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Abstract

This dissertation focuses on the challenges and methods in analyzing multivariate time
series (MVTS) data, crucial in various fields like finance, healthcare, and sports. The raw
MVTS data, often complex due to its volume and multiple attributes, limits insightful
pattern recognition. Temporal abstraction is proposed as a solution, integrating elemen-
tary data (i.e., sequences of time-stamped attribute values) into meaningful entities for
easier comprehension and analysis. At the basic level, the abstraction transforms data
referring to time points into interval-based representations. At higher levels, temporal
relations between earlier derived representations are used to integrate them into more
complex concepts.

Previous research in MVTS analysis has two main directions: computational meth-
ods and visual analytics. The former focuses on extracting patterns from data but is not
concerned with enabling human analysts to consider the contexts in which the patterns
occur and the relationships between the patterns. Visual analytics research encompasses
several application-specific studies but lacks a systematic approach to incorporating tem-
poral abstraction in analytical workflows. This dissertation aims to bridge these gaps by
developing a framework for integrating computational methods with techniques for inter-
active visual analysis designed to support human cognition and knowledge generation.

The thesis focuses on the extraction, interpretation, and analysis of patterns from
MVTS through progressive abstraction. It starts with methods for detecting temporal
patterns in individual variables, progresses to deriving higher-level patterns by combining
univariate patterns, and works out approaches to exploring the distribution of these
patterns across the dataset. In all these steps, it addresses the problem of supporting
human understanding and analytical reasoning by means of effective visualizations.

The dissertation includes the following major parts: First, it focuses on detecting
patterns such as up-trends and peaks in discretized MVTS, employing geometric rules
and visualization for pattern recognition. Second, it explores identifying patterns in
continuous MVTS, using computational algorithms to understand patterns and their
temporal relations. Lastly, it introduces topic modeling to examine concurrency between
multiple univariate patterns in discretized MVTS.

In conclusion, this dissertation provides a conceptual framework and methods for
progressive temporal abstraction in MVTS data. It advances the field by combining
computational and visual techniques to aid domain experts in data interpretation. Fu-
ture research involves adapting and refining this framework across different domains,
enhancing temporal pattern analysis, and incorporating expert feedback for continual
improvement and broader applicability.
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Chapter 1
Introduction



1.1 Background and motivation

In the current era of technological advancements, the analysis of time series data with
multiple attributes, known as multivariate time series (MVTS), has become increasingly
vital across various domains such as finance, healthcare, environmental monitoring, trans-
portation, and sports. Despite the potential insights that can be gained from these data,
domain experts face challenges in extracting meaningful knowledge due to the volume
of raw data and the complexity arising from multiple attributes. Raw data points, in
their original form, often fail to convey insightful information, making the discovery of
patterns an arduous task. The complexity of such data comes from the complex nature
of the phenomenon which we try to understand. One of the analytical goals is to enable
reasoning about data, which are observations of the phenomena. While visualization
techniques can facilitate pattern recognition in the raw data, the insights they provide
are products of a result of human perception and cognitive processes. These insights,
which appear in the human mind, are difficult to externalize (i.e., represent in an explicit
form), share, store, and use in further analysis.

The concept of temporal abstraction serves as a key to solving these challenges. Tem-
poral abstraction transforms the mere sequence of data points into a structured form
that is more accessible and comprehensible to human analysts and allows for the effec-
tive utilization of data by experts. This abstraction process can be applied progressively.
Basic temporal abstraction [30] creates interval-based representations from time-stamped
data [32], while complex (or composite) temporal abstraction [30] treats these represen-
tations as input data for constructing structures with an increased level of abstractions.
In this way, a time interval is not just a sequence of data points but can be perceived
as a pattern, a composite entity formed by temporally ordered attribute values. Such
patterns provide more concise insights into data aspects compared to elementary values.

Within each pattern, basic pattern types such as trends or states can be identified.
Consider, for example, the statement incorporating a pattern instance: “the tempera-
ture increased by 10 degrees from Friday to Sunday”. This sentence conveys a more
intuitive comprehension of weather changes than a mere presentation of the individual
temperatures on Friday and Sunday as 15 and 25 degrees respectively.

Following the extraction of basic patterns, these can be interconnected to form compos-
ite pattern types due to relationships between them, especially temporal ones. Examples
include situations like “the temperature first increased then dropped” (i.e., successive
pattern type) or “while the temperature was increasing, the air humidity was also in-
creasing, and the wind direction was changing from north to west” (i.e., multivariate
pattern type). Hence, through composite temporal abstraction, these basic patterns are
used as input data to construct more complex structures, demonstrating how higher levels
of abstraction can depict relationships between various basic patterns.

What has been missing in the previous research

In MVTS analysis, there are two primary research directions: computational and al-
gorithmic analysis methods, and visual analytics approaches, as detailed in Table 1.1.
The former focuses on deriving artifacts from data, such as patterns, relationships, and
structures. The majority of methods in this area implicitly involve temporal abstraction,
as they derive summary characteristics or aggregate artifacts from multiple time points.
Additionally, there exist frameworks that explicitly define and utilize the concept of tem-
poral abstraction. Knowledge extraction from MVTS data typically involves identifying
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patterns across attributes, transforming these patterns into appropriate data structures
such as networks, and compressing MVTS into lower-dimensional representations. This
extracted knowledge then facilitates various tasks, including classification, clustering, and
regression analysis. However, these approaches, while adept at handling large datasets
and uncovering patterns, often fall short in terms of intuitiveness and interpretability,
particularly for domain experts who may not be rooted in time series analysis. Moreover,
there is absence of a conceptual framework that unites these methods and incorporate
domain knowledge into the analysis process.

On the other hand, visual analytics approaches focus on supporting analytical work-
flows by integrating human cognition processes with the computational derivation of
analytical artifacts. Although numerous application-oriented studies exist in this do-
main, employing specific computational methods for MVTS, they often lack a systematic
approach or a universal paradigm for incorporating temporal abstraction into visual an-
alytics workflows. Traditional visualization tools, designed for temporal data analysis
and focusing on predefined patterns and automated insights, might not fully leverage the
specialized knowledge and analytical capabilities of experts.

We should note that while the phenomenon is the primary subject of analysis, to
understand the available data and the computational model is also essential [5]. Once
we understand characteristics of the data, we can proceed to interpret the phenomenon
reflected in the data and build computational models. Then, the insights gained through
this process can be further utilized to better understand the characteristics of the data,
phenomenon, and model. Human analysis should always be in these iterations to under-
stand the phenomena.

Our work focuses on developing an environment that enhances the utility of existing
computational components in data analysis, thereby addressing the gaps in both com-
putational and algorithmic analysis methods and visual analytics approaches. We have
constructed a framework that enriches traditional methodologies by integrating human
expertise. Our focus has been on creating an environment by integrating existing com-
putational tools. This environment is designed to merge the capabilities of computers
with the strengths of human recognition and reasoning and allow for iterative analytical
process using interactive techniques. Using visual analytics, we aim to bridge the gap
by providing an interactive platform where analysts can visually navigate through the
data, gain insights, and iteratively refine their analysis strategies.

Aim and methodology of the dissertation

The aim of this thesis is to establish a conceptual and practical framework for extracting
knowledge from multivariate time intervals (MVTS) using a progressive temporal ab-
straction approach. This methodology uses computational algorithms coordinated with
visualization tools to assist in assigning meaning and interpreting the processed data.

First, we present the methods to identify temporal patterns of univariate time series
within fixed-length time intervals, i.e., episodes (Chapter 3). In addition to the temporal
distributions of these individual patterns, we also investigate joint behavior of multiple
patterns, i.e., co-occurrences.

Then, we extend the idea of extracting patterns from time series data by introducing
the concept of temporal abstraction (Chapter 4). We propose a conceptual framework for
progressive temporal abstraction, from basic patterns of univariate variables within time
intervals of various lengths, via complex patterns consisting of a set of the basic patterns,
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Computational Visual Analytics

Focus Deriving artifacts from data,
such as patterns, relationships,
structures, and the aggregation of
characteristics.

Supporting analytical work-
flows that integrate human cogni-
tive processes with computational
artifact derivation.

Existing Time abstraction and various
methods to derive temporal ab-
stractions from time series, such as
pattern extraction, data transforma-
tion, and data compression.

Application-oriented studies
employing specific computational
methods for MVTS, focusing on
detection and visualization of pre-
defined patterns.

Missing Lack of support for humans to
perceive , interpret, and use the re-
sults of computational abstraction.
Absence of a unified conceptual
framework that incorporates do-
main knowledge.

Lack of a systematic approach
or a universal paradigm for ef-
fectively incorporating temporal ab-
straction into workflows.

Table 1.1: Contributions in MVTS: focus, existing solutions, and gaps in computational
and visual analytics methods

finally to the distribution of these behavior patterns. This framework is supported by the
Visualization Mantra (Overview first, zoom and filtering, then details-on-demand) and
interaction techniques, such as filtering and coordinated multiple views.

Finally, we focused on the interpretation of the distribution of multivariate patterns
within episode-based data (Chapter 5). We investigate distributions of co-occurrence
patterns using topic modeling methods.

1.2 Problem statement

To facilitate knowledge building from MVTS, we seek to address the problem of charac-
terizing a complex phenomenon or behavior using abstractions, i.e., patterns that have
been detected or derived.

Our approach to understanding these behaviours is structured into three tasks. These
tasks are organized progressively: starting from a) detecting temporal patterns of individ-
ual variables, advancing to b) deriving multivariate patterns from univariate patterns, and
leading to c) exploring the distribution of identified behavior patterns over the dataset.

Detecting and investigating temporal patterns of individual vari-
ables

The first task involves detecting and investigating temporal behavior patterns of indi-
vidual variables. These pattern types provide human analysts with abstract information
about the behavior of one variable in each interval of interest. This involves defining a
set of basic pattern types that can be easily understood by analysts and transforming
time intervals containing elementary value sequences into univariate patterns.
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Deriving higher-level pattern types

The second task involves using the univariate pattern types from different attributes as
building blocks to form composite pattern types within MVTS. The composite pattern
type includes consecutive sequences of univariate patterns from a single attribute (i.e.,
successive pattern type) and joint behavior of multiple variables (i.e., multivariate pat-
tern type). This integration process relies on the exploration of temporal concurrency
relations, providing a composite view of multivariate behavior patterns. It combines the
detected univariate patterns and their relationships to form multivariate patterns.

Identifying patterns in the distribution of behavior patterns

The third task involves exploring the distribution of identified behavior patterns over
the dataset (i.e., with respect to different dimensions of the data). Investigating these
distributions includes scrutinizing the frequency distribution, along with the temporal
distribution across the time axis and within temporal cycles. Furthermore, this task
involves a visual search aimed at unveiling patterns of temporal relations across multiple
variables such as those introduced by Allen [2].

1.3 Research questions

Enabling human analysts in building knowledge by providing increasing degrees of ab-
straction about MVTS presents a challenge that involves the aforementioned tasks. To
provide a roadmap for analysis and enable human analysts to fulfill these tasks, we de-
velop a conceptual and methodological framework for supporting semantic abstraction.
This framework poses the following research questions:

• RQ1: Identifying relevant intervals: How to find relevant intervals in univari-
ate time series, such that the content of each interval can be considered holistically
as an interpretable pattern?

• RQ2: Extracting univariate patterns of individual variables: How to
transform sequences of elementary values of individual variables into constructs
that can be interpreted by humans as recognisable behavior patterns?

• RQ3: Deriving higher-level pattern types: How to help analysts to 1)
define higher-level concepts as combinations of univariate pattern types linked by
particular relationships, and 2) identify instances of these concepts (i.e., composite
pattern types) in the data?

• RQ4: Exploring the distribution of identified behavior patterns over
the dataset: How to enable finding patterns in the distribution of earlier extracted
patterns over the dataset dimensions?

• RQ5: Visualization: How to represent computationally derived constructs to
humans to enable pattern recognition and interpretation?
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1.4 Outline & Contributions

Figure 1.1: An overview of the research scope: A methodological framework for analyz-
ing and visualizing patterns in time series data, differentiating between continuous and
discretized approaches.

Figure 1.1 provides an overview of the contributions made in this dissertation. The figure
explains our approach to temporal data abstraction, distinguishing between “continuous”
and “discretized” forms. For each form, specific abstraction tasks are employed, and
the relevant chapters that discuss these methods are indicated, directly addressing the
research questions (RQ1 - RQ5) .

Chapter 2 presents the theoretical and methodological background, and offers a suc-
cinct overview of the state of the art in the relevant research domains.

Chapter 3 to 5 form the core of this dissertation, with each chapter presenting distinct
contributions. Chapter 3 introduces new techniques for detecting univariate patterns in
discretized time series, addressing RQ1 (Identifying relevant intervals) and RQ2 (Ex-
tracting univariate patterns) . It proposes techniques for the visual exploration of pattern
distribution as well as certain types of relationships between patterns, thus contributing
to RQ3 (Deriving higher-level pattern types), RQ4 (Exploring the distribution of identi-
fied behavior patterns over the dataset), and RQ5 (Visualization) . Chapter 4 builds on
this groundwork to create multivariate patterns from univariate patterns in discretized
MVTS, addressing RQ2 and RQ3 . Additionally, it introduces techniques that support
the interpretation and exploration of these patterns in terms of time, space, and relevant
contexts, contributing to RQ4 and RQ5 . Chapter 4 focuses on identifying univariate
patterns in continuous MVTS without prior discretization, tackling RQ1 and RQ2 . It
explores the temporal relationships between the detected patterns, engaging with RQ3
and RQ5 . This process involves a visual search, aimed at revealing patterns of temporal
relations across multiple variables, addressing RQ4 .

Chapter 3 introduces methodologies for characterizing univariate discretized time se-
ries, i.e., time series segmented into time intervals, using two approaches for extracting
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predefined univariate patterns: state-based and shape-based. The state-based approach
encodes temporal data into sequences of states such as high, medium, and low, helping
us to understand relative value states within their corresponding intervals. On the other
hand, the shape-based approach transforms temporal data into sequences of shapes such
as increasing, constancy, or decreasing, which emphasizes the dynamics to clarify general
trends and changes over time. Additionally, the chapter presents relationships between
univariate patterns (e.g., transitions) and methods for visual exploration of pattern dis-
tribution.

Chapter 4 presents an approach to characterizing continuous MVTS, i.e., time series
without prior discretization, by extracting univariate patterns and exploring temporal
relationships between them. The chapter expands upon the shape-based approach for
extracting patterns, introduced in Chapter 3, to extract univariate pattern from contin-
uous time series. Then, it employs Allen’s interval algebra to examine temporal relations
across multiple attributes. The chapter also presents a visual search technique, enabling
the detection of patterns in temporal relations across multiple variables. In contrast to
the preceding two chapters that delve into discretized time series, this chapter focuses on
continuous MVTS, highlighting the techniques necessary to discern patterns within data
that remains undivided.

Chapter 5 continues the exploration of pattern distribution, discussed in Chapter 3, by
deriving multivariate patterns from the univariate patterns identified within discretized
MVTS. This process relies on the exploration of temporal concurrency relations. For
grouping patterns that co-occur frequently in MVTS, we utilize topic modeling. Here,
an episode with patterns from multiple attributes is treated as a document consisting of
words. To help understand distributions of multivariate patterns, we propose visualiza-
tion techniques for co-occurrences. Homogeneous groups, identified by topic modeling,
are mapped into a 2D space.

Finally, Chapter 6 concludes the dissertation by summarizing the key findings, high-
lighting the contributions, discussing the implications, and proposing directions for fu-
ture research. This chapter synthesizes the answers to all the research questions (RQ1
- RQ5).

1.5 Publications

The chapters in this dissertation are based on the following research publications:

1.5.1 Publications used in the dissertation

Chapter 3

• G. Shirato, N. Andrienko, and G. Andrienko, “Identifying, exploring, and inter-
preting time series shapes in multivariate time intervals”, Visual Informatics, vol.
7, no. 1, pp. 77–91, Mar. 2023, doi: 10.1016/j.visinf.2023.01.001. [36]

Chapter 4

• G. Shirato, N. Andrienko, and G. Andrienko, “Exploring and visualizing tem-
poral relations in multivariate time series”, Visual Informatics, Sep. 2023, doi:
10.1016/j.visinf.2023.09.001. [34]

7



Chapter 5

• N. Andrienko, G. Andrienko, and G. Shirato, “Episodes and topics in multivari-
ate temporal data”, Computer Graphics Forum, vol. 42, no. 6, Sep. 2023, doi:
10.1111/cgf.14926. [7]

1.5.2 Additional publications during PhD

• G. Shirato, N. Andrienko, and G. Andrienko, “What are the topics in football?
Extracting time-series topics from game episodes”, presented at the IEEE VIS 2021,
2021. [34]

• D. Brughardt, A. Dunkel, E. Hautahl, G. Shirato, N. Andrienko, G. Andrienko,
M. Hartmann, and R. Purves, “Extraction and visually driven analysis of VGI
for understanding people’s behavior in relation to multi-faceted context”, Springer,
2023, pp. 213–234. [9]

1.5.3 My contribution in the publications

Parts of the contributions in this thesis have been published in international peer-reviewed
journals. My contributions are clarified based on CRediT (Contributor Roles Taxon-
omy) [31].

Chapter 3

This chapter contains the paper titled “Identifying, exploring, and interpreting time
series shapes in multivariate time intervals” published in Visual Informatics [36]. We
introduce a concept of episode referring to a time interval of a dynamic phenomenon that
is characterized by a multivariate time series.

My contributions to this research are comprehensive and include various aspects such
as formulating research goals, scrubbing and maintaining research data, applying com-
putational techniques, developing methodology, designing computer programs, verifying
the overall replication of results, creating visual representations, and writing the initial
draft and editing the article.

First, we identified the phenomenon we want to understand: temporal variations of
multiple features, i.e., multivariate time series. We aimed to present methods that could
analyze multivariate time series, beginning with the identification of temporal develop-
ment patterns of individual attributes and progressing toward the analysis of patterns of
joint development in a set of episodes. After performing necessary preprocessing steps
such as feature extraction and normalization, I defined the temporal patterns we utilized
in the publication, including down-trend, up-trend, constancy, trough, and peak. I used
a rule-based determination process to identify these patterns (Fig. 4). Additionally,
I applied computational methods to downsample the time series data, especially when
dealing with a large number of data points within a single episode (Fig. 9).

Following the preprocessing and pattern definition, I proceeded to identify the tem-
poral patterns within real-world datasets, specifically focusing on mobility data post-
COVID-19 outbreak and tracking data from football matches. To facilitate an analysis,
I made the data visualization interactive, which allowed us to iteratively investigate the
data with reduced effort and increased efficiency. While common visual representations
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such as time series views and co-occurrence network charts were utilized for both datasets
(Figs. 8, 15, and 16), I adjusted certain charts to align with domain-specific knowledge.
For instance, I used circular displays of temporal patterns to better represent periodic
data (Fig. 6). When it came to analyzing beyond univariate patterns, such as coor-
dinating the selection of a pattern in one chart with another or exploring multivariate
patterns, we leveraged interaction techniques like filtering and highlighting.

The iterative development of these visual analytics tools was important in reviewing
and refining the results, thereby enhancing our understanding of the phenomenon. For
instance, after identifying sets of basic patterns that describe tactical movements in foot-
ball (e.g., slow build-ups as shown in Fig. 14), we could define these sets as higher-level
patterns, which can be reused in subsequent analyses. I found that incorporating event
data or publicly available external sources relevant to the field significantly improved
the reasoning process. For instance, in football datasets, integrating information such as
shots and goals, and in mobility datasets, including mortality rates, provided valuable
context. This additional data facilitated a more coherent connection between the out-
comes of computational methods and our domain knowledge. Finally, to understand the
phenomena occurring within the research subjects, I implemented domain-specific data
representations using the identified patterns from our analysis. These temporal patterns
enabled us to filter temporal data based on the specific patterns we were interested in
identifying.

The processes were implemented using D3.js, a JavaScript-based library for data vi-
sualization. This library provided extensive customization options for layouts (i.e., posi-
tions), interactivity, and animations.

During the writing phase of the research, the iterations we performed with the com-
putational algorithms and visualization techniques provided substantial material directly
applicable to the paper. For instance, some charts presented in this chapter, such as Figs.
1, 6, 7, and 8, were produced through iterative analysis illustrating both basic patterns
(Figs. 1 and 6) and higher-order patterns (Figs. 7 and 8). This iterative process ensured
that the results were robust and well-documented.

Chapter 4

This chapter contains the paper titled “Exploring and visualizing temporal relations in
multivariate time series” published in Visual Informatics [35]. We present an approach to
analyzing multivariate time series data through progressive temporal abstraction of the
data into patterns that characterize the behavior of the phenomenon.

My contributions to this research are consistent with those in the first publication [36],
including formulating research goals, cleaning and maintaining research data, applying
computational techniques, developing methodologies, designing computer programs, ver-
ifying replication of results, creating visual representations, and writing and editing the
article.

First, we identified the temporal relationships in multivariate time series that we
aimed to understand. Our goal was to establish a method to analyze these series through
progressive temporal abstraction, starting with basic patterns in univariate time series
and advancing to higher-level patterns formed by temporal relationships between these
basic patterns. I applied the pattern detection algorithm from the first publication [36]
to segment continuous time series into intervals (episodes) (Figs. 2 and 5). I detailed
how these algorithms function with comprehensive captions (Figs. 2, 3, 4, 5, and 6).
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Then, I calculated temporal relationships [2] (higher-level patterns) between adjacent
time intervals, such as before, after, and overlaps. Finally, I analyzed the distributions
of these patterns to provide an overview of the complex behaviors in multivariate time
series.

After the temporal abstraction, I applied this method to real-world datasets, focusing
on post-COVID-19 mobility data and tracking data from football matches. As in the first
publication, I made the data visualization interactive to maximize the efficiency of each
chart.

I created relation occurrence matrices to comprehensively describe relationships be-
tween all patterns for each feature (Fig. 7). Using the concept of Small Multiples [42],
I juxtaposed these matrices for different categories, such as countries for mobility trends
(Figs. 8 and 9). Additionally, I applied the t-SNE projection to the similarity values
between the matrices to provide a spatial representation of the similarities (Fig. 10).

To improve understanding of the algorithms and the phenomena underlying the data,
it was important to visualize both the processes and thresholds involved. In Fig. 4,
the iterative division process of a time series into intervals was compared across dif-
ferent thresholds, representing varying tolerance levels for data variation. With larger
thresholds, the time series is segmented into broader segments. Similarly, in Fig. 6, the
threshold representing the overlap tolerance (ω) is visualized. If the overlap between two
intervals is smaller than the threshold, the relation “before” or “after” is assigned instead
of “overlap”. As described in Chapter 3, the implementation was done using the d3.js
library, which allowed easy access to primitive visual components such as points or lines,
while offering customization for visualizing the processes and thresholds involved in the
algorithms.

One of the challenges was visualizing the temporal distribution of temporal relations
between intervals. In addition to the thresholds used for calculating temporal relations,
several aspects had to be considered. First, one interval was fixed as a reference, and the
temporal distribution of its neighboring intervals was calculated. Next, I considered how
to plot the occurrences of neighboring intervals along the x-axis (i.e., temporal axis). In
this research, I used the relative time between the middle points of intervals. Although
the resulting charts were not always intuitive, integrating interactive elements to explore
details of specific elements helped mitigate this issue while maintaining the overall view
of the distribution.

The entire abstraction process from raw data through basic and higher-order patterns
to their distributions, is fully automated. Any changes of settings, such as thresholds or
algorithm selection, will automatically generate new visualization results.

Chapter 5

This chapter contains the paper titled “Episodes and topics in multivariate temporal
data”, published in Computer Graphics Forum [7]. In this publication, we focused on
analyzing episode-based data to understand the distribution of multi-attribute dynamic
characteristics across a series of episodes, which can represent various phases or states
within the data. In addition to the event-based approach described in Chapter 4, we also
employed a sliding window approach, which allowed for overlap between windows. This
method was designed to minimize the loss of important behavior patterns that might be
missed in non-overlapping windows, ensuring that the capture of temporal dynamics was
continuous and more comprehensive.
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My contributions to this research included scrubbing and maintaining research data,
applying computational techniques, designing computer programs, and editing the arti-
cle. I developed preliminary algorithms to segment time series into equal intervals using
symbolic encoding with three value states: low, middle, and high. We later extended
this by adopting the Symbolic Aggregate Approximation (SAX) method [22], which used
five value states. For visualizing the resulting patterns, a diverging color scheme, such as
from red through yellow to blue, proved to be interpretable.

Additionally, I explored the application of topic modeling to non-textual data, a tech-
nique typically used in text analysis. In this context, we adopted topic modeling to
identify recurring basic patterns across episodes, rather than focusing on the sequential
order of those patterns. By doing so, we could generate interpretable results that revealed
underlying structures such as co-occurrence of these patterns. This was particularly ef-
fective in yielding when applied to football data, where early results were first presented
in a poster [34]. This chapter extends and builds on those early concepts and method-
ologies. Although initial work relied solely on Latent Dirichlet Allocation (LDA) as the
topic modeling algorithm, we further compared it with Non-negative Matrix Factoriza-
tion (NMF) in this chapter. Through our case study of football data, we found that NMF
produced more coherent groupings and delivered results that were easier to interpret.

The visualization of topic modeling results was achieved through several approaches,
ensuring the versatility of our framework. In addition to matrix displays that featured
pie charts or small multiple maps to show topic weights (Figs. 11, 12, and 16), I applied
a method that projected data points onto a two-dimensional plane through the use of
t-SNE projection. This serves as an initial step for clusering data points based on shared
characteristics. However, despite its usefulness in spatially organizing similar data, this
method proved to be less intuitive compared to the matrix displays and small multi-
ple visualizations. For instance, the matrix display used Principal Component Analysis
(PCA) [18] to align the y-axis, positioning countries with geographically close capitals
nearer in the linear order. Furthermore, in the small multiple views, a football pitch
served as a background, which allows domain experts to fully utilize their specialized
knowledge more effectively during the analysis.

Although the methods were implemented using various tools and systems, such as
Python and V-Analytics [3], the entire analysis followed the principles of the progressive
abstraction framework. This framework guided our approach by helping us focus on
both low-level details, such as elementary points, and higher-level patterns, including
univariate and higher-level temporal patterns.

Throughout the iterative process of developing the interactive visual interfaces, we
implemented a series of computational algorithms designed to handle multiple levels
of abstraction. These algorithms facilitated transitions from elementary data points to
higher-level abstractions, including univariate temporal patterns and composite patterns.
Our visual interfaces were designed to support the exploration of these abstractions, al-
lowing users to seamlessly navigate between different levels of data granularity. The
interfaces provided an environment for uncovering patterns through visualizing both in-
dividual data points and their aggregated behavior patterns.
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Chapter 2
Background



2.1 Pattern theory

A conceptual framework for the pattern discovery is introduced by Andrienko et al. [6].
Within this framework, a behavior pattern is defined by the relationships found in a
distribution that includes at least two data components. To illustrate, in time series
data, we typically aim to discover relationships between two data components: 1) time
and 2) the corresponding values. Time establishes the set of positions of a temporal
distribution (called base) while values are associated with the positions. This set of
positioned values is called the overlay of the distribution.

The authors describe a pattern as a combination of relationships between the ele-
ments of data components in a distribution. A pattern can be viewed as a unit compris-
ing multiple data elements, interlinked through certain relationships. Temporal patterns
are formed by the association of values with their respective temporal positions, the
relationships between temporal positions themselves, and the relationships between the
associated values. An example of this would be temporally ordered values where each sub-
sequent value is greater than the one before, creating a pattern of increase. This pattern
is formed by the temporal order relations between the time stamps and, consequently,
the associated values, as well as the “greater than” relationships between consecutive
values. Hence, the concept of a pattern emerges as a confluence of these interconnected
relationships.

The process of considering a collection of items linked by relationships as one single
object is known as abstraction. This concept of abstraction can be applied recursively.
Initially, it serves to group elementary values into basic patterns.

In this study, a basic pattern denotes a sequence of values of a single attribute, ar-
ranged over time, that can be represented by a single entity understandable to humans.

In a specific application, patterns termed as “basic” are treated as individual units in
comparison to more complex patterns. Although not necessarily simple in nature, these
basic patterns are selected as the fundamental elements for the construction of higher-
level patterns. Subsequent abstraction processes that are applied to these basic patterns
result in the formation of more complex, higher-level patterns. This iterative method of
generating increasingly complex patterns from previously created units is referred to as
progressive abstraction. Basic patterns in time series, such as an increasing trend, are
derived via abstraction: treating time as the base and mapping the varying values onto
it as the overlay. The degree of abstraction can therefore be progressively adjusted, with
elementary values having lower degrees and composite patterns having higher degrees.
The gradual transition in degree of abstraction, or progressive abstraction, can enhance
the understanding of multivariate time series as it allows analysts to perceive various
relationships within the dataset expressed by differing degrees of abstraction.

2.2 Temporal abstraction

Temporal abstraction typically transforms time point-based representation (where each
data item refers to an individual time step) into interval-based representation (where
multiple original data items referring to consecutive time steps are represented by a
single entity), defined by their start and end times. These identified patterns can then
be transformed into patterns of multiple attributes or used in a visual search to uncover
patterns of temporal relations between them.
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Framework for temporal abstraction

Shahar introduced a conceptual framework for temporal abstraction using domain knowl-
edge, termed as knowledge-based pattern abstraction [32]. This framework decomposes
the temporal abstraction task into five subtasks, each relating to specific knowledge types,
such as structural, functional, logical, and probabilistic. Such a framework requires a for-
malized representation of domain knowledge, such as a formal ontology or set of rules.
This framework not only structures operations within temporal abstraction but also en-
hances understanding of temporal changes by addressing the acquisition, maintenance,
reuse, and sharing of temporal knowledge.

Defining relevant intervals

Fu [13] presents two types of time series segmentation: fixed-length and dynamic. While
the fixed-length approach, including the static sliding window approach [11], is relatively
straightforward, the dynamic method offers a more flexible segmentation.

Dynamic time series segmentation has three primary techniques: extensible sliding
window, top-down, and bottom-up, as detailed in a survey [19]. Each technique processes
the time series several times, stopping once specific criteria are met. What differentiates
them is their method of handling time series data: whether to expand, partition, or merge
segments.

In the extensible sliding window technique, a segment continues to expand until the
difference between a prototype pattern and the segment’s values exceeds a threshold.
Upon reaching the end of one segment, the subsequent one commences immediately.

The top-down technique partitions continuous time series into intervals containing
some elements that analysts aim to find. Such elements can either be events (i.e., event-
based segmentation) or univariate patterns. Event-based segmentation defines segments
or episodes based on specific events detected within the time series data. These events,
which may be manually annotated or detected by prior computational processes, are then
used to identify significant segments that may correspond to particular occurrences or
transitions. A practical example of event-based segmentation might be selecting intervals
between changes in ball possession during a football match. Time query languages [14],
and later, interactive tools such as the TimeMask technique [4] can be used to select time
intervals by specifying temporal queries. Another top-down technique is a geometry-
based approach, targeting the identification of the largest triangle within the time series,
initially designed to downsample time series [39]. A time interval including a large triangle
indicates the presence of a sequence of increasing and decreasing patterns (i.e., a peak or
trough). These intervals can be further subdivided into intervals with simpler temporal
shapes, such as increasing, constancy, and decreasing, depending on analysts’ needs.

Lastly, the bottom-up approach merges intervals with the shortest patterns possible.
This approach can be considered as the complement to the top-down algorithm [19],
given that forming the shortest intervals involves partitioning the time series. Adjacent
intervals are merged when they include similar patterns, e.g., trends [20].

Temporal relations

Within a multivariate time series, each detected pattern possesses a specific time interval
representing its existence. These intervals can have different temporal relations with one
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another. The set of possible temporal relations between time intervals, such as preceding,
following, and overlapping, is defined by Allen [2].

In a practical application, Lee and Shen explore multivariate time series data to
discern relationships between specific trend patterns [21]. They focused on analyzing
whether these patterns occur simultaneously and their associations with various factors.
This allowed them to identify elements influenced by specific trends, enhancing their
comprehension of complex temporal relations within the data.

Progressive temporal abstraction in MVTS analysis

While the concept of temporal abstraction is a recognized concept in the literature, this
dissertation advances the field by introducing an approach that applies various levels of
abstraction in a progressive manner. The approach provides an environment where hu-
man analysts can employ reusable workflows. These workflows, designed to incorporate
progressive temporal abstraction, enable analysts to not only apply existing methods but
also explore, interpret, and exploit the outcomes of their analyses. Our work, therefore,
enhances the understanding of multivariate time series data by enabling analysis of rela-
tionships between patterns, thereby distinguishing our research from the previous work.

2.3 Extracting or detecting univariate patterns

Detecting univariate patterns involves the acquisition of abstract representations capable
of capturing the temporal behavior of a single attribute. Supervised pattern detection
involves locating specific predefined patterns within a dataset. The time intervals in the
dataset are compared with predefined patterns by calculating a distance measure between
them. On the other side, unsupervised pattern detection is about deriving patterns from
data, usually by identifying recurring structures or sequences without prior knowledge of
these patterns. In both cases, pattern detection typically follows a segmentation process,
as introduced in Section 2.2.

Types of patterns typically involve state and trend primitives [26]. Takabayashi et
al. extend the trend primitives by speed, i.e., fast increasing and decreasing, and peaks,
comninations of trends [41].

Supervised pattern detection

Supervised pattern detection primarily involves calculating distances from predefined
target patterns for each segment in a time series.

One intuitive approach for pattern detection when target patterns are known is al-
lowing experts to provide explicit representations of desired patterns. This can harness
domain expertise or specific requirements. For instance, users can directly sketch target
patterns, offering a visual and interactive way to specify which patterns to detect [33].
In situations with an available annotated dataset, supervised learning techniques can be
employed. Here, machine learning models are trained on these datasets, enabling them
to recognize and classify patterns in new, unseen data.

Patterns in time series, such as trends are often deduced using algorithms that im-
plicitly contain definitions. Besides identifying trend types such as increase, decrease,
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and constancy, other trend-related information, such as gaps [40] and speed [41], can also
be derived. Moreover, it is worth noting that statistical methods often decompose time
series into layers, encompassing seasonality, trend, and random fluctuations [16].

Various distance measures exist for computing similarity between time series segments.
Dynamic Time Warping (DTW) measures the distance between two intervals, even when
they vary in length [27]. Ye and Keogh suggest comparing subsections of temporal shapes
instead of the entire shapes [49]. A related method, SUBDTW, computes the distance
between a subsequence and a target trend [21].

Unsupervised pattern detection

When target patterns are undefined, the pattern detection framework by Das et al. [11] is
relevant. First, distances between time intervals are determined using a specific distance
measure. Then, a clustering algorithm uses the set of distances, typically in the form of a
matrix, to group the intervals. The representative fragment of time series in each cluster
then serves as the target pattern.

Approximation methods aim to represent data in a simple manner. The simplest
technique is to fit linear segments to a series of data points, called Piecewise Linear
Approximation [45]. Approximation can be done with segments with more complex
structure such as polygonal curves [38].

The Symbolic Aggregate approXimation (SAX) technique [22] discretizes time series
data based on standard deviation and mean values. The derived time intervals are sym-
bolized, leading to distinct states that are interpretable with simple concepts like “high”,
“medium”, and “low”. This characterization allows for human understanding of state se-
quences as specific types of behavior. Ruan et al. proposed a distance measure between
symbolic series [29].

Decomposition methods represent a univariate time series as a combination of simpler
patterns. The original time series can be regarded as the sum of patterns found in these
patterns. These layers are often depicted as waveforms, such as square-shaped waves [10]
or sine waves [1]. However, since this representation does not align with a single concept,
it is not suited for progressive abstraction, especially when deriving multivariate patterns.
This aspect is thus beyond the scope of my dissertation.

2.4 Defining and identifying composite patterns

Temporal abstraction involves the formation of composite patterns by integrating univari-
ate patterns from one or more variables. Patterns, in general, emerge due to relationships
between entities. While basic patterns are formed by relationships among data elements,
composite patterns are formed by relationships between previously identified patterns
treated as single entities. Such composite patterns might emerge in numerous ways, such
as sequences of univariate patterns or as complex patterns formed by multiple attributes,
among other possible configurations. Given the diversity in potential relationship pat-
terns and the myriad ways they can be intertwined, the potential number of composite
patterns is theoretically infinite. Researchers tend to concentrate on specific relationship
types and the corresponding composite patterns that encompass these relationships.
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2.4.1 Computational methods

In MVTS, univariate patterns are typically interconnected by some relationships, forming
multivariate patterns. There are two methods for determining relationships, depending
on whether intervals of different attributes possess identical time ranges (i.e., starting
and ending times), or the time ranges differ across attributes.

Intervals sharing the exact starting and ending time can be considered as co-occurring.
For instance, purchasing multiple items within a single transaction, or words appearing
in the same sentence, demonstrate this concept. Techniques such as frequent item set
mining or association rule mining are commonly used to detect co-occurring patterns.

When intervals do not possess identical starting and ending times, Allen’s relation al-
gebra [2] is used to determine the relationships between them. Allen’s framework provides
13 interval relations that can describe any relative positioning of two intervals and widely
used in formulating temporal rules involving intervals [24]. Some methods use subsets of
Allen’s relations such as before, after, or containment [46]. Each relation can allow for
margins, such as gaps between two intervals allowed for the “before” relationship to be
counted [30], or fuzzy duration of relations [17].

Relations between patterns can be depicted as matrices, where rows and columns
represent individual patterns, and each element indicates a relation between those pat-
terns [25]. Subsequently, each matrix can be viewed as a high-level pattern (i.e., pattern
of patterns) made by the temporal relations between the earlier detected simpler patterns.

Allen’s relations are criticized for being ambiguous and ignorant of quantitative dif-
ferences in overlaps [24]. To address this issue, composite patterns that characterize
overlapping patterns are introduced [24]. Using these composite patterns, information
such as which univariate patterns overlap during specific time periods is revealed.

2.4.2 Interactive query interfaces

Interactive interfaces allow analysts to explore specific complex patterns. In particular,
analysts can combine multiple queries to search for complex patterns.

Outflow [48] treats time intervals with events as single entities. The simultaneous
occurrence of multiple events from multiple attributes, which are specific occurrences or
actions, forms composite patterns. Users can filter intervals by selecting individual events
to be included within these composite patterns.

2.4.3 Visualization techniques

While time intervals are typically depicted as linear elements within a one-dimensional
space, Qiang et al. introduce a visualization technique to transform time intervals into
points within a two-dimensional space [28]. This space is specifically configured as a
triangle area. The horizontal axis depicts time while the vertical axis indicates the du-
ration of intervals. Furthermore, temporal relations between intervals become apparent
through their relative positions in the triangle. As a result, query search conditions are
shown by areas of overlap, with each area representing different queries such as duration
or temporal relations.
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2.5 Exploring the distribution of the patterns

Detected patterns, whether basic or complex, typically possess relationships with other
patterns in a distribution. Previously detected patterns are treated as entities. Possible
relationships between those patterns depend on the chosen base of the distribution, i.e.,
one of existing data dimensions.

When using time as the base, we explore the positions of the patterns on a timeline
and within time cycles, along with their temporal relationships, such as those defined by
Allen’s temporal relations [2]). Temporal information of intervals, such as start, end and
duration, can be mapped onto a 2D plane to identify similar intervals [29]. An interactive
calendar display presents the temporal distribution of data clusters throughout a year [44].

Multivariate temporal patterns can be linked with spatial locations (e.g., weather
measurements) or spatial entities (e.g., cities). In such cases, the spatial distribution of
the patterns may need to be explored. When focusing on spatial dimensions, provided
they are present in the data, we explore the spatial positions and spatial relationships,
such as proximity and directions. t-SNE projection [43] maps intervals exhibiting similar
behaviors closely together, where each data point represents a distinct time interval.
Other techniques use maps to represent relationships between geographical areas, in terms
of values [47] and spatial links [15].

Irrespective of the chosen dimension, one might also examine patterns’ relative fre-
quencies. Visualization techniques for such frequencies include histograms [29], box
plots [12], parallel coordinates plots [21], and density graphs [4].

2.6 Introduction to the general framework of MVTS

abstraction

We present the general framework of MVTS abstraction, as illustrated in Figure 2.1. We
consider two forms of multivariate Time Series (MVTS): discretized or continuous. The
latter can be analyzed either in their inherent form or after undergoing some form of
discretization. This lays the foundation for our framework that bridges prior research
efforts and the contributions of this work.
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Figure 2.1: Our methodological framework consists of three steps, where the level of
abstraction of the multivariate time series increases as we progress through the steps.

In the realm of discretized MVTS, the detection of patterns primarily hinges on two
approaches. The first involves recognizing predefined patterns within the discretized
MVTS, often termed as pattern recognition or detection. The second approach empha-
sizes simplifying and encoding the discretized MVTS to enhance its interpretability. Once
detected, these patterns usually demand interpretation by human analysts, and in some
instances, labeling.

Conversely, for continuous MVTS, the pattern detection process takes a different
trajectory. It begins with pattern detection, which can adopt a supervised approach,
focusing on predefined patterns, or an unsupervised approach, centering on identifying
recurring motifs. The focus of this process is on the temporal relationships between
patterns across multiple variables. Such exploration often leads to a frequency analysis
where commonly occurring relationships are found. These identified relationships are
then interpreted and, if necessary, labeled. An important point in this process is the
derivation of composite patterns. In this phase, new patterns emerge by intertwining two
previously recognized patterns connected by a specific relation, as captured by the formula
new pattern := relation X (pattern i, pattern j). Composite patterns stand as
individual entities when investigating their temporal relationships. Such an examination
sets off a new iteration cycle. Every cycle progressively elevates the abstraction level.

Irrespective of their origin, either from discretized or continuous MVTS, there is an
examination of pattern distribution across multiple dimensions of data. Through visual
analysis, the relationship between the base (e.g., time in time series data) and the overlay
(i.e., associated values) results in distinct patterns.
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Abstract

We introduce a concept of episode referring to a time interval in the develop-
ment of a dynamic phenomenon that is characterized by multiple time-variant
attributes. A data structure representing a single episode is a multivariate
time series. To analyse collections of episodes, we propose an approach that
is based on recognition of particular patterns in the temporal variation of the
variables within episodes. Each episode is thus represented by a combination
of patterns. Using this representation, we apply visual analytics techniques
to fulfil a set of analysis tasks, such as investigation of the temporal distribu-
tion of the patterns, frequencies of transitions between the patterns in episode
sequences, and co-occurrences of patterns of different variables within same
episodes. We demonstrate our approach on two examples using real-world
data, namely, dynamics of human mobility indicators during the COVID-19
pandemic and characteristics of football team movements during episodes of
ball turnover.

Keywords: temporal patterns, multivariate time series, time intervals

1. Introduction

Everything that happens in the world can be conceptualized as a sequence
of episodes representing various events or developments of dynamic phenom-
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ena. The term ‘episode’ means (in the context of our research) a time interval
during which something happens or develops. The happening or development
can be characterized by multiple time-variant attributes, or features. A data
structure containing values of multiple features attained at consecutive time
units is called multivariate time series. Our research presented in this paper
deals with collections of episodes described by multivariate time series where
all features are numeric, i.e., represent measurements rather than categories.

A chronologically ordered sequence of values of a single numeric attribute
forms a certain pattern [6]. When such a sequence is represented by a polyg-
onal line along a time axis, the pattern is visually perceived as a certain
geometric shape. There are shapes, i.e., patterns, that are not only readily
detectable by a human eye but also readily interpretable; moreover, their
meanings are denoted by specific terms, such as ‘increase’, ‘decrease’, ‘peak’,
etc. Temporal variation of a single feature within an interval can thus be
described as one of these simple patterns or a sequence of several simple
patterns. Obviously, this can be done for each individual attribute of a mul-
tivariate time series. However, the resulting description does not provide
immediate holistic understanding of the joint behaviour of the attributes.

The research problem we want to solve is how to proceed from recognition
of temporal development patterns of individual attributes to identifying and
understanding patterns of their joint development in a set of episodes. To
investigate this problem, formulate specific analysis tasks, find approaches
to fulfil these tasks, and test the efficacy of these approaches, we use two
real-world example datasets: mobility data upon the COVID-19 pandemic
and collective movement in football games.

Our research presented in this paper aims to support the following anal-
ysis tasks.

• T1: Identify major temporal patterns in the variation of individual
features within the episodes.

• T2: Study the temporal distribution of the identified univariate
temporal patterns.

• T3: Investigate the transitions between univariate temporal patterns
in consecutive episodes.

• T4: Investigate the co-occurrence of univariate temporal patterns of
different features within episodes.
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The tasks were defined based on the theoretical model for pattern discov-
ery [6], which is further referred to as “the pattern theory”. We do not strive
to cover all possible tasks in analysing time series but consider the tasks rel-
evant to the analysis process in which higher-level patterns are constructed
from lower-level patterns. In this process, task T1 extracts lower-level pat-
terns and tasks T2-T4 aim to discover different types of higher-level patterns
formed by the lower-level patterns.

For T1, we introduce an algorithm to extract temporal patterns from
univariate time series. T2 is supported by a timeline display and, when ap-
propriate, by circular charts with the circumference representing a temporal
cycle. The latter can facilitate detection of periodic re-occurrence patterns
in the temporal distribution. For T3, we propose bipartite graphs showing
frequencies of pattern transitions. T4 can be fulfilled by interacting with a
co-occurrence network.

The rest of this paper is structured as follows. Section 2 discusses the
related work. Section 3 introduces the proposed techniques and approaches
using the example of the mobility data during the COVID-19 pandemic. Sec-
tion 4 demonstrates the generality of our approach by example of another
application using football (soccer) data. Section 5 discusses the concept,
approaches, and answered research questions, identifies strengths and limi-
tations, and proposes directions for future work. Finally, section 6 concludes
our work.

2. Related Work

We introduce previous approaches to pattern detection, interpretation
and visualization applicable to multivariate time series in episodes.

2.1. Conceptual foundations

Collins et al. [12] define a pattern as a holistic representation of multiple
(data) items abstracted from the individual items. The concept of a data
pattern and the existing definitions in different research disciplines have been
extensively discussed by Andrienko et al. [6], who argued that patterns are
formed by relationships between data items. A data pattern involves elements
of at least two sets, for example, time units and values of a numeric attribute.
A pattern is made by intrinsic relationships between the elements within
these sets and the correspondences between the elements from the different
sets. The former depend on the nature of the sets and the latter are defined
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in the data. The intrinsic relationships between elements of one of the sets
create a particular arrangement of the corresponding elements of the other
set. A pattern is the manner in which the elements of the second set relate
one to another throughout this arrangement.

For example, the intrinsic relationships between time units are temporal
ordering and temporal distance, i.e., the amount of time that passed between
two units. The intrinsic relationships of ordering and distance (i.e., differ-
ence) exist also between values of a numeric attribute. A data set specifies
what attribute values corresponds to which time units. The intrinsic tempo-
ral relationships between the time units create a temporal arrangement, i.e.,
a sequence, of the corresponding attribute values. A pattern is the manner
in which the values differ one from another along this sequence: whether
values that are further in the sequence are greater or smaller than the pre-
ceding values or nearly equal to them. Depending on these relationships, we
identify the pattern as increase, decrease, or constancy.

The definition of a data pattern as a system of relationships implies that
visual discovery of data patterns can be enabled by visualizations satisfying
two requirements: (1) appropriately represent the pattern-forming relation-
ships according to the types of data components and (2) facilitate holistic
perception of multiple data items. Thus, in a case of a numeric time series, a
line chart (a.k.a. time plot) is a suitable visualization: two axes appropriately
represent the ordering and distance relationships between time units and be-
tween numeric attribute values, the positions of points in this coordinate
system accurately represent the correspondences between the time units and
the attribute values, and holistic perception is facilitated by connecting the
points by lines. A temporal pattern is thus perceived as a particular shape
of the resulting polygonal chain. Hence, discovery of temporal patterns can
be done by identifying shapes.

According to the pattern theory [6], data patterns that have been dis-
covered can be treated as new elements of data to which the subsequent
analysis steps are applied. The analysis involves determining relationships
between the patterns throughout arrangements created by elements of other
data components, e.g., how the patterns vary along time or how they are
distributed over space.

2.2. Temporal pattern extraction and classification

A comprehensive overview of visual analytics approaches for temporal
data can be found in monographs by Aigner et al [1], Andrienko et al [5] and
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Tominski and Schumann [41].
An important pre-requisite for pattern extraction is segmentation of mul-

tivariate time series into semantically meaningful episodes. Papers by Bernard
et al [9] and Gharhabi et al [16] propose visual interactive and computational
approaches to segmentation. Further works propose semantic segmentation
based on TimeMask [4] and its extensions [3].

There exist two major building blocks for temporal pattern extraction and
classification. First, there exist methods that search for patterns specified
by their shapes. Second, similarity measures (also called distance functions)
are used for quantifying similarity and detecting patterns in time series.

Several papers proposed libraries of temporal patterns for univariate [31]
or multivariate [44] time series. Das et al. apply a data-driven approach
for identifying patterns with interpretable and recognizable shapes [14]. Al-
gorithms for measuring similarity to pre-defined patterns were proposed for
detecting time series that contain the given patterns [30] and, in contrast,
for detecting dissimilar subsequences in time series [26]. Other approaches
to pattern detection and analysis include representations of time series as
aggregates [25] or as sequences of symbols [28].

In our work, patterns are identified by means of a new algorithm that
calculates the largest triangle within a time series for determining the pattern
shape. The idea of the algorithm originates from Steinarsson, who aimed at
downsampling time series for visual representation [39]. Unlike the most
common approaches, which are based on computing similarities to earlier
defined shapes, either taken from a library or sketched by a user, our approach
takes into account geometric characteristics of a time series fragment and
provides a useful opportunity to represent the patterns in a highly schematic
and compact manner using two or three points.

Apart from the research on extraction of predefined patterns and on recog-
nition of pattern types, there are also works where time series patterns are
identified implicitly by means of clustering assuming that each cluster defined
a certain pattern. The main idea has been exemplified by val Wijk and van
Selow [42], who clustered daily univariate time series and investigated the
distribution of the clusters over a year. Schreck et al. [37] proposed to treat
time series of two variables as trajectories in 2D space. Long time series were
divided into episodes, the trajectories from the episodes were clustered, and
the original time series were represented as sequences of the averaged tra-
jectory shapes generated for the clusters. From the perspective of our work,
these approaches are interesting for their focus on exploring the distribution
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of temporal patterns rather than solely on pattern detection and extraction.

2.3. Visualization of multivariate time series and episodes

An obvious approach to visualization of multivariate time series is to cre-
ate multiple visualizations representing the time series of the individual vari-
ables. For example, Janetzko et al. [24] create multiple horizon graphs [22] to
visualize multiple time series characterizing episodes of a football match. Hao
et al.[20] focus on showing the occurrences of earlier detected frequent pat-
terns (motifs) in long time series represented by line graphs. Pham et al. [33]
complement multiple area charts showing variation of singular variables with
a temporally ordered sequence of radar charts showing combinations of val-
ues of the variables. Other authors strive to create a compact view, such as
Kaleidomaps [8], where each time series is represented by a heat map embed-
ded in a sector of a circle. A popular technique utilized in visual exploration
of multivariate time series data is applying dimensionality reduction to the
combinations of attribute values corresponding to the time steps [10, 40]. In
these works, the authors are dealing with continuous time series rather than
episodes.

In visualizing episodes characterized by multivariate time series, it is nec-
essary to address:

1. When the episodes happened: representing their temporal references
in linear [13] or cyclic time [32, 11] or structural (calendar) models [42];

2. What happens within each episode: temporal dynamics of attributes,
usually represented either by displaying time lines [13] or animating
representations such as scatter plots [35, 36, 21]. Zhao et al. proposed
an interactive visualisation for episodes which facilitated comparison of
timelines with different attributes [45];

3. How multiple episodes relate to each other: what are transitions be-
tween the episodes. This can be represented, for example, by a node-
link diagram with nodes representing patterns and links - transitions
between them [29].

In analysing the times of the episode occurrences (when), not only the
temporal distribution of the episodes is of interest but also the temporal re-
lationships between episodes. Allen and Ferguson systematically introduce
all possible pairwise relations between time intervals [2]. These relationships
can be represented graphically using triangular logic introduced by Van de
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Weghe [43]. Qiang et al. [34] used this approach for representing tempo-
ral relationships between episodes. Lee and Shen [27] propose techniques
for visual exploration of temporal relationships between occurrences of user-
defined patterns (called “trends” by the authors) in multivariate time series.
They transform the time series into a sequence of states characterized by
different combinations of trends and propose a visual representation in the
form of a matrix with columns corresponding to the states and rows to the
trends of the different variables.

Our paper uses several visual representations that combine ideas from the
mentioned earlier works. Specifically, the idea of our timeline view (Fig. 1)
is similar to the visualization of state sequences by Lee and Shen [27], the
circular charts (Fig. 6) utilize the idea of Ringmaps [46], and the representa-
tion of temporal patterns by colours in various displays follows the ideas of
van Wijk and van Selow [42].

3. Visual analytics approach

In this section we introduce our visual analytics (VA) approach that helps
analysts to explore and understand large sets of episodes characterised by
multivariate numeric time series.

3.1. Essence of the approach

The key idea of our approach is to abstract each individual time series
within each episode to a temporal pattern. All patterns are assigned to a
finite (preferably small) set of classes, or pattern types, which can be denoted
by semantically meaningful labels or somehow encoded in a symbolic form.
Hence, each individual time series is represented by a reference to the cor-
responding pattern class, and each episode is represented by a combination
of pattern classes of the multiple attributes. The following analysis is done
using this representation of the episodes. For the sake of brevity, we shall
henceforth use the term ‘pattern’ to refer to a pattern class.

According to the pattern theory [6], we treat the temporal patterns that
have been obtained as new elements of data. We strive to find higher level
patterns in the distributions these new elements with respect to the other
components of the data, which are the set of the episodes considered as dis-
crete objects and the time with its intrinsic relationships of temporal ordering
and distances; see Section 2.1.
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Hence, based on the pattern theory summarised in Section 2.1, our ap-
proach includes two stages:

1. Detect and abstract temporal patterns of singular attributes appearing
in the episodes.

2. Treating the univariate temporal patterns as data elements, study the
distribution of these “elements” within the set of episodes and along
time.

In this approach, we deal with patterns of two levels of complexity and so-
phistication. The first stage discovers lower-level patterns formed by tempo-
rally ordered numeric values. The second stage aims to discover higher-level
patterns formed by these lower-level patterns due to their relationships and
thereby imposed arrangements within and across the episodes. Within the
episodes, the univariate patterns of multiple attributes are linked by the re-
lationships of co-occurrence. Across the episodes, the univariate patterns are
linked by relationships of temporal ordering and temporal distance.

The task T1 formulated in Section 1 refers to the first stage and the
remaining tasks to the second stage. The task T4 focuses on the relationships
of co-occurrence within episodes. The expected type of higher-level patterns
is which univariate patterns tend to frequently co-occur and which do not
occur together. The task T3 focuses on the temporal ordering and strives to
find patterns of frequent or infrequent occurrence of one lower-level pattern
immediately after another. The task T2 focuses on more distant temporal
relationships regarding the arrangement of the lower-level patterns along the
time axis and, when appropriate, within temporal cycles. The expected types
of higher-level patterns include tendencies to occur earlier or later in time or
at certain positions in a cycle, to re-occur more or less frequently in different
time periods, to occur in a particular sequence, etc.

As stated by the pattern theory [6], pattern discovery is supported by
faithful visual representation of relevant relationships. Taking into account
the aforementioned relationships that are relevant for tasks T2-T4, we pro-
pose the following visualizations to support these tasks:

• T2: A timeline display of the temporal patterns (Fig. 1), where the
horizontal axis represents the linear ordering relationships between time
intervals, plus circular diagrams (Fig. 6), where positions in circles
represent the cyclic arrangement relationships.
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• T3: A bipartite graph of immediate transitions between patterns of
the same attributes (Fig. 7).

• T4: A co-occurrence network (Fig. 8).

The task T1 can be fulfilled in different ways, for example, by dividing
the time series into intervals and encoding the interval averages by symbols
according to the value ranges in which the averages fall. The resulting codes
are called SAX patterns [28]. In our paper, we propose another method,
which is based on the recognition of the geometric shape that would be
formed when the time series is represented graphically by a line chart. It
should be noted that the visual analytics techniques we propose for the tasks
T2-T4 do not depend on the method of extracting and encoding temporal
patterns and on the choice of labels to denote the patterns.

We demonstrate our approach on example of Google Mobility data [18].
Continuous time series of daily mobility indicators were divided into disjoint
episodes.

3.2. Approach introduced by example

The COVID-19 pandemic has impelled local authorities and/or govern-
ments to regulate people’s mobility. Such policies generate changes in mo-
bility, which are typically sporadic across a certain period. We should dis-
tinguish those sporadic patterns from seasonal repetitions in mobility data.
For example, we can expect the increasing number of people staying at home
and the decreasing number of those going out during the Christmas season.
Moreover, different categories of places have different patterns of mobility
even during the same time interval. Here, our interest is to visualize tem-
poral patterns across episodes and to investigate how the mobility changes
over time across different categories of places.
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Figure 1: Timeline of temporal patterns in Google Mobility Data.

Data Description

We preprocess the mobility data provided by Google [18] to obtain mul-
tivariate time series. Since the COVID-19 outbreak around February 2020,
Google has been daily publishing anonymized mobility data for 6 different
categories of places (namely, retail and recreation, supermarkets and phar-
macies, parks, public transport, workplaces, and residential) from different
regions. The data consist of daily visitor numbers to these categories of
places relative to baseline days before the pandemic outbreak. Baseline days
represent a normal value for each day of the week and are given as the me-
dian value over the five-week period from January 3rd to February 6th 2020.
The values in the published data are expressed as percentages of the changes
from the baseline values.

From the continuous time series, we extract the time intervals of weekdays
(i.e., 5 time steps for each week) with the corresponding segments of the time
series. Mobility data for weekends are excluded from the analysis because
changes from weekdays to weekends are very prominent and therefore obscure
the longer-term changes of the mobility behaviours. We process the mobility
data for Germany collected between the 17th of February, 2020 and the 7th
of January, 2022 (i.e., almost for two years), which results in 99 episodes of
the length of five time steps.

For validation purposes, we acquired values of eight policy indicators
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(namely, closing of schools, workplace, and public transport, cancelling public
events, and restrictions on internal and international movement) from the
Oxford COVID-19 Government Response Tracker [19].

T1. What are the major patterns of individual attributes?

In the introduction, we mentioned the existence of simple, easily perceiv-
able and interpretable patterns of temporal variation of numeric attributes.
These patterns can be schematically represented by lines of particular ge-
ometric shapes. Let us use the term “elementary pattern” for a pattern
that can be represented (in abstraction from minor fluctuations) by a sin-
gle straight line. There are three elementary temporal patterns: up-trend,
constancy, and down-trend. More complex patterns can be considered as
sequences of these. Fig. 2 illustrates how elementary temporal patterns can
make more complex temporal patterns. Any temporal pattern starts with
one of the elementary patterns, and a sequence of two or more temporal
patterns can make a composite pattern such as a peak or a trough.

When a sequence consists of the same kind of elementary pattern (i.e.,
up-trend, constancy, or down-trend), we can simply consider it as a single
temporal pattern. For example, a sequence of two up-trend patterns makes a
single up-trend pattern and this temporal pattern makes a peak pattern with
a subsequent down-trend (i.e., up→up→down makes peak). Note that when
the sequence gets longer, it can create a more complicated shape. A long
time series often looks like an oscillation. It can be simplified by means of
temporal smoothing. We assume that the episodes under analysis are short,
so that the time series include a small number of time steps and thus can
be represented by sufficiently simple patterns. Longer episodes can be sub-
divided into shorter ones to enable such representation. Another possibility
is to downsample the time series, i.e., reduce the number of time steps by
dividing a long sequence of time steps into a small number of intervals and
taking a single representative value (e.g., the mean or median) from each
interval.
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Figure 2: Possible sequences of elementary temporal patterns. For example, a temporal
pattern consisting of up-up-constancy-down-down will be classified as a peak. A long
time series including a peak or a trough (marked *) may require a subtle adjustment to
distinguish different temporal patterns.

We assign an episode to one of the five temporal patterns to represent the
most prominent shape of the time series: up-trend, peak, constancy, trough,
down-trend. To determine a temporal pattern, we adapt the main idea from
the algorithm of Steinarsson [39], which was devised for downsampling of
time series , i.e., reducing the number of points used to represent the time
series. This matches very well our goal to transform time series into simple
shapes that can be represented by very few points. The method is based on
finding the data point that makes the largest triangle when connected to the
first and last data points in a time interval. Fig. 3 shows an example of the
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largest triangle in a time series. Fig. 4 illustrates the work of the pattern
determination algorithm, which is explained below.

Figure 3: The largest triangle in time series.

Figure 4: The process of pattern determination. Time series will be classified into either
A. Down-Trend, B. Up-Trend, C. Constancy, D. Trough, or E. Peak.

A time series can be classified as peak or though when the area of the
largest triangle is greater than a chosen threshold. To find the largest trian-
gle, we take the first and the last points of the time series as the first two
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vertices of a triangle and test all intermediate data points one after another
as potential third vertices of the triangle. From these points, we take the one
that makes a triangle with the largest area among all.

If the absolute value of the area of the largest triangle is above the thresh-
old, the time series has either a peak or a trough; otherwise, it can be classi-
fied as a trend (up or down) or constancy. The value of the area is treated as
negative when the order from the start, via the extreme, to the end points is
counter-clockwise. Otherwise, the area has a positive value. The time series
has a peak with a positive area and a trough with a negative area.

When the time series is neither peak nor trough, meaning that the values
do not significantly deviate from the straight line connecting the first and
last points, the time series has either of the following patterns: an up-trend,
a down-trend, or a constancy. Imagine a time-distance graph for uniform
velocity, where distance increases at the same pace. In this case, no triplet of
the points makes a triangle, and we define the area to be zero. This pattern
determination is relatively straightforward; when the difference between the
start and end values is larger than a chosen threshold, the time series has
either an up-trend or a down-trend, otherwise it has a constancy. Then the
time series has a down-trend when the start value is greater than the end,
and an up-trend happens when the end value is greater than the start.

Results of pattern detection depend on two thresholds that we use for
determining peaks vs. troughs and identifying constancy patterns. The
specific values of the thresholds are not essential for demonstrating our ap-
proach. Generally speaking, these thresholds are application-specifics, and
domain knowledge may be needed for setting them properly. In our exam-
ple, we’ve performed self-assessment to choose appropriate values based on
several trials. For the assessment, we used a visualization with time series
translated to a common starting point, as in Fig. 5.

Table 1 presents the distribution of temporal patterns in the mobility
data. We observe constancy as the most frequent among the patterns. This
observation can be confirmed by time series visualizations in Fig. 5.

The types of patterns our algorithm aims to extract can be categorised as
patterns of value change, while, for example, SAX patterns [28] can be seen as
patterns of value magnitude. Our algorithm ignores the magnitudes of values
and considers only the differences with respect to the first value of a time
series. This needs to be taken into account when assessing the suitability
of our algorithm for specific analysis goals. Another important note is that
the algorithm allows extraction of a more refined set of pattern types than
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Table 1: The overview on temporal patterns in their frequency (Peak/Trough threshold
= 0.1, Constancy threshold = 0.2). We observe constancy as the majority.

Peak UpTrend Constancy DownTrend Trough
retail and recreation 10 0 76 9 4

grocery and pharmacy 12 4 77 2 4
parks 11 9 64 7 8

transit stations 10 3 70 5 11
workplaces 2 6 80 7 4
residential 3 4 81 3 8

we consider in our examples. Thus, for the peak and trough patterns, it
is possible to introduce subtypes based on whether the final value of the
time series increased, decreased, or remained nearly the same as the first
value. For the up- and down-trends, it is possible to distinguish steep and
gradual increase or decrease. An appropriate level of pattern abstraction can
be chosen in accord with the goals of analysis. In our examples, we extract
and use highly abstracted patterns; however, the exploratory techniques we
demonstrate can also be applied to an extended set of patterns.

Figure 5: Actual time series with values shifted to align the start points.
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T2. What is the temporal distribution of the patterns?

For this task, we propose two visualizations focusing on different types
of relationships between time intervals. The timeline view (Fig. 1) focuses
on the relationships of linear ordering, which are represented by positions
on a straight horizontal time axis. The circular view (Fig. 6) focuses on
the relationships of cyclic temporal arrangement between the episodes. In
a circular chart, the years are represented by rings, and episodes (weeks of
data) are blocks of the rings arranged clockwise. In both views, the temporal
patterns of the individual episodes are represented by colour coding.

The timeline view (Fig. 1) reveals periods of stable mobility behaviour
(i.e., prevalence of the constancy patterns) and periods of changes, in which
all mobility indicators or some of them are non-constant. It shows when
different patterns of the individual indicators occurred, what pattern com-
binations existed, and when they took place. The prevailing combination
throughout the entire time span was the combination of six constancy pat-
terns. Other combinations are rare and require more attention to be identi-
fied. For example, the combination of simultaneous down-trends of the visits
of all places except homes and an up-trend of the staying at home occurred in
the third week of March, when the first lockdown was issued. Similar combi-
nations (differing by just one constituent pattern) in the Christmas periods
of 2021 and 2022. These were followed by combinations of the trough in
staying home and peaks in visiting all place categories except for parks.

This re-occurrence of similar patterns at the ends of two years can also be
noticed by looking at the circular charts (Fig. 6). Each chart facilitates iden-
tification of seasonal and sporadic temporal patterns of a single attribute.
In Fig. 6 (a), we clearly see that some temporal patterns re-occur annually.
These recurrent patterns can be attributed to seasonal variations represented
in the data. For example, down-trends are seen in the ‘retail and recreation’,
‘public transport’, and ‘workplaces’ features at the end of each year while
we observe an up-trend in the ‘residential’ feature. We can conjecture that
people travel less and prefer to stay home in the Christmas season. While
the circular charts are good in revealing periodic repetitions of single-feature
patterns, detection of re-occurring combinations requires integrating infor-
mation from six charts; hence, holistic perception of pattern combinations is
not supported by this representation. The timeline view, on the opposite,
supports holistic perception of combinations but does not show periodicity
as clearly as the circular charts.
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Figure 6: Circular displays of temporal patterns for features in Google Mobility Data (a)
and stay-at-home requirements level in Germany (b). In all plots inner ring represents year
2020, middle - 2021, outer ring - 2022. Values in (b) mean 0: no measures announced,
1: recommended not leaving house, 2: required not leaving house with exceptions for
daily exercise, grocery shopping, and ‘essential’ trips, 3: required not leaving house with
minimal exceptions (e.g. allowed to leave once a week, or only one person can leave at a
time, etc), NaN: no data [19]

The circular charts also help to detect sporadic occurrences of temporal
patterns, which may be caused by factors or events that do not occur reg-
ularly. For instance, the German government required closing (or working
from home) for some sectors or categories of workers. Fig. 6 (b) shows that
the stay-at-home requirement level goes from 0 (no measures) to 2 (require
not leaving house with exceptions for daily exercise, grocery shopping, and
‘essential’ trips) in the middle of March, 2020. In Fig. 6, as well as in Fig. 1,
we see the effect of this measure: the residential category shows an up-trend
at this time while the others have a down-trend. Moreover, we also see that
the ‘grocery and pharmacy’ category has an up-trend in the week before
the down-trend, which suggests that people went to groceries to stockpile
products of everyday use (e.g., food and toilet paper) in preparation for the
forthcoming restrictions or possible good shortages.

T3. Are there frequent transitions between univariate temporal patterns over
sequential times?

We create bipartite graphs to represent transitions of univariate temporal
patterns between consecutive time intervals. It helps to find patterns of
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temporal succession and adjacency between the same and different temporal
patterns of feature variation. In Fig. 7, there are six bipartite graphs, one
per feature, consisting of three components: two proportionally segmented
bars and curved lines linking the bar segments. The segmented bars show the
overall proportions of the occurrences of the different patterns in the episodes.
The segments are painted in the colours corresponding to the patterns using
the same encoding as in the timeline view and the circular charts. The
opacity and the stroke width of the linking lines represent the frequency of
the transitions between the classes of the temporal patterns represented by
the bar segments.

Figure 7: Bipartite graph of transitions between different patterns.

This representation can be interactively modified for focusing on selected
patterns only. For example, most frequent transitions between constancy
patterns are subject to be omitted for the sake of better visibility of the
other transitions.

T4. Which patterns frequently co-occur?

To answer this question, we build a co-occurrence network, where nodes
represent the temporal patterns of the features and edges connect patterns
of different features that co-occur in the same episodes (Fig. 8, left). The
size of a node represents the frequency of the temporal patterns appearing
in the dataset and the opacity and the stroke width of an edge represent the
frequency of co-occurrence. For example, we see that the decreasing pattern
of visiting residential places and the increasing pattern of visiting workplaces
frequently co-occur with the increase of the use of transit station. Note that,
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same as in the transition graph, the co-occurrence between two constancy
patterns is obvious and therefore omitted from the chart.

Figure 8: Co-occurrence network with the up-trend of ‘transit stations’ highlighted.

An analyst can interactively select a node in the network for displaying
the most frequent co-occurrences of the respective temporal pattern with the
temporal patterns of the other features. This interactive exploration reduces
clutter in the chart and facilitates finding important relationships. Thus, the
right part of Fig. 8 demonstrates the effect of selecting the node representing
the up-trend pattern of ‘transit stations’. It shows that this pattern occurred
only three times in our data set, and in all cases it occurred together with
the peak pattern of ‘retail and recreation’ and ‘grocery and pharmacy’, the
up-trend pattern of ‘workplaces’, and the down-trend of ‘residential’. This
reveals a re-occurring multivariate temporal pattern (i.e., a combination of
univariate patterns) in the data set.

4. Case Study: Teams’ behaviours in football

We demonstrate the generality of our approach by applying it to episodes
around ball possession change from a professional football (or soccer) match.
Different types of changes of possession exist in football, each of which forces
both teams to switch their tasks from attacking to defending or vice versa.
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The team can apply different tactics. For example, after regaining the posses-
sion possible options are either to approach the opponent’s goal (i.e., execute
a counter-attack) or to remain at own side to protect the possession.

While different types of transitions are typically visible to a human eye,
experts such as video analysts often have to watch the game to sub-categorize
the transitions (e.g., label them as counter-attacks or securing the posses-
sion), which is a time-consuming and daunting task. Our intention in this
study is to investigate which multivariate temporal patterns appear in tran-
sition episodes in football. We characterize these episodes by spatial features
of collective movement.

Data Description

We extract episodes from positional data of players in one professional
football match. We choose time intervals based on the occurrence of a spe-
cific event, i.e., change of possession. Each time interval consists of players’
positions for ten seconds around transitions and the change of possession
occurs exactly in the middle of the episode. As a consequence, we acquire
115 episodes, each lasting 10 seconds (i.e., 250 timesteps, given that the raw
data has a sampling rate of 25 Hz), with 63 episodes seeing the home team
gaining the possession and 52 episodes featuring the away team. Next, we
characterize time intervals by spatial features that can be computed from
positional data: compactness of the team, distance from their own goal, and
velocity. For each team, we compute team width (i.e., distance perpendic-
ular to the side line, between the most left-positioned field player and the
most right-positioned one), team depth (i.e., distance parallel to the side
line, between the farthest player from the goal and the nearest one, except
the goalkeeper), and distance from the center of the team to the own
goal. Since we observe a strong correlation of average velocities between
players of the two teams, we calculate a common average velocity for the
20 infield players of both teams.

4.1. T1. What are the major patterns of individual attritbutes?

As Fig. 9 shows in grey, episodes consisting of many time steps (250 in
our case) may have complex temporal patterns consisting of multiple funda-
mental patterns. As discussed in T1 in Section 3, temporal patterns need
to be sufficiently simple to allow easy interpretation. Complex patterns can
be simplified by omitting excessive details, which can be achieved through
downsampling of the time series. We use the same algorithm [39] introduced
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in T1 to downsample the episodes. The red dot lines in Fig 9 show how time
series with 250 timesteps are downsampled into 5 timesteps. We begin by
applying the downsampling technique to each half of the episode in order
to get a representative value that would form the greatest triangle with two
ends in the divided half. Then, using our algorithm on the downsampled
episode, we classify temporal patterns. Fig. 10 illustrates all downsampled
time series with colors.

Figure 9: An overlay of the downsampled time series and the original time series for the
home depth, away depth, home width, away width, home distance to their goal, away
distance to their goal, and average velocity. The larger three points including the start
and end points indicate the points used to classify the temporal pattern, and together with
the other smaller two points they form the downsampled time series. The downsampled
time series is colored to indicate the classified temporal pattern while the original time
series is grey. The dotted line in the middle means the middle point of the episode. Time is
shown on the horizontal axis in frames (1/25th of a second) while the normalized attribute
values ranging from 0 to 1 are shown on the vertical axis.
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Table 2: Frequency of temporal patterns for each feature in the football data set. Two
numbers in each cell represent two types of episodes where the home team begins by
defending (left) and when the away team begins by defending (right). (Peak/Trough
threshold = 0.05, Constancy threshold = 0.1).

Peak UpTrend Constancy DownTrend Trough
home depth 14, 16 14, 13 19, 6 10, 6 6, 11
away depth 21, 12 10, 15 12, 9 14, 2 6, 14
home width 6, 11 10, 4 10, 6 10, 21 27, 10
away width 11, 2 7, 13 12, 15 23, 5 10, 17

home distance 0, 6 8, 7 33, 30 21, 9 1, 0
away distance 1, 0 23, 10 30, 25 9, 10 0, 7

avg vel 31, 26 5, 5 1, 0 7, 0 19, 21

Figure 10: All downsampled time series. Colors indicate classified temporal patterns.
Time is shown on the horizontal axis in frames (1/25th of a second) while the changes
of the attribute values with regard to the initial point are represented by the vertical
positions. The axes are labelled according to the measurement units of the original (not
normalized) attributes.

Table 2 summarizes the detected patterns. For the attribute home width,
we observe a prevalence of patterns with increase towards the episode end
(i.e., up-trends and troughs) over decreasing patterns (37 vs. 16) in the
episodes when the home team begins the episode by defending (left side
of the cell). This means that the home team tends to expand after they
gain the possession, which is a known behaviour in football [15]. We find
the opposite patterns (i.g., down-trends and peaks) to be the majority in
away width (34 out of 63). Second, we observe a similar number of up-trend
patterns in home distance as down-trend patterns in away distance, as well
as the similar number of down-trend patterns in home distance as up-trend
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patterns in away distance. Fig. 11 confirms this finding with the centroids
of both teams following similar trajectories. Third, we see most of patterns
appear as peaks or trough (50 out of 63) in avg vel. We can assume that the
change of possession can accelerate or decelerate players abruptly rather than
monotonically. Finally, the significant difference between the both teams may
be the trough pattern of the distance from the goal. We observe only one
trough pattern in home distance while seven in away distance. Different
tactics, such as having the away side attempt more counter-attacks than the
opponent, can account for this variation.

Figure 11: The team centroid shifts during the episode. Each row depicts the shift in the
centroid for both teams over the course of eight episodes (left: home, right: away). The
colors reflect the progression of time, from blue to white to red.

4.2. T2. What is the temporal distribution of the patterns?

We use a linear ordering to represent the temporal distribution of the
temporal patterns. In Fig. 12, rectangles that represent episodes are aligned
more sparsely than in Fig. 1 since the time intervals are selected according
to specific events.
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Figure 12: Timeline of temporal patterns in football data. Markers at the top and bottom
of each row indicate goals and substitutions (Ball: goal, S: substitution. H: home, A:
away).

Fig. 13 shows a circular view of the temporal distribution of the patterns.
Two arcs in each chart represent the temporal axes, where inner arcs rep-
resent the first half of the match and outer arcs represent the second half.
Although no periodic repetitions can be expected, this view can facilitate
understanding the data as a circle refers to a clock face, which allows to
compare the first and second halves.
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Figure 13: Circular time view of temporal patterns in football data.

4.3. T3. Are there frequent transitions between univariate temporal patterns
over sequential times?

This task is not applicable to this dataset since episodes appear sporadi-
cally.

4.4. T4. Which patterns frequently co-occur?

Fig. 15 shows a co-occurrence network applied to the episodes (left) and
the five multivariate temporal patterns that most frequently co-occur with
the up-trend pattern of home distance (right), where the home team gains
the ball possession in the middle (at 5 seconds).

One third of the patterns with increasing home width toward the episode
end (i.e., up-trends and troughs) co-occur with the combination of avg vel’s
peak, home distance’s down-trend, and away distance’s up-trend. Fig 14
illustrates the movement of the team centroids in these episodes. We further
identify from the footage that the defending team slowly rebuilds the attack
after collecting long balls deep in their own side. Other combinations such
as with avg vel’s trough or home distance’s up-trend mainly consist of
counter-attacks, collecting balls relatively near to the opponent’s goal, or
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immediate regains of possession by the defending team. Similar tendency is
found in the co-occurrence of increasing patterns of away width when the
away team is defending. However, we observe more counter-attacks with
avg vel’s trough (21% vs 14%), which implies that the away team tends to
attack fast after they gain the possession.

The fact that the home side finished the season in the top three and the
other team in the relegation zone explains these distinct tactics. While the
away side may have preferred long balls to possession, the home team may
have felt secure in controlling the ball against the opponent.

Figure 14: Movement of centroids during episodes with avg vel=peak,
home distance=down-trend, and away distance=up-trend when the home team
is defending
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Figure 15: Features that have co-occurrence with the up-trend pattern of ‘home distance’
(left) and the top 5 co-occurrent features (right) in episodes from Match 1, where the
home team defends.

4.5. Summary of findings

Our approach enabled us to identify similar and distinctive behaviours for
the two teams. Temporal patterns show players often play wide when they
are attacking and narrow when they are defending. Additionally, quick ac-
celeration and deceleration in response to a change of possession is observed.
The co-occurrence chart reveals two typical tactics used by both sides when
they gaining possession of the ball: either executing counter-attacks or grad-
ually rebuilding the attack. After obtaining possession of the ball, the home
team often carefully connects passes while the away team typically attempts
quick counter-attacks.

5. Discussion

With this paper, we are proposing a view of time-varying phenomena as
a sequence of episodes, i.e., time intervals encapsulating fragments of the
temporal behaviours of the phenomena. The term “behaviour” here refers
to any kinds of changes. Episodes can be described by values of multiple
attributes specified for different time slices within the intervals and thus
forming multivariate time series. The rationale for introducing episodes as
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units of behaviour is that they can be short enough to allow abstractive per-
ception and representation of each time series as a single easily interpretable
temporal pattern. Hence, the behaviour encapsulated in an episode can be
represented by a combination of patterns made by the multiple attributes.

Based on the premise that simplification and abstraction are essential
for understanding a phenomenon, i.e., building a mental model of it [7],
we explored in our research the analytical potential of computer-supported
abstraction of time series to temporal patterns and explicit representation
of these patterns for involvement in subsequent analysis. The idea is that
the patterns substitute the original elementary data [6] and are themselves
treated as data to be analysed. We considered several analysis tasks that can
be posed when dealing with such data and defined visual analytics techniques
that can support these tasks.

In our exploratory study, we neither tried to create a complete task tax-
onomy for analysis of temporal patterns of episodes nor strove to design
novel visualisations. The goal was to investigate the principal possibility of
analysing data transformed into temporal patterns. Our study showed that
this approach can be quite useful. By using abstractions of elementary data,
it allows considering the behaviour of a phenomenon at a yet higher level of
abstraction, namely, at the level of relationships between the patterns. This
contributes to obtaining an overall understanding of the behaviour or reveal-
ing its essential features. It can be noted that the very idea of the approach
is generic, i.e., potentially applicable to any type of data.

Given that transformation of data to patterns can be beneficial, a valid
question is what kinds of patterns should be considered and how to obtain
them from data. This question requires a specific answer for each distinct
type of data, because patterns are formed by type-specific intrinsic rela-
tionships between data elements [6]. We have proposed an answer to this
question for data consisting of time series of values of numeric attributes.
We wanted to represent such data by patterns that are well understood by
humans and, preferably, denoted by commonly understandable terms. We
considered a set of basic patterns that can be represented graphically as
particular geometric shapes and are commonly labelled as up-trend, peak,
constancy, trough, and down-trend. We propose an algorithm for automatic
recognition of these patterns and representation of episodes by combinations
of patterns. We acknowledge the possibility to consider other sets of patterns
requiring other algorithms for extraction, but we would like to note that the
same visualisation and exploration techniques may be applied to transformed
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data regardless of the specific pattern “vocabularies” used for encoding the
data.

The visual analytics techniques that we described in this paper are in-
tended to support exploration of (A) the temporal distribution of the differ-
ent types of patterns and (B) relationships between the temporal patterns,
namely, temporal ordering of patterns in a sequence of episodes and co-
occurrence of patterns within episodes. A and B are the two major classes
of analytical tasks relevant to time-referenced data in general. The most
common representation of such data is by some kind of visual marks along a
time axis, and we apply it in our timeline view. A circular representation of
time is also frequently used, particularly, to reveal and explore cyclic changes.
We also propose two time-abstracted and aggregated representations of the
data in the form of graphs showing sequential ordering relationships between
patterns of the same attribute and co-occurrence relationships between pat-
terns of different attributes. Using graphs to visualise relationships is one
of the most common design choices along with the use of a time axis-based
display to visualise a temporal distribution. The visualisations we describe
in the paper should be considered as mere examples of numerous possible
implementations of these fundamental designs.

Thus, there are many methods for laying out nodes of a graph [17]. Most
of the existing algorithms are not suitable for visualising relationships be-
tween patterns, which requires the nodes representing the patterns of the
same attribute to be grouped together and separated from nodes referring
to other attributes. We address this requirement in our design of the co-
occurrence network (Figs. 8 and 15) by arranging groups of nodes in circles.
A more usual design that could satisfy this requirement is the chord dia-
gram [23] using a circular layout, where groups of nodes are arranged in arcs
and separated from other groups by gaps. Figure 16 demonstrates how the
same data as in Figs. 8 and 15 can be visualised in the form of chord dia-
grams. In our design, the grouping of nodes is much better noticeable than
in a chord diagram. A disadvantage of our design is intersections between
some of the graph edges and the circles that visually link nodes belonging
to groups. The circular layout, as in a chord diagram, is potentially suitable
for visualising hierarchical networks by increasing the number of outer cir-
cles; however, this is not needed in our case. The circular layout may also
be more scalable to a greater number of nodes given its simple structure;
however, showing a large number of node groups with sufficient separation
between them may be problematic. Since there is no universally effective
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layout, the choice should depend on properties of data and user preferences.

Figure 16: An alternative design of co-occurrence chart with two data sets: (a) Google
Mobility Data (2) Football Data

We consider our work as just a first step in the research on analysis of
episodes as a way of representing complex dynamic phenomena. We envis-
age continuous systematic research in this direction. Our exploratory study
shows how this representation can be utilised leveraging the possibility of con-
densing and abstracting elementary data. While we see that this approach
has good potential, we admit that the set of techniques we have developed is
not yet sufficiently powerful. In particular, it provides quite limited opportu-
nities for exploration of multi-attribute temporal patterns, i.e., combinations
of single-attribute patterns. The co-occurrence network shows only pairwise
co-occurrence relationships but does not support joint perception and anal-
ysis of multiple patterns occurring together in episodes. We see the problem
of representing and analysing multivariate temporal patterns as a challenge
for future research that requires significant attention and concentration of
effort.

Hence, one of the next steps in the future research should be towards find-
ing methods for the integration of multiple single-attribute temporal patterns
into composite multi-attribute patterns that can be perceived and treated as
units. We see a possibility to achieve this goal with the help of topic mod-
elling. Our experiments [38] showed that this idea deserves further investiga-
tion. Another step should be towards methods for comprehensive analysis of
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temporal relationships between patterns not limited to co-occurrence and se-
quential ordering. Our initial idea is to consider temporal neighbourhoods of
patterns and try to find re-occurring combinations of patterns whose neigh-
bourhoods overlap.

6. Conclusion

We have introduced a concept of episode as a relatively short fragment
in temporal development or behaviour of a dynamic phenomenon. We have
suggested that data describing episodes may have the form of time series of
values of multiple attributes. Limiting our focus to numeric attributes, we
have presented an approach to analysis of such data by means of automated
abstraction of the time series to temporal patterns represented as categorical
labels. We have demonstrated possible ways of visualising abstracted data for
analysing the temporal distribution of the patterns and relationships between
patterns within and across episodes. Our study has shown that decompo-
sition of complex behaviours into episodes and characterising episodes by
temporal patterns of multiple attributes is a promising approach to analysis
of dynamic phenomena. We call for further research in this direction, partic-
ularly, to find ways to consider and analyse combinations of single-attribute
patterns holistically as integrated patterns incorporating multiple aspects of
the behaviour.
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Abstract

This paper introduces an approach to analysing multivariate time series
(MVTS) data through progressive temporal abstraction of the data into
patterns characterizing behavior of the studied dynamic phenomenon. The
paper focuses on two core challenges: identifying basic behavior patterns of
individual attributes and examining the temporal relations between these
patterns across the range of attributes to derive higher-level abstractions of
multi-attribute behavior. The proposed approach combines existing meth-
ods for univariate pattern extraction, computation of temporal relations ac-
cording to the Allen’s time interval algebra, visual displays of the temporal
relations, and interactive query operations into a cohesive visual analytics
workflow. The paper describes application of the approach to real-world
examples of population mobility data during the COVID-19 pandemic and
characteristics of episodes in a football match, illustrating its versatility and
effectiveness in understanding composite patterns of interrelated attribute
behaviors in MVTS data.

Keywords: temporal relations, temporal abstraction, multivariate time
series, time intervals

∗Corresponding author.
Email addresses: gota.shirato@iais.fraunhofer.de (Gota Shirato),

natalia.andrienko@iais.fraunhofer.de (Natalia Andrienko),
gennady.andrienko@iais.fraunhofer.de (Gennady Andrienko)

Visual Informatics 31 August 2023

58



Gota Shirato, Natalia Andrienko, Gennady Andrienko
Exploring and visualizing temporal relations in multivariate time series

1. Introduction

Temporal abstraction means representing sequences of time-referenced
data items as unified entities called patterns [4]. To comprehend the under-
lying dynamics and interrelationships among various attributes within mul-
tivariate time series (MVTS), it is crucial to uncover and explore temporal
relations between patterns of individual attribute variations. Although nu-
merous methods exist to address specific tasks in abstracting and analyzing
MVTS, there is currently no overarching framework that consolidates these
tasks and their corresponding methods into a comprehensive analysis work-
flow. Such a framework would help researchers to synergistically use different
methods, leveraging the variety of existing techniques and enhancing their
understanding of dynamic phenomena.

This paper presents a framework that aims to bridge this gap by support-
ing progressive abstraction of MVTS, from defining relevant intervals with
basic behavioral patterns of individual attributes to exploring temporal rela-
tions between previously extracted patterns, which may differ in their levels
of abstraction. Our primary objective is not to replace existing methods
with new ones; instead, we show how to organize existing methods support-
ing different tasks into a cohesive visual analytics workflow [3]. We present
examples of computational and visualization techniques capable to support
different analysis steps, while the framework is conceptual and therefore al-
lows the use of any appropriate methods. Thus, analysts can choose the
types of patterns to search for, pick one of suitable existing methods that
can detect these patterns in time series, and choose or design a time-oriented
visualization technique that will show the positions of the detected patterns
along the time line. To visualize relationships between the patterns, analysts
may use node-link diagrams instead of matrices.

The proposed framework addresses two key problems: (a) identifying
basic behavioral patterns of individual attributes, and (b) examining the
temporal relations between these patterns across multiple attributes to de-
rive higher-level abstractions. In this context, a basic pattern refers to an
interpretable symbol or expression representing a sequence of values for a
single variable, such as “increasing” or “decreasing” [28]. Deriving complex
patterns of joint behavior of multiple variables is particularly challenging,
especially when there are time lags between the starting points of individual
behavior patterns. Our framework is designed to visualize temporal relations
with lags, facilitating the comprehension of complex interactions among mul-
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tiple attributes.
The framework focuses on three main tasks:

• T1: Defining relevant intervals with basic patterns in univariate time
series

• T2: Deriving complex patterns by computing temporal relations be-
tween time intervals in multivariate time series

• T3: Exploring occurrence patterns of temporal relations through an
interactive visual interface.

For T1, we apply an algorithm to define relevant time intervals from
univariate time series using the geometric pattern extraction technique [30].
T2 can be fulfilled by using Allen’s interval algebra [1]. T3 is supported by
a visual exploration interface designed following B.Shneiderman’s mantra of
“Overview first, zoom and filter, then details-on-demand” [31].

We argue that these tasks serve as essential components in a compre-
hensive MVTS analysis workflow, demonstrating the cohesive nature of our
framework. Our framework accommodates various types of patterns and tem-
poral relationships, allowing analysts to apply existing methods for pattern
detection. Example of such methods include trend-based [18] and state-based
techniques [20].

The rest of this paper is structured as follows. Section 2 discusses the
related work. Section 3 describes selected methods suitable for each task
using the example of the mobility data during the COVID-19 pandemic.
Section 4 demonstrates the effectiveness and versatility of our framework
by example of another application using football (soccer) data. Section 5
discusses the concept, approaches, and answered research questions, identifies
strengths and limitations, and proposes directions for future work. Finally,
Section 6 concludes our work.

2. Related Work

In this section, we review the literature related to the analysis of mul-
tivariate time series, temporal abstraction, and visualization techniques for
exploring temporal relations.
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2.1. Multivariate Time Series Analysis

A variety of methods have been proposed for the analysis of multivari-
ate time series (MVTS) data. These methods can be broadly categorized
into statistical approaches (e.g., Granger causality [10], vector autoregres-
sion [22]), machine learning techniques (e.g., recurrent neural networks [12],
Bayesian networks [26]), and matrix and tensor factorization methods [16].
While these approaches are effective in modeling and predicting various as-
pects of MVTS data, they often do not provide an intuitive understanding
of the temporal relations between different attributes.

2.2. Temporal Abstraction

Temporal abstraction involves transforming the raw data into higher-level
concepts that are easier to understand and interpret, thus creating interval-
based representations from time-stamped data [29] (i.e., basic temporal ab-
straction [28]), and abstracting intervals into other intervals with a higher
level of abstraction (i.e., complex temporal abstraction [28]). Techniques like
time series segmentation [14], time periodization [2], motif discovery [27],
and frequent episode mining [24] have been used to identify meaningful pat-
terns in univariate and multivariate time series. Joint behavior of multiple
variables are also derived from basic patterns by using co-occurrence [19]
and simultaneity of different temporal patterns [30]. While these methods
are effective in extracting temporal patterns, they do not explicitly address
the problem of exploring and analyzing different types of temporal relations
between the identified patterns.

2.3. Visualization Techniques for Temporal Relations

Several visualization techniques have been proposed to explore temporal
relations in time series data. TimeMatrix [35] and TimeNotes [33] are ex-
amples of visualizations that present the temporal relations between events
in the form of a matrix. Moreover, co-occurrences of pairs of different ab-
stract patterns can be visualized by a network [30]. EventFlow [25] and
Outflow [34] are visual analytics tools that enable users to explore temporal
patterns in event sequences by providing interactive visualizations of event
data. Techniques have also been introduced for visually specifying, com-
bining, and querying complex temporal patterns [6]. Recent work supports
the validation of causal relationships by showing correlations between time
intervals in matrix [17] and network [7, 21]. An approach exists for inves-
tigating relationships between one or more time series within specified time

61



Gota Shirato, Natalia Andrienko, Gennady Andrienko
Exploring and visualizing temporal relations in multivariate time series

frames [36]. However, these methods generally lack direct support for ex-
ploring patterns of temporal relations that include time lags.

In summary, the related work highlights a large variety of methods and
techniques available for analyzing and visualizing multivariate time series
data and temporal relations. Our proposed framework distinguishes itself by
introducing an integrated workflow consisting of three tasks: identifying rel-
evant intervals containing patterns, deriving complex patterns by computing
temporal relations, and exploring occurrence patterns of temporal relations
through an interactive visual interface . We propose a selection of methods
that can be employed for each task but do not exclude the use of alternative
techniques.

3. Visual analytics approach

In this section, we present a workflow composed of methods suitable for
identifying time intervals with basic behavior patterns, computing temporal
relations between time intervals in multivariate time series, and revealing
patterns of joint behavior by visually presenting the relations between earlier
extracted patterns.

3.1. Essence of the approach

The key idea of our approach is to conduct a progressive abstraction pro-
cess from identifying basic patterns in univariate time series to discovering
higher-level patterns formed by temporal relations between the basic pat-
terns. This process is designed to simplify and distill complex multivariate
time series data into meaningful and interpretable components that can be
easily understood and analyzed. The workflow of the process is presented in
Figure 1.
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Figure 1: The workflow of the progressive abstraction process consists of three steps with
increasing the level of abstraction at each step.

We demonstrate our approach by utilizing time series of continuous daily
mobility indicators from Google Mobility Data [9].

3.2. Approach introduced by example

During the COVID-19 pandemic, measures were taken to curb infection
spread by restricting people’s movement. In mobility data, we observe tem-
poral relations between different mobility patterns that warrant attention.
When a lockdown measure is announced, for example, we can expect an
increase pattern in coming to workplaces to occur before an increase

pattern of staying at home since, many people may go to their offices to
prepare for remote work. The mobility patterns may differ among differ-
ent countries due to their varying policies against the pandemic. Here, our
interest is to visualize temporal relations between mobility patterns within
each country and to investigate the distributions of temporal relations across
countries.

Data description

Following the COVID-19 outbreak in February 2020 [9], Google began
publishing anonymized mobility data for six different categories of places:

63



Gota Shirato, Natalia Andrienko, Gennady Andrienko
Exploring and visualizing temporal relations in multivariate time series

retail and recreation, grocery and pharmacies, parks, transit stations,
workplaces, and residential from various regions. The data consists of
daily visitor counts to these categories, compared to baseline days prior to the
pandemic’s onset. Baseline days represent a normal value for each day of the
week, calculated as the median value over a five-week period from January
3rd to February 6th, 2020. The values in the published data are presented
as percentages of changes from these baseline values. For our analysis, we
utilize daily time series for 29 countries across Europe, collected between the
15th of February, 2020 and the 15th of October, 2022.

T1. Defining relevant intervals containing abstract patterns

The first step in our framework involves dividing a univariate time series
into a set of time intervals of varying lengths, each featuring a distinct pattern
of value variation (e.g., a trend). Analysts can define the pattern types
of interest and adjust thresholds for identifying them. In our example, we
consider a set of basic patterns that can be represented as trends and typically
labelled as increase, constancy, and decrease. To distinguish these trends,
we employ the algorithm by Shirato et al. [30], which treats a time series as
a graph of a function V (t) in a Cartesian coordinate system. It determines a
peak or trough pattern by identifying the largest triangle in a time interval
[t1, t2] formed by points (t1, V (t1)), (t

′, V (t′)), and(t2, V (t2)), where t1 < t′ <
t2. In other words, the algorithm identifies a peak or trough point that forms
the largest triangle with the starting and ending points of a given interval
(Figure 2). If the area of the triangle is sufficiently large, the peak or trough
point is taken as a break point to divide the time series into two segments each
containing a simpler pattern of temporal variation that can be considered as
increase, decrease, or constancy.
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Figure 2: Illustration of the idea of the pattern detection algorithm [30]. The curve
portrays the evolution of values over time as a function V (t). The algorithm identifies a
point (t′, V (t′)) within an interval [t1, t2] that forms the largest triangle with the points
(t1, V (t1)) and (t2, V (t2)). The point (t′, V (t′)) is used to divide the time series in two
intervals. In this example, the first interval contains an increasing trend. Depending on
a threshold for the difference between the first and last values, the attribute behavior in
the second interval can be considered as a decreasing trend or as constancy.
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Figure 3: Dividing time intervals by iterative application of the largest triangle algo-
rithm [30]. In the initial iteration (top), the algorithm finds the peak or trough point that
forms the largest triangle in the time series, then segments the time interval at this iden-
tified time point. Subsequently, in the second iteration (bottom), the algorithm discovers
peak or trough points in the time intervals obtained in the first iteration. The iterative
process continues until the area of the largest triangle falls below a chosen threshold.

The operation of finding the largest triangle is applied to a time series in
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an iterative manner as illustrated in Figure 3. Initially it is applied to the
whole time span of the time series [t0, tlast] (Figure 3, top). After finding the
vertex of the largest triangle (t′, V (t′)), the time step t′ is used for dividing
the entire time span into intervals [t0, t

′] and [t′, tlast]. The operation is then
applied to each of these two intervals, which can be, in turn, further divided
into sub-intervals (Figure 3, bottom). The decision whether a given interval
needs to be subdivided depends on the area of the largest triangle on this
interval. A large area implies the presence of a substantial peak or trough,
which is a composition of increasing and decreasing trend patterns. Hence,
the interval needs to be subdivided for obtaining simpler patterns. When
the triangle is small, it suggests that this fragment of the time series can be
treated as a simple trend pattern with inessential noise.

With an aim to obtain a set of elementary trends, namely increase,
constancy, and decrease, we recursively segment each time interval until
its pattern is sufficiently distinct, i.e., the largest triangle within the segment
is smaller than a threshold. A larger threshold allows for larger triangles,
representing more significant peaks or troughs, to exist within the segment,
resulting in fewer intervals as the partitioning process is less stringent. In
other words, increasing the threshold value leads to a coarser segmentation of
a time series and a higher level of abstraction, where segments are considered
as simple trends, and internal deviations are ignored. Figure 4 demonstrates
the effect of the threshold on the final division of a time series.
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Figure 4: Division of a time series into intervals using different thresholds for the size of
the largest triangle (top: threshold=0.5, middle: 1.0, bottom: 1.5). Each view consists
of a raw data series (bottom) and the resulting time intervals (top). Blue dotted lines
represent the recursions of the splitting process and bold purple lines represent the final
intervals while grey dotted lines represent the end of each interval. A larger threshold
indicates a greater tolerance for variations within the data, resulting in a coarser segmen-
tation that represents more pronounced trends. Conversely, a smaller threshold refines
the segmentation capturing subtler variation.
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T2. Deriving complex patterns by computing temporal relations between time
intervals in multivariate time series

After identifying the time intervals containing basic patterns in each uni-
variate time series (Figure 5), we proceed to compute the temporal relations
between the time intervals across multiple attributes by employing a sub-
set of Allen’s interval algebra consisting of the relations before, after, and
overlap. We allow a certain margin of overlapping ω to be present in the
before and after relation. Any relation where two intervals share a suf-
ficiently long (> ω) period of simultaneous existence is considered as an
instance of the overlap relation. The threshold ω is specified as percentage
of the duration of the shorter interval.

Figure 5: A segment of an univariate time series from the mobility dataset distilled into
basic trend patterns. Colors denote the trend directions: orange for decreasing, grey for
constancy, and green for increasing. Opacity signifies the change rate, i.e., the amount
of change of the value divided by the interval length.

To identify relations, we employ the following algorithm. Firstly, for each
interval in one time series that contains a pattern (referred to as the reference
interval), the algorithm searches for its temporal neighbors in the other time
series. Two intervals are considered temporal neighbors if they either overlap
or if the temporal distance between the end of the earlier interval and the
start of the later interval does not exceed a predefined threshold, denoted as
δ. If the neighboring interval overlaps with the reference interval by more
than a specified value of the threshold ω, the relation is labeled as overlap.
Otherwise, if the neighbor starts earlier, the relation is labeled as before,
and if the neighbor starts later, the relation is labeled as after. Analysts
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have the flexibility to adjust the parameters δ and ω based on their specific
requirements. In the provided examples, we have chosen δ to be 1 day and
ω to be 20% of the shorter interval’s duration. Figure 6 demonstrates an
example of the relation after between two patterns.

Figure 6: An example of a temporal relation between two trend patterns. The increasing
pattern in workplaces (bottom) is after the increasing pattern in retail and

recreation (top). As the two intervals overlap by less than the threshold ω (bold hash
pattern in red), the relation is identified as after rather than overlap.

T3. Exploring occurrence patterns of temporal relations through an interac-
tive visual interface.

In this task, the objective of an analyst is to understand the occurrence
patterns of temporal relations by examining their frequency distributions.
This task is meant to be performed separately for each type of temporal
relation, i.e., before, after, or overlap. We shall call the relation that is
currently explored the target relation. This task is structured in accordance
with the Visual Information-Seeking Mantra of “overview first, zoom and
filter, then details-on-demand” [31].

T3.1 Overview: Matrix visualization of occurrence patterns

To begin our exploration, we first introduce a matrix visualization that
aids in understanding the occurrence patterns of temporal relationships. An
example is demonstrated in Fig. 7. Each cell in the matrix represents the
frequency of the target relation (before in Fig. 7) occurring between two
patterns across different attributes. In this matrix, rows and columns are
divided by dashed lines into three blocks corresponding to the increase, con-
stancy, and decrease patterns. Within these blocks, the rows and columns
correspond to the different attributes. The color intensity of a cell indicates
the frequency of the target temporal relation: darker shades represent more
frequent occurrences, while lighter ones signify fewer.
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Figure 7: Relation occurrences matrix: Each cell represents the frequency of the target
relation (before in this example) between two patterns across various attributes. The ma-
trix rows and columns are divided into three blocks corresponding to increase, constancy,
and decrease patterns. Darker shades indicate more frequent occurrences, while lighter
ones signify fewer.

The investigation is done using a display with multiple matrices (Fig-
ure 8), i.e., we apply the “small multiples” technique considered by Edward
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Tufte as the best design solution for a wide range of problems [32, p.67]. In
accordance with the Jacques Bertin’s concept of an image as “the meaning-
ful visual form, perceptible in the minimum instant of vision” [5, p.11], each
matrix can be perceived holistically as a single object. This allows for an
at-a-glance comparison between matrices, without involving minute details.

The multi-matrix display in Figure 8 visualizes the occurrence patterns for
the before relation for each country. Initial observation of these matrices
reveals certain similarities, such as comparable white crossing lines in the
Czech Republic, Hungary, Luxembourg, Slovenia, and Slovakia.

Figure 8: Grid of matrix views for 29 European countries. Each matrix within the grid
represents the occurrences of the before relation for each pair of patterns within the
respective country.

For more effective comparison, the user can set the multi-matrix view to
show normalized deviations from the average (Figure 9). Within these matri-
ces, each matrix cell displays the difference between a normalized occurrence
value for a given country and the average normalized value for correspond-
ing pair of patterns across all countries. The normalized occurrence value is
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computed as the ratio of the occurrence count of a specific pattern pair to
the total number of occurrences of the target relation within the matrix. We
can represent this concept with the following formula:

diff = NOVref,neigh,rel,c − ANOVref,neigh,rel (1)

where ref and neigh mean a pair of a reference interval and its neighbor,
rel means a relation, and c means a country.

The Normalized Occurrence Value (or NOV ) is calculated by dividing
the count of occurrences for each pattern pair by the total occurrences of the
target relation in the matrix:

NOVref,neigh,rel,c =
countref,neigh,rel,c

totalOccurrencesrel,c
(2)

The Average Normalized Occurrence Value (or ANOV) is the average of
the NOVs across all countries:

ANOVref,neigh,rel =

∑
cNOVref,neigh,rel,c

N
(3)

In this formula, N is the total number of countries.
Differences are shown through diverging colors, making similarities in

occurrence patterns more readily observable.
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Figure 9: A multi-matrix view of the relations between mobility trends for 29 European
countries. Each matrix illustrates the deviation of the normalized frequencies of the rela-
tion occurrences from the average of the normalized frequencies for the before relation.
These differences are expressed using diverging colors.

For an overview of the similarity relationships between countries, analysts
can apply dimensionality reduction to the set of matrices. We recommend us-
ing a dimensionality reduction algorithm from the class known as neighbour
embedding algorithms, which give priority to preserving local neighborhoods
at the cost of higher distortion of longer distances between embedded data
items. Hence, highly similar items (i.e., neighbors in the multidimensional
space) receive close positions in the low-dimensional projection space. One
of such algorithms is t-SNE [23], which we use in our example. In Figure 10,
t-SNE was utilized with two different values of the parameter perplexity,
5 and 25. This parameter approximately defines the number of neighbours
to be considered when placing points in the projection space. Since it is not
known in advance how many neighbours, in terms of similarity of the relation
occurrence distribution, a country may have, it is reasonable to consider pro-
jections obtained with smaller and larger values of the perplexity parameter.
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In our example, both projections exhibit clusters of countries with similar
matrices, for example, the aforementioned five countries (i.e., the Czech Re-
public, Hungary, Luxembourg, Slovenia, and Slovakia), as well as the Baltic
countries (i.e., Lithuania, Latvia, and Estonia). We do not observe significant
difference between the results obtained with the two perplexity values.

Figure 10: t-SNE projections of the set of countries obtained with perplexity values of 5
(left) and 25 (right), based on the similarity between the matrices of the normalized occur-
rence frequencies of the before relation. The projection provides a spatial representation
of the similarities.

T3.2 Zoom, Filter, and details-on-demand

A. Selecting a matrix of interest and a pair of patterns

The subsequent step encompasses zooming and filtering, permitting an-
alysts to narrow down their analysis to a particular matrix of interest (“fil-
ter”), which is shown in a larger format (“zoom”) to facilitate focusing on
specific patterns and their temporal relations. Analysts can then choose a
target temporal relation, and the frequency of the selected relation between
each pair of patterns will be shown (“details-on-demand”). In our illustra-
tions, the analyst chooses the before relation to explore the frequencies of
neighboring patterns that occur prior to reference patterns.

Taking Malta as an example (Figure 11, left), the matrix visualization
shows the frequencies of the relation occurrences for different pattern pairs
over the period between February 15, 2020 and June 15, 2021 (i.e., in first half
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of the time span of the available data set, including the beginning of the pan-
demic). We observe that decreasing patterns of different attributes often pre-
cede increasing patterns of other attributes. For instance, we observe a large
number of instances where a decreasing trend in retail and recreation

precedes an upswing in parks, transit stations, and workplaces (Fig-
ure 11, left, block 1). Similarly, decreasing patterns in these three categories
of places often precede an increase in retail and recreation. On the
other hand, there are fewer instances of an increasing pattern in retail and

recreation preceding a decrease in these place categories (Figure 11, left,
block 2). Likewise, the matrix for Italy shown on the right of Figure 11
also displays similar patterns but includes another category of place, namely
grocery and pharmacy (Figure 11, right, block 1).

Figure 11: Matrix visualizations of the occurrence frequencies of the temporal relation
before between trend patterns of different attributes for Malta (left) and Italy (right).

Notably, Italy has higher frequencies of the before relation between de-
creasing trends in transit stations and increasing trends in workplaces

and vice versa, indicating a different pattern of mobility in Malta (Figure 11,
left, block 3 and right, block 2) as compared to Italy (Figure 11).

These matrix visualizations serve to observe and compare the overall fre-
quency distribution of temporal relations between different patterns across
various contexts or regions, providing initial insights for further detailed anal-
ysis.
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B. Density chart grid view for temporal relation distributions

To exhibit the distributions of temporal relations between different ab-
stract patterns, we utilize a grid view of density charts. Differently from
the matrix view, which shows information for a chosen target relation, the
grid view presents information for a chosen reference pattern. For each other
pattern, there is a density chart representing the distribution of the relative
(with respect to the reference pattern) times of occurrence of this other pat-
tern. The chart includes two density plots, one for the before relation (blue)
and another for the after relation (red). The overlap relation is intention-
ally excluded from this visualization due to its significantly higher frequency,
which decreases the visibility of the distributions of the other relations. It
is worth noting that our framework provides the flexibility to exclude any
relation, allowing for a more focused examination of the other specific rela-
tions. The density charts are arranged in a grid with rows corresponding to
the attributes and columns to the different patterns, i.e., increase, constancy,
and decrease.

Figure 12 illustrates the grid view. The figure includes two grids rep-
resenting data from two time periods: before and after the 15th of June,
2021 (midpoint of the available data). The reference pattern is the increase
of the attribute workplaces. In each grid view, the rows correspond to
six attributes (retail and recreation, grocery and pharmacies, parks,
transit station, workplaces, and residential) and columns to three
trend patterns (increase, constancy, and decrease), resulting in a total of
18 grid cells. The cells in all but one rows contain density charts showing the
distributions of the relative times of the occurrences of the neighboring pat-
terns with respect to the reference pattern. The row of the attribute whose
pattern is chosen as the reference is empty, because only relations between
patterns of distinct attributes are considered in our framework.

77



Gota Shirato, Natalia Andrienko, Gennady Andrienko
Exploring and visualizing temporal relations in multivariate time series

Figure 12: Grid views of density charts for the distributions of the neighbors’ relative
times for the increase pattern of workplaces in Italy (top) and Sweden (bottom). The
grids on the left include the data from the time period before 15/06/2021, and the grids on
the right show the relation distributions after this date. Colors denote different temporal
relations: blue for before and red for after.
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Comparison of relations of the increase in the visits to workplaces between
Italy and Sweden

In this case study, we focus on the relations of the increase pattern
in visiting workplaces with different trend patterns of the other attributes
occurring in the temporal neighborhood of the reference pattern defined using
a temporal threshold of δ = 1 day. We compare the distributions of the
neighboring patterns for Italy and Sweden. We segment the data into two
subsets based on whether they fall before or after a chosen midpoint date
June 15, 2021, for comparative analysis of two time periods.

In Italy (Figure 12, top), more occurrences of the reference pattern in
neighborhoods of other patterns are noted before the midpoint date than
afterwards. This suggests that the increase pattern of workplaces was
more prominent at the early stages of the pandemic. Given that Italy imple-
mented lockdown measures relatively early [13], this observation aligns with
the expectation that people’s mobility would have been significantly affected
by these measures. In contrast, Sweden (Figure 12, bottom), known for
not imposing any form of lockdown [13], exhibits fewer occurrences of the
reference pattern in relation to others before the midpoint date than after it.

Upon closer inspection, we find that the same pattern before the midpoint
in Italy has more relations with the decrease pattern of transit station

than its counterpart in Sweden, implying different mobility patterns in these
countries.

4. Case study: Team behaviours in football

In this section, we present another case study using data from professional
football (or soccer) matches. Understanding collective movements is crucial
for interpreting tactical behaviors in football. For example, the team that has
gained the ball possession tends to extend its width while the team without
possession tends to get more compact [8]. Revealing temporal relations be-
tween such kinds of trends of different attributes can enhance understanding
of the data. For example, an increase in average velocity (i.e., average
speed of players on both teams) before an increase in goal distance (i.e.,
distance between a team’s own goal and the mean position of the outfield
players on that team, excluding the goalkeeper) implies a quick attack such
as a counter-attack.
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Data description

We use continuous time series of the teams’ collective movements com-
puted from players’ positions. We have data from two matches, labeled as
BB and BN, in which the same home team, denoted as D, competes against
two distinct opponents, referred to as O. One match can be divided into four
subsets of game episodes distinguished by two factors: the stage of the match
(either the first half or the second half) and the team possessing the ball, i.e.,
D or O. Each half contains around 67500 timesteps (i.e., 45 minutes given
that the raw data has a sampling rate of 25 Hz). For each team and each time
step, we compute team width (horizontal distance between the leftmost and
rightmost players on a team excluding the goalkeeper), team depth (vertical
distance between the frontmost and rearmost players on a team excluding
the goalkeeper), and goal distance (distance between a team’s own goal
and the mean position of the players on that team excluding the goalkeeper).
The attributes of the two teams are distinguished by the prefixes home and
away in the attribute names, for example, home width and away width As
there exists strong correlation between the average velocities of the players
of the two teams, we compute average velocity on both teams (excluding
the goalkeepers).

Comparative analysis of team strategies in first and second halves of the BB
match

In defining temporal neighborhoods and identifying relations, we use the
threshold values δ = 25 frames (i.e., 1 second) and ω = 0.3; see section 3.2,
task T2.

Figure 13 enables a comparative study of relation occurrence patterns
under eight situations, i.e., two matches, the first and second halves of each
match, and different teams (D and O) in possession of the ball. Similarly to
Section 3, each cell within these matrices displays the occurrence frequency
of the relation before between the corresponding pattern pairs across all
attributes.
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Figure 13: A 2 ×4 grid of matrix views. The matrices in the top row correspond to the
first match (BB) and those in the bottom row to the second match (BN). Each matrix
within the row represents the occurrences of the before relation for each pair of patterns
in a distinct subset of game episodes: the first or the second half of a match and the team
D or O in possession of the ball.

Upon initial observation, we identify remarkable similarities in the pat-
terns of relation occurrence in the subsets of episodes in both matches when
team D is in control of the ball, i.e., the matrices with labels that end with
-D, such as BB-first-D. These patterns are also similar to the pattern of rela-
tions when team O is in possession in match BN, evident in both BN-first-O
and BN-second-O. There is higher similarity between the matrices BB-first-
O, BN-first-D, and BN-second-D, which indicates that the team D behaved
in the match BN similarly to the behavior of their opponents in the first
half of the match BB. In the first half of the match BB, team D had lower
relation frequencies than team O, whereas in the second half the frequencies
were nearly equal.

The apparent differences between the absolute frequencies can be ex-
plained by the differences in the total duration of the ball possession between
the teams. Therefore, to reveal possible differences in team tactics, it makes
sense to transform the absolute frequencies to normalized values, as in Fig. 9.

The normalized deviations from the average, as depicted in Figure 14,
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enhance the visibility of certain patterns of occurrences, although some sim-
ilarities with the matrices in Figure 13 still persist. Specifically, a distinct
difference in color (blue and yellow) for the top-left vertical line between the
BN-second-D and the BN-first-D matrices can be observed. However, this
difference is merely expressed by color intensity in Figure 13.

Figure 14: A 2 ×4 grid of matrix views. The matrices in the top row correspond to the first
match (BB), while those in the bottom row correspond to the second match (BN). Each
matrix within the row illustrates the difference between the average of normalized occur-
rences of the before relation for each pair of patterns and the corresponding normalized
value. Diverging colors are used to represent these differences. Each matrix corresponds to
a distinct subset of game episodes, either the first or second half of a match, and whether
the team D or O in possession of the ball.

To compare two halves of one match, analysts can subtract the normal-
ized occurrence values of the second half from those of the first half to iden-
tify which pair of patterns appears more frequently in each half. Figure 15
demonstrates the result of this operation for the ball possession of O in the
match BB.
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Figure 15: The matrix represents the difference in normalized occurrence values of the
neighbor patterns preceding the reference patterns between the first and second halves of
match BB when team O possesses the ball. The values are calculated by subtracting the
occurrence frequencies in second half from those in the first half. Red indicates a higher
frequency of occurrences in the first half while blue signifies more occurrences in the second
half.

The increase pattern of away distance followed by the decrease pat-
tern of home distance indicates that the away team is moving further away
from their own goal (1 in Figure 15), suggesting an offensive strategy, while
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the home team is moving closer to their goal, suggesting a defensive strategy.
This pattern is more noticeable in the first half, concurring with the match
report’s statement that the away team initiated a strong offensive from the
start of the game [15].

Similarly, we observe the increase pattern of home distance followed
by the decrease pattern of away depth (2 in Figure 15), suggesting that
the home team advances before the away team becomes more compact. We
also observe that the decrease pattern of away distance preceding the
increase pattern of home distance is more prevalent in the second half
(3 in Figure 15), suggesting that the away team adopts a more defensive
posture while the home team defends more aggressively. This suggests that
the home team is preparing for an aggressive strategy, potentially anticipating
a turnover or looking to exploit any gaps in the away team’s formation, while
the away team is playing compact. The increased prevalence of this pattern
in the second half suggests an offensive shift of strategy by the home team,
aligning with the match report that mentioned that the home team exerting
considerable pressure on the away team’s defense [15].

Density charts: Changes in behaviour between first and second halves

In this section, we use grids of density plots for a more detailed investi-
gation of the temporal relations between patterns of different attributes. To
compare two halves of a football match, we juxtapose two grids representing
the corresponding data. Each grid comprises seven attributes (home depth,
away depth, home width, away width, home distance, away distance,
and average velocity) and three trend patterns (increase, constancy,
and decrease), resulting in a total of 21 grid cells.

First, we focus on the increase pattern in average velocity. We ob-
serve a generally higher number of various neighboring patterns in the first
half (Figure 16, top-left) compared to the second half (Figure 16, top-right),
which may be a consequence of the higher number of occurrences o the
increase pattern of average velocity during the first half.
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Figure 16: Comparison of two grid views from the first half (left) and second half (right) of
a football game, with the reference attribute average velocity and pattern increasing

(top) and with the reference attribute home distance and pattern increasing (bottom).
In each grid, three density plots depict the distributions of the relative times of the neigh-
boring patterns compared to the reference patterns, with blue representing the before

relation, grey representing the overlap relation, and red representing the after relation.
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This seems logical since players typically experience less fatigue in the
first half, enabling them to change speed more frequently. We also observe
less obvious differences, such as much higher frequencies of the decrease of
away depth and increase of away width occurring before the increase of
modifyaverage velocity in the first half than compared to the second half
(1 in Figure 16). The increase of away distance after the increase of
average velocity is also observed more often in the first half (2 in Fig-
ure 16, top). These indicate that the first half included a larger number of
active attacks by the away team in which they moved with increasing ve-
locity towards the opponent’s goal. To prepare the attack, the team tended
to increase the width (i.e., across the pitch) while decreasing the distances
between the lines, i.e., the team’s depth. The second half had prominently
higher frequencies of the decrease of home depth, home width, and away

distance before the increase in the average velocity (3 in Figure 16, top).
This indicates that the away team was often retreating to their goal before
the increase of the average velocity and, at the same time, the home team
was getting more compact, which usually happens in preparation to an attack
of the opponents.

Next, we examine the relations of the increase pattern in home distance

(Figure 16, bottom). It is apparent that this pattern has numerous relations
with the decrease pattern of away distance as a neighboring pattern, par-
ticularly during transitions of ball possession, as observed earlier by Shirato
et al. [30]. However, we can verify that in the first half, there are more neigh-
boring patterns of the decrease of away distance preceding the reference
pattern than those succeeding it (1 in Figure 16, bottom). In contrast, during
the second half, we observe more of the same neighboring patterns following
the reference pattern than those preceding it (2 in Figure 16, bottom). These
observations suggest that the away team tends to move more quickly in the
first half, while the reverse occurs in the second half. This implies that the
home team has greater control over the match in the first half compared to
the second half.

5. Discussion

In this study, we developed a framework for analysis of multivariate time
series (MVTS) data. The framework includes abstraction of value sequences
into instances of basic variation patterns and exploration of temporal rela-
tions between these pattern instances across different variables.
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Our framework has several strengths. As its core, it offers flexibility and
generality to meet a wide range of data analysis needs in MVTS.

Its flexibility emerges from the proposed approach to pattern extraction.
The framework does not require to pre-define pattern duration, i.e., the
length of the time interval containing a pattern. This provides flexibility
for finding pattern instances of variable duration and adapting to data with
diverse properties, such as sampling rate, rate of changes, and amplitudes of
changes.

On the other hand, the generality of our framework manifests in its abil-
ity to handle different types of temporal patterns. While our pilot studies
focused on extracting basic trend patterns for their easy interpretability, the
framework is not limited to these. It is capable of extending to any other
types of temporal patterns depending on the character of studied changes
and the analysis goals. For example, there may be pattern types reflecting
states, such as high, medium, and low values. Moreover, patterns may be
composed of values of categorical attributes.

Our framework can be extended, offering additional or alternative meth-
ods for pattern definition and extraction. This accommodates the diverse
needs of analysts, who may opt to sketch a pattern, use an interface like
Time Searcher [11] to define the pattern, or even define composite patterns
built of basic patterns like a peak followed by a trough. The system, in re-
sponse, identifies patterns similar to the sketch or template provided, opening
a door to more customized and insightful analysis.

Another aspect of extensibility comes in the form of temporal relations
considered in the analysis. While we used a subset consisting of three rela-
tions, before, overlap, and other, other relations from the Allen’s algebra of
time intervals can also be considered in the analysis.

We have demonstrated the application of our framework in two distinct
use cases: exploring mobility patterns during the COVID-19 pandemic and
analyzing team behaviors in professional football matches. In both cases, our
framework was able to provide valuable insights into the temporal relations
between different patterns of attribute variation.

In the COVID-19 mobility data case, our framework was able to identify
and visualize temporal relations between different mobility patterns within
each country and to investigate the distributions of temporal relations across
countries. This analysis revealed interesting patterns, such as the increase
in workplace mobility preceding an increase in residential mobility, likely
due to people preparing for remote work during lockdowns. Moreover, the
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framework was able to highlight differences in mobility patterns between
countries, reflecting the varying policies against the pandemic.

In the football data case, our framework was able to identify and visualize
temporal relations between different team behaviors. For example, it was able
to detect a change in team behavior between the first and second halves of a
match, which aligned with the match report.

Despite its strengths, our framework also has some limitations. It requires
a number of thresholds and parameters to adjust (e.g., ω, δ, and perplexity),
which could potentially confuse analysts and require sensitivity analysis. In
terms of trend patterns, the results may not be expressive enough as it does
not consider a combination of univariate temporal patterns such as peaks and
troughs. For temporal relations, our framework does not provide a holistic
understanding of pairwise relations, as it only calculates the distribution.
The importance of relations is thus expressed only through frequency.

A major limitation is that the framework does not scale well to the num-
bers of attributes, pattern types, and types of relations. A possible approach
to alleviate this is to develop a guiding system that suggests potentially in-
teresting selections to explore. During the analysis, the analyst can interac-
tively construct a knowledge graph or several graphs for different conditions
or classes of situations, such as fast attack or gradual approach in football.
A knowledge graph contains pattern types of different abstraction levels and
relations between them, including temporal and hierarchical.

We also foresee several potential improvements and directions for future
work to enhance our framework. For trend patterns, one possible direction
is to construct combined univariate patterns from basic patterns, thus in-
creasing expressiveness of the results. For temporal relations, future work
could incorporate approaches capable of dealing with multiple pairwise re-
lations, such as a network-based approach where nodes represent temporal
patterns and edges represent relations between them. This could provide a
more holistic understanding of the relations and allow for the identification
of important nodes using graph centrality measures.

An important consideration is the accessibility and user-friendliness of
any tools developed to support this framework. Our primary objective was
the development and validation of the framework itself, while the prototype
tools we implemented served mainly as proof of concept. These tools were
not optimized for end-user adoption and would require further user-centered
design for broad accessibility. Conceptually, our framework is simple enough
to understand to understand and adopt without specialized technical skills.
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However, the practical implementation of the framework for end-users would
necessitate domain-specific enhancements to facilitate its use. Our proof-of-
concept implementation has demonstrated the types of analyses possible with
the framework, but further development is needed to make these operations
user-friendly in specific domains of application.

6. Conclusion

This paper presented a framework that unifies various methods for the
abstraction of multivariate time series (MVTS) data. The unification is
achieved by integrating these different methods into a cohesive workflow,
which allows to understand dynamic phenomena through the lens of temporal
relations, the identification of basic behavior patterns and the examination
of temporal relations among these patterns. Our framework is designed to
identify basic behavior patterns and examine the temporal relations among
these patterns, taking into account temporal lags and varying duration of the
patterns. This feature enhances the understanding of complex interactions
among multiple attributes, making the framework valuable for analysts.

The effectiveness and versatility of our framework were demonstrated
through its application to mobility data during the COVID-19 pandemic and
football (soccer) data. Despite its strengths, the framework has some limi-
tations, such as the need for further enrichment to handle intricate variable
interactions and the integration of more complex patterns. These limitations
provide avenues for future work.

In conclusion, our framework offers an approach to abstracting MVTS,
with a focus on understanding temporal relations. By integrating various
methods into a single workflow, it enables analysts to effectively explore and
comprehend complex temporal relations in MVTS data.
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Abstract
The term ‘episode’ refers to a time interval in the development of a dynamic process or behaviour of an entity.
Episode-based data consist of a set of episodes that are described using time series of multiple attribute values.
Our research problem involves analysing episode-based data in order to understand the distribution of multi-
attribute dynamic characteristics across a set of episodes.
To solve this problem, we applied an existing theoretical model and developed a general approach that involves
incrementally increasing data abstraction. We instantiated this general approach in an analysis procedure in which
the value variation of each attribute within an episode is represented by a combination of symbols treated as a
‘word’. The variation of multiple attributes is thus represented by a combination of ‘words’ treated as a ‘text’.
In this way, the the set of episodes is transformed to a collection of text documents. Topic modeling techniques
applied to this collection find groups of related (i.e., repeatedly co-occurring) ‘words’, which are called ‘topics’.
Given that the ‘words’ encode variation patterns of individual attributes, the ‘topics’ represent patterns of joint
variation of multiple attributes. In the following steps, analysts interpret the topics and examine their distribution
across all episodes using interactive visualisations.
We test the effectiveness of the procedure by applying it to two types of episode-based data with distinct properties
and introduce a range of generic and data type-specific visualisation techniques that can support the interpretation
and exploration of topic distribution.

Categories and Subject Descriptors (according to ACM CCS): [Human-centered computing → Visual analytics]:
Visualization application domains—Visual analytics

1. Introduction

Everything in the world changes over time. Data describing
changes often consist of time-referenced values of one or
more attributes. The process or succession of changes along
time can be divided into episodes each of which occurs over
a specific time interval and is described by attribute values
referring to different time steps within this interval. Fig. 1
demonstrates one of possible ways to divide continuous time
series of attribute values into episodes using a sliding time
window. Our research aims at finding ways to help humans
understand dynamic phenomena or behaviours by analysing
episode-based data.

While a line graph or other visual representation of a time
series of attribute values can help a person understand the
overall character of the development and identify different
patterns of change, it can be difficult to get a holistic un-
derstanding of what is happening when changes are charac-

terised by multiple attributes. To address this problem, we
aim to extract interpretable patterns of change for singular
attributes and then derive meaningful patterns of their joint
changes.

The approach we develop and test is based on explicit rep-
resentation of single-attribute temporal patterns as elements
of data. Given a collection of episodes, we represent the vari-
ation of values of each individual attribute in each episode
by a combination of symbols, which is treated as a ‘word’.
Hence, the variation of all attributes within an episode is rep-
resented by a combination of such ‘words’, which can be
treated as a ‘text’. The entire set of episodes is thus trans-
formed to a collection of ‘texts’. In natural language process-
ing, there are topic modeling methods [VK20,AEG∗23] that
extract interpretable groups of semantically related words
based on their co-occurrence in texts. By analogy, we expect
that applying topic modeling methods to the set of ‘texts’ de-
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rived from the episode-based data will result in finding inter-
pretable groups of related ‘words’ encoding single-attribute
variation patterns that tend to occur together in episodes.
If successful, these groups can be considered as integrated
multi-attribute temporal patterns representing components
of complex behaviours or stages of complex processes.

The next goal after the extraction of multi-attribute pat-
terns is to understand when, where, and under what cir-
cumstances different patterns occur, which is essential for
understanding the dynamic phenomenon or behaviour as a
whole. To facilitate this understanding, we want to provide
an overview and enable the exploration of the distribution
of the patterns in context, including space, time, and any
conditions that may affect or be affected by the process or
behaviour being studied.

With this paper, we intend to make the following contri-
bution to the visual analytics research dealing with temporal
data:

• Propose a conceptual framework and a general work-
flow for the analysis of dynamic phenomena described by
episode-based data involving time series of multiple at-
tributes.

• Explore the opportunities for analysis of dynamic phe-
nomena given by explicit representation of temporal pat-
terns of attribute variation.

• Investigate the potential of using topic modelling tech-
niques for revealing relationships between patterns and
finding patterns of pattern co-occurrence.

• Demonstrate examples of visual exploration of pattern
distribution for data of distinct nature.

We begin with introducing the conceptual background in
Section 2 followed by an overview of the related work in
Section 3. We describe the work of the investigated analy-
sis approach in two case studies in Section 4 and then dis-
cuss our experiences and findings (Section 5). Section 6 con-
cludes the paper.

2. Background

2.1. Key concepts

In this research, we use the term ‘episode’ to refer to a short
period of time that has distinct properties while being a part
of a larger series or process. This aligns with common defi-
nitions of an episode in dictionaries (e.g., [MW22]). Our re-
search focuses on data describing changes occurring within
episodes with non-zero duration. The data consist of series
of attribute values referring to different times between the
beginnings and ends of the episodes. While the attributes can
be of any type (numeric, categorical, or spatial), our current
research is focusing on attributes with numeric values. We
refer to this type of data as episode-based data.

Our research goal is to find methods and develop a vi-
sual analytics workflow for analysing episode-based data

at
tr

ib
ut

es

time

sliding window

. . .

. . .

episode 1
episode 2

. . .

Figure 1: Illustration of the division of a continuous mul-
tivariate time series into multiple episodes using a sliding
time window.

in order to understand the overall process or behaviour the
episodes are parts of. Gaining a general understanding of a
whole by observing its multiple parts requires abstraction.
According to the theoretical model known as “pattern the-
ory” [AAM∗21], abstraction in data analysis is achieved by
finding patterns in data distributions. A pattern is a combina-
tion of relationships between multiple data items that allows
us to consider and represent all of these items jointly as a
unit, which can be described without referring to any indi-
vidual items.

Episode-based data have a hierarchical structure. The en-
tire dataset consists of descriptions of multiple episodes,
each of which is composed of time series of multiple at-
tributes. Each time series consists of multiple attribute values
and their corresponding time references. To gain a general
understanding, we must perform abstraction from the ele-
mentary data items (attribute values and time references) up
to patterns at the highest level of the hierarchy (the distribu-
tion of dynamic properties across the entire set of episodes).
We believe this requires a step-wise ascent from the bottom
to the top of the hierarchy. At the lowest level, patterns are
made up of data elements; at higher levels, patterns are made
up of patterns from the previous levels.

At the lowest level, patterns are jointly formed by (1) tem-
poral relations between the time steps, (2) correspondences
between time steps and attribute values, and (3) relations be-
tween the attribute values. The possible types of patterns in-
clude increase, decrease, peak, trough, constancy, and fluc-
tuations.

At the second level of the hierarchy, patterns are formed
by relations of co-occurrence of temporal patterns of indi-
vidual attributes, i.e., the single-attribute patterns appear to-
gether in episodes. For example, increase of attribute A1
may tend to co-occur with constancy of attribute A2 and de-
crease of attribute A3.

At the third level of the hierarchy, one needs to consider
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Figure 2: A schematic representation of the idea of progressive abstraction. Step 1: Sequences of values of individual attributes
are abstracted to single-attribute patterns of value variation. Step 2: Combinations of single-attribute patterns co-occurring in
multiple episodes are abstracted to multi-attribute combination patterns, Step 3: Instances of combination patterns occurring
throughout the data are abstracted to patterns of distribution of the combination patterns.

the distribution of the second-level patterns over relevant
data dimensions, one of which is always time (since the data
are temporal). Third-level patterns of the temporal distribu-
tion are formed by the temporal relations between the posi-
tions of the second-level patterns in time. Other relevant di-
mensions depend on the nature of the phenomenon reflected
in the data. The data describing episodes may include con-
textual information about the circumstances in which the
episodes occurred, their spatial positions, and/or the actors
involved. The set of all such contexts is the relevant data di-
mension. The distribution of the second-level patterns with
respect to the set of contexts needs to be analysed. Third-
level patterns are formed by the links of the second-level pat-
terns to various context properties. For example, there may
be tendencies for the combination patterns to occur or not
occur in certain parts of space or under specific external con-
ditions.

This theory-based analysis workflow is schematically rep-
resented in Fig. 2. In the first step of the workflow, the tem-
poral sequences of attribute values in each episode are ab-
stracted to single-attribute patterns P1, P2, ... representing
the character of the value variation. In the second step, the
combinations of the single-attribute patterns co-occurring in
the episodes are analysed to find multi-attribute combina-
tion patterns denoted PP1, PP2, .... The notation PP empha-
sises that the combination patterns are super-patterns (i.e.,
patterns of a higher level of abstraction) with respect to the
single-attribute patterns. After extracting the set of PPi, the
episodes are represented in terms of combinations of these
super-patterns. In the third step, the distribution of the super-
patterns PPi over the set of episodes is analysed to find super-
super-patterns PPPj formed by relationships between the
super-patterns resulting from their positions in the distribu-

tion. The distribution is schematically represented in Fig. 2,
right, as a plane where one dimension is time and the other
stands for the set of relevant contexts.

Fig. 2 represents the general idea of the progressive ab-
straction approach. It does not specify what methods can
be utilised to fulfil the three steps of the workflow. In the
following, we describe one of many possible ways to im-
plement the approach. In Step 1, single-attribute value varia-
tions are represented by SAX patterns [LKWL07]. In Step 2,
multi-attribute combination patterns are extracted by means
of topic modelling methods [VK20]. In Step 3, patterns of
the distribution of the combination patterns are discovered
with the help of interactive visualisations.

2.2. Ideas for implementing the approach

According to pattern theory, one possible operation on dis-
covered data patterns is to represent them in an aggregated
manner so that they can be treated as single elements of data.
This means that the combinations of data elements making
up the patterns are replaced by aggregated representations,
which can then be used in further analysis.

The pattern aggregation operation may be a part of an ap-
proach to finding multi-attribute combination patterns. Af-
ter identifying single-attribute patterns, we can treat them as
units and represent them with tokens. We can then replace
the original time series of attribute values with tokens de-
noting the temporal patterns formed by these values. As a
result, each episode is represented by a combination of pat-
tern tokens. We can then apply a method that is suitable
for analysing combinations of tokens and can find patterns
formed by the tokens, such as recurring associations. A po-
tentially suitable class of methods is topic modeling. The
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topics generated by these methods are, in essence, multi-
token patterns, which in our case can be interpreted as multi-
attribute temporal variation patterns.

Once we have an aggregated representation of the multi-
attribute combination patterns in the form of topics, we can
use them in further analysis. We need to analyse the distri-
bution of the integrated patterns (topics) across the dataset
to find patterns at an even higher level of abstraction and
establish relationships between them. To support this by vi-
sual analytics techniques, we need to find appropriate meth-
ods to visualise the distribution of the topics over the set of
episodes.

2.3. Deriving single-attribute patterns

A temporal pattern of attribute values represents, in an ag-
gregated form, the relationships between values arranged in
a chronological sequence. These relationships may be sim-
ilar or different, larger or smaller, close or distant, etc. To
efficiently implement our workflow, we need a method for
automatically transforming value sequences into aggregated
representations of the patterns of value variation along the
sequences. Essentially, we need a compact and simplified
machine-readable representation of a time series that can be
treated as a single object (a token) in the following steps of
analysis. This means that the representation must be sym-
bolic rather than numeric.

For time series of numeric values, there is a suitable
representation called Symbolic Aggregate approXimation
(SAX) [LKWL07]. SAX divides each time series into a
specified number w of equal-sized segments and calculates
the mean value in each segment. The probability or fre-
quency distribution of the mean values is divided into α
equiprobable parts, where α is the desired size of the alpha-
bet, i.e., the number of symbols to be used for encoding the
time series. Each part of the distribution is given a distinct
symbol from the alphabet. The mean values of the time se-
ries segments are mapped to the symbols corresponding to
the parts of the value distribution in which they fit. As a re-
sult, each time series is represented by a sequence consisting
of w symbols from the alphabet.

The basic idea of the SAX representation method can also
be applied to values of other types of attributes if it is pos-
sible to divide the value distribution into a small number of
meaningful parts that can be represented by symbols from
an alphabet. For example, when attribute values represent
positions in space, the space can be divided into regions, the
mean positions in segments of the time series can be calcu-
lated, and these positions can be encoded with symbols cor-
responding to the regions containing them. This allows for
the creation of a compact and simplified machine-readable
representation of a time series that can be treated as a single
object in the following steps of analysis.

3. Related work

Related to our work are researches in the following areas:
visual exploration of multivariate time series (MVTS) and
event sequences, segmentation of MVTS, simplification of
numeric time series, abstraction of temporal data, and appli-
cation of topic modelling methods to non-textual data.

3.1. Visual exploration of multivariate time series

The most obvious approach to visualisation of MVTS is
representation of the time series of the individual variables
along a common time axis in a juxtaposed, superposed,
stacked, or intertwined way [JME10, BHR∗19]. Another
widely used approach is to apply dimensionality reduction
(DR) to the combinations of values of the variables and rep-
resent the time steps by points in a two-dimensional pro-
jection space, as, for example, in MotionTrack [HWX∗10]
or TimeCurves [BSH∗16]. Bernard et al. [BWS∗12] assign
colours to the positions in the projection space and represent
the temporal variation of the value combinations by variation
of colours along the time axis.

Fujiwara et al. [FSS∗21] deal with data consisting of mul-
tiple MVTS, such as measurements recorded in different ge-
ographic locations. Originally, the data have the form of a
3D tensor. It is transformed to a matrix where each row cor-
responds to one time step of one MVTS. After applying DR
to this matrix and obtaining a 2D projection, selected clus-
ters of points in the projection plot are represented by colour
coding in various additional views supporting interpretation
of the DR results. To analyse multiple MVTS of air pollu-
tion data from different locations, Kuo et al. [KFC∗22] ap-
ply non-negative matrix factorisation (NMF) as a DR tech-
nique. NMF extracts combinations of chemicals that can be
attributed to different sources of air pollution. The visual dis-
plays are designed to enable interpreting the results of NMF.

Algorithmic clustering of time steps with subsequent rep-
resentation of the clusters by colours is also used in analysis
of MVTS [GCML06]. DR can be applied to clustered and
aggregated data [BWK∗13].

It is worth noting that DR or clustering methods in all
these works are applied to data associated with individual
time steps, i.e., with time points lacking duration. Hence,
each data item includes a single value of each attribute.
Our approach to analysis of multivariate temporal data is
based on dividing the data into episodes of non-zero dura-
tion. Each episode includes a sequence of values of each at-
tribute. Analysis of such data requires different approaches.

In essence, episodes are events; hence, episode-based data
comprise one or more sequences of events. Analysis of event
sequences is an established research topic in visual analyt-
ics. Guo et al. [GGJ∗22] present a comprehensive survey
of the existing approaches and systems. Well known exam-
ples include LifeFlow [WGGP∗11], OutFlow [WG12], and
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EventFlow [MLL∗13]. In all these works, events are consid-
ered as atomic objects without internal structure. The main
focus of analysis is arrangement of events relative to each
other, which is different from our focus on the variation
of values of multiple attributes within the episodes. Event-
pad [CvW18] is designed for analysis of sequences of mul-
tivariate events, where multiple attributes characterise each
event as a whole. Differently from our work, dynamic at-
tributes whose values vary during the event life times are not
considered.

3.2. Segmentation of multivariate time series

Episodes can be obtained from time series data in many
different ways. The simplest approach is to use a slid-
ing time window that defines episodes of equal length
(e.g., [STKF07]). The episodes may partly overlap in time
[WG11] thus smoothing transitions between consecutive
patterns of value variation. This method of deriving episodes
is illustrated in Fig. 1. The resulting pieces of time series can
be treated as multidimensional vectors to which clustering
and/or dimensionality reduction (projection) methods can be
applied [vWvS99, STKF07, WG11]. Other approaches de-
fine episodes based on events, for example, by taking tempo-
ral buffers before and/or after detected events or time inter-
vals from one event to another; see Monroe et al. [MLL∗13]
for examples in basketball data analysis. TimeMask tech-
nique [AAC∗17] proposes a powerful set of query operations
for defining episodes. In this paper, we apply the sliding win-
dow approach in Section 4.1 and event-based definition of
episodes in Section 4.2.

Episodes can also be obtained by dividing time series into
semantically meaningful segments. There exist segmenta-
tion algorithms [GYD∗19], which can be combined with
interactive visual techniques [BDB∗16, BBB∗18]. Segmen-
tation may also be done based on clustering of time steps
[BWK∗13]. An earlier work [AA23] considers the prob-
lem of dividing the time span of a complex dynamic phe-
nomenon described by multiple MVTS into meaningful pe-
riods that enclose different relatively stable states or de-
velopment trends. Here, the segmentation is applied to all
MVTS taken together. The task is supported by a combi-
nation of clustering, aggregation, projection, and interactive
visual tools for time division.

Statistical science develops methods for detecting multi-
ple change points in a long univariate time series [NHZ16].
To utilise such methods for dividing MVTS, it is necessary
to define the way of setting common breaks for all time se-
ries so as to take into account their individual change points.

3.3. Simplification of numeric time series

In our approach, short time series encapsulated in episodes
are simplified and represented in an abstracted symbolic
form using the SAX pattern method [LKWL07]. The method

involves aggregation (averaging) of attribute values by sub-
intervals and discretisation of the domain of the aggre-
gated attribute values. Alternatively to aggregation, sim-
plification of time series can be achieved by downsam-
pling [CS10, Ste13], which represents a time series using a
smaller number of time points while striving to preserve its
shape. The Douglas-Peucker algorithm originally proposed
for cartographic generalisation [DP73] can be used for the
same purpose.

To discretise a numeric attribute, its value range is di-
vided into bins by introducing several breaks. The ways to
do this have been studied extensively in cartography (see
a review by Slocum [SMKH22]) for designing classified
choropleth maps. The most common approaches include
natural breaks, equal length intervals, and equal size divi-
sions. Jenks [Jen77] developed a method for calculating a
statistically optimal classification. The geovisualisation re-
search community developed various interactive procedures
for human-controlled discretisation [AAK∗21,SMKH22]. A
number of discretisation techniques have been developed in
data mining, see a review by Garcia et al. [GLS∗13]. Beyond
discretisation, an extensive survey of methods for simplifica-
tion and compact representation of numeric time series that
can be used in visualisation was done by Shurkhovetskyy et
al. [SAAF18].

The authors of the SAX method [LKWL07] noted that
symbolic representation of time series had not received
much attention in the data mining research. More recently,
Bondu et al. [BBC16] proposed a more advanced variant of
the SAX method that optimises the division of the time series
into sub-intervals. Shirato et al. [SAA21] divide episodes
into equal intervals, as in the SAX method, but apply sym-
bolic encoding to value trends (increase, decrease, or con-
stancy) on the intervals rather than value aggregates.

Instead of directly working with time series as sequences
of values, it may be suitable for many analysis tasks to ex-
tract features from them, i.e., derive attributes characterising
some aspects of the entire time series. Lubba et al. [LSK∗19]
evaluated about 5000 diverse features that can be computed
from time series and selected a subset of 22 features that ex-
hibit strong classification performance across a given collec-
tion of time-series problems and are minimally redundant.
There are multiple software libraries for feature extraction,
e.g., [BFF∗20]. A recent trend is automatic extraction of
time series features by means of artificial neural networks
[ZZYG21,CTMMB22]. While such features may work very
well in machine learning tasks, they are not interpretable by
humans. In contrast, our goal is to extract variation patterns
that are meaningful to humans.

3.4. Abstraction of temporal data

While the term “abstraction” is often treated as a syn-
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onym to “simplification” or “compression”, we use this
term in the sense of transforming data into meaningful
higher-level concepts [Sha97]. According to Aigner et al.
[AMM∗08, AMST11], data abstractions are qualitative val-
ues or patterns that convey key ideas. Abstraction of tem-
poral data may be supervised or unsupervised [H0̈2]. The
former means finding time intervals where data have a pri-
ori defined properties and assigning corresponding labels
from a given set. Thus, there are methods for detecting
predefined shapes, such as increase, decrease, constancy,
peak, etc. [H0̈2, SAA23]. Abstraction can be done using
domain-specific rules [CC99, AMM∗08] or definitions from
a domain ontology [Sha97]. Unsupervised time abstraction
means that concepts are not defined in advance but need
to be learned from data. A general approach is to iden-
tify similar parts in the time series by means of cluster-
ing [vWvS99, H0̈2]. In our work, unsupervised abstraction
is supported by visual representations of time series trans-
formed to SAX patterns.

Progressive abstraction means deriving higher-level con-
cepts from earlier extracted patterns based on relationships
between the latter [AAM∗21]. Complex patterns can be de-
tected automatically according to predefined rules specify-
ing patterns to be used as building blocks and temporal re-
lationships between these blocks [SLCB07]. Shirato et al.
[SAA23] propose interactive visual interfaces to identify
patterns in the temporal distribution and co-occurrences of
patterns of different attributes and transitions between pat-
terns of the same attributes. In that work, higher-level pat-
terns are constructed in the mind of the analyst. In our cur-
rent work, the derivation of multi-attribute patterns from
single-attribute patterns is supported by topic modelling
techniques.

3.5. Applications of topic modelling beyond text analysis

Regardless of the encoding method, the output of the proce-
dure is a set of tokens (words) that represent single-attribute
patterns. Each episode is described by a combination of to-
kens for multiple attributes. To find recurrent associations
of tokens, we apply topic modelling methods [VK20], such
as Latent Dirichlet allocation (LDA) [BNJ03] and Non-
negative Matrix Factorization (NMF) [LNC∗17]. In essence,
these methods perform dimensionality reduction: similarly
to PCA [JC16], they generate higher level features (con-
sidered as “topics”) as weighted combinations of input fea-
tures, which may be, in particular, frequencies or measures
of relevance of different words. Beyond analysing texts in
natural languages, topic modelling methods have been suc-
cessfully applied to different types of data, for example,
DNA codes [LTD∗16], software repositories [CTH16], taxi
trips [CSZ∗14], user activities in interaction with software
systems [CAA∗20], and team tactics in football [SAA21].
These examples demonstrate the versatility of the topic mod-
elling methods. However, we are not aware of the uses of

topic modelling for finding patterns in multivariate time se-
ries.

While there have been numerous comparative evaluation
studies of different topic modelling methods in application to
text data (e.g., [AYB20, EY22, AEG∗23], we are not aware
about studies comparing effectiveness of these algorithms
for other data types. In our work, we did not plan to compare
different methods. However, LDA, which worked quite well
in the first case study, produced unsatisfactory results in the
second case study. This lead us to try NMF, which fulfilled
its task successfully.

The two case studies in which we tested our ideas and
analysis workflow are described in the following section.

4. Implementation and testing of the approach

In the first case study, we deal with data on population mo-
bility behaviours in different countries during the COVID-19
pandemic. In the second case study, we apply our approach
to episodes extracted from football game tracking data.

4.1. Case study 1: COVID-19 mobility trends

We use a subset of the publicly available data set of mobil-
ity trends available in the Google’s COVID-19 Open Data
Repository [Goo22]. Google collects anonymised data from
apps such as Google Maps to track changes in people’s
movements during the pandemic. The data consist of daily
visitor numbers to specific categories of places (e.g., gro-
cery stores, parks, train stations, etc.) relative to baseline
days before the pandemic outbreak. Baseline days represent
a normal value for each day of the week and are given as the
median value over the five-week period from January 3rd to
February 6th 2020. The rationale for using a specific nor-
mal value for each day of the week is that people usually
have different routines on weekends versus weekdays. The
data thus consist of the deviations from the normal values
expressed in percent of the normal values. Positive values
signify increased numbers of visits to a certain category of
places and negative values have the opposite meaning.

Figure 3: The countries involved in the case study are rep-
resented on a map by their capitals.

For this case study, we used a subset of data containing in-
formation on 60 countries in Europe, Asia, and North Amer-
ica (as shown in Fig. 3). The data covers a 496-day period
from February 17, 2020 (Monday) to June 27, 2021 (Sun-
day); see Fig. 4. It is divided into 69 overlapping episodes of
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Figure 4: The entire time series of the mobility indicators
by the countries are shown on line plots. The lines have the
same colours as the corresponding dots on the map showing
the positions of the countries capitals (Fig. 3).

21 days (3 weeks) each, with a 7-day shift between consecu-
tive episodes. This means that each episode overlaps with the
previous one by 14 days. Each episode represents data for
one country. The full set consists of 4130 episodes, while 10
are missing due to gaps in the data. Fig. 5 shows the 21-day
time series for the mobility indicators within each episode.

4.1.1. Step 1: generating single-attribute patterns

We represent the episode-based time series by SAX patterns
of length 5 using the alphabet {a,b,c,d,e}, where a corre-
sponds to the lowest value interval and e to the highest value
interval. In doing that, we skip the values for Saturdays and
Sundays to disregard the irrelevant weekly variations of the
mobility behaviours and consider the general trends over the
3-weeks time periods. Table 2 shows the breaks by which
the value ranges of the attributes have been automatically
divided into 5 bins so that each bin includes approximately
20% of the values. To visualise the patterns, we apply colour
coding to the symbols of the alphabet that has been used in
pattern generation. We use a diverging colour scale [HB03]
from dark blue to dark red to encode the symbols corre-

Figure 5: The line plots show the time series of the mobility
indicators by the episodes. The lines have the colours that
have been earlier assigned to the countries (Fig. 3). The
time steps are from 0 to 20 according to the number of days
passed since the beginning time of each episode.

sponding to the value intervals ordered from the lowest to
the highest. Fig. 6 demonstrates the representation of the pat-
terns.

4.1.2. Step 2: obtaining multi-attribute patterns

We create pseudo-texts composed of the SAX patterns pre-
ceded by the abbreviated attribute names (e.g., ‘residential’
is abbreviated as ‘home’) and apply the topic modelling al-
gorithm LDA to the resulting strings. After experimenting
with the parameter k (number of topics), we find that k = 9
gives an acceptable result in terms of topic interpretability
while the topics are not too numerous. The table display in
Fig. 7 shows the patterns that have certain weights in the top-
ics, the minimal weight (in our example it is 0.005) being set
through the slider at the bottom of the display. The interpre-
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Figure 6: A fragment of a table showing colour-coded SAX
patterns of the mobility indicators in the episodes. The pat-
terns of length 5 have been generated using the alphabet
{a,b,c,d,e}, where a corresponds to the lowest value in-
terval and e to the highest value interval. The symbols are
represented using a diverging colour scheme from dark blue
for a to dark red for e.

tations of the topics that can be derived from this display are
listed in Table 1.

Table 1: Interpretation of topics.

N Interpretation
0 more or less usual life

1,3,4 average to high mobility, reduced staying at home
2,5 average to low mobility, increased staying at home
7 decreasing mobility, increasing staying at home

6,8 strict “stay at home”

Figure 7: The topics resulting from applying the LDA algo-
rithm.

It can be noted that there are groups of topics that can be
interpreted similarly. The explanation is that there are mul-
tiple symbolic codes corresponding to pattern variants that
have very close meanings for a human. For example, the
codes cdddd, cccdd, ddeee and quite many others represent

different variants of the pattern of increase. However, for the
topic modelling algorithm, these are distinct and unrelated
terms, which may belong to different topics. Therefore, run-
ning the algorithm with a lower value of the parameter k will
not automatically unite semantically similar topics.

Another observation is that the topics are not “clean” in
terms of including similar or consistent patterns of the same
attribute. Consider, for example, the patterns of the attribute
‘home’ in the topic 7. Almost all patterns represent average
to high values and only one pattern represents values from
the lowest range. Such inconsistent mixtures of patterns oc-
cur irrespective of the chosen number of topics k. To inves-
tigate this phenomenon in more detail, we select (by means
of interactive filtering) the episodes with the symbolic pat-
tern aaaaa of the attribute ‘home’ for which topic 7 has the
highest weight among all topics. The 20 episodes satisfy-
ing the query are shown in a table view in Fig. 8. We see
that there are 9 episodes where the lowest values of presence
at home co-occurred with quite low levels of presence in the
other categories of places, which seems counter-intuitive. In-
terestingly, 8 of these episodes took place in Moldova. A
possible reason may be that people did not frequently use
their mobile devices while staying at home, which lead to
under-estimation of the people’s presence. This reminds us
that data may be biased and require caution in interpreting
analysis results and making inferences.

Figure 8: A selected subset of episodes where topic 7 has the
highest weight and the pattern of attribute ‘home’ is aaaaa.
The rows of the table are arranged in the increasing order of
the patterns of the attribute ‘retail’.

To verify and, if appropriate, refine the interpretations of
the topics, it is useful to consider the groups of episodes
with different dominant topics (i.e., having the highest
weight) and the attribute patterns occurring in these groups
of episodes. Since the episodes are numerous, the patterns
need to be represented in an aggregated way. A possible
way of aggregated representation of SAX patterns is demon-
strated in Fig. 9. The patterns of one attribute are aggregated
by counting the occurrences of each symbol {a,b,c,d,e} on
each position from 1 to 5. The result is represented by a seg-
mented bar chart where each bar corresponds to one position
of a pattern and its segments represent the proportions of oc-
currences of the symbols {a,b,c,d,e} in this position. The
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segments are painted in the colours that have been assigned
to the symbols.

Figure 9: The mobility patterns in the groups of episodes
with different dominant topics are shown in an aggregated
way by segmented bars.

The display in Fig. 9 confirms the interpretations of the
topics and topic groups. Thus, the bar charts of the groups of
episodes with dominant topics 1, 3, and 4 have large propor-
tions of red (representing high values) for all place categories
except home, which has large proportions of blue. The bars
for the groups of episodes with dominant topics 6 and 8, on
the opposite, have high amounts of blue for all places except
home and high amounts of red for home. We also see differ-
ences between the topics within the groups in terms of the
proportions of different colours; however, these differences
can be treated as inessential for the interpretation.

4.1.3. Step 3: understanding the distribution of the
multi-attribute patterns

After obtaining and interpreting the topics, we want to in-
vestigate the contexts in which they occur. This includes the
distribution of the topics over the set of countries and the
time and their relationships to the pandemic spread indica-
tors, such as the mortality due to COVID-19. To obtain a
convenient visual representation of the context, we create an
artificial matrix space (Fig. 10) where the rows correspond
to the countries and the columns to the start times of the
episodes. To put the countries in a linear order, we apply the
Principal Component method to the spatial positions of the
country capitals and take the ordering based on the first com-
ponent, as suggested by Wulms et al. [WBM∗21]. With this
approach, close spatial positions tend to receive close posi-
tions in the linear order. The episodes referring to each coun-
try are arranged chronologically in the corresponding row.
The vertical line in Fig. 10 approximately marks the time
of Christmas. It is impossible to mark any date in this view
precisely because the horizontal positions correspond not to
individual days but to temporally overlapping episodes of 21
days length.

In this matrix space, we visualise the pandemic-caused
mortality rates by shading from white for zero to dark brown
for the highest values. The display in Fig. 10 reveals promi-
nent spatio-temporal patterns in the variation of the mortal-
ity rates. Thus, we observe high mortality rates in several

Figure 10: The episodes are arranged in a matrix space
with the rows corresponding to the countries and columns to
the starting times of the episodes. The background colour-
ing of the matrix represents the distribution of the average
daily counts of the deaths due to COVID-19 (Source of the
data: [Goo22]).

countries of Europe (Ireland, Spain, UK, Belgium, Italy, and
Sweden) in March and April 2020, relatively low values in
the summer of 2020 and an increase of the deaths rates in
many countries starting from October 2020.

Now we need to visualise the distribution of the top-
ics in this context space. One possible approach is to use
pie charts with sector sizes representing the topic weights
for the episodes. Fig. 11 shows a fragment of such a dis-
play. Please note that the topics have been assigned distinct
colours, which are shown in the caption of the table display
in Fig. 7. These colours are used for painting the correspond-
ing sectors of the pies. The purpose of this representation is
not to enable accurate perception of individual topic weights
or estimation of the weight proportions (pie charts are com-
monly judged as poorly suited for these tasks [CM84]) but
to provide an overall view of the distribution of the topic
colours. To gain an overview, it is best to look at the display
from a distance without paying much attention to the indi-
vidual diagrams but instead perceiving the patterns of the
overall colour distribution. This is possible due to the asso-
ciative property of the visual variable ‘colour’ [Ber83].

Thus, we notice display areas with high amounts of lilac
representing topic 6, which is interpreted as strict “stay at
home” regime. This topic prevails in the spring of 2020 and
re-occurs in some countries in the winter and spring of 2021
when the death rates increase. The blue colour of topic 8,
which is also interpreted as strict staying at home, occurs in
the same periods as the lilac of topic 6, sometimes as sectors
of the same pies. Topic 2 and 5 (red and magenta), both inter-
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Figure 11: A fragment of the matrix display with topic weights represented by pie charts.

preted as decreased mobility and increased staying at home,
often occur close in time to topics 6 and 8. High amounts of
cyan representing topic 1 (average to high mobility and re-
duced staying at home) are observed in the summer of 2020
and also in the summer of 2021. The light green of topic 4
and brown of topic 3 also frequently occur in the same peri-
ods as topic 1.

Generally, we observe that topics with similar interpreta-
tions tend to have close positions in the matrix space, which
reinforces our confidence that the topics are semantically
close. This gives us a ground to aggregate semantically close
topics, namely, unite the groups of topics {1,3,4}, {2,5},
and {6,7,8}. Technically, the aggregation is done by sum-
ming up the weights of the topics of each group for each
episode. Fig. 12 demonstrates the appearance of the matrix
display with pies after the aggregation. Here, the colours of
the topics 1, 2, and 6 are assigned to the aggregates in which
these topics are included.

The aggregation simplifies the perception of the patterns
of colour distribution across the display. Nevertheless, to see
the distributions of the individual (original or aggregated)
topics more clearly, it may be beneficial to use a small mul-
tiple display as shown in Fig. 13. For each topic, there is a
separate matrix where the topic weights for the episodes are
represented by proportional sizes of circle symbols.

Again, this view is meant not for estimation of individ-
ual values but for perceiving all circles in a matrix at once,
in one instance of sight, i.e., as a single image [Ber83]. In so
doing, we can see very prominently that the combined topics
1+3+4 (increased mobility) and 6+7+8 (increased stay-
ing at home) have complementary distribution patterns. The
former occurs where and when the mortality rates are low,
except for the early period of the pandemic spread (starting
from mid-March), when lockdown regimes were introduced
even in the countries whose local death rates had not yet
significantly increased; see https://en.wikipedia.
org/wiki/COVID-19_pandemic_in_Europe. The
combined topic 6 + 7 + 8, on the opposite, occurs almost

everywhere in the period starting from mid-March and re-
occurs after the summer of 2020 when the death rates in-
crease in the majority of the countries. For the topics 0 and
2+ 5, the small multiples display does not reveal obviously
interpretable patterns. To understand the distribution of these
topics, it is better to use the pie chart display (Fig. 12). It
shows that these topics tend to have intermediate positions
between the periods of staying at home and periods of high
mobility.

4.1.4. Lessons learnt

This investigation showed us that symbolic encoding of nu-
meric time series, which involves division of the value range
into bins, requires attention and, preferably, control from a
human analyst. While there exists a sound rationale for di-
viding values into equal-frequency intervals [LKWL07], the
analyst should examine results of automatic division to be
able to interpret the codes correctly. In our case study, the
middle value interval represented by the symbol c could be
wrongly interpreted as values around zero, i.e., close to the
pre-pandemic levels. In reality, this interval includes val-
ues around the median, which may significantly differ from
zero. The meaning of the symbol c is defined by the interval
breaks shown in the columns 2 and 3 of Table 2. While this
division was suitable for our experimental study, there may
be applications requiring involvement of domain knowledge
and/or adopted conventions in the discretisation of attribute
value ranges. This can be enabled by interaction techniques
that allow the effects of different divisions on the resulting
symbolic patterns to be observed.

Another important lesson is that semantically close sym-
bolic patterns are treated as completely different and unre-
lated by a topic modelling algorithm, which leads to gener-
ation of multiple topics with similar meanings from a hu-
man perspective. This reveals a need in interactive post-
processing of topic modelling results, which includes merg-
ing of semantically close topics, as we did in Fig. 12. It may
also be appropriate to edit some topics to make their mean-
ings clearer by modifying the weights of specific patterns.
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Figure 12: A fragment of the matrix display with pie charts representing the weights of aggregated topics.

Figure 13: A small multiple display where each matrix rep-
resents the distribution of the weights of one original or ag-
gregated topic by proportional circle sizes.

In our case, topic 7 could be edited by setting the weight of
the pattern aaaaa for ‘home’ to zero (the weights of the re-
maining patterns should in this case be adjusted to make 1 in
total). After such editing, the topic weights for the episodes
need to be re-calculated.

4.2. Case study 2: Team behaviours in football

In this case study, we used tracking data from two foot-
ball games of the German Bundesliga season 2019-2020,
such that the same home team played against different guest
teams. We used the original data, which included the play-
ers’ and ball’s trajectories, to derive time series of the fol-
lowing attributes that are used by FIFA to indicate team per-
formance during a game [FIF22]:

• pressure of the defending players on the ball [AAB∗17];
• pressure of the defending players on the attackers;
• percent of the attacking players in the final third of the

pitch;
• depth and width of the home and guest teams on the pitch;
• stretch index of the home and guest teams;
• mean and minimal distance of the attacking players to the

opponents’ goal;
• minimal X-distance (i.e., distance along the pitch) of the

defending players to their own goal.

The time resolution of the data is 25 steps per second, i.e.,
the time interval between consecutive time steps is 40 mil-
liseconds.

After excluding the time intervals when the ball was out of
play from the time series, we extracted episodes of the length
(duration) of 10 seconds starting at the moment of ball pos-
session change as well as episodes starting 10 seconds before
the ball possession change, i.e., the first and last 10 seconds
on one team’s ball possession. We skipped the time intervals
where the ball possession of one team lasted for less than
9 seconds; however, intervals of very short ball possession
(less than 1 second) were treated as parts of longer episodes
of ball possession of the opponent team.

In the result, we got 250 episodes of possession start and
249 episodes of possession end, 499 episodes in total. Due
to the way of episode extraction, episodes from the two
categories may be overlapping or even coinciding in time.
Thus, there are 21 duplicated episodes belonging to both
categories. Overlapping of episode times and duplication of
episodes are acceptable for our analysis, where we want to
reveal differences (if any) between team behaviours at the
beginning and at the end of one team’s ball possession. Par-
ticularly, we want to see how teams begin their attacks, how
defenders behave in response to that, and what is happening
before defenders re-gain the ball. Still, we exclude the sec-
ond instances of the 21 duplicated episodes from the further
consideration to avoid their excessive impact on the results
of topic modelling.

© 2023 The Author(s)
Computer Graphics Forum © 2023 The Eurographics Association and John Wiley & Sons Ltd.

105



Natalia Andrienko, Gennady Andrienko, Gota Shirato / Episodes and topics in multivariate temporal data

4.2.1. Step 1: generating single-attribute patterns

In the episodes, we transform the time series of the attributes
specifying team extents (depth, width, and stretch index) and
distances to the goals into time series of changes (i.e., dif-
ferences) with respect to the values at the beginning of the
episodes. Then we generate SAX patterns of length 4 using
the same alphabet as in the first use case. Table 3 shows the
breaks of the attribute value ranges that were applied for en-
coding the values by the symbols. A sample of the patterns
can be seen in Fig. 14. As in the previous case study, we
construct strings including the patterns of all 13 attributes
preceded by abbreviated attribute names.

4.2.2. Step 2: obtaining multi-attribute patterns

In this case study, we compared the work of two topic mod-
elling algorithms: Latent Dirichlet Allocation (LDA) and
Non-negative Matrix Factorisation (NMF). We ran each of
the methods with the same value of the parameter k (number
of topics). Fig. 15 shows the topics constructed by LDA and
NMF for k = 8. The topics are represented by combinations
of patterns having high weights.

It can be seen in Fig. 15 that the topics produced by LDA
(left table) are less clear than the topics resulting from NMF
(right table). Thus, many cells in the left table contain both
patterns of value increase (represented by shades of red) and
patterns of value decrease (represented by shades of blue).
This complicates interpretation of the topics. We also see
that LDA did not give significant weights to the patterns of
the attribute ‘pressure on the ball’, which mismatches our
knowledge that exerting pressure on the ball is an important
defensive tactics in football. The NMF topics, in contrast, are
differentiated in terms of the pressure on the ball: topics 2, 3,
and 6 are characterised by low pressure, topic 0 by moderate
pressure, topic 4 by high pressure, and topics 1 and 7 by
increasing pressure.

What concerns the patterns of the other attributes, we see
a variety of attacking and defensive tactics. Thus, attackers
may increase or decrease the team’s depth and width on the
pitch, and defenders tend to behave similarly. There are top-
ics (0, 3, and 6) in which the ball moves away from the goal
of the defending team and the attackers do not approach the
opponents’ goal and do not increase their presence in the
final third of the pitch. The other topics represent more ac-
tive attacks and corresponding defensive behaviours, includ-
ing increased pressure on the ball and attackers when they
approach the goal of the defending team. However, to un-
derstand better the behaviours represented by the topics, we
need to see them in the context of the pitch in connection to
the episodes.

4.2.3. Step 3: understanding the circumstances of the
multi-attribute patterns

The data we analyse require a domain-specific representa-
tion of the episodes and their topic weights. For this purpose,

we use maps with the background representing the football
pitch. The data have been transformed so that the goal of the
home team is always on the left and the goal of the guest
team on the right. We represent the episodes on the maps
by vectors (directed lines) connecting the first and last posi-
tions of the ball, as can be seen in Fig. 16. We apply colour
coding to show which team possesses the ball in the episode
and whether it is at the start or at the end of the ball posses-
sion; see the legend at the bottom of Fig. 16. The weights of
the topics are represented by proportional widths and, simul-
taneously, opacity levels of the vector lines. The redundant
encoding of the weights improves the perception.

The position, orientation, and length of a vector not only
show the overall relocation of the ball but also give some
hints about the character of the episode: whether it was a
swift attack along the pitch, or seeking a possibility for an
attack while passing the ball across the pitch, or maintaining
the ball possession while staying close to own goal, or of-
fensive activities near the opponents’ goal. We want to see
whether these types of episodes would be distinguishable in
terms of the topic weights.

Fig. 16 contains two sets of small multiple maps. Each
map represents the weights of one topic (represented by the
background colour of the map caption) by line widths and
opacity levels. The eight maps on the left correspond to the
LDA-generated topics and the eight maps on the right to the
NMF topics. The two sets of maps look very different. On
the left, all vectors seem to have the same width. Indeed,
for more than 76% of the episodes, the dominant LDA topic
has the same weight 0.9375. Also for each of the remaining
episodes, there is one LDA topic with a very high weight
while the weights of the other LDA topics are close to zero.
The maps showing the weights of the LDA topics look very
chaotic. We do not see any clear patterns in terms of the types
and characteristics of the episodes. Each map shows a disor-
derly looking mixture of vectors of different origins, lengths,
and orientations.

Different from what we see on the left, the brighter and
thicker vectors in each map on the right have some features
in common. In the map for topic 0, the vectors originate from
a common point in the centre of the pitch. Many of them
represent ball movements away from the defended goal, and
this is consistent with the representation of topic 0 in the
topic table in Fig. 15, bottom. In contrast, the map for topic
1 highlights episodes (mostly at the end of ball possession,
as signified by the line colours) with great advancements
of the ball towards the target, which agrees with the pat-
terns of the change of the ball and attackers distances to the
goal shown in the topic table. The table also says that these
episodes are characterised by the attackers increasing their
presence in the opponents’ third of the pitch, the defenders
increasing their pressure on the ball and attackers, and both
teams increasing their depth and decreasing widths. Similar
behavioural patterns are observed in topics 5 and 7, and the

© 2023 The Author(s)
Computer Graphics Forum © 2023 The Eurographics Association and John Wiley & Sons Ltd.

106



Natalia Andrienko, Gennady Andrienko, Gota Shirato / Episodes and topics in multivariate temporal data

Figure 14: A fragment of a table showing colour-coded SAX patterns of the football episodes. The patterns of length 4 were
generated using the same alphabet as in the first case study.

Figure 15: Topics extracted from the football episodes by means of LDA (left) and NMF (right).

vectors that are prominent in the corresponding maps also
look similar to those in the map for topic 1.

Topic 3 expresses behaviours that are opposite to topics
1, 5, and 7. They are represented on the map by vectors
oriented across the pitch and painted in the colours corre-
sponding to the beginnings of ball possession. Topic 2 char-
acterises episodes in which teams’ ball possession begins
close to their own goals. They slowly move towards the op-
ponents’ goal stretching across the pitch while the opponents
make their team more compact preparing to defend. Topic 4,
in contrast, characterises the behaviours of the teams in dra-
matic situations when the ball is close to the target. Both
teams get more compact, and the defenders exert high pres-
sure on the ball and attackers. Topic 6 reflects somewhat re-

laxed behaviours when ball possession begins close to the
pitch centre, and the possessing teams move the ball closer
to their own goal while stretching in width. In response, the
defenders decrease their pressure on the ball while following
the attackers’ retreat and making their team more compact.

The maps in Fig. 16 do not show clearly whether any top-
ics prevail more for the home team or for the guest team. We
would also like to compare the team behaviours in the two
games for which we have data. We remind that the home
team (Borussia Dortmund) was the same in both games. The
guest team in the first game was FC Nuremberg and in the
second game Bayern Munich. Assuming that the dominant
topics of the episodes represent the main features of the
teams’ behaviours, we create a display of the co-occurrences
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Figure 16: The weights of the topics for the football episodes are represented on small multiple maps where each map shows
the weights of one topic. The background of each map represents the football pitch. The episodes are represented by vectors
(directed lines) connecting the initial and final positions of the ball. The line widths and opacity levels are proportional to the
topic weights. The colours correspond to the types of the episodes. The images on the left and right show the weights of the LDA
and NMF topics, respectively.

of the dominant topics and the episode types; see Fig. 17. On
the top, the display shows the co-occurrences in both games,
and the two screenshots below show the co-occurrences in
the first and second games. The display consists of eight
bar charts (for the eight topics) with horizontal bars oriented
from right to left. The upper bar in a bar chart shows in how
many episodes in total the corresponding topic was dom-
inant. The following six bars show the frequencies of the
dominance of this topic for the six types of episodes.

From the three instances of the co-occurrence display vis-
ible in Fig. 17, we learn that topic 0 was rarely dominant in
the episodes with the home team’s possession. We also ob-
serve differences between the two games, especially in the
episodes with the guest team’s possession. Under the guests’
possession, the topics from 3 to 7 were dominant much more
frequently in the second game than in the first. This may

mean that the guest team of the first game did not vary its
attacking behaviour as much as the guest team of the sec-
ond game. It can also be noticed that topic 4 (green), which
we interpreted as fighting close to the target, was very rarely
dominant under the guest team’s possession in the first game,
whereas in the second game it prevailed much more fre-
quently in the episodes with the guest team’s possession than
under the possession of the home team. Hence, Bayern Mu-
nich quite frequently created dangerous episodes at the goal
of Borussia Dortmund. Similar whilst not so striking differ-
ences exist for topic 5 (light blue) characterised by the ball
and the attackers approaching the target. This behaviour was
more frequent under the home team’s possession in game 1
and under the guest team’s possession in game 2.
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Figure 17: Distribution of the dominant topics for the
episode types in the whole dataset (top), data from game 1
(middle), and data from game 2 (bottom).

4.2.4. Lessons learnt

This experiment showed us that different methods of topic
modelling may produce very different results and that some
results may not be very useful. It is questionable whether the
success or failure of a given algorithm for a given dataset can
be predicted. There have been comparative studies of the ef-
ficacy of LDA and NMF in application to short texts, such as
tweets. In some studies, the results of the methods were as-
sessed as equally good [AYB20], whereas other researchers
found that topics produced by NMF were more in line with
human judgment [EY22]. However, whatever results may be
obtained for text data, they are not necessarily transferable to
non-textual applications of topic modelling. Therefore, if the
chosen method does not produce an acceptable result, it may
be worth trying another method.

Another useful lesson concerns preparation of the data.
As we mentioned in Section 4.2.1, we transformed the origi-
nal values of some of the attributes into differences from the
values at the beginnings of the episodes and used the time
series of the differences to generate the SAX patterns. We
applied this transformation after an unsuccessful attempt to
use the original time series. The resulting topics were triv-
ial, mainly distinguishing the episodes based on the play-
ers’ distances from the goals and not revealing differences
in team behaviours. Therefore, transforming absolute val-
ues into changes can be crucial in analysing behaviours. It is
worth noting that the attribute values we had in the first case
study were already provided as differences from the baseline
values, which allowed us to analyse behaviour changes with
respect to the pre-pandemic period.

5. Discussion

5.1. Application of the pattern theory

In this work, we aimed to find a way to derive a general
understanding of a phenomenon reflected in episode-based
data, which consist of multivariate time series encapsulated

in episodes. To obtain an overall view of the phenomenon
as a whole from elementary data (i.e., attribute values and
time references), high abstraction is required. We applied the
pattern theory [AAM∗21], which posits that abstraction in
data analysis is achieved through the discovery of patterns
formed by relationships between data items. We developed
an approach to analysis that incrementally increases the level
of abstraction, beginning with the relationships between ele-
mentary data items (i.e., attribute values and time references)
that form temporal variation patterns of individual attributes.
To achieve the next level of abstraction, these patterns are
treated as elements, and relationships between them (specif-
ically, co-occurrence) are considered. We represented single-
attribute patterns as tokens and used techniques such as topic
modeling to discover patterns of token co-occurrence. How-
ever, to gain an overall understanding, the level of abstrac-
tion needs to be further increased by discovering patterns in
the distribution of these token co-occurrence patterns over
time and in relevant contexts.

Using the pattern theory, we devised an abstract analysis
workflow that includes three steps of abstraction (Fig. 2).
We defined the types of patterns to be discovered in each
step and the types of relationships that are involved in these
patterns. This abstract workflow is transformed into a con-
crete work plan by choosing methods that will be used to im-
plement each abstract operation. We chose the SAX pattern
method [LKWL07] for the first step of the analysis work-
flow, topic modelling [VK20] for the second step, and inter-
active visualisations of topic distributions for the third step.
We implemented this work plan for two different datasets
reflecting phenomena of distinct nature and scale and found
the approach to be effective. However, it is important to note
that other implementations of the abstract workflow may be
possible, as discussed below.

5.2. Design space in implementing the abstract
workflow

Step 0: Data pre-processing. If the original data have the
form of continuous time series rather than episodes, they
need to be transformed to episodes. This can be done us-
ing any of the existing approaches, e.g, one of those men-
tioned in Section 3.2. We applied the sliding window ap-
proach in the first case study and event-based definition of
episodes in the second. Domain knowledge may be involved
in defining episodes, e.g., to ignore irrelevant weekly fluc-
tuations, as in the first study, or out-of-play times, as in
the second study. Besides division into episodes, data pre-
processing may include data cleaning, missing value impu-
tation, smoothing, transforming absolute values to relative,
aggregation, re-sampling, etc.

Step 1: Deriving single-attribute patterns. In this step, the
task is to transform each temporal sequence of attribute val-
ues into an object that can be represented both visually, to en-
able human interpretation, and as a symbolic token or word,
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to enable computational processing in the second step. Apart
from the SAX method [LKWL07] that we used in our stud-
ies, a variety of possibilities exist. One of them is to detect
predefined shapes [H0̈2, SAA23] and represent them visu-
ally as shapes and symbolically by words ‘increase’, ‘de-
crease’, ‘peak’, etc. Another possibility is to transform the
original values to changes with respect to the previous or
initial value apply the SAX method to the transformed data
[SAA21]. Domain-specific rules [CC99, AMM∗08] or a do-
main ontology [Sha97] can be employed to assign human-
understandable labels to time series, and these labels can
represent the patterns in the following analysis. Generally,
any approach producing interpretable codes or meaningful
labels is suitable for this step.

Step 2: Deriving multi-attribute patterns. Here, the sym-
bolic representations of single-attribute patterns serve as an
input to a method capable to detect repeated co-occurrences
of the patterns within episodes. Topic modelling meth-
ods, namely, LDA [BNJ03] and NMF [LNC∗17], proved
to be suitable for this purpose. While these methods are
the most popular, there are many other topic modelling
methods that can be potentially applied. Multiple surveys
[KB18, VK20, AEG∗23] discuss properties and capabilities
of different methods, so that an analyst can make an in-
formed choice. Apart from topic modelling, re-occurring
combinations of single-attribute patterns represented by la-
bels can be detected using various algorithms designed for
frequent item set mining [HCXY07, LFVV19]. It should be
noted, however, that these algorithms tend to produce an ex-
cessive number of patterns, which may be very challenging
for the following exploration.

It may be interesting to try network analysis, specifically,
community detection methods [JYL∗18]. The input may be
a graph with vertices corresponding to the single-attribute
patterns and weighted edges connecting patterns that oc-
curred together, the weights being the counts of the joint
occurrences. Network analysis, however, provides a differ-
ent kind of information than we obtained using topic mod-
elling. It reveals strong pairwise associations, but existence
of a community including three or more patterns does not
necessarily mean that all these patterns often occur together.

Due to these limitations and inconveniences of the net-
work analysis and item set mining methods, we consider
topic modelling to be a better tool for fulfilling the second
step of data abstraction.

Step 3: Finding patterns of distribution of multi-attribute
patterns. Implementation of this step is data- and domain-
specific. We propose to support this step by visualisations
designed according to the nature of the data and analysis
goals. The key idea is to colour-code the second-level pat-
terns and use these colours to represent the patterns in visual
displays. If the analysis goals require considering the distri-
bution of the patterns over time, the task can be supported

by variants of a time line display, as we did in our first study.
The episodes are positioned along the time axis according to
their existence times. Since several patterns may be associ-
ated with one episode, the combination of these pattern can
be represented by a diagram or glyph consisting of elements
painted in the colours of the patterns. This can be considered
as a basic design for exploring the temporal distribution of
patterns. Our visualisations provide examples of using the
second display dimension to represent a relevant aspect of
the context in which the episodes occur. In our case, it is
spatial location (country), but it is also possible to represent
other kinds of context information. When the distribution of
the patterns with respect to temporal cycles is of interest,
polar coordinates can be used instead of Cartesian.

In our second study, the distribution of the patterns over
time was not important for the analysis. We wanted to see
how the second-level patterns, i.e., the topics, are related to
spatial properties of the episodes, which was the relevant
type of contextual information. We used a small multiples
display with one panel for each topic. Within the panels, we
visualised the relevant properties (namely, the ball posses-
sion and displacement vector) of the episodes significantly
associated with the corresponding topics. The small multi-
ples is a general design that can be applied to different types
of data, while the visualisations within the panels depends
on the nature of the episodes and analysis goals. The topic
weights for the episodes shown in the panels can be repre-
sented by a suitable visual variable; we used line widths.

Hence, the general design recommendations for visually
supporting the third step of abstraction include (a) timeline
display of episodes, possibly, with an additional dimension
representing some aspect of the context; (b) circular display
with polar coordinates representing temporal positions of
episodes; (c) diagrams or glyphs showing topic composition
for the episodes; (d) small multiples display with panels cor-
responding to topics and application-specific representation
of properties of the episodes associated with the topics.

5.3. Technical aspects of computational methods

In the following section, we will discuss the methods we
have used in our implementation of the abstract workflow.

5.3.1. SAX encoding

The Symbolic Aggregate approXimation (SAX) method
[LKWL07] divides the time series into equal segments and
computes a single numeric value for each segment. This re-
quires deciding how many parts to select and which aggre-
gation function to use. The number of parts is selected ac-
cording to the desired level of detail in representing a time
series. In our first use case, we divided the time series into
5 segments, resulting in one aggregated value representing 3
original daily values (we remind that we took episodes con-
sisting of the weekdays of three consecutive weeks, i.e., 15
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days in total). In the second use case, we used 4 segments to
represent attribute dynamics over 10 seconds.

The SAX method typically uses either the mean or me-
dian as the aggregation function, but different application
domains may require different approaches. For example,
in Schreck et al’s work on financial time series analy-
sis [STKF07], the raw data included stock sell transactions
with amounts and prices. The transactions for each stock
have been aggregated by daily intervals into the average
price and total volume. Domain experts may suggest other
aggregation methods such as opening and closing prices,
minimum and maximum prices for the day, or the differ-
ence/ratio between opening and closing prices or between
maximum and minimum values. Some of these aggregates
were used by Shirato et al. [SAA21] to represent trends over
parts of time series data.

After aggregating the values, the next step in the SAX
method is to symbolically encode the aggregate values based
on their frequency distribution. Two decisions must be made
at this stage: the size of the alphabet (i.e., the number of bins
to divide the distribution into) and the breaks in the range
of aggregate values that determine how the distribution is
divided into bins. The number of bins affects the level of de-
tail in the resulting representation. In our case studies, we
used 5 bins to represent values around the average, values
moderately lower and moderately higher than the average,
and values much lower and much higher. The classical SAX
method uses equal-frequency breaks, but it may be useful to
consider other options based on domain knowledge and the
semantics of the attributes, as we discussed in connection
with our first case study.

5.3.2. Topic modelling

There are two key questions to consider when using a topic
modeling method: which method to choose and how to set
its parameters. A detailed review of available methods can
be found in [VK20]. It is worth noting that Non-Negative
Matrix Factorization (NMF) has been found to be more
effective than Latent Dirichlet Allocation (LDA) for short
texts [AYB20, EY22], but it is unclear if this applies to non-
textual data. In our case studies, LDA worked well in the
first study and poorly in the second, even though the “texts”
(i.e., symbolic descriptions of the episodes) were longer in
the second study. It is worth keeping in mind that LDA is a
probabilistic method. It works better with large amounts of
“texts” (i.e., large number of episodes), so that term prob-
abilities could be more reliably estimated. The number of
episodes was quite low in our second study, which may be
the reason of the failure of the LDA method. To determine
the target number of topics, we used the approach proposed
by Chen et al. [CAA∗20]: running the selected method with
different parameters, projecting the topics generated in the
different runs into a single embedding space using a dimen-
sionality reduction method, and exploring the topic distri-

bution in this space, which is expected to reflect the simi-
larities and differences between the topics. The number of
visible distinct clusters in the projection suggests the poten-
tially suitable number of topics. However, the main criterion
is interpretability of the topics by a human. As it cannot be
formally evaluated, we do not see a feasible way to fully au-
tomate the selection of the suitable number of topics.

5.3.3. Visualisation techniques

The abstract analytical workflow (shown in Fig. 2) is de-
signed for a human analyst to gain insights into the be-
haviour of a phenomenon. All steps in the workflow require
human reasoning, which should be supported by appropri-
ate visualisations of relevant information. As the workflow
is defined abstractly, it does not specify which visualisations
should be used, but it suggests the types of information that
need to be visualised: (1) single-attribute variation patterns,
(2) multi-attribute combination patterns, and (3) the distri-
bution of multi-attribute combination patterns over a set of
episodes.

In our example implementation, we chose to use colour
encoding for the SAX representation of the single-attribute
patterns because the visual variable “colour” has a strong
association capacity [Ber83], allowing multiple coloured
stripes drawn close together to be efficiently perceived as
a single image. This helps with the effective perception of
tables displaying multiple SAX patterns, including tables
of episodes (Figs. 6, 8, 14) and tables of topics (Figs. 7,
15). In contrast, the visual variable “shape” is not asso-
ciative [Ber83], so representing patterns by shapes instead
of coloured stripes would require inefficient scanning and
memorisation of individual shapes, making it more difficult
to interpret the overall display. Another advantage of using
colour-coding is the ability to represent SAX patterns sum-
marised by groups of episodes in the form of segmented
bars, as shown in Fig. 9.

We also chose to use the visual variable ‘colour’ to rep-
resent topics, with each topic being encoded by a distinct
colour. This allows us to use charts with colored segments
to represent topic mixtures. Specifically, we used pie charts,
which are compact, easily perceived as units rather than con-
glomerates of distinct elements, and enable the estimation of
relative weights of the topics. We used the selective power of
the visual variable ‘colour’ [Ber83] to differentiate the top-
ics and the associative power of this variable to support the
perception of topic distribution patterns from displays with
multiple pie charts, as shown in Figs. 11 and 12.

The ways to visualise the distribution of topics over
episodes depend on the organisation of the set of episodes
and the patterns that can be expected based on domain
knowledge. In our first case study, the episodes refer to
different times over a long period and to different entities
(countries). To visualise the distribution, we created a ma-
trix with columns and rows corresponding to the times and
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entities and placed pie charts in the cells. We also used back-
ground shading of the cells to represent some aspect of the
relevant context, enabling the investigation of the distribu-
tion in relation to the context. This kind of visualisation
would not be useful in the second case study, where team
tactics constantly vary during a game and no meaningful
temporal patterns of topic distribution can be expected. In-
stead, it is more appropriate to investigate how the topics
are related to spatial properties of the episodes. This moti-
vated the visualisation of the episodes in the space of the
football pitch. We created a small multiple display to show
the distribution of the weights of each topic over the episodes
(Fig. 16). We also found small multiple displays to be use-
ful in the first case study (Fig. 13). As stated in Section 5.1,
timeline and small multiples are basic designs that can be
used for episodes of various kinds.

A limitation of all displays we used is low scalability re-
garding the number of topics. However, a large number of
topics may also be problematic for human interpretation and
analysis; therefore, an analyst should strive to generate the
minimal number of topics that are easily distinguished and
well understood. Another problem may be a large number of
episodes, which are hard to visualise without display clutter.
A possible approach to alleviate this problem is aggregation
of episodes and increasing the level of detail when the user
zooms in or filters the data.

5.3.4. Software implementation

For our studies, we utilised the implementation of
the topic modelling methods from the scikit-learn 1.3.1
[PVG∗11] Python library. For the data processing and
visualisation, we used our in-house system V-Analytics
[AAB∗13], which has been developed by the authors over
many years. Researchers interested in the latest version of V-
Analytics are welcome to contact the authors; however, there
are also state-of-the-art libraries available, such as Moving-
Pandas [Gra19], that offer similar processing capabilities.
For visualizations, Python libraries like Plotly and Bokeh, as
well as the JavaScript library D3 [BOH11], can be utilised.
The specific details of our software go beyond the scope of
this paper, as our primary focus is on presenting the abstract
workflow and providing examples of its implementation.

6. Conclusion

In our work, we applied a theoretical model [AAM∗21] to
develop an abstract general approach to analysing the type
of data in which a set of episodes is characterised by mul-
tiple time-variant attributes. This approach involves incre-
mentally increasing the level of data abstraction by merging
multiple elements into patterns. We implemented this ap-
proach by selecting specific methods for each step and tested
the resulting workflow in two case studies. In particular, we
evaluated the usefulness of topic modeling methods for de-
riving multi-attribute combination patterns from patterns of

temporal variation of individual attributes. Topic modelling
has proved to be useful in two distinct case studies and can
therefore be recommended for this kind of tasks.

At a broader level, our work demonstrates the feasibil-
ity and value of a theory-based approach for devising data
analysis workflows and choosing appropriate methods to
implement them. In the future, we plan to continue apply-
ing theoretical models proposed for visual analytics, such
as theories of data patterns [AAM∗21], knowledge gener-
ation [SSS∗14], model building [ALA∗18], and qualitative
analysis [KHL21], to different types of data. Our goal is not
only to find effective ways to analyse data, but also to iden-
tify and demonstrate the prescriptive potential of these pri-
marily descriptive theoretical models.
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Table 2: Breaks in the division of the attribute value ranges into bins. Case study 1: COVID-19 mobility trends

Attribute 0 (min) 1 2 3 4 5 (max)
retail & recreation -100 -40 -22 -10 1 143

grocery & pharmacy -98 -13 -3 4 16 170
parks -93 -23 -3 16 52 646

transit stations -100 -45 -30 -17 -2 96
workplaces -93 -41 -28 -20 -11 45
residential -21 1 5 9 14 43

Table 3: Breaks in the division of the attribute value ranges into bins in the football case study

Attribute 0 (min) 1 2 3 4 5 (max)
Pressure on ball 0.000 1.699 11.550 23.672 40.572 173.684

Pressure on attackers 5.196 117.818 156.291 188.216 233.835 487.682
Percent attackers in opp. third 0.000 0.000 0.000 20.000 47.302 100.000

Change of ball distance to defense goal -71.930 -20.194 -7.406 -0.630 8.139 48.713
Change of depth of attackers -29.193 -3.138 -0.600 1.140 4.478 26.445
Change of width of attackers -36.476 -1.985 0.734 3.283 8.365 33.848
Change of stretch of attackers -7.953 -0.653 0.147 0.861 2.421 10.193

Change of min distance of attackers to opp. goal -54.045 -7.787 -1.880 0.408 3.286 22.679
Change of mean distance of attackers to opp. goal -49.126 -7.222 -2.161 -0.047 1.946 23.352

Change of depth of defenders -28.273 -4.085 -1.088 1.054 4.694 25.950
Change of width of defenders -28.794 -5.664 -1.711 0.347 2.893 17.345
Change of stretch of defenders -9.494 -1.635 -0.476 0.186 1.160 6.928

Change of min X-distance of defenders from own goal -44.849 -6.321 -1.207 0.854 3.822 25.177
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Chapter 6
Discussion



6.1 Summary of contributions and discussion

We introduce a conceptual framework for extracting knowledge from multivariate time se-
ries (MVTS) data through progressive temporal abstraction. This approach is structured
into three sequential tasks that elevate the level of abstraction: 1) extracting univariate
patterns of individual variables, 2) deriving higher-level patterns, and 3) exploring the
distribution of these identified behavior patterns across the dataset.

These tasks are applied to two different types of MVTS data: continuous and dis-
cretized, the latter being derived from the former. For each task, we assess the suitability
and utility of various techniques, providing examples of their application. We then in-
troduce computational algorithms along with visualization techniques. Chapters 3 to 5
address tasks relevant to both forms of MVTS.

Table 6.1 provides a summary of the research findings derived from Chapter 3 to 5.

Research

Question
Chapter 3 Chapter 4 Chapter 5 Overall

Identifying relevant
intervals

Query-based
segmentation

Pattern extraction
without predefining
pattern duration

Query-based
segmentation

Segmentation meth-
ods with both pre-
defined and flexible
pattern extraction
techniques

Extracting univari-
ate patterns

Geometry-based
shapes such as
increasing and peak

Temporal trend such
as increasing, con-
stancy, or decreasing

SAX to extract state
values

Trend-based pat-
terns using geometric
shapes and state-
based patterns

Deriving higher-level
patterns

Temporal
co-occurrence

Temporal relations
such as before, over-
lap, and after

Symbolic represen-
tation and topic
modelling. Concur-
rency of univariate
patterns

Various types of tem-
poral relationship

Exploring the distri-
bution of identified
patterns

Frequency of pair-
wise co-occurrence
and temporal distri-
bution of univariate
patterns

Frequency and tem-
poral distribution of
temporal relations

Spatio-temporal dis-
tributions of topic
weights by the time-
space matrix

Frequency, composi-
tion, and temporal
distribution

Visualization Co-occurrence
network to represent
frequency

Visual Information-
Seeking Mantra and
a small multiples dis-
play. Timeline views
and circular repre-
sentation

Visual Information-
Seeking Mantra and
a small multiples dis-
play. Mosaic matri-
ces and pie charts

Visual Information-
Seeking Mantra and
small multiples dis-
plays. Network for
pairwise relationships.

Table 6.1: Synthesis of answers to research questions from Chapter 3 to 5

Chapter 3: Identifying, exploring, and interpreting time series
shapes in multivariate time series

Using the discretized form of MVTS, called episodes, we first present computational
algorithms to identify predefined trend patterns, such as up-trend, peak, and constancy.
From these identified patterns, we derive higher-level patterns, characterized by their
concurrency. Finally, we investigate these patterns based on their occurrence frequency,
temporal distribution, and frequent transitions.

Unless otherwise stated, section and figure numbers correspond to those in the related
paper for this chapter.
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Summary

This research as a whole outlines a general methodology for identifying high-level pat-
terns, irrespective of the method used for basic pattern identification. It should be noted
that defining a comprehensive pattern vocabulary is not a primary focus of this research.

In the part of the work presented in Chapter 3, we used geometry-based rules to
identify five predefined types of patterns that are easily understandable: namely up-
trend, down-trend, constancy, peak, and though. This approach allows for the detection of
recognizable and interpretable shapes in time series and the assignment of understandable
labels, thus facilitating further analysis of complex patterns. Temporal patterns that
can be represented by a straight line, such as constancy, up-trend, and down-trend, were
detected by simply considering the difference between the first and last values. Conversely,
the remaining patterns, specifically peak and trough, required geometry-based thresholds
such as triangle area and vertex order. The geometry-based algorithm also served to
downsample time intervals (Chapter 3 Figure 9), aligning with the primary objective of
the original study [39].

We treated pairwise co-occurrences of formerly identified patterns as high-level pat-
terns. These co-occurrences facilitate searching for intervals with specific domain mean-
ings, e.g., counter-attacks in football as described in Section 4.4 of the paper.

Various visualization techniques were used to display both predefined and high-level
patterns, depending on the data’s nature. Color-coded time series highlighted the iden-
tified patterns (shown in Figures 5 and 10). These two types of charts represented the
temporal distribution of patterns for Google Mobility Data, which encompasses daily mo-
bility data spanning three years. While timelines (Figures 1 and 12) are useful for iden-
tifying pattern co-occurrences, circular views (Figures 6 and 13) enable to compare the
same periods of time, e.g., identifying annually recurring patterns. It is worth mentioning
that the predominant pattern was constancy, colored in gray, which likely influenced the
visual pattern identification.

Addressing the research questions

RQ1: Identifying relevant intervals: How to find relevant intervals in univariate
time series, such that the content of each interval can be considered holistically as an
interpretable pattern?

In this research, we use a query-based segmentation that allows analysts to select spe-
cific data events, which are distinct occurrences within a dataset that are either manually
annotated or detected by prior computational processes, as discussed in Section 2.2. As
a result, each interval encompasses at least one such data event, forming an interpretable
pattern. It is worth noting that we assume relevant intervals are determined by domain
experts or data analysts based on the inherent nature of the observed phenomenon. For
instance, in the case of Google Mobility Data, a one-week interval was selected, reflecting
the temporal cycle of human activities. For situations like football, intervals had variable
duration, primarily determined by the ball possession by one team.

RQ2: Extracting univariate patterns of individual variables: How to trans-
form sequences of elementary values of individual variables into constructs that can be
interpreted by humans as recognisable behavior patterns?

The paper in Chapter 3 discussed transforming time series data into specific geometric
shapes such as up-trend, peak, constancy, trough, and down-trend. An algorithm was
proposed to automatically recognize these patterns. This approach directly answers the
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research question by offering a method to transform raw data into human-understandable
patterns.

RQ3: Deriving higher-level pattern types: How to help analysts to 1) define
higher level concepts as combinations of univariate pattern types linked by particular re-
lationships, and 2) identify instances of these concepts (i.e., composite pattern types) in
the data?

In this work, we focused on one type of temporal relation between univariate pat-
terns, to derive higher-level pattern, i.e., temporal co-occurrence. However, the intro-
duced techniques introduced consider only pairwise co-occurrences, thus offering limited
opportunities for exploring multivariate temporal patterns. There remains a challenge of
analyzing and integrating these patterns into higher-level composite patterns. To address
this gap, subsequent research, as presented in Chapter 5, utilized topic modeling.

RQ4: Exploring the distribution of identified behavior patterns over the
dataset: How to enable finding patterns in the distribution of earlier extracted patterns
over the dataset dimensions?

Visual analytics techniques were introduced to support the exploration of the tempo-
ral distribution of different types of patterns and relationships between these patterns.
With the use of timeline views, circular representations, and graphical methods, the dis-
tribution and relationships of patterns over time were visualized. This allows for better
understanding and analysis of the dynamic behavior of phenomena.

RQ5: Visualization: How to represent computationally derived constructs to hu-
mans to enable pattern recognition and interpretation? Multiple visualization methods,
including timeline views, co-occurrence networks, and chord diagrams, were discussed.
The visualizations aimed to represent the patterns and their relationships effectively to
facilitate human understanding. The visual representation of computationally derived
patterns offered users multiple perspectives on the data. However, as with all visual
methods, the choice of representation might be subjective and dependent on user prefer-
ences and data properties.

Limitations

The selection of tasks T1-T4 was guided by the pattern theory, a theoretical model for
pattern discovery as proposed by Andrienko et al. [6]. The underlying rationale was to
create a structured approach wherein higher-level patterns are deduced from lower-level
patterns. Task T1 was designed to extract these lower-level patterns, while tasks T2-T4
were geared towards identifying various forms of higher-level patterns shaped by their
lower-level counterparts.

It’s worth noting, however, that our framework doesn’t encompass all potential tasks
related to time series analysis. The inherent challenge lies in striking a balance between
a structured, theory-driven approach and the vast array of possible tasks in time series
analysis. Our method leans towards the former, which might not satisfy every conceivable
analytical requirement.

Although the patterns used are easily recognizable, some, such as peaks and troughs,
can be further decomposed into up-trends and down-trends. This issue was addressed by
introducing a new segmentation method in Chapter 4.

We considered pairwise co-occurrences as high-level patterns, meaning only two co-
occurring patterns were taken into account. Chapter 5 expanded this by considering
concurrency among more than two patterns and their temporal distribution.
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The chosen level of abstraction in this study has become a topic of debate. In our
exploration, we adjusted values in a time series based on the initial value, resulting in
ignoring the value magnitudes. This means changes in high and low states are treated
equally. This methodological choice aligns with our aim to detect understandable shapes
within time series data. However, it also presents an inherent limitation, as it might not
capture the nuances and intricacies associated with magnitude-focused analyses, which
other methods might offer.

Therefore, we introduced thresholds in our algorithm to refine the set of pattern
types, offering a degree of flexibility in adjusting the level of abstraction. While this
provides a potential pathway to satisfy more detailed analytical requirements, we should
acknowledge that the high abstraction level might not be always appropriate for more
granulated analyses.

Design recommendations

While our work predominantly centers on the development of a robust theoretical and
methodological framework, we also recognize the benefits of practical software imple-
mentations. As such, future research might strive to strike a balance between these two
aspects, ensuring both understanding and real-world applicability.

Regarding visual representations, it’s essential to be aware of not only the differing
interpretations of color across various application domains but also the accessibility con-
cerns related to color perception. For instance, where red might symbolize loss in a
financial context, it could be associated with positive values in another scenario. Addi-
tionally, given that many individuals perceive red-green colors differently, we may have
to avoid this color combination, even though it was employed in our research.

While analysts can choose between timeline or circular views to understand concur-
rency or periodicity, a representation that encompasses both would be beneficial. We can
use a matrix display as an alternative to the network diagram for representing pairwise
co-occurrences. Additionally, the identification of pattern transitions that extend beyond
two sequences could aid in detecting recurrent sequences.

Chapter 4: Exploring and visualizing temporal relations in mul-
tivariate time series

We first introduce computational algorithms to identify predefined types of patterns in
the continuous form of MVTS, such as up-trend, down-trend, and constancy. For higher-
level patterns, we compute temporal relations between these identified patterns. Lastly,
we investigate relations between patterns from different attributes that frequently occur
and demonstrate their temporal distributions.

Summary

In our examination of multivariate time series, our methodology detects patterns directly
from continuous data without needing prior discretization. This approach not only avoids
restricting patterns to a predefined duration but also does not operate under the assump-
tion of synchronous behaviors among different attributes. Instead, we deeply explore a
variety of possible temporal relations between patterns.

We have developed a progressive abstraction process. This process starts with iden-
tifying basic patterns in univariate time series. Subsequently, it provides analysts with
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the flexibility to define high-level patterns through temporal relations between the basic
patterns as sequences of elementary patterns. The ensuing analysis, which explores the
distribution of these patterns, is applicable to both elementary and more complex pattern
types.

Our geometry-based approach segments continuous time series to delineate predefined
types of patterns like increasing, decreasing, and constancy. A distinction from Chapter 3
is our exclusion of peaks and troughs, treating them as composite of increasing and
decreasing trends. Analysts can tailor the segmentation threshold based on their dataset
characteristics.

Subsequent to the basic pattern identification, we derived high-level patterns by con-
sidering temporal relations between these patterns. The relationships are defined using
simplified versions of Allen’s temporal relations, considering the context of overlap be-
tween intervals.

Visualization was directed by the “Visual Information-Seeking Mantra” [37]. We
adopted “small multiples” [42] for an overarching view and matrix views to denote the
frequency of relations between patterns. Color schemes were selected with considera-
tion for individuals with varied color perception. Finally, the temporal distribution of
these relations was visualized using density charts, scales being standardized for easy
comparison.

Addressing the research questions

RQ1: Identifying relevant intervals: How to find relevant intervals in univariate
time series, such that the content of each interval can be considered holistically as an
interpretable pattern?

The framework proposes an approach to pattern extraction without specifying the
pattern duration in advance. We used the algorithms discussed in Chapter 3 to identify
temporal patterns. This research excluded peak and trough patterns, opting instead to
segment them into increasing and decreasing trends. Analysts have the flexibility to
adjust thresholds to obtain intervals with their desired patterns.

RQ2: Extracting univariate patterns of individual variables: How to trans-
form sequences of elementary values of individual variables into constructs that can be
interpreted by humans as recognisable behavior patterns?

After segmentation, each interval encompasses one of the univariate patterns: in-
creasing, constancy, or decreasing, which appear to be recognisable. Furthermore, the
flexibility in interval length suggests that the derived patterns might be more intuitive
and are likely not to constrained to inappropriate classification.

RQ3: Deriving higher-level pattern types: How to help analysts to 1) define
higher level concepts as combinations of univariate pattern types linked by particular re-
lationships, and 2) identify instances of these concepts (i.e., composite pattern types) in
the data?

The framework can explore temporal relations between various pattern instances
across different variables by using relations like “before”, “overlap”, and “after” from
Allen’s algebra of time intervals. However the specifics of overlaps, including their dura-
tion and the number of overlapping intervals, remain to be investigated.

RQ4: Exploring the distribution of identified behavior patterns over the
dataset: How to enable finding patterns in the distribution of earlier extracted patterns
over the dataset dimensions?
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To determine the distribution of temporal relations, we calculated the frequency of
pairwise relations. Additionally, density charts are employed, drawing on relative times
between two intervals.

RQ5: Visualization: How to represent computationally derived constructs to
humans to enable pattern recognition and interpretation?

Our approach uses Visual Information-Seeking Mantra [37] by providing analysts with
an intial broad view of the computationally derived constructs. As analysts go deeper
into specific regions of interest, they can seamlessly zoom and retrieve granular details.
Furthermore, our visualization allows for the juxtaposition of similar data segments by
incorporating the concept of small multiples [42]. This facilitates comparison of pattern
recognition and makes contrasts more evident, improving the interactive process.

Limitations

A notable limitation in our approach was the limited scope for exploring the distribution
of multivariate patterns, especially their temporal distribution. While the timeline view
displays the univariate patterns, it does not show explicitly how these patterns are linked
into multivariate patterns by particular temporal relations. One potential solution to
this constraint could be the incorporation of query interface. Here, users can specify a
combination of univariate patterns and relations between them. In return, the framework
would highlight occurrences of these complex patterns along the timeline.

Another challenge arises from the dependency on threshold values, both for the seg-
mentation of time series and the determination of temporal neighbors. Inappropriate
thresholds could misrepresent the data, resulting in either overlooked patterns or ex-
cessive segmentation. Furthermore, the decision to simplify some of Allen’s temporal
relations, while practical, could lead to potential losses in specificity or data context
relevance, as discussed by criticism in the introductory section [24].

The current evaluation, primarily anchored in usage scenarios, could benefit from
practical assessments in real-world contexts. This approach would potentially yield a
more nuanced understanding of the framework’s practicality and effectiveness. While our
dissertation emphasizes the conceptual framework, the software tools we developed are
preliminary and serve primarily as a proof of concept. As such, they might not be ideally
suited for exhaustive real-world evaluations. A holistic assessment would be better suited
to tools specifically designed upon the principles of our proposed framework.

Design recommendations

For future implementations of this framework, an iterative pattern recognition process
would be beneficial. Such a progress would allow for the continuous refinement of iden-
tified patterns. Specifically, this refinement involves defining new pattern types as com-
binations of earlier detected ones, linking them through specific relations. This could be
done through immediate visual feedback enabled by an enhanced user interface, especially
for locating complex pattern occurrences in data distribution.

Chapter 5: Episodes and topics in multivariate temporal data

In the earlier chapter, we highlighted a limitation: considering only pairwise relations
between univariate patterns. In this study, we address this limitation by exploring the
potential of topic modelling to detect co-occurrences involving more than two patterns.
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Using the discretized version of MVTS, we first use computational algorithms to
compress and encode the progression of values within each episode. These encoded values,
which signify single-attribute patterns, are incorporated into topic modeling techniques.
Finally, we investigate temporal variations in topic compositions, specifically examining
how the distribution of topics changes over time.

Summary

We segment continuous time series into episodes using either a query-based method or a
sliding time window. In the context of sliding windows, we obtain intervals by shifting a
fixed-length window, allowing for overlap; these are called overlapping sliding windows.
The use of overlapping sliding windows results in a higher number of time intervals
than non-overlapping windows. This approach is adopted to reduce the risk of breaking
essential patterns and potentially overlooking critical temporal behaviors.

For each univariate attribute within an episode, we represent value variations through
a combination of symbols. Each symbol represents a state of values, encoded by Symbolic
Aggregate approXimation (SAX) [22], and is considered a word. We propose a visual
representation of SAX patterns, enhancing their interpretation by humans.

Each episode comprises words that represent variations in value states, and is treated
as a text. Such a text encapsulates a high-level pattern consisting of multiple variables.

We use Natural Language Processing techniques to explore the co-occurrence of these
symbolized sequences. To identify recurrent co-occurring episodes, we applied topic mod-
elling techniques, such as Latent Dirichlet Allocation (LDA) [8] and Non-negative Matrix
Factorization (NMF) [23]. These models seek to identify re-occurring combinations of
words (i.e., SAX codes), which are considered as topics. While we used pie charts to
examine the composition of topics (i.e., topic weights) within each time frame, it should
be noted that pie charts may not always be suitable for visualising multivariate patterns,
especially with linear spatial objects, as seen in our second case study. Instead, a small
multiples display can better represent specific pattern distributions. This approach allows
for easier comparison of topic distributions rather than precise measurement of individ-
ual topic weights. Additionally, merging similar topics can simplify the interpretation of
color distributions.

Addressing the research questions

RQ1: Identifying relevant intervals: How to find relevant intervals in univariate
time series, such that the content of each interval can be considered holistically as an
interpretable pattern?

We used a top-down approach for segmentation, mirroring the method presented in
Chapter 3. While segmenting based on temporal dimensions, as shown in the COVID-19
use case, may seem intuitive, the intervals may not always offer interpretable patterns.
Nevertheless, our approach leans on subsequent processing via topic modelling to extract
recurring and thereby significant patterns deserving interpretation, ignoring occasional
ones.

RQ2: Extracting univariate patterns of individual variables: How to trans-
form sequences of elementary values of individual variables into constructs that can be
interpreted by humans as recognisable behavior patterns?

The Symbolic Aggregate Approximation (SAX) technique was used to transform se-
quences of elementary values into state values. By selecting an optimal number of states,
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SAX simplifies data by reducing dimensions and filtering out noise, thus making pattern
more interpretable.

RQ3: Deriving higher-level pattern types: How to help analysts to 1) define
higher level concepts as combinations of univariate pattern types linked by particular re-
lationships, and 2) identify instances of these concepts (i.e., composite pattern types) in
the data?

In this work, the analyst defines higher level patterns by interpreting the topics ex-
tracted from the data. We captured simultaneous occurrences of various patterns across
attributes. The behavior of each attribute within an episode is symbolized by a set of
symbols, treated as a word. Consequently, the combined variations of multiple attributes
are denoted by a combination of these words, interpreted as a text. Such a symbolic rep-
resentation, combined with visual presentations like mosaic matrices, facilitates further
exploration through topic modelling.

RQ4: Exploring the distribution of identified behavior patterns over the
dataset: How to enable finding patterns in the distribution of earlier extracted patterns
over the dataset dimensions?

Topic modelling facilitates the identification of homogeneous groups within the dataset.
By representing behavioral patterns as topics, we were able to identify their distribution
across the dataset dimensions. It is important to mention, however, that the high number
of topics may pose scalability challenges.

RQ5: Visualization: How to represent computationally derived constructs to
humans to enable pattern recognition and interpretation?

For pattern interpretation and the mental construction of higher level patterns, mosaic
matrices are employed.

When it comes to the exploration of pattern distribution, the approach varies based
on data characteristics. In a spatio-temporal view, pie charts represent the occurrences
of topics. Alternatively, in the small multiples view, each component displays the distri-
bution of an individual topic. The selection between these visual tools often depend on
specific analytical requirements.

Limitations

The abstract nature of the workflow has been designed to encompass general approaches
to data visualizations. However, potential scalability issues, highlighted at the end of
subsection 5.3.3, indicate that as data dimensions increase, the current visualization
techniques might face challenges in preserving clarity and interpretability.

The probabilistic nature of topic modeling methods, such as LDA, means that out-
comes might vary across datasets or configurations. While topic modelling serves to
abstract elementary values, its inherent probabilistic characteristics may produce incon-
sistent results, particularly when data volume is limited, as indicated in our second study.
Furthermore, the decision between adopting LDA or NMF is not straightforward. The
criteria for selecting one model over the other remains ambiguous and warrants further
exploration to ensure consistent and reliable results in varied scenarios.

Lessons learnt

Our aim was to design a generalized approach for visual analytics. However, challenges
arose in balancing between creating a conceptual framework and adjusting to domain-
specific knowledge. As discussed in subsections 5.2 and 5.3, while a generalized framework
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offers broad guidelines, data representation often requires adaptability to the unique
attributes of datasets and analytical goals.

Our experiences in visualization design emphasized the significance of context. We
realized that generic visualization approaches might not resonate across all scenarios,
which highlights the necessity of tailoring to the specific needs and constraints of indi-
vidual datasets.

Design recommendations

Users can gain more knowledge by adjusting the discretization of value intervals in SAX
encoding. Additionally, using a diverging color scale enhances the interpretability of these
SAX codes.

In cases with limited data, NMF often offers more consistent topic modelling out-
comes than LDA. For episodes that can be represented by points in a display space,
diagrams, such as pie charts, are advantageous because they provide a clear visualiza-
tion of proportions. However, pie charts are typically not conducive to precise analysis
of proportions. To alleviate this limitation, small multiples can be used, which support
comparative analysis. Moreover, small multiples display various topic distributions across
diverse data types.

6.2 Conclusions and future work

This dissertation introduces a general framework and methods for temporal abstraction
in multivariate time series data. The focus of the research is on a concept-building ap-
proach to analysis of multivariate temporal data, which involved identifying basic patterns
of individual attributes and analyzing the relations between the basic patterns to derive
higher-level abstractions. Our framework involves methods to extract basic patterns of
individual variables, define relevant intervals containing basic patterns, join basic uni-
variate patterns into patterns of joint behavior, and identify patterns of occurrences of
behavior patterns. Computational methods and visual techniques are suggested to aid
domain experts in understanding and interpreting multivariate time series data, thereby
extracting meaningful insights from the data. This research advances the field of tempo-
ral data analysis by providing a conceptual and methodological framework that combines
computational and visual techniques to facilitate the abstraction of multivariate time
series data progressively and aid domain specialists in comprehending them.

The approach to characterizing complex phenomena using progressive abstraction has
proven useful, particularly in enhancing visualization methodologies and the theoretical
foundations of interaction techniques. Progressive abstraction transforms elementary
data points into univariate patterns, combines these patterns to form composites, and
maps their distributions. The workflow of progressive abstraction (i.e., from elementary
data points, via behavior patterns, to their distributions) reverses the traditional visu-
alization mantra [37] of “overview first, zoom and filter, then details-on-demand”. It
underscores the importance of iterative data exploration, where each step is seamlessly
connected through computational algorithms. This iterative process is important when
adjusting pattern definitions and parameters for patterns. Interaction techniques can
filter elementary data points to identify patterns. The filtered values can then highlight
representative data or create new distributions, starting another iteration of the visu-
alization mantra. By bridging different abstraction levels, these interaction techniques,
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supported by computational algorithms, facilitate iterative analytical processes involving
human analysts i.e., the human-in-the-loop approach.

Looking forward, the study opens up several promising directions for future research,
beginning with the adaptation and application of our framework across different domains,
as summarized in Table 6.2. This step is crucial for assessing the efficacy of our methods
in diverse setting and identifying domain-specific modifications that may be required. As
the framework is implemented in various contexts, there emerges a chance to refine and
improve types of temporal patterns and temporal relations, making the analytical process
more intuitive and efficient. Furthermore, the development of advanced search queries
and visualization techniques, such as highlighting, will enable a more intuitive exploration
of temporal patterns and relations. These enhancements aim to make the framework not
only more robust but also more accessible for domain experts. An essential component of
this future work would be establishing a feedback loop with experts. This would allow for
the integration of domain specific knowledge, particularly when setting thresholds and
defining patterns and relations relevant to different domains. Enabling the framework to
incorporate domain knowledge would ensure that these methodologies remain relevant
and effective across various applications.

Computational Visual Analytics

Focus Deriving artifacts from data,
such as patterns, relationships,
structures, and the aggregation of
characteristics.

Supporting analytical work-
flows that integrate human cogni-
tive processes with computational
artifact derivation.

Our work A conceptual framework for pro-
gressive temporal abstraction and
techniques required at each step in
the framework.

Visual techniques for progressive
abstraction and interpretation of
multivariate time series data.

Future Applying the framework across
various domains to refine types
of temporal patterns and relations.
Enhancing the analytical process for
domain-specific needs or hypothesis.

Developing advanced search
queries and visualization tech-
niques for intuitive exploration.
Establishing a feedback loop with
experts to integrate domain-specific
knowledge and refine the frame-
work.

Table 6.2: Our path in MVTS research: summary of focus, contributions, and future
directions in computational and visual analytics methods

In conclusion, this proof of concept study in progressive temporal abstraction will
allow to refine our framework further and thereby establishing a stronger presence in the
field of temporal data analysis.
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