
Distributed Anomaly Detection on Large
Knowledge Graphs

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Farshad Bakhshandegan Moghaddam

aus
Zanjan, Iran

Bonn, 2024

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen
Friedrich-Wilhelms-Universität Bonn

Gutachter/Betreuer: Prof. Dr. Jens Lehmann
Gutachter: Prof. Dr. Christian Bauckhage

Tag der Promotion: 16.10.2024
Erscheinungsjahr: 2024

Abstract

Digitization has yielded vast data, known as Big Data, fostering data analysis. As this data comes
from various sources and is of diverse types, data integration techniques become essential in making
analytics more accessible and effective. Knowledge Graphs (KGs) are vital in linking diverse data
within a directed multi-graph, utilizing unique resource identifiers. Presently, over 10,000 datasets
conform to Semantic Web standards, spanning fields like life sciences, industries, and the Internet
of Things. KGs employ various creation approaches, including crowd-sourcing, natural language
processing, and knowledge-extraction tools. However, the data used as input is often unvalidated
and not cross-checked, making KGs vulnerable to errors at both logical and semantic levels. These
errors can manifest across individual triples, impacting the subject, predicate, or object components
of the RDF (Resource Description Framework) data, or even happen in relationships across triples,
compromising the overall quality of KGs. Detecting these errors is not a trivial task because of the
complex structure and the sheer size of modern large-scale KG data which easily surpasses the available
memory capacity of current computers (e.g. English DBpedia size is ∼ 114 GB). Furthermore, in the
majority of cases, there are no defined rules to determine whether entered data is deemed correct or
incorrect. The primary objective of this thesis is to identify errors in very large knowledge graphs in
a scalable manner without prior knowledge of ground truth. To achieve this, we employ Anomaly
Detection (AD), a branch of data mining, to identify errors in KGs. However, most of the traditional
AD algorithms are no longer directly applicable to KGs due to the scalability issue and the RDF data
complex structure. This thesis endeavors to integrate communication, synchronization, and distribution
techniques with AD methods. Like most machine learning techniques, AD necessitates fixed-length
numeric feature vectors. Yet, within the context of KGs, there is no native representation available
in fixed-length numeric feature vectors. As a preliminary step, we have proposed a methodology to
create fixed-length numeric feature vectors by extracting features from the graph via map-reduce
operations. Accordingly, we have developed methods that enable SPARQL-based (SPARQL Protocol
and RDF Query Language) feature extraction. Subsequently, we have introduced a scalable anomaly
detection framework that can directly identify anomalies in RDF data. Moreover, to improve the
transparency of the framework’s output, we have provided human-readable explanations to assist
users in understanding why detected anomalies should be considered as such. In addition, due to the
technological complexity, we have enabled the application of our methods through complementary
work, such as integrating them into coding notebooks and REST (Representational State Transfer)
API-based environments. Finally, we have extended the existing technology stack SANSA through
several scientific publications and software releases, to offer these functionalities to the Semantic Web
community.

iii

Acknowledgements

During my Ph.D., I was employed as a researcher at the University of Bonn and was part of a team
supporting the EU Horizon 2020 Project, PLATOON.1,2

I want to express my deep gratitude for the invaluable support and guidance I’ve received from
numerous individuals who have played a significant role in completing this work. I extend immense
gratitude to my supervisor, Prof. Dr. Jens Lehmann, and my mentor, Dr. Hajira Jabeen. I am deeply
thankful for granting me a position within the SDA, enabling me to successfully navigate my Ph.D.
journey with a harmonious blend of trust, autonomy, and support. Your exceptional kindness, endless
patience, and insightful mentorship have been crucial in my academic journey. I consider myself
incredibly fortunate to have had the privilege of being advised by you during the development of this
thesis.

My heartfelt thanks also go to the entire staff members of the Smart Data Analytics (SDA) group at
the University of Bonn. Although I started my Ph.D. during COVID-19 and did not have a chance to
visit the team members in person, it was a pleasure to be a part of this vibrant community. I want to
extend my gratitude to Carsten Draschner, Firas Kassawat, Afshin Sadeghi, and Claus Stadler for their
friendship and support throughout my time at the SDA group. Within our research group, I had the
privilege of managing and maintaining certain aspects of the SANSA project, and I am grateful for the
opportunity to contribute to its development. I am particularly grateful for the fruitful collaborations
that allowed me to implement, evaluate, and integrate the research ideas presented in this thesis into
the open-source SANSA project.

Last, but certainly not least, I wish to express my deepest gratitude to my wife, family, and friends
for their support and boundless love throughout this journey. Their consistent encouragement and
understanding have been the foundation upon which I could rely, enriching my life beyond the realm
of scientific pursuits. Their belief in me and their constant presence has been a constant source of
inspiration, giving me the strength to overcome challenges and pursue my passion. I am profoundly
grateful for their support and the countless sacrifices they have made to ensure my success. Finally,
my special thanks go to Seyed Reza Hosseini for his priceless and unexpected scientific comments.

1 https://cordis.europa.eu/project/id/872592
2 https://platoon-project.eu

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition and Challenges . 3

1.2.1 Challenge 1: Scalable and Distributed RDF Vectorization 4
1.2.2 Challenge 2: Scalable and Distributed Anomaly Detection 4
1.2.3 Challenge 3: Scalable and Distributed Explainable Anomaly Detection . . . 4
1.2.4 Challenge 4: User-Friendly Distributed Machine Learning Framework for

Knowledge Graphs . 4
1.3 Research Questions . 5
1.4 Thesis Overview . 6

1.4.1 Contributions . 6
1.4.2 List of Publications . 7

1.5 Thesis Outline . 8

2 Preliminaries 11
2.1 Knowledge Graphs, RDF, and Semantic Web . 11

2.1.1 Knowledge Graphs (KGs) . 11
2.1.2 Resource Description Framework . 13
2.1.3 Ontology . 14
2.1.4 SPARQL . 14

2.2 Scalable and Distributed Data Analytics . 16
2.2.1 Distributed Computing . 16
2.2.2 Apache Hadoop . 17
2.2.3 Apache Spark . 17
2.2.4 Apache Livy . 17
2.2.5 Apache Jena . 17
2.2.6 Scala . 18

2.3 Knowledge Graph Quality Metrics . 19
2.3.1 Accuracy . 19
2.3.2 Completeness . 19
2.3.3 Consistency . 19
2.3.4 Timeliness . 20
2.3.5 Trustworthiness . 20

vii

2.4 Anomaly Detection . 20
2.4.1 Anomaly Detection Algorithms . 22

2.5 Summary . 25

3 Related Work 27
3.1 KGs as input for Machine Learning . 28

3.1.1 SPARQL-based Propositionalzation . 28
3.1.2 Graph Kernels . 29
3.1.3 Knowledge Graph Embeddings (KGEs) . 29

3.2 Machine Learning on Semantic Data . 30
3.2.1 Statistical Relational Learning (SRL) Frameworks 30
3.2.2 Knowledge Graph Construction and Mining 30
3.2.3 Distributed Graph Processing . 31
3.2.4 Distributed Linked Data Processing . 31

3.3 Anomaly Detection on KGs . 32
3.3.1 Clustering by rdf:type . 32
3.3.2 Clustering with Constraints . 34
3.3.3 Clustering by LHD . 34

3.4 Explainable Anomaly Detection on KGs . 35
3.4.1 Pre-Model Techniques . 36
3.4.2 In-Model Techniques . 36
3.4.3 Post-Model Techniques . 37

3.5 Summary . 38

4 Scalable and Distributed Feature Extractor 39
4.1 Motivation . 39
4.2 Literal2Feature: An Automatic Scalable RDF Graph Feature Extractor 41

4.2.1 Components . 41
4.2.2 Implementation . 45

4.3 Use Cases . 47
4.4 Experimental Results . 48

4.4.1 Experiment A: Assessment of the extracted Features 48
4.4.2 Experiment B: Scalability . 51

4.5 Summary . 53

5 Scalable and Distributed Anomaly Detection on KGs 55
5.1 Motivation . 55
5.2 DistAD: A Distributed Generic Anomaly Detection Framework over Large KGs . . . 56

5.2.1 Components . 57
5.2.2 Implementation . 61

5.3 Experiments . 62
5.3.1 Experiment A: Assessment of the detected Anomalies 62
5.3.2 Experiment B: Scalability . 63

5.4 Summary . 65

viii

6 Explainable Anomaly Detection on KGs 67
6.1 Motivation . 67
6.2 ExPAD: An Explainable Distributed Automatic Anomaly Detection Framework over

Large KGs . 68
6.2.1 Components . 69
6.2.2 Implementation . 73

6.3 Experimental Results . 75
6.3.1 Dataset . 75
6.3.2 Experiment A: Assessment of the detected Anomalies Explanation 75
6.3.3 Experiment B: Scalability . 78

6.4 Summary . 80

7 Implementation and Use-Case 83
7.1 Resources . 84

7.1.1 GitHub Repository . 84
7.1.2 Documentation . 85
7.1.3 Releases . 86

7.2 Scalable Semantic Analytics within PaaS . 87
7.2.1 Motivation . 87
7.2.2 SANSA through Databricks . 87
7.2.3 Summary . 89

7.3 Micro-Service based Semantic Analytics integration 90
7.3.1 Motivation . 90
7.3.2 Architecture . 90
7.3.3 Components . 90
7.3.4 Usage . 92
7.3.5 Summary . 94

8 Conclusion and Future Directions 95
8.1 Review of the Contributions . 95
8.2 Future Work . 98
8.3 Closing Remarks . 99

A SANSA REST docker-compose.yml File 101

B List of Publications 105

Bibliography 107

List of Figures 121

List of Tables 123

ix

CHAPTER 1

Introduction

Within this chapter, we provide a scientific rationale for the topic addressed in this thesis in Section
1.1. We primarily demonstrate the interconnectedness between knowledge graph data and scalable
anomaly detection, highlighting the intriguing meta-dimensions involved. Section 1.2 outlines the
specific problems and challenges encountered in developing scalable distributed anomaly detection
for knowledge graphs. In Section 1.3, we formulate the research questions that guided the endeavors
presented in this thesis. Furthermore, in Section 1.4, we offer an overview of our key contributions,
presenting the scientific publications that have been developed as part of this thesis and serving as the
foundation for several core chapters. Lastly, Section 1.5 gives a concise summary of the content of the
subsequent chapters and explains how they relate to the scientific publications that resulted from this
research.

1.1 Motivation

Over the past decades, our world has seen dramatic changes due to extensive digitization. This shift
has brought forth numerous benefits and analytical opportunities through the use of data. Data comes
in various formats and from diverse sources, encompassing text, numbers, date-time, images, audio,
video, and graph structures. To make the most of data-driven solutions for different purposes, it’s
crucial to combine information from these diverse sources.

These types of correlated data can be represented as a Knowledge Graph (KG). KGs model data
as a directed graph in which nodes present the entities and edges represent the connection between
the entities. The idea of interlinking facts, knowledge, and data sources from the Internet was
first introduced by Tim Berners-Lee as the Semantic Web [1]. To facilitate this, the World Wide
Web Consortium1 introduced the Resource Description Framework (RDF)2 as a standard to model
the real world in the form of entities and their relationships. RDF data are a collection of triples
⟨subject,predicate,object⟩ with rich relationships that can form a potentially huge and
complex RDF graph.

Nowadays, many companies in science, engineering, and business, including bio-informatics, life
sciences, business intelligence, and social networks publish their data in the RDF format. Furthermore,

1 https://www.w3.org
2 https://www.w3.org/RDF/

1

Chapter 1 Introduction

the Linked Open Data Project initiative [2] has aided the Semantic Web in gaining traction over the
last decade. The Linked Open Data (LOD) cloud currently comprises more than 10,000 datasets
available online3 using the RDF standard.

KGs are being exploited in different real-life use cases as semantic search [3, 4], question answering
systems [5], personalized recommendation systems [6, 7], decision support systems [8, 9], and
many more. However, to gain the maximum benefit, the KGs should ensure a certain level of
quality. This is not a problem per se, because quality typically denotes suitability for a certain use
case [10]. KGs are being produced in a variety of ways. Crowd-sourcing was used to create some
KGs, such as Wikidata [11] and Freebase [12]. Natural language processing techniques were used to
create NELL [13], and DBpedia [14] and YAGO [15] were automatically constructed by knowledge
extracting tools. Because usually, the entered data is neither restricted nor cross-validated, KGs are
prone to various types of errors due to the variety of approaches and freedom in inserting the input
data. These errors can manifest across individual triples, impacting the subject, predicate, or
object components of the RDF (Resource Description Framework) data, or even encompass errors
in relationships across triples and the presence of hyper-relations beyond standard triple formats.

Finding these errors is not a trivial task due to the unique characteristics of KGs such as complex
relationships, diverse entities, the dynamic nature of data, multi-modal data including textual, numerical,
and categorical information, and scalability challenges. Traditional methods for ensuring data quality
in knowledge graphs often rely on rule-based validation, consistency checks, and semantic constraints.
While these approaches are valuable, they may struggle to handle the increasing complexity, dynamic
nature, and scale of modern knowledge graphs. Moreover, rule-based systems require prior knowledge
about what is considered correct and what is deemed incorrect. However, Anomaly Detection (AD)
offers a promising avenue for improving the accuracy and effectiveness of error identification in
knowledge graphs. Anomaly detection is a critical task in various scientific and industrial domains
that involves identifying patterns or instances that deviate significantly from the expected or normal
behavior within a given dataset. The primary objective is to detect rare events, outliers, or anomalies
that can provide valuable insights or indicate potential issues in the data. Anomaly detection plays a
crucial role in a wide range of applications, including network security, fraud detection, intrusion
detection, fault diagnosis, quality control, environmental monitoring, anomaly-based predictive
maintenance, and much more [16].

The process of anomaly detection typically involves two main steps: modeling the normal behavior
and identifying deviations from this model. Statistical and machine learning techniques are commonly
employed to model the normal behavior of the data. These methods can include probabilistic models,
clustering algorithms, distance-based approaches, or ensemble methods, among others. By capturing
the inherent statistical properties or patterns of the normal data, these models provide a reference for
determining what is considered normal or expected.

In recent years, the advancement of big data technologies, the proliferation of sensor networks,
and the availability of massive amounts of diverse data have posed both opportunities and challenges
for anomaly detection. The increasing complexity and dimensionality of data, along with the need
for real-time or streaming anomaly detection, have led to the exploration of novel approaches,
including deep learning-based anomaly detection, online learning techniques, and ensemble methods.
Additionally, the integration of domain knowledge, contextual information, and the combination of
multiple anomaly detection techniques have shown promise in enhancing the accuracy and robustness

3 http://lodstats.aksw.org/

2

1.2 Problem Definition and Challenges

of anomaly detection systems.
AD is already a well-studied field with a focus specifically on the task of anomaly detection in

non-relational datasets [17]. Numerous techniques for detecting outliers and anomalies (anomaly and
outlier will be used interchangeably in this thesis) in unstructured collections of multiple dimension
points have been developed in recent years. However, despite the significant progress made in the field
of anomaly detection, and with the current interest in large-scale heterogeneous data in knowledge
graphs, most of the traditional algorithms are no longer directly applicable to KGs due to the scalability
issue and the RDF data complex structure. Furthermore, to the best of our knowledge, there has
not been a lot of dedicated research work on anomaly detection on KGs. Addressing AD over KGs
is crucial to advancing the field and enabling anomaly detection systems to effectively detect and
mitigate unexpected events or abnormalities in various scientific, industrial, and societal contexts.

Handling huge KGs is a challenging process. This challenge occurs due to the huge size of KGs
which no longer can fit within the main memory (RAM) of conventional computers for processing and
further utilization. The limitations of computer main memory are determined by available market
modules, and the cost of hardware upgrades escalates significantly beyond the bounds of typical
consumer-grade specifications. To address this, horizontal scaling becomes necessary as hardware
requirements grow. Horizontal scaling involves leveraging a cluster of multiple computers to provide
the necessary resources, enabled by software frameworks that facilitate distributed data management
and processing.

For distributed data management, the Hadoop Distributed File System (HDFS) is commonly
employed. Moreover, Apache Spark [18] is a widely adopted framework for distributed data
processing, particularly within data analysis pipelines. However, existing Apache Spark data analysis
pipelines typically require data in tabular format. To bridge this gap, the Scalable Semantic Analytics
Stack (SANSA) [19] was developed. SANSA offers native methods to operate on RDF KGs, utilizing
the power of Apache Spark [18] and Apache Jena [20]. SANSA framework did not offer an anomaly
detection possibility because distributed execution of anomaly detection pipelines on KG data
presents unique challenges, particularly in feature retrieval, clustering entities, and ensuring efficient
communication and coordination among distributed nodes.

The focal point of this thesis is to exploit the existing communication, synchronization, and
distribution techniques to perform distributed anomaly detection on huge knowledge graphs to detect
the outliers and enhance the quality of the KGs.

1.2 Problem Definition and Challenges

Dealing with the ever-growing amount of RDF data comes with its own set of complex challenges,
especially when it comes to making sure the data is of high quality. Working with large RDF datasets
and applying any machine learning (ML) to them is considered as one of the most challenging tasks
in the Semantic Web [21]. Anomaly detection, as a sub-field of ML, is not exceptional either. In
establishing an effective anomaly detection system, crucial scientific considerations come to the
forefront: (i) the meticulous vectorization of the KG, (ii) developing a solid and scalable framework to
accommodate the substantial size of KGs, (iii) explaining detected anomalies in a human-readable
manner, and (iv) making the framework easily runnable for non-technical users without any difficulties
or burdens.

3

Chapter 1 Introduction

1.2.1 Challenge 1: Scalable and Distributed RDF Vectorization

The first challenge to overcome when applying anomaly detection on large-scale RDF datasets is to
vectorize RDF data. As RDF data is represented as a graph structure, extracting valuable knowledge
and insights from them is not straightforward, especially when the size of the data is enormous.
Although Knowledge Graph Embedding models (KGEs) convert the RDF graphs to low-dimensional
vector spaces, these vectors suffer from a lack of explainability because they transform the data
from one space to another. Moreover, generating embeddings for very large KGs is challenging.
Therefore, there is a need to have a scalable approach that is capable of transforming big RDF data
into an explainable feature matrix. This matrix can be exploited in many standard machine-learning
algorithms.

1.2.2 Challenge 2: Scalable and Distributed Anomaly Detection

As already explained KGs are being produced in a variety of ways. Crowd-sourcing, natural language
processing techniques, and extracting tools. The entered data mostly is neither restricted nor cross-
validated. For example, DBpedia extracts information by using heuristic information methods from
Wikipedia and may extract incorrect values in the output. These incorrect values sometimes act as
outliers, showing anomalous behavior when compared with the rest of the data. For example, a village
population may be mistakenly recorded in millions or billions in the RDF database and considered
as an outlier when it is compared with the population of the other villages. To enhance the quality
of data, it is necessary to identify outliers in the RDF dataset. However, the sheer size of the data
(e.g. English DBpedia size is ∼ 114 GB) makes it difficult for a regular machine with limited memory
and processing speed to handle it effectively. Therefore, distributed computation is required to detect
outliers. Hence, we need a scalable anomaly detection framework that can deal with massive RDF
datasets.

1.2.3 Challenge 3: Scalable and Distributed Explainable Anomaly Detection

Although numerous techniques for outlier detection have been proposed in the literature, the interpret-
ation of identified outliers is typically left to the users. This can result in users being unsure about
how to handle the detected outliers. To address this issue, detected outliers should be accompanied by
explanations when they are presented. Explanations can help users comprehend outliers and aid in
refining the outlier detection process. As a result, explanations can facilitate outlier mitigation, which
involves determining how to utilize identified outliers to improve predictive models. Therefore, we
need a scalable anomaly detection framework that is not only able to detect the anomalies in the RDF
dataset but also able to generate human-readable explanations for the detected outlier.

1.2.4 Challenge 4: User-Friendly Distributed Machine Learning Framework for
Knowledge Graphs

Generally utilizing big data technologies and distributed computing can present significant challenges.
These technologies involve complex systems and specialized tools that often require a deep under-
standing of programming languages, data management, and infrastructure setup. Non-technical users
may struggle with the intricate configuration and optimization required to harness the full potential

4

1.3 Research Questions

of these technologies. Hence, providing user-friendly approaches to engage with these technologies,
even without any programming or scripting knowledge, would prove advantageous.

1.3 Research Questions

As stated in the motivation section above and identified challenges, we define the main research
question:

RQ1: Can we vectorize knowledge graphs in a scalable and distributed manner?

To address this question, we proposed a generic, distributed, and scalable software framework that
utilizes Apache Spark (a distributed computing framework (Section 2.2.3)) and is able to automatically
transform a given RDF dataset to a standard feature matrix by deep traversing the RDF graph and
extracting literals to a given depth. This framework (a.k.a Literal2Feature (see Chapter 4)) enables the
use of a wide range of machine learning algorithms for the Semantic Web community. The proposed
method is able to extract features automatically by creating a SPARQL query to produce the feature
matrix. All steps are performed automatically without human intervention. The results of the research
question RQ1 allow us to address the defined challenge (cf. Section 1.2.1).

RQ2: How can we apply anomaly detection on knowledge graphs in a scalable and distributed
manner?

In order to answer this question, we focused on the anomalies that appear in literals and proposed
a generic, distributed, and scalable software framework (a.k.a DistAD (see Chapter 5)) that can
automatically detect anomalies in the KGs by extracting semantic features from RDF data, clustering
entities, and applying an anomaly detection algorithm on the level of numeric objects, predicates,
and multi-feature scenarios. DistAD, with its modulated components, offers flexibility over different
parts of the workflow and lets the end-users select different approaches and granularity based on their
use cases. The results of the research question RQ2 allow us to address the defined challenge (cf.
Section 1.2.2).

RQ3: Can explainable anomaly detection be performed efficiently and effectively on knowledge
graphs?

Intending to answer this research question, we proposed a generic, distributed, and scalable software
framework (a.k.a ExPAD (see Chapter 6)) that not only automatically detects numeric anomalies
in KGs but also produces human-readable explanations for why a given value of a variable in an
observation can be considered as outlier. ExPAD works by evaluating and following distributed
supervised decision tree splits on variables to detect and explain anomalous cases. The results of the
research question RQ3 allow us to address the defined challenge (cf. Section 1.2.3).

Moreover, to address challenge 4 (cf. Section 1.2.4), we introduce a micro-service architecture
of a SANSA-enabled Spark and Hadoop cluster with 2 user-friendly interactive communication

5

Chapter 1 Introduction

Figure 1.1: Chapter, Research Questions and Publication Overview

mechanisms a.k.a. REST API and Zeppelin Notebook4. Our introduced architecture is based on
Docker technologies5 and can be deployed on-premise without any technical knowledge. Moreover,
we explain how to set up SANSA in Databricks [22] as one of several Platform as a Service (PaaS)
providers for users who can not provide the necessary hardware. For more information please check
Chapter 7.

1.4 Thesis Overview

This section gives an overview of our main contributions conducted during this thesis and the research
areas investigated. References to scientific publications covering this study and an overview of the
thesis outline are also covered.

1.4.1 Contributions

Our contributions cover several areas of scalable distributed anomaly detection over KGs. These
areas include the automatic development of feature-extracting SPARQL queries, distributed anomaly
detection, and distributed explainable anomaly detection pipelines for KGs.

1. Literal2Feature: An Automatic Scalable RDF Graph Feature Extractor [23]: Literal2Feature
represents a versatile, distributed, and scalable software framework designed to transform
extensive RDF data into an interpretable feature matrix. This feature matrix can be leveraged by
a wide range of standard machine learning algorithms. Our approach harnesses the power of
the Semantic Web and Big Data technologies to extract a diverse set of features from large-scale
RDF graphs through in-depth traversals. Our proposed framework is publicly available as an

4 https://zeppelin.apache.org/
5 https://www.docker.com/

6

1.4 Thesis Overview

open-source solution, accompanied by comprehensive technical documentation, and seamlessly
integrated into the Semantic Analytics Stack community project [19].

2. DistAD: A Distributed Generic Anomaly Detection Framework over Large KGs [24]: DistAD
represents a distributed and scalable framework designed for anomaly detection on large RDF
knowledge graphs. This distributed framework empowers end-users with a high level of
granularity, enabling them to choose from a wide range of algorithms, methods, and (hyper-
)parameters for detecting outliers. This framework is also openly available as an open-source
solution, with comprehensive technical documentation, and integrated into the Semantic
Analytics Stack community project [19].

3. ExPAD: An Explainable Distributed Automatic Anomaly Detection Framework over Large
KGs [25]: ExPAD is a distributed and scalable framework specifically designed for explainable
numeric anomaly detection on extremely large RDF knowledge graphs. ExPAD employs a
supervised decision tree approach to generate explanations that are easily understandable by
humans. These explanations shed light on why a particular result is classified as an outlier,
utilizing a meticulous assessment of decision tree splits. ExPAD is publicly available as an
open-source solution and integrated into the Semantic Analytics Stack community project [19].

4. Semantic Web Analysis with Flavor of Micro-Services [26]: The development of distributed
machine learning pipelines based on knowledge graphs requires profound expertise in various
fields, including computer systems, networking, and distributed computing. Additionally, setting
up the necessary cluster infrastructure demands considerable time and effort, even for skilled
developers. To overcome these challenges, we introduce an architecture based on micro-services
and REST APIs. This architecture enables end-users to effortlessly access the functionalities of
SANSA and perform distributed semantic data analysis without requiring extensive technical
knowledge in these specific domains.

5. Semantic Analytics in the palm of your browser [27]: The initial setup of a distributed in-
memory cluster computation system, along with its dependencies and environments, can present
considerable challenges and resource requirements. However, we aim to alleviate these barriers
and facilitate the analysis and testing of the SANSA framework by enabling its deployment
and utilization solely through a web browser. In this regard, we demonstrate the seamless
execution of the SANSA stack within Databricks, eliminating the need for additional Apache
Spark knowledge or installations.

6. Anomaly Detection for Numerical Literals in Knowledge Graphs: A Short Review of Ap-
proaches [28]: As within the field of Semantic Web and knowledge graphs, anomaly detection
has been relatively overlooked and also the existing literature on anomaly detection over
knowledge graphs lacks proper organization and poses challenges for new researchers seeking a
comprehensive understanding, we offer a well-structured and comprehensive overview of the
existing research conducted on anomaly detection over knowledge graphs to fill this gaps.

1.4.2 List of Publications

In addition to the thesis itself, this body of work encompasses several scientific publications authored
by Farshad Bakhshandegan Moghaddam (Figure 1.1).

7

Chapter 1 Introduction

• Conference Papers:

1. Farshad Bakhshandegan Moghaddam, Carsten Felix Draschner, Jens Lehmann and
Hajira Jabeen, “Literal2Feature: An Automatic Scalable RDF Graph Feature Ex-
tractor”, SEMANTICS, 2021, IOS Press, pp. 74–88. https://doi.org/10.3233/
SSW210036.

2. Carsten Felix Draschner, Claus Stadler, Farshad Bakhshandegan Moghaddam, Jens
Lehmann, Hajira Jabeen, “DistRDF2ML - Scalable Distributed In-Memory Machine
Learning Pipelines for RDF Knowledge Graphs”, Proceedings of the 30th ACM Interna-
tional Conference on Information & Knowledge Management (CIKM). Association for
Computing Machinery, New York, NY, USA, 4465–4474. https://doi.org/10.
1145/3459637.3481999.

3. Farshad Bakhshandegan Moghaddam, Jens Lehmann and Hajira Jabeen, “DistAD:
A Distributed Generic Anomaly Detection Framework over Large KGs”, IEEE 16th
International Conference on Semantic Computing (ICSC), 2022, pp. 243-250, https:
//doi.org/10.1109/ICSC52841.2022.00047.

4. Farshad Bakhshandegan Moghaddam, Jens Lehmann and Hajira Jabeen, “ExPAD:
An Explainable Distributed Automatic Anomaly Detection Framework over Large KGs”,
IEEE 17th International Conference on Semantic Computing (ICSC), 2023, pp. 204-211,
https://doi.org/10.1109/ICSC56153.2023.00040.

5. Farshad Bakhshandegan Moghaddam, Jens Lehmann and Hajira Jabeen, “Anomaly
Detection for Numerical Literals in Knowledge Graphs: A Short Review of Approaches”,
The Sixth IEEE International Conference on Artificial Intelligence and Knowledge
Engineering (AIKE), 2023, pp. 46-53, https://doi.org/10.1109/AIKE59827.
2023.00015.

• Workshops, Demos, and Doctoral Consortium:

6. Farshad Bakhshandegan Moghaddam, Carsten Felix Draschner, Jens Lehmann, Hajira
Jabeen, “Semantic Web Analysis with Flavor of Micro-Services”, LAMBDA Doctoral
Workshop 2021, http://ceur-ws.org/Vol-3195/paper1.pdf

7. Carsten Felix Draschner, Farshad Bakhshandegan Moghaddam, Jens Lehmann, Hajira
Jabeen, “Semantic Analytics in the Palm of Your Browser”, LAMBDA Doctoral Workshop
2021, http://ceur-ws.org/Vol-3195/paper2.pdf

1.5 Thesis Outline

This thesis comprises 8 chapters, each addressing different aspects of the research topic. Chapter 1
serves as an introductory chapter, providing an overview of the scientific fields, and highlighting the
problems and challenges. It also outlines the research questions, contributions, and associated papers.
Chapter 2 focuses on establishing a common understanding by introducing key terms and concepts,
including Semantic Web technologies, scalable and distributed data analytics, and anomaly detection.
In Chapter 3, the related literature is explored, primarily focusing on scalable semantic data analytics
such as ML frameworks over KGs, anomaly detection, and interpretable AI. Chapter 4 introduces

8

https://doi.org/10.3233/SSW210036
https://doi.org/10.3233/SSW210036
https://doi.org/10.1145/3459637.3481999
https://doi.org/10.1145/3459637.3481999
https://doi.org/10.1109/ICSC52841.2022.00047
https://doi.org/10.1109/ICSC52841.2022.00047
https://doi.org/10.1109/ICSC56153.2023.00040
https://doi.org/10.1109/AIKE59827.2023.00015
https://doi.org/10.1109/AIKE59827.2023.00015
http://ceur-ws.org/Vol-3195/paper1.pdf
http://ceur-ws.org/Vol-3195/paper2.pdf

1.5 Thesis Outline

Literal2Feature, an automated approach for generating SPARQL queries to extract features from KG
literals. Chapter 5 demonstrates the distributed anomaly detection framework over KGs (DistAD).
Moving forward, Chapter 6 introduces ExPAD, an explainable distributed anomaly detection approach
designed for KGs. Chapter 7 presents technical details and approaches for accessible notebooks and
REST interfaces, enhancing the accessibility and usability of the developed methods. Finally, Chapter
8 summarizes the thesis on scalable distributed anomaly detection for knowledge graphs. This chapter
also offers an outlook on potential future work and research directions.

9

CHAPTER 2

Preliminaries

In this chapter, we establish the background of the thesis work by formally explaining the recurring
terms. The first section starts with Knowledge Graph and Semantic Web terms. The second section
introduces terms and technologies based on technical details in distributed computing and processing.
The third section discusses the knowledge graph quality metrics. Finally, we provide an overview of
anomaly detection and its associated strategies.

2.1 Knowledge Graphs, RDF, and Semantic Web

This section attempts to define the terminology used in this thesis in the domains of knowledge graphs
and Semantic Web. It contains the definition of numerous significant terminologies, including KGs,
the Resource Description Framework (RDF), Ontology, and SPARQL.

2.1.1 Knowledge Graphs (KGs)

The rise of knowledge graphs, as a concept for structuring the amount of organized knowledge found on
the internet and integrating information from various data sources has received widespread recognition.
Moreover, knowledge graphs have begun to play a role in the field of machine learning serving as a
means to include knowledge as a representation to clarify learned information [29].

A knowledge graph is a type of labeled graph where the labels have meanings. The graph consists
of nodes, edges, and labels. Nodes can represent entities, like people, companies, or computer systems.
Edges connect pairs of nodes and represent the relationships between them such as friendship between
two people, customer relationships between a company and an individual, or network connections
between computer systems. The labels, on the edges, describe the nature of these relationships like
explaining what kind of friendship exists between two individuals.

Knowledge graphs have gained attention, particularly following the introduction of the Google
Knowledge Graph in 2012. Various definitions have been put forward to describe them [30]. Here,
some of the most recent and prominent definitions are presented as follows:

Definition 2.1.1 (Knowledge Graph). A knowledge graph is a semi-structured data model characterized
by three components: (i) a ground extensional component, that is, a set of relational constructs
for schema and data (which can be effectively modeled as graphs or generalizations thereof);

11

Chapter 2 Preliminaries

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://xmlns.com/foaf/0.1/parent

http://xmlns.com/foaf/0.1/age
http://xmlns.com/foaf/0.1/name

https://sda.tech/people/John_JR

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://xmlns.com/foaf/0.1/spouse
http://xmlns.com/foaf/0.1/age

http://xmlns.com/foaf/0.1/name

https://sda.tech/people/John

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://xmlns.com/foaf/0.1/spouse https://sda.tech/people/Mary

http://xmlns.com/foaf/0.1/Person

2 "John Jr"@en

28 "John"@en

http://xmlns.com/foaf/0.1/age
http://xmlns.com/foaf/0.1/name

26 "Mary"@en

http://xmlns.com/foaf/0.1/parent

Figure 2.1: A sample RDF graph

(ii) an intentional component, that is, a set of inference rules over the constructs of the ground
extensional component; (iii) a derived extensional component that can be produced as the result
of the application of the inference rules over the ground extensional component (with the so-called

“reasoning” process) [31].

Definition 2.1.2 (Knowledge Graph). A knowledge graph mainly describes real-world entities and
their interrelations, organized in a graph; defines possible classes and relations of entities in a
schema; allows for potentially interrelating arbitrary entities with each other; covers various topical
domains [32].

Definition 2.1.3 (Knowledge Graph). A knowledge graph acquires and integrates information into an
ontology and applies a reasoner to derive new knowledge [33].

More formally, [34] gives the formal definition of a knowledge graph as an RDF graph.

Definition 2.1.4 (Knowledge Graph). An RDF graph consists of a set of RDF triples (see Section
2.1.2), where each RDF triple (𝑠, 𝑝, 𝑜) is an ordered set of the following RDF terms: a subject
𝑠 ∈ 𝑈 ∪ 𝐵, a predicate 𝑝 ∈ 𝑈, and an object𝑈 ∪ 𝐵 ∪ 𝐿. An RDF term is either a URI 𝑢 ∈ 𝑈, a blank
node 𝑏 ∈ 𝐵, or a literal 𝑙 ∈ 𝐿. 𝑈, 𝐵 and 𝐿 are pairwise disjoint.

Figure 2.1 depicts a sample knowledge graph (Literals are specified with round shapes).

12

2.1 Knowledge Graphs, RDF, and Semantic Web

2.1.2 Resource Description Framework

Resource Description Framework (RDF) is a framework for describing resources [1]. A resource is a
fact or a thing that can be described and identified. RDF has been introduced by the World Wide Web
Consortium (W3C)1 as a standard to model the real world in the form of entities and relations between
them. W3C maintains the standards for RDF, including the foundational concepts, semantics, and
specifications for different formats. The first syntax defined for RDF was based on the Extensible
Markup Language (XML). Other syntaxes are now more commonly used, including Terse RDF Triple
Language (Turtle), JavaScript Object Notation for Linked Data (JSON-LD), and N-Triples. RDF data
is a collection of triples ⟨subject,predicate,object⟩ which tends to have rich relationships,
forming a potentially very large and complex graph-like structure. The subject and object are nodes
that represent things. The predicate is an arc because it represents the relationship between the nodes.
Figure 2.2 represents a schematic RDF triple.

Overall, the RDF standard contains three different types of nodes:

• Uniform Resource Identifier (URI) The URI format is a standardized way of identifying a
resource, whether it is abstract or physical. A Uniform Resource Locator (URL) is a specific
type of URI frequently used in RDF statements. In 2014, when the RDF specification was
updated to version 1.1 by W3C, the Internationalized Resource Identifier (IRI) was introduced
as a node type. IRIs are comparable and compatible with URIs, allowing the use of international
character sets.

• Literal A literal is a distinct data value that may take the form of a string, date, or numerical
value.

• Blank Node A blank node identifier, also referred to as a bnode or an anonymous resource,
denotes a subject for which only the relationship is known. These identifiers are identified by a
specific syntax.

The formal definition of RDF triple is as follows:

Definition 2.1.5 (RDF Triple). Given an infinite set𝑈 of URIs, an infinite set 𝐵 of blank nodes, and
an infinite set 𝐿 of literals, a triple ⟨𝑠, 𝑝, 𝑜⟩ ∈ (𝑈 ∪ 𝐵) ×𝑈 × (𝑈 ∪ 𝐵 ∪ 𝐿) is called an RDF triple
where s, p, o represent the subject, predicate, and object, respectively, of the triple.

Listing 2.1 shows 3 sample triples from Figure 2.1.

+--------------------------------+---------------------------------+----------+
|Subject |Predicate |Object |
+--------------------------------+---------------------------------+----------+
https://sda.tech/people/John_JR	http://xmlns.com/foaf/0.1/age	2
https://sda.tech/people/John	http://xmlns.com/foaf/0.1/name	"John"@en
https://sda.tech/people/Mary	http://xmlns.com/foaf/0.1/age	26
+--------------------------------+---------------------------------+----------+

Listing 2.1: Sample RDF Triples

1 https://www.w3.org

13

Chapter 2 Preliminaries

2.1.3 Ontology

Ontology plays a critical role in the development and implementation of the Semantic Web. Ontology
is essentially a formal and explicit specification of a shared conceptualization of a domain, which
describes the types of entities and relationships that exist within the domain. It provides a standardized
vocabulary for describing information, allowing for more accurate and efficient information retrieval
and knowledge sharing.

In the Semantic Web, ontologies can be represented by Resource Description Framework Schema
(RDFS) and Web Ontology Language (OWL). RDFS provides a foundational framework for creating
ontologies, offering constructs for defining classes, properties, and hierarchies. OWL, an extension of
RDFS, introduces more expressive elements, enabling the specification of richer relationships and
supporting complex reasoning capabilities.

These frameworks facilitate machine-understandable depictions of domain knowledge, fostering
seamless data integration from diverse sources. By establishing a universal language for expressing
meaning, ontologies, RDFS, and OWL collectively promote interoperability among different systems
and applications.

One of the key benefits of ontologies is that they enable the creation of intelligent systems that can
reason about the meaning of data. By using logical rules and inference mechanisms, ontologies can
be used to infer new knowledge from existing data or to check the consistency of data. This makes
it possible to automate many tasks that would otherwise require human intervention, such as data
integration, classification, and decision-making.

Ontologies can be developed in a variety of ways, ranging from manual creation to automatic
extraction from data. However, creating a high-quality ontology requires significant domain knowledge
and expertise, as well as an understanding of the needs and requirements of the intended users.
Ontology development typically involves a collaborative effort between domain experts, knowledge
engineers, and ontology developers. Therefore ontology is a fundamental concept in the Semantic Web,
providing a powerful tool for knowledge representation, integration, and reasoning. As the amount
of data and information available on the web continues to grow, ontologies become increasingly
important for enabling efficient and effective information retrieval and sharing.

2.1.4 SPARQL

An RDF graph is a data format that uses a directed and labeled graph to represent information on the
Web. SPARQL, a recursive acronym for Simple Protocol and RDF Query Language (pronounced
“sparkle”), is a query language used to retrieve and manipulate data stored in RDF. SPARQL is capable
of expressing queries across a variety of data sources, regardless of whether the data is stored natively
as RDF or accessed as RDF through middleware. It provides features for querying required and
optional graph patterns, along with their conjunctions and disjunctions. Additionally, SPARQL allows
for extensible value testing and constraining queries by source RDF graph. The outcome of SPARQL
queries may be sets or RDF graphs.

The upcoming section will delve into the fundamentals of SPARQL and its syntax, drawing
comparisons to the definitions found in [35]. More details can also be found in the W3C specification
of SPARQL2.

2 https://www.w3.org/TR/rdf-sparql-query/

14

2.1 Knowledge Graphs, RDF, and Semantic Web

Figure 2.2: An RDF triple

Definition 2.1.6 (RDF Terms). Let U be the set of all IRIs. Let 𝑅𝐷𝐹𝐿 be the set of all RDF
Literals, and let 𝑅𝐷𝐹𝐵 be the set of all blank nodes in RDF graphs. The set of RDF Terms, T, is
(𝑈 ∪ 𝑅𝐷𝐹𝐿 ∪ 𝑅𝐷𝐹𝐵).

Definition 2.1.7 (Query Variable). A query variable is a member of the set 𝑉 where 𝑉 is considered
infinite and disjoint from 𝑇 .

Definition 2.1.8 (Triple Pattern). Let 𝑉 be a set of variables such that 𝑉 ∩ 𝑇 = ∅. A triple pattern 𝑡 𝑝
is a member of the set (𝑇 ∪𝑉) × (𝑈 ∩𝑉) × (𝑇 ∪𝑉).

Definition 2.1.9 (Basic Graph Pattern (BGP)). Let 𝑡 𝑝 = {𝑡 𝑝1, 𝑡 𝑝2, 𝑡 𝑝3, ..., 𝑡 𝑝𝑛} be a set of triple
patterns. A Basic Graph Pattern BGP is a conjunction of triple patterns, i.e 𝐵𝐺𝑃 = 𝑡 𝑝1 ∧ 𝑡 𝑝2 ∧
𝑡 𝑝3∧, ...,∧𝑡 𝑝𝑛 .

Definition 2.1.10 (Solution Modifiers). A solution modifier is a mapping from a set of 𝑉 to a set of 𝑇 .
More formally, 𝑆𝑀 = {(𝑣, 𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑟 (𝑣)) |𝑣 ∈ 𝑉}, where the modifier is one of the project, distinct,
order, limit, and offset modifiers.

Definition 2.1.11 (Result Set). Given 𝑄 = (𝐵𝐺𝑃, 𝐷, 𝑆𝑀, 𝑆𝐸𝐿𝐸𝐶𝑇 𝑉), then a result set 𝑄𝑆 is a
solution formed by matching dataset 𝐷 with graph pattern 𝐵𝐺𝑃.

Definition 2.1.12 (SPARQL Query). A SPARQL query is a tuple (𝐵𝐺𝑃, 𝐷, 𝑆𝑀,𝑄𝑆).

Let us consider an example for a better understanding of SPARQL. Assume that we want to know
“Who are the parents of John Jr. and how old are they?” from the sample knowledge base (as depicted
in Figure 2.1). Listing 2.2 depicts a simple SPARQL query to retrieve information.

Listing 2.2: A SPARQL query to retrieve the parents of John Jr and their ages
1 PREFIX sdaMember: <http://sda.tech/people/>
2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
3
4 SELECT ?parent ?parent_age WHERE {
5 sdaMember:John_jr foaf:parent ?parent.
6 ?parent foaf:age ?parent_age
7 }

SPARQL has a similar SQL-like syntax. At the beginning prefixes as optional headers are given. It
helps the reader to make the rest of the query more readable. Then the query form is defined. Here
SELECT query has been used. The WHERE clause is used to add constraints and define the SPARQL
query.

More specifically, in Listing 2.2, lines 1-2 define prefixes as a short version of URIs. Line 4 is the
SELECT clause which declares the variables that should be retrieved as an output when executing the
query. There are two variables ?parent and ?parent_age. In SPARQL, the variables are defined

15

Chapter 2 Preliminaries

with a “?” symbol. The following statements (lines 5-6) include two Basic Graph Pattern (BGP)s.
The first one (line 5) states that in the statement with subject sdaMember:John_jr and property
foaf:parent, we assign the value of its object to a variable called ?parent. When evaluated,
this variable will contain the values of sdaMember:John and sdaMember:Merry. Afterwords
(line 6), the same variable ?parent with an associated value will be the subject of the next statement.
The remaining variable ?parent_age then will take the values 28 and 26 respectively. As an
output, both values of the variables ?parent and ?parent_age will be retrieved. The above
query returns the following result set on our data graph (Table 2.1).

Table 2.1: The result of the SPARQL query specified in Listing 2.2

?parent ?parent_age

<http://sda.tech/people/John> 28

<http://sda.tech/people/Marry> 26

2.2 Scalable and Distributed Data Analytics

Big data is a term that means a large volume of data that is difficult to handle by a single machine
with traditional techniques. The size of KGs can become extremely large. This makes it difficult to
execute the algorithms with nondeterministic polynomial time (NP) or even polynomial complexity
on the data in a reasonable amount of time, even with high-performance resources. Furthermore,
because the data requires significant processing power to be represented and analyzed, additional
processing power is needed in addition to dealing with computational complexity. Because of the size
of the datasets, serial computation is not feasible for large KGs. Therefore, a distributed or parallel
computing framework is necessary to distribute the datasets across cores via networks and speed up
processing.

2.2.1 Distributed Computing

Distributed computing is a computing paradigm that involves multiple computers working together
to solve a computational problem. In a distributed computing system, the workload is distributed
across multiple nodes, each with its own processing power and memory. This approach allows for
large-scale data processing and analysis that would be impossible on a single machine. Distributed
computing systems typically include a central coordinator that manages the distribution of tasks and
data among the nodes, as well as mechanisms for communication and synchronization between the
nodes. Examples of distributed computing frameworks include Apache Hadoop and Apache Spark,
which are widely used for processing big data in various industries. Distributed computing is a crucial
component of modern computing systems, as it enables the processing and analysis of vast amounts of
data that would otherwise be impossible to handle.

16

2.2 Scalable and Distributed Data Analytics

2.2.2 Apache Hadoop

Apache Hadoop [36] is a set of frameworks for distributed storage and processing of large-scale
datasets across a cluster of computers. Its ecosystem includes built-in mechanisms that ensure fault
tolerance and high availability on top of commodity hardware, eliminating the need for specialized
hardware. This makes it highly scalable and cost-effective. Hadoop File System (HDFS) [37] is
a core component of distributed handling of large-scale datasets, which includes data partitioning
and fault tolerance techniques. HDFS reduces data movement and duplication by splitting data into
blocks and distributing replicated blocks across nodes in the system. The HDFS architecture follows
a driver/worker model, with the namenode serving as the driver that manages all operational steps,
including the namespace, replication, and metadata, and tracks processed operations. To ensure fault
tolerance, a fallback passive namenode is initiated for the namenode, which can take over the driver’s
work in case of failure to enable faster recovery. The datanodes serve as workers, providing access to
and storage of data.

2.2.3 Apache Spark

Apache Spark3 is a distributed computing framework that is designed to process large-scale data in
parallel across a cluster of computers. It is known for its speed and ease of use, as it allows users
to perform complex data processing tasks with simple and concise code. Spark offers a range of
programming languages, including Java, Python, and Scala, making it accessible to a wide range
of developers. Spark’s built-in machine learning library, MLlib [38], provides a convenient way to
perform various machine learning tasks, such as classification, clustering, and regression, on large
datasets. Another key feature of Spark is its ability to integrate with other big data tools, such as
Hadoop, making it a versatile option for data processing and analysis. Figure 2.3 depicts a cluster
mode overview architecture of Spark.

2.2.4 Apache Livy

Apache Livy4 is an open-source project that enables running and managing interactive Apache Spark
applications on remote clusters. It provides a RESTful interface that allows users to submit Spark jobs
and perform interactive queries from various programming languages such as Python, R, and Scala.
Livy helps simplify the deployment and management of Spark applications on shared clusters, as it
allows multiple users to work on the same cluster concurrently. Additionally, Livy provides a session
management feature that enables users to reuse their Spark sessions, which can help reduce overhead
and increase application performance.

2.2.5 Apache Jena

Apache Jena5 is a Java framework and toolkit for building semantic web and linked data applications.
It provides a set of libraries and tools for working with RDF, OWL (Web Ontology Language), and
SPARQL standards. At its core, Apache Jena provides a comprehensive set of APIs for creating,

3 https://spark.apache.org/
4 https://livy.apache.org/
5 https://jena.apache.org/

17

Chapter 2 Preliminaries

Driver Program

SparkContext
Cluster Manager

Worker Node

Executor Cache

Task Task

Worker Node

Executor Cache

Task Task

Figure 2.3: Apache Spark architecture diagram

managing, and querying RDF data. With numerous functions, it natively handles KG data, enabling
the creation of entities, literals, and triple data, as well as supporting SPARQL filter functions. Thus,
KG data can be effectively worked with in traditional Java programs.

2.2.6 Scala

Scala [39] is a general-purpose programming language that is designed to be concise, expressive,
and scalable. It is a hybrid functional and object-oriented language that runs on the Java Virtual
Machine (JVM), allowing for seamless integration with existing Java code and libraries. Scala is
known for its ability to handle complex data processing tasks with ease, making it a popular choice
for big data processing and analytics. Additionally, Scala’s type inference system and support for
functional programming paradigms allow for code that is both concise and expressive. Another key
feature of Scala is its excellent support for concurrent and parallel programming. This is crucial for
big data processing, where tasks are often parallelized to improve performance.

18

2.3 Knowledge Graph Quality Metrics

2.3 Knowledge Graph Quality Metrics

Knowledge graphs have become increasingly popular as a way to organize and represent structured
data, allowing for more effective search and discovery. However, the usefulness of a knowledge graph
depends heavily on its quality, and there are a number of metrics that can be used to assess this quality.
As the main goal of this thesis is to improve the quality of KGs, in this section, we will explore some
of the key knowledge graph quality metrics that are commonly used. Table 2.2 lists the metrics,
definitions, and anomalous examples.

Table 2.2: Definitions of evaluation dimensions

Dimension Definition Example (negative)

Accuracy Correctness of facts (Barack_Obama, birthPlace, Germany)

Completeness Coverage of Knowledge by the KG -

Consistency Degree of self-contradiction in the KG (John, spouseOf, Mary)
(Mary, sisterOf, John)

Timeliness Degree to which knowledge is up-to-date (Barack_Obama, presidentOf, USA)

Trustworthiness Degree of objectivity, authority, and verifiability of a KG -

2.3.1 Accuracy

Accuracy [40] is an important quality metric for a knowledge graph. It measures the extent to which
the graph represents the true relationships and attributes for a given domain. An accurate knowledge
graph should have relationships and attributes that are as close to the truth as possible.

To measure accuracy, one can use the error rate and accuracy metrics. Error rate measures the ratio
of the number of incorrect relationships or attributes to the total number of relationships or attributes
in the graph. Accuracy measures the ratio of the number of correct relationships or attributes to the
total number of relationships or attributes in the graph. A low error rate and high accuracy indicate a
more accurate knowledge graph. This thesis primarily centers on enhancing accuracy.

2.3.2 Completeness

Completeness [41] is one of the most critical quality metrics for a knowledge graph. It measures the
extent to which the graph represents all the relevant entities and relationships for a given domain. A
complete knowledge graph should include all the relevant entities and relationships that exist in the
domain it represents.

To measure completeness, we can use the recall metric. Recall is the ratio of the number of correct
entities or relationships to the total number of entities or relationships that should be in the graph. A
high recall indicates a more complete knowledge graph.

2.3.3 Consistency

Consistency [42] is another critical quality metric for a knowledge graph. It measures the extent to
which the graph is free from contradictions and inconsistencies. A consistent knowledge graph should
not have any conflicting information or contradictory relationships.

19

Chapter 2 Preliminaries

Table 2.3: Knowledge graph quality metric correlation

Accuracy Completeness Consistency Timeliness Trustworthiness
Accuracy ↓ ↑ - ↑
Completeness ↓ ↓ - -
Consistency ↑ ↓ - ↑
Timeliness - - - -
Trustworthiness ↑ - ↑ -
*↑, ↓, and - indicate positive, negative, or almost not correlated

To measure consistency, we can use coherence and conflict resolution metrics. Coherence measures
the extent to which the information in the knowledge graph is consistent with the domain knowledge.
Conflict resolution measures the ability of the knowledge graph to resolve conflicting information. A
high coherence and conflict resolution indicate a more consistent knowledge graph.

2.3.4 Timeliness

Timeliness [43] is another quality metric for a knowledge graph. It measures the extent to which the
graph is up-to-date with the latest information for a given domain. A timely knowledge graph should
have the latest information about entities and relationships in the domain.

To measure timeliness, we can use the freshness and recency metrics. Freshness measures the
extent to which the knowledge graph includes the latest information about entities and relationships.
Recency measures the time elapsed since the last update to the knowledge graph. A high freshness
and low recency indicate a more timely knowledge graph.

2.3.5 Trustworthiness

Trustworthiness [44] refers to the degree of reliability and credibility of the information contained
within a knowledge graph. It measures the extent to which the data in the knowledge graph can be
trusted and relied upon by users for making informed decisions or drawing accurate conclusions.

Trustworthiness is an important quality metric because knowledge graphs often integrate data from
various sources, and not all sources are equally reliable. Evaluating the trustworthiness of a knowledge
graph helps users assess the credibility of the information and determine the level of confidence they
can place in the data.

In conclusion, knowledge graph quality metrics are critical for evaluating the effectiveness of a
knowledge graph. By measuring the completeness, consistency, accuracy, timeliness, and coherency
of a knowledge graph, one can assess and improve its quality. Table 2.3 shows the correlation between
the mentioned metrics [42, 45, 46].

2.4 Anomaly Detection

Anomaly Detection (AD) is a branch of data mining dedicated to the discovery of uncommon events
in datasets and has several high-impact applications in domains such as security, finance, health care,
law enforcement, and much more [16]. The goal of anomaly detection is finding an answer to the

20

2.4 Anomaly Detection

critical question, “What is intriguing about a dataset?” It refers to the task of identifying data point(s)
and patterns that do not conform to the data’s previously specified behavior. Although numerous
techniques for detecting outliers and anomalies (anomaly and outlier will be used interchangeably in
this thesis) in unstructured collections of multiple dimension points have been developed in recent
years, yet with the current interest in large-scale heterogeneous data in knowledge graphs, most of the
traditional algorithms are no longer directly applicable. This occurs due to the intricate structure of
knowledge graphs, which cannot be directly input into anomaly detection approaches. Furthermore,
the substantial size of large KGs poses challenges in loading them into the main memory for effective
execution of AD.

The first and most widely used definition of an outlier dates from 1980 and is given in [47]:
“An outlier is an observation that differs so much from other observations as to arouse suspicion

that it was generated by a different mechanism.”
As the definition indicates, anomalies are not necessarily wrong values but values that do not

conform with normal data behavior. Outliers are also referred to as abnormalities, discordants, deviants,
or anomalies in the data mining and statistics literature [48]. Anomaly detection is a well-studied area
and has found its way to many real-world scenarios such as Intrusion Detection Systems, Financial
Fraud Detection, IoT and sensor data, Medical Diagnosis, Law Enforcement, Earth Science, and many
more [48].

We need to distinguish the difference between outlier and natural outliers. Natural outliers are the val-
ues that are not wrong. For instance, consider a property likedbpedia-owl:population-Total,
designed to denote the overall population of a dbpedia-owl:PopulatedPlace. This category
contains a diverse range of locales, including villages, towns, cities, states, countries, and continents.
That means that most continents will appear to be outliers by most metrics because they are only few,
in comparison to the population of the villages, towns, and cities, that make up the majority of the
entries. These types of anomalies are called natural outliers. Thus, when using outlier detection to
find errors in data, special care must be taken to distinguish natural outliers from outliers caused by
actual data errors.

Anomaly detection techniques can be categorized from different aspects. Generally, they can be
grouped to supervised, semi-supervised, and unsupervised. Moreover, the methods can be categorized
as neighbor-based, subspace-based, and ensemble-based detection methods. Based on the number of
features they are being applied, the methods can be classified as univariate or multi-variate. Although
a comprehensive review of anomaly detection techniques is beyond the scope of this thesis; we refer
the reader to previous survey publications for a thorough discussion of such approaches [16, 17, 49].

Supervised and semi-supervised approaches require training data in which outlier/normal values
are labeled. In contrast, unsupervised approaches do not rely on any training data and are independent
of such data. As the creation of training labeled data would be rather expensive and labor-intensive,
the most used outlier detection methods are unsupervised.

The primary objective of Neighbor-Based Detection methods is to identify outliers using neigh-
borhood data. For example, the anomaly score of a data point can be defined as the average distance
or weighted distance to its k-nearest neighbors [50, 51]. Another approach is to consider the Local
Outlier Factor (LOF) [52] as the measurement of anomaly degree, in which the anomaly score was
measured relative to its neighborhood. In contrast, methods in Subspace-Based Detection attempt to
project high-dimension data to lower dimensions and then search for anomalies. The reason for this is
that anomalies frequently exhibit abnormal behavior in one or more low-dimensional sub-spaces. The
full-dimensional analysis would obscure low-dimensional abnormal behaviors [53]. For example, [54]

21

Chapter 2 Preliminaries

demonstrated that for an object in a high-dimensional space, only a subset of relevant features provides
useful information, while the rest is irrelevant to the task. In the literature, subspace learning is
a popular technique for dealing with high-dimensional problems [55–58]. Aside from that, the
Ensemble-Based Detection method detects anomalies by utilizing various learning techniques or even
multiple sub-spaces at the same time. Because of the complexity of the data, none of the outlier
detection methods can detect all anomalies in a low-dimensional subspace. One ensemble strategy is,
for example, summarizing the anomaly scores and selecting the best one after ranking [59].

If the AD approach considers multiple dimensions of data at once (for example considering longitude
and latitude together to detect a geo-coordinate as an anomaly) it is called multi-variate and if it just
utilizes a single dimension (for example only checking the age of people to detect anomalies) it is
called univariate.

2.4.1 Anomaly Detection Algorithms

In this section, we briefly summarize the most common statistical anomaly detection algorithms.

Interquartile Range

The Interquartile Range (IQR) [60] technique is a statistical metric that is based on calculating the first
quartile (𝑄1), the median (𝑄2), and the third quartile (𝑄3) of a numerical dataset. The difference
between 𝑄3 and 𝑄1 is called IQR. Outliers are data points that are less than 𝑄1 − 1.5 × 𝐼𝑄𝑅 and
more than 𝑄3 + 1.5 × 𝐼𝑄𝑅. Figure 2.4 depicts the IQR and the outliers ranges.

Figure 2.4: Box and Whiskers plot for Interquartile Range

Median Absolute Deviation

The Median Absolute Deviation (MAD) [61] is a measure of the variability of a univariate sample
of numeric data. The MAD for a data collection 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} is defined as the median of the
absolute deviations from the median of the data. So if �̃� = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋) then:

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − �̃� |)

The values in 𝑋 that are more than �̃� + 2.5 × 𝑀𝐴𝐷 and less than �̃� − 2.5 × 𝑀𝐴𝐷 are outliers. MAD
is more resistant to data set outliers than the standard deviation technique.

22

2.4 Anomaly Detection

Z-Score

The Z-Score is the number of standard deviations by which the value of a raw score (i.e., an observed
value or data point) is above or below the mean value of what is being observed or measured. Positive
standard scores are assigned to raw scores that are greater than the mean, while negative standard
scores are assigned to raw scores that are less than the mean. For example, a Z-Score of 1.5 indicates
that the data point is 1.5 units away from the mean, indicating that it is an outlier. The Z-Score is
defined as:

𝑧 − 𝑠𝑐𝑜𝑟𝑒 = 𝑥 − 𝜇
𝜎

where 𝜇 is the mean of the data and 𝜎 is the standard deviation.

Kernel Density Estimation

Kernel Density Estimation (KDE) [62] is a non-parametric approach to estimating the probability
density function of a random variable. Let 𝑥1, 𝑥2, ..., 𝑥𝑛 be independent and identically distributed
samples drawn from some univariate data with an unknown density f at any given point 𝑥. Then the
kernel density estimator of f is:

𝑓ℎ (𝑥) =
1

𝑛 × ℎ

𝑛∑︁
𝑖=1

𝐾 (
𝑥 − 𝑥𝑖
ℎ

)

where 𝐾 is the kernel, a non-negative function, and ℎ > 0 is a smoothing parameter called the
bandwidth. To obtain outlier scores for a given dataset, firstly a KDE should be constructed from
the data and then the resultant probability at each point should be calculated. To put this probability
into context, it should be compared to the mean probability across all points 𝑝 = 1

𝑛

∑𝑛
𝑖=1 𝑓ℎ (𝑥𝑖). The

relative value of one data point being normal is therefore �̂�(𝑥) = 𝑓ℎ (𝑥)
𝑝

, where �̂�(𝑥) > 1 represents
an above average and �̂�(𝑥) < 1 represents a below average. A predefined threshold can be used to
produce a binary classification, for example, all 𝑥 with �̂�(𝑥) < 0.2 are deemed outliers.

Local Outlier Factor

Local Outlier Factor (LOF) [52] is one of the density-based anomaly detection approaches. LOF is
particularly useful when dealing with datasets where anomalies are not globally rare but are instead
clustered in certain regions. The local outlier factor is based on the concept of local density, where
locality is defined by 𝑘 nearest neighbors, the distance between which is used to estimate the density.
Regions with similar densities and spots with much lower densities than their neighbors can be detected
by comparing an object’s local density to the local densities of its neighbors. These are known as
outliers.

Global Anomaly Score (GAS)

GAS is one of the most often used nearest-neighbor algorithms. The anomaly score is either set to
the average distance of the 𝑘 nearest neighbors, as recommended in [51], or to the distance to the
𝑘
𝑡ℎ neighbor, as proposed in [50], following the intuition that outliers are located in rather sparsely

23

Chapter 2 Preliminaries

populated areas of the vector space. It is worth noting that the first strategy is far more resistant to
statistical variations.

One-Class Support Vector Machine

One-class SVM is a multi-variant anomaly detection algorithm which unlike traditional SVM aims
to develop a decision boundary that produces the greatest separation between the points and the
origin [63]. A one-class SVM projects data into a higher dimensional space using the kernel’s implicit
transformation function, 𝜑(·). The algorithm then learns the decision boundary (a hyperplane) that
separates the bulk of the data from the origin. Only a few data points are allowed to fall on the
opposite side of the decision boundary; these data points are known as outliers. Figure 2.5 depicts
how One-Class SVM detects an anomaly.

Anomaly

1 2 3 4 5 6 7 8 9

1

 2

3

 4

 5

 6

 7

 8

9

Center

Support Vectors

Figure 2.5: An example of One-Class Support Vector Machine in a 2D space for detecting anomalies

Isolation Forest

Isolation Forest (IF) [64] is also a multi-variant anomaly detection algorithm that identifies anomalies
through isolation. Like Random Forests, Isolation Forest is built with decision trees. From the training
data, the algorithm generates an ensemble of isolation trees. The Isolation Forest approach is based
on the fact that anomalous examples in a dataset are easier to isolate (separate) from the rest of the
regular points. In an Isolation Forest, randomly sub-sampled data is processed in a tree structure based
on randomly selected features. Anomalies are less likely to arise in greater-depth samples because
they require more cuts to separate them. Similarly, samples that end up in shorter branches indicate
anomalies. Figure 2.6 depicts how IF detects a point that’s more likely to be an anomaly.

24

2.5 Summary

2.5 Summary

In this chapter, we explained pivotal terms such as Knowledge Graph and Semantic Web and
related terminologies such as RDF, Ontology, SPARQL, etc. elucidating their interconnections.
Our exploration extended to an examination of technologies utilized in distributed computing and
processing, aiming to enhance the comprehension of how data is managed across diverse systems.
Additionally, we introduced knowledge graph quality metrics and delved into their correlation.
Concluding our discussion, we focused on anomaly detection, providing an overview of its types and
methods, and introduced some prominent anomaly detection approaches and their characteristics.

Anomaly

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

 0

 1

 2

 3

4

Figure 2.6: An example of isolating an anomalous point in a 2D space with IF

25

CHAPTER 3

Related Work

This chapter provides a comprehensive review of the related work that has informed the development
of this thesis. In particular, we focus on four main areas: KGs as input for machine learning (ML)
techniques, machine learning frameworks that operate on KGs, existing approaches of anomaly
detection on KG data, and explainable AI. Section 3.1 presents useful techniques for building ML
pipelines with knowledge graph data. Specifically, the emphasis is on the various techniques that have
been proposed for extracting fixed-length numeric feature vectors from KG data. These techniques are
crucial for our research as they allow us to represent KG data in a format that can be easily processed
by machine learning algorithms. In Section 3.2 we review the already existing frameworks that are
able to operate on KG data and apply ML techniques to them. Section 3.3 presents a summary of the
related work on anomaly detection on KG data. We describe the most commonly used techniques in
this area and discuss their strengths and limitations. Finally, in Section 3.4, we delve into the topic of
explainability in the field of machine learning, with a particular focus on explainability techniques in
the context of anomaly detection. We discuss the importance of explainability in this area and present
the various approaches that have been proposed to provide explanations for anomalous behavior in KG
data.

The content of this chapter is influenced by the related work sections of our following publications [23–
25, 28]. These sources have provided valuable context and background information that has shaped our
understanding of the current state of research in the areas of KG feature extraction, anomaly detection
on KGs, and explainable anomaly detection. We have used these studies to guide our research direction
and identify important gaps in the existing literature that our work intends to fill. The sources are as
follows:

• Farshad Bakhshandegan Moghaddam, Carsten Felix Draschner, Jens Lehmann and Hajira
Jabeen, “Literal2Feature: An Automatic Scalable RDF Graph Feature Extractor”, SEMANTICS,
2021, IOS Press, pp. 74–88. https://doi.org/10.3233/SSW210036.

• Farshad Bakhshandegan Moghaddam, Jens Lehmann and Hajira Jabeen, “DistAD: A
Distributed Generic Anomaly Detection Framework over Large KGs”, IEEE 16th International
Conference on Semantic Computing (ICSC), 2022, pp. 243-250, https://doi.org/10.
1109/ICSC52841.2022.00047.

• Farshad Bakhshandegan Moghaddam, Jens Lehmann and Hajira Jabeen, “ExPAD: An

27

https://doi.org/10.3233/SSW210036
https://doi.org/10.1109/ICSC52841.2022.00047
https://doi.org/10.1109/ICSC52841.2022.00047

Chapter 3 Related Work

Explainable Distributed Automatic Anomaly Detection Framework over Large KGs”, IEEE
17th International Conference on Semantic Computing (ICSC), 2023, pp. 204-211, https:
//doi.org/10.1109/ICSC56153.2023.00040.

• Farshad Bakhshandegan Moghaddam, Jens Lehmann and Hajira Jabeen, “Anomaly Detection
for Numerical Literals in Knowledge Graphs: A Short Review of Approaches”, The Sixth IEEE
International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 2023,
pp. 46-53, https://doi.org/10.1109/AIKE59827.2023.00015.

3.1 KGs as input for Machine Learning

This section explores previous scientific research that employs ML and data analytics on KG data.
Additionally, we present various possibilities for generating fixed-length numeric features from the
multi-modal KG data. The majority of classical ML methods require fixed-length numeric feature or
vectors to represent a sample’s information [65, 66]. However, generating such a vector is not a trivial
task since a node in a KG can have connections to an arbitrary number of other nodes, and these nodes
can possess additional information. To tackle this issue, several approaches have been developed to
approximate the representation of sample information. This section outlines various methods that use
propositionalization [67–70], graph kernels [71–73], and KG embeddings [74–76] to generate these
feature vectors.

3.1.1 SPARQL-based Propositionalzation

Before being able to run any ML technique on KGs, the KGs should be featurized (also referred
to as vectorization or prepositionalization). This step generates features from KGs and prepares
machine learning-friendly features for subsequent processes. There are plenty of works in the area of
prepositionalization [67–70]. In this section, our aim is to provide a summary of these works.

In recent years, a variety of approaches have been proposed for generating features from LOD.
Many of these methods assume a manual design of the feature selection mechanism and in most
situations these methods require the user to create a SPARQL query to retrieve the features. For
instance, LiDDM [67] enables the users to specify SPARQL queries for retrieving features from
RDF graphs that can be used in various machine learning algorithms. However, the presence of a
user-defined SPARQL query is inevitable. Similarly, an automatic feature generation approach is
proposed in [68], where the user has to define the type of features in the form of SPARQL queries.
Another approach, RapidMiner1 semweb plugin [69] preprocesses RDF data using user-specified
SPARQL queries, such that the data can be handled in RapidMiner. [77] have considered using
user-specified SPARQL queries in combination with SPARQL aggregates. Another approach is
FeGeLOD [78] and its successor, the RapidMiner Linked Open Data Extension [70]. FeGeLOD [78]
is an open-source and unsupervised approach for enriching data with features derived from LOD. This
approach uses six unsupervised feature generation techniques to explore the data and fetch the features.
It uses 6 predefined SPARQL queries to extract information from KGs and comprises three subsequent
steps: entity recognition, the actual feature generation, and the optional selection of a subset of the
generated features.

1 http://www.rapidminer.com/

28

https://doi.org/10.1109/ICSC56153.2023.00040
https://doi.org/10.1109/ICSC56153.2023.00040
https://doi.org/10.1109/AIKE59827.2023.00015

3.1 KGs as input for Machine Learning

In the context of this thesis, in Chapter 4, we developed an approach that does not require any
predefined SPARQL query for extracting the features. Moreover, our approach is generic and can be
scaled horizontally over a cluster of nodes to handle large amounts of data.

3.1.2 Graph Kernels

Graph kernels are mathematical functions that measure the similarity between pairs of graphs. They
are widely used in machine learning and data mining applications that involve graph data, such as
social networks, chemical compounds, and protein structures. Graph kernels can be categorized
into different types, such as node-based, subgraph-based, and graphlet-based kernels, depending
on the features they consider for similarity computation. [79] presents how graph kernels can be
used to extract feature vectors that can be used in classical data analytics. However, applying graph
kernel methods on KGs is computationally expensive due to the size of KGs. In this regard, there are
simplified approximations that can be applied to large KGs.

For instance, subsequent research, exemplified by Deepwalk [72], introduces simplified approx-
imation methods that enable the extraction of subgraphs within knowledge graphs. The techniques
employed in Word2Vec [80] are further applied in Node2Vec [71], where subgraphs are interpreted as
entities resembling sentences in a document. Deepwalk and Node2Vec are specifically designed for
graphs with a single type of edges. The subgraphs correspond to sentences, and the random walks
associated with each entity in the document form a collection. This transformation of the problem
allows the generation of fixed-length numeric feature vectors similar to those used in Natural Language
Processing (NLP). RDF2Vec [73] offers a dedicated implementation for RDF KGs, enabling native
operations on Semantic Web KGs. It also handles the directed labeled edges commonly found in KGs.

In Chapter 4, we use graph kernels and random walks to create explainable feature extraction
SPARQL queries. Due to the exploratory behavior of random walks, SPARQL queries can be generated
without prior knowledge of the KG and without the existence of an ontology [23].

3.1.3 Knowledge Graph Embeddings (KGEs)

Another option to produce fixed-length numeric feature vectors is Knowledge Graph Embeddings
(KGE). KGE is a popular technique used to represent knowledge graphs in a low-dimensional
vector space. This technique maps entities and relationships in the KGs to continuous vectors in
a low-dimensional space while preserving their semantic similarity. KGE has been widely used
in many tasks such as entity prediction, link prediction, and relation prediction. There are various
approaches for KGE such as TransE [81], SimplE [82], and DistMult [83], which are based on
different assumptions and optimization objectives. Recent studies have shown that KGE outperforms
traditional feature-based methods in many KG-related tasks. For instance, [84] has proposed a neural
network-based approach called ComplEx, which uses complex-valued embeddings for KGs, and
showed that it outperforms many state-of-the-art methods in link prediction tasks. Another study [85]
proposed a novel KGE method called RotatE, which uses rotations in the embedding space to capture
rich semantic interactions between entities and relations in KGs, and showed that it achieves superior
performance in entity prediction tasks. TransE [81] which is the initial approach, assumes that for a
triple (ℎ, 𝑟, 𝑡), the embedding of ℎ and 𝑟 , when summed up, should be similar to the embedding of 𝑡.

29

Chapter 3 Related Work

Mathematically, the model tries to minimize the following scoring function for each triple in the KG:

| |ℎ + 𝑟 − 𝑡 | |

where ℎ, 𝑟 , and 𝑡 are the embeddings of the head entity, relation, and tail entity respectively, and | |.| |
represents a distance metric such as 𝐿1 or 𝐿2. The optimization objective is to minimize the margin
between the score of the true triple and the scores of the corrupted triples (i.e., triples where one of
the entities is replaced by another entity).

Creating KGEs for large-scale knowledge graphs poses a non-trivial challenge due to the complexities
involved in parallelizing these algorithms across multiple nodes. Additionally, embeddings encounter
a deficiency in explainability as they undergo a transformation of data from one space to another. In
Chapter 4 we benchmarked against latent embeddings as part of the evaluation of our novel approach.

3.2 Machine Learning on Semantic Data

There are numerous machine learning frameworks and algorithms for RDF data. Below, we have
highlighted several notable frameworks.

3.2.1 Statistical Relational Learning (SRL) Frameworks

TensorLog [86] and ProPPR (Programming with Personalized PageRank) [87] are recent frameworks
for efficient probabilistic inference in first-order logic. TensorLog is a framework that combines logic
programming and deep learning techniques to perform inference tasks on RDF data. It is specifically
designed for knowledge graph completion, which involves predicting missing relationships or facts
within a knowledge graph. At its core, TensorLog integrates two key components: Prolog [88], a logic
programming language, and TensorFlow [89], a popular deep learning framework. This combination
allows for the seamless integration of logical reasoning and neural network-based learning. Moreover,
ProPPR is a probabilistic logic programming language and an inference engine that combines the
expressiveness of logic programming with the efficiency of personalized PageRank algorithms. It
is designed to handle large-scale knowledge graphs and perform efficient probabilistic reasoning
tasks. At its core, ProPPR extends the standard Prolog language with the addition of probabilistic
facts and rules. These probabilistic rules allow for the encoding of uncertainty and probabilistic
dependencies in the knowledge representation. The language also introduces the notion of a “random
walk” as a mechanism for performing inference. Besides this, DL-Learner [90] is a framework for
automated machine learning (AutoML) and knowledge extraction from structured data. It focuses on
the application of machine learning techniques to perform tasks such as ontology learning, knowledge
graph completion, and semantic annotation. DL-Learner provides a flexible and extensible platform
for integrating machine learning algorithms into knowledge acquisition and representation. It supports
various input formats, including RDF data, ontologies, and knowledge graphs.

3.2.2 Knowledge Graph Construction and Mining

AMIE [91] and AMIE+ [92] are rule-mining algorithms designed for discovering association rules
from knowledge graphs or RDF data. These algorithms are specifically developed for mining rules in
the form of triple patterns ⟨subject,predicate,object⟩ that represent relationships between

30

3.2 Machine Learning on Semantic Data

entities in the knowledge graph. The goal of AMIE and AMIE+ is to automatically discover interesting
and meaningful association rules that capture patterns and dependencies within the data. These rules
provide insights into the underlying structure and relationships in the knowledge graph, aiding in
tasks such as knowledge discovery, recommendation systems, and data exploration. When it comes
to Knowledge Graph Embedding, there are several libraries available that can be incorporated into
traditional machine learning pipelines, including PyKeen [93] and Open-KE [94]. However, these
libraries do not specifically prioritize distributed processing for handling large-scale KG data.

3.2.3 Distributed Graph Processing

For dealing with large KG datasets, specialized frameworks have emerged, such as PyTorch Big-
Graph [95], DGL-KE [96], and Graphvite [97]. These frameworks employ distributed computing
techniques to efficiently manage the memory load of KGs and their corresponding embeddings. One
significant challenge in this context is optimizing KGE in a distributed manner. Since KGE tensors are
spread across multiple machines, sharing and synchronizing vectors throughout the optimization cycles
is crucial. Moreover, GraphX [98] is a distributed graph processing framework developed within the
Apache Spark ecosystem. It provides tools for efficiently performing computations and analytics on
large-scale graphs. GraphX abstracts graphs as collections of vertices and edges, to Spark’s RDDs,
enabling seamless integration with Spark’s parallel processing capabilities. It offers specialized data
structures for vertices and edges, facilitating fault-tolerant and distributed graph operations. With
high-level operators and built-in algorithms, such as PageRank and connected components, GraphX
simplifies the implementation of graph-based computations while allowing integration with Spark’s
broader data processing capabilities.

3.2.4 Distributed Linked Data Processing

Distributed data processing approaches often rely on Apache Spark, which enables the creation of
structured downstream pipelines. However, Apache Spark lacks native support for knowledge graphs.
Although GraphX [98] provides basic tools for graph processing, they do not operate directly on labeled
RDF KGs. To address this limitation, the SANSA stack was developed, combining the distributed
computing capabilities of Apache Spark with Apache Jena’s RDF tools. SANSA forms a Scalable
Semantic Analytics Stack, enabling distributed semantic data analytics for various use cases. Within
the SANSA stack, several research projects have been undertaken, focusing on specific distributed
semantic data analytics scenarios. One such project is Sparqlify [99], a framework that allows the
rewriting of SPARQL queries to SQL, facilitating distributed query execution on RDF KGs within
the SANSA environment. Additionally, research efforts have been devoted to conducting statistical
surveys on the properties of RDF KGs, as demonstrated in the works [100, 101]. SANSA has also
been utilized for experimental proof of concept projects, including clustering on linked geodata [102].

To the best of our knowledge, none of the mentioned frameworks offer the capability of anomaly
detection on KGs. Moreover, due to its native functionalities, we selected SANSA as the foundation
for developing this thesis. Additionally, all the proposed approaches in this thesis are integrated into
the SANSA framework.

31

Chapter 3 Related Work

Fig 3.1: Standard anomaly detection pipeline over KGs

3.3 Anomaly Detection on KGs

Although anomaly detection is already a well-studied field with the focus specifically on the task of
anomaly detection in non-relational datasets [17], to the best of our knowledge there has not been
much dedicated research work, particularly on the use of anomaly detection techniques on a large
RDF dataset. Therefore in this section, we discuss a few existing outlier detection methods.

Different types of errors can be hidden in the different dimensions of knowledge graphs. Most of the
already existing research in this area focuses on outliers in numerical literals [78, 103–105] (except [106]
which focuses on the predicates). This is influenced by the fact that outlier detection predominantly
revolves around numeric data, making numeric literals a logical focal point. These methods try to
find anomalies in a single literal value. That is, given one property, such as dbo:elevation,
representing the elevation of a place, these methods want to detect anomalous values that are used
as literal objects of that property. Furthermore, collecting all values of a specific attribute, such as
weight, and attempting to perform anomaly detection for this attribute is conceptually incorrect in
KGs. The reason is that the same predicate can be used for different entities. For example, the weight
of vehicles can not be compared to the weight of animals. Therefore, to overcome this problem, the
existing works use a mechanism for clustering entities before applying anomaly detection techniques.
Moreover, there should be a mechanism to first extract features from KG before applying any anomaly
detection techniques (explained in Section 3.1).

Figure 3.1 depicts the standard pipeline of anomaly detection over KGs and Table 3.1 summarizes
the existing approaches and our proposed approaches plus their main characteristics.

To be able to achieve precise anomaly detection results and avoid natural outliers, one needs to
perform clustering over entities to not compare for example the height of animals with the height of a
building. In the following sections, we briefly explain the clustering approaches only used in anomaly
detection over KGs.

3.3.1 Clustering by rdf:type

One of the early works in the area of detecting incorrect numerical data in DBpedia is [103]. The
authors argued that the traditional outlier detection approaches are limited by the existence of natural
outliers and performed the process of finding numerical outliers in two steps. In the first step, all types
of an entity are considered as a vector of boolean values (one-hot encode), representing whether or not
the entity is of a certain type. The authors used the FeGeLOD framework [78] for vectorizing the

32

3.3
A

nom
aly

D
etection

on
K

G
s

Table 3.1: Existing works of AD on KGs and their characteristics

[103] [104] [107] [105] DistAD [24] ExPAD [25]

AD Level Numeric
Literals

Numeric
Literals Links Numeric

Literals

Numeric
Literals

+
Number of
Predicates

Numeric
Literals

AD
Algorithm

Univariant ✓ ✓ × ✓ ✓ ✓
Multi-variant × × ✓ × ✓ ×
Graph-based × × ✓ × × ×
Statistical ✓ ✓ × ✓ ✓ ✓
Supervised × × × × × ×
Semi-supervised × × ✓ × × ×
Unsupervised ✓ ✓ ✓ ✓ ✓ ✓

Algorithm
IQR

MAD
KDE

IQR
LOF

GAS
LOF

One-ClassSVM
IQR

IQR
MAD

Z-Score
Isolation Forest

IQR
MAD

Z-Score

Feature
Extractor FeGeLOD SPARQL Graph features - Literal2Feature

Pivoting
Literal2Feature

Pivoting

Clustering
rdf:type

+
Expectation Maximization

constraint
+

lattice
-

LHD
+

Cohorting

DistSim
+

Bisecting Kmeans
Decision Tree

Scalability × × × ✓ ✓ ✓

Explainability × × × × × ✓

Streaming × × × × × ×

33

Chapter 3 Related Work

entities and did the clustering with the Estimation Maximization (EM) algorithm [108], using the
implementation in WEKA [109]. In the next step, the outliers are detected. The authors have compared
different outlier detection techniques, such as IQR [60], KDE [62], and dispersion estimators, and
reported that the IQR performs the best. In addition, they reported that the run-time on datasets
containing only two properties- DBpedia-owl:populationTotal and DBpedia-owl:elevation is over 24
hours due to the slow clustering algorithm.

Furthermore, [106] introduced an innovative unsupervised multi-dimensional anomaly detection
methodology designed to identify erroneous links within RDF datasets. In pursuit of identifying
inaccurate links through outlier detection, they used a multi-step process. Initially, they transformed
each link into a feature vector, by considering both direct types and all incoming and outgoing
properties of resources within the interconnected datasets. Their approach contained three stages: (i)
the extraction of a link set, accompanied by the creation of a distinct feature vector representation for
each link; (ii) the execution of outlier detection on the ensemble of generated vectors, and assigning
an outlier score to each individual link; and (iii) sorting the links in descending order based on their
respective outlier scores. In the course of their experimentation, they leveraged the capabilities of the
RapidMiner2 platform. Also for anomaly detection, they used the k-NN global anomaly score (GAS),
the Local Outlier Factor (LOF), and One-Class Support Vector Machines. Although they reported
encouraging outcomes, it is worth noting that their methodology is not scalable and has not applied to
authentic Linked Open Data (LOD) datasets.

3.3.2 Clustering with Constraints

This approach is introduced in [104] which is close to [103]. This outlier detection method cross-
checks the results of outliers by exploiting the “sameAs” properties in the knowledge graph. Outlier
detection is accomplished through dataset inspection using specialized SPARQL queries against the
knowledge graph. The authors begin by selecting the interesting properties for outlier detection.
The sub-population is generated in the second step by applying a set of constraints (top-down ILP
algorithms) to classes, properties, and property values. This exploration is laid out as a lattice, with
the root node consisting of a property and the number of instances that correspond to it. After the
lattice has been generated, the outliers on all unpruned nodes of the lattice must be found. The outlier
score results are saved as a set of constraints that returns the corresponding instance set. Outliers are
classified as natural or real using the data interlinking property and comparison with different datasets.
This procedure improves the handling of natural outliers, lowering the false positive rate.

3.3.3 Clustering by LHD

As for some entities, the rdf:type information could be missing, [105] introduced a new way of
clustering based on Linked Hypernyms Dataset (LHD) [110]. LHD contains types from the DBpedia
namespace that have been extracted from the opening sentences of Wikipedia articles written in
various languages. These types were identified using Hearst pattern matching on part-of-speech
annotated text and disambiguated to correspond with DBpedia concepts. Moreover, they used Locality
Sensitive Hashing (LSH) [111] for creating clusters (they called the clusters cohorts because the same
data can appear in more than one cluster). LSH is an important class of hashing techniques that hashes
data points into buckets, so that the data points that are close to each other are in the same buckets with
2 http://www.rapidminer.com

34

3.4 Explainable Anomaly Detection on KGs

high probability, while data points that are far away from each other are likely in different buckets.
[105] used rdf:type and LHD information to create vectors and then hashed it based on LSH and
further generated cohorts. This approach was only applicable to DBpedia and the accuracy of it was
questionable because the same data could appear in multiple cohorts which could result in natural
outliers.

As shown in Table 3.1, the majority of existing works face scalability issues, making them impractical
for large-scale knowledge graphs. In response to this challenge, we introduced DistAD (Chapter 5).
DistAD is versatile and applicable to any RDF data; it is scalable and capable of execution on very
large KGs; and it is modular and configurable to cater to different use cases.

3.4 Explainable Anomaly Detection on KGs

As the use of anomaly detection algorithms in critical safety areas becomes more common, there’s a
growing need for explanations behind important decisions made within these areas, which is both
an ethical requirement and a regulatory demand. However, the anomaly detection field has mainly
focused on accuracy in identifying anomalies, often neglecting to explain why those decisions are
reached. For example, [112] criticizes the prevailing practice of algorithms simply providing rankings
for anomalies without giving users explanations for why certain data points deviate. Similarly, [113]
points out that while many techniques are excellent at identifying global and local anomalous patterns,
they often overlook the crucial aspect of understanding why certain instances are considered outliers.
Additionally, [114] notes that only a few studies on outlier detection make an effort to offer insights
that help clarify the nature of instances that stand out. Furthermore, [115] claims that present outlier
detection systems frequently lack explanations for why specific cases are tagged as outliers, failing to
highlight the distinguishing characteristics that define them as such.

According to [116], the terms "interpretability" and "explainability" refer to the ability to make sense
to humans using clear language. Furthermore, [117] defines Explainable Artificial Intelligence (XAI)
as AI that provides details or reasoning to make its operations understandable to a specific audience.
[118] goes on to describe interpretable or eXplainable Machine Learning (XML) as extracting relevant
insights from a machine learning model about inherent data relationships or lessons learned through
the model’s learning process. This knowledge is important if it helps the target audience understand
the issues at hand. As a result, eXplainable Anomaly Detection (XAD) refers to extracting relevant
insights from an anomaly detection model about inherent data relationships or lessons learned from
the model’s learning process, as long as this knowledge sheds light on the anomaly detection problem
under investigation by the end user.

The process of analyzing anomalies involves two equally crucial tasks: (i) detecting anomalies (as
explained in Section 3.3) and (ii) explaining them. Anomaly explanation involves clarifying why
a particular anomaly is labeled as such. Since the terms "anomaly" and "outlier" are often used
interchangeably, anomaly explanation is also known as outlier explanation, outlier interpretation,
outlier description, and outlier characterization.

When an anomaly is identified by an anomaly detection algorithm, XAD aims to make the anomaly
understandable by enhancing the interpretability of the anomaly detection method. There are various
ways to achieve interpretability in an anomaly detector. When the anomaly detector is inherently
interpretable (e.g. logistic regression, shallow decision trees, rule-based models, etc.), it’s relatively
easy to understand why a flagged anomaly is considered unusual. On the other hand, when the anomaly

35

Chapter 3 Related Work

detector lacks inherent interpretability (e.g. Isolation Forest [64], RNN [119], CNN [120]), post-hoc
explainable AI techniques like LIME [121], Anchors [122], and SHAP [123] can be used to interpret
the anomaly detector and elaborate on the reasoning behind its decisions.

In general, there are three categories of approaches for making anomaly detection explainable:
pre-model techniques, in-model techniques, and post-model techniques. Pre-model techniques are
implemented before the anomaly detection process, such as filter feature selection methods. In-model
techniques use inherently explainable models, allowing for easy explanations during anomaly detection,
like linear regression-based anomaly detection methods that can reveal feature coefficients. In contrast,
post-model techniques, also known as post-hoc techniques, strive to explain the decisions made by
an anomaly detection model after the model is built and implemented. For example, SHAP-based
interpretation methods [124] fall under this category.

3.4.1 Pre-Model Techniques

In Pre-model techniques, the aim is to make models simpler and more accurate in detecting anomalies
by having meaningful and relevant features while removing unnecessary ones. This helps to understand
the data relationships better. For instance, in [125], it’s highlighted that the effort needed to investigate
an anomaly increases with the number of features describing it. To simplify this, techniques like
dimensionality reduction can be used. This involves methods such as feature projection and feature
selection, which help decrease the number of features describing an object. This makes explaining
anomalies easier. However, methods like Principal Component Analysis (PCA) transform original
features into a new set, making them harder to interpret. On the other hand, feature selection keeps the
most important original features, enhancing interpretability and overcoming the challenge of dealing
with high-dimensional data.

There are a handful of unsupervised feature selection methods for anomaly detection. Specifically,
CBRW_FS [126] and CBRW [127] are two unsupervised selection methods. These methods choose a
subset of features without considering the subsequent anomaly detection techniques, but they work
only with categorical data by modeling the connections between feature values. Moreover, [128]
devise an optimization framework for concurrently selecting features and instances in categorical data
anomaly detection by assuming strong similarities among uncommon instances. Nevertheless, this
assumption is commonly not met, as anomalies tend to be isolated and distinct from each other.

Meanwhile, [129] and [130] try to identify a relevant feature subset for anomaly detection by
exploring correlations between features. They assume that anomalies are instances that deviate
from normal feature dependencies, so only features connected to others are considered important.
However, this definition of anomalies doesn’t work well with many standard anomaly detection
methods. Additionally, Isolation Forest [64] can also be used to select features for anomaly detection.
A method based on Isolation Forest, called IBFS [131], selects features that contribute the most to the
outlierness of anomalies detected by Isolation Forest.

3.4.2 In-Model Techniques

In the realm of In-Model techniques, the models used for anomaly detection offer insights into the
relationships they’ve learned from the data. This empowers end-users to grasp the reasoning behind
the decisions made. In general, methods which are using transparent models such as Linear Models

36

3.4 Explainable Anomaly Detection on KGs

(Linear Regression, Logistic Regression), Decision Trees, Gaussian Processes, Rule-based Learners,
Generative Additive Models, and Bayesian Models, are inherently explanatory.

For instance, [132] employs frequent pattern mining to identify and explain anomalies in transactional
data. They specifically utilize the Apriori algorithm [133] to uncover frequent patterns, using the
most contradictory frequent patterns to elucidate each identified anomaly. Similarly, [134] proposes a
model to capture common motion and background patterns in video data, treating deviations from
these patterns as anomalies. Likewise, [135] introduces the DRGMiner model, which mines frequent
patterns in dynamic graphs and treats graphs that deviate from these patterns as anomalies.

Moreover, decision trees and their variations have been suggested for anomaly detection, yielding
explanations inherent to the detection outcomes. For example, [136] introduces the Composition-based
Decision Tree (CDT) to identify and interpret anomalies in time series data. This involves constructing
a CDT after preprocessing and labeling time series data. The CDT extends a decision tree to this
labeled data, extracting rules that describe observed anomalies and identify novel ones. The quality
of explanations is evaluated based on the number of utilized patterns and rule lengths. Additionally,
[137] presents an anomaly detection approach involving supervised decision tree splits on features.
Confidence intervals are created for each branch’s target feature, enabling explanations from branch
conditions and general distribution statistics of non-anomalous instances falling into the same branch.
Furthermore, [138] proposes the Decision Tree-based AutoEncoder (DTAE) model for anomaly
detection. This model employs a decision tree to illustrate the encoding and decoding steps of an
AutoEncoder (AE), determining anomalies by comparing the input to the output.

3.4.3 Post-Model Techniques

Post-model techniques examine an anomaly detection model after the detection process is finished,
or they may examine a specific anomaly without requiring a pre-existing anomaly detection model.
Essentially, these methods do not influence the anomaly detection process itself, instead, they work by
analyzing the connection between the input provided to the anomaly detection model (if applicable)
and the resulting output. Within this category, approaches like LIME, Anchors, SHAP, and RESP can
be employed.

LIME (Local Interpretable Model-agnostic Explanations) [121] is a model-agnostic interpretability
technique designed to explain the predictions of complex machine learning models. The primary
objective of LIME is to provide local explanations, offering insights into how a model arrives at specific
predictions for individual instances or samples. LIME operates by approximating the behavior of the
underlying model in the local vicinity of a particular data point. It creates a simplified, interpretable
model, such as linear regression or decision trees, around the instance of interest. This simpler model
is trained using perturbed versions of the original instance, ensuring a diverse set of samples that
cover the relevant feature space. Once the interpretable model is trained, LIME calculates the feature
importance or contribution of each input feature to the prediction. By examining the coefficients or
feature weights in the interpretable model, LIME provides insights into which features have the most
influence on the model’s decision-making process for that particular instance.

In [122] authors improved upon LIME by replacing its linear model with a logical rule for explaining
a data instance. It introduces a rule-based method to generate easily understandable, if-then-like
explanations that capture the conditions under which a particular model’s prediction holds true. It
aims to identify the minimal set of feature conditions, called anchors, that are both sufficient and
necessary for a prediction. Anchors can be derived through a combination of optimization and

37

Chapter 3 Related Work

sampling techniques, ensuring both interpretability and accuracy.
SHAP (SHapley Additive exPlanations) [123] is a unified framework for explaining the predictions

of machine learning models. It leverages concepts from cooperative game theory to assign importance
values to each feature in a prediction, capturing their contribution to the overall prediction. SHAP
provides a comprehensive and consistent way of attributing feature importance that satisfies several
desirable properties, including fairness, consistency, and local accuracy. By considering all possible
combinations of features, SHAP computes the Shapley values, which quantify the marginal contribution
of each feature to the prediction. These values allow for a nuanced understanding of the impact of
individual features and their interactions on the model’s output.

Moreover, RESP [139] focuses on providing explanations for the outcomes of classification models
by considering causal relationships. This model aims to go beyond traditional feature importance
techniques and delve into the underlying causal mechanisms that contribute to the predictions. The
model operates under the assumption that causality plays a significant role in the decision-making
process of classification models. It analyzes the dependencies and causal relationships between the
features used for classification, considering both direct and indirect causal effects. To explain the
classification outcomes, the model applies causal inference methods, such as Bayesian networks or
structural equation modeling, to uncover the causal structure within the data. By identifying the causal
relationships, the model can determine which features have a direct influence on the predicted outcome
and which features impact the outcome indirectly through other variables.

3.5 Summary

In this section, we tried to provide a review of the related work. In particular, we focused on four main
areas: KGs as input for machine learning techniques, machine learning frameworks that operate on
KGs, existing approaches to anomaly detection on KG data, and explainable AI.

Through our investigation, we discovered that Knowledge Graph Embeddings encounter challenges
in achieving effective anomaly detection due to scalability issues and a lack of interpretability. In
response, we introduced Literal2Feature (detailed in Chapter 4) to specifically address these concerns.
Furthermore, we identified shortcomings in existing approaches and frameworks for anomaly detection
on knowledge graphs, particularly in scalability and explainability. Consequently, we put forth DistAD
(covered in Chapter 5) and ExPAD (discussed in Chapter 6) as solutions to these challenges.

38

CHAPTER 4

Scalable and Distributed Feature Extractor

Acknowledgement This chapter is based on our scientific publication: Farshad Bakhshandegan
Moghaddam, Carsten Felix Draschner, Jens Lehmann and Hajira Jabeen, “Literal2Feature: An
Automatic Scalable RDF Graph Feature Extractor”, SEMANTICS, 2021, IOS Press, pp. 74–88.
https://doi.org/10.3233/SSW210036.

4.1 Motivation

With the rapidly growing amount of data available on the Internet, it becomes necessary to have a set
of tools to extract meaningful and hidden information from online data. The Semantic Web is able to
form a structural view of the existing data on the web and provides machine-readable formats [1]. In
order to enable this, the Resource Description Framework (RDF)1 has been introduced by the World
Wide Web Consortium2 as a standard to model the real world in the form of entities and relations
between them. RDF data are a collection of triples ⟨subject,predicate,object⟩ which tend
to have rich relationships, forming a potentially very large and complex RDF graph. Figure 4.1 shows
a sample RDF graph.

Currently, many companies in the fields of science, engineering, and business, including bio-
informatics, life sciences, business intelligence, and social networks publish their data in the form of
RDF. In addition, the Linked Open Data Project initiative [2] also helped the Semantic Web to gain
more and more attention in the past decade. Currently, the Linked Open Data (LOD) cloud comprises
more than 10,000 datasets available online3 using the RDF standard. Nowadays, RDF data can have
sizes up to billions of triples4.

Besides this, Machine Learning, a field of discovering how machines can perform tasks without
being explicitly programmed to do so, is growing and finding its way in human daily life. Some
prominent examples are autonomous driving, face detection, weather forecasting, etc. Recently with
the rapid growth of computational power, training machine learning algorithms at scale is getting
much more feasible. However, most of the well-known machine learning algorithms for classification,

1 https://www.w3.org/RDF/
2 https://www.w3.org
3 http://lodstats.aksw.org/
4 https://www.w3.org/wiki/DataSetRDFDumps

39

https://doi.org/10.3233/SSW210036

Chapter 4 Scalable and Distributed Feature Extractor

Figure 4.1: Literal2Feature: a sample RDF graph

regression, and clustering need to work with a standard shape of data, i.e. a feature matrix. In
this format, the data is mostly presented as a 2D matrix, in which rows present the data points and
columns indicate the features. Normally, for supervised learning, one (or more) of the columns can be
considered as a label (target) for the given row (data point).

Due to the complex graph nature of RDF data, applying standard machine learning algorithms to
this data is cumbersome. Although there are efforts in the community to incorporate RDF graphs
directly in the machine learning algorithms, they are mostly focused on the structural properties of
RDF datasets [29, 87, 90, 91] and offer limited support for RDF literals. Moreover, the challenges in
the current big data era (limited computational resources) cause analytical approaches to mostly fail to
operate on large-scale data.

Even though Knowledge Graph Embeddings (KGE) are getting popular as a paradigm to obtain
low-dimensional feature representations of knowledge graphs, most of them do not exploit literals
in their learning process (an exception is [140] for numerical literal values). Moreover, the feature
vectors obtained by KGE models are latent features, which are not explainable.

To tackle the aforementioned issues, we propose Literal2Feature, a generic, distributed, and scalable
software framework that is able to automatically transform a given RDF dataset to a standard feature
matrix (also dubbed Prepositionalization) by deep traversing the RDF graph and extracting literals
to a given depth. Literal2Feature enables the use of a wide range of machine learning algorithms
for the Semantic Web community. The proposed method is able to extract features automatically
by creating a SPARQL query to produce the feature matrix. All steps are performed automatically
without human intervention (details in Section 4.2). In addition, Literal2Feature is integrated into the
SANSA stack [19] and interacts with the different SANSA computational layers. In contrast to KGEs,
our proposed approach successfully utilizes literals as extracted features and provides high-level
explainability for each feature. Moreover, our approach enables ML practitioners to extract explainable
features and to select the features of interest, based on their objectives and scenarios.

In this chapter, we address the following research question:

40

4.2 Literal2Feature: An Automatic Scalable RDF Graph Feature Extractor

RQ1: Can we vectorize knowledge graphs in a scalable and distributed manner?

To summarize, the main contributions of this chapter are as follows:

- Introducing a distributed generic framework that can automatically extract semantic features
from an RDF graph

- Integrating the approach into the SANSA stack

- Covering the code by unit tests, documenting it in Scala docs, and providing a tutorial

- Making the code and the framework open source and publicly available on GitHub5

- Evaluation of the results over multiple datasets on classification and clustering scenarios, and
comparing it with similar approaches

- Empirical evaluation of scalability

The rest of the chapter is structured as follows: Literal2Feature, workflow, and implementation are
detailed in Section 4.2. The use cases are discussed in Section 4.3. Section 4.4 covers the evaluation
of the Literal2Feature and contains an empirical evaluation for scalability. Finally, we summarize our
work in Section 4.5.

4.2 Literal2Feature: An Automatic Scalable RDF Graph Feature
Extractor

In this section, we present the system architecture of Literal2Feature. The main goal of the framework is
to retrieve literals for each entity based on the predefined graph depth. In other words, Literal2Feature,
by deeply traversing the RDF graph, is able to gather literals for each entity up to a predefined level
and consider them as a feature vector for the given entity. We believe that literals contain valuable
information for each entity which can be used for any subsequent machine learning pipeline.

Figure 4.2 shows the high-level system architecture overview. The core section of the framework
consists of five main components: 1) Seed Generator, 2) Graph Search, 3) Path Extractor, 4) SPARQL
Generator, and 5) SPARQL Executor. Below, each part is discussed in more detail.

4.2.1 Components

Seed Generator Component

The input of the system is an RDF graph G and a set of RDF triples T which defines the entities that
the user is interested in generating features for. T will automatically formulate a SELECT SPARQL
query which is used to generate only starting points for the deep search (seeds). In other words, this
query specifies the entities for which the user is interested in extracting features (e.g. in Figure 4.1, all
the persons). By executing the SELECT query over the given RDF data, the starting points of the
search are generated. These seeds are sorted based on the number of outgoing links. The higher the
5 https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.1_DistRDF2ML

41

Chapter 4 Scalable and Distributed Feature Extractor

Figure 4.2: Literal2feature system architecture abstract overview

number of outgoing links, the higher the chance of generating more features. To execute the query,
Sparklify [141], a SANSA built-in distributed SPARQL executor is used.

Graph Search Component

The next step executes a graph search algorithm starting from the seed nodes. Without loss of generality,
in this framework, we use two different strategies, (i) full graph search, and (ii) approximated graph
search. For full graph search, we use Breadth-First Search (BFS) [142] to be able to traverse the entire
graph. Moreover, for the approximation, we use the Random Walk model [143]. In both approaches
the user will have full control over the depth, the number of walks, and the direction of the search
(downward, upward). There is a relation between extracted feature completeness and the search
execution time with the search strategy. Full graph search is able to extract all the existing features, but
the execution time is higher than the random walk model. Three different factors that have an impact
on the number of extracted features and the execution times are (i) the depth of search, (ii) the average
branching factor of nodes of the graph, and (iii) the number of random walks (only in the Random
Walk model). Figures 4.3, 4.4, 4.5, and 4.6 depict the impact of each factor. It can be seen that most
of the parameters have an exponential impact on the full graph search. However, the Random Walk
model depicts a linear and logarithmic behavior in terms of time and the number of extracted features.

Each search walk (regardless of the selected search method) generates a path and continues till one
of the following conditions occurs:

- Reaching a node which is a literal node

- Exceeding the pre-configured length of the walk

Path Generator Component

By considering the nodes and edge labels (RDF entities and properties) we could generate properties
paths. Each properties path encodes all the needed properties to reach a literal from the given seed

42

4.2 Literal2Feature: An Automatic Scalable RDF Graph Feature Extractor

0 1 2 3 4 5
0

200

400

600

800

1,000

Depth

N
um

be
ro

fF
ea

tu
re

s

BFS
Random Walk

Figure 4.3: Literal2Feature evaluation: depth vs. #features on the Engie dataset

0 1 2 3 4 5
0

20

40

60

80

100

Depth

Ru
nt

im
e

(in
se

co
nd

)

BFS
Random Walk

Figure 4.4: Literal2Feature evaluation: depth vs. time on the Engie dataset

node. For example, based on Figure 4.1, John_jr->hasParent->Mary->age encodes the path
which can fetch the “age of the mother of John_jr”. Each walk of the search algorithm generates a
properties path. Due to the probabilistic nature of the algorithms (in the Random Walk method) and
repetition in the RDF graphs, there is a chance of having duplicated paths. The final output of this
component is distinct properties paths.

SPARQL Generator Component

By gathering all the properties paths, ignoring the entities, and only keeping properties, each path
is transformed automatically to a SPARQL query. For instance, the above-mentioned example will
be transformed to ->hasParent->age and then to the following SPARQL query (Listing 4.1,

43

Chapter 4 Scalable and Distributed Feature Extractor

0110 100 500 1,000

0

10

20

30

40

Number of Random Walks

N
um

be
ro

fF
ea

tu
re

s

Ransom Walk

Figure 4.5: Literal2Feature evaluation: #walks vs. #features on the Engie dataset

1 50 100 150 200 250
0

50

100

150

200

250

300

350

Branching Factor

Ru
nt

im
e

(in
se

co
nd

)

BFS

Figure 4.6: Literal2Feature evaluation: branching factor vs. time on synthetic data on a single machine

prefixes have been omitted for simplicity). Due to the data sparsity issue and as all the seeds may
not have all the possible properties, each properties-path is wrapped with an Optional block to
ensure the successful generation of the final result. To have explanatory names for the projected
variables, the prefix part of each RDF property is omitted and after splitting based on the underscore
character, the last part of each property is selected and concatenated (see Listing 4.1). These names
are human-readable and convey a high level of explainability for each feature.

44

4.2 Literal2Feature: An Automatic Scalable RDF Graph Feature Extractor

Figure 4.7: Literal2Feature execution pipeline (best viewed in color)

SPARQL Executor Component

After generating the SPARQL query based on the generated property paths, we use the built-in
SPARQL engine in SANSA to execute the query over the given RDF data. The result of this component
is the desired feature matrix. Due to the structure of the graph, the SPARQL query may result in
multiple rows for a single entity. Based on Figure 4.1, this behavior can be seen when we want to
extract the age of a parent of John_jr as he has two parents. In such a case, one of the rows is
selected randomly and kept for the subsequent machine learning pipeline.

Listing 4.1: Literal2Feature: Sample result of the generated SPARQL query
1 SELECT ?person ?hasParent_age WHERE {
2 ?person a Person.
3 OPTIONAL {
4 ?person hasParent ?parent.
5 ?parent age ?hasParent_age.
6 }
7 }

4.2.2 Implementation

As the programming language of SANSA is Scala6, we have selected this language and its APIs in
Apache Spark to provide the distributed implementation of Literal2Feature. Moreover, we benefit
from SANSA IO and Query layers. Technically, Literal2Feature can be divided into the following
steps 1) Reading RDF data as a data frame, 2) Generating seeds, 3) Filtering seeds, 4) Traversing
the graph by joining data frames up to a certain depth, 5) Selecting paths which end with literals, 6)
Converting the paths to SPARQL, and 7) Executing the SPARQL and output the result, as shown in
Figure 4.7 which depicts the framework execution pipeline. Moreover, Algorithm 1 demonstrates the
working of Literal2Feature that takes RDF triples as input, creates a data frame, applies a series of
transformations and actions, and returns a feature matrix as an output. The traverse function which
deeply searches the graph is explained in Algorithm 2.

6 https://www.scala-lang.org/

45

Chapter 4 Scalable and Distributed Feature Extractor

Algorithmus 1 : Literal2Feature Algorithm
Data : input: an RDF dataset, config: configuration from Table 4.1
Result : Feature Matrix

1 val graph: Dateframe = spark.read.rdf(lang)(input).cache();
2 val seedQuery: String = generateSeedQuery(config);
3 var seeds: Dataframe = executeSparql(seedQuery,graph);
4 seeds = sort(seeds,DESC);
5 seeds = sampleSeeds(config);
6 val paths: Dataframe = traverse(seeds,graph);
7 val finalQuery = generateSparql(paths);
8 return executeSparql(finalQuery,graph);

Algorithmus 2 : Graph Traverse Algorithm
Data : seeds: filtered seeds, graph: Dataframe of RDF data
Result : A dataframe which contains all the information regarding the paths

1 var withOpenEnd: DataFrame = seeds;
2 var withLiteralEnd: DataFrame = spark.emptyDataFrame;
3 var currentPaths = seeds;
4 for i = 0 to (iteration-1) do
5 val left: DataFrame = currentPaths;
6 val right: DataFrame = graph;
7 var joinedPaths = left.join(right);
8 if search mode == RandomWalk then
9 joinedPaths = joinedPaths.sample(NumberOfRandomWalks);

10 currentPaths = joinedPaths.where(ends in entity);
11 currentPaths = removeCycles(currentPaths);
12 val finalPaths = joinedPaths.where(ends in literals);
13 if finalPaths.size > 0 then
14 withLiteralEnd =withLiteralEnd.union(finalPaths);
15 else
16 break;

17 return withLiteralEnd;

46

4.3 Use Cases

Table 4.1: Literal2Feature: Main parameters of the framework

Parameter Description Value Data Type

Input Data Path of the input file or folder string

Output Data Path of the output file string

Search Depth To which depth going deep integer

Search Depth Up To which level going up integer

Number of Random Walks Number of random walks integer

Number of nodes (seeds) Number of starting nodes for search integer

Ratio of nodes (seeds) Percentage of starting nodes for search double

Search Algorithm BFS or RandomWalk Enumeration

Seed Selector List of triples which defines the seeds string

Seed Variable Variable name for seeds in the SPARQL result string

Regarding the configuration, Table 4.1 shows the main configurable parameters of Literal2Feature.
Moreover, a working sample can be found in SANSA-Notebook7 which is an interactive Spark Zeppelin
Notebook8 for running SANSA-Examples via docker9.

4.3 Use Cases

Literal2Feature is a generic tool that can be used in many use cases. To validate this, we develop use
case implementations in several domains and projects.

PLATOON Digital PLAtform and analytic TOOls for eNergy (PLATOON10) is a Horizon 2020
Project aiming to deploy distributed/edge processing and data analytics technologies for optimized
real-time energy system management in a simple way for the energy domain. PLATOON will use
SANSA stack as a generic data analytics framework in which Literal2Feature is an integral module in
the pipeline. Literal2Feature makes it possible for non-semantic experts to deduce features and enrich
their use case-related data.

Engie Engie SA11 is a French multinational electric utility company that operates in the fields
of energy transition, electricity generation and distribution, natural gas, nuclear, renewable energy,
and petroleum. Together with Engie, we worked on a dataset related to accidents that occurred in
France. One of the major challenges is the prediction and classification of accidents in an effective and
7 https://github.com/SANSA-Stack/SANSA-Notebooks/tree/stack-merge/sansa-notebooks
8 https://zeppelin.apache.org/
9 https://www.docker.com/

10 https://cordis.europa.eu/project/id/872592/de
11 https://www.engie.com

47

Chapter 4 Scalable and Distributed Feature Extractor

Table 4.2: Literal2Feature: Dataset statistics (GT=Ground Truth)

Dataset Format #Triples |GT| Classification Scenario Classes

Accident N-Triple 5,961,107 57,783 How dangerous is an accident? 4
Which side of vehicle is shocked? 10

Carcinogenesis OWL 74,567 298 Is a drug carcinogenesis? 2

scalable manner. In order to perform this task efficiently and effectively, Literal2Feature integrated
into SANSA stack became an integral module to solve classification.

4.4 Experimental Results

In this section, we present two sets of experiments to analyze different aspects of Literal2Feature.
In the first experiment, the quality and usefulness of the extracted features will be analyzed over
classification and clustering scenarios, and in the second experiment, the scalability of the proposed
framework will be investigated.

4.4.1 Experiment A: Assessment of the extracted Features

Literal2Feature is a generic tool that can be used in many scenarios, from statistical analysis to
classification and clustering. In this section, we will analyze the quality of the extracted features
for classification and clustering scenarios. To this end, two datasets have been exploited. Engie
accident dataset12 and Carcinogenesis dataset [144]. The accident dataset contains the accident data
that occurred in France in 2018. Besides, the Carcinogenesis dataset contains information about drug
molecules and their features. An overview of datasets is given in Table 4.2.

Classification

For the above-mentioned datasets, three classification scenarios have been defined as follows:

1- Accident classification based on how dangerous was an accident (4 classes)

2- Accident classification based on which side of the vehicle was shocked in the accident (10
classes)

3- Carcinogenic drugs classification (2 classes)

As baselines, FeGeLOD [78], RDF2Vec [145], TransE [81], SimplE [82], and DistMult [83] have
been selected (KGEs has been trained by OpenKE13 on NVIDIA GeForce GTX 1080 Ti). Moreover,
for the learning algorithms, we selected Random Forest (RF), Logistic Regression (LR), Multi-Layer
Perceptron (MLP), and XGBoost (XG) [146] to cover the full spectrum from decision trees to neural
networks. As the accident dataset has imbalanced labels, only the F1-measure is reported. The results

12 Can not be publicly published due to Intellectual Property concerns
13 https://github.com/thunlp/OpenKE

48

4.4 Experimental Results

1 2 3 4 5

0

10

20

30

40

50

Depth

F1
M

ea
su

re

F1
#Features

Figure 4.8: Literal2Feature evaluation: depth impact on the classification Result and number of extracted
features

are summarized in Table 4.3. These experiments have been conducted on a single node with an Intel
Core i5 CPU and 8GB of RAM. For FeGeLOD its original default configurations have been preserved
and for KGEs the dimension of vectors has been set to 200. Moreover, all the algorithms have been
trained with 5-fold cross-validation.

The focus of this experiment is on showing the quality of the extracted features and comparing it with
other approaches. As can be seen in all cases the extracted features from our proposed framework yield
a higher F1 score. For example, in Accident Scenario 1, Literal2Feature achieves 0.46 in comparison
to 0.37 for DistMult. The same behavior can be observed in Accident Scenario 2. Here Literal2Feature
achieves 0.21, however, the F1 of all the other baselines is less than 0.09. In the Carcinogenesis
binary classification scenario, Literal2Feature still outperforms other methods. Although in this
case, FeGeLOD results are comparable, however, it should be mentioned, that in this specific case,
FeGeLOD could achieve 0.61 with 247 extracted features, however, Literal2Feature achieved 0.62
with only 8 extracted features. So this fact reveals that the extracted features by Literal2Feature are
much more informative.

As a hypothesis, the further we go deeper in the graph, the more likely to find features, but the less
trustworthy and relevant the features become. To prove it, we run the classification scenario on the
Engie dataset with 4 classes (Accident Scenario 1) with MLP algorithm for the features in different
depths. As shown in Figure 4.8, there is no significant change in F1 after step 3. It indicates that
considering the features till depth 3 is sufficient and there is no need to consider further features as it
can increase the running time of the system.

Clustering

To show the usefulness of the extracted features, we designed a clustering scenario as well. However,
as our datasets have no ground truth for the clustering scenario, we selected the Silhouette Coefficient
to measure the quality of the different clustering methods. The Silhouette Coefficient is defined for
each sample and is composed of two scores: (i) the mean distance between a sample and all other

49

C
ha

pt
er

4
Sc

al
ab

le
an

d
D

is
tri

bu
te

d
Fe

at
ur

e
Ex

tra
ct

or
Table 4.3: Literal2Feature: The F1-Measure evaluation results

Approach Accident Scenario 1 Accident Scenario 2 Carcinogenesis

FeGeLOD [78]

RF 0.17 ± 0.01 0.05 ± 0.001 0.59 ± 0.07
LR 0.20 ± 0.02 0.05 ± 0.003 0.61 ± 0.06
MLP 0.18 ± 0.01 0.05 ± 0.001 0.58 ± 0.07
XG 0.18 ± 0.02 0.05 ± 0.004 0.58 ± 0.05

RDF2Vec[145]

RF 0.17 ± 0.004 0.05 ± 0.0001 0.41 ± 0.13
LR 0.25 ± 0.02 0.07 ± 0.006 0.49 ± 0.12
MLP 0.23 ± 0.02 0.09 ± 0.008 0.51 ± 0.18
XG 0.23 ± 0.02 0.07 ± 0.006 0.42 ± 0.10

TransE [81]

RF 0.16 ± 0.001 0.05 ± 0.0001 0.52 ± 0.09
LR 0.17 ± 0.002 0.05 ± 0.001 0.56 ± 0.06
MLP 0.24 ± 0.006 0.08 ± 0.001 0.56 ± 0.06
XG 0.24 ± 0.005 0.06 ± 0.001 0.51 ± 0.06

DistMult [83]

RF 0.22 ± 0.01 0.05 ± 0.0001 0.50 ± 0.06
LR 0.22 ± 0.005 0.05 ± 0.001 0.53 ± 0.06
MLP 0.26 ± 0.005 0.09 ± 0.004 0.54 ± 0.04
XG 0.37 ± 0.04 0.09 ± 0.002 0.58 ± 0.05

SimplE [82]

RF 0.22 ± 0.01 0.05 ± 0.0001 0.45 ± 0.09
LR 0.23 ± 0.003 0.05 ± 0.001 0.48 ± 0.04
MLP 0.28 ± 0.004 0.09 ± 0.004 0.53 ± 0.04
XG 0.36 ± 0.03 0.08 ± 0.003 0.50 ± 0.07

Literal2Feature

RF 0.37 ± 0.007 0.10 ± 0.01 0.57 ± 0.07
LR 0.41 ± 0.002 0.12 ± 0.005 0.62 ± 0.08
MLP 0.46 ± 0.006 0.21 ± 0.005 0.48 ± 0.07
XG 0.38 ± 0.18 0.19 ± 0.07 0.53 ± 0.04

50

4.4 Experimental Results

points in the same class, and (ii) the mean distance between a sample and all other points in the next
nearest cluster. The Silhouette Coefficient s for a single sample is then given as:

𝑠 =
𝑏 − 𝑎

𝑚𝑎𝑥(𝑎, 𝑏) (4.1)

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for
each sample and a higher Silhouette Coefficient score relates to a model with better defined clusters.
As a clustering algorithm, K-Means has been selected and by applying elbow-method, the optimal
number of clusters has been set to 4. Table 4.4 shows the result of the clustering.

Table 4.4: Literal2Feature: Silhouette Coefficient

Engie Carcinogenesis

RDF2Vec 0.004 0.263

TransE 0.113 0.669

SimplE 0.008 0.008

DistMult 0.006 0.009

Literal2Feature 0.133 0.247

Table 4.5: Literal2Feature: Synthetic dataset description

Dataset #Seeds Size #Triples
DS 1 1 6.5 MB 127 K

DS 2 300 2.2 GB 38 M

DS 3 600 4.5 GB 76 M

DS 4 1200 9.1 GB 153 M

DS 5 2400 13 GB 306 M

DS 6 6000 47 GB 765 M

As the result depicts, Literal2Feature achieved better clustering for the Engie dataset and also
obtained comparable results to RDF2Vec for the Carcinogenesis dataset where TransE achieved the
best clustering score.

4.4.2 Experiment B: Scalability

In this experiment, we evaluate the scalability of our approach by different data sizes and varying
cluster processing setups. To be able to have different sizes of datasets, we implemented an RDF
data simulator which generates synthetic RDF graphs based on the given depth, branching factor, and
number of the seeds. Table 4.5 listed the generated datasets and their characteristics. The branching

51

Chapter 4 Scalable and Distributed Feature Extractor

Core
: 4

Core
: 8

Core
: 16

Core
: 32

Core
: 64

Core
: 12

8
0

200

400

600

800

Ru
nt

im
e

(in
se

co
nd

)

Full Search Random Walk

Figure 4.9: Literal2Feature evaluation: processing power scalability on DS 4 Dataset

factor is set to 50, depth to 3, and all the literals lie at the last depth to form a complete tree. Worth
mentioning that the German DBpedia size is 48GB with 336 million triples, however, as the branching
factor of nodes is not fixed and equal in real datasets, we decided to do the experiments on synthetic
data which has the highest CPU and memory consumption.

Scalability over the number of cores

To adjust the processing power, the number of available cores is regulated. In this experiment, DS 4 is
selected as a pilot dataset, and the number of cores increases starting from 22

= 4 up to 27
= 128. The

experiments were carried out on a small cluster of 4 nodes (1 master, 3 workers): AMD Opteron(tm)
CPU Processor 6376 @ 2300MHz (64 Cores), 256 GB RAM. Moreover, the machines were connected
via a Gigabit network. All experiments have been executed three times and the average value is
reported in the results. Figure 4.9 shows the scalability over cluster setups. It is obviously clear that
increasing the computational power horizontally decreases the execution time. The runtime does not
include the time for data ingestion from the Hadoop file system and SPARQL query execution because
we relied on the SANSA SPARQL engine for SPARQL execution and the execution time depends on
the machine (i.e. single node, cluster) on which the query is being run.

In the beginning, by doubling the number of cores, the execution time dramatically decreases almost
by a factor of 2. However, by adding more cores, the execution time only slightly decreases. This
behavior can be seen due to the overhead of shuffling data between nodes and network latency. The
maximum speed-up is 6.3x.

Scalability over dataset size

To analyze the scalability over different datasets, we fix the computational power with 64 cores and
run the experiments for all the datasets introduced in Table 4.5. By comparing the runtime as shown

52

4.5 Summary

DS 1
DS 2

DS 3
DS 4

DS 5
DS 6

0

200

400

600

Ru
nt

im
e

(in
se

co
nd

)

Full Search Random Walk

Figure 4.10: Literal2Feature evaluation: sizeup performance evaluation over 64 Cores

in Figure 4.10, we note that the execution time does not increase exponentially. So doubling the
size of the dataset does not increase the execution time with the factor of 2. This behavior is due
to the available resources (memory) and partition size. On the other hand, as expected, it can be
noted that the random walk consumes much less time as compared to the full search, which requires
comparatively more resources.

4.5 Summary

In this chapter, we introduced Literal2Feature, a generic distributed framework for transforming RDF
data to a feature matrix that can be used in most machine learning algorithms. By providing full control
over different hyper-parameters, users will have a substantial level of flexibility in using the framework.
Our experiments also showed that the framework can be used to analyze RDF data with existing
statistical machine learning pipelines. Moreover, our experiments show that the Literal2Feature can be
successfully scaled over a cluster of nodes. Literal2Feature becomes one central feature-extracting tool
for DistAD in Chapter 5 and builds one feature-extracting opportunity within ExPAD in Chapter 6.

53

CHAPTER 5

Scalable and Distributed Anomaly Detection on
KGs

Acknowledgement This chapter is based on our scientific publication: Farshad Bakhshandegan
Moghaddam, Jens Lehmann and Hajira Jabeen, “DistAD: A Distributed Generic Anomaly Detection
Framework over Large KGs”, IEEE 16th International Conference on Semantic Computing (ICSC),
2022, pp. 243-250, https://doi.org/10.1109/ICSC52841.2022.00047.

5.1 Motivation

Anomaly Detection (AD) is a branch of data mining dedicated to the discovery of uncommon events
in datasets and has several high-impact applications in sectors such as security, finance, health care,
law enforcement, and much more [16]. The goal of anomaly detection is finding an answer to the
critical question, “What is intriguing about a dataset?” It refers to the task of identifying data point(s)
and patterns that do not conform to the data’s previously specified behavior. Although numerous
techniques for detecting outliers and anomalies in unstructured collections of multiple dimension
points have been developed in recent years, with the current interest in large-scale heterogeneous data
in knowledge graphs, most of the traditional algorithms are no longer directly applicable.

As already explained, KGs are being generated in a variety of ways. However, due to the variety of
approaches and freedom in inserting the input data, KGs are prone to various kinds of errors because
the entered data is neither restricted nor cross-validated. These errors can happen at subject,
predicate, or object part in the RDF format. For example, there can be extraction errors like
parsing errors, e.g. some events in Wikipedia have no starting date, and the value for those events
is empty and is written like “- 2001”, so extraction tools may interpret this value as a negative year,
or there can be errors in the predicate part, such as a person has 𝑛 birth places1 which 𝑛 ≫ 1
(normally, a person has only one birthplace). Moreover, the errors can happen in a multi-feature
manner, for example, a person’s age can be 5 and it is reasonable, however, the age of a person who is
a president of a country can not be 5. So in the multi-feature mode, a combination of different values
could yield an anomaly. It is worth mentioning that anomalies are not necessarily wrong values but
values that do not conform with the foreseen data behavior. For example, IoT sensors may generate

1 https://dbpedia.org/page/Alireza_Afzal

55

https://doi.org/10.1109/ICSC52841.2022.00047

Chapter 5 Scalable and Distributed Anomaly Detection on KGs

very high/low values (e.g. temperature), these values are not necessarily wrong but adequate to trigger
subsequent actions such as alarms.

Although various strategies for detecting outliers and anomalies have been developed over the
years, most standard analytic approaches are no longer directly applicable to KGs due to their
graph-like, multi-modal nature, and large size. To tackle the aforementioned issues, in this chapter,
we propose DistAD, a generic, distributed, and scalable software framework that can automatically
detect anomalies in the KGs by extracting semantic features from RDF data, clustering entities, and
applying an anomaly detection algorithm on the level of numeric objects, predicates, and multi-feature
scenarios. DistAD offers flexibility over different parts of the workflow and lets the end-users select
different approaches and granularity based on their use cases. In addition, DistAD is integrated into
the SANSA stack [19] and interacts with the different SANSA computational layers.

In this chapter, we address the following research question:

RQ2: How can we apply anomaly detection on knowledge graphs in a scalable and distributed
manner?

To summarize, the main contributions of this chapter are as follows:

- Introducing a distributed generic framework that can automatically detect anomalies in a large
RDF graph

- Integrating the approach into the SANSA stack

- Covering the code by unit tests, documenting it in Scala docs, and providing a tutorial

- Making DistAD and the framework open-source and publicly available on GitHub2

- Evaluation of the results over multiple datasets and empirical evaluation of scalability

The rest of the chapter is structured as follows: DistAD workflow and implementation are detailed
in Section 5.2. Section 5.3 covers the evaluation of the DistAD and demonstrates the scalability.
Finally, we summarize our work in Section 5.4.

5.2 DistAD: A Distributed Generic Anomaly Detection Framework
over Large KGs

In this section, we present DistAD, a generic framework for anomaly detection in KGs. The framework
performs anomaly detection by extracting semantic features from entities for calculating similarity,
applying clustering on the entities, and running multiple anomaly detection algorithms to detect the
outliers on the different levels and granularity. The output of DistAD is a list of anomalous RDF
triples. In the development process of the DistAD framework, we considered the factors of availability
of the framework, its impact on the community, and usability.

(i) Availability: All the components of the framework are fully integrated into the SANSA
ecosystem within the machine learning layer. The framework is fully available for the community as
an open-source GitHub repository.
2 https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.3_DistAD

56

5.2 DistAD: A Distributed Generic Anomaly Detection Framework over Large KGs

Figure 5.1: DistAD: system architecture abstract overview

(ii) Impact: DistAD offers practitioners from the semantic web domain to detect the outliers in
their dataset and improve the quality of the existing dataset. Moreover, thanks to its power in handling
huge RDF data, it can be used in IoT domains to detect anomalous events in the RDFized sensor data
in many areas such as energy domain3.

(iii) Usability: The framework is not only documented on the code level but we also provide a
tutorial on its use. We also have numerous samples available as an example class to significantly assist
in a try-out barrier.

DistAD offers options to select different algorithms and hyperparameters to prepare a customized
pipeline for anomaly detection. Table 5.1 lists the possibilities and Figure 5.1 depicts the high-level
system architecture overview. In the following, each step of the framework is explained in detail based
on Figure 5.1.

5.2.1 Components

Step 1: Reading Data

The first step of DistAD is reading the RDF data and loading it into memory as a dataframe. The
RDF data can reside in normal file systems or HDFS (Hadoop File System). The framework supports
N-Triple and Turtle file formats.

Step 2: Similarity Calculation

Most clustering algorithms require a mechanism to calculate the similarity between different data
points. In our framework, we used DistSim [148]. The semantic similarity estimations of DistSim
operate based on feature sets. These feature sets are derived from the RDF data by the Feature-Extractor
Module, which is implemented as a Transformer. DistSim provides multiple modes for the feature
extraction module. However, in this framework, we only use the predicates (OR mode in [148]) as
main features. In short, in this mode, two entities will be similar if they share many common predicates.
This helps the clustering algorithm to group similar entities together. Moreover, we implemented two
variations, i.e. Full and Partial similarity. In Full similarity, we consider all the existing predicates of

3 https://platoon-project.eu/

57

C
ha

pt
er

5
Sc

al
ab

le
an

d
D

is
tri

bu
te

d
A

no
m

al
y

D
et

ec
tio

n
on

K
G

s

Table 5.1: DistAD configurable components

Feature Options Comments

Similarity Calculation Full Similarity Consider all the predicates to generate features
Partial Similarity Consider only numerical predicates to generate fea-

tures

Clustering Algorithm BisectingKmeans[147] Hierarchical version of K-Means clustering algorithm
MinHashLSH Cohorting based on Local Sensitivity Hash

Feature Extraction Pivoting/Grouping Basic operation for extracting feature from RDF data
Literal2Feature[23] Sophisticated method for extracting features from

RDF data

Anomaly Detection Type
Numeric Literals Detects anomalies only in the numeric values
Predicates Detects anomalies on the predicate level
Multi-feature Detects anomalies on a set of features

Anomaly Detection Algorithms

Interquartile Range[60] Used for single-value features (numeric literals and
predicates)

Median Absolute Deviation[61] Used for single-value features (numeric literals and
predicates)

Z-score Used for single-value features (numeric literals and
predicates)

IsolationForest[64] Used for multi-feature scenarios

Cluster Detection Silhouette Method For detecting the best optimal number of clusters

58

5.2 DistAD: A Distributed Generic Anomaly Detection Framework over Large KGs

an entity to calculate the similarity between entities. In Partial mode, we only consider predicates that
have numeric literals as objects. Although the accuracy of the Full mode is higher due to considering
all the available predicates, the Partial mode benefits from faster operation due to less number of
predicates.

Step 3: Clustering Algorithms

Clustering is a key point in most anomaly detection techniques on KGs. The reason why clustering is
needed in anomaly detection in KGs is that the traditional methods may gather all values of a certain
predicate, such as dbp:weight, and attempt to detect anomalies for this feature. However, in KGs,
comparing a feature from different entity types (e.g., the weight of persons against the weight of
vehicles) is logically incorrect. Therefore here we mention two clustering algorithms that have been
integrated into the DistAD framework.

BisectingKmeans [147]

The bisecting K-Means clustering algorithm is a variation of the standard K-Means algorithm. The
method begins with a single cluster containing all of the points. Iteratively, it discovers divisible
clusters on the bottom level and bisects each one using k-means until there are k total leaf clusters
or none are divisible. To promote parallelism, the bisecting steps of clusters on the same level are
grouped. If bisecting all divisible clusters on the bottom level results in more than k leaf clusters, the
bigger clusters take precedence.

Besides the algorithm, we integrated the Silhouette method with squared Euclidean distance, which
is a heuristic approach to determine the optimal number of clusters in a data set. The Silhouette
Coefficient value presents a measure of how close each point in one cluster is to points in the
neighboring clusters. This measure has a range of [−1, 1], and a higher Silhouette Coefficient score
relates to a model with better-defined clusters. Our implementation can automatically select the
optional k for the clustering.

MinHashLSH

Locality Sensitive Hashing (LSH) [111] is an important class of hashing techniques that are commonly
used in clustering, approximate nearest neighbor search, and outlier detection with large datasets.
LSH hashes data points into buckets using a family of functions (“LSH families”), so that data points
that are near to each other are in the same bucket with a high likelihood. MinHash4 is an LSH
family method for Jaccard distance where input features are sets of natural numbers. The output of
MinHashLSH is a pairwise Jaccard similarity between data points.

Step 4: Feature Extraction

Before being able to apply any anomaly detection algorithm to the RDF data, the KGs should be
vectorized (Prepositionalized). This step moves each feature (object, predicate,...) to a separate
column in Spark dataframes for further subsequent analysis. To this end, we integrated the following
approaches.

4 https://spark.apache.org/docs/latest/ml-features#minhash-for-jaccard-distance

59

Chapter 5 Scalable and Distributed Anomaly Detection on KGs

Pivoting/Grouping

Pivoting is a reshaping mechanism that Spark provides over dataframes. Pivoting reshapes data
(produce a “pivot” table) based on column values. The following example depicts how pivoting works
on sample RDF data if one wants to pivot the Listing 5.1 based on “Predicate” and aggregate over
“Object”. The result is shown in Listing 5.2.

+-----------------+--------------+-----------+
|Subject |Predicate |Object |
+-----------------+--------------+-----------+
dbr:Barack_Obama	dbo:birthPlace	dbr:Hawaii
dbr:Barack_Obama	dbo:birthDate	1961-08-04
dbr:Angela_Merkel	dbo:birthPlace	dbr:Hamburg
dbr:Angela_Merkel	dbo:birthDate	1954-07-17
+-----------------+--------------+-----------+

Listing 5.1: Original dataframe before pivoting

+-----------------+-------------+--------------+
|Subject |dbo:birthDate|dbo:birthPlace|
+-----------------+-------------+--------------+
|dbr:Barack_Obama |1961-08-04 |dbr:Hawaii |
|dbr:Angela_Merkel|1954-07-17 |dbr:Hamburg |
+-----------------+-------------+--------------+

Listing 5.2: Dataframe after pivoting based on “Predicate” and aggregating over “Object”

Literal2Feature

Literal2Feature [23] is a generic, distributed, and a scalable software framework that can automatically
transform a given RDF dataset to a standard feature matrix by deep traversing the RDF graph and
extracting literals to a given depth. The result of Literal2Feature is a SPARQL query that extracts the
features. This option helps the user to extract features that are not in the direct vicinity of an entity
for the outlier detection purpose. A possible small sample feature extracting SPARQL query created
by the Literal2Feature model is shown in Listing 5.3. This query is executed by the SANSA built-in
SPARQL engine and the result is the vectorized RDF dataframe. Literal2Feature is fully introduced in
Chapter 4.

Step 5: Anomaly Detection Type

In DistAD, we have provided 3 types of anomaly detection methods in the framework i.e. (i) Numeric
Literals, (ii) Predicates, and (iii) Multi-Feature.

Literal Values

Due to the liberty of KG curation methods, KGs are prone to various kinds of errors. As explained
earlier, the errors may happen in Subject, Predicate, or Object parts. The focus here is on
numeric literals. For example, there can be extraction errors like parsing errors, e.g. “3-4” can be
interpreted as “3”, and “-4”.

60

5.2 DistAD: A Distributed Generic Anomaly Detection Framework over Large KGs

Predicates

This type of error happens when an entity has more/less than a usual number of the same predicate.
For example, a person normally may have none to a few children. However, if he/she has, for example,
200 children, then this type of (potential) error should be detected to increase the quality of the KGs.
In this case, the dataframe containing RDF data is transformed into a new dataframe by grouping
based on subjects and predicates and counting based on predicates.

1 SELECT
2 ?movie
3 ?movie__down_title
4 ?movie__down_runtime
5 WHERE {
6 ?movie a <http://data.linkedmdb.org/movie/film> .
7 OPTIONAL { ?movie <http://purl.org/dc/terms/title> ?movie__down_title .}
8 OPTIONAL { ?movie <http://data.linkedmdb.org/movie/runtime> ?

movie__down_runtime .}
9 }

Listing 5.3: Sample SPARQL query of Literal2Feature

Multi-Feature

Multi-feature anomaly detection helps users to detect contextual anomalies. Typically, there exists
some hidden correlation between multiple features, for example, there is a positive correlation between
the height and the age of a person. By considering these features separately, the algorithm will not
detect a person with a 1.8-meter height as abnormal. However, having contextual information such as
the person’s age (e.g., 2 years old) can make this combination anomalous.

Anomaly Detection Algorithms

To cover the mentioned anomaly detection methods, we have integrated multiple prominent anomaly
detection algorithms. For detecting anomalies in the numerical literals and predicates, IQR, MAD,
and Z-Score are implemented, and for the multi-feature scenario, Isolation Forest [64] is integrated.
The technical definition of these algorithms has been presented in Section 2.4.1.

Step 6: Output

The last step of the framework is saving the output to a file. The output is the list of anomalous RDF
triples. The triples can be saved as a normal file on a file system or on HDFS.

5.2.2 Implementation

As the programming language of SANSA is Scala5, we have selected this language and its APIs
in Apache Spark to provide the distributed implementation of DistAD. Moreover, we benefit from
SANSA IO, ML, and Query layers. Technically, as it can be seen in Figure 5.1, DistAD can be
divided into the following steps 1) Reading RDF data as a data frame, 2) vectorizing the RDF data,
5 https://www.scala-lang.org/

61

Chapter 5 Scalable and Distributed Anomaly Detection on KGs

Table 5.2: DistAD: Dataset statistics

Dataset Accident DBpedia1 DBpedia2

Format Turtle N-Triple N-Triple

#Triples 5,961,107 1,000,000 10,000,000

#Distinct Predicates 63 15,520 29,375

#Distinct Numeric Predicates 5 7,067 14,372

File Size 461 MB 137 MB 1.4 GB

3) Clustering the data, 4) Extracting features for anomaly detection, 5) Running anomaly detection
algorithm, and 6) Save the anomalies in a file.

5.3 Experiments

In this section, we present two sets of experiments to analyze different aspects of DistAD. In the first
experiment, the correctness of the extracted anomalies will be analyzed over different datasets, and in
the second experiment, the scalability of the proposed framework will be investigated.

5.3.1 Experiment A: Assessment of the detected Anomalies

In this section, we analyze the detected anomalies. To this end, three datasets have been exploited.
Engie-accident dataset, 1 million, and 10 million triple samples of DBpedia6. Engie SA7 is a French
multinational electric utility company that operates in the fields of energy transition, electricity
generation and distribution, natural gas, nuclear, renewable energy, and petroleum. The accident
dataset contains data about accidents that occurred in France in 20188. DBpedia dataset is a sample of
the infobox part which contains most of the literal predicates in DBpedia. An overview of the datasets
is given in Table 5.2.

Without loss of generality, we define the following setups to show the ability of the framework:

Anomaly Detection on Numerical Literals

For this case, we use the DBpedia1 dataset. We selected the BisectingKmeans algorithm for clustering,
IQR for anomaly detection, Full mode for the semantic similarity feature extractor, and pivoting
for vectorization. We also performed the silhouette method and set the number of clusters to 4.
As a result, DistAD could detect 19,778 triples that contain anomalous values from 1,232 distinct
properties. Some prominent anomalous properties found by DistAD are dbp:year, dbo:postalCode,
dbo:year2start, etc., and as it can be seen most of the outliers are found in the date/time-related
predicates. Manual inspection of detected outliers revealed that the DBpedia extraction tool can

6 https://databus.dbpedia.org/dbpedia/collections/latest-core
7 https://www.engie.com
8 can not be publicly published due to intellectual property concerns

62

5.3 Experiments

Table 5.3: DistAD: Example of real outliers in DBpedia

Entity Predicate Wikipedia Value DBpedia Value Reason

Ian_Turbott dbp:year 1989-2000 19892000^^xsd:integer can not handle hyphen

Bidhan_Saran dbo:postalCode 700004, 700006, 700007 700004700006700007^^xsd:integer can not handle commas

Steve_Walters dbp:year2start 198?–85 198^^xsd:integer wrong value in Wikipedia

not always extract correctly the information related to date/time and that leads to the wrong values.
Table 5.3 shows a few detected outliers and their corresponding values from Wikipedia.

Anomaly Detection on Predicates

For this case, we used the same configuration as the previous experiment but used the larger DBpedia2
dataset. By running DistAD, we could detect some interesting anomalies in the predicates. For
example, Nasir_al-Din_al-Tusi has four dbo:birthDate in the DBpedia dump, however, by manually
checking it we realized that three out of four are locations, not the dates. This error is propagated to
DBpedia because of putting locations under the Born property in Wikipedia infobox. Moreover, for
example, Alia_Toukan has two dbp:father which by checking Wikipedia, we realized that there is one
name as her father but with two different links which caused this issue.

Multi-Feature Anomaly Detection

In this case, we used the Engie dataset. As this dataset contains only accident entities, we set the
number of clusters to 1 and skipped the clustering part. Regarding anomaly detection, we used
Isolation Forest and used Literal2Feature for feature extraction.

Figure 5.2 shows the detected anomalies. As it can be seen, there are a few accidents that happened
outside France and the algorithm could correctly detect them as anomalies by considering their
geo-coordinates as a feature set and isolating them from the normal data. These types of anomalies
will not be detected if one considers only latitude or longitude separately. However, considering them
together makes it possible to detect contextual outliers. The dataset contains data of 57,783 accidents,
out of those 1,962 are outside France, and the framework could correctly detect all outliers.

5.3.2 Experiment B: Scalability

In this experiment, we evaluate the scalability of DistAD by using different data sizes and varying
cluster computing setups. To be able to have different sizes of datasets, we have sampled the DBpedia
dataset. Table 5.4 lists the datasets and their characteristic. As the scalability of Literal2Feature and
MinHashLSH has been investigated in [23] and [149] respectively, for these experiments, we use
BisectingKmeans for clustering, Z-Score for anomaly detection, Full mode for the semantic similarity
feature extractor, and pivoting/grouping for feature extraction. Moreover, we run two algorithms for
detecting anomalies over numeric literals and predicates.

63

Chapter 5 Scalable and Distributed Anomaly Detection on KGs

Figure 5.2: DistAD: accidents which are detected as anomalies

Table 5.4: DistAD: Dataset description

Dataset #Triples Size

DBpedia-S 1 M 136 MB

DBpedia-M 10 M 1.4 GB

DBpedia-L 50 M 6.8 GB

DBpedia 97.5 M 13.3 GB

DBpedia × 2 195 M 26.6 GB

DBpedia × 4 390 M 53.2 GB

Scalability over the number of cores

To adjust the distributed processing power, the number of available cores was regulated. In this
experiment, we selected DBpedia (13.3 GB) as a pilot dataset and the number of cores was increased
starting from 23

= 8 up to 27
= 128. The experiments were carried out on a small cluster of 4 nodes (1

master, 3 workers): AMD Opteron(TM) CPU Processor 6376 @ 2300MHz (64 Cores), 256 GB RAM.
Moreover, the machines were connected via a Gigabit network. All experiments are executed three
times and the average value is reported in the results. Figure 5.3 shows the scalability over different
computing cluster setups. It is clear that increasing the computational power horizontally decreases
the execution time. Initially, doubling the number of cores reduces the execution time by nearly a
factor of two. However, increasing the number of cores only minimally reduces execution time. This
phenomenon is caused by the overhead of moving data between nodes as well as network delay.

64

5.4 Summary

Total Number of CPU Cores

P
ro

ce
ss

in
g

Ti
m

e
in

 S
ec

on
ds

0

500

1000

1500

2000

2500

8 16 32 64 128

Predicates Numeric Literals

Figure 5.3: DistAD evaluation: processing power vs processing time

Scalability over dataset size

To analyze the scalability over different datasets, we fix the computational power to 64 cores and
run the experiments for all datasets introduced in Table 5.4. By comparing the runtime as shown in
Figure 5.4, we note that the execution time does not increase exponentially. Hence, increasing the size
of the dataset with a factor of 10 does not necessarily increase the execution time by a factor of 10.
This behavior is due to the distribution among available resources e.g. (memory) and partition size.
It can be seen that by increasing the dataset size from 1.4 GB to 13.3 GB (∼ 9.5 times bigger), the
execution time almost only doubles.

5.4 Summary

In this chapter, we introduced DistAD, a generic, distributed, and scalable framework for anomaly
detection in KGs. DistAD is open-source, available on GitHub, and integrated into SANSA Stack. By
providing full control over different algorithms, methods, and (hyper-)parameters, DistAD enables
users to have a substantial level of flexibility in using the framework. Our experiments show that the
framework can correctly detect different types of anomalies in KGs and it can help to improve the data
quality in KGs. Moreover, our experiments show that DistAD can be successfully scaled over a cluster
of nodes for a large size of data.

65

Chapter 5 Scalable and Distributed Anomaly Detection on KGs

P
ro

ce
ss

in
g

Ti
m

e
in

 S
ec

on
ds

0

500

1000

1500

2000

Dbpedia - S
~134 MB

Dbpedia - M
~1.4 GB

Dbpedia - L
~ 6.8 GB

Dbpedia
~13.3 GB

Dbpedia * 2
~26 GB

Dbpedia * 4
~52 GB

Predicates Numeric Literals

Figure 5.4: DistAD evaluation: size-up performance evaluation over 64 Cores

66

CHAPTER 6

Explainable Anomaly Detection on KGs

Acknowledgement This chapter is based on our scientific publication: Farshad Bakhshandegan
Moghaddam, Jens Lehmann and Hajira Jabeen, “ExPAD: An Explainable Distributed Automatic
Anomaly Detection Framework over Large KGs”, IEEE 17th International Conference on Semantic
Computing (ICSC), 2023, pp. 204-211, https://doi.org/10.1109/ICSC56153.2023.
00040.

6.1 Motivation

Although AD is a well-studied field in the area of machine learning and statistics, there is a significant
gap of AD in the area of Semantic Web and large-scale heterogeneous Knowledge Graphs (KGs).
Especially when it comes to interpretability, there is no research work in the area of explainable
anomaly detection in KGs.

As already explained, because the entered data are generally neither constrained nor cross-validated,
KGs are prone to various types of errors because of the range of approaches and freedom in inserting
the input data. These errors can happen at Subject, Predicate, or Object part in the RDF
format. For example, there can be errors in the predicate part, such as a person has 𝑛 death dates1

which 𝑛 > 1 (a person has only one death date). Or there can be extraction errors like parsing errors,
e.g. in some cases the extraction tool can not interpret “-” and converts “1989-2000” in Wikipedia2 to
“19892000” in DBpedia3.

Although numerous techniques for detecting outliers and anomalies in unstructured collections of
multiple dimension points have been developed in recent years, with the current interest in large-scale
heterogeneous data in knowledge graphs, most of the traditional algorithms are no longer directly
applicable to KGs due to scalability and RDF complex data structure. Furthermore, uncovering why a
reported anomaly has occurred (explanation discovery), forms a crucial capability for any anomaly
detection system.

In this chapter, we propose ExPAD, a generic, distributed, and scalable software framework that
can automatically detect numeric anomalies in KGs and produce human-readable explanations for

1 https://dbpedia.org/page/Nasir_al-Din_al-Tusi
2 https://en.wikipedia.org/wiki/Ian_Turbott
3 https://dbpedia.org/page/Ian_Turbott

67

https://doi.org/10.1109/ICSC56153.2023.00040
https://doi.org/10.1109/ICSC56153.2023.00040

Chapter 6 Explainable Anomaly Detection on KGs

why a given value of a variable in an observation can be considered as outlier. ExPAD is inspired by
OutlierTree [137] and works by evaluating and following distributed supervised decision tree splits
on variables. This helps to detect and explain anomalous cases which can not be detected without
considering other features. For example, it may be reasonable to assume that a female person’s age is
4. However, if we know that this person is pregnant, then the age of 4 would not be possible. Under
this logic, it is possible to produce human-readable explanations for why a given value of a variable in
an observation can be considered as outlier, by considering the decision tree branch conditions.

Furthermore, given our main focus on distributed computing and the ability to perform on large
KGs, ExPAD is integrated into the SANSA stack [19].

In this chapter, we address the following research question:

RQ3: Can explainable anomaly detection be performed efficiently and effectively on knowledge
graphs?

To summarize, the main contributions of this chapter are as follows:

- A scalable distributed anomaly detection framework that can automatically detect numeric
anomalies in a large RDF graph and provide clear explanations for why certain values are
identified as anomalies.

- Integration of ExPAD into the holistic SANSA stack and making it open-source and publicly
available on GitHub4

- Covering the code by unit and integration tests, documenting it, and providing a tutorial within
Databricks

- Evaluation of the results over multiple datasets and empirical evaluation of scalability

The remainder of the chapter is organized as follows: Section 6.2 describes the architecture
and implementation of ExPAD. Section 6.3 is devoted to the experimental setup, the datasets, and
scalability evaluation. Finally, Section 6.4 summarizes the chapter.

6.2 ExPAD: An Explainable Distributed Automatic Anomaly Detection
Framework over Large KGs

ExPAD is a generic distributed framework for explainable anomaly detection in KGs. The main goal
of the framework is to detect numeric anomalies in KGs and to provide human-readable explanations
for why a given value can be considered as an outlier. ExPAD vectorizes RDF data (extracting literals
from RDF which is explained in Chapter 4), then to detect anomalies on a given numerical variable 𝑣,
it fits a Distributed Decision Tree5, choosing 𝑣 as the target and the rest of attributes as the features.
Based on the depth of the tree, 𝑣 is divided into two or more partitions. By applying any anomaly
detection method (eg. IQR) over the partitioned data and finding anomalies, it is possible to produce
explanations for why a given value of the target variable is identified as an outlier, by considering the
4 https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.5_ExPAD
5 https://spark.apache.org/docs/latest/mllib-decision-tree.html

68

6.2 ExPAD: An Explainable Distributed Automatic Anomaly Detection Framework over Large KGs

decision tree branches and their corresponding variables. An example is sketched here to shed light
on the working of ExPAD. Consider an RDF dataset containing information about the class Person
with sample predicates age (numerical), job (URI), and gender (boolean) with 100 triples. After
vectorizing and indexing this data, ExPAD considers one predicate (feature) as a target variable and
the rest of the predicates as features for training a decision tree. Figure 6.1 depicts a fitted decision
tree model with target feature age. As can be seen each tree node (internal or leaf) partitions data. For
example, the root node partitions data based on job or the second leaf node from the right partitions
data based on job and gender. Based on the second leaf node from the right, the estimated age for a
person with job type 1.0 (this is a mapping index) and gender 0.0 is 16.30, however, based on this
partitioning there is a person with the age of >= 100 which is an anomaly in this scenario. Now this
anomaly can be explained as “the age value >= 100 is suspicious given job = 1.0 and gender = 0.0”
or after mapping indices to the original values “the age value >= 100 is suspicious given job=student
and gender=female”. By this logic, the fitted decision tree can be parsed and for each node, an SQL
query can be extracted (e.g. SELECT * FROM data WHERE job=1.0 AND gender=0.0).
We consider these queries as rules. Finally applying these extracted rules on the dataset and applying
anomaly detection techniques on the target values can yield explanations for the possible detected
outliers.

In the development process of the ExPAD framework, we considered the factors of availability of
the framework, its impact on the community, and usability.

(i) Availability: To make the framework available for the community, all the components of it have
been integrated into the SANSA ecosystem. The framework is fully available for the community as an
open-source GitHub repository [150].

(ii) Impact: ExPAD offers Semantic Web practitioners a tool to not only detect anomalies in their
RDF dataset but also provide an explanation and improve the quality of the existing dataset. Besides
this, as it can handle huge RDF data, it can be a suitable option for enterprise companies in the field of
energy and IoT to detect anomalous events in the RDFized sensor data6.

(iii) Usability: Although the framework is fully documented we also provided a tutorial and a
sample in Databricks to assist end-users and significantly decrease the try-out barrier.

Figure 6.2 depicts the high-level system architecture overview of ExPAD. Moreover, Table 6.1 lists
configurable parts of the framework. In the following, each step of the framework is explained in
detail based on Figure 6.2.

6.2.1 Components

Step 1: Reading Data

The first step of the pipeline is reading and loading the RDF data. The output of this step will be a
Spark dataframe. ExPAD supports N-Triple and Turtle file formats and the RDF data can reside in
normal file systems or Hadoop File System (HDFS).

Step 2: Feature Extractor

The output of the first step is a dataframe with 3 columns that store ⟨subject,predicate,object⟩,
however, to be able to apply any anomaly detection algorithm on the object part, the dataframe

6 https://platoon-project.eu

69

Chapter 6 Explainable Anomaly Detection on KGs

≤ >

Figure 6.1: ExPAD: trained decision tree with the target variable age

should be vectorized (Prepositionalized). This step moves each predicate to a separate column
and reshapes the dataframe accordingly. In this step, we borrowed two integrated approaches from
DistAD (Chapter 5) to apply vectorization.

Pivoting/Grouping

A pivot is an aggregation where one (or more in the general case) of the grouping columns has
its distinct values transposed into individual columns. Spark provides a pivoting mechanism over
dataframes. The detailed explanation can be found in Section 5.2.1

Literal2Feature

Literal2Feature [23] transforms a given RDF dataset to a standard feature matrix by deep traversing the
RDF graph and extracting literals to a given depth. It generates a SPARQL query which is executed by
the SANSA built-in SPARQL engine. The result of the SPARQL query execution is the vectorized
RDF dataframe. This option helps the user to extract features that are not in the direct vicinity of an

70

6.2 ExPAD: An Explainable Distributed Automatic Anomaly Detection Framework over Large KGs

Figure 6.2: ExPAD system architecture high-level overview

entity. The detailed explanation can be found in Chapter 4.

SmartDataFrame

Besides above mentioned approaches, in ExPAD we implemented a new transformation pipeline
entitled “SmartDataFrame”. SmartDataFrame not only reads the RDF data into a dataframe but also
extracts features based on objects and after detection of data types, casts the literal to the primitive
data types. This transformer converts all features corresponding to their feature type into numeric
representations. For example, non-categorical strings (e.g. URIs) are transformed into the label
indexer mapping or boolean-type will be converted to {0, 1}. This transformation is necessary to
make the corresponding decision tree learning possible. Listing 6.1 and Listing 6.2 depict a native
RDF dataset featurized via SmartDataFrame transformer:

dbr:Person0 dbo:age "13"^^http://www.w3.org/2001/XMLSchema#integer
dbr:Person0 dbo:gender "false"^^http://www.w3.org/2001/XMLSchema#boolean
dbr:Person0 dbo:job dbr:Student
dbr:Person1 dbo:age "8"^^http://www.w3.org/2001/XMLSchema#integer
dbr:Person1 dbo:gender "true"^^http://www.w3.org/2001/XMLSchema#boolean
dbr:Person1 dbo:job dbr:Teacher

Listing 6.1: Sample RDF data

Step 3: Decision Tree Learning

The third step of the framework is fitting a distributed decision tree. For this reason, one of the
originally numeric columns (features) in the dataframe will be considered as a target variable and the

71

Chapter 6 Explainable Anomaly Detection on KGs

+-----------+------------+---------------+-----------+--------------+
|s |age__integer|gender__boolean|job__url |job__url_index|
+-----------+------------+---------------+-----------+--------------+
|dbo:Person0|13 |0 |dbr:Student|0 |
|dbo:Person1|8 |1 |dbr:Teacher|1 |
+-----------+------------+---------------+--------------------------+

Listing 6.2: Transformed dataframe via SmartDataFrame

rest of the columns as features. We only consider the original numeric features as target variables,
because anomaly detection will happen on only these values in the next steps, however, the categorical
ones will be involved as a feature in the decision tree training process. The maximum depth of the tree
is a hyper-parameter, the deeper the tree goes, the more complex explanation will be produced due to
the number of reported variables. This value is configurable by the end user. After the training is
done, the decision tree model will be ready to be parsed in the next step.

Step 4: Rule Extractor

This component is responsible for parsing the fitted decision tree model and for each tree node (either
internal node or leaf node) extracting an SQL rule. The parsing process uses DFS (Depth First
Search) [151] to traverse the whole tree. The process keeps track of each variable in every split and
generates an SQL query for each path. Consider the example at Figure 6.1, the generated rules are
shown in Listing 6.3.

SELECT * from df WHERE job <= 0.5
SELECT * from df WHERE job > 0.5
SELECT * from df WHERE job <= 0.5 AND gender <= 0.5
SELECT * from df WHERE job <= 0.5 AND gender > 0.5
SELECT * from df WHERE job > 0.5 AND gender <= 0.5
SELECT * from df WHERE job > 0.5 AND gender > 0.5

Listing 6.3: Generated SQL rules

Worth noting that, instead of SQL, SPARQL rules could also be generated, however, as SQL is a
native query language implemented over Spark dataframe, the execution time of SQL over dataframe
is much shorter than running SPARQL on the RDF data in SANSA.

Step 5: Anomaly Detection

In ExPAD, we have provided anomaly detection methods for only numerical literals. For detecting
anomalies in the numerical literals, we have integrated IQR, MAD, and Z-Score. The technical
definition of these algorithms has been presented in Section 2.4.1.

Step 6: Explanation Generator

Now that rules have been generated, one can apply each rule to the dataset to filter the data (fetch
cluster). This is possible due to Spark SQL7 which is a Spark module for running SQL over dataframes.
7 https://spark.apache.org/sql

72

6.2 ExPAD: An Explainable Distributed Automatic Anomaly Detection Framework over Large KGs

The result will be a dataframe as well. The target column will be selected to be checked for anomalies
with an anomaly detection algorithm. In case any anomaly is detected, it will be reported alongside
the variables and their corresponding values in the SQL rule. For clarification, consider the example in
Figure 6.1. By applying SELECT * from df WHERE job > 0.5 AND gender <= 0.5
and afterward running IQR over the filtered age values, one can see that the value 100 will be detected
as an anomaly. This value can be reported as “the age value 100 is suspicious given job = 1.0 and
gender = 0.0” or after mapping indices to the original values “the age value = 100 is suspicious given
job=student and gender=female”.

The final output of the framework is the list of anomalous RDF triples and corresponding explanations
that can be saved as a normal file on a file system or on HDFS.

6.2.2 Implementation

As Scala8 is the programming language of SANSA, we chose the same and its APIs in Apache Spark9

to provide the distributed implementation of ExPAD. Moreover, we benefit from the SANSA IO layer
for reading/writing RDF data. Technically, ExPAD can be divided into the following steps 1) Reading
RDF data as a data frame with SmartDateFrame, 2) Generating feature matrix, 3) Training decision
tree, 4) Traversing and parsing fitted decision tree and generating rules, 5) Performing anomaly
detection, and 6) Generating explanation. Algorithm 3 depicts the framework execution pipeline.

Algorithmus 3 : ExPAD Workflow
Data : 𝐺 (𝐸,𝑉) Knowledge Graph as a RDF serialization
Result : possible anomalies and their explanation

18 𝑑𝑓 = 𝑟𝑒𝑎𝑑 (𝐺);
19 𝑑𝑓 = 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 (𝑑𝑓);
20 𝑑𝑓 = 𝑆𝑚𝑎𝑟𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒.𝑟𝑒𝑎𝑑 (𝑑𝑓);
21 foreach column 𝑐 ∈ 𝑑𝑓 .𝑐𝑜𝑙𝑠 do
22 if 𝑐 is a numeric literal then
23 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑐

24 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑑𝑓 .𝑐𝑜𝑙𝑠 \ 𝑐
25 𝑑𝑡 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒(𝑑𝑓 , 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
26 𝑟𝑢𝑙𝑒𝑠 = 𝑝𝑎𝑟𝑠𝑒(𝑑𝑡)
27 foreach rule 𝑟 ∈ 𝑟𝑢𝑙𝑒𝑠 do
28 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝐹 = 𝑑𝑓 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑟)
29 𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝑎𝑡𝑎 = 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝐹 (𝑐𝑜𝑙 = 𝑡𝑎𝑟𝑔𝑒𝑡)
30 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 = 𝑑𝑒𝑡𝑒𝑐𝑡𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠(𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝑎𝑡𝑎)
31 if anomalies is not empty then
32 𝑟𝑒𝑝𝑜𝑟𝑡 (𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠, 𝑟)

8 https://www.scala-lang.org
9 https://spark.apache.org

73

C
ha

pt
er

6
Ex

pl
ai

na
bl

e
A

no
m

al
y

D
et

ec
tio

n
on

K
G

s

Table 6.1: ExPAD configurable components

Feature Options Comments

Feature Extraction Pivoting/Grouping Basic operation for extracting feature from RDF data
Literal2Feature[23] Sophisticated method for extracting features from RDF data

Decision Tree MaxDepth Maximum depth of the tree (nonnegative)
MaxBins Maximum number of bins used for discretizing continuous

features

Anomaly Detection
Interquartile Range[60] Used for numeric values
Median Absolute Deviation[61] Used for numeric values
Z-score Used for numeric values

General verbose Boolean to generate logs
AnomalyListSize The minimum number of samples required for anomaly

detection method

74

6.3 Experimental Results

6.3 Experimental Results

In this section, two sets of experiments will be conducted to analyze two particular aspects of ExPAD,
effectiveness and computational performance. In the first experiment, the correctness of the extracted
anomalies explanation will be analyzed over different datasets, and in the second experiment, we will
investigate the scalability of the framework. To the best of our knowledge, there is no other work to
simultaneously detect and explain anomalies on KGs via a distributed computing stack. Therefore, in
this section, we introduce multiple scenarios to examine the quality of the ExPAD solely.

6.3.1 Dataset

To the best of our knowledge, there is no RDF dataset benchmark for anomaly detection and especially
for explainability. Moreover, in Chapter 5, we figured out that most of the detected numeric outliers in
DBpedia are found in the date/time related values and the reason is that the extraction tool can not
always extract correctly the information related to date/time. For example 198?-85 in Wikipedia10,
parsed to 198^^xsd:integer in DBpedia11. We should note that, although this type of anomaly
can be successfully detected by ExPAD, however explaining them with respect to other variables may
not be informative due to independentness. Therefore DBpedia can not be an adequate option for
investigation because it contains many independent predicates that do not correlate with each other.
To this end, and as there is no adequate RDF dataset benchmark, three datasets have been exploited.
Engie-accident dataset12, Titanic dataset13, and our generated synthetic dataset. Engie SA14 is a
French multinational electric utility company that operates in the fields of energy transition, generation,
and distribution, natural gas, nuclear, renewable energy, and petroleum. The accident RDF dataset
contains data about ∼ 57K car accidents that occurred in France in 2018 (such as geo-coordinate,
weather conditions, ...). The Titanic dataset contains information about passengers of the Titanic
shipwreck. The dataset contains 12 features for 891 passengers. Besides this and to be able to have
different sizes of datasets, we implemented an RDF data simulator that generates synthetic RDF
graphs. For the RDF data generator, we consider Person class with 5 synthetic properties and the
respective distribution listed in Table 6.2.

6.3.2 Experiment A: Assessment of the detected Anomalies Explanation

In this section, we analyze the detected anomalies and explanations for all three mentioned datasets.
A synthetic data set with manually added anomalies, an Engie accident dataset, and an RDFized
version of the Titanic dataset. For the synthetic data, we generated 100𝐾 triples with the mentioned
distribution in Table 6.2. For the anomalies, we added 0.02% (= 20 cases) anomalous data; 10 pregnant
women with age ∈ [90, 100], 5 presidents with age ∈ [4, 10], and 5 students with age ∈ [70, 90]. The
reason why we only added a few anomalous cases is that anomalies should rarely happen, and in
case they occur frequently they can not be detected. It is worth noting that the 5 generated predicates
in the simulated data are deliberately defined as dependent (e.g. pregnancy is related to gender).

10 https://en.wikipedia.org/wiki/Steve_Walters
11 https://dbpedia.org/page/Steve_Walters
12 can not be publicly published due to intellectual property concerns
13 https://www.kaggle.com/c/titanic
14 https://www.engie.com

75

C
ha

pt
er

6
Ex

pl
ai

na
bl

e
A

no
m

al
y

D
et

ec
tio

n
on

K
G

s

Table 6.2: ExPAD: Predicates used for generating synthetic RDF graph for class Person

Predicate Value Type Example Distribution

id non negative integer {0,1,2,...} incremental starting from 0
gender boolean {male,female} 50% male, 50% female
job URI {Student,President} 50% student, 50% president
pregnant boolean {true,false} if male then false, if job=student then false, if job=president and

age>55 then false, if job=president and age<=55 then 40%
age positive integer {1,2,3,...} if job=student in [7,14], if job=president in [25,70]

76

6.3 Experimental Results

Figure 6.3: ExPAD: trained decision tree with the target variable age

Although adding other independent predicates (such as weather conditions) won’t cause any issues for
the workflow, however, our approach naturally (due to the nature of the decision tree algorithm) can
not generate meaningful explanations for the independent variables (age of a person is not correlated
to the weather condition and therefore can not be explained meaningfully via it).

In this scenario, we set the maximum depth of the tree to two, used Literal2Feature for extracting
features, and used IQR for anomaly detection. Note that all of these values are configurable for the
end user. Moreover, in this scenario, we only focused on the age predicate, although ExPAD performs
on all the numeric variables. Figure 6.3 depicts the fitted decision tree on the 100𝐾 synthetic data
with age as the target variable.

For the accident dataset, we used Literal2Feature for extracting features (due to the nested architecture
of RDF in this dataset), used IQR for anomaly detection, and set the maximum depth of the tree to
two. In this case, we executed ExPAD on the geo-coordinates of the accidents.

For the Titanic dataset, we used RDFizer [152] to transform Comma Separated Value (CSV) data
to RDF. It is beyond the scope of this chapter to explain how RDFizer works, however, it uses RDF
Mapping Language (RML)15 rules for the transformation of (un)structured data into RDF knowledge
graphs. For this scenario, we only used the training dataset provided by Kaggle16. For feature
extraction we used pivoting approach, for anomaly detection IQR has been used, and set the maximum
depth of the tree to three.

After applying ExPAD on all three datasets, all 20 cases from synthetic data, 9 cases from the
Titanic dataset, and 5 cases from the accident dataset have been detected. Table 6.3 shows some
sample-detected anomalies with the corresponding explanation. It is worth noting that there is a
positive correlation between decision tree depth and the complication of explanation (number of
variables reported in the explanation). Obviously, as we go deeper, the explanation may contain more
variables. Comparing the detected anomalies from the Titanic dataset with OutlierTree [137] results on

15 https://rml.io/specs/rml
16 https://www.kaggle.com/competitions/titanic/data?select=train.csv

77

Chapter 6 Explainable Anomaly Detection on KGs

Table 6.3: ExPAD: Sample of detected anomalies and their explanation

Dataset Anomaly Explanation

100𝑘 Synthetic age = 100 𝑎𝑔𝑒 = 100 is anomalous given pregnant = 𝑡𝑟𝑢𝑒
age = 80 𝑎𝑔𝑒 = 80 is anomalous given pregnant = 𝑓 𝑎𝑙𝑠𝑒 and job =

𝑠𝑡𝑢𝑑𝑒𝑛𝑡

age = 5 𝑎𝑔𝑒 = 5 is anomalous given pregnant = 𝑓 𝑎𝑙𝑠𝑒 and job =
𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡

Titanic Fare = 0 𝐹𝑎𝑟𝑒 = 0 is anomalous given Pclass = 3 and SibSp = 0

Accident longitude = 50 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = 50 is anomalous given location=‘𝐹𝑟𝑎𝑛𝑐𝑒’

Table 6.4: ExPAD: Synthetic dataset description

Dataset File Size #Triples

𝐷𝑆1 500𝑀𝐵 1𝑀

𝐷𝑆2 2.6𝐺𝐵 5𝑀

𝐷𝑆3 5.2𝐺𝐵 10𝑀

𝐷𝑆4 26𝐺𝐵 50𝑀

𝐷𝑆5 52𝐺𝐵 100𝑀

the same dataset, revealed that ExPAD detected the anomalies correctly. Moreover, manual inspection
of the detected anomalies in the accident dataset, reveals that although the accidents’ location in the
dataset is ‘France Métropole’, however, their geo-coordinates show that they lay outside France, in
Asia and eastern Europe (Figure 6.4).

6.3.3 Experiment B: Scalability

In this experiment, we evaluate the scalability of ExPAD by different data sizes and varying cluster
processing setups. To be able to have different sizes of datasets, we use the same RDF data simulator
explained earlier to generate big synthetic RDF graphs. Table 6.4 listed the generated datasets and
their characteristics (worth mentioning that the German DBpedia size is 48GB). As the running
time of reading data from HDFS is the same for all the configurations, and as the scalability of
Literal2Feature has been investigated in [23], for these experiments, we neglect the execution time of
these components.

Scalability over the number of cores

To adjust the distributed processing power, the number of available cores was regulated. In this
experiment, we selected DS3 (5.2GB) as a pilot dataset and the number of cores was increased starting
from 22

= 4 up to 27
= 128. The experiments were carried out on a small cluster of 4 nodes (1

master, 3 workers): AMD Opteron(TM) CPU Processor 6376 @ 2300MHz (64 Cores), 256 GB RAM.

78

6.3 Experimental Results

Figure 6.4: ExPAD: detected anomalies on the Accident Dataset

Moreover, the machines were connected via a Gigabit network. All experiments are executed three
times and the average value is reported in the results. Moreover, in these experiments, we set the
maximum depth of the tree to 2, used pivoting for extracting features, and used MAD for anomaly
detection. Figure 6.5 shows the scalability over different computing cluster setups. It is clear that
increasing the computational power horizontally decreases the execution time. Initially, doubling the
number of cores reduces the execution time by nearly a factor of two. However, by adding more cores,
the execution time only slightly decreases. This phenomenon is caused by the overhead of moving
data between nodes as well as network latency. The maximum speed-up is 5.1x.

Scalability over dataset size

To analyze the scalability over different datasets, we fix the computational power to 32 cores and
run the experiments for all datasets introduced in Table 6.4. By comparing the run-time as shown in
Figure 6.6, we note that the execution time does not increase neither linearly nor exponentially. This
behavior is due to the distribution among available resources e.g. (memory) and partition size. It can
be seen that by increasing the dataset size from 500 MB to 52 GB (∼ 100 times bigger), the execution
time is almost only 19 times higher.

Scalability over the number of features

For checking anomalies in each feature, one decision tree should be trained, therefore the complexity
of ExPAD with respect to the number of features is linear. However, to show how decision tree training
of ExPAD behaves when the data set dimensionality increases, we added 1000 uninformative numeric
features to the DS3 dataset which are drawn from a Gaussian distribution. Dealing with these random
numbers can be problematic for decision trees. Also, we fixed the computational power to 32 cores,
max decision tree depth to 3, and set age as the target variable. Figure 6.7 shows that increasing

79

Chapter 6 Explainable Anomaly Detection on KGs

R
un

tim
e

(in
 s

ec
on

d)

0

50

100

150

4 8 16 32 64 128

Anomaly Detection and Explaination DecisionTree

Figure 6.5: ExPAD evaluation: processing power scalability on DS3

the dimensionality increases the running time almost linearly. This is happening due to the efficient
implementation of the decision tree in Spark. So it can be seen the framework can handle even a large
number of features.

6.4 Summary

In this chapter, we introduced ExPAD, a generic, distributed, and scalable framework for explainable
numeric anomaly detection in KGs. ExPAD is open-source, available on GitHub, and integrated into
SANSA Stack. Inspired by OutlierTree, ExPAD generates human-readable explanations for outlier
identification, by traversing supervised decision tree splits.

As ExPAD operates on univariate data, it may not be able to detect all multi-dimensional outliers
(as opposed to other methods such as Isolation Forest that consider multiple variables simultaneously),
however, it generates meaningful explanations for the dependent features. Moreover, our experiments
show that the framework by detecting and explaining abnormalities can help in enhancing the data
quality in KGs. Furthermore, our results indicate that ExPAD can be successfully scaled across a
cluster of nodes for very large data sets.

80

6.4 Summary
R

un
tim

e
(in

 s
ec

on
d)

0

100

200

300

DS1 DS2 DS3 DS4 DS5

Anomaly Detection and Explaination DecisionTree

Figure 6.6: ExPAD evaluation: size-up performance evaluation over 32 Cores

R
un

tim
e

(in
 s

ec
on

d)

0

100

200

300

5 50 100 200 500 1000

Anomaly Detection and Explaination DecisionTree

Figure 6.7: ExPAD evaluation: running time of ExPAD over a large number of features

81

CHAPTER 7

Implementation and Use-Case

Acknowledgement This chapter is based on our scientific publications:

• Farshad Bakhshandegan Moghaddam, Carsten Felix Draschner, Jens Lehmann, Hajira Jabeen,
“Semantic Web Analysis with Flavor of Micro-Services”, LAMBDA Doctoral Workshop 2021,
http://ceur-ws.org/Vol-3195/paper1.pdf

• Carsten Felix Draschner, Farshad Bakhshandegan Moghaddam, Jens Lehmann, Hajira
Jabeen, “Semantic Analytics in the Palm of Your Browser”, LAMBDA Doctoral Workshop
2021, http://ceur-ws.org/Vol-3195/paper2.pdf

The preceding chapters have outlined the algorithmic and technical approaches employed by
Literal2Feature, DistAD, and ExPAD. However, this chapter delves into the standardization and
accessibility of these approaches, transforming them into readily available resources. Furthermore, it
explores the practical implementation of these newly developed tools and frameworks, examining their
testing capabilities within Databricks and Zeppelin notebooks, as well as their integration potential
through REST API.

Section 7.1 provides a detailed account of the technical deployment. It highlights the steps
taken to effectively bring these solutions into operation. Additionally, Section 7.2 illustrates how
these technologies can be thoroughly tested and utilized within the browser environment, leveraging
the capabilities of the Platform-as-a-Service provider, Databricks. Moreover, Section 7.3 presents
an alternative deployment scenario wherein the technology can be employed on-site, utilizing
Zeppelin notebooks or adopting a REST API architecture. This section explores the practical aspects
and considerations involved in implementing these approaches, catering to the specific needs and
preferences of users.

By expanding on these topics, this chapter offers a comprehensive overview of the standardized
resources, testing methodologies, and deployment options associated with proposed frameworks in
this thesis. It equips readers with the necessary knowledge to leverage these innovative technologies
effectively in various settings and configurations.

83

http://ceur-ws.org/Vol-3195/paper1.pdf
http://ceur-ws.org/Vol-3195/paper2.pdf

Chapter 7 Implementation and Use-Case

7.1 Resources

Every project created as part of this thesis was carefully developed and released in accordance with
a well-defined structure. The technical components driving these projects have been made fully
open source and are readily accessible through the dedicated GitHub repository. To aid users in
understanding and utilizing these components effectively, comprehensive documentation is available
on the GitHub page, as well as within the repository itself.

The repository documentation has been thoughtfully organized and structured, making it easily
navigable for users. It can be accessed through GitHub pages, ReadMe files, and corresponding release
notes. These resources provide detailed insights into the functionality, implementation, and usage
guidelines of the projects. The availability of explicit schemas, open-source code, and comprehensive
documentation empowers users to explore and contribute to the ongoing evolution of these projects,
promoting further innovation and advancement.

7.1.1 GitHub Repository

The complete body of work can be readily accessed through the dedicated GitHub repository of the
SANSA stack1. Within this repository, multiple projects are available, with the primary focus centered
around the central SANSA stack. This central repository serves as a unifying platform, consolidating
the historical projects that were previously segregated by layers. In addition to the central SANSA
stack, the repository also contains separate projects that offer technical implementations for Zeppelin
Notebook, Databricks, and REST API functionalities. These projects are designed for particular
situations and offer unique features and integrations. To facilitate ease of use and comprehension, the
central repository offers comprehensive documentation through detailed ReadMe files and GitHub
pages. These resources serve as valuable references, guiding users in understanding the various aspects
of the projects and assisting in their effective implementation. Moreover, the GitHub repository
includes a strong testing system that uses GitHub actions to run unit tests. This helps make sure that
the projects are of high quality and dependable, ultimately improving their performance. By bringing
together the projects, offering detailed documentation, and using effective testing methods, the GitHub
repository for the SANSA stack becomes a complete platform for accessing and using the different
parts of the SANSA stack. It allows users to explore what’s available, understand how they work, and
easily incorporate them into their own work processes and systems.

Repository Structure

The central SANSA project repository offers a well-structured organization of both code and
documentation, categorized into distinct layers. These layers encompass the RDF layer for efficient
management of input and output, the Query layer designed for executing SPARQL queries, the OWL
layer dedicated to ontology analytics, the Inference layer for reasoning capabilities, and the ML layer
specifically focused on data analytics and machine learning approaches (Figure 7.1).

Within the scope of this thesis, contributions were made to the ML layer of the SANSA stack.
The emphasis was placed on developing and enhancing anomaly detection functionalities, allowing
users to leverage AD techniques on their data. By structuring the repository based on these layers, it
becomes easier for users to navigate and locate the relevant code and documentation pertaining to their
1 https://github.com/SANSA-Stack

84

7.1 Resources

Figure 7.1: SANSA stack structure

specific requirements. This organized approach ensures a coherent and comprehensive understanding
of the SANSA stack, enabling users to effectively utilize the functionalities provided by each layer.

7.1.2 Documentation

The documentation accompanying the new modules offers a comprehensive overview of each
module’s concept, providing practical insights and helpful tutorials. To facilitate implementation,
the documentation includes exemplary code snippets, Scala docs, and sample Databricks notebooks.
Users can effortlessly navigate between the documentation and the codebase, allowing for quick and
convenient reference. By providing a range of resources and linking them closely, the documentation
enables users to easily locate the necessary information, empowering them to understand and utilize
the modules effectively.

Sample Code and Collaborative Environments

To facilitate the understanding and adoption of the technical approaches, namely Literal2Feature,
DistAD, and ExPAD, a collection of example code snippets, classes, and notebooks have been
developed. These resources are designed to minimize the initial barriers of trial and error, providing
users with practical demonstrations of feature extraction, anomaly detection, and explainable anomaly
detection. The code snippets serve as concise and illustrative examples, showcasing the implementation
details of key functionalities. Additionally, the development of dedicated classes offers reusable
components that can be seamlessly integrated into users’ own projects.

Moreover, to enhance the accessibility of the example pipelines showcased, we have created
notebook versions of these examples. This approach ensures that the example code snippets are
accompanied by comprehensive documentation and generated data. Given that the SANSA stack

85

Chapter 7 Implementation and Use-Case

relies on Apache Spark, we utilize Apache Zeppelin for executing local notebooks and Databricks as a
Platform-as-a-Service (PaaS) provider for cloud-based notebooks.

In Section 7.2, we provide a detailed guide on how to instantiate these notebooks within the
Databricks environment. This section outlines the necessary steps and configurations required to
set up and utilize the example pipelines effectively. Furthermore, in Section 7.3, we introduce the
execution of the example pipelines in both the REST API and Zeppelin environments, offering users
the flexibility to choose the most suitable execution approach based on their specific requirements and
preferences.

By offering notebook versions of the example pipelines and providing guidance on utilizing them in
both local and cloud-based environments, we aim to ensure a seamless and accessible experience for
users. This approach allows users to experiment, execute, and analyze the example pipelines using
familiar tools and platforms, enabling a smoother learning and implementation process.

7.1.3 Releases

New releases have been generated for the developed frameworks Literal2Feature, DistAD, and
ExPAD [23–25]. These releases encompass detailed explanations of the latest features and provide
direct links to relevant documentation, examples, Scala docs, example data, and associated publications.
By aligning with the current code state, these releases enhance the reproducibility of the experiments
and evaluations conducted in the corresponding publications.

1. Literal2Feature: An Automatic Scalable RDF Graph Feature Extractor & DistRDF2ML:
Scalable Distributed In-Memory Machine Learning Pipelines for RDF Knowledge Graphs

– Release Name: DistRDF2ML & Literal2Feature Release

– Version Number: v0.8.1_DistRDF2ML

– Link: https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/
v0.8.1_DistRDF2ML

2. DistAD: A Distributed Generic Anomaly Detection Framework over Large KGs

– Release Name: DistAD Release

– Version Number: v0.8.3_DistAD

– Link: https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/
v0.8.3_DistAD

3. ExPAD: An Explainable Distributed Automatic Anomaly Detection Framework over Large KGs

– Release Name: DistAD Release

– Version Number: v0.8.5_ExPAD

– Link: https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/
v0.8.5_ExPAD

86

https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.1_DistRDF2ML
https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.1_DistRDF2ML
https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.3_DistAD
https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.3_DistAD
https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.5_ExPAD
https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.5_ExPAD

7.2 Scalable Semantic Analytics within PaaS

7.2 Scalable Semantic Analytics within PaaS

7.2.1 Motivation

All the introduced scalable and distributed frameworks in Chapters 4, 5, and 6 allow scalable
processing of knowledge graph data across multiple machines using Apache Spark. Moreover, all
of these frameworks have been implemented and integrated into the Scalable Semantic Analytics
Stack SANSA [19]. SANSA leverages Apache Spark and Apache Jena to provide an open-source
framework for start-to-end data analytic pipelines for large-scale RDF knowledge graphs [23–25,
148, 153]. However, one significant challenge when working with the SANSA stack is setting up
cluster computing. It can be technically demanding and requires access to suitable hardware, as
well as expertise in installing and connecting the necessary components. To reduce this hurdle, we
utilize Platform as a Service (PaaS) providers and show how users who want to build large-scale RDF
Knowledge graph data analytic pipelines can use SANSA with minimal technical requirements and
entry hurdles. The main contributions of this section are the following:

- Introduction of scalable semantic analytics stack SANSA through Databricks

- Sample coding notebooks for hands-on ML on RDF KGs

- Guideline on how to set up third-party Apache Spark frameworks in PaaS

7.2.2 SANSA through Databricks

A complex and heterogeneous framework like SANSA requires several technical prerequisites to run
initial experiments. On the one hand, the computation is done in memory and it is crucial to have
enough memory to manage the data, On the other hand, the computation is done on the CPU side.
Apache Spark is designed for multi-core and cluster computation. To use the framework, Apache
Spark must be available in the required version (for now, Spark 3.x and also Scala in version 2.12).
Setting up this hardware and software can be eased by using Databricks since even in the community
edition (free plan), a two-core system with 15GB of memory is already available. Furthermore, there
are predefined images like the combination of different Apache Spark versions and Scala versions.
The following sections will guide the users through the setup, and explain working with SANSA on
RDF data.

Get Access to Platform

Databricks [22] is one of several Platform as a Service (PaaS) providers. It offers the simplicity of
setting up an Apache Spark instance for use on notebooks and making it accessible through notebooks
in a user-friendly way. For registering Databricks in the free plan, the Community Edition is suitable.
More information can be found on the Databricks FAQ2.

Uploading Data

Once logged in to the platform, an opportunity is given to import libraries. The SANSA stack needs
to be uploaded as a jar file. The jar file can be fetched from the most recent release in the SANSA
2 https://www.databricks.com/product/faq

87

Chapter 7 Implementation and Use-Case

stack GitHub page3. The name will be given automatically according to the filename of the jar. Due
to the size of the jar, the upload process may take a few minutes. After the upload is done, the process
can be confirmed with the Create button. Next, we need to make our desired data available. In the
next step, we add the knowledge graph data to our Databricks file system. We will introduce the usage
of the SANSA stack based on the Linked Movie Database dataset [154] which is a LOD RDF dataset
containing 40 thousand movies and their title, runtime, list of actors, genres, and publish date. This
dataset represents a multimodal knowledge graph for several example pipelines. The import can be
started from the main pages Import and Explore data. In the overlay menu, one could drag and drop
the file. Once the data is uploaded, the menu shows the path where it was stored. An example might
be: “FileStore/tables/linkedmdb-18-05-2009-dump.nt”.

Setup Cluster

One must set up a cluster in the platform used for executing the notebooks. First, create the cluster
as a new cluster and give it a unique name like the SANSA-tryout cluster. Next, select the fitting
image named Spark Runtime Version to the pair Scala 2.12 and Apache Spark 3.x. Then specify
the spark config by pasting the following three key-value pairs shown in Figure 7.2 and Listing 7.1.
They correspond to the default Databricks and SANSA Spark setup. This Cluster configuration has to
be confirmed with Create Cluster. Confirmation over create a cluster opens up the overview of the
respective created cluster. In the Libraries tab, it is needed to install new the previously uploaded
SANSA jar. The uploaded jar is within the user’s workspace. This process has to be confirmed with
install. After some seconds the SANSA library will change status from installing to installed.

Setup Notebook

Now, the user has to open up or create a desired notebook. Either one can start with a blank notebook,
but it is easier to use the provided sample notebooks4. These sample notebooks can be imported
by using the import option from the users’ workspace. In the pop-up window, one can import the
notebook over the notebook URL. The import will directly add the notebook to the workspace and
open it up.

Listing 7.1: Spark Configuration modules
spark.databricks.delta.preview.enabled true
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.kryo.registrator net.sansastack.rdf.spark.io.JenaKryoRegistrator,net.

sansastack.query.spark.sparqlify.KryoRegistratorSparqlify

Execution of Sample Notebooks

The notebook needs to be assigned to a cluster. The cluster should be present as previously configured
(see Figure 7.3) and contain the SANSA framework as a library. After selecting the cluster, it gets
attached and will be ready after some seconds. This enables the execution of notebook cells with
SANSA module functionalities.
3 https://github.com/SANSA-Stack/SANSA-Stack/releases
4 https://github.com/SANSA-Stack/SANSA-Databricks

88

7.2 Scalable Semantic Analytics within PaaS

Figure 7.2: Configuration of cluster

Figure 7.3: Installation of SANSA library

7.2.3 Summary

This section illustrates the ease of accessibility of a comprehensive and integrated framework for
scalable semantic analytics through the demonstration of sample notebooks hosted and running within
the Databricks platform provider service. This guide serves as a starting point for users to explore and
adapt their own semantic data analytical pipelines.

By leveraging the infrastructure of Databricks, users are relieved from the need for a dedicated

89

Chapter 7 Implementation and Use-Case

hardware setup with sufficient computational power and main memory, thus simplifying the initial
steps of the process. Furthermore, the installation and management of the necessary Scala and Spark
versions are automatically handled, eliminating potential compatibility issues. The provided code
within the sample notebooks is designed to seamlessly run and scale across distributed Spark clusters.

7.3 Micro-Service based Semantic Analytics integration

7.3.1 Motivation

To be able to use SANSA effectively, a cluster of Spark nodes with an HDFS file system is required.
Even by having such a cluster, one can only interact with SANSA via a terminal. Establishing
a cluster of different nodes containing Spark and Hadoop5 and configuring them is by nature a
cumbersome task and needs a lot of knowledge and experience. Moreover, in the case of having
technical knowledge, establishing such a cluster is a time-consuming task. In addition, end-users prefer
to have a user-friendlier way to interact with SANSA without having any programming and scripting
knowledge. Therefore, in this section, we introduce a micro-service architecture of a SANSA-enabled
Spark and Hadoop cluster with 2 user-friendly interactive communication mechanisms aka. REST API
and Zeppelin Notebook6. Our introduced architecture is based on Docker technologies7. Moreover,
our sample explanatory tutorial enables non-technical users to easily use SANSA without having any
specific knowledge and skills.

The main contributions of this section are the following:

- Introducing a micro-service architecture of Big Data tools such as Apache Spark, Apache
Hadoop, Apache Zeppelin, HDFS File Browser, and Apache Livy

- Introducing for the first time REST APIs for the SANSA stack

- Introducing an interactive Notebook (i.e. Apache Zeppelin) for interacting with SANSA

7.3.2 Architecture

In this section, we present the micro-service system architecture for using SANSA. Worth mentioning
that the framework is open-source and hosted on GitHub8. The main goal of the framework is to bring
a simple and effortless approach to setting up a Spark cluster with all the requirements without having
extensive computer science knowledge.

7.3.3 Components

We provided two interaction mechanisms for the end-users. (i) Zeppelin Notebooks, and (ii) REST APIs.
Depending on the scenario users may select one of the mentioned mechanisms. These mechanisms
cover the full spectrum from simplicity to flexibility. By using the REST APIs, users will be able to
call predefined functionalities from SANSA without any effort. However, in case a user is interested
5 https://hadoop.apache.org/
6 https://zeppelin.apache.org/
7 https://www.docker.com/
8 https://github.com/SANSA-Stack/SANSA-Rest-API

90

7.3 Micro-Service based Semantic Analytics integration

Figure 7.4: High-level micro-service architecture overview

in the new functionalities, they can write code and stack their code via Zeppelin Notebook and submit
their task to the Spark cluster. Figure 7.4 depicts the high-level system overview. The architecture
contains 4 main components i.e. (i) Java-based REST APIs, (ii) Apache Zeppelin Notebook, (iii)
Apache Livy, and (iv) Spark-Hadoop Cluster, which are all utilized via Docker-Compose.

Java-based REST API

This layer provides functionality for the end-user to interact with SANSA via REST APIs. It is
Java-based and is powered by Spring Boot9 technology and contains a Swagger10 UI which enables
users to easily call any provided functions via a browser. Figure 7.5 shows the SwaggerUI and provided
APIs. A sample scenario of how to use these APIs is provided in Section 7.3.4.

Apache Livy REST APIs

As the Spark tasks may be long-running (up to a few days) and there is a chance that the node that
is running the task crashes and loses the calculations, therefore, directly connecting the REST APIs
to the Spark cluster is not feasible due to asynchronous nature of such computations. To tackle this,
another layer has been added by using Apache Livy11, which is able to keep track of Spark sessions
and calculation states. Livy enables programmatic, fault-tolerant, multi-tenant submission of Spark
9 https://spring.io/projects/spring-boot

10 https://swagger.io/
11 https://livy.apache.org/

91

Chapter 7 Implementation and Use-Case

Figure 7.5: REST APIs Swagger UI

jobs from web/mobile apps. So, multiple users can interact with the Spark cluster concurrently and
reliably. Although the Livy interface is available for the user, this layer works as a background process
and the user does not need to interact with it directly, because all the functionalities will be handled by
the REST API layer.

Spark-Hadoop Cluster

To be able to run a SANSA functionality, having a Spark cluster with a Hadoop file system is
inevitable. To do so we containerized Spark, Hadoop Namenode, Hadoop Datanode, and Hue HDFS
file browser12 in publicly available docker images. Moreover, we configured the containers to interact
with each other seamlessly via Docker-Compose. All the other layers have been containerized and
exposed in the same docker-compose file. For the sake of reproducibility, Appendix A presents the
docker-compose.yml file.

7.3.4 Usage

To be able to run the cluster, the user needs to clone the SANSA stack from GitHub and navigate to
sansa-rest sub-folder. The following codes in the terminal will bring up the cluster.

12 https://gethue.com/

92

7.3 Micro-Service based Semantic Analytics integration

$ git clone https://github.com/SANSA-Stack/SANSA-Stack.git
$ cd SANSA-Stack/sansa-rest
$ make
$ make up

To stop the cluster, the user only needs to run the following command.

$ make down

Table 7.1 lists all the available endpoints and their functionalities.

Table 7.1: Available endpoints and their functionalities

Endpoint Functionality

http://localhost Zeppelin Notebook

http://localhost:8085 REST Swagger UI

http://localhost:8998 Livy UI

http://localhost:8080 Spark Master UI

http://localhost:8088/home Hue file browser UI

As already mentioned, users will have two interaction mechanisms to connect to SANSA, either
using Zeppelin Notebook or REST APIs. Using Zeppelin Notebook is straightforward same as all the
other notebook technologies such as Jupyter Notebook13. Therefore, without losing the generality and
due to the space issue, we ignore the explanation in this section. However, in the following, we explain
a sample scenario that shows how to use the REST APIs. Besides its many functionalities, SANSA
provides a distributed SPARQL engine (i.e. Sparklify [141]) which can execute a SPARQL query in a
distributed fashion. As a scenario, imagine the user has an RDF file (any format) and would like to run
a SPARQL query over it. To be able to use a REST API for this purpose, the user first needs to upload
her file into the HDFS because SANSA needs to access the file in a distributed manner. For this reason,
we have provided an API in Swagger that enables the user to upload files to the HDFS. The result of the
API call will be the address to which the file will be stored in the HDFS. The user will need to provide
this address for any subsequent API call. To call the SPARQL engine API (i.e. /api/sparql), the
user simply needs to provide the SPARQL query and the address of the file which he retrieved from
the file upload API. Keep in mind that the result of any API call will be a livy batch id. This id is a
unique number that identifies a Livy session that is responsible for the task computation. We provided
two APIs that receive this id and provide more information about the execution process and the result
of the executions. The result of the /api/getState API will be either running, success, or
dead. Only in case of success, the user can use /api/getResult API to see the result of the
call. The other two states either show the process is ongoing, or the process is unexpectedly stopped.

13 https://jupyter.org/

93

Chapter 7 Implementation and Use-Case

7.3.5 Summary

In this section, our efforts revolve around providing interactive opportunities that can be used for the
newly developed distributed scalable in-memory data analytics and approaches introduced in Chapters
4, 5, and 6, as well as for the Semantic Analytics Stack as a whole. By adopting a containerized
approach and distributing resources as open source, we aim to facilitate easier and more accessible
utilization of our proposed developments, models, and ML pipelines.

This technology empowers users to host SANSA as a service, enabling scalable processing of RDF
KG data. Additionally, a hosted version of SANSA as a service caters to less technically proficient
users, allowing them to execute RDF KG data analytics through a web-based interface without the
complexities and time-consuming setup overhead typically associated with such tasks.

94

CHAPTER 8

Conclusion and Future Directions

In this thesis, we have focused on the problem of scalable distributed anomaly detection on knowledge
graphs. To address this problem, we have made several contributions in the areas of scalable KG
feature extraction, anomaly detection on KGs, and explainable anomaly detection on KGs. These
contributions have allowed us to address the challenges initially stated in our research, and have led to
the development of novel methods and techniques for detecting anomalies in KGs. In the following
sections of this chapter, we will provide a summary of our contributions and explain the main results
that support the validity of our research questions. By doing so, we aim to provide a comprehensive
overview of the work we have undertaken in this thesis and its impact on the field of anomaly detection
on KGs.

8.1 Review of the Contributions

In this section, we will thoroughly explain the contributions of the current Ph.D. thesis. We’ll clarify
how it addresses the challenges we encountered and provide evidence-based solutions to the research
questions. The main goal of this thesis is to enhance the ability to detect anomalies in knowledge
graphs at a scalable level. We have made contributions that successfully answer three key research
questions. Let’s go back and review the research questions outlined in this thesis.

First, we tackled the problem of extracting features from the large-scale RDF datasets and answering
the following research question:

RQ1: Can we vectorize knowledge graphs in a scalable and distributed manner?

Our work encompasses the development of the Literal2Feature module (detailed in Chapter 4),
which plays a crucial role in facilitating the creation of interpretable feature vectors from RDF
knowledge graphs. One of the key strengths of this module lies in its ability to automatically generate
SPARQL queries for extracting essential features. This automation is achieved through dynamic
traversal of the KG, allowing us to derive the optimal SPARQL query structure based on the underlying
graph’s rich semantic relationships. By leveraging URI information, particularly relation patterns, we
can derive meaningful projection variables in the SPARQL query. This strategic approach ensures
that the resulting feature matrices are not only informative but also interpretable, understandable,

95

Chapter 8 Conclusion and Future Directions

and explainable. These interpretable feature matrices can be seamlessly integrated into traditional
downstream machine learning pipelines, including anomaly detection tasks, enhancing the overall
transparency and trustworthiness of the ML process. The evaluation of our approach involved testing
on a multi-node cluster with extensive KG data. The results were promising, showcasing the efficacy
of literal-based features in predicting and improving ML pipelines. This success is particularly
noteworthy in scenarios where KGs lack pre-defined ontologies or when users are relatively new to the
domain. A significant advantage of our approach is its ability to streamline the process of acquiring
ML-relevant data from source RDF-KGs. By automating the process of generating SPARQL queries
that extract features, we make it easier for users and reduce the risk of errors that can occur when
creating queries manually. This not only saves time and effort but also enhances the overall data
retrieval and utilization process, leading to more efficient and reliable ML outcomes. Moreover, the
interpretable nature of the feature matrices empowers users to gain deeper insights into the data and
the anomaly detection process. This level of transparency boosts confidence in the results and makes
it easier to make informed decisions when dealing with anomalies detected in knowledge graphs.

Our second main research focus was aimed at finding efficient ways to apply anomaly detection
techniques to large-scale knowledge graphs in a distributed manner. This effort aimed to answer the
following research question:

RQ2: How can we apply anomaly detection on knowledge graphs in a scalable and distributed
manner?

To address this question comprehensively, our focus was on anomalies present within literals, and
we devised a novel, distributed, and scalable software framework called DistAD (detailed in Chapter 5).
This framework is designed to automatically detect anomalies within knowledge graphs by extracting
semantic features from RDF data, clustering entities, and then applying anomaly detection algorithms
at different levels: numeric objects, predicates, and multi-feature scenarios. The DistAD framework
provides high flexibility throughout the entire workflow, allowing end-users to customize the anomaly
detection process according to their specific needs and use cases. By providing the ability to select
various approaches and granularities, users can customize the detection process to suit their unique
KG structures and anomaly detection requirements. With the outcomes of our research question RQ2,
we are well-equipped to tackle the challenge we defined earlier (cf. Section 1.2.2). By leveraging
DistAD’s capabilities, we are able to efficiently and effectively detect anomalies within numeric
literals, which significantly contributes to improving the overall quality and reliability of KG data.
The extraction of semantic features from RDF data proves to be a pivotal step in the anomaly detection
process, as it enables us to gain valuable insights into the underlying data distribution and relationships.
The subsequent clustering of entities further refines the detection process by grouping similar entities,
facilitating more accurate anomaly detection. Through DistAD’s distributed and scalable nature, we
can handle KGs of varying sizes and complexities, making it suitable for real-world applications with
large-scale datasets. This scalability ensures that the anomaly detection process remains efficient even
when dealing with massive KGs. The ability to apply anomaly detection algorithms on different levels,
such as numeric objects and predicates, allows us to cast a wide net in detecting anomalies across
various aspects of the KG. Additionally, addressing multi-feature scenarios enables the detection of
anomalies that span multiple interconnected features, providing a more comprehensive understanding
of potential irregularities within the KG.

96

8.1 Review of the Contributions

The third contribution of our thesis tackled the third challenge, which was about efficiently and
effectively implementing explainable anomaly detection on large knowledge graphs. In doing so, we
aimed to answer the following research question:

RQ3: Can explainable anomaly detection be performed efficiently and effectively on knowledge
graphs?

To address this research question comprehensively, we introduced a robust, generic, distributed,
and scalable software framework known as ExPAD (elaborated in Chapter 6). ExPAD not only
possesses the capability to automatically detect numeric anomalies within knowledge graphs but also
provides human-readable explanations for why a specific value of a variable in an observation is
deemed an outlier. This interpretability aspect of ExPAD adds a significant advantage as it aids users
in understanding the reasons behind the anomalies detected. The core methodology employed by
ExPAD involves evaluating and following distributed supervised decision tree splits on variables. By
leveraging this approach, ExPAD becomes proficient in detecting and explaining anomalous cases that
would have remained unnoticed if individual features were considered in isolation. Analyzing the
relationships between different features is essential because anomalies can often appear as intricate
interactions among various features. This requires a comprehensive and multi-dimensional approach
to ensure accurate detection. The results of our research question RQ3 offer profound insights and
contribute to addressing the defined challenge we identified earlier (cf. Section 1.2.3). The ability
of ExPAD to automatically detect numeric anomalies in KGs, coupled with its capacity to provide
human-readable explanations, significantly enhances the anomaly detection process and supports
decision-making processes for users. The interpretability of the explanations generated by ExPAD
ensures that users can trust and comprehend the detected anomalies. This transparency is critical in
various applications, especially when dealing with sensitive or high-stakes data where understanding
the reasoning behind anomaly detection is of paramount importance. Moreover, ExPAD’s distributed
and scalable nature empowers it to handle KGs of varying sizes and complexities. By efficiently
processing large-scale datasets, ExPAD remains practical and applicable in real-world scenarios where
KGs can be extensive and constantly evolving. Using decision trees for anomaly detection empowers
ExPAD to effectively navigate and explore the structure of the knowledge graph. This helps identify
patterns and correlations that could indicate abnormal behavior. This data-driven approach boosts the
reliability of anomaly detection, reinforcing ExPAD’s status as a valuable tool for KG-based anomaly
detection.

Lastly, our thesis tackled the final challenge, which was about having a user-friendly environment
to run our proposed frameworks (cf. Section 1.2.4). Since SANSA utilizes Apache Spark and
Apache Jena to offer an open-source framework for comprehensive data analytics on large-scale
RDF knowledge graphs, a notable hurdle in working with the SANSA stack is the establishment of
Hadoop and Spark cluster computing. This task can be technically complex, demanding access to
appropriate hardware, and expertise in the installation and integration of essential components. In
this regard, we introduced a micro-service architecture that combines a SANSA-enabled Spark and
Hadoop cluster, offering two user-friendly ways to interact with it: REST API and Zeppelin Notebook.
This architecture relied on Docker technologies. Additionally, we provided a straightforward tutorial
that allows even non-technical users to utilize SANSA without requiring any specialized knowledge or
skills. Moreover, to reduce the burden of on-premise deployment, we utilized Databricks as a Platform

97

Chapter 8 Conclusion and Future Directions

as a Service (PaaS) and showed how users who want to build large-scale RDF Knowledge graph data
analytic pipelines can use SANSA with minimal technical requirements and entry hurdles.

8.2 Future Work

Alongside the current research, advancements, and responses to the research questions, in this section,
we turn our attention to presenting future directions for future exploration.

- KG’s Feature Extraction: In Chapter 4, we introduced a novel approach to extracting
explainable features from knowledge graphs through deep traversing. Our experimental results
demonstrated that the features we extracted possess significant meaning and are easy to interpret.
However, we focused solely on considering literals as features in our study. As a promising future
direction, other features such as the number of specific predicated (e.g. foaf:knows which
can count the number of friends of each person) or existence of a type relation (e.g. a boolean
value which is True, if a specific type relation exists such as rdf:type dbo:Person),
can be also retrieved from an RDF graph. Moreover, it is possible to explore graph topological
features such as the number of neighbors.
Furthermore, our evaluation of the extracted features was limited to clustering and classification
scenarios. To establish the broader utility and effectiveness of these features, another avenue of
research could involve testing them in various other machine learning scenarios.
An important observation is that certain literal values, such as abstracts of books or papers, may
consist of a large number of characters. This can lead to an increase in the size of the data frame,
thereby impacting the performance of data frame joining operations. To address this issue, a
potential solution would be to employ a hashing mechanism or embeddings to transform these
large strings into more compact features. This approach could result in improved performance
when joining data frames, contributing to more efficient processing and analysis.

- Anomaly Detection over KGs: In Chapter 5, we introduced DistAD, a scalable framework
designed for applying anomaly detection on knowledge graphs. Within this framework, we
primarily utilized statistical and univariate algorithms to identify anomalies (except Isolation
Forest). However, in many real-world scenarios, there exist correlations between the features
within the dataset. As a result, exploring the use of more multi-variate algorithms, such as
OnClass-SVM, presents itself as an intriguing avenue for future research. These algorithms
could better capture the interdependencies among features, leading to more accurate anomaly
detection. Moreover, as KGs are heterogeneous complex graphs with labeled edges (predicates),
applying graph-based anomaly detection techniques [155] to KGs could be an interesting
research area.
Additionally, an exciting prospect for further development lies in the creation of inductive rules
to automatically generate SPARQL queries for detecting anomalies. By devising such rules,
anomalies can be detected by simply executing the SPARQL queries over the KG. This approach
could streamline the anomaly detection process and reduce the manual effort required to identify
and address potential anomalies within the KG.
Moreover, our focus was only on numeric literals. However, literals may have other data types
such as categories, dates, strings, etc. Therefore having a unified framework that can detect

98

8.3 Closing Remarks

anomalies within different data types could be a promising future research area.

One of the main reasons why anomaly detection over KGs has not gained adequate attention is
the lack of benchmarks and ground truths. To the best of our knowledge, there is no publicly
available labeled dataset for anomaly detection in the RDF format. Introducing such a public
benchmark can boost this research field.

In addition, a promising avenue for future exploration lies in the synergistic connection between
anomaly detection and fact verification within knowledge graphs. Anomaly detection, as
addressed in this thesis, focuses on identifying irregular data within the KG. Concurrently, fact
verification leverages Language Model Models (LLMs), web data, or other KGs as corpora to
substantiate the accuracy of facts. Combining these two approaches could enhance the robustness
of anomaly detection by validating detected anomalies through fact verification mechanisms.
While anomaly detection pinpoints deviations from expected patterns, fact verification provides
an additional layer of validation by cross-referencing against external knowledge sources. This
integration could lead to a more comprehensive anomaly detection framework, incorporating not
only the identification of anomalies but also the verification of their accuracy through external
evidence. The synergy between these methodologies has the potential to elevate the reliability
and interpretability of anomaly detection results, offering a more nuanced understanding of
irregularities within KGs.

- Explainable Anomaly Detection over KGs: In Chapter 6, we presented ExPAD, a distributed
and scalable framework specifically designed for explainable anomaly detection. In our
approach, we leveraged interpretable models, specifically decision trees, to produce human-
readable explanations for detected anomalies. While this method has proven effective, there are
other avenues worth exploring in the realm of explanation approaches, such as model-agnostic
methods. Embracing model-agnostic techniques could potentially yield more diverse and
comprehensive explanations, appealing to a broader range of users and use cases.

It is important to acknowledge that ExPAD does have a limitation in its current form, primarily
stemming from its reliance on univariate data analysis. As a consequence, the framework may
not be able to detect all multi-dimensional outliers, unlike alternative methods such as Isolation
Forest, which can simultaneously consider multiple variables. However, one of ExPAD’s
noteworthy strengths lies in its ability to generate meaningful explanations for features that
exhibit dependencies on one another. To build upon this foundation, future work could focus on
enhancing ExPAD to provide explanations even in scenarios where features lack correlations
with each other.

8.3 Closing Remarks

The widespread availability of Semantic Linked Data sources and RDF knowledge graphs has become
an invaluable asset for AI, data analytics, and machine learning processes. However, these RDF graphs
can occasionally contain incorrect data, which makes the quality of knowledge graphs crucial for the
success of subsequent approaches. In this thesis, we have tackled this challenge by creating scalable
frameworks that employ anomaly detection techniques to spot these inaccuracies.

Our research has resulted in three major contributions. First, we developed an automated feature
extraction process that generates SPARQL queries, simplifying the identification of relevant features

99

Chapter 8 Conclusion and Future Directions

from knowledge graphs. This automation significantly eases the anomaly detection process and
improves its efficiency.

Secondly, we introduced a distributed anomaly detection framework tailored specifically for KGs.
By leveraging distributed computing capabilities, we have optimized the detection of anomalies in
large-scale KGs. This approach not only improves the detection accuracy but also significantly reduces
the processing time, making it practical for real-world applications.

The third and equally vital contribution is our creation of an explainable anomaly detection method
specifically designed for knowledge graphs. The interpretability of our approach enables users to
grasp the detected anomalies and comprehend the logic behind them. Through the use of interpretable
models, like decision trees, we guarantee that the explanations given are easy for humans to read and
insightful, which ultimately improves the overall trustworthiness of the anomaly detection process.

Importantly, these contributions have been integrated into the open-source SANSA project,
contributing to its growth and making these advancements accessible to the broader Semantic Web
community. Furthermore, the SANSA stack’s successful application in various European projects
highlights its positive influence on the field of Semantic Web research.

Our work doesn’t just offer technical solutions; it also explores broader theoretical aspects, which
could serve as a basis for new developments in knowledge graph-based machine learning. By blending
technical expertise with theoretical insights, our research has the potential to lead to substantial progress
in the field and open up exciting possibilities for future KG-based anomaly detection applications.

100

APPENDIX A

SANSA REST docker-compose.yml File

We introduced a microservice architecture that incorporates all the necessary distributed computing
components to execute SANSA (cf. Chapter 7). To achieve this, we utilized Docker technology and
used Docker Swarm. Subsequently, the content of the docker-compose.yml file is presented to
facilitate reproducibility.

1 version: '3.9'
2

3 services:
4 spark:
5 container_name: spark
6 image: fmoghaddam/sansaspark:v1
7 environment:
8 - SPARK_MODE=master
9 - SPARK_DEPLOY_MODE=cluter

10 - SPARK_RPC_AUTHENTICATION_ENABLED=no
11 - SPARK_RPC_ENCRYPTION_ENABLED=no
12 - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no
13 - SPARK_SSL_ENABLED=no
14 volumes:
15 - ./examples/jars/sansa-examples-spark.jar:
16 /opt/bitnami/spark/jars/sansa.jar
17 ports:
18 - '8080:8080'
19 - '7077:7077'
20 - '4040:4040'
21 networks:
22 - spark-net
23 spark-worker-1:
24 container_name: spark-worker-1
25 image: fmoghaddam/sansaspark:v1
26 environment:

101

Appendix A SANSA REST docker-compose.yml File

27 - SPARK_MODE=worker
28 - SPARK_MASTER_URL=spark://spark:7077
29 - SPARK_WORKER_MEMORY=1G
30 - SPARK_WORKER_CORES=1
31 - SPARK_RPC_AUTHENTICATION_ENABLED=no
32 - SPARK_RPC_ENCRYPTION_ENABLED=no
33 - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no
34 - SPARK_SSL_ENABLED=no
35 volumes:
36 - ./examples/jars/sansa-examples-spark.jar:
37 /opt/bitnami/spark/jars/sansa.jar
38 networks:
39 - spark-net
40 spark-worker-2:
41 container_name: spark-worker-2
42 image: fmoghaddam/sansaspark:v1
43 environment:
44 - SPARK_MODE=worker
45 - SPARK_MASTER_URL=spark://spark:7077
46 - SPARK_WORKER_MEMORY=1G
47 - SPARK_WORKER_CORES=1
48 - SPARK_RPC_AUTHENTICATION_ENABLED=no
49 - SPARK_RPC_ENCRYPTION_ENABLED=no
50 - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no
51 - SPARK_SSL_ENABLED=no
52 volumes:
53 - ./examples/jars/sansa-examples-spark.jar:
54 /opt/bitnami/spark/jars/sansa.jar
55 networks:
56 - spark-net
57 zeppelin:
58 container_name: zeppelin
59 image: fmoghaddam/sansazeppelin:v1
60 ports:
61 - 80:8080
62 volumes:
63 - ./examples:/opt/sansa-examples
64 - ./notebook:/opt/zeppelin/notebook/SANSA
65 environment:
66 CORE_CONF_fs_defaultFS: "hdfs://namenode:8020"
67 SPARK_MASTER: "spark://spark:7077"
68 MASTER: "spark://spark:7077"
69 SPARK_SUBMIT_OPTIONS: "--jars /opt/sansa-examples/jars/
70 sansa-examples-spark.jar --conf spark.serializer=org.apache.spark.
71 serializer.KryoSerializer --conf spark.kryo.registrator=org.

102

72 datasyslab.geospark.serde.GeoSparkKryoRegistrator --conf
73 spark.kryo.registrator=net.sansa_stack.owl.spark.dataset.
74 UnmodifiableCollectionKryoRegistrator"
75 SPARK_HOME: "/opt/zeppelin/spark"
76 ZEPPELIN_NOTEBOOK_NEW_FORMAT_CONVERT: "true"
77 depends_on:
78 - spark
79 - namenode
80 - datanode
81 - hue
82 - spark-worker-1
83 - spark-worker-2
84 networks:
85 - spark-net
86 hue:
87 container_name: hue
88 image: fmoghaddam/sansahue:v1
89 ports:
90 - 8088:8088
91 environment:
92 - NAMENODE_HOST=namenode
93 - SPARK_MASTER=spark://spark:7077
94 depends_on:
95 - namenode
96 networks:
97 - spark-net
98 namenode:
99 image: fmoghaddam/sansanamenode:v1

100 container_name: namenode
101 ports:
102 - 8020:8020
103 environment:
104 - CLUSTER_NAME=test
105 - CORE_CONF_fs_defaultFS=hdfs://namenode:8020
106 - CORE_CONF_hadoop_http_staticuser_user=root
107 - CORE_CONF_hadoop_proxyuser_hue_hosts=*
108 - CORE_CONF_hadoop_proxyuser_hue_groups=*
109 - HDFS_CONF_dfs_webhdfs_enabled=true
110 - HDFS_CONF_dfs_permissions_enabled=false
111 healthcheck:
112 interval: 5s
113 retries: 100
114 start_period: 10s
115 volumes:
116 - ./data/namenode:/hadoop/dfs/name

103

Appendix A SANSA REST docker-compose.yml File

117 networks:
118 - spark-net
119 datanode:
120 image: fmoghaddam/sansadatanode:v1
121 container_name: datanode
122 volumes:
123 - ./data/datanode:/hadoop/dfs/data
124 environment:
125 - CORE_CONF_fs_defaultFS=hdfs://namenode:8020
126 depends_on:
127 - namenode
128 healthcheck:
129 interval: 5s
130 retries: 100
131 start_period: 10s
132 networks:
133 - spark-net
134

135

136 networks:
137 spark-net:
138 external: true
139 name: spark-net
140

104

APPENDIX B

List of Publications

• Conference Papers:

– Farshad Bakhshandegan Moghaddam, Carsten Felix Draschner, Jens Lehmann and
Hajira Jabeen, “Literal2Feature: An Automatic Scalable RDF Graph Feature Ex-
tractor”, SEMANTICS, 2021, IOS Press, pp. 74–88. https://doi.org/10.3233/
SSW210036.

– Carsten Felix Draschner, Claus Stadler, Farshad Bakhshandegan Moghaddam, Jens
Lehmann, Hajira Jabeen, “DistRDF2ML - Scalable Distributed In-Memory Machine
Learning Pipelines for RDF Knowledge Graphs”, Proceedings of the 30th ACM Interna-
tional Conference on Information & Knowledge Management (CIKM). Association for
Computing Machinery, New York, NY, USA, 4465–4474. https://doi.org/10.
1145/3459637.3481999.

– Farshad Bakhshandegan Moghaddam, Jens Lehmann and Hajira Jabeen, “DistAD:
A Distributed Generic Anomaly Detection Framework over Large KGs”, IEEE 16th
International Conference on Semantic Computing (ICSC), 2022, pp. 243-250, https:
//doi.org/10.1109/ICSC52841.2022.00047.

– Farshad Bakhshandegan Moghaddam, Jens Lehmann and Hajira Jabeen, “ExPAD:
An Explainable Distributed Automatic Anomaly Detection Framework over Large KGs”,
IEEE 17th International Conference on Semantic Computing (ICSC), 2023, pp. 204-211,
https://doi.org/10.1109/ICSC56153.2023.00040.

– Farshad Bakhshandegan Moghaddam, Jens Lehmann and Hajira Jabeen, “Anomaly
Detection for Numerical Literals in Knowledge Graphs: A Short Review of Approaches”,
The Sixth IEEE International Conference on Artificial Intelligence and Knowledge
Engineering (AIKE), 2023, pp. 46-53, https://doi.org/10.1109/AIKE59827.
2023.00015.

• Workshops, Demos, and Doctoral Consortium:

– Farshad Bakhshandegan Moghaddam, Carsten Felix Draschner, Jens Lehmann, Hajira
Jabeen, “Semantic Web Analysis with Flavor of Micro-Services”, LAMBDA Doctoral
Workshop 2021, http://ceur-ws.org/Vol-3195/paper1.pdf

105

https://doi.org/10.3233/SSW210036
https://doi.org/10.3233/SSW210036
https://doi.org/10.1145/3459637.3481999
https://doi.org/10.1145/3459637.3481999
https://doi.org/10.1109/ICSC52841.2022.00047
https://doi.org/10.1109/ICSC52841.2022.00047
https://doi.org/10.1109/ICSC56153.2023.00040
https://doi.org/10.1109/AIKE59827.2023.00015
https://doi.org/10.1109/AIKE59827.2023.00015
http://ceur-ws.org/Vol-3195/paper1.pdf

Appendix B List of Publications

– Carsten Felix Draschner, Farshad Bakhshandegan Moghaddam, Jens Lehmann, Hajira
Jabeen, “Semantic Analytics in the Palm of Your Browser”, LAMBDA Doctoral Workshop
2021, http://ceur-ws.org/Vol-3195/paper2.pdf

106

http://ceur-ws.org/Vol-3195/paper2.pdf

Bibliography

[1] T. Berners-Lee, “A roadmap to the Semantic Web”, 1998 (cit. on pp. 1, 13, 39).

[2] C. Bizer, M.-E. Vidal and H. Skaf-Molli, “Linked Open Data”,
Encyclopedia of Database Systems, Springer New York, 2018 2096, isbn: 978-1-4614-8265-9
(cit. on pp. 2, 39).

[3] C. Xiong, R. Power and J. Callan,
“Explicit Semantic Ranking for Academic Search via Knowledge Graph Embedding”,
Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth,
Australia, April 3-7, 2017, ed. by R. Barrett, R. Cummings, E. Agichtein and E. Gabrilovich,
ACM, 2017 1271, url: https://doi.org/10.1145/3038912.3052558
(cit. on p. 2).

[4] J. R. Pérez-Agüera, J. Arroyo, J. Greenberg, J. Pérez-Iglesias and V. Fresno,
“Using BM25F for semantic search”, Proceedings of the 3rd International Semantic Search
Workshop, SEMSEARCH ’10, Raleigh, North Carolina, USA, April 26, 2010,
ed. by M. Grobelnik, P. Mika, D. T. Tran and H. Wang, ACM, 2010 2:1,
url: https://doi.org/10.1145/1863879.1863881 (cit. on p. 2).

[5] S. Ji, S. Pan, E. Cambria, P. Marttinen and P. S. Yu,
A Survey on Knowledge Graphs: Representation, Acquisition and Applications,
CoRR abs/2002.00388 (2020), arXiv: 2002.00388,
url: https://arxiv.org/abs/2002.00388 (cit. on p. 2).

[6] W. Zhang et al., “XTransE: Explainable Knowledge Graph Embedding for Link Prediction
with Lifestyles in e-Commerce”, Semantic Technology - 9th Joint International Conference,
JIST 2019, Hangzhou, China, November 25-27, 2019, Revised Selected Papers,
ed. by X. Wang, F. A. Lisi, G. Xiao and E. Botoeva, vol. 1157,
Communications in Computer and Information Science, Springer, 2019 78,
url: https://doi.org/10.1007/978-981-15-3412-6%5C_8 (cit. on p. 2).

[7] F. Li et al.,
AliMe KG: Domain Knowledge Graph Construction and Application in E-commerce,
CoRR abs/2009.11684 (2020), arXiv: 2009.11684,
url: https://arxiv.org/abs/2009.11684 (cit. on p. 2).

107

https://doi.org/10.1145/3038912.3052558
https://doi.org/10.1145/1863879.1863881
https://arxiv.org/abs/2002.00388
https://arxiv.org/abs/2002.00388
https://doi.org/10.1007/978-981-15-3412-6%5C_8
https://arxiv.org/abs/2009.11684
https://arxiv.org/abs/2009.11684

Bibliography

[8] X. Xiang, Z. Wang, Y. Jia and B. Fang,
“Knowledge Graph-Based Clinical Decision Support System Reasoning: A Survey”,
Fourth IEEE International Conference on Data Science in Cyberspace, DSC 2019, Hangzhou,
China, June 23-25, 2019, IEEE, 2019 373,
url: https://doi.org/10.1109/DSC.2019.00063 (cit. on p. 2).

[9] R. Lourdusamy and X. J. Mattam, “Resource description framework based semantic
knowledge graph for clinical decision support systems”, Web Semantics, Elsevier, 2021 69
(cit. on p. 2).

[10] J. M. Juran, Juran’s Quality Control Handbook, 4th, Mcgraw-Hill (Tx), 1974,
isbn: 0070331766 (cit. on p. 2).

[11] D. Vrandecic, “Wikidata: a new platform for collaborative data collection”,
Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, April 16-20,
2012 (Companion Volume),
ed. by A. Mille, F. Gandon, J. Misselis, M. Rabinovich and S. Staab, ACM, 2012 1063
(cit. on p. 2).

[12] K. Bollacker, C. Evans, P. Paritosh, T. Sturge and J. Taylor,
“Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge”,
ACM SIGMOD International Conference on Management of Data, SIGMOD ’08,
Vancouver, Canada: Association for Computing Machinery, 2008 1247,
isbn: 9781605581026 (cit. on p. 2).

[13] T. Mitchell et al., “Never-Ending Learning”, AAAI-15, 2015 (cit. on p. 2).

[14] S. Auer et al., “DBpedia: A Nucleus for a Web of Open Data”,
International Semantic Web Conference ISWC, ed. by K. Aberer et al.,
Lecture Notes in Computer Science, Springer, 2007 722 (cit. on p. 2).

[15] F. M. Suchanek, G. Kasneci and G. Weikum, “Yago: a core of semantic knowledge”,
Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff,
Alberta, Canada, May 8-12, 2007,
ed. by C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider and P. J. Shenoy, ACM, 2007 697
(cit. on p. 2).

[16] V. Chandola, A. Banerjee and V. Kumar, Anomaly Detection: A Survey,
ACM Comput. Surv. (2009), issn: 0360-0300 (cit. on pp. 2, 20, 21, 55).

[17] C. C. Aggarwal, Outlier Ensembles: Position Paper, SIGKDD Explor. Newsl. (2013) 49,
issn: 1931-0145 (cit. on pp. 3, 21, 32).

[18] M. Zaharia et al., Apache Spark: A Unified Engine for Big Data Processing,
Commun. ACM 59 (2016) 56, issn: 0001-0782,
url: https://doi.org/10.1145/2934664 (cit. on p. 3).

[19] J. Lehmann et al., “Distributed Semantic Analytics using the SANSA Stack”,
Proceedings of 16th International Semantic Web Conference - Resources Track (ISWC’2017),
Springer, 2017 147 (cit. on pp. 3, 7, 40, 56, 68, 87).

[20] A. J. Foundation, Apache Jena, 2023,
url: https://jena.apache.org/index.html (cit. on p. 3).

108

https://doi.org/10.1109/DSC.2019.00063
http://dx.doi.org/10.1145/2934664
https://doi.org/10.1145/2934664
https://jena.apache.org/index.html

[21] R. Benjamins, J. Contreras, Ó. Corcho and A. Gómez-Pérez,
“Six challenges for the Semantic Web”,
International Conference on Principles of Knowledge Representation and Reasoning, 2002
(cit. on p. 3).

[22] Databricks-Inc, Databricks platform, 2021,
url: https://databricks.com/product/ (cit. on pp. 6, 87).

[23] F. B. Moghaddam, C. F. Draschner, J. Lehmann and H. Jabeen,
“Literal2Feature: An Automatic Scalable RDF Graph Feature Extractor”,
SEMANTICS, The Netherlands, 2021 (cit. on pp. 6, 27, 29, 58, 60, 63, 70, 74, 78, 86, 87).

[24] F. B. Moghaddam, J. Lehmann and H. Jabeen,
“DistAD: A Distributed Generic Anomaly Detection Framework over Large KGs”,
2022 IEEE 16th International Conference on Semantic Computing (ICSC), 2022 243
(cit. on pp. 7, 27, 33, 86, 87).

[25] F. B. Moghaddam, J. Lehmann and H. Jabeen, “ExPAD: An Explainable Distributed
Automatic Anomaly Detection Framework over Large KGs”,
2023 IEEE 17th International Conference on Semantic Computing (ICSC), 2023
(cit. on pp. 7, 27, 33, 86, 87).

[26] F. B. Moghaddam and C. D. Jens, “Semantic Web Analysis with Flavor of Micro-Services”,
Big Data Analytics 3rd Summer School, 2021 (cit. on p. 7).

[27] C. Draschner, F. B. Moghaddam, J. Lehmann and H. Jabeen,
“Semantic Analytics in the Palm of your Browser”, Big Data Analytics 3rd Summer School,
2021 (cit. on p. 7).

[28] F. B. Moghaddam, J. Lehmann and H. Jabeen, “Anomaly Detection for Numerical Literals in
Knowledge Graphs: A Short Review of Approaches”, 2023 IEEE Sixth International
Conference on Artificial Intelligence and Knowledge Engineering (AIKE),
Los Alamitos, CA, USA: IEEE Computer Society, 2023 46 (cit. on pp. 7, 27).

[29] M. Nickel, K. Murphy, V. Tresp and E. Gabrilovich,
A Review of Relational Machine Learning for Knowledge Graphs, Proc. IEEE 104 (2016) 11,
url: https://doi.org/10.1109/JPROC.2015.2483592 (cit. on pp. 11, 40).

[30] A. Hogan et al., Knowledge graphs, ACM Computing Surveys (Csur) 54 (2021) 1
(cit. on p. 11).

[31] L. Bellomarini, D. Fakhoury, G. Gottlob and E. Sallinger,
“Knowledge Graphs and Enterprise AI: The Promise of an Enabling Technology”,
2019 IEEE 35th International Conference on Data Engineering (ICDE), 2019 26
(cit. on p. 12).

[32] P. Cimiano and H. Paulheim,
Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods,
Semant. Web (2017) 489, issn: 1570-0844 (cit. on p. 12).

[33] L. Ehrlinger and W. Wöß, “Towards a Definition of Knowledge Graphs.”,
SEMANTiCS (Posters, Demos, SuCCESS), 2016 (cit. on p. 12).

109

https://databricks.com/product/
http://dx.doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1109/JPROC.2015.2483592

Bibliography

[34] M. Färber, F. Bartscherer, C. Menne and A. Rettinger,
Linked Data Quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO,
Semantic Web Journal (2017) 1 (cit. on p. 12).

[35] J. Pérez, M. Arenas and C. Gutierrez, Semantics and Complexity of SPARQL,
ACM Trans. Database Syst. (2009), issn: 0362-5915 (cit. on p. 14).

[36] T. White, Hadoop: The Definitive Guide, Fourth, O’Reilly, 2015, isbn: 9781491901632
(cit. on p. 17).

[37] K. Shvachko, H. Kuang, S. Radia and R. Chansler, “The Hadoop Distributed File System”,
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), 2010 1
(cit. on p. 17).

[38] X. Meng et al., MLlib: Machine Learning in Apache Spark, J. Mach. Learn. Res. (2016) 1235,
issn: 1532-4435 (cit. on p. 17).

[39] M. Odersky and al., An Overview of the Scala Programming Language, tech. rep.,
EPFL Lausanne, Switzerland, 2004 (cit. on p. 18).

[40] A. Zaveri et al., Quality assessment methodologies for linked open data,
Submitted to Semantic Web Journal (2013) 1 (cit. on p. 19).

[41] B. Stvilia, L. Gasser, M. B. Twidale and L. C. Smith,
A framework for information quality assessment, J. Assoc. Inf. Sci. Technol. (2007) 1720
(cit. on p. 19).

[42] A. Zaveri et al., Quality assessment for Linked Data: A Survey, Semantic Web (2016) 63
(cit. on pp. 19, 20).

[43] M. Färber, F. Bartscherer, C. Menne and A. Rettinger,
Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO,
Semantic Web (2018) 77 (cit. on p. 20).

[44] V. Jayawardene, S. Sadiq and M. Indulska, An Analysis of Data Quality Dimensions,
ITEE Tech (2015) (cit. on p. 20).

[45] R. Y. Wang and D. M. Strong,
Beyond Accuracy: What Data Quality Means to Data Consumers,
J. Manag. Inf. Syst. (1996) 5 (cit. on p. 20).

[46] N. Mihindukulasooriya, R. García-Castro and A. Gómez-Pérez,
“LD sniffer: A quality assessment tool for measuring the accessibility of linked data”,
Knowledge Engineering and Knowledge Management: EKAW 2016 Satellite Events, EKM and
Drift-an-LOD, Bologna, Italy, November 19–23, 2016, Revised Selected Papers,
Springer, 2017 149 (cit. on p. 20).

[47] D. Hawkins, Identification of Outliers, English, Chapman and Hall, 1980 (cit. on p. 21).

[48] A. Charu C., Outlier Analysis. Springer, 2013, isbn: 9781461463955 (cit. on p. 21).

[49] G. Pang, C. Shen, L. Cao and A. V. D. Hengel,
Deep Learning for Anomaly Detection: A Review, ACM Comput. Surv. (2021),
issn: 0360-0300 (cit. on p. 21).

110

[50] S. Ramaswamy, R. Rastogi and K. Shim,
“Efficient Algorithms for Mining Outliers from Large Data Sets.”, SIGMOD Conference,
ACM, 2000 427, isbn: 1-58113-217-4 (cit. on pp. 21, 23).

[51] F. Angiulli and C. Pizzuti, “Fast Outlier Detection in High Dimensional Spaces.”, PKDD,
Lecture Notes in Computer Science, Springer, 2002 15 (cit. on pp. 21, 23).

[52] M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander,
“LOF: Identifying Density-Based Local Outliers.”, SIGMOD Conference, ACM, 2000 93,
isbn: 1-58113-217-4 (cit. on pp. 21, 23).

[53] C. C. Aggarwal and P. S. Yu, Outlier detection for high dimensional data,
SIGMOD Rec. (2 2001) 37 (cit. on p. 21).

[54] A. Zimek, E. Schubert and H.-P. Kriegel,
A survey on unsupervised outlier detection in high-dimensional numerical data.,
Stat. Anal. Data Min. (2012) 363 (cit. on p. 21).

[55] J. Zhang et al., A concept lattice based outlier mining method in low-dimensional subspaces.,
Pattern Recognit. Lett. (2009) 1434 (cit. on p. 22).

[56] J. K. Dutta, B. Banerjee and C. K. Reddy,
RODS: Rarity based Outlier Detection in a Sparse Coding Framework.,
IEEE Trans. Knowl. Data Eng. (2016) 483 (cit. on p. 22).

[57] J. Zhang, S. Zhang, K. H. Chang and X. Qin,
An outlier mining algorithm based on constrained concept lattice.,
Int. J. Systems Science (2014) 1170 (cit. on p. 22).

[58] C. C. Aggarwal and P. S. Yu,
An effective and efficient algorithm for high-dimensional outlier detection.,
VLDB J. (2005) 211 (cit. on p. 22).

[59] A. Lazarevic and V. Kumar, “Feature bagging for outlier detection.”, KDD, ACM, 2005 157
(cit. on p. 22).

[60] R. McGill, J. W. Tukey and W. A. Larsen, Variations of Box Plots,
The American Statistician (1978) 12, issn: 00031305 (cit. on pp. 22, 34, 58, 74).

[61] C. Leys, C. Ley, O. Klein, P. Bernard and L. Licata, Detecting outliers: Do not use standard
deviation around the mean, use absolute deviation around the median,
Journal of Experimental Social Psychology (2013) 764, issn: 0022-1031
(cit. on pp. 22, 58, 74).

[62] E. Parzen, On Estimation of a Probability Density Function and Mode, English,
The Annals of Mathematical Statistics (1962) pp. 1065, issn: 00034851 (cit. on pp. 23, 34).

[63] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola and R. C. Williamson,
Estimating the Support of a High-Dimensional Distribution, Neural Computation (2001) 1443
(cit. on p. 24).

[64] T. Zemicheal and T. G. Dietterich,
“Anomaly Detection in the Presence of Missing Values for Weather Data Quality Control”,
Proceedings of the 2nd ACM SIGCAS Conference on Computing and Sustainable Societies,
Accra, Ghana, 2019, isbn: 9781450367141 (cit. on pp. 24, 36, 58, 61).

111

Bibliography

[65] X. Meng et al., MLlib: Machine Learning in Apache Spark,
Journal of Machine Learning Research 17 (2016) 1,
url: http://jmlr.org/papers/v17/15-237.html (cit. on p. 28).

[66] E. Alpaydin, Introduction to Machine Learning, 2nd, The MIT Press, 2010,
isbn: 026201243X (cit. on p. 28).

[67] V. N. P. Kappara, R. Ichise and O. P. Vyas,
“LiDDM: A Data Mining System for Linked Data”,
WWW2011 Workshop on Linked Data on the Web, Hyderabad, India, March 29, 2011,
CEUR Workshop Proceedings, CEUR-WS.org, 2011 (cit. on p. 28).

[68] W. Cheng, G. Kasneci, T. Graepel, D. H. Stern and R. Herbrich,
“Automated feature generation from structured knowledge”,
Proceedings of the 20th ACM Conference on Information and Knowledge Management, CIKM
2011, Glasgow, United Kingdom, October 24-28, 2011, ACM, 2011 1395 (cit. on p. 28).

[69] M. Khan, G. Grimnes and A. Dengel,
“Two pre-processing operators for improved learning from semanticweb data”,
First RapidMiner Community Meeting And Conference (RCOMM 2010), 2010 (cit. on p. 28).

[70] P. Ristoski, C. Bizer and H. Paulheim, Mining the Web of Linked Data with RapidMiner,
J. Web Semant. (2015) 142 (cit. on p. 28).

[71] A. Grover and J. Leskovec, “Node2vec: Scalable Feature Learning for Networks”,
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16,
San Francisco, California, USA: Association for Computing Machinery, 2016 855,
isbn: 9781450342322, url: https://doi.org/10.1145/2939672.2939754
(cit. on pp. 28, 29).

[72] B. Perozzi, R. Al-Rfou and S. Skiena,
“DeepWalk: Online Learning of Social Representations”, Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14,
New York, New York, USA: Association for Computing Machinery, 2014 701,
isbn: 9781450329569, url: https://doi.org/10.1145/2623330.2623732
(cit. on pp. 28, 29).

[73] P. Ristoski and H. Paulheim, “RDF2Vec: RDF Graph Embeddings for Data Mining”,
The Semantic Web – ISWC 2016, ed. by P. Groth et al.,
Cham: Springer International Publishing, 2016 498, isbn: 978-3-319-46523-4
(cit. on pp. 28, 29).

[74] B. Yang, W. Yih, X. He, J. Gao and L. Deng,
“Embedding Entities and Relations for Learning and Inference in Knowledge Bases”,
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, ed. by Y. Bengio and Y. LeCun, 2015,
url: http://arxiv.org/abs/1412.6575 (cit. on p. 28).

[75] J. Ugander, B. Karrer, L. Backstrom and C. Marlow,
The Anatomy of the Facebook Social Graph, CoRR abs/1111.4503 (2011),
arXiv: 1111.4503, url: http://arxiv.org/abs/1111.4503 (cit. on p. 28).

112

http://jmlr.org/papers/v17/15-237.html
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2623330.2623732
http://arxiv.org/abs/1412.6575
https://arxiv.org/abs/1111.4503
http://arxiv.org/abs/1111.4503

[76] A. Bordes, N. Usunier, A. García-Durán, J. Weston and O. Yakhnenko,
“Translating Embeddings for Modeling Multi-relational Data”,
Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States,
ed. by C. J. C. Burges, L. Bottou, Z. Ghahramani and K. Q. Weinberger, 2013 2787,
url: https://proceedings.neurips.cc/paper/2013/hash/
1cecc7a77928ca8133fa24680a88d2f9-Abstract.html (cit. on p. 28).

[77] J. Mynarz and V. Svátek,
“Towards a Benchmark for LOD-Enhanced Knowledge Discovery from Structured Data”,
Proceedings of the Second International Workshop on Knowledge Discovery and Data Mining
Meets Linked Open Data, Montpellier, France, May 26, 2013,
ed. by J. Völker, H. Paulheim, J. Lehmann, M. Niepert and H. Sack,
CEUR Workshop Proceedings, CEUR-WS.org, 2013 41 (cit. on p. 28).

[78] H. Paulheim and J. Fürnkranz,
“Unsupervised generation of data mining features from linked open data”,
2nd International Conference on Web Intelligence, Mining and Semantics, WIMS ’12,
Craiova, Romania, June 6-8, 2012, ACM, 2012 31:1 (cit. on pp. 28, 32, 48, 50).

[79] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn and K. M. Borgwardt,
Weisfeiler-Lehman Graph Kernels, J. Mach. Learn. Res. 12 (2011) 2539,
url: https://dl.acm.org/doi/10.5555/1953048.2078187 (cit. on p. 29).

[80] T. Mikolov, K. Chen, G. Corrado and J. Dean,
“Efficient Estimation of Word Representations in Vector Space”,
1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona,
USA, May 2-4, 2013, Workshop Track Proceedings, ed. by Y. Bengio and Y. LeCun, 2013,
url: http://arxiv.org/abs/1301.3781 (cit. on p. 29).

[81] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston and O. Yakhnenko,
“Translating Embeddings for Modeling Multi-Relational Data”, Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’13,
Lake Tahoe, Nevada: Curran Associates Inc., 2013 2787 (cit. on pp. 29, 48, 50).

[82] S. M. Kazemi and D. Poole, “SimplE Embedding for Link Prediction in Knowledge Graphs”,
Advances in Neural Information Processing Systems, 2018 (cit. on pp. 29, 48, 50).

[83] B. Yang, W. Yih, X. He, J. Gao and L. Deng,
“Embedding Entities and Relations for Learning and Inference in Knowledge Bases”,
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, ed. by Y. Bengio and Y. LeCun, 2015
(cit. on pp. 29, 48, 50).

[84] Z. Wang, J. Zhang, J. Feng and Z. Chen,
“Knowledge Graph Embedding by Translating on Hyperplanes.”, AAAI,
ed. by C. E. Brodley and P. Stone, AAAI Press, 2014 1112, isbn: 978-1-57735-661-5, url:
http://dblp.uni-trier.de/db/conf/aaai/aaai2014.html#WangZFC14
(cit. on p. 29).

113

https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
http://dx.doi.org/10.5555/1953048.2078187
https://dl.acm.org/doi/10.5555/1953048.2078187
http://arxiv.org/abs/1301.3781
http://dblp.uni-trier.de/db/conf/aaai/aaai2014.html#WangZFC14

Bibliography

[85] Z. Sun, Z.-H. Deng, J.-Y. Nie and J. Tang,
“RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space”,
International Conference on Learning Representations, 2019,
url: https://openreview.net/forum?id=HkgEQnRqYQ (cit. on p. 29).

[86] W. W. Cohen, TensorLog: A Differentiable Deductive Database, CoRR (2016),
arXiv: 1605.06523 (cit. on p. 30).

[87] W. Y. Wang, K. Mazaitis and W. W. Cohen, “Structure Learning via Parameter Learning.”,
CIKM, ACM, 2014 1199, isbn: 978-1-4503-2598-1 (cit. on pp. 30, 40).

[88] J. Cohen, A View of the Origins and Development of Prolog, Commun. ACM 31 (1988) 26,
issn: 0001-0782, url: https://doi.org/10.1145/35043.35045 (cit. on p. 30).

[89] Martín Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,
Software available from tensorflow.org, 2015, url: https://www.tensorflow.org/
(cit. on p. 30).

[90] L. Bühmann, J. Lehmann and P. Westphal,
DL-Learner - A framework for inductive learning on the Semantic Web.,
J. Web Semant. (2016) 15 (cit. on pp. 30, 40).

[91] L. Galárraga, C. Teflioudi, K. Hose and F. M. Suchanek,
Fast rule mining in ontological knowledge bases with AMIE+., VLDB J. (2015) 707
(cit. on pp. 30, 40).

[92] L. Galárraga, C. Teflioudi, K. Hose and F. M. Suchanek,
Fast rule mining in ontological knowledge bases with AMIE+, VLDB J. (2015) 707
(cit. on p. 30).

[93] M. Ali et al.,
PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph Embeddings,
J. Mach. Learn. Res. 22 (2021) 82:1,
url: http://jmlr.org/papers/v22/20-825.html (cit. on p. 31).

[94] X. Han et al., “OpenKE: An Open Toolkit for Knowledge Embedding”,
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4, 2018,
ed. by E. Blanco and W. Lu, Association for Computational Linguistics, 2018 139,
url: https://doi.org/10.18653/v1/d18-2024 (cit. on p. 31).

[95] J. J. Dai et al., BigDL: A Distributed Deep Learning Framework for Big Data,
CoRR abs/1804.05839 (2018), arXiv: 1804.05839,
url: http://arxiv.org/abs/1804.05839 (cit. on p. 31).

[96] D. Zheng et al., “DGL-KE: Training Knowledge Graph Embeddings at Scale”,
Proceedings of the 43rd International ACM SIGIR conference on research and development in
Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020,
ed. by J. X. Huang et al., ACM, 2020 739,
url: https://doi.org/10.1145/3397271.3401172 (cit. on p. 31).

114

https://openreview.net/forum?id=HkgEQnRqYQ
https://arxiv.org/abs/1605.06523
http://dx.doi.org/10.1145/35043.35045
https://doi.org/10.1145/35043.35045
https://www.tensorflow.org/
http://jmlr.org/papers/v22/20-825.html
https://doi.org/10.18653/v1/d18-2024
https://arxiv.org/abs/1804.05839
http://arxiv.org/abs/1804.05839
https://doi.org/10.1145/3397271.3401172

[97] Z. Zhu, S. Xu, J. Tang and M. Qu,
“GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding”,
The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019,
ed. by L. Liu et al., ACM, 2019 2494,
url: https://doi.org/10.1145/3308558.3313508 (cit. on p. 31).

[98] G. Malewicz et al., “Pregel: a system for large-scale graph processing”,
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010,
ed. by A. K. Elmagarmid and D. Agrawal, ACM, 2010 135,
url: https://doi.org/10.1145/1807167.1807184 (cit. on p. 31).

[99] C. Stadler, G. Sejdiu, D. Graux and J. Lehmann, “Sparklify: A Scalable Software Component
for Efficient Evaluation of SPARQL Queries over Distributed RDF Datasets”,
The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland,
New Zealand, October 26-30, 2019, Proceedings, Part II, Lecture Notes in Computer Science,
Springer, 2019 293 (cit. on p. 31).

[100] G. Sejdiu, Efficient Distributed In-Memory Processing of RDF Datasets,
PhD thesis: University of Bonn, Germany, 2020,
url: https://hdl.handle.net/20.500.11811/8735 (cit. on p. 31).

[101] G. Sejdiu, I. Ermilov, J. Lehmann and M. N. Mami,
“DistLODStats: Distributed Computation of RDF Dataset Statistics”,
The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA,
USA, October 8-12, 2018, Proceedings, Part II, ed. by D. Vrandecic et al., vol. 11137,
Lecture Notes in Computer Science, Springer, 2018 206,
url: https://doi.org/10.1007/978-3-030-00668-6%5C_13 (cit. on p. 31).

[102] R. Dadwal, D. Graux, G. Sejdiu, H. Jabeen and J. Lehmann,
“Clustering Pipelines of Large RDF POI Data”,
The Semantic Web: ESWC 2019 Satellite Events - ESWC 2019 Satellite Events, Portorož,
Slovenia, June 2-6, 2019, Revised Selected Papers, ed. by P. Hitzler et al., vol. 11762,
Lecture Notes in Computer Science, Springer, 2019 24,
url: https://doi.org/10.1007/978-3-030-32327-1%5C_5 (cit. on p. 31).

[103] D. Wienand and H. Paulheim, “Detecting Incorrect Numerical Data in DBpedia”,
The Semantic Web: Trends and Challenges, ed. by V. Presutti et al.,
Springer International Publishing, 2014 504, isbn: 978-3-319-07443-6 (cit. on pp. 32–34).

[104] D. Fleischhacker, H. Paulheim, V. Bryl, J. Völker and C. Bizer,
“Detecting Errors in Numerical Linked Data Using Cross-Checked Outlier Detection”,
The Semantic Web – ISWC 2014, ed. by P. Mika et al., Springer International Publishing, 2014
357, isbn: 978-3-319-11964-9 (cit. on pp. 32–34).

[105] H. Jabeen, R. Dadwal, G. Sejdiu and J. Lehmann, “Divided We Stand Out! Forging Cohorts
fOr Numeric Outlier Detection in Large Scale Knowledge Graphs (CONOD)”,
Knowledge Engineering and Knowledge Management - 21st International Conference, EKAW
2018, Nancy, France, November 12-16, 2018, Proceedings,
Lecture Notes in Computer Science, Springer, 2018 534 (cit. on pp. 32–35).

115

https://doi.org/10.1145/3308558.3313508
https://doi.org/10.1145/1807167.1807184
https://hdl.handle.net/20.500.11811/8735
https://doi.org/10.1007/978-3-030-00668-6%5C_13
https://doi.org/10.1007/978-3-030-32327-1%5C_5

Bibliography

[106] H. Paulheim,
“Identifying Wrong Links between Datasets by Multi-dimensional Outlier Detection.”,
WoDOOM, ed. by P. Lambrix, G. Qi, M. Horridge and B. Parsia, vol. 1162,
CEUR Workshop Proceedings, CEUR-WS.org, 2014 27 (cit. on pp. 32, 34).

[107] H. Paulheim,
“Identifying Wrong Links between Datasets by Multi-dimensional Outlier Detection.”,
WoDOOM, CEUR Workshop Proceedings, CEUR-WS.org, 2014 27 (cit. on p. 33).

[108] A. P. Dempster, N. M. Laird and D. B. Rubin,
Maximum likelihood from incomplete data via the EM algorithm,
Journal of the Royal Statistical Society, Series B (1977) 1 (cit. on p. 34).

[109] M. Hall et al., The WEKA data mining software: an update,
SIGKDD Explor. Newsl. (2009) 10 (cit. on p. 34).

[110] T. Kliegr, Linked hypernyms: Enriching DBpedia with Targeted Hypernym Discovery,
Journal of Web Semantics (2015) 59, issn: 1570-8268 (cit. on p. 34).

[111] M. Datar, N. Immorlica, P. Indyk and V. S. Mirrokni,
“Locality-Sensitive Hashing Scheme Based on p-Stable Distributions”,
Proceedings of the Twentieth Annual Symposium on Computational Geometry, SCG ’04,
Brooklyn, New York, USA: Association for Computing Machinery, 2004 253,
isbn: 1581138857 (cit. on pp. 34, 59).

[112] B. Micenková, R. T. Ng, X. Dang and I. Assent,
“Explaining Outliers by Subspace Separability”, 2013 IEEE 13th International Conference on
Data Mining, Dallas, TX, USA, December 7-10, 2013,
ed. by H. Xiong, G. Karypis, B. Thuraisingham, D. J. Cook and X. Wu,
IEEE Computer Society, 2013 518,
url: https://doi.org/10.1109/ICDM.2013.132 (cit. on p. 35).

[113] X. Dang, B. Micenková, I. Assent and R. T. Ng, “Local Outlier Detection with Interpretation”,
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III,
ed. by H. Blockeel, K. Kersting, S. Nĳssen and F. Zelezný, vol. 8190,
Lecture Notes in Computer Science, Springer, 2013 304,
url: https://doi.org/10.1007/978-3-642-40994-3%5C_20 (cit. on p. 35).

[114] C. C. Aggarwal, Outlier Analysis, 2nd, Springer Publishing Company, Incorporated, 2016,
isbn: 3319475770 (cit. on p. 35).

[115] X. V. Nguyen et al., Discovering outlying aspects in large datasets,
Data Min. Knowl. Discov. 30 (2016) 1520,
url: https://doi.org/10.1007/s10618-016-0453-2 (cit. on p. 35).

[116] F. Doshi-Velez and B. Kim, Towards A Rigorous Science of Interpretable Machine Learning,
2017, arXiv: 1702.08608 [stat.ML] (cit. on p. 35).

[117] A. B. Arrieta et al., Explainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI, Inf. Fusion 58 (2020) 82,
url: https://doi.org/10.1016/j.inffus.2019.12.012 (cit. on p. 35).

116

https://doi.org/10.1109/ICDM.2013.132
https://doi.org/10.1007/978-3-642-40994-3%5C_20
http://dx.doi.org/10.1007/s10618-016-0453-2
https://doi.org/10.1007/s10618-016-0453-2
https://arxiv.org/abs/1702.08608
http://dx.doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012

[118] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl and B. Yu,
Definitions, methods, and applications in interpretable machine learning,
Proceedings of the National Academy of Sciences 116 (2019) 22071,
eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.1900654116,
url: https://www.pnas.org/doi/abs/10.1073/pnas.1900654116
(cit. on p. 35).

[119] H. Salehinejad et al., Recent Advances in Recurrent Neural Networks,
CoRR abs/1801.01078 (2018), arXiv: 1801.01078,
url: http://arxiv.org/abs/1801.01078 (cit. on p. 36).

[120] O. Gorokhov, M. Petrovskiy and I. V. Mashechkin,
“Convolutional Neural Networks for Unsupervised Anomaly Detection in Text Data”,
Intelligent Data Engineering and Automated Learning - IDEAL 2017 - 18th International
Conference, Guilin, China, October 30 - November 1, 2017, Proceedings, ed. by H. Yin et al.,
vol. 10585, Lecture Notes in Computer Science, Springer, 2017 500,
url: https://doi.org/10.1007/978-3-319-68935-7%5C_54 (cit. on p. 36).

[121] M. T. Ribeiro, S. Singh and C. Guestrin,
““Why should i trust you?” Explaining the predictions of any classifier”, Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016
1135 (cit. on pp. 36, 37).

[122] M. T. Ribeiro, S. Singh and C. Guestri,
“Anchors: High-Precision Model-Agnostic Explanations”, Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
AAAI Press, 2018 1527 (cit. on pp. 36, 37).

[123] S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions,
Advances in neural information processing systems (2017) (cit. on pp. 36, 38).

[124] S. M. Lundberg and S. Lee, “A Unified Approach to Interpreting Model Predictions”,
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
ed. by I. Guyon et al., 2017 4765,
url: https://proceedings.neurips.cc/paper/2017/hash/
8a20a8621978632d76c43dfd28b67767-Abstract.html (cit. on p. 36).

[125] M. A. Siddiqui, A. Fern, T. G. Dietterich and W. Wong,
Sequential Feature Explanations for Anomaly Detection,
ACM Trans. Knowl. Discov. Data 13 (2019) 1:1,
url: https://doi.org/10.1145/3230666 (cit. on p. 36).

[126] G. Pang, L. Cao and L. Chen,
“Outlier Detection in Complex Categorical Data by Modelling the Feature Value Couplings”,
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
ĲCAI’16, New York, New York, USA: AAAI Press, 2016 1902, isbn: 9781577357704
(cit. on p. 36).

117

http://dx.doi.org/10.1073/pnas.1900654116
https://www.pnas.org/doi/pdf/10.1073/pnas.1900654116
https://www.pnas.org/doi/abs/10.1073/pnas.1900654116
https://arxiv.org/abs/1801.01078
http://arxiv.org/abs/1801.01078
https://doi.org/10.1007/978-3-319-68935-7%5C_54
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
http://dx.doi.org/10.1145/3230666
https://doi.org/10.1145/3230666

Bibliography

[127] G. Pang, L. Cao, L. Chen and H. Liu, “Unsupervised Feature Selection for Outlier Detection
by Modelling Hierarchical Value-Feature Couplings”, IEEE 16th International Conference on
Data Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain,
ed. by F. Bonchi, J. Domingo-Ferrer, R. Baeza-Yates, Z. Zhou and X. Wu,
IEEE Computer Society, 2016 410,
url: https://doi.org/10.1109/ICDM.2016.0052 (cit. on p. 36).

[128] J. He and J. G. Carbonell,
“Co-selection of Features and Instances for Unsupervised Rare Category Analysis”,
Proceedings of the SIAM International Conference on Data Mining, SDM 2010, April 29 -
May 1, 2010, Columbus, Ohio, USA, SIAM, 2010 525,
url: https://doi.org/10.1137/1.9781611972801.46 (cit. on p. 36).

[129] K. Noto, C. E. Brodley and D. K. Slonim,
FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection,
Data Min. Knowl. Discov. 25 (2012) 109,
url: https://doi.org/10.1007/s10618-011-0234-x (cit. on p. 36).

[130] H. Paulheim and R. Meusel,
A decomposition of the outlier detection problem into a set of supervised learning problems,
Mach. Learn. 100 (2015) 509,
url: https://doi.org/10.1007/s10994-015-5507-y (cit. on p. 36).

[131] Q. Yang, J. Singh and J. Lee,
“Isolation-based feature selection for unsupervised outlier detection”,
Proc. Annu. Conf. Progn. Health Manag. Soc, vol. 11, 1, 2019 (cit. on p. 36).

[132] Z. He, X. Xu, J. Z. Huang and S. Deng, FP-outlier: Frequent pattern based outlier detection,
Comput. Sci. Inf. Syst. 2 (2005) 103,
url: https://doi.org/10.2298/CSIS0501103H (cit. on p. 37).

[133] R. Agrawal and R. Srikant,
“Fast Algorithms for Mining Association Rules in Large Databases”,
VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile, ed. by J. B. Bocca, M. Jarke and C. Zaniolo,
Morgan Kaufmann, 1994 487,
url: http://www.vldb.org/conf/1994/P487.PDF (cit. on p. 37).

[134] Y. Zhu, N. M. Nayak and A. K. Roy-Chowdhury,
Context-Aware Activity Recognition and Anomaly Detection in Video,
IEEE J. Sel. Top. Signal Process. 7 (2013) 91,
url: https://doi.org/10.1109/JSTSP.2012.2234722 (cit. on p. 37).

[135] K. Vaculík and L. Popelínský,
“DGRMiner: Anomaly Detection and Explanation in Dynamic Graphs”,
Advances in Intelligent Data Analysis XV - 15th International Symposium, IDA 2016,
Stockholm, Sweden, October 13-15, 2016, Proceedings,
ed. by H. Boström, A. J. Knobbe, C. Soares and P. Papapetrou, vol. 9897,
Lecture Notes in Computer Science, 2016 308,
url: https://doi.org/10.1007/978-3-319-46349-0%5C_27 (cit. on p. 37).

118

https://doi.org/10.1109/ICDM.2016.0052
https://doi.org/10.1137/1.9781611972801.46
http://dx.doi.org/10.1007/s10618-011-0234-x
https://doi.org/10.1007/s10618-011-0234-x
http://dx.doi.org/10.1007/s10994-015-5507-y
https://doi.org/10.1007/s10994-015-5507-y
http://dx.doi.org/10.2298/CSIS0501103H
https://doi.org/10.2298/CSIS0501103H
http://www.vldb.org/conf/1994/P487.PDF
http://dx.doi.org/10.1109/JSTSP.2012.2234722
https://doi.org/10.1109/JSTSP.2012.2234722
https://doi.org/10.1007/978-3-319-46349-0%5C_27

[136] I. B. Kraiem, F. Ghozzi, A. Péninou, G. Roman-Jimenez and O. Teste,
“Human-Interpretable Rules for Anomaly Detection in Time-Series”,
Proceedings of the 24th International Conference on Extending Database Technology, EDBT
2021, Nicosia, Cyprus, March 23 - 26, 2021,
ed. by Y. Velegrakis, D. Zeinalipour-Yazti, P. K. Chrysanthis and F. Guerra,
OpenProceedings.org, 2021 457,
url: https://doi.org/10.5441/002/edbt.2021.51 (cit. on p. 37).

[137] D. Cortes, Explainable outlier detection through decision tree conditioning,
CoRR abs/2001.00636 (2020), arXiv: 2001.00636,
url: http://arxiv.org/abs/2001.00636 (cit. on pp. 37, 68, 77).

[138] D. L. Aguilar, M. A. Medina-Pérez, O. Loyola-González, K. R. Choo and E. Bucheli-Susarrey,
Towards an Interpretable Autoencoder: A Decision-Tree-Based Autoencoder and its
Application in Anomaly Detection, IEEE Trans. Dependable Secur. Comput. 20 (2023) 1048,
url: https://doi.org/10.1109/TDSC.2022.3148331 (cit. on p. 37).

[139] L. Bertossi, J. Li, M. Schleich, D. Suciu and Z. Vagena,
“Causality-based explanation of classification outcomes”, Proceedings of the Fourth
International Workshop on Data Management for End-to-End Machine Learning, 2020 1
(cit. on p. 38).

[140] A. Kristiadi, M. A. Khan, D. Lukovnikov, J. Lehmann and A. Fischer,
Incorporating literals into knowledge graph embeddings,
arXiv preprint arXiv:1802.00934 (2018) (cit. on p. 40).

[141] C. Stadler, G. Sejdiu, D. Graux and J. Lehmann, “Sparklify: A Scalable Software Component
for Efficient Evaluation of SPARQL Queries over Distributed RDF Datasets”,
The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland,
New Zealand, October 26-30, 2019, Proceedings, Part II, ed. by C. Ghidini et al.,
Lecture Notes in Computer Science, Springer, 2019 293 (cit. on pp. 42, 93).

[142] E. Moore, The Shortest Path Through a Maze,
Bell Telephone System. Technical publications. monograph, Bell Telephone System., 1959
(cit. on p. 42).

[143] F. Xia et al., Random Walks: A Review of Algorithms and Applications,
IEEE Transactions on Emerging Topics in Computational Intelligence (2020) 95
(cit. on p. 42).

[144] P. Westphal, L. Bühmann, S. Bin, H. Jabeen and J. Lehmann,
SML-Bench - A benchmarking framework for structured machine learning,
Semantic Web (2019) 231 (cit. on p. 48).

[145] P. Ristoski and H. Paulheim, “RDF2Vec: RDF Graph Embeddings for Data Mining”,
The Semantic Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan,
October 17-21, 2016, Proceedings, Part I, Lecture Notes in Computer Science, 2016 498
(cit. on pp. 48, 50).

[146] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ACM, 2016 785 (cit. on p. 48).

119

https://doi.org/10.5441/002/edbt.2021.51
https://arxiv.org/abs/2001.00636
http://arxiv.org/abs/2001.00636
http://dx.doi.org/10.1109/TDSC.2022.3148331
https://doi.org/10.1109/TDSC.2022.3148331

Bibliography

[147] M. Steinbach, G. Karypis and V. Kumar, “A comparison of document clustering techniques”,
In KDD Workshop on Text Mining, 2000 (cit. on pp. 58, 59).

[148] C. F. Draschner, J. Lehmann and H. Jabeen, “DistSim-Scalable Distributed in-Memory
Semantic Similarity Estimation for RDF Knowledge Graphs”,
International Conference on Semantic Computing (ICSC), IEEE, 2021 333
(cit. on pp. 57, 87).

[149] H. Jabeen, R. Dadwal, G. Sejdiu and J. Lehmann, “Divided We Stand Out! Forging Cohorts
fOr Numeric Outlier Detection in Large Scale Knowledge Graphs (CONOD)”,
Knowledge Engineering and Knowledge Management,
ed. by C. Faron Zucker, C. Ghidini, A. Napoli and Y. Toussaint,
Springer International Publishing, 2018 534, isbn: 978-3-030-03667-6 (cit. on p. 63).

[150] SANSA Team, https://github.com/SANSA-Stack/SANSA-
Stack/releases/tag/v0.8.5_ExPAD, 2022 (cit. on p. 69).

[151] D. C. Kozen, “Depth-First and Breadth-First Search”, The Design and Analysis of Algorithms,
Springer New York, 1992 19, isbn: 978-1-4612-4400-4 (cit. on p. 72).

[152] E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana and M. Vidal,
SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs,
CoRR (2020), arXiv: 2008.07176 (cit. on p. 77).

[153] C. F. Draschner, C. Stadler, F. Bakhshandegan Moghaddam, J. Lehmann and H. Jabeen,
“DistRDF2ML - Scalable Distributed In-Memory Machine Learning Pipelines for RDF
Knowledge Graphs”, Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, CIKM ’21,
Virtual Event, Queensland, Australia: Association for Computing Machinery, 2021 4465,
isbn: 9781450384469, url: https://doi.org/10.1145/3459637.3481999
(cit. on p. 87).

[154] M. P. C. Oktie Hassanzadeh, Linked movie data base, LDOW (2009),
url: http://linkedmdb.org/ (cit. on p. 88).

[155] L. Akoglu, H. Tong and D. Koutra,
Graph based anomaly detection and description: a survey.,
Data Min. Knowl. Discov. (2015) 626 (cit. on p. 98).

120

https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.5_ExPAD
https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.5_ExPAD
https://arxiv.org/abs/2008.07176
https://doi.org/10.1145/3459637.3481999
http://linkedmdb.org/

List of Figures

1.1 Chapter, Research Questions and Publication Overview 6

2.1 A sample RDF graph . 12
2.2 An RDF triple . 15
2.3 Apache Spark architecture diagram . 18
2.4 Box and Whiskers plot for Interquartile Range . 22
2.5 An example of One-Class Support Vector Machine in a 2D space for detecting anomalies 24
2.6 An example of isolating an anomalous point in a 2D space with IF 25

3.1 Standard anomaly detection pipeline over KGs . 32

4.1 Literal2Feature: a sample RDF graph . 40
4.2 Literal2feature system architecture abstract overview 42
4.3 Literal2Feature evaluation: depth vs. #features on the Engie dataset 43
4.4 Literal2Feature evaluation: depth vs. time on the Engie dataset 43
4.5 Literal2Feature evaluation: #walks vs. #features on the Engie dataset 44
4.6 Literal2Feature evaluation: branching factor vs. time on synthetic data on a single

machine . 44
4.7 Literal2Feature execution pipeline (best viewed in color) 45
4.8 Literal2Feature evaluation: depth impact on the classification Result and number of

extracted features . 49
4.9 Literal2Feature evaluation: processing power scalability on DS 4 Dataset 52
4.10 Literal2Feature evaluation: sizeup performance evaluation over 64 Cores 53

5.1 DistAD: system architecture abstract overview . 57
5.2 DistAD: accidents which are detected as anomalies 64
5.3 DistAD evaluation: processing power vs processing time 65
5.4 DistAD evaluation: size-up performance evaluation over 64 Cores 66

6.1 ExPAD: trained decision tree with the target variable age 70
6.2 ExPAD system architecture high-level overview . 71
6.3 ExPAD: trained decision tree with the target variable age 77
6.4 ExPAD: detected anomalies on the Accident Dataset 79
6.5 ExPAD evaluation: processing power scalability on DS3 80
6.6 ExPAD evaluation: size-up performance evaluation over 32 Cores 81

121

List of Figures

6.7 ExPAD evaluation: running time of ExPAD over a large number of features 81

7.1 SANSA stack structure . 85
7.2 Configuration of cluster . 89
7.3 Installation of SANSA library . 89
7.4 High-level micro-service architecture overview . 91
7.5 REST APIs Swagger UI . 92

122

List of Tables

2.1 The result of the SPARQL query specified in Listing 2.2 16
2.2 Definitions of evaluation dimensions . 19
2.3 Knowledge graph quality metric correlation . 20

3.1 Existing works of AD on KGs and their characteristics 33

4.1 Literal2Feature: Main parameters of the framework 47
4.2 Literal2Feature: Dataset statistics (GT=Ground Truth) 48
4.3 Literal2Feature: The F1-Measure evaluation results 50
4.4 Literal2Feature: Silhouette Coefficient . 51
4.5 Literal2Feature: Synthetic dataset description . 51

5.1 DistAD configurable components . 58
5.2 DistAD: Dataset statistics . 62
5.3 DistAD: Example of real outliers in DBpedia . 63
5.4 DistAD: Dataset description . 64

6.1 ExPAD configurable components . 74
6.2 ExPAD: Predicates used for generating synthetic RDF graph for class Person 76
6.3 ExPAD: Sample of detected anomalies and their explanation 78
6.4 ExPAD: Synthetic dataset description . 78

7.1 Available endpoints and their functionalities . 93

123

	1 Introduction
	1.1 Motivation
	1.2 Problem Definition and Challenges
	1.2.1 Challenge 1: Scalable and Distributed RDF Vectorization
	1.2.2 Challenge 2: Scalable and Distributed Anomaly Detection
	1.2.3 Challenge 3: Scalable and Distributed Explainable Anomaly Detection
	1.2.4 Challenge 4: User-Friendly Distributed Machine Learning Framework for Knowledge Graphs

	1.3 Research Questions
	1.4 Thesis Overview
	1.4.1 Contributions
	1.4.2 List of Publications

	1.5 Thesis Outline

	2 Preliminaries
	2.1 Knowledge Graphs, RDF, and Semantic Web
	2.1.1 Knowledge Graphs (KGs)
	2.1.2 Resource Description Framework
	2.1.3 Ontology
	2.1.4 SPARQL

	2.2 Scalable and Distributed Data Analytics
	2.2.1 Distributed Computing
	2.2.2 Apache Hadoop
	2.2.3 Apache Spark
	2.2.4 Apache Livy
	2.2.5 Apache Jena
	2.2.6 Scala

	2.3 Knowledge Graph Quality Metrics
	2.3.1 Accuracy
	2.3.2 Completeness
	2.3.3 Consistency
	2.3.4 Timeliness
	2.3.5 Trustworthiness

	2.4 Anomaly Detection
	2.4.1 Anomaly Detection Algorithms

	2.5 Summary

	3 Related Work
	3.1 KGs as input for Machine Learning
	3.1.1 SPARQL-based Propositionalzation
	3.1.2 Graph Kernels
	3.1.3 Knowledge Graph Embeddings (KGEs)

	3.2 Machine Learning on Semantic Data
	3.2.1 Statistical Relational Learning (SRL) Frameworks
	3.2.2 Knowledge Graph Construction and Mining
	3.2.3 Distributed Graph Processing
	3.2.4 Distributed Linked Data Processing

	3.3 Anomaly Detection on KGs
	3.3.1 Clustering by rdf:type
	3.3.2 Clustering with Constraints
	3.3.3 Clustering by LHD

	3.4 Explainable Anomaly Detection on KGs
	3.4.1 Pre-Model Techniques
	3.4.2 In-Model Techniques
	3.4.3 Post-Model Techniques

	3.5 Summary

	4 Scalable and Distributed Feature Extractor
	4.1 Motivation
	4.2 Literal2Feature: An Automatic Scalable RDF Graph Feature Extractor
	4.2.1 Components
	4.2.2 Implementation

	4.3 Use Cases
	4.4 Experimental Results
	4.4.1 Experiment A: Assessment of the extracted Features
	4.4.2 Experiment B: Scalability

	4.5 Summary

	5 Scalable and Distributed Anomaly Detection on KGs
	5.1 Motivation
	5.2 DistAD: A Distributed Generic Anomaly Detection Framework over Large KGs
	5.2.1 Components
	5.2.2 Implementation

	5.3 Experiments
	5.3.1 Experiment A: Assessment of the detected Anomalies
	5.3.2 Experiment B: Scalability

	5.4 Summary

	6 Explainable Anomaly Detection on KGs
	6.1 Motivation
	6.2 ExPAD: An Explainable Distributed Automatic Anomaly Detection Framework over Large KGs
	6.2.1 Components
	6.2.2 Implementation

	6.3 Experimental Results
	6.3.1 Dataset
	6.3.2 Experiment A: Assessment of the detected Anomalies Explanation
	6.3.3 Experiment B: Scalability

	6.4 Summary

	7 Implementation and Use-Case
	7.1 Resources
	7.1.1 GitHub Repository
	7.1.2 Documentation
	7.1.3 Releases

	7.2 Scalable Semantic Analytics within PaaS
	7.2.1 Motivation
	7.2.2 SANSA through Databricks
	7.2.3 Summary

	7.3 Micro-Service based Semantic Analytics integration
	7.3.1 Motivation
	7.3.2 Architecture
	7.3.3 Components
	7.3.4 Usage
	7.3.5 Summary

	8 Conclusion and Future Directions
	8.1 Review of the Contributions
	8.2 Future Work
	8.3 Closing Remarks

	A SANSA REST docker-compose.yml File
	B List of Publications
	Bibliography
	List of Figures
	List of Tables

