
Integrative analysis of common and rare variants for a

more comprehensive genetic risk assessment

Doctoral thesis

to obtain a doctorate (PhD)

from the Faculty of Medicine

of the University of Bonn

Rana Aldisi
from Doha, Qatar

2024



Written with authorization of

the Faculty of Medicine of the University of Bonn

First reviewer: Prof. Dr. med. Peter Krawitz

Second reviewer: Prof. Dr. Holger Fröhlich

Day of oral examination: 07.11.2024

From the Institute for Genomic Statistics and Bioinformatics

Director: Prof. Dr. med. Peter Krawitz



Dedication

I dedicate this thesis to myself, a reflection of my only slightly wavering belief in my abili-
ties and the sheer stubbornness that carried me through this academic journey. Through
many late nights, countless coffee cups, and more ’Eureka!’ moments than I can count,
I’ve made it here.

As I stand at this milestone, I am reminded that self-belief is the cornerstone of achieve-
ment, and this dedication is a celebration of my personal growth and determination. May
it inspire others to trust in their own capabilities and persevere through their academic
pursuits, just as I have on this remarkable journey.





5

Table of Contents

List of Abbreviations 6

1 Abstract 7

2 Introduction with aims and references 8
2.1 Genetics of complex phenotypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The role of environment in complex traits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Genetic Risk Analysis and Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Aims of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Publications 14
3.1 Publication 1 - GenRisk: a tool for comprehensive genetic risk modeling . . . . . 14

3.1.1 Publication 1 - Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Publication 2 - Gene-based burden scores identify rare variant associa-

tions for 28 blood biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.1 Publication 2 - Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Publication 3 - Analysis of 72,469 UK Biobank exomes links rare variants
to male-pattern hair loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
3.3.1 Publication 3 - Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
3.3.2 Publication 3 - Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

4 Discussion with references 153
4.1 Limitations and future outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

5 Acknowledgment 158



6

List of abbreviations

GBS gene-based scores

GWAS Genome-Wide Association Studies

MAF minor allele frequency

ML machine learning

MPHL male-pattern hair loss

PRS Polygenic Risk Scores

QTL Quantitative Trait Loci

SKAT Sequence Kernel Association Test



7

1. Abstract

The etiology of complex traits is difficult to interpret because of their multifactorial nature.
And while environmental factors play an important role in their development, genetic factors
also have huge and crucial effect on the expression of complex phenotypes. However, a
relevant part of the genetic landscape is yet to be discovered, despite the century long
research and studies on the topic. The aim of this thesis is to investigate the role of rare
pathogenic variants in complex traits and integrate their analysis with common variants for
a more comprehensive genetic risk assessment.

In the first paper, we introduce an open source python package, GenRisk, that imple-
ments gene-based burden scores, focusing on rare deleterious variants, and polygenic risk
scores (PRS), which are based on common variants. GenRisk’s pipeline also contains an
association analysis function using different regression models and a genetic risk modeling
function utilizing multiple machine learning models. In this paper, we applied the pipeline
on samples from UK Biobank as a usage case example.

The second paper employs the GenRisk framework to explore 28 blood biomarkers
within the UK Biobank cohort. We performed the PRS calculation using genotyping data
while exome data was used for the gene-based scores (GBS) calculation. Association
analysis was done using linear regression and genetic risk prediction models were also
generated with either PRS, GBS, or both. We were able to show that rare pathogenic
variants play an important role at an individual level, but the traditional PRS could be more
informative when predicting the genetic risk at a population level.

In the last paper, we conduct a more thorough analysis on 72,469 samples from UK
Biobank to investigate the rare-variants influence on male-pattern hair loss (MPHL). Novel
candidate genes were identified including HEPH, CEPT1 and EIF3F, further proving that
rare variants contribute to the genetic landscape of complex phenotypes like male-pattern
hair loss.

In conclusion, our findings indicate that rare deleterious variants have an essential
role in complex phenotypes, and can be analysed to discover new targets in these traits.
Nonetheless, further investigation needs to be conducted to effectively integrate the effects
of rare and common variants, ultimately improving comprehensive genetic risk assessment
strategies.
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2. Introduction with aims and references

Human genetic traits are generally split into two categories: monogenic and polygenic.
Monogenic traits are typically determined by one gene or allele, and they follow clear
patterns, like dominant or recessive inheritance (Cleynen and Halfvarsson, 2019). On the
other hand, polygenic traits, also known as complex traits, are caused by variations in
multiple genes and can also be influenced by other external factors, like diet or smoking.
Thus, they do not follow a specific pattern, which makes it difficult to identify their underlying
factors(Muthuirulan and Capellini, 2019). Complex traits represent a vast and diverse array
of human characteristics, including height, intelligence, susceptibility to common diseases,
and even personality traits. Furthermore, it has been recently suggested by multiple sources
that the traditional classifications of phenotypes into monogenic or polygenic traits is
oversimplifying the underlying genetic causality (Katsanis, 2016; Kousi and Katsanis, 2015).
For instance, many studied common diseases are characterized by both familial and
sporadic forms, such as diabetes (Karges et al., 2020), cardiovascular diseases (Dai, 2016),
and a number of neurodegenerative disorders(Piaceri, 2013; Tang et al., 2017). This adds
yet another layer of complexity into identifying and understanding the causality of these
traits.

2.1 Genetics of complex phenotypes

Heritability, also knowns as H2, is a measure of the proportion of phenotypic variation in
a population that can be attributed to genetic factors (Visscher et al., 2008). Genetic variants
can generally be categorized based on their minor allele frequency (MAF) and effect sizes,
as seen in Figure 1. Alleles with high effect size are usually rare and disease causing.
More common variants, or genetic regions, which are also known as Quantitative Trait Loci
(QTL), mostly have low effects sizes and may influence a phenotype either positively or
negatively. Individually, QTLs make subtle contributions to the trait, but the aggregate of
these genetic contributions creates a spectrum of trait values across a population (Powder,
2019). Genome-Wide Association Studies (GWAS) have been instrumental in identifying
these genetic variants associated with complex traits, shedding light on their polygenic
nature. However, since common variants usually have small effect sizes individually, it is
challenging to capture their collective impact (Uffelmann et al., 2021). Furthermore, while
GWAS studies have identified numerous variants associated with complex traits, their
cumulative effects often account for only a small fraction of the estimated heritability, which
falls short of explaining the expected heritability based on familial studies. This is known as
the ’missing heritability’ problem (Golan et al., 2014).

Different hypotheses have been proposed and investigated to address this gap. It has
even been suggested that the heritability observed in family and twin studies might be
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Figure 1: The relationship between the frequency of an allele and its effect size. Generally, rare and very
rare alleles (MAF < 0.005) have high effect sizes while common variants (MAF > 0.05) have low to modest
effect sizes. Less frequently, some common variants might have high effect sizes, and some rare variants
might have low effect sizes. Image adapted from (Whitcomb et al., 2015)

simply overestimated (Felson, 2014). GWAS typically do not comprehensively capture the
contribution of rare and low-frequency variants or structural variants (such as copy number
variations). Thus, one hypothesis suggests that these types of genetic variations, which may
have larger effect sizes, could account for a significant portion of the missing heritability (Lee
et al., 2014). In fact, many studies have investigated the effect of rare variants and observed
that they play a role in different complex phenotypes such as hypertension (Surendran
et al., 2020), autism spectrum disorder (More et al., 2023), and diabetes (Deaton et al.,
2021).

Other studies suggest that non-linear effects might be in play here. One of those effects
would be epigenetic modifications, such as DNA methylation and histone modifications,
which can add an additional layer of complexity to the etiology of complex traits. Epigenetic
changes can modulate the activity of genes without altering the underlying DNA sequence.
They can be influenced by both genetic and environmental factors, creating a dynamic and
responsive system (Handy et al., 2011). These changes can persist across generations,
potentially contributing to the transgenerational inheritance of complex traits (Kilpinen and
Dermitzakis, 2012). Another non-linear effect that could contribute to complex traits is
gene-gene interactions, also known as epistasis. Here the combination of specific genetic
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variants may have a more substantial impact on the trait than each variant individually (Wei
et al., 2014). Similarly, gene-environment interactions can modify the genetic effects on a
trait (Laville et al., 2022).

2.2 The role of environment in complex traits

The environment plays a crucial role in the development and expression of complex
traits. Environmental influences consist of a wide variety of factors, including diet, lifestyle,
exposure to toxins, and socioeconomic conditions. These external factors can interact with
genetic variants to shape the trait’s ultimate expression. For example, a person with a
genetic predisposition to obesity may or may not become overweight depending on their diet
and physical activity level (van Vliet-Ostaptchouk et al., 2012). The impact of environmental
factors can be immediate or occur over a longer time frame, such as in developmental or
epigenetic processes.

2.3 Genetic Risk Analysis and Assessment

Genetic risk assessment is a comprehensive process that evaluates an individual’s
likelihood of developing a particular genetic condition or disease based on their genetic
makeup (Igo et al., 2019). Traditionally, genetic risk assessment has focused on common
genetic variants, often identified through GWAS. More recent approaches recognize the
importance of rare variants, which, although individually infrequent, can have a significant
impact on disease risk (Wainschtein et al., 2022).

The most commonly used method for genetic risk prediction is Polygenic Risk Scores
(PRS). PRS aggregates the effects of numerous genetic variants to estimate an individual’s
overall risk for a certain disease or trait (Wang et al., 2022). These variants’ effects are
generally derived from previous GWAS analyses, which use a univariate approach (i.e.,
the association of each variant to a phenotype is done independently) (Uffelmann et al.,
2021). However, more recent multivariate methods have been established to derive PRS,
such as snpnet, which applies regression on the highly-dimensional genotyping data in
batches (Klinkhammer et al., 2023). Nevertheless, these methods only account for the
genetic disposition coming from common variants.

On the other hand, rare variants’ contribution to phenotypes has been mostly studied
using burden tests. These tests calculate the genetic burden of all variants in a genetic
region into one score which is then analyzed. However, some limitations for burden tests
include the assumption of the causality and directionality of the variants’ effect on the
traits (Kosmicki et al., 2016). Variance-component tests were developed to overcome these
limitations. One of the most widely used of those tests is Sequence Kernel Association Test
(SKAT), which is a supervised test that aggregates the statistics of multiple variants in a
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region and evaluates their distribution (Wu et al., 2011). The method was further improved
to incorporate both common and rare variants, in an extended method called SKAT-O (Lee
et al., 2012). One disadvantage of SKAT and SKAT-O is that they do not provide scores or
processed data at an individual-level.

2.4 Aims of the study

In this thesis, we hypothesize that rare and low-frequency variants with modest to high
effect sizes could contribute to the genetic landscape of complex phenotypes. Thus, the
aim of this project is to generate and optimize an analytical framework for the compre-
hensive evaluation of genetic risk by systematically integrating the effects of rare highly
damaging variants and the polygenic component that is attributable to common variants.
To achieve our goal, GenRisk, a python package for comprehensive common and rare
variant analysis, was implemented (publication 1). GenRisk pipeline was used to perform
association analyses and genetic risk modeling on 28 blood biomarkers as quantitative
phenotypes(publication 2). The same analyses were also performed on male-pattern hair
loss as binary phenotype (publication 3). The analyses from GenRisk were also compared
with other previously established methods. Genetic risk modeling was performed using
different machine learning models to account for associations that could arise for non-linear
interactions and environmental factors.
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3. Publications

3.1 Publication 1 - GenRisk: a tool for comprehensive genetic risk modeling

This publication describes an open source python package called GenRisk, which im-
plements several modules for a comprehensive genetic risk analysis. The pipeline contains
modules that perform gene-based scores calculations, association analyses, PRS calcula-
tion and prediction modeling. Unlike many other pipelines, this tool has many adjustable
features, which allows flexible implementation depending on downstream analyses. The
documentation for GenRisk can be found in subsection 3.1.1 (Publication 1 - Appendix A) as
part of the supplementary material for this paper. As the first author, I was directly involved
in the planning of the work in this article. Apart from developing the GenRisk package, I
had collected all the data needed and performed most the data analyses, evaluation and
interpretation of the results.
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Abstract

Summary: The genetic architecture of complex traits can be influenced by both many common regulatory variants
with small effect sizes and rare deleterious variants in coding regions with larger effect sizes. However, the two kinds
of genetic contributions are typically analyzed independently. Here, we present GenRisk, a python package for the
computation and the integration of gene scores based on the burden of rare deleterious variants and common-
variants-based polygenic risk scores. The derived scores can be analyzed within GenRisk to perform association
tests or to derive phenotype prediction models by testing multiple classification and regression approaches.
GenRisk is compatible with VCF input file formats.

Availability and implementation: GenRisk is an open source publicly available python package that can be down-
loaded or installed from Github (https://github.com/AldisiRana/GenRisk).

Contact: s0raaldi@uni-bonn.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the past decade, genome-wide association studies (GWAS) have
been used extensively to investigate the genetic architecture of com-
plex traits and diseases (Uffelmann et al., 2021). However, despite
the identification of many disease-associated common variants
which also led to the development of several accurate polygenic risk
score (PRS) models, a substantial part of the genetic architecture of
common traits remains unknown (Lee et al., 2014). This is known
as missing heritability, which is the difference between the heritabil-
ity observed in twins studies and the measured heritability explained
by common variants (G�enin, 2020).

Different studies suggested that the missing heritability is mainly
attributable to rare variants (Young, 2019). In line with this hypoth-
esis, many studies have observed that rare variants play a role in
complex phenotypes, such as hypertension (Russo et al., 2018),
schizophrenia (John et al., 2019) and autism (Havdahl et al., 2021).
Burden tests are among the most applied methods to investigate rare
variant effects starting from sequencing data. These methods typic-
ally collapse rare variants in a genetic region (e.g. gene) into a single
burden variable and then regress the phenotype on the burden vari-
able to test for the cumulative effects of rare variants (Bomba et al.,

2017). On the other hand, the genetic contribution of common var-
iants is typically analyzed by mean of PRS, which is usually com-
puted as the weighted sum of risk alleles with respect to a
phenotype, where the risk alleles and the corresponding weights are
derived from a reference GWAS (Choi et al., 2020).

Generally, gene-based burden tests are applied on exome/target
sequencing data while GWAS is performed on post-imputed chip-
array data for the genotyping of high-frequent variants. In the light
of the increasing availability of whole genome sequencing data,
there is a need of bioinformatics solutions integrating different
methodological approaches into a unique framework. With this aim
in mind, we developed GenRisk, a python package that seamlessly
combines different tools and libraries to analyze genotype–pheno-
type associations by considering both polygenic effects and the en-
richment of rare deleterious variants at gene-based level.

2 Implementation

The GenRisk pipeline contains multiple modules, which can be run
using a commandline interface or within a python environment. The
modules can be run sequentially, so that the input of a module is the

VC The Author(s) 2022. Published by Oxford University Press. 2651
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output of the previous module. In addition, each module can also be
used independently with data provided by the user to increase flexi-
bility of the tool for custom-analyses. Starting from a VCF, GenRisk
computes gene scores based on variant annotations. Given a pheno-
type and potential covariates (possibly including PRS), the individ-
ual gene scores can be used to perform association analyses and to
build phenotype prediction models. Furthermore, an interactive
command implements PRS computation, the PRS model can be ei-
ther provided by the user or available in pgscatalog (https://www.
pgscatalog.org/).

The workflow of the pipeline is summarized in Figure 1. In the
following sections the main features of GenRisk are described.

2.1 Gene-based scoring system
The gene scores are derived by the weighted sum of the variants in a
gene. Each allele count is weighted according to the product of a del-
eteriousness score and a coefficient based on the allele frequency.
Namely, a weighting function is applied to the variant frequency to
potentially up-weight the biological importance of rare variants.
Two weighting functions are implemented, –log10 as already applied
in another gene-based score tool (Mossotto et al., 2019) and the
beta density function, which contains two parameters a and b that
can be adjusted for more flexible weight calculation as implemented
in the sequence kernel association test (Lee et al., 2012). An adjust-
able threshold parameter for the minor allele frequency (MAF) can
be also considered to filter only for rare variants.

2.2 Genetic risk scores analysis
According to the distribution of the scores, different statistical tests
can be applied to analyze gene–phenotype associations starting from
the derived individual-based gene scores. The association analysis
results are generated as summary statistics and can be visualized via
QQ-plots and Manhattan plots.

Prediction models are computed using the open-source Pycaret, a
machine learning python library (Ali, 2020). The models can be gen-
erated for both quantitative and binary traits. The gene-based
scores, as well as PRS and covariates, such as sex and age, can be
used as features. The data given by the user can be divided into

training and testing sets (with flexible size). Cross-validation is
applied on different models and the best performing model is
selected, tuned and finalized. The model is then saved and can be

further evaluated with external testing sets. Model evaluation
reports and testing set labels are exported. Graphs like, feature im-
portance, confusion matrix and prediction error, are also generated

to visualize the model performance.

3 Usage case

We applied the pipeline on � 160 000 samples from UK Biobank (ap-
plication number 81202), the gene-based scores were calculated by

applying the beta weighting function (a¼1, b¼25) to up-weight rare
variants while the CADD (Rentzsch et al., 2019) raw scores were used
as deleteriousness weight and only variants with MAF < 1% were

included. The derived scores were used for association test and predic-
tion model with respect to alkaline phosphatase measurements (Field

30610) including also the first four genotyping principle components,
sex, BMI and age as covariates. The association analysis based on a lin-
ear regression model detected significance in ALPL, GPLD1 and

ASGR1 genes, all of which have been previously associated with alka-
line phosphatase (Nioi et al., 2016; Yuan et al., 2008). In addition, a
stochastic gradient boosted decision tree algorithm was identified as

the best prediction model once both gene scores and PRS (from
Sinnott-Armstrong et al., 2021) are taken into account and it showed

an improved prediction performance compared with PRS-only model.
Detailed results, as well as comparisons with other methods, can

be found in Supplementary Material.

4 Conclusion

GenRisk is a python package that processes input VCF files to gener-
ate both gene-based burden scores and PRS for association tests and
development of prediction models. GenRisk provides a framework

to model the effects of rare functional variants while considering the
polygenic background. Thus, it is suitable for the analysis of pheno-
types characterized by a complex genetic architecture.

Fig. 1. GenRisk pipeline workflow. A VCF file with functional annotations and frequencies can be used to calculate gene-based scores, alternatively a VCF can be used to ex-

tract and calculate PRS. The scores can then be used with phenotypic data for association analysis or to develop prediction models

2652 R.Aldisi et al.
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3.1.1 Publication 1 - Appendix A

This appendix contains the documentation of the package GenRisk, which is described
in Publication 1. The documentation lists the functionalities of the GenRisk and shows
use case example results. For a better visualization of the documentation, please visit the
online version at: genrisk.readthedocs.io



 / Welcome to GenRisk’s documenta�on!

Welcome to GenRisk’s documentation!

GenRisk is a package that implements different gene-based scoring schemes to analyze and
find significant genes within a phenotype in a popula�on

Citation

Rana Aldisi, Emadeldin Hassanin, Sugirthan Sivalingam, Andreas Buness, Hannah
Klinkhammer, Andreas Mayr, Holger Fröhlich, Peter Krawitz, Carlo Maj, GenRisk: a tool for
comprehensive gene�c risk modeling, Bioinforma�cs, Volume 38, Issue 9, 1 May 2022, Pages
2651–2653, h�ps://doi.org/10.1093/bioinforma�cs/btac152

Installation

Requirements

plink >= 1.9
R version >= 3.6.3
python >= 3.

Package installation

Op�on 1: The latest release of GenRisk  can be installed on python3+ with:

pip install genrisk

Op�on2: you can also install the package with the latest updates directly from GitHub with:

pip install git+https://github.com/AldisiRana/GenRisk.git

Indices and tables

Index
Module Index
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 / Command Line Interface

Command Line Interface

 Note

Detailed informa�on about the func�ons can be found in the pipeline.

The genrisk command line interface includes mul�ple commands which can be used as
follows:

genrisk score-genes

Calculate the gene-based scores for a given dataset.

Example

$ genrisk score-genes -a /path/to/toy_vcf_info.vcf -o toy_genes_scores.tsv -t 
toy_vcf_scoring -v ID -f AF -g gene -l ALT -d RawScore

Parameters

annota�on_file : str

an annota�on file containing variant IDs, alt, AF and deleterious scores.

bfiles : str

the binary files for plink process.

plink : str

the loca�on of plink, if not set in environment

beta_param : tuple

the parameters from beta weight func�on.

temp_dir : str

a temporary directory to save temporary files before merging.

output_file : str

the loca�on and name of the final output scores matrix.

weight_func : str
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the weigh�ng func�on used on allele frequency in score calcula�on. [beta| log10]

variant_col : str

the column containing the variant IDs.

gene_col : str

the column containing gene names. If the genes are in the INFO column, use the iden�fier
of the value (i.e gene=IF, iden�fier is ‘gene’)

af_col : str

the column containing allele frequency. If in INFO, follow previous example

del_col : str

the column containing deleteriousness score (func�onal annota�on). If in INFO, follow
previous example

alt_col : str

the column containing alternate base.

maf_threshold : float

the threshold for minor allele frequency.

Returns

DataFrame informa�on

the final scores dataframe informa�on the DataFrame is saved into the output path
indicated in the arguments

genrisk score-genes [OPTIONS]

Op�ons

Required an annota�on file containing variant IDs, alt, AF and deletarious scores.

provide binary files that contain the samples info

the directory of plink, if not set in environment

Required a temporary directory to save temporary files before merging.

-a, --annotation-file <annotation_file>

-b, --bfiles <bfiles>

--plink <plink>

-t, --temp-dir <temp_dir>
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Required the final output path

the parameters from beta weight func�on.

Default: 1.0, 25.0

the weigh�ng func�on used in score calcula�on.

Default: 'beta'

Op�ons: beta | log10

the column containing the variant IDs.

Default: 'SNP'

the column containing gene names.

Default: 'Gene.refGene'

the column containing allele frequency.

Default: 'MAF'

the column containing the deleteriousness score.

Default: 'CADD_raw'

the column containing the alternate base.

Default: 'Alt'

the threshold for minor allele frequency.

Default: 0.01

-o, --output-file <output_file>

-p, --beta-param <beta_param>

-w, --weight-func <weight_func>

-v, --variant-col <variant_col>

-g, --gene-col <gene_col>

-f, --af-col <af_col>

-d, --del-col <del_col>

-l, --alt-col <alt_col>

-m, --maf-threshold <maf_threshold>
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if flagged temporary files will not be deleted.

provide vcf that contain the samples info

genrisk normalize

Normalize/standarize data.

Example

$ genrisk normalize --data-file toy_example/toy_dataset_scores --method gene_length --
samples-col IID
--output-file toy_dataset_scores_normalized.tsv

Parameters

genes_info : str

the file containing genes names and length. if not provided ensembl database is used to
retrieve data.

method : str

the method of normalizing data. [gene_length|zscore|minmax|maxabs|robust]

data_file : str

the file containg data to be normalized.

samples_col : str

the column containing sample ids.

genes_col : str

the column containing gene names. ignore if genes_info file is not provided.

lengths_col : str

the column containing gene lengths. ignore if genes_info file is not provided.

output_file : str

the name of the file for final output

Returns

DataFrame with normalized data.

-k, --keep

--vcf <vcf>
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genrisk normalize [OPTIONS]

Op�ons

Required

Op�ons: gene_length | zscore | minmax | maxabs | robust

Required

the name of the column that contains the samples.

Default: 'IID'

Default: 'HGNC symbol'

Default: 'gene_length'

Required the final output path

genrisk find-association

Calculate the P-value between two given groups.

Example

$ genrisk find-association --scores-file toy_example/toy_dataset_scores --info-file
toy_example/toy.pheno --phenotype trait1,trait2 --samples-column IID --test logit
 --covariates age,sex --adj-pval bonferroni

--method <method>

--data-file <data_file>

--genes-info <genes_info>

-m, --samples-col <samples_col>

--genes-col <genes_col>

--lengths-col <lengths_col>

-o, --output-file <output_file>
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Parameters

scores_file : str

the file containing gene-based scores.

info_file : str

file containing the phenotype.

genes : str

a file that contains a list of genes to calculate p-values. if not, all genes in scoring file will
be used.

phenotype : str

the name of the column with phenotypes. Phenotypes can be either binary or
quan�ta�ve.

samples_col : str

the name of the column with sample IDs. All files need to have the same format.

test : str

the sta�s�cal test used for calcula�ng p-values.

adj_pval : str, op�onal

the method used to adjust the p-values.

covariates : str, op�onal

the covariates used for calcula�on. Not all tests are able to include covariates. (e.g. Mann
Whinteny U doesn’t allow for covariates)

processes : int, op�onal

if more than 1 processer is selected, the func�on will be parallelized.

Returns

DataFrame informa�on

the final dataframe informa�on the DataFrame is saved into the output path indicated in
the arguments

genrisk find-association [OPTIONS]

Op�ons

Required The scoring file of genes across a popula�on.

-s, --scores-file <scores_file>
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Required File containing informa�on about the cohort.

a file containing the genes to calculate. if not provided all genes will be used.

Required sta�s�cal test for calcula�ng P value.

Op�ons: �est_ind | mannwhitneyu | logit | linear

Required the name of the column that contains the case/control or quan�ta�ve vals.

the name of the column that contains the samples.

Default: 'IID'

Op�ons: bonferroni | sidak | holm-sidak | holm | simes-hochberg | hommel | fdr_bh |
fdr_by | fdr_tsbh | fdr_tsbky

the covariates used for calcula�on

number of processes for paralleliza�on

Default: 1

genrisk visualize

Visualize manha�en plot and qqplot for the data.

Example

$ genrisk visualize --pvals-file toy_example/toy_dataset_scores
--info-file annotated_toy_dataset.vcf

-i, --info-file <info_file>

-g, --genes <genes>

-t, --test <test>

-c, --phenotype <phenotype>

-m, --samples-col <samples_col>

-a, --adj-pval <adj_pval>

-v, --covariates <covariates>

-p, --processes <processes>
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Parameters

pvals_file : str

the file containing the calculated p-values.

info_file : str

file containing variant/gene info.

genescol_1 : str

the name of the genes column in pvals file.

genescol_2 : str

the name of the genes column in info file.

pval_col : str

the name of the pvalues column.

chr_col : str

the name of chromosomes column.

pos_col : str

the name of the posi�on/start column.

Returns

genrisk visualize [OPTIONS]

Op�ons

Required the file containing p-values.

file containing variant/gene info.

the name of the genes column in pvals file.

Default: 'genes'

the name of the genes column in info file.

-p, --pvals-file <pvals_file>

-i, --info-file <info_file>

--genescol-1 <genescol_1>

--genescol-2 <genescol_2>
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Default: 'Gene.refGene'

the name of the pvalues column.

Default: 'p_value'

the name of the chromosomes column

Default: 'Chr'

the name of the posi�on/start of the gene column

Default: 'Start'

genrisk create-model

Create a predic�on model with given dataset.

Example

$ genrisk create-model --data-file toy_example_regressor_features.tsv --model-type 
regressor
--output-folder toy_regressor  --test-size 0.25 --test --model-name toy_regressor
--target-col trait1 --imbalanced --normalize

Notes

The types of models available for training can be found model_types

Parameters

data_file : str

file containing features and target.

output_folder : str

a folder path to save all outputs.

test_size : float

the size of tes�ng set.

test : bool

-v, --pval-col <pval_col>

-c, --chr-col <chr_col>

-s, --pos-col <pos_col>
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if True the dataset will be split into training and tes�ng for extra evalua�on a�er
finaliza�on.

model_name : str

the name of the model to be saved.

model_type : str

the type of model [regressor| classifier].

target_col : str

the name of the target column in data file.

imbalanced : bool

if true methods will be used to account for the imbalance.

normalize : bool

if true the data will be normalized before training

normalize_method : str

method used to normalize data. [zscore| minmax| maxab| robust]

folds : int

the number of folds used for cross valida�on

metric : str

the metric used to choose best model a�er training.

samples_col : str

the name of the column with samples IDs.

seed : int

random seed number to run the machine learning models.

include_models : str

list of specific models to compare. more informa�on in the documenta�ons

Returns

Final predic�on model

genrisk create-model [OPTIONS]

Op�ons

Required file with all features and target for training model.

-d, --data-file <data_file>
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Required path of folder that will contain all outputs.

test size for cross valida�on and evalua�on.

Default: 0.25

Required name of model file.

Required type of predic�on model.

Op�ons: regressor | classifier

Required name of target column in data_file.

if flagged methods will be used to account for the imbalance.

if flagged the data will be normalized before training.

features normaliza�on method.

Default: 'zscore'

Op�ons: zscore | minmax | maxabs | robust

number of cross-valida�on folds in training.

Default: 10

the metric used to choose best model a�er training.

-o, --output-folder <output_folder>

-i, --test-size <test_size>

-n, --model-name <model_name>

--model-type <model_type>

-l, --target-col <target_col>

-b, --imbalanced

--normalize

--normalize-method <normalize_method>

-f, --folds <folds>

--metric <metric>

-m, --samples-col <samples_col>
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the name of the column that contains the samples.

Default: 'IID'

add number to create reproduciple train_test spli�ng.

choose specific models to compare with comma in between. e.g lr,gbr,dt

if selected feature selec�on will be implemented in training.

genrisk test-model

Evaluate a predic�on model with a given dataset.

Example

$ genrisk test-model --model-path regressor_model.pkl --input-file 
testing_dataset.tsv
--model-type regressor --labels-col target --samples-col IID

Parameters

model_path : str

the path to the ML model.

input_file : str

the tes�ng (independent) dataset.

model_type : str

the type of model [classifier|regressor].

label_col : str

the labels/target column.

samples_col : str

the sample ids column.

output_file : str

the path to the dataframe with the predic�on results.

--seed <seed>

--include-models <include_models>

--feature-selection
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Returns

DataFrame

dataframe with the predic�on results.

genrisk test-model [OPTIONS]

Op�ons

Required type of predic�on model.

Op�ons: regressor | classifier

Required tes�ng dataset

Required the target/phenotype/label column

Required path to the trained model.

the samples column.

Default: 'IID'

Required the final output path

genrisk get-prs

Calculate PRS. This command is interac�ve. This command gets a pgs file (provided by the
user or downloaded) then calculates the PRS for dataset.

Example

This func�on is performed using commandline interface:

-t, --model-type <model_type>

-i, --input-file <input_file>

-l, --label-col <label_col>

-m, --model-path <model_path>

-s, --samples-col <samples_col>

-o, --output-file <output_file>
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$ genrisk get-prs

Parameters

plink : str

provide plink path if not default in environment.

Returns

genrisk get-prs [OPTIONS]

Op�ons

-p, --plink <plink>
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 / Pipeline func�ons

Pipeline functions

Gene scoring

Calculate gene-based scores. This is calculated by a weighted sum of the variants in a
gene.

Parameters: logger – an object that logs func�on outputs.
annota�on_file (str) – an annota�on file containing variant IDs, alt,
and another info.
temp_dir (str) – a temporary directory to save temporary files before
merging.
beta_param (tuple) – the parameters from beta weight func�on.
ignore if log10 func�on is chosen.
weight_func (str) – the weigh�ng func�on used in score calcula�on.
del_col (str) – the column containing deleteriousness score or
func�onal annota�on.
maf_threshold (float) – the threshold for minor allele frequency.
between [0.0-1.0]
gene_col (str) – the column containing gene names.
variant_col (str) – the column containing variant IDs.
af_col (str) – the column containing allele frequency.
alt_col (str) – the column containing alternate allele.
bfiles (str) – the binary files for plink process. if a vcf is provided no
binary files are needed.
plink (str) – the directory of plink, if not set in environment
output_file (str) – the path to save the final output scores matrix.
vcf (str) – the vcf file for plink process. if binary files are provided no
vcf is needed.

Returns: final scores matrix
Return type: DataFrame

Gene-scoring equation

The gene scores are derived by the weighted sum of the variants in a gene.

genrisk.pipeline.scoring_process(*, logger, annota�on_file, temp_dir, beta_param,
weight_func, del_col, maf_threshold, gene_col, variant_col, af_col, alt_col, bfiles, plink, output_file, vcf)

[source]
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D  is the func�onal annota�on (e.g CADD)

A  is the weighted allele frequency

C  is the allele count.

Weighting functions

beta: this op�on uses two parameters α and β, to create beta distribu�on. Depending
on the parameters chosen, the distribu�on can change its shape, giving more
flexibilty for the user to chose how to weight the variables.

The default for this func�on is [1,25] which are the same parameters used in SKAT-O.

image source here

log10: this op�on uses -log distribu�on to upweight rare variants. This has been applied
previously in another gene-based score tool

image source here

Gsg =
k

∑
i=1

(Di × Ai)Ci

i

i

i
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Data normalization

Normalize dataset using gene_length, minmax, maxabs, zscore or robust

Parameters: method (str) – the normaliza�on method. [zscore, gene_length,
minmax, maxabs, robust]
genes_info (str) – file containing the genes and their lengths. if
gene_length method chosen with no file, info will be retrieved from
ensembl database.
genes_col (str) – the column containing genes (if genes_info file is
provided)
length_col (str) – the columns containing genes length (if genes_info
file is provided)
data_file (str) – file containing dataset to be normalized.
samples_col (str) – the column containing samples ids.

Returns: a df with the normalized dataset.
Return type: DataFrame

Normalization methods

Mul�ple methods have been implemented to normalize a dataset. Below is a brief describ�on
of each func�on.

gene_length: This method divides each gene-based score by the length of the gene. The
genes lengths can be provided by the user, or retrieved from ensembl
database. The gene length from ensembl database is calculated as such:
gene length = gene end (bp) - gene start (bp)

minmax: This method rescales the values of each column to [0,1] by using the
following formula x`= x - min(x) / max(x) - min(x)

maxabs: In this method, the values are normalized by the maximum absolute to
[-1,1] using the following formula x` = x / max(|x|)

zscore: This method uses the mean and standard devia�on to normalize the
values. Formula is x`= x - mean(x) / std

robust: Great choice for dataset with many outliers. In this method, the values are
substracted by the median then divided by the interquan�le range
(difference between the third and the first quar�le). Formula x`= x -
median(x) / Q3(x) - Q1(x)

Every normaliza�on method has it’s advantages and disadvantages, so choose the method
that works best with your dataset. To learn more about the normaliza�on methods, check out
this helpful ar�cle

genrisk.pipeline.normalize_data(*, method='gene_length', genes_info=None,
genes_col='HGNC symbol', length_col='gene_length', data_file, samples_col) [source]
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Association analysis

Calculate the significance of a gene in a popula�on using different sta�s�cal analyses
[mannwhitneyu, logit, linear, �est_ind].

Parameters: adj_pval (str) – the method used to adjust the p-values.
scores_file (str) – dataframe containing the scores of genes across
samples.
info_file (str) – a file containing the informa�on of the sample. this
includes target phenotype and covariates.
genes (list) – a list of the genes to calculate the significance. if None
will calculate for all genes.
phenotype (str) – the name of the column containing phenotype
informa�on.
samples_column (str) – the name of the column con�ning samples
IDs.
test (str) – the type of sta�s�cal test to use, choices are: �est_ind,
mannwhitenyu, linear, logit.
covariates (str) – the list of covariates used in the calcula�on.
cases (str) – the cases category. if binary phenotype.
controls (str) – the controls category. if binary phenotype.
processes (int) – number of processes used, for parallel compu�ng.
logger – an object that logs func�on outputs.

Returns: dataframe with genes and their p_values
Return type: DataFrame

Beta regression function

Calculate associa�on significance using betareg. This func�on runs in Rscript.

Parameters: scores_file (str) – the path to the scores file.
pheno_file (str) – the path to the phenotypes and covariates file.
samples_col (str) – column containing samples ids.
cases_col (str) – column containing the phenotype.
output_path (str) – a path to save the summary sta�s�cs.
covariates (str) – the list of covariates used in the calcula�on.
processes (int) – number of processes used, for parallel compu�ng.
genes (str) – a list of the genes to calculate the significance. if None
will calculate for all genes.

genrisk.pipeline.find_pvalue(*, scores_file, info_file, genes=None, phenotype, samples_column,
test='mannwhitneyu', covariates=None, cases=None, controls=None, processes=1, logger,
adj_pval=None) [source]

genrisk.pipeline.betareg_pvalues(*, scores_file, pheno_file, samples_col, cases_col,
output_path, covariates, processes, genes, logger) [source]
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logger – an object that logs func�on outputs.

Prediction model generation

Create a predic�on model (classifier or regressor) using the provided dataset.

Parameters: model_name (str) – the name of the predic�on model.
model_type (str) – type of model [regressor|classifier]
y_col (str) – the column containing the target (qualita�ve or
quan�ta�ve).
imbalanced (bool) – True means data is imbalanced.
normalize (bool) – True if data needs normaliza�on.
folds (int) – how many folds for cross-valida�on.
training_set (pd.DataFrame) – the training set for the model.
tes�ng_set (pd.DataFrame) – if exists an extra evalua�on step will be
done using the tes�ng set.
test_size (float) – the size to split the training set for cross-
valida�on.
metric (str) – the metric to evaluate the best model.
seed (int) – the in�liza�on state random number
include_models (list) – a list of models that the user wants to test. if
None all models will be used.
normalize_method (str) – the method to normalize the data. Choices
[zscore, minmax, maxabs, robust]

Return type: Final model

genrisk.pipeline.create_prediction_model(*, model_name='final_model',
model_type='regressor', y_col, imbalanced=True, normalize=True, folds=10, training_set,
tes�ng_set=Empty DataFrame Columns: [] Index: [], metric=None, seed, include_models,
normalize_method, feature_selec�on) [source]
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 / U�li�es

Utilities

Generate QQ-plot for given data.

Parameters: pvals (pd.Series) – the list of p_values.
qq_output (str) – the path to output the QQplot image.

Return type: QQPlot

Generate manha�an plot from a given dataset.

Parameters: data (pd.DataFrame) – a dataframe with pvalues and gene
informa�on.
chr_col (str) – the column with the chromosomes.
pos_col (str) – the column containing the posi�on/start.
pvals_col (str) – the column containing the posi�on/start.
genes_col (str) – the column containing gene names.
manha�an_output (str) – the path to output the manha�an plot
image.

Return type: Manha�an plot

genrisk.utils.draw_qqplot(*, pvals, qq_output) [source]

genrisk.utils.draw_manhattan(*, data, chr_col, pos_col, pvals_col, genes_col, manha�an_output)
[source]
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 / Model types

Model types

Model types that can be computed. Lists taken from Pycaret Documenta�on

Regression models:

‘lr’ - Linear Regression

‘lasso’ - Lasso Regression

‘ridge’ - Ridge Regression

‘en’ - Elas�c Net

‘lar’ - Least Angle Regression

‘llar’ - Lasso Least Angle Regression

‘br’ - Bayesian Ridge

‘kr’ - Kernel Ridge

‘svm’ - Support Vector Regression

‘knn’ - K Neighbors Regressor

‘dt’ - Decision Tree Regressor

‘rf’ - Random Forest Regressor

‘et’ - Extra Trees Regressor

‘ada’ - AdaBoost Regressor

‘gbr’ - Gradient Boos�ng Regressor

‘xgboost’ - Extreme Gradient Boos�ng

‘lightgbm’ - Light Gradient Boos�ng Machine
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‘catboost’ - CatBoost Regressor

Classification models:

‘kmeans’ - K-Means Clustering

‘ap’ - Affinity Propaga�on

‘meanshi�’ - Mean shi� Clustering

‘sc’ - Spectral Clustering

‘hclust’ - Agglomera�ve Clustering

‘dbscan’ - Density-Based Spa�al Clustering

‘op�cs’ - OPTICS Clustering

‘birch’ - Birch Clustering

‘kmodes’ - K-Modes Clustering
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 / Example use case

Example use case

The toy dataset is not real data. It contains real SNPs and gene info, but no real individuals It
was created for tes�ng and evalua�ng the pipeline only. In this example use case, we use the
toy dataset to generate gene-based scores, associa�on analysis and machine learning models.

Annotations and PLINK files

(Click here to download)

Annotations file

(filename: toy_vcf_data.tsv)

The annotated file contains informa�on about the SNPS, gene, deleteriousness score and
allele frequency. It should also contain samples genotypes. This informa�on is important for
the calcula�on of the gene-based scores.

Plink binary files

(filenames: toy_data.bed, toy_data.bim, toy_data.fam)

The binary files contains all genotype informa�on for the cohort.

Gene-based scores

The gene-based scores can be found here. These scores are used as input for the associa�on
analysis and as features for the machine learning models.

Association analysis

We performed linear regression on the quna�ta�ve phenotype and a logis�c regression on
the binary phenotype. Results can be found here.

The QQ-plot of quan�ta�ve phenotype:
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Manha�en plot of quan�ta�ve phenotype:

Machine learning models

We have created two types of models, regression and classifica�on. Both models use the
gene-based scores as features along with covariates. For the regression model, a quan�ta�ve
trait was generated, while a binary trait was generated for the classifica�on model. For each
model, 10 fold cross valida�on was done on training dataset and an extra evalua�on step was
done on the tes�ng set. The input for the model genera�on can be found here.

Classification model

Results of model training

Feature importance:

43



Precision-recall curve:

Confusion matrix:

Regression model

Results for model training

Feature importance:
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Predic�on error:

Residuals:
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 / Real use case

Real use case

Data

We ran the pipeline using about 200K samples from UKBiobank. We filtered for Bri�sh to
remove outliers (150K a�er filtering)

Gene scoring

We calculated the scored for the 150K samples.

MAF threshold: 1% MAF threshold.
Weigh�ng func�on: beta 1-25 weigh�ng parameter.
Func�onal annota�on: CADD raw scores.

Associa�on analysis

For each phenotype, we performed associa�on analysis including all the samples (150K)

Method: linear regression
Covarites: age, sex, BMI and PC1-4

Predic�on models

We also generated 3 models for each phenotype, a PRS predic�on model, a gene-based
predic�on model and a combined model.

Feature Selec�on: we used por�on of the samples (50K) for feature selec�on with linear
regression. The genes with p-values <0.05 were selected as features.

Covariates: age, sex, BMI and PC1-4 were also included in the features.
model trainng: Of the remaining 100K samples, 75% were used in training with 10-

fold cross-valida�on.
model tes�ng: the 25% remaining of the dataset was used as external tes�ng set for

final model evalua�on.
PRS calcula�on: To avoid colinearty, we excluded variants that were included in the

gene scores from the PRS calcula�on.

LDL Phenotype

We performed the analysis on the samples with LDL direct measurements as
phenotype(quan�ta�ve).
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 Note

For this phenotype we adjusted the values for individuals who take sta�n.

Association analysis

The associa�on analysis highlighted PCSK9 and LDLR as significant genes, both are known to
be associated with LDL. QQ-plot and Manha�an plot are presented below.

The QQ-plot:

The Manha�an plot:

Regression model

For the predic�on model, we used LDL direct measurements (adjusted for sta�n) as target.
For features, we used the scores of 3 selected genes + BMI + age + sex + PC1-4. For the PRS
and combined models we used the following PRS (PGS000688). The final predic�on models
was generated using gradiant boos�ng regression, evalua�on metric are shown in the table
below.

Gene-based model PRS model Combined model

Rˆ2 0.092 0.322 0.321
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Gene-based model PRS model Combined model

RMSE 0.849 0.729 0.725

The images below are the output of the final combined model. Feature importance plot:

Actual vs Predicted:

Model residuals:
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Alkaline phosphatase

We performed the analysis on the samples with ALP measurements as
phenotype(quan�ta�ve).

Association analysis

We used linear regression for the analysis and age, sex, BMI and PC1-4 were used as
covaraites. The associa�on analysis highlighted ALPL, GPLD1 and ASGR1 as significant genes,
all of which are known to be associated with alkaline phosphatase. QQ-plot and Manha�an
plot are presented below.

The QQ-plot:

The Manha�an plot:

Regression model

For the predic�on model, we used alkaline phosphatase measurements as target. For feature
selec�on, For features we used 45 selected genes as features (45 genes) + BMI + age + sex +
PC1-4. For the PRS and combined models we used the following PRS (PGS000670). The final
predic�on models was generated using gradiant boos�ng regression, evalua�on metric are
shown in the table below.

49



Gene-based model PRS model Combined model

Rˆ2 0.084 0.255 0.281

RMSE 24.7 22.3 21.9

Feature importance plot for combined model:

Other phenotypes

Association analysis

biomarker Top 3 significantly associated genes

Alanine aminotransferase GPT, THRA, ACVR2B, More

Albumin FCGRT, ALB, IQGAP2, More

Alkaline phosphatase ALPL, GPLD1, ASGR1, More

Apolipoprotein A ABCA1, LIPG, LCAT, More

Apolipoprotein B* PCSK9, LDLR, NKPD, More

Aspartate aminotransferase GOT1, GABRA5, THRA, More

Cholesterol* PCSK9, LDLR, ABCA1, More

C reac�ve protein CRP, PTGES3L, SLN , More

Crea�nine (in serum) NAA20, PRAMEF19, CLIC4, More

Gamma glutamyltranferase GGT1, CCL1, RORC

Glucose G6PC2, GCK, DYNLL1

Glycated Haemoglobin (HbA1C) HBB, PIEZO1, GCK

Lipoprotein A LPA, PLG, MRPL18

Triglycerides APOA5I, APOC3, PLA2G12A

values adjusted for sta�n

50



 Note

summary sta�s�cs for biomarkers associa�on analysis will be added soon.

Prediction models

Here we show a table of other phenotypes that we analyzed. For each phenotype we include
the number of genes considered in the models as well as the Rˆ2 of the gene-based model,
PRS model and combined model.

Number of genes Gene-based model PRS model Comb

apolipoprotein a 6 0.227 0.413 0.403

apolipoprotein b* 5 0.059 0.267 0.269

aspartate aminotransferase 57 0.039 0.124 0.128

Cholesterol* 6 0.088 0.229 0.236

Crea�nine 128 0.228 0.454 0.448

Hba1c 13 0.100 0.242 0.247

lipoprotein a 3 0.004 0.582 0.603

Triglyceride 5 0.143 0.316 0.315

urea 2 0.074 0.173 0.179

Urate 4 0.396 0.521 0.534

values adjusted for sta�n
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 / Methods Comparisons

Methods Comparisons

We have compared GenRisk scores associa�on test results with different burden test
methods. In this example, we use LDL measurements (adjusted for sta�n) as phenotype and
≃160,000 samples from UKbiobank.

We compared the results with SKATO, using the same input as GenRisk for LDL phenotype,
and found that SKATO has detected many genes (58 genes a�er p-value adjustment) as
significant, including PCSK9 and LDLR. However, the lambda of the p-values is inflated
(1.325), as opposed to GenRisk which had a lambda of 1.056, which means there is a risk of
having false-posi�ves.

We, also performed two burden tests from rvtest (h�ps://github.com/zhanxw/rvtests), CMC
and Zeggini, and no significant genes were detected with CMC analysis, while Zeggini was
able to detect PCSK9 but not LDLR.

Burden tests usually use genotypes only to score the genes, and can some�mes use filters
like func�onal annota�ons and allele frequency, but this is just filtering (no values) and it has
to be done as a pre-step before the actual analysis. An example of that is Genebass, where
they applied SKATO on three different sets (Loss of func�on, missense and synonymous), and
the results for LDL presented PCSK9 and LDLR on along with other genes, however the
lambda for the p-values is inflated (e.g the lambda for LDL direct across all burden sets for the
SKATO is 1.18 and for Burden test is 1.16), which means there is a risk of having false
posi�ves. h�ps://genebass.org/gene/undefined/phenotype/con�nuous-30780-both_sexes–
irnt?burdenSet=pLoF&resultIndex=gene-manha�an&resultLayout=full Another example is
astrazeneca phewas portal (azphewas), here they have mul�ple models that filter for
frequency, categorical annota�ons and/or deleteriousness score threshold.
h�ps://azphewas.com/phenotypeView/f87604bb-7293-44e8-8e29-
bf58d9872841/4b20a1ff-bded-4f1e-8301-f2922f0b8499/glr
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 / Computa�on informa�on

Computation information

It should be noted that the aim of our work is to provide a novel framework more
comprehensive in terms of gene�c risk assessment and currently is not yet op�mized for
computa�onal performance. For all the computa�on below, we use a “standard” worksta�on
(RAM=64GB with 6 CPU dual core).

Gene-based scoring and analysis

In the following table we show the computa�on �me for the gene-core computa�on and
associa�on analysis with linear regression of the biggest chromosome (1,727,756 variants,
MAF filtering = <1%) which includes also the higher number of genes (1,972 genes) by
considering different numbers of individuals.

1K samples 10K samples 100K samples

gene-scoring (in mins) 22 25 48

Find-associa�on, linear regression (in sec) 8 28 134

While for predic�on models the complete input matrix (i.e., samples and genes plus
covariates) should be loaded in RAM, for gene-scoring we use the efficient score func�on
implemented in PLINK v2 (). For gene-associa�on GenRisk the memory usage depends on the
size of the input matrix, the larger the matrix the more memory it uses.

1K samples 10K samples 100K samples

Mem (in Gb) 3.1 3.4 9.4

Prediction models generation

GenRisk has “per-se” no limit in the number of features that can be used. However, there
could be computa�onal issues according to the dimensionality of the input, that is samples
and features (genes, covariates, etc..). The tables below present the total run �me (in seconds)
and maximum memory usage (in GB) given different sample sizes with increasing number of
features. Please note that it might be wise to run big data size (e.g 100K x 1000feats) using
an HPC infrastructure. Another point to consider is that the �me and memory usage also
depends on the models included in the analysis and the best model fine-tuning and
finaliza�on. Some models, such as gradient boos�ng, might take more �me than simpler
models, like linear or lasso regression, to be finalized.
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Total run time of prediction model generation in seconds

1K samples 10K samples 100K samples

10 feats 14 19 1690

100 feats 24 678 41649

1000 feats 143 1034 432000(≈ 5days)

Maximum memory used in GB

1K samples 10K samples 100K samples

10 feats 2.81 2.93 2.97

100 feats 2.93 2.95 3.29

1000 feats 3.51 3.82 8.29

Feature Selection

In general in the context of predic�on models for big datasets we would suggest a feature
selec�on using the “associa�on” module and then generate predic�on models. This is also in
line with the expected gene�c architecture of the majority of the traits in which only a small
propor�on of the genes plays a pivotal role. If instead we have a really highly polygenic
phenotype the computa�on of genome-wide polygenic risk score (PRS) is probably the most
appropriate approach, as PRS is a value per individual only a vector of scores would be
generated and therefore the computa�onal burden is limited.
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3.2 Publication 2 - Gene-based burden scores identify rare variant associations for 28
blood biomarkers

In this paper we investigate the contribution of rare variants to the genetic landscape
of 28 blood biomarkers from the UK Biobank cohort. Gene-based scores were calculated
and association analyses were performed to detect significant genes in each biomarker.
Furthermore, prediction models were generated with the gene-based scores and polygenic
risk scores to explore their contributions to the genetic risk prediction. The identification
of genes contributing to the blood biomarkers confirm that rare-variants play an important
role in their genetic landscape. However, common variants might be a more informative
method for predicting the genetic risk at a population level. Information about supplementary
materials can be found in subsection 3.2.1 (Publication 2 - Appendix A). As the first author, I
was directly involved in the planning of the work in this paper. I collected all the data needed
and performed most the analyses, evaluation and interpretation of the results.
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Abstract 

Background A relevant part of the genetic architecture of complex traits is still unknown; despite the discov-
ery of many disease-associated common variants. Polygenic risk score (PRS) models are based on the evalua-
tion of the additive effects attributable to common variants and have been successfully implemented to assess 
the genetic susceptibility for many phenotypes. In contrast, burden tests are often used to identify an enrichment 
of rare deleterious variants in specific genes. Both kinds of genetic contributions are typically analyzed independently. 
Many studies suggest that complex phenotypes are influenced by both low effect common variants and high effect 
rare deleterious variants. The aim of this paper is to integrate the effect of both common and rare functional variants 
for a more comprehensive genetic risk modeling.

Methods We developed a framework combining gene-based scores based on the enrichment of rare functionally 
relevant variants with genome-wide PRS based on common variants for association analysis and prediction mod-
els. We applied our framework on UK Biobank dataset with genotyping and exome data and considered 28 blood 
biomarkers levels as target phenotypes. For each biomarker, an association analysis was performed on full cohort 
using gene-based scores (GBS). The cohort was then split into 3 subsets for PRS construction and feature selection, 
predictive model training, and independent evaluation, respectively. Prediction models were generated includ-
ing either PRS, GBS or both (combined).

Results Association analyses of the cohort were able to detect significant genes that were previously known to be 
associated with different biomarkers. Interestingly, the analyses also revealed heterogeneous effect sizes and direc-
tionality highlighting the complexity of the blood biomarkers regulation. However, the combined models for many 
biomarkers show little or no improvement in prediction accuracy compared to the PRS models.

Conclusion This study shows that rare variants play an important role in the genetic architecture of complex mul-
tifactorial traits such as blood biomarkers. However, while rare deleterious variants play a strong role at an individual 
level, our results indicate that classical common variant based PRS might be more informative to predict the genetic 
susceptibility at the population level.
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Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomic Data

*Correspondence:
Rana Aldisi
s0raaldi@uni-bonn.de
Full list of author information is available at the end of the article

56



Page 2 of 11Aldisi et al. BMC Genomic Data           (2023) 24:50 

Background
The genetic architecture of complex phenotypes has been 
studied extensively for over a century; however, a rel-
evant part of the genetics still elude us. That is because, 
essentially, many factors are involved in the development 
of such traits, both biological and environmental, which 
makes it harder to discover causative effects for any com-
plex phenotype or disease [1]. Genome-wide association 
studies (GWAS) investigate the associations of low-effect 
single nucleotide polymorphisms (SNPs) with specific 
phenotypes. For the last decade, GWAS have been used 
to identify many common variants that are associated 
with diseases and other phenotypes such as cancer [2], 
autism [3] and cholesterol [4]. About 90% of the vari-
ants identified by GWAS are located in the non-coding 
regions of the genome. This gives insight to the mecha-
nisms behind development and progress of complex phe-
notypes by exploring regulatory elements that could have 
an effect on disease related genes [5]. However, the nar-
row sense of heritability estimated from the GWAS, also 
known as SNP-h2, is typically lower than the broad sense 
of heritability  H2 estimate from twins and family stud-
ies, this is known as the missing heritability [6]. Different 
hypotheses have been suggested to resolve the difference 
between observed and measured heritability, such as 
non-linear effects, epigenetics and rare variants [6]. It has 
also been hypothesized that family studies or twin stud-
ies might have overestimated the heritability and that the 
shared environment plays a significant role in these traits 
[7]. On the other hand, many studies suggest that more 
genetic variations need to be included in the analysis of 
complex traits to account for the unexplained heritability, 
such as small to moderate effect low-frequency (MAF1%-
5%) variants, and potentially highly damaging rare vari-
ants (MAF < 1%) [8]. In fact, it has been observed that 
rare variants contribute to the genetic landscape of com-
plex phenotypes such as inflammatory bowel disease [9], 
hypertension [10] and autism [11].

Common and rare variants are typically analyzed inde-
pendently. Common variants’ effects on a certain phe-
notype are analyzed using polygenic risk scores (PRS), 
these scores are usually derived from large-scale GWAS 
and are used to assess an individual’s genetic liability for 
a certain trait or disease [12]. However, current PRSs 
explain only a small part of the heritability of complex 
traits [13]. On the other hand, multiple methods have 
been developed to find phenotype associations with rare 
variants. A widely known category is burden test, which 
collapses all information in a genetic region (e.g. gene) 
into one genetic burden score that can be used for asso-
ciation analysis. The association is then analyzed between 
the burden score and a certain phenotype. However, 
burden tests assume that all rare variants are causal and 

have the same directional effect on the trait tested [14]. 
Another class of methods was developed to avoid these 
limitations, which is known as the variance-component 
tests. These tests analyze associations by looking at joint 
genetic effect for variants in a genetic region. For exam-
ple, sequence kernel association test (SKAT), aggregates 
score statistics of multiple variants then evaluates the dis-
tribution [15]. While this class has dealt with the limita-
tions of burden tests, it might not perform well when a 
large proportion of the variants have strong effects in the 
same direction [14]. For this purpose, methods combin-
ing burden tests and variance-component tests have been 
proposed. One of these methods is SKAT-O, an exten-
sion of SKAT which can incorporate both common and 
rare variants in the analysis [16]. While all these differ-
ent approaches have their advantages, one of their disad-
vantages is that they do not provide individual-level data, 
therefore, other methods based on functional annota-
tions and frequency weight have been developed, such 
as Genepy [17] and GenRisk [18]. These approaches are 
more general and allow gene-based scores at individuals 
levels to be derived which can be used subsequently for 
multiple analyses.

For both common and rare variants, well-established 
methods exist to perform genotype-phenotype associa-
tion and prediction analysis; however, their combined 
contributions have not been fully studied. Our paper 
aims to analyze the contribution of both rare and com-
mon variants to complex phenotypes. We achieve this by 
integrating gene-based scores for rare variants and PRS 
for common variants in genetic risk modeling.

Results
We used gene-based scores, calculated based on the bur-
den of rare functional variants and allele frequency, to 
analyze gene associations with 28 quantitative biomark-
ers. We further integrated the gene-based scores with the 
PRS models, aiming to enhance the risk prediction.

Identification of phenotype‑associated genes
To identify genes associated with different biomarkers, 
we performed association analysis, using linear regres-
sion, on the UK biobank cohort with 28 blood biomark-
ers extracted as phenotypes. Furthermore, we calculated 
the effect size (z-score) of each gene on each biomaker 
phenotype using the beta coefficient and standard error 
extracted from the association analysis. Figure  1 dis-
plays the distribution of the effect sizes of genes with 
P-value < 0.05 after Bonferroni correction for each phe-
notype with highlight on the highest and lowest effect 
size genes, with effect sizes ranging between -49.6 (ALPL 
in alkaline phosphatase) and 23.4 (LDLR in LDL direct 
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measurement). The number of genes with positive and 
negative effects for each biomarker is shown in Table 1.

Rare and common variants integrated risk prediction 
models
In order to assess the contribution of rare and common 
variants on complex phenotypes, we generated predic-
tion models for each biomarker. These models were gen-
erated using GenRisk pipeline, which evaluates different 
regression models and outputs the model with the best 
performance as a final output, we then calculated the  R2 
for each model using an independent testing set. Four 
different models for each biomarker were generated: 

based on polygenic risk scores for common variant effect 
(PRS model); based on selected gene-based scores for 
rare variant effect (GBS model); combining both rare and 
common variant effects (PRS+GBS combined model); a 
only covariates-model (in order to assess the incremental 
performance due to the genetic factors). Table 2 presents 
the  R2 for the covariates models and the incremental  R2 
for all other models in comparison.

Discussion
In this study, we evaluated the association of rare genetic 
variants with 28 blood biomarkers. In addition, we 
explore the genetic contribution of these variants to the 

Fig. 1 Distribution of effect sizes of genes with P-value < 0.05 after Bonferroni correction, the highest and lowest genes’ effect sizes are labeled 
for every biomarker
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regulation of the biomarkers levels using samples from 
the UK Biobank. The association analysis, based on 
gene-scores derived from the burden of rare functional 
variants, revealed several interesting gene candidates 
associated with different blood biomarkers, showing both 
positive (increasing) and negative (decreasing) effect 
sizes. Some of these candidate genes have clear known 
associations with their respective biomarker; for exam-
ple, ALPL gene was identified in association with alkaline 
phosphatase biomarker levels, and SHBG gene was asso-
ciated with both sex hormone binding globulin (SHBG) 
and testosterone biomarkers’ levels. In addition, the neg-
ative effect direction of those associations indicates that 
the presence of rare functional, possibly damaging, vari-
ants, as measured by the gene-based scores, decreases 
the biomarkers’ levels. This is consistent with the fact 
that ALPL and SHBG are the protein-coding genes for 
the alkaline phosphatase and SHBG biomarkers, respec-
tively. Consequently, the presence of damaging variants 
in these genes could lead to a decrease in the production 
of their corresponding biomarkers. Additionally, since 

SHBG regulates testosterone levels in the body, a reduc-
tion in SHBG levels may also result in a reduction of tes-
tosterone levels [19].

Another clear example for rare variant associations is 
LDL (low-density lipoprotein), which showed associa-
tion and positive effect direction with LDLR and nega-
tive effect direction with PCSK9. In this case, damaging 
mutations in LDLR, the gene for the LDL receptor, result 
in an increase in LDL levels in plasma. This finding is not 
surprising, as it has been previously suggested that muta-
tions in LDLR are often responsible for familial hyper-
cholesterolemia [20]. Instead, PCSK9 is a regulatory 
protein that degrades LDLR and thus leads to an increase 
in LDL plasma levels. In fact, PCSK9 inhibitors have been 
used as a treatment for hypercholestrolemia [21].

To confirm and validate our result, we also compared 
our findings with two different approaches that try to 
find gene-phenotype associations using rare variants and 
are performed on UK biobank samples, genebass [22] and 
AstraZeneca PheWAS [23]. Genebass uses SAIGE-GENE 
[24] to perform gene-based burden test and SKAT-O, 
while AstraZeneca PheWAS analysis was performed 
using Fisher’s exact test on different models each with 
their own variant functional and allele frequency filter-
ing criteria. In general, the different methods share many 
similar associations, however, our method has shown 
to have less inflated lambda in comparison to genebass. 
Typically, the lambda values are expected to be near 1, a 
lambda lower than 1 (deflation) could mean under-pow-
ered analysis and a lambda higher than 1 (inflation) could 
mean high false positive rate. Table 3 presents the lamb-
das as calculated from the three different approaches, 
since genebass and Astrazeneca PheWAS used different 
models to find associations, the average of these models 
is reported. Lambdas for all models’ values can be found 
in the supplementary material (Table S2).

All approaches identified genes that are previously 
known to be associated with the respective biomarker 
(P-value < 0.05 after Bonferroni correction), for example 
PCSK9, LDLR, NPC1L1 and ABCG5 association with 
LDL levels [25–27]. However, our approach was able to 
identify potential novel associations that were not found 
with the other methods, such as, SNX8 for LDL and cho-
lesterol, which is a part of the sorting nexin family and 
have been previously associated with the distribution of 
neuronal cholesterol [28]. Another example of shared 
association among all approaches is the association of 
GOT1, also known as AST1, with aspartate aminotrans-
ferase (AST), which is the gene encoding AST. GenRisk 
further identified THRA, also known as thyroid hor-
mone receptor alpha. AST is a liver enzyme that is used 
as a biomarker to indicate liver damage or disease and in 
fact, the liver plays an important role in the activation, 

Table 1 Number of significantly associated genes with negative 
and positive effect sizes

a  Values adjusted for statins

Biomarker Negative 
effect

Positive effect

Alanine aminotransferase 1 1

Albumin 4 2

Alkaline phosphatase 5 6

Apolipoprotein A 7 9

Apolipoprotein  Ba 6 3

Aspartate aminotransferase 1 8

Cholesterola 8 7

Creatinine 1 27

Cystatin C 2 9

Direct bilirubin 3 10

Gamma glutamyltransferase 3 9

Glucose 1 2

Glycated haemoglobin (HbA1c) 3 8

HDL cholesterol 8 9

IGF1 4 1

LDL  directa 7 4

Lipoprotein A 2 1

Phosphate 4 3

SHBG 4 1

Testosterone 1 1

Total bilirubin 7 7

Total protein 5 1

Triglycerides 8 5

Urate 3 3

Vitamin D 1 5

59



Page 5 of 11Aldisi et al. BMC Genomic Data           (2023) 24:50  

metabolism and transport of thyroid hormone, while 
thyroid hormones are said to affect hepatic cells metab-
olism [29]. Notably, THRA was also identified by Gen-
Risk as significant, for alanine aminotransferase, another 
liver biomarker. Figures 2, 3 and 4 display the association 
analysis results along with venn diagram representing 
the number of significant associations identified from 
each approach mentioned above for LDL, aspartate ami-
notransferase and alanine aminotransferase, respectively. 
Similar figures for the rest of the biomarkers are provided 
in the supplementary material (Figs. S2–S26). The sum-
mary statistics for the association analysis performed by 
GenRisk for each biomarker are also provided in the sup-
plementary material (Tables S3–S31).

In addition, in order to assess the contribution of 
rare-variants in the 28 blood biomarkers, we compared 
risk prediction models using four different modalities 

(see Methods for details). Our prediction model results 
suggest that the effect of rare variants on complex phe-
notypes differs depending on the distinct genetic archi-
tecture of the phenotypes. Furthermore, even though 
most of the biomarkers predictions show improvements 
when combining rare (GBS) and common (PRS) variants, 
these improvements are marginal in many cases which 
suggest that the added predictive value of rare variants in 
risk prediction is limited. Interestingly, gradient boosting 
regressor was selected by our pipeline as best perform-
ing model for most biomarkers. In gradient boosting 
machines, weak performing models, e.g decision trees, 
are combined together to generate a more powerful pre-
dictive model [30]. In fact, it has been shown that gradi-
ent boosting and other machine learning models perform 
better than traditional linear models in complex pheno-
types when non-additive effects might be involved [31].

Table 2 The  R2 of prediction models for blood biomarkers, with calculated incremental  R2 values between covariates only model and 
the rest of the models

a  Values adjusted for statins

Biomarker Gene predictors Covariates Model  R2 Incremental  R2

Genes PRS Combined

Alanine aminotransferase 4 0.137 0.003 0.011 0.014

Albumin 5 0.059 0.005 0.027 0.032

Alkaline Phosphatase 8 0.071 0.026 0.088 0.103

Apolipoprotein A 11 0.208 0.009 0.075 0.083

Apolipoprotein  Ba 5 0.088 0.007 0.157 0.162

Aspartate Aminotransferase 10 0.040 0.000 0.009 0.009

Calcium 2 0.028 0.002 0.017 0.018

Cholesterola 6 0.089 0.006 0.096 0.099

C-reactive protein 5 0.066 0.004 0.009 0.011

Creatinine 41 0.248 -0.006 0.011 0.005

Cystatin C 11 0.177 -0.001 0.043 0.043

Direct bilirubin 14 0.045 0.011 0.272 0.272

Gamma glutamyltransferase 11 0.053 0.001 0.015 0.015

Glucose 8 0.030 0.001 0.003 0.003

Glycated haemoglobin (HbA1c) 16 0.098 0.001 0.020 0.022

HDL cholesterol 14 0.274 0.011 0.113 0.120

IGF1 5 0.091 0.003 0.067 0.070

LDL  directa 5 0.077 0.006 0.109 0.113

Lipoprotein A 3 0.000 0.003 0.567 0.591

Phosphate 3 0.067 0.003 0.020 0.023

SHBG 5 0.309 0.017 0.053 0.065

Testosterone 1 0.828 0.001 0.006 0.008

Total bilirubin 11 0.064 0.012 0.399 0.400

Total protein 4 0.003 0.005 0.039 0.042

Triglycerides 7 0.139 0.003 0.058 0.061

Urate 4 0.387 0.013 0.065 0.077

Urea 2 0.070 0.000 0.009 0.010

Vitamin D 2 0.040 0.001 0.015 0.015
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It is noteworthy to mention that some risk prediction 
models were mostly influenced by other factors, like sex 
for testosterone and creatinine, as seen in Fig.  5, which 
was identified as the variable with the highest influence 
in these models with the other features playing only a 
minor role in the prediction. This is to be expected, since 
testosterone is a sex-specific hormone and creatinine 
levels vary depending on the individual’s size and mus-
cle mass, which is usually higher in men [32]. The true 
vs. predicted value plot and the top features figures for all 
the biomarkers’ models can be found in the supplemen-
tary materials (Figs. S27–S54).

Conclusion
In this study, we investigate the contribution of rare 
functional variants in blood biomarkers. We performed 
association analysis on gene-based burden scores and 
built genetic risk models using rare and common variant 

effects. The results suggest that gene-based score is a 
powerful instrument to identify gene-phenotype associa-
tions between rare-variants and complex phenotypes. 
While some of the associations were replicated by other 
methods, our tool has the advantage of producing indi-
vidual-level scores that can be used for multiple subse-
quent analyses. Although gene-based scores have proven 
to be useful on the individual-level, traditional PRS pro-
vides more information for risk prediction purposes 
on the population-level scale. It is important to men-
tion that these results are limited to the effects of rare 
and common variants at gene-based level. Even though 
we included non-linear models in the analysis to poten-
tially detect gene-gene interactions, they cannot capture 
effects that happen at variant level. Furthermore, other 
potential factors influencing the genetic susceptibility 
(i.e., epigenetics, gene-environment) are not considered 
in our current work.

Table 3 The lambdas of the three different approaches, averaged in case of multiple values. Full and detailed table with all values can 
be found in Supplementary material

Biomarker GenRisk Genebass Burden Average Genebass SKATO Average AstraZeneca 
PheWAS 
Average

Alanine aminotransferase 1.016 1.139 ± 0.081 1.1967 ± 0.278 1.046 ± 0.016

Albumin 1.069 1.136 ± 0.132 1.231 ± 0.243 1.050 ± 0.018

Alkaline phosphatase 1.078 1.322 ± 0.259 1.739 ± 1.130 1.084 ± 0.023

Apolipoprotein A 1.068 1.207 ± 0.170 1.340 ± 0.317 1.070 ± 0.020

Apolipoprotein B 1.105 1.149 ± 0.094 1.247 ± 0.289 1.053 ± 0.018

Aspartate aminotransferase 0.951 1.174 ± 0.104 1.253 ± 0.285 1.064 ± 0.027

Calcium 1.063 1.099 ± 0.045 1.162 ± 0.140 1.053 ± 0.020

Cholesterol 1.085 1.158 ± 0.117 1.199 ± 0.266 1.050 ± 0.014

C-reactive protein 0.995 1.228 ± 0.178 1.505 ± 0.786 1.082 ± 0.0201

Creatinine 0.861 1.201 ± 0.158 1.328 ± 0.418 1.097 ± 0.027

Cystatin C 0.995 1.221 ± 0.173 1.376 ± 0.371 1.093 ± 0.030

Direct bilirubin 0.993 1.168 ± 0.146 1.411 ± 0.613 1.036 ± 0.001

Gamma glutamyltransferase 0.965 1.207 ± 0.078 1.384 ± 0.289 1.065 ± 0.030

Gluscose 0.998 1.081 ± 0.081 1.082 ± 0.111 1.019 ± 0.013

Glycated haemoglobin HbA1c 1.018 1.224 ± 0.125 1.391 ± 0.387 1.090 ± 0.026

HDL Cholesterol 1.076 1.231 ± 0.175 1.417 ± 0.474 1.075 ± 0.026

IGF1 1.084 1.212 ± 0.145 1.352 ± 0.396 1.096 ± 0.019

LDL direct 1.092 1.132 ± 0.119 1.179 ± 0.245 1.039 ± 0.016

Lipoprotein A 0.992 1.156 ± 0.152 1.354 ± 0.534 1.020 ± 0.008

Phosphate 1.065 1.041 ± 0.028 0.976 ± 0.060 1.054 ± 0.020

SHBG 1.07 1.194 ± 0.076 1.353 ± 0.336 1.065 ± 0.025

Testosterone 1.005 1.088 ± 0.105 1.072 ± 0.205 1.016 ± 0.014

Total bilirubin 1.028 1.264 ± 0.193 1.648 ± 0.911 1.030 ± 0.013

Total protein 1.059 1.194 ± 0.183 1.286 ± 0.323 1.078 ± 0.021

Triglycerides 1.066 1.197 ± 0.187 1.279 ± 0.362 1.071 ± 0.011

Urate 1.076 1.227 ± 0.054 1.429 ± 0.335 1.058 ± 0.018

Urea 1.036 1.116 ± 0.091 1.157 ± 0.226 1.049 ± 0.012

Vitamin D 1.034 1.089 ± 0.016 1.133 ± 0.135 1.049 ± 0.019
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Methods
Cohort and data processing
All analyses were performed on the UK biobank cohort, 
which is a large-scale population-based biomedical data-
base that contains data for half a million participants. 
Data include questionnaires, biomarkers, imaging and 
genetic data. For our analysis, we used imputed geno-
type data, whole exome sequencing data, biometric data 
(age, sex, BMI) and all blood biomarker measurements 
except for rheumatoid factor and estradiol, which were 
excluded because of low sample size. The UK biobank 
field identifiers used can be found in supplementary 
material (Table S1). Variants were annotated with genes 
using NCBI’s gene and reference sequences [33], gnomad 
allele frequency and CADD v1.6 raw scores [34]. We fil-
tered the cohort to include participants with white Brit-
ish ancestry that have whole exome sequencing data and 
genotype data, resulting in n=145,464 samples. For indi-
viduals using the cholesterol lowering statins as medica-
tion, cholesterol, LDL and apolipoprotein B levels were 

adjusted by using previously estimated factors of 0.684, 
0.749, and 0.719, respectively [35]. For risk prediction 
modeling, the cohort was split into three subsets: 60% 
(n=87,278) for constructing the PRS and feature selec-
tion, 30% (n=43,639) for training the prediction models, 
and 10% (n=14,547) for model testing. The number of 
samples per phenotype varied depending on the availa-
bility of measurements. Distribution and number of sam-
ples per biomarker can be found in the supplementary 
material (Fig. S1).

Polygenic risk score (PRS)
To generate the PRS for each biomarker, we applied 
snpnet pipeline [36] on the the imputed genotyping sam-
ples of the construction dataset. This pipeline uses batch 
screening iterative lasso framework to select effect vari-
ants and generate polygenic score which can be used to 
calculate PRS for a cohort. We used the default param-
eters defined in snpnet pipeline for polgenic score deriva-
tion and excluded SNPs with MAF < 0.01. After polygenic 

Fig. 2 Association analysis summary for LDL direct*. A Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZeneca PheWAS (all models) and genebass (Burden and SKATO). B QQ-plot of the P-values of GenRisk pipeline results. C Manhattan plot 
of GenRisk pipeline results. *statin adjusted values
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score construction, we calculated the PRS for the remain-
ing cohort to be included in the prediction model train-
ing and testing subsets.

Rare variants analysis
We used GenRisk, a python package that implements 
a gene-based scoring system, association analysis, risk 
scores calculations and machine learning models gen-
eration [18]. The gene-based scoring system depends on 
frequency and functional annotations, with up-weight-
ing function for rare variants. Gene-based scores (GBS) 
were derived from whole exome data for all individuals 
in the cohort, using default settings (MAF threshold < 
0.01, beta weighting function with parameters 1 and 25), 
and associations were assessed for the 28 biomarkers 
with quantitative values. For association analysis, linear 
regression was applied to the gene-based scores of the 
whole cohort with BMI, age, sex and the first four genetic 
principal components (PCs) as covariates. The number of 
PCs was chosen based on the variance explained in UK 

biobank European cohort [37]. Manhattan and QQ plots 
were generated to visualize the results, and the lambda 
statistic, representing the inflation of P-values in compar-
ison to the expected distribution of P, was also calculated. 
To account for multiple testing, Bonferroni correction 
was applied to adjust the P-values. Thus, the genome-
wide significance threshold level was calculated based on 
the number of tested genes (0.05/18556 =2.69E-07).

Feature selection
To reduce the numbers of input variables in prediction 
models, feature selection was applied on the GBS matrix 
to select genes that are associated with the respective 
biomarker. Association analysis was performed using 
linear regression with the same previously stated covari-
ates on the GBS of the construction subset for each of the 
biomarker and genes with P-value < 0.05 after Bonferroni 
correction were selected as gene predictors. Number of 
gene predictors per biomarker can be found in Table 2.

Fig. 3 Association analysis summary for aspartate aminotransferase. A Venn diagram of the number significantly associated genes as identified 
by GenRisk, AstraZeneca PheWAS (all models) and genebass (Burden and SKATO). B QQ-plot of the P-values of GenRisk pipeline results. C Manhattan 
plot of GenRisk pipeline results
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Fig. 4 Association analysis summary for alanine aminotransferase. A Venn diagram of the number significantly associated genes as identified 
by GenRisk, AstraZeneca PheWAS (all models) and genebass (Burden and SKATO). B QQ-plot of the P-values of GenRisk pipeline results. C Manhattan 
plot of GenRisk pipeline results

Fig. 5 True vs. Predicted value plot (left) and top 10 features (right) for creatinine combined model. Values that are a 3 standard deviations away 
from the mean were eliminated for a better visualization
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Risk prediction modeling
For each biomarker, four different prediction models 
were generated using the machine learning model train-
ing subset.

• Covariates model: biomarker = sex + age + BMI + 
PC1 + PC2 + PC3 + PC4

• GBS model: biomarker = covariates + GBS
• PRS model: biomarker = covariates + PRS
• Combined model: biomarker = covariates + GBS + 

PRS

Our tool, GenRisk, uses PyCaret as underlying frame-
work for prediction model generation. PyCaret is a 
python library that implements different machine learn-
ing models and can be used for training and testing, 
selecting, fine tuning and finalizing models1. Different 
models (n=17) including linear, such as ridge, elastic net 
and lasso regression, and non-linear models, like gradi-
ent boosting and random forest regression, are tested. A 
list of all models can be found in the GenRisk documen-
tation2. For the GBS, only the gene predictors that were 
selected in the feature selection step for each biomarker 
were included. All features were normalized by calculat-
ing the z-score. The training step was performed on the 
training set, with the corresponding biomarker as target, 
using 10 fold cross-validation and the best performing 
model for each biomarker is then finalized considering 
the complete training cohort and applied on the inde-
pendent test set.
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Figure S1 Distribution of samples across biomarkers. 
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Figure S2 Association analysis summary for albumin. 

A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results.  
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Figure S3 Association analysis summary for alkaline phosphatase. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S4 Association analysis summary for apolipoprotein A. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S5 Association analysis summary for apolipoprotein B*. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
* statin adjusted values 
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Figure S6 Association analysis summary for C-reactive protein. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S7 Association analysis summary for calcium. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S8 Association analysis summary for cholesterol*. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
* statin adjusted values 
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Figure S9 Association analysis summary for creatinine. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S10 Association analysis summary for cystatin C.  
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 

79



 
Figure S11 Association analysis summary for direct bilirubin. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S12 Association analysis summary for gamma glutamyltransferase. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S13 Association analysis summary for glucose. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S14 Association analysis summary for glycated haemoglobin (HbA1c). 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S15 Association analysis summary for HDL cholesterol. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S16 Association analysis summary for IGF1. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S17 Association analysis summary for lipoprotein A. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S18 Association analysis summary for phosphate.  
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S19 Association analysis summary for SHBG. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S20 Association analysis summary for testosterone. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S21 Association analysis summary for total bilirubin. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S22 Association analysis summary for total protein. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S23 Association analysis summary for triglycerides. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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Figure S24 Association analysis summary for urate. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results 
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Figure S25 Association analysis summary for urea. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results 
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Figure S26 Association analysis summary for vitamin D. 
A. Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZenica PheWAS and genebass. B. QQ-plot of the P-values of GenRisk pipeline results. C. 
Manhattan plot of GenRisk pipeline results. 
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A. 

B. 

C. 

D. 

Figure S27 True vs. Predicted value plot (left) and top 10 features (right) for alanine 
aminotransferase A. covariates model B. genes model C. PRS model and D. combined model. 
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A. 

B. 

C. 

D. 

Figure S28 True vs. Predicted value plot (left) and top 10 features (right) for albumin A. 
covariates model B. genes model C. PRS model and D. combined model. 
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A. 

B. 

C. 

D. 

Figure S29 True vs. Predicted value plot (left) and top 10 features (right) for alkaline 
phosphatase A. covariates model B. genes model C. PRS model and D. combined model. 
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A. 

B. 

C. 

D. 

Figure S30 True vs. Predicted value plot (left) and top 10 features (right) for apolipoprotein 
A A. covariates model B. genes model C. PRS model and D. combined model. 
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A. 

B. 

C. 

D. 

Figure S31 True vs. Predicted value plot (left) and top 10 features (right) for apolipoprotein 
B* A. covariates model B. genes model C. PRS model and D. combined model. 
* statin adjusted values 
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A. 

B. 

C. 

D. 

Figure S32 True vs. Predicted value plot (left) and top 10 features (right) for aspartate 
aminotransferase A. covariates model B. genes model C. PRS model and D. combined model. 
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A. 

B. 

C. 

D. 

Figure S33 True vs. Predicted value plot (left) and top 10 features (right) for calcium A. 
covariates model B. genes model C. PRS model and D. combined model. 
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A. 

B. 

C. 

D. 

Figure S 34 True vs. Predicted value plot (left) and top 10 features (right) for cholesterol* A. 
covariates model B. genes model C. PRS model and D. combined model. 
* statin adjusted values 
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A. 

B. 

C. 

D. 

Figure S35 True vs. Predicted value plot (left) and top 10 features (right) for C reactive 
protein A. covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S36 True vs. Predicted value plot (left) and top 10 features (right) for creatinine A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S37 True vs. Predicted value plot (left) and top 10 features (right) for cystatin C A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S38 True vs. Predicted value plot (left) and top 10 features (right) for direct bilirubin 
A. covariates model B. genes model C. PRS model and D. combined model. 
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B. 

A. 

D. 

C. 

Figure S39 True vs. Predicted value plot (left) and top 10 features (right) for gamma 
glutamyltransferase A. covariates model B. genes model C. PRS model and D. combined 
model. 
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D. 

C. 

B. 

A. 

Figure S40 True vs. Predicted value plot (left) and top 10 features (right) for glucose A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S41 True vs. Predicted value plot (left) and top 10 features (right) for glycated 
haemoglobin (HbA1c) A. covariates model B. genes model C. PRS model and D. combined 
model. 
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D. 

C. 

B. 

A. 

Figure S42 True vs. Predicted value plot (left) and top 10 features (right) for HDL cholesterol 
A. covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S43 True vs. Predicted value plot (left) and top 10 features (right) for IGF1 A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S44 True vs. Predicted value plot (left) and top 10 features (right) for LDL direct* A. 
covariates model B. genes model C. PRS model and D. combined model. 
* statin adjusted values 
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D. 

C. 

B. 

A. 

Figure S45 True vs. Predicted value plot (left) and top 10 features (right) for lipoprotein A A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S46 True vs. Predicted value plot (left) and top 10 features (right) for phosphate A. 
covariates model B. genes model C. PRS model and D. combined model. 
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Figure S47 True vs. Predicted value plot (left) and top 10 features (right) for SHBG A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S48 True vs. Predicted value plot (left) and top 10 features (right) for testosterone A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S49 True vs. Predicted value plot (left) and top 10 features (right) for total bilirubin A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S50 True vs. Predicted value plot (left) and top 10 features (right) for total protein A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S51 True vs. Predicted value plot (left) and top 10 features (right) for triglycerides A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S52 True vs. Predicted value plot (left) and top 10 features (right) for urate A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S53 True vs. Predicted value plot (left) and top 10 features (right) for urea A. 
covariates model B. genes model C. PRS model and D. combined model. 
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D. 

C. 

B. 

A. 

Figure S54 True vs. Predicted value plot (left) and top 10 features (right) for vitamin D A. 
covariates model B. genes model C. PRS model and D. combined model. 

123



124

3.3 Publication 3 - Analysis of 72,469 UK Biobank exomes links rare variants to male-
pattern hair loss

This publication looks into the genetics of male-pattern hair loss in samples from UK
Biobank. Both rare and common variants analyses were done to investigate their influence
on the phenotype. Our paper provides further evidence of previously indicated and noval
genes, as well as the contribution of rare-variants in MPHL phenotype. Thus, these findings
could be the base for future investigations into the contribution of rare variants to MPHL.
Information about the supplementary material for this article can be found in subsection
3.3.1 (Publication 3 - Appendix A). For clarity, more information about the machine learning
methods used can be found in subsection 3.3.2 (Publication 3 - Appendix B). For this paper,
I significantly contributed to the planning of the methodology, the data collection, curation
and analysis, especially the analyses relevant to rare variants. I have also contributed to
the evaluation and interpretation of the results.



Article https://doi.org/10.1038/s41467-023-41186-w

Analysis of 72,469 UK Biobank exomes links
rare variants to male-pattern hair loss

Sabrina Katrin Henne 1, Rana Aldisi 2, Sugirthan Sivalingam2,3,
Lara Maleen Hochfeld1, Oleg Borisov 2, Peter Michael Krawitz2, Carlo Maj 2,4,
Markus Maria Nöthen 1 & Stefanie Heilmann-Heimbach 1

Male-pattern hair loss (MPHL) is common and highly heritable. While genome-
wide association studies (GWAS) have generated insights into the contribution
of common variants to MPHL etiology, the relevance of rare variants remains
unclear. To determine the contribution of rare variants to MPHL etiology, we
perform gene-based and single-variant analyses in exome-sequencing data
from 72,469 male UK Biobank participants. While our population-level risk
prediction suggests that rare variants make only a minor contribution to
general MPHL risk, our rare variant collapsing tests identified a total of five
significant gene associations. These findings provide additional evidence for
previously implicated genes (EDA2R, WNT10A) and highlight novel risk genes
at and beyondGWAS loci (HEPH,CEPT1, EIF3F). Furthermore,MPHL-associated
genes are enriched for genes considered causal for monogenic trichoses.
Together, our findings broaden the MPHL-associated allelic spectrum and
provide insights into MPHL pathobiology and a shared basis with monogenic
hair loss disorders.

Male-pattern hair loss (MPHL), or androgenetic alopecia, is the most
common form of hair loss, with a lifetime prevalence of ~80% in Eur-
opean men. MPHL is characterized by progressive and androgen-
dependent hair loss in the frontotemporal region and vertex of the
scalp1. Affected men may experience psychosocial effects2, and lack
well-tolerated and effective treatment options3,4.

Early twin studies estimated that ~80%of theobservedphenotypic
variance of MPHL is attributable to genetic factors5,6. Subsequent
genome-wide association studies (GWAS) have yielded substantial
insights into the genetic basis of MPHL via the identification of more
than 600 independent genetic risk variants at more than 350 genomic
loci, which together explain ~39% of the phenotypic variance7–17.While
thesedata have highlighted a number of plausible candidate genes and
pathways, the majority of GWAS risk variants are common variants
(minor allele frequency (MAF)≫ 1%) located in non-coding areas of the
genome, which renders pinpointing of diseasemechanisms and causal
genes notoriously difficult.

In contrast, fewer data are available concerning the potential
contribution toMPHL etiology of rare variants (MAF < 1%). A previous
study on MPHL, which analyzed imputed genotyping data from the
UK Biobank (UKB), estimated that the contribution of rare variants
(MAF 0.0015% − 1%) to MPHL heritability was close to 0%13. However,
imputed genotyping data do not offer comprehensive insights on
rare variants, the systematic study of which has been hampered by
the limited availability of whole genome or in the context of (rare)
coding variants, whole exome sequencing (WES) data from ade-
quately sized cohorts. Since 2019, the analysis of (rare) variants in
coding areas of the genome has been facilitated by the availability of
a large WES data set created by UKB18,19. The UKB resource further
contains self-report data onMPHL, thereby for the first time enabling
the investigation of a potential relevance of rare variants to MPHL
pathogenesis.

The aim of the present study therefore was to perform the first
exome-based analysis on MPHL in a tranche of 200,629 exomes from
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the UKB. Gene-based analyses (SKAT-O and GenRisk) and single-
variant tests were used to investigate whether rare variants showed
association with MPHL in a final set of 72,469 men. To interpret the
association findings, multiple follow-up analyses were performed. A
schematic overviewof the studyworkflow is depicted in Fig. 1. Our first
systematic analysis of the contribution of rare variants to MPHL
etiology broadens the allelic spectrum of previously reported candi-
date genes (EDA2R, WNT10A), yields evidence for novel MPHL candi-
date genes both at and beyond knownGWAS loci (HEPH,CEPT1, EIF3F),
suggests an association between genotrichoses and the common
MPHL phenotype and provides a basis for future investigations of the
contribution of rare variants to MPHL pathobiology.

Results
Data set characteristics
After quality control, the final data set comprised the data of 72,469
men aged 39–82 years. Our continuous model, all-model and two-as-
control model comprised 72,024 unrelated (kinship < 0.0442)men. Of
these, 49,640 with any signs of baldness (pattern 2–4) were classified
as cases (case-control ratio 2.2:1) in the all-model, and 33,454 (pattern 3
or 4) were classified as cases in the two-as-controlmodel (case-control
ratio 1:1.2). The age distribution per MPHL pattern group is shown in
Fig. 2. The extreme model comprised 17,053 unrelated men, of whom
6523 relatively younger men (age < 60 years) with significant balding
(pattern 4) were classified as cases and 10,530 elderly men (age ≥ 60
years) with no signs of balding were classified as controls (case-control
ratio 1:1.6).

After filtering for per-sample and per-individual missing rates
(<5%) and Hardy-Weinberg-Equilibrium (PHWE > 10−6), a total of
2,656,761 rare (MAF < 1%), nonsynonymous variants in 18,946 protein-
coding genes remained for analysis in the SKAT-O and single-variant
association tests (Fig. 1), with 239,082 variants in 18,449 genesmeeting
themore stringent high impact threshold (frameshift, splice acceptor-,
splice donor-, and start- or stop-altering variants, transcript ablations
and transcript amplifications). For the GenRisk analyses, a total of
16,211,028 rare (MAF < 1%) variants in 18,848 genes remained after
filtering.

Analyses were performed to assess the optimal number of top
principal components (PCs) to correct for. In the association tests of
imputed genotype data with a variable number of included top PCs,
minimum genomic inflation factor values were generated when
including 14–20 PCs in the continuous model, 14–15 PCs in the all-
model, 14–19 PCs in the two-as-controlmodel, and 5PCs in the extreme
model (see Supplementary Fig. 1). Based on these findings, we opted to
correct for 14 PCs in the continuous-, all- and two-as-control models,
and for 5 PCs in the extreme model.

Single-variant association analyses
In a first step, we tested for an association of individual rare coding
variants toMPHL. The analyses identified two genome-wide significant
variants (P < 8 × 10−9) in the continuous- and all-model (Fig. 3, Supple-
mentary Fig. 2, Supplementary Data 1). The two genome-wide sig-
nificant variants, i.e., 23:66604439:G:A (rs12837393, MAF = 5.5 × 10−3,
Pcontinuous = 3.0 × 10−12, betacontinuous = 0.19, Pall = 4.8 × 10−10, odds-

Exome sequencing data
17,981,897 variants from 204,829 exonic

regions and flanking regions

Phenotype data
89,311 men with MPHL

self-report data and exome data

Filtering
• Multi-assessment phenotype plausibility
• Availability of genotype and kinship data
• Confirmed male sex
• Confirmed white British ancestry
• Exclusion of relatives up to 3rd degree

AnnotationAnnotation (VEP)

Filtering
• MAF < 1%
• HWE P > 10-6

• Missing rate < 5%
• Nonsynonymous 

consequence in protein-
coding gene

GenRisk
gene-based test

PLINK 2.0 GLM
single-variant test

SKAT-O
gene-based test

Downstream analyses
• Conditional single-variant analysis
• Enrichment analysis of GWAS-implicated loci
• Conditional SKAT-O analysis
• Conditional GWAS-GenRisk analysis
• ClinVar query of associated variants
• Enrichment analysis of genes associated with monogenic trichoses
• Pathway gene set analysis
• Protein-protein interaction network analysis
• Risk modeling

2,656,761 variants in 18,946 genes
239,082 high impact variants 

16,211,028 variants 
in 18,848 genes

GenRisk
gene-based test

Association analyses

Rare coding
variants pipeline

Rare variants
pipeline

Filtering
MAF < 1%•

• HWE P > 10-6

• Missing rate < 2%

Fig. 1 | Overview of the analysis workflow. Exome and phenotype data obtained
from the UKB were processed and used in three types of association analysis:
GenRisk, SKAT-O, and single-variant testing. Four different phenotypemodelswere
used, of which three distinguishing cases (red) and controls (grey), as well as one
continuous phenotype model. To interpret the association findings, several
downstream follow-up analyses were performed. VEP ensembl variant effect

predictor, HWE Hardy-Weinberg-equilibrium, MAF minor allele frequency, GWAS
genome-wide association study, MPHL male-pattern hair loss. MPHL pattern dia-
grams adapted from the UK Biobank survey accessible at https://biobank.ctsu.ox.
ac.uk/crystal/refer.cgi?id=100423 and reproduced by kind permission of UK
Biobank ©.
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ratio [OR]all = 1.53, r²sentinel SNP = 1.6 × 10−4
, D’sentinel SNP = 0.35) and

23:66197712:C:T (rs151003259, MAF = 2.0 × 10−3, Pcontinuous = 1.0 × 10−13,
betacontinuous = −0.35, Pall = 2.9 × 10−10, ORall = 0.59, r²sentinel SNP = 4.5 ×
10−7

, D’sentinel SNP = 1.0) (GRCh38), are missense variants located within
EDA2R and HEPH respectively. Notably, the T allele of 23:66197712:C:T
was exclusively observed in combination with the MPHL risk allele
(MAF > 0.99) of the respective GWAS sentinel SNP.

To assess whether the observed single-variant associations were
independent of common variant associations previously identified
through GWAS, all single-variant analyses were repeated with con-
ditioning for 622 lead SNPs previously implicated in a UKB-based
GWAS on MPHL13 (Supplementary Fig. 3, Supplementary Data 1). Nei-
ther of the previously significant single variants retained genome-wide
significance after conditioning. While an association signal was
retained for the variant 23:66604439:G:A in EDA2R (Pall = 4.0 × 10−4),
the 23:66197712:C:T variant inHEPHwas not independent of the GWAS
lead SNPs (Pall = 0.35). Several variants retained a relatively low P-value
even after conditioning, indicating a strong association that was
independent from common GWAS variants. For instance, among the
top ten variants post-conditioningwere 3:69964940:G:A (rs149617956,
located in MITF, Pcontinuous = 5.4 × 10−6), 2:218882368:C:A (rs121908119,
located in WNT10A, Ptwo-as-control = 6.1 × 10−6), 21:44499878:C:T
(rs138480801, located in TSPEAR, Ptwo-as-control = 6.9 × 10−6),
11:46366461:G:T (rs901998, located in DGKZ, Ptwo-as-control = 1.1 × 10−5),
and 23:67711453:C:A (rs1800053, located in AR, Pcontinuous = 1.8 × 10−5).

Gene-based association analyses
To assess the cumulative contribution of rare variants to MPHL, we
performed gene-based association analyses using SKAT-O20 and
GenRisk21, a new burden association test which upweights rarer and
more deleterious variants (based on CADD). We applied the GenRisk
test to a data set of both coding andnon-coding rare variants, aswell as
to coding rare variants identical to the variant set used in the SKAT-O
analysis. The SKAT-O analysis based on 2,656,761 variants from all ten
variant consequence categories identified two genes with a genome-
wide significant association (P < 2.6 × 10−6) to MPHL: EDA2R
(Pcontinuous = 1.4 × 10−8); and HEPH (Pcontinuous = 7.3 × 10−9) (Fig. 4, Sup-
plementary Data 2). No significantly associated genes were identified
based on SKAT-O analyses of high-impact variants, with the top asso-
ciation, WNT10A, yielding a P-value of 7.8 × 10−6 in the two-as-control
model (Supplementary Fig. 4, Supplementary Data 2).

The GenRisk analyses identified a total of three significantly asso-
ciated genes (P < 2.6 × 10−6) across the four phenotype models:
EDA2R (Pcontinuous = 1.8 × 10−6),CEPT1 (Pall-model = 2.1 × 10

−6), andWNT10A
(Ptwo-as-control = 2.2 × 10−6) (Fig. 5, Supplementary Data 3). The CEPT1
association finding is likely attributable to a combination of coding and
non-coding variants with high CADD scores, and mainly driven by the
MPHL pattern groups 2 and 3. Whether this reflects a biological aspect
has to be determined by further analyses. The GenRisk analyses based
on only coding variants further identified a significant association with
EIF3F (Ptwo-as-control = 2.5 × 10−6) (Fig. 6, Supplementary Data 3).

N = 22,384 N = 16,186 N = 19,502 N = 13,952

Fig. 2 | Phenotypic distribution within the final set of 72,024 men in the con-
tinuous-, all- and two-as-controlmodel.Density plot showing the agedistribution
permale-patternhair loss (MPHL)pattern group. The number of individuals in each

MPHL pattern group is shown above the plot. MPHL pattern diagrams adapted
from the UK Biobank survey accessible at https://biobank.ctsu.ox.ac.uk/crystal/
refer.cgi?id=100423 and reproduced by kind permission of UK Biobank ©.
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Comparison with an in-house data set on human hair follicle
expression22 revealed that all five MPHL-associated genes (EDA2R,
HEPH, CEPT1, WNT10A, EIF3F) are expressed in human hair follicles. Of
these, EDA2R, HEPH and WNT10A are located at previously implicated
MPHL-GWAS risk loci. An enrichment of a less stringent set of gene
associations (P< 3 × 10−3 in the SKAT-O or GenRisk analyses) was
observed in regions ±1Mb of published MPHL-GWAS lead SNPs
(P = 5.6 × 10−15, overlap 192/595 genes). Thiswas supportedby the FUMA
GENE2FUNC analysis, which identified an enrichment of these gene
associations and MPHL GWAS findings reported in the GWAS catalog.

Conditional SKAT-O analyses were performed in order to deter-
minewhether the significant associations findings for EDA2R andHEPH
were driven by the genome-wide significantly associated variants
23:66604439:G:A and 23:66197712:C:T, respectively. The P-values of
HEPH and EDA2R both before and after the exclusion of these two
variants are shown in Table 1. Notably, the association with EDA2R
appears to have been driven very strongly by 23:66604439:G:A. In
contrast, the effect of 23:66197712:C:T seems to have been less

pronounced, since the conditional analyses for HEPH generated low P-
values (albeit non genome-wide significant), particularly in the two-as-
control and the extreme model.

Conditional GWAS-GenRisk analysis
A conditional GWAS-GenRisk analysis was performed to test whether
common variants implicated by GWAS are independent from GenRisk
gene scores (Supplementary Data 4). The distribution of the differ-
ences in −log10(P) with and without GenRisk gene score correction is
shown in Supplementary Fig. 5. These data indicate no systematic
dependence between common variants implicated by GWAS and
GenRisk gene scores, as a large majority of tested common variants
(99.89%) are not or only minimally impacted (|Δ−log10(P)| < 1) by cor-
rection for any gene score. However, the GenRisk scores of the genes
EDA2R and WNT10A show some attenuation of the common variant
GWAS signal at their respective loci. In contrast, the associated gene
HEPH and e.g., the AR gene do not show any such attenuation (Sup-
plementary Fig. 6).

a

b

d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 X Y
Chromosome

0
1
2
3
4
5
6
7
8
9

−l
o
g

10
(P

)
HEPH

EDA2R

MITF
AUNIP

HOXC13
GFER

LGR4

CCDC34
POLR2L

ARHGAP27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 X Y
Chromosome

0
1
2
3
4
5
6
7
8
9

−l
o
g

10
(P

)

EDA2R

HEPH

FOXH1

ZNF582
LAMA5

PIPOX
ARHOXC13

SLC9A3R2

SEZ6

c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 X Y
Chromosome

0
1
2
3
4
5
6
7
8
9

−l
o
g

10
(P

)

HEPH

EDA2R
BSPH1

MITFWNT10A

DGKZ

EIF3FANXA5
IFT122

HTRA4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 X Y
Chromosome

0
1
2
3
4
5
6
7
8
9

−l
o
g

10
(P

)

HEPH

RPS4Y2

GPR157
EDA2R

DEPDC4
TNKS2

ACTR6 CCL5
TP53TG3D

ZBTB20
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Overlap with genotrichoses
The inspection of ClinVar (Supplementary Data 5) revealed thatMPHL-
associated variants comprise several variants that have been reported
as pathogenic for monogenic trichoses. A systematic enrichment
analysis of genotrichosis-associated genes23–27 amongst a less stringent
set of gene associations (P < 3 × 10−3 in the SKAT-O or GenRisk ana-
lyses) revealed a significant enrichment (P = 1.1 × 10−4). The total over-
lap across all association analyses comprised the genes WNT10A,
HOXC13, DSP, LPAR6, ALX4, EDAR, CDH3, HR, and SPINK5. Notably, two
of the top associated single variants (albeit not genome-wide sig-
nificant), i.e., 2:218882368:C:A (Ptwo-as-control = 4.1 × 10−5) and
21:44499878:C:T (Ptwo-as-control = 9.0 × 10−6), which are located in
WNT10A and TSPEAR respectively, were reported to be pathogenic for
ectodermal dysplasia in previous studies28,29.

Pathway gene set and network analyses
Pathway-based gene set enrichment analysis of a less stringent set of
559 MPHL-associated genes (P < 3 × 10−3 in either the SKAT-O or the
GenRisk analyses) revealed an enrichment of MPHL-associated genes
in TGF-beta signaling (false discovery rate [FDR] = 0.040) and SMAD2/

3:SMAD4 transcriptional regulation (FDR =0.021) (Supplementary
Data 6). A protein-protein interaction network analysis of a less strin-
gent set of 86MPHL-associated genes (P < 3 × 10−4 in the SKAT-Oor the
GenRisk analyses) detected enrichments with ectodermal dysplasia
genes (FDR = 2.6 × 10−3, overlapping genes EDA2R, WNT10A, EDAR,
HOXC13 and IFT122) and genes assigned to the gene ontology termhair
follicle development (FDR =0.014, overlapping genesWNT10A, EDAR,
LAMA5, HOXC13, LGR4 and ALX4) (Supplementary Fig. 7).

Risk modeling
To evaluate the contribution of rare variants toMPHL, a risk prediction
model integrating MPHL polygenic risk scores (PRS) and GenRisk
gene-based scores was created (Fig. 7), as based on rare variants
(MAF < 1%), age, sequencing batch and top PCs. The PRS-only risk
model achieved medium discriminative power similar to the MPHL
PRSmodel previously published by Hagenaars et al.14 in distinguishing
no hair loss (pattern 1) from severe hair loss (pattern 4), at least
moderate hair loss (pattern 3–4) and at least slight hair loss (pattern
2–4), as measured by the area under the curve (AUC)
(AUCsevere = 0.791, AUCmoderate = 0.732, AUCslight = 0.693) when
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considering the full cohort of 72,024 males. In the test data set, the
PRS-only model yielded slightly lower predictive power
(AUCsevere = 0.725, AUCmoderate = 0.687, AUCslight = 0.647). A riskmodel
based exclusively on the gene-based risk score, which integrated all
gene-based scores into one, showed low discriminative power
(AUCsevere = 0.560, AUCmoderate = 0.557, AUCslight = 0.508). Integration
of PRS and gene-based risk scores generated only minimal to no
increase in discriminative power compared to the PRS-only model
(AUCsevere = 0.726, AUCmoderate = 0.686, AUCslight = 0.646). Despite the
high number of associated genes, this largely confirms earlier obser-
vations that rare variants explain only a minor fraction of the genetic
risk for MPHL at population-level13.

Discussion
MPHL is a complex, common trait for which a large number of risk loci
and variants have already been characterized via analyses of common
variation7–17. The main aim of the present study was to analyze the
extent to which rare variants contribute to MPHL. A previous study of
MPHL, which was based on imputed genotyping data from the UKB,
showed that the contribution of rare variants (MAF between 0.0015%

and 1%) toMPHL heritability was close to 0%13. To reassess this finding,
we accessed a large exome sequencing data set from the UKB in order
to perform a systematic analysis of rare variants in coding areas of the
genome.

In line with previous reports that suggest a minor contribution of
rare variants to MPHL heritability, our risk prediction models showed
that the inclusion of gene-based scores that are based on rare variants
into existing risk prediction models based on common variants made
little to no contribution to discriminative power between cases and
controls. This is also reflected in the low number of significant asso-
ciation findings in our single-variant analysis. Both rare variant asso-
ciations identified (P < 8 × 10−9) have already been reported at genome-
wide significance in GWAS13.

The SKAT-O and GenRisk gene-based analyses detected sig-
nificant associations with rare variants in five genes (P < 2.6 × 10−6),
which, while limited, offers important insights intoMPHL biology, and
may be etiologically relevant for individual risk. The identified gene
associations comprise both previously implicated and novel MPHL
candidate genes. Genes previously implicated by GWAS include EDA2R
(ectodysplasin A2 receptor), one of the flanking genes at the most
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strongly associated MPHL GWAS locus on chromosome (chr) X (AR/
EDA2R locus)30 and WNT10A (Wnt Family Member 10A), the likely
causal gene at the chr.2q35 risk locus forwhich a functional interaction
with anotherMPHL risk locus has been shown31. Thesefindings suggest
that both common and rare variation in these genes contributes to
MPHL etiology. The analyses further identified an association with
HEPH (Hephaestin), which, while being located less than 500 kb
upstream of EDA2R, has not been previously considered a candidate
gene. However, recent reports have indicated thatHEPH plays a crucial
role in hair development through its ferroxidase activity32. In addition
to the insights that our rare coding variant analyses yielded at GWAS
loci, they also implicate novel MPHL candidate genes beyond GWAS
loci, namely CEPT1 (Choline/ethanolamine phosphotransferase 1) and
EIF3F (Eukaryotic translation initiation factor 3 subunit F). CEPT1
encodes the terminal enzyme in the Kennedy pathway of phospholipid

biosynthesis33. While no reports specifically linking CEPT1 and hair
(loss) biology exist, there is evidence for a link between phospholipid
metabolism and hair biology. For example, the topical administration
of phospholipids was shown to promote hair growth in mice34, and
overexpression of group X-secreted phospholipase A2 in mice led to
alopecia and changes in hair cycling35. EIF3F encodes a subunit of the
eukaryotic initiation factor 3 (eIF-3) complex. Recent reports suggest a
potential involvement of EIF3F in hair pigmentation, as a patient with
two heterozygous variants in EIF3F presented with skin and hair
hypopigmentation36, and a heterozygous EIF3F knock-out resulted in
abnormal coat pigmentation in mice37. This is of interest as the trans-
formation of pigmented terminal hair follicles to unpigmented vellus
hair follicles is a pathophysiological feature of MPHL38. Additionally,
EIF3F has been shown to act as a negative regulator of cell proliferation
in cancer cells39, andwas shown to regulate Notch signaling40, which in
turn is involved in hair follicle stem cell fate determination41.

Our conditional single-variant analysis further identified a number
of strong associations independent from common GWAS variants.
Among the top ten variant associations from this analysis are variants
located within the genes AR (androgen receptor), WNT10A, TSPEAR
(Thrombospondin Type Laminin G Domain and EAR Repeats), MITF
(Melanocyte Inducing Transcription Factor) and DGKZ (Diacylglycerol
Kinase Zeta). Given that these rare, nonsynonymous coding variants
achieved low P-values - albeit above the threshold for genome-wide
significance - despite the generally low power of the single-variant
analyses, these may constitute independent candidate genes. The two
genome-wide significant single variant associations 23:66604439:G:A
(in EDA2R) and 23:66197712:C:T (in HEPH) did not retain genome-wide
significance after conditioning, pointing to a (partial) inter-
dependence between these variants and common GWAS variants,
which was more pronounced for 23:66197712:C:T, while
23:66604439:G:A retained a partial signal. We further observed that (i)
the rare MPHL risk allele of the 23:66604439:G:A variant occurs
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Fig. 7 | Precision-recall-curves of the created MPHL risk models based on PRS
only, GenRisk gene-based scores, and PRS combined with GenRisk gene-based
scores. Themodels were tested in terms of prediction of no hair loss (pattern 1) vs

severe hair loss (pattern 4), at least moderate hair loss (pattern 3-4), and at least
slight hair loss (pattern 2-4). PRS polygenic risk score, PR precision-recall, Avg.
average.

Table 1 | Results of conditional SKAT-O analysis, involving the
removal of the two variants that showed genome-wide sig-
nificance in the single-variant analyses (23:66197712:C:T and
23:66604439:G:A)

Gene P Pconditioned

Continuous model HEPH 7.3 × 10−9 1.3 × 10−4

EDA2R 1.4 × 10−8 0.84

All-model HEPH 1.5 × 10−7 1.3 × 10−2

EDA2R 1.4 × 10−7 0.79

Two-as-control model HEPH 1.7 × 10−7 2.8 × 10−5

EDA2R 5.9 × 10−6 0.81

Extreme model HEPH 2.0 × 10−7 5.7 × 10−6

EDA2R 8.0 × 10−5 0.12

The SKAT-O P-value (unadjusted) before and after conditioning is shown according to gene and
phenotype model.
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exclusively on the common MPHL risk haplotype previously reported
by Hillmer et al.42 (rs2497935-A, rs962458-A, rs12007229-C,
rs12396249-G) and (ii) the rare protective allele of the 23:66197712:C:T
variant occurs almost exclusively on a lower-risk haplotype with only
the rs962458-A risk allele. While the 23:66604439:G:A variant exclu-
sively occurs on the previously reportedMPHL risk haplotype, a partial
signal remains in the conditional analyses, which may point to an
independent effect of the rare variant and the risk haplotype.However,
at this point, a causal role of either variant can neither be confirmed
nor excluded.

As genes identified through our rare variant gene-based associa-
tion tests were enriched for genes at known MPHL GWAS loci (lead
SNP ± 1Mb), thesedata underline the importance of studies that assess
the entire allelic spectrum of disease associations, and their potential
to highlight causal genes at GWAS risk loci. A conditional GWAS-
GenRisk analysis was performed and found no systematic dependence
between commonGWAS-implicated variants andGenRisk gene scores.
The analysis however identified risk loci where the GWAS association
signal appears to be (partially) driven by both common and rare var-
iants, namely chr.Xq12 (EDA2R) and chr.2q35 (WNT10A). Associated
lociwhich are not impactedby anyGenRisk gene scoremaybedue to a
low contribution of rare deleterious variants to the association. How-
ever, further investigation into the extent of dependence between
common variants and GenRisk gene scores is required.

The X-chromosome has long been at the center of genetic ana-
lyses on MPHL. Early studies focused on the X-linked androgen
receptor gene (AR), due to the strict androgen dependency of the
phenotype. Although the results have been conflicting in regards to
the likely causal variants and genes, the AR/EDA2R locus has con-
sistently been the most strongly associated genomic region for MPHL,
although neither the precise causal variants nor the causal genes have
been confirmed43. In the present study, we identified significant asso-
ciations with two X-chromosomal genes, namely EDA2R and HEPH,
thereby yielding newor additional evidence for these candidate genes.
Our analyses did not identify significant associations of rare variants in
the AR gene (PSKAT-O binary = 7.6 × 10−5). This is in line with previous
Sanger-sequencing-based studies of the AR coding sequence, which
did not identify any significant associations between the AR and
MPHL44,45. Althoughwe cannot exclude the possibility that our analysis
lacked statistical power to detect such an association, one might also
speculate that a potential involvement of the AR gene in MPHL
pathobiology is impacted primarily by regulatory common variants,
rather than rare variants in or around its coding sequence.

Moreover, a less stringent set of MPHL-associated genes over-
lapped with and were enriched for genes that have been reported as
the cause of monogenic trichoses, namely WNT10A (odonto-onycho-
dermal dysplasia and Schöpf-Schulz-Passarge syndrome), HOXC13
(pure hair and nail ectodermal dysplasia), DSP (Carvajal syndrome),
LPAR6 (hypotrichosis 6), ALX4 (total alopecia in frontonasal dysplasia),
EDAR (ectodermal dysplasia), CDH3 (ectodermal dysplasia), HR
(hypotrichosis 4 and alopecia universalis), and SPINK5 (Netherton
syndrome). Notably, most of these genes either cause ectodermal
dysplasias, hypotrichoses or alopecia. However, as we detected var-
iants with a previously reported likely or known pathogenic associa-
tion with genotrichoses in both cases and controls, no definitive
statement can be made as to whether the presence of or variable
expressivity of a genotrichosis may have led to a misclassification in
the MPHL self-report. Generally, an overlap between genotrichoses-
and MPHL-associated genes would be biologically plausible, as differ-
ent levels of impairment of key hair follicle signaling pathways would
be expected to result in differing phenotypes. For example, GWAS
have previously yielded evidence for an association between hair curl
andMPHL9. Together, these findings may indicate an overlap in causal
genes between genotrichoses and MPHL.

Rare coding variants in the associated genes identified in this
study have been previously associated with phenotypes such as mean
corpuscular haemoglobin (EIF3F) and urea (HEPH)46,47. Suggestive
associations have further been identified between testosterone levels
and EDA2R, and alcohol use and EIF3F. Some of these associationsmay
present interesting links – for instance, epidemiological studies have
(albeit with conflicting evidence) found associations between MPHL
and alcohol consumption48.

The present analyses utilized four different phenotype models.
Our continuous model represented a 1:1 representation of the pro-
gressive phenotype, which may however be most sensitive to mis-
classifications in the self-report. Our all-model provided a simple
description of the phenotype by considering unaffected men as con-
trols andmen with any type of balding (frontal or vertex) as cases. The
purpose of our extreme model was to achieve complete separation
between cases and controls, despite the age-dependent and pro-
gressive nature of MPHL. This involved considering men with com-
plete baldness of the scalp below 60 years of age as cases, and
unaffected men aged 60 years or older as controls. The aim of this
approach is to facilitate detectionof variants andgenes contributing to
balding in relatively younger men and may provide higher statistical
power, as these supercontrols are among the 10%ofmen least affected
by MPHL1 and are unlikely to develop a significant degree of balding
during their lifetime. However, this phenotype model comes at the
expense of sample size, whichwas reduced by nearly 80% compared to
the other phenotypemodels. The purposeof the two-as-controlmodel
was to address the possibility of misclassifications in the self-reporting
of balding. Misclassifications may be possible for UK Biobank MPHL
patterns 1 and 2 (unaffected vs frontal balding), since we are of the
opinion that the presence of balding in the frontotemporal regions of
the scalp may be subjectively over- or underestimated in the absence
of a dermatological assessment. In the present study, the different
phenotype models yielded partially distinct gene associations, for
example WNT10A and EIF3F, which consistently showed stronger sig-
nals in the two-as-control model. This may be an indication that dis-
tinct mechanisms contribute to more severe stages of balding, which
are easier to detect using this case-control separation. All in all, the
phenotype models employed in this study provide different perspec-
tives on the MPHL phenotype and can account for certain possible
errors in the self-report.

In this study, we performed two types of gene-based analyses:
SKAT-O and GenRisk. SKAT-O is a well-established tool for gene-
based association analyses and has the ability to detect associations
in the presence of mixed effect directions at the variant level. Gen-
Risk employs a scoring system that uses a beta distributionweighting
schema for allele frequency, which is similar to SKAT-O, and patho-
genicity scores (CADD score), to upweight rare and deleterious var-
iants. As a result, GenRisk does not require variant consequence
filtering. Moreover, GenRisk generates individual-level gene-based
scores, which can be used in downstream analyses such as associa-
tion analyses and risk prediction modeling. GenRisk was recently
used to identify associations between rare genetic variants and blood
biomarkers, identifying both known and novel associations
(preprint)49. In the present study, both methods yielded partially
distinct gene associations.While the inclusion of non-coding variants
and non-protein-coding genes in the GenRisk analysis may yield
overall more comprehensive results, the association signal may
encompass a greater overlap with GWAS. The GenRisk analysis of
coding variants only, on the other hand, offers an increased focus on
high-impact coding variants, without severely reducing the number
of variants through e.g., high-impact variant consequence filters. The
analyses employed in this study therefore address different
hypotheses. While each method offers different biological insights,
some identified gene associations are consistent between SKAT-O
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and GenRisk, and Fisher’s exact tests show a significant overlap of a
less stringent set of associations (P < 3 × 10−3) between the two
analyses across all phenotype models (ORcontinuous = 54.3,
Pcontinuous = 1.5 × 10−17; ORall-model = 92.8, Pall-model = 2.1 × 10−24;
ORtwo-as-control = 71.3, Ptwo-as-control = 3.5 × 10−20; ORextreme model = 99.1,
Pextreme model = 3.9 × 10−19). However, given the novelty of the
approach, corroboration of the GenRisk results in further studies is
desirable.

To our knowledge the present study represents the first sys-
tematic analysis of the contribution of rare variants to MPHL etiology.
While rare variants in coding regions of the genomeseem tomakeonly
a small contribution to MPHL genetic risk at population-level and may
have little value for risk prediction, they may nonetheless contribute
significantly to individual risk. In linewith this hypothesis, we observed
only a marginal contribution to the overall MPHL risk prediction of
gene-based burden scores with respect to the PRS. Since prediction
model performances are typically assessed on overall data set metrics
(such as AUC) it can be expected that the impact of variables infor-
mative only for a small proportion of samples can be marginal (e.g.,
there might be few individuals whose MPHL genetic risk can be
attributed to damaging rare variants in a specific MPHL susceptibility
gene). Instead, PRS by providing a gradient-risk in the overall data set
can model the genetic risk throughout the population, therefore
representing a global genetic risk variable. While gene-based burden
scores may not be particularly suited for risk prediction models in the
general population, they are a powerful instrument to detect gene
associations and can therefore be helpful to dissect the genetic
architecture of complex traits such as MPHL. As demonstrated with
our study, the analysis of rare variants additionally offers important
insights into associated alleles, genes and pathways, as well as pleio-
tropy, thereby improving our understanding of MPHL pathobiology.
While the present study provides first insights into the contribution of
rare variants to MPHL pathobiology based on a tranche of 200,629
exomes from the UK Biobank, the final data set of ~450,000 exomes
has been released while completing the present analyses. This data set
represents a considerable increase in sample size. Continued investi-
gation on the role of rare variants forMPHL using this larger data set is
therefore warranted.

In summary, the findings of our analysis broaden the allelic
spectrum of previously reported candidate genes (EDA2R, WNT10A),
yield evidence for novel MPHL candidate genes both at (HEPH) and
beyond (CEPT1, EIF3F) known GWAS loci and suggest an association
between genotrichoses and the commonMPHL phenotype. Together,
they provide a basis for future investigations into MPHL pathobiology
and the contribution of rare variants to MPHL. Investigations of the
functional relevance of rare variants and their interactions with com-
mon variants at and beyond risk loci will eventually improve our
understanding of MPHL pathobiology and may lead to improved risk
prediction and identification of affected pathways and can pave the
way for the development of personalized therapies.

Methods
Phenotype data
The UK Biobank study has been approved by the North West Multi-
centre Research Ethics Committee as a Research Tissue Bank and all
UKB participants provided written informed consent. The UKB 200k
release contains exome- and MPHL self-report data from 89,311
men18,19. TheseMPHL self-report data were recorded at up to four UKB
assessment center visits. Using a touch-screen questionnaire, partici-
pants scored their hair loss on a scale of 1 to 4, as based on four
pictograms (Supplementary Fig. 8): 1 –Unaffected; 2 – frontotemporal
balding; 3 – balding of the frontotemporal region and vertex; and 4 –

complete baldness of the top of the scalp.
In the present study, four phenotype models were used: (i) a

continuous model, which considers hair loss patterns 1–4 on a

continuous scale, (ii) an all-model, in which controls (pattern 1) were
compared to cases (pattern 2–4); (iii) an extreme model, in which
supercontrols (pattern 1, age ≥60) were compared to severe cases
(pattern 4, age <60); and (iv) a two-as-control model, in which controls
(pattern 1–2) were compared to cases (pattern 3–4) in order to address
the possibility of misclassifications between pattern 1 and 2 in the self-
assessment.

For individuals who provided MPHL data at more than one
assessment center visit, additional steps were performed in order to
check the self-report data for sanity, and to select an entry for use in
the analyses. The most recently recorded MPHL pattern was selected
for analysis, unless an improvement inMPHL status was recorded. Due
to the progressive nature ofMPHL, an improvement is implausible. To
avoid the need to exclude individuals who reported an improved
MPHL status and to instead identify a plausible MPHL pattern, the
following steps were performed: (i) if two balding patterns were
available, and the differencebetween the patternswas no larger than 1,
the higher pattern was used; (ii) if 3 balding patterns were available, a
pattern that was recorded 2 times was used; (iii) if 4 balding patterns
were available, a pattern that was recorded 3 times was used. If no
plausible MPHL pattern could be identified in this manner, the indivi-
dual was excluded. To account for the age-dependency of MPHL, in
case of multiple assessments, for cases, we selected the lowest age at
which the highest MPHL pattern was recorded. For controls, we
selected the highest age at which no (pattern 1) ormild (pattern 2) hair
loss was recorded.

To select participants for the present analysis, the following four
criteria were used: (i) no grounds for exclusion found in the MPHL
multi-entry sanity check; (ii) availability of genotype and kinship data;
(iii) genetically and self-reported male sex with no sex chromosome
aneuploidy; and (iv) self-reportedwhite British ethnicity, aswell as very
similar genetic ancestry, as based on a principal components analysis
of the genotypes. In addition, related individuals up to the thirddegree
were excluded on the basis of UKB kinship coefficients (kinship coef-
ficient ≥0.0442). Iterative exclusion was performed for one individual
in a related pair, with individuals with a larger number of related
individuals being excluded preferentially. An unexpected improve-
ment of MPHL was observed in 2235 individuals. Of these, 293 were
excluded since no plausibleMPHL pattern could be nominated. A total
of 72,469 of the 89,311 male UKB participants fulfilled these criteria.
Exclusion of related individuals was performed separately for each
phenotype model, resulting in the following final sample counts:
72,024 (continuous, all- and two-as-control models) and 17,053
(extreme model).

Variant data
Exome sequencing variant data for the 200,643 participants in the
UKB 200k release were downloaded from the UKB in PLINK format.
The data comprised 17,981,897 variants, which were captured from
204,829 autosomal and gonosomal exonic regions ±100 bp flanking
regions. For the SKAT-O and single-variant analyses, the data were
quality controlled in PLINK 2.050 with respect to per-individual
missing rate (<5%), per-variant missing rate (<5%), and Hardy-
Weinberg equilibrium (P > 10−6). Variants were filtered for a MAF <
1% based on their frequency in the different phenotype model data
subsets. Variants were converted to variant call format (VCF) and
annotated using the Ensembl Variant Effect Predictor (VEP)(v104)51.
Variants with a predicted nonsynonymous consequence ofmoderate
or high impact in a protein-coding gene (as based on Ensembl gene
annotation release 104) were selected. These variant criteria com-
prised missense, insertion, deletion, splice acceptor-, splice donor-,
and start- or stop-altering variants, as well as transcript and reg-
ulatory region ablations.

For the GenRisk analyses, variant data were quality controlled
in PLINK 2.0 with respect to per-variant missing rate (<2%) and

Article https://doi.org/10.1038/s41467-023-41186-w

Nature Communications |         (2023) 14:5492 9

133



Hardy-Weinberg equilibrium (P > 10−6). Variants were filtered for an
MAF < 1%, as based on their frequency in the data set. The variant data
were annotated with CADD (Combined Annotation Dependent
Depletion) scores (CADD v1.6)52 and gene features based on the
GRCh38NCBIRefSeq refFlat table fromtheUCSCGenomeBrowser53,54.

Imputed genotype data were downloaded from the UKB in BGEN
format. These data comprised information concerning 97,059,328
variants and were converted to PLINK format using PLINK 2.0 and the
ref-first parameter.

Correction for population stratification
To account for population stratification, analyses were performed to
estimate the optimal number of top PCs to include in our statistical
models. For this purpose, GWAS were performed on the UKB imputed
genotype data using a varying number of included PCs, and the
genomic inflation factor λ was determined. Imputed genotype data
were processed in PLINK 2.0, with preservation of the imputed geno-
type dosages. The data were quality controlled for info score (≥0.3)
and minor allele count (≥20) and filtered for each of the four pheno-
type model subsets. GWAS were performed in PLINK 2.0, with cor-
rection for age and the 1−20 top PCs, as pre-calculated by the UKB
based on imputed SNP genotype data. In the extreme model, age
correction was omitted, since this phenotype model differentiates
based on age.

Association analyses
The association analyses of the continuous model, all-model and the
two-as-control model were corrected for age, sequencing batch and
the top 14 PCs. In the association analyses of the extreme model,
correction was made for sequencing batch and the top five PCs only.
GWAS-style single variant analyses of the filtered exome data were
performed in PLINK 2.0 using the glm function with covariate nor-
malization to mean 0, variance 1. LD of the single-variant associations
with the sentinel GWAS SNP was calculated in PLINK 2.0 using the ld
function. For the 23:66197712:C:T variant in HEPH, the nearest GWAS
lead SNP was used: 23:66001818:T:A (rs771150309, MPHL risk allele =
major allele = T). For the 23:66604439:G:A variant in EDA2R, the closest
GWAS lead SNP (23:66418642 (rs5965195)) was not contained in the
employed imputed genotyping data release, and the nearest sig-
nificant SNPwas used instead: 23:66418267:G:A (rs4827473,MPHL risk
allele = major allele = A).

Two types of gene-based analyses were performed: SKAT-O20 and
GenRisk21. SKAT-O was applied to the filtered exome data using the
SKATBinary.SSD.All (for binary phenotype definitions) and the
SKAT.SSD.All (for the continuous phenotype definition) functions with
default settings in the SKAT R package (v2.0.1)20. Data were converted
to PLINK 1 binary format using PLINK 2.0 for use as input files. Variants
were assigned to genes based on the VEP annotation approach
described above. In addition to the nonsynonymous variant con-
sequence threshold imposed through the present filtering steps, more
stringent thresholds were applied in this analysis by restricting inclu-
sion to variants of high impact, as based on VEP annotation (splice
acceptor, splice donor, stop- or start-altering and frameshift variants,
as well as transcript ablations). TheGenRisk analysis was performed on
the filtered exome data in VCF format using the GenRisk Python
package (v0.2.5)21. GenRisk was applied separately to i) rare variants
(MAF < 1%) annotated to any gene and ii) only coding variants, using
the identical variant set as used in the SKAT-O analyses. Gene-based
scoreswere generated usingweightedMAF (beta density functionwith
parameters a = 1 and b = 25) and raw CADD scores as functional
annotation, whereby variants with a lower MAF or higher CADD score
were upweighted. The association analysis of the gene-based scores
and previously described covariates was performed using linear
regression (continuous model) or L1-logistic regression (all-, two-as-
control and extreme models).

The P-value threshold for genome-wide significance in single-
variant association analyses was selected as 8 × 10−9, as empirically
determined by Karczewski et al. based on analyses of 394,841 UK
Biobank exomes46. P-value thresholds for the SKAT-O and GenRisk
gene-based analyses were determined using Bonferroni correction
based on the maximum number of genes tested, resulting in a
threshold of 2.6 × 10−6 (corresponding to 18,946 genes tested in the
SKAT-O analysis).

Enrichment analyses
To improve the feasibility of enrichment analyses and obtain a more
comprehensive gene list of approximately 500 genes, a less stringent
P-value threshold of P < 3 × 10−3 was selected, resulting in a less strin-
gent set of 595 MPHL-associated genes. Testing was performed for an
enrichment of this less stringent set of MPHL-associated genes in
genes located ±1Mb of previously published GWAS lead SNPs7–17.
Enrichment testing using a one-tailed Fisher’s exact test from scipy
(v1.8.1) was performed with a background list comprising the final
tested genes per phenotype model. Using the same method, analyses
were also performed to test for an enrichment of this less stringent set
ofMPHL-associated genes in genes causative formonogenic trichoses.
A list of 65 known trichosis genes was created, as based on previous
publications23–27. The genes and their corresponding condition are
listed in Supplementary Table 1.

ClinVar query
An inspection was made to determine whether MPHL-associated rare
variants have been described as pathogenic or likely pathogenic on
ClinVar. ClinVar data were downloaded as VCF (accessed 02.05.2022)
and filtered for nominally significant single variants (P <0.05 in any
phenotype model). Information on associated conditions was extrac-
ted for variants listing a clinical significance of pathogenic, likely
pathogenic or conflicting interpretations of pathogenicity.

Conditional analyses
To evaluate the dependence of association signals on specific var-
iants, conditional analyses were performed. Gene-level conditional
analyses of the genes EDA2R and HEPH were conducted using SKAT-
O, as previously described, after the exclusion of two variants that
showed genome-wide significance in the single-variant analyses
(23:66197712:C:T and 23:66604439:G:A).

Using data from the continuous model, we tested whether SNPs
previously implicated in GWAS were independent from GenRisk gene
scores. Imputed genotype data from the UKB were filtered for MAF
(>1%), info score (>0.3), per-variant missing rate (<5%), Hardy-Weinberg
equilibrium (P > 10−6). Association analyses of the filtered imputed
genotypedatawere performed in PLINK2.0 using the glm functionwith
covariate normalization to mean 0, variance 1, and corrected for age
and 14 top PCs. The analyses were performed per locus, defined based
on 622 SNPs that were identified as independent MPHL lead SNPs in a
UKB-based GWAS13 ± 500kb flanking regions. For each gene per locus,
the analysis was additionally corrected for the respective GenRisk gene
scores. ResultingP-values and effect sizeswere then comparedbetween
the uncorrected and gene-corrected analyses.

To test whether the rare single-variant associations were inde-
pendent from common SNPs previously implicated in GWAS, imputed
genotype data from theUKBwere filtered for info score (>0.3) and 622
SNPs that were identified as independent MPHL lead SNPs in a UKB-
based GWAS13. GWAS-style exome single variant analyses were then
performed as described above, with the inclusion of genotypes for
lead SNPs on the same chromosome as covariates.

Pathway gene set and network analyses
Gene set analysis was performed using FUMA GENE2FUNC55 (v1.4.0)
with default settings. MPHL-associated genes (P < 3 × 10−3 in any gene-
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based test) were used as input gene list. All tested genes were supplied
as a background list. The results were filtered for pathway gene set
categories, namely canonical pathways, curated gene sets, computa-
tional gene sets, chemical and genetic perturbation, hallmark gene
sets, Reactome, KEGG and WikiPathways. To further obtain an over-
view of protein interactions and co-expression, a STRING (v11.5)56

protein network analysis was performed using a less stringent set of
MPHL-associated genes. Here, a threshold of P < 3 × 10−4 was selected
in order to obtain a more manageable network of <100 genes.

Risk modeling
To test whether the inclusion of rare variants improves common
variant-based risk modeling of MPHL, GenRisk was used to create a
risk prediction model integrating MPHL PRS with GenRisk gene-
based scores, which were generated as described above. In order to
establish a PRSmodel, a GWAS of imputed genotyping data from the
UKB was performed based on data from our continuous model.
Individuals with no exome sequencing data were selected to ensure
no sample overlap, and filtered using the criteria described pre-
viously, resulting in 105,565 unrelated (both within this sample and
with the 72,024 individuals of the continuous, all- and two-as-control
models) male individuals. The imputed genotype data were quality-
controlled (info score >0.3, per-variant missing rate <5%, HWE
P > 10−6) and filtered for common variants (MAF > 1%). The GWAS was
performed in PLINK 2.0 using the glm function, and corrected for age
and 18 top PCs (estimated as the optimal number of top PCs for this
sample based on λ calculation).

PRSwere calculated for the cohort of 72,024males using PRSice-2
(v2.3.5)57 using autosomal and X-chromosomal SNPs P < 7.85 × 10−3

(best-fit PRS P-value threshold) and otherwise default settings. AUCs
for the full cohort were computed using the pROC R package (v1.18)58.
The cohort of 72,024 males was split 25–50–25%, with 25% being used
for weighting genes and summing all gene-based scores into one gene-
based risk score per individual. Training of the integrated risk pre-
diction models was performed using 50% of the samples with 10-fold
cross-validation, with the remaining 25% of samples being used as an
independent testing set. The risk prediction model was generated
based on data from our continuous model with age, sequencing batch
and the top 14 PCs being included as features. To evaluate the con-
tribution of rare variants, the performances of risk models that inclu-
ded gene-based scores and PRS were compared with risk models that
included PRS only.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This research has been conducted using data from UK Biobank under
Application Numbers 24661 and 102444. The individual-level genetic
and phenotypic data are available under restricted access; access can
be obtained by application through theUKBiobank platform. The data
generated that support the findings of this study are provided in the
Supplementary Data. The CADD score data used in this study are
available in theUniversity ofWashingtonCADD scoredatabase https://
krishna.gs.washington.edu/download/CADD/v1.6/GRCh38/whole_
genome_SNVs.tsv.gz. The gene feature annotation data used in this
study are available in the Ensembl database under release number 104
https://ftp.ensembl.org/pub/release-104/gtf/homo_sapiens/Homo_
sapiens.GRCh38.104.chr.gtf.gz and in the UCSC Genome Browser
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/refFlat.
txt.gz. The ClinVar data used in this study are available from
the ClinVar database https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_
GRCh38/archive_2.0/2022/clinvar_20220430.vcf.gz.
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3.3.1 Publication 3 - Appendix A

This appendix contains the supplementary material for publication 3. The supplementary
figures are shown below. Because of size issues, the tables and other supplementary
information cannot be included in this thesis, but all files can be directly downloaded from
the paper using this link: https://doi.org/10.1038/s41467-023-41186-w



Supplementary Figures 

 

Supplementary Figure 1: Genomic inflation factor λ in GWAS with a varying number of included principal components. Genomic 
inflation factor λ according to the number of top principal components corrected for in a GWAS of imputed genotype data in the 
continuous model (orange), all-model (blue), the two-as-control model (green) and the extreme model (purple). The λ values 
generated were lowest when using 14-15 PCs in the continuous, all- and two-as-control models and 5 PCs in the extreme model, 
respectively. 
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Supplementary Figure 2: Results of the single-variant analysis of additional phenotype models. Results are shown for a the all-
model; b the two-as-control model; and c the extreme model. Only variants that were tested in the respective SKAT-O analysis 
are included. The dashed line denotes the selected genome-wide threshold for multiple testing in single-variant tests (8 × 10-9). 
The y-axes depict −log10(P) obtained from logistic regression (two-sided, unadjusted). The top 5 variants per analysis were 
annotated.  
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Supplementary Figure 3: Results of the single-variant analysis conditioned for 622 GWAS lead SNPs. Results are shown for a 
the continuous model; b the all-model; c the two-as-control model; and d the extreme model. Only variants that were tested in the 
respective SKAT-O analysis are included. The dashed line denotes the selected genome-wide threshold for multiple testing in 
single-variant tests (8 × 10-9). The y-axes depict −log10(P) obtained from linear regression (a) or logistic regression (b – d) (two-
sided, unadjusted). The top 5 variants per analysis were annotated. 
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Supplementary Figure 4: Results of the SKAT-O gene-based analysis with a high impact variant threshold. Results are shown for 
a the continuous model; b the all-model; c the two-as-control model; and d the extreme model. The dashed line denotes the 
Bonferroni threshold for multiple testing in SKAT-O analyses (2.6 × 10-6). The y-axes depict −log10(P) obtained from linear 
regression (a) or logistic regression (b – d) (two-sided, unadjusted). The top 10 genes per analysis were annotated.  
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Supplementary Figure 5: Distribution of the decrease in −log 10(P)-values in the conditional GWAS-GenRisk analysis. Distributions 
are shown across a all tested common variants and b GWAS lead SNPs. Pcorrected refers to the p-value generated when correcting 
for any single GenRisk gene score of a gene at the respective locus. Uncorrected and corrected p-values were generated by 
linear regression (two-sided, unadjusted). 

 

 

Supplementary Figure 6: Conditional GWAS-GenRisk results. Results are shown for the loci of a EDA2R, b HEPH, c WNT10A, 
and d AR. Association results without correction for GenRisk gene scores are shown in gray, association results after correction 
for GenRisk gene scores of a single gene are shown in blue, with the gene denoted in the respective legend. The y-axes depict 
−log10(P) obtained from linear regression (two-sided, unadjusted). 
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Supplementary Figure 7: Results of the STRING protein interaction network analysis of a less stringent set of MPHL-associated 
genes (P < 3 × 10-4 in the SKAT-O or GenRisk analyses). Functional enrichments performed by STRING based on one-sided 
hypergeometric tests are shown in the top panels, along with the corresponding false discovery rate (p-value corrected using the 
Benjamini-Hochberg method). Genes belonging to the enriched functional annotation terms are shown in blue (hair follicle 
development), orange (ectodermal dysplasia), or both. Line thickness indicates the strength of the data supporting the interaction.
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Supplementary Figure 8: Screenshot of the touchscreen questionnaire used to capture state of hair/balding pattern in the UK 
Biobank. 

 

Reproduced by kind permission of UK Biobank ©.
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Supplementary Tables 
Supplementary Table 1: List of known causative genes for monogenic trichoses, as used for enrichment testing.  

Gene symbol Ensembl ID Gene name Condition References 

ABCA5 ENSG00000154265 ATP Binding Cassette Subfamily A Member 5 Generalized hypertrichosis 1 

ADAM17 ENSG00000151694 ADAM Metallopeptidase Domain 17 Structural hair defects 2 

ALX4 ENSG00000052850 ALX Homeobox 4 Total alopecia in frontonasal dysplasia 2 

ANTXR1 ENSG00000169604 ANTXR Cell Adhesion Molecule 1 Growth retardation, alopecia, 
pseudoanodontia (GAPO) syndrome 

2 

APCDD1 ENSG00000154856 APC Down-Regulated 1 Hypotrichosis 1 1–3 

ATP7A ENSG00000165240 ATPase Copper Transporting Alpha Menkes disease 2 

BCS1L ENSG00000074582 BCS1 Homolog, Ubiquinol-Cytochrome C 
Reductase Complex Chaperone 

Björnstad syndrome 1,3 

C3orf52 ENSG00000114529 Chromosome 3 Open Reading Frame 52 Woolly hair/hypotrichosis 1 

CDH3 ENSG00000062038 Cadherin 3 Ectodermal dysplasia, ectrodactyly, and 
macular dystrophy syndrome 

2–4  

CDSN ENSG00000204539 Corneodesmosin Hypotrichosis 2 1–3 

CLDN1 ENSG00000163347 Claudin 1 Ichthyosis, leukocyte vacuoles, 
alopecia, and sclerosing cholangitis 

2 

DCAF17 ENSG00000115827 DDB1 And CUL4 Associated Factor 17 Woodhouse-Sakati syndrome 2 

DLX3 ENSG00000064195 Distal-Less Homeobox 3 Trichodentoosseous syndrome 2 
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DSC3 ENSG00000134762 Desmocollin 3 Hypotrichosis and recurrent skin 
vesicles 

2,3 

DSG4 ENSG00000175065 Desmoglein 4 Hypotrichosis 6 1–3  

DSP ENSG00000096696 Desmoplakin Carvajal syndrome 1–3 

EDA ENSG00000158813 Ectodysplasin A Ectodermal dysplasia 1–4 

EDAR ENSG00000135960 Ectodysplasin A Receptor Ectodermal dysplasia 1–4 

EDARADD ENSG00000186197 EDAR Associated Death Domain Ectodermal dysplasia 1–4 

EPS8L3 ENSG00000198758 EPS8 Like 3 Hypotrichosis 5 1 

ERCC2 ENSG00000104884 ERCC Excision Repair 2, TFIIH Core Complex 
Helicase Subunit 

Trichothiodystrophy 2 

ERCC3 ENSG00000163161 ERCC Excision Repair 3, TFIIH Core Complex 
Helicase Subunit 

Trichothiodystrophy 2 

FGF13 ENSG00000129682 Fibroblast Growth Factor 13 Generalized hypertrichosis 1,2  

FOXE1 ENSG00000178919 Forkhead Box E1 Hypothyroidism, with spiky hair and 
cleft palate 

2 

FOXN1 ENSG00000109101 Forkhead Box N1 T-cell immunodeficiency, alopecia, and 
nail dystrophy 

2 

GJB6 ENSG00000121742 Gap Junction Protein Beta 6 Clouston syndrome 1,2 

GTF2H5 ENSG00000272047 General Transcription Factor IIH Subunit 5 Trichothiodystrophy 2 

HOXC13 ENSG00000123364 Homeobox C13 Pure hair and nail ectodermal dysplasia 1,2 
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HR ENSG00000168453 HR Lysine Demethylase And Nuclear 
Receptor Corepressor 

Hypotrichosis 4, alopecia universalis 2 

IKBKG ENSG00000269335 Inhibitor Of Nuclear Factor Kappa B Kinase 
Regulatory Subunit Gamma 

Incontinentia pigmenti, alopecia 2,4 

JUP ENSG00000173801 Junction Plakoglobin Naxos disease 1–3 

KRT25 ENSG00000204897 Keratin 25 Woolly hair/hypotrichosis 1 

KRT71 ENSG00000139648 Keratin 71 Woolly hair 1,2 

KRT74 ENSG00000170484 Keratin 74 Hypotrichosis 3, woolly hair 1–3 

KRT75 ENSG00000170454 Keratin 75 Pseudofolliculitis barbae 2,3 

KRT81 ENSG00000205426 Keratin 81 Monilethrix 1–4 

KRT83 ENSG00000170523 Keratin 83 Monilethrix 1–4 

KRT85 ENSG00000135443 Keratin 85 Pure hair and nail ectodermal dysplasia 1–4 

KRT86 ENSG00000170442 Keratin 86 Monilethrix 1–4 

LIPH ENSG00000163898 Lipase H Hypotrichosis 7 1–3 

LPAR6 ENSG00000139679 Lysophosphatidic Acid Receptor 6 Hypotrichosis 8 1–3 

LSS ENSG00000160285 Lanosterol Synthase Hypotrichosis 14 1 

MBTPS2 ENSG00000012174 Membrane Bound Transcription Factor 
Peptidase, Site 2 

Ichthyosis follicularis, atrichia, and 
photophobia syndrome 

2,3 

MPLKIP ENSG00000168303 M-Phase Specific PLK1 Interacting Protein Trichothiodystrophy 2 
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NECTIN1 ENSG00000110400 Nectin Cell Adhesion Molecule 1 Cleft lip/palate-ectodermal dysplasia 
syndrome 

1,4 

PADI3 ENSG00000142619 Peptidyl Arginine Deiminase 3 Uncombable hair syndrome 5 

PKP1 ENSG00000081277 Plakophilin 1 Ectodermal dysplasia/skin fragility 
syndrome 

2,4 

PORCN ENSG00000102312 Porcupine O-Acyltransferase Goltz syndrome 4 

RBM28 ENSG00000106344 RNA Binding Motif Protein 28 Alopecia, neurological defects, and 
endocrinopathy syndrome 

2,3 

RIN2 ENSG00000132669 Ras And Rab Interactor 2 Macrocephaly, alopecia, cutis laxa, and 
scoliosis 

2 

RPL21 ENSG00000122026 Ribosomal Protein L21 Hypotrichosis 12 1,3 

SLC29A3 ENSG00000198246 Solute Carrier Family 29 Member 3 Histiocytosis-lymphadenopathy plus 
syndrome 

2,3 

SNRPE ENSG00000182004 Small Nuclear Ribonucleoprotein Polypeptide 
E 

Hypotrichosis 11 1,2 

SOX18 ENSG00000203883 SRY-Box Transcription Factor 18 Hypotrichosis-lymphedema-
telangiectasia syndrome 

2,3 

SOX9 ENSG00000125398 SRY-Box Transcription Factor 9 Hypertrichosis terminalis 1,2 

SPINK5 ENSG00000133710 Serine Peptidase Inhibitor Kazal Type 5 Netherton syndrome 2,3 

ST14 ENSG00000149418 ST14 Transmembrane Serine Protease 
Matriptase 

Ichthyosis with hypotrichosis 2,3 
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TCHH ENSG00000159450 Trichohyalin Uncombable hair syndrome 5 

TGM3 ENSG00000125780 Transglutaminase 3 Uncombable hair syndrome 5 

TP63 ENSG00000073282 Tumor Protein P63 Ectodermal dysplasia 1,2,4 

TRAF6 ENSG00000175104 TNF Receptor Associated Factor 6 Ectodermal dysplasia 4  

TRPS1 ENSG00000104447 Transcriptional Repressor GATA Binding 1 Trichorhinophalangeal syndrome 1,2 

VDR ENSG00000111424 Vitamin D Receptor Vitamin D-dependent rickets with 
alopecia 

2,3 

WNT10A ENSG00000135925 Wnt Family Member 10A Odonto-onycho-dermal dysplasia, 
Schopf-Schulz-Passarge syndrome 

1,2,4 
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3.3.2 Publication 3 - Appendix B

This appendix clarifies the machine learning methods used in publication 3.

Association analyses

The gene-based association analyses were done using linear regression for the continu-
ous model and logistic regression for the binary models. The covariates used are mentioned
in the paper.

Risk modeling

For risk modeling, different machine learning models were trained with cross-validation
using a training set to select the best fitting model, based on the AUC, for the each MPHL
model, while a part of the dataset was left out for external evaluation, as explained in
the paper. The list of models tested can be seen in the GenRisk documentations (see
subsection 3.1.1). Table B.1 includes which ML model was used for each MPHL model.

Table B.1 List of the best fit ML model for each MPHL model.

MPHL model ML type
Severe (pattern 1 vs 4) PRS only Logistic Regression
Severe (pattern 1 vs 4) gene-based scores only Gradient Boosting Classifier
Severe (pattern 1 vs 4) PRS + gene-based scores Logistic Regression
Moderate (pattern 1 vs 3-4) PRS only Gradient Boosting Classifier
Moderate (pattern 1 vs 3-4) gene-based scores only Gradient Boosting Classifier
Moderate (pattern 1 vs 3-4) PRS + gene-based scores Gradient Boosting Classifier
Slight (pattern 1 vs 2-4) PRS only Logistic Regression
Slight (pattern 1 vs 2-4) gene-based scores only Gradient Boosting Classifier
Slight (pattern 1 vs 2-4) PRS + gene-based scores Logistic Regression
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4. Discussion with references

A relevant part of the genetic architecture of complex traits is yet unknown, despite the
many studies that have been done on it. To investigate this, more and more methods and
hypotheses are being developed. In this thesis, I focus on the effects of rare pathogenic
variants on complex phenotypes. In general, we hypothesize that rare high effect variants
contribute to the genetics of complex traits and can account for part of the missing heritability.
Furthermore, I also study the integration of rare and common variants into genetic risk
assessment pipeline and how that might improve genetic risk prediction for complex
phenotypes.

In the first publication, we present our own implemented python tool, GenRisk, which
we developed to serve as a framework for the following publications and studies. GenRisk
implements a gene-based scoring system that upweights rare and pathogenic variants, a
method that has been previously used in other applications (Mossotto et al., 2019; Curtis,
2022). The pipeline takes in a VCF as an input file, along with an annotation file that
contains the allele frequency and a pathogenicity score of the users’ choice and outputs
a matrix of gene-based scores for each individual in the cohort. This matrix can then be
further used for association analysis and predication modeling, both of which are also
implemented in the pipeline. We have also implemented a module for calculating the PRS
for the cohort. After the publication of this paper, we have further maintained and improved
on the GenRisk tool by allowing binary PLINK (Chang et al., 2015) files (i.e. bed/bim/fam)
as input for the scoring module. We also added in a new module for pathway-based scoring,
in which the gene-based scores in each pathway are summed then normalized by number
of genes in said pathway.

While there are many rare variants testing pipelines, like RVtests (Zhan et al., 2016),
which provides a framework for multiple single-variant level and gene-level burden test,
these pipelines only provide summary statistics output for a specific phenotype. On the
other hand, GenRisk provides a framework which outputs an individual-level burden score
matrix that can be reused for multiple downstream analyses and phenotypes. The pipeline
has many modules, which can be used on the gene-based scores matrix provided by
GenRisk, but also on any other matrix of the same structure. Furthermore, the weighting of
the allele frequency, the pathogenicity scores and the threshold of the allele frequency can
be determined by the user, allowing a more flexible calculation of the scores. For example,
pathogenicity scores that have been generated recently like MetaRNN (Li et al., 2022),
which uses deep learning approaches, can be used to generate the GenRisk scores. The
parameters of the allele frequency weighting functions can be adjusted to upweight or
downweight rare or common variants. This allows the user to adjust the GenRisk scores



154

based on the purpose of the project and the downstream analyses.

Our second publication presents an application of GenRisk pipeline on 28 blood
biomarkers from the UK biobank database. Association analyses were able to identify
gene-phenotype associations between the gene-based scores and the different blood
biomarkers, with distinct and well-known associations like PCSK9 and LDLR association
with LDL levels (Cuchel et al., 2014; Reiss et al., 2018), and SHBG gene association with
SHBG and testosterone levels (Winters, 2020). Our association analyses were also able
to detect some interesting novel associations that were not identified with other methods,
such as THRA association with the liver function biomarkers aspartate amintotransferase
and alanine aminotransferase levels (Piantanida et al., 2020). Such findings confirm that
rare variants do contribute to the genetics of complex phenotypes. We further performed
prediction model generation using different machine learning (ML) models to investigate the
ability of rare variants to predict genetic risk and the combined effect of rare and common
variants on genetic risk prediction. Our results indicated that common variants, i.e. PRS,
was more informative in risk prediction and that rare variants added little to the combined
rare and common variants model. This did not come as a surprise, as rare variants ef-
fects are hard to detect at a population-level and thus, are more useful on individual-level
data. While many studies have conducted common and rare variant analysis on complex
phenotypes separately, our paper presents the combined effect of the two variant types.

In the last publication, we investigate the contribution of rare variants on MPHL, which
was also done on the UK biobank cohort. Both SKAT-O and GenRisk association analyses
were performed. The analyses identified genes that were previosuly implicated by GWAS
such as EDA2R and WNT10A (Yap et al., 2018), which indicate that both common and rare
variants in these genes have effect on MPHL. HEPH was also detected in the association
analyses and while it hasn’t been previously reported, there are studies that suggest this
gene plays a role in hair development (Helman et al., 2022). We further performed a
GWAS conditional analysis using GenRisk’s gene-based scores to investigate whether
there is a dependency between the common GWAS-implicated variants and the rare
variants from the GenRisk analysis. The results showed no dependency between those
two variant groups. The risk prediction modeling performed similarly to the previous paper,
rare variants contributed only marginally to the genetic risk prediction. This further confirms
the contribution of rare variants to complex phenotypes at an individual-level, even if they
provide little information at population-level. Here, we present that while rare variants do
contribute to MPHL phenotype, their effect is independent of the common variants, and
thus, neither factor should be ignored when accounting for the genetic risk. We also provide
an example to the benefits of having a gene-based scores matrix at an individual-level,
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which we were able to utilize for performing the conditional GWAS analysis.

In summary, this thesis investigates the contribution of rare variants to the genetic
landscape of complex phenotypes. We applied our own pipeline, GenRisk, to multiple
phenotypes, both quantitative and binary, to identify associated genes and generate genetic
risk prediction models. Our findings suggest that while rare variants add little contribution to
the genetic risk prediction at population-level, they contribute significantly to the etiology of
complex traits at an individual-level, providing more gene targets and adding to the insight
of the genetic architecture of complex phenotypes.

4.1 Limitations and future outlook

While I have conducted a thorough investigation of rare variants in complex phenotypes,
it is noteworthy to mention that I have majorly worked on UK biobank data, and more
specifically white British cohort of UK biobank data. This means that the findings in this
thesis only account for this specific ethnicity and further studies need to be conducted on
different cohorts to validate the findings. One of our recent collaborations is with Qatar
biobank, in which we have obtained whole genome sequencing data for 14,000 individuals
from Qatar.

It is also important to mention that this study was focused on rare pathogenic high effect
variants, so rare variants with low effect sizes were most likely discarded or underpowered
in the analysis. Thus, we are further working on a pathway-specific analysis that combines
the gene-based scores into pathway-based scores which then can be used for further
downstream analysis. This analysis can help account for the rare variants’ underpower
problem. Our preliminary results showed an improvement in genetic risk assessment when
using pathway-based scores in ML models, but further analysis is needed to confirm these
observations.

Furthermore, we were unable to include all gene-based scores in the prediction modeling
because of high-dimensionality and computational power, thus, feature selection had to
be made. This means that non-linear associations like gene-gene interactions might’ve
been lost. Using the pathway-specific pipeline previously mentioned is one way to solve
this problem; by combining the gene-based scores into pathway-based scores, we are
significantly reducing the dimensionality of the data but we might still loss some of the
gene-gene interactions specially with genes within one pathway. Another way to solve this
issue is to use approaches that were adapted to deal with high-dimensional large-scale
data like snpboost (Klinkhammer et al., 2023), or deep learning approaches (Sigurdsson
et al., 2023).
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