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Summary

Biological neural systems have evolved to give rise to complex cognitive functions that allow

animals to interact with their environment, drive their behavior, and regulate physiological pro-

cesses. These cognitive functions emerge from the processing of information fluxes in the form

of discrete neuronal spikes. The operations on these signals are carried out by a complex net-

work of interactions between neurons. Over the last century, extensive research efforts have

led to a solid understanding of the morphology and physiology of neurons, the diversity of cell

types, the detailed wiring of neural networks, and the main pathways along which information

is transmitted across the brain. Despite this in-depth knowledge, the mechanisms underlying

the emergence of cognitive functions remain poorly understood. In particular, an algorithmic

characterization of the operations carried out by neural systems has only been achieved for the

simplest circuits.

Because of the staggering complexity of the brain’s circuitry, neuroscientists developed the-

oretical models and numerical simulations through which the emergent properties of networks

can be studied. These models are diverse and reflect a trade-off between the level of detail in

which the neural network is characterized and the interpretability of the framework. On the

one hand, the activity regime in a neural network can be studied through a detailed spiking

simulation of all neurons, given their electrophysiological properties, connectivity, and the ex-

ternal stimulation they receive. This approach can provide a realistic reflection of biological

neural networks and generate precise predictions of the resulting firing patterns for any given

parameters. Still, the high level of detail makes simulations heavy to perform and their outcome

challenging to generalize. On the other hand, rate models characterize the global properties

of a network mathematically and allow for a thorough analysis of the effect of its parameters.

Nonetheless, the assumptions underlying the mathematical expression of the model impose

constraints on its domain of validity and restrict the dynamics of its resulting firing activity.

In this work, I aim to bridge the gap between simulations of spiking networks and mathemati-

cally tractable rate models. In particular, the focus is set on simulations of Excitatory-Inhibitory

(E-I) networks of Leaky Integrate-and-Fire (LIF) neurons. These simulations are commonly

used in computational neuroscience to model neural systems. Yet, the mathematical study of

such systems typically relies on intractable equations which require numerical methods to be
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Summary

manipulated. I show that the activation function of LIF neurons can be well approximated with

a power law within the range of biologically relevant firing rates. Following this, the LIF spik-

ing network can be characterized by an adapted version of the Stabilized Supralinear Network

(SSN) rate model, using parameters obtained by fitting the neurons’ transfer function. The

activity regimes of LIF spiking networks match the prediction of the SSN, both qualitatively

and quantitatively. This is shown using parameters extracted from databases of state-of-the-art

experimentally acquired data, from which biologically realistic E-I networks can be defined.

Besides the accuracy of its prediction, a major benefit of the SSN is the simplicity of its math-

ematical formulation. Thanks to this, it can be studied analytically to explore the diversity of

nonlinear activity regimes accessible to two-population LIF systems. In particular, I show it can

be used to derive exact conditions under which specific nonlinear transformations occur. These

diverse nonlinear regimes are supported by the intrinsically supralinear activation function of

LIF neurons and can be leveraged to perform information processing operations at the level of

local circuits.

Finally, I extend the domain of validity of the SSN rate model by demonstrating how it can be

modified to account for diversity in the properties of neurons within populations. This illustrates

the flexibility of the SSN, as it can easily be tweaked to capture the activity of spiking networks

with diverse properties.

Overall, due to its accuracy and mathematical tractability, the SSN appears to be a power-

ful tool to support the study of neural networks. It reduces the complexity of neural network

analysis by shifting the focus to a higher level, towards the transformations operated in local

networks rather than individual neurons. Following this approach, local E-I circuits can be

treated as functional computing units whose transfer functions can be mathematically predicted

from their connectivity.
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Zusammenfassung

Deutsche Übersetzung
Biologisch-neuronale Systeme haben durch ihre Entwicklung komplexe kognitive Funktio-

nen angenommen, die es Lebewesen ermöglichen, mit ihrer Umwelt zu interagieren, ihr Verhal-

ten zu steuern und physiologische Prozesse zu regulieren. Diese kognitiven Funktionen ergeben

sich aus Informationsverarbeitung in Form diskreter neuronaler Aktionspotentiale. Die Verar-

beitung dieser Signale erfolgt über ein komplexes Netz neuronaler Interaktionen. Im Laufe

des letzten Jahrhunderts haben umfangreiche Forschungsanstrengungen zu einem detaillierten

Verständnis der neuronalen Morphologie und Physiologie, der Vielfalt neuronaler Zelltypen,

der Verknüpfung neuronaler Netze und der Verbindungen, über die Informationen im Gehirn

übertragen werden , geführt. Trotz dieses fundierten Wissens sind die Mechanismen, die der

Entstehung kognitiver Funktionen zugrunde liegen, nach wie vor nur unzureichend verstanden.

Insbesondere ist eine algorithmische Charakterisierung umgesetzter Rechenoperationen bisher

nur für einfachste neuronale Schaltkreise möglich.

Zur Untersuchung der Eigenschaften verschiedenster neuronaler Schaltkreise haben Neu-

rowissenschaftler theoretische Modelle und numerische Simulationen entwickelt. Diese Mod-

elle sind äußerst vielfältig, wobei ein jedes einen Kompromiss zwischen Detailgrad und Inter-

pretierbarkeit abbildet. Einerseits ist es möglich, das Aktivitätsregime eines neuronalen Netzes

mittels einer detaillierten Spiking-Simulation aller Neurone unter Berücksichtigung ihrer elek-

trophysiologischen Eigenschaften, ihrer Konnektivität und ihrer externen Inputs zu untersuchen.

Dieser Ansatz kann realistische und präzise Vorhersagen der sich ergebenden Aktivitätsmuster

für beliebige Parameter liefern. Aufgrund des hohen Detailgrads sind diese Simulationen je-

doch rechenintensiv und ihre Ergebnisse schwer zu verallgemeinern. Einfachere Feuerraten-

modelle charakterisieren die globalen Eigenschaften eines neuronalen Netzes mathematisch

und ermöglichen eine gründliche Analyse der Auswirkungen seiner Parameter. Die Annah-

men, die der mathematischen Abbildung dieser Modelle zugrunde liegen, schränken jedoch

ihren Gültigkeitsbereich ein und begrenzen die Dynamik der simulierten Aktivitätsmuster.

In dieser Dissertation strebe ich an, die Lücke zwischen Spiking-Modellen und mathema-

tisch nachvollziehbareren Feuerratenmodellen zu schließen. Insbesondere widme ich mich der

Simulation exzitatorisch-inhibitorischer (E-I) Netzwerke aus Leaky Integrate-and-Fire (LIF)
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Zusammenfassung

Neuronen. Diese Simulationen werden in der theoretischen Neurowissenschaft häufig zur Mod-

ellierung neuronaler Netzwerke verwendet. Die mathematische Untersuchung solcher Systeme

beruht jedoch in der Regel auf schwer lösbaren Gleichungen, die nur mit numerischen Meth-

oden bearbeitet werden können. Ich demonstriere, dass die Aktivierungsfunktion von LIF-

Neuronen innerhalb des Bereichs biologisch realistischer Aktivitätsraten gut durch ein Poten-

zgesetz approximiert werden kann. So kann das LIF- Netzwerk durch eine angepasste Ver-

sion eines Ratenmodells, des Stabilized Supralinear Networks (SSN), charakterisiert werden,

wobei Parameter verwendet werden, die sich aus der neuronalen Transferfunktion ergeben.

Anhand von Parametern, welche aus Datenbanken aktueller experimentell erfasster Daten ex-

trahiert wurden, definiere ich biologisch realistische E-I LIF-Netzwerke und demonstriere, dass

ihr Aktivitätsregime sowohl qualitativ als auch quantitativ mit Vorhersagen des SSN überein-

stimmt. Neben der Genauigkeit der Vorhersage liegt ein großer Vorteil des SSN in der Einfach-

heit seiner mathematischen Formulierung. Dank dieser kann es analytisch untersucht werden,

um die Vielfalt des nichtlinearen Aktivitätsregimes zu erforschen, die LIF-Systemen mit zwei

Populationen zugänglich ist. Insbesondere zeige ich, dass sich genaue Bedingungen ableiten

lassen, unter denen bestimmte nichtlineare Transformationen auftreten. Dieses vielfältige nicht-

lineare Regime wird durch die intrinsisch supralineare Aktivierungsfunktion der LIF-Neuronen

gestützt und kann für Informationsverarbeitungsoperationen auf der Ebene lokaler Schaltkreise

genutzt werden.

Weiterhin erweitere ich das SSN-Ratenmodell, indem ich Modifikationen aufzeige, welche

die Vielfalt neuronaler Eigenschaften innerhalb neuronaler Populationen berücksichtigen. Dies

verdeutlicht die Flexibilität des SSN, da es leicht modifizierbar ist, um die Aktivität verschieden-

ster Spiking-Modelle abzubilden.

Insgesamt erweist sich das SSN aufgrund seiner Genauigkeit und mathematischen Berechen-

barkeit als ein leistungsfähiges Instrument zur Untersuchung neuronaler Netzwerke. Es re-

duziert die Komplexität der Analyse neuronaler Netze, indem es den Schwerpunkt auf eine

höhere Ebene verlagert, nämlich auf die Transformationen, die in lokalen Netzwerken und

nicht in einzelnen Neuronen stattfinden. Diesem Ansatz folgend können lokale E-I-Schaltkreise

als funktionale Recheneinheiten behandelt werden, deren Transferfunktionen mathematisch aus

ihrer Konnektivität vorhergesagt werden können.
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1. Introduction

1.1. Biological neural networks

Single-celled organisms are capable of simple behaviors such as sensing the environment, di-

rected movement, and metabolic regulation. These processes are controlled through complex

regulatory pathways involving biochemical signaling cascades. In the case of multi-cellular

organisms, coordination across the entire organism can still be carried out through chemical

signaling, but the slow and untargeted diffusive transfer becomes limiting. In order to gain

greater control and speed over this coordination, a new specialized cell type appeared in ani-

mals: the neuron. In fact, recent genetic analyses suggest that the apparition of neurons might

have occurred multiple times over the history of animal evolution [157]. These early nervous

systems could have been involved in the coordination of motor action, homeostatic regulation,

sensory perception, or immune response [9].

The early forms of the nervous system were unstructured and formed neural nets across the

surface of the organism. Throughout evolution, new species appeared whose anatomy was

organized around specialized structures and organs. The process of cephalization led to the de-

velopment of dense neural circuits and brains [148]. As brains grew more diverse and complex,

they formed distinct anatomic structures or brain regions that specialize in particular functions.

Thanks to this, the repertoire of cognitive functions realized by nervous systems grew much

richer, including memory, learning, spatial navigation, planning, object recognition, problem-

solving, emotional states, etc. The execution and interplay of such cognitive functions drive

the behavioral output of animals in response to their environment and are therefore subjected to

evolutionary pressure [178].

Ultimately, the operations carried out by nervous systems result from the interactions of

neurons wired into complex networks that have been shaped throughout evolutionary history.
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1. Introduction

1.1.1. Neuronal physiology

Neurons are excitable and polarised cells as they can be stimulated to generate an electrical

signal that propagates unidirectionally. The core of the cell is its cell body, also named soma,

which contains the nucleus and most organelles necessary for cellular functions. A distinct

characteristic of neurons is the presence of processes protruding out of the cell body: the den-

drites and the axon. The dendrites form a complex branching structure that serves the function

of integrating multiple signals received by the neuron and propagating them toward the cell

body. There, if the summed contribution of these signals is sufficiently strong, the neuron will

generate its own electrical impulse, which will propagate down a specialized process, the axon,

leading to the stimulation of subsequent neurons (Fig. 1.1.A).

These signals take the form of changes in the electric potential across the cell membrane. In

the absence of any stimulation, the Na+/K+ ion pumps maintain the inside of the cell at a lower

electric potential than the extracellular medium, around −65mV [86]. Excitatory stimulations

lead to a net influx of current, resulting in depolarization of the cell membrane, while inhibitory

stimulations cause hyperpolarization. The overall sum of dendritic currents will modify the

membrane potential in the soma and the axon initial segment (AIS), where a high density of

voltage-gated ion channels can lead to the generation of an action potential, also named spike.

If the membrane potential in the AIS reaches a threshold value near −50mV [86], voltage-gated

Na+ channels will open and lead to a large influx of current, which further amplifies the depolar-

ization. As the membrane potential increases, the voltage-gated Na+ channels inactivate while

a second slower type of channel, the voltage-gated K+ channels, cause an outflux of current,

restoring a negative membrane potential. This mechanism allows for the amplification of the

electric signal and the generation of a stereotypical response: the action potential (Fig. 1.1.B).

Furthermore, since the generation of an action potential is triggered by an initial depolarization,

it can propagate along the axon as nearby voltage-gated channels will likewise respond to the

local change in potential caused by the adjacent depolarization. In order to accelerate the prop-

agation of the action potential, the axon can be interspaced with insulating myelin coating to

force a saltatory conduction of the signal. At the axon terminal, the electric signal caused by the

spike triggers the activation of axonal boutons, which form synaptic connections with different

neurons or other excitable cells.

2



1.1. Biological neural networks

1.1.2. Synaptic transmission

Synapses are specialized structures where the communication between neurons occurs. The

typical synaptic structure consists of a presynaptic axonal bouton from which the signal is emit-

ted if the presynaptic neuron spikes and a postsynaptic dendritic spine, which will receive the

signal, inducing a change of postsynaptic membrane potential (PSP). A tight gap separates the

cells: the synaptic cleft (Fig. 1.1.C). Once a presynaptic spike reaches the axon terminal, it

activates voltage-gated Ca2+ channels, leading to the exocytosis of vesicles containing neu-

rotransmitters into the synaptic cleft. These molecules can then diffuse across the cleft and

reach specific receptors on the postsynaptic side. Once activated, these receptors enable the

flow of ions across the membrane, either directly through a conformation change or indirectly

by releasing secondary messengers, which then mediate the opening of specific ion channels.

Depending on the nature of the neurotransmitter, different ion channels will be activated, lead-

ing to the influx of either a positive current (Na+, depolarization) or a negative current (Cl−,

hyperpolarization). This local change in the electrical property of the cell will diffuse along the

dendrite, and the summed effect of all synapses throughout the neuronal morphology will be

sensed in the AIS.

As the current flows along the dendrite, diverse phenomena can alter the electric signal and

modify the resulting effect at the AIS. One such effect is attenuation, which causes the voltage

signal to weaken as it travels away from the synapse due to longitudinal electric resistance along

the dendritic path. Attenuation makes distal synapses less effective than proximal ones. Simi-

larly, the temporal patterns of synaptic activation will also matter as the signal originating from

more distant dendrites will take longer to reach the soma. Since multiple depolarizing signals

must arrive simultaneously in the soma to elicit a response, the temporal sequence in which

synapses at different locations are activated will condition the emission of a spike. Another

effect arising from the interaction of multiple dendritic signals is shunting inhibition, which

occurs when one synaptic signal travels through a section where another synaptic activation

had caused an opening of ion channels, resulting in an escape of current and a reduced signal.

Finally, the presence of voltage-gated ion channels in the dendrite can lead to the generation

of a localized dendritic spike, which enhances the synaptic input. Overall, the various transfor-

mations that can shape dendritic signals depending on spatial and temporal activation patterns

constitute dendritic computations [162, 107].

3
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Figure 1.1.: Neuronal structure and excitability. A: Cellular structure of the neuron. The synaptic inputs are

collected across the dendritic arbor and cause changes in the membrane voltage across the cell. At the

AIS, the depolarization can trigger a spike, which will travel along the axon. Once the spike reaches the

axon terminals, it will activate the synapses there, which will signal to other cells. B: Spike generation

at the AIS. Upon excitatory stimulation, the voltage rises. If the depolarization does not reach the

threshold where the voltage-gated channels open (dashed line), the voltage will return to the resting

potential without eliciting a response (see depolarization at 10ms). If the depolarization crosses the

threshold, it will trigger a positive feedback loop, which results in an action potential (see response

at 30ms). The trace shown here is obtained using the Hodgkin-Huxley model (see section 1.2.1). C:
Structure of the synapse (zoom-in from the highlighted box in panel A). The pre- and postsynaptic

neurons are in close proximity. Communication is accomplished by the release of neurotransmitters

in the synaptic cleft. Once specific receptors on the postsynaptic side bind to these molecules, they

trigger the opening of ion channels, causing voltage changes in the postsynaptic compartment. Figures

A and C are adapted from templates on BioRender.com.
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1.1. Biological neural networks

While the majority of synapses connect on the dendrites of postsynaptic neurons, this is not

always the case. Axosomatic synapses directly project on the cell body of the postsynaptic

neuron, bypassing dendritic computations and leading to an immediate effect on the voltage

in the soma. In the case of axoaxonic synapses, the postsynaptic side is the axon of another

neuron. This circuit motif can modulate the signaling of the postsynaptic neuron by strength-

ening or weakening its response while bypassing the spike generation mechanism in the soma

and specifically targeting parts of its axonal arbor [43]. Finally, some synapses bypass the need

for neurotransmitters altogether. This is the case of electrical synapses in which the two cells

form a gap junction where their cytoplasm is in direct contact. In this case, the electric current

can directly flow from one cell to another, leading to a much faster transmission. Since elec-

trical synapses lead to an effective synchronization of the activity of the two neurons, it does

not allow for the incremental action and fine regulation present in neurotransmitter-mediated

chemical synapses [113].

The phenomenon of strengthening or weakening of the connections in chemical synapses

constitutes synaptic plasticity. The plasticity of a synapse can be under the control of diverse

factors such as the precise timing of spikes, the firing rate of the pre- or postsynaptic neuron, or

the activation of nearby synapses. It can take diverse forms depending on the timescales over

which it occurs, as short-term plasticity (STP) is typically on the order of seconds, while long-

term potentiation and depression involve molecular mechanisms that operate on much longer

timescales. These mechanisms can include the synthesis of proteins, modifications in cellular

trafficking, or changes in the morphology of the synapse. Overall, the mechanisms of synaptic

plasticity shape neuronal connections in various ways based on the activity of the network,

which can ultimately support the emergence of cognitive functions like memory or learning

[172].

1.1.3. Network organization

Neurons can be broadly categorized into two classes: excitatory neurons (E) whose neurotrans-

mitters trigger a depolarization of the postsynaptic neuron and promote the generation of an

action potential, and inhibitory neurons (I) whose neurotransmitters cause hyperpolarization

and push against postsynaptic firing [44]. However, more detailed classifications of neurons

have revealed the existence of a rich diversity of cell types. These cell types differ by morphol-
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ogy, electrophysiological properties, the brain regions they appear in, and the other cell types

they form synaptic connections with [112]. Besides neurons, the nervous system contains a

large number of glial cells, which are not electrically excitable but perform diverse supporting

roles such as structure, immune function, metabolic supply, regulation of synaptic transmission,

or electrical insulation.

Overall, the nervous system is organized in an elaborate network of interactions whose wiring

enables the emergence of specific computations. The precise rules underlying the wiring of neu-

ral circuitry remain an active field of research. Nonetheless, these rules appear to be primarily

determined genetically and mediated through the diffusion of signaling molecules and the in-

teractions of protein markers on the cell surface [21].

One circuit motif that appears to be well-conserved and ubiquitous throughout the cortex is

the so-called canonical cortical circuit. The cortex is structured in successive layers, where the

external inputs primarily target the top layer, whereas the deeper layers project outward to other

regions. Most connections occur within each layer, while a smaller fraction of the connections

are made across cortical layers [77, 33]. At the same time, the cortex is organized in a succession

of vertical minicolumns, which are driven by different stimuli and within which most of the

synaptic connections are contained [121]. These minicolumns are therefore hypothesized to

operate as distinct computational units. In this view, cortical function is carried out by a series

of operational modules.

Ultimately, the architecture of the nervous system leads to the emergence of information

pathways that transfer signals across specialized networks to process them and carry out di-

verse operations. At the macroscopic scale, different brain regions specialize in the processing

of different information types, leading to the simultaneous execution of numerous various cog-

nitive functions.
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1.2. Neural Network models

1.2. Neural Network models

While experimental manipulations and recording of neural networks are indispensable to in-

vestigate the mechanisms and substrates underlying the function of neural systems, the field

of neuroscience also relies heavily on simulations and mathematical models to make sense of

experimental findings, search for emerging phenomena, and help design testable hypotheses.

Multiple neural network models exist, which differ by their degree of complexity, reflecting a

trade-off between mathematical abstraction and biological realism (Fig. 1.2). The more com-

plex models can incorporate detailed features and provide a more accurate reflection of their

biological counterparts. On the other hand, simpler models have the advantage that they can be

interpretable and easier to manipulate.

Constant White Noise Feature-based

Feature-based Low rank DetailedErdös-Rényi

STP/LTP STDP

 

Delta Function Temporal Profile Conductance Based

Multiple 
Cell Types

Distribution
of Feature

Binary ReLu Hodgkin-Huxley MorphologyNeuron

Populations

Synapses

Synaptic 
Plasticity

Connectivity

Input

Feed-forward

LIF

Complexity
DetailedAbstract 

Non-local 
learning rule

Sensory 
driven

Static Synapses

E+ISingle 
Population

Figure 1.2.: The essential building blocks of a neural network model ordered by degree of complexity. A

network model representing the activity of a neural circuit is characterized by its neuronal description,

the categorization of neuronal properties into populations, the connectivity between neurons, the type

of synapses and plasticity governing the synaptic strength, and the input that stimulates neurons. Each

of these items can be modeled in different ways, with varying degrees of complexity. Figure adapted

from [19].

1.2.1. Hodgkin-Huxley model

One prominent model of neuronal activation was proposed by Alan Hodgkin and Andrew Hux-

ley in 1952. Based on the analysis of action potential transmission and measurements of mem-

brane ionic conductance in squid giant axons [70, 71, 72, 74], they built a quantitative model
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of the electrical properties of neuronal cell membrane [73]. This model can accurately recreate

the generation of action potentials and their propagation along the axon. This high biological

realism comes with a high computational cost, as the state of the membrane is defined by four

variables coupled through ODEs. This cost is exacerbated in the case where neuronal mor-

phology is considered, as the model must be applied to individual slices of neuronal processes.

Because of this, the Hodgkin-Huxley model is mainly used to study sub-cellular phenomena

[136] and is seldom used in the context of large networks [82]. Other conductance-based mod-

els have been proposed, such as the FitzHugh-Nagumo [54] or the Izhikevich model [81] which

are both phenomenological simplifications of the Hodgkin-Huxley model.

1.2.2. Leaky Integrate-and-Fire model

The Leaky Integrate-and-Fire neuron (LIF) is another widely used neuron model [29]. It was

initially proposed by Louis Lapicque in 1907 [97, 1] and later refined by Bruce Knight in 1972

[93]. The LIF model is based on an electric circuit analogy of the cell membrane [60]. It acts as

a capacitor as it maintains a difference of electric potential between the intra- and extracellular

sides. At the same time, it acts as an electrical resistance as it permits a passive leak of ions.

Finally, the ion channels activated by synaptic inputs play the role of a source of current. Since

the cell membrane plays these different roles simultaneously all over its surface, the equivalent

electrical circuit is wired in parallel (Fig. 1.3.A). The analysis of the analogous circuit leads to

the time evolution of the membrane potential

dV

dt
= −C

R
V + jC,

where C is the capacitance, R is the resistance, and j is the current source.

In the case of the LIF model, the equation is typically reformulated as

dV

dt
= −(V − V0)

τ
+ I. (1.1)

Here, the dynamics of the membrane potential is characterized by the membrane time constant

τ , the input I which is given in units of mV/s, and the resting potential V0 which corresponds

to the unexcited steady state of the cell resulting from the homeostatic activity of ion pumps.

In the LIF model, the spiking mechanism does not emerge from the electrical properties of
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Figure 1.3.: LIF neuron model. A: The electrical properties of the neuronal cell membrane are analogous to RC

circuits with a source of current in parallel. B: Example trajectory of the LIF membrane potential with

white noise input I . Once the potential reaches the threshold Θ (red asterisk), the neuron emits a spike

and is reinitialized at the reset potential VR.

the circuit but comes in the form of additional boundary conditions. As soon as the membrane

potential reaches a threshold value Θ, it fires. After the neuron spikes, it can enter a refractory

period ∆tref during which it cannot receive input and, therefore, cannot spike again. The

membrane potential is then reinitialized to a reset value VR and starts integrating input again

(Fig. 1.3.B).

The activation function of a neuron, or FI curve, is the input-output relationship that charac-

terizes the firing rate response ν of a neuron as a function of the level of input it receives. In

the case of constant input of value µ, without a refractory period, the inter-spike interval (ISI)

is obtained by solving the LIF equation (Eq. 1.1) with V (t0) = VR and V (t0 + ISI) = Θ [29]:

ISI = τ ln

(
µτ + V0 − VR

µτ + V0 −Θ

)
. (1.2)

The firing rate is then simply given by ν = ISI−1. In the situation where the input is not

constant but follows a random process such as white noise, the activation function of the LIF

neuron must be derived using stochastic calculus (section A.4).

In the case where the input follows Gaussian white noise, it is characterized by its mean µ

and noise strength σ

I(t) = µ+ σ η(t).

9



1. Introduction

with η a normally distributed random variable, such that

⟨η(t)⟩ = 0

⟨η(t)× η(t′)⟩ = δ (t− t′) .

With Gaussian white noise input, the membrane potential follows a drift-diffusion process.

The steady state firing rate of a LIF neuron receiving white noise input corresponds to a first-

passage-time problem and is given by the Ricciardi Φ equation [165, 32, 145, 25, 8]

ν = Φ(µ, σ) =

(
τ
√
π

∫ Θ−µτ
σ
√
τ

VR−µτ

σ
√
τ

ez
2(
1 + erf z

)
dz

)−1

. (1.3)

The classic LIF neuron is widely used to model cortical activity, both in vivo and in vitro [60].

Nevertheless, its simple formulation does not reflect the complex nonlinear interactions between

the membrane potential and its conductance. Because of this, models inspired by the LIF neuron

have been developed to reflect the increased excitability as the membrane potential approaches

the threshold Θ. Such models include the Quadratic Integrate-and-Fire (QIF), in which the

dynamics depend on the membrane potential squared, [52] or the Exponential Integrate-and-

Fire (EIF), which adds an exponential dependence on the membrane potential [56]. These

neuron models have two steady states and can support more complex dynamics than classic LIF

neurons.

1.2.3. Spiking network simulations

Neural networks can be studied by running simulations of spiking neurons. Each individual

neuron is modeled and embedded into a network where it is connected to others. This approach

offers a lot of flexibility as every feature of the network can be modeled at varying levels of

detail. This is especially useful when recreating large-scale bio-realistic simulations of brain

regions. In these cases, a detailed description of cell physiology, morphology, and connectiv-

ity can be directly based on state-of-the-art databases of experimentally reported parameters

[20, 11, 111]. Such detailed simulations are valuable to make sense of the large amount of

experimentally recorded data and reach a biologically realistic understanding of brain function.

At the same time, the results of detailed spiking network simulations are difficult to interpret as
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they result from the intricate interplay of multiple complex processes. It is therefore challeng-

ing to pinpoint the core mechanisms underlying diverse network activity patterns. Similarly, the

link between specific parameter values and the resulting network activity cannot be established

through simulations without an extensive search through parameter space, which is unfeasible

for large networks and highly detailed simulations. This indefinite dependence on parameter

values is especially problematic because experimentally reported parameters vary across broad

ranges [94, 75, 42, 137, 92], and bio-realistic spiking network simulations typically require

additional parameter tuning to output realistic activity patterns [20].

1.2.4. Rate models

Unlike spiking network simulations, which consider individual neurons, rate models consider

populations as a whole and characterize their collective firing rate. This approach typically

arises from a mean-field analysis of the system, in which populations are treated as single

units, and the population-average firing rate is the solution of a mathematical equation. In

order to hold, the mean-field description of neural networks relies on large population sizes, so

the statistical variability across neurons is negligible compared to the mean [119]. For small

networks, finite-size effects of spontaneous fluctuations and correlations cannot be ignored and

corrections must be added to the rate model [25, 28, 159].

▶ Ricciardi Self-consistent solution

Using the Ricciardi Φ activation function of LIF neurons (Eq. 1.3), the steady state firing rate

of a LIF network can be determined analytically under the assumption that the total input to

neurons follows the distribution of Gaussian white noise [24]. The rate model takes the form of

a self-consistent system of equations, which define the mean input µX , the input noise σX , and

the firing rate νX of each population X . In the case of a 2-population E-I (Excitatory-Inhibitory)
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network: 

νE = Φ(µE, σE)

µE = JEE νE − JEI νI + µextE

σ2
E = JEE jEE νE + JEI jEI νI + σ2

extE

νI = Φ(µI , σI)

µI = JIE νE − JII νI + µextI

σ2
I = JIE jIE νE + JII jII νI + σ2

extI .

(1.4)

Where the parameter JXY is the population-wise connection strength from population Y to

population X . It is linked to the connection strength of the single synapse jXY by the number

of incoming synapses CXY :

JXY = jXY × CXY .

The expression for the input noise σX is based on the assumption that the LIF spike train follows

a Poisson process, which closely matches the firing patterns of simulated LIF neurons (see

Fig. A.5).

▶ Balanced State

The Balanced State is a mathematical framework proposed by Carl van Vreeswijk and Haim

Sompolinski [185, 186] to explain the generation of asynchronous irregular patterns of neuronal

activity. It postulates that the mean excitatory and inhibitory inputs to neurons in large networks

tend to cancel each other out, while the temporal input fluctuations remain and are the main drive

of neuronal spiking. In particular, the mathematical framework of the Balanced State operates

in the limit of infinitely large network size (N → ∞). It assumes that the pairwise connection

probability p is invariant with network size. Since the in-degree of neurons scales linearly with

N , the synaptic strength must follow the scaling jXY = j0XY

√
N

−1
, so the input noise does not

grow indefinitely with network size N :

σ2
X = σ2

ext +
∑
Y

j2XY CXY νY = σ2
ext +

∑
Y

j0XY
2
pXY νY .

12



1.2. Neural Network models

Therefore, the mean input to neurons scales with
√
N :

µX = µext +
∑
Y

jXY CXY νY =
√
N

(
µ0
ext +

∑
Y

j0XY pXY

)
.

The external input here scales with
√
N as well because it is considered to originate from an

external population which follows the same scaling. In order for the mean input to remain finite

for large network sizes, we must have(
µ0
ext +

∑
Y

j0XY
2
pXY

)
= O(

1√
N
).

This means that in the limit of large network sizes, the Balanced State imposes that the E and I

inputs must cancel out. Meanwhile, multiple electrophysiological studies have confirmed that

E and I synaptic inputs in the cortex tend to be balanced [163, 164, 67, 127, 151]. Furthermore,

deviations in E-I balance have been shown to impair the signal-to-noise ratio and appear to be

associated with neurological disorders [169].

Overall, the assumption of tight balance between E and I synaptic inputs suffices to exactly

predict the firing rates in the network. For a 2-population network:

νE = (JII − rJEI) det J
−1 × µext

νI = (JIE − rJEE) det J
−1 × µext,

(1.5)

where r is the ratio of external input to the I and E populations (r = µextI/µextE) and det J is

the determinant of the population-wise connectivity matrix

det J = JIEJEI − JEEJII . (1.6)

Besides the assumption that N is large enough to achieve tight balance, the Balanced State

rate model imposes additional conditions on its parameters. First of all, the J matrix must be

invertible (det J ̸= 0). Secondly, the connection strengths J must be such that the firing rates
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in Eq. 1.5 are non-negative. With positive feedforward inputs, this condition becomes

0 < r < JII
JEI

, det J > 0

r > JII
JEI

, det J < 0.

(1.7)

The Balanced State rate model is unique in the simplicity of its mathematical formulation

(Eq. 1.5) and the fact that it does not depend on the firing properties of neurons in the network.

In particular, the model predicts that firing rates in balanced networks are linear functions of the

feedforward input. This prediction contrasts with experimentally observed nonlinearities in net-

work responses [34, 126]. Furthermore, from a computational point of view, nonlinearities are

necessary to enable complex operations. In order to achieve nonlinear transformations in bal-

anced networks, additional mechanisms such as synaptic plasticity [118] or detailed silencing

of neuronal subpopulations [13] must be included.

▶ Stabilized Supralinear Network

The Stabilized Supralinear network (SSN) is a rate model developed by Kenneth Miller and

Daniel Rubin [4, 150] to replicate the effect of surround suppression (reduced response to a

broader stimulus of identical amplitude) and normalization (sublinear response to a sum of

stimuli) observed in sensory cortical areas. The SSN is based on a power law neuronal activation

function, as supported by experimental observations [139]. For a 2-population system, the

dynamical equations of the SSN are given by

τPE

dνE
dt

= −νE + a (JEEνE − JEIνI + µext)
n
+

τPI

dνI
dt

= −νI + a (JIEνE − JIIνI + rµext)
n
+,

(1.8)

where τPE
and τPI

are the population time constants that characterize how fast the firing rates

of each population evolve.
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1.2. Neural Network models

1.2.5. ANNs

Another unavoidable type of neural network model is the Artificial Neural Network (ANN)

which has been trained through machine learning to perform specific tasks or generate partic-

ular activity patterns. These networks are comparable in their structure to Spiking Network

models as they comprise individual neurons typically organized in layers and detailed connec-

tion rules, but they differ starkly in the conceptual approach. While Spiking Network models are

used to generate activity patterns corresponding to a given network structure, ANNs are specif-

ically trained and optimized to achieve a predefined transformation. The approach of neural

network models is bottom-up (network structure → activity pattern) whereas ANNs are top-

down (task performance/target activity pattern → network structure) [19]. Because of the goal

difference, ANNs typically disregard biological realism in favor of algorithmic performance.

The neuronal model is usually a simple Rectified-Linear [66] or sigmoidal unit [188], which

are organized in successive processing layers [116, 57]. On the other hand, the connectivity of

trained networks is generally very intricate and high-dimensional, making the interpretability of

ANNs a tremendous challenge in the field of machine learning [38]. The ever-improving per-

formances of ANNs have allowed breakthroughs in countless domains such as computer vision

[96], competitive games [166, 167] protein folding [49] or text generation [129]. Ironically,

even though ANNs are inspired by biological neural networks, they have not achieved this level

of groundbreaking advances in neuroscience. Nevertheless, ANNs are a powerful tool and are

being used increasingly often to help study neural systems in various ways. These approaches

include decoding recorded neural activity [174, 17], providing insights into algorithmic solu-

tions to perform specific tasks [87], or training biologically realistic spiking neural networks for

behaviorally relevant tasks [62, 173].
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1.3. Research goal

Elucidating the mechanisms underlying the function of biological neural networks remains one

of the main challenges of neuroscience. Due to the high-dimensional and complex nature of

biological neural networks, a proper mechanistic understanding can only be achieved with the

use of theoretical principles, mathematical models, and simulations.

Spiking network simulations can provide valuable insights into the activity regimes of neural

networks since they can produce the resulting activity pattern for any given network parameters

and structure. However, the output of a simulation can be challenging to interpret and general-

ize. Which components of the network firing activity constitute the signal and which are just

noise? Of all the interactions in the system, which ones are key to achieving the desired output?

How does a slight change in parameter affect the overall network function?

On the other hand, rate models are powerful tools to study neural networks, and their mathe-

matical analysis can lead to deep mechanistic insights into network function. These models are

diverse and vary by the key assumptions under which they are valid, the degree of complexity

of their mathematical formulation, and the properties of their predicted output. While the most

complex rate models are impractical to use due to their mathematically intractable nature, sim-

pler models can lead to erroneous conclusions if they are used outside of their narrow domain

of validity.

In this work, I aim to bridge the gap between spiking simulations and mathematically tractable

rate models. Using an adjusted SSN model designed to match LIF simulations, I explore the

diversity of nonlinear activity regimes accessible to two-population E-I systems using biolog-

ically realistic parameters. I highlight how such regimes can play a crucial role in supporting

complex computation at the network level and delimit the conditions under which the rate model

fails to predict spiking network activity and how to address these limitations.
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2. Rate model approximation of LIF

networks

This chapter is adapted from the first result section and the supporting information of the

article

Ekelmans Pierre, Nataliya Kraynyukova, and Tatjana Tchumatchenko. "Targeting oper-

ational regimes of interest in recurrent neural networks." PLOS Computational Biology

19.5 (2023): e1011097.

https://doi.org/10.1371/journal.pcbi.1011097

In this chapter, I derive the LIF-fitted SSN rate model which provides an advantageous trade-

off between mathematical tractability and accuracy. Thanks to a simple mathematical formula-

tion and its closed-form equation, it can be studied analytically and the occurrence of diverse

activity features can be linked to conditions on its parameters. At the same time, it is designed

to match the behavior of LIF neurons closely and I show how its parameters are chosen to reflect

available data from experimental sources.

2.1. Single neuron FI curve approximation

As shown in section 1.2.2, the firing rate of a LIF neuron fed with white noise input can be

determined exactly by the Ricciardi Φ equation (Eq. 1.3). While this expression is difficult to

manipulate analytically, we can observe how the Φ function behaves for different parameters

using numerical methods.

Overall, the Φ curve appears to show four different regimes as a function of the input µ (see

Fig. 2.1):

• For very low input, the neuron is silent. If the input level is too low to bring the membrane

potential to the spiking threshold and the fluctuations due to noise are insufficient to

bridge this gap, the neuron will remain inactive and the firing rate will remain close to

0Hz.
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2. Rate model approximation of LIF networks

• For moderate input and sufficient noise level, neuron firing is a supralinear function of the

input. This occurs due to random fluctuations, which can drive the membrane potential

to the spiking threshold. The likelihood of such events increases as the mean input drives

the membrane closer to its threshold.

• For high input, the contribution of random fluctuations becomes negligible and the thresh-

old crossing is mainly driven by the integration of the mean input. Then, the firing rate

grows linearly as a function of the input (see section A.5).

• For high firing rates, the FI curve grows sublinearly as the firing rates approach the limit

imposed by a refractory period ∆tref .

For firing rates in the biologically relevant 0-10Hz range (see section 2.4.1), we can focus on

the first two parts of the curve. In order to facilitate the analysis of LIF neuron dynamics, the

activation function can be approximated with a supralinear power law

f(µ) = a (µ− b)n+ , (2.1)

where µ is the input to the neuron. Here, (x)+ is equal to x when it is positive and zero

otherwise. The b parameter acts as a threshold level of input at which the neuron starts firing.

The parameter a is a scaling factor. The exponent n characterizes how supralinear the FI curve

is and must be larger than 1. Using this approximation, the FI curve can be fitted for any LIF

neuron to determine the three a, b, and n corresponding parameters (Fig. 2.2). In general, each

cell type or neuronal population has different properties, so the activation function fX for each

population X must be defined separately.

2.2. Network rate model

For neurons embedded in a network, the input is the sum of feedforward input coming from

outside the network and recurrent input, which is caused by the connections from other neurons

within the network. In a mean-field framework, the mean input µX of neurons in population X

can then be expressed as

µX =
∑
Y

JXY νY + µextX ,
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Figure 2.1.: FI curve of Leaky Integrate-and-Fire neurons. The theoretical response of LIF neurons to input

(black line) is in agreement with the simulated LIF activation function (blue triangles). The response

is first static and silent (I), then supralinear (II), linear (III), and finally sublinear as the firing rate

approaches the upper bound caused by the refractory period (IV). Here, the refractory period is set at

10ms, so the firing rates cannot rise beyond 100Hz.
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Figure 2.2.: The FI curve of LIF neurons can be accurately fitted with a power law. A: We consider two

types of neurons: E and I (see Table 2.3). The activation function is fitted in the 0-10Hz range and

appears indistinguishable from the LIF theoretical and simulated FI curves. B: The fitted power law

has three parameters, a, b and n. These parameters can be fitted for any LIF neuron with different

parameters. The values of the three power law parameters are shown here for a range of input noise

σ and membrane time constant τ of the LIF neuron. By default, the reset and resting potential are set

to 0, and the firing threshold is set to 1mV. The parameters corresponding to the E and I neurons

from panel A are indicated by a cross (τE = 20ms and τI = 10ms); their numerical values are listed

in Table 2.5.

19
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where JXY is the strength of the population-wise effective connection strength from population

Y to population X and νX is the average firing rate of population X . Regarding the input noise

σ, we assume that the contribution from recurrent inputs is negligible and that the input noise is

mainly driven by the external source (i.e., σX ≈ σextX). This is useful because the noise level

σ does not appear explicitly in the power law approximation, but it is contained in the a, b, and

n parameters. By assuming that the noise level is solely determined by the external noise σext,

the characteristics of the FI curve are decoupled from the activity levels of the populations in

the system, and the closed-form network equation is simplified since a, b and n are considered

constants. In the case of two populations, E and I, the steady states of the SSN are given by the

closed-form equation:

νE = aE (JEE νE − JEI νI + µext − bE)
nE

+

νI = aI (JIE νE − JII νI + rµext − bI)
nI

+ ,

(2.2)

where r is the ratio of external inputs to each population (µextI/µextE). The obtained system

of equations is an extension of the classic Stabilized Supralinear Network (SSN) at the steady

state (Eq. 1.8) [4, 150].

Following the method used in [95] to solve the classic SSN, we can define a characteristic

function F to combine both equations into one. Starting from the total input to each population

µX , which is given by µE

µI

 =

JEE −JEI

JIE −JII

νE
νI

+

 µext

rµext

 , (2.3)

we can isolate the firing rates

νE
νI

 =

−JII JEI

−JIE JEE

µE − µext

µI − rµext


JEIJIE − JEEJII

.

Using the activation functions fE and fI to substitute the firing rates with a function of the input,
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2.2. Network rate model

the system only has two variables µE and µIfE(µE) = − JII
det J

µE + JEI

det J
µI + µext

JII−rJEI

det J

fI(µI) = − JIE
det J

µE + JEE

det J
µI + µext

JIE−rJEE

det J
,

where det J is the determinant of the weight matrix (Eq. 1.6). By isolating the µI term from

the first equation and substituting it in the second one, we can obtain a single equation: the

characteristic function F . Its zeros are the solutions of the steady SSN equation (Eq. 2.2):

F (µE) = JEEfE(µE)− JEIfI(µI(µE))− µE + µext. (2.4)

The polynomial µI(µE) is the total inhibitory input µI expressed in function of µE

µI (µE) =
det J

JEI

fE(µE) +
JII
JEI

µE + µext

(
r − JII

JEI

)
. (2.5)

The zeros of the F function can be found with a nonlinear system solver, and the corresponding

steady state firing rates are simply given by the activation functions fE(µE) and fI(µI(µE)). In

the case of the adjusted power law approximation of the LIF FI curve, the characteristic function

becomes

F (µE) = JEEaE (µE − bE)
nE

+ − JEIaI (µI − bI)
nI

+ − µE + µext, (2.6)

with

µI =
aE det J

JEI

(µE − bE)
nE

+ +
JII
JEI

µE + µext

(
r − JII

JEI

)
.

If the characteristic function F admits multiple zeros, the network possesses multiple steady

state activity levels. The analysis of the characteristic function F alone cannot determine

whether a steady state is stable. The stability of a fixed point will depend on the dynamic

properties of the system, such as the population time constants τPX
in Eq. 1.8 (see Eq. 2.10).

Nevertheless, it can be shown that a negative slope of the F function is a necessary condition
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2. Rate model approximation of LIF networks

for a fixed point µ0
E to be stable [95]

µ0
E is stable ⇒ dF

dµE

∣∣∣∣
µ0
E

< 0. (2.7)

In the case where the system comprises more than two populations, the closed form in Eq. 2.2

can be expanded by adding another equality for each additional population. Already with three

populations, the set of equations can no longer be simplified into a single characteristic function

of one variable because the development leads to a polynomial of the form aµ1
n1
+ + bµ2

n2
+ +

cµ1 + dµ2 + e = 0 from which one variable cannot be algebraically isolated to express it as

a function of the other. Nonetheless, the closed-form SSN in higher dimensions can still be

solved numerically using algorithms such as the continuation method (section A.2).

2.3. Limitations

While the LIF-fitted SSN can provide a valuable framework to study firing rate regimes of

spiking neural networks, it is worth keeping in mind the underlying assumptions of the model

and its limitations.

2.3.1. Steady state assumption

Since the power law fit is based on the LIF response at steady state, this system is limited to

studying neural networks at the steady state and cannot predict temporal dynamics or transient

behaviors (see section 2.4.5). Furthermore, as mentioned previously, the temporal properties of

the network do play a role in the linear stability of the system. If we assume a simple ODE of

the form τPE
ν̇E = −νE + fE (JEEνE − JEIνI + µext)

τPI
ν̇I = −νI + fI (JIEνE − JIIνI + rµext) ,

we can linearize around a fixed point νX = ν0
X + dνX to reach

dν̇E
dν̇I

 =

JEEf ′
E−1

τPE

−JEIf
′
E

τPE

JIEf ′
I

τPI

−JIIf
′
I−1

τPI

dνE
dνI

+

 f ′
E

τPE

dµext

rf ′
I

τPI

dµext

 . (2.8)
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2.3. Limitations

The fixed point ν0
E, ν

0
I is linearly stable if the two eigenvalues of the 2 × 2 matrix M have

negative real parts, which is equivalent to imposing that it has a positive determinant and a

negative trace. Since the time constants τPX
are positive, they do not condition the sign of the

determinant of the matrix M. Therefore, the first stability condition is equivalent to |TM| >

0, where T is the diagonal matrix containing the time constants so that the product TM is

independent of the dynamic parameters. The first stability condition reads

|TM| > 0

1− f ′
EJEE + f ′

IJII + f ′
Ef

′
I det J > 0.

(2.9)

It can be shown that |TM| = −F ′, so the static stability condition is equivalent to the condition

on the slope of the characteristic function (Eq. 2.7). The second stability condition, which

requires a negative trace of M, does impose a constraint on the time constants:

(JEEf
′
E − 1) τPI

< (JIIf
′
I − 1) τPE

.

In the SSN, the neuronal activation functions fX are given by Eq. 2.1. Their derivative can then

be written as f ′ = na
1
nν

n−1
n . The stability condition on the trace of M becomes:

τPE

τPI

>
JEE nE a

1
nE
E ν

nE−1

nE
E − 1

JII nI a
1
nI
I ν

nI−1

nI
I + 1

. (2.10)

This condition can be understood intuitively. If the excitatory activity is weak (negative numer-

ator in Eq. 2.10), the steepness of the power law does not provide sufficient feedback amplifica-

tion to sustain a perturbation and the fixed point is stable regardless of the time constants (i.e.,

the E population is below the ISN threshold, see section 3.1). On the contrary, if the E activity

is high, the positive feedback of recurrent E → E connections can lead to runaway dynam-

ics. In that case, the transient of the E population must be sufficiently slow to let the recurrent

inhibition divert the trajectory away from this positive feedback loop and prevent instability.

2.3.2. Assumption of white noise input

The fitted power law is based on the theoretical FI curve of LIF neurons in response to white

noise input (Eq. 1.3). The LIF-fitted SSN is therefore only applicable to situations where the
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2. Rate model approximation of LIF networks

statistics of the input received by neurons are well approximated with a white noise process.

In our framework, the external input is assumed to be white noise. This input models two

distinct processes. The first process is the sum of all synaptic inputs received by neurons outside

of the considered E-I network. The source can be a connection across layers within the same

cortical minicolumn as well as inputs from long-range projections from other brain regions.

The mean input from this process is assumed to carry most of the information received by the

neural network. For instance, in the context of a neural network involved in processing sensory

stimuli, the mean external input is assumed to be a function of the features of the stimulus. The

second process that is modeled by the external input is the intrinsic fluctuation in the membrane

potential. It is caused by the stochastic properties of ionic pumps and channels or transient

inhomogeneity within and around the cell [135, 3]. While spontaneous membrane fluctuations

can realistically follow a Gaussian noise, this assumption is more delicate in the case of the

external synaptic inputs.

First of all, we must assume that the input is uncorrelated in time. This is a strong simpli-

fication of the mechanisms underlying the firing activity in neurons outside of the considered

network, given that their own activity could be driven by shared inputs or that feedback connec-

tions could lead to longer correlation timescales. Furthermore, the synaptic input is triggered by

spikes which are discrete events. Spike trains of LIF neurons are typically modeled as Poisson

processes (Fig. A.5). Nevertheless, based on the Central Limit Theorem, the overall contribu-

tion from all synaptic inputs will approach a normal distribution if the number of synapses is

large. Considering that the number of synaptic connections typically approaches 104 per neuron

[182, 158, 46], the normal approximation is justifiable. Finally, the Ricciardi activation function

(Eq. 1.3) and its power law approximation rely on a drift-diffusion approximation of the input.

This assumption breaks if individual synaptic inputs have a high weight, in which case neuronal

spiking will be driven by punctual events rather than a continuous integration process.

Overall, the sum of postsynaptic potentials (PSPs) received by a neuron is equivalent to a

Wiener process with drift -or white noise- if the number of incoming PSPs is sufficiently large,

if multiple PSPs are required to trigger spiking, and if the activity is temporally uncorrelated or

Poissonian [47, 176]. This applies to both the recurrent and the feedforward connections.
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2.3. Limitations

2.3.3. Recurrent noise

In the fitted SSN (Eq. 2.2), the contribution of the noise σ in the input is contained in the power

law parameters a, b, and n. In order to keep the mathematical model tractable, the noise σ

is considered independent of the level of recurrent activity. Since the total noise is due to the

combined effect of the external and recurrent inputs, the recurrent noise should be negligible:

σ2 = σ2
ext + σ2

rec ≈ σ2
ext.

In a spiking network with Poissonian spike trains, the recurrent input noise of neurons in popula-

tion X is given by σ2
recX =

∑
Y j2XYCXY νY , where jXY is the synaptic strength of an individual

connection Y → X and CXY is the number of connections a neuron in population X receives

from population Y . For the recurrent noise to be negligible compared to the external noise,

the strength of individual PSPs must be small since their contribution is squared. Likewise, the

recurrent noise grows linearly with the activity level of the network and cannot be neglected for

high firing rates.

In situations where the contribution of recurrent noise cannot be ignored, it is still possible

to use the SSN framework, but the power law parameters must be adjusted with respect to the

activity level

νE = aE (νE, νI)
(
JEEνE − JEIνI + µext − bE (νE, νI)

)nE(νE ,νI)

+

νI = aI (νE, νI)
(
JIEνE − JIIνI + rµext − bI (νE, νI)

)nI(νE ,νI)

+
.

However, this approach misses the main benefit of the SSN as it is not suitable for algebraic

analysis. A possible compromise could be to define the activation function as a piecewise

power law, so that a tractable system can be recovered on separate domains

νE = aE1 (JEEνE − JEIνI + µext − bE1)
nE1
+ , νE + νI < νT

νE = aE2 (JEEνE − JEIνI + µext − bE2)
nE2
+ , νE + νI > νT ,

where νT is a threshold value above which the power law parameters are chosen to correspond

to a higher value of σ, which reflects the higher noise level due to the recurrent activity.

In this work, we restrict our analysis to situations where the recurrent noise is negligible, as
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2. Rate model approximation of LIF networks

this regime is supported by experimentally reported parameters (see section 2.4).

2.3.4. Mean-field framework

Another essential feature of the LIF-fitted SSN is that it is a mean-field approach [130]. As

such, the behavior of individual neurons is not considered and we instead study the global state

of the population which comprises a large number of individual neurons. We focus on the

population-averaged activity and ignore the possible contribution of each cell. Since individual

events are not considered, the possible correlations between them cannot be incorporated into

the model. This includes correlations in the spike time of neurons, which can arise due to

the shared recurrent inputs within the network. This phenomenon can amplify fluctuations in

network activity as a spontaneous increase in activity can lead to a temporary rise in recurrent

input, which further fuels the increased activity. In order to capture such effects as correlations

and fluctuations, rate models must consider the finite-size deviations from the mean-field [25,

28, 27, 159]. These effects are deviations from the population mean and become negligible in

the limit of infinite size N .

Another interesting feature missing from mean-field approximations is the effect of connec-

tivity motifs in the network. The local structure of the connectivity at the level of a few neurons

has been shown to significantly condition the statistics of neuronal activity and its effects are

thought to support complex computation at the network level [79, 170].

2.3.5. Fitting inaccuracy

Since the power law activation function of neurons approximates the theoretical stationary firing

rate of the LIF neuron, the accuracy of the SSN prediction is limited by its goodness-of-fit.

Although the power law provides a good approximation of the Φ function (Eq. 1.3), even minor

deviations can be amplified through the effect of recurrent connections. If the firing rate is

over/under-estimated, the resulting recurrent inputs to both populations will also be modified,

leading to a recursive error propagation. The amplitude of the error depends on the domain over

which the FI curve is fitted. In order to maximize accuracy, the fit should be made locally in

the range where the network activity will be studied (Fig. A.7). In particular, the accuracy of

the power law fit deteriorates when the range considered includes the linear high-input regime

(Fig. 2.1).
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2.4. Biologically realistic network parameters

2.4. Biologically realistic network parameters

2.4.1. Firing rates

In this work, we restrict our analysis to the low firing rate range of 0-10Hz. This is the range

of firing rates that is typically recorded in vivo across various brain regions and species [110,

143, 69, 59, 84, 175, 149, 12]. It should be clarified that this does not ignore the fact that

firing rates can reach much larger values than 10Hz, but such situations mostly fall outside of

the context of this study as the mean-field network model operates at the steady state and does

not distinguish individual neurons. In the case of transient response, the recorded firing rates

can reach values far beyond 10Hz, but this increase does not last more than a few tens of ms

[64, 53, 59]. Such sharp responses should not be considered in a steady state network as they

can result from dynamic properties of the network in response to an abrupt perturbation. They

can be caused as the system transitions from one equilibrium point to another and overshoots

the target. Similarly, the observation of exceptionally high firing rates over a short time window

can reflect a synchronization event in response to a perturbation. For instance, with a 10ms

resolution, an event that can consistently trigger the emission of a single spike will result in

a punctual 100Hz anomaly regardless of the baseline firing rate. Such correlative effects are

outside the scope of mean-field models.

Firing rates beyond the 0-10Hz range can also be observed when considering the characteris-

tics of individual cells [69]. This can occur even if all neurons do effectively fire at a rate lower

than 10Hz, due to the stochastic nature of the Poisson process leading some cells to randomly

emit a higher number of spikes over the recording time window. Beyond the statistic fluctu-

ations of spike trains, it has been observed that neurons within a population can fire at vastly

different firing rates [78, 125] following a long-tail distribution approaching a log-normal curve

[149]. This phenomenon can be caused by the heterogeneity in the input to neurons, leading

the most highly stimulated neurons to fire at much higher rates than the population average.

Similarly, a diversity of cell types associated with different physiological properties can result

in heterogeneity in the firing patterns [41]. Nevertheless, even in experiments that report high

heterogeneity in single-cell firing patterns, the population averages still appear to fall within the

0-10Hz range [149]. Since the mean-field model does not deal with the fine structure of the

network but only considers the average behavior, it is justified to focus on this range of firing
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2. Rate model approximation of LIF networks

rates.

It should be mentioned that restricting our study to the low firing rates provides two substan-

tial advantages. Firstly, the FI curve remains in the supralinear region (see Fig. 2.1). Secondly,

the recurrent noise remains limited, which facilitates the analytical study of the SSN model.

Nonetheless, the SSN framework is not intrinsically limited to the analysis of low activity

regimes, as long as the FI curve is appropriately fitted and the recurrent noise is accounted for.

2.4.2. Connection probability

In the rate model, the effective connectivity is determined by population-wise connectivity pa-

rameters J . They depend on three factors: the number of neurons in a population, the strength

of individual synapses, and the probability of connection for a pair of neurons.

In order to characterize the connectivity in an E-I network, four parameters must be deter-

mined: pEE , pEI , pIE , and pII . The parameter pXY is the pair-wise probability that a neuron

in population Y projects to a neuron in population X . As a target network, we consider layer

2/3 of the mouse V1 region. This choice is only motivated by the fact that this brain region is

the focus of much research and is therefore well documented in the literature. In particular, we

use the Allen Institute Synaptic Physiology database [6]. The data compiled in this database is

acquired through octopatching, in which 8 different cells are patched simultaneously to probe

56 candidate synaptic connections. When one of the cells is driven to spike, the response of the

other 7 cells is recorded, and the cells that respond to the spike (EPSP or IPSP) are reported

to be connected to the spiking neuron. In the database, layer 2/3 comprises four cell types:

Pyramidal, PV, SST, and VIP neurons. In a 2-population E-I network, we agglomerate all in-

terneurons (PV, SST, and VIP) into a single I population. The resulting connection probabilities

are given in Table 2.1.

pEE pEI pIE pII

6.5% 20% 27.5% 10%

Table 2.1.: Connection probabilities between populations E and I collected from the Synaptic Physiology database

of the Allen Institute [6] for Mouse V1 layer 2/3.
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2.4.3. Synaptic strength

The next step in determining the effective connectivity JXY of the network is to obtain the

strength of the synaptic connection jXY in a pair of connected neurons. For this, we use again

the synaptic physiology database of the Allen Institute [6]. During the octopatching measure-

ments, different features of the Post Synaptic Potential (PSP) are recorded. We focus here on

three: The mean peak amplitude (APSP ), the mean rise time (tR), and the mean decay time

constant (τD). These three parameters, along with the synaptic transmission delay D, can fully

characterize the average waveform of a single PSP:

PSP (t) =


V0 , if t < D

V0 +
APSP

tR
(t−D) , if D < t < tR +D

V0 + APSP e
− t−tR−D

τD , if t > tR +D.

Here, V0 is the resting potential and t is time such that the presynaptic spike occurs at t = 0.

Since the only input received by the neuron in this experiment is from the synaptic connection,

we can characterize it as a function of the PSP signal using the LIF equation (Eq. 1.1)

Isyn (t) =
dV

dt
+

V − V0

τ
.

In the static mean-field approximation, the temporal evolution of the synaptic signal is irrelevant

and we can simply characterize the synaptic strength with the time-independent overall change

in potential caused by a single spike (
∫
Isyndt = jXY ). From this, the synaptic strength is given

by

jXY =

∫ ∞

0

(
dV

dt
+

V − V0

τX

)
dt = (V0 − V0) +

∫∞
0

(V − V0) dt

τX
= APSPXY

tRXY
/2 + τDXY

τX
.

EE EI IE II

APSP (mV) 0.102 -0.362 0.465 -0.53
tR (ms) 3.8 6.6 3.4 5.8
τD (ms) 26 145 25 88

Table 2.2.: Properties of the PSP collected from the Allen Institute database [6] for Mouse V1 layer 2/3.
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Neuronal parameters τ (ms) V0 (mV) Θ (mV)
Excitatory population 20 -75.7 -36.4
Inhibitory population 10 -72.9 -35.2

Table 2.3.: Electrophysiological properties of the E and I neurons collected from the Allen Institute database [6]

for Mouse V1 layer 2/3.

It is the area under curve of the PSP divided by the membrane time constant of the postsynaptic

neuron. The contribution of τX can be interpreted as the pull that the synaptic input must over-

come to elicit a PSP in the postsynaptic neuron. Therefore, the stronger the leak, the stronger

jXY must be to achieve the observed change in the postsynaptic potential.

The membrane time constant τ , the resting potential V0, and the firing threshold Θ can be

obtained from the Cell type database of the Allen institute [6] (Table 2.3). We use the difference

between the threshold and resting potentials to rescale the synaptic weights jXY . With this, the

resting potential of the LIF can be set at 0 and the firing threshold at 1mV. Similarly, we set

the reset potential after spiking at the resting potential VR = V0 =0mV.

2.4.4. Network size

The last parameter we need to characterize the effective population-wise connection strength is

the number of neurons in each population. In the SSN framework, we assume that a network

consists of populations of neurons which share a similar external input and connect together

with a homogeneous connection probability and strength. All connections originating from

outside this circuit are considered to be feedforward input. In biological circuits, it is diffi-

cult to determine what can constitute a single network since the brain exhibits a high degree

of complexity and does not consist of well-separated circuits. Nonetheless, the analysis of

cortical regions where projection columns can be anatomically identified leads to a consistent

order of magnitude for network sizes (see section A.7). Overall, experimental data supports that

NE = 3000 and NI = 1000 neurons constitute a realistic size for a homogeneous E-I network.

This network size corresponds to a fundamental functional network unit such as a minicolumn

found in diverse cortical regions [101, 123, 45, 63, 171].

Given the number of neurons, the connection probabilities (Table 2.1), and the strengths of

individual synapses (Table 2.2 and Table 2.3), we can define the population connectivity of the
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JEE JEI JIE JII

0.672 13.2 23.7 11.8

Table 2.4.: Effective population-wise connectivity parameters for 2D network of the mouse V1 layer 2/3 cortex

derived from the Allen institute database [6], the connection weights are given in mV.

mouse V1 cortex in layer 2/3 following

JXY = jXY pXY NY

= APSPXY

tRXY
/2 + τDXY

τX (ΘX − V0X)
pXY NY ,

where the normalization by (ΘX − V0X) is used such that the LIF reset and threshold can be set

to 0 and 1 respectively without affecting the dynamics. The resulting connectivity parameters

are given in Table 2.4.

2.4.5. Temporal constraints

Although the static SSN assumes that the system is at steady state, this assumption can be too

limiting to model biological neural systems as only dead brains display time-invariant activity

patterns [98]. The steady state framework can however be applied in situations where the rate

dynamics evolve on sufficiently slow timescales to assume that the network operates at the

equilibrium state.

In the case of an abrupt perturbation, a biological neural network will undergo a transient

response on a timescale of approximately 20ms [64]. At the same time, in vivo recordings of

multiple cortical areas have reported autocorrelation on much slower timescales, in the order of

hundreds of ms [37, 36, 40]. This discrepancy can be explained by the interplay of different

timescales. On the one hand, the fast intrinsic timescales of the network (τPX
) are responsible

for the dynamics observed upon sudden changes and drive the system towards its equilibrium.

On the other hand, slower dynamics can drive the network while it maintains its state near

equilibrium. For instance, if the feedforward input to the network evolves on timescales much

slower than the intrinsic time constants (τPX
), the network dynamics will maintain the rates

at equilibrium throughout the dynamic trajectory of the external input. Similarly, changes in

excitability due to neuromodulation or adaptation can be modeled as a slow change in the steady

state network parameters, while the rate dynamics fulfill the static SSN equation. Overall, the
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steady state assumption is not limited to strictly static networks. The steady state SSN is suitable

for analyzing processes that unfold over slow timescales.

2.4.6. External input

Finally, the characteristics of the external input must be determined. As previously mentioned,

the external input is assumed to be white noise with a mean µext and a standard deviation σext.

Regarding the mean input, we leave this as a free parameter so the network firing rates are

studied as a function of the external input. The parameter r, which characterizes the relative

external input to the inhibitory and excitatory populations, is by default set to 1. Regarding the

noise level σext, it is set to 3mV/
√
s. This choice is justified by the corresponding FI curve of

the LIF neuron, as this noise level leads to a power law exponent n near 3, which is in line with

the experimentally recorded FI curves [140, 175]. The corresponding power law parameters for

the E and I populations are given in Table 2.5.

Given all parameters of the LIF equivalent mouse V1 layer 2/3 network, the spiking network

can be simulated and compared to its mean-field SSN counterpart (Fig. 2.3). Overall, we find

that the SSN provides an accurate, mathematically tractable prediction of LIF network activity.

Small quantitative discrepancies in the predicted firing rates can be caused by the power law

approximation of the neuronal activation function or the disregard of recurrent noise.

SSN parameters a b n
Excitatory population 1.08× 10−4 -11.1 3.08
Inhibitory population 2.21× 10−6 4.8 3.82

Table 2.5.: Power law parameters of the fitted FI curve of LIF neurons, with the input µ in mV/s and the firing rate

ν in Hz. The resulting curves are shown in Fig. 2.2.A.
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LIF net E

LIF net I

SSN

μext μext
σext σextJIE

JII

JEI

JEE IE

×r
A B

Figure 2.3.: Simulation of the mouse V1 network based on experimentally reported parameters. A:
Schematic diagram of the network architecture. The E-I network consists of two homogeneous popu-

lations recurrently connected with four effective connection strengths. The blue arrows are excitatory

(positive connection strength) and the red arrows are inhibitory (negative connection strength). The

two populations receive feedforward input in the form of white noise. B: The firing rates of the two

populations are determined as a function of the external input µext. The results obtained from simu-

lating a LIF network matches closely the mean-field prediction obtained with the SSN. The E activity

saturates with increasing external input, which illustrates supersaturation (see section 3.2).

33





3. Diversity of network regimes

This chapter is adapted from the result section and the supporting information of the ar-

ticle

Ekelmans Pierre, Nataliya Kraynyukova, and Tatjana Tchumatchenko. "Targeting oper-

ational regimes of interest in recurrent neural networks." PLOS Computational Biology

19.5 (2023): e1011097.

https://doi.org/10.1371/journal.pcbi.1011097

In this chapter, I study diverse activity regimes accessible to the SSN. For this, I consider two

populations (E-I) with their respective power law activation function and with a focus on the

0−10Hz firing rate range. While changes in the connection parameters JXY are allowed com-

pared to the values derived from the mouse V1 network (Table 2.4), biological verisimilitude is

maintained by imposing that all effective connection strengths remain within the same range.

3.1. Inhibition Stabilized Network

In a neural network with excitatory neurons, recurrent connections can lead to a positive feed-

back loop, leading to runaway dynamics. As excitatory activity increases, the recurrent E→E

feedback grows stronger and drives further increase in excitatory activity. In the absence of

inhibition, this mechanism poses a limit to the level of stable activity a network can achieve.

Considering a 1-population system of excitatory neurons with an activation function fE

τPE
ν̇E = fE (JEEνE + µext)− νE,

the linearized system around a fixed point follows

˙δνE =
f ′
EJEE − 1

τPE

δνE +
f ′
E

τPE

δµext.

Since the population time constant τPE
is positive by definition, the system becomes linearly

unstable when

f ′
EJEE > 1. (3.1)
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μext
σext

JEEE

Figure 3.1.: Instability in the 1D subnetwork. In the absence of recurrent inhibition, the excitatory network is

only stable until a point where excitatory feedback is sufficient to amplify perturbations and lead to

runaway dynamics. Higher excitatory activity can only be dynamically unstable (dotted line).

In the SSN, the activation function is given by the power law (Eq. 2.1), such that f ′(x) =

na
1
nν

n−1
n . The stability condition for the 1D network is then an upper limit on the excitatory

firing rate:

νE <
1

(JnE
EEn

nE
E aE)

1
nE−1

. (3.2)

Beyond this level, the fixed point is unstable and perturbations can lead to an unbound self-

feeding growth of the excitatory activity (Fig. 3.1).

In the case of an E-I network, high levels of excitatory activity can be sustained thanks to the

recurrent inhibition which prevents runaway dynamics [181, 131]. In such cases, the system

is in the Inhibition Stabilized Network (ISN) state. For a neural network, the benefits of high

recurrent feedback excitation are to amplify feedforward signals [105, 104] and ensure a ro-

bust response despite deterioration of incoming signals [152, 103, 16]. In Inhibition Stabilized

Networks, recurrent inhibition allows such high gains by ensuring the stability of the system.

The Paradoxical Effect is a feature of the ISN and was first characterized in models of brain

rhythms [180, 181]. It was observed that the E and I populations oscillate in phase when an

oscillating external drive only targets the inhibitory neurons. This phenomenon was paradox-

ical because a phase opposition was expected, where the excitatory activity would be weakest

when inhibition is strongest. This phenomenon has also been confirmed experimentally where

the theta rhythm of pyramidal cells is in phase with interneurons [168]. Similarly, optoge-

netic studies have demonstrated a paradoxical response of inhibitory neurons whose activity

decreases in response to direct stimulation in multiple brain regions [154]. The Paradoxical
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3.1. Inhibition Stabilized Network

Effect can be defined as a decrease of the inhibitory firing rate as its external input increases:
dνI

dµext I
< 0. For a 2-population E-I system with activation functions fE and fI for each popula-

tion, the linearization around a fixed point is [115]

δνE = f ′
E × (JEEδνE − JEIδνI + δµextE)

δνI = f ′
I × (JIEδνI − JIIδνI + δµextI) ,

which leads to the following response upon change of external input

δνE
δνI

 =

1 + JIIf
′
I −JEIf

′
E

JIEf
′
I 1− JEEf

′
E

f ′
EδµextE

f ′
IδµextI


| − TM|

. (3.3)

Where | − TM| is the determinant of the matrix

1− JEEf
′
E JEIf

′
E

−JIEf
′
I 1 + JIIf

′
I

 .

If the fixed point around which the system is linearized is stable, | − TM| must be posi-

tive [115]. Since the eigenvalues of the matrix M characterize the stability of the fixed point

(Eq. 2.8), the eigenvalues λ1, λ2 of M must have negative real parts if the fixed point is stable.

In that case, their product is positive and |M| is positive. Since T , is a diagonal matrix of pos-

itive values (the time constants) and M has two dimensions, | − TM| is positive for a stable

steady state. This also holds in higher dimensions d > 2 as | − TM| = (−1)d
∏d

i=1 τPi
λi,

which is always positive if all Re (λi) < 0 (following the complex conjugate root theorem).

Around a stable steady state, the Paradoxical Effect condition ( dνI
dµext I

< 0) is equivalent to

f ′
EJEE > 1 (Eq. 3.3), which is the condition at which the excitatory subnetwork is unstable. The

Paradoxical Effect is therefore a signature of the inhibition stabilized state of an E-I network. It

should be pointed out that the E activity necessarily decreases as the I population is stimulated

(−f ′
If

′
EJEI is always negative), and it is this suppressed excitation that can lead to the decrease

of I activity. The Paradoxical Effect and the instability of the E subnetwork occur strictly

under the same condition in the 2-population network with constant synapses. This is not as

straightforward in networks with plastic synapses [190] or networks consisting of more than
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Paradoxical effect

LIF net E

LIF net I

SSN

Figure 3.2.: Demonstration of the Paradoxical Effect in an Inhibition Stabilized Network. The paradoxical

effect is the decrease of inhibitory activity as the inhibitory population is specifically stimulated. In

order for the Paradoxical effect to occur, the system must be in the inhibitory stabilized state, so the

excitatory activity must be brought sufficiently high. On the left side of the figure until the vertical

dashed line, both µextE and µextI are increased to reach this point. Beyond the vertical dashed line,

only the external input to the I population is increased, which results in a reduced I activity (see inset)

until the E firing rate drops below the ISN threshold. The decrease in I activity is small because it

operates close to the onset of the ISN.

two neuronal populations [152] (see section A.8).

In spiking network simulations, we can predict when the system is in the ISN state by using

the condition on the excitatory firing rate derived in the SSN (Eq. 3.2). Once the system is

in a state where the E subnetwork is unstable, we can demonstrate the paradoxical effect by

selectively stimulating the inhibitory population. Using the parameters derived for the mouse

V1 network [6], we find that the E subnetwork becomes unstable when νE is larger than 27.5Hz.

That activity level is difficult to reach in this network because the E firing rate tends to plateau

unless the feedforward input is strong and primarily targeted at the E population, r ≪ 1 (see

Fig. 2.3 or Fig. A.9.B). Furthermore, such high activity levels are beyond the 0-10Hz range

over which we fit the LIF FI curve, making the SSN approximation much less accurate. It

appears the considered V1 network does not operate in the ISN state for realistic activity and

input levels. In order to enter the ISN at lower firing rates, the gain JEE must be increased.

Here, we impose that the ISN threshold occurs at νE = 1.5Hz and find JEE must be increased

to 4.75mV. With this adjusted network, we can probe the Paradoxical Effect, and find that the

LIF spiking simulation precisely matches the rate model prediction (Fig. 3.2).

The Inhibition Stabilized state is an important feature of the SSN since it characterizes its

stability. Because of the supralinear activation function of the E population, recurrent excita-
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3.2. Supersaturation

tion can induce a strong positive feedback loop which causes instability. As long as the ISN

threshold is not crossed, the E subnetwork is not unstable and the 2D network is guaranteed to

be stable (Eq. 2.10 and Eq. 2.9). Once the threshold is crossed, however, the network can only

be stabilized through the control of recurrent inhibition. In that case, the stability of the system

can still be broken if the dynamic properties of the network (τPE
, τPI

) can amplify the E positive

feedback faster than the I stabilizing feedback (Eq. 2.10).

3.2. Supersaturation

While the activity of a neural network is typically driven up by its external drive, the response

of a neural network to its external drive can show a range of nonlinear behaviors [31]. The sus-

ceptibility to external input, introduced in [177], characterizes the relative change of excitatory

firing rate to relative changes in external input:

δ =
dνE
dµext

µext

νE
.

The susceptibility δ is defined around a fixed point and provides a local power law description

of the relationship between νE and µext:

νE = ν0
E

(
µext

µ0
ext

)δ

.

The response of the network to external input is supralinear if δ > 1 and sublinear if 0 < δ < 1.

In the case where the response is sublinear, the response is saturating, since further increments

of µext lead to diminishing increases of νE . For δ = 0, the network is fully saturated as the

E population is impervious to the external drive. Finally, when δ is negative, the E population

is suppressed by feedforward input. This phenomenon of decreasing E activity in response to

increase in external input ( dνE
dµext

< 0) is generally referred to as supersaturation [39].

This phenomenon has been widely observed in the visual cortex [39, 183, 100, 133]. In mouse

V1, for instance, a substantial number of pyramidal neurons show reduced firing in response

to enhanced stimulus contrast [146], while the average activity of thalamic neurons - primarily

targeting V1 neurons - is an increasing function of the stimulus contrast [138]. Therefore, E

neurons can be suppressed despite the increase in external input.

In the SSN, the network has been shown to have a supersaturating regime if r > JII
JEI

[4, 134].
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Using the linearized system (Eq. 3.3), the supersaturation condition dνE
dµext

< 0 yields

f ′
E (1 + f ′

I (JII − rJEI))

| − TM|
< 0,

which does require r > JII
JEI

if the considered fixed point is stable (| − TM| < 0) and the

neuronal activation functions are monotonically increasing (f ′
X > 0). Using the power law

activation function f ′
X = a

1
nX nXν

nX−1

nX
X , the supersaturation condition becomes a condition on

the inhibitory firing rate [4]

νI >
nI−1

√
1

aI (nI (rJEI − JII))
nI
. (3.4)

Supersaturation occurs because of recurrent inhibition. If the direct effect of the external

stimulation on the E population is weaker than the increased suppression due to the external

stimulation on the I population, an increase of feedforward input to the network will lead to

a net reduction of input to the E population. Due to this, the existence of supersaturation is

primarily controlled by the r parameter which characterizes the relative strength of feedforward

inputs to both populations.

The existence of stable supersaturation in the SSN is intrinsically linked to the nonlinearity of

the neuronal activation function. Without this nonlinearity, the supersaturation condition would

be independent of the network activity. In that case, νE would be steadily decreasing with µext,

inevitably leading to negative firing rates. For this reason, the Balanced State cannot support

supersaturation: a negative slope is synonymous with negative rates. The nonlinearity of the

SSN allows the firing rates to grow until the network reaches the point where supersaturation

occurs.

3.2.1. Modulation of the peak E firing rate

Recent work [155] compared the responses of LIF and SSN models, pointing out that the peak

E activity in supersaturating spiking networks is small, and in particular, it is smaller than the

SSN peak. As shown in Fig. 3.3.A, the peak firing rates obtained with the two methods are in

agreement.

Furthermore, it is possible to control the height of the E firing rate peak in both networks

such that it can be made arbitrarily high. We begin by analyzing how the value of maximal E
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Figure 3.3.: The SSN-derived condition for supersaturation is confirmed in a LIF spiking network. A: In the

supersaturating regime, the E firing rate decreases with increasing external input µext. In this network,

the SSN predicts that both rates grow until νI reaches 0.65Hz. Beyond that point, the E firing rate

decreases and eventually reaches 0. This prediction is confirmed in the LIF spiking neural network. B:
Modulation of the peak E activity. By simultaneously modifying r, JIE and J−1

EI by a common factor,

the amplitude of the E curve can be arbitrarily increased.

firing rate depends on SSN parameters for supersaturating networks. A characterizing property

of the maximal E firing rate νE is that it satisfies dνE
dµext

= 0. This occurs for νI = (aIn
nI
I (JEIr−

JII)
nI )

− 1
nI−1 (Eq. 3.4), with (JEIr − JII) > 0. Substituting νI in Eq. 2.2, we get

a
− 1

nE
E ν

1
nE
E + (

JIE
r

− JEE)νE =
1

r
(aInI(rJEI − JII))

− 1
nI−1 (1− 1

nI

)− bE +
bI
r
. (3.5)

The solution of Eq. 3.5 corresponds to the maximal E firing rate in the supersaturating activity

regime. To increase the E firing rate peak, we can tune r, JIE , and JEI . Specifically, by

decreasing r while adjusting JIE and JEI such that the terms JIE/r and JEIr remain constant,

we can specifically raise the right-hand side of the equation as 1/r increases. If JIE/r − JEE

is positive, the left-hand side of the equation is a monotonically increasing function of νE , and

increasing the right side therefore leads to increases of µE to satisfy the equality.

This method assumes that the left hand side of Eq. 3.5 is an increasing function of νE (i.e.

JIE/r− JEE > 0). In that case, the peak of the excitatory activity can be increased indefinitely

(Fig. 3.3.B). On the other hand, if JIE/r − JEE is negative, the peak of supersaturation is

bounded. This occurs for supersaturating networks for which det J is negative, as this leads

to JIE/r < JEE . The peak of supersaturation is therefore bounded, and decreasing r can lead

to an unstable situation where no steady state exist (see section 3.4). On the contrary, in the

situation where det J is positive and r > JIE
JEE

, the peak can be modulated until the point where

the peak splits into two branches and any firing rate can be stabilized (see Fig. 3.5.B).
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3. Diversity of network regimes

3.3. Bistability

One of the most prominent experimentally recorded neural activity features in vivo is the net-

work’s ability to switch between higher and lower firing levels. One example is spontaneously

alternating intervals of tonic firing and silence observed across different cortical areas [84].

Another example is the sustained firing rate in the prefrontal cortex after stimulus withdrawal

during decision-making tasks, which is hypothesized to represent short-term memory [58, 7].

The coexistence of multiple activity states can be explained theoretically by the fact that the

network equations can admit multiple solutions for a given set of parameters. In particular, if

two stable states coexist, the system is bistable and can sustain its activity in either of the two

states for the same level of external input. In the situation where a bistable network can sustain

its high activity level in the absence of feedforward input, it is said to have persistent activity.

If multiple stable states coexist in a network model, a sufficiently large perturbation can drive

network activity away from its current state towards another attractor.

Bistability and persistent activity have been shown to be realizable in balanced networks,

using additional sources of nonlinearity such as synaptic plasticity [118] or complex synaptic

weight distributions [91]. In the SSN, bistable networks can be obtained without the need of

additional ingredients [95], as the neuronal activation function already is a source of nonlinear-

ity.

Unlike supersaturation or the ISN, bistability cannot be delimited by a simple tractable con-

dition on network parameters. It is characterized by the fact that the characteristic function F

(Eq. 2.4) admits multiple zeros which fulfill Eq. 2.7. The search for bistability cannot be per-

formed analytically from F without numerical methods. We can use the conditions presented

in [95] as a starting point to guide the search for bistability in biologically realistic spiking

networks. The multistability conditions derived in [95] are necessary but not sufficient to the

existence of multistability, and are derived under restrictive assumptions on the power law pa-

rameters (aE = aI = 1, bE = bI = 0, nE = nI ∈ N). Nonetheless, they provide a helpful

starting point from which the parameters can be fine-tuned. One such example is shown in

Fig. 3.4.

The LIF network simulation confirms the SSN-predicted bistability (Fig. 3.4.A): the network

can sustain either low activity or high activity for external inputs in the 2−4mV/s range. Al-

though the SSN rate model is deterministic, the spiking network simulation is not. Due to the
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A B

Figure 3.4.: The SSN-predicted bistability is confirmed in LIF spiking network. A: Bistability is characterized

by the coexistence of two stable steady states for the same level of external input µext. Here, the

bistability window predicted by the SSN is the range of external inputs between 2 and 3.5mV/s.

The rates of the LIF simulation are in agreement and bistability is confirmed too. The exact location

of the bistability window differs slightly between the SSN and the spiking simulation. This can be

caused by inaccuracy in the power law approximation of the LIF activation function as the edges of

the window are sensitive to changes in parameters (Fig. A.7). Furthermore, the bistability window

varies across realizations of the spiking network simulation (see inset) due to the stochastic nature

of neuronal spiking which can cause spontaneous transitions if the system is near its edge. B: The

location and width of the bistability window can be controlled through the membrane time constant

τE , which characterizes the excitability of the excitatory population. For sufficiently slow τE , the

network supports persistent activity, where it maintains elevated firing rates in the absence of external

input. In the SSN, a change of τE translates to changes in the a, b, and n parameters (Fig. 2.2).
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stochastic nature of the neuronal activity, fluctuations in firing can cause spontaneous transitions

between steady states (shown in Fig. 3.4.A, inset). The width of the bistability window predicted

in the mean-field rate model does not account for the fluctuation-driven switches which lead to

different switching points in every realization of the spiking network simulation. Such sponta-

neous transitions between the up and down states have not been reported in the bistable balanced

network with short-term plasticity [118]. This is because the fluctuations driving spontaneous

transitions are finite-size effects [159], and the switching probability decreases with network

size.

It must be noted that LIF simulations of bistable networks can easily lead to synchronization,

and result in activity regimes where whole populations spike together to generate population

spikes [18, 24] (see Fig. A.8). This violates the assumption of asynchrony and irregularity

in the mean-field approach. In order to avoid such effects, synaptic delays and exponential-

decay synapses are used to distribute the synaptic input in time (section A.1). These synaptic

characteristics only affect the temporal properties of synaptic transmission and therefore do not

affect the mean-field steady state.

Interestingly, increasing the excitatory membrane time constant τE broadens the window of

bistability (Fig. 3.4.B), making bistability more robust to spontaneous fluctuations and easier to

locate in phase space. As τE increases, the bistability window shifts towards lower feedforward

input which can ultimately lead the bistability window to intersect the vertical µext = 0 axis,

allowing for persistent activity.

3.3.1. Condition on the multiplicity of solutions

As shown in [95], the two-dimensional SSN equation can be rewritten as a single characteristic

function, where the steady states of the system correspond to zeros of F (Eq. 2.4). The number

of zero crossings of the characteristic function corresponds to the number of fixed points of the

system. Since F is a continuous function, its number of zero crossings only changes when two

solutions merge into one or when one solution splits into two. This corresponds to the situation

when extrema of F fall on zero: F(µE) = 0

F ′(µE) = 0.

(3.6)
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Here, F ′ denotes the derivative of F with respect to µE . This condition corresponds to changes

in the number of solutions. This approach can be used to delimit the range of bistability or ab-

sence of solutions (see section 3.4). All parameter sets contained in the same domain delimited

by these boundaries have the same number of solutions. The number of such steady states can

be obtained by determining the number of zero crossings of F .

Interestingly, since the condition F ′(µE) = 0 is equivalent to |TM| = 0 it matches the

onset of instability (Eq. 2.9). This shows that the boundary at which the number of solution

changes are edges of instability where stable and unstable fixed points are merging or splitting.

Similarly, the condition F ′(µE) = 0 can be interpreted as points where the firing rate vs external

input curve, ν (µext), has a vertical tangent since F = 0 and F +F ′δµE = 0 (νE and νE + dνE

are solutions).

It is also worth noting that the ISN is intrinsically linked to the emergence of multiple solu-

tions since |TM| = 0 requires that f ′
EJEE > 1 (Eq. 2.9). Interestingly, the inhibitory popu-

lation cannot support multiple solutions in the absence of excitatory activity (f ′
E = 0 leads to

|TM| > 0, see Eq. 2.9), whereas the E population alone can (see Fig. 3.1).

The network mechanisms leading to bistability can be understood from the effect of the

ISN (Fig. 3.5.A). The E activity grows with the external input until the network reaches the

point where recurrent excitatory feedback can support itself without relying on the feedforward

input to grow. At this point, the curve bends (Eq. 3.6) and the unstable branch progresses with
dνE
dµext

< 0. Eventually, if det J > 0, the cross-population interaction will lead to sufficiently

strong recurrent inhibition to cause another bend as further growth will require stronger external

input. After this point, the upper branch of the bistability can supersaturate if the recurrent

inhibition is sufficiently strong (see section 3.2).

Incidentally, this mechanism where the excitatory activity builds up until recurrent inhibition

catches up to stabilize it at a higher level explains how the excitatory membrane time constant

τE affects the width of the bistability window. Increasing τE increases the excitability of the E

population, which translates into lower values of the power law parameter bE (see Fig. 2.2). The

E population starts firing for lower levels of external input and has a larger head start before the

recurrent inhibition can catch up, leading to a more developed bistability window.

Finally, there also exists bistable systems for which the unstable branch never merges with

the upper stable branch (see Fig. 3.5.B which does not have a critical point IV, as in Fig. 3.5.A).

In that case, once the network is in the up state it cannot be pushed to collapse towards the down
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Figure 3.5.: Breakdown of a bistability curve. A: Bistability can be broken down into 5 regimes. (I) For low

E rates below the ISN, the firing rates increase with the external input. (II) The slope of the E curve

grows until it reaches a point where its tangent is vertical. This happens when |TM| is 0, which

requires that the system is beyond the ISN threshold. Beyond that point, the recurrent inhibition can

no longer stabilize the network. (III) The unstable part of the bistability grows for decreasing inputs.

(IV) Due to the supralinear growth of the inhibitory population, the I activity could reach a point where

it can stabilize the system and the curve shows another bend characterized by a vertical tangent. (V)

The upper branch is stabilized by inhibition and can eventually supersaturate if r > JII

JEI
. B: In cases

where JIE

JII
with det J > 0, the unstable branch and the upper branch are separate, so no point IV

exists as in panel A (see Eq. 3.8).

state by tuning down its input. Instead, it would require a sudden perturbation to push it out

of equilibrium so its activity crosses the unstable separatrix. In such cases, the stable branch

keeps rising as the external input diminishes since recurrent excitation must compensate for the

feedforward suppression. If the upper branch never collapses, we have limµext→−∞
dνE
dµext

< 0

for the up branch and limµext→−∞ νE = 0 for the down branch. In order for the up branch to

have a non-zero fixed point in the limit of infinite external suppression, the F function (Eq. 2.4)

must have two zeros with µE > bE , corresponding to the unstable branch and the up branch.

With det J > 0, these two crossings are separated by a maximum µ∗
E of F (section 3.4). The

two fixed points are guaranteed to exist as long as the maximum F (µ∗
E) remains above 0. The

maximum µ∗
E must satisfy F ′(µ∗

E) = 0:

JEEf
′
E
∗
=
(
JII + f ′

E
∗
det J

)
f ′
I
∗
+ 1.

In the limit of µext → −∞, with f ′
E
∗ ≫ 1, the maximum of F becomes a simple condition on

f ′
I
∗

f ′
I
∗
=

JEE

det J
.
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Since the limit of f ′
I
∗, and therefore the limit of µI(µ

∗
E) remain constant as µext tends to −∞,

the limit of f ′
E
∗ is given by Eq. 2.5

f ′
E
∗
=

JII − rJEI

det J
µext. (3.7)

By replacing Eq. 3.7 in F , and with f ′
I
∗ constant, we get

lim
µext→−∞

F (µ∗
E) =

µextJEI

det J
(JIE − rJEE) . (3.8)

For networks with det J > 0 satisfying the supersaturation condition, the local maximum of F

can be above 0 for arbitrarily strong feedforward suppression. Meanwhile, F tends to −∞ in

the limit of large µE . Therefore, the F function has at least one solution F(µE) = 0 such that

bE < µ∗
E < µE and F ′(µE) < 0. For systems with positive det J , the system is guaranteed to be

bistable for sufficiently strong negative feedforward input if r > JIE
JEE

. While the static stability

condition is satisfied (Eq. 2.7 or |TM| > 0), the stability condition linked to the population

time constants (Eq. 2.10) will eventually break as excitatory firing rates keep growing. In the

case where det J < 0, the highest zero crossing of F is unstable (Eq. 2.7, section 3.4) so this

analysis cannot guarantee bistability in the limit of µext → −∞.

3.4. Structural instability

The previous section addressed the cases where a system can admit more than one fixed point,

and in particular multiple stable steady states. Inversely, there exist cases where a network

does not admit a single steady state for a given input level. This phenomenon was shown in

the case of the 1D excitatory network (Fig. 3.1), where the E firing rate grows with increasing

external input until it reaches the ISN threshold (Eq. 3.2), after which the firing rate increases

further for decreasing external inputs. For any external input beyond the ISN threshold, the

network no longer has any fixed point. Beyond that level, the feedback excitation will always

push the activity higher, so no steady state can be reached. While recurrent inhibition has been

shown to stabilize high activity and prevent such runaway dynamics, even 2D networks can

enter conditions where no steady state exists. One such example is shown in Fig. 3.6, where the

E and I firing rates cannot settle on a steady state for a range of external input and instead tend
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Figure 3.6.: Structurally unstable networks do not support a finite activity level for a range of external inputs.
The LIF simulation and the SSN both predict the same fixed points outside of the structural instability

window. Within this range, the SSN does not have a mathematical solution, and the LIF neurons fire at

the maximum rate allowed by the simulation time step. Once the network enters that regime, it cannot

be recovered as it escapes the control of the feedforward input.

to ∞.

Each steady state of the system corresponds to zero crossings of the characteristic F function

(Eq. 2.4). Therefore, to study the cases where no steady state exists, one must study how many

zero crossings the F function has, and when it does not cross zero at all.

Parity of solutions

The number of zero crossings of the F function can be studied through its limits. Assuming

that the FI curves are supralinear (nE > 1 and nI > 1), we get:

lim
µE→−∞

F =∞

lim
µE→+∞

F = lim
µE→+∞

aEJEEµE
nE − aIJEI

(
aE det J

JEI

µnE
E

)nI

+

.

If det J > 0, the second limit tends to −∞. Therefore, the function has at least one zero and

the F function for positive determinants has an odd number of solutions (Mean-value theorem)

[95]. On the other hand, if the determinant is negative, the second term in the µE → ∞ limit

is zero because of the (.)+ operator and the limit tends to ∞. In that case, there is no guarantee

that the system has any fixed solution and the number of solutions is even [4, 95]. Multiple

roots (corresponding to Eq. 3.6) are counted separately in this calculation.

48



3.4. Structural instability

Since networks with positive det J have an odd number of fixed points, such networks will

always have at least one steady state. In the case where the highest steady state is in the ISN, it

can be unstable if the ratio τPE
/τPI

is low (Eq. 2.10), but will otherwise be stable (Eq. 2.7). In

the case where the determinant is negative, the number of solutions to F(µE) = 0 can be 0. The

number of solutions would still depend on the external input. For sufficiently strong negative

feedforward input, νE = νI = 0 is always a solution (limµext→−∞ F (µext) = 0), and it is stable

(Fig. 3.7, Eq. 2.7, Eq. 2.10).

Similarly, in the limit of strong excitatory feedforward input, for networks with det J < 0,

we can distinguish two cases:

• If the network does not support supersaturation (r < JII
JEI

), no solution exists in the limit

µext → ∞. The function µI(µE) =
aE det J

JEI
(µE − bE)

nE

+ + JII
JEI

µE+µext

(
r − JII

JEI

)
has an

upper bound and is always lower than bI for sufficiently high external input µext. In that

case, the inhibitory population cannot stabilize the excitatory population. If µE passes the

ISN threshold, in absence of recurrent inhibition it will lead to the absence of fixed point.

For sufficiently high external input, all networks which do not support supersaturation

and have a negative J determinant will reach a regime where no fixed point exists (see

Fig. 3.7.D-E).

• If the network supports supersaturation (r > JII
JEI

), the network admits a stable solu-

tion where the E population is silenced in the limit µext → ∞. The characteristic func-

tion evaluated at the firing threshold of the E population yields F (bE) = µext − bE −

JEIaI

(
µext(r − JII

JEI
) + bE

JII
JEI

− bI

)nI

+
, which is negative for sufficiently high external

input µext. At the same time, for a fixed value of µext, we have limµE→−∞ F(µE) = ∞.

Therefore, for sufficiently high external input µext, there will always be a zero crossing

such that µE < bE , which corresponds to a situation where the E population is silenced

by recurrent inhibition (JEIνI > µext). With det J < 0, there must be another unstable

solution with νE > 0 so the number of solutions is even. For networks which have a

negative J determinant and support supersaturation, there is a guarantee that a silent state

can be reached for sufficiently high input. Even if there is a window of moderate external

inputs for which the network does not have a solution, this window is finite Fig. 3.7.F.

The absence of a fixed point for a network is pathological since it can lead to an irrecoverable

transition. Once the network enters the domain where it is structurally unstable and does not
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Figure 3.7.: The 6 different activity regimes of the SSN in the limit of large feedforward input. A B and C

correspond to networks with positive det J , with increasing external input ratios (r) from left to right.

D, E, and F correspond to networks with a negative det J . A: For low ratios of external input r, the

network is silent for strong feedforward inhibitory input and has growing activity for strong excitatory

feedforward input. B: For values of r that support supersaturation, the E activity eventually is silenced

for strong excitatory feedforward input. C: For values of r larger than JIE

JEE
, the network supports

bistability in the limit of strong feedforward inhibition (see Eq. 3.8), where the low state corresponds

to both populations being silent. D: For values of r lower than JIE

JEE
, the system does not support

any finite activity for strong feedforward excitation but has two steady states for strong feedforward

inhibition: a stable state where both populations are silent and an unstable one where both populations

are active. E: For values of r larger than JIE

JEE
, the I population is silent in both steady states for strong

negative µext. F: If r supports supersaturation, the network admits two solutions for strong excitatory

feedforward input: a stable state where E is silent while I is active and an unstable state where both

populations are active.
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3.4. Structural instability

have a fixed point, the firing rates will grow without limit. Even if the external input is then

changed back to a condition that supports a steady state solution, det J < 0 implies that there

is an even number of solutions and that the fixed point with the highest E activity is unstable

(F ′ > 0). This means that regardless of the network regime, there is always an upper separatrix

beyond which the activity is out of the basin of attraction of any stable steady state. Because of

this, a network that enters the domain of structural instability will undergo runaway dynamics.

After this process is initiated, stable activity can only be recovered if the network is moved back

quickly to a condition where the state of activity has not yet escaped the basin of attraction of

any fixed point.

For networks that have a positive J determinant, structural instability can only occur if all

fixed points are in the ISN and population time constants τPX
break the stability condition

(Eq. 2.10). In that case, the positive feedback loop will lead to the same runaway dynamics, but

finite activity can always be recovered by modifying µext to a level where the highest state activ-

ity is below the ISN threshold. This is the case because with det J > 0, the highest zero crossing

always satisfies (F ′ < 0). Therefore, if this fixed point satisfies Eq. 2.10, it is an attractor. Fi-

nally, there always exists a level of feedforward input µext for which the highest zero crossing

of F corresponds to a silent E population (either µext → −∞ if (rJEI − JII) JEE/ det J < 1

-Eq. 3.8-, or µext → ∞ if the network supports supersaturation).

Overall, the absence of fixed points for a given level of feedforward input is a feature of

the SSN and is due to the assumption of an unlimited power law activation function. The

LIF neurons from which the power law is derived do not satisfy this behavior since the FI curve

becomes linear or saturates for high firing rates (Fig. 2.1). In particular, if the FI curve saturates,

the firing rates cannot grow indefinitely and will stabilize to a high value near the saturation rate.

This will be the case if the neurons have a refractory period. In simulations of LIF neurons,

the firing rates are limited by the integration time step dt, which effectively plays the role of

a refractory period. That is because neurons cannot spike between them and the firing rates

cannot rise beyond dt−1. In this context, it must be noted that the effect of structural instability

operates far beyond the domain of validity of the LIF-fitted SSN (ν ≤ 10Hz). Nonetheless,

the SSN analysis of structural instability can highlight conditions where the firing rates will

blow up far beyond the range of experimentally reported firing rates. In biological systems,

such self-sustaining hyperactivity is typically linked to pathological conditions such as seizures

[85, 61].
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3. Diversity of network regimes

3.5. Mapping of regimes

In previous sections, we demonstrated that the SSN framework can be used to locate specific

computational regimes such as supersaturation and the Paradoxical Effect in parameter space

and that the observations derived from the SSN are confirmed in corresponding spiking neural

networks. Since the SSN provides specific conditions for the onset of these operational regimes

(Eq. 3.2, Eq. 3.4, Eq. 3.6), they can be accurately located in parameter space. Here, we focus

on the 2D space of the feedforward input and the I/E external input ratio (µext, r) and illustrate

how the SSN can predict the range of parameters in which diverse network properties occur. In

particular, we focus on two example connectivity matrices J , one whose determinant is positive

and one with a negative det J . We also delimit the input regimes for which the network permits a

balanced limit solution. It must be noted that besides characterizing the number of fixed points

a system has [4, 95], the sign of det J also determines whether the system can have a stable

balanced state (Eq. A.4) or lacks it. In networks where the sign of det J is negative, a balanced

solution can exist with positive firing rates if r > JII
JEI

, but it is unstable [147] (section A.3).

Fig. 3.8 shows the map of feedforward inputs and the corresponding computational regime for

two examples of the connectivity matrix J . Panel A corresponds to the connectivity parameters

from the bistable network shown in Fig. 3.4 with det J > 0. The region where supersaturation

occurs is located in the top right corner since it is limited to be above a critical value of r > JII
JEI

and requires sufficient feedforward input so that the inhibitory activity can reach the supersat-

uration threshold (Eq. 3.4). Similarly, the region where the ISN occurs is mainly located in the

bottom right corner since it requires sufficient feedforward input to reach the required excita-

tory activity. At the same time, it is pushed down by the supersaturating region, preventing its

growth. In particular, for high enough values of the parameter r, the network can never enter

the ISN since the recurrent inhibition prevents the excitatory activity from ever reaching the

point where the E subnetwork would become unstable. The region where bistability is expected

matches the results observed in the spiking network simulation in Fig. 3.4 with r = 1. Inter-

estingly, its edge is located near the onset of the ISN. This can be explained by the fact that the

onset of bistability imposes a stricter condition than the ISN, which takes into account the effect

of recurrent inhibition. Since this network reaches the ISN while the inhibitory activity is still

low, it nearly immediately becomes bistable (Eq. 2.9 with f ′
I ≈ 0). It must be noted that the up

state within the bistable window is necessarily in the ISN. Regarding the domain of validity of
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Figure 3.8.: Mapping the computational states of the SSN model in input space for two representative con-
nectivity regimes. Using the conditions for the onset of the ISN (Eq. 3.2), the onset of supersaturation

(Eq. 3.4), the merge and split of multiple solutions (Eq. 3.6), and the condition for the existence of

a Balanced State limit (Eq. A.4) we can determine where the different regimes occur with respect to

the two feedforward input parameters µext and r. A: The J parameters chosen here correspond to

the bistable network shown in Fig. 3.4 and represents the situation det J > 0. Multiple operational

regimes can coexist since the domain of supersaturation and the ISN overlap. The bistable domain

closely borders the ISN domain since the low-activity branch ends soon after the ISN onset, and the

high-activity branch is always in the ISN. With det J > 0, the network admits a balanced solution if r

is below JII

JEI
, so it is incompatible with supersaturation. B: The J parameters chosen here represent a

situation with det J < 0. Here, the ISN domain is limited because recurrent inhibition cannot stabilize

high excitatory activity unless the parameter r is high. Additionally, a range of external inputs cannot

support a steady state activity, leading to structural instability. With det J < 0, the Balanced State is

necessarily unstable and requires r > JII

JEI
.
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3. Diversity of network regimes

an E-I Balanced State, it is defined and is stable for low values of r but does not exist beyond

r > JII
JEI

.

The connectivity parameters in Panel B correspond to a network with det J < 0. While the

supersaturation region operates the same as in Panel A, the ISN appears to be much less acces-

sible, as a large part of the bottom right corner is occupied by structural instability, where no

steady state exists. Here again, the boundary of the structural instability closely approaches the

boundary of the ISN. This is due to the fact that the E subnetwork is unstable in both regimes,

but in the case of the ISN, it is stabilized through recurrent inhibition. Finally, with det J < 0,

the Balanced State is only defined for sufficiently high values of the parameter r, but it is dy-

namically unstable (section A.3).

3.6. Controllability

One key advantage of the SSN over the mathematically exact Ricciardi self-consistent rate

model (Eq. 1.4) is the simplicity of its mathematical formulation. This makes it easier to ma-

nipulate, make predictions, or design network parameters to achieve a desired effect. Knowing

how the 2D firing rates emerge from recurrent and feedforward connectivity in the SSN allows

us to invert this relation and select external inputs such that they lead to the desired E and

I activity trajectory in the spiking network. This is illustrated in Fig. 3.9, where we target a

complex 2D trajectory by defining dynamic feedforward inputs µextE and µextI . We obtain the

feedforward inputs that result in the desired dynamics νE(t) and νI(t) by inverting Eq. 2.2:

µextE(t) =

(
νE(t)

aE

)1/nE

+ JEIνI(t)− JEEνE(t) + bE

µextI(t) =

(
νI(t)

aI

)1/nI

+ JIIνI(t)− JIEνE(t) + bI .

Fig. 3.9 illustrates how the obtained targeting can lead to a high fidelity between the target

and simulated trajectory. Notably, the obtained timescale of the autocorrelation function of

neuronal activity (as defined in [122]) is around 300ms, which is in line with experimentally

recorded cortical activity [37, 36, 40]. These results indicate that complex dynamic trajecto-

ries evolving on biologically realistic timescales can be accurately captured by the SSN steady

states (Eq. 2.2). It follows that the mapping between the steady states of the SSN and spiking
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Figure 3.9.: A LIF spiking network can be designed to follow a user-defined trajectory by defining a feed-
forward input trajectory using the SSN. A: The spiking network can accurately follow an intricate

arbitrarily defined trajectory in the 2D firing rate space. Given the recurrent connectivity, the SSN

equations can be inverted to return the feedforward inputs which will lead to the desired firing rates.

The small distortion at high rates is due to the recurrent noise, which is not accounted for in the SSN

but raises the FI curve of simulated LIF neurons. B: Time trajectory of the 2D simulated firing rates

alongside the target (Above) and the corresponding 2D feedforward input trajectory (Below).

neural networks provides a valuable approximation even for spiking network dynamics at slow

timescales. Although this approach is guaranteed to provide the values of external inputs for

which the target rates νE and νI are a steady state, if that state is unstable (which does not

depend on the feedforward inputs µextE and µextI), it will not be accessible through a spiking

simulation of LIF neurons. Similarly, if the network is bistable, the LIF simulation can land on

a different equilibrium depending on the history of the network.

We used here dynamic feedforward inputs to move along the activity trajectory to reflect the

control of upstream brain regions. It is equally possible to use the SSN to tune other parameters,

such as the connectivity or power law parameters, to reach any user-defined network state or

trajectory.

3.7. Computational implications

The broad range of nonlinear responses accessible to simple E-I networks of LIF neurons can be

the foundation for diverse signal processing and computations which neural networks execute.

In order to perform complex tasks, systems such as electronic circuits or artificial neural net-

works rely on the nonlinear behavior of their basic components, such as transistors or rectified

linear units [76, 160]. On the other hand, due to their linear response function, E-I balanced

networks are very limited in the computations they are capable of carrying out, and extensions
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3. Diversity of network regimes

of the model have been proposed to permit richer and higher dimensional dynamics [14, 118].

Here, we illustrate the computational capabilities of networks of LIF neurons by demonstrat-

ing that they can robustly perform logical operations. One such example is the XOR operation

which is one of the key computing components of logical circuits and is famously challenging

to implement in a neural network [117]. We find that a supersaturating network can take ad-

vantage of its nonlinear response to approximate a XOR operation on two inputs (Fig. 3.10.C),

as the excitatory activity is weak for low inputs (below threshold activation) and high inputs

(silencing due to recurrent inhibition) but has a clear peak of activity for moderate input. In

order for the network to reach its peak activity, it must receive input from one of its two signal

sources, but not both at the same time. Similarly, one could design an approximate NOT logical

gate using a supersaturating network where the peak activity would be reached for limited input

but would be suppressed for any significant incoming signal.

The sharp transition between low and high activity in bistable networks can also be leveraged

to perform computations. Here, we demonstrate how a bistable network can perform the binary

AND operation on two incoming signals (Fig. 3.10.D). The network is in the down state for

low inputs and can only collapse to the up state if it receives sufficient input, which occurs if

both its input sources are active. Similarly, the same mechanism can be used to perform the

OR operation if the down-up transition can occur for sufficiently low inputs that either of the

two signals could trigger the switch on its own. Another valuable feature of bistable networks,

besides their sharp transition between states, is their ability to retain information about prior

states. Since a bistable network will remain in the up or down state as long as its input does not

escape the bistable window, its activity can serve as binary information storage.

While we only demonstrated how a single E-I network can perform unitary binary operations,

more complex computations can build upon this mechanism by combining multiple such E-I

networks together. In the same fashion, as electronic circuits can perform a wide range of tasks

by associating multiple components with different response properties, multiple E-I networks

with diverse recurrent structures can interact to accomplish a richer repertoire of information

processing. As an example, the association of supersaturation-based XOR and bistability-based

AND operation can lead to the implementation of a bit-wise half adder circuit from LIF neurons

Fig. 3.10.B.

56



3.7. Computational implications

0 2 4 6 8 10
X

1

0

2

4

6

8

10

X
2

0

0.5

1

1.5

2

2.5

Fi
ri
n
g
 r

at
e 

(H
z)

0 2 4 6 8 10
X

1

0

2

4

6

8

10

X
2

0 2 4 6 8 10

0

1

2

3

4

5

6

Fi
ri
n
g
 r

at
e 

(H
z)

X
1

0

2

4

6

8

10

X
2

A B

E1 I1 E2 I2

X1 X2 10

01

00

C D

Figure 3.10.: The nonlinearities in spiking networks of LIF neurons can be used to perform operations, such
as bit-wise summation. A: Schematic representation of the network architecture. Two E-I networks

simultaneously process the feedforward input which originates from two independent external pop-

ulations X1 and X2. The firing rate of each E population is considered as readout. B: If the two

subnetworks perform the XOR and AND operations, the circuit is a half-adder and can execute a

bit-wise summation of the two inputs. The XOR subnetwork determines the last digit and the AND

network determines the first digit. C: The XOR operation can be performed using a supersaturating

network. The E activity has a peak for moderate input level and is low otherwise. D: The AND

operation can be performed by a bistable network. The E activity is low on the down branch and has

a sharp transition to the up branch at the end of the bistability window. Here, we assume the system

is initialized at X1 = X2 = 0 so the possible memory implications of bistability are not considered

(i.e., remaining within the bistability window in either state between signals).
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3. Diversity of network regimes

3.8. Convergence to the Balanced State

We have found that biologically-sized networks can generate diverse nonlinear responses to

external input. Meanwhile, the Balanced State limit implies that network response becomes

linear as network size approaches infinity. How do networks transition from nonlinear to linear

regimes for increasing network size N?

To tackle this question, we rescale the recurrent connections jXY by the factor 1/
√
N as a

function of network size N and increase N from N = 4 × 103 to 5 × 105 while keeping the

connection probabilities fixed, leading to an effective re-scaling of the population-wise JXY by
√
N . This parameter re-scaling follows the convention of the Balanced State theory [185, 186]

and allows us to investigate whether these nonlinear spiking networks converge to the expected

Balanced State and, if so, when and how. In the Balanced State convention, the feedforward

input follows the same rescaling and grows with
√
N . This is because the external input can be

seen as originating from another population located outside the network. The three populations

(E, I, and ext) follow the same scaling where the individual synaptic weights decrease with

network size, but the effective population-wise connection strength does increase with network

size N .

A dynamically stable Balanced State limit can only exist if det J is positive and the fraction

of external input weights r satisfies r < JII
JEI

(see Eq. A.4). In this network convergence study,

we focus on three spiking networks: one supersaturating network with det J > 0 (same con-

nectivity parameters as in Fig. 3.3), one bistable network with det J > 0 (same connectivity

parameters as in Fig. 3.4), and a supersaturating network with det J < 0 (same connectivity

parameters as in Fig. 3.8.B, r=3). Among these three example networks, one does not admit a

Balanced State limit (supersaturation), one supports a stable Balanced State solution (bistable

network), and one does support a Balanced State which is dynamically unstable (det J < 0

with r > JII
JEI

).

We find that in all three cases, the SSN model remains an accurate description of the spiking

network mean activity across different network sizes N (Fig. 3.11.A-C, up to 40 000 neurons).

Beyond this network size, spiking network simulations become increasingly prone to synchro-

nization, which makes the comparison with the SSN impractical. Nonetheless, we verify that

the behavior of the SSN for sizes up to 500 000 neurons still qualitatively and quantitatively

matches the predictions obtained using the Φsc self-consistency solution (Fig. 3.11.D-F, inset).

58



3.8. Convergence to the Balanced State

0 0.25 0.5 0.75

External input
ext

/ N

0

0.5

1

1.5

2

2.5

3

E
 F

iri
ng

 r
at

e
E

(H
z)

SSN

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

External input
ext

/ N

0

1

2

3

4

5

6

7

E
 F

iri
ng

 r
at

e
E

(H
z)

Balanced state
SSN

N=4000

40000

SSN
Net Sim

SSN

0 0.1 0.2 0.3 0.4 0.5

External input
ext

/ N

0

2

4

6

8

10

12
E

 F
iri

ng
 r

at
e

E
(H

z)

Balanced state
SSN

SSN
Net Sim

N=4000

20000

40000

40000

SSN

5x1051x1052x1044x103

A B C

D E F

0 10 20 30 40 50

External input
ext

0

0.5

1

1.5

2

2.5

3

E
 F

iri
ng

 r
at

e
E

(H
z)

10000

20000

40000

Net Sim

N=4000

SSN

Network size

SSN

Figure 3.11.: Convergence to the Balanced State of nonlinear network responses as the network size N in-
creases. Panels A, B, and C show the LIF spiking simulations of three networks at different sizes

N, along with the corresponding SSN prediction. The SSN prediction matches the LIF simulation

even for large network size N. Panels D, E, and F show the same three networks as a function of the

external input before scaling to highlight a possible convergence to the Balanced State limit. The

Balanced State theory assumes that the effective recurrent and feedforward connection strength scale

with
√
N . The SSN matches qualitatively and quantitatively the self-consistency equation Φsc de-

rived from the Ricciardi equation, (Eq. 1.4) (inset). A, D: A supersaturating network with det J > 0.

This network does not support a balanced solution (Eq. A.4). As N grows, the inhibitory suppression

grows stronger and the excitatory activity peak shrinks. In the limit of infinite size, the excitatory

population is permanently silenced. B, E: A supersaturating network with det J < 0. This network

supports a balanced solution, but it is dynamically unstable (Eq. A.4). As N increases, the network

becomes structurally unstable since the stable and unstable branches collide (see Panel B inset) and

leave a gap where no steady state solution exists. In the limit of infinite size, the unstable solution

beyond the gap converges to the balanced limit (dashed line), while the stable solution tends to 0. C,
F: A non-supersaturating network with det J > 0 supporting bistability. This network supports a sta-

ble balanced solution (Eq. A.4). As N increases, the firing rates decrease and the bistability window

shifts to lower external inputs, leading to persistent activity. When the external input is considered

before scaling (Panel F), the width of the bistability window decreases with N. In the limit of infinite

N, the up branch of the bistability will converge to the Balanced State. Still, this convergence can

be remarkably slow. Even for unrealistically large network sizes (up to half a million neurons), the

firing rates are far from the balanced limit (dashed line).
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3. Diversity of network regimes

This verification is important since the SSN is nonlinear in its definition, and we must control

that nonlinearities that remain for large network size N are not specific features of the SSN

model.

We find that the network response can remain nonlinear even for very large network sizes

consisting of up to half a million neurons (see inset). By considering the feedforward input

before scaling (µext/
√
N ) [185, 186], the network response should converge toward a single

linear solution as N grows: the balanced limit (section 1.2.4).

In the case of the supersaturating network (Fig. 3.11.A,D), the balanced limit does not exist,

as it would lead to negative E firing rates. Therefore, in the limit of large network size, the E

firing rate tends to zero. It becomes consistently suppressed as it receives significantly more

recurrent inhibition than feedfoward input, while the inhibitory population is itself at balance

with the external input.

For the network with det J < 0 (Fig. 3.11.B,E), the network exhibits supersaturation for

N = 4000 (see Fig. 3.8.B). However, as N increases, the network enters a region of structural

instability where it has no steady state and the firing rates blow up. The inset shows how this

instability is caused by the collision of the two steady state branches, leaving a gap where the

firing rates are unbound. For this network, one of the mean-field solutions converges to the

balanced limit as N increases (Fig. 3.11.E). However, the Balanced State limit is unstable here,

and it only matches with the unstable mean-field solution (high firing rates part of the branch)

whereas the stable low activity solution tends to zero.

Finally, for the bistable network (Fig. 3.11.C,F), a Balanced State limit does exist and is

stable. However, even though the network response must converge toward it as its size grows,

the convergence can be very slow. Here, we find that the network response is still far from

converging to the balanced limit and remains distinctly nonlinear, with persistent activity, even

for networks of unrealistically large size (up to N = 5× 105).

Overall, our example networks illustrate that for many classes of spiking networks with bio-

logically plausible sizes and connectivity configurations, the activity will escape the predictions

of the Balanced State. Depending on the parameters, the Balanced State might not exist or

be unstable. Furthermore, even when a stable Balanced State solution does exist, it is only

expected in the limit of infinite size N . Convergence to this limit can be slow, meaning that net-

work activity can significantly deviate from this prediction, even for unrealistically large sizes

N . Nevertheless, this phenomenon is especially remarkable in this example since its response
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Figure 3.12.: Quality of the Balanced State convergence depends on the linearity of the network response and
the considered balance criterion. A: Unlike examples shown in Fig. 3.11, networks can converge

to the Balanced State for network sizes in the order of 104 neurons. The speed of the convergence

depends on the connectivity parameters. If a network has a linear response at small sizes (see inset,

N = 4000), the convergence to the Balanced State can occur faster. B: A high degree of E-I balance

does not guarantee that the firing rates conform to the Balanced State. The Balanced Factor (BF)

is the ratio of inhibition and excitation received by neurons in a recurrent network (Eq. 3.9). In

the Balanced State limit, perfect cancellation is achieved and BF reaches 1. In the bistable network

shown in Fig. 3.11.C,F, the BF indeed tends to 1 as N grows, showing that balance is getting tighter.

Nonetheless, the network activity is still far from the firing rates predicted in the balanced theory.

The BF is measured for four different network sizes at the point where νE = 10Hz (see inset).

curve is highly nonlinear, and the convergence toward the linear balanced limit is therefore

particularly slow. Depending on the connectivity parameters, a reasonable convergence to the

balanced limit can be achieved for smaller network sizes (Fig. 3.12.A).

Next, we investigate whether a network that is nonlinear and does not conform to the Bal-

anced State prediction can demonstrate other features of E-I balance as N increases. We intro-

duce the balance factor (BF) to measure how close a network is to E-I balance. It is defined for

population X receiving positive external input as

BF = µXI/ (µXE + µextX) . (3.9)

If the network operates at balance, the recurrent inhibitory input will cancel out the total excita-

tory input and lead to a BF of 1. If BF is much lower than 1, then the neurons of population X

receive an excess of excitation and the network is unbalanced. It should be clarified that the bal-

ance we are considering here must be understood in the sense of tight balance [185, 186, 144],

meaning that inhibition matches the excitation and leads to near-perfect cancellation. While a

partial cancellation is considered a loose balance [150], it does not lead to characteristic features
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3. Diversity of network regimes

such as predictable firing rates and a linear network response to external input. We measure the

BF for different network sizes in a bistable network. The point at which BF is measured for

each network size is chosen to be where νE reaches 10Hz. In the case of N=4000 neurons,

the values of BF are near 0.5 (Fig. 3.12.B), which is an indicator that the network is operating

far from balance as neurons in both populations receive nearly twice as much excitation as in-

hibition. However, the BF is network size dependent: increasing the size from 4000 to 40000

neurons strongly increased the ratio of inhibition to excitation. Meanwhile, the firing rate ac-

tivity does not conform to the Balanced State solution (Fig. 3.12.B) even though the network

response becomes locally more linear as N increases.

In summary, the observation of significant cancellation of incoming excitatory and inhibitory

signals does not guarantee that the Balanced State framework is applicable to predict the firing

activity. Even small deviations from tight balance (BF <1) can lead to significant deviations

in the resulting network activity regime.

3.9. Analysis of the Balanced State convergence within the

SSN framework

The analysis of the characteristic function F can lead us to determine the conditions under

which the SSN can admit a balanced solution. Assuming positive external input and applying

the conventional
√
N scaling, we get:

F (µE) = J0
EE

√
NfE (µE)− J0

EI

√
NfI (µI(µE))− µE + µ0

ext

√
N

µI(µE) =
(
det J0

√
NfE(µE) + J0

IIµE + µ0
ext

√
N
(
rJ0

EI − J0
II

))
/J0

EI ,
(3.10)

where the superscript x0 indicates the value of the parameter before scaling. In the limit of large

network size N , assuming fE, fI > 0 the solution of F must satisfy

J0
EEfE − J0

EIfI + µ0
ext = 0.

If fI is finite in the N → ∞ limit, the µI(µE) equation leads to

det J0fE = µ0
ext(J

0
II − rJ0

EI).
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3.9. Analysis of the Balanced State convergence within the SSN framework

Taken together, these conditions lead to the predicted firing rates of the Balanced State limit

(Eq. 1.5) [186]. This means that the only steady state solution of the SSN such that νE and

νI are not silent in the limit of N → ∞ is precisely the balanced limit. In the SSN, non-zero

firing rates can only be achieved if the input of both populations is above the firing threshold

µE > bE and µI > bI . If det J < 0, this condition imposes r > JII
JEI

(Eq. 3.10). This is shown

in Fig. 3.11.E, where supersaturating networks with a det J < 0 have a high activity unstable

solution. The instability of this balanced state can be recovered from the condition on the slope

of F ′ (Eq. 2.7) where the term in det J dominates other terms and prevents a stable balanced

state

F ′ =
√
NJ0

EEf
′
E −

√
NJ0

IIf
′
I −N det J0f ′

Ef
′
I − 1 < 0.

If det J > 0, the condition µE > bE imposes r < JIE
JEE

. Furthermore, if the network supports

supersaturation (r > JII
JEI

), µI grows with both µext and µE . Therefore, any increase of νE

as µext grows will lead to a supralinear increase of νI . Because of this, recurrent inhibition

cannot be fine-tuned to balance the excitatory input and such supersaturating networks cannot

support a balanced limit. This shows that the conditions for the existence of a stable Balanced

State (Eq. A.3) can be recovered from the analysis of the SSN in the limit of strong recurrent

connections J and feedforward input µext. Moreover, the SSN is bound to converge to the

balanced limit when such a stable balanced state exists.

3.9.1. Slope of the firing rate curve

Similarly, the analysis of the slope of the firing rate curve with respect to external inputs shows

that compatible networks will converge to a balanced slope for strong feedforward input. This

convergence is independent of network size and the conventional rescaling of recurrent connec-

tion strengths.

The slope of the firing rate curve can be obtained from linearizing the characteristic function

around a fixed point

F(µE, µext) = F(µ0
E, µ

0
ext) +

∂F
∂µE

dµE +
∂F
∂µext

dµext,

where µ0
E is a fixed point of the network at the external input µ0

ext. We seek a value µE that is a

fixed point corresponding to the external input µext. The characteristic function must be zero at
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3. Diversity of network regimes

both points and we get
∂F
∂µE

dµE = − ∂F
∂µext

dµext.

Using the activation function to convert the input into firing rates (dνE = f ′
EdµE), the slope is

given by

dνE
dµext

=− f ′
E

∂F
∂µext

∂F
∂µE

=
f ′
E + f ′

Ef
′
I(JII − rJEI)

1 + f ′
IJII + f ′

Ef
′
I det J − f ′

EJEE

.

For networks that are compatible with the Balanced State (i.e., non-supersaturating), νE and

νI grow with the external input. Furthermore, in the SSN, f ′
E and f ′

I grow with the firing rate.

Therefore, as µext grows, the terms with f ′
Ef

′
I will dominate over the others and the slope will

converge towards the balanced slope limit: (JII − rJEI)/ det J .

This shows that the rich repertoire of network behaviors that deviate from the balanced limit

is limited to moderate levels of external inputs. If the external input becomes large, the network

activity will either be structurally unstable (det J < 0), silenced (rJEI < JII) or linear. This

is also illustrated in the convergence to balance as N increases, where network response can

remain nonlinear for large network size if we focus on the low external input regime (Fig. 3.11

panels A,B,C compared to D,E,F).
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4. Inhomogeneous Networks

In the previous sections, we assumed that the network is composed of two homogeneous popula-

tions. This means all neurons within each population have the same properties, receive the same

mean external input (µext), have the same number of recurrent connections (CXY = NY pXY )

and all synapses between two populations have the same strength (jXY ). The noise received by

each neuron in a population has the same variance, but it is a private realization: The process

of the feedforward white noise is specific to each neuron, and the recurrent noise depends on

the specific identity of the presynaptic neurons and their spike train. Due to this assumption,

all neurons in a population receive the same mean input but a unique noise pattern. This design

ensures that the whole population fires at the same rate while avoiding synchronization.

In this section, we investigate networks that break the homogeneity assumption. We consider

inhomogeneous populations such that each neuron can receive different levels of mean input.

We distinguish unstructured networks in which the properties of the neurons are randomly dis-

tributed across the population and structured networks in which the intra-population variability

is explained by an intrinsic neuronal feature.

4.1. Unstructured networks

In the mean-field approximation, the description of a high-dimensional system is simplified to

the average property of its components. While the focus on the collective properties within

the system provides a valuable approximation to analyze it, it can be challenging to estimate to

which degree of detail the population can be simplified without leading to significant inaccuracy.

In previous chapters, the state of the network could be fully described by the average firing rate

of each population. In homogeneous networks, the firing properties do not vary across the

population. Deviations from the average firing rate are only caused by temporal fluctuations

and correlations, which are finite-size effects [25, 28, 159] and are outside the scope of the

mean-field framework. In cases where the network is inhomogeneous, the firing rates can vary

within a population. In that case, due to nonlinear interactions within the system, the average

firing rate can itself depend on higher moments of the firing distribution. We will focus here on

cases where the distribution of inputs within a population can be characterized by a Gaussian.
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4. Inhomogeneous Networks

4.1.1. Distribution of firing rates

The input received by a neuron i in an inhomogeneous population is given as

I i(t) = µ0 + ςηiq + σηt(t),

Where ηq and ηt are two normally distributed random variables such that

⟨ηt(t)⟩ = 0

⟨ηt(t)× ηt(t
′)⟩ = δ (t− t′)

⟨ηq⟩ = 0〈
ηiq × ηjq

〉
= δi,j.

The mean input µ0 is the average across time and over the whole population. The two sources

of variability are very different in nature. The quenched noise characterized by its amplitude ς

is time-invariant and defines how the baseline input varies from neuron to neuron. The tempo-

ral noise characterized by σ is responsible for the fluctuations in input over time to a neuron.

Therefore, in the transfer function of the LIF neuron, the mean input is given by

µi = µ0 + ςηiq,

where σ plays the same role as in the homogeneous network (see Eq. 1.3). Similarly, in the SSN,

σ is included in the fitted a, b, and n parameters and the power law applies to the time-invariant

input µi.

While the input distribution across the population follows a simple Gaussian, the firing rate

distribution is itself distorted by two nonlinearities due to the neuronal activation function. The

first nonlinearity is the silencing cutoff which occurs for inputs lower than the activation thresh-

old b of the power law (Fig. 4.1.A-B). This effect is especially prominent for low mean input µ0.

The second source of nonlinearity is the supralinear power law which results in an asymmetric

skewed transformation (Fig. 4.1.C-D) and is especially marked for large mean input µ0. Due

to the distortion of the firing rate distribution, the population-average firing rate shifts with the

quenched variability ς

⟨ν⟩ = E[f
(
µi
)
] ̸= f (µ0) = ν0.
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4.1. Unstructured networks

A B

C D

Figure 4.1.: Distortion of the firing rate distribution due to the nonlinear activation function. A: For inputs

near the firing threshold (b parameter of the fitted power law, a fraction of the population will receive

subthreshold input (shown in red) and remain silent. B: Distribution of firing rates in a population

fed with the input distribution shown in A. The red bar shows the fraction of the population at 0Hz,

which corresponds to the red fraction in A, regardless of the specific value of the subthreshold input

they are fed. C: Shows another distribution of inputs such that input is higher than threshold for the

whole population. D: The supralinear power law transformation leads to an asymmetrical distortion

of the distribution and a long tail of high firing rate neurons. Due to this asymmetry, the mean firing

rate (dashed red line) is higher than the median firing rate (dashed black line), which corresponds to

the firing rate of a neuron fed with the mean input of the population (C).
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4. Inhomogeneous Networks

The asymmetric firing rate distribution Pν is derived using the inverse neuronal activation

function f−1 (Eq. 2.1)

µ =f−1(ν)

f−1(ν) =
(ν
a

) 1
n
+ b,

and the probability distribution of the neuronal input within the inhomogeneous population,

which we assume to be Gaussian

Pµ(µ) =
1

ς
√
2π

e
− (µ−µ0)

2

2ς2 .

Importantly, f−1 only applies for non-zero firing rates as the input to firing rates mapping is

not injective. For ν = 0, any input value such that µ < b is valid. This leads to the two-part

definition of Pν .

Pνdν =Pµ(f
−1(ν))

df−1

dν
dµ, ν > 0

P (ν = 0) =

∫ b

−∞
Pµdµ =

1

2

(
1 + erf

(
b− µ0

σ
√
2

))
.

Which yields [132, 149]

Pν =
1

na
1
nν

n−1
n ς

√
2π

exp

−
(
b+

(
ν
a

) 1
n − µ0

)2
2ς2

H (ν) + P (ν = 0) δ (ν) , (4.1)

Where H is the Heaviside function and δ is the Dirac delta function.

4.1.2. Population average firing rate

If the input to each neuron is independently drawn from the distribution Pµ, the distribution

of the firing rates in the population will follow Pν (Eq. 4.1) and the average firing rate in the
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4.1. Unstructured networks

inhomogeneous population will be the expected value of the distribution

⟨ν⟩ =E[Pν ]

=

∫ ∞

0

ν
1

na
1
nν

n−1
n ς

√
2π

e
−
(
b+( νa )

1
n −µ0

)2

2ς2 dν

=

∫ ∞

0

azn

ς
√
2π

e
−(z+b−µ0)

2

2ς2 dν

≡Ψn(µ0, ς).

(4.2)

Using an analytical solver (Wolfram Mathematica), we get the expression Ψn for the average

firing rate of a population receiving Gaussian-distributed input.

Ψn(µ0, ς) =
2

n−1
2 aςn−1(µ0 − b)√

π
Γ
(
1 +

n

2

)
1F1

(
1− n

2
,
3

2
,
− (µ0 − b)2

2ς2

)
+

2
n
2
−1aςn√
π

Γ

(
1 + n

2

)
1F1

(
−n

2
,
1

2
,
− (µ0 − b)2

2ς2

)
, (4.3)

Where Γ is the gamma function and 1F1 is the Kummer hypergeometric function [2]. The func-

tion Ψn plays the role of the transfer function for inhomogeneous power-law-activated popu-

lations, similarly to the Φ (Eq. 1.3) and f (Eq. 2.1) activation functions presented in previous

sections.

The effect of the distributed input on the average firing rate can be highlighted by comparing

the population average ⟨ν⟩ to the median firing rate, which is the input of a neuron receiving the

mean input ν0 = f (µ0). As expected, the effect of the distributed input grows with the standard

deviation of the distribution ς (Fig. 4.2.A). Furthermore, the type of effect depends on the mean

input µ0, as the effect of the network inhomogeneity is mainly a relative change in firing rates

for low inputs, and an absolute difference in firing rates at high inputs (Fig. 4.2.B-C).

4.1.3. Self-consistency equation

We have shown how inhomogeneous input leads to a shift in the population mean firing rate.

Next, we investigate how this effect can be accounted for in the case of a recurrently connected

inhomogeneous network. In this section, we list different sources of inhomogeneity and show

how they can be accounted for in a self-consistent system of equations to predict the steady state

activity levels in a network.
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4. Inhomogeneous Networks

A B C

Figure 4.2.: Effect of the input variability ς on the population average firing rate, for E neurons. A: Heatmap

of the population average firing rate ⟨ν⟩, as a function of the population mean input µ and the standard

deviation of the input distribution ς . The mean firing rates grow with both µ and ς according to

Eq. 4.3. The activation function at the population level maintains a general power law shape across

input variability values. B: Absolute effect of the input variability. The difference between the mean

and median firing rates shows how the mean firing rates are increased due to input inhomogeneity.

The difference is highest for high mean input µ. C: Relative effect of the input variability. The

relative increase in average firing rate caused by ς is highest for low inputs where the firing rate for

homogeneous input ν0 is near 0.

▶ Inhomogeneous Feedforward input

With a heterogeneous feedforward input, the firing rates in the network will be heterogeneous,

which will in turn make the recurrent inputs heterogeneous as well, as different neurons in the

network will receive more or less recurrent input depending on the activity of the presynaptic

neurons projecting onto them.

Still assuming the distribution of input to neurons is Gaussian, the variance of the firing rate

distribution is given by

Var[ν] =

∫ ∞

0

(ν − ⟨ν⟩)2Pνdν

=

∫ ∞

0

ν2Pνdν − ⟨ν⟩2

=a

∫ ∞

0

az2n

ς
√
2π

e
−(z+b−µ0)

2

2ς2 dν − ⟨ν⟩2 .

The integral in the first term has the same form as in Eq. 4.2 and can be replaced by Ψ2n(µ0, ς)

(Eq. 4.3). From here, the variability in the recurrent connections can be quantified

Var[j
∑
C

ν] =j2C Var[ν]

=
J2

C
Var[ν],
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4.1. Unstructured networks

where j is the strength of a single synapse, C is the number of incoming synaptic connections

and J is the effective connection strength at the population level. For a given effective connec-

tion strength, the variance decreases with the number of connections as the average firing rate

perceived by a neuron through its synapses will converge to ⟨ν⟩. Since the variability in firing

rates caused by the feedforward input is itself amplified through the recurrent connections, it

must be included in a self-consistent system of equations to follow its effect:



⟨νE⟩ = ΨEn(µE, ςE)

Var[νE] = aEΨE2n(µE, ςE)− (ΨEn(µE, ςE))
2

µE = JEE⟨νE⟩ − JEI⟨νI⟩+ µext0

ς2E =
J2
EE

CEE
Var[νE] +

J2
EI

CEI
Var[νI ] + ς2extE

⟨νI⟩ = ΨIn(µI , ςI)

...

(4.4)

where ΨXn is given by Eq. 4.3, and ΨX2n has the same form with the power law parameter nX

doubled.

The combined effect of the nonlinear dependence of Ψ on the input variability (Fig. 4.2)

and the amplification of this inhomogeneity through recurrent inputs leads to a progressively

stronger effect as the feedforward input variability ςext grows (Fig. A.6).

▶ Inhomogeneous activation function

If the source of heterogeneity originates from the variability in the neuronal properties, it could

result in variability in LIF parameters such as the membrane time constant τ (Eq. 1.1) or the

input noise σ (see section 2.3.2). Variability on these parameters would lead to variability in the

activation function, which would in turn lead to variability in the three power law parameters a,

b, and n (see Fig. 2.2.B). While such effects cannot be incorporated into an analytically tractable

self-consistent system of equations, an approximation can be made to achieve this easily. If

the variability in the neuronal excitability (Var[τ ],Var[σ]) is small, its effect on the activation

function can be translated into changes of only one of the three power law parameters. That

is, variability in the neuronal activation function within the population is well approximated by

71



4. Inhomogeneous Networks

A B

D E

Figure 4.3.: Small changes in the neuronal properties can be accurately reflected in changes of a single power
law parameter: the threshold b. A: starting from the fitted power law parameters corresponding to

the E population (Table 2.5, τE=20ms σext=3mV/
√
s), the power law parameter b can be adjusted

to accommodate for deviations in τ or σ. Effectively, the parameters a and n are kept constant and

changes in b are equivalent to a horizontal shift of the activation function. B: The goodness of fit,

as measured by the Root Mean Square Error (RMSE), corresponding to the shifted power law from

panel A. The shifted power law is a good approximation of the FI curve if the deviations in τ and σ

are small. Interestingly, if variations in σ and τ are positively correlated, neurons can remain in the

diagonal domain where the fit quality is maintained and will not cause inaccuracy in the self-consistent

rate model. C: Same as Panel A, but in the case of the I neurons (τI=10ms). D: The goodness of fit

associated with Panel D shows a similar trend as for E neurons.

tuning one of the power law parameters while the other two remain fixed. Incidentally, the one

parameter that can best adjust the activation function is the firing threshold input value b (see

Fig. 4.3).

Therefore, a population within which the excitability is variable can be modeled as a popu-

lation in which the power law parameter b is variable. Since this parameter plays the role of a

virtual input, the self-consistent system has the same form as Eq. 4.4. In this case, the variabil-

ity in b caused by the variability in the neuronal properties would be included with the external

input variability ςext.
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4.1. Unstructured networks

▶ Inhomogeneous recurrent connection strengths

The heterogeneity in the network can be caused by heterogeneity in the synaptic connections. In

that case, the synapses between two populations are not all identical. Here again, different neu-

rons will receive varying recurrent inputs depending on the strength of the incoming synapses.

This will result in a non-uniform firing rate distribution within the population, further contribut-

ing to the variability in recurrent input. The recurrent input received by a neuron at the steady

state is given by the sum over all its synapses of the product of the synaptic strength with the

firing rate of the presynaptic neuron. The firing rate of a postsynaptic neuron is correlated with

the firing rate of its presynaptic partners and the strength of its incoming synapses. It is however

independent of the strength of its own outgoing synapses. Since ji and νi are independent, we

can get:

Var[
∑
C

jiνi] = C Var[jν]

= C
(
j20 Var[ν] + ⟨ν⟩2ς2j +Var[ν] ς2j

)
=

J2
0

C
Var[ν] + Cς2j

(
⟨ν⟩2 +Var[ν]

)
,

(4.5)

where j0 is the average synaptic strength and ς2j is the variance of the synaptic strength distri-

bution in the synaptic population. The inclusion of a distribution of synaptic weights can be

supported by the self-consistent inhomogeneous SSN system (Eq. 4.4) by including two addi-

tional terms in the input variability ςX .

▶ Inhomogeneous number of synaptic connections

Until here, we considered that each neuron in population X receives exactly the same number

of connections C from a population of synapses. That is, all neurons have the same in-degree,

but the out-degree can be randomly distributed as it does not condition the firing rate of the

neuron. A less restrictive approach would be the case of the Erdös-Rényi network, where all

pairs of nodes are connected -or not- with the same probability independently of one another

[51]. The in-degree of neurons in such a network would not be uniform across the population

but would instead follow a binomial distribution. For a presynaptic population of size N with a
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4. Inhomogeneous Networks

connection probability p, the number of connections C follow

P (C = k) =
N !

k!(N − k)!
pk(1− p)N−k

E[C] =pN

Var[C] =Np (1− p) .

(4.6)

The heterogeneity in the in-degree of neurons will cause a heterogeneity in the recurrent input,

similar to the case where the connection strength is non-uniform. The variance in the recurrent

input can be obtained using the law of total variance:

Var

[∑
C

jiνi

]
=E

[
Var

[∑
C

jiνi

∣∣∣∣ C
]]

+Var

[
E

[∑
C

jiνi

∣∣∣∣ C
]]

=E [C] Var [jν] + E[jν]2 Var [C] .

Using Eq. 4.5 and Eq. 4.6, we get

Var[
∑
C

jiνi] = Np
(
j20Var [ν] + ς2j ⟨ν⟩

2 +Var [ν] ς2j + (1− p)j20 ⟨ν⟩
2) , (4.7)

which can be inserted in the self-consistent system (Eq. 4.4).

The effect of variability associated with an Erdös-Rényi connection scheme predicted by the

rate model accurately matches the results of LIF simulations. Nonetheless, the difference with

the homogeneous case is minute (Fig. 4.4). Although the effect size of this variability will

vary with the size and connectivity of networks, this result suggests that the analysis of the

homogeneous case can usually suffice to study the activity regimes of neural networks.

4.1.4. Mathematical tractability

Through the characterization of the mean input and firing rates, the quenched variability in

input and firing rates, and how these quantities interact with one another, we can predict the

state of the network using a self-consistent system of equations derived from the SSN (Eq. 4.4).

However, unlike in the case of homogeneous networks where the SSN has the benefit of being

tractable and easy to manipulate thanks to its simple mathematical formulation, the expansion to

inhomogeneous networks loses this quality. This added mathematical complexity is due to the

fact that the state of each population is characterized by two instead of one variable, increasing
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A B
SSN Rate model LIF simulation

Figure 4.4.: The variability caused by a Erdös-Rényi connectivity scheme leads to negligible effects. A: The

SSN firing rate profile corresponding to Fig. 2.3 is compared between the homogeneous case where all

neurons receive the same fixed number of synaptic connections (bright color), to the Erdös-Rényi sit-

uation where the in-degree of neurons is binomially distributed (dark color). Using the self-consistent

rate model (Eq. 4.4 with Eq. 4.7), the difference between the two scenarios is imperceptible for the E

profile, and is in the order of 0.2Hz for I at high input. B: Same comparison as in Panel A, performed

in LIF spiking simulation. The same observation can be made, as the E profile is unchanged and the

I rates increase only marginally. The rate-model prediction is confirmed in the spiking simulation and

the quenched variability due to the connectivity scheme is negligible as its effect is smaller than the

difference between the spiking network and its SSN approximation.

the dimensionality of the analysis. Furthermore, the activation function Ψ (Eq. 4.3) cannot be

manipulated as easily as the power law function f of the homogeneous case (Eq. 2.1). However,

the model can be simplified using the same strategy we used to derive the SSN (Eq. 2.2) from

the self-consistent Ricciardi equations (Eq. 1.4), by approximating Ψ with a power law with 3

parameters, similarly to Eq. 2.1.

Ψ ≈ aΨ (⟨µ⟩ − bΨ)
nΨ

+ , (4.8)

where the three power law parameters are fitted based on Eq. 4.3. Since the input variability

will itself depend on the state of the network, the dependency of Eq. 4.8 on ς must be made

explicit. Fortunately, the power law can again save the day as the dependence of aΨ, bΨ and nΨ

on ς can be well approximated with a power law function. That is, the deviation from the SSN

power law can itself be modeled with a power law. For the average firing rate ⟨νX⟩ of the E and
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I populations, we have:

ln (aΨE) = ln (aE)−
( ς

8.815

)1.843
bΨE = bE −

( ς

3.367

)1.938
nΨE = nE +

( ς

23.2

)1.775
ln (aΨI) = ln (aI)−

( ς

5.456

)1.967
bΨI = bI −

( ς

2.808

)2.074
nΨI = nI +

( ς

13.05

)1.845
.

The same approximation can be applied for the function Ψ2n used to quantify the firing rate

variability Var[νX ]:

ln (aΨE2) = ln (aE)−
( ς

4.591

)1.930
bΨE2 = bE −

( ς

2.528

)2.031
nΨE2 = 2nE +

( ς

11.44

)1.830
ln (aΨI2) = ln (aI)−

( ς

3.47

)1.943
bΨI2 = bI −

( ς

2.398

)2.107
nΨI2 = 2nI +

( ς

8.143

)1.785
.

Using this approximation, the mathematical formulation of the self-consistent system of equa-

tions can be simplified to facilitate both the numerical resolution and the analytical study. In-

evitably, this simplification comes at the cost of a reduced accuracy for high values of ς .

4.1.5. Limitations

▶ Range of validity of the activation function

The population-average firing rate is derived from the expected value over the pdf Pν . Because

of this, the accuracy of the prediction will be conditioned by the quality of the power law ap-

proximation over a larger domain than the range of considered average firing rates ⟨ν⟩. For

instance, if the mean firing rate of the population is at 10Hz with a variance Var[ν] of 5Hz,
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47% of neurons will fire at a rate higher than 10Hz. The accuracy of the power law approxima-

tion beyond 10Hz would come into play in the determination of the mean activity. Differences

between the power law and LIF activation function at high rates can then result in a misestima-

tion of the population-average firing rates. In other words, the range of validity of the power

law activation function applies to all neurons in the population and not only to their average.

▶ Recurrent temporal noise

In the case where the synaptic connection strength is non-uniform, the effect of the recurrent

input on the temporal noise σ becomes significant if ςj is high. If unaccounted for, this effect

can lead to significant discrepancies between the spiking network simulation and its rate model

prediction (Fig. 4.5). The temporal noise is given by

σ2 = σ2
ext +

∑
CE

j2EνE −
∑
CI

j2IνI

E[σ2] =< σ2
ext > +NEpE

(
j2E0 + ς2jE

)
⟨νE⟩+NIpI

(
j2I0 + ς2jI

)
⟨νI⟩.

In cases where high variability in recurrent weights is considered, the contribution of recurrent

noise can no longer be neglected and the power law fit must be appropriately adjusted to account

for it. Besides the shift in recurrent temporal noise, the inclusion of a high variance in the

recurrent connection strengths will affect the statistical properties of the input which will further

deviate from the assumed white noise. As the heterogeneity in the synaptic weights ςj increases,

the input dynamics will be dominated by rare events and neuronal spiking will be dictated

by few exceptionally strong synapses. As ς increases, the white noise assumption underlying

the diffusion approximation and the Ricciardi Φ (Eq. 1.3) activation function of LIF neurons

becomes invalid.

Furthermore, the effect of the network inhomogeneity on the recurrent noise will affect dif-

ferent neurons differently, leading to further heterogeneity in the firing properties within a pop-

ulation. The variance of the recurrent noise is given by

Var[
∑
C

j2ν] =E[C]
((

j20 + ς2j
)2 (

2⟨ν⟩2 + 3Var[ν]
)
− 2j40

(
⟨ν⟩2 +Var[ν]

))
+Var[C]⟨ν⟩2

(
j20 + ς2j

)2
.

The variability in the recurrent noise within a population leads to heterogeneity in the activa-
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tion functions of the population. This effect can be included in the self-consistent system of

equations as a heterogeneous external input (subsubsection 4.1.3).

▶ Effect size

Ultimately, we find that the effect of inhomogeneity within neural populations is impercepti-

ble or negligible unless we consider high variability. The effect of variability in the synaptic

connection strength only becomes significant when its standard deviation is of the same order

as the mean ( ςj
j0

≈ 1). With such high variability, 16% of the synapses would break Dale’s

law, which states that biological neurons cannot have simultaneously excitatory and inhibitory

synapses [48, 44]. Similarly, the effect of a fully random connectivity scheme, as in the case of

the Erdös-Rényi network, is negligible (Fig. 4.4). From this, it seems that biologically realistic

degrees of variability within neural populations are generally inconsequential and do not pose

a significant limitation to the generalization of the results obtained under the assumption of a

homogeneous network in the previous chapters. Nonetheless, if a network possesses a strong

source of variability or if multiple concurrent mechanisms collectively lead to a consequent

level of heterogeneity, such effects can be studied in a closed-form rate model based on the

SSN.
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A B
LIF simulationSSN Rate model

DC

Figure 4.5.: For high variability in the recurrent connection strength, the SSN rate model fails to predict the
activity of spiking simulations. A: Prediction of the rate model for increasing levels of variability

in the connection strengths (from light to dark colors, increasing variability.). The effect of the inho-

mogeneity is imperceptible until ςj > j0. B: In the spiking simulation, the effect of the variability is

much stronger and deviates significantly from the rate model prediction beyond ςj > 0.5 × j0. The

parameters are the same as in Panel A. C: The firing rates and inputs of the E neurons are recorded

at a fixed point of simulation where the rates mismatch the prediction (see inset). The observed FI

curve of the LIF neurons follows a power law that strongly deviates from the expected FI curve (solid

line) assumed in the SSN. The deviation can be partially explained by the contribution of the recurrent

input to the temporal noise (dashed line) but the rates are then overestimated. D: The total input of

E neurons recorded in C follows a Gaussian distribution with a large standard deviation (Top). This

results in a skewed distribution of firing rates with high variance (bottom).
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4.2. Structured networks

We previously analyzed unstructured inhomogeneous networks where the difference between

neurons within a population cannot be explained by underlying variables. Because of this,

the properties of individual neurons are treated as random variables and the mean-field theory is

built on a statistical analysis of the population properties. In the case of structured networks, the

neuronal populations are organized in a feature space, and the features of a neuron determine its

feedforward input and recurrent connectivity. This organization can be topographic and directly

translate to the spatial organization of circuits, as is the case in numerous brain regions such

as the somatotopic map of the somatosensory cortex [68], the tonotopic map in the auditory

cortex [153] or the retinotopic map of the visual system [192]. Alternatively, in situations

where the cortical map is not spatially organized, such as the salt-and-pepper organization of

the orientation tuning map in mouse visual cortex [83, 88], the feature space is defined by the

receptive field of neurons instead of their topographic location. In that framework, neurons that

are nearby in feature space receive feedforward input of similar amplitude since the neurons are

selective to similar stimuli. Furthermore, the connection probability between two neurons can

also depend on their distance in feature space as neurons with similar receptive fields have been

shown to preferentially connect together [94] (see Fig. 4.6).

Since the total input of neurons depends on their position in feature space θ, the firing rate

profile of the population varies along the feature dimensions of that space. In a 1-D feature

space, given the feedforward input as a function of position Mext (θ) and the pair-wise connec-

tion probability as a function of the distance between neurons in feature space P (θ − θ′), the

input to a neuron in population X at position θ is given by

µX (θ) = Mext (θ) +

∫ θmax

θmin

(jXEηEPXE (θ − θ′) νE(θ
′)− jXIηIPXI (θ − θ′) νI(θ

′)) dθ′.

Where η is the linear density of neurons along the dimension θ. The geometric properties of the

feature space depend on the nature of the considered feature: Periodic boundary conditions in

the case of orientation preference, infinite for tonotopy, etc. The mean-field analysis of neural

populations organized in feature space is conceptually equivalent to the analysis of an infinite

system of populations, where each population is selective for an infinitesimal section of feature

space [150, 147]. A local network comprises all neurons whose preferred feature is in the range
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E

I

Figure 4.6.: Schematic diagram of a structured E-I network in feature space θ. In structured networks, the

feedforward input of each neuron is determined by its receptive field, which translates into its location

in the feature space θ. The recurrent connection probability is also a function of the position in feature

space of the pre- and postsynaptic neurons.

[θ, θ + ∆θ] where the neural properties can be considered homogeneous, and the mean-field

assumption considers that the number of neurons is large enough to ignore finite-size effects

and focus on collective effects such as the population mean firing rate.

Using the activation function of the neuronal populations, we obtain the spatially structured

rate model 
νE(θ) = fE

(
(JEE ∗ νE) (θ)− (JEI ∗ νI) (θ) +Mext(θ)

)

νI(θ) = fI

(
(JIE ∗ νE) (θ)− (JII ∗ νI) (θ) + rMext(θ)

)
,

(4.9)

Where ∗ is the convolution operation, and the spatial recurrent connection functions JXY are

given by jXY ηY PXY (∆θ).

4.2.1. SSN implementation in structured networks

Using the LIF-adjusted SSN activation function, the firing rate profile in feature space is given

by

νE (θ) = aE (JEE ∗ νE − JEI ∗ νI +Mext − bE)
nE

+

νI (θ) = aI (JIE ∗ νE − JII ∗ νI + rMext − bI)
nI

+ .

(4.10)
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The firing rate profiles of the two populations are solutions to the coupled Fredholm integral

equation [10]. The power law transformation makes the equation especially challenging to

solve analytically. In order to approach a solution numerically, a weighted residual method can

be used. The connection probability is assumed to be a Gaussian function of feature distance

between the pair of neurons, of the form

PXY (θ, θ
′) = pXY e

−(θ−θ′)2

2λ2
XY . (4.11)

Here, p is the peak probability, corresponding to the connection probability of neurons with the

same feature preference, and λXY is the lengthscale of the connections in feature space. Sim-

ilarly, we assume the external input is a Gaussian function of feature, centered at the stimulus

feature θ0.

Mext(θ) = µext e
−(θ−θ0)

2

2λ2ext , (4.12)

where λext is a measure of the selectivity in the receptive field of neurons. Finally, both fir-

ing rate profiles are approached as a weighted sum of Gaussian curves of various lengthscales

centered around θ0,

ν =
∑
i

Kie
− (θ−θ0)

2

2λ2
i .

The recurrent convolution becomes

JXY ∗ νY (θ) =jXY pXY ηY
∑
i

KY i

∫ ∞

−∞
e
− (θ−θ′)2

2λ2
XY e

− (θ′−θ0)2

2λ2
i dθ′

=jXY pXY ηY
∑
i

KY i

√
2πλ2

XY λ
2
i

λ2
XY + λ2

i

e
− (θ−θ0)

2

2(λ2
XY

+λ2
i
) .

Using this decomposition of the firing rate profile, the spatially structured SSN equation (Eq. 4.10)

can be solved through optimization of the coefficients KEi, KIi.

While this approach offers a numerical framework to solve the firing profiles of spatially

structured neural networks (Fig. 4.7), it remains intractable and unsuited for analytical manip-

ulation. Despite the simple mathematical formulation of the SSN, the inclusion of its power

law in the integral equation prevents an analytical resolution. In order to achieve an analytical

resolution of spatially distributed networks, we must rely on even simpler rate models, such as

the Balanced State model.
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Figure 4.7.: Firing rate profile in a structured E-I network with periodic boundaries. The prediction of the

SSN accurately matches the results of the spiking network simulation. The E profile has a minimum

in 0, where the external input is strongest because this network supports supersaturation (r
∫
JEI >∫

JII ).

4.2.2. Balanced State analysis of structured networks

This subsection is adapted from elements in the methods and results section of the article

Bernáez Timón Laura, Ekelmans Pierre, Konrad Sara, Nold Andreas and Tchumatchenko

Tatjana. "Synaptic plasticity controls the emergence of population-wide invariant repre-

sentations in balanced network models". Physical Review Research 4.1 (2022): 013162.

https://doi.org/10.1103/PhysRevResearch.4.013162

Unlike other rate models which rely on the activation function to determine the firing rate

of neurons (Eq. 4.9), the Balanced State prediction stems from the assumption that excitatory

and inhibitory inputs cancel out (µE, µI = O( 1√
N
) as N → ∞) [186]. The profile equation

becomes (JEE ∗ νE) (θ)− (JEI ∗ νI) (θ) = −Mext (θ)

(JIE ∗ νE) (θ)− (JII ∗ νI) (θ) = −rMext (θ) .

(4.13)

The convolution can be converted into a simple multiplication by transforming the equation
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in the Fourier space [147]

ĴEE ν̂E(ω)− ĴEI ν̂I(ω) = −M̂ext(ω)

ĴIE ν̂E(ω)− ĴII ν̂I(ω) = −rM̂ext(ω),

(4.14)

where ω is the frequency decomposition of the feature space θ. In order for the network to be

perfectly balanced, the balance condition must be fulfilled at all frequencies ω. The Fourier

coefficients of ν̂E and ν̂I at all frequencies are then obtained from inverting the weight matrix

in frequency domain (Eq. 4.14).

For Gaussian functions JXY and Mext in feature space (Eq. 4.11, Eq. 4.12), we get

ĴXY (ω) = jXY pXY ηY λXY

√
2πe−

1
2
ω2λ2

XY

M̂ext(ω) = µext

√
2πe−

1
2
ω2λ2

ext .

We assume that the lengthscale of recurrent connections is characterized by the projection dis-

tance of the presynaptic neuron (λEX = λIX ≡ λX) and get

ν̂E(ω) =
rjEIpEI − jIIpII

jEEpEEjIIpII − jEIpEIjIEpIE

λextµext

λEηE
e−

1
2
ω2(λ2

ext−λ2
E)

ν̂I(ω) =
rjEEpEE − jIEpIE

jEEpEEjIIpII − jEIpEIjIEpIE

λextµext

λIηI
e−

1
2
ω2(λ2

ext−λ2
I).

Or in feature space

νE(θ) =

(
rjEIpEI − jIIpII

jEEpEEjIIpII − jEIpEIjIEpIE

)
λextµext

λEηE
√

2π (λ2
ext − λ2

E)
e
− θ2

2(λ2ext−λ2
E)

νI(θ) =

(
rjEEpEE − jIEpIE

jEEpEEjIIpII − jEIpEIjIEpIE

)
λextµext

λIηI
√

2π (λ2
ext − λ2

I)
e
− θ2

2(λ2ext−λ2
I) .

(4.15)

From Eq. 4.15, it appears that besides the usual conditions for existence and stability of the Bal-

anced State (Eq. A.4), the spatially structured balanced network imposes λext > max (λE, λI)

[147]. The intuitive interpretation of this condition is that the recurrent input profile must ex-

actly compensate the externally imposed feedforward input profile for balance to be achieved.

The recurrent connections therefore need to be finer to prevent any overcorrection.

Even in the context of the Balanced State, simplifying assumptions are required to obtain an
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explicit expression for the firing rate profiles. If the condition (λEX = λIX , X = E, I) is not

fulfilled, the Gaussian kernels cannot be factorized and the inverse Fourier transform cannot be

defined in general.

Remarkably, the shape of the E firing profile is independent of the I connectivity lengthscale,

and vice versa. This again stems from the E-I balance condition. The recurrent input profile

must exactly cancel the feedforward input profile, which is achieved if both the recurrent E and

the recurrent I inputs have the same shape as the feedforward profile. Since the recurrent E

input profile is a convolution of the νE profile with a kernel of lengthscale λE , it is independent

of λI .

4.2.3. Effect of synaptic plasticity on the firing profile shape

In previous sections, we considered that the connection strength of individual synapses was

fixed. Here we consider how the network firing rate profile is transformed through the effect of

synaptic plasticity, where the strength of individual recurrent synaptic connections is modulated

by neuronal activity.

We consider a short-term plasticity (STP) model derived by Mongillo et al. [118], which is

itself an extension of the classic Tsodyks-Markram STP model [179]. The effective synaptic

strength results from the interplay of the depression and facilitation mechanisms. Depression is

caused by the depletion of neurotransmitters from previously emitted spikes. The neurotrans-

mitter pool replenishes over time but will be low for high presynaptic firing rates. Facilitation

is caused by the retention of bound calcium in the presynaptic terminal, which is necessary for

the exocytosis of synaptic vesicles. The emission of a presynaptic spike promotes the binding

of calcium, which unbinds over time. The fraction of bound calcium will be high for high

presynaptic firing rates. The two mechanisms determine the probability of neurotransmitter re-

lease w. In the mean-field at steady state, the release probability is a polynomial fraction in the

presynaptic firing rate ν [177]

w(ν) =
U2Dν2 + UD (D + F (1 + U)) ν + UFD (F +D)

U2ν3 + U (F +D) (1 + U) ν2 +
(
U (F +D)2 + FD

)
ν + FD (F +D)

, (4.16)

where U is the spike-induced calcium increase, F is the calcium unbinding rate and D is the

neurotransmitter replenishing rate.

Since the STP factor w operates as a tuning coefficient of the synaptic strength j, the profile
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of the recurrent input from population X to population Y is given by

µrecXY (θ) = J0
XY ∗ wY νY , (4.17)

where J0
XY is the recurrent connection kernel for the baseline synaptic strength, correspond-

ing to a release probability of 1. We assume that the plasticity factor is independent of the

postsynaptic neuron (wE = wEE = wIE and wI = wEI = wII). We define

ℵX(νX) = wX(νX)× νX ,

and we can modify Eq. 4.13 according to Eq. 4.17. The exact same derivation then leads to

ℵE(θ) =

(
rjEIpEI − jIIpII

jEEpEEjIIpII − jEIpEIjIEpIE

)
λextµext

λEϱE
√

2π (λ2
ext − λ2

E)
e
− θ2

2(λ2ext−λ2
E)

ℵI(θ) =

(
rjEEpEE − jIEpIE

jEEpEEjIIpII − jEIpEIjIEpIE

)
λextµext

λIηI
√

2π (λ2
ext − λ2

I)
e
− θ2

2(λ2ext−λ2
I) .

(4.18)

The firing rate profile can be recovered by extracting the νX profile that generated the pre-

dicted ℵX profile using the inverse ℵX function νX = ℵ−1
X (wXνX).

If ℵ is not injective, multiple νE profiles are compatible with a tight balanced condition,

which can be the basis for bistability at the spatial profile level. In the case of the STP rule

(Eq. 4.16), this cannot occur as the function ℵ is monotonic (dℵ
dν

> 0) and therefore injective.

The inclusion of STP in the Balanced State can still lead to bistability as shown in [118] if the

STP factors can depend on the postsynaptic neuron type (i.e., wEE ̸= wIE). But then again, an

explicit expression for the firing rate profile cannot be derived in general.

If ℵ is not surjective, ℵ−1 will not exist for high values of w × ν. This means that no firing

rate profile can generate the recurrent input profile required for tight input balance. In that

case, a balanced limit only exists for low external inputs µext such that the ℵ profile remains

in the range where it is invertible. This can occur with the STP plasticity rule (Eq. 4.16) since

depression imposes an upper bound, ℵ ≤ D.

The application of the ℵ−1 transformation to the balanced profile can lead to distortions of

the spatial firing rate profile. Whether the geometric properties of the firing rate profiles vary

with the strength of the feedforward stimulation µext depends on the function ℵ−1. The profile

of wXνX in Eq. 4.18 can be seen as the product of two factors, one which accounts for the
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input strength and the exponential factor which accounts for the dependence on feature space

(ℵ(ν) = χµ × χθ). The shape of the profile will be preserved across changes in χµ if the effect

of the input strength is only a multiplicative rescaling of an invariant profile function. That is if

the function ℵ−1 is scale-invariant:

ℵ−1 (χµχθ) =
ℵ−1 (χµ)ℵ−1 (χθ)

ℵ−1 (1)
. (4.19)

Through function composition, we can rewrite Eq. 4.19 to fall back on the linearity condition

lnℵ−1elnχµ+lnχθ = lnℵ−1elnχµ + lnℵ−1elnχθ − lnℵ−1eln 1.

Since ln(ℵ−1(exp)) is a linear function of ln(x), it follows a linear equation of the form

lnℵ−1elnx = k lnx+ x0.

Overall, it results that transformations ℵ−1 which can support scale invariance and therefore

maintain the spatial profile independently of the feedforward input strength must follow the

power law

ℵ−1(x) = x0x
k. (4.20)

This effect can be seen in Fig. 4.8, where the response of the same network can be either

distorted with increasing feedforward input (panel A) or scale-invariant (panel B), depending

on whether the plasticity rule leads to a homogeneous ℵ−1 function. Interestingly, the condition

Eq. 4.20 can be worked back to determine that it requires that the plasticity rule is a power law

as well

wX = x
−1/k
0 ν

1/k−1
X .

While this is the strict requirement in the mathematical sense, it can be sufficient to impose that

ℵ−1 is well approximated with a power law to achieve reasonable scale invariance. Therefore,

approximate scale invariance can also be achieved with plasticity rules of diverse forms, such as

the polynomial fraction of the STP rule (Eq. 4.16), as in Fig. 4.8.B. For scale-invariant plasticity

rules, the exponent k determines whether the profile is compressed or stretched. The spatial
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A B

Figure 4.8.: In balanced network, the width of the activity profile is independent of external input if the
synaptic plasticity rule is approximately power law. In both panels, the connectivity is identical and

only E synapses are plastic (wI = 1). The two panels differ in the STP parameters of wE (Eq. 4.16).

A: As the external input grows, the width of the firing rate profile shrinks. At the same time, the peak

amplitude for both populations grows with µext to maintain E-I balance (left insets). The plasticity

rule is dominated by depression as wE decreases with νE (top right inset). For high rates, the function

ℵ saturates (bottom right inset). Because of the saturating behavior of ℵ, which is incompatible with

a power law approximation, the underlying firing rate profile does not scale homogeneously with

external input and distortions occur. STP parameters: U=0.25, F=2, D=1.15. B: Here, the amplitude

of the feedforward input only affects the amplitude of the response curve (right inset), but the width of

the spatial profile is invariant with input strength. The plasticity rule is dominated by facilitation and

wE grows with νE (top right inset). The function ℵ is supralinear and can be well approximated with

a power law (bottom right inset). STP parameters: U=0.01, F=1.82, D=50.

profile has the form

ℵ−1
X (χθ) = x0e

−θ2

(
2
(λ2ext−λ2X)

k

)−1

,

so the lengthscale of the spatial profile is λ2
ext−λ2

X

k
. The profile is stretched for values of k lower

than 1, which correspond to facilitating plasticity, and it is compressed for k > 1 or depressing

synapses.

The property of scale invariance has been observed in multiple sensory cortical networks

and can be the basis for reliable sensory perception [31, 35, 22], as it ensures that the intensity

of a sensory stimulus does not interfere with its position in feature space. For instance, the

primary visual cortex is sensitive to the contrast of the visual stimulus as well as its orientation

[30]. Then, contrast invariance allows for separate encoding of the two stimulus properties, as

contrast modulates the peak V1 activity whereas the orientation is encoded in the selectivity of

neurons that respond to the stimulus. Without contrast-invariance, the selectivity of the network

would change with contrast and could lead to blurry or less accurate perception.
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5. Conclusion

5.1. Main results

In this work, I have shown how the SSN rate model can be modified to accurately match the

predictions from spiking network simulations while maintaining a simple and tractable math-

ematical formulation. This rate model is based on the observation that the FI curve of LIF

neurons fed with white noise closely follows a power law function in the low firing rate range.

Based on the observation that biological neurons mainly operate in this low-rate regime, it

follows that the power law approximation is suitable for studying biologically realistic neural

networks.

In order to ground the model in biological realism, the power law for each population is based

on experimentally reported parameters. Similarly, the network connectivity can be derived from

available databases to recreate a realistic model of neural circuitry. Following this, I have shown

that the activity regime in layer 2/3 of the mouse primary visual cortex predicted by the SSN

rate model matches closely with spiking LIF simulations. Notably, both frameworks capture the

nonlinear relation between the firing rate of this network and its incoming feedforward input.

Because of the intrinsically supralinear response of LIF neurons, reflected in the built-in

power law of the SSN, simple recurrent E-I networks are capable of various nonlinear input-

output transformations. Thanks to the mathematical tractability of the SSN, it can be used to

predict the occurrence of these regimes. In particular, they can be precisely mapped in pa-

rameter space using exact mathematical conditions. I have illustrated four cases: The ISN,

which stabilizes high excitation and supports the Paradoxical Effect, occurs when the E rates

rise beyond a threshold. Supersaturation, which results in a decrease of E activity for increasing

feedforward input, occurs when the I rates cross another threshold. Bistability, which supports

the coexistence of two distinct stable states for the same level of input, occurs when the char-

acteristic function F has more than two zeros. Finally, Structural Instability, which does not

support any fixed point and results in runaway dynamics, occurs if the characteristic function

has no zero. These various regimes are accessible to biologically-sized E-I networks without

synaptic plasticity by tweaking the effective connection weights JXY . Still, these weights were

maintained within the range spanned by the experimentally reported mouse V1 connectivity to

limit deviations from biological realism.
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The ability of local E-I networks to carry out diverse nonlinear transformations on inputs can

have profound functional implications. Since complex information processing must rely on the

execution of underlying nonlinear operations, the various activity patterns accessible to local E-

I networks can form the necessary basis for higher-order computations. As a proof of concept,

I demonstrated how the association of supersaturating and bistable E-I networks can perform a

binary summation on two signals.

While the SSN can generate various nonlinear transformations in networks of biologically

realistic size, the Balanced State theory predicts that all regimes become linear as the network

size tends to infinity. In the case where the network supersaturates, the balanced limit is unsta-

ble or simply does not exist. Then, I showed that the excitatory population gets increasingly

suppressed as the network grows until it is permanently silenced. Additionally, if the network

connectivity has a negative determinant, it will become structurally unstable and diverge to un-

limited firing rates as size increases. Alternatively, if the connectivity satisfies the condition for

a stable balanced limit, it will converge toward it. Still, I showed that this convergence can be

quite slow, and network activity regimes can remain distinctly nonlinear at unrealistically large

sizes. This illustrates that the predictions of the Balanced State framework are only valid at

the theoretical limit and are not guaranteed to provide relevant insights for finite networks, no

matter how large they are.

Finally, I demonstrated how the domain of validity of the SSN can be extended beyond ho-

mogeneous networks within which all neurons of a population share the same properties and

receive the same input. In the case of unstructured networks, the variability cannot be explained

by an underlying structure. The SSN can then be extended into a self-consistent system of equa-

tions by accounting for two additional variables: input variance and firing rate variance. This

approach provides an exact framework to study the effect of inhomogeneities, but it comes at

the cost of a significant increase in the complexity of the model. Nonetheless, it leads to valu-

able insights into the robustness of SSN-derived results with respect to network heterogeneity.

In particular, I showed that moderate levels of variability, such as the use of an Erdös-Rényi

connection scheme, only have a marginal effect on the resulting activity. In the case of struc-

tured networks, the underlying organization in feature space explains the heterogeneity. These

systems are analogous to a continuum of E-I networks, and the self-referential nature of their

equations requires them to be analyzed using numerical methods. Only the simplest rate mod-

els, such as the Balanced State, can be used to study structured networks analytically. Even

then, additional assumptions on parameters must be made to reach an explicit solution.
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5.2. Perspective

The matter of generating nonlinear transformations in neural network models has been an im-

portant point of focus in theoretical neuroscience. Because of the limitations imposed by the

assured linearity of the classical Balanced State framework, multiple extensions of the model

have been put forward to allow for richer dynamics. One potential source of nonlinearity is

synaptic plasticity. By modulating synaptic strengths as a function of the firing rate, the Bal-

anced State can be modified to support such complex regimes as bistability [118]. Another

source of nonlinearity that has been studied in the Balanced State is the structure of the con-

nectivity. Using a high-variance distribution of synaptic strengths instead of a homogeneous

connectivity, the network activity is supported by a fraction of the neuronal population only and

scales sublinearly with input [91]. Similarly, a complex connectivity structure can lead to the

selective suppression of subsets of the neuronal populations. In this case, the Semi-Balanced

framework considers that all neurons are either E-I balanced or silenced [13]. Following this,

the global network response becomes a piece-wise linear manifold whose support varies with

the specific subsets of active neurons. In this work, I restricted the analysis to nonlinearities

emerging from the neuronal FI curve alone. Still, these diverse other sources of nonlinearity

could be included into a more elaborate model, resulting in an even richer repertoire of net-

work activity regimes. Likewise, a more detailed description of the neuronal FI curve could

be introduced into the model to capture the effect of the activation function beyond the ini-

tial supralinear phase. In particular, the saturation that occurs for high firing rates because of

the neuronal refractory period is another source of nonlinearity that has been shown to enable

diverse network regimes [155].

One key aspect of LIF spiking simulations that could not be adequately captured by the

LIF-adjusted SSN is its temporal dynamics. Although I showed that the steady state SSN equa-

tion suffices to predict the slow time evolution of spiking neural networks driven by external

changes, it cannot be applied to model the fast dynamics that are intrinsic to these systems. In

the classical SSN [150], the time evolution of the system is characterized by first-order ODEs

and depends on one fixed time constant τPX
for each population. Yet, establishing a mathemat-

ical link between the value of these time constants and the parameters of a LIF neural network

remains a formidable endeavor. The temporal properties of the network result from the complex

interplay of the LIF membrane time constant, the dynamics of synaptic transmission, and the
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state of the network. The exact transfer function governing the dynamics of neuronal popu-

lations has been derived using the LIF Fokker-Planck equations [156, 25, 26, 106]. Still, this

transfer function only applies in the frequency domain, in the context of infinitesimal oscilla-

tions around an equilibrium point at which the system is linearized. Future research could set

out to provide an applicable formulation of the LIF temporal transfer function, enabling rate

models to track firing rate trajectories in time. Using this, the LIF-fitted SSN model presented

here could be extended to capture the dynamical properties of spiking networks, which would

open the way to study various features of these systems. It would allow for a complete character-

ization of the steady state stability conditions, which depend on the population time constants.

It would also be needed to derive a mathematical description of mechanisms driving finite-size

effects, such as spontaneous firing rate fluctuations. Finally, dynamic network regimes, such as

the slow oscillations observed in the classic SSN [95], could be located in the parameter space

of LIF networks and linked to biologically realistic implementations.

The approach presented here relies on the mathematical tractability of the SSN to allow

for a thorough analysis of its potential features. Despite the sheer simplicity of homogeneous

2-population LIF networks, such systems can support a rich repertoire of transformations. Evi-

dently, including more complex features into the network would result in even richer dynamics

and a more realistic depiction of biological systems. Still, this would come at the cost of pre-

venting such in-depth mathematical analysis.

Following this, the choice of studying rate models is motivated by their much lower dimen-

sionality compared to the spiking network alternatives. Yet again, this framework presents

limitations since diverse phenomena fall outside the scope of a firing-rate-centered description.

Mechanisms that rely on the precise timing of spike emission are erased in the conversion from

spiking networks to rate models. Despite the fact that such mechanisms as spike-timing depen-

dent plasticity, dendritic computations, or neuronal avalanches could play a significant role in

the function of neural circuits, they are inaccessible to the analysis of rate models. Fundamen-

tally, the choice of a rate-based description of neural network activity exposes an underlying

tacit assumption: that the information flow of neural communication is carried by firing rates

rather than the precise timing of spike trains. Through the lens of spike-rate neural coding, sub-

stantial simplifications can be operated, resulting in a conveniently low-dimensional system.

Still, while this approach is necessary to distill complex neural activity into more manageable

quantities, it could overlook relevant features of neural network function [99, 187, 23].
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Finally, the SSN-based approach I presented in this work is a promising tool for scaling up

the analysis of neural networks. The SSN analysis can resolve the functional characteristics of

neural systems at the level of medium-sized local circuits by reducing them to phenomenolog-

ical input-output transformations. Following this, the analysis of large-sized neural networks

can be simplified by converting them into interconnected systems of such well-characterized

local elements. The issue of adopting an appropriate framework with respect to the scale of

the system being investigated is becoming increasingly pertinent as ever-expanding amounts

of detailed experimental measurements are made available [120, 108]. Despite this wealth of

data, a complete mechanistic description of neural circuit operation, including algorithmic im-

plementation and structural organization, has only ever been achieved for the simplest systems

consisting of a handful of neurons [109, 191]. Meanwhile, at the other end of the spectrum, the

Balanced State theoretical framework only applies to networks of infinite size and can result in

unpredictable inaccuracy when used to study biologically-sized networks. Overall, I propose

that the low-dimensional analysis of local networks can constitute a valuable intermediate step

on the way to elucidating the mechanisms underlying the emergence of cognitive functions.
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A. Appendix A

A.1. Implementation of the spiking network simulator

All LIF spiking network simulations are performed using the spiking network simulator devel-

oped collaboratively within the Tchumatchenko lab. The code and practical information can be

found on the following GitHub repository:

https://github.com/CompNeuroTchuGroup/TchuSNNet/tree/Ekelmans_et_

al_2023

Overall, the simulator considers Np populations, each consisting of NX neurons. Each neuron is

treated as a separate object with its own incoming and outgoing synapses. The state of each neu-

ron (i.e., its membrane potential V ) is tracked throughout the simulation and updated according

to the LIF rule (Eq. 1.1). The feedforward input is a Gaussian pseudo-randomly generated num-

ber, with a different seed for each cell and each time step. The recurrent input results from the

spiking events of LIF neurons and the network connectivity which is randomly established at

the initialization stage of the simulation. The simulation follows a forward Euler integration

scheme with a fixed time step dt (usually 5× 10−5 s). Over the course of a simulation, multiple

measurements of the network state can be recorded. In this work, we primarily focus on the

average population firing rate which is the total number of emitted spike in a population over

a time bin, normalized by the population size and the bin size. The time bin is usually set at

100ms, although its size should not affect the recorded mean firing rate since the networks are

studied at the steady state.

In the default network implementation, synaptic transmissions occur over a single time step:

IXY (t) = jXY δ(t− ts), (A.1)

where ts is the spike time of the presynaptic neuron, and δ is the Dirac delta function.

In some network configurations, this type of synaptic transmission promotes synchronization

at the neuronal population level, resulting in population spikes [18, 24] (see Fig. A.8). Such

phenomena can only arise when the assumption of asynchrony and irregularity is broken and are

therefore outside the scope of the mean-field approach. In order to avoid this synchronization
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A. Appendix A

in such cases, a different type of synaptic transmission can be used:

IXY (t) =
jXY

τs
e−

t−(ts+D)
τs H(t− ts −D), (A.2)

where τs is a synaptic transmission time constant, D is the synaptic delay and H is the Heaviside

function. This type of synapse implementation prevents synchronization as the effect of each

spike is more distributed in time and each synaptic connection has a different delay D.

This exponentially decaying synaptic type was employed in the spiking network simulation

of bistable or structurally unstable networks, and Dirac-delta synapses were used in all other

cases. The exponential synapse parameters are presented in Table A.1. It should be noted that

the synaptic delay values we use are higher than experimentally reported [141, 15, 89], but this

jitter only serves to prevent population synchrony and does not affect the steady state network

activity. On the other hand, the use of exponentially decaying synaptic transmission can lead

to changes in the properties of the recurrent noise [5, 55], which would affect the mean-field

steady state. Nevertheless, the contribution of recurrent noise is considered negligible compared

to external noise (section 2.3.3) and is not accounted for in the SSN framework.

τS D Affected Synapses
10 0 - 100 EE, II

Table A.1.: Synaptic parameters used to prevent synchronization, following Eq. A.2. The exponential synapse

time constant τS and the synaptic delay D are given in ms. The synaptic delay for each synapse is

drawn randomly from a uniform distribution in the given range. The E→I and I→E synapses are not

affected and use Dirac-delta synapses without delay (Eq. A.1). This applies to LIF simulations shown

in Fig. 3.4,Fig. 3.6, Fig. 3.10.D, Fig. 3.11.B-C, Fig. 3.12.B and Fig. A.7.B.

116



A.2. Continuation method

A.2. Continuation method

The steady state firing rates of neural networks are given by the solutions of self-consistency

equations (i.e., Eq. 2.2 or Eq. 1.4). In general, such systems of equations are too complex to

solve analytically and require numerical approaches to solve them, such as the fsolve Matlab

function. When the aim is to determine the geometric locus of solutions with one control param-

eter freely varying (e.g., the steady state activity of the network as a function of the feedforward

input µext), the equation solver will require additional guidance.

The equation solver can only converge to a single solution even if the system of equations

admits multiple solutions. Furthermore, the algorithm can get trapped near a local minimum

and fail to reach the solution. We use the continuation method to guide the nonlinear system

solver from one solution to the next in order to facilitate the search and ensure that the algorithm

browses along the geometrical locus of solutions and does not return the same solution multiple

times.

At the initial point, the state variables Y are determined using the solver for the control

parameter X set at its initial point X0, using an initial guess Ỹ0:

Y0 = ג
(
Ỹ0, X0

)
| X = X0 ,

where ג is the optimization function. The next point is obtained using a user-defined vector v0,

which is presumed to point towards the next point, leading to the next guess X̃1, Ỹ1. The search

is then restricted to be on the hyperplane orthogonal to the vector v0:(X̃1, Ỹ1) = (X0, Y0) + v0

(X1, Y1) = ג
(
X̃1, Ỹ1

)
|
(
(X1, Y1)− (X̃1, Ỹ1)

)
· v0 = 0,

where the scalar product (·) imposes that the deviation from the guessed solution is orthogonal

to the vector v0. Beyond this, all future points are obtained by extrapolating from the position

of the two previous points so the new vector vi leads to the next guess.
vi = (Xi, Yi)− (Xi−1, Yi−1)

(X̃i+1, Ỹi+1) = (Yi, Xi) + ∆ ∥vi∥−1 vi

(Xi+1, Yi+1) = ג
(
X̃i+1, Ỹi+1

)
|
(
(Xi+1, Yi+1)− (X̃i+1, Ỹi+1)

)
· vi = 0,
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X

Y

Figure A.1.: 2-D Schematic representation of the continuation method. The expected position of the (i+1)th

point (red circle) is extrapolated from the location of the points i and (i-1) (blue and red crosses) in

the direction of the vector vi (blue arrow). The (i+1)th point is then found by solving the objective

function with the constraint that the solution (green cross) is located on the hyperplane containing the

initial guess (red circle) that is orthogonal to the vector vi (red line).

where the vector vi is normalized to control the step size ∆ between successive points. In

particular, ∆ can be adjusted to be smaller near bending points in the curve to limit the error.

The degree of bending in the curve can be measured by the scalar product of successive vectors

(vi−1 · vi). A schematic representation of the method is shown in Fig. A.1.

The continuation method is particularly valuable in the case of bistability, so all coexisting

steady states can be recovered. In particular, it can indiscriminately find the stable and unstable

fixed points. This cannot be achieved with the more straightforward approach of integrating the

differential equations in time (e.g., Eq. 1.8) to converge towards the steady state, as unstable

fixed points are repellent. One drawback of the continuation method is that it can only follow

the branch of solutions on which it was initiated. In situations where multiple separate branches

exist (Fig. 3.7.C,F), the algorithm must be initialized multiple times to cover them all.

In the case of the 2-D SSN, the steady state solutions as a function of the external inputs can

simply be obtained using methods for implicit functions, such as the Matlab function fimplicit,

on the characteristic function F (Eq. 2.6). However, for more complex systems such as the

3-D SSN or the Ricciardi self-consistent equations (Eq. 1.4), more robust methods like the

continuation method are required.
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A.3. Balanced State validity

Within the Balanced State framework, we assume that the dynamics for the change in firing rate

of each population is a function of the excess input it receives.

dνE
dt

= f(µE)

dνI
dt

= g(µI).

The firing rate of a population is at the steady state when its total input is balanced (f(0) =

g(0) = 0). By linearising around a steady state, we get

 ˙δνE

˙δνI

 =

f ′(µ0
E) 0

0 g′(µ0
I)

JEE −JEI

JIE −JII

δνE
δνI

 .

Where f ′(µ0
E) and g′(µ0

I) are positive (excess input drives the firing rate up). The state

(ν0
E, ν

0
I ) is stable if the two eigenvalues of the Jacobian matrix

f ′JEE −f ′JEI

g′JIE −g′JII


have negative real parts.

The eigenvalues λ1 and λ2 are roots of the polynomial

λ2 − λ(f ′JEE − g′JII) + f ′g′(JEIJIE − JEEJII),

or

λ1, λ2 =

(
f ′JEE − g′JII

2

)(
1±

√
1− 4f ′g′ det J

(f ′JEE − g′JII)2

)
.

The steady state is stable ⇐⇒

f ′JEE − g′JII < 0

det J > 0 .

(A.3)
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The first condition requires that the response of the inhibitory population (g′) is fast and

strong enough to prevent a runaway excitatory feedback loop. We do not focus on this condition

here because it depends on the dynamic properties of the network (f and g functions), which

are beyond the scope of this work. However, the second condition constrains the connectivity

matrix such that JEIJIE − JEEJII > 0 [147].

The condition on the existence of a non-negative Balanced State (Eq. 1.7) can be combined

with the stability condition on connectivity (Eq. A.3) to delineate the parameter range where a

Balanced State limit exists and is stable [186, 147]:


0 < r < JII

JEI

det J > 0

f ′JEE − g′JII < 0 .

(A.4)
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A.4. Derivation of the Φ function

Here, I provide the main steps of the mathematical derivation of the theoretical activation func-

tion of LIF neurons fed with white noise [145, 32, 24].

Given a white noise input, the membrane potential of the LIF neuron follows a Ornstein-

Uhlenback process, with a drift caused by the mean input µ, according to the master equation

dV = µdt− V

τ
+ σ

√
dtN t+dt

t (0, 1),

where N t+dt
t (0, 1) is a normally distributed random variable for the interval [t, t + dt]. The

resting potential V0 is set at 0, without loss of generality. The explicit dependence of the random

term with
√
dt is meant to ensure that the cumulative variance over a period T caused by the

random term is independent of the size of the time step dt used to resolve the process:

Var[

∫
dV ] = Var[

n=T/dt∑
i=1

σ
√
dtN ti+dt

ti (0, 1)]

= σ2dt Var[

n=T/dt∑
i=1

N (0, 1)]

= σ2T.

The master equation can be converted into the Fokker Planck equation over the probability

density function (pdf) of the membrane potential P(V ) [102]

∂P
∂t

=
∂
((

V
τ
− µ

)
P
)

∂V
+

σ2

2

∂2P
∂V 2

. (A.5)

At the steady state, the P function does not vary with time and the left side of Eq. A.5 can be

set to 0. This results in an ordinary homogeneous second-order linear differential equation, to

which the solution follows the general form

P(V ) = e
−
(

V −µτ
σ
√
τ

)2 (
K1 +K2 erfi

(
V − µτ

σ
√
τ

))
,

where erfi is the imaginary error function (erfi(x) = 2
√
π
−1 ∫ x

0
eV

2
dV ) and K1 and K2 are
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integration constants. The values of the two constants are determined by imposing the charac-

teristic boundary conditions of LIF neurons. Since neurons that reach the spiking threshold Θ

are automatically set back at the reset potential VR, these two points act as sink and source for

the probability density function P(V ). Because of this, the function is not differentiable in VR

and it must be defined separately on two domains, with the integration constants K−
1 , K

−
2 for

V < VR and K+
1 , K

+
2 for VR < V < Θ. The flux φ of the pdf is given by

∂φ

∂V
= −∂P

∂t

φ = P
(
µ− V

τ

)
− σ2

2

∂P
∂V

.

The boundary conditions of the LIF neuron are then

• φ(Θ) = ν; By definition, the flux that reaches the firing threshold is the firing rate.

• P(Θ) = 0; The membrane potential cannot exceed the firing threshold, and as soon as it

reaches it, the neuron fires and is reset.

• φ(V +
R )− φ(V −

R ) = ν; The flux that is sunk at Θ is reinjected at VR, leading to a discon-

tinuity in the flux profile.

• P(V +
R ) = P(V −

R ); The probability density function is continuous at the junction of its

two subdomains. Because of the Gaussian white noise, the pdf cannot be discontinuous.

•
∫ Θ

−∞PdV = 1; P is a probability density function and its integral must be 1.

Using the first four boundary conditions, we can determine the four constants

K+
2 =− ν

√
πτ

σ

K+
1 =−K+

2 erfi

(
Θ− µτ

σ
√
τ

)
K−

2 =0

K−
1 =K+

1 +
(
K+

2 −K−
2

)
erfi

(
VR − µτ

σ
√
τ

)
,

which leads to the profile

P(V ) =
ν
√
πτ

σ
e
−
(

V −µτ
σ
√
τ

)2 (
erfi

(
Θ− µτ

σ
√
τ

)
− erfi

(
max(V, VR)− µτ

σ
√
τ

))
. (A.6)
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Figure A.2.: Steady state Probability density function of the membrane potential V of a LIF neuron. The

theoretical distribution (Eq. A.6) matches the distribution obtained through simulation at both low

and high firing rates. For high firing rates, the cusp at V = VR is visible, where the distribution is

continuous but non-differentiable.

This profile matches the distribution of membrane potentials recorded in simulations of LIF

neurons (Fig. A.2). Finally, the last boundary condition is used to determine the value of the

steady state firing rate such that the integral of the pdf is 1. With the change of variable z =

V−µτ
σ
√
τ

, this results in the Ricciardi Φ equation (Eq. 1.3) [145, 32, 24]:

∫ ∞

−∞
P(V )dV =1

ντ
√
π

(√
π

2
(erfi (zΘ)− erfi (zR)) +

∫ zΘ

zR

ez
2

erf zdz

)
=1

τ
√
π

∫ zΘ

zR

ez
2

(1 + erf z) dz =ν−1.
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A.5. LIF approximation at high rate

Although the activation function of LIF neurons given by the Ricciardi equation (Eq. 1.3) is

distinctly nonlinear for low input, the high-input/high-rates regime approaches a linear limit

(see Fig. 2.1, phase III). In the limit of strong input limµ→∞, the boundaries Θ−µτ
σ
√
τ

and VR−µτ
σ
√
τ

of the integral in Eq. 1.3 tend to −∞. In that limit, using L’Hôpital’s rule, we can replace the

integrand with a simpler expression,

lim
z→−∞

ez
2

(1 + erf (z)) =
−1

z
√
π
.

For high inputs, the Φ equation becomes then

ν =

(
τ
√
π

∫ Θ−µτ
σ
√
τ

VR−µτ

σ
√
τ

−1

z
√
πdz

)−1

=

(
τ ln

(
1 +

Θ− VR

µτ −Θ

))−1

. (A.7)

Incidentally, this limit is also the analytical solution of the LIF equation for constant noiseless

input (Eq. 1.2).

Although this expression still shows a highly nonlinear relation between input and firing

rate, it is approximately linear in the limit of large input µ. Using the Taylor expansion of the

ln (1 + x) term in Eq. A.7 we get

ν =
µ

Θ− VR

− Θ+ VR

2τ(Θ− VR)
+O

(
1

µ

)
.

This shows that the activation function of LIF neurons becomes linear in the high-input/high-

rates regime. In that case, the SSN approximation does not hold, and network activity cannot

achieve complex operational regimes permitted by the increasing f ′
E and f ′

I functions (Eq. 3.3).

In that limit, the populations are either silenced or in the linear balanced regime (Fig. 3.7).

Nonetheless, if the neuron has a refractory period ∆tref , the FI curve will saturate (see

Fig. 2.1, phase IV) and will approach the limit ν = ∆t−1
ref as

ν =
2τµ−Θ− VR

2τ (Θ− VR) + (2τµ−Θ− VR)∆tref
.
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A.6. Edge cases of the characteristic function

In the process of deriving the characteristic F function (Eq. 2.4), two assumptions are made on

the connectivity:

• The steady state condition of one population carries information about the state of the

other population: JEI ̸= 0.

• The J matrix is invertible : det J ̸= 0

Here, I demonstrate that the steady states of the 2D network are always given by zero-crossings

of the characteristic function, even in the edge cases where these working assumptions are

broken.

▶ JEI = 0

By substituting JEI = 0 in Eq. 2.3, the first line becomes

JEEfE − µE + µext = 0,

which is exactly the F function for JEI = 0. The steady state of the E population is then

independent of the state of the I population.

▶ detJ = 0

The case where the J matrix is not invertible corresponds to a situation where the connection

weights to the E and I populations are linearly dependent. So the J matrix can be rewritten as

J =

 JE −JI

κJE −κJI

 ,

where κ = JIE
JEE

= JII
JEI

is the proportionality factor. The equation Eq. 2.3 becomes

µE = (JEνE − JIνI) + µext

µI = κ (JEνE − JIνI) + rµext.
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The recurrent input term in the two equations can be equated

JEfE(µE)− JIfI (µI)− µE + µext = 0

µI = κµE + µX (r − κ) ,

which is identical to the characteristic function F (Eq. 2.4) with det J = 0 and κ = JII
JEI

.

Overall, the zero-crossings of the characteristic function F can be used to identify steady

states of the rate model for any connectivity matrix J .
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A.7. Experimental evidence for biologically plausible neural

network size

In the primary visual cortex of mice, it is particularly challenging to define a local network size

since the cortical map is unstructured, meaning that neurons that share the same receptive field

do not co-localize [184]. However, this does not mean that the concept of homogeneous network

cannot be applied to mouse V1, as neurons that share the same receptive field preferentially

connect together [94]. Since local networks within mouse V1 cannot be delimited based on

spatial anatomy, we refer to other brain regions with anatomically defined networks to determine

a reference point.

In mouse somatosensory cortex, distinct neuroanatomical structures known as barrels each

receive the sensory input from a corresponding whisker [189]. These structures are perfect

candidates to define the typical scale of a homogeneous network. Their diameter ranges from

100 to 400 µm, with a thickness in layer 4 of 100 µm [189]. Using the neuronal density observed

in [120], the number of neurons in these structures ranges from 140 to 2200. In the rat barrel

cortex, the number of neurons in each layer of multiple projection columns has specifically been

counted [114]. It is on the order of N = 4000 in layer 4 and N = 6000 in layer 2/3.

In primates, the primary visual cortex of macaques has been studied extensively. Unlike

rodents, the cortical organization of macaque V1 shows a columnar structure, both for eye

dominance and orientation preference [80]. Within a range of orientation preference of 10◦,

such columns are slab-shaped, with a size of 30 µm by 0.5 to 1mm [124]. With the thickness

of layer 2 and layer 3 being respectively 225 µm and 310 µm [65], and a cell density of 1.3 ×

105 neurons/mm3 [128], we can deduce that the number of neurons in layer 2/3 in such columns

is in the range of 1000 to 2000.

In summary, it appears that across species and cortical regions, we can define functional

networks with sizes ranging from hundreds to a few thousands of neurons. In this work, we

choose a network size of 4000 because it corresponds to the value reported in [114], which is

the only study where the neurons in a cortical column were directly counted. In this context,

we can use anatomical analyses of neurons in the same brain region to determine the fraction

of excitatory and inhibitory neurons in a network [142, 111], which leads to a E/I ratio of 3.5 in

layer 2/3. This corresponds to 3110 E neurons and 890 I neurons, which we round to 3000 and

1000 respectively.
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Finally, we can verify that the considered network size (i.e., 4000 neurons) is plausible for

mouse V1 since we could not use a spatial anatomy feature to define a network. We use the

reported probability profile (p) for E→E connections as a function of distance for mouse V1

layer 2/3, Fig 4B in [161] (near 20% for nearby pairs, going down to 0% for neuron pairs

150µm apart). Following this observation, the number of excitatory synapses to an excitatory

neuron can be estimated through a 3D spatial integration of this connection probability profile:

CEE =
∫ ∫ ∫

pEE(
√

x2 + y2 + z2)ηEdxdydz, where ηE is the density of excitatory neurons.

Over an infinite 3D space, we obtain the total number of E→E connections: CEE = 8.7×105ηE .

Using a neuronal density of 1.64 × 10−4 neurons/µm3 [90], and assuming a E/I ratio of 3.5,

we obtain CEE ≈111 connections. The result of this rough calculation is in the same order of

magnitude as the 195 connections we obtain with 4000 neurons and a probability of connection

of 6.5% (as described in [6]), which suggests that this network size is a valid approximation for

mouse V1 as well. It should be noted that the network we define does not constitute a single

block of cortex due to the salt-and-pepper organization of this brain region, but consists instead

of distant neurons which receive the same external input and are homogeneously connected

within the network.
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A.8. Disinhibition

We demonstrated in section 3.2 how the Paradoxical Effect is a signature of the ISN in E-I

networks. It should be noted however that in networks comprising more than two popula-

tions, other mechanisms can be responsible for a decrease of overall inhibitory activity upon

stimulation of the I population. This occurs in the case of disinhibition, where one inhibitory

population is suppressed by another [152]. This mechanism has been observed in cortical cir-

cuits where different inhibitory cell types have preferential targeting. The Pyramidal neurons

are primarily inhibited by PV neurons, whereas PV neurons are themselves inhibited by other

interneuron types such as VIP or SST [137]. In this context, the stimulation of SST interneurons

can lead to the suppression of the PV neurons and, in turn, the increase of pyramidal activity.

An experimenter unaware of the structured interactions between inhibitory subtypes can erro-

neously interpret the decrease of overall I activity after stimulation of the SST neurons as the

Paradoxical Effect and conclude that the network is in the ISN.

Nevertheless, when considering the different interneuron types as separate populations, it

becomes clearer that this phenomenon is not a marker of the ISN. While we can observe
d(νPV +SST )

d(µext PV +SST )
< 0, we cannot have d(νPV )

d(µext PV )
< 0 or d(νSST )

d(µext SST )
< 0 without being in the inhi-

bition stabilized regime, f ′
EJEE > 1. Furthermore, disinhibition cases can lead to an increased

excitatory activity, which is incompatible with the Paradoxical Effect since the paradoxical de-

crease of I activity is due to the reduced recurrent excitation (Fig. A.3).

In the considered 3-population system, we get:


δνE

δνI1

δνI2

 =


1− f ′

EJEE f ′
EJEI1 f ′

EJEI2

−f ′
I1
JI1E 1 + f ′

I1
JI1I1 f ′

I1
JI1I2

−f ′
I2
JI2E f ′

I2
JI2I1 1 + f ′

I2
JI2I2


−1 

f ′
EδµextE

f ′
I1
δµextI1

f ′
I2
δµextI2

 .

Here again, The determinant |−TM| is positive if the fixed point is stable [115]. The paradox-

ical effect requirement on the inhibitory subpopulation reduces to

dνI1
dµextI1

< 0

(1− f ′
EJEE)

(
1 + f ′

I2
JI2I2

)
< −f ′

Ef
′
I2
JEI2JI2E

f ′
EJEE > 1 +

f ′
Ef

′
I2
JEI2JI2E

1 + f ′
I2
JI2I2

.

As I1 and I2 play strictly symmetrical roles in this system, the results are equivalent when

probing for the paradoxical effect on the population I2. This condition is more restrictive than
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EI1I2

A B

Figure A.3.: Disinhibition can lead to an apparent Paradoxical Effect without the network having to be in
the ISN. A: Schematic representation of a 3-population network which supports disinhibition. The

population I2 mainly projects to I1. The effect of its stimulation (represented by the lightning symbol)

is a feedforward inhibition of the population I1. B: The stimulation of the population I2 leads to

a decrease of activity of I1. If the inhibitory population is considered as a whole (I=I1+I2), this

phenomenon can be mistaken for a paradoxical effect. The fact that the rates of the E populations

are driven up by the stimulation illustrates that the suppression of I1 is not caused by a reduction in

recurrent input and is therefore not a signature of the ISN. Figure adapted from [152].

the inhibition stabilization condition since the second term of the inequality is always positive

with I1 and I2 being inhibitory neurons. In the situation where multiple interneuron populations

are considered, the Paradoxical Effect is sufficient but not necessary evidence of the ISN state

of the system.

On the other hand, if the two subpopulations I1 and I2 are considered together as a single

population I, such that νI = qνI1+(1− q) νI2 where q and (1− q) are the fractions of neurons in

each subpopulation. The experiment where a decrease of overall inhibitory activity is observed

after stimulation of one subpopulation becomes

dνI
dµextI1

< 0

q
dνI1

dµextI1

+ (1− q)
dνI2

dµextI1

< 0

f ′
EJEE > 1 + f ′

Ef
′
I2
JI2E

qJEI2 − (1− q)JEI1

q
(
1 + f ′

I2
JI2I2

)
− (1− q)f ′

I2
JI2I1

.

Here, the second term can be negative, so the ISN is not a necessary condition for the decrease

of overall I activity after stimulation of one inhibitory subpopulation. For instance, if we assume

that the I1 population plays the role of the SST neurons, its strong suppression of the PV sub-

population but not of Pyramidal neurons will lead to a negative second term. This mechanism

underlies the disinhibition phenomenon.
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A.9. Effect of JEE on the occurrence of the ISN

Networks are inhibition-stabilized for fixed points that satisfy Eq. 3.2. Therefore, it seems that

any network can be in the ISN state, granted that JEE is sufficiently strong. Here, I investigate

whether there is any counterexample to this. Are there network configurations that cannot enter

the ISN, no matter how high JEE is?

From the SSN equation, by imposing that both firing rates are non-zero, the (.)+ operator can

be removed and the external input can be isolated to obtain


(

νE
aE

) 1
nE −

(
JEEνE − JEIνI − bE

)
= µext(

νI
aI

) 1
νI −

(
JIEνE − JIIνI − bI

)
= rµext.

These equations can be combined to get the crossing of two functions ζE and ζI

ζE(νE) = r

(
νE
aE

) 1
nE

+ (JIE − rJEE) νE + rbE − bI

ζI(νI) =

(
νI
aI

) 1
nI

+ (JII − rJEI) νI .

(A.8)

If one population has zero firing rate, it results in an inequality imposing that its total input is

lower than its firing threshold bX .

A steady state in the SSN is therefore one of four situations:

• ζE(νE) = ζI(νI), with νE, νI > 0

• ζI(νI) < ζE(0), with νE = 0

• ζE(νE) < ζI(0), with νI = 0

• νE = νI = 0

Since JEE only affects ζE , let us first examine how it behaves and how the ISN threshold is

affected by changes in JEE . As JEE grows, the ζE curve goes from monotonically increasing

to having a peak and then decreasing (Fig. A.4.A). Furthermore, the ISN threshold moves to

lower values of νE as JEE increases. Because of this, any value of ζE ranging from −∞ to
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A B

Figure A.4.: A supersaturating network such that the E population is consistently suppressed cannot enter
the ISN no matter the strength of the recurrent strength JEE. A network that can never be

inhibition-stabilized either has no cross-connection between the E and I populations or it does not

have a fixed point at the ISN threshold, no matter how strong JEE is. The range of steady states

accessible to a network is given by the analysis of the ζE and ζI functions (Eq. A.8). A: With JEE

as a free parameter, any value of ζE is accessible and any E firing rate νE > 0 can be the onset of the

ISN. To prevent the ISN no matter the value of JEE , the network must not admit a stable steady state

with νE > 0. B: If the function ζI always remains below the initial point of ζE , νE = 0 will always

be a stable steady state, and any other steady state where νE is not silent is unstable. If the network

does not support supersaturation (rJEI > JII ) or if the maximum of ζI is above the initial point of

ζE , it will cross the domain where the ISN can be achieved (hatched area).

∞ can be made to support the ISN by tuning JEE . Therefore, regardless of the parameters

of ζI , tuning JEE is guaranteed to lead to a crossing between the two curves such that νE >

(aEn
nE
E JnE

EE)
− 1

nE−1 , the ISN threshold. In order to ensure that no JEE value corresponds to the

ISN, we must ensure this inevitable crossing is unstable.

A network is in the ISN if the derivative of the E activation function is between the ISN

threshold (Eq. 3.1) and the instability threshold (Eq. 2.9), while satisfying the dynamic stability

requirement on the trace of M (Eq. 2.10)

1

JEE

≤ f ′
E < min

(
1 + f ′

IJII
JEE − f ′

I det J
,

1

JEE

(
1 +

τPE

τPI

(1 + f ′
IJII)

))
.

Here already, we see that one trivial way to prevent inhibition stabilization is to close the

stability window between these values, so the ISN onset is also the onset of instability. This can

occur if

• JEI or JIE is 0. In that case, the inhibitory feedback loop is broken and recurrent inhibi-

tion cannot stabilize the E subnetwork.
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• τpE
τpI

= 0. In that case, the recurrent excitation is infinitely faster than recurrent inhibition

and runaway dynamics can never be tempered.

• f ′
I = 0. In that case, the I population is frozen and cannot adapt dynamically to stabilize

the E subnetwork.

These three extreme cases prevent inhibition stabilization regardless of JEE by ensuring the

ISN onset is already unstable. Another approach is to ensure that the ζE and ζI curves can-

not cross at the ISN onset and that any further crossing will always be unstable. Since the

ISN threshold occurs before the maximum of ζE (when this maximum exists and ζE is not

monotonically increasing), the value of ζE at the ISN threshold is guaranteed to be larger than

ζE(0) = rbE − bI , regardless of JEE . The curve ζI must then remain below rbE − bI , which is

the limit of the ISN threshold for JEE → ∞. This can happen if rbE − bI > 0 and the network

supports supersaturation (rJEI > JII , see Fig. A.4.B).

For networks of which the whole curve ζI is lower than rbE − bI , solutions such that νE = 0

are always supported. If rJEE > JIE , the ζE curve will eventually decrease and lead to the

occurrence of another solution when ζE reaches the maximum of ζI , corresponding to another

fixed point. Let us consider this second crossing ν∗
E, ν

∗
I > 0 such that ζE(ν∗

E) = ζI(ν
∗
I ) =

rbE − bI , while ζI(ν
∗
I ) is the maximum of ζI . We find

ν∗
E =

(
1

r
a

1
nE
E (rJEE − JIE)

) nE
1−nE

ν∗
I =

(
nIa

1
nI
I (rJEI − JII)

) nI
1−nI

,

which leads to

f ′
E
∗
=

r nE

rJEE − JIE

f ′
I
∗
=

1

rJEI − JII
.

Using these values, the static stability condition (Eq. 2.9) becomes

|TM|∗ = 1− nE

1− JII
rJEI

,
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which is necessarily negative for supersaturating networks with supralinear activation functions.

Therefore, we find that high values of JEE lead to the apparition of more solutions, but they are

always unstable. That is because the solution ν∗
E, ν

∗
I corresponding to the minimum non-zero

νE solution is unstable and increasing JEE will only drive the network further into instability.

Therefore, for the considered supersaturating networks such that ζI does not exceed ζE(0),

the network cannot enter an inhibition stabilized regime, no matter the value of JEE . In such

networks, the E activity is always suppressed and there is no stable steady state with νE > 0. If

JEE becomes large, another unstable steady state will appear. These systems cannot be in the

ISN regardless of JEE because the E activity is either entirely silent or cannot be stabilized by

inhibition.

For values of bE and bI such that rbE − bI < 0, the network can always enter an inhibition-

stabilized state by tuning JEE . Interestingly, this is always the case with the values of bE and

bI we obtained from fitting the FI curve (Table 2.5) because of the experimentally reported

neuronal parameters for τE and τI [6] lead to bE < 0 < bI . Similarly, in networks which do not

support supersaturation (JII > rJEI), ζE always crosses ζI , even for low values of JEE .
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A.10. Connectivity parameters

JEE JEI JIE JII Remarks

Fig. 2.3.B

Fig. A.9.A

Fig. 4.4

Fig. A.6
0.672 13.2 23.7 11.8

Based on

layer 2/3 mouse V1

Fig. 3.1 4.75 0 0 0

Fig. 3.2 4.75 13.2 23.7 11.8

Fig. 3.3

Fig. 3.10.C

Fig. 4.5

Fig. 3.9

Fig. 3.11.A,D

Fig. A.9.B

2 12 6 1

Fig. 3.4

Fig. 3.10.D

Fig. 3.12.B

Fig. A.8

Fig. 3.8.A

Fig. 3.11.C,F

Fig. A.7
5 10 7 11

Fig. 3.5.A 2 3 2 1.5

Fig. 3.5.B 10 20 9 5

Fig. 3.6 3.75 3 3 3.75 r = 3

Fig. 3.7.A-C 2 3 3 2 r = 0.5, 1, 2

Fig. 3.7.D-F 3 2 2 3 r = 0.5, 1, 2

Fig. 3.8.B Fig. 3.11.B,E 1.25 1 1 1.25 r = 3

Fig. 3.12.A 1 2 4 4

Fig. A.3 1 1.2 2 1.5 JI2I1 =
5
3
, r = 10

3

Fig. 4.7 1.5 2.5 2 0.5
λE = λI =

π
10

λext =
π
5

Fig. 4.8 57 140 140 170
λE = λI =

π
5

λext = 1.6× π
5

Table A.2.: Network connectivity parameters used in all figures. The connection strengths at the population level

JXY used in mean-field solutions are given in mV. In cases where a figure portrays the same network

at different sizes, the presented values of JXY correspond to the default size N = 4000.
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A.11. Additional figures

A B

Figure A.5.: Poisson approximation of the LIF spiking process. The spiking statistics of LIF neurons fed with

white noise can generally be well approximated with a Poisson process. However, this approximation

leads to overestimating the prevalence of the shortest ISI events. A: The measured Laplace transform

of the ISI probability density function is in agreement with the theoretical prediction based on the

Ricciardi analysis [32, 118]. For high frequency in the Laplace domain, the equivalent Poisson pro-

cess deviates from the simulation. B: In the time domain, the ISI distribution of LIF neurons can be

approximated with an Exponential distribution, characteristic of Poisson processes. The main differ-

ence occurs for the near-zero ISIs, which are rare events in LIF neurons.
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Figure A.6.: Effect of an inhomogeneous external input on network activity. The same network as shown in

Fig. 2.3, with increasing variability in the external input. While the effect of the feedforward input

variability is unnoticeable between ς = 0 and ς = 5mV/s, the effect becomes increasingly stronger

for higher variability. This is due to the nonlinear effect of ς on the activation function (Fig. 4.2.B)

and the positive feedback of the firing rate variance in the input variability.

W1

W2 W3

A B

Figure A.7.: Small errors in the fitted power law are amplified when used in a network. A: The FI curve of the

E population is fitted with three different weight functions. W1 is the default weight distribution (see

Fig. 2.2) with a flat function until νE=10Hz. W2 and W3 are mainly focused around 1.5Hz and 4Hz,

respectively. The difference between the three fits is barely visible in the main figure. The insets show

zoom-ins of the FI curve around the focal points of W2 and W3 to illustrate how each fit is locally

more accurate than the others. B: When used to predict the network activity, the difference between

the three fits becomes much more noticeable. The network chosen here is the bistable network shown

in Fig. 3.4. Fit2 can very accurately match the self-consistency solution based on the Ricciardi Φ

function at the bottom bend since it is precisely the level of activity where it matches the FI curve best.

Similarly, Fit 3 should accurately predict the upper bend, but the error there is due to the recurrent

noise, which is not accounted for in the SSN. The response of the I population is not shown here for

clarity.
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Figure A.8.: Simulations of spiking LIF neurons require stabilizing synaptic mechanisms to enable bistabil-
ity. The same network is simulated as in Fig. 3.4, using a different synaptic transmission mecha-

nism. Here, the simulation is carried out with instantaneous Dirac delta synapses (Eq. A.1), whereas

synapses in Fig. 3.4 are distributed in time and have randomly distributed synaptic delays to prevent

synchronization (Eq. A.2). Without these stabilizing mechanisms, the network does not support bista-

bility as the forward (blue) and reverse (red) trajectories overlap. The inset shows a zoom-in of the

simulated curves near the expected transition point. The spiking network is in a chaotic state where

it spontaneously transitions between the low and high activity levels of the bistability. Without ad-

ditional stabilizing mechanisms, the system cannot maintain a consistent activity level, which causes

deviations from the mean-field since the steady state condition cannot be fulfilled. The apparent firing

rates reported in the main panel lie between the low and high activity levels due to averaging over a

larger time bin.
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Figure A.9.: Maps of operational regimes in input space for two additional networks. Similar to the maps

shown in Fig. 3.8. A: V1 network with connectivity extracted from the Allen Institute Synaptic

Physiology database (see Fig. 2.3). B: Supersaturating network presented in Fig. 3.3
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A.12. List of symbols

Symbol Definition First mention
ν Firing rate section 1.2.2
µ Mean input section 1.2.2
σ Temporal input noise section 1.2.2
V Membrane potential section 1.2.2
Θ LIF spiking threshold potential section 1.2.2
VR LIF reset potential section 1.2.2
V0 LIF resting potential section 1.2.2
τ LIF membrane time constant section 1.2.2
Φ Ricciardi activation function section 1.2.2
Φsc Ricciardi Self-consistent network equation section 1.2.4
j Single-synapse connection strength section 1.2.4
J Population-wise connection strength section 1.2.4

det J Determinant of the J connectivity matrix section 1.2.4
µext Mean feedforward input section 1.2.4
σext Feedforward input noise section 1.2.4
r Ratio of external input to the I and E populations section 1.2.4
C In-degree, Number of incoming synaptic connections section 1.2.4
p Pairwise connection probability section 1.2.4
N Number of neurons section 1.2.4
τP Time constant of the firing-rate dynamics section 1.2.4
a Fitted power law parameter, prefactor section 2.1
b Fitted power law parameter, firing input threshold section 2.1
n Fitted power law parameter, exponent section 2.1
f Neuronal activation function section 2.1
F Characteristic function section 2.2
M SSN Jacobian matrix section 2.3.1
T Diagonal matrix of the population time constants section 2.3.1
P Probability density function section 4.1.1
H Heaviside function section 4.1.1
ς Intra-population input variability section 4.1.1
Ψ Population average activation function section 4.1.2
ςj Variability in the strength of individual synapses section 4.1.3
θ Neuronal feature section 4.2
η Neuronal density in feature space section 4.2

Mext Feedforward input profile in feature space section 4.2
P Pairwise probability of connection in feature space section 4.2
λ Lengthscale of recurrent connections in feature space section 4.2.1

λext Lengthscale of the feedforward input profile in feature space section 4.2.1
ω Frequency domain of the feature space θ section 4.2.2
w Synaptic plasticity factor section 4.2.3
τs Synaptic time constant section A.1
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A.13. List of abbreviations

Abbreviation Definition First mention
AIS Axon initial segment section 1.1.1
PSP postsynaptic potential section 1.1.2
ODE Ordinary differential equation section 1.2.1
ISI Inter-spike interval section 1.2.2

FI curve Firing rate-input relationship section 1.2.2
LIF Leaky-integrate and fire section 1.2.2
E-I Excitatory-Inhibitory section 1.2.4

SSN Stabilized supralinear network section 1.2.4
ANN Artificial Neural Network section 1.2.5
ISN Inhibition stabilized network section 3.1
BF Balanced factor section 3.8
Pdf Probability density function section 4.1.1
STP Short-term plasticity section 4.2.3
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