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Preface

The Hodge conjecture predicts a deep connection between topology, complex geometry, and

algebraic geometry. It asserts that any Hodge class on a smooth complex projective variety

is algebraic, meaning it is a linear combination with rational coefficients of fundamental

classes of subvarieties. If proven true, this conjecture would characterize algebraic classes

as Betti cohomology classes that correspond, via the Betti-de Rham isomorphism, to de

Rham cohomology classes of type (k, k) for some k.

For powers of a K3 surface, the Hodge conjecture is equivalent to the algebraicity of

the Hodge classes in the tensor algebra of its transcendental lattice, which is the orthogonal

complement of the Néron–Severi group in the second rational cohomology. In Appendix

B, using invariant theory, we determine generators for this algebra of Hodge classes and

we show that the Hodge conjecture for the powers of a K3 surface does not always follow

from the Hodge conjecture for its square. Specifically, we prove that if the endomorphism

field of the K3 surface is totally real, there are exceptional Hodge classes which do not

appear on the square of the K3 surface. Additionally, we extend a result by Schlickewei

[81] and establish the Hodge conjecture for all powers of certain K3 surfaces of Picard

number 16.

The Kuga–Satake construction, reviewed in collaboration with Claire Voisin in Ap-

pendix A, provides an embedding of the transcendental lattice T (X) of a projective K3

surface or hyperkähler manifold X into the square of the first cohomology of an abelian

variety. If the Kuga–Satake Hodge conjecture holds, meaning this embedding is algebraic,

the algebraicity of the Hodge classes in the tensor algebra of T (X) follows if one proves

that their image via this embedding is algebraic on the powers of the abelian variety.

Note that to deduce this, one must assume that the Lefschetz standard conjecture in

degree two holds for the variety X. This has been proven, in the cases we consider, by

Charles–Markman [14] and Foster [24].

This observation is particularly relevant for Hodge similarities between the transcen-

dental lattices of projective hyperkähler manifolds (or K3 surfaces). A Hodge similarity

is a Hodge morphism which preserves, up to a positive scalar, the Beauville–Bogomolov

forms (or the intersection products). In Appendix C, we prove that a Hodge similarity

induces an isogeny between the Kuga–Satake varieties, and thus is algebraic on the

product of the two Kuga–Satake varieties. If the Kuga–Satake Hodge conjecture holds,

v



vi Preface

then the Hodge similarity is algebraic on the product of the two hyperkähler manifolds

(or K3 surfaces). Voisin [98] has shown that the Kuga–Satake Hodge conjecture holds for

hyperkähler manifolds of generalized Kummer type. Therefore, we deduce the algebraicity

of any Hodge similarity between two such manifolds. This complements previous results

on the algebraicity of Hodge isometries between K3 surfaces by Buskin in [11] and again

by Huybrechts [45], and between K3[n]-type varieties by Markman [62].

In Appendix D, a joint work with Salvatore Floccari, we study the Hodge conjecture

in the special case of hyperkähler manifolds of generalized Kummer type. We prove

that any Hodge class in the algebra generated by their second cohomology is algebraic.

We deduce this from three key results: the algebraicity of Hodge similarities between

hyperkähler manifolds of generalized Kummer type, a construction by Floccari [21]

providing an algebraic Hodge similarity between a Kum3-type variety and a K3 surface,

and the fact that, by Appendix B, the Hodge conjecture holds for the K3 surfaces that

appear in this construction. Remarkably, this implies the Hodge conjecture for projective

Kum2-type varieties, thereby providing the first instance of complete families of projective

four-dimensional manifolds for which the Hodge conjecture holds.

The thesis is structured as follows: Chapter 1 revisits the properties of the objects under

study, presenting proofs of some selected results that have motivated and inspired our

research. Chapters 2–5 serve as an introduction to the four appended papers (Appendices

A–D). Finally, Chapter 6 summarizes the results obtained in this thesis supplementing

them with additional remarks.
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Chapter 1

Introduction

In this chapter, we introduce the objects that are studied in the four appended papers

[23, 89, 88, 90]. In addition, we review some results that have inspired our research.

1.1 The Hodge conjecture

We begin by recalling the statement and and some example applications of the Hodge

conjecture, which is the central focus of this thesis. As a reference for this section we use

[96].

Let X be a smooth complex projective variety, and let ι : Z ↪! X be the inclusion

morphism of a smooth subvariety Z. Note that Z can be viewed as a real orientable

manifold of dimension 2n − 2k, where n := dimX and k := codimXZ. In particular,

the singular homology H2n−2k(Z,Q) is one-dimensional and it is spanned by [Z], the

fundamental class of Z. Note that [Z] defines a cohomology class in H2k(X,Q) via the

composition

H2n−2k(Z,Q)
ι∗−! H2n−2k(X,Q) ≃ H2k(X,Q).

In the case where Z is singular, by Hironaka [41], there exists a smooth projective

variety Z̃ with a degree-one morphism τ : Z̃ ! Z. Then, one defines [Z] as

[Z] := ι̃∗[Z̃] ∈ H2k(X,Q),

where ι̃ := ι◦ τ . As one shows, the class [Z] ∈ H2k(X,Q) is always a Hodge class, meaning

an element of

Hk,k(X,Q) := H2k(X,Q) ∩Hk,k(X),

i.e., a rational class of type (k, k). A Hodge class in Hk,k(X,Q) is called algebraic if it is

a linear combination (with rational coefficients) of fundamental classes of subvarieties of

X of codimension k. The Hodge conjecture predicts that every Hodge class is algebraic:

Conjecture 1.1.1 (Hodge conjecture). Let X be a smooth projective variety. Then, for

every non-negative integer k, every Hodge class in Hk,k(X,Q) is algebraic.

1



2 Chapter 1.

In codimension one, the Hodge conjecture is known to hold. This follows from the

Lefschetz theorem on (1, 1)-classes which states that the image of the first Chern map

c1 : Pic(X)Q ! H2(X,Q),

surjects onto the space of Hodge classes H1,1(X,Q).

Hodge classes naturally appear when considering morphisms of Hodge structures. Let

V andW be Hodge structures of weight k and k′ = k+2r respectively, and let ψ : V !W

be a morphism of Hodge structures. This means that the extension ψC satisfies

ψC(V
p,q) ⊆W p+r,q+r,

for all p+ q = k. By linear algebra, we can view ψ as an element [ψ] ∈ V ∗ ⊗W . From

the fact ψ is a morphism of Hodge structures, one sees that [ψ] is a Hodge class, where

V ∗ ⊗W is endowed with the Hodge structure induced by the Hodge structures on V

and W . Let now V = H2k(X,Q) and W = H2k′(Y,Q) be cohomology groups of two

smooth complex projective varieties X and Y . By Poincaré duality and the Künneth

decomposition, there is an embedding of Hodge structures

H2k(X,Q)∗ ⊗H2k′(Y,Q) ≃ H2n−2k(X,Q)⊗H2k′(Y,Q) ↪! H2n−2k+2k′(X × Y,Q).

Therefore, the morphism of Hodge structures ψ : H2k(X,Q)∗ ! H2k′(Y,Q) determines a

Hodge class [ψ] ∈ H2n−2k+2k′(X × Y,Q). The Hodge conjecture then predicts that [ψ] is

a linear combination of fundamental classes of subvarieties of X × Y . If this is the case,

we say that the morphism ψ is algebraic.

As an example, consider the cup product with a line bundle. Let X be a complex

projective variety, and let h ∈ H2(X,Q) be the fundamental class of an effective divisor

D on X. As h is a Hodge class, cup product with h gives a morphism of Hodge structures

h ∪ • : H∗(X,Q) ! H∗+2(X,Q), x 7! h ∪ x.

Note that this morphism is algebraic since it is induced by the cohomology class of the

divisor D embedded in X ×X via the diagonal map.

In the case, where h is the cohomology class of an ample divisor, the hard Lefschetz

theorem [94, Thm. 6.2.3] says that the morphism of Hodge structures

hn−k ∪ • : Hk(X,Q) ! H2n−k(X,Q), n := dimX,

is an isomorphism for all k ≤ n. In particular, one can consider its inverse

δk := (hn−k ∪ •)−1 : H2n−k(X,Q) ! Hk(X,Q).

The Hodge conjecture applied to the isomorphism of Hodge structures δk is also known as

Lefschetz standard conjecture in degree k. As one shows, the algebraicity of δk does not
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depend on the choice of the ample class h. There are positive evidences for this conjecture.

For an abelian variety A, the existence of the Poincaré bundle on A × Â can be used

to prove the Lefschetz standard conjecture in all degrees. In the case of hyperkähler

manifolds of K3[n]-type this conjecture has been proven by Charles and Markman [14].

More recently, Foster in [24] shows that the Lefschetz standard conjecture holds in low

degrees also for hyperkähler manifolds of generalized Kummer type.

1.2 K3 surfaces and hyperkähler manifolds

The main geometrical objects we study in this thesis are K3 surfaces and hyperkähler

manifolds. We recall here their definitions and examples, focusing on the properties of

their second rational cohomology. In this section, we follow [44] while discussing K3

surfaces and [38] for the part on hyperkähler manifolds.

Definition 1.2.1. A K3 surface is a smooth compact connected complex surface S such

that

ωS := Ω2
S
∼= OS and H1(S,OS) = 0.

Let S be a K3 surface and consider the exponential sequence

0 ! Z ! OS ! O∗
S ! 0.

The induced long exact sequence in cohomology and the vanishing of H1(S,OS) imply

that H1(S,Z) = 0. By extension of scalars and Poincaré duality, also

H1(S,Q) = H3(S,Q) = 0.

As H0(S,Q) ≃ H4(S,Q) ≃ Q, the only other non-trivial cohomology group is H2(S,Q).

By the Noether formula, one sees that dimH2(S,Q) = 22.

Also the Hodge numbers of the K3 surface are easily computed. In degree zero

and four, the Hodge structures H1(S,Q) and H4(S,Q) are of Tate-type since they are

one-dimensional. As h1(S) = h3(S) = 0, the only Hodge structure we need to describe is

H2(S,Q). By hypothesis, Ω2
S is trivial, so in particular H0(S,Ω2

S) ≃ C is one-dimensional.

This implies that h2,0(S) = 1 and, by symmetry, h0,2(S) = 1. As the second cohomology

of a K3 surface is 22-dimensional, we conclude that h1,1(S) = 20.

As S is a surface, the intersection pairing qS induces a lattice structure on H2(S,Z).
It can be shown that there is an isometry of lattices

(H2(S,Z), qS) ≃ E8(−1)⊕2 ⊕ U⊕3 =: ΛK3,

where U is the hyperbolic lattice and E8 is the unique positive definite, even, unimodular

lattice of rank eight. Extending scalars to Q, we can also view qS as a morphism of Hodge

structures

qS : H
2(S,Q)⊗H2(S,Q) ! H4(S,Q) ≃ Q(−2),



4 Chapter 1.

where Q(−2) is the Tate Hodge structure.

The Hodge structure on the second cohomology of K3 surface leads to the following

definition. A rational Hodge structure of weight two V is called of K3-type if it is effective

and dimV 2,0 = 1. Here, effective means that V p,q = 0 if p or q is negative. Note that

these Hodge structures are sometimes also called of hyperkähler-type.

We now end our discussion on K3 surfaces by recalling two examples of these surfaces.

Example 1.2.2 (Quartics in P3). The easiest example of K3 surface is a smooth quartic

S ⊂ P3. From the vanishings H1(P3,O) = H2(P3,O(−4)) = 0 and the short exact

sequence

0 ! O(−4) ! O ! OS ! 0,

one deduces that H1(S,OS) = 0. Triviality of the canonical bundle of S is shown by

taking the determinant of the conormal bundle sequence

0 ! O(−4)|S ! ΩP3 |S ! ΩS ! 0.

Example 1.2.3 (Kummer surfaces). Let A be an abelian surface, and denote by ι : A! A

the involution x 7! −x. The quotient A/ι is singular and has 16 simple nodal points

corresponding to the fixed points of the involution ι. Blowing up these singularities, we

obtain a smooth surface Kum(A) called the Kummer surface of A. The fact that Kum(A)

is a K3 surface can be deduced from the commutative diagram

Ã A

Kum(A) A/ι

ι̃

,

where Ã is the blowup of A at the fixed locus of ι, and Ã! Kum(A) is the quotient of

morphism of Ã by the involution ι̃ induced by ι.

As mentioned at the beginning of this section, the other class of manifolds we focus

our attention on is the class of hyperkähler manifolds:

Definition 1.2.4. A hyperkähler manifold is an irreducible simply-connected compact

Kähler manifold X, such that H0(X,Ω2
X) is generated by an everywhere non-degenerate

holomorphic two-form.

Hyperkähler manifolds can be considered as high-dimensional generalization of K3

surfaces. Indeed, the condition on H0(S,Ω2
S) for a K3 surface S follows from the definition,

and any K3 surface is Kähler by Siu [84].

Note that, given a hyperkähler manifold X, the second cohomology group H2(X,Q) is

a Hodge structure of K3-type. Furthermore, similarly to the case of K3 surfaces, H2(X,Z)
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has a lattice structure with signature (3, b2(X)− 3). This follows from the existence of

the Beauville–Bogomolov form qX , which is defined as follows. Let 2n := dimX, and let

σ be a holomorphic two-form such that
∫
X(σσ)

n = 1. If α = λσ + β + µσ ∈ H2(X,C)
with β ∈ H1,1(X), define

qX(α) := λµ+
n

2

∫
X
β2(σσ)n−1.

By the Beauville–Fujiki relation there exists a positive constant cX ∈ R, depending only

on the deformation class of X, such that

qX(α)
n = cX

∫
X
α2n,

for all α ∈ H2(X,C). This can be used to prove that qX can be renormalized such that it

restricts to a primitive integral quadratic form on H2(X,Z). The fact that the signature

of qX is (3, b2(X) − 3) is proven by showing that, if [ω] ∈ H1,1(X) is a Kähler class,

then qX is positive definite on (H2,0(X)⊕H0,2(X))R ⊕R[ω] and negative definite on the

primitive part H1,1(X)ω.

Beauville in [7] provided the first two examples of hyperkähler manifolds which are

not K3 surfaces: Hilbert schemes of points on a K3 surface, and generalized Kummer

varieties.

Example 1.2.5 (Hilbert schemes of points on a K3 surface). Let X := S[n] be the

Hilbert scheme of n points on a K3 surface S, i.e., the moduli space of zero-dimensional

subschemes of S of length n. Then, X is a hyperkähler manifold of dimension 2n, and

there is an isometry

(H2(X,Z), qX) ≃ (H2(S,Z), qS)⊕ (−2(n− 1))Z,

where qS is the intersection pairing on H2(S,Z). A hyperkähler manifold which is derived

equivalent to S[n] for some K3 surface S is called of K3[n]-type.

Example 1.2.6 (Generalized Kummer varieties). Let T be a complex torus of dimension

two, let n ≥ 2, and let T [n+1] be the Hilbert scheme of (n+ 1) points on T . In this case,

T [n+1] is not a hyperkähler manifold since it is not simply-connected and its symplectic

structure is not unique. The natural map

T [n+1] ! T (n+1) ! T,

induced by the summation map on T is an isotrivial fibration. One then checks that the

fiber is a hyperkähler manifold of dimension 2n. It is denoted by Kumn(T ), and it is

called generalized Kummer variety. The lattice structure of X := Kumn(T ) on its second

cohomology satisfies

(H2(X,Z), qX) ≃ (H2(T,Z), qT )⊕ (−2(n+ 1))Z,
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where qT is the natural intersection pairing on T . A hyperkähler manifold which is

deformation equivalent to Kumn(T ) for some complex torus T is called of generalized

Kummer type or, in short, of Kumn-type.

1.3 Transcendental lattices and endomorphism fields

Let X be a projective hyperkähler manifold or a projective K3 surface, and let NS(X) be

its Néron–Severi group, that is the image of the first Chern class map

c1 : Pic(X) ! H2(X,Z).

The transcendental lattice T (X) of X is defined as the orthogonal complement of

NS(X)Q in H2(X,Q) with respect to the Beauville–Bogomolov form qX or the intersection

product if X is a K3 surface. By the Lefschetz theorem on (1, 1)-classes, NS(X)Q coincides

with H1,1(X,Q), so T (X) is a Hodge structure of K3-type. Moreover, as X is projective

by assumption, the restriction of −qX polarizes T (X) in the following sense:

Definition 1.3.1. A pair (V, q) is a polarized Hodge structure of K3-type if V is a Hodge

structure of K3-type, and q : V ⊗ V ! Q(−2) is a morphism of Hodge structures on V

whose real extension is negative definite on (V 2,0 ⊕ V 0,2) and has signature (dimV − 2, 2).

As we are assuming that X is projective, T (X) can be equivalently defined as the

smallest sub-Hodge structure T̃ ofH2(X,Q) for whichH2,0(X) ⊆ T̃C. From this definition,

one sees that T (X) is an irreducible Hodge structure.

Given a Hodge structure V one can define its Hodge group as follows. Let ρ : S !

GL(VR) be the representation of the Deligne torus S := ResC/RGm,C defining the Hodge

structure on V . The Hodge group Hdg(V ) of V is the smallest algebraic subgroup of GL(V )

defined over Q such that ρ(U(R)) ⊆ Hdg(V )(R), where U(R) = {z|zz = 1} ⊆ S(R).

The relevance of this notion in the context of the Hodge conjecture follows from the

fact that a class v ∈
⊕

(V ⊗ni ⊗V ∗⊗mi) is a Hodge class if and only if it is invariant under

the natural action of Hdg(V ).

For an irreducible polarized Hodge structure of K3-type (V, q), the Hodge group has a

simple description. Let E := EndHdg(V ) be the ring of Hodge endomorphisms of V . As

V is irreducible by assumption, E is a field. Let F ⊆ E be the fixed locus of the Rosati

involution, which is the natural involution on E which sends an element e to the element

e′ for which

q(ev, w) = q(v, e′w), ∀v, w ∈ V.

As one checks, F is a totally real field, and either F = E or E is a CM field with maximal

totally real subfield F . Let Ψ: V × V ! E be the pairing defined by the condition

q(ev, w) = TrE/Q(eΨ(v, w))
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for all e ∈ E and all v, w ∈ V . As shown in [101], the map Ψ is symmetric if E is totally

real and E-hermitian in the CM case, and the Hodge group of V satisfies

Hdg(V ) =

SO(V,Ψ) if E is totally real

U(V,Ψ) if E is a CM field.

As Hodge classes can be characterized as invariant classes under the action of the

Hodge group, knowing Hdg(V ) one can use invariant theory to describe the algebra of

Hodge classes in
⊗• V . This is especially relevant in the case where V = T (X) is the

transcendental lattice of a projective K3 surface. In fact, the Hodge conjecture for the

powers of X is equivalent to the algebraicity of the Hodge classes in
⊗• T (X).

In Appendix B, we correct a result by Ramon-Maŕı [78], and we describe a set of

generators for the algebra of Hodge classes in
⊗• T (X). We then use this description to

prove the Hodge conjecture for the powers of projective K3 surfaces of Picard number 16

if an additional condition holds: the algebraicity of the Kuga–Satake correspondence. We

recall the construction of Kuga–Satake varieties in Section 1.5.

To end this section, we recall that in a family of projective hyperkähler manifolds

or K3 surfaces X ! B, the endomorphism field of the general fibre is contained in the

endomorphism field of any fibre. To fix the notation, let T̃ be the transcendental lattice of

the general fibre Xb, and let E ≃ Q(ϕ) be its endomorphism field. Let 0 ∈ B be any point

and let X := X0. Note that there is a natural inclusion of quadratic spaces T (X) ⊆ T̃ .

The quadratic form on X then induces an orthogonal decomposition

T̃ ≃ T (X)⊕N,

for some N ⊆ NS(X)Q. As the ϕ is a Hodge morphism on the general fibre and the Hodge

locus of a cohomology class is closed, the morphism ϕ specializes to a morphism of Hodge

structures

ϕ : T (X)⊕N ! T (X)⊕N.

Since there is no non-trivial Hodge morphism between T (X) and N , we see that ϕ can

be written as a sum of two automorphisms ϕT (X) : T (X) ! T (X) and ϕN : N ! N . This

shows that elements of E define Hodge endomorphisms of T (X) and of N . In particular,

we conclude that E ≃ Q(ϕT (X)) is contained in the endomorphism field of X as claimed.

1.4 Hodge isometries

As we have recalled, the Hodge conjecture applies also to Hodge morphisms between

cohomology groups of smooth projective varieties. In the case of Hodge isometries between

hyperkähler manifolds or K3 surfaces X and Y there have been positive evidences. Recall

that an isomorphisms of Hodge structures

φ : H2(X,Q) ! H2(Y,Q)
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is called a Hodge isometry if it is compatible with qX and qY , meaning

qY (φv, φw) = qX(v, w), ∀v, w ∈ H2(X,Q).

If X and Y are K3 surfaces, the algebraicity of Hodge isometries has been proven

by Buskin [11] and again by Huybrechts [45]. Before Buskin’s paper, the algebraicity of

Hodge isometries of K3 surfaces was known only in the case of Picard number bigger

than five by Nikulin [75], which was an extension of the result by Mukai [72] on Hodge

isometries between K3 surfaces of Picard number at least eleven. In the following example,

we sketch the proof given in [45].

Example 1.4.1 (Hodge isometries for K3 surfaces). Let S and S′ be two K3 surfaces,

and let

φ : H2(S,Q) ! H2(S′,Q)

be a Hodge isometry between their second cohomology. By lattice theory, any isometry

ϕ : ΛQ ! ΛQ of a lattice Λ can be expressed as composition of reflections. I.e., there exist

primitive elements bi ∈ Λ, with (bi)
2 ̸= 0 such that

ϕ = sb1 ◦ · · · ◦ sbk ,

where sbi is the reflection x 7! x− 2(x.bi)
(bi)2

bi. This observation, together with the surjectivity

of the period map for K3 surfaces, shows that it suffices to prove the algebraicity of

reflective Hodge isometries: I.e., such that after choosing markings Λ ≃ H2(S,Z) and

Λ ≃ H2(S′,Z), they are of the form sb for some b ∈ H2(S,Z).

Let us now assume that φ : H2(S,Q)
≃
−! H2(S′,Q) is the reflective Hodge isometry

induced by b ∈ H2(S,Z). For n := (b)2/2, set B := (1/n)b ∈ H2(S,Q) and define

H2(S,Z)B := {x ∈ H2(S,Z) | (x.B) ∈ Z}.

Let H̃(S,Z) be the Mukai lattice of S, which is H∗(S,Z) with the sign change in the

pairing of H0 and H4, and consider the following primitive embedding of lattices

exp(B) : H2(S,Z)B ↪! H̃(S,Z), x 7! x+ x ∧B.

Denote by H̃(S,B,Z) the space H̃(S,Z) with the natural Hodge structure of K3-type

induced by H2(S,Z)B. I.e., the (2, 0)-part of H̃(S,B,Z) is spanned by exp(B)(σ), where

σ is any generator of H2,0(S). In the same way, define H2(S′,Z)B′ and H̃(S′, B′,Z) with
B′ := −φ(B).

As one checks, the rational Hodge isometry φ restricts to an isometry of integral

Hodge structures H2(S,Z)B ! H2(S′,Z)B′ which then extends to a Hodge isometry

φ̃ : H̃(S,B,Z) ≃
−! H̃(S′, B′,Z). In other words, there exists a commutative diagram of
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Hodge morphisms

H2(S,Z)B H̃(S,B,Z)

H2(S′,Z)B′ H̃(S′, B′,Z).

exp(B)

φ φ̃

exp(B′)

(1.1)

Up to changing φ by a sign, we may assume that φ̃ preserves the natural orientation

of the four positive directions in the Mukai lattice. Therefore, by [48], the Hodge isometry

φ̃ lifts to an exact equivalence

Φ: Db(S, α)
≃
−! Db(S′, α′) (1.2)

between derived category of twisted coherent sheaves, where α and α′ are the Brauer

classes on S and S′ induced by B and B′ via the exponential sequence. In particular, since

any exact linear equivalence as in (1.2) is of Fourier–Mukai type by [12], the morphism Φ

is induced by some E ∈ Db(S × S′, α−1 ⊠ α′). This, together with the commutativity of

(1.1), implies that φ is algebraic.

In the case of projective hyperkähler manifolds of K3[n]-type, the algebraicity of Hodge

isometries is due to Markman in [62]. We recall now the idea of the proof.

Example 1.4.2 (Hodge isometries and K3[n]-type varieties). Let X and Y be projective-

hyperkähler manifolds of K3[n]-type, and consider a Hodge isometry

f : H2(X,Q)
≃
−! H2(Y,Q).

The first step is to reduce to the case of isometries of cyclic type. In [62], a Hodge

isometry H2(X,Q)
≃
−! H2(Y,Q) is called of r-cyclic type for some positive integer r, if

it is equal to −gρu where g : H2(X,Z) ≃
−! H2(Y,Z) is a parallel-transport operator and

ρu ∈ O(H2(X,Q)) is the reflection x 7! x− 2(x.u)
(u)2

u for some primitive class u ∈ H2(X,Z)
such that (u)2 = 2r. Similarly to the case of K3 surfaces, this reduction step is done via

lattice theory and the surjectivity of the period map: Let Λ be the K3[n]-lattice, and let

Mon(Λ) ⊆ O(Λ) be the subgroup corresponding to the action of the monodromy group

of X on H2(X,Z). The fact that Mon(Λ) is well-defined is a result by Markman in [59,

Thm. 1.6, Lem. 4.10]. Considering the orthogonal direct sum decomposition

Λ = L⊕ (2− 2n)Z,

where L is the K3 lattice, one shows that the group of rational isometries O(ΛQ) is

generated by Mon(Λ) and O(LQ). In particular, this implies that any isometry ψ ∈ O(ΛQ)

can be written as a composition ψ = ψk ◦ · · · ◦ ψ1, where each ψi is in the double orbit

Mon(Λ)(−ρu)Mon(Λ) for some primitive integral class u ∈ L with (u)2 > 0. Note that,

considering the monodromy action, makes it possible to choose u in the K3-lattice L and

not in the full lattice Λ. Fix two isometries

ηX : H2(X,Z) ≃
−! Λ and ηY : H2(Y,Z) ≃

−! Λ,
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such that the pairs (X, ηX) and (Y, ηY ) belong to the same connected component M◦
Λ of

the moduli space of marked hyperkähler manifolds of K3[n]-type. As f is an isometry by

assumption, the composition ψ := ηY ◦ f ◦ η−1
X defines an element of O(ΛQ). It can then

be written as a composition ψ = ψk ◦ · · · ◦ ψ1 as above. Up to changing the sign of f , we

may assume that ψ preserves the orientation of the positive cone.

In the case where ψ is the identity, the Hodge isometry f = η−1
Y ◦ ηX is a parallel

transport operator. Indeed, the isometries ηX and ηY were chosen to ensure that (X, ηX)

and (Y, ηY ) are in the same connected component M◦
Λ. By the Verbitsky’s Torelli theorem

[43, 92, 93] parallel transport operators which are Hodge isometries are algebraic. In

particular, f is algebraic.

Let us now deal with the case in which ψ is not the identity. For all i = 1, . . . , k by

the surjectivity of the period map, there exist pairs (Xi, ηi) ∈ M◦
Λ such that the isometry

fi := η−1
Xi

◦ ψi ◦ ηXi−1 : H
2(Xi−1,Q)

≃
−! H2(Xi,Q)

is a Hodge morphism. As f = fk ◦ . . . ◦ f1, it suffices to prove the algebraicity of fi.

Assume now that f : H2(X,Q) ! H2(Y,Q) is in a fixed double orbit of a reflection in

u ∈ L and preserves the orientation of the positive cone. To show that f is algebraic, one

considers the following construction.

For an object F of positive rank r in the derived category of (twisted) coherent sheaves

on X × Y , define κ(F ) as the r-th root with degree-zero summand equal to r of the

Chern character of the untwisted object F⊗r ⊗ det(F )−1. If F has negative rank, define

κ(F ) := −κ(F [1]).
Let E be a (twisted) locally free coherent sheaf on X×Y such the pair (X×Y,E nd(E))

is deformation of (X0 × Y0,E nd(E0)), where E0 is a locally free untwisted sheaf for which

the Fourier–Mukai transformation

ΦE0 : D
b(X0) ! Db(Y0)

is an equivalence. As one checks, the Hodge morphism

ϕ := [κ(E)
√
tdX×Y ]∗ : H

∗(X,Q)
≃
−! H∗(Y,Q)

is a Hodge isometry with respect to the Mukai pairing. By a result of Taelman [86], the

Hodge isometry ϕ induces a Hodge isometries of the rational LLV lattices

H̃(ϕ) : H̃∗(X,Q) ! H̃∗(Y,Q),

where H̃(X,Q) is the lattice H2(X,Q) ⊕ UQ. Using a result proven independently by

Beckmann [9] and Markman [61], the author shows that H̃(ϕ) restricts to an isometry

H2(X,Q) ! H2(Y,Q). More precisely, he shows that H̃(ϕ) is degree-reversing in the

following sense. Write

H̃(X,Q) = αQ⊕H2(X,Q)⊕ βQ,
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with α of degree −2, β of degree 2 and H2(X,Q) of degree 0. Then, H̃(ϕ) preserves the

degree-zero part and sends the degree −2 part to the degree 2 part and vice versa.

Finally, the author shows that any Hodge isometry which is in a double orbit of a

reflection in some u and that preserves the orientation of the positive cone is the restriction

to the H2 part of a morphism H̃(ϕ) for some twisted locally free coherent sheaf E on

X × Y as above. In particular, this applies to the Hodge isometry f and shows that it is

algebraic.

Note that in [62], the varieties X and Y are not assumed to be projective. In this case,

the proof above shows that the Hodge isometry f is analytic. Which is a generalization

of algebraicity to the non-projective setting.

In Appendix C, we study the case of hyperkähler manifolds of generalized Kummer

type. For these manifolds, using the algebraicity of the Kuga–Satake correspondence, we

prove that Hodge similarities are algebraic. Note that this in particular proves the case of

Hodge isometries. See Chapter 4 for an introduction to this result.

1.5 Kuga–Satake varieties

A useful construction in the study of the Hodge conjecture for hyperkähler manifolds and

powers of K3 surfaces is the Kuga–Satake construction. Since it is central in all the four

appended paper, let us shortly recall it. See [44] or Appendix A for more details.

Let (V, q) be a polarized Hodge structure of K3-type, and denote by

Cl(V ) := (
⊗• V ) /Iq

the Clifford algebra of V , where Iq is the two-sided ideal generated by elements of the

form v⊗ v− q(v) for v ∈ V . As Iq is generated by even-degree elements, there is a natural

Z/2Z-grading on Cl(V ). The even Clifford algebra Cl+(V ) of V is the even-degree part

of Cl(V ).

Let J := e1 · e2 ∈ Cl+(VR), where e1 + ie2 ∈ V 2,0 is a generator such that q(e1) =

q(e2) = −1. By the property of multiplication on Cl+(VR), left-multiplication by J induces

a complex structure on Cl+(VR) which does not depend on the choice of the generator

e1 + ie2.

For x ∈ Cl∗(V ), let x∗ be the image of x under the involution on Cl+(V ) induced by

v1 ⊗ · · · ⊗ v2m 7! v2m ⊗ · · · ⊗ v1, on V ⊗2m.

Taking two orthogonal elements f1, f2 ∈ V with positive square, one checks that the

pairing

Cl+(V )× Cl+(V ) ! Q, (v, w) 7! tr(f1 × f2 × v∗ × w)

defines, up to a sign, a polarization on Cl+(V ).
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In conclusion, we see that KS(V ) := Cl+(VR)/Cl
+(V ) defines the isogeny class of an

abelian variety called the Kuga–Satake variety of V .

The usefulness of the Kuga–Satake construction lies in the fact that it allows to realize

the original weight-two Hodge structure V as a sub-Hodge structure of the tensor product

of two Hodge structures of weight one. In fact, one shows that there is an embedding of

Hodge structures

κV : V ↪! Cl+(V )⊗ Cl+(V ).

Let X be a projective hyperkähler manifold or a K3 surface, and denote by KS(X) the

Kuga–Satake variety of V = T (X) endowed with the Beauville–Bogomolov form (or the

intersection product) with the sign changed. In this case, the above morphism is

κX : T (X) ↪! H1(KS(X),Q)⊗H1(KS(X),Q).

The Hodge conjecture applied to κX gives then the following:

Conjecture 1.5.1 (Kuga–Satake Hodge conjecture). Let X be a projective hyperkähler or

a projective K3 surface, then the morphism of Hodge structures κX is algebraic, i.e., it is

induced by the linear combination of fundamental classes of subvarieties of X ×KS(X)2.

This conjecture is not known in general. Only in the case of hyperkähler manifolds of

generalized Kummer type, it has been proven in full generality. Voisin in [98] deduces the

algebraicity of the Kuga–Satake correspondence from two results by Markman [60] and

O’Grady [76]. See Chapter 2 and Appendix A for a review of this proof.

In the case of K3 surfaces, there are just some examples for which the Kuga–Satake

Hodge conjecture has been proven: The family of Kummer surfaces and K3 surfaces with a

Shioda–Inose structure of Example 1.5.2, the family of double covers of P2 branched along

six lines of Example 1.5.3, and the family of desingularizations of a singular K3 surfaces

in P4 with 15 simple nodes of Example 1.5.4. Finally, there are other countably many

four-dimensional families of K3 surfaces for which the Kuga–Satake Hodge conjecture

has been proven. These families, studied by Floccari in [21], naturally appear when

considering symplectic involutions on Kum3-type varieties. We review this construction

in depth in Example 1.5.5 since it is a central ingredient for the results in Appendix D.

Example 1.5.2 (Kummer surfaces and Shioda–Inose structures). Let X := Kum(A) be

the Kummer surface of a general abelian variety A. By construction, X is the minimal

resolution of the quotient of A by the natural involution ι sending x to −x. As one

checks, the involution ι is symplectic, i.e., it acts trivially on H2,0(A). This implies

that the rational two-to-one map ψ : A 99K X induces an algebraic isomorphism between

transcendental lattices ψ∗ : T (X)
≃
−! T (A). In particular, to prove the Kuga–Satake

Hodge conjecture for X, it suffices to prove that the composition

T (A)
(ψ∗)∨
−−−! T (X)

κX
↪−−! H1(KS(X),Q)⊗2 (1.3)
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is algebraic, where κX is the Kuga–Satake correspondence and (ψ∗)∨ denotes the transpose

of the pullback map ψ∗. In [71], Morrison shows that the Kuga–Satake variety of a Kummer

surface X is isogenous to a power of the original abelian surface. More precisely, that it

satisfies

KS(X) ∼ A8.

The morphism (1.3) is then induced by a Hodge class α in the cohomology of A9. As

shown by Ribet in [79], a result of Mumford proves the Hodge conjecture for all powers of

abelian surfaces. In particular, this implies that α is algebraic. Hence, the Kuga–Satake

Hodge conjecture holds for the K3 surface X.

This result for Kummer surfaces easily extends to prove the Kuga–Satake Hodge

conjecture for K3 surfaces with a Shioda–Inose structure. Recall that a K3 surface

X has a Shioda–Inose structure if it admits a symplectic involution σ such that the

minimal resolution Y of X/σ is a Kummer surface. In this case the rational quotient map

π : X 99K Y induces an algebraic isomorphism of Hodge structures π∗ : T (Y ) ≃ T (X). As

the Kuga–Satake Hodge conjecture holds for Kummer surfaces, we see that this conjecture

also holds for K3 surfaces with a Shioda–Inose structure.

Example 1.5.3 (Double covers of P2 branched along six lines). As one checks, a double

cover of P2 branched along a general sextic is a K3 surface. In the case where this sextic

is the union of six lines in a general position, the double cover π : Y ! P2 has simple

nodes over the 15 points of intersection of the lines. Blowing up these nodes on Y one

gets a smooth K3 surface Y 1. In [77], Paranjape gives an alternative description for this

four-dimensional family of K3 surfaces, and deduces from it the Kuga–Satake Hodge

conjecture for these K3 surfaces. In recalling this construction, we use the same notation

as in the reference.

Let C be a general genus five curve with an automorphism J of order four, such that

the quotient E := C/J is an elliptic curve. Let G be the group acting on C ×C generated

by the automorphism (J, J−1) and the involution swapping the two factors. Blowing up

the twelve ordinary double points of (C × C)/G, one gets a smooth surface W1 with a

natural morphism

W1 ! (C × C)/G! Sym2(E) ! E,

where Sym2(E) is the symmetric square of E and the last morphism is the summation

map. One then checks that the involution x 7! −x on E lifts to an involution on W1

with eight isolated fixed points and two fixed fibres. Let W2 be the blow up of W1 at

these fixed points and denote by Y 2 the quotient of W2 by the induced involution. Then

Y 2 is a K3 surface and is isomorphic to a double cover of P2 branched along six lines Y 1.

As the author shows, any such double cover can be obtained this way.

Let Y 1 be a double cover of P2 branched along six lines, let C be the genus five curve

with an automorphism J of order four given by the construction above, and let E be the
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quotient elliptic curve. Let Jac0(C) be the degree-zero Jacobian variety of C, and let

Prym(C/E) := (Id− J∗)(Jac0(C))

be the Prym variety of the cover C ! E. Recall that Prym(C/E) is a polarized abelian

variety of dimension four, and that there is a natural morphism of abelian varieties

Jac0(C) ! Prym(C/E) inducing

H1(Jac0(C),Q) ≃ H1(E,Q)⊕H1(Prym(C/E),Q).

Let π : Sym2(C) 99K Y 1 be the dominant rational map given by the construction above,

and consider the following diagram

Sym2(C)× Sym2(C) Jac0(C) Prym(C/E)

Sym2(C)

Y 1

p1

where p1 is the first projection. On the level of the second cohomology, the diagram gives

an algebraic morphism H2(Y 1,Q) ! H2(Prym(C/E),Q) which induces an algebraic

embedding of Hodge structures

κY 1 : T (Y 1) ↪! H2(Prym(C/E),Q).

By representation theory ([16] and [71]), one sees that κY 1 is in fact the embedding

given by the Kuga–Satake construction and that Prym(C/E) is a simple factor of the

Kuga–Satake variety of Y 1. In conclusion, this construction proves that the Kuga–Satake

Hodge conjecture holds for Y 1.

Example 1.5.4 (Desingularization of K3 surfaces in P4 with 15 simple nodes). The

family of singular K3 surfaces in Pm with 15 simple nodes has been first introduced and

characterized in [27] by Garbagnati and Sarti. In [49], Ingalls, Logan, and Patashnick

consider the case of m = 4. They prove that, up to isogeny, these K3 surfaces can be

covered by the square of a genus seven curve C3 with an automorphism of order three

such that the quotient D3 is a smooth curve of genus three. They then show that a

variant of Paranjape’s method generalizes to this case. That is, they prove that the

Prym variety of C3 ! D3 is a simple factor of the Kuga–Satake of the K3 surface, and

that this construction proves that the Kuga–Satake Hodge conjecture holds for this

four-dimensional family of K3 surfaces.

We conclude this section by reviewing the construction studied by Floccari in [21]

which associates to any given hyperkähler manifold of Kum3-type a K3 surface. As a

result, one can deduce the Kuga–Satake Hodge conjecture for these K3 surfaces from the

same conjecture for hyperkähler manifolds of generalized Kummer type.
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Example 1.5.5 (K3 surfaces associated to Kum3-type varieties). Let K be a variety of

Kum3-type, and let Aut0(K) be the group of automorphisms of K which act trivially on

the second cohomology. As proven by Hassett and Tschinkel [40], these automorphisms

are deformation invariant. In particular, the group Aut0(K) does not depend on K and

can be described assuming K = Kum3(A), where A is an abelian surface. This is done by

Boissière, Nieper-Wißkirchen, and Sarti in [10]. They prove that

Aut0(K) ≃ A4 ⋊ ⟨−1⟩,

where A4 is the group of points in A of order four. In particular, the subgroup of Aut0(K)

of automorphisms of order two is

G ≃ (Z/2Z)5.

As studied by Fujiki [25] and Menet [63], the quotient K/G is primitive symplectic.

This means that there exists a non-degenerate holomorphic two form σ on the smooth locus

of K/G and h2,0(K/G) = 1. Furthermore, one shows that K/G is a singular symplectic

variety in the sense of [6, Def. 3.1], i.e., that H1(K/G,OK/G) = 0, and that there exists a

resolution of singularities r : Y ! K/G such that r∗(σ) extends to a holomorphic from

on Y . This last notion originates from the article [8] by Beauville.

In [21], an explicit description of the resolution is provided: The singular locus of

K/G is the union of 16 hyperkähler manifolds of K3[2]-type. The resolution obtained by

blow up is a hyperkähler manifold YK of K3[3]-type. The author then shows that there is

an algebraic Hodge isometry

t2 : T (YK) ! T (K)(2),

where T (K)(2) denotes the transcendental lattice of K with the quadratic form multiplied

by two. As we remark at the end of Section 6.2, this can be directly deduced from the

existence of the rational dominant map K 99K YK of degree 25. In fact, we show that

rational dominant maps between hyperkähler manifolds induce Hodge similarities between

their transcendental lattice. See Appendix C, for the definition of Hodge similarity.

If K is projective, the transcendental lattice of YK is at most six-dimensional and

there exists a K3 surface SK such that there exists a Hodge isometry

t1 : T (SK) ! T (YK).

By Morrison [70], the K3 surface SK can be chosen such that the above Hodge isometry

holds already with integer coefficients. In this case, by a criterion due to Mongardi–

Wandel [65] and independently Addington [2], YK is birational to a moduli space of stable

sheaves MSK ,H(v) on SK , and by Markman [58], there exists a quasi-tautological sheaf

over SK ×MSK ,H(v). From this, one deduces that the Hodge isometry t1 is algebraic.

Composing t1 with t2 one then gets an algebraic Hodge isometry

t2 ◦ t1 : T (SK)
≃
−! T (K)(2).
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From this isometry, one deduces that the Kuga–Satake variety of SK and of K are

isogenous, and that the composition

T (SK)
t2◦t1−−−! T (K)

κK
↪−−! H1(KS(K),Q)⊗2

is the Kuga–Satake correspondence for SK , where κK is the Kuga–Satake correspondence

for K. As the Kuga–Satake Hodge conjecture is known for hyperkähler manifolds of

generalized Kummer type this implies the Kuga–Satake Hodge conjecture for the K3

surface SK .

As Hodge isometries between K3 surfaces are algebraic by the result of Buskin [11] and

again Huybrechts [45], the above construction proves the Kuga–Satake Hodge conjecture

for any K3 surface S such that there is a hyperkähler manifold of generalized Kummer

type K with associated K3 surface SK for which T (S) and T (SK) are Hodge isometric.

These K3 surfaces come in four-dimensional families, and can be characterized as the K3

surfaces S such that there is an isometric embedding

T (S) ↪! ΛKum3(2)⊗Z Q,

where ΛKum3 = U⊕3 ⊕ ⟨−8⟩ is the lattice H2(K,Z).

We end this section and the chapter by providing another example of a construction

of an algebraic correspondence between some hyperkähler manifolds of K3[2]-type and an

abelian variety. As we remark at the end of the example, the abelian variety appearing is

not necessarily the Kuga–Satake variety so the correspondence constructed will be called

a Kuga–Satake correspondence and not the Kuga–Satake correspondence. This is based

on the result by van Geemen and Izadi in [33]. A similar remark can be found in [55] by

Laterveer. For a general introduction to cubic hypersurfaces and more details about the

following construction we refer to [46].

Example 1.5.6 (Cycic cubic fourfolds). Let X4 := V (F (x0, . . . , x4) + x35) ⊆ P5 be

the smooth cubic fourfold, which is the triple cover of P3 branched along a smooth

cubic threefold X3 := V (F (x0, . . . , x4)). The deck transformation group for this cover is

generated by the order-three automorphism of X4

ρ4 : [x0 : . . . : x4 : x5] 7! [x0 : . . . : x4 : ξx5],

where ξ is a third root of unity. Similar, let X5 := V (F (x0, . . . , x4) + x35 + x36) ⊆ P6 be

the triple cover of P5 branched along X4. Finally, let X1 := V (y30 + y31 + y32) ⊆ P2 be the

Fermat elliptic curve with its order-three automorphism ρ1 : [y0 : y1 : y2] 7! [y0 : y1 : ξy2].

Consider the dominant rational map

ϕ : X4 ×X1 99K X5, ([x0 : . . . : x5], [y0 : y1 : y2]) 7! [y2x0 : . . . : y2x4 : y0x5 : y1x5].

As one checks, the map ϕ induces a morphism of Hodge structures

ϕ∗ : H5(X5,Q)p ↠
(
H4(X4,Q)p ⊗H1(X1,Q)

)ρ∗4⊗ρ∗1 ⊆ H4(X4,Q)p ⊗H1(X1,Q),
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where H5(X5,Q)p and H4(X4,Q)p denote the primitive cohomologies.

The morphism ϕ∗ can be used to produce a Kuga–Satake correspondence for the

Hodge structure of K3-type H4(X4,Q)p as follows. Tensoring ϕ∗ by H1(X1,Q)∗ and

composing it with the trace morphism

H1(X1,Q)⊗H1(X1,Q)∗ ! Q,

we get the following (algebraic) morphism of Hodge structures

φ : H5(X5,Q)p ⊗H1(X1,Q)∗ ! H4(X4,Q)p.

Note that φ is surjective. To see this, assume that X4 is a general, so that the Hodge

structure H4(X4,Q)p is irreducible. In this case, it suffices to show that φ is not identically

zero, and this follows from the non-degeneracy of the trace morphism.

Let F (X5) be the Fano surface of planes on X5, and let Alb(F (X5)) be its Albanese

variety. Then, there is an algebraic isomorphism

H1(Alb(F (X5)),Q)
Alb∗
−−−! H1(F (X5),Q)

h∪•
−−! H3(F (X5),Q)

≃
−! H5(X5,Q)p,

where h ∈ H2(F (X5),Q) is an ample class, and the last morphism is the Fano correspon-

dence. The fact that the Fano correspondence is an isomorphism for cubic fivefolds has

been proven by Collino in [15]. Similarly, the Fano correspondence between X4 and its

Fano variety of lines F (X4) gives an algebraic isomorphism

H4(X4,Q)p
≃
−! H2(F (X4),Q)p.

Putting this all together, gives an algebraic morphism

g : H1(Alb(F (X5)),Q)⊗H1(X1,Q)∗ ! H2(F (X4),Q)p.

Let A be the dual abelian variety of Alb(F (X5)) × X̂1. Then, the dual morphism of g

gives an algebraic embedding of Hodge structures

κF (X4) : H
2(F (X4),Q)p ↪! H1(Alb(F (X5)),Q)∗ ⊗H1(X1,Q) ↪! H1(A,Q)⊗H1(A,Q).

Note that κF (X4) is an embedding of Hodge structures of the primitive second cohomology

of the hyperkähler manifold F (X4) into the square of the first cohomology of the abelian

variety A. In this sense, κF (X4) is a Kuga–Satake correspondence. However, since

H2(F (X4),Q)p is not Mumford–Tate general (since its endomorphism is a CM field), one

cannot use the universal property of the Kuga–Satake construction to conclude that A is

a factor of the Kuga–Satake variety of F (X4) and that κF (X4) is the embedding given by

the Kuga–Satake construction.





Chapter 2

Introduction to Hyper-Kähler manifolds

of generalized Kummer type and the

Kuga–Satake correspondence

In this chapter, we give an overview of the content of Appendix A, which has appeared

in [90] and is a joint work with Claire Voisin. In the first part article, we review the

Kuga–Satake construction and the classical results related to it. We then focus on the

case of hyperkähler manifolds of generalized Kummer type. This is the only class of

hyperkähler manifolds for which the Kuga–Satake Hodge conjecture has been proven in

full generality. This is a result by Voisin [98], based on two previous results by Markman

[60] and O’Grady [76].

2.1 Kuga–Satake varieties

As we have recalled in Section 1.5, given a polarized Hodge structure of K3-type (V, q),

one can associate to it an abelian variety KS(V ) called its Kuga–Satake variety. This

abelian variety has the property that there exists an embedding of Hodge structures

V ↪! H1(KS(V ),Q)×H1(KS(V ),Q).

In general, the abelian variety KS(V ) is not simple, and the Hodge structureH1(KS(V ),Q)

is not irreducible but is a power of a simple Hodge structure H1(KS(V ),Q)c. This is

related with the fact that End(KS(V ))⊗Q is in general very large: Consider the action

of Cl+(V ) on itself by right-multiplication. As one checks, this action is compatible with

the Kuga–Satake Hodge structure, and defines an embedding

Cl+(V ) ↪! EndHdg(Cl
+(V )) ≃ End(KS(V ))⊗Q.

As dimCl+(V ) = 2dimV−1, we deduce that the endomorphism algebra of KS(V ) is in

general very big. As an example, consider the four-dimensional spaces of Hodge structures

of K3-type (V, q) for which there is an isometric embedding of quadratic spaces

ι : V ↪! U2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩,
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for some negative numbers a and b. For the general such Hodge structure, the embedding

ι is an isometry and by [56] the Kuga–Satake variety of (V, q) is isogenous to the fourth

power of an abelian fourfold of Q(−
√
ab) with discriminant one. Our interest in these

Hodge structures lies in the fact that they appear as transcendental lattice of projective

hyperkähler manifolds of generalized Kummer type.

Remarkably, KS(V ) satisfies a universal property if (V, q) is Mumford–Tate general,

i.e., if Hdg(V ) ≃ SO(V, q). Indeed, the following uniqueness result by Charles [13] holds.

Theorem 2.1.1 (Theorem A.4.1). Let (V, q) be a polarized Hodge structure of K3-type.

Assume that the Hodge group of the Hodge structure on V is maximal. Let H be a simple

effective weight-one Hodge structure, such that there exists an injective morphism of Hodge

structures

V ↪! End(H).

Then, H is a direct summand of the Kuga–Satake Hodge structure H1(KS(V ),Q).

The Kuga–Satake construction satisfies other similar universal properties. Note

however that the Mumford–Tate generality assumption appears in all of them. As

explained in [35, Sec. 3], given a K3 surface S with a non-symplectic automorphism of

order five, there is a positive-dimensional family of weight one Hodge structure H1 such

that, for some weight-one Hodge structure H2, there is an embedding of Hodge structures

T (S) ↪! H1 ⊗H2.

This shows that if a Hodge structure of K3-type is not Mumford–Tate general, its

Kuga–Satake variety does not need to satisfy a universal property as above.

2.2 Intermediate Jacobians and the Kuga–Satake Hodge conjecture

Let X be a projective hyperkähler manifold of generalized Kummer type. By Göttsche

[36], the third cohomology H3(X,Q) is eight-dimensional and satisfies H3,0(X) = 0. In

particular, H3(X,Q) is a Hodge structure of abelian-type and

J3(X) := H1,2(X)/H3(X,Z)

defines a complex torus. It is called the intermediate Jacobian ofX, and by the projectivity

of X, is an abelian variety. Naturally, there is an isomorphism

H1(J
3(X),Q) ≃ H3(X,Q).

In [60], Markman proves the Hodge conjecture for this morphism, i.e., that it is induced

by a cycle Z ∈ CH2(X × J3(X))Q.

The existence of intermediate Jacobians and the algebraicity of the above correspon-

dence can be used to prove the Kuga–Satake Hodge conjecture for projective hyperkähler

manifolds of generalized Kummer type as follows.
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The first step is to show that J3(X) is a simple factor of the Kuga–Satake variety of

X. Let cX ∈ Sym2H2(X,Q) be the dual of the Beauville–Bogomolov form on H2(X,Q).

By Verbitsky [91], the cup product defines an embedding

Sym2H2(X,Q) ↪! H4(X,Q).

Therefore, cX can be viewed as a cohomology class in H4(X,Q), and one can define the

morphism

ϕ :
∧2H3(X,Q) −! H4n−2(X,Q), α ∧ β 7−! cn−2

X ∪ α ∪ β.

The morphism ϕ is called the O’Grady map since it has been first introduced by O’Grady

in [76]. There, the author shows that ϕ is surjective in the case where X is a hyperkähler

manifold of generalized Kummer type. Note however that ϕ can be more generally defined

for any hyperkähler manifold X for which H3(X,Q) ̸= 0. By a result of Voisin [98], the

morphism ϕ is surjective also in this more general case.

If X is Mumford–Tate general, we can apply the universal property of the Kuga–

Satake variety of X to deduce to deduce that H3(X,Q) contains a direct summand of

the Kuga–Satake Hodge structure H1(KS(X),Q). As we mentioned above, for general X,

there is an isomorphism of quadratic spaces

T (X) ≃ U2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩

for some negative number a and b. Therefore, H1(KS(X),Q) is the fourth power of a

simple weight-one Hodge structure H1(KS(X),Q)c of dimension eight. By dimension

reasons, we conclude that there is an isomorphism

H3(X,Q) ≃ H1(KS(X),Q)c.

The algebraicity of the Kuga–Satake Hodge correspondence then can be seen as follows:

Let CX ∈ CH2(X)Q be a cycle whose cohomology class is cX , which exists by [60], and

let Z ∈ CH2(X × J3(X))Q be the Markman cycle above. Using the fact that J3(X) is a

simple abelian subvariety of the Kuga–Satake variety of X, one then checks that the cycle

Γ = Z2 · pr∗XCn−2
X ∈ CH2n(J3(X)×X)Q

induces the Kuga–Satake correspondence

[Γ]∗ : H2(KS(X)c,Q) −! H2(X,Q).

Contribution by the author of the thesis

Appendix A, written by the author of the thesis in collaboration with Claire Voisin,

originates from a presentation delivered during the Bonn–Paris seminar in the summer

term of 2021. We do not claim mathematical originality in this appendix.
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Notation

Appedix A follows mostly the notation we have introduced and used so far. We briefly

highlight the differences that occur. The transcendental lattice of a hyperkähler manifold

or a K3 surface X is denoted by H2(X,Q)tr. Furthermore, the first cohomology of

the Kuga–Satake variety of a polarized Hodge structure (V, qV ) is denoted by H1
KS(V ).

Finally, in the paper, we refer to Hodge structures of K3-type as Hodge structures of

hyper-Kähler-type, and to the Hodge group as the Mumford–Tate group.



Chapter 3

Introduction to the Hodge conjecture for powers

of K3 surfaces of Picard number 16

In this chapter, we give an overview of the content of Appendix B, which will appear in

[89]. In the article, we study the Hodge conjecture for powers of K3 surfaces. In particular,

in the case of K3 surfaces with a totally real endomorphism field, we prove the existence

of exceptional Hodge classes. This shows that the Hodge conjecture for the square of a

K3 surface does not necessarily imply the same conjecture for all its powers. We then

extend a result in [81] and prove the Hodge holds for all powers of a K3 surface of Picard

number 16 if the Kuga–Satake Hodge conjecture holds.

3.1 The Hodge conjecture for powers of K3 surfaces

In the first half of the paper, we correct a result in [78] using techniques which were first

introduced by Ribet [79] to study the Hodge conjecture for abelian varieties.

Let X be a projective K3 surface, and let T (X) be its transcendental lattice. By the

Künneth decomposition and the triviality of the first and third cohomology groups, one

sees that the Hodge conjecture for the powers of X follows if one proves that the Hodge

classes in the tensor algebra
⊗• T (X) are algebraic. As recalled in Section 1.3, Hodge

classes in this algebra are the invariant classes under the natural action of the Hodge

group Hdg(X) of T (X). By Zarhin [101], the group Hdg(X) is either a special orthogonal

group or a unitary group depending on whether the endomorphism field

E := EndHdg(T (X))

is totally real or a CM field.

In particular, one can describe a set of generators of the algebra of Hodge classes in⊗• T (X) using invariant theory. Ramon-Maŕı in [78] shows that, if E is a CM field, this

algebra is generated by degree-two elements. In particular, this implies that the Hodge

conjecture for X2 implies the Hodge conjecture for all powers of X.

In the totally real case, the situation is different and it is not true that the algebra of

Hodge classes in
⊗• T (X) is generated in degree-two. In fact, we prove the following:
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Theorem 3.1.1 (Theorem B.1.1). Let X be a K3 surface with totally real endomorphism

field E. Then, any Hodge class in
⊗• T (X) can be expressed in terms of Hodge classes

of degree two and the exceptional Hodge classes in T (X)⊗r, where r := dimE T (X).

We show that there is a natural embedding

detE T (X) :=
∧r
E T (X) ↪!

∧r
Q T (X) ↪! T (X)⊗r,

whose image consists of Hodge classes. We call them exceptional Hodge classes in analogy

with the exceptional Hodge classes in the case of abelian varieties of Weil type, see [99] and

[28]. The fact that the image of above embedding consists of Hodge classes follows from

the fact that detE T (X) is invariant under the action of the special orthogonal group of

the E-vector space T (X). Note however that, whereas degree-two Hodge classes T (X)⊗2

are invariant under the action of the full orthogonal group of T (X) as an E-vector space,

classes in detE T (X) are not. From this observation, one deduces that the exceptional

Hodge classes are indeed not in the algebra generated by the Hodge classes in T (X)⊗2.

The results above can be used to prove that the Hodge conjecture for all powers

of a K3 surface specializes in families in the case where the endomorphism field of the

special K3 surface is equal to the endomorphism field of the general element of the family.

See Corollary B.4.2 for the case in which the endomorphism field of the special fiber is

Q. In this case, to prove the Hodge conjecture for the special fiber it suffices to prove

that the determinant of its transcendental lattice is algebraic. As we show, this follows

from the algebraicity of the determinant of the transcendental lattice of the general fibre.

See Chapter 6 for a discussion on how to adapt the argument to the case where the

endomorphism field of the special fibre is totally real but different from Q. Note that we

still assume that the endomorphism field of the special fibre is equal to the endomorphism

field of the general fibre.

3.2 Families of K3 surfaces of Picard number 16

In [81], Schlickewei proves the Hodge conjecture for the square of the K3 surfaces in the

family of double covers of P2 branched along six lines. The author deduces this result

from the Kuga–Satake Hodge conjecture, which holds for these K3 surfaces by Paranjape

[77] as we recalled in Example 1.5.3. The main result of our paper is an extension of

this proof to show that the Hodge conjecture holds for all powers of these K3 surfaces.

In particular, we produce in this way the first examples of K3 surfaces with algebraic

exceptional Hodge classes. Furthermore, we show that these techniques extend to other

families of K3 surfaces of Picard number 16.

Theorem 3.2.1 (Theorem B.1.2). Let X ! S be a four-dimensional family of K3

surfaces whose general fibre is of Picard number 16 with an isometry

T (Xs) ≃ U2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩,
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for some negative integers a and b. If the Kuga–Satake correspondence is algebraic for the

fibres of this family, then the Hodge conjecture holds for all powers of every K3 surface in

this family.

The first step is to prove the Hodge conjecture for the powers of the general K3 surface

X of the family. In this case, the endomorphism field of X is Q. By a result of Lombardo

[56], the Kuga–Satake variety of X is a power of an abelian fourfold of Weil type with

discriminant one. The Hodge conjecture for these fourfolds holds by Markman in [60]. In

Section B.5, we review a proof of a result of Abdulali [1] that shows that this implies the

Hodge conjecture for all powers of these abelian fourfolds. In particular, we see that the

image via the Kuga–Satake correspondence of every Hodge class in the tensor algebra of

T (X) is algebraic. Via the transposed morphism of the Kuga–Satake correspondence, we

see that this implies that every Hodge class in
⊗∗ T (X) is algebraic. This concludes the

proof for the general K3 surface of the family.

A similar proof works also for the K3 surfaces of the family with totally real mul-

tiplication different from Q. In this case, the Hodge conjecture for the powers of the

Kuga–Satake variety holds by another result of Abdulali [1], using the fact that by [81],

the Kuga–Satake variety is a power of an abelian fourfold with quaternionic multiplication.

By [78], the Hodge conjecture holds for all powers of K3 surfaces with a CM endomor-

phism field. Therefore, to conclude the proof of Theorem 3.2.1, it only remains to study

the case in which the K3 surface has with endomorphism field Q and Picard number

higher than 16. In this case, the endomorphism field of the K3 surface is equal to the

endomorphism field of the general K3 surface of the family. Therefore, as remarked above,

the Hodge conjecture for the powers of these K3 surfaces can be deduced from the same

conjecture for the general K3 surface of the family.

In Chapter 6, we slightly improve this result, showing the following: Let X be a K3

surface such that there is an isometrical embedding T (X) ↪! U2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩ for some

negative numbers a and b. Then, if the Kuga–Satake Hodge conjecture for X implies the

Hodge conjecture for all powers of X. Note that in Theorem 3.2.1, to deduce the Hodge

conjecture for the powers of the K3 surfaces of Picard number higher than 16 we had

to assume that the Kuga–Satake Hodge conjecture holds for all the K3 surfaces of the

four-dimensional family.
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Introduction to Hodge similarities, algebraic classes,

and Kuga–Satake varieties

In this chapter, we give an overview of the content of Appendix C, which has appeared in

[88]. In the paper, we introduce and study the notion of Hodge similarity, and we prove

the Hodge conjecture for some of these morphisms using symplectic automorphisms of K3

surfaces or the Kuga–Satake correspondence.

4.1 Hodge similarities

Let X and Y be projective hyperkähler manifolds or K3 surfaces, and let (T (X), qX)

and (T (Y ), qY ) be their transcendental lattices, where qX and qY are the respective

Beauville–Bogomolov forms (or intersection products). As in Section 1.1, a morphism of

Hodge structure ψ : T (X) ! T (Y ) determines a Hodge class in H2n,2n(X × Y,Q), where

dimX = 2n. As we have recalled in Example 1.4.1 and Example 1.4.2, if ψ is a Hodge

isometry, i.e.,

qY (ψv, ψw) = qX(v, w), ∀v, w ∈ T (X)

the algebraicity of ψ is known in the case where X and Y are both K3 surfaces, or

hyperkähler manifold of K3[n]-type of the same dimension. In Appendix C, we investigate

the Hodge conjecture for Hodge similarities, which are Hodge morphisms that preserve

the quadratic forms up to a scalar.

Definition 4.1.1 (Definition C.2.2). Let (V, qV ) and (V ′, qV ′) be polarized Hodge struc-

tures of K3-type, and let ψ : V ! V ′ be a Hodge isomorphism. We say that ψ is a Hodge

similarity if there exists a positive rational number λψ ∈ Q such that

qV ′(ψv, ψw) = λψqV (v, w), ∀v, w ∈ V.

We call λψ the multiplier of ψ. A Hodge isometry is a Hodge similarity ψ of multiplier

λψ = 1.

The easiest example of Hodge similarity is the following: Let (V, qV ) be a polarized

Hodge structure of K3-type and consider the polarized Hodge structure of K3-type
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(V, λqV ), where the quadratic form is multiplied by a positive scalar λ ∈ Q. The identity

morphism

Idλ : (V, qV ) ! (V, λqV )

is then a Hodge similarity of multiplier λ. In the case where λ is not a square and the

dimension of V is odd, the Hodge structures (V, qV ) and (V, λqV ) are not isometric so

Idλ is not a homothety (i.e., an isometry composed by multiplication by a scalar).

Consider now the case in which the endomorphism field of (V, qV ) is a totally real field

E of degree two. Then, E is isomorphic to Q(
√
d) for some positive square-free integer d.

As totally real morphisms are fixed by the Rosati involution, we see that the morphism

√
d : V ! V

is a Hodge similarity of multiplier d. This gives another example of Hodge similarity.

4.2 Symplectic automorphsims on K3 surfaces and Hodge similarities

Let X be a K3 surface with a symplectic automorphism σp of order p, and let Y be the

K3 surface which is the minimal resolution of the quotient X/σp. We show in Section C.3

that the natural rational dominant map X 99K Y induces an algebraic Hodge similarity

φ : T (Y ) ! T (X)

of multiplier p. See also Section 6.2 for more detail.

In the case where the endomorphism field of T (X) is Q(
√
p), the algebraicity of the

morphism φ can be used to prove that ψ :=
√
p is an algebraic automorphism of T (X):

Consider the morphism φ−1 ◦ψ : T (X) ! T (Y ). By [11] and [45], it is algebraic since it is

a Hodge isometry. Therefore, also ψ is algebraic since it can be written as the composition

of two algebraic morphisms:

ψ = φ ◦ (φ−1 ◦ ψ).

In short, this proves the following.

Theorem 4.2.1 (Theorem C.3.1). Let X be a K3 surface Hodge isometric to a K3

surface with a symplectic automorphism of prime order p. Assume furthermore that

Q(
√
p) ⊆ EndHdg(T (X)). Then, the Hodge similarity

√
p is algebraic.

In the remainder of Section C.3, we show that the family of K3 surfaces satisfying

the hypotheses of Theorem 4.2.1 are four-dimensional for p = 2 and two-dimensional for

p = 3. In particular, this result provides the first example of four-dimensional family of

K3 surfaces with totally real multiplication of degree two for which the Hodge conjecture

holds for the square of its general member.
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4.3 Functoriality of Kuga–Satake varieties

The main result of Appendix C follows from the observation that the Kuga–Satake

construction is functorial with respect to Hodge similarities in the following sense. Let

ψ : (V, q) ! (V ′, q′) be a Hodge similarity of polarized Hodge structures of K3-type. In

Proposition C.4.1, we show that there is an isogeny of abelian varieties ψKS : KS(V ) !

KS(V ′) making the following diagram commute

V V ′

H1(KS(V ),Q)⊗2 H1(KS(V ′),Q)⊗2

ψ

(ψKS)
⊗2
∗

,

where the vertical arrows are the Kuga–Satake correspondences.

In the case where the Hodge structures V and V ′ are transcendental lattices of two

projective hyperkähler manifolds or K3 surfaces X and X ′ for which the Kuga–Satake

Hodge conjecture holds, the above functoriality almost implies the algebraicity of any

Hodge similarity ψ : T (X) ! T (X ′). Indeed, the following holds:

Theorem 4.3.1 (Theorem C.5.5). Let X and X ′ be two hyperkähler manifolds for which

the Kuga–Satake Hodge conjecture holds. Then, for every Hodge similarity ψ : T (X) !

T (X ′), the composition

T (X)
ψ−−! T (X ′)

h2n−2
X′ ∪•

−−−−−! H4n−2(X ′,Q)

is algebraic, where 2n := dimX ′.

If moreover X ′ satisfies the Lefschetz standard conjecture in degree two, i.e., the

inverse of the map T (X ′)
h2n−2
X′ ∪•

−−−−−! H4n−2(X ′,Q) is algebraic, this result implies that any

Hodge similarity ψ : T (X) ! T (X ′) is algebraic.

The family of hyperkähler manifolds of generalized Kummer type gives the main

examples of varieties for which the Kuga–Satake Hodge conjecture is known to hold.

As we review in [90], this has been deduced by Voisin [98] based on previous results by

Markman [60] and O’Grady [76]. As the Lefschetz standard conjecture in degree two

holds for these manifolds by Foster [24], we conclude that Hodge similarities between the

transcendental lattices of two projective hyperkähler manifolds of generalized Kummer

type are algebraic. Using the fact that the endomorphism field of these varieties is always

generated by Hodge similarities, we then conclude the following:

Theorem 4.3.2 (Theorem C.1.4). Let X and X ′ be hyperkähler manifolds of generalized

Kummer type such that T (X) and T (X ′) are Hodge similar. Then, every Hodge morphism

between T (X) and T (X ′) is algebraic.





Chapter 5

Introduction to algebraic cycles on hyper-Kähler

varieties of generalized Kummer type

In this chapter, we give an overview of the content of Appendix D which is a joint work

with Salvatore Floccari appeared in [23]. In the paper, we prove the Hodge conjecture for

the Hodge classes in the algebra generated by the second cohomology of a hyperkähler

manifold of generalized Kummer type. From this we deduce the Hodge conjecture for

projective Kum2-type manifolds.

5.1 An algebraic correspondence with a K3 surface

The second cohomology of a Kumn-type variety X is seven-dimensional by the result of

Beauville in [7]. In the case where X is projective, the transcendental part H2(X,Z)tr of
its second integral cohomology is then at most six-dimensional. Given a positive integer k,

let H2(X,Z)tr(k) be the Hodge structure H2(X,Z)tr with the quadratic form multiplied

by k. By dimension and signature reasons, there exists by Nikulin [74, Thm. 1.14.4] a

primitive embedding of lattices

H2(X,Z)tr(k) ↪! ΛK3,

where ΛK3 = E8(−1)⊕2 ⊕ U⊕3 is the K3-lattice. In particular, by the surjectivity of the

period morphism for K3 surfaces, there exists a K3 surface S such that there is a Hodge

isometry

φ : T (X)(k) −! T (S). (5.1)

Note that, even though this Hodge isometry holds already with integer coefficients, we

extended scalars to Q since we are concerned with the rational Hodge conjecture for

S ×X, which predicts that φ is algebraic. In the special case where X is six-dimensional

and k = 2, the algebraicity of φ follows from the work [21]: As recalled in Example 1.5.5,

given a projective Kum3-type variety K there is a dominant rational map of degree 25

r : K 99K YK
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for some K3[3]-type variety YK . By degree reasons and the fact that YK is birational to a

moduli of sheaves on a K3 surface SK , the pushforward by r induces an algebraic Hodge

isometry
1

16
r∗ : T (K)(2) −! T (SK).

In the paper, we prove that for any dimension n and any projective Kumn-type variety

X, there exists an integer k and a K3 surface S for which a morphism φ as in (5.1)

is algebraic. To do this, we first prove in Lemma D.4.3 that, given X, there exists a

projective Kum3-type variety K for which there is a Hodge similarity

T (X) −! T (K).

Recall that Hodge similarities of hyperkähler manifolds of generalized Kummer type are

algebraic by [88]. By the above construction, we know that there exists a K3 surface SK

with an algebraic Hodge isometry

T (K)(2) −! T (SK).

Taking the composition, we get an algebraic Hodge similarity φ : T (X) −! T (SK) as

claimed.

5.2 Algebraic cycles

The above construction is used to prove the following:

Theorem 5.2.1 (Theorem D.1.1). Let X be a projective manifold of Kumn-type, n ≥ 2.

Denote by A•
2(X) ⊂ H•(X,Q) the subalgebra of the rational cohomology generated by

H2(X,Q). Then any Hodge class in A2j
2 (X) ∩Hj,j(X) is algebraic, for any j.

Note that by the Lefschetz theorem, it suffices to prove the algebraicity of the Hodge

classes in A2j
2 (X) for j ≤ n. By [91], there is an isomorphism

A2j
2 (X) ≃ Symj(H2(X,Q)), ∀j ≤ n.

Using the decomposition H2(X,Q) ≃ NS(X)Q ⊕ T (X), we see that to prove the theorem,

we have to prove the algebraicity of the Hodge classes in Symj(T (X)). This can be seen

as follows.

As observed in [21], the four-dimensional families of K3 surfaces appearing in these

construction satisfy the hypotheses of Theorem B.1.2: The general transcendental lattice

is isometric to U2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩ for some negative numbers a and b, and the Kuga–Satake

Hodge conjecture holds for these K3 surfaces has been deduced in [21] from the algebraicity

of the Kuga–Satake correspondence for the associated Kum3-type variety. In particular,

the Hodge conjecture holds for all powers of these K3 surfaces.
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Then, using the inverse of the algebraic morphism φ constructed above, the algebraicity

of the Hodge classes in Symj(T (X)) follows from the algebraicity of the Hodge classes in

the tensor algebra of transcendental lattice of the associated K3 surface. Note that, to

deduce that the inverse of φ is algebraic, one uses the fact that the Lefschetz standard

conjecture in degree-two holds for hyperkähler manifolds of generalized Kummer type by

[24].

In Theorem 5.2.1, we study only the subalgebra generated by the second cohomology.

In general, this does not imply the Hodge conjecture for the variety X. Nonetheless, in

low-dimension, the result above is in fact sufficient: In dimension four the complement

of A•
2(X) in H•(X,Q) consists of the odd cohomology and of an 80-dimensional space

of Hodge classes in H4(X,Q), by [57, Example 4.6]. The classes in this 80-dimensional

space have the property that they are of Hodge-type on all deformations of X. This has

been used by Hasset and Tschinkel in [40], to prove that they are algebraic. In particular,

their result together with Theorem 5.2.1 implies the following.

Corollary 5.2.2 (D.1.2). Let X be a projective manifold of Kum2-type. Then, the Hodge

conjecture holds for X.

Similarly, one can deduce the Hodge conjecture for Kum3-type varieties. This has

been done in [20], but requires considerably more work since one has to show that the

Hodge classes in the complement of A•
2(X) are of Hodge-type on all deformations of X

and that this implies that they are algebraic.

Contribution by the author of the thesis

Appendix D is the product of a joint work with Salvatore Floccari. The project originated

from a Zoom call in which we discussed the results in the papers [21, 88]. We then recog-

nized that the findings in the two papers could be utilized to establish the aforementioned

results. The ownership of the results are shared equally between both authors.

Notation

Appendix D follows mostly the notation we have introduced and used so far. The main

difference is that we adopt in the paper a motivic approach. To maintain coherence, we

have chosen to align this introduction with the style and terminology employed throughout

the rest of the thesis.





Chapter 6

Summary and conclusive remarks

In this final chapter, we give an overview and complement the results produced in the

four appended papers.

6.1 The Hodge conjecture for products of K3 surfaces

As we have seen, already in the case of powers and products of K3 surfaces, the Hodge

conjecture is open and has been proved only in some special cases.

Thanks to the description of the Hodge group of a polarized Hodge structure of

K3-type provided by Zarhin [101], we study in Appendix B the algebra of Hodge classes

in the tensor algebra of the transcendental lattice T (X) of a K3 surface X. Denoting

by E the endomorphism field of T (X), we prove the following. If E is a CM field, then

the Hodge conjecture for X2 is equivalent to the Hodge conjecture for all its powers. If

E is totally real, to prove the Hodge conjecture for the powers of X, one has to prove

the Hodge conjecture for X2 and that the (exceptional) Hodge classes in detE T (X) are

algebraic, where detE T (X) is defined as the image of the natural map∧dimE T (X)
E T (X) ↪!

∧dimE T (X) T (X) ↪! T (X)⊗ dimE T (X).

Note that the CM case was already studied in [78] and implies the Hodge conjecture for

the powers of these K3 surfaces: Considering the isomorphism

(T (X)⊗ T (X))Hdg(X) ≃ (T (X)⊗ T (X)∗)Hdg(X) ≃ EndHdg(T (X)) =: E,

we see that the Hodge conjecture for X2 is equivalent to prove the algebraicity of the

elements in E. As CM fields are generated by isometries, this follows from the fact that

Hodge isometries between K3 surfaces are algebraic by [11] and [45].

The above description of the algebra of Hodge classes on the powers of K3 surfaces,

allowed us to address the following question: Does the Hodge conjecture for the powers of

a K3 surface specialize in families? That is, given a family of K3 surfaces X ! B such

that the Hodge conjecture holds for all powers of its general elements, is it true that the
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Hodge conjecture then holds for all powers of all K3 surfaces of the family? If not, by

how much this fails to be true?

To answer this, let X := X0 for some fixed element 0 ∈ B. Comparing T (X) with

T (Xb) for a general b ∈ B, we see that two things might happen

(i) EndHdg(T (Xb)) ⊆ EndHdg(T (X)) is not an equality;

(ii) dimT (Xb) > dimT (X).

The former case shows that the answer to the above question is negative. Indeed,

if EndHdg(T (Xb)) ⊆ EndHdg(T (X)) is not an equality, there exists a Hodge class α ∈
T (X)⊗2 which is not the specialization of a Hodge class in T (Xb)

⊗2. Thus, the algebraicity

of α cannot be deduced from the Hodge conjecture for the powers of the general K3

surface in the family.

On the other hand, if the endomorphism field of the special fibre is equal to the

endomorphism field of the general fibre, the Hodge conjecture does specialize even if

the dimension of the transcendental lattice of the special K3 surface drops as in (ii). In

Corollary B.4.2, we prove the above statement in the case where

EndHdg(T (X)) ≃ EndHdg(T (Xb)) ≃ Q

by showing that detT (X) is algebraic: Let T̃ be the transcendental lattice of the general

fibre Xb. By hypothesis, the Hodge class det T̃ is algebraic on the powers of Xb. Therefore,

it specializes to an algebraic class on the powers of X. Note that there is an orthogonal

decomposition

T̃ ≃ T (X)⊕N

for some N ⊆ NS(X)Q. As det T̃ is algebraic and all classes in N are algebraic, the class

α := det T̃ ⊗ detN,

is algebraic on Xn+2k, where n := dimT (X) and k := dimN . Fix now a point x ∈ X and

consider the natural morphism

φ : Xn × {x}k ↪! Xn ×Xk
IdXn×∆

Xk

↪−−−−−−−! Xn+2k.

As one checks, the pullback φ∗(α) is equal to a multiple of detT (X), so in particular

detT (X) is algebraic. This follows from the fact that T (X) and N are orthogonal (with

respect to the intersection product), and that there is an equality

det T̃ =
∑

±q∗I detT (X)⊗ p∗I detN,

where the sum runs over all subsets I ⊆ {1, . . . , n+ k} of length k, pI is the projection

from Xn+k onto the I-th factors, and qI is the projection onto the remaining factors.
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A similar proof works also in the case where EndHdg(T (X)) ≃ EndHdg(T (Xb)) is

any totally real field E. As recalled at the end of Section 1.3, the decomposition

T̃ ≃ T (X)⊕N is a decomposition of E-vector spaces, and the algebraicity of the Hodge

classes in detE T (X) can be deduced from the algebraicity of the Hodge classes in detE T̃ .

This then implies the Hodge conjecture for the powers of the K3 surface X.

As an application, we show the following in Theorem B.1.2. Given a four-dimensional

family of K3 surfaces of generic Picard number 16 for which the Kuga–Satake Hodge

conjecture holds, then the Hodge conjecture holds for all powers of the K3 surfaces

of the family. Note that by [21], this hypothesis is satisfied by countably many such

four-dimensional families. In particular, we get the Hodge conjecture for all powers of K3

surfaces in countably many four-dimensional families.

In the following, we refine the above statement. We prove that the Hodge conjecture

for the powers of a K3 surface as in the theorem can be deduced directly from the

algebraicity of the Kuga–Satake correspondence and does not rely on the Kuga–Satake

Hodge conjecture for the nearby fibres.

Theorem 6.1.1. Let X be a K3 surface such that there exists an embedding of quadratic

spaces

T (X) ↪! U2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩,

for some negative integers a and b. If the Kuga–Satake Hodge conjecture holds for X,

then the Hodge conjecture holds for all powers of X.

Proof. Let E be the endomorphism field of T (X). As T (X) is at most six-dimensional,

one of the following holds:

(i) dimT (X) = 6, 4, or 2 and E is a CM field;

(ii) dimT (X) = 6 and E = Q;

(iii) dimT (X) = 6 and E is a totally real field of degree two;

(iv) dimT (X) ≤ 5 and E ≃ Q.

In the case (i), the Hodge conjecture for the powers of X holds by [78]. In the cases

(ii) and (iii), we see from the proof of Theorem B.1.2 that the Hodge conjecture for the

powers of X follows from the fact that the Hodge conjecture holds for all powers of KS(X)

and the fact that the Kuga–Satake correspondence is algebraic for X by assumption.

Only in the case (iv), we used a different argument and we deduced the Hodge

conjecture for the powers of X from the same conjecture for the powers of the nearby

fibres of the family X . This can be avoided as follows. As the endomorphism field of

X is Q by assumption, to prove the Hodge conjecture for the powers of X, it suffices to

show that detT (X) is algebraic. By hypothesis, T (X) is a quadratic subspace of

T̃ := U2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩.
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Up to an orthogonal transformation of the K3-lattice, we may assume that the embedding

T (X) ↪! H2(X,Q) factors through T̃ ↪! H2(X,Q). As we recalled earlier in this section,

to prove that detT (X) is algebraic, it suffices to show that det T̃ is algebraic. As

T̃ ⊆ H2(X,Q) decomposes as T̃ = T (X)⊕N , for some N ⊆ NS(X)Q, we see that KS(T̃ )

is isogenous to KS(X)2
dimN

. By assumption, the Kuga–Satake Hodge conjecture holds

for X, and the morphism

H2(X,Q) ↠ T̃ ↪! H1(KS(T̃ ),Q)⊗2

is algebraic. Therefore, to show the algebraicity of det T̃ on the powers of X it suffices

to prove that det T̃ is algebraic on some power of the abelian variety KS(T̃ ). Denote

by T̃σ the quadratic space T̃ endowed with a very general Hodge structure of K3-type

determined by some σ ∈ T̃ . By [56], the abelian variety KS(T̃σ) is the fourth power of

a (general) abelian fourfold of Weil type with discriminant one. By Theorem B.1.3, the

Hodge conjecture holds for all powers of KS(T̃σ). In particular, the Hodge class det T̃σ is

algebraic on the powers of KS(T̃σ). As the Kuga–Satake construction works in families, we

see that det T̃σ specializes to the Hodge class det T̃ on some power of KS(T̃ ). Therefore,

det T̃ is algebraic on the powers of X. As remarked above, this implies that detT (X) is

algebraic and concludes the proof.

6.2 Hodge similarities and a bound on the degree of correspondences

In Appendix C, we introduce and study the concept of Hodge similarity. These are

morphisms of Hodge structures of K3-type ψ : V !W such that there exists a positive

λψ ∈ Q for which

qW (ψv1, ψv2) = λψqV (v1, v2) ∀v1, v2 ∈ V.

The number λψ is called the multiplier of ψ. Clearly, Hodge isometries are special cases

of Hodge similarities. Let us now recall two contexts in which Hodge similarities naturally

appear.

Let E be the endomorphism field of a Hodge structure of K3-type. If E is a totally

real field of degree two, then E ≃ Q(
√
d) for some positive square-free d ∈ Z. From the

fact that totally real endomorphisms are fixed by the Rosati involution, we see that the

endomorphism
√
d is a Hodge similarity of multiplier d.

A second, more geometrical, instance in which Hodge similarities appear is the

following. Let f : Y 99K X be a dominant rational map between two K3 surfaces. Then,

the pullback via f induces a Hodge similarity of ratio d between T (X) and T (Y ), where

d is the degree of f : Resolving the rational map f , we obtain a diagram

Z X

Y

f1

f2

f
,
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where f1 : Z ! Y is birational and f2 : Z ! X is dominant and generically finite of order

d. By the compatibility of the pullback and product, we see that f∗2 induces a Hodge

similarity of ratio d between T (X) and T (Z), and that f∗1 gives a Hodge isometry between

T (Z) and T (Y ).

In Appendix C, we consider K3 surfaces with a symplectic automorphism of order p

and totally real endomorphism field Q(
√
p). We prove in Theorem C.1.1 that the existence

of the symplectic automorphism implies the algebraicity of
√
p. Note that this is not

obvious since the symplectic automorphism acts trivially on the transcendental lattice of

the K3 surface. In particular, for p = 2, we prove the Hodge conjecture for the square of

the general member of the first four-dimensional families of K3 surfaces with totally real

multiplication of degree two.

Also in the case of hyperkähler manifolds, a rational dominant map f : Y 99K X

induces a Hodge similarity f∗ : T (X) ! T (Y ). To show this, one proves using the Fujiki

relations, that f∗ is a Hodge similarity of multiplier (cX deg f/cY )
1/n, where cX and cY

are the Fujiki constants of X and Y , and 2n is the dimension of X. Note in particular,

that this implies that (cX deg f/cY )
1/n is a rational number. Therefore, it imposes a

constraint on the degree of rational maps between hyperkähler manifolds. In the special

case of a rational dominant self-map f : X 99K X, we see that deg f has to be an n-th

power. If in addition we assume that X is Mumford–Tate general, then deg f has to be a

2n-th power. This follows from the fact that in this case, every endomorphism of T (X) is

just scalar multiplication by some d ∈ Q, so it is a Hodge similarity of degree d2. These

observations are product of a joint work with Evgeny Shinder.

6.3 The case of hyperkähler manifolds of generalized Kummer type

The class of Kumn-type manifolds is the only class of hyperkähler manifolds for which the

Kuga–Satake Hodge conjecture has been proven. We exploit this result multiple times in

the thesis.

In Appendix C, we prove that the Kuga–Satake construction is functorial with respect

to Hodge similarities. As a result we get that, if the Kuga–Satake Hodge conjecture holds

for two projective hyperkähler manifolds X and Y and the Lefschetz conjecture in degree

two holds for Y , then any Hodge similarity between T (X) and T (Y ) is algebraic. In the

case of Kumn-type varieties both hypotheses are satisfied. We then deduce that Hodge

similarities between projective hyperkähler manifolds of generalized Kummer type are

algebraic.

In Appendix D, we study the Hodge conjecture for these manifolds and we prove

the following. Let X be a Kumn-type variety, and denote by A•
2(X) the subalgebra of

H•(X,Q) generated by the second cohomology. Then, every Hodge class in A•
2(X) is

algebraic. In the case where X is four-dimensional, the Hodge classes in the complement
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of A•
2(X) in H•(X,Q) are algebraic by [40]. Therefore, we conclude that the Hodge

conjecture holds for hyperkähler manifolds of Kum2-type.

To prove this, we first construct an algebraic Hodge similarity between T (X) and

T (S) for some K3 surface S: By lattice theory and the surjectivity of the period map,

there exists a Kum3-type variety K such that T (K) is Hodge similar to T (X). The

construction in [21] that we recalled in Example 1.5.5 shows that there exists an algebraic

Hodge similarity between the transcendental lattice of K and a K3 surface S. As we

showed that Hodge similarities between hyperkähler manifolds of generalized Kummer

type are algebraic, we get that also the composition

T (X)
≃
−! T (K)

≃
−! T (S)

is algebraic. As remarked in [21], the hypotheses of Theorem B.1.2 are satisfied and

therefore the Hodge conjecture holds for the powers of the K3 surface S. This, together

with the algebraicity of the Hodge morphism above, implies that every Hodge class in

A•
2(X) is algebraic as required.

We conclude this section by providing a more direct proof of the above result that only

relies on the algebraicity of Hodge similarities for Kumn-type varieties and the algebraicity

of the Lefschetz isomorphism in degree two proven by Foster [24].

Let X be a projective Kumn-type variety. By the Lefschetz isomorphism, to prove

the Hodge conjecture for the Hodge classes in A•
2(X), it suffices to show it for the Hodge

classes in Aj2(X) for j ≤ n. By [91], there is an isomorphism

Aj2(X) ≃ Symj(H2(X,Q))

for j ≤ n. As all Hodge classes in NS(X)Q are algebraic, we just have to prove the Hodge

conjecture for the Hodge classes in

Symj(T (X)) ⊆ H2j(X,Q)

for j ≤ n. Considering the pullback via the diagonal embedding X ↪! Xj , we see that the

statement follows if we prove that any symmetric Hodge class in T (X)⊗j ⊆ H2j(Xj ,Q)

is algebraic.

By the results of Appendix B recalled in Section 6.1, any symmetric Hodge class in

T (X)⊗j is in the tensor algebra generated by Hodge classes in T (X)⊗2. Indeed, if the

endomorphism field E of X is a CM field, the algebra of Hodge classes in
⊗• T (X) is

generated by Hodge classes in T (X)⊗2, and if E is totally real, the algebra of Hodge

classes in
⊗• T (X) is generated by T (X)⊗2 together with the exceptional Hodge classes

in detE T (X). As these exceptional Hodge classes are anti-symmetric, we conclude that

the claim holds also in this case.

To conclude the proof, we then have to show that any Hodge class in T (X)⊗2 is

algebraic. By [24], the Lefschetz conjecture in degree two holds for X, and there is an
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algebraic isomorphism

T (X)⊗ (h2n−2
X ∪ T (X))

≃−−! T (X)⊗2, (6.1)

where hX ∈ H2(X,Q) denotes the cohomology class of an ample line bundle on X. It

then suffices to prove that any Hodge class on the left-hand-side of (6.1) is algebraic. As

E ≃ (T (X)⊗ T (X)∗)Hdg(X) ≃
(
T (X)⊗ (h2n−2

X ∪ T (X))
)Hdg(X)

,

we just have to show that any Hodge morphism in E is algebraic. This then follows from

the algebraicity of Hodge similarities between Kumn-type varieties and the fact that E is

always generated by Hodge similarities. Indeed, as dimT (X) ≤ 6, the field E is either a

CM field, Q, or a totally real degree-two extension of Q.





Appendix A

Hyper-Kähler manifolds of generalized Kummer

type and the Kuga–Satake correspondence

M. Varesco and C. Voisin1

Abstract. We first describe the construction of the Kuga–Satake variety associated to

a (polarized) weight-two Hodge structure of hyper-Kähler type. We describe the classical

cases where the Kuga–Satake correspondence between a hyper-Kähler manifold and its

Kuga–Satake variety has been proved to be algebraic. We then turn to recent work of

O’Grady and Markman which we combine to prove that the Kuga–Satake correspondence

is algebraic for projective hyper-Kähler manifolds of generalized Kummer deformation

type.

A.1 Introduction

The Kuga–Satake construction associates to any K3 surface, and more generally to any

weight-two Hodge structure of hyper-Kähler type a complex torus which is an abelian

variety when the Hodge structure is polarized. This construction allows to realize the

Hodge structure on degree-two cohomology of a projective hyper-Kähler manifold as a

direct summand of the H2 of an abelian variety. Although the construction is formal and

not known to be motivic, it has been used by Deligne in [16] to prove deep results of a

motivic nature, for example the Weil conjecture for K3 surfaces can be deduced from the

Weil conjectures for abelian varieties.

Section A.2 of the notes is devoted to the description of the original construction

and the presentation of a few classical examples where the Kuga–Satake correspondence

is known to be algebraic, i.e., realized by a correspondence between the hyper-Kähler

manifold and its Kuga–Satake variety. In Section A.3, we focus on the case of hyper-Kähler

manifolds of a generalized Kummer type and present a few recent results. If X is a (very

1Mauro Varesco and Claire Voisin. Hyper-Kähler manifolds of generalized Kummer type and the

Kuga–Satake correspondence. Milan J. Math., pages 433-444, 2022. https://doi.org/10.1007/s00032-022-

00369-8.

This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK,

Grant agreement ID 854361. The talk was delivered on May 14, 2021.
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general) projective hyper-Kähler manifold of generalized Kummer type, the Kuga–Satake

variety KS(X) built on H2(X,Z)tr is a sum of copies of an abelian fourfold KS(X)c of

Weil type. There is another abelian fourfold associated to X, namely the intermediate

Jacobian J3(X) which is defined as the complex torus

J3(X) = H1,2(X)/H3(X,Z)

where b3(X) = 8. Here we use the fact that H3,0(X) = 0 and the projectivity of X

guarantees that J3(X) is an abelian variety. O’Grady [76] proves the following result.

Theorem A.1.1. The two abelian varieties J3(X) and KS(X)c are isogenous.

We also prove in Section A.4 a more general statement concerning hyper-Kähler

manifolds with b3(X) ̸= 0. Section A.5 is devoted to the question of the algebraicity of the

Kuga–Satake correspondence. Following [98], we prove, using a theorem of Markman and

Theorem A.1.1 above that the Kuga–Satake correspondence is algebraic for hyper-Kähler

manifolds of generalized Kummer type.

Theorem A.1.2. There exists a codimension-2n cycle Z ∈ CH2n(KS(X)c ×X)Q such

that

[Z]∗ : H2(KS(X)c,Q) ! H2(X,Q) (A.1)

is surjective.

A.2 The Kuga–Satake construction

A.2.1 Main Construction

In this section, we recall the construction and some properties of the Kuga–Satake variety

associated to a Hodge structure of hyper-Kähler type. This construction is due to Kuga

and Satake in [54]. For a complete introduction see [44, Ch. 4] and [30].

Definition A.2.1. A pair (V, q) is a Hodge structure of hyper-Kähler type if the following

conditions hold: V is a rational level-two Hodge structure with dimV 2,0 = 1, and

q : V ⊗ V ! Q(−2) is a morphism of Hodge structures whose real extension is negative

definite on (V 2,0 ⊕ V 0,2) ∩ VR.

Remark A.2.2. Note that ifX is a hyper-Käler manifold and qX is the Beauville-Bogomolov

quadratic form, the pair (H2(X,Q),−qX) is indeed a Hodge structure of hyper-Kähler

type.

Let (V, q) be a Hodge structure of hyper-Kähler type, and let T (V ) be the tensor

algebra of the underlying rational vector space V :

T (V ) :=
⊕
i≥0

V ⊗i
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where V ⊗0 := Q. The Clifford algebra of (V, q) is the quotient algebra

Cl(V ) := Cl(V, q) := T (V )/I(q),

where I(q) is the two-sided ideal of T (V ) generated by elements of the form v ⊗ v − q(v)

for v ∈ V . Since I(q) is generated by elements of even degree, the natural Z/2Z-grading
on T (V ) induces a Z/2Z-grading on Cl(V ). Write

Cl(V ) = Cl+(V )⊕ Cl−(V ),

where Cl+(V ) is the even part and Cl−(V ) is the odd part. Note that Cl+(V ) is still a

Q-algebra, it is called the even Clifford algebra.

We now use the assumption that (V, q) is a Hodge structure of hyper-Kähler type to

define a complex structure on Cl+(V )R. Consider the decomposition of the real vector

space VR = V1 ⊕ V2, with

V1 := V 1,1 ∩ VR, V2 := {V 2,0 ⊕ V 0,2} ∩ VR.

The C-linear span of V2 is the two-dimensonal vector space V 2,0 ⊕ V 0,2. Therefore, q

is negative definite on V2. Pick a generator σ = e1 + ie2 of V 2,0 with e1, e2 ∈ V2 and

q(e1) = −1. Since q(σ) = 0, we deduce that q(e1, e2) = 0 and q(e2) = −1, i.e., {e1, e2} is

an orthonormal basis of V2. From this, it is straightforward to check that e1 · e2 = −e2 · e1
in Cl(V )R. Therefore, J := e1 · e2 satisfies the equation J2 = −1 and left multiplication

by J induces a complex structure on the real vector space Cl(V )R which preserves the

real subspaces Cl+(V )R and Cl−(V )R. Giving a complex structure on a real vector space

is equivalent to giving a Hodge structure of level one on the rational vector space:

Definition A.2.3. The Kuga–Satake Hodge structure H1
KS(V ) is the Hodge structure of

level one on Cl+(V ) given by

ρ : C∗ ! GL(Cl+(V )R), x+ yi! x+ yJ,

where x+ yJ acts on Cl+(V )R via left multiplication.

Therefore, starting from a rational level-two Hodge structure of hyper-Kähler type

(V, q), we constructed a rational Hodge structure of level one on Cl+(V ). This determines

naturally a complex torus up to isogeny: Let Γ ⊆ Cl+(V ) be a lattice in the rational

vector space Cl+(V ). Then, the Kuga–Satake variety associated to (V, q) is the (isogeny

class of) the complex torus

KS(X) := Cl+(V )R/Γ,

where Cl+(V )R is endowed with the complex structure induced by left multiplication by

J . Note that if (V, q) is an integral Hodge structure of hyper-Kähler type, then V can be

viewed as a lattice in Cl+(VQ). Thus, the natural choice Γ := V determines the complex

torus KS(V ), and not just up to isogeny.
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By construction, one has the following:

H1
KS(V ) := H1(KS(V ),Q) ≃ Cl+(V )∗ ≃ Cl+(V ),

where the isomorphism between Cl+(V ) and its dual is induced by the nondegenerate

form q.

Remark A.2.4. Consider the case where V can be written as a direct sum of Hodge

structures V = V1 ⊕ V2. Since dimV 2,0 = 1, either V1 or V2 has to be pure of type (1, 1).

We may then assume that V 2,0
2 = 0. In this case, one checks that the Kuga–Satake Hodge

structure Cl+(V ) is isomorphic to the product of 2n2−1 copies of Cl+(V1)⊕Cl−(V1), with

n2 := dimV2. In particular:

KS(V1 ⊕ V2) ∼ KS(V1)
2n2
.

Remark A.2.5. For any element w ∈ Cl+(V ), the right-multiplication morphism

rw : Cl
+(V ) ! Cl+(V ), rw(x) := x · w

is a morphism of Hodge structures. This follows from the fact that the Kuga–Satake Hodge

structure on Cl+(V ) is induced by left multiplication by J ∈ Cl+(V ) which commutes

with right multiplication by elements of Cl+(V ). Therefore, there is an embedding

Cl+(V ) ↪! EndHdg(Cl
+(V )) ≃ End(KS(V ))⊗Q.

Since the dimension of Cl+(V ) is 2dimV−1, we deduce that the endomorphism algebra of

KS(V ) is in general big. This is related with the fact that the Kuga–Satake variety of a

Hodge structure of hyper-Kähler type is in general not simple, but it is isogenous to the

power of a smaller-dimensional torus.

Remarkably, the Kuga–Satake construction realizes the starting level-two Hodge

structure as a Hodge substructure of the tensor product of two Hodge structures of level

one:

Theorem A.2.6. Let (V, q) be a Hodge structure of hyper-Kähler type. Then, there is an

embedding of Hodge structures:

V ↪! Cl+(V )⊗ Cl+(V ),

where Cl+(V ) is endowed with the level-one Hodge structure of Definition A.2.3.

Proof. We recall here just the definition of the desired map, for more details we refer to

[44, Prop. 3.2.6]. Fix an element v0 ∈ V such that q(v0) ̸= 0 and consider the following

left multiplication map:

φ : V ! End(Cl+(V )), v 7! fv,
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where fv(w) := v·w·v0. The injectivity of φ follows from the equality fv(v
′·v0) = q(v0)(v·v′)

for any v′ ∈ V . See the reference above for the proof of the fact that φ is a morphism of

Hodge structures. Finally, the desired embedding is given by the composition of ϕ and

the isomorphisms

End(Cl+(V )) ≃ Cl+(V )∗ ⊗ Cl+(V ) ≃ Cl+(V )⊗ Cl+(V ),

where the isomorphism Cl+(V )∗ ≃ Cl+(V ) is induced by q.

Remark A.2.7. Note that the embedding of Theorem A.2.6 depends on the choice of v0 ∈ V .

Nevertheless, choosing another v′0 ∈ V changes the embedding by the automorphism of

Cl+(V ) which sends w to
w·v0·v′0
q(v0)

.

Theorem A.2.6 shows that any Hodge structure of hyper-Kähler type can be realized

as a Hodge substructure of W ⊗W for some level-one Hodge structure W . On the other

hand, in [16, Sec. 7], Deligne proves that the same conclusion does not hold for a very

general level-two Hodge structure. We recall here a version of this fact as presented in

[30, Prop. 4.2].

Theorem A.2.8. Let (V, q) be a polarized level-two Hodge structure whose Mumford–Tate

group MT(V ) is maximal, that is, equal to SO(q). If dimV 2,0 > 1, then V cannot be

realized as a Hodge substructure of W ⊗W for any level-one Hodge structure W .

Remark A.2.9. One can show in some cases that the technical condition MT(V ) = SO(q)

of Theorem A.2.8 is satisfied for a very general Hodge structure, see [16, Sec. 7] and [95,

Cor. 4.12]. The proof goes as follows: Given a smooth projective morphism π : X ! B,

one shows that for very general t ∈ B, the Mumford–Tate group MT(Xt) contains a finite

index subgroup of the monodromy group of the base. Already in the case of hypersurfaces

in a (2r+ 1)-dimensional projective space, this shows that for a very general hypersurface

Xs, the Mumford–Tate group of H2r(X,Q) is maximal in the above sense. Applying

Theorem A.2.8, one then sees that the second cohomology of a very general surface X in

P3 of degree ≥ 5 cannot be realized as a Hodge substructure of W ⊗W for any level-one

Hodge structure W .

To conclude this section, we recall the fact that if the Hodge structure of hyper-Kähler

type is polarized, the resulting Kuga–Satake Hodge structure on the even Clifford algebra

is naturally polarized.

Theorem A.2.10. If (V, q) is a Hodge structure of hyper-Kähler type such that q is

a polarization for V , then the Kuga–Satake Hodge structure on Cl+(V ) has a natural

polarization. In particular, the Kuga–Satake torus KS(V ) is an abelian variety.

A.2.2 Some examples

Let X be a hyper-Kähler variety (resp. a two-dimensional complex torus). The pair

(H2(X,Q),−qX) where qX is the Beauville-Bogomolov form (resp. the intersection pairing)
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is a Hodge structure of hyper-Kähler type. Therefore, we can apply the Kuga–Satake

construction to it and we get the Kuga–Satake variety of X:

KS(X) := KS(H2(X,Q)).

Since−qX is not a polarization on the wholeH2(X,Q), the variety KS(X) is not necessarily

an abelian variety, but it is just a complex torus. On the other hand, if X is projective

and l is an ample class on X, the primitive part

H2(X,Q)p := l⊥ ⊆ H2(X,Q)

is a Hodge substructure which is polarized by the restriction of the form −qX . Therefore,

by Theorem A.2.10, the Kuga–Satake variety of H2(X,Q)p is an abelian variety. Moreover,

by Remark A.2.4, we have

KS(X) := KS(H2(X,Q)) ∼ KS(H2(X,Q)p)
2.

In particular, in the projective case, KS(X) is an abelian variety. A similar argument

can be applied to H2(X,Q)tr ⊆ H2(X,Q), the transcendental lattice of a projective

K3 surface, to deduce that KS(X) is isogenous to some power of the abelian variety

KS(H2(X,Q)tr). On the other hand, if X is not projective, the torus KS(X) need not be

polarized.

Theorem A.2.11. [71] Let A be a complex torus of dimension two. Then, there exists

an isogeny

KS(A) ∼ (A× Â)4,

where Â is the dual complex torus. In particular, if A is an abelian surface

KS(A) ∼ A8 and KS(Kum(A)) ∼ A219 ,

where Kum(A) is the Kummer surface associated to A.

Definition A.2.12. Let A be an abelian variety of dimension 2n and let d be a positive

real number. Then, A is called of Q(
√
−d)-Weil type if Q(

√
−d) ⊆ End(A) ⊗Z Q and

if the action of
√
−d on the tangent space at the origin of A has eigenvalues

√
−d and

−
√
−d both with multiplicity n.

Given an abelian of Q(
√
−d)-Weil type A, then one can associate naturally an element

δ ∈ Q/N(Q(
√
−d)), where N(Q(

√
−d)) is the set of norms of Q(

√
−d). The element δ

is called the discriminant of A. Abelian varieties of Weil type appear often as simple

factors of Kuga–Satake varieties; the next result due to Lombardo [56] gives an example

of this fact. We recall here the version presented in [30, Thm. 9.2]. In the following, U

denotes the hyperbolic plane.
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Theorem A.2.13. Let d be a positive real number and let A be an abelian fourfold of

Q(
√
−d)-Weil type of discriminant δ = 1. Then, A4 is the Kuga–Satake variety of a

polarized Hodge structure of hyper-Kähler type of dimension six (V, q), such that

V ≃ U⊕2 ⊕ ⟨−1⟩ ⊕ ⟨−d⟩

as quadratic spaces. Conversely, if (V, q) is a Hodge structure of hyper-Kähler type of

dimension six as above, its Kuga–Satake variety is isogenous to A4 for some abelian

fourfold of Q(
√
−d)-Weil type.

A.2.3 Kuga–Satake Hodge conjecture

In this section, we analyze the morphism of Hodge structures

V ↪! Cl+(V )⊗ Cl+(V )

of Theorem A.2.6, in the case where V = H2(X,Q)tr, the transcendental lattice of a projec-

tive hyper-Kähler varietyX. Using the isomorphism Cl+(H2(X,Q)tr) ≃ H1
KS(H

2(X,Q)tr),

we apply the Künneth decomposition and obtain an embedding

H1
KS(H

2(X,Q)tr)⊗H1
KS(H

2(X,Q)tr) ↪! H2(KS(H2(X,Q)tr)
2,Q).

On the other hand, since we the variety X is projective there is a natural projection

map H2(X,Q) ! H2(X,Q)tr. Composing these morphisms, we obtain the morphism of

Hodge structures

H2(X,Q) ! H2(KS(H2(X,Q)tr)
2,Q),

which is called the Kuga–Satake correspondence. This morphism corresponds via Poincaré

duality to a Hodge class

κ ∈ H2n,2n(X ×KS(H2(X,Q)tr)×KS(H2(X,Q)tr)),

where 2n = dimX. The Hodge conjecture applied to this special case gives us the

following:

Conjecture A.2.14 (Kuga–Satake Hodge conjecture). Let X be a projective hyper-Kähler

variety or a complex projective surface with h2,0 = 1. Then, the class κ is algebraic.

Remark A.2.15. In the case where X is an abelian surface or a Kummer surface, the

Kuga–Satake Hodge conjecture can be deduced from Theorem A.2.11, using the fact that

the Hodge conjecture is known for self-products of any given abelian surface [68].

The Kuga–Satake Hodge conjecture is not known in most cases, already in the case

of K3 surfaces. One of the very few examples for which it has been proved is the family

of K3 surfaces studied by Paranjape in [77]: Let L1, . . . , L6 be six lines in P2 no three

of which intersect in one point, and let π : Y ! P2 be the double cover of P2 branched
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along the six lines. Then, Y is a singular surface with simple nodes in the preimages of

the intersection points of the lines Li. Resolving the singularities of π by blowing up

the nodes one obtains a K3 surface X. For a general choice of the six lines, the Picard

number of X is equal to 16, where a basis of the Néron–Severi group is given by the

15 exceptional divisors over the singular points of Y , together with the pullback of the

ample line of P2 via the map X ! P2. In particular, the transcendental lattice of X is

six-dimensional, and satisfies the hypotheses of Theorem A.2.13. Its Kuga–Satake variety

is therefore isogenous to the fourth power of some abelian fourfold. In [77], the author

shows that this abelian fourfold is the Prym variety of some 4 : 1 cover C ! E where C

is a genus 5 curve and E is an elliptic curve, and finds a cycle in the product of X and

the Prym variety which realizes the Kuga–Satake correspondence.

The fact that the Kuga–Satake correspondence is algebraic for the family described

above has been used by Schlickewei to prove the Hodge conjecture for the square of those

K3 surfaces:

Theorem A.2.16. [81, Thm. 2] Let X be a K3 surface which is the desingularization

of a double cover of P2 branched along six lines no three of which intersect in one point.

Then, the Hodge conjecture is true for X2.

In [49], the Kuga–Satake Hodge conjecture is proved for K3 surfaces which are

desingularization of singular K3 surfaces in P4 with 15 nodal points. The authors then

show that the same techniques as in Theorem A.2.16 can be used to prove the Hodge

conjecture for the square of these K3 surfaces.

Theorem A.2.17. [49] Let X be a K3 surface which is the desingularization of a singular

K3 surface in P4 with 15 nodal points. Then, the Kuga–Satake Hodge conjecture holds for

X and the Hodge conjecture is true for X2.

As a part of its PhD thesis, the first author of these notes generalize these two results

and proves the following:

Theorem A.2.18. [89, Thm. 4.3] Let X ! S be a four-dimensional family of K3

surfaces whose general fibre is of Picard number 16 with an isometry

T (Xs) ≃ U2 ⊕ ⟨a⟩ ⊕ ⟨b⟩,

for some negative integers a and b. If the Kuga–Satake correspondence is algebraic for the

fibres of this family, then the Hodge conjecture holds for all powers of every K3 surface in

this family.

The families of K3 surfaces studied in [81] and in [49] satisfy the hypotheses of Theorem

A.2.18. Therefore, Theorem A.2.18 shows in particular that the Hodge conjecture holds

for all powers of the K3 surfaces in the two families considered in [81] and [49]. The

techniques applied are similar to the one introduced in [81] with the addition of a
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deformation argument which allows to prove the Hodge conjecture for all powers of the

K3 surfaces of higher Picard number in the family.

In the next section, we review another type of polarized hyper-Kähler manifolds for

which the Kuga–Satake Hodge conjecture can be proved: The family of hyper-Kähler

manifolds of generalized Kummer type.

A.3 The case of hyper-Kähler manifolds of generalized Kummer type

A.3.1 Cup-product: generalization of a result of O’Grady

Let X be a hyper-Kähler manifold of dimension 2n with n ≥ 2. The Beauville-Bogomolov

quadratic form qX is a nondegenerate quadratic form on H2(X,Q), whose inverse gives

an element of Sym2H2(X,Q). By Verbitsky [91], the later space imbeds by cup-product

in H4(X,Q), hence we get a class

cX ∈ H4(X,Q). (A.2)

The O’Grady map ϕ :
∧2H3(X,Q) ! H4n−2(X,Q) is defined by

ϕ(α ∧ β) = cn−2
X ∪ α ∪ β. (A.3)

The following result was first proved by O’Grady [76] in the case of a hyper-Kähler

manifold of generalized Kummer deformation type.

Theorem A.3.1. ([76], [98]) Let X be a hyper-Kähler manifold of dimension 2n. Assume

that H3(X,Q) ̸= 0. Then, the O’Grady map map ϕ :
∧2H3(X,Q) ! H4n−2(X,Q) is

surjective.

Proof. We can choose the complex structure on X to be general, so that ρ(X) = 0. This

implies that the Hodge structure on H2(X,Q) (or equivalently H4n−2(X,Q) as they are

isomorphic by combining Poincaré duality and the Beauville-Bogomolov form) is simple.

As the morphism ϕ is a morphism of Hodge structures, its image is a Hodge substructure

of H4n−2(X,Q), hence either ϕ is surjective, or it is 0. Theorem A.3.1 thus follows from

the next proposition.

Proposition A.3.2. The map ϕ is not identically 0.

Sketch of proof. Let ω ∈ H2(X,R) be a Kähler class. Then, we know that the ω-Lefschetz

intersection pairing ⟨ , ⟩ω on H3(X,R), defined by

⟨α, β⟩ω :=

∫
X
ω2n−3 ∪ α ∪ β

is nondegenerate. This implies that the image of the map

ψ :
2∧
H3(X,Q) ! H6(X,Q)
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pairs nontrivially with the image of Sym2n−3H2(X,Q) in H4n−6(X,Q). Note that the

Hodge structure on H3(X,Q) has Hodge level one, so that the Hodge structure on the

image of Imψ in Sym2n−3H2(X,Q)∗ is a Hodge structure of level at most two. One checks

by a Mumford–Tate group argument (see [98] for more details) that, for a very general

complex structure on X, the only level-two Hodge substructure of Sym2n−3H2(X,Q) is

cn−2
X H2(X,Q), where we see here cX as an element of Sym2H2(X,Q). It follows that

the image of Imψ in Sym2n−3H2(X,Q)∗ pairs non-trivially with cn−2
X H2(X,Q), which

concludes the proof.

A.4 Intermediate Jacobian and the Kuga–Satake variety

A.4.1 Universal property of the Kuga–Satake construction

The following result is proved in [13]. Using the Mumford–Tate group, this is a statement

in representation theory of the orthogonal group.

Theorem A.4.1. Let (H2, q) be a polarized Hodge structure of hyper-Kähler type. Assume

that the Mumford–Tate group of the Hodge structure on H2 is maximal (that is, equal to

the orthogonal group of q). Let H be a simple effective weight-one Hodge structure, such

that there exists an injective morphism of Hodge structures of bidegree (−1,−1)

H2 ↪! End(H).

Then, H is a direct summand of the Kuga–Satake Hodge structure H1
KS(H

2,Q).

Idea of the proof. Let G := MT(End(H)) and denote by g its Lie algebra. Note that the

group G acts on H2, since H2 is a Hodge substructure of End(H). Using the fact that

the action of G preserves the polarization on H2 and the hypothesis MT(H2) = SO(H2),

one sees that the image of G in GL(H2) is SO(H2). As so(H2) is a simple Lie algebra, we

conclude that there exists a simple factor g0 of the Lie algebra g that maps isomorphically

onto so(H2). Note that G is naturally a subgroup of MT(H), which is contained in

CSp(H), the group generated by the symplectic group and the homotheties of H. In

particular, there is a morphism of Lie algebras:

so(H2) ≃ g0 ↪! sp(H). (A.4)

By the classification result presented in [80] and explained in [17, 1.3.5-1.3.9], one concludes

that the only embeddings as in (A.4) which correspond to irreducible representations

of SO(H) are the spin representations. This proves that H is a direct summand of

H1
KS(H

2, q).

Charles’ theorem is in fact stronger, as it proves a similar statement for all tensor

powers H⊗k ⊗ (H∗)⊗k+2r. It also addresses the nonpolarized case that appears when

dealing with nonprojective hyper-Kähler manifolds. In [35], another version of the

universality property is proved. Namely
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Theorem A.4.2. Let (H2, q) be a polarized Hodge structure of hyper-Kähler type. Assume

that dimH2 ≥ 5 and that the Mumford–Tate group of the Hodge structure on H2 is

maximal. Let H be a simple effective weight-one Hodge structure, such that there exists

an injective morphism of Hodge structures of bidegree (−1,−1)

H2 ↪! Hom(H,A),

for some weight-one Hodge structure A. Then, H is a direct summand of the Kuga–Satake

Hodge structure H1
KS(H

2, q).

Coming back to Theorem A.4.1, under the same assumption on the Mumford–Tate

group, one knows that the Kuga–Satake weight-one Hodge structure is a power of a simple

weight-one Hodge structure of dimension ≥ 2⌊
b2−1

2
⌋, where b2 = dimH2, hence one gets

as a consequence an inequality (see [13] for a more precise estimate)

dimH ≥ 2⌊
b2−1

2
⌋.

Proof of Theorem A.1.1. Let X be a very general projective hyper-Kähler manifold of

generalized Kummer type of dimension ≥ 4. We apply Theorem A.4.1 to the O’Grady

map (A.3) that we know to be a surjective morphism of Hodge structures by Theorem

A.3.1, or rather to its dual. We then conclude that H3(X,Q) contains a direct summand

of H1
KS(H

2(X,Q)tr). As H1
KS(H

2(X,Q)tr) is a power of a simple weight-one Hodge

structure H1
KS(H

2(X,Q)tr)c of dimension 8, and b3(X) = 8, we conclude that H3(X,Q) ∼=
H1

KS(H
2(X,Q)tr)c as rational Hodge structures.

A.5 Algebraicity of the Kuga–Satake correspondence for hyper-Kähler

manifolds of generalized Kummer type

A.5.1 Markman’s result

For a projective manifold X with h3,0(X) = 0, it is expected from the Hodge conjecture

that there exists a cycle Z ∈ CH2(J3(X) × X)Q such that [Z]∗ : H1(J
3(X),Q) !

H3(X,Q) is the natural isomorphism. Indeed, the map [Z]∗ is an isomorphism of Hodge

structures, hence provides a degree-4 Hodge class on J3(X) × X. Equivalently, after

replacing Z by a multiple that makes it integral, the Abel–Jacobi map

ΦZ : J3(X) ! J3(X), ΦZ := ΦX ◦ Z∗,

is a multiple of the identity and in particular ΦX is surjective.

Theorem A.5.1. (Markman [60]) Let X be a projective hyper-Kähler manifold of

generalized Kummer type. Then, there exists a codimension-two cycle Z ∈ CH2(J3(X)×
X)Q satisfying the property above.
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The proof of this theorem uses a deformation argument starting from a generalized

Kummer manifold, using the fact that J3(X) can be realized as a moduli space of sheaves

on X in that case.

We now use Markman’s result to prove Theorem A.1.2.

Proof of Theorem A.1.2. Let Z be the Markman codimension-two cycle of Theorem A.5.1.

We choose a cycle CX ∈ CH2(X)Q of class [CX ] = cX (it exists by results of Markman

[60]). We now consider the cycle

Γ = Z2 · pr∗XCn−2
X ∈ CH2n(J3(X)×X)Q.

One checks using the Künneth decomposition (see [98] for more details) that

[Γ]∗ : H2(J
3(X),Q) ! H2(X,Q)

is the O’Grady map. By Theorem A.1.1, this is also the surjective morphism of Hodge

structures (A.1).
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The Hodge conjecture for powers of K3 surfaces

of Picard number 16

M. Varesco1

Abstract. We study the Hodge conjecture for powers of K3 surfaces and show that if

the Kuga–Satake correspondence is algebraic for a family of K3 surfaces of generic Picard

number 16, then the Hodge conjecture holds for all powers of any K3 surface in that

family.

B.1 Introduction

B.1.1 The determinant and the exceptional Hodge classes

Let X be a K3 surface, and denote by T (X) its transcendental lattice with its induced

Hodge structure of weight two. In the study of the Hodge conjecture for powers of X

a central role is played by the endomorphism field E of T (X). If E is a CM field, then

the Hodge conjecture for all powers of X is known to hold: Buskin [11] and, again,

Huybrechts [45], using derived categories, prove the Hodge conjecture for the square

of these K3 surfaces. Ramón–Maŕı [78] then shows that for K3 surfaces with a CM

endomorphism field, the Hodge conjecture for the square implies the Hodge conjecture

for all powers of these K3 surfaces. On the other hand, if E is a totally real field, the

situation is more difficult. Unlike the CM case, the algebra of Hodge classes in
⊗• T (X)

is never generated by degree-two elements: The determinant of the transcendental lattice

detT (X) ∈ T (X)⊗ dimT (X) gives an example of an exceptional Hodge class, i.e., a Hodge

class in the tensor algebra of T (X) that cannot be expressed in terms of Hodge classes

in T (X)⊗2. In particular, we see that it is not sufficient to prove the Hodge conjecture

for the square of these surfaces. Moreover, if the endomorphism field of X is not Q, the

determinant is not the unique exceptional Hodge class. Indeed, we prove the following:

1Mauro Varesco. The Hodge conjecture for powers of K3 surfaces of Picard number 16. Mich. Math.

J., Advance Publication 1-32, 2024, https://doi.org/10.1307/mmj/20236349.
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Theorem B.1.1 (Theorem B.3.16). Let X be a K3 surface with totally real endomorphism

field E. Then, any Hodge class in
⊗• T (X) can be expressed in terms of Hodge classes

of degree two and the exceptional Hodge classes in T (X)⊗r, where r := dimE T (X).

In particular, one sees that detT (X) decomposes as tensor product of exceptional

Hodge classes of lower degree. To see what these exceptional classes are, consider the

decomposition T (X)C =
⊕

σ Vσ of the complex vector space T (X)C into eigenspaces for

the action of the field E, where the direct sum runs over all embeddings σ : E ↪−! C. The
classes detVσ ∈ (T (X)C)

⊗r are of type (r, r), but are not rational. However, it can be

shown that the space ⟨detVσ⟩σ is indeed rational, i.e., spanned by Hodge classes. These

are the exceptional Hodge classes appearing in the theorem. In particular, to prove the

Hodge conjecture for all powers of a K3 surface X with a totally real endomorphism field,

one needs to show the Hodge conjecture for the square X2, i.e., prove that all classes

in EndHdg(X)(T (X)) are algebraic, and then show that one of the exceptional classes in

T (X)⊗r is algebraic on Xr. Indeed, if one of these exceptional classes is algebraic, then,

applying the endomorphisms in EndHdg(X)(T (X)), we see that all of them are algebraic.

The second implication of our theorem is the fact that the Hodge conjecture does not

specialize in families: In a family of K3 surfaces the dimension of the endomorphism field

may jump and the rank of the transcendental lattice may go down, therefore, the Hodge

conjecture for powers of the general member does not imply the Hodge conjecture for

powers of all other fibres. However, we prove in Proposition B.4.1 that the algebraicity of

detT (X) specializes also when the dimension of T (X) drops. A similar statement can

be proven for the exceptional Hodge classes, this allows us to conclude that the Hodge

conjecture specializes in families if the endomorphism field of the special fibre is equal to

the endomorphism field of the general fibre.

B.1.2 The main theorem

A possible approach to tackle the Hodge conjecture for powers of K3 surfaces is via the

Kuga–Satake construction, which gives a correspondence between the K3 surface and

an abelian variety. When this correspondence is known to be algebraic, it is possible to

produce algebraic cycles on powers of the K3 surface from algebraic cycles on powers

of the abelian variety. For example, this shows the Hodge conjecture for powers of K3

surfaces that are Kummer surfaces: By Morrison [70], the Kuga–Satake variety of a

Kummer surface is a power of the starting abelian surface, and by Ribet [79], the Hodge

conjecture holds for powers of abelian surfaces. This same approach has been employed

by Schlickewei [81] to prove the Hodge conjecture for the square of K3 surfaces which are

double covers of the projective plane branched along six lines using a result by Paranjape

[77]. Inspired by these techniques, we analyze in depth the Kuga–Satake correspondence

for K3 surfaces of Picard number 16, and we prove the following:
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Theorem B.1.2 (Theorem B.6.3). Let X −! S be a four-dimensional family of K3

surfaces whose general fibre is of Picard number 16 with an isometry

T (Xs) ≃ U2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩,

for some negative integers a and b. If the Kuga–Satake correspondence is algebraic for the

fibres of this family, then the Hodge conjecture holds for all powers of every K3 surface in

this family.

At the time of us writing this article, there are two families of K3 surfaces which

satisfy the hypotheses of Theorem B.1.2: The family of double covers of P2 branched

along six lines studied in [81] and the family of K3 surfaces which are desingularization of

singular K3 surfaces in P4 with 15 simple nodes studied in [49]. In particular, Theorem

B.1.2 proves the Hodge conjecture for all powers of the K3 surfaces in these families.

B.1.3 Outline of the proof

The first step of the proof is a study of the Hodge conjecture for powers of the Kuga–Satake

varieties of the K3 surfaces of Theorem B.1.2. By Lombardo [56], these abelian varieties

are powers of abelian fourfolds of Weil type with discriminant one. We correct in Section

B.5 the proof of the following theorem.

Theorem B.1.3 (Theorem B.5.16). [1] Let A be a general abelian variety of Weil type.

Then, the Hodge conjecture for A implies the Hodge conjecture for all powers Ak.

In a recent preprint, Milne [64] gives an alternative proof of Theorem B.1.3 using an

equality between the Mumford–Tate group and the algebraic group which preserves the

algebraic classes on the powers of the abelian variety2. Our proof has the advantage of

giving a concrete description of all Hodge classes on the powers of a general abelian variety

of Weil type. For example this allows us to show that if the Kuga–Satake correspondence

for the general K3 surface of Picard number 16 with transcendental lattice as in Theorem

B.1.2 is algebraic, then the Hodge conjecture holds for the resulting abelian fourfold of

Weil type with discriminant one. Indeed we prove the following:

Proposition B.1.4 (Prop. B.6.2). Let X be a general K3 surface of Picard number 16 as

in Theorem B.1.2, and denote by A the abelian fourfold of Weil type with discriminant one

appearing as simple factor of the Kuga–Satake variety of X. Then, if the Kuga–Satake

correspondence is algebraic for X, the Weil classes on A are algebraic. Thus, the Hodge

conjecture holds for A and, hence, for all powers Ak.

The Hodge conjecture for general abelian fourfolds of Weil type with discriminant

one has already been proven by Markman [60] using generalized Kummer varieties. Our

2Thanks to Bert van Geemen for the reference.
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approach is different but no new case of the Hodge conjecture is established. Proposition

B.1.4 is included to highlight the strong link between algebraicity of the Kuga—Satake

correspondence and the Hodge conjecture for the Kuga–Satake variety. Assuming the

algebraicity of Kuga–Satake correspondence, the Hodge conjecture for powers of the

Kuga–Satake variety implies the Hodge conjecture for the K3 surface. This allows us

deduce the Hodge conjecture the general K3 surface of the family of Theorem B.1.2.

Similarly, we prove the Hodge conjecture for all powers of K3 surfaces of Picard number

16 and a totally real endomorphism field of degree two. To establish the same for the

K3 surfaces of higher Picard number with totally real endomorphism field, we rely on

the aforementioned result stating that the Hodge conjecture specializes in families if the

endomorphism field of the special fibre is equal to the endomorphism field of the general

fibre. This last hypothesis is satisfied, as the endomorphism field of K3 surfaces of Picard

number higher than 16 is Q if it is not a CM field.
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B.2 The Hodge conjecture and Kuga–Satake varieties

In this section, we recall the Hodge conjecture in the special case of powers of K3 surfaces

and review the construction of the Kuga–Satake varieties. For a complete introduction

we refer to [44].

B.2.1 The Hodge conjecture

Let X be a smooth complex projective variety. For a non-negative integer k denote by

Hk,k(X,Q) := Hk,k(X,C) ∩H2k(X,Q) the set of Hodge classes of degree k.

Conjecture B.2.1 (Hodge conjecture for powers of K3 surfaces). Let X be a K3 surface,

and let k and n be positive integers. Then, the Q-algebra of Hodge classes in Hk,k(Xn,Q)

is generated by cohomology classes of algebraic cycles on Xn.

As the K3 surface X is projective by assumption, the intersection pairing on X induces

the direct sum decomposition

H2(X,Q) = NS(X)Q ⊕ T (X),

where NS(X) is the Néron–Severi group of X, and T (X) is its transcendental lattice, i.e.,

the smallest rational sub-Hodge structure T of H2(X,Q) such that T 2,0 = H2,0(X).
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Lemma B.2.2. The Hodge conjecture holds for all powers of a K3 surface X if and only

if all Hodge classes in the tensor algebra of T (X) are algebraic.

Proof. Let n and k be positive integers. By Künneth decomposition, we have that

H2k(Xn,Q) ∼=
⊕(

T (X)⊗a ⊗NS(X)⊗bQ ⊗H0(X,Q)⊗c ⊗H4(X,Q)⊗d
)
,

where the direct sum runs over all non-negative integers a, b, c, and d satisfying 2k =

2a+2b+4d and a+ b+c+d = n. Since all elements in NS(X)Q, H
0(X,Q), and H4(X,Q)

are obviously algebraic, to prove the Hodge conjecture for the powers of X, it suffices to

show that the Hodge classes in the algebra
⊗• T (X) are algebraic.

Let us recall the notion of Hodge group of T (X), which we use to study the algebra

of Hodge classes in
⊗• T (X). Let V be a rational Hodge structure, and denote by

ρ : C∗ −! GL(VR) the morphism defining the Hodge structure on V . The Hodge group of

V is defined as the smallest algebraic sub-group Hdg(V ) of GL(V ) defined over Q such

that

ρ(S1) ⊆ Hdg(V )(R),

where S1 ⊆ C∗ is the unit circle. Hodge classes can be equivalently defined as the classes

that are invariant under he action of the Hodge group, indeed, the following holds:

Lemma B.2.3. [79, Sec. 2] Let a and b be non-negative integers. An element v ∈
V ⊗a⊗(V ∗)⊗b is a Hodge class if and only if it is invariant under the action of Hdg(V ).

Given a K3 surface X, the algebra of Hodge classes in
⊗• T (X) is then the invariant

algebra (
⊗• T (X))Hdg(X), where Hdg(X) is the Hodge group of T (X). Similarly, given

an abelian variety A, denote by Hdg(A) the Hodge group of H1(A,Q). Considering

the natural embedding of Hodge structures
∧•H1(A,Q) ↪−!

⊗•H1(A,Q), we see that

(
∧•H1(A,Q))Hdg(A) is the algebra of Hodge classes in

∧•H1(A,Q).

B.2.2 Kuga–Satake varieties

We shortly recall the Kuga–Satake construction following [30] and [44, Ch. 4].

Let (V, q) be a polarized rational Hodge structure of weight two of K3-type, i.e.,

dimV 2,0 = 1. The Clifford algebra of V is the quotient of the tensor algebra of V by the

two-sided ideal generated by elements of the form v ⊗ v − q(v) for v ∈ V :

Cl(V ) :=
⊗• V/⟨v ⊗ v − q(v)⟩.

Denote by Cl+(V ) the subalgebra of Cl(V ) generated by the elements of even degree.

As shown in [44, Prop. 2.6], the Hodge structure on V induces a Hodge structure

of weight one on Cl+(V ) for which there exists an embedding of Hodge structures

V ↪−! Cl+(V )⊗ Cl+(V ).
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Definition B.2.4. The Kuga–Satake variety of (V, q) is an abelian variety KS(V ) such

that there is an isomorphism of Hodge structures H1(KS(V ),Q) ≃ Cl+(V ).

Note that the abelian variety KS(V ) is determined only up to isogeny. For our

purposes, this description of the Kuga–Satake variety up to isogeny is sufficient.

Let X be a K3 surface, and denote by KS(X) the Kuga–Satake variety of T (X). By

construction, there is an embedding of Hodge structures:

T (X) ↪−! H1(KS(X),Q)⊗H1(KS(X),Q) ⊆ H2(KS(X)2,Q).

Composing this map with the natural projection H2(X,Q) −! T (X) induced by the

polarization on X, we obtain the following morphism of Hodge structures:

H2(X,Q) −! H2(KS(X)2,Q).

This morphism is called Kuga–Satake correspondence. By Poincaré duality, this map is

induced by a Hodge class κ ∈ H2,2(X ×KS(X)2,Q). The Hodge conjecture then predicts

the following:

Conjecture B.2.5 (Kuga–Satake Hodge conjecture for K3 surfaces). Let X be a K3

surface. Then, the Hodge class κ is algebraic.

If the Kuga–Satake correspondence is algebraic, it is possible reduce the study of

the Hodge conjecture on powers of K3 surfaces to the study of the Hodge conjecture for

powers of abelian varieties. Indeed, as in the proof of [81, Thm. 2], the following holds:

Lemma B.2.6. Let X be a K3 surface for which the Kuga–Satake correspondence is

algebraic. Then, a Hodge class in the tensor algebra of T (X) is algebraic if and only if its

image via the Kuga–Satake correspondence is algebraic.

Proof. Let α be a Hodge class in T (X)⊗k for some k. If α is algebraic on Xk then

also its image via the Kuga–Satake correspondence is algebraic as we are assuming that

the Kuga–Satake Hodge conjecture for X. Conversely, applying [51, Cor. 3.14] to the

Kuga–Satake correspondence, we see that there is an algebraic projection

H2(KS(X)2,Q) −! T (X) ⊆ H2(X,Q).

Therefore, if the image of α is algebraic on KS(X)2k also α is algebraic on Xk.

B.3 Generators of the algebra of Hodge classes

In this section, using the techniques introduced by Ribet [79], we study the algebra of

Hodge classes for the powers of K3 surfaces. A similar study has been done in [78].

However, there is a mistake in the proof of [78, Prop. 5.2] that leads to a wrong conclusion

in the case of K3 surfaces with totally real multiplication.
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By Lemma B.2.2 and Lemma B.2.3, to study the Hodge conjecture for powers of

X it suffices to investigate it for the algebra (
⊗• T (X))

Hdg(X)
. To ease the exposition,

let us introduce some terminology we will use in the following sections. An element

f ∈
⊗• T (X) is called homogeneous of degree d if f ∈ T (X)⊗d. Note that the group of

permutations Sd naturally acts on T (X)⊗d.

Definition B.3.1. We say that homogeneous elements e1, . . . , er ∈ (
⊗• T (X))

Hdg(X)

generate (
⊗• T (X))

Hdg(X)
if any element f ∈ (

⊗• T (X))
Hdg(X)

can be written as a sum

f =
∑

i fi, where each fi is homogeneous and, up to permutation and up to a scalar, it

is a tensor product of elements in {e1, . . . , ek}. In this case, we say that any element in

(
⊗• T (X))

Hdg(X)
can be expressed in terms of e1, . . . , ek.

Note that if {e1, . . . , er} is a set of generators of (
⊗• T (X))

Hdg(X)
, to prove the Hodge

conjecture for the powers of X, it suffices to show that the classes ei are algebraic.

Let E := EndHdg(X)(T (X)) be the endomorphism algebra of T (X). As T (X) is an

irreducible Hodge structure, E is a field, cf. [44, Sec. 3.2]. We call it the endomorphism

field of X. Let ψ be the polarization on T (X) induced by the intersection form on

H2(X,Q). Note that ψ is symmetric, since the Hodge structure on T (X) has weight two.

The Rosati involution is the involution on E sending an element e to the element e′ for

which

ψ(e(x), y) = ψ(x, e′(y)), ∀x, y ∈ T (X).

As one checks, F := {e ∈ E | e′ = e} ⊆ E is a totally real field, and either E = F or E is

a CM field with maximal totally real sub-field F , see [44, Thm. 3.3.7]. We treat these

two cases separately.

B.3.1 K3 surfaces with a CM endomorphism field

In this section, we prove the following:

Theorem B.3.2. [78, Prop. 5.2] Let X be a K3 surface whose endomorphism field is a

CM field. Then, any Hodge class
⊗• T (X) can be expressed in terms of Hodge classes in

T (X)⊗2.

Note that in the reference it is stated that the same holds also in the case of K3

surfaces with totally real multiplication. In the next section, we show that this is not

true.

Before proving Theorem B.3.2, let us deduce from it the Hodge conjecture for all

powers of the K3 surface X:

Corollary B.3.3. [78, Thm. 5.4] Let X be a complex, projective K3 surface whose

endomorphism field is a CM field. Then, the Hodge conjecture holds for all powers of X.
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Proof. By Lemma B.2.2, in order to prove the Hodge conjecture for all powers of X, we

need to show that the Hodge classes in
⊗• T (X) are algebraic. By Theorem B.3.2, to

show this, it suffices to show that every Hodge class in T (X)⊗2 is algebraic. This has

been proven in [11] and again in [45, Cor. 0.4.ii], where the authors prove the Hodge

conjecture for the square of a K3 surface with CM endomorphism field.

The remainder of this section is dedicated to the proof of Theorem B.3.2. Let us start

by recalling the following result from linear algebra:

Lemma B.3.4. [18, Lem. 4.3] Let k be a field and let V be a vector space of finite

dimension over a finite separable field extensions k′ of k. Then, the map

Homk′(V, k
′) −! Homk(V, k), f 7−! Trk′/k ◦ f,

is an isomorphism of k-vector spaces.

Lemma B.3.5. [101, Sec. 2.1] Let X be a K3 surface with a CM endomorphism field E

and let ψ be the polarization on T (X) induced by the intersection pairing. Then, there

exists a unique non-degenerate E-Hermitian map φ : T (X)× T (X) −! E which satisfies

ψ(v, w) = TrE/Q(φ(v, w)) for every v, w ∈ T (X).

Proof. Denote by T (X)† the space T (X) with E acting on it via complex conjugation. The

polarization ψ can be seen as a Q-linear morphism T (X)⊗E T (X)† −! Q. Lemma B.3.4

then says that there exists a unique E-linear map φ : T (X)⊗E T (X)† −! E such that

ψ(v, w) = TrE/Q(φ(v, w)) for every v, w ∈ T (X). Viewing φ as a map T (X)×T (X) −! E,

we see that it is E-Hermitian and satisfies all the required proprieties.

Let Hdg(X) be the Hodge group of the transcendental lattice of X. As the polarization

ψ is a morphism of Hodge structures

ψ : T (X)⊗ T (X) −! Q(−2),

the action of Hdg(X) on T (X) preserves ψ, i.e., ψ(Av,Aw) = ψ(v, w) for every v, w ∈
T (X) and every A ∈ Hdg(X). By construction of φ, we conclude that Hdg(X) ⊆
ResF/Q(U(T (X), φ)), where U(T (X), φ) is the unitary group with respect to the E-

Hermitian form φ, and F is the maximal totally real sub-field of E. In [101, Thm. 2.3.1],

it is shown that this inclusion is always an equality, i.e., that the Hodge group of X

satisfies Hdg(X) = ResF/Q(U(T (X), φ)). By Lemma B.2.3, the ring of Hodge classes in⊗• T (X) is then equal to

(
⊗• T (X))Hdg(X) = (

⊗• T (X))ResF/Q(U(T (X),φ)).

Let Hdg(X)(C) be the group of C-valued points of Hdg(X). As in [28, Sec. 6.7], there is

an isomorphism of graded algebras

(
⊗• T (X))Hdg(X) ⊗Q C ≃ (

⊗• T (X)C)
Hdg(X)(C). (B.1)

From this, using the terminology of Definition B.3.1, we deduce the following:
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Lemma B.3.6. If ẽ1, . . . , ẽr are homogeneous generators of (
⊗• T (X)C)

Hdg(X)(C) over

C, then there exist generators e1, . . . , er of (
⊗• T (X))Hdg(X) over Q, such that ei is

homogeneous with deg ei = deg ẽi for every i.

In particular, to show that any element in (
⊗• T (X))Hdg(X) can be expressed in terms

of degree-two elements, it suffices to show that any element in (
⊗• T (X)C)

Hdg(X)(C) can

be expressed in terms of degree-two elements. Let F be the maximal totally real subfield

of E. Extending scalars to R, we get the following well known fact:

Lemma B.3.7. The real vector space T (X)R decomposes as a direct sum

T (X)R =
⊕

σ : F ↪!R
Vσ,

where Vσ are real vector spaces with an E-action. Moreover, this decomposition is φ-

orthogonal and φ induces a non-degenerate C-Hermitian form on Vσ for every σ.

Proof. As T (X) is a free F -module, T (X) ⊗Q R is a free F ⊗Q R-module. Using the

isomorphism

F ⊗Q R ≃
∏

σ : F ↪−!R
R, e⊗ r 7−! (σ(e)r)σ,

we see that

T (X)R =
⊕

σ : F ↪!R
Vσ,

where Vσ := T (X)⊗F,σ R ≃ {v ∈ T (X)⊗Q R | f(v) = σ(f)v ∀f ∈ F}. Let us now show

that E acts on Vσ. Let σ : F ↪−! R be an embedding, and let v ∈ Vσ be any element. For

every e ∈ E and every f ∈ F , we have that

f(e(v)) = e(f(v)) = e(σ(f)v) = σ(f)e(v),

where the last equality follows from the fact that the action of E on T (X)R is the R-linear
extension of the action of E on T (X). This shows that e(v) ∈ Vσ and that the action of

E on T (X)R induces an action on Vσ. To see that this decomposition is φ-orthogonal,

let σ, σ̃ : F ↪−! R be two different embeddings and choose f ∈ F such that σ(f) ̸= σ̃(f).

Since φ is E-Hermitian and since the elements of F are fixed by the Rosati involution, we

have that

σ(f)φ(v, w) = φ(f(v), w) = φ(v, f(w)) = σ̃(f)φ(v, w),

for every v ∈ Vσ and w ∈ Vσ̃. From this, we deduce that φ(v, w) = 0, i.e., φ|Vσ×Vσ̃ = 0.

To define the C-Hermitian form φσ on Vσ, extend the embedding σ : F ↪−! R to an

embedding τ : E ↪−! C, which can be done since E is a totally imaginary quadratic

extension of F . Let φσ be the composition

φσ : Vσ × Vσ E ⊗F,σ R C.
φ⊗F,σR τ⊗F,σR

From the fact that the decomposition T (X)R =
⊕

σ Vσ is φ-orthogonal, it follows that φσ

is a non-degenerate C-Hermitian form on Vσ. This concludes the proof.
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Remark B.3.8. Since the action of Hdg(X) on T (X) is E-linear, it preserves the eigende-

composition T (X)R =
⊕

σ Vσ of Lemma B.3.7. From this, one deduces that the group of

real valued points of Hdg(X) decomposes as a product

Hdg(X)(R) =
∏

σ : F ↪!R
Uσ(R),

where Uσ := U(Vσ, φσ). Therefore, the invariants in (
⊗• T (X)R)

Hdg(X)(R) can be ex-

pressed in terms of invariants in the spaces (
⊗• Vσ)

Uσ(R).

By definition of CM field, E = F (ρ) with ρ2 ∈ F such that σ̃(ρ2) is negative for

any embedding σ̃ : F ↪−! R. Fix σ : F ↪−! R an embedding, and let λ ∈ R such that

σ(ρ2) = −λ2. As we have seen in Lemma B.3.7, the field E acts on Vσ. The action of
ρ
λ then induces a C-vector space structure on Vσ. In particular, Vσ is even-dimensional

and there is a decomposition (Vσ)C = V 1,0 ⊕ V 0,1 with V 1,0 := {v ∈ (Vσ)C | ρ(v) = iλv}
and V 0,1 := {v ∈ (Vσ)C | ρ(v) = −iλv}. Let ωσ be the C-linear extension of the map

Imφσ : Vσ×Vσ −! R. Since φσ is non-degenerate and E-Hermitian, ωσ is a non-degenerate

symplectic form on (Vσ)C.

Lemma B.3.9. The decomposition (Vσ)C = V 1,0 ⊕ V 0,1 of the C-vector space (Vσ)C is

Lagrangian with respect to the symplectic form ωσ, i.e.,

ωσ|V 1,0×V 1,0 = 0 and ωσ|V 0,1×V 0,1 = 0.

Furthermore, ωσ induces an isomorphism of complex vector spaces V 0,1 ≃ (V 1,0)∗.

Proof. The space V 1,0 is Lagrangian since for v, v′ ∈ V 1,0 the following holds:

ωσ(v, v
′) =

1

λ2
ωσ(ρ(v), ρ(v

′)) =
1

λ2
ωσ(iλv, iλv

′) = −ωσ(v, v′),

where the first equality follows from the fact that φ is E-Hermitian. A similar argument

proves that V 0,1 is Lagrangian. The second assertion then follows from the fact that ωσ

is non-degenerate.

Remark B.3.10. As Hermitian forms are determined by their symplectic imaginary part,

we deduce that Uσ(C) ≃ Sp((Vσ)C,C). Identifying these two groups, we can consider

Uσ(C) as a subgroup of GL((Vσ)C,C). On the other hand, we can consider GL(V 1,0,C)
as a subgroup of GL((Vσ)C,C) via the embedding

A 7−!

(
A 0

0 A∗

)
∈ GL(V 1,0 ⊕ (V 1,0)∗,C) ≃ GL((Vσ)C,C),

where A∗ denotes the natural action of A on (V 1,0)∗.

Lemma B.3.11. The groups Uσ(C) and GL(V 1,0,C) coincide when viewed as subgroups

of GL((Vσ)C,C) as in Remark B.3.10.
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Proof. Let A ∈ GL(V 1,0,C). By construction, A sends an element v ∈ V 0,1 to the

element of V 0,1 corresponding to the element ωσ(A
−1(·), v) ∈ (V 1,0)∗ via the isomorphism

of Lemma B.3.9. This implies that the action of A on (Vσ)C preserves the symplectic

form ωσ, i.e., A belongs to Uσ(C). To prove the other inclusion, note that the action of

Uσ(C) is E-linear and hence preserves the direct sum decomposition (Vσ)C = V 1,0 ⊕ V 0,1.

Therefore, if A is an element of Uσ(C), its restriction A|V 1,0 is an invertible matrix on

V 1,0. Then, via the isomorphism GL(Vσ,C) ≃ GL(V 1,0 ⊕ (V 1,0)∗,C), the matrix A is

sent to

(
A|V 1,0 0

0 (A|V 1,0)∗

)
. This shows that A ∈ GL(V 1,0,C). As we have shown the

double inclusion, we conclude that the two groups are the same.

We are now able to prove Theorem B.3.2:

Proof of Theorem B.3.2. By the previous discussion and Remark B.3.8, we just need to

prove that any element in (
⊗•(Vσ)C)

Uσ(C) can be expressed in terms of elements of degree

two. By Lemma B.3.9, this algebra can be identified with (
⊗•(V 1,0 ⊕ (V 1,0)∗))GL(V 1,0,C).

Given f ∈
(⊗p(V 1,0 ⊕ (V 1,0)∗)

)GL(V 1,0,C)
an invariant element of degree p, view it as a

map

f : ((V 1,0)∗ ⊕ V 1,0)⊗ · · · ⊗ ((V 1,0)∗ ⊕ V 1,0) −! C.

Decomposing f as a sum
∑

i fi where each fi is a function W1 ⊗ · · · ⊗Wp −! C, with
Wj = V 1,0 or (V 1,0)∗ for all j, we see that it suffices to show that each fi can be expressed

in terms of invariant elements of degree two. By construction, up to permuting its factors,

fi ∈
(
Hom((V 1,0)⊗r ⊗ ((V 1,0)∗)⊗s,C)

)GL(V 1,0,C)

for some r and s with r + s = p. According to the fundamental theorem of invariants for

GL(V 1,0,C) as presented in [52, Thm. 4.2], the ring(
Hom((V 1,0)⊗r ⊗ ((V 1,0)∗)⊗s,C)

)GL(V 1,0,C)

is non-trivial if and only if r = s and in this case it is generated by complete contractions,

i.e., maps of the form

(V 1,0)⊗s ⊗ ((V 1,0)∗)⊗s −! C, v1 ⊗ · · · ⊗ vs ⊗ µ1 ⊗ · · · ⊗ µs 7−!
∏
i µi(vσ(i)),

for some σ ∈ Ss. This statement of invariant theory can be found also in [99, Ch. III].

This concludes the proof of Theorem B.3.2: Indeed, any complete contraction can be

written (up to permuting its factors) as a tensor product of complete contractions of

degree two:

V 1,0 ⊗ (V 1,0)∗ −! C, v ⊗ µ 7−! µ(v),

which are invariant.
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B.3.2 K3 surfaces with a totally real endomorphism field

Let X be a complex, projective K3 surface with totally real endomorphism field E =

EndHdg(X)(T (X)). In this case, the Rosati involution is the identity, and, for every e ∈ E

and every v, w ∈ T (X), we have that

ψ(ev, w) = ψ(v, ew).

As in Lemma B.3.5, one shows that there exists a non-degenerate symmetric E-bilinear

map φ : T (X)× T (X) −! E such that ψ(v, w) = TrE/Q(φ(v, w)). Note that this time φ

is E-bilinear since E is totally real. Moreover, by [101, Thm. 2.2.1], the following equality

holds

Hdg(X) = ResE/Q(SO(T (X), φ)).

Similarly to Lemma B.3.7, we have the following result:

Lemma B.3.12. The complex vector space T (X)C := T (X)⊗Q C decomposes as a direct

sum

T (X)C =
⊕

σ : E↪!C
Vσ,

where Vσ are complex vector spaces with an E-action. Moreover, the action of Hdg(X) pre-

serves this decomposition, and the E-bilinear symmetric form φ induces a non-degenerate

C-bilinear symmetric form φσ on Vσ for any σ.

Remark B.3.13. Note that the decomposition of the transcendental lattice into E-

eigenspaces of Lemma B.3.12 already holds over R as E is totally real. We extended

scalars directly to C to introduce as little notation as necessary.

Similarly to the CM case, we deduce from the isomorphsim

(
⊗• T (X))Hdg(X) ⊗Q C ≃ (

⊗• T (X)C)
Hdg(X)(C)

that the invariants in (
⊗• T (X)C)

Hdg(X)(C) can be expressed in terms of invariants in

the spaces (
⊗• Vσ)

SO(Vσ ,C). The complex vector space
∧dimVσ Vσ ⊆ V ⊗ dimVσ

σ is one-

dimensional and thus determines a unique element up to a complex scalar, denote it by

detVσ. Note that detVσ is invariant under the action of SO(Vσ,C). With this notation

and with the convention of Definition B.3.1, the following holds:

Theorem B.3.14. [52, Thm. 10.2] Let Vσ be a complex vector space endowed with a

non-degenerate symmetric C-bilinear form. Then, the SO(Vσ,C)-invariants in
⊗• Vσ can

be expressed in terms of SO(Vσ,C)-invariants of degree two and detVσ.

Proof. To deduce this statement from the one in the reference, just note that, for any

positive integer k, any element in V ⊗k
σ can be viewed as a homogeneous polynomial function

(V ∗
σ )

⊕k −! C of degree k: For example, the map (V ∗
σ )

⊕k −! C which corresponding to a

decomposable element v1 ⊗ · · · ⊗ vk ∈ V ⊗k
σ is µ1 ⊗ · · · ⊗ µn 7−!

∏
µi(vi).
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By Theorem B.3.14, we see that, unlike the CM case, if the endomorphism field is

totally real, there are Hodge classes in
⊗• T (X) which cannot be expressed in terms

of Hodge classes of degree two. To describe the additional classes needed to generate

(
⊗• T (X))

Hdg(X)
, let us recall the following result from linear algebra:

Lemma B.3.15. [18, Lem. 4.3] Let k be a field, and let V be a vector space of finite

dimension over a finite separable field extension k′ of k. Then, for any integer r, there is

a natural embedding of k vector spaces:∧r
k′ V ↪−!

∧r
k V.

Proof. For later use, we recall the construction of the embedding. By Lemma B.3.4, the

trace map induces an isomorphism of k-vector spaces

Homk′(V, k
′) ≃ Homk(V, k), f −! Trk′/k ◦ f.

This induces a natural map

κ :
∧•
k Homk(V, k) −!

∧•
k′ Homk′(V, k

′).

The dual of κ as a map of k-vector spaces gives a map

κ∗ : Homk (
∧•
k′ Homk′(V, k

′), k) −! Homk (
∧•
k Homk(V, k), k) .

The desired embedding is then the composition

∧•
k′ V

≃
−! Homk′ (

∧•
k′ Homk′(V, k

′), k′)
Trk′/k
−−−−! Homk (

∧•
k′ Homk′(V, k

′), k)

κ∗
−! Homk (

∧•
k Homk(V, k), k)

≃
−!

∧•
k V.

Let r := dimE T (X) = dimVσ. Applying Lemma B.3.15 with V = T (X), k′ = E, and

k = Q, we get the following embedding∧r
E T (X) ↪−!

∧r T (X).

Since the right-hand side embeds naturally into T (X)⊗r, we can consider
∧r
E T (X) as a

vector subspace of T (X)⊗r. Then, using the isomorphism E ⊗Q C ≃
∏
σ C, one sees that

the C-linear span of this vector subspace is

(
∧r
E T (X))⊗Q C ≃

∧r
E⊗QC T (X)C ≃

⊕
σ(
∧r

C Vσ) ≃ ⟨detVσ⟩σ,

where detVσ are as in Theorem B.3.14. For a similar computation, see [18, Prop. 4.4].

Since detVσ are invariant under the action of Hdg(X)(C), we deduce that the vector

subspace
∧r
E T (X) consists of Hodge classes, we call them the exceptional Hodge classes.

As a consequence of Theorem B.3.14, we conclude the following:
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Theorem B.3.16. Let X be a K3 surface with totally real endomorphism field E. Then,

any Hodge class in
⊗• T (X) can be expressed in terms of Hodge classes of degree two

and the exceptional Hodge classes in T (X)⊗r, where r := dimE T (X).

The name exceptional classes alludes to the fact that those classes cannot be expressed

in terms of Hodge classes in the square of the transcendental lattice. This is a consequence

of the following fact: Let Vσ be as in Theorem B.3.14. The SO(Vσ,C)-invariant elements

in Vσ ⊗ Vσ are also O(Vσ,C)-invariant, as they are complete contractions. On the other

hand, the class detVσ is just SO(Vσ,C)-invariant and thus cannot be expressed in terms of

degree-two elements. In the literature, the name exceptional classes is used in the context

of abelian varieties and denotes Hodge classes which are not in the algebra generated by

(intersection of) divisor classes.

Remark B.3.17. The mistake in the proof of [78, Prop. 5.2] in the case of K3 surfaces with

totally real multiplication is the wrong assumption that any invariant under the action of

the special orthogonal group can be expressed in terms of invariants of degree two.

In conclusion, if the endomorphism field E of the K3 surface is totally real, then there

are |E : Q| Hodge classes in T (X)⊗r, with r = dimE T (X), which cannot be expressed

in terms of Hodge classes in T (X)⊗2. Thus, in this case, it is not true that the Hodge

conjecture for the second power of the K3 surface implies the Hodge conjecture for all its

powers.

B.3.3 A motivic approach

Inspired by the techniques in the paper [64], we give a different proof of the results of the

previous section.

Let X be a K3 surface and denote by E its endomorphism field. Similarly to the case

of abelian varieties, we give the following definition:

Definition B.3.18. The Lefschetz group of X is the biggest algebraic subgroup of

GL(T (X)) which preserves the Hodge classes in T (X)⊗ T (X). We denote it by L(X).

Assume that E is a CM field and let F be its maximal totally real subfield. Denoting

by φ : T (X)× T (X) −! E the E-Hermitian map of Lemma B.3.5, we see that

L(X) ≃ ResF/QU(T (X), φ),

where we regard U(T (X), φ) as an algebraic group over Q using the Weil restriction. Note

that in this case, L(X) and Hdg(X) coincide. Similarly, if E is a totally real field and

φ : T (X)× T (X) −! E is the E-bilinear form on T (X), the Lefschetz group of X is

L(X) ≃ ResE/QO(T (X), φ).

By the invariant theory results of previous section, the algebra (
⊗• T (X))

L(X)
is generated

by its degree two elements both in the totally real and in the CM case.
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Definition B.3.19. The motivic group M(X) is the biggest algebraic subgroup of

GL(T (X)) which preserves all the algebraic classes in
⊗• T (X).

In this case, the fact that only the algebraic classes in
⊗• T (X) are invariant under

the action of M(X) is non-trivial: As in the case of abelian varieties [64, App. A], it

follows from the fact that the category of motives on a variety is a Tannakian category if

the Künneth components of the diagonal are algebraic [50, Cor. 3].

Since all algebraic classes are Hodge classes, there is an inclusion Hdg(X) ⊆ M(X).

Then, proving the Hodge conjecture for the powers of X is equivalent to prove that this

inclusion is an equality.

If we assume the Hodge conjecture for X2 holds, i.e., that the classes in E ≃
(T (X)⊗ T (X))Hdg(X) are algebraic, we have the following chain of inclusions:

Hdg(X) ⊆ M(X) ⊆ L(X). (B.2)

In the case of K3 surfaces with CM endomorphism field, the Hodge group and the Lefschetz

group are equal, all the inclusions in (B.2) are therefore equalities. This gives another

proof of Theorem B.3.2, and shows that, in the case of CM endomorphism field, the

Hodge conjecture for X2 implies the Hodge conjecture for all powers of X.

As we saw in the previous section, in the case of K3 surfaces with a totally real

endomorphism field, the situation is different: Even if we assume the Hodge conjecture

for the square we cannot conclude the Hodge conjecture for all powers of the given K3

surface due to the presence of the exceptional Hodge classes. From the group perspective,

this is a consequence of the fact that the Hodge group and the Lefschetz group are not

equal, so (B.2) does not imply the equality between the Hodge and the motivic group.

Assuming the Hodge conjecture for the square of the K3 surface, let us find which are the

possibilities for the motivic group: Let X be a K3 surface with totally real endomorphism

field E and let us take the complex points in (B.2)∏
σ : E↪!C

SO(Vσ,C) ⊆ M(X)(C) ⊆
∏

σ : E↪!C
O(Vσ,C).

We see that M(X)(C) corresponds to a subgroup of the quotient( ∏
σ : E↪!C

O(Vσ,C)

)
/

( ∏
σ : E↪!C

SO(Vσ,C)

)
≃ (Z/2Z)|E:Q|.

From the fact that M(X) is defined over Q, there are constraints on the possibilities

for M(X)(C): Let Ē be the Galois closure of the field E and let G := Gal(Ē/Q) be the

Galois group of Ē over Q, then G acts on (Z/2Z)|E:Q| by changing the factors. As M(X)

is defined over Q, the group M(X)(C) corresponds to a subgroup of (Z/2Z)|E:Q| which is

preserved under the G-action. This allows us to conclude that

M(X)(C)/ (
∏
σ SO(Vσ,C))
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is either trivial, the full group (Z/2Z)|E:Q|, or the subgroup of (Z/2Z)|E:Q| generated by

(1, . . . , 1).

In the first case, M(X) coincides with Hdg(X) and hence the Hodge conjecture holds

for all powers of X. In the second case, M(X) coincides with L(X) and only the classes

in the algebra generated by the Hodge classes in T (X)⊗ T (X) are algebraic. Finally, in

the latter case,

M(X)(C) = {A1 × · · · ×Ak ∈
∏
σ O(Vσ,C)|

∏
i det(Ai) = 1}.

This corresponds to the case where the class detT (X) is algebraic but the exceptional

classes in
∧r
E T (X) are not. Showing the Hodge conjecture for all powers of X is then

equivalent to exclude the two latter cases. In particular, note that to prove the Hodge

conjecture for all powers of a K3 surface X it suffices to prove it for X2 and then show

that there exists an algebraic class in
∧r
E T (X). Indeed, this would force the motivic

group to be equal to the Hodge group by the above discussion.

Remark B.3.20. The fact that we can exclude some possibilities for M(X)(C) is linked with

the fact that (
⊗• T (X)C)

M(X)(C)
is defined over Q: For example, assume that M(X)(C)

corresponds to the subgroup of (Z/2Z)|E:Q| generated by (0, 1, . . . , 1), i.e.

M(X)(C) ≃ SO(Vσ1 ,C)×O(Vσ2 ,C)× · · · ×O(Vσk ,C).

Then (
∧r
E T (X))M(X) ⊗Q C is one-dimensional and generated by detVσ1 . In particular,

up to complex scalar, detVσ1 is a rational cohomology class. To see that this cannot

happen, consider the action of E on the first factor of T (X)⊗r. As any element of E acts

on detVσ1 by multiplication by its image via σ1 : E ↪−! C, the class detVσ1 cannot be

rational.

Remark B.3.21. Note that this motivic approach is equivalent to the approach we presented.

It might seem easier due to the fact that we implicitly used in more places the results

proved above. For example, to show that the algebra of invariant classes under the

Lefschetz group is generated by degree-two elements, we used the invariant theory of the

previous section.

B.4 The Hodge conjecture and deformations of K3 surfaces

Let X be a K3 surface and let n := dimQ T (X). Let detT (X) be a generator of the

one-dimensional vector space ∧n T (X) ⊆ T (X)⊗n

Note that detT (X) is a Hodge class for every K3 surface X. If the endomorphism field

of X is a CM field, by Theorem B.3.2, the class detT (X) can be expressed in terms of

(2, 2)-classes. On the other hand, if the endomorphism field is Q or any other totally real

field, detT (X) cannot be expressed in terms of Hodge classes of degree two.
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In this section, we prove that the property the determinant of the transcendental

lattice is algebraic is a closed property in families of K3 surfaces:

Proposition B.4.1. Let X −! S be a family of K3 surfaces such that detT (Xs) is

algebraic for general s ∈ S. Then, the same holds for all s ∈ S.

Proof. We may assume that the transcendental lattices of the general fibres of X −! S

are isometric to a given quadratic space T̃ . Write n := dimQ T̃ . Since detT (Xs) is

algebraic for general s ∈ S by assumption, we conclude that det T̃ is algebraic when

seen as a class of Hr,r(X r
s ,Q) for all s ∈ S. Note that this does not conclude the

proof, since det T̃ does not necessarily specialize to detT (Xs) for every s ∈ S, since

it may happen that dimT (Xs) < n for some s ∈ S . Fix an element 0 ∈ S and let

X := X0 be the corresponding K3 surface. By construction, the transcendental lattice of

X is naturally a subspace of T̃ . Hence, if dimQ T (X) = n then T (X) = T̃ (as rational

quadratic spaces) and detT (X) is algebraic so there is nothing to prove. Let assume that

dimQ T̃ − dimQ T (X) = c > 0 and denote by T̃ /T (X) the quotient vector space. Up to a

rational coefficient, we have the following equality:

det T̃ =
∑

±q∗I detT (X)⊗ p∗I det(T̃ /T (X)), (B.3)

where the sum runs over all subsets I ⊆ {1, . . . , n} of length c, pI is the projection from

Xn onto the I-th factors and qI is the projection onto the remaining factors.

Let Z1 be an algebraic class representing det T̃ on Xn. Then, Z1 defines the following

algebraic map:

φ1 : H
1,1(X,Q) −!Hn−1,n−1(Xn−1,Q),

y 7−!q1∗(Z1 ∩ p∗1y)

where p1 is the projection from Xn onto the first factor and q1 is the projection onto the

remaining factors. Let x1 ∈ H1,1(X,Q) be a fixed element and denote by Z2 the algebraic

class φ1(x1) ∈ Hn−1,n−1(Xn−1,Q). Then, similarly to the previous case, Z2 defines an

algebraic map

φ2 : H
1,1(X,Q) −!Hn−2,n−2(Xn−2,Q).

y 7−!q2∗(Z1 ∩ p∗2y)

Repeating this procedure c times we get an algebraic class Zc in Hn−c,n−c(Xn−c,Q).

Note that the only summand of (B.3) contributing to the resulting class Zc is the one

for which I = {1, . . . , c}. This follows from the fact that all the elements of T (X) are

orthogonal to NS(X) with respect to the canonical pairing on X. Using a basis of the

rational quotient space T̃ /T (X) consisting of algebraic classes, we see that it is possible

to choose a sequence x1, . . . , xc ∈ H1,1(X,Q) for which the resulting Zc is non-zero and

represents the class detT (X) ∈ Hn−c,n−c(Xn−c,Q). This shows that detT (X) is algebraic

and concludes the proof.
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As an immediate corollary, we have the following:

Corollary B.4.2. Let X −! S be a family of K3 surfaces such that the Hodge con-

jecture for all powers of Xs holds for general s ∈ S. If 0 ∈ S is an element such that

EndHdg(X0)(T (X0)) = Q, then the Hodge conjecture holds for all powers of X0.

Proof. Since we are assuming that the endomorphism field of X0 is Q, by Theorem B.3.16,

the algebra of Hodge classes in
⊗• T (X0) is generated by

EndHdg(X0)(T (X0)) ≃ Q and detT (X0).

This implies the statement, indeed, the generator of EndHdg(X0)(T (X0)) is algebraic, since

it corresponds to a component of the class of the diagonal ∆ ⊆ X0 × X0, and detT (X0)

is algebraic by Proposition B.4.1.

Remark B.4.3. With a little bit of work, one can prove the same statement of Proposition

B.4.1 for the exceptional Hodge classes. Note that the determinant of the transcendental

lattice is the unique exceptional Hodge class in the case E = Q. This in particular shows

that, in the statement of Corollary B.4.2, the assumption EndHdg(X0)(T (X0)) = Q can

be weakened to

EndHdg(X0)(T (X0)) = EndHdg(Xs)(T (Xs)).

Note that the inclusion “⊇” always holds true. We do not give here the detailed proof

since this extended result is not needed in the remainder of this paper.

B.5 Abelian varieties of Weil type

In this section, we recall the definition of abelian varieties of Weil type and we study the

Hodge conjecture for their powers. Our interest in these varieties lies in the fact that, as

we recall in the next section, the Kuga–Satake varieties of K3 surfaces of Picard number

16 are powers of abelian fourfolds of Weil type. These abelian varieties have been first

introduced and studied by Weil [99]. We refer to [28] for a complete introduction. For a

survey on the Hodge conjecture for abelian varieties we refer to [68] and to [69].

In this section, we denote by K the CM field Q(
√
−d), where d is a positive rational

number.

Definition B.5.1. Let A be an abelian variety of dimension 2n such that K ⊆ End(A)⊗Z

Q. Then, A is an abelian variety of K-Weil type if the action of
√
−d on the tangent

space at the origin of A has eigenvalues
√
−d and −

√
−d both with multiplicity n.

Given an abelian variety A of K-Weil type, there exists a polarization H on A such

that (
√
−d)∗H = dH. This polarization induces the following K-Hermitian map on

H1(A,Q):

H̃ : H1(A,Q)×H1(A,Q) −! K, H̃(x, y) := H(x,
√
−dy) +

√
−dH(x, y). (B.4)
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Let N(K) be the set of norms of K, and let det(H̃) be the determinant of H̃ with respect

to any K-basis of H1(A,Q). Then, one checks that det(H̃) belongs to Q∗ and that its

image δ in Q/N(K) does not depend on the choice of the basis. The class δ is called the

discriminant of A. We say that an abelian variety A of K-Weil type is general if it has

maximal Hodge group. By [28, Thm. 6.11], this means that Hdg(A) = SU(H̃) and that

End(A)⊗Z Q = K.

Note that there are similarities between this situation and the case of K3 surfaces

with CM endomorphism field. Let E be a CM field with maximal totally real subfield Q,

and let X be a K3 surface with endomorphism field E and let 2n := dimT (X). By [101,

Thm. 2.3.1], the Hodge group of X is U(φ), where φ is E-Hermitian form on T (X). The

discussion of Section B.3.1 and in particular Lemma B.3.11 show that U(φ)(C) ≃ GL(n,C)
and that the representation of Hdg(X)(C) on T (X)C is the direct sum of the standard

representation of GL(n,C) and its dual. In the case of a general abelian variety A of Weil

type of dimension 2n, the Hodge group is SU(H̃). Then, a similar argument shows the

following:

Proposition B.5.2. [28, Lem. 6.10] Let A be a general abelian variety of Weil type

of dimension 2n. Then, Hdg(A)(C) is isomorphic to SL(2n,C), and the representation

H1(A,C) of Hdg(A)(C) is the direct sum of the standard representation of SL(2n,C) and
its dual.

Abelian varieties of Weil type are characterized by the existence of Hodge classes

which do not belong to the algebra generated by divisors:

Remark B.5.3. Let A be an abelian variety of K-Weil type of dimension 2n. By Lemma

B.3.15, there exists an embedding

ϵ :
∧2n
K H1(A,Q) ↪−!

∧2nH1(A,Q) ≃ H2n(A,Q).

The condition on the action of the field K on H1(A,Q) implies that the image of ϵ consists

of Hodge classes, see [18, Prop. 4.4]. These classes are called exceptional classes or Weil

classes. From now on, we identify
∧2n
K H1(A,Q) with its image via ϵ in

∧2nH1(A,Q).

By Proposition B.5.2, the algebra of Hodge classes on a general abelian variety of

Weil type satisfies the following(∧•H1(A,Q)
)Hdg(A) ⊗ C ≃ (

∧•(W ⊕W ∗))
SL(W,C)

,

where W is a complex vector space of dimension 2n. Complete contractions are natural

examples of invariant elements of the right-hand side. Let us recall their definitions.

Definition B.5.4. LetW be a 2n-dimensional vector space and let s be a positive integer.

Then, an element in W⊗s ⊗ (W ∗)⊗s is called a complete contraction of degree 2s if its

image under the natural SL(W,C)-invariant isomorphism

W⊗s ⊗ (W ∗)⊗s ≃ Hom((W ∗)⊗s ⊗W⊗s,C)
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is equal to

µ1 ⊗ · · · ⊗ µs ⊗ v1 ⊗ · · · ⊗ vs 7−!
∏
i µi(vσ(i)),

for some permutation σ ∈ Ss

Remark B.5.5. From the definition, it is immediate to see that complete contractions

are invariant under the action of SL(W,C) and that any complete contraction can be

expressed in terms of complete contractions of degree two.

Let s and s′ be non-negative integers, and let I = (i1, . . . , ik) and I
′ = (i′1, . . . , i

′
k) be

partitions of s and s′ respectively, i.e., i1 + · · ·+ ik = s and i′1 + · · ·+ i′k = s′. Considering

the natural action of Ss ×Ss′ on W⊗s ⊗ (W ∗)⊗s
′
, we introduce following definition.

Definition B.5.6. An element α ∈W⊗s ⊗ (W ∗)⊗s
′
is (I, I ′)-alternating if it satisfies

(σ, σ′)(α) = sgn(σ)sgn(σ′)α,

for any pair of permutations σ ∈ Si1 × · · · ×Sik ⊆ Ss and σ′ ∈ Si′1 × · · · ×Si′k ⊆ Ss′ .

In the case where s = s′ and I = I ′ = (s), the vector space of (I, I ′)-alternating

elements in W⊗s ⊗ (W ∗)⊗s is equal to
∧sW ⊗

∧sW ∗.

We are now able to state the following theorem from invariant theory.

Theorem B.5.7. [52, Thm. 8.4] Let W be a 2n-dimensional complex vector space and

denote by W ∗ its dual. Then, any element of

(
⊗•(W ⊕W ∗))

SL(W,C)

can be expressed in terms of complete contractions and the two determinants detW and

detW ∗ in (W ⊕W ∗)⊗2n.

Proof. See Definition B.3.1 for formal meaning of the expression “can be expressed in

terms of”. To deduce this statement from the one in the reference, just note that, for any

pair of non-negative integers p and q, any element of W⊗p ⊗ (W ∗)⊗q ⊆ (W ⊕W ∗)⊗(p+q)

can be viewed as a homogeneous polynomial function (W ∗)⊕p ⊕W⊕q −! C of degree

p+ q.

Applying Theorem B.5.7 to a general abelian variety of Weil type, one can compute

the dimension of the vector space of Hodge classes. Indeed, the following holds:

Theorem B.5.8. [99, Thm. 6.12] Let A be a general abelian variety of K-Weil type of

dimension 2n. Then,

dim(Hs,s(A,Q)) =

3, if s = n

1, if s ̸= n.

In particular, the Picard number of A is one.
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Proof. We just give a sketch of the proof since the same techniques will be used with

much more detail later in this section: By assumption, A is a general abelian variety of

Weil type. Then, as before, we have the following isomorphism:(∧•H1(A,Q)
)Hdg(A) ⊗Q C ≃ (

∧•(W ⊕W ∗))
SL(W,C)

, (B.5)

where W is a 2n-dimensional complex vector space. After considering the natural

SL(W,C)-invariant embedding∧•(W ⊕W ∗) ↪−!
⊗•(W ⊕W ∗),

we can apply Theorem B.5.7 to deduce that the C-algebra (
∧•(W ⊕W ∗))

SL(W,C)
is

generated by (s, s)-alternating linear combinations of complete contractions in
⊗2s(W ⊕

W ∗) for all 1 ≤ s ≤ 2n together with the two determinants detW, detW ∗ ∈
⊗2n(W⊕W ∗).

Note that for every s there exists a unique linear combination of complete contractions in

W⊗s ⊗ (W ∗)⊗s which is (s, s)-alternating: It corresponds to the SL(W )-invariant map∧sW ∗ ⊗
∧sW −! C

µ1 ∧ · · · ∧ µs ⊗ v1 ∧ · · · ∧ vs 7−! det(µi(vj))i,j

This, together with the isomorphism in (B.5), proves the statement.

Remark B.5.9. As an immediate consequence of Theorem B.5.8, we deduce that the algebra

of Hodge classes on A is generated by the unique class in NS(A)Q and the exceptional

classes in
∧2n
K H1(A,Q). As in the case of K3 surfaces with totally real multiplication,

this follows from the isomorphism(∧2n
K H1(A,Q)

)
⊗Q C ≃ ⟨detW, detW ∗⟩C,

cf. [18, Prop. 4.4].

In general, it is not known whether the Weil classes are algebraic, but in the case of

abelian fourfolds of Weil type with discriminant one, the following holds:

Theorem B.5.10. [60, Thm. 1.5] Let A be abelian fourfold of Weil type with discriminant

one. Then, the Weil classes on A are algebraic. In particular, the Hodge conjecture holds

for the general abelian fourfold of Weil type with discriminant one.

The same result was previously proven by Schoen [82] in the case of abelian fourfolds

Q(
√
−3)-Weil type for arbitrary discriminant and by Schoen [82] and independently by

van Geemen [29] in the case of abelian fourfolds Q(i)-Weil type with discriminant one.

In the remainder of this section, we prove that the Hodge conjecture for a general

abelian variety of Weil type implies the Hodge conjecture for all its powers. Our strategy

is the following: We first prove an extension of Theorem B.5.7 which allows us to find

a set of generators for the algebra of Hodge classes on the powers of A. Then, we show
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that there are relations between these generators and we conclude that these generators

are algebraic if the Hodge conjecture holds for A. For a comparison with the work of

Abdulali [1], see Remark B.5.17.

Let A be a general abelian variety of Weil type and let k be a positive integer. By

Theorem B.5.7, the ring of Hodge classes on Ak satisfies(∧•(H1(A,Q)⊕k)
)Hdg(A) ⊗ C ≃

(∧•((W ⊕W ∗)⊕k)
)SL(W,C)

,

where W is a 2n-dimensional complex vector space. To study this ring, let us introduce

the notion of realizations of detW and detW ∗.

Remark B.5.11. Let W be a 2n-dimensional complex vector space and let k be a positive

integer. Consider the following canonical decomposition:∧2n ((W ⊕W ∗)⊕k
)
=
⊕(∧i1 W1 ⊗ · · · ⊗

∧ik Wk ⊗
∧ik+1 W ∗

1 ⊗ · · · ⊗
∧i2k W ∗

k

)
,

where the sum runs over all 2k-partitions I of 2n and Wj =W for all j. We introduced

the Wj to be able to distinguish between
∧2nW1 and

∧2nW2, etc. Note that if I is a

k-partition of 2n, i.e., ik+1 = . . . = i2n = 0, there is a natural embedding

ιI :
∧2nW ↪−!

∧i1 W1 ⊗ · · · ⊗
∧ik Wk.

This follows from the fact that the image of
∧2nW ↪−!W

⊗
2n is contained in the image

of the natural embedding
∧i1 W1⊗· · ·⊗

∧ik Wk ↪−!W
⊗

2n. As one sees, ιI is compatible

with the natural action of SL(W,C). Hence, its image determines (up to a complex scalar)

an SL(W,C)-invariant class. Denote this class as (detW )I and consider it as an element

in
∧2n ((W ⊕W ∗)⊕k

)
. We call it a realization of detW . We then call

{(detW )I | I is a k-partition of 2n} ⊆
∧2n ((W ⊕W ∗)⊕k

)
the set of all realizations of detW in

∧2n ((W ⊕W ∗)⊕k
)
. Similarly, we introduce the

notion of realizations of detW ∗.

To give an example, let k = 2, 2n = 4, and consider the 2-partition of 4 given

by I = (2, 2). Then, denoting by v1, . . . , v4 a basis of W , the realization (detW )I in∧4 ((W ⊕W ∗))⊕2 is given by the image of∧4W ↪−!
∧2W1 ⊗

∧2W2

v1 ∧ · · · ∧ v4 7−!
∑

±(vi ∧ vj)⊗ (vk ∧ vl),

where the sum runs over all i < j, k < l such that {i, j, k, l} = {1, 2, 3, 4}.

With this notion, we can now state and prove the following extension of Theorem

B.5.7.
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Corollary B.5.12. Let W be a 2n-dimensional complex vector space and denote by W ∗

its dual. Then, for every positive integer k, any invariant in(∧•((W ⊕W ∗)⊕k)
)SL(W,C)

can be expressed in terms of invariants of degree two and all realizations of detW and

detW ∗ in
∧∗ ((W ⊕W ∗)⊕k

)
defined in Remark B.5.11.

Proof. Let s and k be two positive integers. As in Remark B.5.11, we decompose the

space
∧s ((W ⊕W ∗)⊕k

)
as

∧s ((W ⊕W ∗)⊕k
)
=
⊕(∧i1 W1 ⊗ · · · ⊗

∧ik Wk ⊗
∧ik+1 W ∗

1 ⊗ · · · ⊗
∧i2k W ∗

k

)
,

where the direct sum runs over all 2k-partitions of s, and Wj = W for all j. For any

2k-partition I of s, denote by ZI,s the corresponding direct summand of the decom-

position. Since the action of SL(W,C) preserves this decomposition, an element in∧s ((W ⊕W ∗)⊕k
)
is SL(W,C)-invariant if and only if its component in ZI,s is invariant

for every 2k-partition I of s. Therefore, it suffices to study the invariants in each ZI,s.

To this end, we first embed each ZI,s individually into
⊗s(W ⊕W ∗) and then apply

Theorem B.5.7:

Let I = (i1, . . . , i2k) be a fixed 2k-partition of s. Let s′ := i1 + · · ·+ ik, and consider

the natural SL(W,C)-invariant embedding of ZI,s

ZI,s =
∧i1 W1⊗· · ·⊗

∧ik Wk⊗
∧ik+1 W ∗

1 ⊗· · ·⊗
∧i2k W ∗

k ↪−!W⊗s′ ⊗ (W ∗)⊗(s−s′) (B.6)

given by the tensor product of the canonical embeddings∧ij W ↪−!W⊗ij and
∧ij W ∗ ↪−! (W ∗)⊗ij .

From now on, we identify ZI,s and its image. Note that an element of W⊗s′ ⊗ (W ∗)⊗(s−s′)

belongs to ZI,s if and only if it is I-alternating.

Let us first deal with the case where s < 2n: Since detW and detW ∗ are elements of

(W⊕W ∗)⊗2n, Theorem B.5.7 shows that the vector space of invariants inW⊗s′⊗(W ∗)⊗s−s
′

is zero if s− s′ ̸= s′, and it is generated by complete contractions if s− s′ = s′. Therefore,

we conclude that ZI,s does not contain any non-trivial invariant if s − s′ ̸= s′ and it

is generated by linear combinations of complete contractions which are I-alternating if

s− s′ = s′.

For s = 2n, Theorem B.5.7 shows that the vector space of invariants in W⊗s′ ⊗
(W ∗)⊗(2n−s′) is generated by detW if s′ = 2n, by detW ∗ if s′ = 0, by complete contractions

of degree 2n if s′ = n, and it is zero in all other cases. In the case s′ = 2n, we have

ZI,2n =
∧i1 W1 ⊗ · · · ⊗

∧ik Wk ⊆W⊗2n.
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Since detW is I-invariant, we conclude that detW ∈ ZI,2n and that the vector space of

invariants in ZI,2n is generated by detW . Similarly, if s′ = 0, one sees that detW ∗ generate

the ring of invariants in ZI,2n. Finally, if s
′ = n, one sees that the ring of invariants in

ZI,2n is generated by I-alternating linear combinations of complete contractions, as in

the previous case.

For s > 2n, the invariants in ZI,s can be expressed in terms of invariants of ZĨ,s̃

for s̃ ≤ 2n. This follows from the fact that invariants in (
⊗•(W ⊕W ∗))

SL(W,C)
can be

expressed in terms of invariants of degree ≤ 2n.

To sum up, we proved that invariants in
(∧•((W ⊕W ∗)⊕k)

)SL(W,C)
can be expressed

in terms of linear combinations of complete contractions and the images the maps∧2nW ↪−! ZI,2n for all I = (i1, . . . , i2k) such that i1+· · ·+ik = 2n and
∧2nW ∗ ↪−! ZI,2n

for all I = (i1, . . . , i2k) such that i1 + · · ·+ ik = 0.

Similarly to Remark B.5.5, any linear combination of complete contractions can be

written as a linear combination of wedge products of degree-two complete contractions in∧2 ((W ⊕W ∗)⊕k
)
. Therefore, to conclude the proof, it suffices to note that the set of all

images of the maps
∧2nW ↪−! ZI,2n for all I = (i1, . . . , i2k) such that i1+ · · ·+ ik = 2n is

the set of all realizations of detW defined in Remark B.5.11, and similarly for detW ∗.

Before applying Corollary B.5.12 to study Hodge classes for powers of abelian varieties

of Weil type, let us define the set of realizations of exceptional classes:

Remark B.5.13. Let A be an abelian variety of K-Weil type of dimension 2n. As in

Remark B.5.3, we identify
∧2n
K H1(A,Q) with the set of exceptional classes on A via the

natural embedding

ϵ :
∧2n
K H1(A,Q) ↪−!

∧2nH1(A,Q) ≃ H2n(A,Q).

For any integer k > 1, similarly to Remark B.5.11, consider various embeddings of∧2nH1(A,Q) into
∧2n(H1(A,Q)⊕k) ≃ H2n(Ak,Q): If I = (i1, . . . , ik) is a k-partition of

2n, denote by

ιI :
∧2nH1(A,Q) ↪−!

∧i1 H1(A,Q)⊗ · · · ⊗
∧ik H1(A,Q) ⊆ H2n(Ak,Q),

the corresponding embedding as in Remark B.5.11. As ιI is a morphisms of Hodge

structures, ιI(α) is a Hodge class for every α ∈
∧2n
K H1(A,Q). We call ιI(α) a realization

of α on Ak. Finally, the set of all realizations on Ak of the exceptional classes is the set

{ιI(α) | α ∈
∧2n
K H1(A,Q), and I is a k-partition of 2n} ⊆ H2n(Ak,Q).

The following result describes the set of Hodge classes on the powers of A in terms of

realizations of exceptional classes of A.

Lemma B.5.14. Let A be a general abelian variety of K-Weil type of dimension 2n.

Then, for every positive integer k, any Hodge class on Ak can be expressed in terms of

rational (1, 1)-classes and all realizations of the exceptional classes on Ak.
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Proof. Let k be a positive integer. As A is a general abelian variety of Weil type, the

algebra of Hodge classes on Ak satisfies the following:(∧•(H1(A,Q)⊕k)
)Hdg(A) ⊗Q C ≃

(∧•((W ⊕W ∗)⊕k)
)SL(W,C)

. (B.7)

By Corollary B.5.12, any invariant in this algebra can be expressed in terms of invariants of

degree two and realizations of detW and detW ∗. The C-linear span of invariants of degree

two is equal to the C-linear span of rational (1, 1)-classes on Ak, hence, it suffices to show

that the C-linear span of the set of all realizations of detW and detW ∗ in
∧•((W⊕W ∗)⊕k)

is equal to the C-linear span of the set of all realizations of the exceptional classes on

Ak defined in Remark B.5.13. This follows from the fact that, if I is any k-partition of

2n, the isomorphism in (B.7) sends the C-linear span of ιI

(∧2n
K H1(A,Q)

)
⊆ H2n(Ak,Q)

onto the C-linear span of

ιI

(
⟨
∧2nW,

∧2nW ∗⟩
)
⊆
∧2n ((W ⊗W ∗)⊕k

)
.

In particular, to show that the Hodge conjecture for A implies the Hodge conjecture

for all powers of A, it suffices to show that if an exceptional class is algebraic on A then

all its realizations are algebraic. The following lemma gives some relations between the

realizations of the exceptional classes:

Lemma B.5.15. Let A be a general abelian variety of K-Weil type of dimension 2n,

and let α be an exceptional class on A. Denote by α̃ the realization of α on A2n via the

embedding ∧2n
K H1(A,Q) ↪−! H1(A,Q)⊗ · · · ⊗H1(A,Q) ⊆ H2n(A2n,Q).

Then, for any positive integer k, and any k-partition I of 2n, the realization αI on Ak is

the pullback of α̃, via an algebraic map Ak −! A2n. In particular, if α̃ is algebraic on

A2n, then any realization of α on any power of A is algebraic.

Proof. Writing α as a sum of decomposable elements of
∧2nH1(A,Q), we see that it

suffices to show that, for any decomposable element β := v1 ∧ . . . ∧ v2n ∈
∧2nH1(A,Q),

any realization of β on Ak is the pullback via an algebraic map Ak −! A2n of

β̃ =
∑

σ ±vσ(1) ⊗ · · · ⊗ vσ(2n),

where the sum runs over all permutations σ of {1, . . . , 2n}. Let I = (i1, . . . , ik) be a

k-partition of 2n, and let βI be the realization of β on Ak via the embedding∧2n
K H1(A,Q) ↪−!

∧i1 H1(A,Q)⊗ · · · ⊗
∧ik H1(A,Q) ⊆ H2n(Ak,Q).

Then, one sees that a multiple of βI is equal to the pullback of β̃ via the map

∆i1 × · · · ×∆ik : A
k −! A2n,

where ∆ij is the diagonal map A −! Aij .
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We have now everything needed to prove that the Hodge conjecture for a general

abelian variety of Weil type implies the Hodge conjecture for all its powers.

Theorem B.5.16. [1] Let A be a general abelian variety of K-Weil type. Then, the

Hodge conjecture for A implies the Hodge conjecture for all powers Ak.

Proof. By Lemma B.5.14, for any positive integer k, any Hodge class on Ak can be

expressed in terms of rational (1, 1)-classes and realizations of the exceptional classes on

Ak. Since rational (1, 1)-classes are algebraic by the Lefschetz (1, 1) theorem, to prove

the Hodge conjecture for all powers of A, we need to show that all realizations of the

exceptional classes on the powers of A are algebraic. By Lemma B.5.15, it suffices to

show that for any exceptional class α on A, its realization α̃ via the map∧2n
K H1(A,Q) ↪−! H1(A,Q)⊗2n ⊆ H2n(A2n,Q)

is algebraic.

To do this, consider the following maps: For J ⊆ {1, . . . , 2n}, let pJ : A2n −! A|J | be

the projection from A2n onto the J-th components, and, for i ≥ 1, let Σi : A
i −! A be

the summation map. In cohomology, the pullback via Σi is

Σ∗
i : H

1(A,Q) −! H1(A,Q)⊕i, v 7−! (v, . . . , v).

With this notation, we will prove that, for every β ∈
∧2nH1(A,Q), the following equality

holds:

Σ∗
2n(β) =

∑
∅≠J⊊{1,...,2n}

(−1)|J |−1p∗J(Σ
∗
|J |(β)) + β̃ ⊆ H2n(A2n,Q), (B.8)

where β̃ is the image of β via the natural map
∧2nH1(A,Q) ↪−! H1(A,Q)⊗2n ⊂

H2n(A2n,Q). For β = α, we will then conclude from (B.8) that α̃ is algebraic since α is

assumed to be algebraic and all the maps involved are algebraic.

Note that by linearity, it suffices to prove (B.8) in the case where β is decomposable,

i.e., β = v1 ∧ · · · ∧ v2n ∈
∧2nH1(A,Q). By the commutativity of pullbacks and cup

products, we have the following equalities:

Σ∗
2n(β) =Σ∗

2n(v1) ∧ · · · ∧ Σ∗
2n(v2n) = (v1, . . . , v1) ∧ · · · ∧ (v2n, . . . , v2n)

=
∑

(p∗i1(v1) ∧ . . . ∧ p
∗
i2n

(v2n)),

where the sum runs over all i1, . . . , i2n ∈ {1, . . . , 2n}. To prove (B.8), we show that each

of these summands appears exactly once on the right-hand-side of (B.8) after simplifying

it. Let us start with the summands for which all ij are different. These terms do not

appear in the sum on the right-hand side of the equality, indeed they do not come from

the pullback under the projection onto some lower power of A, but they appear exactly

once in β̃ since by construction

β̃ =
∑

σ ±vσ(1) ⊗ · · · ⊗ vσ(2n) =
∑

σ ±p∗1(vσ(1)) ∧ · · · ∧ p∗2n(vσ(2n)).
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If ij are not all different, let I := {i1, . . . , i2n}. The term p∗i1(v1) ∧ . . . ∧ p
∗
i2n

(v2n) appears

on the right-hand side of (B.8) once for every J such that I ⊆ J . Therefore, taking into

account the sign (−1)|J |−1 the term p∗i1(v1) ∧ . . . ∧ p
∗
i2n

(v2n) appears exactly once, since

2n−1∑
i=|I|

(−1)i−1

(
2n− |I|
i− |I|

)
= 1.

This concludes the proof of (B.8).

Remark B.5.17. As mentioned in the introduction, Theorem B.5.16 can already be found

in [1]. However, in the proof, the author applied an incomplete version of Corollary B.5.12

which does not mention the different realizations of the two determinants detW and

detW ∗. As we have seen, the different realizations of the two determinants are linked

to the existence of the different realizations of the exceptional classes on the powers of

the abelian variety. A priori, the fact that if one realization of an exceptional class is

algebraic then all the realizations of it are algebraic was not clear to us. For a motivic

proof of Theorem B.5.14 see [64].

A result similar to Theorem B.5.16 holds also for abelian varieties of Weil type with

definite quaternionic multiplication. Note that one needs to add to the proof the same

modifications as we introduced in the proof of Theorem B.5.16.

Theorem B.5.18. [1, Thm. 4.1],[81, Thm. 4.2.1] Let A be a general abelian variety of

K-Weil type with definite quaternionic multiplication. Then, if the Weil classes on A are

algebraic, the Hodge conjecture holds for every power Ak.

Theorem B.5.16 and Theorem B.5.18 allow us to deduce the Hodge conjecture for all

powers Ak, where A is a general abelian variety of Weil type or a general abelian variety

of Weil type with definite quaternionic multiplication whenever the Weil classes on A are

algebraic.

B.6 Families of K3 surfaces of general Picard number 16

In this section, we prove the Hodge conjecture for all powers of the K3 surfaces belonging

to families whose general element has Picard number 16 assuming the Kuga–Satake Hodge

conjecture.

The relation between K3 surfaces of Picard number 16 and abelian fourfolds of Weil

type is given by the Kuga–Satake construction due to the following result:

Theorem B.6.1. [56],[30, Thm. 9.2] Let (V, q) be a polarized rational Hodge structure

of K3-type such that there exists an isomorphism of quadratic spaces

(V, q) ≃ U2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩,
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where a and b are negative integers, and U is the hyperbolic lattice. Then, the Kuga–Satake

variety of (V, q) is isogenous to A4 for an abelian fourfold of Q(
√
−ab)-Weil type with

discriminant one. Moreover, for general (V, q), there is an isomorphism End(A)⊗Z Q ≃
Q(

√
−ab). Conversely, if A is an abelian fourfold of Weil type with discriminant one,

then A4 is the Kuga–Satake variety of a polarized rational Hodge structure of K3-type of

dimension six as above.

By Theorem B.5.10, the Hodge conjecture holds for the general abelian fourfold of

Weil type with discriminant one. The following proposition shows that the same result

follows in the cases where Kuga–Satake correspondence is known to be algebraic. As

mentioned in the introduction, this does not prove the Hodge conjecture for any new

abelian variety, it just shows the strong relation between the algebraicity Kuga–Satake

correspondence and the Hodge conjecture for the Kuga–Satake variety in this special case.

Proposition B.6.2. Let A be a general abelian fourfold of K-Weil type with discriminant

one. If the Kuga–Satake Hodge conjecture holds for the corresponding K3 surface, then

the Weil classes on A are algebraic. Thus, the Hodge conjecture holds for A and, hence,

for all powers Ak.

Proof. Let X be a K3 surface such that KS(X) ∼ A4 which exists by Theorem B.6.1. By

[56, Thm. 3.8], we have the following isomorphism of Hodge structures:∧2
K H

1(A,Q) ≃ T (X)⊕ ϕ(T (X)), (B.9)

where ϕ denotes the natural action of
√
−d on

∧2
K H

1(A,Q) sending v∧Kw to
√
−dv∧Kw.

In particular, there is an embedding of Hodge structures

κ : T (X) ↪−!
∧2
K H

1(A,Q) ↪−!
∧2H1(A,Q).

By generality assumption, the K3 surface X is Mumford–Tate general. In particular, [13,

Thm. 4.8] and its proof show that κ is induced by the Kuga–Satake correspondence. As

we are assuming the Kuga–Satake Hodge conjecture for X we deduce that κ is algebraic.

Tensoring (B.9) by C, we get as in [18, Prop. 4.4] the following isomorphism∧2W ⊕
∧2W ∗ ≃

(∧2
K H

1(A,Q)
)
⊗Q C ≃ T (X)C ⊕ ϕ(T (X))C, (B.10)

where, as usual, W is a complex vector space of dimension 2n = 4 such that Hdg(A)(C) ≃
SL(W,C). Using the left-hand side of (B.10), we compute the ring of Hodge classes in

S :=
(∧2

K H
1(A,Q)

)
C
⊗
(∧2

K H
1(A,Q)

)
C
.

We see that it is four-dimensional and is spanned by two linear combinations of complete

contractions together with two realizations on A2 of the Weil classes. On the other hand,

computing the same ring of Hodge classes using the right-hand side of (B.10), we conclude
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for dimension reasons that there is a unique Hodge class in T (X)⊗ T (X), i.e., that the

endomorphism field of X is Q. Denoting by α this unique Hodge class, we see that the

ring of Hodge classes in S is spanned by

α, (Id⊗ ϕ)α, (ϕ⊗ Id)α, and (ϕ⊗ ϕ)α.

Since we are assuming the Kuga–Satake Hodge conjecture, the class α is algebraic on A2

as it is represented on X2 by a component of the class of the diagonal. Moreover, note

that ϕ is algebraic as it is the restriction to
∧2
K H

1(A,Q) of the algebraic morphism

√
−d⊗ Id : H1(A,Q)⊗2 −! H1(A,Q)⊗2.

We then conclude that every class in S is algebraic. In particular, we see that the

realizations of the Weil classes in S are algebraic. Using a similar argument to the one

of Lemma B.5.15, we conclude that the Weil classes on A are algebraic. This implies by

Theorem B.5.16 the Hodge conjecture for all powers Ak.

We are finally able to state and prove our main theorem which extends [81, Thm. 2].

Theorem B.6.3. Let X −! S be a four-dimensional family of K3 surfaces whose general

fibre is of Picard number 16 with an isometry

T (Xs) ≃ U2
Q ⊕ ⟨a⟩ ⊕ ⟨b⟩,

for some negative integers a and b. If the Kuga–Satake correspondence is algebraic for the

fibres of this family, then the Hodge conjecture holds for all powers of every K3 surface in

this family.

Proof. Recall that, if a K3 surface X has totally real endomorphism field E, the dimension

of T (X) as an E-vector space is at least three. Using this observation, together with the

assumption that the general K3 surface of this family has Picard number 16, we see that,

for any s ∈ S the pair (dimT (Xs), E := EndHdg(Xs)(T (Xs)) satisfies one of the following:

(i) dimT (Xs) = 6, 4, or 2 and E is a CM field;

(ii) dimT (Xs) = 6 and E = Q;

(iii) dimT (Xs) = 6 and E is a totally real field of degree two;

(iv) dimT (Xs) ≤ 5 and E ≃ Q.

In case (i), the endomorphism field of T (Xs) is a CM field. Therefore, we may apply

Corollary B.3.3 to deduce the Hodge conjecture for all powers of Xs.

In case (ii), the transcendental lattice is six-dimensional and by Theorem B.6.1, the

Kuga–Satake variety of Xs is the fourth power of a general abelian fourfold A of Weil

type. By Theorem B.5.10 and Theorem B.5.16, the Weil classes on A are algebraic and
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the Hodge conjecture holds for all powers of A. Using Lemma B.2.6, we conclude that all

Hodge classes in the tensor algebra of T (Xs) are algebraic on the powers of Xs.

In case (iii), one knows that the abelian fourfold A appearing in the decomposition of

the Kuga–Satake variety of Xs is an abelian fourfold of Weil type whose endomorphism

algebra is of definite quaternion type, see [30, Prop. 5.7]. By Theorem B.5.16 together

with Theorem B.5.10, we see as in the previous case that the Hodge conjecture holds for

all powers of the general A. As before, this is sufficient to conclude that all Hodge classes

on the tensor algebra of T (Xs) are algebraic.

Finally in case (iv), the endomorphism field of Xs is Q. Since we have already proven

the Hodge conjecture for all powers of the K3 surfaces of Picard number 16 belonging to

this family, we may apply our degeneration result of Corollary B.4.2 to conclude that the

Hodge conjecture holds for all powers of the K3 surface Xs.

This concludes the proof.

We end this paper recalling two four-dimensional families of K3 surfaces satisfying

the hypothesis of Theorem B.6.3.

Example B.6.4 (Double covers of P2 branched along six lines). This family of K3 surfaces

has been first studied by Paranjape [77] and it is the example studied by Schlickewei

[81]: Let π : Y −! P2 be a double cover branched along six lines no three of which

intersect in one point. The surface Y has simple nodes in the 15 points of intersection

of the lines. Blowing up these 15 points on Y we get a smooth K3 surface X. The 15

exceptional lines on X together with pullback of the ample line on P2 span a sublattice

of NS(X) of rank 16. Since this family of K3 surfaces is four-dimensional, the Picard

number of a general member is 16. The transcendental lattice of the general element of

this family has been computed in [77, Lem. 1], where it is shown that it is isomorphic

to U2
Q ⊕ ⟨−2⟩2. In particular, by Theorem B.6.1 the Kuga–Satake variety is the fourth

power of an abelian fourfold of Q(i)-Weil type. This was already known to Paranjape [77]

where the author constructs the Kuga–Satake correspondence for this family, covering

the general K3 surface by the square of a curve of genus five. Our Theorem B.6.3 then

extends the result in [81], since it allows us to conclude that the Hodge conjecture holds

for all powers of the K3 surfaces in this family and not just for their square.

Example B.6.5 (Desingularization of K3 surfaces in P4 with 15 simple nodes). This

family of K3 surfaces has been first introduced in [27]. In [49], the authors show that

the same techniques as in [81] can be used to prove the Hodge conjecture for the square

of these K3 surfaces: Let X be a general K3 surface which is the desingularization of a

singular K3 surface in P4 with 15 nodal points. Then, the 15 rational lines on X together

with the pullback of the ample line bundle on P4 span a sublattice of NS(X) of rank 16.

Therefore, since the family of such K3 surfaces is four-dimensional, the Picard number

of X is equal to 16. In [49, Rmk. 4.8], using elliptic fibrations, it is shown that the
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transcendental lattice of a general K3 surface is isomorphic to U⊕2
Q ⊕ ⟨−6⟩ ⊕ ⟨−2⟩. In

particular, applying Theorem B.6.1, the Kuga–Satake variety of X is isogenous to A4

where A is an abelian fourfold of Q(
√
−3)-Weil type. Inspired by [77], Ingalls, Logan,

and Patashnick [49] show that the Kuga–Satake correspondence is algebraic for these K3

surfaces. The authors then show that the proof of Schlickewei applies which shows the

Hodge conjecture for the square of these K3 surfaces. As in the previous example, by

Theorem B.6.3, we conclude that the Hodge conjecture holds for all powers of the K3

surfaces in this family.
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Hodge similarities, algebraic classes, and Kuga–

Satake varieties

M. Varesco1

Abstract We introduce in this paper the notion of Hodge similarities of transcendental

lattices of hyperkähler manifolds and investigate the Hodge conjecture for these Hodge

morphisms. Studying K3 surfaces with a symplectic automorphism, we prove the Hodge

conjecture for the square of the general member of the first four-dimensional families of

K3 surfaces with totally real multiplication of degree two. We then show the functoriality

of the Kuga–Satake construction with respect to Hodge similarities. This implies that, if

the Kuga–Satake Hodge conjecture holds for two hyperkähler manifolds, then every Hodge

similarity between their transcendental lattices is algebraic after composing it with the

Lefschetz isomorphism. In particular, we deduce that Hodge similarities of transcendental

lattices of hyperkähler manifolds of generalized Kummer deformation type are algebraic.

C.1 Introduction

C.1.1 Hyperkähler manifolds and the Hodge conjecture.

Let X be a hyperkähler manifold, and let T (X) ⊆ H2(X,Q) be its transcendental lattice,

which is the orthogonal complement of the Néron–Severi group of X in H2(X,Q) with

respect to the Beauville–Bogomolov quadratic form. The relevance of this notion in

the context of the Hodge conjecture can be evinced from the following observation: let

X and Y be hyperkähler manifolds. By Lefschetz (1, 1) theorem, a Hodge morphism

H2(X,Q) ! H2(Y,Q) is algebraic if and only if the induced Hodge morphism T (X) !

T (Y ) is algebraic. Recall that a Hodge morphism H2(X,Q) ! H2(Y,Q) is said to be

algebraic if the corresponding Hodge class in H2n,2n(X × Y,Q) is algebraic, where 2n is

the dimension of X.

In general, it is not known whether Hodge morphisms of transcendental lattices are

algebraic or not. However, there have been promising results for the class of Hodge

1Mauro Varesco. Hodge similarities, algebraic classes, and Kuga–Satake varieties. Math. Z., 305(4):

69, 2023. https://doi.org/10.1007/s00209-023-03390-8.
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isometries. Recall that a Hodge isomorphism T (X) ! T (Y ) is called a Hodge isometry

if it is an isometry with respect to the Beauville–Bogomolov quadratic forms on X and

Y . A result by Buskin [11] reproved by Huybrechts [45] shows that Hodge isometries of

transcendental lattices of projective K3 surfaces are algebraic. The same has been proven

by Markman [62] for Hodge isometries of transcendental lattices of hyperkähler manifolds

of K3[n]-type.

In this paper, we introduce a natural generalization of Hodge isometries which we

call Hodge similarities: a Hodge isomorphism is a Hodge similarity if it multiplies the

quadratic form by a non-zero scalar called multiplier, see Definition C.2.2. Note that

Hodge isometries are Hodge similarities with multiplier one. There are two contexts where

Hodge similarities naturally appear. The main instance is given by hyperkähler manifolds

X whose endomorphism field E := EndHdg(T (X)) is a totally real field of degree two:

indeed, every totally real field of degree two is isomorphic to Q(
√
d) for some positive

integer d. One then sees that
√
d : T (X) ! T (X) is a Hodge similarity. This follows

immediately from the fact that, as E is totally real, the Rosati involution is the identity.

Note that in this case E is generated by Hodge similarities. A second source of examples

of Hodge similarities is the following: given a hyperkähler manifold X, there might exist

another hyperkähler manifold Y with transcendental lattice Hodge isometric to T (X)(λ),

for some λ ∈ Q>0, where (λ) indicates that the quadratic form is multiplied by λ. The

identity of T (X) then defines a natural Hodge morphism T (Y ) ! T (X) which is a Hodge

similarity. At the time of writing this paper, there are very few examples of Hodge

similarities that are not isometries which can be proven to be algebraic. For example, in

the case of K3 surfaces with totally real endomorphism field E = Q(
√
d), the algebraicity

of
√
d has been proven only for some one-dimensional families of such K3 surfaces. This

is a result by Schlickewei [81] which has then been extended in [89]. Note that the proof

in the references involves the study of the Hodge conjecture for Kuga–Satake variety of

these K3 surfaces, and does not use the fact that E is in these cases generated by Hodge

similarities.

C.1.2 Hodge similarities of K3 surfaces and symplectic automorphisms

Recall that the Hodge conjecture for the product of two K3 surfaces X and Y to the

algebraicity of the elements of HomHdg(T (X), T (Y )). This follows from the Künneth

decomposition and the fact that the quadratic form qX identifies (T (X) ⊗ T (Y ))2,2 ∩
(T (X)⊗T (Y )) with HomHdg(T (X), T (Y )). As mentioned above, Hodge isometries between

the transcendental lattices of two K3 surfaces are known to be algebraic. In particular,

the Hodge conjecture holds for X × Y whenever HomHdg(T (X), T (Y )) is generated by

Hodge isometries. This is the case when T (X) and T (Y ) are Hodge isometric and

HomHdg(T (X), T (Y )) is Q or a CM field.

The main result of Section C.3 is the proof of the algebraicity of some Hodge similarities
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for some families of K3 surfaces with totally real multiplication of degree two:

Theorem C.1.1 (Theorem C.3.1, C.3.9, and C.3.15). Let X be a K3 surface Hodge

isometric to a K3 surface with a symplectic automorphism of order p with p = 2, 3.

Assume furthermore that Q(
√
p) is contained in the endomorphism field of X. Then,

√
p : T (X) ! T (X) is algebraic. In particular, the Hodge conjecture for X ×X holds if

EndHdg(T (X)) ≃ Q(
√
p).

The condition “X is Hodge isometric to a K3 surface with a symplectic automorphism

of order p” is equivalent to T (X) ↪! U3
Q⊕E8(−2)Q for p = 2 and to T (X) ↪! U3

Q⊕ (A2)
2
Q

for p = 3. This is deduced in Proposition C.3.5 and Proposition C.3.11 from the classical

result by Nikulin [73], van Geemen and Sarti [34], and Garbagnati and Sarti [26]. Using

these conditions on the transcendental lattice, we show that the families of K3 surfaces

satisfying the hypotheses of Theorem C.1.1 are at most four-dimensional for p = 2 and two-

dimensional for p = 3. We then produce examples of such maximal-dimensional families

in Proposition C.3.6 and Proposition C.3.12. In particular, Theorem C.1.1 provides the

first four-dimensional families of K3 surfaces with totally real multiplication of degree two

for which the Hodge conjecture can be proven for the square of its general member and

the first two-dimensional family of K3 surfaces with totally real multiplication of degree

two for which the Hodge conjecture can be proven for the square of all its members.

C.1.3 Kuga–Satake varieties and Hodge similarities

In Section C.4, we prove that the functoriality of the Kuga–Satake construction with

respect to Hodge isometries extends to Hodge similarities in the following sense:

Proposition C.1.2 (Proposition C.4.1). Let ψ : (V, q) ! (V ′, q′) be a Hodge similarity of

polarized Hodge structures of K3-type. Then, there exists an isogeny of abelian varieties

ψKS : KS(V ) ! KS(V ′) making the following diagram commute

V V ′

H1(KS(V ),Q)⊗2 H1(KS(V ′),Q)⊗2

ψ

(ψKS)
⊗2
∗

,

where the vertical arrows are the Kuga–Satake correspondence for V and V ′.

In Section C.4.1, we exploit the observation that a similarity of quadratic spaces

induces an isomorphism of even Clifford algebras to extend the result by Kreutz, Shen,

and Vial [53] which shows that de Rham–Betti isometries between the second de Rham–

Betti cohomology of two hyperkähler manifolds defined over Q are motivated in the sense

of André. We note in Proposition C.4.8 that the same proof as in the reference can be

used to show that de Rham–Betti similarities are motivated.

In Section C.5, we use the functoriality property of the Kuga–Satake construction

proven in Proposition C.1.2 to deduce the following:
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Theorem C.1.3 (Theorem C.5.5). Let X ′ and X be two hyperkähler manifolds for which

the Kuga–Satake Hodge conjecture holds. Then, for every Hodge similarity ψ : T (X ′) !

T (X), the composition

T (X ′)
ψ−−! T (X)

h2n−2
X ∪•

−−−−−! H4n−2(X,Q)

is algebraic, where 2n := dimX and hX is the cohomology class of an ample divisor on X.

By a result of Voisin [98] based on previous results by Markman [60] and O’Grady

[76], the Kuga–Satake Hodge conjecture holds for hyperkähler manifolds of generalized

Kummer type. This is the main source of examples of manifolds which satisfy the

hypotheses of Theorem C.1.3. As the Lefschetz standard conjecture in degree two for

these manifolds is proved by Foster [24], Theorem C.1.3 shows that Hodge similarities

between the transcendental lattices of two hyperkähler manifolds of generalized Kummer

type are algebraic. Using the fact that the endomorphism field of these varieties is always

generated by Hodge similarities, we then conclude the following:

Theorem C.1.4 (Theorem C.6.1). Let X and X ′ be hyperkähler manifolds of generalized

Kummer type such that T (X) and T (X ′) are Hodge similar. Then, every Hodge morphism

between T (X ′) and T (X) is algebraic.

Note that, opposed to the case of K3 surfaces and hyperkähler manifolds of K3[n]-type,

already the algebraicity of Hodge isometries was not known in the case of hyperkähler

manifolds of generalized Kummer type. Furthermore, note that Theorem C.1.4 also

applies for hyperkähler manifolds of generalized Kummer type of different dimension.

In the case of K3 surfaces, the Lefschetz standard conjecture is trivially true. Hence,

if the Kuga–Satake Hodge conjecture holds for two given K3 surfaces, Theorem C.1.3

shows that every Hodge similarity between their transcendental lattices is algebraic. In

particular, this provides a more direct proof of the Hodge conjecture for the square of the

K3 surfaces in the one-dimensional families of K3 surfaces with totally real field of degree

two studied in [81, 89] that we mentioned above.

For hyperkähler manifolds of K3[n]-type, the Kuga–Satake Hodge conjecture is known

only for certain families: the paper [21] proves this conjecture for countably many four-

dimensional families of K3[3]-type hyperkähler manifolds. Recall that, for hyperkähler

manifolds of K3[n]-type, the Lefschetz standard conjecture has been proven by Charles

and Markman [14]. Therefore, we deduce the algebraicity of Hodge similarities for the

hyperkähler manifolds of K3[3]-type appearing in [21].

As a final remark, note that the manifolds X and X ′ as in Theorem C.1.3 are neither

assumed to be of the same deformation type nor of the same dimension.
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C.2 Main definitions

In this paper, all varieties are assumed to be projective. Unless otherwise stated, the

definition field of the varieties we consider is C.
A hyperkähler manifold is a simply connected, projective, compact, Kähler manifold

X such that H0(X,Ω2
X) is generated by a nowhere degenerate symplectic form. Denote

by qX the Beauville–Bogomolov quadratic form, which is a non-degenerate quadratic form

on H2(X,Q). Recall that qX induces the following direct sum decomposition

H2(X,Q) = NS(X)Q ⊕ T (X),

where NS(X) is the Néron–Severi group of X and T (X) is the transcendental lattice of

X. When talking about the transcendental lattice of a hyperkähler manifold X we will

always refer to the rational quadratic subspace T (X) of H2(X,Q). The pair (T (X),−qX)

gives an example of polarized Hodge structures of K3-type:

Definition C.2.1. A rational Hodge structure V of weight two is called of K3-type if

dimC V
2,0 = 1, and V p,q = 0 for |p− q| > 2.

Moreover, we say that a pair (V, q) is a polarized Hodge structure of K3-type if q : V ⊗V !

Q(−2) is a morphism of Hodge structures whose real extension is negative definite on

(V 2,0 ⊕ V 0,2) ∩ VR and has signature (dimV − 2, 2).

Let E := EndHdg(T (X)) be the endomorphism algebra of the Hodge structure T (X).

As T (X) is an irreducible Hodge structure, E is a field. As explained in [44, Thm. 3.3.7],

E is either totally real or CM. Recall that a field extension E of Q is totally real if every

embedding E ↪! C has image contained in R, and it is CM if E = F (ρ), where F is a

totally real field and ρ satisfies the following:

σ(ρ)2 ∈ σ(F ) ∩ R<0, ∀σ : E ↪! C.

These two cases can be distinguished by the action of the Rosati involution, which is the

involution on E which sends an element e ∈ E to the element e′ ∈ E such that

qX(ev, w) = qX(v, e
′w), ∀v, w ∈ T (X).
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The Rosati involution is the identity if E is totally real, and it acts as complex conjugation

if E is CM.

As mentioned in the introduction, we focus in this paper on the notion of Hodge

similarities:

Definition C.2.2. Let (V, qV ) and (V ′, qV ′) be polarized Hodge structures of K3-type,

and let ψ : V ! V ′ be a Hodge isomorphism. We say that ψ is a Hodge similarity if there

exists a non-zero λψ ∈ Q such that

qV ′(ψv, ψw) = λψqV (v, w), ∀v, w ∈ V.

We call λψ the multiplier of ψ. A Hodge isometry is a Hodge similarity ψ of multiplier

λψ = 1.

We say that two hyperkähler manifolds are Hodge similar (resp., Hodge isometric) if

there exists a Hodge similarity (resp., a Hodge isometry) between their transcendental

lattices. Note that the multiplier of a Hodge similarity is always a positive number.

C.3 Symplectic automorphisms and algebraic Hodge similarities

Let X be a K3 surface, and denote by q the polarization on T (X) given by the negative

of the intersection form. Identifying T (X) with its dual via q, we see that

EndHdg(T (X)) ≃ (T (X)⊗ T (X))2,2 ∩ (T (X)⊗ T (X)) .

This shows that proving the Hodge conjecture for X2 is equivalent to showing that

every element of EndHdg(T (X)) is algebraic. In this section, considering K3 surfaces

with a symplectic automorphism, we produce examples of K3 surfaces X with Q(
√
p) ⊆

EndHdg(T (X)) for which the Hodge similarity
√
p can be shown to be algebraic.

The starting observation is the following: given a K3 surface X with a symplectic

automorphism of order p, there exists a K3 surface Y and an algebraic Hodge similarity

φ : T (Y ) ! T (X) of multiplier p. To show this, recall that, by [44, Prop. 15.3.11], the

prime p is at most 7, the fixed locus of σp is a finite union of points, and the minimal

resolution of X/σp is a K3 surface Y . Moreover, Y can also be obtained as follows: after

a finite sequence of blowups of X at the fixed locus of σp, we get a variety X̃ with a free

action σ̃p and Y ≃ X̃/σ̃p. I.e., there is a commutative diagram

X̃ X

Y X/σp

π

β

.

As π : X̃ ! Y is a finite map of degree p and β : X̃ ! X just contracts the exceptional

divisors, we see that

φ := β∗π
∗ : T (Y ) ! T (X)
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is a Hodge similarity of multiplier p. Note that φ is algebraic. From this construction, we

deduce the following:

Theorem C.3.1. Let X be a K3 surface Hodge isometric to a K3 surface with a symplectic

automorphism of prime order p. Assume furthermore that Q(
√
p) ⊆ EndHdg(T (X)). Then,

the Hodge similarity
√
p is algebraic.

Proof. As Hodge isometries of K3 surfaces are algebraic by [11] and [45], we may assume

that X admits a symplectic automorphism of order p. Let ψ be the Hodge similarity

of multiplier p on T (X), which exists since Q(
√
p) ⊆ EndHdg(T (X)) by assumption.

As remarked above, denoting by Y the minimal resolution of the quotient X/σp, the

map φ := β∗π
∗ : T (Y ) ! T (X) is a Hodge similarity of multiplier p. The composition

φ−1 ◦ ψ : T (X) ! T (Y ) is then a Hodge isometry. In particular, φ−1 ◦ ψ is algebraic by

[11] and [45]. As φ is algebraic, we conclude that ψ = φ ◦ (φ−1 ◦ ψ) is algebraic. This

concludes the proof.

Remark C.3.2. The two conditions “X is isometric to a K3 surface with a symplectic

automorphisms of order p” and “the endomorphisms field of X contains Q(
√
p)” are not

related. In fact, the general K3 surface with a symplectic automorphism of order p has

endomorphism field equal to Q. Moreover, note that the requirement “the endomorphisms

field of X contains Q(
√
p)” is equivalent to the condition “X admits a Hodge similarity

ψ of multiplier d which is fixed by the Rosati involution”. Indeed, if ψ such a Hodge

similarity, then Q(ψ) is a totally real subfield of the endomorphism field of X. Using the

fact that totally real fields have no non-trivial isometry, we see that ψ2/d is the identity,

i.e., that Q(ψ) ≃ Q(
√
d).

In the remainder of this section, we construct families of K3 surfaces satisfying the

hypotheses of Theorem C.3.1. To do this, we use the following result is adapted from [31,

Sec. 3], we give here a detailed proof for later use.

Proposition C.3.3. Let d ∈ Z be a positive integer which is not a square, and let (Λ, q)

be a rational quadratic space of signature (2,Λ− 2) with dimΛ > 4. Let ψ be a similarity

of Λ of multiplier d which is fixed by the Rosati involution. Then, Λ is even-dimensional,

and the locus of Hodge structures of K3-type on Λ for which ψ defines a Hodge similarity

is either empty or of dimension (dimΛ)/2− 2.

Proof. The first statement is immediate from the fact that odd-dimensional quadratic

spaces do not admit any similarity of multiplier d if d is not a square.

Let us assume that Λ is even-dimensional. As in Remark C.3.2, we see that, for every

Hodge structure on Λ for which ψ is a Hodge morphism, Q(ψ) ≃ Q(
√
d) is a totally real

subfield of the endomorphism field of Λ.

Note that Λ can be viewed as a Q(ψ)-vector space, that is Λ ≃ Q(ψ)(dimΛ)/2. The

decomposition Q(ψ)⊗QR ≃ R√
d⊕R−

√
d into eigenspaces for the action of ψ then induces
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a decomposition

ΛR ≃ Λ√
d ⊕ Λ−

√
d,

where Λ√
d
:= {v ∈ ΛR | ψv =

√
dv} and similarly for Λ−

√
d. Note that Λ√

d and Λ−
√
d are

both of dimension (dimΛ)/2. From the fact that ψ is fixed by the Rosati involution, we

deduce that this decomposition is orthogonal with respect to the quadratic form q on ΛR.

Recall that giving a Hodge structure of K3-type on Λ is equivalent to giving an element

ω in the period domain

ΩΛ := {ω ∈ P(ΛC) | q(ω) = 0, q(ω, ω) > 0}.

Note that ψ defines a morphism of Hodge structures if and only if ω is an eigenvector.

Therefore, as ΛR ≃ Λ√
d⊕Λ−

√
d is orthogonal with respect to q and (Λ2,0⊕Λ0,2)∩ΛR has

to be positive definite, there exists a Hodge structure for which ψ is a Hodge morphism

if and only if Λ−
√
d is negative definite and Λ√

d has signature (2, (dimΛ)/2− 2) or vice

versa. Let us assume that ψ satisfy this hypothesis. Then, up to changing the sign of ψ,

we may assume that Λ√
d has signature (2, (dimΛ)/2− 2). We conclude that ψ defines a

Hodge automorphism if and only if the Hodge structure corresponds to an element in

{ω ∈ P
(
(Λ√

d)C

)
| q(ω) = 0, q(ω, ω) > 0}.

Therefore, the locus of Hodge structures on Λ for which ψ defines a Hodge morphism has

dimension equal to dimΛ√
d − 2 = (dimΛ)/2− 2.

Remark C.3.4. Let ψ be a similarity of multiplier d as in Proposition C.3.3. From the

proof of Proposition C.3.3, we see that locus of Hodge structures of K3-type on Λ for

which ψ is a Hodge similarity is non-empty (hence, of dimension (dimΛ)/2− 2) if and

only if either Λ√
d or Λ−

√
d is negative definite.

We use Proposition C.3.3 to show that the families of K3 surfaces which satisfy the

hypotheses of Theorem C.3.1 are at most four-dimensional for p = 2 and two-dimensional

for p = 3. Moreover, we produce examples of such families with these maximal dimensions.

As we will see, no K3 surface satisfies the hypotheses of Theorem C.3.1 for higher values

of p.

Let us start from the case p = 2. Following [34], we call a symplectic involution on a

K3 surface a Nikulin involution. By [34, Prop. 2.2, 2.3], a K3 surface X admits a Nikulin

involution if and only if the lattice E8(−2) is primitively embedded in the Néron–Severi

group of X. Note that, up to an automorphism of the K3-lattice, there exists a unique

primitive embedding of E8(−2) in the K3-lattice. Therefore, we deduce from [34, Sec. 1.3]

that (E8(−2))⊥ ≃ U3 ⊕E8(−2). From this fact, we get the following criterion in terms of

the transcendental lattice of X:
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Proposition C.3.5. A K3 surface X is Hodge isometric to a K3 surface admitting a

Nikulin involution if and only if T (X) ⊆ U3
Q ⊕ E8(−2)Q.

2

Proof. Let us first prove the “only if” part. Let X be a K3 surface such that T (X) is

Hodge isometric to T (X ′) for some K3 surface X ′ admitting a Nikulin involution. By

[34, Prop. 2.2, 2.3], the lattice E8(−2) is primitively embedded in NS(X ′). Therefore,

NS(X ′)⊥ ↪! E8(−2)⊥ ≃ U3 ⊕ E8(−2). Over Q, we conclude that

T (X) ≃ T (X ′) ↪! U3
Q ⊕ E8(−2)Q.

For the “if” part, let us assume that there is an embedding of quadratic spaces

T (X) ↪! U3
Q ⊕ E8(−2)Q.

Denote by H2(X,Z)tr the transcendental part of the second integral cohomology of X.

Clearing the denominators, we find a positive integer λ ∈ Z such that the above embedding

restricts to an embedding of lattices

j : λH2(X,Z)tr ↪! U3 ⊕ E8(−2).

Fix a primitive embedding ι : U3 ⊕ E8(−2) ↪! H2(X,Z) such that

ι(U3 ⊕ E8(−2))⊥ ≃ E8(−2).

Let T ′ be the saturation of the lattice (ι ◦ j)(H2(X,Z)tr) ⊆ H2(X,Z). For any K3 surface

X ′ such that H2(X ′,Z)tr ≃ T ′ we get an embedding

E8(−2) ≃ (U3 ⊕ E8(−2))⊥ ↪! (T ′)⊥ ≃ NS(X ′).

This embedding is primitive, since E8(−2) is obtained as an orthogonal complement.

Therefore, X ′ admits a Nikulin involution by [34, Prop. 2.2, 2.3]. Note that T (X) and

T ′
Q are isometric quadratic spaces. Hence, by the surjectivity of the period map we can

find a K3 surface X ′ with H2(X ′,Z)tr ≃ T ′ such that T (X ′) is Hodge isometric to T (X).

This concludes the proof since the K3 surface X ′ is Hodge isometric to X and admits a

Nikulin involution as required.

In particular, we deduce that the transcendental lattice of a K3 surfaces which is

Hodge isometric to a K3 surface with a Nikulin involution is at most 13-dimensional.

Proposition C.3.3 then shows that the families of K3 surfaces satisfying the hypotheses of

Theorem C.3.1 in the case p = 2 are at most four-dimensional. To prove the existence of

such a four-dimensional family of K3 surfaces we consider a particular quadratic subspace

of U3
Q ⊕ E8(−2)Q, and we show that it admits a similarity of multiplier 2.

2Thanks to G. Mezzedimi for the help with this argument.
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Proposition C.3.6. The locus of Hodge structures of K3-type on Λ := U2
Q ⊕ E8(−2)Q

which admit a Hodge similarity of multiplier 2 which is fixed by the Rosati involution is

non-empty and has a four-dimensional component.

Proof. As dimΛ = 12, Proposition C.3.3 shows that the locus of Hodge structures of

K3-type on Λ which admit a Hodge similarity of multiplier 2 which is fixed by the Rosati

involution has a four-dimensional component if non-empty. By Remark C.3.4, we just

need to produce a similarity ψ of Λ of multiplier 2 fixed by the Rosati involution such

that Λ√
2 has signature (2, 4).

As the quadratic space E8(−2)Q is isometric to ⟨−2⟩8, we can write Λ = Q1 ⊕Q2 ⊕
Q3 ⊕Q4 ⊕Q5, with

Q1 = Q2 := ⟨1⟩ ⊕ ⟨−1⟩, Q3 = Q4 = Q5 = Q6 := ⟨−2⟩ ⊕ ⟨−2⟩.

As in [31, Exmp. 3.4], we restrict to finding a similarity ψ which preserves the decomposi-

tion of Λ as above. I.e., we look for matrices Mi ∈ GL2(Q) which satisfy the following:
tMiQi = QiMi and M

2
i = 2Id for i = 1, . . . , 6. Then, ψ := M1 ⊕ . . . ⊕M6 will be fixed

by the Rosati involution by the first condition and will be a similarity of multiplier 2. A

direct computation shows that the following matrices satisfy all the above conditions

M1 =M2 =

(
3
2 −1

2
1
2 −3

2

)
, M3 =M4 =M5 =M6 =

(
1 1

1 −1

)
,

and that the signature of Λ√
2 is (2, 4). Thus, ψ satisfies the required properties.

Example C.3.7. By [34, Sec.1 4], the family of elliptic K3 surfaces with a section and a

two-torsion section provides an example of a ten-dimensional family of K3 surfaces with a

Nikulin involution and general transcendental lattice Λ = U2
Q ⊕ ⟨−2⟩8. By Proposition

C.3.6, there exists a four-dimensional family of elliptic K3 surfaces with a two-torsion

section with endomorphism field containing Q(
√
2).

Remark C.3.8. One can produce other examples of quadratic subspace of U3
Q ⊕E8(−2)2Q

which admit a similarity of multiplier 2 which is fixed by the Rosati involution. For

example, if d > 1 is a square-free integer such that 2 is a quadratic residue modulo d,

the space U2
Q ⊕ ⟨−2⟩7 ⊕ ⟨−2d⟩ admits a similarity of multiplier 2 and is not isometric to

U2
Q ⊕ E8(−2)Q. This provides other four-dimensional families of K3 surfaces satisfying

the hypotheses of Theorem C.3.1 for p = 2.

To sum up, our discussion shows that Theorem C.3.1 in the case of Nikulin involutions

gives the following:

Theorem C.3.9. For every K3 surface in the four-dimensional families of K3 surfaces

with endomorphism field containing Q(
√
2) which are Hodge isometric to a K3 surface

with a Nikulin involution, the endomorphism
√
2 is algebraic. In particular, the Hodge

conjecture holds for the square of the general such K3 surface.
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Remark C.3.10. The only case where Theorem C.3.9 is not enough to prove the Hodge

conjecture for the square of the K3 surfaces X as in the statement is when the endomor-

phism field E of X is totally real of degree four and T (X) is twelve-dimensional: this

follows from the well known fact that, if the endomorphism field E is totally real, the

dimension of T (X) as E-vector space is at least three. Recall that if E is a CM field, then

the Hodge conjecture for X2 follows from [11] and [45] using the fact that E is generated

by Hodge isometries. Similarly to Proposition C.3.3, one sees that the families of K3

surfaces as in Theorem C.3.9 with totally real endomorphism field of degree four are

one-dimensional.

Let us come to the case p = 3. Let X be a K3 surface with a symplectic automorphism

of order 3, and let Y be the minimal resolution of the quotient. As above, we have

an algebraic similarity T (Y ) ! T (X) of multiplier 3 and T (Y ) is Hodge isometric to

T (X)(13). By [26, Thm. 4.1], a K3 surface X admits a symplectic automorphism of order

3 if and only if K12(−2) is primitively embedded in NS(X), where K12(−2) denotes the

Coxeter–Todd lattice with the bilinear form multiplied by −2. With a similar proof as

in Proposition C.3.5, we can reformulate this in terms of the transcendental lattice as

follows:

Proposition C.3.11. A K3 surface X is Hodge isometric to a K3 surface admitting a

symplectic automorphism of order 3 if and only if T (X) ⊆ U3
Q ⊕ (A2)

2
Q.

Proposition C.3.3 shows that families of K3 surfaces X with T (X) ⊆ U3
Q ⊕ (A2)

2
Q

whose endomorphism field contains Q(
√
3) are at most two-dimensional. As in the case

of Nikulin involutions, we consider a particular quadratic subspace of U3
Q ⊕ (A2)

2
Q, and

we show that it admits a similarity of multiplier 3:

Proposition C.3.12. The locus of Hodge structures of K3-type on Γ := U2
Q ⊕ (A2)

2
Q

which admit a Hodge similarity of multiplier 3 which is fixed by the Rosati involution is

non-empty and has a two-dimensional component.

Proof. As in the proof of Proposition C.3.6, we will construct an explicit similarity ψ of Γ

of multiplier 3 fixed by the Rosati involution such that Γ√
3 has signature (2, 2). Then, by

Proposition C.3.3 and Remark C.3.4, the locus of Hodge structures on Γ for which ψ is a

Hodge morphism has a two-dimensional component.

Diagonalizing the quadratic space (A2)Q, we see that there is an isometry

Γ ≃ Q1 ⊕Q2 ⊕Q3 ⊕Q4,

with Q1 = Q2 = ⟨1⟩ ⊕ ⟨−1⟩ and Q3 = Q4 = ⟨−2⟩ ⊕ ⟨−3/2⟩. We provide now matrices

M1,M2,M3,M4 ∈ GL2(Q) such that tMiQi = QiMi and M2
i = 3Id. As one checks,

setting

M1 =M2 :=

(
2 −1

1 −2

)
and M3 =M4 :=

(
0 3

2

2 0

)
,
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the map ψ :=M1 ⊕M2 ⊕M3 ⊕M4 defines a similarity of multiplier 3 of Γ satisfying all

the requirements.

Example C.3.13. By [26, Prop. 4.2], the family of elliptic K3 surfaces with a section

and a three-torsion section provides an example of a six-dimensional family of K3 surfaces

with a symplectic automorphism of order 3 and general transcendental lattice isometric

to Γ = U2
Q ⊕ (A2)

2
Q. By Proposition C.3.12, there is a two-dimensional subfamily of K3

surfaces with endomorphism field containing Q(
√
3).

Remark C.3.14. As in the case of Nikulin involutions, one can construct other eight-

dimensional quadratic subspaces of U3
Q ⊕ (A2)

2
Q admitting a similarity of multiplier 3 as Γ

of Propostion C.3.12.

Our discussion shows that Theorem C.3.1 in the case p = 3 gives the following:

Theorem C.3.15. For every K3 surface in the two-dimensional families of K3 surfaces

with endomorphism field containing Q(
√
3) which are Hodge isometric to a K3 surface with

a symplectic automorphism of order 3, the endomorphism
√
3 is algebraic. In particular,

the Hodge conjecture holds for the square of every such K3 surface.

Remark C.3.16. Note that in this case, Theorem C.3.15 proves the Hodge conjecture for

the square of every K3 surfaces of these families. The reason for this lies in the fact that

the transcendental lattice of these K3 surfaces is at most eight-dimensional. Therefore,

by a similar argument as in Remark C.3.10, we see that the endomorphism field of such

K3 surface is either Q(
√
3) or a CM field. In the latter case, the Hodge conjecture for the

square of the K3 surface follows from the fact that CM fields are generated by Hodge

isometries.

In the case of symplectic automorphisms of order bigger than 3, the same procedure

does not produce any K3 surface. In fact, the endomorphism of a K3 surface with a

symplectic automorphism of order 5 or 7 is always Q or a CM field. This can be deduced

from [26, Prop. 1.1]: indeed, the transcendental lattice of a K3 surface admitting a

symplectic automorphism of order 5 is of dimension at most five, and for K3 surfaces

with a symplectic automorphism of order 7 its dimension is at most three. As in Remark

C.3.10, one sees that, in both cases, the endomorphism field of these K3 surfaces cannot

be a totally real field different from Q.

C.4 Kuga–Satake varieties and Hodge similarities

By a construction due to Kuga and Satake [54], given a polarized Hodge structure of

K3-type (V, q), there exists an abelian variety KS(V ), called the Kuga–Satake variety of

(V, q), together with an embedding of Hodge structures κ : V ↪! H1(KS(V ),Q)⊗2. We

refer the reader for this construction to [44, Ch. 4], [30], and [90]. In this section, we prove

the functoriality of the Kuga–Satake construction with respect to Hodge similarities:
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Proposition C.4.1. Let ψ : (V, q) ! (V ′, q′) be a Hodge similarity of polarized Hodge

structures of K3-type. Then, there exists an isogeny of abelian varieties ψKS : KS(V ) !

KS(V ′) making the following diagram commute

V V ′

H1(KS(V ),Q)⊗2 H1(KS(V ′),Q)⊗2

ψ

(ψKS)
⊗2
∗

,

where the vertical arrows are the Kuga–Satake correspondences for (V, q) and (V ′, q′).

In the remainder of this section we prove Proposition C.4.1.

Let (V, q) and (V ′, q′) be polarized Hodge structures of K3-type, and let ψ : (V, q) !

(V ′, q′) be a Hodge similarity of multiplier λψ. The next lemma shows that ψ induces an

isomorphism between the even Clifford algebras Cl+(V ) and Cl+(V ′). Recall that Cl+(V )

is defined as the even degree part of
⊗∗ V/IV , where IV is the two-sided ideal generated

by elements of the form v ⊗ v − q(v), for v ∈ V .

Lemma C.4.2. The isomorphism of graded rings

ψ⊗ :
⊗ev V !

⊗ev V ′, v1 ⊗ · · · ⊗ v2m 7! (1/λψ)
mψv1 ⊗ · · · ⊗ ψv2m

induces an isomorphism ψCl : Cl
+(V )

≃
−! Cl+(V ′).

Proof. From the definition, it is immediate to see that the map ψ⊗ is an isomorphism of

graded rings. Given v ∈ V , we have the following

ψ⊗(v ⊗ v − q(v)) = (1/λψ)(ψv ⊗ ψv)− q(v) = (1/λψ)(ψv ⊗ ψv − λψq(v))

= (1/λψ)(ψv ⊗ ψv − q′(ψv)),

where in the last step we used that ψ is a similarity of multiplier λψ. This equality shows

that ψ⊗(v⊗v−q(v)) belongs to the ideal of
⊗ev V ′ generated by w⊗w−q′(w) for w ∈ V ′.

Hence, the isomorphism ψ⊗ descends to an isomorphism ψCl : Cl
+(V ) ! Cl+(V ′).

In the construction of the Kuga–Satake variety associated to a polarized Hodge

structure of K3-type, the complex Hodge structure on Cl+(V )R is given by left multipli-

cation by J := e1 · e2, with {e1, e2} an orthogonal basis of VR ∩ (V 2,0 ⊕ V 0,2) satisfying

q(e1) = q(e2) = −1. As one checks, this complex structure does not depend on the choice

of the basis.

Lemma C.4.3. The map ψCl,R : Cl
+(V )R ! Cl+(V ′)R is compatible with the natural

complex structures on Cl+(V )R and Cl+(V ′)R.
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Proof. Let {e1, e2} be an orthogonal basis of VR ∩ (V 2,0 ⊕ V 0,2) with q(ei) = −1, and

define

e′i := ψRei/
√
λψ ∈ V ′

R ∩ (V ′2,0 ⊕ V ′0,2), for i = 1, 2.

As ψ is a Hodge similarity of multiplier λψ, one sees that {e′1, e′2} is an orthogonal basis

of V ′
R ∩ (V ′2,0 ⊕ V ′0,2) such that q′(e′i) = −1. The complex structure on Cl+(V )R (resp.,

on Cl+(V ′)R) is then induced by left multiplication by J := e1 · e2 (resp., by J ′ := e′1 · e′2).
Hence, the equality

ψCl,R(J · x) = J ′ · ψCl,R(x) ∀x ∈ Cl+(V )

proves that ψCl,R is a morphism of complex vector spaces.

The Kuga–Satake variety of (V, q) is defined as (the isogeny class) of the complex

torus KS(V ) := Cl+(V )R/Cl
+(V ), where Cl+(V )R is endowed with the complex structure

we recalled above. Lemma C.4.3 then shows that ψCl : Cl
+(V ) ! Cl+(V ′) induces an

isogeny of complex tori

ψKS : KS(V ) ! KS(V ′).

Recall that Kuga–Satake varieties of polarized Hodge structures of K3-type are abelian

varieties: let (f1, f2) ∈ V × V be a pair of orthogonal elements of V with positive square,

and consider the pairing

Q : Cl+(V )× Cl+(V ) ! Q, (v, w) ! tr(f1 · f2 · v∗ · w),

where tr(x) denotes the trace of the endomorphism of Cl+(V ) given by left multiplication

by x ∈ Cl+(V ) and v∗ denotes the image of v under the involution of Cl+(V ) induced

by the involution v1 ⊗ · · · ⊗ v2m 7! v2m ⊗ · · · ⊗ v1 on
⊗ev V . Then, Q defines up to

a sign a polarization for the weight-one Hodge structure Cl+(V ). Note that the pair

(ψf1/λψ, ψf2) ∈ V ′ × V ′ satisfies the same hypotheses. Hence, it defines a polarization

Q′ on Cl+(V ′).

Lemma C.4.4. The isomorphism ψCl : Cl
+(V ) ! Cl+(V ′) is compatible with the polar-

izations Q and Q′ defined above. Hence, ψKS : KS(V ) ! KS(V ′) is an isogeny of abelian

varieties.

Proof. To prove the lemma, we need to show that

Q(v, w) = Q′(ψClv, ψClw),

for all v, w ∈ Cl+(V ). By definition of Q and Q′, this is equivalent to prove that

tr(f1 · f2 · v∗ · w) = tr(ψf1/λψ · ψf2 · (ψClv)
∗ · ψClw).

Note that, by definition of ψCl, the following holds

ψf1/λψ · ψf2 · (ψClv)
∗ · ψClw = ψCl(f1 · f2 · v∗ · w).
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We then need to prove that, for every x ∈ Cl+(V ), the left multiplication by x on Cl+(V )

has the same trace as the left multiplication by ψClx on Cl+(V ′). This can be checked as

follows: let {bi}i be a basis of Cl+(V ) with dual basis {bi}i. By definition, we have that

tr(x) = Σib
i(x · bi)

As a basis of Cl+(V ′), consider {ψClbi}i. Its dual basis is {ψ∨
Clb

i}i, where ψ∨
Cl is the dual

action of ψCl. The trace of the left multiplication by ψClx is then

tr(ψClx) = Σi(ψ
∨
Clb

i)(ψClx · ψClbi) = Σib
i(x · bi) = tr(x).

This concludes the proof.

The last ingredient for the proof of Proposition C.4.1 is the compatibility of the

isomorphism ψCl with the embedding φV : V ↪! End(Cl+(V )) given by the Kuga–Satake

construction. Recall that φV is given as follows: let v0 ∈ V be an element with q(v0) ̸= 0,

then φV (v) := fv ∈ End(Cl+(V )) where fv(w) := v · w · v0. Similarly, let φV ′ : V ′ ↪!

End(Cl+(V ′)) be the embedding corresponding to the element ψ(v0)/λψ ∈ V ′.

Lemma C.4.5. With the previous notation, the following diagram commutes

V V ′

End(Cl+(V )) End(Cl+(V ′))

φV

ψ

φV ′

End(ψCl)

,

where End(ψCl) is the map f 7! ψCl ◦ f ◦ ψ−1
Cl .

Proof. By definition, the composition of φV with End(ψCl) is the map

V ! End(Cl+(V ′)), v 7! (w′ 7! ψ(v) · w′ · ψ(v0)/λψ).

This shows that the above square is commutative. Indeed, φV ′ is the map

V ′ ↪! End(Cl+(V ′)), v′ 7! (w′ 7! v′ · w′ · ψ(v0)/λψ).

Proof of Propostion C.4.1. Lemma C.4.4 shows that there exists an isogeny of abelian

varieties ψKS : KS(V ) ! KS(V ′) such that (ψKS)∗ = ψCl : Cl
+(V ) ! Cl+(V ′). Recall that

the Kuga–Satake embedding is the composition

V
φV
↪−−! End(Cl+(V )) ≃ Cl+(V )⊗ Cl+(V ),

where the isomorphism is given by the polarization Q on Cl+(V ) which induces an

isomorphism between Cl+(V ) and Cl+(V )∗. Note that the commutativity of the square

in the theorem follows from the commutativity of the square of Lemma C.5.4 by the

compatibility of ψCl with the polarizations Q and Q′.
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C.4.1 De Rham–Betti similarities

In [53, Thm. 9.5], the authors prove that de Rham–Betti isometries between the second

de Rham–Betti cohomology groups of two hyperkähler manifolds defined over Q are

motivated in the sense of André using the fact that the Kuga–Satake correspondence is

motivated. We note here that the observation that similarities between two quadratic

spaces induce isomorphisms between the respective even Clifford algebras shows that the

result in [53] can be extended to de Rham–Betti similarities.

Let us briefly recall the notions of de Rham–Betti morphism and of motivated cycles

as presented in [53]. To simplify the exposition, we avoid going into too much detail of

the Tannakian formalism.

Definition C.4.6. Let X be a smooth projective variety over Q, and let Q(k) :=

(2πi)kQ ⊆ C. The de Rham–Betti cohomology groups of X are the triples

Hn
dRB(X,Q(k)) := (Hn

dR(X/Q), Hn
B(XC,Q(k)), cX),

where

cX : Hn
dR(X/Q)⊗Q C ≃

−! Hn
B(XC,Q(k))⊗Q C

is the Grothendieck’s period comparison isomorphism. GivenX ′ another smooth projective

variety over Q, a de Rham–Betti morphism between Hn
dRB(X,Q(k)) and Hn

dRB(X
′,Q(k))

consists of a pair of morphisms

fdR : Hn
dR, (X/Q) ! Hn

dR(X
′/Q) and fB : Hn

B(XC,Q(k)) ! Hn
B(X

′
C,Q(k)),

where fdR is Q-linear and fB is Q-linear, and their C-linear extensions are compatible

with cX and cX′ .

Definition C.4.7. Let X be a smooth projective variety over Q. A motivated cycle on

X is an element of H2r
B (XC,Q(r)) of the form pX,∗(α∪∗Lβ), where α and β are algebraic

cycles on X ×Q Y for some smooth projective variety Y over Q, ∗L is the (inverse of the)

Lefschetz isomorphism, and pX,∗ is the first projection. Note that, given a motivated cycle

αB in H2k
B (X,Q(k)), there exists a de Rham cohomology class αdR in H2k

dR(X/Q) such

that cX(αdR) = αB. In particular, we see that a motivated cycle on X ×Q Y induces a de

Rham–Betti morphism between the de Rham–Betti cohomologies of X and Y . One says

that a de Rham–Betti morphism between cohomology groups of two smooth projective

varieties X and Y over Q is motivated if it is induced by a motivated cycle on X ×Q Y .

For a complete introduction on this subject we refer the reader to [4].

Following [53], a variety over Q is called a hyperkähler manifold over Q if its base-

change to C is a hyperkähler manifold with second Betti number at least three. This last

assumption is needed to ensure that the Kuga–Satake correspondence is motivated as

proved by André [3]. The following proposition extends the result of [53, Thm. 9.5].
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Proposition C.4.8. Let X and X ′ be hyperkähler manifolds over Q. Then, any de

Rham–Betti similarity H2
dRB(X,Q)

≃
−! H2

dRB(X
′,Q) is motivated.

Proof. The proof of this theorem is exactly the same as the one in the reference with the

only addition that similarities (and not just isometries) induce isomorphisms between the

even Clifford algebras. We give here just a sketch of the proof.

Let H2
dRB(X,Q) be the second Q-de Rham–Betti cohomology group of X. That is

H2
dRB(X,Q) := (H2

dR(X/Q), H2
B(XC,Q), cX).

Similarly define H2
dRB(X

′,Q). By [53, Lem. 6.2, 6.17], to prove the theorem, it suffices to

prove the same statement over Q. I.e., that every Q-de Rham–Betti similarity between

H2
dRB(X,Q) and H2

dRB(X
′,Q) is a Q-linear combination of motivated cycles on X ×Q X

′.

Let T 2
dRB(X,Q) be the orthogonal complement of the subspace of H2

dRB(X,Q) spanned

by divisor classes, and similarly define T 2
dRB(X

′,Q). As in the reference, one shows that,

to prove the result, it suffices to show that every de Rham–Betti similarity between

T 2
dRB(X,Q) and T 2

dRB(X
′,Q) is Q-motivated.

Consider the Q-linear category CQ−dRB whose objects are triples (MdR,MB, cM ),

where MdR and MB are finite dimensional Q-vector spaces and

cM : MdR ⊗Q C !MB ⊗Q C

is a C-linear isomorphism. As in [53, Sec. 4.3], one sees that CQ−dRB is a neutral Tannakian

category. Denote by GQ−dRB its Tannakian fundamental group. Note that T 2
dRB(X,Q)

and T 2
dRB(X

′,Q) are objects in CQ−dRB.

Denote by V := T 2
B(X,Q(1)) and V ′ := T 2

B(X
′,Q(1)) the transcendental Betti co-

homologies of X and X ′. Given a Q-de Rham–Betti similarity ψdRB : T
2
dRB(X,Q)

≃
−!

T 2
dRB(X

′,Q), it induces a similarity

ψ : V ⊗Q ! V ′ ⊗Q.

As ψdRB is a morphism in CQ−dRB, the morphism ψ is GQ−dRB-invariant by the Tannakian

formalism. With the same definition as in Lemma C.4.2, we see that ψ induces a GQ−dRB-

invariant isomorphism of algebras

ψCl : Cl
+(V ⊗Q) ! Cl+(V ′ ⊗Q).

As in the reference, one then shows that this induces a GQ−dRB-invariant isomorphism

of algebras J : End(Cl(V ) ⊗ Q) ! End(Cl(V ′) ⊗ Q). One then shows that J is Q-

motivated. This in turn implies that ψ is Q-motivated using the fact that the Kuga–Satake

correspondence is Q-motivated as proven in [53, Prop. 8.5]. This concludes the proof.
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C.5 Hodge similarities and algebraic classes

We now go back to the case of hyperkähler manifolds defined over C and study the

consequences of the functoriality of the Kuga–Satake construction relative to Hodge

similarities in the case where the Hodge structure (V, q) is geometrical. In other words,

we assume that there is a hyperkähler manifold X for which V = T (X) or V = H2(X,Q)

and q is the Beauville–Bogomolov quadratic form with the sign changed.

Remark C.5.1. In Section C.4, we studied the Kuga–Satake construction for polarized

Hodge structures of K3-type. The same construction also works for the second cohomology

group of a hyperkähler manifold X even though it is not polarized by the Beauville–

Bogomolov quadratic form. Indeed, using the direct sum decomposition H2(X,Q) ≃
T (X)⊕NS(X)Q, one sees that the even Clifford algebra of H2(X,Q) is a power of the

even Clifford algebra of T (X). Thus, the Kuga–Satake variety KS(H2(X,Q)) is an abelian

variety isogenous to a power of KS(T (X)).

Let KS(X) be the Kuga–Satake variety ofH2(X,Q). The Kuga–Satake correspondence

gives an embedding of Hodge structures:

κX : H2(X,Q) ↪! H1(KS(X),Q)⊗2 ⊆ H2(KS(X)2,Q).

The Hodge conjecture predicts that κX is algebraic:

Conjecture C.5.2 (Kuga–Satake Hodge conjecture). Let X be a hyperkähler manifold,

then, the Kuga–Satake correspondence κX is algebraic.

Remark C.5.3. Note that the Kuga–Satake correspondence depends on the choice of

the three elements v0, f1, f2 ∈ T (X) as in Section C.4. Choosing a different ṽ0 ∈ T (X)

changes the embedding by the automorphism of Cl+(H2(X,Q)) which sends w to w·v0·ṽ0
q(v0)

,

and choosing a different pair f̃1, f̃2 ∈ T (X) corresponds to changing the polarization on

the complex torus KS(X). However, neither of these two operations affects the algebraicity

of κX . Hence, Conjecture C.5.2 does not depend on the choices made in the definition of

κX .

Let 2n := dimX and N := dimKS(X). The transpose κ∨X of κX is the surjection

κ∨X : H4N−2(KS(X)2,Q) ↠ H4n−2(X,Q).

Note that, as κX and κ∨X are transpose of each other, κX is algebraic if and only if κ∨X is

algebraic. Let hX ∈ H2(X,Q) be the cohomology class of an ample divisor on X. By the

strong Lefschetz theorem, the cup product with h2n−1
X induces an isomorphism of Hodge

structures

h2n−1
X ∪ • : H2(X,Q) ! H4n−2(X,Q)(2n− 2),

where (2n− 2) denotes the Tate twist by Q(2n− 2). Let

δX := (h2n−1
X ∪ •)−1 : H4n−2(X,Q)(2n− 2) ! H2(X,Q)
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be the inverse map. As h2n−1
X ∪ • is an isomorphism of Hodge structures, also δX is an

isomorphism of Hodge structures. Note that it is in general not known whether δX is

algebraic or not. Adapting the proof of [97, Lem. 3.4], we show that κX and κ∨X satisfy

the following:

Lemma C.5.4. Let X be a hyperkähler manifold of dimension 2n, and let hKS ∈
H2(KS(X),Q) be the class of an ample divisor on KS(X). Denote by φ the restriction to

T (X) of the composition

δX ◦ κ∨X ◦ (h2N−2
KS ∪ •) ◦ κX : H2(X,Q) ! H2(X,Q).

Then, φ is a non-zero rational multiple of the identity IdT (X) : T (X) ! T (X).

Proof. Let us begin by showing that φ is a Hodge automorphism. Note that φ is by

construction a morphism of Hodge structures. It is then an element of the endomorphism

field of T (X). As T (X) is an irreducible Hodge structure, every non-trivial endomor-

phism is an automorphism. In particular, we just need to show that φ is non-zero. As

δX : H4n−2(X,Q)(2n− 2) ! H2(X,Q) is an isomorphism of Hodge structures, it suffices

to show that the map(
κ∨X ◦ (h2N−2

KS ∪ •) ◦ κX
)∣∣∣
T (X)

: T (X) ! H4n−2(X,Q)

is non-zero. Let ω ∈ H2,0(X) be the class of a symplectic form. As κX and κ∨X are adjoint

with respect to the Hodge–Riemann pairing, we have the following equality

⟨ω, κ∨X ◦ (h2N−2
KS ∪ •) ◦ κX(ω)⟩X = ⟨κX(ω), (h2N−2

KS ∪ •) ◦ κX(ω)⟩KS(X).

The right-hand side is non-zero by the Hodge–Riemann relations, as 0 ̸= κX(ω) ∈
H2,0(KS(X)) by the injectivity of κX . In particular, we conclude that κ∨X ◦ (h2N−2

KS ∪ •) ◦
κX(ω) ̸= 0. This implies that κ∨X ◦ (h2N−2

KS ∪ •) ◦ κX restricted to T (X) is non-zero and

proves the first statement of the lemma.

To prove that φ is a rational multiple of the identity, let us first assume that X is

Mumford–Tate general. In this case, EndHdg(T (X)) = Q. Hence, the statement is obvious

since every Hodge automorphism is a rational multiple of the identity. For the special

case, just note that it is possible to deform in the moduli space of polarized hyperkähler

manifolds the pair (X,hX) to a pair (X ′, hX′), where X ′ is Mumford–Tate general. Then,

as all the maps involved in the definition of φ deform in families, the statement for

(X ′, hX′) readily implies the statement for (X,hX).

We finally have all tools to show the main theorem of this section:

Theorem C.5.5. Let X ′ and X be two hyperkähler manifolds for which the Kuga–

Satake Hodge conjecture holds. Then, for every Hodge similarity ψ : T (X ′) ! T (X), the

composition

T (X ′)
ψ−−! T (X)

h2n−2
X ∪•

−−−−−! H4n−2(X,Q)
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is algebraic, where 2n := dimX.

Proof. By the functoriality of the Kuga–Satake correspondence of Propositon C.4.1, the

similarity ψ : T (X ′) ! T (X) induces an isogeny ψKS : KS(X ′) ! KS(X) such that the

induced isomorphism

(ψKS)
⊗2
∗ : H1(KS(X ′),Q)⊗2 ! H1(KS(X),Q)⊗2

makes the following diagram commute:

T (X ′) T (X)

H1(KS(X ′),Q)⊗2 H1(KS(X),Q)⊗2

κX′

ψ

κX

(ψKS)
⊗2
∗

, (C.1)

where κX′ (resp., κX) is the Kuga–Satake correspondence for T (X ′) (resp., T (X)). By

Lemma C.5.4, the automorphism φ of T (X) makes the following diagram commute

T (X) H4n−2(X,Q)

H2(KS(X)2,Q) H2N−2(KS(X)2,Q)

κX

(h2n−2
X ∪•)◦φ

h2N−2
KS ∪•

κ∨X
. (C.2)

The commutativity of the squares (C.1) and (C.2) implies that the following equality

holds

(h2n−2
X ∪ •) ◦ φ ◦ ψ = κ∨X ◦ (hN−2

KS ∪ •) ◦ (ψKS)
⊗2
∗ ◦ κX′ .

Note that the right-hand side of the equality is algebraic: (ψKS)
⊗2
∗ is induced by an isogeny

of abelian varieties, and κ∨X and κX′ are algebraic by assumption. We then conclude that

the composition

(h2n−2
X ∪ •) ◦ φ ◦ ψ : T (X ′) ! H4n−2(X,Q)

is algebraic as well. I.e., there exists a cycle Γ ∈ CH∗(X ′ ×X) inducing the morphism

[Γ]∗ = (h2n−2
X ∪ •) ◦ φ ◦ ψ : T (X ′) ! H4n−2(X,Q).

By Lemma C.5.4, the automorphism φ is by equal to λIdT (X) for some non-zero λ ∈ Q.

Therefore, the class Γ/λ ∈ CH∗(X ′ ×X) induces the morphism

T (X ′)
ψ
−! T (X)

h2n−2
X ∪•

−−−−−! H4n−2(X,Q).

This concludes the proof.

This shows that, if the Kuga–Satake correspondence is algebraic, then every Hodge

similarity is algebraic after composing it with the Lefschetz isomorphism. The Lefschetz

standard conjecture in degree two forX predicts that the inverse of h2n−2
X ∪• : H2(X,Q) !

H4n−2(X,Q) is algebraic. If X satisfies this conjecture, Theorem C.5.5 gives the following:
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Corollary C.5.6. Let X and X ′ be hyperkähler manifolds satisfying the Kuga–Satake

Hodge conjecture. Assume moreover that X satisfies the Lefschetz standard conjecture in

degree two. Then, every Hodge similarity ψ : T (X ′) ! T (X) is algebraic.

C.6 Applications

In this section, we recall the main cases where the Kuga–Satake Hodge conjecture has

been proven and the cases in which the Lefschetz standard conjecture in degree two is

known to hold. This way, we describe examples of applications of Theorem C.5.5 and

Corollary C.5.6.

As mentioned in the introduction, Hodge similarities between transcendental lattices

of hyperkähler manifolds appear naturally in two cases: as elements of totally real

endomorphism fields of degree two, and as Hodge isomorphisms T (Y ) ! T (X), where

X and Y are hyperkähler manifolds with T (Y ) Hodge isometric to T (X)(λ) for some

λ ∈ Q>0.

Let us start from the case of hyperkähler manifolds of generalized Kummer type. For

these varieties the Kuga–Satake Hodge conjecture is proven in [98] and the Lefschetz

standard conjecture in degree two has been proven in [24]. We thus get our main families

of examples of varieties satisfying the hypotheses of Corollary C.5.6, and we conclude that

every Hodge similarity between the transcendental lattices of two hyperkähler manifolds

of generalized Kummer type is algebraic. Note that the dimension of the transcendental

lattice of a hyperkähler manifold of generalized Kummer type is at most six-dimensional.

Therefore, its endomorphism field is either a CM field or a totally real field of degree one

or two. In all cases, we see that it is always generated by Hodge similarities. We therefore

deduce the following:

Theorem C.6.1. Let X and X ′ be hyperkähler manifolds of generalized Kummer type

such that T (X) and T (X ′) are Hodge similar. Then, every Hodge morphism between

T (X ′) and T (X) is algebraic.

Remark C.6.2. Taking X = X ′ in Theorem C.6.1, we see that every Hodge morphism in

E := EndHdg(T (X)) is algebraic. Note that, Theorem C.6.1 also covers the case where

X and X ′ are hyperkähler manifolds of generalized Kummer type with Hodge similar

transcendental lattice but of different dimension. Let us briefly recall why this happens:

recall that the second cohomology group of a hyperkähler manifold X of generalized

Kummer type of dimension 2n satisfies

(H2(X,Q), qX) ≃ U⊕3
Q ⊕Qδn,

where (δn)
2 = −2(n+ 1). Let k be a positive integer. Using the fact that UQ is isometric

with UQ(k), one sees that there is an isometry

U⊕3
Q ⊕Qδn′ ! (U⊕3

Q ⊕Qδn)(k),



108 Appendix C.

for n′ := k(n+ 1)− 1. In other words, there is a similarity

ψ : U⊕3
Q ⊕Qδn′ ! U⊕3

Q ⊕Qδn.

Let [σ′] ∈ P((U⊕3
Q ⊕ Qδn′) ⊗Q C) be a class satisfying (σ′)2 = 0 and (σ′, σ′) > 0. Then,

[σ′] determines a Hodge structure on the quadratic space U⊕3
Q ⊕ Qδn′ . Similarly the

class [ψ(σ′)] satisfies the same hypotheses of σ′, hence, it defines a Hodge structure on

U⊕3
Q ⊕ Qδn. By the surjectivity of the period map, we obtain a hyperkähler manifold

X ′ of Kumn′
-type whose symplectic form is given by σ′ and a hyperkähler manifold X

of Kumn-type whose symplectic form is given by ψ(σ). By construction, the morphism

ψ defines a Hodge similarity between T (X ′) and T (X). Thus, X and X ′ satisfy the

hypotheses for Theorem C.6.1, and we conclude that any Hodge morphism T (X ′) ! T (X)

is algebraic.

Let us briefly comment on the application of our result to the case of K3 surfaces. In

this case, the Lefschetz standard conjecture is trivially true. Hence, applying Corollary

C.5.6, we get the following:

Theorem C.6.3. Let S and S′ be K3 surfaces for which the Kuga–Satake Hodge conjecture

holds. Then, every Hodge similarity between T (S) and T (S′) is algebraic.

For K3 surfaces, the Kuga–Satake Hodge conjecture is in general not known. However,

in [21], the author proves it for the (countably many) four-dimensional families of K3

surfaces with transcendental lattice isometric to T (K)(2) for a hyperkähler manifold K

of generalized Kummer type of dimension six. By [31, Sec. 3], there are one-dimensional

subfamilies in these four-dimensional families of K3 surfaces which have totally real

endomorphism field of degree two. As totally real fields of degree two are generated by

Hodge similarities, Theorem C.6.3 proves the Hodge conjecture for the square of these K3

surfaces. As mentioned in the introduction, the Hodge conjecture for all powers of these

particular K3 surfaces has been proven in [89] by extending the techniques introduced

in [81]. The proof we provided here for the square of these K3 surfaces is however more

direct since it does not involve the study of the Hodge conjecture for the Kuga–Satake

varieties.

Finally, let us come to the case of hyperkähler manifolds of K3[n]-type. As mentioned

in the introduction, the Lefschetz standard conjecture holds for these manifolds by [14].

Therefore, applying Corollary C.5.6, we get the following:

Theorem C.6.4. Let X and X ′ be hyperkähler manifolds of K3[n]- and K3[n
′]-type for

which the Kuga–Satake Hodge conjecture holds. Then, every Hodge similarity between

T (X ′) and T (X) is algebraic.

The Kuga–Satake Hodge conjecture has not been proven for hyperkähler manifolds of

K3[n]-type. In dimension six, this conjecture follows from the construction in [21] for the
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families of hyperkähler manifolds of K3[3]-type which are resolution of the quotient of a

hyperkähler manifold of generalized Kummer type of dimension six by a symplectic group

G ≃ (Z/2Z)5. This way, we obtain four-dimensional families of hyperkähler manifolds of

K3[3]-type which satisfy the hypotheses of Theorem C.6.4.

Remark C.6.5. Note that Theorem C.5.5 and Corollary C.5.6 provide algebraic classes on

X ′ ×X whenever the Kuga–Satake correspondence is algebraic for X and X ′ and the

transcendental lattices are Hodge similar. This also works when X and X ′ are not of the

same deformation type, and when the dimensions of X and X ′ are not the same.





Appendix D

Algebraic cycles on hyper-Kähler varieties of

generalized Kummer type

S. Floccari and M. Varesco1

Abstract. We prove the conjectures of Hodge and Tate for any four-dimensional hyper-

Kähler variety of generalized Kummer type. For an arbitrary variety X of generalized

Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology

generated by H2(X,Q) are algebraic.

D.1 Introduction

Despite many efforts, the Hodge conjecture remains widely open. Much work has been

devoted to the study of algebraic cycles on abelian varieties. In spite of several positive

results, already in this setting the Hodge conjecture proved to be a rather formidable

problem. It is in general open for abelian varieties of dimension at least 4 (see [68, 69]).

Another interesting class of varieties with trivial canonical bundle is that of hyper-

Kähler varieties. See the articles [7] and [42] for general information. In the present paper

we study the Hodge conjecture for hyper-Kähler varieties of generalized Kummer type

(Kumn-varieties for short). By definition, these are deformations of Beauville’s generalized

Kummer varieties ([7]) constructed from abelian surfaces.

Important progress on Kumn-varieties came from the works of O’Grady [76] and Mark-

man [60]. They uncovered the relation between a Kumn-variety X and its intermediate

Jacobian J3(X), which is shown to be an abelian fourfold of Weil type. Their results lead

to a Torelli theorem for Kumn-varieties in terms of the Hodge structure on H3(X,Q).

Markman further constructs an algebraic cycle on X × J3(X) realizing the canonical

isomorphism H3(X,Q) ∼= H1(J3(X),Q)(−1) of Hodge structures, for any variety X of

Kumn-type. It follows that the Kuga–Satake correspondence ([54]) is algebraic for these

varieties, as shown by Voisin [98]. See also [90] and [32] for an account of these results.

In the recent article [20], the first author proved the Hodge conjecture for any six-

1Salvatore Floccari and Mauro Varesco. Algebraic cycles on hyper-Kähler varieties of generalized

Kummer type. arXiv preprint https://arxiv.org/abs/2308.04865, 2023.
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dimensional variety K of Kum3-type. No locally complete family of hyper-Kähler or

abelian varieties (of dimension at least 4) satisfying the Hodge conjecture was previously

known. An important ingredient in the proof is the construction from [21] of a K3

surface SK naturally associated with K, and the fact that the Hodge conjecture holds for

any power of this K3 surface. This was proven in [21, Corollary 5.8], using a theorem of

the second author [88] and the aforementioned results of O’Grady, Markman and Voisin.

In the present article we obtain some results on the Hodge conjecture for varieties of

generalized Kummer type of arbitrary dimension.

Theorem D.1.1. Let X be a projective manifold of Kumn-type, n ≥ 2. Denote by

A•
2(X) ⊂ H•(X,Q) the subalgebra of the rational cohomology generated by H2(X,Q).

Then any Hodge class in A2j
2 (X) ∩Hj,j(X) is algebraic, for any j.

To prove this result we use the works of Foster [24] and of the second author [88] to

show that an arbitrary variety X of Kumn-type is related via an algebraic correspondence

to the K3 surface SK associated to some Kum3-variety K. Theorem D.1.1 is then deduced

from the Hodge conjecture for the powers of SK . Our proof leads to the suggestive

expectation that any variety of Kumn-type is naturally associated with a K3 surface,

generalizing the construction given in [21] for the six-dimensional case. We remark that it

should also be possible to obtain the theorem via the representation-theoretic methods of

[88].

For j ≤ n, cup-product induces an isomorphism A2j
2 (X) ∼= Symj(H2(X,Q)) of Hodge

structures, by a theorem of Verbitsky [91]. However, Theorem D.1.1 is not sufficient

to prove the Hodge conjecture for X (see [37]). For n = 3, the full Hodge conjecture

proven in [20] is a stronger result and requires considerably more work. For n = 2,

the Hodge classes in the complement of A•
2(X) form an 80-dimensional subspace of the

middle cohomology; Hassett and Tschinkel have shown in [40] that these Hodge classes

are algebraic, for any X of Kum2-type. Hence, Theorem D.1.1 yields the following.

Corollary D.1.2. Let X be a projective manifold of Kum2-type. Then the Hodge

conjecture holds for X, i.e., Hj,j(X) ∩H2j(X,Q) consists of algebraic classes for any j.

Let now k be a finitely generated field of characteristic 0, with algebraic closure k̄,

and let X/k be a smooth and projective variety over k. Given a prime number ℓ, the

absolute Galois group of k acts on the ℓ-adic étale cohomology of Xk̄. In analogy with

the Hodge conjecture, the Tate conjecture predicts that the subspace of Galois invariants

in H2j
ét (Xk̄,Qℓ(j)) is spanned by the fundamental classes of k-subvarieties of X. See [87]

for general information on the Tate conjecture.

Corollary D.1.3. Let k ⊂ C be a finitely generated field and let X/k be a smooth and

projective variety such that XC is of Kum2-type. Then, for any prime number ℓ, the strong

Tate conjecture holds for X, i.e., the Galois representations Hj
ét(Xk̄,Qℓ) are semisimple
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and the subspace of Galois invariants in H2j
ét (Xk̄,Qℓ(j)) is the Qℓ-span of fundamental

classes of k-subvarieties of X, for any j.

A third conjecture, the Mumford-Tate conjecture, connects those of Hodge and Tate;

see [67, §2.1] for its statement. While this is a hard open problem in itself, the Mumford-

Tate conjecture has been proven for any hyper-Kähler variety of known deformation type

in [19], [85] and [22]. As a consequence, the conjectures of Hodge and Tate are equivalent

for such a variety. It follows that Corollary D.1.3 is equivalent to Corollary D.1.2.
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D.2 Motives

Grothendieck’s theory of motives provides a useful framework to study the Hodge conjec-

ture. We will work with the category of homological motives with rational coefficients

over C, which we denote by Mot; see [83] or [4] for its construction. The objects of

Mot are triples (X, p, n) where X is a smooth and projective complex variety, p is an

idempotent correspondence given by an algebraic class in H2 dimX(X ×X,Q), and n is an

integer. Morphisms are given by algebraic cycles modulo homological equivalence via the

formalism of correspondences; more precisely, morphisms from (X, p, n) to (Y, q,m) are

by definition the algebraic classes γ ∈ H2 dimX−2n+2m(X × Y,Q) such that γ ◦ p = q ◦ γ.
The category Mot is a pseudo-abelian tensor category. The unit object for the tensor

product is denoted by Q; the Tate motives (resp., the Tate twists of a motive m) will be

denoted by Q(i) (resp., by m(i)). Given a motive m, we let ⟨m⟩Mot be the pseudo-abelian

tensor subcategory of Mot generated by m, i.e., the smallest thick and full such subcategory

containing m and closed under direct sums, tensor products, duals and subobjects.

There is a natural contravariant functor h : SmProjC ! Mot, associating to a variety X

its motive h(X) := (X,∆, 0). Here, ∆ is the cohomology class of the diagonal in X ×X.

Remark D.2.1. Let X be a smooth and projective variety. A polarization on X gives a

split inclusion of Q(−1) into h(X). It follows that ⟨h(X)⟩Mot contains all Tate motives.

This category consists of the motives (Y, q,m) such that Y is a power of X or Spec(C).

The functor associating to X its Hodge structure H•(X,Q) factors as the composition

of h and the realization functor R : Mot ! HS to the category HS of polarizable Q-Hodge

structures. By definition, R(X, p, n) := p∗(H
•(X)(n)), and R is faithful. The Hodge

conjecture is equivalent to the fullness of the realization functor R.

Remark D.2.2. Let X be a smooth and projective variety. Then the Hodge conjecture

holds for X and all of its powers if and only if the restriction of R to ⟨h(X)⟩Mot is full.
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Grothendieck’s standard conjectures [39] would ensure that the category Mot has

much better properties than just being a pseudo-abelian tensor category. We recall the

following theorem due to Jannsen [50] and André [4]; see [5, Theorem 4.1].

Theorem D.2.3. Let X be a smooth and projective complex variety. Then the following

are equivalent:

• Grothendieck’s standard conjectures hold for X;

• ⟨h(X)⟩Mot is a semisimple abelian category.

In light of the above theorem, we will say that the standard conjectures hold for a

motive m ∈ Mot if the category ⟨m⟩Mot is semisimple and abelian.

The standard conjectures are known to hold for curves and surfaces, and for abelian

varieties [51]. If they hold for varieties X and Y , then they hold for X × Y as well. We

collect below some consequences of these conjectures.

Remark D.2.4. Assume that the standard conjectures hold for m ∈ Mot. Then, by [4,

Corollaire 5.1.3.3], the restriction of the realization functor R to ⟨m⟩Mot is conservative,

which means that a morphism f in this category is an isomorphism if and only if its

realization R(f) is an isomorphism of Hodge structures. Moreover, m (as well as any

object in ⟨m⟩Mot) admits a canonical weight decomposition m =
⊕

im
i such that R(mi)

is a pure Hodge structure of weight i; see [4, §5.1.2]. If the standard conjectures hold for

the smooth and projective variety X, we shall thus write h(X) =
⊕

i h
i(X).

We will also use the following easy fact from the theory of motives.

Remark D.2.5. Assume that Γ is a finite group acting on a smooth and projective variety

X. Then the Γ-invariant part h(X)Γ := (X, pΓ, 0) is a direct summand of the motive of

X, cut out by the projector pΓ := 1
|Γ|
∑

γ∈Γ[graph(γ)] ∈ H2 dimX(X ×X,Q). Moreover,

if the quotient X/Γ is smooth, then h(X)Γ equals the motive h(X/Γ).

D.3 Some recent result

Let X be a Kumn-variety, n ≥ 2. In [60], Markman constructs a four-dimensional abelian

variety TX associated to X, which is isogenous to the intermediate Jacobian J3(X). The

automorphisms of X which act trivially on its second and third cohomology groups form

a group Γn ∼= ( Z
(n+1)Z)

4, by [10, 40]. Markman proves that Γn acts on TX via translations

and that the quotient MX := (X × TX)/Γn by the anti-diagonal action is a smooth

holomorphic symplectic variety deformation equivalent to a smooth and projective moduli

space of stable sheaves on an abelian surface ([47, 100]). Building on Markman’s results

and the strategy used by Charles and Markman in [14] to prove the standard conjectures

for K3[n]-varieties, Foster obtaines the following theorem in [24].

Theorem D.3.1 ([24]). Let X be a variety of Kumn-type. Then the standard conjectures

hold for MX . The Künneth projector H•(X,Q) ! H2(X,Q) is algebraic.
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Remark D.3.2. The cohomology of MX is naturally identified with the Γn-invariants in

H•(X × TX ,Q). Since Γn acts trivially on the cohomology of TX , we have

H•(MX ,Q) = H•(X,Q)Γn ⊗H•(TX ,Q).

The standard conjectures holds for the abelian variety TX , and h0(TX) = Q. Therefore,

the motive h(X)Γn is a direct summand of h(MX). By Foster’s Theorem D.3.1, the

standard conjectures hold for h(X)Γn .

The following result of the second author [88] is crucial for our proof of Theorem D.1.1.

It allows us to relate varieties of generalized Kummer type of different dimensions via

algebraic correspondences. Let r ̸= 0 be a rational number. A similarity of multiplier r

between two quadratic spaces V1 and V2 is a linear isomorphism t : V1 ! V2 which

multiplies the form by a factor r, i. e., such that (t(u), t(w))2 = r · (u,w)1 for all u,w ∈ V1.

Theorem D.3.3 ([88, Theorem 0.4]). Let X1, X2 be varieties of generalized Kummer

type (not necessarily of the same dimension). Assume that

ϕ : H2(X1,Q)
∼

−−! H2(X2,Q)

is a rational Hodge similarity. Then ϕ is induced by an algebraic cycle on X1 ×X2.

The main observation behind this result is that the similarity ϕ induces an isogeny

between the Kuga–Satake varieties of X1 and X2. The above statement is then deduced

using the algebraicity of the Kuga–Satake correspondence and Foster’s Theorem D.3.1.

D.4 Conclusion

As mentioned in the introduction, we will use the construction of a K3 surface SK

associated to any Kum3-variety K, given by the first author in [21]. We will only need

the following result which is deduced from the construction, see [21, Proof of Theorem

5.7 and Corollary 5.8].

Theorem D.4.1 ([21]). Let K be a projective manifold of Kum3-type, with associated K3

surface SK . The Hodge conjecture holds for any power of SK , and there exists an algebraic

cycle on SK×K which induces a Hodge similarity of multiplier 2 of transcendental lattices

ψ : H2
tr(SK ,Q)

∼
−−! H2

tr(K,Q).

Let X be a Kumn-variety, n ≥ 2, and denote by A•
2(X) the subalgebra of the

rational cohomology generated by H2(X,Q). By Foster’s Theorem D.3.1, the degree 2

component h2(X) of h(X) is well-defined. Since Γn acts trivially on the second cohomology

of X, the motive h2(X) is a direct summand of the Γn-invariant part h(X)Γn of h(X).

Lemma D.4.2. The subalgebra A•
2(X) ⊂ H•(X,Q) is the realization of a submotive a2(X)

of h(X). Moreover, a2(X) ∈ ⟨h2(X)⟩Mot.
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Proof. For i > 0, we let δi+1 ∈ H2idimX(Xi+1,Q) denote the class of the small diagonal

{(x, . . . , x)} ⊂ Xi+1. This class induces the cup-product morphism h(X)⊗i ! h(X),

which restricts to a morphism
(
h(X)Γn

)⊗i
! h(X)Γn in Mot. Since h2(X) is a direct

summand of h(X)Γn , the cup-product induces a morphism of motives

β :
⊕
i

h2(X)⊗i ! h(X)Γn .

Note that β is a morphism in the category ⟨h(X)Γn⟩Mot, which is abelian and semisimple

by Foster’s Theorem D.3.1. Therefore, the image of β is a submotive a2(X) ⊂ h(X),

whose realization is A•
2(X) ⊂ H•(X,Q). By semisimplicity, a2(X) is a direct summand

of
⊕

i h
2(X)⊗i, and hence a2(X) ∈ ⟨h2(X)⟩Mot.

The next lemma shows that X is Hodge similar to a variety of Kum3-type.

Lemma D.4.3. For any projective variety X of Kumn-type, there exists a projective

variety K of Kum3-type and a Hodge similarity of multiplier n+ 1

ϕ : H2(K,Q)
∼

−−! H2(X,Q)

with respect to the Beauville-Bogomolov pairings.

Proof. By [7], the integral second cohomology group of a Kumn-variety is identified with

the lattice ΛKumn = U⊕3 ⊕ ⟨−2n− 2⟩, where U is a hyperbolic plane. It is easy to define

a rational similarity

ϕn : ΛKum3 ⊗Q ∼
−−! ΛKumn ⊗Q

of multiplier n+ 1. Explicitly, let eni , f
n
i , i = 1, 2, 3 and ξn be a basis of ΛKumn , where:

eni , f
n
i are isotropic and (eni , f

n
i ) = 1, the planes ⟨eni , fni ⟩ and ⟨enj , fnj ⟩ are orthogonal for

i ̸= j, ξn has square −2n− 2 and it is orthogonal to each eni and fni . Then ϕn is defined

via

e3i 7! eni , f3i 7! (n+ 1)fni , for i = 1, 2, 3, ξ3 7!
1

4
ξn.

Let X be a Kumn-variety, and let η : H2(X,Z) ∼
−−! ΛKumn be an isometry. The

Hodge structure on the left hand side is determined by its period [σ] = η(H2,0(X)),

which is an isotropic line in ΛKumn ⊗ C such that (σ, σ̄) > 0. Via the similarity ϕ−1
n ,

we obtain the isotropic line [θ] := [ϕ−1
n (σ)] in ΛKum3 ⊗ C, such that (θ, θ̄) > 0. By the

surjectivity of the period map [42], there exists a manifold K of Kum3-type with period [θ],

which means that there is an isometry η′ : H2(K,Z) ∼
−−! ΛKum3 mapping H2,0(K) to [θ].

By construction, the composition η−1 ◦ ϕn ◦ η′ gives an isomorphism of rational Hodge

structures

ϕ : H2(K,Q)
∼

−−! H2(X,Q),

and hence ϕ is a rational Hodge similarity. Since X is projective, K is projective as well,

thanks to Huybrechts’ projectivity criterion [42].
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We can now complete the proofs of our results.

Proof of Theorem D.1.1. Given the projective Kumn-variety X, let K be the Kum3-

variety with a Hodge similarity ϕ : H2(K,Q)
∼

−−! H2(X,Q) given by Lemma D.4.3. By

Theorem D.3.3, the morphism ψ is induced by an algebraic cycle on K ×X. Applying

Theorem D.4.1 to K, we obtain the associated K3 surface SK and a Hodge similarity

ψ : H2
tr(SK ,Q)

∼
−−! H2

tr(K,Q) induced by an algebraic cycle on SK×K. The composition

of ψ with ϕ thus gives a rational Hodge similarity of multiplier 2n+ 2

Ψ: H2
tr(SK ,Q)

∼
−−! H2

tr(X,Q)

of transcendental lattices, which is induced by an algebraic cycle on SK ×X.

Consider the submotive h2(X) of h(X). By Lefschetz (1,1) theorem, we have the

decomposition h2(X) = h2tr(X) ⊕ h2alg(X) into transcendental and algebraic part (and

similarly for SK); the algebraic part is a sum of Tate motives Q(−1). Since Ψ is induced

by an algebraic cycle on SK ×K, it is the realization of a morphism

Ψ̃: h2tr(SK) −−! h2tr(X)

of motives. Recall that h2(X) is a direct summand of h(X)Γn , and hence h2(X) belongs

to ⟨h(MX)⟩Mot. Therefore, Ψ̃ is a morphism in the subcategory ⟨h(SK ×MX)⟩Mot of Mot.

The standard conjectures hold for SK×MX by Foster’s Theorem D.3.1. By conservativity

(see Remark D.2.4), it follows that Ψ̃ is an isomorphism of motives, since its realization Ψ

is an isomorphism of Hodge structures. As h2(X) is the sum of h2tr(X) and Tate motives,

we conclude that h2(X) ∈ ⟨h(SK)⟩Mot.

Consider now the submotive a2(X) ⊂ h(X) constructed in Lemma D.4.2. By the

above, a2(X) belongs to ⟨h(SK)⟩Mot. Since, by Theorem D.4.1, the Hodge conjecture

holds for all powers of SK , the realization functor R is full when restricted to ⟨h(SK)⟩Mot,

and we deduce that any Hodge class in A•
2(X) ⊂ H•(X,Q) is algebraic.

Remark D.4.4. Let X be a Kumn-variety as above and consider any power Z = Xr.

Denote by A•
2(Z) the subalgebra of H•(Z,Q) generated by H2(Z,Q). Then our argument

implies that all Hodge classes in A•
2(Z) are algebraic. In fact, note that A•

2(Z) is the

graded tensor product A•
2(X)⊗r, because H1(X,Q) is zero. With notation as in the

above proof, the argument given implies that A•
2(Z) is the realization of a submotive

a2(Z) of h(Z), and moreover that a2(Z) = a2(X)⊗r belongs to ⟨h(SK)⟩Mot. As the Hodge

conjecture holds for all powers of SK , it follows that any Hodge class in A•
2(Z) is algebraic.

Proof of Corollary D.1.2. If X is of Kum2-type, the complement of A•
2(X) in H•(X,Q)

consists of the odd cohomology and of an 80-dimensional space of Hodge classes in

H4(X,Q), by [57, Example 4.6]. The classes in this 80-dimensional subspace of the middle

cohomology have the special property of remaining Hodge on any deformation of X, and

Hassett and Tschinkel have shown in [40] that they are algebraic. Together with Theorem

D.1.1, this implies that the Hodge conjecture holds for any X of Kum2-type.
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Proof of Corollary D.1.3. As mentioned in the introduction, the Mumford-Tate conjecture

has been proven for any hyper-Kähler variety X/k of known deformation type, by

work of the first author [19], Soldatenkov [85] and of the first author with Fu and

Zhang [22]. The final result may be found in [22, Theorem 1.18]. As a consequence, the

Galois representations on Hj
ét(Xk̄,Qℓ) are semisimple, and the Tate conjecture for X/k

is equivalent to the Hodge conjecture for XC (see [66, Proposition 2.3.2]). Therefore,

Corollary D.1.3 follows from Corollary D.1.2.
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spaces and arithmetic geometry, pages 31–42, 2006.

[49] Colin Ingalls, Adam Logan, and Owen Patashnick. Explicit coverings of families of

elliptic surfaces by squares of curves. Math. Z., 302(2):1191–1238, 2022.

[50] Uwe Jannsen. Motives, numerical equivalence, and semi-simplicity. Invent. Math.,

107(3):447–452, 1992.

[51] Steven L. Kleiman. Algebraic cycles and the Weil conjectures. Columbia Univ.,

Department of mathematics, 1968.

[52] Hanspeter Kraft and Claudio Procesi. Classical invariant theory, a primer. Lecture

Notes. Preliminary version, 1996.

[53] Tobias Kreutz, Mingmin Shen, and Charles Vial. Around the de Rham–Betti

conjecture. arXiv preprint arXiv:2206.08618, 2022.
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