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Abstract

In this thesis, we study the application of modern machine learning methods to searches for
supersymmetric models of physics beyond the Standard Model.

In recent years, resonant anomaly detection methods, such as CATHODE, have gained much
attention. Using weakly supervised learning, these methods are built to be signal-model agnostic. The
main advantage is that they are not only sensitive to a specific signal model, the analysis is tailored
to, but cover a potentially much larger region of the parameter space. These methods are most often
demonstrated on signal models that contain purely localized features.

However, the well-motivated R-parity conserving minimally supersymmetric Standard Model is
often found at the tails of distributions of features such as p7"** or Hy. Pair produced gluinos with the
decay chain g — ch/{/g(}g — X)??) with X either the Z or Higgs boson, light )?? and small mass
splitting between g and )?g will be used to demonstrate CATHODES sensitivity. We, for the first time,
demonstrate that CATHODE is only slightly less sensitive than multiple dedicated searches while
covering multiple signal models simultaneously.

This method can not uncover all signal models. For example the R-parity violating scalar top quark
decay 7 — t)?(l) ()‘((1) — gqq) with weak scale )?‘1) and sub-TeV 7 fails to produce features that CATHODE
can reliably be applied to. For this signal model, we build a supervised classifier. We utilize recent
innovations in computer vision, such as CoAtNet and MaxViT, that apply the self-attention mechanism
to images. We represent calorimeter towers and tracks of jets as 2D images and show that the
transformer-based classifiers outperform more classical convolutional neural networks in using the jet
substructure to predict whether a given jet is neutralino-initiated or not. We show that replacing a
CNN with MaxViT excludes up to 100 GeV of additional scalar top mass at 95% C.L. in a simple
mock analysis for 100 GeV neutralinos.
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CHAPTER 1

Introduction

Particle physics is the study of the most fundamental building blocks of our universe. Our current
best understanding is captured in the Standard Model of particle physics (SM). With this model
and the machinery of quantum field theory, it is possible to predict the interactions of particles at
extremely small scales. At the Large Hadron Collider (LHC), ordinary matter in the form of hadrons
is collided with extremely high energies. The collisions produce particle sprays that are analyzed with
statistical methods to infer the parameters of the theoretical model, which agree with the predictions
of the Standard Model to great precision [1]. Despite this, the Standard Model is incomplete. The
overwhelming amount of matter present in the universe can not be described within the framework of
the Standard Model, hinting at the existence of particle dark matter whose precise nature is yet to be
understood [2]. Additionally, the energy scale of the Standard Model is surprisingly small compared
to the scale at which gravity has to be included in the quantum theory. This is the scale at which we
expect the SM to break down. Moreover, one of the particles, the Higgs boson, is sensitive to the
presence of hypothetical more massive particles [3]. The fact, that we do not see the effects of this
sensitivity is, from the theoretical frame, unnatural and somewhat unaesthetic. Motivated by this,
one may introduce extensions that describe physics beyond the Standard Model. Supersymmetry is
a popular and elegant way to alleviate the aforementioned problems. Supersymmetry postulates a
symmetry that implies the existence of either bosonic partners of SM fermions or fermionic partners
of SM bosons. These additional partner particles are searched for by collider experiments at the LHC,
such as CMS and ATLAS [4]. This far, only null results were achieved, leading to ever higher lower
bounds on the mass of the hypothetical supersymmetric particles.

To probe even higher masses, two paths can be taken, which are mutually non-exclusive. First,
one may collide particles at higher energies E, which is related to the potentially created mass m via
E = mc>. Increasing the energy by a lot, however, is very expensive and needs a complete overhaul
of the particle collider. Upgrading the Large Electron-Positron Collider (LEP) to the LHC was in
no small part done because the Higgs boson was very likely to be found with the new energy — due
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to theoretical considerations [5, 6], it could not have been much heavier than the observed 125 GeV.
This guarantee does not exist with the supersymmetric partners. It could be that the signatures are
already hiding in our data, or that the masses are out of reach for the coming decades.

The second strategy to find new physics at slightly higher masses is simply more data. Potentially
we already produce some supersymmetric particles L although in quantities that are not significant
enough yet. Increasing the amount of data takes time. Current analyses at CMS and ATLAS use the
Run 2 dataset at 137 b~ ! of integrated luminosity [7], while the LHC has delivered a factor of two
more to this day. To make the most of the available data, one needs to apply ever more sophisticated
analysis strategies.

Vast amounts of data are precisely the context, in which machine learning excels. This will be the
approach we will cover in this text. First, we will focus on resonant anomaly detection. This technique
requires a new physics signal to produce a strongly localized (resonant) excess in some feature that
is extracted from particle collisions. The aim will be to use the fact that this feature can be used to
construct signal-enriched and signal-depleted sets of collision events that allow to find the signal in an
overwhelming amount of Standard Model background events. The main advantage of this approach is,
that it can be built very signal-model-agnostically. Therefore, it covers many signal-model hypotheses
simultaneously. We will demonstrate that one of the recently proposed techniques, CATHODE [8],
is more general than it has been previously shown. This allows uncovering supersymmetric signals
without explicitly restricting the method to a specific signal model. We will also show that CATHODE
is not the ultimate approach applicable to all signal models that produce resonances. To amplify the
statistical significance of another supersymmetric model we demonstrate, that recent improvements in
computer vision can be translated into physics analyses. Particle detectors can be understood as very
large cameras, providing pictures of the moment after the particle collision. Image recognition can be
used to find signal-like images which amplifies the discovery potential of new physics.

Because the topic of this thesis is physics and machine learning, we introduce both concepts in
separate chapters. We start by giving an overview of the Standard Model of particle physics and its
supersymmetric extension in Chapter 2. In Chapter 3 we review the machine learning techniques that
will be used in the main text. The application of resonant anomaly detection to models that populate
the tail of the distribution of some feature is shown in Chapter 4. Since not all signal models that
produce resonant features can be found this way, we introduce modern computer vision techniques
to high energy physics and show superior performance compared to more established techniques in
Chapter 5. We present an overall discussion and conclusion in Chapter 6. In Appendix A we show
additional information about the resonant anomaly detection methods. The second appendix, Chapter
B, contains additional studies on the computer vision application of Chapter 5.

! This is also motivated due to naturalness arguments



CHAPTER 2

Theoretical Overview

In this chapter, we review the theoretical basics that are needed to follow the treatment in the following.

2.1 Standard Model of Particle Physics

The SM is the quantum field theory that describes all elementary particles and their interactions, the
strong, weak, and electromagnetic forces. Gravity is explicitly left out since its effects are negligible
at the energy scales we can probe at collider experiments.

2.1.1 Gauge Fields

We start with the gauge fields of the Standard Model. These stem from the local gauge symmetry of
the three factors [9—13]
SU@3)g xSU2)p xU(1)y, (2.1)

which induce three gauge fields with spin § = 1, namely B,,, W, and G ,. The various representations

Field Lorentz-Rep. Coupling constant Y SU(2)-Rep. SU(@3)-Rep.
B, (1/2,1/2) g 0 1 1
oW, (/1) g 0 3 1
T,G,, (1/2,1/2) 8s 0 1 8

Table 2.1: Gauge field content of the Standard Model. o; and 7; denote the generators of the adjoint representation
of SU(2) and SU(3) respectively.

of the gauge groups these fields belong to are shown in table 2.1. The field strength tensor a gauge
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field A with coupling constant g is defined as
Ay =0,A,-0,A,+ig|A,.A,]. (2.2)

Given this, the kinetic term of the Lagrangian is

1 1 1
=5 TG, G" = STeW,, W - 2B, B, (2.3)

‘Lgauge kin.
where the trace runs over the SU(3)g and SU(2),, indices. Since the B,, field corresponds to the
Abelian gauge group whose commutator vanishes in equation 2.2, it does not have a self-interaction
term. Notably, G, and W, interact with themselves, leading to three and four-gauge boson interactions.

Since the Standard Model undergoes spontaneous symmetry breaking, only the Quantum Chromo-
dynamics (QCD) gauge group factor SU(3)¢ will stay unbroken. The corresponding gauge field, the
gluon, therefore stays massless.

2.1.2 Fermions

Field Lorentz-Rep. Y SU(2)-Rep. SU(3)-Rep.
Li=|"eE [ ] (1/2,0) -1 2 1
er 18538 L
Upi
Q; = (1/2,0) /3 2 3
dpi
UR; (0,1/2) 43 1 3

Table 2.2: Fermionic content of the Standard Model as Weyl spinors [14]. The index i denotes generations
from 1 to 3. The subscripts L and R are meant as implicit chiral projections if the fields are taken to be Dirac
fermions. A potential right-handed neutrino is not part of the standard model.

With the introduction of local gauge transformations, one has to introduce the covariant derivative,
which can be written as [14]
(2.4)

o Y
D,=0,-igB

HE - lgW” - ngG

ue

The gauge field terms are only present if the field it is applied to transforms non-trivially under the
respective transformation. The kinetic terms for the fermionic field content of the Standard Model also
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induce the fermion-gauge boson interactions via the covariant derivative. This term can be written as
[14]

‘L:fermion kin. = i%’”Dﬂlﬂ 4 (25)
where the various fermions that replace ¢ are given in table 2.2. Since both the Standard Model and
the supersymmetric extension introduced in the following sections are inherently chiral theories, it

would be advantageous to use the two-component [15, 16] notation of fermionic fields if one were to
carry out computations by hand.

2.1.3 Higgs Mechanism

Field Lorentz-Rep. Y SU(2)-Rep. SU(3)-Rep.

P = (0,0) 1 2 1

Table 2.3: Additional Higgs sector of the Standard Model with one Higgs doublet that will give mass to both up
and down type quarks simultaneously.

Because a Dirac mass term for the fermions

myny =m (Yrg+Ury) (2.6)

would be gauge-variant for the SU(2); factor, this is not a viable approach to give the observed masses
to the fermions in the Standard Model. Additionally, the Z and W bosons are both massive, which
is impossible in a pure gauge theory. To remedy this, the Brout-Englert-Higgs mechanism [17-22]
(Higgs mechanism for short) adds a SU(2)-doublet Lorentz scalar field ® with quantum number
shown in table 2.3. This introduces an additional Lagrangian term [14]

¥ - . \2
Litiges = (@ﬂcb) (D"®) - 2o T® - 1 (cb'cp) 2.7)
and Yukawa coupling to the fermions of the form
Lyukawa = —)’fé'Q_iQ)de - y?jQ_ia)uRj - yf‘jiiq)le +hc., (2.8)

with @ = io,®". Here, i and j are generation indices. For ,u2 < 0 and A > 0, one obtains the famous
Mexican-hat-like Higgs potential with a minimum at @ # 0. When the Higgs condenses, it obtains a
vacuum expectation value v that spontaneously breaks the SU(2); group. After fixing the gauge, the
Higgs field can be written as

oo L[| 0 (2.9)

V2 v+h
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where £ is a real scalar field. This leads to a new form of equation 2.7, eliminating ,uz in favour of v
[23]:

, 1 l 5 2 (1ol 24,2
Lisges =30,h0"h+ 58> v+ )7 (WLWH 4 Wiw™)
g —gg|(w”

2

e s iy (2.10)

1 2 (4
g0’ 5,)
1 2
2
Ah (v+2h) .

The first line contains the kinetic term for the Higgs boson and, defining W;‘: = %(W}l Fi Wi), a
mass term for the electrically charged W boson with My, = %. The second line can be diagonalized
by a change of basis with an orthogonal matrix parametrized by the Weinberg angle 8y,. This

leads to the new basis states Z, = cos GWWz — sinfy, B,,, known as the Z boson with mass

M, = %ﬂgz +8"% = My, /cos 6y, and the still massless photon A, =sin HWW;31 +cos 6y B,. The
Fermi constant inferred from the muons lifetime can be used to fix the value of v via [4]

~12
p= (\/EGF) ~ 246 GeV @2.11)

while the Higgs mass of m,, = 124 GeV [24] fixes the remaining parameters /12 and A of the Higgs
sector. After all this, the gauge group of the Standard Model is spontaneously broken into

SU3)g x SU2); x U(1)y — SUB3)g X U(1)gy. (2.12)

This has consequences for the fermionic sector. For N generations, the Yukawa couplings y;, y,, and
y; are N X N complex matrices. The structure of the Lagrangian allows a rotation of the left- and
right-handed leptons by unitary U(N) matrices V! and U’ via L, — VZ jLjand lp; — Uf ilgj- The
rotations can be chosen to diagonalize the Yukawa couplings, or phrased in another way, the Yukawa
matrix y; can be chosen as a diagonal matrix without loss of generality. As a consequence, the gauge

eigenstates coincide with the mass eigenstates. The charged leptons obtain a mass of

VY
"R

where y; are the diagonal elements of the Yukawa matrix. In other words, the coupling to the Higgs

(2.13)

field determines the mass of the leptons. Because there exists no right-handed neutrino in the Standard
Model, there is no Yukawa matrix that would generate a mass term for the neutrinos.

The story is not quite as straightforward with the quarks. To rotate the basis of a general complex
Yukawa matrix such that it becomes diagonal with nonnegataive diagonal entries, one needs the
freedom to rotate by two unitary matrices. In the lepton sector, we only have one Yukawa matrix
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and as such, can choose to rotate the lepton doublets and singlets. Therefore the gauge and mass
eigenbase become aligned and one does not have to choose one over the other. This is different in the
quarks sector, as we have two Yukawa matrices. The doublets would have to produce rotations that
diagonalize both matrices, which is not possible in general. Therefore, one has to choose between the
gauge and mass eigenbase for the quark sector.

Neglecting SU(2) invariance, as it is broken anyway, we are allowed to choose four unitary matrices
that rotate the left, right, up-type and down-type quarks, such as [14]

wp; — Vit dp; — Vidy; (2.14)
d
Uri = U?j”Rj dg; = Uidej'
With these, it is possible to diagonalize the Yukawa matrices by a simple change of basis and obtain
masses for the quarks M, ; = VJ/dy”/dU

u/a- For three generations, the mass eigenstates are called up,

charm and top for the up-type quarks and down, strange and bottom for the down-type quarks. This
comes at a price, as now the interactions with the W-bosons are no longer diagonal in the generation.
It takes the form
8 - U

_$uiy#PL (VCKM)LJ. d;W" +hc., (2.15)
where the Cabibbo-Kobayashi-Maskawa (CKM) matrix Vg is defined as v“v9T. Since the 3 x 3
CKM-matrix is unitary, it can be parametrized by three angles and six phases, five of which can be
set to zero by using U(1) symmetries. The last phase that we cannot get rid of is responsible for the
CP-violation of the Standard Model and only appears if there are more than two quark generations.

2.2 Problems with the Standard Model

The Standard Model has been probed with remarkable precision, reaching experimental and theoretical
uncertainties of the order of one part per trillion for the magnetic moment of the electron [25].
Although these predictions are reassuring, the Standard Model is not perfect, and observations show
that the Standard Model cannot be the end of the story. We now review some of the aspects that might
hint at Physics beyond the Standard Model (BSM) with varying degrees of urgency. This list is by no
means complete.

Gauge Coupling Unification

An intrinsic feature of quantum field theories is the running of coupling constants, i.e., any coupling g
is not a constant, but changes as a function of the energy scale g(Q) that is probed. For the Standard
Model, the three fine structure constants g2 /4n due to the three gauge factors get close to each other at
0 ~ 0(10" - 10'7)GeV [26]. The fact that any pair of couplings meet below the Planck scale hints
at the possibility that this is not entirely accidental. Since the Standard Model already contains the
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unification of electromagnetic and weak interactions into the SU(2) x U(1) gauge group, this is a
compelling reason to search for grand unified theories that force the three couplings to meet at the
corresponding scale exactly [27].

Missing Dark Matter Candidate

Dark matter is a term to collectively describe a form of matter that interacts exceptionally weakly
—or not at all- with the electromagnetic field, thus appearing dark in astronomy. Observations of the
rotation curves of galaxies [28] and galaxy clusters [29, 30] show a large discrepancy between the

total amount of gravitating matter and visible matter.

Further evidence can be seen if one directly compares the distribution of luminous and gravitating
matter after multiple galaxies pass each other. This was done for the bullet cluster 1E 0657-558 [31]
by comparing an x-ray image of the merger by the Chandra observatory with a map of its gravitational
potential derived from weak gravitational lensing effects. During the collision, the stars are too
sparse to interact much between the mergers, while the hot intergalactic gas (which is seen in the
x-ray observation) experiences friction. The gravitational map shows that the majority of the mass
distribution is not affected by the collision and is consequently separated from the gas. This is one
of the major hurdles in explaining gravitational observations by alternate theories of gravity instead
of the dark matter paradigm, and also provides insights into the dark matter self-interaction cross
sections [32]. Within the ACDM model, the matter content of the universe contains 84% dark matter
[33]. The Standard Model lacks a convincing particle candidate to explain dark matter. The only
hypothesis for dark matter within the Standard Model and ACDM are primordial black holes [2, 34]
although the evidence is still inconclusive.

Hierarchy Problem

The Standard Model describes the fundamental particle interactions remarkably well. Neutrino masses
aside, there is no clear sign of additional physics beyond the Standard Model besides what is known
at the moment. However, one cannot expect the Standard Model to be the theory of everything
since it cannot be reconciled with a quantum theory of gravity in this state. One expects quantum

gravity to play a role at roughly the Planck scale Mp = \/hcs /G = 1.22 % 10" GeV with Newtons
constant G[35]. The mere fact that the weak scale and the Planck scale are separated by a factor of
Mp/My, ~ 10'8 appears highly unnatural in itself. But this is only the first half of the argument. This
hierarchy of masses gets into even more unnatural territories if one assumes there are additional, more
massive particles that communicate with the particle content of the Standard Model. As we have seen
in the previous section, the masses of the electroweak gauge bosons are determined by the Higgs
vacuum expectation value, which in turn depends on — ,u2 which is set by the Higgs mass m;. The
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one fermion loop correction from the coupling —1 ;@ f f takes the form [3]

Sy (2.16)

where A is a cutoff that regularizes the loop-integral, commonly interpreted as the scale at which
new physics joins the dynamics. If there is no new physics at energies below the Planck scale, this
implies A ~ Mp which requires an enormous amount of fine-tuning of the ultraviolet parameters to
keep the electroweak sector at its tiny mass. If there were new heavy particles beyond the Standard
Model yz becomes usually quadratically sensitive to those large masses. In either case, the smallness
of ,u2 compared to the Planck or BSM scale is surprising and therefore unnatural if no symmetry
protects the parameter from these large contributions. This effect is called the hierarchy problem. The
Standard Model fermions do not have this behavior because the chiral symmetry protects the masses
from quadratic corrections, such that only logarithmic corrections appear.

2.3 Supersymmetry

We start this section by observing an intriguing detail in the way the loop corrections to the Higgs
mass from fermions and bosons differ. If the Higgs field couples to a massive BSM complex scalar
field with coupling term —A SCI)T<D|S |2 the resulting correction takes the form

Amy; = +’l—52A2 +o. (2.17)
167

This closely resembles the form of equation 2.16 up to a factor of -2 when Ag = |4 f|2. When our
theory contains two sets of S and the coupling constants are indeed related to that of the fermions, the
quadratic sensitivity of the Higgs mass to higher mass scales cancels out and only the logarithmic
terms hidden in the eclipses remain. A theory will not contain the relation between fermions and
bosons by chance, so we need a symmetry to relate the two. This relation is called Supersymmetry
(SUSY) [36-38]. The Coleman-Mandula-theorem [39] severely limits the possibility of transforming
fermions into bosons (and vice versa) in an interacting theory. Supersymmetry avoids one of the core
assumptions by having Lie superalgebras instead of normal Lie algebras, as used by the Standard
Model. Furthermore, the Haag-F.opuszanski-Sohnius theorem [40] implies that the superalgebra

furnishing supersymmetry is the only realization of a non-trivial extension of the Poincaré algebra.
We will not delve deeper into the mathematical foundation of supersymmetry and rather just state
how to formulate a N = 1 supersymmetric field theory (i.e. one that is generated by a single set of
supersymmetry generators), that will contain the known Standard Model. Particles that are for the
Standard Model the representations of the Poincaré group must now be contained in the irreducible
representations of the supersymmetry algebra paired with their superpartners. These partners differ by
half a unit of spin but sit in the same representations of the gauge groups. A chiral supermultiplet



Chapter 2 Theoretical Overview

consists of a fermion represented by a Weyl spinor ¢ and its bosonic scalar superpartner ¢.
To build a manifestly supersymmetric field theory one defines the superpotential W, which is a
holomorphic function of the scalar fields which enters the dynamics via

iy 5w

0409, (2.18)

Wi = ﬂ

0,

With these definitions, the chiral part of the Lagrangian is '13]
Leira == D'¢" D¢ +iy"' 54D
1 ij ST T— (2.19)
=5 (Wwa +Wiplul) - wiwg,

where o = 3 = I, the Pauli matrices o' = -5 and D u 1s the gauge covariant derivative. To add

gauge interactions, we consider the vector supermultiplet, that contains a gauge field A¢, its fermionic
superpartner /lz which both transform under the adjoint representation of the group with generators
T“ and gauge coupling g. The kinetic terms for the gauge supermultiplet are [3]

1 ,
Lyuge =~ Fin P+ GHD Ay (2.20)

The complete Lagramgian2 can be written as
L ='L:chiral + Lgauge - \/Eg (¢*Ta'70) /la

L 2.21)
- V2gd' (¥'T79) - 587 (79"

2.3.1 Minimally Supersymmetric Standard Model

We now turn our attention to the minimal field content and minimal superpotential to realize the
Standard Model as part of a supersymmetric theory, the Minimal Supersymmetric Standard Model
(MSSM)[3, 36-38, 41, 42]. The supermultiplets that incorporate the Standard Model fermions are
shown in table 2.4 and those that incorporate the Standard Model gauge bosons are shown in table 2.5.

The Yukawa interactions between the Higgs sector and the Standard Model fermions that lead to
the masses after the electroweak symmetry breaking need to be induced by the superpotential. Since
it needs to be holomorphic, one Higgs field can only give masses to either the up-type or down-type
quarks3. Therefore, the Higgs sector has to be extended by an additional Higgs doublet which is

! Here the auxiliary F-fields that need to be added to close the SUSY algebra off-shell are already integrated out. This term
does play an important role in a mechanism that beaks supersymmetry.

2 Again, the auxiliary D-fields are already integrated out but also play an important role in supersymmetry breaking
3 Two Higgs doublets are also needed for gauge anomaly cancellation
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Superfield SM Field Superpartner

—~ Vi - - Vi

Li L[ — Li Li — ~Ll
€L eri

= t

€; €Ri CRi

Qi Qi = ! Qi = ~l
dp, dp

i g, R

-~ T ~

Table 2.4: Supermultiplet content of the MSSM that contains the Standard Model fermions. The superpartners
are spin-0 complex scalars. Gauge representations are the same as the ones shown in table 2.2. The names of
the scalar superpartners of the fermions are usually prepended by an s, i.e., the scalar superpartner of a quark is
a squark.

Superfield SM Field Superpartner
B B, B

i i i

/4 w, W

i i =i

G G, g

Table 2.5: Supermultiplet content of the MSSM that contains the Standard Model gauge vector fields. The
superpartners are spin-1/2 fermions. Gauge representations are the same as the ones shown in table 2.1. The
fermionic superpartners of bosonic SM fields are named with an -ino appended to the name, i.e., the fermionic
partner of the W-boson is the wino.

shown in table 2.6. The superpotential is given by [3]

—

Wassm = _(yd)ijQind_j + (yu)ijQiHu;l:j - (yl)ijLingj +uH, H, (2.22)

which reproduces the Yukawa couplings of the Standard Model from equation 2.8 due to the WY term
in the chiral Lagrangian in equation 2.19.

2.3.2 Soft SUSY Breaking

A universe with unbroken supersymmetry is very different from the world we observe, since
there is no sign of the superpartners with the same gauge couplings and mass. Consequently,
supersymmetry (if realized in nature) has to be broken, leading to the apparent absence at the energies
currently being probed with high-energy colliders. Since there exist many mechanisms that lead to
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Superfield SM Field Superpartner Y SU(2)-Rep. SU(3)-Rep.
_ H H
H, “ ! 3 2 1
H, H,
_ H) H)
H, . o -4 2 1
Hy Hy

Table 2.6: Superfield content of the MSSM that is necessary for breaking the electroweak symmetry by the
Higgs mechanism. Notice, that for the SM we only need one Higgs doublet, of which only one degree of
freedom propagates as the Higgs boson. The fermionic fields are called Higgsinos.

spontaneous supersymmetry breaking [43-48], we parametrize our ignorance of the actual mechanism
by introducing explicit supersymmetry breaking terms to the Lagrangian. These couplings have
positive mass dimension [3] to retain the cancellation of quadratic divergencies to the scalar particles,
a desirable trait for the scalar Higgs. For the MSSM, these terms are given by an additional Lagrangian

I
Lon==3 (M BB+ MWW + M;3g +hec.)
I~ 2 =~ T 2 -~

—~ 2\ ~ % 2 = ~ 2 ~
T URi (mﬁ)i,‘ Urj ~ dri (mg)ij rj = ki (mg)”. “Rj 229
—my HyH, —my HyH, - (bH,H,+h.c.)

- ((Td)ij éinJ;j + (Tu)ij éiHuﬁ;j + (Te)ij Zin?;?j +h.C.) :

The fourth line is responsible for giving the Higgs sector a nontrivial vacuum, which is responsible
for spontaneously breaking the electroweak symmetry. All in all, the terms shown in equation 2.23
and the supersymmetric Lagrangian introduce 124 real physical parameters that contain the 18 real
parameters4 of the Standard Model [52, 53]. In phenomenological studies, one often uses a restricted
set of parameters to avoid an investigation involving 105 parameters.

Interestingly, the particle content of the MSSM can lead to gauge coupling unification when the

sparticles are not too heavy [54].

2.3.3 Mass Mixing in the MSSM

Given viable soft-breaking parameters, the Higgs potential leads to electroweak symmetry breaking.
Instead of a single vacuum expectation value, we now obtain one vacuum expectation value for each
Higgs doublet (H,)) = v, and (H;) = v,. After the Nambu-Goldstone bosons have been absorbed into

* This includes the QCD angle focp whose value agrees with 0 [49-51].
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2.3 Supersymmetry

the W and Z bosons, there are five real degrees of freedom left. The corresponding mass eigenstates
(after diagonalizing the mass matrix through two-dimensional rotations) are two neutral CP-even
scalars i and H, one of which is the observed 125 GeV Higgs boson. In addition, there is a CP-odd
neutral scalar A and a charged scalar H*.

Furthermore, both neutral higgsinos, the bino, and wino now mix into the mass eigenstates called
neutralinos ;\('? with i = 1,2, 3,4. By definition, the neutralinos are sorted in ascending order of the

mass. The mass matrix in the gauge eigenstate is [3]

B
1/~ — _ 0 M, &£4 Sully
__ 50 0 V2 V2
-LNeu 2 (B W Bd HM) _g/vd & O B EO + Cc.C. ) (224)
VoW A2
! - 770

which is diagonalized into the )}f) mass eigenstates by a unitary matrix. Therefore, the choice of M|,
M, and p determines whether the lightest supersymmetric particle is bino-, wino- or Higgsino-like.

The other mixing of interest here is the top squark mixing. In the gauge basis, this is [55]

2 1\ [~
ms A t

L=-; w) 0 o (2.25)
(L R A m2 IR

with
tanS=v,/v,

1 2
mt%L =m% +m’+ (— -3 sin’ QW) m, cos 23

o ) 2 (2.26)
m%R = m%3 +m?+ 3 sin” By, m% cos 23

A =vT,;sin B —m,u” cot .

The off-diagonal entry A is responsible for the mixing, raising one eigenvalue (i.e., physical mass) and
lowering the other. Therefore, most models predict the mixing to be most pronounced in the heaviest
third-generation sfermions, leading to rather light scalar top or scalar bottom masses. The mixing in
the other two generations is regarded as approximately absent.

2.3.4 R-Parity

The MSSM we have introduced so far obeys an interesting symmetry. Consider assigning a baryon
number B to all particles, such that Qi carries baryon number B = 1/3, lip; and dg; carry B = —1/3
and all other fields B = 0. Additionally, one may introduce the lepton number L such that Zi carries
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lepton number L = 1, ég, carries L = —1 and all other fields L = 0. In the Standard Model, both
numbers are conserved independently at tree level, simply because renormalizable violating terms are
not permitted without adding additional fields. With these two quantities, one may introduce R-parity,
which is a Z, symmetry defined as

Pg = (=1)?BLs (2.27)

where s is the spin. Under this symmetry, all Standard Model fields carry Pr = +1 while the
superpartners, differing only by As = 1/2, carry P, = —1. All terms in the MSSM Lagrangian and the
soft supersymmetry breaking Lagrangian are symmetric under R-parity. If we promote R-parity to
a symmetry our theory should respect rather than an accidental symmetry, there are no additional
allowed interactions besides the ones induced by the superpotential given in equation 2.22. As a
consequence, all interactions must involve an even number of superpartners. As a corollary, the
lightest supersymmetric particle (LSP) is necessarily stable and might be a candidate for dark matter
that the Standard Model misses.

2.3.5 R-Parity Violating MSSM

In the development of the Standard Model, it has been fruitful to write down all allowed interactions
and introduce symmetries to avoid others. We should do the same with the MSSM. If R-parity is
not conserved, there are additional allowed terms in the superpotential. The part that violates lepton

number by one unit is
1..,\,\,\ Lo o~ o~ = co~ o~
Wy oy = E/l”kLiLje‘k +AY*L,0,d, + €'L;H, (2.28)
and an additional term that violates baryon number by one unit is

1 ”i g~ T T
— Tk
where the indices i, j, k are generation indices. Here anti-symmetrization over color (i.e., contraction
with the totally antisymmetric tensor in color space) is implied; hence, the coupling A" has to be
antisymmetric in the last two indices. Therefore, there are in general nine independent coupling

124

constants A; .

With these terms enabled, there are numerous tightly constrained new processes. The most famous
of these allows one up- and one down-quark inside the proton to fuse into a (virtual) squark via /l““i,
which decays via A M intoa positron and i. Therefore, the proton decays into a positron and 7°. The
lifetime of the proton is measured to be larger than 0(1032) years[56], which puts severe constraints
on the couplings.

The absence of R-parity conservation also has consequences on the experimental signatures.

With R-parity conservation, the end of any sparticle decay chain is the absolutely stable Lightest
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Supersymmetric Particle (LSP) that is favored to be neutral, which leaves the detector undetected.
Therefore, the universal signature is large missing momentum. Once the LSP decays, for example via
the operator in equation 2.29, this completely changes as the previous missing momentum now gets
deposited into the large hadronic activity in hadron collider experiments. Many exclusion bounds on
sparticle masses are therefore considerably weaker.
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CHAPTER 3

Machine Learning

In this section, we cover the basis of the machine-learning algorithms that were used in this text. We
focus on an intuitive understanding from a physicist’s point of view rather than formal results. Since
the tasks covered in this thesis are classification problems, we will focus on them. The aim will be to
take input features x € X and correctly map them onto the target variable y € Y via some function
h : X — Y that needs to be found. In the context of supervised learning, we have access to a training
set made of n pairs (X;, y;) that can be used to construct h where the index i enumerates the pairs.
One way to construct h is analogous to function fitting. One chooses a sufficiently complex function
with parameters 6 for which the problem is solved for some value of these parameters, even though
these are not known beforehand. To calculate how well the function predicts the right output on an
example x;, given some 6 one introduces a cost or loss function such as

[(X;, v, 0) = (h(x;30) - ;)" . G.1)

To find the optimal 6, the expectation value of equation 3.1 is minimized numerically over all training
examples.

3.1 Optimizers

One way to find the optimal 8 is by gradient descent. Computing the full gradient is prohibitively
expensive for large training sets and complex models. To remedy this, one uses mini-batch-based
stochastic gradient descent, which takes a randomized subset of n,, training examples called mini-
batch for each step. The batch size n,, is a hyperparameter that has to be chosen depending on the
computational resources at hand. After an initial guess, 6 will be updated from timestep 7 to timestep
7 + 1 with the gradient

0
Gj(Xi) - T%l(xi’yive)’ (32)
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where 6 is the j’th component of 6 and the rule

aj(7+1)=9j(r)—%ZGj(xb), (3.3)
b

where the index b enumerates all examples x in a given mini-batch. 7 is called the learning rate, which
controls the stepsize along the gradient. The learning rate is a hyperparameter and as such will not be
optimized with gradient descent during the learning stage, but has to be chosen beforehand. Especially
for small batches, the gradient tends to have strong fluctuations, which renders the optimization
procedure unstable. This can be avoided by using a technique called Momentum [57] that changes the
update rule to

Vi(r)=aV,(r—1)- nl >16(x,) (3.4)
by

Analogously to the mass in physical momentum, the hyperparameter a € [0, 1) controls how much
inertia the gradient step carries, i.e. how much it resists the change due to the gradient at this step.
The optimizer that is used in this text, Adam [58], is a slight modification of this.! For this, two new
hyperparameters 3, 8, € [0, 1) with typical values of 0.9 and 0.999, respectively, are introduced. The
update rule is as follows:

p,

g,(0) = %; G, (x,) (3.6)

M;(7) =B M;(t = 1) + (1= B)g, () (3.7)

Vi(1) = BoVi(t = 1) + (1 = By)g; ()’ (3.8)

) (1) = M (0 (39)

V(1) = — 2ij(r) (3.10)
M;(7)

Oi(r+1)=0,(r)—n (3.11)

w/VJ-(T) +€ ’

where g ; (T)2 and \7]- (1) are evaluated elementwise, € regularizes the expression for small V and is

typically set to 10°% and M ;(0) and V;(0) are set to zero. The hatted definitions are added to correct
the bias in the early steps introduced by the zero initialization. Similar to Momentum, M ; captures the

! Technically it can be understood as a combination of another optimization algorithm, RMSProp[59] and Momentum [57].
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mean” of the gradient, suppressing fluctuations. In contrast to this, V; captures the variance, which is
a measure of how much the gradient fluctuates. Combining both in the update step for 6; we can think
of Adam as gradient descent with momentum, with an adaptive learning rate ~ 1/ \/V , which takes
large steps when the fluctuations of the gradient are small and vice versa. This effectively gives every
parameter 6; an independently adapted learning rate.

3.2 Feed Forward Neural Network

Now that we are equipped with the tool to find the optimal parameters 6, we turn our attention to
how to build the function h. One recipe to construct a sufficiently complex h is to build it as a fully
connected feed-forward network [60]. A single layer of this network can be defined by

h=Wx+b (3.12)
h=o(h) . (3.13)
Here, x € R" is the n; dimensional input, while h is the n,, dimensional output of the layer. W € R"i"""
is called the weight matrix, and b € R™ is the bias vector. o is the element-wise applied non-linear

activation function. With / ., being the m’th component of h, this activation function is most often
one of the following:

ReLU (B) = max(h,,, 0) (3.14)
ReLU6 (H) = min(max(%,,, 0), 6) (3.15)
e 1
Slngld (h)m = m (316)
Softmax (H) _ P 3.17)
m Zj eXP(hj)

These activation functions have simple and computationally cheap derivatives, which is useful for the
calculation of the gradient. Typically, both W and b are combined into 8 from the previous section to
be optimized. h can either be the target y or be the input to another layer, in which case h is called the
hidden representation. Such networks with at least one hidden layer are historically called Multilayer
Perceptron (MLP). A simple example is shown in figure 3.1. Even though this construction seems ad
hoc, there are formal results that put the technique on solid foundations. Especially, various forms of
the Universal Approximation Theorem [61, 62] prove the existence of RelLU-activated networks that
approximate well-behaved functions arbitrarily well.

2 Strictly speaking, this is not the mean due to the powers of 5, /2 but the intuition still holds.
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Figure 3.1: Representation of a simple two-layer fully connected feed-forward network that takes three inputs
X1, Xy, X3 to calculate the output y. The circles denote the neurons that add the bias term b’j to the sum of the
inputs and apply the activation function. Arrows denote the flow of values, which get multiplied by the weight
denoted by W ,,,.

3.3 Gradient Boosted Decision Trees

Another powerful method to construct the function h are Classification and Regression Trees
(CART) [63]. As the name implies, decision trees can be used for regression and classification tasks.
The structure is as follows: The set of inputs starts at the root node of the tree. From here, the tree
consists of nodes that take one of the input features, which is used to decide to which of multiple
subsets (in our case, two) a given example belongs. These subsets are passed along to the next
corresponding node. This procedure is repeated until a stopping criterion is reached. At the end of
a path through the tree, there are leaves that carry a leaf index j and a weight w; that represent the
output. For classification, these leaves correspond to the inferred class a given example belongs to.
For regression, the weight is the discretized inferred output. An example of a decision tree is shown
in figure 3.2. Note, that even a regression tree can be used for binary classification when a logistic
function is applied afterward, as is the case in logistic regression. Since we do not use vanilla decision
trees, we will not cover the algorithms used to construct them. Due to their intuitive structure, these
trees are very interpretable, although they usually perform weakly. This can be improved upon by
gradient boosting.

The specific implementation of gradient tree boosting we will use in later chapters is XGBoost [64]
which we will summarize in the following. Instead of proposing a single architecture and simply
finding the best parameters, this approach builds the desired function iteratively with

N
hx) = Y fa(x), (3.18)
n=1
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Root Node
X, >0

Node Node
X <2 X, <5

Leaf O Leaf 1 Leaf 2 Leaf 3
Weight w,, Weight w, Weight w, Weight w;

Figure 3.2: A short example of a decision tree. The tree starts at the root node. Examples that pass the decision
flow along the green arrows, while examples that fail the decision flow along the red lines. As a concrete
example, x = (4,2) ends in leaf 3 and is assigned the weight w.

where the functions f, are weak learners, i.e., learners that perform relatively poorly on their own on
the task at hand. In our case, these learners are simple regression trees. Each partial sum aims to fit
the desired function as well as possible, such that each additional term only needs to fit the residuals
of the previous terms.

To formalize how to grow the tree, one needs to define an objective. Since the tree growing does
not have a natural cutoff that regularizes its growth, it tends to grow until it learns the noise present in
the data, which leads to poor generalization. To remedy this, the objective contains, in addition to the
loss function, regularization terms that penalize overly complex trees. Formally, this can be written as

L) =Y 1Gny) + ) w(f,) (3.19)

T
1
W) =T+ 340 il (3.20)

where J; is the inferred output for x;, i runs over the trainings samples, (-, -) is the loss function, T is
the number of leaves in the tree f, and w, are the leaf-weights. y and A are hyperparameters that
control how much the model is regularized. For growing the trees to optimize this objective, XGBoost
approximates the loss function with the second-order Taylor expansion at each point of the expansion
in equation 3.18. After m terms are considered in equation 3.18 and the prediction up until this point
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is $", the expansion can be written as

L Zl(yl )+ o(f,) (3.21)
= Z L7 + £ (%), 30) + @(f,) (3.22)
am—1
I o L0 p o (3.23)
o™
12167 y)
3T %)+l +0 (fx) (3.24)
1
zZ:gifm(xi) + Ehifr%t(xi) +w(fin) s (3.25)
where all terms that do not depend on the structure of the m-th tree are dropped. The g; and h; are
given by
I,
= % (3.26)
L™y,
h; = (—lg) . (3.27)
o™ )

Again, enumerating the leaves by ¢ and defining /, as the set of indices i of inputs x; that belong to the
t-th leaf this can be written as

L= Z Dgw + —Zh +A|w?|+9T. (3.28)
iel, iel,

This can be used to obtain the weights that extremize this expression by setting the derivative to zero,
given that each term can be considered independently:

Ziel 8i

W= —e— (3.29)
! Dier, hi + 4
which leads to the optimal objective
( 2
iel, gz)

= —+9T. 3.30
2 Z Sier b+ A (3:30)

This expression can now be used to grow the tree. Consider a node in a tree under construction,
that contains the indices [ and a split into indices I; and I for the left and right leaf respectively is
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proposed. The reduction in the objective function due to the additional split can be written as

2 2
() Beas) s
2| Zier, hi+ 4 X i+ A4 Zierhi+ 4

(3.31)

One then finds the feature and split value with the greatest Gain and adds this split to the tree if the
objective is indeed reduced. Alternatively, one terminates the tree in a leaf when the penalty of the
added split y is greater than the improvement, a technique called pre-pruning. Notably, a feature is
only selected to construct an additional node if the split improves the model. In other words, the
method is inherently insensitive to the inclusion of useless features.

3.4 Convolutional Neural Network

Not all objects have a sensible representation as a fixed-size vector x, which a simple MLP can handle.
Images, for example, have numerous drawbacks in this representation. In a flattened representation,
the notion of neighboring pixels, or objects in the image being close is hidden and would need to
be learned by the network. Additionally, single pixels carry only a small amount of information on
their own. A better approach is to keep the two-dimensional nature, such as in Convolutional Neural
Networks (CNN)[65, 66]. For this, one regards an image as a matrix [ € R"<""w""n where n,. is the
number of channels (e.g., red, green, blue for RGB-images), n,,, n;, the number of pixel columns and
rows. Next, one considers a learnable matrix called kernel K € R"™"w-kn with k,,, k;, kernel columns

and rows. This kernel is convolved * with the image to construct the output C at position i, j as

ne kw kh
C(,j) = Z Z Z I i+iy, j+i)K(ii,. i) +b, (3.32)

Ly 1In

where b is a bias parameter. This is passed afterward through an activation function. In other words,
this operator slides the kernel over the spatial dimensions of the image and sums the element-wise
product between the image and the kernel. Given one only allows convolutions where the kernel is
entirely contained in the image, the output C (also called feature map) of this operation has shrunken
in size and has dimension (n,, — k,, + 1) X (n;, — k;, + 1). One technique to avoid this spatial shrinking
is padding, where the image gets expanded by additional values before the convolution so that the
size stays fixed. The channel dimension is always collapsed into a single value at each position. This
collapse results usually in information loss. To avoid this n,, independent kernels are used to construct
the output with 7, feature maps. This way, each kernel could learn to find a different property of the

image.

3 Technically, what is implemented in various machine learning libraries is cross-correlation instead of proper convolution,
which differs by flipping the kernel.
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This convolution operator has several properties (also called inductive biases), that aid in learning
the important features such that the model generalizes well onto unseen data [57]. For one, the
operation is inherently local if the filters are spatially much smaller than the entire image. Since many
features of an image are also local, this allows to share a relatively small number of weights across the
entire space while still being useful. For example, small features such as edges can be found in only a
small region of the image, without the need for global connections. Also, the operation is translation
equivariant, i.e. a spatial shift in the input image results only in a spatial shift of the feature map.

To build a classifier for images, such as the one we will encounter later in this text, one usually stacks
multiple CNN layers, feeding the feature maps after applying an activation function into subsequent
layers. The last feature map is flattened and fed into a classification network which gets expensive if
the feature map is too large. To reduce the spatial dimensions one can either use convolution with
strides, where the indices 7, j in equation 3.32 are not traversed consecutively but only values that are
different by a fixed step size, or a pooling layer. For the latter, a pooling operation (often the maximum
or average) is applied on a sliding window across the spatial dimensions. The dimensions of the
image can effectively be cut down when this sliding is stridden without the introduction of additional
learnable parameters. For example, a square window of width two that gets applied with stride two
cuts both spatial dimensions in half. Often both reduction techniques are applied simultaneously.

3.5 Attention Mechanism

Now we turn our attention to another mechanism that will be used in this thesis, the attention
mechanism. Attention was originally designed for use in natural language processing but gained wide
popularity in a wide range of applications[67]. We briefly summarize how the attention mechanism
works following the treatment of ref. [68]. For this, let us regard the input of the mechanism X as a
vector of m n-dimensional vectors, also called tokens. These tokens may be embedded words in the
context of natural language processing, pixels with multiple channels, or flattened patches of images
in the context of computer vision. The aim is to gain information that uses all tokens on an equal
footing no matter how far (first vs. last word in a sentence, rightmost top corner vs. leftmost bottom
corner of an image) the tokens are from each other, without relying on excessively large amounts
of involved neurons. First, the elements of X are multiplied by learnable matrices wY, WX and
w2 e R to form V, K, Q called value, key and query. Note that, in general, wY may have another
second dimension. Next, the scalar product of all rows of Q with all rows of K builds a matrix that the
softmax function is applied to. The resulting matrix is used to mix and reweight the tokens stored in
rows of V, depending on the representation learned by the matrices. The full result can be expressed
using matrices by:

Attention(Q, K, V) = softmax OK” Vv (3.33)
b b VE . .

The mechanism is also shown diagrammatically in figure 3.3.
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Figure 3.3: Sketch how the attention mechanism works. The input X is a vector or tokens. The learnable
matrices W", WX and W€ transform each token into a d-dimensional representation that built V, K and Q. The
product D = QK T ¢ R%4 are scaled by 1/vd and fed into the softmax function, which builds the weights by
which V' is multiplied, which furnishes the output O.

This particular variant of the mechanism is called Scaled Dot-Product Self-Attention and outputs
m d-dimensional vectors. Note here that the number of learnable parameters is independent of the
number of tokens. Also, note that the calculation of the scalar products gets expensive for a large
number of tokens. For n tokens, there are n” scalar products that need to be computed. Especially in
images, where the number of pixels grows quadratically with the size of the image, the vanilla attention
mechanism gets unmanageably costly when applied directly to pixels of large images. Sometimes it is
useful to use n;, distinct matrices wY, WX and W2. The ny, attention outputs are called heads and
are concatenated. The now large contextualized output vectors are as a last step transformed to be
again n-dimensional by another learnable matrix. The whole mechanism is then called Multi-Head
Self-Attention. This allows a single layer to extract information from #n,, different projections in a
single layer.

3.6 Self-Attention Applied to Images

Now that we have covered how Multi-Head Self-Attention works, we now introduce the concept of
transformer. As the name suggests, the mechanism aims to transform sequences into more informative
states. For this, we follow the treatment of the transformer-encoder of ref. [68]. This structure is
built of several identical layers. Each layer consists of a Multi-Head Self-Attention module with
a skip connection and layer-normalization [69]. Skip connections take the input of whatever they
are built around and add it to the output. This is done to stabilize training by avoiding vanishing
gradients. These tokens are then fed separately through a fully connected feed-forward network, again
with skip connections and layer normalization. With each layer, the tokens pick up more context, i.e.

25



Chapter 3 Machine Learning

information depending on the entire set of tokens.

As mentioned earlier, applying self-attention and therefore transformers on large images is
prohibitively costly when applied directly to all pixels in an image, even though the number of
parameters may stay manageable compared to applying a fully connected network directly to pixels.
To circumvent this, multiple techniques break the image into smaller chunks and apply self-attention
to these. We will only focus on image classification architectures, as these are what is covered in the
remaining text.

3.6.1 Vision Transformer

The Vision Transformer (ViT) [70] breaks the image into a grid of P X P patches. Each patch is
flattened to P? - C dimensional vectors, where C is the number of channels the image had. These
are then linearly projected into D dimensional vectors to dial the desired size. These vectors are
subsequently added to a learnable position encoding. This allows the next step to be informed about
the position of each patch since the encoding only depends on the position of the path within the
image. A single additional learnable cls-token is added to the list of vectors. The results are then fed
into the transformer, which consists of multiple transformer-encoder layers. After the transformer
layers, only the transformed cls-token is fed into the classification head. This way, the input features
for the MLP are not biased to a single patch, as would be the case if one were to simply choose another
output token for classification.

As noted by the original publication, this architecture only performs better than CNNs for large
datasets, because it lacks some of the inductive biases mentioned in Chapter 3.4, that help to generalize
from the limited training data. Several techniques exist that introduce back the inductive biases into
the transformer approach.

3.6.2 CoAtNet

One of the techniques we will use later in this text was introduced in Combination of Depthwise
Convolution and self-Attention (CoAtNet) [71]. First, the authors propose aggressively shrinking
the large input image by strided convolutions or pooling operations such that the size is manageable
for the transformer stage. The key idea is a technique called relative attention. The version used by
CoAtNet adds a weight to the attention matrix before the application of softmax that depends on the
relative position between the tokens. This can be written schematically as

exp(g;k; +w;_;)
Yi= Z

(3.34)
7 Y exp(qik] +w;_y)

i°
where g,,, k,, and v,, are query key and value vectors at the position n and w are the weights encoding

the relative position, hence in itself being translation equivariant. w is learnable and has size
(2H — 1) X (2W — 1) for input images of height H and width W. Depending on the relative size of the
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3.6 Self-Attention Applied to Images

dot-product and w this allows the relative attention mechanism to either enforce the global receptive
field of the vanilla attention with small values of w; ; or focus on local fields by learning larger values

of w;; for small distances between tokens.

3.6.3 MaxViT

Block Attention
E OmECE g OmO| E o
OmECE = OmO| EH
— lll%D.DD% § %DIDD% lll%@ E > —
OmCE < Om|
Grid Attention
OmECE 5 OmO| ”
OmECE = OmO|
- Sacs | §-EaE-EH o £ oo
OmECE < OmO|

Figure 3.4: Block and grid attention as used by MaxViT. For block attention the image is split into regular-sized
blocks within each attention is applied, as shown in the upper panel. For grid attention (shown in the lower
panel) the image is split into a regular grid. Attention is applied to each subgrid.

The second technique we will use is the Multi-AXis VIsion Transformer (MaxViT) [72]. The
main way this accomplishes applying attention to images is in two stages. First, the image is split
into square blocks. Within each block, one applies the attention mechanism, which the authors call
Block Attention, after which the image is recombined. This essentially applies the mechanism only
locally with high resolution. In a second stage, the image is split into a regular uniform grid such
that the attention mechanism is applied to each grid, which the authors call Grid Attention 4 The
specific attention mechanism used here is the same relative attention used by CoAtNet. This allows
the attention mechanism to use global interactions on the lower-resolution patches. Both steps are

illustrated in figure 3.4.

4 An interesting fact from the intersection of physics and computer science: This splitting into grids and blocks is done
using Einstein summation [73]
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The reason why this works is the following: As mentioned before, the computational cost of the
attention mechanism scales as n” for n tokens. For a square N X N image, with each pixel representing
a token, the cost scales as N*. On the contrary, block attention with block size B X B costs constantly B!
computations but has to be computed N 2 / B? times. Therefore, another factor of N* / B’ computation
is saved.

To build a MaxViT-layer, a MBConv-block [74] is prepended to the block attention, followed by
grid attention. Multiple MaxViT-layers are stacked to form a MaxViT-block. Only the convolution of
the first layer in each block uses stride two to reduce the spatial size. The number of MaxViT-layers in
each MaxViT-block is a hyperparameter.

The full classification network, as proposed by the authors, is built as follows: First, the image is
passed through two convolution layers with 3 X 3 kernels and stride two and one, respectively. This
is followed by four MaxViT-blocks. The output tokens of the last block are average-pooled and fed
through a simple MLP for classification.

3.7 Density Estimation

Density estimation is another class of problems we encounter in this thesis. For this, we want to model
or estimate the Probability Density Function (PDF) p(x) from only a finite number of independent
and identically distributed samples x.

3.7.1 Kernel Density Estimation

For the density estimation of a univariate PDF, we do not even need to use machine learning. A
popular, non-parametric method to solve this problem is Kernel Density Estimation (KDE). Given a
set of n independent and identically distributed samples x; from the PDF p(x) one may estimate p(x)
by [75]:

plx) = % Zn: K (x ;x") : (3.35)

Here, K is a non-negative and normalized function called the kernel, and 4 is called the bandwidth. A
common choice for the kernel is the unit normal distribution

K(x) = \/% exp (—g) . (3.36)
The bandwidth % needs to be tuned to a usable value. If £ is too large, the estimated distribution
is overly smooth, and details are washed out. If 4 is too small, the estimated distribution behaves
irregularly and models artifacts due to the finite number of samples. Notice that if we bin the samples
x; into bins of width 4 and choose a uniform distribution as the kernel, this technique closely resembles
normalized histograms. There are also multivariate kernel density estimation techniques (e.g., see ref.
[76]), but we will not pursue them further.
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3.7 Density Estimation

3.7.2 Normalizing Flow

To estimate a multivariate distribution, we will use another technique called normalizing flow [77,
78]. For this treatment, we follow ref. [79]. This aims at modeling the target distribution p, (x) of a
continuous D dimensional random variable x parametrically by transforming the samples u of a base
distribution p,, (u) using a transformation 7" such that x = 7'(u). If one demands T to be invertible and
both T and its inverse T~ to be differentiable, one finds by using a change of variable

Po(x) = p, (w)|det J(w)| ™", (3.37)

where J; is the Jacobian matrix corresponding to the transformation 7. In practice, one usually
chooses p,, (u) to be a simple tractable distribution such as a multivariate normal and instead of just
a single T one decomposes T into K transformations Tk o ... o T;. With the definition u = z, and
X = zx we can write the intermediate z; as

2, =Ty (z4_), (3.38)

with k = 1...K.

A sample from the simple distribution p,,(u) flows through all K transformations via the z;’s into
the target space. Inversely given the samples x and traversing the transformations in the opposite
direction gets normalized into the simpler distribution p,, (u) thus the name normalizing flow.

Framed in this context, the aim is to parametrize the transformations 7; by some sufficiently
expressive model and find the parameters that solve the problem. As before, these parameters are found
by minimizing a cost function. One way to write the cost function is the forward Kullback-Leibler
divergence between the model and the true target distribution, which measures, informally speaking,
the difference between two probability distributions. Given a set of N samples, sampled from the true
target distribution x,, this can be approximated up to terms that do not depend on the model parameters
as

N
1 _
L=~ N E log p, (T 1(xn)) +log | detJ -1 (x,)]. (3.39)
n=1

Since, from a practical point of view, we want to arrive at the parameters that minimize equation 3.39
via gradient descent, the cost function should be computationally easy to evaluate. The logarithm of
the determinant in the last term decomposes into a sum of the logarithms of the determinants of the
partial transformations 7}, though the determinants are still potentially costly.

It is particularly easy to calculate the determinant of a matrix if it is triangular. In this case, the
log-determinant is simply the sum of the logarithms of the diagonal entries.

To see how this is useful, we focus on a model with a single transformation 7 from u to x. Let us
denote x,.; as the vector built from the first through i’th component of x. The chain rule of probability

29



Chapter 3 Machine Learning

states

D
p(x) = [ pilxiiy) (3.40)
i=1

where p(x,|x,.0) = p(x;) and p(x;|x,.,_;) are probabilities of x; conditioned on the previous i — 1
dimensions. The Jacobian is always triangular if 7; (the i’th component of T) depends only on u,;
or u;.. This is the point of attack affine autoregressive flows take [80]. For this, one defines the
transformation as

X;=u;expa; (X)) + 1 (X1.21) (3.41)

where «; and y; are neural networks. For all ¢; and y;, this expression is invertible. In this
parametrization, the log-determinant is simply the sum of the «; which is computationally cheap. The
version of normalizing flow we will use later in this text is the Masked Autoregressive Flow (MAF)
[81]. This aims to model the 2 - D functions «; and y; in a single pass using masking in the form
introduced by Masked Autoencoder for Distribution Estimation (MADE) [82]. For this, one first
builds a fully connected neural network with D input and D output neurons and a number of hidden
layers with more neurons. It takes u as input and applies a mask on the weight matrices such that any
given output neuron is only connected to a desired subset of input nodes. An algorithm to produce
this mask efficiently is given in the original MADE publication. This way, it produces the entire set of
D functions a; or y; in a single forward pass while it still can be efficiently represented for evaluation
on a GPU.
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CHAPTER 4

Resonant Anomaly Detection

The results of this chapter have been published at:

Combining resonant and tail-based anomaly detection

Gerrit Bickendorf, Manuel Drees, Gregor Kasieczka, Claudius Krause, and David Shih
Phys. Rev. D 109, 096031 - Published 23 May 2024

In many scenarios of physics beyond the Standard Model, there is at least one new particle that decays
visibly. Usually, a search for these signals boils down to searching for a localized excess compared to
the Standard Model in a mass-like feature m. To calculate the significance of such an excess, some
searches rely on simulated Standard Model background events. This is suboptimal, because from
the computational cost of sufficiently accurate modeling of the hard process and showering to the
non-perturbative nature of hadronization and the finely-grained simulation of the detector response
(to mention a few), numerous steps add uncertainties to the simulations. Even if the background
template is constructed in a data-driven way, these searches usually assume a specific signal model.
By optimizing selection cuts to maximize the discovery potential of a specific signal, these strategies
have low sensitivity to other models.

New physics might hide in the data collected by the experiments, only slightly out of reach of our
classical searches. Therefore, it is imperative to also employ strategies that are less model-specific.
Classical bump-hunts in a feature with a smooth non-zero background shape fit this description. Put
simply, one could divide the range of m into a Signal Region (SR) and Side Band (SB), interpolate
a smooth function from the SB into the SR and calculate p-values for all potential locations of the
resonance. This is rather insensitive because one relies on only this feature, such that the signal has to
have a large cross section to significantly impact the p-value. Recent machine learning methods can
be used to suppress the background efficiently without exact knowledge of the signal model. For this,
the methods use auxiliary features x that might be different between the background and a potential
signal model to generate a signal-enriched subset of events. These methods can be summarized by the
umbrella term resonant anomaly detection [8, 83—102].
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Chapter 4 Resonant Anomaly Detection

4.1 Overview of Resonant Anomaly Detection

As implied by the Neyman-Pearson lemma [103] the optimal technique to classify a given event
as either signal- or background-like constructs the likelihood ratio p(x)/ Ppg(x) where py, is the
distribution of the true background and p;(x) is the distribution of the signal. In physics, we do not
have access to either distribution exactly, even though we can approximately construct py, (x), for
example, using the SB, while p(x) is supposed to be left unfixed in favor of being signal model
agnostic.

On the other hand the proxy task
Pdata (x )

R(X) B pbg(x) '

4.1)

where p 4., i the distribution of the data, is available. When the distribution of the background and

signal is known, the data distribution can be written as

pdata(x) = (1 - E)pbg(x) + Gpsi()C) ’ (42)

where € is the signal strength parameter, depending on the signal process cross section. With this
equation 4.1 can be rewritten as
g (x
R = (1— )+ 2 (4.3)
p bg (x )
which is monotonically related to the likelihood ratio between signal and background and hence still
Neyman-Pearson optimal. This is the key observation that is exploited in the following.
Next, we will give an overview of some resonant anomaly detection methods that use this or a
similar approach. This is by no means an exhaustive treatment since it is an active field.

CWolLa Hunting

Perhaps the most immediate application of a similar technique is in Classification Without Labels
(CWoLa)[104]. For this, one builds two datasets with features x, one inside the SR and one inside
the SB. Even though the SB is not completely signal-free, it still contains fewer signal events, such
that the likelihood ratio between SR and SB pgg (x)/pgp(x) is still monotonically increasing with
Psi(x)/Pyg (x) as described in the original publication [104]. This approach depends on the assumption
that for pure background events the SR and SB are indistinguishable, i.e. pgg(x) = pgr(x).

This implies that special attention has to be paid to select and modify the features x such that they
are uncorrelated with the feature m. Otherwise, the classifier will pick up the correlation with m and
simply learn the definition of the SR and SB while ignoring the difference between both sets due to
the signal presence in the SR. This method has already been applied at ATLAS [105] on the decay
A — BC withmy =1TeV > mpg ~ mc ~ 100GeV and B and C are reconstructed as large-radius
jets. Also, the CMS measurement of the tthb production cross section used CWolLa [106].
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Tag N’ Train

The Tag N’ Train (TNT) [107] method is closely related to CWoLa. For CWoLa one needs to define a
signal-enriched and signal-depleted sample by hand. In general, one might not know how to design
these. For Tag N’ Train this is done automatically using a tagger that might perform poorly on its
own, followed by training a CWoLa-like anomaly detector. One example application is the search
for an anomalous process that shows up in two jets. To keep the training of the tagger data-driven,
one possible architecture is an autoencoder that is trained completely unsupervised on only one jet of
the event. For this autoencoder, one represents the jet constituents (either calorimeter cells, tracks or
particle candidates) as an image, treating the deposited energy as the brightness and discretizing the
detector coordinates ¢ and 7 to a regular gridl, regarding these as pixel coordinates. One autoencoder
architecture [108—111] uses convolution and pooling layers to reduce the image size. The image is
then flattened and fed through multiple dense layers, further reducing the number of neurons. After the
desired latent space dimension is reached, the architecture is built inversely such that the output is the
same size as the input image. One then trains the autoencoder to reconstruct the input image. Since the
latent space is small, the exact identity transformation cannot be learned, and —informally speaking—,
the autoencoder has to focus on reconstructing the most probable image. Since one assumes the
majority of jets are from background processes, the autoencoder should reconstruct these images
better than it does for signal images, which it encounters less frequently. Thus, the reconstruction loss
can be seen as an anomaly score. By cutting on this loss, the dataset is split into a signal-enriched
and signal-depleted subset. The second jet is then used to train a CWoLa-like classifier. In principle,
this can again be iterated, splitting the dataset using the CWoLa anomaly score and training another
CWoLa-like classifier on the first jet, which was used by the autoencoder. However, the performance
tends to plateau rather quickly.

Note, that the assumption of two anomalous jets not only reduces signal model independence, but
might be problematic for models where the potentially anomalous jets cannot be reliably separated. If
non-anomalous jets fit the selection criterion, this might dilute the anomalous jets, even though one of
the jets is correctly identified.

ANODE

Another approach is Anomaly Detection with Density Estimation (ANODE) [112]. This immediately
tackles equation 4.1 by first learning the conditional density of events p (x|m) in the SB and interpolating
itinto the SR. If all goes well, this can be seen as an estimate of p,, in the SR. Additionally, a second
conditional density p4,.,(x|m) is estimated using the data in the SR. Both density estimators are
chosen as normalizing flows, as described in the earlier chapter. Combining both, one can calculate

the likelihood ratio
p data (x I m)

Rlxbm) = Gelm)

4.4)

! More detail on how to obtain images from jets will be provided in the next chapter
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which can be evaluated on the samples to assign an anomaly score to each event. A cut on this score
can then be used to amplify the signal-to-background ratio. One clear advantage over CWoLa is that it
does not break down when x and m are slightly correlated because the learned conditional density
interpolates the correlations from the SB into the SR.

CATHODE

2l x1 I

To T3 Z2

m € SB m € SR m € SB

T

Figure 4.1: Sketch of CATHODE. The signal shown in orange forms a bump in the resonant feature m, while
the background shown in blue is smooth. One defines the SR, which contains almost all signal events. The
density of the auxiliary features x, shown in the upper panels, is learned in the SB and interpolated into the
SR. Overdensities in the SR data compared to the interpolated background template are then associated with
anomalous events. Figure inspired by ref. [8].

m

Another improvement of ANODE is Classifying Anomalies THrough Outer Density Estimation
(CATHODE) [8]. This will be the technique we will follow further in this chapter and will be described
in more detail later on. Similar to ANODE, one first learns p(x|m) in the SB. Next, artificial samples
from this estimate are generated in the SR. If all goes well and the signal region indeed contains almost
all signal events, the artificial samples should approximately follow p,(x). Correlations between x
and m are also modeled by the density estimator. Therefore, it is possible to apply CWoLa between
real SR events and artificial samples without careful consideration of possible slight correlations. The
CWolL.a classifier can then be used to assign anomaly scores to the SR events, which can then be cut
on. A sketch of the distributions is shown in figure 4.1. We will describe the method in more detail
later in this chapter. The whole method works by learning directly from the data. The training and
model selection of both the density estimation and classification are completely agnostic of any signal
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truth label.

LHC Olympics 2020

Most of these techniques have only been shown to perform well in a limited set of signal scenarios.
Of special note here are the LHC Olympics 2020 [113] which posed a community challenge to seed
new developments in data-driven approaches to find new physics model-agnostically. The challenge
consists of three datasets with unknown signal production processes, and participants were tasked
with uncovering new physics signals from an overwhelming QCD background. One signal model
was the production of a Z’' boson with decay Z' — X(— ¢gq)Y(— qq) with m, = 3500GeV,
my = 500GeV and my = 100 GeV. This model was never hidden, such that it is used to develop new
approaches. Many techniques have been compared on this de-facto benchmark dataset. CATHODE
has been shown to work well on this dataset by using the two leading jets J, and J, [8]. The feature
that the SR is defined on is the dijet invariant mass m ;; while the additional features are the jet mass
m  , the difference between both jet masses m ; —m and the two n-subjettiness variables TZJ | and sz 8
The signal is always found in the bulk of the distribution of the features x, never at the far end of a tail.

4.2 Combining Resonant and Tail-based Anomaly Detection

Many BSM physics scenarios at the TeV-scale leave their signature at the tails of distributions such as
p?iss, Hy or M g. It has never been explicitly shown that these signatures can be effectively leveraged
by anomaly detection methods such as CATHODE. As was covered in Chapter 2.3.4, many processes
within the MSSM will produce events with large pr}‘iss since the LSP, often assumed to be the lightest
neutralino j('?, leaves the detector undetected. The neutralino is produced either directly or indirectly
at the end of a decay chain of heavier sparticles. To show that CATHODE is indeed capable of
uncovering such signatures, we show its performance for a well-motivated MSSM model. For this, we
consider gluino pair production for which the two gluinos undergo a cascade decay first into a light
quark plus off-shell squark, which immediately decays into another quark and a neutralino ;\?(2) The 553
subsequently decays into the LSP )}? plus X, where X can be a Z or Standard Model Higgs-boson or
even the non-standard Higgs boson of the extended Higgs sector of the MSSM, as covered in Section
2.3.3.

Our treatment should be contrasted with existing machine-learning-based approaches to supersym-
metric scenarios, that are fully supervised (e.g,[114—118]).

The case where X is the Z boson has been searched for by CMS [119] with a traditional, cut-based
analysis. The full process is shown in figure 4.2. Here, the gluino and ;\7(2) have a small mass splitting
such that the two quarks per gluino will produce relatively soft jets. When the ,F? and X are relatively
light compared to the i3 this process will contain p** and two highly boosted Zs. When the Zs decay
hadronically (as is the case in 69.9% of cases [4]) this leaves two highly boosted large-radius jets.

The CMS search defined a signal region requiring the mass of the leading and subleading AKOS
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Figure 4.2: Diagram of the signal process pp — gg with g — qc])?g,)?g - Z)?(l)

jets to lie in m € [70 GeV, 100 GeV]. The background was estimated in two data-driven steps, which
are shown in more detail in our recreation in Appendix A.1. First, the total number of expected
background events in the SR B, ., is found by interpolating the sideband in the leading AKOS jet into
the SR (the subleading AK8 jet was required to be in the SR). The shape of the p™** distribution is
determined by the distribution where neither jet lies inside the SR. Normalizing this shape to B, .,
made it possible to derive exclusion bounds on the gluino production cross section from exclusive

p™ bins. This procedure can be seen as a low-resolution p’F'**-density estimation. The probing of

the p'M'** spectrum with signal regions defined by the jet mass can also be done with CATHODE. The
clear advantage is, that this works automatically without explicitly stating that the signal is found at
large p?iss. For this, we will use the mass of the hardest large-radius jet as the resonant feature. The
additional features x include the mass of the second hardest large-radius jet, H; and p?iss. Both Hp
and p™** will be found at the tail of the distributions for this signal. pF"** is essential to suppress the

Standard Model background from Z/W + jets with hadronically decaying Z/W.

4.3 Data

Since all the methods described here (both the CMS search and CATHODE) fully rely on data for
estimating backgrounds (aka are “fully data-driven"), the simulation data we generate here is meant to
play the role of real data, and all background estimates and significances etc. we derive are meant to
illustrate the result one would get applying these methods to collider data. There will be no events
generated here that play the role of simulations at the LHC.

For Standard Model background data, we take into account the three largest contributions of
background events to the CMS search, arising from Z + jets, W + jets and ¢+ jets. W and Z events
were generated with one to four additional final state partons while ¢ were generated with up to 3
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additional partons.

All events are generated with  MadGraph5_aMC@NLO 3.2.0 [120] with v/s = 13TeV. The
NNPDF3.1LO PDF-set [121] is used throughout. At the generator level, a minimum Hy cut of
250 GeV is imposed.

For the benchmark signal (to be used to compare the performance of the CMS search vs. the
CATHODE method), we follow the CMS search and generate gluino pair production (with zero to
two additional partons), with subsequent cascade decay pp — 2g,8 — qq)}g,)?g — Zj('? where the
neutralino )73 is the next-to-lightest supersymmetric particle (NLSP) and )?? is the LSP. The mass
splitting between the gluinos and NLSP is set to 50 GeV while the LSP-mass is 1 GeV. This results in
soft jets from the first step of the decay and a highly boosted Z-boson. The LSP escapes the detector
and contributes large amounts of missing energy.

Later we will also consider decays of )?g to X)’(’(l) where the X is either a Standard Model Higgs
boson or a new Higgs boson with mass besides 125 GeV, like the new Higgs bosons in supersymmetric
extensions of the Standard Model. The Standard Model Higgs boson decays in ~ 58% of cases to bb
while for the latter case, we set the branching ratio to 100%.

Gluinos are decayed spin-uncorrelated with Madspin [122] to qq')?g via an off-shell squark
and subsequently /?3 - X)??. Showering is done using Pythia 8.306 [123] with MLM merging.
Pythia-Tune CP5 was used for background events while CP2 [124] was used for the signal samples.
The number of background events in each channel is scaled to match their respective next-to-
leading-order cross sections [125]. Detector effects are simulated using Delphes 3.5.0 [126] with
the delphes_card_CNMS. tcl detector card modified to account for the lepton isolation criterion.
Particles are clustered into jets using the anti-k4 clustering algorithm with cone-radius parameter
R = 0.4 for AK4 jets and R = 0.8 for AKS jets. To be considered, jets have to have pr > 30 and
In] <2.4.

The following selection criteria are imposed for both the classical CMS recast and the dataset for
CATHODE:

L. Naggjer 2 2

2. PP > 300 GeV

3. Hp > 400GeV, where Hy = ¥ x4 jess | P7

4. |A¢;, Ijl?issl > 0.5(0.3) for the first two (up to next two) AK4 jets, where fIrT“iss =~ Y AKd jets P1

5. no isolated photon, electron or muon candidate with p; > 10 GeV with isolation variables
I <0.1,0.2 and 1.3 GeV/p; + 0.005 for isolated electron, muon and photon respectively

6. no isolated track with
mp = \/2ptTra°kp‘}“SS(1 — cos(¢™ — ¢™%) < 100GeV and p; > 5GeV for tracks identified
as an electron/muon or else 10 GeV.
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Selection w z tt
Baseline selection 73790 25725 7906
my € [70GeV, 100 GeV] 5936 2401 1320
CMS-SUS-19-013 [119] signal region 420 237 153

Table 4.1: Number of events passing each selection-requirement for £;, = 300 !

0 Background
1 g a0z (2 — 2ZX))

events

10*

100
0 50 100 150 200 250 300

my, | GeV

Figure 4.3: Distribution of the resonant feature m 7 for background and signal events in the SB and the SR. The
signal corresponds to m; = 1700 GeV. The distributions are scaled to L;, = 300 '

7. atleast two AKS jets with p; > 200 GeV

The number of background events that pass this baseline selection is shown in the first line of table 4.1.
In total, the dataset is composed of 107,421 background events corresponding to £;,, = 300 fb~! after
cuts 1-7. Signal events are injected according to the gluino-pair production cross section.

Figure 4.3 shows that the feature m ; is smooth for the background, while it is resonant for the
signal. (Hadronically decaying W’s and Z’s are eliminated by the requirements on p7*°.) This is a
necessary feature for the application of the CATHODE method employed in Section 4.4. Figures 4.4

and 4.5 show that the signal of new physics is found on the tail of the pF**-distribution, while the
background peaks at lower p7'**. We will show that the powerful discriminator p7 > can be leveraged

by CATHODE even though the signal is found on the tail of the distribution.
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Figure 4.4: Comparison of the signal and background distribution inside the signal region and the artificial
samples. The artificial samples will be discussed in the next section. The signal corresponds to m; = 1700 GeV.
The distributions are scaled to £;,, = 300fb™".
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Figure 4.5: Comparison of the signal and background distribution inside the signal region and the artificial
samples. The artificial samples will be discussed in the next section. The signal corresponds to mz = 1700 GeV.

The distributions are scaled to £;;,, = 300 !

4.4 CATHODE

Here we recap the main points of the inner workings of Classifying Anomalies THrough Outer Density
Estimation CATHODE (for more detail see [8]). In this study, the events are represented as the tuple
my and x with

i Jo_J
x= (m 1o PSS Hy T 722) : 4.5)
where J,, J, are the leading/subleading AKS jets and 7,; = 7,/7, is the ratio of n-subjettiness

variables [127]. To compare the technique to the classical search more directly, we also consider the
reduced set of features

x= (m 1o P, HT) (4.6)
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so that CATHODE only gets to use the same information. We use a slightly modified version of the
original 1repository2 to allow for any dimension for x.

4.4.1 Data Preparation and Density Estimation

First, one defines the SR as an interval in m J, Where the signal is expected to be concentrated, similar
to a classical bump hunt. The complement of the SR defines the SB. As in any bump hunt, the SR
window has to account for the position and the width of the signal bump. Because the reconstructed
jet mass is not distributed symmetrically around the mass m of the mother particle (which is the Z, the
Higgs or a BSM Higgs here) we chose the parameterization

my € [m (1 —go'm),m(1+§0m)]. 4.7
We estimate the mass resolution to o, = 15% and round the window to the closest GeV. The lower
sideband extends to m 5= 0 while the upper sideband is only limited by the phase space.

Events in the SB are partitioned into a training set (75%) used for the actual training and a validation
set (25%), used to select the models used in the next steps. To address the finite number of real SB
events, we use four-fold cross-validation such that we get four datasets with non-overlapping validation
sets. The data is transformed (preprocessed) for easier learning by shifting and scaling the observables
in x to fit the interval (0, 1), then applying a logit tranformation®, and again shifting and scaling to
unit standard deviation and zero mean.

For density estimation, a MAF is used with affine transformations [81], as described in Section
3.7.2. The MAF constructs invertible transformations with tractable Jacobians that map a simple
multidimensional distribution (e.g., multiple Gaussians as is considered here) to the target density,
in this case, the conditional probability pg,,(x|m; € SB). The MAF uses 15 MADE [82] blocks
to learn the transformations. The number of events it is trained on depends on the signal region but
is typically of the order of 10° for £ = 300" .Training is done with the hyperparameters listed in
table 4.2.

After training, model states at the ten epochs with the lowest validation loss are selected for the
sampling step.

4.4.2 Sampling SR Events

The next step aims to sample synthetic events inside the SR using the four density estimates of the
last step. KDE with a Gaussian kernel and a bandwidth of 0.01 is used to model the m distribution
inside the SR. This is then used to sample N = 1000 events from each of the ten density-estimator-
model-states, which are combined, shuffied and split between the training set (60%) and validation set
(40%) for the next step. The training and validation sets of all four density estimators are combined,

2 https://github.com/HEPML-AnomalyDetection/CATHODE
3 logit(x) = In 1%
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Hyperparameter Value
optimizer Adam
epochs 100
learning_rate 107
batch_norm true
batch_norm_momentum 1
batch_size 256

Table 4.2: Parameters of the density estimator

respectively, to form the synthetic dataset with a total of 40 000 events. Compared to the roughly
10000 real events in the SR (see table 4.1 second line) this is intentionally oversampled to improve
the classification performance [8], as we will show in the following section. The synthetic background
events and the real SR events are then standardized in the SR without the logit transformation.

The distributions of the synthetic events are shown in orange in figures 4.4 and 4.5. In all our
models, the signal is located in a resonance in m ; and in the tail of the prT’niSS distribution. The density
estimation has to model the shape reasonably well so that this powerful classification feature can be
leveraged. This is accomplished successfully, as shown in figure 4.4 and 4.5.

4.4.3 Classifier and Anomaly Detection

Now a classifier is trained on both the synthetic and real SR datasets to distinguish the sampled events,
which should follow the background distribution, from the real events, which additionally might
contain events following the signal distribution.

The classifier is a fully-connected neural network, which consists of 3 hidden layers with 64 nodes
and ReL.U activation each, and it is optimized using the hyperparameters given in table 4.3. Because
the datasets are imbalanced between artificial and real data, a weight is assigned such that both classes
contribute equally to the loss.

Since, in a realistic example, the number of events to train and validate on is limited, we employ an
additional step of four-fold cross-validation. The real SR data is partitioned into four subsets of equal
size. In each subset, one-quarter of the real events are held back as a test set for anomaly detection,
while the remaining 75% are split between the training set (60%) and the validation set (40%). The
synthetic background events are also split into train/val sets with the same proportions. After training,
the ten model states with the lowest validation loss are selected and evaluated on the test set. The
predicted labels are then averaged over the models and assigned as anomaly scores to the events. This
is repeated for the next quarter of the SR data, and so on, until every event in the SR is assigned an
anomaly score.

To reduce the statistical effects of severely over- and under-performing models, each dataset is
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Hyperparameter Value
optimizer Adam
epochs 100
learning_rate 1073
batch_size 128

Table 4.3: Parameters of the classifier
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Figure 4.6: Normalized distributions of the anomaly score R of the signal and background processes. The signal
corresponds to the average distribution of ten independent injections with mz; = 1900 GeV.

shuffled 5 times to allow different selections. Then the entire process of the preceding paragraph is
repeated to produce 5 different anomaly scores. All 5 anomaly score assignments are averaged to
produce a final, more robust score.

Finally, to even out the influence of signal-event selection, everything is repeated ten times with
differing independent sets of signal-events. In all the results we report below, we will report the mean
and standard deviation of these ten different trials.

The signal-to-background ratio is improved by cutting on the anomaly score above a critical value
R... Figure 4.6 shows the distributions of the anomaly score R for the signal and background. No
additional selections are performed.

In a real application, one would also evaluate the anomaly score on the sideband. Since the classifier
is only trained on the x features, it should be applicable for every resonant feature value, whether
inside the SR or the SB. For this, an additional subset of SB events has to be set aside, similarly to
the SR strategy. This is only possible if x and m are fairly uncorrelated, which has to be validated.
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For any given R_. a smooth function is either fit only to the SB or the entire m space, which models
the expected background distribution. For this, CATHODE mustn’t sculpt features in the otherwise
smooth background distribution in m, which would be validated, e.g. on simulated background events.
Standard statistical inference techniques can be used from this point onward to construct p-values.
However, this is beyond the scope of this work. Instead, the performance is evaluated using the
nominal significance

Z=S/VB (4.8)

with § (B) the number of signal (background) events after imposing this cut. This makes use of the
truth labels which an experiment would have to replace by other means of background estimation.
One still has to choose a strategy to set R,.. In the following, we will show the signal significance with
R, set to maximize Z with at least 5 background events left to show the best performance one could
hope for. Since a real application does not have access to the truth labels, this is not immediately
applicable. To show a more realistic method we also show the performance where R.. is set so that 1%
of SR-events pass the cut while also containing at least 5 background events.

4.5 Results

4.5.1 Nominal Signal Model

We first turn our attention to the nominal signal model with the decay Yy — Zx}. This is the signal
model the dedicated CMS search [119] was aimed at.

Hyperparameter Ng,, ;i

First, we show that Ng, .. = 10000 artificial events sampled from each of the four density estimators
is indeed a sensible choice. Note, that N, 18 the number of samples per density estimator, of
which there are four. We fix the gluino mass to mgz = 1700 GeV while using the full feature set shown
in equation 4.5. We scan Ng, . from40to 4 - 10°. Class weights are used to scale the total weight
of the real events and the synthetic events to be the same, mending the class imbalance. This is done
by weighting the loss per sample by the class weight. This way, we are free to choose Ng, e Without
biasing the classifier towards a single class. The results are shown in figure 4.7. We see that the naive
choice of the same number of artificial samples as there are real samples is suboptimal. The value
of Ngymple = 10000 lies at the beginning of a plateau. Larger values do not improve the anomaly
detection performance meaningfully but come at a cost of substantially longer training duration. The
factor of four between real data and artificial samples is similar to the point that saturates CATHODESs

performance in the original publication on the LHC-Olympics dataset [8].
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Figure 4.7: Dependence of S/VB on Ngampie- The signal model is a 1700 GeV gluino.

Three Features

We continue by using the limited feature set x = (m s PSS, HT) so CATHODE does not have
access to more information than the classical search. To compare with CMS we calculate the signal
significance for events inside the signal regionm; ,; € [70 GeV, 100 GeV] with the b-veto mentioned
in Appendix A.1 applied. Since the search gets most of its sensitivity from the highest p7""**-bins we
apply an additional cut p'** > 800 GeV.* This leads to roughly the same number of events as when
only the top 1% of events are kept for CATHODE. For a gluino-mass with a sizeable cross section like
1700 GeV, the classical search yields on average for ten independent signal injections Z = 20. Using
CATHODE with three features, the significance is on average Z = 34 + 2.

CATHODE outperforms the classical approach, even though CATHODE is more model-agnostic.
The reason is that the classical approach, being cut-based, misses correlations between the features
that the multivariate classifier of CATHODE can pick up.

To confirm this, we also investigated the sensitivity of a fully supervised approach, using the same
classifier architecture and hyperparameters as that of CATHODE. The training data for the fully
supervised classifier consists of an additional 300 ! background events and 10,000 signal events.
60% of this dataset is used in training, while the remaining 40% is used as a validation set to select
the best-performing model. Evaluating this classifier again by selecting only the top 1% of anomaly
scores results in a significance of on average Z = 33 + 4. We conclude that CATHODE is saturating
the performance of the fully supervised classifier for this amount of signal (unsurprisingly, since this

4 Technically, the original CMS search uses p?iss-bins, and most of the sensitivity comes from the three highest bins,
800-1000 GeV, 1000-1200 GeV and larger than 1200 GeV, where the background is comparable or subdominant to the
signal hypothesis. To get a fair comparison with CATHODE, we replace this with a single cut.
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is a lot of signal), and that the deep neural networks of both CATHODE's classifier and the supervised
classifier can leverage correlations to improve the signal significance significantly over the classical
approach.

Five Features
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Figure 4.8: Sensitivity of CATHODE and the classical strategy. The signal window is set as m; €
[70GeV, 100 GeV]. For the blue line, R, is set to allow 1% of events to pass this cut while the orange
line omits the cut completely. The shaded region shows one standard deviation around the mean S/VB obtained
from ten different signal injections. The dot-dashed part of the blue line represents parameter points where R,
has to be lowered to allow 5 background events. The vertical black line at 2 145 GeV indicates gluino-mass
that is excluded at 95% confidence level by our 300 fb! recreation of the dedicated search [119]. The red
dot-dashed line is calculated using the classical strategy with m; ,, € [70 GeV, 100 GeV], p7™* > 800 GeV
and the b-veto.

From now on, we will use the five features (m s p‘}]iss, Hp, szll , szf) because the subjettiness-variables
7,, are useful discriminants. Figure 4.8 shows CATHODE’s performance compared to the classical
strategy. We see that in the relevant region at high gluino masses, the conservative cut on R (allowing
only the top 1% to pass) reaches only slightly weaker results. We identify the mass where the signal
significance is Z = 1.645 5 with the expected 95% limit on the mass in a real application [128]. The
conservative cut on R alone excludes gluino masses up to mz = 2066 GeV. This is only slightly
weaker than the expected excluded mass of mgz < 2 145 GeV for a dedicated search at this integrated
luminosity. This is expected because a model-specific search will be fine-tuned to the specific process,
while CATHODE is intentionally kept more general. CATHODE'’s strength lies in this generalization,

> The 95% one-sided normal quantile

46



4.5 Results

as it can detect different models without the need to tweak the approach, as we will show in the
following sections.

4.5.2 Alternate Signal Model: Decays to SM Higgs

Now we turn our attention to another model, where the neutralinos decay via 55‘2) - hj('? where h
is the 125 GeV Standard Model Higgs boson. All that has to be done for CATHODE is to select a
new signal window around 125 GeV. A scan over the gluino-mass is shown in figure 4.9. A b-jet
selection criterion would be beneficial in this case, but we omit this to keep CATHODE as general as
possible. Even without the b-tag, CATHODE still generates a sizable signal-significance for gluino
masses comparable to the expected excluded value. While the dedicated search is expected to exclude
gluino masses below 2 355 GeV, CATHODE with the 1% cut reaches Z > 1.645 for all masses up to
2233 GeV. With the best possible cut on R, this can be pushed to 2300 GeV. As expected, CATHODE
results in slightly weaker bounds. The opportunity cost of this is significantly lower than a specialized
search. The only change in the approach is the choice of the signal region. The intended use of
CATHODE scans the signal region over the entire mass range, such that both the decay to Z and Higgs
bosons would be included automatically in this strategy without any extra considerations.
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Figure 4.9: CATHODE’s performance for ¥y — /x,. The signal window is set as m g, € [100GeV, 140 GeV].
For the blue line, R,. is set to allow 1% of events to pass this cut while the orange line omits the cut completely.
The dot-dashed part of the blue line represents parameter points where R, has to be lowered to allow 5
background events. The shaded region shows one standard deviation around the mean S/ VB obtained from ten
different signal injections. The vertical black line at 2355 GeV indicates gluino-mass that is expected to be
excluded by rescaling the (expected) limit from a dedicated CMS search for this decay [129] from 137 !
to 300 b~ integrated luminosity. There is no red line corresponding to the classical search (as in Fig. 4.8)
because we did not perform a detailed recast of [129].
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4.5.3 Alternate Signal Model: Mixed Z /h Decays

Setting the branching ratio of the )?(2) - h)?? or ;(‘3 - Zj('(l) decays to 100% is a rather unnatural choice.
Therefore, we also show CATHODE'’s performance for a model where both branching ratios are 50%.
This time, the anomaly-detection has to find two bumps simultaneously. For this, we chose the signal
window to contain both resonances: m 5 € [70 GeV, 140 GeV]. The results of a scan over the gluino
masses are shown in figure 4.10. This time CATHODE seems to outperform the extrapolated bound
from the dedicated search [130]. The extrapolation from 35.9 b~ 0300 b integrated luminosity is
quite far and should be interpreted with care. The dedicated search classifies events in 0,1 and 2 Higgs
categories using b-tags. The signal model populates all categories simultaneously. The approach
using CATHODE only uses a single signal region without further input being necessary to generate
these results.
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Figure 4.10: Sensitivity of CATHODE and the classical strategy. The signal window is set as m; €
[70 GeV, 140 GeV]. For the blue line, R, is set to allow 1% of events to pass this cut while the orange line
omits the cut completely. The dot-dashed part of the blue line represents parameter points where R, has to be
lowered to allow 5 background events. The shaded region shows one standard deviation around the mean S/VB
obtained from ten different signal injections. The vertical black line at 2 060 GeV indicates gluino-mass that is
expected to be excluded by rescaling the expected excluded cross section obtained by the dedicated CMS search
for this decay [130] from 35.9 b~ t0300fb~" integrated luminosity.

In figure 4.11 we show that CATHODE is indeed capable of recovering both bumps corresponding
to the decay into Z and Higgs bosons respectively.
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Figure 4.11: The distribution of the data inside the signal region before the anomaly score cut is shown in
gray. After selecting the top 1% of events in the SR the remaining signal events are shown in orange while the
remaining background events are shown in blue. The signal corresponds to mz = 1700 GeV.
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Figure 4.12: Sensitivity of CATHODE for varying branching ratios to Z bosons for m; = 2000 GeV. The
shaded region shows one standard deviation around the mean S/VB obtained from ten different signal injections.

Figure 4.12 shows that CATHODE is very robust against changes in branching ratios. We vary
the branching ratio Br(yy — Zx\) with Br(¥y — hxy) = 1 — Br(¥y — Zx)) and calculate the
significance. Regardless of the branching ratio, the multiplicative gain of significance by applying the
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Figure 4.13: Significance for a parameter scan over the mass hypothesis in steps of 5 GeV, when the mass is not
known a priori. The shaded region shows one standard deviation around the mean S/VB obtained from ten
different signal injections. Masses are chosen as mg = 2000 GeV and my = 100 GeV.

technique is always between 5 and 6. This shows the real strength of the CATHODE approach over the
dedicated searches [119, 129, 130]. With the enlarged SR that covers both decay modes, CATHODE
only needs to be trained once, independent of the assumption on the BRs, compared to performing a
dedicated analysis for each BR assumption.

4.5.4 Alternate Signal Model: Decays to BSM Higgs

Until now, we applied CATHODE only to models where the position of the bump is known beforehand.
But one strength of the technique is that we don’t even need to know that. To discuss this further
we now focus on another model that induces the neutralino decay y5 — Hj('(l) where H is one of
the additional Higgs-bosons introduced by the (N)MSSM that has a mass different from 125 GeV.
Because the decay of H depends on the specific implementation of SUSY-breaking parameters, we
set the branching ratio BR(H — bb) = 100%. To find the signal, CATHODE is applied to different
signal regions given by varying mass hypotheses m in equation 4.7, scanning the entire mass range in
discrete steps and the signal significance is determined. To demonstrate this, we chose my = 100 GeV
and mz = 2000 GeV and show the result in figure 4.13. Once the signal window has a significant
overlap with the signal-bump, the signal significance gets sufficiently improved to show the presence of
anomalous events. In a real application, this would then warrant further investigation with a dedicated
search.

Finally, we show how wide the possible choice of m g is that CATHODE can still help to find in our
dataset with the given choice of features. For this purpose, we perform a parameter-scan over mg
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Figure 4.14: Parameter-scan of my with mg = 2000 GeV to show which signals CATHODE can help find in

the dataset. The shaded region shows one standard deviation around the mean S/VB obtained from ten different
signal injections.

from 35 GeV to 515 GeV in steps of 10 GeV, as shown in figure 4.14. The method reliably reaches
signal significances of order ten up to my ~ 350 GeV without using b-tags as otherwise powerful
discriminators.

4.6 Summary

In this chapter, we have shown how recently developed techniques for weakly-supervised resonant
anomaly detection can be easily extended to cover anomalies that also are located at the tails of
distributions. This situation commonly arises in well-motivated weak-scale scenarios such as SUSY,
where the cascade decays of heavier BSM particles can produce resonances such as Z’s and Higgs
bosons while simultaneously populating the tails of features such as pr}’iss and Hy. As long as the
signal is localized in one feature where the background is smooth, resonant anomaly detection can be
brought to bear on these additional features in order to enhance the sensitivity to the signal.

As a proof-of-concept demonstration, we applied the state-of-the-art anomaly detection method
CATHODE [8] to the SUSY scenario pp — gg,g — qc])}g,)?g — X)?? where X is either a Z boson,
Standard Model Higgs, or an additional (N)MSSM Higgs boson. Despite being model-agnostic, we
showed that the CATHODE method is competitive with existing, dedicated, cut-based searches [119,
129, 130], because — being inherently multivariate — it takes advantage of correlations between
features. Moreover, whereas each decay scenario required a separate, optimized analysis, CATHODE
— being model-agnostic — is able to simultaneously target them all.
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We considered two different feature sets for the CATHODE algorithm, as shown in eqgs. (4.5)
and (4.6). These were motivated by the SUSY scenarios we considered, and it would be interesting to
generalize our study beyond these feature sets, both to increase the degree of model-agnosticism of
the method and possibly to enhance the sensitivity to the SUSY signals considered here. For example,
our benchmark signals all come with ~ 4 additional jets from the gluino decay, and their detailed
kinematic distributions (instead of just the aggregate feature H;) may offer additional discriminating
power versus the QCD background. Adding features related to additional jets in the event may also
give us more sensitivity to spectra not explicitly considered here, for example, where the NLSP mass
is not so close to the gluino mass. As long as m; gp +my < mg, the Z will still be boosted, but the
extra jets will get harder as m; g p moves away from mg.

When trying to incorporate more features into our approach, we noticed that the performance
decreased as the classifier became more prone to overfit. Each additional feature has to contribute
an overhead of additional discriminating information to cancel this decrease before it improves the
performance. Ideally, one would use a large and therefore general feature set to ensure that many
possible signal models produce discriminating differences in the distributions. Necessarily, this
implies that some features are distributed similarly in background and signal processes and are
consequently irrelevant to amplifying the signal. This aspect of the CATHODE approach has been
studied while our work was in progress. To make CATHODE more robust against irrelevant features,
it was shown to be beneficial to replace the fully connected neural network in the classification step
with a gradient-boosted decision tree [131]. As we covered previously in Chapter 3.3, Gradient
Boosted Decision Tree (GBDT)s can be built to only add splits along a feature if the loss decreases
by a minimum amount. Therefore, irrelevant features will most often be ignored, as long as the
GBDT does not overfit. The performance itself is relatively insensitive to the replacement when only
informative features are selected for the LHC Olympics dataset.

Although the performance studies on simulated data are promising, this might not carry over to real
collision data. Applying the statistical inference machinery after anomaly scores have been assigned
is non-trivial. Instead of simply calculating S/VB with truth level information, one needs to calculate
p-values another way; for example, a one-dimensional bump hunt after a cut on the anomaly score
R. This might suffer systematic errors if the cut sculpts the background inside the signal region,
therefore falsely inferring a bump. Background sculpting due to correlations between m and R can be
avoided when the anomaly score and thus its cut is calculated in the latent space of the normalizing
flow [98], i.e., where the background samples follow a multidimensional normal distribution. Since
here all samples follow the same distribution, independent of the conditional m, a cut does not lead to
a sculpted background in m.

Even though the approach is as model-independent as possible, one would still derive exclusion
limits for specific models, given that no significant deviation from the background-only hypothesis is
found. In contrast to classical cut-based searches, where the signal efficiency g is often only given by
the selection cuts, this will be more intricate here. Since the classifier only learns to differentiate the
artificial samples from the signal region if a signal is present, its performance depends on the amount
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of signal present. Hence, the signal efficiency is a function of the signal production cross section, i.e.
€g(0). To set an upper limit on og, one therefore needs to inject signal events into the real collision
data and retrain CATHODE for different numbers of injected signals. One then needs to find the
number of signal events that result in the desired p-value.

Among other anomaly detection methods, CATHODE has already been applied to real data by
CMS[132]. This shows that resonant anomaly detection is not a mock analysis-only exercise, but also
sparks the interest of the experimentalist community.
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CHAPTER 5

Learning to see R-parity violating scalar top
decays

The results of this chapter have been published at:
Learning to see R-parity violating scalar top decays
Gerrit Bickendorf, Manuel Drees

Phys. Rev. D 110, 056006 - Published 4 Sep 2024

Although resonant anomaly detection methods show impressive results, they are not the ultimate
technique applicable in every scenario. While constructing the auxiliary features x for the CATHODE
method is relatively straightforward, finding a suitable m is not always easy. A signal region has
to be relatively narrow to avoid large errors from far interpolations of the conditional feature m by
the normalizing flow when m and x are slightly correlated. The classifier will simply pick up these
inaccuracies and therefore universally correctly classify synthetic events without amplifying only the
signal events. Also, a strong correlation between m and x degrades the anomaly detection performance,
even though the density estimation step improves this degradation compared to directly applying
CWoLa hunting. This has to be considered when constructing suitable input features. Also, m has
to be smoothly distributed for the background as the core concept of CATHODE. When a Standard
Model resonance is present in the interesting region of m and it cannot be removed by preselection

cuts (as was the case in the previous chapter, where the '™

requirement eliminated hadronic Z and
W boson decays) this will not work as intended. If the Standard Model resonance is broad, this can
invalidate the technique on a large chunk of m parameter space. This will be precisely the setting we
will encounter next.

For this, we will stay within the MSSM but drop the R-parity conservation, which otherwise leads
to stable LSPs that leave the experiment undetected, which in turn can be leveraged in searches by

miss

exploiting the large resulting p; [133], just as in the previous chapter.
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miss

Once the RPC assumption is dropped, searches involving large py often become insensitive. As
covered in Section 2.3.5, in the context of the R-parity violating (RPV) MSSM, new terms are added
to the superpotential that break lepton- or baryon-number conservation [134]. These additional terms
imply that drastically different search strategies are needed [135], especially when prompt hadronic
decays of supersymmetric particles become drowned by the hadronic activity inside the detector.

At a hadron collider like the LHC, the production of strongly interacting superparticles has the
largest cross section for a given mass. Among these, the stops — the superpartners of the top quark —
are often assumed to be the lightest. On the one hand, for equal squark masses at some very high (e.g.
Grand Unified or Planckian) energy scale, renormalization group effects reduce the masses of the
stops; mixing between the masses of the SU(2) doublet and singlet stops will reduce the mass of the
lightest eigenstate even more [3]. On the other hand, simple naturalness arguments [136—138] prefer
stop squarks to be not too heavy, but allow much heavier first and second-generation squarks. This
motivates the analysis of scenarios where the mass of the lighter stop squark lies well below those of
the other strongly interacting superparticles.

The same naturalness arguments also prefer rather small supersymmetric contributions to the masses
of the Higgs bosons. In most (though not all [139]) versions of the MSSM, this implies rather light
higgsinos, typically below the stop. Since the mass splitting between the three higgsino-like mass
eigenstates is small, they all behave similarly if the LSP is higgsino-like. In particular, in the kind of
RPV scenario we consider, all three states would lead to very similar “fat jets” when produced in stop
decays; the recognition of such jets by exploiting recent developments in computer vision is one of
the central points of this chapter, which would apply equally to all three higgsino states. However,
about half of all stop decays would then produce a bottom, rather than a top, together with a higgsino,
thereby complicating the analysis of the remainder of the final state. Moreover, higgsinos being SU(2)
doublets have a sizeable direct production rate. Their non-observation therefore leads to significant
constraints on parameter space, especially (but not only) if the bino has mass comparable to or smaller
than the higgsinos [129, 140-144].

In order to avoid such complications, we consider the pair production of scalar top quarks, which
decay to top quarks plus two neutralinos with unit branching ratio. The neutralinos in turn decay
promptly via the UD D R—parity breaking term, which is fairly difficult to constrain [145].

This scenario contains multiple resonant features that one might hope to exploit with CATHODE.
The obvious choice is the jet mass of one of the hard (fat) jets produced by the neutralinos. This proves
futile because the signal process also produces a top quark pair. Therefore, the irreducible background
for this process will contain the Standard Model pair-produced top quarks. These will produce a
broad hadronic resonance in the jet mass distribution around 172 GeV which hinders CATHODESs
application in the immediate vicinity. Furthermore, the hardest jet in the signal model will not
necessarily be purely initiated by the neutralino. Since the top quarks recoil against the neutralinos,
these will also often produce the hardest jet. Combined with the imperfect reconstruction of all three
neutralino-induced partons in a single jet, this leads to signal contamination at jet masses far from the
neutralino mass. Therefore, we will leave resonant anomaly detection and tackle this signature using
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supervised learning.

Since each neutralino may form a (fat) jet, one can use the substructure to differentiate it from
background processes [146]. Let us briefly review some jet-tagging machine-learning algorithms that
use the substructure.

5.1 Overview of Jet Tagging Using Machine Learning

Here we give a partial overview of recent jet-tagging architectures. The aim will always be to use the jet
substructure to classify it between two or more classes, without the need to construct physics-informed
features by hand. In the description, we omit the various preprocessing steps used to make training
more efficient as well as implementation details and focus on broad ideas. The interested reader may
refer to the original publications.

TopoDNN

The most immediate representation of the jet substructure is in a (e.g., py-) ordered list of massless
constituents, characterized by the tuple (pr, 7, ¢) as studied by ref. [147]. One builds a vector of a
fixed number of constituents by zero-padding whenever there are fewer constituents in the jet, which
can be fed directly to a fully connected neural network. This has been studied by ATLAS [148] using
topological clusters [149] (hence the name) for W-boson and top quark tagging, which performed well
in suppressing the background.

CNN

One may represent the jets as images, where the spatial dimensions are simply the detector coordinates
1 — ¢. These images may be represented with multiple channels (i.e., base colors in normal images)
by using calorimeter p, potentially split between hadronic and electromagnetic calorimeter, track
pr, number of tracks or muons within each pixel. Convolutional neural networks (CNN) have
already been demonstrated to produce good results on these images [150—158]. This technique has
been used by ATLAS in electron identification [159] or quark-gluon jet discrimination [160] on
simulations. CMS studied a CNN on these images for top-tagging [161] and found a good agreement
between the distribution of tagging score on simulated data and real data, demonstrating that the
simulation is faithful enough for computer vision application. Similarly, the Deep Underground
Neutrino Experiment (DUNE) studied CNNs for tagging neutralino flavors, although the images, in
that case, were not in 7 — ¢ coordinates but rather in detector wire-number vs. time coordinates, where
the brightness is the collected charge [162].
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Energy Flow Network And Particle Flow Network

Observables at collision experiments can be seen as functions of sets of detected particles. These
functions can be generalized and decomposed into [163]

M
Z@(p»

where F and @ are functions and p;, is a parametrization (e.g. py, 17, ¢, particle ID, charge etc.) of the

O=F , (.1

M particles that contribute to Q. The function ® maps each particle separately to the latent space. F'
maps the permutation-invariant latent space representation onto the target O. The observable might
be per event (e.g., Hy) or per reconstructed object, like jet-p,. One machine learning approach is
to represent both functions F and ® by sufficiently expressive neural networks. This is the intuition
of Particle Flow Networks. One can make the observables infrared- and collinear-safe by replacing
®(p;) = pr;P(p;/E;), which is called the Energy Flow Network. The observable is simply the
tagger for jet-tagging where p; are the jet constituents.

ParticleNet

ParticleNet [164] represents the jet as an unordered set of its constituents, i.e. a cloud. This particle
cloud can be represented as a graph with constituents as vertices and edges to the k nearest neighboring
vertices. The information contained in this graph can be further processed by a convolution operation
called EdgeConv [165]. Given the vertices x; the EdgeConv operation of ParticleNet can be written as

, 1
xi=g Zk:h(xi,xk ~x,), (5.2)

where the index k runs over all k-nearest neighbors and h is represented by a simple MLP. The
EdgeConv block takes coordinates and features as input and outputs a transformed cloud with the same
number of points. To build ParticleNet, multiple EdgeConv blocks are stacked, where the coordinates
and features are the same as the output of the previous block. The first EdgeConv block calculates the
k-nearest neighbors using the geometric 7 — ¢ distance. After all EdgeConv lavers, the outputs are
average-pooled and fed into an MLP for classification. ParticleNet has successfully been used by CMS
to constrain the quartic HHVV coupling [166] and for the observation of the Z — cc decay [167].

LorentzNet

LorentzNet [168] tackles jet tagging from another perspective which is derived from an intuitive
argument: If the underlying quantum field theory respects Lorentz-symmetry, why should the tagging
architecture not do the same?

Let us denote the Lorentz-invariant inner product between the Lorentz-vectors u# and v as (u, v)
and the Lorentz norm as ||ul|| = W . We represent the N constituent particles of a jet as the
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corresponding four-momentum x; = (E;, p;, Py;» P,;) as well as several Lorentz scalars s; such as
the mass. The scalars can be freely passed through a linear layer to the embedded representation /;
without breaking Lorentz symmetry. To build a Lorentz group equivariant block, the authors propose
several steps. From the inputs x; and &; one builds the Lorentz scalar

M =6 (h,-, et (1= 11) v (<x,-,x_,~>)) , 53)

where ¢, is an MLP and ¢ (x) = sign(x) log(|x| + 1).This is used to reweight the Lorentz vectors into
a new vector that transforms properly under Lorentz transformations via

x; =xi+cz¢x (mij)xi’ (5.4)
J

where ¢, is another MLP and a Lorentz scalar, and ¢ is a hyperparameter. The scalars get reweighted
similarly via

W= i+ $3,(he, D (i my) (5.5)
J

where ¢;, and ¢,, are MLPs with the output of the latter being restricted to [0, 1]. Similarly to
a transformer, this block is repeated until the desired depth is achieved. Afterward, the h’s are
average-pooled and fed through a classification MLP. This performs impressively well, as it contains a

powerful theoretical inductive bias.

Particle Transformer

The last architecture we will cover here is the Particle Transformer [169] (ParT). This approach again
takes the features of all N particles inside the jet as input. Additionally, one constructs interactions,
i.e. additional features that depend on the N X N pairings of particles (e.g., the invariant mass or
AR). Then, two MLPs are used to embed the features into a N X d-dimensional matrix x and the
interactions into a N X N x d’ matrix U, which will be held fixed across all layers. The vectors x are
fed into the Particle Attention Block, for which the multi-head self-attention mechanism introduced in

3.5 is slightly modified. The attention weights are calculated via
P-MHA(Q, K, V) = SoftMax(QK" /A/d, + U)V, (5.6)

which allows the attention weights to use handcrafted physics-informed interactions without learning
them. This block is repeated L times, transforming the matrix x into a more contextualized state.
is

The authors propose two blocks of Class attention for classification. For this, a class token x, 1

introduced. Mixing the class token with x via attention allows it to pick up the information necessary
for classification. Only the transformed class token is fed through the last layer, the classification
MLP. The ParT has sparked the interest of the ATLAS collaboration and has been studied by them on
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simulations and compared to ParticleNet, Energy Flow Network and Particle Flow Network [170].

5.2 Vision Transformers on Jets

In recent years, computer vision techniques have improved drastically with novel approaches such as
the vision transformer [70]. In standardized computer vision tasks, these models have been shown
to outperform CNN-based models for large datasets [70-72]. Fortunately, generating large sets of
simulated events is relatively cheap in particle physics, which motivates the use of these new techniques.
As we have covered for the ParT, transformers have already been applied to classification in particle
physics scenarios [169, 171-178], although these focus on representing the jet as a set of particles
instead of an image.

In this chapter, we for the first time apply two modern transformer-based computer vision techniques
to find neutralinos from scalar top quark decays and compare the results to a classical CNN to see if
the gain in performance translates to detector images. Using GBDT, we combine the data from both
neutralinos tagged in this way and add further high-level features to construct our final event classifier.

5.3 Signal Model

v
=
SN

/ \
/ \
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L
[ R

Figure 5.1: Stop pair production with each stop decaying to a top quark and a neutralino. The neutralinos decay
via the RPV UD D operator with nonzero 1”.

We will work with breaking parameters, so that the lighter mass eigenstate of the top squark 7,
contains mainly the right-handed top squark which decays promptly into a top quark and the bino-like
neutralino )2? = y. We consider all other scalar quarks to be decoupled. In order to avoid the
constraints of missing Er-based searches, we add the baryon number violating term shown in equation
2.29 to the superpotential.

When i = 3, this would allow the stop to decay directly to two lighter quarks, which has already
been extensively studied [179-182]. A coupling with i # 3 allows even a light neutralino to decay into
three quark jets via an off-shell squark. The process we are interested in is shown in figure 5.1.
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We also note that a mostly 7 eigenstate decaying into a bino-like neutralino produces a predominantly
right-handed top quark. The same is true for a 7; decaying into a neutral higgsino. In contrast, a 7,
decaying into a bino or a 7, decaying into a neutral higgsino would produce a left-handed top quark.
Since we do not try to reconstruct the polarization of the top (anti)quark in the final state, all four
reactions would have very similar signatures and could be treated with the methods developed in this
chapter. However, a light neutral higgsino implies the existence of a nearly mass-degenerate charged
higgsino (and of a second neutral higgsino), thereby reducing the branching ratio for 7 — ¢ + y decays.
Moreover, by SU(2) invariance, a mostly 7, stop eigenstate would be close in mass to b, , leading to
additional signals from b, pair production. By focusing on a mostly 7 lighter stop and a bino-like
LSP we avoid these complications.

5.4 Data Generation and Preselection

For baseline selections, we follow roughly the CMS search for this signal process [183]. We impose
the following preselection cuts:

1. One muon with p; > 30GeV or electron with p; > 37 GeV and || < 2.4.

2. The lepton must be isolated within a cone radius depending on the p+ of the lepton as

0.2 pr < 50GeV
R=110Gev/p; 50GeV < py < 200 GeV
0.05 pr > 200GeV

Together with the first cut, this isolation requirement implies that in almost all events the lepton
originates from the semileptonic decay of one of the top (anti)quarks in the final state. These
two cuts satisfy the requirements of the single lepton trigger. Note that the events must contain
exactly one such isolated lepton; this largely removes Z+ jets backgrounds.

3. We define “AK04 jets” via the anti-k jet clustering algorithm with distance parameter R = 0.4,
requiring p; > 30GeV and |57| < 2.4 for each jet. We demand that the event contains at least 7
such AKO04 jets, at least one of which is b-tagged. We note that our signal events contain at
least two b (anti)quarks from top decay. Moreover, even if both ¢ and 7 decay semi-leptonically,
signal events contain 8 energetic quarks even in the absence of QCD radiation. They should
therefore pass this cut with high efficiency, except for very light neutralinos where several of
their decay products might end up in the same (quite narrow) AKO4 jet. On the other hand, SM
tt events with one top decaying semi-leptonically contain only 4 hard quarks. Hence, at least
three additional jets would have to be produced by QCD radiation, significantly reducing the ¢
background, and reducing the W+ jets background even more.
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4. Hy > 300GeV, where Hp is the scalar sum of the transverse momenta of all AK04 jets. This
cut is mostly effective against W, Z+ jets backgrounds.

5. Atleast one combination of b-tagged jet and isolated lepton must have an invariant mass between
50 GeV and 250 GeV. Most events where the lepton and the b quark originate from the decay
of the same ¢ quark pass this cut, which helps to further reduce the W+ jets background.

6. At least one AKOS jet (defined with distance parameter R = 0.8), with p; > 100GeV. We
will later try to tag these “fat jets” as coming from neutralino decay. However, a boosted,
hadronically decaying top (anti)quark can also produce such a jet. We will also consider even
fatter jets. Since (nearly) all particles inside an AKOS8 jet will end up inside the same jet if
R > 0.8 is used in the jet clustering, while these fatter jets will contain additional “nearby”
particles, they will automatically also have p; > 100 GeV.

After these cuts, the remaining background is almost exclusively due to top quark pair production
as can be seen in the original CMS publication [183]. In our simulation, we therefore only consider
this background process.

For the signal model, we set the masses of squarks (except that of the stop), gluinos, wino- and
higgsino-like neutralinos to 5 TeV. We only set one RPV coupling to be nonzero, 45,53 = —1A53, = 0.75;
this leads to prompt neutralino ¥y — csb decay even if the exchanged squark has a mass of 5 TeV,
Ty~ 10 185, [m /(100 GeV)] ~>_ We scan over the stop mass from m; = 700 GeV to m; = 1 200 GeV
in steps of 25 GeV. We also scan over the neutralino mass from m ; = 100 GeV to m; = 500 GeV in
steps of 10 GeV.

Background and signal events are simulated using MADGrAPHS_aMC@NLO 3.2.0 [120]. The tf
background is generated with between 0 and 3 additional matrix element partons while the signal
events contain up to 2 additional partons. The NNPDF3.1 PDF-set [184] is used. We use PYTHIA
8.306 [185] for parton showering and hadronization; background events are showered with the CP5
tune while signal events are showered with the CP2 tune [186]. Events with different matrix element
level final state parton multiplicities are merged with the MLM prescription [187], in order to avoid
double counting events where the parton shower produces additional jets. Finally, detector effects are
simulated with the CMS card of DeLpHEs 3.5.0 [188, 189].

5.5 Preprocessing

The main novelty of this chapter is the adoption of very recent computer vision techniques to tag the
hadronically decaying neutralinos. To that end, we first have to translate the simulated detector data
into images.

The objects we are interested in are jets clustered with the anti-k; (AK) jet algorithm as implemented
by the FASTJET package [190]. Choosing the optimal distance parameter R for a given purpose
can be somewhat nontrivial. A small value of R means that most particles inside a sufficiently hard
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jet originated from the same parton, but some of the energy of that parton might not be counted in
this jet due to final state showering. On the other hand, a large R likely leads to jets that capture all
daughter particles while also muddying the waters by including unrelated objects, e.g. from initial
state showering. One can use the fact that the decay products of a resonance with a fixed mass m

and transverse momentum p spread roughly like AR = \/Agbz + A772 oc m/py and the typical energy
scale of the process to arrive at a best guess for an optimal R parameter. This can be aided by the use
of jet clustering algorithms with variable R (e.g.,[191, 192]). In the case at hand, this optimal value of
R would depend on both the stop and the neutralino mass. We, therefore, do not work with a single
fixed value of R, but instead, we will cluster each event using several values of R, and ensemble the
resulting jet images to get a better per-event classification. Because we consider rather large neutralino
masses, m; > 100 GeV, we consider AKOS (R = 0.8), AK10 (R = 1.0) and AK14 (R = 1.4) jets. This
also allows us to keep the technique general, i.e. to use the same algorithm over the entire parameter
space. Recall that the resulting fat jet has to satisfy p; > 100 GeV and || < 2.4.

In order to get images out of the jets, we now consider the calorimeter towers and tracks as jet
constituents in the (1, ¢) plane. As in the construction of top taggers [153] we will not use the energy
E of the calorimeter towers directly but rather opt for the transverse energy E; = E/coshn. The
relevant features are more readily learned by the classifier if we normalize the coordinates. First, we
calculate the E weighted center of the calorimeter towers via

— 2iErm;
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here the sums run over all the constituents of a given fat jet. We then shift the coordinates ; — n; — 77
and ¢, — ¢, — ¢ so that the image is centered on the origin. Next, we rotate the coordinate system
around the origin so that the calorimeter tower with the highest £ points vertically from the origin.
We use the last degree of freedom to make sure that the calorimeter tower with the second highest E -
lies in the right half of the coordinate, by flipping along the vertical axis if necessary.

Next, we pixelate the coordinates to a 0.04 x 0.04 grid. The brightness/intensity of each pixel
is given as the measured E. We use three channels, corresponding to E+ in the Electromagnetic
Calorimeter (ECAL), Hadron Calorimeter (HCAL), and p of the tracks, analogous to three color
channels in classical images.1 We divide each pixel by the maximal value found in this image, so that
each intensity is between 0 and 1. This makes learning more efficient. It also removes information
about the p; and mass of the jet which are powerful discriminators. We partly remedy this by giving
the classifier the mass of the fat jet as another input; this will be explained in more detail in a following
section. We also note that we will later introduce additional high-level features to our final classifier,

"In principle, the tracks have a much higher resolution compared to the calorimeter towers and could thus be pixelated
into a finer grid. However, we do not expect these very fine details to improve the discrimination between signal and
background. We therefore use the same grid spacing for all three channels.
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which will reintroduce information about the overall E scale of the event.

In the last preprocessing step, we crop the image to a square centered around the origin with side
lengths chosen as 64 pixels for AKO8 and AK10 jets and 128 pixels for AK14 jets. This size is chosen
to contain most of the constituents while also being a power of two which aids in the application of the
computer vision techniques. The resulting images after all preprocessing steps, averaged over the
entire event sample, are shown in figure 5.2. These average images look quite similar for signal and
background, at least to the human eye; however, taking the difference between the average images
does reveal some differences.

Moreover, there is more information available to the computer vision techniques than can be
displayed in the figure. For instance, the number of non-zero pixel values is useful for classification.
On average, the signal images contain more non-zero pixels than the the background images do. Just
cutting on this quantity allows, for one set of parameters, to reach an accuracy of 74% when applied to
a sample containing an equal number of signal and background events. Of course, our final classifier
should perform much better than this.”

BG S SI-BG 10°
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Figure 5.2: Signal and background AK14 jet image averaged over the entire training dataset. All three channels
are aggregated by summation. The rightmost plot shows the difference between the average signal and the
average background jet image. Signal events are more concentrated at the origin while background jets are
more spread out.

5.6 Architectures

In this section we describe how we process a single fat jet, the goal being to distinguish jets due to
the three-body decay of neutralinos from SM background (“LSP tagging”). At the core is one of
three architectures adapted from computer vision, and described in more detail in Chapter 3. We only
describe the chosen hyperparameters in the following. In all three cases, the output of this architecture

2 We note in passing that this multiplicity does contain some information on the hardness of the event since it correlates
positively with both the mass and the transverse momentum of the fat jet. Hence, the normalization step described above
does not completely remove the information on these quantities. However, these dependencies are only logarithmic and
subject to large event-by-event fluctuations. Explicitly adding the jet mass as an input variable can therefore still be
expected to aid in the classification task.
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is concatenated with the measured jet mass and fed into the same multilayer perceptron classification
network. It is built from a dense layer with 256 neurons followed by another dense layer with 128
neurons which connect to two output neurons. Between all three layers, the ReLU activation function
is used. The two neurons of the last layer are passed into the softmax activation function, such that the
output can be interpreted as the predicted probability of the image belonging to either the signal or the
background; since these probabilities should add to 1. In the following, we denote this by MLP Head.
All architectures are built and trained within the PyTorch [193] deep learning library.

5.6.1 CNN
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Figure 5.3: Architecture of the CNN for AK0O8 and AK10 jets.

The first architecture is a (comparatively) simple CNN, described in Section 3.4. We follow loosely
an existing model used for top tagging [150]. The first layers of the CNN are two blocks, each
containing a convolutional layer with 128 kernels of size 4 X 4, stride 1, zero padding to keep the
image dimensions, ReL.U activation function and average pooling with kernel size 2 and stride 2. This
halves the spatial image dimensions. Next, we apply the same block with only 64 kernels and without
pooling. The last convolution block contains again 64 kernels but this time with the pooling operation.

In order to put AK14 images of size 128 x 128 on the same footing as the smaller AKO8 and AK10
images we repeat the last block one more time. The output of shape 64 x 8 x 8 is then flattened into
4096 features and fed into the MLP head.

The full architecture for AKO8 and AK10 jets is shown in figure 5.3. As already noted, this kind
of architecture is already being used for similar tasks; it serves as our baseline, against which we
compare the more advanced architectures described in the following two subsections.
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5.6.2 CoAtNet

As mentioned in Chapter 3.6 transformer architectures have been successfully applied to images.
Among the first applications is the vision transformer, further described in Section 3.6.1, although in
our tests, the vanilla ViT indeed performs poorly, so we will only show the performance in a limited
fashion in Appendix B.3.

Instead, the first transformer-based model we will pursue here is CoAtNet, described in Section
3.6.2. The model we use here is constructed in five stages. The first stage consists of three convolution
layers with 3 x 3 kernels, where the first has a stride of 2. This halves the spatial resolution of the
input image. This is followed by two stages of three MBConv blocks [74] which are computationally
cheaper while maintaining most of the performance of full convolutional layers. In both stages, the
first layers perform downsampling again with a stride size of 2. By now the width and height of the
input image are shrunk by a factor of 2% so global attention is feasible even for the large AK14 jet.
Thus the last two stages consist of five and two transformer blocks respectively. In each transformer,
2D relative attention is used. These steps were performed using the publicly available code’. Finally,
we average pool the outputs and feed the 768 features into the classification head.

5.6.3 MaxViT

The third architecture we will use is the MaxViT [72] described in Chapter 3.6.3.

For our application, we chose the publicly available implementation that is included in PyTorch4
with the only change being the replacement of the MLP head that takes the 256 output features.
Concretely, the first stage consists of two convolutional layers with 64 3 X 3 kernels each, where the
first has stride 2, reducing the spatial dimensions by half. This is followed by three stages with two
MaxViT blocks each. The convolution is strided with size 2 for the first block of each stage. The
partitions are of size 4 X 4 each. The MaxViT stages have 64,128 and 256 channels respectively.
Self-attention uses 32-dimensional heads.

Note that in the meantime, the main idea of MaxViT, the multi-axis self-attention, has been
combined with ParT, to form a particle multi-axis transformer [194]. This does, similarly to ParT, use
the particle cloud representation of the jet.

5.7 Dataset Creation

In this section, we describe how the dataset used to train the LSP taggers is defined. In most events,
there is more than one fat jet that passes the selection criteria. Since we investigate pair production,
not all the information useful for event classification can be expected to be contained in the hardest jet.
It is therefore expected to be useful to combine information from more than one jet into the analysis.
Wide jets that are produced from the y decays are expected to be hard because of the large stop

3 https://github.com/chinhsuanwu/coatnet-pytorch
4 https://github.com/pytorch/vision/blob/main/torchvision/models/maxvit.py
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5.8 Training the LSP taggers

mass. Therefore, the two jets with the largest p- are expected to be signal-enriched. The preselection
requirements imply that one top quark from stop decay generally will decay semileptonically. However,
the second top quark might decay fully hadronically, resulting in a third wide jet with large p,. Since
the top quarks and the LSPs have very similar p; distributions, the third largest-p jet may also well
be from an LSP.

In order to design taggers that perform well on all three leading jets, and hence for a wide range of
pr, we, therefore, include samples of all three leading fat jets in our training dataset in the ratios that
the respective number of jets are present in the full events. To this end, we add up to three fat jets
present in an event as images to the dataset. Of course, an event may also contain only one or two
such jets; in fact, this is generally the case for background events. We generate as many events as
required to reach the desired size of the training set for each jet size.

5.8 Training the LSP taggers

We start by verifying that the different pyTHIA tunes that we adopted do not significantly influence our
results. To this end, we train the CNN model described in sec. 5.6.1 to differentiate not between signal
and background samples but between background events generated with the CP2 tune and background
samples generated with the CP5 tune. We combine 1 000 000 jet images generated with each tune into
a dataset and split it equally between training and test sets for each jet size. The initial learning rate 17,
is chosen as 5 - 10™*. This value worked best in tests of the LSP taggers. At the end of each epoch, the
learning rate is lowered by a factor of 0.7 and the entire training dataset is shuffied. The batch size is
64. We minimize the averaged binary cross-entropy loss

N
1
l=—N2yilnxi+(1—yi)ln(l—xi), (5.9)

where the index i runs through all N = 64 images in the batch, y; is the true label and x; is the predicted
label. Adam [58] is chosen as the optimizer. All taggers are trained for a total of 15 epochs.

The minimum validation losses for AKO8, AK10 and AK14 jets are found to be 0.6917, 0.6918
and 0.6920, respectively. When the classifier is tasked with assigning the label O to the first class (e.g.
CP2 tune) and the label 1 to the second class (CP5 tune) and the classifier is perfectly confused (i.e.
unable to distinguish between the classes), it will assign labels close to 0.5 regardless of the true class.
The binary cross entropy per image is then In(2) = 0.6931. Evidently, our observed losses are only
very slightly below the value expected for a classifier that learns nothing. We therefore conclude that
the difference in pyTHIA tunes can be neglected in the following.

We now turn to the actual training of the taggers to select LSP-like fat jets. Signal samples are
generated for y masses between 100 GeV and 500 GeV in steps of 10 GeV, and for stop masses between
700 GeV and 1200 GeV in steps of 25 GeV. For each combination of stop and neutralino mass, we
take 4750 sample images from 7,7} signal events. In order to generate an almost pure signal sample for
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training, we only include images of jets that are within AR < 0.5 of a parton level y. Since we want
the LSP tagger to work for all combinations of m; and m , we combine all 41 xX21x4750 = 4 089750
images into a single training set. We take the same number of background images, 4 089 750, from
tf+jets events.

Finally, we split the 8 179 500 images into 5 725 650 images for training and 2 453 850 images for
validation. After training, the model state at the epoch with the lowest validation loss is selected to
define the tagger.

5.9 Results for Neutralino Taggers

In order to compare the performance of our classifiers, we neglect any systematic uncertainties and
define the signal significance Z as

Z=%=%-%m, (5.10)
where S and B are the numbers of signal and background samples passing a cut (e.g., on the value of an
output neuron of the MLP), €5, is the selection efficiency of this cut, o7, g is the fiducial production
cross section and L;, is the integrated luminosity of the dataset considered. Instead of comparing
signal significances directly, we compare the significance improvement €g/+/€g, which captures the
gain due to the sophisticated event classifiers and is independent of the assumed luminosity.
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Figure 5.4: Significance improvement curves for all three neutralino taggers for all single jet samples in the test
dataset. The shaded regions show one bootstrapped standard deviation with 100 rounds of bootstrapping.
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Figure 5.4 shows the performance of all neutralino taggers on the entire test dataset, i.e. with all
signal masses present and with the three leading jets mixed as mentioned in sec. 5.8. As a working
point for the following analysis, we choose the cut on the MLP output neuron such that g = 0.3. Even
lower values of €g can still increase €g/€p, but the significance improvement is already close to the
maximum at the chosen point. Moreover, for smaller € the background efficiency €z becomes so
small that the statistical uncertainty on the accepted background becomes sizeable, despite the large
number of generated background events.

Both CoAtNet and MaxViT showed superior performance in classical image classification tasks
compared to CNN-based models, as reported in the respective original publications. We expect this to
carry over to jet classification. Indeed, this is the case here and both models outperform the classical
CNN by up to a factor of 2 for AK14 jets. The most performant classifiers are the transformer-based
models trained on the large radius jets. These large jets still contain the entire narrow jets from small
LSP masses, while the small jets might miss important features for larger neutralino masses. We also
observe that Max ViT performs slightly better than CoAtNet, as is the case in the original MaxViT
publication. Evidently, improvements in modern computer vision translate well to the classification of
jet images. Even the worst transformer-based model (i.e. AKO8 CoAtNet) matches the best CNN.
Interestingly, despite the transformer models showing a clear hierarchy, performing better on larger
jets, this is not the case for the CNN, which performs best for AKO8 jets.

So far, we have considered the classification of singlet jets. In the next section, we will show how
this can be used for event classification.

5.10 Boosted Classifiers

As previously mentioned, our signal model always produces two neutralinos that subsequently decay
into three quarks (plus possible gluons from final state radiation). It is therefore sensible to combine
multiple jet images into our predictions. To this end, we apply one of our LSP taggers described above
on the three leading fat jets in an event. From now on, we will drop the merging requirement since it
is not meaningful anymore. The three resulting MLP outputs are used as inputs for a GBDT classifier.
If an event contains less than 3 fat jets with p > 100 GeV, we assign the label —1 for the missing jets.
The GBDT is implemented using the XGBoost [64] package. We use 120 trees with a learning rate of
0.1, with the other hyperparameters left unchanged at the default values. In order to train the GBDT
and calculate its results, we use 3000 and 2500 events, respectively, for each combination of stop and
LSP masses. This corresponds to a total of 2 583 000 signal events for training and 2 152 500 signal
events for evaluation. We again generate an equal number of 77+ jets background events.

Figure 5.5 shows the significance improvement after a cut on the signal probability given by
the GBDT. The difference in performance between the two transformer-based models has shrunk
significantly for all jet sizes, especially for AK10 and AKOS jets. Comparing this with figure 5.4 the
gain by combining the three jets is not very large. Note, that the merging requirement is now dropped.
If we calculate the significance improvement for only the jet with the highest p, without requiring
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Figure 5.5: Significance improvement curves for all GBDT classifiers built to combine the LSP tagger outputs
for the three highest p+ jets. The shaded regions are one bootstrapped standard deviation.

it to be close to a (truth-level) LSP, MaxViT reaches 6.79 + 0.05 at eg = 0.3. Comparing this with
9.92 + 0.12 for the same base model after combining the LSP tagger output for the three hardest jets
shows an improvement of almost 50%, equivalent to doubling the integrated luminosity in equation
5.10. The CNN now also works best with AK14 jets, even though the AKOS8 version is still better than
the AK10 version, contrary to the hierarchy of the other models.

Overall, the level of improvement between the results of figure 5.5, which use information from up
to three jets per event, and figure 5.4 for single jets, might seem somewhat disappointing. After all, in
the absence of QCD radiation, a 7,7] signal event contains two signal jets plus one fat background jet
from the hadronically decaying top quark, whereas a generic ¢f event with one top quark decaying
semileptonically contains only a single background fat jet. In such a situation, simply requiring at
least one fat jet to be tagged as signal would increase the signal efficiency (for eg > €p) from €g to
1-(1- eS)2 while the background efficiency remains unchanged. Recall, however, that we require
each event to contain at least seven AKO04 jets. This greatly reduces the 7 background, since at least
three additional partons need to be emitted for the event to pass this cut; on the other hand, it also
means that background events frequently contain several fat jets, in which case a simple single tag
requirement would not increase the significance. In any case, as noted above, there is a significant
improvement in performance when information of the three leading fat jets is combined using a GBDT;
of course, the GBDT output is not equivalent to simply demanding a fixed number of jets in a given
event being tagged as LSP-like.

In figure 5.6 we show how the performance of the GBDT depends on the LSP mass. For small
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Figure 5.6: Significance improvements depending on the LSP mass for all GBDT classifiers built to combine the
LSP tagger outputs for the three highest p jets. The cut on the GBDT output has been set such that eg = 0.3
for each given LSP mass. The shaded regions are one bootstrapped standard deviation.

masses, the two transformer-based models perform comparably for all three jet sizes. Here, the
decay products are usually contained even in the AKOS jet so all three jet sizes contain the necessary
information for our task. Evidently, the transformer networks are able to filter out the noise from
particles not related to LSP decay that are present in the AK10 and AK14 jets, while the simpler CNN
cannot; hence the GBDT using the CNN applied to AK10 or AK14 jets performs relatively poorly for
small LSP mass. On the other hand, for LSP masses above 200 GeV, the GBDT performs significantly
worse when used on the smaller jets, which no longer contain all particles originating from LSP decay.

We also note that using the CNN applied to AK14 jets performs far worse than the other models for
small LSP mass, but matches the performance of the CoAtNet-based model for m ; between 450 and
500 GeV. This curve also shows the strongest LSP mass dependence. We will revisit this point later in
this chapter.

Finally, while the MaxViT architecture with AK10 and AK14 jets again shows the best overall
performance, the resulting €5/+/€5 shows a shallow minimum at m; =~ m,. For a given p, fat
jets originating from LSP and top decay will then have similar overall features, and the additional
information about the jet mass will not provide further benefit. Moreover, recall that in our scenario, the
LSP decay products contain exactly one b-quark, just like nearly all jets from top decay. Nevertheless,
the model performs quite well even in this difficult mass region. Presumably, it exploits the fact that
top decays into three quarks proceed via two 2-body decays with a color singlet on-shell W boson in
the intermediate state, whereas the LSP decays via the exchange of a (far) off-shell squark, therefore
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Model AK14 Combined jets
CoAtNet 9.32+0.10 9.63 +0.10
MaxViT 9.91+0.11 10.09 £ 0.12
CNN 7.62 +0.06 9.16 £ 0.09

Table 5.1: Significance improvement, eg/+/€g, for €5 = 0.3 when only using AK14 jets (second column), and
when combining the LSP tagger outputs on AK08, AK10 and AK14 jets using a larger GBDT (third column).
The uncertainties are bootstrapped standard deviations.

Jet Combined Best single model

AKOS8 7.53 £0.06 7.34 £ 0.06 (MaxViT)
AKI10 8.94 +0.09 8.15 £ 0.07 (MaxViT)
AK14 10.51 £ 0.11 9.91 £ 0.11 (MaxViT)

Table 5.2: Significance improvement with g = 0.3 when feeding the outputs of all three LSP taggers
simultaneously to the GBDT, keeping the jet definition fixed. For comparison, the third column shows the
significance improvement for the MaxViT-based model, which performs best for all three jet sizes. The
uncertainties are bootstrapped standard deviations.

leading to a slightly different jet-pattern.

At this point, we still have nine predictions for each event (the output of three architectures applied
to AKO08, AK10 and AK14 jets). Of course, these nine numbers are highly correlated. Nevertheless, a
further improvement of the performance might be possible by either combining results from different
jet definitions within a given architecture or vice versa. Comparing these results might also allow us
to infer in which aspect a single model has room for improvements that might be gained by another
architecture.

We start by combining LSP tagger outputs for different jet sizes. We show the results in table 5.1
and compare the performance to that of the best single jet definition, which is achieved for AK14
jets, as we saw in figure 5.5. Evidently, the improvement is barely statistically significant for the two
transformer-based models. These models extract most of the useful information from the images
of the large AK14 jets, even when there is a lot of clutter present. The improvement is larger for
the CNN-based classifier, which, however, still performs somewhat worse than the other models. It
seems to benefit from the multiple jet definitions intended to extract high-level features, such as the
mass in classical applications. In particular, the combination allows to compensate for the degraded
performance when using the large jets for LSP mass below 250 GeV by information from the AK08
jets, which is more useful in this parameter region, as we saw in figure 5.6.

Next, we combine the outputs of different LSP taggers into a single GBDT, for fixed jet definition.
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The results are shown in table 5.2. This time, the combination leads to a slight but significant
improvement over the best single model (the one based on MaxViT). This shows that even though the
transformer-based models perform almost equally well for the AK14 jets while the CNN is noticeably
weaker, each model misses complementary information that the GBDT can combine into a stronger
classifier.
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Figure 5.7: Significance improvement as a function of the LSP mass for GBDT classifiers built by combining
the output of different LSP taggers, with e = 0.3 in each case. The shaded regions are one bootstrapped
standard deviation. The curves labeled CoAtNet (blue), CNN (orange) and MaxViT (red) show the performance
of GBDTs built from combining the jet sizes for the given model, as in the third column of table 5.1. The green
curve is for the GBDT that uses the outputs of all LSP taggers, but only for the AK14 jets, as in the third row of
table 5.2. The purple line results from combining both transformer-based LSP taggers for all jet sizes, while the
brown line is for a GBDT that combines all LSP taggers and all jet sizes.

In figure 5.7 we show how the performance of various strategies to combine LSP taggers varies with
the neutralino mass. Combining all transformer-based predictions into a single GBDT does not show
any significant improvement over the performance of the MaxViT-based tagger. This indicates that
these models use the same features of the jet images and do not find complementary information. The
combination of all CNN predictions is comparable to the weaker transformer-based model, CoAtNet,
for LSP mass above 200 GeV, while MaxViT is still more sensitive for all LSP masses.

Because our LSP taggers generally perform best on AK14 jets, we also show the combination of all
three architectures using only AK14 jets, as in the last row of table 5.2. Comparing to figure 5.6, we see
that for LSP mass below ~ 160 GeV this combination does not further improve on the MaxViT-based
model applied to AK14 jets. Between ~ 160 GeV and ~ 300 GeV, the performance closely follows
that of the two combined transformer models shown in purple. Since we already showed that one does
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not gain much combining the CoAtNet and MaxViT models, this shows that the CNN does not yield
useful information in this region of parameter space, either.

However, as we saw in figure 5.6, the CNN-based model applied to AK14 jets improves more with
increasing LSP mass than the transformer-based models do, even matching CoAtNet at 500 GeV. The
combination profits from this fact and outperforms the GBDTs in the > 300 GeV range, using only
input from the transformer-based LSP taggers. This shows that the CNN learns something about the
sample that the other models miss.

Finally, we show the result of a GBDT that is trained on the LSP tagger outputs of all three models
and all three jet sizes and thus has 27 inputs in total for each event. Compared to the AK14-only
case, this does benefit from the inclusion of smaller jets, in particular at smaller LSP masses where
the AKO8 and AK10 jets already capture most LSP decay products. For larger LSP masses, the
performance is only slightly better than that of the AK14-only case.

These various comparisons show that for the given signal process, the largest improvement in
significance €g/+/€p is achieved by the transformer-based models applied to AK14 jets. Both models
capture details of the jet images that the CNN misses. Nevertheless, also feeding the output of the
CNN-based LSP tagger into a larger GBDT leads to a further slight improvement in the performance.
This indicates that one might be able to find new architectures that perform even better than MaxViT.

5.11 Adding High-Level Features

The cuts discussed in Section 5.4 are only preselections. They ensure that the event passes the single
lepton trigger and contains at least one fat jet to which the LSP tagger can be applied. They also
reduce the background, but even after including information from the LSP tagger, these cuts are not
likely to yield the optimal distinction between signal and background. A full event has additional
features that allow to define additional, potentially useful cuts, even if they may show some correlation
with the output of the LSP tagger.

In particular, so far the only dimensionful quantities we used in the construction of our classifier are
the masses of the hardest three fat jets, which we use as input to the LSP tagger. We therefore now
introduce additional input variables for the final GBDT: the sum of the masses of all AK14 jets [195],

M, = Z m, (5.11)

AK14

and the total missing transverse momentum pr}liss. In addition, we use the total number N ; of all AK04

jets, as well as the scalar sum H of their transverse momenta.
Moreover, information about the angular separation of the jets might be helpful. Inspired by
ref. [183] we capture this information via the Fox-Wolfram moments [196] H,, defined by

PriPT;
= TP pcos Q) (5.12)

i,j=1 (2Zk P1i)
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here i, j, k run over all AKO4 jets in the event, p; is the p of the i.th jet, P; is the I’th Legendre
polynomial and
cos €;; = cos;cos6; +sin6; sin6; cos(¢; — ¢ ;) (5.13)

is the cosine of the opening angle between the jets i and j. We show the distribution of all features in
Appendix B.1.

We combine these features into two sets: the small set DS1= [ pl}’iss, Hy,M;, N j], which includes
the most commonly used features for new physics searches in hadronic final states and a slightly larger
set DS2, which also includes the second to sixth Fox-Wolfram moments. We combine these features
with the output of the LSP tagger based on MaxViT applied to AK14 jets (i.e., the most performant
single model) and derive predictions with a similar GBDT as before.
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Figure 5.8: Significance improvements as a function of the LSP mass for various GBDT classifiers. In all cases,
the cut on the GBDT output has been set such that eg = 0.3 for each given LSP mass. The upper two curves
show results from classifiers that combine the output of the MaxViT-based LSP tagger applied to AK14 jets
with additional kinematical features. The feature set DS1 contains [p7"", Hy, M, N;] while DS2 contains, in
addition, the second to sixth Fox-Wolfram moments. For comparison, the red curve id obtained when using
only LSP tagger information, as in figure 5.6, while the lower blue and green curves are for GBDTs that only
use kinematical information. The shaded regions are one bootstrapped standard deviation.

Results are shown in figure 5.8. We see that even GBDT classifiers that only use the kinematic
information of sets DS1 or DS2 are quite capable of separating signal from background, especially for
larger LSP masses; this reconfirms the usefulness of these variables for new physics searches at the
LHC. In fact, for LSP mass above 300 GeV, these classifiers even outperform the GBDT that only uses
information from the MaxViT-based LSP tagger. On the other hand, except for m; = 100 GeV, adding
kinematic information to the output of the LSP tagger clearly improves the performance of the event

75



Chapter 5 Learning to see R-parity violating scalar top decays

classifier, indicating that the Fox-Wolfram moments prove useful for LSP mass above 250 GeV or so.

Conversely, adding information from the LSP tagger to the purely kinematic variables raises the
significance improvement by an amount that is nearly independent of the LSP mass. We expect
the gain of performance to be even larger when compared to a classical selection based purely on
kinematical cuts.

5.12 Application at 137 fbo!

We are now ready to discuss how the different classifiers fare, in terms of the reach in stop mass for

exclusion or discovery. Here we set the integrated luminosity to £, , = 137 fb~!, as in the original

1nt
CMS publication [183]. For simplicity, we ignore the systematic uncertainty on the signal, as well as
the uncertainty from the finite size of our Monte Carlo samples. The former is much less important
than the systematic error on the background estimate, and the latter should be much smaller than
the statistical uncertainty due to the finite integrated luminosity. The ¢f background is normalized
to the next to leading order production cross section [120]. The simulated stop pair samples are
normalized to NLO + NLL accuracy [197]. This corresponds to 273 084 background events and a stop
mass-dependent number of signal events. We calculate exclusion limits from the expected exclusion

significance [198]:

1/2
B+S 2B> (B-S B+A;
Zow =252 |22 1E) _ 22 g (220X (pig o n2TRBL (504
2B A% 2B 3

where B and § are the expected number of background and signal events, Ay is the absolute systematic
uncertainty on the background, and

4SBA
x=1|(S+B)* - 2. (5.15)
B+ A%

We chose Ay = 0.06B, as described below. Z

xcl 18 the expected number of standard deviations

with which the predicted signal S can be excluded if the background-only hypothesis, described by

the background B, is correct; note that Z_, ; — S/+/B + A% if B > §. This quantity is computed for
every combination of stop and LSP masses introduced in sec. 5.4, using four different event classifiers.

The results are shown in figure 5.9. We again define signal-like events through a cut on the
GBDT output corresponding to eg = 0.3. The top-left frame is for a GBDT that uses only kinematic
information about the AKO04 jets, as in the green curve of figure 5.8. Associating the contour along
Z

xcl = 1.645 with the 95% confidence level exclusion bounds of this “traditional” analysis, we find

an expected exclusion reach in m; of about 740 GeV for an LSP mass of 100 GeV This is rather close
to the expected reach of about 710 GeV for the same LSP mass achieved in the CMS search,” which is

> We note in passing that the actual CMS limit on the stop mass is only 670 GeV for this LSP mass, due to a small (not
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Figure 5.9: Exclusion significance Z,,, defined in equation 5.14 for an integrated luminosity of 137 o', Inall
cases, the cut on the GBDT output has been chosen such that the signal efficiency eg = 0.3, and A = 0.065.
The top-left frame is for a GBDT using kinematical information only, corresponding to the green curve in
figure 5.8. The other three frames are for GBDTs that also use the output of LSP taggers applied to AK14
jets, based on the CNN (top-right), on CoAtNet (bottom-left) and on MaxViT (bottom-right). Solid, dashed
and dotted lines denote contour lines corresponding to a signal significance of 1, 1.281 and 1.645 respectively.
These are smoothed by a Gaussian filter with standard deviations 10 GeV and 25 GeV on the neutralino mass
and stop mass axis respectively, applied to the logarithm of the signal significances.
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based on a neural network (NN) “trained to recognize differences in the spatial distribution of jets and
decay kinematic distributions” [183]. Unfortunately, they don’t show results for other LSP masses.
This agreement is not accidental; we chose the systematic background uncertainty, Az = 0.065,
accordingly. Presumably, even closer agreement would have been possible for somewhat larger Ap.
However, it would then be significantly larger than the actual systematic error on the background
estimate found by CMS, which is below 5%. We note that for A% > B the significance scales o 1/B,
rather than o 1/VB, if A p 1s a fixed percentage of B. A larger Ag, therefore, increases the relative
improvement in reach achieved by including information from one of our LSP taggers; recall that this
leads to a significant improvement of €g/+/€p, and hence to an even bigger improvement in €g/€p.

The other three frames show results for GBDTs that also use the outputs of an LSP tagger as input
variables; we apply this tagger to the three leading AK14 jets. We see that the simpler CNN-based
tagger (top right) increases the reach in stop mass only by less than 10 GeV. Recall from figure 5.6
that the CNN tagger applied on AK14 jets does not perform well for small LSP mass. For larger LSP
mass, and hence larger angular spread of the LSP decay products, the kinematic information on the
AKO04 jets, many of which are components of AK14 jets, already seems to capture much of the physics
found by the CNN. Recall that the kinematic GBDT includes information on the angular separation of
these jets via the Fox-Wolfram moments of equation 5.12.

In contrast, using the transformer-based LSP taggers does improve the reach considerably. As
before, MaxViT (bottom right) performs slightly better than CoAtNet (bottom left); the reach in stop
mass increases by 100 GeV for m ; = 100 GeV, and by about 60 GeV for m = 500 GeV. This again
indicates that the kinematic information on the AK04 jets allows some effective LSP tagging for large
LSP masses.

For stop masses in the interesting range, the 7,7; production cross section of [197] can be roughly
parameterized as

m;, -7.8
f,57) ~0.08pb: | ——— . 5.16
o(pp — §if)) p (700 GeV) ( )

Increasing the reach from 740 to 840 GeV (for m; = 100 GeV ) thus corresponds to reducing the
bound on the stop pair production cross section by a factor of ~ 2.7. Note that the limit setting
procedure is quite nonlinear because the background falls by nearly two orders of magnitude when
m; is increased from 700 to 1200 GeV while keeping €5 = 0.3 fixed.

5.13 Summary

The large hadronic activity in pp collisions makes the search for physics beyond the Standard Model
in purely hadronic processes at the LHC especially challenging. This problem can be mitigated
by the use of sophisticated analysis methods. In particular, jet substructure has proved a powerful
discriminator between various production processes.

statistically significant) excess of events.
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In this chapter, we studied the feasibility of applying modern computer vision techniques in detecting
RPV stop decays. As a benchmark, we use 7, pair production, where each stop decays to a top and a
neutralino LSP which subsequently decays via the UD D operator to three quarks. For not-too-small
mass splitting between the stop and the LSP, the decay products of the latter tend to reside in a single
fat (e.g., AK14) jet. One can build images from the constituents of such jets by using the angle ¢ and
pseudorapidity 7 as spatial positions and deposited energy into the detector as pixel intensity. One can
then use computer vision techniques on this representation to build classifiers (“ LSP taggers”) that
aid in amplifying the signal process.

In recent years, transformer-based architectures have been shown to improve on the performance
of more classical convolutional neural network-based structures in standard classification tasks. We
study how well these novel architectures work on jet images by training LSP taggers based on MaxViT,
CoAtNet and a CNN architecture. The training is done on single-jet images. We then combine
the output of the LSP tagger applied to the three jets with the highest p, using a gradient-boosted
decision tree into a more robust classification score. We find that the CNN-based tagger improves the
statistical significance of the signal by a factor between 5 and 10 for fixed signal efficiency eg = 0.3,
the exact factor depending on the neutralino mass and the definition of the fat jets. In contrast, the
transformer-based models lead to an improvement factor between 8 and 11, outperforming the CNN
over the entire parameter space. We also combine the predictions of all architectures for each jet size
separately and find a modest improvement, hinting that even the transformer-based models do not use
the entire information present in the images; hence an investigation of further improvements of the
architecture might be worthwhile.

Since the kinematic preselection cuts are not optimized for sensitivity, we also use high-level
features such as Fox-Wolfram-moments, p'»**, Hy, M, and N ; as inputs to a GBDT, in combination
with the output of one of our LSP taggers. This leads to a total gain of sensitivity by a factor of 20 for
500 GeV LSPs, on top of the effect due to the acceptance cuts.

Finally, we estimate the reach in stop and LSP mass that could be expected from the full run-2
dataset. We chose the systematic uncertainty on the background such that a GBDT that only uses
kinematic information on AKO04 jets leads to a reach (for LSP mass of 100 GeV) similar to that found
by CMS [183]. Additionally, using the output of the relatively simple CNN-based LSP tagger then
leads to almost no further improvement of the reach. By instead using the MaxViT-based tagger, one
can improve the reach by 100 GeV (60 GeV) for neutralino masses of 100 GeV (500 GeV), under the
assumption that the relative size of the systematic uncertainty remains the same. This corresponds to
a reduction of the bound on the stop pair production cross section by up to a factor of 2.7.

We conclude that LSP taggers built on modern transformer-based neural networks hold great
promise in searches for supersymmetry with neutralino LSP where R—parity is broken by the UD D
operator. This result can presumably be generalized to models with different LSP, e.g., a gluino
decaying via the same operator, or a slepton decaying into a lepton and three jets via the exchange of a
virtual neutralino.

In fact, it seems likely that these advanced techniques can also be used to build improved taggers
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for boosted, hadronically decaying top quarks or weak gauge or Higgs bosons. We did not attempt
to construct such taggers ourselves, since this field is already quite mature. Convincing progress
would therefore have to be based on fully realistic detector-level simulations, for which we lack the
computational resources. Moreover, a careful treatment of systematic uncertainties would be required,
which ideally uses real data. However, we see no reason why the improvement relative to CNN-based
taggers that we saw in our relatively simple simulations should not carry over to fully realistic ones.
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CHAPTER 6

Conclusion and Outlook

The Standard Model, in its current form, is remarkably predictive and accurately describes a wide
range of physical phenomena. Its symmetries and anomaly cancellations also present an elegant
theoretical framework. Despite these strengths, the Standard Model has limitations that suggest there
is yet more to discover. Notably, it lacks a convincing dark matter candidate, and its cosmological
predictions do not match the universe we observe today.

The latest analyses from CMS and ATLAS, based on the LHC Run 2 dataset with an integrated
luminosity of 137 fb~!, have so far yielded null results, gradually constraining the parameter space for
new physics. Including data from the ongoing Run 3, the LHC has now accumulated approximately
300! of integrated luminosity. The upcoming High-Luminosity LHC aims to increase this further
by a factor of ten [199], thanks to significant upgrades in experimental apparatus. While the number
of recorded events will continue to rise steadily, substantial increases in energy are unlikely in the
near future. Consequently, it is crucial to make optimal use of the extensive data available. Machine
learning, which thrives on large datasets, stands to provide significant benefits to physics research,
thanks to the unprecedented quantities of data generated by the LHC experiments.

The next major step toward discovering new physics lies in employing more sophisticated analysis
strategies that leverage machine learning. This thesis contributes to this goal by demonstrating
that recent innovations in resonant anomaly detection techniques are more broadly applicable than
previously shown. We have demonstrated that even features localized at the tails of distributions
can be used to reliably and signal-model-agnostically detect new physics signals. This implies that
even the R-parity conserving minimal supersymmetric Standard Model that often produces large
missing momentum can potentially be found this way. We explicitly demonstrated that the technique
uncovers multiple different supersymmetric signal models with a general approach, while only being
marginally less sensitive than multiple dedicated searches. This demonstrates the value that machine
learning techniques can bring for resonant anomaly detection, which will be crucial going forward in
the development of new, broader analysis strategies
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Not all interesting models that produce hadronic resonances can be uncovered using this method.
Therefore, further innovations besides the field of anomaly detection will need to be developed. We
have found that recent advances in computer vision techniques can be effectively translated to physics,
creating a symbiotic relationship between the two fields and leading to increasingly sensitive analysis
strategies for high-energy collider datasets. That way, even notoriously difficult signal models have a
chance to be uncovered.

Looking ahead, maximizing the discovery potential of the true underlying model of nature will require

simultaneous improvements in experimental techniques and the development of more sophisticated
analysis strategies.
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APPENDIX A

Additional Studies on CATHODE

A.1 Recreating CMS-SUS-19-013

The recreation of CMS-SUS-19-013 [119] follows the most important analysis steps of the original
=137, First, a set of
remaining cuts are applied to select Z-candidates, then the background estimation is recreated before

publication. The number of events is set to the integrated luminosity of L,
the statistical analysis is performed. The following cuts are applied to select hadronically decaying Z
bosons:

8. Softdropped m;,, € [40GeV, 140 GeV] of the 2 highest p AK3 jets

9. ARz ;, > 0.8 for the second highest p; AKS8 jet Z and any b-tagged jet where the angular

separation is defined as AR = \/A¢2 + Ar]2

miss

The resulting p -spectrum is shown in figure A.1 which agrees with the spectrum shown in the
original publication within uncertainties.

The background estimation consists of the normalisation and the shape estimation. The SR is
defined as mje, € [70GeV, 100 GeV]. First, one demands the subleading AK38-jet to be in the SR.
Then a linear function s fitted to the m; spectrum of the leading AKS jet outside its SR. The nominal
yield B, is obtained by integrating the linear function in the SR. The statistical error of the yield
is obtained from the spread of pseudo-experiments sampled from the fit. In addition to the linear
function, Chebychev functions up to the fourth order are fitted. The largest deviation of the nominal
yield is then assigned as an additional uncertainty.

The background p**-shape is obtained by the SB with both AKS jets outside the SR. The content

of the ith p bin is denoted as N>°. The transfer factor from the SB to the SR is then calculated as

B
T = 5 “°fg‘B =0.206 + 0.023. (A.1)
i Ni

4
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Figure A.1: pl}liss spectrum of the three leading background processes. The background of the same three

processes from the CMS-publication is shown in red. The variation of cross section due to changing the
energy-scale by a factor of 1/2 and 2 as computed by MadGraph is assigned as a systematic uncertainty and
added to the statistic errors in quadrature and shown as error bars.

which agrees with the original publication within uncertainties. The expected background in bin i is

B, =TNB. (A.2)

1 l

RooStats [200] is used for statistical modeling. It takes NiSB with statistical errors, 7 and A7 to
model the background in the SR with uncertainties. The signal model contains signal events that pass
all cuts and is rescaled to the approximate NNLO+NNLL cross section [201]. The overall uncertainty
of the cross section is applied to all signal bins. The resulting statistical model is evaluated with the
CL, [202] approach and the asymptotic form of the onesided profile likelihood teststatistic. This is
o = 137107 ! are
=300 in figure A.3 . We use the latter dataset for the application
of the ML-technique since the accuracy is greatly improved with more datapoints to learn on while in

used to obtain the 95% CL. cross section. The limits for the integrated luminosity £
shown in figure A.2 and for £

int

reach for the collider in the near future.
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Figure A.2: Recreation of CMS-SUS-19-013 [119]. The red dashed line denotes the expected limits of original
CMS-search. The black dashed line shows the expected limits of the recreation.
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Figure A.3: Results of the classical search for 300 fb! integrated luminosity

A.2 Comparison with Idealistic Methods

We now compare CATHODESs performance to that of overly idealistic methods. First of all, we
focus on a fully supervised approach, learning to distinguish signal and background events directly.
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Figure A.4: Background rejection 1/eg as a function as the signal efficiency €. Solid lines indicate the mean.
The shaded bands range from the minimal to the maximal value. The CATHODE models shown use 10 000
artificially sampled background events in total inside the signal region.

Because the number of background events is limited "and generating more events is computationally
prohibitively expensive, we need to take care to make the most of the available data. With the limited
training data, we use a gradient-boosted decision tree as implemented by scikit-learn [203]. We choose
a maximum number of 150 boosting rounds and leave the remaining hyperparameters at their default
values. Input data is not standardized because gradient-boosted decision trees are more robust in this
regard than the fully connected neural network used in CATHODE.

We use the same signal model with decay )73 - Z)?? and fix the gluino mass to mz = 1700 GeV.
=300fb~ " of signal and background
events within the signal region defined by equation 4.7. We use the four-fold cross-validation procedure

Similar to the previous section, we define the test dataset as £;,
described above by splitting the dataset into four equally sized parts.

For the supervised model, we combine three of the subsets with additional 10000 background
and 17 500 signal events inside the SR to form the training set. This way, we have roughly the same
number of signal and background events in the training set. Contrary to CATHODE, we use the truth
labels target labels.

Similarly to ref. [8] we also compare to an idealized anomaly detector. For this, the classification
step of CATHODE does not try to tell apart real data from synthetically generated background events
but from real background events. This idealized step can be thought of as the limit where the estimated
background distribution models the real background distribution perfectly. To train this, we combine

''We generated a total of £, =618 fb! background events, allowing us to estimate various statistical uncertainties.
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A.2 Comparison with Idealistic Methods

the three previously mentioned subsets with 10 000 additional background events. This time, the
target labels if a given event comes from real data or the background-only simulation. The only way
to tell these apart is to find the signal events that are only in one class, which is the whole principle
behind CATHODE.

For both the supervised model and the idealized anomaly detector, this is done four times to assign
predicted labels to the entire set of real data. Additionally, we reshuffle the dataset ten times and
average the ten predicted labels to gain more stable predictions. We repeat this 25 times to calculate
statistical uncertainties by sampling new datasets from the available simulated events.

We compare this to CATHODE with a total of 10 000 artificially sampled background events. This
way the comparison to the idealized anomaly detector is fair. The results are shown in figure A.4. The
fully supervised method performs the best on the entire range of signal efficiency. This is expected
because it immediately solves the problem we are testing, i.e. separating signal from background
and not the proxy task the anomaly detector methods are trained on. The idealized anomaly detector
and CATHODE almost perform the same, a property that has already been observed by the original
CATHODE publication. The fact that our signal lies at the tail of both p** and H;- does not degrade
its performance, especially the density estimation step.
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Figure A.5: Correlation between the anomaly score R and m I

A.3 Correlations of Anomaly Scores and Features

In figure A.5, A.6 and A.7 we show the correlation between the anomaly score R and the features
CATHODE uses. The signal model is )’(’(2) - Zj('(l) with mz = 1700 GeV. Since we always use the
same background events, we average the anomaly score of background events over the five reshuffled
datasets and the ten independent signal injections. For better visibility, we combine the ten independent
signal injections into a total of 3109 signal events in the signal region. The anomaly score of these is
the average of the five assignments to the reshuffled datasets.

In figure A.5 we note visually that CATHODE does not sculpt the background in m . Even though
the signal is predominantly found in m,, € [70GeV, 100 GeV] it does not assign higher anomaly
scores to background events in this region. Therefore, one could even use m 7, in a bump-hunt,
although with limited signal model generalizability. In figure A.6 it seems CATHODE learns a cut on
Hp of ~ 1 TeV for events with R > 0.65. Making precise statements from these figures is impossible
because CATHODE also uses correlations between the features that can not be shown here.
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Figure A.6: Correlation between the anomaly score R and p'™** and Hy.
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A.4 Signal and Background Efficiencies
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Figure A.8: Signal and background efficiencies of the model with decay )?(2) - Z)?(l) with a cut on the anomaly
score R,. such that 1% of events pass the selection. The dot-dashed part of the blue line represents parameter
points where R, has to be lowered to allow five background events. The shaded region shows one standard
deviation around the mean efficiency.

A.4 Signal and Background Efficiencies

In figures A.8 and A.9 we show the signal and background efliciencies €5 and € respectively, that
correspond to the results shown in Section 4.5. Over a large section of parameter space CATHODE
retains more than 10% of signal events when the cut on the anomaly score R, is chosen conservatively
to only pass 1% of all events. In an application with real data, this selection value would have to be
chosen with more careful consideration.
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Figure A.9: Signal and background efficiencies of the model with decay )“({2) - h,?(l) and Br(}g - Z)“({l)) =
Br(}g — hj('(l)) with a cut on the anomaly score R, such that 1% of events pass the selection. The dot-dashed
part of the blue line represents parameter points where R, has to be lowered to allow five background events.
The shaded region shows one standard deviation around the mean efficiency.
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A.5 ROC-Curves

A.5 ROC-Curves

In the figures A.10 and A.11 we show Receiver Operating Characteristic (ROC) curves, i.e. background
suppression, as a function of the signal-efficiency of our benchmark models. We also observe a
common feature of anomaly detection techniques. With rising signal cross section the classifier learns
to separate background from signal-like events better. At the same time, larger signal cross sections
correspond to smaller gluino masses, which in turn lead to less expressive features. Both effects
combined lead to intermediate gluino masses having the largest background suppression at the same
signal efficiency compared to small masses with large cross sections or large masses with very obvious
signatures, especially in the decay to Z and Standard Model Higgs bosons. We also observe in the
bottom right figure that for low and high Higgs masses the background rejection is noticeably weaker
than for intermediate masses. For light Higgs masses, the jets are too similar to background jets, while
high Higgs masses lead to wide jets that get reconstructed incorrectly.
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Figure A.10: ROC-curves of the )7;’ - Z)??. Solid lines denote the mean value and shaded regions show the
span between the minimum and maximum values obtained from ten different signal injections.
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Figure A.11: ROC-curves of the 5;‘2’ - h)?? models. Solid lines denote the mean value and shaded regions
show the span between the minimum and maximum values obtained from ten different signal injections.
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Figure A.12: ROC-curves of the Br(y, — Zy;) = Br(y, — hy;) models. Solid lines denote the mean value

and shaded regions show the span between the minimum and maximum values obtained from ten different
signal injections.
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Figure A.13: ROC-curves of the )?g - H)?(l) models. Solid lines denote the mean value and shaded regions
show the span between the minimum and maximum values obtained from ten different signal injections.
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APPENDIX B

Additional Studies on the Stop Pair Search

B.1 Additional Features

Here we show the additional features for the datasets DS1 and DS2 in Section 5.11. This is shown
for all 6 844 975 background events and 9 500 signal events each. H; is shown in figure B.1 while
p;liss, M and N are shown in figure B.2. Although the Fox-Wolfram moments shown in figures B.3
and B.4 are only subtly different between most signal and background events, it proved still useful to

include these in the larger dataset.

mg = 700GeV = mg = 100GeV
0.0020 1 :
* my=1100GeV ——myg = 300GeV
e Background
0.0015 1
“ .0010-
0.0005 1
0.0000 - : - |
0 2000 4000 6000

Hy/GeV

Figure B.1: Distribution of H; in background events and four signal models as defined in Section 5.4. All
histograms are normalized to unit area.
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Figure B.2: Distribution of pr}liss, M, N; in background events and four signal models as defined in Section 5.4.

All histograms are normalized to unit area.
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Figure B.3: Distribution of H,, H,, H; in background events and four signal models as defined in Section 5.4.
All histograms are normalized to unit area.
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Figure B.4: Distribution of H,, H5 in background events and four signal models as defined in Section 5.4. All
histograms are normalized to unit area.
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B.2 Excluded Stop Masses
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Figure B.5: Additional excluded stop masses Am at 95% C.L. as a function of the neutralino mass m ;. The

dotted line denotes stop masses where the kinematic GBDT excludes all probed stop masses. Therefore, the line
is the worst case estimate.

B.2 Excluded Stop Masses

Here we show the contour of additionally excluded stop masses extracted from figure 5.9 for better
comparison. The additional reach is shown in figure B.5.

B.3 Vanilla Vision Transformer

Here we demonstrate that the vanilla vision transformer [70], described in Section 3.6.1 will not yield
competitive results when applied as a neutralino tagger. We use the publicly available code ', For
this, we use 16 X 16 pixel patches. These patches are flattened into n = 4/16 - w/16 tokens of length
¢ - 16 where c is the number of input channels. The dimension of the tokens is D = 256, achieved by
multiplying with a learnable matrix. The transformer stage consists of six transformer encoder layers.
Each transformer layer contains 16 64-dimensional attention-heads. The MLP layer of the transformer
has a single hidden layer with 1024 neurons. The cls-token is concatenated with the mass m and fed
into the classification MLP-head identically to the other techniques. After the same training routine
as the other techniques, the results are shown in figure B.6. Its performance is only slightly better
than the CNN shown in figure 5.4 while MaxViT is far stronger. Therefore, we did not pursue this
technique further.

1 https://github.com/lucidrains/vit-pytorch
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Figure B.6: Significance improvement curves for the vanilla vision transformer (ViT) compared to MaxViT for
all single jet samples in the test data set. The shaded regions show one bootstrapped standard deviation.
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