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Summary 

The ecology, behavior, and conservation threats of endemic francolin species have been 

poorly documented in Ethiopia, despite their importance in providing appropriate species-

specific conservation measures. Thus, this thesis aimed to make a substantial contribution 

to the knowledge of two allopatric francolin species (Harwood's Francolin Pternistis 

harwoodi and Moorland Francolin Scleroptila psilolaema) that are of exceptional 

conservation importance among the diverse birds of Ethiopia. Here, various field methods 

and advanced statistical analyses appropriate to the nature of the datasets were applied 

to draw reliable inferences and meaningful conclusions about the ecology and biology of 

these two endemic ground-dwelling pheasant species.  

Using a camera trap approach and occupancy (static) modeling, I described the habitat 

use of Moorland Francolin across both relatively pristine and disturbed landscapes in the 

Afroalpine biome of Ethiopia for the first time. The occupancy (i.e., habitat use) of the 

species was higher in pristine than disturbed landscapes. The species was averse to 

predators and used roads and trails for feeding, connectivity and communication among 

conspecifics in pristine alpine habitat. The occupancy of the species was positively 

influenced by herb species richness. The detection probability of the species increased 

significantly as a function of sampling occasion and precipitation. Therefore, significant 

species-habitat associations in pristine habitats were likely related to the effects of 

conservation and management policies established by indigenous peoples, governments, 

and international organizations.  

For Harwood’s Francolin, I applied dynamic occupancy modeling to determine 

spatiotemporal habitat use at fine and landscape scales. Direct observation and playback 

technique was used to collect the presence and absence data during two distinctive 

seasons, where the species was anticipated to use habitats differently. Occupancy 

probability decreased significantly with increasing Normalized Difference Vegetation 

Index (vegetation reflectance) and quadratic slope in the Upper Blue Nile Basin, 

suggesting that the species preferred sparsely vegetated habitat and flat to gentle slope 

gradient. Not surprisingly, anthropogenic disturbance had a significantly negative effect 

on species occupancy in the area. The detection probability of the species was recorded 
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at habitats where average temperature was relatively higher. The dynamic parameters 

(colonization and extinction) showed no significant associations among covariates, but 

NDVI was slightly negatively influenced by colonization and anthropogenic disturbance 

positively influenced local extinction. 

Furthermore, the study stressed to investigate the breeding biology of Harwood's 

Francolin for the first time in its native habitat. Direct field observations and camera traps 

were used to collect life history data. A non-lekking polygyny mating system was 

documented. Only female parents were responsible for nest site selection, nest building, 

and nest attendance. Such behavior was mainly linked to thwart risk of predation through, 

background matching, nest orientation and positioning, and reducing depositional odor 

trails. There were significant spatiotemporal differences in clutch size variation, as well as 

significant spatial differences in egg geometric variation, except for the shape index. 

Generally, Harwood’s Francolins show a uniparental care strategy with eggs being 

exclusively incubated and hatched by females, and nidifugous chicks being predominantly 

attended by their mothers. The results showed how breeding success could be attributed 

to nest site selection, nesting behavior, and parental care. 

Because mountaintop endemic bird species are prone to climate change globally due their 

ecological specialization, particularly in the biodiversity hotspot regions of the tropics, this 

thesis also investigated the effect of climate change on the current and future habitat 

suitability of Moorland Francolin in the summits of the Ethiopian highlands. An ensemble 

model of six selected algorithms was used to analyze the geographical distribution of the 

species. Accordingly, annual mean temperature was the governing bioclimatic variable for 

the distribution of the species in the alpine and subalpine habitats, and to a lesser extent, 

other temperature variables, including mean diurnal range, temperature seasonality, and 

temperature annual range contributed to the current and future suitable habitat 

predictions. As a result, the target species is predicted to be at high risk of extinction in its 

current alpine habitat in the context of climate change. The assessment showed that the 

species could enter the IUCN Red List Vulnerable category.   

Therefore, insights into the spatiotemporal patterns of habitat use, nesting behavior, and 

breeding success can contribute to better conservation strategy plans in the future by 
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reducing habitat loss and hunting pressure on Harwood’s Francolin. In addition, I explored 

how integrating occupancy and climate change effects can add valuable suggestions for 

conservation action of Moorland Francolin, sympatric biodiversity and its alpine habitats 

in heterogonous landscapes. Captive breeding may be a reasonable conservation option 

for this species. Collectively, the results show that habitat management, habitat 

restoration, or law enforcement through a socio-ecological approach are crucial actions 

for species-specific conservation in this biodiversity host region.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ix 
 

Table of Contents 

Summary..……………………………............………………………………………………....vi 

List of Tables ................................................................................................................. xiii 

List of Figures ................................................................................................................ xiv 

Abbreviations ................................................................................................................ xvii 

Chapter 1: General Introduction ...................................................................................... 1 

1.1. Biodiversity Hotspots of Ethiopia .............................................................................. 1 

1.2. Protected Areas in Ethiopia ...................................................................................... 2 

1.3. Conservation impacts of IBAs ................................................................................... 3 

1.4. Taxonomy and phylogenetic relationships of francolins ........................................... 5 

1.5. Morphology of francolins ........................................................................................... 7 

1.6. Ecology of francolins: threats and ethno-ornithological relationship ......................... 9 

1.7. Breeding biology of pheasants ............................................................................... 11 

1.8. Endemic birds and climate change in Ethiopia ....................................................... 13 

1.9. Aims and Scope ..................................................................................................... 14 

Chapter 2: Occupancy of the Ethiopian endemic Moorland Francolin in pristine and 

degraded Afroalpine biome using a camera trap approach ........................ 17 

2.1. Abstract .................................................................................................................. 18 

2.2. Introduction ............................................................................................................. 19 

2.3. Materials and Methods ........................................................................................... 22 

2.3.1. Study area ........................................................................................................ 22 

2.3.2. Sampling design ............................................................................................... 24 

2.3.3. Camera trapping ............................................................................................... 25 

2.3.4. Habitat covariates ............................................................................................. 27 

2.3.5. Data analysis .................................................................................................... 31 

2.4. Results .................................................................................................................... 34 

2.4.1. Camera trapping in GCCA and SEA ................................................................ 34 

2.4.2. Habitat use modeling for traditionally managed habitat .................................... 35 

2.4.3. Habitat use modeling for human-modified landscape ....................................... 40 

2.4.4. Recommended number of sampling occasions (K) .......................................... 41 

2.5. Discussion .............................................................................................................. 41 

2.5.1. Occupancy and detection probability estimates using camera trap .................. 41 



x 
 

2.5.2. Determinants of occupancy and detection probabilities ................................... 42 

2.5.3. Camera trapping for assessment of cryptic bird species .................................. 45 

2.6. Conclusions ............................................................................................................ 46 

2.7. References ............................................................................................................. 48 

2.8. Supplementary information ..................................................................................... 59 

Chapter 3: Dynamic occupancy modeling of a cryptic ground-dwelling pheasant species 

in the Upper Blue Nile Basin in Ethiopia ..................................................... 64 

3.1. Abstract .................................................................................................................. 65 

3.2. Introduction ............................................................................................................. 66 

3.3. Materials and Methods ........................................................................................... 68 

3.3.1. Study area ........................................................................................................ 68 

3.3.2. Sampling design ............................................................................................... 70 

3.3.2.1. Presence/Absence data ................................................................................ 70 

3.3.3. Habitat covariates ............................................................................................. 72 

3.3.4. Data analyses ................................................................................................... 76 

3.4. Results .................................................................................................................... 77 

3.4.1. Spatiotemporal patterns in occupancy and dynamic parameters ..................... 77 

3.4.2. Influence of habitat covariates on Harwood’s Francolins ................................. 79 

3.5. Discussion .............................................................................................................. 81 

3.5.1. Dynamic occupancy patterns of Harwood’s Francolins .................................... 81 

3.5.2. Influence of covariates on habitat use of Harwood’s Francolins ....................... 83 

3.5.3. Conservation implications and future directions ............................................... 85 

3.6. References ............................................................................................................. 87 

3.7. Supplementary information ................................................................................... 100 

Chapter 4: Nesting behavior, egg morphology, and breeding biology of Harwood’s 

Spurfowl (Pternistis harwoodi) in the Upper Blue Nile Basin, Ethiopia ...... 103 

4.1. Abstract ................................................................................................................ 104 

4.2. Introduction ........................................................................................................... 105 

4.3. Methods ................................................................................................................ 106 

4.3.1. Study area ...................................................................................................... 106 

4.3.2. Field Methods ................................................................................................. 108 

4.3.3. Nest site characterization ............................................................................... 110 

4.3.4. Geometrical parameters and coloration of eggs ............................................. 111 

4.3.5. Data analysis .................................................................................................. 111 



xi 
 

4.4. Results .................................................................................................................. 112 

4.4.1. Social behavior and mating system ................................................................ 112 

4.4.2. Nest-site selection and nest-building behavior ............................................... 113 

4.4.3. Egg laying and egg description ...................................................................... 116 

4.4.4. Geometrical parameters of eggs and spatiotemporal variation of clutch size . 117 

4.4.5. Incubation, hatching and parental care .......................................................... 118 

4.4.6. Breeding success and hatching failure ........................................................... 118 

4.5. Discussion ............................................................................................................ 120 

4.5.1. Mating system, nest-site selection and nest-building behavior ....................... 120 

4.5.2. Egg laying, geometrical parameters of eggs, and clutch size ......................... 121 

4.5.3. Incubation, hatching, and parental care ......................................................... 123 

4.5.4. Breeding success and failure ......................................................................... 124 

4.6. References ........................................................................................................... 126 

4.7. Supplementary information ................................................................................... 135 

Chapter 5: Impact of climate change on mountaintop endemic birds in the Ethiopian 

highlands: A case study of Moorland Francolin (Scleroptila psilolaema) .. 138  

5.1. Abstract ................................................................................................................ 139 

5.2. Introduction ........................................................................................................... 140 

5.3. Methods ................................................................................................................ 142 

5.3.1. Study Area...................................................................................................... 142 

5.3.2. Species occurrence data ................................................................................ 144 

5.3.3. Environmental data and variable selections ................................................... 144 

5.3.4. Algorithms for Species Distribution Models .................................................... 145 

5.3.5. Modeling procedure and validation ................................................................. 146 

5.3.6. Combining model predictions ......................................................................... 146 

5.3.7. IUCN RED List assessment ........................................................................... 147 

5.4. Results .................................................................................................................. 147 

5.4.1. Model evaluation ............................................................................................ 147 

5.4.2. Variable importance ....................................................................................... 148 

5.4.3. Current and future habitat suitability of Moorland Francolin ........................... 149 

5.4.4. IUCN Red List assessment ............................................................................ 153 

5.5. Discussion ............................................................................................................ 153 

5.6. Conclusions .......................................................................................................... 157 

5.7. References ........................................................................................................... 159 



xii 
 

5.8. Supplementary information ................................................................................... 168 

Chapter 6: General Discussion .................................................................................... 172 

6.1. Broader context .................................................................................................... 172 

6.2. Ecology of Moorland Francolin ............................................................................. 173 

6.3. Effect of climate change on Moorland Francolin ................................................... 175 

6.4. Ecology of Harwood’s Francolin ........................................................................... 176 

6.5. Breeding biology of Harwood’s Francolin ............................................................. 178 

6.6. Combining results for species-specific conservation approach ............................ 179 

7. References (Chapters 1 and 6) ............................................................................... 181 

8. Publications ............................................................................................................. 193 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

List of Tables 

Table 2.1. Habitat covariates predicted to affect occupancy and detection probabilities of 
Moorland Francolins in the central highlands of Ethiopia. ............................. 29 

Table 2.2. Results of model selection for Moorland Francolins occupancy and detection 
probabilities in the central highlands of Ethiopia. .......................................... 36 

Table 2.3. Summed model weight (Σωi) and influence of covariates calculated from model- 
averaged beta coefficient estimates and standard errors (ꞵmean ± SE). ........ 38 

Table 3.1. Description of habitat covariates influencing initial occupancy probability (ψ1), 
colonization probability (γ), extinction probability (ε), and detection probability 
(ρ). Some empty cells in the table indicate that the value of coefficients (i.e., 
beta-ꞵ) was not checked for some parameters. ............................................ 75 

Table 3.2. Model selection with covariates for dynamic occupancy analysis. Model 
rankings are based on the Akaike information criterion (AIC) corrected for small 
sample size (AICc) values and only candidate models with ΔAICc < 2.00 and 
null model are reported. Model weight (ωi), number of parameters (Κ), and 
twice the negative log-likelihood (-2l) are reported. ...................................... 79 

Table 3.3. Cumulative model weight (Σωi) and influence of covariates calculated from 
model-averaged beta coefficient estimates and standard errors (ꞵmean ± SE). β 
estimates values are shown with 95% confidence intervals and p values. Zero 
overlapping shows non-significant values. Only fixed influences are included.
 ...................................................................................................................... 80 

Table 4.1. Geometrical egg parameters in three habitat types in UBNB (N = 224 eggs). 
Values are given as Mean ± SD for the whole data set (habitats combined) and 
separately per habitat. The same superscript letter within a row indicates a non-
significant difference. Abbreviations: CTW = Combretum-Terminalia woodland 
and wooded grasslands and DAF = Dry evergreen Afromontane forest and 
grassland complex. ..................................................................................... 117 

Table 4.2. Spatiotemporal variation of clutch size. Abbreviations: AH-Afrotropical 
Highlands biome and SG-Sudan-Guinea Savanna biome. * Mann–Whitney test 
U = 443.5 and P < 0.001. ............................................................................ 118 

Table 4.3. Breeding parameters for measured and unmeasured nests of Harwood’s 
Spurfowls. ................................................................................................... 119 

Table 4.4. Causes of breeding failure in Harwood’s Spurfowls.................................... 120 

Table 5.1. Individual and averaged variables importance for different models for habitat 
suitability modeling of Moorland Francolin. ................................................. 149 

 
 
 
 



xiv 
 

List of Figures 

Figure 1.1. An adult male Harwood's Francolin (Pternistis harwoodi) has two spurs (top) 
and an adult male Moorland Francolin (Scleroptila psilolaema) has a single 
spur (bottom) and nostrils. Both species have brown eyes, slightly curved bills, 
and graduated tails. A complete photo of a female Moorland Francolin can be 
found in Chapter 2. ......................................................................................... 8 

Figure 1.2. Thematic structure of the thesis................................................................... 16 

Figure 2.1. An adult female Moorland Francolin Scleroptila psilolaema in the Afroalpine 
biome, Ethiopia. The feather patterns and colors contribute crypsis through 
background matching in this species (photo credit: Kai Gedeon). ................ 20 

Figure 2.2. The two study areas (GCCA and SEA) and location of camera sites in the 
central highlands of Ethiopia. GCCA, Guassa Community Conservation Area. 
The southern areas (including Sululta, Entoto National Park, Ankober-
Debresina escarpment, and other areas) form the second study area (SEA).
 ...................................................................................................................... 23 

Figure 2.3. Afroalpine habitats in the central highlands of Ethiopia: GCCA with most 
habitat types (a) and the target species feeding in Helichrysum-Festuca 
grassland (c) and SEA with degraded rocky habitat (b) and grazing land (d).
 ...................................................................................................................... 24 

Figure 2.4. Parameter estimates (occupancy and detectability) of Moorland Francolin 
derived from model averaging. The asterisks (***) denote a strong statistically 
significant difference between parameter estimates in the study area at p < 
0.001 level. ................................................................................................... 35 

Figure 2.5. Occupancy probability of Moorland Francolin in association with predator 
presence/absence in GCCA. Cameras placed in woody plant species 
frequently had photos of predators like Serval Leptailurus serval. Error bars 
indicate standard errors of occupancy probability, *** p < 0.001. .................. 39 

Figure 2.6. (A, B) Occupancy probability (ψ) of Moorland Francolin in association with 
herb species richness and distance to the nearest road (km) and (C, D) 
Detection probability (ρ) of the species in association with sampling occasion 
and average precipitation (mm/day), respectively. The estimates for the 
parameters are created from the most parsimonious model that holds these 
covariates and the shaded area in each graph shows 95% confidence intervals.
 ...................................................................................................................... 39 

Figure 3.1. Study area in the Upper Blue Nile Basin (UBNB) based on digital elevation 
model (DEM) (SRTM Global elevation data- https://earthexplorer.usgs.gov). All 
sampling stations (n = 144) are included in the map. ................................... 69 

Figure 3.2. Average estimates of initial occupancy probability (ψ1), detection probability  
(ρ), colonization probability (𝛾) and extinction probability (𝜀) across different 
habitat types in the Upper Blue Nile Basin (estimation calculated from models 
with ΔAICc < 4.00). Error values are standard errors. Abbreviations: CTW-

file:///D:/CC%20New%202020%20Nov/CC/PHD%20project/Letter%20of%20motivation/Objectives/PhD%20Thesis/Abrha%20Thesis-Updated1.docx%23_Toc171345666


xv 
 

Combretum-Terminalia woodland and wooded grasslands; DAF-Dry evergreen 
Afromontane forest and grassland complex and RV-riparian vegetation. ..... 78 

Figure 3.3. Model averaged estimates of occupancy probability (ψ̂) and detection 

probability (ρ̂) (A) across seasons and dynamic parameters (�̂�-colonization and 
�̂�-extinction) (B) between seasons. Estimations were calculated from top 
models with ΔAICc < 4.00. ............................................................................ 78 

Figure 3.4. Model averaged estimates of initial occupancy (ψ1) and detection (ρ) 
probabilities for Harwood’s Francolins. The left column (A and C) and right 
column (B) indicate the influence of NDVI, quadratic term of standardized slope 
and HDI on initial occupancy probability (ψ1), respectively. The bottom right (D) 
indicates the influence of temperature (°C) on detection probability (ρ) of the 
species in UBNB. Parameter estimates were derived from the top-ranked 
models and the shaded area in each graph indicates 95% confidence intervals.
 ...................................................................................................................... 81 

Figure 4.1. Study area and the two main study sites of Harwood’s Spurfowls in the Upper 
Blue Nile Basin (UBNB): Western nests belong to the Sudan-Guinea Savanna 
biome (SG) and eastern nests to the Afrotropical Highlands biome (AH). .. 107 

Figure 4.2. Habitat types in the Afrotropical Highlands biome (top) and the Sudan-Guinea 
Savanna biome (bottom) in the Upper Blue Nile Basin. .............................. 108 

Figure 4.3. Nesting sites of Harwood’s Spurfowls on relatively flat terrain in farmland (A-
C) and on a steep slope in DAF (D). Nest locations proper are highlighted by 
white-dashed circles. Nests are effectively covered by vegetation (partly placed 
aside for photography) and are positioned and oriented to avoid excessive 
exposure to weather conditions and disturbances. Images also show effective 
camouflaging against the background substrate......................................... 109 

Figure 4.4. A territorial male feeding in association with Common Duiker Sylvicapra 
grimmia (A) and domestic goats Capra sp. (B), but fled from the feeding ground 
and gave off warning calls when approached by predators like White-tailed 
Mongoose Ichneumia albicauda (C). Males scratch the ground to feed, dust-
bathe and preen their bodies during quiescence, as indicated by remaining 
feathers (D). ................................................................................................ 113 

Figure 4.5. Examples of nest structure and composition in different habitat types. The 
color and patterns of the incubating females provides camouflage against the 
background of rocks, stones and soil. Typical nest sites are shown on black (A) 
and brown to grey brown soils (B) and underneath rocks (C and D). Egg colors 
ranged from white (A, C, and D) to dusty white with tiny white spots (B). Nests 
with eggs close to hatching were usually filled with soft down feathers (C). 115 

Figure 4.6. Linear relationship between clutch size and egg-laying dates of Harwood’s 
Spurfowls (N = 59), indicating clutch size to decline significantly with laying 
date. The line fit is mean with 95% CI. y = -0.33x + 5.35: y = clutch size and x 
= days passed after the first egg laid. ......................................................... 116 

Figure 5.1. Study area and occurrence points of Moorland Francolin in the highlands of 
Ethiopia. The Rift Valley, indicated by the two dotted lines, separates the 
western highlands and the eastern highlands. ............................................ 143 



xvi 
 

Figure 5.2. Average and range scores of TSS and ROC (AUC) to evaluate predictive 
performance of each selected algorithm. .................................................... 148 

Figure 5.3. Habitat suitability modeling of Moorland Francolin projection using weighted 
mean ensemble model in the context of current climatic conditions (1970-
2000). ......................................................................................................... 150 

Figure 5.4. Current locations of Moorland Francolin in the Ethiopian highlands (BMNP = 
Bale Mountains National Park, AMNP = Arsi Mountains National Park, ENP = 
Entoto Natural Park and its surroundings, Ankober-Debresina escarpments, 
GCCA = Guassa Community Conservation Area, BSNP = Borena Sayint 
National Park and Guguftu highland, Dessie highlands and Abune Yosef). The 
species was not detected in other predicted suitable habitats in north-west 
mountaintops (highlighted with an oval circle) (Choke Mountains, Guna 
Mountain and SMNP = Semien Mountains National Park). ........................ 151 

Figure 5.5. Habitat suitability modeling of Moorland Francolin using weighted mean 
ensemble model projected for 2021–2040 (SSP 126) (A), and 2061–2080 (SSP 
370) and 2081–2100 (SSP 585) (both in B) ................................................ 152 

Figure 5.6. Maps showing areas requiring model extrapolation based on the Multivariate 
Environmental Similarity Surfaces (MESS) approach. Dissimilar maps 
(negative values) represent habitats that are novel climate relative to the 
training range and similar maps (positive values) represent habitats analogous 
to the training range. The future climate change scenarios are SSP 126 (A), 
SSP 370 (B), and SSP 585 (C). .................................................................. 153 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xvii 
 

Abbreviations  

AH  Afrotropical Highlands biome 

AOO  Area of occurrence 

AZE  Alliance for Zero Extinction 

CBD  Convention on Biological Diversity 

CHELSA  Climatologies at high resolution for the earth’s land surface areas 

CTW  Combretum-Terminalia woodland and wooded grasslands 

DAF  Dry evergreen Afromontane forest and grassland complex 

DSR  Daily nest survival rates 

EOO  Extent of occurrence 

GCCA  Guassa Community Conservation Area 

GeoCAT  Geospatial Conservation Assessment Tool 

HDI  Human disturbance index 

IBAs  Important Bird and Biodiversity Areas 

IUCN  International Union for Conservation of Nature 

KBAs  Key Biodiversity Areas 

MESS  Multivariate Environmental Similarity Surface 

NDVI  Normalized Difference Vegetation Index 

PAs  Protected areas 

SDMs  Species distribution models 

SG  Sudan-Guinea Savanna biome 

SSPs  Shared Socioeconomic Pathways 

UBNB  Upper Blue Nile Basin 

UNDP  United Nations Development Programme 

UNESCO  United Nations Educational, Scientific and Cultural Organization 

VU  Vulnerable 

 



1 
 

Chapter 1 

General Introduction 

Many species are experiencing rapid declines across their geographical ranges in the 

Anthropocene. Because the global distribution of biodiversity is highly uneven (e.g., Hole 

et al., 2011; Mittermeier et al., 2011), broad-scale conservation approaches (also known 

as conservation networks) are prioritized at the regional and landscape scales are being 

prioritized to prevent or mitigate the impacts of human-induced environmental problems 

on biodiversity and ecosystems. The three major important conservation targets related 

to my PhD work are Biodiversity Hotspots (Myers et al., 2000; Mittermeier et al., 2004), 

Endemic Bird Areas (Stattersfield et al., 1998), and Key Biodiversity Areas (KBAs) (IUCN, 

2016). The first two targets essentially comprise of the popularly known Important Bird 

and Biodiversity Areas in Africa (Fishpool and Evans, 2001; BirdLife International, 2004). 

The other conservation networks, also nested within the above approaches, are part of 

the UNESCO World Heritage Site. Therefore, continued international funding for 

conservation and research in these areas has resulted in effective interventions for some 

target species and their sympatric biodiversity.  

1.1. Biodiversity Hotspots of Ethiopia 

The global biodiversity hotspots are considered to be of high conservation priority due to 

high levels of endemism and habitat loss (Myers et al., 2000; Mittermeier et al., 2004). 

Most importantly, human activities are the key menacing factors to the terrestrial 

biodiversity hotspots on a global scale (Bowler et al., 2020). Currently, there are 36 

hotspots of biodiversity in the world (Hrdina and Romportl, 2017; Habel et al., 2019). Africa 

boasts eight of the world's biodiversity hotspots, two of which include Ethiopia: the Eastern 

Afromontane and the Horn of Africa (Mittermeier et al., 2011; Habel et al., 2019). Within 

the Ethiopian border, the centers of endemism occur in the Ethiopian highlands (also 

known as the mesic Roof of Africa) and the arid Horn of Africa (Fashing et al., 2022). 

These highlands are divided into the western and eastern highlands, which are intriguingly 

separated by the Ethiopian sector of the East African Rift Valley (Friis et al., 2010). They 

contain most of the high-elevational land (above 3000 m), typically known as Afroalpine 
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(Chignell et al., 2019; Groos et al., 2021). The evolution of the Ethiopian highlands is the 

result of uplift and volcanic processes (Abbate et al., 2015). This geological history, 

topography, and climate creates heterogeneous habitats suitable for diverse species 

groups characterized by high endemism (Antonelli et al., 2018). Therefore, the country’s 

high endemic flora and fauna species could be explained by topographic variation (also 

signifying climatic conditions) and geographical isolations. For this reason, the Eastern 

Afromontane Biodiversity Hotspot, which includes the Ethiopian Highlands, ranks fourth 

by owning a high number of endemic plant and vertebrate families and genera 

(Mittermeier et al., 2004). As such, the country has conducive circumstances for testing 

many research questions related to evolution, ecology and conservation of floral and 

faunal assemblages (Fashing et al., 2022). 

1.2. Protected Areas in Ethiopia 

An increasing number of protected areas are being designated around the world in 

response to ongoing multifaceted threats, primarily human-induced pressures (e.g., 

Palomo et al., 2014; UNEP-WCMC, 2018). Protected areas (hereafter PAs) play a critical 

role in the conservation and preservation of biodiversity, and they have a crucial impact 

on the well-being of indigenous and local people through employment, ecotourism 

ventures, traditional natural resource use rights, and associated ecosystem services. 

Meanwhile, the purpose of PAs changed from an ‘island’ approach, which often limits 

people living near the protected areas in planning and using natural resources (Ervin et 

al., 2010) to a holistic or integrative approach, which reinforces mutual benefits and 

coexistence between nature and people in the ever-changing environment (Ervin et al., 

2010; Palomo et al., 2014). Therefore, the effective and sustainable conservation of 

biological diversity and its ecological processes in PAs is dependent on a socio-ecological 

approach (Palomo et al., 2014; Moranta et al., 2021). However, most of Africa's PAs are 

"paper parks," which means that they lack effective management and interventions to 

lessen the exiting pressures (Dudley and Stolton, 1999). 

Currently, most of Ethiopia's relatively pristine wildlife habitats are located in PAs. The 

main PAs are national parks, sanctuaries, wildlife reserves and control-hunting areas. 

Most of these protected areas have been identified and recognized as Important Bird and 
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Biodiversity Areas (hereafter IBAs) (Tilahun et al., 1996; Fishpool and Evans, 2001). All 

of the country's bird species are distributed from the lowest deserts to the highest 

mountaintops (up to 4600 m) in protected areas, IBAs and other unprotected areas, all of 

which generally fall within three biomes: the Afrotropical Highlands (further subclassified 

into Afroalpine and Afromontane), the Sudan-Guinea Savanna and the Somali-Masai 

biomes (Fishpool and Evans, 2001). Among these biomes, the Somali-Masai biome 

harbors the largest biome-restricted species richness in Ethiopia, while most endemic 

species are restricted to the Ethiopian highlands (e.g., Fishpool and Evans, 2001; de Klerk 

et al., 2002), especially the mountaintop habitats, also known as alpine habitats (Töpfer 

and Gedeon, 2020). Among 39 Endemic Bird Areas in Africa, three are in Ethiopia, 

including the Jubba and Shabeelle valleys, the South Ethiopia highlands and the Central 

Ethiopia highlands (Stattersfield et al., 1998; Fishpool and Evans, 2001). The magnitude 

and origin of environmental threats can be regional or global, and thus the combination of 

site-based (IBAs) and broad-scale (biomes, Endemic Bird Areas and biodiversity 

hotspots) approaches is used to conserve birds and their habitats (Fishpool and Evans, 

2001).    

1.3. Conservation impacts of IBAs 

IBAs are sites that are critical for the conservation of birds and biodiversity on account of 

an internationally agreed set of criteria (BirdLife International, 2004; Waliczky et al., 2019; 

Donald et al., 2019). To tackle the growing human pressures (BirdLife International, 2004), 

the number of IBAs established worldwide has continued to grow since the 1970s, with 

more than 13,000 sites currently recognized worldwide (Waliczky et al., 2019; Donald et 

al., 2019). As such, IBAs have global impacts on conservation policy and planning and 

are used in the comprehensive frameworks of the Convention on Biological Diversity 

(CBD), the Ramsar Convention, the Convention on Migratory Species, the European 

Union, and other institutions (Waliczky et al., 2019).  

There are nearly 70 IBAs identified during the first inventory in Ethiopia, and most are 

located outside PAs, with the exception of national parks, wildlife and private reserves, 

and national forest priority areas (Tilahun et al., 1996; Fishpool and Evans, 2001). Two 

national parks, including the Simien Mountains National Park and the recently inscribed 
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Bale Mountains National Park, are part of the World Heritage Site; evidencing a high level 

of global importance for biodiversity conservation through the active participation of 

various stakeholders. Interestingly, the achievement for the scenically remarkable Bale 

Mountains National Park is the result of unwavering strategic conservation efforts by local 

and international organizations. Conservation efforts also enhance ecosystem services 

that are valuable for both habitat and human well-being. Both parks are home to several 

unique plant and animal species. Unlike most PAs in the country, these parks and the 

Guassa Community Conservation Area (hereafter GCCA) are the pristine isolated habitats 

of the endangered flagship species, the Ethiopian wolf (Canis simensis) (Tefera and 

Sillero-Zubiri, 2006). The local community, in collaboration with national and international 

organizations, has effectively established exemplary conservation efforts to protect the 

species and its Ericaceous belt (which also holds moorland) and the adjacent Sub-

Afroalpine belt in the Ethiopian highlands. Human pressures on the plateau of these three 

IBAs principally have been comparatively controlled, which directly contributes to the 

replenishment of herbaceous plants, which is key to the survival of rodent species and by 

this means, the endangered Ethiopian wolves get abundant rodents for predation in the 

natural habitats (Ashenafi et al., 2012; UNDP, 2012; Atickem and Stenseth, 2022). As 

such, the role of flagship species is well illustrated here, by directly leading to the 

conservation of the entire system in both geographically isolated national parks and 

GCCA.  

In the history of natural resource conservation and management in Ethiopia, the 

governance of GCCA by the indigenous people (i.e., indigenous land use system also 

known as Qero system) has resulted in a deep-rooted responsibility and accountability for 

over four centuries (UNDP, 2012). The indigenous people have managed and used 

Festuca grasses (e.g., Festuca macrophyhlla, in Amharic: Guassa) to produce fodder and 

to make thatch, wall construction, whips, ropes, hats, brooms (mure) and raincoats (gesa). 

After a long history of traditional natural resource management, the socialist government's 

(Derg) agrarian reform and villagization policies collapsed the Qero system in 1975 

(Ashenafi and Leader-Williams, 2005). Nevertheless, the government and international 

organizations such as the Frankfurt Zoological Society funded by the European Union, 

the Ethiopian Wolf Conservation Programme and the Darwin Initiative revived the Qero 
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system in 2003. Its proximity to Addis Ababa makes it convenient and accessible to 

conservation organizations, researchers, and visitors. Although GCCA covers a small 

area (approximately 111 km2) (Ashenafi & Leader-Williams, 2005; Nigussie et al., 2019), 

it is a pristine Afroalpine habitat and continuous to support several unique bird and 

mammal species. Among the most fascinating bird species richness distributed across 

the IBAs and their surrounding areas (Ash and Atkins, 2009; Gedeon et al., 2023, this 

thesis sheds light on two distinctive ground-dwelling or landfowl species of the Ethiopian 

highlands: Harwood’s Francolin (Pternistis harwoodi) and Moorland Francolin (Scleroptila 

psilolaema). The central highlands of Ethiopia (also including the Upper Blue Nile Basin) 

are home to both endemic bird species. Specifically, Harwood’s Francolin is restricted to 

two unprotected IBAs: the Jema and Jara valleys (sometimes spelled Jemma and Jara 

valleys), and the Mid-Abbay (Blue Nile) river basin while Moorland Francolin exits in 

GCCA, the Ankober-Debresina escarpment, the Entoto Natural Park and escarpment and 

the eastern highlands (previously the South Ethiopia highlands) in the Bale Mountains 

National Park (Tilahun et al., 1996; Fishpool and Evans, 2001). The most recent updated 

bird species checklist of Ethiopia reveals that both species occupy human-shaped 

landscapes over large geographical areas (Gedeon et al., 2023). In particular, this work 

has identified for the first time additional locations of Moorland Francolin adjacent to or far 

from the PAs and IBAs (Chapter 5).    

1.4. Taxonomy and phylogenetic relationships of francolins 

In this thesis, the English and scientific names of pheasants and related species mostly 

follow Gill et al. (2024). The order Galliformes (megapodes, guans, guineafowls, New 

Word quails, and pheasants and allies) is largely ground-dwelling birds (Winkler et al., 

2015; Kimball et al., 2021; Gill et al., 2024). The family Phasianidae (pheasants and allies) 

comprises 188 extant species belonging to 54 genera, distributed globally across most 

terrestrial habitats (Gill et al., 2024). Following the updated taxonomic and phylogenetic 

studies of galliform species, there are currently seven endemic genera in Africa: 

Xenoperdix, Afropavo, Peliperdix, Campocolinus, Scleroptila, Margaroperdix, and 

Pternistis (Gill et al., 2024).  
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To date, only three of the ten Ethiopian francolin species (Harwood's Francolin, Erckel's 

Francolin Pternistis erckelii, and Chestnut-naped Francolin P. castaneicollis) have been 

studied to some extent with respect to their ecology and conservation (e.g., Robertson et 

al., 1997; Töpfer et al., 2014; Abrha et al., 2017; Gedeon et al., 2017b; Abrha et al., 2018). 

In the last decade, there have been significant advances in the taxonomy and 

phylogenetic relationships of francolins and spurfowls in Africa (Mandiwana-Neudani et 

al., 2019a, b; Hunter et al. 2021; Hustler 2021). In particular, Moorland Francolin has 

received special taxonomic attention (Hunter et al., 2019). It was previously thought to 

consist of two subspecies confined to the Afroalpine habitats of Ethiopia, western Kenya, 

and eastern Uganda (Madge and McGowan, 2002). However, based on vocalizations and 

plumage, both subspecies have been assigned species rank (Hunter et al., 2019; Gill et 

al., 2024). Currently, the Moorland Francolin is considered an endemic to the Ethiopian 

highlands (Hunter et al., 2019). In contrast, the taxonomic status of Harwood’s Francolin 

is undebated monotypic. It is morphologically distinct from other species in the so-called 

“Northern Vermiculated spurfowls” group (Mandiwana-Neudani et al. 2019a). My thesis 

focuses on both endemic species of the Afrotropical Highlands (including the Afroalpine 

and Afromontane) and Sudan-Guinea Savanna biomes of Ethiopia. For ease of reference, 

I will use the original name “Harwood’s Francolin” instead of “Harwood’s Spurfowl”, 

regardless of name inconsistencies in the literature. Indeed, all spurfowl species 

belonging to the genus Pternistis occur exclusively in Africa due to their distinctive 

morpho-vocalization characters (Mandiwana-Neudani et al. 2019a), yet there are still 

debating issues and gaps that require robust inference to understand the species 

diversity, delimitation and geographical distribution of the Galliformes in Africa (Hunter et 

al., 2021; Hustler, 2021; Crowe et al., 2022).   

Following the most recent phylogenetic analyses, Harwood’s Francolin is sister to 

Clapperton's Francolin (Pternistis clappertoni clappertoni and P. c. sharpii) (Mandiwana-

Neudani et al., 2019a). Indeed, I have found that both species have very similar 

advertisement calls and morphologies compared to other francolin species. The only 

contiguous ranges for both species are recorded between Sayint and Simada districts 

south of the Lake Tana. An earlier report also supports this field observation (Urban et al., 

1986). The closest relative of Moorland Francolin is Grey-winged Francolin (Scleroptila 
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afra) of the Lesotho and South Africa, whereas the recently elevated Elgon Francolin (S. 

elgonensis) from Afroalpine habitats of Uganda and Kenya is closely related to both 

Finsch's Francolin (S. finschi) of central Africa and to Whyte's Francolin (S. whytei) of 

southeastern Democratic Republic of Congo to northern Zambia and northern Malawi 

(Mandiwana-Neudani et al., 2019b). 

1.5. Morphology of francolins 

Morphologically, many phasianids are sexually dimorphic (both sexual dimorphism and 

sexual dichromatism); typically, males have bright plumage and other features essential 

for elaborate ornamentation (del Hoyo et al., 1994; Winkler et al., 2015). Because these 

species are ground dwelling species, they have relatively stout legs, feet, and short and 

robust bills adapted for scratching the ground for feeding and nesting (Urban et al., 1986; 

del Hoyo et al., 1994; Winkler et al., 2015). The distinctive feature of most species is that 

adults have single or double spurs (del Hoyo et al., 1994; Winkler et al., 2015), as in the 

two Ethiopian francolins (Figure 1.1).   

In living birds, melanins (black, brown, and pale yellow colors) and carotenoids (bright red, 

orange, and yellow colors) are the two main types of pigments derived from a variety of 

food sources, with the former being synthesized by animals and the latter by plants 

(Bostwick, 2016; Price-Waldman and Stoddard, 2021). Despite slight phenotypic 

differences between adult males and females of Harwood's Francolin, sexes are very 

similar (Redman et al., 2011), meaning that the species is sexually monochromatic and 

monomorphic. In support of this, my field measurements showed that adult females are 

slightly paler and adult males are slightly larger, with a mean body mass of 483.18 g (n = 

29) for adult males and 391.95 g (n = 22) for adult females (unpublished report). Both 

adults have a red lower mandible and a black upper mandible with red at the base. 

However, the black upper mandible lacks red at the tip (Figure 1.1A), in contrast to a 

previous report (Urban et al., 1986). The color of the bare skin around the eyes, forehead, 

and legs (or tarsi) is red and brighter during the breeding season for both sexes. This 

could be due to the availability of diverse food during the rainy season, mainly plants 

responsible for carotenoid synthesis. Adult males have two horny spurs; the lower one is 

slightly longer, while females lack it completely. The lower spur of subadult males is 
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considerably longer, suggesting the clue for aging in this species. In contrast, McGowan 

(1994) reported that females have much reduced spurs and the presence of 1-2 spurs 

only in males as mentioned by Mandiwana-Neudani et al. (2019a) seems imprecise. The 

spurs of this species grow in a gradual manner, with a lower one being visible in the 

immature stage. Interestingly, indigenous people identify the sexes of adults based on 

slight differences of body size and spur traits.  

 

Figure 1.1. An adult male Harwood's Francolin (Pternistis harwoodi) has two spurs (top) and an adult 

male Moorland Francolin (Scleroptila psilolaema) has a single spur (bottom) and nostrils. Both species 

have brown eyes, slightly curved bills, and graduated tails. A complete photo of a female Moorland 

Francolin can be found in Chapter 2.  

Moorland Francolin has similar plumage and coloration between adult males and females, 

but as with Harwood's Francolin, adult males are slightly larger than adult females (male 

= 417.11 g; n = 18 and female = 359.27 g, n = 11) (unpublished report). The species raises 

its crest feathers during communication (courtship and fear displays). The bill is blackish 
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brown and pale at the base, and the tarsi are pale yellow to dull brown in adults. In 

addition, the species has nearly circular, light to dark brown ear patches (i.e., auricular 

feathers) covering the ear opening. This type of plumage has not been previously 

described in the literature. The species also has a finely spotted buff throat and the ventral 

side is marked with variable chestnut spots (Figure 1.1B). 

1.6. Ecology of francolins: threats and ethno-ornithological relationship  

Most, if not all, Galliformes are sedentary and have limited long flight, with the exception 

of quail and partridge (McGowan, 1994; Hosner et al., 2017). Although flight is the 

dominant tactic for escaping from predators in most birds (van den Hout et al., 2010), most 

pheasants prefer to escape by running and, to a lesser extent, fast and short flight when 

approached by predators (Urban et al., 1986; McGowan, 1994; Mandiwana-Neudani et 

al., 2019a, b). Ethiopian francolins and guineafowls live in groups. For example, 

Harwood's Francolins typically move in groups of 2 to 8 individuals (Abrha and Nigus, 

2017), and Moorland Francolins show a similar pattern (Chapter 1).  

Harwood’s Francolin demonstrates overlapping niches with Erckel's Francolin and 

Helmeted Guineafowl (Numida m. meleagris) in the central highlands of Ethiopia (Urban 

et al., 1986; Abrha et al., 2017; Abrha et al., 2018). Evidence from the Jema and Jara 

valleys IBAs shows distinct diurnal activity patterns of the species, which exhibits 

bimodality with peaks in the early morning and late in the afternoon (Abrha et al., 2018). 

Moorland Francolin shares its habitat with Erckel's Francolin in traditionally protected 

GCCA, officially protected and unprotected IBAs in the western highlands of Ethiopia, 

while its habitat overlaps with Chestnut-naped Francolin in Bale Mountains National Park 

in the eastern highlands (pers. obs.). Like other galliform species (Urban et al., 1986; del 

Hoyo et al., 1994), francolins in Ethiopia feed on seeds, tubers, insects, and litter-dwelling 

preys (worms) and occupy predominantly scrubland and bushland featured by grassy and 

steep slopes (McGowan, 1994; Ash and Atkins, 2009; Abrha and Nigus, 2017).  

Archaeological evidence reveals that the oldest high-elevational human settlement in the 

world's history is recorded from the biodiversity hotspot region in Ethiopia (Ossendorf et 

al., 2019). The hunter-gatherers deliberately occupied the rock shelters of the highlands 

in the Afroalpine and Dry evergreen Afromontane forest and grassland complex (DAF) of 
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Ethiopia, where people relied on hunting wildlife and firewood collection (mainly charcoal) 

to survive in the cold conditions of the Late Pleistocene (Arthur et al., 2019; Ossendorf et 

al., 2019; Hensel et al., 2021; Bodin et al., 2024). Sporadic evidence from the 

contemporary paleoenvironmental data, particularly from the Afrotropical Highlands 

biome, shows that humans hunted ratites such as ostriches (Ossendorf et al., 2019) and 

cassowaries (Gaffney et al., 2021) and, remarkably, a volant galliform species 

(brushturkeys) (Gaffney et al., 2021). This therefore proves how humans have a long-

standing relationship with Afroalpine and Afromontane bird species, other wildlife and their 

habitats in the Afrotropics. For example, the relationship between humans and Galliformes 

is also linked to food and cultural values (religious beliefs, paintings, writings, sports, etc.) 

(del Hoyo et al., 1994); this is likely to lead to overexploitation, threatening several species 

with extinction. 

Ethno-ornithological relationship can be viewed as a multifaceted relationship between 

people, birds, and their ecosystems (Tidemann and Gosler, 2010). It focuses on people's 

indigenous knowledge of birds in terms of culture and spirit. People's perception of birds 

can be either positive or negative in terms of their values (Talukdar and Gupta, 2018). The 

positive knowledge and experience of local people towards wildlife is important for a 

successful conservation scenario (Brandon 1995; Talukdar and Gupta, 2018). In Ethiopia, 

people do not usually hunt birds for food because it is associated with religious beliefs 

(Ash and Gullick, 1989). Unfortunately, all pheasants are hunted in Ethiopia, including 

francolins, partridges, and guineafowls. For example, local people selectively hunt 

Harwood’s Francolin (locally known as Soren or Sorit: in Amharic and Sorene: in Afan 

Oromo, meaning red francolin) for household consumption and medicinal purposes 

(Robertson et al., 1997; Abrha et al., 2017). Consequently, the main conservation threats 

to francolins in the country are hunting and habitat loss (Töpfer et al., 2014; Abrha et al., 

2017; Gedeon et al., 2017b). Most of the world's galliform species face related 

disturbances, mainly caused by human activities (Keane et al., 2005; McGowan et al., 

2012). 

Moorland Francolin occurs in both major blocks of the Ethiopian highlands (Ash and 

Atkins, 2009; Gedeon et al., 2017a; Gedeon et al., 2023). The population size, threat 

factors, and ecological niche of the species in different habitats remains elusive. Even 
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then, little or nothing is known about the determinant factors, including biotic (vegetation 

traits and predators) and abiotic (climate, topography, etc.) attributes for such patterns. 

Hunting pressure on Erckel's Francolin is comparatively much more pronounced because 

of its larger size and the different perceptions of local people towards francolins. The 

vernacular name of Moorland Francolin is ‘Gagirt’ means ‘Satan’s spirit’ and it is also an 

insult used by the local people in North Shewa. Because the species is cryptic and shy, 

local people may approach it unknowingly and the bird may suddenly flee, producing a 

ghastly flapping sound. Consequently, the local people have two different attitudes 

towards Moorland Francolin, which is either perceived as a bad spirit or as being too small 

to catch, making it unattractive game prey (pers. obs.). For this reason, the species seems 

to have benefited from the perception of the indigenous people in some localities, 

especially in GCCA.   

The menacing factors to Moorland Francolin are the loss of moorland and associated 

grassland habitats, and in this way, it is considered as Near Threatened (BirdLife 

International, 2024). The habitat use of the species is reported for the first time in this 

thesis (Chapter 2). Unlike Moorland Francolin, Harwood’s Francolin is only confined to the 

western highlands and has been comparatively well studied, regularly from the Jema and 

Jara valleys in Ethiopia (Robertson et al., 1997; Abrha and Nigus, 2017; Abrha et al., 

2018). Herein, huge geographical ranges of both species are identified and species-

habitat associations are determined over space and time (Chapters 3 and 3).   

1.7. Breeding biology of pheasants 

Understanding the breeding biology of avian species helps to produce successful 

conservation measures. At global level, knowledge of the breeding biology of avian 

species is not well known, particularly for tropical species (Xiao et al., 2017; Fierro‐

Calderón et al., 2021). In birds, nest site selection is the most important trait and is 

determined by nest material availability, condition of microhabitat, predation, and food 

availability (Hansell, 2000). 

Compared to the sophisticated displays of males of several galliform species (Lovette, 

2016), some male pheasant species, including francolins, lack exaggerated displays, but 

still rely on vocalization to attract females during the breeding season. For example, male 
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Harwood’s Francolins mounted up commonly on stones and rocks, and sporadically on 

short snags, to produce territorial calls by pointing their heads upward (skyward), while 

females remained shy, cryptic, and crouched in their nests during the breeding season. 

This is essentially a dawn song in this species. Males also produce very distinctive low-

pitched calls, especially during quiescence in the breeding season. This behavioral activity 

is frequently recorded between late morning and early afternoon (Abrha et al., 2018). By 

considering the timing and natural conditions, both francolin species respond to acoustic 

playback, making them easy to detect in low population densities and fragmented habitats 

(Chapters 2 and 3).  

Bird nests are remarkably diverse in material composition and shape, and can be broadly 

classified into ground and tree (aerial) nests. The former include scrapes, domes, 

burrows, and mounds, while the latter include cups, globulars, and cavities, with platforms 

and other nests classified into both (Winkler, 2016). Birds build nests in ways that reduce 

the risk of predation through nest-site selection (considering factors like inaccessibility and 

shelter), as well as through camouflage and strategies to prevent overheating, all 

contributing to successful breeding (Mainwaring et al., 2014; Winkler, 2016). Nest-building 

behavior is critical to breeding success in many bird species (Mainwaring et al., 2014; 

Perez et al., 2023). Most, if not all, galliform species select nest sites on the ground to 

build scrape, burrow, and mound nests (e.g., Urban et al., 1986, del Hoyo et al., 1994, 

Madge and McGowan, 2002, Harris et al., 2014). On the other hand, some pheasants like 

tragopans (McGowan, 1994, Madge and McGowan, 2002) and guans (del Hoyo, 1994) 

are known to nest in trees. As with most bird species (Winkler, 2016), the breeding season 

of pheasants coincides with the rainy season when food is abundant (McGowan, 1994). 

Scarps in pheasants are used only for egg laying, incubation and hatching stages.  

The breeding biology of many phasianids is characterized by the following four mutually 

inclusive life-history traits. 1) Reproductive skewness (Lislevand et al., 2009), where the 

mating system in many of these species is polygynous (Winkler et al., 2015), indicating 

reproduction dominated by a few adults in the population. Even though social monogamy 

is a typical mating system in most extant birds (Alcock, 2016; Gowaty, 2018), polygamous 

or promiscuous mating systems are assumed to occur disproportionately in galliform 

species (McGowan, 1994). 2) Low levels of cooperative breeding (Cockburn, 2006, 
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Lislevand et al., 2009, Davies et al., 2012) or lack of alloparental care (Riedman, 1982; 

Ben Mocha et al., 2023). In other words, other than the parents, other individuals (i.e., 

conspecifics) do not provide care for the chicks. Cooperative breeding is reported in less 

than three percent of the world's bird species (Ligon, 2004). In general, the modes of 

parental care in birds are the use of geothermal heat in mound builders, brood parasitism, 

uniparental care (female-only care and male-only care), biparental care, and cooperative 

breeding (Cockburn, 2006). 3) Uniparental care (Cockburn, 2006). In most cases, only 

female pheasants are responsible for incubating and hatching the eggs (McGowan, 1994; 

Cockburn, 2006). 4) Precocial chicks (Cockburn, 2006), in which nidifugous chicks have 

considerably developed down at hatching and leave the nest immediately following their 

mothers to feed independently (McGowan, 1994; Hansell, 2000; Winkler et al., 2015).  

In this thesis, I present the first study of the breeding biology of Harwood’s Francolins in 

the Sudan-Guinea Savanna and the Afrotropical Highlands biomes of the Upper Blue Nile 

Basin in Ethiopia (Chapter 4). The chapter details how the species successfully breeds in 

the context of prevalent stressors, such as human disturbances (including hunting), 

predation (natural), and associated threats.     

1.8. Endemic birds and climate change in Ethiopia 

Because the effect of future climate on mountaintop endemic species (insects: Rödder et 

al., 2021; McCain and Garfinke, 2021; amphibians: Cordier et al., 2020; reptiles: Biber et 

al., 2023; birds: Hoffmann et al., 2020; plants: Costion et al., 2015) and their habitats 

(Mata-Guel et al., 2023) in the tropics gets alarming concerns in the Anthropocene, this 

study also assesses on how Moorland Francolin persists in the ongoing climate change 

in the summits of the Ethiopian highlands.  

In Ethiopia, limited species-level evidence shows that range-restricted birds are facing 

serious challenges due to habitat loss and climate change in the eastern Rift Valley. 

Endemic species of the Somali-Masai biome are particularly vulnerable. For instance, two 

endemic species in southern Ethiopia, Stresemann's Bushcrow (Zavattariornis 

stresemanni) and White-tailed Swallow (Hirundo megaensis), are predicted to vanish 

within the next half century due to climate change (Bladon et al., 2021). The endemic 

Black-fronted Francolin (Pternistis atrifrons) is on the brink of extinction from habitat loss, 
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exacerbated by climate change, making it the most endangered galliform in Africa 

(Gedeon et al., 2017b; Gedeon et al., 2023). Additionally, the Liben Lark (Heteromirafra 

archeri), specialized to Liben and Jijiga rangelands, faces extinction mainly from grazing, 

bush encroachment, and agriculture (Spottiswoode et al., 2009; Mahamued et al., 2022). 

Overall, biodiversity and habitats in Ethiopia are threatened by climate change and other 

factors (Fashing et al., 2022). Conservation networks in Sub-Saharan Africa aim to 

maintain suitable climatic conditions despite future changes (Hole et al., 2011). However, 

there is insufficient species-level evidence for most mountaintop tropical birds regarding 

current and future climate change, necessitating urgent conservation assessments 

(Campos-Cerqueira et al., 2017). Understanding the impact of climate change on both 

francolins (Chapters 1 and 2) will enhance conservation efforts. To this end, model 

averaging (ensemble modeling) and Multivariate Environmental Similarity Surface 

(MESS) were employed to analyze suitable habitats and model uncertainties for Moorland 

Francolin (Chapter 5).  

1.9. Aims and Scope 

This thesis comprises studies of two endemic francolin species of the Ethiopian highlands. 

These studies aim to scrutinize occupancy (habitat use), breeding biology, and climate 

change impacts on francolin species to inform sound conservation measures in the 

Ethiopia highlands. In the second and third chapters, static and dynamic occupancy 

models (MacKenzie et al., 2018) were used to determine the associations between the 

target species and their habitats in Ethiopia. Here, I applied two different modeling 

approaches due to the nature of the data (i.e., response variable) collected from the field. 

The third chapter of this thesis highlights the nesting behavior, egg biometrics, and 

breeding biology of Harwood’s Francolins in the Upper Blue Nile Basin (UBNB) of Ethiopia 

(Figure 1.2). The fourth chapter focuses on climate change effect on Moorland Francolin.       

Specifically, the first objective focused on the occupancy of Moorland Francolin in pristine 

and human-shaped landscapes of the central highlands of Ethiopia. I collected 

presence/absence (popularly, detection/non-detection) data using camera traps in the 

Afroalpine biome. A single-season (static) occupancy model was used to model 

occupancy and detection probabilities while accounting for imperfect detection 
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(MacKenzie et al., 2002). Accordingly, I tested hypotheses derived from the stochastic 

biological and sampling processes to predict the occupancy and detectability of poorly 

known Moorland Francolins.  

The second objective was to determine the dynamic (multi-season) occupancy modeling 

(MacKenzie et al., 2003) of Harwood’s Francolin. I conducted both direct observation and 

playback techniques to collect detection/non-detection data in UBNB. Because the cryptic 

species went undetected, particularly in low-density populations and disturbed habitats - 

a potential source of false-negative detection - a combined approach is worthwhile to 

make robust inferences about true occupancy, detection, and dynamic parameters 

(colonization and extinction). Therefore, the influence of habitat covariates on these 

parameters was determined. The combination of multiple field methods produces 

overarching datasets and this helps fundamental inference for the conservation purpose 

of this threatened species (Chapter 3).  

The third objective emphasized understanding the nesting behavior and breeding biology 

of Harwood's Francolins. This study pioneered the life history of the species, including 

reproductive, behavioral, and spatiotemporal variability of traits. Reproductive success is 

attributed to nest-site selection and parental nest building behavior in response to 

stressors in this species. The combination of direct field observations and camera trap 

data shapes also contributed to an understanding of how laying females select and build 

nests, incubate and hatch eggs, and care for nests and fledglings during the single 

breeding season (Chapter 4).  

The fourth objective details the current and future habitat suitability of Moorland Francolin 

in the context of climate change and the determinants of such spatial distribution patterns. 

Due to model uncertainties, the results are obtained from model averaging; an ensemble-

based model of individual competing models (Chapter 5).    

I provide species-specific conservation approaches for both cryptic francolin species in 

Ethiopia (Figure 1.2). 



1
6

 
 

  

Figure 1.2. Thematic structure of the thesis. 
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2.1. Abstract 

Occupancy modeling is an essential tool for understanding species-habitat associations, 

thereby helping to plan the conservation of rare and threatened wildlife species. The 

conservation status and ecology of several avian species, particularly ground-dwelling 

birds, are poorly known in Ethiopia. We used camera-trap based occupancy modeling to 

investigate habitat covariate influence on occupancy (Ψ) and detection probability (ρ) 

estimates of Moorland Francolins Scleroptila psilolaema from spatially replicated surveys 

across both relatively pristine and disturbed landscapes in the Afroalpine biome of 

Ethiopia. Model-averaged estimate of ψ̂  across all sites was 0.76 (SD = 0.28) and ρ̂ was 

0.77 (SD = 0.13) in pristine landscape. The ψ̂  of the species in the disturbed landscape 

was 0.56 (SD = 0.19) and ρ̂ was 0.48 (SD = 0.06). As hypothesized, based on our model-

averaged beta coefficient estimates (ꞵmean ± SE), predators significantly negatively 

influenced the occupancy of Moorland Francolins in pristine habitat. We also found a 

significant positive association of occupancy with herb species richness. Contrary to our 

prediction, distance to road significantly negatively influence the occupancy of the 

species, suggesting that occupancy probability was highest in proximity to roadsides and 

trails in pristine habitat. There was no significant influence of habitat covariates on the 

occupancy of the species in the disturbed habitat. The most important covariates that 

significantly influence the detectability of the species in pristine habitat included sampling 

occasion and precipitation. The greater occupancy and detectability of this endemic 

species in pristine habitat could be linked with the particular conservation status and 

management of this biodiversity hotspot in the central highlands of Ethiopia. Our results 

suggest that strict legal enforcement is required sustainably to preserve Moorland 

Francolins and the ecological integrity of the entire Afroalpine biome. We recommend 

using camera traps in order to develop realistic and effective conservation and 

management strategies for rare, sensitive, cryptic, and ground-dwelling animals in the 

region. 

Keywords: Afroalpine biome, camera trap, endemic, Moorland Francolin, occupancy, 

conservation 
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2.2. Introduction 

Among the 34 Earth's biodiversity hotspots, the Eastern Afromontane hotspot, including 

the Ethiopian Highlands, ranks fourth by a number of endemic plant and vertebrate 

families and genera (Mittermeier et al., 2004). Next to the Guinea-Congo Forests biome, 

the second-highest number of biome-confined bird species are found in the Afrotropical 

Highlands biome (BirdLife International, 2004). In Ethiopia, all bird species subsist in three 

biomes: the Afrotropical Highlands (including the Afroalpine and Afromontane), the 

Sudan-Guinea Savanna, and the Somali-Masai biomes (Fishpool and Evans, 2001; 

Gedeon, Zewdie, & Töpfer, 2017). The Afroalpine biome of Ethiopia consists of a complex 

mosaic of grassland, moorland, bushland, and other habitat types, which are unique in 

terms of species distinctiveness. This biome harbors a considerable endemic flora and 

fauna and is home to a number of range-restricted bird species (Ash & Atkins, 2009; 

Gedeon, Zewdie, & Töpfer, 2017; Töpfer & Gedeon, 2020), as well as to rodents (Ashenafi 

et al., 2012; Bryja et al., 2019; Razgour et al., 2021), and medium and large-sized 

mammals (Ashenafi & Leader-Williams, 2005).  

Historically, the oldest records of human high-elevational occupation worldwide are from 

the Afroalpine biome (Ossendorf et al., 2019), but today human population growth (Reber 

et al., 2018) is the key threat to wildlife in the Afroalpine and Afromontane (Asefa et al., 

2017; Ashenafi et al., 2012; Razgour et al., 2021). Agricultural practices, human-induced 

climate change and other threats synergistically affect both the biomes’ flora (Asefa et al., 

2020) and fauna (Asefa et al., 2017; Razgour et al., 2021; Rodrigues et al., 2021). 

Like in other tropical countries, the distribution of vegetation in Ethiopia reflects the 

interplay among altitudinal variation as well as climatic and other abiotic factors (Friis et 

al., 2010). The combination of different habitat characteristics, species traits and their 

interactions define the occurrence, occupancy and abundance of wildlife populations and 

influence their distribution patterns and detectability (Guillera-Arroita, 2017; Devarajan et 

al., 2020). 

Most native bird species of Afroalpine and Afromontane habitats of Ethiopia are poorly 

studied in terms of their abundance, distribution and threats (Ash & Atkins, 2009; Gedeon, 

Zewdie, & Töpfer, 2017). One of them is the Moorland Francolin Scleroptila psilolaema 
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(Figure 2.1), an endemic species of the Ethiopian highlands (Gill et al., 2023; BirdLife 

International, 2023), where it inhabits both Afroalpine and Afromontane habitats (Töpfer 

& Gedeon, 2020). Knowledge on its breeding biology, home range size, population 

abundance, occupancy (i.e., habitat use), and other ecological patterns is still scant. 

Previous distributional data showed Moorland Francolins to occur in the eastern and 

western highlands (Ash & Atkins, 2009; Gedeon, Zewdie, & Töpfer, 2017). It is classified 

as Near Threatened due to the ever-increasing loss of moorland and grassland habitats 

(BirdLife International, 2023), but its population size and habitat association along its 

geographical range are insufficiently known.  

 

Figure 2.1. An adult female Moorland Francolin Scleroptila psilolaema in the Afroalpine biome, 

Ethiopia. The feather patterns and colors contribute crypsis through background matching in this 

species (photo credit: Kai Gedeon). 

In biodiversity-rich Sub-Saharan African countries such as Ethiopia, little attention is paid 

to camera trap-based research (Cordier et al., 2022). To fill this knowledge gap, our 
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sampling protocol for Moorland Francolins occupancy estimates relies on data obtained 

using camera traps. Although this approach may disturb wildlife and alter their behavior 

(Wearn & Glover-Kapfer, 2017; 2019; Caravaggi et al., 2020), it is cost-effective and non-

invasive to study ecological patterns such as population size and distribution of animals. 

The centerpiece in most occupancy-based camera trap studies are frequently applied on 

mammal species (e.g., Burton et al., 2015; Niedballa et al., 2015; Kays et al., 2019; 

Cremonesi et al., 2021; Wevers et al., 2021; Cordier et al., 2022), yet some studies are 

conducted on ground-dwelling bird species, mainly pheasants (e.g., O'Brien & Kinnaird, 

2008; Zou et al., 2019; Tanwar et al., 2021; Sharief et al., 2022). Most importantly, camera 

traps are particularly useful to study elusive, cryptic and rare species (Winarni et al., 2005; 

O'Brien & Kinnaird, 2008; Si et al., 2014; Sharief et al., 2022) and thus represent the most 

promising approach to investigate Moorland Francolin. Camera trapping is more efficient 

than other methods such as traditional distance sampling (Suwanrat et al., 2015; Wearn 

& Glover-Kapfer, 2019). Moreover, it can provide valuable information to implement sound 

conservation strategies (O'Brien & Kinnaird, 2008; Si et al., 2014; Wearn & Glover-Kapfer, 

2017; Sharief et al., 2022). 

We attempt to draw an inference of baseline data on the ecology of Moorland Francolins 

using an occupancy modeling framework. We used presence/absence (i.e., 

detection/non-detection) data to analyze two stochastic processes: occupancy and 

detection probability. Occupancy is a dichotomous state variable that accounts for 

imperfect detection to minimize unreliable inferences of species distribution and range 

(Tyre et al., 2003; Kéry et al., 2010; Guillera-Arroita & Lahoz-Mohort, 2012; Bailey et al., 

2014; MacKenzie et al., 2018). Occupancy models estimate the probability of a species’ 

presence in a fraction of landscape units (MacKenzie et al., 2002, 2018) and help to 

understand habitat use within a landscape. They are applied across several animal taxa 

for the implementation of successful conservation and management strategies 

(MacKenzie et al., 2018; Burton et al., 2015; Steenweg et al., 2017). The objective of this 

study was to gain insight into the habitat use of Moorland Francolins in its native range for 

the first time and to investigate the effect of habitat covariates on occupancy and detection 

probability from spatially replicated surveys. 
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2.3. Materials and Methods  

2.3.1. Study area 

This study was performed in two areas (Figure 2.2): Guassa Community Conservation 

Area (hereafter GCCA) and an area encompassing the Sululta plain, Entoto Natural Park, 

Ankober-Debresina escarpment and a few sites between them (hereafter collectively 

abbreviated SEA). The study areas are part of Ethiopia’s central highlands in which 

several Important Bird and Biodiversity Areas (IBAs) are designated (Tilahun et al. 1996). 

These highland areas consist of top mountain massifs and volcanic cones (Friis et al., 

2010). Most of our study sites (93%) were located in IBAs, including GCCA, Entoto Natural 

Park, Ankober-Debresina escarpment, and Sululta plain. The remaining sites were 

located outside these IBAs in Angolela Tera, Assagirt, Sheno and Mendida districts. 

However, both IBAs and non-IBAs sites in SEA are under serious anthropogenic threat: 

farming, livestock grazing, settlement, monocultural plantations and recreational activities. 

For instance, ENP has shifted its purpose from conservation implementation (Tilahun et 

al., 1996) to recreational area where mass tourism (Asefa 2018; Tesema & Berhan 2019) 

and monocultural plantations (Tadesse & Tafere, 2017; Bahru et al., 2021) strongly affect 

the landscape. Both the Sululta plain and the Ankober-Debresina escarpment are mainly 

influenced by livestock grazing, farming and settlement expansions. Except for the Sululta 

plain, the other areas are dominated by exotic Eucalyptus plantations and African juniper 

Juniperus procera (Esayas & Bekelle, 2011). Therefore, we distinguished between the 

two study areas based on their different levels of human disturbance, topography, floristic 

structure and composition, and conservation status, considering GCCA a relatively 

pristine and SEA a strongly human-modified area. 

GCCA (Figures 2.2 and 2.3) covers 78 km2 (Steger et al., 2020), yet the total land area 

sums up to 111 km2 if the adjoining villages and other land use types are included 

(Ashenafi & Leader-Williams, 2005; Nigussie et al., 2019). This area shows critically 

important habitat features for many wildlife species (Steger et al., 2020) and comprises 

both the Ericaceous belt (3000 – 3200 m a.s.l) and the Afroalpine belt (above 3200 m 

a.s.l) (Friis et al., 2010). The area has been managed by the local community through a 

management model called the Qero system (Ashenafi & Leader-Williams, 2005; Ashenafi 
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et al., 2012). Unlike other IBAs of the study areas, the Qero system, coupled with the 

conservation initiatives of Frankfurt Zoological Society, The Darwin Initiative, European 

Union, and Ethiopian Wolf Conservation Program have significantly sustained the 

ecological integrity of GCCA since 2003. In this area, the Ethiopan Wolf Canis simensis 

is the flagship species (Tefera & Sillero-zubiri, 2006), generating income through 

ecotourism which is partly plowed back for the conservation of the species itself (Eshete 

et al., 2015; Estifanos et al., 2018). 

 

Figure 2.2. The two study areas (GCCA and SEA) and location of camera sites in the central highlands 

of Ethiopia. GCCA, Guassa Community Conservation Area. The southern areas (including Sululta, 

Entoto National Park, Ankober-Debresina escarpment, and other areas) form the second study area 

(SEA). 

The second study area is SEA (Figures 2.2 and 2.3), forming part of the Afromontane with 

altitudes generally below 3000 m a.s.l. Very small patches of herbs, shrubs, scattered 

acacia trees, and exotic trees are common. Here, the Moorland Francolins persist in very 

small uncultivated and grassland patches of Afromontane habitats. 
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Figure 2.3. Afroalpine habitats in the central highlands of Ethiopia: GCCA with most habitat types (a) 

and the target species feeding in Helichrysum-Festuca grassland (c) and SEA with degraded rocky 

habitat (b) and grazing land (d). 

These highland areas experience a bimodal rainfall pattern with main rain from June to 

September and smaller amount of rain from October to February (Mohammed et al., 

2022). The distinctive habitat features of both of these areas are erratic climatic conditions 

and a very short dry season (ca. 2 months). The mean annual temperature of GCCA and 

SEA are 21.26 °C (± 0.95 SE) and 15.53 °C (± 0.55 SE), whereas the mean annual 

precipitation of GCCA and SEA were 2.65 mm (± 0.78 SD) and 2.69 mm (± 0.90 SD), 

respectively (Figure S1). 

2.3.2. Sampling design 

Site selection for this study was made randomly. Most sites were obtained through a 

distribution map from the IUCN, scientific literature, and citizen science data, whereas 

some sites were chosen without antecedent species records. Following the standard 

design procedure for allocating optimal sampling occasion (MacKenzie & Royle, 2005; 

MacKenzie et al., 2018), we initially attempted to conduct a total of 185 camera sites (or 
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preferably sites) (n = 116 for GCCA and n = 69 for SEA) for a single-season design located 

in various habitat types. All camera sites were arranged in 39 line transects (n = 20 for 

GCCA and n = 19 for SEA), with an average transect length of 2.04 km (± 0.80 SD) across 

both study areas. In this study, we expected that the number of sites (s) and occasions 

(K) were sufficient to determine the stochastic processes. Then, the total survey is simply 

defined as s × K and the maximum survey occasion for each site was calculated by 

minimizing s, while taking a standard error of 0.05 for GCCA and 0.065 for SEA. Since 

both study areas are separated by approximately 150 km, independent camera trap data 

collections were conducted for 5 months for both areas. Along these geographical scales, 

specific habitat characteristics (i.e., covariates) predicted to influence the occupancy and 

detection rates of the target species were measured at each site (Table 2.1). 

2.3.3. Camera trapping  

In December 2019 and the first 3 weeks of January 2020, we made a pilot survey in both 

areas to assess the study species using camera traps and broadcast playback methods. 

A total of 20 cameras (Browning Trail Cameras and Bushnell Trophy Cam HD brands) 

were used for short-term deployments in this study. Since we had a small number of 

cameras, some adjoining habitats (see habitat covariates below) were simultaneously 

assessed and in both study areas cameras were deployed sequentially. Cameras were 

repositioned to other sites to cover the desired representative home range and to make 

the field survey more cost-effective. When small camera traps are available, repositioning 

to new sites is recommended to increase the spatial coverage of target species (Meek et 

al., 2014; Shannon et al., 2014; Si et al., 2014; Wearn & Glover-Kapfer, 2017). 

Each camera trap was placed horizontally (i.e., camera alignment was perpendicular to 

the ground) within a 50 m radius (~ 0.8 ha) of plot or focal patch size to optimize 

detectability. Because some terrain settings were very difficult to conduct surveys, 

cameras were not fixed at the center of each plot instead they were placed approximately 

10 – 30 m distance from the grid center, where freshly raked and possible feeding grounds 

were noticed. Single camera placement is employed to detect small-medium mammals 

and bird species (Ferreguetti et al., 2015; Lamelas-López & Salgado, 2021). The camera 

spacing in continuous habitats in GCCA was approximately 0.3 km (0.2-0.5 km), while in 
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SEA was approximately 0.5 km (0.3 – 0.8 km) to enhance detectability and to avoid spatial 

autocorrelation between camera traps. Though telemetry data collection was originally 

proposed to estimate the home range of the species which enables to estimate camera 

spacing, we assumed that the camera trapping space was sufficient and representative 

to study occupancy of this species based on available literature. If the average home 

range size of a target species is not known, it is recommended to infer spatial extent from 

congeneric or other related species (Niedballa et al., 2015). Mostly, camera trap spacing, 

based on home range, for pheasants ranges from 0.2 km (Zou et al., 2019) to 0.7 km 

(Suwanrat et al., 2015). Therefore, the camera spacing was higher than the home range 

diameter of the species, which was a similar approach as in other studies (Maffei & Noss, 

2008; Niedballa et al., 2015). In our case, camera traps were unbaited but rather were 

providentially camouflaged with rocks, stones and Ericaceous heathlands of the study 

sites. Site selection for camera placement was randomly carried out across various 

habitats of both study areas, as was proposed by several other studies (e.g., Meek et al., 

2014; Burton et al., 2015; Wearn & Glover-Kapfer, 2017; Tanwar et al., 2021; Cordier et 

al., 2022).  

We placed camera traps on tree trunks, attached to thick coarser grasses (Festuca spp.) 

and shrubs, and on wooden stakes at approximately 30 – 60 cm above the ground, as 

this standard height is credible to trigger the motion sensor and it is reasonable to detect 

ground-dwelling bird species (Figure 2.3; Figure S2). Because some sites were in 

completely rocky areas, we also put cameras by arranging stacked stones that matched 

the background of the site. Most cameras had 16 GB memory and some cameras 

mounted on courser grasses and shrubs had 32 GB SanDisk memory card as they were 

easily triggered by the movement of vegetation during high wind velocity. However, to 

enhance good photographs and detectability, prudent vegetation removal was carried out 

in some sites to avoid false triggering mainly during windy conditions (Meek et al., 2014; 

Wearn & Glover-Kapfer, 2017). Our primary interest was to capture photos of the target 

species that can be easily pooled into detection/non-detection binary matrices. In most 

cases, the video function was discounted, yet some videos were collected from the field 

to understand the natural behavioral repertoire of the species and its interaction with other 

species (i.e., predators) in the habitats. Because both camera models had different setting 
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options but similar functions, we set up cameras for the following typical important 

parameters: (1) camera traps were active for 24 h/day and programmed to capture 1 

photo/trigger at 10 s intervals and some sites with more than one camera traps set to 

capture 20 s video/trigger, with subsequent videos delayed for 5 min; (2) the sensitivity of 

the infrared sensor was programmed to be medium or normal; and (3) the quality of photos 

were adjusted to be medium for both camera brands. The battery life of each camera was 

checked during data retrieval, storage, and repositioning of cameras. Extreme weather 

conditions (too hot or too cold) severely affected the sensitivity of sensors in our areas. 

2.3.4. Habitat covariates  

To include representative habitat types in GCCA, we adapted the habitat classifications 

of Ashenafi et al. (2012). The habitat types were Mima Mound, Erica Moorland, Euryops-

Alchemilla shrubland, Helichrysum-Festuca grassland, and Festuca (Guassa) Grassland. 

In their classifications, swamp habitat which is typically characterized by woody vegetation 

(US definition) and reed swamp or forested fen (European definition) is now replaced by 

“peatland”. In this habitat, the wetland type is normally a moor surrounded by Erica, 

Festuca and other plant species and has permanent and ephemeral water fed by 

precipitation hence called “ombrothropic peatland”. Moreover, we identified and added 

montane forest to the classification as an important other habitat type for wildlife species 

in the area, though it was not included in the rodent-based study (Ashenafi et al., 2012). 

Because the sites in the SEA study area were human-dominated, the habitat types were 

homogenous and it was very hard to distinguish and classify in relation to vegetation 

patterns. Broadly, we categorized the habitats into Eucalyptus-Juniperus habitat and 

grazing lands. The latter class obviously incorporated agricultural lands. Overall, this area 

has been heavily transformed to Eucalyptus plantations to meet demand for wood 

products and improve the livelihoods of local communities (Tadesse & Tafere, 2017; 

Bahru et al., 2021). 

At the sites, we collected 13 covariates derived from habitat features, landscape 

connectivity metrics, climatic factors, and sampling covariates which were predicted to 

influence the occupancy and detection probabilities of the target species. Occupancy was 

modeled as a function of site-specific covariates, including biotic factors (vegetation traits 
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and predators) and landscape connectivity metrics, while detectability was modeled as a 

function of observational-specific covariates, including survey occasion (hereafter 

occasion) and climatic factors (precipitation and temperature). The occasion is defined as 

the total number of days for which each camera was active per site (Table 2.1). 

Specific vegetation traits assumed to influence habitat use were collected from each site 

using different tools. Due to the occurrence of scattered trees within most sites (with the 

exception of montane forest adjoining to the moorland habitats and ENP) and complex 

landscapes varying with soil, climate, topographic, and other features, we used only two 

20 × 20 m2 randomly placed quadrats for tree species with DBH ≥ 10 cm in woody 

vegetation sites separated by at least 15 m between quadrat. Meanwhile, in each large 

quadrat, 5 × 5 m2 for shrub and liana species with ≤ 10 cm were nested (Figure S2). Thus, 

the following vegetation traits were measured accordingly: (1) by placing five 1 × 1 m2 

quadrats (four in the corner and one in the center) in each nested quadrat; herb and fern 

species richness was identified and counted; (2) woody species richness and abundance 

were determined from the larger and nested plots; (3) woody species density (abundance 

of individual trees, shrubs and lianas/0.8 ha) was also estimated from each site; and (4) 

average tree canopy cover was estimated using GLAMA (Gap Light Analysis Mobile 

Application software) from vertically upward looking photos (approximately 8 photos/site) 

either directly collected in the field or retrieved photographs with a digital camera (Nikon 

D5300) from sampling sites (Gonsamo et al., 2011; Tichý, 2016). 

Landscape connectivity metrics (landscape scale covariates), including elevation, 

distance to the nearest road (both paved and unpaved roads and trail with at least 1 m 

wide), distance to nearest water points and distance to nearest settlements were gauged 

either directly at the site using a handheld GPS and tape meter or indirectly using Google 

earth images. Nearest and accessible metrics to some sites were measured in the field. 

Average on-site ambient temperature and precipitation measurements would have been 

costly and very difficult to conduct in each site; instead, we obtained climatic data from 

NASA 2022 (https://power.larc.nasa.gov/data-access-viewer/) to understand species-

habitat association.   

https://power.larc.nasa.gov/data-access-viewer/
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Table 2.1. Habitat covariates predicted to affect occupancy and detection probabilities of Moorland Francolins in the central highlands of 

Ethiopia. 

Covariate Type of 
data 

Measurement and scoring 
systems 

Hypothesized relationship References tested the effects 

Occupancy covariates 

Fine-scale level covariates 

Herb species 
richness (Hsp) 

Continuous Number of herb species in each 
site 

The species prefers herbaceous sites 
for feeding, breeding and 
concealment. 

Jolli et al., 2012; Sukumal et al., 
2017 

Species 
richness 
(Sprich)a 

Continuous Plant species richness (i.e., 
alpha diversity) in each site 

See Hsp Atikah et al., 2021 

Woody density 
(WD) 

Continuous Density of tree and shrub 
vegetation per 0.8 ha 

The species is negatively influenced 
by birds of prey perched on trees and 
rocky areas. 

Sukumal et al., 2017 

Tree canopy 
cover (Tcaco) 

Continuous Tree canopy cover (CaCo) index 
estimated using mobile app or 
digital camera 

Francolins avoid tree canopy cover 
due to the presence of human 
disturbance and birds of prey and 
other predators. 

Sukumal et al., 2017; Chen et al., 
2019; Atikah et al., 2021 

Predatorb Binary Presence of predator (1 = if 
predator/s was/were recorded 
and 0 otherwise). 

Francolins are negatively influenced 
by predators. 

Sukumal et al., 2017; Abrha et al., 
2018 

Landscape-scale covariates 

Elevation 
(Elev) 

Continuous The elevation of each site was 
measured in the field using GPS. 

Elevation explains climate and 
vegetation variations that affect 
species survival and reproduction 
differently in both sites. 

O'Brien & Kinnaird, 2008;  Jolli et 
al.,  2012; Pardo et al., 2017; 
Whitworth et al., 2018; Chen et al., 
2019; Holzner et al., 2021; Wevers 
et al., 2021 

Distance to 
roads (DR)c 

Continuous Distance from the center of each 
site to the nearest paved or 
unpaved roads 

Proximity to road exposes the species 
to predators and other disturbances. 

Whitworth et al., 2018;   Dean et 
al., 2019; Semper-Pascual et al., 
2020; Kroeger et al., 2022 

Distance to 
settlements 
(DS)c 

Continuous Distance from the center of each  
site to the nearest settlement 

Francolins avoid human settlements 
where several stressors, including 
human presence, grazing, mowing 
and others are common activities. 

O'Brien & Kinnaird, 2008; Jolli et 
al., 2012; Nuttall et al., 2017; Pardo 
et al., 2017; Chen  et al., 2019; 
Semper-Pascual et al., 2020 

Distance to 
water point 
(DW) 

Continuous Distance from the center of each  
site to the nearest water point 

Francolins use water points for food  
and cover in various habitats 

Nuttall et al., 2017;  Sukumal et al., 
2017 
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Note: The first nine predictors are site-specific covariates, whereas the last four are observational-specific covariates. 
aThe spatiotemporal covariates are dropped due to high collinearity (Zuur et al., 2010; Dormann et al., 2013). This study selected herb species 

richness over total species richness (Sprich) in both study area. Herbaceous and shrubby vegetation were dominant in GCCA (> 80% ground 

vegetation cover) (Nigussie et al., 2019). 
bHunting was not considered as a threat for this species (See discussion).   
cHuman disturbance factors: grazing, mowing and farming are the major factors in the study sites (Ashenafi et al., 2012; Nigussie et al., 2019; Steger 

et al., 2020). Festuca abyssinica  and F. macrophyhlla grasses (locally Guassa) intriguingly is valued for fodder for livestock (cut and carrying system 

and livestock grazing), thatching, wall building mix with mud, and help to make whip, rope, hat, broom (mure), and raincoats (gesa). 

 

(wetlands, streams,  madicolous, 
etc) 

Detection covariates 

Fine-scale level covariates 

Sampling 
month (M)a 

Continuous The survey  month for both 
areas (SEA: Feb and Mar and 
GCCA: Apr-Jun) in 2020 

Detection probability of  Moorland 
Francolins varies between sampling 
months 

Jolli et al., 2012; Holzner et al., 
2021 

Survey 
occasion (E) 

Continuous Number of days for which 
camera trap was active in each 
site per sampling occasion also 
called survey timing-how long? 

The francolin detection  increases 
with number of days of cameras 
deployed 

Si et al., 2014; Semper-Pascual et 
al., 2020; Kays et al., 2019; 
Holzner et al., 2021;  Wevers et al., 
2021 

Climate covariates 

Temperature 
(T) 

Continuous Temperature of each site while 
camera trap was active. 

The francolin detection is influenced 
by temperature because francolins 
highly favor cold conditions and 
adapted to extreme low nocturnal 
temperature 

Gedeon, Rödder, et al., 2017;  
Abrha et al., 2018 

Precipitation 
(P) 

Continuous Precipitation of each site while 
camera trap was active. 

Francolins have plenty of food 
resource to easily rake the wet ground 
and produce continuous calls for 
breeding during raining or wet 
season. 

Gedeon, Rödder, et al., 2017; 
Abrha et al., 2018 
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2.3.5. Data analysis  

Single-season single species modeling framework was applied to understand the 

influence that habitat covariates have on occupancy and detectability while accounting for 

imperfect detection (Mackenzie et al., 2002, 2018). The detection history was derived from 

a sequence of species detection/non-detection dichotomous data (i.e., detection = 1 and 

non-detection = 0) that were pooled into occasions from consecutive camera-days for 

each site. For occupancy models, data collected by camera traps needs to be divided into 

sampling occasions (Sollmann, 2018). Such data treatment is important to maximize 

detectability, maintain spatiotemporal independence among occasions and thereby 

increases adequacy of model fit. Sensitive analysis was conducted without incorporating 

any covariates to evaluate the discrepancy of occupancy and detection estimates for 

different sampling intervals. Based on the input of the analysis, we chose the balance 

between high parameter estimates and small confidence intervals (see Table S1). 

Consequently, an occasion was defined as an interval of two camera days for both study 

areas.  

Cameras were active for approximately six consecutive days (n = 98, 2-10 days) to obtain 

an average of three occasions per site at GCCA area. Whereas cameras at SEA area 

were active for approximately eight consecutive days (n = 48, 4-12 days) to obtain an 

average of four occasions per site. Number of camera days varied depending on the 

probability of detection of the species in the two different areas. Such study duration is 

recommended for high detectable species (Mackenzie & Royle, 2005; Guillera-Arroita et 

al., 2010). To account occupancy model assumptions (MacKenzie et al., 2002, 2018), 

each site was surveyed between one to five repeated occasions (Κmax = 5; Κaverage = 2.95) 

in GCCA from March to June 2020, while in SEA each site was surveyed two to six 

repeated occasions (Κmax = 6; Κaverage = 3.46) from February to March 2020. The 

discrepancy in number of occasions per site was due to accessibility, logistical constraints, 

security, weather conditions, and technical problems. We had missed observations in 

some sites meaning that sampling was not conducted at site i during time t and hence a 

missed observation represented by hyphen (−) was filled instead in the complete detection 
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history (hi). This also included data from malfunctioned cameras and blank photos in some 

cameras. 

We used PRESENCE program v.2.13.39 (Hines, 2006) to model occupancy and detection 

estimates. The parameters were estimated using logit link and a maximum likelihood 

approach in the program (MacKenzie et al et al., 2018). Occupancy probability (Ψ) was 

modeled as a logit-link function of fine-scale level and landscape-scale covariates. The 

structure of the model framework of the occupancy probability of a site (i) in association 

with the site-specific covariates is expressed as:  

logit(Ψi) = ꞵ0 + ꞵ1Xi1 + ꞵ2Xi2 +… + αuXiu ,                                          (1) 

Likewise, the detection probability (ρ) was modeled as a logit-link function of observation-

specific covariates. The general logit equation derived from the probability of detecting a 

species at site i, during survey j in association with the covariates is: 

logit(ρij) = ꞵ0 + ꞵ1Xi1 + ꞵ2Xi2 +… + ꞵuXiu + ꞵu+1yij1 …ꞵu+vyijv ,               (2) 

where Xi1 … Xiu refers to site covariates associated with the probability of a site i being 

occupied  and  yij1 … yijv refers to sample covariates. 

All continuous covariates were normalized by z score conversion (mean = 0 and SD = 1) 

to help convergence of the maximum likelihood algorithm prior to analysis (Schielzeth, 

2010). Such data transformation produces better model performance and interpretability 

(Gelman & Hill, 2007; Schielzeth, 2010). Since we had spatial data, collinearity was 

assessed using variance inflation factor (VIF). Covariates with highest VIF were dropped 

in the analysis and covariates at threshold level VIF < 5 and Spearman's correlation (rs < 

0.7) were retained (Zuur et al., 2010; Dormann et al., 2013). Of the strongly correlated 

covariates, we retained ecologically important covariates based on field evidence and 

existed literature to understand their influence on occupancy and detectability. With a total 

of 11 covariates, the global model was run, and subsequently competing models were 

constructed based on plausible additive covariates. The null model (ψ(.),ρ(.)) was also 

constructed to compare with the relative weight of other additive models which included 

one or more covariates. 
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Since the ratio of effective sample size to the number of parameters (n/k) was small, model 

selection procedures were carried out using Akaike’s Information Criterion for small 

sample bias adjustment (AICc) from the competing candidate set of models (Burnham & 

Anderson, 2002), where the most supported models are top-ranked models with ΔAICc ≤ 

2.0 (Burnham & Anderson, 2002). Summed model weights of each covariate from each 

model were also calculated to rank the relative importance of the covariates (Burnham & 

Anderson, 2002). Then, in order to retain ecologically meaningful covariates, models with 

ΔAICc ≤ 4.0 were selected to drive model average estimates of occupancy and detection 

probabilities (Burnham et al., 2011) (Tables 2.2 and 2.3). Competitive models were used 

to estimate Ψ and ρ and calculated parameter estimates, standard errors (SEs), and level 

of significance based on 95% CI (zero-overlapped method) for each covariate. 

Uninformative parameters (Arnold, 2010; Leroux, 2019) were also assessed in our model 

sets. Estimates of the slopes (i.e., ꞵ coefficients) for covariates were used to determine 

the magnitude of their influence on Ψ and ρ. 

We used a parametric bootstrap goodness of fit (GOF) using 10,000 permutations to 

assess the adequacy of fit of the global model (i.e., the most parameterized model) and 

Pearson’s Chi-square test (χ2) and non-Bayesian p-value were implemented to check 

overdispersion (ĉ) (MacKenzie & Bailey, 2004). The degree of overdispersion parameter 

estimate (ĉ) or variance inflation factor was assessed using chi-square (GOF) statistic. It 

was calculated by dividing the observed test statistic by the average of simulated test 

statistics. 

We computed the number of occasions (K) to enhance the odds of detecting Moorland 

Francolins in a site. We considered a set of four levels of confidence (ρ*): 0.7, 0.8, 0.9 

and 0.99 by assuming that the species detection probability is always less than one. The 

occasion (K) was calculated from the detection probability (ρ) of the model averaging to 

determine the true absence of the species from a site (Pellet & Schmidt, 2005; Sewell et 

al., 2010; McGrath et al., 2015). 

𝐾 =  
log(1−ρ∗)

log(1−ρ)
 ,                                                                                                (3) 
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where ρ is the calculated detection probability and ρ* is the target detection probability as 

mentioned above. 

Both original and square-root transformed data were used sequentially for normality 

assumption using Shapiro–Wilk and homoscedasticity tests. Consequently, we used one-

way ANOVA to compare mean differences in photos captured among sampling months in 

GCCA, and a post-hoc testing procedure using Bonferroni error adjustment was applied 

for multiple comparisons. We also used the Mann–Whitney U-test to compare mean 

differences in photos and parameter estimates across spatiotemporal. Similarly, this test 

was used for occupancy probability estimates comparison in relation to predator presence 

and absence. This data was analyzed in IBM SPSS statistics (version 20). A two-tailed 

hypothesis test with an alpha value of 5% was considered.  

2.4. Results  

2.4.1. Camera trapping in GCCA and SEA 

The deployed camera traps yielded 610 and 361 trap nights in GCCA and SEA, 

respectively. We failed to collect data from 21 (GCCA) and SEA (18) sites mostly due to 

battery failure and system malfunctioning. We found a significant difference in average 

photos captured among sampling months in GCCA (F2, 95 = 11.775, p < 0.001). There was 

no significant difference in average photos captured between sampling months in SEA 

(Mann–Whitney U-test = 277.5, n = 48, p = 0.893). Pooling the data across both study 

areas, the average photos captured in GCCA was approximately four units higher in 

comparison to SEA (Mann–Whitney U-test = 1365, n = 146, p < 0.001) (Figure S3). 

Likewise, model-averaged estimates of occupancy probability (ψ̂) and detection 

probability (ρ̂) parameters were significantly higher in pristine habitat than in the disturbed 

landscape (Figure 2.4). 
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Figure 2.4. Parameter estimates (occupancy and detectability) of Moorland Francolin derived from 

model averaging. The asterisks (***) denote a strong statistically significant difference between 

parameter estimates in the study area at p < 0.001 level. 

2.4.2. Habitat use modeling for traditionally managed habitat 

We captured a total of 2632 photos (7–141 photos per site) from all sampling occasions 

in GCCA. Moorland Francolins were detected at 68 of 98 sites, which resulted in a naïve 

occupancy (proportion of sites that recorded at least one photograph on the whole camera 

sites) estimate of 0.69. In GCCA, at the habitat-specific level, the findings showed that the 

highest habitat use was obtained in Mima Mound, Euryops-Alchemilla shrubland, and 

Helichrysum-Festuca grassland. Conversely, the least was shown across the tree belt 

(i.e., montane forest and Eucalyptus plantations) (Figure S4). 

The null model (ψ (.), ρ(.)) appeared to be the least important model to explain the 

stochastic processes (Table 2.2; Table S2). The Ψ for this model was 0.73 (SE = 0.05) 

with a 95% CI of 0.63–0.82 and ρ of 0.85 (SE = 0.03) with a 95% CI of 0.79–0.89. In 

GCCA, some evidence of breeding activity was observed from the camera traps, such as 

three juveniles being provisioned by both parents. 
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Table 2.2. Results of model selection for Moorland Francolins occupancy and detection probabilities 

in the central highlands of Ethiopia.  

Model structure AICc ΔAICc ωi Κ -2l ĉ 

Traditionally protected landscape (GCCA) 

Ψ(Hsp + Tcaco + Pre + DR),p(E + T + P) 257.40 0.00 0.08 9 237.35 0.88 

Ψ(Hsp + Pre + DR),p(E + T + P) 257.46 0.06 0.07 8 239.84 0.83 

Ψ(Hsp + Pre + Elev + DR),p(E + T + P) 258.01 0.61 0.06 9 237.96 0.88 

Ψ(WD + Hsp + Pre + DR),p(E + T + P) 258.07 0.67 0.05 9 238.02 0.80 

Ψ(Hsp + Tcaco + Pre + DR),p(E + P) 258.16 0.76 0.05 8 240.54 0.81 

Ψ(Hsp + Pre + Elev + DR),p(E + P) 258.39 0.99 0.05 8 240.77 0.83 

Ψ(Hsp + Pre + DR),p(E + P) 258.44 1.04 0.05 7 243.20 0.84 

Ψ(Hsp + Tcaco + Pre + Elev + DR),p(E + T + P) 258.47 1.07 0.04 10 235.94 0.82 

Ψ(Hsp + Pre + Elev),p(E + T + P) 258.94 1.54 0.04 8 241.32 0.88 

Ψ(WD + Hsp + Pre + DR),p(E + P) 258.96 1.56 0.03 8 241.34 0.83 

Ψ(WD + Hsp + Pre + Elev + DR),p(E + T + P) 259.17 1.77 0.03 10 236.64 0.83 

Ψ(WD + Hsp + Tcaco + Pre + DR),p(E + T + P) 259.18 1.78 0.03 10 236.65 0.80 

Ψ(Hsp + Tcaco + Pre + DR + DW),p(E + T + P) 259.35 1.95 0.03 10 236.82 0.77 

… 
     

 

Ψ(.),ρ(.) 298.28 40.88 0.00 2 294.15 1.09 

Human-modified landscape (SEA)  

Ψ(Hsp+Tcaco+DR+DS),p(.) 182.77 0.00 0.07 6 168.72 0.99 

Ψ(Hsp+DS),p(.) 183.32 0.55 0.06 4 174.39 1.14 

Ψ(Tcaco+DS),p(.) 183.37 0.60 0.05 4 174.44 1.15 

Ψ(Hsp+DR+DS),p(.) 183.62 0.85 0.05 5 172.19 0.97 

Ψ(Hsp+Tcaco+DS),p(.) 183.75 0.98 0.04 5 172.32 1.15 

Ψ(Tcaco+DS),p(E) 184.13 1.36 0.04 5 172.70 1.41 

Ψ(Hsp+DS),p(T) 184.32 1.55 0.03 5 172.89 1.10 

Ψ(Tcaco+DR+DS),p(.) 184.40 1.63 0.03 5 172.97 1.03 

Ψ(Hsp+Tcaco+DR+DS),p(T) 184.45 1.68 0.03 7 167.65 0.95 

Ψ(Hsp+DR+DS),p(T) 184.65 1.88 0.03 6 170.60 0.92 

Ψ(Hsp+Tcaco+DR+DS),p(T) 184.68 1.91 0.03 7 167.88 1.04 

Ψ(Tcaco),p(.) 184.76 1.99 0.03 3 178.21 1.15 
… 

     
 

Ψ(.),ρ(.) 186.58 3.81 0.009 2 182.31 1.09 

Note: Model rankings are based on the AICc values; AICc values compared to the top-ranked model 

(ΔAICc); ΔAICc scores ≤ 2.0 are the top-ranked model; model weight (ωi), and number of parameters (Κ), 

and -2l = -2LogeL. ĉ = overdispersion parameter to estimate lack of fit. 

We constructed candidate sets without interactions between covariates to model Ψ and р 

in the order of parsimony models using ΔAICc. The bootstrapping procedure and χ2 test 

revealed that the global model (ψ(WD + Hsp + Tcaco + Pre + Elev + DR + DS + DW),ρ(E + 

T + P)) lacks overdispersion (χ2 = 35.95; p = 0.35; ĉ = 0.85), showing independence 

among sites. Subsequently the combinations of occupancy and detection covariates of 

the top models were tested based on the lowest ΔAICc values. The bootstrapped top 13 

models also showed adequate model fit (ĉ ~ 1, Table 2.2). The summed weight of the top-
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ranked models (ΔAICc ≤ 2.0) was 0.61 and the most parsimonious model (ψ(Hsp + Tcaco 

+ Pre + DR),ρ(E + T + P)) had only 0.08 model weight, suggesting more plausible 

competing models existed to explain the occupancy and detection estimates (Table 2.2). 

We used model averaging to improve inference as the top model clearly showed model 

selection uncertainty (Symonds & Moussalli, 2011). Due to the ecological importance of 

individual covariates included in the top models, we discounted models with less than five 

ΔAICc to increase model weight (Richards, 2005) and we considered the top-ranked 

models with summed model weight of 0.95 (Symonds & Moussalli, 2011). 

Model-averaged estimate of ψ̂ across all sites was 0.76 (SD = 0.28) and ρ̂ was 0.82 (SD 

= 0.05). The overall occupancy was 10% greater than the naïve occupancy estimates 

when detection probability is accounted for. As we hypothesized, predators negatively 

associated with the Ψ of Moorland Francolins in GCCA (ꞵmean ± SE = -2.12 ± 0.84; 95% 

CI: -3.76, -0.48) and the summed ωi was 97% (Table 2.3). There was a higher average 

occupancy probability in the absence of predators in comparison to the presence of 

predators (Mann–Whitney U-test = 244.5, n = 98, p < 0.001) (Figure 2.5). These predators 

were avian and mammalian species. We observed Yellow-billed Kite Milvus aegyptius, 

Augur Buzzard Buteo augur, Verreaux's Eagle Aquila verreauxii, and Common Kestrel 

Falco tinnunculus to be common potential aerial predators of Moorland Francolins in the 

area. The most important potential mammalian predators were African Civet Civettictis 

civetta, Honey Badger Mellivora capensis, Black-backed Jackal Canis mesomelas, Serval 

Leptailurus serval, and White-tailed Mongoose Ichneumia albicauda. 

We also found that herb species richness showed a significantly positive influence on the 

occupancy of the species based on model averaging estimates (ꞵmean ± SE = 1.40 ± 0.68, 

95% CI: 0.07–2.74) and the summed ωi was 97% (Table 2.3; Figure 2.6). Contrary to our 

prediction, distance to road was significantly negatively influenced the Ψ of the species 

and the model weight of the covariate was 78% (ꞵmean ± SE = -0.74 ± 0.35; 95% CI: -1.44, 

-0.05), suggesting that occupancy probability decreased as the distance to road increased 

in pristine habitat (Table 2.3; Figure 2.6). 

As depicted in the top models, the ability to detect Moorland Francolins was modeled as 

a function of survey occasion, precipitation, and temperature with summed model weight 
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of 0.95, 0.92, and 0.70, respectively. The most important covariates supported by our 

hypotheses, however, included sampling occasion (ꞵmean ± SE = 0.68 ± 0.23, 95% CI: 

0.23–1.13) and precipitation (ꞵmean ± SE = 0.75 ± 0.36, 95% CI: 0.05–1.45), both of which 

significantly positively influenced the detectability of the species (Table 2.3; Figure 2.6). 

Although the detectability of the species was increasing with temperature, the beta 

coefficient estimate (ꞵmean ± SE = 0.40 ± 0.23; 95% CI: -0.04 to 0.84) overlapped zero 

which exhibited a positive association but non-significant difference with habitat use of the 

species.  

Table 2.3. Summed model weight (Σωi) and influence of covariates calculated from model- averaged 

beta coefficient estimates and standard errors (ꞵmean ± SE).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Lower and upper 95% confidence intervals of the coefficients were constructed. Non-overlapping with 

zero (bold) shows significance values of β estimates. 

 

Site Covariate  Σωi ꞵmean ± SE 95% CIs p-Value 

Lower Upper 

GCCA Occupancy (Ψ)  

Predator 0.97 -2.12 ± 0.84 -3.76 -0.48 0.011 

Herb species richness 0.97 1.40 ± 0.68 0.07 2.74 0.039 

Distance to road 0.78 -0.74 ± 0.35 -1.44 -0.05 0.034 

Tree canopy cover 0.46 -0.58 ± 0.37 -1.30 0.13 0.117 

Elevation 0.35 0.79 ± 0.60 -0.39 1.97 0.189 

Woody density 0.22 -0.46 ± 0.42 -1.29 0.37 0.277 

Distance to water 0.10 0.21 ± 0.41 -0.59 1.00 0.621 

Distance to settlement 0.06 0.36 ± 0.49 -0.60 1.33 0.472 

Detection (ρ)  

Occasion 0.99 0.68 ± 0.23 0.23 1.13 0.003 

Precipitation 0.92 0.75 ± 0.36 0.05 1.45 0.037 

Temperature 0.70 0.40 ± 0.23 -0.04 0.84 0.082 

SEA 

 

Occupancy (Ψ)  

Distance to settlement 0.76 0.74 ± 0.41 -0.07 1.55 0.071 

Tree canopy cover 0.72 -0.84 ± 0.48 -1.77 0.09 0.080 

Herb species richness 0.60 0.83 ± 0.48 -0.11 1.77 0.083 

Distance to road 0.37 0.62 ± 0.41 -0.18 1.42 0.131 

Predator 0.09 1.10 ± 1.23 -1.31 3.51 0.378 

Woody density 0.03 0.23 ± 0.44 -0.63 1.09 0.614 

Detection (ρ)  

Occasion 0.26 0.39 ± 0.30 -0.19 0.98 0.195 

Temperature 0.23 0.34 ± 0.27 -0.19 0.86 0.210 

Precipitation 0.18 0.21 ± 0.21 -0.21 0.63 0.322 
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Figure 2.5. Occupancy probability of Moorland Francolin in association with predator presence/absence in 

GCCA. Cameras placed in woody plant species frequently had photos of predators like Serval Leptailurus 

serval. Error bars indicate standard errors of occupancy probability, *** p < 0.001. 

 

Figure 2.6. (A, B) Occupancy probability (ψ) of Moorland Francolin in association with herb species 

richness and distance to the nearest road (km) and (C, D) Detection probability (ρ) of the species in 
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association with sampling occasion and average precipitation (mm/day), respectively. The estimates 

for the parameters are created from the most parsimonious model that holds these covariates and the 

shaded area in each graph shows 95% confidence intervals. 

2.4.3. Habitat use modeling for human-modified landscape  

In the human-modified landscape, a total of 339 photos (2–29 photos per site) from 23 

sites were trapped, yielding a naïve occupancy estimate of 0.48. The Ψ estimate without 

any covariate was 0.54 (SE = 0.08) with a 95% CI of 0.38–0.70 and ρ of 0.54 (SE = 0.06) 

with a 95% CI of 0.42–0.65. In this study area, based on the above considerations, the 

null model was included in the top important models with ωi = 0.95 to explain the stochastic 

processes. The global model (ψ(WD + Hsp + Tcaco + Pre + Elev + DR + DS + DW),ρ(E+ T 

+ P)) showed no evidence of lack of fit (χ2 = 118.13; p = 0.35; ĉ = 1.07). The most 

parsimonious model (Ψ(Sprich + Tcaco + DR + DS),ρ(.)) had 0.07 model weight. Hence, all 

top models (ΔAICc ≤ 2.0) were equally supported to influence habitat use modeling in the 

case of SEA disturbed sites (Table 2.2; Table S2). 

Model-averaged estimate of ψ̂ across all sites in SEA was 0.56 (SD = 0.19) and ρ̂ was 

0.48 (SD = 0.06). The overall occupancy was underestimated by approximately 17% when 

detection probability is not accounted for. Distance to settlement, tree canopy cover, herb 

species richness, distance to road, predator, and woody density appeared in the 

competing models to explain habitat use of the target species in this area. As predicted, 

distance to settlement (ωi = 0.76; ꞵmean ± SE = 0.74 ± 0.41; 95% CI: -0.07 to 1.55) 

positively associated with habitat use of the species, yet its respective 95% CIs 

overlapped zero. Other covariates also showed non-significant associations with 

occupancy of the species (Table 2.3).  

In this study area, detectability was more supported without covariates based on the top 

models. Thus, the sample covariates predicted to influence detectability had relatively low 

summed weight and 95% of CIs overlapped zero. In this disturbed habitat, detection 

probability was not significantly affected by sample covariates but all covariates depicted 

positive association with detectability. The summed model weight of each covariate was 

below 0.30 (Table 2.3). 
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2.4.4. Recommended number of sampling occasions (K) 

The sampling occasion (K) needed at GCCA was ranged from 1–3, this meaning that a 

single occasion (mean 0.86 and 1.14, respectively) was needed for a targeted confidence 

level of probabilities of 0.7 and 0.8 and two (mean 1.64) and three (mean 3.27) occasions 

sequentially were sufficient for 0.9 and 0.99 detection probabilities to estimate the true 

absence of the species at a given site. Similarly, we found that 2, 3, 4, and 7 occasions 

sequentially were needed at SEA. 

2.5. Discussion  

2.5.1. Occupancy and detection probability estimates using camera trap 

Our study delivers the first insights into the habitat use of Moorland Francolins using a 

camera trap approach. Camera traps for this elusive and cryptic species helped us to 

avoid false-positive detection, which also corroborates the respective assumption for the 

occupancy model. The overall or true occupancy estimates in both study areas were 

greater than the naïve occupancy (ψ) estimates when detection probability is accounted 

for. These suggest that models incorporate imperfect detections to discount 

underestimating of overall occupancy (MacKenzie et al., 2018; Guillera-Arroita et al., 

2014). Since we had small sample sizes and low density of individuals in SEA, we 

increased the sampling by one more occasion to minimize the effect of false-negative 

detections of the target species. Increasing of sampling occasion helps to increase the 

precision and accuracy of detectability of species (MacKenzie & Royle, 2005; Moore et 

al., 2014). 

In many tropical African countries, the protected areas are called “paper parks”-existing 

in name only as they poorly counter habitat and species loss (Dudley & Stolton, 1999). 

However, GCCA as a traditionally protected area is exceptional in this case as the 

indigenous knowledge for conservation of natural resources, the Qero system, has 

supported several wildlife species for almost four centuries (Ashenafi & Leader-Williams, 

2005; Nigussie et al., 2019). Occupancy and detection probability estimates of Moorland 

Francolins were higher in traditionally protected areas than in unprotected areas, 

suggesting the persistent and high conservation effort supporting the Ethiopian Wolf 
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(Canis simensis) by the local community in association with international organizations 

signifies the integrity and functionality of the whole community. Flagship species like this 

play a vital role in biodiversity conservation at local and global scales (Jarić et al., 2023), 

which is demonstrated by its positive side effects for Moorland Francolins and other 

species in GCCA, too. Unlike other carnivore species, this species is a rodent specialist 

(Vial et al., 2011; Ashenafi et al., 2012; Atickem & Stenseth, 2022). 

2.5.2. Determinants of occupancy and detection probabilities  

Based on beta estimates and moderate model weight, Moorland Francolins revealed an 

aversion to montane forest habitat due to the presence of predators in the tree canopies. 

The Afroalpine highlands are suitable habitats for predators (Clouet et al., 2000), and 

habitat use of many ground-dwelling birds is negatively influenced by the presence of 

predators in and around the forest habitats (Sukumal et al., 2017; Abrha et al., 2018). In 

concordance with these findings, our results confirm that predators (both aerial and 

ground predators) may strongly negatively influence the habitat use of Moorland 

Francolins in GCCA, although the main diet of several raptors is rodents (Clouet et al., 

2000). 

Though hunting pressure is one of the key factors for decreasing francolin populations 

nationwide (Töpfer et al., 2014; Abrha et al., 2017; Gedeon, Rödder, et al., 2017) and 

globally (McGowan et al., 2012), this threat was only of minor importance to Moorland 

Francolins in GCCA. However, in both study areas, but essentially in SEA, hunters 

preferably target to capture Erckel's Francolin Pternistis erckelii that usually subsist in 

habitats below the tree line in GCCA (Demis & Tesfaye, pers. comm.), and sympatrically 

with Moorland Francolins in SEA. Hunting pressure apparently is much more pronounced 

on P. erckelii due to its larger size and because of the different perceptions by the local 

communities toward both highland francolins. 

Herb species richness was also supported based on model weight and top models. The 

protected grassland of GCCA covers almost 60% of its total area (Steger et al., 2020) and 

holds several range-restricted species (Ashenafi and Leader-Williams, 2005; Ashenafi et 

al., 2012). As expected, the occupancy probability of Moorland Francolins increased with 

herb species richness in GCCA, in line with other reports on pheasant species (Jolli et al., 
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2012; Sukumal et al., 2017). This vegetation type is widespread in the plateau of 

Afroalpine biome of Ethiopia (Nigussie et al., 2019; Steger et al., 2020) and it is the source 

of food and provides essential shelter for many grassland specialists (Töpfer & Gedeon, 

2020). It had also a positive influence on the habitat use of Moorland Francolins at SEA, 

but the 95% confidence interval of the β-coefficient estimate overlapped zero showing 

less support for its influence on the species. This is because the area has been 

increasingly transformed into a monocultural plantation (Tadesse & Tafere, 2017; Bahru 

et al., 2021), and is subject to tourism activities (Asefa, 2018; Tesema & Berhan, 2019), 

overgrazing and other human-induced disturbances in the plateau of central highlands 

(Asefa et al., 2020). For instance, a recent report showed that the natural grassland of 

Entoto Natural Park has decreased over the last three decades and that the area is now 

dominated by Eucalyptus plantations (Tesema & Berhan, 2019). In such areas, Moorland 

Francolins showed a pronounced aversion toward modified habitat types. This implies that 

Afromontane grassland and shrubland specialists, especially Moorland Francolins might 

gradually become locally extinct. 

Distance to road was also the other strongest covariate influencing the occupancy 

probability of Moorland Francolins, similar to other reports in ground-dwelling bird species 

(Whitworth et al., 2018). The occupancy probability of the species was higher along the 

edge of roadsides and trails than at sites located in remote in GCCA, in concordance with 

other reports on wildlife species (Kroeger et al., 2022; Paemelaere et al., 2023). This is 

unexpected because roads can attract hunters and predators, delivering also other 

human-induced perturbations (Dean et al., 2019; Kroeger et al., 2022). In GCCA, we 

observed that proximity to road attracts the species as there were food items mainly on 

the unpaved road, including grains and fruits thrown through window by passengers. Most 

roadsides have also dense native herbaceous vegetation, which may also help Moorland 

Francolins to survive. On the contrary, occupancy increased as the distance to road 

increased in SEA habitat but did not show a significant association with roads. This 

suggests that Moorland Francolins avoid roads and trails in a human-modified landscape. 

Thus, roads may have positive effects on bird species in more pristine habitats (Kroeger 

et al., 2022) and in areas where hunting pressure is controlled as a management strategy 

(Whitworth et al., 2018). Local low temperatures and high ground vegetation cover 
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(Nigussie et al., 2019; Steger et al., 2020) may lead the species to use the roadsides and 

trails: (1) to enhance foraging opportunities; (2) to stay more vigilant to avoid risk of 

predation; (3) as a heat source; (4) to facilitate mating, connectivity and communication. 

Avoidance of human settlements is likely related to livestock grazing causing herb species 

richness to shrink at GCCA periphery (i.e., human occupation). Similarly, the effect of 

distance to settlement as a type of human disturbance posed a positive effect on Moorland 

Francolins in SEA. There was no significant difference for the covariate in this area, yet 

relatively high model-averaged beta coefficient estimate; model weight and confidence 

intervals reveal irregularity in association with the species, most presumably due to lack 

of habitat heterogeneity, a small sample size, limited number of cameras, and small 

sampling occasions, as compared to recommended occasions. Hence distance to 

settlement had a slightly significant positive influence on the species in SEA, agreeing 

with previous studies on pheasants (O'Brien & Kinnaird, 2008; Jolli et al., 2012; Nuttall et 

al., 2017; Chen et al., 2019), other bird (Pardo et al., 2017) and mammal species (Semper-

Pascual et al., 2020; Paemelaere et al., 2023). 

In line with our hypothesis, sampling occasion significantly positively influences the 

detectability of the species in GCCA. Conversely, in SEA, this covariate appeared in one 

of the most parsimonious models and it positively influenced detectability but it had low 

model weight and the beta coefficient estimates showed statistically non-significance 

association. The detectability may be affected by spatial variations and sample sizes. Our 

hypothesis that species detection increases with number of days of cameras deployed 

showed consistency with other findings in bird (Si et al., 2014; Paemelaere et al., 2023) 

and mammal species (Si et al., 2014; Shannon et al., 2014; Semper-Pascual et al., 2020; 

Holzner et al., 2021; Wevers et al., 2021). The magnitude of sampling occasion on 

detection probability estimate demonstrates species-specific response (Iannarilli et al., 

2021). 

In Ethiopia, after a long dry season, both a small and a main rain season occurs in most 

highland areas (Mohammed et al., 2022). Several francolin species are adapted to this 

seasonally changing precipitation regime (Gedeon, Rödder, et al., 2017; Abrha et al., 

2018), which allows the areas to replenish food resources and ecosystem greenness vital 
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for breeding (Abrha et al., 2018). This is because francolins may find plenty of food by 

easily raking and scratching the wet ground (Abrha et al., 2018). Moreover, during rain 

seasons, birds of prey soar less, and agro-pastoral encroachments seem lower compared 

to the dry season (pers. obs). Elsewhere in the tropics, the breeding season of birds is 

reported to be associated with the beginning of precipitation and this is linked to the 

abundance of food and cover resources (Jansen & Crowe, 2005; Cox et al., 2013; França 

et al., 2020). In our species, some camera traps have documented chicks being fed by 

their parents in GCCA, and this implies that the breeding season of the species may 

coincide with the short and mild precipitation distribution from February to June. Similarly, 

temperature positively influenced the detectability of the species, but there was little 

support for our hypothesis based on models. This may suggest that the species avoids 

extreme temperatures. Collectively, climate factors are very important for the detectability 

of the target species in the central highlands of Ethiopia. 

2.5.3. Camera trapping for assessment of cryptic bird species 

The Moorland Francolins, similar to other pheasants in the region, could potentially go 

visually undetected, particularly in areas of low population density and in disturbed 

habitats. Extreme weather conditions, seasonality, expert experience, and other factors 

may also obscure the ability to detect the species. This is because the birds usually remain 

silent, hidden, and squatted when people approach them. Thus, false-negative detection 

could bias inferences about the occupancy and detection probability estimates and other 

parameters. However, the deployment of non-invasive modern approaches like remotely 

triggered camera traps can avoid such ecological concerns. This approach also helps to 

discover new geographical ranges, other wildlife species (including predators) and 

thereby helping to understand the interactions of the Moorland Francolins in its natural 

habitat. Another positive feature of the camera trapping technique is that it is cost and 

time-effective. Our results strongly support the deployment of camera traps for the 

detection of cryptic and little-known species in a topographically complex region. Camera 

traps provide reliable comprehension and precision of the occupancy of Moorland 

Francolins in the Afroalpine Biome. Such camera trap data (Wearn & Glover-Kapfer, 2017; 

O'Brien & Kinnaird, 2008; Si et al., 2014; Steenweg et al., 2017; Sharief et al., 2022) 

ultimately promotes the proper conservation of the target species. 
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2.6. Conclusions 

The findings demonstrate that habitat use of Moorland Francolins is higher in the more 

pristine habitats compared to the strongly human-influenced in SEA. This suggests that a 

community-based conservation area (i.e., GCCA) is a crucial remnant habitat of 

endangered and data-deficient wildlife species in Ethiopia. Since such community-based 

conservation approaches obviously support sustainable species-habitat conservation, 

strengthening the existing Qero system and expanding the model to other potential 

hotspot sites and/or IBAs is strongly recommended to circumvent the mounting 

anthropogenic disturbances in the region (Asefa et al., 2017; Razgour et al., 2021; 

Rodrigues et al., 2021; Chengere et al., 2022). 

Our results also show that the species uses various herb species, roadsides and trails for 

resting, hiding, survival, and reproduction. Conversely, predators threatened the 

francolins predominantly in native and plantation forests, thus Moorland Francolins tend 

to avoid tree canopy cover and human settlements in both study areas. In the human-

modified SEA areas, most covariates had a weak influence on the occupancy and 

detection estimates of our target species because habitats are dominated by Eucalyptus 

plantations, fragmented meadow hill patches, and farmlands, unlike the heterogeneous 

and protected habitats in the GCCA. 

We confirm that camera trap deployment corroborates the presence or absence of shy 

ground-dwelling birds not only in known areas but also in understudied areas. The 

detectability of francolins was determined by the sampling occasion and precipitation. 

Further research using single or multi-season modeling is required to understand the 

influence of habitat covariates, seasonal colonization, and local extinction from 

spatiotemporally replicated surveys. 
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2.8. Supplementary information 

  

Figure S1. Climatic conditions of GCCA and SEA from 1981-2020 (https://power.larc.nasa.gov/data-

access-viewer). Temperature (°C) and precipitation (mm) values are based on mean monthly data for 

each year (mean maximum, average and mean minimum temperatures).  

 

https://power.larc.nasa.gov/data-access-viewer
https://power.larc.nasa.gov/data-access-viewer
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Table S1. Sensitive analyses for the constant model (null model) using different sampling occasions for 

GCCA and SEA study areas. The middle sampling occasion was opted over the lowest and highest 

estimates. Abbreviations: k-parameter; ψ-occupancy probability; ρ-detection probability, and n-effective 

sample size.   

Study 
area 

Sampling occasion 

Output 1 Output 2 Output 3 

G
C

C
A

 

k Estimate  SE 95% CI n Estimate  SE 95% CI n Estimate  SE 95% CI n 

ψ 0.72 0.05 0.61-
0.80 

98 0.73 0.05 0.63-
0.82 

98 0.77 0.05 0.66-0.85 94 

ρ 0.63 0.02 0.59-
0.68 

98 0.85 0.02 0.79-
0.89 

98 0.86 0.03 0.79-0.91 94 

S
E

A
 

ψ 0.51 0.08 0.36-
0.65 

48 0.54 0.08 0.38-
0.70 

48 0.54 0.08 0.37-0.69 48 

ρ 0.38 0.04 0.31-
0.46 

48 0.54 0.06 0.42-
0.65 

48 0.65 0.07 0.50-0.77 48 

 

 

Figure S2. Schematic illustration of quadrant and camera placement in each circular plot (c. 0.8 ha). 

All quadrats for woody and herbaceous plant species (A) and camera trap mounted on coarser grass 

species (B) are shown. 
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Figure S3. Number of photos captured in different sampling months and across study area. The 

asterisks (***) denote p < 0.001 level.  

 

Figure S4. Occupancy and detection probability estimates of Moorland Francolin in different habitat 

types in central highlands of Ethiopia.  Both parameter estimates were derived from model average 

estimates and error bars represent SEs. Abbreviations: FG-Festuca Grassland; HFG-Helichrysum-

Festuca Grassland; EM-Erica Moorland; EAS-Euryops-Alchemilla Shrubland; Peat-Peatland; MM-

Mima Mound and MF-Montane Forest. 
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Table S2. Model outputs for GCCA and SEA study areas.  

GCCA 

Model AICc ΔAICc ωi Κ -2L 

psi(Hsp+Tcaco+Pre+DR),p(E+T+P) 257.40 0.00 0.0801 9 237.35 

psi(Hsp+Pre+DR),p(E+T+P) 257.46 0.06 0.0777 8 239.84 

psi(Hsp+Pre+Elev+DR),p(E+T+P) 258.01 0.61 0.0590 9 237.96 

psi(WD+Hsp+Pre+DR),p(E+T+P) 258.07 0.67 0.0573 9 238.02 

psi(Hsp+Tcaco+Pre+DR),p(E+P) 258.16 0.76 0.0548 8 240.54 

psi(Hsp+Pre+Elev+DR),p(E+P) 258.39 0.99 0.0488 8 240.77 

psi(Hsp+Pre+DR),p(E+P) 258.44 1.04 0.0476 7 243.20 

psi(Hsp+Tcaco+Pre+Elev+DR),p(E+T+P) 258.47 1.07 0.0469 10 235.94 

psi(Hsp+Pre+Elev),p(E+T+P) 258.94 1.54 0.0371 8 241.32 

psi(WD+Hsp+Pre+DR),p(E+P) 258.96 1.56 0.0367 8 241.34 

psi(WD+Hsp+Pre+Elev+DR),p(E+T+P) 259.17 1.77 0.0331 10 236.64 

psi(WD+Hsp+Tcaco+Pre+DR),p(E+T+P) 259.18 1.78 0.0329 10 236.65 

psi(Hsp+Tcaco+Pre+DR+DW),p(E+T+P) 259.35 1.95 0.0302 10 236.82 

psi(Tcaco+Pre+Elev+DR),p(E) 259.45 2.05 0.0287 7 244.21 

psi(Hsp+Pre+Elev),p(E+P) 259.48 2.08 0.0283 7 244.24 

psi(Hsp+Tcaco+Pre+Elev),p(E+T+P) 259.81 2.41 0.0240 9 239.76 

psi(Hsp+Pre+DR),p(E) 259.84 2.44 0.0237 6 246.92 

psi(Hsp+Tcaco+Pre),p(E+T+P) 259.87 2.47 0.0233 8 242.25 

psi(Hsp+Pre+DR+DW),p(E+T+P) 259.89 2.49 0.0231 9 239.84 

psi(Hsp+Pre),p(E+T+P) 260.12 2.72 0.0206 7 244.88 

psi(Hsp+Tcaco+Pre+DR),p(E) 260.20 2.80 0.0198 7 244.96 

psi(WD+Hsp+Tcaco+Pre+Elev+DR),p(E+T+P) 260.46 3.06 0.0173 11 235.39 

psi(Hsp+Tcaco+DR),p(E+T+P) 260.52 3.12 0.0168 8 242.90 

psi(WD+Hsp+Pre+DR+DW),p(E+T+P) 260.54 3.14 0.0167 10 238.01 

psi(Hsp+Tcaco+Pre+Elev+DR+DW),p(E+T+P) 260.76 3.36 0.0149 11 235.69 

psi(WD+Hsp+Pre+Elev),p(E+T+P) 260.88 3.48 0.0141 9 240.83 

psi(Hsp+Tcaco+Pre),p(E+P) 260.92 3.52 0.0138 7 245.68 

psi(Hsp+Tcaco+Pre+Elev+DR+DS),p(E+T+P) 261.00 3.60 0.0132 11 235.93 

psi(Hsp+Pre+DS),p(E+T+P) 261.02 3.62 0.0131 8 243.40 

psi(Hsp+Tcaco+Pre+DR+DW+DS),p(E+T+P) 261.20 3.80 0.0120 11 236.13 

psi(Hsp+Tcaco+Pre+DW),p(E+T+P) 261.24 3.84 0.0117 9 241.19 

psi(Hsp+Pre),p(E+P) 261.29 3.89 0.0115 6 248.37 

psi(Hsp+Tcaco+DR+DS),p(E+T+P) 261.35 3.95 0.0111 9 241.30 

psi(.),p(.) 298.28 40.88 0.0000 2 294.15 

SEA 

Model AICc ΔAICc ωi Κ -2L 

psi(Hsp+Tcaco+DR+DS),p(.) 182.77 0.00 0.07 1.00 6 

psi(Hsp+DS),p(.) 183.32 0.55 0.06 0.76 4 
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psi(Tcaco+DS),p(.) 183.37 0.60 0.05 0.74 4 

psi(Hsp+DR+DS),p(.) 183.62 0.85 0.05 0.65 5 

psi(Hsp+Tcaco+DS),p(.) 183.75 0.98 0.04 0.61 5 

psi(Tcaco+DS),p(E) 184.13 1.36 0.04 0.51 5 

psi(Hsp+DS),p(T) 184.32 1.55 0.03 0.46 5 

psi(Tcaco+DR+DS),p(.) 184.40 1.63 0.03 0.44 5 

psi(Hsp+Tcaco+DR+DS),p(T) 184.45 1.68 0.03 0.43 7 

psi(Hsp+DR+DS),p(T) 184.65 1.88 0.03 0.39 6 

psi(Hsp+Tcaco+DR+DS),p(P) 184.68 1.91 0.03 0.38 7 

psi(Tcaco),p(.) 184.76 1.99 0.03 0.37 3 

psi(Tcaco),p(E) 184.94 2.17 0.02 0.34 4 

psi(Tcaco+DS),p(P) 184.98 2.21 0.02 0.33 5 

psi(Pre+Tcaco+DS),p(.) 185.11 2.34 0.02 0.31 5 

psi(Hsp),p(.) 185.12 2.35 0.02 0.31 3 

psi(Hsp+DR+DS),p(P) 185.22 2.45 0.02 0.29 6 

psi(Hsp+Tcaco+DS),p(P) 185.30 2.53 0.02 0.28 6 

psi(Hsp+Tcaco+DR+DS),p(E) 185.33 2.56 0.02 0.28 7 

psi(Hsp+Tcaco),p(.) 185.37 2.60 0.02 0.27 4 

psi(Hsp+Tcaco+DS),p(E) 185.39 2.62 0.02 0.27 6 

psi(Hsp+Tcaco+DS),p(T) 185.40 2.63 0.02 0.27 6 

psi(Hsp+DS),p(E) 185.41 2.64 0.02 0.27 5 

psi(Tcaco+DS),p(E+T) 185.43 2.66 0.02 0.26 6 

psi(Tcaco),p(E+T) 185.44 2.67 0.02 0.26 5 

psi(Hsp+DR),p(.) 185.52 2.75 0.02 0.25 4 

psi(Tcaco+Pre+DR+DS),p(.) 185.58 2.81 0.02 0.25 6 

psi(WD+Tcaco+DS),p(.) 185.63 2.86 0.02 0.24 5 

psi(Hsp+DS),p(E+T) 185.65 2.88 0.02 0.24 6 

psi(Tcaco+DS),p(E+P) 185.68 2.91 0.02 0.23 6 

psi(Pre+Tcaco),p(.) 185.82 3.05 0.02 0.22 4 

psi(Tcaco+DR+DS),p(E) 185.86 3.09 0.02 0.21 6 

psi(Hsp+Pre+Tcaco+DS),p(.) 186.00 3.23 0.01 0.20 6 

psi(Hsp+DR+DS),p(E 186.19 3.42 0.01 0.18 6 

psi(Hsp+DR),p(T) 186.23 3.46 0.01 0.18 5 

psi(Hsp+Tcaco+DR+DS),p(T+P) 186.25 3.48 0.01 0.18 8 

psi(Tcaco),p(P) 186.34 3.57 0.01 0.17 4 

psi(Tcaco),p(E+T+P) 186.35 3.58 0.01 0.17 6 

psi(Tcaco),p(E+P) 186.41 3.64 0.01 0.16 5 

psi(.),p(.) 186.58 3.81 0.01 0.15 2 

psi(Hsp+Tcaco+DS),p(E+T) 186.62 3.85 0.01 0.15 7 

psi(WD+Tcaco+DR+DS),p(.) 186.72 3.95 0.01 0.14 6 
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3.1. Abstract  

Modeling the occupancy of species in the context of habitat components is a crucial step 

to deliver an appropriate conservation strategy. Accounting for imperfect detection in 

occupancy models helps to conclude on true species distribution and occupancy. We 

used dynamic occupancy modeling to investigate the influence of habitat covariates on 

occupancy dynamics of the Near Threatened Harwood’s Francolin (Pternistis harwoodi) 

in the Upper Blue Nile Basin in Ethiopia. We used direct observation and playback 

technique to collect presence/absence data during both a wet and a dry season in 2019 

and 2020. By accounting for species’ imperfect detection, the model averaged estimates 

of occupancy probabilities (mean ± SE) across respective seasons were 0.81 ± 0.08 and 

0.79 ± 0.07 and detection probabilities were 0.47 ± 0.08 and 0.62 ± 0.06. The colonization 

and local extinction probability estimates between seasons were 0.59 ± 0.20 and 0.12 ± 

0.07, respectively. We demonstrate that occupancy probability significantly decreased 

with increasing both Normalized Difference Vegetation Index (NDVI: ꞵmean ± SE = -1.83 ± 

0.66; 95% CI: -3.12, -0.54) and quadratic term of slope (SL2= -1.51 ± 0.62; 95% CI: -2.73, 

-0.29) in the study area. Furthermore, human disturbance index (HDI: = -1.06 ± 0.54; 95% 

CI: -2.12, -0.004) significantly negatively influenced the occupancy of the species. As we 

hypothesized, the detection probability increased significantly as a function of average 

temperature (0.37 ± 0.13; 95% CI: 0.12, 0.63). There were no statistically significant 

associations among covariates and the dynamic parameters, yet important covariates 

such as NDVI slightly negatively influenced colonization, whereas HDI positively 

influenced local extinction. The aversion of the species towards human disturbance and 

its persistence at lower NDVI and lower slopes has important implications for conservation 

strategy in the area. The current study demonstrates empirical evidence of dynamic 

occupancy modeling for a cryptic ground-dwelling pheasant species in the Upper Blue 

Nile Basin. Further study is recommended to understand spatiotemporal species-habitat 

association at fine and landscape scales. 

Keywords: Harwood’s Francolin, NDVI, Occupancy, Colonization, Local extinction, 

Conservation 
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3.2. Introduction  

Occupancy modeling of a species in the context of habitat components is critically 

important for successful conservation and management of ecological systems (Lahoz-

Monfort et al., 2014; MacKenzie et al., 2018). The species-habitat associations and 

distributions are commonly modeled using species distribution models (SDMs) (e.g., Elith 

et al., 2006; Phillips et al., 2006; Elith and Leathwick, 2009). These models integrate 

occurrence or count data of species with habitat covariate (i.e., environmental covariate) 

data to make ecological inferences on species distribution (Elith et al., 2006; Elith et al., 

2011). Nevertheless, most of these conventional SDMs use presence-background, true 

absence or pseudo-absence data without accounting for imperfect detection to predict 

species distributions (e.g., Guisan and Zimmermann, 2000; Elith et al., 2006; Elith et al., 

2011). Such type of models generates biased estimates of true distribution of species as 

a function of habitat covariates (Kéry et al., 2010). The consideration of imperfect 

detection for species occupancy and distributions in ecological data is essential to create 

robust inferences (MacKenzie et al., 2003, 2018; Lahoz-Monfort et al., 2014; Guillera-

Arroita et al., 2014; Guillera‐Arroita, 2017).  

Unlike conventional models such as the popular presence-only models, occupancy 

models are ‘data hungry models’ and perform better (Jha et al., 2022). Occupancy models 

need accurate and precise presence/absence data and environmental factors to produce 

sound conservation and management strategies for wildlife species (MacKenzie et al., 

2002, 2018). These factors determine species-habitat associations (Kearney, 2006; 

Morrison et al., 2012) and are generally classified into resources, risks and conditions 

(Matthiopoulos et al., 2020). Among these factors, Normalized Difference Vegetation 

Index (NDVI) as a surrogate for vegetation or ecosystem greenness (Leveau et al., 2018; 

Green et al., 2019; Debela et al., 2021; Wu et al., 2021), topography (Burner et al., 2019; 

Campos-Cerqueira et al., 2021; Debela et al., 2021; Jean-Pierre et al., 2022), 

anthropogenic disturbances (Ramesh and Downs, 2014; McGowan et al., 2012; Abrha et 

al., 2017; Devarajan et al., 2020), disease (Bailey et al., 2014; Blanco et al., 2019; 

Chaudhary et al., 2020; Keesing and Ostfeld, 2021), climatic conditions (Debela et al., 

2021; Jean-Pierre et al., 2022) and others affect species in spatiotemporal dynamics 

(Devarajan et al., 2020). 
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Harwood’s Francolin (other name: Harwood’s Spurfowl) Pternistis harwoodi is an endemic 

and Near Threatened pheasant species in Ethiopia (BirdLife International, 2018). In 

Ethiopia, most pheasants, especially francolins, are highly threatened bird species due to 

hunting and habitat loss (Töpfer et al., 2014; Abrha et al., 2017; Gedeon, et al., 2017). 

Galliformes face multiple anthropogenic threats (Keane et al., 2005; McGowan et al., 

2012; Tian et al., 2018) with hunting (Keane et al., 2005; McGowan et al., 2012), livestock 

grazing (Wang et al., 2021) and other habitat losses (Bagaria et al., 2021) and climate 

change (Zahoor et al., 2022; Liu et al., 2023) being the key menacing factors globally. For 

instance, around 66% of galliform species are threatened by these synergetic effects 

(McGowan et al., 2012).  

Harwood’s Francolin was first discovered in 1899 at Ahiya Fej at south of Jama district in 

the central highlands of Ethiopia. The subsequent field expeditions that focused on 

identification of new localities for the species were conducted in Kalo Ford (Cheeseman 

and Sclater, 1935; Urban et al., 1986), near Bichana, and Muger River sub-basins (Urban 

et al., 1986). The most recent study on the ecology of the species has been frequently 

reported from Jema and Jara sub-basins (Robertson et al., 1997; Ash and Atkins, 2009; 

Abrha and Nigus, 2017; Abrha et al., 2017, 2018). Most of these earlier studies were 

limited by time and research funds. There is a scarcity of information about the 

mechanisms explaining the distribution and spatiotemporal habitat use dynamics of 

Harwood’s Francolins so far. Currently, the conservation status of the species is 

downlisted from the ‘Vulnerable’ to the ‘Near Threatened’ category on the IUCN Red List 

(BirdLife International, 2018); yet empirical evidence supports spacious geographical 

range and conservation action that has practically reduced the threats of the target 

species at site level are lacking. The species is one of the three endemic bird species that 

could be prioritized for future flagship conservation and management action plans in 

Ethiopia (Ash and Atkins, 2009).  

Even though most studies on ground-dwelling birds of Africa are derived from static 

occupancy modeling (e.g., Ramesh and Downs, 2014; Maseko et al., 2017; Smith et al., 

2017; Gumede et al., 2022; Abrha et al., 2023; Bitani et al., 2023), studies using dynamic 

occupancy modelling are lacking, in particular on habitat use of galliform species from 

Ethiopia. Here, we collected presence/absence data of Harwood’s Francolins using a 
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combination of techniques from two-season surveys, which ranged from Mida Woremo to 

Amuru, Yaso and Bure districts in the Upper Blue Nile Basin (UBNB). We also collected 

some spatiotemporal sets of covariates from ground truthing (i.e., field surveyed) and 

remotely sensed levels in the area. Using dynamic (multi-season) occupancy modeling 

(MacKenzie et al., 2003), we modeled occupancy and associated parameters governing 

the processes of the system to draw inferences about the occupancy dynamics of the 

target species in its native range. Therefore, the objective was to determine factors 

influencing probabilities of occupancy, seasonal colonization, local extinction and 

detection of the target species across large spatiotemporal scales in UBNB. 

3.3. Materials and Methods  

3.3.1. Study area  

Ethiopia harbors two large blocks of highlands: the Western and Eastern highlands 

segmented by the East African Rift Valley. The study area is part of the Western highland, 

which stretches from Mida Woremo district in north Shewa zone of Amhara to the junction 

among Amuru, Yaso and Bure districts of Oromia, Benishangul-Gumuz and Amhara 

regions, respectively. The elevation of the study area ranges from 840 to 2520 m a.s.l 

(Figure 3.1). The dominant habitat vegetation types (for simplicity habitat types) are 

Combretum-Terminalia woodland and wooded grasslands (CTW), Dry evergreen 

Afromontane forest and grassland complex (DAF), riparian vegetation (RV) and farmland 

mosaics (Friis et al., 2010). We also included mixed plantations (commonly different fruits 

and vegetables) scattered along the course of the Jema, Wenchit and Jara Rivers as an 

additional habitat type in this study. 
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Figure 3.1. Study area in the Upper Blue Nile Basin (UBNB) based on digital elevation model (DEM) 

(SRTM Global elevation data- https://earthexplorer.usgs.gov). All sampling stations (n = 144) are 

included in the map.   

In UBNB, two Important Bird and Biodiversity Areas (hereafter IBAs) including the Mid-

Abbay (Blue Nile) River Basin and Jema and Jara valleys are designated particularly 

because of the occurrence of endemic species, including Harwood’s Francolin (Tilahun et 

al., 1996; BirdLife International, 2023). According to the biome classification of Fishpool 

and Evans (2001), the Mid-Abbay is part of the Sudan-Guinea Savanna biome, whereas 

the Jema and Jara valleys belong to the Afrotropical Highlands biome. Multifaceted 

anthropogenic disturbances are common phenomena across the Ethiopia highlands 

(Nyssen et al., 2004), particularly in the habitat of the target species (Robertson et al., 

1997; Abrha et al., 2017). Generally, the dominant land cover type of UBNB is farmland 

mosaics (Tekleab et al., 2013). The mean annual temperature of Jema and Jara valleys 

and the Mid-Abbay IBAs is 18.61°C (± 0.09 SE) and 20.34°C (± 0.11 SE), and the mean 

annual precipitation is 3.45 mm (± 4.57 SD) and 5.36 mm (± 8.54 SD), respectively. The 

https://earthexplorer.usgs.gov/
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area is characterized by a high degree of rainfall variability, with the main rain season from 

June to September (Mohammed et al., 2022).   

3.3.2. Sampling design 

3.3.2.1. Presence/Absence data 

Field surveys were conducted during two periods, reflecting a dry (26 October 2019 to 29 

March 2020) and a wet season (26 August to 14 November 2020). We conducted direct 

observation approach (Buckland et al., 2004; Sutherland, 2006) to collect 

presence/absence data in UBNB. It is a valuable field approach for occupancy modeling 

studies, particularly bird monitoring (Zamora-Marín et al., 2021; Zwerts et al., 2021). We 

also conducted indirect observations such as auditory detections with stimulus and molted 

feather occurrences. Including indirect methods helps to produce robust estimates of 

occupancy and associated parameters for cryptic, shy and rare species (MacKenzie et 

al., 2018; De Rosa et al., 2022; Goldman et al., 2023), such as Harwood’s Francolin.     

Sampling stations (hereafter stations) (Figure 3.1) were selected randomly from 

predetermined line transects across five habitat types in UBNB. We had 61 line transects 

(average = 2.1 km ± 1.2 SD) and along these transects a total of 144 stations were 

allocated. Each station was a 50 meter-radius with a minimum distance of 0.7 km between 

them. The number of stations (i.e., effective sample size) allocated across habitat types 

was based on the standard design procedure (excluding survey cost) for multi-season 

occupancy study (MacKenzie and Royle, 2005; MacKenzie et al., 2018). Thus stations 

were selected according to proportion of each habitat size and habitat preferences of the 

Harwood’s Francolins in UBNB (CTW = 42, DAF = 44, farmland = 32, plantations = 12 

and RV = 14). The evergreen scrub vegetation habitat is part of DAF in this study (Friis et 

al., 2010). Four trained field observers participated and each observer assigned to visit 

new stations during the entire study to avoid potential observer effect. Data collections 

were mostly performed in the morning (6:00-10:00) and in the late afternoon (15:00-18:00) 

as the species exhibit optimum activity patterns in both time blocks (Abrha and Nigus, 

2017; Abrha et al., 2018) and this could potentially help to minimize false negative 

detections. In each station, the observers spent 10-minute bouts to record 

presence/absence (i.e., detection/non-detection) of Harwood’s Francolins. 
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The same stations were surveyed in both non-consecutive seasons. The distance 

between stations in the continuous habitat ranged from 0.7 to 3.0 km along transects to 

maintain independence among stations and minimize spatial autocorrelation. Sampling 

effort was between one to three repeated surveys with an average survey (Κaverage) of 1.95 

and 2.56 in both seasons, respectively. Repeated surveys in each site were conducted in 

alternate order based on morning and late afternoon time blocks. Thus, data were 

collected in an interval of 4-7 days at each station. The total number of surveys (s stations 

surveyed K times) was 864. However, due to logistic and time constraints, adverse 

weather conditions, COVID and security reasons, we only visited 581 stations. 

Because direct observation produces low data quality for cryptic and shy species (Zwerts 

et al., 2021), we used a playback technique (De Rosa et al., 2022) at some of the stations 

to ascertain the presence of elusive Harwood’s Francolins. The target species could 

remain silent and go undetected due to its behavior essentially in some low-density 

populations as well as highly disturbed habitat types. In such conditions, we applied a 

playback call using a Sony speaker (Sony SRS-XB10 portable wireless speaker, Sony 

Electronics Inc.) immediately after having failed to observe visually. We confirmed that 

Harwood’s Francolins are easily attracted by a playback call during a preliminary 

assessment survey in 2018 (Gedeon and Abrha, pers. obs). We conducted the survey 

with an alternation of a 5 s playback call followed by 1 min of silence to aurally detect the 

target species. This call survey was repeated three times until the target species was lured 

by the stimulus. The device was held at about 2 m high and rotated for 360° until the target 

species responded to the stimulus. We applied it carefully to lure the target species by 

minimizing unnecessary disturbance on the behavior of the species and the entire 

community. We did not perform playback when there was an obvious reaction towards 

our presence or an anti-predator behavior by congenerics, other bird and mammal species 

in the area. Playback was used during morning and late afternoon time block to match 

with the normal time for calling and the amplitude of the loudspeaker was adjusted to be 

low to medium depending on the proximity to the center of the station; medium amplitude 

was adjusted when observers were at the edge of the stations and there was no 

disturbance on the nearest station. 
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We combined direct and indirect observations to minimize false absence of the target 

species. Data were recorded as detection history of a sequence of binary spatial 

occupancy patterns (detection = 1 and 0 otherwise).  

3.3.3. Habitat covariates  

We considered habitat covariates both at fine scale and landscape scale levels and 

climatic conditions. Because fine-scale data have limited spatiotemporal coverage and 

accessibility (Cisneros-Araujo et al., 2021), most of our covariates were accessed from 

remotely sensed data (Table 3.1). Our key interests in considering some covariates were 

mainly derived from previous studies on anthropogenic disturbances (Robertson et al., 

1997; Abrha et al., 2017), activity patterns in the context of climate factors (Abrha et al., 

2018), and habitat preferences (Abrha and Nigus, 2017) of the target species. We also 

incorporated ecologically significant climate covariates from previous studies on 

congeneric species in Ethiopia (Gedeon et al., 2017). Accordingly, six covariates were 

collected from each station to model occupancy, detection and dynamic parameters (i.e., 

colonization and extinction). 

In our datasets, we used two remotely sensed spatiotemporal covariates 

(https://earthexplorer.usgs.gov/, accessed on 31 August 2022) including: 1) time-series 

Normalized Difference Vegetation Index (NDVI; per station at 30 m resolution and 16-day 

frequency) derived from Landsat 8 OLI/TIRS images (raster band 4 and 5) for the periods 

of 2019 and 2020. Thus, NDVI = (NIR-RED)/(NIR+RED), where NIR and RED imply near-

infrared and red (visible) spectral reflectance, respectively (Kriegler et al., 1969). 2) 

Elevation and slope were derived from Digital Elevation Model (DEM) of Shuttle Radar 

and Topography Mission (SRTM-DEM) of 1 arc-second for global coverage (~30m 

resolution). We downloaded NDVI by minimizing the aerosols and cloud cover noises. 

Even though elevation was recorded from ground truthing data using handheld Global 

Positioning System (GPS, with accuracy ~ ± 3m, Garmin eTrex 30), we ultimately took it 

from the STRM-DEM data for consistency purpose. All remotely sensed data were derived 

for each station and the satellite-based vegetation index (i.e., NDVI) was extracted for 

both seasons. The average NDVI for each station was computed. We calculated all these 

habitat covariates in QGIS (version 3.26.1) software (http://www.qgis.org/). Enhanced 

https://earthexplorer.usgs.gov/
http://www.qgis.org/
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Vegetation Index (EVI) may be preferred over NDVI (Qiu et al., 2018) due to its capability 

to enhance vegetation monitoring and consider adjustments to reduce the effect of soil 

and atmospheric noises (Huete et al., 1997; Tuanmu and Jetz, 2015), yet it is not 

encouraged to apply it in topographically complex area (Matsushita et al., 2007), like the 

Ethiopian Highlands. NDVI has been extensively used in Ethiopia as a surrogate for 

aboveground net primary productivity or ecosystem greenness (Muir et al., 2021) and 

forage availability (Worku et al., 2023), particularly for UBNB (Merga et al., 2022; Moisa 

et al., 2022). Elevation, slope and average temperature (hereafter temperature) covariates 

were also in quadratic terms to test the nonlinear influence on occupancy and dynamic 

parameters. 

Following the procedure of Abrha et al. (2017) on the same species, the average human 

disturbance index (HDI) was determined from each station. HDI covariate was measured 

after the detection/non-detection data was completed in each station, as this field activity 

could hamper species detection and impose unnecessary disturbance. The type of human 

disturbances were classified as: 1) vegetation influence based on local people (VIP) which 

included cutting, debarking, mowing and thatching; 2) vegetation influence based on 

livestock grazing pressure (LG); 3) vegetation influence based on fire introduction (VIF) 

for charcoal preparation, farming activities and honey production and 4) hunting practices 

(HP). In this study, other minimal anthropogenic disturbances (Abrha et al., 2017) and 

natural predation effects were not measured due to logistical constraints. Some of these 

threats were also site-specific in the basin. The HDI covariate of each station was 

calculated as:  

𝐻𝐷𝐼 =  𝑉𝐼𝑃 ×  0.4 +  𝐿𝐺 ×  0.3 +  𝐻𝑃 ×  0.25 +  𝑉𝐼𝐹 ×  0.15 ……………… equation 1 

The extent of disturbance weight for each disturbance class was assigned based on the 

previous research findings in the Jema valley sub-basin (Abrha et al., 2017). We followed 

the protocol of Barber‐Meyer et al. (2013) for quantifying and assigning of HDI weight for 

dynamic occupancy modeling of Harwood’s Francolins. 

We obtained remotely sensed climatic data such as temperature and precipitation from 

National Aeronautics and Space Administration/Prediction of World Wide Energy 

Resources (NASA/POWER) satellite-based weather system 
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(https://power.larc.nasa.gov/data-access-viewer/, accessed on 27 August 2022).  

Because meteorological stations were absent near to the stations, with exception close to 

Gohatsion (Mohammed et al., 2022), we preferred remotely sensed data. Both data were 

extracted based on daily average values exactly corresponding to the Julian day of 

repeated surveys in each station. We lacked ground truthing climatic data and there was 

no literature related to our focus in Ethiopia to perform bias correction for our data.  

We modeled initial occupancy probability (ψ1) as a function of site-specific covariates 

including NDVI, slope, elevation, and HDI and the quadratic terms of both topographic 

covariates. Detection probability (ρ) was modeled as a function of sample covariates such 

as temperature and its quadratic term, precipitation and season. In addition, detection 

probability was modeled as a function of NDVI and HDI. Here, seasonal variation in 

ecosystem or vegetation greenness (i.e., NDVI) and HDI were also hypothesized to 

influence the detectability of Harwood’s Francolins. Accordingly, we tested the influence 

of covariates on occupancy, detection, local colonization and extinction parameters (Table 

3.1).  

 

https://power.larc.nasa.gov/data-access-viewer/
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Table 3.1. Description of habitat covariates influencing initial occupancy probability (ψ1), colonization probability (γ), extinction probability (ε), 

and detection probability (ρ). Some empty cells in the table indicate that the value of coefficients (i.e., beta-ꞵ) was not checked for some 

parameters.   

Covariate Units Description and source Predicted effect on 
dependent 
variable 

Hypotheses and references 

ψ1 γ ε ρ 

NDVI Dimensionless Extracted for each station from Landsat 8 
Operational Land Imager (OLI) / Thermal Infrared 
Sensor (TIRS) images. Downloaded from: 
https://earthexplorer.usgs.gov/ 

- - + - Ecosystem greenness influences the occurrence of 
bird species (Leveau et al., 2018; Green et al., 
2019; Debela et al., 2021; Wu et al., 2021).  
Harwood’s Francolins prefer shrubs, herbs and 
sparse trees in and around farmlands (Abrha and 
Nigus, 2017) where food sources are available.   

Elevation m Extracted for each station from Digital Elevation 
Model (DEM) of Shuttle Radar and Topography 
Mission (SRTM-DEM). Downloaded from: 
https://earthexplorer.usgs.gov/ 

+ + -  Elevation influences the occupancy of bird species 
(Burner et al., 2019; Campos-Cerqueira et al., 
2021; Jean-Pierre et al., 2022). 
Harwood’s Francolins’ occupancy increases with 
elevation because increasing elevation may 
decrease human disturbance in most parts of the 
area.  

Slope Percent See elevation  + + -  Topographic variables such as slope affect bird 
species (Debela et al., 2021).  
The target species avoids extremely steep slopes 
in various habitat types (Abrha and Nigus, 2017). 

HDI Dimensionless The index of human disturbance across stations (i.e., 
at fine scale level) 

- - + - Anthropogenic disturbances influence occupancy 
of bird species (Abrha et al., 2017; Devarajan et al., 
2020).   

Season Julian date The dry and wet seasons during data collection    +/- Seasons influence detectability of Harwood’s 
Francolins due to seasonal variation in food 
availability. 

Temperature  °C Daily temperature extracted for each station from 
NASA/POWER) satellite-based weather system. 
Downloaded from: https://power.larc.nasa.gov/data-
access-viewer/ 

   + Temperature and precipitation influence 
detectability of Harwood’s Francolins (Abrha et al., 
2018), since these factors affect reproductive 
success of bird species (Skagen and Adams, 2012; 
Mares et al., 2017). Hence, the odds of detecting 
the target species may increase. 

Precipitation mm See temperature    + 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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3.3.4. Data analyses 

The dynamic occupancy modeling was performed using the program PRESENCE 12.38 

(Hines, 2006). The modeling (MacKenzie et al., 2003) was used to determine the effect 

of habitat covariates on each parameter estimate (ψ1, γ, ε, and ρ) of Harwood’s Francolins. 

This modeling approach explicitly integrates changes in an occupancy rate of a site over 

time with dynamic parameters: colonization and local extinction probabilities. The 

colonization probability (γ) is defined as that an unoccupied station in season t is occupied 

by the species in season t + 1; and extinction (𝜀) is defined as the probability that a station 

occupied in season t is unoccupied by the species in season t + 1 (MacKenzie et al., 2003, 

2018). The assumptions of this modeling approach (MacKenzie et al., 2003; 2018) are: 1) 

No unmodeled heterogeneity in all parameters, 2) Occupancy state is static within a 

season, 3) Independence of detection of species and detection history in each station, 

and 4) Absence of false positive detections. 

Prior to analyses, all continuous covariate data were normalized to increase the software 

performance. We used Pearson's correlation coefficients (r) and variance inflation factor 

(VIF) to assess for multicollinearity between independent covariates in IBM SPSS 

statistics (version 20) (Table S1). All covariates did not show a strong correlation (r < 0.7) 

(Dormann et al., 2013). Because the VIF values were less than three, there were no 

confounding effects between independent covariates. Hence, all covariates were retained 

for the subsequent competing model sets. Then, based on previous ecological studies on 

francolin species (Robertson et al., 1997; Abrha and Nigus, 2017, Abrha et al., 2017; 

Gedeon et al., 2017; Abrha et al., 2018), we tested combinations of habitat covariates 

effect on each parameter. The null model (ψ1(.),γ(.),ε(.),ρ(.)) was also analyzed for 

comparison in the candidate sets. 

The ratio of effective sample size (n) to the number of parameters (Κ) (i.e., n/Κ) was 

determined. Then we used Akaike’s information criteria corrected for small sample sizes 

(AICc) as n/Κ ≤ 40 (Burnham and Anderson, 2002). This procedure helped with model 

selection by producing competing modeling with combinations of covariates of interest in 

the order of parsimony and cumulative model weight of each covariate (Burnham and 

Anderson, 2002). We built a total of 33 models depending on biological and ecological 
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hypotheses about habitat preference, threat, and behavior of Harwood’s Francolins. 

Because most candidate models revealed similar levels of support, our models did not 

show a “better” representation of the data (MacKenzie et al., 2018). Meanwhile, we 

incorporated competing models constituted from the top to the bottom, i.e., continuing the 

list until the cumulative Akaike Weight (ωi) of all models was at least 0.95 (Symonds and 

Moussalli, 2011). The level of significance was based on 95% CI (zero-overlapping 

method) and beta (ꞵ) coefficient estimates were used to understand the magnitude and 

effect of covariates on initial occupancy, colonization, local extinction and detectability. 

We also checked the presence of uninformative parameters using information criterion 

(IC) in the candidate model sets (Arnold, 2010; Leroux, 2019). Finally, model averaging 

approach was employed to calculate averaged ꞵ coefficient estimates (ꞵmean ± SE) 

(Burnham and Anderson, 2002; Symonds and Moussalli, 2011).  

3.4. Results  

3.4.1. Spatiotemporal patterns in occupancy and dynamic parameters   

Harwood’s Francolins were detected at 71 and 93 stations throughout the three sampling 

efforts in the first and second seasons, respectively. This yielded naïve occupancy 

estimates of 0.49 and 0.65 without correcting for imperfect detection. Based on the null 

model ((ψ1(.),𝛾(.),𝜀(.),ρ(.)), initial occupancy, detection, colonization, and extinction 

probability estimates were 0.76 (95%: 0.64–0.86), 0.58 (95%: 0.52–0.63), 0.50 (95% 

0.25–0.75), and 0.12 (0.04–0.28), respectively (Table S2). By accounting for imperfect 

detection, the average estimates of initial occupancy across seasons were greater than 

the naïve occupancy. Following the inclusion of covariates in the models, the estimates 

of initial occupancy across habitat types were similar across habitats, except for 

plantations. The detection probability was similar across the habitats. The colonization 

estimates were similar in most habitat types but were lower in plantations. The local 

extinction estimates were similar in most habitats but slightly greater in plantations (Figure 

3.2).  
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Figure 3.2. Average estimates of initial occupancy probability (ψ1), detection probability (ρ), 

colonization probability (𝛾) and extinction probability (𝜀) across different habitat types in the Upper Blue 

Nile Basin (estimation calculated from models with ΔAICc<4.00). Error values are standard errors. 

Abbreviations: CTW-Combretum-Terminalia woodland and wooded grasslands; DAF-Dry evergreen 

Afromontane forest and grassland complex and RV-riparian vegetation. 

The averaged estimates of occupancy probability (ψ̂) Harwood’s Francolins across 

seasons were 0.81 ± 0.08 and 0.79 ± 0.07, respectively and averaged detection probability 

(ρ̂) estimates were 0.47 ± 0.07 and 0.62 ± 0.06, respectively. The average detectability 

increased by 32% from 0.47 in 2019 to 0.62 in 2020 (Figure 3.3A). The seasonal 

colonization and local extinction probability estimates during study seasons were 0.59 ± 

0.20 and 0.12 ± 0.07, respectively (Figure 3.3B).  

 

Figure 3.3.  Model averaged estimates of occupancy probability (ψ̂) and detection probability (ρ̂) (A) 

across seasons and dynamic parameters (�̂�-colonization and �̂�-extinction) (B) between seasons. 

Estimations were calculated from top models with ΔAICc < 4.00.  

The null model was not included among the top candidate sets. In the top-ranked models 

HDI, NDVI, slope and its quadratic term, temperature and the effect of seasons were 

incorporated. These competing models were largely built without interactions (except for 



79 
 

quadratic fit of elevation, slope and temperature) to model underlying dynamic processes 

and are ranked in the order of the lowest ΔAICc. The cumulative weight (Σωi) of the top-

ranked models (ΔAIC ≤ 2.0) was 0.53 and the first-ranked model 

(ψ1(HDI+NDVI+SL+SL2),𝛾(NDVI),𝜀(.),ρ(S+T)) received 0.11 model weight separately 

which reasonably imply the presence of other competing models to draw inferences about 

the occupancy and underlying dynamic processes (Table 3.2). In other words, our 

competing models showed model selection uncertainty and hence weak support for the 

research questions. Therefore, to improve the representation of our data, we applied 

model averaging, which contained all competing models with ΔAICc < 4.00 to produce the 

strongest statistical inferences following the recommendation of Symonds and Moussalli 

(2011). Moreover, the model weight (ωi) of covariates that appeared in the top-ranked 

models was increased by removing other models with ΔAICc less than six (Richards, 2005; 

Richards et al., 2011).  

Table 3.2. Model selection with covariates for dynamic occupancy analysis. Model rankings are based 

on the Akaike information criterion (AIC) corrected for small sample size (AICc) values and only 

candidate models with ΔAICc < 2.00 and null model are reported. Model weight (ωi), number of 

parameters (Κ), and twice the negative log-likelihood (-2l) are reported. 

Model AICc ΔAICc ωi Κ -2l 

ψ1(HDI+NDVI+SL+SL2), 𝛾(NDVI), 𝜀(.),ρ(S+T) 727.85 0.00 0.11 15 694.10 

ψ1(HDI+NDVI+SL+SL2), 𝛾(NDVI), 𝜀(.),ρ(NDVI+S+T) 728.42 0.57 0.08 16 692.14 

ψ1(HDI+NDVI+SL+SL2), 𝛾(NDVI), 𝜀(NDVI),ρ(S+T) 728.75 0.90 0.07 16 692.47 

ψ1(HDI+NDVI+SL+SL2), 𝛾(NDVI), 𝜀(.),ρ(HDI+S+T) 728.90 1.05 0.06 16 692.62 

ψ1(HDI+NDVI+SL+SL2), 𝛾(.),𝜀(.),ρ(NDVI+S+T) 729.05 1.20 0.06 15 695.30 

ψ1(HDI+NDVI+SL+SL2), 𝛾(.),𝜀(.),ρ(S+T) 729.35 1.50 0.05 14 698.09 

ψ1(HDI+NDVI+SL+SL2), 𝛾(NDVI), 𝜀(HDI),ρ(NDVI+S+T) 729.46 1.61 0.05 17 690.60 

ψ1(HDI+NDVI+SL2), 𝛾(NDVI), 𝜀 (.),ρ(S+T) 729.51 1.66 0.05 14 698.25 

…      

ψ1(.),𝛾(.),𝜀 (.),ρ (.) 772.65 44.80 0.00 4 764.36 

Abbreviations: ψ1(psi) = initial occupancy probability, 𝛾 = colonization probability, 𝜀 = extinction probability, 

and ρ = detection probability, HDI = human disturbance index, NDVI = Normalized Difference Vegetation 

Index, SL= slope, SL2 = quadratic term of slope, S = season and T = temperature.  

3.4.2. Influence of habitat covariates on Harwood’s Francolins 

As we hypothesized, NDVI correlated significantly negatively with the initial occupancy 

probability of Harwood’s Francolins at the stations in UBNB (ꞵmean ± SE = -1.83 ± 0.66; 

95% CI: -3.12, -0.54). Thus, the occupancy probability estimates decreased by 76% with 

increasing NDVI. The habitat use of the target species was also decreased with increasing 
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quadratic slope, suggesting that the species revealed avoidance towards steep and 

extremely steep slopes (ꞵmean ± SE = -1.51 ± 0.62; 95% CI: -2.73, -0.29). We also 

observed that the occupancy probability decreased by 47% across the quadratic slope 

gradient. The occupancy probability of Harwood’s Francolins significantly decreased with 

increasing HDI (ꞵmean ± SE = -1.06 ± 0.54; 95% CI: -2.12, -0.004) and was decreased by 

17% across HDI gradient (Table 3.3 and Figure 3.4).  

Table 3.3. Cumulative model weight (Σωi) and influence of covariates calculated from model-averaged 

beta coefficient estimates and standard errors (ꞵmean ± SE). β estimates values are shown with 95% 

confidence intervals and p values. Zero overlapping shows non-significant values. Only fixed 

influences are included.  

Covariate  Σωi ꞵmean ± SE 95% CIs  P value 

Lower Upper  

Occupancy (Ψ1)  

Normalized Difference Vegetation Index 1.00 -1.83 ± 0.66 -3.12 -0.54 0.0056 
Quadratic Slope 1.00 -1.51 ± 0.62 -2.73 -0.29 0.0148 
Human disturbance index 0.96 -1.06 ± 0.54 -2.12 -0.004 0.0484 
Slope 0.88  0.94 ± 0.52 -0.08 1.96 0.0831 

Colonization (𝛾)      
Normalized Difference Vegetation Index 0.62  -1.39 ± 1.00 -3.34 0.56 0.1652 

Extinction (𝜀)      

Human disturbance index 0.15 0.50 ± 0.44 -0.36 1.35 0.2587 

Normalized Difference Vegetation Index 0.10 0.86 ± 0.63 -0.38 2.10 0.1731 

Detection (ρ)  
Season (pooled) 1.00 0.19 ± 0.27 -0.34 0.73 0.4914 
Temperature 1.00 0.37 ± 0.13 0.12 0.63 0.0045 
Normalized Difference Vegetation Index 0.38 -0.24 ± 0.16 -0.55 0.07 0.1338 

As expected, temperature was significantly positively correlated with the detectability of 

Harwood’s Francolins across stations and it was increased by 64% (ꞵmean ± SE = 0.37 ± 

0.13; 95% CI: 0.12, 0.63) (Table 3.3, Figure 3.4). We found a positive association between 

season and detectability and there was also a negative association between vegetation 

greenness and detectability, albeit non-significant values among them (Table 3.3). The 

colonization probability was associated negatively with NDVI, but 95% CI overlapped zero 

(ꞵmean ± SE = -1.39 ± 1.00; 95% CI: -3.34, 0.56). The local extinction probability was 

positively correlated with human disturbance index and NDVI but found no statistical 

support (Table 3.3).  

Our models also show that elevation and its quadratic effect had generally negligible 

influence on occupancy and related parameters. Similarly, precipitation and quadratic 
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temperature had insignificant influence on the detectability of Harwood’s Francolins during 

our study seasons. Quadratic slope did not seem to be an important covariate to affect 

the dynamic parameters. From a model averaged estimate perspective, we also showed 

occupancy and detection probability patterns as a function of significant covariates across 

stations (Figure S1).   

 
Figure 3.4. Model averaged estimates of initial occupancy (ψ1) and detection (ρ) probabilities for 

Harwood’s Francolins. The left column (A and C) and right column (B) indicate the influence of NDVI, 

quadratic term of standardized slope and HDI on initial occupancy probability (ψ1), respectively. The 

bottom right (D) indicates the influence of temperature (°C) on detection probability (ρ) of the species 

in UBNB. Parameter estimates were derived from the top-ranked models and the shaded area in each 

graph indicates 95% confidence intervals.   

3.5. Discussion  

3.5.1. Dynamic occupancy patterns of Harwood’s Francolins 

The dynamic occupancy modeling is applied for the first time in Ethiopia (see also 

Devarajan et al., 2020) to study habitat use and distribution of Harwood’s Francolins 

across a huge geographical scale in the Upper Blue Nile Basin (UBNB). In this study, we 

also incorporated previously poorly documented populations from west of the Mid-Abbay 

IBA dominated by Combretum-Terminalia woodland and wooded grasslands (CTW) in the 

Sudan-Guinea Savanna biome. The nearest and the only locality recorded (c.140 km) to 

our new stations was found at Kalo Ford by Cheesman and Sclater (1935) and recently 
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confirmed by Ash and Atkins (2009), which is near to the junction between Muger and 

Abbay River. Our results show that the target species essentially uses a mosaic of habitats 

across several sub-basins, comprising a larger geographic scale than previously known 

(Ash and Gullick, 1989; Robertson et al., 1997; Abrha and Nigus, 2017; Abrha et al., 

2017). Most of our localities for this species also supported the exhaustive field survey of 

Ash and Atkins (2009). 

By pooling seasons, the averaged detection probability of Harwood’s Francolins (0.55 ± 

0.07 SE) was more than doubled in occupancy modeling than reported using conventional 

distance sampling (CDS) method from Jema valley in Afrotropical Highlands biome (Abrha 

and Nigus, 2017). This suggests that occupancy modeling delivers more reliable 

estimations for this restricted range species than another method which do not explicitly 

account for imperfect detection, in concordance with other reports across different taxa 

(Kéry et al., 2010; Thapa and Kelly, 2017; Taylor et al., 2021).  

Dynamic occupancy modeling also demonstrated to model colonization and extinction 

probabilities of Harwood’s Francolins with and without covariates. Even though 

colonization probability was greater than extinction probability (Figure 3.3B), the overall 

level of occupancy of Harwood’s Francolins was decreasing between seasons. This is 

because the estimated net probability of extinction was larger than the estimated net 

probability of colonization depending on the inference of population trajectory (Mackenzie 

et al., 2018). The highest extinction probability at plantations was not surprising because 

this habitat is highly disturbed due to human activities (including hunting, cutting, burning, 

etc.) and livestock grazing (Abrha et al., 2017). Natural predation, which is a known threat 

for ground dwelling pheasants (Little and Crowe, 2004), could also be a possible cause 

for local extinction of Harwood’s Francolins. Our models also revealed that extinction 

probability was positively associated with both HDI and NDVI (Table S1).  

Drawing inference from a two-season dataset could yield erroneous parameter estimates, 

yet our preliminary study showed important findings for occupancy and the dynamic 

parameters of Harwood’s Francolins. Interestingly, the employed field techniques enabled 

us to scrutinize about the mechanisms that drive the spatiotemporal occupancy patterns 

and dynamics of the target species across two contiguous biomes in UBNB. Similarly, it 
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has been reported that using combined methods generates effective parameter estimates 

and facilitates appropriate bird conservation plans and recommendations for future 

studies (De Almeida-Rocha et al., 2019; Zamora-Marín et al., 2021; Zwerts et al., 2021). 

3.5.2. Influence of covariates on habitat use of Harwood’s Francolins 

Bird species occupancy is influenced by finer-scale and landscape scale covariates (e.g., 

Harms et al., 2017; Smith et al., 2017; Green et al., 2019; Morante-Filho et al., 2021; 

Gumede et al., 2022), particularly galliform species (Ramesh and Downs, 2014; Maseko 

et al., 2017; Bitani et al., 2023). Our results showed that NDVI significantly negatively 

affected the occupancy of Harwood’s Francolins (Figure 3.4A). NDVI shows seasonal 

phenological dynamics in UBNB (Muir et al., 2021; Moisa et al., 2022). The average NDVI 

derived from wet and dry season data ranged from 0.05 to 0.45 (mean = 0.22; SD = 0.1), 

implying that stations were dominated by herbaceous and sparse vegetation. The lowest 

occupancy probability was recorded in plantation habitats along the course of tributary 

rivers, which had the highest spectral reflectance of vegetation. Therefore, occupancy 

probability decreased with increasing NDVI, meaning that Harwood’s Francolins preferred 

low vegetation or sparse trees, evergreen scrub vegetation and herbaceous-dominated 

habitats in CTW and its transformed habitat to farmland mosaics, in concordance with 

previous results on the ecology of the target species (Abrha and Nigus, 2017), the 

endangered Black-fronted Francolin (Pternistis atrifrons) (Töpfer et al., 2014; Gedeon et 

al., 2017) in south Ethiopia and other francolin species in Africa (van Niekerk, 2017; Lerm 

et al., 2019). The distribution of evergreen vegetation is identified on the lower edge of the 

DAF (Friis et al., 2010) and it is treated as DAF vegetation habitat in this study. Our results 

also show that forest habitat (DAF) had high NDVI and were shelters for Harwood’s 

Francolins, particularly during dry season, yet the habitat was not highly preferred as 

human, livestock grazing and other stressors considerably existed as compared to other 

habitats. 

Our results also emphasize that the quadratic term of slope significantly limits the 

occupancy probability, suggesting that Harwood’s Francolins preferred flat, gentle and 

moderate slopes over steep and extremely steep slopes (Figure 3.4B), similar to the 

results of Li et al. (2009); Abrha and Nigus (2017) and Abrha et al. (2018). Across most 
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stations, flat, gentle and moderate slopes were characterized by herbaceous, scattered 

trees and bushy vegetation important for food and nesting grounds (pers. obs.). Flat low 

and high-elevation habitats are highly disturbed areas, whereas steep and extremely 

steep slopes are less disturbed due to inaccessible to human encroachment (Abrha and 

Nigus, 2017). The flat terrain and plateau of UBNB are dominated by farming activities 

(Tekleab et al., 2013). The steep and extremely steep slopes featured by rocks and 

escarpments are home to raptors, primates and carnivores in the Western highlands of 

Ethiopia (Saavedra, 2009). Our results show that Harwood’s Francolins mostly avoided 

these gradients possibly due to 1) the presence of potential predators and in such 

distinctive gradients, for instance, Leopards (Panthera pardus) are reported to prey upon 

francolins in the Abune Yosef massif (Saavedra et al., 2009) and Gelada monkeys 

(Theropithecus gelada) in the Guassa Community Conservation Area (Lin et al., 2020); 2) 

because steep slopes are grass free stripes and are rarely cultivated in the highlands of 

Ethiopia (Nyssen et al., 2004). 

Globally, the mass extinction of vertebrate species is intensified by anthropogenic 

disturbances (Dirzo et al., 2014; Ceballos et al., 2015; Ceballos et al., 2020). For instance, 

most bird species are threatened by human disturbances (Hilton-Taylor et al., 2009), 

particularly Galliformes (Keane et al., 2005; McGowan et al., 2012; Ramesh and Downs, 

2014; Tian et al., 2018). In Ethiopia, anthropogenic disturbances increasingly threatened 

birds (Asefa et al., 2017), particularly francolin species (Töpfer et al., 2014; Abrha and 

Nigus, 2017; Abrha et al., 2017; Gedeon et al., 2017). Not surprisingly, our results show 

that human-induced disturbances posed a significant threat to Harwood’s Francolins 

occurrence at the fine scale level (Figure 3.4C), which supported the a priori hypothesis. 

In this study, we did not include the effect of mining on the species due to budget and time 

constraints. Similar to our target species, the multitude of threats the Critically Endangered 

Djibouti Francolin (Pternistis ochropectus) faces are overgrazing, forest fragmentation, 

hunting and death of Juniperus procera trees (Fisher et al., 2009; BirdLife International, 

2023). Previously, it was also reported that Harwood’s Francolins avoid various threat 

factors (Robertson et al., 1997), specifically owing to vegetation disturbances, livestock 

grazing, burning, and hunting in Jema and Jara valleys (Abrha et al., 2017).  
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Colonization probability was also inversely correlated with HDI; albeit non-significant 

association. To confirm these findings, our hypothesis also supports that colonization 

probability decreased with increasing human disturbances. Our results also show a non-

significant negative association between NDVI and colonization of Harwood’s Francolins. 

However, a relatively high 95% CIs, and beta coefficient for model-averaged estimate of 

NDVI shows that colonization probability was greater in lower vegetation reflectance 

characterized by shrubby, bush and herbaceous stations in the area. There were no 

significant determinant covariates for colonization and extinction, suggesting little variation 

in the dynamic processes governing changes in the species-habitat association in 

spatiotemporal patterns. 

In terms of temperature, we found a significant positive association of detection probability 

(Figure 3.4D), suggesting that Harwood’s Francolins detectability was higher at higher 

temperature, similar to the findings of Skagen and Adams (2012). We encountered the 

target species commonly in scrub vegetation and herbaceous covers intermingled with 

sparse trees in CTW and adjacent vegetation habitats. Such land use is commonly 

characterized by low NDVI and high temperature and this phenomenon strongly facilitates 

the habitat use of Harwood’s Francolins. Like our findings, temperature and NDVI are 

inversely correlated in Ethiopia (Muir et al., 2021), particularly for UBNB (Merga et al., 

2022; Moisa et al., 2022). Therefore, across our study area, detectability increased with 

increasing temperature, and it was lower at stations with higher NDVI.  

3.5.3. Conservation implications and future directions 

Even though we did not contrast various methods for the occurrence data as it was not 

our focus, the combination of multiple field methods collects reliable and comprehensive 

datasets, thereby drawing fundamental inferences for conservation purpose of this cryptic 

species. There were no false positive detections in our surveys and false negative 

detections were minimized by study design, essentially the application of playback 

technique. However, we cannot rule out entirely that, due to the topography of the study 

area, our playback sometimes may have disturbed the target species located at other 

stations. Future studies should consider potential disturbances if stations are placed too 

close to each other. 
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The persistence of Harwood’s Francolins at lower ecosystem greenness and lower slope 

gradients has important implications for in-situ conservation strategy. The detection 

probability of the target species was strongly influenced by temperature, suggesting that 

the target species favors lowland areas featured by high temperature in UBNB. Ultimately, 

this factor could have important contribution to the breeding phenology of the species.  

Determination of minimum and maximum survey efforts (K) to increase species 

detectability (Pellet and Schmidt 2005; Sewell et al., 2010; McGrath et al., 2015) is a 

critical step for future research design. Accordingly, the appropriate survey effort for the 

target species needed at 0.60 target detection probability is a single effort and a maximum 

of six efforts is required at 0.99 detection probability to confirm true absence of the species 

in a station. 

To conclude, our results highlight that Harwood’s Francolins exist across a large 

geographical scale in UBNB. The dynamic occupancy modeling informs effective 

conservation and management implications for the target species. Nonetheless, the target 

species could also be affected by other covariates, particularly at a finer scale (e.g., plant 

species richness, canopy cover, shrub height, etc.) which we did not incorporate in this 

study due to budget limitations and time constraints.  

Most IBAs in Ethiopia, particularly for UBNB are not protected and have little contribution 

to globally important restricted range species, such as Harwood’s Francolins and other 

biodiversity. We urge special attention to the conservation and management of this 

threatened pheasant species in Combretum-Terminalia woodland and grassland, 

farmland mosaics, evergreen scrub and riparian vegetation habitats across several sub-

basins. We also recommend further study to test the influence of fine-scaled, landscape-

scaled and climatic covariates on occupancy dynamics of Harwood’s Francolin across 

spatiotemporally replicated surveys.  
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3.7. Supplementary information 

 

  

Figure S1. Climatic conditions of GCCA and SEA from 1981-2020 (https://power.larc.nasa.gov/data-

access-viewer). Temperature (°C) and precipitation (mm) values are based on mean monthly data for 

each year (mean maximum, average and mean minimum temperatures).  

 

 

https://power.larc.nasa.gov/data-access-viewer
https://power.larc.nasa.gov/data-access-viewer
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Table S1. The Pearson correlation coefficient (r) of the predictor covariates. 

Covariate Elev Elev2 SL SL2 NDVI HDI T T2 P 

Elev 1                 

Elev2 0.259** 1               

SL 0.628** 0.170* 1             

SL2 0.238** 0.268** 0.363** 1           

NDVI 0.094 -0.218** -0.131 0.026 1         

HDI 0.166* -0.053 0.054 -0.029 0.039 1       

T -0.273** -0.217** -0.239** -0.079 -0.101 0.053 1     

T2 0.133 -0.029 0.084 -0.070 0.280** 0.004 -0.429** 1   

P 0.079 0.082 0.179* 0.036 0.029 -0.058 -0.079 0.056 1 

Abbreviations: Elev = elevation, Elev2 = quadratic term of elevation, SL= slope, SL2 = quadratic term of 

slope, NDVI = Normalized Difference Vegetation Index, HDI = human disturbance index, T = temperature, 

T2 = quadratic term of temperature, and P = precipitation. ** Correlation is significant at the 0.01 level (2-

tailed), and * correlation is significant at the 0.05 level (2-tailed). 

Table S2. Description of occupancy and dynamic parameters for null models. 

Method Parameter estimates (95% conf. interval) 

Naïve Ψ for 
season 1 and 
season 2 

Initial occupancy 
probability (ψ1) 

Detection 
probability (ρ) 

Colonization 

probability (𝛾) 

Extinction 

probability (𝜀) 

DO 0.38 ; 0.60 0.57 (0.46-0.68) 0.61 (0.54-0.67) 0.42 (0.26-0.59) 0.03 (0.001-0.49) 

DO+PB 0.49 ; 0.65 0.76 (0.64-0.86) 0.58 (0.52-0.63) 0.50 (0.25-0.75) 0.12 (0.04-0.28) 

Abbreviations: DO = direct observation, and DO+PB = direct observation plus playback. 

 



102 
 

 

Figure S2. The estimates of occupancy and detection probabilities of Harwood’s Francolins at each sampling station as functions of significant 

covariates.  
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4.1. Abstract 

This study aims to understand the life history of the endemic Harwood's Spurfowl 

(Pternistis harwoodi) including reproductive, behavioral and spatio-temporal variability of 

traits for the first time in the Upper Blue Nile Basin, Ethiopia. We used field observations 

and camera traps to collect data from August to December 2020. We observed a non-

lekking polygyny mating system with females selecting the nesting sites. Most nests were 

designed to thwart predators through background matching, nest orientation and 

positioning, and reducing depositional odor trails. We found that the peak egg-laying 

period occurred in the first two weeks of October. There were significant differences of 

clutch-size variation spatiotemporally, as well as variation of the geometrical parameters 

of eggs spatially, excluding for shape index. The average hatching success was 4.12 

chicks/nest (± 0.91 SD). The daily nest survival rates (DSR) was estimated at 98.82% ± 

0.003 (95% CI: 98.31%–99.32%) and the total survival probability of the nests was 70.48% 

± 0.01 (95% CI: 60.66%–81.82%). We document a uniparental care strategy with eggs 

being exclusively incubated by females and chicks being predominantly attended by their 

mothers, although males may support rearing the chicks during post-hatching period.  

Keywords: background matching, breeding biology, daily nest survival rates, egg 

morphology, nesting behavior, parental care  
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4.2. Introduction 

The breeding biology of most tropical bird species is poorly known (Xiao et al. 2017, 

Fierro‐Calderón et al. 2021), yet the knowledge of it is an indispensable tool to carry out 

successful conservation measures (Green 2004, Kesler et al. 2018). For example, 

knowing the details of the breeding biology of landfowl (Galliformes) can help to mitigate 

negative influences on the populations (e.g., hunting, habitat loss, and human population 

growth) when taken into consideration during the development of appropriate 

management plans (Clark et al. 1999, Jiménez and Conover 2001, Tian et al. 2018). Nest 

site selection and nest design are among the most important determinants of reproductive 

success in birds (Mainwaring et al. 2014, Guillette and Healy 2015), and this is reflected 

in ground nesters such as galliforms through the interplay of resource availability, 

thermoregulation, crypticity, and risk-avoidance behaviors (Mayer et al. 2009, Carroll et 

al. 2015, Gómez et al. 2019). 

Galliformes mostly select nest sites on the ground to build scrape nests (Madge and 

McGowan 2002). Scrape nests are structurally weak, but require less effort to build 

(Suárez et al. 2005, Mainwaring et al. 2014) than the burrow and mound nests of 

megapodes (Harris et al. 2014), yet great parental attention is invested during egg laying, 

incubation, and hatching (Persson and Göransson 1999, Suárez et al. 2005). However, 

there is a paucity of information on how such a nest confers reproductive success in many 

galliform species. 

Globally, there are 54 genera in the family Phasianidae, seven of which (Xenoperdix, 

Afropavo, Peliperdix, Campocolinus, Scleroptila, Margaroperdix, and Pternistis) are 

confined to Africa (Gill et al. 2024). There is limited information on the breeding biology of 

most species, including francolins and spurfowls, from Sub-Saharan Africa (del Hoyo et 

al. 1994, Madge and McGowan 2002), with some studies only reported from South Africa 

(e.g., Little and Crowe 1993, Jansen 2001, van Niekerk 2001, 2017, 2018). In Ethiopia, 

Harwood’s Spurfowl (Pternistis harwoodi) is an endemic sedentary species of the Sudan-

Guinea Savanna biome and of the Afrotropical Highlands biome, excluding the Afroalpine 

and Sub-Afroalpine ecosystems (Abrha et al. 2023). The main threats to these biomes 

are agricultural expansion, livestock grazing, firewood collection, and settlement (Asefa et 
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al. 2020), while the main menacing factors for francolins and spurfowls in Ethiopia are 

habitat loss and hunting pressure (Töpfer et al. 2014, Abrha et al. 2017, Gedeon et al. 

2017, Abrha et al. 2023). 

Some aspects of the ecology of Harwood’s Spurfowl have hitherto been studied in the 

Jema and Jara valley sub-basins of the Upper Blue Nile Basin (Robertson et al. 1997, 

Abrha and Nigus 2017, Abrha et al. 2017, Abrha et al. 2018). From a life history 

standpoint, only a single egg-laying date and a polygamous mating system have 

previously been reported (Ash 1978, Robertson et al. 1997, Ash and Atkins 2009), and so 

its breeding biology remains essentially elusive. This study investigates the behavior and 

breeding biology of Harwood’s Spurfowl for the first time. Specifically, it aims to 

understand life-history traits, such as reproductive (clutch size, egg geometrics, 

incubation, brood size, daily nest survival rates, breeding success, hatching failure and 

related traits) and behavioural traits (nest-site selection and design, social behavior, 

mating system, and parental care), as well as spatiotemporal variation among traits. 

4.3. Methods 

4.3.1. Study area 

The study area lies in the Upper Blue Nile Basin (UBNB; Figure 4.1) and the area consists 

of two main study sites separated by a distance of approximately 100 km. The main 

vegetation types are Dry evergreen Afromontane forest and grassland complex (DAF) and 

Combretum-Terminalia woodland and wooded grasslands (CTW) (Friis et al. 2010). The 

common native tree species are Combretum spp, Terminalia spp, Acacia spp and 

Juniperus spp. The CTW also harbors socio-economically important plants such as 

Frankincense (Boswellia papyrifera) and Lowland bamboo (Oxytenanthera abyssinica) 

(Friis et al. 2010). According to Fishpool and Evans (2001), the lower elevations (mean = 

1322 m, range = 840–1941 m, N = 27 nests) of the study area belong to the Sudan-Guinea 

Savanna biome (SG), whereas the higher elevations (mean = 1712, range = 1245–2192 

m, N = 65 nests) are part of the Afrotropical Highlands biome (AH) (Figures. 4.1 and 4.2). 

The study areas do not contain Afroalpine and Sub-Afroalpine ecosystems as defined by 

Töpfer and Gedeon (2020). The major soil types of the area are Vertisols (“black cotton 

soils”) and Leptosols (“grey-brown or brown soils”) (Last 2009).  
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Figure 4.1. Study area and the two main study sites of Harwood’s Spurfowls in the Upper Blue Nile Basin (UBNB): Western nests belong to 

the Sudan-Guinea Savanna biome (SG) and eastern nests to the Afrotropical Highlands biome (AH). 
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Figure 4.2. Habitat types in the Afrotropical Highlands biome (top) and the Sudan-Guinea Savanna 

biome (bottom) in the Upper Blue Nile Basin. 

4.3.2. Field Methods 

We searched for nesting sites from mid-August to the last week of December in 2020 

along predetermined line transects in farmland, CTW and DAF habitats (Abrha et al. 

2023). We intensively searched in the morning and evening, when the species exhibits 

peak feeding and calling activity (Abrha et al. 2018). In particular, the distinctive 

vocalizations of territorial males were important signals as were courtship displays. 

Incubating birds were detected by random searches in habitats where the species was 

known to breed (Figure 4.3). An active scrape was considered as a permanent nesting 

site when it contained at least one egg during that breeding season. Females squatting 

on freshly scraped ground were also considered as signs for a potential nest. 

In total, we found 119 nests in the two biomes (27 in SG; 92 in AH). We collected complete 

data from 92 nests (referred to as “measured nests”). For the remaining 27 nests 

(“unmeasured nests”), we only documented clutch size, nesting period (backdated), nest 

fate (successful and failed) and nest dimensions in order to understand the effect of nest 

visits on the breeding success of the species. A nesting period is defined as the time from 
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Figure 4.3. Nesting sites of Harwood’s Spurfowls on relatively flat terrain in farmland (A-C) and on a steep slope in DAF (D). Nest locations proper 

are highlighted by white-dashed circles. Nests are effectively covered by vegetation (partly placed aside for photography) and are positioned and 

oriented to avoid excessive exposure to weather conditions and disturbances. Images also show effective camouflaging against the background 

substrate. 
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the first egg laying until hatching and a nest was considered successful when at least one 

egg hatched (Klett et al. 1986, Steenhof and Newton 2007). We checked 79% of 

measured nests in a 2–3 day intervals and 21% of the nests in intervals of 4–5 days. We 

applied camera traps to investigate breeding activity in 40 nests in the eastern study site 

in AH biome (Figure S1). Camera traps were situated at a 2–3 m radius from the nests 

after clutch initiation in order to avoid nest desertion. All cameras were mounted on short 

trees or wooden stakes approximately 40–60 cm above the ground. Cameras were 

programmed to operate during incubation and hatching. We set cameras to take photos 

and enabled video mode for three consecutive days; finally each day was pooled into a 

single survey following Kross and Nelson (2011). Using these methods, we were able to 

observe the frequency of egg laying during morning and evening, egg-laying intervals 

(number of egg/day), trips to and from the nest, nest attendance during feeding activity 

(time/day), hatching (time) and vocalizing males and potential predators. 

4.3.3. Nest site characterization  

During our fieldwork, we collected four traits to characterize the nest microhabitat as 

follows: 

1) Background matching: we captured digital photographs to assess the contrast 

between the birds’ plumage color and the background. By minimizing disturbance, a 

minimum distance of 1 m between the observer and the female was assumed during 

photographing.  

2) Nest orientation and positioning: exposure to extreme weather conditions (e.g., solar 

radiation, rainfall, and wind conditions) and slope gradient (gentle to steep slope) 

was determined as “oriented” or “non-oriented”. Furthermore, the presence or 

absence of vegetation cover and nesting in association with other bird species was 

visually assessed.  

3) Nest dimensions: we measured internal diameter, external diameter and depth of 

both measured and unmeasured nests and we identified the different nesting 

materials after hatching. 
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4) Nest spacing: We applied GPS to assess the minimum nest spacing between two 

nests and distance between a territorial male and the nearest nest. 

4.3.4. Geometrical parameters and coloration of eggs 

Egg dimensions and mass of fresh eggs were gauged in the field using digital calipers (to 

the nearest 0.01 mm) and digital balances (to the nearest 0.01 g), respectively. Egg 

measurements were conducted when females had left the nests for foraging or after 

antipredator responses. We wore gloves during measurements to reduce our scent on the 

eggs in order to avoid the attraction of mammalian predators common in the study area. 

We calculated the egg shape index, surface area and volume from two egg parameters: 

maximum length (L) and maximum breadth (B). The egg shape index (SI) was computed 

as a percent ratio of egg breadth and egg length (B/L*100) (Preston 1968). Egg volume 

was calculated using the equation 𝑉 =  𝐾𝑣 × 𝐿 × 𝐵2 (Hoyt 1979). Based on the modified 

Hügelschäffer's model with two parameters (Narushin et al. 2022), the formula for Kv 

coefficient for an ovoidal egg shape is: Kv = -0.0012(B/L)2 + 0.0035B/L + 0.5115, where 

Kv = specific mass coefficient of egg. The detailed formulae for both egg surface area and 

egg volume are given in Narushin et al. (2022). 

We dichotomized dominant phenotypic egg traits for egg color as being white or dusty 

white with tiny white spots and egg texture as being smooth and partly smooth (hence 

rough) (Figure S2). 

4.3.5. Data analysis 

We checked the normality assumptions of our data using a Shapiro-Wilk test and 

homoscedasticity to apply appropriate statistical tests. Adhering to these assumptions: (1) 

we applied paired and unpaired sample t-tests to contrast the mean differences of fresh 

eggs-laid per nest between morning and evening time blocks and nest measurements 

between successful and failed nests, respectively; (2) we used Pearson’s correlation test 

to check the linear relation between egg geometrical parameters; (3) the ordinary least 

squares (OLS) regression method was used to analyze the relationship between clutch 

size and egg-laying dates; (4) we also used nonparametric tests such as Chi-Square (χ2) 

Goodness of Fit test, Mann–Whitney test U and Kruskal–Wallis test H. The Chi-Square 
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test was used to contrast the observed and expected distribution of nest orientation, egg 

color and texture of eggs. The Mann–Whitney and the Kruskal–Wallis tests were used to 

analyze spatiotemporal variation of egg biometrics and hatching success between 

measured and unmeasured nests. A post-hoc Dunn’s test with Bonferroni error 

adjustment method was used for pairwise comparisons of each parameter between 

habitats. Data was analyzed with IBM SPSS Statistics v20.0. Data of life-history traits was 

presented as mean ± SD, and a two-tailed hypothesis test with an alpha value of 5%. 

Because not all nests were encountered simultaneously, nest fate (i.e., successful = 0 

and failed = 1) of Harwood’s Spurfowls was derived from daily nest survival rates (DSR) 

in program MARK (White and Burnham 1999, Dinsmore et al. 2002). Accordingly, we 

calculated 95% CI of DSR and total nest survival probability (or breeding success) using 

a maximum likelihood estimation. Mayfield’s (1975) formula for DSR is: 

DSR = 1 −
Number of failed nests

Number of exposure days
 

The ‘exposure days’ are defined as the duration from the first nest observation until the 

final fate of nests. The overall probability of a nest survival rate of d days is DSRd. Where, 

d refers to the summation of egg-laying and incubation periods (Mayfield 1975, Rotella et 

al. 2004) in our model species. 

4.4. Results 

4.4.1. Social behavior and mating system 

Harwood’s Spurfowl is sympatric with Erckel’s Spurfowl (Pternistis erckelii) at higher 

elevations in AH and with Helmeted Guineafowl (Numida m. meleagris) at lower 

elevations in CTW and farmlands. Male Harwood’s Spurfowls were territorial and 

interacted with domestic and wild animals (Figure 4.4A–C). Constant territorial calls of 

individual males were noticed throughout the breeding season. We observed males 

producing territorial calls during the mornings (6:00 – 11:00) and afternoons (15:00 – 

12:30). In a continuous habitat, four to eight males were calling in a distance of 

approximately 90 m from each other. Within each of these individual territories, we found 

at least two nests. On average, males were recorded at a distance of 23.6 m away from 

incubating females (14.5 – 45.0 m, N = 23 nests). Average distances between nests were 
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30.1 m in farmland (14.5 – 52.0 m, N = 22 nests), 39.1 m in CTW (19.0 – 70.0 m, N = 8 

nests), and 48.7 m in DAF (32.0 – 66.0 m, N = 3 nests). There was no significant difference 

of nest spacing between habitat types (Kruskal–Wallis test H = 4.30, df = 2, P = 0.07). 

Most nests were constructed in and around farmlands (60.87%, N = 56), followed by CTW 

(31.52%, N = 29 nests) and DAF (7.61%, N = 7 nests). According to our observations of 

five sites, the mating system of Harwood’s Spurfowl is polygynous. During the season, 

individual males chased down several females and initiated courtship behavior before 

nest building mainly after mid-August in 2020. 

 

Figure 4.4. A territorial male feeding in association with Common Duiker Sylvicapra grimmia (A) and 

domestic goats Capra sp. (B), but fled from the feeding ground and gave off warning calls when 

approached by predators like White-tailed Mongoose Ichneumia albicauda (C). Males scratch the 

ground to feed, dust-bathe and preen their bodies during quiescence, as indicated by remaining 

feathers (D). 

4.4.2. Nest-site selection and nest-building behavior 

Nests were inconspicuous and usually well-hidden in herbaceous vegetation with some 

short trees and often surrounded by rocks and stones. Most nests were found on black 

cotton soil adjacent to stones (60.86%, N = 56), as well as underneath overhanging rocks 

(18.48%, N = 17 nests) and under thorny and bushy vegetation (11.96%, N = 11 nests) 
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(Figure 4.5). The grey-brown to dark-brown vermiculated patterns and colors of the 

breeding females’ plumage matched the background very well. Only eight nests (8.70%) 

were built in heaps of Sorghum stalks, where females were less camouflaged. Females 

usually remained motionless during photography (Figures 4.3 and 4.5). Many nests were 

oriented away from excessive exposure to weather conditions like sunlight, rainfall and 

strong wind (63.04%, N = 58 nests), being sheltered by an extensive vegetation cover and 

by the selection of slopes and rocks on microhabitat levels (Figure 4.3). There was a 

statistically significant difference between the observed and expected distribution of nest 

orientation in the study area (χ2 = 31.34, df = 1, P < 0.001). 

The nest itself is placed in a flat scrape and consists of a structurally weak arrangement 

of dried grasses and thin twigs, lined with the females’ down or other soft body feathers 

(Figure 4.5). Green plant material was not observed in any nest and our videos confirmed 

that females selectively plucked and incorporated dried twigs and grasses to the 

construction while crouched low on the nest. The average external and internal diameters 

of the nests were 19.94 ± 1.76 cm and 16.85 ± 1.81 cm (N = 40 nests), respectively. The 

average depth of nests was 6.20 ± 1.43 cm. There was no significant difference in external 

diameter between successful and failed nests (unpaired-t = 1.565, df = 38, P = 0.126). 

Similarly, there was no significant difference in depth of successful and failed nests 

(unpaired-t = 0.370, df = 38, P = 0.714). In contrast, successful nests were significantly 

wider in internal diameter (1.4 cm) than failed nests (unpaired-t = 2.529, df = 38, P = 

0.016). 
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Figure 4.5. Examples of nest structure and composition in different habitat types. The color and 

patterns of the incubating females provides camouflage against the background of rocks, stones and 

soil. Typical nest sites are shown on black (A) and brown to grey brown soils (B) and underneath rocks 

(C and D). Egg colors ranged from white (A, C, and D) to dusty white with tiny white spots (B). Nests 

with eggs close to hatching were usually filled with soft down feathers (C). 
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4.4.3. Egg laying and egg description 

On average, in each nest a single egg was laid per day (mean = 1 d, range = 0–2 d, N = 

23 nests) and the average egg-laying span was 8.34 days (± 2.87, range = 3–13 d, N = 

41 nests). Our results showed that there was a statistically significant difference in eggs 

laid between morning and evening (paired-t = 5.21, df = 30, P < 0.001). The earliest clutch 

initiation was recorded on 9 September 2020, while the latest was recorded on 29 

December 2020, with 52.20% of the clutches initiated in October (peaking in the first two 

weeks of October). There was a linear relationship indicating that clutch size declines 

significantly from the start of the laying season to the end (R2 = 0.11; F = 6.786, df = 1,57, 

P = 0.012) (Figure 4.6). The color of 67.39% of the eggs was white and 32.61% were 

dusty white. Egg texture was either rough (73.91%) or smooth (26.09%) (Figure 4.5; 

Figure S2). There were significant differences in egg color (χ2 = 11.13, df = 1, P = 0.001), 

as well as in egg texture (χ2 = 21.04, df = 1, P < 0.001) across nests. 

 

Figure 4.6. Linear relationship between clutch size and egg-laying dates of Harwood’s Spurfowls (N = 

59), indicating clutch size to decline significantly with laying date. The line fit is mean with 95% CI. y = 

-0.33x + 5.35: y = clutch size and x = days passed after the first egg laid. 
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4.4.4. Geometrical parameters of eggs and spatiotemporal variation of clutch size 

Egg measurements were conducted on 224 fresh eggs (54.63%) from 66 nests. Fresh 

eggs weighed on average 25.20 g. The average egg length and breadth were 42.13 mm 

and 32.95 mm, respectively. The average egg volume and surface area were 23.35 cm3 

and 34.12 cm2, respectively. The average shape index was 78.25%. Across habitat types, 

most egg parameters showed significant differences, except for egg shape index 

(Kruskal–Wallis test H = 0.78, P = 0.677) (Table 4.1). The average clutch size was 4.46 

eggs/nest (± 1.09, range = 2–7, N = 410 eggs from 87 nests), with a modal clutch size of 

four eggs. Pearson correlation showed a significant positive association between most 

parameters. Only egg length showed a significant negative association with shape index 

and mass and surface area did not show significant associations with egg shape index 

(Table S1). Clutch size showed significant differences across habitats (Kruskal–Wallis test 

H = 13.95, P = 0.001), biomes (Mann–Whitney test U = 443.5, P < 0.001) and months 

(Kruskal–Wallis test H = 12.99, P = 0.003) (Table 4.2). 

Table 4.1. Geometrical egg parameters in three habitat types in UBNB (N = 224 eggs). Values are 

given as Mean ± SD for the whole data set (habitats combined) and separately per habitat. The same 

superscript letter within a row indicates a non-significant difference. Abbreviations: CTW = Combretum-

Terminalia woodland and wooded grasslands and DAF = Dry evergreen Afromontane forest and 

grassland complex. 

Geometric parameter Habitats combined Habitat H P 

  CTW = 55 DAF = 25 Farmland = 144   

Length (mm) 42.13 (± 0.86; 40.02–43.70) 41.63 ± 0.88b 42.44 ± 0.71a 42.26 ± 0.81a 23.38 <0.001 

Breadth (mm) 32.95 (± 0.73; 30.98–34.85) 32.62 ± 0.73b 32.95 ± 1.00ab 33.08 ± 0.63a 12.74 0.002 

Mass (g) 25.20 (± 1.74; 21.29–28.76) 23.94 ± 1.56b 25.95 ± 1.18a 25.55 ± 1.66a 40.85 <0.001 

Volume (cm3) 23.51 (± 1.31; 20.12–26.65) 22.76 ± 1.23b 23.69 ± 1.63a 23.77 ± 1.17a 21.87 <0.001 

Surface area (cm2) 34.12 (± 1.23; 31.04–36.88) 33.37 ± 1.16b 34.36 ± 1.39a 34.36 ± 1.11a 24.43 <0.001 

Shape index (%) 78.25 (± 1.79; 73.41–82.74) 78.37 ± 2.06a 77.64 ± 2.23a 78.31 ± 1.57a 0.78 0.677 
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Table 4.2. Spatiotemporal variation of clutch size. Abbreviations: AH-Afrotropical Highlands biome and 

SG-Sudan-Guinea Savanna biome. * Mann–Whitney test U = 443.5 and P < 0.001. 

4.4.5. Incubation, hatching and parental care 

Based on our three days of continuous video recordings, only females incubated the eggs. 

The average incubation lasted for 20.81 days (± 1.09, 19–23 d, N = 36) and 66.67% of 

the eggs were incubated for 20 and 21 days. Additionally, the videos documented that 

females were never provisioned with food by males, but left their nests unattended, likely 

in search of food (mean 74.71 ± 38.90 min/day, 11–188 min, N = 108 observations), which 

corresponded to 5.19% of their daily time budget (± 0.02%, range = 0.76–13.06%). Videos 

from farmland nest sites showed that females sometimes foraged directly from seeds of 

grasses covering the nests. Females left the nests for feeding frequently in the morning 

and in the evening, with higher activity observed in the morning (Mann–Whitney test U = 

213, P < 0.001). The average nesting period for measured and unmeasured nests were 

29.36 days (± 3.51, 22–35 d, N = 36) and 31.53 days (± 1.81, 26–33 d, N = 19 nests), 

respectively. Hatching was synchronous and lasted on average for 137.27 min (± 79.44, 

68–298 min, N = 11 nests). Usually only females were present during hatching, while in 

four nests (5.3%) both sexes fed chicks in the nest during the post-hatching period. 

4.4.6. Breeding success and hatching failure 

Out of 92 nests, we evaluated the fate of most measured nests (N = 78 nests, 84.78%). 

Accordingly, 73.08% (N = 57 nests) were successful and 26.92% (N = 21 nests) failed. 

Category Subcategory  Clutch size N Total Mean ± SD H P 

2 3 4 5 6 7 

Habitat CTW 0 14  8 5 2 0 29 111 3.83 ± 0.97b 13.95 0.0
01 

DAF 0 1 1 3 2 0 7 34 4.86 ± 1.07ab 

Farmland 1 4 19 19 11 2 56 265 4.73 ± 1.04a 

Biome* AH 0 9 17 23 14 2 65 308 5.14 ± 0.90a NA NA 

SG 1 10 11 4 1 0 27 102 3.78 ± 0.89b 

Month September 0 3 5 4 4 0 16 73 4.56 ± 1.09ab  

12.99 

 

0.0
03 

October 0 5 12 16 10 2 45 216 4.80 ± 1.04a 

November 1 6 9 3 2 0 21 83 3.95 ± 1.02b 

December 0 5 3 3 0 0 11 38 3.82 ± 0.87b 
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Only 14 nests (15.22%) were censored due to extreme weather conditions, logistical 

constraints and accessibility. Among the successful nests, all eggs (100%) hatched in 23 

nests. Altogether 235 chicks hatched, of which seven chicks (2.99%) were found dead in 

and around seven nests during our last nest visit, possibly due to adverse weather 

conditions. The average hatching success was 4.12 chicks/nest (± 0.91, 2–6 chicks), 

which was equivalent to 86.94% (± 11.60) chicks/nest in measured nests. In these nests, 

the daily nest survival rates (DSR) was estimated at 98.82% ± 0.003 (95% CI: 98.31%–

99.32%) and total nest survival probability (DSRd) was 70.48% ± 0.01 (95% CI: 60.66%–

81.82%) (Table 4.3). The average hatching success for the unmeasured nests was 5.22 

(± 0.80, 4–7 chicks) or 95.47% (± 7.88) chicks/nest. DSR and nest survival probability 

were 99.45% ± 0.003 (95% CI: 98.92%–99.99%) and 84.14% ± 0.01 (95% CI: 71.00%–

99.61%), respectively (Table 4.3). Our results showed that unmeasured nests had higher 

hatching success than measured nests (Mann–Whitney test U = 380, P = 0.002). 

Table 4.3. Breeding parameters for measured and unmeasured nests of Harwood’s Spurfowls. 

Parameter Measured nests Unmeasured nests 

 Mean SD N mean SD N 

Clutch size 4.46 1.09 92 5.48 0.80 27 

Hatching success 4.12 0.91 57 5.22 0.80 23 

Daily nest survival rates (DSR) (%) 98.82 0.003 78 99.45 0.003 27 

Total nest survival probability (Ŝ) (%) 70.48 0.01 36 84.14 0.01 23 

The status of 38 eggs from 34 nests was categorized as unhatched (47.37%), collected 

(23.68%), disappeared (21.05%), and rolled out of nest (7.89%) (Table 4.4). Human 

footprints, photographs and noise recorded by camera traps in the nest environment 

documented that herdsmen and farmers collected eggs. Rainfall coupled with strong 

winds also rolled eggs out of the nest and broke some of them. The main factors for nest 

failure were predation (52.39%, including hunting) followed by farming operations 

(19.05%), and desertion (9.52%) (Table 4.4). Potential predators commonly observed on 

the study sites were White-tailed Mongoose (Figure 4.4C), Common Genets Genetta 

genetta and Fan-tailed Ravens Corvus rhipidurus. 
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Table 4.4. Causes of breeding failure in Harwood’s Spurfowls. 

Successful nests (N = 57 nests) Failed nests (N = 21 nests) 

Factor Egg Factor Nest level Laying parent Total 

Unhatched 18 (47.37%) Predation 3 (14.29%) 1 (4.76%) 4 (19.05%) 

Disappeared eggs 8 (21.05%) Desertion 2 (9.52%) - 2 (9.52%) 

Egg collecting 9 (23.68%) Hunting 8 (38.10%) 3 (14.29%) 11 (52.38%) 

Sprawl/rolled eggs 3 (7.89%) Farming 4 (19.05%) 0 4 (19.05%) 

Total 38 (100%) Total 17 (80.95%) 4 (19.05%) 21 (100%) 

4.5. Discussion 

4.5.1. Mating system, nest-site selection and nest-building behavior 

We confirmed a polygamous, non-lekking mating system in Harwood’s Spurfowl as 

previously reported (Robertson et al. 1997, Abrha et al. 2018). This is a resource-defense 

polygyny strategy (Emlen and Oring 1977, Gill 2007) typical of many gallifom species 

(Lislevand et al. 2009). Nest-site selection and nest-building behavior are critical for the 

breeding success of ground-nesting birds (Mainwaring et al. 2014, Mayer et al. 2009, 

Gómez et al. 2019). According to our results, only female Harwood’s Spurfowls select 

nest sites. Their specific nest-site selection and nest-building behavior predominantly 

aims at reducing the risk of predation by the following mechanisms: 

1) Plumage color and patterns of females often matched the background of the nest 

microhabitat (e.g., black soil, stones, rocks and bushy thorns: Figure 4.5, Figure S1). 

Such crypsis through background matching is a fundamental tactic of predator 

avoidance (Merilaita and Stevens 2011, Michalis et al. 2017, Ruxton et al. 2019, Terrill 

et al. 2023) and is very common in ground nesting birds (Lovell et al. 2013, Troscianko 

et al. 2016). In Ethiopia, some larks and other ground-breeding songbirds have 

evolved plumage traits to match different soil types (Last 2009). Based on our 

observations, incubating females remained motionless until being approached up to 

1 meter, suggesting that plumage crypsis plays the most important role for the survival 

of clutches because the lightly colored eggs are relatively conspicuous when 

unattended, even though the nests may be covered by vegetation. In support of this, 

motionlessness is known to reinforce anti-predator coloration in many animal species 
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(Stevens and Merilaita 2011, Stevens and Ruxton 2019), particularly among ground 

nesting birds (Troscianko et al. 2016). 

2) The location of most nests in terms of orientation, positioning, substrate, and slope 

gradient (accessibility) was apparently chosen to thwart unfavorable exposure to 

weather and to minimize the risk of predation. Consistent with this findings, ground 

nesters are known to employ such mechanisms to maintain a favorable thermal 

environment (Deeming and Mainwaring 2015, Mainwaring et al. 2015, Duursma et al. 

2018) thereby optimizing nest safety (Gill 2007). Most Harwood’s Spurflows’ nests 

were effectively hidden in vegetation and some were located under single short thorny 

trees (up to 5 m) on steep slopes. This strategy minimized nest predation as 

suggested by Conover (2007) and Mainwaring et al. (2014). 

3) Female Harwood’s Spurfowls possibly also reduced the risk of depositional odor trails 

during feeding. Our camera trap recordings showed that incubating females never 

flew off directly from their nests and mainly left the nest in the morning. Instead, they 

typically walked away from the nests in different directions. Besides, we did not see 

individuals leaving the nest during rain and intensive solar radiation. Such behavior 

could, together with reducing visual encounters with predators, suggest that females 

minimize the risk of depositional odor trails in concordance with other reports on 

ground-dwelling birds (Conover 2007, Winkler 2016). For example, we had two failed 

nests due to olfactory-orientated predators, White-tailed Mongoose and Common 

Genet, who likely followed contact odor trails created by repeated visits, suggesting 

that breeding spurfowl females may be olfactory inconspicuous. 

4.5.2. Egg laying, geometrical parameters of eggs, and clutch size 

The onset of breeding was from the end of August, right after big rainfalls ceased, to 

December (in Ethiopia, this season is also known as “harvesting season” or “spring”). We 

found that Harwood’s Spurfowl has a single breeding season instead of a prolonged or 

non-synchronous breeding as mentioned in Robertson et al. (1997). Such a difference in 

breeding phenology could be attributed to temporally changes of favorable habitats and 

climatic conditions, as well as differences in disturbances level. For example, the rainfall 

in the Upper Blue Nile Basin (UBNB) is highly variable but has trended towards significant 
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decrease since 1980 (Mohammed et al. 2022). This could possibly influence the timing of 

breeding of the species. Indeed, the breeding season of Harwood’s Spurfowl is associated 

with the rainy season (Robertson et al. 1997, Abrha et al. 2018) as in related species, 

such as Swainson's Spurfowl (Pternistis swainsonii) (Jansen and Crowe 2005) and most 

galliformes species (McGowan 1994), probably due to food peaks after heavy and 

consecutive rainfall ceases. 

Our results demonstrated that the earliest clutches were initiated in September and peak 

egg laying occurred in October when the conditions were wet with occasional rainfall 

(Figure S4). Conversely, earlier studies reported the earliest egg-laying dates during the 

driest conditions in December and January (Ash 1978, Ash and Gullick 1986, Ash and 

Atkins 2009). However, these reports lacked systematic and detailed breeding 

observation of the target species in the area. According to our camera trap data (77.50%), 

many eggs were laid in the morning, which is consistent with other birds (Winkler 2016). 

The females laid on average a single egg per day, similar to other pheasants (Khalil et al. 

2016) and other precocial species (Hepp and Kennamer 2018). Significant variation in the 

geometrical parameters of eggs across habitats could be explained by climatic conditions 

and food availability for females. The clutch size (4.66) for Harwood’s Spurfowls was 

similar to that of Swainson's Spurfowl (Jansen and Crowe 2005). We found clutch size of 

Harwood’s Spurfowl to decrease significantly as the breeding season progresses, 

possibly as a result of a gradual decline in food resources and nest cover, as well as an 

increase in threats (predominantly predation). This phenomenon is common in ground 

nesting birds (Lu and Zheng 2003, Suárez et al. 2005, Balasubramaniam and Rotenberry 

2016) because breeding females progressively face food scarcity (Winkler 2016). 

While linear egg dimensions of Harwood’s Spurfowl were similar to its sister species, 

Clapperton’s Spurfowl (Pternistis clappertoni) (Schönwetter 1961), we rely on the derived 

parameter (i.e. egg shape), as this parameter has an adaptive value for life-history traits 

in birds (Stoddard et al. 2017, Montgomerie et al. 2021). Moreover, egg shapes could be 

determined by clutch size (Barta and Székely 1997, Montgomerie et al. 2021). Following 

the classification of egg shape index (Sarica and Erensayin 2004, de Oliveira-Boreli et al. 

2023), Harwood’s Spurfowl has more spherical and whiter eggs, regardless of some 

phenotypic variation in shape, spottiness and color across habitats (Figures S2 and S3). 
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Because spherical egg shapes are featured by a uniform shell thickness (Stoddard et al. 

2017) and resistance to breakage (Bain 1991, Montgomerie et al. 2021), such traits 

(including egg color) in our study species could also represent an adaptation to excessive 

sunlight and erratic weather conditions in UBNB. For example, in Australian songbirds, 

the most spherical eggs were found among those species who bred in open nests under 

the hottest conditions, which exposed them to the highest amount of solar radiation 

(Duursma et al. 2018). We consider it possible that the spherical shape of Harwood’s 

Spurfowls’ eggs is a similar adaption to the harsh sunlight conditions in UBNB, which 

could also explain the spherical eggs shape of other tropical galliform species (Stoddard 

et al. 2017, Montgomerie et al. 2021). To which extent the colors and patterns of 

Harwood’s Spurfowls’ eggs actually contribute to temperature regulation, which ultimately 

may account for enhanced breeding success, remains to be tested. 

4.5.3. Incubation, hatching and parental care 

We found incubation to last for approximately 21 days, which matches the known 

incubation period of 21-23 days in other spurfowl species from South Africa (Little and 

Crowe 1993, Jansen et al. 2001). Although females sit on the nest after laying the first 

egg, incubation is delayed until the clutch is completed to guarantee hatching 

synchronicity. This is consistent with reports for many precocial birds, particularly ground 

nesters (e.g., Persson and Göransson 1999, Gill 2007, Mayer et al. 2009, 

Balasubramaniam and Rotenberry 2016, Winkler 2016). The average daily nest 

attendance of nearly 95% indicates that females actively reduce the risk of predation and 

egg hypothermia by leaving the nest only briefly for feeding. Our data thus documented 

that Harwood’s Spurfowl has an almost uniparental care strategy with females exclusively 

incubating the eggs and guiding their freshly hatched chicks to the nearby vegetation. The 

role of territorial males was mainly to escort the nesting females. Only in rare cases males 

were observed tossing foods towards chicks. This indicates that males predominantly 

control the resources for the breeding females and by doing so, participate at least 

indirectly in raising their chicks. This is in accordance with the hitherto reported uniparental 

strategy in the congeneric Swainson’s Spurfowl Pternistis swainsonii from South Africa 

(van Niekerk 2017). 
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4.5.4. Breeding success and failure 

The average hatching success (86.94% at measured and 95.47% at unmeasured nests) 

of Harwood’s Spurfowl is similar to some African (Grey-winged Francolin Scleroptila afra: 

Little and Crowe 1993, Red-winged Francolin Scleroptila l. levaillantii: Jansen et al. 2001) 

and Asian francolin species (Black Francolin Francolinus francolinus asiae: Kumar et al. 

2020), but higher than reported for the other Grey Francolin (Ortygornis pondicerianus 

interpositus: Khalil et al. 2016). Even though we cautiously removed the vegetation cover 

and fenced trails leading to nests, we suspected that disturbances during repeated visits 

(e.g. camera placement, nest measurements, egg handling) could have exacerbated the 

failure of measured nests indirectly. Indeed, breeding success of measured nests was 

lower than of unmeasured (random) nests, mainly due to predation and farming activities 

(Table 4.4). The relatively high percentage (47.37%) of unhatched eggs in successful 

nests could be due to infertility and embryo mortality. Touching eggs and catching laying 

parents in particular (Radnezhad et al. 2011, Zhao et al. 2020), as well as nest visits in 

general were reported as factors for hatching failure in other birds (Green 2004, Zhao et 

al. 2020). Because Harwood’s Spurfowl is a ground nester mainly in and around 

farmlands, it is pronouncedly hunted for food (Robertson et al. 1997, Ash and Atkins 2009, 

Abrha and Nigus 2017, Abrha et al. 2017, Abrha et al. 2023). Farming operations also 

exacerbated hatching failure of the species, consistent with studies in other pheasant 

species (Coates et al. 2017). Globally, predation is a major important threat for several 

galliform species (e.g. Little and Crowe 1993, Clark et al. 1999, Persson and Göransson 

1999, Lu and Zheng 2003, Balasubramaniam and Rotenberry 2016, Zhao et al. 2020). 

To conclude, since predation was the main reason for the nesting failure, we recommend 

limiting mowing grasses and cutting trees during the breeding season in and around 

farmlands and other habitats (including woodlands, scrub and bush vegetation) where 

Harwood’s Spurfowls are dwelling in order to avoid disturbance, sun exposure and access 

to nesting sites. Hunting (including egg collecting) should be prohibited throughout the 

year, and conservation education and awareness creation should be delivered to the local 

communities. 
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4.7. Supplementary information  

 

Figure S1. Camera placement adjacent to nest location (A). A typical rock-dependent nest (B) and a 

nest under a short Vachellia tortilis tree (C and D) show background matching (plumage color and 

patterns of females and nesting sites) in Upper Blue Nile Basin (UBNB). 

 

Figure S2. Variability in Harwood’s Spurfowl egg colors and texture. Egg colors were white (A) and 

dusty white (B) with tiny spots in both nests. The clutch for (A) was taken out of the nest for handling 

and photography. 
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Figure S3. Variability in Harwood’s Spurfowl egg shapes. Egg shapes ranged from oval to more 

spherical. The photographs depict both intra- and inter-clutch variation (A-D). 
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Figure S4. Average rainfall distribution and clutch size initiation in each month during the study period. 

Rainfall data was extracted from NASA/POWER satellite-based weather system 

(https://power.larc.nasa.gov/data-access-viewer/). 

Table S1. Pearson correlation coefficients for the geometrical egg parameters of Harwood’s Spurfowl. 

** Implies very significant correlation between parameters (P < 0.001). 

Parameters Length Breadth Weight Volume Surface area Shape index 

Length 1           

Breadth .431** 1         

Weight .434** .277** 1       

Volume .704** .944** .376** 1     

Surface area .821** .869** .413** .983** 1   

Shape index -.488** .577** -.124 .276** .097 1 
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5.1. Abstract 

Mountaintop endemic bird species are highly vulnerable to climate change and habitat 

loss in the tropics. However, there is a lack of knowledge on most alpine birds of the 

Eastern Afromontane Biodiversity Hotspot. In this study, we used ensemble species 

distribution modeling to assess the current and future habitat suitability for Moorland 

Francolin endemic to the Ethiopian highlands, the largest alpine habitat in Africa. Our 

results demonstrated that the average predictive accuracy of six algorithms had high 

discrimination ability (AUC = 0.99; TSS = 0.95). Temperature variables were the main 

determinants of habitat suitability for Moorland Francolin, with BIO1 (annual mean 

temperature) making the largest contribution, and to a lesser extent, BIO2 (mean diurnal 

range), BIO4 (temperature seasonality) and BIO7 (temperature annual range). 

Accordingly, the results showed that the extent of the current suitable habitat for Moorland 

Francolin in the alpine habitats of the Ethiopian highlands is 6861.99 km2. However, the 

range will be contracted to 389.48 km2 when projecting our ensemble on climate change 

scenarios, i.e., assuming the intermediate shared socio-economic pathways (SSP 126) 

between 2041-2060, and no suitable habitat will be available assuming the highest shared 

socio-economic pathways (SSP 370 and SSP 585). We also evaluated which areas 

exceed the training conditions of the models in projections using Multivariate 

Environmental Similarity Surface (MESS) to understand potential future niche dynamics 

of the species. Current climate change and habitat loss on the mountaintops of the 

Ethiopian highlands may pose a serious threat to Moorland Francolin, as major parts of 

its currently realized niche may be reduced. Our results also suggest that the species 

could be classified as Vulnerable (VU). Species-specific conservation measures are 

needed to mitigate the effects of climate change on alpine habitats.  

Keywords: mountaintop extinction, endemic, climate change, ensemble species 

distribution modeling, Moorland Francolin, conservation 
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5.2. Introduction 

Anthropogenic climate change is a substantial threat to global biodiversity and assumed 

to be a major driver of future species extinction (e.g., Thomas et al. 2004; Bellard et al. 

2012; Cahill et al. 2013; Urban 2015; Habel et al. 2019). Global biodiversity hotspots, 

which support high species richness and endemism (Myers et al. 2000), are particularly 

prone to climate change (Malcolm et al. 2006; Trew and Maclean 2021). Thus, climate 

change affects species distribution across several taxa and regions (Gitay et al. 2002; 

Colwell et al. 2008). For instance, global warming as part of climate change causes 

upslope shifts in the distribution and abundance of montane butterflies (Rödder et al. 

2021) and tropical bird species (Freeman et al. 2018; Bender et al. 2019; Neate-Clegg et 

al. 2021). Specifically, mountaintop endemic bird species are the most sensitive groups 

to climate change due to their limited geographical ranges (e.g., Gitay et al. 2002; Harris 

et al. 2014; Freeman et al. 2018; Neate-Clegg et al. 2021). However, for most mountaintop 

endemic tropical birds, there is insufficient evidence of their vulnerability to current and 

future climate change. Accordingly, urgent assessment and conservation action has been 

recommended for endemic birds at higher elevations in the tropics where they are 

experiencing range contractions due to climate change (Harris et al. 2014; Freeman et al. 

2018; Neate-Clegg et al. 2021). 

The Ethiopian highlands contribute high levels of endemism to the Eastern Afromontane 

biodiversity hotspot (De Klerk et al. 2002). They cover the largest plateau above 3000 m 

in the Afrotropics (Chignell et al. 2019; Groos et al. 2021), and are sometimes referred to 

as the Afroalpine “sky islands”, because they consist of isolated mountains surrounded by 

different ecosystems at lower elevations. Specifically, the total surface area of Afroalpine 

habitats above 3500 m is approximately 5000 km2 (Groos et al. 2021), of which nearly 

27% are represented by the Bale Mountains alone (Kidane et al. 2019). Ethiopia has two 

extensive highland blocks namely the western and eastern highlands, divided by the 

Ethiopian sector of the East African Rift Valley (Friis et al. 2010). These highlands host 

high bird species richness and endemism next to the Albert Rift and East African Montane 

in Africa (De Klerk et al. 2002). The mountaintops of Ethiopia are part of the Afroalpine 

and Sub-Afroalpine vegetation (Ash and Atkins 2009; Friis et al. 2010) featured by a 

distinct endemic flora (Friis et al. 2010; Kandziora et al. 2022) and avifauna (De Klerk et 
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al. 2002; Ash and Atkins 2009; Gedeon et al. 2017a; Töpfer and Gedeon 2020). The 

habitats are affected by human population growth (Chignell et al. 2019; Fashing et al. 

2022), and are experiencing a rapid fragmentation due to erratic climatic conditions and 

other anthropogenic factors (Asefa et al. 2017; Razgour et al. 2020). More recently, 

ongoing climate change has also been predicted to affect the Ethiopian highlands (Kidane 

et al. 2019; Kidane et al. 2022) and African sky islands as the whole (Kandziora et al. 

2022). This global impact may overwhelmingly affect species with restricted ranges, 

particularly mammals and birds in Ethiopia. To address the ongoing multiple stressors, 

especially on the mountaintops, the Alliance for Zero Extinction (AZE) 

(https://zeroextinction.org/) has initiated conservation actions to prevent the extinction of 

some critical species at four sites in the country. Notwithstanding, scarce information is 

available to attest the effects of climate change on mountaintop bird species. 

To understand the potential impact of climate change on species, several algorithms for 

species distribution modeling have been proposed, including regression-based and 

machine-learning algorithms (e.g., Thuiller et al. 2009; Thuiller et al. 2016; Guisan et al. 

2017; Gobeyn et al. 2019; Urbina-Cardona et al. 2019). Species distribution models 

(SDMs) are useful tools for assessing the conservation status of species (de Castro Pena 

et al. 2014; Breiner et al. 2017) and prioritize conservation plan of species under climate 

change scenarios (Guisan and Thuiller 2005; Elith et al. 2006; Urbina-Cardona et al. 

2019). There is a plethora of studies on the usefulness of the models across several taxa 

(Guisan and Thuiller 2005; Urbina-Cardona et al. 2019), including cryptic (Tôrres et al. 

2012), rare (Breiner et al. 2015), and poorly known species (Urbina-Cardona et al. 2019). 

Most importantly, the models allow discovery of potentially suitable (or isolated) areas for 

species (Raxworthy et al. 2007). However, these models also have caveats regarding 

sample size, temporal dynamics, encountering of species during migration, and 

detectability (Lissovsky et al. 2021). 

Although most of Ethiopian’s endemic birds are concentrated in the mountainous 

landscapes (De Klerk et al. 2002; Ash and Atkins 2009; Gedeon et al. 2017a; Gedeon et 

al. 2023), there is paucity of information on the effect of climate change and related 

anthropogenic disturbances on these taxa (Fashing et al. 2022). However, there is 

evidence of three endemic bird species, but only from the lowlands (Gedeon et al. 2017b; 

https://zeroextinction.org/
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Bladon et al. 2021). Moorland Francolin (Scleroptila psilolaema) is an endemic 

mountaintop and near-threatened galliform species of Afroalpine and Sub-Afroalpine 

habitats in Ethiopia, making it an ideal species to test the effect of climate change on 

endemic high-elevation bird species. Most galliform species (megapodes, guans, 

guineafowls, New World quails, pheasants and allies) (Winkler et al. 2015; Kimball et al. 

2021) are weak fliers, but rather excellent runners (Heers 2018). This phenomenon is 

linked to their heavy body and short wings, resulting in a low hand-wing index (HWI) 

(Hosner et al. 2017; Sheard et al. 2020). Therefore, their inability to disperse over long 

distances and the natural elevational limit of the mountains may exacerbate the situation 

for ground-dwelling mountaintop endemics such as the Moorland Francolin. 

Moorland Francolin subsists in pristine and disturbed Afroalpine and Sub-Afroalpine 

habitats of the Ethiopian highlands (Tilahun et al. 1996; Ash and Atkins 2009; Gedeon et 

al. 2017a; Töpfer and Gedeon 2020; Abrha et al. 2023). Its occupancy (i.e., habitat use) 

is determined by factors related to vegetation traits, landscape connectivity metrics, 

climatic conditions, and sampling occasion in the central highlands of Ethiopia (Abrha et 

al. 2023). However, the habitat suitability and determinants of the spatial distribution for 

the species across the Ethiopian highlands remain elusive and show a decreasing trend 

due to anthropogenic disturbances (BirdLife International 2024). Therefore, our objectives 

were: (1) to identify the main determinants of environmental factors on the distribution of 

the species, (2) to predict the current and future suitable geographical distribution of the 

species. 

5.3. Methods 

5.3.1. Study Area 

The study area was located in two of the Ethiopian highlands (Figure 5.1). It stretched 

from Bale Mountains National Park (BMNP) and Arsi Mountains National Park in the 

eastern highlands to Entoto Natural Park and escarpment, Sululta Plain, Ankober-

Debresina escarpment, Guassa Community Conservation Area (GCCA), Borena Sayint 

National Park, Guguftu, Dessie highlands, and Abune Yosef in the western highlands. The 

study sites comprised one community-based conservation area, three national parks, four 

Important Bird Areas (IBAs), and other human-shaped landscapes (Tilahun et al. 1996). 
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Furthermore, it included other areas between these sites in both highland blocks (Figures 

5.1 and 5.4). The main habitat consisted of moorland with an elevation range of 2400 to 

4228 m. 

 

Figure 5.1. Study area and occurrence points of Moorland Francolin in the highlands of Ethiopia. The 

Rift Valley, indicated by the two dotted lines, separates the western highlands and the eastern 

highlands. 

Most of the study sites comprised two major high montane vegetation zones, the 

Ericaceous belt (also called the Sub-Afroalpine belt featured by elevation ranging from 

3000 to 3200 m) and the Afroalpine belt (above 3200 m) (Ash and Atkins 2009; Friis et al. 

2010). The habitats of other sites below 3000 m included Eucalyptus plantations mixed 

with Juniperus procera, and anthropized meadows. Typically, this ecoregion is 
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characterized by erratic climatic conditions, a very short dry season (about two months), 

and an average annual temperature of 8 °C. The highlands are top mountain massifs and 

volcanic cones and encompass bimodal rainfall patterns with intensified rainfall in summer 

in July and August and with predominantly short dry season during the early summer (Friis 

et al. 2010). 

5.3.2. Species occurrence data 

Most occurrence (i.e., presence-only) data were collected in 2019-2020 from two of the 

large, geographically separated highlands of Ethiopia. In our fieldwork protocol, we used 

multiple techniques to confirm the occurrence of the study species, i.e., direct observation, 

playback survey, and feather collection (Abrha et al. 2023). Furthermore, we 

crosschecked and evaluated previous occurrence data from published articles, books and 

citizen science data. Ground truthing data were collected to an accuracy of 3-5 m using a 

handheld Garmin etrax 30 GPS. Geographic data were originally collected in terms of 

Universal Transverse Mercator (UTM) coordinates. The overall dataset considered 506 

occurrence records of Moorland Francolin from several locations, and each GPS location 

was verified prior to analysis. Approximately 34% of the data were collected from the 

eastern highlands, while 66% of the records belonged to the western highlands. Finally, a 

subset of 231 occurrence data were selected in a two-step selection procedure to model 

the ecological niche of the species in the study region after removing duplicates and 

selecting only one record per 1 x 1 km grid resolution for model training. We then 

computed a semivariogram using the relevant functions of the ecospat package for R 

(Broennimann et al. 2023) and selected 42 records with a minimum distance of 0.075° to 

remove potential negative effects of spatial autocorrelation. 

5.3.3. Environmental data and variable selections 

We downloaded 19 bioclimatic variables from CHELSA (http://chelsa-climate.org; Karger 

et al. 2017), with a spatial resolution of approximately 30 arcsec (ca. 1 km) for projections. 

The current climate represented the past 30 years (average of 1970–2000), while the 

future climate scenarios included three shared socio-economic pathways (SSP 126, SSP 

370 and SSP 585) for the periods 2021-2040, 2061-2080, and 2081-2100, respectively. 

We conducted variable selection to improve model performance and accuracy for habitat 

http://chelsa-climate.org/
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suitability modeling (Hirzel and Lay 2008). We assessed for multicollinearity among 

variables using pairwise Spearman’s rank correlation (rs) to meet the requirement of 

statistical assumptions. Among pairs of predictor variables with critical value of rs ≥ 

│0.70│, only one variable that was hypothesized to biologically influence the francolin 

species was used for further analyses (Dormann et al. 2013) (Tables S1 and S2). Finally, 

only nine predictor variables were selected to generate species distribution models of 

Moorland Francolin under the current and future scenarios. The variables were as follows: 

BIO1 (annual mean temperature), BIO2 (mean diurnal range), BIO4 (temperature 

seasonality), BIO7 (temperature annual range), BIO12 (annual precipitation), BIO14 

(precipitation of driest month), BIO15 (precipitation seasonality), BIO18 (precipitation of 

warmest quarter), and BIO19 (precipitation of coldest quarter). All the predictor variables 

had equal spatial resolution of 1 km × 1 km grid to match the species occurrence data. 

5.3.4. Algorithms for Species Distribution Models 

For our ensemble SDM approach, we selected six algorithms (two statistical regression 

and four machine learning) from the 10 algorithms in the biomod2 package based on their 

performance (AUC > 0.7) (Thuiller et al. 2009; Thuiller et al. 2016) in estimating habitat 

suitability for the target species (Table S3). The set of algorithms used to assess the 

potential distribution of the species were: (1) Artificial Neural Networks (ANN: Ripley 

2007); (2) Classification Tree Analysis (CTA: Breiman et al. 1984); (3) Generalized 

Additive Models (GAM: Hastie and Tibshirani 1995; Hastie 2017); (4) Generalized 

Boosted Model (GBM: Friedman 2001; Elith et al. 2008), also known as Gradient Boosting 

Machine or Boosted Regression Trees; (5) Generalized Linear Models (GLM: Nelder and 

Wedderburn 1972; Guisan et al. 2002; Zuur et al. 2010); and (6) Maximum Entropy 

(MaxEnt: Phillips et al. 2006; Elith et al. 2011; Hijmans et al. 2013). Here, we used 

presence-background data for all algorithms because our data lacks species absence 

(Hao et al. 2019). Therefore, instead of missing data (true absence), we generated 

background data (i.e., pseudo-absence) (Barbet-Massin et al. 2012). To do this, we 

randomly generated 10,000 pseudo-absence locations using the relevant functions in the 

biomod2 (Wisz and Guisan 2009), i.e., the disk strategy with a minimum distance from the 

species records of 0.1 km and a maximum distance of 100 km. 
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5.3.5. Modeling procedure and validation 

For model evaluation and calibration, our occurrence datasets were split into 80% used 

for training and 20% for testing using a bootstrap approach with 10 replications for each 

algorithm. We used area under the curve (AUC) of the receiver operating characteristics 

(ROC) and true skill statistics (TSS) metrics to evaluate model performance and accuracy 

(Fielding and Bell 1997; Manel et al. 2001; Thuiller et al. 2005). TSS considers sensitivity 

and specificity (Allouche et al. 2006), and its value ranges from -1 to +1, with values close 

to +1 indicating the best performance of the model, while values close to zero or below 

zero indicate poor performance (Landis and Koch 1977; Allouche et al. 2006), or 

sometimes below 0.4 is generally reported as poor model performance (Beaumont et al. 

2016). The AUC values can range between 0 and 1 (0.5-0.7 = poor performance, 0.7-0.9 

= good performance and > 0.9 = high performance of the model) (Swets 1988). The 

contribution of each bioclimatic variable was determined using the permutation producer 

in the biomod2 package. 

To assess potential areas requiring extrapolation of the models beyond their training 

range due to non-analogous bioclimatic conditions, the Multivariate Environmental 

Similarity Surface (MESS) (Elith et al. 2010) were computed using the dismo R package 

based on the training data of the models. MESS maps were binarized into a similar 

(positive values) and dissimilar (negative values) index to visualize and distinguish 

between intra- and potential extrapolation areas (Elith et al. 2010). 

5.3.6. Combining model predictions  

All selected algorithms were run using the default settings for prior validation process (Hao 

et al. 2019; Thuiller et al. 2009; Thuiller et al. 2021). Then we computed model averaging 

by combining them into an ‘ensemble model’ (e.g., Araújo and New 2007; Seni and Elder 

2010; Grenouillet et al. 2011) using a weighted mean (Hao et al. 2019; Thuiller et al. 2021) 

and decay factor of 0.7. The biomod2 package V.3.5.1 (Thuiller et al. 2021) was used to 

carry out the analysis. Finally, we chose the weighted mean method over other methods 

(i.e., mean, median and committee averaging) for the ensemble model due to its best 

predictive performance (Marmion et al. 2009; Hao et al. 2019). SDMs maps were then 
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binarized to calculate changes in size of suitable habitats using the minimum training 

presence threshold. 

5.3.7.  IUCN RED List assessment 

Moorland Francolin is currently classified as Near Threatened (BirdLife International 

2024). Based on our extensive dataset, we re-assessed the conservation status based on 

the established IUCN criteria. For this, we used GeoCAT (Bachman et al. 2011) to 

determine the extent of occurrence (EOO) and area of occurrence (AOO) from the total 

number of occurrence records (n = 506). We used the IUCN recommended grid size of 2 

km to calculate AOO. We used the IUCN recommended grid size of 2 km × 2 km to 

calculate AOO (IUCN Standards and Petitions Committee 2024). 

5.4. Results 

5.4.1. Model evaluation 

The average predictive accuracy of each algorithm suggested a high discrimination ability 

of the models, with most having AUC > 0.90 and TSS > 0.91. The metrics of each 

algorithm, in descending order, were as follows: GBM (AUC = 1.00; TSS = 0.98), GLM 

(AUC = 0.98; TSS = 0.93), ANN (AUC = 0.97; TSS = 0.93), GAM (AUC = 0.94; TSS = 

0.91), MaxEnt (AUC = 0.98; TSS = 0.88), and CTA (AUC = 0.92; TSS = 0.83) (Figure 5.2). 

Compared to the individual models, the binary ensemble model showed the highest 

performance, but it was closely behind GBM (AUC = 0.99; TSS = 0.95). Therefore, we 

retained the ensemble model (i.e., weighted mean by AUC) to predict the distribution of 

Moorland Francolin under climate change because the first four competing algorithms 

showed similar and high performance based on the two evaluation metrics. 
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Figure 5.2. Average and range scores of TSS and ROC (AUC) to evaluate predictive performance of 

each selected algorithm. 

5.4.2. Variable importance 

All variables showed significant variation across algorithms. In our analysis, BIO1 (Annual 

Mean Temperature) revealed the highest influence, with variable importance scores 

ranging from 0.73 (GAM) to 0.99 (CTA), on the habitat suitability of Moorland Francolin in 

the Afroalpine and Sub-Afroalpine habitats of Ethiopia. Other variables, including BIO2 

(Mean Diurnal Range), BIO4 (Temperature Seasonality) and BIO7 (Temperature Annual 

Range) showed slight contributions to the distribution of the species (Table 5.1). 



149 
 

Table 5.1. Individual and averaged variables importance for different models for habitat suitability 

modeling of Moorland Francolin. 

Variable ANN CTA GAM GBM GLM MaxEnt Mean 

BIO1 0.91 0.99 0.73 0.93 0.96 0.97 0.92 

BIO2 0.53 0.00 0.61 0.01 0.49 0.05 0.28 

BIO4 0.48 0.00 0.37 0.02 0.57 0.01 0.24 

BIO7 0.48 0.00 0.39 0.01 0.37 0.00 0.21 

BIO12 0.33 0.00 0.16 0.08 0.04 0.10 0.12 

BIO14 0.18 0.11 0.11 0.04 0.06 0.21 0.12 

BIO15 0.33 0.00 0.19 0.09 0.14 0.10 0.14 

BIO18 0.26 0.00 0.11 0.07 0.05 0.02 0.09 

BIO19 0.21 0.00 0.31 0.05 0.05 0.01 0.11 

5.4.3. Current and future habitat suitability of Moorland Francolin 

The estimated potential distribution as derived from the species realized niche under 

current climatic conditions is 6861.99 km2 based on ensemble modeling. The modeling 

also suggested other potential suitable habitats beyond the known occurrences, notably 

the Choke Mountains (also locally known as Arat Mekerakirt), the Guna Mountain, and 

the Simien Mountains National Park. Nevertheless, ground truthing data and literature did 

not confirm the occurrence of the species in these Afroalpine and Sub-Afroalpine habitats 

of the Ethiopian highlands (Figures 5.3 and 5.4). 

Based on the intermediate SSP 126 climate change scenario, an estimated area of 389.48 

km2 was predicted to be a suitable habitat for the species. Here, the Choke Mountains, 

Borena Sayint Mountain, Arsi Mountains, Bale Mountains (very small areas of Harenna 

Forest), and other highlands adjacent to the Rift Valley were also predicted potentially 

suitable habitats for the species. However, no suitable habitat was predicted to be 

available under future climate change scenarios in the 2061–2080 (SSP 370) and 2081–

2100 (SSP 585) projection periods (Figure 5.5). 

Due to model uncertainty of future predictions, the Multivariate Environmental Similarity 

Surface (MESS) analysis showed extensive areas exceeding current conditions requiring 

model extrapolation, signifying that the predicted sites were beyond the model training 
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range (calibration range), hence highly dissimilar. In contrast, some localities, mainly the 

central highlands of Ethiopia, showed no extrapolation suggesting the predicted sites were 

similar to the model training range (i.e., analogous climatic conditions) (Figure 5.6). 

Therefore, all future predicted ranges require careful interpretation. Our results showed 

that the predicted suitable areas were novel compared to the currently realized niche, 

suggesting that model uncertainty associated with extrapolation showed overpredictions, 

e.g. the occurrence of the species below 1500 m. 

 

Figure 5.3. Habitat suitability modeling of Moorland Francolin projection using weighted mean 

ensemble model in the context of current climatic conditions (1970-2000). 
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Figure 5.4. Current locations of Moorland Francolin in the Ethiopian highlands (BMNP = Bale Mountains National Park, AMNP = Arsi Mountains 

National Park, ENP = Entoto Natural Park and its surroundings, Ankober-Debresina escarpments, GCCA = Guassa Community Conservation 

Area, BSNP = Borena Sayint National Park and Guguftu highland, Dessie highlands and Abune Yosef). The species was not detected in other 

predicted suitable habitats in north-west mountaintops (highlighted with an oval circle) (Choke Mountains, Guna Mountain and SMNP = 

Semien Mountains National Park). 
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Figure 5.5. Habitat suitability modeling of Moorland Francolin using weighted mean ensemble model projected for 2021–2040 (SSP 126) (A), 

and 2061–2080 (SSP 370) and 2081–2100 (SSP 585) (both in B).
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Figure 5.6. Maps showing areas requiring model extrapolation based on the Multivariate Environmental 

Similarity Surfaces (MESS) approach. Dissimilar maps (negative values) represent habitats that are 

novel climate relative to the training range and similar maps (positive values) represent habitats 

analogous to the training range. The future climate change scenarios are SSP 126 (A), SSP 370 (B), 

and SSP 585 (C). 

5.4.4. IUCN Red List assessment 

Based on the GeoCAT analysis, the total occurrence records (n = 506) of Moorland 

Francolin revealed an extent of occurrence (EOO) and area of occupancy (AOO) of 

64,175.5 km2 and 912.0 km2, respectively. The result from AOO showed that the species 

is classified as Vulnerable.  
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5.5. Discussion 

In this study, we investigated the consequences of climate change on Moorland Francolin 

distribution using algorithms in the biomod2 package (Thuiller et al. 2009; Thuiller et al. 

2016). Because the predictive performance of models varies considerably, we used the 

biomod2-based ensemble model, which combines competing algorithms to reduce the 

noise of individual models (Araújo and New 2007; Thuiller et al. 2009; Thuiller et al. 2016). 

Although there is evidence in favor of individual models such as MaxEnt (Kaky et al. 2020), 

our results showed that the ensemble model (i.e., modeling averaging) outperformed most 

competing models, in line with many previous reports (e.g., Araújo and New 2007; Seni 

and Elder 2010; Grenouillet et al. 2011), especially for modified parameters in the package 

(Valavi et al. 2022). 

In this study, AUC and TSS metrics were used for evaluation and validation of individual 

algorithms, while the weighted mean consensus method was used to generate the 

ensemble. Individual algorithms and the ensemble showed good predictive performance 

in terms of both metrics (AUC > 0.90; TSS > 0.80), suggesting that SDMs adequately 

discriminate the presence and background samples of Moorland Francolins. Although the 

ensemble model was slightly outperformed by the Generalized Boosted Model (GBM), we 

retained it for our habitat suitability modeling. This is because weighted mean is essential 

in ecology to reduce the prediction error of each contributing model (Dormann et al. 2018). 

Our ensemble model suggests that the current potential distribution area of Moorland 

Francolin is 6,861.99 km2. With respect to the model estimation, it is assumed that the 

current projected suitable area may slightly overestimate the actual distribution area of 

the species, as it extends over most of the geographically separated highlands, except 

the Tigray highlands (Figures 5.3 and 5.4). The results depicted that the north-west 

mountaintops of the country, namely the Simien Mountains National Park (412 km2; Craig 

et al. 2020), Choke Mountains (299 km2: Teferi et al. 2010) and Guna Mountain (197.1 

km2; Belay et al. 2022) are projected as suitable habitats for the species, while the actual 

presence of the species on these mountaintops has not been confirmed for almost three 

decades (Tilahun et al. 1996; Ash and Atkins 2009; Gedeon et al. 2023). This suggests 

that the ensemble model overpredicts the occurrence of the species where it was not 
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actually detected in our field surveys (i.e., false positives). This phenomenon, popularly 

known as commission error, is a typical feature of species distribution models (SDMs), 

where species are predicted to occur in suitable locations without actually occurring 

(Allouche et al. 2006; Pearson 2007, Lissovsky and Dudov 2021). 

Based on our exhaustive field surveys and model averaging, we expected that the range 

of Moorland Francolin could be less than 6000 km2. This is partly because the Ethiopian 

highlands are increasingly affected by land-use change (Belay et al. 2022). The Bale 

Mountains National Park currently represents the most extensive suitable habitat. The 

park is relatively intact and contiguous compared to most mountain ranges in Ethiopia, 

and covers a large area of the country’s alpine habitat (Chignell et al. 2019; Groos et al. 

2021), making it a favorable habitat for diverse plant and animal species. Due to its high 

species richness and endemism, the park is registered as world heritage site (UNESCO 

2023) and confirmed as Alliance for Zero Extinction (AZE) site. This global importance, 

along with other local and international conservation initiatives, could provide long-term 

support to mitigate effects of climate change and to counter habitat loss, ultimately 

benefiting the park's ecological integrity and human well-being. 

Based on the ensemble model, temperature variables were the key determinants of the 

distribution of Moorland Francolin. Specifically, BIO1 (annual mean temperature) 

constituted the highest contribution for the habitat suitability of the species, suggesting 

that the current cooler temperature of the summit region is the most influential predictor 

for the occurrence of the species. In line with this, Gedeon et al. (2017b) found that annual 

mean temperature was the highest contributor to the habitat suitability of Black-fronted 

Francolin (Pternistis atrifrons) in the eastern highlands of Ethiopia. 

In general, several recent empirical studies have similarly reported that rising 

temperatures are a threatening factor for endemic mountain bird species in the tropics 

(Freeman et al. 2018). In the context of future climate change, only 6% of the current 

suitable habitat will remain under SSP126. Surprisingly, the largest alpine habitat (i.e., the 

Sanetti Plateau) in the Bale Mountains was predicted to be unsuitable for the species, yet 

only a tiny site in the Harenna Forest was predicted to maintain the species in this 

scenario, which actually did not occur in the current habitat suitability modeling (Figure 
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5.2). Indeed, Moorland Francolins are averse to using montane forests and dense 

Ericaceous vegetation where predators abound (Abrha et al. 2023). A recent report shows 

that the Ericaceous vegetation of the Bale Mountains is expanding upwards due to the 

ongoing climate change (Kidane et al. 2022), with many endemic mountaintop plants are 

predicted to become locally extinct (Kidane et al. 2019). The consequences are expected 

to disrupt the distinctive ecological zonation across elevational gradients, and thus for 

several birds and other wildlife with specific habitat requirements. The greater phenotypic 

plasticity of Ericaceous, and possibly other vegetation types, is replacing moorland and 

grassland habitats (Kidane et al. 2022) suitable for Moorland Francolins (Abrha et al. 

2023). 

The currently realized niche will gradually contract under SSP 126, and Moorland 

Francolin will be absent in the context of the extreme future climate change scenarios 

SSP 370 and SSP 585 (Figure 5.5). The extrapolation based on the Multivariate 

Environmental Similarity Surface (MESS) approach demonstrated that the species is 

predicted to be displaced from its currently realized niche, which showed potentially 

unsuitable habitats (Figure 5.6). Since the species is endemic, diet-specialized and limited 

to the cold climate of the Ethiopian mountaintops, it is expected to be maladapted to the 

novel climatic conditions. In such a stochastic event, as reported by Ihlow et al. (2012), 

we are uncertain whether non-analogous bioclimatic variables are acting or whether future 

climatic conditions actually threaten the species. 

In general, the current and future distribution of Moorland Francolin is consistent with the 

observed effects of anthropogenic climate change on mountaintop extinction in the tropics 

(e.g., Harris et al. 2014; Freeman et al. 2018; Neate-Clegg et al. 2021). The high 

vulnerability of birds to climate change may be exacerbated by: (1) species traits (e.g., 

low dispersal ability) (Sheard et al. 2020); (2) habitat traits, including limited habitat 

requirements and elevational range limits (Gitay et al. 2002; Harris et al. 2014; Freeman 

et al. 2018; Neate-Clegg et al. 2021), (3) the effects of upslope shifts (Freeman et al. 2018; 

Neate-Clegg et al. 2021), and (4) human activities, including deforestation, habitat loss 

and associated threats (Harris et al. 2014; Freeman et al. 2018; Neate-Clegg et al. 2021). 

As a result, Moorland Francolin is predicted to be at high risk of extinction under future 
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climate change, unless novel phenotypic plasticity evolves against multiple environmental 

stressors. 

We did not use ensemble model to estimate extent of occurrence (EOO) and area of 

occupancy (AOO) due to model uncertainty (IUCN Standards and Petitions Committee 

2024). Our geographic range estimate showed that EOO was 43% lower than that 

calculated by IUCN Red List of Threatened Species (BirdLife International 2024). This 

discrepancy is likely due to differences in the data sources. We found that populations of 

Moorland Francolins exhibit high fragmentation caused by human activities and are 

notably isolated by geographical barriers, such as the Rift Valley and substantial distances 

between mountain summits. Therefore, based on our estimates of the AOO and the 

assumption of increasing multiple stressors, the species could be classified as Vulnerable 

(VU). 

5.6. Conclusions 

We conducted a baseline study to predict the habitat suitability of the endemic Moorland 

Francolin in the mountaintop of the Ethiopian highlands under climate change scenarios. 

With respect to the current suitable area of Moorland Francolin, almost 94% of the habitat 

will be gradually lost assuming the intermediate shared socio-economic pathway (SSP 

126), and no suitable habitat is predicted to remain under worst-case scenarios. Annual 

mean temperature and other temperature-related variables contributed to the distribution 

of the species. The ensemble-based habitat suitability modeling for our target species 

supported the existing empirical knowledge on mountaintop extinction of tropical birds. 

Based on our assessment, the species could be classified as Vulnerable (VU). To mitigate 

the effects of climate change and habitat loss on irreplaceable alpine habitats, species-

specific conservation measures (habitat management, increasing habitat connectivity, 

creating nature reserves) are needed. 
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5.8. Supplementary information  

Table S1. Bioclimatic variables selected for habitat suitability modeling (data source: CHELSA 

(http://chelsa-climate.org). 

 

Variables Codes Units Temporal scales 

Annual Mean Temperature BIO1 Degree Celsius Annual 

Mean Diurnal Range BIO2 Degree Celsius Month 

Temperature Seasonality BIO4 Dimensionless Month  

Temperature Annual Range BIO7 Degree Celsius Month 

Annual Precipitation BIO12 Millimeter Annual  

Precipitation of Driest Month BIO14 Millimeter Month 

Precipitation Seasonality BIO15 Dimensionless Month  

Precipitation of Warmest Quarter BIO18 Millimeter Quarter 

Precipitation of Coldest Quarter BIO19 Millimeter Quarter 

Table S2. Pairwise Spearman's correlation coefficient between the selected variables using heat-map.  

 

 

 

 

 

http://chelsa-climate.org/
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Table S3. The scores of TSS and ROC (AUC) for evaluating predictive performance of each algorithm.  

S.No Run Algorithm Metric.eval Cutoff Sensitivity Specificity Calibration Validation 

1 RUN1 GBM TSS 583 100 98.488 0.985 0.805 

2 RUN1 GBM ROC 588.5 100 98.55 0.996 0.946 

3 RUN1 GLM TSS 646 100 93.55 0.936 0.834 

4 RUN1 GLM ROC 649 100 93.6 0.977 0.946 

5 RUN1 GAM TSS 71 97.059 95.512 0.926 0.462 

6 RUN1 GAM ROC 72.5 97.059 95.525 0.955 0.73 

7 RUN1 CTA TSS 411 100 79.463 0.795 0.779 

8 RUN1 CTA ROC 415.5 100 79.463 0.897 0.89 

9 RUN1 ANN TSS 929 97.059 96.25 0.933 0.462 

10 RUN1 ANN ROC 928.5 97.059 96.25 0.969 0.803 

11 RUN1 MAXENT TSS 68 100 88.238 0.883 0.853 

12 RUN1 MAXENT ROC 70.5 100 88.488 0.977 0.962 

13 RUN2 GBM TSS 539 100 98.375 0.984 0.852 

14 RUN2 GBM ROC 543.5 100 98.438 0.995 0.933 

15 RUN2 GLM TSS 566 100 92.1 0.921 0.931 

16 RUN2 GLM ROC 566.5 100 92.112 0.975 0.963 

17 RUN2 GAM TSS 222 97.059 94.5 0.916 0.31 

18 RUN2 GAM ROC 229.5 97.059 94.525 0.943 0.647 

19 RUN2 CTA TSS 411 100 79.275 0.793 0.786 

20 RUN2 CTA ROC 415 100 79.275 0.896 0.893 

21 RUN2 ANN TSS 930 97.059 96.512 0.936 0.703 

22 RUN2 ANN ROC 933.5 97.059 96.525 0.973 0.907 

23 RUN2 MAXENT TSS 48 100 85.9 0.86 0.895 

24 RUN2 MAXENT ROC 53.5 100 86.662 0.977 0.967 

25 RUN3 GBM TSS 567 100 98.625 0.986 0.808 

26 RUN3 GBM ROC 570.5 100 98.638 0.995 0.943 

27 RUN3 GLM TSS 667 100 94.138 0.942 0.882 

28 RUN3 GLM ROC 673.5 100 94.213 0.98 0.935 

29 RUN3 GAM TSS 677 97.059 92.325 0.894 0.295 

30 RUN3 GAM ROC 676.5 97.059 92.325 0.924 0.645 

31 RUN3 CTA TSS 408 100 90.762 0.908 0.663 

32 RUN3 CTA ROC 409.5 100 90.762 0.969 0.831 

33 RUN3 ANN TSS 797 100 93.688 0.937 0.444 

34 RUN3 ANN ROC 802.5 100 93.713 0.977 0.854 

35 RUN3 MAXENT TSS 85 97.059 90.738 0.879 0.865 

36 RUN3 MAXENT ROC 86.5 97.059 90.888 0.979 0.952 

37 RUN4 GBM TSS 567 100 98.388 0.984 0.881 

38 RUN4 GBM ROC 568 100 98.4 0.995 0.975 

39 RUN4 GLM TSS 585 100 92.238 0.923 0.927 
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40 RUN4 GLM ROC 585.5 100 92.262 0.971 0.979 

41 RUN4 GAM TSS 763 97.059 92.662 0.897 0.547 

42 RUN4 GAM ROC 762.5 97.059 92.663 0.927 0.771 

43 RUN4 CTA TSS 410 100 78.938 0.789 0.8 

44 RUN4 CTA ROC 414 100 78.938 0.895 0.9 

45 RUN4 ANN TSS 897 97.059 94.525 0.916 0.8 

46 RUN4 ANN ROC 896.5 97.059 94.525 0.966 0.919 

47 RUN4 MAXENT TSS 83 100 87.638 0.877 0.899 

48 RUN4 MAXENT ROC 90.5 100 88.225 0.974 0.978 

49 RUN5 GBM TSS 556 100 98.112 0.981 0.905 

50 RUN5 GBM ROC 556.5 100 98.125 0.994 0.975 

51 RUN5 GLM TSS 586 100 92.725 0.927 0.877 

52 RUN5 GLM ROC 587.5 100 92.738 0.973 0.97 

53 RUN5 GAM TSS 641 97.059 93.5 0.906 0.284 

54 RUN5 GAM ROC 639.5 97.059 93.5 0.933 0.633 

55 RUN5 CTA TSS 410 100 79.15 0.792 0.792 

56 RUN5 CTA ROC 414.5 100 79.15 0.896 0.896 

57 RUN5 ANN TSS 909 100 96.088 0.961 0.938 

58 RUN5 ANN ROC 906.5 100 96.088 0.977 0.977 

59 RUN5 MAXENT TSS 94 100 88.138 0.882 0.909 

60 RUN5 MAXENT ROC 97.5 100 88.475 0.973 0.983 

61 RUN6 GBM TSS 606 100 98.812 0.988 0.807 

62 RUN6 GBM ROC 606 100 98.812 0.995 0.902 

63 RUN6 GLM TSS 687 100 93.787 0.938 0.888 

64 RUN6 GLM ROC 693 100 93.863 0.975 0.962 

65 RUN6 GAM TSS 722 97.059 94.7 0.918 0.32 

66 RUN6 GAM ROC 743.5 97.059 94.713 0.945 0.654 

67 RUN6 CTA TSS 417 100 91.012 0.91 0.652 

68 RUN6 CTA ROC 421.5 100 91.012 0.968 0.834 

69 RUN6 ANN TSS 789.5 100 95.65 0.957 0.712 

70 RUN6 ANN ROC 787.5 100 95.65 0.975 0.851 

71 RUN6 MAXENT TSS 48 100 86.55 0.866 0.898 

72 RUN6 MAXENT ROC 85.5 97.059 89.938 0.976 0.967 

73 RUN7 GBM TSS 549 100 98.312 0.983 0.94 

74 RUN7 GBM ROC 550 100 98.325 0.995 0.973 

75 RUN7 GLM TSS 605 100 92.162 0.922 0.95 

76 RUN7 GLM ROC 613.5 100 92.225 0.97 0.976 

77 RUN7 GAM TSS 525 97.059 95.012 0.921 0.578 

78 RUN7 GAM ROC 526.5 97.059 95.012 0.944 0.784 

79 RUN7 CTA TSS 410 100 78.988 0.79 0.798 

80 RUN7 CTA ROC 414 100 78.988 0.895 0.899 

81 RUN7 ANN TSS 802 97.059 91.862 0.889 0.806 
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82 RUN7 ANN ROC 802 97.059 91.862 0.967 0.955 

83 RUN7 MAXENT TSS 94 100 87.725 0.878 0.971 

84 RUN7 MAXENT ROC 98.5 100 88.087 0.972 0.987 

85 RUN8 GBM TSS 562 100 98.375 0.984 0.73 

86 RUN8 GBM ROC 566 100 98.388 0.995 0.888 

87 RUN8 GLM TSS 525 100 91.775 0.918 0.909 

88 RUN8 GLM ROC 525.5 100 91.8 0.975 0.958 

89 RUN8 GAM TSS 126 97.059 94.112 0.912 0.19 

90 RUN8 GAM ROC 124 97.059 94.112 0.94 0.592 

91 RUN8 CTA TSS 410 100 79.15 0.792 0.792 

92 RUN8 CTA ROC 414.5 100 79.15 0.896 0.896 

93 RUN8 ANN TSS 881 91.176 92.3 0.835 0.925 

94 RUN8 ANN ROC 886.5 91.176 92.337 0.913 0.967 

95 RUN8 MAXENT TSS 113 94.118 91.175 0.853 0.825 

96 RUN8 MAXENT ROC 115.5 94.118 91.35 0.977 0.954 

97 RUN9 GBM TSS 571 100 98.6 0.986 0.82 

98 RUN9 GBM ROC 567.5 100 98.6 0.995 0.952 

99 RUN9 GLM TSS 677 100 94.2 0.942 0.885 

100 RUN9 GLM ROC 677.5 100 94.213 0.977 0.949 

101 RUN9 GAM TSS 0 100 0 0.9 0.679 

102 RUN9 GAM ROC 1.5 97.059 93.188 0.947 0.824 

103 RUN9 CTA TSS 460 97.059 92.725 0.898 0.547 

104 RUN9 CTA ROC 458 97.059 92.725 0.957 0.684 

105 RUN9 ANN TSS 915 100 95.688 0.957 0.805 

106 RUN9 ANN ROC 914 100 95.688 0.973 0.903 

107 RUN9 MAXENT TSS 45 100 85.7 0.859 0.891 

108 RUN9 MAXENT ROC 50.5 100 86.512 0.978 0.958 

109 RUN10 GBM TSS 543 100 98.238 0.982 0.823 

110 RUN10 GBM ROC 551.5 100 98.3 0.995 0.911 

111 RUN10 GLM TSS 657 100 93.938 0.939 0.877 

112 RUN10 GLM ROC 660.5 100 93.975 0.977 0.951 

113 RUN10 GAM TSS 535 97.059 96.475 0.935 0.449 

114 RUN10 GAM ROC 533.5 97.059 96.475 0.956 0.721 

115 RUN10 CTA TSS 415 100 80.525 0.805 0.665 

116 RUN10 CTA ROC 419.5 100 80.525 0.903 0.833 

117 RUN10 ANN TSS 879 100 93.875 0.939 0.554 

118 RUN10 ANN ROC 878 100 93.875 0.975 0.779 

119 RUN10 MAXENT TSS 103 100 90.825 0.909 0.851 

120 RUN10 MAXENT ROC 108.5 100 91.188 0.978 0.961 
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Chapter 6 

General Discussion 

6.1. Broader context  

The heterogeneous landscapes of Ethiopia are home to speciose flora and fauna.  While 

mounting evidence on bird species studies in this biodiversity-rich country has 

emphasized in community ecology (synecology) with a thematic focus on species 

richness, diversity, and composition, the organismal ecology (autoecology) of several 

species, especially rare, endemic, and cryptic bird species, has scarcely been quantified, 

given its importance to deliver appropriate species-specific conservation measures. In 

other words, there are substantial gaps in knowledge about on how and why birds exist in 

heterogeneous landscapes featured by diverse plant, climate, topography, and human 

disturbance in the country. This could be mainly due to budgetary and logistical 

constraints. Therefore, this chapter provides detailed and combined explanations on how 

the ecology, breeding biology and climate change impacts underpin conservation 

implications of two endemic and threatened francolins and their habitats in the Ethiopian 

highlands. All of these robust inferences were made using appropriate field methods and 

combined statistical tools. 

Habitat characteristics are important factors influencing the occurrence, occupancy and 

abundance of bird species. These characteristics determine the distribution and 

association of bird species (Sutherland and Green, 2005) and have a major influence on 

detectability (Bibby et al., 2000). As in other tropical countries, habitat characteristics 

defined by topography, hydrography, geology, climate and vegetation determine the 

evolution and distribution of biodiversity in Ethiopia (Ash and Atkins, 2009; Fashing et al., 

2022). The distribution of vegetation, a key factor in the survival of bird species, is 

hypothesized to be linked to climatic and altitudinal variations and other abiotic factors in 

the country (Friis et al., 2010). For example, the semi-natural vegetation in agricultural 

landscapes supports high bird species richness in Ethiopia (Marcacci et al., 2022).  

The single-season (static) occupancy model (MacKenzie et al., 2002) and the multi-

season  (dynamic) occupancy model (MacKenzie et al., 2002) were used for Moorland 
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Francolins and Harwood’s Francolins, respectively, to scrutinize determinants of 

occupancy, detectability and dynamic parameters (colonization and extinction). 

Occupancy models (MacKenzie et al., 2018) and conventional models such as the popular 

presence-only models (Elith et al., 2006; Phillips et al., 2006) model species-habitat 

associations. The response variable for the former models is always presence/absence 

data (widely known as detection/nondetection data) and incorporates missing 

observations, while the latter can use presence-only or presence/absence data, and these 

models lack explicit absence data and instead generate background (i.e., pseudo-

absence) (VanDerWal et al., 2009; Barbet-Massin et al., 2012). Occurrence data for 

conventional models, such as the popular MaxEnt model or other algorithms, can be 

collected from a single field survey or from highbrow literature, as I did for Moorland 

Francolin. The sampling effort for these models is unknown (Guillera-Arroita, 2017), 

whereas the design for occupancy models requires repeated field visits to a site by human 

observers, camera traps or other tools (MacKenzie et al., 2018). Consequently, 

occupancy models provide robust data that account for imperfect detection to estimate 

occupancy (i.e., habitat use) and species distribution, making them more flexible and 

reliable (MacKenzie et al., 2018). For this reason, occupancy models are sometimes 

referred to as ‘data-hungry models’ and are more suitable for species-specific studies (Jha 

et al., 2022). In this study, I used camera traps to scrutinize the occupancy of Moorland 

Francolins and the breeding biology of Harwood’s Francolins. For Harwood’s Francolins, 

I sometimes used playbacks to enhance detectability of the species in very fragmented 

habitats and finally combined the data (direct observation and playback) to accurately and 

precisely estimate the habitat use of the species. Based on this, it is plausible to say that 

occupancy models allowed us to provide better estimates of habitat use of the rare and 

cryptic francolin species in the central highlands of Ethiopia. 

6.2. Ecology of Moorland Francolin   

Moorland Francolin was recently elevated to species level and is endemic to the Ethiopia 

highlands. The species is restricted to the summits of both highland blocks, except for the 

northwest highlands (Chapter 5). The species is a member of the red-winged group of 

francolins in the Afrotropics (Madge and McGowan, 2002). With respect to this group and 

other endemic pheasant species in this biogeographical realm, very limited information is 
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available on the ecological preferences Moorland Francolin in the alpine and subalpine 

habitats of the Ethiopian highlands.  

Moorland Francolin is a sedentary species and is hard to detect by direct observation, 

particularly at low-population densities in fragmented and disturbed habitats, and field 

observers often discount to survey such habitats. This is because these species, like 

Harwood’s Francolin (Chapter 4), have plumage coloration that allows for background 

matching, similar to other phasianid species (Winkler et al., 2015). The use of camera 

traps was therefore a reliable tool for understanding the ecology of this species. I 

conducted repeated surveys in predetermined line transects, which allowed us to collect 

data effectively by avoiding false absences and false positives of Moorland Francolins. To 

estimate species occupancy and detection probabilities, true absences and missing 

observations are of considerable importance in accurately and precisely determining 

species-habitat associations (MacKenzie et al., 2018). In addition, I measured habitat 

covariates, including fine-scale covariates, landscape-scale covariates, and climatic 

covariates. I also added the effects of sampling month and survey occasion (effort) to 

examine species-habitat associations using static occupancy modeling. 

Accordingly, naïve and true occupancy and detection probability estimates were higher in 

pristine (locally conserved and managed) than in disturbed habitats, suggesting that the 

species strongly prefers to live in traditionally managed habitats. The historical natural 

resource management, called the Qero system in the Guassa Community Conservation 

Area (GCCA) (Ashenafi and Leader-Williams, 2005; Ashenafi et al., 2012), is of global 

importance for the conservation of the flagship species, the Ethiopian wolf (Canis 

simensis) (Tefera and Sillero-Zubiri, 2006). A recent report has also demonstrated that 

this carnivore species qualifies for umbrella status, and in this way the species benefits 

the sympatric biodiversity of the alpine habitat, including Moorland Francolin, and the local 

community living around the protected area through the wise use of resources (Mekonnen 

et al., 2024), especially the multipurpose and cultural keystone species called Guassa 

(Festuca macrophyhlla) grass (Chengere et al., 2022). 

As hypothesized, based on the average results of the most parsimonious models, 

predators strongly affect Moorland Francolins in the relatively pristine alpine habitat of 
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GCCA. Because most Galliformes are ground-dwelling birds, natural predators generally 

have a negative impact on the species (del Hoyo et al., 1994). The other important 

covariate that positively influenced the species was herb species richness. Mixed and 

dense herbaceous vegetation was suitable for feeding, hiding and nesting of the target 

species. The most preferred herb species were found where the species scratched the 

ground to feed on seeds, bulbs and roots. Insects and worms were also consumed by the 

species in the herbaceous vegetation.  

Contrary to the hypothesis, Moorland Francolin occupancy decreased with increasing 

distance from roads in GCCA, while roads and paths had a negative, though non-

significant, effect on occupancy in disturbed habitats at other sites. Moorland Francolins 

responded differently to the same covariates in pristine and disturbed habitats, suggesting 

that the species avoids fragmented and highly disturbed sites in Sub-Afroalpine habitats. 

These habitats are dominated by high human population growth, where people are 

changing the habitats (land use types) into eucalyptus plantations, farmlands, settlements, 

etc. The detection probability of the species increased significantly as a function of 

average precipitation and sampling occasion (effort) in the pristine alpine habitat. 

Moorland Francolins were more active during wet and misty conditions to search for food. 

This is a typical habit of Galliformes, which prefer rainy and less sunny conditions, 

especially at dawn and dusk, and spend much of the daytime in quiescent (del Hoyo et 

al., 1994). Repeated surveys with camera traps were useful to explicitly infer the drivers 

of species-habitat association. 

6.3. Effect of climate change on Moorland Francolin  

Moorland Francolin is a cold-adapted species that is likely to be affected by extreme 

temperatures. Global warming is predicted to have a severe impact on restricted range 

alpine (i.e., mountaintop) bird species. A plethora of evidence shows that mountaintop 

endemic bird species are vulnerable to climate change and associated risk factors (e.g., 

Freeman et al., 2018; Neate-Clegg et al., 2021). Moorland francolin is therefore not a 

notable exception, as many bird species at risk of extinction often share similar 

demographic and ecological traits (e.g., endemism, rarity and ground nesting) and extinct 

bird species also exhibited such trait (Marzluff and Restani, 2018).  
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Most importantly, most galliform species are poor dispersers due to their morphological 

traits such as body size and wing shape (Hosner et al., 2017), their chances of persisting 

the climate change seems unlikely. This is because the currently suitable cold climate will 

gradually change to a hot one, where generalist bird species from lower elevations will 

move upward and colonize the mountaintops. Focusing on Moorland Francolin as a 

candidate species, an ensemble of six algorithms from biomod2 package revealed that 

the current relatively cool temperature (i.e., annual mean temperature, mean = 9.89 °C, 

range = 5.82 - 15.98 °C) was the main driver for the occurrence of the species in the alpine 

habitat of the Ethiopian highlands. Black-fronted Francolin in southern Ethiopia also 

showed a similar habitat association, where the species preferred to survive only at cold 

temperatures (Gedeon et al., 2017b). With increasing global warming, no suitable habitat 

is predicted for the Moorland Francolin in the worst-case scenarios, mainly the Shared 

Socioeconomic Pathways (SSP 370 in 2061-2080) and (SSP 585 in 2081-2100). From 

the perspective of the current geographical range of the Moorland Francolin (less than 

5,000 km2), populations are at high risk of extinction due to climate change and habitat 

loss (livestock grazing, human population growth and agriculture). This study proposed 

that the species could be listed as Vulnerable on the IUCN Red List based on the results 

of the area of occupancy (AOO) metric and other assessment criteria.  

6.4. Ecology of Harwood’s Francolin 

To understand the determinants of spatiotemporal habitat use, I modeled habitat 

covariates (satellite-based indices of vegetation traits, topography, anthropogenic, 

climatic, and survey covariates) that could affect the species using dynamic occupancy 

modeling. Results from the average of the top models showed that Normalized Difference 

Vegetation Index (NDVI), quadratic slope term (SL2), and Human Disturbance Index (HDI) 

significantly negatively influenced the occupancy of Harwood's Francolin in the Upper 

Blue Nile Basin (UBNB) of Ethiopia. 

The species rarely used certain habitats characterized by high NDVI (> 0.5), probably due 

to the presence of aerial and terrestrial predators, and as such the species averted to 

dwell in areas dominated by large tree species in habitats such as Combretum-Terminalia 

woodland and wooded grassland (CTW), Dry evergreen Afromontane forest and 
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Grassland Complex (DAF), and riparian vegetation in UBNB. However, at lower 

vegetation reflectance, the species is highly persistent in shrub, scrub, and sparsely 

vegetated habitats (i.e., open woodland and grassland) habitats. Equally interesting, 

species occupancy decreased as a function of quadratic slope, indicating that species is 

averse to exiting over steep gradients. The reason could be that potential predators, 

including raptors, other cliff-nesting birds, primates, and cats, occupy these gradients of 

mountainous landscapes in Ethiopia (Saavedra, 2009). Steep slopes in Ethiopia are 

unfavorable for cultivation and lack herbaceous vegetation (Nyssen et al., 2004), making 

the slopes unsuitable for hiding, feeding, and resting of the target species. 

It is not surprising that human pressure, measured in this study as the human disturbance 

index, poses a serious threat to Harwood's francolins. Hunting, livestock grazing and 

habitat loss are the main known disturbance factors for the Ethiopian francolin species 

(e.g. Töpfer et al., 2014; Abrha et al., 2017; Gedeon et al., 2017). Contrary to the report 

by del Hoyo et al. (1994), pheasant species are discriminately hunted for food and 

medicinal purposes in Ethiopia, especially Harwood's francolin (Robertson et al., 1997; 

Abrha et al., 2017). Other bird species are not hunted due to the religious beliefs of local 

Christians.  

As I hypothesized, the detection probability of the species increased with increasing 

average temperature. The valley, hill and bottom of mountain habitats had low 

temperature records and these areas have low NDVI and steepness of the gradient. 

Indeed, there is an inverse correlation between temperature and NDVI across the country 

(Muir et al., 2021), particular for UBNB (Merga et al., 2022; Moisa et al., 2022).  

Based on the model averaging, there were no statistically significant covariates affecting 

the dynamic parameters (colonization probability and extinction probability of the species) 

from two seasons data. However, the highest extinction probability was noted in 

plantations with multiple stressors and the colonization probability was highest at lower 

vegetation reflectance.  
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6.5. Breeding biology of Harwood’s Francolin 

The mating system of most phasianids is diverse (McGowan, 1994; Madge and 

McGowan, 2002; Winkler et al., 2015), but polygyny is the most common one (Winkler et 

al., 2015). The breeding cycle of birds has three distinct forms of parental care: nest 

building, incubation, and offspring provisioning (Wang et al., 2023). Focusing on 

phasianids, only female pheasants are responsible for incubating and hatching the eggs 

(McGowan, 1994; Cockburn, 2006), probably due to the occurrence of sexual selection 

on males (Lislevand et al., 2009; Winkler et al., 2015; Wang et al., 2023), suggesting that 

mating success exhibits high skewness in the family. The “offspring provisioning” stage 

usually excludes chick feeding in precocial birds such as pheasant species (Wang et al., 

2023), but it involves intensive care such as brooding in extreme weather conditions, 

escorting to rich food sources, and giving alarm calls to thwart the risk of predation (del 

Hoyo et al., 1994; Hansell, 2000).  

The mating system of Harwood’s Francolin is polygamous (Robertson et al., 1997; Abrha 

et al., 2018). Specifically, my results are similar to those reported by Lislevand et al. 

(2009), where the target species exhibited a non-lekking mating system (i.e., resource-

defence polygyny). Female parents were responsible to select and build nests, consistent 

with many pheasant species (McGowan, 1994; Cockburn, 2006) and they exhibited three 

key behavioral mechanisms to thwart the risk of predation during the breeding cycles. 

These included background matching, nest orientation and positioning relative to other 

unselected microhabitats, and depositional odor trails during feeding. The average female 

nest attendance was 94.81% per day, indicating that females reduce the risk of predation 

and temperature drop of the nests. I also confirmed that females approaching hatching 

stayed for more than two days without leaving the nests, and that the nests had molted 

soft feathers from ventral parts that could produce brood patches. In breeding birds, 

molting is induced by continuous fasting (Berry 2003) to facilitate heat transfer from the 

patch to the egg (Jones, 1971; Gill 2007; Winkler 2016). As in many polygynous phasianid 

species (Winkler et al., 2015), female parents of Harwood’s Francolins provide all forms 

of care during the breeding cycle, hence uniparental care. The breeding success of the 

species was 86.94% and 95.47% at measured and unmeasured (random) sites, 

respectively. Predation and agricultural activities were the main proximate causes of 
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breeding failure in this species. Repeated nest visits, egg touching and other related 

activities were also partly considered as indirect factors for hatching failure. Many birds 

are more sensitive to disturbance during the breeding season (Green, 2004), especially 

galliform species (Zhao et al., 2020). The results highlight how nest site selection, nest 

building behavior, and parental care contribute to breeding success in this species. 

6.6. Combining results for species-specific conservation approach 

The current study on Moorland Francolin provides the first evidence on the ecology of the 

species in the alpine habitats of Ethiopia. Based on occupancy modeling results, the 

habitat requirements of the species are mainly mixed herbaceous vegetation in 

traditionally protected and managed areas at fine and landscape scales. Roads and trails 

dominated by native grasses and associated herb species are highly preferred by the 

species. In addition, the presence of (natural) predators also affects the presence of the 

species in the area. The total suitable area for the species is likely to be less than 5,000 

km2 and this habitat is undergoing massive decline due to human pressure, livestock 

grazing and other related factors. The endemic plant species restricted to the alpine 

habitat are expected to become extinct in the face of climate change and will be dominated 

by a few plant species (Kidane et al., 2022) and the habitat will become highly fragmented 

(Kandziora et al., 2022). Finally, this means that the current specific habitats (e.g., Mima 

Mound, Erica moorland, Euryops-Alchemilla shrubland, Helichrysum-Festuca grassland, 

Festuca (Guassa) grassland and wetlands) will no longer occur. 

Therefore, to conserve the species and their native and suitable habitats, integrated 

conservation efforts that include socio-ecological and political perspectives will be 

effective in mitigating climate change and maintaining the ecological function and services 

of the alpine habitat. In particular, the conservation efforts of local and international actors 

for the protection of endangered flagship species (Ethiopian wolf) throughout the 

Ethiopian highlands and cultural keystone species such as Festuca grass in Guassa have 

been strongly supported to sustain the biological and cultural diversity of the alpine 

habitats. The indigenous people follow the Qero system on how to use natural resources 

wisely. The indigenous community use grasses through cut and carry system in Guassa. 

This grazing-free system could help minimize the incidence of wildfire in the area during 
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the dry season by reducing the amount of accumulated grass debris on the ground. As 

such, the area has been a stronghold for biodiversity and ecosystem services that are 

vital for humans as well. Implementing the Qero system into some selected alpine habitats 

could help sustain the diversity of the species in the face of ongoing climate change and 

other related stressors. With a focus on this target species, I also recommend captive 

breeding to mitigate the consequences of predicted climate change. 

Similarly, the conservation of Harwood’s Francolin depends on its specific habitat 

requirements and breeding success. The species uses scattered vegetation, bush, scrub 

and grass dominated habitats adjacent to agricultural areas (hence low NDVI), and it is 

paramount importance to conserve these areas for the survival of the species and 

sympatric biodiversity. Therefore, the spatio-temporal occupancy patterns of Harwood’s 

Francolins provide insight into sound conservation and management plans. Specifically, I 

recommend the following actions: 

1) The species, especially breeding females, use areas in and around agricultural fields 

during the rainy season for food sources. Thus, besides avoidance of disturbance, 

and access to nesting sites, it is important to constrain mowing of grasses, grazing, 

and removal of bushes during farming operations (e.g., weeding process). 

2) Hunting pressure on this species should be minimized and the perception of 

discriminatory and unregulated hunting needs serious capacity building and 

awareness raising to reduce the multifaceted disturbances to the species and its 

habitats. In turn, the local people should be well informed about alternative sources of 

income such as ecotourism, employment and sustainable use of resources from the 

habitats.     

3) The government should strongly consider establishing at least one Important Bird and 

Biodiversity Area (IBA) in the Upper Blue Nile Basin, presumably in the Jema and Jara 

valleys, in cooperation with the local people, to conserve this endemic species and 

habitat and thereby benefit the local people.     
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Abstract
Occupancy	modeling	 is	an	essential	tool	for	understanding	species-	habitat	associa-
tions,	thereby	helping	to	plan	the	conservation	of	rare	and	threatened	wildlife	species.	
The	 conservation	 status	 and	ecology	of	 several	 avian	 species,	 particularly	 ground-	
dwelling	birds,	are	poorly	known	in	Ethiopia.	We	used	camera	trap-	based	occupancy	
modeling	to	investigate	habitat	covariate	influence	on	occupancy	(Ψ) and detection 
probability	(ρ)	estimates	of	Moorland	Francolins	Scleroptila psilolaema	from	spatially	
replicated	 surveys	 across	 both	 relatively	 pristine	 and	 disturbed	 landscapes	 in	 the	
Afroalpine	biome	of	Ethiopia.	Model-	averaged	estimate	of	ψ̂	across	all	sites	was	0.76	
(SD = 0.28)	and	 ρ̂	was	0.77	 (SD = 0.13)	 in	 the	pristine	 landscape.	The	ψ̂	of	 the	 spe-
cies	 in	the	disturbed	landscape	was	0.56	(SD = 0.19)	and	 ρ̂	was	0.48	(SD = 0.06).	As	
hypothesized,	based	on	our	model-	averaged	beta	coefficient	estimates	 (βmean ± SE),	
predators	significantly	negatively	 influenced	the	occupancy	of	Moorland	Francolins	
in	pristine	habitat.	We	also	found	a	significant	positive	association	of	occupancy	with	
herb	species	richness.	Contrary	to	our	prediction,	distance	to	road	significantly	nega-
tively	influence	the	occupancy	of	the	species,	suggesting	that	occupancy	probability	
was	 highest	 in	 proximity	 to	 roadsides	 and	 trails	 in	 the	 pristine	 habitat.	 There	was	
no	significant	influence	of	habitat	covariates	on	the	occupancy	of	the	species	in	the	
disturbed	habitat.	The	most	important	covariates	that	significantly	influence	the	de-
tectability	of	the	species	in	pristine	habitat	included	sampling	occasion	and	precipita-
tion.	The	greater	occupancy	and	detectability	of	this	endemic	species	in	the	pristine	
habitat	could	be	 linked	with	the	particular	conservation	status	and	management	of	
this	biodiversity	hotspot	in	the	central	highlands	of	Ethiopia.	Our	results	suggest	that	
strict	legal	enforcement	is	required	to	sustainably	preserve	Moorland	Francolins	and	
the	ecological	integrity	of	the	entire	Afroalpine	biome.	We	recommend	using	camera	
traps	in	order	to	develop	realistic	and	effective	conservation	and	management	strate-
gies	for	rare,	sensitive,	cryptic,	and	ground-	dwelling	animals	in	the	region.
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1  |  INTRODUC TION

Among	 the	 34	 Earth's	 biodiversity	 hotspots,	 the	 Eastern	
Afromontane	 hotspot,	 including	 the	 Ethiopian	 Highlands,	 ranks	
fourth	 by	 a	 number	 of	 endemic	 plant	 and	 vertebrate	 families	 and	
genera	 (Mittermeier	 et	 al.,	 2004).	 Next	 to	 the	 Guinea-	Congo	
Forests	biome,	the	second-	highest	number	of	biome-	confined	bird	
species	 are	 found	 in	 the	 Afrotropical	 Highlands	 biome	 (BirdLife	
International, 2004).	 In	 Ethiopia,	 all	 bird	 species	 subsist	 in	 three	
biomes:	 the	 Afrotropical	 Highlands	 (including	 the	 Afroalpine	 and	
Afromontane),	 Sudan-	Guinea	 savanna,	 and	 Somali-	Masai	 biomes	
(Fishpool	 &	 Evans,	 2001;	 Gedeon,	 Zewdie,	 &	 Töpfer,	 2017). The 
Afroalpine	biome	of	Ethiopia	consists	of	a	complex	mosaic	of	grass-
land,	moorland,	bushland,	and	other	habitat	types	which	are	unique	
in	terms	of	species	distinctiveness.	This	biome	harbors	a	considerable	
endemic	flora	and	fauna	and	is	home	to	a	number	of	range-	restricted	
bird	species	(Ash	&	Atkins,	2009;	Gedeon,	Zewdie,	&	Töpfer,	2017; 
Töpfer	&	Gedeon,	2020),	as	well	as	to	rodents	(Ashenafi	et	al.,	2012; 
Bryja et al., 2019;	Razgour	et	al.,	2021),	and	medium	and	large-	sized	
mammals	(Ashenafi	&	Leader-	Williams,	2005).

Historically,	 the	 oldest	 records	 of	 human	 high-	elevational	 oc-
cupation	 worldwide	 are	 from	 the	 Afroalpine	 biome	 (Ossendorf	
et al., 2019),	but	today	human	population	growth	(Reber	et	al.,	2018) 
is	the	key	threat	to	wildlife	in	the	Afroalpine	and	Afromontane	(Asefa	
et al., 2017;	Ashenafi	et	al.,	2012;	Razgour	et	al.,	2021).	Agricultural	
practices,	human-	induced	climate	change,	and	other	threats	syner-
gistically	affect	both	the	biomes'	flora	(Asefa	et	al.,	2020)	and	fauna	
(Asefa	et	al.,	2017;	Razgour	et	al.,	2021;	Rodrigues	et	al.,	2021).

Like	in	other	tropical	countries,	the	distribution	of	vegetation	in	
Ethiopia	reflects	the	interplay	among	altitudinal	variation	as	well	as	
climatic	and	other	abiotic	factors	(Friis	et	al.,	2010).	The	combination	
of	different	habitat	characteristics,	species	traits,	and	their	interac-
tions	define	the	occurrence,	occupancy,	and	abundance	of	wildlife	
populations	and	influence	their	distribution	patterns	and	detectabil-
ity	(Devarajan	et	al.,	2020;	Guillera-	Arroita,	2017).

Most	 native	 bird	 species	 of	 Afroalpine	 and	Afromontane	 hab-
itats	 of	 Ethiopia	 are	 poorly	 studied	 in	 terms	 of	 their	 abundance,	
distribution,	 and	 threats	 (Ash	&	Atkins,	 2009;	Gedeon,	Zewdie,	&	
Töpfer,	 2017).	 One	 of	 them	 is	 the	Moorland	 Francolin	 Scleroptila 
psilolaema	(Figure 1),	an	endemic	species	of	the	Ethiopian	highlands	
(BirdLife	International,	2023; Gill et al., 2023),	where	it	inhabits	both	
Afroalpine	 and	 Afromontane	 habitats	 (Töpfer	 &	 Gedeon,	 2020). 
Knowledge	 on	 its	 breeding	 biology,	 home	 range	 size,	 population	
abundance,	occupancy	 (i.e.,	 habitat	use),	 and	other	ecological	 pat-
terns	 is	 still	 scant.	 Previous	 distributional	 data	 showed	Moorland	
Francolins	 to	 occur	 in	 the	 eastern	 and	 western	 highlands	 (Ash	 &	

Atkins,	 2009;	 Gedeon,	 Zewdie,	 &	 Töpfer,	 2017).	 It	 is	 classified	 as	
Near	Threatened	due	 to	 the	ever-	increasing	 loss	of	moorland	 and	
grassland	habitats	 (BirdLife	 International,	2023),	but	 its	population	
size	and	habitat	association	along	 its	geographical	range	are	 insuf-
ficiently	known.

In	biodiversity-	rich	Sub-	Saharan	African	countries	such	as	Ethi-
opia,	little	attention	is	paid	to	camera	trap-	based	research	(Cordier	
et al., 2022).	 To	 fill	 this	 knowledge	gap,	our	 sampling	protocol	 for	
Moorland	Francolins	 occupancy	 estimates	 relies	 on	data	obtained	
using	 camera	 traps.	 Although	 this	 approach	 may	 disturb	 wildlife	
and	 alter	 their	 behavior	 (Caravaggi	 et	 al.,	2020;	Wearn	&	Glover-	
Kapfer,	 2017, 2019),	 it	 is	 cost-	effective	 and	 non-	invasive	 to	 study	
ecological	patterns	such	as	population	size	and	distribution	of	ani-
mals.	The	centerpiece	in	most	occupancy-	based	camera	trap	studies	
are	frequently	applied	on	mammal	species	(e.g.,	Burton	et	al.,	2015; 
Niedballa	et	al.,	2015; Kays et al., 2020;	Cremonesi	et	al.,	2021;	Wev-
ers et al., 2021; Cordier et al., 2022),	yet	some	studies	are	conducted	
on	 ground-	dwelling	 bird	 species,	 mainly	 pheasants	 (e.g.,	 O'Brien	
&	 Kinnaird,	 2008;	 Sharief	 et	 al.,	 2022; Tanwar et al., 2021;	 Zou	
et al., 2019).	Most	importantly,	camera	traps	are	particularly	useful	
to	study	elusive,	cryptic,	and	rare	species	(O'Brien	&	Kinnaird,	2008; 
Sharief	et	al.,	2022;	Si	et	al.,	2014;	Winarni	et	al.,	2005)	and	thus	rep-
resent	the	most	promising	approach	to	investigate	Moorland	Fran-
colin.	Camera	trapping	is	more	efficient	than	other	methods	such	as	
traditional	distance	sampling	(Suwanrat	et	al.,	2015;	Wearn	&	Glover-	
Kapfer,	 2019).	 Moreover,	 it	 can	 provide	 valuable	 information	 to	

K E Y W O R D S
Afroalpine	biome,	camera	trap,	conservation,	endemic,	moorland	francolin,	occupancy

T A X O N O M Y  C L A S S I F I C A T I O N
Agroecology,	Autecology,	Population	ecology,	Zoology

F I G U R E  1 An	adult	female	Moorland	Francolin	Scleroptila 
psilolaema	in	the	Afroalpine	biome,	Ethiopia.	The	feather	patterns	
contribute	crypsis	through	background	matching	in	this	species	
(photo	credit:	Kai	Gedeon).
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    |  3 of 18ABRHA et al.

implement	sound	conservation	strategies	(O'Brien	&	Kinnaird,	2008; 
Sharief	et	al.,	2022;	Si	et	al.,	2014;	Wearn	&	Glover-	Kapfer,	2017).

We	attempt	to	draw	an	inference	of	baseline	data	on	the	ecology	
of	Moorland	 Francolins	 using	 an	 occupancy	modeling	 framework.	
We	 used	 presence/absence	 (i.e.,	 detection/non-	detection)	 data	 to	
analyze	 two	 stochastic	 processes:	 occupancy	 and	detection	prob-
ability.	 Occupancy	 is	 a	 dichotomous	 state	 variable	 that	 accounts	
for	 imperfect	 detection	 to	 minimize	 unreliable	 inferences	 of	 spe-
cies	 distribution	 and	 range	 (Bailey	 et	 al.,	 2014;	 Guillera-	Arroita	 &	
Lahoz-	Monfort,	 2012; Kéry et al., 2010;	 MacKenzie	 et	 al.,	 2018; 
Tyre et al., 2003).	 Occupancy	 models	 estimate	 the	 probability	 of	
a	 species'	 presence	 in	 a	 fraction	 of	 landscape	 units	 (MacKenzie	
et al., 2002, 2018)	and	help	to	understand	habitat	use	within	a	land-
scape.	 They	 are	 applied	 across	 several	 animal	 taxa	 for	 the	 imple-
mentation	 of	 successful	 conservation	 and	management	 strategies	
(Burton	et	al.,	2015;	MacKenzie	et	al.,	2018;	Steenweg	et	al.,	2017). 
Therefore,	 the	objective	of	 this	 study	was	 to	gain	 insight	 into	 the	
habitat	use	of	Moorland	Francolins	 in	 its	native	range	for	 the	first	
time	and	to	investigate	the	effect	of	habitat	covariates	on	occupancy	
and	detection	probability	from	spatially	replicated	surveys.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

This	study	was	performed	in	two	areas	(Figure 2):	Guassa	Commu-
nity	Conservation	Area	(hereafter	GCCA)	and	an	area	encompassing	
Sululta	plain,	Entoto	Natural	Park,	Ankober-	Debresina	escarpment,	
and	a	 few	sites	between	 them	 (hereafter	collectively	abbreviated	
SEA).	 The	 study	 areas	 are	 part	 of	 Ethiopia's	 central	 highlands	 in	
which	 several	 Important	 Bird	 and	 Biodiversity	 Areas	 (IBAs)	 are	
designated	 (Tilahun	 et	 al.,	 1996).	 These	 highland	 areas	 consist	 of	
top	mountain	massifs	and	volcanic	cones	 (Friis	et	al.,	2010). Most 
of	 our	 study	 sites	 (93%)	 were	 located	 in	 IBAs,	 including	 GCCA,	

Entoto	Natural	Park,	Ankober-	Debresina	 escarpment,	 and	Sululta	
plain.	The	remaining	sites	were	 located	outside	these	IBAs	 in	An-
golela	Tera,	Assagirt,	Sheno,	and	Mendida	districts.	However,	both	
IBAs	 and	 non-	IBAs	 sites	 in	 SEA	 are	 under	 serious	 anthropogenic	
threat:	 farming,	 livestock	 grazing,	 settlement,	monocultural	 plan-
tations,	 and	 recreational	 activities.	 For	 instance,	 ENP	 has	 shifted	
its	purpose	from	conservation	implementation	(Tilahun	et	al.,	1996) 
to	 recreational	 area	where	mass	 tourism	 (Asefa,	2018;	 Tesema	&	
Berhan, 2019)	and	monocultural	plantations	(Bahru	et	al.,	2021; Ta-
desse	&	Tafere,	2017)	strongly	affect	 the	 landscape.	Both	Sululta	
plain	 and	 Ankober-	Debresina	 escarpment	 are	 mainly	 influenced	
by	 livestock	 grazing,	 farming,	 and	 settlement	 expansions.	 Except	
for	 Sululta	 plain,	 the	 other	 areas	 are	 dominated	 by	 exotic	 Euca-
lyptus	 plantation	 and	 African	 juniper	 Juniperus procera	 (Esayas	 &	
Bekele, 2011).	Therefore,	we	distinguished	between	the	two	study	
areas	based	on	their	different	levels	of	human	disturbance,	topog-
raphy,	floristic	structure	and	composition,	and	conservation	status,	
considering	GCCA	a	relatively	pristine	and	SEA	a	strongly	human-	
modified	area.

GCCA	(Figures 2 and 3)	covers	78 km2	 (Steger	et	al.,	2020), yet 
the	total	land	area	sums	up	to	111 km2	if	the	adjoining	villages	and	
other	land	use	types	are	included	(Ashenafi	&	Leader-	Williams,	2005; 
Nigussie	 et	 al.,	 2019).	 This	 area	 shows	 critically	 important	 habitat	
features	 for	 many	 wildlife	 species	 (Steger	 et	 al.,	 2020)	 and	 com-
prises	both	the	Ericaceous	belt	(3000–	3200 m	a.s.l)	and	the	Afroal-
pine	belt	(above	3200 m	a.s.l)	(Friis	et	al.,	2010).	The	area	has	been	
managed	 by	 the	 local	 community	 through	 a	 management	 model	
called	 the	Qero	system	 (Ashenafi	et	al.,	2012;	Ashenafi	&	Leader-	
Williams,	 2005).	 Unlike	 other	 IBAs	 of	 the	 study	 areas,	 the	 Qero	
system,	coupled	with	the	conservation	initiatives	of	Frankfurt	Zoo-
logical	Society,	The	Darwin	Initiative,	European	Union,	and	Ethiopian	
Wolf	Conservation	Program	have	significantly	sustained	the	ecolog-
ical	 integrity	of	GCCA	since	2003.	 In	this	area,	the	Ethiopian	Wolf	
Canis simensis	is	the	flagship	species	(Tefera	&	Sillero-	Zubiri,	2006), 
generating	income	through	ecotourism	which	is	partly	plowed	back	

F I G U R E  2 The	two	study	areas	(GCCA	
and	SEA)	and	location	of	camera	sites	in	
the	central	highlands	of	Ethiopia.	GCCA,	
Guassa	Community	Conservation	Area.	
The	southern	sites	(including	Sululta,	
Entoto	National	Park,	Ankober-	Debresina	
escarpment,	and	other	areas)	form	SEA.
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4 of 18  |     ABRHA et al.

for	the	conservation	of	the	species	itself	(Eshete	et	al.,	2015;	Esti-
fanos	et	al.,	2018).

SEA	 (Figures 2 and 3)	 forms	part	of	 the	Afromontane	with	 al-
titudes	 generally	 below	 3000 m a.s.l.	 Very	 small	 patches	 of	 herbs,	
shrubs,	scattered	acacia	trees,	and	exotic	trees	are	common.	Here,	
the	Moorland	Francolins	persist	in	very	small	uncultivated	and	grass-
land	patches	of	Afromontane	habitats.

These	highland	areas	experience	a	bimodal	rainfall	pattern	with	
main	rain	from	June	to	September	and	smaller	amount	of	rain	from	
October	to	February	(Mohammed	et	al.,	2022).	The	distinctive	hab-
itat	 features	of	 both	of	 these	 areas	 are	 erratic	 climatic	 conditions	
and	a	very	short	dry	season	 (ca.	2 months).	The	mean	annual	 tem-
perature	 of	 GCCA	 and	 SEA	 are	 21.26°C	 (± 0.95	 SE)	 and	 15.53°C	
(± 0.55	 SE),	 whereas	 the	mean	 annual	 precipitation	 of	 GCCA	 and	
SEA	were	2.65 mm	(± 0.78	SD)	and	2.69 mm	(± 0.90	SD),	respectively	
(Figure S1).

2.2  |  Sampling design

Site	 selection	 for	 this	 study	was	made	 randomly.	Most	 sites	were	
obtained	 through	 a	 distribution	map	 from	 the	 IUCN,	 scientific	 lit-
erature,	and	citizen	science	data,	whereas	some	sites	were	chosen	
without	antecedent	species	records.	Following	the	standard	design	
procedure	 for	 allocating	 optimal	 sampling	 occasion	 (MacKenzie	

et al., 2018;	MacKenzie	 &	 Royle,	2005),	 we	 initially	 attempted	 to	
conduct	a	total	of	185	camera	sites	(or	preferably	sites)	(n = 116	for	
GCCA	and	n = 69	for	SEA)	for	a	single-	season	design	located	in	vari-
ous	habitat	types.	All	camera	sites	were	arranged	in	39	line	transects	
(n = 20	for	GGCA	and	n = 19	for	SEA),	with	an	average	transect	length	
of	2.04 km	(± 0.80	SD)	across	both	study	areas.	In	this	study,	we	ex-
pected	that	the	number	of	sites	(s)	and	occasions	(K)	were	sufficient	
to	determine	the	stochastic	processes.	Then,	the	total	survey	is	sim-
ply	defined	as	s × K,	and	the	maximum	survey	occasion	for	each	site	
was	calculated	by	minimizing	s,	while	taking	a	standard	error	of	0.05	
for	GCCA	and	0.065	for	SEA.	Since	both	study	areas	are	separated	
by	approximately	150 km	independent	camera	trap	data	collections	
were	conducted	for	5 months	for	both	areas.	Along	these	geographi-
cal	scales,	specific	habitat	characteristics	(i.e.,	covariates)	predicted	
to	influence	the	occupancy	and	detection	rates	of	the	target	species	
were	measured	at	each	site	(Table 1).

2.3  |  Camera trapping

In	December	2019	and	the	first	3 weeks	of	January	2020,	we	made	
a	pilot	survey	in	both	areas	to	assess	the	study	species	using	cam-
era	 traps	 and	broadcast	playback	methods.	A	 total	of	20	cameras	
(Browning	Trail	Cameras	and	Bushnell	Trophy	Cam	HD	brands)	were	
used	for	short-	term	deployments	in	this	study.	Since	we	had	a	small	

F I G U R E  3 Afroalpine	habitats	in	the	central	highlands	of	Ethiopia:	GCCA	with	most	habitat	types	(a)	and	the	target	species	feeding	in	
Helichrysum- Festuca	grassland	(c)	and	SEA	with	degraded	rocky	habitat	(b)	and	grazing	land	(d).

 20457758, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10551, W

iley O
nline L

ibrary on [09/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  5 of 18ABRHA et al.

TA B L E  1 Habitat	covariates	predicted	to	affect	occupancy	and	detection	probabilities	of	Moorland	Francolins	in	the	central	highlands	of	
Ethiopia.

Covariate Type of data Measurement and scoring systems Hypothesized relationship References tested the effects

Occupancy	covariates

Fine-	scale	level	covariates

Herb	species	
richness 
(Hsp)

Continuous Number	of	herb	species	in	each	site The	species	prefers	
herbaceous	sites	for	
feeding,	breeding,	and	
concealment.

Jolli	et	al.	(2012);	Sukumal	
et	al.	(2017)

Species	richness	
(Sprich)a

Continuous Plant	species	richness	(i.e.,	alpha	
diversity) in each site

See	Hsp Atikah	et	al.	(2021)

Woody	density	
(WD)

Continuous Density	of	tree	and	shrub	vegetation	
per	0.8 ha

The species is negatively 
influenced	by	birds	of	
prey perched on trees 
and rocky areas.

Sukumal	et	al.	(2017)

Tree canopy 
cover	(Tcaco)

Continuous Tree	canopy	cover	(CaCo)	index	
estimated	using	mobile	app	or	
digital	camera

Francolins	avoid	tree	
canopy	cover	due	to	
the	presence	of	human	
disturbance	and	birds	
of	prey	and	other	
predators.

Atikah	et	al.	(2021); Chen 
et	al.	(2019);	Sukumal	
et	al.	(2017)

Predatorb Binary Presence	of	predator	(1 = if	
predator/s was/were recorded 
and 0 otherwise).

Francolin	are	negatively	
influenced	by	
predators.

Abrha	et	al.	(2018);	Sukumal	
et	al.	(2017)

Landscape-	scale	covariates

Elevation	(Elev) Continuous The	elevation	of	each	site	is	
measured	in	the	field	using	GPS.

Elevation	explains	climate	
and vegetation 
variations	that	affect	
species	survival	
and	reproduction	
differently	in	both	
sites.

Chen	et	al.	(2019);	Holzner	
et	al.	(2021);	Jolli	et	al.	(2012); 
O'Brien	and	Kinnaird	(2008); 
Pardo	et	al.	(2017);	Wevers	
et	al.	(2021);	Whitworth	
et	al.	(2018)

Distance to 
roads	(DR)c

Continuous Distance	from	the	center	of	each	site	
to	the	nearest	paved	or	unpaved	
roads

Proximity	to	road	exposes	
the species to 
predators and other 
disturbances.

Dean	et	al.	(2019); Kroeger 
et	al.	(2022);	Semper-	Pascual	
et	al.	(2020);	Tan	et	al.,	(2017);	
Whitworth	et	al.	(2018)

Distance to 
settlements	
(DS)c

Continuous Distance	from	the	center	of	each	site	
to	the	nearest	settlement

Francolins	avoid	human	
settlements	where	
several stressors, 
including	human	
presence,	grazing,	
mowing,	and	others	are	
common	activities.

Chen	et	al.	(2019);	Jolli	
et	al.	(2012);	Nuttall	
et	al.	(2017);	O'Brien	and	
Kinnaird	(2008); Pardo 
et	al.	(2017);	Semper-	Pascual	
et	al.	(2020)

Distance to 
water point 
(DW)

Continuous Distance	from	the	center	of	each	
site to the nearest water point 
(wetlands,	streams,	madicolous,	
etc)

Francolins	use	water	
points	for	food	and	
cover	in	various	
habitats

Nuttall	et	al.	(2017);	Sukumal	
et	al.	(2017)

Detection covariates

Fine-	scale	level	covariates

Sampling	month	
(M)a

Continuous The	survey	month	for	both	areas	
(SEA:	Feb	and	Mar	and	GCCA:	
Apr-	Jun)	in	2020

Detection	probability	of	
Moorland	Francolins	
varies	between	
sampling	months

Holzner	et	al.	(2021);	Jolli	
et	al.	(2012)

Survey	occasion	
(E)

Continuous Number	of	days	for	which	camera	
trap was active in each site per 
sampling	occasion	also	called	
survey	timing-	how	long?

The	francolin	detection	
increases	with	number	
of	days	of	cameras	
deployed

Holzner	et	al.	(2021); Kays 
et	al.	(2020);	Semper-	Pascual	
et	al.	(2020);	Si	et	al.	(2014); 
Tan	et	al.,	(2017);	Wevers	
et	al.	(2021)

(Continues)
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6 of 18  |     ABRHA et al.

number	 of	 cameras,	 some	 adjoining	 habitats	 (see	 habitat	 covari-
ates	below)	were	simultaneously	assessed	and	 in	both	study	areas	
cameras	were	deployed	sequentially.	Cameras	were	repositioned	to	
other	sites	to	cover	the	desired	representative	home	range	and	to	
make	the	field	survey	more	cost-	effective.	When	small	camera	traps	
are	available,	repositioning	to	new	sites	is	recommended	to	increase	
the	spatial	coverage	of	target	species	 (Meek	et	al.,	2014;	Shannon	
et al., 2014;	Si	et	al.,	2014;	Wearn	&	Glover-	Kapfer,	2017).

Each	camera	trap	was	placed	horizontally	(i.e.,	camera	alignment	
was	perpendicular	to	the	ground)	within	a	50 m	radius	(~ 0.8 ha)	of	
plot	or	focal	patch	size	to	optimize	detectability.	Because	some	ter-
rain	settings	were	very	difficult	to	conduct	surveys,	cameras	were	
not	 fixed	 at	 the	 center	 of	 each	plot	 instead	 they	were	placed	 ap-
proximately	10–	30 m	distance	 from	 the	 grid	 center,	where	 freshly	
raked	 and	 possible	 feeding	 grounds	 were	 noticed.	 Single	 camera	
placement	 is	employed	to	detect	small-	medium	mammals	and	bird	
species	 (Ferreguetti	et	al.,	2015;	 Lamelas-	López	&	Salgado,	2021). 
The	camera	 spacing	 in	 continuous	habitats	 in	GCCA	was	 approxi-
mately	0.3 km	(0.2–	0.5 km),	while	in	SEA	was	approximately	0.5 km	
(0.3–	0.8 km)	to	enhance	detectability	and	to	avoid	spatial	autocor-
relation	 between	 camera	 traps.	 Though	 telemetry	 data	 collection	
was	originally	proposed	to	estimate	the	home	range	of	the	species	
which	 enables	 to	 estimate	 camera	 spacing,	 we	 assumed	 that	 the	
camera	 trapping	 space	was	 sufficient	 and	 representative	 to	 study	
occupancy	 of	 this	 species	 based	 on	 available	 literature.	 If	 the	 av-
erage	 home	 range	 size	 of	 a	 target	 species	 is	 not	 known,	 it	 is	 rec-
ommended	to	infer	spatial	extent	from	congeneric	or	other	related	
species	(Niedballa	et	al.,	2015).	Mostly,	camera	trap	spacing,	based	

on	home	range,	for	pheasants	ranges	from	0.2 km	(Zou	et	al.,	2019) 
to	0.7 km	(Suwanrat	et	al.,	2015).	Therefore,	the	camera	spacing	was	
higher	 than	 the	home	 range	diameter	of	 the	species,	which	was	a	
similar	approach	as	in	other	studies	(Maffei	&	Noss,	2008;	Niedballa	
et al., 2015).	 In	 our	 case,	 camera	 traps	 were	 unbaited	 but	 rather	
were	providentially	camouflaged	with	rocks,	stones,	and	Ericaceous	
heathlands	of	the	study	sites.	Site	selection	for	camera	placement	
was	randomly	carried	out	across	various	habitats	of	both	study	areas,	
as	was	proposed	by	several	other	studies	(e.g.,	Burton	et	al.,	2015; 
Cordier et al., 2022; Meek et al., 2014; Tanwar et al., 2021;	Wearn	&	
Glover-	Kapfer,	2017).

We	placed	camera	traps	on	tree	trunks,	attached	to	thick	coarser	
grasses	 (Festuca	 spp.)	 and	 shrubs,	 and	 on	 wooden	 stakes	 at	 ap-
proximately	30–	60 cm	above	the	ground,	as	this	standard	height	is	
credible	to	trigger	the	motion	sensor	and	it	is	reasonable	to	detect	
ground-	dwelling	 bird	 species	 (Figure 3; Figure S2).	 Because	 some	
sites	were	in	completely	rocky	areas,	we	also	put	cameras	by	arrang-
ing	stacked	stones	that	matched	the	background	of	the	site.	Most	
cameras	had	16 GB	memory	and	some	cameras	mounted	on	courser	
grasses	and	shrubs	had	32 GB	SanDisk	memory	card	as	they	were	
easily	 triggered	 by	 the	movement	 of	 vegetation	 during	 high	wind	
velocity.	However,	to	enhance	good	photographs	and	detectability,	
prudent	vegetation	removal	was	carried	out	in	some	sites	to	avoid	
false	triggering	mainly	during	windy	conditions	 (Meek	et	al.,	2014; 
Wearn	&	Glover-	Kapfer,	2017).	Our	primary	interest	was	to	capture	
photos	of	 the	 target	 species	 that	 can	be	easily	pooled	 into	detec-
tion/non-	detection	binary	matrices.	 In	most	cases,	the	video	func-
tion	was	discounted,	yet	some	videos	were	collected	from	the	field	

Covariate Type of data Measurement and scoring systems Hypothesized relationship References tested the effects

Climate	covariates

Temperature	(T) Continuous Temperature	of	each	site	while	
camera	trap	was	active

The	francolin	detection	
is	influenced	by	
temperature	because	
francolins	highly	favor	
cold conditions and 
adapted	to	extreme	
low	nocturnal	
temperature

Abrha	et	al.	(2018); Gedeon, 
Rödder,	et	al.	(2017)

Precipitation	(P) Continuous Precipitation	of	each	site	while	
camera	trap	was	active

Francolins	have	plenty	
of	food	resource	to	
easily rake the wet 
ground	and	produce	
continuous	calls	for	
breeding	during	raining	
or wet season

Abrha	et	al.	(2018); Gedeon, 
Rödder,	et	al.	(2017)

Note:	The	first	nine	predictors	are	site-	specific	covariates,	whereas	the	last	four	are	observational-	specific	covariates.
aThe	spatiotemporal	covariates	are	dropped	due	to	high	collinearity	(Dormann	et	al.,	2013;	Zuur	et	al.,	2010).	This	study	selected	herb	species	
richness	over	total	species	richness	(Sprich)	in	both	study	area.	Herbaceous	and	shrubby	vegetation	were	dominant	in	GCCA	(> 80%	ground	
vegetation	cover)	(Nigussie	et	al.,	2019).
bHunting	was	not	considered	as	a	threat	for	this	species	(See	Discussion).
cHuman	disturbance	factors:	grazing,	mowing	and	farming	are	the	major	factors	in	the	study	sites	(Ashenafi	et	al.,	2012;	Nigussie	et	al.,	2019;	Steger	
et al., 2020). Festuca abyssinica	grass	(Guassa)	intriguingly	is	valued	for	fodder	for	livestock	(cut	and	carrying	system	and	livestock	grazing),	thatching,	
wall	building	mix	with	mud,	and	help	to	make	whip,	rope,	hat,	broom	(mure)	and	raincoats	(gesa).

TA B L E  1 (Continued)
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    |  7 of 18ABRHA et al.

to	understand	the	natural	behavioral	repertoire	of	the	species	and	
its	interaction	with	other	species	(i.e.,	predators)	in	the	habitats.	Be-
cause	both	camera	models	had	different	setting	options	but	similar	
functions,	we	set	up	cameras	for	the	following	typical	important	pa-
rameters:	(1)	camera	traps	were	active	for	24 h/day	and	programmed	
to	capture	1	photo/trigger	at	10 s	intervals,	and	some	sites	with	more	
than	one	camera	traps	set	 to	capture	20 s	video/trigger,	with	sub-
sequent	videos	delayed	for	5 min;	(2)	the	sensitivity	of	the	infrared	
sensor	was	programmed	to	be	medium	or	normal;	and	(3)	the	qual-
ity	of	photos	were	adjusted	to	be	medium	for	both	camera	brands.	
The	battery	life	of	each	camera	was	checked	during	data	retrieval,	
storage,	and	repositioning	of	cameras.	Extreme	weather	conditions	
(too	hot	or	too	cold)	severely	affected	the	sensitivity	of	sensors	in	
our	areas.

2.4  |  Habitat covariates

To	 include	 representative	habitat	 types	 in	GCCA,	we	adapted	 the	
habitat	 classifications	 of	 Ashenafi	 et	 al.	 (2012).	 The	 habitat	 types	
were	Mima	Mound,	Erica Moorland, Euryops-	Alchemilla	 shrubland,	
Helichrysum-	Festuca grassland, and Festuca	 (Guassa)	 Grassland.	 In	
their	classifications,	swamp	habitat	which	is	typically	characterized	
by	woody	vegetation	(US	definition)	and	reed	swamp	or	forested	fen	
(European	definition)	is	now	replaced	by	“peatland”.	In	this	habitat,	
the	wetland	 type	 is	normally	 a	moor	 surrounded	by	Erica, Festuca 
and	other	plant	species	and	has	permanent	and	ephemeral	water	fed	
by	 precipitation	 hence	 called	 “ombrothropic	 peatland”.	 Moreover,	
we	identified	and	added	montane	forest	to	the	classification	as	an	
important	other	habitat	type	for	wildlife	species	in	the	area,	though	
it	was	not	included	in	the	rodent-	based	study	(Ashenafi	et	al.,	2012). 
Because	 the	 sites	 in	 SEA	 study	 area	were	 human-	dominated,	 the	
habitat	types	were	homogenous	and	it	was	very	hard	to	distinguish	
and	classify	in	relation	to	vegetation	patterns.	Broadly,	we	catego-
rized	the	habitats	into	Eucalyptus-	Juniperus	habitat	and	grazing	lands.	
The	 later	 class	 obviously	 incorporated	 agricultural	 lands.	 Overall,	
this	 area	 has	 been	 heavily	 transformed	 to	 Eucalyptus plantations 
to	meet	demand	for	wood	products	and	improve	the	livelihoods	of	
local	communities	(Bahru	et	al.,	2021;	Tadesse	&	Tafere,	2017).

At	the	sites,	we	collected	13	covariates	derived	from	habitat	fea-
tures,	landscape	connectivity	metrics,	climatic	factors,	and	sampling	
covariates	 which	 were	 predicted	 to	 influence	 the	 occupancy	 and	
detection	probabilities	of	the	target	species.	Occupancy	was	mod-
eled	as	a	function	of	site-	specific	covariates,	including	biotic	factors	
(vegetation	 traits	 and	 predators)	 and	 landscape	 connectivity	met-
rics,	while	detectability	was	modeled	as	a	function	of	observational-	
specific	 covariates,	 including	 survey	 occasion	 (hereafter	 occasion)	
and	climatic	factors	(precipitation	and	temperature).	The	occasion	is	
defined	as	a	total	number	of	days	for	which	each	camera	was	active	
per	site	(Table 1).

Specific	vegetation	traits	assumed	to	influence	habitat	use	were	
collected	from	each	site	using	different	tools.	Due	to	the	occurrence	
of	scattered	trees	within	most	sites	(with	the	exception	of	montane	

forest	 adjoining	 to	 the	 moorland	 habitats	 and	 ENP)	 and	 complex	
landscapes	 varying	with	 soil,	 climate,	 topographic,	 and	 other	 fea-
tures,	we	 used	 only	 two	 20 × 20 m2	 randomly	 placed	 quadrats	 for	
tree	species	with	DBH	≥ 10 cm	in	woody	vegetation	sites	separated	
by	at	 least	15 m	between	quadrat.	Meanwhile,	 in	each	 large	quad-
rat,	 5 × 5 m2	 for	 shrub	 and	 liana	 species	with	 ≤ 10 cm	were	 nested	
(Figure S2).	 Thus,	 the	 following	 vegetation	 traits	 were	 measured	
accordingly:	(1)	by	placing	five	1 × 1 m2	quadrats	(four	in	the	corner	
and	one	in	the	center)	in	each	nested	quadrat;	herb	and	fern	species	
richness	was	identified	and	counted;	(2)	woody	species	richness	and	
abundance	were	determined	 from	 the	 larger	 and	nested	plots;	 (3)	
woody	 species	 density	 (abundance	of	 individual	 trees,	 shrubs	 and	
lianas/0.8 ha)	 was	 also	 estimated	 from	 each	 site;	 and	 (4)	 average	
tree	canopy	cover	was	estimated	using	GLAMA	(Gap	Light	Analysis	
Mobile	Application	software)	from	vertically	upward	looking	photos	
(approximately	 8	 photos/site)	 either	 directly	 collected	 in	 the	 field	
or	retrieved	photographs	with	a	digital	camera	(Nikon	D5300)	from	
sampling	sites	(Gonsamo	et	al.,	2011; Tichý, 2016).

Landscape	 connectivity	 metrics	 (landscape	 scale	 covariates),	
including	 elevation,	 distance	 to	 the	 nearest	 road	 (both	 paved	 and	
unpaved	roads	and	trail	with	at	least	1 m	wide),	distance	to	nearest	
water	points,	and	distance	to	nearest	settlements	were	gauged	ei-
ther	directly	at	the	site	using	a	handheld	GPS	and	tape	meter	or	indi-
rectly	using	Google	earth	images.	Nearest	and	accessible	metrics	to	
some	sites	were	measured	in	the	field.	Average	on-	site	ambient	tem-
perature	 and	precipitation	measurements	would	have	been	 costly	
and	very	difficult	to	conduct	in	each	site;	 instead,	we	obtained	cli-
matic	data	from	NASA	2022	(https://power.larc.nasa.gov/data-	acces	
s-	viewe	r/)	to	understand	species-	habitat	associations.

2.5  |  Data analysis

Single-	season	occupancy	model	was	applied	to	understand	the	 in-
fluence	that	habitat	covariates	have	on	occupancy	and	detectability	
while	accounting	 for	 imperfect	detection	 (MacKenzie	et	 al.,	2002, 
2018).	The	detection	history	was	derived	from	a	sequence	of	species	
detection/non-	detection	 dichotomous	 data	 (i.e.,	 detection = 1	 and	
non-	detection = 0)	 that	were	pooled	 into	occasions	 from	consecu-
tive	camera	days	for	each	site.	For	occupancy	models,	data	collected	
by	camera	traps	needs	to	be	divided	 into	sampling	occasions	 (Sol-
lmann,	2018).	Such	data	treatment	is	important	to	maximize	detect-
ability,	maintain	spatiotemporal	independence	among	occasions	and	
thereby	increases	adequacy	of	model	fit.	Sensitive	analysis	was	con-
ducted	without	incorporating	any	covariates	to	evaluate	the	discrep-
ancy	of	occupancy	and	detection	estimates	 for	different	 sampling	
intervals.	Based	on	the	input	of	the	analysis,	we	chose	the	balance	
between	high	 parameter	 estimates	 and	 small	 confidence	 intervals	
(see	Table S1).	Consequently,	an	occasion	was	defined	as	an	interval	
of	two	camera	days	for	both	study	areas.

Cameras	were	 active	 for	 approximately	 six	 consecutive	 days	
(n = 98,	 2–	10 days)	 to	 obtain	 an	 average	 of	 three	 occasions	 per	
site	at	GCCA	area.	Whereas	cameras	at	SEA	area	were	active	for	
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approximately	eight	consecutive	days	(n = 48,	4–	12 days)	to	obtain	
an	average	of	four	occasions	per	site.	Number	of	camera	days	var-
ied	 depending	 on	 the	 probability	 of	 detection	 of	 the	 species	 in	
the	two	different	areas.	Such	study	duration	is	recommended	for	
high	detectable	species	 (Guillera-	Arroita	et	al.,	2010;	MacKenzie	
&	Royle,	2005).	To	account	occupancy	model	assumptions	(MacK-
enzie	et	al.,	2002, 2018),	each	site	was	surveyed	between	one	to	
five	 repeated	 occasions	 (Κmax = 5;	 Κaverage = 2.95)	 in	 GCCA	 from	
March	to	June	2020,	while	in	SEA	each	site	was	surveyed	two	to	
six	 repeated	 occasions	 (Κmax = 6;	 Κaverage = 3.46)	 from	 February	
to	March	2020.	The	discrepancy	in	number	of	occasions	per	site	
was	 due	 to	 accessibility,	 logistical	 constraints,	 security,	weather	
conditions,	and	technical	problems.	We	had	missed	observations	
in	some	sites	meaning	 that	sampling	was	not	conducted	at	site	 i 
during	time	t	and	hence	a	missed	observation	represented	by	hy-
phen	(−)	was	filled	 instead	 in	the	complete	detection	history	 (hi). 
This	 also	 included	 data	 from	 malfunctioned	 cameras	 and	 blank	
photos	in	some	cameras.

We	used	PRESENCE	program	v.2.13.39	(Hines,	2006)	to	model	
occupancy	and	detection	estimates.	The	parameters	were	estimated	
using	logit	link	and	a	maximum	likelihood	approach	in	the	program	
(MacKenzie	et	al.,	2002, 2018).	Occupancy	probability	(Ψ)	was	mod-
eled	as	a	 logit	 link	function	of	fine-	scale	 level	and	 landscape	scale	
covariates.	 The	 structure	 of	 model	 framework	 of	 the	 occupancy	
probability	of	a	site	(i)	in	association	with	the	site-	specific	covariates	
is expressed as:

Likewise,	 the	 detection	 probability	 (ρ)	 was	 modeled	 as	 a	 logit	
link	function	of	observation-	specific	covariates.	The	logit	equation	
derived	from	the	probability	of	detecting	a	species	at	site	 i,	during	
survey	j in association with the covariates is:

where Xi1 … Xiu	refers	to	site	covariates	associated	with	the	probability	
of	a	site	i	being	occupied	and	yij1 … yijv	refers	to	sample	covariates.

All	continuous	covariates	were	normalized	by	z	score	conversion	
(mean = 0	 and	 SD = 1)	 to	 help	 convergence	 of	 the	 maximum	 likeli-
hood	algorithm	prior	to	analysis	(Schielzeth,	2010).	Such	data	trans-
formation	produces	 better	model	 performance	 and	 interpretability	
(Gelman	&	Hill,	2007;	Schielzeth,	2010).	 Since	we	had	spatial	data,	
collinearity	was	assessed	using	variance	inflation	factor	(VIF).	Covari-
ates	with	 highest	VIF	were	 dropped	 in	 the	 analysis	 and	 covariates	
at	 threshold	 level	VIF < 5	and	Spearman's	correlation	 (rs < 0.7)	were	
retained	 (Dormann	et	 al.,	2013;	 Zuur	 et	 al.,	2010).	Of	 the	 strongly	
correlated	covariates,	we	retained	ecologically	important	covariates	
based	on	field	evidence	and	existed	literature	to	understand	their	in-
fluence	on	occupancy	and	detectability.	With	a	total	of	11	covariates,	
the	global	model	was	run,	and	subsequently	competing	models	were	
constructed	based	on	plausible	additive	covariates.	The	null	model	
(ψ(.),ρ(.))	was	also	constructed	to	compare	with	the	relative	weight	of	
other	additive	models	which	included	one	or	more	covariates.

Since	 the	 ratio	of	 effective	 sample	 size	 to	 the	number	of	 pa-
rameters	(n/k)	was	small,	model	selection	procedures	were	carried	
out	using	Akaike's	Information	Criterion	for	small	sample	bias	ad-
justment	(AICc)	from	the	competing	candidate	set	of	models	(Burn-
ham	 &	 Anderson,	 2002),	 where	 the	 most	 supported	 models	 are	
top-	ranked	models	with	ΔAICc ≤ 2.0	(Burnham	&	Anderson,	2002). 
Summed	model	weights	of	each	covariate	 from	each	model	were	
also	 calculated	 to	 rank	 the	 relative	 importance	 of	 the	 covariates	
(Burnham	&	Anderson,	2002). Then, in order to retain ecologically 
meaningful	 covariates,	models	with	ΔAICc ≤ 4.0	were	 selected	 to	
drive	model	average	estimates	of	occupancy	and	detection	proba-
bilities	(Burnham	et	al.,	2011)	(Tables 2 and 3).	Competitive	models	
were	used	to	estimate	Ψ and ρ	and	calculated	parameter	estimates,	
standard	 errors	 (SEs),	 and	 level	 of	 significance	 based	 on	 95%	 CI	
(zero-	overlapped	 method)	 for	 each	 covariate.	 Uninformative	 pa-
rameters	 (Arnold,	2010;	 Leroux,	2019)	were	 also	 assessed	 in	our	
model	sets.	Estimates	of	the	slopes	(i.e.,	β	coefficients)	for	covari-
ates	were	used	to	determine	the	magnitude	of	 their	 influence	on	
Ψ and ρ.

We	 used	 a	 parametric	 bootstrap	 goodness	 of	 fit	 (GOF)	 using	
10,000	 permutations	 to	 assess	 the	 adequacy	 of	 fit	 of	 the	 global	
model	 (i.e.,	 the	 most	 parameterized	 model)	 and	 Pearson's	 Chi-	
square	 test	 (χ2)	 and	 non-	Bayesian	 p-	value	 were	 implemented	 to	
check	overdispersion	(ĉ)	(MacKenzie	&	Bailey,	2004).	The	degree	of	
overdispersion	 parameter	 estimate	 (ĉ)	 or	 variance	 inflation	 factor	
was	assessed	using	chi-	squared	(GOF)	statistic.	It	was	calculated	by	
dividing	the	observed	test	statistic	by	the	average	of	simulated	test	
statistics.

We	 computed	 the	 number	 of	 occasions	 (K)	 to	 enhance	 the	
odds	 of	 detecting	Moorland	 Francolins	 in	 a	 site.	We	 considered	
a	 set	 of	 four	 levels	 of	 confidence	 (ρ*):	 0.7,	 0.8,	 0.9,	 and	 0.99	 by	
assuming	that	the	species	detection	probability	is	always	less	than	
one.	The	occasion	(K)	was	calculated	from	the	detection	probabil-
ity	(ρ)	of	the	model	averaging	to	determine	the	true	absence	of	the	
species	from	a	site	(McGrath	et	al.,	2015;	Pellet	&	Schmidt,	2005; 
Sewell	et	al.,	2010).

where ρ	is	the	calculated	detection	probability	and	ρ* is the target de-
tection	probability	as	mentioned	above.

Both	original	 and	 square-	root	 transformed	data	were	used	 se-
quentially	 for	 normality	 assumption	 using	 Shapiro–	Wilk	 and	 ho-
moscedasticity	 tests.	 Consequently,	 we	 used	 one-	way	 ANOVA	
to	 compare	mean	differences	 in	photos	 captured	among	 sampling	
months	 in	GCCA,	 and	 a	post	 hoc	 testing	procedure	using	Bonfer-
roni	error	adjustment	was	applied	for	multiple	comparisons.	We	also	
used	Mann–	Whitney	U-	test	to	compare	mean	differences	in	photos	
and	parameter	estimates	across	spatiotemporal.	Similarly,	 this	 test	
was	used	 for	 occupancy	probability	 estimates	 comparison	 in	 rela-
tion	 to	predator	presence	and	absence.	This	data	was	analyzed	 in	
IBM	SPSS	statistics	(version	20).	A	two-	tailed	hypothesis	test	with	
an	alpha	value	of	5%	was	considered.

(1)logit
(

Ψi

)

= �0 + �1Xi1 + �2Xi2 + … + �uXiu

(2)logit
(

�ij

)

= �0 + �1Xi1 + �2Xi2 + … + �uXiu + �u+1yij1 … �u+vyijv,

(3)K =
log(1 − ρ∗)

log(1 − ρ)
,
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3  |  RESULTS

3.1  |  Camera trapping in GCCA and SEA

The	deployed	camera	traps	yielded	610	and	361	trap	nights	in	GCCA	
and	SEA,	respectively.	We	failed	to	collect	data	from	21	(GCCA)	and	
SEA	(18)	sites	mostly	due	to	battery	failure	and	system	malfunction-
ing.	We	 found	a	 significant	difference	 in	average	photos	captured	
among	sampling	months	in	GCCA	(F2,95 = 11.775,	p < .001).	There	was	
no	significant	difference	in	average	photos	captured	between	sam-
pling	months	in	SEA	(Mann–	Whitney	test	U = 277.5,	n = 48,	p = .893).	
Pooling	the	data	across	both	study	areas,	the	average	photos	cap-
tured	 in	GCCA	was	approximately	four	units	higher	 in	comparison	

to	SEA	(Mann–	Whitney	test	U = 1365,	n = 146,	p < .001)	(Figure S3). 
Likewise,	 model-	averaged	 estimates	 of	 occupancy	 probability	 (ψ̂) 
and	detection	probability	(ρ̂)	parameters	were	significantly	higher	in	
the	pristine	habitat	than	in	the	disturbed	landscape	(Figure 4).

3.2  |  Habitat use modeling for traditionally 
managed habitat

We	captured	a	total	of	2632	photos	(7–	141	photos	per	site)	from	all	
sampling	occasions	in	GCCA.	Moorland	Francolins	were	detected	at	
68	of	98	sites,	which	resulted	 in	a	naïve	occupancy	 (proportion	of	
sites	 that	 recorded	 at	 least	 one	photograph	on	 the	whole	 camera	

TA B L E  2 Results	of	model	selection	for	Moorland	Francolins	occupancy	and	detection	probabilities	in	the	central	highlands	of	Ethiopia.

Model structure AICc ΔAICc ωi Κ −2 L ĉ

Traditionally	protected	landscape	(GCCA)

Ψ(Hsp + Tcaco + Pre + DR),p(E + T + P) 257.40 0.00 0.08 9 237.35 0.88

Ψ(Hsp + Pre + DR),p(E + T + P) 257.46 0.06 0.07 8 239.84 0.83

Ψ(Hsp + Pre + Elev	+	DR),p(E + T + P) 258.01 0.61 0.06 9 237.96 0.88

Ψ(WD + Hsp + Pre + DR),p(E + T + P) 258.07 0.67 0.05 9 238.02 0.80

Ψ(Hsp + Tcaco + Pre + DR),p(E + P) 258.16 0.76 0.05 8 240.54 0.81

Ψ(Hsp + Pre + Elev + DR),p(E + P) 258.39 0.99 0.05 8 240.77 0.83

Ψ(Hsp + Pre + DR),p(E + P) 258.44 1.04 0.05 7 243.20 0.84

Ψ(Hsp + Tcaco + Pre + Elev + DR),p(E + T + P) 258.47 1.07 0.04 10 235.94 0.82

Ψ(Hsp + Pre + Elev),p(E + T + P) 258.94 1.54 0.04 8 241.32 0.88

Ψ(WD + Hsp + Pre + DR),p(E + P) 258.96 1.56 0.03 8 241.34 0.83

Ψ(WD + Hsp + Pre + Elev + DR),p(E + T + P) 259.17 1.77 0.03 10 236.64 0.83

Ψ(WD + Hsp + Tcaco + Pre + DR),p(E + T + P) 259.18 1.78 0.03 10 236.65 0.80

Ψ(Hsp + Tcaco + Pre + DR + DW),p(E + T + P) 259.35 1.95 0.03 10 236.82 0.77

…

Ψ(.),ρ(.) 298.28 40.88 0.00 2 294.15 1.09

Human-	modified	landscape	(SEA)

Ψ(Hsp + Tcaco + DR + DS),p(.) 182.77 0.00 0.07 6 168.72 0.99

Ψ(Hsp + DS),p(.) 183.32 0.55 0.06 4 174.39 1.14

Ψ(Tcaco + DS),p(.) 183.37 0.60 0.05 4 174.44 1.15

Ψ(Hsp + DR + DS),p(.) 183.62 0.85 0.05 5 172.19 0.97

Ψ(Hsp + Tcaco + DS),p(.) 183.75 0.98 0.04 5 172.32 1.15

Ψ(Tcaco + DS),p(E) 184.13 1.36 0.04 5 172.70 1.41

Ψ(Hsp + DS),p(T) 184.32 1.55 0.03 5 172.89 1.10

Ψ(Tcaco + DR + DS),p(.) 184.40 1.63 0.03 5 172.97 1.03

Ψ(Hsp + Tcaco + DR + DS),p(T) 184.45 1.68 0.03 7 167.65 0.95

Ψ(Hsp + DR + DS),p(T) 184.65 1.88 0.03 6 170.60 0.92

Ψ(Hsp + Tcaco + DR + DS),p(T) 184.68 1.91 0.03 7 167.88 1.04

Ψ(Tcaco),p(.) 184.76 1.99 0.03 3 178.21 1.15

…

Ψ(.),ρ(.) 186.58 3.81 0.009 2 182.31 1.09

Note:	Model	rankings	are	based	on	the	AICc	values;	AICc	values	compared	to	the	top-	ranked	model	(ΔAICc); ΔAICc	scores	≤ 2.0	are	the	top-	ranked	
model;	model	weight	(ωi),	and	number	of	parameters	(Κ),	and	−2 L = −2LogeL.	ĉ = overdispersion	parameter	to	estimate	lack	of	fit.
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sites)	 estimate	 of	 0.69.	 In	GCCA,	 at	 the	 habitat-	specific	 level,	 the	
findings	showed	that	the	highest	habitat	use	was	obtained	in	Mima	
Mound,	 Euryops- Alchemilla	 shrubland,	 and	 Helichrysum- Festuca 
grassland.	Conversely,	the	least	was	shown	across	the	tree	belt	(i.e.,	
montane	forest	and	Eucalyptus	plantation)	(Figure S4).

The	 null	 model	 (ψ(.),	 ρ(.))	 appeared	 to	 be	 the	 least	 important	
model	 to	explain	 the	stochastic	processes	 (Table 2; Table S2). The 
Ψ	 for	 this	model	was	0.73	 (SE = 0.05)	with	a	95%	CI	of	0.63–	0.82	
and ρ	of	0.85	(SE = 0.03)	with	95%	CI	of	0.79–	0.89.	In	GCCA,	some	
evidence	of	breeding	activity	was	observed	from	the	camera	traps,	
such	as	three	juveniles	were	provisioned	by	both	parents.

We	 constructed	 candidate	 sets	 without	 interactions	 between	
covariates	to	model	Ψ and р	in	the	order	of	parsimony	models	using	
ΔAICc.	 The	 bootstrapping	 procedure	 and	 χ2 test revealed that 
the	 global	 model	 (ψ(WD + Hsp + Tcaco + Pre + Elev + DR + DS + DW),	
ρ(E + T + P))	lacks	overdispersion	(χ2 = 35.95;	p = .35;	ĉ = 0.85),	show-
ing	 independence	among	sites.	Subsequently,	 the	combinations	of	
occupancy	and	detection	covariates	of	the	top	models	were	tested	
based	on	the	lowest	ΔAICc	values.	The	bootstrapped	top	13	mod-
els	 also	 showed	 adequate	 model	 fit	 (ĉ ~ 1,	 Table 2).	 The	 summed	
weight	of	the	top-	ranked	models	(ΔAICc ≤ 2.0)	was	0.61	and	the	most	

parsimonious	model	 (ψ(Hsp + Tcaco + Pre + DR),ρ(E + T + P))	 had	 only	
0.08	model	weight,	suggesting	more	plausible	competing	models	ex-
isted	to	explain	the	occupancy	and	detection	estimates	(Table 2).	We	
used	model	averaging	to	improve	inference	as	the	top	model	clearly	

Site Covariate Σωi βmean ± SE

95% CIs

p- ValueLower Upper

GCCA Occupancy	(Ψ)

Predator 0.97 −2.12 ± 0.84 −3.76 −0.48 .011

Herb	species	richness 0.97 1.40 ± 0.68 0.07 2.74 .039

Distance to road 0.78 −0.74 ± 0.35 −1.44 −0.05 .034

Tree canopy cover 0.46 −0.58 ± 0.37 −1.30 0.13 .117

Elevation 0.35 0.79 ± 0.60 −0.39 1.97 .189

Woody	density 0.22 −0.46 ± 0.42 −1.29 0.37 .277

Distance to water 0.10 0.21 ± 0.41 −0.59 1.00 .621

Distance	to	settlement 0.06 0.36 ± 0.49 −0.60 1.33 .472

Detection	(ρ)

Occasion 0.99 0.68 ± 0.23 0.23 1.13 .003

Precipitation 0.92 0.75 ± 0.36 0.05 1.45 .037

Temperature 0.70 0.40 ± 0.23 −0.04 0.84 .082

SEA Occupancy	(Ψ)

Distance	to	settlement 0.76 0.74 ± 0.41 −0.07 1.55 .071

Tree canopy cover 0.72 −0.84 ± 0.48 −1.77 0.09 .080

Herb	species	richness 0.60 0.83 ± 0.48 −0.11 1.77 .083

Distance to road 0.37 0.62 ± 0.41 −0.18 1.42 .131

Predator 0.09 1.10 ± 1.23 −1.31 3.51 .378

Woody	density 0.03 0.23 ± 0.44 −0.63 1.09 .614

Detection	(ρ)

Occasion 0.26 0.39 ± 0.30 −0.19 0.98 .195

Temperature 0.23 0.34 ± 0.27 −0.19 0.86 .210

Precipitation 0.18 0.21 ± 0.21 −0.21 0.63 .322

Note:	Lower	and	upper	95%	confidence	intervals	of	the	coefficients	were	constructed.	Non-	
overlapping	with	zero	(bold)	shows	significance	values	of	β	estimates.

TA B L E  3 Summed	model	weight	(Σωi) 
and	influence	of	covariates	calculated	
from	model-	averaged	beta	coefficient	
estimates	and	standard	errors	(βmean ± SE).

F I G U R E  4 Parameter	estimates	(occupancy	and	detectability)	
of	Moorland	Francolin	derived	from	model	averaging.	The	asterisks	
(***)	denote	a	strong	statistically	significant	difference	between	
parameter	estimates	in	the	study	area	at	p < .001	level.

 20457758, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10551, W

iley O
nline L

ibrary on [09/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11 of 18ABRHA et al.

showed	model	selection	uncertainty	 (Symonds	&	Moussalli,	2011). 
Due	to	the	ecological	 importance	of	 individual	covariates	 included	
in	the	top	models,	we	discounted	models	with	less	than	five	ΔAICc 
to	 increase	model	weight	 (Richards,	2005) and we considered the 
top-	ranked	models	with	summed	model	weight	of	0.95	(Symonds	&	
Moussalli,	2011).

Model-	averaged	 estimate	 of	 ψ̂	 across	 all	 sites	 was	 0.76	
(SD = 0.28)	and	 ρ̂	was	0.82	 (SD = 0.05).	The	overall	occupancy	was	
10%	 greater	 than	 the	 naïve	 occupancy	 estimates	 when	 detec-
tion	 probability	 is	 accounted	 for.	 As	 we	 hypothesized,	 predators	
negatively associated with the Ψ	of	Moorland	Francolins	 in	GCCA	
(βmean ± SE = −2.12 ± 0.84;	95%	CI:	−3.76;	−0.48)	and	the	summed	ωi 
was	97%	 (Table 3).	 There	was	a	higher	 average	occupancy	proba-
bility	in	the	absence	of	predators	in	comparison	to	the	presence	of	
predators	(Mann–	Whitney	U-	test = 244.5,	n = 98,	p < .001)	(Figure 5). 
These	predators	were	avian	and	mammalian	species.	We	observed	
Yellow-	billed	Kite	Milvus aegyptius,	Augur	Buzzard	Buteo augur,	Ver-
reaux's	Eagle	Aquila verreauxii,	and	Common	Kestrel	Falco tinnuncu-
lus	to	be	common	potential	aerial	predators	of	Moorland	Francolins	
in	 the	 area.	 The	 most	 important	 potential	 mammalian	 predators	
were	African	Civet	Civettictis civetta,	Honey	Badger	Mellivora cap-
ensis,	Black-	backed	Jackal	Canis mesomelas,	Serval	Leptailurus serval 
and	White-	tailed	Mongoose	Ichneumia albicauda.

We	also	found	that	herb	species	richness	showed	a	significantly	
positive	influence	the	occupancy	of	the	species	based	on	model	av-
eraging	 estimates	 (βmean ± SE = 1.40 ± 0.68,	 95%	CI:	 0.07–	2.74)	 and	
the	 summed	ωi	was	97%	 (Table 3; Figure 6).	Contrary	 to	 our	 pre-
diction,	distance	to	road	was	significantly	negatively	influenced	the	
Ψ	 of	 the	 species	 and	 the	model	weight	 of	 the	 covariate	was	78%	
(βmean ± SE = −0.74 ± 0.35;	95%	CI:	−1.44,	−0.05),	suggesting	that	oc-
cupancy	probability	decreased	as	the	distance	to	road	increased	in	
the	pristine	habitat	(Table 3; Figure 6).

As	 depicted	 in	 the	 top	 models,	 the	 ability	 to	 detect	 Moor-
land	 Francolins	 was	 modeled	 as	 a	 function	 of	 survey	 occasion,	
precipitation,	 and	 temperature	 with	 summed	 model	 weight	 of	
0.95,	 0.92,	 and	 0.70,	 respectively.	 The	 most	 important	 covari-
ates	 supported	 by	 our	 hypotheses,	 however,	 included	 sampling	

occasion	 (βmean ± SE = 0.68 ± 0.23,	 95%	 CI:	 0.23–	1.13)	 and	 precip-
itation	 (βmean ± SE = 0.75 ± 0.36,	 95%	CI:	 0.05–	1.45),	 both	 of	which	
significantly	 positively	 influenced	 the	 detectability	 of	 the	 spe-
cies	 (Table 3; Figure 6).	 Although	 the	 detectability	 of	 the	 species	
was	 increasing	 with	 temperature,	 the	 beta	 coefficient	 estimate	
(βmean ± SE = 0.40 ± 0.23;	 95%	 CI:	 −0.04	 to	 0.84)	 overlapped	 zero	
which	exhibited	a	positive	association	but	non-	significant	difference	
with	habitat	use	of	the	species.

3.3  |  Habitat use modeling for 
human- modified landscape

In	the	human-	modified	landscape,	a	total	of	339	photos	(2–	29	pho-
tos	per	site)	from	23	sites	were	trapped,	yielding	a	naïve	occupancy	
estimate	of	 0.48.	 The	Ψ	 estimate	without	 any	 covariate	was	0.54	
(SE = 0.08)	with	a	95%	CI	of	0.38–	0.70	and	ρ	of	0.54	(SE = 0.06)	with	
a	95%	CI	of	0.42–	0.65.	In	this	study	area,	based	on	the	above	con-
siderations,	the	null	model	was	included	in	the	top	important	mod-
els with ωi = 0.95	 to	 explain	 the	 stochastic	 processes.	 The	 global	
model	 (ψ(WD + Hsp + Tcaco + Pre + Elev + DR + DS + DW),ρ(E + T + P
))	 showed	no	 evidence	 of	 lack	 of	 fit	 (χ2 = 118.13;	p = .35;	 ĉ = 1.07).	
The	 most	 parsimonious	 model	 (Ψ(Sprich + Tcaco + DR + DS),ρ(.))	 had	
0.07	model	weight.	Hence,	all	top	models	(ΔAICc ≤ 2.0)	were	equally	
supported	 to	 influence	 habitat	 use	 modeling	 in	 the	 case	 of	 SEA-	
disturbed	sites	(Table 2; Table S2).

Model-	averaged	estimate	of	ψ̂	across	all	 sites	 in	SEA	was	0.56	
(SD = 0.19)	and	 ρ̂	was	0.48	 (SD = 0.06).	The	overall	occupancy	was	
underestimated	by	approximately	17%	when	detection	probability	is	
not	accounted	for.	Distance	to	settlement,	tree	canopy	cover,	herb	
species richness, distance to road, predator, and woody density ap-
peared	in	the	competing	models	to	explain	habitat	use	of	the	target	
species	in	this	area.	As	predicted,	distance	to	settlement	(ωi = 0.76;	
βmean ± SE = 0.74 ± 0.41;	95%	CI:	−0.07	to	1.55)	positively	associated	
with	habitat	use	of	 the	species,	yet	 its	 respective	95%	CIs	slightly	
overlapped	zero.	Other	covariates	also	showed	non-	significant	asso-
ciations	with	occupancy	of	the	species	(Table 3).

F I G U R E  5 Occupancy	probability	of	
Moorland	Francolin	in	association	with	
predator	presence/absence	in	GCCA.	
Cameras	placed	in	woody	plant	species	
frequently	had	photos	of	predators	
like	Serval	Leptailurus serval.	Error	bars	
indicate	standard	errors	of	occupancy	
probability,	***p < .001.
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12 of 18  |     ABRHA et al.

In	this	study	area,	detectability	was	more	supported	without	co-
variates	based	on	the	top	models.	Thus,	the	sample	covariates	pre-
dicted	to	influence	detectability	had	relatively	low	summed	weight	
and	95%	of	CIs	overlapped	zero.	In	this	disturbed	habitat,	detection	
probability	was	not	significantly	affected	by	sample	covariates	but	
all	 covariates	 depicted	positive	 association	with	 detectability.	 The	
summed	model	weight	of	each	covariate	was	below	0.30	(Table 3).

3.4  |  Recommended number of sampling occasions 
(K)

The	sampling	occasion	(K)	needed	at	GCCA	was	ranged	from	1	to	3,	
this	meaning	that	a	single	occasion	(mean	0.86	and	1.14,	respectively)	
was	 needed	 for	 a	 targeted	 confidence	 level	 of	 probabilities	 of	  0.7	
and	0.8	 and	 two	 (mean	1.64)	 and	 three	 (mean	3.27)	 occasions	 se-
quentially	were	sufficient	for	0.9	and	0.99	detection	probabilities	to	
estimate	the	true	absence	of	the	species	at	a	given	site.	Similarly,	we	
found	that	2,	3,	4,	and	7	occasions	sequentially	were	needed	at	SEA.

4  |  DISCUSSION

4.1  |  Occupancy and detection probability 
estimates using camera trap

Our	study	delivers	the	first	insights	into	the	habitat	use	of	Moorland	
Francolins	using	a	camera	trap	approach.	Camera	traps	for	this	elu-
sive	and	cryptic	species	helped	us	to	avoid	false-	positive	detection,	
which	 also	 corroborates	 the	 respective	 assumption	 for	 the	 occu-
pancy	model.	The	overall	or	true	occupancy	estimates	in	both	study	
areas	were	 greater	 than	 the	 naïve	 occupancy	 (ψ)	 estimates	when	
detection	 probability	 is	 accounted	 for.	 These	 suggest	 that	 mod-
els	 incorporate	 imperfect	 detections	 to	 discount	 underestimating	

of	 overall	 occupancy	 (Guillera-	Arroita	 et	 al.,	 2014;	 MacKenzie	
et al., 2018).	Since	we	had	small	sample	sizes	and	low	density	of	in-
dividuals	in	SEA,	we	increased	the	sampling	by	one	more	occasion	
to	minimize	the	effect	of	false-	negative	detections	of	the	target	spe-
cies.	Increasing	of	sampling	occasion	helps	to	increase	the	precision	
and	accuracy	of	detectability	of	species	(MacKenzie	&	Royle,	2005; 
Moore et al., 2014).

In	many	tropical	African	countries,	the	protected	areas	are	called	
“paper	parks”-	existing	 in	name	only	as	they	poorly	counter	habitat	
and	species	loss	(Dudley	&	Stolton,	1999).	However,	GCCA	as	a	tra-
ditionally	protected	area	is	exceptional	in	this	case	as	the	indigenous	
knowledge	for	conservation	of	natural	resources,	the	Qero	system,	
has	 supported	 several	 wildlife	 species	 for	 almost	 four	 centuries	
(Ashenafi	 &	 Leader-	Williams,	 2005;	 Nigussie	 et	 al.,	 2019).	 Occu-
pancy	and	detection	probability	estimates	of	Moorland	Francolins	
were	 higher	 in	 traditionally	 protected	 areas	 than	 in	 unprotected	
areas,	 suggesting	 the	persistent	and	high	conservation	effort	 sup-
porting	the	Ethiopian	Wolf	(Canis simensis)	by	the	local	community	
in	association	with	international	organizations	signifies	the	integrity	
and	functionality	of	the	whole	community.	Flagship	species	like	this	
play	a	vital	role	in	biodiversity	conservation	at	local	and	global	scales	
(Jarić	et	al.,	2023),	which	is	demonstrated	by	its	positive	side	effects	
for	 Moorland	 Francolins	 and	 other	 species	 in	 GCCA,	 too.	 Unlike	
other	carnivore	species,	this	species	is	a	rodent	specialist	(Ashenafi	
et al., 2012;	Atickem	&	Stenseth,	2022;	Vial	et	al.,	2011).

4.2  |  Determinants of occupancy and detection 
probabilities

Based	 on	 beta	 estimates	 and	 moderate	 model	 weight,	 Moorland	
Francolins	revealed	an	aversion	to	montane	forest	habitat	due	to	the	
presence	of	predators	in	the	tree	canopies.	The	Afroalpine	highlands	
are	suitable	habitats	for	predators	(Clouet	et	al.,	2000),	and	habitat	

F I G U R E  6 (a,	b)	Occupancy	probability	
(ψ)	of	Moorland	Francolin	in	association	
with	herb	species	richness	and	distance	to	
the	nearest	road	(km)	and	(c,	d)	Detection	
probability	(ρ)	of	the	species	in	association	
with	sampling	occasion	and	average	
precipitation	(mm/day),	respectively.	The	
estimates	for	the	parameters	are	created	
from	the	most	parsimonious	model	that	
holds these covariates and the shaded 
area	in	each	graph	shows	95%	confidence	
intervals.
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    |  13 of 18ABRHA et al.

use	of	many	ground-	dwelling	birds	 is	negatively	 influenced	by	 the	
presence	 of	 predators	 in	 and	 around	 the	 forest	 habitats	 (Abrha	
et al., 2018;	Sukumal	et	al.,	2017).	In	concordance	with	these	find-
ings,	our	results	confirm	that	predators	(both	aerial	and	ground	pred-
ators)	may	strongly	negatively	influence	the	habitat	use	of	Moorland	
Francolins	in	GCCA,	although	the	main	diet	of	several	raptors	is	ro-
dents	(Clouet	et	al.,	2000).

Though	hunting	pressure	is	one	of	the	key	factors	for	decreas-
ing	 francolin	 populations	 nationwide	 (Abrha	 et	 al.,	 2017; Gedeon, 
Rödder, et al., 2017;	 Töpfer	 et	 al.,	 2014)	 and	 globally	 (McGowan	
et al., 2012),	this	threat	was	only	of	minor	importance	to	Moorland	
Francolins	in	GCCA.	However,	in	both	study	areas,	but	essentially	in	
SEA,	hunters	preferably	target	to	capture	Erckel's	Francolin	Pternis-
tis erckelii	that	usually	subsist	in	habitats	below	the	tree	line	in	GCCA	
(Demis	&	Tesfaye,	 pers.	 comm.),	 and	 sympatrically	with	Moorland	
Francolins	 in	SEA.	Hunting	pressure	apparently	 is	much	more	pro-
nounced	on	P. erckelii	due	to	 its	 larger	size	and	because	of	 the	dif-
ferent	perceptions	by	the	 local	communities	toward	both	highland	
francolins.

Herb	 species	 richness	 was	 also	 supported	 based	 on	 model	
weight	 and	 top	models.	 The	 protected	 grassland	 of	GCCA	 covers	
almost	60%	of	 its	total	area	(Steger	et	al.,	2020) and holds several 
range-	restricted	species	(Ashenafi	et	al.,	2012;	Ashenafi	&	Leader-	
Williams,	2005).	As	expected,	 the	occupancy	probability	of	Moor-
land	Francolins	increased	with	herb	species	richness	in	GCCA,	in	line	
with	other	reports	on	pheasant	species	 (Jolli	et	al.,	2012;	Sukumal	
et al., 2017).	 This	 vegetation	 type	 is	widespread	 in	 the	plateau	of	
Afroalpine	biome	of	Ethiopia	(Nigussie	et	al.,	2019;	Steger	et	al.,	2020) 
and	it	is	the	source	of	food	and	provides	essential	shelter	for	many	
grassland	specialists	(Töpfer	&	Gedeon,	2020). It had also a positive 
influence	on	the	habitat	use	of	Moorland	Francolins	at	SEA,	but	the	
95%	 confidence	 interval	 of	 the	 β-	coefficient	 estimate	 overlapped	
zero	 showing	 less	 support	 for	 its	 influence	on	 the	 species.	This	 is	
because	the	area	has	been	increasingly	transformed	into	a	monocul-
tural	plantation	(Bahru	et	al.,	2021;	Tadesse	&	Tafere,	2017), and is 
subject	to	tourism	activities	(Asefa,	2018;	Tesema	&	Berhan,	2019), 
overgrazing	 and	other	human-	induced	disturbances	 in	 the	plateau	
of	central	highlands	 (Asefa	et	al.,	2020).	For	 instance,	a	 recent	 re-
port	showed	that	the	natural	grassland	of	Entoto	Natural	Park	has	
decreased	over	the	last	three	decades	and	that	the	area	is	now	dom-
inated	by	an	Eucalyptus	plantation	(Tesema	&	Berhan,	2019).	In	such	
areas,	Moorland	Francolins	showed	a	pronounced	aversion	toward	
modified	habitat	types.	This	implies	that	Afromontane	grassland	and	
shrubland	specialists,	especially	Moorland	Francolins	might	gradu-
ally	become	locally	extinct.

Distance	to	road	was	also	the	other	strongest	covariate	influenc-
ing	the	occupancy	probability	of	Moorland	Francolins,	similar	to	other	
reports	in	ground-	dwelling	bird	species	(Whitworth	et	al.,	2018). The 
occupancy	probability	of	the	species	was	higher	along	the	edge	of	
roadsides	and	trails	than	at	sites	located	in	remote	in	GCCA,	in	con-
cordance	with	other	reports	on	wildlife	species	(Kroeger	et	al.,	2022; 
Paemelaere	et	al.,	2023).	This	is	unexpected	because	roads	can	at-
tract	 hunters	 and	 predators,	 delivering	 also	 other	 human-	induced	

perturbations	(Dean	et	al.,	2019; Kroeger et al., 2022).	In	GCCA,	we	
observed	that	proximity	to	road	attracts	the	species	as	there	were	
food	items	mainly	on	the	unpaved	road,	including	grains	and	fruits	
thrown	 through	window	by	passengers.	Most	 roadsides	have	 also	
dense	native	herbaceous	vegetation,	which	may	also	help	Moorland	
Francolins	to	survive.	On	the	contrary,	occupancy	increased	as	the	
distance	 to	 road	 increased	 in	SEA	habitat	 but	did	not	 show	a	 sig-
nificant	association	with	roads.	This	suggests	 that	Moorland	Fran-
colins	avoid	roads	and	trails	 in	a	human-	modified	 landscape.	Thus,	
roads	 may	 have	 positive	 effects	 on	 bird	 species	 in	 more	 pristine	
habitats	(Kroeger	et	al.,	2022)	and	in	areas	where	hunting	pressure	
is	 controlled	 as	 a	 management	 strategy	 (Whitworth	 et	 al.,	 2018). 
Local	low	temperatures	and	high	ground	vegetation	cover	(Nigussie	
et al., 2019;	Steger	et	al.,	2020)	may	lead	the	species	to	use	the	road-
sides	 and	 trails:	 (1)	 to	 enhance	 foraging	 opportunities;	 (2)	 to	 stay	
more	vigilant	to	avoid	risk	of	predation;	 (3)	as	a	heat	source;	 (4)	to	
facilitate	mating,	connectivity	and	communication.

Avoidance	 of	 human	 settlements	 is	 likely	 related	 to	 livestock	
grazing	causing	herb	species	richness	to	shrink	at	the	GCCA	periph-
ery	(i.e.,	human	occupation).	Similarly,	the	effect	of	distance	to	set-
tlement	as	a	type	of	human	disturbance	posed	a	positive	effect	on	
Moorland	Francolins	in	SEA.	There	was	no	significant	difference	for	
the	covariate	 in	 this	 area,	 yet	 relatively	high	model-	averaged	beta	
coefficient	estimate;	model	weight	and	confidence	intervals	reveal	
irregularity	 in	 association	 with	 the	 species,	 most	 presumably	 due	
to	 lack	of	habitat	heterogeneity,	 a	 small	 sample	 size,	 limited	num-
ber	of	cameras,	and	small	sampling	occasions,	as	compared	to	rec-
ommended	occasions.	Hence	distance	to	settlement	had	a	slightly	
significant	positive	 influence	on	 the	species	 in	SEA,	agreeing	with	
previous	studies	on	pheasants	(Chen	et	al.,	2019;	Jolli	et	al.,	2012; 
Nuttall	 et	 al.,	 2017;	 O'Brien	 &	 Kinnaird,	 2008),	 other	 bird	 (Pardo	
et al., 2017)	and	mammal	species	(Paemelaere	et	al.,	2023;	Semper-	
Pascual	et	al.,	2020).

In	 line	 with	 our	 hypothesis,	 sampling	 occasion	 significantly	
positively	 influences	 the	 detectability	 of	 the	 species	 in	 GCCA.	
Conversely,	in	SEA,	this	covariate	appeared	in	one	of	the	most	par-
simonious	 models	 and	 it	 positively	 influenced	 detectability	 but	 it	
had	 low	model	weight	 and	 the	beta	 coefficient	 estimates	 showed	
statistically	non-	significance	association.	The	detectability	may	be	
affected	by	spatial	variations	and	sample	sizes.	Our	hypothesis	that	
species	 detection	 increases	 with	 number	 of	 days	 of	 cameras	 de-
ployed	showed	consistency	with	other	findings	in	bird	(Paemelaere	
et al., 2023;	Si	et	al.,	2014)	and	mammal	species	(Holzner	et	al.,	2021; 
Semper-	Pascual	 et	 al.,	2020;	 Shannon	et	 al.,	 2014;	 Si	 et	 al.,	 2014; 
Wevers	 et	 al.,	2021).	 The	magnitude	 of	 sampling	 occasion	 on	 de-
tection	probability	estimate	demonstrates	species-	specific	response	
(Iannarilli	et	al.,	2021).

In	Ethiopia,	after	a	long	dry	season,	both	a	small	and	a	main	rain	
season	occurs	in	most	highland	areas	(Mohammed	et	al.,	2022).	Sev-
eral	 francolin	species	are	adapted	to	 this	seasonally	changing	pre-
cipitation	regime	(Abrha	et	al.,	2018; Gedeon, Rödder, et al., 2017), 
which	allows	the	areas	to	replenish	food	resources	and	ecosystem	
greenness	 vital	 for	 breeding	 (Abrha	 et	 al.,	 2018).	 This	 is	 because	
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francolins	may	 find	plenty	of	 food	by	easily	 raking	 and	 scratching	
the	wet	ground	(Abrha	et	al.,	2018).	Moreover,	during	rain	seasons,	
birds	of	prey	soar	less,	and	agro-	pastoral	encroachments	seem	lower	
compared	 to	 the	 dry	 season	 (pers.	 obs).	 Elsewhere	 in	 tropics,	 the	
breeding	season	of	birds	 is	reported	to	be	associated	with	the	be-
ginning	of	precipitation	and	this	is	linked	to	the	abundance	in	food	
and	cover	resources	(Cox	et	al.,	2013;	França	et	al.,	2020;	Jansen	&	
Crowe, 2005).	In	our	species,	some	camera	traps	have	documented	
chicks	being	fed	by	their	parents	in	GCCA,	and	this	implies	that	the	
breeding	season	of	the	species	may	coincide	with	the	short	and	mild	
precipitation	distribution	from	February	to	June.	Similarly,	tempera-
ture	positively	influenced	the	detectability	of	the	species,	but	there	
was	 little	 support	 for	 our	 hypothesis	 based	 on	 models.	 This	 may	
suggest	that	the	species	avoids	extreme	temperatures.	Collectively,	
climate	factors	are	very	important	for	the	detectability	of	the	target	
species	in	the	central	highlands	of	Ethiopia.

4.3  |  Camera trapping for assessment of cryptic 
bird species

The	Moorland	Francolins,	similar	to	other	pheasants	 in	the	region,	
could	potentially	go	visually	undetected,	particularly	in	areas	of	low	
population	density	and	in	disturbed	habitats.	Extreme	weather	con-
ditions,	seasonality,	expert	experience,	and	other	factors	may	also	
obscure	the	ability	of	detecting	the	species.	This	is	because	the	birds	
usually	remain	silent,	hidden,	and	squatted	when	people	approach	
them.	Thus,	false-	negative	detection	could	bias	inferences	about	the	
occupancy	and	detection	probability	estimates	and	other	parame-
ters.	However,	the	deployment	of	non-	invasive	modern	approaches	
like	remotely	triggered	camera	traps	can	avoid	such	ecological	con-
cerns. This approach also helps to discover new geographical ranges, 
other	wildlife	 species	 (including	predators)	 and	 thereby	helping	 to	
understand	the	interactions	of	the	Moorland	Francolins	in	its	natural	
habitat.	Another	positive	feature	of	the	camera	trapping	technique	
is	 that	 it	 is	 cost	 and	 time-	effective.	 Our	 results	 strongly	 support	
the	 deployment	 of	 camera	 traps	 for	 the	 detection	 of	 cryptic	 and	
little-	known	 species	 in	 a	 topographically	 complex	 region.	 Camera	
traps	provide	reliable	comprehension	and	precision	of	occupancy	of	
Moorland	Francolins	in	the	Afroalpine	Biome.	Such	camera	trap	data	
(O'Brien	&	Kinnaird,	2008;	Sharief	et	al.,	2022;	Si	et	al.,	2014;	Steen-
weg et al., 2017;	Wearn	&	Glover-	Kapfer,	2017)	ultimately	promotes	
the	proper	conservation	of	the	target	species.

5  |  CONCLUSIONS

The	findings	demonstrate	that	habitat	use	of	Moorland	Francolins	is	
higher	in	the	more	pristine	habitats	compared	to	the	strongly	human-	
influenced	in	SEA.	This	suggests	that	a	community-	based	conserva-
tion	area	(i.e.,	GCCA)	is	a	crucial	remnant	habitat	of	endangered	and	
data-	deficient	wildlife	 species	 in	 Ethiopia.	 Since	 such	 community-	
based	 conservation	 approaches	 obviously	 support	 sustainable	

species-	habitat	conservation,	strengthening	the	existing	Qero	sys-
tem	and	expanding	the	model	to	other	potential	hotspot	sites	and/
or	 IBAs	 is	 strongly	 recommended	 to	circumvent	 the	mounting	an-
thropogenic	disturbances	in	the	region	(Asefa	et	al.,	2017; Chengere 
et al., 2022;	Razgour	et	al.,	2021;	Rodrigues	et	al.,	2021).

Our	 results	 also	 show	 that	 the	 species	 uses	 various	 herb	 spe-
cies,	roadsides	and	trails	for	resting,	hiding,	survival,	and	reproduc-
tion.	Conversely,	predators	threatened	the	francolins	predominantly	
in	native	and	plantation	forests,	 thus	Moorland	Francolins	 tend	to	
avoid	tree	canopy	cover	and	human	settlements	in	both	study	areas.	
In	 the	human-	modified	SEA	areas,	most	covariates	had	a	weak	 in-
fluence	 on	 the	 occupancy	 and	 detection	 estimates	 of	 our	 target	
species	because	habitats	are	dominated	by	Eucalyptus plantations, 
fragmented	meadow	hill	patches,	and	farmlands,	unlike	the	hetero-
geneous	and	protected	habitats	in	GCCA.

We	confirm	that	camera	trap	deployment	corroborates	the	pres-
ence	 or	 absence	 of	 shy	 ground-	dwelling	 birds	 not	 only	 in	 known	
areas	but	also	in	understudied	areas.	The	detectability	of	francolins	
was	determined	by	the	sampling	occasion	and	precipitation.	Further	
research	using	single	or	multi-	season	modeling	is	required	to	under-
stand	the	influence	of	habitat	covariates,	seasonal	colonization,	and	
local	extinction	from	spatiotemporally	replicated	surveys.
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A B S T R A C T   

Modeling the occupancy of species in the context of habitat components is a crucial step to deliver 
an appropriate conservation strategy. Accounting for imperfect detection in occupancy models 
helps to conclude on true species distribution and occupancy. We used dynamic occupancy 
modeling to investigate the influence of habitat covariates on occupancy dynamics of the Near 
Threatened Harwood’s Francolin (Pternistis harwoodi) in the Upper Blue Nile Basin in Ethiopia. 
We used direct observation and playback technique to collect presence/absence data both during 
a wet and a dry season in 2019 and 2020. By accounting for species’ imperfect detection, the 
model averaged estimates of occupancy probabilities (mean ± SE) across respective seasons were 
0.81 ± 0.08 and 0.79 ± 0.07 and detection probabilities were 0.47 ± 0.08 and 0.62 ± 0.06. The 
colonization and local extinction probability estimates between seasons were 0.59 ± 0.20 and 
0.12 ± 0.07, respectively. We demonstrate that occupancy probability significantly decreased 
with increasing both Normalized Difference Vegetation Index (NDVI: βmean ± SE = − 1.83 ± 0.66; 
95% CI: − 3.12, − 0.54) and quadratic term of slope (SL2 = − 1.51 ± 0.62; 95% CI: − 2.73, − 0.29) 
in the study area. Furthermore, human disturbance index (HDI: = − 1.06 ± 0.54; 95% CI: − 2.12, 
− 0.004) significantly negatively influenced the occupancy of the species. As we hypothesized, the 
detection probability increased significantly as a function of average temperature (0.37 ± 0.13; 
95% CI: 0.12, 0.63). There were no statistically significant associations among covariates and the 
dynamic parameters, yet important covariates such as NDVI slightly negatively influenced 
colonization, whereas HDI positively influenced local extinction. The aversion of the species to-
wards human disturbance and its persistence at lower NDVI and lower slopes has important 
implications for conservation strategy in the area. The current study demonstrates empirical 
evidence of dynamic occupancy modeling for a cryptic ground-dwelling pheasant species in the 
Upper Blue Nile Basin. Further study is recommended to understand spatiotemporal species- 
habitat association at fine and landscape scales.   

1. Introduction 

Occupancy modeling of a species in the context of habitat components is critically important for successful conservation and 
management of ecological systems (Lahoz-Monfort et al., 2014; MacKenzie et al., 2018). The species-habitat associations and 
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distributions are commonly modeled using species distribution models (SDMs) (e.g., Elith et al., 2006; Phillips et al., 2006; Elith and 
Leathwick, 2009). These models integrate occurrence or count data of species with habitat covariate (i.e., environmental covariate) 
data to make ecological inferences on species distribution (Elith et al., 2006; Elith et al., 2011). Nevertheless, most of these con-
ventional SDMs use presence-background, true absence or pseudo-absence data without accounting for imperfect detection to predict 
species distributions (e.g., Guisan and Zimmermann, 2000; Elith et al., 2006; Elith et al., 2011). Such type of models generates biased 
estimates of true distribution of species as a function of habitat covariates (Kéry et al., 2010). The consideration of imperfect detection 
for species occupancy and distributions in ecological data is essential to create robust inferences (MacKenzie et al., 2003, 2018; 
Lahoz-Monfort et al., 2014; Guillera-Arroita et al., 2014; Guillera-Arroita, 2017). 

Unlike conventional models such as the popular presence-only models, occupancy models are ‘data hungry models’ and perform 
better (Jha et al., 2022). Occupancy models need accurate and precise presence/absence data and environmental factors to produce 
sound conservation and management strategies for wildlife species (MacKenzie et al., 2002, 2018). These factors determine 
species-habitat associations (Kearney, 2006; Morrison et al., 2012) and are generally classified into resources, risks and conditions 
(Matthiopoulos et al., 2020). Among these factors, Normalized Difference Vegetation Index (NDVI) as a surrogate for vegetation or 
ecosystem greenness (Leveau et al., 2018; Green et al., 2019; Debela et al., 2021; Wu et al., 2021), topography (Burner et al., 2019; 
Campos-Cerqueira et al., 2021; Debela et al., 2021; Jean-Pierre et al., 2022), anthropogenic disturbances (Ramesh and Downs, 2014; 
McGowan et al., 2012; Abrha et al., 2017; Devarajan et al., 2020), disease (Bailey et al., 2014; Blanco et al., 2019; Chaudhary et al., 
2020; Keesing and Ostfeld, 2021), climatic conditions (Debela et al., 2021; Jean-Pierre et al., 2022) and others affect species in 
spatiotemporal dynamics (Devarajan et al., 2020). 

Harwood’s Francolin (other name: Harwood’s Spurfowl) Pternistis harwoodi is an endemic and Near Threatened pheasant species in 
Ethiopia (BirdLife International, 2018). In Ethiopia, most pheasants, especially francolins, are highly threatened bird species due to 
hunting and habitat loss (Töpfer et al., 2014; Abrha et al., 2017; Gedeon et al., 2017). Galliformes face multiple anthropogenic threats 
(Keane et al., 2005; McGowan et al., 2012; Tian et al., 2018) with hunting (Keane et al., 2005; McGowan et al., 2012), livestock grazing 
(Wang et al., 2021) and other habitat losses (Bagaria et al., 2021) and climate change (Zahoor et al., 2022; Liu et al., 2023) being the 
key menacing factors globally. For instance, around 66% of Galliform species are threatened by these synergetic effects (McGowan 
et al., 2012). 

Harwood’s Francolin was first discovered in 1899 at Ahiya Fej at south of Jama district in the central highlands of Ethiopia. The 
subsequent field expeditions that focused on identification of new localities for the species were conducted at Kalo Ford (Cheeseman 

Fig. 1. Study area in the Upper Blue Nile Basin (UBNB) based on digital elevation model (DEM) (SRTM Global elevation data- https://earthexplorer. 
usgs.gov). All sampling stations (n = 144) are included in the map. 
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and Sclater, 1935; Urban et al., 1986), near Bichana, and Muger River sub-basins (Urban et al., 1986). The most recent study on the 
ecology of the species has been frequently reported from Jema and Jara sub-basins (Robertson et al., 1997; Ash and Atkins, 2009; 
Abrha and Nigus, 2017; Abrha et al., 2017, 2018). Most of these earlier studies were limited by time and research funds. There is 
scarcity of information about the mechanisms explaining distribution and spatiotemporal habitat use dynamics of Harwood’s Fran-
colins so far. Currently, the conservation status of the species is downlisted from ‘Vulnerable’ to ‘Near Threatened’ category on the 
IUCN Red List (BirdLife International, 2018); yet empirical evidence supported spacious geographical range and conservation action 
that has practically reduced the threats of the target species at site level are lacking. The species is one of the three endemic bird species 
that could be prioritized for future flagship conservation and management action plans in Ethiopia (Ash and Atkins, 2009). 

Even though most studies on ground-dwelling birds of Africa are derived from static occupancy modeling (e.g., Ramesh and Downs, 
2014; Maseko et al., 2017; Smith et al., 2017; Gumede et al., 2022; Abrha et al., 2023; Bitani et al., 2023), studies using dynamic 
occupancy modelling are lacking, in particular on habitat use of galliform species from Ethiopia. Here, we collected presence/absence 
data of Harwood’s Francolins using a combination of techniques from two-season surveys which ranged from Mida Woremo to Amuru, 
Yaso and Bure districts in the Upper Blue Nile Basin (UBNB). We also collected some spatiotemporal sets of covariates from ground 
truthing (i.e., field surveyed) and remotely sensed levels in the area. Using dynamic (multi-season) occupancy modeling (MacKenzie 
et al., 2003), we modeled occupancy and associated parameters governing the processes of the system to draw inferences about oc-
cupancy dynamics of the target species in its native range. Therefore, the objective was to determine factors influencing probabilities of 
occupancy, seasonal colonization, local extinction and detection of the target species across large spatiotemporal scales in UBNB. 

2. Methods 

2.1. Study area 

Ethiopia harbors two large blocks of highlands: the Western and Eastern highlands segmented by the East African Rift Valley. The 
study area is part of the Western highlands which stretches from Mida Woremo district in north Shewa zone of Amhara to the junction 
among Amuru, Yaso and Bure districts of Oromia, Benishangul-Gumuz and Amhara regions, respectively. The elevation of the study 
area ranges from 840 to 2520 m a.s.l (Fig. 1). The dominant habitat vegetation types (for simplicity habitat types) are Combretum- 
Terminalia woodland and wooded grasslands (CTW), Dry evergreen Afromontane forest and grassland complex (DAF), riparian 
vegetation (RV) and farmland mosaics (Friis et al., 2010). We also included mixed plantations (commonly different fruits and vege-
tables) scattered along the course of Jema, Wenchit and Jara Rivers as an additional habitat type in this study. 

In UBNB, two Important Bird and Biodiversity Areas (hereafter IBAs) including the Mid-Abbay (Blue Nile) River Basin and Jema 
and Jara Valleys are designated particularly because of the occurrence of endemic species, including Harwood’s Francolin (Tilahun 
et al., 1996; BirdLife International, 2023a). According to the biome classification of Fishpool and Evans (2001), the Mid-Abbay is part 
of the Sudan-Guinea Savanna biome, whereas Jema and Jara Valleys belongs to the Afrotropical Highlands biome. Multifaceted 
anthropogenic disturbances are common phenomena across the Ethiopia highlands (Nyssen et al., 2004), particularly in the habitat of 
the target species (Robertson et al., 1997; Abrha et al., 2017). Generally, the dominant land cover type of UBNB is farmland mosaics 
(Tekleab et al., 2013). The mean annual temperature of Jema and Jara Valleys and the Mid-Abbay IBAs is 18.61 ◦C ( ± 0.09 SE) and 
20.34 ◦C ( ± 0.11 SE), and the mean annual precipitation is 3.45 mm ( ± 4.57 SD) and 5.36 mm ( ± 8.54 SD), respectively. The area is 
characterized by a high degree of rainfall variability, with the main rain season from June to September (Mohammed et al., 2022). 

2.2. Sampling design 

2.2.1. Presence/Absence data 
Field surveys were conducted during two periods, reflecting a dry (26 October 2019 to 29 March 2020) and a wet season (26 August 

to 14 November 2020). We conducted direct observation approach (Buckland et al., 2004; Sutherland, 2006) to collect pre-
sence/absence data in UBNB. It is a valuable field approach for occupancy modeling studies, particularly for bird monitoring 
(Zamora-Marín et al., 2021; Zwerts et al., 2021). We also conducted indirect observations such as auditory detections with stimulus 
and molted feather occurrences. Including indirect methods helps to produce robust estimates of occupancy and associated parameters 
for cryptic, shy and rare species (MacKenzie et al., 2018; De Rosa et al., 2022; Goldman et al., 2023), such as Harwood’s Francolin. 

Sampling stations (hereafter stations) (Fig. 1) were selected randomly from predetermined line transects across five habitat types in 
UBNB. We had 61 line transects (average = 2.1 km ± 1.2 SD) and along these transects a total of 144 stations were allocated. Each 
station was a 50 m radius with a minimum distance of 0.7 km between them. The number of stations (i.e., effective sample size) 
allocated across habitats types were based on the standard design procedure (excluding survey cost) for multi-season occupancy study 
(MacKenzie and Royle, 2005; MacKenzie et al., 2018). Thus stations were selected according to proportion of each habitat size and 
habitat preferences of the Harwood’s Francolins in UBNB (CTW = 42, DAF = 44, farmland = 32, plantations = 12 and RV = 14). The 
evergreen scrub vegetation habitat is part of DAF in this study (Friis et al., 2010). Four trained field observers participated and each 
observer assigned to visit new stations during the entire study to avoid potential observer effect. Data collections were mostly per-
formed in the morning (6:00–10:00) and in the late afternoon (15:00–18:00) as the species exhibits optimum activity patterns in both 
time blocks (Abrha and Nigus, 2017; Abrha et al., 2018) and this could potentially help to minimize false negative detections. In each 
station, the observers spent 10-minute bouts to record presence/absence (i.e., detection/non-detection) of Harwood’s Francolins. 

The same stations were surveyed in both non-consecutive seasons. The distance between stations in the continuous habitat ranged 
from 0.7 to 3.0 km along transects to maintain independence among stations and minimize spatial autocorrelation. Sampling effort 
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was between one to three repeated surveys with an average survey (Κaverage) of 1.95 and 2.56 in both seasons, respectively. Repeated 
surveys in each site were conducted in alternate order based on morning and late afternoon time blocks. Thus, data were collected in an 
interval of 4–7 days at each station. The total number of surveys (s stations surveyed K times) was 864. However, due to logistic and 
time constraints, adverse weather conditions, COVID and security reasons, we visited only 581 stations. 

Because direct observation produces low data quality for cryptic and shy species (Zwerts et al., 2021), we used the playback 
technique (De Rosa et al., 2022) at some of the stations to ascertain the presence of elusive Harwood’s Francolins. The target species 
could remain silent and go undetected due its behavior essentially in some low-density populations as well as highly disturbed habitat 
types. In such conditions, we applied a playback call using Sony speaker (Sony SRS-XB10 portable wireless speaker, Sony Electronics 
Inc.) immediately after having failed to observe visually. We confirmed that Harwood’s Francolins are easily attracted by a playback 
call during a preliminary assessment survey in 2018 (Gedeon and Abrha, pers. obs). We conducted the survey with alternation of a 5 s 
playback call followed by 1 min of silence to aurally detect the target species. This call survey repeated for three times until the target 
species lured by the stimulus. The device was held at about 2 m high and rotated for 360◦ until the target species responded to the 
stimulus. We applied it carefully to lure the target species by minimizing unnecessary disturbance on the behavior of the species and 
the entire community. We did not perform playback when there was an obvious reaction towards our presence or an anti-predator 
behavior by congenerics, other bird and mammal species in the area. Playback was used during morning and late afternoon time 
block to match with the normal time for calling and the amplitude of the loudspeaker was adjusted to be low to medium depending on 
the proximity to the center of the station; medium amplitude was adjusted when observers were at the edge of the stations and there 
was no disturbance on the nearest station. 

Ultimately, we combined direct and indirect observations to minimize false absence of the target species. Data were recorded as 
detection history of a sequence of binary spatial occupancy patterns (detection=1 and 0 otherwise). 

2.2.2. Habitat covariates 
We considered habitat covariates both at fine scale and landscape scale levels and climatic conditions. Because fine-scale data have 

limited spatiotemporal coverage and accessibility (Cisneros-Araujo et al., 2021), most of our covariates were accessed from remotely 
sensed data (Table 1). Our key interests to consider some covariates were mainly derived from previous studies on anthropogenic 
disturbances (Robertson et al., 1997; Abrha et al., 2017), activity patterns in the context of climate factors (Abrha et al., 2018), and 
habitat preferences (Abrha and Nigus, 2017) of the target species. We also incorporated ecologically significant climate covariates 
from previous studies on congeneric species in Ethiopia (Gedeon et al., 2017). Accordingly, six covariates were collected from each 

Table 1 
Description of habitat covariates influencing initial occupancy probability (ψ1), colonization probability (γ), extinction probability (ε), and detection 
probability (ρ). Some empty cells in the table indicate that the value of coefficients (i.e., beta-β) was not checked for some parameters.  

Covariate Units Description and source Predicted effect on 
dependent variable 

Hypotheses and references 

ψ1 γ ε ρ 

NDVI Dimensionless Extracted for each station from Landsat 8 
Operational Land Imager (OLI) / Thermal 
Infrared Sensor (TIRS) images. Downloaded 
from: https://earthexplorer.usgs.gov/ 

- - + - Ecosystem greenness influences the occurrence 
bird species (Leveau et al., 2018; Green et al., 
2019; Debela et al., 2021; Wu et al., 2021). 
Harwood’s Francolins prefer shrubs, herbs and 
sparse trees in and around farmlands (Abrha and 
Nigus, 2017) where food source are available. 

Elevation m Extracted for each station from Digital 
Elevation Model (DEM) of Shuttle Radar and 
Topography Mission (SRTM-DEM). 
Downloaded from: https://earthexplorer.usgs. 
gov/ 

+ + -  Elevation influences the occupancy of bird species 
(Burner et al., 2019; Campos-Cerqueira et al., 
2021; Jean-Pierre et al., 2022). 
Harwood’s Francolins’ occupancy increases with 
elevation because increasing elevation may 
decrease human disturbance in most parts of the 
area. 

Slope Percent See elevation + + -  Topographic variables such as slope affect bird 
species (Debela et al., 2021). 
The target species avoids extremely steep and 
extremely slopes in various habitat types (Abrha 
and Nigus, 2017). 

HDI Dimensionless The index of human disturbance across 
stations (i.e., at fine scale level) 

- - + - Anthropogenic disturbances influence occupancy 
of bird species (Ramesh and Downs, 2014; Abrha 
et al., 2017; Devarajan et al., 2020). 

Season Julian date The dry and wet seasons during data collection    + /- Seasons influence detectability of Harwood’s 
Francolins due to seasonal variation in food 
availability. 

Temperature ◦C Daily temperature extracted for each station 
from NASA/POWER) satellite-based weather 
system. Downloaded from: https://power.larc. 
nasa.gov/data-access-viewer/    

+ Temperature and precipitation influence 
detectability of Harwood’s Francolins (Abrha 
et al., 2018), since these factors affect 
reproductive success of bird species (Skagen and 
Adams, 2012; Mares et al., 2017). Hence, the odds 
of detecting the target species may increase. 

Precipitation mm See temperature    +
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station to model occupancy, detection and dynamic parameters (i.e., colonization and extinction). 
In our data sets, we used two remotely sensed spatiotemporal datasets (https://earthexplorer.usgs.gov/, accessed on 31 August 

2022) including: 1) time-series Normalized Difference Vegetation Index (NDVI; per station at 30 m resolution and 16-day frequency) 
derived from Landsat 8 OLI/TIRS images (raster band 4 and 5) for the periods of 2019 and 2020. Thus, NDVI = (NIR-RED)/ 
(NIR+RED), where NIR and RED imply near-infrared and red (visible) spectral reflectance, respectively (Kriegler et al., 1969); 2) 
Elevation and slope were derived from Digital Elevation Model (DEM) of Shuttle Radar and Topography Mission (SRTM-DEM) of 1 
arc-second for global coverage (~30 m resolution). We downloaded NDVI by minimizing the aerosols and cloud cover noises. Even 
though elevation was recorded from ground truthing data using handheld Global Positioning System (GPS, with accuracy ~ ± 3 m, 
Garmin eTrex 30), we ultimately took it from the STRM-DEM data for consistency purpose. All remotely sensed data were derived for 
each station and the satellite-based vegetation index (i.e., NDVI) was extracted for both seasons. The average NDVI for each station was 
computed. We calculated all these habitat covariates in QGIS (version 3.26.1) software (http://www.qgis.org/). Enhanced Vegetation 
Index (EVI) may be preferred over NDVI (Qiu et al., 2018) due to its capability to enhance vegetation monitoring and considers ad-
justments to reduce the effect of soil and atmospheric noises (Huete et al., 1997; Tuanmu and Jetz, 2015), yet it is not encouraged to 
apply it in topographically complex area (Matsushita et al., 2007), like Ethiopian Highlands. NDVI has been extensively used in 
Ethiopia as a surrogate for aboveground net primary productivity or ecosystem greenness (Muir et al., 2021) and forage availability 
(Worku et al., 2023), particularly for UBNB (Merga et al., 2022; Moisa et al., 2022). Elevation, slope and average temperature 
(hereafter temperature) covariates were also in quadratic terms to test the nonlinear influence on occupancy and dynamic parameters. 

Following the procedure of Abrha et al. (2017) on the same species, the average human disturbance index (HDI) was determined 
from each station. HDI covariate was measured after the detection/non-detection data was completed in each station, as this field 
activity could hamper species detection and impose unnecessary disturbance. The type of human disturbances were classified as: 1) 
vegetation influence based on local people (VIP) which included cutting, debarking, mowing and thatching; 2) vegetation influence 
based on livestock grazing pressure (LG); 3) vegetation influence based on fire introduction (VIF) for charcoal preparation, farming 
activities and honey production and 4) hunting practices (HP). In this study, other minimal anthropogenic disturbances (Abrha et al., 
2017) and natural predation effects were not measured due to logistical constraints. Some of these threats were also site-specific in the 
basin. The HDI covariate of each station was calculated as: 

HDI = VIP × 0.4+LG × 0.3+HP × 0.25+VIF × 0.15 (1) 

The extent of disturbance weight for each disturbance class was assigned based on the previous research findings in the Jema Valley 
sub-basin (Abrha et al., 2017). We followed the protocol of Barber-Meyer et al. (2013) for quantifying and assigning of HDI weight for 
dynamic occupancy modeling of Harwood’s Francolins. 

We obtained remotely-sensed climatic data such as temperature and precipitation from National Aeronautics and Space Admin-
istration/Prediction of World Wide Energy Resources (NASA/POWER) satellite-based weather system (https://power.larc.nasa.gov/ 
data-access-viewer/, accessed on 27 August 2022). Because meteorological stations were absent near to the stations, with excep-
tion close to Gohatsion (Mohammed et al., 2022), we preferred remotely sensed data. Both data were extracted based on daily average 
values exactly corresponding to the Julian day of repeated surveys in each station. We lacked ground truthing climatic data and there 
was no literature related to our focus in Ethiopia to perform bias correction for our data. 

We modeled initial occupancy probability (ψ1) as a function of site-specific covariates including NDVI, slope, elevation, and HDI 
and the quadratic terms of both topographic covariates. Detection probability (ρ) was modeled as a function of sample covariates such 
as temperature and its quadratic term, precipitation and season. In addition, detection probability was modeled as a function of NDVI 
and HDI. Here, seasonal variation in ecosystem or vegetation greenness (i.e., NDVI) and HDI were also hypothesized to influence the 
detectability of Harwood’s Francolins. Accordingly, we tested the influence of covariates on occupancy, detection, local colonization 
and extinction parameters (Table 1). 

2.3. Data analyses 

The dynamic occupancy modeling was performed using the program PRESENCE 12.38 (Hines, 2006). The modeling (MacKenzie 
et al., 2003) was used to determine the effect of habitat covariates on each parameter estimate (ψ1, γ, ε, and ρ) of Harwood’s Fran-
colins. This modeling approach explicitly integrates changes in occupancy rate of a site over time with dynamic parameters: colo-
nization and local extinction probabilities. The colonization probability (γ) is defined as that an unoccupied station in season t is 
occupied by the species in season t + 1; and extinction (ε) is defined as the probability that a station occupied in season t is unoccupied 
by the species in season t + 1 (MacKenzie et al., 2003, 2018). The assumptions of this modeling approach (MacKenzie et al., 2003, 
2018) are: 1) No unmodeled heterogeneity in all parameters; 2) Occupancy state is static within a season; 3) Independence of detection 
of species and detection history in each station and 4) Absence of false positive detections. 

Prior to analyses, all continuous covariate data were normalized to increase the software performance. We used Pearson’s cor-
relation coefficients (r) and variance inflation factor (VIF) to assess for multicollinearity between independent covariates in IBM SPSS 
statistics (version 20) (Table S1). All covariates did not show strong correlation (r < 0.7) (Dormann et al., 2013). Because the VIF 
values were less than three, there were no confounding effects between independent covariates. Hence, all covariates were retained for 
the subsequent competing model sets. Then, based on previous ecological studies on francolin species (Robertson et al., 1997; Abrha 
and Nigus, 2017; Abrha et al., 2017; Gedeon et al., 2017; Abrha et al., 2018), we tested combinations of habitat covariates effect on 
each parameter. The null model (ψ1(.),γ(.),ε(.),ρ(.)) was also analyzed for comparison in the candidate sets. 
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The ratio of effective sample size (n) to the number of parameters (Κ) (i.e., n/Κ) was determined. Then we used Akaike’s infor-
mation criteria corrected for small sample sizes (AICc) as n/Κ ≤ 40 (Burnham and Anderson, 2002). This procedure helped for model 
selection by producing competing modeling with combinations of covariates of interest in the order of parsimony and cumulative 
model weight of each covariate (Burnham and Anderson, 2002). We built a total of 33 models depending on biological and ecological 
hypotheses about habitat preference, threat, and behavior of Harwood’s Francolins. Because most candidate models revealed similar 
level of support, our models did not show “better” representation of the data (MacKenzie et al., 2018). Meanwhile, we incorporated 
competing models constituted from the top to the bottom, i.e., continuing the list until the cumulative Akaike Weight (ωi) of all models 
was at least 0.95 (Symonds and Moussalli, 2011). The level of significance was based on 95% CI (zero-overlapping method) and beta 
(β) coefficient estimates were used to understand the magnitude and effect of covariates on initial occupancy, colonization, local 
extinction and detectability. We also checked the presence of uninformative parameters using information criterion (IC) in the 
candidate model sets (Arnold, 2010; Leroux, 2019). Finally, model averaging approach was employed to calculate averaged β coef-
ficient estimates (β mean ± SE) (Burnham and Anderson, 2002; Symonds and Moussalli, 2011). 

2.4. Research ethics clearance 

This part of AMA’s PhD work was permitted by Ethiopian Wildlife Conservation Authority (EWCA) in Amhara (Ref. No: 31/74/12), 
Oromia (Ref. No: 31/79/12) and Benishangul-Gumuz (Ref. No: 31/70/12) national regional states. 

3. Results 

3.1. Spatiotemporal patterns in occupancy and dynamic parameters 

Harwood’s Francolins were detected at 71 and 93 stations throughout the three sampling efforts in the first and second seasons, 
respectively. This yielded naïve occupancy estimates of 0.49 and 0.65 without correcting for imperfect detection. Based on the null 
model ((ψ1(.),γ(.),ε(.),ρ(.)), initial occupancy, detection, colonization, and extinction probability estimates were 0.76 (95%: 
0.64–0.86), 0.58 (95%: 0.52–0.63), 0.50 (95% 0.25–0.75), and 0.12 (0.04–0.28), respectively (Table S2). By accounting for imperfect 
detection, the average estimates of initial occupancy across seasons were greater than the naïve occupancy. Following the inclusion of 
covariates in the models, the estimates of initial occupancy across habitat types were similar across habitats, except for plantations. 
The detection probability was similar across the habitats. The colonization estimates were similar in most habitat types but was lower 
in plantations. The local extinction estimates were similar in most habitats but slightly greater in plantation habitat (Fig. 2). 

The averaged estimates of occupancy probability (ψ̂) Harwood’s Francolins across seasons were 0.81 ± 0.08 and 0.79 ± 0.07, 
respectively and averaged detection probability (ρ̂) estimates were 0.47 ± 0.07 and 0.62 ± 0.06, respectively. The average detect-
ability increased by 32% from 0.47 in 2019–0.62 in 2020 (Fig. 3A). The seasonal colonization and local extinction probability esti-
mates during study seasons were 0.59 ± 0.20 and 0.12 ± 0.07, respectively (Fig. 3B). 

The null model was not included among the top candidate sets. In the top-ranked models HDI, NDVI, slope and its quadratic term, 
temperature and the effect of seasons were incorporated. These competing models were largely built without interactions (except for 
quadratic fit of elevation, slope and temperature) to model underlying dynamic processes and are ranked in the order of the lowest 
ΔAICc. The cumulative weight (Σωi) of the top-ranked models (ΔAICc ≤ 2.0) were 0.53 and the first ranked model 
(ψ1(HDI+NDVI+SL+SL2),γ(NDVI),ε(.),ρ(S+T)) received 0.11 model weight separately which reasonably imply the presence of other 

Fig. 2. Average estimates of initial occupancy probability (ψ1), detection probability (ρ), colonization probability (γ) and extinction probability (ε) 
across different habitat types in the Upper Blue Nile Basin (estimation calculated from models with ΔAICc<4.00). Error values are standard errors. 
Abbreviations: CTW-Combretum-Terminalia woodland and wooded grasslands; DAF-Dry evergreen Afromontane forest and grassland complex and 
RV-riparian vegetation. 
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competing models to draw inferences about the occupancy and underlying dynamic processes (Table 2). In other words, our competing 
models showed model selection uncertainty and hence weak support for the a priori hypotheses. Therefore, to improve the repre-
sentation of our data, we applied model averaging, which contained all competing models with ΔAICc < 4.00 to produce strongest 
statistical inferences following the recommendation of Symonds and Moussalli (2011). Moreover, the model weight (ωi) of covariates 
appeared in the top-ranked models were increased by removing other models with ΔAICc less than six (Richards, 2005; Richards et al., 
2011). 

3.2. Influence of habitat covariates on Harwood’s Francolins 

As we hypothesized, NDVI correlated significantly negatively with the initial occupancy probability of Harwood’s Francolins at the 
stations in UBNB (βmean ± SE = 1.83 ± 0.66; 95% CI: 3.12,0.54). Thus, the occupancy probability estimates decreased by 76% with 
increasing NDVI. The habitat use of the target species was also decreased with increasing quadratic slope, suggesting that the species 
revealed avoidance towards steep and extremely steep slopes (βmean ± SE = 1.51 ± 0.62; 95% CI: 2.73,0.29). We also observed that the 
occupancy probability decreased by 47% across the quadratic slope gradient. The occupancy probability of Harwood’s Francolins 
significantly decreased with increasing HDI (βmean ± SE = 1.06 ± 0.54; 95% CI: 2.12,0.004) and was decreased by 17% across HDI 
gradient (Table 3, Fig. 4). 

As expected, temperature was significantly positively correlated with the detectability of Harwood’s Francolins across stations and 
it was increased by 64% (βmean ± SE = 0.37 ± 0.13; 95% CI: 0.12, 0.63) (Table 3, Fig. 4). We found a positive association between 
season and detectability and there was also a negative association between vegetation greenness and detectability, albeit non- 
significant values among them (Table 3). The colonization probability was associated negatively with NDVI, but 95% CI over-
lapped zero (βmean ± SE = 1.39 ± 1.00; 95% CI: 3.34, 0.56). The local extinction probability was positively correlated with human 
disturbance index and NDVI, but found no statistical support (Table 3). 

Our models also show that elevation and its quadratic effect had generally negligible influence on occupancy and related 

Fig. 3. Model averaged estimates of occupancy probability (ψ̂) and detection probability (ρ̂) (A) across seasons and dynamic parameters 
(γ̂-colonization and ε̂-extinction) (B) between seasons. Estimations were calculated from top models with ΔAICc < 4.00. 

Table 2 
Model selection with covariates for dynamic occupancy analysis. Model rankings are based on the Akaike information criterion (AIC) corrected for 
small sample size (AICc) values and only candidate models with ΔAICc < 2.00 and null model are reported. Model weight (ωi), number of parameters 
(Κ), and twice of the negative log-likelihood (− 2 l) are reported.  

Model AICc ΔAICc ωi Κ -2 l 

ψ1(HDI+NDVI+SL+SL2), γ(NDVI), ε(.),ρ(S+T)  727.85  0.00  0.11  15  694.10 
ψ1(HDI+NDVI+SL+SL2), γ(NDVI), ε(.),ρ(NDVI+S+T)  728.42  0.57  0.08  16  692.14 
ψ1(HDI+NDVI+SL+SL2), γ(NDVI), ε(NDVI),ρ(S+T)  728.75  0.90  0.07  16  692.47 
ψ1(HDI+NDVI+SL+SL2), γ(NDVI), ε(.),ρ(HDI+S+T)  728.90  1.05  0.06  16  692.62 
ψ1(HDI+NDVI+SL+SL2), γ(.),ε(.),ρ(NDVI+S+T)  729.05  1.20  0.06  15  695.30 
ψ1(HDI+NDVI+SL+SL2), γ(.),ε(.),ρ(S+T)  729.35  1.50  0.05  14  698.09 
ψ1(HDI+NDVI+SL+SL2), γ(NDVI), ε(HDI),ρ(NDVI+S+T)  729.46  1.61  0.05  17  690.60 
ψ1(HDI+NDVI+SL2), γ(NDVI), ε(.),ρ(S+T)  729.51  1.66  0.05  14  698.25 
…           
ψ1(.),γ(.),ε(.),ρ (.)  772.65  44.80  0.00  4  764.36 

Abbreviations: ψ1(psi) = initial occupancy probability, γ = colonization probability, ε = extinction probability, and ρ = detection probability, HDI 
= human disturbance index, NDVI = Normalized Difference Vegetation Index, SL= slope, SL2 = quadratic term of slope, S = season and 
T = temperature. 
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parameters. Similarly, precipitation and quadratic temperature had insignificant influence on the detectability of Harwood’s Fran-
colins during our study seasons. Quadratic slope did not seem to be important covariate to affect the dynamic parameters. From the 
model averaged estimate perspective, we also showed occupancy and detection probability patterns as a function of significant 
covariates across stations (Fig. S1). 

4. Discussion 

4.1. Dynamic occupancy patterns of Harwood’s Francolin 

The dynamic occupancy modeling is applied for the first time in Ethiopia (see also Devarajan et al., 2020) to study habitat use and 
distribution of Harwood’s Francolins across a huge geographical scale in the Upper Blue Nile Basin (UBNB). In this study, we also 
incorporated previously poorly documented populations from west of the Mid-Abbay IBA dominated by Combretum-Terminalia 

Table 3 
Cumulative model weight (Σωi) and influence of covariates calculated from the model-averaged beta coefficient estimates and standard errors (β mean 
± SE). β estimates values are shown 95% confidence intervals and p values. Zero overlapping shows non-significant values. Only fixed influences are 
included.  

Covariate Σωi β mean ± SE 95% CIs  P value 
Lower Upper  

Occupancy (Ψ1) 

Normalized Difference Vegetation Index  1.00 -1.83 ± 0.66  -3.12  -0.54  0.0056 
Quadratic Slope  1.00 -1.51 ± 0.62  -2.73  -0.29  0.0148 
Human disturbance index  0.96 -1.06 ± 0.54  -2.12  -0.004  0.0484 
Slope  0.88 0.94 ± 0.52  -0.08  1.96  0.0831 
Colonization (γ)          
Normalized Difference Vegetation Index  0.62 -1.39 ± 1.00  -3.34  0.56  0.1652 
Extinction (ε)          
Human disturbance index  0.15 0.50 ± 0.44  -0.36  1.35  0.2587 
Normalized Difference Vegetation Index  0.10 0.86 ± 0.63  -0.38  2.10  0.1731 
Detection (ρ)          
Season (pooled)  1.00 0.19 ± 0.27  -0.34  0.73  0.4914 
Temperature  1.00 0.37 ± 0.13  0.12  0.63  0.0045 
Normalized Difference Vegetation Index  0.38 -0.24 ± 0.16  -0.55  0.07  0.1338  

Fig. 4. Model averaged estimates of initial occupancy (ψ1) and detection (ρ) probabilities for Harwood’s Francolins. The left column (A and C) and 
right column (B) indicate the influence of NDVI, quadratic term of standardized slope and HDI on initial occupancy probability (ψ1), respectively. 
The bottom right (D) indicates the influence of temperature (◦C) on detection probability (ρ) of the species in UBNB. Parameter estimates were 
derived from the top-ranked models and the shaded area in each graph indicates 95% confidence intervals. 
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woodland and wooded grasslands (CTW) in the Sudan-Guinea savanna biome. The nearest and the only locality recorded (c.140 km) to 
our new stations was found at Kalo Ford by Cheesman and Sclater (1935) and recently confirmed by Ash and Atkins (2009), which is 
near to the junction between Muger and Abbay River. Our results show that the target species essentially uses a mosaic of habitats 
across several sub-basins, comprising a larger geographic scale than previously known (Ash and Gullick, 1989; Robertson et al., 1997; 
Abrha and Nigus, 2017; Abrha et al., 2017). Most of our localities for this species also supported the exhaustive field survey of Ash and 
Atkins (2009). 

By pooling seasons, the averaged detection probability of Harwood’s Francolins (0.55 ± 0.07 SE) was more than doubled in oc-
cupancy modeling than reported using conventional distance sampling (CDS) method from Jema Valley in the Afrotropical Highlands 
biome (Abrha and Nigus, 2017). This suggests that occupancy modeling delivers more reliable estimations for this restricted range 
species than other method which do not explicitly account for imperfect detection, in concordance with other reports across different 
taxa (Kéry et al., 2010; Thapa and Kelly, 2017; Taylor et al., 2021). 

Dynamic occupancy modeling also demonstrated to model explicitly colonization and extinction probabilities of Harwood’s 
Francolins with and without covariates. Even though colonization probability was greater than extinction probability (Fig. 3B), the 
overall level of occupancy of Harwood’s Francolins was decreasing between seasons. This is because the estimated net probability of 
extinction was larger than the estimated net probability of colonization depending on the inference of population trajectory (MacK-
enzie et al., 2018). The highest extinction probability at plantations was not surprising because this habitat is highly disturbed due to 
human activities (including hunting, cutting, burning, etc.) and livestock grazing (Abrha et al., 2017). Natural predation, which is a 
known threat for ground-dwelling pheasants (Little and Crowe, 2004), could also be a possible cause for local extinction of Harwood’s 
Francolins. Our results also revealed that extinction probability was positively associated with both HDI and NDVI (Table S1). 

Drawing inference from a two-season dataset could yield erroneous parameter estimates, yet our preliminary study showed 
important findings for occupancy and the dynamic parameters of Harwood’s Francolins. Interestingly, the employed field techniques 
enabled to scrutinize about the mechanisms that drive the spatiotemporal occupancy patterns and dynamics of the target species across 
two contiguous biomes in UBNB. Similarly, it has been reported that using combined methods generate effective parameter estimates 
and facilitates appropriate bird conservation plans and recommendation for future studies (De Almeida-Rocha et al., 2019; Zamor-
a-Marín et al., 2021; Zwerts et al., 2021). 

4.2. Influence of covariates on habitat use of Harwood’s Francolins 

Bird species occupancy is influenced by finer-scale and landscape scale covariates (e.g., Harms et al., 2017; Smith et al., 2017; 
Green et al., 2019; Morante-Filho et al., 2021; Gumede et al., 2022), particularly for galliform species (Ramesh and Downs, 2014; 
Maseko et al., 2017; Abrha et al., 2023; Bitani et al., 2023). Our results showed that NDVI significantly negatively affected the oc-
cupancy of Harwood’s Francolins (Fig. 4A). NDVI shows seasonal phenological dynamics in UBNB (Muir et al., 2021; Moisa et al., 
2022). The average NDVI derived from wet and dry season data ranged from 0.05 to 0.45 (mean = 0.22; SD = 0.1), implying that 
stations were dominated by herbaceous and sparse vegetation. The lowest occupancy probability was recorded in plantations habitats 
along the course of tributary rivers which had highest spectral reflectance of vegetation. Therefore, occupancy probability decreased 
with increasing NDVI, meaning that Harwood’s Francolins preferred low vegetation or sparse trees, evergreen scrub vegetation and 
herbaceous dominated habitats in CTW and its transformed habitat to farmland mosaics, in concordance with previous results on the 
ecology of the target species (Abrha and Nigus, 2017), the endangered Black-fronted Francolin (Pternistis atrifrons) (Töpfer et al., 2014; 
Gedeon et al., 2017) in south Ethiopia and other francolin species in Africa (van Niekerk, 2017; Lerm et al., 2019). The distribution of 
evergreen vegetation is identified on the lower edge of the DAF (Friis et al., 2010) and it is treated as DAF vegetation habitat in this 
study. Our results also show that forest habitat (DAF) had high NDVI and were shelters for Harwood’s Francolins particularly during 
dry season, yet the habitat was not highly preferred as human, livestock grazing and other stressors considerably existed as compared 
to other habitats. 

Our results also emphasize that quadratic term of slope significantly limit the occupancy probability, suggesting that Harwood’s 
Francolins preferred flat, gentle and moderate slopes over steep and extremely steep slopes (Fig. 4B), similar to the results of Li et al. 
(2009); Abrha and Nigus (2017) and Abrha et al. (2018). Across most stations, flat, gentle and moderate slopes were characterized by 
herbaceous, scatter trees and bushy vegetation important for food and nesting grounds (pers. obs.). Flat low and high-elevation 
habitats are highly disturbed areas, whereas steep and extremely steep slopes are less disturbed due to inaccessible for human 
encroachment (Abrha and Nigus, 2017). The flat terrain and plateau of UBNB are dominated by farming activities (Tekleab et al., 
2013). The steep and extremely steep slopes featured by rocks and escarpments are home of raptors, primates and carnivores in the 
Western highlands of Ethiopia (Saavedra, 2009). Our results show that Harwood’s Francolins mostly avoided these gradients possibly 
due to 1) the presence of potential predators and in such distinctive gradients, for instance, Leopards (Panthera pardus) are reported to 
prey upon francolins in the Abune Yosef massif (Saavedra et al., 2009) and Gelada monkeys (Theropithecus gelada) in the Guassa 
Community Conservation Area (Lin et al., 2020); 2) because steep slopes are grass free stripes and are rarely cultivated in the highlands 
of Ethiopia (Nyssen et al., 2004). 

Globally, mass extinction of vertebrate species is intensified by anthropogenic disturbances (Dirzo et al., 2014; Ceballos et al., 2015; 
Ceballos et al., 2020). For instance, most bird species are threatened by human disturbances (Hilton-Taylor et al., 2009), particularly 
for Galliformes (Keane et al., 2005; McGowan et al., 2012; Tian et al., 2018; Ramesh and Downs, 2014). In Ethiopia, anthropogenic 
disturbances increasingly threatened birds (Asefa et al., 2017), particularly for francolin species (Töpfer et al., 2014; Abrha and Nigus, 
2017; Abrha et al., 2017; Gedeon et al., 2017). Not surprisingly, our results show that human-induced disturbances posed a significant 
threat on Harwood’s Francolins occurrence at the fine scale level (Fig. 4C), which supports the a priori hypothesis. In this study, we did 
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not include the effect of mining on the species due to budget and time constraints. Similar to our target species, the multitude of threats 
the Critically Endangered Djibouti Francolin (Pternistis ochropectus) faces are overgrazing, forest fragmentation, hunting and death of 
Juniperus procera trees (Fisher et al., 2009; BirdLife International, 2023b). Previously, it was also reported that Harwood’s Francolins 
avoid various threat factors (Robertson et al., 1997), specifically owing to vegetation disturbances, livestock grazing, burning, and 
hunting in Jema and Jara Valleys (Abrha et al., 2017). 

Colonization probability was also inversely correlated with HDI; albeit non-significant association. To confirm these findings, our 
hypothesis also supports that colonization probability decreased with increasing human disturbances. Our results also show a non- 
significant negative association between NDVI and colonization of Harwood’s Francolins. However, a relative high 95% CIs, and 
beta coefficient for the model-averaged estimate of NDVI shows that colonization probability was greater in lower vegetation 
reflectance characterized by shrubby, bush and herbaceous stations in the area. There were no significant determinant covariates for 
colonization and extinction, suggesting little variation in the dynamic processes governing changes in the species-habitat association in 
spatiotemporal patterns. 

In terms of temperature, we found a significant positive association of detection probability (Fig. 4D), suggesting that Harwood’s 
Francolins detectability was higher at higher temperature, similar to the findings of Skagen and Adams (2012). We encountered the 
target species commonly in scrub vegetation and herbaceous covers intermingled with sparse trees in CTW and adjacent vegetation 
habitats. Such land use is commonly characterized by low NDVI and high temperature and this phenomenon strongly facilitates the 
habitat use of Harwood’s Francolins. Like our findings, temperature and NDVI are inversely correlated in Ethiopia (Muir et al., 2021), 
particular for UBNB (Merga et al., 2022; Moisa et al., 2022). Therefore, across our study area, detectability increased with increasing 
temperature, and it was lower at stations with higher NDVI. 

4.3. Conservation implications and future directions 

Even though we did not contrast various methods for the occurrence data as it was not our focus, the combination of multiple field 
methods collects reliable and comprehensive datasets, thereby draws fundamental inference for conservation purpose of this cryptic 
species. There were no false positive detections in our surveys and false negative detections were minimized by study design, 
essentially the application of playback technique. However, we cannot rule out entirely that, due to topography of the study area, our 
playback sometimes may have disturbed the target species located at other stations. Future studies should consider potential dis-
turbances if stations are placed too close to each other. 

The persistence of Harwood’s Francolins at lower ecosystem greenness and lower slope gradients has important implications for in- 
situ conservation strategy. The detection probability of the target species was strongly influenced by temperature, suggesting that the 
target species favors lowland areas featured by high temperature in UBNB. Ultimately, this factor could have important contribution of 
the breeding phenology of the species. 

Determination of minimum and maximum of survey efforts (K) to increase species detectability (Pellet and Schmidt, 2005; Sewell 
et al., 2010; McGrath et al., 2015) is a critical step for future research design. Accordingly, the appropriate survey effort for the target 
species needed at 0.60 target detection probability is a single effort and a maximum of six efforts is required at 0.99 detection 
probability to confirm true absence of the species in a station. 

To conclude, our results highlight that Harwood’s Francolins exist across a large geographical scale in UBNB. The dynamic oc-
cupancy modeling informs effective conservation and management implications for the target species. Nonetheless, the target species 
could also be affected by other covariates, particularly at a finer scale (e.g., plant species richness, canopy cover, shrub height etc.) 
which we did not incorporate in this study due to budget limitations and time constraints. 

Most IBAs in Ethiopia, particularly for UBNB are not protected and have little contribution for globally important restricted range 
species, such as Harwood’s Francolins and other biodiversity. We urge special attention for conservation and management of this 
threatened pheasant species in Combretum-Terminalia woodland and grassland, farmland mosaics, evergreen scrub and riparian 
vegetation habitats across several sub-basins. We also recommend further study to test the influence of fine-scaled, landscape-scaled 
and climatic covariates on occupancy dynamics of Harwood’s Francolin across spatiotemporally replicated surveys. 
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