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iii

The fact that some seemingly very special functions, like
the Riemann Zeta function, have such deep connections
with the behavior of integers, of prime numbers, is hard
to explain a priori and in depth. This is really not well
understood to this day. Somehow these entities, these
special analytic functions defined by infinite series, have
been generalized more recently to spaces other than the
plane of all complex numbers, such as to algebraic
surfaces. These entities show connections between
seemingly diverse notions. They also seem to show the
existence (to make a metaphor stimulated by the
subject itself) of another surface of reality, another
Riemann surface of thought (and connections of
thought) of which we are not consciously aware.

Stanis law Ulam, Adventures of a Mathematician [Ula]
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Chapter 1

Introduction

“Can one hear the shape of a drum?” is a famous question asked by Lipman Bers and reported in
1966 by Mark Kac in his eponymous article [Kac]. More precisely, is it possible for two different
shapes of drums to make the same sound (at least for a mathematician)? This can be formalized
as follows. The sound of a shape is given by the stationary waves on it. They are waves that do
not move but only evolve in amplitude. These can be ordered by frequency. The first one is the
fundamental tone, the pitch of the drum, and the higher ones are harmonic. They add complexity
to the sound.

Mathematically, they are described by the Laplacian

∆ = −
(

∂2

∂x2
+

∂2

∂y2

)
on R2. This is a differential operator. The stationary waves are exactly the eigenfunctions of the
Laplacian that vanish on the edge. That is, for a bounded shape D ⊆ R2, the functions f such
that {

∆f = λf,

f |∂D = 0.

Moreover, the eigenvalue λ is in that case the frequency of the wave, i.e. the pitch of the sound
we hear. The set of all eigenvalues (with multiplicity) is called the spectrum of the Laplacian. The
question of Kac can be therefore reformulated as follows:

Question. Can we have two shapes D1, D2 ⊆ R2 with the same spectrum?

The answer is positive and was given in 1992 [GWW]. For a bounded and nice enough shape,
the spectrum looks as follows:

λ0 = 0 ≤ λ1 ≤ λ2 ≤ · · · → ∞.

More precisely, the eigenvalue zero corresponds to the constant function. All eigenvalues occur with
finite multiplicity, i.e. for a fixed j, there are only finitely many k such that λj = λk. The λj do not
accumulate on a point and are infinite in number. Therefore, limj→∞ λj = ∞. Various questions
can be asked about the spectrum and the corresponding eigenfunctions. For example, the Weyl
law [Wey] counts the eigenvalues smaller than a given constant. In particular, it implies that one
can hear the area of the drum.

The Laplacian is highly generalizable. Given a nice enough surface, or more generally a Rie-
mannian manifold M , we can associate a differential operator to it, called the Laplace-Beltrami
operator ∆. Intuitively, it averages a function over a small neighborhood of a point. This operator
also describes stationary waves on M . For a compact manifold, the spectrum looks similar to the
case of a bounded shape on the plane. Moreover, there is an orthonormal basis of the space of
square-integrable functions that consists of eigenfunctions of ∆ in C∞(M).

A more refined question can be asked in that general setting. It belongs to the field of ergodicity.
This theory asks about the behavior in the long term of a process on a space. It can be seen as
a measurement of chaos. For example, consider a gas molecule moving in a room and bumping

1



2 CHAPTER 1. INTRODUCTION

on other molecules. After a while, one expects that the molecule has approximately an equal
probability to be anywhere in the room. Equivalently, the trajectory of the molecule should fill the
room uniformly. The trajectory is called ergodic.

In a similar way, we can define quantum ergodicity by replacing molecules by waves. One can
think of the movement of water on a puddle after throwing a rock. In that case, we study the
behavior of eigenfunctions of the Laplacian as the eigenvalue, which corresponds to the energy,
goes to infinity. To see how the waves spread, we associate to an eigenfunction fj of eigenvalue λj

the measure |fj(x)|2dx. This describes how the mass of fj distributes. Intuitively, the mass should
spread uniformly as λj →∞. Here dx designates the canonical probabilistic measure associated to
M . The following conjecture formalizes this intuition:

Conjecture (Quantum Unique Ergodicity [RS]). Let M be a compact manifold with negative
curvature. Then, as λj →∞,

|fj(x)|2dx→ dx

in the weak* sense. More precisely, for all ϕ ∈ C∞(M), we have∫
M

ϕ(x)|fj(x)|2dx→
∫
M

ϕ(x)dx.

Note that we restricted ourselves to manifolds with negative curvature. These are manifolds
where parallel lines move away from each other. We see, at least intuitively, that it should have the
effect of spreading the waves more evenly. This conjecture is really hard in general and currently
out of reach. But there are special cases with more structure that gives us additional information.
They are called arithmetic manifolds. In short, these objects have a lot of extra symmetries coming
from number theory. More precisely, they are symmetric spaces equipped with a family of normal
operators, called the Hecke algebra. It commutes with the Laplacian, and therefore we can consider
eigenfunctions of both ∆ and all the Hecke operators. These joint eigenfunctions have a lot of
properties. They are used to say more about Quantum Unique Ergodicity and link it to other
questions.

We give an example. We go back to the two-dimensional setting. The upper half-plane is

H := {x + iy ∈ C | y > 0}.

It is a hyperbolic space with constant curvature −1. There is a natural action of SL2(R) on H
given by Möbius transforms: (

a b
c d

)
· z =

az + b

cz + d

for all z ∈ H. Given a discrete subgroup Γ ⊆ SL2(R), we get a quotient Γ\H by the action. Any
compact manifold M without boundary of constant negative curvature −1 can be obtained this
way. In other words, H is the universal cover of such M . Of course, not all quotients give a compact
manifold.

There are discrete subgroups of particular interest. The obvious one is SL2(Z). More generally,
we consider a subgroup Γ of finite index in SL2(Z). The surface obtained using such a Γ is an
arithmetic surface. It has finite volume and extra symmetries, corresponding to the Hecke operators.
It might not be compact. In that case, it has cusps going to the boundary of H. Smooth functions
defined on such a quotient that are eigenvalues of the Laplacian and have polynomial growth at
the possible cusps are called Maass forms. If they, moreover, vanish at the cusp, in the sense that
their limit there is 0, they are called cusp forms.

There are other perspectives on Maass forms. In particular, they are very important in the
representation theory of the group GL2(R). From this point of view, it is natural to introduce a
holomorphic analog of them. A modular form of weight k with respect to the congruence subgroup
Γ is a holomorphic function f : H→ C such that

1. f

((
a b
c d

)
· z
)

= (cz + d)kf(z) for all

(
a b
c d

)
∈ Γ,

2. f is holomorphic at the cusps.
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That last condition just says that f stays bounded in a cusp. If, moreover, the limit of f as it goes
to a cusp is 0, f is said to be a cusp form. The analog of Quantum Unique Ergodicity is called
the Mass Equidistribution Conjecture [LS]. It considers the measure |fk(z)|2ykdz as k → ∞. The
extra factor yk makes the measure invariant under the action of Γ. In both the Maass form case
and the holomorphic case, the conjectures were shown to be true for Γ = SL2(Z).

Theorem 1.1 (Lindenstrauss [Lin2], Soundararajan [Sou]). Quantum Unique Ergodicity is true
for Maass cusp forms that are joint eigenfunctions of all Hecke operators.

Theorem 1.2 (Holowinsky-Soundararajan [HS]). The Mass Equidistribution Conjecture is true
for cusp forms that are joint eigenfunctions of all Hecke operators.

Remark. From now on, we will not distinguish between the two conjectures and use the term
Arithmetic Quantum Unique Ergodicity or AQUE for both of them. We will also use QUE for the
non-necessary arithmetic case.

Quantum Unique Ergodicity is a statement about equidistribution of the mass of eigenfunctions.
It is possible to ask other questions in this spirit. For example, QUE tells us that the L2-norm of a
sequence of eigenfunctions converges to a constant. But what about other norms? For example, the
sup-norm problem asks about the maximum of an eigenfunction on the space. It is also possible
to restrict fj to a subspace, for example a geodesic, and investigate the equidistribution on it. It
leads us to our topic of interest, restriction norms. These are norms of functions on a space of
lower dimension. In particular, the measure is different and so QUE and other statements cannot
directly tell us something about them.

Restriction norms were introduced by Andre Reznikov in 2004 [Rez]. He considered restric-
tions of eigenfunctions along closed geodesics and circles. He obtained bounds for the L2-norm. In
particular, given a closed geodesic γ, he proved that

∥f |γ∥22 = Oγ(λ1/4) (1.1)

for an eigenfunction f on a compact hyperbolic surface with eigenvalue λ. In 2008, Peter Sarnak
wrote a letter to Reznikov about his paper [Sar]. Of particular interest to us is the discussion on the
link between these questions in the arithmetic case and the Lindelöf Hypothesis (in Appendix 2 of
the letter). The Lindelöf Hypothesis, as described at the end of Section 1.1, gives essentially the best
possible bound for the restriction norm. There were a lot of follow-up works on the question in the
arithmetic setting. Ghosh, Reznikov and Sarnak [GRS] proved an optimal lower and upper bound
for Maass forms, proving the best possible exponent O(λϵ) for all ϵ > 0 for Equation (1.1). The
holomorphic case was considered by Blomer, Khan and Young [BKY]. It was not possible to give
the optimal bound in that setting. Matthew Young gave an overview of the question of Quantum
Unique Ergodicity in the restricted setting [You1]. Higher rank problems were also considered, e.g.
for SL3(R) [Mar2] or for SLn+1(R) [LLY].

In the case of the Siegel upper-half plane of degree 2, a result on average was obtained by
Valentin Blomer and Andrew Corbett [BC]. This article inspired our main result. We introduce
that setting in the next section. Other restriction problems for Siegel modular forms were considered
in [LY] and [BKY]. Finally, in the context of a general manifold, not necessarily arithmetic, Burq,
Gérard and Tzvetkov showed the essentially best possible bound for an eigenvalue of the Laplacian
[BGT]. It roughly corresponds to Equation (1.1) in Reznikov’s case. Subsequent improvements in
a non-arithmetic setting were only by a subpolynomial factor.

In Chapter 2, we start with something similar to our main result, Theorem 1.4, but in a simpler
setting. Let Γ0(N) ⊆ SL2(Z) be the group of matrices

(
a b
c d

)
with N |c. We consider modular forms

of level N for Γ0(N) and restrict them to the imaginary axis. We define the L2-restriction norm

N(f) :=
π[SL2(Z) : Γ0(N)]

3∥f∥2

∫ ∞

0

|f(iy)|2yk dy
y
. (1.2)

The front factor accounts for the fact that we did not use a probability measure on the quotient
Γ0(N)\H. We consider N(f) in two cases. First, for N = 1 and as k → ∞. Second, for k fixed
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and N →∞. We restrict ourselves to prime level to avoid technicalities. In both cases, we average
N(f) over the space Sk(N) of cusp forms of weight k and level N . More precisely, we define

Nav(k,N) :=
1

dimSnew
k (N)

∑
f∈Bnew

k (N)

N(f).

The set Bnew
k (N) is a basis of newforms. They are forms that are not coming from lifts of lower

level.

Theorem 1.3. Let p = 1. If k →∞, then

Nav(k) =
1

dimSk(1)

∑
f∈Bk(1)

N(f) = 2 log(k) + C + O(k−1/2+ϵ)

for an explicit constant C.
Let k be fixed. If p→∞ in a sequence of prime number, then

Nav(k, p) =
1

dimSnew
k (p)

∑
f∈Bnew

k (p)

N(f) = 2 log(
√
pk) + O(1).

This theorem gives an asymptotic expansion for N(f) on average. If we drop all terms but
one, we get a trivial bound for N(f). A better individual bound is given in [BKY]. They prove
that N(f) ≪ k1/4+ϵ for all ϵ > 0. We highlight a few ingredients of our proof. It is similar in
shape to the proof of our main result, Theorem 1.4, presented in the next section. Via Parseval’s
identity, we get a period formula for N(f) in terms of the L-function associated to f . We use an
approximate functional equation and the Petersson trace formula to compute the average and get
a diagonal term and an off-diagonal term. The former gives a main term and the latter gives the
error term. For level N > 1, we need to add the old forms to apply the Petersson formula. It gives
an additional error term.

1.1 Siegel modular forms and the Kitaoka formula

In this section, we present a restriction norm problem for a generalization of holomorphic modular
forms, called Siegel modular forms. They are defined with respect to the symplectic group Sp2n(R).
Detailed definitions are given in Chapter 3. They take arguments in the Siegel upper half-plane

H(n) := {Z = X + iY ∈ Mn(C) | Z = Zt, Y > 0}

where Y > 0 means that Y is positive-definite. On this space, the symplectic group acts by a
generalization of Möbius transforms. More precisely, for a 2n by 2n matrix ( A B

C D ) in the symplectic
group Sp2n(R) and Z ∈ H(n), we define(

A B
C D

)
· Z = (AZ + B)(CZ + D)−1.

We can define Siegel modular forms and cusp forms in a natural way. A Siegel modular form of
weight k is a holomorphic function f : H(n) → C such that

f

((
A B
C D

)
· Z
)

= det(CZ + D)kf(Z)

for all integral matrices ( A B
C D ) in the symplectic group. For n ≥ 2, we do not need to add a

condition at the cusp. See also Lemma 3.2. If n = 1, everything reduces to the classical case of

modular forms, except for the condition at the cusps. We denote by S
(n)
k the set of cusp forms of

weight k. A cusp form f has a Fourier series of the form∑
T>0

af (T ) det(T )
k−3/2

2 e2πi tr(TZ),
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where the sum is over half-integral positive definite matrices T ∈ P(Z). We generalize Equation
(1.2) to Siegel modular forms of full level. The L2-restriction norm of a Siegel modular form

f ∈ S
(n)
k to the imaginary axis is

N(f) :=
1

∥f∥22
Vol(Sp2n(Z)\H(n))

Vol(SLn(Z)\SLn(R)/ SO(n))

∫
SLn(Z)\{Y >0}

|f(iY )|2 det(Y )k
dY

det(Y )(n+1)/2
.

The ratio of volumes in front of the integral is there because we did not use probability measures.

The denominator is due to the isomorphism in Equation (3.3). For n = 2, it is equal to π2

90 . In
that case, SL2(R)/ SO(2) ∼= H is the classical upper half-plane. The action of SLn(Z) is given by
U · Y := U tY U . It corresponds to the restriction of the action of Sp2n(Z) on iY to the second
generator in Equation (3.2). The space H(n) has real dimension n(n − 1) and the imaginary axis
has half the dimension.

It is hard to give an individual bound for N(f). As often in analytic number theory, we can say
something on average. From now on, we reduce to n = 2. It is natural to average over the space

S
(2)
k of cusp forms of weight k. As in Theorem 1.3, we consider

8640

k3

∑
f∈B

(2)
k

N(f),

where B
(2)
k is a Hecke basis of S

(2)
k . The normalization is justified by the dimension formula

dimS
(2)
k ∼ k3

8640 [Igu]. Unfortunately, this is not good enough for our purpose so we do a further
average over k ∈ [K, 2K]. For analysis purposes, we average smoothly as follows. Let w : R→ R>0

be a smooth test function with support in [1, 2] and ω =
∫ 2

1
w(x)x3dx. We consider the following

average:

Nav(K) =
17280

ωK4

∑
k∈2N

w

(
k

K

) ∑
f∈B

(2)
k

N(f). (1.3)

The restriction to even k is for technical reasons, going back to the paper of Kitaoka [Kit] on
a Petersson-like formula. It is known that this formula is also valid for odd k (see Remark 1.4
in [CKM]). Likely, our result also extends in a similar fashion. This adds a factor of 2 in the
normalization. Our main result is:

Theorem 1.4 ([Fel]). Let ϵ > 0. As K →∞, we have

Nav(K) = 4 log(K) + C + Oϵ(K
−1/2+ϵ)

for an explicit constant C that only depends on w.

Valentin Blomer and Andrew Corbett in [BC] have a similar result for another average. They
considered Saito-Kurokawa lifts. They are lifts of holomorphic cusp forms, via an injective map

S2k−2 = S
(1)
2k−2 → S

(2)
k for even k. They also are in one-to-one correspondence with some half-

integral forms of weight k− 1/2. Blomer and Corbett considered the following average over Saito-
Kurokawa lifts and again over the weight k ∈ [K, 2K]:

NSK
av (K) =

12

ωK4

∑
k∈2N

w

(
k

K

) ∑
f∈B

(2),SK
k

N(f).

Their result is similar, except for a larger error term:

NSK
av (K) = 4 log(K) + O(1)

as K →∞. Our result is inspired by their article. At the center of our proof is a generalization of the
Petersson trace formula, where for them, it is a relative trace formula for pairs of Heegner points.
They can apply it after the following manipulation. The Fourier coefficients of a Siegel modular
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forms are over half-integral positive-definite matrices. For Saito-Kurokawa lifts, it is possible to
factorize them with respect to the determinant. They obtain this way a Dirichlet series in the right
shape for their relative trace formula. It is essentially a Rankin-Selberg product of two half-integral
weight cusp forms (see also [DI]). After this initial step, our proof diverges from theirs.

It is possible to rewrite N(f) in terms of some Dirichlet series. This is the first step in the proof of
Theorem 1.4. We call this the period formula. We have an isomorphism P(R) := {Y > 0} → H×R>0

given in Equation (3.3). For the two pieces on the right side, we have a spectral theory. For H, it is
the decomposition of L2(SL2(Z)\H) into Eisenstein series, cusp forms and the constant functions.
We denote by Λ a set of spectral components that are also Hecke eigenforms and Λev the subset of
even forms. There is a measure dϕ associated to ϕ ∈ Λ. It is the counting measure on the discrete
part and dt

4π on the continuous part given by the Eisenstein spectrum E(·, 1/2 + it). For R>0, the
spectral inversion is given by the Mellin transform. In N(f), we compute the square of a function.
We apply the Parseval identity for both spectral decomposition. We get the following proposition:

Proposition 1.5 ([BC], Proposition 1). Let f ∈ S
(2)
k , ϕ ∈ Λev and L(f × ϕ, s) be the Dirichlet

series defined in Equation (3.4) and G(f × ϕ, s) the corresponding gamma factor. Then

N(f) =
π2

2880∥f∥22

∫ ∞

−∞

∫
Λev

|L(f × ϕ, 1/2 + it)G(f × ϕ, 1/2 + it)|2dϕ dt.

More details are provided in Section 3.3. The Dirichlet series L(f×ϕ, s) is of particular interest.
We call it a twisted Koecher-Maass series. Despite what the notation might suggest, it is not a
Rankin-Selberg product of the two functions. More precisely, the Dirichlet series runs over half-
integral matrices T . It features the Fourier coefficients of f at T but ϕ is evaluated at the Heegner
point zT in the sum via the isomorphism in Equation (3.3). This series has an analytic extension
to an entire function with a functional equation, given in Proposition 3.5. But it does not have an
Euler product and is not in the Selberg class.

Theorem 1.4 fits into the context of two conjectures. First, there is Arithmetic Quantum Unique
Ergodicity that we discussed above. In our case, the subspace SL2(Z)\P(R) is of infinite measure.
Suppose that AQUE is true, even when we restrict to the imaginary axis. Then the norm N(f)
should diverge to infinity. Our result says that, on average, it is the case. But there is more.
We show in Chapter 9 that f is essentially supported in the imaginary axis on matrices with
k−2 ≪ det(Y )≪ k2. In Equation (9.1), we compute the volume of such matrices. If we conjecture
that f is essentially constant there, then the main term in Theorem 1.4 and in particular the
constant 4 are shown to be consistent with AQUE on the imaginary axis.

Concerning the second conjecture, the period formula leads us to the Lindelöf hypothesis. It
is a consequence of the Riemann Hypothesis. Both can be generalized to L-functions. One would
guess that the latter is false for the Dirichlet series L(f × ϕ, s), since it does not belong in the
Selberg class. Nevertheless, we still have a functional equation and some arithmetic inputs. We can
hope that the Lindelöf Hypothesis holds. See also [Kim] for supporting evidence. In the simplest
case, Lindelöf [Lin1] conjectured that

ζ(1/2 + it)≪ϵ t
ϵ

for all ϵ > 0. We can generalize it to other parameters of families of L-functions. For example,
given a family of L-function associated to modular form fkj

of weight kj , the Lindelöf Hypothesis
in the weight aspect says that

L(fkj , s)≪ kϵj .

The Lindelöf Hypothesis is open in all instances. ”Trivial” upper bounds are obtained using the
Phragmén–Lindelöf principle. This is called the convexity bound. To establish it can be far from
trivial in some cases. Research focuses nowadays on improving bounds beyond convexity for various
families of L-functions. If we input the weight aspect bound to L(f ×ϕ, s), we get that N(f)≪ kϵ.
Theorem 1.4 can be seen as strong version of Lindelöf on average.

1.2 Details of the proof

In this section, we give details of the proof of Theorem 1.4. We have actually not two but three
averages in the problem:
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1. the sum over k ∈ [K, 2K],

2. the sum over the basis B
(2)
k of weight k,

3. the sum/integral over the spectrum Λ.

The last average appears in the period formula, presented in Proposition 1.5. Each average gives us
additional cancellations in the various sums and integrals appearing in the problem. The sum over
k is treated using oscillations of Bessel functions. The two other sums are computed using trace
formulae. For the sum over the basis, the relevant formula is the Kitaoka formula that shape the
whole proof. We start to explain this one. For the sum over the spectrum, the pre-trace formula
for SL2(Z) is used.

In the center of our argument is a generalization of Petersson trace formula to Siegel modular
forms of degree 2. It was established by Kitaoka [Kit] to give bounds on Fourier coefficients of Siegel
modular forms. Its shape is as follows. Let T,Q be two half-integral positive-definite matrices. Then
we have

ck
∑

f∈B
(2)
k

af (T )af (Q)

∥f∥2
= # Aut(T )δT∼Q

+
∑

rk(C)=1

KL1(Q,T ;C)Jk−3/2

(
4π
√

det(TQ)

c

)

+
∑

rk(C)=2

KL2(Q,T ;C)Jk−3/2(Q,T ;C). (1.4)

Here, T ∼ Q if they are related by an isomorphism and the two sums on the right-hand side feature
generalizations of the Kloosterman sum and the J-Bessel function. The number c is related to the
non-zero invariant factor of C. The detailed definitions are given in Section 3.4. Our main interest

in this formula for us is the sum over S
(2)
k on the left-hand side. We can take advantage of our

average in Nav(K) with it. The idea is that only the diagonal term, where T ∼ Q, should contribute
to the main term as k →∞. See [KST] for a supportive statement. Let vT = (af (T ))

f∈B
(2)
k

. Then

Equation (1.4) says that vT and vQ are approximately orthogonal if T ̸∼ Q. The left-hand side of
the formula is called the spectral side and the right-hand side the geometric side. The latter has
three terms, that correspond to matrices of rank respectively 0, 1 and 2.

The Kitaoka formula shapes the proof of Theorem 1.4. This is shown in Figure 1.1. We give
more details. The first step in the proof is to introduce the period formula for N(f). Then we can
insert the Kitaoka formula in Nav(K) using an approximate formula. It gives us three terms. The
diagonal one gives us the main term of our asymptotic formula. More precisely, we have in that
case to use the pre-trace formula for SL2(Z). It splits this term into two parts, one of them being
the main asymptotic and the other going into the error term. The rank 1 and rank 2 terms are
both giving error term. The challenge of the proof is to give error terms of the right size for every
part. In the diagonal term, we do not take advantage of the average over k. In the rank 1 and the
rank 2 case, it gives us a better decay for the respective Bessel function. See Lemma 5.3 and its
application in Chapters 7 and 8. The rank 2 term is the most involved but the other parts all need
a non-trivial argument.

The diagonal term is treated using the pre-trace formula. It gives us a main term where the
distance u appearing in the formula is zero. The terms with u ̸= 0 have to be treated using a
standard counting argument. We also have to extract the even spectrum in the formula using
the T−1 Hecke operator. After that, we treat the remaining sums and integrals. In particular, a
Dirichlet series over class numbers appears and we have to compute its residue. We input a formula
for the average size of class numbers. The average over k is computed at the end and does not
contribute to this term.

The bound for the rank 1 term is obtained as follows. First, we use the average over k for
the J-Bessel function. If we take a trivial upper bound at this point, we barely miss the desired
main term. Therefore we use additional cancellation in the Bessel function. We have a sum over
Fourier coefficients T,Q. The sum over det(T )−det(Q) has oscillations that we detect using Poisson
summation and a stationary phase argument. The argument is technical but essentially standard.
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Figure 1.1: The shape of the proof

N(f)

Period formula

Kitaoka formula

Diagonal term

Pre-trace formula
Non-zero term of
pre-trace formula

Rank 1 term Rank 2 term

Average over k

4 log(K) + C +O(K−1/2+ϵ) +O(K−1/2+ϵ) +O(K−1/2+ϵ)

In the rank 2 term, we start by analyzing the cancellation in the Jk−3/2 function with the
average over k. Then we do a stationary phase argument for the resulting function. The question
reduces to a counting problem for a matrix of the form TQ, where T and Q are half-integral positive
definite matrices such that the product has close eigenvalues. We do that counting exploiting a
nice identity for the distance between the eigenvalues. In the rank 1 and the rank 2 terms, we only
use trivial bounds on the generalized Kloosterman sums. This is because we have short sums on
C up to some negligible errors and the Kloosterman sums do not depend on k.

1.3 Higher degrees

It is also interesting to consider the generalization of the Petersson formula to Siegel modular
forms of higher degrees. Little is known when the degree is greater than 2. We have a formula
similar to Equation (1.4) but also with terms of rank higher than 2. They feature generalizations
of Kloosterman sums and Bessel functions. For the Kloosterman sum of degree 3 and full rank, we
obtain a non-trivial bound in Chapter 10.

Theorem 1.6. Let C be an invertible matrix and Q,T be symmetric positive definite matrices. Let
K(3)(Q,T ;C) be the symplectic Kloosterman sum defined in Equation (10.1) for n = 3. Suppose
that C = pI3 for an odd prime p. Then

K(3)(Q,T ; pI3) =
∑

A,D mod p
AD=I3 mod p

e

(
tr(AQ + DT )

p

)
≪ p5.

This is inspired by a similar result of Tóth in degree 2 [Tót]. We prove it with elementary
techniques, such as the evaluation of the Gauss sum and the Salié sum. When C = pI3, the
exponential sum is over symmetric 3 by 3 matrices modulo p with non-zero determinant. Therefore
a trivial upper bound for K(3)(Q,T ; pI3) is p6.

This thesis is partially based on the article A Restriction Norm Problem for Siegel Modular
Forms [Fel]. Chapters 4 to 8 are part of the article, with only minor changes and corrections. To
start, we consider the case of Sp2(R) = GL2(R) in Chapter 2. We prove Theorem 1.3 for the level
and the weight aspect. In Chapter 3, we introduce the theory of Siegel modular forms and give
the necessary definitions. Chapter 4 is dedicated to the proof of Proposition 1.5, the insertion of
the Kitaoka formula and the analysis of the cut-off function given by the approximate functional
equation. Chapter 5 regroups various technical lemmas about the Gamma and Bessel functions
and the stationary phase technique. Chapter 6 is dedicated to the diagonal term of the Kitaoka
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formula. Chapters 7 and 8 treat respectively the rank 1 and rank 2 terms. In Chapter 9, we give
further comments on the proof of Theorem 1.4. In Chapter 10, we study the setting for higher
degree modular forms on Sp2n(R). We prove Theorem 1.6 for n = 3. Finally, the Appendix A gives
a detailed computation of automorphisms of binary quadratic forms.

1.4 Notation and normalizations

We fix a few notations and normalize some objects in this section. What is written here is valid
everywhere unless stated otherwise.

The set P(R) consists of every 2 by 2 symmetric positive-definite matrices and P(Z) is the
subset of elements with integral diagonal and half-integral off-diagonal elements. In particular
iP(R) corresponds to the imaginary axis of the Siegel upper-half plane H(2). A matrix

(
a b
b c

)
in

P(Z) (sometimes written ( x y
y z ) or ( α β

β δ )) corresponds to a positive-definite binary quadratic forms

ax2 + 2bxy + dy2. Such a form is weakly reduced if 2|b| ≤ a ≤ d. It is reduced if, moreover,

2|b| = a or a = c =⇒ b ≥ 0.

We use the notation coming from matrices and do not introduce the alternative notations used for
quadratic forms. In particular, we consider the determinant of the matrix but not the discriminant
of the associated quadratic form.

A matrix Y ∈ P(Z) also corresponds to a point zY in H, see Equation (3.3). The usual funda-
mental domain of SL2(Z)\H is {z = x + iy ∈ C | −1/2 ≤ x ≤ 1/2, |z| ≥ 1}. A weakly reduced
matrix Y corresponds to a point in this domain. If Y is reduced and the corresponding point is on
the edge of the fundamental domain, then this point has non-positive real part.

Let ℓ = k− 3/2 and f ∈ S
(2)
k be a Siegel cusp form of weight k and degree 2. We only consider

even weights. The Fourier series of f is normalized in the following way:

f(Z) =
∑

T∈P(Z)

a(T ) det(T )ℓ/2e(tr(TZ)).

The set of spectral components is denoted by Λ and Λev is the subset of even forms. The
eigenvalue of ϕ ∈ Λ is λϕ and tϕ is the spectral parameter, given by λϕ = 1

4 + t2ϕ. The constant

function has spectral parameter i/2. We write
∫
Λ

for the integral over the spectrum with the

corresponding measure, that is
dtϕ
4π for the continuous part and the counting measure for the

discrete part. The symbol Γ is used for the gamma function and the modular group is designated
by SL2(Z). We use the notation e(z) = e2πiz and the Vinogradov symbols ≪, ≫, ≍ and ∼.

Finally, we always assume that k, K and p are large enough and ϵ > 0 is small enough to avoid
degenerate cases. We may change the value of ϵ from a display to the next, as long as the new ϵ is
a constant multiple of the first one.
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the Institut Henri Poincaré for their hospitality.



Chapter 2

The case of Sp2(R)

In this chapter, we prove Theorem 1.3. It is similar to Theorem 1.4 for degree 1 Siegel modular
forms, in other words, classical holomorphic modular forms. We define a restriction norm to the
imaginary axis and we do an average over the space of weight k. Finally, we use Petersson trace
formula to get an asymptotic formula, this time both for the weight and the level aspect. Definitions
for this chapter can be found in [BGHZ] or any other introductory textbook on modular forms.

2.1 Setting

Let k be an integer. We consider modular forms attached to the congruence subgroup Γ0(p) :=
{
(
a b
c d

)
| c = 0 (mod p)}. We consider simultaneously the cases p is prime and p = 1. For a Hecke

newform f ∈ Snew
k (p) = Snew

k (Γ0(p)), we set

f(z) =

∞∑
n=1

a(n)(4πn)(k−1)/2e(nz)

with a(1) = 1. We consider the restriction norm

N(f) :=
π[SL2(Z) : Γ0(p)]

3∥f∥2

∫ ∞

0

|f(iy)|2yk dy
y
. (2.1)

Here, [SL2(Z) : Γ0(p)] = p + 1 if p > 1 and 1 if p = 1 and

∥f∥2 =

∫
Γ0(p)\H

|f(z)|2yk dxdy
y2

.

We have the Mellin transform∫ ∞

0

f(iy)y
k−1
2 +s dy

y
= 2

k−1
2

Γ((k − 1)/2 + s)

(2π)s
L(f, s)

where L(f, s) =
∑ an

ns . Hence Parseval’s formula gives

N(f) =
π(p + 1)

3∥f∥2
1

2π

∫ ∞

−∞
2k−1 |Λ(f, 1/2 + it)|2 dt, (2.2)

where the L-function for f has the following completion and functional equation:

Λ(f, s) =
Γ((k − 1)/2 + s)

(2π)s
L(f, s),

ps/2Λ(f, s) = ikη̄p(1−s)/2Λ(f, 1− s),

with |η| = 1.

11
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Lemma 2.1. Inserting an approximate functional equation, we have

N(f) =
p + 1

12π∥f∥2
Γ(k − 1)

∑
m,n

af (m)af (n)√
mn

V (m,n, p)

with the definition of V given in Equation (2.3).

We prove this lemma in Section 2.2. We consider N(f) on average over the space of weight k.
More precisely, we are looking for an asymptotic formula for

Nav(k, p) =
1

dimSnew
k (p)

∑
f∈Bnew

k (p)

N(f),

where Bnew
k (p) is a Hecke eigenbasis of newforms. The results are given in Theorem 1.3, where

either k is fixed and p→∞ or p = 1 and k →∞. If p > 1, we have

Nav(k, p) =
1

dimSnew
k (p)

∑
f∈Bk(p)

N(f)− Ñold
av (k, p)

where Ñold
av (k, p) is a sum over forms in Sk(1) = SL2(Z) that are lifted in two ways to Sk(p). The

precise definition is given in Equation (2.9). We use the following formula to take advantage of the
average.

Proposition 2.2 (Petersson trace formula, [IK], Corollary 14.23). Let p, k integers, Bk(p) an
orthogonal basis of Sk(p) consisting of Hecke eigenfunctions and m,n ∈ N. Then

Γ(k − 1)
∑

f∈Bk(p)

af (m)af (n)

∥f∥2
= δmn + 2πi−k

∑
p|c

S(m,n, c)

c
Jk−1

(
4π
√
mn

c

)
.

2.2 Approximate functional equation

In this section, we prove Lemma 2.1. Let f ∈ Snew
k (p) be a new form and

I(f, s) =
1

2πi

∫
(3)

ev
2

pvΛ(f, v + s)Λ(f, v + 1− s)
dv

v
.

Shifting the contour of the integral and using the functional equation, we get

|Λ(f,1/2 + it)|2 = 2I(f, 1/2 + it)

=
1

π

∑
m,n

a(m)a(n)√
mn

( n

m

)it 1

2πi

∫
(3)

ev
2 Γ(k/2 + v + it)Γ(k/2 + v − it)

(2π)2v

(
mn

p

)−v
dv

v
.

We set

V (m,n,N) =

∫ ∞

−∞

( n

m

)it 1

2πi

∫
(3)

ev
2

2k
Γ(k/2 + v + it)Γ(k/2 + v − it)

(2π)2vΓ(k − 1)

(mn

N

)−v dv

v
dt. (2.3)

Inserting this in Equation (2.2), we obtain

N(f) =
p + 1

12π∥f∥2
Γ(k − 1)

∑
m,n

a(m)a(n)√
mn

V (m,n, p)

with decay properties given in the following lemma.

Lemma 2.3. Let m,n,N be integers and A > 0. Then(
m√
k

)j1 ( n√
k

)j2 dj1

dmj1

dj2

dnj2
V (m,n,N)≪A,j1,j2 k

(
1 +

mn

Nk2

)−A (
1 + k1/2| log(m/n)|

)−A
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This can be easily deduced from the following.

Lemma 2.4. Let k ≥ 1, s = σ + it with σ ≥ −1, A > 0 and

G(k, s) := 2k
Γ(k/2 + σ + it)Γ(k/2 + σ − it)

Γ(k − 1)
.

We have, for σ > 0, t ∈ R

G(k, σ + it) = k1/2+σGA,σ(k, t) + OA(k−A),

where

kj1+j2/2
dj1

dkj1
dj2

dtj2
GA(k, σ, t)≪A,σ,j1,j2

(
1 +

t2

k

)−A

.

We also have

2k
Γ(k/2 + it)Γ(k/2− it)

Γ(k − 1)
= 23/2

√
πke−2t2/k(1 + O(k−1/2+ϵ)).

Proof of both lemmas. We only sketch the proof of the size of V . The rest is similar to the proof
of Equation (4.3). The duplication formula gives

2k
Γ(k/2 + σ + it)Γ(k/2 + σ − it)

Γ(k − 1)
= 4
√
π

Γ(k/2 + σ + it)Γ(k/2 + σ − it)

Γ((k − 1)/2)Γ(k/2)
.

We apply Lemma 5.1. We see that the ratio is of size O(k1/2+2σ). For V , another
√
k is given by

the integral over t and the decay properties are easily computed.

2.3 Diagonal term

We apply the Petersson trace formula to Nav(k, p) using Lemma 2.1. We split this into a diagonal
term, when δmn = 1, and the off-diagonal term with the sum over c. For the diagonal term, we
have

Ndiag
av (k, p) =

1

dimSk(p)

p + 1

12π

∑
n

V (n, n, p)

n

with V (n, n, p) defined in (2.3). We open this definition and insert the n-sum. The v-integral gives∫
(3)

ev
2

2k
Γ(k/2 + v + it)Γ(k/2 + v − it)

(2π)2vΓ(k − 1)

∑
n

1

n2v+1
pv

dv

v

=

∫
(−1+ϵ)

ev
2

2k
Γ(k/2 + v + it)Γ(k/2 + v − it)

(2π)2vΓ(k − 1)
ζ(2v + 1)pv

dv

v

+ Resv=0 2k
Γ(k/2 + v + it)Γ(k/2 + v − it)

(2π)2vΓ(k − 1)
ζ(2v + 1)pv

1

v
.

Concerning the middle term, we have (we can take ϵ = 1/2)∫ ∞

−∞

∫
(−1+ϵ)

ev
2

2k
Γ(k/2 + v + it)Γ(k/2 + v − it)

(2π)2vΓ(k − 1)
ζ(2v + 1)pv

dv

v
dt

≪ϵ k
−2.5+2ϵp−1+ϵ

∫ ∞

−∞

(
1 +

t2

k

)−A

dt

≪ϵ k
−2+ϵp−1+ϵ.

We have Γ′(z)
Γ(z) = log(z)+O(|z|−1) for Re(z) ≥ 1. Since t≪ k1/2+ϵ up to a negligible error, we have

∑
±

Γ′(k/2± it)

Γ(k/2± it)
= log(k2/4 + t2) + O(k−1+ϵ)

= 2 log(k)− log(4) + O(k−1+2ϵ)
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We also have ζ(2v + 1) = 1
2v + γ + O(v). Therefore

Resv=02k
Γ(k/2 + v + it)Γ(k/2 + v − it)

(2π)2vΓ(k − 1)
ζ(2v + 1)pv

1

v

= 2k
Γ(k/2 + it)Γ(k/2− it)

Γ(k − 1)

(
1

2
(2 log(k)− log(4)− 2 log(2π) + log(p)) + γ + O(k−1+ϵ)

)
.

Lemma 2.4 also gives

2k
Γ(k/2 + it)Γ(k/2− it)

Γ(k − 1)
= 23/2

√
πke−2t2/k(1 + O(k−1/2+ϵ)).

Therefore ∫ ∞

−∞
2k

Γ(k/2 + it)Γ(k/2− it)

Γ(k − 1)
dt = 2πk + O(k1/2+ϵ).

Finally, we have dimSnew
k (p) = kp

12 + O(k + p) and dimSk(1) = k
12 + O(1) (see [Mar1]). If p > 1,

we get

Ndiag
av (k, p) =

1

dimSk(p)

p + 1

12π

∫ ∞

−∞

∫
(3)

ev
2

2k
Γ(k/2 + v + it)Γ(k/2 + v − it)

(2π)2vΓ(k − 1)
ζ(2v + 1)pv

dv

v
dt

=
1

πk

(
1 + O

(
1

k
+

1

p

))
(2πk + O(k1/2+ϵ))(log(

√
pk) + γ − log(4π) + O(k−1+ϵ))

= 2 log(
√
pk) + 2(γ − log(4π)) + O(k−1/2+ϵ) + O(p−1).

If p = 1, we get the same result with an error term of size O(k−1/2+ϵ). This concludes the proof of
the main term.

2.4 Off-diagonal term

The off-diagonal term is

Noff
av (k, p) =

1

dimSk(p)

p + 1

12π

∑
m,n

V (m,n, p)√
mn

2πi−k
∑
p|c

S(m,n, c)

c
Jk−1

(
4π
√
mn

c

)
.

If p > 1, Lemma 2.3 tells us that, up to a negligible error, mn≪ p1+ϵk2+ϵ. At the same time, the

decay of the J-Bessel function gives k1−ϵ ≪
√
mn
c (see Equation (5.1)). Thus, we have

c≪
√
mn

k1−ϵ
≪ p1/2+ϵk2ϵ.

Since p|c, we see that the off-diagonal term is negligible if p→∞.
We consider the weight aspect where p = 1. We apply Lemma 2.3 and Equation (5.1). We fix

ϵ > 0 small enough. Up to a negligible error, we get

k1−ϵ ≪
√
mn

c
,

√
mn≪ k1+ϵ |m− n| ≪ k−1/2+ϵm.

Therefore, c ≪ kϵ and k1−ϵ ≪ m,n ≪ k1+ϵ. We detect cancellation in the difference between m
and n. Let d = n − m. We know that |d| ≪ k−1/2+ϵm up to a negligible error. We fix d = d0
(mod c) so that we can see the Kloosterman sum as constant in the d-sum. This adds a sum over
d0 (mod c). The sum over d is

∑
d=d0 mod c

V (m,m + d, 1)√
m(m + d)

Jk−1

(
4π
√

m(m + d)

c

)

=
1

c

∞∑
h=−∞

∫ ∞

−∞

V (m,m + t, 1)√
m(m + t)

Jk−1

(
4π
√
m(m + t)

c

)
e

(
(d0 − t)h

c

)
dt. (2.4)
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We applied Poisson summation in the second line. The Bessel function is defined as

Jk(x) =

∫ 1/2

−1/2

e(kθ)e−ix sin(2πθ)dθ.

Let v be a positive function supported on [−2, 2] and equal to 1 on [−1, 1]. In the θ-integral, we
consider

Lk(x) :=

∫ 1/2

−1/2

e(kθ)e−ix sin(2πθ)v
(
k1/10(|θ| − 1/4)

)
dθ.

Then in the integral Jk−1(x)− Lk−1(x), the integrand is 0 when θ is close to ± 1
4 . We get

1

c

∞∑
h=−∞

∫ ∞

−∞

∫ 1/2

−1/2

V (m,m + t, 1)√
m(m + t)

e

(
(k − 1)θ −

2
√
m(m + t)

c
sin(2πθ) +

(d0 − t)h

c

)
·
(

1− v
(
k1/10(|θ| − 1/4)

))
dθ dt.

We do a stationary phase argument in the t-integral. More details about this technique are given
in Section 5.3. We have

d

dt

[
(k − 1)θ −

2
√
m(m + t)

c
sin(2πθ) +

(d0 − t)h

c

]
= −1

c

√
m

m + t
sin(2πθ)− h

c
.

We consider the case h = 0 below. If h ̸= 0, the stationary point is

t0 =

(
sin(2πθ)2

h2
− 1

)
m.

The function sin(2πθ) is equal to 1 only at |θ| = 1
4 . Since |θ|− 1

4 ≫ k−1/10, we have |t0| ≫ k−1/5m.
The function V is negligible for such t0. We apply Lemma 5.5 to the t-integral. Following the
notations, we have

β − α≪ mk−1/2+ϵ, R = 1 +
|h|
c
,

X =
k

m
, U =

m√
k
,

Y = k1+ϵ, Q = m. (2.5)

Since k1−ϵ ≪ m≪ k1+ϵ, we get that the t-integral is

≪A mk−1/2+ϵ k

m
(1 + |h|/c)−Ak−(1/2+ϵ)A

for all A > 0. We take trivial bounds for the θ-integral and the h-sum. We see that the contribution
of this term to Equation (2.4) is OA(k−A).

Now, we consider the integral

1

c

∞∑
h=−∞

∫ ∞

−∞

V (m,m + t, 1)√
m(m + t)

Lk

(
4π
√
m(m + t)

c

)
e

(
ht

c

)
dt.

We apply Lemma 5.5 to Lk(x). We know that x ≫ k1−ϵ up to a negligible error. The derivative
2πk − 2πx cos(2πθ)≫ k since |θ| − 1

4 ≪ k−1/10. We have

β − α≪ k−1/10, R = k,

X = 1, U = k−1/10,

Y = k1+ϵ, Q = 1. (2.6)
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We get that Lk(x)≪A k−1/10(k−A/2 + k−9A/10). If d0 ̸= h, we integrate the t-integral by parts to
get a factor h−2 and sum over h. Taking trivial bounds on the t-integral and the h-sum, we see
that the contribution to Equation (2.4) is OA(k−A). We Tak trivial bounds to the rest of the sums.
The contribution to Noff

av (k, 1) of the terms with h = 0 is negligible.
Finally, we consider the case h = 0. We want to estimate

1

c

∫ ∞

−∞

∫ 1/2

−1/2

V (m,m + t, 1)√
m(m + t)

e

(
(k − 1)θ −

2
√

m(m + t)

c
sin(2πθ)

)
dθ dt.

We consider 3 different ranges for the couple of variables (θ,m). First, if θ is big, we can apply
Lemma 5.5 to the t-integral and show that it is negligible. If θ is small and m is far from some
fixed m0, Lemma 5.5 applies to the θ-integral and shows that it is negligible. Finally, for small θ
and m close to m0, we show that the m-sum has an additional restriction and we estimate trivially
the integral.

More precisely, let δ = 1/2− 10ϵ. We consider the case |θ| ≫ k−δ. For this, we insert a cut-off
function v(kδθ) similarly to the above. We apply Lemma 5.5 to the t-integral. We have

d

dt

[
(k − 1)θ −

2
√
m(m + t)

c
sin(2πθ)

]
=

1

c

√
m

m + t
sin(2πθ)≫ k−δ−ϵ.

Following notations of Section 5.3, we have the same constants as in Equation 2.5 except that
R = k−δ−ϵ. Recall that m≫ k1−ϵ. We get

1

c

∫ ∞

−∞

∫
k−δ≪|θ|≤1/2

V (m,m + t, 1)√
m(m + t)

e

(
(k − 1)θ −

2
√

m(m + t)

c
sin(2πθ)

)(
1− v

(
kδθ
))

dθ dt

≪ mk−1/2−ϵ k

m

(
(mk−δ−ϵk−1/2−ϵ)−A + (mk−δ−ϵ/

√
k)−A

)
≪A k−ϵA.

Now, we consider the range |θ| ≪ k−δ. Let c, k,m be fixed. Suppose that∣∣∣∣ (k − 1)c

4πm
− 1

∣∣∣∣≫ k−δ.

Then we can apply Lemma 5.5 to the θ-integral (recall that t/m = o(k−δ)):

d

dθ

[
(k − 1)θ −

2
√
m(m + t)

c
sin(2πθ)

]
= k − 1−

4π
√
m(m + t)

c
cos(2πθ)

=

(
(k − 1)c

4πm
−
√

m(m + t)

m
cos(2πθ)

)
4πm

c

=

(
(k − 1)c

4πm
− 1 + O

(
t

m

)
+ O

(
k−2δ

)) 4πm

c
.

The last expression in parenthesis is of size at least k−δ since the two big O terms are smaller.
Therefore, the derivative is always ≫ k−δ · k1−ϵ. We apply Lemma 5.5 to the θ-integral. We have
the same constants as in Equation 2.6, except that β−α = k−δ, R = k1−δ−ϵ and U = k−δ. We get

1

c

∫ ∞

−∞

∫ 1/2

−1/2

V (m,m + t, 1)√
m(m + t)

e

(
(k − 1)θ −

2
√

m(m + t)

c
sin(2πθ)

)
v
(
kδθ
)
dθ dt

≪ k1/2+ϵ · kϵ
(

(k1−δ/k1/2)−A + (k1−2δ−ϵ)−A
)

≪A k−ϵA. (2.7)

Applying trivial bounds to the other sums, we see that the two cases above are negligible.
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Finally, if |θ| ≪ k−δ and there is a m0 such that

(k − 1)c

4πm0
= 1 + O(k−δ). (2.8)

This condition restricts the m-sum:

(k − 1)c

4πm
=

(k − 1)c

4πm0

m0

m
= 1 +

m0 −m

m
+ O(k−δ).

So |m0 −m| ≪ m0k
−δ for m still satisfying Equation 2.8. For a given m, we estimate trivially

1

c

∫ ∞

−∞

∫
|θ|≪k−δ

V (m,m + t, 1)√
m(m + t)

e

(
(k − 1)θ −

2
√

m(m + t)

c
sin(2πθ)

)
dθ dt

≪ k1/2+ϵ · k−δ · kϵ

≪ k1/2−δ+2ϵ.

For m not satisfying Equation 2.8, we can apply the bound in Equation 2.7. In total, we have a
contribution of this term to Noff

av (k, 1) of size

1

k

∑
|m−m0|≪k1/2+ϵ

∑
c≪kϵ

∑
d0 mod c

S(m,m + d0, c)

c

1

c

∫ ∞

−∞

V (m,m + t, 1)√
m(m + t)

Jk−1

(
4π
√

m(m + t)

c

)
dt

≪ k−1/2+ϵ.

We conclude that

Noff
av (k, 1) =

1

dimSk(1)

1

12π

∑
m,n

V (m,n, 1)√
mn

2πi−k
∑
c

S(m,n, c)

c
Jk−1

(
4π
√
mn

c

)
≪ 1

k

∑
m≪k1+ϵ

∑
c≪kϵ

∑
d0 mod c

S(m,m + d0, c)

c

· 1

c

∞∑
h=−∞

∫ ∞

−∞

V (m,m + t, 1)√
m(m + t)

Jk−1

(
4π
√

m(m + t)

c

)
e

(
(d0 − t)h

c

)
dt

≪ϵ k
−1/2+ϵ.

This finishes the proof of Theorem 1.3 in the weight aspect. For the level aspect, we need to bound
the contribution of the old forms. This is done in the next section.

2.5 Bound on old forms

In this section, we estimate the contribution of the old forms. More precisely, for prime level p and
a modular form g ∈ Sk(1), we have two lifts, g(z) and pk/2g(pz). The two lifts are not orthogonal.
We use the Gram-Schmidt process to get two orthogonal forms. Let g ∈ Sk(1), f1(z) = g(z) and

f2(z) = pk/2g(pz)− ⟨pk/2g(pz), g(z)⟩g(z).

Then the collection of f1, f2 for g in a Hecke basis Bk(1) of Sk(1) is an orthogonal basis of old
forms.

Lemma 2.5 ([ILS], Lemma 2.4). The inner products between g(z) and pk/2g(pz) have the following
values:

⟨g(z), pk/2g(pz)⟩ = λg(p)

√
p

p + 1
∥g∥2, ⟨pk/2g(pz), pk/2g(pz)⟩ = ∥g∥2.
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We conclude that ∥f1∥2 = ∥g∥2 and

∥f2∥2 = ∥pk/2g(pz)∥2 − ⟨g(pz), g(z)⟩2

∥g∥2
= ∥g∥2

(
1−

λg(p)
√
p

p + 1

)
∼ ∥g∥.

We used that |λf (p)| ≪ 1, thanks to Ramanujan conjecture, which is known in that case. Let

Ñ(f) =
p + 1

12π∥f∥2
Γ(k − 1)

∑
m,n

af (m)af (n)√
mn

V (m,n, p).

We want to bound

Ñold
av (k, p) =

1

dimSnew
k (p)

∑
g∈Bk(1)

(Ñ(f1) + Ñ(f2)) (2.9)

in the p aspect. We use Deligne’s bound ag(n) ≪g,ϵ n
ϵ. Of course, g ∈ Bk(1) does not depend on

p. Therefore ∥g(z)∥2 = [SL2(Z) : Γ0(p)]∥g∥2SL2(Z)\H, where the last norm is taken over SL2(Z)\H
and is independent of p. For f1, we compute

Ñ(f1) =
p + 1

12π∥f1∥2
Γ(k − 1)

∑
m,n

af1(m)af1(n)√
mn

V (m,n, p)

≪k,ϵ

∑
m≪p1/2+ϵk

∑
|m−n|≪k−1/2+ϵm

(mn)−1/2+ϵ

≪k,ϵ p
1/2+2ϵ.

For f2, we have ∥f2∥2 ∼ ∥g∥2 and af2(n)≪ p1/2ag(n/p)δp|n +ag(n)≪ p1/2nϵδp|n +nϵ. The second
term gives the same bound as above. In total, we have

Ñ(f2) =
p + 1

12π∥f2∥2
Γ(k − 1)

∑
m,n

af2(m)af2(n)√
mn

V (m,n, p)

≪k,ϵ p
∑

m≪p1/2+ϵk
p|m

∑
|m−n|≪k−1/2+ϵm

p|n

(mn)−1/2+ϵ + p1/2+ϵ

≪k,ϵ p
1/2+2ϵ.

We estimate the contribution of the old forms to be

Ñold
av (k, p) =

1

dimSnew
k (p)

∑
g∈Bk(1)

(Ñ(f1) + Ñ(f2))≪k,ϵ
1

p
· p1/2+ϵ ≪k 1.

This concludes the proof of Theorem 1.3 in the level aspect.



Chapter 3

Siegel modular forms

In this chapter, we review the basis of the theory of Siegel modular forms. For a more general
introduction, see for example [BGHZ, Kli, Fre]. In short, Siegel modular forms are a holomorphic
generalization of modular forms where we replace complex numbers by complex matrices.

3.1 Definitions and first properties

Let n be an integer. We consider n by n matrices with complex coefficients Z = X + iY ∈Mn(C).
If Y is symmetric and positive-definite, i.e. it has real positive eigenvalues, we write Y > 0. The
Siegel upper half-plane is

H(n) := {Z = X + iY ∈ Mn(C) | Z = Zt, Y > 0}.

There is an action of a 2n by 2n matrices group on the upper half-plane. The symplectic group is

Sp2n(R) := {M ∈ M2n(R) |M tJM = J},

where J =
(

0 −In
In 0

)
. Let ( A B

C D ) ∈ Sp2n(R) where A,B,C,D are n by n blocks and Z ∈ H(n). We
define (

A B
C D

)
· Z := (AZ + B)(CZ + D)−1.

Lemma 3.1. Let M = ( A B
C D ) ∈ Sp2n(R) and Z = X + iY ∈ H(n). Then det(CZ + D) ̸= 0 and

the imaginary part of M · Z is positive-definite. In other terms, the action above is well defined.

We give a few more properties of Sp2n(R) and Sp2n(Z), the restriction of the group to integral
matrices. First, writing ( A B

C D ) ∈ Sp2n(R) as above, we have the relationships

AtC,BtD symmetric, AtD − CtB = In. (3.1)

Actually, it is sufficient that a matrix satisfies the above equations for it to be symplectic. Second,
the symplectic group over R is generated by the following families of matrices:(

In B
0 In

)
,

(
At 0
0 A−1

)
, J, (3.2)

where B is symmetric and A is invertible. Finally, if n = 1, then Sp2(R) ∼= SL2(R) so the upcoming
definition of modular form is similar to the classical one in that case.

Let f : H(n) → C a holomorphic function and k ∈ Z. For n ≥ 2, f is a Siegel modular form of
weight k if

f

((
A B
C D

)
· Z
)

= det(CZ + D)kf(Z)

for all ( A B
C D ) ∈ Sp2n(Z). Note that for n ≥ 2, we don’t give any condition at the cusps, thanks to

Lemma 3.2 below.

19
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A Siegel modular form f transforms in the following way under the action of the integral
generators of Equation (3.2):

f

((
In B
0 In

)
· Z
)

= f(Z), f

((
At 0
0 A−1

)
· Z
)

= det(A)−kf(Z), f(J · Z) = det(Z)kf(Z).

Choosing A = −In, we see that f vanishes if nk is odd. It is also possible to show that k must be
non-negative and only the constant functions occur for k = 0. We see that f is periodic with respect
to the abelian group given by the first generator in Equation (3.2) with integral B. Therefore, it
admits a Fourier series of the form

f(Z) =
∑
T

a(T ) det(T )
k−3/2

2 etr(TZ),

where etr(A) := e2πi tr(A). Here, T runs over half-integral symmetric matrices with integral entries.
We have added a power of det(T ) to the definition for normalization purposes. This moves the
critical line of the associated L-function to 1

2 . From now on, we write ℓ for k − 3/2. The Fourier
coefficients are given by the formula

a(T ) = det(T )−ℓ/2

∫
X mod 1

f(Z) etr(−TZ)dX,

for Z = X + iY and a fixed Y > 0. Here dX =
∏

1≤i≤j≤n xij is the Lebesgue measure.

Lemma 3.2 (Koecher’s principle). Let f be a Siegel modular form. Then for T not positive
semi-definite, the Fourier coefficient a(T ) = 0. Moreover f is bounded on domains of the form
{X + iY ∈ H(n) | Y > cIn} for all c > 0.

Proof. By contradiction, we suppose that there exists a T not positive semi-definite with a(T ) ̸= 0.
Since T is not positive definite, there exist a vector v with vtTv < 0. We can complete v to a
unimodular matrix U . If we replace T by U tTU , we can suppose that t11 < 0. Now consider the
matrix

A =


1 x

1
. . .

1

 .

Then tr(AtTA) = t11x
2 + O(x) and so a(AtTA)e−2π tr(AtTA) diverges as x → ∞ and so does the

Fourier series at Z = iIn. We conclude that a(T ) = 0.

The Koecher principle restricts the Fourier series to positive semi-definite T ≥ 0. The function
f is a cusp form if a(T ) = 0 for det(T ) = 0 (these are the T such that T ≥ 0 but T ≯ 0). Given a
unimodular matrix U ∈ GLn(Z) with determinant ±1, we easily see that

a(U tTU) = det(U)ka(T ).

There is an inner product on the space of cusp forms, given by

⟨f, g⟩ :=

∫
Sp2n(Z)\H(n)

f(Z)g(Z) det(Y )k
dXdY

det(Y )n+1
.

We define the L2-norm of f as ∥f∥22 = ⟨f, f⟩.
Remark. We can introduce a level structure on Siegel modular forms. There are two congruence
subgroups that are usually considered. The parabolic subgroup for n = 2 is

Γ̃
(2)
0 (N) :=



∗ N∗ ∗ ∗
∗ ∗ ∗ ∗/N
∗ N∗ ∗ ∗
N∗ N∗ N∗ ∗

 ∈ Sp4(Q)


and the Siegel subgroup is

Γ
(n)
0 (N) :=

{(
A B
C D

)
∈ Sp2n(Z) | C = 0 (mod p)

}
.

We can define Siegel modular forms with respect to these subgroups in the usual way.
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3.2 An isomorphism for the imaginary axis

We are interested in restricting Siegel modular forms to the imaginary axis. Let n = 2. There exists
a morphism P(R) → H between the imaginary axis and the upper half-plane. For a half-integral
positive definite matrix M ∈ P(Z), it is given by sending M to the corresponding Heegner point
zM . This process loses the information on the determinant. We get an isomorphism P(R) ∼= H×R>0

where the second component is the determinant. The converse direction goes as follows. First, we
lift a point in H to the corresponding matrix in SL2(R). The element in P(R) is given by the matrix
times its transposed and multiplied by the determinant. More precisely,

P(R)
∼−→ H× R>0

∼= SO(2)\ SL2(R)× R>0,

M =

(
a b
b c

)
7→

(
−b + i

√
det(M)

a
,det(M)

)
,

r · gtg ←[ (SO(2) · g, r),

√
r

(
y−1 −xy−1

−xy−1 y−1(x2 + y2)

)
←[ (x + iy, r). (3.3)

The last line is an explicit computation of the map. This isomorphism maps the measure dY
det(Y )3/2

7→(
dx dy
y2 , dr

r

)
and is compatible with the action of SL2(Z) on both sides. If Y is in P(Z), the corre-

sponding point zY ∈ H is called a Heegner point. Note that if Y is a reduced matrix, then zY is in
the fundamental domain of H. We summarize the discussion in the following table:

symmetric positive
definite matrices

↔ positive-definite
quadratic forms

↔ Heegner points
(for integral forms)

{Y > 0} {Q(x, y)} H× R>0

Y =

(
α β
β δ

)
QY (x, y) = αx2 + 2βxy + δy2 zY =

−β+i
√

αδ−β2

α

rY = αδ − β2

M tYM Q(ax + b, cy + d) az+b
cz+d

Note that this isomorphism also generalizes to higher dimensions:

SO(n)\SLn(R)× R>0 → P(n)(R),

(SO(n)g, r) 7→ r1/n · gtg.

3.3 Koecher-Maass series

In this section, we define two Dirichlet series associated to a Siegel cusp form f ∈ S
(n)
k . To this

end, we consider the (shifted) Mellin transform

Λ(f, s) =

∫
Y >0

f(iY ) det(Y )
k−1
2 +s dY

det(Y )(n+1)/2
.

This converges for Re(s) large enough. The measure dY
det(Y )(n+1)/2 is invariant under multiplication

by a scalar. There is an action by SL2(R) on H(n) via the embedding given by the second generator
in Equation (3.2). It is given by A · z = AtZA. Let P(n)(R) be the set of symmetric positive-
definite matrices in Mn(R) and P(n)(Z) be the restriction to integral coefficients. The following
computations are valid for Re(s) large enough. This depends on a bound for a(T ), for example
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|a(T )| ≪f det(T )k given in Lemma 12.1 of [Kli]. We have

Λ(f, s) =

∫
Y >0

∑
T>0

a(T ) det(T )ℓ/2e−2π tr(TY ) det(Y )
k−1
2 +s dY

det(Y )(n+1)/2

=
∑

T∈P(n)(Z)/PSLn(Z)

a(T ) det(T )ℓ/2

ϵ(T )

∫
SLn(Z)\P(n)(R)

e−2π tr(TY ) det(Y )
k−1
2 +s dY

det(Y )(n+1)/2

=
∑

T∈P(n)(Z)/PSLn(Z)

a(T )

ϵ(T ) det(T )1/4+s

∫
SLn(Z)\P(n)(R)

e−2π tr(Y ) det(Y )
k−1
2 +s dY

det(Y )(n+1)/2
,

where ϵ(T ) = #{U ∈ PSLn(Z) | U tTU = u}. The last integral is computed in Lemma 6.2 of [Kli].
It is equal to

Gn(s) :=

∫
SLn(Z)\P(n)(R)

e−2π tr(Y ) det(Y )
k−1
2 +s dY

det(Y )(n+1)/2

= 2(2π)−ns
n∏

r=1

π(r−1)/2Γ

(
k − 1

2
+ s− r − 1

2

)
.

We define

L(f, s) =
∑

T∈P(n)(Z)/PSLn(Z)

a(T )

ϵ(T ) det(T )1/4+s
.

So Λ(f, s) = L(f, s)Gn(s).

Proposition 3.3 ([Maa], Chapter 15). Let k be an even integer and f ∈ S
(n)
k . The function L(f, s)

has a holomorphic continuation to the whole complex plane. Moreover, it is bounded on vertical
strips and it satisfies the functional equation

Λ(f, s) = (−1)nk/2Λ(f, 1− s).

Kaori Imai, in her paper [Ima], gave another perspective. This was generalized by Rainer
Weissauer in unpublished notes and revisited in [AMS]. For the rest of this chapter, we restrict
ourselves to n = 2. We saw in the last section an isomorphism SL2(Z)\P(Z) ∼= SL2(Z)\H × R>0.
On the two terms of the right side, we have a spectral theory. Therefore, we can compute the double

spectral inversion of a form f ∈ S
(2)
k , that is the Mellin transform and the spectral decomposition

with respect to Λ. More precisely, let iY ∈ H(2) be a matrix on the imaginary axis with det(Y ) = 1

and f ∈ S
(2)
k . We can see f as a function of (zY , r) ∈ H× R>0. We consider

f̃s(zY ) =M(f)(zY , s) =

∫ ∞

0

f(ir1/2Y )rs
dr

r
,

where M(f) is the Mellin transform with respect to the variable r. This is a function of zY ∈ H
that is invariant under the action of SL2(Z). It is natural to decompose it with respect to the
spectral decomposition of L2(SL2(Z)\H). Thus, for ϕ ∈ Λ, i.e. a Mass cusp form, Eisenstein series
or the constant function, we want to consider

⟨f̃s, ϕ⟩ = ⟨M(f)(·, s), ϕ⟩.

We compute this inner product in Lemma 3.4. But first, we need to introduce some notations. We
define the twisted Koecher-Maass series

L(f × ϕ, s) :=
∑

T∈P(Z)/PSL2(Z)

a(T )

ϵ(T ) det(T )1/4+s
ϕ(zT ), (3.4)

where a(T ) is the T -th Fourier coefficient of f and ϵ(T ) = #{U ∈ PSL2(Z) | U tTU = T} is the
number of automorphisms of T . The corresponding gamma factor is

G(f × ϕ, s) = G(tϕ, k, s) := 4(2π)−(k−1)−2sΓ

(
ℓ

2
+ s +

itϕ
2

)
Γ

(
ℓ

2
+ s− itϕ

2

)
.

Recall that ℓ = k − 3/2 and that tϕ is the spectral parameter of ϕ.
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Lemma 3.4 ([Ima], Proposition 3.4, [Maa], pp. 85–94). Let f ∈ S
(2)
k , ϕ ∈ Λ and s ∈ C. If ϕ is

even, we have

⟨M(f)(·, (k − 1)/2 + s), ϕ⟩ =

√
π

4
L(f × ϕ̄, s)G(f × ϕ̄, s).

If ϕ is odd, the inner product vanishes.

Proof. First, we rearrange the terms

⟨M(f)(·, (k − 1)/2 + s), ϕ⟩ =

∫
PSL2(Z)\H

∫ ∞

0

f(z, r)ϕ(z)r
k−1
2 +s dr

r
dϕ

=
∑

T∈P(Z)

a(T ) det(T )ℓ/2
∫
PSL2(Z)\H

∫ ∞

0

e−2π tr(TY )ϕ(z)r
k−1
2 +s dr

r
dϕ

=
∑

T∈PSL2(Z)\P(R)

a(T )

ϵ(T )
det(T )ℓ/2

∫
P(Z)

e−2π tr(TY )ϕ(z) det(Y )
k−1
2 +s dY

det(Y )3/2
.

The last integral was computed by Maass [Maa], pp. 85-94. He proved that∫
P(R)

e−2π tr(TY )ϕ(z) det(Y )
k−1
2 +s dY

det(Y )3/2
=

√
π(2π)−k+1−2s

det(T )
k−1
2 +s

ϕ(zT )
∏
±

Γ

(
ℓ

2
+ s± itu

2

)
.

We obtain that the inner product is

√
π

∑
T∈PSL2(Z)\P(R)

a(T )

ϵ(T ) det(T )−1/4+s
ϕ(zT )(2π)−k+1−2s

∏
±

Γ

(
ℓ

2
+ s± itu

2

)

=

√
π

4
L(f × ϕ̄, s)G(f × ϕ̄, s).

Proposition 3.5 ([Ima], Theorem 3.5). The Dirichlet series L(f × ϕ, s) extends to an entire
function on C that is bounded in vertical strips and with the functional equation

Λ(f × ϕ, s) := L(f × ϕ, s)G(f × ϕ, s) = L(f × ϕ, 1− s)G(f × ϕ, 1− s).

Remark. Note that this function does not have an Euler product and is not in the Selberg class.

3.4 The Kitaoka formula

The Petersson formula was generalized by Kitaoka to Siegel modular forms of degree 2 [Kit]. It is
proved in the same way. We consider the Poincaré series

PQ(Z) =
∑

γ∈Γ∞\ Sp4(Z)

j(γ, Z)−k etr(QγZ) =
∑

T∈P(Z)

hQ(T ) det(T )ℓ/2 etr(TZ),

where j(( A B
C D ) , Z) = det(CZ + D). Klingen [Kli] showed that these functions satisfy

⟨f, PQ⟩ = 8ck det(Q)−ℓ/2af (Q),

with ck =
√
π
4 (4π)3−2kΓ(k− 3/2)Γ(k− 2). We compute ⟨PT , PQ⟩ in two different ways: first, using

the above property and second, using an orthonormal basis B
(2)
k of the space of cusp forms of

weight k. We obtain

8ckhQ(T ) det(T )−ℓ/2 = ⟨PQ, PT ⟩ =
∑

f∈B
(2)
k

⟨PQ, f⟩⟨f, PT ⟩ = 64c2k
∑

f∈B
(2)
k

det(TQ)−ℓ/2 af (T )af (Q)

∥f∥22
.
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The Fourier coefficients hQ(T ) were computed by Kitaoka. We need to introduce a few notations.
Let C ∈M2(Z) with det(C) ̸= 0. The generalized Kloosterman sum of rank 2 is

K(Q,T ;C) :=
∑

(A B
C D )

etr(AC−1Q + C−1DT ),

where the sum is over matrices ( ∗ ∗
C ∗ ) ∈ Sp2n(Z) in a system of representatives of Γ∞\ Sp4(Z)/Γ∞.

This Kloosterman sum can be factorized with respect to elementary divisors of C. For C =(
c1 0
0 c1c2

)
, a trivial upper bound is given by the number of representatives of the quotient, which

gives
|K(Q,T ;C)| ≤ c31c2 ≤ |det(C)|3/2.

We also have square root cancellation for this sum. This was computed by Tóth in a mostly
elementary way [Tót].

The rank 1 Kloosterman sum is defined in the following way. This setup comes from a family
of representatives described using Smith normal form. We consider two integers c, s and matrices

U ∈
{(
∗ ∗
0 ∗

)}
\GL2(Z), V ∈ GL2(Z)/

{(
1 ∗
0 ∗

)}
(3.5)

and define

P = UQU t =
(

p1 p2/2
p2/2 p4

)
, S = V −1TV −t =

(
s1 s2/2

s2/2 s4

)
.

Suppose that the bottom right entries of P and S are both equal to s. In that case, we define

H±(P, S; c) := δp4=s4

∑∗

d1 mod c

∑
d2 mod c

e

(
d̄1s4d

2
2 ∓ d̄1p2d2 + s2d2 + d̄1p1 + d1s1

c
∓ p2s2

2cs4

)
.

Here
∑∗

means that the sum is on d1 coprime to c. We have the trivial bound |H±(P, S, c)| ≤ c2.

Finally, the generalized Bessel function is defined in the following way. Let P be a diagonalizable
matrix with eigenvalues equal to the squares of s1, s2 > 0. We define

Jk(P ) =

∫ π/2

0

Jk(4πs1 sin(θ))Jk(4πs2 sin(θ)) sin(θ)dθ,

where Jk is the Bessel function of the first kind. Combining everything, we get the following:

Theorem 3.6 ([Kit]). Let k ≥ 6 even, B
(2)
k be an orthogonal basis for the space of Siegel modular

forms of degree 2 and weight k. Then

ck
∑

f∈S(2)
k

af (T )af (Q)

∥f∥22
= δQ∼T # Aut(T )

+
∑
±

∑
c,s≥1

∑
U,V

(−1)k/2
√

2π

c3/2s1/2
H±(UQU t, V −1TV −t; c)Jℓ

(
4π
√

det(TQ)

cs

)

+ 8π2
∑

det(C) ̸=0

K(Q,T ;C)

|det(C)|3/2
Jℓ(TC−1QC−t)

where U, V run over matrices in Equation (3.5).

Remark. On the right-hand side, the three terms are called, in order, the diagonal term, the rank
1 and the rank 2 terms.

Remark. This was generalized in the level aspect to the Siegel subgroup by Chida, Katsurada and

Matsumoto [CKM]. The only difference for Γ
(2)
0 (N) is that we restrict to N |c and N |det(C) in the

second and the third terms.
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It is also possible to generalize the Kitaoka formula to higher degree. Unfortunately, here are
only basic descriptions of the generalized Kloosterman sums and Bessel functions appearing. For
the term of full rank, we get

∑
C∈Mn(Z)
det(C )̸=0

K(n)(Q,T ;C)

|det(C)|k
J (n)
ℓ (Q,T ;C),

where
K(n)(Q,T ;C) :=

∑
(A ∗
C D )∈Γ∞\ Sp2n(Z)/Γ∞

etr(AC−1Q + C−1DT )

as above and

J (n)
k (Q,T ;C) :=

∫
X

etr(−Z−1C−1QC−t − ZT ) det(Z)−kdX,

We discuss that topic in more detail in Chapter 10.





Chapter 4

First manipulations

In this chapter, we start the proof of Theorem 1.4. We prove Proposition 1.5, establish an ap-
proximate functional equation and insert the Kitaoka formula in Nav(K). We then prove decay
properties of the cut-off function appearing in the approximate functional equation.

4.1 Spectral decomposition and Dirichlet series

We recall the discussion in Section 3.3. We consider the spectral decomposition of L2(SL2(Z)\H).
Let Λ be a set of spectral components. For any g ∈ L2(SL2(Z)\H), we have the spectral decom-
position g(z) =

∫
Λ
⟨g, ϕ⟩ϕ(z)dϕ. We also write M(g) for the Mellin transform of g. We have the

Parseval identities for this decomposition and for the Mellin transform:∫
SL2(Z)\H

|g(z)|2 dx dy
y2

=

∫
Λ

|⟨g, ϕ⟩|2dϕ,
∫ ∞

0

|g(r)|2r2c dr
r

=
1

2π

∫ ∞

−∞
|M(g)(c + it)|2dt,

with c ∈ R such that both sides of the equation make sense. We write f(z, r) as a function of
z ∈ H and r > 0. LetM(f)(z, r) denote the Mellin transform with respect to r. We apply the two
Parseval identities. This gives∫

SL2(Z)\H

∫ ∞

0

|f(z, r)|2rk dr
r

dx dy

y2
=

∫
SL2(Z)\H

1

2π

∫ ∞

−∞
|M(f)(z, k/2 + it)|2dtdx dy

y2

=
1

2π

∫ ∞

−∞

∫
Λ

|⟨M(f)(·, k/2 + it), ϕ⟩|2dϕ dt

We consider the restriction norm

N(f) :=
π2

90∥f∥22

∫
SL2(Z)\P(R)

|f(iY )|2 det(Y )k
dY

det(Y )3/2
.

Applying the Parseval identities, we get

N(f) =
π2

90∥f∥22
1

2π

∫ ∞

−∞

∫
Λ

|⟨M(f)(·, k/2 + it), ϕ⟩|2dϕ dt.

The Mellin transform can be computed explicitly. The Mellin transform of f is given in Proposition
3.4. The result is

⟨M(f)(·, (k − 1)/2 + s), ϕ⟩ =

√
π

4
L(f × ϕ̄, s)G(f × ϕ̄, s).

For odd ϕ, the scalar product inside the r-integral vanishes. For even Hecke-Maass cusp forms ϕ,
we have ϕ̄ = ϕ and for Eisenstein series, |L(f × ϕ, s)| = |L(f × ϕ̄, s)|. Inserting this in the norm
gives us

N(f) =
π2

2880∥f∥22

∫ ∞

−∞

∫
Λev

|Λ(f × ϕ, 1/2 + it)|2dϕ dt.

This concludes the proof of Proposition 1.5.

27
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4.2 Approximate functional equation

Now, we want to evaluate the series L(f×ϕ, s) on the critical line using its Dirichlet series. For this,
we compute an approximate functional equation. Note that if f and ϕ are Hecke eigenfunctions,
then L(f × ϕ, s) = L(f × ϕ, s̄) for cusp forms and the constant function and

L(f × E(·, 1/2 + iτ), s) = L(f × E(·, 1/2− iτ), s̄) = ν(1/2− iτ)L(f × E(·, 1/2 + iτ), s̄)

for Eisenstein series, where

ν(s) = π1/2 Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

ζ(2s)
=

π−(1−s)Γ(1− s)ζ(2(1− s))

π−sΓ(s)ζ(2s)
.

Let νϕ be ν(1/2 − iτ) with ν as above if ϕ an Eisenstein series and 1 if ϕ is a cusp form or the

constant function. Then νϕϕ(z) = ϕ̄(z) and L(f × ϕ, s) = νϕL(f × ϕ, s̄). Consider

I(f × ϕ, s) =
1

2πi

∫
(3)

ev
2

Λ(f × ϕ, v + s)Λ(f × ϕ̄, v + 1− s)
dv

v

=
1

2πi

∫
(3)

ev
2

νϕΛ(f × ϕ, v + s)Λ(f × ϕ, v + 1− s)
dv

v
.

We take s = 1/2+it. The integrand has no poles except for v = 0 and decays rapidly at∞. Moving
the path of integration to Re(v) = −3, we get

I(f×ϕ, 1/2+it) =
1

2πi

∫
(−3)

ev
2

νϕΛ(f×ϕ, v+1/2+it)Λ(f×ϕ, v+1/2−it)dv
v

+|Λ(f×ϕ, 1/2+it)|2.

Using the functional equation of Λ(f × ϕ, s), we get

1

2πi

∫
(−3)

ev
2

νϕΛ(f × ϕ, v + 1/2 + it)Λ(f × ϕ, v + 1/2− it)
dv

v

=
1

2πi

∫
(−3)

ev
2

νϕΛ(f × ϕ,−v + 1/2− it)Λ(f × ϕ,−v + 1/2 + it)
dv

v

= − 1

2πi

∫
(3)

ev
2

νϕΛ(f × ϕ, v + 1/2 + it)Λ(f × ϕ, v + 1/2− it)
dv

v

= −I(f × ϕ, 1/2 + it).

We conclude that |Λ(f × ϕ, 1/2 + it)|2 = 2I(f × ϕ, 1/2 + it). Now, we expand the Dirichlet series
of L(f × ϕ, s) at s = v + 1

2 + it:

I(f × ϕ, s) =
1

2πi

∫
(3)

ev
2

G(f × ϕ, v + 1/2 + it)G(f × ϕ, v + 1/2− it)

·
∑

T,Q∈P(Z)/PSL2(Z)

a(T )a(Q)

ϵ(T )ϵ(Q) det(TQ)1/4+v+1/2

(
det(Q)

det(T )

)it

ϕ(zT )ϕ̄(zQ)
dv

v

=
∑

T,Q∈P(Z)/PSL2(Z)

a(T )a(Q)

ϵ(T )ϵ(Q) det(TQ)3/4
ϕ(zT )ϕ̄(zQ)

·
(

det(Q)

det(T )

)it
1

2πi

∫
(3)

ev
2

G(f × ϕ, v + 1/2 + it)G(f × ϕ, v + 1/2− it) det(TQ)−v dv

v
.

This gives for the norm

N(f) =
π2

1440

∑
T,Q∈P(Z)/PSL2(Z)

1

ϵ(T )ϵ(Q) det(TQ)3/4

∫
Λev

∫ ∞

−∞

(
det(Q)

det(T )

)it

· 1

2πi

∫
(3)

ev
2

G(tϕ, k, v + 1/2 + it)G(tϕ, k, v + 1/2− it)(x1x2)−v dv

v
dt ϕ(zT )ϕ̄(zQ)dϕ

· a(T )a(Q)

∥f∥22
.
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Note that only the last term depends on f (for a fixed k). We consider Nav as defined in Equation
(1.3). This is amenable to the Kitaoka formula as stated in 3.6.

4.3 Cut-off

We define the function V (x1, x2, τ, k) as∫ ∞

−∞

(
x2

x1

)it
1

2πi

∫
(3)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(x1x2)−v dv

v
dt. (4.1)

With this definition, we rewrite the norm in a compact way:

N(f) =
π2

1440

∑
T,Q∈P(Z)/PSL2(Z)

1

ϵ(T )ϵ(Q) det(TQ)3/4

·
∫
Λev

V (det(T ),det(Q), tϕ, k)ϕ(zT )ϕ̄(zQ)dϕ
a(T )a(Q)

∥f∥22
. (4.2)

Lemma 4.1. Let x1, x2 > 0, τ ∈ C such that | Im(τ)| ≤ 2, k large enough and A > 0. The function
V satisfies the following bounds:(

x1√
k

)j1 ( x2√
k

)j2

k
1
2 j3+j4

dj1

dxj1
1

dj2

dxj2
2

dj3

dτ j3
dj4

dkj4
V (x1, x2, τ, k)

≪A,j1,j2,j3,j4k
2
(

1 +
x1x2

k4

)−A (
1 + k1/2| log(x2/x1)|

)−A
(

1 +
|τ |2

k

)−A

.

(4.3)

Remark. This lemma is similar to Equations (10.5) in [BC]. There is an error in the derivatives of
x1 and x2. The integral over t add an extra k1/2 term for each derivative. Note that the term is
corrected when used later in Section 10.

Proof. We can bound G using the decay of the Γ function. We establish the relevant bounds in
the next chapter. First, we consider the inner integral

V1(x, t, τ, k) =
1

2πi

∫
(3)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)x−v dv

v

where x > 0 and the other variables are as above. We prove

xj1k
1
2 j2+

1
2 j3+j4

dj1

dxj1

dj2

dtj2
dj3

dτ j3
dj4

dkj4
V1(x, t, τ, k)≪A,j1,j2,j3,j4 k3/2

(
1 +

x

k4

)−A
(

1 +
t2 + |τ |2

k

)−A

.

(4.4)

This is similar to Equation (9.16) in [BC]. In Lemma 5.2, all the derivatives except the one in x
are already treated. First, we move the v-integral to a large real part Re(v) = A. Then we apply
Lemma 5.2 and get

xj dj

dxj
V1(x, t, τ, k)

=
1

2πi

∫
(A)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)x−v(−v) . . . (−v − j + 1)

dv

v

=
1

2πi

∫
(A)

ev
2

GA(k, t, τ, v)x−v(−v) . . . (−v − j + 1)
dv

v
+ OA(k−A)

≪A k3/2+4A 1

2πi

∫
(A)

e−|v|2
(

1 +
t2 + |τ |2 + Im(v)2

k

)−A

x−A|v| . . . |v + j − 1|dv
|v|

+ OA(k−A)

≪A,j k
3/2
( x

k4

)−A
(

1 +
t2 + |τ |2

k

)−A

.
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Now, we move the v-integral to Re(v) = − 1
4 . If j = 0, we pick up a pole at v = 0.

xj dj

dxj
V1(x, t, τ, k)

=
1

2πi

∫
(−1/4)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)x−v(−v) . . . (−v − j + 1)

dv

v

=
1

2πi

∫
(−1/4)

ev
2

GA(k, t, τ, v)x−v(−v) . . . (−v − j + 1)
dv

v
+ δj0GA(k, t, τ, 0) + OA(k−A)

≪A k1/2
1

2πi

∫
(−1/4)

e−|v|2
(

1 +
t2 + |τ |2 + Im(v)2

k

)−A

x1/4|v| . . . |v + j − 1|dv
|v|

+ k1/2
(

1 +
t2 + |τ |2 + Im(v)2

k

)−A

+ OA(k−A)

≪A k3/2
(( x

k4

)1/4
+ δj0

)(
1 +

t2 + |τ |2

k

)−A

.

We conclude that Equation (4.4) holds. We consider now the t-integral. The only derivatives that
we need to consider are the ones in x1 and x2. First, we integrate by parts.

V (x1, x2, τ, k) =

∫ ∞

−∞

(
x2

x1

)it

V1(x1x2, t, τ, k)dt

=

∫ ∞

−∞
(i log(x2/x1))−j

(
x2

x1

)it
dj

dtj
V1(x1x2, t, τ, k)dt

≪A,j k
3/2(k1/2| log(x2/x1)|)−j

(
1 +

x1x2

k4

)−A
∫ ∞

−∞

(
1 +

t2 + |τ |2

k

)−A

dt

≪A,j k
2(k1/2| log(x2/x1)|)−j

(
1 +

x1x2

k4

)−A
(

1 +
|τ |2

k

)−A

.

Considering j = 0 and j = A, we get the correct result for j1 = j2 = 0 in Equation (4.3). If we
differentiate with respect to x1 or x2, we get an extra factor 1

x1
respectively 1

x2
and another factor

of size either 1 or k1/2. We conclude that the result holds.



Chapter 5

Technical lemmas

We gather here various estimates and lemmas for the rest of the thesis. They come from Section 6
of [BC] and Section 8 of [BKY].

5.1 Gamma factors

Lemma 5.1 ([BC], Lemma 22). Let k ≥ 1, s = σ+it such that k+σ ≥ 1/2 and A ∈ N, j1, j2 ∈ N0.
Then

Γ(k + s)

Γ(k)
= ksGA,σ(k, t) + OA,σ((k + |t|)−A),

where

kj1+j2/2
dj1

dkj1
dj2

dtj2
GA,σ(k, t)≪A,σ,j1,j2

(
1 +

t2

k

)−A

.

Moreover,
Γ(k + s)

Γ(k)
= ks exp

(
− t2

2k

)(
1 + Oσ

(
|t|
k

+
t4

k3

))
.

Lemma 5.2 ([BC], similar to Corollary 23). Let A ≥ 0, σ ≥ −1/4, t ∈ R, τ ∈ C such that
| Im(τ)| ≤ 2 and k ∈ 2N. Then

c
−1/2
k G(τ, k, σ + 1/2 + it)≪A,σ k2σ+3/4

(
1 +

t2 + |τ |2

k

)−A

.

We also have, for v ∈ C,

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it) = GA(k, t, τ, v) + ORe(v),A(k−A),

where

kj1+j2/2+j3/2
dj1

dkj1
dj2

dtj2
dj3

dτ j3
GA(k, t, τ, v)≪A,j1,j2,j3,Re(v) k

3/2+4Re(v)

(
1 +

t2 + |τ |2 + Im(v)2

k

)−A

.

Moreover, for t, τ ≪ k1/2+ϵ, we have

c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it) =

2

π5/2
k3/2 exp

(
−4t2 + τ2

k

)(
1 + O(k−1/2+ϵ)

)
.

Proof. Using the Legendre duplication formula, Γ(z)Γ(z + 1/2) = 21−2z
√
πΓ(2z), we get

ck = 2
√
π(4π)3−2kΓ(k − 3/2)Γ(k − 2)

= 2
√
π(4π)3−2k22k−7/2−2π−1Γ

(
k − 3/2

2

)
Γ

(
k − 1/2

2

)
Γ

(
k − 2

2

)
Γ

(
k − 1

2

)
= 2−1(2π)5/2−2kΓ

(
k − 3/2

2

)
Γ

(
k − 1/2

2

)
Γ

(
k − 2

2

)
Γ

(
k − 1

2

)
.
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Taking the square of the gamma factor, this gives

c−1
k G(τ, k, σ + 1/2 + it)2 =

24(2π)−2k−4σ−4it

2−1(2π)5/2−2k

Γ
(

k−1/2
2 + σ + it + iτ

2

)2
Γ
(

k−1/2
2 + σ + it− iτ

2

)2
Γ
(

k−3/2
2

)
Γ
(

k−1/2
2

)
Γ
(
k−2
2

)
Γ
(
k−1
2

)
= 25(2π)−4(σ+it)−5/2

Γ
(

k−1/2
2 + σ + it + iτ

2

)2
Γ
(

k−1/2
2 + σ + it− iτ

2

)2
Γ
(

k−3/2
2

)
Γ
(

k−1/2
2

)
Γ
(
k−2
2

)
Γ
(
k−1
2

) .

Applying Lemma 5.1, we get

≪A,σ (k/2)4σ+1/2+0+3/4+1/4

(
1 +

(t + τ)2

k

)−A

≪A,σ k4σ+3/2

(
1 +

t2 + |τ |2

k

)−A

.

This gives the first formula. Similarly, for the second formula, we compute

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)

= 25(2π)−4v−5/2
Γ
(

k−1/2
2 + v + it + iτ

2

)
Γ
(

k−1/2
2 + v + it− iτ

2

)
Γ
(

k−3/2
2

)
Γ
(

k−1/2
2

)
·

Γ
(

k−1/2
2 + v − it + iτ

2

)
Γ
(

k−1/2
2 + v − it− iτ

2

)
Γ
(
k−2
2

)
Γ
(
k−1
2

)
= 25(2π)−4v−5/2(k/2)4v+3/2GA,σ(k, t, τ, Im(v)) + OA,σ

(
(k + |t|+ |τ |)−A

)
,

where GA,σ is the combination of the functions GA,σ in Lemma 5.1 for the four ratios of gamma
functions. We have the following properties for the GA,σ function:

kj1+j2/2+j3/2
dj1

dkj1
dj2

dtj2
dj3

dτ j3
GA,σ(k, t, τ, Im(v))≪A,σ,j1,j2,j3

(
1 +

Im(v)2 + t2 + |τ |2

k

)−A

.

We used that if k ≪ Im(v)2 + t2 + |τ |2, then k ≪ (Im(v)± t± τ)2 for one of the choices of signs.
The last equation comes from the corresponding formula in Lemma 5.1. We get

c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)

= 25(2π)−5/2
Γ
(

k−1/2
2 + it + iτ

2

)
Γ
(

k−1/2
2 + it− iτ

2

)
Γ
(

k−1/2
2 − it + iτ

2

)
Γ
(

k−1/2
2 − it− iτ

2

)
Γ
(

k−3/2
2

)
Γ
(

k−1/2
2

)
Γ
(
k−2
2

)
Γ
(
k−1
2

)
= 25(2π)−5/2(k/2)3/2 exp

(
−2(t + τ/2)2 + 2(t− τ/2)2

k

)(
1 + O(k−1/2+ϵ)

)
=

2k3/2

π5/2
exp

(
−4t2 + τ2

k

)(
1 + O(k−1/2+ϵ)

)
.

5.2 The J Bessel function and the spectral integral

Concerning the J-Bessel function, we need the estimates

Jk(x)≪1, Jk(x)≪
(x
k

)k
, Jk(x)≪x−1/2. (5.1)
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The first two are valid for x > 0 and k > 2 and the last one for x ≥ 2k as stated in Equations
(4.1), (4.2) and (4.3) in [Blo]. They can be deduced from Equations 8.411.13, 8.411.4 and 8.451.1
in [GR]. Moreover, Equation (4.7) in [Blo], which is a correction of Equation 2.12.20 in [PBM],
says that the product of two Bessel functions can be rewritten in the following way:

Jk(4πs1 sin(α))Jk(4πs2 sin(α))

=
1

π
Re

(
e

(
−k + 1

4

)∫ ∞

0

e

(
(s21 + s22)t +

sin(α)2

t

)
Jk(4πs1s2t)

dt

t

)
. (5.2)

The following lemma is used to take advantage of the average over k:

Lemma 5.3 ([BC], Lemma 20 and remark afterward). Let x > 0, A > 0, K > 1, w : R → C
smooth with support in [1, 2], such that w(j)(x)≪ϵ K

jϵ. Then there exist smooth functions w0, w−
and w+ such that, for all j ∈ N0, we have∑

k even

ikw

(
k

K

)
Jk−3/2(x) = w0(x) + eixw+(x) + e−ixw−(x)

and

w0(x)≪A K−A,

dj

dxj
w±(x)≪j,A

(
1 +

K2

x

)−A
1

xj

If x ≥ 2K, we also have w0, w± ≪ K/
√
x. Moreover, if w depends on other parameters with control

over the derivatives, so do w±.

We state a general upper bound for the spectral integral.

Lemma 5.4. Let z1, z2 ∈ H with Im(z1), Im(z2)≫ T and T ≥ 1. Then∫
Λev

|tϕ|≪T

|ϕ(z1)ϕ(z2)|dϕ≪A T
√

Im(z1) Im(z2).

Proof. We apply the Cauchy-Schwarz inequality. We get∫
Λev

|tϕ|≪T

|ϕ(z1)ϕ(z2)|dϕ≪
∫

Λ
|tϕ|≪T

|ϕ(z1)ϕ(z2)|dϕ

≪

(∫
Λ

|tϕ|≪T

|ϕ(z1)|2dϕ

)1/2(∫
Λ

|tϕ|≪T

|ϕ(z2)|2dϕ

)1/2

.

We bound the two terms with Proposition 15.8 in [IK]. The hypothesis give

≪
(
T 2 + T Im(z1)

)1/2 (
T 2 + T Im(z2)

)1/2
≪ T

√
Im(z1) Im(z2).

5.3 Stationary phase

We state in this section two lemma from [BKY] about estimates on oscillating integral. Let w be
a smooth function with support on [α, β] and h be a smooth function on [α, β]. We want to bound
the integral

I =

∫ ∞

−∞
w(t)eih(t)dt.

This depends on the vanishing of h′ in the interval [α, β].
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Lemma 5.5 ([BKY], Lemma 8.1). Let Y ≥ 1, X,U,R,Q > 0. Suppose that

w(j)(t)≪j XU−j , for j = 1, 2, . . .

|h′(t)| ≥ R,

h(j)(t)≪j Y Q−j , for j = 2, 3, . . .

Then
I ≪A (β − α)X[(QR/

√
Y )−A + (RU)−A].

Lemma 5.6 ([BKY], Proposition 8.2). Let 0 < δ < 1/10, X,U, Y,Q > 0, Z = Q+X+Y +β−α+1
be such that

Y ≥ Z3δ, β − α ≥ U ≥ QZδ/2

√
Y

.

Suppose that

w(j)(t)≪j XU−j , for j = 0, 1, . . .

h′′(t)≫ Y Q−2,

h(j)(t)≪j Y Q−j , for j = 1, 2, . . .

and that there exists a unique t0 ∈ [α, β] such that h′(t0) = 0. Then

I ≪ QX√
Y
.



Chapter 6

Diagonal term

In this chapter, we compute the diagonal term of the Kitaoka formula, where T ∼ Q. For this, we
combine Equations (1.3) and (4.2) with the Kitaoka formula. We have in particular that det(T ) =
det(Q) and ϵ(T ) = ϵ(Q). The equation for the diagonal term simplifies to

Ndiag
av (K) =

12π2

ωK4

∑
k∈2N

w

(
k

K

) ∑
T∈P(Z)/PSL2(Z)

# Aut(T )

ϵ(T )2 det(T )3/2

·
∫
Λev

V (det(T ),det(T ), tϕ, k) |ϕ(zT )|2 dϕ.

We deal with this expression in the following steps. First, we analyze the spectral integral using
the pre-trace formula. This requires a non-trivial argument and takes up an important part of
this chapter. In particular, we need to count Heegner points close to the edge of the fundamental
domain and take care of the restriction to the even spectrum. After that, the rest of the summations
and estimations are handled. We finish by the computation of the average over k.

We fix some notations for this chapter. Let T be a reduced positive-definite matrix of deter-
minant D. It corresponds to a Heegner zT in the fundamental domain via Equation (3.3). We use
the notation

T =

(
α β
β δ

)
←→ zT =

−β + i
√
D

α
.

6.1 The pre-trace formula

First, we do not consider the even spectrum. We apply the pre-trace formula (see for example
[Iwa], Section 10.1). It states that∫

Λ

V (det(T ),det(T ), tϕ, k) |ϕ(zT )|2 dϕ =
∑

γ∈SL2(Z)

κ(u(zT , γzT )).

The function κ is the Harish-Chandra inverse of V and it only depends on the point pair invariant

u(z1, z2) = |z1−z2|2
4 Im(z1) Im(z2)

. We keep these notations in this chapter. Recall that T is reduced, so

2|β| ≤ α ≤ δ and the decay properties of V give D ≪ k2+ϵ, up to a negligible error. In particular,
zT is in the classical fundamental domain of Γ\H. For the edge of the domain, we pick the pieces
with Re(z) ≤ 0. The goal of the following subsections is to prove the following theorem.

Theorem 6.1. For all ϵ > 0, we have∑
T∈P(Z)/PSL2(Z)

# Aut(T )

ϵ(T )2 det(T )3/2

∫
Λ

V (det(T ),det(T ), τ, k) |ϕ(zT )|2 dϕ

=
∑

T∈P(Z)/PSL2(Z)

2# Aut(T )

ϵ(T ) det(T )3/2
κ(0) + Oϵ(k

2.5+ϵ), (6.1)
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If we reduce to the even spectrum, we get∑
T∈P(Z)/PSL2(Z)

# Aut(T )

ϵ(T )2 det(T )3/2

∫
Λev

V (det(T ),det(T ), τ, k) |ϕ(zT )|2 dϕ

=
∑

T∈P(Z)/PSL2(Z)

(
# Aut(T )

ϵ(T )

)2
1

2 det(T )3/2
κ(0) + Oϵ(k

2.5+ϵ),

Remark. We will see later that the term with κ(0) is of size k3 log(k). The two equations tell us
that, on average over T , the terms on the spectral side with u ̸= 0 are of lower size.

To get κ, we want to compute the Harish-Chandra inverse transform of the function h(τ) =
V (det(T ),det(T ), τ, k). We know that this function of τ is even, decays exponentially and is holo-
morphic in the strip | Im(τ)| ≤ 2. Therefore it is suitable for the Harish-Chandra inversion. A first
way to get κ in terms of h is given by Equation (1.62’) in [Iwa]:

κ(u) =
1

4π

∫ ∞

−∞

1

π

∫ π

0

(2u + 1 + 2
√
u(u + 1) cos(θ))−

1
2−iτdθ h(τ)τ tanh(πτ)dτ.

At u = 0, we get

κ(0) =
1

4π

∫ ∞

−∞
V (det(T ),det(T ), τ, k)τ tanh(πτ)dτ. (6.2)

For u ≪ 1, the θ-integral is of size ≪ 1 because 2u + 1 − 2
√
u(u + 1) is bounded away from 0.

Using the cut-off of V given in Equation (4.3) and τ tanh(τ) = |τ |+ O(1), we get a trivial bound

κ(u)≪A k2
(

1 +
det(T )2

k4

)−A ∫ ∞

−∞
|τ |
(

1 +
|τ |2

k

)−A

dτ ≪A k3
(

1 +
det(T )2

k4

)−A

. (6.3)

We also need the following lemma.

Lemma 6.2 ([Iwa], Lemma 2.11). Let z ∈ H with Im(z) ≥ 1/10 and X > 0. We have

#{γ ∈ SL2(Z) | u(z, γz) < X} ≪
√

X(X + 1) Im(z) + X + 1,

#{γ ∈ SL2(Z) | u(z, γ(−z̄)) < X} ≪
√

X(X + 1) Im(z) + X + 1.

Remark. Note that in our case, Im(zT ) =
√
D
α ≪ k1+ϵ up to a negligible error.

6.2 The full spectrum

We do not restrict to the even spectrum at first. In this section, we prove a strong decay bound
for κ(u) when u is large enough.

Lemma 6.3. Let ϵ > 0, A > 0, T ∈ P(Z) with det(T ) ≪ k2+ϵ and zT ∈ H the Heegner point
corresponding to T via Equation (3.3). Then∑

γ∈SL2(Z)
u(zT ,γzT )≥k−1+ϵ

|κ(u(zT , γzT ))| ≪A,ϵ k
−A.

Proof. We apply the usual three steps to get the Harish-Chandra inverse transform (see (1.64) in
[Iwa]). This gives

g(r) =
1

2π

∫ ∞

−∞
V (det(T ),det(T ), τ, k)eirτdτ,

q(v) =
1

4π

∫ ∞

−∞
V (det(T ),det(T ), τ, k)(

√
v + 1 +

√
v)2iτdτ,

κ(u) =
1

4π2i

∫ ∞

u

1√
v − u

∫ ∞

−∞
V (det(T ),det(T ), τ, k)

(
√
v + 1 +

√
v)2iτ√

v(v + 1)
τdτ dv.
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We recall the decay property of V with respect to τ , as written in Equation (4.3):

dj

dτ j
V (det(T ),det(T ), τ, k)≪A,j k

2−j/2

(
1 +

det(T )2

k4

)−A(
1 +
|τ |2

k

)−A

.

Let h(τ) = V (det(T ),det(T ), τ, k). We consider first q(v). Since h is holomorphic in a strip, we can
move the integration line to τ 7→ τ + 2i:∫ ∞

−∞
h(τ)τ(

√
v + 1 +

√
v)2iτdτ = (

√
v + 1 +

√
v)−4

∫ ∞

−∞
h(τ + 2i)(τ + 2i)(

√
v + 1 +

√
v)2iτdτ.

Integrating by parts, we get

4πq(v) = (
√
v + 1 +

√
v)−4

∫ ∞

−∞
h(τ + 2i)(τ + 2i)(

√
v + 1 +

√
v)2iτdτ

= (
√
v + 1 +

√
v)−4(−2i log(

√
v + 1 +

√
v))−1

·
∫ ∞

−∞
(h′(τ + 2i)(τ + 2i) + h(τ + 2i))(

√
v + 1 +

√
v)2iτdτ

= (
√
v + 1 +

√
v)−4(−2i log(

√
v + 1 +

√
v))−j

·
∫ ∞

−∞
(h(j)(τ + 2i)(τ + 2i) + jh(j−1)(τ + 2i))(

√
v + 1 +

√
v)2iτdτ

≪A,j (
√
v + 1 +

√
v)−4

(
log(
√
v + 1 +

√
v)
√
k
)−j

k2(k + j
√
k)

(
1 +

det(T )2

k4

)−A

.

In particular, we have a saving in k if log(
√
v + 1 +

√
v) ≫ k−1/2+ϵ/2. Since log(

√
v + 1 +

√
v) =√

v + O(v3/2) for small v, this happens if v or u is ≫ k−1+ϵ. We obtain

q(v)≪A,j (
√
v + 1 +

√
v)−4k3−jϵ/2

(
1 +

det(T )2

k4

)−A

.

Then

κ(u)≪A,j k
3−jϵ/2

(
1 +

det(T )2

k4

)−A ∫ ∞

u

dv√
v(v + 1)(v − u)(

√
v + 1 +

√
v)4

.

We split the integral in the intervals ]u, u + 1[ and [u + 1,∞[. We get∫ ∞

u

dv√
v(v + 1)(v − u)(

√
v + 1 +

√
v)4
≪ 1√

u(u + 1)(
√
u + 1 +

√
u)4

∫ u+1

u

dv√
v − u

+

∫ ∞

u+1

dv

v3

=
2√

u(u + 1)(
√
u + 1 +

√
u)4

+
1

2(u + 1)2
.

If u≫ 1, then we obtain

2√
u(u + 1)(

√
u + 1 +

√
u)4

+
1

2(u + 1)2
≪ 1

u2
.

If u≪ 1, then we have 1 + u ≍ 1 and

2√
u(u + 1)(

√
u + 1 +

√
u)4

+
1

2(u + 1)2
≪ 1√

u
.

In summary, for u≫ k−1+ϵ, we computed

κ(u)≪A,jk
3−jϵ/2

(
1 +

det(T )2

k4

)−A
1

u2
if u≫ 1,

κ(u)≪A,jk
3−jϵ/2

(
1 +

det(T )2

k4

)−A
1√
u

if u≪ 1.
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Applying Lemma 6.2, we sum over γ. For k−1+ϵ ≪ uT ≤ 1, we have

∑
γ∈SL2(Z)

k−1+ϵ≪u(zT ,γzT )≤1

|κ(u(zT , γzT ))| ≪A,j k
4.5−jϵ/2

(
1 +

det(T )2

k4

)−A

.

So for j large enough, we can cancel all the powers of k. For u ≥ 1, we split into dyadic intervals.
For X ≥ 1, we have

√
X(X + 1) Im(z) + X + 1≪ Xk1+ϵ. We get

∑
γ∈SL2(Z)

u(zT ,γzT )≥1

|κ(u(zT , γzT ))| =
∞∑

n=0

∑
u∈[2n,2n+1[

κ(u)

≪
∞∑

n=0

2nk1+ϵκ(2n)

≪A,j

∞∑
n=0

k4+ϵ−jϵ/2

(
1 +

det(T )2

k4

)−A

2−n

≪A,jk
4+ϵ−jϵ/2

(
1 +

det(T )2

k4

)−A

.

We take j large enough to conclude the proof.

Now, note that for a Heegner point z = −β+i
√
D

α , γ =
(
a b
c d

)
and z ̸= γz, we have

u(z, γz) =
|z − γz|2

4 Im(z) Im(γz)
=
|z(cz + d)− (az + b)|2

4 Im(z)2

=
(cβ2 − cD − (d− a)αβ − bα2)2 + (−2cβ

√
D + (d− a)α

√
D)2

4α2D
.

In the last line, if the second square is non-zero, we get u(z, γz) ≫ D
α2D ≫

1
α2 . If it is zero, then

2cβ = (d−a)α. Moreover, the first square is non-zero, since z ̸= γz. The first square simplifies then

to (cβ2−cD−(d−a)αβ−bα2)2 = (−c(β2+D)−bα2)2 = α2(−cδ−bα)2. Thus u(z, γz)≫ α2

α2D ≫
1
D

in that case. Up to a negligible error, we get that for zT ̸= γzT ,

u(zT , γzT )≫ min

(
1

α2
,

1

D

)
≫ k−2−ϵ.

It remains to deal with the zT and γ such that k−2−ϵ ≪ u≪ k−1+ϵ. This gives the error term
in Equation (6.1). Applying Equation (6.3) and Lemma 6.2, we see that∑

T∈P(Z)/PSL2(Z)
det(T )≪k2+ϵ

# Aut(T )

ϵ(T )2 det(T )3/2

∑
γ∈SL2(Z):

k−2−ϵ≪u(zT ,γzT )≪k−1+ϵ

|κ(u(zT , γzT ))|

≪
∑

αδ≪k2+ϵ

∑
|β|≪α

1

det(T )3/2
k3 · k−1/2+ϵ

√
det(T )

α

≪ k2.5+ϵ
∑

D′≪k2+ϵ

1

D′

≪ k2.5+2ϵ. (6.4)

This concludes the proof of Equation (6.1). We combine Lemma 6.3 and Equation (6.4) and get
the correct error term. For the term u = 0, the set {γ ∈ SL2(Z) | zT = γzT } has size 2ϵ(T ) since
it is its lift from PSL2(Z).
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6.3 The even spectrum

In this section, we prove the second equation of Theorem 6.1. Let T−1 be the −1 Hecke operator
acting by T−1ϕ(z) = ϕ(−z̄). We have

(id +T−1)ϕ(z) =

{
2ϕ(z) if ϕ is even,

0 if ϕ is odd.

This tells us that∫
Λev

V (det(T ),det(T ), tϕ, k)|ϕ(zT )|2dϕ

=
1

4

∫
Λ

V (det(T ),det(T ), tϕ, k)
(
|ϕ(zT )|2 + |ϕ(−zT )|2 + 2 Re(ϕ(zT )ϕ(−zT ))

)
dϕ.

If z is a Heegner point, then so is −zT . So we can consider Equation (6.1) when we replace |ϕ(zT )|2
by ϕ(z)ϕ(−z̄). We apply the trace formula again and we consider first the term with u = 0.

The points zT and −zT are both in the classical fundamental domain. Therefore if there ex-
ists γ ∈ SL2(Z) such that γ(−zT ) = z, it means that zT = −zT or that zT is on the edge of
the fundamental domain. In both cases, there is a γ0 such that γ0(−zT ) = zT . This gives three
possibilities: β = 0 if zT = −zT , β = − 1

2 and |zT | = 1. There γ0 is respectively id,
(
1 −1
0 1

)
and(

0 1
−1 0

)
. We can post-compose with any γ such that γzT = zT . Therefore the term ϕ(zT )ϕ(−zT )

has the same number of γ with u = 0 as the terms |ϕ(zT )|2 and |ϕ(−zT )|2. As above, the set

{γ ∈ SL2(Z) | zT = γzT } has size 2ϵ(T ). If there is such a γ0, we get in total 8ϵ(T )
4 = 2ϵ(T ) terms

for u = 0. If there is no γ0 such that γ0(−zT ) = zT , then the term ϕ(zT )ϕ(−zT ) has no term with
u = 0 on the geometric side of the pre-trace. Therefore we only get ϵ(T ). Looking at the table in
Appendix A.1, we see that the ratio between # Aut(T ) and ϵ(T ) is 4 if γ0 exists and 2 otherwise.

Thus we can write this contribution as #Aut(T )
2 . If we combine this with the factor #Aut(T )

ϵ(T )2 in

Equation (6.1), we get in total

1

2

(
# Aut(T )

ϵ(T )

)2

,

as in the second equation of Theorem 6.1.
We consider now the case u ̸= 0. The only thing that matters in the error term of Equation (6.1)

above is the distance u(z1, z2) between the two points in the trace formula. If u(zT , γ(−zT )) ≫
k−1+ϵ, then we conclude as in Lemma 6.3 using the decay of κ and Lemma 6.2. The other case is
when u(zT , γ(−zT ))≪ k−1+ϵ. The bound in Equation (6.4) is also valid in this case. This concludes
the proof of Theorem 6.1.

6.4 Main term of the pre-trace formula

We now analyze the term with u = 0 of the pre-trace formula. Applying Theorem 6.1, we have

Ndiag
av (K) =

12π2

ωK4

∑
k∈2N

w

(
k

K

) ∑
T∈P(Z)/PSL2(Z)

(
# Aut(T )

ϵ(T )

)2
1

2 det(T )3/2
κ(0) + O(K−1/2+ϵ),

with κ(0) given in Equation (6.2). The error term is the combination of Theorem 6.1 and trivial
estimates. In Appendix A, we calculate all the automorphisms of T in GL2(Z). At the end of it, a

table summarizes the computation. We see that 1
2 (#Aut(T )

ϵ(T ) )2 is 2 except if T =
(

α β
β δ

)
is diagonal,

α = δ or α = 2|β|. In these cases the ratio is equal to 8. Recall the definition of V in Equation
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(4.1). For T ∼ Q, the only part that depends on T is det(T )−2v for Re(v) > 0. We consider∑
T∈P(Z)/PSL2(Z)

(
# Aut(T )

ϵ(T )

)2
1

2 det(T )3/2+2v

= 2
∑

T∈P(Z)/PSL2(Z)

1

det(T )3/2+2v
+ 6

∑
T∈P(Z)/PSL2(Z)
#Aut(T ) ̸=2ϵ(T )

1

det(T )3/2+2v

=: 2L(v) + 6L̃(v).

Lemma 6.4. The function L̃(v) converges for Re(v) > −1/4 and is bounded on vertical strips.

Proof. Let σ = Re(v). First, we consider the case of T diagonal. We have∑
T∈P(Z)/PSL2(Z)

T diagonal

1

det(T )3/2+2v
=

∑
0<α≤δ

1

(αδ)3/2+2v
≪ ζ(3/2 + 2σ)2.

Therefore this sum converges for all σ > −1/4 and is bounded on vertical strips. The two other
cases are similar:∑
T∈P(Z)/PSL2(Z)

α=δ

1

det(T )3/2+2v
=

∑
0≤2β≤δ

0<δ

1

(δ2 − β2)3/2+2v
≪
∑
0<δ

1

δ2+4σ
≪ ζ(2 + 4σ),

∑
T∈P(Z)/PSL2(Z)

α=2|β|

1

det(T )3/2+2v
=

∑
0<2β≤δ

1

(2βδ − β2)3/2+2v
≪
∑
0<δ

∑
0<β

1

(βδ)3/2+2σ
≪ ζ(3/2 + 2σ)2.

Note that these three cases are not disjoint. This is important if one wants to estimate the values
of L̃ explicitly.

To study L(s), we need the following lemma.

Lemma 6.5 ([BC], remark after Lemma 12). Let

h̃(D) := #{T ∈ P(Z)/PSL2(Z) | det(T ) = D}

be the class number of the determinant D. We have∑
D≤X

h̃(D) =
4π

9
X3/2 −X + O(X3/4).

Remark. Note that in [BC], the determinant D corresponds to the discriminant −4D. We have
h̃(D) = h(−4D). Hence X must be replaced by 4X between the result there and here.

Lemma 6.6. The function L(v) converges for Re(v) > 0 and can be meromorphically extended to
Re(v) > −1/4 with a unique pole at v = 0 of residue π

3 . The extension is bounded on vertical strips
and away from the pole.

Proof. We have

L(s) =
∑

T∈P(Z)/PSL2(Z)

1

det(T )3/2+2v
=
∑
0<D

h̃(D)

D3/2+2v
.

This converges for Re(v) > 0. Let X > 0. Summing the Dirichlet series by parts, we get∑
D≤X

h̃(D)

D3/2+2v
=
∑
D≤X

h̃(D)X−3/2−2v + (3/2 + 2v)

∫ X

1

∑
D≤t

h̃(D)
dt

t5/2+2v

=

∑
D≤X

h̃(D)X−3/2−2v − 4π

9
X−2v

+ (3/2 + 2v)

∫ X

1

∑
D≤t

h̃(D)− 4π

9
t3/2

 dt

t5/2+2v

+
4π

9
X−2v + (3/2 + 2v)

∫ X

1

4π

9
t−1−2vdt. (6.5)
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The last integral is

(3/2 + 2v)

∫ X

1

4π

9
t−1−2vdt = −(3/2 + 2v)

4π

9

X−2v − 1

2v
.

For Re(v) > 0, the limit as X →∞ converges to 4π
9

3/2+2v
2v . Finally,

lim
X→∞

∑
D≤X

h̃(D)X−3/2−2v − 4π

9
X−2v

 = lim
X→∞

(X−1/2−2v + O(X−3/4−2v)) = 0.

In total, we have that

(3/2 + 2v)

∫ ∞

1

∑
D≤t

h̃(D)− 4π

9
t3/2

 dt

t5/2+2v
+

4π

9

3/2 + 2v

2v

converges for Re(v) > − 1
4 and v ̸= 0. It is a meromorphic continuation of L(v) with a unique pole

of residue Resv=0 L(v) = π
3 and it is bounded on vertical strips and away from v = 0.

Now, we consider the T -sum combined with the v-integral of Equation (4.1):∑
T∈P(Z)/PSL2(Z)

(
# Aut(T )

ϵ(T )

)2
1

2 det(T )3/2

· 1

2πi

∫
(3)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it) det(T )−2v dv

v

=
1

2πi

∫
(3)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(2L(v) + 6L̃(v))

dv

v
.

Note that the integrand has a double pole at v = 0. We have the following Taylor expansion for
the gamma factor:

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it) = c−1

k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)[
1 + v

(∑
±±

Γ′

Γ

(
k − 1/2

2
± it± iτ

2

)
− 4 log(2π)

)
+ O(v2)

]
.

Recall that according to Equation (4.3), the t- and τ -integral can be cut at k1/2+ϵ up to a negligible

error. Moreover, Γ′

Γ (z) = log(z) + O(|z|−1) so that for t, τ ≪ k1/2+ϵ,∑
±±

Γ′

Γ

(
k − 1/2

2
± it± iτ

2

)
− 4 log(2π) =

∑
±,±

log((k − 1/2)/2± it± iτ/2)− 4 log(2π) + O(k−1)

= 4 log(k) + C0 + O(k−1/2+ϵ),

for some constant C0 ∈ R. Let C1 = limv→0(L(v)− π
3v ) be the constant term of the Laurent series

of L(v). In conclusion, the pole at v = 0 of the integrand has residue

c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)

(
2π

3

(
4 log(k) + C0 + O(k−1/2+ϵ)

)
+ 2C1 + 6L̃(0)

)
.

We define D = 2π
3 C0 + 2C1 + 6L̃(0). We move the v-integral to Re(v) = −1/4 + ϵ for some fixed

ϵ > 0:

1

2πi

∫
(3)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(2L(v) + 6L̃(v))

dv

v

= c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)

(
8π

3
log(k) + D + O(k−1/2+ϵ)

)
+

1

2πi

∫
(−1/4+ϵ)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(2L(v) + 6L̃(v))

dv

v
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We apply the bounds of Lemma 5.2 to the second term to get

1

2πi

∫
(−1/4+ϵ)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(2L(v) + 6L̃(v))

dv

v

≪Ak
1/2+4ϵ

∫ ∞

−∞
e−w2

(
1 +

t2 + |τ |2 + w2

k

)−A

(|L(−1/4 + ϵ + iw)|+ |L̃(−1/4 + ϵ + iw)|)dw

≪Ak
1/2+4ϵ

(
1 +

t2 + |τ |2

k

)−A

.

Using Lemma 5.2 and τ tanh(πτ) = |τ |+ O(1), we get

12π

ωK4

∑
k∈2N

w

(
k

K

)∫ ∞

−∞

∫ ∞

−∞

1

2πi

∫
(−1/4+ϵ)

ev
2

· c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(2L(v) + 6L̃(v))

dv

v
dtτ tanh(πτ)dτ

≪A K−3

∫ ∞

−∞

∫ ∞

−∞
K1/2+4ϵ

(
1 +

t2 + |τ |2

k

)−A

dtτ tanh(πτ)dτ

≪ K−3 ·K1/2+4ϵ ·K1/2 ·K
≪ K−1+4ϵ.

Therefore we conclude that

Ndiag
av (K) =

12π2

ωK4

∑
k∈2N

w

(
k

K

)
1

4π

∫ ∞

−∞

∫ ∞

−∞
c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)

·
(

8π

3
log(k) + D + O(k−1/2+ϵ)

)
dtτ tanh(τ)dτ + O(K−1/2+ϵ)

=
3π

ωK4

∑
k∈2N

w

(
k

K

)∫ ∞

−∞

∫ ∞

−∞
c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)dtτ tanh(τ)dτ

·
(

8π

3
log(k) + D + O(k−1/2+ϵ)

)
+ O(K−1/2+ϵ).

Now, we compute an approximation of the t-integral using Lemma 5.2. We also replace the gamma
factors outside t, τ ≪ k1/2+ϵ. This gives an error of size OA(k−A) for all A > 0, so it is negligible.
We get ∫ ∞

−∞
c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)dt

=
2

π5/2
k3/2

∫ ∞

−∞
exp

(
−4t2 + |τ |2

k

)(
1 + O(k−1/2+ϵ)

)
dt + OA(k−A)

=
2

π5/2
k3/2
√
πk

2
exp

(
−|τ |

2

k

)(
1 + O(k−1/2+ϵ)

)
=

1

π2
k2 exp

(
−|τ |

2

k

)
+ O(k3/2+ϵ).

We compute the τ -integral using τ tanh(τ) = |τ |+ O(1). This gives∫ ∞

−∞
exp(−τ2/k)τ tanh(τ)dτ = 2

∫ ∞

0

exp(−τ2/k)(τ + O(1))dτ

= − k exp(−τ2/k)
∣∣∞
0

+ O(
√
k)

= k + O(
√
k).
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We conclude that∫ ∞

−∞

∫ ∞

−∞
c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)dtτ tanh(τ)dτ =

1

π2
k2(k + O(

√
k)) + O(k3/2+ϵ)

=
1

π2
k3 + O(k2.5+ϵ).

6.5 Sum over k

Recall that ω =
∫ 2

1
w(x)x3dx. We saw above that the diagonal term is

Ndiag
av (f) =

3π

ωK4

∑
k∈2N

w

(
k

K

)
1

π2
k3
(

8π

3
log(k) + D + O(k−1/2+ϵ)

)
+ O(K−1/2+ϵ)

=
8

ωK4

∑
k∈2N

w

(
k

K

)
k3 log(k) +

3D

ωπK4

∑
k∈2N

w

(
k

K

)
k3 + O(K−1/2+ϵ).

We deduce the main term of Theorem 1.4 by summing over k. We apply the Euler-MacLaurin
formula for this.

Lemma 6.7 ([IK], Lemma 4.1). Let a, b ∈ Z and f a C1 function on [a, b]. Then

∑
n∈2N
a≤n≤b

f(n) =
1

2

∫ b

a

f(x)dx + O

(∫ b

a

|f ′(x)|dx + |f(a)|+ |f(b)|

)
.

Let ω′ =
∫ 2

1
w(x)x3 log(x)dx. We get

Ndiag
av (f) =

4

ωK4

∫ 2K

K

w
( x

K

)
x3 log(x)dx +

3D

2ωπK4

∫ 2K

K

w
( x

K

)
x3dx + O(K−1/2+ϵ)

+ O

(
1

K4

∫ 2K

K

(
1

K
w′
( x

K

)
x3 log(x) + w

( x

K

)
x2 log(x) + w

( x

K

)
x2

)
dx

)

=
4

ωK3

∫ 2

1

w(x)(xK)3 log(xK)dx

+
3D

2ωπK3

∫ 2

1

w(x)(xK)3dx + O(K−1/2+ϵ) + O(K−1+ϵ)

= 4 log(K) + 4
ω′

ω
+

3D

2π
+ O(K−1/2+ϵ)

= 4 log(K) + D′ + O(K−1/2+ϵ).

Here D′ is a constant that only depends on w, ϵ > 0 is arbitrary and the implied constant depends
only on ϵ and w.





Chapter 7

Rank 1 term

We focus now on the first off-diagonal term of the Kitaoka formula, called the rank 1 term. It
comes from the combination of Equations (1.3), (4.2) and the Kitaoka formula (Theorem 3.6). Its
shape is

12
√

2π3

ωK4

∑
k∈2N

w

(
k

K

) ∑
T,Q∈P(Z)/PSL2(Z)

1

ϵ(T )ϵ(Q) det(TQ)3/4

·
∫
Λev

V (det(T ),det(Q), tϕ, k)ϕ(zT )ϕ̄(zQ)dϕ

·
∑
±

∑
c,s≥1

∑
U,V

(−1)k/2

c3/2s1/2
H±(UQU t, V −1TV −t; c)Jℓ

(
4π
√

det(TQ)

cs

)
.

We have various sums that we need to restrict, up to a negligible error. First, we apply Lemma
5.3. The sum over k is∑

k∈2N
w

(
k

K

)
(−1)k/2V (det(T ) det(Q), tϕ, k)Jℓ

(
4π
√

det(TQ)

cs

)
.

We get three terms. The w0 term is negligible because all the other sums and integral have a
cut-off that gives a polynomial growth in K. The terms with w+ and w− have the property that

w±(x)≪A K2
(

1 + K2

x

)−A

with x =
4π
√

det(TQ)

cs . They also depend on det(T ), det(Q) and tϕ and

follow the other bounds of Equation (4.3). In our case, we have

w±(x, x1, x2, τ,K)≪A K2
(

1 +
x1x2

K4

)−A (
1 + K1/2| log(x2/x1)|

)−A
(

1 +
|τ |2

K

)−A(
1 +

K2

x

)−A

with x as above, x1 = det(T ), x2 = det(Q), τ = tϕ. We also have a control on the derivatives given
by Equation (4.3) and Lemma 5.3.

7.1 First upper bound

We prove a first bound for the rank 1 term. Let ϵ > 0. Combining the estimate of Lemma 5.3
with Equation (4.3), we get c2s2K4−ϵ ≪ det(TQ) ≪ K4+ϵ up to a negligible error. Hence c, s =
O(Kϵ) and K4−ϵ ≪ det(TQ)≪ K4+ϵ. Since det(T )− det(Q)≪ K−1/2+ϵ det(T ), we get K2−ϵ ≪
det(T ),det(Q) ≪ K2+ϵ. Now, we look at the exponential sum H± defined after Theorem 3.6. It
vanishes unless there are U = ( ∗ ∗

u3 u4
) /{±1} and V = ( v1 ∗

v3 ∗ ) in GL2(Z) such that

(UQU t)22 = (V −1TV −t)22 = s.

Let T =
(
a b
b c

)
, Q = ( x y

y z ). Using the inequality r2 + t2 ≥ 2rt, this gives

s = av23 − 2bv1v3 + cv21 ≥ 2(
√
ac− |b|)|v3v4|,

s = xu2
3 + 2yu3u4 + zu2

4 ≥ 2(
√
xz − |y|)|u3u4|.

45



46 CHAPTER 7. RANK 1 TERM

Since T and Q are reduced, we have 2(
√
ac − |b|) ≥

√
ac ≥

√
det(T ) and similarly for Q. If u3u4

or v1v3 is non-zero, then we get s ≥
√

det(T ) or
√

det(Q) and both are of size ≫ K1−ϵ. Since
s = O(Kϵ) up to a negligible error, this is negligible. Otherwise we have u4 = v1 = 0 because
c ≫

√
det(T ) ≫ K1−ϵ and z ≫ K1−ϵ. Since U, V ∈ GL2(Z), we have the following choices of

representatives for U and V :

U =

(
0 1
1 0

)
, V = ±

(
0 1
1 0

)
. (7.1)

We get s = a = x and in particular x, a = O(Kϵ). Since T and Q are reduced, we also have
|y|, |b| = O(Kϵ) and K2−ϵ ≪ z ≍ c ≪ K2+ϵ. Therefore there are O(K2+ϵ · K3/2+ϵ) choices for
T and Q and O(Kϵ) choices for c, s and U, V . We combine this with other estimates. Recall that
the exponential sum is bounded by c2. We use Equation (5.4) with T = K1/2+ϵ and K1−ϵ ≪
Im(zT ), Im(zQ)≪ K1+ϵ. We get that the rank 1 term is bounded by

K−4
∑

T,Q∈P(Z)/PSL2(Z)

1

ϵ(T )ϵ(Q) det(TQ)3/4

∑
c,s≥1

∑
±

∑
U,V

(−1)k/2

c3/2s1/2
H±(UQU t, V −1TV −t; c)

· e

(
±

2
√

det(TQ)

cs

)∫
Λev

w±

(
4π
√

det(TQ)

cs
,det(T ),det(Q), tϕ,K

)
ϕ(zT )ϕ̄(zQ)dϕ

≪ K−4 ·K3.5+ϵ ·K−3+ϵ ·Kϵ ·K2 ·K3/2+ϵ

≪ K4ϵ.

7.2 Analysis of the T,Q-sum

We need to win extra cancellation somewhere. We do that in the T,Q-sum. We consider ∆ =
det(Q) − det(T ). We know that ∆ = O(K3/2+ϵ) up to a negligible error. We can fix all the
coefficients of Q except z at the cost of Kϵ choices. The possible values of ∆ = xz − y2 − det(T )
follow then an arithmetic progression as z varies. More precisely, d := y2 + det(T ) ≡ ∆ (mod x).
Looking at the last table in Appendix A, we have ϵ(Q) = 1 unless x = z, which is a negligible case
for K large enough. Similarly, we can suppose that ϵ(T ) = 1. The T,Q-sum looks like∑

K2−ϵ≪det(T )≪K2+ϵ

∑
|∆|≪O(K3/2+ϵ)

∆≡d mod x

1

(det(T )(det(T ) + ∆))3/4
(7.2)

·
∫
Λev

w±

(
4π
√

det(T )(det(T ) + ∆)

cs
,det(T ),det(T ) + ∆, tϕ,K

)
ϕ(zT )ϕ̄(zQ)dϕ

·H±(UQU t, V −1TV −t; c)e

(
±

2
√

det(T )(det(T ) + ∆)

cs

)
.

Recall the definition of H± just after Theorem 3.6, the representatives of U and V chosen in
equation (7.1) and that s = a = x. We get that

P = UQU t =

(
z y
y s

)
, S = V −1TV −t =

(
c b
b s

)
.

Therefore, z = p1 and the summand in H± is

e

(
d̄1s4d

2
2 ∓ d̄1p2d2 + s2d2 + d̄1p1 + d1s1

c
∓ p2s2

2cs4

)
= e

(
d̄1z

c

)
e

(
d̄1s4d

2
2 ∓ d̄1p2d2 + s2d2 + d1s1

c
∓ p2s2

2cs4

)
= e

(
d̄1∆

cs

)
e

(
d̄1(det(T ) + y2)

cs

)
e

(
d̄1s4d

2
2 ∓ d̄1p2d2 + s2d2 + d1s1

c
∓ p2s2

2cs4

)
. (7.3)
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We fix ∆ (mod cs), so that we can see this term as constant in the ∆-sum. This adds a sum over
d (mod cs) such that d ≡ y2 + det(T ) (mod s). Now, we consider the spectral integral. Let

ν(s) = π1/2 Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

ζ(2s)
=

π−(1−s)Γ(1− s)ζ(2(1− s))

π−sΓ(s)ζ(2s)
.

Lemma 7.1. We have∫
Λev

w±

(
4π
√

det(T )(det(T ) + ∆)

cs
,det(T ),det(T ) + ∆, tϕ,K

)
ϕ(zT )ϕ̄(zQ)dϕ

= w̃±

(
4π
√

det(T )(det(T ) + ∆)

cs
,det(T ),det(T ) + ∆,K

)
+ O(K2.5+ϵ),

where the function

w̃±(x, x1, x2, k) :=
(x1x2)1/4

s

∫ ∞

−∞
w± (x, x1, x2, τ, k)

·

((
x1

x2

)iτ

+

(
x2

x1

)iτ

+ ν(1/2− iτ)(x1x2)iτ + ν(1/2 + iτ)(x1x2)−iτ

)
dτ

4π

(for s fixed) satisfies the following bounds:

xj1
( x1

k1/2

)j2 ( x1

k1/2

)j3 dj1

dxj1

dj2

dxj2
1

dj3

dxj3
2

w̃±(x, x1, x2, k)

≪A,j1,j2,j3 k2.5(x1x2)1/4
(

1 +
k2

x

)−A (
1 +

x1x2

k2

)−A
(

1 +
(x1 − x2)k1/2

x1

)−A

.

Proof. We have Im(zT ), Im(zQ) ≫ K1−ϵ and the spectral parameter tϕ satisfies |tϕ| ≪ K1/2+ϵ

up to a negligible error. In that case, the cusp forms in the spectral decomposition are known to
be negligible and the only terms that remain are the constant terms in the Fourier expansion of
the Eisenstein series and the constant function. Details about the decay of the K-Bessel function
and the Eisenstein series can be found in Lemma 3.1 of [You2]. For the Fourier coefficients of cusp
forms, a polynomial bound like Equation 8.8 in [Iwa] suffices. More precisely, let

y1 =

√
det(T )

s
, y2 =

√
det(Q)

s

and

ν(s) = π1/2 Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

ζ(2s)
=

π−(1−s)Γ(1− s)ζ(2(1− s))

π−sΓ(s)ζ(2s)
.

Then |ν(s)| = 1 and the constant term of the Eisenstein series E(x + iy, s) is ys + ν(1 − s)y1−s.
We have∫

Λev

w±

(
4π
√

det(T )(det(T ) + ∆)

cs
,det(T ),det(T ) + ∆, tϕ,K

)
ϕ(zT )ϕ̄(zQ)dϕ

=

∫ ∞

−∞
w±

(
4π
√

det(T )(det(T ) + ∆)

cs
,det(T ),det(T ) + ∆, tϕ,K

)

·
(
y
1/2+iτ
1 + ν(1/2 + iτ)y

1/2−iτ
1

)(
y
1/2−iτ
2 + ν(1/2− iτ)y

1/2+iτ
2

) dτ

4π

+

∫ ∞

−∞
V (τ)

3

π
dτ + O(e−cK)

= w̃±

(
4π
√

det(T )(det(T ) + ∆)

cs
,det(T ),det(T ) + ∆,K

)
+ O(K2.5+ϵ).

Note that the bounds and control on the derivatives in the other variables of w± also apply to
w̃±. We use |τ | ≪ K1/2+ϵ, s ≥ 1 and |ν(1/2± iτ)| = 1 to get the stated bound.
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Remark. In the definition of w̃±, it is possible to integrate by parts the τ -integral multiple times
for the factors with the terms (y1/y2)±itτ . It gives a cut-off of the form (k1/2 log(y2/y1))−j and
we can get a strong decay for the other terms. We saw that a = x = s. Hence this is redundant
information with the cut-off on det(Q)/ det(T ) of Equation (4.3) in our case.

We also have
1

(det(T ) + ∆)3/4
=

1

det(T )3/4
+ O(K−2+ϵ),

up to a negligible error. Inserting this, Equation (7.3) and the result of Lemma 7.1 in Equation
(7.2), we get

∑
K2−ϵ≪det(T )≪K2+ϵ

det(T )−3/2
∑

d mod cs
d≡y2+det(T ) mod s

H±(P, S, c)
∑

|∆|≪K3/2+ϵ

∆≡d mod cs

e

(
±

2
√

det(T )(det(T ) + ∆)

cs

)

· w̃±

(
4π
√

det(T )(det(T ) + ∆)

cs
,det(T ),det(T ) + ∆, k

)
+ O(K3+ϵ).

7.3 Poisson summation and stationary phase

We apply Poisson summation formula to the ∆-sum.

∑
∆=d mod cs

w̃±

(
4π
√

det(T )(det(T ) + ∆)

cs
,det(T ),det(T ) + ∆,K

)
e

(
±

2
√

det(T )(det(T ) + ∆)

cs

)

=
1

cs

∑
h∈Z

∫ ∞

−∞
w̃±

(
4π
√

det(T )(det(T ) + t)

cs
,det(T ),det(T ) + t,K

)

· e

(
±2
√

det(T )(det(T ) + t) + h(d− t)

cs

)
dt.

To analyze this integral, we need to compute the derivative of w̃± with respect to t. We have

d

dt
w̃±

(
4π
√

det(T )(det(T ) + t)

cs
,det(T ),det(T ) + t,K

)

=

(
d

dx
w̃±

)(
4π
√

det(T )(det(T ) + t)

cs
,det(T ),det(T ) + t,K

)
4π

cs

√
det(T )

det(T ) + t

+

(
d

dx2
w̃±

)(
4π
√

det(T )(det(T ) + t)

cs
,det(T ),det(T ) + t,K

)

≪A

(
K−2+ϵ + K−3/2+ϵ

)
(det(T )(det(T ) + t))1/4K2.5

(
1 +

csK2√
det(T )(det(T ) + t)

)−A

·
(

1 +
det(T )(det(T ) + t)

K2

)−A(
1 +

tK1/2

det(T )

)−A

.

More generally, each derivative with respect to t adds a factor of size K−3/2+ϵ (up to a constant
depending on j). This is because it either adds a derivative in the first or the third variable of
w̃±, or it differentiates a factor of the form (det(T ) + t)−r. All these added factors are of size
≪ K−3/2+ϵ. If |h| ≫ Kϵ, we integrate by parts, until we can sum over h and get a large enough
power saving. Each derivative in t adds nothing in the worst case. But the h-sum can be a small
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as we want, so we get a strong decay. More precisely,

∑
|h|≫Kϵ

e

(
hd

cs

)∫ ∞

−∞
w̃±

(
4π
√

det(T )(det(T ) + t)

cs
,det(T ),det(T ) + t, k

)

· e

(
±2
√

det(T )(det(T ) + t)− ht

cs

)
dt

=
∑

|h|≫Kϵ

e

(
hd

cs

)(
cs

−2πih

)j ∫ ∞

−∞

dj

dtj

[
w̃±

(
4π
√

det(T )(det(T ) + t)

cs
,det(T ),det(T ) + t, k

)

· e

(
±2
√

det(T )(det(T ) + t)

cs

)]
e

(
−ht

cs

)
dt

≪A,j,ϵ K
1+ϵ

∑
|h|≫Kϵ

(cs)j

hj

∫ ∞

−∞
K3.5

(
1 +

tK1/2

x1

)−A

dt

(
1 +

csK2

det(T )

)−A(
1 +

det(T )2

K2

)−A

≪A K−A

(
1 +

csK2

det(T )

)−A(
1 +

det(T )2

K2

)−A

.

Using the cut-off on the other sums, we see that this term is negligible. For small h, we apply the
stationary phase method. The stationary point is

± 1

cs

√
det(T )

det(T ) + t0
=

h

cs
=⇒ t0 =

det(T )

h2
− det(T ).

Note that h must have the same sign as the left-hand side. There are three cases. If h = 0, then
there is no stationary point. We apply in that case Lemma 5.5. If h = ±1, then t0 = 0. We apply
Lemma 5.6. Otherwise, t0 ≫ det(T )K−ϵ and w̃± is negligible for such t. We apply again Lemma
5.5. Following notations there, we have w = w̃± and

h(t) = 2π

(
±2
√

det(T )(det(T ) + t) + h(d− t)

cs

)
.

In the first and the last case, we get

α = −K3/2+ϵ, β = K3/2+ϵ,

X = K3.5+ϵ, U = K1.5,

R = K−ϵ,

Y = K2+ϵ, Q = K2−ϵ.

Lemma 5.5 tells us that the integral is bounded by

≪A K3/2+ϵ ·K3.5+ϵ[(K2−2ϵ/K1+ϵ)−A + K−1.5A].

Using the cut-off on the other sums, we see that these terms are negligible. If t0 = 0, we apply
Lemma 5.6. Following the notations, we get

α = −K3/2+ϵ, β = K3/2+ϵ,

X = K3.5+ϵ, U = K1.5−ϵ,

Y = K2+ϵ, K2−ϵ ≪ Q≪ K2+ϵ.

Here we mean that there exists a Q in this interval that works. Then the integral is bounded by

≪ QX√
Y
≪ K5.5−1+ϵ = K4.5+ϵ.
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We sum after that over T with K2−ϵ ≪ det(T ) ≪ K2+ϵ, which gives a contribution of size
K2+ϵ · K−3+ϵ ≪ K−1+2ϵ. The remaining sums are the sum over the other coefficients of Q, the
one over d (mod cs) and the various ±, c, s, U, V -sums for the exponential sum H±. They are all
of size Kϵ. The rank one term is therefore bounded by

K−4 ·K−1+ϵ ·Kϵ ·K4.5+ϵ ≪ K−1/2+3ϵ.



Chapter 8

Rank 2 term

In this chapter, we focus on the last error term. It comes from the combination of Equation (1.3),
(4.2) and the rank 2 term of the Kitaoka formula (Theorem 3.6). Its shape is

96π4

ωK4

∑
k∈2N

w

(
k

K

) ∑
T,Q∈P(Z)/PSL2(Z)

1

ϵ(T )ϵ(Q) det(TQ)3/4

·
∫
Λev

V (det(T ),det(Q), tϕ, k)ϕ(zT )ϕ̄(zQ)dϕ
∑

det(C) ̸=0

K(Q,T ;C)

|det(C)|3/2
Jℓ(TC−1QC−t).

Using the estimate Jk(x)≪
(
x
k

)k
in Equation (5.1), we get

Jℓ(TC−1QC−t) =

∫ π/2

0

Jℓ(4πs1 sin(θ))Jℓ(4πs2 sin(θ)) sin(θ)dθ ≪
(s1s2

k2

)k
.

Therefore k2−ϵ ≪ s1s2 = det(TC−1QC−t)1/2 = det(TQ)1/2

det(C) ≪ k2+ϵ

det(C) . The last estimate comes from

Equation (4.3), up to a negligible error. Hence det(C) ≪ kϵ and k4−ϵ ≪ det(T ) det(Q) ≪ k4+ϵ.
Using Equation (4.3), we also have det(T ) = det(Q)(1 + O(k−1/2+ϵ)).

The restriction on C is a bit subtle because there exist infinitely many matrices with a fixed
determinant. We prove later that actually ∥C∥∞ ≪ kϵ. Lemma 2 in [Blo] gives us already a bound

∥C∥2 ≪ ∥T∥∥Q∥. (8.1)

This is because s1 ≫ k1−ϵ, using Equation (5.1). Since, without loss of generality, T and Q are
reduced, we have ∥C∥2 ≪ det(T ) det(Q) ≪ k4+ϵ. Recall also that the generalized Kloosterman
sum K(Q,T ;C) is normalized by the factor det(C)3/2. The goal of the chapter is to prove that the
C-sum is short and to detect further cancellation in the T and Q sums coming from the generalized
Bessel function Jℓ. The idea is that if s1 and s2 are far from each other, Jℓ should be small. This
is made more precise in Section 8.2.

8.1 Summing over k

First, we use Lemma 5.3 to take advantage of the average over k. Let s1 ≥ s2 > 0 be the square
root of the two eigenvalues of TC−1QC−t. We want to analyze the sum

∑
k∈2N

w̃(k)Jℓ(TC−1QC−t) =
∑
k∈2N

w̃(k)

∫ π/2

0

Jℓ(4πs1 sin(α))Jℓ(4πs2 sin(α)) sin(α)dα,

where

w̃(k) = w̃(k, det(T ),det(Q), tϕ) = w

(
k

K

)
V (det(T ),det(Q), tϕ, k)

51
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and we temporarily drop the other dependencies. Applying Equation (5.2) gives∑
k∈2N

w̃(k)Jℓ(TC−1QC−t)

= Re

(
1

π
e

(
−k − 1/2

4

)∫ π/2

0

∫ ∞

0

e

(
(s21 + s22)t +

sin(α)2

t

) ∑
k∈2N

w̃(k)Jℓ(4πs1s2t)
dt

t
sin(α)dα

)
.

We apply Lemma 5.3 to the sum over k. Using w0(x) ≪A min{k−A, x−1/2}, we see that the
term with w0 is negligible. For the two other terms, we get

Re

(
e(1/8)

π

∫ π/2

0

∫ ∞

0

e

(
(s21 + s22)t +

sin(α)2

t
± 2s1s2t

)
w±(4πs1s2t)

dt

t
sin(α)dα

)
.

We forget about the real part and bound what is inside. We show first a trivial bound for this
integral. We use the bounds on w± of Lemma 5.3 and the last Equation of (5.1). As stated in the
remark after Lemma 20 of [BC], this is also valid for w±. We get

I : =

∫ π/2

0

∫ ∞

0

e

(
(s21 + s22)t +

sin(α)2

t
± 2s1s2t

)
w±(4πs1s2t)

dt

t
sin(α)dα

≪
∫ ∞

0

|w±(4πs1s2t)|
dt

t

≪ K2

(∫ 1

0

(
1 +

K2

s1s2t

)−1(
1 +

K2

s1s2t

)−ϵ
dt

t
+

∫ K2

1

dt

t
+ K

∫ ∞

K2

dt

t3/2

)
≪ K2+ϵ (8.2)

8.2 Analysis of the integral and distance between eigenvalues

Lemma 8.1. Let w± as above, a > 0, 0 < b≪ 1 and K2−ϵ ≪ c≪ K2+ϵ. If a≫ K6ϵ, then∫ ∞

0

e

(
at +

b

t

)
w±(ct)

dt

t
≪A K−A.

Proof. Lemma 5.3 says that dj

dtj w±(ct)≪A,j t
−jK2(1 +K−ϵ/t)−A for all A > 0. By induction, we

have that
dj

dtj
w±(ct)

t
≪A,j t

−(j+1)K2

(
1 +

1

Kϵt

)−A

.

This is because each derivative add either a derivative on w±(ct) or a 1
t factor. We apply Lemma

5.5. Following the notations there, we have

h(t) = 2π

(
at +

b

t

)
, h′(t) = 2π

(
a− b

t2

)
,

h(j)(t) = (−1)jj!
2πb

tj+1
for j ≥ 2,

w(t) =
w±(ct)

t
, w(j)(t)≪A,j t

−(j+1)K2

(
1 +

1

Kϵt

)−A

.

The only stationary point t0 is such that 0 = h′(t0) = a − b
t20

, that is t0 =
√

b
a (it only exists if

a ̸= 0). Let suppose that a≫ K6ϵ. Then in particular t0 ≪ K−3ϵ since b≪ 1. But in that part of
the t-integral, the function w± is negligible. For t ≤ K−2ϵ, we use the bound on w±:∫ K−2ϵ

0

e

(
at +

b

t

)
w±(ct)

dt

t
≪A K2

∫ K−2ϵ

0

(
1 +

1

Kϵt

)−A
dt

t
≪A K2−ϵA.
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For t ≥ K−2ϵ, we apply Lemma 5.5. We split everything into dyadic intervals [α, 2α] with α ≥ K−2ϵ.
We use the constants

X =
K2

α
, U = α,

Y = 1≫ b

α
, Q = α,

R = πa ≤ 2π

(
a− b

α2

)
.

Lemma 5.5 gives us∫ 2α

α

e

(
at +

b

t

)
w±(ct)

dt

t
≪A K2(πaα)−A ≪A K2 ·K−6ϵAα−A.

This can be summed for a dyadic decomposition of [K−2ϵ,∞[ to get∫ ∞

K−2ϵ

e

(
at +

b

t

)
w±(ct)

dt

t
≪A K2−6ϵA

∞∑
j=0

(2jK−2ϵ)−A ≪A K2+(2ϵ−6ϵ)A.

Combining both estimates, we have∫ ∞

0

e

(
at +

b

t

)
w±(ct)

dt

t
≪A K2−ϵA.

Remark. In our case, we have a = (s1 ± s2)2, b = sin(α)2 and c = 4πs1s2. Using the various
estimates coming from Equations (4.3) and (8.1), we see that, up to a negligible error, a ≪ K3ϵ.
Note that (s1 + s2)2 ≥ 4s1s2 ≫ K2−ϵ. So the term with this sign is always negligible.

8.3 Size of the T , Q and C sums

We are left to analyze the case a = (s1−s2)2 ≪ Kϵ. We changed the value of ϵ here. In this section
and the next ones, we may change again the value of ϵ from one display to the other. We only do
this if the new ϵ is only a constant multiple of the old one.

The goal of this section is to see which T , Q and C satisfy the bound (s1 − s2) ≪ Kϵ. Note
first that if λ1 ≥ λ2 are the two eigenvalues of M = TC−1QC−t, then

λ1 − λ2 = s21 − s22 = (s1 − s2)(s1 + s2)≪ K1+2ϵ.

This comes from the fact that K2−ϵ ≪ s1s2 ≪ K2+ϵ, so that K1−ϵ ≪ s1 + s2 ≍ s1 ≍ s2 ≪ K1+ϵ.
We fix some notations for this section:

T =

(
a b
b c

)
, Q =

(
x y
y z

)
, C−1 = (cij),

Q̃ = C−1QC−t =

(
x̃ ỹ
ỹ z̃

)
, M = TQ̃ = TC−1QC−t, M = (mij).

Note that all numbers are integers or half-integers except for cij ∈ 1
det(C)Z and for x̃, ỹ, z̃ ∈

1
2 det(C)2Z. But since |det(C)| ≪ Kϵ, this only creates a negligible difference in terms of estimates

for distances between coordinates. So we treat them as if they were integers in the rest of the
argument and point out where the difference occurs. Recall also that T and Q are reduced, so
2|b| ≤ a ≤ c and 2|y| ≤ x ≤ z. In particular, K2−ϵ ≪ ac ≍ det(T ) ≪ K2+ϵ and similarly for
Q. Consider (λ1 − λ1)2 the square of the difference between the two eigenvalues of M . By the
quadratic formula, this corresponds to the discriminant of the characteristic polynomial of M . We
have

K2+ϵ ≫ (λ1 − λ2)2 = tr(M)2 − 4 det(M) = (m11 −m22)2 + 4m12m21.
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Inserting the values of the product TQ̃, we get

∆ = (ax̃− cz̃)2 + 4(aỹ + bz̃)(bx̃ + cỹ).

We rearrange the second term. Completing the squares with respect to ỹ, we have

4(aỹ + bz̃)(bx̃ + cỹ) = 4acỹ2 + 4bỹ(ax̃ + cz̃) + 4b2x̃z̃

=

(
2
√
acỹ + b

ax̃ + cz̃√
ac

)2

− b2
(ax̃ + cz̃)2

ac
+ 4b2x̃z̃

=
1

ac
(2acỹ + b(ax̃ + cz̃))2 − b2

ac
(ax̃− cz̃)2.

We can do a similar computation by completing the square on b. We get

∆ = (ax̃− cz̃)2
(

1− b2

ac

)
+

1

ac
(2acỹ + b(ax̃ + cz̃))2, (8.3)

∆ = (ax̃− cz̃)2
(

1− ỹ2

x̃z̃

)
+

1

x̃z̃
(2x̃z̃b + ỹ(ax̃ + cz̃))2. (8.4)

Since T is reduced, b2

ac ≤
1
4 . We also have x̃z̃ > ỹ2 because det(Q̃) > 0. So all the squares in

Equations (8.3) and (8.4) must be bounded by K2+ϵ. For the first square, we get

ax̃− cz̃ ≪ K1+ϵ. (8.5)

In particular K2−ϵ ≪ ax̃ ∼ cz̃ ≪ K2+ϵ, i.e. ax̃ and cz̃ are of the same size. This is because the
product of the terms is of size det(TQ̃) ≫ K4−ϵ (by Equation (4.3) and considerations at the
beginning of this chapter). Using that a ≤ c and K2−ϵ ≪ ac≪ K2+ϵ, this equation also gives

z̃ =
a

c
x̃ + O

(
K1+ϵ

c

)
≤ x̃ + O(K2ϵ).

We introduce the notation: z̃ ≲ x̃ ⇔ z̃ ≤ x̃ + O(Kϵ) as K → ∞. Equation (8.5) allows us to
rearrange the right square:

K2+ϵ ≫ 2acỹ + b(ax̃ + cz̃) ∼ 2c(aỹ + bz̃) ∼ 2a(cỹ + bx̃).

This gives the two other relations

aỹ + bz̃ ≪ K2+ϵ

c
, (8.6)

cỹ + bx̃≪ K2+ϵ

a
. (8.7)

In particular, we have ỹ = −z̃ b
a + O(Kϵ). Using the relation 2|b| ≤ a, we get 2|ỹ| ≲ z̃ ≲ x̃. So Q̃ is

almost in a ”reversed” reduced form and in particular K2−ϵ ≪ x̃z̃ ≍ det(Q̃) ≍ xz
det(C2) ≪ K2+ϵ.

Lemma 8.2. Let ϵ > 0 and K ∈ 2N. Let T,Q ∈ P(Z) such that K4−ϵ ≪ det(TQ) ≪ K4+ϵ and
det(T )− det(Q)≪ K3/2+ϵ, and C ∈M2(Z) such that 0 ̸= det(C)≪ Kϵ and ∥C∥ ≪ K2+ϵ. If

∥C∥ ≫ K2ϵ

then the integral I in Equation (8.2) satisfies

I ≪A K−A,

i.e. ∥C∥ ≪ K2ϵ up to a negligible error.
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Proof. Following the hypothesis, we see that C−1 has coefficients in 1
det(C)Z and |det(C−1)| ≪

1. Therefore det(C)∥C−1∥ = ∥C∥ for the ∞-norm on M2(R). So it is equivalent to prove that
∥C−1∥ ≪ Kϵ. We can use the results of this subsection and the last.

The proof relies on the numbers of non-zero entries in C−1. Because det(C) ̸= 0, there are at
most two zeros and in that last case, C−1 is diagonal or anti-diagonal. Since det(C−1) ≪ 1, the
result is obvious in this case. Computing the product Q̃ = C−1QC−t, we have

x̃ = xc211 + 2yc11c12 + zc212

z̃ = xc221 + 2yc21c22 + zc222.

The matrix Q is reduced. Therefore we have 2|yc11c12| ≤ |y|(c211 + c212) ≤ 1
2xc

2
11 + 1

2zc
2
12 and the

same for the second equation. We get

x̃ ≍ xc211 + zc212,

z̃ ≍ xc221 + zc222.

If c12c22 ̸= 0, then we have x̃, z̃ ≫ z ≥ x. Therefore xz ≤ z2 ≪ x̃z̃ ≍ xz
det(C)2 ≪ xz. We deduce

that x ≍ z and we must have x̃ ≍ ∥C−1∥2x or z̃ ≍ ∥C−1∥2x. Then xz
det(C)2 ≍ x̃z̃ ≫ ∥C−1∥2xz and

so ∥C−1∥2 ≪ det(C)−2 ≪ 1.
If c12 = 0, then we have x̃ ≳ z̃ ≫ z ≥ x. So xz

det(C)2 ≍ x̃z̃ ≫ z(z + O(Kϵ)) and z ≥ x ≫
z + O(Kϵ). Therefore z ≍ x and we can finish as above.

The last case is c22 = 0. We have xz
det(C)2 ≍ x̃z̃ ≫ c212c

2
21xz so c12, c21 ≪ 1 and z̃ ≍ xc221 ≍ x.

For ỹ, we have

ỹ = c11c21x + (c11c22 + c12c21)y + c12c22z = c21(c11x + c12y).

Let suppose that c11 ≫ K2ϵ, so that

z̃ + O(Kϵ)≫ |ỹ| ≍ c21c11x≫ K2ϵc21x ≍ K2ϵz̃.

This is a contradiction. Therefore ∥C∥ ≪ K2ϵ.

The next lemma is a way to decouple the relationship between the variables.

Lemma 8.3. Let ϵ > 0 and K ∈ 2N. Let T,Q ∈ P(Z) such that K4−ϵ ≪ det(TQ) ≪ K4+ϵ and
det(T )− det(Q)≪ K3/2+ϵ, and C ∈M2(Z) such that det(C) ̸= 0 and ∥C∥ ≪ Kϵ. If

ac− det(C)2x̃z̃ ≫ K3/2+ϵ

or
a− det(C)z̃ ≫ K−1/2+ϵz̃

then the integral I in Equation (8.2) satisfies

I ≪A K−A,

that is, up to a negligible error,

ac = det(C)2x̃z̃ + O(K3/2+ϵ), (8.8)

a = det(C)z̃ + O(K−1/2+ϵz̃). (8.9)

Proof. We know that

det(T ) = det(Q) + O(K3/2+ϵ)

⇔ ac− b2 = det(C)2(x̃z̃ − ỹ2) + O(K3/2+ϵ). (8.10)
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We want to simplify this using the other equations in this section. We multiply the Equations (8.6)
and (8.7) together.

(ac)2ỹ2 = (cz̃b + O(K2+ϵ))(ax̃b + O(K2+ϵ))

= acx̃z̃b2 + O(bK2+ϵ(ax̃ + cz̃) + K4+2ϵ),

⇒ ỹ2 =
x̃z̃

ac
b̃2 + O(bK4ϵ + K2ϵ).

We simplified the big O term using Equation (8.5) that tells us that K2−ϵ ≪ ax̃ ≍ cz̃ ≪ K2+ϵ

and ac≫ K2−ϵ. Inserting this result in Equation (8.10), we get

ac− b2 = det(C)2(x̃z̃ − ỹ2) + O(K3/2+ϵ)

= det(C)2
(
x̃z̃ − x̃z̃

ac
b2 + O(bKϵ + Kϵ)

)
+ O(K3/2+ϵ)

= det(C)2
x̃z̃

ac
(ac− b2) + O(K3/2+ϵ).

We have 0 ̸= ac− b2 ≍ ac. Multiplying by ac
ac−b2 , we get

ac = det(C)2x̃z̃ + O(K3/2+ϵ).

By subtraction of Equation (8.10), we also get b2 = det(C)2y2 +O(K3/2+ϵ). Combining Equations
(8.5) and (8.8) and recalling that ac, cz̃ ≫ K2−ϵ (Equations (4.3) and (8.5)), we have

det(C)2z̃(ax̃− cz̃)≪ K1+ϵ det(C)2z̃,

+ a(ac− det(C)2x̃z̃)≪ K3/2+ϵa,

ca2 − det(C)2cz̃2 ≪ K1+ϵ det(C)2z̃ + K3/2+ϵa,

a2 − det(C)2z̃2 ≪ K1+3ϵ z̃

c
+ K3/2+ϵ a

c
≪ K−1+4ϵz̃2 + K−1/2+2ϵa2,

a− det(C)z̃ ≪ K−1/2+2ϵa ≍ K−1/2+3ϵz̃.

The last equation comes from the observation that, on the line above, the two bounds on the right
are smaller than a term on the left. Therefore the two terms must be of the same size. We can
then factorize the left-hand side and simplify.

Remark. Similarly, we can prove that c− det(C)x̃≪ K−1/2+ϵx̃ up to a negligible error.

8.4 Estimate of the rank 2 term

We now gather the results of the chapter and give the bound for the rank 2 term. First, we analyze
the sum coming from the Fourier series and the spectral integral. Each term in the T,Q-sum has
the following shape. We suppose for the following argument that C is fixed.

1

ϵ(T )ϵ(Q) det(TQ)3/4

∫ π/2

0

∫ ∞

0

e

(
(s1 − s2)2t +

sin(α)2

t

)
·
∫
Λev

w−(πs1s2t)ϕ(zT )ϕ̄(zQ)dϕ
dt

t
sin(α)dα

≪ det(TQ)−3/4 ·Kϵ ·K2 ·K1/2+ϵ det(TQ)1/4√
ax

≪ K1/2+3ϵ 1√
ax

We used the following estimates. Recall that det(T ),det(Q) ≫ K2−ϵ and ϵ(T ), ϵ(Q) ≪ 1 up to a
negligible error. The integrals over t and α are of size Kϵ, as seen in Equation (8.2) (with K2 being
the size of w±). The spectral integral is bounded using Lemma 5.4. Now, we count the number of
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T and Q using the cut-off we computed. First, we fix Q. This also fix Q̃ since C is fixed. We fix a,
c and b in this order. Equations (8.9), (8.5) and (8.6) give respectively

a = det(C)z̃ + O

(
z̃

K1/2−ϵ

)
, c =

ax̃

z̃
+ O

(
K1+ϵ

z̃

)
, b =

aỹ

z̃
+ O

(
K2+ϵ

cz̃

)
.

Note that in the big O of the first equation, the fraction can be smaller than 1. We also know that
cz̃ ≫ K2−ϵ. Therefore to fix T , we have

O

((
z̃

K1/2−ϵ
+ 1

)
· K

1+ϵ

z̃
· K

2+ϵ

cz̃

)
= O

((
K−1/2+ϵ +

1

z̃

)
K1+3ϵ

)
possible choices. We also see that a ∼ K2+ϵ

x̃ . We use the divisor bound, Equation (8.9), z̃ ≪ K1+ϵ,
x≫ 1 and x̃z̃ ≪ K2+ϵ to get that the T,Q-sum is bounded by

∑
K2−ϵ≪x̃z̃≪K2+ϵ

∑
2|ỹ|≪z̃+O(Kϵ)

(
K−1/2+ϵ +

1

z̃

)
K1+ϵ ·K1/2+ϵ

√
x̃

K1−ϵ

≪
∑

K2−ϵ≪x̃z̃≪K2+ϵ

(
z̃
√
x̃

K1/2−ϵ
+
√
x̃

)
K1/2+4ϵ

≪
∑

K2−ϵ≪x̃z̃≪K2+ϵ

(
K1/2+2ϵ

√
z̃ +
√
x̃
)
K1/2+4ϵ

≪ K2+ϵ ·
(
K1+3ϵ + K1+ϵ

)
·K1/2+4ϵ

≪ K3.5+8ϵ.

We have estimated the T,Q-sum, as always up to a negligible error. Now we combine this with
other estimates to bound the term of rank 2. Note that there are O(Kϵ) choices for C by Lemma
8.2. We get

96π3

ωK4

∑
T,Q∈P(Z)/PSL2(Z)

1

ϵ(T )ϵ(Q) det(TQ)3/4

∑
∥C∥≪1

det(C )̸=0

|det(C)|3/2

·
∫ π/2

0

∫ ∞

0

e

(
(s1 − s2)2t +

sin(α)2

t

)∫
Λev

w−(πs1s2t)ϕ(zT )ϕ̄(zQ)dϕ
dt

t
sin(α)dα

≪ K−4 ·Kϵ ·K3.5+ϵ

≪ K−1/2+2ϵ.

This proves the bound on the rank 2 term. Together with the results of Chapters 6 and 7, it
concludes the proof of Theorem 1.4.





Chapter 9

Comments on the proof

This chapter is devoted to additional comments on the proof of Theorem 1.4. It also generalizes
some lemmas that are seen in the course of the proof.

9.1 Complement to Lemma 5.3

The decay of the functions in Lemma 5.3 for x ≥ 2K can be obtained from the proof in [BC],
Lemma 20. Following notations there, we have w± = W±

2 , where

W+
2 =

e(3/8)

2

∫ ∞

−∞
w(y)

∫ ∞

−∞
v(θK−1/10)eiϕ(θ;x,y)dθ dy,

where w and v have support respectively in [1, 2] and [−2, 2]. The phase function is

ϕ(θ;x, y) = −3πθ

K
+ 2πθy + x

(
cos

(
2π

θ

K

)
− 1

)
.

So we have 1 ≤ y ≤ 2 and θ ∈ [−2K1/10, 2K1/10]. The derivative of ϕ is

d

dθ
ϕ(θ;x, y) = −3π

K
+ 2πy + 2π

x

K
sin

(
2π

θ

K

)
.

We use the Taylor expansions sin(t) = t + O(t3). We have a stationary point θ0 where

sin(2πθ0/K) =

(
3

2K
− y

)
K

x
,

i.e. θ0 ≍ −K2

x . We apply Lemma 5.6 to the θ-integral. Following notations there, we have

α, β = ±2K1/10,

X = 1, U = K1/10,

Y = x, Q = K.

We see that the integral is bounded by

≪ QX√
Y

=
K√
x
.

This is also valid for w− by a similar argument. The last inequality in Equation (5.1) gives the
same bound for

∑
k even i

kw(k/K)Jk−3/2(x) so this is also valid for w0(x).

9.2 Generalization of Lemma 6.3.

The following is a generalization of the Lemma on the Harish-Chandra inverse transform. It shows
how the decay property of a function on the spectral side of the pre-trace formula transfers to the
geometric side. The proof is basically the same.

59
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Lemma 9.1. Let h(τ) be a function satisfying the condition for the Harish-Chandra inversion,
that is holomorphic in the strip Im(τ) ≤ 2 and such that

T j dj

dτ j
h(u)≪A,j

(
1 +
|τ |
T

)−A

.

Let κ(u) be the Harish-Chandra inverse of h and let ϵ > 0, A > 0, T ≥ 1. Then the geometric side
of the pre-trace formula is negligible for u much larger than T−2. More precisely∑

γ∈SL2(Z)
u(z,γz)≥T−2+ϵ

|κ(u(z, γz))| ≪A,ϵ T
−A(Im(z) + 1).

Proof. We have (see (1.64) in [Iwa]):

g(r) =
1

2π

∫ ∞

−∞
eirτh(τ)dτ,

q(v) =
1

4π

∫ ∞

−∞
h(τ)(

√
v + 1 +

√
v)2iτdτ,

κ(u) =
1

4π2i

∫ ∞

u

1√
v − u

∫ ∞

−∞
h(τ)

(
√
v + 1 +

√
v)2iτ√

v(v + 1)
τdτ dv.

We consider first q(v). Since h is holomorphic in a strip, we can move the integration line to
τ 7→ τ + 2i. Integrating by parts, we get

4πq(v) = (
√
v + 1 +

√
v)−4(−2i log(

√
v + 1 +

√
v))−j

·
∫ ∞

−∞
(h(j)(τ + 2i)(τ + 2i) + jh(j−1)(τ + 2i))(

√
v + 1 +

√
v)2iτdτ

≪A,j (
√
v + 1 +

√
v)−4

(
log(
√
v + 1 +

√
v)T

)−j
T.

In particular, we have a saving if u≫ T−2+ϵ. We obtain

κ(u)≪A,j T
1−jϵ

∫ ∞

u

dv√
v(v + 1)(v − u)(

√
v + 1 +

√
v)4

.

We split the integral in the intervals ]u, u + 1[ and [u + 1,∞[. We get∫ ∞

u

dv√
v(v + 1)(v − u)(

√
v + 1 +

√
v)4
≪ 2√

u(u + 1)(
√
u + 1 +

√
u)4

+
1

2(u + 1)2
.

We have either u≫ 1 or 1 + u ≍ u. For u≫ T−2+ϵ, we obtain respectively

κ(u)≪A,jT
1−jϵ 1

u2
if u≫ 1,

κ(u)≪A,jT
2−jϵ if u≪ 1.

We sum over γ. For T−2+ϵ ≪ u ≪ 1, we apply Lemma 6.2 directly and for 1 ≪ u, we split into
dyadic intervals. We compute that∑

γ∈SL2(Z)
u(z,γz)≫T−2+ϵ

|κ(u(z, γz)| ≪j,ϵ T
2−jϵ(Im(z) + 1).

We take j large enough to conclude the proof.

Remark. We can improve the conditions on h(τ). If we ask for it to be holomorphic in the strip
Im(τ) ≤ 1 + δ, δ > 0, the proof works again but the bound blows up as δ → 0. Conversely, if we
have a larger strip, we gain nothing in the bound with this proof.
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9.3 Orbits of Heegner points

The estimate in Equation (6.4) can also be computed directly. For this, we analyze the distribution
of Heegner points and their orbits. Recall that they lie in the classical fundamental domain for a
corresponding reduced matrix. We use the notation of Chapter 6. We obtain the following result:

Lemma 9.2. Let zT be the Heegner point corresponding to the matrix T . Then∑
T∈P(Z)/PSL2(Z)

det(T )≪k2+ϵ

# Aut(T )

ϵ(T )2 det(T )3/2

∑
γ∈SL2(Z):

k−2−ϵ≪u(zT ,γzT )≪k−1+ϵ

|κ(u(zT , γzT ))| ≪ϵ k
2.5+ϵ.

Proof. Since u(zT , γzT ) is smaller than 1, we have that κ(u(z, γz)) ≪ k3 by Equation (6.3).

Combining this with #Aut(T )
ϵ(T )2 ≪ 1, we see that we only have to show that∑

T∈P(Z)/PSL2(Z)
det(T )≪k2+ϵ

1

det(T )3/2

∑
γ∈SL2(Z):

k−2−ϵ≪u(zT ,γzT )≪k−1+ϵ

1≪ k−1/2+ϵ

to get a bound of size O(k2.5+ϵ) for Equation (6.1). Geometrically, it is clear that zT must be close
to an edge of the fundamental domain if we want it to be close to another point in its orbit. We
make this more precise. There are two types of Heegner points such that u(zT , γzT ) is small. First,
suppose zT has large imaginary part, say Im(zT ) > 10. For a translation γz = zT + n, n ∈ Z, we
have

u(zT , zT + n) =
n2

4 Im(zT )2
=

n2α2

4D
.

Therefore if u(zT , zT + n) ≪ k−1+ϵ, we get n2 ≪ D
α2k1−ϵ . To compute a bound, we sum over

D′ = αδ ≍ D ≪ k2+ϵ. For a fixed D′, there are≪ (D′)ϵ/4 choices for α and δ by the divisor bound
and there are α choices for β, so that∑

T∈P(Z)/PSL2(Z)
det(T )≪k2+ϵ

1

det(T )3/2

∑
γ∈SL2(Z) translation

k−2−ϵ≪u(zT ,γzT )≪k−1+ϵ

1≪
∑

D′≪k2+ϵ

(D′)−3/2
∑

αδ=D′

∑
|β|≤α/2

∑
n2≪ D′

α2k1−ϵ

1

≪
∑

D′≪k2+ϵ

(D′)−3/2+ϵ/4
∑

αδ=D′

α

√
D′

α2k1−ϵ

≪ϵk
−1/2+ϵ/2

∑
D′≪k2+ϵ

(D′)−1+ϵ/4

≪ϵk
−1/2+ϵ

If Im(zT ) > 10 and γ is not a translation, then |zT | ≍ Im(zT ) and Im(γzT ) ≤ 1. Therefore
|zT − γzT | ≫ Im(zT )− Im(γzT ) ≍ |zT | and

u(zT , γzT ) =
|zT − γzT |2

4 Im(zT ) Im(γzT )
≫ |zT |2

Im(zT )
≫ |zT | ≫ 1.

So there is no such γ with u(zT , γzT ) ≪ k−1+ϵ. Now, we analyze low-lying Heegner points where
Im(zT ) ≤ 10. Note that we have |zT |2 = δ

α ≍ 1. If γ is a translation, then the computation above
shows that u(zT , γzT )≫ 1. Since the Heegner points are in the fundamental domain and we ruled
out the case where γ is a translation, Im(γzT ) ≤ 1. Hence

u(zT , γzT ) =
|zT − γzT |2

4 Im(zT ) Im(γzT )
≫ |zT − γzT |2.

Any point in the orbit of zT is at least as far as the point zT /|zT | (in the Euclidean distance), as
one can see by growing a circle around zT . Suppose that |zT | − 1≫ k(−1+ϵ)/2, then we have

|zT − zT /|zT ||2 =
|zT |2

|zT |2
||zT | − 1|2 ≫ k−1+ϵ,
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so this rules out this case. Now, if |zT | − 1≪ k(−1+ϵ)/2, that means

k(−1+ϵ)/2 ≫ |zT | − 1 ≍ (|zT | − 1)(|zT |+ 1) = |zT |2 − 1 =
δ − α

α
.

So that δ − α ≪ k(−1+ϵ)/2α. In particular, α ≍ δ and δ2 ≍ det(T ) ≪ k2+ϵ. Clearly, for such a
zT , there is a finite number of γ such that u(zT , γzT ) ≪ k−1+ϵ (at most 12 when zT is close to
±1+i

√
3

2 , for k large enough). The sum over such T and γ gives∑
T∈P(Z)/PSL2(Z)

det(T )≪k2+ϵ

1

det(T )3/2

∑
such γ∈SL2(Z)

k−2−ϵ≪u(zT ,γzT )≪k−1+ϵ

1≪
∑

δ≪k1+ϵ

δ−3
∑
α

δ−α≪k(−1+ϵ)/2δ

∑
|β|≤α/2

1

≪
∑

δ≪k1+ϵ

δ−3
∑
α

δ−α≪k(−1+ϵ)/2δ

α

≪
∑

δ≪k1+ϵ

δ−1k(−1+ϵ)/2

≪k−1/2+ϵ

Remark. It is also possible to do a similar computation on zT and γ such that

k−2−ϵ ≪ u(zT , γ(−zT ))≪ k−1+ϵ.

This situation appears when restricting to the even spectrum. In that case, we also have to consider
the points zT close to the imaginary axis.

9.4 Volume computation

We give a heuristic argument supporting that Theorem 1.4 is consistent with Quantum Unique

Ergodicity on the imaginary axis. This is based on Appendix C in [BC]. A cusp form f ∈ S
(2)
k is

essentially supported on iY ∈ iP(R) such that there exists a T ∈ P(Z) with TY having eigenvalues
λ1, λ2 of size k/4π + O(k1+ϵ). We make this more precise. We use the following estimate:

Proposition 9.3 ([DK], Lemma 4.1). Let f ∈ S
(2)
k , k ≥ 6 and α = 13/4, β = −3/4. Then

|af (T )|
∥f∥2

≪ (4π)kkα det(T )3/4−β

Γ(k)
.

Let Y ∈ P(R) with det(Y ) ≥ 1. We have

F (Y ) :=
f(iY )|det(Y )k/2

∥f∥2
≪
∑
T>0

|a(T )|
∥f∥

det(TY )k/2 det(T )−3/4e−2π tr(TY )

≪
∑
T>0

1

det(T )2
(4π)kkα det(TY )k/2+2−βe−2π tr(TY )

Γ(k)

We consider the function

Y 7→ (4π)kkα det(TY )k/2+2−βe−2π tr(TY )

Γ(k)
.

Note that the rest of the T -sum converges. Recall the Stirling formula log(Γ(k)) = k log(k)− k +
O(log(k)). Let λi = k

4π (1 + Ei) for i = 1, 2 be the eigenvalues of TY . We estimate the logarithm
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of the function above:

log

[
(4π)kkα det(TY )k/2+2−βe−2π tr(TY )

Γ(k)

]
= k log

(
4π
√
λ1λ2

k

)
+ k − 2π(λ1 + λ2) + O(log(k))

=
k

2
log((1 + E1)(1 + E2))− k

2
(E1 + E2) + O(log(k))

= −kE
2
1 + E2

2

4
+ O(k(E3

1 + E3
2)) + O(log(k)).

So if we do not have |Ei| ≪ k−1/2 log(k) for i = 1 and i = 2, we get an exponential decay in k.
Note that if E1 ≫ 1 or E2 ≫ 1, we already have an exponential decay in the second line of the
equation above. Clearly det(T ) ≫ 1. We conclude that, up to a negligible error, det(Y ) ≪ k2.
Since |F (Y )| is invariant under Y 7→ Y −1, we can also suppose that det(Y ) ≫ k−2. We compute
the volume of such Y :∫

SL2(Z)\H

∫
k−2≪r≪k2

dr

r

dx dy

y2
= Vol(SL2(Z)\H)4 log(k) + O(1). (9.1)

We see that the constant 4 is consistent with QUE.

9.5 Other remarks

Concerning Lemma 6.5, the literature gives for the average of the class number of primitive dis-
criminants the formula [CI]∑

−D≤X

hprim(D) =
π

18ζ(3)
X3/2 − 2

π2
X + O(X3/4).

The formula at the end of Section 5.1 in [BC] is for all discriminants. We recall it:∑
−D≤X

h(D) =
π

18
X3/2 − 1

4
X + O(X3/4).

It is easy to go from one formula to the other. We just notice the following. Let ax2 + bxy + cy2 be
a primitive quadratic form of discriminant D < 0 with (a, b, c) = 1. It gives rise to a non-primitive
one of the form nax2 + nbxy + ncy2 for any integer n. Its discriminant is n2D. Hence we have∑

−D≤X

h(D) =
∑

−D≤X

hprim(D) +
∑

−4D≤X

hprim(D) +
∑

−9D≤X

hprim(D) + . . .

=
π

18ζ(3)
X3/2

∑
n≤

√
X

1

n3
− 2

π2
X
∑

n≤
√
x

1

n2
+ O

X3/4
∑

n≤
√
X

1

n3/2


=

π

18
X3/2 − 1

4
X + O(X3/4).

The opposite way between the two formulae goes by Möbius inversion.
A natural variation of Theorem 1.4 is to consider the level aspect. For Siegel modular forms,

there are two possibilities: the Siegel subgroup and the paramodular subgroup. We consider the
first one. The Siegel congruence subgroup is

Γ
(2)
0 (N) :=

{(
A B
C D

)
| C = 0 (mod N)

}
.

We fix a weight K and consider N → ∞. The restriction of the action on the imaginary axis to
this subgroup is again SL2(Z). We obtain the twisted Koecher-Maass series in a similar way. The
Kitaoka formula is modified, with N |c in the rank 1 term and N |det(C) in the rank 2 term. We
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do a discussion similar to the start of Chapter 8 to see how large the C-sum is in the rank 2 term.
The conductor of the series is N2k4. Therefore, the approximate functional equation gives a cut-off

det(TQ)≪ (N2k4)1+ϵ.

The generalized Bessel function Jℓ gives us a cut-off

k1−ϵ ≪
√

det(TQ)

det(C)
.

So that

N ≤ det(C)≪
√

det(TQ)

k1−ϵ
≪ kϵN1+ϵ.

We see that the C-sum is short, but not zero, in contrast to Chapter 2. A challenging part in this
problem is to understand the old forms. It is possible to lift forms from each level M |N to level N .
These cusp forms appear in the Kitaoka formula, but they are not well behaved for the Koecher-
Maass series. To make the problem approachable, we can reduce to square-free level or prime level.
Unfortunately, this makes it difficult to average over the level as we did over k ∈ [K, 2K] in the
weight aspect. Therefore, we conjecture that our method to prove Theorem 1.4 does not give an
asymptotic in the level aspect if we do not average over N .



Chapter 10

Higher degrees

In this section, we discuss the higher degree analog of the Kitaoka formula for modular forms on
Sp2n(R). The shape of the formula is similar but it has more terms, corresponding to matrices
C of rank 0 to n. Of central interest are the Kloosterman sum and the Bessel function of “full
rank”. They are the objects that appear in the rank n term of the generalized Kitaoka formula.
The generalized Kloosterman sum is

K(n)(Q,T ;C) :=
∑

(A ∗
C D )∈Γ∞\ Sp2n(Z)/Γ∞

etr(AC−1Q + C−1DT ). (10.1)

Here for a matrix M , etr(M) = e2πi tr(M), Γ∞ = {
(
In X
0 In

)
| X = Xt} and the sum is over a set

of representatives X(C) of matrices in Γ∞\ Sp2n(Z)/Γ∞ with bottom-left block equal to C. The
generalized Bessel function is

J (n)
k (Q,T ;C) :=

∫
X

etr(−Z−1C−1QC−t − ZT ) det(Z)−kdX,

where Z = X + iY ∈ H(n), Im(Z) > 0 is fixed and X runs over symmetric matrices. In the next
section, we show how to factorize K(n) with respect to C. In the last section, we prove a non-trivial
bound in the case n = 3 and C = pI3.

10.1 Factorization and Smith normal form

Lemma 10.1 (Smith normal form). Let A ∈ Mm,n(Z). There exist matrices U ∈ GLm(Z), V ∈
GLn(Z) such that UCV = D is a m×n diagonal matrix with the elements on the diagonal satisfying
dii|di+1,i+1 and dii = 0 for i > rk(A). The dii are unique up to a unit and called invariant factors.

Notation. Let A,B be two matrices. We set A[B] := BtAB.

Lemma 10.2. For U, V ∈ GLn(Z), we have

K(n)(Q[U ], T [V ];U tCV ) = K(Q,T ;C).

Proof. Let X(C) be as above. We have(
U−1

U t

)
X(C)

(
V

V −t

)
= X(U tCV ).

This can be deduced from the identity(
U−1

U t

)(
A ∗
C D

)(
V

V −t

)
=

(
U−1AV ∗
U tCV U tDV −t

)
.

The matrix on the right-hand side is also in Sp2n(Z) and the identity can be reversed. Moreover,
matrices of the form

(
U

U−t

)
normalize Γ∞. So we have a bijection between X(C) and X(U tCV ).
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The lemma is then established by invariance of the trace under conjugation. More precisely,

K(n)(Q[U ], T [V ];U tCV ) =
∑

(A ∗
C D )∈X(UtCV )

etr(AC−1Q[U ] + C−1DT [V ])

=
∑

(A ∗
C D )∈X(C)

etr((U−1AV )(U tCV )−1Q[U ] + (U tCV )−1(U tDV −t)T [V ])

=
∑

(A ∗
C D )∈X(C)

etr(U−tAC−1U−tQ[U ] + V −tC−1XV −tT [V ])

= K(n)(Q,T ;C).

Lemma 10.3. Let F,H,C integral diagonal matrices with FH = C, fii|fi+1,i+1, hii|hi+1,i+1 and
(fnn, gnn) = 1. Let r, s ∈ Z such that rfnn + shnn = 1. Then

K(n)(Q[H̄], T ;F ) ·K(n)(Q[F̄ ], T ;H) = K(n)(Q,T ;C),

where
F̄ = rfnnF

−1, H̄ = shnnH
−1.

In particular, F̄F + H̄H = In.

Proof. This is done in Lemmas 1, 2 and 3 of Kitaoka’s article [Kit]. The proof applies to larger n
without substantial change. First, we have ( A B

C D ) ∈ Sp2n(Z) if and only if(
HA HB − F̄AtD
F H̄D

)
,

(
FA FB − H̄AtD
H F̄D

)
∈ Sp2n(Z).

We use the characterization of symplectic matrices given in Equation (3.1). If ( A B
C D ) ∈ Sp2n(R),

the two other matrices are as well. Conversely, we have

A = F̄HA + F̄FA,

B = 2F̄ H̄AtD + F̄ (FB − H̄AtD) + H̄(HB − F̄AtD),

D = HH̄D + FX1D.

We get

tr(HAF−1Q[H̄] + F−1H̄DT ) + tr(FAH−1Q[F̄ ] + H−1F̄DT )

= tr(H̄HAF−1H̄Q + F̄FAH−1F̄Q) + tr((F−1H̄ + H−1F̄ )DT )

= tr(A(shnnF
−1H̄ + rfnnH

−1F̄ )Q) + tr(C−1DT )

= tr((A((shnn)2 + (rfnn)2)C−1Q) + tr(C−1DT ).

We used that H̄H and F̄F are scalar matrices. Finally, notice that shnnrfnnC
−1 has integral

entries, so

etr(A((shnn)2 + (rfnn)2)C−1Q) = etr(A(shnn + rfnn)2C−1Q) = etr(AC−1Q).

It remains to show that the map(
A B
C D

)
7→
((

HA HB − F̄AtD
F H̄D

)
,

(
FA FB − H̄AtD
H F̄D

))
is an isomorphism between X(C) and X(F ) × X(H). Kitaoka showed in Lemma 2 of [Kit] that
the map and its inverse factor through the double quotient. It can be explicitly verified or using
that the block D (mod CΛ), where Λ is the set of integral symmetric matrices, characterizes an
element in the quotient for a given C.
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In view of the above lemmas, we can suppose that C is an integral diagonal matrix with coef-
ficients that are prime powers, i.e. C = diag(pα1 , pα1+α2 , . . . , pα1+···+αn). There are four different
cases. First, there are the cases where α1 = 1. Second, if C = pαIn for α > 1, we can apply Salié’s
estimate as done by Tóth [Wil, Tót] to get square root cancellation. The most technical case is
C = pIn. Finally, if there is an n with αn > 1, we can make a Taylor series argument to get some
cancellation. We consider the third case for n = 3 and p ≥ 3 in the next section. We do not develop
the other cases in this thesis.

10.2 The case C = pI3

In this section, we prove Theorem 1.6. Let C = pI3 for an odd prime p. We can rewrite K(3)(Q,T ;C)
as ∑

AD=I3 mod p

etr

(
AQ + DT

p

)
=

∑
A mod p

k det(A)=1 mod p

etr

(
AQ + k̄A∗T

p

)

where k = det(A) (mod p). The sum is over integral matrices A (mod p) such that (p, det(A)) =
1 and A∗ designates the adjugate matrix of A, with A∗ = det(A)A−1. Suppose that a11 and
m = a11a22 − a212 are non-zero. We do a change of variable with respect to the diagonal minor
m = A(3|3). More precisely

m =

∣∣∣∣a11 a12
a12 a22

∣∣∣∣ = a11a22 − a212 ⇔ a22 = ā11(m + a212),

k = det(A) = a13

∣∣∣∣a12 a22
a13 a23

∣∣∣∣− a23

∣∣∣∣a11 a12
a13 a23

∣∣∣∣+ a33

∣∣∣∣a11 a12
a12 a22

∣∣∣∣
⇔ a33 = m̄

(
k − a13

∣∣∣∣a12 ā11(m + a212)
a13 a23

∣∣∣∣+ a23

∣∣∣∣a11 a12
a13 a23

∣∣∣∣) .

Therefore a22 7→ m, a33 7→ k is a valid change of variable on matrices A with a11 ̸= 0 and m ̸= 0.
We go from 7 variables with one equation (A = (aij), k with k = det(A)) to 6 variables without
relationships. The computation of the change of variable was done on Sage. We obtain

tr(AQ + k̄A∗T )

= ((a212 + m)(((a212 + m)a13a11 − a12a23)a13 − (a12a13 − a11a23)a23 + k)a11m̄− a223)k̄t11

− 2 ((((a212 + m)a13a11 − a12a23)a13 − (a12a13 − a11a23)a23 + k)a12m̄− a13a23)k̄t12

− 2 ((a212 + m)a13a11 − a12a23)k̄t13

+ ((((a212 + m)a13a11 − a12a23)a13 − (a12a13 − a11a23)a23 + k)a11m̄− a213)k̄t22

+ 2 (a12a13 − a11a23)k̄t23 + ((a212 + m)a11a11 − a212)k̄t33 + (a212 + m)a11q22

+ (((a212 + m)a13a11 − a12a23)a13 − (a12a13 − a11a23)a23 + k)m̄q33

+ a11q11 + 2 a12q12 + 2 a13q13 + 2 a23q23.

This (very long) expression has inverses in a11,m and k. The degree of the different variables are
summarized in the table below.

Coef. a11 a11 a12 a13 a23 m m̄ k k̄
Degree 2 2 4 2 2 1 1 1 1

(10.2)

We sum tr(AQ+ k̄A∗T ) over the above variable with the extra condition that a11mk ̸= 0 (mod p),
so that we can invert them. If a11 = 0, we take a trivial sum over the other variables and get a
bound of size O(p5). If a11 ̸= 0 and m = 0, we get a formula for a22. We take again a trivial bound
on the rest of the variables. Otherwise, we consider the sums in a23 and m. In number theory, there
are essentially two exponential sums that can be computed exactly, the Gauss sum and the Salié
sum. We give their exact values in the next two lemmas.



68 CHAPTER 10. HIGHER DEGREES

Lemma 10.4 (Gauss sum, [IK], Equation (3.38)). Let p be an odd prime and α, β be two integers.
The Gauss sum has the following value. If p|α, β, the sum has value p. If (p, α) = 1, it is below
and the sum vanishes otherwise.

G(α, β; p) =
∑

n mod p

e

(
αn2 + 2βn

p

)
=

∑
n mod p

e

(
α(n + ᾱβ)2 − ᾱβ2

p

)
= ϵp
√
p

(
α

p

)
e

(
−ᾱβ2

p

)
,

where ϵp = 1 if p = 1 (mod 4) and i if p = 3 (mod 4).

Lemma 10.5 (Salié sum, [IK], Lemma 12.4). Let p be an odd prime and α, β be two integers such
that (p, αβ) = 1. Then

S(α, β; p) =
∑∗

n mod p

(
n

p

)
e

(
αn̄ + βn

p

)
= ϵp
√
p

(
β

p

) ∑
m2=αβ mod p

e

(
2m

p

)

where ϵp is as above. If p|α or p|β but not both, this is a Gauss sum of size
√
p. If p|α, β, the sum

is 0.

Looking at the table in Equation (10.2), we see that we have a Gauss sum in a23 and a
Kloosterman sum in m. We consider the Gauss sum in a23. The coefficients in a23 are

αa223 + 2βa23 =

[(
a12 −a11

)(t11 t12
t12 t22

)(
a12
−a11

)
k̄ + a11q33

]
m̄a223

+
[
−(a212m̄ + 1)a12a13a11k̄t11 + (2a212m̄ + 1)a13k̄t12 − a11a12a13m̄k̄t22

+a12k̄t13 − a11k̄t23 + q23 − a12a13m̄q33
]

2a23.

We rewrite this as
α1m̄a223 + (β1m̄ + β2)2a23

with α1, β1, β2 independent of m. Note that m̄ is factorized in the coefficient in front of a223. We
apply Lemma 10.4. If p|α, since T is positive definite and a11 ̸= 0, we get a relationship for k. In
that case, a trivial bound gives the result, since we only have 5 variables left. If (p, α) = 1, then
we get the following:

G(α, β; p) = ϵp
√
p

(
α1

p

)(
m̄

p

)
e

(
−α1m(β2

1m̄
2 + 2β1β2m̄ + β2

2)

p

)
.

We are only interested in the variable m. We get a Legendre symbol and two new terms which are
constant or of degree 1 in m and m̄. The coefficient in m and m̄ that do not depend on a23 were
unaffected by the computation of the Gauss sum. They are the following:

γ1m + γ2m̄ =

[(
a11a13 −1

)(t11 t13
t13 t33

)(
a11a13
−1

)
k̄ + a11q22

]
m

+

[(
a11a12 −1

)(t11 t12
t12 t22

)(
a11a12
−1

)
(a212a

2
13k̄ + a11) + a212a

2
13a11q33 + kq33

]
m̄.

We obtain the following Salié sum in m:

∑∗

m mod p

(
m̄

p

)
e

((
−α1β

2
2 + γ1

)
m +

(
−α1β

2
1 + γ2

)
m̄

p

)
.

We apply Lemma 10.5. In all cases, we obtain a result of size O(
√
p) or 0. Finally, we use a trivial

bound for the other sums in a11, a12, a13 and k. In total, we obtain

|K(3)(Q,T ; pI3)| ≪ p
∑

a12,a13 mod p

∑∗

a11,k mod p

1 + p5 ≪ p5.

This concludes the proof of Theorem 1.6.



Appendix A

Automorphisms of binary quadratic
forms

The goal of this appendix is to compute all the automorphisms in GL2(Z) of a binary quadratic
form. We set

Q =

(
x y
y z

)
M =

(
a b
c d

)
.

Here Q is a (weakly) reduced integral quadratic form, that is x, z ̸= 0, 2|y| ≤ x ≤ z, 2y, x, z ∈ Z
and det(Q) > 0, and M ∈ GL2(Z). We are looking for the couples (Q,M) such that

Q = M tQM.

Note first that if we replace M by −M , we get the same result. Therefore we only consider
matrices up to multiplication by ±1. The computation gives

0 = M tQM −Q =

(
a2x + 2acy + c2z − x abx + (ad + bc)y + cdz − y

abx + (ad + bc)y + cdz − y b2x + 2bdy + d2z − z

)
. (A.1)

We consider the first entry. Using the identity u2 + v2 ≥ 2|uv|, we have

0 = a2x + 2acy + c2z − x ≥ 2|ac|(
√
xz − |y|)− x ≥ |ac|x− x.

Therefore we have |ac| ≤ 1. We have to work a bit more for the other entries. Suppose that |d| ≥ 2.
Then d2 − 1 ≥ 3

4d
2 and so

0 = b2x + 2bdy + (d2 − 1)z ≥ 2|b|
√

d2 − 1
√
xz − 2|bdy| ≥ 2|bd|(

√
3/4
√
xz − |y|).

Since
√

3/4 > 1/2, we have b = 0. Therefore we have two cases: |d| ≤ 1 or b = 0.

A.1 Diagonal and antidiagonal M

We begin with the two easy cases of diagonal and antidiagonal M . There are four possibilities up
to multiplication by −1:

M =

(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 1
1 0

)
.

The identity is an automorphism for any matrix Q. Looking at Equation (A.1), we get respectively
for the other three matrices

0 =

(
0 −2y
−2y 0

)
,

(
z − x −2y
−2y x− z

)
,

(
x− z 0

0 z − x

)
.

Therefore the conditions on Q are respectively y = 0, x = z ∧ y = 0 and x = z.
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A.2 Diagonal Q

We quickly consider the case y = 0, so we can rule out this later. Equation (A.1) rewrites as

0 =

(
a2x + c2z − x abx + cdz
abx + cdz b2x + d2z − z

)
.

First, if a = 0, then b, c = ±1 since the determinant is bc = ±1. The first entry gives x = z and the
second entry gives d = 0. If c = 0, then a, d = ±1 and the diagonal entries vanish. The second entry
gives b = 0. In both cases, we are back to a diagonal or antidiagonal M . Otherwise, if ac = ±1,
then the first entry gives z = 0 which is a contradiction. So all these cases fit in the last section.
From now, we suppose that y ̸= 0.

A.3 The case ac = 0

If c = 0, then automatically a and d equal ±1 since the determinant is ad. That gives the matrices

M =

(
1 n
0 1

)
,

(
1 n
0 −1

)
for n a non-zero integer. The other cases can be obtained by multiplying by −1. Looking at
Equation (A.1), we have

0 =

(
0 anx + (ad− 1)y

anx + (ad− 1)y n2x + 2dny

)
.

So if ad = 1 like in the first case, then x = 0 and there is no such Q. In the second case, ad = −1
and we get nx = 2y or nx + 2y = 0. Since x ≥ 2|y|, we get n = sgn(y) and x = 2|y|. Now, if a = 0
then bc = ±1 and we have the matrices

M =

(
0 1
1 n

)
,

(
0 1
−1 n

)
.

Equation (A.1) rewrite as

0 =

(
z − x (bc− 1)y + cnz

(bc− 1)y + cnz x + 2bny + (n2 − 1)z

)
.

If bc = 1, then z = 0 and there is no such matrix. Otherwise, x = z and we get the two equations
nx = 2y and nx + 2y = 0. Again, x ≥ 2|y| so n = − sgn(y) and x = 2|y|.

A.4 The case ac = 1

We have a = c = ±1, without loss of generality say a = c = 1. Therefore the first entry of the
matrix is 2y + z = 0. Since 2|y| ≤ x ≤ z, we get −2y = x = z. Equation (A.1) rewrites as

0 =

(
0 −by − dy − y

−by − dy − y −2b2y + 2bdy − 2(d2 − 1)y

)
.

If b = 0, then the second entry gives d + 1 = 0 so d = −1 and this is compatible with the last
entry. If b ̸= 0, then we have two cases. If d = 0, then the second equation gives b = −1. This is
compatible with the last entry. If d = ±1, then the last entry is −2b2y + 2bdy = 0, so that b = d.
There is no such matrix with determinant ±1 and it is also incompatible with the second entry.

A.5 The case ac = −1

We have a = −c = ±1, without loss of generality say a = −c = 1. So the first entry of Equation
(A.1) gives 2y = z. Since 2|y| ≤ x ≤ z, we have 2y = x = z. The full matrix rewrites

0 =

(
0 by − dy − y

by − dy − y 2b2y + 2bdy + 2d2y − 2y

)
.
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If b = 0, then the second entry gives d = −1 and is compatible with the last. If b ̸= 0, then d = 0
gives b = 1 for both equations. If d = ±1, then the last entry is 2b2y + 2bdy = 0 so b = −d. This
is incompatible with the second entry that says b = d + 1 (for integral b and d).

A.6 Summary

We summarize the result in the table below. The first column indicates the sign of the determinant
of M . For each matrix M , there is the matrix −M that has the same action on Q. Note that except
for the fourth entry, y is always supposed to be non-zero.

det(M) M Q

+

(
1 0
0 1

)
Any

−
(

1 0
0 −1

) (
x 0
0 z

)
+

(
0 1
−1 0

) (
x 0
0 x

)
−

(
0 1
1 0

) (
x y
y x

)
−

(
1 1
0 −1

) (
2y y
y z

)
−

(
1 −1
0 −1

) (
2y −y
−y z

)
+

(
0 1
−1 1

) (
2y y
y 2y

)
+

(
0 1
−1 −1

) (
2y −y
−y 2y

)
−

(
1 0
1 −1

) (
2y −y
−y 2y

)
+

(
1 −1
1 0

) (
2y −y
−y 2y

)
−

(
1 0
−1 −1

) (
2y y
y 2y

)
+

(
1 1
−1 0

) (
2y y
y 2y

)
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We rewrite the above table in terms of Q. The second column lists all the automorphisms of Q
(modulo ±id). The three following columns indicate respectively the number of automorphisms in
SL2(Z), in GL2(Z) and the ratio between the two. The number of automorphisms ϵ(Q) in PSL2(Z)
is just half of the number in SL2(Z). The last column gives the corresponding Heegner point

z =
−y+i
√

xz−y2

x . Here y ̸= 0 everywhere and y > 0 except in the third row. Recall that if Q is
reduced and x = z or x = 2|y|, we can, furthermore, suppose that y > 0. This removes the fifth
and the seventh rows.

Q M SL2(Z) GL2(Z) Ratio Heegner pt(
x 0
0 z

) (
1 0
0 1

)
,

(
1 0
0 −1

)
2 4 2 i

√
z
x(

x 0
0 x

) (
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 1
1 0

)
4 8 2 i(

x y
y x

) (
1 0
0 1

)
,

(
0 1
1 0

)
2 4 2

−y+i
√

x2−y2

x(
2y y
y z

) (
1 0
0 1

)
,

(
1 1
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[DI] W. Duke and Ö. Imamoglu. A converse theorem and the Saito-Kurokawa lift. Inter-
national Mathematics Research Notices, 1996(7):347–355, January 1996.

[DK] Soumya Das and Hariram Krishna. Bounds for the Bergman kernel and the sup-
norm of holomorphic Siegel cusp forms. International Mathematics Research Notices,
2024(7):6140–6175, January 2024.

[Fel] Gilles Felber. A restriction norm problem for Siegel modular forms. August 2023.
arXiv:2308.13493.

[Fre] Eberhard Freitag. Siegelsche Modulfunktionen. Springer Berlin Heidelberg, 1983.

[GR] Izrail S. Gradshtein and Iosif M. Ryzhik. Table of Integrals, Series, and Products.
Elsevier/Academic Press, Amsterdam, Waltham, MA, eighth edition edition, 2015.

[GRS] Amit Ghosh, Andre Reznikov, and Peter Sarnak. Nodal domains of Maass forms
I. Geometric and Functional Analysis Volume 23, Issue 5 , pp 1515-1568 2013,
23(5):1515–1568, July 2012.

[GWW] C. Gordon, D. Webb, and S. Wolpert. Isospectral plane domains and surfaces via
Riemannian orbifolds. Inventiones Mathematicae, 110(1):1–22, December 1992.

73

https://arxiv.org/abs/2308.13493


74 BIBLIOGRAPHY

[HS] Roman Holowinsky and Kannan Soundararajan. Mass equidistribution for Hecke
eigenforms. Annals of Mathematics, 172(2):1517, 2010.

[Igu] Jun-Ichi Igusa. On Siegel modular forms of genus two. American Journal of Mathe-
matics, 84(1):175–200, January 1962.

[IK] Henryk Iwaniec and Emmanuel Kowalski. Analytic Number Theory. American Math-
ematical Society, 2004.

[ILS] Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak. Low lying zeros of families of L-
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