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Abstract

Monitoring animal species efficiently in their natural habitats is essential to describe
and analyze the development of ecosystems and populations and to detect the causes
of changes due to climate change or other external influences. Camera traps are
increasingly being used to generate video material. Until now, however, the resulting
material has either been examined manually by researchers or with systems that
require their expert knowledge. Supporting ecologists with AI applications is not
only necessary due to the large amount of data and limited number of available
experts, but also enables new insights and standardized analyses. Therefore, an
automation of this analysis process by adapting the prominent computer vision
tasks of instance segmentation, tracking, and action detection to the context of
ecology can help to solve important ecological problem statements like population
estimation, animal migration or behavioral analysis.

In this doctoral thesis, we present a new approach to perform instance segmentation,
tracking and action detection for camera trap videos of animals in one system.
Central to our research is how reliable instance segmentation can improve both
tracking and action detection.

The ability to accurately detect and track animals in wildlife videos is essential for
researchers to analyze animal behavior and identify individual animals. Simply de-
tecting animals by bounding boxes is not enough to distinguish between animals
that are in close proximity to each other. Instead, a precise contour of each ani-
mal, an instance mask, is required, which is obtained by the instance segmentation.
Moreover, an instance mask shows the pose of the animal, which is helpful for a
detailed action recognition. We introduce SWIFT (Segmentation With FIltering of
Tracklets), a novel multi-object tracking and segmentation (MOTS) pipeline that
effectively addresses this problem. SWIFT improves the average precision of the
instance masks compared to using state-of-the-art computer vision instance seg-
mentation approaches by 4 percentage points on average for the different datasets.
The SWIFT Tracking Algorithm that uses multiple filtering steps to either delete
tracks that are found incorrectly or to merge tracks that are not yet connected
achieves multi-object tracking and segmentation accuracy scores up to 68.0%.
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Furthermore, we propose our action detection system that leverages SWIFT for
animal detection and introduces MAROON (MAsk guided Action RecOgnitiON),
a novel network for action recognition. The instance masks of SWIFT are used to
cutout the animals for the input for MAROON, which allows the network to focus
on the actor. MAROON uses a novel triple-stream architecture to extract motion
and appearance features with different granularities. MAROON achieves an action
recognition accuracy of 72.24% on the Rolandseck Daylight dataset, which includes
11 distinct action classes.

For the evaluation of our models, we introduce five different wildlife camera trap
datasets that we manually annotated containing videos of European mammals like
red deer, roe deer, fallow deer, boars, hares and foxes. Two of these five datasets
were created by us using camera traps in the wildlife enclosure Rolandseck. Each
dataset represents a different scenario in wildlife monitoring. These datasets are the
first datasets in wildlife monitoring that are annotated with instance masks, track
IDs and action labels at once.
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Chapter 1

Introduction

Comprehending animal behavior is a key aspect of conservation biology (Berger-Tal
et al., 2011), making the detection of actions by wild animals critical for ecologists
supporting conservation initiatives (Caravaggi et al., 2017). Despite its importance,
the manual analysis of wild animal behavior is often neglected due to the extensive
workload required to examine all gathered data.

Camera traps have emerged as a popular and effective tool in ecology and conser-
vation, providing a reliable and minimally intrusive visual method for monitoring
wildlife (McCallum, 2013; Burton et al., 2015; Boitani, 2016; Caravaggi et al., 2017;
Wearn and Glover-Kapfer, 2019). The use of stationary camera traps allows wildlife
to be monitored over an extended period of time by recording videos. Over the
last decades, camera traps have been adopted for various ecological tasks, includ-
ing abundance estimation (Hongo et al., 2021; Villette et al., 2017; Henrich et al.,
2023), quantification of species diversity (Tobler et al., 2008) detection of rare species
(Linkie et al., 2007), investigation of animal activity patterns (Frey et al., 2017) or
the analysis of species replacement processes (Caravaggi et al., 2016). The im-
mense volume of data collected from camera traps necessitates the use of artificial
intelligence for automatic analysis to efficiently handle and process this information
(Green et al., 2020; Mitterwallner et al., 2023). Analyzing data from even a small
number of camera traps can require months to process just a few weeks’ worth of
footage. Various AI models have been developed to manage and analyze camera trap
images and videos in order to classify and categorize species in the images (Vélez
et al., 2023). However, despite the existence of some AI models capable of classifying
species in camera trap videos, there remains a gap in tools specifically designed for
the automatic quantification of animal behavior.

To determine the number of animals present for an abundance estimation of the
animals (Hongo et al., 2021), the individuals within a video must be detected and
not only classified. Moreover, the detection and tracking of individual animals in
a video is an essential basis for solving further problems such as action detection
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Chapter 1 Introduction

(Schindler and Steinhage, 2021a) or re-identification (Schneider et al., 2019) of indi-
vidual animals in multiple videos. These advancements facilitate more streamlined
and effective behavioral studies of wild animals using camera traps (Caravaggi et al.,
2017; van Beeck Calkoen et al., 2021).

1.1 Problem Definition and Objectives

The goal of this thesis is to develop the first system that can detect and track
animals and describe their actions in camera trap videos. The input for this system
are camera trap videos from different European mammals, especially deer species.
The final output of the system consists of 6 parts, which are explained below in
accordance with the respective parts of the system.

In order to detect animals in a frame of a video and to determine their exact outlines,
an instance segmentation is necessary. This means that the detection of an animal in
one frame results in (1) a bounding box to pinpoint its location, (2) a segmentation
mask to outline its precise shape, (3) a class label to specify the type of animal
detected, and (4) a score value to indicate the confidence level of the detection.
Exact instance masks are necessary for further processing in an action detection or
a re-identification as well as for distinguishing animals that are close to each other.

Multi-object tracking integrates the instance segmentation detections into contin-
uous tracks, enabling the monitoring of individual animals throughout a video se-
quence. This process involves assigning (5) a unique track ID to each detection,
augmenting the previously described detection results. Therefore, tracking allows
the analysis of single individuals over an entire video, not just in a single frame or
image. While the tracking process is running, incomplete tracks are referred to as
tracklets. Only the final results of the tracking are then the derived tracks. The
combined task of instance segmentation and tracking is called multi-object tracking
and segmentation (MOTS). The goal of a MOTS pipeline is to localize the animals
by instance masks and track them in camera trap videos.

Action recognition, also known as action classification, describes the process of at-
tributing an (6) action label to a short video sequence (Simonyan and Zisserman,
2014; Kong and Fu, 2022), where a single actor performs a single action. Action
detection combines the tasks of identifying an object in a video and subsequently
recognizing the action being performed by that object. This enables the identifica-
tion of various actions by different actors simultaneously within a video. However,
the term action detection can also refer to the temporal identification of actions,
not just their spatial detection in a video. This means focusing on pinpointing the
beginning and end of an action within the video timeline. In this case, action de-
tection refers again to a single individual rather than multiple actors. In this thesis
we consider the first definition of action detection.
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1.2 Challenges

Therefore, our system performs an instance segmentation for the detection of the
animals, a multi-object tracking to track the individuals in a video and an action
detection to describe the different actions of the animals.

1.2 Challenges

Detecting animals in camera trap videos, tracking them and describing their actions
is a difficult problem. The recordings of the animals take place during the day and
at night. Depending on the animal species and the recording scenario, the day or
night recordings play a more important role. For example, daylight shots are easier
to take in a wildlife park, as the animals live there largely undisturbed. Recordings
from wildlife crossings on highways, on the other hand, are mainly taken at night,
as this scenario poses a greater threat to the animals. Different lighting conditions
occur in both day and night shots, so that the detection of the animals based on
their appearance can be very different. In particular, the lack of color information
in the infrared images taken at night poses a particular challenge for the detection
and classification of the animals. The lighting of the scenarios at night increases
this challenge, as the edges of the image are usually darker and the center can be
additionally brightened by an infrared flash. For recordings from wildlife crossings,
a light source may also be installed on the opposite side of the camera’s shooting
location in order to illuminate the scene more evenly. However, the flash of light can
also be very bright, which can make detection more difficult. The various challenges
mentioned mean that a robust and versatile object detector is needed to locate
animals in the various scenarios.

As all the shots take place outside, it is not only the time of the recording that plays
a role, but also the location and the weather conditions. The vegetation can be very
different. When taking pictures in wildlife parks or at wildlife crossings, there are
usually only minor restrictions to the field of view due to trees or bushes. When
taking pictures in national parks, for example, on the other hand, many bushes
and grasses can often lead to more occlusions of the animals. Changing weather
conditions, such as rain or fog, can also present challenges in terms of detection.
How relevant these special conditions are for a study of the animals depends on the
location of the recordings, i.e. whether the weather or vegetation are typical for these
scenarios and occur frequently. Since vegetation can also change throughout the year
(especially in the European regions considered here), occlusions from vegetation in
fall and winter, for example, are reduced. Due to the occlusions of animals by
other animals or objects, it is important for detection that animals are recognized
by exact contours in order to identify them clearly. At the same time, possible
occlusions also mean frequent interruptions of tracks in the context of multi-object
tracking. Therefore, the multi-object tracking approach used must be robust and
versatile for different scenarios.
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One of the biggest practical challenges for our work is that there are, to the best
of our knowledge, no publicly available datasets in the field of wildlife monitor-
ing that are already annotated for the three aforementioned objectives of instance
segmentation, tracking and action detection. We therefore had to create our own
datasets and obtain data from collaborations. Moreover, the manual data annota-
tion is very time-consuming for the desired tasks. We explain this in detail in the
dataset chapter 3.

The classification of the animals is also challenging, as in our work we look in
particular at different deer species (red deer, roe deer and fallow deer). These
animal classes have a similar appearance especially if they are far away from the
camera or the weather conditions and lighting are bad. Here, too, we need a robust
object detector and classifier that can be trained with a relatively small amount of
training data.

Another major challenge in the context of action recognition is the sometimes very
similar actions of the animals. For example, the actions walking and foraging moving
are very similar in terms of the movement of the animals and differ only in the
position of the animal’s head. In addition, actions such as head lowering and head
raising are very similar in execution and could not be distinguished by a single
frame. Accordingly, temporal information plays an important role here. Moreover,
animals often move in groups, where they (partially) occlude each other. This makes
an action recognition difficult. Therefore, an action recognition approach is needed
that can focus on single animals and is robust to irritating backgrounds.

1.3 Contributions

In this thesis, we present the following main contributions to the tasks of instance
segmentation, tracking and action detection in general and in our application area,
the wildlife monitoring:

1. We present our novel multi-object tracking and segmentation (MOTS) pipeline,
SWIFT - Segmentation WIth Filtering of Tracklets (Schindler and Steinhage,
2022). This is the first approach that tracks the exact contours of animals
in camera trap videos using instance masks. For the first part of SWIFT we
developed a new refinement algorithm, the SWIFT Refinement Algorithm (Al-
gorithm 4.1), that combines the results of a trained Mask R-CNN (He et al.,
2017) with a HR-Net (Wang et al., 2020a) to refine the instance masks and to
improve their quality. The second part of SWIFT consists of our novel track-
ing algorithm, the SWIFT Tracking Algorithm (Algorithm 4.2), that enables
a generation of tracks from the derived detections from the first part. Here
we use the detected instance masks for more precise tracking than the usual
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bounding boxes. The core idea of our tracking algorithm includes multiple fil-
tering stages to delete or combine found tracklets. An exact system overview
of SWIFT is given in Figure 4.4 in Section 4.2.

2. Our action recognition network MAROON, MAsk guided Action RecOgnitiON
(Schindler et al., 2024), is the first method (in the whole computer vision
community) to combine masked input sequences in combination with a triple-
stream approach to extract motion and appearance features with different
granularities. The use of instance masks allows better recognition of behavioral
patterns and is also necessary when several animals are close together. The
network architecture of MAROON is depicted in Figure 5.3 in Section 5.3.
Our approach distinguishes between up to 13 different action classes. A precise
definition of the different action classes is given in Table 3.2 in Section 3.4.1.

3. Our complete action detection system combines SWIFT and MAROON for
a successful instance segmentation, tracking and action detection of animals
in wildlife videos. The workflow of our complete action detection approach
is shown in Figure 5.2 in Section 5.2. Our approach is the first approach
to perform all these tasks in one system in the application area of wildlife
monitoring. This is important for ecological applications, as it allows action
recognition to benefit directly from instance segmentation. If the systems
are separated, instance masks are normally not used and bounding boxes are
used for action detection instead. In particular, the use of instance masks for
improved tracking and more precise action recognition is a key new feature of
this system. For the evaluation of our approach, we are introducing five new
datasets annotated by us, two of which we recorded ourselves using camera
traps. A detailed description of the datasets is given in Chapter 3.

To summarize our contributions: Instance segmentation is the central solution in our
overall approach in order to improve both tracking and action recognition. Instance
masks allow a more accurate matching in comparison to bounding boxes in the
multi-object tracking. Moreover, the action recognition is improved because the
instance masks enable a focus on the animal.

1.4 Thesis Structure

This thesis is divided into six chapters:

In Chapter 2 we discuss the related work for the topics instance segmentation, multi-
object tracking, multi-object tracking and segmentation (MOTS), action recognition
and action detection in detail. Moreover, we present all approaches regarding these
topics in the context of wildlife monitoring or in general animals. We classify our
contributions in the structure of related work from the various task areas.
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Chapter 3 deals with the description of the datasets that we introduce in this thesis.
We present the special characteristics of the individual datasets and also describe
the recording process for our own Rolandseck dataset. Furthermore, we present our
adapted and improved annotation tool and describe the difficulties of the annotation
process. Parts of this chapter are based on (Schindler and Steinhage, 2021b).

In Chapter 4 we present and explain our novel instance segmentation and track-
ing approach SWIFT, Segmentation WIth Filtering of Tracklets. We give detailed
explanations of our workflow and our designed refinement and tracking algorithms.
For our tracking workflow in particular, in which several filtering stages are carried
out in succession, we go through the algorithms line by line and explain our design
decisions. We compare the instance segmentation and tracking ability of SWIFT
with state-of-the-art approaches. Furthermore, we explain in detail the complex
COCO (Common Objects in COntext) metrics, MOT metrics and MOTS metrics.
This chapter is based on the publications (Schindler and Steinhage, 2021a, 2022,
2023).

Chapter 5 contains the description of our action detection approach. We introduce
our new action recognition network MAROON, MAsk guided Action RecOgnitiON.
Thereby, we analyze the individual components of our network, in particular the in-
fluence of instance masks and the significance of our triple-stream approach. More-
over, we explain how SWIFT and MAROON can be combined to perform action
detection on camera trap videos. This chapter is mainly based on (Schindler et al.,
2024).

In our final Chapter 6 we summarize this thesis and give an outlook on future
research and possible extensions for our designed approach.
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Chapter 2

Related Work

Our review of related literature is structured into five distinct sections. We begin
by examining different techniques used in instance segmentation. Following this,
we provide a detailed overview of the latest developments in multi-object tracking
(MOT) and discuss how tracking and segmentation are combined in multi-object
tracking and segmentation (MOTS). We then explore key research in action recog-
nition and detection. Finally, we highlight important studies in wildlife monitoring
that pertain to these topics.

We conclude each of the five sections of this chapter with a brief summary. Finally,
we briefly classify our approaches in the literature presented.

2.1 Instance Segmentation

Instance segmentation aims to provide each object instance in an image (or video
frame) with a pixel-level segmentation mask and a class label. This is particularly
crucial in wildlife monitoring for differentiating animals that are in close proximity to
one another. Unlike semantic segmentation, which groups all instances of a similar
object into one category, instance segmentation identifies each instance separately.
For instance, if a frame contains three deer, instance segmentation will individually
locate and distinguish each deer with its own segmentation mask. In comparison, a
general object detection would only assign a bounding box and a class label to each
animal, without differentiating between overlapping instances.

Instance segmentation techniques are typically categorized into two types: single-
stage and two-stage approaches, each differing in their underlying object detection
mechanisms. Two-stage approaches tend to provide more precise instance masks
but are generally slower than their single-stage counterparts. A two-stage detector
first creates object proposals, then refines these through bounding box regression
and classification to pinpoint the object’s exact location. Because of this procedure,
these approaches are also called top-down approaches. One disadvantage of this
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approach is that the mask quality depends on the bounding box found. In contrast,
single-stage detectors bypass the region proposal phase and instead directly sample
potential object locations from the input image, enhancing their speed. Therefore,
these approaches are also called single-shot approaches.

In our specific application of analyzing wildlife footage from camera traps, real-time
detection is not a necessity since the videos are processed post-recording. Therefore,
the speed advantage of single-stage detectors does not play a critical role in our
context, allowing us to prioritize accuracy over processing speed.

Comprehensive surveys on various instance segmentation and object detection meth-
ods are available in the literature (Hafiz and Bhat, 2020; Liu et al., 2020; Gu et al.,
2022). These surveys provide detailed reviews of the techniques and advancements
in these fields.

Mask R-CNN is one of the most renowned two-stage instance segmentation methods,
known for its effectiveness in generating segmentation masks (He et al., 2017). Since
its introduction, Mask R-CNN has consistently outperformed the previous winners
of the COCO segmentation challenge, achieving a bounding box AP of 37.1 on the
official COCO test dataset for instance segmentation. Many subsequent two-stage
approaches have been developed based on Mask R-CNN, including those by Huang
et al. (2019); Fang et al. (2019); Chen et al. (2019a). Additionally, CD-Net (Lv
et al., 2022) builds upon the results of Mask R-CNN and further refines them using a
graph convolutional network, demonstrating the ongoing influence and adaptability
of Mask R-CNN in the field.

Sequential Grouping Networks (SGN) (Liu et al., 2017) employ a series of multiple
networks to generate final instance masks. This process starts by predicting object
breakpoints, then grouping these into line segments, and ultimately forming con-
nected components. This method bears some resemblance to our approach in that
it utilizes multiple networks sequentially to enhance the accuracy of the instance
masks. A key distinction, however, is that our method already produces instance
masks after the first network, which are then further refined, whereas the SGN ap-
proach only yields partial results after each network stage, culminating in a complete
instance mask only at the final stage.

The Path Aggregation Network (Liu et al., 2018) focuses on enhancing the extraction
of information in the early layers of the network to improve the features in the later
layers. Similarly, the Self-Balanced R-CNN, introduced by Rossi et al. (2022)),
aims to enhance the extraction of regions of interest (ROIs) while also reducing the
overall number of parameters in the two-stage model. These innovations are part
of ongoing efforts to refine the efficiency and effectiveness of instance segmentation
techniques.

Prominent examples of single-stage instance segmentation include TensorMask (Chen
et al., 2019c) and SipMask (Cao et al., 2020). TensorMask employs a sliding win-
dow approach to address complex segmentation tasks involving numerous objects.
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Despite its capabilities, the performance of Mask R-CNN generally surpasses that of
TensorMask. SipMask enhances instance-specific details by splitting the predicted
segmentation mask of an object into sub-regions within a single bounding box, pre-
serving finer details per instance. The Self-Balanced R-CNN (SBR-CNN) (Rossi
et al., 2022) introduces a new refinement mechanism for ROIs by using a loop be-
tween the detection head and the ROI extractor. Moreover, they improve the ROI
extractor by better integrating low and high level features.

Other notable single-stage detectors include CenterMask (Lee and Park, 2020), ex-
plicit shape encoding for real time instance segmentation (ESE-Seg) (Xu et al.,
2019a), reciprocal object detection and instance segmentation network (RDSNet)
(Wang et al., 2020b), single-shot instance segmentation with affinity pyramid (SSAP)
(Gao et al., 2019), single-stage instance segmentation based on anchor boxes (Cai
and Li, 2021), BorderPointsMask (Yang et al., 2022) segmenting objects by location
(SOLO) (Wang et al., 2020c) and its successor SOLOv2 (Wang et al., 2020d), and
MetricMask (Wang et al., 2022).

Foundation models are playing an increasingly important role in instance segmen-
tation. A foundation model is a very large model that has been trained on a large
amount of data so that it can be used for various application scenarios. The model is
no longer specialized or fine-tuned for a specific application, which is also difficult to
implement due to its size and the computing power required. The most important
representative in the area of instance segmentation is the Segment Anything Model
(SAM) (Kirillov et al., 2023). However, the SAM model does not have a built-in
classifier, so the model only segments interesting objects in an image, but cannot
classify them. As a result, the network requires additional inputs such as positive
and negative points or a bounding box for more accurate detection. Otherwise, the
foundation model must be combined with another classifier to classify instances.
For general object detecting a famous foundation model is DETR with Improved
deNoising anchOr boxes (DINO) (Zhang et al., 2022). There are already several
approaches that integrate SAM for instance segmentation in special application ar-
eas. For example, SAM is used for object segmentation underwater when diving
(Lian et al., 2024). In the work of Lu et al. (2024), SAM is used in a workflow to
detect new object classes. SAM is combined with DINO to detect basic objects in
an image. For these reasons, we also analyze SAM as a possible refinement network
in our work.

Video instance segmentation methods incorporate video data directly into the seg-
mentation process and simultaneously perform tracking. These approaches, which
integrate both instance segmentation and tracking, are categorized under Multi-
Object Tracking and Segmentation (MOTS). For a more detailed discussion on these
methods, refer to Section 2.3.

To summarize, the most important distinction for instance segmentation approaches
is whether they are single-stage or two-stage approaches. The focus is either on the
speed and compactness of the architecture or on the quality of the instance masks.
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However, established basic models such as the Mask R-CNN are often used and
extended with additional functionalities. Another important basis are the increas-
ingly prominent foundation models such as Segment Anything. With further im-
provements in the future, specialized approaches will only be necessary for specific
application scenarios and the general instance segmentation task can be solved with
foundation models.

2.2 Multi-Object Tracking MOT

The task of multi-object tracking (MOT) involves identifying objects within a video
and generating trajectories that describe their movement throughout the entire
video. In MOT, a bounding box is typically sufficient to identify each object.

The surveys of Ciaparrone et al. (2020) and Xu et al. (2019b) offer a comprehensive
overview of various contemporary approaches in the field of multi-object tracking.

The tracking-by-detection paradigm is currently the most common and effective
method for performing multi-object tracking (MOT). This approach begins with a
detection model that identifies objects in a video, followed by data association that
links these detections across frames to form continuous tracks. Consequently, im-
provements in the detection model directly improve tracking accuracy. Our SWIFT
method also utilizes this tracking-by-detection framework.

Alternative tracking methodologies that do not adhere to the tracking-by-detection
paradigm are often referred to as one-shot tracking or joint-detection-and-tracking
approaches. These methods integrate detection and tracking within a single net-
work process. While they generally yield less accurate results than the traditional
tracking-by-detection methods, their faster processing speeds make them more suit-
able for real-time applications.

One of the most famous tracking-by-detection approaches is the simple online and
realtime tracking (SORT) (Bewley et al., 2016), which combines the detections of an
arbitrary object detector by the Hungarian Matching algorithm and a Kalman filter.
There are various tacking approaches that build on this idea. DeepSORT (Wojke
et al., 2017) integrates appearance features in the tracking process to better overcome
occlusions. In contrast, StrongSORT (Du et al., 2023) introduces two lightweight
appearance-free algorithms to better refine the tracks. BoT-SORT (Aharon et al.,
2022) includes camera motion compensation and Re-ID features for a more robust
data association. The observation centric SORT (OC-SORT) (Cao et al., 2023) im-
proves the Kalman filter as motion model by incorporating the momentum of the
object movement to better track non-linear movements. The BYTE track approach
(Zhang et al., 2021a) integrates the detection score quality into the tracking pro-
cess of SORT by first forming tracks from very reliable detections and then adding
the less reliant detections. The P3AFormer (Zhao et al., 2022b) does not track
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objects by their bounding boxes or center points, but instead uses a transformer
architecture for a pixel-wise propagation and association of the pixel-wise distribu-
tions of the objects. The Tracktor approach, developed by Bergmann et al. (2019),
is a well-known successful implementation of the tracking-by-detection paradigm.
Tracktor leverages the regression capabilities of a detection model to facilitate data
association, with the significant advantage being that no additional tracking-specific
training is required. SparseTrack (Liu et al., 2023b) uses pseudo-depth information
to better distinguish between objects in the data association step. This is especially
helpful, if there are many objects close to each other. For calculating pseudo-depth,
a planar scene is assumed, which, in environments like wildlife areas with hills, may
not always be applicable.

Xu et al. (2020a) and Chen et al. (2018a) utilize trained neural networks to match
detections across frames. Li et al. (2022b) introduced the IANet, which enhances
data association, particularly in scenarios involving object interactions or occlusions,
through a geometry refinement network and an identity verification module. Graph-
based solutions for linking detections to tracks have been employed by (Ma et al.,
2018; Henschel et al., 2018; Sheng et al., 2018). The approach of Brasó and Leal-
Taixé (2020) uses a Message Passing Network (MPN) to formulate the tracking
problem. They show that with this fully differentiable network learning in multi-
object tracking is also possible for the data association and not only the feature
extraction. Other notable tracking-by-detection approaches include those by Berclaz
et al. (2011); Dicle et al. (2013); Chu et al. (2019).

The single-shot tracker FairMOT (Zhang et al., 2021b), joint detection by embedding
(JDE) (Wang et al., 2020f), and the approach by Zhang et al. (2020) perform object
detection and Re-ID feature extraction concurrently to track objects within video
frames. TransMOT (Chu et al., 2021) and TransTrack (Sun et al., 2020) employ
Transformer networks to simultaneously detect and track objects, showcasing the
application of advanced neural network architectures in tracking tasks. The Global
Tracking Transformer (GTR) (Zhou et al., 2022) analyzes short sequences of frames
to form global tracks across these. This tracker can also be trained together with
an object detector.

Another special approach to tracking is the DiffusionTrack model (Luo et al., 2024),
which uses a denoising technique to perform object detection and data association
at once. SiamMOT (Shuai et al., 2021) and SMOT (Li et al., 2020a) utilize motion
modeling to track detected objects effectively. MeMOT (Cai et al., 2022) uses a
large spatio-temporal memory, where identity embeddings of all tracked objects are
stored. With the help of an attention mechanism MeMOT is able to predict the new
object states. CenterTrack (Zhou et al., 2020) tracks objects not by their bounding
box, but with the center position of the objects. This makes this tracker simpler
and faster. The PermaTrack approach (Tokmakov et al., 2021) builds on the idea of
CenterTrack and adds a spatio-temporal, recurrent memory. This means that the
position of an object in a frame can be determined not only with the information from
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the last frame, but with all previous information. Additional single-shot tracking
approaches include TrackletNet (Wang et al., 2019), (Li et al., 2022a), and a Graph
Neural Network-based approach Wang et al. (2021).

To summarize, the main distinction for multi-object tracking approaches is whether
they do a tracking-by-detection approach or if they are single-shot trackers. The
tracking-by-detection approaches are the more popular and successful approaches.
They profit from the improvement of object detectors because the tracking accuracy
is always dependent on the detection quality. For faster inference times a single-
shot tracker can be the better choice due to the integrated detection and tracking
architecture.

2.3 Multi-Object Tracking and Segmentation MOTS

Multi-object tracking and segmentation (MOTS) integrates instance segmentation
with multi-object tracking (MOT). MOTS identifies objects in a video using instance
masks and associates these masks with their respective trajectories.

Numerous MOTS (Multi-Object Tracking and Segmentation) approaches adopt Mask
R-CNN for instance segmentation and develop their tracking frameworks on this
foundation. The most basic extension forms MaskTrack R-CNN (Yang et al., 2019a)
that extends the Mask R-CNN model by a tracking branch. The SORTS approach
(Ahrnbom et al., 2021) focuses on the speed of the video instance segmentation and
therefore combines Mask R-CNN with SORT as a tracker and also presents another
extension using a Re-ID network. MOTSNet (Porzi et al., 2020) adds a new tracking
head to Mask R-CNN and further introduces a mask pooling layer to guide the data
association. MaskProp (Bertasius and Torresani, 2020) extends Mask R-CNN by a
new propagation branch to propagate instance masks from one frame to all frames of
a video. The propagated masks then form the tracks in the video. The work of Lin
et al. (2020) implements a variational autoencoder (VAE) on top of a Mask R-CNN.
The approach learns spatial and motion features to create representations to detect
and track instance masks in videos. (Qi et al., 2021) concentrates on a special video
instance segmentation task, where they also consider the occluded parts of instance
masks. Therefore, they introduce a novel dataset, where the instance masks are
annotated in that way. Moreover, they present a video instance segmentation mod-
ule, called temporal feature calibration that is a combination of MaskTrack R-CNN
(Voigtlaender et al., 2019) and SipMask (Cao et al., 2020) . The authors of (Voigt-
laender et al., 2019) extend the architecture of Mask R-CNN by 3D convolutions
and an association head. The data association is then performed by computing the
Euclidean distance of the generated association vectors. This approach is called
TrackR-CNN (which should not be confused with the similar sounding MaskTrack
R-CNN (Yang et al., 2019a)).
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There are several approaches to video instance segmentation that are based on trans-
former architectures. In the study by Wang et al. (2020e), the VisTr, a transformer
network comprising an encoder and decoder, is utilized to simultaneously perform in-
stance segmentation and tracking. The Minimal Video Instance Segmentation (Min-
VIS) (Huang et al., 2022) uses an image-based transformer architecture. Therefore,
the training process needs less samples and annotations in comparison to other video
instance segmentation tasks that learn from video data. The finding that queries,
when trained to distinguish between object instances within the same frame, are
temporally consistent allows the model to track instances effectively without rely-
ing on any manually designed tracking heuristics. The SeqFormer model (Wu et al.,
2021) applies the transform attention mechanisms to each frame independently. This
is done by detecting an instance in a frame and aggregating the temporal informa-
tion for learning a video representation. This is the foundation for predicting the
instance masks in the following frames. The IDOL framework (Wu et al., 2022b)
uses a deformable transformer DETR (Zhu et al., 2020) with contrastive learning.
This approach focuses on learning discriminative instance embeddings for data as-
sociation. The Video Instance segmentation via object Token Association (VITA)
approach (Heo et al., 2022) builds on an image transformer and associates the image-
based object tokens to form tracks. The Generalized framework for Video Instance
Segmentation (GenVIS) approach (Heo et al., 2023) builds on the VITA architecture
and uses a novel training strategy that uses multiple clips at once and learns associ-
ations between them. Moreover, they introduce a memory to better use information
from the past.

Moreover, there are some approaches that create new modules or extend existing
frameworks in other ways. The Taxonomy-aware Multi-dataset Joint Training for
Video Instance Segmentation (TMT-VIS) (Zheng et al., 2024) introduces two new
modules to learn jointly from multiple different datasets. The instance segmentation
network SipMask (Cao et al., 2020) can also be extended to the video instance
segmentation task by adding a new fully convolutional branch for the tracking vector
feature extraction as described by the authors. The Cross-VIS network (Yang et al.,
2021) introduces a novel crossover learning scheme. This scheme means that the
features of one instance mask in a frame are used to identify the same instance in
another frame.

Finally, there are networks and systems specially designed for the task of video
instance segmentation. STEm-SEg (Athar et al., 2020) is an end-to-end trainable
network designed to process video input as a 3D spatio-temporal volume, where the
network learns an embedding for each pixel. PolyTrack (Faure et al., 2021) uti-
lizes center heatmaps to represent detected objects and employs a tracking method
similar to that used by CenterTrack (Zhou et al., 2020). The ReMOTS approach
(Yang et al., 2020) aims at better learning appearance features for the data as-
sociation. This is done by training an appearance encoder with predicted masks
and short-term tracklets. Therefore, this approach is called self-supervised refin-
ing MOTS (ReMOTS). The Space Time Correspondence Network (STCN) (Cheng
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et al., 2021b) concentrates on modeling these correspondences for video instance
segmentation. They use direct image-to-image correspondences that lead to more
efficient and robust matching results. PointTrack (Xu et al., 2020b) uses a tracking-
by-points paradigm, where instances are not tracked by image representations but
by point cloud representations. The Spatial Granularity Network (SG-Net) (Liu
et al., 2021) is a one-stage approach that uses three heads for detection, tracking
and segmentation that are jointly optimized and share features. The one-stage de-
sign improves the interference speed. EfficientVIS (Wu et al., 2022a) introduces a
correspondence learning scheme, which enables a correlation between instance track-
lets between clips without the need for an explicit data association.

To summarize, the task of MOTS combines the tasks of instance segmentation and
tracking. Therefore, many approaches build on a reliable instance segmentation
approach, the Mask R-CNN. This basis is extended in various ways to integrate
the tracking ability. Another important field of approaches uses transformer models
for the instance segmentation and the tracking part. Moreover, there are various
approaches that extend other specialized instance segmentation models to the MOTS
task.

2.4 Action Recognition and Action Detection

Numerous approaches to action recognition and action detection have emerged in
recent years, as detailed in several comprehensive surveys (Simonyan and Zisserman,
2014; Zhang et al., 2019; Bhoi, 2019; Kong and Fu, 2022; Liu et al., 2022).

3D convolutional neural networks (3D CNNs) are a prominent method for extracting
spatio-temporal features from videos to classify actions (Tran et al., 2015; Carreira
and Zisserman, 2017; Tran et al., 2018; Hara et al., 2018; Wang et al., 2018b). These
networks have proven to outperform 2D convolutional approaches (Zhou et al., 2018;
Wang et al., 2018a) in action recognition. The X3D model (Feichtenhofer, 2020) ex-
pands 2D convolutional networks across space, time, width, and depth to better
capture spatio-temporal features needed for accurate action recognition. A signifi-
cant advancement in 3D CNNs is the adoption of two-stream approaches, initially
introduced by Christoph and Pinz (2016). One of the most successful implemen-
tations of this concept is the SlowFast network (Feichtenhofer et al., 2019), which
separates the processing of spatial and temporal features into two distinct streams.
Sheth (2021) further evolve this idea with a three-stream network that uses varying
frame counts across streams, integrating the outputs via an LSTM (Long Short-Term
Memory) network for action prediction. Additionally, a three-stream convolutional
neural network (3SCNN) that utilizes skeleton data for action recognition in 3D has
been proposed by Liang et al. (2019). The approach of (Wang et al., 2024) uses
a knowledge distillation approach with a generative network. Initially, a feature
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representation is learned by generative model-based attention module. After this, a
student network is trained with the help of the distilled features.

There are various methods that build on existing CNN architectures to enhance
their capability to extract spatio-temporal features from video data. Notable exam-
ples include Temporal Relation Network (TRN) (Zhou et al., 2018), SpatioTempo-
ral Module (STM) (Jiang et al., 2019), Temporal Shift Module (TSM) (Lin et al.,
2019), Temporal Excitation and Aggregation (TEA) (Li et al., 2020b), Motion-
Squeeze (Kwon et al., 2020), and TokenLearner (Ryoo et al., 2021). Additionally,
the Contrastive Action Representation Learning (CARL) framework (Chen et al.,
2022) is specifically designed to learn long-term action representations, focusing on
capturing complex activity patterns over extended periods.

Transformer architectures have gained significant popularity for action recognition,
leveraging the attention mechanism (Vaswani et al., 2017; Yan et al., 2022; Arnab
et al., 2021a). One particularly successful example is the Multiscale Vision Trans-
former (MViT) (Fan et al., 2021), which combines the transformer architecture with
hierarchical multiscale feature extraction. The ActNetFormer (Dass et al., 2024)
combines a CNN with a transformer, where the CNN focuses on extracting spatial
and (local) temporal features while the transformer especially extracts long-range
temporal features. The Cross Attention in Space and Time network (CAST) (Lee
et al., 2024) uses two frozen transformer networks, where one forms an expert for
extracting spatial features and the other one is an expert for temporal feature ex-
traction. Both transformer networks exchange information and in the end generate
a joint prediction.

The application of instance masks to enhance action recognition is a relatively un-
derexplored field, with existing approaches typically confined to specific application
areas or possessing certain limitations. SegCodeNet (Sushmit et al., 2020) employs
a Mask R-CNN (He et al., 2017) to generate instance masks and incorporates these
into a two-stream approach alongside input frames to recognize various activities
associated with wearable devices. Similarly, the study of Zaghbani and Bouhlel
(2021) utilizes a Mask R-CNN to create instance masks for a single actor in video
sequences, which are then used to mask the frames before they are processed by a
single-stream CNN for action recognition. Another approach by Hacker et al. (2023)
combines RGB frames with human pose information in a two-stream network to an-
alyze actions in table tennis, illustrating the diverse applications of these techniques
in action recognition scenarios.

The most direct way to perform action detection is to combine a detector with
an action recognition network. However, since these tasks are often analyzed and
evaluated independently, comprehensive designs for action detection are relatively
scarce in comparison to action recognition approaches in the literature. Additionally,
the effectiveness of the action recognition component is heavily dependent on the
quality of the initial detection when both components are evaluated collectively.
There are also approaches that combine the detection and action recognition in one
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network. Despite these challenges, there are notable action detection methodologies.
The Asynchronous Interaction Aggregation network (Tang et al., 2020) is designed
to capture interactions between individuals. Biswas and Gall (2020) introduced a
baseline method for weakly supervised action detection that can handle scenes with
multiple actors. The Efficient Video Action Detector (EVAD) (Chen et al., 2023)
employs a transformer architecture to accurately localize actors and categorize their
actions. The approach of (Arnab et al., 2021b) uses a message passing graph neural
network to represent the spatio-temporal relations. The approach can be trained
with and without supervision.

There are action detection approaches that train one backbone network for combined
localization and action prediction. The Video Action Transformer (Girdhar et al.,
2019) uses a transformer to aggregate spatio-temporal features from the person,
whose action they want to predict. The attention mechanism learns to concen-
trate the feature extraction on hands and face, which are most important for action
recognition of humans. Another transformer based approach is TubeR (Zhao et al.,
2022a), which builds on the DETR transformer and extracts features from action
tubelets for localization and action recognition. They introduce a context aware
classification head to better detect the start and end point of actions. The STMixer
network (Wu et al., 2023) builds on the transformer backbone of ViT (Dosovitskiy
et al., 2020). The STMixer is a sparse action detection approach, where the core con-
cept are learnable queries to decode all action instances in parallel. The Watch Only
Once (WOO) network (Chen et al., 2021) also uses one backbone for detection and
action recognition. The used backbone is mixture between the SlowFast backbone
and the Faster R-CNN. Moreover, the authors introduce spatio-temporal action em-
beddings in the pipeline and use a fusion module. The approach of (Arnab et al.,
2022) uses a co-finetune strategy to train the transformer backbone simultaneously
on different classification and detection datasets. With this rather simple approach
they reach accuracies similar to more complex long term memory concepts.

The already mentioned SlowFast network (Feichtenhofer et al., 2019) also incorpo-
rates capabilities for action detection, combining a detector similar to Faster R-CNN
within its framework to identify actors before recognizing their actions. Additionally,
Yuan et al. (2020) combine a SlowFast network with a human detector to specifically
target action detection involving people.

To summarize, there are many different approaches to performing action recognition.
While the first successful approaches were based on 2D convolutions, the current
models are either built from 3D convolutions or consist of transformer architectures.
Important improvements within the models include the use of multiple streams, the
use of memory modules and the introduction of new module components within the
network layers. The task of action detection is often a combination of a successful
detection network with one of the mentioned action recognition networks. But there
are also specially designed action detection systems, for example, models that use
transformer architectures. Similar to the multi-object tracking the action recognition
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is dependent on the detection quality. Therefore, approaches that divide both tasks
in separate approaches are more prominent.

2.5 Instance Segmentation, MOT, MOTS, Action
Recognition and Action Detection in Wildlife
Monitoring

There are very few works that consider instance segmentation, MOT, and MOTS
in the field of wildlife monitoring. Many approaches for image classification exist
(Chen et al., 2014; Okafor et al., 2016; Villa et al., 2017; Norouzzadeh et al., 2018;
Willi et al., 2019; Chen et al., 2019b). Moreover, there exist several approaches
to detect animals with bounding boxes in images (Verma and Gupta, 2018; Beery
et al., 2018, 2019; Falzon et al., 2020; Bonneau et al., 2020; van der Zande et al.,
2021). Classification and detection of animals in images is useful, but basic task.

Camera trap videos offer significantly more information that can be extracted and
processed by more complex computer vision techniques to facilitate ecological stud-
ies. The approach of Yang et al. (2019b) presents a detection pipeline that utilizes
attention-based blending of spatial and temporal features to detect gorillas in cam-
era trap footage. While this method detects apes using bounding boxes, it does
not incorporate tracking or instance masks. Instance segmentation on images of
cows is explored by Ter-Sarkisov et al. (2018); Salau and Krieter (2020); Bello et al.
(2021). Hu et al. (2021) introduce a dual attention-guided feature pyramid network
to perform instance segmentation on images of pigs. Le et al. (2021) create a dataset
containing images of camouflaged animals in nature and a specialized instance seg-
mentation approach, the Camouflaged Fusion Learning (CFL) framework that is
optimized for the task of camouflaged instance segmentation.

Multi-object tracking has predominantly been applied to small animals such as fish
or insects in controlled laboratory settings, as explored by (Fukunaga et al., 2015;
Rodriguez et al., 2017; Sridhar et al., 2019). In a different context, Zeppelzauer
(2013) employed a method to track elephants in wildlife videos by constructing a
connectivity graph for detected elephant segments, although they did not provide
MOT metric values to evaluate tracking accuracy. Gan et al. (2022) utilized a
graph convolutional neural network for instance segmentation and tracked objects
by analyzing the intersection over union of the detections, eventually identifying
actions of piglets in a static indoor environment, which differs significantly from the
dynamic conditions of wildlife videos in varying terrains.

To the best of our knowledge, the multi-object tracking and segmentation (MOTS)
task has not been extensively explored in the context of wildlife monitoring in previ-
ous studies. The challenge in wildlife monitoring is particularly pronounced due to
the similar appearance of animals, especially when they are in close proximity. This
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is a stark contrast to person datasets where individuals are often distinguishable
by their clothing. This similarity complicates the task of achieving precise instance
segmentation and dependable tracking. The study by Xue et al. (2021) is the most
similar to addressing the MOTS problem in this context. However, their approach
focuses on segmenting and tracking only one animal at a time within a video. Addi-
tionally, their method necessitates user intervention to set the instance mask of the
animal in what they refer to as a ’guidance frame’, which may not be practical for
extensive wildlife monitoring efforts that aim for automation and scalability.

Action recognition and action detection for wildlife monitoring remains still a rel-
atively unexplored research area. The following approaches represent important
publications in the field of action recognition and action detection in wildlife moni-
toring. Sakib and Burghardt (2020) develop a neural network for action recognition
of great apes using a self-created dataset. The Animal Kingdom Dataset is intro-
duced by Ng et al. (2022), which consists of action clips of a huge variety of animal
species. Moreover, the authors introduce an action recognition network, the Col-
laborative Action Recognition network (CARe) that recognizes actions of unseen
animal species. In the paper (Brookes et al., 2023) the authors introduce a metric
learning approach employing a triple-stream embedding network that utilizes RGB
and optical flow features to recognize actions of great apes.

With our previous publications we contributed to the tasks of instance segmentation
(Schindler and Steinhage, 2021a,b, 2022, 2023), multi-object tracking (Schindler and
Steinhage, 2021b, 2022, 2023) and action recognition and action detection (Schindler
and Steinhage, 2021a; Schindler et al., 2024).

To summarize, research in the three fields of our work, instance segmentation, multi-
object tracking and action detection, in the context of wildlife monitoring are very
scarce. There are many works, which concentrate on classifying images and detecting
animals in images. Video data is mainly considered in closed environments like
laboratories or farms, where animals are tracked and detected. There are only a few
works that consider action recognition for apes.

2.6 Where do SWIFT and MAROON fit into the Related
Work?

Our entire workflow is an action detection system, which in turn consists of two
parts: SWIFT, which initially performs multi-object tracking and segmentation,
and MAROON, which performs action recognition. The instance segmentation part
of SWIFT consists of a Mask R-CNN and a refinement network. Therefore, it is
a two stage approach and builds on the famous Mask R-CNN like other instance
segmentation approaches. We further combine this with a refinement algorithm
that we designed. In this refinement step we use a refinement network, which can
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also be a foundation model for generating very exact masks. The SWIFT Tracking
Algorithm is a tracking-by-detection approach because we want to generate exact
tracks and do not perform an online tracking. Our design to use multiple filtering
stages, where tracklets are combined and deleted is novel. The basis tracklets are
generated from a combination of a motion model and the Hungarian matching,
which resembles the SORT based approaches. Both parts of SWIFT together form
a MOTS system. Accordingly, our approach is one of the approaches based on a
Mask R-CNN. However, as just described, the two components of detection and
tracking are separate in our case. This modularity makes it easier to modify our
system, for example to benefit more easily from future improvements to foundation
models.

MAROON is our action recognition network and builds on the SlowFast architecture.
So our approach uses 3D convolutions and the idea of multiple streams. In compar-
ison to SlowFast, we extend the two-stream approach to triple-stream approach for
extracting motion and appearance features with a finer granularity. Another impor-
tant improvement is the use of instance masks to cut out the animal, allowing the
network to focus on the actor. The combination of SWIFT and MAROON forms
our overall workflow, which is able to perform action detection. Here, too, we follow
the idea of modularity, so that we implement our subsystems sequentially one after
the other. This allows us to better control the dependency of action recognition on
the detector and, similar to MOTS, to better benefit from future improvements to
individual components.

In our application area, we are the first to examine all these problem statements
at once. This makes it possible to combine the findings from the different areas.
As we show in this thesis, instance segmentation enables improved tracking and
action recognition. Even for the partial tasks of instance segmentation, multi-object
tracking and action recognition there are not really comparable approaches for the
field of wildlife monitoring. Therefore, our system is a novelty in wildlife monitoring
and enables researchers to analyze camera trap videos easier and better.
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Chapter 3

Datasets and Data Acquisition

Annotated datasets for the combined tasks of instance segmentation, MOT, MOTS
and action detection in the context of wildlife monitoring, to the best of our knowl-
edge, do not exist or are not publicly available. There are also no annotated datasets
for each individual task. Therefore, we created our own datasets, the Rolandseck
datasets, for this thesis. In addition, we were able to obtain data material from the
cooperation with the Nationalpark Bayerischer Wald, which forms the Bavarian For-
est datasets. We divide these two datasets into a daylight and a nighttime dataset.
In addition, we analyze the Wildlife Crossings dataset, which consists exclusively
of nighttime images. In total, we examine the five datasets Rolandseck Daylight,
Rolandseck Nighttime, Bavarian Forest Daylight, Bavarian Forest Nighttime and
Wildlife Crossings. In Table 3.1, we compare the most important aspects from our
five datasets. In the following sections, we describe our datasets in detail.

3.1 Rolandseck Datasets

With permission of the Wildpark Rolandseck GmbH, we captured video footage of
fallow deer (Dama dama) and red deer (Cervus elaphus) in their natural environment
from November 2020 to December 2021, resulting in over 6000 recorded videos. We
first had to view the data material to filter out videos that were not usable (e.g.
no animals are present, camera was tilted extremely). This initial filtering resulted
in about 3000 remaining videos of varying quality. The data annotation process is
described in detail in Section 3.4. Because the data annotation forms a bottleneck
we had to choose representative videos for different scenarios, backgrounds, animals
present and actions. Within the 3000 videos, there are often scenes that show
similar situations and behavior. Using similar videos is not helpful for training
neural networks.

For the recordings we used two Victure HC500 Trail Cameras. Our camera traps
are shown in Figure 3.1. On the left picture, the camera is open so that settings for
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Dataset No. of
videos /
No. of
Frames

Frames
per

second
(FPS)

Resolution Avg. no.
of

animals
per video

Different
action
classes

Rolandseck
Daylight

34 / 27,979 30 1728×1296 5.88 11

Rolandseck
Nighttime

34 / 27,025 30 1728×1296 2.91 9

Bavarian
Forest

Daylight

54 / 19,469 15 1280× 720 1.13 7

Bavarian
Forest

Nighttime

31 / 5,789 8 1280× 720 1.06 7

Wildlife
Crossings

41 / 2,506 8 1280× 720 2.15 7

Table 3.1: Comparative overview of the five datasets used. We compare the technical aspects of the videos,
such as the size of the datasets and the recording quality. We also look at the average number of animals
and the number of different action classes.

the recordings can be made and already created recordings can be viewed on the
small display. The cameras are waterproof and inexpensive to buy (about 100 euros
including the necessary batteries and SD card). All videos are 30 seconds long with
30 fps (frames per second) and a high definition resolution of 1728 x 1296 pixels.
Videos in the dataset were only shortened if there were no animals visible in the
clips anymore. Our camera traps are equipped with PIR (Pyrocelectric Infrared)
sensors, which detect temperature changes in its field of view. Therefore the cameras
are only triggered when an animal moves into the field of view (not for example by
a moving branch). The camera traps were placed at different locations to show
changing backgrounds and different settings. The general site locations stayed the
same, but we changed the exact position of the cameras (e.g. changed the tree,
where the camera is mounted) each months to prevent always showing the same
background.

As already mentioned, we split our annotated videos in two separate datasets de-
pending on the recording time. The Rolandseck Daylight dataset consists of 34
annotated videos. These videos are all captured during daylight. The following
11 different actions are present in the videos: foraging moving, foraging standing,
grooming, head lowering, head raising, resting, running, standing up, vigilant lying,
vigilant standing, walking. A definition of all action classes is given in Table 3.2.
The Rolandseck Nighttime dataset consists of 34 annotated videos. These videos are
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3.2 Bavarian Forest Datasets

Figure 3.1: Our Victure HC500 camera traps mounted on the trees in the wildlife park Rolandseck (Ger-
many).

all captured during nighttime and therefore show no color information. In Figure 3.2
we show exemplary frames of both datasets showing fallow deer and red deer at day
and night.

The Rolandseck datasets contain high-resolution images with a high frame per sec-
ond rate compared to the other datasets (see Table 3.1). In addition, larger groups
of animals appear in these datasets. This is a major challenge, particularly for detec-
tion and tracking because many animals move close to each other and thus partially
or even completely occlude each other. In general, animals camouflage themselves
with the environment through their fur color, which makes detection more challeng-
ing than detection in a person dataset, where each person wears different clothing
(Le et al., 2021). The night images are a challenge overall due to the lack of color
information. In addition, the PIR sensor illuminates the center of the image more
than the edges. As a result, animals in the middle of the image appear brighter and
animals are more difficult to recognize when entering and leaving the scene. This
can also be seen in the sample images in Figure 3.2.

3.2 Bavarian Forest Datasets

The datasets Bavarian Forest Daylight and Bavarian Forest Nighttime were captured
in the Nationalpark Bayerischer Wald at different sites. The video material was
selected in cooperation with ecologists from the Bavarian Forest National Park.
The description of the action classes was carried out by the ecology experts and the
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Figure 3.2: Exemplary frames from Rolandseck Daylight (top) and Rolandseck Nighttime (bottom). Fallow
deer are shown on the left and red deer on the right.
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3.3 Wildlife Crossings Dataset

data annotation was done jointly. The videos show roe deer (Capreolus capreolus)
and red deer (Cervus elaphus). These videos were selected from a larger dataset
based on the number of individuals and different types of behavior present. The
daylight videos are recorded with 15 FPS and a resolution of 1280 x 720. The
nighttime videos have the same resolution, but only 8 FPS. The Bavarian Forest
Daylight dataset contains 54 annotated videos and the Bavarian Forest Nighttime
dataset consists of 31 annotated videos. The following 7 different action classes
are represented in this dataset: foraging standing, grooming, head lowering, head
raising, vigilant standing, walking, sudden rush. In Figure 3.3 we show exemplary
frames of both datasets showing roe deer and red deer at day and night.

Figure 3.3: Exemplary frames from Bavarian Forest Daylight (top) and Bavarian Forest Nighttime (bot-
tom). Roe deer are shown on the left and red deer on the right.

In contrast to the Rolandseck Daylight dataset these two datasets generally show
a lower number of individuals per video. The reason for this is that the recordings
were taken in a national park that does not have a narrow spatial boundary like
the wildlife park. This represents an important difference that will be of interest
when investigating the influence of instance masks for our system. Moreover, the
resolution of the frames and the frames per second rate is lower than the values of
the Rolandseck datasets.

3.3 Wildlife Crossings Dataset

The fifth dataset that we consider is the Wildlife Crossings dataset. The data
material was recorded by camera traps that were positioned at wildlife crossings
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at the federal motorway 7 near the city Oberthulba. The video data was provided
by the Bavarian Highway Directorate, Germany, but we had to manually annotate
all of the videos with the instance masks, track IDs, animal classes and action
labels. All videos are recorded at nighttime. Therefore, we do not divide this
dataset in a Daylight and Nighttime dataset. Each video is about 10 seconds long
with 8 fps (frames per second) and a resolution of 1280 x 720 pixels. The videos
include red deer (Cervus elaphus), wild boar (Sus scrofa), hares (Leporidae) and
foxes (Vulpes vulpes). The Wildlife Crossings dataset consists of 41 annotated videos.
The following 7 different action classes are represented in this dataset: foraging
standing, foraging standing, head lowering, head raising, vigilant standing, walking,
running. In Figure 3.4 we show exemplary frames of all 4 different animal classes of
the Wildlife Crossings dataset.

Figure 3.4: Exemplary frames from Wildlife Crossings dataset. All videos are nighttime videos. The 4
occurring animal classes are red deer (top left), wild boar (top right), hares (bottom left) and foxes (bottom
right).

The Wildlife Crossings dataset contains the most different species from all five con-
sidered datasets. This is especially interesting for the classification aspect of the
instance segmentation. Moreover, the videos have a rather low resolution, which
makes it difficult to recognise the animals, and at the same time they have a low
temporal resolution of 8 fps, which in turn leads to blurring when the animals move
quickly. Due to the special scene of wildlife crossing over a highway, groups of an-
imals also appear more frequently here (in contrast to the national park), usually
running through the picture from left to right or vice versa. In addition, for better
illumination of the scene a flashlight on the opposing side of the camera is used
(cf. example image of wild boars in Figure 3.2). However, this also leads some-
times to very bright points of light in the videos, which can also cause difficulties
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3.4 Data Annotation

for detection.

3.4 Data Annotation

The annotation of data material is an often underestimated task, which is par-
ticularly important when application areas are examined that have not yet been
intensively explored. As already mentioned, there are few to no annotated publicly
accessible datasets in wildlife monitoring, especially for the objectives considered in
this work. We therefore had to carry out the data annotation ourselves.

For our tasks we need to assign (1) a segmentation mask, (2) a bounding box, (3)
a class label, (4) a track ID and (5) an action label to each animal instance in each
frame of each video. Taking this into account, the annotation of a single video with
less than 10 animals, for example, 30 seconds long and recorded at 30 FPS, already
means the assignment of several thousand instance masks and labels. One advantage
of this is that the animals usually only change slightly between two frames, so that
copying the previous annotation to the next frame is usually very advantageous.

The programs and methods available for annotating instance masks and track IDs
have developed considerably in recent years. At the beginning of our work, we used
the VGG Image Annotator (VIA) Version 2.0.8 (Dutta and Zisserman, 2019). This
tool allows the user to set the contour of the animal as a polygon line. The user can
copy the annotated animals to the next frame. But even a slight movement of the
animal requires the user to manually shift many points of the polygon line. In 2021,
the interactive tool RITM (Reviving Iterative Training with Mask Guidance for
Interactive Segmentation) was published by Sofiiuk et al. (2022). This annotation
tool supports the user with an AI approach. The user sets positive and negative
clicks to describe which regions are part of an object and what are not. These
clicks are fed into a trained HR-Net (High-resolution Network) (Wang et al., 2020a)
to create and adapt the instance masks. This tool was further improved with the
Simple Click approach (Liu et al., 2023a). The user interface has remained the same,
but the underlying AI support is now a transformer model. Both approaches are
designed for the annotation of single images (not videos).

We have improved the approach of (Liu et al., 2023a) to make it suitable for anno-
tating videos. Therefore, we enable the loading of all frames from one folder. We
introduce some short-cut key bindings to enable fast annotation. So it is possible
to load the next or previous frame and to switch between the currently annotated
object mask. In addition, we add a short-cut key binding for saving the annotated
mask to save time. When the user switches to the next or previous frame the current
annotations are copied. This new feature is very helpful for video annotation because
the animals only move slightly between two frames. Moreover, the copied masks are
fed into the HR-Net (respectively the transformer model) as initialization for a more
robust prediction. In Figure 3.5 we show the user interface of RITM / Simple Click
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and highlight our additions in red. On the right side we add information about the
current frame and annotation status. The file name of the current frame is displayed
and the number of the frame from the entire video. It also shows which animal or
instance mask is currently being edited. Below this, one new button has been added
that allows the correction mode to be switched on and off. In the correction mode
the program loads the already annotated masks and allows the user to correct faulty
annotations. Moreover, we added the continue function on the left side. This button
automatically loads the last frame, where an instance mask is available. This is very
useful and time-saving if the annotation process is interrupted and continued later.
Without this button, the last frame must be manually selected and loaded and then
the appropriate instance mask loaded.

The improvements concerning the correction mode and continue button were done
in cooperation with the student Benedikt Wude during his project group in the
summer term of 2023 (cf. Acknowledgements).

Figure 3.5: The user interface of the annotation tool RITM / Simple Click is shown. We have highlighted
our improvements and additions to the user interface in red. We have added the Continue button at the
top. On the right-hand side, we have added a display specifically for videos that shows the current frame
of the video and which animal is currently being annotated. Below this is the new button for switching to
Correction mode.

There also exist annotation tools that are designed for video annotation. The tool
MIVOS (Cheng et al., 2021a) is also an interactive instance segmentation tool. The
user annotates one frame with positive and negative clicks supported by AI. Then
this information is propagated for the next frames to interpolate the annotation.
This prediction does not work really well for longer periods of time and is also faulty
if animals move close to each other. In our publication (Schindler and Steinhage,
2021b) we used a combination of the Mask R-CNN (He et al., 2017) and the Tracktor
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3.4 Data Annotation

approach (Bergmann et al., 2019) to automatically annotate videos. The instance
segmentation approach has to be trained initially. Therefore, it is necessary that
at least a few videos are manually annotated before. A general problem with the
automatic annotation of frames is that even a 95% correctly annotated object or
animal may require post-processing by the user. For example, if an animal’s ear is
not annotated, this cannot be learned correctly by a neural network later on. How-
ever, accurately annotated animals are even more important for a correct evaluation
of the models. For those reasons, it is difficult to completely automate the annota-
tion. Thus, interactive instance segmentation supported by AI is currently the best
solution.

The Rolandseck datasets were annotated by us and also by students working in
projects in our working group (cf. Acknowledgements). The Bavarian Forest datasets
were annotated by us and by a student from the research group of the national park
Bavarian Forest (cf. Acknowledgements). The annotations of the Wildlife Crossings
dataset were done by us.

3.4.1 Action Definitions and Action Distributions

For the task of action detection, the actions of all individuals must be described by a
start and end time. However, in order to train an action recognition network, further
pre-processing of the data material must be done. The videos from the datasets
can contain multiple animals and the animals perform different actions throughout
one single video. To be usable for action recognition, each sequence must contain
exactly one animal that performs only one action. Therefore, we extract each animal
individually from the videos using the given bounding box information. We then
split this video of the individual animal at the time points where the animal’s action
changes. Thus, from the complete videos of the datasets, many (action) sequences
are created, which show only one animal performing only one action during the
whole sequence. The length of the sequences can vary from a short section (1
second) to a total video length (30 seconds). It depends only on how long an action
is performed. In Figure 3.6 we show the distribution of the action class sequences in
our datasets. As it is common in the field of action recognition, especially in the field
of wildlife monitoring, long tailed distributions are present in all datasets (Zhang
et al., 2023). This means that the action classes are not evenly distributed in the
dataset. For example, the classes walking, vigilant standing, and foraging standing
are significantly more common than the classes grooming, resting, or sudden rush
in all datasets.

The Table 3.2 provides an overview of all 13 different action classes that occur and
a description of them. Both the action classes and the descriptions were created in
cooperation with ecologists from the Bavarian Forest National Park who are involved
in wild animal behavior research.
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Figure 3.6: Action class distribution of the datasets Rolandseck Daylight, Rolandseck Nighttime, Bavarian
Forest Daylight, Bavarian Forest Nighttime and Wildlife Crossings. The same action classes in different
datasets are depicted in the same color.
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Action class Description

Foraging mov-
ing

The animal is in motion or walking with its head lowered toward
the ground or a food source such as bushes, its eyes open. Its
mouth is close to the ground or the food source, and its jaws may
be moving.

Foraging
standing

The animal is standing with its head lowered toward the ground
or a food source such as bushes, its eyes open. Its mouth is close
to the ground or the food source, and its jaws may be moving.

Grooming The animal is standing and either scratching or licking itself. Its
mouth is in contact with a random part of its body, and its head
is moving slightly.

Head lowering The animal’s head transitions from a raised position (aligned with
or above the body) to a lowered position (closer to the ground or
nearly in line with the body) within a brief time.

Head raising The animal’s head is moved from a lowered position (close to the
ground, up to nearly in line with the body) to a raised position
(aligned with the body or higher) within a brief period.

Lying down The animal shifts its posture from standing to lying down.
Resting The animal is lying on the ground with its torso slightly to the side.

Its legs may be stretched away from the body or bent underneath
and beside it. The head is resting on the ground, and the animal’s
eyes may be either closed or open.

Running This describes a swift, purposeful forward movement that is faster
than walking. The animal maintains a relatively tense posture
with its head raised and eyes open. At any given time, at least
two hooves are off the ground. This movement ranges from a trot
to full speed.

Sudden Rush The animal transitions directly from standing to running, without
walking, in less than one second.

Standing up The animal moves from a lying position to standing up.
Vigilant lying The animal is lying down with its head held high, occasionally

turning its head and twitching its ears.
Vigilant
standing

The animal is standing with a tense posture, its head held parallel
to the body or higher. It looks around and occasionally twitches
its ears.

Walking This describes a relatively slow, purposeful forward movement not
associated with feeding or chewing. The animal maintains a re-
laxed posture with its head held parallel to the body or higher.
At all times, at least one hoof is off the ground.

Table 3.2: Definition of all occurring action classes.

31





Chapter 4

Instance Segmentation and Tracking

In this chapter, we present our approach for instance segmentation and tracking of
wild animals. The goal of instance segmentation is to detect all animals in a frame
by assigning (1) a class label, (2) a bounding box, (3) an instance mask and (4) a
score value. Tracking links the detections of the instance segmentation in a video to
tracks by assigning (5) a unique track ID to each animal in each frame of the video.
So the combined task is called MOTS, multi-object tracking and segmentation.

Most of the results of this chapter are published in (Schindler and Steinhage, 2022)
and (Schindler and Steinhage, 2023).

4.1 Introducing Bounding Boxes, Instance Masks and
Tracks

The goal of object detection is to localize all desired objects in an image or, in
our case, a frame of a video by bounding boxes and to assign class labels to these
objects. Each bounding box is usually described by the pixel positions of the top
left and bottom right corners of the rectangle, b = (x1, y1, x2, y2). However, there
are also alternative representations in which a bounding box is described by its
center point and the height hb and width wb of the box, b = (xc, yc, wb, hb). The
second definition is useful, for example, for tracking using the Kalman filter or the
particle filter. A conversion between the two forms of representation is therefore
often helpful. However, we will use the first definition for detection. In Figure 4.1
(a) we show a bounding box for the animal in image (c). Each detection also gets a
score value s with 0 ≤ s ≤ 1 to describe its reliability. Object classification is often
included in object detection. This means that each detection gets a class label c.
Therefore, each detection d is described by the tuple (b, c, s), which consists of the
bounding box b, the class label c and the score value s.
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(a) Bounding box (b) Instance mask

(c) Image (d) Binary mask

Figure 4.1: The bounding box (a) is a rectangle containing the animal. The instance mask (b) describes the
exact contours of the animal, which enables more precise localization. The instance mask is often represented
by a binary mask (d) that is saved separately from the image (c).

Instance segmentation extends this task by localizing the objects with their exact
contour and not only the bounding box information. In Figure 4.1 (a) and (b) we
show visually the difference between a bounding box and an instance mask. For an
instance segmentation, each detection additionally gets an instance mask m. The
instance mask m is typically a binary mask, where each pixel that is part of the
desired object is assigned a 1 (or 255 depending on the range of pixels) and all other
background pixels are assigned a 0. This representation is also shown in Figure 4.1
(c) and (d). This results in the definition of a detection d in the context of instance
segmentation as the tuple (b, c, s, m).

Multi-object tracking aims to detect and track all objects of a video. Tracking
connects the detections of the same instance from different frames to form tracks.
This allows to follow the same object in multiple frames, which is essential to count
objects in videos or form a basis for other tasks like action detection. Therefore,
each detection d is assigned a track ID t.

Multi-object tracking and segmentation (MOTS) extends this task by including the
instance mask in this process. In Figure 4.3 we show the difference between multi-
object tracking and MOTS. The representation of a detection d for the task of
multi-object tracking and segmentation is the tuple (b, c, s, m, t), which consists of
the bounding box b, the class label c, the detection score s, the instance mask m
and the track ID t.
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(a) Object detection (b) Instance segmentation

Figure 4.2: For an object detection (a) each object is localized with a bounding box. The instance segmen-
tation (b) adds an instance mask for each object. Often both approaches include an object classification,
which results in the written object class above the bounding box.

(a) Multi-object tracking

(b) Multi-object tracking and segmentation (MOTS)

Figure 4.3: The Multi-Object Tracking (MOT) (a) combines detections from different frames and connects
the same instances to tracks. This is done by assigning a track ID to each detection and shown visually by
assigning the same color to the same instances. The Multi-Object Tracking and Segmentation (MOTS) (b)
includes the instance masks in the tracking process.
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4.2 Segmentation With FIltering of Tracklets - SWIFT

This section provides a summary of our Multi-Object Tracking and Segmentation
(MOTS) approach SWIFT. The workflow of SWIFT is depicted in Figure 4.4. Ini-
tially, SWIFT conducts instance segmentation with our refinement algorithm (cf.
Section 4.3) to accurately detect all animals and their precise outlines. Subsequently,
our tracking algorithm (cf. Section 4.4), comprising multiple filtering stages, is
applied to link detections across all video frames into continuous tracks, ensuring
seamless tracking throughout the video sequence.

In the Figure 4.4 referencing SWIFT’s workflow, the algorithms responsible for each
step are marked in blue. We will outline the technical specifics of these algorithms
using pseudo-code in the forthcoming sections. Moreover, we’ll delve into the func-
tionality and underlying design principles of each algorithm, providing a detailed,
line-by-line explanation within the respective sections.

Figure 4.4: The workflow of SWIFT: The instance segmentation part generates instance masks, bounding
boxes, class labels and score values in the input video. To achieve this, a robust and reliable instance
segmentation approach, the Mask R-CNN, first detects basic instance masks of the animals. These are then
improved by the newly developed SWIFT Refinement. An HR-Net is used for this. The tracking part forms
tracks from the detections. Our SWIFT Tracking Approach uses several filtering stages that combine and
delete tracklets. The basic tracklets are formed by a particle filter tracking with a Hungarian matching. In
filtering step 1, tracklets that are spatially and temporally part of other tracklets are deleted. In filtering
step 2, a motion model is used to estimate the position of animals according to occlusions and tracklets are
matched by a Re-ID network, the OS-Net. In the filtering step 3, tracklets that cannot be explained by
a motion model and can only be matched by a Re-ID network are matched, for example when an animal
leaves the scene and then re-enters it. The final filtering step 4 deletes very short and unreliable tracklets.
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4.3 Instance Segmentation with SWIFT

Our approach to instance segmentation is founded on the use of a Mask R-CNN (He
et al., 2017) that effectively generates reliable detections and produces good instance
masks. These initial masks are then further improved to high-quality masks through
our refinement algorithm.

We choose Mask R-CNN as our base detection model due to its proven reliability
across various application settings, often serving as a basis for advancements in in-
stance segmentation and MOTS (cf. Section 2.1). Furthermore, we have shown the
effectiveness of Mask R-CNN in wildlife monitoring in our publications (Schindler
and Steinhage, 2021a) and (Schindler and Steinhage, 2021b). Mask R-CNN first ex-
tracts features in its backbone from the input image, followed by proposing regions
of interest, which lay the basis for bounding box and mask regression, as well as
classification. To tailor Mask R-CNN to our specific needs, we adjust the input size
to match our frame resolution precisely, which is higher than the default setting and
prevents the loss of input image detail and information due to image reduction. Ad-
ditionally, we calculate the image mean and standard deviation for our datasets to
achieve more accurate normalization of the input frames. We replace the standard
ResNet-50 by a ResNeXt-101 to enhance feature extraction capabilities. Although
this deeper backbone slows down training and inference, it excels at generating su-
perior instance masks, aligning with our objectives to generate high-quality instance
masks. The network is trained for 3 epochs, starting with an initial learning rate
of 0.0005, a momentum of 0.9 and weight decay of 0.0005. These parameters were
determined in different experiments. We decrease the learning rate by a factor of
0.1 after 1 and 2 epochs, corresponding to points where the loss plateaus, indicating
the need for a reduced learning rate to continue progress, although further reduction
beyond this point does not prove beneficial.

For refining instance masks, we employ a technique commonly used in interactive
segmentation, where users designate positive (inside the target mask) and negative
(outside the target mask) points through mouse clicks. This method allows for
the precise creation of instance masks with just 3 to 10 clicks (depending on the
complexity of the object).

We follow the interactive segmentation strategy of Sofiiuk et al. (2021), who demon-
strated the superiority of their refinement network over other methods in this do-
main. Especially the use of an HR-Net (Wang et al., 2020a) backbone within the
refinement network facilitates the generation of high-resolution instance masks. In
our application, without the direct involvement of a user to place clicks, we design
an algorithm that automatically assigns these positive and negative clicks.

The pseudo-code of the refinement process is shown in Algorithm 4.1, which we
explain in detail below. An illustrative example of this process is provided in Figure
4.5.
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(a) Mask R-CNN detection (b) Dilated mask (c) Eroded mask

(d) Positive center click (e) Negative first click (f) Positive first click

Figure 4.5: The process of setting positive and negative clicks is fundamentally based on the operations of
dilation and erosion. The outline of the maskeroded and maskdilated is shown in green. Four positive and
negative points are evenly sampled. In the lower row of images, the development of the mask after the first
three clicks is shown, the center click and the first negative and positive click. Positive clicks are shown as
yellow dots and negative as blue dots.

4.3.1 SWIFT Refinement Algorithm

The objective of the SWIFT Refinement Algorithm (Algorithm 4.1) is to enhance the
accuracy of detections, specifically the instance masks produced by Mask R-CNN,
through the automated application of positive and negative clicks in a refinement
network. This algorithm is executed on all detected objects D within each frame
i. A score threshold τscore is employed to ensure that only detections d with a
high confidence score d.score undergo refinement (line 2 of Algorithm 4.1). This
is important for two main reasons: firstly, instance masks with a low score often
represent incorrect detections or partial detections (e.g., capturing only a portion of
an animal), and secondly, each refinement process entails additional processing time.
We choose a threshold of 0.5, aligning with the common benchmark for considering
a detection as correct in performance metrics.

Our approach for setting positive and negative points for refinement draws on the
principles of morphological operations, specifically dilation and erosion. This means
that we uniformly reduce the detected instance mask from the Mask R-CNN via
erosion and uniformly expand it through dilation. The extent of dilation and ero-
sion applied is tailored to the size of the detected animal, steered by parameters
ϕd for dilation and ϕe for erosion. The goal is for the dilated mask, maskdilated,
to fully encompass the target object, while the eroded mask, maskeroded, should fit
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entirely within the object’s contours. Should the eroded mask maskeroded fragment
into several smaller regions, only the largest region is considered. Through experi-
ments we estimated various degrees of erosions and dilations that are effective based
on the segmentation masks’ coverage area (i.e., the pixel count within the mask).
Therefore the function fgetP aram returns the desired parameters ϕd and ϕe (line 3
of Algorithm 4.1).

Algorithm 4.1: SWIFT Refinement Algorithm
Input : Frame i; all detections D found by Mask R-CNN in i; threshold

values τscore and τiou; refinement network RN
Output: Refined detections D

1 for d ∈ D do
2 if d.score > τscore then
3 ϕe, ϕd ← fgetP aram(area(d.mask)) ▷ // estimate by how much mask

must be enlarged or reduced depending on its size
4 maskdilated ← dilation(d.mask, ϕd) ▷ // enlarge the mask
5 maskeroded ← erosion(d.mask, ϕe) ▷ // reduce the mask

// Get positive and negative points
6 ppos ← sample(polygon(maskeroded),4) ▷ // sample 4 points on

contour of smaller mask
7 pneg ← sample(polygon(maskdilated),4) ▷ // sample 4 points on

contour of bigger mask
8 pcenter ← computeCenterpoint(d.mask) ▷ // get point in middle of

mask
// Set positive and negative clicks

9 maskrefined ← RN(i, d.mask, pcenter, positive) ▷ // RN computes
refined mask using the frame, mask and click information

10 for j = 1 to 4 do
11 maskrefined ← RN(i, maskrefined, pneg[j], negative)
12 maskrefined ← RN(i, maskrefined, ppos[j], positive)
13 end
14 if IoU(d.mask, maskrefined) > τiou then
15 d.mask ← maskrefined

16 d.box← adaptBbox(d.mask) ▷ // adapt the bounding box to
the new mask

17 end
18 end
19 end
20 Return D

Following the creation of maskdilated and maskeroded (line 4 to 5 of Algorithm 4.1),
we proceed to select points from the bounding polygon (the outline) of the masks
(line 6 to 7 of Algorithm 4.1). The points derived from maskdilated serve as the
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negative clicks, whereas those from maskeroded act as the positive clicks. Addition-
ally, we calculate the mask’s center point to place the initial positive click (line 8
of Algorithm 4.1). We have experienced that it is beneficial to set the first click in
the center of the object to get better results. An effective number of clicks for both
positive and negative selections is determined to be 4, with points evenly distributed
along the polygon to ensure one point is positioned at the top, right, bottom, and
left, respectively. Consequently, a total of 9 points are utilized in the refinement
process. The work of (Sofiiuk et al., 2021) shows that 1 to 6 points are sufficient
to get high quality masks for different datasets. The strategic placement of a point
on each side of the object is crucial, especially since there is no user intervention
for click placement. This method proves particularly important in scenarios where
multiple animals are in close proximity, necessitating negative clicks around all sides
to distinguish between them effectively. An illustration of the erosion, dilation, and
initial clicks process is provided in Figure 4.5.

The refinement process begins by initializing the refinement network RN with the
instance mask d.mask detected by Mask R-CNN, a step crucial for maintaining re-
sult stability, as demonstrated in our evaluation section 4.5.5. The initial input to
RN includes the current frame i, the instance mask d.mask and the center point
pcenter as the first positive click (line 9 of Algorithm 4.1). For the subsequent points
we alternate between the positive and negative clicks (line 10 to 13 of Algorithm 4.1).
Upon completing the refinement, we assess the Intersection over Union (IoU) be-
tween the original instance mask d.mask and the refined mask maskrefined (line 14
of Algorithm 4.1). This evaluation ensures that only significant and accurate refine-
ments replace the original mask, preventing the acceptance of potentially incorrect
refinement outcomes. If the change in the instance mask d.mask is too drastic, we
retain the original mask from Mask R-CNN. To facilitate this decision, we introduce
a threshold τiou, reflecting the training quality of the underlying Mask R-CNN and
the reliability of its instance masks. We set τiou = 0.7 for our scenario. Surpassing
this threshold means the original mask is substituted with maskrefined, necessitating
adjustments to the bounding box d.box to align with the new mask (line 15 to 16 of
Algorithm 4.1).

4.4 Tracking with SWIFT

The second part of SWIFT aims to track the identified and refined detections from
the instance segmentation stage, assigning a unique track ID to each instance mask.
This allows for the individual tracking of each animal within a video. To accomplish
this, we have designed a tracking algorithm that utilizes various filtering steps to
refine the tracking process. These steps involve either deleting existing tracklets or
merging them to form larger, more comprehensive tracklets.
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4.4.1 SWIFT Tracking Algorithm

Our SWIFT Tracking Algorithm is shown in Algorithm 4.2. In the following, we
explain all individual steps of the algorithm in detail. The inputs to our algo-
rithm include a video V , composed of frames f0, f1, ..., fn, and the corresponding
refined detections D0, D1, ..., Dn across these frames. Additionally, there are various
threshold values utilized in the different filtering steps that will be explained in the
corresponding filtering step section. A Re-Identification (Re-ID) network ReIDN
is also required to re-identify individual animals following periods of occlusion or
when they exit and re-enter the scene. The algorithm’s outputs are the tracks T .
As long as a track is not finalized, it is generally called a tracklet.

Algorithm 4.2: SWIFT Tracking Algorithm
Input : Video V consisting of frames f0, f1, ..., fn; all detections

D0, D1, ..., Dn from refinement algorithm in frames f0, f1, ..., fn;
threshold values τscore,τcost,τcontain, τiou, τreid,τreidg, τlength and
τtscore; Re-ID network ReIDN

Output: Tracks T
// Tracking with particle filter and IoU segmentation mask

matching (Algorithm 4.3)
1 T ← ParticleMaskTracking(V ,D,τscore,τcost)

// Filtering Step 1: Partial detection check (Algorithm 4.4)
2 T ← FilteringStep1(T ,τcontain)

// Filtering Step 2: Tracklet matching based on position
estimation and ReID-Net (Algorithm 4.5)

3 T ← FilteringStep2(T ,ReIDN ,τiou,τreid)
// Filtering Step 3: Global tracklet matching based on

ReID-Net (Algorithm 4.6)
4 T ← FilteringStep3(T ,ReIDN ,τreidg)

// Filtering Step 4: Deletion of short and low score
tracklets (Algorithm 4.7)

5 T ← FilteringStep4(T ,τlength, τtscore)
6 Return T

4.4.2 Particle Filter and IoU Segmentation Mask Matching

Explanation of Algorithm 4.3: Our SWIFT Tracking Algorithm begins by form-
ing basic tracklets through a combination of particle filter tracking (Gordon et al.,
1993) and Intersection over Union (IoU) matching with instance masks (line 1 of
Algorithm 4.2), shown in detail in Algorithm 4.3. This initial step is inspired by the
simple, but very successful SORT tracking algorithm (Bewley et al., 2016). In con-
trast, we employ the Intersection over Union (IoU) values of instance masks instead
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of the bounding boxes for detections. This adjustment is particularly beneficial in
scenarios involving crowded scenes, such as deer moving within a group. Further-
more, we replace the Kalman filter (Welch et al., 2006) with a particle filter (Gordon
et al., 1993) as our motion model. While both filters are designed to predict an ani-
mal’s next frame position based on previous detections, the Kalman filter is limited
to linear motion predictions. In contrast, a particle filter is capable of accommo-
dating both linear and non-linear movements, offering a more versatile solution for
tracking the varied motions of animals. The efficacy and comparison of these filters
are further explored in our experiments Section 4.5.7.

We begin with an empty set of tracklets ∅ (line 1 of Algorithm 4.3) and sequentially
process the video V , frame by frame (line 2 of Algorithm 4.3). Initially, detections
d within a frame that have a score d.score below the threshold τscore are filtered out
(line 3 to 7 of Algorithm 4.3). The threshold τscore is set at the commonly accepted
value of 0.5 for instance segmentation and tracking tasks. Subsequently, we assess
which tracklets to deactivate based on the absence of matches with new detections
over the last 4 frames (line 8 to 10 of Algorithm 4.3). Through experiments we
determined 4 as the optimal value for this threshold. This parameter ensures that
a tracklet can be continued even when in one frame a detection is missed. This
threshold is not intended to account for extended periods of occlusion or to address
re-identification (Re-ID) challenges.

The particle filter pf predicts the new position of the bounding box t.predBbox
for each tracklet t (line 12 of Algorithm 4.3). Going beyond the SORT algo-
rithm’s bounding box prediction, we also predict the position of the instance mask
t.predMask within this predicted bounding box (line 13 of Algorithm 4.3) and intro-
duce a weighting function to include prediction scores. To predict the instance mask,
we resize the current bounding box (which contains the instance mask) to match the
dimensions of the predicted bounding box, adjusting the instance mask’s size accord-
ingly (This stretches and compresses the instance mask accordingly). This simple
and efficient approach integrates instance mask predictions into the particle filter’s
prediction. Given that our videos typically have a high frame rate, the changes
in instance masks from one frame to the next is generally minimal. Additionally,
our research (Schindler and Steinhage, 2021a) has demonstrated that more complex
methods of predicting instance mask movement, such as using optical flow tech-
niques (e.g., FFGA (Zhu et al., 2017)), are not consistently reliable for articulated
objects with complex movements like animals.

To match existing tracklets with new detections, a cost matrix is constructed. This
matrix is generated by calculating the Intersection over Union (IoU) for all possible
pairs of the predicted instance masks t.predMask and the new detections d.mask
within the current frame (line 17 of Algorithm 4.3). Tracklets that have been de-
activated are excluded from this cost matrix. We weight the IoU values using a
custom weighting function (Equation 4.1), designed to favor matches between new
detections with high score values d.score and existing tracklets whose most recent

42



4.4 Tracking with SWIFT

Algorithm 4.3: Particle mask tracking
Input : Video V consisting of frames f0, f1, ..., fn; all detections

D0, D1, ..., Dn found by Mask R-CNN in frames f0, f1, ..., fn;
threshold values τscore and τcost

Output: Tracklets T
1 T ← ∅ ▷ // initialize tracklets with empty set
2 for fi ∈ V do
3 for d ∈ Di do
4 if d.score < τscore then
5 del d ▷ // delete unreliable detections
6 end
7 end
8 for t ∈ T do
9 deactivate tracklet t if not matched for 4 frames

10 end
11 for t ∈ T do
12 t.predBbox← t.pf.predict() ▷ // particle filter predicts new

bounding box position
13 t.predMask ← predictMask(t.predBbox)
14 end
15 for t ∈ T do
16 for d ∈ Di do

// compute the costmatrix using the scores of the
tracklets and the detections and the overlap of the
predicted mask with the detected mask

17 costmatrix[t, d]←
(−1) · w(t.lastScore, d.score)·IoU(t.predMask, d.mask)

18 end
19 end
20 m, unmatchedT, umatchedD ←

HungarianAlgorithmMatching(costmatrix)
21 filter out matches m with cost value < τcost

22 T .update(m, unmatchedT, unmatchedD) ▷ // update existing tracklets
and initiate new tracklets

23 end
24 Return T

detection also has a high score value d.lastScore. By squaring the mean of these two
scores, the function effectively penalizes matches between low-scoring detections. To
align with the Hungarian Algorithm’s (Kuhn, 1955) preference for the lowest values
(used for the matching process), the cost matrix values are multiplied by −1. So the
Hungarian Algorithm matches the lowest not the highest values. Matching means
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that a one-to-one correspondence is built so that exactly one detection is associated
with one existing tracklet.

w(t.lastScore, d.score) =
(

t.lastScore + d.score

2

)2
(4.1)

The Hungarian Algorithm outputs a list of matches m, along with lists of unmatched
tracklets unmatchedT and unmatched detections unmatchedD (line 20 of Algo-
rithm 4.3). To ensure the reliability of these matches, we apply a threshold τcost

to filter out unreliable matches, as the Hungarian Algorithm does not incorporate
a threshold by default (line 21 of Algorithm 4.3). We set τcost to 0.3, opting for a
strict threshold to minimize the occurrence of erroneous matches. This is crucial
since our subsequent filtering steps do not split existing tracklets but instead either
merge them or delete them entirely. Matches with a cost value below τcost are re-
moved from the matches list, reallocating the involved tracklets and detections to
unmatchedT and unmatchedD, respectively. The algorithm then updates all track-
lets with this new information (line 22 of Algorithm 4.3). Matches are added to
existing tracklets. Unmatched tracklets count internally how many times they fail
to match and unmatched detections initiate a entirely new tracklets. The result of
the particle mask tracking algorithm are tracklets that build a basis for the following
filtering steps.

4.4.3 Filtering Step 1: Partial Deletion Check

Explanation of Algorithm 4.4: In the initial step of our filtering process (line 2 of
Algorithm 4.2), we assess whether any tracklets are either fully spatially enclosed by
another tracklet or entirely encompass one. This scrutiny is necessary because de-
tection processes often capture not just the targeted animal but also parts of it, such
as a leg or head, as separate detections. Despite these partial detections typically
scoring lower, their score might still exceed the τscore threshold (from Algorithm 4.3),
leading them to be mistakenly acknowledged as valid detections. Similarly, a detec-
tion might erroneously include additional elements like a tree or another animal in
close proximity, due to color similarities, resulting in larger detections that might
fully enclose or be enclosed by another tracklet. The tracking with the particle
filter has accordingly built short tracklets from these detections, which either lie
completely within another tracklet or completely enclose another tracklet. These
tracklets are faulty and therefore should be deleted.

To address this, the computeContainment function (line 3 of Algorithm 4.4) eval-
uates whether one tracklet t1 is temporally contained within another t2. If so, it
calculates a containment value c(t1, t2) by measuring, for each frame f within t1, the
intersection of instance masks between t1 and t2 relative to the area of the instance
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mask of t1 are summed up. This sum is then averaged over the length len(t1) of
tracklet t1:

c(t1, t2) =
∑

f∈t1

(
t1[f ].mask ∩ t2[f ].mask

t1[f ].mask

)
len(t1) (4.2)

The final value should identify tracklets that are either incorrectly segmented parts
of an animal or erroneous detections that mistakenly include other objects. These
incorrect tracklets are marked for deletion to refine the tracking outcomes.

Additionally, we compute c(t2, t1) to account for the ambiguity regarding which
tracklet is contained within the other. The computeContainment function then
determines the greater value between c(t1, t2) and c(t2, t1) and returns it. A high
c(t1, t2) indicates that t1 is a partial detection of t2, such as when t1 captures only the
animal’s head and t2 represents the full animal correctly detected. Conversely, a high
c(t2, t1) suggests that t1 erroneously includes t2, for example, t1 might be a mistaken
detection that combines the animal with a nearby tree, whereas t2 accurately detects
the animal alone. If the containment value c exceeds the threshold τcontain, the
tracklet t1 is deleted (line 4 to 5 of Algorithm 4.4). Based on our experimental
findings, setting τcontain = 0.85 proved to be the most effective for identifying and
eliminating improperly contained tracklets.

Algorithm 4.4: SWIFT Filtering Step 1
Input : Tracklets T ; threshold value τcontain

Output: Tracklets T
1 for t1 ∈ T do
2 for t2 ∈ T do
3 c ← computeContainment(t1,t2) ▷ // check how much one tracklet

overlaps with the other
4 if c > τcontain then
5 del t1 ▷ // if there is a significant overlap, one tracklet is a

partial detection of another tracklet and should be deleted
6 end
7 end
8 end
9 Return T

4.4.4 Filtering Step 2: Tracklet Matching based on Position Estimation
and ReID-Net

Explanation of Algorithm 4.5: The Filtering step 2 (line 3 of Algorithm 4.2) merges
tracklets based on a position estimation and a Re-ID network that is used to re-
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identify animals in the same video. We sort the tracklets by their length in descend-
ing order before proceeding through each one. Initially, we extract all tracklets TnO

that do not have a temporal overlap with the selected tracklet t1 (line 12 of Al-
gorithm 4.2). The velocity for the last bounding box of t1 is then determined by
averaging the velocities of its last 10 bounding boxes (line 4 of Algorithm 4.5). This
simplistic motion model is preferred over complex models like the Kalman filter,
which may alter the bounding box size significantly, potentially leading to its disap-
pearance over time, especially since no new measurements are available to update
either a Kalman or particle filter. We keep the bounding box fixed and only estimate
the new position based on this fixed velocity.

While the last frame n of the video is not reached and the tracklet t1 was not already
successfully matched (line 5 of Algorithm 4.5) we estimate the new bounding box
t1.bboxEst position of t1 using the constant velocity v1 (line 6 of Algorithm 4.5). We
refrain from predicting the mask, as this would be unreliable over an extended period.
A potential match with any tracklet from TnO is considered possible if a tracklet
tnO starts in the current frame curFrame and its initial bounding box overlaps with
t1’s estimated bounding box, surpassing the τiou threshold (line 8 of Algorithm 4.5).
Upon meeting this criterion, we apply the Re-ID network ReIDN to the tracklets for
matching. The network calculates the Re-ID features of the bounding box that is in
the middle of each tracklet. This provides more reliable re-identification than using
the last bounding box of the first tracklet and the first bounding box of the second
tracklet. Often, the first and last frames of a tracklet display only partial views of
an animal (such as a single leg of an animal) due to occlusion or poor visibility.
The Euclidean distance between the Re-ID features of t1 and tnO is computed to
determine if they represent the same animal. If ReIDN(t1, tnO) is below the τreid

threshold, indicating a high likelihood of a match, the tracklets are merged (line 9
of Algorithm 4.5). This threshold τreid is crucial to prevent merging tracklets that
track different animals.

4.4.5 Filtering Step 3: Global Tracklet Matching based on ReID-Net

Explanation of Algorithm 4.6: In the third filtering step (line 4 of Algorithm 4.2), we
utilize the Re-ID network ReIDN to match tracklets based solely on Re-ID features,
bypassing the spatial constraints and position estimations from the previous step.
This approach addresses scenarios not covered by spatial analysis, such as when
an animal exits and re-enters the scene or changes direction while obscured, for
instance, by a tree. We call this phase global tracklet matching due to its lack of
spatial limitations on re-identification. Initially, Re-ID features are computed for all
tracklets, with ReIDN extracting features from the bounding box in the middle of
each tracklet (line 1 to 3 of Algorithm 4.6). A distance matrix is then generated
using these features, employing the Euclidean distance (line 4 of Algorithm 4.6).
Since the matrix is symmetrical, we only need to consider the upper triangular
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Algorithm 4.5: SWIFT Filtering Step 2
Input : Tracklets T ; threshold values τiou and τreid; Re-ID network

ReIDN
Output: Tracklets T

1 sort T by tracklet length (longest first)
2 for t1 ∈ T do
3 TnO ← get all t with no temporal overlap to t1
4 estimate velocity v1 of t1.bbox
5 while curFrame< n and tracklets not merged do
6 t1.bboxEst← estimate new bbox position of t1 with velocity v1
7 for tnO in TnO do

// a match is possible when (1) the non overlapping
tracklet starts in curFrame and (2) the instance
mask of this tracklet significantly overlaps with
the estimated bbox of t

8 if (curFrame = tnO[0].frame) and
IoU(t.bboxEst, tnO[0].bbox) > τiou then

// Re-ID network checks, if it is (probably) the
same animal

9 if ReIDN(t1, tnO) < τreid then
10 merge t1 and tnO

11 end
12 end
13 end
14 curFrame← curFrame + 1
15 end
16 end
17 Return T

matrix. Distances for temporally overlapping tracklets are set to ∞, preventing a
merging of these tracklets. The values on the diagonal are also set to ∞, since
merging a tracklet with itself is impossible (line 5 of Algorithm 4.6). Tracklets
with the smallest distance value in the matrix are merged, provided this value falls
below the threshold τreidg (line 6 to 9 of Algorithm 4.6). Following each merge
operation, the distance matrix is updated to reflect the newly combined tracklet,
with its entries taking the minimum value from the corresponding entries of the two
original tracklets. This process continues as long as the smallest distance remains
below the established threshold, ensuring that only tracklets likely representing the
same animal are merged.
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Algorithm 4.6: SWIFT Filtering Step 3
Input : Tracklets T ; threshold value τreidg; Re-ID network ReIDN
Output: Tracklets T

1 for t ∈ T do
2 featuresReID ← ReIDN(t) ▷ // extract Re-ID features from all

tracklets with the Re-ID network
3 end
4 distanceMatrix← computeDistMatrix(featuresReID,Euclidean) ▷ //

compute the distance between all Re-ID features to each other
5 set entries of temporally overlapping tracklets in distanceMatrix to ∞
6 while min(distanceMatrix) < τreidg do
7 merge tracklets from T where min(distanceMatrix) ▷ // if Re-ID

features have a small distance to each other they are probably the
same animal

8 update distanceMatrix

9 end
10 Return T

4.4.6 Filtering Step 4: Deletion of Short and Low Score Tracklets

Explanation of Algorithm 4.7: In the fourth and final step of our filtering process
(line 5 of Algorithm 4.2) we eliminate tracklets that are either too short in duration
or have a low average score. Each tracklet is checked if its length falls below the
threshold τlength, set at 5 for our scenario. This threshold varies based on the frame
rate of the videos being analyzed, with lower frame rates necessitating a reduced
τlength. The score of a tracklet, score(t), is calculated as the average of the detection
scores for all instance masks within the tracklet. Tracklets characterized by a low
average score are deemed to consist predominantly of unreliable detections and thus
should be deleted. Through experimental validation, we have established a score
threshold τtscore of 0.75 to decide which tracklets should be deleted, ensuring that
only tracklets with sufficiently reliable detections are retained for further analysis.

Algorithm 4.7: SWIFT Filtering Step 4
Input : Tracklets T ; threshold values τlength and τtscore

Output: Tracklets T
1 for t ∈ T do
2 if len(t) < τlength or score(t) < τtscore then
3 del t ▷ // delete short and unreliable tracklets
4 end
5 end
6 Return T
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Finally, the SWIFT Tracking Algorithm returns the found tracks T (line 6 of Algo-
rithm 4.2).

4.5 Results

In this section we evaluate our SWIFT approach. First, we introduce the met-
rics for instance segmentation, tracking and the combined task. Especially the
COCO (Common Objects in COntext) metrcis for instance segmentation are com-
plex. Therefore, we explain them in detail. In the following, we analyze the instance
segmentation quality of SWIFT. We then analyze the tracking capability of SWIFT.
Finally, we look at the joint task of tracking and instance segmentation.

4.5.1 COCO Metrics

To evaluate SWIFT’s performance, we employ the standard COCO (Common Ob-
jects in COntext) metrics designed for instance segmentation evaluation. In the
following, we base our explanation on (Schindler and Steinhage, 2021a,b; Padilla
et al., 2021; Everingham et al., 2010).

We calculate the average precision AP mask for instance masks as an average across
IoU threshold values from 0.5 to 0.95 in steps of 0.05. Specific average precision
metrics, AP mask

0.5 and AP mask
0.75 , are determined at IoU thresholds of 0.5 and 0.75,

respectively, with AP mask
0.75 serving as a stricter criterion compared to AP mask

0.5 . The
metrics AP mask

small , AP mask
medium, and AP mask

large assess the average precision for objects of
varying sizes. Small objects are all objects with a size smaller than 32 × 32 pixels.
Medium sized objects lie in the range between 32 × 32 pixels and 96 × 96 pixels.
Objects that are bigger than 96 × 96 pixels are considered as large objects. In
our application scenario most of the objects are considered as large objects. Small
objects are almost non existent, only representing very small animal parts, while
they enter or leave the scene. Additionally, the average recall ARmask mirrors the
average precision by averaging over IoU thresholds from 0.5 to 0.95, also in steps of
0.05, but for recall values.

Each prediction from Mask R-CNN, whether a bounding box or segmentation mask,
is accompanied by a confidence score that reflects the reliability of the prediction.
The Intersection over Union (IoU), a crucial component in metric computation, is
defined as

IoU(Bp, Bgt) = area(Bp ∩Bgt)
area(Bp ∪Bgt)

(4.3)

where Bp represents the area of the predicted bounding box or segmentation mask,
and Bgt refers to the area of the ground truth bounding box or segmentation mask,
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with the definition being analogous for both bounding boxes and segmentation
masks.

A detection is considered a true positive (TP) if

• the confidence score exceeds a specific threshold, such as 0.5, indicating the
detection’s reliability.

• the Intersection over Union (IoU) surpasses a certain threshold, for instance,
0.5, ensuring the detection is accurately positioned.

• the predicted class matches the actual class of the object.

A detection is classified as a false positive (FP) if its confidence score exceeds the
threshold, but either the class prediction is incorrect, the IoU is below the desired
threshold, or both conditions apply. A false negative (FN) occurs, when the confi-
dence score of a detection is lower than the threshold for a ground truth object that
should be detected. Precision p and Recall r are calculated using their standard
definitions:

p = TP

TP + FP
and r = TP

TP + FN
(4.4)

Varying the confidence score threshold leads to distinct pairs of precision and recall
values. When recall is plotted on the x-axis and precision on the y-axis, this produces
a precision-recall curve. Gradually lowering the confidence threshold from 1 to
0 results in a monotonically decreasing recall. While precision may fluctuate, it
generally decreases as the confidence threshold is reduced. In this precision-recall
curve, a precision at the x-coordinate r can therefore be regarded as p(r).

The average precision (AP) serves as a numerical metric for comparing precision-
recall curves across various detectors, calculating the mean precision across different
recall levels for a single detector. The precision-recall curve is constructed through
the interpolation of multiple (recall, precision) points. Specifically, the interpolated
precision pinterp at a given recall level r is defined as

pinterp(r) = max
r′≥r

p(r′) (4.5)

This implies that pinterp represents the highest precision value obtained for a recall
level r′ that is greater than or equal to r. The recall levels r are chosen at equal
intervals. For the COCO metrics neighbouring recall levels differ by 0.01. Con-
sequently, 101 recall levels r ranging from 0.0 to 1.0 with a step size of 0.01 are
evaluated in the calculation. Thus, for COCO datasets, the Average Precision (AP)
for a class i at an IoU threshold th is calculated as
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APi,th = 1
101

∑
r∈{0.0 : 0.01 : 1.0}

pinterp(r) (4.6)

The AP is averaged over all classes, commonly referred to as mean Average Precision
(mAP). In COCO evaluation metrics, this mean average precision is also denoted
by AP, too. We follow the naming convention from COCO datasets. For K classes,
each with its respective APi,th, the mean APth at an IoU threshold th is computed
as

APth =
∑K

i=1 APi,th

K
(4.7)

The AP for the COCO evaluation metric, excluding AP0.50 and AP0.75, is determined
by averaging the AP across various IoU thresholds, specifically from 0.50 to 0.95 in
increments of 0.05. Thus, the AP represents an average across both all classes and
the specified range of IoU thresholds, calculated as

AP = AP0.50:0.05:0.95 = AP0.50 + AP0.55 + ... + AP0.95
10 (4.8)

In addition to the overall calculation, we specifically examine AP0.50 and AP0.75
as distinct components of our evaluation metrics. AP0.50, corresponding to an IoU
threshold of 0.50, is also recognized as the Pascal VOC metric. Meanwhile, AP0.75,
associated with an IoU threshold of 0.75, is referred to as the strict metric within
the context of COCO evaluations.

The average recall (AR) is calculated across various IoU thresholds, with the COCO
datasets specifically considering the 10 IoU thresholds from 0.50 to 0.95, in incre-
ments of 0.05, mirroring the approach used for AP calculation (4.8). Consequently,
the AR for class i at an IoU threshold th is calculated as

ARi,th = r0.50 + r0.55 + ... + r0.95
10 (4.9)

The AR is averaged across all K classes, which can also be referred to as mean
average recall (mAR). However, within the COCO metrics, this aggregate measure
mAR is simply denoted as AR. Thus, the ARth at a specific IoU threshold th is
computed as

ARth =
∑K

i=1 ARi,th

K
(4.10)

We evaluate two variations of average recall: ARmax=1 and ARmax=10, which are cal-
culated based on allowing a maximum of 1 detection and a maximum of 10 detections
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per image, respectively. Both versions of AR are averaged across the aforementioned
10 IoU thresholds:

AR = AR0.50 + AR0.55 + ... + AR0.95
10 (4.11)

4.5.2 MOT Metrics

The accuracy of our tracking approach is assessed using the Multiple Object Tracking
(MOT) metrics, with further details available in the works of Schindler and Steinhage
(2021b); Bernardin and Stiefelhagen (2008); Milan et al. (2016). We consider the
accuracy MOTA and precision MOTP of our tracking outcomes. For the calculation
of the MOT metrics, the false positives FP , false negatives FN and the id switches
IDSW have to be considered. Ground truth tracks are categorized into Mostly
Tracked (MT), Partially Tracked (PT), and Mostly Lost (ML) based on the tracking
algorithm’s performance in identifying each track.

Similar to the COCO metrics, the Multiple Object Tracking (MOT) metrics comprise
various measures. MOTA, which stands for Multi-Object Tracking Accuracy, is
defined as

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
t GTt

=
∑

t(TPt − FPt − IDSWt)∑
t GTt

(4.12)

where t represents the frame index, FN the number of false negatives, FP the
number of false positives, IDSW the number of identity switches, and GT the total
number of ground truth objects. The classification into true positives (TP ), false
negatives (FN), and false positives (FP ) follows the same process as outlined for
bounding boxes in Section 4.5.1, using the IoU value for determination. An identity
switch is identified when a ground truth target i is matched to track j, whereas
its previous match was k ̸= j. Notably, MOTA can result in a negative value if
the errors produced by the tracking algorithm surpass the number of actual tracks,
placing the MOTA value within the range of (−∞, 100).

The Multi-Object Tracking Precision (MOTP) quantifies the average precision be-
tween the bounding boxes of true positive detections and their corresponding ground
truth bounding boxes.

MOTP =
∑

t,i dbbox
t,i∑

t ct
(4.13)

In this context, dbbox
t,i represents the IoU value of bounding box i with its assigned

ground truth, while ct denotes the number of matches in frame t. Thus, MOTP
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calculates the average overlap between all correctly matched detections and their
ground truths. So MOTP is a measure for the localisation accuracy. The range of
MOTP values is between 50 and 100, reflecting that an IoU of 50 is the minimum
threshold for a detection to qualify as a true positive.

Ground truth tracks are categorized into three distinct types: Mostly Tracked (MT),
Partially Tracked (PT), and Mostly Lost (ML), based on the effectiveness of the
tracking algorithm in identifying the track throughout its duration. A track is clas-
sified as MT if it is successfully identified for at least 80% of its lifespan. Conversely,
a track is deemed ML if less than 20% of its lifespan is matched correctly. The PT
category encompasses all other scenarios not meeting the criteria for MT or ML.

The identification metric IDF1 computes a bijective mapping between the ground
truth tracks and the generated tracks. The difference to the MOTA metric is that
MOTA considers matches on the level of single detections (in a frame) and IDF1
considers matches on a track level.

The IDF1 metric is defined as

IDF1 = IDTP

IDTP + 0.5 · IDFN + 0.5 · IDFP
(4.14)

The IDTP is defined as the (identity) true positives, which are the matches from
the overlapping parts of matched tracks. The overlap is defined in the same way as
for MOTA that means the IoU threshold for the bounding boxes is set to 0.5. The
(identity) false negatives IDFN are the ground truth detections from the parts of
the matched tracks that do not overlap and from the remaining unmatched tracks.
In the same way the (identity) false positives IDFP are the remaining detected
tracks in these both scenarios.

4.5.3 MOTS Metrics

We use the MOTS metrics introduced by Voigtlaender et al. (2019) for the combined
task of instance segmentation and tracking. These metrics extend the traditional
MOT metrics by utilizing instance masks in place of bounding boxes for their cal-
culations. The mask-based metrics, MOTSA and MOTSP , assess the system’s
accuracy and precision, respectively. So MOTSA and MOTSP are defined in the
same way as the corresponding MOT metrics in Section 4.5.2 with the only difference
that for the IoU matching masks are used instead of bounding boxes.

MOTSA = 1−
∑

t(FNmask
t + FP mask

t + IDSWt)∑
t GTt

=
∑

t(TP mask
t − FP mask

t − IDSWt)∑
t GTt

(4.15)
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MOTSP =
∑

t,i dmask
t,i∑

t cmask
t

(4.16)

Additionally, the sMOTSA (soft Multi-Object Tracking and Segmentation Accu-
racy) metric is a soft variant of MOTSA. For the calculation of sMOTSA the
TP mask

t are replaced by ∑
t,i dmask

t,i . As a result of this replacement, not the number
of correct matches is counted, but the accuracy of the instance masks is included in
the calculation. In this way sMOTSA should measure segmentation and detection
and tracking quality at once.

sMOTSA =
∑

t(
∑

t,i dmask
t,i − FP mask

t − IDSWt)∑
t GTt

(4.17)

4.5.4 Implementation Details

All software is developed using Python 3 and utilizes PyTorch (Paszke et al., 2019)
for the construction and training of networks. The Mask R-CNN model we employ
is based on PyTorch’s Mask R-CNN detection framework. Our refinement network’s
implementation draws from the official GitHub repository provided by Sofiiuk et al.
(2021). Within this setup, the HR-Net is pre-trained on both the COCO dataset (Lin
et al., 2014) and the LVIS dataset (Gupta et al., 2019), ensuring a robust foundation
for our applications. The training and testing of the networks was performed with
GPUs with 24 GB graphic memory, either a GeForce RTX 3090, a QUADRO RTX
6000 or a NVIDIA RTX A5000.

4.5.5 Evaluation Studies on SWIFT

We conduct several evaluation studies for SWIFT to investigate the efficiency and
functionality of each component. First, we consider instance segmentation and then
tracking. Within the tracking evaluation, we will also examine underlying motion
model for forming basis tracklets in our tracking algorithm (Algorithm 4.2). In
each section, we compare our approaches to known competitive approaches to the
respective task.

All datasets are split into training and testing sets, ensuring that approximately
20% of each class is allocated to the test set. Given the limited number of videos
for each dataset, we do not create a separate validation set. Therefore, we execute a
stratified 5-fold cross-validation for each dataset. The term ”stratified” means that
in each fold 20% of the data from each class is designated as test data. This ensures
that the test sets accurately represent the animal class distribution of the entire
dataset.
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4.5.6 Instance Segmentation Evaluation

We assess the quality of instance segmentation of SWIFT by employing COCO met-
rics. Specifically, we compare the performance of our refinement algorithm (Algo-
rithm 4.1) with the outcomes from the baseline Mask R-CNN (He et al., 2017), which
operates without any refinement enhancements. Moreover, we analyze our choice of
refinement network. Therefore, we compare the HR-Net (Sofiiuk et al., 2021), with
the f-BRS (feature-Backpropagating Refinement Scheme) approach (Sofiiuk et al.,
2020), which also uses positive and negative points for interactive segmentation. For
the HR-Net, we specifically analyze two distinct operational modes. Additionally,
we use the new instance segmentation foundation model Segment Anything Model
SAM (Kirillov et al., 2023) as the refinement network in our algorithm. Here, too,
we examine different ways of using the model. As mentioned in Section 3, the ap-
proach of Sofiiuk et al. (2021) was successfully used for the interactive annotation
of the dataset.

We employ Stochastic Gradient Descent (SGD) as the optimization technique for
training our Mask R-CNN model. Training starts with an initial learning rate of
0.0005, momentum of 0.9, and a weight decay of 0.0005. Altering the momentum and
weight decay parameters did not yield improvements based on our evaluations. To
enhance mask quality, we adjust the resizing parameters of the network to match the
frame resolution of our dataset. This adjustment slows down the training process
and increases GPU memory requirements compared to standard settings, but it
results in higher quality masks.

Additionally, we compute the mean and standard deviation of each dataset’s images
to tailor normalization specifically for our needs. The network is trained over 3
epochs with learning rate reductions by a factor of γ = 0.1 after the first and second
epoch to further reduce loss. Extending the training duration or further reducing
the learning rate beyond this point does not enhance results.

The refinement networks HR-Net and the f-BRS are pre-trained on the COCO and
LVIS datasets. The foundation model SAM has been trained on the huge SA-
1B dataset. The HR-Net includes a feature called setmask that allows for the
initialization of the refinement process using a given instance mask. We evaluate
the performance of HR-Net both with and without the use of this initialized mask.
For the SAM model, we investigate two different ways of predicting masks. The
first mode also uses positive and negative clicks in the same way as the other two
refinement networks. The second mode uses a bounding box as input, in which the
best suitable mask is then searched for.

The results of the instance segmentation are presented in Table 4.1. The best results
for each metric in each dataset is marked in blue. We consider 5 of the COCO
metrics presented in Section 4.5.1. We use the AP bbox to analyze the accuracy of
the bounding boxes. Our focus is on the evaluation of the instance segmentation
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Dataset Method AP bbox AP mask AP mask
0.50 AP mask

0.75 ARmask

Rolands-
eck
Daylight

Mask R-CNN 0.547 0.435 0.803 0.431 0.503
SWIFT f-BRS 0.501 0.426 0.803 0.385 0.509
SWIFT HR-Net w/ sm 0.526 0.452 0.804 0.429 0.541
SWIFT HR-Net w sm 0.562 0.485 0.809 0.517 0.559
SWIFT SAM 0.548 0.441 0.802 0.431 0.519
SWIFT SAM bbox 0.583 0.497 0.806 0.545 0.579

Rolands-
eck
Nighttime

Mask R-CNN 0.573 0.489 0.836 0.532 0.563
SWIFT f-BRS 0.552 0.470 0.834 0.463 0.567
SWIFT HR-Net w/ sm 0.585 0.502 0.835 0.514 0.598
SWIFT HR-Net w sm 0.622 0.537 0.840 0.579 0.622
SWIFT SAM 0.591 0.493 0.836 0.527 0.577
SWIFT SAM bbox 0.648 0.535 0.835 0.574 0.501

Bavarian
Forest
Daylight

Mask R-CNN 0.539 0.558 0.834 0.665 0.668
SWIFT f-BRS 0.514 0.530 0.835 0.610 0.659
SWIFT HR-Net w/ sm 0.567 0.576 0.835 0.638 0.711
SWIFT HR-Net w sm 0.621 0.609 0.841 0.700 0.729
SWIFT SAM 0.545 0.547 0.834 0.634 0.671
SWIFT SAM bbox 0.605 0.574 0.834 0.653 0.704

Bavarian
Forest
Nighttime

Mask R-CNN 0.244 0.290 0.585 0.254 0.460
SWIFT f-BRS 0.260 0.288 0.585 0.239 0.462
SWIFT HR-Net w/ sm 0.249 0.286 0.586 0.217 0.380
SWIFT HR-Net w sm 0.285 0.315 0.586 0.305 0.490
SWIFT SAM 0.275 0.300 0.586 0.255 0.477
SWIFT SAM bbox 0.25 0.297 0.583 0.224 0.484

Wildlife
Crossings

Mask R-CNN 0.146 0.196 0.455 0.105 0.415
SWIFT f-BRS 0.178 0.216 0.455 0.142 0.442
SWIFT HR-Net w/ sm 0.201 0.231 0.455 0.165 0.468
SWIFT HR-Net w sm 0.206 0.232 0.452 0.192 0.463
SWIFT SAM 0.169 0.211 0.455 0.135 0.436
SWIFT SAM bbox 0.208 0.236 0.455 0.181 0.458

Table 4.1: Instance segmentation comparison: We compare the results of the base Mask R-CNN with our
SWIFT Refinement Algorithm using different refinement networks. We use the f-BRS, the HR-Net and
SAM as the refinement model. For the HR-Net we analyze the two different modes with setmask (w sm)
and without setmask (w/ sm), which describe whether the HR-Net is initialized with or without the Mask
R-CNN mask. For the Segment Anything Model we compare the type of refinement. SWIFT SAM uses the
positive and negative clicks like the other approaches. The SWIFT SAM bbox approach uses the bounding
box of the mask from Mask R-CNN to determine the refined mask. The depicted metrics are the standard
COCO metrics. The best results for each dataset are shown in blue.
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(a) Rolandseck Daylight

(b) Rolandseck Nighttime

Figure 4.6: Exemplary instance segmentation results with SWIFT from the Rolandseck datasets: The
bounding box and mask are colored in the respective instance class color, green for fallow deer and red for
red deer. Moreover, the animal class is written above the corresponding bounding box with the detection
score value.
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accuracy. Accordingly, we consider AP mask, AP mask
0.50 , AP mask

0.75 as well as the ARmask.
Other sub-metrics of the COCO metrics, which take object size into account, do not
play a major role here, as small and medium-sized objects as defined by the COCO
metrics only occur very rarely in our datasets.

(a) Bavarian Forest Daylight

(b) Bavarian Forest Nighttime

Figure 4.7: Exemplary instance segmentation results with SWIFT from the Bavarian Forest datasets: The
bounding box and mask are colored in the respective instance class color, blue for roe deer and red for red
deer. Moreover, the animal class is written above the corresponding bounding box with the detection score
value.

The best results are achieved by SWIFT in combination with the HR-Net and the
setmask option. For the datasets Rolandseck Nighttime, Bavarian Forest Daylight
and Bavarian Forest Nighttime this combination achieves the highest results for all
metrics. For the Rolandseck Daylight and Wildlife Crossings datasets the SAM
model with the bounding box prompt is slightly better than the HR-Net. The f-
BRS refinement shows that the choice of the refinement network is very important
because the f-BRS worsens the instance mask AP in comparison to the basis Mask
R-CNN detections. The possibility to initialize the HR-Net with the Mask R-CNN
detection with the setmask functionality is very beneficial. For all datasets this
leads to improved results. Without the initialization the pure click based refinement
can lead to faulty masks, especially if there are other animals or objects with the
same color nearby. The Segment Anything model works in our scenario better
with the bounding box prompt instead of the click based prompt. Especially for
the datasets Rolandseck Daylight and Wildlife Crossings the SAM bbox approach
even outperforms the HR-Net. Wildlife Crossings is the smallest of all 5 considered
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datasets with the worst video quality. Therefore, the Mask R-CNN results show the
lowest AP values and therefore they do not work as a reliable basis as for the other
datasets. The Rolandseck Daylight dataset consists of color images (frames) and
has a high resolution. Therefore, this dataset is most similar to the training data of
the SAM model. As a consequence, the results of SAM can outperform the HR-Net.
In general, the AP mask

0.75 shows the most improvements of the refinement. This is
because this metric takes into account the finer details of the instance masks. For
example, for the Rolandseck Daylight dataset the HR-Net with setmask improves
the AP mask

0.50 only from 0.803 to 0.809, but the stricter AP mask
0.75 from 0.431 to 0.517

from the Mask R-CNN basis results. In general, it is clear that refinement with both
HR-Net and SAM achieves a great improvement in mask accuracy for all datasets
compared to the basic Mask R-CNN detections.

We show exemplary instance segmentation results with SWIFT for the Rolandseck
datasets in Figure 4.6. Moreover, we present results with SWIFT for the Bavarian
Forest datasets in Figure 4.7 and for the Wildlife Crossings dataset in Figure 4.8.

Figure 4.8: Exemplary instance segmentation results with SWIFT from the Wildlife Crossings dataset:
The bounding box and mask are colored in the respective instance class color, red for red deer and yellow
for boar. Moreover, the animal class is written above the corresponding bounding box with the detection
score value.

4.5.7 Tracking Evaluation

To assess the tracking performance of SWIFT, we employ the MOT metrics that we
described in Section 4.5.2 and compare our system with the established and effec-
tive BYTE approach (Zhang et al., 2021a). Additionally, we compare the tracking
outcomes using original Mask R-CNN detections versus those using refined masks
to evaluate the impact of our refinement process. We also explore the effectiveness
of different motion models for creating the basis tracklets.

Within our tracking algorithm, we utilize a Re-ID network to facilitate re-identificat-
ion. We use the OS-Net (Omni-Scale Network) (Zhou et al., 2019), trained over 10
epochs with a learning rate of 0.0003 using frames extracted around the animals. For
training, we extract a bounding box with a fixed aspect ratio around each animal,
resizing it to 256x128 pixels. This horizontal format better suits the animals in our
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dataset compared to the typical vertical 128x256 pixel format used in person Re-ID,
prompting us to adjust the network inputs accordingly. The OS-Net achieves nearly
perfect mAP scores, and the Rank-1 accuracy is almost 100.0%. These excellent
Re-ID results can be attributed to the nature of the task, which involves recognizing
individual animals within a single video. Since the Re-ID network operates on an
image basis, it benefits from receiving many similar images due to the high frame
rate of our videos, particularly when the animals move minimally. This similarity
greatly aids in the re-identification process. However, recognizing animals across
different videos remains a difficult challenge.

In Table 4.2 we present the tracking results of SWIFT using the MOT metrics. We
analyze the BYTE tracker (Zhang et al., 2021a) and compare SWIFT using the
Mask R-CNN detections and the refined detections. The MOT accuracy MOTA is
slightly higher for SWIFT with the refined detections in comparison to the Mask R-
CNN detections. The only exception forms the Rolandseck Daylight dataset, where
SWIFT with Mask R-CNN detections is slightly better. The relatively poor tracking
results for wildlife crossings can be explained by the correspondingly inaccurate
detection results for this dataset. Since both SWIFT and BYTE are tracking-
by-detection methods, the tracking accuracy is highly dependent on the quality
of the detections. The BYTE tracker performs worse than SWIFT. This can be
explained by the fact that BYTE is very dependent on the quality of the detections.
BYTE does not delete any detections and also considers low-confidence detections
as possible starting points for new tracklets. This shows how important the several
filtering steps in our tracking algorithm, in which tracklets are deleted and merged,
are for the wildlife monitoring application scenario.

The Rolandseck Daylight dataset contains 200 GT (ground truth) tracks. For
SWIFT with refined detections 154 tracks are MT (mostly tracked), 35 tracks are
PT (partially tracked) and 11 tracks are ML (mostly lost). The Rolandseck Night-
time dataset consists of 99 GT, where SWIFT with refined detections achieves 76
MT, 16 PT, and 7 ML. The Bavarian Forest Daylight dataset contains only 60 GT
tracks, where SWIFT with refined detections achieves 47 MT, 10 PT, and 3 ML. The
Bavarian Forest Nighttime dataset consists of 33 GT and SWIFT with refined detec-
tions achieves 11 MT, 11 PT, and 11 ML. Finally, the Wildlife Crossings dataset has
88 GT, where SWIFT with refined detections delivers 4 MT, 8 PT, and 76 ML.

We illustrate exemplary tracking results achieved by SWIFT for all five datasets
in Figure 4.9. For each example, we consider three frames. For the Rolandseck
datasets there are 200 frames between the shown frames, for the Bavarian Forest
Daylight dataset 150 frames, for the Bavarian Forest Nighttime dataset 90 frames
and for the Wildlife Crossings dataset 30 frames. We color each detected track in a
different color. Therefore, the color does not correspond to the animal class in this
visualization. As it can be seen, the more complex tracking tasks in the Rolandseck
datasets are handled quite well. The other three datasets offer mainly easier tracking
scenarios because there are often only single animals in the videos.

60



4.5 Results

(a) Rolandseck Daylight

(b) Rolandseck Nighttime

(c) Bavarian Forest Daylight

(d) Bavarian Forest Nighttime

(e) Wildlife Crossings

Figure 4.9: Visualization of exemplary multi-object tracking and segmentation results of SWIFT for all
five datasets: Three frames of a video are displayed. For the Rolandseck datasets there are 200 frames
between the frames shown, for Bavarian Forest Daylight there are 150 frames between the frames shown,
for Bavarian Forest Nighttime there are 90 frames between the frames shown and for Wildlife Crossings
there are 30 frames between the frames shown. Each detected track is colored differently (the color does not
correspond to the object class).
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Dataset Method MOTA ↑ MOTP ↑ IDF1 ↑

Rolandseck
Daylight

BYTE 4.3% 81.2% 13.4%
SWIFT with Mask R-CNN 76.3% 83.4% 73.9%
SWIFT with refinement 75.1% 83.9% 73.7%

Rolandseck
Nighttime

BYTE 15.8% 14.4% 30.3%
SWIFT with Mask R-CNN 42.7% 76.8% 57.3%
SWIFT with refinement 77.8% 86.4% 76.1%

Bavarian
Forest
Daylight

BYTE 13.6% 83.4% 53.2%
SWIFT with Mask R-CNN 83.7% 85.1% 81.2%
SWIFT with refinement 84.6% 88.7% 80.8%

Bavarian
Forest
Nighttime

BYTE −36.2% 64.8% 58.8%
SWIFT with Mask R-CNN 51.8% 77.5% 61.0%
SWIFT with refinement 53.1% 80.1% 60.7%

Wildlife
Crossings

BYTE −33.8% 36.7% 20.3%
SWIFT with Mask R-CNN 17.3% 83.6% 28.8%
SWIFT with refinement 17.4% 90.1% 29.1%

Table 4.2: Tracking comparison: We compare the tracking results of BYTE with our SWIFT Tracking
Algorithm. For SWIFT we differentiate between Mask R-CNN detections and the refined detections from
our refinement algorithm. The depicted metrics are the MOT metrics. The best results for each dataset are
shown in blue.

62



4.5 Results

Dataset Motion Model MOTA ↑ MOTP ↑ IDF1 ↑

Rolandseck
Daylight

Kalman filter 75.6% 84.0% 74.4%
UKF 75.5% 83.9% 74.0%
particle filter 75.1% 83.9% 73.7%

Rolandseck
Nighttime

Kalman filter 76.8% 86.4% 76.8%
UKF 78.0% 86.4% 75.6%
particle filter 77.8% 86.4% 76.1%

Bavarian
Forest
Daylight

Kalman filter 85.0% 88.7% 80.8%
UKF 85.0% 88.7% 80.9%
particle filter 84.6% 88.7% 80.8%

Bavarian
Forest
Nighttime

Kalman filter 53.1% 80.1% 60.7%
UKF 51.7% 80.1% 58.8%
particle filter 53.1% 80.1% 60.7%

Wildlife
Crossings

Kalman filter 17.3% 90.1% 29.0%
UKF 17.5% 90.1% 29.3%
particle filter 17.4% 90.1% 29.1%

Table 4.3: SWIFT Motion model comparison: We compare the Kalman filter, the UKF and the particle
filter as a motion model for our tracking algorithm. The best results for each dataset are shown in blue.

Analysis of the Motion Model

In this section we analyze the motion model that we use in the first step of our
tracking algorithm 4.3 to detect the basis tracklets. Table 4.3 presents the perfor-
mance of our tracking algorithm using various motion models to generate the initial
tracklets. We evaluate the effectiveness of the Kalman filter, the Unscented Kalman
filter (UKF), and the particle filter. The results indicate that all three variants
achieve similar overall tracking results. The reason for this is that the subsequent
filtering steps in our algorithm, which delete and combine tracklets, are essential for
the final tracks. Of course, the tracking scenarios under consideration also play a
decisive role in this. Many videos do not contain very large groups of animals, which
means that the theoretical advantages of the particle filter do not always apply in
practice.

Generally, particle filters are more adept for multi-object tracking compared to
Kalman filters and UKFs. This advantage arises because Kalman filters are lim-
ited to linear systems, and UKFs, while capable of handling non-linear systems, are
not multimodal and struggle with occlusions (Labbe, 2014). Additionally, research
by Marron et al. (2007) highlights that particle filters outperform Kalman filters in
complex scenarios such as tracking multiple objects.
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Dataset Method sMOTSA ↑ MOTSA ↑ MOTSP ↑
Rolandseck
Daylight

SWIFT with Mask R-CNN 35.3% 56.1% 73.1%
SWIFT with refinement 42.6% 58.4% 78.3%

Rolandseck
Nighttime

SWIFT with Mask R-CNN −35.1% −24.2% 68.3%
SWIFT with refinement 54.3% 68.0% 82.6%

Bavarian Forest
Daylight

SWIFT with Mask R-CNN 34.1% 49.5% 79.2%
SWIFT with refinement 41.3% 51.3% 86.3%

Bavarian Forest
Nighttime

SWIFT with Mask R-CNN 11.2% 21.3% 75.1%
SWIFT with refinement 14.9% 22.4% 82.4%

Wildlife
Crossings

SWIFT with Mask R-CNN 7.0% 11.2% 70.8%
SWIFT with refinement 9.3% 11.3% 86.3%

Table 4.4: MOTS comparison: The MOTS metrics for SWIFT with the Mask R-CNN detections and with
the refined detections are shown. The best results for each dataset are shown in blue.

4.5.8 Multi-Object Tracking and Segmentation Evaluation

Finally, we analyze the MOTS metric results for SWIFT using the Mask R-CNN
detections in comparison to the refined detections in Table 4.4. This comparison
highlights a notable enhancement in the MOTS (Multi-Object Tracking and Seg-
mentation) task when utilizing the refined instance masks in SWIFT, as opposed
to relying solely on basic Mask R-CNN detections. While the improvement in the
MOTA scores for all datasets in Table 4.2 is small, there is a bigger increase in the
MOTSA values. Here, the MOTSA value for Rolandseck Daylight is also higher for
the refined detections compared to the Mask R-CNN detections, where the MOTA
value in Table 4.2 was slightly higher for the Mask R-CNN detections. This demon-
strates that refining the instance masks within the SWIFT framework yields more
accurate tracking outcomes than using unrefined Mask R-CNN detections alone. Ad-
ditionally, the sMOTSA value, which assesses the combined quality of segmentation
and tracking, also sees a notable difference between unrefined and refined detections,
further underscoring the benefits of using SWIFT with refined detections.

Exemplary MOTS results of SWIFT are shown in Figure 4.9. As SWIFT uses
instance masks for the tracking process, the results of multi-object tracking and
MOTS are visually identical. In general, bounding boxes without the instance masks
would be sufficient for the multi-object tracking.

4.5.9 Domain Adaptation from Rolandseck to Bavarian Forest

When training and evaluating the deep learning models on the different datasets,
the question arises as to whether a model that has been trained on one dataset can
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be directly transferred to another. This is generally a complex problem for deep
learning applications and is known as domain shift. This means that the (source)
distribution for the training set is different to the (target) distribution of the test set
(Kouw and Loog, 2018). There are also many works that attempt to perform domain
adaptation in the area of detection and tracking (Chen et al., 2018b; He and Zhang,
2019; Zhang and Zhang, 2021). Domain shift is a common problem in applications
with medical data, for example, when different scanners and sensors are used to
record the data (Stacke et al., 2019; Sheikh and Schultz, 2020). This problem is also
present in wildlife monitoring, as different camera models with different resolutions
and FPS rates are used to record the videos. Different camera traps were also used
for our different datasets.

There are various techniques that can help to perform a domain adaptation. A par-
ticularly basic one is the use of many and strong data augmentations. By applying
different data augmentations, a deep learning model generalizes better and can thus
be transferred more easily to another dataset (Sheikh and Schultz, 2020). Early
stopping during training can also help to prevent overfitting on the data (Zheng
and Yang, 2022). Another option is to fine-tune the network by transfer learning on
selected samples of the target dataset (Zhuang et al., 2020). However, this requires
already annotated data for the desired target dataset.

We try out basic domain adaptation techniques to transfer SWIFT trained on the
Rolandseck Daylight dataset to the Bavarian Forest Daylight dataset. In the same
way, we also investigate SWIFT trained on the Rolandseck Nighttime dataset to be
transferred to the Bavarian Forest Nighttime dataset. We choose the Rolandseck
datasets as source datasets because they are larger and have a higher resolution (cf.
the dataset Chapter 3). For the domain shift, we only analyze the object detection,
in particular the instance segmentation, since the tracking is directly dependent on
the detection results and therefore no further influence of the domain shift plays a
role there. The target datasets, the Bavarian Forest datasets, were recorded with
different camera traps and show a lower resolution and lower FPS. Most importantly,
different animal species occur in the Bavarian Forest datasets and in the Rolandseck
datasets. Fallow deer and red deer occur in Rolandseck, whereas red deer and roe
deer occur in Bavarian Forest (cf. Figure 4.10). This makes a direct transfer of
the classification part of the detector impossible. In order to enable a domain shift,
we generalize the animal classes to an animal class deer. Moreover, the vegetation
in Rolandseck and in the Bavarian Forest National Park is very different. In the
Bavarian Forest, significantly more shrubs, bushes and grasses can be seen in the
videos. As a result, there are more occlusions of the animals, while at the same time
the animals stand out more easily from the mostly green background, which makes
them easier to detect. In Rolandseck, the surroundings are characterized by brown
tones, such as leaves lying on the ground. This makes it more difficult to detect the
animals, whose fur color is similar to the color tones of the surroundings.

Furthermore, we are extending our existing data augmentation techniques and are
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Dataset Method AP bbox AP mask AP mask
0.50 AP mask

0.75 ARmask

Bavarian
Forest
Daylight

SWIFT trained
on Bavarian For-
est Daylight

0.621 0.609 0.841 0.700 0.729

SWIFT trained
on Rolandseck
Daylight

0.559 0.538 0.843 0.612 0.608

Bavarian
Forest
Nighttime

SWIFT trained
on Bavarian For-
est Nighttime

0.285 0.315 0.586 0.305 0.490

SWIFT trained
on Rolandseck
Nighttime

0.292 0.305 0.617 0.224 0.394

Rolandseck
Daylight

SWIFT trained
on Rolandseck
Daylight

0.583 0.497 0.806 0.545 0.579

SWIFT trained
on Bavarian For-
est Daylight

0.310 0.269 0.445 0.280 0.312

Rolandseck
Nighttime

SWIFT trained
on Rolandseck
Nighttime

0.622 0.537 0.840 0.579 0.622

SWIFT trained
on Bavarian For-
est Nighttime

0.378 0.317 0.536 0.304 0.411

Table 4.5: Domain adaptation: The column Dataset describes the target dataset of the domain adaptation.
The source datasets are mentioned in the Method column as trained on. The depicted metrics are the
standard COCO metrics. The best results are shown in blue.
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also introducing a Gaussian blur and random cropping. This should make the Mask
R-CNN even more robust. For the refinement we use SAM with the bounding
box input. This has achieved the best results on the Rolandseck Daylight dataset
and can create more accurate masks in this transfer scenario due to the greater
degree of freedom (in relation to setting the positive and negative clicks) in order to
compensate for the difficulty of the non-occurring roe deer samples in the training
dataset. Our results for the domain shift are presented in Table 4.5.

Figure 4.10: Exemplary frames from the source dataset Rolandseck Daylight (left) and the target dataset
Bavarian Forest Daylight (right) show the difficulties for performing a successful domain adaptation since
Rolandseck contains fallow deer and Bavarian Forest contains roe deer. Moreover, there is huge difference
in the vegetation of both locations.

With the domain adaptation techniques described above, SWIFT trained on the
Rolandseck Daylight dataset can almost achieve the accuracy of the network trained
on the Bavarian Forest Daylight dataset. In the AP mask

0.50 metric, this network is even
slightly better. In order to achieve a better transfer, samples from the target dataset
could now be taken for further transfer learning. Since this is only a basic experiment
to show the adaptability of our model, we do not use deeper and more complex
domain adaptation techniques. Domain adaptation for the Nighttime dataset is in
general easier, as the videos in Rolandseck and the Bavarian Forest do not differ that
much in color. Nevertheless, the videos were created with different camera traps and
recording techniques. In the Rolandseck Nighttime recordings, it can be seen that
the central area is illuminated more brightly by the infrared light and the sides of
the image are darker. We show this exemplary in Figure 4.11. In the Bavarian
Forest, the night shots were taken with uniform lighting. The domain adaptation
results show that the approach trained on Rolandseck Nighttime achieves similar
good results as the original approach trained on the Bavarian Forest dataset. For
the AP mask

0.50 metric the network trained on the Rolandseck Nighttime dataset even
surpasses the results of the other approach. We also investigate the domain shift from
the other perspective, where the source and target datasets are switched. As already
theoretically explained, this domain adaptation is not as successful as the domain
adaptation with the source dataset Rolandseck. But with the described domain
shift techniques the network trained on the Bavarian Forest datasets achieves good
results for this difficult task.

In order to achieve a better adaptation to the target datasets, fine-tuning would
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Figure 4.11: Exemplary frames from the source dataset Rolandseck Nighttime (left) and target dataset
Bavarian Forest Nighttime (right) show the difficulties for performing a successful domain adaptation. The
camera traps in Rolandseck Nighttime use an infrared flash, which leads to a brighter center and darker
sides of the scene. The Bavarian Forest Nighttime shots are darker but more evenly lit.

have to be carried out with the help of transfer learning. To do this, samples would
have to be selected from the respective target dataset on which the Mask R-CNN
is trained further. Successful transfer learning has been achieved in other areas of
computer vision in the work of (Zhuang et al., 2020; Hu and You, 2020), for example.
This would certainly improve the accuracy of the night datasets, where the recording
methods are very different. Since we limit ourselves here to basic experiments and
investigate the general transferability of our approach to an unknown dataset, we
do not carry out any further transfer learning experiments.

4.6 Discussion

Our findings indicate that SWIFT excels not only in the MOTS task for wildlife
camera trap videos but also in the subtasks of instance segmentation and multi-
object tracking. By integrating the robust Mask R-CNN system (He et al., 2017)
with a subsequent refinement step, we significantly enhanced instance segmenta-
tion. However, for application areas requiring (near) real-time recognition, such as
pedestrian detection in autonomous driving, this additional refinement step would
be impractical due to the extra time it demands. Consequently, SWIFT is an of-
fline tracking approach and not suited for real-time detection and (online) tracking
applications.

In the context of wildlife monitoring, the urgency for real-time video analysis is
generally low. Often, data from camera traps are reviewed only months later due
to the sheer volume of video collected. More precise instance masks are particularly
beneficial in distinguishing individual animals within larger groups, such as herds
of red deer. In scenarios where simple bounding boxes might encapsulate multiple
animals, our refined instance masks ensure that each animal is distinctly recognized.
This improvement in action detection reliability is invaluable for ecologists, enhanc-
ing their ability to analyze animal behavior. This leads to more accurate behavioral
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analyses and insights, which are critical for conservation and ecological studies (like
(van Beeck Calkoen et al., 2021)).

We discovered that semi-automatic instance segmentation methods yield highly ac-
curate instance masks for annotating wildlife data. This insight formed the founda-
tion for our approach, which aims to automate these methods by replacing manual
user inputs (such as clicks for object segmentation) with masks generated by a reli-
able automatic instance segmentation method. Our SWIFT Refinement Algorithm
facilitates the automatic setting of ”clicks”, using the detection results from Mask
R-CNN as input instead of manually annotated ground truth masks. To limit the
uncertainty caused by the automation of clicks and to ensure reliable results, we use
two techniques in particular: First, by automatically adjusting the scale (zooming
in and out by erosion and dilation) of the Mask R-CNN instance masks to reliably
set clicks inside and outside the detected animal; second, by utilizing the setmask
function from the approach of Sofiiuk et al. (2021) to initialize the HR-Net with the
Mask R-CNN mask, thereby avoiding significant alterations that could result from
erroneous clicks.

Our experiments demonstrated that the choice of refinement technique is critical.
For instance, refinement using the f-BRS approach (Sofiiuk et al., 2020) actually
reduced the quality of instance masks due to its instability and lack of integration
with Mask R-CNN’s segmentation results. In contrast, initializing HR-Net with the
Mask R-CNN mask via the setmask function provides a stable and reliable refinement
process.

We have also examined the increasingly popular and successful foundation models
as possible refinement approaches. Here it was shown that the Segment Anything
Model (SAM) even achieved better results than the HR-Net for two of the five
datasets. For night images in particular, the results of the foundation model were
worse than those of the HR-Net. This shows that when using the foundation models,
the data on which the networks were trained and the application data must be
taken into account. Our experiments also show that SAM achieves better results
with a bounding box as input compared to the input of positive and negative clicks.
This is due to the fact that the foundation model has more degrees of freedom
when generating masks with the bounding box. In the future, it is expected that
foundation models will continue to improve and will probably be the better choice
for refinement. However, it must be taken into account what the data looks like
in the application context (e.g. night images). Scenarios that are foreign to the
foundation model may also result in less accurate masks.

Accurately creating instance masks for animals that are partially in or out of the
scene presents particular challenges. For example, when only a leg or parts of the
head are visible, Mask R-CNN may struggle to differentiate animal parts from en-
vironmental features like branches or tree parts, leading to unreliable detections.
Additionally, accurately detecting the legs of animals in a group where they may be
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obscured by other animals is challenging, as these parts may incorrectly be assigned
to the wrong animal.

For multi-object tracking, we demonstrated that SWIFT outperforms the BYTE
tracker (Zhang et al., 2021a) in tracking accuracy. Additionally, we conducted a
thorough examination of the individual components within our tracking algorithm.

We found that the choice of the motion model to form basic tracklets is not that
important. The particle filter, Kalman filter and unscented Kalman filter (UKF)
generate almost the same final tracking accuracy. This shows that the following
filtering stages are more important for the tracking. In these stages tracklets are
deleted and combined. Especially this functionality is very important for the ap-
plication of the tracker because there are false detections or partial detections of
animals. This is one main difference to the BYTE tracker, which performs poorly
on all datasets. The particle filter can handle non-linear movements, which are more
characteristic of animal behaviors than the linear models assumed by the Kalman
filter (Marron et al., 2007). However, this did not play a major role in the gener-
ation, as often only a few animals appear in a video or only a few fast movements
take place in larger groups. For other scenarios or other animal classes, such as birds
or fish, this advantage will be more important.

Furthermore, our experiments revealed that the refined instance masks produced by
our SWIFT Refinement Algorithm significantly enhanced tracking accuracy com-
pared to the basic Mask R-CNN detections. This improvement was particularly
notable in the sMOTSA metrics for multi-object tracking and segmentation, as de-
tailed in Table 4.4.

SWIFT operates under the tracking-by-detection paradigm, meaning the efficacy of
its tracking is inherently linked to the quality of its instance segmentation detec-
tions. This relationship is clearly demonstrated in our evaluations presented in Ta-
ble 4.4, where SWIFT shows superior tracking performance using refined detections
as opposed to basic Mask R-CNN detections. Consequently, future enhancements
in instance segmentation are likely to yield further improvements in tracking per-
formance. An additional benefit of SWIFT is its flexibility; the SWIFT Tracking
System is designed to potentially utilize detection results from other instance seg-
mentation methods, thereby enabling tracking based on a variety of segmentation
outputs. This modularity and adaptability enhances the applicability of SWIFT
across different tracking scenarios and datasets.

Both instance segmentation and tracking metrics, including MOTS, can generally
be improved through the annotation of additional training material. We created five
datasets comprising overall 194 videos, which collectively contain 82,768 individual
frames. For context, the well-known tracking datasets MOT16 (Milan et al., 2016)
features 14 videos with 11,235 frames, while MOT20 (Dendorfer et al., 2020) includes
8 videos totaling 13,410 frames (both datasets do not contain instance masks, just
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bounding boxes and track IDs). This comparison highlights the extensive nature of
our datasets.

SWIFT enhances the ability of ecologists to manage and analyze the vast amounts of
data generated by camera traps by automating the detection and tracking of animals
within video footage. Manual review of such data is immensely time-consuming,
necessitating days or even weeks of labor, thus highlighting the need for automation
through artificial intelligence, as noted by Green et al. (2020). To prepare SWIFT
for recognizing new species in videos, training data must first be generated, which
involves manually annotating a substantial number of video sequences. Like all deep
learning approaches, SWIFT requires a large, diverse set of training data to perform
accurately on unseen data. In our domain adaptation study we showed that this is
not an easy task even for similar looking species. If, in the future, a dataset is built
up containing videos from different locations and recorded with different camera
traps, this will facilitate transferability.

The use of instance masks in conjunction with video data offers deeper and more
comprehensive insights compared to traditional image-based bounding box detection
approaches like those by (Verma and Gupta, 2018; Beery et al., 2018, 2019; Falzon
et al., 2020; Bonneau et al., 2020; van der Zande et al., 2021). Unlike Yang et al.
(2019b), who employ bounding box detection for gorillas in camera trap videos,
our approach incorporates both instance masks and tracking. Without tracking,
linking detections from one frame to another to facilitate action detection would be
challenging. Existing image-based instance segmentation studies such as those by
Ter-Sarkisov et al. (2018); Salau and Krieter (2020); Bello et al. (2021); Hu et al.
(2021) are typically confined to indoor environments with overhead cameras, making
them less relevant to the dynamic and uncontrolled conditions of wildlife monitoring.
Our datasets represent a more typical setup for camera trap studies and poses greater
challenges. Furthermore, while Zeppelzauer (2013) track elephant segments through
videos, they do not provide metrics for the accuracy of their segments as instance
masks, nor do they compute MOT metrics to measure tracking accuracy, making
their study less comparable to ours in terms of methodological complexity and the
detailed analysis required for effective wildlife monitoring.

SWIFT operates without any user intervention during the detection and tracking
processes, which is a notable advantage over methods like the one proposed by Xue
et al. (2021), where users must manually set a guidance instance mask in each video
frame to facilitate instance segmentation and subsequent tracking.

4.7 Conclusions

For the most accurate instance segmentation possible, we combine a reliable and
popular CNN, the Mask R-CNN, to detect and classify the animal instances, and
a refinement network to further increase the quality of the instance masks. We
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have also shown how important it is to select a suitable refinement network and
at the same time we have examined the new foundation models in this context.
In particular, we utilize the instance mask information in our designed tracking
algorithm. We use several filtering stages in which basic tracklets are combined
and deleted if necessary. In this way, we reduce the influence of false detections on
the tracking accuracy. We were able to show the improvement in tracking accuracy
through the instance masks by applying the MOTS metrics.
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Action Recognition and Action Detection

In this chapter, we outline our strategy for action recognition and action detec-
tion. Action recognition, also called action classification, aims to identify the action
performed by a single actor in a short sequence. On the other hand, action de-
tection identifies all actors within a video and subsequently recognizes the actions
of each detected actor. We introduce our innovative action recognition network,
MAROON (Mask guided Action RecOgnitiON), in Section 5.3. Prior to that, we
describe our comprehensive system for action detection, which is based on SWIFT
and MAROON. The main results of this chapter are published in (Schindler et al.,
2024).

5.1 Introducing Action Classes, Action Recognition and
Action Detection

Action detection aims to detect all actors and to classify their performed actions
in a video. To perform action detection the general tasks of (object) detection and
action recognition are combined. We have already described how detection works, in
particular the instance segmentation, in Section 4.1. The task of action recognition
is to assign an action class c to a video sequence of fixed length t, where only one
actor is present. Usually t is 8, 16 or 32 frames. Longer sequences require more GPU
memory for training neural networks. In addition, longer sequences can become too
long for temporally short actions. In this case, different actions would be represented
in one sequence, which would make classification impossible. In Figure 5.1 we show
visually the differences between action recognition and action detection.

The usual input size of the frames for an action recognition network is square, for
example m×m. A common value for m is 256 pixels. This means that either a frame
has to be resized or a square patch has to be cut out from the whole frame. The
second strategy is the common approach for action detection. The object detector
localizes the actor and the bounding box of the detection forms the basis for a square
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(a) Action recognition (b) Action detection

Figure 5.1: Comparison between action recognition and action detection: The action recognition (a) only
classifies one action from one actor in a frame. The action class is written in the top left corner. If there are
multiple actors present, the outcome would be unclear. The action detection (b) localizes each actor and
describes its action. The predicted action is written above each bounding box. A classification and tracking
of actors is not necessarily included in the action detection.

cutout. The action of the cutout actor is then classified by the action recognition
approach.

5.2 Action Detection System

The workflow of our action detection approach is shown in Figure 5.2. First, our
instance segmentation system SWIFT (Schindler and Steinhage, 2022) detects and
tracks all animals in the video data. We already explained and evaluated SWIFT
in the previous Chapter 4. This represents the detection part of the action detec-
tion. Utilizing the bounding boxes and track IDs from the detected animals, we
extract them from the video as square cutouts to ensure they are suitable for action
recognition without being distorted (e.g. compressed or stretched). Subsequently,
the instance masks from SWIFT are used to cut out the exact animal’s shape. This
step is crucial, particularly when multiple animals are in close proximity, ensuring
each individual is distinctly separated in the cutout. Moreover, isolating the ani-
mal from its background enhances the system’s ability to generalize across various
unseen environments. These cutouts are then resized to match the input dimen-
sions required by our action recognition network MAROON. The action recognition
process then identifies the action class, culminating in a comprehensive action de-
tection result that includes the action class, instance mask, bounding box, species
classification, confidence score, and track ID.
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Figure 5.2: Our action detection system, a combination of SWIFT and MAROON. The instance segmen-
tation and tracking are performed by SWIFT that we described in Chapter 4. The bounding boxes and
instance masks found are then used to cut out the animals. These frames are then fed as input into the
MAROON action recognition network, which will be explained in the following section. The result from the
action recognition network is an action label for the input frames.

5.3 Action Recognition with MAROON

Here, we explain in detail the architecture and idea of our action recognition net-
work MAROON - Mask guided Action RecOgnitiON. In Figure 5.3 we present the
architecture of MAROON. We highlight in blue the pathways and lateral connections
that we newly introduce in comparison to the base model of SlowFast (Feichtenhofer
et al., 2019). Our network introduces two key innovations: (1) the employment of
masked input frames, and (2) the implementation of a triple-stream approach. As
previously mentioned, the input frames of the action recognition network are first
cutout from the overall video frame using the bounding boxes detected by SWIFT
and then masked by the instance mask of the animal. This technique enables MA-
ROON to concentrate solely on the actor during feature extraction, preventing the
network from learning irrelevant background information.

Our network architecture builds on the idea of SlowFast (Feichtenhofer et al., 2019).
SlowFast introduces a two-stream network, consisting of two pathways, a slow path-
way and a fast pathway. The task of the fast pathway is to extract motion features
(for example, the type of movement and speed of the animal) and the slow path-
way focuses on the appearance features (for example, the color and the pose of the
animal). To accomplish this, the approach involves adjusting the quantity of input
frames, denoted as T , for each stream, and altering the number of feature channels,
represented as C, of the convolutional layers of each respective stream. For this,
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the parameters α and β are introduced. For MAROON, we expand upon this con-
cept by transitioning from a two-stream to a triple-stream approach, allowing us to
extract motion and appearance features with varying levels of detail. In Figure 5.3
we present the architecture of MAROON. Accordingly, we name the three pathways
MAROON slow pathway, MAROON medium pathway and MAROON fast pathway.
We newly introduce the parameters γ and δ. With α and δ (α, δ > 1) we control the
amount of frames for each of the three pathways. The MAROON fast pathway gets
the most densely sampled αT frames. The MAROON medium pathway processes T
frames and the MAROON slow pathway handles a reduced number of T/δ frames.
For instance, given an input sequence of 16 frames, the distribution might involve
16 frames for the fast pathway, 4 frames for the medium pathway, and 2 frames for
the slow pathway. The second distinction among the three pathways lies in their
channel capacity, C, which is regulated by two parameters, β and γ. An increased
number of channels facilitates the extraction of more detailed features, particularly
useful when analyzing an animal’s appearance in detail. The medium pathway has
C channels. The parameters β and γ (β < 1, γ > 1) adjust the channel quantity for
the remaining two pathways, tailoring the level of feature detail they can extract.
With βC channels the fast pathway has less channels than the medium pathway
allowing it to focus on extracting motion features. The slow pathway has with
γC channels the highest number of channels of all three pathways. To summarize,
the more frames are fed into the pathway the lower the channel capacity and vice
versa.

Beyond the two-stream architecture, a key innovation of SlowFast (Feichtenhofer
et al., 2019) involves the integration of both streams through lateral connections,
allowing for the fusion of features from the fast pathway with those of the slow
pathway. We build upon this concept by similarly integrating our third pathway,
merging the fast pathway’s features with those of our new MAROON slow pathway.
The features from all three pathways are then combined in the prediction head,
which produces the final action class prediction.

5.4 Results

In this section, we present our evaluation results of MAROON and compare them
with the state-of-the-art approaches SlowFast (Feichtenhofer et al., 2019) and MViT
(Fan et al., 2021). Furthermore, we conduct ablation studies to prove our architec-
ture’s functionality and the choice of our parameters.

5.4.1 Training and Testing Details

We selected SlowFast for comparison due to its notable success as a CNN approach,
especially since MAROON draws inspiration from and extends SlowFast’s concepts.
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Figure 5.3: Our action recognition network MAROON uses three streams and masked input frames. Our
improvements compared to the basic SlowFast architecture are marked in blue, i.e. the new MAROON Slow
Pathway with the corresponding lateral connections and the input of masked input frames. The more input
frames are entered into a path, the more motion features are extracted. However, if fewer frames are entered
and there are more channels in the convolution blocks, mainly appearance features are extracted. This is
shown by the colors of the convolution blocks. The orange blocks in the Fast Pathway mainly extract motion
features, the green blocks in the Medium Pathway a mixture of motion and appearance features and the
blue blocks in the Slow Pathway mainly appearance features.

MViT stands out as a prominent transformer model recognized for its effectiveness in
action recognition with human subjects. The parameters for these models were de-
termined based on recommendations from their respective publications and through
extensive testing.

We base the maximum length of the input sequences on the action classes which
describe temporally short actions such as head raising or sudden rush. For the
Rolandseck Daylight and Rolandseck Nighttime datasets we choose an input length
of 16 frames. Since this dataset has a high FPS of 30, fast actions are also well
covered. For the other datasets Bavarian Forest Daylight, Bavarian Forest Nighttime
and Wildlife Crossings we limit the input to 8 frames due to their lower FPS rates.
The results of the Wildlife Crossings dataset should be evaluated with caution, as
this dataset is not only the smallest of the five datasets and therefore has the lowest
number of training samples, but it also contains very different animal classes, i.e.
red deer, boar, hare and fox. For the sake of completeness, we also include this
dataset in our action evaluations.

As shown in Section 3.4.1 the action class distributions in our datasets are long tailed
distributions. To ensure accurate predictions, it’s crucial to give special attention
to underrepresented classes, which suffer from a scarcity of training samples. To
enhance action recognition performance for these classes, we employ oversampling
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during training. In each epoch we randomly sample from the smaller classes, so
that each class represents at least 50% of the number of observations of the largest
class (the experiments for determining this value are done in Section 5.4.5). For
the already mentioned special case of the Wildlife Crossings dataset it is 100%.
In general, the oversampling parameter depends on the dataset that is analyzed,
especially on the distribution of the action classes, the size of the dataset and the
variability of the data samples. Therefore, we determine this parameter through
experiments. Another theoretical reason to restrict the resampling to 50% (and not
100% in general) is that our smallest classes have as few as 5 samples and the largest
class more than 100 samples. Even with data augmentation strategies, these samples
are presented to the network very frequently. By setting this limit, we aim to avoid
overfitting to individual samples.

During training we enhance our dataset with random horizontal flips. Moreover,
we perform temporal and spatial jittering as data augmentation techniques. In
general, the action sequences are longer than the specified input length for the
networks, which is either 16 or 8 frames in our cases. For temporal jittering, we
randomly select a fixed-length sequence from the entire action sequence, ensuring
the model is exposed to different segments of the action with each epoch to minimize
overfitting. As described before, we cut out each animal by their bounding box.
For a spatial jittering the box is cut out a little bit larger than the desired input
size for the network. From this enlarged section, we then randomly crop to the
exact input dimensions. This technique ensures the animal isn’t always centered,
thereby introducing more variation into the training data and enhancing the model’s
generalizability. For comparable testing, the inputs must remain uniform, so spatial
jittering is omitted. However, to encompass various time points within an action
sequence, we divide the sequence into equal parts for testing, a method known
as ensemble view testing, specifically employing a 10-view testing approach. This
strategy allows us to thoroughly evaluate the model’s performance across different
segments of an action sequence.

To evaluate the performance of networks in action recognition, we employ the com-
mon metric of top-1 and top-5 accuracy. Essentially, top-k accuracy indicates a
sample is correctly predicted if the network’s k highest-ranked predictions include
the accurate action class for that sample. For the task of action detection, a univer-
sal metric is not established, though mean average precision (mAP) is occasionally
utilized, as seen in certain studies (for example in (Chen et al., 2023; Biswas and
Gall, 2020)). A limitation of mAP is that it primarily measures the accuracy of
bounding boxes produced by the detector, neglecting aspects like instance masks,
and thus heavily linking the action class prediction to the detector’s performance. By
evaluating the detector and action recognition components separately, each part is
more equitably assessed, simplifying the decision process for potential replacements
within the overall system.

All our models are trained for 200 epochs. For a fair comparison among the models,
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we do not use pre-trained weights as initialization. For MAROON and also SlowFast
we use the ResNet-50 as backbone. For the Rolandseck Daylight and Rolandseck
Nighttime dataset the input sequence length is 16 frames. We set the parameters
for MAROON for all datasets as α = 4, β = 1/8, γ = 4 and δ = 8. We determine
these parameters through extensive experiments that are shown in the following
ablation studies. The parameters α and δ lead to the input sizes 16 frames for the
fast pathway, 4 frames for the medium pathway and 2 frames for the slow pathway
for the Rolandseck Daylight and Nighttime dataset and respectively 8 frames for the
fast pathway, 2 frames for the medium pathway and 1 frame for the slow pathway
for the Bavarian Forest datasets and the Wildlife Crossings dataset.

5.4.2 Action Recognition Evaluation

We conduct evaluations of our models across all five datasets introduced earlier.
These datasets are split into training and testing sets, ensuring that approximately
20% of each class is allocated to the test set. Given the limited volume of data, we
opt not to establish a separate validation set. Instead, to demonstrate the superior
performance of our model relative to benchmark models, we execute a stratified 5-
fold cross-validation on every dataset. ”Stratified” here implies that in each fold, 20%
of the data from each class is designated as test data, ensuring that the composition
of the test sets accurately reflects the action class distribution found within the
entire dataset.

Our evaluation results, comparing the different models across different datasets, are
summarized in Table 5.1.

MAROON outperforms the other models for all five datasets. On average, all models
perform best on the Rolandseck datasets and worst on the Bavarian Forest datasets.
This result can be explained by the fact that the Rolandseck datasets encompass
the greatest number of sequences, thereby offering the broadest variety of scenarios
for training. Conversely, the Bavarian Forest datasets contain the fewest sequences,
limiting the diversity of training situations. For all datasets, MAROON improves
the top-1 accuracy of the second best comparison model by at least 10 percentage
points. This shows efficiency of our innovations for MAROON. The accuracies of
the two comparison models are approximately the same. As already mentioned,
the Wildlife Crossings dataset is a special case due to its small size and the very
different animal species that occur. However, MAROON also achieves a high level
of accuracy for this dataset.

In Figure 5.4 we present the top-1 accuracies for all action classes from the 5-fold
cross-validation. In general, MAROON consistently surpasses the other models in
performance for every class within all five datasets. Notably, MAROON maintains
uniformly high top-1 accuracies across different action classes, a trend particularly

79



Chapter 5 Action Recognition and Action Detection

Dataset Model Top-1 Top-5

Rolandseck
Daylight

MAROON 72.24 95.88
SlowFast 42.05 89.66

MViT 43.13 85.18

Rolandseck
Nighttime

MAROON 82.33 97.15
SlowFast 35.06 91.46

MViT 41.61 91.48
Bavarian
Forest
Daylight

MAROON 54.27 97.59
SlowFast 35.40 95.88

MViT 35.05 94.17
Bavarian
Forest
Nighttime

MAROON 45.47 95.08
SlowFast 35.49 95.68

MViT 31.91 93.26

Wildlife
Crossings

MAROON 73.11 98.40
SlowFast 59.51 99.20

MViT 53.97 96.03

Table 5.1: Evaluation results of our action recognition model MAROON compared for the five different
datasets Rolandseck Daylight, Rolandseck Nighttime, Bavarian Forest Daylight, Bavarian Forest Nighttime
and Wildlife Crossings with 5-fold cross validation. The top-1 and top-5 accuracies are depicted. The best
value for each dataset is marked blue.
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Figure 5.4: The action class top-1 accuracy of the cross validation of the five datasets for each action class
with the models MAROON (blue), MViT (orange) and SlowFast (green).
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evident in the Rolandseck Daylight dataset. This uniformity indicates that MA-
ROON effectively learns to recognize actions not just in well-represented classes but
also in those with fewer samples, ensuring a balanced performance across diverse
action types.

Figure 5.5 shows exemplary SWIFT action detection results for all five datasets.
The animal detections are ground truth detections.

In the following sections, we evaluate the functionality of different parts of our
action recognition network. We always use the same 5-fold cross-validation as in
this section.

5.4.3 The Impact of Masked Input Frames

The theory behind masking the input frames is that this allows the network to
fully focus on the actors and the action they are performing and not be distracted
by irritations in the background, particularly other animals that may be within
the frame being viewed. Another advantage is that the removal of the background
prevents the memorization of features from it, which could provide a false basis for
the recognition of the actions.

In Table 5.2 we present the impact of the masked input. We evaluate all models with
and without masked input frames. So, in comparison to our previous evaluations,
we experiment with using masked input frames for both SlowFast and MViT mod-
els, and for our MAROON model, we employ regular (non-masked) input frames.
The mask information enhances the results for all models on all datasets, yielding
an average improvement of 10 percentage points. Notably, our action recognition
network, MAROON, consistently outperforms or matches the results of the other
methods, regardless of the presence of mask information. This improvement is par-
ticularly significant in the Rolandseck Daylight dataset, where mask information
boosts MAROON’s performance by over 15 percentage points compared to Slow-
Fast and MViT. The MViT transformer model shows the smallest relative gain from
mask information among the tested models. This outcome can be attributed to the
operational mechanics of transformers, which utilize an attention mechanism focus-
ing on small sections of the image. The introduction of mask information leads to
larger areas of uniform blackness within the image, presenting minimal to no visual
information about the animal to the transformer, thus limiting its effectiveness in
these cases.

5.4.4 Lateral Connections

Additionally, we investigate the significance of the lateral connection between the
fast and slow pathways within our MAROON model. Similar to how (Feichtenhofer
et al., 2019) assessed the impact of lateral connections in their SlowFast model,
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(a) Rolandseck Daylight: left: blue: Foraging standing, green: Walking, teal: Vigilant lying, red: Walking; center: blue:
-, green: Walking, teal: Vigilant lying, red: Vigilant standing; right: blue: -, green: Head lowering, teal: Vigilant lying, red:
Vigilant standing

(b) Rolandseck Nighttime: left: blue: Foraging moving; center: blue: Foraging standing; right: blue: Foraging moving,
green: Foraging moving, teal: Walking

(c) Bavarian Forest Daylight: left: blue: Head raising; center: blue: Walking; right: blue: Walking

(d) Bavarian Forest Nighttime: left: blue: Walking; center: blue: Walking; right: blue: Foraging standing

(e) Wildlife Crossings: left: blue: -, green: Foraging standing, teal: Foraging standing; center: blue: -, green: Foraging
standing, teal: Foraging standing; right: blue: -, green: Foraging standing, teal: Foraging standing

Figure 5.5: Visualization of exemplary action detection results of SWIFT (with ground truth detections)
for all five datasets: Three frames of a video are displayed. Each detected track is colored differently (the
color does not correspond to the object class). The predicted action class is written above the track and
class prediction. If there is no action that means no prediction was possible. To make it easier to read, we
have noted the action classes of the individual animals again under the frames.
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Dataset Model Top-1
(without

mask)

Top-5
(without

mask)

Top-1
(with
mask)

Top-5
(with
mask)

Rolandseck
Daylight

MAROON 54.65 90.96 72.24 95.88
SlowFast 42.05 89.66 57.67 92.48

MViT 43.13 85.18 49.41 89.57

Rolandseck
Nighttime

MAROON 59.26 94.59 82.33 97.15
SlowFast 35.06 91.46 48.71 95.44

MViT 41.61 91.48 66.37 93.74
Bavarian
Forest
Daylight

MAROON 36.44 94.85 54.27 97.59
SlowFast 35.40 95.88 45.35 96.57

MViT 35.05 94.17 42.63 95.54
Bavarian
Forest
Nighttime

MAROON 35.04 91.42 45.47 95.08
SlowFast 35.49 95.68 42.93 93.86

MViT 31.91 93.26 40.62 92.03

Wildlife
Crossings

MAROON 58.77 97.60 73.11 98.40
SlowFast 59.51 99.20 63.54 97.60

MViT 53.97 96.03 68.31 97.60

Table 5.2: Analysis of the impact of masked input frames on the action recognition accuracy. The best
value for each dataset is marked blue.
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our analysis encompasses various configurations. We explore four distinct scenarios:
a connection from the fast to the slow pathway (which is ultimately selected for
MAROON), a connection between the medium and slow pathways (both before and
after integration with the fast pathway), and the absence of any lateral connections.
The outcomes of these investigations are detailed in Table 5.3.

For all datasets the connection between the fast and slow pathway is the most suc-
cessful choice. This configuration is for all datasets better by 3 to 4 percentage
points than the second-best alternative. This choice also corresponds to our theo-
retical considerations in Section 5.3. However, the second-best choice varies for the
different datasets.

Dataset Type of lateral connection Top-1 Top-5

Rolandseck
Daylight

fast to slow 72.24 95.88
no connection 65.50 95.70
medium (before merging) to slow 66.74 94.32
medium (after merging) to slow 68.26 96.00

Rolandseck
Nighttime

fast to slow 82.33 97.15
no connection 76.10 97.72
medium (before merging) to slow 69.78 94.86
medium (after merging) to slow 77.49 97.15

Bavarian
Forest
Daylight

fast to slow 54.27 97.59
no connection 45.71 97.94
medium (before merging) to slow 51.89 96.21
medium (after merging) to slow 46.38 96.92

Bavarian
Forest
Nighttime

fast to slow 45.47 95.08
no connection 42.35 96.93
medium (before merging) to slow 39.18 95.10
medium (after merging) to slow 41.70 95.09

Wildlife
Crossings

fast to slow 73.11 98.40
no connection 69.91 96.83
medium (before merging) to slow 62.50 97.60
medium (after merging) to slow 63.57 96.83

Table 5.3: Analysis of the lateral connections to the new MAROON Slow pathway. The best value for each
dataset is marked blue.

5.4.5 Oversampling Analysis

In this section we analyze the degree of oversampling. As previously described, all
datasets form long-tailed distributions in which some classes occur significantly more
frequently than others. If training is now performed without oversampling, the data
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samples are presented per epoch according to their distribution in the dataset. This
means that rare classes are so rarely presented as training examples that they cannot
be learned by the network or are ignored due to their rarity. Oversampling artificially
increases the number of rare classes in the dataset. The oversampling threshold
increases the samples of the small classes to such an extent that they contain at
least X% of the largest class. That means that an oversampling threshold of 100%
leads to classes of equal size. The new samples are randomly drawn and duplicated
from the set of existing samples of the respective class and then augmented using
the data augmentation techniques already described, such as horizontal flip, spatial
and temporal jittering.

In Table 5.4 we present the analysis of the oversampling threshold for our five consid-
ered datasets. In all datasets except the Wildlife Crossings dataset, an oversampling
threshold of 50% turns out to be the best choice. This is also a good choice from a
theoretical point of view. With a lower value, the small classes still occur too rarely
to be learned correctly by the network. However, if the oversampling threshold is
set too high, this can lead to overfitting on the duplicated classes (even if these are
varied by data augmentation). For the Rolandseck Daylight dataset, for example,
an oversampling threshold of 100% would mean that the rarest class, standing up,
with 5 samples would be expanded to the size of the largest class, vigilant standing,
with 149 samples. For the Wildlife Crossings dataset, an oversampling threshold of
100% is the best choice. This can be explained by the fact that this dataset is the
smallest dataset and therefore has the smallest number of samples and also contains
the most different animal classes. This leads to a continued high diversity of the
data even when oversampling to 100%.

5.4.6 Analysis of the Pathway Parameters

Our model MAROON introduces 2 new parameters, γ and δ for our new third
pathway. As already described in detail in Section 5.3, the parameter δ steers the
amount of frames that are fed into the MAROON slow pathway. The parameter α
from the original SlowFast architecture decides how many frames are fed into the
fast pathway. The choice of the two parameters is limited by the given total number
of frames of the sequences. In our case, this is 16 frames for the Rolandseck datasets
and 8 frames for the other three datasets. With α = 4, this results in the MAROON
fast pathway receiving 16 or 8 frames depending on the dataset under consideration
and the MAROON medium pathway receiving 4 or 2 frames respectively. This ratio
also corresponds to the authors’ choice of SlowFast (Feichtenhofer et al., 2019), as
this proved to be the best choice in their experiments. The parameter β controls the
ratio of the feature channels between the MAROON medium and the MAROON
fast pathway. This parameter has also already been introduced for SlowFast. The
authors (Feichtenhofer et al., 2019) have shown that a value of β = 1/8 was the
most successful. Our new parameter γ controls the ratio of the channels of the
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Dataset Oversampling
threshold

Top-1 Top-5

Rolandseck
Daylight

0% 69.95 95.25
25% 71.01 96.01
50% 72.24 95.88
75% 69.16 96.31
100% 68.39 94.94

Rolandseck
Nighttime

0% 77.19 98.00
25% 75.47 98.57
50% 82.33 97.15
75% 80.35 97.43
100% 80.90 98.01

Bavarian
Forest
Daylight

0% 50.85 96.56
25% 47.45 96.92
50% 54.27 97.59
75% 46.39 97.24
100% 42.26 96.56

Bavarian
Forest
Nighttime

0% 40.26 94.93
25% 41.13 93.22
50% 45.47 95.08
75% 43.05 96.33
100% 42.87 95.70

Wildlife
Crossings

0% 59.20 92.00
25% 60.34 99.20
50% 61.14 98.40
75% 63.54 97.60
100% 73.11 98.40

Table 5.4: Analysis of oversampling threshold for the MAROON model. Oversampling with 0% means
that no oversampling takes place. At 100%, each class is represented equally frequently. The best value for
each dataset is marked blue.

87



Chapter 5 Action Recognition and Action Detection

MAROON slow pathway to the MAROON medium pathway. The slow pathway
has more feature channels than the medium pathway. The value of γ is also lim-
ited by the available GPU memory capacity, as more feature channels also require
correspondingly more memory.

In Table 5.5 we present our extensive experimental results for all five datasets. The
parameter combination of γ = 4 and δ = 8 is the best combination for all datasets.
The parameter δ = 8 in combination with α = 4 results in the number of frames that
are fed into the fast, medium and slow pathway as [16,4,2] for Rolandseck datasets
and [8,2,1] for the other three datasets. The parameter γ = 4 and β = 1/8 result
in feature channel capacities for the fast, medium and slow pathway as [C/8, C, 4C]
for all datasets.

5.5 Discussion

Our evaluation results indicate that MAROON outperforms other state-of-the-art
models across various datasets. Each of our five datasets encompasses distinct sce-
narios and settings. The Rolandseck Daylight and Nighttime datasets, for example,
often feature groups of animals, making the use of instance masks critical for ac-
curately distinguishing individual animals and ensuring reliable action predictions.
The Bavarian Forest Daylight dataset, on the other hand, includes videos with fewer
animals, and is characterized by lower resolution and frame rates. The Bavarian
Forest Nighttime dataset demonstrates MAROON’s capability to predict actions in
videos lacking color information and with very low frame rates. The Wildlife Cross-
ings dataset shows not only videos with a low resolution and frame rate, but also
different animal species like deer and boar. A straightforward method to enhance
the accuracy across all models would be to increase the volume of video data, thus
expanding the training and testing material. However, the process of annotating
these videos is labor-intensive, and rarer action classes tend to be underrepresented,
reflecting a common issue in wildlife ecology (Sakib and Burghardt, 2020) and the
broader field of computer vision where action classes often exhibit long-tailed dis-
tributions (Zhang et al., 2023). Enriching these rare action classes with additional
examples would improve model accuracy, but this is frequently constrained not just
by annotation efforts but also by the scarcity of camera trap recordings of these
actions. Such actions are typically of particular interest to researchers.

To address the imbalance in data representation, we employ oversampling, a widely
used technique for more effective training with long-tailed distributions. Due to
the very limited instances of some actions, undersampling is impractical as it would
overly diminish the diversity of data for more frequent classes. To introduce more
variety during training, we implement data augmentation techniques previously dis-
cussed in Section 5.4.1, such as horizontal flips, temporal jittering, and spatial jit-
tering.
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Dataset γ δ Top-1 Top-5

Rolandseck
Daylight

2 4 68.41 95.55
4 4 69.95 95.56
8 4 60.73 92.49
2 8 69.50 95.40
4 8 72.24 95.88
8 8 45.42 80.68
2 16 69.18 95.25
4 16 69.33 95.40
8 16 48.46 84.81

Rolandseck
Nighttime

2 4 81.20 98.01
4 4 74.91 96.87
8 4 74.61 97.44
2 8 79.20 97.72
4 8 82.33 97.15
8 8 76.38 97.72
2 16 79.17 97.15
4 16 80.33 97.72
8 16 78.06 97.72

Bavarian
Forest
Daylight

2 4 48.77 95.53
4 4 53.27 95.53
8 4 51.89 96.56
2 8 51.17 96.91
4 8 54.27 97.59
8 8 54.25 97.25

Bavarian
Forest
Nighttime

2 4 36.19 96.93
4 4 45.45 94.47
8 4 44.83 93.88
2 8 43.63 93.83
4 8 45.47 95.08
8 8 41.17 93.84

Wildlife
Crossings

2 4 70.68 98.43
4 4 63.54 99.20
8 4 67.60 98.43
2 8 71.57 98.40
4 8 73.11 98.40
8 8 69.08 99.23

Table 5.5: Analysis of the pathway parameters γ and δ of MAROON. The best value for each dataset is
marked blue.
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If ample time and resources are allocated to a study, it’s feasible to produce addi-
tional video recordings in zoos or wildlife enclosures to gather data on rare behaviors.
Alternatively, augmenting the dataset with artificially generated data is another vi-
able option. Although today’s technology can produce high-quality artificial im-
ages, there remain challenges in transferring a network trained on these images to
real-world scenarios, particularly for complex scenes like wildlife videos that fea-
ture varying weather conditions, exposure levels, and day-night cycles. Nonetheless,
with continued improvements in the generation of artificial data, this method holds
significant potential for enhancing the dataset in future studies.

Our action recognition network is currently designed to identify actions performed
by individual animals, meaning it cannot detect interactions between multiple an-
imals. In our dataset, instances involving animal interactions were extremely rare,
thus were not a focus of our study. Typically, most action recognition models are
developed to recognize the actions of a single actor. However, in other studies and
datasets, particularly those involving different species, recognizing interactions be-
tween animals could be of interest. Existing action detection models, such as those
documented in studies (Tang et al., 2020; Biswas and Gall, 2020), have explored
action recognition among humans. To extend our model to capture animal interac-
tions, it would require modifications to accept multiple animals masked as inputs
and processed through the action recognition network, allowing for the detection of
interactions between them.

Adapting our action detection system for use with other animal species, particularly
those of similar size, is generally straightforward. Initially, it requires gathering and
annotating data specific to the desired animal species and their actions. SWIFT
and MAROON would then need to be retrained to recognize these new species and
action classes. Given the robustness and reliability of the Mask R-CNN in SWIFT,
which can detect a wide range of objects, transferring the system to new contexts is
typically feasible. However, challenges may arise when dealing with smaller animals,
such as birds, which might only occupy a very small area of the video frame (e.g.,
less than 50 x 50 pixels). Detection in such cases can be challenging, and action
recognition may be further complicated by the lack of visual detail. Therefore,
careful consideration of the camera setup is crucial to ensure that the recordings
capture adequate detail for effective detection and action recognition.

The resolution of video recordings is crucial for effectively recognizing animals and
their actions. Higher resolution is beneficial for instance segmentation with SWIFT,
as it allows for the segmentation of more object details when the animal is closer
to the camera and occupies more pixels. Consequently, higher image resolution
facilitates easier recognition of action classes in the action recognition phase. How-
ever, the capability to recognize actions also depends on the specific action classes
involved — namely, the level of detail required to distinguish the action and the
potential for similar actions to be confused with one another. When considering
the application of our system to other animal species, the video resolution must be
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carefully considered. For smaller animals or birds, for instance, the existing cam-
era settings might render the animals too small to accurately differentiate between
various actions. Recordings from the Rolandseck dataset are already at a very high
resolution, and enhancing video quality further can be challenging due to storage
limitations on camera trap devices. Therefore, it is important to tailor recording
settings to the specific needs of the targeted animal and action classes. Adjustments
might include the proximity of the camera to the subject or the specific location of
the recording, ensuring that the setup is optimized to capture the necessary detail
for effective action recognition.

Building on the concept of SlowFast (Feichtenhofer et al., 2019) and incorporating
three pathways into MAROON has markedly enhanced the accuracy of action recog-
nition. However, this expansion of the model introduces more parameters compared
to SlowFast, resulting in increased training times. Consequently, when working
with very large datasets, it may be necessary to allocate more time for training or
to employ additional hardware resources to manage the extended training process
efficiently.

Introducing masked input sequences into our system has enhanced action prediction
accuracy, with an average improvement of 10 percentage points. However, this ap-
proach requires that instance masks be available for the different animals. Typically,
action recognition datasets focus solely on video sequences of the actor, while action
detection datasets, such as the AVA dataset (Gu et al., 2018) for person action detec-
tion, often employ only bounding boxes. If no existing dataset with instance masks
for the desired object type is available, new annotations must be created, which is
generally more labor-intensive than creating bounding box annotations. Despite the
challenges, the task of annotation is becoming more feasible with ongoing advance-
ments in AI-assisted annotation tools (Sofiiuk et al., 2022; Liu et al., 2023a) and
the development of foundation models like Segment Anything (Kirillov et al., 2023).
These technologies are likely to simplify the process of generating instance masks in
the future, making it less cumbersome than it currently is.

In Section 5.4.2, we detail the class-specific action recognition accuracies for our mod-
els across various datasets. There are two primary reasons why both our MAROON
approach and the other two action recognition networks achieve lower accuracies
for some classes compared to others. Firstly, as previously discussed, some classes
such as resting, standing up, or sudden rush occur less frequently than others. Al-
though oversampling partially mitigates this issue, there might still be insufficient
diversity in the training data to enable successful generalization. Actively expanding
the dataset with more examples of these less frequent behaviors, provided sufficient
recordings are available, could enhance prediction accuracy. The second reason for
the difficulty in predicting certain actions stems from variability in how they are per-
formed and their similarity to other actions. For instance, the class foraging moving
is distinguished from walking primarily because the animal is searching for food,
typically with its head lowered. Similarly, foraging standing and vigilant standing
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can appear alike, especially when the animal is searching for food near a bush with-
out lowering its head. Increasing the number of samples for these nuanced classes
could aid in better distinguishing between them. Nonetheless, it is observed that
the action recognition accuracies for these more nuanced classes are generally higher
than those for the classes affected by the first issue.

When applying an action detection system to videos where animals change their
behavior — a common scenario — there are transition areas between different be-
haviors where the prediction shifts from one behavior to another. Insights from the
analysis of behavioral sequences in ethology, as detailed in studies like (Chatfield and
Lemon, 1970; Bels et al., 2022; Gygax et al., 2022) , could be valuable for enhancing
the action prediction process in the future. These principles are also applicable to
human behavior studies, as suggested by (Keatley, 2018), where certain behaviors
are more likely to precede others. While these insights currently do not impact the
evaluation of action recognition approaches — since evaluations typically focus on
sequences showcasing a single behavior — they could be immensely useful for apply-
ing the system to new, unseen recordings. Incorporating this additional information
could potentially increase the accuracy of action predictions or help validate the
results of action recognition systems.

5.6 Conclusions

We presented an approach for action detection of wildlife in camera trap videos,
which consists of the combination of our instance segmentation and tracking method
SWIFT and our action recognition network MAROON. By exploiting the instance
masks generated by SWIFT, MAROON can obtain masked input sequences and pre-
dict actions more accurately by focusing on the actor. In our ablation experiments,
the great influence of the instance masks was particularly evident, as the action
recognition accuracy improved enormously for all models and all datasets using the
masked input sequences. The triple-stream approach allows a finer extraction of
motion and appearance features than it is possible with the two-stream approach
of SlowFast, for example. In our experiments on the 5 different datasets, we were
able to show that MAROON beats the other state-of-the-art approaches in top-1
accuracy. In the ablation experiments, we also evaluated the individual aspects of
MAROON.
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Conclusion

In this thesis, we presented the first instance segmentation, tracking and action
detection system for the task of wildlife monitoring. Our system consists of two
main parts: the detection and tracking part that we solve with SWIFT and the
action recognition part that is done by our action recognition network MAROON.
Our most important research result is that the use of instance masks enables a major
improvement in multi-object tracking and action recognition.

Our novel MOTS (multi-object tracking and segmentation) pipeline, SWIFT, gen-
erates accurate instance masks combining a reliable instance segmentation network
with a refinement algorithm. To form reliable tracks from the instance segmen-
tation detections we introduce a tracking approach consisting of multiple filtering
steps. Our system is the first approach, to the best of our knowledge, to track an-
imals in wildlife monitoring videos with instance masks. The robust Mask R-CNN
is able to detect the animals in the challenging and changing weather and recording
conditions. By combining a robust instance segmentation approach such as Mask R-
CNN with a refinement network, we solve the problem of smaller datasets in wildlife
monitoring compared to general instance segmentation datasets. In this way, we can
generate exact instance masks, even if the amount of training data is limited. Due
to the modularity of our system, the network trained on animals benefits also from
the further development of foundation models.

SWIFT improves the accuracy of instance masks and tracking compared to popular
methods from the context of general object detection and person tracking that we
trained on each of the five wildlife datasets. We achieve an average precision for
the instance masks for the Rolandseck Daylight dataset of 0.485 compared to 0.435
of the Mask R-CNN baseline model. On average the instance mask quality for
the different datasets is improved by 4 percentage points. Furthermore, SWIFT
achieves a tracking accuracy of 84.6% for the Bavarian Forest Daylight dataset
and achieves a sMOTSA score of 42.6% for its joint segmentation and tracking
ability on the Rolandseck Daylight dataset. These findings demonstrate that the
sequential deletion and combination of tracklets, guided by a particle filter motion
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model and a Re-Identification (Re-ID) network, can effectively track animals in
challenging conditions. The more accurate instance masks and improved tracking
capability lead to longer and more accurate tracks of the animals. This leads to
more accurate population estimations due to better detection capabilities and also
forms an essential basis for the subsequent action recognition in our action detection
system.

To perform action detection on camera trap videos, we combine SWIFT as the
detector and tracker with our novel action recognition network MAROON. Our ap-
proach MAROON is the first action recognition approach that combines instance
mask information for the input sequences with a feature extraction in a triple-stream
approach for action recognition. By using the instance masks to mask the animals,
actions of animals that are close to other animals can be better recognized, as only
the actor is focused on by the network. In addition, cutting out the animals en-
ables better generalization, as it removes the influence of the changing background
on action recognition. In our experiments we have shown that MAROON improves
the action recognition accuracy on all five datasets compared to other state-of-the-
art computer vision approaches. For the dataset Rolandseck Daylight, MAROON
achieves a top-1 accuracy of 72.24% in comparison to 43.13% from MViT and 42.05%
from SlowFast. Also on the other datasets, our action recognition network achieves
on average a 10 percent point higher top-1 accuracy compared to the other ap-
proaches. We perform a 5-fold cross validation to show that our approach generally
works better than the other approaches.

In our work (Schindler et al., 2024), we have collaborated with ecologists and be-
havioral scientists from the University of Freiburg and the Bavarian Forest National
Park to adapt our action detection system to the objectives of the application do-
main. Our systems will therefore significantly reduce the manual work of researchers
and help them perform more complex behavioral analyses. We are therefore con-
fident that SWIFT and MAROON will also provide important support for other
ecological objectives and enable new insights to be gained in ecology.

6.1 Future Work

We have successfully applied our action detection system to various deer species.
It would be interesting to apply our action detection system to datasets with other
mammals that have been annotated accordingly. For a successful application, SWIFT
would have to be retrained for the detection. It would be interesting to see how far
action detection with MAROON can be transferred to different animal species. In
this work, we looked at the actions of similar species, in particular red deer, roe deer
and fallow deer. This could raise the question of whether the detection of general
actions such as walking, vigilant standing or lying can be transferred from these
animal species to other species such as lions, zebras or alpacas.
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6.1 Future Work

One focus of future research will be the detection of the animals. The classic ap-
proach of training and fine-tuning a detection model to a specific dataset may be-
come obsolete if foundation models continue to develop as they have in recent years.
We have already investigated this by integrating the Segment Anything Model into
our refinement algorithm. It is possible that detection with instance masks may
be completely replaced by an even more improved foundation model in the future.
This could mean that further refinement is no longer necessary and a single network
can take over this task. This would also significantly reduce the annotation work
required for a transfer to previously unknown animal species.

In our SWIFT Tracking Algorithm, we use a Re-ID network to combine tracklets
with other tracklets, where animals have been temporarily occluded by bushes or
trees, for example, or animals have completely left and re-entered the scene. For the
training of the Re-ID network, we had to limit ourselves to the recognition of animals
within a video, as no ground truth exists for a cross-video Re-ID for the different
deer species. It would therefore be interesting to see whether such a ground truth
can be created in the future and whether a Re-ID network that has been trained on
it can merge tracklets even better. An improvement could be expected, particularly
for the cases, where an animal leaves the scene completely and then reappears.

Our action detection system can form the basis for further computer vision tasks in
the context of wildlife monitoring in the future. For example, the re-identification of
individual animal instances could be based on our detections and action predictions.
The extracted appearance and motion features from the various steps of our system
could be used accordingly in a re-identification network that uses video information.
This would certainly be easier to implement on animals with special characteristics,
for example, special individual fur patterns such as zebras or giraffes. In addition,
a pose estimation of the animals could also be carried out based on the instance
masks found. The keypoints found by the pose estimation could be helpful in better
distinguishing complex actions. In order to perform a pose estimation, the data
would first have to be annotated with the corresponding keypoints.
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mAP mean Average Precision

mAR mean Average Recall
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101



Acronyms

ML Mostly Lost
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for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003,
2020.

Caglayan Dicle, Octavia I Camps, and Mario Sznaier. The way they move: Tracking
multiple targets with similar appearance. In Proceedings of the IEEE international
conference on computer vision, pages 2304–2311, 2013.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Yunhao Du, Zhicheng Zhao, Yang Song, Yanyun Zhao, Fei Su, Tao Gong, and
Hongying Meng. Strongsort: Make deepsort great again. IEEE Transactions on
Multimedia, 2023.

Abhishek Dutta and Andrew Zisserman. The VIA annotation software for im-
ages, audio and video. In Proceedings of the 27th ACM International Conference
on Multimedia, MM ’19, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-
6889-6/19/10. doi: 10.1145/3343031.3350535. URL https://doi.org/10.1145/
3343031.3350535.

Mark Everingham, Luc Van Gool, Christopher K.I. Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (voc) challenge. In Int
J Comput Vis, volume 88, page 303–338, 2010. doi: https://doi.org/10.1007/
s11263-009-0275-4.

Greg Falzon, Christopher Lawson, Ka-Wai Cheung, Karl Vernes, Guy A Ballard,
Peter JS Fleming, Alistair S Glen, Heath Milne, Atalya Mather-Zardain, and
Paul D Meek. Classifyme: a field-scouting software for the identification of wildlife
in camera trap images. Animals, 10(1):58, 2020.

107

https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1145/3343031.3350535


BIBLIOGRAPHY

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra
Malik, and Christoph Feichtenhofer. Multiscale vision transformers. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pages 6824–
6835, 2021.

Hao-Shu Fang, Jianhua Sun, Runzhong Wang, Minghao Gou, Yong-Lu Li, and Cewu
Lu. Instaboost: Boosting instance segmentation via probability map guided copy-
pasting. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 682–691, 2019.

Gaspar Faure, Hughes Perreault, Guillaume-Alexandre Bilodeau, and Nicolas
Saunier. Polytrack: Tracking with bounding polygons. arXiv preprint
arXiv:2111.01606, 2021.

Christoph Feichtenhofer. X3d: Expanding architectures for efficient video recogni-
tion. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 203–213, 2020.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast
networks for video recognition. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6202–6211, 2019.

Sandra Frey, Jason T Fisher, A Cole Burton, and John P Volpe. Investigating
animal activity patterns and temporal niche partitioning using camera-trap data:
Challenges and opportunities. Remote Sensing in Ecology and Conservation, 3
(3):123–132, 2017.

Tsukasa Fukunaga, Shoko Kubota, Shoji Oda, and Wataru Iwasaki. Grouptracker:
video tracking system for multiple animals under severe occlusion. Computational
biology and chemistry, 57:39–45, 2015.

Haiming Gan, Mingqiang Ou, Chengpeng Li, Xiarui Wang, Jingfeng Guo, Axiu Mao,
Maria Camila Ceballos, Thomas D Parsons, Kai Liu, and Yueju Xue. Automated
detection and analysis of piglet suckling behaviour using high-accuracy amodal
instance segmentation. Computers and Electronics in Agriculture, 199:107162,
2022.

Naiyu Gao, Yanhu Shan, Yupei Wang, Xin Zhao, Yinan Yu, Ming Yang, and Kaiqi
Huang. Ssap: Single-shot instance segmentation with affinity pyramid. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pages
642–651, 2019.

Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zisserman. Video action
transformer network. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 244–253, 2019.

108



BIBLIOGRAPHY

Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. In IEE Proceedings F-radar
and signal processing, volume 140, No.2, pages 107–113. IET, 1993.

Siân E Green, Jonathan P Rees, Philip A Stephens, Russell A Hill, and Anthony J
Giordano. Innovations in camera trapping technology and approaches: The inte-
gration of citizen science and artificial intelligence. Animals, 10(1):132, 2020.

Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing
Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Suk-
thankar, et al. Ava: A video dataset of spatio-temporally localized atomic visual
actions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 6047–6056, 2018.

Wenchao Gu, Shuang Bai, and Lingxing Kong. A review on 2d instance segmentation
based on deep neural networks. Image and Vision Computing, page 104401, 2022.

Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A dataset for large vocabu-
lary instance segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

Lorenz Gygax, Yvonne RA Zeeland, and Christina Rufener. Fully flexible analysis
of behavioural sequences based on parametric survival models with frailties—a
tutorial. Ethology, 128(2):183–196, 2022.

Leonard Hacker, Finn Bartels, and Pierre-Etienne Martin. Fine-grained action de-
tection with rgb and pose information using two stream convolutional networks.
arXiv preprint arXiv:2302.02755, 2023.

Abdul Mueed Hafiz and Ghulam Mohiuddin Bhat. A survey on instance segmenta-
tion: state of the art. International journal of multimedia information retrieval,
9(3):171–189, 2020.

Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns
retrace the history of 2d cnns and imagenet? In Proceedings of the IEEE confer-
ence on Computer Vision and Pattern Recognition, pages 6546–6555, 2018.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In
The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

Zhenwei He and Lei Zhang. Multi-adversarial faster-rcnn for unrestricted object
detection. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 6668–6677, 2019.

Maik Henrich, Mercedes Burgueño, Jacqueline Hoyer, Timm Haucke, Volker Stein-
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Roberto Henschel, Laura Leal-Taixé, Daniel Cremers, and Bodo Rosenhahn. Fusion
of head and full-body detectors for multi-object tracking. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, pages
1428–1437, 2018.

Miran Heo, Sukjun Hwang, Seoung Wug Oh, Joon-Young Lee, and Seon Joo Kim.
Vita: Video instance segmentation via object token association. Advances in
Neural Information Processing Systems, 35:23109–23120, 2022.

Miran Heo, Sukjun Hwang, Jeongseok Hyun, Hanjung Kim, Seoung Wug Oh, Joon-
Young Lee, and Seon Joo Kim. A generalized framework for video instance seg-
mentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14623–14632, 2023.

Shun Hongo, Yoshihiro Nakashima, Gota Yajima, and Shun Hongo. A practical
guide for estimating animal density using camera traps: Focus on the rest model.
bioRxiv, 2021. doi: https://doi.org/10.1101/2021.05.18.444583.

Man Hu and Fucheng You. Research on animal image classification based on transfer
learning. In Proceedings of the 2020 4th International Conference on Electronic
Information Technology and Computer Engineering, pages 756–761, 2020.

Zhiwei Hu, Hua Yang, and Tiantian Lou. Dual attention-guided feature pyramid
network for instance segmentation of group pigs. Computers and Electronics in
Agriculture, 186:106140, 2021.

De-An Huang, Zhiding Yu, and Anima Anandkumar. Minvis: A minimal video in-
stance segmentation framework without video-based training. Advances in Neural
Information Processing Systems, 35:31265–31277, 2022.

Zhaojin Huang, Lichao Huang, Yongchao Gong, Chang Huang, and Xinggang Wang.
Mask scoring r-cnn. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6409–6418, 2019.

Boyuan Jiang, MengMeng Wang, Weihao Gan, Wei Wu, and Junjie Yan. Stm:
Spatiotemporal and motion encoding for action recognition. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 2000–2009,
2019.

David Keatley. Pathways in crime: An introduction to behaviour sequence analysis.
Springer, 2018.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.
Segment anything. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4015–4026, 2023.

110



BIBLIOGRAPHY

Yu Kong and Yun Fu. Human action recognition and prediction: A survey. Inter-
national Journal of Computer Vision, 130(5):1366–1401, 2022.

Wouter M Kouw and Marco Loog. An introduction to domain adaptation and
transfer learning. arXiv preprint arXiv:1812.11806, 2018.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

Heeseung Kwon, Manjin Kim, Suha Kwak, and Minsu Cho. Motionsqueeze: Neural
motion feature learning for video understanding. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XVI 16, pages 345–362. Springer, 2020.

Roger Labbe. Kalman and bayesian filters in python. Chap, 7(246):4, 2014.

Trung-Nghia Le, Yubo Cao, Tan-Cong Nguyen, Minh-Quan Le, Khanh-Duy Nguyen,
Thanh-Toan Do, Minh-Triet Tran, and Tam V Nguyen. Camouflaged instance
segmentation in-the-wild: Dataset, method, and benchmark suite. IEEE Trans-
actions on Image Processing, 31:287–300, 2021.

Dongho Lee, Jongseo Lee, and Jinwoo Choi. Cast: Cross-attention in space and time
for video action recognition. Advances in Neural Information Processing Systems,
36, 2024.

Youngwan Lee and Jongyoul Park. Centermask: Real-time anchor-free instance
segmentation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 13906–13915, 2020.

Guofa Li, Xin Chen, Mingjun Li, Wenbo Li, Shen Li, Gang Guo, Huaizhi Wang,
and Hao Deng. One-shot multi-object tracking using cnn-based networks with
spatial-channel attention mechanism. Optics & Laser Technology, 153:108267,
2022a.

Rui Li, Baopeng Zhang, Zhu Teng, and Jianping Fan. An end-to-end identity asso-
ciation network based on geometry refinement for multi-object tracking. Pattern
Recognition, 129:108738, 2022b.

Wei Li, Yuanjun Xiong, Shuo Yang, Siqi Deng, and Wei Xia. Smot: Single-shot
multi object tracking. arXiv preprint arXiv:2010.16031, 2020a.

Yan Li, Bin Ji, Xintian Shi, Jianguo Zhang, Bin Kang, and Limin Wang. Tea:
Temporal excitation and aggregation for action recognition. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 909–918,
2020b.

Shijie Lian, Ziyi Zhang, Hua Li, Wenjie Li, Laurence Tianruo Yang, Sam Kwong,
and Runmin Cong. Diving into underwater: Segment anything model guided
underwater salient instance segmentation and a large-scale dataset, 2024.

111



BIBLIOGRAPHY

Duohan Liang, Guoliang Fan, Guangfeng Lin, Wanjun Chen, Xiaorong Pan, and
Hong Zhu. Three-stream convolutional neural network with multi-task and ensem-
ble learning for 3d action recognition. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition workshops, pages 0–0, 2019.

Chung-Ching Lin, Ying Hung, Rogerio Feris, and Linglin He. Video instance segmen-
tation tracking with a modified vae architecture. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13147–13157,
2020.

Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient
video understanding. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 7083–7093, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects
in context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
editors, Computer Vision – ECCV 2014, pages 740–755, Cham, 2014. Springer
International Publishing.

Matthew Linkie, Yoan Dinata, Agung Nugroho, and Iding Achmad Haidir. Estimat-
ing occupancy of a data deficient mammalian species living in tropical rainforests:
sun bears in the kerinci seblat region, sumatra. Biological Conservation, 137(1):
20–27, 2007.

Dongfang Liu, Yiming Cui, Wenbo Tan, and Yingjie Chen. Sg-net: Spatial gran-
ularity network for one-stage video instance segmentation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9816–
9825, 2021.

Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu,
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Juliana Vélez, William McShea, Hila Shamon, Paula J Castiblanco-Camacho,
Michael A Tabak, Carl Chalmers, Paul Fergus, and John Fieberg. An evaluation
of platforms for processing camera-trap data using artificial intelligence. Methods
in Ecology and Evolution, 14(2):459–477, 2023.

Gyanendra K. Verma and Pragya Gupta. Wild animal detection using deep con-
volutional neural network. In Bidyut B. Chaudhuri, Mohan S. Kankanhalli, and
Balasubramanian Raman, editors, Proceedings of 2nd International Conference on
Computer Vision & Image Processing, pages 327–338, Singapore, 2018. Springer
Singapore. ISBN 978-981-10-7898-9.

Alexander Gomez Villa, Augusto Salazar, and Francisco Vargas. Towards automatic
wild animal monitoring: Identification of animal species in camera-trap images
using very deep convolutional neural networks. Ecological informatics, 41:24–32,
2017.

Petra Villette, Charles J Krebs, and Thomas S Jung. Evaluating camera traps as
an alternative to live trapping for estimating the density of snowshoe hares (lepus
americanus) and red squirrels (tamiasciurus hudsonicus). European Journal of
Wildlife Research, 63(1):1–9, 2017.

117



BIBLIOGRAPHY

Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon Luiten, Berin Balachan-
dar Gnana Sekar, Andreas Geiger, and Bastian Leibe. Mots: Multi-object track-
ing and segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7942–7951, 2019.

Gaoang Wang, Yizhou Wang, Haotian Zhang, Renshu Gu, and Jenq-Neng Hwang.
Exploit the connectivity: Multi-object tracking with trackletnet. In Proceedings
of the 27th ACM International Conference on Multimedia, pages 482–490, 2019.

Guiqin Wang, Peng Zhao, Yanjiang Shi, Cong Zhao, and Shusen Yang. Generative
model-based feature knowledge distillation for action recognition. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pages 15474–15482,
2024.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao,
Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution
representation learning for visual recognition. IEEE transactions on pattern anal-
ysis and machine intelligence, 43(10):3349–3364, 2020a.

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and
Luc Van Gool. Temporal segment networks for action recognition in videos.
IEEE transactions on pattern analysis and machine intelligence, 41(11):2740–
2755, 2018a.

Shaoru Wang, Yongchao Gong, Junliang Xing, Lichao Huang, Chang Huang, and
Weiming Hu. Rdsnet: A new deep architecture forreciprocal object detection
and instance segmentation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, No.7, pages 12208–12215, 2020b.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural
networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7794–7803, 2018b.

Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and Lei Li. Solo: Seg-
menting objects by locations. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16, pages
649–665. Springer, 2020c.

Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen. Solov2: Dy-
namic and fast instance segmentation. Advances in Neural information processing
systems, 33:17721–17732, 2020d.

Yang Wang, Wanlin Zhou, Qinwei Lv, and Guangle Yao. Metricmask: Single cat-
egory instance segmentation by metric learning. Neurocomputing, 500:896–908,
2022.

118



BIBLIOGRAPHY

Yongxin Wang, Kris Kitani, and Xinshuo Weng. Joint object detection and multi-
object tracking with graph neural networks. In 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 13708–13715. IEEE, 2021.

Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao
Shen, and Huaxia Xia. End-to-end video instance segmentation with transformers.
arXiv preprint arXiv:2011.14503, 2020e.

Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and Shengjin Wang. Towards
real-time multi-object tracking. In European Conference on Computer Vision,
pages 107–122. Springer, 2020f.

Oliver R Wearn and Paul Glover-Kapfer. Snap happy: camera traps are an effec-
tive sampling tool when compared with alternative methods. Royal Society open
science, 6(3):181748, 2019.

Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. Siggraph
Course, 8:1–16, 2006.

Marco Willi, Ross T. Pitman, Anabelle W. Cardoso, Christina Locke, Alexan-
dra Swanson, Amy Boyer, Marten Veldthuis, and Lucy Fortson. Identifying
animal species in camera trap images using deep learning and citizen science.
Methods in Ecology and Evolution, 10(1):80–91, 2019. doi: 10.1111/2041-210X.
13099. URL https://besjournals.onlinelibrary.wiley.com/doi/abs/10.
1111/2041-210X.13099.

Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime track-
ing with a deep association metric. In 2017 IEEE international conference on
image processing (ICIP), pages 3645–3649. IEEE, 2017.

Jialian Wu, Sudhir Yarram, Hui Liang, Tian Lan, Junsong Yuan, Jayan Eledath,
and Gerard Medioni. Efficient video instance segmentation via tracklet query and
proposal. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 959–968, 2022a.

Junfeng Wu, Yi Jiang, Wenqing Zhang, Xiang Bai, and Song Bai. Seqformer:
a frustratingly simple model for video instance segmentation. arXiv preprint
arXiv:2112.08275, 2(3):4, 2021.

Junfeng Wu, Qihao Liu, Yi Jiang, Song Bai, Alan Yuille, and Xiang Bai. In defense
of online models for video instance segmentation. In European Conference on
Computer Vision, pages 588–605. Springer, 2022b.

Tao Wu, Mengqi Cao, Ziteng Gao, Gangshan Wu, and Limin Wang. Stmixer: A
one-stage sparse action detector. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14720–14729, 2023.

119

https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13099
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13099


BIBLIOGRAPHY

Wenqiang Xu, Haiyang Wang, Fubo Qi, and Cewu Lu. Explicit shape encoding for
real-time instance segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5168–5177, 2019a.

Yihong Xu, Aljosa Osep, Yutong Ban, Radu Horaud, Laura Leal-Taixé, and Xavier
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