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Abstract

Starting from a federal project to predict grapevine yields in Germany, we faced five
challenges to enable machine learning for yield prediction. The first challenge is train-
ing on small data sets, as capturing data for yield prediction is very time consuming
with most plants following an annual cycle. Providing a feature-based representation
of remote sensing data by modeling underlying distributions allows gradient boosting
methods to outperform deep learning approaches by 25% in our experiments for soybean
yield prediction in the US, one of the biggest datasets for yield prediction that allows
international comparability. The second challenge is the need for explanations to show
that the model’s decision making is in-line with experts knowledge of the field. For this
challenge, we extend the idea of Shapley value feature attributions to predefined groups
of features. The groupings are naturally given for yield prediction scenarios and allow
for an improved representation of the explanations, as individual features are plentiful
and often abstract. We give a novel algorithm to solve the problem of calculating the
grouped Shapley values in polynomial time for random forests as they result from the
gradient boosting pipeline from challenge one. Third, we work towards better feature
selection for yield prediction tasks. The introduction of grouped Shapley values sparks
the question of whether Shapley values could be used for feature selection. To address
this question, we define four necessary conditions for defining a Shapley value suitable
for feature selection. Additionally, we analyze the problem of model averaging where
unimportant features are allowed to alter the final feature selection by introducing a
novel exhaustive feature selection tool that has no problems with model averaging, and
use it to further evaluate Shapley values for feature selection. Our experiments indi-
cate that there is a small loss in accuracy due to model averaging, while the runtime
of Shapley values as a heuristic measure for feature selection is superior for random
forests. The fourth challenge is handling gaps in remote sensing data. As we need to
use remote sensing data to provide consistent coverage for a small research area, clouds
that occlude the satellite’s view on the Earth can hide a meaningful amount of data.
We approach this challenge by introducing a novel deep interpolation pipeline that uses
a U-Net structure together with partial convolutions to gradually fill in remote sensing
data in our research area, finally improving previously established statistical methods
by 44% in terms of RMSE. Lastly, we worked towards a solution to make predictions
for shifting domains, where we used regularized transfer learning to improve yield pre-
diction by transferring knowledge between different domains by 16% in terms of RMSE,
compared to not using transfer learning techniques.
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1 Introduction

Providing a secure source of food for the world’s population is an increasingly difficult
challenge. While the world population grows, the available farmland around the world
is limited, driving us to optimize agricultural efficiency to its full extent. Doing so
will be an integrated task of agriculture and political will, along with logistics of food
distribution around the world (Prosekov & Ivanova 2018). To be able to make informed
decisions, we need to be able to provide resilient data for the amount of food available,
which, in the end, is a question of predicting the yearly yields for a variety of different
crops around the world. The accurate prediction of yields then comes with multiple
benefits, such as advanced logistic planning capabilities, the possibility of redistributing
food throughout the world, and financial security for producers. Within this thesis, our
aim is to provide tools for reliable and exact yield prediction using explainable machine
learning algorithms.

Machine learning in yield prediction has developed an increasingly high accuracy over
time (Van Klompenburg et al. 2020) and has subsequently replaced statistical model-
ing approaches to predict crop development and yields. The advantages of machine
learning models over statistical approaches are multiple. For one, statistical methods
often rely heavily on experts’ understanding of biodiversity, plant-specific properties,
and local ecosystems (Lobell & Burke 2010). Changes in the environment will result
in the change of variables during the modeling process and ultimately in miscalculated
predictions. Especially in times of climate change, it cannot be guaranteed that the
environmental conditions remain stable. Machine learning methods used for yield pre-
diction can circumvent the well-known problem to an extent, by being able to react to
new environmental conditions and the resulting new patterns determining the yearly
yields, by simply being retrained on newly acquired data, representing the novel condi-
tions. However, with increasing accuracy, the complexity of the models and input data
also expands. Popular data sources include remote sensing data (Huber et al. 2022, You
et al. 2017), fertilization schedules (Meng et al. 2021), climate information (Cao et al.
2020), and soil evaluation (Sirsat et al. 2019), just to name a few. Successful models
can utilize up to 1000 features to predict yield (Huber et al. 2022), making models and
data increasingly difficult to understand. This is why we need to focus on explainable
machine learning to not only provide accurate predictions but also provide explanations
for the models decisions. Explaining the models decisions can raise trustworthiness by
showing that the process of making predictions is in line with the knowledge of experts of
the field, or by explaining the complex relations determining the yearly yields in general.
Throughout this thesis, we will focus on the game-theoretic concept of Shapley values to
obtain explanations for our models. Shapley values can provide a unified framework for
explaining machine learning models with desirable properties. For tree models specif-
ically, we can find a feature attribution score that is able to allocate credit among all
features equally, regardless of the position in the tree. Moreover, Shapley values for ex-
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1 Introduction

plaining tree-based models are known to have strong performance on several benchmarks
and consistency with human intuition (Lundberg et al. 2020).

1.1 The Challenges of Explainable Yield Prediction

Throughout the work in this thesis, we identified five major challenges to achieve reliable
and explainable machine learning solutions for different yield prediction scenarios. In the
following, we will explain the five challenges from different points of view. Each challenge
in general can be seen as a universal challenge in machine learning, where regardless of
the specific scope of the task at hand, we find similar problems in the literature. We then
point out the specifications for the regarding challenge that arise from our scope of yield
prediction. Finally, we will give an example of how the challenge impacted our work
during the ongoing federal project “Künstliche Intelligenz für innovative Ertragsprog-
nose bei Reben” (KI-iREPro). The title of the project can be translated to “Artificial
Intelligence for innovative Grapevine Yield Prediction”. Founded in April 2021, the
project includes partner expertise in commercial wine growing, experimental breeding
of new varieties, and computer science. The goal of the project is to enable accurate
predictions of grapevine yields by incorporating extended data acquisition and finally
machine learning-based yield prediction models into viticultural processes. To explain
the challenges in this introduction, we give selected details of the project as necessary,
with more information on the project described in Section 3.2. Following the challenge
explanation, we will emphasize the measures taken to achieve an improved explainable
yield prediction.

a) Training on small data sets

Suffering from a lack of training data to represent the underlying distribution of the sce-
nario at hand is known to be a constant problem for machine learning tasks. Numerous
solutions to this challenge exist, from generating synthetic data, over using unsupervised
methods that eliminate the need for labels, to choosing machine learning models that
require fewer data points to learn underlying relationships. Although many problems in
machine learning are tackled by deep learning approaches, and neural nets are known
to be an universal function approximator if enough data are available, they might not
be the best choice for a machine learning problem with limited training data. For yield
prediction, in general, the scarcity of data arises from being able to obtain new data
points only once a year, during harvest. Even the largest data sets available, for exam-
ple for soybean yield prediction in the US, where the US Department of Agriculture is
a pioneer for accurate and reliable data acquisition in agriculture, can offer little more
than 15,000 data points to work with. For deep learning applications, we often have
access to more training data, such as the popular ImageNet data set that consists of 14
million annotated images (Deng et al. 2009). Furthermore, multiple data points for yield
prediction taken from the same year always show some form of correlation, since growing
conditions in a year only allow for so much variation; inducing bias into the model if too
few years are considered during model training. Within the KI-iREPro project, we had
access to little more than ten years of historical records that can be used as ground-truth
yield data for creating a prediction model. Furthermore, data acquisition in the past was
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1.1 The Challenges of Explainable Yield Prediction

not done with machine learning in mind. This, in conjunction with common agricultural
practice in viticulture, results in artifacts, further shrinking the amount of data available.
In this work, we present a pipeline to parameterize the underlying distributions of freely
available remote sensing images to obtain feature-based representations that allow the
use of eXtreme Gradient Boosting (XGBoost) for yield prediction (Huber et al. 2022),
making reliable predictions with access to limited training data sets. We succeed in
providing models with 25% higher accuracy in terms of RMSE, when compared to deep
learning approaches, even for the largest and most widely used yield prediction data set
within the field of research, soybean yield prediction in the US.

b) Need for explanations

Explainability is one of the most anticipated research directions in machine learning
right now. According to Selbst & Barocas (2018), there are three general reasons be-
hind the call for an explainable AI. (1) the fundamental question of autonomy, dignity,
and personhood, (2) educating about how to achieve different prediction results, and
(3) explaining the model allows a debate on whether the model’s rules are justifiable.
Translating the motivation to yield prediction, the first point of motivation remains im-
portant even when we make no predictions directly related to individual human beings,
as the yearly harvest cycle significantly touches on the life of the producers. Similarly, it
is desirable to learn how to maximize annual yields and increase trust in predictions by
providing a way to justify the model by experts. In KI-iREPro, we faced the challenge
of explainability, especially with regard to the last talking point, with many viticulture
experts in our project. It was desired to explain the yield prediction models in a way that
both computer scientists and domain experts could find a common language. Especially
challenging in explaining yield prediction models is the variety of input features that can
be used to obtain yield predictions, bringing common explanation methods to the edge,
as explanations are often confusing when too many input variables are explained at once.
A solution to this problem can be given by grouping the explanation of features together,
which are generally explained as one unity. This includes multiple features acquired by
the same sensor or at the same point in time. We extend the well-known framework
of Shapley values, giving a definition of grouped Shapley values that can conserve the
additivity of explanations for groups of features, one of the key qualities of Shapley val-
ues. Building on existing work for fast calculation of Shapley value feature attributions,
we give an algorithm for polynomial calculation of grouped Shapley values for random
forests. Exploiting the tree structure, we calculate the final Shapley value by adding
the contributions of each path in the tree, instead of following the direct definition of
grouped Shapley values, where an exponential amount of calculations is needed. This
is possible since each path of a tree is included in multiple steps of naive Shapley value
calculation. We can finally use our approach to explain the machine learning models
that are created to solve the first challenge described above.

c) Selecting important features

The first step in designing a machine learning model is to define the data that should be
captured for the predictions. While for some problems finding the right input features
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comes naturally, there are others where the number of possible input features is nearly
endless and we need to decide on a meaningful representation of the data. The task
of feature selection is historically divided into three different families (Huan & Hiroshi
1998). First, the filter approaches where the feature subset is selected based on some
quality measurement that is independent of any machine learning algorithm. Second,
wrapper methods, where the feature selection is wrapped around a machine learning
algorithm to generate a feature subset based on the algorithms’ performance. Then we
have the third family, embedded methods, where we directly compute the importance of
the features based on their contribution within the machine algorithm. A famous exam-
ple for embedded feature selection for random forests is a greedy feature selection based
on the internal Gini importances of random forests (Menze et al. 2009). With regard
to yield prediction, annual yields are determined by a multitude of different influencing
factors. Climatic conditions, soil properties, and agricultural practices are just some ex-
amples. The underlying relations that determine the yields from these factors are very
complex and difficult to model. Data that can be used for yield prediction are plentiful,
but in-field measurements by experts or specialized sensors are an excellent source for
precise predictions, but are often expensive to obtain. Within KI-iREPro, we noticed
that data acquisition for yield prediction often follows a pattern, where the same sensor
usage or expert assessments take place multiple times throughout the year. Reproduc-
ing a models success with fewer input features could lead to fewer sensors or expert
hours needed to obtain future predictions, ultimately increasing the chance of real-world
adoption of our yield prediction models. For our feature selection approach, we build on
the concept of grouped Shapley values. With Shapley value feature attributions being
fast to calculate for random forests and offering accessible explanations, it is an open
question whether we can leverage the attributions towards selecting important features.
We contribute to the discussion by showing that a properly defined Shapley value feature
attribution can solve most of the existing concerns regarding Shapley values for feature
selection, while separating model averaging as an unsolvable remaining problem (Huber
& Steinhage 2024d). In feature selection for prediction models, it is uncertain which
features should be considered for the final feature selection. Model averaging is the
process of quantifying the influence of all features with respect to predictions (Madigan
& Raftery 1994, Raftery 1995). Finally, model averaging allows unimportant features
to alter the feature selection, giving nonoptimal solutions. To analyze the impact of
model averaging on real-world feature selection problems, we introduce a feature selec-
tion method based on estimating the expected model output for random forests for a
restricted feature space. Analyzing all feature subsets naturally results in an exponential
runtime of the approach, but allows for a comparison with Shapley value feature selec-
tion for reasonable sized problems. Our experiments only demonstrate a slight increase
in performance when model averaging is mitigated, justifying Shapley values for feature
selection given their superior runtime for random forests. Finally, using Shapley values
for feature selection allows us to decrease the number of input features by 72% while
only sacrificing 1% in accuracy, compared to our initial experiments for the prediction
of soybean yield in the US.
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1.1 The Challenges of Explainable Yield Prediction

d) Gaps in remote sensing data

Remote sensing data is a term used to refer to data captured by satellites orbiting the
Earth. For example, NASA satellites Terra and Aqua equipped with the Moderate-
Resolution Imaging Spectroradiometer MODIS (Vermote, E. 2021) capture daily infor-
mation about visible and infrared reflectance of the Earth’s surface that can be used
to infer the phenological condition of plants (Gao 1996). They provide an important
data source for a variety of machine learning applications, such as monitoring changing
climate (Schneider & Hook 2010) or analyzing the environmental impacts of land cover
(Gohain et al. 2021). Furthermore, they play an important role in yield prediction,
where they offer a reliable and accessible data source to match historical records of yield
quantities with climatic and phenological information about the plant state at the time,
even though the data suffer from missing information induced by clouds blocking the
satellite’s view on the research area. We witnessed this problem during data prepara-
tion for grapevine prediction during KI-iREPro. Current solutions include either using
remote sensing data at a low spatio-temporal resolution to avoid gaps or the interpo-
lation of the gaps based on statistical methods. However, plot-level predictions require
the use of high-resolution satellite data, and statistical models are often unable to learn
the underlying climatic pattern of the interest regions. Within this thesis, we introduce
a deep interpolation practice to fill gaps in remote sensing Land Surface Temperature
(LST) data with the help of local ground-site weather stations and a U-Net architecture
incorporating partial convolutions, resulting in a full coverage of our study area used
within KI-iREPro. This is done with a novel deep learning pipeline that can learn on
partial ground-truth data exclusively. This is possible by (1) performing partial convo-
lutions, gradually filling unknown pixels with information based on their neighbors, and
(2) defining a loss function and training pipeline that evaluate the reconstruction only
on valid pixels (Huber et al. 2024b). By doing so, we allow model training, even when
the amount of non-occluded ground-truth data is severely limited. The improvement
in reconstructing the daily Land Surface Temperature (LST) in our study area is mea-
sured by a decrease of 44% in terms of RMSE compared to state-of-the-art statistical
modeling.

e) Making predictions for shifting domains

All throughout machine learning, researchers are faced with changing data properties,
before or during the application of a machine learning model (Zhou et al. 2022). Most
machine learning algorithms are highly based on the assumption that the data used for
training and the data found during the application are drawn from the same distribution.
But this is not always the case, especially when domains shift in some kind of form. Yield
prediction scenarios themselves are quite versatile, including different regions around
the world and different crops and crop varieties. While some scenarios are extensively
explored and data acquisition is already occurring over an extended time period, others
are not. Naturally, the question arises if our models can handle the change in domain
from one yield prediction scenario to another, for example by changing the growing
region or the crop variety at hand. Traditionally, the easiest solution to this problem is
to retrain whole machine learning models with a more fitting training data distribution.
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However, this way of solving the problem has the potential to hold the approaches back,
as they cannot integrate previous learning from a different domain into the pipeline.
In this thesis, we explore the possibilities of transfer learning by examining soybean
yield in the US. For this, we use deep learning instead of XGBoost, as decision tree
approaches to transfer learning (Segev et al. 2016, Jiang et al. 2019) are not as powerful,
especially when the respective domains are inhomogeneous. We use a Convolutional
Neural Net (CNN) to learn features from remote sensing satellite data for soybean yield
prediction in the US and transfer the knowledge to soybean yield prediction in Argentina
(Huber et al. 2024a). For this, we explore the capabilities of different state-of-the-art
regularization techniques and attach a deep Gaussian process to improve the results,
revealing an improvement of 16% in terms of RMSE for soybean yield prediction in
Argentina when using knowledge transferred from soybean yield prediction in the US,
compared to not using transfer learning.

1.2 Contributions

This work presents five distinct contributions that correspond to the five challenges for
yield prediction identified in the KI-iREPro project, as previously mentioned. While
the solutions are formulated with yield prediction in mind, the ideas for explainability
and feature selection extend beyond the horizon of yield prediction and can ultimately
be useful in a variety of machine learning tasks. Each contribution can be linked to a
specific peer-reviewed publication on the topic. The summarized contributions are as
follows:
a) Extreme Gradient Boosting for Yield Estimation Compared with Deep
Learning Approaches (Huber et al. 2022)

• Conceptual: Analyzing gradient boosting methods for yield prediction on remote
sensing data compared to deep learning approaches.

• Methodical: Extracting features from remote sensing data in tabular form by
modeling the underlying skewed normal distributions based on histogramization
of remote sensing data.

• Results: Improving yield prediction for the biggest available data set — the
soybean yield prediction in the US — by 25% in terms of RMSE over the state-of-
the-art deep learning approaches.

b) Grouping Shapley Value Feature Importances of Random Forests for ex-
plainable Yield Prediction (Huber et al. 2023)

• Conceptual: Exploit given natural groupings of features from yield prediction
scenarios to improve the usability of Shapley values to explain yield prediction
models.

• Methodical: 1. Giving a polynomial algorithm to calculate the grouped Shapley
values for random forests. 2. Providing proof that the sum of individual Shapley
values is not the same as using grouped Shapley values when calculated on random
forests by giving a counterexample.
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1.2 Contributions

• Results: We provide Grouped Shapley Values (GSV) as a specialized tool for
explaining yield prediction models directly attaching the method to the success of
individual Shapley values and are therefore able to improve the explainability for
yield prediction scenarios.

c) Conditional Feature Selection: Evaluating Model Averaging when Select-
ing Features with Shapley Values (Huber & Steinhage 2024d)

• Conceptual: Asking the research question if Shapley values should be used as a
feature selection tool and evaluating theoretical shortcomings against performance
in application.

• Methodical: 1. Defining four necessary conditions for defining a Shapley value
suitable for feature selection. 2. Introducing a novel exhaustive feature selection
method (CFS) to evaluate the lost performance of using Shapley values for feature
selection due to model averaging. The core idea is to evaluate the expected model
output with limited access to feature subsets.

• Results: The baseline approach of greedily selecting features according to the
internal Gini feature importance of random forests is consistently improved on
by both, a feature selection according to Shapley values by circa 5% in terms of
RMSE and according to CFS by circa 7.5% in terms of RMSE when averaged over
all possible subset sizes.

d) Deep Interpolation of Remote Sensing Temperature Data with local Weather
Stations and Partial Convolutions (Huber et al. 2024b)

• Conceptual: Carrying over the success of deep learning for image inpainting
towards interpolating gaps in remote sensing land surface temperature (LST) data.

• Methodical: 1. Design of a U-Net architecture specific to our region of interest.
2. Introduction of a training pipeline allowing the exclusive use of partial ground-
truth images for model training where two partial images are combined to create
realistic cloud occlusions, including the introduction of a partial loss function.

• Results: Improvement over previous state-of-the-art statistical methods by 44%
in terms of RMSE while filling 100% of all pixels.

e) Leveraging Remote Sensing Data for Yield Prediction with Deep Transfer
Learning (Huber et al. 2024a)

• Conceptual: Answering the question whether regularized transfer learning is
possible for yield prediction scenarios with widely differing domains.

• Methodical: 1. Data handling to achieve spatio-temporal alignment of the two
data domains. 2. Design of a deep learning set-up which allows transfer learn-
ing using established building blocks including frozen weights and regularization
(L2-SP and BSS) driven fine-tuning followed by the application of a Gaussian
process.

• Results: Improvement for soybean yield prediction of 16% in terms of RMSE
for Argentina with transfer learning compared to CNN training without transfer
learning.
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1.3 Thesis Structure

The following thesis is generally set up in the well-known manner of a research paper,
consisting of Related Work, Materials, Methods, and Experiments. Finally, we add a
chapter showing the practical usage of the methods as they are used in the real-world by
our partners within the KI-iREPro project. The chapters Related Work, Methods, and
Experiments consist of five sections, each dedicated to one of the five contributions, as
shown above. Most of the content in the chapters has been published in peer-reviewed
journal and conference contributions. For international comparability, we will first test
our pipeline for yield predictions with the well-renown soybean yield records captured
from the US Department of Agriculture (USDA), one of the largest data sets available
for yield prediction. The prediction model will be explained using grouped Shapley
values and will be optimized by feature selection. In the following, we apply the model
to the commercial and breeding aspects of the KI-iREPro project, first fixing the gaps
in remote sensing LST data in our research area. Lastly, we analyze the transferability
of knowledge in the context of yield prediction, again with regard to soybean yield data,
since for this task the amount of available data allows training expressive deep learning
models that will serve as the basis for transfer learning efforts.
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2 Related Work

In the introduction, we established five challenges for yield prediction. Each of the
challenges is suspect of previous research, which will be displayed below and marks the
starting point of this thesis contributions. As we have addressed each of our contributions
to the five challenges in a peer-reviewed publication, we will base the related work for
each challenge on one of our publications, extending the related work with new additions
if necessary. We start by explaining how the task of yield predictions and subsequently
the problem of limited data are handled in the literature. We then describe efforts
to obtain explainable models in yield prediction scenarios and introduce the history of
Shapley values in machine learning. We present related work discussing feature selection,
first in general, and then with the help of Shapley values. After this, we explore how
others solved the problem of gaps in remote sensing data and, lastly, we will explain
the related work regarding the transfer of knowledge between different models in yield
prediction, as it is necessary to handle shifting domains.

2.1 Yield Prediction

The topic of yield prediction is extensively covered in the surveys of Van Klompenburg
et al. (2020) and Nathgosavi & Patil (2021). For the sake of this thesis, we focus on the
discussion by dividing the research field into three types of approaches to yield predic-
tion. First, solutions based on statistical models. Second, machine learning approaches
without deep learning and (3) solutions based on deep learning. This section is based
on previously published work (Huber et al. 2022).

Statistical Models for Yield Prediction

As yield prediction is a research topic throughout history, we find a research branch
established before the widespread use of machine learning. General statistical models
with adjustable parameters are fitted to the specific yield prediction problem at hand,
often under the consideration of domain experts, helping with establishing the parame-
ters. Two representative approaches to yield prediction based on statistical models and
vegetation indices are reported by Meng et al. (2019) and Zhao et al. (2020). Meng
et al. (2019) propose a new daily vegetation index based on MODIS data and use it to
predict cotton yield in California. An exponential function with two learned parameters
is used to predict the yields. They achieve good results for yield prediction on a field
scale by combining images with low and high spatial resolutions. Zhao et al. (2020)
predict wheat yields at a field scale in Wales with traditional crop modeling based on
high-resolution images from the Sentinel-2 satellite. Their yield prediction model was
developed using statistical analysis of variance (ANOVA) and a multivariate analysis
that incorporates various derived metrics and indices. Statistical models are also used
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2 Related Work

in grapevine prediction. De La Fuente et al. (2015) report good results for grapevine
yield prediction when counting field measurements such as the number of clusters and
the weight of the cluster in different time frames throughout the growth cycle of plants
and predict the expected yield by comparing the reported feature values with historical
values of the same feature in previous years.

While these approaches are data- and computationally efficient, the handcrafted mod-
eling of multiple complex interactions with statistical models is very rigid and vulnerable
to not scaling well with changes in the environment. Therefore, the XGBoost-based ap-
proach presented in this thesis aims to benefit from the intrinsic advantages of machine
learning approaches, that is, being adaptable to changes in the environment by retraining
using new training data.

Machine Learning for Yield Prediction

Machine learning methods often improve the performance of statistical methods and,
most importantly, can be implemented without expert knowledge, using a sufficient
amount of training data instead. The works of Rodŕıguez et al. (2017) and Bóbeda et al.
(2018) focus on predicting the yields in citrus orchards. Both approaches use a selection
of phenological information that is captured directly from plants multiple times a year.
For both, the implementation of M5-Prime (Wang & Witten 1996) of random forests
shows superior results on different kinds of citrus fruits. Sirsat et al. (2019) describe an
approach to grapevine yield prediction using phenological information, soil properties,
and climatic conditions. The random forest ensemble technique proposed by Breiman
(2001) shows the best results to predict grapevine yield. More recent publications show
the benefits of incorporating remote sensing data for yield prediction. Mart́ınez-Ferrer
et al. (2020) include remote sensing data in terms of vegetation indices together with
phenological information and use a Gaussian process to predict the yield of corn, wheat
and soybeans in the US. Meng et al. (2021) employ vegetation indices for the prediction
of maize yield in California on a field scale. Complementing data sources include fertilizer
information, climate data, and soil properties. They conclude that non-linear models
such as random forests are best performing for this kind of prediction task. The first
study to use XGBoost for yield prediction is that of Charoen-Ung & Mittrapiyanuruk
(2018). Based on the characteristics of the plot, the phenological information, and the
rainfall volume, they predict the yield of sugar plots in Thailand. This approach forgoes
an exact yield regression and instead solves the binary classification problem, whether
the yield is above or below the median of the training data. Cao et al. (2020) deploy
LightGBM as a form of gradient boosting for random forests to predict winter wheat
yields in China. Again, they used vegetation indices, derived from remote sensing data,
together with climatic and socioeconomic factors as input data. In recent advances,
Desloires et al. (2023) achieved similar results with deep learning and XGBoost for the
prediction of corn yield on the field scale in the US. Instead of using the regular way
of aggregating the data according to a fixed time frame, they calculated the sampling
pattern according to the actual growth periods of the plants to improve the model
accuracy. Celik et al. (2023) achieved state-of-the-art results for cotton prediction using
XGBoost and LightGBM.

The novelty introduced within our work for explainable yield prediction is the com-
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bination of machine learning and our way of sampling remote sensing data to achieve a
tabular representation, by exploiting a representation as skewed normal distributions of
the features involved in the prediction.

Deep Learning for Yield Prediction

The latest developments in yield prediction include the use of deep learning architec-
tures. The extensive use of deep learning for the prediction of yields gained momentum
with the publication of You et al. (2017). They investigated the deployment of basic
convolutional neural networks (CNNs) and long-short-term memory networks (LSTMs)
for yield prediction on a USDA soybean data set similar to the soybean yield prediction
data set examined in this thesis. Furthermore, they developed the idea of using binned
histogramizations of remote sensing data to overcome the limitations that are implied
by nonregular-sized images for deep learning. The same concept is picked up by Sun
et al. (2019), who evaluate a CNN-LSTM hybrid model for the same yield prediction
task and report improved accuracy. Other notable publications, including CNNs, are
presented by Wang et al. (2020) and Wolanin et al. (2020). Forgoing complex structures
such as CNNs and RNNs, the work of Khaki & Wang (2019) shows that an accurate
prediction of maize yield based on environmental and genotype information is possible
using only simple feedforward networks. They predict future weather conditions to ob-
tain a more accurate prediction of yield in the early stages of the year. Alibabaei et al.
(2021) demonstrate the benefits of incorporating the exact irrigation schedule of the
crops examined. Given very detailed input information, they compare predictions made
by several algorithms, including LSTMs, CNNs, and feedforward networks. The experi-
ments show a superior performance of a bidirectional LSTM structure in predicting the
yields of potatoes and tomatoes. The data provided by the USDA have become very
popular in recent years because it is one of the largest sources of yield data. Like most
regression tasks, yield prediction becomes more difficult when there are fewer training
data available. Wang et al. (2018) address this problem by applying the concept of
transfer learning. They first train an LSTM network for soybean yield prediction in
Argentina and then transfer the knowledge to regions in Brazil that have fewer available
data. Another idea to solve this problem is introduced by Khaki et al. (2021), who
combine the predictions of different crops to overcome data scarcity. They present a
multi-target regression CNN structure, together with a newly developed combined loss
function. Experiments are again carried out on USDA data by simultaneously predicting
soybean and corn yields based on remote sensing data, showing promising results.
There are two state-of-the-art approaches to soybean yield prediction based on deep

learning that are explicitly demonstrated and evaluated on USDA and remote sensing
data, namely the CNN-based approach of You et al. (2017) and the CNN-LSTM hybrid
model of Sun et al. (2019). Later in this thesis, our approach to an XGBoost-based yield
prediction system will be compared with these two approaches (Section 5.1).

2.2 Explainability and Shapley Values

Again, we will review the related work divided into categories. First, we will give an
overview about explainability in machine learning as a whole. Then, based on the related
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work section of one of our previous publications (Huber et al. 2023), we will examine the
state of explainability in yield prediction. Lastly, we focus on a specific idea to obtain
explainable machine learning in the form of Shapley values, as they will be an integral
part of our explainability pipeline, we will describe the history of using Shapley values as
feature importance measure together with previous efforts to expand the paradigms of
Shapley values onto groups of features, both in a general game-theoretic and a machine
learning context.

Explainability in Machine Learning

With the widespread adoption of machine learning and a rise in precision throughout
a multitude of tasks, also the complexity of machine learning models increased. This
naturally results in an increased interest in the scientific field of explainable artificial
intelligence (XAI), with the aim of explaining the decisions of machine learning models
in human understandable terms to raise trust in the predictions. A comprehensive survey
of the topic is given by Linardatos et al. (2020). The approaches to explain models can
generally be divided into two groups. First, methods providing local explanations, where
the predictions for individual data points are explained, and second, methods for global
explanations, where the model is explained without consideration of a specific data point.

The local explanation methods can then be divided into model-specific and model-
agnostic approaches. While model-specific approaches are designed to explain a specific
kind of machine learning model, model agnostic approaches can be applied universally
to any kind of machine learning model. In recent years, the most famous model-specific
approaches have been developed for deep learning approaches, where the black-box na-
ture of models with ever-increasing complexity are in desperate need of explanations.
Deep learning specific approaches often perform some kind of backtracking of neuron ac-
tivation to see which input neurons have the highest impact on the models’ prediction.
The idea was first proposed by Simonyan et al. (2013), where a gradient explanation
technique was introduced. Gradients were used to calculate how small changes in the
input will change the model output, and input pixels with high gradients are seen as im-
portant to the model’s decisions. This main idea was improved many times, for example
by Sundararajan et al. (2017). They achieved the desired properties of explanations by
changing the method to calculate the gradients. Another approach for explaining deep
learning approaches are Class Activation Maps (CAMs) as first introduced by Zhou
et al. (2016) to achieve explainability for CNNs. CAMs indicate discriminative regions
of an image that are used to determine the classification result of the network. Selvaraju
et al. (2017) extend on this idea with the so-called Grad-CAM approach. Grad-CAM
stands for gradient-weighted class activations mapping and uses the gradients of the
target flowing into the final layer of a CNN to produce localization maps that highlight
the important regions in the input image, finally allowing explanations for any kind of
CNN. Model-specific explanations also exist for other models, so for example random
forests. Mollas et al. (2019) introduce local explanations, where they determine the
feature ranges, where a change in input will not change the output of the model. An
extension of the work for multi label classification is given by Mylonas et al. (2022).

In comparison, there are other local explanation approaches that are model agnostic
with an idea that can be applied to any machine learning model, allowing for unified
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explanations. Famously, the LIME method for local model-agnostic explanations gained
a lot of recognition (Ribeiro et al. 2016). LIME explanations are achieved by sampling
data around the neighborhood of the input instance and using the predictions of the
original model to train a smaller natively explainable model, like a decision tree. Giving
explanations to the small model then automatically explains the source model. However,
there are possible problems with the approach, for example, when poor parametrization
leads to missing explanations (Garreau & Luxburg 2020). Evolving on the idea of
LIME, Zafar & Khan (2019) propose a deterministic version of the approach, where
the explanations are the same for every calculation by replacing the random sampling
with a deterministic selection of neighboring data points via clustering. In another
effort to create model agnostic explanations, the authors of LIME introduced anchors
to explain models (Ribeiro et al. 2018). An anchor is a locally computed sufficient
set of features and conditions such that the model output will remain the same. A
game theoretic approach to achieve local model-agnostic explanations is given by the
idea of Shapley values. We will discuss the related work regarding this topic in detail
later on. A direct explanation of the model output is not the only way to achieve
explainable machine learning. Another idea is contrastive explanations, where any model
is explained by deciding which features are important such that a specific model answer
is not given. This should help explainability in different domains, such as healthcare
care and criminology (Jacovi et al. 2021). Wachter et al. (2017) describe an approach
to find the smallest possible change that can be applied to the input features to achieve
a changed output from the model. This creates counterfactual examples that can serve
as a lightweight first interpretation of the model.

Global explainability is harder to obtain than local explanations, as the complex
decision process needs to be described in general and not only with a specific example
in mind. Friedman (2001) proposed the idea of Partial Dependence Plots (PDPs). They
show how a certain set of features impacts the model’s prediction by marginalizing the
rest of the features. As a result, PDPs usually do not account for all features of the
model and provide simplistic explanations. As an extension of PDPs, Goldstein et al.
(2015) proposed ICE plots to address some weaknesses of PDPs by again restricting
to local explanations. For random forests specifically, we also find a variety of global
explanation approaches, since the underlying structure of decision trees is often times
humanly understandable. Most famously, we refer to the Gini feature importance score,
where the features are evaluated according to the amount of uncertainty they remove
with respect to the splits inside the random forest (Nembrini et al. 2018).

Explainability in Yield Prediction

As described above, yield prediction as a research problem is being addressed with a
multitude of approaches, both for modeling and explaining the results. We already de-
scribed many deep learning approaches to the problem of yield prediction; for example,
the work of You et al. (2017), Wang et al. (2020), and Khaki et al. (2021). Although
gaining explanations of the models is difficult due to the black-box nature of deep learn-
ing models, some efforts were made to explain the results. You et al. (2017) correlate
the importance of a feature with the decrease in the accuracy of the model when infor-
mation on the feature is missing. They render the information of a feature useless by
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randomly permuting the values throughout the data set. With this approach, they can
assess the importance of whole feature groups by permuting their values simultaneously.
Experiments show that the red and near-infrared bands of satellite images are impor-
tant for their yield prediction model. Another way to gain explanations for the output
of deep learning frameworks is deployed by Khaki et al. (2021). They backpropagate
the output of active neurons in the last layer and are able to find active neurons in the
first layer to correspond to features of the input space. An explainable alternative to
deep learning for yield prediction can be found using tree structures like random forests,
that are prevalent in yield prediction. When not using deep learning, we find other solu-
tions to explain models in the literature. Dı́az et al. (2017) use the M5-Prime algorithm
(Wang & Witten 1996) to create regression trees for the prediction of citrus orchards
in Argentina. Since singular trees are considered instead of forests, they conduct a vi-
sual analysis of the feature importances based on the resulting tree structure. Similarly,
Bóbeda et al. (2018) use the M5-prime algorithm to predict citrus orchards in Argentina.
They use another popular method to understand the yield predictions and explain their
model output. By creating multiple subsets of features and evaluating their model in
the absence of each of the subsets, they find that it is not necessary to count the fruits
in the trees multiple times a year, and the results are only slightly worse when, instead,
calculating the volume of the trees’ crowns once. Since we can understand how tree
models are functioning, we can rely on the inner relations of the trees to find feature
importances that can give explanations to the model’s output. The Mean Decrease in
Impurity (MDI) (Louppe et al. 2013) can be used to give a measure of the number of
splits made by each feature, weighted with the impact of the individual split, that is, the
proportion of training samples divided. This internal measure of importance is used by
Sirsat et al. (2019) to select expressive features when predicting grapevine yields based
on phenological information, soil properties, and climatic conditions. Meng et al. (2021)
use this method to show the high importance of vegetation indices when predicting maize
yield in California on a field scale. For the prediction of cotton yield in the US, Celik
et al. (2023) want to improve the explainability of XGBoost and LightGBM by using
explainable boosting machines (EBM) introduced by Nori et al. (2019). By restricting
the models to univariate terms and not considering interactions between the features
during modeling, EBMs allow for better explainability traded off against the models’
capacity. The work of Celik et al. (2023) uncovers precipitation as the most important
variable for the prediction of cotton yields by using EBM, although it cannot beat the
predictive performance of comparative gradient boosting models.

Our work within this thesis will be based on the explainability of random forests,
where each individual tree can be easily interpreted by humans. Within this thesis, we
will consider multiple features as inseparable a priori determined groups of features, as
is always possible due to the time-series aspect of yield prediction. We combine this idea
with the context of Shapley values as a universal tool for explaining machine learning
models.

Explaining Models with Shapley Values

For our advances in improving explainability in yield prediction scenarios, we will extend
the idea of Shapley values. Shapley values are a game-theoretic measure for solving a
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fair distribution of resources in a cooperative game. The value awarded to a player is
calculated by averaging his contribution over all possible coalitions that he could join
within the game. The Shapley value was popularized as a feature importance measure
by Lundberg & Lee (2017). The idea is to assign each feature an importance value for
a particular prediction. The choice of the game-theoretic construct to solve coopera-
tive games, namely the Shapley value, was found because of its desirable theoretical
properties and results that are in line with human intuition. One of the mathemat-
ical properties allows them to provide an additive feature attribution method, which
means that the sum of the feature importances will equal the actual model output for
the example. The calculation of Shapley values is, in general, a NP-hard problem. But
for decision trees, exploiting the tree structure allows computations in polynomial time,
as explained by Lundberg et al. (2020), giving the first polynomial-time algorithm to
compute explanations on tree structures based on game theory. The work also gives
an idea of how to use many local explanations to represent the global structure of the
model. Lastly, we want to highlight other efforts to extend the Shapley value feature
importances towards groups of features. On the one hand, we have the classical game-
theoretic view on this topic. However, the relevant works (Grabisch & Roubens 1999,
Marichal et al. 2007, Flores et al. 2019) all fail to preserve the efficiency property, which
means that the sum of all the attribution values of the features will not coincide with
the output of the model and therefore are not suitable to base the explanations on. The
work of Jullum et al. (2021) recognizes this weakness and presents a form to extend the
Shapley value to groups of players in the context of feature importance. This allows
for easier representation of the results together with a lower computational complexity.
Amoukou et al. (2021) base an approach to evaluate groups of features on a different
definition of grouped Shapley values, where groups of players continue to play against
individuals. The work is extended by giving a fast computation for tree structures and
selecting minimal subsets of features, so that the classifier will make the same decision
with high probability.
After summarizing the landscape of general explainability methods above and the

usage of Shapley values in this subsection, we can elaborate why we chose Shapley values
as the basis for our explanations. First and foremost, Shapely values for explaining
models are based on solid theory, with four axioms — efficiency, symmetry, dummy, and
additivity — giving a theoretical foundation to the explanations. Most importantly, the
axiom of efficiency will result in distributing the model prediction fairly on all features,
such that the sum of all calculated importance scores together with the mean expected
output of the model will precisely explain the model output for the data point at hand.
Furthermore, in contradiction to one of the most used competitors in LIME, we need no
assumptions like local linear behavior to explain the model with Shapley values. One of
the biggest drawbacks of Shapley value explanations is usually the run time for arbitrary
models, as we need to handle an exponential amount of coalitions during the calculation.
As we focus primarily on random forest-based models within this thesis, this drawback
does not apply as fast and exact calculation is available for random forests. Still, this
makes our methods applicable and comparable for any machine learning algorithm, when
we can omit runtime constraints or are satisfied with approximations of the Shapley
value. Throughout this thesis, we will build on the existing work but focus on a definition
of Shapley values where groups of players can only compete against other groups and
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not individuals. Following this concept, we are the first to give a polynomial algorithm
for the calculation in this scenario.

2.3 Feature Selection

To review related work on feature selection, we again divide the research into two areas.
First, we will give a broad overview of feature selection in general, especially focusing on
the model-driven wrapper methods and embedded methods for random forests. We then
discuss the use of Shapley values for feature selection, as can be found in the literature
up to this point. This related work section is based on our previous work (Huber &
Steinhage 2024d).

Feature Selection in General

Feature selection, in general, is a very well-researched topic within the field of machine
learning (Dhal & Azad 2022, Venkatesh & Anuradha 2019, Chandrashekar & Sahin
2014). Historically, approaches to feature selection can be divided into three different
families (Huan & Hiroshi 1998).

1. Filter approaches, in which the feature subset is selected based on some quality
measurement that is independent of any machine learning algorithm. An example
of a filter method is a correlation-based feature selection, where features are greed-
ily selected based on maximizing the correlation with the target variable while
minimizing the correlation to already selected features (Li et al. 2017).

2. Wrapper methods, where feature selection is wrapped around a machine learning
algorithm to generate a feature subset based on algorithm performance. In par-
ticular, (Huang et al. 2016) use a random forest to evaluate the value of a feature
based on the performance of the model when the values of a feature are randomly
permuted. The highest ranked features are then used for feature selection.

3. Embedded methods, where we directly compute the importance of the features
based on their contribution to the machine learning algorithm. A famous example
of embedded feature selection for random forests is a greedy feature selection based
on the internal Gini importances of random forests (Menze et al. 2009).

Another related research direction is feature extraction, where the existing feature space
is altered to create new more expressive representing features in a lower dimension.
Although procedures like principal component analysis (PCA) (Park et al. 2005) are a
very common paradigm in machine learning, we opt to focus on feature selection rather
than feature extraction, as we lose explainability when we alter the feature space (Jijón-
Palma et al. 2023).

Furthermore, as throughout our manuscript, we focus on problems where we already
find a functional machine learning algorithm that should be further optimized, we will
focus on wrapper methods and embedded methods for this literature review. As random
forests have been used for several decades now, feature selection methods that wrap
random forests or decision trees are a widely investigated research topic.
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Deng & Runger (2012) are not selecting a subset of features before creating the model,
but rather encourage the correct choice of features during model creation. This is im-
plemented by penalizing the selection of new features within computing random forests
when the feature information content is similar to a previously selected feature. Another
wrapping method is proposed by Genuer et al. (2010). After creating a random forest,
they evaluate the importance of features by calculating the difference in error when the
feature values are randomly permuted. The deviation in error is then directly correlated
with the importance of the feature, and the most important features are selected. This
idea is further explored by the work of Gazzola & Jeong (2019) by adding a clustering
of data points to take advantage of the structure of dependencies between the input
features. The advantages of selecting features based on the knowledge already provided
by the previously selected features are suggested by Alsahaf et al. (2022). Features are
selected sequentially according to the internal importance of an XGBoost model, where
in each step the probability of new features being selected is adjusted by the number
of misclassified training examples for a model based on the current feature selection. A
different approach is explored by Shih et al. (2018), which is not directly interested in
finding a subset of features that are well suited to retraining a machine learning model
with a smaller input feature space, and similar to our work, they focus on finding expla-
nations based on individual data instances. The concept of sufficient reasons explains a
prediction by finding a subset of features already sufficient such that the model output
will be the same, no matter the other feature values. Arenas et al. (2022) extend this
approach by not demanding the exact same model output, but a high probability of
equality. Lastly, a wrapper approach is proposed for the selection of features in random
forests by Zhou et al. (2021). They calculate feature weights dependent on the layers
of the decision trees and select the feature with the largest weights as a partition for
further model creation. The two feature selection approaches analyzed and developed
in this thesis are all part of the family of wrapped feature selection for random forest.
First, we use Shapley value feature importances that can be calculated for an existing
machine learning model to select important features. This approach can also be seen as a
heuristic search, as we use Shapely values as a heuristic on which features are expressive,
without needing to consider every subset of features. Our other approach explained in
this thesis will take the idea further, but employ it in an exhaustive search, where we
evaluate every possible subset that can be selected.

Shapley Values for Feature Selection

With the rise of Shapley values in explainable AI, it also became an interesting research
topic to explore the possibilities of Shapley values for feature selection. One of the main
benefits of Shapley values in explainability is the ability to provide unified feature at-
tribution values for different machine learning models. A similar benefit is given by the
above-mentioned LIME framework. As with Shapley values, also LIME was researched
as a feature selection tool (Man & Chan 2021), where in a comparison the top-rated
features for both, a LIME and a Shapley values based feature selection improved the
performance of random forests. One of the earliest works exploring Shapley values for
feature selection is done by Cohen et al. (2005). After estimating the Shapley value
feature importance via sampling permutations, they introduce the Contribution Selec-
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tion Algorithm (CSA) to greedily select the most important features. They show the
best results when using the algorithm to eliminate the unimportant features, instead
of selecting the most important ones. They also investigated their CSA approach on
additional data sets in follow-up work (Cohen et al. 2007). Marćılio & Eler (2020) give a
general subsumption of the topic. The most important features according to TreeShap
(Lundberg et al. 2020) are greedily selected and the accuracies reached are evaluated on
several data sets. The survey shows the capabilities compared to other popular feature
selection methods. A broad overview on the use of the Shapley value in machine learn-
ing by Rozemberczki et al. (2022) also talks about the possibilities of Shapley values
in feature selection. Chu & Chan (2020) eliminate the problem of additional features
altering the Shapley value and therefore the final selection of features. They do so by
proposing an iterative feature selection approach based not only on Shapley values but
also on higher-order interactions. We see multiple cases of Shapley value feature selec-
tion that solve real-world problems. Fang et al. (2022) successfully decrease the number
of features needed for air pollution forecasting in China, by selecting the most important
features of an ensemble model, including a random forest, according to the output of
Shapley value-based SAGE explanations (Covert et al. 2020). Zacharias et al. (2022)
designed a framework for easy access to a wrapped feature selection based on Shapley
values and random forests. The result is a feature selection process that includes user
feedback. They are able to report nearly unchanged accuracy for reduced feature counts
on a variety of data sets. Strumbelj & Kononenko (2010) give a different procedure to
obtain feature attributions with the Shapley value. As is commonly done, they randomly
sample permutations to reduce computational complexity compared to calculating the
exact Shapley value. The novelty of their approach is to obtain explanations by also
randomly sampling an instance from the data that serves as the base value of the expla-
nation in every iteration of the algorithm. Štrumbelj & Kononenko (2014) extend on this
idea by improving the sampling algorithm via quasi-random and adaptive sampling, and
are able to show improved explainability in an experiment with human participants. In
comparison to those successful implementations of Shapley values for feature selection,
we find some criticism within the literature (Kumar et al. 2020, Huang & Marques-Silva
2023, Sundararajan & Najmi 2020, Fryer et al. 2021). We will give an in-depth analysis
of these critical ideas in Section 4.3.

All in all, we see that there exist multiple approaches to calculate feature attributions
Shapley values and different ideas to take advantage of the calculated values for feature
selection. Our work is the first to conceptually define the conditions that a definition of
Shapley values should meet so that the resulting values can be used for feature selection.
Furthermore, we give the first algorithm to evaluate the impact of the model averaging
problem, where unimportant features can alter the final selection that is intrinsic to any
definition of Shapley values in machine learning, and we give an extensive analysis on
multiple real-world examples.

2.4 Filling Gaps in Remote Sensing LST Data

The following section is based on the Related Work section of our recent publication
Huber et al. (2024b) and is again divided, covering two general research directions related
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to the challenge of cloud-induced holes in remote sensing data. Remote sensing LST
image interpolation is a widely investigated research area, often relying on statistical
approaches to interpolate between close neighbors of missing values. This is covered in
the first part of this section. The second part of the related work describes the state of
general image inpainting with deep learning and why this can be related to providing
gap-free estimations of LST.

Estimating Missing Land Surface Temperature

The common idea in most efforts to fill in gaps in LST data retrieved from remote sensing
observations is to fit some kind of function to valid pixels neighboring the missing values,
either in the spatial or temporal domain. An early adoption of this idea can be found in
the work of Neteler (2010), which fills gaps in MODIS LST in mountainous environments.
The study region is the central-eastern alps, and gap filling is done through statistical
operations that rely on the valid nearest neighbors of missing data points. Finally,
an evaluation against meteorological data measurements reveals R2 correlation values
between 0.7 and 0.98. The author concludes that the new reconstructed LST time series
are reducing the gap between high spatial and high temporal resolution. Metz et al.
(2017) introduce an approach that reconstructs values in time through local weighted
regression with a polynomial of order 2 and considering the 5 closest neighbors in time.
Afterward, spatial imputation is performed with thin plate spline interpolation, including
information on emissivity and elevation. All this is tested on MODIS data to achieve a
gap-free coverage of central Europe, achieving remarkable results in dealing with extreme
events, such as a heatwave effecting Europe in 2003. Similarly, Zhang et al. (2022) infer
the temperature of the surface of the land using a two-step algorithm. The first step
consists of data filtering and cleaning, where the missing value for gaps and low-quality
pixels is computed utilizing the information from other available data from the same
day, i.e., observations from other satellite overpasses. In the second step, the overall
yearly temporal trend is used as a basis to calculate the missing residuals by fitting a
smooth spline function to accessible valid pixels. They report an average Root Mean
Squared Error (RMSE) of 1.88 °C, validated by filling artificial gaps of varying sizes.
They highlight, that with their approach, there are no obvious block effects caused
by large areas of missing values, which might exists in other LST data sets. Another
popular approach is to transfer the LST data to a different domain to fit an interpolation
function. Pham et al. (2019) fill gaps in MODIS LST data captured in Australia. They
use multidimensional robust smooth regression (Garcia 2010) minimizing the squared
error after performing a three-dimensional discrete cosine transform with a manually
adjusted smoothing parameter. Validation is carried out against ground-based LST
data on real-world gaps, revealing RMSE values between 2 °C and 3.9 °C. Similarly, Liu
et al. (2020) use the same discrete cosine transform and penalization of least squares
to fill gaps in the MODIS LST data. Synthetic gaps are produced by the random
blinking algorithm to create evaluation data. An average RMSE of 0.91 °C is reported.
Both works have the advantage of not relying on alternative geospatial data sets to fill
the gaps and therefore avoid additional uncertainty. Furthermore, both works use a
parameterization of the smoothing parameters in a way that retains the high-frequency
components and therefore the global spatial patterns of the original LST data. A three-
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step hybrid method is proposed by Li et al. (2018). They first used other satellite
overpasses from the same day to fill gaps, if possible. This is followed by spatio-temporal
gap filling and lastly temporal interpolation using neighboring days. The evaluation was
carried out in urban areas within the US with an RMSE between 2.7 °C and 3.3 °C,
using artificial masks of missing values taken from other real-world examples for the
evaluation. Again, the approach does not rely on other geospatial data sets for gap-
filling. An included daily merging step that uses other satellite overpasses of the same
day further decreases the computational complexity of the problem. Focusing on the
reconstruction of 8-day MODIS LST data, Xu & Shen (2013) used harmonic analysis of
time series to reconstruct missing values. The validation was carried out by removing the
information of 76 pixels and considering them as ground-truth data to calculate a mean
absolute error of 1.51 °C. The authors highlight the capabilities of the approach to deal
with large and persistent gaps in LST data, while struggling with sudden and extreme
changes in the temperature. The first adoption of machine learning for the reconstruction
of missing LST values can also be found in the literature. Li et al. (2021) produce a gap-
free LST product by combining MODIS and ground-site measurements using random
forests, achieving an RMSE of 2.756 °C when validated with data at the ground sites.
Insights of their work include a clear improvement of the results for clear-sky conditions
when compared with cloudy sky conditions and good performances even without the
usage of spatial information for the reconstruction. Xiao et al. (2023) reconstructed
LST MODIS data for Zhejiang province. Missing pixel values are calculated individually
with different Machine Learning models, where eXtreme Gradient Boosting (XGBoost)
outperformed the other approaches with an average R2 of 0.95. The authors conclude,
that the XGBoost model demonstrated stronger learning capabilities and was able to
fit the complex relations of the data, in comparison to statistical regression approaches
or random forests. Both machine learning-focused works show the capabilities of tree-
based approaches but have the drawback of needing to interpolate every missing value
individually.

Overall, we see that the landscape of filling gaps in LST data focuses on statistical
approaches and slowly begins to adapt machine learning methods into the process. A
common drawback for all related work is the need to fill every missing value individually,
either by fitting some kind of interpolating function or evaluating some kind of machine
learning algorithm. This can be improved by our idea of using deep learning to solve the
problem. With respect to the type of evaluation, the different approaches vary widely,
making a direct comparison difficult. We analyzed the work of Metz et al. (2017) as an
excellent execution of the statistical approach to interpolating LST data, and we will
use this to obtain a baseline score for our use case and provide a fair evaluation.

Deep learning for Image Inpainting

Our idea of using deep learning to fill in gaps in MODIS LST data is highly influenced by
general image painting problems. Inpainting of images, in general, refers to a problem in
which information about the input image is missing in some way or another. The task is
then to infer the missing information in a way that is most likely given the existing valid
pixel information. It has been widely used in different applications to reconstruct image
data. Many approaches focus on inpainting regular shapes, such as boxes in the center
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of an image (Yang et al. 2017, Pathak et al. 2016). This inherently causes the network to
be induced with bias that is usually not wanted in practice, and also something that, in
general, rarely happens in the real-world. PatchMatch by Barnes et al. (2009) has long
been the state-of-the-art method for image inpainting. PatchMatch suggests a random
sampling base algorithm that computes patches that look similar to the holes to be filled
in an image. However, the proposed algorithm only works well as long as there is a patch
that is similar to the one already existing, as otherwise the results will quickly turn out to
be visually unappealing and unnatural. Liu et al. (2018) introduced partial convolutions
in 2018 to overcome the challenge of filling irregular holes. The method does not need to
compute similarity metrics for patch-based inpainting, but rather just masks out invalid
pixels during the convolutional step so that, rather than using wrong data, no data are
used. After each convolution, the number of unfilled pixels decreases. The results have
shown a huge improvement in the visual appearance, and it was one of the first papers
to obtain good results for irregular holes. Furthermore, Han & Howe (2023) used 3D
partial convolutions in the context of 3D histograms. Histograms depicted taxi pick-
ups and bike sharing data in New York. They used a custom 3D variant of the U-Net
introduced Ronneberger et al. (2015). One of the few papers using image inpainting
for geoscience tasks is done by Sun et al. (2022). They implement a coarse-to-fine task-
driven neural network that preserves good visual appearances but is also more suited
to geoscience tasks where visual appearance is not as important as predicting specific
values. Hence, a coarse model predicts the general appearance and a refinement net
refines these predictions.
None of the previous work considered LST data as input for an image inpainting

network. This leads to unsolved challenges, such as images consisting of only missing
values that need to be interpolated. We solve this problem by including ground station
data within our work and give proof that the patterns learned by deep learning architec-
tures can help to produce precise inference of missing LST data by learning the inherent
climate patterns of the interest region.

2.5 Knowledge Transfer for Yield Prediction

Lastly, we investigate the related work on the problem of reusing knowledge between
different yield prediction domains based on a previous publication (Huber et al. 2024a).
The related work that influences our research can be categorized into two main groups.
First, we look at general developments in transfer learning, as it is mostly used for
computer vision tasks. Second, we examine advances in transfer learning for remote
sensing applications and yield prediction.

General Transfer Learning

Transfer learning is a topic of increasing popularity in different research areas. Most
commonly, computer vision tasks are solved with the help of deep learning networks that
are pre-trained on huge task-agnostic data sets, before being fine-tuned to solve specific
problems. Plested & Gedeon (2022) give an in-depth survey of the state of transfer
learning. Due to the versatile applicability of CNNs, the application of transfer learning
methods to CNNs represents a well-known study objective. In image classification,
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transfer learning methods achieve significant success (Sharif Razavian et al. 2014). In
this work, we examine whether this success can be translated into yield prediction while
following the insights of the community. Huh et al. (2016) found out, that a larger data
set for pre-training results in better model performance. Furthermore, the number of
layers that should be transferred during the training process depends on the similarity
between the target data set and the source data set (Chu et al. 2016).

A common problem in transfer learning is the negative transfer of knowledge (Pan &
Yang 2009). Negative transfer occurs when the source data set used for pre-training and
the target data set are not well related, and transfer learning has a negative impact on the
model accuracy. According to Plested & Gedeon (2022), a greater similarity between the
transfer learning domains improves the ability to transfer knowledge between domains. If
the domains are not well aligned, the key to overcome negative transfer is regularization,
which restricts the amount of knowledge that can be lost during the fine-tuning step of
transfer learning. The L²-SP regularization method achieves success in dealing with
negative transfer through an L² regularization with the origin parameters of the more
general model (Xuhong et al. 2018). In our use case, this means that features that
are extracted from the patterns of remote sensing data can be preserved during the
transfer learning. Similar results can be achieved with DELTA regularization (Li et al.
2019), following the idea of only altering CNN channels that are not already useful for
the target task. Batch Spectral Shrinkage (BSS) is another regularization method that
often successfully eliminates negative transfer by suppressing non-transferable spectral
components (Chen et al. 2019). Chen et al. (2019) report that BSS will never negatively
affect performance in a given data set and is therefore also considered within our work
to stabilize transfer learning.

Our work is the first to examine the extended use of regularization and transfer learn-
ing on hyperspectral remote sensing data presented as histograms, investigating how
ideas developed for classical computer vision can help us with remote sensing applica-
tions.

Transfer Learning for Remote Sensing Applications

Transfer learning for remote sensing applications is a widely investigated topic. A recent
extensive survey on transfer learning on remote sensing data is conducted by Ma et al.
(2024). Most commonly, the task of land use and land cover classification is improved
by starting from pre-trained models. Dastour & Hassan (2023) give an in-depth analysis
of different deep learning architectures for this task. In general, all CNN tested are
pre-trained on the well-known ImageNet data set (Deng et al. 2009) and applied to land
cover classification on Sentinel-2A images. ResNet50 (He et al. 2016) was found to be
the best architecture for transfer learning in this scenario. Li et al. (2020) show that
a ResNet architecture again works best on the HSRRS data set for scene classification
in urban populated areas, after being pre-trained on the ImageNet data set. Similar
results are shown in the work of Alem & Kumar (2022) where a ResNet50 architecture
pre-trained on ImageNet data shows high accuracy for land cover classification on remote
sensing data. Tseng et al. (2022) use the pre-trained ResNet architecture inside Faster
R-CNN as a backbone for rice seedling detection in RGB images outperforming a support
vector machine. Chen et al. (2022) use the same pre-trained architecture, the Faster R-
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CNN network. First, features are learned on the ImageNet data set before the network
is fine-tuned to detect objects in high-resolution satellite images. Hilal et al. (2022)
extend the idea of a pre-trained ResNet50 for land cover classification by including
discrete local binary patterns to the ResNet features for the final classification. In
very recent advances, Ma et al. (2023) improve the idea of Domain-Adversial Neural
Networks (DANNs) (Ganin et al. 2016), where transfer learning is extended by projecting
the input features of each domain into a common subspace. Their proposed partial
DANN (PDANN) applies weights to the source samples according to their estimated
yield distribution in the target domain and is used to improve the transfer learning
of soybean and corn yields between different regions in the US. Lastly, as mentioned
above Wang et al. (2018) first train an LSTM network for soybean yield prediction in
Argentina and then transfer the knowledge to regions in Brazil. Khaki et al. (2021)
combine the predictions of different crops and present a multi-target regression CNN
structure, simultaneously predicting soybean and corn yields in the US based on remote
sensing data.
Our work is quite distinguishable from the approaches described above. As our input

data are processed to be represented by histograms and include multiple hyperspectral
image channels and our target is not a classification but a regression, it is not possible to
use huge image data sets like ImageNet as a source domain for transfer learning. Even
in our source domain, we have relatively small amounts of training data compared to
modern image classification tasks. We need to overcome this issue by using deliberate
regularization methods during knowledge transfer.
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In this thesis, we use two data sets to test and evaluate our methods. First, we describe
an international data set for the prediction of soybean yields. The data captured by
the USDA are one of the largest data sets available for yield prediction, and reporting
results enables us to compare our work with the state-of-the-art for yield prediction.
The evaluation of the methods in a scientific context is done on these data in Chapter 5.
Second, we give an in-depth description of the data used within the KI-iREPro project.
These are the data that motivated the research of our approaches and will be used to
evaluate the reconstruction of remote sensing data in Section 5.4 and the real-world
application of our methods in Chapter 6. Lastly, we introduce the changes made to the
soybean data set presented in Section 3.1 and the additional data on the prediction of
soybean yields in Argentina, used to transfer knowledge between the two domains.

3.1 Soybean Yield Prediction - An International Data Set

For this section, we directly follow the presentation of the data as previously published
(Huber et al. 2022). The data chosen to evaluate different yield prediction approaches
are soybean production reported within the US over a period of time of 2003 to 2021.
This allows for good comparability with previous work, as soybeans in the US are widely
investigated (You et al. 2017, Sun et al. 2019) and form one of the largest databases for
yield prediction tasks. The study area includes 13 adjacent states within the US. The
states are Arkansas, Illinois, Indiana, Iowa, Kansas, Minnesota, Mississippi, Missouri,
Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. The 13 states are high-
lighted in Figure 3.1, showing that most of the blue highlighted soybean farmland in the
US is located within the selected states. The study spans 19 years, giving us 14543 data
points in total. For the end-of-year soybean yield prediction, predictions are based on
data captured over the time span between the 49th and 321st days of the year. Since
the soybean cycle varies between years and state selection, generous ranges are used
around the usual dates for planting and harvesting. The range includes approximately
two months before the first crops are planted and ends approximately one week after the
last soybeans are harvested (USDA 2010). The input features for the prediction of the
yield are extracted from five different data sources that have also been used to predict
the soybean yield by Sun et al. (2019).

USDA Yield Data

County-level soybean yield data from 2003 to 2021 are collected by the USDA (USDA
2021). Soybean yields are reported in soybean bushels per acre (bu/acre), with 1 bu/acre
approximately equivalent to 67.26 kg/ha. The yield data are used as ground-truth labels
for model training and validation. Figure 3.2 shows the historical yields during the study
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Figure 3.1: The 13 states of the US used to extract historical yield data highlighted in red. The
blue areas indicate soybean farmland. The image is extracted via Google Earth Engine (Gorelick
et al. 2017) and previously published (Huber et al. 2022).

period, and the graph shows an overall upward trend, caused mainly by technological
innovations that lead to more efficient farming (Chambers & Pieralli 2020).

MODIS Surface Reflectance and Temperature

Within this study, remote sensing data collected by Moderate Resolution Imaging Spec-
troradiometers (MODIS) installed on the NASA Terra and Aqua satellites are used.
MODIS data are available from the Google Earth Engine Catalog (Gorelick et al. 2017)
and consist of MODIS products MOD09A1 that provide surface spectral reflectance data
and MYD11A2 that provide temperature data for the surface of the land. The surface
reflections of light are captured in a range starting from the visible spectrum (459-479
nm) to the invisible infrared spectrum (2105-2155 nm) and are captured by 7 different
channels. Each channel is referred to as a band in the context of remote sensing images.
In this study, both products are used at a resolution of 500 m per pixel, with each image
being an 8-day composite of the values of each band. The visible spectrum includes blue,
green, and red light, which can be used, e.g., for RGB visualizations of the regions. The
non-visible spectrums are four different wavelengths of infrared light and near-infrared
light. The importance of near-infrared light for yield prediction is well known and is
used in standard measures such as the Normalized Difference Vegetation Index (NDVI)
(Gao 1996). A temperature image shows two bands for the temperature during the day
and night. Using the timespan between the 49th and 321st days of the year therefore
produces 34 images to correspond to one year’s yields.

Daymet Weather Data: Precipitation and Vapor Pressure

The Daymet V4 data set offers daily surface weather and climatological summaries ex-
tracted from the Google Earth Engine Catalog (Thornton et al. 2016). It provides
gridded estimates of daily weather parameters based on selected meteorological station
data and various supporting data sources within the US. Two important weather param-
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Figure 3.2: Historic soybean yields in the US. The crosses indicate the mean yields in bu/ac with
the grey bars describing the standard deviations. The blue line shows the rising trend in annual
yields, together with a confidence interval.

eters in Daymet, daily total precipitation and daily averaged partial pressure of water
vapor — produced on a 1 km × 1 km gridded surface over North America were selected
as climatic factors as proposed by Sun et al. (2019). The scaling is changed from 1000
m to 500 m using the native Earth Engine image pyramid to match the weather data
with the other yield and environmental data. Lastly, the daily data are aggregated to
match the same 8-day composites of the MODIS data by applying the mean.

Tiger County Borders

The TIGER data set from the US Census Bureau contains the 2018 boundaries for the
primary legal divisions of the US states (Bureau 2018). Information is used to crop
remote sensing data to county borders.

USDA NASS Cropland Data Layer

The Cropland Data Layer (CDL) is a crop-specific land cover data layer created annually
for the continental US and also downloaded from the Google Earth Engine catalog. The
selection of 13 adjacent states within the US has been partially covered since 2003 and
fully covered since 2006. The states of Kansas, Mississippi, Missouri, Ohio, and South
Dakota have also been covered since 2006, when the CDL started to be available to
the entire US. Originally, the CDL has a resolution of 30 m. This resolution of 30 m
is upscaled to a resolution of 500 m to match the resolutions of the other data sources
explained above. The CDL information is used to focus the training of the prediction
system to the parts of the remote sensing images that cover soybean farmland.
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3.2 Grapevine Yield Prediction in KI-iREPro

The KI-iREPro project aims to predict grapevine yields in Rhineland-Palatinate, Ger-
many. For this task, we have two prediction approaches, (1) at the plot level for commer-
cial use and (2) at the plant level for help in developing new varieties. The data set for
these tasks varies in two main directions compared to the soybean yield data described
above. The first distinction comes from the monitored crop. Although soybeans are
planted and harvested in an annual cycle, grapevines are not destroyed during harvest,
and the same plant will carry fruit over decades. Furthermore, soybean yields are opti-
mized with respect to quantity, as the quality is very stable. However, for grapevines,
quality is the main factor influencing winemakers’ profits, and the quantity of the yields
is regulated by federal laws. The second distinction between the two data sets comes
from the granularity of the data. For the soybean yield prediction, we always cover whole
counties with each prediction, making the appearance of cloud induced holes in remote
sensing images less threatening to the data, as it is unusual for such a large area to be
covered in clouds for multiple days. For the grapevine yield prediction, we need the data
to cover individual parcels, each only a few square kilometers big. This corresponds to
only a handful of pixels in remote sensing satellite images, which creates the need to
fill the satellite data with interpolation processes. Furthermore, this allows us to use
only a certain kind of satellite data, the Land Surface Temperature (LST), since it is
the only one where holes can be filled with the help of ground-site weather stations and
where the distribution is smooth enough to allow for interpolation. The descriptions in
this section of the study area and the LST data used are based on our previous research
(Huber et al. 2024b) and adjusted to fit the scope of this thesis.

Study Area

The study area of the KI-iREPro project is located in Rhineland-Palatinate, Germany.
The area measures 47.49 km by 36.96 km and is centered around 8.112 °N and 49.25 °W.
It includes vineyards that should be monitored throughout the year. An overview of the
location in the south west of Germany can be seen in Figure 3.3 a), where we see that
it is located south of Frankfurt am Main and north west of Stuttgart. To improve the
interpolation of missing values inside the study area, we added a 10 km padding around
the relevant area, which will not be considered during evaluations. In Figure 3.3 the
original research area is represented by a purple rectangle, while the red rectangle shows
the extended area that includes the padding. The study time frame for LST interpolation
is set from 11.03.2008 to 15.11.2022, as dictated by the availability of ground-site weather
station air temperature data and the availability of remote sensing data at the time of
our study. The relative location of the weather stations is shown in Figure 3.3 b). The
region itself offers some interesting topology, with heights ranging from 91 to 599 m
above zero, including a steep change in elevation along an axis from the south west to
the north east corner, as shown in Figure 3.3 c).
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Figure 3.3: Overview of the KI-iREPro study area, weather stations, elevation, and occluded
LST data. a) The study area is located mostly in Rhineland-Palatinate, Germany, measuring
47.49 km by 36.96 km, with the extended padding shown as a red rectangle and the weather
stations shown as red crosses. b) The relative location of the weather stations. c) Elevation map
showing a characteristic pattern. d) An example for LST data on 02.09.2010 showing gaps in the
data and the characteristic temperature distribution dictated by the elevation. Figure previously
published (Huber et al. 2024b).

MODIS Data and Occlusions

Our source for remote sensing LST images is the well-known MOD11 product (Wan
et al. 2023), as it is also used for the soybean yield prediction data. The LST data
are retrieved from a multitude of inputs from the MODIS sensor attached to the Terra
satellite provided by NASA using the generalized split window algorithm (Wan & Dozier
1996). In summary, the algorithm consists of three steps. First, cloudy pixels are de-
tected and skipped in LST production. Second, the estimation of atmospheric column
water vapor and lower boundary temperature from seasonal climatological data to im-
prove the accuracy of LST. Third, the estimation of band emissivities correcting for
atmospheric effects at specific wavelengths that are used to finally retrieve the LST in-
formation. Other existing data sources for LST records include the Landsat collection
that provides LST records at a high spatial resolution but lacks the daily coverage of
MODIS that is important for a variety of tasks.

In our case, the data are downloaded using the Google Earth engine (Gorelick et al.
2017). The images were taken with a spatial resolution of 1 km. An example of a partial
LST image recovered from the MODIS sensor is shown in Figure 3.3 d). To have as
much usable data as possible, we did not consider the quality indicator to remove any
further values, as early experiments indicate that, in general, every pixel with a value
attached can be considered good enough to be used for further processing. Together
with the LST, the product provides information on the emissivity of each pixel. The
emissivity is considered when evaluating statistical approaches for gap filling but did
not show any added benefit for our approach. The satellite regularly observes our study
region around 11:00 am, monitoring temperatures from -32 °C to 46 °C with a mean
temperature of 12.69 °C, a median temperature of 12.59 °C and a standard deviation of
10.3 °C when considering all valid pixel values in our research area. When considering all
5706 observations in our time frame, 33.24% of all pixels are filled with valid information.
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This includes a total of 280 images where all 4012 pixels are valid and 1500 images where
no pixels are valid. On average, each image consists of about 1507 valid pixels that can
be used to estimate the values of the remaining 2505 missing pixels.

After interpolation, we use the data as basis to match the climatic conditions with
the ground-truth grapevine yields. To use these data for yield prediction, we start
by matching each parcel with a pixel of the interpolated LST image, providing daily
records of the LST for the parcel. To obtain a feature-based representation of the data,
we aggregated the LST data in 35 timeframes, each covering 10 days, going backwards
from the known date of harvest. This ensures to cover almost the whole period of
plant development, which is necessary for grapevines as a perennial plant. For each
10-day window, we calculate the average temperature as a representation, and for all
10-day windows, we calculate the biggest positive and negative difference in temperature
observed within one window. Furthermore, we calculate an array of aggregated statistics
over the entire 350 days. We counted the number of days when the LST at the time
of the capture was below 0, -2, -4 and -6 °C. Similarly, we counted the days when the
temperature was above 10, 20, 30, 35 and 40 °C. We count the days between the last
temperature below zero and the harvest date, such as the temperature sum of all 350
daily records.

Ground Site Air Temperature

To be able to fill the gaps in the LST data, even when the entire padded study area is
occluded, we decided to include air temperature measured by local ground-site weather
stations in our pipeline. Air temperature and LST are of course different measurements
with varying records up to multiple °C, but often show a high correlation (Cao et al.
2021). A local ground-site weather station cannot monitor the varying climate in an
extended region, but excels at providing precise and reliable information about a specific
location. Using both weather stations and remote sensing data allows us to combine
the best characteristics of both data sources, with the aim of providing reliable LST
information with high resolution. We use 20 weather stations in our study area with
their locations shown in Figure 3.3 b), located mainly in the low-lying regions of our
research area. Weather stations can capture a multitude of features at an hourly rate. We
are mostly interested in the data captured at the time when the MODIS satellite observes
the region, together with the data a few hours earlier, because both can give information
on how the measured air temperature can be homogenized with the surface temperature
that is of interest to our study. We use the average, minimum, and maximum air
temperature, together with the air humidity captured at 6:00 am. and 11:00 am., to
infer the surface temperature at 11:00 am. clock of the pertaining day. All features are
measured twice, once at a height of 20 cm and once at a height of 200 cm. A list of
all weather stations and their coordinates is given in Table 4.1. Data are captured on
account of the federal state Rhineland-Palatinate, Germany (Agrarmeteorologie RLP
2023).
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Figure 3.4: Normalized grapevine yields captured within the KI-iREPro project showing the
annual differences in the harvested yields. The cross shows the mean value, the gray bar shows
the standard deviation and in blue we see the trendline.

Grapevine Yield Data

We obtain ground-truth yield data from the delivery notes of a winemaking collective
located in Rhineland-Palatinate, Germany. In a winemaking collective, vineyard owners
and winemakers deliver grapes to the cooperative, which is then in turn involved in
the production of wine and the subsequent marketing. Therefore, our data set involves
vineyards of 396 different winemakers. Our primary data source are the delivery notes
collected from the collective between 2010 and 2022. The entire data set contains 11624
data points, averaging approximately 894 data points a year. As general processing in
viticulture is not necessarily made with singular parcels in mind, we need to clarify that
one data point contains the aggregated yields of one winemaker in a year with respect to
a specific variety. This is necessary to secure the accuracy of our ground-truth yield data
given the agricultural practices in viticulture. From the delivery notes, we are already
able to extract multiple crucial features involved in the modeling. First, we can extract
ground-truth yields in kg/m2 that will serve as a target variable during model training
and evaluation. To anonymize the confidential data, we normalized the yield data to the
0 to 1 interval by using the biggest and smallest yield records within the training data.
The average normalized yields over the years are shown in Figure 3.4. Other information
that we can extract from the delivery notes that will be useful for modeling includes the
variety, the year the vineyard was planted, an anonymized ID of the winemaker, and the
harvest date. The variety contains important information, as different varieties produce
different amounts of yield. Our data set contains 38 different varieties with differing
amounts of data points, ranging from Dornfelder with 1558 different data points to
Frühburgunder with only one data point within our data set. The year the vineyard was
planted can offer information about the capacity of the plants at hand, as grapevines as
a perennial plant show certain behavior depending on their age. Here, our data show
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different vineyards, varying between being just planted and being present for 75 years.
The anonymized winemaker ID serves as a substitute for the missing information about
in-field processed that is not captured within our data. The idea here is that each of the
396 winemakers has some kind of preferences during the care of his plants, and therefore
we allow the model to indirectly model those in the prediction. Lastly, the harvest date
will be used to match the time series of climatic information with the data points for
the predictions.

Elevation and Soil Data

To incorporate the elevation and inclination of the vineyards, we use a digital elevation
model (DEM) with a resolution of 5 m. For each parcel, we used the mean values of
latitude and longitude to place the parcel within our DEM and extract the elevation.
The lowest parcel within our data lies on average at 75.75 m above sea level, with the
highest parcel laying on average 289.65 m above sea level. To extract the inclination, we
use the 3×3 Sobel operator (Sobel 2014). Originally designed to extract edges in images,
it can be used to approximate the gradient in the x- and y-directions in an image, where
the change in brightness in a grayscale image is analyzed. In our use case, the image
consists of the DEM information, and the approximated gradient directly reveals the
slope and inclination of each pixel in the image. The absolute value of the gradient
averaged per field varies between 0.023 and 1.538, as shown in Figure 3.5 c) and the
slope takes values from 0.186° to 12.271°. In addition, the average responses of the Sobel
operator are used to determine the orientation of the inclination of the fields as a value
between −π and π, showing the possible rotation of 360°. Our source of soil information
is the soil map of Germany 1:250,000 (BUEK250) which provides information on land
use and soil in the states of Europe (Krug 2018). We used this information to one-hot
encode the 6 different soil types in a categorical fashion. The soil map can be seen in
Figure 3.5 b).

Grapevine Yield Prediction on Plant Level

Besides grapevine yield prediction for plot-level predictions, we work on plant-level pre-
dictions. For this, we use different phenological traits of individual grapevines as input
to our machine learning models. The final goal of this task is to use the automatically
generated data that are extracted from camera images taken within the vineyards. As
this pipeline is still in development with our project partners within KI-iREPro, we use
data acquired through manual plant appraisal to evaluate the concept. The data de-
scription in this section is based on one of our previous publications (Huber et al. 2024c).
Data were captured in two experimental vineyard plots at the JKI institute for grapevine
breeding Geilweilerhof located in Siebeldingen, Germany (49°13’07.0”N 8°02’45.0”E) in
the year 2021. The rows were planted in the north south direction and the vines were
grown in a vertical shoot positioned trellis system with a cane and around 10 buds per
vine for both plots. The data set includes information on four well-established grape
varieties, namely Dornfelder, Pinot noir, Pinot blanc, and Riesling, as well as seven elite
breeding lines from the intermediate testing phase (Töpfer & Trapp 2022). The plants
are grafted on SO4 root stocks with an interrow distance of 2 m and grapevine spacing
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(a) Location of the individ-
ual vineyards (red).

(b) Different soil types
shown in different colors.

(c) Sobel operator showing
gradients.

Figure 3.5: The location of our test vineyards in the study region. The soil types in b) are used
as a categorical feature during the prediction. The Sobel operator c) helps to identify the hillside
location of the vineyards.

of 1.1 m for both plots. A complete overview of the grapevines used for data acquisition
can be found in Table 3.1. As already explained, we used the data acquired from manual
plant observations. Viticulture experts made optical observations seven times during the
growing season. This leads to some features being present multiple times, which shows
the development of the plant. The number of shoots, for example, is captured four
times, as it is an integral feature when measuring the grapevine. The yields of the 400
grapevines are manually weighted to serve as the ground-truth for our predictions. Ta-
ble 3.2 shows the dates on which the features are extracted, together with a description
of each feature. For the predictions, we need to remove 30 data points due to missing
values. The remaining data points have an average yield of 1.34 kg per grapevine.

Variety VIVC Accession number Rows Count Year Abb.
Dornfelder 3659 DEU098-2008-057 1 21 2008 Do
Pinot noir 9279 DEU098-2008-075 1 22 2008 PN
Pinot blanc 9272 DEU098-2008-072 1 22 2008 PB
Riesling 10077 DEU098-2008-080 1 24 2008 Ri

Gf.2010-011-0048 - - 2 50 2015 BL1
Gf.2001-041-0004 - - 2 46 2016 BL2
Gf.2001-041-0003 - - 2 46 2016 BL3
Gf.2004-043-0010 - - 2 46 2016 BL4
Gf.2004-043-0021 - - 2 45 2016 BL5
Gf.2004-043-0034 - - 2 40 2018 BL6
Gf.2000-305-0081 - - 2 38 2019 BL7

Table 3.1: Overview of the different grapevines used for the plant level yield prediction. The
data set consists of four established and seven experimental varieties. Table taken from Huber
et al. (2024c)
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Feature Capturing Dates (DD.MM.) Data Range
Number of shoots 03.05., 12.05., 02.06., 20.07. 1 - 22

Number of shoots with inflorescences 02.06. 1 - 22
Average inflorescences per shoot 02.06. 0.23 - 3.2
Number of inflorescences per vine 02.06., 16.06. 1 - 44
Number of shoots with bunches 20.07. 1 - 22

Average bunches per shoot 20.07. 1 - 3.9
Number of bunches per vine 01.07., 07.07., 20.07. 1 - 71

Table 3.2: Overview of the features extracted via manual plant appraisal together with the date
the appraisal has taken place in 2021. Some features are captured multiple times during the study
and at each appraisal multiple features are captured. Table taken from Huber et al. (2024c).

3.3 Unified Soybean Yield Prediction for Transfer Learning

To test our approaches to transfer knowledge between different domains for yield predic-
tion, we introduce a second scenario for soybean yield prediction, this time in Argentina.
Argentina is one of the main soybean producers in South America. However, the amount
of available data differs compared to the US, with the country being much smaller and
data acquisition less proficient. Therefore, Argentina is the perfect target domain to
transfer the knowledge gained for the prediction of soybean yield in the US. We need to
alter the data set described in Section 3.1 since we want to create compatibility between
the two data sources. This is necessary, as, for example, the Daymet V4 climate data
are only available in the US and not in Argentina. Furthermore, we adjust the time
frame to cover 10 instead of 19 years, to retain maximum relevance of the training data
for the actual use case, considering the rising trend for annual yields in both data sets.
In addition, the selection of states is slightly different, focusing on the largest producers,
as we lose access to a precise location of soybean farmland when using data in different
countries than in the US. The use of less precise general farmland indicators forces us
to only consider the counties with the highest percentage of farmland being soybean
farmland to reduce noise in the data.

Yield Data

As mentioned above, we make slight changes to the selection of US data processed
compared to Section 3.1. Soybean yield data are again taken from the US Department
of Agriculture (USDA) for the US during the period 2010 to 2020, inclusive (USDA
2021). In Argentina, the yield data are taken from the Ministerio de Agricultura (2023)
over the 2010/11 to 2020/2021 seasons, inclusive. This leaves us with a total of 8465
data points in the US and 1542 data points in Argentina. An overview of the yield
data can be seen in Figure 3.6. Generally, we see that the yield data in the US and
Argentina show similar patterns, with the relative yields in Argentina consistently lower
than in the US. Both data sets show a positive linear trend that indicates more soybean
yields in recent history. This is mainly due to technological innovations that lead to more
efficient agriculture (Chambers & Pieralli 2020). Greater similarity between the domains
of transfer learning improves the ability to transfer knowledge between domains. Here,
the data for the US denote the source domain and the data for Argentina denote the
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Figure 3.6: Visualization of the ground-truth yield data in the US (blue) and Argentina (orange).
Average yields are indicated by the crosses and standard deviation are shown by the vertical lines,
both in bushels per acre. The dashed lines indicate the linear trend in the data. We see the US
yields to be generally higher than in Argentina.

target domain. In order to keep the similarity of the data as high as possible, the same
data cleansing procedure is used for both domains. In our case, data cleansing serves
to ensure a sufficiently large input data set. First, we select the regions of each country
where soybeans are grown. This is the north eastern part of the US and the north of
Argentina. Then, on the one hand, data points that cannot be assigned to a county due
to missing information and counties with no yield specified or with a yield per hectare
of zero are removed. On the other hand, all counties that have less than 2000 pixels
of crop mask are removed. This is necessary to ensure a significant amount of soybean
cropland for every data point and to reduce the number of noise from other sources.

Remote Sensing Data

For both data sets, we use a selection of remote sensing data very similar to the one
already explained in Section 3.1. This includes surface reflections taken from MOD09A1
as an 8-day composite of the images taken by the satellites with a resolution of 500 m
by 500 m. Climatic conditions are exclusively monitored by the MYD11A2 data. The
original solution of 1 km by 1 km is resampled to match the resolution of 500 m by 500 m
of the surface reflection data. We forego the use of Daymet data as they are exclusive
to the US. Another difference is the quality of the mask used to filter out pixels that are
not related to crop growth. For transfer learning, we use the MCD12Q1 data set (Friedl,
M., Sulla-Menashe, D. 2019), which offers a yearly classification of several types of land
cover with a resolution of 500 m by 500 m. Areas consisting of more than 60% cultivated
fields are classified as croplands and will be the focus of our study. The more precise
CDL used in Section 3.1 is again exclusive to the US and would not allow a knowledge
transfer. Lastly, we crop the satellite images for the individual counties. Therefore,
we require district assignments labeled with the county names. In the US, the same
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TIGER data set from the US Census Bureau (Bureau 2018) is used for this purpose.
In Argentina, we use the county (Departamentos in Argentina) mapping used by Wang
et al. (2018), which contains all counties relevant to soybean cultivation.
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The Methods chapter has five sections that match the five challenges and contributions
defined in Section 1.1 and Section 1.2. We start by showing a pipeline to enable the
usage of XGBoost for yield prediction in Section 4.1. We do so by modeling the under-
lying distributions of the remote sensing data, allowing us to train an XGBoost model,
resulting in a structure similar to a random forest. To subsequently explain the model,
we introduce the paradigm of Grouped Shapley Values (GSV), where we extend the
popular Shapley values to obtain explanations of machine learning models for groups of
features, as we often find them in yield prediction scenarios. This will be done in Section
4.2 together with the introduction of an algorithm to calculate the GSV in polynomial
time for random forests. Section 4.3 is dedicated to the question if Shapley value fea-
ture attributions can be used for feature selection after a successful model is trained,
i.e., reducing the dimension of the input feature space while preserving the accuracy
of the modeling. We guide the discussion by first defining four necessary conditions to
defining a (grouped) Shapley value for feature attributions that allows feature selection,
and show that our definition used throughout this thesis fulfills all of them. We then
approach flaws in the Shapley value feature selection tied to the nature of the approach
to perform model averaging by introducing the concept of Conditional Feature Selection
(CFS), allowing us to give an application-driven quantitative analysis of the impact of
the problem. In the following two sections, we first show a solution to interpolate gaps
in remote sensing LST data in Section 4.4. This is necessary to enable our methods
established in the previous sections to be applied to yield prediction with a high spatio-
temporal resolution, for example, when predicting the yields for individual plots. We do
so by giving a U-Net deep learning architecture including partial convolutions and estab-
lishing a training loop that allows us to use exclusively partially available ground-truth
data for training the model. Lastly, we conclude the chapter by describing the methods
used to align two different yield prediction domains for transfer learning. As random
forests are not well suited for transfer learning, when the domains for transfer learning
are inhomogeneous, we present a deep learning architecture together with transfer learn-
ing techniques, including Batch Spectral Shrinking (BSS), L2-SP regularization, and a
Gaussian process, to improve the knowledge transfer.

4.1 A Yield Prediction Pipeline with Extreme Gradient
Boosting

As mentioned in the Introduction, the content of this section is already published (Huber
et al. 2022). We will describe how to enable the use of remote sensing satellite images
for yield prediction with machine learning algorithms that need a tabular description
of the data on the example of soybean yield prediction in the US. Following this, we
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describe how state-of-the-art deep learning approaches address this task to prepare for
the extensive evaluation in Section 5.1.

Figure 4.1: Overview of the remote sensing data processing pipeline for yield prediction. The
aggregated remote sensing data are cropped and masked, before they are processed. The resulting
data are then either represented by histograms for the deep learning approaches or a feature-
based approximation of the underlying distribution for XGBoost. Figure taken and altered from
Huber et al. (2022).

A graphical overview of the entire prediction pipeline is given in Figure 4.1. The
process starts with determining the time window that is used for the predictions. We
use two different windows to test our prediction model, first for the more difficult task of
predicting the yield weeks before the harvest and a second one, where all harvests have
already concluded. For the in-year prediction, we use data captured between day 49
and day 201 of the year. For the end-of-year prediction, the time frame is between day
49 and day 321 of the year. As explained above in Section 3.1 three different satellite
products are utilized to build the input data for the pipeline. That is, the MOD09A1
reflectance data, the MOD11A2 temperature data, and the DaymetV4 precipitation and
vapor pressure data. The relevant sections for the prediction of yield at the county
level are obtained using the Tiger county borders to crop the data and by applying
the USDA cropland data as a mask to keep only pixels covering soybean farmland.
The experimental setup focuses on a direct comparison between XGBoost-based yield
prediction and current state-of-the-art deep learning frameworks. After the cropping and
masking explained above, the resulting images have irregular shapes and varying sizes
between different counties. Furthermore, the preferred presentation of data as input for
deep learning frameworks and classical machine learning approaches differs. Therefore,
the data are processed towards either a histogram-based approach for deep learning or a
feature-based modeling of the underlying pixel distribution for the XGBoost approach.
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The histogramization will output the relative frequency of the pixel values in 32 evenly
spaced intervals, and the distribution modeling will highlight three key characteristics
of the underlying distribution. Lastly, the different approaches are applied on their
respective preprocessed data sources to compute both the in-year and the end-of-year
predictions.

Yield Prediction with Gradient Boosting

Among the machine learning methods used in practice, gradient tree boosting (GTB)
or gradient boosted regression tree (GBRT) and especially, the XGBoost approach of
Chen & Guestrin (2016) has been shown to give state-of-the-art results in many standard
classification and regression benchmarks and competitions. For example, in KDDCup
2015 (Fournier-Viger 2016), all teams in the top 10 used XGBoost. A single regression
tree is a set of cascading questions. Applied to a data point, i.e., a set of features and
their values, the feature values are used to answer the cascading questions, yielding
a result value. Regression trees are trained on training data to learn the appropriate
cascade of questions. A tree ensemble is a family of K regression trees where the final
prediction is the sum of the predictions for each tree. XGBoost learns the appropriate
tree ensemble from training data by iteratively adding new trees into the given ensemble
that maximize the prediction performance of the trees already in the ensemble plus the
new tree that has to be added. In other words: for a given tree ensemble Ek of k trees
and its residuals, a new tree ek+1 that fits best to these residuals is combined with the
given ensemble Ek, which produces the boosted version Ek+1 of Ek. The performance
of Ek+1 will be better than that of Ek. This can be done for K (1 ≤ k ≤ K) iterations,
until the residuals have been minimized as much as possible. Therefore, the design of
the new tree uses the gradients of the performance evaluation functions to select the
best cascade of questions.

To extend the general explanation of the XGBoost algorithm, a more in-depth ex-
planation of the XGBoost regression design is given below. In general, the following
objective function needs to be optimized:

O(M) = L(M) + Ω(M), (4.1)

whereM is the model learned from the training data. L is a differentiable convex training
loss function, such as the Mean Squared Error (MSE) and Ω is the regularization term
which prevents overfitting, i.e., the model learning the structure of the training data too
precisely, leaving it without the ability to generalize to unseen data.

As explained above, the model is an ensemble of decision trees, so the output ŷi for
each instance i is given by a collection EK of K trees.

ŷi =

K∑
k=1

ek (xi) , ek ∈ EK . (4.2)

Since the model in the general objective (4.1) includes the decision trees as functional
parameters, the loss cannot be optimized directly, but it has to be done iteratively, where
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in the t-th step the following is minimized:

O(t) =
n∑

i=1

L
(
yi, ŷ

(t)
i

)
+

t∑
k=1

Ω (ek) , (4.3)

where n is the number of training data points, and for a given iteration, ŷ
(t)
i can be

calculated as:

ŷ
(t)
i =

t∑
k=1

ek (xi) = ŷ
(t−1)
i + et (xi) , (4.4)

by adding the prediction of the latest calculated tree to the previous prediction.

Chen & Guestrin (2016) define the regularization term Ω (ek) as:

Ω (ek) = γT +
1

2
λ

T∑
j=1

w2
j , (4.5)

Where T is the number of leaves in the tree penalized by γ and wj are the leaf weights
within the tree penalized by the parameter λ. The leaf weights represent the answer of
the tree that is given for the regression task, when the cascade of questions reaches the
particular leaf. Lower numbers of leaves with smaller leaf weights force the tree to learn
a very generalized representation of the training data.

To transform the problem of optimizing the objective function into a simpler problem
of minimizing a quadratic function, Chen & Guestrin (2016) perform multiple steps.
They apply the second order Taylor approximation and perform further steps to obtain
the following approximate representation of the objective function (4.3):

O(t) ≈
n∑

i=1

1

2
hi (et (xi)− gi/hi)

2 +Ω(et) + c, (4.6)

where gi and hi are the first and second order derivatives of the MSE loss function and
c is a constant term. The new representation of the objective function can be used to
find the optimal weights wi that minimize the loss function at each step.

The last remaining problem is to find the optimal cascade of questions to ask for each
tree. More precisely, this refers to finding the features and values to define the splits
at each node of the tree. Chen & Guestrin (2016) propose two algorithmic solutions to
the problem. First, an exact greedy algorithm to solve this problem by enumerating all
possible splits and evaluating each option with the help of equation (4.6) and secondly,
an approximate algorithm. The approximate algorithm is chosen for this study since it
is best suited to handle the amount of training data within the experiments. The basic
idea of the approximate algorithm is to find promising possible splits based on the given
feature distributions, resulting in improved time efficiency by not having to evaluate all
possible splits.

Lastly, the clever system design of Chen & Guestrin (2016) further differentiates be-
tween classical gradient boosting and XGBoost. They introduce the concept of blocks in
their work. Because data need to be put in order multiple times during the approximate

40



4.1 A Yield Prediction Pipeline with Extreme Gradient Boosting

split finding algorithm, data are stored in blocks, where each column is already sorted
by the corresponding feature value. The blocks can be divided and used for parallel
computing of the approximate split finding algorithm.

When applying XGBoost to a specific data set, a multitude of hyperparameters can be
adjusted to achieve the highest possible accuracy. Throughout the thesis, we will use a
Tree-structured Parzen Estimation (TPE) (Bergstra et al. 2013) as a sequential model-
based optimization approach. This means that models are constructed sequentially
to approximate the performance of the model for a set of hyperparameters based on
historical measurements. TPE tries to estimate the underlying relations between a
quality measure and the hyperparameters by exposing the underlying expression graph
of how a performance metric is influenced by the hyperparameters. For this thesis, the
Python implementation of TPE within the Optuna framework is used for the experiments
(Akiba et al. 2019) with the exact number of iterations and the selection of the validation
set being explained for the individual experiments in Chapter 5.

From Raw Images to Histograms and Feature-Based Representations

The downloaded satellite images form input sequences d ∈ R34×H×W×11, where H and
W are the variable height and width of the images, 34 is the number of 8-day episodes
and 11 is the number of bands. H and W are variable throughout the data, as the size of
the counties varies. Depending on whether an end-of-year prediction with information
available covering the whole growing period or an in-year prediction with information
available to a certain point is performed, the corresponding time frames of the remote
sensing data are selected. The satellite images are cropped to the county borders and
masked with the Cropland Data Layer (CDL). Pixels showing non-zero values are dis-
tributed unevenly. A common workaround is to process each band of the images into
histograms with evenly distributed bins (You et al. 2017). This approach reduces the
data size dramatically and still conserves sufficient information for deep learning ap-
proaches to learn expressive representations of the data.

However, since the bin values of the histograms are standardized over all images on
the one hand and pixel values vary significantly between different images on the other,
the resulting histograms show bins filled with zero value entries. The value distribu-
tions of the satellite bands mostly follow skewed normal distributions, allowing for an
approximation of the value distribution of each band of an image by a normal distribu-
tion parameterized by three values, namely the median and the values marking the 20%
and 80% quantiles. The choice of features is well suited to describe the skewed normal
distributions. Although the median is an outlier resistant approximation of the expected
value of the distribution, a small and a high quantile value are useful to monitor the
slopes to the left and to the right of the median. The experiments showed that the
specific values 20% and 80% are a good choice for the task. This is the feature-based
representation that is used as an input for XGBoost. Intuitively, it is possible to model
remote sensing data as skewed normal distributions, since soybean acres within proxim-
ity to each other will show similar surface reflections and are exposed to similar weather
conditions. An example is shown in Figure 4.2. The sparse heatmap depicts the initial
data. The orange bars within the histogram representation show how the three selected
values describe the underlying skewed normal distribution.
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Figure 4.2: Left: Heatmap for band 2 of the masked MODIS surface reflectance data, captured
between day 105 and day 113 of 2020 in Adams, Illinois. Right: The histogram showing the
relative frequencies of the same data. The bins depicting the 20% quantile, the median and the
80% quantile are highlighted in orange and used as input features for predictions. Figure taken
from Huber et al. (2022).

It is important to note that the proposed reduction in dimensionality is based on the
assumption of permutation invariance. This means that the prediction of future yields
relies more on the value of the non-cropped pixels than on their location. As You et al.
(2017) point out, this assumption ignores the likely dependencies of the target output on
position-bound features such as soil properties or elevation. You et al. (2017) therefore
combined their deep learning approaches with a deep Gaussian process to integrate the
missing spatio-temporal information, resulting in only a small improvement of 3.9% in
terms of RMSE. Using a Gaussian process for the prediction of yield is more important
when fewer data points are available (Kaneko et al. 2019). This must be related to the
significant reduction in dimensionality by removing spatial information from the data.
Finally, all the values of every band from one sequence are concatenated. Multiplying
the 3 values of the feature-based distribution representation of all 11 bands over 34 time
steps results in an initial input vector x ∈ R1122. Since classic machine learning models
are able to take advantage of handcrafted features, another seven features are added.
Positional awareness is added to the prediction by including the latitude and longitude
of the respective centers of the counties. Furthermore, awareness of time is raised by
including the year, the sample is taken from, and the number of years passed since 2003.
The county-wise average yield computed on the previous years is added to incorporate
spatial dependencies. Lastly, the y-intercept and the slope of a linear regression fitted
to the historical yields in the data set are included. These features help to explain a
growing trend in average soybean yields over the years.

State-of-the-Art Approaches to Soybean Yield Prediction

The XGBoost-based approach is compared with two deep learning approaches to soybean
yield prediction. The CNN network presented by You et al. (2017) and the CNN-LSTM
hybrid network structure presented by Sun et al. (2019). Both approaches convert the
original satellite images into image histograms of each band with evenly distributed bins.

For the histogramization of the bands provided by the MODIS products, data pro-
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cessing follows the limits given by You et al. (2017). The original work did not use
the Daymet data, but in this study they are included in both approaches for a fairer
comparison. Furthermore, the theoretical minimal and maximal values are used as the
boundaries for the histograms of the bands provided by the Daymet product. The hy-
perparameters described in the respective work for both networks are used, including an
early stopping criterion when the validation score shows no improvement for 10 epochs.
The results are averaged over five runs to account for randomness. The CNN network
implementation is taken from a publicly available GitHub repository (Tseng 2022) and
the CNN-LSTM hybrid approach from Sun et al. (2019) is implemented from scratch.
As for XGBoost, a new model is trained for each year with access to information from
all previous years. A random 10% split of the training data is used for validation and
all data are normalized by subtracting the mean of the training data.

The CNN structure of You et al. (2017) is very straightforward, consisting of seven con-
volutional layers of varying sizes with stride-1 or stride-2, followed by a fully connected
layer with 2048 neurons for the final prediction. The stride-1 layers serve the purpose of
a classical convolution. The stride-2 layers are important to reduce the dimensionality
throughout the network, since no pooling layers are used. The same network will be
used in Section 4.5, where this will be the basis of our transfer learning efforts.

The CNN-LSTM network of Sun et al. (2019) applies a CNN structure to the input
data to learn a meaningful representation that is used as input for a standard LSTM
network. The CNN structure consists of two blocks of convolution, batch normalization,
and max pooling that are concatenated and used for each of the 34 time steps separately.
The output is flattened and serves as an input for the LSTM network with a hidden layer
size of 256. Lastly, the output of every iteration is passed through a fully connected layer
with 64 neurons and concatenated with each other. The final result is calculated using
a dropout layer with a probability of 0.5 before using the last fully connected layer for
the singular output.

4.2 Grouped Shapley Values for Explaining Yield Prediction
Models

The pipeline for applying XGBoost to yield prediction finally results in a random forest
used to make annual yield predictions. In this section, we present the idea of the Grouped
Shapley Value (GSV). The contents of this section are previously published (Huber et al.
2023). The described approach is divided into multiple steps (1) definition of GSV for
general cooperative games, (2) transfer of GSV to gain local explanations for machine
learning models, (3) use of local explanations to gain global understanding, and finally
(4) calculation of local explanations in polynomial time for tree structures.

The Value of Predefined Coalitions in a Cooperative Game

The Shapley value is a concept first defined in economic game theory and is defined to
solve the fair distribution of resources in a cooperative game. A cooperative game is a
tuple (P, v), where P = {1, 2, . . . , p} is the finite set of players and v : 2P → R is the
value function. A subset of players P is called a coalition, and the value function assigns
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a value to each coalition of players. The Shapley value φi(v) for a player i and a value
function v represents the average contribution of a player to all possible coalitions that
players in P can form (Roth 1988) and is defined as:

φi(v) =
∑

S⊆P\{i}

|S|! (p− |S| − 1)!

p!
(v(S ∪ {i})− v(S)). (4.7)

To better understand the Shapley values, we can look at the fraction at the beginning
of Equation (4.7). The fraction evolves from the original Shapley value definition, which
is made by permuting the set of players and averaging the difference when evaluating
the value function over the coalition with all players that precede a player i in the given
order with and without the player i itself. The number of players preceding in our
formula coincides with the number of players in the set S, having |S|! possible orders.
Similarly, the players who succeed the player i have (p − |S| − 1)! possible orderings.
Normalizing with all possible p! permutations results in the factor in Equation (4.7).
For our approach, we extend the classic Shapley value formula by allowing players to
form predefined coalitions before the game starts. Players in a predefined coalition will
be evaluated together and will never be separated. To notate the predefined coalitions
of players, we assume a complete partition of the set of players C = {C1, . . . , Ck}, where
each Ci is a nonempty subset of P and represents a different predefined coalition with
∪C = P and ∀i, j : Ci ∩ Cj = ∅. We note that these restrictions on the predefined
coalitions do not allow a direct comparison of different feature groups that share some
features, but we will give an outlook on how to solve this problem in the discussion in
Section 5.2.

To obtain GSV, the classic definition of Shapley values is restricted to only average the
contribution of the group Ci to all possible subsets S that can be built from predefined
coalitions within C. Therefore, the GSV φCi(v) for a predefined coalition Ci depending
on the value function v can be defined as:

φCi(v) =
∑

S⊆C\{Ci}

|S|! (k − |S| − 1)!

k!
(v(∪S ∪ {Ci})− v(∪S)), (4.8)

where ∪S describes the union of all selected sets of C that are in S. We note that this
definition allows the predefined coalition of players to have varying sizes, which is very
useful in terms of feature importances, since natural groupings are mostly related to the
origin of the feature and vary throughout most data sets. When comparing Equation
(4.8) with Equation (4.7), we see that the player i is now replaced by the predefined
coalition Ci, as the entire set of players is seen as a singular player. Similarly, the set S
that is used to sum all possible coalitions is always a subset of S ⊆ C\{Ci}. This means
that again, predefined coalitions are always evaluated together, and the players within
are never split when calculating the marginal contributions. Since the equation is a direct
extension of the classical Shapley value, all desirable game-theoretic properties still hold
(efficiency (4.9), symmetry, dummy variable, and additivity). Most importantly, the
efficiency axiom ensures that the Shapley value precisely distributes the gain produced
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by the coalition consisting of all players among all players.

efficiency :
∑
Ci∈C

φCi(v) = v(C). (4.9)

Later, the axiom of efficiency translates into local explanations that always add up
to explain the output value of the model for the explained data point. Exactly this
important axiom of efficiency is not preserved in game-theoretic approaches to extend
Shapley values on predefined coalitions that are proposed in the literature (Grabisch &
Roubens 1999, Marichal et al. 2007, Flores et al. 2019). Therefore, these game-theoretic
approaches are not applicable towards explainable machine learning, as the explanations
would not add up to explain the model outcome. The main difference between the GSV
approach presented in this work and the related work mentioned is the treatment of
players that are not in the predefined coalition that is subject to the Shapley value
calculation. While in our approach and Equation (4.8) we expect the other players to
play the game restricted to their respective groups, the other approaches focus on a
comparison where the other players are still seen as individuals. This is helpful when
the subject of the study is to find which players gain value from joining a predefined
coalition. Our approach instead excels in comparing the performance of disjoint groups,
as they appear in our yield prediction scenarios, where the predefined coalitions are given
by the structure of the input data. A naive solution to aggregate Shapley values within
a group of players is to add individual Shapley values as we did in an early iteration
of explaining our yield predictions (Huber et al. 2022). To show that this option is
not appropriate and produces counterintuitive results in a game-theoretic content, we
analyze a minimal example based on the classic illustrative glove game (Aumann &
Shapley 1974). Later in this thesis, we give an example for the calculation of grouped
Shapley values, where we expose the differences in both approaches to explain a decision
tree.

The glove game example : Within the glove game, three players P = {1, 2, 3} trying
to complete a pair of gloves. The player 1 and the player 2 each have a left glove, while
the player 3 has a right glove. The value function v(S) is evaluated with the value 1, if
the set S contains a matching pair of gloves and with the value 0 otherwise. Calculating
the classic Shapley value, we obtain φ1(v) = φ2(v) = 1

6 and φ3(v) = 4
6 . The results

follow our direct intuition that the player 3 is the most important player in the game,
since it is the only player who can complete a pair of gloves. Our observation changes
when players 1 and 2 form a predefined coalition. This means C1 = {1, 2} and C2 = {3}.
Both groups should be valued equally within the game, as having multiple left gloves
does not increase the value function, and only a combination of C1 and C2 can build a
pair of gloves. Using equation (4.8) we observe that our definition of grouped Shapley
values follows this intuition by valuing φC1(v) = φC1(v) =

1
2 , while when summing the

initial values φ1(v) + φ2(v) =
2
6 we would undervalue the coalition of players 1 and 2.

Note that we can increase the gap between both approaches by adding and grouping
more players who own a left-hand glove to the game.
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From Grouped Shapley Values to Local Explanations.

To use GSV to better understand yield prediction, we define a game (P, v) in the context
of a machine learning model M trained on a data set X ∈ Rn,m with targets y ∈ Rm.
That is, the data set consists of n features {f1, . . . , fn} and m data points used to create
the model. We obtain local explanations for a fixed data point x ∈ X by interpreting
each of the features as a player in a cooperative game, so P = {f1, . . . fn}. For a subset
of features S ⊆ P , we want the value function v(S) to represent the answer of the
model M to the data point x, assuming only the feature values of the data point from
features in S are known. For any predefined coalition Ci ⊆ P and set S ⊆ C\{Ci}, the
difference between v(∪S) and v(∪S ∪ {Ci}) describes the change in the output of the
model, assuming additional knowledge of the values of the features in Ci. The idea of
the GSV is to average contributions over all possible combinations of other predefined
coalitions S and to give an estimate of the impact of specific values of the features in Ci

to the model output.

To give an estimate of the model answer based on limited access to features, we
will calculate the expected answer of the model M for a data point x, where only the
features in S are known: E[M(x)|S]. This is known as a conditional value function, as
we estimate the model output under the condition that only certain features are known.
For this discussion, we will focus on a value function that can be defined for decision
trees. This will be useful for yield prediction, since we have just established a pipeline
to use XGBoost for yield prediction that sequentially results in a random forest to make
the predictions. To estimate the model’s answer of a singular tree given a subset of
features, we will traverse the tree. If, while traversing, we find a feature F , which is not
included in S, we estimate the average model answer from data points in our training
data set that are similar to x in relation to the set S. Similar data points are defined as
points that induce the traversing of the tree equal to the data point x, for every feature
in S. For the feature F that is not in S we calculate the weighted average of the model
answer, according to the number of similar data points that follow the two possible
branches of the tree. The procedure was first described by Lundberg et al. (2020) and
can be calculated using the recursive Algorithm 1. For the algorithm, we assume the
model M to be a tree that can be displayed as multiple lists. Including val (values) to
store the output value of the node, if the node is a leaf, l (left) and r (right) to store the
index of the left and right child nodes, f (features) and t (thresholds) to indicate which
feature to split at what threshold for the according node, and finally c (cover) to store
the number of training data points that follow the node. The root is always saved at
the index 0.

We give exemplary calculations in Figure 4.3 and put emphasis on handling the un-
known feature “Rain” in part a) and “Temp day” in part b). With Algorithm 1, we can
calculate the value function of Equation (4.8) for any given data point and subset. By
iterating over all the necessary subsets of features and building the sum, we can calcu-
late the GSV. Later in this section, we will describe a further procedure for calculating
Equation (4.8) in polynomial time.
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Algorithm 1: Conditional value function vM,x(S). First introduced by Lund-
berg et al. (2020)

Input : S, a subset of features
x, a data point
M = {val, l, r, f, t, c}, the model consisting of values, left children, right children,
split feature, threshold and cover

Output: vM,x(S) = E [M(X) | XS = xS ], the expected model output for the data point x given only
access to the feature values in S

1 Function traverse(node):
2 if node is internal then
3 if f [node] ∈ S then
4 nextnode = next node according to x
5 return traverse(nextnode)

6 else
7 leftpath = traverse(l[node]) ∗ c[l[node]]
8 rightpath = traverse(r[node]) ∗ c[r[node]]
9 return (leftpath+rightpath)\ c[node]

10 end

11 else
12 return val[node];
13 end

14 EndFunction

15 return traverse(0)

From Local Explanations to Global Understanding.

The approach described for GSV is capable of obtaining local explanations for any yield
prediction model, that is, predictions that can explain the impact of each feature for
a specific data point. In the context of yield prediction, a data point will be a vector
containing the values of the input features that are used to predict the yield for one
instance in one year. To continue, we want to have access to a global understanding
of the model. Only then can we decide to drop features of low importance or analyze
general patterns within the data that will help us to understand the yields. The low
dimension of the GSV allows a clear representation of the importance of the features.
The first step is to calculate the local GSV for a variety of data points. We can then
utilize specialized swarm plots for a joint representation to get an idea of not only the
magnitude of impact each feature group possesses, but also the impact of high and low
feature values on the final prediction. Swarmplots are plots where each point is placed
according to its value on the y-axis. If multiple points have similar values, an area gets
crowded and the points are spaced out, creating visual clusters. The plots are well suited
for our task, because they excel in visualizing the distribution of data points in a small to
medium amount of categories, like we have reached by grouping our features. Together
with applying a hue to the points, we can reveal meaningful patterns in the data. The
information gained can then serve as baseline for further experiments to decide whether
the machine learning task at hand is reliant on a specific group of features and can
lead to decisions like, e.g., not buying a certain sensor or not using human resources
to capture in-field information that often. We build the swarm plots as follows: After
grouping the features, we decide on an aggregated value to represent the magnitude
of the features in the group. For similar features, such as features captured from the
same sensor in multiple timeframes, the mean value of all features serves this purpose.
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a) S = {Temp day, Temp night}
E [M(x)|S] = (30/80) * 8 kg

+ (50/80) * 12 kg = 10.5 kg

Temp day
> 20°

100

10 kg

20

Rain
> 5 l

80

8 kg

30

Temp night
> 15°

50

12 kg

25

14 kg

25

b)

b) S = {Rain}
E [M(x)|S] = (20/100) * 10 kg

+ (80/100) * 8 kg = 12.8 kg

Esimtating model output with limited knowledge

x = (Temp day = 22°, Temp night = 14°, Rain = 4 l)

Figure 4.3: Two calculations of expected the model output E[M(x)|S] for a fixed data point x,
feature-subset S and model M as it is used for Shapley values calculation. The number of data
points covered by each node is indicated by the number next to it, and fulfilling the condition
of a node results in following the right path of the tree. The same path ending in the prediction
labeled “8 kg” is used to estimate the model answer of two different feature-subsets S. Figure
taken and altered from (Huber et al. 2023).

Since the number of groups is limited, we can even visualize multiple swarm plots in one
figure, where each swarm represents a feature group. The x-axis is then used to show
the GSV of the regarding group, indicating this feature group’s impact on the prediction
in the grand scheme. Finally, after normalizing the representative values for all groups,
we can use the hue of the individual points to highlight how the high and low values of
the feature groups influence the prediction of the model. Examples are shown later in
Figures 5.1 and 5.2. Having the GSV calculated can help us understand the impact of
the group of features Ci on our model for the specific data point x. Each GSV can be
interpreted as the difference made for our model that the features in Ci are valued within
x the way they are, in comparison to what the model would output, if these values were
unknown. The higher the absolute value, the more impact is attributed to the feature
group.

Grouped Shapley Values on Decision Trees (conceptual)

In general, the question of calculating the Shapley values is known to be NP-hard
(Conitzer & Sandholm 2004). The usage of predefined a priori coalitions is capable
of reducing the complexity of the task by reducing the number of summands in Equa-
tion (4.8) compared to the classic Shapley value. We have already established how to
estimate the value function v(S) for a model M and a fixed data point x and how to use
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it to calculate Equation (4.8). Understanding the naive algorithm alters the way of for-
mulating an algorithm capable of solving Equation (4.8) in polynomial time. Lundberg
et al. (2020) give a polynomial time algorithm for the calculation of the classic Shapley
value feature importances on tree structures. On the basis of their work, we are able to
formulate an algorithm to calculate the GSV feature importances in polynomial time.
To better understand the algorithm, we start with a conceptual representation of the
idea with Algorithm 2, where we abandon the exact weight update. The next subsection
will give an example calculation and finally the exact version of the algorithm can be
found later in this section in Algorithm 3.

Algorithm 2: Polynomial Group Shapley Values for Trees (Conceptual)
Input : x, a data point

M , the tree model
C, the partition of features that form the predefined coalitions

Output: φ, the grouped Shapley values
1 Function GroupTreeShapleyValue(Datapoint: x, Model: M, Coalitions: C):
2 φ = array of len(C) zeros // Storage for GSV

3 Function Expand(currentNode, path, weigths):
4 path, weights = Update weights(currentNode, path, weights)
5 Ci = Group of currentNode.getFeature()

// Get the group of the node’s split-feature

6 if currentNode is an inner node then
7 if a previous Feature F along the path is also in Ci then
8 UNDO the Update weights for F // Subset sizes remain the same

9 Child1 = Traverse further following the values of x
10 Child2 = Traverse further the other child
11 Expand(Child1, path, weights)
12 Expand(Child2, path, weights)

13 if currentNode is a leaf then
14 for node in path do
15 Cj = Group of node.getFeature()
16 w frac = weights according to subsets along the path in regard to Cj

17 w pos = weights of splits according to features in Cj

18 w neg = weights of splits without information of features in Cj

19 φ [j] += w frac ∗ (w pos− w neg)∗ currentNode.getValue()

20 end

21 EndFunction
22 EXPAND(root, path = [], weights = [])

// Start at root node with empty path and no weights

23 return φ

24 EndFunction

We have already described an intuition for calculating Equation (4.8) by iterating over
all possible subsets of the sum and estimating the answer of the value function. For each
subset S we have to traverse multiple paths of the tree, as highlighted in Figure 4.3,
since every time we need to split at a feature not in S, we continue to build the weighted
average over the two possible following children. Similarly, we use each path of the model
M in multiple calculations for the sets of Equation (4.8). In the examples in Figure 4.3,
we see the path ending in “8 kg” traversed for two different subsets S. The main idea
of the polynomial algorithm is to traverse the entire tree only once while keeping track
of the contribution that each individual path has to all possible GSVs. At the end of
the traversal of each path, the grouped Shapley values are updated accordingly. The
weights are determined by three different factors that need to be tracked and updated
throughout the algorithm. First, the sizes of the possible sets S as necessary for the
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factor in Equation (4.8) (noted as w frac in Algorithm 2). Second, the fraction of
training examples that follow the branches, as explained in the example in Figure 4.3.
Third, for every group Ci we want to calculate the GSV for, we need a sign depending
on whether the path traversal assumes knowledge of the features in Ci (positive) or not
(negative). The weights are updated consecutively while traversing the tree. We focus
on line 7 of the algorithm, where we need to check if the feature group was already
represented during the path we traverse currently. If this is the case, the structure of
subsets leading down to the path does not change, since all features within a group are
treated as a unit.

The algorithm was first defined in (Lundberg et al. 2020) for classic Shapley values.
We altered the algorithm to calculate the grouped Shapley values. The correctness of
our algorithm follows directly from the work of Lundberg et al. (2020), since we only
consider multiple features to be handled as if they were the same player within the
equation. Since the check of the occurring groups can be made via a lookup table,
the run time is still bounded by O(TLD2), with T being the number of trees within
the random forest. This is a factor since we need to execute the algorithm for every
individual tree. L refers to the maximum number of leaves within the trees and D
is the maximum depth of the trees. To understand the runtime, we have to look at
the exact version of the algorithm, Algorithm 3. Calling the Expand function in line 3
calls the Unwind function in a loop that is bound by the length of the regarding path,
which is bound by the maximum depth D. Unwind itself is also bound by the depth D,
explaining the factor D2 of complexity. All other loops are bound by the length of the
path m and therefore by D. The Expand call with runtime D2 has to be done for every
path, which is bound by the number of leaves L, causing the runtime O(LD2) for one
tree and O(TLD2) for all trees of the forest.

Grouped Shapley Value Algorithm Example

In this section, we analyze the model shown in Figure 4.4, exposing differences in the
Shapley value feature attribution for grouped Shapley values compared to simply sum-
ming up the individual values. We will compare the case where each feature is seen as an
individual with the a priori defined groups C = {C1 = {F1, F3}, C2 = {F2}}. In both
cases, we will use the algorithm for fast calculation of the (grouped) Shapley values to
calculate the Shapley value of the feature F2 and then the group C2 that contains the
feature F2. To improve readability and since x, v and M are fixed throughout the ex-
ample, we will write φF2 instead of φF2(v). As the sum of all Shapley value attributions
will be the same in both scenarios, since we are still explaining the same model by the
axiom of efficiency, when φF2 ̸= φC2 , then φF1+φF3 ̸= φC1 , where C1 contains both F1
and F3. We can use Algorithm 2 to calculate φF2, as the ungrouped Shapley value is
just a special case of the GSV, where every group contains a single player. To calculate
φF2, following Algorithm 2 we will calculate the positive and negative contribution of
each path in the model M towards the final Shapley value. Each path is represented
by the leaf node in which it ends. A path can only make a positive contribution to a
Shapley value φFi, when for each appearance of the feature Fi as a split feature, the
path traverses the tree according to the data point x. This is because in the Shapley
value calculation (Equation (4.8)), the sign of the value function is only positive for

50



4.2 Grouped Shapley Values for Explaining Yield Prediction Models

K1
F1 > 0
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F2 > 10
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F3 < 10
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K4
v = 1
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K5

v = 2

10
K6

v = 3

20
K7

F2 > 10

40

K8
v = 4

30
K9

v = 5

10

Model M

F = {F1, F2, F3}

C = {C1 = {F1, F3}, C2 = {F2}}

x = [5, 15, 5]

Figure 4.4: An example model for a prediction problem consisting of three features
F = {F1, F2, F3}. The first row in each node shows its name, the second shows the split
condition for internal nodes and the output value for leaf nodes. If the condition of an internal
node is met, we follow the right path of the tree. The example data point x = [5, 15, 5] follows
the right path in each node, as is indicated by the orange arrows. Lastly, the red number shows
the number of data points covered by each node.

sets that include the according feature Fi. For the negative contributions, we track the
weights according to the cover for each path to account for two different factors. First,
we trace the fraction at the beginning of Equation (4.8) according to the number of
feature groups included in the path. This value is presented by w frac in line 16 of
the algorithm. Second, we track the fraction of training examples following the path
to account for coalitions where we assume some features along the path are unknown,
represented by w pos and w neg in lines 17 and 18 of the algorithm.

Starting with the example, for the path ending in K4, this means that we have no pos-
itive contribution, since we do not reach K4 when F2 is known. Regarding the weights,
we obtain 1

2 as the factor in front of the Shapley value equation, since two different
features are present in this path. The two possibly negative contributing coalitions to
the path are then the one where F1 and F2 are unknown, represented by the 3

10 of
training examples following this path according to the cover, and the coalition where F1
is known and F2 is unknown, giving no contribution as in this case we cannot reach K4
due to the split in K1. For the path ending in K5, we have a positive and a negative
contribution, since we can reach K5 when we assume knowledge about the feature F2.
The calculations follow the same logic. The exact calculation of the contributions is as
follows:

K4: pos = 0

neg = 1
2 ∗ 3

10

φF2 = 0− 3
20 ∗ 1 = − 3

20

K5: pos = 1
2 ∗ 4

10

neg = 1
2 ∗ 1

10

φF2 = − 3
20 + ( 4

20 − 1
20) ∗ 2 = 3

20
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Resuming the algorithm with the calculation of the contributions of the path ending
in K6, we see that on line 19 of the Algorithm 2 the Shapley value is only updated
when the regarding feature was used as a split feature along the path. As this is not
the case for the path ending in K6 and feature F2, we do not have updates. For the
path ending in K8 and K9 we now find the fractions 1

6 and 2
6 to represent the fraction

in the Shapley value formula, as here three features are involved in the calculation. The
weights representing the amount of training data that follows the path when features
are assumed to be unknown are calculated as above. This leaves us with:

K6: pos = 0

neg = 0

φF2 = 3
20 + 0 ∗ 3 = 3

20

K8: pos = 0

neg = 2
6 ∗ 3

10 + 1
6 ∗ 3

6 + 1
6 ∗ 6

10 ∗ 3
4 + 2

6 ∗ 3
4

φF2 = 3
20 − 61

120 ∗ 4 = −113
60

And finally, to represent the complete tree and get the Shapley value:

K9: pos = 2
6 ∗ 4

10 + 1
6 ∗ 4

6 + 1
6 ∗ 6

10 ∗ 3
4 + 2

6 ∗ 1
neg = 2

6 ∗ 1
10 + 1

6 ∗ 1
6 + 1

6 ∗ 6
10 ∗ 1

4 + 2
6 ∗ 1

4

φF2 = −113
60 + (6190 − 61

360) ∗ 5 = 79
120 ≈ 0.658

Now we calculate the same example but with pre-defined groups of features. The
groups are defined as follows: C = {C1 = {F1, F3}, C2 = {F2}}. First we note, that
there is no change in the calculations for K4, K5 as they represent paths not including
F3. For the path ending in K6, the contributions are still 0, as F2 is not present. How-
ever, for K8 and K9 we get different results. On the one hand, we have only two feature
groups present in the path, which means that w frac is now 1

2 and we no longer have a
coalition where F1 is present but F3 is not, which makes a difference in the calculation.
In a formal representation, we get the following:

K8: pos = 0

neg = 1
2 ∗ 3

10 + 1
2 ∗ 3

4

φC2 = 3
20 − 21

40 ∗ 4

K9: pos = 1
2 ∗ 4

10 + 1
2 ∗ 1

neg = 1
2 ∗ 1

10 + 1
2 ∗ 1

4

φC2 = −39
20 + ( 7

10 − 7
40) ∗ 5 = 27

40 = 0.675

This example again proves the difference between GSV and simply building the sum
of individual Shapley values. And while the difference in our example is relatively small
with 0.675− 0.658 = 0.017, we can use the idea of the simple example to create arbitrarily
large differences by increasing the value of the leaf node K9. Furthermore, this example
can help us to understand how the fast calculation for grouped Shapley values utilizes
the given tree structure. We can omit any operations that scale with the powerset of
the players and substitute it by an algorithm that loops over the different paths within
a decision tree.

Grouped Shapley Values on Decision Trees (detailed)

Based on the work of Lundberg et al. (2020) we present Algorithm 3 as a precise descrip-
tion of Algorithm 2. Regarding the notion within the algorithm, as above, we assume
that the model M is a tree that can be displayed as multiple lists. Including val (values)

52



4.3 Discussing Shapley Values for Feature Selection

to store the output value of the node, if the node is a leaf, l (left) and r (right) to store
the index of the left and right child nodes, f (features) and t (thresholds) to indicate
which feature to split at what threshold for the according node, and finally c (cover) to
store the number of training data points that follow the node. The root is always saved
at the index 0. The additional variable m is used to store the path of the unique feature
groups along the path, represented by one feature per group. Together with the path
m, we store four attributes. (1) The feature index f , (2) the fraction of paths, where
this group is not in the set S that flow through the branch z, (3) the fraction of paths,
where this feature group is in the set S - o, and finally (4) the weight w, which keeps
track of the weights in front of Equation (4.8). Within the algorithm, we access arrays
through dot notation and m.d represents the whole vector of features that are traversed
so far. Lastly, the values pz and po track the fraction of added contributions, depending
on the current feature as represented in the subsets.

4.3 Discussing Shapley Values for Feature Selection

In the previous section, we established how Shapley values can be a valuable tool for
explaining yield prediction models, especially under consideration of naturally available
feature groupings. With this in mind, a natural next question arises: Can we use
Shapley values as a feature selection tool? More precisely, can we reduce the dimension
of the input feature space, while preserving the accuracy of our given model. In this
section, we lay the theoretical foundation for an application-driven analysis later in this
thesis. We first define 4 necessary conditions for defining a Shapley value application
in machine learning to circumvent known problems for Shapley value feature selection.
After this we unpack the model averaging problem, where, by definition of the Shapley
value, features that should not be selected during a feature selection procedure can alter
the final selection. We give an algorithm to obtain a feature selection that follows the
same core idea as Shapley values but has no problems with model averaging, called
Conditional Feature Selection (CFS). For simplicity, we focus our discussion mostly on
normal Shapley values as a special case of GSV, but the results can be directly related.
Parts of this section are already published in our previous research (Huber & Steinhage
2024d).

Necessary Conditions for Defining Shapley Values for Feature Selection

In the previous section, we defined GSV and applied the game-theoretic principle of
Shapley values to machine learning. However, within this definition, it is necessary
to choose a value function that gives each subset of players a value. Throughout this
thesis, so far, we have chosen a value function as defined by Algorithm 1, but there
are other possible choices to consider, such as the selected value function being integral
to a successful use of the Shapley values for feature selection. We define conditions to
define a value function that enables Shapley value feature attributions to be well suited
for feature selection. The conditions are based on recent criticism of the Shapley values
(Kumar et al. 2020, Huang & Marques-Silva 2023, Sundararajan & Najmi 2020, Fryer
et al. 2021) and avoid the problems that the respective works have uncovered. Although
the four mentioned works regarding this topic focus on defining a value function for
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Algorithm 3: Polynomial Group Shapley Values for Trees (Detailed)
Input : x, a data point,

M = {val, l, r, f, t, c }, the model consisting of values, left children, right children, split
feature, threshold, and cover
C, the partition of features that form the predefined coalitions

Output: φ, the grouped Shapley values
1 Function GroupTreeShapleyValue(Datapoint: x, Model: M, Coalitions: C):
2 φ = array of len(C) zeros // Storage for GSV

3 Function Expand(j,m, pz , po, pi):
4 m = Weight update(m, pz , po, pi); // Update m and all fractions to incorporate the

growing amount of features included in the path

5 if valj is an internal node then
6 hot, cold = (lj , cj) if xfj ≤ tj else (cj , lj) // check path according to x

7 iz = io = 1
8 k = FINDFIRSTGROUP (m.f, fj) // Check for group of fj
9 if k ̸= nothing then

10 iz , io = (mk.z,mk.o) // Undo split if the group is already represented

11 m = Unwind(m, k)

12 Expand (hot,m, izchot/cj , io, fj) // Recursive call for both children

13 Expand (cold,m, izccold/cj , 0, fj)

14 if valj is a leaf then
15 for i← 0 to len(m) do
16 w = sum(Unwind((m, i).w) // traverse path backwards

17 C = group of fj
18 φC = φC + w (mi.o−mi.z) valj // Update Shapley value

19 end

20 EndFunction
21 Function Weight update(m, pz , po, pi):
22 l,m = len(m), copy(m)
23 subsetsize = 1 if l = 0, else subsetsize = 0 // Check if this is the first call

24 ml+1.(f, z, o, w) = (pi, pz , po, subsetsize)
25 for i← l to 1 do
26 mi+1.w = mi+1.w + po ·mi.w · (z/l) // Fraction for bigger subsets

27 mi.w = pz ·mi.w · (l − i)/l // Fraction for same size subsets

28 end
29 return m

30 EndFunction
31 Function Unwind(m, i):
32 l, n,m = len(m),ml.w, copy(m1...l−1)
33 for i← l − 1 to 1 do
34 if mi.o ̸= 0 then
35 t = mj .w // Run the path backwards

36 mj .w = n · l/ (j ·mi · o)
37 n = t−mj .w ·mi.z · (l − j)/l // Undo the calculations within Weight update

38 else
39 mj .w = (mj .w · l) / (mi.z(l − j))
40 end

41 end
42 for j ← i to l − 1 do
43 mj .(f, z, o) = mj+1.(f, z, o)
44 end
45 return m

46 EndFunction
47 EXPAND(root, path = [], weights = []) // Start at root node with empty path and weights

48 return φ

49 EndFunction
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Shapley values that will cause negative examples when applied as a tool for feature
selection, we take learning from their counterexamples and extract necessary conditions
for defining the Shapley value in a way that they can be used for feature selection. A
detailed description of the problems and solutions will be given in the following. The
presented conditions will result in a value function well suited for feature selection and
explainability on regression trees. The conditions are as follows:
C1: The value function must not be interventional. In general, two families

of value functions are considered in the literature, conditional value functions and inter-
ventional value functions. Conditional value functions define the expected conditional
output of the model at a data point, assuming that only the features of S are known to
the model:

vM,x(S) = E [M(X) | XS = xS ] . (4.10)

Interventional value functions are motivated by causal inference. They simulate an
intervention on the features not in S, denoted as S̄, by modeling a distribution D from
the product of the marginal distributions of the features in S̄:

vM,x(S) = ED [M (xS ,X S̄)] . (4.11)

We note that this definition of a value function allows the simulated features of S̄ to
break with the correlations with the features of S. The negative effects of the inter-
ventional value functions for the Shapley values in explainability and feature selection
are examined by Kumar et al. (2020). An interventional value function will break down
with the correlations within the data set.
For a simple example, we can look at a problem where the feature space consists of

two temperature measures of the same day, and we try to predict the temperature of the
following day. Naturally, in this scenario, the two features are somehow correlated, as
the temperature can only vary so much during one day. The question of choosing a value
function now becomes the question of giving estimates of the model behavior when one
of the measurements is missing. When choosing a conditional value function, we need to
estimate the model output directly without missing information. For an interventional
value function, we do not estimate the model output, but estimate the feature value and
then use the new fully reconstructed data point to obtain a model prediction. From an
application-driven point of view of feature selection, interventional value functions are
problematic because of the difficulties of modeling distributions, as it has to be done
to estimate the missing feature value from the remaining features of a subset. In our
example, when one of the measurements is unknown, for an interventional value function,
we need to simulate its value. That could, for example, result in merging measurements
that are taken from different seasons and show a wider difference than naturally possible
in our data set, breaking the natural correlations of the data. Finally, this leads us to
evaluating the model at a data point that is not in the training distribution, where,
especially for random forests, the model behavior is unpredictable.
C2: The value function should correctly attribute relevant and irrelevant

features. Huang & Marques-Silva (2023) create a value function that allows a Shapley
value feature attribution to attribute no value to features that are important for model
prediction. In the same scenario, features that are not important to the model output
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receive a non-zero attribution value. The choice of a value function to utilize Shapley
values for feature selection should avoid these problems.

C3: The value function should consider multiple different training data
points when estimating the expected conditional answer of the model. This
property is important, since it prevents the evaluation of the value function vM,x(S)
to only consider data points where the values of the features in the set S match the
values of x. As Sundararajan & Najmi (2020) point out, this can cause problems when
the data point x is unique within the data set. This leads to the value function al-
ways estimating the model output based on the output of a singular data point and,
subsequently, vM,x(S) = vM,x(T ) for all S, T ⊆ P , making it impossible to distinguish
important features.

C4: The value function should allow the calculation of Shapley value fea-
ture attributions in polynomial time. The problem of Shapley value calculation is
known to be NP-hard. As the number of features can be high, especially when we con-
sider the task of feature selection, the calculation should be feasible in a moderate time
frame. Although there exist approximation techniques for the Shapley value calculation
(Castro et al. 2009, 2017) that can improve the computational complexity, they add a
layer of uncertainty that needs to be considered.

We note that our chosen conditional value function has all the properties explained
above, either for groups of features or for singular features. The function is conditional
and not interventional (C1). When considering features relevant to the model, we can
define a relevant feature as a feature capable of altering the model output. When a
feature f is capable of altering the model output, there exists at least one node within the
tree that splits on the value of f . So, our value function will give a different result, when
evaluated on the sets S ⊆ P\{f} and S ∪ {f}, giving a non-zero marginal contribution
and finally a non-zero attribution of the feature. Similarly, features that are not relevant
and are not considered as split feature in any node within the tree will never get a non-
zero marginal contribution and will receive no feature attribution (C2). Furthermore,
the chosen value function will consider multiple training instances when estimating the
conditional expected answer of the model, as long as at least one relevant feature f is
missing from the set S. If a relevant feature is missing, at least two branches of the tree
are followed during estimation of the expected answer of the model M . Both branches
represent at least one data point in the training data following the path, as otherwise
no split at the feature f would have been possible (C3). And finally, the calculation of
the Shapley value feature importance is possible in polynomial time (C4), as stated by
Lundberg et al. (2020) for the classical definition of Shapley values and for groups of
features, as is described in this thesis.

On the Problem of Model Averaging

In the previous subsection, we explained how Shapley values must be utilized for suc-
cessful feature selection. In this subsection, we discuss the weakness of Shapley values
for feature selection, which cannot be fixed by the choice of the value function. To
evaluate the impact of model averaging, we give an algorithm that uses the conditional
value function defined above to perform feature selection without suffering from model
averaging. Even with a carefully selected value function, a feature selection based on
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Shapley values cannot be optimal. The nature of Shapley values includes measuring the
impact of a feature on every possible subset of features, as can be seen in Equation (4.7).
But what is model averaging? In feature selection for prediction models, it is uncertain
which features should be considered for the final feature selection. Model averaging is the
process of quantifying the influence of all features with respect to predictions (Madigan
& Raftery 1994, Raftery 1995). Shapley value feature selections are a model averaging
procedure by definition, as Shapley value feature attributions are calculated by consid-
ering all possible subsets of features during the calculation of the Shapley value of every
singular feature. This results in features that are not in the optimal feature selection
can alter the feature selection process. For example, we can assume a scenario with
two features f1 and f2 that explain the data well, when selected together, but poorly
when selected alone. When calculating the feature attribution for the feature f1, the
importance will not be correctly reflected, since for every set S within Equation (4.7)
that does not include the feature f2, the marginal contribution when adding f1 will be
low. This results in a Shapley value feature selection that may not select the features
f1 and f2 in the correct position. A real-world example of this behavior is explained in
Section 5.3.

Conditional Feature Selection

Validation Data

E [M(X) | XS = xS ]Random Forest

Feature Subsets S

Full model output

RMSE

Feature
Selection

select min

evaluate

For all Feature Subsets S
(Algorithm 4)

CFS Overview

Figure 4.5: Overview of the Conditional Feature Selection (CFS) process to evaluate the problem
of model averaging for Shapley value feature selection. Algorithm 4 is used to evaluate the
conditional model output for all possible subsets of features on the validation data. A comparison
by RMSE with the full output of the full model is used to find the optimal feature selection.
This figure was previously published (Huber & Steinhage 2024d)

As a solution to the above problem, we present an algorithm called Conditional Feature
Selection (CFS) that allows us to evaluate a feature selection S without considering the
features not in S, simply traversing the decision tree once. A visual summary of the
procedure is shown in Figure 4.5. Since we will update the estimated model answer for
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All Feature Subsets f1 f2 f3 f1f2 f1f3 f2f3 f1f2f3 ∅

1 0 0 1 1 0 1 0setswithf1

0 1 1 0 0 1 0 1setswithoutf1

Figure 4.6: Explanation of the vectors used for the calculation of CFS for an example with three
features. Each subset is associated with a fixed position within a vector to store the weights
and the output value in Algorithm 4. The vectors setswithf and setswithoutf are calculated
for each feature and used to update the weights and output values. Figure previously published
(Huber & Steinhage 2024d).

all possible subsets simultaneously, we start by allocating memory for the output of all
possible 2n sets S by creating a vector out ∈ R2n . Each set S corresponds to exactly one
entry in out, and the vector will be used to synchronize the results of multiple recursive
calls of the traversemethod, each ending in a different leaf. A possible correspondence of
the feature subsets with an order in the vector can be found in Figure 4.6. Furthermore,
we use a vector weights ∈ R2n with the same correspondence to the sets S to store
weights that are unique for every path of the tree. The weights determine to what
extent the value of the path leaf contributes to vM,x(S). Following a path and splitting
at a node n with a feature f , for a set S, we observe three cases to update the weight.
First, when f ∈ S and we follow the path according to the value of f in x, the weights
remain the same. Second, when f ∈ S and we follow the path not according to the
value of f in x, the weights are multiplied by 0. Third, when f /∈ S we need to estimate
the behavior of the model based on the fraction of training data points that follow
both branches of the path, determined by the cover of the node n and both children.
For the following algorithm, we assume pre-processing to generate lists setswithf and
setswithoutf for each feature f . setswithf which has the value 1, when f ∈ S for the set
S that corresponds to the same spot in out and the value 0 otherwise. setswithoutf has
the value 1, when setswithf has the value 0 at the same spot and the value 0 otherwise.
An example of the two vectors is shown in Figure 4.6. When working with vectors, ∗ is
the scalar multiplication and ⊙ is the elementwise multiplication.

We can now use this algorithm to find the best selection of features S for a given
criterion. This can be a maximum number of features k to be selected or a maximum
deviation allowed from the model output given the full set of features. To find the
best feature selection, we divide a validation set V ∈ Rn×mv from our training data
X ∈ Rn×m with targets yv ∈ Rmv . The goal of our feature selection will be to find
the selection S that minimizes the error between the output of the full model M and
the expected output of the model vM,x(S) for the data points in the validation set. To
measure this error, we use the Root Mean Squared Error (RMSE):

RMSE(ŷ, ỹ(S)) =
√
MSE(ŷ, ỹ(S)) =

√√√√ 1

mv

mv∑
i=1

(ŷi − ỹi(S))
2, (4.12)

where ŷ is the output of the full model M on the validation set and ỹ(S) is the expected
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Algorithm 4: Conditional value function for all S
Input : x, a data point,

M = {val, l, r, f, t, c }, the model consisting of values, left children, right children, split
feature, threshold and cover

Output: out ∈ R2n , a vector storing the expected model output for every S ∈ 2P

1 out = zeros(2P )

2 weights = ones(2P )

3 Function traverse(weights, node):
4 if node is internal then
5 setswithf = vector of length 2P

6 setswithoutf = vector of length 2P // see Figure 4.6

7 childrenx = next children according to x
8 childrenother = children not according to x

/* fractions to update weights for setswithoutf : */

9 wx = c[childrenx] \ c[node]
10 wother = c[childrenother] \ c[node]

/* recursive call following x: */

11 traverse(setswithf + setswithoutf ∗ wx) ⊙ weights, childrenx)
/* recursive call not following x: */

12 traverse(setswithoutf ∗ wother) ⊙ weights, childrenother)

13 else
/* Update output on leaf nodes: */

14 out = out + weights ∗ val[node]
15 end

16 EndFunction

17 return traverse(0)

answer of the model M when only the features in S are known, as it is calculated in
Algorithm 4. The whole process is shown in Figure 4.5.

Runtime Analysis

The runtime of Algorithm 1 is analyzed by Lundberg et al. (2020). The complexity
of a single execution of the algorithm is proportional to the number of leaves l in the
respective tree. For our use case, we need to analyze every individual feature subset
of the 2P possible feature subsets. For an ensemble of k trees, we need to repeat this
procedure k times, leaving us with a runtime of O(kl2P ). Although this runtime is
still exponential in the number of features, an algorithm for Shapley value calculation
in polynomial time for random forests is stated above in this thesis. Algorithm 4 only
needs one execution per tree, since every subset value is updated simultaneously. In
this algorithm, the elementwise multiplication in lines 12 and 13 to update the weights
is the most costly part, since all 2P subsets are updated. The number of updates
is again proportional to the number of leaves in a tree, and we need to perform this
procedure for every tree in the ensemble, again leaving us with a runtime of O(kl2P ).
For practical applications, it is beneficial that the most expensive part of the algorithm
is the elementwise multiplication of two vectors, as this is a common problem and offers
multiple ways of efficient implementation, most importantly easy parallelization and the
use of powerful GPUs (Okuta et al. 2017, Lam et al. 2015). It is not possible to improve
the runtime of CFS by applying the same idea as for the fast calculation of the Shapley
values. The main concept is to iteratively update the calculated Shapley values when
traversing the tree, eliminating the need to track the value function for every existing
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K1
F1 > 0

100

K2
F2 > 10

20 K3
F1 < 10

80

K4
v = 1

10 K5
v = 2

10 K6
v = 3

30 K7
v = 4

50

Model M

F = {F1, F2}

x = [5, 15]

Figure 4.7: An example model for a prediction problem consisting of two features F = {F1, F2}.
The first row in each node shows its name, the second shows the split condition for internal nodes
and the output value for leaf nodes. Meeting the condition of an internal node means following
the right-hand path. The example data point x = [5, 15] follows the right path in each node,
as is indicated by the orange arrows. Lastly, the red number shows the number of data points
covered by each node. Figure previously published (Huber & Steinhage 2024d).

subset of players. However, for CFS, we are relying on tracking the change of every
subset, making a runtime of O(kl2P ) the best we can reach.

CFS Example

We use Algorithm 2 to calculate the expected output of the model defined in Figure
4.7 given that only subsets of the entire feature space F are known, for the example
data point x = [5, 15]. For better readability, we omit the brackets for the feature sets
and write F12 for {F1, F2}. After the first call of traverse we will only track the next
recursive function calls for the internal nodes or the update of the output for the leaf
nodes. First we initialize:

All subsets = [∅, F1, F2, F12]
setsWithF1 = [0, 1, 0, 1]
setsWithoutF1 = [1, 0, 1, 0]
out = [0, 0, 0, 0]
weights = [1, 1, 1, 1]

Algorithm 2 starts with traverse([1,1,1,1], K1). According to the data point x, we would
follow the right path in the tree towards node K3. This determines childrenx and chil-
drenother in line 7 and 8 of Algorithm 4. The two weights are then updated according
to the cover of the two nodes in lines 9 and 10. For both children we start the next
recursive call of the algorithm.
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split feature = F1
childrenx = K3
childreenother = K2
wx = 80/100
wother = 20/100
recursive call : traverse(([0, 1, 0, 1] + [ 8

10 , 0,
8
10 , 0])⊙ [1, 1, 1, 1],K3) [1]

Update with full weight when F1 is known and partial weights when not
recursive call : traverse([ 210 , 0,

2
10 , 0]⊙ [1, 1, 1, 1],K2) [2]

Update with zero weight when F1 is known and partial weights when not

[1] traverse(([ 810 , 1,
8
10 , 1]),K3)

recursive call : traverse(([0, 1, 0, 1] + [58 , 0,
5
8 , 0])⊙ [ 810 , 1,

8
10 , 1],K7)[3]

recursive call : traverse([38 , 0,
3
8 , 0]⊙ [ 810 , 1,

8
10 , 1],K6) [4]

[3] traverse(([12 , 1,
1
2 , 1]),K7)

out = [0, 0, 0, 0] + [12 , 1,
1
2 , 1] ∗ 4 = [2,4,2,4]

The value 4 of leaf K7 is added to the output
The weights reflect that the value is added fully for sets including F1
For sets not including F1 1

2 of training examples reach K7

[4] traverse(([ 310 , 0,
3
10 , 0]),K6)

out = [4, 2, 4, 2] + [ 3
10 , 0,

3
10 , 0] ∗ 3 = [2910 ,4,

29
10 ,4]

The value 3 of leaf K6 is added to the output
The weights reflect that no value is added for sets including F1
For sets not including F1 3

10 of training examples reach K6

[2] traverse(([ 210 , 1,
2
10 , 1]),K2)

recursive call : traverse(([0, 0, 1, 1] + [12 , 0,
1
2 , 0])⊙ [ 210 , 0,

2
10 , 0],K5) [6]

recursive call : traverse([12 ,
1
2 , 0, 0]⊙ [ 210 , 0,

2
10 , 0],K4) [7]

[6] traverse(([ 110 , 0,
2
2 , 0]),K5)

out = [2910 , 4,
29
10 , 4] + [ 1

10 , 0,
2
10 , 0] ∗ 2 = [3110 ,4,

33
10 ,4]

The value 2 of leaf K5 is added to the output
When F1 is known, K5 is never reached and no value is added

[7] traverse(([ 110 , 0, 0, 0]),K5)

out = [3110 , 4,
33
10 , 4] + [ 1

10 , 0, 0, 0] ∗ 1 = [3210 ,4,
33
10 ,4]

The value 1 of leaf K4 is added to the output
Only when F1 and F2 are unknown the path is followed to add value

The result [3210 ,4,
33
10 ,4] can now be directly interpreted as the expected output of the

model M for the data point x when we only assume access to the information in the
subsets of features [∅, F1, F2, F12]. In the case of this model, we see that the answer
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when only F1 is known is the same as when both F1 and F2 are known. In general,
the idea of CFS is to find the combination of features that minimizes the difference
between the expected model answer for the feature subset and the output of the full
model. We see that the main contribution to the runtime comes from the elementwise
multiplication ⊙. For n features the operation adds 2n multiplications per weight up-
date, growing exponentially in the number of features. We can now use the obtained
values to calculate the Shapley values φ1(v) and φ2(v):

φ1(v) = 1
2(4−

33
10) +

1
2(4−

32
10) = 0.75

φ2(v) = 1
2(4− 4) + 1

2(
33
10 − 32

10) = 0.05

In this case, the Shapley values hint towards the same selection as CFS, as φ1(v) reveals
the higher impact of feature F1 on the model output. We saw in the previous example
that the evaluation of the expected model output for decision trees makes it necessary
to track 2n weights for every path in the tree. Shapley values can be calculated by
only tracking 2 ∗ n values for every path, since each path has a positive and a negative
contribution to the calculation of the Shapley value. The contribution is positive for
every occurrence of the path in the calculation of v(S ∪ i) in Equation (4.7). To occur
in this calculation, the path must be as indicated by the example x on every split that
includes the feature Fi. First, we calculate φF1. We do so by listing the positive and
negative impact on the final Shapley value of every path of the model, represented by
the leaf node the path ends in:

K4: pos = 0

neg = 1
2 ∗ 2

10 ∗ 1
2

φF1 = 0− 1
20 ∗ 1 = − 1

20

K6: pos = 0

neg = 3
10

φF1 = − 7
20 − 3

10 ∗ 3 = −25
20

K5: pos = 0

neg = 1
2 ∗ 20

100 ∗ 10
20 + 1

2 ∗ 2
10

φF1 = − 1
20 − 3

20 ∗ 2 = − 7
20

K7: pos = 1

neg = 5
10

φF1 = −25
20 + (1− 1

2) ∗ 4 = 0.75

And now for φF2. First, we note that the paths ending in K6 and K7 have no impact
on φF2, as the feature does not appear within the paths and thus the positive and
negative contributions on the Shapley value will always be equal. For the remaining
paths:

K4: pos = 0

neg = 1
2 ∗ 1

10 + 1
2 ∗ 0

φF2 = 0− 1
20 ∗ 1− 1

20

K5: pos = 1
2 ∗ 0 + 1

2 ∗ 2
10

neg = 1
2 ∗ 2

10 ∗ 10
20 + 1

2 * 0

φF2 = − 1
20 + ( 1

10 − 1
20) ∗ 2 = 0.05

This concludes the example and shows why Shapley value calculation on random
forests can be faster than performing exhaustive feature selection like CFS.
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4.4 Deep Interpolation for Gaps in Remote Sensing LST Data

We want to apply our methods established in the previous three sections to yield pre-
diction scenarios of high spatio-temporal resolution, like, for example, the prediction of
grapevine yields on plot-level. For tasks like this, it is not possible to use remote sensing
data out of the box, as clouds and cloud shadows produce gaps in the data. In this sec-
tion, we describe three main ideas of our deep interpolation approach to interpolate gaps
in remote sensing Land Surface Temperature (LST) data. First, we describe how we use
individual-trained linear regressions to obtain surface temperature approximations for
missing LST values when a ground-site weather station is available. Second, we describe
the U-Net structure and partial convolutions that perform the interpolation of all other
missing values, and third, we describe how we use a partially computed loss function for
neural network training to obtain a capable model without the use of non-occluded LST
representations with no missing data. We also note that throughout the whole process,
we excluded each 140 LST images with full coverage for validation and testing, so they
are not used during creating the linear regression models or the training of the network.
The contents of this section are previously published (Huber et al. 2024b).

Linear Regression for Homogenization of Air Temperature

The first step in our efforts to interpolate holes in remote sensing LST data is to include
a reliable source of information in our data. Ground-site weather stations, as they
are present throughout the world, have the advantage of frequent and reliable climatic
records for a specific position. Integrating this information allows us to establish a
minimum amount of information for every day of the year. As the stations in our interest
region only offer air temperature records, we first need to infer a surface temperature
estimation from the data. We do so by training a new linear regression model for
every individual ground-site weather station. It is not possible to integrate the data
captured from the stations directly into the LST images, as the measured air temperature
usually deviates from the surface temperature, although the two are closely correlated.
To obtain data to train the linear regression models, we first search for all valid LST
information regarding pixels that cover the same area as the respective ground site
weather station. This leaves us with about 1000 to 1600 entries depending on the
weather station. An outlier is the Freimersheim station with only 438 valid entries in
the training data because it is available only from January 1, 2019. For each station, we
choose to use 80% of the data for training and 20% of the data to validate and adjust
the process. Note again that the final testing data are excluded throughout the process
and the interpolated LST values are part of calculating the final accuracies of all the
approaches tested. Regarding the input features to our models, as described in Section
3.2, we use the average, minimum, and maximum air temperature, together with the air
humidity captured at 6:00 am and 11:00 am, to infer the surface temperature at 11:00
am clock of the pertaining day. All features are measured twice, once at a height of 20
cm and once at a height of 200 cm. The RMSE to homogenize the air temperature with
LST is around 2.5 °C for each station, with the correlation coefficient R2 around 0.9.
An explanation for both evaluation metrics can be found at the beginning of Chapter
5 and an exact listing of the results is shown in Table 4.1. Experiments with more
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advanced machine learning models like random forests or XGBoost have not shown any
improvements, resulting in us choosing linear regression, due to its fast training and
evaluation together with high robustness.

Name Latitude Longitude RMSE (°C) R2

Bad Bergzabern 49.11 8.00 2.80 0.92
Deidesheim Niederkirchen 49.43 8.22 2.70 0.94

Edesheim 49.26 8.15 2.82 0.94
Ellerstadt 49.46 8.27 2.47 0.95

Freimersheim 49.27 8.22 2.70 0.92
Goecklingen Holzbruehl 49.16 8.03 2.64 0.93

Herxheimweyher 49.16 8.25 2.88 0.92
Lachen Speyerdorf 49.31 8.20 2.66 0.94
Landau Nussdorf 49.22 8.11 2.75 0.94

Landau Wollmesheim 49.18 8.08 2.60 0.94
Maikammer 49.29 8.15 2.72 0.94
Meckenheim 49.40 8.26 2.77 0.94

Neustadt an der Weinstraße 49.37 8.19 3.07 0.91
Ruppertsberg 49.39 8.19 2.77 0.93

Schaidt 49.05 8.09 2.30 0.93
Schweigen Rechtenbach 49.05 7.97 2.71 0.93

Schweighofen 49.04 7.99 2.48 0.93
Siebeldingen 49.22 8.05 2.67 0.93
Steinweiler 49.10 8.10 2.69 0.93
Wachenheim 49.44 8.19 2.84 0.93

Table 4.1: Overview over the location of all 20 local ground-site weather stations used to obtain
air temperature data. The values of RMSE and R2 for the linear regression models that convert
the air temperature into LST data. Table previously published (Huber et al. 2024b)

Partial Convolutions for Interpolating Temperature

We propose a U-Net-based architecture inspired by the work of Ronneberger et al. (2015)
to fill the gaps in the LST data. The general structure of the network is shown in
Figure 4.8. The input and output of the image consist of an LST image measuring
69x58 pixels. At each level of the U-Net architecture, we perform two concatenated 5x5
partial convolutions to extract features, shown by black arrows in Figure 4.8. Partial
convolutions, as introduced by Liu et al. (2018), work the same as regular convolutions
except that they do not include masked pixels. Given convolution filter weights W , the
input features for the current convolution window are written as X. M is the binary
mask that indicates missing values in X. The bias is b and the constant maximum
number of possible valid pixels in one convolution step is written as c. For each X ′ of
the output, a partial convolution can be described as:

X ′ =

{
W T (X ⊙M) c

sum(M) + b, if sum(M) > 0,

0, otherwise.
(4.13)

Here, ⊙ is the elementwise multiplication. The fraction in this equation can be inter-
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preted as a scaling factor for the number of valid pixels in the calculation. The condition
sum(M) > 0 checks if at least one valid pixel is available. The mask is updated under
the same conditions. If sum(M) > 0, then M ′, the new mask, gets a valid pixel at that
position. After the first set of convolutions, the downward path starts with a combina-
tion of a leaky Rectified Linear Unit (ReLU) and a 2x2 max pooling layer. Leaky ReLU
is an activation function similar to a standard ReLU activation. With a standard ReLU
activation, all negative values are suppressed, and positive values are propagated linearly
with a slope of 1. A leaky ReLU treats positive values as the same, but negative values
are not suppressed but linearly discounted. The max-pooling step selects the maximum
value from a 2x2 window. On the one hand, this helps to select the most important ex-
tracted features in each step, and on the other hand, this helps us to interpolate missing
values, as one valid value can be selected to represent up to three missing values. The
application of a leaky ReLU and the max pooling is shown by blue arrows in Figure 4.8.
The lowest layer of our U-Net is called the bottleneck and consists of image tensors of the
size 4x3. The small size guarantees that after an empty LST image is filled with the up
to 20 valid pixel values extracted from ground-site weather stations, there are no more
missing values in the bottleneck and therefore there are no missing values throughout
the whole upward path and subsequently no missing values in the final output image.
The stepwise increase in image size in the upward path is carried out by the so-called
inverse convolutions (Zeiler et al. 2010) with a 2x2 kernel and a stride of 2, shown as
orange arrows in Figure 4.8. Lastly, at every step of the upward path, we copy the state
of the last output of the same layer of the downward path and concatenate the input
to the first convolution of the upward path. This is also standard practice for designing
U-Net structures and helps stabilize the training process. Finally, the network output is
smoothed with a Gaussian kernel of size 5 with a standard deviation of 0.7. This further
improves the results, as LST images are mostly rather smooth, while the network output
can have steep differences between neighboring pixels.

Learning on Occluded Data

As fully available ground-truth data for LST reconstruction are very limited, we need a
solution to train our network using partially occluded ground-truth data. This means
that we have input data where only a portion of all pixels are valid. To create pairs of
input and output data that can be used to train the network, we removed additional
pixel information from each image. To create training images that resemble the real-
world conditions the best, we take the pattern of occluded pixels (cloud mask) from
a random different image of our training data set. This often results in some pixels
being masked, where ground-truth data are available, which can ultimately be used to
estimate how well the network can fill gaps in LST data. An overview of the process
is shown in Figure 4.9. The average amount of non-valid pixels in the training images
is increased throughout this procedure from 2505 non-valid pixels to 2729 non-valid
pixels. The increase in those numbers is to be expected, as the amount of non-valid
pixels per image can only be increased for every individual image. Throughout this
process, we also create training images where no additional pixels are made invalid,
resulting in the output image not having any additional information compared to the
input images. However, including those images in training the network is beneficial as
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Figure 4.8: Visualization of the U-Net structure including partial convolutions used to interpolate
gaps in LST data. Figure previously published (Huber et al. 2024b).

the network can use those to learn the spatial dependencies of the LST images in our
study region and therefore further improve accuracy and stabilize training. During the
training process, we used the Mean-Squared-Error (MSE) loss between the ground-truth
y and the prediction ŷ: L(y, ŷ) = ||y− ŷ||. To overcome the problem of missing ground-
truth data for an entire image, the MSE is calculated only where the ground-truth has
viable information. We note that this includes both pixels that exist in the network input
and pixels that are occluded in the network input image, providing stability during the
training process. For the final evaluation of the test data, only pixels newly inferred by
the network are used to calculate the error metrics.

4.5 Regularized Deep Transfer Learning for Yield Prediction

To conclude the chapter, we will explain the methods used to achieve knowledge transfer
between two different yield prediction domains. For this, we use multiple different tools
to achieve the best accuracy for yield prediction on a smaller data set. To allow for
successful transfer learning, we align our two data sources first, before we apply multiple
regularization techniques, and subsequently append a Gaussian process to recover the
information lost due to histogramization. An overview of the process is shown in Figure
4.10. The basis for our deep learning model is the same as that used to compare our
results in Section 4.1. For transfer learning, we use deep learning instead of XGBoost,
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Figure 4.9: Overview of creating image pairs for network training. Two random training images
are selected, one for extracting a real-world example for missing values and one for ground-truth
temperature data. The second image is masked according to the missing values in image one.
The network input is then completed by adding LST data, where weather stations are available.
Figure previously published (Huber et al. 2024b)

as decision tree approaches to transfer learning (Segev et al. 2016, Jiang et al. 2019) are
not as powerful, especially when the respective domains are inhomogeneous.

Spatio-temporal Alignment

The geographical distance between the US and Argentina accounts for some differences
in soybean cultivation in both countries. Specifically, we need to adjust for different
crop growth cycles. In the US, we monitor the growing conditions from March 23 to
December 4. In Argentina, due to different climatic conditions, we monitor the crop
growth cycle from November 26 to August 9. Both periods extend beyond harvest time,
so that we can leverage the capabilities of our models to determine important input data
themselves. As soybean yield prediction is especially valuable during the early stages
of soybean growth, we examine a second in-season forecast to test our models. For this
case, the time period only contains the first 14 of the 34 8-day intervals. The time periods
used, as well as the underlying crop calendars (USDA 2023), can be seen in Figure 4.11.
After data cleansing, a histogramization is performed, as first done by You et al. (2017)
and previously explained in Section 4.1. For each band and each satellite image, the
pixels masked as cropland within a county are summed for each record. Subsequently,
these sums are transformed into a normalized histogram with 32 bins of the frequency
distributions of the records in the vertical and the associated time in the horizontal. The
resulting data point consists of 9 times 34 histograms, a county name and a season year.
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Figure 4.10: Overview of our approach for leveraging remote sensing data for yield prediction with
deep transfer learning. The two boxes on the left side show the kind of input data that we use,
consisting of surface reflectance data, surface temperature data, and the cropland mask for each
of the two domains. The data is spatio-temporally aligned as preparation for transfer learning,
before being processed toward normalized histograms. The middle section of the figure shows
some of the transfer learning techniques used: frozen weights, fine-tuning with regularization,
and the initialization of the dense layer at the end of the network. Lastly, on the right-hand side,
we show an example of refining the prediction results by applying a Gaussian process. Figure
previously published (Huber et al. 2024a).

Figure 4.11: Crop calendar of Argentina and USA (data from USDA (2023)). The data of the
long period is shown in purple. The data of the short period is shown in blue. Figure previously
published (Huber et al. 2024a).
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Model Design and Transfer Learning Techniques

At the center of our predictive model is a CNN, as it is first used for yield prediction
by You et al. (2017). As a baseline for our implementation, we started from the work
of Tseng (2022). The CNN consists of 6 convolutional layers and the following dense
layer. As a result of histogramization of the input data, we need an alternative solution
to the commonly used pooling layers in conjunction with the convolutional layers. The
solution is convolutional layers with a stride of 2 to prevent locational invariance due
to pooling. In addition, we use dropout layers, early stopping, and batch normalization
when training the CNN. Foremost, to apply transfer learning, this CNN is trained in the
US domain and will be referred to as the US model in the following. The most natural
way to apply transfer learning is to fine-tune the US model in the Argentine domain.
This corresponds to initializing the weights of the CNN for the Argentine domain with
the weights of the US model. By assuming a similar distribution of the US domain and
the Argentine domain, the starting point of the Argentine model will thus be chosen
closer to the desired model, and the hypothesis space will be constrained by limiting
the hyperparameters of the training. Furthermore, since it is known through extensive
research that later layers have greater domain-specific significance while early layers
extract general properties, it may be useful to distinguish the approach based on layer
depth (Plested & Gedeon 2022). The first way to treat layers differently is to freeze
some of them. The frozen layers keep their weights unchanged during fine-tuning and
are effectively not trained directly on the new domain. In our case, this means that the
frozen layers are trained only on the larger US domain to contribute to a prediction on
the Argentine domain. Due to the high generalization of the front layers, this procedure
is applied to the front convolutional layers and thus adopts the basic framework of
the US model for feature extraction. This serves, in particular, to avoid catastrophic
forgetting (Iman et al. 2022). Catastrophic forgetting is one of the two major problems in
transfer learning and is the tendency of neural networks to abruptly lose the knowledge
of previous tasks when learning a new task (Kirkpatrick et al. 2017). Later convolutional
layers are initialized with the weights of the US model, but retain their ability to adapt
to the Argentine domain. To name this retraining on top of the source domain, we
overload the term fine-tuning, which also refers to the complete retraining of the net on
the Argentine domain on top of the US model. Last, we use the ability to completely
retrain layers independent of the US model so that they can fully adapt to the Argentine
domain. This complete retraining is used in the dense layers to account for their strong
specialization to the target domain associated with their high depth.

Transfer-specific regularization methods are suitable to further limit catastrophic for-
getting and to avoid negative transfer. Regularization influences CNN training by an
additional summand Ω to the loss. The widely known L² regularization, also known as
weight decay, penalizes large weights in the CNN. In this process, as seen in Equation
(4.14), the vector w of weights of the CNN is normalized, squared, and parameterized
by α to set the regularization strength:

Ω(w) =
α

2
∥w∥22. (4.14)

Based on this, Xuhong et al. (2018) modifies the starting point of this regularization so
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that instead of a deviation of the weights from zero, a deviation of the weights from the
US model is penalized. Thus, the hypothesis space is again restricted to the surroundings
of the US model, making catastrophic forgetting less likely. Since for the deviation of
the target model from the source model an equal structure of both networks is required,
Xuhong et al. (2018) extends the model by the option to regularize non-transferable and
especially newly added parts of the model with the L² regularization. Equation (4.15)
shows the corresponding formula, where α and β set the strengths of the regularization
of the constant and newly added parts:

Ω(w) =
α

2
∥wS − w0

s∥22 +
β

2
∥wS̄∥22, (4.15)

where wS is a weight vector of the constant structures of the target model, w0
s is a

weight vector of the constant structures of the source model and wS̄ is the weight vec-
tor of the newly added structures of the target model. We exploit the application of
L² regularization for greater adaptability of the dense layer, so that dense layers are
effectively regularized with L² regularization even when L²-SP regularization is applied.
This means in particular that the vectors of the constant structures are equal to the con-
volutive layers and the newly added structures are equal to the complete reinitialization
of the dense layers.

Negative transfer refers to a loss of performance due to knowledge transfer and occurs
due to a lack of transferability of some features caused by differences in the domains
(Chen et al. 2019, Plested & Gedeon 2022). To reduce negative transfer, we use the
Batch Spectral Shrinkage (BSS) regularization method. Chen et al. (2019) observed that
large data sets lead to highly generalized models, while at the same time these models
suppress small singular values of the extracted features. To exploit this behavior of
generalized models, Chen et al. (2019) use artificial suppression of small singular values.
Specifically, they introduced the concept of relative angles between domains that can be
used to measure the transferability of eigenvectors in the weight matrices. Subsequently
they found out that in later layers of the network only eigenvectors corresponding to
relatively large eigenvalues produce small angles and hence are well suited for knowledge
transfer. Here, the feature maps fi of the input xi are vectorized and aggregated into
a feature matrix F = [f1...fb] per batch of size b. Subsequently, the singular value
decomposition is applied to this feature matrix, and the k smallest singular values are
used to suppress the associated poorly transferable eigenvectors. The BSS regularization
is thus given by

Ω(F ) = Lbss(F ) = η

k∑
i=1

σ2
−i,

where η as a hyperparameter specifies the strength of the regularization, k specifies
the number of smallest singular values σ−i to be penalized. k is set to 1 according to
Chen et al. (2019) and the regularization is completely adjusted through η. The use
of BSS and L²-SP have the advantage that both regularization methods can be applied
simultaneously (Chen et al. 2019).
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Deep Gaussian Process

To extend the CNN to include spatio-temporal features, You et al. (2017) propose the
use of a Gaussian process on top of the CNN. For a data point x, the deep Gaussian
process uses the input of the last dense layer of the CNN h(x) and a Gaussian process
f(x) ∼ GP(0, k(x, x′)) to make a harvest prediction:

y(x) = f(x) + h(x)Tβ

f(x) ∼ GP(0, k(x, x′)) is distributed from a Gaussian process with zero mean and co-
variance defined by the squared exponential kernel

k(x, x′) = σ2 exp

(
∥gloc − g′loc∥22

2r2loc
−

∥gyear − gyear′∥22
2r2year

)
σ2
eδg,g′

where gloc and gyear indicate the spatial and temporal data of the associated data point x
and δg,g′ is the Kronecker delta as noise factor over g = (gloc, gyear) parameterized by σe.
σ, σe, rloc and ryear are hyperparameters. In summary, f(x) distributed from a Gaussian
process is a collection of random variables with a joint Gaussian distribution. The next
summand for the prediction is given by a set of basis functions h(·), corresponding to the
last layer, and a random variable β. β is distributed from a normal distribution with the
weight vector of the last layer as mean and σbI as the variance with the hyperparameter
σb.

The choice of β and h(x) results in a distribution around the CNN prediction. The
second summand then results from the covariance of the training data with the test data
formed on the RBF kernel multiplied by the differences of the prediction h(x)Tβ on the
training data and the ground-truths of the training data, which are again weighted with
the help of their covariance. This forms f(x) ∼ GP(0, k(x, x′)), which reduces the error
values depending on the local and temporal relationships of the underlying data.
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Within this chapter we present and discuss our experiments that analyze the impact
of our solutions on the five challenges that we face when predicting agricultural yields
with machine learning: training on small data sets, need for explanations, selecting
important features, gaps in remote sensing data, and making predictions for shifting
domains. We start by evaluating our pipeline processing remote sensing data into a
tabular representation by estimating the underlying distributions to allow predictions
with XGBoost by comparing the prediction for soybean yields in the US against the
state-of-the-art deep learning approaches in Section 5.1. In Section 5.2 we explain the
resulting model using grouped Shapley values and show how our models decision process
is in line with the expertise in the field of yield prediction. We then have an application-
driven discussion on the use of Shapley values for feature selection in Section 5.3 by
comparing different selection methods in multiple real-world examples, before using the
Shapley values to select an expressive subset of features to optimize the data efficiency
of our previously built yield prediction model. Furthermore, we test the capabilities of
our deep interpolation approach for remote sensing LST data to prepare data for the
prediction of grapevine yield in Section 5.4. Lastly, we analyze transfer learning efforts to
transfer knowledge from soybean yield prediction in the US to soybean yield prediction
in Argentina in Section 5.5.

Performance Metrics

Throughout this section, we will use two main metrics to evaluate our approaches. To
measure the overall error, the Root Mean Square Error (RMSE) is calculated as follows:

RMSE(ŷ,y) =
√
MSE(ŷ,y) =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2. (5.1)

Here, y represents the ground-truth values and ŷ, the prediction values. To be able
to measure the variability in the target variable that is explained by the models, the
coefficient of determination (R2) is utilized:

R2(ŷ,y) = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
, (5.2)

where ȳ is the mean of the ground-truth values y.

Furthermore, every experiment that includes random aspects consists of multiple runs.
This includes accounting for randomness in the initialization of deep learning frameworks
and the sub-sampling within the XGBoost algorithm.
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5.1 Comparative Evaluation of XGBoost vs. Deep Learning for
Yield Prediction

The performance of the XGBoost-based approach for yield prediction and the deep
learning approaches are evaluated in two different yield prediction scenarios. An end-of-
the-year prediction and an in-year prediction on soybean yields provided by the USDA.
The experiments have previously been published (Huber et al. 2022).

End-of-the-Year Prediction

Experiments are carried out on the entire data set to evaluate all approaches for an
end-of-year yield prediction. This means that the complete span between the 49th and
321st day of the year is used. By this date, all soybeans should be harvested (USDA
2010), and therefore the satellite data include information on the farmland right before
harvest. When testing approaches for a specific year of the data set, it is assumed that
only data from before the specific year are available for training and validation, while
the year itself is explicitly excluded for testing. Hyperparametertuning was run for 50
iterations without further pruning involved to optimize the accuracy on the validation
set. A model is tuned and trained for each testing year from 2017 to 2021, using 10%
of the training data available for validation. After being used for validation, the data is
included again in the training set for the final model. A unique model is trained for each
year to be as close as possible to the real-world use case, where it should be beneficial
to include the most recent years in training. The results can be observed in Table 5.1.
When comparing the XGBoost-based approach with deep learning approaches, RMSE
decreases by about 25% when averaging the metric over five years in the test data. In the
same time frame, the average R2 score increases by about 0.13. The good performance
of the XGBoost-based approach in the experiments can be explained by the nature of
the data. Although remote sensing data are often referred to as satellite images, there
is a greater resemblance to tabular data sets, where the information is represented by
numerical features instead of pixels. The necessary preprocessing towards histograms or
distribution approximation values strengthens this supposition. Classic machine learning
approaches on feature-engineered data sets thrive under these conditions.

With respect to the results of hyperparameter tuning, a tendency of the models to
develop deep trees is prevalent. The parameter that provides the maximum allowed
depth of the individual trees averages 21.8 over all five years in the experiments. The
XGBoost library defaults towards a value of 6 for this specific parameter, since the
standard use cases contain smaller quantities of overall features. This indicates that
the data at hand are of high complexity and need many features to be included for
an informed regression. Since this could lead to overfitting, other hyperparameters are
tuned to encourage conservative model behavior. The learning rate is rather low and
averages 0.06 compared to the default value of 0.3. Furthermore, the hyperparameters
indicating stochastic sampling of rows and columns in each iteration average at 0.6 and
0.84 respectively, to help avoid overfitting.
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5.1 Comparative Evaluation of XGBoost vs. Deep Learning for Yield Prediction

XGBoost CNN CNN-LSTM
Year RMSE R2 RMSE R2 RMSE R2

2017 3.77 0.82 5.01 0.70 5.07 0.70
2018 4.51 0.76 6.15 0.63 6.21 0.63
2019 4.21 0.76 5.52 0.57 5.76 0.54
2020 4.22 0.80 6.66 0.55 7.63 0.42
2021 4.55 0.82 5.12 0.85 6.03 0.79
AVG 4.25 0.79 5.69 0.66 6.14 0.61

Table 5.1: RMSE and R2 values of end-of-year soybean yield predictions. The best result for
every year is highlighted in blue. The CNN architecture is taken from You et al. (2017), and
the CNN-LSTM architecture is taken from Sun et al. (2019). Table previously published (Huber
et al. 2022).

XGBoost CNN CNN-LSTM
Year RMSE R2 RMSE R2 RMSE R2

2017 4.88 0.72 7.82 0.28 7.78 0.29
2018 5.27 0.68 7.30 0.50 8.06 0.38
2019 4.65 0.70 9.73 -0.49 9.67 -0.31
2020 5.35 0.65 8.24 0.32 8.16 0.33
2021 6.04 0.61 8.11 0.62 8.76 0.56
AVG 5.24 0.67 8.24 0.25 8.49 0.25

Table 5.2: RMSE and R2 values of in-year soybean yield predictions. The best result for every
year is highlighted in blue. The CNN architecture is taken from You et al. (2017), and the
CNN-LSTM architecture is taken from Sun et al. (2019). Table previously published (Huber
et al. 2022).

In-Year Prediction

To showcase the dynamics of in-year soybean yield estimation, the time between the
49th and the 201st day of the year is used to produce training data. This ensures that
the harvesting season has not yet begun. Therefore, the data contain 19 of the 8-day
intervals that present the remote sensing data. The reduced amount of information
increases the difficulty of the prediction task. On the same note, information gained
from an in-year prediction is even more valuable to every party involved, since classic
estimation approaches often include counting specific features of the crop that might
not have developed yet. Training and testing data are handled as explained for the
end-of-year prediction.

The results are presented in Table 5.2. Averaging error metrics over five testing years,
the XGBoost-based approach outperforms the best state-of-the-art approach by 36% in
terms of RMSE and 0.42 in terms of R2. The gap between the deep learning approaches
and the XGBoost approach appears to be wider than for the in-year prediction. This
indicates that the XGBoost based method is less affected by the lack of information
about the later growing stages, possibly hinting that the underlying relations between
early growing stages and final yield are better understood than by the deep learning
methods. Regarding the hyperparameters of XGBoost, similar values are observed as
described for the end-of-year prediction.
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Data and Time Efficiency

While the raw satellite images take up 218 GB, histogramization results in a reduction
of down to 1.41 GB by removing spatial dependencies of the data. The histograms still
cover the complete ranges of values of the pixel intensities. However, since adjacent
image pixels have a high probability of showing similar values, multiple bins of these
histograms show zero entries. Our approach of estimating only three key values, that is,
the median, 20% quantile, and 80% quantile, describing the value distributions produces
a representation size of 0.01 GB for further processing.

The USDA yield data set shows the most significant amount of training data that needs
to be processed for the year 2021. To examine the time used to train and test a yield
prediction model for 2021, the performance is averaged over two runs, since the early
stopping mechanic within the training of the deep learning approaches is responsible
for varying training times. The CNN network requires approximately 15 minutes for
training. The CNN-LSTM architecture takes approximately 10 minutes for the task.
Finally, the XGBoost-based approach takes about 90 seconds for the same task. All
experiments were performed on an NVIDIA GeForce GTX 1660 Ti.

Discussion

The experiments above hint towards a good compatibility between XGBoost and the
estimation of yield, showing a performance at least on par compared to deep learning
for the end-of-year as well as for the in-year predictions. However, it is generally known
that deep learning methods benefit from extensive training data. This tendency is
especially noticeable in the CNN approach, where we see an increase in performance
after expanding the training data set after early experiments. Although the XGBoost
method showed similar results for the reduced and full data sets, the accuracy of the
CNN improved. Another indicator of this hypothesis is the good performance of the CNN
approach for yield prediction in 2021, where most data are available. At the same time,
2021 is the only year in which CNN could outperform XGBoost in terms of R2. Although
this is taken into account, the limitations of real-world data need to be acknowledged.
Arguably, soybean production in the US is one of the largest data sets available to train
and test models for yield prediction. Therefore, using the same approaches for other
data sets will often result in fewer data available to train the models. As more years
pass, it will be possible to train the models on even larger data sets with more harvest
data available. In addition, other possibilities for handling scarce data in deep learning
could bring improvements. For classic image processing tasks, pre-trained networks are
utilized. The networks are pre-trained to extract general features on large data sets in
a task agnostic way. For a specific use case, pre-trained networks are trained further
on often small task-dependent use cases, achieving good accuracies on scarce data sets
(Kolesnikov et al. 2020). We will provide experiments on this matter later in this thesis.
Other research fields include semi-supervised learning, where only parts of the data are
annotated (Pham et al. 2021), and synthetic data sets, where more training data are
generated (Xu et al. 2019).

Another point worth highlighting in this study is the application of different process-
ing methods for the same data. Experiments have shown that the respective way of
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processing data, which means histograms for deep learning and features for XGBoost,
obtains the highest accuracies, respectively. The difference in accuracies between the
CNN and CNN-LSTM approaches must be explained. Sun et al. (2019) claim that the
CNN-LSTM approach outperforms a CNN in their article. However, the CNN used for
comparison consists only of the CNN part of the CNN-LSTM and is not geared specifi-
cally towards the problem. Reproducing their experiments showed the same results for
the same CNN, but the CNN developed by You et al. (2017) is still able to outperform
the CNN-LSTM on our data.

Furthermore, the use of vegetation indices could bring about further improvements
in accuracy. Multiple studies are conducted in which remote sensing data are accessed
for yield prediction, based on the results of different vegetation indices. In this study,
the information integrated within the vegetation indices is expected to be incorporated
directly into the models. This is due to the assumed capabilities of all the approaches
involved in our study to understand the relationships between the raw remote sensing
data and vegetation indices.

The results of the experiments prove the capabilities of XGBoost for soybean yield
prediction in the US, compared to state-of-the-art deep learning approaches. However,
this is only one possible task to predict yields out of many. Other tasks will most likely
suffer from fewer available training data and will make it more difficult for deep learning
approaches to reach the accuracies of our XGBoost pipeline. Selection of crops within the
US allows the use of CDL and Daymet data, which are not available worldwide. Although
substitutable data sources are available around the world, the quality of the data and
the resulting prediction accuracy may differ, as we will see later in this thesis in Section
5.5. Not only the region, but also the crop of interest could be different for further yield
prediction scenarios. We expect the results for other crops and different yield prediction
scenarios, such as, for example, corn and wheat, to be similar. Finally, the limitations of
XGBoost need to be acknowledged. Although very good prediction accuracies have been
achieved in many real-world scenarios, some weaknesses are well known. This includes a
lack of extrapolation capabilities when dealing with test data that exceed the observed
feature quantities during training. Especially in times of climate change, this could pose
future problems for our approach. Furthermore, XGBoost can be heavily affected by
outliers due to the nature of Gradient Boosting, where each learner tries to consider the
previous learners’ mistakes. Since data acquisition of harvested yields always includes
human-made measurements, mistakes and therefore outliers could occur.

5.2 Explaining Yield Predictions with Grouped Shapley Values

In this section, we use our novel method to calculate grouped Shapley values for random
forests for the models created in Section 5.1. We show how grouped Shapley values can
be used to analyze the prediction model and make the results plausible for practical
use cases by showing alignment with the knowledge of experts in yield prediction by
grouping the explanations first by remote sensing band and then by the timestep used
for creating the features in our data. Some of the results in this section have previously
been published (Huber et al. 2023).
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Grouping Feature Attributions by Band

To explain our yield prediction models, grouped Shapley values are necessary, as the
input data originally consists of 1131 input features, making any effort to analyze indi-
vidual feature attributions tedious. We will focus our analysis on the model created for
the full out-of-year prediction model, as the explanations of a model are worth more if
the model is more precise. Furthermore, we will exemplarily analyze the model to predict
the 2021 yields, as our experiments reveal similar plots for the prediction of any year.
The input features are extracted from 11 different bands of remote sensing data with
three values representing the band for a county in an eight day interval. Figure 5.1 shows
the swarm plots resulting from the grouping of features with respect to their spectral
bands. We note that the sum of all GSV of a local explanation will result in the model
output for the specific data point. Therefore, each grouped Shapley value describes how
knowing the data point’s values for the features within the groups impacted the model
output, in comparison to the absence of these values. If we look, for example, at the
values on the far right within the swarm plot for the handcrafted features in Figure 5.1,
we know that there are data points that we would expect to have ca. 15 bu/ac lower
predicted yield, when the handcrafted features would be unknown. Furthermore, we
know that this behavior is caused by the high overall values of the feature group, since
the respective data points are colored red. When iterating through the swarm plots, we
see interesting and insightful patterns in most of them. The following insights can be
gained from the corresponding swarm plots:

Red - 620-670 nm and NIR - 841-876: These two feature groups are components
of the well-known Normalized Difference Vegetation Index (NDVI) (Quarmby et al.
1993), which is historically used to summarize remote sensing images to predict yields.
The NDVI is calculated by dividing the difference between the NIR and the Red band
by their sum. This means that a high NIR will increase the NDVI and is correlated
with a higher yield, while the opposite holds for the red band. This coincides with the
plots in Figure 5.1, as can be seen by the reverse order of the red and blue points in the
two plots. For the red band, the blue dots are mostly on the positive side of the plot,
meaning that a low value for this band coincides with an increasing yield prediction.
For the NIR band, we observe the opposite. The dots colored blue make the biggest
negative impact on the model of all feature groups, by reducing the model’s prediction
by more than 5 bu/ac.

Blue - 459-479 nm and Green - 545-564 nm: Both bands have historically not
been used for yield prediction and also have little impact on our prediction models, as
there are no dots within the plots that show a high GSV.

NIR - 1230-1250 nm and IR - 1628-1652 nm: These feature groups show lower
impacts, indicated by very narrow swarm plots. However, for both bands, we see a
tendency that higher values coincide with lower predictions, since the negative impacts
on the yield predictions are all recorded for red-colored dots.

IR - 2105-2155 nm: This feature group shows a higher impact, indicated by a larger
swarm plot. Since we find red and blue dots at both ends of the spectrum, we cannot
derive a pattern or interpret the influence of higher or lower values. This means that the
model’s interpretation of this feature group is highly influenced by other feature groups
around, but still important to derive the final prediction.
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TempDay and TempNight: The temperature at day shows a larger swarm plot
than the temperature at night and therefore is more influential on the model output. At
the same time, the dots within the night temperature are clearly sorted from blue to red
and indicate that a higher temperature at night coincides with a higher yield prediction.
Precipitation and Vapor Pressure: The precipitation group shows almost no

impact on the model output, as it is the narrowest swarm plot in Figure 4.3. The vapor
pressure group shows a small impact on the yield prediction and a very clear indication
that a higher vapor pressure should lead to slightly higher yields because the dots are
completely in order from blue to red. Interestingly, both feature groups are not available
worldwide, as they are specifically captured within the US. The relatively low impact on
the prediction model encourages soybean yield prediction experiments in other regions
of the world, although this information would not be available.
Handcrafted Features: This is the most influential group of features, capable of

altering the prediction of yield by more than 15 bu/ac. The impact is very high, as it
includes the average yield of the county represented by the data point over the foregoing
years. That is, a county with traditionally higher yields in the past will obtain a higher
yield prediction from our model, thus inducing spatial context in the modeling.
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Figure 5.1: GSV feature importances for soybean yield prediction. Every dot is a local explana-
tion of a soybean yield prediction in the U.S. The first 11 plots represent a group of 102 features
each calculated from different remote sensing data. The bottom plot shows a group of 7 addi-
tional handcrafted features. The color represents an averaged and normalized representation of
the grouped features values. Figure already published in (Huber et al. 2023).
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Grouping Feature Attributions by Timestamp

Another natural way to group the features is not by band, but by the time step (TS) in
which they are captured. For this, we leave out the handcrafted features, as they cannot
be attributed to a specific time. The swarmplot for the grouped Shapley values showing
the impact of each time step observations on the prediction result is shown in Figure
5.2. For this grouping, the hue of the individual points is difficult to interpret, as the
aggregated value of the value of all the bands at an individual point in time is not as
expressive as for the grouping by band seen in the previous experiment. However, we see
an increasing importance of time steps starting from TS 17, where we see the modeling
results being altered by circa -1 to +1 bu/ac by the features values. The greatest impact
on the model output can be found by the features captured at TS 22 and TS 23, where
unfavorable conditions can decrease the prediction of the model by up to 6 bu/ac, each.
This is supported by the knowledge of experts on the prediction of soybean yields, stating
that high temperature stress during mid-reproductive growth is detrimental to yields,
while stress experienced during the early or late stages of development has comparatively
little impact on plants (Yang et al. 2023). The figure also helps explain the differences
in accuracy between the in-year and end-of-year predictions, with the in-year prediction
not including the very impactful TS 22 and TS 23.

Discussion

The presented work on using GSV to gain global understanding of random forests shows
several advantages over other explanation methods. Grouping similar features allows for
a representation of the models decision process that can be easily understood and can
serve as a tool to understand that our models decision making process is in line with
experts knowledge regarding the topic and can be helpful in creating synergy between
computer scientists and domain experts. Much more so than a direct representation
of the importance of all the features, as can be done with classical Shapley values.
One common solution to this problem prior to our work was to add up the individual
Shapley value feature attributions, ignoring interactions between the features within the
same group that can alter the results, as we have seen in the example in Section 4.3.
Our approach does all this while conserving the common strengths of Shapley values in
machine learning, offering a unified framework for explanations across different machine
learning models, and most importantly preserving the axiom of efficiency, resulting in all
the explanations of a data point adding up to the final model output. This makes feature
attribution easy to understand, especially outside of the field of computer science. For
tree models, all this is possible without having to sacrifice runtime, as we provide a
fast algorithm to calculate grouped Shapley values. We acknowledge that our approach
relies on a natural grouping of features that cannot be determined in every scenario but
is common for yield prediction tasks, as multiple features are often derived from the
same sensor or captured at the same time frames. In some cases, the restricting rules
on creating the partition of predefined coalitions can hinder the analysis of important
features. However, when we want to compare to predefined coalitions that share a set
of features, we can use our approach multiple times to support the analysis. The easiest
way would be to perform two evaluations of GSV with two feature groups each. One
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Figure 5.2: GSV feature importances for soybean yield prediction. Every dot is a local expla-
nation of a soybean yield prediction in the U.S. Each plot represents all features captured at
the specified time step (TS), running in 8 day intervals from the 49th day of the year. We see
the biggest impact given by TS 22 and TS 23 during mid-reproductive growths. This shows the
model decision making process to be in line with experts knowledge (Yang et al. 2023).
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predefined coalition in each run would be the one that should be analyzed, and the
other would be composed of all other features. As the sum of the two GSVs will be
the same in both cases, the importance of the regarding predefined coalitions can be
compared. Furthermore, our visualization works best if the value of the feature groups
can be represented meaningfully by an aggregated value. Lastly, since fast calculation
of the GSV is only enabled for tree structures, it remains an open problem how to
handle explanations for models with high-dimensional input data that do not rely on
tree structures. Next in this thesis, we will experiment on using the calculated feature
importances to select features and create lightweight models for yield prediction.

5.3 Application-Driven Discussion on Shapley Values for
Feature Selection

As we have successfully proven the worth of GSV for explaining models, we now want
to discuss the question whether we can use them to select meaningful feature subsets to
rebuild our yield prediction models. This section is dedicated to an application-driven
discussion on the capabilities of Shapley values for feature selection. To do so, we will test
three different options to select features to preserve model performance in well-known
real-world data sets. As a baseline and representation of the state-of-the-art, we will use
the internal Gini feature importances of random forests. We show how a greedy selection
of features by Shapley value feature importances improves over the state-of-the-art and
evaluate the impact of model averaging by discussing the results of the CFS algorithm
as introduced in Section 4.2. First, we will give an in-depth explanation of a selected
real-world example that highlights the differences between CFS and greedy Shapley
value feature selection. Following this, we show the results of further experiments on
different data sets, before we use the results of the feature selection process to replicate
the experiments of Section 5.1 with a smaller feature space. Most of the content in this
section has previously been published (Huber & Steinhage 2024d).

Experimental Design

To evaluate the three different feature selection methods and to build our base model
M , we again use XGBoost to build a random forest. As explained above, XGBoost
builds the tress sequentially, where each tree is designed to reduce the residual error
of the already existing ensemble. For hyperparameter tuning, a Tree-structured Parzen
Estimation (TPE) (Bergstra et al. 2013) is applied. This is a sequential model-based
optimization approach. Models are constructed sequentially to approximate the perfor-
mance of the model for a set of hyperparameters based on historical measurements. TPE
estimates the underlying relations between a quality measure and the hyperparameters
by exposing the underlying expression graph of how a performance metric is influenced
by the hyperparameters. For this study, the Python implementation of TPE within
the Optuna framework is used to tune the hyperparameter for each selection of subsets
(Akiba et al. 2019) and ran for 25 iterations without any additional pruning involved to
optimize accuracy in a 5-fold cross-validation of the training data.

The three different feature selection methods evaluated are implemented as follows.
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First, we use the internal Gini feature importances of the random forests as a baseline
and representation of the most used feature selection methods in practical applications.
The feature selection is done by greedily selecting the highest scoring feature according
to the internal feature importance from XGBoost as a baseline selection. To calculate
the internal Gini feature importance for a feature, we evaluate all splits made with the
help of the features. The Gini entropy is calculated according to the amount of training
data that are divided by the split and, lastly, all added up. As a second approach, we will
evaluate the feature selection achieved by greedily selecting the feature with the highest
absolute Shapley value in each iteration. This method represents the core question of
this section, whether Shapley values can be used for feature selection in such a fashion.
Lastly, we have our novel approach of CFS that can be seen as a way of using the idea
of Shapley values for feature selection, without suffering from model averaging, and thus
can be used to evaluate the impact of model averaging on different data sets and raise our
understanding of the problem. We performed our experiments by selecting a subset of
every size with each of the three feature selection methods. We then optimize and train
a new model on the subset of features to report the resulting accuracy on the testing
data. With this procedure, good feature selections should result in high accuracy and
low prediction error, giving us a ranking of the feature selection processes.

Explaining Model Averaging on a Real-World Problem

We start our experimental evaluation by taking a more in-depth look at a real-world
problem to understand the conditions that cause model averaging to be a problem for
Shapley value feature selection. For this purpose, we will use a data set not related
to yield prediction, as we need a data set with less complex feature interactions that
allows for a better investigation of the results. We use the bike rental data set from the
UCI machine learning repository (Fanaee-T 2013). The data set is often investigated
within the literature (Sathishkumar & Cho 2020) and has many advantages in explaining
feature selection. Most importantly, we can understand the problem and the features
involved. The target variable is the number of bikes rented in an hour through the
Capital Bikeshare system in Washington DC, USA. The features we use are described
in Table 5.3. We chose this data set to discuss model averaging, since its features
have interesting relations. The feature year is important without considering any other
feature, since the values for 2013 are generally higher than 2012. The mean for all data
points in 2012 is 143 bikes rented, and for 2013 it is 234 bikes rented. The features of
holidays, weekdays, and workdays also have an interesting relationship with each other.
The weekday and holiday features can be used to reconstruct the workday feature, since
a workday is a day not on the weekend, where no holiday occurs. Finally, we see a strong
correlation between temperature and perceived temperature, with a Pearson correlation
coefficient of 0.988.

For this data set, we selected subsets of all sizes from 1 to 11 with three different
selection procedures. In the analysis, we focus especially on the difference between the
Shapley value feature selection and CFS. The results are shown in the top left part of
Figure 5.3. Differences occur for selections of sizes 2, 3 and 4. The Shapley value feature
selection for size 2 consists of the features year and hour, while CFS selects temperature
and hour. While the hour is the same in both selections, we are able to see a problem
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with model averaging for the Shapley value feature selection. This is because the feature
year is important when adding it to any subset of features, which is good for achieving
a high Shapley value. However, the feature temperature is more important to estimate
the number of bikes rented. The temperature variable is selected later by the Shapley
value feature selection, since sets that already include the highly correlated perceived
temperature lower the Shapley value feature attribution and delay the selection of an
important feature. This shows how model averaging can be problematic.

For the feature selection of size 3 the Shapley value feature selection method selects the
feature temperature next. The CFS algorithm adds the feature workday to the feature
selection. Again, due to model averaging, the Shapley value feature selection does not
select the best feature, as year again adds value to every possible subset, but the feature
workday is not yet chosen due to the relations to the other features weekday and holiday.
For subsets of size 4, both approaches add the feature rush hour to the selection, still
inheriting the problems of the previous selection. From now on, both approaches add
the same features to the selection. Furthermore, both approaches consistently beat the
Gini feature importance in terms of RMSE.

Feature Description

year The year the bike rental took place. Either 2012 or 2013.
month The month the bike rental took place. Values 1 to 12.
hour The hour during the day the bike rental took place. Values

1 to 24.
holiday Was the bike rented on a holiday. Values 0 or 1.
weekday Day of the week the bike rental took place. Values 1 to 7.
workday Was the bike rented on a regular working day? Values 0 or

1
weather situation Integer evaluation of the weather condition. Values from 1

- good to 4 - bad.
temperature Temperature when the bike rental took place. Normalized

between 0 and 1.
perceived temperature Perceived temperature when the bike rental took place.

Normalized between 0 and 1.
humidity Humidity when the bike rental took place. Normalized

between 0 and 1.
windspeed Windspeed when the bike rental took place. Normalized

between 0 and 1.
rush hour Was the bike rented during rush hour (7:00 to 9:00 or 17:00

to 19:00)? Values 0 or 1.

Table 5.3: In depth description of the features used to predict the amount of bikes rented within
the hour. This detailed table is the basis for explaining the impact of model averaging on using
Shapley values as a feature selection tool on a real-world example. Table previously published
(Huber & Steinhage 2024d).
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Further Experimental Results on Different Data Sets

We solidify our results by performing more experiments on two data sets taken from the
well-known UCI machine learning repository and additionally our application of soybean
yield prediction with an extended feature space. The experimental setup is the same
as explained for the bike rental data set. The first additional data set we analyze is
about the prediction of air quality (Vito 2016). The data set consists of 9358 instances
consisting of 12 features that can be used to estimate the hourly CO concentration
measured in mg/m3 an Italian city. The second experiment carried out within our work
is the prediction of house prices in Boston (Harrison & Rubinfeld 1978). Here, the data
set consists of 505 data points from the year 1970, where 13 variables describe features
of the house and the corresponding neighborhood. The target price is the price of the
house in 1000 $. Lastly, we include the data set to predict soybean yield in the US. We
focus on the prediction of the yields in 2022. For our analysis, the features are grouped
according to the satellite sensors used for data acquisition, together with one group for
all handcrafted features, resulting in 13 different groups that can be selected during
the feature selection process. To calculate the Shapley values we use the extension of
Shapley values for groups of features as it is introduced in this thesis and use a similar
extension for our CFS algorithm.

We can use the results of the experiments to gain more insight about the model aver-
aging problem and the connected strength to mitigate model averaging with CFS. For
model averaging to become problematic in Shapley value feature selection, we need two
conditions to be met. First, we need to find two or more features that are correlated
or contain similar information. Second, we need a different feature that has fewer ca-
pabilities when used within a prediction model but is mostly unrelated to the rest of
the data set. Due to the Shapley value feature importance being averaged over the
marginal contribution to every feature subset, the Shapley value of the features with
similar information is lowered, everytime they are added to a subset where the other
features are already present. This finally results in the feature that is mostly unrelated
to the rest of the data set but with lower prediction capabilities to be selected first.
Taking this insight, we can analyze the results in the air prediction data set in the top
right corner of Figure 5.3. The selection from Shapley value feature selection and CFS
is mostly the same, with the first distinction being made for feature subsets of size 8.
This is because the seven most important features for the prediction problem are all
highly correlated with each other, with absolute Pearson correlation coefficients above
0.9. The first difference in selection occurs when the previously described conditions
are met. The features relative humidity and temperature are highly correlated with a
Pearson correlation coefficient of -0.77, while the feature absolute humidity is left to
select with all correlations within the data set being lower. CFS is able to correctly
attribute a higher prediction capabilities of relative humidity, while the correlation with
the temperature hinders the Shapley value feature selection to do so. For soybean yield
prediction, we see that CFS and Shapley value feature selection produce identical fea-
ture subsets. This can be explained by using groups of features in this example, where
highly correlated features can only be selected as a whole group. In this scenario, it is
very unlikely that the remaining feature groups contain similar information, and model
averaging is not a real issue for this data set, resulting in CFS and Shapley value feature
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Average RMSE over all subset sizes (Runtime)
Data set Shapley value CFS Gini

Bike Rental 71.38 bikes (1.02 s) 66.79 bikes (21 m) 81.68 bikes
Air Quality 0.27 mg/m3 (0.42 s) 0.26 mg/m3 (7 m) 0.28 mg/m3

Soybean Yield 4.76 bu/ac (3 s) 4.76 bu/ac (18 m) 5.29 bu/ac
Boston House Price 5.63 k$ (0.27 s) 5.55 k$ (11 m) 5.64 k$

Table 5.4: The averaged accuracy of the models trained on the feature subsets selected with
the three different feature selection approaches, with the best values in each row highlighted in
blue. The regarding units are explained in Section 5.3. We see a general tendency for the CFS
algorithm to outperform the competition. However, the differences between the greedy Shapley
value selection and the CFS algorithm stemming from the problem of model averaging within the
Shapley value feature selection are rather small. A similar table is previously published (Huber
& Steinhage 2024d).

selection being equally as potent. Lastly, we have the Boston house price prediction data
set where again the first feature selections are the same. A change occurs for the fourth
selected feature where CFS selects a feature describing the amount of nitrogen oxides
in the air that is highly correlated with two other features, the amount of industry in
the area and the average distance to next Boston employment centers, finally leading to
Shapley value feature selection providing different results. Summarized, the experiments
show how different correlations within the data set can hinder Shapley values to find the
optimal selection of features based on features that are not part of the optimal selection
of a given size.

Throughout all experiments, we observe similar behavior of the three different feature
selection approaches. Looking at the averaged RMSE values for all possible subset sizes
in Table 5.4, we see that the Shapley value feature selection approach and CFS are
always very close together in terms of accuracy, with the CFS algorithm having a small
advantage for every data set but for the soybean yield prediction, where both approaches
produce identical feature subsets. On the same note, we see greedy feature selection
according to the internal Gini feature importances, which performs significantly worse
for all our data sets, when compared to the other approaches. The detailed illustration
of the results in Figure 5.3 shows the same picture as the table. The green and orange
lines, showing the results for CFS and Shapley value feature selection, respectively, are
always very close together, with the blue line showing the results of the internal Gini
feature importances mostly lying above the other two approaches.

Reduced Feature Space for Yield Prediction

In this subsection we will use the above results to reduce the feature space for the yield
prediction scenario shown in Section 5.1. As indicated by the graph on the bottom left in
Figure 5.3, we see no real benefit in including more than the four most important feature
groups according to the different bands of remote sensing data in building our model for
the prediction of soybean yield. In this case, the resulting feature selection is the same,
whether we build it on CFS or on Shapley values directly. As can be seen in Figure
5.1, the most important groups are the (1) handcrafted features, (2) the near-infrared
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Figure 5.3: Experiments on selecting features with the three different approaches. The experi-
ments indicate that both greedy feature selection according to Shapley values and the selection
with CFS constantly outperform the often used greedy selection according to the internal Gini
feature importances from random forests. This is indicated by the blue line, which mainly shows
the largest prediction error for the different feature subset sizes. Figure previously published
(Huber & Steinhage 2024d).

band with wavelengths 841 to 876 nm, (3) the infrared band with wavelengths 2105 to
2155 nm, and (4) the temperature during the day. This selection is in line with experts’
knowledge concerning yield prediction and the results of building a novel model on the
selected features are shown in Table 5.5. We see that the loss in accuracy is very small
and for the years 2018 and 2019 the prediction on the feature subset is even slightly
better than the prediction on the full data set in terms of RMSE.

Discussion

Given a machine learning problem with a data set and an existing model M , the subject
of this section is the research question, whether Shapley values can be used as a tool to
select a subset of features in a way that reduces the amount of input features and there-
fore the overhead in data acquisition, while the accuracy of the model M is conserved as
much as possible. When approaching this question from a theoretical standpoint, we are
able to formulate five possible pitfalls which could hinder a successful usage of Shapley
values as a feature selection tool. Four of those are exposed by related literature to the
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Year RMSE Full R2 Full RMSE Reduced R2 Reduced
2017 3.77 0.82 4.03 0.78
2018 4.51 0.76 4.39 0.76
2019 4.21 0.76 4.12 0.76
2020 4.22 0.80 4.29 0.80
2021 4.55 0.82 4.60 0.81
Avg 4.25 0.79 4.29 0.78

Table 5.5: RMSE in bu/ac and R2 values of end-of-year soybean yield predictions for the full
data set in comparison to the reduced data set. We selected the 4 most influential feature groups
according to Shapley value feature attributions to rebuild the XGBoost model. The best result
for every year is highlighted in blue.

topic and are focused on constructing counterexemplified examples for Shapley values as
a feature selection tool by defining value functions that lead to the Shapley value feature
selection to violate certain desired properties. The first contribution of our work is to
define the four conditions C1 to C4 that need to be fulfilled by the value function, when
Shapley values should be used for feature selection. We found that the conditional value
function as defined by Algorithm 1 can satisfy all the conditions. The experiments show
that the resulting definition of Shapley values is indeed suitable for feature selection and
outperforms the often used internal Gini feature importances of random forests, when
both are used within a greedy feature selection algorithm. Compared to other related
applied work on the topic as presented in Section 2.3, this is in line, even though the
Shapley value feature selection suffers from model averaging. The Shapley value feature
importances are a better heuristic for the greedy feature selection, as the Gini impor-
tances only focus on the amount of training examples that are divided by a feature, but
not directly on the impact on the target variable, when the feature is changed. This is
the strength of Shapley values in machine learning and leads to a better quantification
of the importance of a feature to the model and therefore to an importance score, well
suited to select the most important feature to preserve the models performance on a
subset.

However, we further analyzed that there is a problem with Shapley values for feature
selection that cannot be solved through the choice of the right value function. Shapley
values, by definition, suffer from the problem of model averaging when they should be
applied for feature selection. This means that the Shapley value of an individual fea-
ture is influenced by features that are not in the desired final selection, and the greedy
selection according to Shapley values will be suboptimal. We introduced a novel ap-
proach, CFS, to isolate the impact of unselected features and measure the impact of
model averaging in several real-world problems. The experiments in general support
the existence of model averaging as a problem, where CFS outperforms Shapley value
feature selection on all selected data sets, as shown in Table 5.4. In-depth analysis of
the different feature selections on the bike rental data set in Section 5.3, shows that
the correlation between features and in particular the possibility of reconstructing the
feature values from one another is a crucial factor when model averaging hinders Shapley
value feature importances to indicate the optimal selection of features. This conclusion
is also supported by the soybean data set, where similar features can only be selected as
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groups and, therefore, the respective groups cannot be reconstructed from the remaining
ones. That being said, we need to note that the CFS algorithm is computationally very
heavy, when compared to Shapley values, at least for random forests, where Shapley
values can be calculated in polynomial time. This hints into a research direction, where
the use of CFS is further explored. CFS is formulated for random forests but the idea
of evaluating the same value function as used in Shapley value calculation to minimize
the error for feature selection can be transferred to other machine learning algorithms.
For example, there exist Shapley value calculation procedures for deep learning applica-
tions. When exploring these options, the Shapley value calculation loses its advantage
of fast calculations, as calculating Shapley values on arbitrary models remains NP-hard.
Furthermore, restricting the number of subsets that should be considered for feature
selection can further improve computational complexity and allow the evaluation of
problems that include a larger feature space with CFS. For the problem at hand, the
improvements in accuracy that we were able to find with our experiments indicate that
the trade-off between computational complexity and gained accuracy when circumvent-
ing the problem of model averaging hints to use Shapley values for feature selection for
applied problems. Finally, the best solution is to be picked individually by deciding
on a trade-off between accuracy and runtime, between CFS and Shapley values for fea-
ture selection, while both approaches are to be preferred over using the internal Gini
importances of random forests for feature selection. On the example of soybean yield
prediction in the US, we see how we can build more efficient models using Shapley values
of CFS for feature selection. We decrease the number of input features by 72% while
only sacrificing 1% in performance, showing the capabilities of GSV for feature selection
for yield prediction specifically.

5.4 Interpolating Gaps in LST Data

In this section, we first discuss a state-of-the-art statistical approach to fill gaps in LST
data, followed by a comparative evaluation to show the capabilities of our approach.
The results have previously been published (Huber et al. 2024b).

A Statistical Approach to Interpolating Remote Sensing Data

As a competitor and to evaluate the capabilities of our approach, we opted to use our
own implementation of a state-of-the-art procedure for statistical interpolation of LST
introduced by Metz et al. (2017). They present their approach to fully reconstructing
LST data for central Europe at a resolution of 1 km in a two-step process, even including
elevation and emissivity. The elevation helps to recognize temperature patterns induced
at different height altitudes and can be used, regardless of how occluded the LST data
are, since the elevation never changes. The same can be said for the emissivity. Although
the emissivity can suffer from occlusion, like the sensors used to derive the LST, the
emissivity is fairly constant and can be interpolated linearly over time.

The first step in the statistical reconstruction of LST data is the reconstruction in time.
The original work of Metz et al. (2017) performs a local weighted regression with polyno-
mial order 2, considering the five nearest neighbors in time, with gaps greater than seven
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days not being interpolated. Extensive hyperparametertuning via Tree Parzen Estima-
tion (Bergstra et al. 2013) and the Optuna framework (Akiba et al. 2019) to optimize on
our validation data set showed that, for our particular use case, polynomials of order 5,
considering the seven nearest neighbors, and interpolating any gaps up to a size of nine
days, improve the results. This could be due to the fact that the weather in our study
region is of high variance, compared to the entire region of central Europe as used in
the study of Metz et al. (2017), where more moderate climatic conditions are prevalent.
Values that cannot be interpolated by the first step are spatially interpolated using Thin
Plate Spine (TPS) interpolation (Craven & Wahba 1978). Again hyperparametertun-
ing revealed that a relatively strong smoothing coefficient of five helps to achieve the
best results, and while the emissivity as a covariable of TPS proved itself helpful for
interpolation, as suggested in the original work, the elevation was not useful to reduce
the interpolation error. This could be explained with worse results, when the valid in-
formation was only accessible in the high- or low-laying parts of our interest region, as
elevation as a covariable cannot provide additional information, without at least some
data points being available for the different value ranges. For a fair comparison, we also
added the up to 20 value captures from local ground weather stations to the LST images
if they were missing, as they are computed according to Section 3.2.

Deep Learning Parameters

The experiments with our deep interpolation approach are performed on a NVIDIA
Quadro RTX 6000. The batch size during training is set to 6. During training, the well-
known Adam optimizer is used (Kingma & Ba 2014), with a learning rate of 4×10−5. The
learning rate decays by the factor 0.1 after 15 and again after 30 epochs. The network is
trained for a total of 100 epochs to guarantee convergence. All parameters are selected
on a validation data set, solely reserved for this purpose, consisting of 140 LST images
with no occlusions of the ground-truth, and, therefore, all information available. The
network input is normalized to the interval [0, 1] using the minimum and maximum
temperature values of the training data set.

Comparative Evaluation

To achieve a fair evaluation, we excluded 140 images with full data coverage as testing
data during the entire modeling process. The test images are processed as training
samples, explained in Section 4.4, resulting in partially covered images as input to the
different approaches, but with the full ground-truth available. This process of masking
pixel values according to the missing value pattern of a randomly selected training
example removes an average of about 2500 pixels from the 4012 available pixels per
image. The numerical evaluation of those experiments is shown in Table 5.6, which
shows the capabilities of our deep interpolation approach. We improve the RMSE of the
statistical approach by 44%, while being able to deliver a gapless reconstruction, even
when the only valid pixels available are derived from the inferred data from the local
weather stations.
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5.4 Interpolating Gaps in LST Data
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Figure 5.4: The reconstruction of three typical training images found in our data set taken on
29.09.2008, 09.05.2008, and 15.04.2008 respectively. In the first row, our research area is fully
covered by clouds or cloud shadows, and no LST information is available. In the second row,
more data are available, and in the last row, data are available, especially in the challenging area
where the elevation changes drastically, allowing the statistical approach to do a great job of
reconstructing the gaps. Figure previously published (Huber et al. 2024b).
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Approach RMSE R2 Reconstruction
Mean Approximation 3.23 °C 0.81 100 %

Statistical Approach (Metz et al. 2017) 2.52 °C 0.91 52.06 %
Deep Interpolation (We) 1.67 °C 0.95 100 %

Table 5.6: Results for evaluating the accuracy via RMSE and R2 error metrics on 140 test
instances for LST reconstruction. The 140 instances have full coverage of ground-truth data for
the day. The value of pixels is masked according to the missing value pattern of a randomly
selected training example, removing an average of about 2500 pixels from the 4012 available
pixels per image. Table previously published (Huber et al. 2024b).

Discussion

When comparing our approach with state-of-the-art statistical methods, we see improve-
ments in two main directions. First, the interpolation always covers 100% of the research
area and second, the general precision is improved from 2.52 °C to 1.67 °C in terms of
RMSE. The reason for the first improvement is that the statistical interpolation problem
can be ill-posed if only a few data points are available. The first row example in Figure
5.4 shows a testing instance, where the selected cloud occlusion covers the entire image.
Therefore, only pixels with valid information are reconstructed from ground-site weather
stations. We see that our deep interpolation approach is capable of reconstructing the
whole research area with all its environmental constraints, while the statistical approach
is not capable of interpolating. The reason for the second improvement direction can be
explained by looking at the second and third examples in Figure 5.4. The test instance
shown in the second row shows a reconstruction error of 2.06 °C for the statistical ap-
proach and 1.39 °C for our deep interpolation. Looking at the reconstructed images, we
see that the statistical approach is not capable of reconstructing the lower left corner
of the image correctly. The ground-truth image shows the steep temperature gradient
typical for our research area, which runs from the lower left corner to the upper right
corner of the area. The statistical approach cannot reproduce this peculiarity when the
information around this gradient is missing, as is the case in this example. For the third
row example of Figure 5.4 we observe two very good reconstructions, with error values of
0.93 °C and 0.87 °C for our deep interpolation and the statistical approach, respectively.
The high accuracy of the statistical approach can be explained by the existing data in the
input image. Although the general number of data points is not too high, the available
information is located mostly in the area where the reconstruction is the most challeng-
ing, allowing the statistical approach to slightly outperform our deep interpolation. In
general, our approach is capable of learning the environmental constraints of the research
area and reproducing them, even when crucial information is missing, giving an edge
over statistical methods that see each instance as an isolated problem, without being
able to induce knowledge from other instances from the research area. One way to help
statistical approaches with this problem is to provide additional information in the form
of covariables during the interpolation process. The covariables investigated within this
study are elevation maps and emissivity. Elevation maps are not included in the results
shown in this investigation, as our experiments indicated that including them reduces
the accuracy of the reconstruction. However, the emissivity, which is fairly constant and
therefore can be easily interpolated, even throughout cloud occlusion, helped to improve
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5.5 Transferring Knowledge for Soybean Yield Prediction

the results and added some form of environmental context to the statistical model.

As explained earlier in the manuscript, the process of obtaining LST information from
satellite records is complex. So, naturally, the question arises whether further processing
of the data records with deep learning alters or impacts the data inherently. The first
influence on the data comes from the integration of air temperature when interpolat-
ing LST. The difference between air temperature and surface temperature varies with
respect to different surfaces, which poses a potential source of uncertainty within the
interpolation. We minimize the potential for errors by training an individual model for
every ground site weather station and, therefore, allowing the models to account for
different surfaces. As shown in Table 4.1, the results for the different stations are very
similar. The question whether the deep learning pipeline itself alters the data can only
be answered by looking at the performance on the test data. The very high correlation
between predicted temperature and real temperature indicated by an R2 score of 0.95
is a clear indication that our approach is true to the data at hand. However, there is
a common problem when evaluating LST interpolation, which comes from the fact that
the data used for training and evaluating the approaches have the inherent bias of being
captured when no clouds are present. This so-called cloud-free assumption is necessary,
as it is not possible to achieve ground-truth LST measurements for already occluded data
points on a large scale. For our region of interest, the weather station at the ground
site also does not provide direct information on LST that could be used to evaluate LST
reconstruction without the cloud-free assumption, at least for some selected pixels.

Although the high specialization of our approach to the research area improves ac-
curacy, it is harder to apply when considering a different area. For a new area, the
statistical approach can be used out of the box and just needs access to the very in-
stance that needs to be reconstructed. For our deep interpolation, it is necessary to
find a database of training examples that can be used to train our deep interpolation
before the reconstruction can be applied. However, building such a database is fairly
accessible, since our proposed learning process can be executed exclusively on occluded
ground-truth data, as explained in Section 4.4. To fully unlock the potential of deep
interpolation in a new research area, the availability of local ground-site weather stations
is also necessary. Although the approach would work in most cases without them, we
would not be able to provide a 100% coverage of the reconstruction. When changing
the research area, the amount of improvement of our deep interpolation approach over
the statistical approach could also change, as the results shown in Figure 5.4 indicate
the difficult inhomogeneous areas of the region, where our approach outperforms the
competition.

5.5 Transferring Knowledge for Soybean Yield Prediction

To analyze the capabilities of transfer learning for yield prediction, we analyze the ac-
curacy of yield prediction models built with different configurations of regularization
techniques and the use of a Gaussian process. First, we examine the models for the
end-of-year-prediction, including the full crop growth cycle, before conducting experi-
ments on the performance of an in-year prediction. This section is based on our previous
research (Huber et al. 2024a).
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End-of-the-Year prediction

We compare the application of different transfer learning methods for the end-of-season
prediction covering the entire crop growth cycle, with the results shown in Table 5.7. To
account for the influence of random parameters, all values are determined over four runs
each. For the Argentine models, the application of the Gaussian process improves the
accuracy in all cases by up to 10% in terms of RMSE and by up to 25% in terms of R².
Transfer learning approaches with regularization improve the results further. First, we
examined the application of an initialization with the US model for all six layers with a
freezing of the parameters of the first 4 layers. We see initial improvements compared to
a model without any transfer learning applied that diminish after the concatenation of
the Gaussian process. Incorporating the regularization techniques explained in Section
4.5 stabilizes the training and subsequently gives the best results. The overall best
configuration is an initialization with the weights of the US model, a freezing of the first
four layers, a fine tuning with using the L²-SP regularization and lastly the application
of the Gaussian process. Using BSS as an additional regularization slightly decreases
the average accuracy but stabilizes the training process, as can be seen in Figure 5.5.
Figure 5.5 shows the distribution of the RMSE in bu/ac for each method. The first

two boxplots show the basic drop in RMSE when the Gaussian process is applied. The
US initialization with freezing subsequently causes a wide dispersion of the error values,
indicating that transfer learning in general can be helpful but must be guided by regu-
larization. Although BSS places the center of these scattered error values at a low level,
L²-SP causes the values to be centered at a lower value, indicating a lower average error.
The simultaneous use of BSS and L²-SP further reduces the scattering of error values,
indicating that predictions provide greater reliability.

Approach RMSE R² RMSE + GP R² + GP
USA: CNN 5.94 0.583 6.81 0.439

Argentina without 7.47 0.442 6.76 0.554
transfer

Argentina + freezing 6.94 0.526 6.85 0.547
Argentina + freezing 6.80 0.550 6.25 0.618

and L²-SP
Argentina + freezing, 7.05 0.516 6.43 0.593

L² and BSS
Argentina + freezing, 7.07 0.511 6.31 0.608

L²-SP and BSS

Table 5.7: Average RMSE in bu/ac and R² as fraction of 1, of different model configurations for
the end-of-year-prediction. The best result is highlighted in blue showing the advancements of
regularized transfer learning. Table previously published (Huber et al. 2024a).

In-Year prediction

As described in Figure 4.11 we examine a second shorter time frame of available infor-
mation for our prediction models. A model capable of inferring the estimated yield way
before harvest has a very high value for crop management. Table 5.8 shows a summary
of the prediction results in the short period. Here, satellite images no longer include
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Figure 5.5: Distributions of the averaged district errors of all runs in all test years as boxplots. In
this case, freezing implies the initialization of the 6 convolutional layers by the US model without
further fine tuning of the first four layers. Involving BSS into the pipeline helps to decrease the
variance in error for different models. Table previously published (Huber et al. 2024a). Figure
previously published (Huber et al. 2024a).

Approach RMSE R² RMSE + GP R² + GP
USA: CNN 7.12 0.394 7.00 0.414

Argentina without 9.36 0.140 8.37 0.314
transfer

Argentina + freezing, 8.20 0.349 6.92 0.537
L²-SP and BSS

Table 5.8: Average RMSE in bu/ac and R² as fraction of 1, of different model configurations for
the in-year prediction. Again showing the capabilities of regularized transfer learning. Satellite
image coverage ends before the start of the harvests. Table previously published (Huber et al.
2024a).

the harvest and end before the first harvest begins. Training, evaluation, and testing
are performed exactly as in the long period. We used only the first 14 satellite images,
instead of 34 as done previously. This is reflected in a reduced performance compared
to the long period. At the same time, it can be seen that transfer learning methods, es-
pecially with simultaneous application of the Gaussian process, result in an even greater
increase in performance.

Discussion

While XGBoost was superior in our initial experiments for the prediction of soybean
yield in the US, we chose to explore CNNs as the second-place method for our transfer
learning experiments. This is due to the proven capabilities of CNNs for transferring
low-level features learned in one domain to a new domain, as it is used in transfer
learning (Gupta et al. 2022). Transfer learning approaches based on random forests
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are often only feasible when both domains are very close to each other, as it is not
possible to distinguish between low-level features that can be transferred and high-level
features that are domain-specific. Furthermore, we decided to add a Gaussian process
to the predictions. The addition of the Gaussian process for predicting US yields is
beneficial for the short prediction period, while decreasing the accuracy for the long
prediction period. For the Argentine yield prediction without transfer learning, the
Gaussian process improves the results by ca. 10% in terms of RMSE for the long period
and the short period. Similar results are discovered by Kaneko et al. (2019) where a
Gaussian process improves prediction results based on small data sets to a level similar
to that that can be observed when training with more data. The same effects are shown
when examining the first step of transfer learning for Argentina, where the CNN weights
are initialized with the US model’s weights, and the first four layers are frozen. Although
the improvement without a Gaussian process is about 7% in terms of RMSE, the results
are worse when the Gaussian process is included. Getting worse results with a machine
learning model after application of knowledge transfer, as we have in the case of our
model when the Gaussian process is included, can be described as negative transfer and
is well anticipated in the literature (Pan & Yang 2009). As yield prediction is a research
area that suffers from data scarcity, the selection of a source domain for pre-training
is prone to a known tradeoff. On the one hand, more data for pre-training improves
the results, while on the other hand, less similarity between the domains endangers
the knowledge transfer. Our experimental setup tends to emphasize the amount of
training data for pre-training over the similarity of the domains, as in real-world yield
prediction applications it is often not possible to produce more training data close to the
target domain. Despite this choice, the first transfer experiments indicate that features
extracted from remote sensing data can be transferred similarly to those obtained in
many computer vision tasks. This claim is supported by the fact that we were able to
freeze the first four layers in our CNN that commonly condense high-level features from
the data and improve the model accuracy without the Gaussian process.

The negative transfer that is prevalent when we evaluate the models with the Gaussian
process can be addressed by regularization techniques. Our results support the claim that
regularization techniques designed for commonly used image features have similar effects
on remote sensing data presented as histograms. The L²-SP regularization together with
the Gaussian process gives the best results in terms of average RMSE and R², removing
the negative transfer that occurred without regularization. As indicated by Chen et al.
(2019) the inclusion of BSS gives us a small decrease in average performance by 2.8% in
terms of RMSE, but stabilizes knowledge transfer. As can be seen in Figure 5.5 the worst
error values are closer to the average RMSE than in any other constellation, which makes
us recommend the combination of layer freezing, L²-SP and BSS for transfer learning
tasks, including remote sensing data represented by histograms. The same constellation
also works well when considering the short prediction period (Table 5.8).
Within the context of the wider literature, the first parallel between our work and

related work also considering yield prediction with remote sensing data is the use of
MODIS satellite data as a primary data source, as is done, for example, by You et al.
(2017), Wang et al. (2018) and Khaki et al. (2021). Although all of those works report
good results, it is worth mentioning that alternative data sources exist. Fernandez-
Beltran et al. (2021) use the Sentinel-2 satellite to also achieve state-of-the-art results,
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5.5 Transferring Knowledge for Soybean Yield Prediction

exploiting the fact that the images are available at a higher resolution. Furthermore, the
literature is beginning to investigate the use of non-fixed time steps during histogram
creation as input for machine learning procedures (Desloires et al. 2023), which may
be useful to increase alignment between the two domains used for transfer learning in
the future. When considering the literature for yield prediction in general, our results
improve on state-of-the-art performance, as we can deduce from our comparison to
successfully deployed deep learning architectures (You et al. 2017) trained and evaluated
on our data. This increase in performance comes from enabling the US, as the biggest
repository for ground-truth yield data, as the source domain for transfer learning, even
for a country on a different hemisphere. This builds on the work of Wang et al. (2018),
where transfer learning is first used to improve yield prediction through transfer learning,
but the two countries used, i.e., Argentina as source and Brazil as target, are much closer
related than in our case.
However, we mention that the improvements come at the price of many additional

hyperparameters that have to be tuned. Tuning hyperparameters in a deep learning
context is always difficult, since the impact of a hyperparameter can mostly only be
observed after a significant amount of computations. This makes it so that research of-
ten turns to empirical values or educated guesses. Regularization and transfer learning
include an additional six important hyperparameters to adjust: L²-SP, BSS, the number
of frozen layers, and the initialization of the non-frozen layers. In our experiments, the
number of 4 frozen layers indicates that many features learned from remote sensing data
in our target domain can be directly transferred to the new task. The high transfer-
ability is also indicated by the advantageous initialization with the source weights for
the non-frozen layers. The L²-SP hyperparameter α with a value of 0.23 quantifies the
punishment for altering the weights of the source models. This value being relatively low
means that the non-frozen layers must be able to be highly adjustable to the new task,
hinting that the yield related patterns utilizing the frozen features of the first layers are
quite different for both our yield prediction tasks. The high L²-SP hyperparameter β is
the standard L² punishment for high weights suppressing overfitting. The BSS hyper-
parameters η and k and their respective values 0.07 and 1 indicate that the strength of
the regularization is relatively low and the smallest singular value is penalized. For all
these hyperparameters, small adjustments can alter the models’ performance, increasing
the risk of a bad model due to careless handling of the hyperparameters compared to a
simpler model without transfer learning.
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6 Application of Explainable Yield
Prediction in KI-iREPro

In this chapter, we will revisit the KI-iREPro project for grapevine yield prediction that
motivated our contributions to the field of yield prediction with its practical example.
First, we will look at the commercial side of grapevine yield prediction, where we make
predictions for commercial vineyards at the plot level, with possible benefits in terms of
logistic planning and financial security for winemakers. After this, we will look at plant-
level predictions that will be especially helpful for the early identification of experimental
breeding lines that can meet the yield thresholds to become commercially viable.

6.1 Grapevine Yield Prediction for Commercial Plots

In this section, we will analyze our experiments and insights on grapevine yield prediction
within the KI-iREPro project using the data described in Section 3.2, giving a direct use
case for our developed yield prediction pipeline and the interpolation of remote sensing
LST data.

Experimental Design

We will analyze our experiments and insights on grapevine yield prediction within the
KI-iREPro project. Using XGBoost as the primary prediction tool, as it has shown its
capabilities for other yield prediction scenarios, our aim is to evaluate the capabilities
of the approach for grapevine yield prediction. For this reason, we test not only the
XGBoost-based approach but also a simple feedforward network, as well as a baseline
average predictor. The feedforward network consists of six linear layers, each with batch
normalization and a ReLU, with each layer having half the size of the previous, until
the singular prediction is given. The data is used as described in Section 3.2. Our
prediction data are most importantly filled LST records that model climatic conditions
throughout the year. The data are aggregated in 10-day intervals to match our ground-
truth yield data. Additional information includes soil, elevation, and historical yields,
as well as an identification of the respective winemaker who harvested the parcel and
some phenological information such as the variety and age of the plants. We select
two different testing scenarios, one in which we exclude the data from a full year of
harvests, where only the data captured before the testing year can be used to train
the model. This is the more realistic scenario, as in real-life applications, we have no
information about the yields of the ongoing year at the time of prediction. The other
train-test split is motivated by the literature and poses an easier problem. For example,
Sirsat et al. (2019) make predictions for a random 20% split of the data. This might
not be the most helpful in the application, but the results can still help to decide on
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a direction for further studies, finally showing a direction to achieve great results for
the yearly predictions in the future. Later in this chapter, we will elaborate on how
to improve on data acquisition in viticulture, to allow for more accurate predictions in
the future. For our XGBoost model, we will tune again using Tree Parzen Estimation
(TPE) (Bergstra et al. 2013) inside the Python Optuna framework (Akiba et al. 2019)
for 30 iterations without further pruning. To evaluate the parameters during tuning,
we use a five-fold cross-validation of the training data. This showed the best results,
even when optimizing for the yearly prediction, as the data show great intervariability
between the years, making a tuning procedure, where a whole year of data is used to
validate hyperparameters unfeasible.

Results, Discussion and Use in Application

The results of our two experiments are shown in Table 6.1. Looking first at the random
split prediction, we see an improvement of 0.06 in terms of RMSE and 0.206 in terms of
R2. Although the improvement in RMSE is rather small, the gain in R2 is significant,
indicating that our model starts to learn about the underlying relations of the yield
data and is capable of explaining some of the variation for the target data, as could
be shown by other grapevine prediction approaches with random forests (Sirsat et al.
2019). We also learn that for any prediction scenario, the deep learning approach in the
form of a simple feedforward network cannot learn about the prediction of grapevine
yield from our data. This might be due to the low amount of training data, compared to
most applications involving deep learning, and the tendency of simpler random forest-
based models such as XGBoost to better handle a low amount of training data. In all
our deep learning experiments, the RMSE is high, and the negative R2 score indicates
that the data are not well understood by the model. Looking at the second prediction,
the yearly testing split, we again notice that the XGBoost-based approach is slightly
better than the mean prediction in terms of RMSE and improves the average R2 score
by about 0.059. Although these results are not ground braking, they show that we
can learn about grapevine yield prediction with XGBoost and our data pipeline. The
question remains as to why the grapevine yield prediction presented here is so much more
difficult than the soybean yield prediction in Section 5.1. One reason can be found in the
nature of the two crops investigated. While soybean seedlings are planted every year,
allowing us to monitor the entire cycle of crop development, grapevines are planted
years before harvest occurs, making it impossible to model their entire development.
Furthermore, while soybean yield is maximized for quantity, making it irrelevant to try
to model the processes applied to the plants, as they can be assumed to be fairly constant,
grapevines are maximized with regard to quality. Without detailed information on the
processing steps taken, for example, cutting whole grape clusters, reducing the yield
by up to 40% (Palliotti & Cartechini 1998), there will always be fluctuations in yield
that cannot be explained by our models. Lastly, notice that the quantity of our data is
smaller and the aggregation by winemaker that we needed to implement to account for
logistical circumstances in viticulture practice, make it even harder to distinguish the
yield determining factors.

However, our efforts in grapevine yield prediction can serve as a hint to the capabilities
of machine learning in viticulture. With this in mind, we developed a prototype for

100



6.2 Grapevine Yield Prediction on Plant Level

commercial plot-level yield prediction that can be used as a starting point for future
projects. The planning has already started for a novel project where yield data in
viticulture will be captured on plot level precisely, without any yield-changing manual
practices being applied to the grapes, to remove two of the biggest challenges with our
current data set.

Test Split XGBoost Deep Learning Mean predictor
RMSE R2 RMSE R2 RMSE R2

2020 0.025 0.124 0.186 -2.006 0.028 0.027
2021 0.031 0.029 0.306 -0.388 0.031 0.005
2022 0.027 -0.007 0.863 -0.049 0.028 -0.041

Average 0.028 0.049 0.452 -0.814 0.029 -0.010
Random Split 0.023 0.210 1.235 -2.182 0.029 0.004

Table 6.1: Prediction results for the grapevine yield prediction in the KI-iREPRo project. The
data were normalized to lay between 0 and 1. The best result is highlighted in blue. The
experiments are two-fold: First, a yearly prediction close to the real-world use case and second,
the testing data consisting a random 20% split of the data. The second experiment is easier for
the machine learning models to solve but can be used to evaluate our experiments in the wider
scope of the literature.

6.2 Grapevine Yield Prediction on Plant Level

Another use case for yield prediction in viticulture is given by prediction at the plant
level that has direct access to the phenological traits of the plants. Here, we will predict
the yield for a variety of experimental breeding lines.

Experimental Design

Following the results of the experiments in the thesis so far, we will use XGBoost as an
algorithm suitable to build a regression model to predict yields with limited amounts
of training data. Furthermore, we want to retrain the model every year with the new
data to increase accuracy and make the model adaptable to deal with an ever-changing
environment, especially in times of climate change. Therefore, the selected machine
learning algorithm should be quickly re-trained. To obtain a proof-of-concept for the
prediction of grapevine yield at the plant level, we trained both a random forest for
regression through XGBoost and a linear regression on the same feature set. Following
the experiments as previously published (Huber et al. 2024c), we evaluated two main
metrics, the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE).
To emulate real-world conditions in our experiments, even with the small data set, we
created 11 testing scenarios, one for each grape variety within our data. Hyperparameters
are tuned by optimizing the RMSE to achieve the best performance in a 5-fold cross-
validation on the remaining training data. The average RMSE for the eleven varieties
is 0.68 kg for XGBoost and 0.76 kg for linear regression, showing an improvement of
circa 11%. Regarding MAE, we measure an average of 0.55 kg for XGBoost and 0.63
kg for linear regression, showing an improvement of approximately 13%. The concept
provided to use XGBoost for grapevine yield prediction shows its capabilities even in a
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small data set. A complete breakdown of the results of the individual varieties is shown
in Table 6.2. The improvements of XGBoost over the baseline approach are predicted
to increase with an increase in training data, since the more powerful model XGBoost
will be able to learn more complex relations that determine the yearly yields. Our test
scenario is close to the real-world use case, with the grape varieties tested missing from
the training data. Therefore, our reported results hint towards XGBoost as the best
choice to solve automated grapevine yield prediction in the future.

Results, Discussion and Use in Application

The results of these experiments must be taken into the context of limited input data
and a difficult data set, which contains varieties that are not fully explored with re-
spect to their possible yield quantities and are prone to higher variations. For example,
De La Fuente et al. (2015) report slightly better results when predicting well-established
varieties by statistical analysis with an RMSE of down to 0.46 kg. However, in general,
we already see a positive correlation between the predicted and actual yields. The higher
error comes from the tendency of our model to not predict yields higher than 2.5 kg,
as those are underrepresented during model training. That being said, the expected
maximum performance for machine learning-driven yield prediction is higher than that
for statistical approaches, since they are able to model even the most complex relations
in the data, when enough training data points are available. Furthermore, machine
learning models are adaptive to changing conditions with regard to grapevines. In times
of climate change, it is possible that statistical models need to be calibrated by experts,
while a machine learning model can simply include new samples in the training data
to adapt to the new situation. However, our model has already been applied at the
Julius Kühn-Institut (JKI) in the context of breeding new varieties and early identifica-
tion of grapevine breeds that can meet the requirements to become commercially viable.
With future application in mind, we expect our models to become more precise as more
training data becomes available in the years to come.

Variety Do PN PB Ri BL1 BL2 BL3 BL4 BL5 BL6 BL7 AVG
XGB RMSE 1.17 0.47 0.80 0.63 1.03 0.52 0.50 0.68 0.68 0.46 0.54 0.68

MAE 1.02 0.38 0.58 0.44 0.86 0.43 0.39 0.57 0.62 0.34 0.44 0.55
Lin. Reg. RMSE 1.19 0.42 1.25 0.63 1.03 0.58 0.47 0.63 0.91 0.70 0.54 0.76

MAE 1.06 0.33 0.99 0.44 0.88 0.51 0.34 0.54 0.86 0.58 0.44 0.63

Table 6.2: Experimental results for grapevine plant-level yield prediction on data captured via
manual plant appraisal. The input data can be found in Table 3.2 and the varieties are explained
in Table 3.1. The presented table shows the RMSE and MAE error value in kg when different
varieties are used as test data comparing XGBoost and Linear Regression for yield prediction.
The best result for each column and each metric is highlighted blue. Table previously published
by Huber et al. (2024c).
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7 Conclusions

To conclude this thesis, we want to revisit each of the challenges for yield prediction
as explained in the introduction. For each of the challenges, we will quickly recap
our solutions, the state of the related work before our contributions, ideas for further
improvements, and the importance besides yield prediction.

a) Training on small data sets

To approach the challenge of training on small data sets, we explored XGBoost as a
solution. We provide a processing pipeline to efficiently process remote sensing im-
ages to feature vectors for machine learning by modeling the underlying distributions
of the data. By conducting experiments on one of the largest data sets available for
yield prediction, soybean yield prediction in the US, we see that the derived feature-
based representation of the remote sensing data allows for the successful application of
XGBoost for yield prediction. Demonstrating state-of-the-art performance, when com-
pared to deep learning-based yield prediction approaches, while offering faster runtimes
and better options for explainability.

Before our work, deep learning approaches dominated the field (You et al. 2017, Sun
et al. 2019) using a histogramization approach for remote sensing data. Those works did
not account for the limited amount of training data available in yield prediction scenarios.
Unlike this, our idea of extracting features from remote sensing data and using a machine
learning algorithm known for handling small amounts of data is therefore able to improve
the accuracy. However, deep learning is an evolving field. We have already tested novel
developments in the form of convolutional transformer networks (Inderka et al. 2024)
and found that they cannot yet improve over other deep learning approaches. This is
again due to limited access to training data.

In the future, it must be acknowledged that the available data sets for yield prediction
are growing yearly, and deep learning could catch up in performance or even overtake
the XGBoost approach in terms of accuracy. One of the main points of interest will
therefore be monitoring the accuracies of the already developed methods over the next
couple of years. Furthermore, it will be interesting to investigate the exchange of the
fixed eight-day composite of remote sensing data with flexible window sizes to improve
the similarity of the data between different years. Some early experiments showed that
this approach is very promising for further improving yield prediction with machine
learning.

The exclusive use of remote sensing data during our experiments results in great
reusability of our results. Remote sensing data are available not only free of charge, but
also as historical records. As long as historical ground-truth yield data are available, our
pipeline can be applied to any yield prediction scenario by matching the yield data with
fitting remote sensing data. Looking at the impact of our results in addition to the field
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of yield prediction, we see that remote sensing data are the input to several machine
learning problems such as monitoring changing climate (Schneider & Hook 2010) or
analyzing the environmental impacts of land cover (Gohain et al. 2021). Our insights on
processing remote sensing data and the comparative evaluation revealing that for small
data sets gradient boosting methods outperform deep learning can finally be valuable
for a variety of other problems.

b) Need for explanations

With the establishment of XGBoost as an approach to yield prediction, which results
in a random forest for the final regression model, we are able to concentrate our efforts
on explainability in this direction. We define Grouped Shapley Values (GSV) to exploit
natural groupings of features from yield prediction scenarios to improve the usability of
Shapley values for explanations. For this, we give a polynomial algorithm to calculate
the GSV for random forests, where instead of iterating over all subsets of players when
calculating the Shapley value, we just iterate over every path of the trees. To achieve
a global understanding of the model, we leverage the visualization of many local expla-
nations. This is done by introducing swarm plots that not only show the GSV but also
give a colored indication of the feature’s aggregated values, giving further information
to analyze. In addition, we provide proof that calculating the GSV is not the same as
summing up individual Shapley values.

In previous efforts within the literature, there were yield prediction models that were
explained by grouping features (You et al. 2017, Sirsat et al. 2019). However, obtaining
those explanations was mostly done by retraining the whole modeling process on differ-
ent feature subsets, which is very time-consuming. Furthermore, individual explanations
are not suitable for yield prediction due to the high feature count and the abstract na-
ture of the individual features. Therefore, they are rarely used in related work, making
a straightforward application of Shapley values for yield prediction impossible. A poly-
nomial calculation for the classic Shapley value for random forests was presented before
(Lundberg et al. 2020) and served as a starting point for our GSV calculation. The idea
of grouped Shapley values in machine learning was first explored by Jullum et al. (2021)
without considering a fast calculation, making the use of summed individual Shapley
values the most used idea for aggregated Shapley values (Redelmeier et al. 2020, Aas
et al. 2020).

For future work, it is a promising idea to extend Shapley value feature attributions to
provide instructions to take actions guiding the model towards a desired output. This
will be especially useful when we can include factors like fertilization or watering in a
yield prediction model, as they are features where the agent can directly change the
input values. Additionally, as for now we focus on explaining the model behavior as a
whole, we can work towards exploiting individual explanations to enable understanding
of singular data points, as it will be very interesting for end users that use prediction
models to make predictions regarding personal data points.

In the context of yield prediction, we can use GSV not only to learn from the pre-
dictions, for example, about conditions that favor high yields but also to raise trust in
our models. This is achieved by showing that the important features are in line with
the features that domain experts would consider for yield prediction. For soybean yield
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prediction, we found that historical tendencies of specific counties to produce high or
low yields are the most important, directly followed by infrared surface reflectance data,
which are known to correlate with plant health. Within the KI-iREPro project, the
GSV was a valuable tool to build a common language between viticulture experts and
computer scientists and are integrated into the application now in use at the JKI. Now,
domain experts can use the feature importances to analyze models themselves and give
feedback on how a model can be improved. Looking further than yield prediction, ex-
plainable artificial intelligence (XAI) is an integral topic in machine learning research at
the moment. Grouped Shapley values can be applied for any kind of machine learning
problem where natural groupings occur. This includes most prominently all kinds of
time series problem in which the same observations are repeated multiple times.

c) Selecting important features

When obtaining feature importances with GSV, the natural question arises whether we
can use this information to select meaningful features for an optimized model. To help
answer the question, we make two methodical contributions to the field. First, we define
four necessary conditions that must be satisfied to make the Shapley values suitable
for feature selection. Second, we expose some lost potential for Shapley value feature
selection due to the nature of Shapley values as a model averaging procedure, where
features that should not appear in the final selection can alter the selection process. We
overcome those issues by defining a new feature selection method, Conditional Feature
Selection (CFS). We use CFS as an exhaustive feature selection counterpart to Shapley
values and can subsequently evaluate the impact of the model averaging problem.

Shapley values for feature selection are a controversial topic within the literature, with
many existing works discussing different shortcomings of poorly defined Shapley values
(Kumar et al. 2020, Huang & Marques-Silva 2023, Sundararajan & Najmi 2020, Fryer
et al. 2021). While those works focus on exposing weaknesses of the Shapley value,
we extend on their work by proposing the 4 necessary conditions for successful Shapley
value feature selection. There were other promising applications of Shapley values in
feature selection (Fang et al. 2022, Zacharias et al. 2022). However, the problem of
model averaging was never isolated to be evaluated, as we did by introducing CFS. In
addition to Shapley values, in practice often simple feature selection methods, as, for
example, based on the internal Gini importance, are used. Although the procedure
is rather simple and therefore fast to calculate and robust, it fails to acknowledge the
magnitude of change in the regression result when a feature is used to make a decision
within a tree. Shapley values and CFS do account for this.

When comparing the CFS and Shapley values, we see that the advantage of Shapley
values is derived from faster calculation times. With this advantage only being present
for random forests, it allows for further exploration of the idea of CFS when extending
to other machine learning methods. Based on the definition of SHAP (Lundberg &
Lee 2017), sampling is used to evaluate the value function during the calculation of
Shapley values for arbitrary machine learning models. Extending CFS by this idea
would remove the computational advantage of Shapley values and might make CFS the
strictly preferred feature selection method. Additionally, proposing run-time constraints
for CFS could further improve the run-time of the approach, as certain subsets might
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not need to be evaluated according to, for example, size constraints.

In the context of yield prediction, our results allow us to build more efficient models
with only a minimal decrease in prediction accuracy. An even greater benefit for feature
selection can be found for the prediction of grapevine yield, where data acquisition is
very costly and always involves some form of human involvement. By building a similar
model with fewer input features, we can decrease the number of times data needs to
be captured throughout the year. The cost saved associated with missing features can
improve the value of our prediction model, as it is used by our JKI project partners.
Moreover, feature selection is already part of most machine learning pipelines, also those
unrelated to yield prediction. Our contribution to the discussion on Shapley values for
feature selection can lead to a wider application of Shapley values for feature selection in
random forests and maybe even replace the often used practice of considering the internal
Gini feature importances for this problem, as they show a clearly worse performance in
our experiments.

d) Gaps in remote sensing data

When trying to use remote sensing data for yield prediction with a high spatio-temporal
resolution, cloud and cloud shadows occlude parts of the data necessary to train a
model and make predictions. As the climatic conditions show some form of continuity
in confined regions, we were able to present a novel deep interpolation approach to fix
gaps in remote sensing data. We use partial convolutions within a U-Net deep learning
architecture to interpolate remote sensing LST measurements from the MODIS sensors
attached to NASA satellites. Our two-step interpolation approach includes first the
conversion of air temperature data to LST data, when local ground-site weather stations
can provide this information. Second, we use deep interpolation methods to achieve a
gap-free representation of the data. Partial convolutions work like regular convolutions,
but only focus on valid pixels and fill the remaining information when progressing deeper
into the network. Furthermore, we deployed a partial loss function during training that
again only evaluated valid pixels of the ground-truth data and allows training with
exclusive use of occluded data. This is very important because the bigger the research
area, the smaller the chances of finding completely non-occluded ground-truth data.

To the best of our knowledge, we are the first to explore the use of deep learning to
fill LST remote sensing data. Regarding general image inpainting problems, our work
uses partial convolutions (Liu et al. 2018) to fill irregular holes and the trusted idea of
a U-Net design for the deep learning model (Ronneberger et al. 2015) and is therefore
in-line with the current developments in the field. The problem of LST interpolation
was previously handled using statistical methods (Metz et al. 2017), which have two
major limitations compared to our deep interpolation approach. First, they are not able
to fit an interpolation function when the number of accessible data points is too small.
Second, they are not able to learn spatial dependencies of the interest region, as each
instance is seen as an isolated problem.

Having established deep learning for inpainting of LST remote sensing data, we could
consider other remote sensing products that can be used for yield prediction like in-
frared reflection to be filled by our deep interpolation approach. Having no access to
consistently available pixels, like we have with weather station data for LST, poses an
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additional challenge. A solution could be given by including a temporal axis to the
process to provide a gapless coverage.

Finally, experiments in our research area show that we outperform the state-of-the-
art statistical approaches. This is achieved through the capabilities of our approach in
collecting knowledge of the research area’s environmental constraints during training,
which is missing for statistical approaches. This enables remote sensing LST measure-
ments for plot-level yield prediction and is an important part of our grapevine yield
prediction pipeline. As mentioned above, our work is not only useful for yield prediction
scenarios, but can be of interest anywhere, where gapless remote sensing data can be
used for enhanced predictions.

e) Making predictions for shifting domains

To conclude the challenges identified for yield prediction, we tested deep transfer learning
as a tool to deal with shifting domains in yield prediction scenarios. We give a proof-of-
concept for transfer learning that can lead to improved crop prediction using CNNs, in
particular through a joint application of several regularization methods, together with
careful determination of the hyperparameters. First, Batch Spectral Shrinking (BSS)
and L²-SP regularization provide more stable model training and improved prediction
accuracy. In addition to the usual procedures of initializing the weights by a model
trained on a larger data set and fixing these weights, transfer-specific regularization
methods with simultaneous application of the Gaussian process lead to an improved
prediction for soybean yield prediction in Argentina.

Transfer learning in yield prediction has only been done for very similar domains such
as Argentina and Brazil (Wang et al. 2020) or by using a different crop in the same
region (Khaki et al. 2021). Our contributions now allows for transfer learning for yield
prediction on a world-wide scale to enable improved predictions. This is achieved by
using state-of-the-art building blocks for transfer learning. The combination of BSS and
L²-SP outperformed any use of the also popular Delta regularization methods in our
initial experiments.

To further build on our results, we could multiply the amount of data available for
yield prediction if a model could be universally used for different crops. There might
be universal patterns in remote sensing data that can be used to extract very low level
features that might be applicable to a variety of crops, allowing to tackle the problem of
small data sets from this direction. In addition, first efforts are made in our workgroup
to remove the fixed 8-day intervals used in data preprocessing for remote sensing and
instead use the idea of thermal time, where data are clustered according to the so-called
growing degree days (DGG). The idea is to be able to better align the target and source
domains by normalizing the time steps based on the phenological state of the target
crop.

For grapevine yield prediction, the transfer of knowledge with deep learning is just a
concept for now, as the amount of data is limited and it is difficult to train expressive
deep learning models. A solution here is to analyze the trade-off between building
multiple prediction models on homogenous variety selection with fewer training data
each, or building a combined model for multiple varieties with more training data but
also more variation within. The fast training times of XGBoost-based approaches allow
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for a yearly adoption of the model for new data by being trained by the domain experts
themselves. We developed the application for grapevine yield prediction with this idea
in mind, and together with the tools for explainability allowing the domain experts to
understand the model, they are able to provide reusability of the model, even in times
of changing climatic conditions, by incorporating the new data every year. In general,
the contributions regarding this challenge are rather yield prediction-specific but could
be used as a starting point to explore other transfer learning problems based on remote
sensing data.

Summarized this thesis contributions evolved around the challenges for explainable yield
prediction, identified within the KI-iREPro project. We analyzed XGBoost as the go-to
method for general yield prediction tasks, as even on the biggest data sets it is able to
keep up with state-of-the-art deep learning approaches. At the same time, it provides
faster training times together with better explainability. As the challenges of explainable
yield prediction can be extended to machine learning in general, like explaining complex
models with many features and using Shapley values feature importances for feature
selection, so can the contributions of this thesis. Especially the extension of the well-
known Shapley value idea for explaining models towards groups of features, as well as
the CFS algorithm for feature selection, can be used for general machine learning tasks.
The deep interpolation method for gaps in remote sensing LST data enables plot-level
yield prediction, but can also be utilized in other tasks involving remote sensing data,
as gapless coverage is needed in many research areas. Lastly, handling shifting domains
appears in any kind of machine learning scenario. We were able to prove that a general
transfer of knowledge is possible for worldwide yield prediction scenarios, even with our
limited access to data. We are proud to find our methods applied in a real-world scenario
within the KI-iREPro project, where viticulture experts use our solutions for modeling
and explainability to improve their workflow.
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Dı́az Rodŕıguez, S. I. et al. (2018), ‘Using regression trees to predict citrus load bal-
ancing accuracy and costs’, International Journal of Computational Intelligence, 12
(1) .

109

https://www.wetter.rlp.de
https://www.wetter.rlp.de


Bibliography

Breiman, L. (2001), ‘Random forests’, Machine learning 45(1), 5–32.

Bureau, U. C. (2018), ‘Tiger: US Census counties 2018’, https://developers.

google.com/earth-engine/datasets/catalog/TIGER_2018_Counties/. Data set -
Accessed: 2021-07-01.

Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Han, J. & Li, Z. (2020), ‘Identifying the
contributions of multi-source data for winter wheat yield prediction in China’, Remote
Sensing 12(5).

Cao, J., Zhou, W., Zheng, Z., Ren, T. & Wang, W. (2021), ‘Within-city spatial and
temporal heterogeneity of air temperature and its relationship with land surface tem-
perature’, Landscape and Urban Planning 206.
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