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Abstract 

Intact ecosystems are the basis of human food security, air quality and provide naturally re-growing 

resources. Adaptive ecosystem management in the face of climate change requires detailed and 

continuous data about the ecosystems’ status. Optical remote sensing allows the non-invasive 

acquisition of information from terrestrial ecosystems and produces very large amounts of multi-

dimensional data. However, it poses the following challenges at the same time: (1) Many different 

optical sensors use different measurement protocols, yet a joint exploitation of their data would 

improve temporal, spatial and spectral details available for further analyses. (2) Standardizing data 

products eases comparing and interpreting optical, remote-sensed data, but requires a specific 

processing chain, which also includes the propagation of uncertainties. (3) The retrieval of data-

products is affected by systematic influences, e.g. from the atmosphere or the surface-properties, 

which bias the retrieved signal and require a correction approach.  

The use of standardized, automated field spectrometers enables the continuous, unattended 

acquisition of hyperspectral data at very high temporal resolution in proximity sensing on the ground. 

The high dimensionality of hyperspectral down-welling and up-welling radiance recorded in the visible-

near infrared (VIS-NIR) spectral range enables the retrieval of detailed atmosphere and vegetation 

properties. The application of Machine Learning (ML) algorithms is promising to disentangle multiple-

redundant spectral information, isolate irrelevant or disturbing spectral information and find relevant, 

correlating spectral information, while offering detailed investigation of uncertainties and levels of 

confidence around the data products. Thus in the first study, Solar Induced chlorophyll Fluorescence 

(SIF), a proxy for photosynthesis in vegetation, is retrieved from hyperspectral field-measurements 

using a novel, ML-driven approach and avoiding atmospheric reabsorption. The second study in this 

thesis demonstrates farther the potential of exploiting continuous, hyperspectral VIS-NIR 

measurements using ML for the investigation of NOx concentration in the atmosphere. Furthermore, 

high-resolution field spectrometer measurements allow the convolution of multispectral sensor 

characteristic at overlapping spectral ranges. In consequence, the third study of this thesis harmonizes 

a network of standardized, automated field spectrometers in ten different locations around the world 

in comparison to Sentinel-2 bottom of atmosphere reflectance, and investigates effects of variable 

temporal-spatial heterogeneity. In the final study, automated field spectrometers were used as central 

transfer instruments inter-calibrating satellite and two airborne multispectral sensors, while correcting 

for continuous changes of down-welling radiance over time. Addressing the above stated challenges 

facilitated recommendations for the standardization of optical proximity sensing data and for using 

automated field spectrometers as a centerpiece of data fusion enabling a more holistic and more 

detailed ecosystem monitoring. 
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Zusammenfassung 

Intakte Ökosysteme sind die Grundlage für Ernährungssicherheit, Luftqualität und natürlich 

nachwachsende Rohstoffe. Ein adaptives Ökosystemmanagement erfordert detaillierte und 

kontinuierliche Daten über den Zustand der Ökosysteme angesichts des Klimawandels. Die optische 

Fernerkundung ermöglicht nichtinvasive Erfassung von Informationen terrestrischer Ökosysteme und 

erzeugt gleichzeitig sehr große Mengen mehrdimensionaler Daten. Es stellen sich die folgenden 

Herausforderungen: (1) Viele verschiedene optische Sensoren verwenden unterschiedliche 

Messprotokolle. Eine gemeinsame Nutzung ihrer Daten würde jedoch die verfügbaren zeitlichen, 

räumlichen und spektralen Details für weitere Analysen verbessern. (2) Standardisierte Datenprodukte 

erleichtern den Vergleich und die Interpretation optischer Fernerkundungsdaten, erfordern jedoch 

eine spezifische Verarbeitungskette, welche auch die Messunsicherheiten berücksichtigt. (3) Die 

Ableitungen von Datenprodukten werden durch Einflüsse aus der Atmosphäre oder den 

Oberflächeneigenschaften beeinflusst, welche das abgeleitete Signal verzerren und einen 

Korrekturansatz erfordern. 

Der Einsatz standardisierter, automatisierter Feldspektrometer ermöglicht die kontinuierliche, 

unbeaufsichtigte Erfassung hyperspektraler Daten mit sehr hoher zeitlicher Auflösung in unmittelbarer 

Nähe am Boden. Die hohe Dimensionalität der hyperspektralen Messung einfallender und reflektierter 

Strahlung im sichtbaren und nahinfraroten Spektralbereich (VIS-NIR) ermöglicht die Ableitung 

detaillierter Atmosphären- und Vegetationseigenschaften. Besonders vielversprechend ist die 

Anwendung von maschinellem Lernen (ML), um mehrfach redundante Spektralinformationen zu 

reduzieren, irrelevante oder störende Spektralinformationen zu isolieren und relevante, korrelierende 

Spektralinformationen zu identifizieren. Gleichzeitig wird eine detaillierte Untersuchung von 

Vorhersagesicherheiten und Fehlerfortpflanzung ermöglicht. In der ersten Studie dieser Dissertation 

wird die sonneninduzierte Chlorophyllfluoreszenz (SIF), ein Zeigerwert für die Photosynthese, aus 

hyperspektralen Feldmessungen mithilfe eines neuartigen, datengestützten ML-Ansatzes und unter 

Vermeidung atmosphärischer Verzerrung ermittelt. Die zweite Studie dieser Dissertation demonstriert 

darüber hinaus die Nutzung hyperspektraler VIS-NIR-Daten mittels verschiedener ML Algorithmen zur 

Untersuchung von der NOx-Konzentration in der Atmosphäre. Weiterhin ermöglicht die hohe 

hyperspektrale Auflösung von Feldspektrometermessungen die Simulation anderer multispektraler 

Sensoren mit überlappenden Spektralbereichen. Daher harmonisiert die dritte Studie dieser Arbeit ein 

Netzwerk standardisierter, automatisierter Feldspektrometer an zehn verschiedenen Standorten auf 

der Welt im Abgleich mit Sentinel-2 und untersucht Auswirkungen der zeitlich-räumlichen 

Heterogenität. In der vierten Studie werden schließlich automatisierte Feldspektrometer als 

Übertragungsinstrumente genutzt, um zwei luftgestützte Multispektralsensoren in Bezug auf einen 
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Satelliten miteinander zu interkalibrieren und Auswirkungen von kontinuierlichen Änderungen der 

einfallenden Strahlung zu korrigieren. Aus der Bearbeitung der oben genannten Herausforderungen 

leiten sich Empfehlungen für die Standardisierung und Fusion optischer Fernerkundungsdaten 

automatisierter Feldspektrometersysteme ab, um eine ganzheitlichere und detailliertere 

Ökosystemüberwachung zu ermöglichen. 
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1 Introduction 

1.1 Background 

Intact ecosystems are at the basis of human well-being, provide naturally re-growing resources, affect 

air quality and enable food security. The carbon cycle in ecosystems interlinks atmosphere and 

biosphere, describes the fixation of atmospheric carbon into biomass by photosynthesis and the 

release of carbon into the atmosphere by oxidative processes, e.g. combustion and respiration 

(Baldocchi, 2014; Beer et al., 2010; Humphrey et al., 2021; Schlesinger et al., 2013). Terrestrial 

ecosystem services are resources naturally available to humankind and regimented by both the floral 

composition and the vegetation phenology. Climate change directly affects and alters the composition 

and phenology of terrestrial ecosystems, which places ecosystem services at risk (Blair et al., 2014; L. 

He et al., 2019; Seidl et al., 2017). While the climate of the earth changes globally and locally, extreme 

weather events increase vegetation stressors, e.g. by heat and drought, directly affecting plant health, 

and affect air quality, e.g. by natural aerosol release and anthropogenic pollution (Ehn et al., 2014; Gu 

et al., 2016; Jansen et al., 2009; Niinemets, 2010). Established routines and conventions of agriculture 

and forestry outdate with increasing pace and require comprehensive environmental data to adjust 

ecosystem management quickly and appropriately (Peine et al., 2011; Soudani and François, 2014). 

Remote sensing, in the strict sense, has been an emerging discipline in earth observation over decades 

and enables environmental monitoring by non-invasive data acquisition from a distance for scientific 

purposes (Cracknell, 2018). Dedicated optical sensors investigate in this context the visible (VIS) and 

non-visible electromagnetic spectrum, e.g. in the Near Infrared (NIR), of received, reflected and 

absorbed solar radiation and derive insights into properties of the Earth’s surface (Burnett et al., 2021; 

Green et al., 1998; Peddle et al., 2001; Pinter et al., 1983; Smith et al., 2003; Spyrakos et al., 2018; 

Viscarra Rossel et al., 2016) and atmosphere (Ehn et al., 2014; Gao et al., 1993; Giles et al., 2019; 

Sirignano et al., 2010). Spectroscopy covers multiple scales in terrestrial surface monitoring, which 

requires the differentiation of proximal sensing at a close distance on the ground and remote sensing 

at a larger distance from aircraft or satellites (Gamon et al., 2019). Thus, following the term “proximity 

sensing” will relate to spectroscopy on the ground in relatively close distance to the target. The term 

“remote sensing” will be used to distinguish airborne or spaceborne use cases, to ease the 

differentiation of spatial scales in this thesis. 

The airborne use of optical sensors on drones and aircraft enables the quantitative observations of 

vegetation in limited areas with a very high spatial resolution (Aasen et al., 2018; Chapman et al., 2019; 

Frankenberg et al., 2018; Gao et al., 1993; Green et al., 1998; Middleton et al., 2017; Siegmann et al., 

2019; Vanderbilt et al., 1998). In theory, a higher photon flux density is available from a single point at 
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a shorter distance according to the inverse-square law (Kepler, 1604). However neglecting atmospheric 

influences such as path transmittance and diffuse scattering (Richter and Schläpfer, 2002), distance is 

irrelevant for the amount of light collected by the optical sensor, because the ground projected area 

of each pixel increases at the same ratio as photon flux density of each integral point decreases with 

increasing distance to target (Schaepman-Strub et al., 2008). The specific excitation energy of the 

detector required for sufficient differentiation of the signal from the baseline of noise determines the 

minimal amount of measurable light in a spatial and spectral pixel within a reasonable integration time. 

Thus, a tradeoff is required between achieving high spatial resolution with a sufficient pixel size for a 

given distance to target and achieving a high spectral resolution, both limited by the amount of 

available light at the detector for a given integration time. Large optics are capable of collecting more 

light, while they are heavy and expensive at the same time. Equally, longer integration time allows 

collecting more light at the detector, but is critical for moving targets and sensors in motion. Satellites 

typically use those large optics to provide observations on a global scale, yet at a larger spatial 

resolution due to the immense distance to target (Gamon et al., 2019; Slater et al., 1987). In contrast 

to airborne missions, satellites offer more frequent revisit rates thus allowing the analysis of time-

series with regular intervals (Guyet and Nicolas, 2016; Oxoli et al., 2020; Petitjean and Weber, 2014). 

For example, the Sentinel-2 mission offers a single/dual satellite revisit-rate of 5/10 days and supports 

vegetation monitoring with good temporal resolution (Debella-Gilo and Gjertsen, 2021; Drusch et al., 

2012). Furthermore, Sentinel-2 provides very stable, vigorously calibrated and stable data products 

(Origo et al., 2020). However, this temporal resolution could be significantly improved by combining 

other satellite instruments, airborne data and continuous records from automated sensors on the 

ground (Wen et al., 2020). On the ground, imaging sensors allow the most detailed reconstruction of 

spatial information due to the very short distance to target, while non-imaging sensors integrate high-

resolution, spectral information according to the Field of View (FOV) into one, well characterized point 

(Alberton et al., 2017; Gamon, 2015; Harris et al., 2014; Kuester et al., 2001; Mac Arthur et al., 2007a; 

Milton et al., 2009; Wingate et al., 2015). Due to their stationary use, ground-based sensors typically 

allow higher integration times and achieve a higher spectral and spatial resolution even when using 

inexpensive optics and detectors at the same time. Therefore, proximal sensing on the ground allows 

optical measurements at the highest spectral and spatial resolution devoid of atmospheric distortion 

(Galvagno and Gamon, 2017; Gamon and Surfus, 1999; Milton et al., 2009), and continuous repeat 

rates at very high temporal resolution over long periods of time using automated spectroscopy systems 

(Cogliati et al., 2015a; Drolet et al., 2014; Pacheco-Labrador and Martín, 2015; Painter and Dozier, 

2004). 

The degree of differentiation of the electromagnetic spectrum distinguishes between multispectral (a 

few spectral bands) and hyperspectral (hundreds of continuous spectral bands) sensors. The study of 
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multispectral reflectance of vegetation is very suitable for change-detection, mapping and 

classification for example (Berni et al., 2009; Feilhauer et al., 2012; Oxoli et al., 2020; Roberts et al., 

2002; Ustin et al., 2004; Wang et al., 2018). At the same time, hyperspectral reflectance of vegetation 

increases in complexity but enables the retrieval of more detailed information (Aasen and Bolten, 

2018; Malenovský et al., 2006; Rahman et al., 2001; Ustin et al., 2004). Recent advancements in 

computer technology, data science and algorithms provide new and powerful tools for the exploitation 

of large and complex, hyperspectral datasets in earth observation (Hank et al., 2019; Jung et al., 2019; 

Mateo-Sanchis et al., 2021; Rivera-Caicedo et al., 2014; Rommel et al., 2022; Viscarra Rossel et al., 

2016). This presents the following challenges: 

 Many differently specified optical sensors across different instrument-platforms use differing 

measurement protocols and acquire optical data, which could be suitable for the combined 

observation of ecosystems. However, they require a way to unify the data and validate the 

information across those different optical sensors. 

 The high dimensionality of hyperspectral data is multi-redundant and requires dedicated 

processing pipelines for the retrieval of the relevant information into standardized data 

products, including assigned uncertainties. 

 Remote sensing data products are affected by interfering optical influences, distortion from 

the atmosphere or surface properties, which alter the measured signal and require a 

correction. 

1.2 Thesis aims and structure 

This thesis aims to address the three above stated challenges to support the retrieval of information 

relevant for the investigation of ecosystems across multiple sensors scales, and domains using 

automated field spectrometer systems as a centerpiece. The details of using continuous, automated, 

hyperspectral point measurements of up-welling and down-welling light on the ground are described 

with the aim to achieve standardized and comparable results, to support the generation of holistic, 

standardized datasets including associated uncertainties and quality control. The hyperspectral 

analysis of field-measured data is studied with respect to deriving higher data products for the 

investigation of air-quality and vegetation photosynthesis. Furthermore, this thesis aims to 

demonstrate the combination of data from vigorously standardized, automated spectrometers on the 

ground and satellite data facilitating the integration of information across temporal and spatial scales. 

Finally, the standardized, automated field spectrometers are used as a reference for the integration of 

remote sensing data across multiple, optical sensors on different platforms, to serve as the central 

transfer instrument. 
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The thesis presents first an overarching framework of applying automated field spectrometers in 

proximity sensing, introduces hyperspectral analysis and retrieval of higher data products and machine 

learning, radiometric noise, the propagation of uncertainties, the validation and calibration of optical 

data across different sensors. Furthermore, the knowledge gain and scientific contribution is shown. 

Four studies follow. Studies 1 and 2 are centered on the exploitation of the hyperspectral data using 

ML. Studies 3 and 4 are focused on the use of proximal sensing for the purpose of sensor calibration 

and validation in the field. Regarding the studies inside the pairs, the first one is an enabling study, the 

second one is a subsequent case study. 1) A data-driven retrieval method of Sun Induced chlorophyll 

Fluorescence unaffected by atmospheric reabsorption was developed. 2) Furthermore, a case study 

employed ML farther for the hyperspectral analyses of down-welling radiance to relate to changes of 

NOx in urban air during the coronavirus pandemic. 3) Harmonizing time-series from a standardized 

network of autonomous field spectrometers using data from Sentinel-2 as reference was enabled. 4) 

Finally, the inter-calibration and validation of time-synchronous field spectroscopy, drone, aircraft and 

Sentinel-2 imaging was examined in a case study. At last, an overarching conclusion is provided. 

 

2 Overarching framework and implications 

2.1 Fundamentals of applying automated field spectrometers 

Automated field spectrometer systems are introduced and current applications in environmental 

monitoring are outlined in this section. Furthermore, the exploitation of the hyperspectral data for 

vegetation monitoring using VI and SIF as proxies for plant physiology are briefly introduced. Following, 

the potential of machine learning in hyperspectral SIF retrieval and analysis of the atmosphere are 

outlined. Specific pipelines have been developed for example for SIF retrieval and atmospheric NOx 

investigation, which are examined in detail in Study 1 and 2 in this thesis. 

2.1.1 Automated field spectrometers 

Field spectroscopy stems from the use of spectro-radiometers outdoors which were, in their origin, 

pure laboratory instruments and enabled investigating optical characteristics of the environment in-

situ and in-vivo (Milton, 1987; Milton et al., 2009). Within the field of optical proximity sensing, field 

spectrometers allow the non-invasive and non-destructive collection of information about an object 

from a distance by measuring unique details of the electromagnetic spectrum of received, absorbed 

and reflected radiation (Kuester et al., 2001; Mac Arthur et al., 2007b; Peddle et al., 2001). Early 

systems were bulky, heavy, and demanding in the handling, requiring an operator at all times (Milton, 

1987; Milton et al., 2009). Especially, the ASD FieldSpec (today marketed by Malvern Panalytical, 
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United Kingdom, Almelo, The Netherlands) has been used for over 25 years as a portable and reliable 

field spectro-radiometer (Kuester et al., 2001; Milton et al., 2009). Nevertheless, rapid advancements 

in technology enabled developing automated field spectrometer systems, which are applied in 

continuous vegetation monitoring (Burkart et al., 2014; Cogliati et al., 2015a; Drolet et al., 2014; 

Grossmann et al., 2018; Mac Arthur et al., 2014; Meroni et al., 2011; Rossini et al., 2010; X. Yang et al., 

2018), examination of water quality (Keller et al., 2018; Maier et al., 2021) or air quality monitoring 

(Hundt et al., 2018; Naethe et al., 2020; Viana et al., 2015). Regardless of the specific field of 

application, automated field spectrometers continuously record time-series of optical data at very high 

spectral resolution and rapid repeat rates, enabling unprecedented insights into temporal dynamics. 

Continuous data of very high temporal and spectral resolution allow insights into short-term phenology 

and vegetation stress responses using plant physiological proxies, e.g. Vegetation Indices (VIs) and Sun-

Induced chlorophyll Fluorescence (SIF) (Alonso et al., 2017; Bertolli et al., 2013; Burkart et al., 2015b; 

Campbell et al., 2014; Damm et al., 2010a; Rascher and Pieruschka, 2008; Roth et al., 2018; Wieneke 

et al., 2018). The SIF signal is especially promising for early stress detection, but requires a complex 

interpretation of canopy structure, physiology, retrieval method, instrument and atmospheric 

distortion with respect to a direct reference in the field (Chang et al., 2021; Martini et al., 2022; Sabater 

et al., 2018). Since SIF contributes only 2% - 5% to the total up-welling radiance, sophisticated retrieval 

methods need to carefully decouple the SIF signal with little uncertainty to allow the meaningful 

investigation of stress events (Mohammed et al., 2019). Furthermore, applied to record surface 

reflectance in close proximity on the ground, field spectrometer data serve as a reference for validating 

airborne or spaceborne optical remote sensing (Buman et al., 2022; Hueni et al., 2017; Mihai et al., 

2018; Naethe et al., 2023; Olsson et al., 2021). Used as a ground reference, field spectrometer data 

inform mapping and classification of vegetation and land-surface cover (Debella-Gilo and Gjertsen, 

2021; Rommel et al., 2022; Sefrin et al., 2021; Serbin and Townsend, 2020; Smith et al., 2003).  

The automated field spectrometer system FloX, JB-Hyperspectral Devices, Düsseldorf, Germany, was 

developed specifically for the continuous long-term observation of vegetation reflectance and SIF, and 

is specified with optical characteristics similar to the upcoming Fluorescence Explorer (FLEX) Satellite 

mission of the European Space Agency (ESA) (Drusch et al., 2017; Middleton et al., 2017; Rascher et 

al., 2015). The FloX is a dual spectrometer system, which includes a full-range VIS/NIR spectrometer 

for monitoring reflectance and VI of vegetation between 400 nm and 950 nm in combination with a 

high-performance red/NIR spectrometer dedicated to retrieving SIF between 650 nm and 800 nm 

(Burkart et al., 2015b; Julitta et al., 2016). Multiplexing each spectrometer into a hemispherical channel 

and a conical channel allows near-time-synchronous recordings of down-welling and up-welling light 

and enables internal quality checks by recording stability of illumination, sensor saturation, integration 

time and optimization level, GPS coordinates, time-stamp, Solar Zenith Angle (SZA) and dark-currents 
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for each measurement cycle (Cogliati et al., 2015a). The RoX, JB-Hyperspectral Devices, Düsseldorf, 

Germany, is a smaller version of the FloX including only full-range VIS/NIR spectrometer from the FloX 

for reflectance monitoring. FloX and RoX both are designed as stationary, automated spectrometer 

systems capable of continuously monitoring vegetation as they measure up-welling and down-welling 

light at the top of canopy (TOC) with identical optical characteristics. Due to identical radiometric and 

spectral calibration routines, as well as identical specifications of the optical path and spectrometers, 

the FloX and RoX systems provide highly standardized reflectance, up-welling radiance, down-welling 

radiance, VIs and quality flags suitable for synergistic, integrated use. In addition, the FloX’s red/NIR 

spectrometer enables advanced retrievals of the SIF signal (Burkart et al., 2015b), as well as further 

investigation of SIF retrievals by the use of ML (Naethe et al., 2022; Scodellaro et al., 2022). The RoX 

can be used also as a portable device, which is furthermore interesting for the in-situ validation of 

cross-calibration of airborne and satellite remote sensing products (Naethe et al., 2023). The totality 

of recorded data from all those instruments already covers many different ecosystems and climate 

conditions, determined by the use-case of the owners respectively, but also represent a very large 

source of secondary information in standby for further analyses beyond the originally intended use-

case. Another, secondary use-case of the data is the application for validation and calibration against 

satellite reflectance data worldwide (Naethe et al., 2024). Furthermore, the retrieval of atmospheric 

properties from exploiting the continuous readings of down-welling light is possible (Naethe et al., 

2020), as each recoded spectrum of down-welling radiance on the ground contains information of the 

atmospheric transmission affected by gases and aerosols absorbing light at specific wavelengths 

(Green et al., 1998). With the increasing, synergistic use of multiple environmental sensors from 

different scientific communities and networks in mind (Cheng et al., 2006; Joiner et al., 2018; Jung et 

al., 2019; Musavi et al., 2016; Peltoniemi et al., 2018; Sirignano et al., 2010), a better and deeper 

understanding of the interactions of the earth’s systems and processes could be enabled from 

harmonizing existing and future proximity sensing products from a network of automated field 

spectrometers and combine them with remote sensing products from other optical sensors. A 

standardized network of automated field spectrometers on the ground is furthermore interesting for 

calibrating spaceborne and airborne optical sensors (Bouvet et al., 2019). However, this proposes the 

challenge of integrating increasing dimensionality and high complexity of measured variables in a 

meaningful way (Bioucas-Dias et al., 2013). For hyperspectral data, synergistic integration is only 

possible for multiple times and sites, which are standardized and as similar as possible in terms of 

instrumentation specifications, calibrated data output, quality flags, uncertainty tracing and associated 

meta-data (Graf et al., 2023; Hueni et al., 2023).  
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2.1.2 Hyperspectral analysis in field spectroscopy for vegetation monitoring 

The high dimensionality of hyperspectral data recorded by automated field spectrometer systems is a 

challenge but presents a large source of information at the same time. FloX and RoX provide 

hyperspectral data in over 1000 spectral bands per integrated spectrometer, each. To the 

hyperspectral domain adds the temporal domain of continuous time-series and, if applicable, the 

spatial domain of various sites and locations. Investigating hyperspectral reflectance of vegetation 

within this order of dimensionality is beyond the capacity of human perception. However, extracting 

relevant information from hyperspectral reflectance requires to investigate only a fraction of the 

hyperspectral domain relevant for the study of plant physiological processes and phenology (Gitelson 

et al., 2006; Linkosalmi et al., 2022; Yang et al., 2019). VIs are used as widespread proxies for 

vegetation, originating from multispectral sensors and combining fractions of the reflectance spectrum 

susceptible to plant density (Tucker, 1979), chlorophyll content (Dash et al., 2004), pigment regulation 

(Gamon et al., 1992), or Gross Primary Production (GPP) (Dechant et al., 2020) in singular values. 

Furthermore, SIF is used as a proxy for photosynthesis, but requires a higher amount of spectral 

information and additional considerations to reconstruct the signal from hyperspectral measurements 

(Frankenberg and Berry, 2018; Mohammed et al., 2019; Porcar-Castell et al., 2014). It must be noted 

that SIF is measured at the top of the canopy and the distribution of the signal inside the canopy is 

much more complex due to scattering, reabsorption and anisotropic distribution, which complicates 

the interpretation of signal (Liu et al., 2019a; Siegmann et al., 2021; Van Wittenberghe et al., 2021, 

2015). Several different mechanistic retrieval methods exploit the overlapping spectral signature of 

the SIF signal with the telluric oxygen absorption bands (Alonso et al., 2008; Cendrero-Mateo et al., 

2019; Cogliati et al., 2015b; Meroni et al., 2010) and even reconstruct the full spectral shape of SIF 

(Cogliati et al., 2019; X. Liu et al., 2015). However, SIF retrievals based on telluric oxygen are sensitive 

to atmospheric distortion and require challenging signal corrections for increasing distance between 

sensor and canopy (Liu et al., 2019b; Sabater et al., 2018; van der Tol et al., 2023; Yang et al., 2020, 

2015). In contrast, SIF retrieval methods based on Solar Fraunhofer Lines (SFL) are in principle 

unaffected by atmospheric reabsorption of the SIF signal (Grossmann et al., 2018; Guanter et al., 2013; 

Joiner et al., 2016; Köhler et al., 2020; Sun et al., 2018). The FloX instruments and retrieval methods 

need to comply with the FLEX satellite mission requiring an error in SIF not exceeding 0.2 mW m-2 sr-1 

nm-1 as candidate ground reference in the satellite validation plan (Vicent et al., 2016). This value is 

also equivalent to the lowest differentiable signal quantity and relevant for SIF being used to identify 

early stress in vegetation, which is typically apparent with low signal intensities (Chang et al., 2021; 

Martini et al., 2022; Siegmann et al., 2021; Wohlfahrt et al., 2018). Also from the perspective of 

standardization, data quality and uncertainty tracing are important. 
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2.1.3 Fundamentals of machine-learning for hyperspectral analyses and retrievals 

More recently, advancements in computer technology, scientific computing and Machine Learning 

(ML) provide very powerful tools for the fast processing and analysis of high-dimensional, 

hyperspectral data (Boyle, 2013; Madin et al., 2007; Mardia et al., 1979; Matheron, 1963; Pompilio et 

al., 2014; Verrelst et al., 2012; Wilson et al., 2014). Fundamentally, supervised and unsupervised 

methods are distinguished by whether or not training datasets are used (Eick et al., 2004; Hosseiny et 

al., 2024). Unsupervised methods investigate the variance in the input data and find connected groups 

based on the distance of measurement, commonly applied in dimensionality reduction and clustering, 

change detection and gap filling (Banerjee et al., 2005; Dray, 2008; Mardia et al., 1979; Murphy and 

Maggioni, 2019; Pompilio et al., 2014; Wallace and Dale, 2005). Based on the principles of curve fitting, 

maximum likelihood and correlation, supervised ML algorithms exploit relevant spectral features from 

the predictor space with respect to the predicted variable space and are suitable for the retrieval of 

higher products, classification, spectral unmixing and feature extraction (Benoudjit et al., 2009; 

Biancolillo and Marini, 2018; Dayal and Macgregor, 1997; Mou et al., 2017; Pompilio et al., 2014; 

Roberts et al., 2002; Schmidtlein et al., 2007; Serbin et al., 2012; Siegmann and Jarmer, 2015; Verrelst 

et al., 2012). However, supervised ML are also susceptible to overfitting and to accidentally exploiting 

surrogate relationships inside the data, which get increasingly problematic when transferring and 

scaling the obtained ML models (Hosseiny et al., 2024). While overfitting and underfitting can be 

effectively addressed by optimizing the training routines of the algorithms using segmentation, 

bootstrapping, random permutations and k-fold cross-validation (CV) (Rommel et al., 2022; Siegmann 

and Jarmer, 2015), surrogate relationships are more difficult to overcome as they exploit correlated 

co-variances by chance which have no real, mechanistic link to the aimed variable of interest. Cross-

validation with a second testing dataset can address this issue, but proposes the requirement that the 

dataset used for secondary cross-validation is not repeating misleading surrogate dependencies 

(Rommel et al., 2022; Wagner et al., 2018). Popular supervised ML algorithms in vegetation monitoring 

and phenotyping are Neural Network (NN), Partial Least Squares regression (PLS), Gaussian Process 

Regression (GPR), Elastic Net regression (ENet), Random Forest and Support Vector Machine (SVM), 

which tread the input data each in a specific way to facilitate the optimization of regression between 

predictor space and predicted variable space (Berger et al., 2022; Mou et al., 2017; Rivera-Caicedo et 

al., 2014; Sefrin et al., 2021; Serbin and Townsend, 2020; Siegmann and Jarmer, 2015; Verrelst et al., 

2012). Furthermore, it must be noted that each of those algorithms calculates differently uncertainty 

estimates of their predictions, e.g. during training, CV or even when applying the final model to 

unknown measurements. All ML predicted results and uncertainty estimates are fundamentally 

constrained by the generalization of the systematic contingent of information in the variables 

exploited during the training. The results of ML approaches fully depend on the input data used for 
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training and validation (Berger et al., 2020). Constraints of the training data and CV routines influence 

the limitations of transferability and of scalability for the specific ML application even over the impact 

of the actual algorithm choice (Siegmann and Jarmer, 2015; Ustin et al., 2004). One way to address this 

issue is to use self-similar field measurements during the training, which cover the expected variability 

of the predicted vegetation parameter and resemble the experimental conditions precisely. However, 

this approach is likely to result in overfitting, suffers from poor generalization, and requires precise a-

priori knowledge about the expected conditions, which is rarely achieved during field experiments. The 

use of modelled training data is an alternative to the previous approach and benefits from precisely 

controlling the influencing parameters to create very determined ML models (Gamon et al., 2019; 

Rivera-Caicedo et al., 2014; Verrelst et al., 2012). For example, the Soil Canopy Observation, 

Photochemistry and Energy fluxes (SCOPE) model can calculate specific vegetation spectra including 

SIF for various plant physiological parameters (van der Tol et al., 2009; Verrelst et al., 2015). However, 

the modelled training data still needs to be representative for the real measurements to exploit and 

requires to include also a simulation of the instrument and surrounding atmosphere. Furthermore, 

SCOPE and other mechanistic Radiative Transfer Models (RTMs) are complex and require excessive 

computation, which can expand quickly over several days and more depending on the size of datasets 

and number of repetitions (Berk et al., 1998; Damm et al., 2015; Rivera et al., 2015; Serbin and 

Townsend, 2020). Inverting RTMs for the retrieval of parameters from spectral data requires even 

farther enhanced computational effort (Sabater et al., 2017; Ustin et al., 2004). Thus, the use of 

computationally fast ML algorithms is promising for creating data-driven emulations for complex 

radiative transfer code, especially, when used for speeding up the computationally costly RTM 

inversion (Pacheco-Labrador et al., 2019b; Rivera et al., 2015; Verrelst et al., 2017, 2016a). At the same 

time, modelling large, RTM-based look-up-tables of SIF and true reflectance enables supervised 

training of advanced, ML-based SIF retrieval approaches in general (Aasen et al., 2019; Rivera-Caicedo 

et al., 2014) and in particular with automated field spectrometers (Naethe et al., 2022; Scodellaro et 

al., 2022). The challenges of ML-based SIF retrievals emerge in combining thousands of instances into 

a realistic, yet synthetic dataset including canopy radiances, atmosphere and known SIF contribution 

for training the algorithm properly. Furthermore, integrating the real sensor characteristics and 

combined uncertainties into the training dataset is mandatory for the transfer of the model from 

synthetic data into real field measurements. Harnessing high dimensionality and high complexity of 

interacting, in parts redundant and in parts unique variables in hyperspectral data remains another 

challenge. Those challenges are further examined in Study 1 of this thesis (Naethe et al., 2022). 

ML and statistical dimensionality reduction identify and eliminate redundant variables and extract 

relevant spectral features, but on the contrary, they can uncontrollably lose information (Dray, 2008; 

Nock et al., 2013; Wiklund, 2007). Especially, Singular Vector Decomposition (SVD) or Principal 
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Component Analysis (PCA), which are mathematically very similar unsupervised methods, reduce 

dimensionality of the input data by calculating replacement dimensions according to the fraction of 

total variance explained. In contrast, PLS regression involves matrix deflation and sequential regression 

optimization to obtain latent components according to the covariance between the predicted variable 

and the deflated predictor (Abdi, 2010; Burnett et al., 2021; Dayal and Macgregor, 1997; De Jong and 

Ter Braak, 1994). Due to its nearly mechanistic behavior and transparent data transformation based 

on optimizing for covariance in the predictor space, PLS allows the thorough analysis of the obtained 

models similar to PCA or SVD and does not resemble a black box. Thus, PLS is very widely used when 

dealing with hyperspectral data for example in chemometrics (Biagioni et al., 2011; Biancolillo and 

Marini, 2018; De Jong, 1993), vegetation monitoring (Jin and Wang, 2019; Meacham-Hensold et al., 

2019; Singh et al., 2015), spatial scaling of vegetation functional traits (Gamon et al., 2019; Serbin and 

Townsend, 2020), analysis of water quality (Keller et al., 2018; Wagner et al., 2018) and analysis of air 

quality (Ismael and Duleba, 2021; Kim et al., 2012). Continuous down-welling light measurements have 

the potential of revealing atmospheric properties. For example, atmospheric NOx concentration 

interacts with the solar radiation along its path through the atmosphere and affects measurements of 

down-welling radiance on ground (Hundt et al., 2018; Ogen, 2020; Park et al., 2019). The Coronavirus 

pandemic reduced the anthropogenic emissions of those pollutants significantly (Gkatzelis et al., 2021; 

Lipfert and Wyzga, 2021; Wang et al., 2020) and enabled linking a statistically relevant difference of 

NO2 concentration with spectral features in continuous measurements of down-welling radiance 

(Naethe et al., 2020). Study 2 in this thesis details the steps of hyperspectral analyses. 

2.2 From instrumental noise and propagated uncertainties 

This section discusses the propagation of uncertainties in automated field spectrometer systems to 

support high data quality, enable traceability throughout the processing chain and standardization of 

protocols. 

2.2.1 Fundamentals of propagating uncertainties in field spectroscopy 

Converting spectrometer data from raw DN into radiance in SI units is important to allow for comparing 

and interpreting measurements in a meaningful way, but propagates uncertainties into the spectral 

radiance at the same time (Barnes et al., 2000; Milton et al., 2009; Schaepman-Strub et al., 2008; 

Schaepman and Dangel, 2000). Calibration coefficients are used to convert raw DN with respect to 

integration time into spectral radiance. However, during the calibration process radiometric and 

spectral uncertainties arise and require consideration. Spectral uncertainties arise around the 

determination of the Instrumental Spectral Response Function (ISRF), the central wavelengths for each 

waveband and the FWHM, which were beyond the scope of this work. Other studies investigated 

spectral uncertainties related to different ISRF shapes (Trim et al., 2021) and optimized spectral 
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calibration procedures (Hueni and Bialek, 2017; Mihai et al., 2018). Only a minor impact from 

uncertainties related to spectral shifts was recognized in radiance products and in the retrieved SIF, 

while Signal to Noise Ratio (SNR) related to radiometric uncertainties was of significantly greater 

impact (Damm et al., 2011). Therefore, the propagation of radiometric uncertainties and SNR has to 

be considered more closely when using radiance measured by field spectrometers to derive higher 

data products. Moreover, the hyperspectral database SPECCIO (Hueni et al., 2009) just received an 

update to include automated uncertainty propagation from the radiometric and spectral branch 

(Hueni et al., 2023), yet it requires the input of initial uncertainties to propagate.  

Furthermore, systematic errors affect the data products in addition to the random uncertainties 

(Csavina et al., 2017). Systematic effects contribute offsets, which are attributed to specific sources, 

e.g. by electrical and optical components, measuring principles or retrieval approaches, setup and 

handling of the instrument, study design, sampling strategies and spatial representativeness, (Barnes 

et al., 2000; Biggar et al., 2003; Buman et al., 2022; Burkart et al., 2015b; Cendrero-Mateo et al., 2019; 

Graf et al., 2023; Kuester et al., 2001; Milton, 1987). Also, dependent uncertainties around the cosine 

correction of the down-welling radiance reference are important (Burkart et al., 2022; Rollin et al., 

2000). In contrast to random uncertainties, systematic errors have a specific contribution and can be 

corrected if their magnitude is known. It is generally understood that cross-calibration can reduce 

systematic offsets at the cost of propagating random uncertainties from the validated reference (Hueni 

et al., 2017). In consequence, the pursuit of tracing random, radiometric uncertainties in hyperspectral 

radiance measured by FloX/RoX will be discussed in detail in the following. The correction of systematic 

errors and offsets between multiple sensors will be discussed in detail in section 2.4 

2.2.2 Radiometric noise and instrument uncertainties 

In physics, the propagation of uncertainties is an essential consideration for quantities, which cannot 

be measured directly. In this context, radiometric uncertainties express the random and not 

correctable aspect of an indirect radiance measurement and trace back to their precision during 

instrument calibration (Schaepman and Dangel, 2000). While the systematic offset in radiance, the 

accuracy, can be corrected for a spectro-radiometer using calibration coefficients with respect to a 

stable reference (e.g. stable halogen lamp), the precision of this correction will enter into the 

propagation of the radiometric uncertainty, which stems from the fluctuations of the initial 

measurement repetitions during calibration (Białek et al., 2020). In the case of a directly measured 

quantity, this uncertainty relates only to the random component of the calibrated instrument 

(spectrometer vs. stable halogen lamp with negligible random deviation). However, if the random 

deviation of the reference is significant, it has to be considered in the propagation of uncertainties as 

well (JCGM, 2008). For example, this is the case when cross-comparing two independent spectrometer 
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systems, which have random noise in their measured signals each, using a second calibration 

coefficient to calculate the referencing radiance. Mathematical rules determine the calculation of 

uncertainty for functional relationships (Farrance and Frenkel, 2012). 

 

Figure 1: Random errors during calibration propagate as uncertainties of the calibration coefficients C, which are 
mathematically expressed as the standard deviations of the random scattering of the measured X values with respect to a 
stable reference in a). If the reference includes also uncertainties, the propagation of the uncertainties from both sources 
into the radiometric calibration coefficients C becomes more complex in b). Drawn after (Csavina et al., 2017). 

Precision and accuracy are reported during calibration ideally with respect to a single, direct reference 

(Figure 1a), or more realistically with respect to a noisy reference (Figure 1b). For a cross-calibration, 

this implies mathematically that the standard deviation of the measurements from the calibrated 

instrument and the standard deviation of the reference instrument interact in the partial derivative of 

the measurement equation (Csavina et al., 2017). Given that the noise-equivalent radiance change for 

the calibrated instrument and for the reference are both known per wavelength and measurement, 

the calibration coefficients include the uncertainty associated to the calibrated radiance. The 

uncertainty of the calculated down-welling or up-welling radiance L for a certain waveband number i 

is computed according to equation 1 from the multiplication of the calibration coefficient 𝐶𝑖, which 

includes the radiometric uncertainty 𝜎𝐶𝑖  from the reference, and the raw spectrometer output 𝑋𝑖  in 

DN including the uncertainty 𝜎𝑋𝑖 with respect to the central wavelength 𝜆 of the waveband:  

𝜎𝐿𝑖,𝜆 = √(
𝜎𝐶𝑖,𝜆

𝐶𝑖,𝜆̅̅ ̅̅ ̅
)
2

+ (
𝜎𝑋𝑖,𝜆

𝑋𝑖,𝜆̅̅ ̅̅ ̅
)
2

 ⋅ 𝐿𝑖,𝜆̅̅ ̅̅      (1). 

In consequence, the uncertainty of the radiometric calibration propagates according to Equation 1 

from the calibration coefficients and initial measurements into the calibrated radiance. 

As opposed to the laboratory, in field spectroscopy purely mathematical propagation of uncertainties 

is not always practical due to additional uncertainties introduced by a complex, dynamic, living 

environment, which often requires an in-situ uncertainty assessment using rapidly repeated 

measurements (Hueni et al., 2017). Even though mathematical rules describe the propagation of 
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uncertainties for measured data theoretically, it can be complex and challenging to consider all 

possible contributing sources appropriately. Furthermore, the complete propagation involves a 

comprehensive model of the sensor and requires a precise knowledge of all uncertainties related to 

the calibration process, coefficients used, instrumental configurations and signal gain settings (Milton 

et al., 2009; Peddle et al., 2001; Schaepman and Dangel, 2000). This information is not always available 

and can be difficult to obtain. The design of the automated field spectrometers FloX and RoX eliminates 

some systematic uncertainties related to temperature drift, dark current, non-linearity, channel 

mismatch or erroneous cosine response to allow unattended use (Pacheco-Labrador and Martín, 

2015). A limiting factor for high data quality remains the amount of available light at the detector. 

Obviously, a higher signal level at detector results in higher SNR for a static amount of radiometric 

noise. FloX and RoX both optimize the integration time for each measurement with respect to the 

amount of available light and ensure an optimal detector gain around 80% of the maximal dynamic 

range while minimizing the risk of saturated spectra at the same time (Pacheco-Labrador and Martin, 

2014). Thus, SNR can be theoretically 80% of the specified maximum during field conditions. However, 

80% detector gain cannot be reached under all circumstances, e.g. if the available light pushes the 

integration time to the limits or due to the specific spectral shape of measured signal including very 

high and very low intensities. For example, signal levels in the NIR are much higher in comparison to 

the blue or the green in reflected radiance from vegetation. This leads to a variable risk of 

misinterpreting mathematically propagated uncertainties in measured up-welling and down-welling 

radiance at different wavelengths, when resorting to a singular value of SNR for the entire detector. 

Furthermore, mathematical propagation of radiometric uncertainties could be misleading and will 

eventually fail in cases when full traceability back to the national or international standard is not 

possible, e.g. when the actual uncertainties around the reference are unknown, when instrumental 

properties are not fully characterized, or when setup and complex environmental dynamics interact 

with the measurements. Nevertheless, it remains important to quantify the amount of random, 

radiometric noise in field measurements for further consideration and propagation of uncertainties 

into higher data products. With respect to the traceability of radiometric uncertainties from FloX and 

RoX, the lack of SNR values associated to measured radiance data presents a significant deficiency 

towards standardizing protocols. This deficiency proposes the need of quantitatively determining 

radiometric noise of field measured radiance spectra from FloX and RoX with an empirical approach. 

We addressed this issue in the following sub-section in this thesis.  

2.2.3 Radiometric noise and field-measurement uncertainties 

The noise of each radiance measured with a field spectrometer depends on internal factors (e.g. 

integration time and optical configuration for example) and external factor (e.g. available amount of 

light and surface brightness of the target for example). The SNR can be estimated by extracting the 
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standard deviation of the random contribution of the measurements and mean signal when comparing 

them on a stable target (Schaepman and Dangel, 2000). Since a systematic change in illumination must 

be expected over time (Milton et al., 2009), it is advisable to investigate multiple, consecutive radiance 

spectra at a time to eliminate the systematic changes. Hence, even with no direct information about 

the dynamic range of the detector at hand, it is still possible to extract the random noise from a series 

of consecutive radiance spectra measured with rapid repeat rate by FloX/ RoX and calculate the SNR 

with respect to the recorded signal intensity under the following assumptions: 

1. The time interval between consecutive measurements is short, e.g. < 60 seconds. 

2. The optical characteristics of the instrument did not change from one measurement to 

another. 

3. The target was not significantly altered and can be assumed as stable during a period of 2 

minutes, which is approximately required for 3 full measurement cycles of a FloX. 

4. The recorded measurements can be directly compared with each other. Thus, one spectrum 

can be expressed mathematically as a function of its neighboring spectrum. 

5. The spectrum is not smoothed. 

Implementing in-field approximation of operational SNR with the FLoX, we selected three 

consecutively measured down-welling radiance to compare the one in the middle to the one before 

and the one after (Figure 2). Systematic changes would affect the preceding and succeeding measured 

spectrum similarly, assuming a steady change over the 2-minute interval. 

 

Figure 2: Three temporally neighboring radiance spectra measured by a FloX field spectrometer. The different colors indicate 
the times of recording given in XHH_MM_SS. 

The noise is calculated using the standard deviation of the residual from approximating the middle 

measurement n by a linear combination of a 3rd order polynomial using the spectrum before (n-1) and 
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the spectrum after (n+1). Thus, the noise N is calculated according to equation 2 as the standard 

deviation of the two intervals i before and after the central spectrum n for the wavelengths between 

745 nm and 759 nm as: 

𝜎𝑁𝑖∈{𝑛−1;𝑛+1} = √∑
((𝐿𝑛,𝜆−𝐿𝑖,𝜆)−𝜇(𝐿𝑛,𝜆))

Δ(𝜆−1)

2
 759

𝜆=745     (2) 

with Li being the approximated intensity for example of L2, using the spectrum with index 1 or 3 to 

optimize a, b, c and d in a linear, 3rd order polynomial with respect to the central wavelengths vector 

wl, scaling the spectrum 𝐿𝑛 to overlap with 𝐿𝑖 according to equation 3: 

𝐿𝑖 ≈ 𝑑 ⋅ 𝑤𝑙𝜆
3 ⋅ 𝐿𝑛,𝜆 + 𝑐 ⋅ 𝑤𝑙

2 ⋅ 𝐿𝑛,𝜆 + 𝑏 ⋅ 𝑤𝑙 ⋅ 𝐿𝑛,𝜆 + 𝑎   (3). 

The signal is calculated as the mean intensity of the spectra 𝐿𝑖 in the given spectral range between 745 

nm and 759 nm in equation 4: 

𝑆𝑖∈{𝑛−1;𝑛+1} =
∑ 𝐿𝑖,𝜆
759
𝜆=745 

Δ(𝜆−1)
     (4). 

Finally, the SNR of a measured radiance spectrum n is calculated with respect to the two neighboring 

intervals i accordingly in equation 5: 

𝑆𝑁𝑅 = 
∑𝑆𝑖/2

∑𝜎𝑁𝑖/2
      (5). 

Hence, systematic changes are reduced and only random changes are reported for one spectrum with 

respect to the preceding and succeeding measurements. Systematic changes cancel out due to the two 

interval steps, approximating the central measurement in terms of the previous and latter one. Thus, 

the residual according to equation 4 of the linear approximation of the spectra according to equation 

3 marks the almost purely random noise. Finally, the SNR is the mean signal of the two approximated 

spectra with respect to the isolated, mean random noise from the two neighboring measurements. 

Approximating SNR using a ~15 nm wide spectral window moving across all bands of the detector in a 

diurnal series of up-welling and down-welling radiance spectra measured by a FloX on November 6th 

2020 in Selhausen revealed successfully the variable SNR across the spectral domain and across the 

temporal domain (Figure 3). Lower signals due to the typical reflectance shape of vegetation and the 

telluric absorption features as well as limiting low light conditions during late afternoon clearly affect 

the SNR in the field. For high signal levels, both channels of the FloX exhibit very similar, maximal 

operational SNR around 800 due to the automatic signal optimization of the FloX spectrometer system. 
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Figure 3: Spectral Signal to Noise Ratio (SNR) plotted for a diurnal series of measured up-welling radiance (a) and down-welling 
radiance (b) using a FloX in Selhausen, Germany, on November 6, 2020. SNR was approximated using a ~15 nm wide spectral 
window moving across all bands of the detector with respect to the central wavelength of each window position. The upright 
panels show cross-sections selected for each full hour step on the time axis (right) and for each 20 nm step labeled on the 
wavelength axis (left) 

The observation is supported by the fact that both channels are automatically optimized in integration 

time to reach maximum raw DN values around 80% of the total dynamic range of the detector, unless 

available light is fading too much. The investigated instrument reached 80% of the nominal SNR around 

1000 using automatically optimized integration times and subtracting the dark-current in the signal 

processing (Julitta et al., 2016). Thus, reported peak SNR values around 800 suggest that the results of 

the presented empirical approximation of operational SNR from field-measurements are plausible. 

Consequently, this approach was applied to consistently monitor operational SNR across measured 

and simulated up-welling radiance data during the study of a data-driven SIF-retrieval method (Naethe 

et al., 2022), presented in Study 1 of this thesis. Finally, SNR is important to trace the quality of field 

spectrometer measurements but covers only the random radiometric contribution to the total 

uncertainty budget. The inherited uncertainties and accuracy of the radiance calibration itself are not 

reflected in this consideration assuming the radiometric noise of the measured radiance as an 

instantaneous uncertainty. However, even without full traceability to a national standard, propagating 

operational noise can be considered a significant improvement to characterize better the uncertainty 

budget of the final data products from the FloX/RoX systems. 

2.2.4 Field-measurement and retrieval uncertainties 

The propagation of the radiometric uncertainty from calibrated radiance continues through further 

processing and corrections steps into the higher data products (Graf et al., 2023; Hueni et al., 2023). A 

very simple example for this cascading propagation would be calculating the NDVI (Tucker, 1979) based 
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on hyperspectral reflectance calculated from up-welling and down-welling radiance measured with 

the field spectrometer (Table 1).  

Table 1: Reflectance (R), the NDVI (Tucker, 1979) and iFLD (Alonso et al., 2008) far-red SIF as data products calculated from 
calibrated radiance measured by field spectrometers. The radiometric uncertainties of the calibrated radiance are propagate 
through the calculation of the partial derivative of the product equations. Uncertainty equations calculated after (Farrance 
and Frenkel, 2012). 

 

The basis for this calculation is the inherent (fully traceable) or instantaneous (operational), 

radiometric uncertainty of the calibrated radiance data. The signal noise is mathematically derived in 

the inherent case above using equation 1. Conversely, noise is empirically approximated in the 

instantaneous case. The propagation of the radiometric uncertainty is calculated from partial 

derivatives of the data product equation in Table 1 (Farrance and Frenkel, 2012; JCGM, 2008). Thus, 

the up-welling und down-welling radiance 𝐿 ↑  and 𝐿 ↓  require each the associated radiometric 

Data product Associated radiometric uncertainty propagated 
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uncertainty 𝜎𝐿 ↑ and 𝜎𝐿 ↓ with respect to the central wavelengths at 656 nm and 800 nm computing 

reflectance and NDVI. The purely radiometric uncertainty of the measured up-welling and down-

welling radiance propagates first into the calculated reflectance R at 656 nm and at 800 nm, which are 

further used to calculate the NDVI (Table 1). Taking experimental radiance data the from red/NIR 

spectrometer of the FloX in Selhausen, Germany, on November 18th 2020 for example with 𝐿 ↓656=

82.71, 𝐿 ↑656= 4.44, 𝐿 ↓800= 86.41, 𝐿 ↑800= 42.72, all given in mW m-2 sr-1 nm-1 results in 𝑅656 =

0.054  and 𝑅800 = 0.494 , furthermore 𝑁𝐷𝑉𝐼 = 0.80  respectively. Propagating the instantaneous 

radiometric uncertainties 𝜎𝐿 ↓656= 0.151, 𝜎𝐿 ↑656= 0.024, 𝜎𝐿 ↓800= 0.108, 𝜎𝐿 ↑800= 0.061 , all 

given in mW m-2 sr-1 nm-1 yields a radiometric uncertainty for the reflectance products of 𝜎𝑅656 =

0.0004  and 𝜎𝑅800 = 0.0009. This radiometric uncertainty propagates into 𝜎𝑁𝐷𝑉𝐼 = 0.0014 (Table 

1). These radiometric noise uncertainties are negligibly small with respect to the observed values, 

which equate to 0.2% relative uncertainty for NDVI, 0.7% for R656 and 0.1% for R800 respectively. For 

comparison, study 4 demonstrated an average relative uncertainty around 10% - 20% in between the 

airborne multispectral products and the ground reference due to added influences from e.g. 

instrument handling, spatial representativeness, BRDF, sensor alignment and atmosphere under field 

conditions in Figure 42 (Naethe et al., 2023).  

 

Figure 4: Diurnal far-red SIF around 760 nm a) and red SIF around 687 nm c) retrieved with the iFLD method from FloX 
measured data in Selhausen, Germany, on November 6, 2020. The mathematically propagated radiometric uncertainty from 
instantaneous signal noise is shown in grey. The relative uncertainty with respect to signal magnitude is reported for SIF 760 
nm b) and SIF around 687 nm d), respectively. 
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Nevertheless, it is noteworthy that the increasingly complex mathematical propagation of 

uncertainties for higher products implies increased uncertainties with each processing step. For 

example, the family of FLD based SIF retrieval methods relies on spectral bands inside and outside of 

telluric oxygen absorption features (Alonso et al., 2008; Plascyk and Gabriel, 1975). Taking the 

optimization coefficients as 𝛼𝑅 = 0.9898 and 𝛼𝐹 = 1.2518 from (Alonso et al., 2008), the SIF signal 

from field measurements using the FloX and retrieved with the improved FLF (iFLD) method for far-red 

SIF around 760 nm results in 0.35 mW m-2 sr-1 nm-1, also assuming  𝐿 ↓754= 119.591, 𝐿 ↓761=

46.832, 𝐿 ↑754= 25.367, 𝐿 ↑761= 10.296, all in mW m-2 sr-1 nm-1 (Table 1). Taking the associated 

radiometric uncertainties from the radiometric noise of field measurements (Figure 3) as 𝜎𝐿 ↓754=

0.136, 𝜎𝐿 ↓761= 0.118, 𝜎𝐿 ↑754= 0.055, 𝜎𝐿 ↑761= 0.052, all in mW m-2 sr-1 nm-1, yields a radiometric 

uncertainty of the iFLD far-red SIF around 0.11 mW m-2 sr-1 nm-1, which is with 31% relative uncertainty 

significant (Figure 4). For iFLD red SIF 0.38 mW m-2 sr-1 nm-1 with 0.16 mW m-2 sr-1 nm-1 uncertainty, 

42% were reported in the same fashion. The iFLD method is sensitive to noise (Damm et al., 2011). 

Therefore, it is observed how the relative uncertainty of the iFLD retrieval is radically increased in the 

afternoon with decreasing SNR after the automatic signal optimization of the spectrometer was at its 

limits due to fading daylight (Figure 4). Influences from the automatic optimization in the FloX adjusting 

the integration time to changing incoming radiation result in noticeable spikes in the relative retrieval 

uncertainty throughout the diurnal course. Especially the undershooting of the optimal signal levels in 

the afternoon lowered the raw signal below 80% of the dynamic range due to decreasing light and thus 

increased the radiometric noise with respect to the integration time not yet adjusted. Furthermore, 

the iFLD method tends to overestimate especially lower SIF signals and to underestimate higher SIF 

signals around 687 nm (Cendrero-Mateo et al., 2019), which is also observed in the presented results. 

Study 1 also presents the results from other SIF retrievals of that day (Figure 10). The poor performance 

especially in the red SIF suggests the iFLD method not suitable as a mechanistic reference for study 1, 

which employs the SFM retrieval instead. Note that different retrieval methods have specific 

uncertainty functions and will propagate uncertainties differently (Chang et al., 2020a). Also, this 

example is based on a simplification in relation to determining the optimization coefficients base on 

the reflectance shape. The above presented calculation accounts only for the radiometric noise of the 

measurements with the dark current removed. In addition, dark-current, non-linearity, temperature, 

integration time and cosine receptor response need to be considered in a more complete model of the 

sensor (Pacheco-Labrador and Martin, 2014; Pacheco-Labrador and Martín, 2015). Furthermore, 

instrument setup and optical alignment (Aasen et al., 2019), target structure and geometry, BRDF, SZA 

and viewing angel, sensor field of view, surface heterogeneity, temporal misalignments and the 

atmosphere affect measured radiance data and also propagate as uncertainties into the final product 

(Chang et al., 2021).  
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Finally, uncertainties of representativeness, which are associated to the spatial extend of the field 

spectrometer footprint in comparison to other optical sensors or physical probing strategies require 

consideration in the final uncertainty budget (Buman et al., 2022). This aspect is particularly relevant 

in field measurements when cross-comparing data products of multiple optical sensors and outweigh 

effects of SNR, above all when averaging sufficient repetitions of individual ground measurements 

minimizes random uncertainties (Hueni et al., 2017; Pacheco-Labrador et al., 2019a). Measurement 

system analysis describes the complete interactions of the observed object, the instrument, the 

operator, the measurement method and the outer environment contributing to the overall uncertainty 

budget of the data product (JCGM, 2020). The complete uncertainty budget includes the full 

propagation of all random and systematic uncertainties. Conversely, this implies that random 

uncertainties are addressed by a sufficient number of repetitions and systematic uncertainties by 

validation and calibration against a trustworthy reference or by using suitable correction models in the 

reflectance products (Naethe et al., 2023). Further considerations are required when addressing 

systematic influences of atmospheric distortion in the retrieval of the SIF signal (Naethe et al., 2022). 

At last, the complete propagation of relevant uncertainties into the data products must be considered 

for allowing a meaningful interpretation and traceability. 

2.3 Validation and calibration of optical data across different sensors 

The hyperspectral resolution of automated field spectrometer systems allows cross-comparing of a 

single instrument with many different multispectral or hyperspectral, imaging or point sensors 

recording an overlapping spectral range. A common scenario of application is the cross-validation of 

airborne or satellite instruments using the ground measurements of hyperspectral reflectance as a 

reference (Barnes et al., 2000; Biggar et al., 2003; Bouvet et al., 2019; Green et al., 1998; Hueni et al., 

2017; Peddle et al., 2001; Pompilio et al., 2018; Schaepman-Strub et al., 2008). However, current 

protocols of reflectance calibration for airborne or satellite sensors oftentimes refer to a single 

reference only and lack a continuous tracing of changing, down-welling radiance (Ariza et al., 2018; 

Hakala et al., 2018; Olsson et al., 2021). Continuous changes of illumination over time determine a 

substantial systematic drift of the calibrated reflectance and require a correction. Furthermore, 

changing illumination angel and changing viewing angle cause significant alterations of the surface 

reflectance signature and lead to a distinctive Bi-directional Reflectance Distribution Function (BRDF), 

which is uniquely dependent on surface roughness, structure, geometry and the materials’ optical 

properties (Aasen and Bolten, 2018; Burkart et al., 2015a; Liu and Liu, 2018; Rautiainen et al., 2018; 

Vargas et al., 2020). The Hemispherical Directional Reflectance Function (HDRF) considers in addition 

the scattering of light inside the atmosphere and is therefore also referred to as blue-sky reflectance 

(Milton et al., 2009; Painter and Dozier, 2004; Schaepman-Strub et al., 2008). Mechanistic correction 
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methods require sufficient knowledge of those parameters (Richter and Schläpfer, 2002; Schläpfer and 

Richter, 2002) and are not always feasible. An empirical correction using proximity sensing in the field 

is therefore oftentimes the best choice (Karpouzli and Malthus, 2003; Peng et al., 2022; Pompilio et 

al., 2018; Wang and Myint, 2015). However, this proposes the challenge of limiting the transfer of 

biases from the proximity sensing further into the validation and calibration of airborne or satellite 

sensors (Liu and Liu, 2018). The automated field spectrometers are very dependable references as they 

are designed to minimize instrumental uncertainties, allow many rapidly recorded repetitions and 

support the assessments of systematic offsets at the same time. One possible way to address biased 

reflectance is the acquisition of ground-based, airborne and satellite measurements at exactly the 

same time with a nadir viewing angle and ensuring an identical sun angle (Buman et al., 2022). 

Furthermore, artificial reference targets with known BRDF and reflectance characteristics, which are 

visible both from ground-based and airborne sensors support cross-validation and calibration (Hakala 

et al., 2018, 2013; Honkavaara and Khoramshahi, 2018). Spatial representativeness is also an issue 

especially for the comparison of differently sized pixels and spectrometers footprints on natural 

surfaces, but is negligible for homogenous, artificial targets (Biggar et al., 2003; Buman et al., 2022; 

Graf et al., 2023). Furthermore, automated field spectrometer systems are very suitable for the 

application as ground reference, as they record continuously and unattended down-welling and up-

welling radiance of a known point on the ground, while the size of this point is adjusted with the 

distance between sensor and target. Set up some time before and left for some time after the airborne 

acquisition, the automated field spectrometer can remain in the field and requires no further human 

interaction. Eventually, applications such as airborne mapping, land surface classification or change 

detection greatly benefit from inter-calibrated data (Green et al., 1998; Rahman et al., 2001; Roberts 

et al., 2002; Ustin et al., 2004). Satellite data, for example ESA’s Sentinel-2, are vigorously standardized, 

validated and repeatedly calibrated to provide a credible and traceable reference for surface 

reflectance (D’Odorico et al., 2013; Drusch et al., 2012; Origo et al., 2020). Unfortunately, multispectral 

resolution and acquisition time of this satellite data do not always match with the airborne sensors. 

Addressing this issue, a suitable transfer instrument is required, which covers the spectral and 

temporal mismatch. The automated field spectrometer can serve as such a transfer instrument, 

whether purposefully integrated into the airborne mission planning or already available from long-

term monitoring at the investigated sites, as examined in Study 3 and 4 in this thesis (Naethe et al., 

2024, 2023). The following essential assumptions must be satisfied by the automated field 

spectrometer for the consideration of a solid ground reference: (I) The spectrometer ground-sampling 

points should be homogenous and the surrounding area should be representative in vegetation cover 

and size with respect to the pixel projection of the satellite and airborne sensors. (II) The hyperspectral 
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range of the field spectrometer should overlap with the multispectral airborne and satellite sensors. 

(III) The time of airborne and satellite data acquisition overlap each with the ground measurements. 

2.4 Knowledge gain and scientific contribution 

This thesis is based on the legacy of field spectroscopy for proximity sensing of the past decades 

(Milton, 1987; Milton et al., 2009). With the arrival of fully automated field spectrometer systems 

unprecedented use cases were enabled, e.g. in the retrieval of SIF and continuous vegetation 

monitoring (Cogliati et al., 2015a; Gamon, 2015; Julitta et al., 2016; Pacheco-Labrador and Martín, 

2015). Modern automated field spectrometers enable the retrieval of SIF from long time series, but 

the small contribution of the signal poses challenges towards the technical requirements especially 

under lowered light and lowered SIF emission (Mohammed et al., 2019). Under laboratory conditions 

SNR around 1000 in combination with a spectral resolution FWHM < 0.5 nm was identified suitable for 

reliable SIF retrievals exploiting absorption feature of telluric oxygen (Julitta et al., 2016). However, 

telluric oxygen also reabsorbs SIF and causes a distortion of the measured signal even at the level of 

proximity sensing (Aasen et al., 2019; Sabater et al., 2018). Instead, exploiting SFL is in principle 

unaffected by atmospheric reabsorption, but technically even more demanding due to the very small 

absorption features and results in a very noisy signal retrieval (Guanter et al., 2013). Furthermore, 

propagating the random uncertainties around field-measured radiance is important to enable quality 

control for SIF retrievals and annotate quantitative uncertainties to the final product (Chang et al., 

2020a). We developed a novel SIF retrieval based on the PLS algorithm to exploit SFL unaffected by 

atmospheric reabsorption and low retrieval noise, using the quantitative radiometric uncertainties to 

inform realistic modelling of synthetic radiance data for the purpose of training and validating the ML-

based model on large spectral windows (Naethe et al., 2022). This study enabled for the first time the 

application of the PLS regression for SIF retrieval in measured field data, which is distinctively more 

challenging compared to pure modelling exercises (Rivera-Caicedo et al., 2014; van der Tol et al., 2016; 

Verrelst et al., 2016a). In addition, the high computation speed of the ML algorithm outperformed 

other, mechanistic retrievals. Furthermore, purely measured hyperspectral down-welling radiance 

from the automated field spectrometer RoX and NOx concentration from an urban measuring station 

were analyzed using ML in our second field study (Naethe et al., 2020). The study investigated the 

results of fundamentally different ML approaches, suggesting that a qualitative distinction (low 

uncertainty) and even a quantitative distinction (higher uncertainty) was possible. As major 

contribution, the potential of exploiting atmospheric properties from the continuous down-welling 

radiance measurements of automated field spectrometers using ML was demonstrated, further useful 

for applications in pollution monitoring or investigating natural atmospheric changes (Ehn et al., 2014; 

Kanniah et al., 2012; Sirignano et al., 2010). At last, ground-based measurement networks of optical 
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atmospheric properties are relevant for the calibration of satellites, atmospheric correction of top-of-

atmosphere reflectance and cloud screening (Bouvet et al., 2019; Giles et al., 2019; Zhang et al., 2021).  

The introduction of commercially available, automated spectrometer systems made them accessible 

to a wider range of users at a large scale, but requires consistent and standardized, radiometric 

measurements to derived data products including uncertainty support (Buman et al., 2022; Hueni et 

al., 2023). Due to full instrument characterization, propagation of all uncertainties and full traceability 

back to the international standard being not always possible nor economically feasible for an ever 

increasing number of optical instruments in service, an alternative consistency assessment of data 

products from the automated spectrometer systems FloX/RoX was required. Using Sentinel-2 as a 

globally stable reference (Graf et al., 2023; Origo et al., 2020), we enabled for the first time the 

investigation of consistency of automated field spectrometer measurements and harmonized their 

products from proximity sensing across 10 field sides around the world (Naethe et al., 2024). 

Furthermore, pixel-based temporal-spatial clustering using continuous time-series of high temporal 

resolution was used for finding areas considered as sufficiently homogenous for the cross-validation 

of field spectrometer and satellite. A standardized network of automated field spectrometers 

contributes to improve integration of data and enhance comparability of products with other systems 

to ensure long-term usability (Hueni et al., 2009). Field spectrometers are widely used for cross-

calibrating proximity sensing and remote sensing products from the ground to the aircraft (Biggar et 

al., 2003; Hueni et al., 2017; Origo et al., 2020; Peddle et al., 2001). However, the lack of continuously 

tracing the diurnal fluctuation of incoming light on the ground poses a severe limitation for reflectance 

calibration, but possible to overcome using automated field spectrometers. The new concept of using 

trustworthy satellite reflectance for validating proximity sensing was further investigated and brought 

forth by using automated field spectrometers as a transfer instrument to inter-calibrate other airborne 

sensors with respect to the satellite in our fourth case study (Naethe et al., 2023). Furthermore, 

continuous measurements of down-welling radiance were investigated to support the correction of 

airborne reflectance during the day and inform the detection of clouds from the ground. This case 

study contributed a detailed, best-practice example using FloX/RoX devices for airborne sensor inter-

calibration. Eventually, the presented approach could be easily adapted to other sensors on aircraft 

for future campaigns. 
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3 Study 1 - A precise method unaffected by atmospheric 

reabsorption for ground-based retrieval of red and far-red 
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3.1 Abstract 

Remote sensing employs solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthesis 

from field to airborne and satellite sensors. The investigation of SIF offers a unique way of studying 

vegetation functioning from the local to the global scale. However, the passive, optical retrieval of the 

SIF signal is still challenging. Common retrieval approaches extract the SIF infilling directly from 

atmospheric oxygen bands in down-welling and up-welling radiance. They often involve a complex 

signal correction to compensate for atmospheric reabsorption and require long computing time. In 

contrast, the exploitation of solar Fraunhofer lines is devoid of atmospheric disturbances. We propose 

a new retrieval method for red and far-red SIF directly from up-welling radiance spectra in the spectral 

range between 650 nm and 810 nm by applying Partial Least Squares (PLS) regression machine 

learning. Solar Fraunhofer lines are exploited for SIF retrieval with the PLS approach by excluding 

telluric absorption features. The PLS models are trained and tested on synthetic reflectance and SIF 

data modeled with SCOPE. We identified a logarithmic relationship of the retrieval error with respect 

https://doi.org/10.1016/j.agrformet.2022.109152
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to signal-to-noise ratio of the instrument. The approach has been tested with real-world data 

measured by the Fluorescence Box (FloX), and evaluated against two well-established retrieval 

methods: the spectral fitting method (SFM) and the singular value decomposition (SVD). PLS models 

exploiting solar Fraunhofer lines retrieved meaningful SIF values with high precision and demonstrated 

robustness against atmospheric reabsorption, including from a 100m tall tower. In addition, PLS 

retrieval requires no complex correction for atmospheric reabsorption and computes 37 times faster 

than SFM. Hence, PLS retrieval allows fast and robust exploitation of SIF from solar Fraunhofer lines 

with high precision under conditions in which other retrieval approaches require complex atmospheric 

correction. 

3.2 Introduction 

Remote sensing of solar-induced chlorophyll fluorescence (SIF) has been studied in the past decades 

as a non-invasive method to track photosynthesis from leaf to global scales (Mohammed et al., 2019). 

The signal is emitted as light in the red and near-infrared (NIR) wavelengths (Porcar-Castell et al., 2014). 

It is comprised of contributions from both photosystems II and I (Agati et al., 1995; Magney et al., 

2019b). Thus, simultaneous monitoring of red and far-red fluorescence allows for obtaining direct 

insight into the light reactions and light-use efficiency of photosynthesis (Wieneke et al., 2018). At the 

leaf level, SIF changes as plants adjust photosynthesis and non-photochemical quenching in response 

to environmental conditions such as temperature, light, available water, and nutrients (Alonso et al., 

2017; Camino et al., 2018; Campbell et al., 2019; Cendrero-Mateo et al., 2016; Martini et al., 2022, 

2019; Sun et al., 2017; Zarco-Tejada et al., 2016). Additionally, canopy structure affects light 

absorption, scattering, and fluorescence emission, thereby also influencing the SIF signal (Dechant et 

al., 2020; Migliavacca et al., 2017; Van Wittenberghe et al., 2015). The true SIF signal is unknown and 

difficult to retrieve under natural conditions for its complex nature. The Soil Canopy Observation, 

Photochemistry and Energy fluxes (SCOPE) model fully integrates leaf-level radiative transfer and heat 

fluxes in the canopy and produces realistic fluorescence spectra for the validation of canopy SIF 

retrieval (van der Tol et al., 2009; Verhoef et al., 2018; Verrelst et al., 2016b; Yang et al., 2021). On the 

other hand, inversion of the SCOPE model allows the inference of parameters related to 

photosynthesis and energy balance from measured canopy hyperspectral reflectance (Guanter et al., 

2012; Pacheco-Labrador et al., 2019b; van der Tol et al., 2016; Verrelst et al., 2015). Evaluation of SIF 

retrieval methods for the optical exploitation of the signal are performed with SCOPE simulated 

datasets, including known reflectance and SIF spectra (Cogliati et al., 2015b). 

The passive optical exploitation of SIF using hyperspectral sensors at the top-of-canopy (TOC) has great 

potential to enhance global monitoring of primary production across both natural ecosystems and 

agricultural landscapes (Damm et al., 2010a; Dechant et al., 2022; Goulas et al., 2017; Guanter et al., 
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2014; Magney et al., 2019a; Martini et al., 2019; Migliavacca et al., 2017; Nichol et al., 2019; Sun et al., 

2018; Tagliabue et al., 2019; Wohlfahrt et al., 2018). Towards this goal, automated SIF monitoring field 

spectrometer systems have been developed for deployment on stationary towers (Burkart et al., 

2015b; Cogliati et al., 2015a; Daumard et al., 2010; Drolet et al., 2014; Meroni et al., 2011; Rascher et 

al., 2009; Rossini et al., 2010), UAVs (Bendig et al., 2019; Chang et al., 2020b; Mac Arthur et al., 2014; 

Wang et al., 2021).Imaging sensors retrieve SIF on aircraft (Frankenberg et al., 2018; Wieneke et al., 

2016). Current systems include, for example, TriFLEX (Daumard et al., 2010), Piccolo Doppio (Mac 

Arthur et al., 2014), PhotoSpec (Grossmann et al., 2018), FAME (Gu et al., 2019), FluoSpec2 (X. Yang et 

al., 2018), and Fluorescence Box (FloX) (Julitta et al., 2017). These field spectroscopy systems have 

been invaluable for calibration and validation of airborne and satellite missions (Porcar-Castell et al., 

2015; Rossini et al., 2015) as well as investigating temporal, structural, and physiological dynamics of 

the monitored target (Fournier et al., 2012; Perez-Priego et al., 2015; Rossini et al., 2010). The potential 

of spectrometers was also further investigated in their own realm on the ground (Magney et al., 2017; 

X. Yang et al., 2018). Together, these ground-based measurements support the development of 

upcoming satellites such as the ESA Earth Explorer 8 candidate FLEX (Drusch et al., 2017; Middleton et 

al., 2017; Mohammed et al., 2019; Rascher et al., 2015), and enable calibration and validation of 

satellite SIF retrieval methods and data products (Hueni et al., 2017). 

Different retrieval methods have been proposed to retrieve the SIF signal from continuous 

measurements of down-welling and up-welling radiance recorded by systems with different 

instrument configurations, as comprehensively reviewed by Meroni et al. (2009) and Cendrero-Mateo 

et al. (2019). The Fraunhofer Line Discrimination (FLD) method (Plascyk and Gabriel, 1975) is the basis 

for further, more advanced FLD retrieval algorithms, e.g. iFLD (Alonso et al., 2008). FLD estimates the 

emission of SIF through relative infilling of the telluric absorption bands, located around 687 nm (the 

Oxygen-B band, from which SIF-B is retrieved) and around 760 nm (the Oxygen-A band, from which 

SIF-A is retrieved). The Spectral Fitting Method (SFM) models the spectral shape of fluorescence and 

reflectance as mathematical functions to retrieve and correct signal intensities (Cogliati et al., 2015b; 

Meroni et al., 2010). SFM is a mechanistic approach based on physical principles and describes the 

spectral shape of the actual fluorescence signal but suffers from costly computation. Because of its 

reliability, we used it as the reference for field measurements in this study. The SFM is applied as the 

standard processing method for fluorescence retrieval with the FloX monitoring field spectrometer, 

optimizing first guessed SIF values from the iFLD. Both FLD and SFM approaches require high-resolution 

hyperspectral data around the telluric absorption features to exploit their infilling (Cendrero-Mateo et 

al., 2019; Cogliati et al., 2019; Julitta et al., 2016). Recently an improvement of the SFM method has 

been developed: The SpecFit method that allows for the retrieval of the full spectral SIF signal in 

ground-based field spectrometer measurements (Cogliati et al., 2019). Retrieval algorithms do not 
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allow the exploitation of the spectral region of telluric water vapor (H2O) between 715nm and 735nm. 

Although it overlaps well with the SIF emission spectrum, rapid fluctuations impair signal retrieval 

(Köhler et al., 2015).  

However, current research highlights the necessity for correction of atmospheric influences due to 

varying air-column in the oxygen bands when retrieving SIF. In particular, reabsorption affects the 

accurate retrieval of SIF severely in the Oxygen-A absorption band around 760 nm and to a lesser 

extent in the Oxygen-B band around 687 nm (Sabater et al., 2018). Atmospheric reabsorption remains 

an issue with the computationally costly SFM and other retrieval approaches based on telluric 

absorption features. If the instrument is positioned in the midst of the atmospheric column more than 

a few meters above canopy, this effect is increasingly significant. (Aasen et al., 2019). An empirical 

correction approach partially addresses the issue but could not successfully demonstrate the retrieval 

of positive SIF-A values (Liu et al., 2019b). An alternative is the use of solar Fraunhofer lines, which are 

in principle unaffected by changes in relative aerosol thickness of the atmospheric column and cloud 

cover. For example, the data driven Singular Vector Decomposition (SVD) method can be configured 

to either exploit telluric oxygen absorption features or the solar Fraunhofer lines (Chang et al., 2020a; 

Guanter et al., 2013). SVD is capable of retrieving far-red SIF from satellite or ground-based field 

spectrometers with spectral resolution around 0.13 nm FWHM (Guanter et al., 2013, 2012; K. Yang et 

al., 2018). The SVD is limited to the accurate, SIF-free forward modeling of up-welling radiance and 

computes SIF as an inverse problem from the residuals. Furthermore, studies have shown reliable SIF 

retrieval solely by exploiting SIF infilling in solar Fraunhofer absorption lines between 757 nm and 771 

nm from satellite data (Frankenberg and Berry, 2018; Sun et al., 2018).  

Here, we propose a novel retrieval of red SIF-B and far-red SIF-A based on the supervised machine 

learning algorithm Partial Least Squares (PLS) multivariate regression. The method developed aims at 

overcoming the shortcomings of the SVD and the SFM in terms of computing time, robustness, 

precisions, evading forward model inversion and without needing to compensate atmospheric 

reabsorption. PLS combines dimensionality reduction and statistical multivariate regression. The 

algorithm origins from quantitative analysis in chemo-metrics and was also applied to other fields of 

research (Biagioni et al., 2011; Biancolillo and Marini, 2018; Dayal and Macgregor, 1997; Wagner et al., 

2018). PLS is widely used for the retrieval of signals in mixture from a large number of variables (Jin 

and Wang, 2019; Schmidtlein et al., 2007; Wiklund, 2007). Further applications of the PLS algorithm 

include the analysis of vegetation with regards to leaf mass, canopy foliar chemicals, morphological 

and functional traits as well as the remote assessment of biodiversity with hyperspectral reflectance 

data (Cavender-Bares et al., 2016; Ma et al., 2019; Serbin et al., 2019; Serbin and Townsend, 2020; 

Singh et al., 2015). PLS regression decomposes the predictor data space into components (latent 

variables). As opposed to the SVD, latent variables are obtained with PLS in an iterative process, which 
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optimizes the components to explain the most covariance between predictor and response in the 

transferred orthogonal space of the singular vectors (Dayal and Macgregor, 1997). Component loading 

and score matrices are computed accordingly. Regression coefficients directly explain the variation in 

the response variable by using the transferred scores. In contrast to SVD-based SIF retrievals PLS does 

not compute the measured up-welling signal and residuals in a forward model. Instead, PLS is a 

supervised machine learning approach which predicts the response variable using a trained model to 

exploit the covariance structures between predicted variable (SIF) and predictor (preprocessed, up-

welling radiance) in the transformed predictor space. 

In this study, we developed a new PLS retrieval method for the retrieval of SIF from up-welling radiance 

and evaluated its performance on a synthetic test dataset and on field measurements collected with 

the FloX instruments deployed over three field sites with differing vegetation targets. For this purpose, 

a dataset of synthetic up-welling radiance including SCOPE-modelled SIF was created. Two 

configurations of the PLS model were evaluated, the first covering the entire spectrum of the FloX 

sensor between 650 nm and 810 nm and the second excluding the telluric oxygen and water 

absorption bands. We further modelled a synthetic sensor with an adjustable Signal to Noise Ratio 

(SNR) to test the robustness of the approach across changing SNR with changing signal intensity. 

Finally, we compared the performance of PLS exploiting solar Fraunhofer lines against the two state-

of-the-art retrieval methods (SFM and SVD) on both synthetic and measured data. The evaluation was 

focused on different aspects of the method: the performance, the speed, and the robustness against 

conditions where the SFM and SVD methods are not applicable.  

3.3 Materials and methods 

First, PLS models were tested for the prediction of red SIF-B around 687 nm and far-red SIF-A around 

760 nm in different configurations using synthetic up-welling radiance data in which we could precisely 

control the spectral SIF contribution. Furthermore, the retrieval error of PLS was assessed against 

SCOPE simulated SIF in a synthetic test dataset in comparison to SFM and SVD. Secondly, we applied 

the optimized PLS models to retrieve SIF-B and SIF-A from up-welling radiance, measured at three 

different sites. The workflow of composing training data, tuning and evaluating the PLS models is 

described below. 

3.3.1 Modelling synthetic data 

We created a dataset of synthetic up-welling radiance spectra, which contained modelled fluorescence 

ranging between 0 and 5 mW m-2 sr-1 nm-1. To do so, we randomly selected 30 measurements of down-

welling radiance from a clear day recorded by each of the three instruments. We used SCOPE to model 

265 different SIF and reflectance spectra. The SCOPE dataset has been obtained through inversion 
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against TOC reflectance collected over grassland (Pacheco-Labrador et al., 2019b). The down-welling 

radiance spectra were then combined with each of the SIF and reflectance spectra using a strong 

permutation, which randomly shuffled and 3-fold oversampled each SIF and reflectance spectra. Thus, 

a total synthetic dataset of 23,850 up-welling radiance spectra (L) at TOC was obtained according to 

Equation 6. Here T̂ is the total atmospheric transmittance (including both direct and diffuse radiation) 

of the entire path-length to the target and back to the sensor, R is the reflectance, E is the down-

welling irradiance, F the fluorescence signal and 𝑇̌ considers the reabsorption of fluorescence for the 

transmittance of the single path-length between target and sensor, specified for wavelength λ and 

view field direction Ω. 

𝐋𝛌, 𝛀 = 𝐓̂𝝀,𝛀 × 𝐑𝛌, 𝛀 × 𝐄𝛌, 𝛀 + 𝐅𝛌, 𝛀 × 𝑻̌𝝀,𝛀  (6) 

The relative fractional depth of solar Fraunhofer lines remains unaffected by atmospheric attenuation 

in spectral regions devoid of telluric absorption features (Frankenberg and Berry, 2018; Guanter et al., 

2012). Thus, atmospheric modelling is greatly simplified if no telluric absorption bands are present. 

The influence of total atmospheric transmittance as well as reabsorption can be neglected if retrieving 

SIF from the fractional infilling of solar Fraunhofer lines in spectral regions with flat telluric absorption. 

In this study we retrieved SIF from both telluric oxygen absorption features (O2-A and O2-B) considering 

atmospheric attenuation and reabsorption, as well as the solar Fraunhofer lines devoid of telluric 

absorption features. We resampled the SCOPE-simulated SIF and reflectance spectra, which were 

initially generated at a resolution of 1 nm. Because they are relatively smooth, linear interpolation was 

used with respect to the FloX Instrument Spectral Response Function of the down-welling radiance 

measurements. 

SIF-B and SIF-A values were extracted from the SCOPE modelled SIF spectra at 687nm and 760nm, 

respectively, and used as response variables for the model training, testing and retrieval benchmark. 

The measured down-welling radiance data already contains atmospheric absorption at sensor height 

together with characteristic spectral response and noise from the respective instrument. This 

measured noise was statistically decreased as the same down-welling radiance measurements were 

repeatedly used to model multiple synthetic up-welling radiances in different combinations with 

SCOPE-modelled SIF and true reflectance. Thus, the following noise assumptions were added to 

account for the actual noise levels found in real-world measurements. First, Noise equivalent delta 

Radiance (NedL) was characterized according to Schaepman and Dangel (2000), using the FloX 

spectrometer configured for 0.3 nm FWHM spectral resolution and 0.1 nm spectral sampling rate 

around 820 SNR. As shown in Equation 7, NedL is computed with respect to wavelength for each pixel 

with the radiometric calibration gain g. The detector was characterized with 110 measurements of a 

stable light source and dark current in digital numbers for an integration time (IT) optimized at 80% of 
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the detector’s dynamic range, with 𝜎2(𝑁) and 𝜎2(𝑁𝐷𝐶)  being the standard deviation of the lamp and 

the dark-current, respectively. 

𝑵𝒆𝒅𝑳(𝝀) =  
√𝝈𝟐(𝑵𝝀) + 𝝈𝟐(𝑵𝑫𝑪,𝝀)

𝑰𝑻
  ̇𝒈(𝝀) 

(7) 

In our case, the noise was considered consistent due to an automatic optimization of the integration 

time (IT) in the FloX, resulting in a steady signal-level around 80% of the detector’s dynamic range. 

Note that this assumption does not hold for devices without automatic optimization of the signal level, 

as the noise scales with changing signal level at the detector.  

To simulate random noise as described in Equation 8, we then applied Monte Carlo simulation using a 

normal distribution N centered at mean zero and standard deviation equal to NedL to propagate 

instrument-characteristic uncertainty for ca. 80% optimized signal exposure at detector level to the 

synthetic dataset. 

𝑵𝒐𝒊𝒔𝒆𝝀,𝛀 = 𝚴(𝟎, 𝒄 ⋅ 𝑵𝒆𝒅𝑳𝝀)𝛀 (8) 

The artificial noise level was controlled with scaling factor c to replicate the actual SNR in real measured 

data. Thus, simulated noise was computed individually and added to each instance in the synthetic 

dataset. Signal to noise ratio (SNR) was calculated as denoted in Equation 9: 

𝑺𝑵𝑹 = 
𝝁𝑳𝝀,𝛀

𝝈𝑵𝒐𝒊𝒔𝒆𝝀,𝛀
 

(9) 

with μL being the mean signal intensity with respect to wavelength and σNoise being the standard 

deviation of the simulated, random noise with respect to wavelength for this detector. Note that zero 

noise was not simulated as the SNR is not defined or infinite in this case. 

Following the approach of Caporaso et al. (2018), we computed the first spectral derivative with 

respect to wavelength as a final pre-treatment. The first spectral derivative expresses the change in 

spectral shape rather than the actual intensities in the spectral continuum. Training the PLS on the first 

spectral derivative ensured that the algorithm exploits relative changes in the up-welling radiance 

instead of absolute intensities. Thus, offsets from absolute intensities were eliminated. We then split 

the synthetic dataset into 60% training and 40% testing datasets by randomized selection. The PLS was 

trained to exploit the covariance in the first spectral derivatives with respect to SIF-B values or SIF-A 

values given from the SCOPE simulation, decomposing the spectral-temporal domain into orthogonal 

scores and loadings. This testing dataset was further used for evaluation of the retrieval error against 

the known SCOPE SIF, where we compared the methods of PLS, SFM and SVD, as described below. We 

additionally compared the performance of PLS and five other machine learning algorithms against the 



 
44 

baseline of a linear regression model and found that PLS was the most promising with respect to 

retrieval error and computing time over 30 repetitions (Section 2.3.2).  

3.3.2 Evaluation of PLS retrieval performance 

Two configurations of the synthetic data simulating the physical instrument were investigated in the 

spectral range of the detector between 650nm and 810nm for model training, cross-validation and 

testing of PLS:  

(1) Including the full, usable spectral range of the FloX between 650nm and 810nm (hereafter referred 

to as PLSfull),  

(2) Excluding the spectral region of telluric absorption bands for O2-B between 684nm and 700nm, for 

H2O between 715nm and 735nm and for O2-A between 759nm and 770nm (hereafter referred to as 

PLS). 

Each of the two response variables, SIF-B and SIF-A, were extracted from the SCOPE-simulated full SIF 

spectrum at 687 nm and 760 nm, respectively, and used in separate regression models.  The models 

were trained using the “pls” package (Mevik and Wehrens, 2007) in R (R Core Team, 2017) facilitating 

the orthogonal scores algorithm. Hereafter we refer to these as the SIF-B model and SIF-A model. The 

SIF-B model can predict only red-SIF values (SIF at 687nm) and the SIF-A model can only predict far-

red SIF values (SIF at 760nm) from the first spectral derivative of the up-welling radiance spectrum. 

Random k-fold stratified cross-validation with four segments was applied during the training process 

for 360 latent vectors ranked according to the explained signal covariance. In a second cross-validation 

step, the models were evaluated in their ability to predict the response variable of the unknown 

synthetic testing dataset. The Root Mean Squared Error of Prediction (RMSEP) was calculated with 

respect to the actual known SCOPE-modelled value according to Equation 10:  

𝑹𝑴𝑺𝑬𝑷 =  √
∑ (𝒙̂𝒊 − 𝒙𝒊)𝟐 
𝒏
𝒊=𝟏

𝒏
 

(10) 

where 𝑥 is the actual known fluorescence value and 𝑥 is the predicted value from the PLS regression 

model for n instances in the testing dataset. The process was repeated 100 times each for different 

configurations of the testing and training data to determine mean and standard deviation goodness-

of-fit metrics. The average RMSEP and standard deviation were then calculated with respect to the 

number of components of prediction in the testing data.  

To investigate the algorithm’s limitations on scaling noise, we assumed an ideal, synthetic detector 

with controllable noise. Using a single down-welling measurement, a training and testing dataset was 

modelled which was practically free of random noise but still included the specific response 
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characteristics of the sensor. Increasing amounts of Monte-Carlo simulated noise were added by 

changing the scaling factor c in Equation 10 stepwise in 100 iterations to simulate detector SNR 

between 10000 and 10 to account for scaling noise with changing signal intensity (see Equation 9). 

RMSEP was reported with respect to simulated SNR.  

The covariance scale was calculated for both of the abovementioned spectral configurations for the 

standardized covariance of the SIF signal with the first spectral derivative of synthetic up-welling 

radiance continuum, i.e., 𝑐𝑜𝑣 (𝐹𝜆,Ω, 𝐿𝜆,Ω
𝑑𝐿

𝑑𝜆
) . Each covariance value was scaled by the standard 

deviation of the total covariance in the respective waveband to normalize the covariance in the 

spectral continuum. Inversely, the covariance scale multiplied with the standardized latent variables 

results in the regular, temporal covariance of the computed components (scores) in the deflated 

spectral continuum. 

3.3.3 Instruments for field measurements 

The FloX monitoring field spectrometer(JB-Hyperspectral Devices, Düsseldorf, Germany) is a fully 

autonomous dual field of view system, which records long term time-series of down-welling and up-

welling radiance computed towards hyperspectral reflectance and SIF (Acebron et al., 2021; Burkart et 

al., 2015b; Dechant et al., 2022; Julitta et al., 2016; Krämer et al., 2021).  

We measured hyperspectral reflectance using three different FloX systems installed in France, 

Germany and Italy (Table 2). The instruments at both the Italian and German sites were installed at 

close distance to canopy. In contrast, the instrument in France was mounted at a 100 m distance from 

the canopy, to evaluate atmospheric reabsorption of the SIF signal with increasing air-column between 

sensor and canopy. 

   

Figure 5: From left to right, setup of the FloX systems a) at TOC over Rumex in Germany, b) at TOC over Alfalfa in Italy and c) 
at 100m distance to canopy over oak forest in France. 



 
46 

Figure 5 shows the setup conditions of the instruments in the field. Data processing and further use of 

the data is described in the next sections. 

Table 2: Description of field sites where FloX measurements were obtained for SIF retrieval testing 

Place GPS 

Coordinates: 

Lat / Lon 

Target Distance 

to canopy 

Dates of clear sky days SNR: red / NIR 

shoulder 

Research Center 

Jülich, Selhausen, 

Germany 

50.87/6.44 Cover crop 

(mainly 

Rumex sp., 

Poa sp.) 

3 m Nov. 5
th

 – 7
th

, 11
th

, 18th, 

24
th

 2020 

396 / 815 

Grossetto, Italy 43.93/5.71 Alfalfa 

(Medicago 

sativa) 

1.5 m April 7
th

, 16
th

, 20
th 

– 

22
nd

, 25
th

 2018 

383 / 796 

Forage 

(Lolium sp.) 

May 25th, June 10th 2018 

Observatoire de 

Haute-Provence 

(OHP), France 

42.83/11.08 Oak forest 

(Quercus 

robur). 

100 m April 1st, 5th-6th, 18th – 

22nd, 24th – 26th, May 

25th 2018 

382 / 794 

 

3.3.4 Evaluation of retrieval methods using simulated and field measurements 

Finally, the SFM and SVD retrievals were compared with PLS retrieval of SIF-B and SIF-A in synthetic 

testing data against known SCOPE modelled SIF values. 

Table 3: Fitting windows and spectral points acquired by the FloX field spectrometer used for the retrieval of SIF-B and SIF-A 
with SFM, PLS, SVD-O2 and SVD-FL. * the full spectral configuration of PLS was tested in synthetic to estimate the loss of 
information when excluding the telluric absorption features under ideal conditions. 

Retrieval method SIF-B SIF-A 

 Fitting window Spectral points  Fitting window Spectral points 

SFM 684-700 nm 96 pixels 750-780 nm 196 pixels 

PLS 651-684 nm, 700-

715 nm, 736-759 

nm, 770-810 nm 

718 pixels 651-684 nm, 700-

715 nm, 736-759 

nm, 770-810 nm 

718 pixels 

PLSfull* 651-810 nm 1010 pixels 651-810 nm 1010 pixels 

SVD-O2 684-700 nm 96 pixels 750-780 nm 196 pixels 

SVD-FL 651-686 nm 202 pixels 745-759 nm 90 pixels 
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Fitting windows used for each retrieval method are shown in Table 3. We used the SFM algorithm 

implemented in the R packages FieldSpectroscopyCC 1  and FieldSpectroscopyDP 2  as part of the 

standardized open source FloX processing. Here, SFM was applied as the standard processing method 

for fluorescence retrieval in the FloX monitoring field spectrometer, after optimizing first guessed SIF 

values based on iFLD retrieval. The SVD was implemented as reported in Guanter et al. (2013) and 

Chang et al. (2020a) to exploit the telluric oxygen absorption bands (SVD-O2) and solar Fraunhofer lines 

(SVD-FL). We calculated RMSEP with respect to the known SCOPE SIF values in each instance. The error 

was investigated with respect to changes in the SCOPE-modelled SIF, respectively. Following the 

approach of Cogliati et al. (2015b), SCOPE simulated SIF and reflectance spectra (Appendix A2) were 

used to assess the retrieval performance of the SFM, SVD-FL and SVD-O2 retrievals with a known "true 

SIF". We then used the three field datasets (Table 2) to retrieve SIF-B and SIF-A with SFM, SVD-FL and 

SVD-O2, respectively. Given that the true SIF signals in the measured data is unknown, the SFM retrieval 

was used as reference for later comparison.  

We trained individual PLS models specifically for each instrument and response variable to retrieve red 

SIF-B at 687nm and far-red SIF-A at 760nm. The optimal number of components for prediction was 

selected with respect to the first minimum in average RMSEP with synthetic testing data simulating 

each instrument. The number of components for SIF-B and SIF-A retrieval were thus individually 

identified for the PLS models. SIF was then retrieved with PLS models trained with noise contribution 

according to in-field conditions, excluding major telluric absorption features, or with SFM, SVD-O2 or 

SVD-FL models, as described in Table 3. To compare the performance of PLS, SVD-O2, SVD-FL retrievals 

from measured observations, we calculated RMSEP as well as the coefficient of determination (R2), 

incident and slope from linear regression with respect to the SFM-retrieved SIF values.  

3.4 Results 

The results of the model training, testing and retrieval validation against SCOPE SIF with synthetic data 

are described in the following section, followed by the retrieval results from field measurements of 

up-welling radiance. 

3.4.1 Model training and testing 

The covariance of the PLS model across the spectrum describes the influence of spectral regions in the 

predictor space which covary with the response variable of the model. In this section we investigate 

the covariance of the two PLS Models for SIF-B and SIF-A response, respectively, and the impact of the 

                                                           
1  Julitta, T. “FieldSpectroscopyCC”. Github, Inc. Accessed April 5, 2024. https://github.com/tommasojulitta/ 
FieldSpectroscopyCC. 
2  Julitta, T. “FieldSpectroscopyDP”. Github, Inc. Accessed April 5, 2024. https://github.com/tommasojulitta/ 
FieldSpectroscopyDP. 
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exclusion of the telluric absorption features in the fitting window. When trained for the data 

configuration including telluric absorption features, the PLS model found high covariance 

predominantly at the O2-A band at 760 nm, with increased covariance also observed in the water vapor 

absorption band between 715 nm and 735 nm and in the O2-B band at 687 nm (Figure 6b). In the model 

configuration excluding atmospheric absorption features, the covariance was predominantly observed 

around 660 nm and a large number of smaller yet pronounced peaks across the remaining spectrum 

(Figure 6c). The fitting window excluding atmospheric absorption bands between 650 nm and 810 nm 

is an almost perfect overlay of the top of atmosphere solar irradiance spectrum (Figure 6a) based on 

satellite data (Brault and Neckel, 1999; Thuillier et al., 2004). As a result, the latter model configuration 

is trained to exploit solar Fraunhofer lines as relevant spectral features for the fluorescence retrieval.  

  

Figure 6: Disk Integrated Solar Irradiance spectrum with Fraunhofer lines at 0.05 nm resolution after Thuillier et al. (2004) 
(black solid line) and measured Diffuse Sky Radiation Irradiance spectrum with telluric absorption features at 0.3 nm resolution 
(grey dashed line) (a). Covariance between SIF and the first spectral derivative of up-welling radiance across the spectrum 
exploited by the PLS algorithm including telluric absorption features (b) and excluding telluric absorption features (c). 

We simulated a synthetic FloX sensor with adjustable SNR between 10000 and 10 to investigate the 

PLS algorithm limitations with respect to scalable noise. Both SIF-B and SIF-A PLS regression models 
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are very sensitive to noise across all components (Figure 7). The propagation of uncertainties increases 

RMSEP directly in proportion to the amount of SNR on a logarithmic scale and becomes increasingly 

unstable below 150 SNR (dotted line). The SIF-A model is slightly more susceptible to very low SNR at 

the NIR shoulder in comparison with the SIF-B model. Furthermore, the worst error is exceeding 0.5 

mW m-2 sr-1 nm-1 in both models and varying largely due to the random noise contribution for very low 

SNR below 150. Thus, retrieval errors beyond SNR 150 cannot be reliably predetermined and is not 

suitable for the fluorescence retrieval. With the SNR of FloX instruments ranging around 390 in the red 

and 800 in the NIR shoulder wavelengths in operational scenarios due to automatic optimization of 

the signal level, we predicted a retrieval error of below 0.1 mW m-2 sr-1 nm-1 in both SIF-B and in SIF-A, 

using synthetic training and testing data. 

  

Figure 7: Root Mean Square Error of Prediction (RMSEP) from testing data of PLS models with response variable SIF-B (red) 
and SIF-A (blue) for simulated spectrometer SNR on logarithmic scale in 100 simulations with scaled Signal to Noise Ratio 
(SNR). SNR 150 is indicated by black dotted line. Operational SNR around 390 in the red and around 800 in the NIR shoulder 
wavelengths are marked with a red dotted line blue dotted line, respectively. 

When including telluric absorption and noise simulated according to field conditions, RMSEP 

significantly varied by model complexity over 100 randomized training and test datasets (Figure 8a). 

Testing error significantly increased when model complexity deviated from the optimal number of 

components. We found an optimum of lowest RMSEP at 134 components for prediction of SIF-A with 

RMSEP around 0.07 mW m-2 sr-1 nm-1 and 245 components of SIF-B and RMSEP around 0.09 mW m-2 

sr-1 nm-1. The standard deviation of the error also increased below and above the optimal number of 

components for prediction. When a low number of components was used, the error of the SIF-B model 

tended to be slightly lower than the error of the SIF-A model. This tendency was inverted as the 

number of components increased and resulted in an overall lower error of the PLS model for SIF-A 

prediction compared with SIF-B prediction.  
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In contrast, when excluding telluric absorption and using noise simulated according to field conditions, 

very little increase in RMSEP was observed with respect to PLSfull (Figure 8b). The error of SIF prediction 

was similar excluding telluric absorption features compared to the previous case which included those 

spectral regions (Figure 8a). The mean RMSEP is minimal with 0.09 mW m-2 sr-1 nm-1 around 136 

components for SIF-A model and 0.11 mW m-2 sr-1 nm-1 for the SIF-B model with 169 components, 

respectively. Furthermore, less complex PLS models performed with less error for SIF-B retrievals than 

for SIF-A retrievals. At higher complexity, the performance of the SIF-A models was again superior 

compared to the SIF-B model. The standard deviation increased slightly more compared to the former 

configuration with increasing number of components for prediction. While the PLS models for SIF 

retrieval showed a slightly enhanced performance when including telluric absorption features (i.e., 

RMSEP with respect to model complexity and standard deviation with respect to randomly permuting 

training and testing), the difference was not significant.  

    

Figure 8: Root Mean Square Error of Prediction (RMSEP) and its standard deviation across 100 PLS model training and 
validation cycles is shown for each of the separate PLS models in predicting the response variable SIF-B (red dots) and SIF-A 
(blue triangles), respectively, with increasing number of components (ncomp). Telluric absorption features are included in (a) 
and excluded in (b).The optimal number of components and associated lowest RMSEP is indicated with dashed lines for the 
SIF-B and the SIF-A model, respectively in red and blue. 
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The retrieval performance of PLS, SFM, SVD-O2 and SVD-O2 was assessed with respect to known SCOPE-

modelled SIF, extracted at 687 nm and 760 nm (Figure 9). SVD-FL exhibited a strong dependence on 

the actual signal intensity, scaling the median RMSE almost proportional to the SCOPE-modelled SIF 

signal intensity. This behavior was not observed with the other retrieval algorithms, which exhibited a 

steady error across the investigated SCOPE SIF value range. In SIF-B exhibited PLS median RMSE very 

close or slightly below median RMSE of SFM (Figure 9a). The median RMSE of SFM was lowest in SIF-

A, while RMSE of SFM and SVD-O2 were very similar (Figure 9b). PLS exhibited a slightly larger error 

with respect to SFM, even if the median value did not exceed 0.1 mW m-2 sr-1 nm-1. 

 

Figure 9: RMSE of the PLS (red), SFM (green), SVD-FL (turquois) and SVD-O2 (purple) with respect to SCOPE simulated SIF for 
SIF-B extracted at 687nm (a) and SIF-A extracted at 760nm (b), with respect to changing SIF intensities in five equally large 
intervals given with [ including boundary and ( excluding boundary marks. Interquartile range is indicated by the expand of 
the boxes in y-direction, the median RMSE by a solid line. Whiskers expand to the last member inside 1.5 x interquartile range 
and outliers are marked with dots. 

3.4.2 Retrieving sun-induced fluorescence from field data 

The previously tested PLS models excluding telluric absorption features were transferred to measured 

data. Typical diurnal cycles out of the entire measured data set are presented in detail for each 

instrument (Figure 10). Retrieval results for the entire set are presented in Figure 11. Finally, PLS, SVD-

O2 and SVD-FL were compared with respect to SFM retrieved SIF across the entire dataset for each 

instrument and results are reported in Figure 12. The differences of the PLS, SVD-O2 and SVD-FL 

retrieval with respect to the SFM were tested and are reported in Table 4. 

3.4.2.1 Diurnal cycles and time series 

Measured up-welling radiance data from three different instruments were processed with SFM, SVD-

O2, SVD-FL and PLS. A representative diurnal cycle was selected for each site to illustrate a typical clear-

sky day for a canopy in different stages of development under non-stressed conditions, and aggregated 

to half-hour intervals for presentation clarity. At the German site, the diurnal pattern of SIF exhibited 

an inverted smile shape for PLS, SVD-O2, SVD-FL and SFM (Figure 10 a,b). This pattern is typical for non-

stressed vegetation. The magnitude of the SIF-B and SIF-A signals were low (< 1 mW m-2 sr-1 nm-1) 
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across all retrieval methods, possibly because measurements were collected towards the end of the 

growing season. SVD-FL overestimated SIF-B with respect to all other methods and underestimated 

SIF-A with respect to all other methods. The standard deviation for SVD-FL across the diurnal course 

was also noticeably higher, compared to all other presented retrieval methods. For SFM and SVD-O2, 

half-hourly means and standard deviations of retrieved SIF-B and SIF-A values were almost 

indistinguishable. SIF values retrieved with PLS also agreed well with both SFM and SVD-O2 in SIF-B and 

SIF-A. At the Italian site, very high values were retrieved for SIF-B and SIF-A during the peak of the 

growing season (Cogliati et al., 2019). Again, the SVD-FL retrieval of SIF-B exhibited significantly higher 

values compared to all other methods (Figure 10 c,d). Standard deviation, and therefore the 

uncertainties around the diurnal trend, were very high for SIF-B and SIF-A retrieved using the SVD-FL. 

SIF-B values retrieved using PLS were slightly above those from SVD-O2 and SFM retrieval. Differences 

between the SFM, the SVD-O2 and PLS were almost indistinguishable in SIF-A, except for a slight 

overestimation of the PLS round midday after 10am UTC until 12am UTC with respect to the other 

methods. 
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Figure 10: Diurnal cycles of red SIF-B, resp. at 687nm (left panel) and far-red SIF-A, resp. at 760nm (right panel) retrieved with 
SVD-O2 (red), SVD-FL (blue), SFM (green) and PLS (purple). PLS models for retrieval have been trained on synthetic up-welling 
radiances data considering noise according to in-field conditions, excluding telluric absorption features. Data was measured 
at TOC in Germany over Rumex on November 6th 2020 (a, b), at TOC over Alfalfa in Italy on April 21st 2018 (c, d) and 100m 
above oak forest canopy in France on April 25th 2018 (e, f). Measurements of one day were aggregated to half-hourly intervals; 
points indicate mean and error bars show standard deviation. 

Lastly, the French site exhibited very low to negative SIF from SFM and SVD-O2 retrievals, with the 

diurnal pattern inverted in SIF-A, compared to SVD-FL and PLS (Figure 10 e,f). At this site, data collected 

by the FloX mounted at 100 meters above the canopy were used without any atmospheric 

compensation for retrieving SIF-B and SIF-A with the SFM, SVD-O2, SVD-FL and PLS. This setup is known 

to cause errors in the SIF retrievals based on telluric absorption bands. In contrast, PLS and SVD-FL 
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both exhibited positive, inverted smile patterns, typical for this kind of vegetation. Still, a difference 

between SVD-FL and PLS was noticeable in both SIF-B and SIF-A. SVD-FL predicted SIF-A values were 

lower and partially negative with a larger standard deviation around the half-hourly mean. 

Consequently, we retrieved only positive SIF-B and SIF-A values with lower noise using PLS. Differences 

between SVD-O2 and SFM were barely noticeable. 

Across the entire time series, very similar values were retrieved using the three retrieval methods SVD-

O2, SFM and PLS at the German site (Figure 11 a,b). Especially SFM and SVD-O2 were always consistent. 

SVD-FL values for both SIF-A and SIF-B were noisier than telluric band retrievals or the PLS retrieval. 

Again, SVD-FL retrieval had a tendency to overestimate SIF-B. Towards the end of the growing season, 

magnitude of SIF was quite low, with midday peaks around 0.5 mw m-2 sr-2 nm-1 in SIF-A. 

At the Italian site, very high values were retrieved in SIF-B and SIF-A across the entire time series over 

both maturing alfalfa and forage canopies (Figure 11 c,d). The error around the diurnal trend was 

slightly higher for SFM and SVD-O2 retrieval compared to PLS, while retrieved values were very similar 

in SIF-A. PLS SIF-B values were slightly above the values of SFM and SVD-O2 but remained well below 

the SVD-FL values. A difference in diurnal shape as well as in magnitude of SIF-A values was observed 

between the forage and alfalfa canopies before and after May 8th (Figure 11 c,d). In SIF-B, the difference 

between the canopies was less pronounced. 

At the French site, both, SIF-B and SIF-A showed mostly negative values across the entire time series 

when retrieved with SFM and SVD-O2 due to atmospheric distortion (Figure 11 e,f). Notably, although 

PLS did not correct for atmospheric impacts, retrieval results were always positive. SVD-FL retrieved 

partially negative values with the seasonal pattern exhibiting a random jump in the second half of April. 

Furthermore, SVD-FL values in SIF-B were significantly higher in comparison with all other retrieval 

methods. The PLS results showed a gradual increase of SIF-B and SIF-A between April 18th and April 

26th, which is in temporal agreement with the greening-up and increase of photosynthetic activity in 

the target canopy. This gradual increase was also present in the SVD-FL SIF-A values, while the diurnal 

pattern was barely distinguishable due to the high noise in the signal. Using the PLS retrieval, diurnal 

pattern in both SIF-B and SIF-A were exhibited with high precision. 
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Figure 11: Clear sky days selected for the retrieval of red SIF-B at 687nm (left panel) and far-red SIF-A at 760nm (right panel) 
with SVD-O2 (red), SVD-FL (blue), SFM (green) and PLS (purple). PLS models for retrieval have been trained on synthetic up-
welling radiances data considering noise according to in-field conditions, excluding telluric absorption features to exploit solar 
Fraunhofer lines. Measurements were obtained at TOC over Rumex in Germany (a, b), at TOC over Alfalfa and Forage in  Italy 
(c, d) and 100m above an oak forest canopy in France (e, f). 

3.4.2.2 Comparison of the result from the different retrieval methods 

The performance of the PLS and SVD-FL for SIF retrieval based on solar Fraunhofer lines, and SVD-O2 

based on telluric oxygen absorption bands, were evaluated against SFM retrieved SIF over 26 clear-sky 

days for three different instruments.  



 
56 

  

Figure 12: Correlation of red SIF-B at 687nm (left panel) and far-red SIF-A at 760nm (right panel) with SVD-O2 (red), SVD-FL 
(blue) and PLS (green) with respect to SFM SIF from field measurements. PLS models were trained on synthetic up-welling 
radiances data considering noise according to in-field conditions, excluding telluric absorption features. Measurements were 
obtained from field sites located at TOC in Germany (a, b), at TOC Italy (c, d) and 100m above canopy France (e, f). 

Similar RMSE values and, thus, difference with respect to SFM was found for PLS for the two 

instruments in Germany and Italy, which were both positioned relatively close to the canopy (Table 4). 

At the same time, SVD-O2 performed with very similar results to SFM in the two sites. This behavior 

was also reflected in the correlation of the SVD-O2 and PLS retrievals with respect to SFM, with very 

high R² values (Figure 12 a, b). The strongest correlation was observed between the telluric oxygen-

line-based SVD-O2 and SFM with R² 0.99 and 0.98 in SIF-B and SIF-A, respectively. The slope and 

intercept described almost a one-to-one conversion from SFM to PLS with very low offset in SIF-B and 

a small multiplicative underestimation in SIF-A. The SVD-FL retrieval exhibited the highest 
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disagreement with SFM (Table 4), poorest correlation and lowest R² with SFM in the German site 

(Figure 12 a, b). A multiplicative overestimation was recognized in SIF-B using SVD-FL retrieval with 

respect to SFM, with slope 1.7 and offset close to zero. On the contrary, a multiplicative 

underestimation with slope around 0.5 and very low offset was exhibited for SVD-FL with respect to 

SFM in SIF-A.  

At the Italian site, PLS exhibited similar absolute but lower relative RMSE in SIF-A with respect to SFM, 

due to the higher absolute signal intensity compared to the German site (Table 4). The correlation with 

the SFM is high in SIF-B and SIF-A, with a small additive offset (Figure 12 c, d). The multiplicative offset 

ranges around one. As with the German site, SVD-O2 exhibited strong agreement with SFM. SVD-O2 

retrievals were highly correlated with SFM, with R² around 0.98 in SIF-B and 0.97 in SIF-A, with slopes 

of 0.99 and offsets below 0.04. In contrast, SVD-FL retrieval in SIF-B and SIF-A exhibited the poorest 

correlation with SFM. The absolute and relative discrepancies were larger in SIF-B and SIF-A with SVD-

FL in comparison to the other methods (Table 4), with intercept and slope deviating strongly from the 

one-to-one conversion (Figure 12 c, d). 

The instrument in France was positioned at 100 m distance to canopy without atmospheric correction 

applied to any of the SIF retrievals. High disagreement of PLS with respect to SFM and SVD-O2 were 

observed in both SIF-B and SIF-A (Table 4). Very high absolute and percentage RMSE was also found 

for SIF values retrieved using SVD-FL with respect to SFM. The performance of PLS and SVD-FL, which 

both exploited solar Fraunhofer lines and remained in principle unaffected by atmospheric distortion, 

differed from the telluric oxygen band based SFM and SVD-O2 in this site. SVD-O2 was again highly 

consistent with SFM with high R² values in SIF-B and SIF-A (Figure 12 d, e). In SIF-B, all retrieval methods 

exhibited regression lines with positive slope, with SVD-O2 and PLS below one and SVD-FL even above 

two. While the offset for SVD-O2 was negligible, SVD-FL exhibited a high offset in SIF-B. A smaller offset 

was recognized in SIF-B using PLS retrieval. Notably, PLS retrieved SIF-A was negatively correlated with 

SFM as a result of the atmospheric influence on the signal for this site. The SVD-FL retrieval exhibited 

a flat, negative slope around -0.07. The offsets in SIF-A for the two methods PLS and SVD-FL were both 

positive and similar (0.16 and 0.2, respectively). 
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Table 4: Root Mean Square Error (RMSE) of PLS retrieval excluding telluric absorption features, SVD O2 in the related 
atmospheric absorption bands and SVD FL in the solar Fraunhofer lines for SIF-B and SIF-A with respect to the SFM retrieved 
SIF, calculated in absolute values and percentage of the signal for the entire time-series.  

 

3.5 Discussion 

In the following two sections, we first discuss the results from modelling and testing with synthetic up-

welling radiance data. We then discuss real world retrieval (i.e., observational data) results from up-

welling radiance measured using FloX monitoring field spectrometers at three field sites. 

3.5.1 Testing against modelled data 

SIF was retrieved using a multivariate PLS model. We showed that the algorithm finds and exploits the 

covariance between SIF and specific spectral features in the first spectral derivative of up-welling 

radiance in the fitting window between 650nm and 810nm. For the spectral configuration including 

telluric absorption, covariance is predominantly observed around the O2-B band, centered around 

687nm, the water absorption feature between 715nm and 735nm, and the O2-A absorption feature 

around 760nm. Solar Fraunhofer lines are of minor contribution across the spectral range in this 

configuration, for they are very narrow. However, for training and testing data excluding telluric 

absorption features we identified significant covariance in the solar Fraunhofer lines across the 

spectral range of the detector. This means that the first derivative of up-welling radiance varies within 

the Fraunhofer lines due to the infilling of the varying SIF contribution. 

Noise in the synthetic training and testing data significantly influenced the retrieval RMSEP in synthetic 

testing data. The retrieval error increased on a logarithmic scale by more than an order of magnitude 

when scaling noise was added to the ideal, noise-free, synthetic detector. In order to represent the 

expected characteristics of the FloX instruments in the field, noise must be included in the training 

data with respect to the automatic optimization at 80% signal of the total dynamic range of the 

detector. In operational scenarios were SNRs around 390 in the red and around 800 in the NIR shoulder 

region reported. SNR depends on the signal level at the detector and therefore changes with respect 

Dataset RMSE  

PLS 

SIF-B 

RMSE  

PLS 

SIF-A 

RMSE 

SVD FL 

SIF-B 

RMSE 

SVD FL 

SIF-A 

RMSE 

SVD O2 

SIF-B 

RMSE 

SVD O2 

SIF-A 

Unit 

German site (TOC) 0.054 0.043 0.227 0.297 0.014 0.024 mW m-2 sr-1 nm-1 

27.5 17.7 79.8 30.2 4.5 2.2 % 

Italian site (TOC) 0.15 0.044 1.166 0.639 0.041 0.16 mW m-2 sr-1 nm-1 

26.9 5.0 117.9 19.9 4.6 1.6 % 

French site (100m 

above canopy) 

0.724 1.572 1.443 0.718 0.067 0.050 mW m-2 sr-1 nm-1 

55.3 366.1 187.7 178.1 4.3 3.4 % 
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to wavelength depending on the spectral shape of the target. In effect, high noise and spectral drift 

affect the depicted shape and, thus, the accurate approximation of the infilling in the small solar 

Fraunhofer lines. Thus, instrumental noise is considered as an important limiting factor to the 

performance of the approach. This will be especially relevant when using the retrieval with different 

ground-based and airborne SIF systems with varying SNR because of their various optical 

configurations. Therefore, we recommend a minimum operational SNR of around 150 in the NIR 

shoulder spectral region for the application of PLS retrieval based on the presented results.  

In addition to the SNR, the spectral resolution (FWHM) of the spectrometer limits the maximum depth 

of the absorption bands which can be effectively exploited for SIF retrieval (Julitta et al., 2016; Pacheco-

Labrador et al., 2019a). The investigated FloX sensors featured a spectral resolution around 0.3nm 

FWHM. Further research should investigate the PLS retrieval with other optical configurations, 

especially with different FWHM and SNR, to reproduce other instruments currently used in the 

community. The challenge of the PLS approach resides in the composition of the synthetic training and 

testing dataset with respect to the optimal level of added noise to model real conditions as closely as 

possible. Many other factors superimpose the fluorescence signal in remote measurements and 

require consideration to provide comparable readings (Damm et al., 2010b). One has to cover enough 

variance of these superimposed factors and instrumental noise for to identify these as components 

that are not correlated with the signal. At the same time, the synthetic data has to cover enough 

variance of fluorescence in the continuum so that the algorithm can correlate the components related 

to the actual signal. However, if the modelled data is very noisy, instances can potentially fall on 

multiple components at the same time and, thus introduce artifacts into the retrieved values. These 

artifacts are rather tricky to identify with common statistical error measures, as they often still 

represent the solution of best fit. In the retrieval of real measured SIF appear artifacts often as singular 

outliers, sudden jumps or shape inversions. However, since we cannot assume continuous trends in 

unknown data, contingency in real measurements must be respected. Thus, we strongly recommend 

to strive for an instrumental solution with optical specifications, accordingly. The performance of the 

algorithm is severely limited by the detector’s capability to accurately measure the depth and infilling 

in relatively small spectral features. This was especially obvious when using the SVD-FL retrieval for 

SIF-B in this study. Other sensors, such as FLORIS and HyPlant, designed for SIF retrieval, exceed FloX-

similar optical requirements (Drusch et al., 2017; Siegmann et al., 2019). 

We investigated the model training and testing performance for two different configurations of the 

synthetic up-welling radiance data with noise to resemble in-field measurements: (1) including the full 

spectrum between 650nm and 810nm, (2) excluding spectral regions of major telluric absorption 

features. In all configurations, we observe for each model an increasing uncertainty of prediction with 

increasing number of components. This is known as overfitting, where the model increasingly tracks 
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noise instead of the real signal. Conversely, the uncertainty of prediction also increases for a very low 

number of components. This is due to the model not tracking enough of the signal at low complexity 

(under-fitting). We identified the optimum where the mean error is lowest and the variation in the 

error is small. As demonstrated in Wagner et al. (2018), the first minimum of absolute RMSEP and 

smallest standard deviation indicate the optimal number of components for prediction for each model. 

No significant difference in mean RMSEP of the two configurations, i.e. either including or excluding 

the spectral regions of major telluric absorption features, was found in the PLS model testing with 

synthetic data. In particular, the variability attributed to changing detector noise or model complexity 

was significantly larger than the variability attributed to spectral configurations. The full spectral 

configuration performed slightly less retrieval error than the configuration excluding telluric 

absorption. Due to the higher complexity of spectral information available from the full spectrum, this 

difference in performance was anticipated. However, an RMSE around 0.1 mW m-2 sr-1 nm-1 for the PLS 

configuration excluding telluric absorption is still very similar to the SFM (Cogliati et al., 2015b). 

Atmospheric absorption is known to distort telluric retrievals of the SIF signal with increasing distance 

over the canopy, which requires correction using complex atmospheric compensation (Aasen et al., 

2019). Therefore, we further investigated the PLS model configuration, which excludes the telluric 

absorption features and only exploits the solar Fraunhofer lines, thereby circumventing atmospheric 

reabsorption (Guanter et al., 2013).  

We emphasize that the PLS regression model is a data driven approach similar in some aspects to SVD, 

nevertheless with some important differences. Both SVD and PLS employ dimensionality reduction. 

SVD uses a forward model and residuals to estimate the SIF signal, whereas PLS utilizes a direct 

regression between SIF and the deflated first spectral derivative of up-welling radiance spectra. SVD 

decomposes the variable space into principal components which are identified and ordered according 

to the amount of variance covered (Mardia et al., 1979). In contrast, PLS determines the response 

variable SIF through the projection of latent variables in such a way that scores and loadings explain as 

much covariance between predictor and response variable as possible (Mevik and Wehrens, 2007). 

Typically, the first latent variables represent highly correlated components of the predictor data space 

with respect to the response variable. However, it is possible that latent variables are equally weighted 

with respect to explained covariance between predictor and response variable (De Jong, 1993). Note 

that neither SVD nor PLS can model variations in the measurements which they were not trained for. 

The PLS algorithm has been specifically optimized for detection of signals in mixture in general and 

relies on a considerate construction of synthetic training and testing data to accurately resemble real 

measurements with modelled SIF contribution in this study.  

We assumed that the modelled synthetic up-welling radiance data can resemble in-field conditions 

and, thus, can be transferred to a SIF retrievals applied to the real measurements (Pacheco-Labrador 
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et al., 2019b). This assumption was further investigated with a comparison of the SFM, SVD-O2, SVD-

FL and PLS retrieval against SCOPE simulated SIF as a reference. The results suggest a strong 

dependency of the SVD-FL retrieval error on the signal levels in both SIF-B and SIF-A. Thus, the spectral 

shape of the SIF signal is affecting this retrieval significantly. The spectral resolution of 0.3nm FWHM 

of the FloX, compared with 0.13nm in the literature is another limiting factor for the SVD-FL retrieval 

(Guanter et al., 2013). SFM was the most stable retrieval in this regard and therefore SFM was 

considered the reference to evaluate the other retrieval methods with field measurements. SVD-O2 

and PLS showed similar errors compared with the SFM. Only very low SIF values were retrieved with 

an increased number of outliers. Note that SVD requires information about the fluorescence shape for 

precise retrieval, which can introduce error if the assumed fluorescence shape is incorrect (Chang et 

al., 2020a). PLS avoids this issue as no forward model is fitted to the up-welling radiance spectrum. 

Instead, the algorithm computes regression coefficients in each waveband across the fitting window 

by rotating the input matrix of spectral derivatives in such a way that covariance with the SIF variable 

is maximized. 

3.5.2 Real world retrieval 

SIF-B and SIF-A were retrieved with a PLS regression model approach configured to exploit solar 

Fraunhofer lines, considering instrumental noise according to in-field conditions from measured data 

from three different sites. Speeding up the measurement can be beneficial, especially for experiments 

aimed at investigating fast dynamics in fluorescence. However, simultaneous (or near-simultaneous) 

down-welling measurements are of great benefit for computing fluorescence yield and light use 

efficiency, even if more time consuming (Damm et al., 2010a; Rascher et al., 2010). The retrieval with 

SFM also required continuous down-welling light measurements, which are included together with 

automatic signal level optimization in each FloX measurement cycle. 

We were able to retrieve positive and meaningful values both in SIF-B and SIF-A from FloX 

measurements with the PLS configuration in all sites. In close distance to canopy, PLS results agreed 

well with the oxygen-band-based retrieval methods SFM and SVD-O2. The most striking differences 

were found between retrievals based on telluric oxygen absorption lines and PLS retrieval at the 100 

m tall tower in France. Complex atmospheric correction methods are required for SFM and SVD-O2 

retrievals to achieve meaningful results with increasing distance to canopy (Sabater et al., 2018). With 

no atmospheric correction in place, SFM and SVD-O2, both based on telluric oxygen absorption, 

retrieved negative SIF from the French site and were therefore unusable for further analysis. The 

German and Italian setups were both in relatively close proximity to their target canopies, and both 

sites exhibited similar agreement across PLS, SVD-O2 and SFM. In particular, SVD-O2 and SFM based on 

telluric absorption performed equally well with almost identical results. PLS slightly overestimated SIF 
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with respect to SVD-O2 and SFM in the Italian site but exhibited very good agreement in the German 

site. Similar tendencies were observed comparing the retrieval methods against SCOPE simulated SIF 

in synthetic data. By exclusively exploiting solar Fraunhofer lines, the PLS retrieval is in principle 

unaffected by atmospheric distortion and clouds (Sun et al., 2018). Furthermore, by using large fitting 

windows and exploiting multiple solar Fraunhofer lines between 650nm and 810nm, retrieval noise is 

kept very low and good robustness against atmospheric reabsorption is achieved with PLS. At the 

French site PLS also captured a gradual increase in SIF-B and SIF-A over time, which was related to the 

onset of photosynthesis during the greening-up of the forest canopy. This increase in fluorescence was 

also observed through SVD-FL but was not sufficiently resolved on a diurnal scale due to the high 

retrieval noise.  

Overall, SVD-FL results were much noisier than PLS, SFM or SVD-O2. This could be due to instrumental 

limitations, mainly FWHM, and the small fitting window of the algorithm. The performance of the SVD 

algorithm also relies on accurate fits of a SIF-free model with measured up-welling radiance data (Du 

et al., 2018). Previous studies indicate that the exploitation of solar Fraunhofer lines using SVD was 

superior with a spectral resolution around 0.13nm FWHM (Chang et al., 2020a; Guanter et al., 2013). 

FWHM and SNR affect the accurate exploitation of the SIF infilling and thus limiting retrieval accuracy 

further (Frankenberg and Berry, 2018; L. Liu et al., 2015). The FloX is commonly configured with 0.3 

FWHM. Evidently, Frankenberg and Berry (2018) show the influence of spectral resolution affecting 

the apparent depth of the measured solar Fraunhofer lines in the same spectral window, which is also 

used for the SVD-FL retrieval in this work. As FWHM increases, the difficulty of accurately measuring 

the line depth increases, and the effect of atmospheric scattering on the infilling becomes more 

noticeable. When applied to the telluric oxygen absorption features, SVD exhibits similar retrieval 

noise as SFM, but loses the benefit of independence from atmospheric conditions. When exploiting 

narrow solar Fraunhofer lines, the SVD-FL is considered more sensitive to instrument noise, spectral 

resolution or drift due to the low SIF signal and narrow spectral features from field measurements 

(Chang et al., 2020a). Scattering and hotspot effects related to canopy structure and BRDF depending 

on the angle of incident light can substantially influence up-welling radiance and retrieved SIF 

(Pacheco-Labrador et al., 2016). Furthermore, SIF signals are known to be angle-dependent and 

directed in complex canopies (Rautiainen et al., 2018; Van Wittenberghe et al., 2015). Thus it is 

necessary to clarify that only at-sensor fluorescence can be directly measured without any inference 

of target canopy structure or scattering in the atmospheric path (Damm et al., 2014). Bearing this 

consideration in mind, a slight disagreement in absolute values between the different retrieval 

methods is expected due to the different physical principles on which they are based. Still, the diurnal 

shape of all retrievals should still produce similar patterns, unless the physical principle is obstructed 

by independent factors, e.g., atmospheric distortion. PLS outperformed SVD-FL in terms of retrieval 
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noise and precision based on the presented results. Hence, the PLS algorithm appears more robust and 

suitable for SIF-retrieval based on solar Fraunhofer lines with a spectrometer of lower resolution 

(around 0.3nm FWHM), as it exploits many more solar Fraunhofer lines in a wider fitting window. 

Since PLS is a data driven approach, it requires training. A limiting factor to the retrieval of real-world 

data is the composition of the synthetic data for the PLS model training process. The employed SCOPE 

modelled vegetation data is based on actual in-field measurements over a grassland to allow for 

realistic variances of the signal covered in the synthetic dataset. We are aware that the vegetation 

spectra modelled with SCOPE do not represent all possible variations in canopy characteristics. 

Therefore, uncertainties in SIF retrieval can vary with other canopy characteristics, especially for 

complex structures. We assumed in this work that the modelled spectral fluorescence based on 

grassland can be extrapolated and transferred to other canopies. This assumption is based on the 

findings that the presented PLS algorithm exploits covariance between the pure SIF signal and first 

spectral derivative of up-welling radiance in the solar Fraunhofer lines. Furthermore, the assumption 

is supported by the results from comparing SFM, SVD-O2, SVD-FL and PLS against SCOPE simulated SIF, 

following the approach of Cogliati et al. (2015b) and achieving comparable retrieval errors. Finally, our 

retrieval results of PLS were similar to SVD-O2 and SFM in TOC settings. However, we anticipate 

increased uncertainty of prediction in structurally complex canopies. To address this limitation and 

account for structurally more complex canopies, a strong permutation of SCOPE modelled SIF and 

reflectance spectra is used in the training of the PLS models. Thus, each simulated SIF spectrum was 

combined with each simulated reflectance spectrum. This strong permutation by oversampling 

increases the distinct instances in the training data and provided larger variation of canopy 

characteristics. Thus, the PLS model becomes more capable of disentangling SIF from more diverse 

measured data, and improves the transferability of the PLS retrieval. At the same time, ambivalence 

and retrieval noise is reduced. However, this trick does not account for all variability in the spectral 

continuum of SIF and reflectance which can be affected by multiple factors in natural canopies in the 

field (Verrelst et al., 2016a, 2015). A thorough investigation optimizing a SCOPE dataset, specifically 

modelled for the training of statistical retrievals, could improve the robustness and transferability of 

machine-learning-algorithm-based retrieval approaches into specific canopy characteristics. However, 

this was beyond the scope of this study. 

3.6 Conclusion 

PLS models trained with SCOPE modelled SIF and reflectance transfer well to real measurements and 

retrieve values in agreement with other mechanistic (SFM) and statistical (SVD) telluric retrieval 

methods in TOC settings. As PLS is a supervised approach, its main limitations are identified in the 

model training and testing with SCOPE modelled up-welling radiance data of known SIF contribution. 
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Further research is recommended to improve the performance of the PLS model in various and more 

complex canopies. We partially addressed this issue with a robust permutation approach, which 

oversamples the SCOPE modelled data to increase the number of possible SIF and canopy reflectance 

combinations. In addition, PLS models are sensitive to instrumental noise. The retrieval error increases 

with poorer SNR in a logarithmic relationship. For the retrieval of SIF in very noisy data, for example 

due to low-light conditions in which automatic signal optimization of the FloX is not possible, the PLS 

method is not very well suited. Furthermore, PLS and SVD retrieval methods require measurements of 

down-welling light for the model training process. Thus, it is recommended to acquire the 

measurements of down-welling light preferably with a white panel through the up-welling channel to 

accurately include the instrument’s optical response. The instrumental configuration with a spectral 

resolution of 0.3nm FWHM provides a further limitation to the exploitation of the solar Fraunhofer 

lines with the FloX, especially recognized in the SVD-FL retrieval in combination with narrow fitting 

windows. In this context, the PLS approach was found more robust. For the first time, we have been 

able to retrieve positive and meaningful SIF-B and SIF-A values without any atmospheric correction 

from measured up-welling radiances on a 100m tower above ground, regardless of the reabsorption 

of signal in the atmospheric column, using PLS. The exploitation of solar Fraunhofer lines for SIF 

retrieval is very promising for being in principle independent of changing atmospheric disturbances. 

Since the solar Fraunhofer lines are distributed across the entire spectrum of SIF, more spectral 

information is available for the detection of SIF using the PLS regression. This additional spectral 

information reduces retrieval noise and could open a way to unveil the full spectral shape of 

fluorescence using PLS in the future. We consider the PLS regression model for SIF retrieval from solar 

Fraunhofer lines particularly promising under conditions for which retrieval methods based on telluric 

oxygen absorption require complex and computationally costly data correction. In consequence, PLS 

does not account for atmospheric correction but simply bypasses atmospheric reabsorption. Future 

research is encouraged to investigate also the performance of SIF retrievals under diffuse light 

conditions. On an ordinary consumer-grade laptop, PLS models were computed for an entire diurnal 

dataset within 6.62 seconds. Compared to the SFM method, this is 37.25 times faster. This is also 

superior to five other machine learning algorithms tested with and without dimensionality reduction 

in advance of this study. 

In summary, we investigated the potential of PLS as an approach for SIF retrieval in modelled data and 

real measurements from autonomous field spectrometers with promising results. Our results suggest 

that PLS is superior, compared with other machine learning algorithms, in retrieving SIF signals in the 

mixture of hyperspectral, up-welling radiance. The fast computation time makes the approach 

especially appealing for fast processing to overview large datasets for which complex atmospheric 

correction was required otherwise and for future application of PLS with imaging high-resolution 
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hyperspectral data. Furthermore, PLS exhibits very high precision compared with solar Fraunhofer line-

based SVD. At the same time, PLS based on exploiting the infilling of solar Fraunhofer lines is highly 

robust against atmospheric reabsorption, compared with telluric oxygen-based methods.  
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3.8 Appendix 1 - Assessment of machine learning for hyperspectral SIF retrieval 

Machine learning algorithms (MLA) are tools from data science, which provide methods to extract 

useful information from a large number of input variables. Emulators and toolboxes have been 

developed to aid model inversion and retrieval of biophysical parameters from RTM using a variety of 

MLA (Berger et al., 2020; Rivera-Caicedo et al., 2014; Rivera et al., 2015; Verrelst et al., 2012). Typically, 

supervised MLA models are trained to predict the variable Y in the predictor space of X. Redundant 

information in a high-dimensional, hyperspectral predictor spaces are identified and eliminated using 

dimensionality reduction in a pre-processing step (Verrelst et al., 2017). Principal component analysis 

(PCA) decomposes the hyperspectral predictor space into components in such a way, that most of the 

variance in the data is explained by the first few components.  

Six MLA and a linear regression model with and without applying PCA during the preprocessing were 

tested. Neural Network (NN), Partial Least Squares regression (PLS), Gaussian Process Regression 

(GPR), Elastic Net regression (ENet), Conditional Inference Random forest (CForest), Support Vector 

Machine (SVM) and a Linear Model (LM) were examined. Training and testing data were composed in 

the same fashion as presented in Study 2 computing the first spectral derivative as preprocessing. 

Likewise, 60% training data and 40% testing data were split with a total number of 718 variables in the 

predictor space. PCA was performed in the preprocessing and the principal components were tested 

for significance with the randomization procedure (Dray, 2008). For that purpose, axis in the training 

data were randomized in 900 repetitions. According to Equation 11 the cumulative proportion of 

variance explained σcum[%] 
2  for n components was computed from the standard deviation 𝜎2 of each 

component i, with respect to the total variance of all m=718 components, expressed by the Eigenvalues 

of the rotated matrix using PCA: 

http://www.cost.eu/
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(11). 

We identified no components, which were significant on a 95% confidence interval. Thus, 95% 

explained variance was statistically not missing any important information from the original dataset. 

In consequence, the number of reduced dimensions from the PCA was selected to explain 95% of the 

variance in the total predictor space, which resulted in using the first five components (see Figure 13).  

 

Figure 13: Cumulative proportion of variance of the total predictor space explained in the training data by the first 30 principal 
components, computed by PCA in the preprocessing of training the different MLAs. 

A k-fold, random, segmented (k=4) cross-validation approach with four repeats was used during the 

training. Training and testing procedures were repeated 30 times for each algorithm in SIF-A and SIF-

B, respectively. The RMSE was computed in each run using k-fold cross-validation for the training 

fraction of the dataset during the training and for the predicted SIF values using the testing fraction of 

the dataset during the testing with respect the actual SCOPE SIF.  

The mean errors and standard deviation are reported for each MLA with and without dimensionality 

reduction in Figure 14. The associated mean computing time and standard deviation for one training 

are reported in Figure 15. Our results suggest that PLS exhibited similar prediction errors to GPR, ENet 

or SVM without applying PCA during the preprocessing. The MLAs exhibited a significantly increased 

training and testing error in SIF retrieval when combined with PCA. Only in terms of computing time 

benefit CForest, Enet and SVM from dimensionality reduction slightly. On the contrary, GPR, NN and 

LM need even more time to converge. PLS outperformed all other MLA significantly in terms of 

computing time.  
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Figure 14: Error of SIF prediction from six different MLA and linear regression with and without using PCA in the preprocessing 
with respect to SCOPE simulated SIF. RMSE was calculated separately for training and testing in 30 repetitions, with SIF-A or 
SIF-B as response variable, respectively. Whiskers show standard deviation. 

 

 

Figure 15: Computing time in seconds from six different MLA and linear regression with and without using PCA in the 
preprocessing. Mean runtime was calculated separately for training with SIF-A or SIF-B as response variable, respectively. 
Whiskers show standard deviation. 

The SIF signal contributes only about 2% to the variance of the total spectral continuum of up-welling 

light. However, PCA compresses the components in such a way, to maximize the total variance of the 

predictor space within the first components. However, due to this compression information is lost, 

which has only a small contribution to the continuum. However, the exact information loss is 

unpredictable. Thus, PCA limits the MLAs to find and exploit the fluorescence contribution, which is 

very small and likely to be lost due to the compression. Note that differences in implementation of the 

MLAs between different environments (e.g. MATLAB, R, Python.) should also be considered when 

comparing the results with different studies. Given the high dimensionality of the hyperspectral data 
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with 718 bands and the computed PCA explaining 95% of its variance within the first five components, 

we consider the results meaningful. In contrast, PLS exploits covariance between the predicted 

parameter (SIF in this case) and the predictor space (entity of first spectral derivatives of up-welling 

radiance in this case) by reducing the number of variables into correlated orthogonal scores. The PLS 

algorithm has been optimized to find and to obtain quantitative information, which contribute only as 

small covariance in hyperspectral VIS/NIR spectroscopy (Biancolillo and Marini, 2018; Jiang et al., 2020; 

Jin and Wang, 2019). PLS outperformed all other tested MLAs with and without PCA preprocessing in 

this investigation. The most critical drawback of PCA was losing information of small covariance 

unpredictably when compressing the data into principal components and renders PCA unsuitable for 

SIF retrieval approaches. In contrast, PLS is by design adequate for finding and exploiting small signals 

in mixture and therefor considered suitable for the hyperspectral retrieval of SIF. 

3.9 Appendix 2 – SCOPE simulated data 

Following the approach of Cogliati et al. (2015b), SCOPE simulated SIF and reflectance spectra were 

used to assess the retrieval performance of the SFM, SVD-FL and SVD-O2 retrievals. The simulated 

spectra were used to compute up-welling radiance which resembles the optical configuration of the 

FloX. The range of SIF and reflectance is given for 212 different instances (Figure 16). 

 

Figure 16: Range of SCOPE simulated reflectance (a) and SIF (b) of the 212 different cases used for the composition of the 
combined training and testing datasets. 
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4.1 Abstract 

The global outbreak of the Corona pandemic has led to a significant reduction of traffic and traffic-

related urban air pollution. One important pollutant in this context is NO2. Sudden change in NO2 

emissions related to reduction of urban traffic due to infection protection measures can be detected 

in Düsseldorf, Germany with continuous measurements of down-welling light with a RoX automated 

field-spectrometer. In comparison to a nearby reference instrument, a waveband around 590 nm was 

identified as significant for the retrieval in the VIS-NIR spectral range. A decision tree based on principal 

components which were decomposed from down-welling radiance spectra has been the most robust 

approach to retrieved NO2 values. Better differentiation of the NO2 value-range is achieved with a 

partial least square regression model. The results suggest that traffic-related changes of NOx pollution 

in urban air can be detected through continuous down-welling radiance measurements with 

inexpensive automated field-spectrometer systems. 

4.2 Introduction 

Air quality is critical for the well-being and health of humans living in urban areas. Nitrous oxides (NOx) 

are produced as anthropogenic pollutant and are found in elevated concentrations in densely 

populated, urban areas. Recent studies suggest that long-term exposure to elevated NO2 has an 

https://doi.org/10.1016/j.scitotenv.2020.141286
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impact on fatalities due to the coronavirus, especially in areas with low wind speed and low airmass 

exchange (Coccia, 2020a; Frontera et al., 2020; Ogen, 2020). In particular, stagnation of air pollutants 

due to the typical climatology of urban areas in the backcountry supports the spread of viral infective 

agents (Coccia, 2020b). In recent years, efforts have been made to reduce NOx emission of combustion 

engines as a consequence of the legal obligations and stricter regulations from governments in 

response to the Volkswagen emission scandal in 2015. A network of permanent monitoring stations 

has been established in Germany under state-authority to monitor complete levels of typical air 

pollutants in urban hotspots. These monitoring efforts provide comprehensive data of NO, NO2 and 

other typical pollutants at various locations.  

As a result of the COVID-19 outbreak in Wuhan, China, and the subsequent global pandemic, most 

affected countries have responded with varying shut-down measures. In effect have been social 

interactions reduced, economic activities largely halted and personal mobility discouraged. The 

resulting reduction of anthropogenic activities has also affected the emission of urban air pollutants 

noticeably (Muhammad et al., 2020; Wang et al., 2020). A better approach to monitoring and 

regulating urban air pollutants may very well be part of an integral strategy to address the current 

coronavirus pandemic and reduce environmental risk factors also for future diseases similar to the 

COVID-19 infection (Coccia, 2020b). 

Geostatistical data fusion approaches are promising in combining real-time data from high-density 

low-cost sensor-networks with high-grade stationary instruments for improved observation of urban 

air quality (Schneider et al., 2017). Portable quantum cascade laser spectrometers have been shown 

to accurately record NO2 in ambient air (Hundt et al., 2018). A waveband in the infrared is shown 

optimal for NO2 retrieval (X. He et al., 2019). However, previous studies indicate typical absorption 

cross-sections for opto-electronic detection of the urban air pollutant also in the VIS-NIR range (Zheng 

et al., 2018). Furthermore, high-grade imaging UV-VIS sensors and UV-VIS point-spectrometers have 

measured columnar amounts of NO2 in the atmosphere (Park et al., 2019). Thus, it may be possible to 

consider also inexpensive VIS-NIR spectrometer systems as suitable devices for detecting NO2 

pollution in urban air through the continuous monitoring of downwelling light passing through the 

earth’s atmosphere. Hence, inexpensive VIS-NIR field-spectrometers could support the deployment of 

widespread monitoring networks of urban air pollution. We observe significant changes in NO2 

concentration following the reduction of traffic as an immediate effect of the coronavirus pandemic. 

This case study explains how continuous measurements of down-welling light with inexpensive field-

spectrometers can be exploited to retrieve concentration of urban NOx pollution for the purpose of 

calibration and validation. The presented analysis showed promising results in that sense with 

significant correlation and an accuracy of up to 87.3% between retrieved and measured NO2 

concentration across three different retrieval models. 
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4.3 Data and Methods 

In the following details are provided on the study area, ancillary data, measures of this study, data 

analyses and procedures. 

4.3.1 Study area, data and sources 

This study was conducted in close proximity to Südring, a 6-lane street in the south of central 

Düsseldorf (N51.201745, E6.761245). 

Continuous long-term measurements of urban air quality are available as open data from the State 

Department for Nature, Environment and Consumer Protection North-Rhine Westphalia (LANUV 

NRW3). NO2 levels were extracted from the nearest automated measuring station. Data from the 

station DDCS, Düsseldorf, Corneliusstraße is available for the time period of interest (Figure 17). 

 

Figure 17: Time-series of continuous NO2 measurements under the authority of LANUV NRW at Düsseldorf Corneliusstr. 
(DDCS). The vertical line highlights a significant drop in values after March 19th 2020. 

 

4.3.2 Measurements of the study 

Automated long-term measurements of down-welling light were performed with a RoX monitoring 

field spectrometer system by JB-Hyperspectral Devices, Düsseldorf, Germany (Figure 18). The solar-

powered instrument was installed for that purpose on a rooftop at the study site. 

                                                           
3 “Einzelwerte kontinuierlicher Messungen “. LANUV NRW. Accessed April 5, 2024. https://www.lanuv.nrw.de/ 
umwelt/luft/immissionen/berichte-und-trends/einzelwerte-kontinuierlicher-messungen. 
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Figure 18: Instrumental Setup. Solar powered, urban installation of autonomous, monitoring field spectrometer RoX – (a). 
Example spectra of calibrated down-welling radiance spectrum measured with this device – (b). 

The data recorded covers the period between December 1st, 2019 and March 29th, 2020. The 

hyperspectral data was processed from raw digital numbers to calibrated radiances using the 

FieldSpectroscopyDP4 and FieldSpectroscopyCC5 packages in R (R Core Team, 2017). 

4.3.3 Data analyses and procedure 

Overall, three statistical models were selected for the retrieval of NO2 concentration levels from 

hyperspectral radiance data: an unsupervised classification model, a decision tree model and partial 

least squares regression model. These methodologies are in the named order increasing in complexity 

and are capable of retrieving better NO2 differentiation from the optical measurements. However, 

with increasing complexity require those methods more information from the underlying data and 

thus are more sensitive to propagation of uncertainty from the hyperspectral measurements. The 

analyses of the hyperspectral data were performed in R (R Core Team, 2017). In particular the packages 

tidyverse (Wickham et al., 2019), mdatools (Kucheryavskiy, 2020), rpart (Therneau and Atkinson, 2019) 

and partykit (Hothorn et al., 2006) were used. Initially, the hyperspectral data was aggregated by a 

one-hour interval and the mean of each waveband calculated for each interval step to match the hourly 

NO2 measurements.  

A binary class was introduced, labeled before Corona (bC) and after Corona (aC). A noticeable drop in 

the NO2 time-series was identified as breakpoint for the separation of this binary class (Figure 1). This 

breakpoint has been validated as one day after the TV-oration of German Chancellor Angela Merkel 

on the evening of March 18th, 2020, in which she announced contact prohibition and advanced 

protective measures in response to the coronavirus pandemic. Both, the hyperspectral radiance time 

                                                           
4  Julitta, T. “FieldSpectroscopyDP”. Github, Inc. Accessed April 5, 2024. https://github.com/tommasojulitta/ 
FieldSpectroscopyDP. 
5  Julitta, T. “FieldSpectroscopyCC”. Github, Inc. Accessed April 5, 2024. https://github.com/tommasojulitta/ 
FieldSpectroscopyCC. 
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series and NO2 time-series were combined in a large dataset. As suggested in Grolemund and 

Wickham(2016), the data was transformed in an effort to improve accessibility. A spectral window 

between 550nm and 680nm (Figure 18) was selected for further analysis in agreement with the 

spectral range of the known NOx absorption cross-section (Zheng et al., 2018) and to excluded 

unrelated spectral regions as potential source of error. A supervised classification model was built with 

a conditional inference tree, using the hyperspectral radiance data to predict the binary class response. 

The model performance was recorded and a confusion matrix created. The positive predictive values 

of the model were reported separately for each group and the entire set. 

Furthermore, the down-welling radiance data was decomposed into principal components (PCs). 

These principal components served as the predicting variables for an unsupervised decision tree model 

for the regression with the measured NO2 values. A penalty was introduced to limit tree complexity 

and avoid over-fitting. With R² increasing by at least 0.01 per additional level can the model 

discriminated 10 discrete NO2 levels. Tree structure and most significant variable are reported in 

Figure 19. The model was built of nine PCs at nine nodes, with PC2 as most significant for the 

differentiation of NO2, which is reflected by its position at the top of the decision tree.  

 

Figure 19: Tree structure of the decision tree model for the prediction of NO2 built from principal components computed from 
hyperspectral down-welling radiance measurements. Nodes show principal components and their threshold value for the 
model. The leaves show the distinguishable NO2 values and their proportional percentage of occurrence, which can be still 
differentiated on the assumption that R² increases by at least 0.01 with each step of increasing tree-complexity. 

The decision tree model has been used to predict NO2 levels from the actual measurements. 

The predicted NO2 values were compared with the true measured values and confidence of 

determination (R²) was calculated for a linear regression. In addition, intercept and slope for the linear 
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fit and the p-value for significance of correlation are reported. Furthermore, the F-test for ratio of 

variance and its p-value for significance are reported. 

Moreover, partial least square regression was employed with the down-welling radiance data to 

predict actual NO2 values with a supervised model. This model is built on the assumption of a linear 

regression between NO2 concentration and a covariance in the mixture of signals in the down-welling 

light measurements. Based on this correlation between NO2 levels and down-welling light 

measurements was the variable space of the calibration matrix decomposed into optimized latent 

variables (components) in an iterative process. The resulting components of the spectral radiance data 

were then utilized in a model to predict the actual NO2 levels from the down-welling light 

measurements with the instruments. The full dataset was split even into training and testing data for 

model training and cross-validation. The Root Means Square Error (RMSE) was calculated as following: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑥𝑖̂ − 𝑥𝑖)

2𝑛
𝑖=1       (12) 

with x  ̂being the actual measured NO2 value and x being the predicted NO2 value was reported as in 

Equation 12 for increasing number of components, and thereby an increasing model complexity. For 

prediction, the number of components with lowest RMSE in the cross-validation was selected. The 

absolute regression coefficients were reported for this model complexity with respect to wavelength. 

Finally, the predicted NO2 values were compared with the actual measurements across the entire 

dataset through linear regression, reporting R² and RMSE of prediction. 

4.4 Results and Discussion 

Hyperspectral down-welling radiance time-series were exploited to retrieve NO2 from urban sources. 

The results from three different retrieval approaches were compared to actual measurements of the 

urban monitoring. Results are presented according to the previously described methodology. 

The inter-quartile ranges (IQR) of NO2 values of the group before the Corona (bC) is above the one of 

group after the Coronavirus (aC), both IQR do not overlap. Both groups, bC and aC are therefore 

significantly different (Figure 20). On the weekend after the announcement of German Chancellor 

Merkel, on March 21st and 22nd, were the lowest daily maximum values recognized in the entire NO2 

series (Figure 17). These findings suggest reduced NO2 emissions in response to the official 

recommendation for people to stay home.  
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Figure 20: Panel (a) shows boxplot with two groups of NO2 values, before Corona (bC) in green and after Corona (aC) in red. 
Panel (b) shows the conditional inference tree for the classification of nominal NO2 levels from hyperspectral down-welling 
measurements. 

Further, a conditional inference tree based on hyperspectral down-welling radiances suggested a 

waveband around 590.56nm as most significant for the classification of bC and aC within a 99.9% 

confidence interval. The absorption cross-section of both NO2 and NO3 presented in Zheng et al. 

(2018) overlap with this waveband around 590nm. Hence, co-occurrence of NO2 and NO3 is assumed 

on the basis of traffic-related emission sources. The model classified the NO2 correctly from down-

welling light in 91.9% of the bC cases and in 73.3% of the aC cases. Overall, 87.3% of the cases are 

distinguished correctly, based on hyperspectral down-welling radiance data (Table 5). 

Table 5: Confusion matrix for prediction of nominal NO2 levels after Coronavirus (aC) and before Coronavirus (bC) with the 
conditional inference tree. The percentage of true positive classification is given per class and per total. 

 aC bC positive predictive value 

aC 22 8 73.3 % 

bC 8 88 91.6 % 

total 30 96 87.3 % 

 

The decision tree model has been employed to correlate NO2 values with combinations of PCs, derived 

from continuous downwelling light measurements. Figure 21 illustrates the regression between 

predicted and actual measured NO2 values. The F-test indicates a significant difference within a 99.9% 

confidence interval between the decision tree model and an intercept-only model for the prediction 

of NO2 (Table 6). Therefore, it can be concluded that the specified decision tree model describes the 

measured data better than a linear model with no predictors. 
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Figure 21: Measure and predicted NO2 values from the decision tree model. The line represents the function of the linear 
regression between measured and predicted values. 

Hence, the decision tree model can reconstruct absolute NO2 values with R² = 0.67 from hyperspectral 

data, showing a significant linear correlation within a 99.9% confidence interval (Table 6). Slope and 

intercept indicate furthermore a one-to-one relationship between measured and predicted NO2. 

Table 6: Test statistics of the regression and F-test performed on measured and predicted NO2 data with the decision tree 
model based on principal components of hyperspectral down-welling radiance data. 

Statistic Test value 

F-test 253.3 

F-test p-value <2x10-16 

Intercept of linear regression 0 

Slope of linear regression 1 

R² 0.67 

Correlation p-value <2.2x10-16 

 

Partial least squares regression was applied, relating NO2 to downwelling radiance measurements, and 

the performance reported in Figure 22. During the model calibration decreases the error of prediction 

with increasing model complexity, reaching an almost perfect fit of the training data. However, this is 

a typical case of overfitting as the error of prediction increases rapidly with increasing model 

complexity during the cross-validation. The optimal number of components for prediction with 

minimal error in the cross-validation process is at 10 components. The regression coefficients are 

plotted in absolute values to improve readability. These coefficients can also be negative as their sign 

arbitrarily depends on the orthogonal loadings. The highest regression coefficient is computed for a 

waveband around 590nm and deemed the most influential for the prediction of NO2. The 10 

components model predicts measured NO2 with R² = 0.45 and RMSE = 14.22 µg/m³ with respect to 

the actual measured values. 
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Figure 22: Root Mean Square Error (RMSE) of calibration (blue) and cross-validation (red) with respect to number of 
components used – (a). Absolute regression coefficients of the 10 components model with respect to wavelength – (b). 
Benchmarking prediction of NO2 values with the 10-components model – (c). 

Best accuracy of the three statistical models tested for the retrieval of NO2 was achieved with the 

classification through a conditional inference tree. The presented classification approach, on the other 

hand, is limited due to the repeated temporal occurrence of similar values within the outliers in each 

group. This overlap is especially noticeable for the group aC, while the group bC can be distinguished 

through a unique value-range. Therefore, misclassification of spectra that would actually fall into aC is 

more likely. This, in turn, is directly reflected in the ambiguity of the conditional classification. The 

positive predictive value for bC is significantly higher in comparison to aC. To reduce classification bias 

by cooccurrence with other trends in the hyperspectral data the classification should be carried out 

with an extended time-series, comparing similar episodes in subsequent years. Unfortunately, due to 

the limited timeframe of field spectrometer data available in this instance, this has not been possible. 

For the complexity of changes in the atmospheric transfer across the entire spectral range statistical 

de-trending methods were considered unsuitable. The unsupervised regression model presented 

remains unaffected by those limitation. In contrast to comparing classes split at a specific point in time, 

the unsupervised model aims to directly differentiate levels in the NO2 value-range. Thus, robustness 

of the model benefits from multiple temporal occurrences of the same or similar NO2 values. The 

presented unsupervised regression model shows the highest R² of all three investigated approaches 

but remains rather crude in value-resolution as only 10 levels of NO2 values can be effectively 

differentiated from hyperspectral PCs.  

In comparison, the presented supervised regression is more capable of reproducing the actual value-

range in NO2 but shows a lower R² value. A cross validation process in the supervised approach is 

testing the model’s robustness with previously unknown data from repeated random segments and 
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minimizes over-fitting. However, the algorithm is highly sensitive to noise in the hyperspectral radiance 

data which is also reflected in the model’s spectral regression coefficients. Moreover, a waveband 

around 590nm was recognized as the most influential in the supervised model. This outcome aligns 

with the previous findings in the unsupervised classification and is in accordance with the absorption 

cross-section for NOx in the VIS-NIR spectral range. In Figure 18 a small absorption feature is noticed 

around 590nm in the down-welling light spectrum. However, the immediate exploitation remains 

challenging, as there are multiple atmospheric influences in this spectral region. 

Nevertheless, the observed significant drop in urban air pollution with NOx in this case study can be 

considered a beneficial byproduct of the lockdown and reduces environmental risk factors for COVID-

19 and similar diseases, threatening to human health (Fattorini and Regoli, 2020). Our results 

encourage further investigation of field-spectrometers as inexpensive instruments towards a wide-

spread monitoring network of anthropogenic air pollution as a part of an integrated strategy to reduce 

further environmental risk factors for the coronavirus and similar pandemics in the future. 

4.5 Conclusion 

Three different classification and regression approaches were tested in this case study to retrieve 

information on urban air pollutants from continuous down-welling radiance measurements with an 

automated monitoring field-spectrometer system during the coronavirus pandemic. Significant 

differences in urban NO2 emissions were reported before and after severe reduction of urban traffic 

due to measures in response to the coronavirus pandemic which were enacted by governmental 

authorities in Germany. The investigated methods reproduce these differences in measured NO2 

successfully with relatively inexpensive equipment. As an alternative, physical modelling based on 

mechanistic radiative transfer models can be considered for the retrieval of urban air pollutants from 

down-welling hyperspectral measurements. However, further direct exploitation of absorption 

features of NO2 is considered very tricky, as they are typically overlaid with other absorption features 

of atmospheric trace gases and aerosols. In addition, geographical position is known to influence the 

stagnation of air pollutants under certain conditions which has to be considered as a limitation to this 

investigation. It has to be further noted that the location of measurements for NO2 and down-welling 

light were not identical due to the availability of data. Therefore, uncertainties with respect to the 

spatial distribution have to be considered. Further limitation from windspeed as a variable for airmass 

exchange and the distribution of NO2 in different air layers need to be considered. Additional 

experiments for calibration and validation over an extended period of time with a dedicated 

instrumental setup of a monitoring field spectrometer systems in close proximity to conventional 

measurements of urban air pollutants are encouraged. Future efforts should also consider the 

windspeed, wind direction and the resulting dispersion of NO2 in the air as influencing variables. 
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Nevertheless, in this context we consider the potential of inexpensive, automated field-spectrometers 

a valuable contribution towards wide-spread monitoring of urban air pollutants, especially since these 

systems are easy to handle, cheap to maintain and observe a large spectral range containing various 

other information. 
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5.1 Abstract 

Sentinel-2 satellite data enables multispectral monitoring of the earth at a high temporal revisit rate. 

Combining this information with a network of optical ground measurements enables a more detailed 

and a more complete understanding of terrestrial ecosystems. However, independent optical ground 

measurements often lack consistency, especially when comparing different sites in geographically 

remote locations. Using the very high temporal and spectral resolution offered by the automated field 

spectrometer systems FloX and RoX (Fluorescence Box and Reflectance Box, respectively, JB-

Hyperspectral Devices GmbH, Duesseldorf, Germany), we investigated continuous time series ranging 

over three years and in ten different locations across Europe, Africa, America and Asia. The continuous 

records of ground-measured reflectance were first validated against Sentinel-2 top of canopy (TOC) 

reflectance to evaluate the consistency of the in-situ network. Our results suggest a good agreement 

of ground-measured reflectance with Sentinel-2 TOC reflectance in vegetation and snow with R2 

around 0.79 in the 833 nm band and R2 up to 0.94 in the bands around 559 nm and 492 nm, 

demonstrating good consistency across the network. Spatial misalignment of Sentinel-2 pixel-sizes 

with respect to the different footprint sizes of the ten automated spectrometers on the ground, 

atmospheric uncertainties, sub-optimal instrument setup and spatial-temporal variable landscape 

heterogeneity were identified as the most relevant sources of uncertainties in the network. Comparing 

the Normalized Difference Vegetation Index (NDVI), Transformed Chlorophyll Absorption in 

Reflectance Index (TCARI) and Enhanced Vegetation Index (EVI) between ground and satellite revealed 

a decreasing agreement with increasing complexity of index formulation. The best agreement between 

satellite and ground was exhibited by NDVI with R² around 0.96 and relative error of 4.3% investigating 

vegetation and snow across all ten sites. Furthermore, we identified a seasonal pattern in residuals of 

NDVI between ground and satellite in an alpine ecosystem in northern Italy, which was associated with 

increased spatial heterogeneity due to the effects of diverse vegetation phenology and snowfall. In 

contrast, a random distribution of residuals was recognized in a rather uniform oak forest canopy in 

southern France.  Clustering Sentinel-2 pixels with respect to their temporal patterns in NDVI identified 

similar areas seen as homogenous in the canopy of Torgnon, Italy, and Observatoire de Haute-
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Provence (OHP), France, each. The very high temporal resolution of NDVI measured on the ground 

confirmed overlap with matched homogenous areas, but must consider seasonal landscape 

heterogeneity. Using well-standardized and globally homogenous Sentinel-2 TOC reflectance enabled 

the assessment of uncertainties in ten field spectrometer sites around the world. The standardization 

of the automated field spectrometers, their data products and data annotation were essential 

prerequisites that enabled joint validation against Sentinel-2. Harmonizing optical ground 

measurements with respect to a satellite is promising for future research to ensure the valid 

intercomparison and transfer of data products across different sites in a network worldwide. 

5.2 Introduction 

Remote sensing of the earth’s terrestrial surface from satellites provides a valuable source of 

information, often combined with insight from ground-based sensors across scales and domains 

(Bioucas-Dias et al., 2013). With the Copernicus program, the European Space Agency (ESA) has 

launched seven Sentinel satellite missions up to now. ESA’s Sentinel-2 (S-2) program has two satellites 

in operation with the primary objective to retrieve high-resolution, multispectral images with a high 

temporal revisit rate (Drusch et al., 2012). The multispectral configuration is suitable to examine land 

surface properties, especially for the investigation of coastal waters, land-cover and vegetation (Ariza 

et al., 2018; Caballero et al., 2020; Hank et al., 2019; Ma et al., 2019; Oxoli et al., 2020; Vincini et al., 

2016). Surface reflectance is provided at the bottom of the atmosphere using an atmospheric 

correction and automated data processing, which is further supported through cloud masks and cloud 

shadow masks (Baetens et al., 2019). Due to the high temporal resolution and good spectral coverage 

of the S-2 visible to near- infrared (VIS-NIR) spectral range, this satellite mission is especially suitable 

to compare with a network of identically specified, automated spectrometer systems, installed in 

various locations for long periods of time (Wang et al., 2018). Extended time series not only reveal 

specific spectral signals from different types of land cover, but also provide unique temporal 

signatures, suitable for change detection of land use classes and inferring plant functional traits 

(Debella-Gilo and Gjertsen, 2021; Ma et al., 2019). Both, advanced experimental and modelling 

analyses are of high value for predicting environmental phenomena, for example in estimating burned 

areas or eroded soil (Lense et al., 2023; Mohammad et al., 2023). Extended time series are particularly 

useful when temporal and spectral signatures are compared between ground and satellite (Nagai et 

al., 2020; Sefrin et al., 2021). Especially interesting for the purpose of this study is the unprecedented 

investigation of the highly consolidated S-2 data for validating and harmonizing a worldwide network 

of standardized, automated field spectrometers. 

Autonomous field spectrometer systems have been increasingly used for the continuous long-term 

monitoring of vegetation, water, atmosphere and snow (Campbell et al., 2019; Cogliati et al., 2015a; 
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Kokhanovsky et al., 2021; Meroni et al., 2011; Naethe et al., 2020; Wagner et al., 2018). While the field 

spectrometer system FloX (Fluorescence Box) by JB Hyperspectral Devices, Düsseldorf, Germany, was 

designed primarily for the retrieval of sun-induced chlorophyll fluorescence, both, FloX and RoX 

(Reflectance Box) share the identical optical configuration in VIS-NIR and are suitable for the retrieval 

of hyperspectral reflectance and vegetation indices (VI) (Acebron et al., 2021; Burkart et al., 2015b; 

Dechant et al., 2022; Julitta et al., 2016; Krämer et al., 2021; Mohammed et al., 2019; Siegmann et al., 

2021; Vargas et al., 2020). High temporal resolution in combination with the high hyperspectral 

resolution enable investigation of detailed temporal patterns, both, in VI and reflectance with regards 

to a very defined field of view (FOV) in one location (Martini et al., 2022). Standardization of spectral 

ground measurements using automated point-spectrometers has been a longstanding challenge in the 

field of remote sensing (Cavender-Bares et al., 2020; Gamon, 2015; Milton et al., 2009). Standardized 

hardware as well as standardized calibration, data processing, data annotation and traceability 

including uncertainty budgets are necessary to transfer calibrated data in absolute physical unit across 

a network of instruments (Buman et al., 2022; Hueni et al., 2017; Porcar-Castell et al., 2015). The 

automated spectrometers investigated in this study fulfilled those requirements and, therefore, could 

be considered a network. On the one hand, such a network allows to investigate spatial-temporal 

dynamics at a larger scale worldwide. However, verification of those ground measurements with 

respect to a globally aligned reference is indispensable for combining insights of great temporal and 

spectral details across the network and harmonizing data products on the other hand.  

Numerous networks and communities were established in the past with the aim to provide a 

standardized approach to spectral ground measurements, for the purpose of calibration and validation 

of satellite data, e.g. Aerosol Robotic Network - AERONET (Li et al., 2018) and Spectral Network - 

SpecNet (Gamon, 2015; Gamon et al., 2006), and to facilitate these optical measurements in the 

context of a network of carbon flux sites (FLUXNET)(Gamon et al., 2010) such as the Integrated Carbon 

Observation System (ICOS) (Etzold et al., 2022; Gielen et al., 2017) and the National Science 

Foundation's National Ecological Observatory Network (NEON) (Ma et al., 2022; Metzger et al., 2019). 

Ground measurements of ecosystem parameters are important for the understanding, modelling and 

forecasting of natural phenomena broadly speaking, which globally interlink vegetation dynamics and 

primary production with the water cycle, carbon cycle and local micro-meteorology (Lama et al., 

2021a, 2021b; Migliavacca et al., 2017; Norton et al., 2019; Pirone et al., 2023; Rossini et al., 2010). In 

the context of those existing networks are automated, temporally dense, hyperspectral ground 

measurements of down-welling and up-welling light interesting, because optical in-situ measurements 

oftentimes serve as proxies for local ecosystem status parameters and enable the fusion of multiple 

optical sensors across scales (Naethe et al., 2023; Pérez-Harguindeguy et al., 2013).  
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Due to rapid changes in the atmosphere and low light conditions, ground-based spectroscopy 

measurements under cloudy conditions are challenging but valuable for enabling specific insights at 

the same time (Buman et al., 2022; Kanniah et al., 2012; Kaskaoutis et al., 2008). Optical satellite 

images are adversely affected by clouds so that cloud-covered areas are unusable and typically masked 

out, making impossible to observe vegetation canopies under cloudy conditions with optical satellites 

(Baetens et al., 2019; Petitjean and Weber, 2014). Shadows of clouds and large structures are an 

increasing issue with increasing spatial resolution of remote sensing images (Liu et al., 2017; 

Shahtahmassebi et al., 2013). While being especially challenging at lower levels, e.g. on drones and on 

the ground, effective shadow detection methods are essential for robust data filtering, as remote 

sensing products such as reflectance or VI are substantially biased under shadows (Adler-Golden et al., 

2002; Damm et al., 2015; Liu et al., 2017; Wemett et al., 2009). However, often studies investigate a 

limited area only where local cloud-shadow detection on the ground would be sufficient. However, 

robust cloud detection and filtering are mandatory prerequisites for validating and harmonizing 

information of multiple optical sensors across scales and domains. 

This study used data from S-2 as a reference for validating a worldwide network of standardized field 

spectrometers and for harmonizing their data products. For the first time, satellite TOC data was used 

to validate continuous time series of reflectance measured from automated field spectrometers at 

very high temporal resolution in 10 different locations around the world. We use the very high 

temporal resolution of ground-measured down-welling radiance to investigate suitable cloud-shadow 

detection. Reversing the common practice of cross-validating in-situ point-spectroscopy and airborne 

imaging spectroscopy, as presented in Hueni et al. (2017), 10 identically equipped field spectrometer 

sites were harmonized and challenges of temporal variability in spatial heterogeneity were unveiled. 

Considering that S-2 offers global coverage of highly standardized data products, this satellite data 

served as a stable reference for the independent validation of each site and investigation of site-

specific uncertainties in continuous time series recorded by standardized field spectrometer systems 

over several years on the ground. 

5.3 Materials and Methods 

We compared dense, hyperspectral time series recorded with FloX and RoX spectrometers in ten 

different locations in Africa, America, Asia and Europe with time series extracted from simultaneous 

S-2 overpasses. Combining ground measured and satellite measured data is challenging due to rapid 

changes in the atmosphere. Therefore, we applied cloud filtering based on both, S-2 cloud masks and 

on a novel approach using ground-based measurements of incoming light. Top of Canopy (TOC) 

Reflectance, Normalized Difference Vegetation Index (NDVI) (Tucker, 1979), Enhanced Vegetation 

Index (EVI) (Liu and Huete, 1995) and the Transformed Chlorophyll Absorption in Reflectance Index 



 
84 

(TCARI) (Haboudane et al., 2002) were compared under cloud-free conditions. TOC reflectance was 

used for absolute and quantitative comparison per spectral band, extracted from satellite and 

convolved from hyperspectral ground measurements. NDVI is very robust against diurnally variable 

amounts of solar radiation on the ground and is not sensitive for short-term variations in plant’s 

physiological adaptation processes due to its band selection and formulation (Gamon et al., 2015, 

1992), and was therefore considered ideal to compare ground and satellite data. EVI is a more complex 

modification of NDVI that minimizes effects of soil and atmosphere, which is still mostly stable 

throughout the diurnal cycle and was considered for that reason. TCARI was used as a more modern, 

very complex soil-adjusted chlorophyll index, which predicts canopy chlorophyll content regardless of 

the background of changing land cover (Herrmann et al., 2010; Main et al., 2011). NDVI, EVI and TCARI 

were feasible to compute from the available S-2 bands in this study and were used to examine the 

effects of increasing complexity of VI affecting the agreement between ground and satellite data. 

Finally, the robust NDVI was used to investigate further temporal and spatial aspects affecting the 

direct validation of ground and satellite data. 

5.3.1 Instruments and sites 

A variety of different agricultural and natural vegetation canopies as well as snow were monitored with 

FloX and RoX field spectrometers in ten different sites across Europe, America, Asia and Africa (see 

Figure 23). FloX and RoX share in common identical VIS-NIR spectrometers featuring 450 nm – 900 nm 

spectral range, 1.5 nm full width at half maximum (FWHM) spectral resolution and a hemi-conical 

optical configuration with up-welling light recorded through bare fiber optics with 25° opening angle 

and down-welling light recorded through a cosine diffusor with a theoretical 180° opening angle 

(Chang et al., 2021). Time series were recorded completely unattended with a very high temporal 

resolution up to one measurement per minute, depending on light conditions in the field (Cogliati et 

al., 2015a). Further processing of the data enabled filtering based on standardized, system-internal 

quality flags and quantitative parameters indicating goodness of each measurement, accounting for 

saturation, unstable measurements, automatic optimization and low solar angles. 
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Figure 23: Selected field sites, equipped with FloX or RoX. Spread over Europe, America, Asia and Africa, covering different 
vegetation and non-vegetation targets. World Imagery (ESRI, 2021). 

The ten field sites were set up similarly for the investigation of extended, temporally dense time series 

of TOC reflectance and VI. For this purpose, all spectrometers were set up on towers in such a way that 

down-welling light was monitored though the up-facing cosine optics without obstruction from nearby 

structures. The down-facing bare optics were mounted in a southerly direction (in the southern 

hemisphere in a northerly direction) on an extended arm to minimize self-shading and ensure 

unobstructed nadir view onto the desired footprint. Details to the sites, spectrometers and 

installations are provided in Table 7. The shortest time series covers 6 months and the longest over 3 

years of continuous data recording, for which representative parts were selected. An important 

criterion for the selection of data was the temporal agreement with available S-2 overpasses. 

Furthermore, ambient light conditions and instrumental quality criteria, as described in the following 

section were considered for the selection of ground measured data. 
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Site name Country Lat Lon Target Dist. 

from 

TOC 

Footprint 

radius 

Period investigated 

Torgnon Italy 45.844 7.578 Alpine 

pasture 

2 m 0.4 m 06 Dec 2017 - 05 Mar 2021 

OHP France 43.934 5.711 Oak forest 90 m 20.0 m 06 Dec 2017 - 16 Sep 2020 

Leinefelde Germany 51.327 10.367 Mixed 

broadleaf 

forest 

8 m 1.8 m 12 May 2019 - 03 Oct 2020 

Gebesee Germany 51.100 10.914 Wheat 

field 

2 m 0.4 m 15 Apr 2019 - 07 Jul 2019 

Kapiti Kenya -16.144 37.133 Savannah 4.5 m 1.0 m 01 Oct 2019 - 12 Jul 2020 

Lincoln USA 41.179 -96.441 Corn field 2 m 0.4 m 02 Sep 2019 - 17 Oct 2019 

Greenbelt USA 39.029 -76.843 Corn field 2 m 0.4 m 25 Jul 2020 - 24 Aug 2020 

Shangqui China 34.515 115.59 Corn field 4 m 0.9 m 08 Jul 2020 - 16 Nov 2020 

Oensingen Switzerland 47.286 7.733 Corn field 2 m 0.4 m 25 Jul 2020 - 24 Aug 2020 

Selhausen Germany 50.865 6.447 Grassland 2 m 0.4 m 18 Nov 2020 - 27 Apr 2021 
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5.3.2 Data processing, cloud detection and statistical analyses 

 

Figure 24: Schematic of data processing and analyses conducted during this study. 

The data from S-2 and from the automated spectrometer network were pre-processed to enable their 

joint use for cloud detection and filtering (Figure 24). Finally, only data pairs from ground and satellite 

filtered and validated as cloud-free using down-welling radiance fitting from the ground were used for 

further analyses. Each of the steps are described in detail below. 

Sentinel-2 preprocessing 

Satellite data were selected to match the exact position of the footprint recorded by the automated 

spectrometers based on the natively annotated GPS-coordinates. The level 2-A products from the 

Copernicus hub were downloaded and time series extracted for the single pixel at the positions of the 

spectrometer footprint, a 3x3 pixel matrix and a subset of ca. 200 pixels for each site around the 

instrument using Google Earth Engine (Gorelick et al., 2017). Atmospherically corrected TOC 

reflectance using the Sen2Cor algorithm included cubic spline resampling (Li et al., 2018) was extracted 

at 10 m spatial resolution for those S-2 bands overlapping with the spectral range of the field 

spectrometers between 450 nm and 900 nm shown in Table 8. VIs were computed directly from the S-

2 reflectance bands at 10 m spatial resolution in the same way as for ground measurements according 

to Table 9. 
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Table 8: Sentinel-2 B bands used for TOC reflectance extraction overlapping with the spectral range of the ground instruments 

Sentinel-2 

band name 

B2 B3 B4 B5 B6 B7 B8 

Central 

wavelength 

492 nm 559 nm 665 nm 704 m 740 nm 780 nm 833 nm 

Band width 65 nm 35 nm 31 nm 15 nm 13 nm 19 nm 104 nm 

Pixel size on 

ground 

10 m 10 m 10 m 20 m 20 m 20 m 10 m 

 

FloX and RoX preprocessing 

Raw data from the field spectrometer systems were processed to retrieve calibrated radiance and 

surface reflectance using the packages FieldSpectroscopyCC 6  and FieldSpectroscopyDP 7  with the 

statistical computing software R (R Core Team, 2017). The hyperspectral reflectance was then 

convolved to match the multispectral characteristics of S-2 (Table 8) within the VIS-NIR spectral range 

of FloX and RoX, using Gaussian convolution. Only band 2 to band 8 of the total 13 multispectral bands 

from S-2 were covered in the convolution, considering the central wavelength and full width at half 

maximum (FWHM) in each band, which were respectively overlapping with the usable spectral range 

between 450 nm and 900 nm of the automated field spectrometers.  

Table 9: Index formulations used for the calculation from Sentinel-2 multispectral bands and convoluted bands from field 
spectrometers identified by their central wavelength.  

Index 

name 

Formula Index 

Reference 

NDVI (𝑅833 − 𝑅665 )

(𝑅833 + 𝑅665)
 

(Tucker, 1979) 

EVI 
2.5 × 

(𝑅833 − 𝑅670)

(𝑅833 + 6 × 𝑅665 − 7.5 × R492 + 1)
 

(Liu and Huete, 

1995) 

TCARI 3 × ( 𝑅704 − 𝑅665) − 0.2 ×  (𝑅704 − 𝑅559)  ×
𝑅704

𝑅665
⁄  

1.16 ×
(𝑅833 − 𝑅665) 

(𝑅833 + 𝑅665 + 0.16)
⁄  

 

(Haboudane et 

al., 2002) 

                                                           
6  Julitta, T. “FieldSpectroscopyCC”. Github, Inc. Accessed April 5, 2024. https://github.com/tommasojulitta/ 
FieldSpectroscopyCC. 
7  Julitta, T. “FieldSpectroscopyDP”. Github, Inc. Accessed April 5, 2024. https://github.com/tommasojulitta/ 
FieldSpectroscopyDP. 
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NDVI, EVI and TCARI were calculated for FloX and RoX from the convoluted spectral bands according 

to Table 9 in order to properly match with the S-2-based products. 

The spectrometer data were filtered according to Cogliati et al. (2015a) to eliminate unstable, 

saturated spectra and measurements at low solar zenith angles. In addition, outliers of negative NDVI 

were identified as measurements of snow and verified as such by time and place of recording. Data 

were extracted from the continuous time series at a temporal resolution per ca. 1 minute using a 20-

minute time-window around each Sentinel-2 (S-2) overpass and aggregating by the mean of the 

reflectance and VI values within each time-window. 

Cloud detection 

Two independent routines were used for cloud detection eliminating cloud-shaded data. The first 

filtering routine was based on the S-2-inherent cloud masks (Baetens et al., 2019). Data above 0% cloud 

coverage were excluded, as fractional cloud cover could not be consistently checked otherwise.  

A second filtering routine was applied using dense temporal information of down-welling radiance 

from ground measurements. The method was based on the assumption that incoming light can be 

considered stable enough to be expressed by a linear model for a short time period. Thus, a time 

window of 20 minutes was selected around the time of the S-2 overpass. A linear model was fitted to 

the down-welling radiance at 750nm within this time window. The down-welling radiance within this 

time-window varied a lot during cloudy conditions, resulting in a poor fit of the linear model with the 

down-welling radiance and a low correlation coefficient R² (see Figure 25a). Conversely, under clear 

sky conditions the linear fit resulted in a high correlation with the measured down-welling radiance 

(see Figure 25b). Applying ground-based cloud detection, we investigated pairs of S-2 and ground data 

under clear-sky conditions only. 

 

 

Figure 25: Principle of data filtering approach based on downwelling radiance. Diurnal course of cloudy incident radiance (a) 
compared to clear incident radiance (b). Measurements are printed in black while the linear fit is printed in blue, dashed grey 
vertical lines indicate the 20 min. time-window around the S-2 overpass, which is marked by a solid grey line. 
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Statistical analyses 

TOC reflectance and VI from S-2 were compared with ground measurements by using linear regression 

of a 3x3 pixel matrix around the position of ground measurements to ensure fully covering the 

spectrometer footprint. The S-2 pixels were summarized by their mean value around the position of 

the field spectrometer. The coefficient of determination (R2), the confidence of significance (p-value) 

and slope were computed for each linear regression of reflectance bands and VI, respectively. In 

addition, the root mean square error (RMSE, eq. 13) and relative RMSE (RRMSE, eq. 14) in percent 

were calculated, using 𝑥 as the measured reflectance or VI from S-2 and 𝑥 as the measured reflectance 

or VI from FloX/ RoX with respect to the total number of n measurements.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖−𝑥𝑖)
𝑛
𝑖=1

2

𝑛
      (13) 

𝑅𝑅𝑀𝑆𝐸 =
√∑ (𝑥𝑖−𝑥𝑖)

2𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

⋅ 100%      (14) 

Also, the temporal residuals in NDVI were calculated as the difference between satellite and ground 

measurements for each data pair in the entire time series.  A histogram of the residuals was created 

to investigate their distributions. Furtermore, median and standard deviation (sd) were calculated.  

Finally, spatial clustering using the “tsclust” algorithm from the R-package “dtwclust”8 was conducted 

on each pixel of the subset (ca. 200 pixels) around the automated field spectrometers. Hierarchical 

clustering of NDVI time series per pixel was performed in the two three-years-long datasets. The time 

series of NDVI pixels were grouped into three clusters based on normalized dynamic time warping 

distances (Aghabozorgi et al., 2015; Wallace and Dale, 2005).  

                                                           
8 Sarda, A. “dtwclust”. Github, Inc. Accessed April 5, 2024. https://github.com/asardaes/dtwclust. 
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Figure 26: Cluster dendrogram from the hierarchical clustering of NDVI time series associated with a pixel of the subset each 
in Torgnon (a) and OHP (b). Clusters C1, C2 and C3 are marked each in a different color. The tree depth is given in relative 
Euclidian distance between 0 and 1. The leaves correspond to pixel IDs in the mosaics. Note that the level of displaying was 
pruned and not all pixels are listed for improved readability, pruning to a maximum depth of 7.  

Pixels of similar temporal patterns in NDVI around the location of ground measurements were 

identified and allocated in 3 groups by the algorithm (Figure 26). The depth of differentiation of the 

clusters was indicated by the relative distance of the top node of each cluster. Note that the NDVI 

pixels from the canopy in Torgnon were identified more diverse than those from OHP, accordingly. 

Finally, the temporal patterns in each cluster were compared with the ground measured temporal 

patterns. A visual inspection was conducted comparing the location of pixels associated to each cluster 

with respect to the location of ground measurements for both sites. Agreement of the clusters of NDVI 

pixels with respect to the spectrometer footprint verified temporal and spatial representativeness of 

the ground measurements for the area covered by clustered pixels. 

5.4 Results 

5.4.1 Cloud filtering 

Filtering by ground-measured down-welling radiance fitting was applied to deselect clouded satellite 

data of overpasses during which the linear fit yielded an R² value below 0.7. This resulted in an overall 

acceptance rate of 49% of the available data pairs from ground and satellite (Figure 27), compared 

with an average acceptance rate of 86% using conventional cloud masks. A detailed comparison of 

retained data using filtering by cloud masks and ground-measured down-welling radiance fitting are 
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provided in Table 10.  A significantly larger number of S-2 overpasses was identified cloud-free using 

cloud masks, but still showed in parts effects of clouds in the ground-measured data within the region 

of interest (ROI).  

Table 10: Number of Sentinel-2 overpasses paired with ground measurements available for each site in total and after the 
filtering using Sentine-2 cloud mask or ground measured incoming radiance, respectively. 

Sites All Sentinel-2 

overpasses 

paired with 

ground 

measurements 

Remaining 

instances filtered 

by Sentinel-2 cloud 

mask 

Remaining 

instances filtered 

by down-welling 

radiance 

Gebese 15 14 7 

Kapiti 14 11 3 

Leinefelde 44 36 14 

Greenbelt 8 8 6 

Lincoln 23 22 7 

Shangqui 7 7 3 

OHP 105 100 67 

Selhausen 7 6 3 

Oensingen 14 12 5 

Torgnon 169 133 94 

 

Figure 27: Rejection rate of all data given in % with respect to changing R2 of the linear fit for ground measurements around 
the S-2 overpass set as threshold for filtering cloudy conditions 
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Therefore, cloud filtering based on down-welling radiance measurements was considered more 

conservative and suitable for the further analyses compared to S-2 cloud masks. Since the S-2 cloud-

mask included also data pairs which were evidently affected by clouds, the ground-based filtering was 

used for all further investigation. 

5.4.2 Spectral Reflectance and VI 

Ground measured and satellite measured reflectance were compared for all eight multispectral bands, 

which fell within the spectral range of FloX and RoX. To visually compare measurements across all sites, 

band 5 around 704 nm, band 6 around 740 nm and band 7 around 780 nm were selected from the 

central region of the FloX’s/RoX’s detector (Figure 28).  

 

Figure 28: Scatterplots show reflectance at bands around 704nm, 740nm and 780nm from Rox/FloX vs Sentinel-2 
measurements, respectively. Data in panels a, b and c excludes measurements of snow, in panels d, e and f are results for all 
measurements displayed. Regression line in dashed red indicates deviation from line of identity in dashed black. 

A noticeable deviation from a slope of one was exhibited in all panels of Figure 28. Overall, lower R² 

and larger deviation from a slope around one was recognized in the reflectance bands when excluding 

measurements of snow. Likewise, a smaller dynamic range of reflectance was recognized for pure 

vegetation samples only. Noticeable outliers with respect to the regression’s trendline were noticed 

for the field sites in Linefelde, affected by the off-nadir tilted up-welling optics and for some recordings 

of snow in Torgnon, both of which were affected by reflection hotspots in the target. Reflection 

hotspots in the snow caused reflecting direct sunlight, which entered the downwards facing optics of 

the instrument. This is a known issue of snow, caused by a series of variables related to acquisition, 

illumination geometry, and surface topography. Taking a purely diffuse reference for the down-welling 
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light using cosine diffusors in combination with direct sunlight in the up-welling resulted in a calculated 

reflectance greater 1, which must be understood as an artifact.   

Table 11: Correlation between satellite-measured and ground-measured reflectance. Statistics of regression for the different 
bands (only for rigorous filtering), p-value, RMSE, %-RRMSE, across all sites vegetation only and included snow, respectively. 

BAND (nm) R SQUARED P VALUE SLOPE RMSE % RRMSE 

VEGETATION ONLY      

492  0.59 <0.01 0.91 0.023 11.82 

559 0.58 <0.01 0.84 0.025 10.73 

665 0.72 <0.01 0.89 0.029 11.56 

704 0.59 <0.01 0.76 0.035 11.65 

740 0.45 <0.01 0.67 0.051 4.79 

780 0.53 <0.01 0.77 0.061 4.10 

833 0.45 <0.01 0.71 0.065 5.48 

INCLUDING SNOW      

492 0.94 <0.01 0.84 0.104 7.47 

559 0.94 <0.01 0.83 0.106 6.81 

665 0.93 <0.01 0.83 0.105 5.43 

704 0.92 <0.01 0.81 0.109 3.06 

740 0.88 <0.01 0.75 0.117 4.31 

780 0.83 <0.01 0.69 0.127 4.82 

833 0.79 <0.01 0.66 0.138 2.79 

A detailed assessment of each band is reported in Table 11. The coefficient of determination between 

satellite-measured and ground-measured reflectance varied a lot between the different multispectral 

bands across all sites. The lowest coefficient of determination was recognized in band 6 around 740 

nm with R2 of 0.45, a slope of 0.67 and RRMSE around 4.8%, as well as in band 8 around 833nm with 

R2 of 0.45, a slope of 0.71 and relative RMSE around 5.5% in the subset of vegetation only. Taking also 

reflectance of snow into account, all R2 values increased significantly. Due to a higher variance and 

covariance in the data also the absolute and relative error increased (Figure 28). The RMSE increased 

almost consistently with increasing wavelength of the multispectral bands. The RRMSE was affected 

by the typical reflectance shape of pure vegetation targets, resulting in higher relative values for visible 

wavelength at lower intensities and in lower relative error of near-infrared wavelength of higher 

intensities (compare Figure 29 and Table 11). The RRMSE values were more similar across all spectral 

bands when including snow, since a larger diversity of non-vegetative spectral reflectance shapes was 

introduced in addition to a larger variance of reflectance. Lowest coefficient of determination was 

recognized in band 8 around 833 nm in the dataset including snow with R2 of 0.79, slope of 0.66 and a 
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RRMSE of 2.8%. This is half of the RRMSE value compared to data including vegetation only. When 

including snow, the agreement for the bands up to band 5 were very good with R2 above 0.9 and 

RRMSE between 3.1% and 7.5%. All reported results were significant according to a 99.9% confidence 

interval, applying the p-value test. 

 

Figure 29: Heatmap indicating the relative difference percentage (%) of convoluted ground-measured reflectance using 
autonomous field spectrometers with respect to Sentinel-2 TOC reflectance, covering over three years of investigation in 
Torgnon (a) and in OHP (b). 

Good agreement was recognized in the reflectance shape between the two platforms (see Figure 29). 

Especially the spectral shape typical for vegetation was well retained in the selected cases. A very clear 

seasonal pattern in the relative differences between satellite-based reflectance and ground-based 

reflectance was observed in Figure 29 especially at OHP. In contrast, the relative discrepancy was more 

evenly distributed in Torgnon across the temporal domain and exhibited less seasonality due to a lack 

of usable data pairs during winter. Most stable across the temporal domain was the band around 780 

nm for both Torgnon and OHP, yielding the lowest associated relative RMSE in pure vegetation 

(compare Figure 29 and Table 11).  
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Similar to the investigation of absolute reflectance for individual multispectral bands, VIs were 

examined for their agreement between ground and satellite measurements. For this purpose, NDVI, 

EVI and TCARI were computed, both from the convoluted bands of the ground measurements and the 

multispectral bands of S-2 reflectance, including atmospheric correction. A regression analysis was 

performed, indicating that NDVI, EVI and TCARI agreed well across both platforms, recognizing a 

noticeable difference in value range between pure vegetation and measurements including snow, 

especially in NDVI (Figure 30). NDVI exhibited a very good coefficient of determination with R² around 

0.96 (incl. snow) and 0.90 (vegetation only) and a slope close to one (Table 12). The RRMSE was in both 

cases very similar around 3.8% and 4.3%. Agreement in TCARI values was overall the strongest affected 

by the snow and performed very differently with R² around 0.75 (incl. snow), while the coefficient of 

determination in pure vegetation targets was reduced to R2 around 0.55 due to a larger scattering of 

values. The RRMSE was almost doubled for those measurements which included vegetation only in 

TCARI, because a larger variance in the data was introduced due to snow (Figure 30). EVI exhibited a 

lower coefficient of determination R2 around 0.88 (incl. snow) between ground and satellite 

measurements, while the value changed not noticeably to R2 around 0.86 investigating vegetation 

targets only. Similar to TCARI, the RRMSE was almost doubled by the exclusion of snow. 

 

Figure 30: Comparison of field Rox-Flox and S-2 satellite VIs. Scatterplots show NDVI, EVI and TCARI from Rox/FloX vs Sentinel-
2 measurements, respectively. Data in panels a, b and c excludes measurements of snow showing vegetation only. In panels 
d, e and f are results for all measurements displayed. Regression line in solid red indicates deviation from line of identity in 
dashed red. 

Ground measurements and satellite measurements agreed better when examining simple TOC 

reflectance of the individual bands compared with the more complex EVI and TCARI computed from 

those bands. The coefficient of determination between ground and satellite measurements decreased 
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with increasing complexity of the index formulation of NDVI, EVI and TCARI, in that order. EVI was by 

far the most robust index with respect to influences from snow and exhibited the lowest RRMSE, both 

in pure vegetation and including snow. Due to the highest variance in values with respect to the spread 

of datapoints around the regression line in Figure 30, RRMSE of EVI was the lowest. On the contrary, 

the absolute RMSE was lowest for TCARI in vegetation only and for NDVI including snow. 

Table 12: Statistics of regression for the VI (only for radiance-based filtering), p-value, RMSE, %-RRMSE, across all sites 
vegetation only and included snow, respectively. 

INDEX R SQUARED P VALUE SLOPE RMSE % RRMSE 

VEGETATION 

ONLY 

     

TCARI 0.55 <0.01 0.88 0.029 11.25 

EVI 0.86 <0.01 0.94 0.291 1.41 

NDVI 0.90 <0.01 0.93 0.074 3.80 

INCLUDING 

SNOW 

    

 

TCARI 0.75 <0.01 0.83 0.105 5.44 

EVI 0.88 <0.01 0.92 0.276 0.76 

NDVI 0.96 <0.01 0.96 0.068 4.34 

 

5.4.3 Temporal and Spatial Patterns 

When investigating the two longest time series (i.e., the time series from OHP and Torgnon), only a 

fraction of the ground measurements were usable for further analysis. Only S-2 overpasses under 

cloud-free conditions were used, previously identified by using the down-welling radiance-based 

filtering. The resulting gaps with respect to the higher temporal resolution of the continuous 

monitoring using ground measurements were obvious especially in Torgnon in the Alps (Figure 31). In 

Torgnon data recorded during winter were filtered out for all three years, due to the exclusion of snow 

to focus on the analysis of vegetation only. In contrast, a much better coverage of the annual pattern 

in NDVI was achieved from the ground including all seasons. In OHP in southern France there were a 

larger number of S-2 overpasses available throughout the investigated years. However, in both cases 

the high temporal resolution of the ground measurements depicted annual dynamics to a much better 

degree compared with satellite measurements. This advantage was especially noticeable during 

seasons of unstable weather conditions. When stable conditions for reliable measurements were 

difficult to identity using the S-2 cloud-masks, ground measurement still identified locally usable data. 
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Figure 31: Time series measured from satellite and on the ground in Torgnon (a) and OHP (b), where data over approximately 
three years were available. The selected data from a usable satellite overpass (red) is compared with the associated ground 
measurement (blue). Negative NDVI values were caused by snow. 

While the temporal evolution of the discrepancy between ground-measured and satellite-measured 

NDVI followed a right-skewed, normal distribution centered around zero for all data combined, the 

residuals were not always normally distributed for individual time series, such as Torgnon (Figure 32). 

A median residual NDVI around -0.02 and a standard deviation of 0.09 was recognized across all sites, 

indicating very low systematic differences between ground and satellite. In particular, median residual 

NDVI in Torgnon was around -0.06 with a standard deviation around 0.08. In OHP the median 

discrepancy was below -0.01 with a standard deviation of 0.07. All these values similarly indicated a 

negligible systematic tendency of underestimating NDVI on the ground, taking S-2 as reference. 

However, the random uncertainties significantly exceeded those systematic errors. The highest 

occurring frequency of residual NDVI in ground measurements with respect to the satellite 

measurements was found by the mode just below zero in all sites (Figure 32). For the extended two 

time series the absolute residual NDVI followed the seasonal vegetation cycle in Torgnon, while the 

residual NDVI in OHP data showed a more random pattern. 
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Figure 32: Residual of NDVI over time (top) and distribution of the residual (bottom) for Torgnon (a), OHP (b), and for all 
available sites (c). 

Finally, we investigated the pixels in the sub-section around the location of the RoX in Torgnon and the 

FloX in OHP with respect to spatial similarity of the NDVI. Each pixel exhibited a specific temporal 

pattern in NDVI and was compared in with all other subset pixels, so that similar temporal patterns 

would be summarized into a cluster. In Torgnon the clustering algorithm identified three major clusters 

in the S-2 pixels and associated specific trends in seasonal pattern accordingly (Figure 33). Those 

clusters of seasonal patterns were spatially associated with certain spatial features. The seasonal 

pattern in NDVI recorded by ground measurements in Torgnon was similar to cluster 2 of S-2 based 

NDVI pixels, at the fringes to cluster 3 during 2018 and 2019 (Figure 33). Likewise, the position of the 

RoX was located inside pixels, which were spatially associated to cluster 2 at the border to cluster 3. 

Similarly, in OHP the algorithm identified three clusters, of which cluster one was the major 

contributor. The spatial location of the ground measurements at the border between the three clusters 

resembled the temporal pattern of ground measurements falling into cluster 1 mainly during summer 

and into cluster 3 mainly during winter. Hence, spatial features were successfully associated with the 

temporal NDVI patterns from both S-2 and ground measurements.  
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Figure 33: Time series similarity clustering. Rox/FloX was spatially identified in the associated cluster of similar Sentinel-2 
pixels with respect to similar temporal patterns in NDVI. Satellite scene of the ROI in Torgnon, Italy (a) and in OHP, France (c). 
Clustered time series of NDVI with respect to pixels identified as similar using hierarchical clustering in Torgnon (b) and OHP 
(d). 

5.5 Discussion 

5.5.1 Spectral Reflectance and VI 

Previous studies have compared reflectance measurements using different spectrometer systems on 

the ground and also investigated differences in VI across ground and satellite (Castro-Esau et al., 2006; 

Cheng et al., 2006). Our results suggested a better agreement in absolute values compared with these 

studies, both in reflectance and in VI comparing FloX/RoX measurements with S-2 TOC products. Thus, 

TOC reflectance and VI data from the network of 10 FloX and RoX sites were considered very coherent 

with respect to S-2. Similar to (Cheng et al., 2006), a characteristic seasonal pattern was identified in 

the relative discrepancy of reflectance bands between ground and satellite in the two longest time 

series in this study. This seasonal pattern suggested temporal-spatial variabilities of uncertainties with 

respect to the static and continuous ground measurements, which were investigated more closely in 

this study using the spatial information available from S-2. Best practice in characterization, traceability 

and standardization will further enable fusing validated ground data to improve the spectral, temporal 

and spatial details of future studies. Thus, future efforts would benefit from the accreditation of 

radiometric calibration routines of FloX and RoX and assure traceability with respect to a fiducial 
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reference (Mihai et al., 2018; Picard et al., 2016; Schaepman and Dangel, 2000). With continuous time 

series being available from the automated spectrometers, ground-measured data were extracted 

exactly for the time of the S-2 overpass in order to minimize temporal uncertainties. However, 

uncertainties around the different spatial resolutions had to be considered, which affected the direct 

comparison of ground measurements and satellite data (Vogtli et al., 2021; Zagajewski et al., 2017). 

The varying pixel-sizes of S-2 bands (Drusch et al., 2012) and the varying footprint radius of point 

spectrometers from 0.5 m to 20 m, depending on the height of installation, limited the best possible 

agreement between ground and satellite (Milton et al., 2009). In addition, inconsistencies around the 

setup of the automated field spectrometers yielded another important source for uncertainties. In 

particular, off-nadir misalignment of the up-welling and down-welling channels of FloX and RoX results 

in an offset with respect to the satellite TOC reflectance (Drolet et al., 2014; Hueni et al., 2017). 

Compensation for atmospheric distortion of the light passing from space to the ground is furthermore 

important for the retrieval of accurate results validated from the satellite (Schläpfer et al., 2020a; 

Vogtli et al., 2021). While ground measurements by field spectrometers already included the path of 

light through the atmosphere, S-2 reflectance had to infer these atmospheric influences. We used S-2 

TOC reflectance, which was processed using the Sen2Cor algorithm to account for the atmospheric 

distortion of light (Li et al., 2018). Short-term changes of the atmosphere affect the measurements at 

the ground level and introduce an additional uncertainty. We tried to address this issue by using a very 

conservative cloud filtering approach, which aimed to identify those shot-term variations in the 

atmosphere from the ground. However, some compromises had to be made with respect to retaining 

a usable amount of data pairs for further analyses. Furthermore, multispectral reflectance was 

convolved from the hyperspectral ground measurements assuming a Gaussian spectral response of S-

2. It has to be noted that this basic assumption is a simplification and the actual spectral response 

function of S-2 bands is in truth of a more complex shape (Li et al., 2018). Even though the assumption 

of a Gaussian response did mimic the S-2 multispectral bands closely, it was sufficient for this 

investigation and introduced only a minor systematic error into the comparison. Combining 

uncertainties from spatial misalignment, atmospheric correction, radiometric calibration, convolution 

and setup is essential towards fully characterizing the standardized application of high-resolution 

hyperspectral ground measurements to be used in fusion with multispectral, imaging satellite sensors 

(Ariza et al., 2018; Mihai et al., 2018; Schmitt and Zhu, 2016).  

The complexity of the VIs affected their behavior in a very distinctive manner in this study. The variance 

of absolute NDVI values was increased by measurements including snow in contrast to pure 

vegetation. NDVI is a very widely used VI for the remote sensing of vegetation and is based on the red-

edge feature of vegetation (Eitel et al., 2010; Gamon et al., 1995; Yao et al., 2013). Thus, negative NDVI 

of snow must be considered as an artifact, which affected our presented statistics by increased value 
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range (Wang et al., 2023a). Those artifacts were caused by the specific bi-directional reflectance 

distribution function of snow due to a series of variables related to acquisition, illumination geometry 

or surface topography (Painter and Dozier, 2004; Picard et al., 2020). At the same time, the negative 

NDVI values exhibited by snow were a criterion for filtering only vegetation measurements (Jiang et 

al., 2006; Wang et al., 2023b). In comparison to the other more complex VIs, NDVI with R2 exceeding 

0.9 and relative error remaining below 5% between satellite and ground measurements suggested a 

good inter-site transferability on ground and good transferability between ground and satellite. The 

increased robustness of EVI against influences from soil and atmosphere resulted in less pronounced 

outliers produced by snow but differentiated more the vegetation between sites (Liu and Huete, 1995).  

Thus, the absolute error in EVI was the highest of all the three investigated VIs. Also, the formulation 

of EVI is more complex than NDVI, resulting in singular uncertainties from the individual multispectral 

bands propagating more strongly (Stow et al., 2019). Considering our results, an adjustment of EVI 

values would be recommended to harmonize all sites with respect to S-2. Finally, TCARI exhibited 

lowest coefficient of determination and highest relative error when comparing ground and satellite. 

Being the most complex of the three investigated VIs, TCARI was designed for canopy chlorophyll 

prediction and to be robust against impacts from soil (Malenovský et al., 2006). This resulted in TCARI 

being affected the most by covariances of uncertainties propagated from the spectral reflectance. 

Future research should investigate appropriate correction approaches especially for TCARI towards 

improving transfer of information across platforms (Ariza et al., 2018; Olsson et al., 2021), which was 

beyond the scope of this study. Thus, NDVI was identified as most suitable to further compare 

temporal and spatial aspects and reduce effects of spectral uncertainties at the same time.  

5.5.2 Temporal and Spatial Analyses 

Temporal patterns in NDVI from ground and satellite were compared for the two longest time series 

recorded in OHP and Torgnon. Both locations provided data recorded over three years. The absolute 

difference in NDVI between the platforms over time exhibited a seasonal pattern in Torgnon, which 

had to be compared to a random pattern in OHP. It is followed that the systematic seasonal 

discrepancy pattern was caused by snowfall and diverse vegetation phenology in the highly dynamic 

alpine ecosystem (Alberton et al., 2017; Fu et al., 2014; Peano et al., 2021), leading to an increased 

fractional heterogeneity of the landscape during fall and spring. Heterogeneity of the canopy also 

increased during certain growth stages and added further spatial uncertainties (Pieruschka et al., 

2014). At the same time, larger solar zenith angles during spring and fall can drive bidirectional 

reflectance artifacts and introduce uncertainties into reflectance of snow measured from ground (Ball 

et al., 2015). This is especially obvious for those instances of reflectance greater than 1 measured on 

the ground, caused by reflected direct sunlight in the up-welling with respect to a totally diffuse down-

welling reference. We addressed this issue partially by filtering the ground measurements for solar 
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zenith angle below 75°, but could not rule out bidirectional reflectance artifacts driven by surface 

anisotropy. Furthermore, additional uncertainties were introduced by the circumstance that  satellite 

measurement varied in viewing angle depending on the position of the ROI in the swath width over 

both sites, as the bidirectional distribution of reflectance varies significantly in natural canopies (Aasen 

and Bolten, 2018; Burkart et al., 2015a). This effect is very difficult to assess from the satellite scale 

and would require a thorough investigation of bidirectional reflectance distribution using goniometers 

or drones on the ground (Biriukova et al., 2020; Honkavaara and Khoramshahi, 2018; Stow et al., 2019), 

which was beyond the scope of this study. Investigating spatial uncertainties related to canopy 

characteristics using spatial clustering is promising (Rejichi and Chaabane, 2015). We investigated 

spatial homogeneity at satellite level, clustering similar pixels of the subset pixels with respect to their 

temporal pattern in NDVI. The footprint of the ground measurements in OHP was equal or larger than 

the S-2 pixel size. This large footprint minimized influences of individual plants and other smaller 

features. Thus, canopy characteristics were assumed as spatially homogenous for that integrated 

footprint (Jiang et al., 2006). The same assumption was made for the equally large ground-projection 

of the S-2-pixel size. In consequence of the rather homogenous canopy in OHP, the algorithm identified 

the largest number of similar pixels within one cluster but at a shallow depth of differentiation. Thus, 

it was followed that larger areas could be seen as homogenous and provided little spatial diversity at 

that scale. This reasoning is supported by the median residual in NDVI between ground and satellite 

around 0 in OHP. In contrast, the canopy in Torgnon was identified as more diverse, indicated by the 

3 larger clusters at greater depth of differentiation. It is noteworthy that the spectrometer footprint 

on the ground was integrating a smaller area in Torgnon. However, sub-pixel size variations of the 

canopy remained difficult to track and affected especially the comparison with the smaller footprint 

of FloX and RoX on the ground. Thus, it is advisable to examine the heterogeneity of the investigated 

canopy carefully with the best spatial resolution and visually explore the site when installing field 

spectrometers on the ground. The footprints of the ground measurements were chosen in order to be 

representative for a larger area with respect to the S-2 pixel-size and to minimize uncertainties related 

to spatial heterogeneity in this study. In both, OHP and Torgnon was the spatial location of ground 

measurements correctly recognized within one cluster of similar pixels. The ground measured 

temporal signatures overlapped with the temporal signatures associated with the corresponding 

cluster especially well during summer. In consequence, spatial clustering of S-2 pixels with respect to 

the associated temporal signatures in NDVI is considered a very useful tool to identify similar areas 

and to extrapolate the high-resolution temporal ground measurements, given that homogeneity of the 

canopy and representativeness of ground measurements can be assumed (Bador et al., 2015; Duveiller 

and Cescatti, 2016). However, care must be taken to account for the seasonality of the discrepancy 

between ground and satellite with respect to the temporal dynamics of the investigated ecosystem. 
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Hence, extrapolation of information from the field spectrometer readings was not valid for times when 

the temporal signatures did not overlap well with the associated cluster and absolute temporal 

residuals were high. Likewise, the variability inside the pixel-associated clusters showed a seasonal 

pattern and can help to indicate the uncertainties around similar satellite pixels providing abundant 

ground coverage (Nagai et al., 2020). Uncertainties of field spectrometer readings are affected by 

morphological diversity of the canopy (Singh et al., 2015) and represent a challenge when generalizing 

insights  into larger areas from the satellite. Thus, valid spatial extrapolation of high-resolution, 

temporal measurements into a larger area requires the assessment of the spatial uncertainty budget 

(Wen et al., 2020).   

5.5.3 Cloud filtering 

The automated field spectrometer systems FloX and RoX are capable of continuously monitoring one 

ROI at very high temporal and very high spectral resolution (Drolet et al., 2014). In contrast, 

atmospherically corrected S-2 TOC data depict an entire spatial scene of many pixels at a coarser 

temporal and coarser multispectral resolution (Linkosalmi et al., 2022). Only the harmonization of 

cloud-free data from both platforms is possible. Thus, the validation of cloud-free pairs of S-2 

overpasses and overlapping measurements on ground was an important pre-requisite for this work. 

Therefore, an approach for cloud-filtering based on continuous down-welling radiance measured by 

automated field spectrometers on the ground was employed. The ground-based filtering approach 

outperformed the S-2 cloud masks and identified also small obstructions from high, thin and small 

clouds reliably in the limited areas around the spectrometer site. In contrast, using a cloud-mask and 

setting a threshold of zero for the percentage of cloud-coverage would not suffice to rule out small 

clouds inside the scene (Baetens et al., 2019). In consequence, total rejection of all data with non-zero 

cloud-cover was not feasible based on cloud-masks. Consequently, using ground-based down-welling 

radiance allowed for a much more selective filtering by rejecting data, which was actually affected by 

clouds at the time of the S-2 overpass at the spectrometer site. Since the hemispherical cosine diffusor 

of the FloX/RoX monitored rapid changes in irradiance continuously (Burkart et al., 2022), clouds and 

cloud shadows were identified precisely by measuring the discrepancy from a linear evolution of down-

welling radiance for very short time windows, e.g. 20 minutes around the S-2 overpass. Cloud filtering 

using continuous ground measurements of irradiance is recommended only for experiments of limited 

spatial expanse around the spectrometer site, not exceeding the direct line of sight of the ground-

based optics. The correct identification of clouds in satellite data remains challenging under rapidly 

changing atmospheric conditions to this day (Linkosalmi et al., 2022; Schläpfer et al., 2020b). Thus, 

cloud detection should be informed by the use of automated ground measurements when possible. 
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5.6 Conclusion 

A network of standardized, automated field spectrometer systems was validated using Sentinel-2 TOC 

reflectance as reference in 10 different sites around the globe. Good overall agreement between field 

spectrometers and Sentinel-2 level 2-A TOC reflectance suggested mostly consistent reflectance data 

throughout the network. Deviations of individual samples and sites were mainly caused by slight spatial 

misalignments of Sentinel-2 pixels and the spectrometer footprints, by the instrument setup, 

atmospheric compensation and variable landscape heterogeneity. Future works should aim at 

correcting data product deviations from multiple ground sites using Sentinel-2 as a reference and move 

towards fully harmonized data. We observed a very good agreement between NDVI obtained from the 

field spectrometers and Sentinel-2, while the propagated errors from individual spectral bands were 

more noticeable with the more complex TCARI and EVI. The seasonal patterns of NDVI residuals on 

ground with respect to the satellite demonstrated increased uncertainties from summer to winter for 

the dynamic, heterogenous alpine ecosystem due to diverse vegetation phenology, snowfall and 

snowmelt, in contrast to a random distribution of residuals in a snow-free and homogenous oak forest 

in southern France. Thus, it is recommend to carefully consider the seasonal landscape dynamics when 

validating continuous ground measurements against satellite data. Furthermore, cloud filtering based 

on ground-measured irradiance showed a very robust way to eliminate overcast scenes in limited areas 

and outperformed conventional cloud-mask. We recommend to further exploit the potential for 

improving cloud-filtering of satellite data based on automated, continuous spectrometer 

measurements on the ground. 

Validating the network of automated field spectrometers around the globe against Sentinel-2 

demonstrated the potential of harmonizing standardized, hyperspectral, temporally dense reflectance 

data with respect to the satellite. The spatial domain of the satellite scale informed the assessment of 

uncertainties and assumptions of homogenous areas on the ground. Future works combining different 

optical sensors in various locations will benefit from harmonizing their data against Sentinel-2 as a 

vigorously standardized refence offering global coverage.  
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6.1 Abstract 

Non-invasive investigation of surfaces from drones and manned aircraft used as camera platforms is a 

well-established remote sensing practice. However, cross-comparison of multispectral reflectance 

from different camera systems across different platforms, locations and times can be challenging. We 

investigate reflectance retrieved from Sentinel-2 and two airborne camera systems with respect to the 

mobile, radiometrically calibrated, two-channel hemispherical-conical field spectrometer system RoX. 

This spectrometer system serves in combination with a nine-panel grey scale as ground reference and 

transfer instrument. In the first step, the ground reference was validated against Sentinel-2 reflectance 

including atmospheric compensation. Our results suggest significant differences in the uncorrected 

reflectance from the two airborne sensors with respect to instantaneous calibration across 22 mixed 

https://doi.org/10.1007/s41064-022-00231-x
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targets. In the second step, those differences were reduced to a median discrepancy below 10% using 

the proposed in-field empirical line correction method (ELC). Continuous irradiance correction further 

improved the agreement across the validation targets and achieved a coherent reflectance dataset 

from all four different sensor systems, from the satellite level to the ground and airborne level, 

considering the limitations of instrument and in-field handling. NDVI maps created from drone and 

manned aircraft achieved an agreement around 89% and 95% compared to the satellite after 

calibration and correction. We consider in-field calibration with additional, continuous down-welling 

radiance correction of reflectance promising to support fusion of information across four sensors and 

platforms. Thus, field spectrometer systems serve as transfer instruments and bridge the gap of 

information from the satellite down to the ground and airborne scale in future airborne mapping and 

classification efforts. 

6.2 Introduction 

Modern remote-sensing systems allow non-invasive, yet detailed insights into various targets from 

airborne and spaceborne platforms, e.g. for investigation of vegetation and soil (Bioucas-Dias et al., 

2013; Hall et al., 2008; Hank et al., 2019; Picard et al., 2016; Schmidtlein et al., 2007; Singh et al., 2015; 

Vanderbilt et al., 1998). While satellite images provide detailed information in time due to frequent 

overpasses, satellite images suffer at the same time from poor spatial resolution due to the very large 

distance between sensor and target (Mulla, 2013). The European Space Agency (ESA) currently 

operates Sentinel-2 satellites, which provide multispectral maps including 13 spectral bands in the 

visible and near-infrared, a high revisit rate and robust atmospheric path correction (Ariza et al., 2018; 

Drusch et al., 2012; Li et al., 2018). In contrast, airborne platforms, e.g. drones or manned aircraft, 

provide the benefit of high spatial resolution due to lower altitude and airspeed but cannot provide 

many frequent overpasses (Berni et al., 2009; Siegmann et al., 2019). Multispectral cameras on 

airborne platforms often lack direct assessment of the atmosphere and incoming light conditions 

(Mamaghani and Salvaggio, 2019). Thus, calibration of retrieved reflectance values with respect to 

incoming light is typically achieved in comparison with a well-characterized target, e.g. reference 

panels or grey-scales, prior to or during the flight (Guo et al., 2019; Von Bueren et al., 2015). While 

irradiance is considered as rather stable and following a cosine-function on a perfect clear-sky day, 

changes in the atmosphere can cause a vast deviation from this assumption and result in biased 

reflectance and indices derived from airborne imagery (Schläpfer et al., 2020a; Stow et al., 2019). In 

consequence, using a ground reference for the purpose of calibration is essential to allow for a valid 

comparison between different platforms and imaging sensors (Cogliati et al., 2015a). Radiometric 

corrections are required to eliminate disturbances related to sensors, atmosphere, clouds and 

bidirectional reflectance distribution function (BRDF) in airborne and spaceborne imaging data 
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(Honkavaara et al., 2013; Honkavaara and Khoramshahi, 2018; Schläpfer et al., 2020b). In addition, 

varying illumination conditions need to be considered and compensated for, while irradiance sensors 

installed on drone or aircraft are often rendered unusable by flight altitude and movements (Hakala et 

al., 2013). Thus, changes in the down-welling light can be monitored only by using continuous 

irradiance measurements on the ground during the flight campaign. At the same time, mobile ground 

references can validate the multispectral reflectance in aerial images with multiple independent 

samples in various locations and further inform other aspects of remotely sensed reflectance (Agapiou 

et al., 2010; Damm et al., 2015; Shi et al., 2020). 

Hyperspectral point sampling with field spectrometer systems has been used for decades as ground 

reference to calibrate and validate airborne sensors (Mihai et al., 2018; Milton et al., 2009; Yao et al., 

2013). The emergence of automated, hemispherical-conical spectrometer systems with two inter-

calibrated channels allows the assessment of up-welling and down-welling light at the same time and, 

thus, retrieve calibrated radiance and reflectance in principle even under changing atmospheric 

conditions (Burkart et al., 2015b; Cogliati et al., 2015a). The RoX field spectrometer system (JB 

Hyperspectral Devices, Düsseldorf, Germany) is a two-channel system, which includes a high-

resolution spectrometer in the visible to near infrared (NIR) spectral range. The device has been used 

in mobile applications to assess water quality or snow albedo using hyperspectral reflectance 

characteristics, or in stationary setups to infer air quality through continuous measurements of 

incoming and reflected light (Kokhanovsky et al., 2021; Maier et al., 2021; Naethe et al., 2020; Wagner 

et al., 2018). Dual-channel, hemispehrical-conical optical configuration makes the device suitable for 

reflectance validation without the need for alternating measurements of target and a white reference. 

Due to the integrated cosine corrector in the down-welling channel and a lightweight gimbal, a white 

reference in the field is becoming obsolete. This enables mobile ground measurements to be both, 

more flexible and more mobile. 

Grey-scales serve as reference targets for the inter-calibration of reflectance across imaging sensor 

systems during survey-campaigns with multiple sensor-platforms. (Guo et al., 2019). The defined 

reflectance of each individual panel differs slightly for this purpose and is typically defined with a 

reference instrument in the field or in the lab (Klein et al., 2011; Mamaghani and Salvaggio, 2019). An 

empirical line correction (ELC) uses the reflectance measured with the reference instrument above the 

grey-scale and relates it by linear regression to the measured reflectance from the airborne camera 

system (Karpouzli and Malthus, 2003; Pompilio et al., 2018; Wang and Myint, 2015). Regression 

coefficients are calculated using the linear relationship between reference and airborne reflectance 

(Wang and Myint, 2015). The derived slope and intercept serve as correction coefficients for the ELC 

and are applied to rescale the raw reflectance values from the airborne sensor systems. This correction 

allows the fusion of data from different sensors and their combined use as coherent dataset in further 
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efforts, e.g. classification and mapping of waters, sediments and vegetation (Bioucas-Dias et al., 2013; 

Moharana and Dutta, 2014; Pompilio et al., 2014; Smith et al., 2003; Spyrakos et al., 2018; Zhao et al., 

2019). In relating all data to a single, radiometrically calibrated reference, a doorway opens up towards 

analysis of multiple airborne measurements with respect to the temporal domain (Al-Rawabdeh et al., 

2017; Guyet and Nicolas, 2016; Oxoli et al., 2020; Petitjean and Weber, 2014; Rejichi and Chaabane, 

2015; Shi et al., 2020; Turner et al., 2015). 

We present the cross-calibration of two airborne, multispectral camera systems, based on in-situ 

characterization of a grey-scale using a high-resolution hyperspectral field spectrometer as a 

radiometrically calibrated reference, which was previously validated against Sentinel-2 BOA 

reflectance. The correction coefficients are derived from the in-field ELC and are applied to the raw, 

imaging reflectance data recorded with an unmanned drone and a manned gyrocopter. In addition, 

we apply a continuous radiance correction to the reflectance retrieved from drone and gyrocopter to 

account for changes during the flights using continuous measurements of down-welling radiance with 

the RoX. The corrected, airborne reflectance is compared with the ground reference in 22 validation 

points, which are spread out across the field site. We investigate the agreement of reflectance from 

three different sensors and platforms with respect to Sentinel-2 BOA reflectance, aiming for a 

coherent, joint dataset towards enabling further inter-temporal and inter-spatial analyses. 

6.3 Equipment and Methods 

The following sections describe site, equipment, data pre-processing, post-correction and validation. 

6.3.1 Site 

Ground sampling points (GSP) and aerial images were collected on March 30th, 2021 during clear sky 

conditions in a closed, non-public property in Schmidtheim, Germany, within ca. 6 km distance from 

the airfield Dahlemer Binz (GPS - WGS84, Lat.: 50.409N, Lon.: 6.590E). The sampling area was located 

in close proximity to a stone pit, with different areas of bare soil, gravel, low-growing meadow and 

small, planted trees. Due to the early time in the year, a closed vegetation canopy was not yet 

developed. Only low grass was growing in the northeastern part of the sampling area. A few, young, 

evergreen conifers were located in the south of the sampling area. A map of the sampling area is 

provided in Figure 34. A grey-scale with nine different grey panels was placed in the center of the 

recorded area on the ground and recorded as GSP 2-10. In addition, 22 GSPs were spread out to cover 

vegetation and soil targets equally (Figure 34, GSP 11-32). 
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Figure 34: Orthomosaic recorded with MicaSense RedEdge-M on drone, geo-rectified hyperspectral GSPs of the mobile RoX 
system were marked with red triangles and labelled in ascending order with respect to the time of recording. 

6.3.2 Equipment and data 

Field spectrometer 

Hyperspectral ground measurements were collected using a customized RoX monitoring field 

spectrometer with a spectral range of 340 nm – 832 nm across 1024 spectral bands and a spectral 

resolution of 1.5 nm full-width at half maximum (FWHM). The instrument was equipped with a two-

channel optical path that switches continuously between measuring up-welling and down-welling light 

using optical shutters. The down-welling channel was equipped with a cosine receptor and 

hemispherical field of view, the up-welling channel with bare fiber optics and a conical field of view of 

ca. 25° opening angle. 

In addition, a full measurement cycle consisted of recordings of the detector’s dark-current by closing 

the shutters for both channels. Automatic optimization of the integration time ensured to cover ca. 

80% dynamic range of the detector. Internal quality flags allowed for error tracing and ensured a 

consistent data quality. Furthermore, the instrument had undergone a thorough laboratory calibration 

routine, which included radiometric calibration, wavelength calibration and non-linearity 

characterization. The system was powered by a rechargeable LiPo-battery and mounted on a mobile 

three-legged tripod. 
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Figure 35: Mobile setup of JB Hyperspectral RoX monitoring field spectrometer (left) used as ground reference and nine-panel 
grey scale for in-field calibration and validation of airborne sensor systems (right). 

A gimbal-unit installed at the far-end of the boom at a height of 1.5 m above ground automatically 

maintained the nadir orientation of the optics, and ensured consistent recordings (Figure 35). Ten 

complete cycles were collected for each GSP, which included the measurement of down-welling light, 

reflected light, again down-welling light and then dark-current in both channels. In addition, 

continuous measurements of down-welling light were recorded in-situ during the air time of drone 

and gyrocopter. For this purpose, a second RoX with identical optical configuration was set up near the 

airfield in ca. 4800m distance to the sampling site and served as a second reference for down-welling 

light. The device recorded continuously for 6h incoming radiance to support the correction of changes 

during the airborne measurements (Figure 36). 

  

Figure 36: Diurnal course of mean down-welling radiance between 400 nm and 700 nm, continuously measured with the RoX 
nearby the airfield on March 30th, 2021. Ideal clear-sky conditions exhibited a pattern, which followed a cosine function in 
the morning. High cirrus clouds affected the later readings and caused shading of the entire area in the afternoon. Time of 
Sentinel-2 overpass at 10:34 marked in blue, Gyrocopter overpass between 11:08 and 11:46 marked in orange, time of drone 
overpass between 13:30 and 13:49 marked in green. 
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Drone and Camera 

Multi-spectral image data were collected using the five-band multispectral camera MicaSense 

RedEdge-M, carried by a DJI Phantom 4 Pro V2.0 UAV with four rotors (Figure 37). The MicaSense 

RedEdge-M provided information in the five spectral bands blue, green, red, red edge and near infrared 

(NIR), as specified in Table 13. 

Table 13 Optical specification of MicaSense RedEdge-M multispectral camera system as carried with the drone in this study, 
central wavelength and FWHM are given in nm for each spectral band. 

Filter, band Blue Green Red Red 

Edge 

NIR 

Central 

wavelength 

in nm 

475 560 668 717 840 

FWHM in nm 20 20 10 10 40 

 

A 5-band Down-welling Light Sensor (DLS) was mounted at the top of the drone to correct for changing 

light conditions during each flight. The measurements of the DLS were stored in the metadata of each 

image file during the flight. However, the usage of the DLS was recommended for overcast conditions 

only in the standardized MicaSense processing chain, because the UAV tilted during the flight and the 

DLS pointed in changing directions with changed orientation of the drone (Mamaghani and Salvaggio, 

2019). Thus, the DLS information could not be used for the MicaSense data under clear-sky conditions.  

 

Figure 37: The DJI Phantom 4 Pro V2.0 drone was used to carry a MicaSense RedEdge-M multispectral camera. 
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A calibrated reflectance panel from MicaSense was captured immediately before the flight in order to 

transform the Digital Numbers (DN) from the RedEdge-M into raw reflectance values. This raw 

reflectance was used for the comparison with other sensors and for applying further correction 

methods. 

Images were triggered during flight every two seconds, gain (ISO) and exposure settings were set to 

automatic. The drone was moving at a speed of about 8 m/s at a flight altitude of 80 m, which resulted 

in spatial resolution of approximately 6.5 cm/pixel. 

Gyrocopter sensor carrier platform 

The gyrocopter MTOsport (Figure 38 a) used by Fraunhofer Anwendungszentrum für multimodale und 

luftgestützte Sensorik (AMLS), Remagen, Germany, provided a comparatively inexpensive and flexible 

airborne carrier platform, primarily used with custom built spectral camera systems. A customized 

sensor carrier system “FlugKit” (Kneer et al., 2016) was developed explicitly for the MTOsport and 

facilitated fast and flexible integration of different imaging sensors. The FlugKit carrier was integrated 

into the gyrocopter and included an aircraft-independent power supply, the Sensor Management 

System (SMS), Global Navigation Satellite System (GNSS) receivers, and two external mounts for 

electromechanically stabilized camera systems. In addition, a Flight Management System (FMS) was 

temporarily installed on the pilot's instrument panel and connected to the SMS. The FMS handled 

navigation along a pre-calculated flight path and triggered data acquisition of the camera system 

through the SMS at specific trigger points. These trigger points were calculated during flight planning 

according to the selected parameters, e.g., image overlap, flight altitude, or ground sampling distance 

(GSD). The individual system components have been described in detail in previous publications (Jenal 

et al., 2015; Weber et al., 2015a). FlugKit has recently been extended with a Real-Time Kinematic (RTK) 

capable GNSS receiver allowing a Post-Processed Kinematic (PPK) correction as a backup solution. 

 

Figure 38: Microlight gyrocopter carrying the base system during the flight on March 30th, 2021 in (a), PanX 3.0 mounted in 
an electromechanical stabilization platform for laboratory tests in (b). 
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Gyrocopter Camera Unit 

On March 30th, 2021, the FlugKit was operated with the PanX 3.0 camera system as exterior payload. 

The PanX 3.0 is the latest multispectral camera system developed by AMLS. It is the successor of the 

PanX camera system (Weber et al., 2015b) and is equipped with four identical industrial board-level 

cameras (Allied Vision Manta G-1236B). 

Table 14 Feature overview of the PanX 3.0 camera system 

Parameter Specified Value 

Resolution 4 x 12 Megapixel 

Bit-depth / 

Dynamic 

Range 

12 bit / 71.8 dB 

Field of View 62.5° (horizontal) / 47.8° (vertical) 

Weight 3.85 kg (including gimbal) 

Filter 

central 

wavelength  

 

bandwidth 

blue 

 

470 nm 

 

50 nm 

green 

 

532 nm 

 

55 nm 

red 

 

630 nm 

 

45 nm 

NIR 

 

810 nm 

 

50 nm 

 

Every camera was combined with a band-pass filter between 400 and 1000 nm. The filters used on 

March 30th are specified in Table 14. Those selected band-pass filters were mounted between lens and 

sensor in the PanX 3.0 system, which also provided a significant advantage over the preceding model. 

The applied filter wavelengths match typical spectral features of vegetation in the visible (VIS) and 

near-infrared (NIR) spectrum and allow the calculation of established vegetation indices like NDVI. 

Each sensor system used in the FlugKit, including the PanX 3.0, was integrated into a custom-made 

electromechanical gimbal, which ensured a permanent nadir viewing angle during flight (Figure 38). 

The main features of the PanX 3.0 camera system are summarized in Table 14. 
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The gyrocopter flew at an altitude of 300 meters above ground level with a speed of ca. 30 m/s. An 

area of 2.62 km2 was covered by 300 images per band with a spatial resolution of 9 cm/pixel. A side 

overlap of 85% and a forward overlap of 62% between the images were guaranteed during the 45-

minute-long flight. In order to optimize the dynamic range of each spectral band, the integration time 

of every camera was individually set by capturing images of a nearly ideal diffuse, Lambertian reference 

panel before the flight. 

Sentinel-2 acquisition 

The Copernicus Hub provided by ESA was used to access and download relevant Sentinel-2 data, which 

were recorded roughly at the same time of field measurements. We used the semi-automatic 

classification plugin for QGIS to download the multispectral satellite images (Congedo, 2021). An 

overpass at 10:34 was available in best immediacy with the ground measurements at the field site (see 

Figure 36). The scene was confirmed to be free from clouds. We downloaded the Level-2A product of 

flightpath T32ULA including sub-pixel multi-spectral reflectance registration (Ariza et al., 2018). Level-

2A reflectance included ESA’s SEN2COR atmospheric correction and provides orthorectified, 

atmospherically corrected BOA reflectance, which was directly used for further analysis with field 

spectrometer measurements on the ground (Baetens et al., 2019). The multispectral bands 2 to 8 were 

extracted for further analysis, which overlapped with the usable spectral range of the RoX (see Table 

15).  

Table 15: Selected Sentinel-2A multispectral bands, which overlapped with the spectral range of the RoX, central wavelength 
and FWHM are given in nm for each spectral band. 

Band B2 B3 B4 B5 B6 B7 B8 

Central 

wavelength 

in nm 

492 560 665 705 740 783 832 

FWHM in 

nm 

66 36 31 15 15 20 106 

 

6.3.3 Data pre-processing 

Field spectrometer data from the direct output of the instrument in raw digital numbers were 

processed using R and the packages FieldSpectroscopyCC9 and FieldSpectroscopyDP10. The result of 

this processing was calibrated upwelling radiance, down-welling radiance and reflectance. These 

                                                           
9  Julitta, T. “FieldSpectroscopyCC”. Github, Inc. Accessed April 5, 2024. https://github.com/tommasojulitta/ 
FieldSpectroscopyCC. 
10 Julitta, T. “FieldSpectroscopyDP”. Github, Inc. Accessed April 5, 2024. https://github.com/tommasojulitta/ 
FieldSpectroscopyDP. 
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calibrated radiance and reflectance data were further processed into a standardized format for the 

inter-comparison of the different sensors and platforms. In the next step, the spectral characteristic 

response of Sentinel-2A band 2 - 8, the MicaSense and the PanX3.0 bands were simulated using the 

calibrated hyperspectral reflectance data from the RoX. Gaussian response functions were assumed 

for the multispectral bands of the camera systems, following Schaepman and Dangel (2000). Central 

wavelengths and FWHMs specified in Table 13, Table 14 and Table 15 were used to calculate the 

multispectral response matching with the actual sensors, respectively. Mean and standard deviation 

were calculated for each GSP, considering ten individual ground measurements in each point. 

Differential GPS with RTK was used for reliable positioning in the field and to locate the GSPs with a 

precision of 2 cm within the orthorectified geomosaic, following the approach by Schläpfer and Richter 

(2002). A repeatable sampling of desired Regions of Interest (ROI) was possible only by use of the 

precise positioning with RTK-GPS, which referenced each ground measurement. GSPs were labeled in 

ascending order with respect to the time of recording and each assigned with RTK-GPS coordinates. 

RTK-GPS coordinates were recorded alongside the hyperspectral measurements using a Topcon HiPer 

V in the field. 

Furthermore, the GPS coordinates were used to extract the pixel-based, multispectral information 

from the Sentinel-2A image. The selected spectral bands had a spatial resolution between 10 m and 

20 m per pixel. Using a 20 m x 20 m ROI for extraction around each GSP resulted in 2 x 2 pixels for 

bands B2, B3, B4, B8, and in 1 x 1 pixel for bands B5, B6, B7, respectively. A recognition of the grey-

scale was not possible due to the coarse spatial resolution. Larger, homogenous areas were selected 

around the site to cross-compare reflectance measured on the ground and satellite-based, BOA 

reflectance. Thus, only GSP 11 to 32 were used to extract pixel values, mean and standard deviation, 

as they were recorded over larger features, considered homogenous both, from field spectrometer 

footprint and from Sentilel-2 pixel projection. The visual inspection of the surfaces on the ground, 

which were covered by the RoX’s field of view and the Sentinel-2 pixels allowed assuming sufficient 

homogeneity of the examined areas. Linear regression between ground-measured reflectance using 

the simulated multispectral response and satellite-based BOA reflectance was computed, providing 

coefficient of determination R², slope and intercept. The resulting linear coefficients were applied to 

adjust the ground measurements using ELC validated with the satellite. Thus, adjusted and validated, 

hyperspectral reflectance were used as ground reference for later analyses. 

The raw MicaSense images containing DNs were converted to radiance and reflectance using the 

MicaSense calibrated reflectance panel, which was captured prior to the flight. The processing chain 



 
117 

was based on the MicaSense image processing tutorials available for Python 3 on GitHub11. The 

processing included correction for vignette effects, a normalization for automatic exposure and gain 

settings. DLS sensor values could not be used due to erroneous readings under clear sky conditions. 

Agisoft Metashape was used for the photogrammetric processing and stitching of a geo-rectified 

orthomosaic from image data recorded with the MicaSense camera. 

Georeferencing of the images recorded with PanX 3.0 was based on post-processing of the GPS 

positions after the flight (Baeumker et al., 2020), including additional manual referencing using ground 

control points. The raw pixel values were converted to reflectance based on grey-card readings. The 

resulting images were processed with the Structure from Motion (sfm) algorithm using the 

photogrammetric software Metashape from Agisoft (Westoby et al., 2012). 

6.3.4 Post correction and cross-validation 

A grey scale comprising nine different reflectance intensities was measured simultaneously with the 

RoX on the ground and from two airborne camera systems on drone and gyrocopter. The grey-scale, 

as shown in Fig. 2, consists of nine individual 30 cm x 30 cm aluminum panels, fixed in a wooden frame. 

Each panel has been coated with a different, spectrally linear, matted paint of Lambertian reflectance 

characteristics. All nine panels exhibited each a defined gradient in reflectance across the investigated 

spectral range of MicaSense ,PanX 3.0 and RoX (Figure 39). The panels’ reflectance was spectrally flat 

across all multispectral bands and served as a reference for the calibration of MicaSense and PanX 3.0 

with respect to the hyperspectral ground measurements. 

 

Figure 39: Plot of the nine-panel grey-scale reflectance in different colors for each of the panels, measured by the RoX (line), 
convolved for MicaSense (triangles) and PanX 3.0 (squares). 

                                                           
11  MicaSense, Inc. “imageprocessing”. Github, Inc. Accessed April 05, 2024. https://github.com/micasense/ 
imageprocessing. 
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For this purpose, all nine panels were measured in close proximity using the RoX spectrometer. The 

convolved spectral bands of MicaSense and PanX 3.0 from the hyperspectral ground data (Figure 39) 

were compared with the actual raw reflectance from pixel values in the aerial images for the entire 

grey scale. A region of interest with 18cm (4x4 pixels) from the drone and 18 cm (2 x 2 pixels) from the 

gyrocopter was assumed, centered around the middle of each panel for the extraction of the actual, 

raw, multispectral reflectance. Mean and standard deviation were extracted for the corresponding 

pixel values. Assuming a linear regression for each band separately, intercept and slope were 

computed with respect to the ground reference. Finally, thus computed intercept and slope were 

applied as correction coefficients for the empirical line correction “ELC field”, using each band of the 

raw MicaSense and PanX 3.0 reflectance data, separately. The corrected results were reported for the 

validation points, respectively. 

Continuous Irradiance Correction (CIC) was performed in addition to the ELC. We applied an approach 

similar to the irradiance correction with the sunshine sensor in Olsson et al. (2021). Reflectance with 

respect to the wavelength 𝜆 was retrieved by both airborne camera systems, each with respect to a 

single reflectance calibration of a known reference target prior to the flight, as shown in Equation 15: 

𝑅𝜆,𝑇0 =
𝐿↑,𝜆,𝑇0

𝐿↓𝜆,𝑇0
      (15) 

Measurements of the up-welling radiance 𝐿 ↑𝑇0 of each camera system were related to the known 

reflectance 𝑅𝑇0 from the reference target with respect to the inherent down-welling radiance 𝐿 ↓𝑇0 

at the time T0 prior to the flight. Assuming static irradiance for all later times Ti, Equation 16 computes 

reflectance from the airborne sensors using measured upwelling-radiance during the flight at time Ti 

with respect to the down-welling radiance 𝐿 ↓𝑇0. 

𝑅𝜆,𝑇𝑖 =
𝐿↑𝜆,𝑇𝑖

𝐿↓𝜆,𝑇0
      (16) 

However, the assumption of static down-welling radiance holds true only for very short periods and 

creates an increasing error in the reflectance retrieval with increasing time Ti due to changes in the 

down-welling light during the flight. To account for this fact, continuous measurements with the RoX 

provided a reference for the actual changes of the down-welling light during the entire experiment 

(Figure 36). Thus, the measured down-welling radiance 𝐿 ↓𝑇0 at the time of calibration and the change 

𝛥𝐿 ↓𝑇𝑖  in down-welling radiance were used in Equation 17 to correct the retrieved reflectance 

𝑅𝑇𝐶𝑖.during the flights. 

𝑅𝜆,𝑇𝐶𝑖 =
𝐿↑𝜆,𝑇𝑖

𝐿↓𝜆,𝑇0+𝛥𝐿↓𝑇𝑖
     (17) 
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Using the reflectance 𝑅𝜆,𝑇𝑖 , which was retrieved during the flight from the airborne camera platforms 

with respect to the fixed down-welling 𝐿 ↓𝑇0, we substituted the measured up-welling radiance in 

Equation 17 with Equation 16 solved for 𝐿 ↑𝜆,𝑇𝑖, calculated the difference in down-welling radiance 

between 𝐿 ↓𝑇1 and 𝐿 ↓𝑇0 and further solved to Equation 18: 

𝑅𝜆,𝑇𝐶𝑖 = 𝑅𝜆,𝑇𝑖
𝐿↓𝜆,𝑇𝑜

𝐿↓𝜆,𝑇𝑖
     (18) 

Validation of the applied ELCs was performed using 22 ground-sampling points, which were measured 

with the mobile field spectrometer including different vegetation and bare soil targets. Assuming a 

region of interest of 16 cm radius with respect to the footprint of the ground measurements, mean 

and standard deviation of raw reflectance as well as the ELC field pixel values were extracted for each 

point. In addition, CIC using Equation 18 was performed based on ELC field reflectance values to 

account for changes in irradiance during the flight. Time T0 was assumed at 13:38 for the drone when 

recording the reference panels and reflectance was corrected for the overpass time Ti of the GSPs 

between 13:30 and 13:49, accordingly (see Figure 36). For the gyrocopter, we assumed T0 with the 

reflectance calibration using a grey-card of Lambertian characteristics at the airfield at 11:08 and 

calculated the corrected reflectance with respect to the actual time of the overpass of the GSPs 

between 11:27 and 11:46. The extracted and corrected pixel values from the aerial images were 

compared by means of linear regression with the convolved bands from the ground reference for each 

camera system individually. Pearson’s correlation coefficient R², intercept and slope were reported for 

raw, ELC field and ELC field + CIC reflectance values with respect to the ground reference. The relative 

percentage difference of raw and corrected pixel values in each spectral band was computed for each 

GSP with respect to the ground reference. 

Finally, corrected orthomosaics from micaSense and PanX 3.0 were resampled to match the 10 m 

spatial resolution of the Sentinel-2 images. For this purpose, pixels from micaSense and PanX 3.0 were 

aggregated by calculating the mean for pixels, which fell inside one Sentinel-2 pixel. Sub-pixels on the 

edge were assorted to the super-pixel with which they shared the largest proportion. Thus, corrected 

and resampled PanX 3.0 and micaSense maps were created with identical spatial resolution with 

respect to Sentinel-2. NDVI was calculated for each pixel to better compare the different multispectral 

bands across the different platforms (Tucker, 1979). The NIR and red band were used for the 

calculation, both, in resampled micaSense and PanX 3.0 images respectively. NDVI was computed in 

Sentinel-2 pixels using bands B8 and B4 accordingly. The pixel values were extracted with respect to 

their position and compared using linear regression. Thus, NDVI pixel values from PanX 3.0 and 

micaSense were compared with NDVI from Sentinel-2, calculating the coefficient of determination as 

a result. In consequence, the final validation step was performed against Sentinel-2 NDVI (Figure 40). 
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Figure 40: Schematic overview of the performed calibration and validation exercise, including correction for changing 
irradiance conditions. Hyperspectral field spectrometer measurements were the centerpiece from which all other imaging, 
multispectral sensors were cross-calibrated and finally validated against Sentinel-2 NDVI. 

 

6.4 Results 

 

Figure 41: Ground measured reflectance with respect to Sentinel-2 BOA reflectance across 7 bands (B2 – B8), each in a different 
color, extracted from single pixel for each GSP. The grey dashed regression line and diamond symbols show the native RoX 
measurements. The black dotted regression line and triangle symbols show the corrected RoX measurements. 

Reflectance measured with the RoX was compared with the BOA reflectance including atmospheric 

correction from the Sentinel-2 overpass. Using the native RoX measurements, a tendency for 

multiplicative (ca. 0.96) and additive (ca. -0.04) underestimation of the Sentinel-2 reference was 

observed across all measured GSP (Figure 41). Especially in B4 and B5 a few outliers of strong 

underestimation were recognized. The rest of the data points were spread without any obvious 
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patterns with respect to the spectral bands around the regression lines. Assuming that ground 

measurement were linearly related and proportional to the Sentinel-2 reference, ELC resulted in a 

regression with R² around 0.88, intercept and slope approaching the line of identity after correction. 

Thus, the accuracy of the ground spectrometer measurements was improved to less than 0.2% additive 

error, while the precision around 88% would remain the same with respect to Sentinel-2 BOA 

reflectance. 

   
Figure 42: Relative percentage difference for all validation points with respect to the ground reference, calculated in each 
band for the MicaSense in (a) and for the PanX 3.0 in (b), raw camera reflectance given in blue, ELC field reflectance is given 
in green and ELC field plus CIC is given in red. 

Likewise, raw drone image reflectance and raw gyrocopter image reflectance were corrected using the 

ELC field and the combination of ELC field and CIC. Relative difference of reflectance values with 

respect to the ground reference for each band across all validation points were reported in Figure 42a 

for the drone and in Figure 42b for the gyrocopter, respectively. A relative difference with highest 

median was reported in the 840 nm band of the MicaSense. Relative differences in other bands were 

distributed with ascending median across all bands. As a result, relative differences with respect to the 

reference were significantly reduced using the ELC field. The median relative difference remained 
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below 10% and suggested a significantly improved agreement between the two systems. Interquartile 

range decreased also significantly with ELC field in almost all bands, except for the 840 nm and 717 nm 

bands, which exhibited unchanged interquartile ranges. The relative differences with respect to the 

ground reference were reduced further using the ELC field + CIC, exhibiting slightly increased spreading 

and lower median relative difference. 

The raw reflectance values extracted for all ground-sampling points from the gyrocopter data exhibited 

a rather stable relative difference across the four spectral bands of the PanX 3.0 camera system with 

respect to the ground reference. The lowest median relative difference was below -10% in the 470 nm 

band, the highest median relative difference was around 20% in the 630 nm band with respect to the 

ground measurements. Outliers exhibited a similar spreading in the 470 nm, 532 nm and 630 nm band. 

The smallest range of relative differences was reported in the 810 nm band. Applying the ELC field, 

corrected reflectance values exhibited even an increased relative difference compared with the raw 

reflectance with respect to the ground reference. The CIC reduced median relative difference between 

airborne reflectance and ground reference significantly, resulting in median relative differences below 

10% across all spectral bands with the PanX 3.0. 

ELC field improved the coherence in retrieved reflectance between all three systems significantly in all 

recorded wavebands (Figure 43). Taking changing irradiance conditions over time during the flight into 

account, the CIC improved the agreement between airborne reflectance and ground reference even 

further. This improved coherence was likewise reflected in the slope and intercept between airborne 

and ground-based reflectance values for all bands across all validation points extracted from the drone 

data (Figure 43 a) and from the gyrocopter data (Figure 43 b). Assuming a linear relationship between 

ground-based and airborne measured reflectance values, a high coefficient of determination with R² 

larger 0.9 was reported for raw and corrected reflectance from PanX 3.0 and micaSense. Slope and 

intercept of the raw reflectance recorded with the MicaSense camera across all validation points 

exhibited a noticeable, multiplicative overestimation with respect to RoX reflectance. In consequence, 

higher reflectance values were systematically more overestimated than lower reflectance values from 

the raw MicaSense reflectance for the validation points. A significantly improved agreement between 

drone reflectance and the ground reference was reflected in a slope closer to one and intercept closer 

to zero for all validation points using ELC field. Thus, reflectance measured from the drone after the 

correction was more coherent with reflectance measured on the ground. Applying the CIC in addition 

to the ELC field reduced the intercept by half and improved slope to nearing one. Reflectance 

measured at the validation points from the gyrocopter also exhibited a strong correlation with the 

ground measurements, both in the raw and corrected reflectance. Slope higher than one and intercept 

deviating from zero, respectively, indicated a systematic overestimation of the raw reflectance also by 

the PanX camera system. This overestimation was eliminated, using the ELC field and resulted in a 
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slope around 0.9 and intercept closer to zero. Likewise, the agreement between the ground reference 

and reflectance measured from the gyrocopter were significantly improved applying ELC field and CIC. 

Airborne reflectance was considered equivalent to the ground reference, with slope nearing one and 

offset reduced further after full correction. In consequence, reflectance data recorded in the field from 

all three systems were considered coherent since ELC field + CIC corrected reflectance from micaSense 

and PanX 3.0 were equivalent with the ground reference. 

  
Figure 43: Comparison of raw reflectance extracted from the orthomosaic (blue), ELC field corrected reflectance (green) and 
ELC field plus CIC corrected reflectance (red), recorded with the MicaSense (a) mounted on the drone and PanX 3.0 (b) mounted 
on the gyrocopter, with respect to the ground reference. Error-bars indicate the standard deviation and points the mean value 
in each GSP and for all multispectral bands, respectively. 

Finally, we validated the corrected airborne data as NDVI product resampled to Sentinel-2 spatial 

resolution against the actual satellite product. Visual inspection showed that the Sentinel-2 image 

provided least spatial details in comparison to higher details in the resampled PanX 3.0 and highest 

details in resampled micaSense images (Figure 44 a, b and c). Especially the small pond in the right side 
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of the image was only depicted in the micaSense image with sufficient detail. Likewise, the structures 

around the bare soil in the bottom of the image were depicted with increasing detail in resampled 

PanX 3.0 and micaSense, in that order. Vegetation and bare soil could be clearly differentiated by NDVI 

from all three platforms. NDVI from the micaSense agreed with R² around 0.89, NDVI from PanX 3.0 

agreed with R² around 0.95 with the Sentinel-2-based NDVI (Figure 44 d). MicaSense NDVI exhibited a 

systematic tendency to underestimate Sentinel-2 NDVI in addition to producing a larger number of 

random outliers. Pixel based NDVI from PanX 3.0 agrees very well with Sentinel-2 NDVI, showing also 

a more similar level of spatial detail in the resampled orthomosaic. 

 

Figure 44: NDVI map of the study site from Sentinel-2 (a), PanX 3.0 (b) and micaSense (c) resampled to Sentinel-2 spatial 
resolution around 10 m. Pixel values from micaSense and PanX 3.0 are compared with respect to Sentinel-2 NDVI using linear 
regression (d). 

 

6.5 Discussion 

For the fact that the RoX is a radiometrically calibrated instrument, the ground measured reflectance 

was retrieved with respect to an absolute reference (Slater et al., 1987). When comparing the ground-

measured with Sentinel-2 reflectance, we recognized a systematic discrepancy. The ground reference 

was validated and corrected against Sentinel-2 BOA reflectance to reduce systematic errors from 

instrument handling, calibration, optical configuration, path geometry, BRDF and the different 

footprints of the systems, which resulted in an overall agreement around 88% between RoX and 
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Sentinel-2 BOA reflectance. The line of identity was matched after the correction, indicating 

comparable dynamics in signal variation across platforms from the satellite to the field spectrometer. 

We observed only few significant outliers in B4 and B5, which were most likely related to a difference 

in size of RoX field of view and Sentinel-2 pixel size. The central area of the site provided large surfaces, 

which were considered as homogenous with respect to the field spectrometer’s field of view and the 

Sentinel-2 pixel projection on the ground. However, small-scale spatial variations are always present 

in natural surfaces and need to be considered as a source of uncertainty. We minimized this issue by 

placing the GSPs in locations, which were representative for a larger area after visual inspection on the 

ground. Significant differences were observed between raw multispectral camera reflectance from, 

both MicaSense and PanX 3.0, with respect to the ground reference from the hyperspectral field 

spectrometer. In turn, ELC based on in-situ characterization of a nine-panel grey-scale lead to an 

improved alignment of the reflectance values measured with drone, gyrocopter and field spectrometer 

over 22 validation points. This agreement between the three systems was improved further by 

applying an additional correction to the airborne reflectance, which accounted for the continuous 

changes in down-welling light during the flight. Since down-welling light conditions could change 

quickly due to changing atmosphere or solar angle, errors were introduced in the two airborne sensor 

systems from the assumption of fixed irradiance for the airborne reflectance retrieval (Gilabert and 

Meliá, 1993). Our continuous measurements of down-welling radiance with the RoX allowed the 

assessment of the actual irradiance at all times during the flight and served as a reference for 

correcting reflectance with respect to the changes in irradiance during image acquisition time. 

However, correction of spatial differences in down-welling light due to low, moving clouds remains 

difficult, because the reference measurements were taken during the flights in one location only and 

with some distance to the sampling site. Measuring irradiance ideally at the same time and place would 

reduce spatial uncertainties of lower clouds and is recommended in the future. In consequence, the 

presented method for continuous irradiance correction is recommended only for the application in 

conditions under which the spatial component could be neglected, e.g. for clear sky conditions or high 

cirrus clouds (Schläpfer et al., 2020b). Fast moving cumulus clouds or low cirrus affect the area with 

too much spatial heterogeneity and cannot be corrected by the approach (Gao et al., 1993). Since clear 

sky conditions were reported in the morning and high cirrus clouds affected the entire sampling area 

uniformly during the afternoon acquisition time, the combined dataset from all three different sensor 

platforms applying ELC field and CIC was considered coherent (Schmitt and Zhu, 2016). Thus, all three 

systems were cross-calibrated and temporal biases corrected, which would further allow the valid 

transfer of information across those systems, e.g. to create a fused data product with spectral 

information from all airborne sensors to inform classification models and improve their performance 

by added spectral information (Milton et al., 2009; Schneider et al., 2017; Yao et al., 2013). However, 
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outliers in the spectral domain exhibited biases in the corrected multispectral reflectance, which could 

be associated with handling errors, both in the airborne and ground-based sensors, atmospheric 

distortion, BRDF or erroneous assumption about the optical characteristics of the sensors (Ball et al., 

2015; Berni et al., 2009; Liu and Liu, 2018; Mihai et al., 2018; Wen et al., 2020). Especially the lack of 

an atmospheric correction for the data from drone and manned aircraft represented a significant 

limitation and introduced another potential source of error. Path length through the column of air 

between sensor and target is known to cause distortion of the recorded reflected light as a 

consequence of path radiance, atmospheric transmittance, direct and diffuse solar flux (Richter and 

Schläpfer, 2002). However, a complete radiative transfer model inversion was beyond the scope of this 

study because of its complexity (Gómez-Dans et al., 2016). Instead, ELC-based correction methods 

were previously applied with success to compensate for atmospheric distortion and, therefore, 

considered to sufficiently address this issue (Ariza et al., 2018; Caballero et al., 2020). Furthermore, 

multispectral bands of PanX 3.0 and MicaSense were convolved assuming a Gaussian response 

function, using hyperspectral ground data to compare the actual measured data from each camera 

system with (Schaepman and Dangel, 2000). A full assessment of the actual spectral and spatial 

response of the airborne sensors is very complex. The laboratory characterization requires a perfect 

point source with tunable wavelength at very high resolution, which was not at our disposal. 

Consequently, a full correction for the actual optical response function was beyond the scope of this 

study and the simplified assumption of a Gaussian convolution provided a close approximation (Hueni 

et al., 2017). Consequently, the inherent spectral response function of the RoX and its associated non-

linearity, pixel crosstalk, wavelength calibration and radiometric calibration held further sources of 

uncertainties for the same reason. We reported a median relative difference below 10% between in-

field corrected, airborne reflectance and ground-measured reflectance in all multispectral spectral 

bands of the PanX 3.0 and MicaSense. This quantified error was related to the instrumental handling, 

nearby objects or the operator affecting the measured reflectance on the ground in addition to 

uncertainties from atmospheric distortion and simplified assumption about the instruments’ optical 

characteristics discussed above (Kimes et al., 1983). Especially the 840 nm band from the MicaSense 

fell with its central wavelength outside of the detector range of the RoX. In consequence, spectral 

information from the edge of the detector were extrapolated to calculate the Gaussian convolution. A 

linear continuation of the spectral shape was assumed, which would not hold true for the 

discontinuation of the rising red-edge into the near infrared. The FWHM of the NIR bands in micaSense, 

PanX3.0 and Sentinel-2 was very wide and, thus, measured data still contributed a large proportion of 

information and reduced the amount of inference. However, information from the edge of the 

detector is adversely affected by noise and drifts with temperature (Hueni and Bialek, 2017). 

Therefore, the comparison with the hyperspectral ground reference for the 840 nm band from the 
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MicaSense, the 832 nm band from Sentinel-2 and to a certain extent the 810 nm band from the PanX 

3.0 included additional uncertainties due to the partially inferred information. Thus, results from those 

bands must be interpreted carefully and their enhanced uncertainty budget must be noted in addition 

to above-mentioned errors. Furthermore, angular dependencies diverting from a perfect Lambertian 

characteristic in the spectral response of reference panels and validation targets have to be 

considered. Changing sun angle throughout the day caused varying incident light, moving structural 

shadows and changes in BRDF response due to the different times of recording with each sensor (Rollin 

et al., 2000). Viewing angles can also differ amongst sensors inside the off-nadir swath width 

contribution, leading to a changed view onto the same target with different sensors. Thus, structural 

geometry, terrain topography and surface BRDF need to be considered as an additional uncertainty 

(Vogtli et al., 2021). In principle, this effect was considered of minor influence and a coherent dataset 

across all four sensor-platforms using the RoX field spectrometer as transfer instrument would enable 

a comparison of data recorded at different times and places (Wen et al., 2020). Thus, in-field calibration 

of airborne multispectral camera systems with respect to an absolute reference opens a doorway 

towards comparing data recorded at multiple points in time to enable time-series analysis or 

comparing multiple sites to enable mapping and classification applications (Hueni et al., 2017). The 

raw MicaSense and PanX 3.0 reflectance lacked those capabilities in consequence of their relative 

reflectance calibration approach prior to the flight based on a single grey-card reference and inferred 

irradiance. Furthermore, examining and optimizing exposure settings in MicaSense and PanX 3.0 for 

future efforts could improve the quality of the data within the dynamic range of the detector while 

increasing the image acquisition rate due to bypassing time-consuming automatic exposure routines 

at the same time. Future efforts should investigate the operation of the two airborne sensors with 

different settings towards minimizing uncertainties introduced from sensor handling. An additional 

cross-calibration of the two optical channels in the RoX using a white reference in the field is 

furthermore recommend to track and to correct potential drifts in the radiometric and wavelength 

calibration when transferring the results from one site or from one time-series to another(Cogliati et 

al., 2015a). Future effort should thoroughly investigate uncertainties related to the absolute 

calibration of the ground reference over an extended period of time and across different locations with 

respect to satellite data. In addition, grey panels were exposed in the fields to dust, which would 

accumulate on the surface and change their reflectance characteristics during the field campaign. 

Assessment and correction for the resulting changes of the reflective surface would be complex and 

were beyond the scope of this study. However, frequent characterization of the panels could track 

potential degradation and would require ground referencing during each field-campaign to reduce 

associated uncertainties. Additional care for keeping grey-scales clean should further reduce 

uncertainties around the reference targets. Adjacency effects of neighboring pixels are a severe source 
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of error for the extraction of grey-scale reflectance from aerial images (Ariza et al., 2018). An alteration 

of the reflectance values must be expected due to atmospheric scattering, pixel crosstalk, image 

definition, focus and geometry of the recorded features. We minimized this error by extracting pixels 

only around the center of each panel using a ROI, which was significantly smaller than the actual panel 

size.  

Corrected othomosaics from micaSense and PanX 3.0 were resampled to match the spatial resolution 

of Sentinel-2 around 10 m pixel size. NDVI was calculated from all three platforms and compared 

accordingly. Increasing degree of spatial detail was observed from Sentinel-2, over PanX 3.0 and to 

micaSense images, in that order, in despite of the identical pixel size. Different degrees of sub-pixel 

details contributed to the aggregation due to different spatial resolution and flight altitudes of 

micaSense and PanX 3.0. Thus, a larger number of micaSense pixels in contrast to a smaller number of 

PanX 3.0 pixels contributed more spatial information. Differences in spatial details cause varying 

spectral information in aggregated pixels and need to be considered when investigating NDVI across 

platforms (Imran et al., 2021). Furthermore, the spatial response function of a Sentinel-2 pixel was 

assumed flat during sub-pixel aggregation as a simplification. Instead, the true spatial response 

function is more complex. Changing spatial response function characteristics also affect the 

comparison of NDVI across different sensors and demonstrate inherent biases due to the spatial 

response function (Inamdar et al., 2020). A Gaussian spatial response contributes usually blurring 

effects to the image. A deconvolution of spatial response of the high-resolution sub-pixels followed by 

a convolution with spatial response of the low-resolution super-pixel would yield the most accurate 

representation. However, this convolution was not possible since the true spatial response functions 

were not known. In absence of the actual Sentinel-2 point-spread function, the simplified, box-like 

behavior was assumed to aggregate the high-resolution data, which must be considered a potential 

source of error. However, regression results suggested a good agreement of pixel-based NDVI from 

micaSense and a very good agreement of pixel-based NDVI from PanX 3.0 with Sentinel-2 NDVI. Even 

though the spectral configuration of the micaSense bands was more similar to the Sentinel-2 bands 

(D’Odorico et al., 2013), a better agreement in NDVI was observed in PanX 3.0 data. Our findings 

suggest that similar spatio-geometric characteristics of flight altitude and poorer spatial resolution 

outweigh spectral-optical similarity of the bands used to compute NDVI in this comparison. Very high 

spatial resolution of the drone-based NDVI product was not beneficial and introduced random errors 

when compared with the satellite scale. Considering the lower degree of detail in spatial information 

from the satellite, a much higher degree of vegetation diversity and soil could be observed from 

gyrocopter and the drone (Feilhauer et al., 2012; Viscarra Rossel et al., 2016; Zhao et al., 2019). 

Furthermore, the difference in time between satellite, gyrocopter and drone overpass has to be 

considered. Similar limitations related to atmospheric distortion, instrument handling, BRDF, structural 
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geometry, shading and optical assumptions apply as discussed above. In addition, the sensors’ point 

spread functions determine the depiction of objects and influence the results as such (Hueni et al., 

2017). Nevertheless, the corrected multispectral images acquired from drone and gyrocopter allow 

deriving NDVI as a comparable remote sensing product, which was successfully validated against the 

satellite. 

6.6 Conclusion 

Consistency of reflectance measurements from two airborne camera systems, field spectrometer and 

Sentinel-2 BOA reflectance was investigated, using an ELC approach and additional, continuous 

irradiance correction. A mobile field spectrometer setup was validated against Sentiel-2 in the first 

place, enabling its use as transfer instrument to combine all four scales with respect to a widely 

available, reliable and well-defined reference. Applying ELC based on in-field calibration using a nine-

panel grey-scale improved reproducibility of the target’s spectral shapes and coherency of the 

reflectance data from the three sensor platforms on the ground, on the drone and on the gyrocopter 

with respect to the satellite. Additional correction of airborne reflectance using continuous monitoring 

of down-welling light on the ground further improved the agreement between the three sensor 

systems. Our results from drone and gyrocopter showed a striking difference between raw reflectance 

values before and after applying in-field ELC and additional CIC, which were associated mainly with 

biases from calibrating the mounted cameras using a reference panel prior to the flight. Thus, 

corrected and resampled NDVI maps from drone and gyrocopter agreed to 89% and 95% with Sentinel-

2 NDVI, indicating a successful transfer of information across four remote sensing scales. Uncertainties 

related to optical characteristics, BRDF, calibration and handling of the instrument contributed to 

reflectance outliers, resulting in a median discrepancy below 10% between airborne camera 

reflectance and ground reference. Further investigations of those uncertainties across multiple 

locations or times is required towards enabling potential correction approaches. As a prerequisite, 

valid cross-calibration between the up-welling and down-welling channel of the RoX is essential. To 

ensure a valid and reproducible ground reference, reflectance readings were validated using Sentinel-

2 BOA reflectance over homogenous targets and adjusted accordingly. In addition, we recommend the 

use of a standardized white reference for validation of the ground reference for future efforts. 

Furthermore, measurement errors from handling of the instruments in rough field conditions affected 

the results. Inherent systematic and random uncertainties of hyperspectral field spectrometer 

measurements on the ground as well as of airborne, multispectral images did not allow for a general 

correction for other missions. In consequence, a solid ground reference is required for each mission to 

provide an accurate reference. Continuously monitoring the actual field conditions enabled the 

transfer of multispectral information from satellite to ground and airborne sensors. 
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Finally, in-situ calibration and continuous irradiance correction of multispectral reflectance from 

airborne camera systems using grey-scales in combination with ground measurements is highly 

recommended to substantially increase coherence in the recorded data across different levels. It is 

advisable to consider the potential of field spectrometers for ground referencing and as transfer 

instruments when planning future remote sensing missions that involve different sensors, platforms 

and scales. Creating coherent datasets is at the basis for further attempts towards sensor fusion, 

temporal and spatial analyses, classification, mapping and change detection across multiple scales 

from ground to satellite. 
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7 Overarching conclusion 

This thesis presented four studies, of which each provided a conclusion in their own realm. However, 

this chapter identifies common aspects of conclusion beyond the individual aspects of each study in 

the total context of this thesis. Emphasis was placed on (1) the joint application of different optical 

sensors using different measurement protocols, (2) the standardization of data processing chains 

including propagation of uncertainties and (3) the reduction of signal biases in the final data product. 

Point (1) was addressed by applying automated field spectrometers and recognizing their potential as 

transfer instruments for harmonizing data products across multiple different optical sensors and 

platforms. Point (2) was addressed by determining the radiometric uncertainties of the measured 

radiance and considering this in the final product by means of mechanistic propagation rules or 

included in training data of ML retrieval approaches. However, radiometric uncertainties were also 

recognized as a very partial aspect of the total uncertainty budget in the data products. Other 

dependent, systematic and random influences needed further consideration and exceeded effects of 

radiometric uncertainties by orders of magnitude in reflectance and simple VIs, while the effect of 

radiometric uncertainty in SIF was significant. Point (3) addressed the systematic influences on the 

data products, which were quantifiable and corrected either by avoiding distorted retrieval 

mechanisms or by applying a validation and correction approach with respect to a trusted reference 

using proximity sensing. Furthermore, independent training and testing data was a central aspect for 



 
131 

cross-validation and post-validation of ML approaches in the presented studies, due to ML algorithm 

results being profoundly determined by their underlying data.  

We developed an ML-based SIF retrieval, which included the radiometric uncertainties of the FloX in 

operational conditions into a semi-synthetic training data set. Furthermore, this new retrieval method 

exploited SFL instead of telluric oxygen absorption features to retrieve SIF unaffected by atmospheric 

reabsorption. Nevertheless, the presented PLS approach was capable of retrieving the SIF signal from 

SFL within the FLEX mission requirements, yielding radiometric uncertainties around 0.1 mW m-2 sr-1 

nm-1 both in the red SIF and in the far-red SIF with operational SNR around 390 and 800, respectively. 

The PLS uncertainty was determined and compared with other retrieval methods in Study 1, showing 

a significant increase in precision over the SVD exploiting SFL. For reference, the mathematical 

propagation of radiometric uncertainties of the iFLD-retrieval exploiting oxygen absorption band was 

demonstrated using operational SNR, resulting in the red and far-red around 0.13 - 0.16 mW m-2 sr-1 

nm-1 uncertainty respectively. In contrast to the negligible effect on VIs or reflectance products, SNR 

was identified as a significant constraint for SIF retrievals. However, SNR values reflect only the 

influence of the radiometric noise and cannot account for other sources of uncertainties. The 

presented retrieval of SIF from SFL was challenged furthermore by the spectral resolution around 0.3 

nm FWHM, which was on the edge of accurately determining the depth of the SFL. The employed PLS 

algorithm addressed the issue using a much larger spectral window compared with previous studies 

and exploited more, spectral information. Finally, surrogate dependencies required considering a 

specific design of using training data, cross-validation scheme and independent testing data. A direct 

validation of SIF was challenging, as the scaling to the canopy would involve very complex 

considerations about the intra-canopy scattering, reabsorption and anisotropic distribution of the 

escape probabilities. This allowed only an indirect validation in measured data, e.g. with respect to 

other mechanistic retrieval methods to identify systematic and dependent uncertainties influencing 

the results of the ML-based retrieval. Thus, efforts were made towards minimizing the systematic 

errors by adjusting the dedicated model training procedures and training data, and minimizing the 

random uncertainties by using sufficient repetitions. Case study 2 demonstrated the application of ML 

in investigating the retrieval of NOx concentration in the air from continuous time-series of 

hyperspectral, down-welling radiance. Three different ML algorithms were employed and covariations 

in dense time-series of down-welling radiance investigated with respect to a significant decrease in 

NOx concentration reported by an independent NOx sensor station on the ground following the 

COVID-19 lock-down. While a conditional inference tree classified a binary, nominal differentiation of 

NOx levels before and after the COVID-19 lock-down successfully, a decision tree using principal 

components was able to distinguish discrete scale levels of the NOx concentration. Eventually, the PLS 

regression model allowed the retrieval of NOx values at the most differentiated ratio. While the levels 
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of differentiability increased with the complexity of the model, also a larger amount of hyperspectral 

dimensions was required to build the models. Thus, the uncertainty of the final products increased due 

to including also more un-correlated uncertainties. This trade-off between graduation and confidence 

presented a typical limitation of the ML algorithms, fundamentally caused by the propagation of 

uncertainties. In case study 2, this issue was address by monitoring uncertainties using the errors of 

prediction during the training and independent cross-validation processes of the models with respect 

to the independent gas measurements. 

The propagation of uncertainties needed further consideration also for the in-field validation and 

calibration of reflectance across multiple remote sensing platforms. Fundamentally, the amount of 

light received at the sensor together with its sensitivity determined the physical limit of detection for 

each measurement. Integration time being on the one hand side and spectral-spatial resolution on the 

other side, a trade-off is required for each sensor to be balanced for its specific application. Stationary, 

automated field spectrometers are less constrained e.g. to allow longer integration times, which made 

them suitable for reference measurements to calibrate and validate imaging sensors. However, the 

growing number of automated field spectrometers and use cases required consistent and harmonized 

data products, while full traceability back to the international standard was not always feasible to 

obtain. Assuming Sentinel-2 satellites as well calibrated and stable, long time-series of hyperspectral 

reflectance recorded by 10 automated field spectrometers around the world were harmonized in the 

enabling study 3 in this thesis. The presented study investigated temporal and spatial aspects of 

uncertainties in bottom-of-atmosphere reflectance and recognized seasonal changes in the spatial 

representativeness of the spectrometer footprint comparing ground and satellite measurements. 

Therefore, seasonal dynamics in vegetation and landscape heterogeneity as well as short-term events, 

e.g. cloud formation, were shown to outweigh radiometric uncertainties by orders of magnitude in the 

uncertainty budget of proximally sensed reflectance. The introduced cloud filtering approach based on 

continuously ground-measured down-welling radiance detected clouds more effectively and 

minimized the associated uncertainties of the reflectance products across platforms. Finally, case study 

4 revealed temporally mismatching reflectance calibration with respect to a grey-card calibration in 

the field causing significant errors between the two examined airborne sensors. Continuous down-

welling radiance measurements on the ground successfully corrected airborne reflectance considering 

variations of incoming light. Consecutively, the reflectance readings of the field spectrometer were 

calibrated over a large, homogenous area against Sentinel-2 bottom of atmosphere reflectance, as 

previously demonstrated by enabling study 3. Thus, the ground reference enabled the transfer of the 

reflectance calibration from the satellite to two airborne sensors using a ground-measured reflectance 

gradient over artificial panels in the field in the second step. The presented two-step approach 

significantly improved the agreement of the two airborne imaging sensors with each other and with 
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Sentinel-2, while reducing uncertainties around the spatial representativeness and dependent errors 

from temporal fluctuation of received radiation at the bottom of the atmosphere. Furthermore, the 

results implied a fusion of the multispectral data from a radiometric perspective. The approach was 

limited by propagating the total random uncertainties of the ground-measurements and satellite 

reflectance into all airborne measurements. This issue was addressed by using many repetitions, 

validating the ground-measured reflectance against Sentinel-2 across multiple ground sampling points 

and several repetition in each over a homogenous area. Still, random uncertainties remained around 

the representativeness of the various pixel sizes and spectrometer footprint, and were quantified for 

the airborne reflectance data using the relative difference of pixels inside the footprint of each ground 

sampling point.  

Ideally, a consistent tracking of uncertainties in meta-data alongside the retrieval of higher data 

products enables full traceability with respect to the international standard. However, such traceability 

was not always possible due to technical or economical aspects. Our results demonstrated that 

uncertainties of spatial representativeness, atmospheric influences and dependent errors exceed 

random radiometric uncertainties by orders of magnitudes for reflectance and simple VI products 

measured with FloX/RoX. However, random radiometric uncertainties were relevant for SIF retrievals 

and for machine-learning models to exploit effectively proximally sensed hyperspectral data. Those 

results suggested to include operational, quantitative uncertainties during supervised cross-validation 

and model testing approaches for obtaining precise results. In the age of big-data, fusion of 

information across different optical sensor allows an unprecedented combination of information 

details for the investigation of ecosystems. Future research unifying data from multiple optical sensors 

and retrieving data products for holistic ecosystem monitoring will benefit from standardized, 

automated field spectrometer measurements on the ground. Consequently, the results also 

emphasized a continued need for quantifying, minimizing and tracking random, systematic and 

dependent uncertainties from the input data, which propagate into the specific uncertainties of the 

data products. 
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