
Institut für Lebensmittel- und Ressourcenökonomik

Global and experimental evidence on the adoption of
innovations and robotics for sustainable crop production

Dissertation
zur Erlangung des Grades

Doktor der Agrarwissenschaften (Dr. agr.)

der Landwirtschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

von

Philipp Feisthauer

aus

Trier

Bonn 2024

https://www.ilr1.uni-bonn.de/de


Erstgutachter:
Zweitgutachter:
Vorsitzender:
Fachnahes Mitglied:

Prof. Dr. Jan Börner
Prof. Dr. Monika Hartmann
Prof. Dr. Thomas Heckelei
Prof. Dr. Christian Lippert

Tag der mündlichen Prüfung: 2. September 2024

Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultät der Universität Bonn



Notwendige Fragen

Das Gewicht der Angst

Die Länge und Breite der Liebe

Die Farbe der Sehnsucht

im Schatten und in der Sonne

Wie viel Steine geschluckt werden müssen

als Strafe für Glück

und wie tief man graben muss

bis der Acker Milch gibt und Honig

Erich Fried





v

Danksagung

Herausfordernde, doch vor allem unglaublich bereichernde vier Jahre liegen hinter mir.
Ich möchte mich bei all meinen fachlichen und persönlichen Wegbegleitern von Herzen
bedanken, deren unschätzbare Unterstützung mich bis an diesen Punkt der Promotion
getragen hat.

Zuallererst danke ich meinem Doktorvater Jan Börner und meiner Zweitbetreuerin
Monika Hartmann. Das Betreuungsverhältnis bot mir einerseits große Flexibilität und
den Freiraum, meine Forschung stark nach meinen persönlichen thematischen und
methodischen Interessen auszurichten. Andererseits war unsere Zusammenarbeit bis
zuletzt durch ihre professionelle fachliche Begleitung und einen äußerst wertschätzenden
Umgang geprägt. Ich bin überzeugt, dass ihr hoher Anspruch kombiniert mit wohlwol-
lendem sowie kollegialem Beistand maßgeblich die Qualität dieser Arbeit ungemein
gesteigert hat und ich bin dafür sehr dankbar.

Darüber hinaus danke ich all meinen Kollegen am ILR für ihre fachliche und emotionale
Unterstützung. Ausdrücklicher Dank gilt Dario Schulz und Linmei Shang, die mich
substanziell in der Datenerhebung und der Konzeptualisierung der Analysen für Kapitel
2 untersützt haben. Dank der tatkräftigen Mitarbeit von Alexa Leyens ist die Datenerhe-
bung von Kapitel 4 maßgeblich vorangetrieben worden. Dominik Suri und Dr. Javier
Miranda danke ich für die spannenden fachlichen Diskussionen, und Janine Macht, Dr.
Jeanette Klink-Lehmann, Gabriel Frey sowie meinen weiteren Flurnachbarn danke ich
für den harmonischen Umgang und die Albernheiten, die den manchmal trockenen
Doktorandenalltag versüßt haben.

Meine Promotion war eingebettet in und gefördert durch das DFG Exzellenzcluster
PhenoRob. Es war ein großes Privileg, Teil dieses interdisziplinären, hochaktuellen
Forschungsprojekts zu sein und ich danke meinen Kollegen im Core Project 6 für die
Diskussionen und den Team Spirit und dem Cluster Office für die enorme administrative
Arbeit.

Die Unterstützung meiner Familie geht weit über die Promotion und das hier Erfassbare
hinaus. Meine Eltern und beiden Schwestern waren besonders in den letzten intensiven
Jahren durch ihre liebevolle Anteilnahme, ihren unermüdlichen Optimismus, ihre



vi

intellektuellen Impulse, ihre klaren Meinungen und vor allem ihre bedingungslose
Stabilität und Verlässlichkeit essenzielle Säulen in meinem Leben. Ich danke es euch
von Herzen!

Zuletzt, jedoch ohne ihre Bedeutsamkeit schmälern zu wollen, danke ich meinen
Freunden in Bonn und in der Ferne. Fabian, Paula, Michelle, Robert, Charlotte, Alex,
Christian, Theresia und Edmund, ihr habt mich mit wertvollen Lebenstipps begleitet
und habt mir zugehört. Vielen Dank für alles.







ix

Kurzfassung
Landwirtschaftliche Innovationen im Allgemeinen und Smart Farming Technologien
(SFT) im Speziellen haben das Potenzial, negative Umwelteffekte und die damit
verbundenen Risiken moderner landwirtschaftlicher Praktiken zu mindern, während sie
deren Produktivität und Präzision steigern. Für Technologiehersteller, Agrarökonomen
und politische Interessenvertreter ist es von zentraler Bedeutung, ein umfassendes
Verständnis der Treiber der Technologieannahme zu entwickeln und zu verstehen,
warum Landwirte weiterhin zögern, sich mit intelligenten und autonomen Technologien
zu befassen, um das volle Potenzial dieser nachhaltigen Innovationen zu entfalten.

Diese Dissertation untersucht die Annahme landwirtschaftlicher Innovationen aus ver-
schiedenen Blickwinkeln. Zunächst identifizieren und ordnen wir quantitative Literatur
zur Annahme landwirtschaftlicher Innovationen systematisch in einer globalen Evi-
dence Map von beträchtlicher Größe an, um die statistische Relevanz von häufig und
weniger häufig untersuchten Determinanten der Technologieannahme zu untersuchen
und um daraus Forschungsempfehlungen abzuleiten. Wir gehen dann im Rahmen eines
Lab-in-the-Field Experiments genauer auf die Haltungen deutscher Ackerbauern gegen-
über SFT ein und testen explizit, ob ausgewählte hypothetische Politikszenarien einen
positiven Effekt auf deren zukünftige Annahmebereitschaft haben. Ferner replizieren
wir dieses Experiment mit landwirtschaftlichen Studierenden, um ein unerwartetes
Verhaltensmuster genauer zu untersuchen, das in obigem Experiment mit Ackerbauern
entdeckt wurde. Außerdem leiten wir daraus eine Aussage über Effekte ab, die sich
potenziell durch die Wahl spezifischer Teilnehmergruppen in experimentellen Stich-
proben erklären lassen. Zuletzt nutzen wir ein psychologisches Konzept—die Theory
of Planned Behahvior (TPB)—zur Erforschung der Rolle zusätzlicher ausgewählter
Verhaltensparameter hinsichtlich der Intention der Landwirte, Spot Spraying zu Herbizid
reduzierter Beikrautregulierung auf ihren eigenen Feldern zu nutzen.

Während wir global häufig erforschte soziodemografische und Strukturvariablen sta-
tistisch zumeist als insignifikant beobachten, finden wir, dass seltener untersuchte
Variablen mit Bezug zum Verhalten von Landwirten, deren persönlichen Einstellungen
und Interaktion mit ihrem sozialen und professionellen Umfeld relativ betrachtet höhere
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statistische Relevanz in der Annahmeforschung zu haben scheinen. Diese Erkenntnisse
werden durch die Ergebnisse der experimentellen und der TPB Studie ergänzt. Im
Speziellen sind die positive Umwelteinstellung und Innovationsfreude der Landwirte
starke Prädikatoren ihrer SFT Annahmeintentionen. Weitere aussagekräftige Verhal-
tensparameter des Vorhabens, Spot Spraying auf den eigenen Feldern innerhalb der
nächsten fünf Jahre zu nutzen, sind soziale Normen und Moralempfinden der Landwirte
bezogen auf einen pfleglichen Umgang mit der Umwelt. Allerdings finden wir für
keins der hypothetischen Politikszenarien den erwarteten statistischen Effekt, obwohl
sowohl die Richtung als auch die Magnitude der Schätzer im Sinne der Hypothesen
vielversprechend ausfallen. Darüber hinaus finden wir deutliche Unterschiede zwischen
den Ergebnissen aus den Stichproben mit Landwirten und Studierenden, was Zweifel an
der Eignung von Studierenden als Substitute für Landwirte in Experimenten bezüglich
erwartbarer Effekte von Agrarpolitiken nahelegt.

Neben den methodischen und theoretischen Beiträgen dieser Dissertation verdeutlichen
insbesondere unsere Ergebnisse die Relevanz von Verhaltensparametern für zukünftige
Forschungsbestreben sowie kontextbezogene Agrarpolitikstrategien mit dem Ziel einer
nachhaltigen Intensivierung der modernen Landwirtschaft.

Schlüsselwörter: Annahme landwirtschaflticher Innovationen, Smart Farming Technolo-
gien, Farmebene, Verhaltensdeterminanten, Auswertung hypothetischer Politikszenarien,
experimentelle Methoden
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Abstract
Agricultural innovations in general and smart farming technologies (SFT) in particular,
can mitigate the negative environmental impacts and risk inherent to modern agricultural
practices while increasing productivity and precision thereof. Clearly, understanding
what drives their adoption and why farmers are still hesitant to venture into the field
of smart and autonomous farming technologies is pivotal for technology producers,
agricultural economists and political stakeholders alike to unfold the full potential of
these sustainable innovations.

The present dissertation studies the adoption of agricultural innovations from different
vantage points. First, we systematically identify and organize quantitative agricultural
innovation adoption literature in a sizable global evidence map to learn about the
statistical relevance of frequently and less frequently investigated farm-level adoption
determinants and to propose future avenues of research. Second, in a framed lab-in-
the-field experiment with German crop farmers we delve deeper into their attitudinal
dispositions toward SFT, and we test whether a set of hypothetical policy scenarios has
a positive effect on farmers’ intention to use more SFT in the future. Third, we replicate
the above experiment with agricultural students to get a better understanding of an
unexpected behavioral pattern observed in the farmer sample and to derive a statement
regarding potential subject pool effects in agricultural policy evaluation studies. Fourth
and last, we draw on a psychological framework—the Theory of Planned Behavior
(TPB)—to extend our knowledge regarding likely behavioral antecedents of farmers’
intention to use spot spraying for herbicide-reduced weed control on their own farms.

While frequently investigated structural and sociodemographic variables are found
statistically insignificant in a vast majority of studies investigating adoption across
the globe, less frequent variables pertaining to farmers’ behavior, attitudes and their
embeddedness in their social and professional environment bear statistical relevance
for adoption relatively more often. This is complemented by the findings of both the
experimental and the TPB approaches. In particular, farmers’ pro-environmental attitude
and innovativeness are found to be strong predictors of their intended SFT adoption.
In addition, social and moral norms to tend to the environment render themselves
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relevant antecedents of farmers intention to conduct weed management via spot spraying
technology on their own fields within the next five years. By contrast, neither of the
investigated policy scenarios yield the expected effects on SFT adoption intention.
Promisingly, however, both their magnitude and direction of effect are in line with
theoretical predictions. We can further show a marked discrepancy between the results
derived from the farmers and students, respectively, which casts doubt on the adequacy
of using agricultural students as substitutes for farmers in agricultural policy evaluation
experiments.

The methodological and theoretical contributions alongside the insights derived in
this dissertation emphasize the relevance of behavioral determinants to inform future
research endeavors and enable context-specific agricultural policies aiming at sustainable
intensification of modern agriculture.

Keywords: agricultural innovation adoption, smart farming technologies, farm-level,
behavioral determinants, hypothetical policy scenario evaluation, experimental methods
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Chapter 1

Research context1

1.1 Motivation and structure

The challenges for global agricultural systems are numerous. A continuous growth of
the global population (United Nations, 2021) alongside the anticipated increase in global
demand for food, feed, and fiber (van Dĳk et al., 2021; von Braun et al., 2021) will require
a transformation of agriculture to achieve greater levels of productivity while reducing
negative impacts on biodiversity, ecosystems, and climate (Garnett et al., 2013). The
societal relevance of this notion has led international organizations and governmental
institutions to proclaim multi-annual agendas for global sustainable development (United
Nations, 2023) and formulate specific goals, such as the pan-Europe target, to reduce
pesticides by 50% until 2030 (European Union, 2020). However, unfavorable trends
with respect to biodiversity (Hallmann et al., 2017), ecosystems quality (Newbold et al.,
2015), the intensity of pesticide use (FAOSTAT, 2024) and the availability of agricultural
land in developed countries such as Germany (Destatis, 2024), have made sustainable
intensification of farming a particularly ambitious endeavor.

Innovations in farm management processes and technology are seen as a crucial element
to increase profitability of farming and promote sustainable intensification by improving
the efficiency of input use, reducing agricultural greenhouse gas emissions, lowering
natural resource exploitation, and mitigating adverse impacts on ecosystems in water
and on land (Springmann et al., 2018). In particular, recent developments of smart

1Research presented in this dissertation was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy, EXC 2070-390732324-PhenoRob.
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Chapter 1. Research context

farming technologies (SFT) are considered pivotal innovations, with the potential to
fundamentally transform farming systems and harmonize the outlined trade-offs inherent
to agricultural production (Lindblom et al., 2017; Walter et al., 2017). Aerial modes of
operation, smart sensors, and artificial intelligence (AI) enable unprecedented resolution
and speed of agronomic data collection and analysis in real time to inform farmers’
managerial processes. This enables machine-based high-precision application of inputs
tailored to the spatiotemporal requirements of field sections or even individual plants
(Aubert et al., 2012; Wolfert et al., 2017). This can substantially reduce washout of
chemical inputs into the environment (Finger et al., 2019). Moreover, increasing levels
of automation can reduce human labor requirements and alleviate physical working
conditions (Bovensiepen et al., 2016; Finger, 2023).

The anticipated consequences ascribed to innovation-based sustainable intensification of
agriculture clearly transcend the boundaries of individual farming operations. Especially
the expected environmental improvements bear a public good character as they benefit
society at large. From the perspectives of political decision makers and advisers,
agricultural economists, and non-governmental interest groups, it is thus of high interest
to understand what drives and hinders the adoption process on farm level. This
knowledge can inform the design of enabling policy strategies to accelerate the diffusion
and eventually exploit the full potential of societally highly beneficial innovations.
Situated in this interplay of interests, the present dissertation has the overarching
objective to investigate what drives the uptake of eco-friendly agricultural innovations
with a particular consideration of SFT, for which the empirical research basis is yet scarce.
While each chapter avails itself of a different research methodology, the focal vantage
point remains with farmers as the adopting entity throughout the entire dissertation. We
study farmers’ behavioral dispositions and thereby do not only contribute to painting a
more holistic picture of potentially relevant adoption determinants. We also draw on
and extend experimental approaches to test potential policies to pave the way toward a
more evidence-based promotion of sustainable intensification of agriculture.

The determinants of the uptake of more productive, environmentally conserving, and
less risky agricultural innovations have been studied for decades. The current body
of quantitative observational literature accumulates to a vast amount of farm-level
studies to investigate the association of farmers’ adoption behavior with a multitude
of economic, demographic, and contextual variables. To retain an overview of the

2



1.1. Motivation and structure

abundant literature and to facilitate the design of policies to promote innovation uptake,
scholars have conducted meta-analyses with varying methodological approaches and
thematic perspectives. The majority thereof, however, are inconclusive, and it needs
to be assumed that adoption might be highly specific to individual innovation types
and contexts. What is more, economic and sociodemographic variables are strongly
overrepresented, while measures of farmers’ behavior, their network, or specific attributes
of the innovations themselves were relatively underrepresented (de Oca Munguia and
Llewellyn, 2020; Thompson et al., 2023). The objective of Chapter 2 is therefore
to establish an updated global evidence map of the available agricultural innovation
adoption literature to address the prevalent inconclusiveness thereof. In depicting their
frequency and statistical relevance, the primary aim of this chapter is to formulate
unequivocal statements regarding the impact of common adoption determinants and
identify ambiguous and poorly researched determinant categories to formulate priorities
for future research.

The body of empirical adoption literature with a focus on SFT is much less abundant.
This is largely owed to the fact that these innovations are still in an early stage of
technological development with little commercial availability. While their value
proposition has previously been recognized by scientists from different disciplines
(e.g., Balafoutis et al., 2017; Lowenberg-DeBoer et al., 2020; Weersink et al., 2018),
the expected benefits revolving around gains in profitability and input-use efficiency
next to the mitigation of environmental impacts remain widely unexploited due to
faltering rates of adoption and diffusion. Furthermore, open questions pertaining to
novel SFT features, e.g., AI, autonomous modes of operation and data collection concern
potential adopters (e.g., Jakku et al., 2019; Sparrow and Howard, 2021). Studying how
novel technology characteristics correspond to and interact with farmers’ non-monetary
personal motives may thus complete and potentially adjust our conceptualization of
agricultural technology adoption (Blasch et al., 2022; Chouinard et al., 2008; Kuehne
et al., 2017; Musshoff and Hirschauer, 2014). This sets the scene for Chapter 3 in which
we investigate German crop farmers’ intended SFT adoption in a framed lab-in-the-field
experiment. The first objective is to learn how farmers’ attitudes toward the environment
and innovations, next to their trust in the security and sovereignty of agricultural data
collected by autonomous robots, co-determine willingness to adopt SFT. The second
objective is to find out whether a set of realistic policy scenarios can positively influence

3



Chapter 1. Research context

farmers’ intended adoption in a positive way. With this artificial experimental setting we
are not only able to investigate highly relevant behavioral determinants of SFT adoption
(Dessart et al., 2019) but we also provide a cost-efficient approach to evaluate policy
strategies to support farmers who want to contribute to transforming modern agriculture
in a more sustainable direction through the use of these innovations.

To elicit farmers’ intended SFT adoption, the experimental centerpiece of Chapter 3 is a
two-round business simulation game (cf. Thomas et al., 2019). Among other things, we
therein tested the effect of three hypothetical policy treatments on farmers’ SFT adoption
behavior compared to a control group. The results reveal an unexpected phenomenon:
The control group, despite not having received a treatment, exhibited a behavior change
from round one to round two in the sense of the policy treatments, which strongly
resembles the behavior change of the treatment groups. We argue in Chapter 3 that this
“round effect” may be a reason why no statistically significant effect was found for any
of the policies. This finding motivated Chapter 4, in which we describe and discuss an
adapted experimental design and the results of a replication of the above lab-in-the-field
experiment with German agricultural students. The specific objective was to find out
whether the round effect is an artifact and therefore specific to the farmer sample in
Chapter 3, or whether it is the result of a methodological issue inherent to multi-period
(agricultural) economic management games. In any case, learning about round effects
is of high relevance for policy makers and agricultural economists, who interpret and
implement findings from similar experimental approaches into policy designs, and it
would require accommodating round effects in future research. As such, Chapter 4, in
its brevity, is a methodological amendment to the objective of this dissertation. It aims
to shed light on a phenomenon in experimental research which is, to the best of our
knowledge, little known and understood in this field.

This dissertation concludes with Chapter 5. It presents a purely behavioral approach
to studying German farmers’ intended adoption of one exemplary SFT, namely spot
spraying for herbicide-reduced weed management. The chapter is thus an immediate
response to the findings in Chapter 2 and to the pleas of previous authors to place
greater attention on behavioral variables (Dessart et al., 2019; Thomas et al., 2019;
Thompson et al., 2023). Arguably, this may uncover more subtle, context-specific
influences on farmers’ technology uptake, which has long been analyzed through the
lens of profit maximization (Musshoff and Hirschauer, 2014). We build on the Theory

4



1.2. Synthesis of research

of Planned Behavior (TPB) (Ajzen, 1991), a psychological theory which is not based in
the paradigm of rational decision-making (Sok et al., 2021). Briefly, this theory predicts
an individual’s intended actions by their attitude toward the action, the feeling of being
in control and capable of the action, and the influence of their personal environment
of, e.g., colleagues or peers. Our first objective was to test and adapt this theory in the
context of farmers’ spot spraying adoption decision. The second objective was to test an
extended version of the theoretical framework to capture the extent to which farmers’
affinity to innovations alongside their environmental and moral dispositions function as
behavioral antecedents of their attitude toward spot spraying and the intention to adopt
it. In sum, the objective of Chapter 5 was to identify attitudinal drivers of German crop
farmers to use spot spraying on their own farm. Because this approach goes beyond
commonly assessed sociodemographic and economic farm variables, it contributes to
drawing a more holistic picture of likely important determinants of uptake, and our
findings are thus highly relevant for agricultural economists and politicians who want to
design effectual SFT dissemination strategies.

In the next section of the introduction to this dissertation, an overview of each chapter is
given including a more detailed outline of the respective motivation, analytical approach
and the results (Chapter 1.2). This is followed by the discussion of how the results of
each chapter contribute to the overarching objective of the dissertation (Chapter 1.3).
Finally, after the discussion of overarching limitations of this work (Chapter 1.4), we
close with the implications for policy (Chapter 1.5).

1.2 Synthesis of research

1.2.1 Matching technology to behavior and context: Insights from
a global meta-analysis of adoption studies in agriculture

Scientist have long been keen on learning about determining factors of the uptake of
more productive, environmentally conserving, less risky agricultural innovations with
early studies dating back several decades (e.g., Bell, 1972; Ervin and Ervin, 1982;
Feder, 1982; Fliegel and Kivlin, 1966; Griliches, 1957; Yapa and Mayfield, 1978).
Paralleled by the evolving diversity of agricultural innovations, the body of quantitative
observational literature has grown, which today accumulates to a vast amount of
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farm-level studies to assess the relation of a multitude of economic, demographic,
and contextual variables with farmers’ adoption behavior. It has become increasingly
challenging to retain an overview of the abundant literature and to distill universal
statements regarding the relevance of certain adoption determinants to eventually
inform the design of policies for the promotion of innovation uptake. Scholars have
therefore conducted meta-analyses with varying degrees of methodological rigor and
geographic and innovation-specific foci. The majority of these synoptic studies, however,
could not come to unambiguous conclusions, suggesting that adoption might be highly
specific to innovations and contexts “in which case inconsistency of results would
reflect reality” (de Oca Munguia and Llewellyn, 2020, p. 88). Furthermore, readily
observable economic farm characteristics and farmers’ sociodemographic variables were
operationalized disproportionately often, while more subtle variables depicting, e.g.,
farmers’ attitudes, norms, or their embeddedness within their professional environment,
remain relatively underrepresented (e.g., Thompson et al., 2023). In a similar fashion,
specific characteristics of the innovations themselves as potential drivers of adoption were
found to be largely absent from adoption research (de Oca Munguia and Llewellyn, 2020).
In light of this equivocal evidence base, designing targeted and efficient innovation
dissemination policies is a daunting task.

To get a comprehensive overview of the research landscape, Chapter 2 presents an up-to-
date evidence map (Pullin et al., 2022) based on a global data set of published adoption
literature. It focuses on multiple crop farming innovations, including new management
or practice regimes, improved agricultural inputs, and technological innovations. This
not only allows for the investigation of the frequency and statistical relevance of recorded
adoption determinants but, by relating the former to the latter, it also enables the
identification of currently underrepresented determinant categories that seem to bear
relevant, yet not fully exploited, statistical information value for adoption research. As
such, rather than deriving specific policy recommendations, Chapter 2 aims to give an
orientation for future adoption research.

Through a multi-stage literature identification, selection, and recording approach
(Havránek et al., 2020), a sizable data base with minimum possible bias was established,
comprising over 32,000 individual adoption determinant observations stemming from
534 unique case studies. We assigned each observation to one of three vote count
categories, namely 1) negative and significant, 2) insignificant, and 3) positive and
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significant. Compared to methodologically more rigorous meta-regressions with high
data quality requirements (e.g., Schulz and Börner, 2023), our procedure enabled us to
exploit a larger extent of the data set and further propose two disaggregated analysis
perspectives, as aggregation is frequently assumed to mask sample heterogeneity
(Wauters and Mathĳs, 2014). For the first disaggregation approach, we differentiated
agricultural innovations by four attributes. Specifically, we conceptualized innovations
to be either risk-reducing, environmental footprint-reducing, productivity-increasing, or
cognition-enhancing. This disaggregation allowed us to identify systematic differences
regarding the inclusion frequency and statistical relevance of the adoption determinants
in our data base for each innovation type separately. In the second disaggregation, we
compared the results from studies conducted in OECD (Organization for Economic
Co-operation and Development) and BRICS (Brazil, Russia, India, China, South Africa)
countries to studies from the developing country context.

In line with previous research, we found that the majority of determinants originated in
the categories of farm-level and operator characteristics, with most of them positively yet
not statistically significantly associated with adoption. In contrast, variables measuring
farmer attitudes, behavior, and their embeddedness in their social and professional
environment have received substantially less attention in the literature, although several
were significant in most cases. While this finding remained robust across the analyses,
both disaggregation approaches revealed a more refined interplay in which certain
variables from less researched categories had a high proportion of significant cases for
specific innovation types (attributes) and country contexts, respectively.

1.2.2 Adoption intentions of smart weeding technologies–A lab-in-
the-field experiment with German crop farmers

SFT are assumed a technological leap toward more sustainable and productive ways
of farming (Lindblom et al., 2017; Walter et al., 2017), but their adoption is far from
reaching the societally desirable momentum (Mizik, 2022; Spykman et al., 2021). Next
to the fact that early technology prototypes are not yet profitable in all production
systems (Lowenberg-DeBoer et al., 2020), farmers have expressed further concerns
pertaining to increasing technological complexity and novel SFT characteristics, e.g.,
autonomous modes of operation and the ability to collect, process, and utilize large
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amounts of plot-specific data in real time (Fleming et al., 2018; Jakku et al., 2019;
Scholz et al., 2021). Chapter 3 is thus concerned with the determinants of farmers’
intended adoption of smart weeding technologies (SWT), namely spot spraying and
an autonomous weeding robot. It complements Chapter 2 since it not only lays the
focus on specific, barely researched and adopted sustainable agricultural innovations
but also enhances our knowledge regarding potential underlying adoption mechanisms
by assessing selected behavioral determinants and the effect of hypothetical policy
interventions in an experimental case study setting.

Against the backdrop of the above considerations, which are likely explained by low
levels of diffusion and technical information regarding specific SWT, Chapter 3 is based
on a hypothetical approach, specifically a framed lab-in-the-field experiment (Gneezy
and Imas, 2017). Due to high experimental control on the one hand but a professional
subject pool–in our case composed of active crop farmers–and a hypothetical setting to
mimic their everyday decisions on the other hand, lab-in-the-field experiments strike a
balance between external and internal validity. Furthermore, since the experimental
conditions can be framed according to the research context, lab-in-the-field experiments
are a cost-efficient option to observe farmers’ response to hypothetical policies, assuming
that SWT were already fully operational.

The core of the incentive-compatible and pre-registered experiment, conducted in early
2022, consisted of a two-period business simulation game. German crop farmers were
asked to choose from three different weeding technologies to set up a weed management
strategy for a fictitious crop farming business with 50 hectares of farm land. A broadcast
application boom represented a conventional technology with relatively high profits
but no positive environmental impact. Spot spraying and a weeding robot represented
the SWT alternatives with lower profits but positive environmental impacts. The aim
of the first game round was to explain participants’ intention to use SWT by a set
of sociodemographic control variables and three behavioral measures, which were
hypothesized to interact with novel features inherent to the presented SWT. These
behavioral measures were farmers’ attitudes toward the environment, toward farming
innovations in general, and toward the security and privacy of farming data. In the
second round, the sample was randomized into a control and three treatment groups.
While the former group received the same experimental conditions as in the first round,
the latter received a subsidy, a green nudge, and the combination thereof, respectively.
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All policy treatments were hypothesized to increase the number of hectares allocated to
SWT.

The results of the first round reveal that farmers with a more positive attitude toward the
environment and innovations in general were statistically significantly more willing to
use spot spraying and a weeding robot in their pre-treatment weeding plan compared to
farmers with lower scores in these behavioral determinants. However, to our surprise
and in contrast to the current debate in research and in public (e.g., Gabriel and
Gandorfer, 2020; Jakku et al., 2019), farmers’ lack of trust in agricultural data collected
by autonomous machinery played no role for SWT adoption intentions with statistical or
economic relevance in our sample. The second round yielded no statistically significant
effect of any policy scenarios on intended SWT adoption. However, all treatment
effects had a positive association with higher SWT allocation shares in the sense of
the hypotheses at economically and environmentally relevant magnitudes. We assume
that an unexpected behavioral phenomenon among study participants may be one major
reason for the absence of significant treatment effects. Specifically, in round two and
despite not having received a policy treatment, the control group showed a similar
positive change in farm-land allocated to SWT in the sense of the hypotheses compared
to the treatment groups. Although this phenomenon, which we coin “round effect”, may
not necessarily be unique to our experiment, we are not aware of any specific mention
in experimental agricultural economics.

1.2.3 Round effects in economic experiments–Insights from a busi-
ness simulation game with agricultural students

Chapter 4 is motivated by the phenomenon of the round effect identified in Chapter 3.
As outlined, from round one to round two in the business simulation game above, all four
experimental groups exhibited similar technology allocation changes which rendered
the policy interventions statistically indistinguishable from zero. With the objective
to learn whether this round effect is a subject pool effect (Peth and Mußhoff, 2020)
brought about by the specific farmer sample or whether round effects are a phenomenon
inherent to multi-period business simulation games, in Chapter 4, we replicated the
above-mentioned lab-in-the-field experiment with agricultural students in an adapted
design. As such, Chapter 4 is a methodological complement to Chapter 3. Rather than
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deriving policy recommendations or investigating how agricultural students perceive
SFT, the aim of this chapter was, first, to make future agricultural economic experiments
with similar designs aware of round effects and their potential consequences for the
development of agricultural policies. Second, based on the comparison of the results
gathered from the farmer and the student sample, we critically reflect upon the adequacy
of using students as substitutes to study farmers’ behaviors and attitudes.

Our adapted experimental design is strongly based on the precursory study in Chapter
3. As before, survey participants–placed in the role a fictitious crop farmer–received
the task to use an arbitrary combination of broadcast application, spot spraying, and a
weeding robot in order to conduct weed management on 50 hectares of hypothetical
farm-land for two rounds. The pre-treatment round determinants of interest of intended
SWT adoption remained pro-environmental attitude, personal innovativeness and trust
in the security and privacy of farming data. For simplicity and in line with the aim of
this study to narrow the focus on round effects, in round two, we only tested the effect of
the subsidy paid for each hectare on which a smart weeding technology was used as
policy treatment.

The multivariate analysis results of the student sample exhibit marked difference
compared to the farmer sample in Chapter 3. First, the pre-treatment round findings
for several attitudinal measures in the student sample contradict earlier findings from
the farmer sample with respect to their direction of effect, their significance, and their
magnitude. Second, while the control group did not significantly change their technology
allocation pattern in round two, the treated group exhibited a distinct reaction to the
subsidy via higher (lower) allocations shares of spot spraying and the weeding robot
(broadcast application). On the one hand, this implies a significant policy treatment
effect in the student sample which we did not find in the farmer study. On the other hand,
this clearly hints at the absence of a round effect in this present case. In sum, the findings
of 4 contrast what was previously found in Chapter 3. This fuels the debate about
both temporal effects and the choice of subject pools in agricultural policy evaluation
experiments.
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1.2.4 Behavioral factors driving farmers’ intentions to adopt spot
spraying for sustainable weed control

Chapter 5 is built on a similar motivation as Chapter 3. It empirically assesses the
determinants of farmers’ adoption intention of SFT, a promising generation of sustainable
agricultural innovations whose environmental potential is still largely untapped due
to an early stage of technological maturity and a majority of crop farmers who have
proven to be reluctant to adopt them. However, Chapter 5 looks at intended adoption
through a purely behavioral lens which, according to our findings in Chapter 2 and
previous conclusions in, e.g., Dessart et al. (2019) or Thompson et al. (2023), require
reinforced attention. Furthermore, a behavioral approach is assumed to unravel subtle,
context-specific adoption dynamics that may not necessarily be explained by purely
rational decision-making aimed at profit maximization (Musshoff and Hirschauer, 2014).

This chapter is based on the TPB (Ajzen, 1991), which we extend and adapt according
to our particular empirical setting, i.e., German farmers’ adoption of spot spraying on
parts of their fields within the next five years for high-precision weed management
with substantial herbicide savings. The theory in its original form aims to predict an
individual’s behavior by three focal constructs: the individual’s attitude toward the
action, subjective (social) influences or pressures to perform it, and the individual’s
belief of being in control and capable of performing it (Ajzen, 1991). The theory is
highly adaptable, and numerous previous examples have shown that context-specific
model extensions can more precisely describe the background and decision context of
the surveyed individuals (Sok et al., 2021). We therefore follow the recommendation by
Fishbein and Ajzen (2010) and add further theory-informed context-specific extensions
to the conceptual model. Namely, we hypothesize that farmers’ personal innovativeness,
pro-environmental attitude, and moral norms act as dispositional antecedents of their
attitude toward spot spraying and the eventual adoption intention. Due to the exploratory
nature of our conceptual setup, we use partial least squares structural equation modeling
for the data analysis which is recommended as a flexible approach and particularly
suitable for theory development and informing policy (Hair et al., 2017).

Since Chapter 5 is the second component of the larger investigation of German farmers’
intended SFT adoption presented in this dissertation, data collection took place at the
same time as the framed lab-in-the-field experiment (Chapter 3). The baseline model
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analysis reveals that our data is well in line with theoretical model predictions according
to (Ajzen, 1991), i.e., farmers’ attitude, subjective norms, and perceived behavioral
control explain intended spot spraying adoption with good approximate model fit.
Besides proving the baseline model findings robust, the extended model also revealed
additional insights. We found a medium-sized total effect of moral norms, which
suggests that our survey participants, on average, perceive a moral duty to reduce the
amounts of herbicides applied on their land, which translates into a higher willingness
to adopt spot spraying to achieve this goal. Furthermore, we could show with statistical
significance that farmers with higher personal innovativeness develop a more favorable
attitude toward spot spraying, which translates into a higher willingness to adopt it.
In turn, although high average scores of pro-environmental attitude were found in the
sample, we found no clear effect thereof on farmers’ attitude and adoption intention of
spot spraying.

1.3 Contributions

This dissertation investigates the adoption determinants of agricultural innovations on
the farm level. In line with this overarching trajectory, each of the Chapters 2 to 5 has an
individual motivation and builds on a unique methodological and contextual approach
with respect to the innovations and adoption determinants investigated. In the following,
we outline and synthesize the contributions of each chapter.

The meta-analysis presented in Chapter 2 contributes to the overarching objective of this
dissertation, as it gives an extensive overview of the published quantitative literature
focusing on the adoption of crop farming innovations. We emphasize the frequency
and statistical significance of variables which are commonly (and not so commonly)
used to model adoption on farm level. The findings were derived from the largest
currently available database, which allowed us to investigate the sample in both its
entirety and according to potential innovation- and context-specific heterogeneity. We
agree with the conclusions of previous studies, i.e., although mostly positively associated
with adoption, the vast majority of recorded adoption determinants were statistically
insignificant in primary studies. This limits the scope to formulate immediate policy
recommendations. However, we identified several adoption determinants that have
a relatively low inclusion frequency in our sample but, when included, the majority
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thereof were statistically significant. This suggests a high explanatory value of these
particular variables for innovation uptake. Since this promising finding does not allow
for generalizability due to a small number of respective observations, these variable
categories render themselves relevant candidates for future research. To this end, one
major finding, namely the limited yet promising evidence for the impact of behavioral
determinants on the adoption of eco-friendly innovations, further motivates Chapter 3
and Chapter 5 in this dissertation. Clearly, our comprehensive database is far from being
fully exploited and may thus be of use for and extended by future research projects.

The first contribution of Chapter 3 to the overall objective of this dissertation lies
in the fact that we conceptualize and relate behavioral determinants to anticipated
novel attributes inherent to SFT. In other words, we investigate the association of
a set of farmers’ attitudes with their willingness to try out potentially eco-friendly
innovations, although this may not be optimal from the perspective of a rational,
economically thinking decision maker. We could show that, while more innovative
and environmentally caring farmers express a higher intention to adopt spot spraying
and autonomous weeding robots, their intentions are unaffected by concerns revolving
around farming data. While this confirms the relevance of certain farmers’ attitudes for
SFT uptake, it also enables a more precise characterization of potential early adopters and
the derivation of policy-targeting criteria. The second contribution lies in the evaluation
of a set of plausible policy scenarios to promote sustainable smart weeding innovations.
Although the policy treatments were not statistically significant, all estimates were
positively associated with higher levels of adoption at relevant scales within the German
agricultural context. This suggests that enhanced policy interventions may play a role
in the future as SFT continue to mature. In sum, the findings of Chapter 3 are highly
relevant for political stakeholders in addition to behavioral and agricultural economists
who want to facilitate and accelerate sustainable intensification of modern agriculture
based on experimental approaches. In identifying what we call a round effect, we further
bring the attention of researchers to a methodological issue which, if unaccounted for,
may cause the systematic misinterpretation of the results of multi-period experimental
studies (cf. Thomas et al., 2019) and may potentially lead to ineffectual and costly
policies.

The results in Chapter 4 yield no evidence of a round effect. We can thus assume that the
round effect might be a phenomenon specific to the farmer sample collected for the study
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in Chapter 3. The first contribution of this chapter thus lies in increasing the awareness
for round effects in future research. We further want to urge agricultural economists to
develop alternative research designs to investigate round effects in more depth and to find
out whether they are a phenomenon which can generally be observed in farmer samples.
Second, in showing substantial differences between the farmers and the students in our
samples regarding the effects of the attitudinal constructs and their responsiveness to
the subsidy, we emphasize that students may not be adequate substitutes for agricultural
policy evaluation studies (Peth and Mußhoff, 2020). Although collecting farmer samples
increases the cost and required effort to conduct experimental agricultural economics
research in the short run (Harrison and List, 2004), we argue that it will deliver more
accurate and realistic insights and thereby contribute to the design of cost-efficient
policies in the long run. Hence, our findings are relevant for experimental agricultural
economists and policy makers who interpret and implement findings from multi-period
business simulation games and similar experimental approaches.

Chapter 5 is a purely behavioral economics contribution to the objective of this
dissertation. It applies and extends a psychological theory which relies on a set of
attitudinal variables to explain farmers’ adoption intention of a smart farming innovation
for enhanced weed management with high potential to mitigate negative environmental
impacts. On the one hand, our theoretical extension may inform future behavioral
research in the field of SFT adoption. Our findings emphasize the role of farmers’
moral considerations and their openness to innovations as key factors to determine their
attitude toward spot spraying and their willingness to adopt it. This helps to paint a more
holistic picture of farmers’ intrinsic predisposition toward societally highly beneficial
agricultural innovations. On the other hand, the study may enlighten agricultural policy
makers, since our results underline the importance of channels for farmers to collaborate,
exchange know-how and experiences regarding the benefits of SFT, and acquire adequate
access to technological and financial resources. Given the sociodemographic profile of
our survey participants, which points toward younger and well-educated farmers, our
findings are based on a convenience sample and our analysis may therefore suffer from a
lack of external validity. Nevertheless, we are convinced that we have captured a cohort
of especially innovative and morally driven farmers who are willing to venture into
an unknown field of sustainable technologies even if this may be associated with cost
of investment, learning, or even structural farming system adaptations (Rogers, 2003;
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Suvanto et al., 2020).

1.4 Limitations and future research directions

Beyond specific limitations discussed within each chapter, inherent caveats of the
presented research require highlighting.

First, while our chosen meta-analytic approach in Chapter 2 is advantageous to the extent
that it provides an extensive and largely unbiased picture of global adoption literature,
it is this broad perspective alongside coarse methodological resolution which restrict
the options to apply our findings in policy. Agricultural innovation adoption is highly
context-specific, possibly even farm-specific. Clearly, policies need to consider and be
adapted to such contextual factors to provide effectual solutions to promote uptake and
diffusion of sustainable innovations. In spite of performing two disaggregated analyses,
our meta-analysis summarizes research across socioeconomic and geographic contexts.
This implies that even if our findings were more conclusive, designing agricultural
policies to address adoption drivers and barriers of eco-friendly innovations would
be a challenging task, as this would be based on findings spanning national or even
continental borders. However, considering the size of our data base, the effort invested
into establishing it, and the fact that we only analyzed a subset thereof, we want to
encourage future research to build on and expand it to exploit its full potential.

Second, the novelty and low commercial availability of SWT limited our ability to
capture their economic and environmental characteristics and accurately compare them to
conventional broadcast application technology in the framed lab-in-the-field experiments
in Chapter 3 and Chapter 4. As smart and autonomous farming technologies mature,
a more precise quantification of innovation attributes with potential relevance for the
adoption decision (Shang et al., 2023) next to observing the actual adoption process and
diffusion patterns, will be possible. Eventually, this will contribute to more realistic
and feasible empirical research leading to highly applicable insights. In any case, our
findings can inform modeling exercises to predict adoption decisions on individual
farms (Kuehne et al., 2017) and the diffusion process on a regional scale (Shang et al.,
2021) and thus serve as a starting point and orientation for future research.
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Third and in complementing the previous point, we acknowledge that the findings of
Chapters 3, 4 and 5 may be prone to a low degree of external validity. On the one hand,
a relatively controlled experimental setting with narrow decision-making space left the
participants no room for improvisation to capture their decisions and behavior as would
have been possible in real-life conditions. On the other hand, the survey participants
themselves constitute convenience samples. The farmers contacted for Chapter 3 and 5
do not represent the underlying farmer population since, considering the diversity of
farming structures in Germany, establishing a representative farmer sample would have
exceeded the resources of our project. By contrast, the students which we sampled for
Chapter 4 may not have been an adequate subject pool to begin with in order to derive
insights for the design of policies addressed to farmers. Nonetheless, as we argue in the
respective chapters, our findings may methodologically inspire future research and may
also be useful for policy makers, since it is younger, well-educated farmers, as found in
our sample, with innovative and pro-environmental dispositions among which adoption
of SFT is likely to gain momentum.

Fourth and last, framing and analyzing adoption through the lens of individual farmers
as a one-time event may be a premature perspective which omits additional relevant
considerations. In fact, adoption is a process which spans multiple stages, from becoming
aware of, evaluating, trailing and finally adopting or even discarding an innovation
(Kuehne et al., 2017; Ruzzante et al., 2021). Moreover, previous works suggest that the
influence of farmers’ proximate peers (Massfeller and Storm, 2023) and farming system
dynamics on a regional level (Shang et al., 2021) define the adoption and diffusion
patterns. All these are vital aspects which future works need to incorporate to holistically
study this topic.

1.5 Policy implications

The adoption of innovative management processes and technologies is seen as a
major building block of steering agricultural production systems globally toward more
sustainable and economically more viable outcomes (Springmann et al., 2018). Due to
societally suboptimal rates of adoption and diffusion, these expected benefits remain far
from being exploited, and our attempt to distill generalized adoption determinants from
the vast amount of adoption research in Chapter 2 has resulted in few conclusive findings.
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If anything, the presented work shows that adoption is highly specific to the innovation
type and context under investigation. As further demonstrated in Chapter 3 and Chapter
5, adoption is co-determined by behavioral and innovation-specific aspects, which
scientists have only recently become aware of. Policy designs to promote sustainable
innovations in general and SFT in particular should consider these contextual aspects
and provide a variety of aligned strategies instead of a one-size-fits-all approach to
achieve the desired momentum. In the following, we discuss a non-exhaustive list of
policy recommendations with different scopes and, where possible, we draw on selected
participants’ verbal responses recorded in the course of our empirical study with farmers
to accentuate our elaborations.

The numerical results of Chapters 3 and 5 indicate, on average, a positive intention
to use SFT among the sampled farmers. The fact that our convenience sample may
already represent a relatively innovative cohort of farmers and seeing that the majority
of farmers retain a large share of conventional weeding methods in their technology mix
(Figure 3.2) suggests that we have probably overestimated the SFT adoption intention of
the underlying German farmer population. However, finding high average moral and
pro-environmental dispositions in our sample (Chapter 5) may hint at the effectiveness of
technology demonstrations and informational or nudging campaigns, which emphasize
the environmental benefits and functionality of SFT and specifically appeal to farmers’
perceived environmental responsibility (Dessart et al., 2019; Thomas et al., 2019).
Along these lines, one farmer expressed the following:

“Spot spraying should come along with demonstrations, recommendations and financial
support. I haven’t dealt with it yet since it appears to be too expensive and impractical.”

Especially in the early stages of technological development, substantial incentives might
be needed to overcome the reluctance of potential early adopters and to accelerate
diffusion. Although we show in Chapter 3 that a partial compensation of the opportunity
cost incurred by switching from a conventional technology to a sustainable SFT can
already have a positive impact on farmers’ SFT adoption intention, higher financial
support to remunerate farmers for their contribution to a healthy environment may send
a stronger signal and create a feeling of public appreciation. The following quotes from
survey participants underline this:
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“As long as politicians and society don’t reward environmentally conducive actions
appropriately, I see no bright future for our local agriculture.”

“Societal utility needs to be rewarded via monetary compensation or governmental
support for farming business expansions.”

Both our findings in Chapter 5 and previous literature highlight the importance of
communication and collaboration channels. Including farmers into the design of
regional policy frameworks (Westerink et al., 2017) and providing payments based
on participation in collective agri-environmental schemes can increase collaboration
(Kuhfuss et al., 2016; van Dĳk et al., 2015). It can further motivate collective investment
in and sharing of agricultural innovations among adjacent farmers to overcome financial
bottlenecks and promote the accumulation and exchange of expertise (Blasch et al.,
2022). Additionally, subsidies which are made conditional upon a minimum number
of participating farmers in a given region may benefit the uptake of SFT due to their
normative effect (Kuhfuss et al., 2016). This may contribute to building a social identity
and promote the dissemination of group norms which are known to develop in an
environment of like-minded peers (Terry et al., 1999) and which have been shown to
determine the intention of sustainable innovations uptake (Bonke and Musshoff, 2020).

A related line of thought pertains to the design of research conducted within the
agricultural knowledge and innovation systems. Since several farmers left a comment
regarding valid potential improvements of our empirical design (not shown here), we
recommend reinforcing the inclusion of knowledgeable and innovative farmers into
future research networks to increase collaboration and learning among interdisciplinary
actor groups, e.g., scientists, farmers, and politicians (Hermans et al., 2015). This
will not only enable the design of effective policies to promote pathways toward more
sustainable agriculture, but it will inform agricultural technology producers to tailor
innovations to the specific needs of practitioners.

On another note, with increasing degrees of digitalization of agriculture, the role
of a farm operator, as we currently conceptualize it, is likely to undergo substantial
alterations, which will require us to rethink farming from several perspectives. Current
examples of SFT draw on rapidly recorded and analyzed data to enhance decision-
making and the precision of individual process steps but, importantly, the primary
decision-making power remains with the farmers. However, as agricultural machinery
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becomes increasingly autonomous, intelligent, and safe, a plausible scenario takes
shape in which agricultural robots independently plan and execute manual routine tasks,
e.g., harvesting or the application of pesticides (Marinoudi et al., 2019). On the one
hand, this will change the job profile of future farmers, who will have to expand their
knowledge and skills in fields of digital literacy and engineering to operate and maintain
novel technologies. On the other hand, a continuous substitution of human workers
by agricultural robots will exert additional pressure on agriculture as an economic
sector, especially, in countries with a high share of traditional, small-scale agricultural
structures (Marinoudi et al., 2019). To enable farmers to stay up to date and partake
in these anticipated developments, policy frameworks aimed at financial support and
education are urgently required.

Finally, although not supported by our analysis in Chapter 3, unresolved questions
revolving around big data and AI in agriculture continue to give rise to ambiguous
debates in the public and scientific sphere (Finger, 2023; Jakku et al., 2019; Scholz
et al., 2021; Sparrow and Howard, 2021; Wolfert et al., 2017). Future research and
technological developments next to the implementation of SFT should thus be aligned
with and embedded in comprehensive legislative and ethically sound action plans. This
will preserve farmers’ bargaining power vis-à-vis international technology producers
and food companies, and it will limit the threat of exacerbated market concentration.
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Chapter 2

Matching technology to behavior and
context–Insights from a global meta-
analysis of adoption studies in agricul-
ture

Abstract: An abundant body of case studies and meta-analyses on the uptake of
eco-friendly, more productive, and efficient agricultural innovations across diverse
farming contexts and research methodologies has been published in recent decades.
In light of global socioeconomic, climate, and environmental challenges, it is of high
public and scholarly interest to learn about the underlying mechanisms of adoption
and diffusion of agricultural innovations to incentivize and accelerate these processes
to make agricultural production more sustainable at relevant scales. However, it has
proven difficult to unambiguously determine which general factors are important drivers
of adoption. We establish the largest currently available global data set based on
published ex-post adoption literature to provide an updated evidence map of frequently
and less frequently studied adoption determinants. Next to the aggregate analysis, we
delve deeper into potential sample heterogeneity by disaggregating the data according
to socioeconomic contexts and innovation attributes–a newly developed concept to
characterize and study the relative advantage of innovations. Our findings are by and
large in line with previous review studies. However, we highlight relatively understudied
yet statistically promising behavioral and diffusion factors for future scientific exploration.
Moreover, we find indications of behavioral determinant-innovation attribute pairs,
suggesting that the role of the interaction of intrinsic farmer and innovation characteristics
to explain specific adoption dynamics should be exploited in future studies. Our work is
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thus primarily aimed at informing and helping refine future adoption research.

Keywords: Adoption determinants, agricultural innovations, global evidence map,
innovation attributes, context, relative advantage

JEL classification: Q16, Q18, O13, O33

2.1 Introduction

Intensive agricultural production is associated with a host of adverse environmental
impacts such as, inter alia, land use changes, greenhouse gas emissions, deterioration
of ecosystems in water and on land, and declining biodiversity (Newbold et al., 2015;
Springmann et al., 2018). Accentuated by the increasing global food demand trend
(Tilman et al., 2011), it thus appears paramount to intensify global food production in a
sustainable manner (Garnett et al., 2013) to continue to provide enough healthy food
while staying within the planetary boundaries (Springmann et al., 2018; von Braun et al.,
2021). In this endeavor, a plethora of agricultural innovations have been developed and
adopted around the world.

In a broad sense, innovation is described as a continuous process during which
businesses ameliorate their competitiveness and relative market position by developing
and implementing improved processes, services, or products (Baregheh et al., 2009).
For the purpose of the present study and in line with, e.g., Nord and Tucker (1987)
and Rogers (2003), we, however, apply a narrower definition and henceforth depict
agricultural innovations as novel technologies and improvements of in-field or on-farm
practices with the purpose of enhancing the economic and/or environmental performance
of an individual farming operation (Schulz and Börner, 2023). As such, agricultural
innovations range from new inputs, e.g., high-yielding or resilient seed varieties,
fertilizers or pesticides, to adapted management processes or growing regimes, e.g.,
agroforestry or intensified crop rotations, to digital technologies, e.g., mobile farming
apps for decision support, drones for aerial pest scouting, or fully autonomous field
robots for precision application of agrochemicals and mechanical weed management.

In light of their presumed environmental and economic potential, research on the
uptake of agricultural innovations to inform stakeholders in policy, industry, science
and non-governmental agencies has a long-standing history, which has resulted in a rich
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body of literature for a wide range of innovations and contexts. Similarly, to aggregate
and organize overarching conclusions, a number of literature reviews and meta-studies
have been conducted, looking at different innovation types next to varying contextual
foci and resolutions. However, despite profound research efforts, no universally valid
conclusions could be drawn.

The present meta-analysis is based on a unique and, to the best of our knowledge, the
largest available global data set of agricultural innovation adoption literature. It is
composed of systematically acquired and rigorously coded quantitative ex-post analyses
investigating the adoption determinants of a multitude of eco-friendly innovations in
crop productions systems. We comprehensively take stock of the published literature by
assessing the relative occurrence frequency and the statistical significance of commonly
used adoption determinants. Next to the analysis of the full data set, two disaggregated
perspectives are presented to refine the understanding of circumstances under which
certain variables may become statistically relevant and unambiguous in their direction
of impact on adoption. Furthermore, we identify determinant categories which, despite
their relevance according to our analysis, have received comparatively little attention.
Rather than deriving explicit policy recommendations, the primary aim of our work is
thus to inform future research and shed further light on currently underrepresented yet
informative and potentially context-specific drivers of agricultural innovation adoption.

Due to the diversity of published reviews of innovation adoption literature, it has proven
difficult to find overarching agreement for multiple reasons, a prominent one being
the difference in geographical contexts. Several reviews established data sets on the
global level (Lopez-Avila et al., 2017; Pierpaoli et al., 2013; Rajendran et al., 2016),
while others focus on developed (Baumgart-Getz et al., 2012; Dessart et al., 2019; Tey
and Brindal, 2012) or developing countries (Jack, 2013; Macours, 2019). Furthermore,
several articles have restricted their scope to specific categories of innovations not
readily comparable such as precision farming technologies (Pathak et al., 2019; Shang
et al., 2021; Tey and Brindal, 2012), soil conservation (Wauters and Mathĳs, 2014),
eco-friendly innovations for fertilization (Hasler et al., 2017), or organic farming (Lamine
and Bellon, 2009). This is contrasted by articles that incorporate multiple innovations
at once under the umbrella of sustainable, conservation, or best management practices
(Baumgart-Getz et al., 2012; Knowler and Bradshaw, 2007; Liu et al., 2018; Prokopy
et al., 2019). Additionally, review studies differ in their objectives and respective
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methodologies. Several meta-regressions determine effect size ranges of selected
determinants of uptake (Baumgart-Getz et al., 2012; Rubas, 2004; Ruzzante et al., 2021;
Schulz and Börner, 2023), while other articles investigate adoption through a conceptual
and theoretical lens (de Oca Munguia et al., 2021; Gallardo and Sauer, 2018). However,
we predominantly find studies based on vote count analyses (de Oca Munguia and
Llewellyn, 2020; Knowler and Bradshaw, 2007; Prokopy et al., 2019; Schaub et al.,
2023), qualitative and narrative reviews (Dessart et al., 2019; Macours, 2019), and
evidence maps (Lopez-Avila et al., 2017; Thompson et al., 2023). Lastly, while several
reviews used a systematic literature search approach (Pathak et al., 2019; Schaub et al.,
2023; Schulz and Börner, 2023; Shang et al., 2021), non-systematic approaches are
disproportionally represented (Baumgart-Getz et al., 2012; Dessart et al., 2019; Knowler
and Bradshaw, 2007; Ruzzante et al., 2021).

This overview is not meant to be exhaustive; however, it gives an approximate notion of
the diversity of review literature and further illustrates that each approach, intentionally
or unintentionally, introduces bias.2 This may be one major reason why a large share
of the above literature syntheses did not yield clear findings regarding the significance
and impact of direction of assessed adoption variables. In addition, the majority of
variables used in primary case studies originated from the categories of farmer and farm
characteristics while the importance to investigate behavioral determinants (Dessart et al.,
2019; Schaub et al., 2023) and to emphasize characteristics depicting the technology to
be adopted (de Oca Munguia and Llewellyn, 2020) has only recently been recognized.

Clearly, this challenges researchers, politicians, extension service providers, and non-
governmental stakeholders alike because the derivation of unambiguous recommen-
dations for research and policy agendas next to innovative business plans is not
straight-forward. Against this backdrop, we do not conduct yet another literature review
with a preset geographic and innovation-specific focus. In building on Thompson et al.
(2023), our aim is rather to identify and organize the published quantitative adoption
literature to provide an updated evidence map (Pullin et al., 2022). In applying a
systematic literature search and screening approach, which includes both statistically

2We acknowledge that there may be additional types of bias at the primary case study level, introduced
by limitations in the conceptualization of the adoption mechanisms and respective estimation procedures.
A discussion thereof would exceed the scope of this chapter. Nevertheless, a review of potential sources
of bias at the case study level can be found in Ruzzante et al. (2021).
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significant and insignificant findings, we keep potential bias of, e.g., selection or confir-
mation, to a minimum (Aromataris and Pearson, 2014; Schaub et al., 2023). Specifically,
we investigate the frequency of common (and less common) independent variables in
primary adoption studies. Furthermore, we test whether these variables are, on average,
consistent regarding their significance and direction of impact on adoption. Lastly, we
relate the frequency of included determinants to their statistical consistency, which
enables us to derive cautious statements regarding the relevance which certain variables
bear for those adoption studies in our sample. Although our insights may enable the
formulation of policy recommendations, our primary aim is to identify knowledge gaps
and thereby inform future research (Pullin et al., 2022).

Our global perspective across multiple technological and managerial innovations allowed
us to identify a vast amount of literature, which required random selection of potentially
eligible articles to keep the manual coding effort to a manageable amount. Our data
base is thus considered a convenience sample. This notwithstanding, the large size
of our data set allowed us to refine the analysis by two disaggregation approaches to
investigate potential heterogeneity in the data. First, we looked for systematic differences
in adoption determinants when the innovations were investigated separately according to
their attributes. Specifically, we developed and applied a theory-informed concept which
assumes that innovations bear a set of attributes, i.e., characteristics, that are conducive
to the economic or and/or environmental outcome of the farming business, which thereby
makes them relatively advantageous compared to the status quo of technology or practice.
Second, we conducted a context-specific analysis, i.e., we looked for diverging patterns
in adoption determinants when OECD (Organization for Economic Co-operation and
Development) and BRICS (Brazil, Russia, India, China, South Africa) country findings
were compared to studies conducted in developing countries.

Our contributions are thus threefold. First, our sizable systematic data base allows us to
give an updated overview of published research on the uptake of agricultural innovations
for a broad spectrum of crop farming innovations in a multitude of countries. Second,
running disaggregated analyses enables us to learn under which circumstances certain
variables may play a pronounced role. Lastly, we identify variables which have thus
far been of low scholarly interest but which bear relevant statistical potential for future
research.
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Following this Introduction, Section 2.2 presents the concept of innovation attributes
used as part of the disaggregated analysis. This is followed by Section 2.3, in which the
systematic literature and data acquisition and recording process is detailed. In Section
2.4, we present the results of the aggregated and disaggregated analyses, followed by
Section 2.5, in which we summarize and discuss the results, critically reflect upon this
study, give an outlook for future research, and provide a conclusion.

2.2 Innovation attributes

The synoptic literature agrees that the majority of research on the uptake of agricultural
innovations primarily assessed the role of readily observable farmer and farm characteris-
tics. Aspects of the studied innovations, however, have not systematically been taken into
account (de Oca Munguia and Llewellyn, 2020). Yet, when considering the spectrum
of technology and process attributes, i.e., characteristics, one may intuitively expect to
find interactions among certain innovation type-adoption determinant combinations. In
this section, we present a concept to group innovations by their attributes for one of the
subsequent disaggregation analyses. Thereby, we contribute an alternative approach
to previous investigations which set out to find systematic patterns in the relevance of
adoption determinants when innovation types are considered separately (Arslan et al.,
2022; de Oca Munguia and Llewellyn, 2020; Schulz and Börner, 2023).

Our approach was motivated by Rogers’ (2003) seminal work on the diffusions of
innovations, which has a focus on the attributes of the innovation. Specifically, we built
on the claim that an innovation will be adopted and diffused given that it is relatively
advantageous compared to the status quo of technology or practice.3 We conceptualized
the relative advantage to capture focal areas frequently stressed in the ongoing debate
on sustainable intensification of global food systems (Section 2.1).

Theory predicts that profitability may serve as the prime reason for innovation uptake
(Rogers, 2003). Accordingly, innovations are said to be relatively advantageous when
they are in line with a supposedly rationally acting farmer’s objective to maximize profit
or minimize the expected losses (Khanna, 2021; Khanna et al., 2022; Tey and Brindal,
2012). However, whether an innovation is truly profitability-increasing primarily

3See Rogers (2003) for a detailed depiction of further innovation attributes, stylized stages of the
adoption process, and a characterization of types of adopters.
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depends on a farm’s individual return and cost structures and other contextual factors,
and can thus not be assumed under all circumstances (Khanna, 2021; Lowenberg-DeBoer
et al., 2020). Second, several subordinate aspects simultaneously determine profitability
and require separate consideration. Lastly, farmers may value additional integral
innovation characteristics which are not necessarily related to economic performance
but pertain to practitioners’ attitudinal and psychological dispositions (Dessart et al.,
2019; Kuehne et al., 2017). As such, an innovation reveals its potential through several
impact pathways (Khanna, 2021) and is thus viewed as relatively advantageous when it
helps to pursue any of a farmer’s, oftentimes interdependent, objectives (Khanna et al.,
2022; Thompson et al., 2019). We now elaborate on four specific attributes to describe
the relative advantage of innovations in more detail.

A frequent observation is that innovations boost productivity, i.e., they improve the ratio
of output to input. This is achieved by increasing production quantity while the input
quantity is held constant, by reducing the required inputs while production quantity is
held constant, or by simultaneous changes in both output and input quantities (Finger
et al., 2019; Khanna, 2021; Khanna et al., 2022; Macours, 2019; Sunding and Zilberman,
2001; Thompson et al., 2019). For example, an output increase is achieved by augmented
yields through the application of fertilizers and higher-yielding seed varieties, or the
reduction of yield losses via the usage of plant protection measures or improved weed
management. In turn, input reductions are achieved by, e.g., improved seed varieties
which require less nutrients, mechanization of managerial processes which reduces
manual labor requirements, or precision input application adapted to the heterogeneity
of the field.

The term productivity conceptually overlaps with the notion of input-use efficiency. How-
ever, while improvements in the former are primarily associated with economic benefits,
improvements in the latter address environmental benefits. Evidently, innovations which
improve the input–output ratio not only benefit a farmers’ budget but may also achieve
a more efficient use of resources and inputs, thereby reducing adverse environmental
impacts per unit of agricultural produce (Finger et al., 2019; Khanna, 2021; Khanna
et al., 2022; Li et al., 2018; Thompson et al., 2019). Furthermore, the anticipated
environmental advantages of more efficient innovations may incentivize their adoption
independently of economic benefits, as detailed in Kuehne et al. (2017). This seems to
be particularly relevant for farmers with a high pro-environmental attitude and intrinsic
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or perceived moral obligation to reduce the negative environmental impacts of their
farming practices as suggested by Dessart et al. (2019), Feisthauer et al. (2024a), and
Feisthauer et al. (2024b). Specific environmental benefits result from lower application
and improved resorption of inputs (e.g., pesticides, fertilizer, water) due to precision
application and improved seed varieties, respectively, which can reduce runoffs and the
associated deterioration of ground-water and soil. Furthermore, negative environmental
impacts can be mitigated by reducing the intervention intensity aiming to conserve
agricultural land via, e.g., cover crops, conservation tillage regimes, or more systematic
innovations such as agroforestry, refined crop rotations, or integrated pest management.

Another aspect is primarily introduced by digital and smart farming technologies that
assist and enhance cognitive and managerial processes by enabling more informed
decisions making next to more adequate and accurate execution of farming practices
across heterogenous space and time (Finger, 2023; Tey and Brindal, 2012; Wolfert
et al., 2017). This is facilitated by rapid collection of high-resolution data via smart
cameras and sensors, computer-based aggregation and interpretation of large amounts
of data from different sources to provide managerial recommendations, and site-specific
execution of management tasks, e.g., harvesting, chemical application, or weed removal
adapted to the soil variability within a plot and to the requirements of individual plants
(Marinoudi et al., 2019; Walter et al., 2017; Wolfert et al., 2017; ?). While overlaps
with the previous positive impacts on productivity and the environment are apparent,
we emphasize here the enhancement effect on practitioners’ cognitive capacities and
skills that they would otherwise not be able to have.

Lastly, agricultural innovations can lower the production risk and reduce yield variability
due to more stable and secure harvests (Kuehne et al., 2017; Lowenberg-DeBoer, 1999;
Tey and Brindal, 2012). Several previously discussed innovation features, especially
those of digital farming technologies, are linked to the risk-reducing characteristic as they
help to anticipate and adapt to environmental factors and uncertainty revolving around
heterogenous soil and growing conditions (Khanna, 2021). Additionally, innovative
management approaches and practices, e.g., cover crops or agroforestry, can reduce the
risk of water and wind erosion while modernized plant protection measures can mitigate
the risk of pest infestations.

In sum, we state that the relative advantage of innovations manifests in their risk-reducing,

34



2.3. Materials and methods

environmental footprint-reducing, productivity-increasing, and cognition-enhancing
attributes. Clearly, the attributes are neither exhaustive nor mutually exclusive, i.e.,
one innovation may be characterized by more than one attribute since they interact
by construction (Khanna et al., 2022) (see details in Table A4 and Text A5 in the
Supplementary Information). Nevertheless, it represents a first heuristic approach that
allows us to comply with demands by Pannell et al. (2006) and Kuehne et al. (2017),
who stressed the need both to emphasize the role-specific characteristics inherent to
types of innovations and to shed light on their interaction with commonly recorded
adoption determinants. This may reveal heterogeneity in adoption dynamics caused by
context specificity and may further help to understand barriers and drivers of uptake and
diffusion. We explain in Section 2.3.3 the implementation of attributes into our analysis.

2.3 Materials and methods

2.3.1 Identification of primary literature

We followed a systematic literature search and multi-stage screening protocol (Havránek
et al., 2020) in the field of agricultural innovation adoption (Figure 2.1). In a first
step, 1,423 eligible references were gathered from priorly identified review papers
in this field. Second, a text mining approach (Grames et al., 2019) applied to the
identified publications enabled the construction of a systematic search string, which was
then applied to the databases Web of Science, AgEcon Search and EBSCOhost. The
literature query took place on May 6th, 2020, and amounted to 27,043 peer-reviewed
publications. With the help of an automation technique, titles and abstracts of identified
records were evaluated and ranked according to their potential eligibility, leaving 6,983
studies for manual screening. Next, we adopted and applied on the study level a set
of PICOS eligibility criteria commonly used in systematic clinical literature search
(Tacconelli, 2010). Accordingly, only publications with crop farmers as the target
population (P) excluding livestock and horticulture, agricultural practice and technology
adoption as focal intervention (I), studying adopters in comparison to the control group
of non-adopters (C), and farm-level adoption as the outcome (O) were selected, while all
ex-ante measures (e.g., intention or willingness to adopt) were dropped. Furthermore,
only studies with quantitative causal analyses (S) were included, while all qualitative
and non-causal quantitative study designs were left out. Subsequently, a randomly
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selected sample of 534 eligible primary publications was rigorously recorded (meta
data and analysis-specific model coefficients) in a spreadsheet. Therefore, the final data
set needs to be regarded as a convenience sample. Due to the applied literature search
strategy, eligibility assessment, and coding approach, it is possible that not all eligible
studies were identified. However, similar to Schulz and Börner (2023), we state that
non-identified studies do not systematically differ from identified ones.

The data base was designed to contain the estimated model coefficients of adoption
determinants (x-variables) extracted from primary case studies, next to the descriptive
statistics, i.e., the means and standard deviations of independent variables, model
specifications, description of the technology or practice under assessment, the scale and
measurement thereof, and characteristics and size of the collected farmer sample. The
coding process revealed a multitude of both independent and dependent variables. To
facilitate later analyses and interpretation, the categorization framework in Prokopy et al.
(2019) was extended, and a total of 45 and 20 categories for independent and dependent
variables, respectively, were formed. The final data base contained a total of 32,079
observations from 534 unique studies. More details on the literature identification
strategy can be found in Texts A1 to A5, Tables A1 to A5, and Figures A1 and A2 in the
Supplementary Information.

2.3.2 Data set

After having established this comprehensive data base, further filtering steps were
performed (Figure 2.1). First, applying the adapted set of PICOS criteria on the
observation level further reduced the number of observations to 17,814. Second,
after removing duplicates (n=78), only observations for which a p-value, t-statistic, or
standard error could be extracted from primary studies were retained (n=15,940). Based
on these recorded measures of estimation precision, we derived the significance of
the recorded effect estimates by comparing them against a general 10% significance
level (Borges et al., 2019; Shang et al., 2021) (see Text A6 in the Supplementary
Information for details). To enable the unambiguous interpretation of impact direction
of the adoption determinants as defined in Table A3, we coded them in a way such that
positive estimates were generally associated with higher likelihood or levels of adoption.
In several cases, however, we had to rely on unstandardized model coefficients, e.g.,
odds ratios in logit models, and analyses with an unintuitive definition of the outcome
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variable, e.g., survival analyses. This required careful interpretation and potentially
a recoding of the outcome variable or determinant. Having established significance
and direction, all recorded coefficients were thereafter assigned one of three vote count
classes, namely negative significant, insignificant, and positive significant in the sense
of our definition of adoption. Third, all adoption determinant categories which had
no intuitive or meaningful interpretation of direction (geography, other, interaction
terms) were dropped, yielding the final sample of 13,748 observations extracted from
383 unique primary studies. As a quality criterion, we additionally ascertained that
observations for each individual variable category were collected from at least five
different studies. In a last step, the attributes (Section 2.2) were assigned to all innovation
categories. For this task, a binary coding scheme was developed and applied to the
innovation categories by four members of the research group in a blinded manner. In this
process, a final inter-coder agreement of 89.5% could be reached. A detailed description
thereof can be found in the Supplementary Information in Text A5, the final data set is
available on OSF.

Figure 2.1: PRISMA diagram of identification of primray literature and creation
of the final data set.

2.3.3 Analysis

Arguably, formal meta-regressions which are concerned with the assessment of the
magnitude and precision of effect sizes allow for the most in-depth investigation
of adoption determinants (Schulz and Börner, 2023). However, meta-regression
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is conditional on the comparability of effect sizes across primary studies, which
further necessitates the availability of standardized coefficients (Shang et al., 2021).
Standardization of coefficients can, in principle, be performed for each adoption
determinant; however, this would require further measures of precision, i.e., standard
deviations of both dependent and independent variables of primary studies, which are
not reported in all cases. Limiting the scope of the analysis to studies with sufficient
information would have drastically reduced the size of the present sample. In line with
the objective of this study, we therefore opted for a vote count procedure to exploit a
larger extent of the database and maintain a broader, less selective perspective on the
published evidence on adoption.

We investigated the sample from different perspectives. First, we performed a descriptive
analysis of the geographical distribution of the data with respect to research intensity
and diversity, i.e., the number of eligible studies and innovations identified. Similar
to previous reviews (e.g., Knowler and Bradshaw, 2007; Prokopy et al., 2019), we
then performed a vote count analysis to take stock of the frequencies of included
adoption determinants across primary studies and compared the number of insignificant,
significant positive and significant negative cases to each other. We further related
the frequency in which individual variables were included in eligible studies to the
frequency of being found significant to determine their relative explanatory value in the
identified adoption research (Thompson et al., 2023). Furthermore, we followed de Oca
Munguia and Llewellyn (2020) and conducted two-proportion z-tests to ascertain the
consistency of the direction and significance for each variable with the aim to formulate
statements about their (statistical) relevance in adoption research. Lastly, as proposed by
Wauters and Mathĳs (2014), we addressed potential sample heterogeneity and repeated
the analysis with two different disaggregation approaches, namely we disaggregated
by innovation attributes as described in Section 2.2 and by geographical context, i.e.,
OECD and BRICS versus developing countries.
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2.4 Results

2.4.1 Descriptive analysis

The primary studies containing the adoption determinants for our data set assessed
the uptake of multiple innovations across a range of countries (Figure 2.2). Since we
incorporated parts of the data set in Floress et al. (2019), our sample is biased toward
studies conducted in the United States. Furthermore, with respect to the number of
studies and diversity of innovations, several sub-Saharan countries (Ethiopia, Nigeria)
and Asian countries (China, India, Bangladesh) alongside Brazil and South Africa
contribute a large share of adoption research to the data set while Latin American and
European countries are underrepresented.

Figure 2.2: Global representation of number of identified studies and respective
innovations.

Note: The shading color indicates the number of studies per country included in the data base. The size
of the circles gives an orientation for the number of different innovations assessed per country in the
included studies. For example, for Brazil 7 case studies were identified in which a total of 11 different
innovations were investigated. The underlying data can be found in Table A6 in the Supplementary
Information.

Furthermore, when comparing OECD and BRICS nations to developing nations,
diverging research priorities regarding the types of innovations become apparent (Figure
2.3). While approximately 10% of all studies in our OECD and BRICS subsample
assessed cognition-enhancing innovations, a negligible number of studies did so in

39



Chapter 2. Matching technology to behavior and context–Insights from a global
meta-analysis of adoption studies in agriculture

developing nations. Moreover, the share of studies examining environmental footprint-
reducing innovations in the OECD and BRICS data is about eight percentage points
higher. By contrast, studies on risk-reducing and productivity-increasing innovations
are more prominent in developing countries by a difference of approximately eight and
ten percentage points, respectively.

Figure 2.3: Adoption research by geographic contexts and innovation types.

Note: Percentages represent the share of studies assessing different innovation types in a given geographic
context. For example, in developing nations, 34.4% of included publications studied risk-reducing
innovations. Detailed counts of studies per individual innovation category and context are displayed in
Figures A5 and A6 in the Supplementary Information.

2.4.2 Aggregated analysis

We now turn to the focal part of the analysis and assess independent variables used
in primary studies as adoption determinants.4 We relied on Shang et al. (2021) and
Wauters and Mathĳs (2014) to categorize all determinants into seven larger thematic
groups (Table 2.1). Similar to recent reviews (e.g., Shang et al., 2021; Thompson et al.,
2023), the most included and diverse variables in our data set are (economic) farm
characteristics and sociodemographic variables, while biophysical factors, institutional
factors, and innovation traits rank at the lower end of Table 2.1. In between rank diffusion
factors, i.e., variables describing channels of information and resource acquisition, and
farmer communication, followed by behavioral factors.

4Table A3 in the Supplementary Information contains the definitions of all adoption determinants
identified.
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Table 2.1: Count of observations by adoption determinant category, full data set
(n=13,748).

Adoption
determinant
category

Sum Adoption determinant subcategories

Farm
characteristics

4,924 Farm size, labor, other practices, tenure, livestock, capital,
specialization, market distance, diversity, asset value, dependency,
irrigation, productive assets, yield

Sociodemographic
factors

3,832 Formal education, age, income sources, income farm, experience,
operator sex

Diffusion factors 1,969 Sought/use, network, assistance, affiliation, evaluation, marketing
Behavioral factors 1,039 Environmental attitude, innovativeness, farmer identity, risk
Biophysical factors 760 Vulnerable, soil quality, weather
Institutional
factors

621 Subsidy, input cost, agricultural economy, institutional

Innovation traits 603 Innovation traits

Figure 2.4 depicts the frequency of adoption determinants in more detail, i.e., the
observations for each variable partitioned into their vote count classes. The 15 most
frequent variables stem from the groups of farm characteristics, sociodemographic
factors, and diffusion factors except for the variable innovation traits (cf. Table 2.1). For
most variables, the majority of recorded cases were insignificant with few exceptions,
namely diversity, productive assets, weather, environmental attitude, innovativeness,
input cost, and subsidy. Moreover, among the cases identified as significant for each
variable, the majority had a positive association with adoption except for the variables
age and risk.

In a next step, we investigated how frequently adoption determinants were used in the
statistical models of primary studies relative to their information value, i.e., whether the
variable inclusion frequency across all eligible models in the data set was matched by
the frequency of being found statistically significant (cf. Thompson et al., 2023). In
Figure 2.5, the former is given by the ratio of the number of occurrences of an adoption
determinant to the total number of models (not studies) in the data set (x-axis). The
latter is given by dividing the number of significant determinants extracted from the
models by the total number of occurrences of the respective determinant (y-axis).
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Figure 2.4: Frequency of adoption determinants by vote count class (full sample,
n=13,748).

Note: This figure is based on the processed data (n=13,748). Non-usable observations and determinant
categories without intuitive interpretation were excluded (geography, interaction terms, other).
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Figure 2.5: Share of adoption determinant inclusion and significance (full sample).

Note: The data underlying the plot can be found in Table A7 in the Supplementary Information.

The distribution of adoption determinants across the facets in Figure 2.5 underlines
the previous finding that sociodemographic, farm-specific, and diffusion factors have
received most attention in the adoption research in our sample when looking at the
number of different variable conceptualizations. However, as discussed below, this does
not necessarily mean that they bear disproportionate explanatory relevance in agricultural
adoption research. We first look at variables which have often been included (>40%)
but which were infrequently statistically significant (<40%). Three sociodemographic
variables (formal education, age, income sources) and one farm characteristic (labor)
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were listed. Although these variables are often included as covariates in analyses their
added benefit to scientific knowledge appears limited in light of their relatively infrequent
significance in our sample. Regarding variables which were frequently included (>40%)
and frequently statistically significant (>40%), two farm characteristics (farm size, other
practices) and the variable innovation traits need mentioning. Arguably, these variables
bear a relevant explanatory value for adoption research based on our sample and should
thus be maintained in future agricultural adoption research. Among variables which
were rarely included (<20%) but which were often found statistically significant (>40%),
we identified farm characteristics (diversity, asset value, irrigation, productive assets,
yield), a behavioral factor (risk), biophysical factors (soil quality, weather), institutional
factors (subsidy, input cost, institutional) and diffusion factors (evaluation, marketing).
These variables seem to play a relevant role in adoption research, as they were frequently
significant when included in the models. However, we recorded only few data points to
substantiate this statement. This motivates an interesting avenue for future research to
develop and include more indicators in the mentioned categories, as they are likely to
bear explanatory value when considered in adoption models. The remaining variables
were infrequently included and infrequently found significant and are thus not discussed
in detail here due to their arguably low information value for adoption research.

In the next step, we assessed the consistency of significance and impact direction
of the recorded variables on adoption. Specifically, a conclusive two-proportion z-
tests demonstrated that a tested variable was frequently found to be, e.g., statistically
significant or positively associated with adoption. While columns two to five of Table
2.2 indicate for each variable the vote count classes and their sums, columns six and
seven display the results of the consistency tests of significance and direction.

Regarding statistical significance, Table 2.2 complements the conjecture of Figure 2.4
since the majority of adoption determinants were either consistently insignificant (insig)
or inconsistent (no entry). Thus, based on our sample, most covariates do not determine
adoption in a statistically conclusive way. The test results for the variable direction
support the notion of Figure 2.4 as well since 29 variables had a consistently positive
association with adoption in this data set.
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Table 2.2: Vote count analysis and results of consistency tests of significance and
direction (full sample).

Adoption
determinant

Sig- Insig Sig+ sum Consistency of
significance

Consistency of
direction

Formal_education 58 690 353 1101 insig pos
Farm size 100 480 299 879 insig pos
Age 156 558 97 811 insig neg
Income_sources 83 418 114 615 insig pos
Innovation_traits 94 307 202 603 pos
Labor 66 362 144 572 insig pos
Other_practices 42 293 227 562 pos
Sought_use 68 268 163 499 pos
Network 55 285 155 495 insig pos
Tenure 65 314 87 466 insig
Assistance 13 247 206 466 pos
Income_farm 38 262 153 453 insig pos
Experience 50 292 104 446 insig pos
Livestock 58 259 116 433 insig pos
Operator_sex 47 292 67 406 insig
Affiliation 37 227 134 398 insig pos
Vulnerable 36 196 131 363 pos
Capital 30 213 111 354 insig pos
Specialization 36 194 107 337 insig pos
Environmental_
attitude

55 136 192 320 sig pos

Innovativeness 19 112 168 299 sig
Farmer_identity 43 185 54 282 insig
Market_distance 55 166 55 276 insig
Diversity 45 118 91 254 pos
Soil_quality 30 117 69 216 pos
Subsidy 26 87 98 211 sig pos
Input_cost 42 73 71 186 sig pos
Weather 40 69 72 181 sig pos
Asset_value 7 106 67 180 insig pos
Dependency 16 128 33 177 insig pos
Irrigation 21 91 60 172 pos
Productive_assets 15 66 81 162 sig pos
Risk 35 73 30 138

continued . . .
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. . . continued

Adoption
determinant

Sig+ Insig Sig+ sum Consistency of
significance

Consistency of
direction

Agricultural_
economy

16 77 26 119 insig

Institutional 27 60 18 105
Yield 4 42 54 100 pos
Evaluation 10 44 31 85 pos
Marketing 3 13 10 26 n_small

Note: Sig -, Insig and Sig + represent the three vote count classes significant negative/positive and
insignificant. Consistency tests: A cell containing information indicates that the test was significant
(p<0.05) and that the adoption determinants were found to be consistent regarding their (in-) significance
or direction. Empty cells represent an insignificant test results, i.e., a lack of consistency in significance
or direction, and n_small indicates that the test was not conducted due to small number of observations.

Variables which were consistent regarding both their significance and impact direction
on adoption stem from the groups of biophysical factors (weather), farm characteristics
(productive assets), behavioral factors (environmental attitude, innovativeness), and
institutional factors (subsidy, input cost). According to Figure 2.5, the here identified
variables were significant disproportionately often; however, only a small share of
models included them. Taken together, these results justify maintaining and further
exploring these variables in future studies. Next, we look at variables which were
consistent regarding their direction and insignificance. Except for two diffusion factors
(network, affiliation), this category mainly contains sociodemographic variables (formal
education, age, income sources, income farm, experience) and farm characteristics (farm
size, labor, livestock, capital, specialization, asset value, dependency). As discussed in
the context of Table 2.1 and Figure 2.4, the here subsumed variables were among the
most frequently used variables across a broad spectrum of adoption research collected
in our sample. This notwithstanding and in light of their consistent insignificance, they
played no relevant role in determining adoption in our data set at this aggregation level.

Variables which were consistent regarding the positive sign but inconclusive regarding
their significance originated in biophysical factors (soil quality, vulnerable), farm
characteristics (diversity, irrigation, other practices, yield), diffusion factors (assistance,
evaluation, sought/use) and innovation traits. Hence, despite unambiguous impact
direction, a lack of consistency regarding significance indicates that for each adoption
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determinant the number of significant and insignificant observations were indistin-
guishable from one another. While this may hint at context-specific relevance of these
covariates, no definite claim regarding their statistical relevance can be formulated at this
point. However, with reference to Figure 2.5, several of the here listed variables were
assessed in less than 20% of all models in our data, which may imply that more research
is required to substantiate their statistical (in-) significance. Lastly, we turn to variables
which were both inconclusive regarding the direction and inconclusive or insignificant
regarding their significance. Here, we found farm characteristics (market distance,
tenure), behavioral factors (farmer identity, risk), institutional factors (institutional,
agricultural economy), one sociodemographic factor (operator sex), and one diffusion
term (marketing). Since these variables were ambiguous regarding their direction and
mostly insignificant, and since they were only included in the minority of recorded
models except for operator sex and tenure (Figure 2.5), their informative value for
adoption research is arguably low.

The results of this section are by and large in line with recent reviews (e.g., Borges et al.,
2019; Thompson et al., 2023), i.e., a large share of determinants were sociodemographic
and farm characteristics. Regarding significance, most variables were ambiguous or
even consistently insignificant. In contrast to previous research, however, the majority
of recorded variables showed a consistently positive association with adoption. The
only six variables for which both direction and significance was consistent mostly
originated from less researched variable categories. Furthermore, several variables with
a high frequency of significant cases were not included in the majority of models. This
observed imbalance of the frequencies of inclusion and significance of several variables
may guide future research to pay more attention to the here identified determinants, as
they possibly bear additional yet unexploited explanatory value.

2.4.3 Disaggregation by innovation types

We now turn to the disaggregated analysis according to innovation types. Table 2.3
presents the innovations assigned to their respective attribute(s) and the count of the
associated adoption determinants extracted from primary publications. While the
majority of observations were recorded for environmental footprint-reducing (A2) and
productivity-increasing (A3) innovations followed by risk-reducing innovations (A1), the
count of variables used to study the adoption of cognition-enhancing innovations (A4)
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was distinctly lower. The latter observation may be explained by the fact that only few
innovations in primary literature matched our definition of cognition-enhancement in our
collective coding approach (Text A5), and the count of observations is thus approximately
proportional to the number of innovations per attribute. This also demonstrates that
cognition-enhancing innovations, which we define to have components of data analysis
and digital technology, have received less attention in the literature compiled in our
data set; arguably, due to their relative novelty, complexity, and limited eligibility to
countries with modern agricultural structures (also see Figure 2.3).

Table 2.3: Sample disaggregation according to innovation attributes.

Attribute Sum Innovations

A1 Rist-reducing 6,883 PF analysis support, PF intervention, insurance, fertilizer,
improved seed, non-chemical biocide, soil analysis, chemical
biocide, pest management, GMO, agroforestry, contract; n=12

A2 Environmental
footprint-reducing

8,224 Nutrient optimization, PF intervention, conservation, contour,
cover, tillage, buffer, non-chemical biocide, pest management,
organic, agroforestry; n=11

A3 Productivity-
increasing

8,059 Nutrient optimization, PF analysis support, PF intervention,
fertilizer, improved seed, contour, cover, soil analysis, chemical
biocide, mechanization; n=10

A4 Cognition-
enhancing

1,328 PF analysis support, PF intervention, soil analysis; n=3

Note: Several innovations were assigned more than one attribute (Text A5, Table A4). The total number
of observations in column two thus exceeds the sample size of the data base and several innovations occur
more than once.

As for Section 2.4.2, we first looked at broader adoption determinant groups. Specifically,
we aimed to find differences in the shares of adoption determinant categories used to study
different innovation types as displayed in Figure 2.6. According to the bar chart, the shares
of adoption determinant categories did not differ substantially between innovation types.
Similar to the full data set, the most represented variable families—farm characteristics,
sociodemographic factors and diffusion factors—add up to approximately 80% of all
determinants used to assess adoption of these innovation types. For cognition-enhancing
innovations, two slight differences in variable group shares were observed. While the
share of diffusion factors (12%) ranked lowest for A4 innovations, the share of farm
characteristics (42%) ranked highest compared to A1 to A3 innovations. One explanation
could be that, according to our definition, A4 innovations may be more expensive in
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their acquisition compared to A1 to A3 innovations. Furthermore, higher complexity of
on-farm implementation and inherently different characteristics of cognition-enhancing
innovations pertaining to the technological infrastructure of farms may explain the
emphasis of (economic) farm characteristics in the collected adoption research in this
innovation group.

Figure 2.6: Share of adoption determinant categories by innovation type.

As in the aggregated analysis above, we next related the frequency in which each variable
was tested to the frequency of being found significant to assess their informative values
for adoption research. We maintained the disaggregated perspective to find systematic
difference across the innovation-specific data sets. For commensurability, we restrict
the discussion to protruding observations. The complete data and supplementary plots
underlying the following analysis are presented in Table A8 and Figures A7 to A10.

With respect to farm characteristics, cognition-enhancing innovations stand out because
the share of models which included the variables asset value, capital, dependency, labor,
and market distance was distinctly lower for this innovation type (<5.5%) compared
to models which assessed A1 to A3 innovations. Interestingly, in the few cases in
which asset value was controlled for in A4 innovation type models, a majority thereof
(80%) was significant. Conversely, the variables specialization and other practices
were included disproportionately often in models of cognition-enhancing innovations
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(>55%). However, the former variable was found statistically significant in fewer cases
(<26%) in this innovation group, and the latter did not differ from other innovation types.
In short, several covariates controlling for aspects of production factor endowments
are underrepresented, while controls for specialization and use of related practices
and technologies are relatively overrepresented in A4 innovations, although this is not
reflected in notably different patterns in significance.

When looking at sociodemographic factors, cognition-enhancing innovations are note-
worthy as well. Experience, income sources, and operator sex were tested distinctly
less often in respective models compared to the other innovation types. Yet, finding at
least experience to be frequently significant emphasizes the need to further explore this
variable in the context of A4 innovations. Similarly, the variables age and farm income
had higher shares of significant cases for cognition-enhancing innovations (>43%),
highlighting their relative information values for adoption research compared to the
other innovation types. This pattern continues for diffusion factors. Several variables,
i.e., assistance, affiliation, and network, were tested disproportionally less often in
cognition-enhancing innovation models. Assistance and affiliation were significant in
distinctly fewer cases, suggesting that these variables contribute negligible information
value for adoption of A4 innovations compared to A1 to A3 innovations in our data
set. In turn, the variables evaluation and marketing, despite being included in very few
models of A4 innovations, had a relatively higher share of significant cases compared to
other innovation types. Again, these findings require further exploration since our data
set does not contain enough cases to substantiate this observation.

Regarding behavioral factors, measures of environmental attitude and farmer iden-
tity were most often included in models testing environmental footprint-reducing
innovations but were most often found significant for risk-reducing innovations. For
cognition-enhancing innovations, environmental attitude was tested the least often, but
innovativeness was controlled for most often. While we generally observed a lower
frequency of behavioral variable usage, we found several pairs of specific innovations
and behavioral variables which frequently became significant when included. Assessing
this interaction between specific innovation types and related behavioral parameters
may be another promising path for future research. We observed a similar result for
institutional factors, i.e., generally low shares of models which included these variables
but, when included in the models, frequently became significant.
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Among biophysical factors, we tested and found the variable vulnerable to be significant
disproportionally often in models assessing environmental footprint-reducing innova-
tions. Lastly, measures of innovation traits showed a generally high level of significance
(>45%) for all innovation types and were tested especially often in models assessing
environmental footprint-reducing and productivity-increasing innovations adoption.

In the final step of this disaggregated analysis, we tested the consistency of direction and
significance for each adoption determinant. Again, here we only discuss most notable
findings from the comparison across innovation types (see Tables A9 to A13 for detailed
results). The results of the aggregated sample (Table 2.2) were by and large reconfirmed.
Most adoption determinants across innovation types displayed a congruent pattern–
they tended to have a consistently positive yet insignificant association with adoption.
A few variables, however, showed a discrepancy in the consistency of sign and/or
significance, suggesting that the aggregated results masked heterogeneity of certain
adoption determinants between the innovation types. Only one behavioral variable
(innovativeness) was found to have a consistently significant and positive association with
adoption in studies about multiple, i.e., risk-reducing, environmental footprint-reducing,
and productivity-enhancing innovations. This implies that for the majority of innovation
types, measures of innovativeness seem to play an important role in the included studies.
Regarding the variable weather, which was consistently significant and positive in the
full sample, the consistency in significance seems to be driven primarily by observations
from studies on risk-reducing innovations, while the consistency in direction appears
to stem from studies on environmental footprint-reducing and productivity-increasing
innovations. Similarly, for the variable environmental attitude, the consistency in
significance seems to be mainly driven by observations associated with risk-reducing
innovation studies, while a consistently positive impact of this variable on adoption was
driven by observations stemming from environmental footprint-reducing innovation
studies. Moreover, risk-reducing innovation studies also seem to contribute the largest
share of significant and positive observations to the determinants input cost and subsidy
(institutional factors), which may explain the conclusive consistency test of significance
and direction in the full sample. Lastly, while for most adoption determinants of
cognition-enhancing innovations no consistency test could be calculated due to small
samples size, one result stands out. Namely, the farm characteristic tenure (measures
farming land ownership) was consistently negatively associated with the adoption of
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this innovation type, an observation which was not apparent in the full data set.

Disaggregation by innovation types revealed few additional yet interesting aspects. Our
data base contains substantially fewer observations for cognition-enhancing innovations.
This may be explained by their specific definition in our coding approach, their relative
novelty, and applicability limited to contexts with modern agricultural structures.
Nevertheless, several variables which were tested less often for A4 innovations displayed
a higher share of significant cases compared to A1 to A3 innovations. In light of small
subsample size, this finding requires cautious interpretation, but it also renders the
exploration of the discussed variables a promising field in adoption research of digital
farming innovations. Across all innovation types, we found that several institutional
and behavioral variables, although included in the minority of models, showed a high
share of significant cases. On the one hand, this is a strong argument for future studies
to pay greater attention to these variables, as they seem to bear relevant explanatory
value for adoption research in which they are currently underrepresented (Dessart
et al., 2019). Additionally, although we acknowledge that our findings are purely
observational in nature, they further emphasize the relevance to study the interplay of
specific innovation traits and adoption determinants to get a more refined understanding
of the conditions in which certain innovations are taken up by farmers (Blasch et al.,
2022; Schulz and Börner, 2023). Specifically, measures of farmers’ innovativeness were
consistently significant determinants for most innovation types; variables of weather
and environmental attitude as well as input cost and subsidy covariates were only
consistent for risk-reducing innovations in our sample; and lastly, the association of
controlling for land ownership (tenure) with adoption was consistently negative only for
cognition-enhancing innovations.

2.4.4 Disaggregation by context

For the second disaggregation, we divided the sample into observations stemming from
OECD and BRICS nations (n=7,736) and developing nations (n=6,012). Again, we first
compared the relative distribution of adoption determinant groups across subsamples.
Figure 2.7 reveals few contextual differences. The difference of eight percentage points
in behavioral factors was most prominent, i.e., they were the least included variable group
in developing country studies, while they ranked fourth in OECD and BRICS country
studies. Furthermore, the share of diffusion factors was elevated by six percentage
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points in the developing country context compared to the OECD and BRICS sample.
Taken together, these two findings suggest that the role of collaboration, exchange, and
networks among farmers has relatively been rated more important in adoption research
in developing countries, whereas attitudes and personality traits were more dominant in
our sample of developed and emerging countries. The share differences of the remaining
variable groups were even smaller and are not discussed any further.

Figure 2.7: Shares of adoption determinant categories by study context.

Note: For the detailed disaggregated data underlying this visualization see Tables A14 and A15.

In going from their thematic categories to single determinant level, we now compare
across the subsamples the proportions in which adoption determinants were included
relative to their proportion of being found significant. This allows the depiction and
comparison of their information value for adoption research in the given contexts. As
before, we restrict the results description to prominent differences between subsamples
(see Table A16 and Figures A11 and A12 for details).

Regarding farm variables, in OECD and BRICS countries the determinants asset value,
dependency, and market distance were used relatively infrequently, but when included,
they showed a high share of significant cases. The same holds for the variable diversity
in the developing country context. These variables may thus be interesting candidates
in future research in the respective contexts to verify or falsify their statistical relevance
in a larger number of cases. Concerning the variable labor, a large difference regarding
the shares of variable inclusion between contexts stands out, i.e., the variable was
included in only 18% of models in an OECD and BRICS context compared to 87%
of models based on developing country studies. Regarding coefficient significance,
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however, the samples showed a similar share of cases (39% and 36%, respectively).
Clearly, in many studies based in developing countries, the degree of labor endowment
was viewed to be an important adoption determinant, although this does not seem
to be justified in light of modest shares of statistical significance. A similar pattern
arises for the sociodemographic variables income sources and operator sex. They were
included disproportionately often in studies in developing countries compared to the
OECD and BRICS context, but the samples did not differ substantially in the shares
of significant observations. This pattern continues in the group of diffusion factors
where the variables affiliation, assistance, and network received much higher scholarly
attention in developing context studies, although they had similar shares of significant
cases compared to the OECD and BRICS data set. On a more general note, when
included, all diffusion factors had a high share of significant cases above 40% in both
contexts. Although for some variables this observation was based on few observations,
this reiterates our previous line of argumentation in Section 2.4.3 regarding the potential
to further explore diffusion factors in adoption research.

By contrast, behavioral variables were generally included less often in developing
country studies (<16%) but, where included, they showed a disproportionately higher
share of significant cases (>43%) compared to the OECD and BRICS sample. This is
not to say that behavioral adoption determinants do not matter for the latter context. In
both subsamples, high shares of significant cases indicate that behavioral determinants
seem to play an important role in adoption research in a statistical sense. For biophysical
factors, we highlight the variable soil quality. Compared to developing country studies,
it was included distinctly less often in analyses (<14%) but was statistically significant
in the majority of cases (>51%), thus suggesting itself a potentially insightful variable
for future research based in OECD and BRICS countries. In the category of institutional
variables, we highlight agricultural economy and institutional. While no substantial
difference in the inclusion shares was present across the samples, the former (latter) had
a much higher share of significant cases in studies with a focus on developing (OECD
and BRICS) countries, which emphasizes their statistical relevance for adoption research
in the respective context.

In a last step, we conducted the consistency tests of direction and significance of
individual determinants and here discuss the most insightful differences arising from
the comparison by context. Graphical and tabular details can be found in Tables A17 to
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A19 and Figures A13 to A14. As above, the majority of determinants were consistently
positive and a substantial share of cases was found either consistently insignificant
or statistically inconsistent. However, there were four consistently significant and
positive variables in OECD and BRICS country studies (input cost, productive assets,
subsidy, weather), which were mostly inconsistent in the developing country context. In
turn, we found the variable environmental attitude (yield) to be consistent regarding
a positive association (positive association and significance) with adoption in the
developing context but not in OECD and BRICS country studies. The only variable
which was consistent regarding statistical significance and positive sign in both contexts
was innovativeness. Thus, it becomes clear that several findings regarding the (in-)
consistency of direction and significance in the full sample were driven to varying
extents by the findings in the underlying contexts.

Similar to the attribute-specific analysis in Section 2.4.3, disaggregating by contexts
yielded only few but notable findings. Relatively speaking, behavioral variables
received higher scholarly emphasis in studies based in OECD and BRICS countries,
while studies in the developing context, on average, deemed diffusion factors more
important. In addition, regarding the inclusion frequency of several variables from the
farm, sociodemographic, and diffusion variable categories, we observed imbalances
which seem to be intuitively reasonable when considering their respective context.
However, when matched with the assessment of determinant significance, a high (low)
share of inclusion does not seem justified–often included variables were frequently
insignificant and vice versa. Moreover, as for Sections 2.4.2 and 2.4.3, the results
of the context-specific disaggregation show that, in contrast to relatively frequently
included sociodemographic and farm variables, the determinants with most unambiguous
statistical evidence predominantly stemmed from less frequently included variable
categories, i.e., institutional, behavioral, and biophysical factors (Table A19). This
furthers the demand to rebalance future assessments of adoption determinants toward
context-specific covariates as they bear seemingly untapped yet valuable insights
according to our findings.
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2.5 Discussion

The present study provides an updated systematic global evidence map of a total of
13,748 adoption determinants recorded from 383 unique farm-level studies on the
adoption of a broad spectrum of crop farming innovations. The first aim was to give an
unbiased perspective on the current landscape of determinants used to explain observed
agricultural adoption and thereby shed light on their seeming statistical importance
relative to their inclusion frequency, and to identify promising variables for future
research. The second aim was to assess potential sample heterogeneity by reanalyzing
the data disaggregated by innovation attributes and by geographical context of primary
studies. In the remaining Sections 2.5.1, 2.5.2 and 2.5.3, we briefly summarize the
findings, discuss limitations of our study, and give an outlook for future research,
respectively.

2.5.1 Summary of results

The majority of recorded adoption determinants were farm characteristics and sociode-
mographic variables, followed by diffusion and behavioral factors. while we recorded the
least number of observations for biophysical, institutional, and characteristics referring
to the innovation under study. On average, most variables had a positive association
with adoption, although their impact was either consistently insignificant or ambiguous.
Contrary to our expectation, nonetheless in line with Borges et al. (2019) and Schaub
et al. (2023), this pattern did not change substantially in the disaggregated analyses. In
the aggregate data set, we found only few variables which were consistent in significance
and impact direction on adoption. They belong to the less or even least researched
variable families of biophysical, institutional, and behavioral factors, thus rendering
them interesting variable candidates for future adoption studies. Furthermore, we agree
with previous scholars who have expressed the need for future research to primarily focus
on behavioral and diffusion factors (Dessart et al., 2019; Hasler et al., 2017; Schaub
et al., 2023; Thompson et al., 2023), which, when included in primary studies, had a
statistically significant and positive effect on innovation adoption across our analyses.

Disaggregating by attributes revealed divergent patterns in variable inclusion and
significance frequency. Specifically, several variables were tested distinctly less often in
studies on cognition-enhancing, i.e., precision and smart farming innovations; however,
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we found them to be statistically significant in a higher share of cases. Furthermore,
we found few yet interesting relations between certain innovation types and adoption
determinants. We thereby confirm recommendations by de Oca Munguia and Llewellyn
(2020) and Kuehne et al. (2017) to dedicate greater attention to the interaction between
farmer and innovation-specific characteristics, as this may help to explain and predict
which technologies are (not) taken up in specific contexts.

The context-specific analysis revealed systematic differences in the inclusion frequency of
variables in most categories. While this pattern may be explained by intuitive economic
reasoning, e.g., the distance to the next market or family labor endowment does arguably
play an emphasized role for agricultural production in developing countries, we did
not find notable evidence in a statistical sense to justify this and related statements.
In fact, in both subsamples we found several variables to be poorly represented but
statistically promising. Among those, even fewer were consistent in their positive
impact on adoption and significance in one or even both contexts. Thus, we want to
urge researchers to further explore the identified variable candidates, e.g., farmers’
innovativeness and pro-environmental attitude or subsidies as behavioral and institutional
variables, respectively.

2.5.2 Limitations

Several limitations in our study need to be addressed. First, while vote counting
and consistency testing tolerate the inclusion of a multitude of different potentially
incomparable model coefficients, which enables the collection of larger data sets, we base
an important part of our discussion and conclusion on the evaluation of significances
of effect estimates. However, p-values may not be sufficient to judge the relevance
of model coefficients since they are arbitrary cut-off levels of statistical significance,
and one should rather interpret the accuracy and size of effects (Amrhein et al., 2019;
Heckelei et al., 2023). Although more rigorous meta-regression approaches come with
their own limitations (Ruzzante et al., 2021; Schulz and Börner, 2023), they can yield
more detailed insights about the relative importance of adoption determinants and thus
be more valuable for policy recommendation. Furthermore, since we only included
peer-reviewed quantitative literature, our findings may be prone to publication bias
and may have systematically missed insights from qualitative literature which could
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have added to the understanding of farming innovation adoption (Dessart et al., 2019;
Thompson et al., 2023).

Second, we did not assess whether the adoption model specification and theoretical
underpinning of the included case studies had any influence on our findings since
respective attempts presented in, e.g., Borges et al. (2019) or Wauters and Mathĳs
(2014) did not deliver further insights. Nevertheless, the choice of a specific adoption
theory and regression model can have adverse effects. On the one hand, it may cause
the systematic omission of potentially crucial variables, resulting in a biased effect of
other covariates. On the other hand, a specific analytical framework may dictate the
unsolicited pro forma inclusion of control variables without further adaptation to the
study context, which may cause multicollinearity among covariates, thus leading to a
distortion and/or insignificance of otherwise relevant adoption determinants (Borges
et al., 2019). Neither did we analyze the effect of specific measurements and units of the
dependent and independent variables in adoption studies. However, depicting adoption
as a binary decision or a gradual process, recording education as binary (has education)
or continuous (years of education), or seeing that environmental attitude can either
be captured by a self-rated multi-item scale or recording whether a farmer voluntarily
leaves land fallow, strongly suggests different dynamics in modeling innovation uptake
(Schulz and Börner, 2023). We thus want to encourage future research to use our
publicly available data base as a resource since it fortunately does contain respective
(and further) information for each observation.

Third, our concept of innovation attributes may be incomplete for several reasons.
Simplifying innovations’ relative advantage by four stylized attributes disregards relative
disadvantages arising from learning or investment cost (Li et al., 2018) or additional
risk introduced by novel technologies (Sunding and Zilberman, 2001) which are prone
to inaccurate or defective functionalities. Additionally, instead of a binary assignment
of attributes, a more refined depiction thereof may be required, thereby allowing
them to manifest in different intensities. Beyond that, a correlation of attributes with
context-specific, e.g., socioeconomic or biophysical circumstances would be plausible
(Khanna et al., 2022). This notion was explored in a meta-analysis in Schulz and Börner
(2023), who found that adoption determinants vary in their relevance depending on the
production factor abundance in a given socioeconomic contexts and the respective input
factor demand of the innovation at stake.
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The burgeoning literature on smart farming technologies increasingly presents au-
tonomous robots and artificial intelligence as innovations which reduce physical strain
and fatigue associated with manual work in agriculture and which increase convenience,
well-being, and operator safety (Khanna, 2021; Kuehne et al., 2017; Marinoudi et al.,
2019; Thompson et al., 2019). This characteristic is difficult to quantify and has overlaps
with other attributes such as the enhancement of cognition and productivity. Addition-
ally, due to the novelty of the associated innovations and limited availability of digital
technology adoption research papers, it may be advisable to investigate this attribute on
a case-study level rather than on meta-study level. Nonetheless, this characteristic can
be expected to gain interest, as such technologies mature and are increasingly considered
viable technology alternatives by innovative, well-educated farmers (Feisthauer et al.,
2024a; Mohr and Kühl, 2021).

Fourth and last, we acknowledge that our findings are largely based on correlational
case studies with no claim of causality. However, adoption studies based on perfectly
controlled settings may suffer from a low degree of external validity, and we are therefore
convinced that the large quantity of observations included in our data set can paint a
relatively accurate picture of likely adoption dynamics, considering the resolution of
our analysis.

2.5.3 Outlook

We identify promising yet less frequently investigated adoption determinant categories
which need to be addressed in future adoption research. This notwithstanding, we
confirm previous reviews, i.e., no unambiguous conclusions can be drawn for the majority
of investigated variables. Although we add to the literature two further disaggregation
approaches, our findings mostly persist throughout. Because the variety of innovations
next to the socioeconomic, biophysical, and institutional contexts in which agricultural
production takes place suggest limited comparability of individual adoption scenarios,
the predominant inconclusiveness of our results may represent reality (de Oca Munguia
and Llewellyn, 2020). Therefore, we want to discourage further comprehensive literature
reviews with a scope as wide as ours and emphasize several research priorities. Although
our conceptualization of innovation attributes did not yield the expected insights, we
think it highly relevant to continue to investigate technology characteristics as adoption
determinants because recent research continues to show that innovations are taken
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up out of other than purely monetary motives (Feisthauer et al., 2024b; Meĳer et al.,
2015). It further appears crucial to look at the intersection of specific innovations and
farmer types who adopt them, given their respective environment. This will eventually
enable the formulation of targeted policy recommendations to facilitate context-adapted
promotion of sustainable innovations. Furthermore, adoption needs to be understood
as a process rather than a binary decision (Schlüter et al., 2017; Weersink and Fulton,
2020). It is thus essential to get an in-depth understanding of driving and hindering
factors at different stages of the process. This ties in with considerations in Shang
et al. (2021) who state that adoption does not occur on one isolated farm since it is
rooted in regional diffusion dynamics. Clearly, social norms, shared moral obligations
and the influence of professional colleagues require consideration as determinants of
location-specific patterns of diffusion (Feisthauer et al., 2024b; Hüttel et al., 2022).
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Chapter 3

Adoption intentions of smart weeding
technologies–A lab-in-the-field experi-
ment with German crop farmers5

Abstract: Smart weeding technologies (SWT) enable substantial herbicide savings via
precise sensor-based application. This can enhance agrobiodiversity and make modern
agriculture more sustainable. Currently, our knowledge about what will determine
SWT adoption at the farm level is limited because few mature and economically viable
prototype systems are available. We conduct a pre-registered and incentivecompatible
online lab-in-the-field experiment with a convenience sample of 334 active German
crop farmers to assess whether pro-environmental attitude, innovativeness, and trust
in farming data privacy explain hypothetical SWT adoption. We further test if an
environmentally motivated subsidy, a green nudge, and a combination thereof affect
adoption intentions. While attitudinal measures clearly modulate hypothetical adoption
decisions in our sample, we detect no effect for the nudge and subsidy. Our findings
have implications for policy and future research. Substantial policy support may be
needed as long as environmentally beneficial smart farming technology remains privately
less competitive than conventional alternatives. Moreover, targeting criteria for early
adopters include pro-environmental attitudes and innovativeness.

Keywords: Sustainable intensification, Attitudes, Subsidy, Nudge, Fractional multino-
mial logit

5Chapter 3 is published as Feisthauer, P.; Hartmann, M.; Börner, J. (2024): Adoption intentions of
smart weeding technologies - A lab-in-the-field experiment with German crop farmers. Q Open, 4(1).
https://doi.org/10.1093/qopen/qoae002
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JEL classification: Q16, Q18, D91

3.1 Introduction

In light of a growing global population and rising demand for bio-based food, energy,
feed, and fibers, modern agriculture must boost eco-efficiency in order to sustainably
ensure food security at global scale (von Braun et al., 2021). To intensify global food pro-
duction sustainably, i.e. enhanced agricultural productivity with reduced environmental
impacts thereof, no universal solution exists. Instead, a multitude of context-specific
approaches must be pursued, often contingent on a wider systemic transformation
process (Garnett et al., 2013). In particular, technological and management-related
food system innovations bear considerable potential to counteract climate change and
environmental degradation, for example, linked to farm input overuse (Springmann
et al., 2018).

Smart farming technologies (SFT) are heralded as particularly promising innovations to
reconcile environmental and productivity goals (e.g., Finger et al., 2019; Rübcke von
Veltheim and Heise, 2021) and may trigger the ‘fourth revolution’ in agriculture (Walter
et al., 2017). SFT are knowledge-intensive innovations based on agricultural machines
that record and process data to make decisions in real time. By acting autonomously,
SFT may gradually shift the operator’s role away from active managerial tasks, such as
steering machinery, toward supervising, adjusting, and intervening to resolve technical
failures (Bovensiepen et al., 2016). Examples are robots for field operations like
mechanical and chemical weeding, fertilization, pest detection (Rübcke von Veltheim
and Heise, 2021), aerial inspection of crop nutritional status via hyperspectral cameras
(Li et al., 2014), and drone-based pest scouting (Bovensiepen et al., 2016). The value
proposition of SFT is to enhance the economic and environmental performance of
agricultural production (Weersink et al., 2018). Specifically, SFT tailor field operations
to the temporal and spatial field heterogeneity (Aubert et al., 2012; Wolfert et al., 2017),
enabling substantial reductions in the use of chemical and other inputs (Finger et al.,
2019; Sørensen et al., 2005), agricultural greenhouse gas emissions, and environmental
pollution (Balafoutis et al., 2017). As such, SFT may appeal to farmers who are under
pressure to balance trade-offs between profitability and environmental impacts in a
range of agricultural production systems (Walter et al., 2017).
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Lowenberg-DeBoer et al. (2020) demonstrated that automated and fully autonomous
field robots can economically outperform conventional machinery for certain field
operations. Nevertheless, on-farm experimental evidence is scant. Furthermore, while
SFT may reduce negative environmental impacts, they also increase the complexity of
agricultural systems (Scholz et al., 2021; Sparrow and Howard, 2021) and potentially
pose data protection and sovereignty issues (Fleming et al., 2018; Jakku et al., 2019).
The viability and speed of diffusion of specific novel technologies thus clearly vary
depending on technology attributes, biophysical context and farmers’ competences,
and preferences (Finger, 2023; Khanna et al., 2022). Moreover, ethical and legislative
concerns about unsupervised operations, automated agronomic data collection, and
other genuinely novel characteristics inherent to SFT are likely to affect technology
diffusion (Sparrow and Howard, 2021).

Past research on agricultural technology adoption has often focused on observable
individual, farm, and contextual adoption determinants (Ruzzante et al., 2021; Shang
et al., 2021; Tey and Brindal, 2012). This has greatly facilitated the identification of
so-called ‘early adopters’ (Rogers, 2003), i.e. farm types among which innovation
processes are likely to begin. However, given the novel SFT features discussed above,
specific individual attitudes of farmers are likely to play a more important role in forming
future adoption intentions and corresponding decisions than in the past. Yet, according
to recent reviews, the available literature on sustainable farming innovations has so far
paid only limited attention to behavioral factors (e.g., Dessart et al., 2019; Thompson
et al., 2023). Exceptions include relatively recent studies that provide incipient evidence
on how norms and attitudes toward the environment, innovations, and data privacy may
interact with specific technology attributes (e.g., Blasch et al., 2022; Hüttel et al., 2022;
Michels et al., 2020a; Mohr and Kühl, 2021). For example, in a choice experiment
regarding Italian farmers’ willingness to adopt precision farming technologies, Blasch
et al. (2022) interacted, inter alia, the degree of automation and chemical savings
with farmers’ innovativeness and environmental preferences to find higher innovation
willingness among farmers with higher attitude levels. Furthermore, Mohr and Kühl
(2021) conducted a survey on behavioral determinants of the acceptance of agricultural
artificial intelligence systems. While innovativeness was not a significant determinant
in this study, a higher level of trust in property rights of farming data had a statistically
significant positive effect on acceptance. To this point, however, no study has looked
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at the farmers’ attitudes pertaining to their adoption intentions of data-intensive and
(partly) autonomous SFT in a rigorous experimental setting. Additionally, a systematic
analysis of the relationship between farmers’ attitudes and policy scenarios to enhance
SFT adoption is currently missing.

Thus, at this early stage, no general conclusions can be drawn on these interactions,
and further case-specific evidence is needed to improve our understanding of the
conditions under which farmers are willing to adopt SFT at relevant scales. In sum,
expanding our knowledge base about how novel technology attributes align with farmers’
sociodemographic and behavioral characteristics is essential to design effective enabling
and regulatory frameworks for sustainable agriculture (Mizik, 2022; Sparrow and
Howard, 2021; Thomas et al., 2019).

We address these knowledge gaps by focusing on smart weeding technologies (SWT), a
branch of SFT with a relatively advanced level of technological development and high
potential to increase herbicide use efficiency (King, 2017). The centerpiece of our online
lab-in-the-field experiment with German arable farmers is an incentive-compatible
two-period business simulation game in which we elicit innovation adoption intentions,
i.e. the number of hectares allocated to SWT, from two perspectives. First, we analyze
the relevance of attitudinal measures, based on prior literature, as additional covariates
in order to address novel attributes inherent to SWT. Second, we test the effectiveness
of hypothetical policy scenarios to positively influence adoption behavior. Specifically,
we look at a subsidy and a green nudge, separately and in combination, as experimental
treatments in a within- and between-subjects design.

Our contributions to the agricultural technology adoption literature are twofold. First,
we move beyond economic feasibility assessment and shed light on attitudinal measures
likely to bear additional explanatory value for the extent to which farmers do intend
to adopt. We show that German farmers’ pro-environmental attitude (AttEnv) and
innovativeness are likely to matter for the technology diffusion process in the real world,
whereas data concerns seem to be less of an adoption barrier. Our second original
contribution lies in testing whether innovative policy instruments, namely, a conditional
subsidy and a green nudge, can, separately and in combination, enhance adoption
intentions. None of the policies investigated had a statistically significant effect on SFT
adoption.

72



3.2. Conceptual background

The following Section 3.2 details the conceptual background and research hypotheses
after which Section 3.3 describes the empirical and analytical approach and gives an
overview of the collected data set. Section 3.4 depicts the results of the analysis, and in
Section 3.5, we discuss the results and conclude the paper in Section 3.6.

3.2 Conceptual background

Farmers’ adoption decisions of sustainable innovations are known to be driven by
monetary and non-monetary motives (Chouinard et al., 2008). Personal preferences
and attitudes toward (sustainable) innovations can lead to managerial decisions that
deviate from profit maximizing behavior (Musshoff and Hirschauer, 2014; Sattler and
Nagel, 2010). SWT are associated with environmental benefits due to herbicide savings
but are also less profitable than conventional weeding technology at current stages of
development. Motivated by Annosi et al. (2019) and Aubert et al. (2012), we add to the
set of sociodemographic adoption determinants three attitudinal constructs that are likely
to interact with novel characteristics of SFT (exemplified by SWT) and assess whether
these attitudes can explain farmers’ willingness to partially forego private profits.

Both farmers’ immediate profits and long-term livelihoods depend on the sustained
quality of the natural environments. Therefore, managerial decisions are simultaneously
driven by short-term economic goals and motivations to conserve natural resources
(Blasch et al., 2022) in order to maintain long-term productivity (Chouinard et al., 2008)
and environmental service provision (Juárez-Luis et al., 2018). Producers thus derive
utility from innovations that enhance environmental quality, e.g., via the sustainable
use of farm assets or in the form of aesthetic or recreational values (Chouinard et al.,
2008). However, technologies that provide public environmental goods may also be
adopted out of a desire to comply with social norms and expectations to improve one’s
reputation (Kuhfuss et al., 2016b) or because adoption comes with a ‘warm glow’
feeling (Andreoni, 1990). Lastly, as SWT can bring about substantial herbicide savings,
mitigating environmental impacts, their uptake could be motivated by a farmer’s general
environmental concern or her perceived responsibility for the environment (Dessart
et al., 2019). Hence, even though moving from conventional to SWT implies partially
trading off short-term profits, we hypothesize that:

73



Chapter 3. Adoption intentions of smart weeding technologies–A lab-in-the-field
experiment with German crop farmers

H1: Farmers with a higher degree of pro-environmental attitude (AttEnv) allocate
more hectares to environmentally friendly SWT than individuals with a lower
degree of AttEnv.

Rogers (2003) describes early adopters as venturous, curious about innovations, and
uncertainty-loving. Correspondingly, farmers who perceive themselves as interested and
knowledgeable and who actively seek out information about technological innovations
through the internet, magazines, or discussions with colleagues should be more likely
to experiment with digital technologies. The literature on digital innovation adoption
does not entirely confirm this conjecture though. While Michels et al. (2020b) found
a positive association between stated innovativeness and smart phone ownership for
farming purposes among German farmers, Beza et al. (2018) observed that personal
innovativeness (PI) did not effectively promote intentions to use mobile SMS among
Ethiopian farmers. One study conducted with Canadian farm managers identified
innovativeness to favor the adoption of diagnostic and applicative precision agriculture
tools (Aubert et al., 2012). Lastly, Mohr and Kühl (2021) provide a behavioral perspective
on the acceptance of artificial intelligence systems among German farmers. While they
found no direct effect of higher levels of personal innovativeness on acceptance, the
former positively mediated a set of attitudinal measures which in turn indirectly affected
acceptance in a positive way. Arguably, the relevance of farmers’ innovativeness may
vary across study designs and contexts. Especially for technologies with complex traits,
such as SWT, innovativeness may be a necessary but not sufficient condition for adoption.
For example, if innovative farmers are also well-informed about pending technological
challenges of a particular digital technology, innovativeness may be associated with
non-adoption. We hope to better understand this relation and hypothesize that:

H2: Farmers with a higher degree of personal innovativeness (PI) allocate more
hectares to environmentally friendly SWT than individuals with a lower degree of
PI.

Many SFT have the ability to collect and process high-volume farming data, allowing
them to take and continuously improve (semi-)autonomous analytical and operational
tasks in real time (Bovensiepen et al., 2016). These novel technological features
have sparked a controversial debate. Improved in-field decision-making based on
artificial intelligence allows substantial chemical input reductions (Finger et al., 2019),
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and augmenting farming processes via big data applications will enhance foresight
capacities and eventually transform whole farming business models (Wolfert et al.,
2017). However, little quantitative research is available on how farmers evaluate
the novel data-driven abilities of the ‘digital brain’ of SFT, let alone their effect on
adoption intentions and implications for policies required to soothe concerns around
big data in agriculture (Sparrow and Howard, 2021). Scholz et al. (2021) found that
the agricultural digitalization process has raised growing concerns among farmers
regarding the sovereignty, security, and ownership of their farming data, which may
impose an impediment to the adoption of SFT (Fleming et al., 2018; Gabriel and
Gandorfer, 2020; Jakku et al., 2019; Lioutas et al., 2019). We are aware of only one
recent publication by Mohr and Kühl (2021), who quantified a positive relationship
between ‘farmers’ expectation of property rights over business data’ and the acceptance
of artificial intelligence in agriculture. We shed further light on this relevant debate by
explicitly considering the role of trust in the security and privacy of farming data for
farmers’ intentions to adopt SFT:

H3: Farmers with a higher degree of trust in farming data security and privacy
(DT) allocate more hectares to autonomous weeding robots (WR) as an alternative,
environmentally friendly, weeding technology than individuals with a lower degree
of DT.

The potential environmental benefits that are associated with the adoption of agricultural
innovations may pose a rationale for policy intervention. Agri-environmental policy
instruments, such as subsidies, can then increase the private profitability of innovations
vis-à-vis established agricultural technologies to the benefit of society (Kuhfuss et al.,
2016a; Musshoff and Hirschauer, 2014; Thomas et al., 2019). For example, in
the framework of the EU’s Common Agricultural Policy, agri-environmental policy
incentives are designed to induce sustainable agricultural innovation by partially
compensating the opportunity costs faced by farmers when adopting environmentally
beneficial land uses (Kuhfuss et al., 2016a). Beyond compensation for the associated
increase in production and transaction costs, subsidies signal societal appreciation to
farmers, who are increasingly under pressure to align multiple and often conflicting
sustainability demands (EEA, 2022). A technology-specific subsidy, even if not fully
compensatory, may thus tip the balance in favor of the environmentally more beneficial,
but privately less profitable technology option:
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H4: A governmental subsidy increases the number of hectares allocated to
environmentally friendlier SWT.

More recently, ‘soft’ policy tools (Akerlof and Kennedy, 2013) have been proposed to
promote the adoption of sustainable practices and technologies. So-called behavioral
nudges are designed to influence individuals’ behavior toward more sustainable outcomes
and thereby increase the welfare of an individual or (and) society at large (Congiu
and Moscati, 2022). As such, nudges can be a cost-effective alternative to monetary
incentive schemes. According to Thaler and Sunstein (2008), a nudge contains ‘any
aspect of choice architecture that alters behavior in a predictable way without forbidding
alternatives or significantly changing economic incentives’ (p. 6). While nudges are
applied in a multitude of contexts (Akerlof and Kennedy, 2013; Thaler and Sunstein,
2008), ‘green nudges’ in particular aim at voluntary pro-environmental behavior change
(Schubert, 2017). Ferrari et al. (2019) reviewed literature on the impact of green nudges
on, inter alia, farmers’ pro-environmental behavior and found that the majority of articles
used two nudge design principles. Specifically, they either relied on salience and affect
by addressing a novel issue of personal relevance to the nudged farmer or they made
use of social norms and peer comparison.6 Along these lines, nudges may be aimed at
farmers’ self-image (Howley and Ocean, 2022), their perceived responsibility toward
the dominant social setting (Czap et al., 2015), or the environment (Peth et al., 2018).

However, the effectiveness of behavioral nudges depends on the specific context and
behavior under consideration. For example, Buchholz et al. (2018) found that a green
nudge significantly lowered participants’ pesticide use, while Czap et al. (2019) showed
that an empathy nudge (a personal message) significantly increased the number of
Nebraska farmers enrolled in a conservation program. Kuhfuss et al. (2016b) confirmed
the effect of a social norm nudge (comparison with other farmers) on intentions to
maintain conservation practices in agri-environmental schemes, although this was
contrasted by Howley and Ocean (2022), who showed that a similar social nudge had
minimal effect on the intention to adopt smartphone apps for farming purposes. Lastly,
in Czap et al. (2015), a heterogeneity analysis revealed that an empathy nudge was an
effective intervention to increase hypothetical water conservation behavior only for those
individuals who already showed higher pre-treatment conservation behavior. Potentially,
any hint toward socially or environmentally desirable behavior might even have the

6See Blumenthal-Barby and Burroughs (2012) for a comprehensive review of nudge design principles.
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opposite effect, i.e. farmers may react with protest behavior since for the adoption of
costly innovations such as SWT substantiated support is needed. Despite the ambiguity
in the empirical literature, we hypothesize based on the majority of study findings:

H5: A green nudge increases the number of hectares allocated to the environmen-
tally friendly SWT.

In the metaeconomics framework (MEF) and dual interest theory (DIT), Lynne et al.
(2016) suggest that economic agents endeavor to find a balance between their (economic)
self-interests and other business-related interests when considering outcomes of their
managerial decisions. Other interests could be driven by the agents’ empathy toward their
social environment. The environmental benefits associated with SWT accrue to society
at large as a public good. Thus, according to theory (Lynne et al., 2016), combined policy
interventions that simultaneously address farmers’ economic as well as farmers’ societal
interests can enhance conservation behavior more than each intervention separately.
However, empirical literature testing the superiority of combining policy tools is both
scarce and ambiguous. For example, Hagmann et al. (2019) found that a nudge to use
green energy reduced the support for a carbon tax. However, experimental findings
in Osman et al. (2021) and a review study by Stern (2011) suggest that combined
monetary and non-monetary incentives were superior in increasing the consumption
of sustainable food and reducing private carbon emissions, respectively, than each of
the two incentive types in isolation. Despite several findings that nudges alone may
not suffice to produce the desired effects (e.g., Czap et al., 2015; Peth et al., 2018;
Reddy et al., 2020), research on combined policy effects is even more patchy in the
context of agricultural technology adoption. Promisingly, Howley and Ocean (2022)
tested two nudge types, an injunctive norm and social signaling, to find weak evidence
that the combined nudge effect exceeded the sum of the individual effects on mobile
phone farming app adoption by farmers in the United Kingdom. For the case of French
farmers’ enrolment in agri-environmental contracts, Kuhfuss et al. (2016a) showed that
a financial incentive combined with an injunctive social norm was more effective and
cost-efficient than a subsidy alone. Furthermore, a framed lab experiment in Czap
et al. (2015) confirmed that the effect of a combination of a subsidy with an empathy
nudge was larger than either of the individual treatment effects on hypothetical water
conservation behavior. Accordingly, we formulate our last hypothesis:
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H6: Combining monetary incentives and a green nudge leads to a higher number
of hectares allocated to SWT than either of the two measures individually.

Note that hypothesis three only addresses WR. We argue that concerns around farming
data security and privacy are mainly associated with fully autonomous WR, while the
remaining hypotheses address both SWT investigated below.

3.3 Methods and data

3.3.1 Lab-in-the-field experiment–background and design

The novelty and low diffusion levels of SWT rule out an ex-post assessment based on
observed adoption behavior under varying policy interventions for our case. Therefore,
we designed a framed lab-in-the-field experiment (Gneezy and Imas, 2017; Thomas
et al., 2019). Compared to costly controlled field experiments and ex-post observational
studies with limited internal validity, lab-in-the-field experiments can be designed at
relatively low cost and provide a high level of internal validity (Gneezy and Imas, 2017;
Musshoff and Hirschauer, 2014). To maximize external validity, we addressed the study
to non-standard subjects, i.e. active farmers (Gneezy and Imas, 2017). We framed the
experimental setting to include information on the study context and practical agronomic
decision tasks. Framing creates a common ground of contextual knowledge and aligns
the (presumably diverging) implicit interpretations and assumptions of participants to
the extent possible (Alekseev et al., 2017). Moreover, the experiment aimed to closely
resemble a realistic decision situation, which is beneficial for data quality (Musshoff
and Hirschauer, 2014). As such, the hypothetical nature of the experiment enabled us to
study farmers’ behavior in a scenario that assumed the commercial availability of SWT
for crop farming and the presence of policy conditions tailored accordingly.
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The pre-registered7 and incentivized8 study was programmed in Qualtrics and started out
by recording a set of attitudinal measures. This order was chosen to obtain the attitudes
unaffected by any information given throughout the experiment. To make hypotheses
H1–H3 testable, we developed the three attitudinal measures based on multiple question
items that were derived from the discussed literature and operationalized them via
7-point Likert scales on which study participants self-assessed their degree of (dis-)
agreement. The final attitudinal constructs entered the analysis as standardized mean
scores.9

This was followed by the experimental centerpiece—a two-period business simulation
game. We collaborated with the Agricultural Chamber of North Rhine-Westphalia
(NRW, a German federal state) for the development of experimental contents. After
pretesting with eighteen chamber members (mostly active farmers), minor improvements
regarding programming and farming terminology were implemented. Within the game,
participants were placed in the role of fictitious farmers managing 50 hectares (ha) of
arable land on which cereals and root crops would be cultivated and sold after each
production period. The participant’s task would be to choose between three weeding
technologies—broadcast application (BC), spot spraying (SS), and a weeding robot
(WR). Specifically, participants had to decide in each game period separately about the
number of hectares allocated to each weeding technology. Only one technology could be
allocated to each full hectare, i.e. repeated weeding or weeding fractions of hectares was
not possible. On each hectare, two kinds of returns could be generated—economic and
environmental—expressed in game points, which were converted into real Euros after

7Pre-registration: https://osf.io/b9ryz/?view_only=feba413987bf429d826ae8665eed15fc. The survey
was part of a larger project. Only parts are used for the present study. The full survey, including
formulations of attitudinal questions, business simulation game instruction, alongside sociodemographic
and farm structural survey questions, can be found in the Online Appendix. The choice of two game
rounds was motivated by a similar lab-in-the-field experimental study by Thomas et al. (2019). The
decision on the hypothetical farm size of 50 ha was made after consultation with our partners in the
Agricultural Chamber of NRW. Difficulties in achieving the minimum sample size required the acquisition
of additional survey distribution channels in other federal states with different average farm sizes. However,
for internal validity we maintained the original hypothetical farm size of 50 ha in the simulation game.

8The explanation of how the experiment was made incentive-compatible can be found at the end of
the section.

9We tested the attitudinal constructs for internal consistency, yielding Cronbach’s alpha values of
0.9 (AttEnv), 0.86 (PI), and 0.49 (DT). We are aware that the latter is below the acceptable level of
0.7. However, after dropping one item from the construct, yielding a Cronbach’s alpha of 0.8, results
and interpretations of all multivariate analyses remained robust. We thus decided to retain the original
construct.
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the game. Participants were informed that the three weeding technologies would perform
equivalently in terms of weeding efficacy, but differently with respect to per-hectare
gross margins and environmental impacts, and that all operations would be offered
as a service per hectare by a contracting firm. BC served as the technological status
quo. It was depicted as an established conventional weeding method with homogeneous
chemical application, thus no additional benefits to the environment, but a comparatively
high profit due to low operational costs. SS and the WR represented SWT alternatives
associated with substantial chemical savings, thus providing environmental benefits via
reduced impacts. However, these technologies were assumed to imply higher contracting
costs and thus a lower profit margin for the farmer (Table 3.1).10 While SS was depicted
as an enhanced spraying boom mounted to a tractor with a human driver, the WR
was framed as an autonomously operating SWT, thereby encapsulating the discussed
unknowns of early-stage SFT, which allows us to test H3.

Table 3.1: Description of weeding technologies.

Broadcast application Spot spraying Weeding robot

Steering mode Tractor with human driver Tractor with human driver Autonomous
Profit margin (pts/ha) 90 66 66
Ecological value (pts/ha) 0 45 45

A key experimental design challenge lies in the parameterization of the absolute and
relative private and environmental benefits of weeding technologies. First, no reliable
information currently exists on the average profitability and environmental benefits
of highly innovative SWT. Second, the experimental setting must allow participants
to quickly calculate the payoff of alternative choices. This forced us to work with
stylized values for private and ecological payoffs based on available knowledge. Several
studies assessed relative yield performance in different crops by comparing broadcast
herbicide application to SS or WRs (e.g., Gerhards and Oebel, 2005; Kunz et al., 2018;
Sørensen et al., 2005) and yield losses in general due to reduced chemical weeding
(e.g., Kobusch, 2003). Based on Pahmeyer et al. (2021) and the online production
planning tool KTBL (2023), the relative profit loss of switching from BC to an SWT

10Based on discussions with experts (NRW Agricultural Chamber), we framed BC to be environmentally
neutral instead of environmentally harmful to avoid irritation among participants, potentially leading to
reduced participation willingness.
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was found to range from 23 per cent to 62 per cent. Although the profit differences
of switching from BC to SWT are mainly caused by lower average yields, equivalent
weeding efficacy for all technologies was assumed for the parsimony of the simulation
game. For commensurability and practicability, ecological values in Equation (3.2) are
presented in the same unit to allow for comparison with private profits and illustrate the
composition of societal utility. Private profit, ecological value, and total societal utility
were calculated as follows:

Private profit = 90× haBC + 66× haSS + 66× haWR, (3.1)

with haBC + haSS + haWR = 50 ha

Ecological value = 45× haSS + 45× haWR, (3.2)

Total societal utility = private profit+ ecological value. (3.3)

In the first round (baseline) of the experiment, all participants played the same game.
Equations (3.1)-(3.3) were shown to each participant, followed by the task of setting
up their baseline weed management plan. Thereafter, participants were shown their
individual outcomes in terms of private profit, ecological value, and total societal utility.
In the following round two (treatment round), participants were randomly assigned to
one of the four experimental conditions (Table 3.2).

Table 3.2: Randomized assignment of experimental conditions to treatment
groups.

Subsidy = 0 Subsidy = 1

Nudge = 0 T0 T1

Nudge = 1 T2 T3

Prior to deciding on their weeding strategy for round two, each treatment group received
a different informational text. The control group T0 received a text without any
connection to the experiment. In line with H4, treatment group T1 was informed that
they would obtain a subsidy of ten points for each hectare weeded with SS or WR. This
partially compensated farmers’ opportunity costs of switching from broadcast to a more
sustainable but less profitable technology. Group T1 was thus shown an updated private
profit function (Equation (3.4)).
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Private profit(T1) = 90× haBC + 66× haSS + 66× haWR + 10× (haSS + haWR) (3.4)

The calculation of ecological benefits remained identical to Equation (3.2). Respondents
were informed that societal utility did not include the values of the subsidies; thus,
social utility equaled environmental benefits and private profits, excluding subsidies.
According to H5, the green nudge, shown to participants of treatment group T2, appealed
to the intrinsic motivation of farmers as environmental stewards and key actors in
guaranteeing safe and sustained food production, highlighting farmers’ responsibility for
the welfare of society as a whole via voluntary sustainable practices. Thereby, the nudge
made use of the salience and affect design principle (Blumenthal-Barby and Burroughs,
2012).11 Profit, ecological, and societal utility per hectare were kept at baseline levels.
Finally, treatment group T3 received treatment texts T1 and T2 in combination (H6)
alongside the formulae for the calculations of returns as shown to treatment group
T1. After receiving one of the treatment texts and updated information regarding the
calculation of their profits, participants set up their weeding plan again, followed by the
display of their respective private, ecological, and societal outcomes. Subsequent to
the business simulation game, information on sociodemographic and farm structural
variables was collected.

Lastly, and only upon finishing the whole survey, respondents could insert their email
address to redeem their incentive, which consisted of the countervalue of their economic
and ecological benefits from one of the two randomly selected game periods. The
profit obtained in that round was converted (150 points = 1 Euro) into a voucher from a
workwear retailer and sent out to all farmers who provided their e-mail address. The
ecological benefit was converted at the same rate into a donation. For donations, we
chose organizations or initiatives that contributed to promoting environmental goals,
such as the multifunctionality of rural agricultural landscapes, in the respective German

11The exact wording of the environmental nudge was (translated from German): ‘In their daily work,
farmers realize the principles of good agricultural practice in manifold ways. Besides the production of
safe and healthy food and other agricultural products, this also means that they cater to a careful handling
of the environment and natural resources. The usage of innovative and herbicide saving technologies
offers farmers an additional opportunity to contribute to a more sustainable agriculture. Thus, they
promote the stability of ecosystems and the protection of biodiversity. Thereby, the sum of individual
farmers decisions can significantly enhance the well-being of society and the security of the natural basis
of life for current and future generations.’
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federal state of the participant. The respective information regarding the pay-out was
provided to participants prior to conducting the experiment. Depending on participants
in-game decisions, voucher values and donations could range from 22 Euros (show-up
fee) to 30 Euros and from 0 Euros to 15 Euros, respectively.

3.3.2 Analysis

3.3.2.1 Attitudinal measures

First, we assess baseline determinants of SWT allocation shares. While controlling for
sociodemographic variables, we mainly focus on attitudinal constructs such as AttEnv,
PI, and trust in farming data security and privacy to address hypotheses H1-H3. Let
yij be the amount of hectares farmer i allocates to weeding technology j such that the
normalized allocation shares are given by sij = yij/50. By construction, allocation
shares lie between zero and one and have to sum up to unity for each farmer i. This
characteristic of the outcome variables motivates a fractional multinomial logit model
(FMNL), the multivariate extension of the bivariate fractional logit model presented in
Papke and Wooldridge (1996). The FMNL framework has no assumptions regarding
the distribution of outcome variables. This allows for extreme values of zero and one
at non-trivial probability, i.e. allocations of zero or 50 ha to one particular technology
(which are contained in our data set) can be included (Mullahy, 2015). However, the
FMNL assumes independence of irrelevant alternatives (IIA), implying that the ratio
of two alternatives is unaffected by the characteristics of other options. This may be
inconsistent with the unit-sum share in the FMNL, but the varying implicit attributes
introduced by our framing render our three weeding options mutually exclusive (Murteira
and Ramalho, 2016).12 We are therefore not concerned about inferential issues related
to the IIA assumption. The conditional expectation of technology land shares sij is
expressed as follows (e.g., Ji and Cobourn, 2018; Mullahy, 2015; Wang and McCarl,
2021):

12Murteira and Ramalho (2016) discuss the Dirichlet-Multinomial (DM) model as an alternative
fractional response modeling approach. While the DM model is more flexible, it is not as robust to
misspecification as the FMNL is (Becker, 2014). Moreover, the DM requires assumptions about the
distribution of shares, a condition that rarely holds in practice (Becker, 2014). When comparing both
approaches, Murteira and Ramalho (2016) found only slight efficiency advantages of the DM. In another
comparison, Mullahy (2015) found that the APEs did not differ substantially and concluded that the DM
model does not come with particular benefits over the FMNL. We thus opted for the FMNL as the main
modeling framework for our study.
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E [sij|xi] = Gj

(
xi;βj

)
=

exp
(
xiβj

)∑J
k=1 exp (xiβk)

; j = 1, 2, 3. (3.5)

In Equation (3.5),Gj(xi;βj) is the multinomial logit link function and containsβj andxi

to capture the technology-specific parameter vector and farmer-specific control variables,
respectively. Setting technology J (BC) as the reference category (normalization of
βJ=0) further yields for the reference technology J (Equation (3.6)) and all other
technologies j (Equation (3.7)), respectively:

E [siJ |xi] = GJ (xi;βJ) =
1

1 +
∑J−1

k=1 exp (xiβk)
; (3.6)

E [sij|xi] = Gj

(
xi;βj

)
=

exp
(
xiβj

)
1 +

∑J−1
k=1 exp (xiβk)

; j = 1, ..., J − 1. (3.7)

The exact empirical model specification is given by Equation (3.8) in whichG−1
j (xi;βj) is

the inverse of Equation (3.5), withµj being the intercept,βj being the technology-specific
parameter vector, and X i a matrix of farmer characteristics including sociodemographic
and, the main interest of the baseline analysis, attitudinal constructs. The error term is
represented by ϵij .

G−1(xi;βj) = µj + βjXi + ϵij (3.8)

The functional specification of the FMNL requires a quasi-maximum likelihood es-
timation (QMLE) procedure (Papke and Wooldridge, 1996). Assuming the link is
correctly specified, the QMLE yields a consistent and asymptotically normal estimator
β̂. Estimated model coefficients represent effects on the log-odds ratios, i.e. the effect
of a one-unit change in a covariate on the log of the probability of choosing technology
j over the reference technology J. We calculate average partial effects (APEs), which
represent the effects of a unit change in a continuous explanatory variable on sij , the
observed share of land farmer i dedicates to technology j, while all other explanatory
variables are held constant at the sample mean. APEs for discrete explanatory variables
are interpreted as the effect on sij due to a change of a covariate from minimum to
maximum. The sum of APEs across technology shares for a given covariate yields zero
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by construction (Mullahy, 2015). Reported standard errors of APEs are calculated via
the Krinsky–Robb algorithm (Papke and Wooldridge, 1996).

3.3.2.2 Policy treatment effects

To assess the effect of hypothetical policy scenarios (treatments) on weeding decisions
(H4–H6), we adopt the same FMNL approach as above. However, we extend the
functional specification (Equation (3.9)) to include three dummies to account for
treatments T1 and T2 individually and their combination T3:

G−1(xi;βj) = µj + βjXi + γ1jT1 + γ2jT2 + γ3jT3 + ϵij (3.9)

Coefficients γ1j−3j are policy scenario coefficients and capture the effect of a respective
policy treatment on area allocation to the j’th weeding technology. APEs are calculated
as above. Figure 3.1 depicts the design of the business simulation game.

Figure 3.1: Visualization of business simulation game.

Note: Control variables and behavioral determinants (solid border) enter the analysis in both rounds;
policy treatments (dotted border) enter the analysis only in round two. Si1, Si2, and Si3 represent the
allocation shares associated with the respective weeding technology, as given in Equation (3.5).

3.3.3 Data

Data were collected between February and April 2022. We conducted an ex-ante power
analysis based on a reference study with a comparable experimental setup to calculate
the minimum required sample size.13

13The linear regression model in Thomas et al. (2019) yielded an R2 of 0.12 which translated to a
Cohen’s f2 of 0.136 representing a ‘small’ effect size. To detect such an effect size with a significance
level of 0.05 and a power of 0.9 we would require at least 215 observations.
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The email invitation to the survey was sent out via multiple channels, including farmers’
representatives of several German federal states and training farms (Tables S1 and S2).
In total, 713 farmers started the survey by clicking on the invitation link. We excluded
all participants who did not finish the study (n = 336; dropout rate = 47.1 per cent),
those who did not grant us consent to use their anonymized experimental responses
(n=3), and those who answered a question about their understanding of the experimental
instructions incorrectly (n = 40). The final data set consisted of 334 complete responses
(Table 3.3). The average survey duration was 106 minutes and the mean values of
vouchers and environmental donations were 25.7 and 9.2 Euros, respectively.

Table 3.3: Selected sociodemographic and farm-structural sample characteristics.

Sample (SD) German farmer populationa

Age in years 43.3 (11.9) 53.0
Gender 90.0 per cent male 64.0 per cent male (full-time &

part-time farmers), 89.0 per cent
(full-time farmers only)

Farming experience in
years

24.0 (12.7) N/A

Full-time farming 82.0 per cent 41.8 per cent
Family farm 92.0 per cent 41.8 per cent
Farming style 83.0 per cent conventional 90.1 per cent conventional
Farm size (ha)b

0-5 0.9 per cent -
6-10 1.8 per cent -
11-20 5.7 per cent -
21-50 16.0 per cent -
51-100 28.0 per cent -
101-200 33.0 per cent -
>200 15.0 per cent -

Education 60.0 per cent vocational training,
state-approved/master’s certificate;

58.0 per cent vocational training,
state-approved/master’s certificate;

37.0 per cent Bachelor/Master
degree, 0.9 per cent doctoral degree;

9.0 per cent Bachelor/Master/
doctoral degree;

1.8 per cent none 33.0 per cent other
Experience with SFT 32.0 per cent N/A

n = 334
a See the Online Appendix for references used for comparison.
b Due to substantial differences in farming structures across different German federal states, it did not
appear feasible to calculate and present shares of different farm size classes of the German farmer
population averaged across all federal states. Average farm sizes per federal state can be found in the
additional references in the Online Appendix.
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On average, our sample was about ten years younger than the average of the German
farmer population. Presumably, younger farmers are more likely to regularly use a
computer and thus participate in online surveys distributed through email. The share
of male participants was clearly above the German average of 64.0 per cent of male
farm workers. However, when assuming that participants were farm owners, the sample
closely resembles the German average of 89.0 per cent male farm owners. The share of
full-time farmers is twice as high as the German average (41.6 per cent), while family
farms are only slightly overrepresented relative to the respective German population
(86.7 per cent). With respect to farm size, we found disproportionately large farms
in our sample, i.e. 75.0 per cent (47.0 per cent) of our sample cultivated 51.0 (101.0)
or more ha (91.0 per cent of the participants originated in the federal states of North
Rhine-Westphalia, Bavaria, Baden-Wuerttemberg and Lower Saxony with respective
average farm sizes of 43.8, 36.0, 36.6, and 72.7 ha in the underlying populations).

Presumably, larger farms boast a higher degree of digitalization (Fleming et al., 2018)
and may thus be more inclined to participate in online surveys. Compared to the
nationwide average (90.1 per cent), conventional farmers were underrepresented in our
sample, possibly due to the appeal that the technological context of our study might
have had on farmers with an interest for sustainable herbicide-saving technologies. We
found that our sample was disproportionately well educated. About 38.0 per cent had
an academic degree in a related field. Finally, 32.0 per cent of all participants had
prior experience with SFT. In light of the online mode of distribution and participation,
respective distribution channels, and lack of representativeness of descriptive statistics,
the present sample must be regarded as a convenience sample (Ellis et al., 2023), and
the findings of subsequent analyses may not necessarily hold for the general German
farmer population. However, in line with Hüttel et al. (2022), we argue that it represents
a relevant group whose behavior may be illustrative of likely behavior of potential early
adopters.
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3.4 Results

3.4.1 Descriptive analysis

In the baseline, mean area allocation was 23.4 (BC), 17.4 (SS), and 9.1 (WR) ha for
the full sample, indicating a general preference for BC and SS over the WR (Figure
3.2). As expected, neither a Kruskall–Wallis rank sum test nor pairwise Mann–Whitney
U tests point to significant differences in weeding decisions between the treatment
groups (Tables S5–S8). Furthermore, we conducted Kruskall–Wallis rank sum tests
and Pearson’s Chi-squared tests to ascertain the balancing of continuous and binary
control variables (sociodemographic, attitudinal, and farm structural variables) across
treatment groups, yielding no significant differences. We can thus assume adequate
randomization of treatments among participants in our sample (Table S16).

Figure 3.2: Mean weeding decisions in baseline and treatment round.

Mean technology allocations in the treatment round are surprising (Figure 3.2). On
average, participants allocated 15.7, 21.3, and 13.0 ha to BC, SS, and WR, respectively,
indicating a substantial switch toward SS and WR from the baseline to the treatment
round (Table 3.4). P-values of <0.001 from Wilcoxon rank sum tests imply statistically
highly significant differences in technology choices between rounds; also see Table S3.
This is confirmed by a statistically significant Wilcoxon-signed rank tests of within-group
differences between rounds. Inspecting average weeding decisions per treatment group
and comparing baseline and treatment rounds reveals that all groups, including the
control group, show similar switching behavior (Table S4).
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Another Kruskal–Wallis rank sum test and pairwise Mann–Whitney U tests on treatment
round results yield no significant differences between groups (Tables S9–S12). We
further discuss this unusually large round effect below. Lastly, we calculated the changes
in each weeding technology allocation for each group and tested them with pairwise
Mann–Whitney U tests. No significant differences in the allocation changes were found
(Tables S13–S15).

Table 3.4: Average change of weeding technology allocation from round one to
round two.

Technology allocation change (ha)

Weeding technology Control group Subsidy Nudge Subsidy + Nudge

Broadcast application -8.6 -6.7 -5.7 -10.0
Spot spraying 4.3 2.8 2.4 5.7
Weeding robot 4.2 3.3 3.8 4.3

3.4.2 Multivariate analysis

The controlled hypothetical setting, in principle, allows us to focus on treatments and so-
ciodemographic as well as attitudinal measures in a parsimonious model specification.14

Moreover, to account for multicollinearity, we dropped less informative covariates
if their absolute correlation with any other covariate was 0.3 or higher (Table S17).
AttEnv and PI (correlation of 0.37) are an exception to this rule in order to test for
H1 and H2. Lastly, we dropped gender as a covariate given the fact that respondents
are predominantly male. Sociodemographic variables were included as controls in all
analyses.

3.4.2.1 Attitudinal measures

We start by looking at pre-treatment determinants of SWT allocation shares as per
the FMNL regression.15 Figure 3.3 presents APEs of the attitudinal constructs. A
one-standard deviation increase in AttEnv is significantly associated with a 3.3 per cent
(1.7 ha) WR area increase and a 5 per cent (2.5 ha) decrease in BC area allocation.
By contrast, a standard deviation increase in PI is significantly associated with a 4 per

14The pre-registration foresaw including farm structural variables. However, excluding them had no
major qualitative effect on the coefficients of main interest which justified the parsimonious model above.

15See Table A18 for an additional Tobit regression as foreseen by the pre-registered analysis plan.
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cent (2 ha) increase in SS and a 6.1 per cent (3.1 ha) decrease in BC. Together, the
baseline FMNL results support H1 and H2, i.e. AttEnv and PI significantly increase
SWT adoption levels while broadcast usage is reduced. The APEs for the data trust
construct are close to zero and statistically insignificant for all technologies (Table S19).

Figure 3.3: Baseline determinants of technology allocation shares (FMNL).

Note: AttEnv, pro-environmental attitude; PI, personal innovativeness; Data, trust in farming data security
and privacy; BC, broadcast application; SS, spot spraying; WR, weeding robot.

3.4.2.2 Policy treatment effects

To assess the effectiveness of hypothetical policy scenarios, we ran another FMNL
regression for the treatment round outcomes. The statistical pattern of attitudinal
constructs remains robust compared to the baseline (Table S20). Figure 3.4 shows
the APEs of policy scenarios on technology allocation shares. None of the policy
treatments, i.e. the subsidy (H4), the nudge (H5), and their combination (H6), have a
statistically significant effect on technology choice, and the large confidence intervals
indicate considerable variability in responses. The signs of the respective APEs are in
line with the hypotheses nonetheless. It is possible that unexplained variation in our
model masks a relevant relationship between the policy treatments and hypothetical
SWT adoption (Amrhein et al., 2019). While we acknowledge that the estimates are
statistically indistinguishable from zero, the magnitudes of the estimated APEs for
policy treatments suggest changes in area allocation in the order of 2 ha on average,
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which constitutes a potentially relevant relationship that merits further research. While
T1 and T2 are mainly associated with higher (lower) area allocations to WR (SS), T3

correlates positively with area allocations to both SWT options.

Figure 3.4: Treatment round determinants of technology allocation shares
(FMNL).

Note: T1, subsidy; T2, nudge; T3, subsidy + nudge; BC, broadcast application; SS, spot spraying; WR,
weeding robot.

3.4.2.3 Exploratory analyses

The apparent round effect on technology allocations across all participant groups merits
further scrutiny. Following Ji and Cobourn (2018), we used a pooled cross-sectional
FMNL specification including a game round dummy (Rt) to capture temporal dynamics
in our two-period experiment. Moreover, we clustered standard errors at the individual
level (Womble and Hanemann, 2020). The extended structural specification is depicted
in Equation (3.10):

G−1(sijt) = µj + βjXi + γ1jT1 + γ2jT2 + γ3jT3 + θRt + ϵijt (3.10)

Given randomization, estimating Equation (3.10) is equivalent to calculating treatment
effects using a difference-in-differences approach. Figure 3.5 summarizes the results
from the extended model. The APEs of policy interventions resemble earlier results

91



Chapter 3. Adoption intentions of smart weeding technologies–A lab-in-the-field
experiment with German crop farmers

(Table S21). The APE of Rt is large and statistically significant, i.e. mere game
repetition was associated with a 2.9 ha (4.4 ha) increase in area weeded with WR (SS)
and a 7.3 ha decrease in area weeded with BC, a substantial reallocation. Potential
explanations are discussed in Section 3.5.

Figure 3.5: Treatment and round effects of technology allocation shares (pooled
cross-sectional FMNL).

Note: T1, subsidy; T2, nudge; T3, subsidy + nudge; Round 2, dummy for effect of second round; BC,
broadcast application; SS, spot spraying; WR, weeding robot.

Furthermore, we explored the role of organic farming on weeding decisions (Table S22)
by extending the model in Equation (3.8) with a dummy variable controlling for organic
farming. On average, participants with an organic farming background allocated 6 ha
(12 ha) more to SS (WR) than conventional farmers (APEorganic SS: 0.121, 95 per cent
CI [0.010, 0.232]; APEorganic WR: 0.240, 95 per cent CI [0.165, 0.315]). Our results
also show that attitudinal differences exist between conventional and organic farmers in
our sample. Conventional farmers boasted relatively higher levels of innovativeness,
explaining high receptiveness toward new yet familiar technologies, i.e. SS.

Organic farmers scored lower on innovativeness but higher on AttEnv compared to
conventional farmers, which arguably motivated them to gravitate toward new SWT
associated with yet unprecedented ways of sustainable farming. Additionally, we
assessed potential heterogeneity of policy treatment effects by extending Equation
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(3.9) with the organic farming dummy and interacting it with the treatment dummies
(Table S23). The results suggest that organic farmers were more responsive to the
policy treatments than conventional farmers (13.25 ha in response to the subsidy,
APEorganic×subsidy WR: 0.265, 95 per cent CI [-0.005, 0.534] and 14.1 ha in response
to the combined treatment, APEorganic×(subsidy+nudge) WR: 0.282, 95 per cent CI [0.012,
0.553]), indicating positive associations with a higher intention to use the WR in
substantial economic and ecological magnitude. However, given the imbalance in our
sample (norganic = 39, nconventional = 295), these explorative results must be interpreted
with caution.

3.5 Discussion

This study focused on SWT as a technological alternative for German crop farmers
using a lab-in-the-field experiment. Previous work suggests that farm-level adoption
research must expand its focus to include behavioral factors in order to adequately
depict the adoption process (Dessart et al., 2019; Hüttel et al., 2022). Correspondingly,
we first studied the role of farmers’ AttEnv, PI, and trust in farming data security and
privacy as adoption determinants. SWT were explicitly framed to encapsulate novel
technology characteristics, and relevant sociodemographic factors were controlled for.
The baseline analysis showed that AttEnv and PI were positively associated with higher
(lower) SWT (BC) adoption, yielding support for the corresponding hypotheses H1 and
H2. Interestingly, higher adoption of WR was primarily associated with higher levels
of AttEnv, while higher levels of SS, the intermediate and somewhat less innovative
SWT, were primarily associated with higher levels of PI. Arguably, this finding was
driven by attitudinal differences between the conventional and organic farmers in our
sample, with the former scoring higher with respect to innovativeness and the latter
revealing a higher AttEnv. We could not confirm previous research (e.g., Gabriel and
Gandorfer, 2020; Jakku et al., 2019; Mohr and Kühl, 2021) reporting that farmers’ (lack
of) trust in the privacy of data collected by SFT is indicative of adoption intentions (H3).
Except for Mohr and Kühl (2021), who base their findings on a small sample, in which
43 per cent of the subjects were non-farmers, our study is the first to conceptualize
and quantify the effect of a data trust construct in this rigorous manner, which limits
further comparison of our results with previous quantitative research. However, the
insignificance of our finding may owe to the fact that young and educated managers of
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large farms are somewhat overrepresented in our sample vis-à-vis the average German
farm population. Variation in attitudes toward security and privacy of farming data may
thus not be sufficient to explain technology choices in the experiment. Nevertheless,
in light of prevalent qualitative evidence, future studies should continue to develop an
understanding of the circumstances in which concerns around farming data become
relevant for technology adoption. The overarching message from the baseline results
is that farmers with higher scores for environmental attitude and innovativeness were
more willing to forego private returns to the benefit of society than participants who
scored lower in these attitudinal constructs. Trust in farming data privacy, however, was
not a relevant determinant of SWT adoption.

Our second objective was to assess policy scenarios to enhance farmers’ adoption of
societally desirable SWT. None of the treatments had a statistically significant effect on
SFT adoption due to very heterogenous allocation shares. Specifically, the level of partial
compensation and design of the green nudge seemed to be insufficient as an adoption
incentive for this particular sample. Having acquired sufficient power via adequate
sample size, we acknowledge that statistical insignificance of our results prevents the
inference of conclusive treatment effects. However, in line with the ongoing debate on
the use of p-values, we note that our findings may indicate quantitatively relevant effects
that justify further exploration in adapted research designs (Heckelei et al., 2023). All
policy effect estimates exhibited the expected sign, i.e. the subsidy (H4) and green nudge
(H5) had a net positive association with the adoption of SWT. Notably, in both scenarios,
this tendency was primarily driven by increased allocation to WR, whereas SS allocation
shares dropped. The parameter estimates of the combined policy treatment (H6) were
higher than those of the individual treatments. BC allocation dropped somewhat more,
and SS and WR allocation were more balanced than under the single policy regimes.
This is in line with our earlier line of argumentation. Farmers supposedly incorporate
both personal and societal interests into their managerial decisions (Lynne et al., 2016)
to simultaneously address personal and other interest. Similarly, to Czap et al. (2015)
and Kuhfuss et al. (2016a), our findings may hint at the presence of such a combined
policy effect. Interestingly, our results suggest organic farmers are more responsive to
the policy treatments than conventional farmers. This finding is in line with the findings
of a recent simulation-based study on SWT adoption in which Shang et al. (2023) found
that organic farms are likely willing to pay substantially more for automated technology
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than conventional farms.

Some implications arise, nonetheless. Farmers showed a clear preference for broadcast
allocation over SS over WR (Figure 3.2). While an overall preference for BC is expected
given the higher hypothetical profit margin, the preference of SS over WR likely reflects
varying degrees of familiarity and expertise with the respective technologies and AttEnv
in our sample of farmers. Uncertainty associated with the novel characteristics of WRs,
though not made explicit in our framing, may also have played a role. Overcoming the
diverse potential barriers to SWT adoption may thus require a combination of technology
maturation and carefully designed policy incentives. Along these lines, Rogers (2003)
theorized that early adopters with an innovative, uncertainty-loving, and intellectual
mindset can act as agents of change to initiate and subsequently accelerate the innovation
process by being leading examples for their colleagues. Against this backdrop, Hüttel
et al. (2022) found the impact of social norms driven by innovative peers and other
technology users to be a major determinant of farmers’ intention to use variable rate
nitrogen application in crop farming. Similarly, Suvanto et al. (2020) showed that a
higher entrepreneurial disposition, including low risk-aversion and innovativeness, was
associated with a higher likelihood of starting the cultivation of sustainable protein-rich
crops, and, finally, Blasch et al. (2022) looked at the adoption of precision farming
tools in general to find that operators’ higher innovativeness and openness toward
eco-friendly farming practices were relevant predispositions to uptake. Our findings
match this line of research, which justifies the suggestion that targeting innovative and
pro-environmentally minded farmers would appear as a promising element in early
dissemination strategies based on our findings.

We could not reject the null hypothesis related to H4–H6 after conducting our experiment,
but this certainly does not imply that policy interventions do not matter for promoting
the adoption of environmentally desirable SFT. All estimates of policy treatments, albeit
statistically not significant, consistently pointed toward higher levels of WR adoption at
a policy-relevant magnitude of up to 2.2 additional ha on a single hypothetical farm of
50 ha. In the German agricultural context, this is a relevant area to experiment with
new technologies. If anything, the null result suggests that agricultural field robots, if
not profitable from a purely private perspective, must come with policy interventions
that at least compensate for opportunity cost and perceived additional downside risk
(Finger, 2023). Green nudges alone, on the other hand, may not work to encourage
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adoption among all types of farm managers at this stage of technological development.
Instead, as pro-environmental discourse becomes mainstream in the public sphere, the
occasional scapegoating of agriculture may eventually lead to protest behavior with
counterproductive responses to behavioral nudging attempts.

Some caveats apply. Although we could rule out randomization failures and control
group contamination, participants in the control group ventured substantially more
hectares into SWT in the second round than in the first round. We speculate that this
round effect was driven by a combination of the hypothetical experimental setting
and the perceived uncertainty associated with adopting a new technology (although
not reflected in the actual fixed payoffs). After being reassured in the first round that
payoffs materialized as promised, participants also became more familiar with the
survey tool and eventually allocated more hectares to the less well-known technology
options. Increased adoption may not only be indicative of gambling behavior but
also reflect a subjectively perceived reduction in uncertainty. Our findings reveal the
importance of including a control group in both baseline and treatment rounds to reduce
the risk of overinterpreting treatment effects derived from uncontrolled before-and-after
comparisons. Our results, however, are robust to excluding participants with extreme
switching behavior. Round effects are caused by the order of the decision tasks within
an experiment (Carlsson et al., 2012) and should thus have affected all participants in
the same way in our experiment. Hence, our treatment effect estimates remain internally
valid. Future work in this domain should pay careful attention to round effects by playing
several rounds until stabilization of preferences is observed. We also acknowledge that
the hypothetical nature and degree of abstraction created by reducing weed management
to a simple area allocation may have confused or upset some participants, causing
additional response heterogeneity or deviations from behavior in reality. We tried to
address this aspect by making participation incentive-compatible and making payouts
of vouchers and donations depend on decisions within the experiment. Moreover, our
experiment depicted farmers’ intended adoption at one particular point in time, making
it difficult to differentiate between immediate and long-run adoption determinants. All
these are known limitations of lab-in-the-field experiments (e.g., Thomas et al., 2019).
As more SFT reach technological maturity, future adoption research would benefit from
controlled and potentially longitudinal intervention studies in which some of these
limitations can be addressed by conceptualizing adoption as a multidimensional process
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(Khanna et al., 2022). This would enable insights into whether policy can have an
influence on farmers’ pro-environmental behavior and attitudes in the long run. While
this has been shown for some types of human conservation behavior in general (Akerlof
and Kennedy, 2013), no conclusive evidence exists for the agricultural context. Finally,
the findings stem from a non-representative convenience sample and may therefore only
apply to farmers with similar demographic and structural profile among which, however,
early SWT adoption is most likely to be observed, rendering them a relevant subject
pool to study.

3.6 Conclusion

The present study brings evidence from an economic experiment to the debate on
adoption determinants of SFT, an emerging technology field with the potential to enable
a sustainable agricultural transformation (King, 2017). In light of current medium to
low adoption rates (Mizik, 2022), this debate is still largely based on assumptions and
demonstration farm data and thus requires a systematic empirical foundation. Our study
shows that German farmers’ pro-environmental attitude and innovativeness seem to be
relevant for the uptake and diffusion of SWT, indicating some willingness to forego
private returns in favor of environmentally sustainable herbicide-efficient weeding
options. However, data concerns, contrary to widely held concerns, seem to play a
negligible role. The subsidy and the green nudge did not significantly affect SWT
adoption, neither individually nor in combination, but the response to our treatments is
positive on average and should be explored in future research. Thus, our findings inform
the design of policy incentives required to accelerate the adoption of socially desirable
agricultural innovations that may otherwise fail to unfold their full potential.
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Chapter 4

Round effects in economic experiments–
Insights from a business simulation
game with agricultural students

Abstract: In their two-round framed lab-in-the-field experiment to evaluate, inter alia,
the effect of hypothetical policies on German farmers’ intended adoption of smart
weeding technologies, Feisthauer et al. (2024) found that the behavior of the control
group, although not having received a treatment, strongly resembled the treatment
groups’ behavior. They argue that this "round effect" may have been an important factor
of rendering all policy effects statistically insignificant. We replicate the precursory study
with German agricultural students in an adapted experimental design. We want to find
out whether the round effect is a behavioral phenomenon specific to the farmer sample
of the precursory study or whether it is a methodological issue inherent to multi-period
experiments. Since we cannot reproduce a round effect but find a substantial policy
treatment effect, our results point to marked differences between our student and the
farmer sample. This stimulates the debate about subject pool effects and casts doubt on
the adequacy of using students as a reference to study farmer behavior in agricultural
policy evaluation experiments.

Keywords: Framed lab-in-the-field experiment, subject pool effects, replication study,
policy evaluation, smart farming technologies

JEL classification: D91, B41, Q16
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4.1 Introduction

In Chapter 3 in this dissertation, Feisthauer et al. (2024) conducted a framed lab-in-the-
field experiment with German farmers to learn about their intentions to adopt smart
farming technologies (SFT) for herbicide-reduced weed management. The authors
designed a two-round business simulation game in which participants had to choose
from several weeding technologies with different economic and environmental outcomes
to conduct weed management on 50 hectares of hypothetical farmland. Specifically,
farmers could choose a technology mix of broadcast application–relatively profitable
but without environmental benefits–and two smart weeding technologies (SWT) with
relatively lower profits but environmental benefits derived from hypothetical herbicide
savings. The first round served as the baseline in which the authors assessed the
statistical association of farmers’ technology allocation shares with, inter alia, a set of
attitudinal variables which were recorded prior to the game, namely pro-environmental
attitude, personal innovativeness, and trust in the security and privacy of farming data.
In the second round, the sample was randomized in four experimental groups. While the
first group, the control group, played under identical experimental conditions as in round
one, the treated groups received hypothetical policy scenarios that were hypothesized to
have a positive effect on farmers’ intention to use more sustainable SWT in the second
round compared to the baseline.

The findings of the second round were surprising: The control group, although not
having received a treatment, exhibited a change in technology allocation towards SWT
in the sense of the hypotheses similar to the treated groups. This resulted in insignificant
between-group differences in technology allocation in round two rendering the policy
treatment effects indistinguishable from zero. An exploratory analysis–a pooled cross-
sectional model including the allocation shares of both game rounds–further yielded a
statistically significant coefficient for the "round two dummy". That is, merely playing
a second round was associated with higher SWT allocation compared to the baseline.
A within-group comparison of the treatment groups’ weeding decisions across game
rounds would have rendered all treatment effects statistically significant (cf. Thomas
et al., 2019). Only the inclusion of a control group avoided this spurious interpretation.

Given the relative cost-efficiency of framed lab-in-the-field experiments (Gneezy and
Imas, 2017) to test potential policies prior to their implementation, the discovery of
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what Feisthauer et al. (2024) coined "round effect" is arguably highly relevant from both
a methodological and a policy perspective and thus motivates the present study. But
based on the findings in Chapter 3 and in light of the paucity of similar studies in our
field, it cannot be said whether the round effect is an inherent methodological issue of
multi-period business simulation games or rather a peculiarity of the farmer sample
collected in the above study. The objective of Chapter 4 is thus to attempt to answer
this question and it therefore is to be read as a methodological addendum to Chapter 3.
Consequently, we neither aim to derive further statements regarding the state of SFT
adoption intentions among German crop farmers nor do we formulate additional policy
recommendations to promote sustainable intensification of agriculture.

We replicate and adapt the experiment in Feisthauer et al. (2024) with German agricultural
students. Thereby, our study does not only aim at increasing the awareness for potential
round effects and hold as an orientation for future studies with similar experimental
designs and samples. In comparing the results from the student sample to the farmer
sample in Chapter 3, we also add to the debate about subject pool effects, i.e., we discuss
the question whether agricultural students can hold as an adequate reference to study the
behavior of professional experimental subjects, e.g., farmers (Peth and Mußhoff, 2020).

In the remainder of this chapter, we first outline the adapted experimental design, the
analytical approach and the composition of the student sample (Section 4.2). This is
followed by the presentation of descriptive and multivariate analysis results (Section
4.3). Finally, we discuss the results and conclude by pointing out implications for future
research (Section 4.4).

4.2 Methods and data

4.2.1 Experimental design

We largely retained the framing (playing the role of a crop farmer), design (50 hectares of
farm land, 3 weeding technologies with original attributes) and the choice task (choose
weeding technology mix for each round) of the precursory lab-in-the-field experiment
in Feisthauer et al. (2024) as show in Table 4.1.
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Table 4.1: Description of weeding technologies.

Broadcast application Spot spraying Weeding robot

Steering mode Tractor with human driver Tractor with human driver Autonomous
Profit margin (pts/ha) 90 66 66
Ecological value (pts/ha) 0 45 45

Regarding the length of the experiment and the treatments, we made several changes
in line with the objective outlined in Section 4.1. First, to the track with two game
rounds–baseline and one treatment round–we added a second track playing four game
rounds–baseline and three treatment rounds. This design change was motivated based
on the consideration that the round effect, given its presence, might change in magnitude
as the game progresses (Day et al., 2012). Second, for parsimony, we only retained one
policy scenario which was shown to the treatment groups in both the two-round and the
four-round track. That is, respective participants would receive a subsidy of ten points
for each hectare on which they chose a SWT for weed management. Table 4.2 depicts
the adapted course of the experiment for each group.

Table 4.2: Flow of experiment and randomized assignment to treatment groups.

Round

Treatment 1 2 3 4

Subsidy = 0 Baseline Group 1 - -
Baseline Group 3 Group 3 Group 3

Subsidy = 1 Baseline Group 2 - -
Baseline Group 4 Group 4 Group 4

Furthermore, the same formulae to calculate private profit, ecological value, and societal
utility were presented to participants before each game round. Specifically, Equations
(4.1), (4.3) and (4.4) were shown to all participants in the baseline and to those who were
assigned to a control group in subsequent rounds (group one or group three). Treated
participants in groups two and four saw Equations (4.2), (4.3) and (4.4) in subsequent
rounds after the baseline.
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Private profit(baseline;subsidy=0) = 90× haBC + 66× haSS + 66× haWR (4.1)

Private profit(subsidy=1) = 90× haBC + 66× haSS + 66× haWR + 10× (haSS + haWR) (4.2)

with : haBC + haSS + haWR = 50 ha

Ecological value = 45× haSS + 45× haWR, (4.3)

Total societal utility = private profit+ ecological value. (4.4)

As in the precursory study, we asked participants to express their attitudes towards the
environment, towards innovations, and towards the security and privacy of farming data
via a set of 7-point Likert scale questions. At the end of the survey, participants were
asked to respond to a set of questions regarding their sociodemographic background
(see Supplementary Information for the list of all recorded variables).

Finally, this replication experiment with agricultural students was incentivized, as well,
as this is said to increase truthful response behavior and samples size (Göritz, 2006).
Participants were informed that their ecological value achieved in one randomly selected
game round would be converted into a donation to a German environmental agency
at a game point to Euros exchange rate of 300 to 1. Moreover, they could insert their
email address to redeem the countervalue of their private profit from the same randomly
selected game round and it consisted of an online voucher code for an electronics and
technology retailer. Voucher values and donations could range from 11 Euros (show-up
fee) to 15 Euros and from 0 Euros to 7.50 Euros, respectively.

4.2.2 Analysis

The outlined extended lab-in-the-field experiment was part of a larger study within our
research group to study the nature of round effects in multi-period stated preference
experiments in more depth. Please refer to Leyens et al. (2024) who apply an alternative
theoretical and methodological perspective to the full data set collected in this endeavor.
Although our primary focus remains with round effects, too, the objective of the present
chapter, however, is to replicate the identical experimental conditions in Feisthauer
et al. (2024) and compare their results to the findings of our student sample. For
commensurability, we thus draw on the same analytical procedures of the precursory
study. Furthermore, although the sample description in Section 4.2.3 below depicts the

111



Chapter 4. Round effects in economic experiments–Insights from a business simulation
game with agricultural students

full sample, all results and the discussion in Section 4.3 and Section 4.4, respectively,
are derived from a subsample including only participants in group one and group two
who played two game rounds (Table 4.2).

We use the same fractional multinomial logit (FMNL) procedure as in Feisthauer et al.
(2024). The baseline is analyzed according to Equation (4.5), in which sij represents
the technology allocation share of student i to technology j. Additionally, µj represents
the technology-specific intercept, βj is the technology specific parameter vector and
X i is a matrix of student characteristics including the variables of main interest of the
baseline analysis - the attitudinal constructs. The error term is given by ϵij .

G−1(sij) = µj + βjXi + ϵij (4.5)

The FMNL model specification for the treatment round assessment is given by Equation
(4.6) in which the coefficient of the subsidy policy scenario T on the allocation shares
of each technology j is represented by γj .

G−1(sij) = µj + βjXi + γjT + ϵij (4.6)

Similarly, the pooled cross-sectional model specification for game rounds one and two
which includes the coefficient θ for the round effect Rt is given by Equation (4.7).

G−1(sijt) = µj + βjXi + γjT + θRt + ϵijt (4.7)

4.2.3 Data

Data were collected in November and December 2022.16 The online survey was dis-
tributed via email through multiple channels within the authors’ networks to agricultural
students from German universities, technical colleges and vocational schools. In total,
403 students clicked on the link to begin the survey of which only 277 completed it
(dropouts n=126, dropout rate=31.3%). Furthermore, we excluded participants who

16Since data collection was part of the joint endeavor within our research group, this section is, in a
large part, taken from Leyens et al. (2024). We received explicit permission of the authors to reproduce it
here and adapt details in line with the objective of the present chapter, where needed.
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did not consent to the use of their anonymized experimental responses (n=2), those
who indicated they were no students (n=8), and those who answered a test question
regarding the experimental instructions incorrectly (n=64) which yielded the final data
set of 203 usable observations (Table 4.3). Among all usable survey submissions, the
average participation duration across all groups was 37.1 minutes. The voucher and
environmental donation payouts averaged to 13.0 and 4.5 Euros, respectively. The
average participant’s age was 22.7 years and the sample was approximately composed
of 55.0% male and 45.0% female student. While about half of the sample did not have
any prior practical farming experience, 22.7% were accustomed to working on their
family business, 14.8% had several years of experience and 14.3% had completed an
internship. A large majority of participants were university students (83.0%), while the
remainder were enrolled in technical colleges (13.0%) and vocational schools (3.9%).

Table 4.3: Sociodemographic characteristics of the full sample.

Variable Mean(SD), count(share)b

Age in years 22.7 (2.7)
Gender 111 (55.0%) male

91 (45.0%) female
1 (0.5%) diverse

Prior farming experience 98 (48.3%) no experience
46 (22.7%) work experience on family farm
30 (14.8%) several years
29 (14.3%) completed an internship

Type of educational institution 169 (83.0%) university
26 (13.0%) technical college
8 (3.9%) vocational school

Experience/knowledge of SFT (yes/no) 102 (50.0%)
Pro-environmental attitudea 5.9 (1.0)
Personal innovativenessa 4.8 (1.4)
Trust in security and privacy of farming dataa 4.1 (1.2)

n = 203
a 7-point Likert scale multi-item construct to evaluate participants’ self-rated fatigue during the survey.
See Supplementary Information for details.
b Percentages are rounded to one decimal point and thus do not necessarily add up to 100%.

Exactly half of the sample (50.0%) had prior experience or (and) knowledge of smart
farming technologies (SFT). Lastly, regarding the attitudinal measures, participants
had a high average level of pro-environmental attitude (mean=5.9) while expressing
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moderately high levels of personal innovativeness (mean=4.8) and trust in the security
and privacy of farming data (mean=4.1).

4.3 Results

In the following, we first elaborate on the descriptive results of the weeding technology
allocation shares (Section 4.3.1) which is followed by the presentation of the multivariate
analysis (Section 4.3.2). Please note that we will focus only on the results of groups
one and two which played two game rounds (n=108). Details on game outcomes for
the full sample are compiled in Tables S3 and S4 in the Supplementary Information.
Yet, prior to the subsample analysis and for completeness, we conducted a balance
test which yielded no statistically significant differences in any sociodemographic
variable, i.e., randomization of the experimental groups was successful (see Table S1 in
Supplementary Information for details).

4.3.1 Descriptive analysis

In the baseline, a preference of broadcast application over spot spraying over the weeding
robot is present in both groups (Figure 4.1). A pairwise Mann-Whitney-U-test yielded
no statistically significant differences in area allocation between groups (Table S5). To
this point, the results of the student subsample strongly resemble the farmer sample in
Feisthauer et al. (2024).

In going from round one to round two, we observe negligible changes in technology
allocations in the control group (<1 hectares). This is confirmed by an insignificant
Wilcoxon rank sum tests of within-group differences (Table S6). By contrast, the
treatment group reduces broadcast application allocation by 4.40 hectares and increases
spot spraying and weeding robot by 2.00 and 2.40 hectares, respectively (Table 4.4).

The Wilcoxon rank sum tests shown in Table S6 renders these within-group differences
statistically (marginally) significant for broadcast applications and the weeding robot
(spot spraying). In absolute terms, the area assignments of the control group differ
from the treated group by 5.30 hectares, -5.80 hectares, and 0.50 hectares for broadcast
application, spot spraying, and the weeding robot respectively (Figure 4.1). In other
words, in round two, the control group allocates substantially more (less) area to broadcast
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(spot spraying), as indicated by marginally significant pairwise Mann-Whitney-U-test
results of between-group differences (Table S5).

Figure 4.1: Mean weeding decisions in baseline and treatment round.

Finally, a pairwise Mann-Whitney-U-test of difference in changes of weeding technology
allocation from round one to round two underlines the above by yielding (marginally)
significant group difference regarding allocation changes in hectares for broadcast
application (weeding robot) (Table 4.4).

Table 4.4: Average change of weeding technology allocation from round one to
round two and test of differences.

Technology allocation change in hectares, mean (SD)

Technology Control group Subsidy group p-valuea

Broadcast application -0.8 (12.2) -4.4 (8.3) 0.029
Spot spraying 0.3 (10.9) 2.0 (7.5) 0.330
Weeding robot 0.5 (7.8) 2.4 (4.6) 0.095

a Pairwise Mann-Whitney-U-test of differences between experimental groups.

These descriptive results suggest a statistically detectable reaction of group two to the
subsidy treatment. Furthermore, seeing that the control group exhibits similar area
allocation in both rounds hints to the absence of a round effect in this group. These
findings are in sharp contrast to Feisthauer et al. (2024). However, looking at the
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baseline group differences in weeding robot allocation, it may be plausible that part of
the reaction to the treatment of group two may have been due to ‘catching up’. This
assumption is enhanced when comparing the baseline weeding robot allocation of all
four groups (Table S4)–group two has the lowest initial allocation to weeding robot. But
seeing that group two increases not only the weeding robot but also the spot spraying
area in round two strengthens the case of an effectual subsidy treatment again.

4.3.2 Multivariate analysis

We now turn to the results of the multivariate analyses. The effect size plots below
(Figures 4.2 to 4.4) only depict the variables of interest of the respective analyses
(attitudinal constructs, policy treatment, round effect). Additional covariates, although
included in each model estimation, are not presented in the main body of the text.
Regarding several sociodemographic control variables, the student sample turned out
rather homogenous and the majority thereof were strongly imbalanced, e.g., ‘type
of educational institution’. We therefore decided to drop these variables from the
regressions. We further decided to drop the variables ‘age’ and ‘gender’ due to low
variability and arguably low information value, respectively. The retained control
variables were ‘experience/familiarity with smart farming technologies’ and ‘prior
farming experience’. For model parsimony, the latter variable was transformed into
a binary variable with 0 representing ‘no experience/completed internship for study
program’ and 1 representing ‘several years of experience/works on family farm’. As in
the precursory study, attitudinal constructs entered the analyses as standardized mean
scores. Please refer to Tables S7 to S9 in the Supplementary Information for numeric
model results in tabular form.

The analysis results of pre-treatment SWT adoption determinants are shown in Figure
4.2 and Table S7. A one-standard deviation increase in pro-environmental attitude
is significantly associated with a 6.1% (3.05 hectares) increase in area allocated to
the weeding robot. A one-standard deviation increase in personal innovativeness is
statistically significantly associated with a 13.9% (6.95 hectares) decrease in spot
spraying allocation area and a 18.4% (9.20 hectares) increase in area allocated to
broadcast application. Finally, an increase of trust in the security and privacy of farming
data is significantly associated with a 7.2% (3.60 hectares) reduction in area allocated
to the weeding robot and an increase in area allocated to broadcast application by
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11.3% (5.65 hectares). The baseline results of the farmer sample in Feisthauer et al.
(2024) and our student subsample resemble each other regarding pro-environmental
attitude. The results for personal innovativeness and data trust, however, contrast each
other. That is, for personal innovativeness we find the opposite signs with (marginal)
significance for all three technologies. A similar pattern arises for data trust–finding
significant average partial effects (APEs) for the weeding robot and broadcast application
at relevant magnitudes is a novel observation compared to the farmer sample. On a more
general note, most APEs seem to be larger in magnitude in the present case compared to
Feisthauer et al. (2024).

Figure 4.2: Baseline determinants of technology allocation shares (FMNL).

The results of the treatment round analysis are shown in Figure 4.3. Minor changes in
the magnitudes of the APEs of the attitudinal constructs notwithstanding, the results of
the baseline remain by and large robust (detailed results are given in Table S8). The
results for the subsidy treatment are promising. Having received the subsidy in round
two, is significantly associated with an increased area allocation to spot spraying by
24.3% (12.15 hectares) and a 28.8% (14.40 hectares) reduced allocation to broadband
application. This multivariate finding underscores the descriptive analysis in Section
3.1. regarding a notable treatment effect. Clearly, this is a stronger finding than in the
precursory study in which no statistically significant treatment effect with comparable
magnitude and direction was found.
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Figure 4.3: Treatment round determinants of technology allocation shares
(FMNL).

Note: BC, broadcast application; SS, spot spraying; WR, weeding robot; AttEnv, pro-environmental
attitude; PI, personal innovativeness; DT, trust in security and sovereignty of farming data; Subsidy,
subsidy policy treatment dummy

In a last step, we present the results of the pooled cross-sectional analysis including
observations of both round for groups one and two (Figure 4.4).

Figure 4.4: Treatment and round effects of technology allocation shares (pooled
cross-sectional FMNL).

Note: Subsidy, subsidy policy treatment dummy; Round 2, round effect dummy

As before, the results of the attitudinal variables (not shown) next to the subsidy treatment
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effect are by and large reproduced in this model (detailed results are shown in Table S9).
Seeing that the confidence intervals of the APEs of the dummy controlling for round
two clearly include the zero suggest that there is no statistically significant round effect.
This strongly contrasts the findings in Feisthauer et al. (2024) who find a statistically
significant and negative (positive) APE for the round effect on broadcast application
(spot spraying).

4.4 Discussion and conclusion

The primary aim of this chapter was to replicate the experiment in Feisthauer et al.
(2024) with an adapted design to find out whether the round effect in the precursory
study could be reproduced. This would then indicate a methodological flaw inherent to
multi-period business simulation games. While the related phenomenon of ordering
effects in stated preferences methods with repeated choice tasks has extensively been
recognized in consumer behavior literature (e.g., Day et al., 2012), we are not aware of any
mention in comparable references in our field of experimental agricultural economics
(e.g., Blasch et al., 2022; Fleming et al., 2021; Musshoff and Hirschauer, 2014;
Thomas et al., 2019). However, experimental designs which do not account for round
effects are at risk of contorting participant behavior, lead to over- or underestimation of
experimental treatment effects and eventually yield false conclusions regarding societally
and economically highly relevant policies (Feisthauer et al., 2024; Thomas et al., 2019).
The awareness of and methodological measures to account for round effects should thus
be a high priority in any future study. The inclusion of a control group enabled the
identification and discussion of round effects in both of the discussed studies and we urge
scholars to retain control groups as indispensable elements in any future multi-period
experiment. Further methodological advancements are clearly required to understand
the deeper nature of round effects (Leyens et al., 2024).

The results of the present replication study with agricultural students do not suggest a
round effect. Seeing that the estimations of the behavioral constructs and the treatment
effect remain robust, once we control for a potential round effect, indicates that the
temporal design of the survey does not cause substantial bias of the results. In
consequence, we may assume that the round effect may indeed have been a behavioral
peculiarity of the farmer sample collected in the previous study. Feisthauer et al. (2024)
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state that their non-representative convenience sample was marked by young, especially
innovative, and well educated farmers among which a certain degree of digital literacy
and familiarity with answering surveys in an online format could have been expected.
However, their observations suggest otherwise. The concept of institutional learning
postulates that experimental subjects oftentimes need to familiarize themselves with
the experimental setting and the complexity of choice tasks which is associated with
substantial deviations in respondents’ behavior, especially, in early phases of a survey
(Chou et al., 2009; Day et al., 2012). This may be an alternative explanations for what
was observed in the precursory study but it does, however, not apply to our student
sample. Arguably, the students were even more experienced with participating in online
surveys which allowed them to understand the experimental instructions and trust the
voucher payout structures from the outset.

In the same vein as Peth and Mußhoff (2020), we also compare the farmer sample to our
student subsample on a more general level. Without interpreting our findings regarding
the attitudinal measures and the subsidy treatment in particular depth, substantial sample
differences regarding the magnitude, significance and direction of the APEs of most
variables of interest shall be highlighted. This casts doubt on the extent to which
student samples can reliably be used to derive assumptions regarding the behavior
of farmers in our context. Given the scarcity of studies which assess attitudinal and
behavioral differences between students and farmers and seeing that our finding of
marked differences between the student and farmer sample somewhat contrasts Peth
and Mußhoff (2020) and the reviewed literature therein, caution is clearly warranted for
the interpretation of policy evaluation experiments with non-professional subject pools.
While student samples are cheaper to acquire and more readily accessible (Harrison and
List, 2004), we argue that with increasing degree of contextualization of experiments,
comparability of student and farmer samples declines. Our results not only point to a
difference between students’ and farmers’ responsiveness to a hypothetical subsidy for
smart weeding technologies but we also observe a fundamental difference in subjects’
behaviors in relation the game round played. We therefore recommend to continue to
conduct framed policy evaluation experiments with potential beneficiaries.
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Chapter 5

Behavioral factors driving farmers’ in-
tentions to adopt spot spraying for sus-
tainable weed control17

Abstract: Smart Farming Technologies enable plant-specific agrochemical applications
which can increase the efficiency and reduce the environmental impacts of agriculture.
However, the uptake of Smart Farming Technologies remains slow despite their potential
to enhance sustainable transformation of food systems. The design of policies to promote
sustainable agricultural technologies requires a holistic understanding of the complex
set of factors driving the adoption of innovations at farm level. This study has a focus
on behavioral factors, such as pro-environmental attitude, personal innovativeness and
moral norms. Based on an online study conducted in Germany, structural equation
modelling is applied to test the predictions of an extended version of the Theory of
Planned Behavior, using spot spraying, a smart weeding technology, as an example. The
results confirm theoretical predictions and show that indicators of attitude, subjective
norms, and perceived behavioral control have relevant effects on farmers’ adoption
intentions. The extended model revealed a medium-sized (small) direct effect of moral
norms on the attitude towards spot spraying (adoption intention). Personal innovativeness
had a small effect on adoption intention, whereas pro-environmental attitude did not
exhibit a clear direction of impact. Methodological and policy implications derived
from the results are discussed noting that the inclusion of indicators for moral norms
can improve the predictive power of models used in future research in this field. Overall,
initiatives aimed at facilitating the exchange of opinions and related moral norms as

17Chapter 5 is published as Feisthauer, P.; Hartmann, M.; Börner, J. (2024): Behavioral factors
driving farmers’ intentions to adopt spot spraying for sustainable weed control. Journal of Environmental
Management, 353. 10.1016/j. jenvman.2024.120218
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well as collaboration among peers may contribute to voluntary sustainable innovation as
it enhances adoption intentions among farmers.

Keywords: Smart farming technologies, Sustainable intensification, Partial least squares
structural equation modelling, Voluntary technology uptake, Agricultural policy

JEL classification: Q16, Q18, D91

5.1 Introduction

In order to meet the rising global food demand (von Braun et al., 2021), agricultural
productivity growth of the last few decades was predominantly achieved through
intensified cultivation of cropland via, e.g., increased use of pesticides and fertilizers.
This development, however, is associated with biodiversity loss and threats to ecosystem
stability (Newbold et al., 2015). Agricultural policy makers, especially in the developed
world, have recognized and started to address the potentially harmful effects of excessive
agrochemical application to human and environmental health. Against this backdrop, the
European Union’s Farm to Fork strategy–a multi-annual agenda towards more resilient,
sustainable, safe and accessible food production–seeks to reduce the use of pesticides
by 50% in all member states until 2030 (European Union, 2020).

Technological innovations in general (Springmann et al., 2018) and Smart Farming
Technologies (SFT) in particular are considered key elements to enable the shift towards
sustainable intensification and thus more eco-efficient ways of farming (Finger et al.,
2019; Garnett et al., 2013; Rübcke von Veltheim et al., 2019; Walter et al., 2017).
As opposed to uniform field operations, SFT allow for plant-specific treatment which
implies several advantages throughout the production process. Precision application
of chemicals reduces runoff to the environment (Aubert et al., 2012; Wolfert et al.,
2017), is associated with lower agricultural greenhouse gas emissions (Balafoutis et al.,
2017) and, with growing maturity of SFT, it may even be economically beneficial for
farmers due to savings in fuel, chemical and manual labor inputs (Balafoutis et al., 2017;
Lowenberg-DeBoer et al., 2020; Weersink et al., 2018). Nevertheless, adoption rates
of digital innovations among farmers are currently low (Aubert et al., 2012; Barnes
et al., 2019; Paustian and Theuvsen, 2017). Marketing and policy strategies to promote
uptake and diffusion could thus enable SFT to unfold their substantial environmental
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potential. The design and implementation of such strategies, however, requires a more
in-depth understanding of the underlying factors that drive farmers’ attitudes and motives
regarding SFT. Among these factors, the understanding of behavioral determinants of
agricultural technology adoption still remains limited (Thompson et al., 2023). This
study thus takes a behavioral perspective to investigate adoption intentions of spot
spraying, a sensor-based smart weeding technology (SWT) for precision herbicide
application in crop farming.18

Over the past decades, substantial research on adoption determinants of sustainable and
digital farming technologies has been conducted with a primary focus on observable
farmer and farm-level characteristics, i.e., sociodemographic and structural aspects such
as age, gender, education level, farm size or biophysical parameters (e.g., Barnes et al.,
2019; Groher et al., 2020; Michels et al., 2020b). Depending on, e.g., study design
and context, sampling and estimation strategy, or technology investigated, results vary.
Similarly, review studies aiming to integrate previous findings yield inconclusive results
(e.g., de Oca Munguia and Llewellyn, 2020; Pathak et al., 2019; Pierpaoli et al., 2013;
Tey and Brindal, 2012). Furthermore, the literature on adoption of sustainable farming
technologies has been criticized as so far only few studies considered behavioral and
normative factors (Dessart et al., 2019). Those behavioral studies applied different
theoretical frameworks. Using the Reasoned Action Approach, Hüttel et al. (2022) find
that social norms were the single most important determinant of farmers’ intentions to
use a precision nitrogen application technology. By contrast, in a study on the acceptance
of artificial intelligence technology in agriculture (Mohr and Kühl, 2021), the TPB and
the Technology Acceptance Model were combined to find that farmers’ personal attitude
and perceived behavioral control were most relevant in explaining acceptance whereas
subjective norms appeared irrelevant. To study the use of agricultural smart phone apps,
Michels et al. (2020b) adapted the Unified Theory of Acceptance and Use of Technology.
They found that two attitudinal determinants, namely effort and performance expectancy,
next to subjective norms were most relevant in explaining behavioral intentions. By
comparison, Aubert et al. (2012) combined the Technology Acceptance Model with
the Diffusion of Innovations Theory to simultaneously assess the role of behavioral

18Spot spraying is a plant protection technology for high-precision agrochemical application. High-
resolution AI-supported cameras are attached to the spraying boom mounted to or pulled by a tractor to
recognize and differentiate weeds from crop plants. Subsequently, the nozzles can be operated individually
to apply herbicides to single weed plants only and thus allowing for substantial herbicide reductions.
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aspects and technology attributes for the adoption of multiple precision agriculture tools.
Besides the ease of use, perceived usefulness and farmers’ self-rated innovativeness,
they found perceived resources to be important adoption determinants. Lastly, Beza et al.
(2018) applied an extended Unified Theory of Acceptance and Use of Technology to
study the use intentions of SMS services for farming data collection and identified that
expected effort, performance and profitability, along with farmers’ trust in the service
were significant positive determinants of behavioral intention.

This paper adds a theory-driven empirical analysis to the literature by testing the
suitability of the Theory of Planned Behavior (TPB) (Ajzen, 1991) for investigating
spot spraying adoption intentions for sustainable weed management. Furthermore, we
investigate the relevance of extending the TPB by environmental and moral norms as
additional drivers of sustainable innovation uptake allowing for an in-depth understanding
of the drivers of German farmers’ adoption intentions and potential antecedents of the
attitude towards this technology.

The findings of this study have implications for future research and policy alike as they
highlight the strength of subjective and moral norms for the adoption intention and
the attitude towards spot spraying, respectively. Considering the increasing emphasis
of the European Union’s Common Agricultural Policy to develop a more diversified
policy landscape to promote voluntary uptake of sustainable farming practices and
technologies (European Commission, 2019), the presented insights reveal the relevance
of farmers’ awareness of the relative advantageousness of spot spraying which thus hints
at the importance of social exchange and collaboration among farmers. Local policy
schemes which enable communication and exposure to the attitudes and moral compass
of colleagues may heighten farmers’ attitudes towards SFT, address causes of current
restraints and potentially facilitate the initial access to smart innovations. Eventually,
this may be a more cost-efficient way to accelerate the diffusion of environmentally
and societally conducive SFT towards sustainable intensification in modern farming
(Dessart et al., 2019). The remainder of this paper is structured as follows. In the next
section, the research hypotheses based on the TPB and the extension of the framework
are derived. This is followed by the description of the survey design and sample statistics.
Subsequently, the results are presented and discussed. The article concludes with a
discussion of the limitations and an outlook for future research.
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5.2 Theoretical framework

The Theory of Planned Behavior (TPB) (Ajzen, 1991) is a psychological framework
that draws on three behavioral constructs–attitude, subjective norms and perceived
behavioral control–to predict subjects’ intention to pursue a specific behavior. Attitude
represents the degree to which the individual perceives this behavior as desirable,
beneficial or useful. Subjective norms refer to social influences or pressures affecting the
individual regarding (not) performing the given behavior. Lastly, perceived behavioral
control represents an individual’s own perceived capabilities and control to perform
the focal action. More favorable attitudes, subjective norms and perceived control over
the behavior are assumed to lead to a higher intention towards the behavior in question.
Hence, the following three hypotheses are formulated:

H1. A favorable attitude towards using spot spraying has a positive effect on the
intention to use spot spraying for weed management.

H2. Subjective norms that are in favor of using spot spraying have a positive
effect on the intention to use spot spraying for weed management.

H3. A high level of perceived behavioral control with respect to using spot
spraying has a positive effect on the intention to use spot spraying for weed
management.

The TPB has frequently been applied to the context of sustainable agricultural innovations
and practices (Sok et al., 2021). In a number of cases the TPB has been extended
to more adequately capture the decision context of the behavior under consideration
(Sniehotta et al., 2014), as suggested by Fishbein and Ajzen (2010). In this study, the
conceptual framework is extended by three constructs potentially relevant for explaining
farmers’ intention to use spot spraying.

According to Rogers’ (2003) seminal Theory of Diffusion of Innovations, individuals
who try and implement innovations at early stages are described as venturous, uncertainty-
loving, and keen to gather information on latest technological gadgets which, if evaluated
positively, results in a positive attitude towards a particular innovation. Several studies
on digital farming technology adoption have used the concept of farmers’ innovativeness
as an explanatory behavioral measure in different conceptual setups. For example,
Michels et al. (2020b) and Aubert et al. (2012) found a small but positive direct effect
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of farmers’ innovativeness and smart phone ownership, respectively, on adoption of
precision farming tools. However, a significant effect of personal innovativeness could
not be confirmed in Beza et al. (2018) for the case of farmers’ intention to use SMS
for agricultural services. Finally, Barnes et al. (2019) found innovativeness to be a
significant determinant for variable rate nitrogen fertilizer technology adoption only
for those farmers who had previously adopted a machine guidance technology. The
notion of an immediate impact of innovativeness on intended adoption behavior may,
however, disregard an important intermediate step. Specifically, farmers with higher
levels of innovativeness may demonstrate higher interest and effort to gather information
regarding technological characteristics and in-field performance (Aubert et al., 2012), be
more motivated to actively seek out advice from colleagues and increase their exposure
to demonstrations and information regarding technological developments (Blasch et al.,
2022; Reichardt and Jürgens, 2009). This could enable practitioners to develop a more
substantiated perception of particular innovations which will, eventually, allow them
to form a well-informed and more determined adoption intention (Aubert et al., 2012),
assuming the innovation at hand was positively evaluated (Reichardt and Jürgens, 2009).
This suggests an indirect pathway of farmers’ willingness to learn and try out SFT on
intended adoption via favorable attitudes towards the innovation. Along these lines,
Mohr and Kühl (2021) find use attitudes and control believes to mediate the effect
of personal innovativeness on farmers’ acceptance of agricultural AI technologies.
Accordingly, hypothesis four is formulated:

H4. A high level of personal innovativeness has a positive effect on the attitude
towards using spot spraying for weed management.

The TPB captures the effect of subjective norms on individuals’ intentions while
personal values, e.g., environmental concerns and moral norms are not explicitly
considered (Ajzen, 1991). Dessart et al. (2019) postulate that environmental concern is a
dispositional behavioral determinant manifesting in all of a farmer’s decisions. Potential
environmental consequences of future decisions are evaluated accordingly, such that for
farmers with high pro-environmental values, actions in favor of the environment create
a satisfactory feeling, while pursuing actions harming the environment might induce a
feeling of guilt (Andreoni, 1990) and cognitive dissonance (Festinger, 2009). Previous
studies assessing the relevance of farmers’ environmental concerns for their adoption
frequently focused on organic farming. For example, Toma and Mathĳs (2007) found
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environmental concern to be a direct antecedent of Romanian farmers’ willingness to
participate in organic farming programs. Moreover, Läpple (2010) assessed the timing of
Irish farmers’ organic farming adoption and showed that higher environmental concerns
were a relevant predictor of adoption for early as well as late adopters. However, a high
level of a general pro-environmental attitude may not necessarily manifest in higher
inclination towards respective behaviors (Bamberg et al., 1999; Best, 2010). Specifically,
pro-environmental attitude may have an indirect effect on intended adoption through
a more positive attitude towards specific sustainable practices or innovations. For the
case of energy-efficient vehicle adoption intention in China, Wang et al. (2016) extend
the TPB to show that environmental concern had a significant indirect effect on the
adoption intention via the behavioral attitude. Best (2010) studied the relevance of
environmental concern for the uptake of organic farming in Germany in a two-step
approach. Specifically, they assessed the effect of farmers’ environmental concern on
the attitude towards organic farming for reducing negative environmental consequences
and the impact of the latter on the subsequent implementation likelihood. The authors
concluded that a favorable environmental attitude of farmers was associated with a more
positive evaluation of organic farming which again lead to a higher adoption likelihood
thereof. The fifth hypothesis is formulated accordingly:

H5. A favorable environmental attitude has a positive effect on the attitude
towards using spot spraying for weed management.

Moral norms refer to an individual’s perception of the (in)correctness of a specific
behavior. The concept relates to perceived responsibilities or obligations to conduct
or abstain from a certain behavior (Schwartz, 1977). Such norms are based on the
evaluation of potential consequences of one’s own actions (Arvola et al., 2008) and
affect a range of individual actions (Dessart et al., 2019). Since the merits of sustainable
farming practices have a public good character, moral norms may capture what a farmer
perceives as a desirable contribution to society. Previous empirical studies support
the role of moral norms as a predictor of intention in the context of farmer behaviors
including environmentally related ones (Sok et al., 2021). More specifically, Rezaei
et al. (2019) identified personal norms to directly determine Iranian farmers’ intention
to implement integrated pest management while Karimi and Saghaleini (2021) found
moral norms to indirectly determine the intention to conserve range lands via the attitude
towards this behavior. Furthermore, Bagheri et al. (2019) showed that favorable moral
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norms significantly reduced Iranian farmers’ intention to use pesticides, directly and
indirectly. The question persists whether the effect of moral norms on behavioral
intention is of direct nature or whether it is mediated through attitude. Klöckner (2013)
concluded from a meta-analysis based on 56 independent data sets that attitude partially
mediates the impact of moral norms on behavioral intentions, emphasizing the relevance
of both direct and indirect effect. This motivates the assessment of both of these effects
on farmers’ intention to adopt spot spraying in the present study and the corresponding
hypotheses are formulated:

H6a. Perceived moral norms in favor of using spot spraying have a positive effect
on the intention to use spot spraying for weed management.

H6b. Perceived moral norms in favor of using spot spraying have a positive effect
on the attitude towards using spot spraying for weed management.

Figure 5.1 presents the structural model and the related hypotheses regarding farmers’
intention to use spot spraying.

Figure 5.1: Structural model of farmers’ intention to use spot spraying.
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5.3 Methods

5.3.1 Questionnaire and behavioral constructs

Data collection took place between February and April 2022 with conventional arable
crop farmers as target group. The online survey was distributed via email in several
German federal states using multiple channels.19 The survey started with two questions
regarding participants’ prior knowledge and use of SFT in general and spot spraying
in particular. Subsequently, all participants received an informational text about the
technology to create a common knowledge base regarding spot spraying. To analyze
farmers’ intention to adopt spot spraying according to the extended TPB model, the
subsequent section contained a set of item questions representing the seven latent,
multidimensional constructs attitude towards spot spraying (AttSS), subjective norms
(SN), perceived behavioral control (PBC), intention (INT), pro-environmental attitude
(AttEnv), personal innovativeness (PI) and moral norms (MN). For the formulation of
indicator questions, validated scales from previous literature were used (see Supplemen-
tary Information) to guarantee robust construct measurement. Moreover, in adapting the
indicators to the study context in line with the hypotheses, it was adhered to the principles
of construct and scale compatibility whenever possible (Sok et al., 2021). The focal
behavior was framed regarding the specific action, time period, and context. Specifically,
it was framed as farmers’ intention to use spot spraying for herbicide-reduced weed
management on parts of their own farmland within the next five years. The indicators of
all constructs were operationalized via 7-point Likert scales (Fishbein and Ajzen, 2010).
The survey concluded by requesting sociodemographic and farm related information.
The questionnaire was pretested with 18 members of the Chamber of Agriculture of
North Rhine-Westphalia, mostly active farmers, upon which the questions were slightly
adapted.

19This present study is part of a larger investigation regarding SFT. Full presentation thereof would
exceed the extent of this paper. Survey distribution channels and the questionnaire can be found in the
Supplementary Information.
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5.3.2 Analysis

The data was analyzed using Partial Least Squares Structural Equation Modeling
(PLS-SEM),20 a non-parametric variance-based estimation strategy that maximizes
the explained variance in endogenous variables (Hair et al., 2017a). PLS-SEM was
preferred over the covariance-based SEM due to the explorative nature of research
and the complexity of the derived structural model including multiple constructs and
respective items (Hair et al., 2019). PLS-SEM is also preferred since the path model
includes formatively measured constructs (Hair et al., 2021). Additionally, PLS-SEM
makes no assumptions regarding the distribution of the data (e.g., normality) and thus
provides high flexibility (Hair et al., 2017a). This allows to extend existing theoretical
frameworks and to derive model-based predictions (Hair et al., 2017b) rendering this
method particularly useful to formulate recommendations for practitioners (Hair et al.,
2021). PLS-SEM has been used to study extensions of TPB-based models (e.g., Karimi
and Saghaleini, 2021; Michels et al., 2020a) and has been successfully applied to
investigate technology adoption behavior in the agricultural sector (Bonke and Musshoff,
2020; Hüttel et al., 2022; Mohr and Kühl, 2021).

The theoretical constructs in PLS-SEM models are latent (unobservable) by nature
requiring indirect measurement via sets of observable indicators which hold as proxies
for the underlying constructs (Hair et al., 2017a). Accordingly, the analysis of PLS-SEM
proceeds in two steps: First, the outer (measurement) model assesses the reliability
and validity of the latent variables. Second, the inner (structural) model tests the
strength of the associations among the latent variables. The evaluation criteria of the
measurement model differ for reflectively and formatively measured constructs. In
reflectively measured constructs, the direction of relationship goes from the construct to
the indicators which reflect the same underlying theoretical domain and are thus assumed
to be highly correlated. Items are interchangeable such that leaving one out does not
substantially change the construct (Hair et al., 2017a). In formative latent variables,
items are said to form the construct, i.e., the relationship goes from the indicator to the
construct. Each item covers different aspects of the same conceptual domain, they are
not interchangeable and leaving out one item can substantially change the meaning of
the construct (Hair et al., 2017a).

20The analysis was performed in Smart PLS 4.0.9.5 (Ringle et al., 2022)
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In order to find a medium-sized effect (Cohen’s f2 of 0.3), a power analysis assuming
a power level of 80%, a significance level of 5%, and a set of 7 latent with a total of
23 observed indicator variables yielded a minimum sample size of 170 observations
(Soper, 2023).

5.4 Results

5.4.1 Sample

The survey was started by 713 participants. Of those, 332 did not finish the questionnaire
(dropout rate=45,4%) or refused to consent to the use of their anonymized survey
responses (n=3). Furthermore, since neither chemical usage and therefore nor spot
spraying is applicable for organic farmers, this farm type was excluded from the sample
(n=45). The final data set consisted of 333 complete observations (Table 5.1) which
exceeded the minimum required sample size. Regarding age, business type of farming
(full-time/part-time), level of education, and farm size, the sample is not representative
compared to statistics of the German farm population.21

The average age of respondents is 43.3 years; thus, approximately ten years below the
German farmer population. With 80.0%, the share of full-time farmers in the sample is
about twice as large compared to the underlying population. Furthermore, 48.0% of the
participants cultivate 101 ha or more which exceeds the German average of 63.2 ha per
farm. This is emphasized by the fact that around 90.0% of the sample was collected
in the federal states of North Rhine-Westphalia, Bavaria, Baden-Wuerttemberg and
Lower Saxony where average farm sizes are 43.8, 36.0, 36.6, and 72.7 ha, respectively.
However, with 92.0% family-owned farms the sample is well representative of the
German average (86,7%). In addition, with about 40.0% of participants carrying at
least a bachelor degree, higher educated respondents are overrepresented. Lastly, 31.0%
(35.0%) of participants have prior knowledge of SFT (spot spraying in particular). Given
the outlined characteristics, the sample renders itself especially interesting to study
the adoption intention of presumably innovative and venturous farmers (Tamirat et al.,
2017).

21See the Supplementary Information for references used to compare the sample with the underlying
farmer population.
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Table 5.1: Sociodemographic and farm characteristics.

Variable Mean/share (SD) German farmer populationa

Age in years 43.3 (11.7) 53.0
Education 58.0% vocational training,

state-approved/master’s certificate
58.0% vocational training,
state-approved/master’s certificate

37.0% Bachelor/Master degree,
1.5% doctoral degree

9.0% Bachelor/Master/ doctoral
degree

3.0% other 33.0% other
Full-time farming 80.0% 41.8%
Family farm 92.0% 86.7%
Farm size (hectares)b

0-5 0.6% -
6-10 1.5% -
11-20 5.1% -
21-50 16.0% -
51-100 29.0% -
101-200 25.0% -
>200 23.0% -

Experience with smart
farming technologies
(1=yes, 0=no)

31.0% N/A

Knowledge of spot
spraying technology
(1=yes, 0=no)

35.0% N/A

n = 333
a See the Supplementary Information for references used for comparison.
b Due to substantial difference in farming structures across different German federal states it did not appear
feasible to calculate and present shares of different farm size classes of the German farmer population
averaged across all federal states. Average farm sizes per federal state can be found in the additional
references in the Supplementary Information.

5.4.2 Descriptive statistics of observed indicators

Tables 5.2 and 5.4 provide descriptive statistics for the items of reflectively and
formatively measured constructs, respectively, which entered the PLS-SEM. Mean
values for all items of the construct adoption intention (INT) range from 3.13 to 3.36.
Thus, farmers in this sample have, on average, a rather low intention to use spot spraying
for weed management on parts of their fields within the next five years. The AttSS
item values are somewhat higher ranging from 4.24 to 4.41. Accordingly, respondents
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perceive this technology as neutral to slightly positive. The item values of AttEnv range
from 5.74 to 6.01 indicating a high average pro-environmental attitude in the sample.
Noteworthy is that two standard deviations of the three AttEnv items are relatively low
pointing to a high level of consistency in respondents’ opinion with respect to the items.
Moreover, farmers perceive little social pressure to adopt spot spraying (mean values for
SN of 3.12 and 3.15). At the same time, they do feel a moral obligation to protect the
environment by reducing herbicide application (mean values for MN ranging from 4.47
to 5.37). Respondents perceive themselves in general as innovative (mean values for
PI ranging from 4.95 to 5.89). Finally, on average farmers neither agree nor disagree
that they have the necessary resources to adopt spot spraying on their farms (mean PBC
values between 4.16 and 3.50).

Table 5.2: Reflective constructs: descriptive statistics, indicator reliability,
internal consistency reliability and convergent validity.

Construct Statement Mean (SD) Loadingc

Intention to adopt spot sprayinga (CR=0.942, AVE=0.895)
INT_1 I will try to use spot spraying as a weeding method on

parts of the acreage currently under cereal or root crops
cultivation within the next five years.

3.34 (1.90) 0.941***

INT_2 I intend to use spot spraying as a weeding method on
parts of the acreage currently under cereal or root crops
cultivation within the next five years.

3.13 (1.88) 0.961***

INT_3 I want to use spot spraying as a weeding method on parts
of the acreage currently under cereal or root crops
cultivation within the next five years.

3.36 (1.98) 0.935***

Attitude towards spot sprayinga (CR=0.942, AVE=0.885)
AttSS_1 I think that the use of a spot spraying technology for weed

management can increase profitability of my farm.
4.24 (1.80) 0.902***

AttSS_2 I think that the use of spot spraying technology for weed
control can be advantageous for my farm.

4.40 (1.78) 0.958***

AttSS_3 All in all, I think that the use of spot spraying technology
for weed control can prove to be useful for my farm.

4.41 (1.80) 0.961***

Pro-environmental attitudeb (CR=0.903, AVE=0.809)
AttEnv_2 Respecting the earth: harmony with other species. 6.00 (1.13) 0.914***
AttEnv_3 Unity with nature: fitting into nature. 5.74 (1.32) 0.890***
AttEnv_4 Protecting the environment: preserving nature. 6.01 (1.97) 0.894***

continued . . .
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. . . continued

Construct Statement Mean (SD) Loadingc

Subjective normsa (CR=0.928, AVE=0.933)
SN_1 People who are important to me regarding my business

decisions on farm think that I should use spot spraying
technology.

3.12 (1.75) 0.966***

SN_2 People who influence my business decisions on farm
think that I should use spot spraying technology.

3.15 (1.79) 0.966***

Moral normsa (CR=0.882, AVE=0.809)
MN_1 I would feel guilty if I did not try to reduce the applied

amounts of herbicides on my fields in order to protect the
environment and strengthen biodiversity.

4.47 (1.99) 0.872***

MN_2 When I reduce the amounts of applied herbicides on my
fields to protect the environment and strengthen
biodiversity I feel like a better farmer.

5.37 (1.68) 0.914***

MN_3 I feel morally obliged to reduce the amounts of applied
herbicides on my fields in order to save the environment
and strengthen biodiversity.

4.98 (1.88) 0.913***

Personal innovativenessa (CR=0.853, AVE=0.692)
PI_1 I am generally very curious about how new technologies

work.
5.89 (1.11) 0.830***

PI_2 I often research information on new technologies
(magazines, internet, technology experts etc.).

5.29 (1.48) 0.835***

PI_3 I like to try out/experiment with new technology. 4.95 (1.56) 0.854***
PI_4 I like to be around colleagues who experiment with new

technologies.
5.11 (1.51) 0.807***

Threshold values: loadings>0.708, CR>0.7, AVE>05.
n = 333
a 7-point Likert scale items (“Please indicate your level of agreement” – 1 “I strongly disagree”; 7 “I
strongly agree”).
b 7-point Likert scale items (“Please indicate how important the below values are for you as guiding
principles in your life?” – 1 “not important at all”; 7 “extremely important”).
c Significance code: ***p<0.001, **p<0.01, *p<0.05.

5.4.3 Measurement model evaluation

Reflectively measured constructs were evaluated for indicator reliability, internal
consistency reliability, convergent validity and discriminant validity (Hair et al., 2017a).22

Indicator reliability describes how much of each indicator’s variance is captured by
22The here presented measurement model evaluation results (Tables 2–4) refer to the extended model

(H1–H6b) after deletion of several items which did not meet the evaluation criteria. Respective results for
the baseline TPB do not differ substantially and are, thus, not explicitly discussed. Supplementary analysis
results for the measurement and structural models of the baseline and extended model are available in the
Supplementary Information.
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its construct. Significant standardized loadings above 0.708 are considered acceptable
since their squared value of 0.5 or larger implies that the construct explains at least
50 percent of the indicator’s variance. Internal consistency reliability, the degree to
which indicators measuring the same construct are correlated with each other, was
tested via composite reliability (CR) at a threshold level of 0.7. Composite reliability
estimates of 0.95 or higher suggest redundancy among items which reduces construct
validity and potentially causes undue correlation of the items’ error terms (Hair et al.,
2021). Convergent validity, i.e., the magnitude of the average variance of all indicators
(the mean value of squared indicator loadings) captured by a respective construct, was
assessed via the average variance extracted (AVE) with a minimum acceptable value of
0.5. Finally, to assess whether the constructs are empirically distinct from one another
(discriminant validity) the heterotrait-monotrait ratio was assessed (Henseler et al., 2015)
with a threshold value that should be below 0.85. The assessment of the data based on
the discussed criteria revealed factor loadings between 0.807 and 0.962 indicating high
indicator reliability for all reflective constructs. CR values are all above 0.7, however,
with very high composite reliability values (≥0.95) for the constructs AttEnv and SN.
After deleting one item of each of these constructs, respectively, all CR values lie in
the desired range. The AVEs are above the threshold value of 0.5 for all constructs
indicating adequate convergent validity. Finally, the HTMT ratios are below the 0.85
threshold yielding discriminant validity between constructs (Tables 5.2 and 5.3).

Table 5.3: Reflective constructs: discriminant validity.

AttEnv AttSS INT MN PI

AttSS 0.213 - - - -
INT 0.279 0.693 - - -
MN 0.548 0.459 0.468 - -
PI 0.381 0.306 0.410 0.315 -
SN 0.193 0.671 0.703 0.422 0.278

Threshold value for HTMT < 0.85.
AttSS Attitude towards sport spraying, SN subjective norms, PI personal innovativeness, AttEnv pro-
environmental attitude, MN moral norms, Int Intention.
n = 333.

The evaluation of formatively measured constructs required different steps (Hair et al.,
2021). Specifically, indicator collinearity and the significance and relevance of indicator
weights and loadings were evaluated (Hair et al., 2017a). High correlation between
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indicators of formative constructs increases the standard errors of indicator weights
which may cause imprecise or incorrect estimation (Hair et al., 2017a). The variance
inflation factor (VIF) allows for assessing indicator collinearity with values above 5
being indicative of high collinearity. Lastly, indicator weights, loadings and their
significance were inspected for relative and absolute statistical item importance. For the
only formatively measured construct PBC, VIFs of all items lie below the threshold,
i.e., no case of indicator collinearity is identified. The weights of two items, however,
are insignificant. In line with Hair et al. (2017a), a subsequent inspection of respective
loadings and their significance reveals sufficient magnitude and significance for PBC_1.
By contrast, an insignificant outer loading of below 0.5 for PBC_2 yielded no absolute
statistical relevance of this indicator for the construct and it was thus dropped from the
data. Considering the different magnitudes of the retained items, the construct is mainly
formed by PBC_3 with PBC_1 being of marginal relevance (Table 5.4).

Table 5.4: Formative constructs: descriptive statistics, indicator collinearity,
weights and loadings.

Construct Statement Mean
(SD)

VIF Weightb Loadingb

Perceived behavioral controla

PBC_1 I have sufficient knowledge and skills
to implement spot spraying
technology on my farm.

4.16
(2.05)

1.463 0.072 0.611***

PBC_3 I have sufficient technical resources
and time to implement spot spraying
technology on my farm.

3.50
(1.84)

1.463 0.958*** 0.998***

Threshold values: VIF<5.
n = 333
a 7-point Likert scale items (“Please indicate your level of agreement” – 1 “I strongly disagree”; 7 “I
strongly agree”).
b Significance code: ***p<0.001, **p<0.01, *p<0.05.

5.4.4 Structural model evaluation and testing of hypotheses

For the structural model evaluation, multicollinearity among endogenous variables was
assessed via the VIFs (threshold=5; Hair et al., 2017a) to rule out redundancy. With
all VIFs ranging between 1.148 and 1.768, no issues of multicollinearity are present.
Adjusted R2 and Stone-Geisser criterion Q2 for the endogenous variables INT and AttSS
provide information on the model variance explained (in-sample predictive power)
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and out-of-sample predictive relevance, respectively (Hair et al., 2017a). The latter
was calculated in an iterative blindfolding procedure with an omission distance of ten.
Furthermore, because PLS-SEM does not assume normality of data, a bootstrapping
procedure with 10,000 iterations was applied to calculate 95% confidence intervals of
the standardized path coefficients (Hair et al., 2017a). Standardized coefficients below
0.2, between 0.2 and 0.5, and above 0.5 represent a small, medium and large effect,
respectively (Fey et al., 2023). The approximate overall model fit was examined via
the standardized root mean square residual (SRMR) (Henseler et al., 2016). Finally,
although the latent constructs are conceptually distinct, they are often found to be
correlated (Ajzen, 2020) as displayed in Table 5.5 for our case. However, as the HTMT
ratios are all below the 0.85 threshold, discriminant validity between constructs is
secured.

Table 5.5: Correlation of latent variables of extended TPB model.

AttEnv AttSS INT MN PBC PI SN

AttEnv 1 - - - - - -
AttSS 0.200*** 1 - - - - -
INT 0.254*** 0.652*** 1 - - - -
MN 0.488*** 0.419*** 0.426*** 1 - - -
PBC 0.169*** 0.318*** 0.449*** 0.247*** 1 - -
PI 0.335*** 0.275*** 0.368*** 0.275*** 0.339*** 1 -
SN 0.176*** 0.625*** 0.657*** 0.382*** 0.362*** 0.250*** 1

***p<0.001
AttEnv Pro-environmental attitude, AttSS Attitude towards sport spraying, INT Intention, MN Moral
norms, PBC Perceived behavioral control, PI personal innovativeness, SN subjective norms.
n = 333.

Figure 5.2 (Supplementary Information, Table 6) presents the path analysis results of
the baseline TPB model.23 For the focal construct INT, moderate in-sample predictive
power (R2

adj=0.547) and good out-of-sample predictive model accuracy (Q2=0.539)
are found. The SRMR has a value of 0.029 indicating good approximate model fit.
The estimation yielded empirical evidence for the first three hypotheses. Specifically,
medium effect sizes for AttSS (H1), SN (H2), and PBC (H3) where found suggesting a
positive association of each construct with intended spot spraying adoption. However,

23In following recommendations by Amrhein et al. (2019) and Heckelei et al. (2023), only the
magnitude and 95% confidence intervals are presented and discussed here while further information, e.g.,
p-values, are presented in the Supplementary Information, Tables 6 and 7.
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the 95% confidence intervals of AttSS and SN indicate that compatible effects in the
population could range from a medium to an almost large effect while the confidence
interval for PBC indicate that the effect size could range from small to medium.

Figure 5.2: Estimated Theory of Planned Behavior path coefficients, R2 and Q2

values of the baseline model (B) and the extended model (Ext), respectively.

Note: The dotted line encompasses all behavioral constructs of the theoretical model in its original form.
Values in parentheses indicate the lower and upper bound, respectively, of the 95% confidence intervals
based on a bootstrapping procedure with 10,000 resamples.

The path analysis for the extended model is displayed in Figure 5.2 (Supplementary
Information, Table 7). The R2

adj values for INT and AttSS amount to 0.567 and 0.198
indicating moderate and weak explanatory power, respectively. The slightly higher
R2

adj value for INT in the extended model suggests marginal model improvements
compared to the baseline model. Positive Q2 values for INT and AttSS of 0.481 and
0.184, respectively, indicate that the extended model has good out-of-sample predictive
relevance. Furthermore, a SRMR value of 0.096 suggest good approximate model fit.
Based on the model specification, empirical evidence in line with all pre-registered
hypotheses but for H5 was found in this sample (Figure 5.2). First, the results of the
baseline model are by and large reproduced by the extended model. The estimation
yielded medium effect sizes for AttSS (H1) and SN (H2) whereas a small effect was
estimated for PBC (H3). Second, the assessment of the model extensions yielded mixed
results. A small direct effect of PI on AttSS implies that PI is a small, yet relevant
antecedent of AttSS in the presented sample according to the model specification (H4).
This effect translates into a small total effect from PI on INT. For the path from MN on
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AttSS, a medium-sized effect was estimated (H6b). However, the confidence interval
shows that compatible effect sizes could range from medium to large. The small indirect
effect size for MN on INT via AttSS, together with the small direct effect of MN on
INT (H6a) suggests a relevant total effect of MN on INT in this particular sample.
Lastly, a small negative relation between AttEnv and AttSS was estimated (H5). Yet,
the confidence interval includes both negative and positive values. Thus, the results do
not substantiate H5, i.e., the effect of AttEnv on AttSS is ambiguous and statistically not
significant. This translates into a similar pattern for the total effect of AttEnv on INT.

5.5 Discussion

5.5.1 General findings

With sufficient in-sample and out-of-sample predictive power in the baseline and the
extended model, the study shows that farmers’ adoption intention is well explained
by the TPB. This confirms the adequacy of this behavioral theory to assess adoption
intention of agricultural innovations (cf. Sok et al., 2021). Furthermore, the extension
of the TPB by three constructs derived from empirical research provides additional
valuable insights for the understanding of farmers’ adoption behavior as well as for
future studies. The study arrives at medium-sized effects of the attitude towards spot
spraying on intended spot spraying adoption in the baseline and extended model. These
results are in line with findings of Rezaei et al. (2019) on integrated pest management,
of Beza et al. (2018) on SMS service for agricultural data collection and of Michels
et al. (2020a) on intended smart phone app use for crop protection purposes. The latter
even find a large effect of attitude on intention. Surprisingly, however, in studies looking
at technologies more comparable to spot spraying, e.g., digital nitrogen fertilization
technology (Hüttel et al., 2022) and agricultural AI systems (Mohr and Kühl, 2021) no
effect could be identified. The authors of the latter two studies argue that the assessed
technologies were too complex and yet too unfamiliar for farmers to have already formed
an attitude strong enough to influence intention. Arguably, spot spraying has comparable
degrees of complexity and novelty. However, despite low diffusion of the technology,
farmers in this sample seem to have developed an attitude which is, on average, in favor
of intended adoption.
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The effect of subjective norms in the baseline and the extended model of this study
was confirmed as a relevant predictor of adoption intention with a medium effect size.
While Mohr and Kühl (2021) found no effect of social norms on the acceptance of the
general concept of AI systems in agriculture studies focusing on intended adoption
of (more) specific innovations, e.g., smartphone app use (Michels et al., 2020a) and
variable rate fertilization (Hüttel et al., 2022) do, although the respective effect size
is small to medium. Similar to the latter two technologies, spot spraying is already
commercially available which suggests that information and first experiences are already
shared within farming communities. Nonetheless, due to novelty and technological
complexity implying high requirements with respect to on-farm infrastructure and
personal competences farmers often perceive the implementation and use of digital
farming technologies challenging (Mohr and Kühl, 2021). The opinions and experiences
of innovation leaders may be crucial for the majority of farmers to overcome personal
restraints, gather technical know-how, and gain the confidence to introduce spot spraying
on their own farm. Beyond the here discussed pre-registered impact of subjective norms
on intention, it is plausible that the professional environment may co-determine farmers
perceived moral obligations. Therefore, we conducted further exploratory tests which
can be found in the Supplementary Information.

The relevance of perceived behavioral control, the third determinant of intention in
the TPB, was confirmed in both estimated models with a small to medium effect size.
While comparable results were identified in studies focusing on the adoption intention of
sustainable innovations (e.g. Bonke and Musshoff, 2020; Dong et al., 2022; Rezaei et al.,
2019), the picture is less clear for research investigating digital farming technologies,
specifically. Whereas Mohr and Kühl (2021) find a large effect of PBC on AI agricultural
system acceptance, Hüttel et al. (2022) find no support for PBC as a determinant of the
intention to adopt digital fertilization methods. Noteworthy, the findings of the present
study show that, although of relevance, perceived behavioral control has a smaller
impact on spot spraying adoption intention than the attitude towards the technology
and subjective norms to use it. This partly corresponds to previous studies on, e.g.,
intended adoption of drip irrigation (Wang et al., 2023), mixed cropping (Bonke and
Musshoff, 2020), or integrated pest management (Rezaei et al., 2019). Although these
mentioned innovations may not be comparable regarding their objectives and factor
demands, their commonality is that they, similar to spot spraying, systematically change
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on-farm processes rather than affect single process steps. Thus, forming the intention
to adopt such innovations may depend more strongly on personal attitudes and social
influences, whereas aspects of perceived behavioral control, e.g., on-farm resources or
operator skills may become more relevant for the actual implementation.

Moral norms, one of the literature-based model extensions, showed a medium total
effect on intended spot spraying adoption in the extended model. This indicates that
farmers who perceived moral obligations to reduce the amounts of applied herbicides on
their field for environmental and societal benefits have a higher intention to adopt spot
spraying. This is by and large in line with the findings of Karimi and Saghaleini (2021)
and Bagheri et al. (2019) who show that moral norms increase farmers’ intention to
conserve rangelands and to reduce pesticide use in Iran, respectively. However, no other
study assessing the role of this construct for the adoption intention of digital farming
tools was identified, thereby limiting the integration of findings into the relevant context.
The present study also indicates, that moral norms does not only have a small direct
effect on the attitude towards spot spraying but it additionally influences the intention to
adopt it indirectly via the attitude. Interestingly, the latter effect even slightly exceeds the
former one in its overall magnitude on intention. While high perceived moral obligations
to limit herbicide application were prevalent in the sample (Table 5.2) spot spraying may
not necessarily have been the preferred option to achieve this ambition. Presumably,
although no immediate implication of the data, the direct effect may become more
important as spot spraying becomes more visible and accessible.

Two additional potential antecedents of the attitude towards spot spraying, namely
pro-environmental attitude and personal innovativeness were considered in the extended
model. The results show that, similar to moral norms, personal innovativeness influences
the attitude of spot spraying, however, to a smaller extent. Thus, as expected the present
study provides support for the hypothesis that farmers with an innovative mindset develop
more favorable attitudes towards SFT and are subsequently more inclined to implement
such technology on their farm (Mohr and Kühl, 2021). Conversely, the hypothesis that
pro-environmental attitude positively impacts the attitude of spot spraying and indirectly
influences also adoption intentions was not supported by the results of this study. This
is in contrast to previous studies which show that a pro-environmental orientation
positively impacts the uptake of pro-environmental behavior via more positive attitudes
towards innovations (Best, 2010; Dessart et al., 2019). Again, we acknowledge that
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further intuitively plausible pathways of the impact of personal innovativeness and
pro-environmental attitude were omitted in the extended model above. Please see the
Supplementary Information for further exploratory analyses.

5.5.2 Policy implications

Based on the presented findings, a number of policy measures could be considered to
unleash the “paradigm shift” towards a more sustainable food system associated with
SFT (Lindblom et al., 2017). With subjective norms and the attitude of spot spraying
as the most important drivers of adoption intention, the provision of local platforms to
foster social interaction among farmers may be a starting point to promote the exchange
of knowledge and experiences with respect to the uptake of digital innovations, thereby
increasing the awareness of SFT within farming communities. Moreover, demonstrations
and field days offered by regional agricultural ministries, chambers and technology
experts may facilitate farmers’ access to trustworthy information sources to address
potential restraints and enhance their attitude regarding potential benefits of SFT (Toma
et al., 2018). The behavioral attitude in our study is linked to the perceived, primarily
economic, benefits of the technology for farmers. On average, the sampled farmers
only had a weak positive conviction that spot spraying could increase profitability of
their farm (AttSS_1=4.24, Table 5.2). Furthermore, the average values for all items
measuring adoption intention were below 4 (“I neither agree, nor disagree”) suggesting
restraint in our survey participants’ adoption intentions. One option to address this
could be an agri-environmental scheme which provides payments for the adoption of
more sustainable agricultural practices to incentivize pro-environmental behavior in
farming (Massfeller et al., 2022; Wuepper and Huber, 2022).

This study also reveals the relevance of moral norms as an important driver for
farmers’ attitude towards spot spraying and their intention to adopt it. Perceived
moral obligations and norms develop over time and cannot be imposed by government
regulation. Nevertheless, governmental campaigns to promote awareness for the
environmental benefits of SFT might increase farmers’ motivation to recognize and
exert their own influence to shape this development.

Another determinant influencing farmers’ intention to adopt spot spraying on their farm
was perceived behavioral control. This construct was predominantly formed by the item
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PBC_3 referring to sufficient technical resources and time to implement spot spraying
(Table 5.4). In fact, high investment cost, time-consuming maintenance and unsuitable
infrastructure on farm are frequently mentioned causes of reluctance among farmers
to adopt digital innovations (Kernecker et al., 2020; Mohr and Kühl, 2021; Reichardt
and Jürgens, 2009). Hence, financial support for the acquisition of new technology
and infrastructure, and for the training of staff to operate and maintain new machines
may help to overcome the barriers identified, thereby enabling farmers especially at the
early stages of SFT development to overcome entry barriers and thereby promote the
diffusion of those technologies.

Finally, we find that farmers with a higher inclination to learn and discuss about
innovations tend to have a higher attitude of spot spraying which translates to higher
adoption intentions. Westerink et al. (2017) could show that including farmers into
spatially coordinated policy schemes had a positive influence on their collaboration
behavior. For the present case, a similar approach which specifically targets innovative
farmers may accelerate the dissemination of and exposure to SFT related information.
This may have a positive effect on the overall perception and intended adoption of SFT
among farmers who are part of such participatory schemes.

The assessment of the extended model yielded a slightly higher adjusted R2
adj value for

intention, i.e., the added constructs marginally increased the in-sample prediction power
of the focal path model. Especially, moral norms renders itself a potentially relevant
construct in future research on sustainable agricultural innovations uptake. Moreover, a
medium-sized total effect, approximately evenly composed of a significant direct and
indirect effect, of moral norms on intended adoption confirm the conclusion by Klöckner
(2013) that both effects are relevant for environmental behavior.

5.5.3 Implications for future research and limitations

The question remains why, compared to moral norms and personal innovativeness, no
definite effect of pro-environmental attitude could be detected. First, the lack of evidence
might be due to the fact that, compared to all other constructs, pro-environmental attitude
in this study was measured in a very general way comparable to a personality trait. It was
neither linked to the weeding method nor to the objective to reduce herbicide application.
However, it is recommended for all TPB constructs, the classic and the newly added, to
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comply with the principle of construct compatibility, i.e., to be specified according to
the target, action, time frame, and context of the assessed behavior (Ajzen, 2020). For
pro-environmental attitude this criterion was not met at all, while personal innovativeness
and moral norms had a somewhat clearer connection to the target behavior. Strict
adherence to construct compatibility has been shown to increase explained variance
of endogenous variables (Sok et al., 2021) and may thus help to substantiate the here
hypothesized relationships in future studies. Second, due to the economic framing of
the items of the attitude towards spot spraying, a more favorable attitude towards spot
spraying was observed among those survey participants who showed stronger agreement
to the statements that spot spraying could be advantages, more useful or profitable for
their business. Thus, the coefficient of the attitude towards spot spraying on adoption
intention needs to be interpreted accordingly (cf. Barnes et al., 2019; Pierpaoli et al.,
2013). However, no item of the attitude towards spot spraying asked participants
whether they thought that spot spraying could mitigate negative environmental impacts
which may be another explanation for having found no relevant association between
pro-environmental attitude and the attitude towards spot spraying. Nevertheless, the
environmental mitigation potential through, e.g., reduced agrochemical application is
another important value proposition of SFT in general and spot spraying in particular,
and should be included as a separate construct in future studies on intended SFT adoption
(cf. Bonke and Musshoff, 2020; Rezaei et al., 2019).

Somewhat similar considerations apply to the subjective norms construct used in this
study. The utilized item questions did not specify the background or field of expertise
of individuals who might have influenced a farmer’s adoption intention. However, in
order to design targeted policy strategies, disseminate information about the economic
and environmental potential, and to increase farmers’ exposure to SFT, learning about
specific channels of social influences is necessary. In this endeavor, Hüttel et al. (2022)
found out that current users and other farmers had a positive effect on German farmers’
perceived subjective norms while farm advisors had a negative influence on this construct.
Addressing such promising channels to exchange information and experiences may
arguably be an efficient way to promote digital farming technology adoption (Barnes
et al., 2019).

Three main limitations mark the paper. First, resulting from the non-random online mode
of survey distribution via email, the selected distribution channels (see Supplementary
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Information), and the topic of the survey which may have been of varying interest to the
addressed population, no representative sample could be generated and self-selection
bias may be a concern (Weigel et al., 2021). This data set is therefore considered a
convenience sample and we do not claim generalizability of the findings. Being biased
towards younger, well-educated full-time farmers, our sample may have exhibited above
average levels of environmental and moral attitudes alongside an emphasized interest
in and attitude towards smart innovations. Our model effects for several behavioral
measures may thus represent overestimations relative to the underlying population.
Nevertheless, the survey participants likely represent the more innovative, venturous
segment of the farmer population rendering respondents as such an interesting group
to investigate. Supporting this farmer segment among which SFT adoption is most
likely to be observed first should be of interest from a policy perspective. Such “early
adopters” may act as role models, demonstrate the functionality of SFT and eventually
initiate further diffusion of SFT among more hesitant colleagues (cf. Rogers, 2003).

Second, given the novelty of SFT, there is a relatively low level of diffusion and
awareness among practitioners, as revealed in Table 5.1. Consequently, the analysis was
constrained to assessing farmers’ intentions rather than observing actual adoption. As
a result, it is important to acknowledge that our results may suffer from hypothetical
bias and that additional unrecognized factors may determine actual adoption at a later
stage (Govindharaj et al., 2021). Furthermore, a high measure of intention does not
necessarily lead to high levels of actual behavior. In fact, Ajzen (2020) lists several
experimental design aspects and potentially unrecognized factors which may inhibit the
closure of the so-called intention-behavior gap. Nonetheless, several studies in related
fields have demonstrated that behavioral intention serves as a strong predictor of actual
adoption (e.g., Bonke and Musshoff, 2020; Hüttel et al., 2022; Michels et al., 2020a;
Moerkerken et al., 2020). Thus, we argue that our findings offer valuable insights into
the underlying determinants of adoption to policy makers and practitioners.

Third, unobserved sample heterogeneity introduced by farmers with prior experience
with SFT may have biased our results. We therefore conducted a multi-group analysis
based on the binary grouping variable “Experience with smart farming technologies”
(Supplementary Information). Due to uneven group sizes and low statistical power, the
results require careful interpretation. Yet, we find no statistically significant differences
in model coefficients between groups suggesting that a potential bias introduced by
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farmers with prior experience with SFT is low.

5.6 Conclusion

SFT tailor agricultural practices to smaller sections of the field or even individual plants
which bears both economic and environmental potential. Nevertheless, because their
implementation may fundamentally alter managerial on-farm processes, farm operators
have shown to be hesitant to adopt SFT which causes the anticipated potential to remain
widely unexploited. A more in-depth understanding of the drivers and barriers for
their uptake is deemed necessary, which also considers behavioral factors influencing
voluntary agricultural technology adoption for sustainable intensification–factors which
so far have gained little attention in the SFT adoption literature. Thus, looking through a
behavioral lens the Theory of Planned Behavior was applied and extended to assess the
adoption intention of spot spraying, a sustainable weeding technology, in a sample of
German crop farmers. Beyond demonstrating the adequacy of the TPB for the present
case, the results highlight that social influences and farmers personal attitudes towards
the technology have the strongest influence on intended spot spraying adoption. This
is followed by farmers perceived moral obligations to reduce the applied amounts of
herbicides. Furthermore, based on the extension of the model, important antecedents of
attitudes towards spot spraying could be identified allowing for a better understanding
of SFT adoption behavior.

The findings of this study offer insights for policy to advance the uptake of SFT
exemplified by spot spraying. Measures that increase farmers’ awareness of the benefits
as well as schemes that strengthen their confidence to use novel digital technologies
(Aubert et al., 2012; Toma et al., 2018) and facilitate communication and collaboration
among innovative farm operators seem promising strategies to accelerate dissemination.
Furthermore, and if properly designed, subsidies can help to secure profitability of
socially beneficial innovations and thus level the playing field for this weeding method in
the early diffusion phase. Early adopters who are morally determined to reduce negative
environmental impacts of harmful farming practices may be an inspiration for their
peers regarding technology-based ways of sustainable farming, raise local awareness and
accelerate the diffusion of SFT within their professional networks Blasch et al. (2022).
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