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Zusammenfassung

Als Bestiubung versteht man die Ubertragung von Pollenkérnern von den Staubbeuteln auf
die Narbe von Pflanzen. Diese enge wechselseitige Beziehung zwischen Tieren und
Bliitenpflanzen, hat die Vielfalt der Angiospermen weltweit gepragt. Insbesondere die
Bestiubung durch Insekten zihlt zu den wesentlichen Okosystemleistung fiir den Menschen,
da viele Anbaupflanzen fiir eine optimale Frucht- und Samenproduktion in hohem Mafie von
Bestiaubung abhangig ist. Die Intensivierung der Landwirtschaft im letzten Jahrhundert hat
zu folgenden Widerspruch gefiihrt: Einerseits besteht ein erhohter Bedarf an erfolgreicher
und optimaler Bestdaubung zur Sicherung der Produktion; andererseits, tragt die mit
intensiven Anbaumethoden verbundene Expansion der Landwirtschaft zu einem weltweiten
Riickgang der Bestduber bei. Eine erfolgreiche Bestidubung kann daher oft nur durch
verstarkten Einsatz bewirtschafteter Bestduber, vor allem der Europdischen Honigbiene Apis
mellifera (Linnaeus, 1758) und anderen ausgewdahlten Wildbienenarten, gesichert werden.
Die Abhangigkeit von diesen spezifischen Bestdaubern fiihrt in Agrarékosystemen zu einer
Unterschiatzung und verzerrten Wahrnehmung der Vielfalt anderer potenzieller Bestauber.
Zu den relevantesten Bestiubergruppen der Agrarokosysteme gehoren Bienen und Wespen
(Hymenoptera), sowie Fliegen (Diptera: Brachycera). Diese potenziellen Bestduber
interagieren nicht nur mit den angestrebten Anbaupflanzen, sondern auch mit weiteren
Pflanzenarten, die als komplexe Interaktionen zwischen Pflanzen und Insekten in
zweiseitigen 0Okologischen Pflanzen-Bestduber-Netzwerken analysiert werden. Diese
Netzwerke und ihre Struktur geben Aufschluss iiber die Stabilitit von Pflanzen-Insekten-
Interaktionen als Okosystemfunktionen und ihre Widerstandsfahigkeit gegeniiber dueren
Einfliissen und Stressfaktoren. Die gingigsten Methoden zur Analyse dieser Pflanzen-
Bestauber-Netzwerke sind Erhebungen der Bliitenbesuche, wobei nicht alle Bliitenbesucher
auch Bestduber sind, oder die morphologische Bestimmung der Zusammensetzung der
Pollenfracht an Insekten. Die morphologische Identifizierung von Pollen ist jedoch
zeitaufwandig, erfordert viel Fachwissen und fiihrt in der Regel zu einer geringeren
taxonomischen Auflésung. DNA metabarcoding beinhaltet die Analyse einer gemischten DNA-
Probe mit Next Generation Sequencing und kann einiger dieser Herausforderungen
tiberwinden. In dieser Dissertation verwendete ich einen integrativen Ansatz, bei dem in
erster Linie DNA barcoding der Cytochrom-c-Oxidase-Untereinheit 1 (COI) Barcodes zur
Identifizierung der Insektenarten und DNA metabarcoding des internal transcribed spacer 2
(ITS2) Barcodes zur Analyse der Pollenladungen kombiniert wurden, zusatzlich zur

teilweisen morphologischen Identifizierung der Insekten und Pollenladungen , um so die
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Interaktionen von Pflanzen und Bestdubern zu analysieren. Das erste Ziel der vorliegenden
Arbeit war es, in Agrarokosystemen I) die Interaktionen zwischen Pflanzen und Bestaubern
aller Hymenoptera und Brachycera, mit Ausnahme von Honigbienen, zu untersuchen, II) die
Schliisselarten von Pflanzen und Bestdubern fiir die Stabilitit der Netzwerke zu identifizieren
und III) die potenzielle zeitliche Dynamik der Pflanzen-Bestduber-Netzwerke zu analysieren.

Diese Studien sind die ersten ihrer Art fiir diese beiden Kulturpflanzenarten.

In Kapitel 2 wurden die Pflanzen-Bestauber-Netzwerke von Kiimmel (Carum carvi L.) mit
Schwerpunkt auf wilden Hymenoptera und Brachycera analysiert, die auch komplexe
Wechselwirkungen zwischen potenziellen Bestiubern des Kiimmels und weiteren
Pflanzentaxa, die von denselben Insekten besucht wurden, beinhalten. In den Pflanzen-
Bestauber-Netzwerken von Kiimmel interagierten insgesamt 34 Hymenoptera und 87
Brachycera als potenzielle Bestduberarten mit insgesamt 139 Pflanzentaxa. Die qualitativen
Unterschiede der Pollengemeinschaft zwischen Brachycera und Hymenoptera unterstreichen
die Komplementaritét in der Bliitenaffinitit beider Insektengruppen. Intrasaisonale Analysen
des Pflanzen-Bestauber-Netzwerks von Kiimmel zeigten das Potenzial dieser Kulturpflanze
als wichtige Nahrungsquelle fiir Insektenarten auflerhalb des Zeitraums vieler friih
blithender Kulturpflanzenarten, mit einer Aktivitatsspitze im Spatsommer. Zuletzt,
unterstrichen starke tageszeitliche Variationen in der Bestaubervielfalt, die Wichtigkeit der
Beprobung von Blitenbesucher und somit potenzielle Bestduber zu verschiedenen

Tageszeiten, um komplexe Pflanzen-Bestauber-Netzwerke vollstandig darzustellen.

In Kapitel 3 wurde das Pflanzen-Bestduber-Netzwerk des Apfels (Malus domestica BORKH.)
analysiert, einschlieflich der komplexen Interaktionen zwischen den potenziellen
Bestaubern des Apfels und weiterer besuchten Pflanzen. Insgesamt interagierten 35
Hymenoptera- und 66 Brachycera-Arten mit 194 Pflanzentaxa. Neben der Zielpflanzenart
dominierten andere frithblithende Pflanzentaxa die Pflanzen-Bestdauber-Netzwerke, was die
Bedeutung dieser Arten als Nahrungsquelle in frithbliihenden Obstgirten unterstreicht. Die
Zusammensetzung der Pollenfracht unterschied sich stiarker bei Brachycera zwischen den
Jahren hoher als zwischen Brachycera und Hymenoptera vom gleichen Beprobungsjahr. Die
Pflanzenphianologie konnte daher die Unterschiede zwischen der Netzwerkstruktur der

Pflanzenbestiuber erklaren.

Neben der Analyse von Pollenproben kann DNA metabarcoding auch zur allgemeinen
Auswertung der Artenvielfalt von Hymenoptera und Brachycera in Mischproben eingesetzt
werden. Trotz der weit verbreiteten Anwendung dieser Methode ist die Vergleichbarkeit

zwischen dem DNA metabarcoding und einer reinen morphologischen Auswertung bisher
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wenig untersucht worden, besonders bei Insekten. In Kapitel 4 wurden Brachycera und
Hymenoptera mit Malaise-Fallen auf Spinatfelder (Spinacia oleracea L.) gesammelt und mit
Hilfe einem nicht-destruktiven DNA metabarcoding Ansatz sowie vier verschiedenen Kluster-
und Filteransatze analysiert und getestet. Die Ergebnisse des DNA metabarcodings variierten
stark in der Gesamtanzahl identifizierter Brachycera- und Hymenoptera-Arten, je nach
gewdhltem Ansatz. Anhand der Syrphidae als Beispielfamilie einer gutuntersuchten
Brachycera-Familie diskutiere ich mogliche Griinde fiir die Diskrepanzen zwischen DNA

metabarcoding und der morphologischen Identifizierungen.

Das abschlieRende Diskussionskapitel bringt die vorherigen Themenbereiche zusammen
und diskutiert kapiteliibergeifend die betrachtliche Vielfalt potenzieller Wildbestauber
innerhalb der Ordnungen Brachycera und Hymenoptera in zentraleuropdischen
Agrarokosystemen. Obwohl in dieser Arbeit nicht direkt auf die Effizienz oder Effektivitat der
Bestduber eingegangen worden ist, trdgt die hohe Vielfalt an Bestdubern zur
Widerstandsfihigkeit dieser Okosystemfunktion in Agrarékosystemen bei. In Abschnitt 5.2
werden spezifische Starken und Herausforderungen von DNA metabarcoding von Pflanzen-
Bestauber-Netzwerken und Massenproben behandelt und mdégliche Lésungen zur
Uberwindung dieser methodischen Herausforderungen diskutiert. In Agrarékosystemen hat
die sich mangelnde Anerkennung und Voreingenommenheit auf den bedeutenden Beitrag
von Wildbestdubern auf die Entwicklung und Umsetzung von Schutzmafinahmen ausgewirkt.
Basierend auf den vorgestellten Ergebnissen der vorangegangenen Abschnitte flige ich auch
Handlungsempfehlungen fiir diverse Akteure bei. Abschliefiend werden offene Fragen und
mogliche, kiinftige Forschungsvorhaben behandelt, u.a. integrative Ansiatze mit Fokus auf
Insektenspuren auf Pflanzengewebe oder die Einbeziehung der Interaktionen zwischen
Pflanzen und Bestaubern in grof3skalige (agro-)okologischer Netzwerke. Beendet wird diese
Arbeit mit der Zusammenstellung der wichtigsten Schlussfolgerungen und Erkenntnisse aller

Kapitel.
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Resumen

La polinizacion es la transferencia de granos de polen de las anteras al estigma de las plantas.
Esta es una estrecha relacién mutualista entre animales y plantas florales, que globalmente
ha moldeado la diversidad de angiospermas. Particularmente la polinizacién por insectos ,se
considera un servicio ecosistémico esencial para el ser humano, ya que muchas especies
cultivadas dependen en gran medida de la polinizacién para una produccién 6ptima de frutos
y semillas. Sin embargo, la intensificacién de la agricultura en el Ultimo siglo, ha creado un
dilema entre una mayor necesidad de una polinizacién 6ptima y satisfactoria y acelarada
expansion agricola asociada con practicas agricolas intensivas y permiciosas, que contribuyen
a un declive global de los polinizadores. La consecuencia esun suministro insuficiente de
servicios de polinizadores silvestres y en contraste un mayor uso de polinizadores
domesticados, principalmente la abeja melifera europea Apis mellifera (Linnaeus, 1758) y
otras especies seleccionadas de abejas silvestres. La dependencia de una sola o pocas especies
polinizadoras, también ha influido en lasubestimacién y percepcién sesgada de la diversidad
de polinizadores potenciales, especialmente en los agroecosistemas. Entre los grupos de
insectos y polinizadores mas destacados de los agroecosistemas se encuentran las abejas y
las avispas (Hymenoptera), asi como las moscas (Diptera: Brachycera). Los polinizadores
potenciales, interactian no sélo con las especies de cultivo de interés, sino también con otras
especies de plantas, que pueden ser analizadas como complejas interacciones planta-insecto

en redes ecolégicas bipartitas.

Estas redes y particularmente su estructura, pueden indicar la estabilidad de las interacciones
planta-insecto como funciones del ecosistema y su resistencia a influencias externas y
factores de estrés. Los métodos mas comunes, para analizar las redes planta-polinizador, son
los sondeos de visita a las flores - aunque no todos los visitantes de las flores sean
polinizadores - o mediante la identificacién morfolégica de la composicion de la carga de
polen recogida por los especimenes de insectos. Sin embargo, la identificacién morfolégica
del polen lleva mucho tiempo, requiere mucha experiencia y suele dar como resultado una
resolucion taxondmica inferior. E1 ADN metabarcoding, el analisis de una muestra mixta de
ADN con secuenciacion de proxima generacion, puede superar algunas de estas limitaciones.
En esta tesis, se utiliz6 un enfoque integrador que combinaba principalmente el ADN
barcoding de la subunidad I de la citocromo c oxidasa (COI) para identificar los especimenes
de insectos y ADN metabarcoding del espaciador transcrito interno 2 (ITS2) para el anélisis

de las cargas de polen, al tiempo que también identificaba morfolégicamente de forma parcial
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los especimenes de insectos y las cargas de polen para evaluar las redes de polinizadores. El
primer objetivo planteado, fue estudiar las interacciones planta-polinizador de todos los
Hymenoptera y Brachycera, excluyendo la abeja melifera europea, en dos especies de cultivos
especificos en agroecosistemas, identificar las especies de plantas y polinizadores claves para
la estabilidad de las redes y analizar la dindmica temporal de las redes planta-polinizador.

Estudios son los primeros de su clase para estas dos especies de cultivos.

En el capitulo 2, se analizaron las redes planta-polinizador del alcaravea (Carum carvi L.)
centrandose en los hymenopteros y brachyceros, incluyendo las complejas interacciones
entre los polinizadores potenciales del alcaravea y otros taxones de plantas visitados por esos
mismos insectos. En las redes planta-polinizador del alcaravea, un total de 34 Hymenoptera
y 87 Brachycera polinizadores potenciales interactuaron con un total de 139 taxones de
plantas. Ademas, las claras diferencias cualitativas en las cargas de polen entre Brachycera e
Hymenoptera destacan la complementariedad en la afinidad floral de ambos grupos. Los
analisis intraestacionales de la redes planta-polinizador del alcaravea, mostraron el potencial
de este cultivo, como importante fuente de alimento para especies de insectos, fuera del
periodo de muchas especies de cultivos de floraciéon temprana, con un pico de actividad a
finales de verano. Por tltimo, las fuertes diferencias intradiarias en la diversidad potencial de
polinizadores, destacan la importancia de recolectar insectos a diferentes horas del dia, para

poder recopilar las redes completas de plantas-polinizadores.

En el capitulo 3, se analizé la red planta-polinizador del manzano (Malus domestica BORKH.),
incluyendo las complejas interacciones entre los polinizadores potenciales del manzano y las
plantas que visitan. En total, 35 especies polinizadoras de Hymenoptera y 66 de Brachycera
interactuaron con 194 taxones de plantas. Aparte de las especies de cultivo de interés, otros
taxones de plantas de floracién temprana dominaron las redes planta-polinizador,
destacando la importancia de estas especies como fuente de alimento en los cultivos de
floracion temprana. Ademas, la diferencia en la composiciéon de la carga de polen de
Brachycera entre los afios fue mayor que entre Brachycera e Hymenoptera recolectados en el
2017, lo que indica que la fenologia de las plantas, podria ser uno de los factores clave, que

impulsen las diferencias en la red y la estructura de los polinizadores de plantas.

Ademas de analizar muestras de polen, el ADN metabarcoding también se puede utilizar para
evaluar la diversidad de Hymenoptera y Brachycera en muestras mixtas . A pesar del uso
generalizado de esta metodologia, hasta ahora se ha investigado relativamente poco,hasta
qué punto las muestras examinadas con metabarcoding son comparables a las identificadas

por medios morfoldgicos, sobre todo en lo que respecta a los insectos. En el capitulo 4, se



analizaron Brachycera e Hymenoptera recogidos con la trampa Malaise en campos de
espinaca (Spinacia oleracea L.) utilizando un protocolo de metabarcoding no destructivo y
cuatro estrategias diferentes de agrupaciény filtrado. Dependiendo del enfoque seleccionado,
los resultados de la metabarcoding con respecto a las especies de braciceros e himendpteros
detectadas variaron fuertemente. Utilizando Syrphidae como familia de Brachycera
ampliamente estudiada, discuto las posibles razones de las discrepancias entre el

metabarcoding y las identificaciones morfolégicas.

En el capitulo final, sintetizo y destaco la considerable diversidad de polinizadores silvestres
dentro de los 6rdenes Brachycera e Hymenoptera. A pesar de que en este trabajo de
investigacién doctoral no me he centrado en la eficiencia o eficacia de los polinizadores, esta
alta diversidad de polinizadores puede mejorar la resistencia de la polinizacién como
componente clave de las funciones ecosistémicas en los agroecosistemas. Ademas, dado que
la principal metodologia de investigacion empleada fue principalmente ADN metabarcoding,
en la seccion 5.2 discuto las principales limitaciones e impedimentos, a la hora de estudiar las
redes de plantas-polinizadores y las muestras mixtas de insectos con ADN metabarcoding,

junto con las posibles soluciones para abordar estos obstaculos metodoldgicos.

La falta de reconocimiento y los limitados estudios sobre la importante contribucién de los
polinizadores silvestres en los agroecosistemas, también ha tenido consecuencias en el
desarrollo y la aplicaciéon de medidas de conservacion. Por lo tanto, y considerando los
resultados presentados en las secciones anteriores, sugiero algunas recomendaciones para
stakeholders. Ademas, de enunciar algunas preguntas abiertas y futuras ideas de
investigacidon, que incluyen enfoques integrativos para estudiar las interacciones planta-
polinizador, a partir de muestras centradas en plantas o el analisis de las interacciones planta-
polinizador como parte de redes ecoldgicas en agroecosistemas. Por ultimo, se expone una

recopilacion de las principales conclusiones y hallazgos clave de los tltimos capitulos.
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Abstract

Pollination, the transfer of pollen grains from the anthers to the stigma, is a tight mutualistic
relationship between animals and flowering plants, which has globally shaped angiosperm
diversity. Particularly pollination by insects is considered an essential ecosystem service for
humans since many crop species depend highly on pollination for optimal fruit and seed
production. However, agricultural intensification over the past century has created a dilemma
between an increased need for successful and optimal pollination and an agricultural
expansion associated with intensive farming practices contributing to a global pollinator
decline. Therefore, a sufficient pollinator service supply has only been achieved by increased
use of managed pollinators, mainly the European honeybee Apis mellifera (Linnaeus, 1758)
and other selected wildbee species. In turn, this has led to a dependency on one species and
an underestimation and skewed perception of the diversity of potential pollinators,
particularly on agroecosystems. Among agroecosystems' most prominent insect groups and
pollinators are bees and wasps (Hymenoptera), as well as flies (Diptera: Brachycera). These
potential pollinators interact not only with the targeted plant species but also with many
other plant species, which can be analyzed as complex plant-insect interactions in bipartite
ecological plant-pollinator networks. These networks and their structure can indicate the
stability of plant-insect interactions as ecosystem functions and their resilience to external
influences and stressors. The most popular methods to analyze these plant-pollinator
networks are flower visitation surveys, even though not all flower visitors are pollinators, or
by morphologically identifying the pollen load composition collected from insect specimens.
However, the morphological identification of pollen is time-consuming, requires a lot of
expertise, and usually results in a lower taxonomic resolution. DNA metabarcoding, the
analysis of a mixed DNA sample with Next Generation Sequencing, can overcome some of
these limitations. In this thesis, I used an integrative approach combining primarily DNA
barcoding of cytochrome c oxidase subunit I (COI) to identify the insect specimens and DNA
metabarcoding of the internal transcribed spacer 2 (1TS2) for the analysis of the pollen loads
while also additionally morphologically identified partially the insect specimens and pollen
loads to assess the plant-pollinator networks. The first aim of the present thesis was I) to
study plant-pollinator interactions of all non-honeybee Hymenoptera and Brachycera of two
targeted crop species in agroecosystems, II) identify the key plant and pollinator species for
the networks' stability, and III) analyze potential temporal dynamics of the plant-pollinator

networks. These studies are the first of its kind for these two crop species.
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In Chapter 2, the plant-pollinator networks of caraway (Carum carvi L.) with a focus on non-
honeybee Hymenoptera and Brachycera were analyzed, including the complex interactions
between potential pollinators of caraway and other plant taxa visited by those same insects.
In the plant-pollinator networks of caraway, a total of 34 Hymenoptera and 87 Brachycera
potential pollinators interacted with a total of 139 plant taxa. Additionally, the distinct
qualitative differences in the pollen loads between Brachycera and Hymenoptera highlight
the complementarity in flower affinity of both groups. Intraseasonal analyses of the plant-
pollinator network of caraway showed the potential of this crop as an important food source
for insect species outside the period of many early-flowering crop species, with an activity
peak in late summer. Finally, strong intraday differences in potential pollinator diversity
emphasized the importance of collecting insects at different times of the day to compile

complete complex plant-pollinator networks.

In Chapter 3, the plant-pollinator network of apple (Malus domestica BORKH.) was analyzed,
including the complex interactions between the potential pollinators of apple and the plants
they visit. In total, 35 Hymenoptera and 66 Brachycera pollinating species interacted with
194 plant taxa. Aside from the targeted crop species, other early-flowering plant taxa
dominated the plant-pollinator networks, highlighting the importance of these species as food
source in early-flowering orchards. Moreover, the difference in pollen load composition of
Brachycera between the years was higher than between Brachycera and Hymenoptera 2017,
which hints that plant phenology could potentially be one of the key drivers of differences in

the plant-pollinator network and structure.

Aside from analyzing pollen samples, DNA metabarcoding can also be utilized to assess the
diversity of Hymenoptera and Brachycera in bulk samples. Despite the prevalent use of this
methodology, to what extent samples examined with metabarcoding are comparable to those
identified through morphological means has been investigated relatively little so far,
particularly regarding insects. In Chapter 4, Brachycera and Hymenoptera collected with
Malaise trap in spinach fields (Spinacia oleracea L.) were analyzed and tested using a non-
destructive DNA metabarcoding approach and four different clustering and filtering
approaches. Depending on the selected approach, DNA metabarcoding results regarding
detected brachyceran and hymenopteran species strongly varied. Using Syrphidae as an
exemplar family of a well-studied Brachycera family, I discuss possible reasons for the

discrepancies between DNA metabarcoding and the morphological identifications.

In the final discussion chapter, [ provide concluding remarks highlighting the considerable

diversity of potential wild pollinators within the orders Brachycera and Hymenoptera.
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Despite that I did not focus on pollinator efficiency or effectiveness in this thesis, a diverse
pollinator diversity can enhance the resilience of pollination as a key component of ecosystem
functions in agroecosystems. Moreover, since the primary methodologies employed
throughout the thesis was DNA metabarcoding, key strengths and impediments when
studying plant-pollinator networks and bulk samples with DNA metabarcoding, along with
potential solutions to address these methodological obstacles, will be discussed in section 5.2.
Alack of recognition and bias in understanding the significant contribution of wild pollinators
in agroecosystems has also impacted the development and implementation of conservation
efforts. Therefore, based on the results presented in the preceding sections, [ added some
recommendations for various stakeholders. Furthermore, I will address open questions and
potential gaps for future research ideas, which include integrative approaches to study plant-
pollinator interactions from plant-targeted samples or the analysis of plant-pollinator
interactions as a part of ecological networks in agroecosystems. Lastly, this thesis will

conclude with a compilation of all chapters' main conclusions and key findings.
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General introduction

1.1. Pollination as an essential ecosystem service

Pollination by insects, i.e., the transfer of pollen grains from the anthers (male reproductive
organ) to the stigma (female reproductive organ), resulting in the fertilization and production
of seeds and fruits (Abrol, 2011), evolved at least 250 million years ago (Bao et al., 2019;
Labandeira & Currano, 2013; Stephens et al, 2023). The relationship between insect-
pollinated angiosperms and pollinating insects is a tight symbiotic relationship, whereby the
insects are attracted to the numerous rewards provided by the flowers (such as pollen, nectar,
oils, or perfumes), allowing the plants to spread their pollen attached to the insect from one

flower to another (Abrol, 2011).

As one of the most crucial ecological processes, pollination is vital for the reproduction and
survival of angiosperms (flowering plants) and is considered an essential ecosystem service
for agricultural production and, consequently, food security (Abrol, 2011; Porto et al., 2020).
Out of the 115 most important crop species worldwide, atleast 87 crop species are dependent
on insect pollination (Klein et al., 2007), with an estimated annual global value of crop
pollination between US$195 to 657 billion (Lautenbach et al., 2012; Porto et al.,, 2020).
Therefore, promoting pollination services can increase the productivity of many crops (Abrol,
2011). Optimized pollination service is a delicate balance between foraging behavior, the
efficiency of transferring pollen, the interaction of the flower and the pollinators, and

surrounding environmental factors (Rader et al., 2024).

Pollination decline, drivers, and consequences

Despite the essential role that insects play as pollinators, providing necessary goods and
ecosystem services for both humans and flowering plants, there is concerning and undeniable
evidence of a recent decline in their populations and diversity (Barendregt et al., 2022; Potts
etal,, 2010). Within Europe, an estimated 9.2 % of bees (Nieto, 2014) and 8.5 % of butterflies
(Swaay et al,, 2010) are threatened with extinction. In Germany, at least 48% of wildbees
(Westrich et al,, 2011) and 31% of hoverflies (Ssymank et al., 2011) are listed as endangered
or extinct in the national Red List, the decline of hoverflies even in a faster pace than for bees
(T. Zeegers et al., 2024). Indirect evidence of pollinator losses stems from studies analyzing
insect decline, often including taxa known for their role as pollinators (Goulson, 2019;

Hallmann et al,, 2017).

Primary factors contributing to pollinator decline are a combination of various anthropogenic
drivers, which can be condensed into the following: climate change, land-use change, and

management intensity, followed often by the use of pesticides and genetically modified crop
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species, pollinator management and pathogens, and finally, invasive alien species (Potts et al.,

2010; Vanbergen & Initiative, 2013).

While climate change impacts not only the abundance and population of pollinators (I.-C.
Chen et al,, 2011) and plants (Chitu & Paltineanu, 2020), it also leads to a mismatch in the
phenology of these groups, and therefore, the interaction between insects and plants is lost
(Gérard et al., 2020; Hegland et al., 2009; Hgye et al,, 2013; Inouye, 2022; Memmott et al.,
2007; Schweiger et al.,, 2008). Although the complete extent of this discrepancy remains
unclear, initial studies have already identified an impact on the fitness of both the pollinators

and plants (Hutchings et al., 2018; Schenk et al., 2018).

A global demand for food, fiber, water, and shelter for an increasing world population has
caused a massive shiftin land use and an intensification in agroecosystems (Foley et al., 2005;
Robinson & Sutherland, 2002). These changes have caused the destruction, fragmentation, or
degradation of semi-natural habitats, all vital habitats where pollinators nest and forage
(Potts et al,, 2010). The availability of floral resources (pollen and nectar) or nesting sites for
pollinators can be altered and, consequently, endanger pollinators' population and diversity

(Biesmeijer et al., 2006; McNeil et al., 2020; Persson et al., 2015; Requier et al., 2015).

Agricultural intensification is often accompanied by increased use of pesticides and
herbizides, applied directly to the crop or frequently concentrated in pollen or nectar of
adjacent wildflowers (Botias et al., 2015). Despite that pollinators are not the targeted group,
the effects can vary, from changes in behavior (Clem et al., 2020; Easton & Goulson, 2013;
O'Reilly & Stanley, 2023; D. B. Smith et al,, 2020; Tasman et al., 2021), higher vulnerability
towards pathogens (Di Prisco et al.,, 2013), a direct effect on the population (Alston et al.,
2007; Rundlof et al., 2015; Woodcock et al,, 2016) or a mixed effect often amplified by other
agrochemicals (Van Der Sluijs et al., 2013). Moreover, the exposure not only affects the first
generation, but can also have lasting carryover effects on the next generations (Stuligross &

Williams, 2021).

Regarding food production, a pollination decrease could compromise the quality or quantity
of pollinating-dependent crops (Garratt et al., 2014; Hiinicken et al., 2020; Klein et al., 2007).
Numerous pollinator-dependent crop species also serve as a primary source of various
micronutrients (i.e., vitamin A, folate, and iron) (Chaplin-Kramer et al.,, 2014). A lower
consumption of these food sources caused by an increased production price may lead to an
increase in preventable diseases that are associated with malnutrition, including

cardiovascular diseases, diabetes, oesophageal cancer, and lung cancer (Bauer & Sue Wing,
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2016; M. R. Smith et al.,, 2015). Aside from crop species, over 87% of wild flowering plants

depend on animal pollination for their reproduction and fitness (Ollerton et al., 2011).

Ultimately, it is crucial to acknowledge that our comprehension and scope of pollinator
decline is still limited to those being monitored or studied by experts (IPBES, 2019). Thus, the
underlying severity and factors contributing to the decline of other understudied wild-

pollinating insects remain unclear.

Brachycera and Hymenoptera are vital pollinators in agroecosystems

Land use and agricultural intensification have also resulted in greater dependence on proper
pollination services. This dependency has, to some degree, been fulfilled by managed
pollinators, with the European honeybee (Apis mellifera L.) being the most prevalent (Breeze
et al, 2014). Honeybees have been promoted to a greater extent than wild pollinators due to
their easiness of handling and managing. However, they are not necessarily more efficient
than wild pollinators (Albano et al,, 2009; Garibaldi et al., 2013; Jauker & Wolters, 2008;
Lefebvre et al., 2019; Phillips et al., 2018; Rader et al,, 2009; Viana et al., 2014). Recent studies
have even emphasized the potential threat of honeybees to native wild pollinators, competing
for the same floral resources, particularly when these resources are limited (Goulson, 2003;
Goulson & Sparrow, 2009; Paini, 2004; Wojcik et al., 2018) or transferring diseases (Fiirst et
al,, 2014). For the sake of simplicity, we will define from here on wild pollinators as all non-
managed pollinator, and non-bee pollinators as all non-honeybee and wildbee pollinators.
Nonetheless, especially these native underestimated wild pollinators within Hymenoptera
and Brachycera (Diptera) might play an important role, which, however, are still relatively
unknown, despite being among the most speciose insect orders worldwide and a
predominant group of pollinators (Forbes et al,, 2018; Ollerton, 2017; Stork, 2018). These
taxa are usually overlooked in pollination studies assumed to be less effective, consequently
underestimating their pollination abilities and affecting furthermore conservation efforts
based on those assessments (Ssymank et al., 2008).

The Order Hymenoptera with over 154,000 species encompasses, among others, wasps,
sawflies, ants, and bees (Aguiar et al., 2013; Huber, 2017; Noort & Broad, 2024). Despite bees'
global popularity (especially honeybees), they represent only a portion of potential
hymenopteran pollinators (Ollerton, 2021). In recent years, there has been a noticeable shift
in attention towards other non-bee hymenopterans for their significant role as pollinators
(Coruh & Coruh, 2012; Ollerton, 2017; Rader et al,, 2016; Requier et al., 2023a). As a case in
point, a recent study by Borchardt et al. (2024) demonstrated that wasps can be as efficient
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pollinators as other wildbee species in terms of pollen diversity and amount being
transported.

Meanwhile, Brachycera (flies) are even further overlooked as pollinators and frequently
underestimated, despite that over 55 brachyceran families are considered flower visitors,
feeding on nectar, pollen or both (Larson et al., 2001; Raguso, 2020; Ssymank et al., 2008).
Within Brachycera, just the family Syrphidae (commonly known as hoverflies or flower flies)
has gained a little bit more attention concerning its essential contribution to pollination,
especially in agroecosystems (Doyle et al., 2020; Innouye et al., 2015; Orford et al., 2015;
Rader et al,, 2020). Particularly in low temperatures, Brachycera is the main pollinator for
many flowering plants (Doré etal., 2021; Howlett, 2012; Lefebvre et al., 2018; Tiusanen et al,,
2016). This is particularly important in the face of climate driven shifts causing a mismatch
between the flowering crop and the pollinator phenology, which is already the case in many
apple orchards (Wyver etal., 2023).

Additionally, many non-honeybee hymenopteran and brachyceran species can also be crucial
control agents of pest species (Brock et al,, 2021; Kremen & Chaplin-Kramer, 2007; Pekas et
al,, 2020), essential in organic farming (Porcel et al.,, 2018). For example, numerous hoverflies
feed on aphids during their larval phase, thus serving as crucial agents in regulating aphid
population (Dunn et al., 2020). Likewise, many parasitoid wasps lay their eggs and develop in
or on the host, which are often natural enemies, eventually killing it and influencing the
population (Begg et al., 2017; Godfray, 1994; Jervis et al., 1993).

Additionally, the diversity and population of various wild pollinators are being employed as
bioindicators, crucial tools to assess conservation efforts, due to the higher sensitivity to
spatial and temporal changes (Birkhofer et al., 2018; M. Naeem et al., 2020). However, using
a specific taxon as a bioindicator requires feasibility to be identified accurately by trained
amateurs and to understand the precise environmental and ecological requirements of these
species (Birkhofer et al.,, 2018). As many taxa do not meet this prerequisite, there have been
more efforts to identify bioindicating species within Syrphidae and wildbees (Burgio &

Sommaggio, 2007; Schindler et al., 2013).

1.2. DNA barcoding and metabarcoding

Identifying species is a crucial component of biodiversity assessments and, ultimately,
conservation efforts. Historically, the identification has relied on unique intraspecific traits,
making classifying specimens into different species possible. However, these assessments can
be expensive, time-consuming, and sometimes lack taxonomic resolution, which also derives

from a decline in taxonomic expertise (Chimeno et al., 2022; Piper et al., 2019; Souza et al,,
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2016). These classic identification methods also have clear limitations for species where
morphological traits are somewhat ambiguous or indistinguishable, for example, in cryptic
species complexes (Jackson et al.,, 2014; Song et al., 2018) or understudied taxa without

identification keys (Chimeno et al., 2022).

Advances in molecular techniques at the beginning of the 21st century have provided novel
approaches for processing large sample numbers, addressing some previously mentioned
obstacles, or supplementing the traditional methods (Hebert & Gregory, 2005). DNA
barcoding takes advantage of the conserved homologous regions of a gene present in
numerous species or groups of taxa. Which and how many DNA barcodes should be selected
may differ depending on the studied organisms (Coissac et al,, 2016; Freeland, 2017). For
plants and fungi, a combination of nuclear and chloroplastic gene markers, such as internal
transcribed spacer (ITS) and maturaseK (matK), are often selected DNA barcodes (Chase &
Fay, 2009; S. Chen et al., 2010; Group, 2009). The most prevalent mitochondrial gene used as
a DNA barcode for the animal kingdom is Cytochrome c Oxidase subunit 1 (COI) (Hebert et al.,
2003a).

The process of DNA barcoding involves extracting the targeted gene using standardized
molecular steps consisting of DNA extraction, PCR amplification of the selected gene fragment
with a (forward and reverse) primer set, and Sanger sequencing (Kress et al., 2015; Shokralla
et al, 2014). The obtained DNA barcodes are then compared to reference databases such as
the GBOL Reference Library (M. F. Geiger et al., 2016), BOLD (Ratnasingham & Hebert, 2007)
or NCBI (Sayers et al,, 2022) using alignment-based tools such as BLAST (Altschul et al., 1990;
Camacho et al., 2009). These repositories provide reference sequences of accurately
identified organisms by taxonomists and are ideally regularly curated (Pentinsaari et al,,
2020). The reference sequence with the lowest genetic distance is then considered a valid

match, and its taxonomy is assigned to the own sequence.

While DNA barcoding allows the analysis of individual specimens, the development of high-
throughput sequencing (HTS) has enabled the possibility to analyze samples with multiple
taxa, a process also known as DNA metabarcoding (Compson et al., 2020; Deiner et al., 2017).
The analyzed samples can be either bulk tissue samples of whole organisms or environmental
samples with traces of species DNA (eDNA) in soil (Kirse et al., 2021b), water (Aunins et al.,
2023), sediments (Sinniger et al., 2016) or other materials (Liu et al,, 2019). While the lab
work, including DNA extraction and PCR amplification, is similar to DNA barcoding, they differ
mainly in the final bioinformatic analysis of sequence reads summarized into either Operative
Taxonomic Units (OTUs; Kopylova et al., 2016; Westcott & Schloss, 2015) or Amplicon
Sequence Variants (ASVs; Porter & Hajibabaei, 2018) table, which can be used for further

7
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analysis (Liu et al., 2019). These bioinformatic steps are as necessary as the laboratory
protocol to obtain a precise species list as possible. Proper quality trimming, clustering, and
denoising of these raw sequence reads can be the decisive step between finding false positives
(species just identified via DNA metabarcoding) or false negatives (species just identified
morphologically) in the sample. This is particularly important in agroecosystems, where
using this methodology is crucial to detect invasive or pest species (Borrell et al,, 2017; R. G.

Young et al.,, 2021).

The use of DNA metabarcoding as a method to analyse plant-pollinator interactions has
gained popularity in recent times (Bell et al., 2017; Pornon et al., 2016). In comparison to
flower visitations surveys under the false assumption that flower visitors are also pollinators
(King et al,, 2013; Wardhaugh, 2015), or utilizing traditional morphological identification to
identify pollen grains (palynology; Beattie, 1971; Erdtman, 1943), DNA metabarcoding of
pollen achieves a higher taxonomic resolution (Bell et al., 2017) and is also more cost-efficient
(Hawthorne et al., 2024a; Macgregor et al., 2019). This higher taxonomic resolution makes it
possible to identify invisible plant-pollinator interactions that otherwise would not be found
with traditional methods (Pornon et al,, 2017) and a more proper interpretation of plant-
pollinator network indices (Soares et al., 2017). The high taxonomic resolution is also a
prerequisite to explore and understand the impact of ecosystem changes or anthropogenic
impact on plant-pollinator interactions, from the lowest individual forager to the colony or

species level (Bell et al., 2023).

1.3. Pollination ecology and plant-pollinator networks

Studying pollinators as key elements of mutualistic ecological networks of ecological
communities has several advantages compared to studying the pollinators of focal plant
species. Primarily, it is possible to analyze the contribution and stability of plant-insect
interactions to ecosystem functions, as well as potential key components that can affect the
adaptation or stability of these interactions (Bascompte & Jordano, 2007; Bascompte &
Scheffer, 2023; Ings et al, 2008). Additionally, it enables comparing and assessing
interactions over different spatiotemporal scales or resolution levels (Hemprich-Bennett et

al,, 2021; Pornon et al,, 2017; Renaud et al., 2020).
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Figure 1: Typical plant-pollinator topology. Plant-pollinator networks can either be illustrated as a (A)
matrix or as a (B) bipartite network. One of the most commonly used indices to compare plant-
pollinator networks are (C) connectance and (D) nestedness. Connectance is the fraction of all possible
links in a network level of nestedness of a network relates to the set of insects that interact with one
plant set compared to another one (modified from Besson et al,, 2019). The level of nestedness of a
network describes to what extent sets of specialists interact with a set of generalists (Almeida-Neto et
al,, 2008; Bascompte et al., 2003).

Plant-pollinator networks are usually two-mode networks represented by either bipartite
graphs or a matrix (Bascompte et al., 2003; Namin et al., 2022). The nodes on each side of the
network are either the plant taxa (primary level species) or the insect taxa (secondary level
species). The relationship between the node types is usually represented by connection links,
where the interaction's strength reflects the interaction's frequency (Bascompte et al., 2003;

Jordano, 1987; Jordano et al., 2006). While there are over 26 highly correlated network
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indices that describe and help to examine the network structure under different ecological
scenarios, mainly the distribution of links amongst species, connectance, and nestedness, all
frequently used in the literature (Dormann et al., 2009), were used in Chapter 2 and 3.
Connectance is defined as the fraction of all possible links in a network (Dormann et al., 2009;
Dunne et al., 2002). The level of nestedness of a network describes the extent of interaction
among sets of specialist and generalist species (Almeida-Neto et al., 2008; Bascompte et al,,
2003). Generally, plant-pollinator networks tend to be highly nested, meaning that specialist
species usually interact with most generalist species (Bascompte et al,, 2003; Vazquez &
Aizen, 2003). The main characteristic of a nested network is a dominant core of generalist
plant and insect species that interact with each other, making the network more robust
against external influences that could potentially lead to extinction (Memmott et al., 2004).
While climate variables impact pollinator richness and taxonomic composition of plant-
pollinator networks, anthropogenic pressures cause a predominance of generalist over
specialist plant and insect species (Doré et al., 2021). Additionally, in Chapter 3, the level of
Generalism was calculated. Generalism is defined as the mean number of potential pollinator
species per plant species (Bersier et al., 2002). It was calculated by the number of potential
pollinators divided by the number of plant species in each network.

In terms of temporality, most of the studies on plant-pollinator networks provide a static
snapshot of plant-pollinator networks. However, this constrains the ability to interpret the
ecological and evolutionary mechanisms that shape those networks to some degree.
Community dynamics and turnovers are highly different depending on whether the networks
are being studied at the narrowest (days, weeks, months) or broadest (decades or centuries)
temporal scales (CaraDonna et al., 2021).

Finally, plant-pollinator network is a very general term for several different network types:
depending on the emphasis either placed on visitation frequency or pollinator effectiveness,
the networks can be differentiated between visitation networks (i.e. the number of
interactions between the pollinator and the flower), pollinator effectiveness or pollen
transport networks (i.e. the amount and types of pollen transported by the pollinator) or
pollinator importance networks (i.e. the amount and types of pollen deposited by the
pollinator) (Ballantyne et al., 2017). The focus of this thesis was on analyzing pollen transport
networks, which provides directly more attention to the pollinators” perpective in the
network (Bosch et al., 2009). However, for the sake of clarity and consistency, the term plant-

pollinator network will be used in place of pollen transport network.
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1.4. Agroecosystems as study systems

Agroecosystems present a unique and challenging environment due to their interplay
between ecological and economic factors (Pert et al., 2013). Unlike natural ecosystems, they
are intentionally designed and managed to optimize agricultural production (food, fiber, and
other products). They are characterized by a unique complexity of interactions between the
cultivated crop, the soil, as well as pests and beneficial organisms (e.g., pollinators) (Jeanneret
et al, 2021). In comparison to natural ecosystems, the artificial selection and cultivation of
specific plant and animal species creates complex dependencies. While the primary purpose
of agroecosystems is to provide food and other secondary products for human life, it holds
also the potential for friction between the different stakeholders, including the farmers,

consumers, policymakers, and agribusinesses (Burkle et al.,, 2017; Tscharntke et al., 2012).

Table 1: worldwide production and value of the targeted crop species in 2022 (FAOSTAT, 2020).

Crop species Areaharvested [ha] Yield [100 g/ha] Value [billion USD]

Apple 4,825,729 198,594 84
Caraway* 2,315,212 11,882 3.9
Spinach 937,829 353,117 20

* Caraway is included in the FAOSTAT database as an item with other medicinal and spice plants

To study the potential wild pollinator diversity of Brachycera and Hymenoptera in
agricultural ecosystems I chose apple (Malus domestica; Rosaceae), caraway (Carum carvi L.:
Apiaceae), and spinach (Spinacia oleracea L.; Amaranthaceae) as the study crop species. They
differ in flower morphology, phenology, and economic value.

Apple is the most ubiquitous temperate fruit with a high economic value (Ramirez &
Davenport, 2013). It is highly dependent on cross-pollination between plant individuals of
the same cultivar and the flowering period is usually in the spring (Broothaerts et al., 2004;
Dennis, 2003). In case of pollination exclusion, deficits in fruit set and seed numbers can reach
up to 75% and 56%, respectively (Garratt et al., 2013).

Caraway is an annual or biennial cultivated medical and spice plant. Due to the flower
structure and arrangement, nectar and pollen are easily available for short-tongued
generalist pollinators (d'Albore, 1986; McGregor, 1976). Pollination exclusion can reduce the
(seed) yield by up to 40% (Bouwmeester & Smid, 1995; Toivonen et al., 2022).

The last selected crops species is spinach. While it is usually harvested before the flowering

period, and thus not a primary attractant for flowering-visiting insects, there is a local concern

11
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regarding the means to enhance the diversity of brachyceran and hymenopteran species
through initiatives such as the implementation of flowering strips in cultivation (Meyhofer et
al,, 2008). Hence, although pollination exclusion is not a concern, a variety of brachyceran and

hymenopteran species have the potential to serve as beneficial pest biocontrol agents.

1.5. Aims and structure of this thesis

The recent and extensive worldwide pollinator decline has garnered renewed attention
toward understudied or unknown wild pollinators, which are important ecosystem service
provider and pivotal for angiosperm diversity. Additionally, methodological developments in
DNA metabarcoding has allowed to get a deeper understanding of plant-pollinator networks
in comparison to palynology. Therefore, we analyzed and focused on the potential of non-
honeybee Hymenoptera and Brachycera as pollinators and how they interact in a plant-
pollinator network with the targeted crop species (caraway and apple). In doing so, we also
examined the floral affinity of these pollinators towards other species.

In Chapter 2, the plant-pollinator network of non-honeybee Hymenoptera and Brachycera
collected in caraway fields over one year, during and after the flowering period of caraway is
being assessed. All possible wild pollinators of caraway and the complex plant-pollinator
network they are embedded are being presented. This was possible by combining DNA
metabarcoding and the morphological identifications of the pollen loads carried by the
potential pollinators and DNA barcoding and morphological identification of the insect
specimens. Additionally, the intraday and intraseasonal variability (temporal pattern) of the
plant-pollinator networks as well as flower affinity between Brachycera and Hymenptera was
analyzed and compared.

In Chapter 3, the plant-pollinator networks of non-honeybee Hymenoptera and Brachycera
collected in apple orchards over two years, before, during and after the flowering period of
apple were analysed. After showing in Chapter 2 that it was possible to uncover a higher
number of plant-pollinator interactions just by DNA metabarcoding the pollen loads and they
correspond overall to the morphological identification at family level, we used in this chapter
just metabarcoding of pollen loads combined with DNA barcoding and morphological
identification of the insect specimens to analze the plant-polliantor networks. The focus of
this chapter was on interannual differences in pollinator diversity and plant-pollinator
interactions.

In recent years, DNA metabarcoding has evolved into a widely used technique for
bioassessments, especially for the analysis of bulk samples. However, the evaluation of

established methods is key and essential to understand possible limitations. Specially, there
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remains a paucity of studies examining potential disparities between the traditional
morphological identification based on taxonomic traits and DNA metabarcoding of bulk
samples.

In Chapter 4, we analyzed the overlap between the morphological identification and a non-
destructive DNA metabarcoding approach of Brachycera and Hymenoptera in bulk samples
collected with Malaise traps on spinach fields (Spinacia oleracea L.). We focused especially on
the in-silico approach of clustering and filtering approaches to have the closest match
between morphological identification and DNA metabarcoding in terms of species abundance

and species communities.
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This chapter is published in Molecular Ecoloy (open access; CC BY 4.0) as followed:

Kilian, I. C., Swenson, S. J., Mengual, X., Gemeinholzer, B., Hamm, A., Wagele, ]. W., & Peters, R.
S. (2023). More complex than you think: Taxonomic and temporal patterns of plant-
pollinator networks of caraway (Carum carvi L.). Molecular Ecology, 32, 3702-3717.
https://doi.org/10.1111/mec.16943.

2.1. Summary

Pollination by insects is a crucial ecosystem service to maintain angiosperm diversity and is
particularly relevant for food production in agroecosystems (Klein et al., 2007; Ollerton et al.,
2011). Moreover, most studies on this topic usually target well-studied taxa such as
honeybees or bumblebees. As a result, the potential of other wild pollinating species is
partially excluded or ignored, limiting the understanding of the real contribution of wild
pollinators in agroecosystems and their drivers (Howlett et al,, 2021; Rader et al., 2020).
Carum carvi L. (caraway; Apiaceae), an annual or biennial cultivated medicinal and spice
plant, was used here as a case study. Despite that pollination exclusion reduces seed
production by up to 40% in caraway plants, current knowledge on the potential of wild
pollinators is still minimal (Bouwmeester & Smid, 1995; Stelter, 2014; Van Roon &
Bleijenberg, 1964).

One of the main goals of Chapter 2 was to analyze the plant-pollinator networks of caraway.
Instead of exclusively using palynological identification of pollen samples, we used additional
DNA metabarcoding to study the plant-pollinator interactions. A significant advantage of
metabarcoding is the higher taxonomic resolution and efficiency than palynology analysis
(Macgregor et al., 2019; Pornon et al., 2016). In this chapter, we used an integrative approach
to analyze the potential pollinators of caraway by identifying morphologically and DNA
barcoding the insect specimens, as well as identifying morphologically and DNA

metabarcoding the pollen loads carried by the insect specimens.
In Chapter 2, based on the plant-pollinator networks of caraway, the aims we focused on were,

1) to identify potential pollinators within the taxa of Brachycera and non-honeybee
Hymenoptera, including variations in pollinator diversity between the different
sampling intervals (intraday differences),

(i) to analyze the leading qualitative differences between the network of Brachycera and

Hymenoptera,
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Chapter 2.

(iii)  to examine potential intraseasonal differences in the plant-pollinator network of

caraway, focusing on differences during and after the flowering period.

Outof 1,021 insect specimens collected, we identified 121 species that carried caraway pollen
and, therefore, could be potential pollinators of caraway. Among these were 87 Brachycera
and 34 Hymenoptera species encompassing numerous non-syrphid Brachycera and non-bee
Hymenoptera species. Many of these potential pollinators have been described as flower
visitors in the past or have been overseen in pollination studies. Particularly outstanding was
the crucial role of Athalia rosae (Linnaeus, 1758) (Tenthredinidae, turnip sawfly) as a key
player in the plant-pollinator network of Hymenoptera. The larva of this species is rather
known as a common pest of Brassicaceae crop species (Oishi et al.,, 1993), showcasing the
close ties in agroecosystems between crops and insect species. Notably, around one-fourth of
the potential pollinators were collected exclusively during a single sampling interval out of
possible three throughout the day. Therefore, a thorough sampling is essential to ensure a

comprehensive representation of all potential pollinating species.

Overall, these caraway pollinators interacted with 139 plant taxa of different taxonomic
levels. These plants include many species of the flowering strip present in one of the two
sampling areas, in addition to other crop species present in the surrounding landscape.
Surprisingly, we also identified some wind-pollinated plant species in the pollen loads, such
as Urtica dioica L. or several Pinaeceae (pine) species. Both methodologies identified these
species, which ruled out a methodological bias. Flower visitors have already been observed
on most of these plant species. Therefore, we assume they actually visited the flowers or got
in contact with the pollen in their environment (Ssymank & Gilbert, 1993; Taylor, 2009). The
plant-pollinator networks of Brachycera and Hymenoptera differed in their structure, based
principally on the differences in the number of interactions and the number of insect and
plant species involved. The plant communities visited by these two pollinator groups also
varied significantly, showcasing differences in flower affinity: Hymenopterans showed a
preference for Fabaceae and Boraginaceae, which are also adapted to pollination by
Hymenopterans, while Brachycerans showed a preference for Apiaceae (Faegri & Pijl, 1979;
Sedivy et al,, 2013). Apiaceae often include generalist plant species that are characterized by
their umbellate flowers, which usually attract a high diversity of pollinators due to the
superficial nectaries or are also used as a resting place (Niemirski & Zych, 2011; Zych et al,,

2007).

Despite the assumption that the caraway plant-pollinator network’s complexity decreases

after the main flowering period of caraway, we found that many insect species also carried
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caraway pollen after this period. This suggests that the late caraway flowers, like other
umbellifers, remain an essential food source for pollinating species. Additionally, since
caraway blossoms outside the main flowering period of many orchards and other crop
species in the temperate region, farmers could cultivate it as an ecologically beneficial mass-
blooming crop (Thomson, 1978; Zych et al., 2019). In conclusion, the results presented in this
chapter show that an integrative approach combining DNA metabarcoding and barcoding, as
well as morphological identifications, is a viable and effective methodology to analyze plant-
pollinator networks of a targeted crop species and identify the dynamic and structure of the

network.
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1 | INTRODUCTION
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Abstract

Caraway (Carum carvi L.) is a crop species that is gaining in importance in Europe,
especially as a condiment and medicinal plant. Here, we present the plant-pollinator
network of caraway in a central European agricultural landscape, focusing on two
diverse potential pollinator taxa, Diptera: Brachycera (= true flies) and Hymenoptera
(sawflies, bees, and wasps). We specifically studied qualitative differences in interac-
tions between the two insect taxa as well as the intraday and intraseasonal variability
of the network. Insect and pollen plant species determination was done via morpho-
logical identification and DNA (meta)barcoding. In total, 121 species representing 33
families of Hymenoptera and Brachycera were found to carry caraway pollen. These
taxa included many nonhoneybee and nonhoverfly species, showing a wide taxo-
nomic breadth of potential pollinators and a higher network complexity than previ-
ously anticipated. There are distinct qualitative differences between Brachycera and
Hymenoptera networks, suggesting complementary roles of both taxa in the polli-
nation of native and crop plants. Strong intraday differences in potential pollinator
diversity make it necessary to collect insects and pollen at different times of the day
to compile complete plant-pollinator networks. Intraseasonal analyses of the plant-
pollinator network of caraway show the potential of caraway as an important food

source for insect species with an activity peak in late summer.

KEYWORDS
bipartite networks, Brachycera, DNA barcoding, DNA metabarcoding, Hymenoptera,
pollination

biodiversity (Klein et al., 2007; Ollerton et al., 2011). A large num-

ber of publications have been devoted to well-studied taxa such as

Insects are critical for a variety of ecosystem services necessary for honeybees, bumblebees and solitary bees, but very few publications

the health of the planet. Pollination is among the most important have focused on nonbee Hymenoptera or nonsyrphid Brachycera

ecosystem services insects provide and is pivotal for angiosperm despite these taxa being pollinators for at least 105 crop species
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(Howlett et al., 2021; Ollerton, 2017; Rader et al., 2020). Some re-
cent studies have highlighted the importance of nonbee taxa for pol-
lination, such as dipterans being the dominant pollinators at higher
altitudes and latitudes (Lefebvre et al., 2019; Tiusanen et al., 2016),
and for several crop species (Orford et al., 2015; Rader et al., 2016).
In addition, there is evidence that dipterans are more resilient to
stressors such as land-use change in comparison to managed and
wild bees (Rader et al.,, 2016) and are as efficient as honeybees
(Rader et al., 2009).

Most studies of pollination by Diptera have focused on one fam-
ily (Syrphidae) despite many other taxa frequently being listed as
flower visitors (Orford et al., 2015; Ssymank et al., 2008). The under-
studied taxa are often excluded or deliberately ignored, which leads
to the erroneous assumption that they do not play an important
role in pollination (Larson et al., 2001; Rader et al., 2016, 2020) or
miss the fact that some species can be pollinators as well as pest or
weed control agents (Dunn et al., 2020; Moerkens et al., 2021; Rizza
et al., 1988; Sheppard et al., 1995). Consequently, many governmen-
tal programmes to enhance pollinator diversity have been designed
and developed for well-studied taxa, neglecting the importance of
including and safeguarding the less-studied taxa (Orford et al., 2015;
Rader et al., 2020). A deeper knowledge of plant-pollinator inter-
actions is required to understand the underlying multifactorial
processes causing the worldwide pollinator decline and the ef-
fects of landscape changes from agricultural activity (Arstingstall
et al., 2021). At the same time methods that protect beneficial in-
sects while also protecting the economic interests of farmers neces-
sitate further investigation.

Providing flower strips or fallow land in the vicinity of crops
has been shown to be successful at attracting pollinators (Batary
et al., 2015; Feltham et al., 2015; Garibaldi et al., 2016) as well
as natural enemies of crop pests (Cahenzli et al., 2019; Tschumi
et al., 2015). However, the cost of seed stock for flower strips that
do not provide an income source as well as a delayed increase of
crop production for several years often make them unattractive
to farmers (Christmann et al., 2021). An approach that would de-
vote small plots of ecologically beneficial mass-blooming crops or
“magnet-species” (Thomson, 1978; Zych et al., 2007) in the vicinity
of fields and crops could be a potential alternative or addition to
flower strips to enhance the populations and diversity of agricultur-
ally beneficial insects while providing an additional income source
(Christmann et al., 2021).

Carum carvi L. (caraway) is an annual or biennial cultivated
medical and spice plant with a worldwide increasing market
(Stelter, 2014; Van Roon & Bleijenberg, 1964). It belongs to the
family Apiaceae and has characteristic yellowish white protan-
drous flowers arranged in compound umbels (d'Albore, 1986;
McGregor, 1976) which require insect pollination to transport the
pollen to the stigma. Pollination exclusion can reduce seed yield
up to 40% (Bouwmeester & Smid, 1995; Toivonen et al., 2022). In
Central Europe, the main flowering period of caraway has a du-
ration of 25-30days (Németh et al., 1997) between late May and

early July (Langenberger & Davis, 2002). After the main flower-
ing period, there is sometimes a second flowering period in au-
tumn, but to a lesser extent (Hegi, 1926). Nectar and pollen are
easily available and they constitute a valuable source of protein
and carbohydrates for many potential pollinators (d'Albore, 1986;
1976; Toivonen
et al., 2022). Syrphidae and other flower-visiting Brachycera that

Langenberger & Davis, 2002; McGregor,

provide both economically important services of pollination and
pest control (at their larval stage in the case of syrphids) are known
to be important pollinators of caraway and related Apiaceae spe-
cies (Colley & Luna, 2000; Lamborn & Ollerton, 2000; Pérez-
Bafidn et al., 2007; Toivonen et al., 2022; Wojciechowicz-Zytko,
2019; Zych, 2002, 2007; Zych et al., 2014, 2019). These character-
istics make caraway a possible crop to be added to an agricultural
system to attract beneficial insects while offering an additional
economic resource for growers.

In the present study, we analysed the astounding complexity of
the plant-pollinator network of caraway in a central European ag-
ricultural landscape, targeting taxon-specific roles and, so-far ne-
glected, temporal patterns within the network. The two prevailing
approaches to analyse plant-pollinator networks are observing the
interaction between the flower and a potential pollinator (Classen
et al., 2020; Toivonen et al., 2022) or morphological identification
of pollen loads (Beattie, 1971; Erdtman, 2013). While both meth-
odologies are widely used, they often underestimate the num-
ber of plant species visited, leading to an underestimation of the
total number of interactions (Jedrzejewska-Szmek & Zych, 2013;
Macgregor et al., 2019). Furthermore, many described plant-
pollinator networks are static records, not covering temporal shifts
of species and interactions (Burkle & Alarcén, 2011; CaraDonna
et al., 2017, 2021; CaraDonna & Waser, 2020). To gain a better
estimate of plant species visited we implemented morphological
identification as well as DNA metabarcoding for pollen determi-
nation. DNA metabarcoding is an emerging molecular tool that has
the potential for more rapid pollen identifications with higher tax-
onomic resolution than possible with traditional morphology (Bell
et al., 2017; Macgregor et al., 2019; Sickel et al., 2015). Previous
studies utilizing DNA metabarcoding to investigate plant-pollinator
networks have resulted in more complex networks when compared
to those based on observational data alone (Michelot-Antalik
et al.,, 2021; Pornon et al., 2017). In addition, the data contradicted
the previous assumption that many pollinating species are spe-
cialists (Arstingstall et al., 2021). Still, many DNA metabarcoding
studies target only those flower-visiting species with high pollen
loads and do not cover the whole diversity of potential pollina-
tors (Arstingstall et al., 2021; Bansch et al., 2020; Bell et al., 2017,
Cornman et al., 2015; Keller et al., 2015).

In this study, we aim to address the following questions: (i) Which
Hymenoptera and Brachycera are involved in the plant-pollinator
network of caraway? (ii) What are the qualitative differences in the
plant-pollinator networks of Hymenoptera and Brachycera? (iii)

What is the intraseasonal pattern of the plant-pollinator network?
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(iv) Are there any intraday differences in potential pollinator diversity

of caraway?

2 | MATERIALS AND METHODS

2.1 | Study site

Specimens were collected in 2016 at the agricultural research
station Campus Klein-Altendorf. We collected on two plots, one
with a flower strip (mixture “Bliihende Landschaft Sud”; list of
plant species in Table S1) (50°37'0.7"N, 7°0'4.19"E) and one with-
out a flowering strip (50°37'15.86"N, 6°59'15.43"E). Plots were
1km apart. The caraway plot with flowering strips had a length of
110x 9 m (990 m?) including the flowering strip (110 x 3m; 330 m?).
The plot without flower strips had a length of 150x 9 m (1350 m?).
The plots were surrounded predominantly by winter barley and
wheat and flowering orchards (cherry, apple). By sampling both
areas we wanted to attract as many potential caraway pollinators
as possible.

The caraway (bi-annual variety “Sprinter”; N. L. Chrestensen)
and flower strip were sown on April 8, 2016, seeding was carried
out on both fields at a row spacing of 50cm and the sowing rate
was set at 10kgha™. Field emergence on April 23, 2016 in the
plot with flowering strips was 77% and the plot without flower-
ing strips had a field emergence of 91%. For weed control, a pre-
emergent Aclonifen herbicide was applied on both fields once at
3Lha™! on April 14. To keep the plots weed-free during the vege-
tation period, additional weed control was performed with a roller
and hand hoe.

2.2 | Collection of potential pollinators

During the caraway flowering period (July 5-25, 2016), sampling
took place on all rain-free days, resulting in 10 collection days in
total. After the flowering period, we sampled an additional 5days
(August 13 to September 1, 2016) after a 15-day gap to establish a
boundary between the interactions during and after the main flow-
ering time (Table S2).

Both caraway plots were sampled for 30min each at three dif-
ferent time intervals to sample variation of insect activity: 10-12h
(intervall), 12-14 h (interval Il) and 14-16 h (interval I11). To avoid time
bias in our sampling of the two caraway fields, we alternated the
order, starting with a different caraway plot each day.

Specimens of Brachycera and nonhoneybee Hymenoptera
were collected by hand-netting or direct collection into sampling
vials along a 110 x 3-m transect, either (i) in the caraway fields on
caraway flowers during the flowering period or (ii) in the border
area of the caraway fields and the flowering strip on the respec-
tive flowers after the flowering period. Formicidae were excluded

from the sampling based on the results by Zych et al. (2014).
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FIGURE 1 Visual summary of the methods applied to detect
potential pollinators of caraway.

After sampling, specimens were stored dry individually at -20°C

(Figure 1).

2.3 | Identification of potential pollinators

In the laboratory, all insect specimens were identified based on ex-
ternal morphology (Table S3 for keys used). For those insect speci-
mens which could not be morphologically identified to the species
level, we followed a DNA barcoding reverse-taxonomy approach
(Moriniére et al., 2019) using molecular sequences of the mitochon-
drial cytochrome c oxidase subunit | gene (COI; Hebert et al., 2003)
(Figure 1).

2.4 | DNA barcoding of Brachycera and
Hymenoptera

DNA was extracted from one to three legs per specimen in larger
taxa (>5mm long) or using a nondestructive protocol for lysis
extraction of the whole specimen in small taxa (<5mm long)
(Gilbert et al., 2007) with the BioSprint96 magnetic bead extrac-
tor (Qiagen). Subsequently, specimens were pinned, mounted, or
kept in ethanol, and labelled. Voucher specimens are deposited at
the Zoologisches Forschungsmuseum Alexander Koenig (ZFMK,
Leibniz Institute for the Analysis of Biodiversity Change). PCR
(polymerase chain reaction)_ amplification followed the Canadian
Centre for DNA Barcoding (CCBC) protocol for COI amplification
with the primer pair HCO2198-JJ (AWACTTCVGGRTGVCCAAAR
AATCA) and LCO1490-JJ (CHACWAAYCATAAAGATATYGG) (Astrin
& Stuben, 2008). PCR products were sequenced at the Beijing
Genomics Institute (BGI; https://en.genomics.cn/).

Sanger sequences were imported into Geneious version 7.1.9
(Kearse et al., 2012) and prepared with the Laboratory Information
Management System plug-in (Lims; Biomatters). Reverse and for-
ward sequences were trimmed, filtered and de novo assembled.
Assembled COl sequences were inspected and manually corrected

if necessary. Sequences were submitted to GenBank (0Q611071
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- 0Q611458) and the GBOL reference database (GBOL DNA
Barcode Reference Library 2022; Geiger et al., 2016). Sequences
were then searched in BOLD (https://www.boldsystems.org/;
Ratnasingham & Hebert, 2007). If all matches in BOLD with >99%
similarity resulted in the same species name, this species name
was used.

2.5 | Preparation and morphological
identification of pollen loads

Pollen was collected by swabbing the insect specimens with a lentil-
sized piece of Kaisers phenol-free glycerol gelatin (Carl Roth), with
a focus on the areas where the pollen was present in the greatest
concentration. Then, the glycerol gelatin fragment was mounted
on a slide over a 55°C heating plate and covered with a cover slip
(Figure 1) (Beattie, 1971). Morphological identification of their pol-
len load was done (i) for all specimens per species when the number
of specimens per species was five or fewer per plot (data from both
plots were pooled later, see below), (ii) from five specimens when
the number of specimens per species was 6-50, ensuring that all
intraday intervals were covered, and (iii) 10% of specimens when the
number of specimens per species was >50 individuals, optimizing
for intraseasonal collection dates. Slide-mounted pollen samples
were then photographed to serve as a voucher, as the downstream
method of DNA metabarcoding is destructive, and then identified
with a microscope (Olympus, 400-1000x magnification) using the
keys of von der Ohe and von der Ohe (2007) and the pollen refer-
ence collection of the Specialized Centre for Bees and Beekeeping
in Mayen, Germany (www.bienenkunde.rlp.de) (Figure 1). “Types”
represent taxonomic units that cannot be identified further to lower

taxonomic levels and may contain several species or even genera.

2.6 | DNA metabarcoding of pollen loads
Following morphological identification, pollen slides were used in
DNA metabarcoding. To maximize pollen content (and therefore
higher DNA content) and reduce cost, all slides from a particular in-
sect species (one to six) were combined in a single 2-mL SafeSeal mi-
crocentrifuge tube (Sarstedt) to create a species- and plot-specific,
but not specimen- or time-specific sample with a total number of
206 samples. To minimize cross-contamination, the slides were
wiped externally with Molecular BioProducts DNA AWAY before
gently removing the coverslips with a sterile scalpel blade. Then, the
glycerol gelatin sample was removed from the slide with the same
sterile scalpel. In most cases removal of the coverslip and obtain-
ing the gelatin sample required little effort, but in several instances,
the slides were heated at 50°C for 55, and in a few cases, specimen
samples were discarded due to glass fragmentation.

Following the sample creation, 1g of 1.4-mm ceramic beads was
added to the 2-mL tube and DNA was extracted with a Nucleomag
96 Plant Kit (Macherey Nagel). All reagents were used at 25% of

the factory protocol, except for elution buffer MCé. Prior to lysis
incubation lysis buffer MC1 and 5 pL Proteinase K (10mg mL™Y) were
added and the sample was homogenized for 2.5min on a Mixer Mill
MM 400 (Retsch) at 30Hz, then incubated at 65°C for 60 min after
which, 5uL RnaseA (10mgmL™) was added and incubated at room
temperature (20 + 2°C) for 30 min. Following all other protocol steps,
35l of elution buffer MC6 was added and incubated at 55°C for
5min to remove residual ethanol, then 25uL was removed for fur-
ther processing and 2 uL for DNA quantification with a Qubit 4 fluo-
rometer (Thermo Fisher Scientific).

Polymerase chain reaction was performed with three replicates
per sample, with the addition of two DNA extraction-negative con-
trols and two PCR-negative controls to evaluate contamination, and
two positive controls. Amplification was performed with an adap-
tation of the Canadian Centre for Barcoding Platinum Taq Protocol
(Ilvanova et al., 2007) with the addition of 0.25uL BSA (bovine
serum albumin; 0.01mgmL™) and 1.25 uL of 50% DMSO (dimethyl
sulphoxide) in a total reaction volume of 12.5ulL. Universal plant-
specific ITS2 primers were used: forward: ITS-3p62plF1, ACBTR
GTGTGAATTGCAGRATC and reverse: ITS-4unR1, TCCTCCGCTTA
TTKATATGC (Kolter & Gemeinholzer, 2021b). PCR cycling condi-
tions were 95°C for 3min, followed by 35cycles of 95°C for 30s,
50°C for 305, 72°C for 45s and a final extension of 72°C for 10 min.
Following PCR cycling, the three replicates were combined by the
addition of 5pL of each replicate for a total volume of 15 pL and puri-
fied with Thermo Scientific Exonuclease 1. The pooled replicates of
nonindexed PCR products were sent to LGC Genomics for sequenc-
ing on a MiSeq (2x300bp) after an additional 12 PCR cycles, three
cycles: 155 96°C, 30s 50°C, 90s 70°C, followed by nine cycles: 15s
96°C, 30s 58°C, 90s 70°C with MyTaq Red Mix polymerase (Bioline
BIO-25044).

Sequencing data were processed with usearch (Edgar, 2010) and
dada2 (Callahan et al., 2016) in R (R Core Team, 2021). Sequencing
primers were trimmed and quality filtered with a maximum expected
error of 1.0 in usearch. Dada2 was then used for error learning, de-
noising by the error profile (pseudo pooling) and merging of reads.
Chimeras were removed with uchime3. The resulting amplicon
sequence variants (ASVs) were identified by implementation of
the SINTAX algorithm (Edgar, 2016) using the PLANITS database
(Banchi et al., 2020) and submitted to NCBI SRA (Accession nos.:
PRJNA935259 and PRINA935270). The resulting ASVs with fewer
than five reads per sample, as well as fungal contaminants, were
discarded. Taxa that do not occur in Germany and were probably
present due to laboratory contamination were removed from further
analysis. Taxa with ambiguous species-level identifications, due to
lack of coverage in the identification reference database, were given
genus-level identifications.

2.7 | Curation of the data set

The data initially kept separately by plot (i.e., plot with and with-
out flower strip) were pooled into two data sets: one based on
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TABLE 1 Network indices of the five

sDeatta Connectance Nestedness I;;)rle'::siezer different networks analysed.
General network 2 0.05 2.39 2.84
Brachycera network 2 0.05 2.97 2.18
Hymenoptera network 2 0.16 793 3.83
Network during flowering 1 0.13 6.32 2.34
period
Network after flowering 1 0.17 11.25 1.68

period

Note: For data set definitions, see main text.

morphological identification of pollen only (data set 1) and one based
on the morphological identification combined with the DNA meta-
barcoding identifications of pollen (data set 2). Both data sets there-
fore differ in terms of identified plant/pollen species but include the
same data on potential pollinators (i.e., insect species). Data set 1 is
semiquantitative (i.e., includes the number of samples containing the
respective interaction). Data set 2 was converted into a single pres-
ence/absence data set (qualitative data set). Since presence/absence
data sets can over-accentuate interactions with rare plant taxa, we
excluded plant species involved in less than 1% of the total number
of interactions from the analysis, following Lucas et al. (2018).

2.8 | Terminology, statistical analysis, plant-
pollinator networks and indices

We constructed bipartite networks composed of two node divi-
sions (insect and pollen species) connected by a link defined as an
interaction between the plant and a potential pollinator (Dormann
et al., 2009).

All bipartite plant-pollinator networks analyses were carried
out in R (version 1.4.) (R Core Team, 2021), using the function
plotweb of the bipartite package for the network analyses and
using the function networklevel for network indices (Dormann
et al., 2008). We created five different plant-pollinator networks:
(i) a network with all potential hymenopteran and brachyceran
pollinating species of caraway, (ii) a plant-pollinator network with
only brachyceran species, and (iii) with only hymenopteran species
((i-iii) based on the qualitative data set 2), and two intraseasonal
networks, (iv) during and (v) after the main flowering period (based
on the semiquantitative data set 1).

For the description of the main differences between the
plant-pollinator networks, we calculated the Connectance (C),
Nestedness (N) and the mean number of links per species for
each network. C is defined as the number of links in proportion
to all possible links (Dormann et al., 2009; Dunne et al., 2002).
The overall N of a network (in this case 0 being highly nested) de-
scribes the specialization asymmetry, that is the proportion be-
tween specialists and generalists in the network (Bascompte &
Jordano, 2007; Dormann et al., 2008, 2009). Since the morpho-
logical identification of pollen grains was only possible at genus,

type or family levels in most cases, some plant species in data set
2 may be represented in several nodes.

To analyse the differences in interactions between
Hymenoptera and Brachycera, we used a permutational multi-
variate analysis of variance (MANOVA) with the Jaccard simi-
larity index (function adonis in the R package vegan; Oksanen
et al., 2016), using 9999 permutations and Jaccard similarity index.
The differences were also plotted as a nonmetric multidimensional
scaling (hMDS) with the function metaMDS and ellipses were gen-
erated with the function VeganCovEllipse (package vegn: Oksanen
et al., 2016). We also generated a UpsetR-plot (function upset in
the R package UpsetR; Conway et al., 2017) to study the key in-
tervals to sample the highest number of potential pollinators of

caraway.

3 | RESULTS
We collected 1021 insect specimens (844 brachycerans and 177
hymenopterans). These specimens represent 121 species from 33
families (87 Brachycera taxa from 20 families and 34 Hymenoptera
taxa from 12 families) (Figure S1). In total, 707 specimens were
identified morphologically (559 Brachycera and 148 Hymenoptera)
and 516 specimens (331 Brachycera and 185 Hymenoptera) were
identified via DNA barcoding following the reverse-taxonomy ap-
proach. Of the 1021 specimens collected, 457 were selected for
analyses of their pollen load, representing all collected insect spe-
cies. Common species included Melanostoma mellinum (Linnaeus,
1758) (Syrphidae; 11.57% of all specimens), Sphaerophoria scripta
(Linnaeus, 1758) (Syrphidae; 9.08% of all specimens), Eristalis ar-
bustorum (Linnaeus, 1758) (Syrphidae; 6.92% of all specimens),
Lucilia silvarum (Meigen, 1826) (Calliphoridae; 6.49% of all speci-
mens), Melanostoma scalare (Fabricius, 1794) (Syrphidae; 4.65%
of all specimens), Episyrphus balteatus (De Geer, 1776) (Syrphidae;
4.11% of all specimens) and Athalia rosae (Linnaeus, 1758)
(Tenthredinidae; 3.46% of all specimens). Links were recorded by
plant identification via DNA metabarcoding in 79 insect species,
by the morphological pollen identification in eight species or by
both approaches in 34 species.

A total of 457 pollen loads were identified morphologically and
later pooled into 206 DNA metabarcoding samples. Of these, 17
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metabarcoding samples (seven taken from Brachycera and 10 from
Hymenoptera) did not yield an adequate quantity of DNA and were

excluded, resulting in 189 samples used in further analyses.

3.1 | Plant-pollinator network of caraway

The plant-pollinator network of caraway included 121 potential
pollinator species and 139 plant taxa of different taxonomic levels.
Overall, we found 859 links, from which 199 links were identified
only by pollen morphology, 617 links were recorded only by DNA
metabarcoding of pollen samples and 43 links were recorded by
both methodologies.

The mean number of links per insect species was 2.48 (hy-
menopterans=23.8 links per species; brachycerans=2.18) (Figure S2
and Table 1). Thirteen insect species (11 brachycerans and two hy-
menopterans) carried only caraway pollen. The key plant node (i.e.,
plant species with the highest number of interactions) is naturally
Carum carvi L. (121 interactions=18.4% of the total number of in-
teractions), followed by Urtica dioica L. (33 interactions=3.75%) and
Borago officinalis L. (32 interactions=3.6%) (Figure S2). Of the 50
plant species present in the flower strip (Table S1), 31 were present
in the network. The network included 18 crop plants, which were
either a component of the flower strip (12 species) or cultivated in

the surrounding area (six species).

3.2 | Differences in Hymenoptera and
Brachycera links

Within the plant-pollinator network of Brachycera, 87 insect species
from 20 families and 96 plant taxa were involved, and we identi-
fied 399 links. Eight of the 10 species with the highest number of
interactions belong to Syrphidae. Eristalis nemorum (Linnaeus, 1758)
(Syrphidae) is the species with the highest number of interactions
(18 interactions), followed by Episyrphus balteatus (De Geer, 1776),
Syritta pipiens (Linnaeus, 1758) and Syrphus vitripennis (Meigen,
1822) (all Syrphidae; 12 interactions each) (Figure 2 and Figure S3).

Within the plant-pollinator network of Hymenoptera, 34 insect
species from 12 families and 86 plant taxa were involved, with 460
links. Bombus terrestris (Linnaeus, 1758) (Apidae; 41 interactions)
was the species with the highest number of interactions, followed
by Athalia rosae (Linnaeus, 1758) (Tenthredinidae; 38 interac-
tions), Bombus pascuorum (Scopoli, 1763) (Apidae; 26 interactions),
Lasioglossum pauxillum (Schenck, 1853) (Halicitidae; 25 interactions)
and Lasioglossum calceatum (Scopoli, 1763) (Halicitidae; 20 inter-
actions) (Figure 3 and Figure S4). The plant-pollinator network of
Hymenoptera had a higher connectance (C=0.14) and nestedness
(N=8.13) than the pollination network for Brachycera (C=0.04 and
N=2.57) (Table 1).

We found a significant difference in pollen load composition
between Hymenoptera and Brachycera (F=5.4567, R?=.10402,
p=.003%) (Figure 4). Besides caraway as the key plant node for

Hymenoptera, Lotus corniculatus L. (Fabaceae) and Trifolium repens L.
(Fabaceae) (27 interactions each), Centaurea cyanus L. (Asteraceae;
24 interactions) and Borago officinalis L. (Boraginaceae; 22 interac-
tions) were the important plant species in the network. L. cornicula-
tus L. and C.cyanus L. were present in the flower strip.

For Brachycera, Urtica dioica L. (Urticaceae; 31 interactions),
Matricaria/Achillea sp. (Asteraceae; 21 interactions), Daucus carota
L. (Apiaceae; 20 interactions) and Bellis sp. (Asteraceae; 16 interac-
tions) were other important plants in the network. Of these species

only D.carota was present in the flower strip.

3.3 | Intraseasonal pattern of the plant-pollination
network of caraway

We sampled a total of 15days, 10days during and 5days after the
main flowering period of caraway. During the main flowering period
of caraway, 30 potential pollinators of caraway were present; 17 of
these taxa were not present after the flowering period and 13 po-
tential pollinators remained. Sphaerophoria rueppellii (Wiedemann,
1830) and Pipizella sp. (both Syrphidae) carried caraway pollen only
in the period after the main caraway flowering period (Figure 5).

Moreover, we observed an overall decrease in the number of
plant taxa (from 46 plant taxa to 38) and a shift in plant species
composition (six plant species being only present after the flowering
period) involved in the plant-pollination network between during
and after the caraway flowering period. At the structural level, we
observed an increase in the total number of interactions (C=0.13
during and 0.17 after the flowering period) as well as an increase
in the proportion of generalists to specialists (N=6.32 during and
10.74 after the flowering period) (Figure 5 and Table 1).

3.4 | Intraday differences of potential
pollinator diversity

In total, 75 out of the 121 potential pollinators species of caraway
(61.98%) were found during the first time interval (10-12AM), 70
(57.85%) during the second time interval (12-14 AM) and 78 (64.46%)
during the last time interval (14-16 AM). Only 38 of the 121 potential
pollinators (31.4%) were present in all three time intervals, whereas
59 insect species (48.76%) were reported exclusively in one of the

three time intervals (Figure 6).

4 | DISCUSSION

To our knowledge, the present survey is the first study character-
izing the complexity of the plant-pollinator network of caraway in
an agro-ecosystem. With 121 species identified as potential caraway
pollinators interacting with 139 plant taxa via 859 links, this net-
work contains the largest number of species of any similar study of
agro-ecosystems to date. Compared to previous studies on potential
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FIGURE 2 Bipartite network of potential Brachycera pollinators (right), based on data set 2 (qualitative data set based on the
morphological identification and DNA metabarcoding of pollen loads). The height of the nodes (insect and pollen) indicates the number

of links connected directly to that taxon. ADO, Adoxaceae; AMA, Amaryllidaceae; ANA, Anacardiaceae; API, Apiaceae; AST, Asteraceae;
BAL, Balsaminaceae; BET, Betulaceae; BOR, Boraginaceae; BRA, Brassicaceae; CAN, Cannabaceae; CAR, Caryophyllaceae; CHE,
Chenopodiaceae; CUC, Cucurbitaceae; EUP, Euphorbiaceae; FAB, Fabaceae; FAG, Fagaceae; HYP, Hypericaceae; LAM, Lamiaceae; MAL,
Malvaceae; OLE, Oleaceae; ONA, Onagraceae; PIN, Pinaceae; PLAN, Plantaginaceae; PLAT, Platanaceae; POA, Poaceae; POL, Polygonaceae;
RAN, Ranunculaceae; ROS, Rosaceae; RUB, Rubiaceae; SOL, Solanaceae; URT, Urticaceae.

pollinators of caraway (Bouwmeester & Smid, 1995; d'Albore, 1986),
we found a much higher diversity of potential pollinators, in par-
ticular featuring many species of Brachycera. This aligns with the
results by Toivonen et al. (2022), which provided evidence of higher
flower visiting rates by Brachycera on caraway than of bee species
combined.

The overall plant-pollinator network with all species had an
overall low nestedness and connectance, which usually makes net-
works more prone to external disturbances (Bascompte et al., 2003).
However, when calculating these network indices, we encountered
some methodological issues. DNA metabarcoding of pollen sam-
ples was able to generate plant species lists while the morphological
identification of the pollen grains was, in most cases, possible only to
types (i.e., a group of related plant species with morphologically indis-
tinguishable pollen) or to the family or genus level. When merging the
data sets, we might artificially inflate the number of plant species in
the network, with some species potentially being listed as species and
as part of a type, family or genus. This cannot be avoided when com-
bining both methods; still, we consider our approach as the best way
to cover all actual interactions. Alternatively, for example when con-
sidering only species-level plant identifications, we would probably
severely underestimate the actual number of taxa and links. For the
sake of completeness and reference, we provide a network based only
on plant species in Figure S5. Accordingly, we need to be aware that
the numbers of plant taxa used in the present paper might not be the
exact plant species number. An analysis with this network would re-
sult in the same number of links per species, but a considerably higher
connectance and nestedness value. Despite having the same average
number of links per species as the one with all identified pollen taxa,
the overall decrease in the total number of links would increase auto-
matically the weight of each link, resulting in a higher connectance.
While one possible solution to combine the morphologically and ge-
netically identified pollen could have been to adapt the total number
of plants identified via DNA metabarcoding to the number of species
identified morphologically, as suggested by Jedrzejewska-Szmek and
Zych (2013), this would have resulted in the loss of over two-thirds of
the possible interactions. Therefore, we think the approach used in
this study is the best approximation currently possible.

We found a higher number of brachyceran species than hy-
menopterans carrying caraway pollen, although hymenopterans
had overall more links per species than brachycerans. The plant-
pollinator network of Brachycera had low connectance and nest-
edness caused by a high number of species with a low number of
interactions. On the other hand, the plant-pollinator network of
Hymenoptera had fewer insect species but more links per species.
These results align with previous studies (Phillips et al., 2018; Rader

et al,, 2011). Based on these numbers, hymenopterans might appear
as more effective pollinators, but the higher abundance of brachy-
cerans as flower visitors compared to hymenopterans (this study;
Garibaldi et al., 2013; Garratt et al., 2014; Innouye et al., 2015; Rader
et al., 2016), their higher resilience to land-use changes in compari-
son with bees (Rader et al., 2016; Ricketts et al., 2008), their ability to
carry pollen to greater distances, and their potential additional eco-
system service as biocontrol agents (Dunn et al., 2020) make them
equally important ecosystem service providers. Moreover, it has
been pointed out that pollen transport and diversity in a species do
not correlate with pollination effectiveness (King et al., 2013; Popic
et al., 2013). Further studies are required to assess the difference
in the effectiveness of hymenopteran and brachyceran potential
pollinators, despite some studies on other Apiaceae species already
noting a high effectiveness of Brachycera (Niemirski & Zych, 2011;
Pérez-Bandn et al., 2007; Zych, 2007; Zych et al., 2014).

Brachyceran species with a high number of interactions were
mainly anthropophilic syrphid species with a general preference
for white or yellow umbels (Innouye et al., 2015; Speight, 2018).
Nonetheless, the high number of generalized syrphid species may be
attributed to the occurrence of short-term specialized feeding bouts
between individuals of the same species (Lucas et al., 2018). Eleven
syrphid species found in our study are aphidophagous in their larval
stage and therefore are highly suitable as biocontrol agents (Dunn
et al., 2020; Moerkens et al., 2021; Nelson et al., 2012; Tenhumberg
& Poehling, 1995), which implies that caraway is not only an attract-
ing resource for pollinators but also for the adult stages of natural
enemies of crop pests.

Within Hymenoptera, as expected, Apidae species and other
wild bees presented the highest number of interactions, except for
two sawflies species, Athalia rosae (Linnaeus, 1758) (Tenthredinidae,
turnip sawfly) and Tenthredo notha (Klug, 1817), indicating the im-
portance of sawflies as potential generalist pollinators of caraway
and other Apiaceae (Lamborn & Ollerton, 2000). Athalia rosae had
the highest number of links of all Hymenoptera species in the net-
work, but the larva of this species is known as a common pest of
Brassicaceae crop species (Oishi et al., 1993), particularly of oilseed
rape, Brassica napus subsp. napus, one of the most common oil crops
throughout Europe (Wozniak et al., 2019). In addition to detecting
non-Apidae species with high numbers of interactions, we also found
two species, Lasioglossum pauperatum (Halicitidae: Brullé, 1832) and
Anthidium strigatum (Megachilidae; Panzer, 1805), as potential car-
away pollinators that are listed in the German Red List as severely
endangered and prewarning list, respectively (Haupt et al., 2009).
This shows the potential of caraway as a relevant food source for
some endangered species.
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FIGURE 3 Bipartite network of potential Hymenoptera pollinators (right), based on data set 2 (qualitative data set based on the
morphological identification and DNA metabarcoding of pollen loads). The height of the nodes (insect and pollen) indicates the number of
links connected directly to that taxon. ADO, Adoxaceae; ANA, Anacardiaceae; API, Apiaceae; AST, Asteraceae; BAL, Balsaminaceae; BET,
Betulaceae; BIG, Bignoniaceae; BOR, Boraginaceae; BRA, Brassicaceae; CAP, Caprifoliaceae; CHE, Chenopodiaceae; CON, Convolvulaceae;
CUC, Cucurbitaceae; EUP, Euphorbiaceae; FAB, Fabaceae; FAG, Fagaceae; HYP, Hypericaceae; MAL, Malvaceae; ONA, Onagraceae; PAP,
Papaveraceae; PIN, Pinaceae; PLAN, Plantaginaceae; PLAT, Platanaceae; POA, Poaceae; POL, Polygonaceae; RAN, Ranunculaceae; ROS,

Rosaceae; SAL, Salicaceae; SAP, Sapindaceae; URT, Urticaceae.
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We corroborate previous studies showing significant differ-
ences in flower affinity between Hymenoptera and Brachycera
(Lowe et al., 2022). Hymenopterans showed a preference for
Fabaceae and Boraginaceae flowers, which are highly adapted
to Hymenoptera pollination (Faegri & van der Pijl, 1979; Sedivy
et al., 2013; Westerkamp, 1996; Wood et al., 2021) and have re-
stricted access to nectar, making long-tongued bees more suited
for retrieving nectar rewards (Jeiter et al., 2020). Brachycerans
prefer flowers with mainly white, sometimes yellow, umbrella-like
inflorescences that provide pollen and exposed nectar through-
out the flowering period, in addition to a resting place (Woodcock
et al., 2013). Apiaceae have generally been considered nonspecial-
ized in pollination biology, but studies have shown an increased
visitation by dipterans (Niemirski & Zych, 2011; Wojciechowicz-
Zytko, 2019; Zych, 2007; Zych et al., 2014, 2019). The compos-
ite flowers of Asteraceae also provide a large surface area, and
sometimes shelter, as well as easy access to floral resources
shown to be preferentially exploited by dipterans (Branquart &
Hemptinne, 2000; Morales & Kéhler, 2008). Stinging nettle, Urtica
dioica L., is a primarily wind-pollinated species with highly reduced
and inconspicuous flowers and is generally not considered of great
interest to pollinating insects. However, pollination of U.dioica by
insects is known to occur (Taylor, 2009) and it is known to pro-
vide important habitat for beneficial insects, including predatory
and parasitoid flies and parasitoid wasps that can also serve as

pollinators (Alhmedi et al., 2007; James et al., 2015). These two
factors, combined with its prevalence in the study area, could in
part explain the high abundance. In addition, U. dioica was in peak
or moderate pollen flight through the duration of the study (2016
Archive; Stiftung Deutscher Polleninformationsdienst; https://
www.pollenstiftung.de) and was probably ubiquitous in the air
and on surfaces through the study area where insects could pick
up pollen grains during contact with these surfaces. We therefore
believe that the presence of U.dioica found from metabarcoding is
not a false positive caused by sample or laboratory contamination,
but a real occurrence in the environment.

The presence of three other wind-pollinated taxa both in the
morphological and metabarcoding data (Betula spp., Picea spp. and
Pinus spp.) and one insect-pollinated taxon (Salix spp.) is surprising,
as pollen production occurs in early spring, well before our collec-
tion dates. The occurrence of wind-pollinated taxa is probably a
result of persistence on surfaces in the environment, contact with
nest provisions by nesting bees or by active collection of species
which depend on anemophilous pollen (Ssymank & Gilbert, 1993).
The presence of Salix spp. is best explained by contact with nest pro-
visions. Some species of Salix have later flowering times in Germany
(May-July), but these are present only in subalpine and alpine re-
gions which are far distant from the study site.

Our results show temporal shifts of pollinator networks during
and after the flowering period of caraway. Caraway continued to
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FIGURE 5 Semiquantitative bipartite network during and after the main flowering period (FP) of caraway, based on data set 1
(semiquantitative data set based on the morphological identification of pollen loads). Plant taxa on the left side, potential pollinators on the
right side. The width of the link indicates the total number of samples analysed containing the respective link. Timeline on the top illustrates
the number of sampling days during and after the flowering period (FP).

flower after the main flowering period but to a much lesser extent.
Thirteen of the 32 potential pollinators of caraway were present
after the main flowering period and carried caraway pollen. This sug-
gests that for these species the late caraway flowers as well as other
late flowering umbellifers, present after the main flowering periods
of flowering plants in general, might be an important food resource
and therefore a good candidate for farmers to support pollinators
(Zych et al., 2007).

The increment in connectance and nestedness after the flow-
ering period is caused by different factors: over half of the insect
species are no longer present, the number of carried pollen species
is declining, and we observe an increase in links and abundance of
a few Bombus species. Despite having thoroughly sampled over
the flowering period of caraway, around 50% of the collected spe-
cies would have been missing if the sampling had not taken place
at three time intervals per day. The activity levels of Brachycera
and Hymenoptera are susceptible to weather conditions (e.g.,

temperature, wind or cloudiness) and therefore it was anticipated
that some potential pollinators of caraway will not be present over
the whole day (Innouye et al., 2015; Koul et al., 1993; Willmer, 1983).
Therefore, the strong intraday differences in potential pollinator di-
versity make it necessary to collect insects and pollen at different
times of the day to compile complete plant-pollinator networks.

By combining the results of both pollen identification methods,
we were able to distinguish over four times more interactions than
with the morphological identification of the slide-mounted pollen
alone, and 1.3 times more interactions than with the pollen identifi-
cation via DNA metabarcoding alone. While DNA metabarcoding has
an overall higher species identification resolution than morphological
identification, its accuracy is limited by the quality of the database
(Meiklejohn et al., 2019; Michelot-Antalik et al., 2021), and by the
barcode marker used (Kolter & Gemeinholzer, 2021a). Also, possible
cross-contamination can produce false positives, and PCR bias has the
potential to produce both false positives and negatives. In our study,
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FIGURE 6 UpsetR-plot of species intersection during time
intervals | (10-12 AM), interval Il (12AM to 2PM) and interval Il
(2-4 PM), based on data set 2 (for data set definition, see main text).
The horizontal bars indicate the total number of potential pollinator
species during one of the three different time intervals. Vertical
bars indicate the number of species shared between intervals
(connected black dots) or exclusive to one of the intervals (single
black dots).

we benefited from a well-curated database for our region and incorpo-
rated best practice protocols of sterile techniques and a dense system
of negative controls to account for contamination as well as positive
controls to confirm methods. Unfortunately, there is no definitive way
to account for false negatives. DNA metabarcoding is a developing
method and several factors could have influenced our results. Our
samples for the most part comprised very low pollen loads (<5000
pollen grains) that could be highly prone to false positives (Alberdi
et al., 2018). In addition, cross-contamination in the field and labora-
tory processes can be mitigated but are impossible to eliminate, and
some scrutiny needs to be applied to the results.

We also observed a great difference in the abundances of the
species, ranging from a single specimen in 83 species up to 108 spec-
imens in Athalia rosae. Further sampling over multiple years, with a
higher number of specimens per species, would be necessary to get
the full picture of the plant-pollinator network of caraway and other
possible hidden links. This multiyear sampling would also account for
possible interannual and spatial variations of caraway, which could

influence the patterns of the plant-pollinator network of caraway.

5 | CONCLUSIONS

Our results highlight the unexpected complexity of the studied
network and the high diversity of nonhoneybee Hymenoptera
and Brachycera species involved as potential caraway pollinators.
Furthermore, we observe significant network differences over the

course of the year, as well as strong qualitative differences between

main potential pollinator taxa. We emphasize the importance of
caraway as a food source outside the peak flowering periods of
other crops and natural plants for pollinating insect communities.
Moreover, we highlight the potential of caraway as a complement to
flowering strips and other biodiversity-fostering methods in agricul-
tural areas, providing farmers with an additional source of income.
We also argue that upscaling this type of study to cover intraseasonal
and intraday variation as well as all main pollinator species is crucial
to obtain complete data. Implementing beneficial and evaluating ben-
eficial as well as detrimental measures will rely on this comprehensive

understanding of the plant-pollinator networks in agro-ecosystems.
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This chapter is in preparation to be submitted as:

Kilian, I. C., Swenson, S. |, Peters, R. S., Gemeinholzer, B., Wagele, ]. W., Hamm, A., & Mengual,
X. (in prep). Think on flies when you eat an apple: Brachycera have more interactions than

Hymenoptera in the plant-pollinator network of Malus domestica Borkh. (Rosaceae).

3.1. Summary

Pollination is an essential ecosystem service provided by insects and a demand for the
production of at least 75% of the most important and highly pollination-dependent crop
species worldwide (Garibaldi et al., 2009; Klein et al., 2007; Ollerton et al.,, 2011). Malus
domestica Borkh. (apple; Rosaceae) is one of the most economically important fruit orchards
worldwide, with a annual production of about 87.5 megatons (FAOSTAT, 2020). Apple flowers
are self-incompatible and need a successful cross-pollination between the same cultivars to
achieve the highest possible yield (Free, 1964; McGregor, 1976; Westwood, 1988). Due to
climate change, apple orchards and other early flowering crop species could risk an
asynchrony between flowering and insect phenology (Wyver et al., 2023). Nonetheless,
existing knowledge on apple orchard pollination has primarily focused on wildbees and
managed species (particularly honeybees), given limited visibility and attention to the
importance of other wild pollinators (particularly Dipterans) as potential pollinators
(Barahona-Segovia et al., 2023; Rader et al., 2016; Rosa Garcia & Mifarro, 2014). Moreover,
these studies have relied primarily on observational data, leaving the question open of
whether all those species were also pollinating (i.e., transporting the pollen) or just visiting
the flowers. In this chapter, we applied a similar methodology as in Chapter 2 to assess the
plant-pollinator networks of apple orchards with a minor deviation. Instead of
morphologically identifying the pollen loads combined with DNA metabarcoding, we solely

utilized metabarcoding.
In Chapter 3, based on the plant-pollinator networks of apple, the aims were to:

(1) to identify the potential pollinators of apple, with a focus on Brachycera and
Hymenoptera,

(2) to analyze the potential interannual differences in brachyceran apple pollinators,

(3) to determine the key generalist taxa crucial for the network’s stability and

(4) to describe differences between the Brachycera and Hymenoptera networks.

Of the 233 insect species transporting pollen, 103 species (66 Brachycera and 37

Hymenoptera) were identified as potential apple pollinators. Aside from being pollinators of
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apple, 25 species additionally carried Prunus-pollen (e.g., from cherries or plum trees),
indicating the relevancy as potentially pollinators for other early flowering orchards. The
plant-pollinator network of Hymenoptera was primarily dominated by mining bees
(Andrenidae) and wildbees, except for a few parasitoid wasps and sawflies. Within the plant-
pollinator networks of Brachycera, several species of Syrphidae and Anthomyiidae played an
essential role as generalist species within the networks. Surprisingly, five Brachyceran
species were only found to be transporting pollen in one of the two sampled years, displaying
the high variability in the pollinator diversity between both years. While the efficiency of
selected wildbees can be higher than that of Brachycera (Boyle & Philogene, 1983),
Brachycera are more tolerant of lower temperatures, exemplified by the abundance and
activity of these pollinators in arctic and alpine regions (Lefebvre et al., 2019; Tiusanen et al,,
2016). Additionally, they are more tolerant to land-use changes due to a high variability in
nesting sites and floral resources (Rader et al., 2016; Ricketts et al,, 2008). Aside from apple
pollen, all the potential pollinators of apple visited also other 194 plant species. Just five of
these plant species were present in a flowering strip established in one of the sampling areas.
Dandelion (Taraxacum spp.), daisies (Bellis perennis), and other early flowering wild plant
species were generalist plant species in the networks. Despite often being labeled as weed
species, they can be essential nectar and pollen providers in the spring when other flowering
species or strips are not flowering yet (Lisek & Sas-Paszt, 2015). Finally, the plant-pollinator
network structure and interactions between Brachycera and Hymenoptera were closer in
comparison to the interannual Brachycera networks. Plant phenology could be the leading
driver defining in this case the plant-pollinator networks" structure (Nicholls & Altieri, 2013).
In conclusion, the results presented in this chapter demonstated the high diversity of
potential pollinators of apple even when solely focusing on Brachycera and Hymenoptera.
Moreover, early-flowering plant species are key taxa to maintain the structure of the
networks, while plant phenology and diversity shape additionally the plant-pollinator

networks.

Personal contribution

The study was conceptualized by Ximo Mengual, Ralph Peters, and Andrée Hamm. I prepared
the pollen samples for morphological identification and prepared the specimens (including
tissue harvesting and pining) with the support of Katharina Geiger. Primarily, I
morphologically identified the insect specimens with specific support from Ximo Mengual for

Syrphidae and Ralph Peters for parasitoid wasps. Additionally, a few specimens were
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identified by external taxonomists. I took the voucher pictures of the pollen samples with
some support from Katharina Geiger and a student helper. Stephanie Swenson and I did the
lab work to extract and analyze the DNA of the pooled pollen samples. Stephanie Swenson
curated bioinformatically the raw data from the DNA metabarcoding of pollen samples and
submitted the ASVs to NCBI SRA. The DNA Barcoding of the insect specimens was done at the
LIB - Museum Koenig Bonn. I combined and curated all, analyzed the data, prepared the
figures using my own R® scripts, and refined all the figures in Inkscape®. I interpreted all
results, and Ximo Mengual and Ralph Peters helped validate them. [ wrote the first draft of

the manuscript, which all co-authors helped to review and edit.
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Abstract

Pollination by insects is an essential ecosystem service crucial for many crop species, such as
apple. Because of its worldwide economic importance and high dependence on pollination by
insects, previous studies on apple pollinator diversity and efficiency have focused
predominantly on wildbees or other well-studied taxa. Moreover, flies have rarely been
considered as pollinators or previous studies have instead identified only a selection of
flower-visitors due to methodology limitations. Here, we present the plant-pollinator
network of apple with a focus on Brachycera (Diptera) and Hymenoptera. By analyzing via
DNA metabarcoding the pollen loads attached to the potential pollinators, we studied the
qualitative differences in the plant-pollinator interactions of Brachycera and Hymenoptera
sampled in two years. We found in total 35 potential hymenopteran pollinators and 66
potential brachyceran pollinators of apple interacting with 194 plant taxa. The potential
pollinators of apple include many non-syrphid Brachycera and some non-bee Hymenoptera,
which also interacted with other early-flowering orchards and plants that can supplement the
floral resource requirements of potential pollinators. Overall, the difference in pollen load
composition of Brachycera between the years was lower than between Hymenoptera and
Brachyera. Our results indicate that a significant number of species are potential pollinators

of apple and underscore the importance of conserving a large diversity of potential
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pollinators within Hymenoptera and Brachycera, together with the need to take a closer look
at the ecology and efficiency of those taxa in future studies. This is crucial to secure and

increase proper pollination services for apple and other early-flowering orchard species.

Introduction

Pollination is a crucial ecosystem service provided by insects in agroecosystems. Worldwide,
at least 75% of the most important crop species are highly dependent on constant and
efficient pollination (Garibaldi et al.,, 2009; Klein et al., 2007; Ollerton et al., 2011). One of the
most economically essential orchard crops worldwide are apples (Malus domestica Borkh.;
Rosaceae), composed of multiple cultivars. The worldwide production of apple comprises
87.5 megatons. In Germany, apple plantations cover around 34 thousand hectares of land and
are therefore a substantial component of agricultural landscapes and diversity (FAOSTAT,
2020). Apple flowers are self-incompatible and require a successful cross-pollination by
insects between the same cultivars to harvest in profitable quantities (Free, 1964; Garratt et
al,, 2014; McGregor, 1976; Westwood, 1988). The pollination dependency level also differs
significantly between cultivars (Garratt et al., 2021). Moreover, weather conditions heavily
influence apple pollination due to its status as an early-flowering plant susceptible to
significant temperature fluctuations, with an average blossoming duration of approximately
nine days in spring (McGregor, 1976). Deficits in pollination in apple orchards may cause a
deficiency in fruit set of at least 41 % and loss of yields worldwide in the million dollar

(Garratt et al., 2014; Hiinicken et al., 2021; Leonhardt et al., 2013; Olhnuud et al., 2022).

From a farmer’s perspective, these high dependencies for a successful and effective
pollination in a short period of the year have caused a demand for managed pollinating
species. Honeybees (Apis mellifera Linnaeus, 1758; Hymenoptera) are most frequently used
for this purpose, although they are not even the most efficient pollinators compared to other
bee species (Bernauer et al.,, 2022; Delaplane et al., 2000; Eeraerts et al., 2020; Weekers et al.,
2022). While Hymenoptera are the most predominant pollinators of apple, other insect
groups such as Coleoptera, Diptera, and Lepidoptera are also important apple pollinators and
are usually neglected in pollination studies (Barahona-Segovia et al.,, 2023; Boyle & Philogene,
1983; Burns & Stanley, 2022; Orford et al., 2015; Pardo & Borges, 2020; Rader et al., 2020;
Roquer-Beni et al,, 2022). Recent studies have even shown that successful apple pollination
can only be achieved by having a higher diversity of pollinating species during the flowering
period (Barahona-Segovia et al., 2023; Blitzer et al., 2016; Foldesi et al., 2016; Garibaldi et al.,
2013; Mallinger & Gratton, 2015; Olhnuud et al.,, 2022; Russo et al.,, 2015). Despite this,
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research focus on pollinators of apple is still mostly restricted to honeybees and wildbees,
while the potential of other wild pollinators, especially non-bee hymenopterans, is rarely
addressed and therefore underestimated (Barahona-Segovia et al., 2023; Foldesi et al.,, 2016;

Gamonal Gomez et al., 2023; Mupepele et al,, 2023; Rader et al., 2016).

Globally, a variety of external drivers are affecting apple pollination and could impact global
apple production in the near future. Particularly in early-flowering crop species like apples,
global warming is causing, among others, an asynchrony between the apple flowering period
and bee phenology (Wyver et al,, 2023). In addition, the massive decline in pollinating insect
species diversity and biomass could also mean a decline in apple production worldwide
(Garratt et al., 2014; Hallmann et al., 2017). Therefore, there is a need to look deeper into the
diversity of non-bee pollinators and their ecology to secure more effective pollination

services in the future (Garratt et al., 2014; Rader et al., 2016; Wyver et al., 2023).

Plant-pollinator network analysis facilitates studying the interactions between potential
pollinators and other plant species and is ideal for these purposes. Compared to the study of
the pollinators of focal plant species, plant-pollinator network studies can help to understand
underlying ecosystem functions and the stability of the interactions (Bennett et al.,, 2018;
Briggs et al, 2019). However, in many pollinator assessments, there is usually a main
misinterpretation of the difference between flower-visitors and pollinators: while all the
insects visiting a flower are flower-visitors, just the species transporting the pollen from one
flower to another can be considered pollinator (King et al., 2013). Therefore, while studies on
the plant-pollinator network of apple are not rare (Barahona-Segovia et al., 2023; Blitzer et
al,, 2016; Boyle & Philogene, 1983; Mupepele et al., 2023; Ramirez & Davenport, 2013), the
methods mainly used for these assessments continue to be surveys on insect visits or
sampling along a transect in the orchard, under the assumption that flower-visitors are also
pollinating insects. While visit surveys are a more affordable method than an animal-centered
approach based on investigating pollen loads, it is sensitive to sampling effort (Baksay et al.,
2022). It can underestimate the number of interactions between the plant and the pollinator

compared to advanced methods such as DNA metabarcoding (Pornon et al., 2017).

DNA metabarcoding using Next Generation Sequencing (NGS) to analyze mixed DNA samples,
is a powerful method used to study plant-pollinator interactions by, e.g., analyzing the pollen
samples collected from pollinators (Lucas et al., 2018; Macgregor et al., 2019; Pornon et al,,
2017). In contrast to conventional approaches utilizing light microscopy to analyze pollen
samples, metabarcoding allows for a more extensive identification of plant taxa, including a
higher number of species-level identifications, which allows for the identification of a higher

number of interactions (Kilian et al., 2023; Pornon et al., 2017). Moreover, it is also the
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prerequisite to explore and understand the impact of ecosystem changes on the structure of

plant-pollinator networks (Bell et al., 2023; Pornon et al., 2017).

Here, we present the first plant-pollinator network study of apple in a central European
agricultural landscape, targeting the taxon-specific roles. By characterizing the attached
pollen loads of the insects via DNA metabarcoding, we aim to investigate the potential
pollinators of apple based on the analysis of a plant-pollinator network, addressing
additionally the following questions: (1) which are the potential pollinators of apple? (2) what
are the potential interannual differences in plant-pollinator interactions of Brachycera? (3)
Which are the key plant species many apple pollinators share? (4) are there interaction

differences between Brachycera and Hymenoptera?

Material and Methods

Study sites

The sampling of Hymenoptera and Brachycera was conducted on two transects. The first one
was located on a conventionally farmed apple orchard with flowering strips (list of plants in
supplements and planted in 2014) at the agricultural research station Campus Klein-
Altendorf (50°37°23.2"N 6°59'21.4"E) managed by the Service Center for Rural Areas of
Rhineland-Palatinate (DLR Rheinpfalz), Germany. Ten flower boxes (80 x 17,5 cm) with early-
flowering native plant species (e.g., Primula vulgaris, Campanula sp., Erica x darleyensis) were
placed along the transect during the blooming period of the apple orchards until the flowering
strips started to bloom. The transect (82 m long) was surrounded by other early-flowering

orchards (pears and cherry trees).

The second transect (137 m long) was located on an organically farmed apple orchard
without flowering strips in the farm of the family Nachwey (50°35'46.0"N 7°02'48.6"E) and
surrounded mainly by cereals and maize. The distance between both areas was around 5 km,
therefore, beyond most pollinating species' movement range (Rader et al., 2011). The
blossom development of the apple trees was tracked using the BBCH scale, which, based on a

decimal code, describes the phenological growth stages of crop species (U. Meier et al., 1994).

Sampling and morphological identification of potential pollinators

We sampled during the apple blossoming (BBCH: 60-69) on all rain-free days and every two
weeks before (BBCH: < 59) and after (BBCH: = 70) the flowering period of the apple orchards
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from March to September 2016 and 2017, for a total of 39 days on both years (Table S2; Meier
et al,, 1994). Both locations were sampled for 30 min each sampling day at three different
time intervals to sample intraday variation in insect and interaction diversity: 10-12h, 12-
14h, and 14-16h. To avoid time bias in the sampling design, we alternated the order of the

locations, starting with a different location each day.

Brachycera and non-honeybee Hymenoptera were collected by hand-netting or direct
collection from the flowers into sampling vials along the transects, either (i) from the apple
flowers or (ii) from the flowering strips or flowering plants in the transect after the
blossoming period of apple. Within Hymenoptera, Formicidae were excluded from the study,
as they are better known as biocontrol agents in apple orchards instead of pollinators (J. Cross
et al.,, 2015; Mifiarro et al., 2010). In addition, honeybees were excluded from the study as
their role and efficacy for apple orchards are already well-established (Bernauer et al., 2022;
Delaplane et al,, 2000; Eeraerts et al., 2020; Weekers et al., 2022). After sampling, specimens
were stored dry individually at -20°C. Each specimen was identified based on morphological
characteristics (information about used identification keys can be found in the supplements).
For specimens that could not be accurately identified with external characters, we followed a
reverse-taxonomy approach via DNA barcoding using either three legs or the whole specimen
(Moriniére et al,, 2019) to obtain molecular sequences of the mitochondrial cytochrome c
oxidase subunit I gene (COI; Hebert et al., 2003). A detailed description of the DNA extraction
and barcoding protocol for the insects is described in Kilian et al. (2023). Voucher specimens
are deposited at the Museum Koenig Bonn (Leibniz Institute for the Analysis of Biodiversity

Change).

Preparation and pooling of pollen load samples

The pollen attached to the specimens was collected by swabbing the insects with a lentil-sized
piece of Kaisers phenol-free glycerol gelatin (Carl Roth), focusing on the body areas where
the pollen was present. Afterward, the fragment of glycerol gelatin was mounted on a slide
cover over a 55°C heating plate and covered with a cover slip (Beattie, 1971). Mounted
samples were photographed to serve as vouchers, as the downstream method of DNA
metabarcoding is destructive. To maximize the pollen content and DNA content while
minimizing expenses, 1-6 slides obtained from a specific insect species and location were
merged into a single metabarcoding sample. For each location, (i) if fewer than 5 specimens
of a species were present, all pollen loads were pooled into a sample; (ii) if there were 5-50

specimens of a species, five pollen loads were pooled, ensuring that all intraday intervals were
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covered, or (iii) if there were > 50 specimens present, 10% of the samples were pooled,
optimizing for intraday intervals and sampling dates. Therefore, the pooled pollen samples
for DNA metabarcoding, while being species-, plot-, and year-specific, are not specimen-

specific.

Identification of pollen loads via DNA metabarcoding

The laboratory protocols followed the same procedures for DNA extraction, PCR
amplification, and Illumina MiSeq (2 x 300 bp) sequencing are described in Kilian et al.
(2023). DNA was extracted from pollen slides (single or polled) with Nucleomag 96 Plant Kit
(Macherey Nagel), and all reagents were used at 25% of the factory protocol except for the
elution buffer MC6 (35 pL, with 25 pL removed after magnetic bead incubation to remove
residual ethanol). Sample homogenization occurred for 2.5 min on a Mixer Mill MM 400

(Retsch) at 30 Hz after adding MC1 and 5 pL Proteinase K (10 mg mL-1).

We used the internal transcribed spacer 2 (ITS2) region of the nuclear ribosomal DNA as DNA
barcode for its ability to provide species level identifications due to its extensive
representation in public DNA sequence repositories and its proven success in identification
across a wide breadth of plant taxa (S. Chen et al.,, 2010, 2010; Han et al,, 2013; Kolter &
Gemeinholzer, 2021b; Yao et al,, 2010) as well as its success in identification of the family
Rosaceae in general and the genus Malus Mill. in particular (Pang et al., 2011). PCR was
performed in three replicates with the plant specific ITS2 primers ITS-3p62plF1 (forward;
ACBTRGTGTGAATTGCAGRATC) and ITS-4unR1 (reverse; TCCTCCGCTTATTKATATGC)
(Kolter & Gemeinholzer, 2021a). PCR cycling conditions were 95°C for 3 min, followed by
35 cycles of 95°C for 30's, 50°C for 30 s, 72°C for 45 s, and a final extension of 72°C for 10 min.
5 pL of each three PCR replicates were for a total volume of 15 pL and purified with Thermo
Scientific Exonuclease 1. The pooled replicates of nonindexed PCR products were sent to LGC
Genomics for sequencing on a MiSeq (2 x 300 bp) after an additional 12 PCR cycles, three
cycles: 155 96°C, 30 s 50°C, 90 s 70°C, followed by nine cycles: 155 96°C, 30 s 58°C, 90 s 70°C
with MyTaq Red Mix polymerase (Bioline BI0-25044).

The sequencing data was also processed using the same procedure as found in Kilian et al.
(2023) and implemented in R (R Core Team, 2021). Sequencing primers were trimmed and
quality filtered with a maximum expected error of 1.0 in USEARCH. DADA2 was used for error
learning, denoising by the error profile (pseudo pooling), merging of reads, and chimera
removal (Callahan et al, 2016). Resulting amplicon sequence variants (ASVs) were

implemented with the SINTAX algorithm (Edgar, 2016) using the PLANITS database (Banchi
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etal,, 2020). Raw data has been deposited to NCBI SRA. ASVs with fewer than five reads per
sample and fungal reads were removed from further analysis, as well as species that do not
occur in Germany (either in the wild or in gardens). Taxa with ambiguous species-level
identifications were only identified at genus level. Finally, metabarcoding samples of the same
species, year, and location were combined and converted to a binary dataset (presence-

absence).

Terminology, statistical analysis, plant-pollinator networks and indices

To properly analyze the interactions of apple pollinators with plants, we constructed bipartite
networks composed of two node divisions (insect species versus plant/pollen species)

connected by a link defined as the interaction between both parties (Dormann et al., 2009).

Species level identification of Malus domestica Borkh. based on DNA barcodes is complicated
because of the rapid evolution driven by hybridization. Furthermore, the single apple species
native to central Europe, Malus sylvestris (L.) Mill, is known to hybridize with Malus
domestica, although it is extremely rare in the environment (Spengler, 2019; Wagner et al,,
2014). Therefore, we refer to apple pollen as Malus spp. (Rosacea). For each plant-pollinator
network of apple per insect order (Brachycera and Hymenoptera) and year (2016 and 2017),
we filtered those insect species carrying pollen of Malus spp. and defined them as potential
apple pollinators. We filtered the potential pollinators per year to analyze the differences in
interactions per year. We used the tidyverse package for data wrangling (Wickham et al.,

2019).

The bipartite networks and indices were calculated in R (v. 2023.03.1) (R Core Team, 2021)
with the function plotweb and function networklevel, respectively (bipartite package;
Dormann et al., 2008). To describe the main differences between the networks, we compared
the total and average number of links per species, the number of plant and insect nodes,
Connectance (C), Nestedness (N), and the level of generalism in the network. C is defined as
the number of links in proportion to the overall possible links (Dormann et al., 2009; Dunne
et al, 2002). N describes the specialization asymmetry, therefore, the proportion of
interactions between specialists (species carrying pollen of one plant taxa) and generalists
(species carrying pollen from more than one plant taxa) (Bascompte & Jordano, 2007;
Dormann etal., 2008, 2009). Generalism is defined as the mean number of potential pollinator
species - that is, the species that carry pollen - per plant species (Bersier et al., 2002). It was
calculated by the number of potential pollinators divided by the number of plant species in

each network.
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Finally, to visualize and test the differences between the interactions of brachyceran and
hymenopteran apple pollinators, we performed a Principal Coordinate Analysis (PCoA) and a
permutational multivariate analysis of variance (PERMANOVA). We started by analyzing a
binary Jaccard dissimilarity matrix of pollen occurrence between years and insect species
with the function vegdist (R package vegan; Oksanen et al., 2016). The prerequisite of a
homogeneous dispersion for a PCoA, as well as the analysis itself, was tested with the
betadisper function (vegan package). The PERMANOVA was analyzed with the Jaccard
dissimilarity matrix as a dependent variable and the different insect orders by years as

independent variables using 9.999 permutations (function adonis in the R package vegan).

Results

In 2016, of the total 1.366 collected specimens, 91 brachyceran species (of 26 families) were
selected to analyze the pollen loads, representing all collected pollen-carrying insect species.
In 2017, of the total 1680 specimens collected, 91 brachyceran species (of 26 families) and
76 hymenopteran species (of 14 families) were selected for the analysis of the pollen loads,
representing all pollen-carrying insect species in the samples. Altogether, we identified a total

of 233 species transporting pollen.

A total of 987 pollen loads (519 from 2016 and 468 from 2017) were pooled into 443 DNA
metabarcoding samples: 376 from Hymenoptera and 612 from Brachycera. Five
metabarcoding samples were pooled pollen loads from both study areas. However, since we
are not considering any spatial differences here, they were used for further analysis as they
do not affect the final results. Contrarily, 21 other metabarcoding samples were excluded
from further analysis since they were cross-contaminated, as well as all the metabarcoding
samples of Hymenoptera from 2016 (84 samples in total), as the high level of cross
contamination between several samples led to low confidence in the entire sequencing run.
Therefore, they were excluded from further analysis, which ended with 338 metabarcoding

samples.

From the remaining 338 DNA metabarcoding samples, 258 plant taxa (of 55 families) were
molecularly identified. 159 plant taxa (of 43 families) were identified in the samples from
Brachycera 2016 (DNA metabarcoding samples = n = 139), 149 plant species (of 41 families)
in the samples of Brachycera 2017 (n = 113), and 123 plant taxa (of 32 families) in the sample
of Hymenoptera 2017 (n = 86).
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Maius sp. (Rosaceae)

Veranica chamaedrys (Planiaginaceae)
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Cenlaurea sp. (Asleraceas)
Plantago sp. (Plantaginaceas)
Quarcus sp. (Fagaceas)

Carpinus betulus (Betulaceae)
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Urtice dioice (Urlicaceae)
Ranuneubas sp. (Ranunculaceas)
Sambucus nigra (Adoxaceae)
Sinapis sp. (Brassicaceae)

Castanes sp. (Fagaceas)

Crels capilaris (Asteraceas)
Jacobses sp. (Astersceae)
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Jacobaga eruciloiiz (Asleraceae)
Juglans sp. (Juglandsceae)
Melictis albus (Fabaceae)

Papavar somniferum (Papaveraceae)
Scoreonenoides auturnmalis (Asleracene)
Senecio sp. (Asteraceas)
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Steffaria sp. (Caryophyllacene)
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Cardamine sp. (Brassicaceae)
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Herscleun sp. (Apiaceas)
Hypéricurn sp. (Hypericacene)
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Merouialis annis (EUphorbisceae)
Papaversp. [Papaveraceas)

Poa amna (Poacea;

Poa trivialis [Poaceae;

Ranunculus polyanthcinos (Ranunculaceac

Reynautna sp. (Polygonaceac)
Robus sp. (Resaceas)
)
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Holates Janatus (Poaceae:
Hydrangoa paniculata [Hycrangoaceao)
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Figure 2: Bipartite network of the potential brachyceran pollinators (right) sampled in 2016 and their
respective interaction to plant taxa identified via DNA metabarcoding of pollen loads carried by the
insects. The thickness of the node (insect and pollen) correlates with the number of links, and the plant
or insect taxa are listed from the taxon with the highest number of links (top) to the taxon with the

lowest numbers of links (bottom).
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Brachycera 2017
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Tia sp. (Malvaceae]
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Eupeodes coroffae (Syrphidae)
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Platycheirus atbimanus (Syrphidag)

Beltardia viarum (Calliphoridae)

Empis nuntia (Empididae)

Empis sp.2 (Empididag)

Delia platura (Anthomyiidae)

Dioctria of. hyatipennis (Asilidag)

Fannia canicularis (Fanniidae)

Sarcophaga variegata (Sarcophagidae)

Bombylius major (Bombyliidag)

Eupeodes luniger (Syrphidae)

Platychefrus sp. (Syrphidae)

Sarcophaga subvicina (Sarcophagidae)

Scaeva pyrastri (Syrphidae)

Hydrotaea meteorica (Muscidae)

Bellardia pandia {Calliphoridae)

Dasysyrphus albostriatus (Syrphidae)

Eupeodes miefseni (Syrphidae)

Fannia serena/aff. subsimilis (Fanniidae)

Hefophilus trivittatus (Syrphidae)

Anthomyia confusanea/lifurata {Anthomyiidae)

Cheilosia cf. rufficolis (Syrphidae)

Rachispoda sp. (Sphaercceridae)

Delfa florilega {Anthomyiidae)

Delia radicum (Anthomyiidae)

Lasiomma seminitidum (Anthomyiidas)
Oscinelfa msp4 (Chloropidae)
Sarcophaga carnaria (Sarcophagidae)
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Megaselia fongicostalis (Phoridas)
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Botanophila striolata (Anthomyiidae)
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Tephrochlamys rufiventiis (Heleomyzidae)

Figure 3: Bipartite network of the potential brachyceran pollinators (right) sampled in 2017 and their
respective interaction to plant taxa identified via DNA metabarcoding of pollen loads carried by the
insects. The thickness of the node (insect and pollen) correlates with the number of links, and the plant
or insect taxa are listed from the taxon with the highest number of links (top) to the taxon with the

lowest numbers of links (bottom).
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Plant-pollinator networks of apple

Among the 233 insect species transporting pollen, 103 species carried Malus spp. pollen and
interacted with additionally 194 plant taxa. Of the plant taxa identified via DNA
metabarcoding of the pollen loads, only 5 species were present in the flowering strips (Carum
carvi L., Daucus carota L., Pastinaca sativa L., Trifolium pretense L., and Veronica chamaedrys
L.). In both of the recorded years, a total of 66 different brachyceran species were identified
as potential pollinators of apple: 32 species (of 16 families) in 2016 and 39 species (of 15
families) in 2017. Five brachyceran species, namely Bellardia viarum (Robineau-Desvoidy,
1830), Delia radicum (Linnaeus, 1758), Eupeodes corollae (Fabricius, 1794), Sarcophaga
carnaria (Linnaeus, 1758), and Sarcophaga variegata (Scopoli, 1763), were identified as
potential pollinator of apple on both years (Fig. 1 and 2). Within the Hymenoptera, a total of
37 species (of 8 families) were identified as potential pollinators of apple from 2017 samples

(table 1) (Fig.3).

From the insect species carrying apple pollen, 25 species (10 Hymenoptera and 15
Brachycera) also carried pollen from Prunus sp. (including cherries and plums), and three
species, namely Andrena dorsata (Kirby, 1802), Andrena fulva (Eversmann, 1852), and
Calliphora vicina (Robineau-Desvoidy, 1830)., also carried pollen of Pyrus sp. (pears),

together with pollen from apple and Prunus sp.

Table 2: Network indices and key information of the plant-pollinator network of apple-Brachycera
2016, apple-Brachycera 2017, and apple-Hymenoptera 2017. Number of plant nodes are the number
of plant taxa identified from the pollen loads via DNA metabarcoding, while the number of insect nodes
are the number of potential pollinating species. For further information concerning the indeces, see
main text section.

Brachycera Brachycera Hymenoptera

2016 2017 2017
Total number of links 554 397 360
Avg. Links per species  3.82 2.84 2.71
No. plant nodes 113 101 96
No. plant families 35 34 29
No. insect nodes 32 39 37
No. insect families 16 15 8
Connectance 0.15 0.1 0.1
Nestedness 20.74 11.43 9.52
Generalism 0.28 0.39 0.39
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Angelica sylvesiris (Apiaceae)
Anthiriscus sp. (Apiaceae)
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Arfemisia sp. (Asteraceae)
Carpinus betilus (Betulaceae)
Chaeropiyllum temufum (Apiaceae
Cirsium sp. (Asteraceae)
Girsium arvense (Asteraceae)
Crepis sp. [Asteraceae)
FaFus SE. (Fagaceae)
Frangula afhus {(Rhamnaceae
Hoicus fanatus (Poaceae;
Hypericum sp. (Hypericaceae’

ki radicata

Leonfodon sp. (Asteraceae)
Leucanthemum sp. (Asteraceae)
Lotus cornicufaturs (Fabaceae)
Lotus sp. (Fabaceae)
Lythrum saficaria (Lythraceae,
Medicago sativa (Fabaceae)
Phacelia sp. (Hydrophyllaceae)
Picea sp. (Pinaceae
Pisum sativum (Fabaceae)
Plantago sp. (Plantaginaceae)
Poa infirma (Poaceae
Foa sp. (Poaceae
Rosa sp. (Rosaceae)
Rumex sp. (Polygonaceae
Sambucus nigra (Adoxaceae)

COrzo
Senecio vulgaris (Asteraceae)

'y officinale (Brassi
Solanum [ycopersicum (Solanaceae)
Sonchus arvensis [Asteraceae)
Sonchus sp. (Asteraceae)
Spiraea japonica (Rosaceae)
Stellaria graminea (Caryophyllaceae)
Styphnolobiurt japonicum (Fabaceae)
Sufera sp. (Scrophulariaceae)
Taxus sp. (Taxaceae
Thiaspi arvense (Brassncaneae;
Tilia sp. (Malvaceae,
Urtica urens (Urticaceae:

Andrena minutula (Andrenidae}

Megachife centuncularis (Megachilidae)

Athafia circularfs (Tenthredinidae)

Osmia cornufa (Megachilidag)

Bombus hypnorum (Apidag)

Bomtbus hortorum (Apidae)

Calameuta pallipes (Tenthredinidae)

Ichneumonidae msp1

Andrena dorsata (Andrenidae)

Euura myosolis (Tenthredinidae)

Hoplocampa tesfudinea (Tenthredinidae)

Andrena chrysosceles (Andrenidae)}

Bombus pascuorum {Apidag)

Andrena bicolor {Andrenidae)

Andrena fulva (Andrenidae)

Andrena helvola (Andrenidae)

Bombus syfvestris (Apidae)

Eurytomidae msp1

Microctonus aethiopoides (Braconidae)

Osrig bicomnis (Megachilidae)

Andrena nigroaenea (Andrenidae)

Chelostoma campanuiarum (Megachilidae

Nesosefandria morio (Tenthredinidae)

Selandria serva (Tenthredinidae)

Braconidae msp3

of Eutomostethus ephippiem

(Tenthredinidae)

Halicturs sexcinctus (Halictidae)

Helictes conspicuus/erythrostarnasborealis

{lchneumonidae)
Andrena haemorroa (Andrenidag)

Andrena nftida (Andrenidag)
Megastylus simifis {Ichneumonidae)
Sussaba flavipes (Ichneumonidae)
Bombus terrestris (Apidae)
Lasioglossum calceatum (Halictidae)
Andrena carantonica (Andrenidag)
Anthophora plumipes (Apidae)

Andrena cineraria (Andrenidae)

Figure 4: Bipartite network of the potential hymenopteran pollinators (right) sampled in 2017 and
their respective interaction to plant taxa identified via DNA metabarcoding of pollen loads carried by
the insects. The thickness of the node (insect and pollen) correlates with the number of links, and the
plant or insect taxa are listed from the taxon with the highest number of links (top) to the taxon with

the lowest numbers of links (bottom).
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The plant-pollinator network with the highest level of connectance and nestedness was the
network for Brachycera sampled in 2016 (table 1, fig.1). With a connectance of 0.153 and a
nestedness of 20.74; it involves a total of 554 links (with an average of 3.82) of 113 plant
species (of 35 families) with 32 brachyceran species (of 16 families). The plant-pollinator
networks of Brachycera sampled in 2017 had a total of 397 interactions (with an average of
2.84) of 101 plant species (of 34 families) with 39 brachyceran species (of 15 families), with
a nestedness of 11.43 as well as the connectance of 0.1 (table 1, fig.2). Finally, the plant-
pollinator network of Hymenoptera sampled in 2017 had a total of 360 interactions (with an
average of 2.71) of 96 plant species (of 29 families) with 37 hymenopteran species (of 8

families), with a nestedness of 9.52 and a connectance of 0.1 (table 1, fig.3).

The level of pollinator generalism across both Hymenoptera and Brachycera from 2017 was
consistent, while it was slightly lower in Brachycera from 2016 (see Table 1). Among the
Brachycera species collected in 2016, Eristalis tenax (Linnaeus, 1758) had the most
interactions within the network, with a total of 37, followed by Eristalis nemorum (Linnaeus,
1758) with 32, and Cynomya mortuorum (Linnaeus, 1761) with 27. Fannia serena (Fallén,
1825) had with only 5 the lowest number of interactions. In the plant-pollinator network of
Brachycera collected in 2017, E. corollae had the most interactions (30), followed by
Botanophila fugax (Meigen, 1826) with 20, and Platycheirus albimanus (Fabricius, 1781) with
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Figure 4: (A) Principal Coordinate Analysis (PCoA) based on a Jaccard dissimilarity matrix of the
differences in insect-plant interactions (based on the pollen community) for brachyceran apple
pollinators collected in 2016 (n = 32 species) and 2017 (n = 37 species), as well as hymenopteran apple
pollinators collected in 2017 (n=35 species). (B) The group dispersion plot indicates homogeneity of
pollen community composition.
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18. Tephrochlamys rufiventris (Meigen, 1830) had with just 2 the lowest number of
interactions. Within the plant-pollinator network of Hymenoptera specimens collected in
2017, Megachile centuncularis (Linnaeus, 1758) had the most interactions (25), followed by
Andrena minutula (Kirby, 1802) with 24, and Athalia circularis (Klug, 1815) with 22. The
species with the lowest number of interactions was Andrena cineraria (Linnaeus, 1758), with

only three recorded interactions.

The PCoA indicated a higher overlap between the composition of pollen loads (and therefore
the plant-pollinator interactions) between Brachycera collected in 2017 with Hymenoptera
collected in 2017, rather than with Brachycera collected in 2016 (Fig. 4A). Among the plant
species with the highest number of interactions within the brachyceran network of 2016
(excluding Malus sp.) was Veronica chamaedrys (Plantaginaceae) with 27, followed by
Achillea sp. (Asteraceae) with 26, and Bellis perennis and Leucanthemum spp. (both
Asteraceae) with 25. Moreover, 32 plant taxa have a single link within this network. In the
brachyceran network of 2017, apart from apple pollen, Taraxacum spp. (Asteraceae) showed
the most interactions with 31, followed by Bellis perennis (Asteraceae) with 26, and Brassica
spp. (Brassicaceae) with 17. In this network, 48 plant taxa were connected only once. Within
the Hymenoptera network of 2017, aside from Malus spp. and similarly to the brachyceran
network of 2016, the most interconnected plant species was Brassica spp. with 25
interactions, followed by Taraxacum spp. with 22, and B. perennis with 21. A total of 51 plant
taxa in this network had a single interaction. Despite visual similarities in the PCoA, the pollen
composition of Brachycera collected on both years and Hymenoptera is significantly different
(PERMANOVA, F=7.7239, p< 0.001). Also, the betadisper-test indicated a heterogeneous
dispersion of the samples of each dataset (F=7.5621, p < 0.001) (Fig. 4B). This suggested that
the differences between the groups were due to the distance of the samples to their centroid

in the PCoA.

Discussion

This study provides evidence of the high diversity of potential pollinators of apple, with 66
species of Brachycera and 35 species of Hymenoptera. Recorded potential pollinators of the
plant-pollinator network of apple interacted with 194 other plant taxa, many of them being
other orchard or crop species. Although we did not consider pollinator effectiveness in this
study, previous studies on this topic have already shown that a higher richness of pollinating
taxa can improve apple pollination (Blitzer et al., 2016; Mallinger & Gratton, 2015). The high
diversity of potential pollinators of apple and particularly the high number of Brachycera is

consistent with the findings of Gamonal Gomez et al. (2023) and Barahona-Segovia et al.
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(2023), who implemented different methodologies. In the first work, environmental DNA
metabarcoding was used to detect the presence of the insect on apple flowers, and in the
second work, insect visits on apple flowers were recorded. Our results mirror those of these
two other studies as they reveal that more species of flies than Hymenoptera (also
considering wildbees) are significant flower-visitors of apple orchards. Additionally, our
survey aligns with previous studies on apple orchards, highlighting the vital contribution of
wild pollinators (Rosa Garcia & Mifiarro, 2014). Our study provides additional evidence for
flies transporting pollen and, therefore, are not just flower-visitors but also potential apple

pollinators.

Despite the importance of Brachycera for the pollination of apple confirmed here, there are
just a handful of studies acknowledging it, the recent most important ones are mentioned
above. This pattern of undermining or ignoring the potential of Brachycera, particularly the
importance of non-syrphid pollinators for many crop species, has just been addressed in this
century (Orford et al., 2015; Ssymank et al., 2008). Many families of brachycera, including
Muscidae and Scatophagidae, have bristles that can trap pollen, similar to some bee species
(Skevington & Dang, 2002). In this study, the Brachycera species with the highest number of
interactions belonged to Syrphidae, highlighting here, among others, Eristalis tenax.
Syrphidae are among the most studied pollinators, many species being as efficient as wildbees
(Hodgkiss et al., 2018; Orford et al., 2015). Syrphidae are not just essential pollinators, but
many species start as predatory larvae and are, therefore, particularly interesting in
integrated pest management (Dunn et al, 2020). Eristalis tenax is a cosmopolitan bee-
mimicry syrphid species that has already been reported as an important pollinator of many
crop species (Howlett & Gee, 2019). Moreover, Delia radicum (Anthomyiidae) feeds on nectar
and, therefore, can be found in the plant-pollinator network. Nonetheless, this species is also
known as a pest for cruciferous crops (Nilsson et al., 2011). This also shows the dual roles of
many species in agroecosystems, similar to Athalia rosae (Tenthredinidae) for caraway

(Kilian et al., 2023).

Within Hymenoptera, we had a higher number of wildbee species, especially Andrenidae.
Andrenidae is not just among the wildbee families which carry the highest number of pollen
grains in apple orchards and, therefore, are considered an essential pollinator of Malus
domestica (Boyle & Philogéne, 1983; Campbell et al.,, 2017) but are also among the species
with the highest number of interactions in the networks. Furthermore, Andrena species are
also commonly known to be more resilient towards lower temperatures (Herrera et al,,
2023), a likely condition for orchards with an early flowering phenology. Despite the high

numbers of wildbees in the network, we have also reported some unique insect groups as

56



Plant-pollinator network of apple

potential pollinators of apple, which are usually not being recognized as potential pollinators,
likely due to their natural history. For instance, parasitic wasps of the families Eurytomidae,
Braconidae, and Ichenumonidae are in the network. Members of these families, besides being
potential pollinators, parasitize a wide range of pest species, in apple orchards species like
moths, aphids, or leaf midges (J. V. Cross et al., 1999; Dib et al,, 2012; Fernadndez-Triana et al.,
2009; Mates etal., 2012).

Of the 30 plant taxa in the flowering strip, five species were also present in the plant-
pollinator network. Although it suggests that the pollinator did not visited the flowering
strips, it is more likely 1.) due to the asynchrony between the flowering of the flowering strip
and apple blooming, 2.) due to perennial flowering strip aging and potential plant community
changes (De Cauwer et al., 2005) or 3.) the surrounding wild flowering plants were more
attractive to potential pollinators (Kowalska et al., 2023). Aside from the few plant taxa
present in the original flowering strips and also being present in the networks, we remark the
presence in the networks of dandelion (Taraxacum spp.), Bellis perennis, and other early
blooming wild plant species, which are also pervasive in agroecosystems. While particularly
Taraxacum spp. is known as a weed plant in apple orchards (Lisek & Sas-Paszt, 2015; Mia et
al,, 2021), it can provide wild pollinators with nectar and pollen during early spring when
apple blossoming has not started yet (Rosa Garcia & Mifiarro, 2014). Therefore, we highlight
the potential of these species to attract potential pollinators of apple flowers and complement
established flowering strips (Campbell et al., 2017) or be potential plant candidates for
flowering strips, as in the case of Bellis perennis (Pfiffner et al., 2019). These flowering strips,
in addition to other landscape structures, e.g., hedges, are also essential after the flowering
period of the apple orchards (Mupepele et al., 2023) or any other early-flowering plants
(Campbell et al., 2017), alongside the landscape’s influences including the surrounding

management types (Barahona-Segovia et al.,, 2023).

This is particularly important in the context of phenological asynchrony between apple crops
and pollinators, caused predominantly by climate change (Wyver et al., 2023). This mismatch
does not only affect the fitness of specialized pollinators (K6rosi et al., 2018) but also a heavy
reliance on managed pollinators for farmers (Wyver et al, 2023), which cannot wholly
compensate for wild pollination (Blitzer et al., 2016; Rader et al,, 2016). The phenological
synchrony and, therefore, pollination function can be ensured with high levels of pollinator
diversity (Bartomeus et al.,, 2013). Here, similarly to bumblebees, Brachycera pollinators
could help to fill in the gap as they are overall more tolerant for lower temperatures, as
illustrated by their abundance and importance as pollinators in arctic and alpine regions

(Boyle & Philogene, 1983; Doré et al.,, 2021; Howlett, 2012; Lefebvre et al., 2018; Orford et al.,
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2015; Tiusanen et al,, 2016). Additionally, Brachycera are more resilient to land-use changes
in comparison to bees (Rader et al., 2016; Ricketts et al., 2008) and can transport pollen over
larger distances as they are not reliant on nesting sites (Larson et al., 2001; Rader et al.,, 2011).
Finally, despite hymenopteran apple pollinators having the ability to transport higher
quantities of pollen at a species level, they do not differ significantly in the efficiency
compared with Brachycera species (Boyle & Philogéne, 1983) since the efficiency is not

necessarily linked to any morphological trait (Roquer-Beni et al., 2022).

The plant-pollinator networks presented here have a similar structure to other networks
assessed by metabarcoding of pollen samples (Arstingstall et al., 2021; Kilian et al., 2023).
Although the Brachycera and Hymenoptera networks of 2017 had different nodes, the overall
structure was more similar between them than between the interannual Brachycera
networks. This may indicate that the effect of plant phenology and interannual differences in
plant abundance is here not only one of the main drivers of the structure of the plant-
pollinator networks but could also attract and enhance the overall pollinator diversity

(Nicholls & Altieri, 2013).

The high level of complexity in the network is also associated with the higher taxonomic
resolution resulting from DNA metabarcoding of the pollen samples compared with the
affordable identification level using traditional methods such as palynology. Even though it is
possible to identify a more significant number of interactions with DNA metabarcoding of
pollen samples (Kilian et al., 2023; Pornon et al., 2017) and it provides a more detailed diet
breadth (e.g., polylecty vs. oligolecty) than observational data (Arstingstall et al., 2021), this
methodology still has some inherent limitations when analyzing pollen samples. Notably, the
selection of barcode markers and primers (Kolter & Gemeinholzer, 2021a) and the quality of
reference databases (Kolter & Gemeinholzer, 2021b) can have their own taxonomic detection
biases. However, we believe that the choice of ITS2 as a DNA barcode and the primers used
are the optimal choices for this study system. Additionally, the analysis of the abundance of
different taxa in pollen mixtures and, therefore, the strength of interactions in the network
are among the most limiting factors, even though there is a strong correlation between the

amount of pollen and the number of sequences for some plant taxa (Baksay et al., 2022).

Nonetheless, advances in DNA metabarcoding techniques have opened new perspectives in
the analysis of potential pollinators of apple. Current developments in the analysis of eDNA
on flowers have improved the assessments of potential flower-visitors of apple, improving
the detection of nocturnal pollinators (Gamonal Gomez et al., 2023), for instance. The use of
metabarcoding for pollen samples combined with eDNA from the flowers could provide an

interesting insight into the dynamics between the plant and the potential pollinators, since it
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describes the pollen transport and interaction networks tentatively. This could provide a
more detail inside into the dynamics of plant-insect interactions of the potential pollinators
of apple and improve current agri-environmental schemes to protect and improve pollination

services.

Conclusion

Our results shed light on the diversity of potential pollinators of apple, including many non-
syrphid Brachycera and some non-wildbee Hymenoptera. While previous studies showing
the diversity of potential pollinators of apple were primarily based on interaction surveys of
observations, we showed here the actual diversity of potential pollinators of apple by
analyzing the pollen loads with DNA metabarcoding. The potential pollinators included many
brachyceran species with potential dual roles as pollinator and pest control species or also as
pollinator and pest species. Additionally, the potential pollinators of apple were nested in a
complex network of interactions with other plant species, including early-flowering orchards
and wild plants. The plant-pollinator interactions differed more between the years than
between Brachycera and Hymenoptera, suggesting the importance of some generalist wild
plant species, which are also the backbone of the plant-pollinator networks. This study proves
the importance of including all Brachycera and Hymenoptera species in future assessments
of apple pollination. Otherwise, getting an accurate representation of the complex network
will not be possible. This is essential to get a better picture of how future environmental
factors could affect the pollination service, for apple orchards particularly a plant-pollinator
asynchrony caused by climate change, and to understand the impact and improve current

measures to enhance biodiversity in apple production worldwide.
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Supplementary information
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Table S1: List of plant species present in the flowering strips.

Plant species

Achillea millefolium agg.
Campanula patula L.
Campanula rapunculus L.
Carum carvi L.
Centaurea jacea L.
Daucus carota L.

Galium album MILL.
Galium verum L.

Geranium pratense L.

Knautia arvensis (L.) Coult.

Leontodon hispidus L.
Leucanthemum sp. MILL.
Lotus corniculatus agg.
Malva moschata L.

Onobrychis viciifolia SCOP.

Origanum vulgare L.
Pastinaca sativa L.

Picris hieracioides L.
Pimpinella major (L.) Huds.
Primula veris L.

Prunella vulgaris L.
Salvia pratensis L.
Sanguisorba minor SCOP.
Scabiosa columbaria L.
Thymus pulegioides L.
Tragopodon pratensis L.
Trifolium pretense L.
Trifolium dubium Sibth.
Veronica chamaedrys L.

Vicia cracca L.
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Table S2: Sampling dates before, during and after the flowering period of apple with their
corresponding phenological development stage based on the BBCH-scale of apple orchards (U. Meier
etal, 1994).

year Sampling date BBCH - scale
10.03.2016 50
17.03.2016 52
02.04.2016 53
03.04.2016 53
04.04.2016 53
12.04.2016 54
20.04.2016 56-57
02.05.2016 59
06.05.2016 61-64
07.05.2016 62-63

2016
08.05.2016 64
09.05.2016 65
19.05.2016 67
31.05.2016 70
09.06.2016 71
05.07.2016 72
09.07.2016 72-73
19.07.2016 74
25.08.2016 >70
31.08.2016 >70
08.09.2016 >70
09.04.2017 31-59
14.04.2017 31-61
20.04.2017 53-63
21.04.2017 54-61

2017 24.04.2017 54-65
26.04.2017 54-65
27.04.2017 54-65
29.04.2017 54-65
09.05.2017 57-69
17.05.2017 61-71
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01.06.2017 71-72
16.06.2017 73-74
30.06.2017 72-75
19.07.2017 75-79
02.08.2017 79-85
10.09.2017 87

Table S3: List of literature references used for the identification of Hymenoptera and Brachycera.

Order Targeted taxa References
Brachycera Family overview (Oosterbroek,  2006;  Stresemann &
Klausnitzer, 2011)
Stratiomyidae (Reemer, 2014; Rozkosny, 2000)
Syrphidae (Bartsch & Binkiewicz, 2009a, 2009b; Haarto
& Stahls, 2014; Van Veen, 2010)
Tachinidae (Tschorsnig, 1994; Van Emden, 1954; T. W. P.
Zeegers, 1992)
Tephritidae (White, 1988)
Other families (Stresemann & Klausnitzer, 2011)
Hymenoptera Family overview (Goulet et al., 1993)

“wild bees”

Pompilidae
Sphecidae

Tenthredinidae

(Amiet et al., 1999, 2001, 2012; Bellmann,
1995; Gokcezade et al,, 2010; Miiller et al,,
1997; Scheuchl & Schmid-Egger, 2000;
Schmid-Egger & Scheuchl], 1997)

(Wolf, 1992)
(Bitsch, 1992; Schmidt, 2000)

(D. R. Smith, 1971, 1979)
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This chapter is under review in Ecology and Evolution as:

Kilian, I. C,, Kirse, A, Peters, R. S, Bourlat, S. ], Fonseca V. G., Wagele W. ]., Hamm, A. & Mengual,
X. (under review). Maximizing metabarcoding precision: ASV clustered to OTUs and LULU
filtering for enhanced species diversity analysis of bees, wasps (Hymenoptera), and flies
(Diptera: Brachycera) with a non-destructive DNA metabarcoding approach. Ecology and

Evolution.

4.1. Summary

Monitoring of insect diversity is crucial and necessary in the face of a global decline to address
and understand and mitigate potential drivers (Hallmann et al., 2017; Van Klink et al., 2020).
Reliable and standardized methods allow the collection of valuable information on insect
community compositions and dynamics for these purposes. Malaise trap is a well-established
method to assess flying arthropods, particularly Diptera and Hymenoptera (Hallmann et al.,
2017; Matthews & Matthews, 1971; Skvarla et al,, 2021). However, sorting and morphological
identifying specimens and species-rich bulk samples can be also challenging and time-
consuming (Chimeno et al., 2022; Piper et al., 2019; Souza et al.,, 2016). DNA metabarcoding
can overcome some of these challenges by avoiding the individual specimen processing (as in
barcoding) and has become, therefore, a widely method to analyze this type of samples
(deWaard et al,, 2019; Huang et al., 2022; Wagele et al., 2022). In particular, non-destructive
approaches can preserve the sample as a morphological voucher for further analysis, if
necessary (Hausmann, Segerer, et al., 2020). Sequences are usually clustered into Operative
Taxonomic Units (OTUs), which are a cluster of sequences with a fixed similarity threshold
(Kopylova et al., 2016; Westcott & Schloss, 2015), or Amplicon Sequence Variants (ASVs),
which are OTUs with zero genetic distances to infer putative species from metabarcoding data
(Porter & Hajibabaei, 2018). In order to mitigate the possible occurrence of erroneous
clusters in an analysis, multiple post-clustering algorithms have been developed (Olesen et
al, 2017; Palmer et al.,, 2018). The LULU algorithm has the advantage of being independent of
reference databases and of integrating read abundance as a premise (Frgslev etal., 2017). To
what extent samples examined with metabarcoding are comparable to morphologically
identified samples has been investigated relatively little so far, particularly in the realm of
insects (Kirse et al., 2023; Mata et al, 2021; Remmel et al.,, 2024; Zenker et al, 2016).

Moreover, previous studies comparing metabarcoding with morphological identification
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have often been based on mock communities to facilitate the comparison, which does not

usually correspond to the diversity’s complexity of an actual sample (Marquina et al., 2019).

In Chapter 4, using exemplarily adult Brachycera (and particularly Syrphidae) and
Hymenoptera collected with Malaise traps on spinach fields, we compared morphological
identified specimens with a non-destructive metabarcoding approach coupled with four
different clustering and filtering approaches: (1) ASVs clustered in OTUs at 97% cutoff and
LULU-filtered using default settings at 84% minimum match, (2) or using at 96% minimum
match, (3) ASVs directly LULU-filtered using the default settings at 84% minimum match, (4)

or at 96% minimum match.

At least for Brachycera, ASVs clustered into OTUs followed by LULU using a 96% minimum
match (OTU96) was the best combination to get the closest result to morphological
identification in terms of species number. However, we also found many false positives,
where species were detected using DNA metabarcoding but not morphologically, and false
negatives, where morphologically identified species were not detected using DNA
metabarcoding. Using Syrphidae as an exemplarily family of a well-studied Brachycera family,
we found an overlap between 9 and 81%, depending on the approach. This is somewhat
surprising since the morphological identification of syrphid species is not a serious challenge.
The species present in the samples are also among the most common ones in Central-
European agroecosystems and should, therefore, be well-represented in the reference
databases (Bartsch, 2009b, 2009a; Bot & Van de Meutter, 2023; Van Veen, 2010). Syrphid
false negatives may not have been detected due to the low number of specimens present in
the sample (also known as biomass bias; Strutzenberger et al, 2024) or shared COI
haplotypes (Dietz et al., 2023; Haarto & Stahls, 2014; Locke & Skevington, 2013; A. D. Young
et al, 2016), it is unclear how false positives could have originated. Since with DNA
metabarcoding it is also possible to capture environmental DNA, it cannot be ruled out thata
potential source for false positives might have been cross-contamination with other DNA
traces in the sample, e.g.,, the gut content of predatory insect (Blosch, 2000; Gilbert, 2005;
Kirse et al., 2023; Pickard, 1975; Reeves et al., 2018). Moreover, while DNA mini-barcodes
(313 bp instead of 658 bp long) are commonly used in metabarcoding, they might not provide
enough genetic information for precise species identification. For Hymenoptera, while 0OTU96
detected the highest number of species, it was still considerably lower than the one reached
via morphological identification. While there are probably several reasons for the absence of
so many Hymenopteran species, the most probable ones are the failure of the universal
primer to amplify Hymenoptera, also known as primer bias (Brandon-Mong et al,, 2015;

Elbrechtetal.,, 2019; Yu etal,, 2012) and the different levels of sclerotization of the specimens
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within this order (Erdozain et al., 2019; Kirse et al., 2023; Marquina et al., 2019; Zizka et al,,
2018).

Despite these limitations, we argued that metabarcoding is a powerful and effective method
for insect monitoring. We showed possible pathways to enhance metabarcoding results by
adapting and modifying the bioinformatic pipeline. This vital step in the analysis is often
neglected since it requires a certain level of bioinformatic expertise, which potential end-
users do not always have or is still not part of the service repertoire of metabarcoding service
providers (Liu et al., 2019). Nonetheless, it is essential to understand the current limitations
and explore options to overcome them, mainly when aiming for the long-term utilization of
metabarcoding for bioassessments or when cross-validation with mock communities or

morphological identifications is unfeasible.
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laboratory work on metabarcoding. Ameli Kirse bioinformatically curated the raw data and
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Abstract

In recent years, DNA metabarcoding has been used for a more efficient assessment of bulk
samples. However, there remains a paucity of studies examining potential disparities in
species identification methodologies. Here, we explore the outcomes of diverse clustering and
filtering techniques on data from a non-destructive metabarcoding approach, compared to
species-level morphological identification of Brachycera (Diptera) and Hymenoptera. The
study evaluated four distinct approaches, namely clustering to ASVs or ASVs clustered to
OTUs coupled with subsequent filtering using the LULU algorithm at 84% and 96% minimum
match. Depending on the selected approach, DNA metabarcoding results strongly varied in
terms of detected molecular units blasted to brachyceran and hymenopteran species. Using
Syrphidae as an exemplary family, we found an overlap ranging from 9% - 81% between the
morphological identification and the different clustering and filtering approaches. For
Brachycera, ASVs clustered into OTUs followed by LULU using a 96% minimum match
(OTU96) inferred the number of molecular units closest to the number of morphologically

identified species. For Hymenoptera, while OTU96 also yielded the highest number of
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molecular units, it was still considerably low compared to the number of morphologically
identified species. Our results show that metabarcoding methodology needs to be
significantly improved to be applied to Hymenoptera. Conversely, for Brachycera, we
acknowledge the promise of employing a non-destructive metabarcoding approach,
incorporating ASV clustering into OTUs and filtering with LULU, to derive dependable species
lists. Such lists hold significant potential for applications in biomonitoring, conservation

efforts, and other related fields.

Introduction

In view of a worldwide insect decline (Van Klink et al., 2020), large-scale biomonitoring
initiatives on the basis of standardized protocols are more important than ever. Malaise
trapping is a well-established method to collect flying insects, and they have been extensively
utilized in various local (M. Geiger et al., 2016; Hallmann et al., 2017) and global biodiversity
assessment initiates (e.g. Global Malaise Program;
https://biodiversitygenomics.net/projects/gmp/). Malaise traps are non-attractant, static
interception traps, which consist essentially of an open-fronted tent with a trapping device
attached to the inner highest corner of the tent (Henderson & Southwood, 2016; Muirhead-
Thompson, 1991; Townes, 1962). Diptera and Hymenoptera are usually the most specimen
and species-rich insect taxa found in Malaise trap catches (Matthews & Matthews, 1971;
Skvarla et al., 2021). Despite their significance, many contemporary studies utilizing Malaise

trap samples often lack detailed species-level information (Hallmann et al., 2017).

DNA metabarcoding is frequently utilized for assessing arthropod diversity from bulk
samples (deWaard et al., 2019; Huang et al.,, 2022; Wagele et al., 2022). It is capable of
identifying thousands of specimens in parallel by analyzing with high-throughput sequencing
(HTS) (Taberlet et al.,, 2012). A common practice in DNA metabarcoding to yield high DNA
quantities involves homogenizing the entire sample (Beng et al., 2016; Gibson et al,, 2015).
However, by homogenizing the sample, undetected and rare species are irreversibly
destroyed, thereby hindering a subsequent morphological identification (Carew et al., 2018;
Kirse et al., 2023). Our knowledge of flying insect diversity in Central Europe and beyond,
particularly in Diptera and Hymenoptera, remains limited, highlighting the importance of
preserving morphological vouchers (see, e.g., Hausmann et al., 2020). Therefore, new
developments in DNA extraction protocols for metabarcoding are shifting towards non-
destructive extraction methods, such as DNA extraction directly from incubated lysis buffers

(Batovska et al., 2021; Carew et al.,, 2018; Kirse et al., 2021a, 2023; Moriniére et al., 2016;

71



Chapter 4.

Zizka et al., 2018) as well as from preservative ethanol (Kirse et al., 2023; Zenker et al., 2020).
To infer putative species from metabarcoding raw data of Malaise trap samples (or other bulk
samples), sequences can be either clustered into Operational Taxonomic Units (OTUs, also
known as Molecular Operational Units or MOTUs) or into Amplicon Sequence Variants
(ASVs). OTUs are clustered sequences based on a fixed similarity threshold (Kopylova et al,,
2016; Westcott & Schloss, 2015), while ASVs are zero radius OTUs, encompassing only
sequences that exhibit zero genetic distance from any other sequence in the dataset (Porter
& Hajibabaei, 2018). Although different terminologies may be used in practice for the
Amplicon Sequence Variants, such as ASV, zero radius OTUs (zOTU), and ESV (Exact Sequence
Variant), they essentially refer to similar methods (Antich et al., 2021; Nearing et al., 2018).

For simplicity, we will use the term ASV hereafter.

OTUs come with two major limitations. Firstly, while OTUs are often used as a proxy for
species (Porter & Hajibabaei, 2018), if closely related species exhibit only limited variation in
the barcode region and the clustering threshold is not appropriately chosen, it can artificially
reduce the number of species detected. Secondly, OTUs are only valid within the dataset they
have been created in, meaning comparison across datasets is only feasible when the data is
being combined and reanalyzed. In contrast, ASV tables can be compared across datasets,
because the ASV approach clusters sequences without a threshold and infers groups already
based on a single nucleotide difference (Callahan et al, 2017). Several studies have
demonstrated that ASVs often represent the true ecological situation and diversity patterns
as well or even more accurately than OTUs (Callahan et al., 2016; Joos et al., 2020; Porter &
Hajibabaei, 2018, 2020). However, taxa exhibiting high levels of intraspecific variation are
prone to be represented by multiple ASVs, thereby artificially inflating the number of detected
putative species (Callahan et al., 2017). In addition, both OTUs and ASVs can generate artificial
clusters due to sequencing errors, leading to discrepancies in the number of actual species
present in the sample (Koeppel & Wu, 2013; Schloss & Westcott, 2011). To mitigate the
occurrence of erroneous molecular units, algorithms have been developed for post-clustering
curation of resulting OTU- and ASV-tables such as AMPtk (Palmer et al., 2018), dbOTU3
(Olesen et al., 2017), or LULU (Frgslev et al.,, 2017). LULU assesses the pattern of sequences
present in lower counts, often arising from sequencing or PCR artifacts, to curate the list and
filter out misleading ASVs or OTUs. A major advantage of LULU is its independence from a
reference database, as it integrates read abundance with the degree of minimum match
(sequence similarity). Minimum_match is one of the user-selected parameters representing
the minimum threshold difference between sequences from the cluster for considering any

OTU as an error. After analyzing the initial OTU or ASV table with the LULU algorithm, a new
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OTU table is constructed. Some studies have already shown that abundance filtering alone
may lead to over-filtering, resulting in an underestimation of overall OTU diversity, since
OTUs with low read counts could be erroneously filtered out (Callahan et al., 2016; Frgslev et

al, 2017).

Comparative studies between species identified through clustering DNA metabarcoding data
and those identified morphologically are still relatively scarce (Beentjes et al., 2019; Huo et
al,, 2020; Topstad et al., 2021), particularly within the realm of insects (Kirse et al., 2023; Mata
etal,, 2021; Remmel et al., 2024; Zenker et al., 2016). Moreover, such comparisons often rely
on mock communities to facilitate analysis. While mock communities serve as a robust tool
for systematically comparing different methodologies (Iwaszkiewicz-Eggebrecht et al., 2023;
Nielsen et al., 2019), studies involving bulk samples (e.g.,, Malaise trap samples) may yield
different outcomes due to the high complexity of samples (Marquina et al.,, 2019). To our
knowledge, no study has yet evaluated the outcomes of different clustering and filtering
approaches based on ASVs or OTUs, and filtered with LULU at different minimum_match
settings, against the results from morphological identification of species across diverse flying
insect taxa. In this study, we compared the overlap between species identification with a non-
destructive DNA metabarcoding approach coupled with four different clustering and filtering
approaches with the morphological identification of adult Brachycera and Hymenoptera from

bulk samples collected with Malaise traps.

Material and Methods

Study area and sample collection

Study sites were located in the area of Borken, north-western Germany (51.807765
N/6.832369 E in 2016; 51.810295 N/6.830871 E in 2017). The area is dominated by
agricultural fields with maize, spinach, and other non-flowering plants (Meyhofer et al., 2008)

(Fig. 1A). For the collection of the
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Figure 1: (A) Map with the location of the (B) Multisampler attached to a Malaise trap (in red) located
in 2016 and 2017 in spinach fields with flowering strips.

Brachycera and Hymenoptera specimens, an automated multi-sampler unit attached to a
commercial Townes-style Malaise trap (Kirse et al., 2024; Wagele et al., 2022) was set up on
spinach fields with flowering strips in 2016 and 2017 (Fig. 1B). Spinach (Spinacia oleracea L.)
is the most important field-grown vegetable in the area of Borken, with an annual harvest of
around 34,000 tons. This constitutes approximately half of the total harvested in Germany,
with the majority being processed into frozen food (FAOSTAT, 2023; Frerichs & Daum, 2021).
Since spinach is usually harvested before the flowering period, and thus not a primary
attractant for flowering-visiting insects, there is a local interest in increasing biodiversity in
spinach-dominated areas through the implementation of flower strips. Malaise traps were
positioned directly at the border between the spinach field and the flowering strips with 1000
ml collection bottles filled with 96% ethanol. Following retrieval from the field, the samples
were keptin 96% ethanol and stored at room temperature. The study presented here is based
on two bulk samples, collected during two periods: from August 24t to 31st 2016 and from

July 4th to 11th 2017, respectively.
Morphological identification

Adult specimens assigned to Hymenoptera and Brachycera from both bulk samples were

counted and identified to the species or morphospecies level based on morphological
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characters (Table S1). The highly diverse superfamily Ichneumonoidea (Hymenoptera) were
excluded from the analysis due to a lack of specific expertise within our team, and the
identification to morphospecies based solely on external features can be inadequate
(Horstmann, 2002; Veijalainen et al., 2011). The sorted samples are deposited as vouchers at

the Museum Koenig Bonn (Leibniz Institute for the Analysis of Biodiversity Change).

DNA extraction and analysis

DNA extraction was carried out following a modified protocol from Aljanabi & Martinez
(1997) (Vesterinen et al., 2016). Initially, the ethanol in the bulk sample was decanted from
the bottles using the MICROFIL®YV Filter (White Gridded 0.45 pm-Dia 47 mm & 100 ml Funnel
Sterilized) equipped with a 0.45 pm filter membrane to retain small individuals and body
parts. The remaining insects were dried for 10 min. Due to the high biomass of both bulk
samples and to ensure thorough contact of all the specimens with the extraction buffer, we
divided each sample into four equal subsamples (Fig. S1). Subsequently, each subsample was
mixed with 50 ml of extraction buffer (0.4 M NaCl, 10 mM Tris-HCl pH 8.0, 2 mM EDTA pH 8.0,
and 2% SDS of the final concentration). Additionally, 400 pg Proteinase K per ml of lysis buffer
was added to each subsample. Subsamples were then incubated for digestion overnight at 52
°C on an orbital shaker set at 200 rpm. After digestion, the lysis solution from each subsample
was evenly divided into three 50 ml falcon tubes, resulting in three replicates per subsample
(24 samples in total, two samples x four subsamples x three replicates; Fig. S1). The lysate
was filtered using MICROFIL®V Filter (White Gridded 0.45 pm-Dia 47 mm & 100 ml Funnel
Sterilized) equipped with a 0.45 pum filter membrane to filter out the insects. After this second
filtering step, we once again pooled the 24 samples into 6 extraction triplicates (3 for each
sample; Fig. S1), which were processed separately throughout the remaining protocol and
kept separate until the bioinformatic analysis. In the subsequent step, each tube received an
additional 1.12-fold amount of lysis solution containing 6 M NaCl. The tubes were then
vortexed for 30 seconds before being centrifuged for 30 min at 4,700 rpm. The supernatant
was carefully transferred to new tubes, to which an equal amount of isopropanol was added.
The solution was gently mixed by inverting the tubes upside down a few times before placing
them at -20 °C for one hour. Following this, the tubes were centrifuged at 4 °C and 4,700 rpm
for 60 min. The solution was carefully decanted and 2 ml of -20 °C 70% EtOH was added to
the remaining pellet. The tubes were centrifuged at 4 °C and 4,700 rpm for 15 min.
Subsequently, the supernatant was discarded and tubes with the remaining pellet were left

to dry overnight at room temperature. Afterwards, pellets in each tube were dissolved in 1 ml
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of sterile H,0 at room temperature for four hours. DNA extracts were quantified using the

Quantus Fluorometer (Promega) and stored at -20 °C until further processing.
Library preparation strategy

Library preparation was conducted following a two-step PCR approach (Bourlat et al., 2016;
Fonseca & Lallias, 2016). The first PCR (amplicon PCR, PCR1) was carried out using amplicon-
specific primers with [llumina adapter overhangs and the second (index PCR, PCR2) allowed
the incorporation of Illumina index adapters (Bourlat et al., 2016). The 313 bp long
mitochondrial COI region of interest was amplified using the forward primer mlCOlintF (5'-
GGWACWGGWTGAACWGTWTAYCCYCC-3") (Leray et al, 2013) and the reverse primer
jgHC02198 (5'-TAAACTTCAGGGTGACCAAAAAATCA-3") (Leray et al, 2013), yielding a
suitable fragment size for both performing with higher success rates than other primer sets

(e.g, LCO1490/HCO2198) in NGS applications (Leray et al., 2013).

Approximately 10 ng of template DNA was used for all PCR reactions. For the amplicon PCR,
the here used mastermix consisted of 7.5 pl Q5 Hot Start High-Fidelity 2X Master Mix (New
England BioLabs), 1 pl Sigma H:0, 0.5 ul of forward Primer, 0.5 pl of reverse primer, 0.5 ul
Bovine Serum Albumin (Thermoscientific) and 1 pl template DNA, making up a total volume
of 15 pl. The amplicon PCR was initialized by denaturation of 2 min at 98 °C, which was
followed by 20 cycles with 40 sec at 98 °C, 40 sec at 45 °C, 30 sec at 72 °C and a final extension
of 3 min at 72 °C. PCR1 products were purified with HT ExoSAP-ITTM (Applied Biosystems)
by adding 4 pl of HT ExoSAP-ITTM to each sample. Following the manufacturer's protocol,
samples were incubated for 15 min at 37 °C, followed by 15 min at 80 °C before being cooled
down for 5 min at 4 °C. For the index PCR, 8 ul of purified PCR1 products was used. The
purified PCR products were therefore split into two PCR tubes. Each tube contained 12.5 pl
Q5 Hot Start High-Fidelity 2X MasterMix (New England BioLabs), 3 pl Sigma H0, 1.2 pl of
forward primer, 1.2 pl of reverse primer and 8 pl purified PCR1 product. Again, an initial
denaturation step of 2 min at 98 °C was applied, followed by 20 cycles with 40 sec at 98 °C,
30 sec at 55 °C, 30 sec at 72 °C and a final extension of 3 min at 72 °C. PCR2 products were
visualized by gel electrophoresis and purified using the QIAquick Gel Extraction Kit (Qiagen),
according to the manufacturer’s instructions. All final purified amplicons (PCR2) were
quantified using the Quantus Fluorometer (Promega) and diluted to the same concentration
(3 ng/ul) before pooling. The resulting purified amplicon pools were sequenced on an
[llumina Miseq (2x 300 bp) sequencing platform at Liverpool University’s Centre for Genomic
Research (UCGR, Liverpool). The raw data have been deposited at the Genbank SRA archive
under accession number PRJNA1105927.
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High throughput sequencing data analysis

An initial quality check was carried out at the UCGR. The raw fastq files were trimmed for the
presence of [llumina adapter sequences using Cutadapt (v. 1.2.1) (Martin, 2011). Additionally,
sequences were trimmed using Sickle (v. 1.200) with a minimum window quality score of 20.
Reads shorter than 20 bp were removed after trimming. Additionally, demultiplexing was

carried out by the sequencing company.

The raw fastq files were trimmed for the presence of COI primers using Cutadapt (v. 1.18)
using the following settings: maximum error rate (-e): 0.1, minimum overlap (-0): 20, and
minimum sequence length (-m): 50. Only sequences containing both forward and reverse
primers were kept for further analyses. Subsequently, filtered and trimmed raw reads
without the primer pairs were uploaded to QIIME2(v. 2022.2) (Bolyen et al., 2019). In an
initial filtering step all forward reads were truncated to 269 bp and reverse reads to 274 bp.
Further analysis steps including paired-read merging, quality filtering, and denoising were

conducted with the implemented DADA2 version (Callahan et al., 2016).

ASY
OoTuU 97% similarity cutoff

LULU- 84% 96% 84% 96%
filter

minimum match minimum match minimum match minimum match

0oTU84 OTU96 ASV84 ASV96

Figure 2: Schematic differences between the four different clustering approaches: ASVs were either
clustered in OTUs at 97% cutoff and LULU-filtered using default settings at 84% minimum match
(OTU84) or using a 96% minimum match (OTU96), or ASVs were just directly LULU-filtered using the
default settings at 84% minimum match (ASV84) or (4) at 96% cutoff (ASV96).

We then started four different clustering and filtering approaches starting either with ASVs
or ASVs clustered to OTUs at a 97% similarity cutoff. Initially we used a BLAST search of ASV
and OTU representative sequences, respectively, against each other using BLASTN (v. 2.9.0)
with the following settings: “query coverage high-scoring sequence pair percent”

(—gcov_hsp_perc) was set to 80 and minimum percent identity (-perc_identity) was set to 84
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(default setting). To filter for erroneous sequences, the post-clustering filter algorithm LULU
(v. 0.1.0) (Frgslev et al., 2017) was applied either directly to the ASVs or OTUs dataset with
the (1) minimum match set at 84% (from here on referred to as ASV84 or 0TU84) or (2)
minimum match at 96% (ASV96 or OTU96) (Fig. 2). We used the default value of the
minimum_match parameter in LULU (84%) and selected another higher value (96%) — “a
higher value is recommended for markers with little variation and/or few expected PCR and
sequencing errors” (Frgslev et al., 2017). Then, for each dataset, the number of sequences
found in the negative controls were subtracted from the according OTUs or ASVs. For the data
analysis, we aggregated the total number of reads per molecular unit from each extraction
triplicate per sample (Fig. S1) and converted into a binary present-absence dataset. Finally,
the taxonomic assignment was carried out against the BOLD database
(https://www.boldsystems.org) using BOLDigger (access date: 06.03.2023 ; Buchner &
Leese, 2020), including early-release and private records. The output list was filtered using
the JAMP-Pipeline method implemented in BOLDIGGER (Buchner & Leese, 2020). In detail,
assignments to different taxonomic levels were conducted according to the following
similarity thresholds: 98% species, 95% genus, 90% family, 85% order, <85% class. For
instance, for a 96% hit, the species-level assignment will be discarded and genus-level

information will be used as the lowest taxonomic level.

We manually checked the output list for possible synonyms (same species with different
scientific names) to facilitate comparisons between the different methods. Moreover, we
computed Shannon's index (H') (vegan package; Dixon, 2003) and Pielou's measure of species
evenness (E) (chemodiv package; Petrén et al., 2023) based on the morphological dataset to
gain a better understanding of both bulk samples. To compare morphology with the different
clustering and filtering approaches, we focused on two different species diversity
components: 1) species richness, defined as the number of identified molecular units,
morphospecies, or species (in the case of Syrphidae), and 2) species composition (applied
only for Syrphidae), representing the species community of Syrphidae identified using the
different methodologies. For the analysis of the Syrphidae species composition, we used the
Jaccard dissimilarity index (]) (vegan package, Oksanen et al., 2016). All the species diversity
and composition analyses were performed in R (v1.4) with the tidyverse package (Wickham
et al, 2019), while the heatmaps were additionally generated using the cowplot package
(Wilke, 2024) combining data from both samples.

Results

Morphological identification
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In the 2016 sample, we identified a total of 839 brachycerans and 533 hymenopterans (H' =
3.23, E = 0.694) sorted into 71 and 36 morphospecies respectively, belonging to 29
Brachycera and 17 Hymenoptera families. In the 2017 sample, we identified a total of 1,189
Brachycera and 813 Hymenoptera specimens (H' = 3.39, E = 0.693) sorted into 75 and 59
morphospecies respectively, belonging to 31 Brachycera and 22 Hymenoptera families.
Combining both sampling years, we identified a total of 114 species of Brachycera (35

families) and 85 species of Hymenoptera (27 families) (Table 1).

In 2016, Drosphilidae was the most abundant family in Brachycera (225 specimens), followed
by Syrphidae (144 specimens), while Tenthredinidae (56 specimens) and Proctotrupidae (14
specimens) were the most abundant among Hymenoptera. In 2017, Anthomyiidae was the
most abundant family of Brachycera (493 specimens) followed by Hybotidae (107
specimens), while Apidae (187 specimens, of which 110 specimens were identified as Bombus
lucorum (Linnaeus, 1761)) and Tenthredinidae (62 specimens) had the highest number of
individuals for Hymenoptera. Regarding morphospecies richness, Syrphidae (12 species) and
Tenthredinidae (11 morphospecies) were the most diverse families in 2016, whereas
Pteromalidae (12 morphospecies), Tachinidae (11 morphospecies) and Syrphidae (11

species) exhibited the highest morphospecies richness in 2017.

Concerning the species diversity of Syrphidae, the most abundant species in both years was
Melanostoma mellinum (Linnaeus, 1758): 109 specimens in 2016 (75.7% of the total number
of hoverflies), while 45 specimens in 2017 (43.7% of the total number of hoverflies).
Additionally, 4 syrphid species in 2016 and 5 syrphid species in 2017 were singletons, i.e,,

each species represented by just one specimen (Table S2).

DNA metabarcoding assessment

DNA metabarcoding directly from the lysis buffer with all four analysis approaches recovered
between 180,010 and 189,562 reads from the bulk sample of 2016. Specifically, OTU84
generated 180,010 reads, ASV84 produced 181,983 reads, O0TU96 resulted in 189,562, and
ASV96 yielded 180,010 reads. Similarly, for the bulk sample of 2017, the DNA metabarcoding
approach retrieved between 244,564 to 244,501 reads. OTU84 and ASV84 both generated
244,586 reads, 0TU96 produced 244,501 reads, and ASV96 resulted in 244,586 reads.
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Table 1: Final list of Hymenoptera (excluding Ichneumonoidea) and Brachycera diversity identified via DNA-metabarcoding applying four different clustering
approaches compared to the morphologically identified diversity: 1) LULU-filtered ASVs at a minimum match of 84% (default settings; ASV84); 2) LULU-filtered
ASVs at a minimum match of 96% (ASV96); 3) ASVs clustered to OTUs at 97% similarity cutoff and LULU-filtered at a minimum match of 84% (default settings;
0TU84); and 4) ASVs clustered to OTUs at 97% similarity cutoff and LULU-filtered at a minimum match of 96% (OTU96). Blasted molecular units refer to
molecular units identified with a name after blasting.

zampl Taxa Unit ASV84 ASV96 O0TU84 OTU96 Morphology
Reads 54,116 62,519 62,519 54,499
Family 11 10 10 24 Family 29
Brachycera Genera 13 14 14 66
Molecular unit (MU) 15 16 16 97
Blasted MU 15 16 16 80 Morphospecies 71
Reads 7 7 7 1,162
2016 Family 1 1 1 2 Family 17
Hymenoptera Genera 1 1 1 5
Molecular unit (MU) 1 1 1 13
Blasted MU 1 1 1 11 Morphospecies 36
Reads 14,602 31,266 31,266 18,433
Syrphidae Genera 3 5 5 10 Genera 6
Molecular unit (MU) 3 5 5 11
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Blasted MU 3 5 5 11 Species 12
Reads 51,311 47,415 47,415 46,781
Family 11 10 10 31 Family 31
Brachycera Genera 14 15 15 64
Molecular unit (MU) 16 18 18 119
Blasted MU 16 17 17 96 Morphospecies 75
Reads 644 746 746 746
Family 3 3 3 3 Family 22
2017
Hymenoptera Genera 4 4 4 4
Molecular unit (MU) 5 5 5 5
Blasted MU 5 5 5 5 Morphospecies 59
Reads 26,827 28,449 28,449 29,075
Genera 3 5 5 11 Genera 8
Syrphidae
Molecular unit (MU) 3 5 5 16
Blasted MU 3 5 5 15 Species 11
Reads 105,427 109,934 109,934 101,280
Family 16 15 15 34 Family 35
Both  Brachycera
Genera 20 21 21 95
years
Blasted MU 23 24 24 144 Morphospecies 114
combi
Reads 651 753 753 1,908
ned
Hymenoptera Family 3 3 3 3 Family 27
Genera 4 4 4 8
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Blasted MU 5 5 5 15 Morphospecies 85
Reads 41,429 59,715 59,715 47,508

Syrphidae Genera 4 6 6 14 Genera 12
Blasted MU 6 10 10 26 Species 21

82



Maximising metabarcoding precision

(A) Brachycera Hymenoptera
100 1
60
© . O ©
g SO
S 50 S
£ £ O
% %
8 25 g 207
= =
0 T T T 1 0 T T T
0 25 50 75 10C 0 20 40 60
# taxa metabarcoding # taxa metabarcoding
(B) Syrphidae
201
>
815- method
o
;fl @ O ASV96
o 104
g ASV84
¥ 0TU96
& 57
H# oTus4
0 T T T 1
0 5 10 15 20

# taxa metabarcoding

Figure 3: Comparison between the number of (A) hymenopteran and brachyceran taxa and (B)
Syrphidae species detected with morphological identification and DNA metabarcoding with four
different clustering approaches across two samples of 2016 and 2017. ASVs were either directly LULU-
filtered at 96% minimum match (ASV96) or using the standard setting at 84% minimum match
(ASV84), or ASVS were firstly clustered to OTUs (at 97% similarity cutoff) and afterwards LULU-
filtered at 96% minimum match (OTU96) or using the standard setting at 84% minimum match
(OTU84). The solid line represents a 1:1 relationship. Points with black borders represent the sample
of 2016, and points without border represent the sample of 2017.

In 2016, we detected between 15 to 97 Brachyceran molecular units depending on clustering
and filtering method, corresponding to 15 to 80 species across 11 to 24 families. For the
Hymenoptera, we detected 1 to 13 Hymenoptera molecular units matching 1 to 11 species
across 1 to 2 families (Table 1). Similarly, in 2017, we detected between 16 to 119
Brachyceran molecular units matching 16 to 96 species across 11 to 30 families.
Hymenoptera exhibited 5 molecular units corresponding to 5 different taxa across 5 families
using all 4 different clustering methods. Overall, 0TU96 detected the highest number of reads
and species in both orders (Table 1).
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Table 2: Jaccard dissimilarity index (J) of Syrphidae between the different samples based on
morphological data (morpho) and DNA metabarcoding with four different clustering and filtering
approaches, based on a binary dataset. The closer the value is to 0, the higher the similarity is between
the methods. OTU84 = ASVs clustered in OTUs at 97% similarity cutoff and LULU filtered using the
standard settings at 84% minimum match, ASV84 = ASVs and LULU filtered using standard settings at
84% minimum match, ASV96 = ASV and LULU filtered using a 96% minimum match, OTU96 = ASV

clustered to OTUs at 97% similarity cutoff and LULU filtered using a 96% minimum match.

Comparison 2016 ()) 2017 ()
0TU84 : morpho 0.69 0.5
ASV84 : morpho 1 0.4
ASV96 : morpho 1 0.4
0TU96 : morpho 0.67 0.4

Comparison of morphological identification and metabarcoding

DNA metabarcoding revealed different numbers of putative species (molecular units) in
Hymenoptera and Brachycera depending on which of the four different clustering and
filtering approaches was used (Fig. 3). For Brachycera across both sampling years, ASV84,
ASV96, and 0TU84 underestimated the number of the species identified using morphology
(in Fig. 3, point above the 1:1 crossline), while OTU96 was the closest though notably
overestimating the number of species (in Fig. 3, points below the 1:1 crossline). Among the
brachyceran families identified by adult morphology, nine were not found by any of the
clustering and filtering approaches, namely Dryomizidae, Ephydridae, Heleomyzidae,
Lonchaeidae, Rhinophoridae, Stratiomyidae, Tephritidae, Therevidae and Xylomyidae (Fig. 4
and Fig. 5). Contrary, three families were not identified using morphology in the sample, but
with DNA metabarcoding only: Sciomyzidae was detected through all four clustering and
filtering approaches, while Milichiidae and Polleniidae were identified specifically with
OTU96. The pattern of underestimation of brachyceran species richness, evident across all
clustering and filtering approaches, except for OTU96, is also apparent for Syrphidae.
Although a slight underestimation of species number persists in the sample of 2016, 0TU96
exhibited the closest species number to those identified using morphological characters (i.e.,

the closest to the 1:1 crossline) (Fig. 3).

For Hymenoptera, all clustering and filtering approaches substantially underestimated the

species number identified by morphological characters (in Fig. 3, point above the 1:1
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Figure 4: Comparison of the ratio between four different bioinformatic approaches (ASV filtered with
LULU using a 96% (ASV96) or 84% minimum match (default setting; ASV84), ASV clustered to OTUS
at 97% similarity cutoff and LULU curated at 96% (OTU96) or at 84% minimum match (0TU84)) and
the morphological identification of Hymenoptera and Brachycera. Morphological and metabarcoding
identification could have either identified the same number of taxa (1:1) or inclined to identify more
taxa with metabarcoding (MB, red) or via morphological identification (MI, blue).

85



Chapter 4.

Hymenoptera Brachycera
Andrenidae - Agromyzidae -
Apidae - Anthomyiidae - [ |
Chalcididae - Asilidae -
Colletidae - Asteiidae -
Crabronidae - Calliphoridae -
Cynipidae - Chloropidae -
ianrii - Conopidae -
%?5::3:: . Dolichopodidae - [
Eulophidae - Drosophil?dae -
Eurytomidae - Dryomizidae -
Figitidae - Empididae -
Formicidae - Eggﬁ:gg: i
Halictidae - Heleomyzidae -
Megaspilidae - Hybotidae - # taxa
Melittidae - Lauxaniidae -
Mymaridae - Lonchaeidae - 25
Ormyridae - Lonchopteridae - 20
Perilampidae - Milichiidae -

Philanthidae - Muscidae - [ 15
Platygastridae - Opomyzidae - 10
Proctotrupidae - Phoridae -

Psenidae - F’ipunculidae - 5
Pteromalidae - [ | Polleniidae -
Scelionidae - R.hagion?dae -
Tenthredinidae - N . Rhinophoridae -
Torymidae - Sarcophag!dae -
Vespidae - Scathophagidae -
doL iy Scicgmyz?gae -
S @ 9 Q. P epsidae -
x?ff’A v‘?(’)\\) O»\\Bo\oq\;;\o‘\ Sphaeroceridae -
SE® Stratiomyidae -
((9_@6(\ Syrphidae - [ B |
Tabanidae -
Tachinidae -
Tephritidae -
Therevidae -
Xylomyidae -
N
R \)q‘b S
RN & 035\
«Q{\\‘\\
é‘

Figure 5: Heatmap comparing the number of hymenopteran and brachyceran species identified
morphologically and via DNA metabarcoding either by LULU-curated ASV using a 96% (ASV96) or 84%
minimum match (default setting; ASV84), or ASV clustered to OTUS at 97% similarity cutoff and LULU
curated at 96% (0TU96) or at 84% minimum match (OTU84), of two samples collected in 2016 and
2017.
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crossline), with OTU96 providing the closest estimation of species numbers in both samples
(Fig. 3). Among the taxa identified by morphology, Athalia rosae (Linnaeus, 1758)
(Tenthredinidae) and Lasius niger (Linnaeus, 1758) (Formicidae) were also identified using
DNA metabarcoding (Fig. 4 and 5). While Vespidae was also identified using both DNA
metabarcoding and morphology, the two species of this family retrieved by DNA
metabarcoding were not found morphologically. Moreover, 25 additional families identified
morphologically were not determined by any of the clustering and filtering approaches (Fig.

4 and 5).

In terms of similarities in syrphid species composition, 0TU96 showed the highest similarity
with morphology for both samples (J = 0.67 in 2016 and ] = 0.4 in 2017). The same highest
Jaccard value was found for the 2017 sample with ASV84 and ASV96 (]=0.4) (Table 2).
Melanostoma mellinum, as the most abundant species identified with morphology in both
years, was detected with all four clustering and filtering approaches (Table S2). However,
none of the syrphid singletons from 2016 were found using DNA metabarcoding. In contrast,
in the 2017 sample, 4 out of the 6 singletons were identified with 0TU84. Lastly, 9 syrphid
species (7 in 2016 and 2 in 2017) identified using morphology were not detected by DNA
metabarcoding (Table S2). Contrary, different metabarcoding approaches detected 13
syrphid species (6 in 2016 and 7 in 2017) that were not found in the morphology study, being
OTU96 (in the 2016 sample) and OTU84 (in the 2017 sample) the metabarcoding approaches
with the highest number of syrphid species detected that were not present in the

morphological study (6 each) (Table S2).

Discussion

To our knowledge, this study represents the first comparative analysis of species-level
diversity in Malaise trap samples (focusing specifically on Brachycera and Hymenoptera)
comparing the diversity assessments from traditional adult morphology with those obtained
through a non-destructive DNA metabarcoding approach. Our survey places particular
emphasis on testing various clustering and filtering methods, combining ASVs, OTUs, and
LULU-curation. Among the four different clustering and filtering approaches tested here,
0OTU96 emerges as the method that better reflects species richness identified by
morphological characters and closely approximates species composition for Brachycera,
specifically in Syrphidae. This alignment between DNA metabarcoding and morphological

identification for Brachycera mirrors the findings from similar studies on arthropod diversity
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in Malaise trap samples (Remmel et al., 2024) and freshwater invertebrates (Beentjes et al,,

2019; Cahill et al., 2018).

Previous research has extensively examined the advantages and disadvantages of using OTU
and ASV clustering, primarily in the context of microbiome assessments (Barnes et al., 2020;
Chiarello et al., 2022) but also for arthropods (Giebner et al., 2020; Porter & Hajibabaei, 2020).
Some authors argue that ASVs exhibit a clear superiority over OTUs in their ability to identify
a larger number of distinct taxa (Giebner et al., 2020; Porter & Hajibabaei, 2020). However,
other studies suggest that ASVs may lead to an overestimation of diversity due to high levels
of intraspecific diversity of the sampled taxa, often combined with a high degree of artificially
introduced sequences (e.g., PCR artifacts) (Andujar et al, 2021; Brandt et al., 2021). In
contrast, while OTUs mitigate the impact of sequencing noise, they often achieve this by
clustering similar interspecific sequences together into a single OTU, which can artificially
lower the assessed diversity and is, therefore, a more conservative approach. For this
particular dataset we advocate for an optimal approach of non-destructive sample analysis,
followed by a clustering intraspecific ASVs into interspecific OTUs. This process involves
grouping closely related sequences from the same species (intraspecific ASVs) together
within larger clusters representing different species (interspecific OTUs). By adopting this
method, we aim to accurately represent genetic variation within species while providing a

comprehensive understanding of overall diversity.

LULU curation at 96% minimum match, compared to the default setting of 84%, enables the
reduction of intraspecific ASVs erroneously considered/assigned to different species,
ultimately leading to an estimated species number that aligns more closely with
morphological identification. Despite the close resemblance in the estimated number of
species between OTU96 and the morphological identification, disparities in species number
and composition persist (Fig. 4 and Table 2). These variations primarily stem from either false
positives, where species were detected using DNA metabarcoding but not morphologically,
or false negatives, where species were identified morphologically but not detected using DNA
metabarcoding. Potential causes for false positives or negatives include cross-contamination,
shared haplotypes of COI , morphological misidentification, and inaccuracies in reference
databases. Cross-contamination often arises from the analysis of DNA traces, e.g. gut content
of predatory arthropods (Kirse et al., 2023; Iwaszkiewicz-Eggebrecht et al., 2023; Lynggaard
et al,, 2019; Reeves et al, 2018). While analyzing trophic interactions can enhance the
analysis, it cannot be quantified until which degree it may lead to an overestimation of species
richness and a distortion of species composition compared to morphology. Also, some species

(here i.e., Melanostoma species) may share haplotypes between species when analyzing the
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COI gene fragment (Haarto & Stdhls, 2014). While LULU curation partially addresses this
issue, it does not account for variations in haplotype proportions (Brandt et al., 2021).
Furthermore, morphological identification of highly diverse groups like Diptera can also be
difficult (Huang et al., 2022), leading to misidentifications due to the lack of differences in
morphological characters (here i.e., females of certain Platycheirus and Sphaerophoria
species). The presence of cryptic species within species complexes can contribute to these
false negatives and/or positives. Lastly, erroneous species identifications can result from
inaccuracies in reference databases caused by misleading vouchers. Indeed, conducting a
thorough validation of the dataset before performing any diversity analysis as presented by
Remmel et al. (2024) by cross-checking the species list with occurrences in the GBIF (Global
Biodiversity Information Facility; Telenius, 2011) or GBOL databases (German Barcode of
Life; M. F. Geiger et al., 2016), as well as a double-check by taxonomists can mitigate some of
the misleading results. However, it depends again directly on the quality of further databases
and availability of taxonomists, which can be challenging for many understudied insect taxa.
The first and direct consequence of the mismatches, false positives or negatives, are an under-
or overestimation of diversity. In cases where morphological data are lacking for comparison,
this can result in inaccurate biodiversity assessments, leading to e.g. ineffective conservation

plans (Ficetola et al., 2016).

Overall, no single approach stood out as optimal for analyzing Hymenoptera diversity. The
notably low number of Hymenoptera OTUs found cannot be solely attributed to the clustering
and filtering approaches, as even the unfiltered ASV dataset already exhibited a surprisingly
low number of ASVs assigned to Hymenoptera. This suggests that false negative errors likely
occurred during sample processing in the laboratory. There are multiple potential
explanations for the absence of many hymenopteran species. Firstly, the lack of larger and
more common Hymenoptera species (e.g., Bombus species with 190 specimens in the sample
of 2017), also evidently from the study by Remmel et al. (2024), could potentially be
attributed to a primer bias. Primer bias, which refers to the failure of universal primers to
amplify certain taxa, has been documented across various taxa (Clark et al., 2020; Pifiol et al,,
2015), but is particularly noticeable in Hymenoptera samples (Brandon-Mong et al., 2015;
Elbrecht et al., 2019; Yu et al., 2012). This limitation hampers the comprehensive assessment
of Hymenoptera diversity when using one primer alone, as it excludes many important
species, including numerous important pollinators (Kilian et al., 2023). Secondly, biomass
bias could have directly influenced the species richness of Hymenoptera detected via DNA
metabarcoding. This bias arises because species represented by a limited number of

specimens or those that are generally smaller in size may yield lower quantities of DNA
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(Elbrechtetal., 2019; Erdozain et al., 2019). This could explain why nine brachyceran families
represented by a low number of specimens and small in size were not identified at all with
any of the clustering and filtering approaches, although recent studies show that a non-
destructive approach can counteract this bias (Marquina et al., 2019). Furthermore, different
degrees of sclerotization among the different taxa may impact the quantity of extracted DNA,
particularly when using a non-destructive approach as in our study (Erdozain et al.,, 2019;
Kirse et al, 2023; Marquina et al, 2019; Zizka et al, 2018). While size-sorting and a
destructive extraction method may potentially increase the amount of extracted DNA (and
theoretically the number of identified species), they also present significant drawbacks. These
methods do not alleviate the issues related to primer and mass biases, as discussed earlier.
Furthermore, they prevent the possibility of re-checking voucher specimen after
metabarcoding — a critical step for validation and verification in biodiversity studies
(Remmel et al., 2024). Therefore, the non-destructive extraction method has the significant
benefit of preserving vouchers, enabling subsequent taxonomic analysis. This preservation is
particularly crucial in the largely understudied taxa of Diptera and Hymenoptera, often
referred to as “Dark Taxa” (Chimeno et al., 2022; Hausmann, Krogmann, et al.,, 2020). In the
current context, despite advancements in DNA metabarcoding, applications of species-level
data in Hymenoptera still heavily rely on results obtained through morphological

identification rather than solely on metabarcoding outcomes.

In the particular case of the family Syrphidae, our exemplary family in the present survey, the
high dissimilar community between the DNA metabarcoding and morphology is unexpected.
Cross-contamination and shared COI haplotypes can be a source of mismatch between the
two approaches, as syrphids are frequent prey of predaceous arthropods such as Diptera and
Hymenoptera (Blosch, 2000; Gilbert, 2005; Pickard, 1975) and certain genera have species
with shared COI haplotypes (Dietz et al., 2023; Haarto & Stahls, 2014; Locke & Skevington,
2013; A. D. Young et al,, 2016). But the COI haplotype is not common among all the syrphid
genera and would not explain all the cases of discrepancies, e.g., the detection of Episyrphus
balteatus, Eristalis tenax or Helophilus pendulus in the OTU96 from 2016. Should the
Syrphidae include taxa or species groups characterized by minimal interspecific
differentiation, the aggregation of multiple species within a single OTU/ASV becomes a likely
outcome. Still, this would not explain the detection of genera using metabarcoding that were
not present among the morphological species such as Dasysyrphus or Episyrphus in the 2016
sample. The interspecific divergence in the subfamily Syrphinae exhibits significant overlap
with the intraspecific divergence distribution, thereby negating the presence of a general DNA

barcoding gap for hover flies as a group (Kurt Jordaens et al., 2015; R. Meier et al., 2008); this
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overlap is not as frequent in the subfamily Eristalinae as in Syrphinae, but it exists. Eristalis
tenax or Helophilus pendulus belong to Eristalinae, and although Episyrphus balteatus is a
Syrphinae, it is the single species of the genus occurring in Europe. Thus, the detection of E.
balteatus in the OTU96 from 2016 implies not only a species not found in the morphological
survey, but a genus not studied morphologically. We must point out that all the hover flies
identified morphologically, as well as those identified only by metabarcoding, have reference
sequences in BOLD; hence, the lack of a reference barcode in the database cannot explain the

observed discrepancies.

In addition, although morphological misidentification is likely to occur, Syrphidae is a well-
studied flower-visitor group with several good identification tools for northern and central
Europe (Bartsch, 2009b, 2009a; Bot & Van de Meutter, 2019, 2023; Speight & Sarthou, 2017;
Van Veen, 2010) and the collected species in 2016 and 2017 (Table S2) do not represent a
serious challenge in their morphological identification, with the exception of some females or
partially destroyed specimens. Inaccuracies in reference databases are very likely to occur
and we cannot rule it out completely, although in a minor percentage for Syrphidae as the
community of syrphid researchers helped to build a well-curated database for GBOL and

other parts of the world.

The biomass bias with unique organisms or single species showing lower detection rates
(Strutzenberger et al., 2024) could be argued as the absence of certain species identified
morphologically in any DNA metabarcoding approach, such as Triglyphus primus from 2016
or Eupeodes luniger from 2017, but not for the non-detection of other species with more
specimens, i.e., Platycheirus species other than P. clypeatus (Table S2). But this biomass bias
cannot explain the relatively high number of species detected by DNA metabarcoding that
were not found in our morphological survey, especially as the detected species are mostly
medium-to-large-sized syrphids, i.e., Eristalis tenax, Dasysyrphus tricinctus, Helophilus
pendulus or Syrphus ribesii. Based on our experience, and corroborated by the GBOL database,
these species show a barcoding gap with the nearest neighbor species (in other words, the
intra- and the interspecific p-distance do not overlap) and they are very common and
abundant species in Central Europe, which makes the overlooking by us in the morphology

survey unlikely.

Our findings mirror other works where morphologically identified species are compared with
metabarcoding species results (Remmel et al.,, 2024; with J=0.5 for Syrphidae). Thus, the high
Jaccard dissimilarity index calculated for Syrphidae in the present study might be explained

by other reasons, such as the accuracy of the DNA mini-barcode of 313 bp in length used in
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metabarcoding to identify species. While DNA mini-barcodes are commonly used in
metabarcoding, there is a concern about whether they might affect the accuracy of identifying
syrphid species, especially when compared to full-length 658 bp COI barcodes, as shorter
sequences may not provide enough genetic information for precise species identification, at
least for some species. Many studies comparing DNA mini-barcodes and morphology are
based on mock communities (Aylagas et al., 2016; Baloglu et al.,, 2021; Govender et al., 2022),
which may not fully capture the complexities present in real-world scenarios. This suggests
that the observed mismatch could be influenced by factors unique to natural environments,
such as the presence of closely related species and environmental variables affecting DNA
extraction and amplification. Srivathsan et al. (2018), for example, found no difference in the
number of species between full-length DNA barcodes (658 bp) and the 313-bp fragments,
although they did not state if the species composition was highly similar or not. Identifying
syrphid species based on full-length DNA barcodes accurately can be challenging due to
various factors such as genetic variability within species and incomplete reference databases,
as mentioned. This raises the question of whether DNA mini-barcodes exacerbate this issue
or if it is inherent to metabarcoding techniques in general. Without a better explanation, it
seems that the detection of these species not present in our morphological study may be due

to cross-contamination.

Despite the current limitations in DNA metabarcoding, we also highlight the potential of a
non-destructive DNA metabarcoding approach for uncovering e.g. cryptic diversity in highly
diverse groups, which morphologically can still be very challenging. We emphasize the
potential of enhancing DNA metabarcoding results not only through improvements in the
DNA extraction and PCR processes, but also by refining the final assessment through
appropriate bioinformatic analysis, particularly focusing on the clustering and filtering
approaches. This is especially important in studies where the metabarcoding analysis cannot

be cross validated with morphology.

Conclusion

While DNA metabarcoding has become a valuable tool for insect biomonitoring assessments,
there are still many limitations that require attention, especially during the in silico stage
where the impact of clustering and filtering approaches is significant. Our study highlights
that for Brachycera clustering ASVs into OTUs at 97% cutoff and subsequently applying
LULU-filtering at a 96% minimum match yields the most interesting results, with the number

of detected species closely approximating the diversity identified using morphology when
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using a non-destructive DNA protocol, although these total numbers may be misleading due
to the high number of false positives and false negatives which end up with low Jaccard
dissimilarity index (see the results of the species composition with Syrphidae, Tables 2 and
S2). We advocate for a species composition analysis whenever is possible. However, for
Hymenoptera, the same approach resulted in considerably different estimate compared to
diversity assessed via morphological identification, likely due to the presence of false
negatives introduced during the laboratory processing of the samples, mainly driven by
primer bias. Despite the variations in results and resolution observed for Brachycera and
Hymenoptera, and the persistent limitations in the application of this methodology, we
recognize the potential of achieving high species-level resolution with a non-destructive DNA
metabarcoding approach. This approach not only retains for future analyses, but preserves
the entire sample as a voucher. This preservation is particularly valuable for large-scale
monitoring programs utilizing DNA metabarcoding as a standard methodology. Addressing
these limitations and optimizing protocols will enhance the reliability and accuracy of DNA

metabarcoding for insect biomonitoring in the future.
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Supplementary information

Table S1: Publications with identification keys used in the morphological survey of the samples.

Taxa

Identification keys

Hymenoptera

Amiet et al.,, 2012; Benson, 1951, 1958; Bitsch, 1992; Gokcezade
etal, 2010; Goulet et al., 1993; Prous et al,, 2019; Schmid-Egger
& Scheuchl, 1997, 1997; Stresemann & Klausnitzer, 2011; Witt,

1998

Brachycera

Drake, 1993; Gregor et al, 2016; Naglis, 2012; Oosterbroek,
2006; Rozkosny & Frantisek, 2004; Stresemann & Klausnitzer,

2011; Tschorsnig, 1994; Van Emden, 1954; Zeegers, 1992

Syrphidae

Bartsch, 20093, 2009b; Haarto & Stahls, 2014; Van Veen, 2010
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Figure S1: Experimental setup for DNA extraction. The specimens of two Malaise trap bulk samples
were split into four equal subsamples after drying. Each subsample was mixed with an extraction
buffer. After digestion, the lysis solution was split into three replicates per subsample, which were
pooled back together to three extraction replicates after the second filtering process. For a more
detailed description, see Material and Methods section. Created with BioRender.com.
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Figure S2: Comparison between number of families (1) of Brachycera and (2) of Hymenoptera
identified with morphological identification and DNA metabarcoding with four different clustering
approaches across both samples of 2016 and 2017. ASVs were either clustered in OTUs at 97%
similarity cutoff and LULU-filtered using 1.) standard settings at 84% minimum match (0OTU84) or 2.)
using a 96% minimum match (OTU96), or ASVs were just directly LULU-filtered using the standard
settings at 3.) 84% minimum match (ASV84) or 4.) at 96% minimum match (ASV96). The solid line
represents a 1:1 relationship. Points with black borders represent the sample of 2016, and points with
grey borders represent the sample of 2017.
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Table S2: Final list of Syrphidae diversity identified via DNA-metabarcoding applying four different
clustering and filtering approaches (qualitative data) and morphological identification (quantitative
data). ASV84 = LULU-curated ASVs using standard settings at 84% minimum match, ASV96 = LULU-
curated ASV using a 96% minimum match, OTU84 = ASVs clustered in OTUs at 97% similarity cutoff
and LULU filtered using the standard settings at 84% minimum match, 0TU96 = ASV clustered to OTUs
at 97% similarity threshold and LULU filtered using a 96% minimum match.

2016 2017

Syrphid species ASV84 ASV96 0OTUB4 OTU96 Morph.*|ASV84 ASV96 OTU84 OTU96 Morph.*
Dasysyrphus tricinctus 0 0 0 1 0 0 0 0 0 0
Episyrphus balteatus 0 0 0 1 0 0 0 1 0 18
fer[’jﬁl;f;szs 0 0 0 0 0 0 0 1 0 1
Eristalis tenax 1 1 1 1 0 1 1 1 1 0
Eristalis arbustorum 0 0 0 0 0 0 0 1 0 1
Eristalis intricaria 0 0 0 0 0 0 0 1 0 1
Eupeodes corollae 0 0 0 0 0 0 0 1 0 0
Eupeodes sp. 0 0 0 0 0 0 0 1 0 0
Eupeodes luniger 0 0 0 0 0 0 0 0 0 2
Helophilus pendulus 0 1 1 1 0 0 0 0 0 0
Helophilus trivittatus 0 0 0 0 0 0 0 1 0 1
Fagisyrphus cinctus 0 0 0 1 0 0 0 0 0 0
%zg:g}om“ 1 1 1 1 109 |1 1 1 1 45
Melanostoma sp. 0 0 0 1 0 0 0 0 0 0
Melanostoma scalare 0 0 0 0 5 0 0 0 0 0
Paragus sp. 0 0 0 1 1 0 0 1 0 0
Platycheirus clypeatus 1 1 1 1 3 0 1 1 1 0
Platycheirus sp. 0 0 0 0 1 0 0 0 0 0
! fggf::;rs us 0 0 0 0 3 0 0 0 0 0
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Platycheirus 0 0 0 0 1 0 0 0 0
angustatus

Platycheirus 0 0 0 0 13 0 0 0 0
europaeus

Platycheirus 0 0 0 0 3 0 0 0 0
inmaculatus

Rhingia campestris 0 0 0 1 1 0 0 0 0
Scaeva pyrastri 0 0 0 0 0 0 0 1 0
Sphaerophoria scripta 0 1 1 1 3 0 1 1 1
Sphaerophoria sp. 0 0 0 0 0 0 0 0 0
Sphaerophoria 0 0 0 0 0 0 0 0 0
taeniata

Syrphus ribesii 0 0 0 0 0 1 1 1 1
Syrphus vitripennis 0 0 0 0 0 0 0 1 0
Triglyphus primus 0 0 0 0 1 0 0 0 0
syr_phldae molecular 0 0 0 0 0 0 0 1 0
unit
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General discussion & conclusions

5.1. Complexity of plant-pollinator networks in agroecosystems and why
pollinator diversity matters

Despite the global importance of pollination to angiosperm diversity and crucial for food
production, the potential of wild pollinators (defined here as all non-managed pollinators)
has been largely neglected or it is still unknown (Klein et al., 2007; Larson et al., 2001; Ollerton
et al,, 2011; Orford et al, 2015; Ssymank et al.,, 2008). Results from this thesis show a
particularly high number of less studied brachyceran and non-bee hymenopteran pollinating
species of caraway and apple, many of them even potential pollinating both crop species.
Earlier research on pollination of those crop species compiled for the most part, in the case of
caraway, no more than a list of pollinators or, as for apples, plant-pollinator networks based
primarily on flower-visiting surveys (Barahona-Segovia et al., 2023; Bouwmeester & Smid,
1995; Toivonen et al., 2022). Despite flower-visitation being a poor proxy for pollination as
many species visit flowers without transporting intraspecific pollen, it is still commonly used
in pollination ecology studies (King et al., 2013; Theodorou et al,, 2017; Wardhaugh, 2015).
For this thesis, increased accuracy could be achieved by using an integrative approach with
DNA barcoding of the insect specimens and metabarcoding of the pollen loads. This approach
has the potential not only to identify potential pollinators of crop species in agroecosystems,
but also to reveal the complex interactions with other plant species present in fields or in the
surrounding landscape (Chapter 2 and 3). These interactions also changed over time,
showcasing temporal dynamics of plant-pollinator networks. Additionally, key pollinating
species for both crop species were identified, which are responsible to some degree for the
resilience and stability of the network’s structure. In the discussion sections of Chapters 2 and
3, some more detailed information is given for those crucial pollinating species. To avoid
redundancy in the following discussion, going on, I want to focus on the overall high
taxonomic diversity of Brachycera and Hymenoptera potential pollinators, and their potential
implications and consequences for the stability of ecosystems functions and particularly

pollination.

Following the concept of functional redundancy, where multiple species perform a similar
function in an ecosystem (Bliithgen & Klein, 2011; S. Naeem, 1998), it could be assumed that
a higher diversity of pollinators could lead to a redundancy of individual pollinating species.
Current studies show that even with a high pollinator diversity (particularly communities or
functional groups), pollinating species not necessarily share the same ecological
requirements or utilize overlapping resources, but can share or complement each other
niches. Therefore, this niche complementarity increases the pollination service by reducing

interspecific overlaps in flower visitations or pollination, and can help to mitigate changing
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environmental conditions (Albrecht Matthias et al., 2012; Brittain et al., 2013; Cantwell-Jones
etal, 2023; Friind et al,, 2013; S. Naeem & Li, 1997). For example, flies often forage when bees
or butterflies do not (Inouye et al,, 2015), which is particular important for early flowering
crop species such as apples (Ssymank et al., 2008). Moreover, phenological asynchronies
between plants and pollinator could increase in the future due to climate change, which could
be mitigated by enhancing the diversity of pollinators (Bartomeus et al., 2013). Nonetheless,
functional redundancy can only secure pollination services up to a certain level; in the case of
a sudden collaps of a functional group, given that they are usually tightly connected in plant-
pollinator networks, the risk in mutualistic networks may also increase the vulnerability in

the case of a sudden collapse (Lever et al., 2014).

Numerous wild-pollinators contribute also significantly not only as pollinators, but also
provide other ecosystems services: Syrphidae (hoverflies), for example, contribute to crop
pollination and their predatory larvae are natural biological control agents of certain pest
species (Dunn et al., 2020; Lundin et al., 2013; Pekas et al., 2020). Aculeate (stinging) wasps
also do not just contribute to pollination, but also to biocontrol, decomposition, as well as
biological indicators, independent if they are social or non-social species (Brock et al., 2021).
Directly linked conservation efforts are often ecosystem-service-based approaches with a
focus on flowering food sources, particularly targeting the most efficient pollinating species,
and ignoring other food sources or non-food related requirements (Iwasaki & Hogendoorn,
2021; Requier & Leonhardt, 2020; Wood et al,, 2015; further details in section 5.3). However,
strategies centered on ecosystem-based conservation efforts frequently overlook the most
endangered pollinating species, as they proportionally contribute less to the overall

pollination of mayor crops (Kleijn et al., 2015).

Pollinator diversity is also tightly connected to plant diversity (Biesmeijer et al., 2006;
Ferreira et al., 2013; Ramos-Jiliberto et al., 2020). It is, therefore, not surprising that the high
number of potential pollinators of apple and caraway also interacted with many other
flowering plant species within the surrounding landscape and was not restricted to plant
species within the sampling transect. Regarding nectar availability, attractiveness, floral
morphology, and biochemical factors of the flowers (i.e., scent, color, and nutritional values
of the nectar or pollen), the plant taxa diversity observed in the plant-pollinator networks
differs significantly. These functional flower traits are crucial determinants in whether or not
a flower will be visited, the level of flower fidelity and affinity, as well as the fitness and
abundance of pollinators (Abrol, 2011; Junker et al., 2015; Van Rijn & Waickers, 2016;
Wackers, 2004). Flowers with restricted access to the nectaries, the floral tissue that produces

nectar, or sometimes also oils or scents, are usually pollinated by long-tongued bees and other
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insects (Faegri & Pijl, 1979; Sedivy et al., 2013; Wood et al,, 2021), while flowers with easy

access to floral resources are often visited by dipterans (Woodcock et al., 2013).

Exploring the effectiveness and efficiency of wild pollinators

The pollinators' "performance” is often defined as effectiveness and efficiency. Although there
are numerous definitions for these two parameters, following the modular definition by
Ne'eman et al. (2010), pollen deposition effectiveness can be defined as the pollinator's
contribution to pollen deposition and measured as the number of pollen grains delivered by
a pollinator to the stigma of a given flower. On the contrary, the pollen deposition efficiency
of a pollinator can be defined "as the pollinator's contribution, by deposition of conspecific,
compatible and viable pollen grains on the receptive target stigma in relation to the maximal
possible female reproductive success (i.e.,, maximum seed set with no pollen limitation). Thus,
pollen deposition efficiency refers to a measure that reflects whether a pollinator deposits

enough pollen to achieve full seed set per flower" (Ne'eman et al., 2010).

The insect-targeted methodology used in Chapters 2 and 3 did not allow for a statement
regarding the pollen deposition efficiency or effectiveness of the collected potential
pollinators of apple and caraway. However, plant targeted sampling approaches, such as
exclusion experiments, the analysis of fruit quality or fruit set (the proportion of a plant's
flowers that develop into mature fruits or seeds), could provide evidence of the effectiveness
of single insect species or communities (Boyle & Philogene, 1983; Garibaldi et al., 2013;
Hiinicken et al., 2021; Quinet et al.,, 2016; Webber et al., 2020). On the contrary, an efficiency
assessment involves, among others, the evaluation of pollen quality, which include aspects
like the viability, the presence of conspecific pollen grains in the pollen load, compatibility of
pollen grains, as well as pollen surplus described as the maximum amount of pollen required
for optimal seed formation (Jacquemart et al., 2006; Ne’eman et al., 2010; Razanajatovo et al,,
2024). By now, other studies have already shown that wild pollinators can be as effective as
managed pollinating species, particularly if wild pollinator populations can accomplish the
visitation frequencies as high as or even higher than managed species (Rader et al., 2009), if
they are bigger in size than managed species (Foldesi et al, 2021) or have certain
morphological traits, such as the level of hairiness (Stavert et al.,, 2016). In the context of
climate change, the efficiency and effectiveness of pollinators is becoming an increasingly

important topic to understand the plant reproductive consequences caused by changes in the
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plant-pollinator network or the plant or pollinator communities (IPBES, 2019; Rafferty &
Ives, 2013).

Beyond the plant or insect perspective: exploring the plant-pollinator networks

Examining the interactions between pollinators and flowering plants as mutualistic bipartite
networks can help to get a deeper understanding of the stability of plant-insect interactions
rather than solely focusing on targeted plant species (Bascompte & Jordano, 2007; Bascompte
& Scheffer, 2023). Additionally, it allows to compare the network structure across various
spatiotemporal scales and resolutions (Hemprich-Bennett et al,, 2021; Memmott et al.,, 2004;
Pornon et al,, 2017; Renaud et al., 2020), leading to scale-dependent outcomes. Exemplarily,
while at the landscape level, pollinator and plant diversity highly correlate (Ferreira et al,,
2013; Ramos-Jiliberto et al.,, 2020), field-scale management is a better predictor of pollen-
insect interactions when analyzing the plant-pollinator network. Consequently, while
smaller-scale conservation efforts could provide better results in restoring the plant-
pollinator network (Hall et al., 2022), large conservation efforts can help maintain plant and

pollinator communities (see section 5.3).

Generalist plant and pollinator species, which represent the species with the highest number
of links and also highlighted as such in Chapters 2 and 3, are considered the core of any plant-
pollinator network, as they maintain the main network structure and functionality over time
(Resasco et al., 2021; Zografou et al., 2020). Their ability to adapt and interact with a variety
of plants and pollinators allows them to act as mediators in the face of environmental changes
and disruptions (Bliithgen et al., 2006). This flexibility also allows generalists to occupy a
broader range of habitats, making them less vulnerable to losing specific symbiotic partners
(Resasco et al., 2021; Zografou et al,, 2020). Consequently, losing abundant generalist plant
species impacts the network’s structure and enhances the sensibility to external changes and
stressors. This loss can be managed if pollinator efficiency and diversity do not fluctuate

simultaneously (Bain et al,, 2022; Waser et al., 1996).

Even if single individuals of a pollinator species may show a high degree of specialization, the
species could still be characterized as a generalist by aggregating the interactions of many
intraspecific individuals (Araujo et al,, 2021; Brosi, 2016). This pattern can often be observed
when plant-pollinator networks are being analyzed at different organismal hierarchies, e.g.
from individuals to communities (Pornon et al, 2017). Consequently, it particularly
challenging to securely identify potential pollinating specialists of caraway and apple, since it

requires a thorough sampling and analysis. Insufficient sampling of specimens, and
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consequently the analysis of limited pollen samples, may lead to a distorted understanding of
a species' level of specialization (Bosch et al., 2009; Dorado et al., 2011), what could be with
the highly specialized species found in Chapter 2 and 3. Nonetheless, if there are true
specialists identified, the high interdependence of specialist pollinators and plants can lead
to a higher vulnerability in comparison to generalist species (Weiner et al., 2014). Contrarily,
the influence of specialist species to the network structure is relatively minimal: the presence
of specialist species generally do not alter significantly the overall robustness of plant-
pollinator networks, particularly if specialist species are able to adapt their diets to changes
in flowering sources (Bain et al., 2022; Fontaine et al., 2008; Gémez-Martinez et al., 2022;

Zografou et al., 2020).

While plant-pollinator networks are commonly portrayed as a static snapshot over a specific
time or space, their structure is far more complex and dynamic. By analyzing the interactions
as a static snapshot, it is just possible to identify the general pattern of a network, missing the
nuanced changes. Which underlying ecological process (e.g. from behavioural shifts of
individuals specimens to dramatic community changes) is the targeted question is
determined by the specificities of the spatiotemporal perspective through which they are
analyzed (CaraDonna et al, 2021; Dupont et al., 2009). Therefore, temporal dynamics
regarding intraday and intraseasonal shifts of plant-pollinator networks were more closely
studied in Chapters 2 and 3. Over the years, despite the high variability in species and
interaction composition, the network’s general structure has remained constant, indicating
that species can be replaced by topologically similar species (Dupont et al., 2009). Over a
single day, changes in the availability of floral resources (e.g., pollen and nectar) and
pollinators' activity can drive a turnover in interaction rewiring or species turnover (Nagano,

2023).

Especially in agroecosystems, which are characterized by intensive land use and
fragmentation levels, the reduction of species richness of plants and pollinators adds to the
vulnerability of plant-insect interactions (Lopez-Vazquez et al., 2024; Morrison et al., 2020;
Xiao et al, 2016). Nonetheless, the impact’s extent of agricultural practices or other
anthropogenic factors are always context-dependent and can vary across taxa (plants and

pollinators) and regions (Lopez-Vazquez et al.,, 2024).

5.2. Methodological strengths and limitations

The genomic revolution, with the rise of the analysis of genetic diversity via universal DNA
barcodes, has fundamentally changed how we assess biodiversity. DNA barcoding and

metabarcoding have become universal methods for detecting and monitoring species (Kestel
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et al,, 2022). Throughout this thesis, DNA barcoding and metabarcoding were implemented
through various means: ranging from the identification of single insect specimens with DNA
Barcoding (Chapters 2 and 3) to the analysis of mixed pollen samples (Chapters 2 and 3) and
insect bulk samples (Chapter 4), both with DNA metabarcoding. The significant advantages
and versatility of DNA barcoding and metabarcoding are showcased in the results presented
in the Chapters before. The most important advantage is the increase in taxonomic resolution
in the analysis of pollen samples and bulk samples. For instance, in the analysis of the plant-
pollinator networks of caraway, this increased taxonomic resolution led to the identification
of a greater number of plant-pollinator interactions, as seen in Chapter 2. These interactions
would have remained unknown if only the morphological identification of the pollen loads

would have been carried out.

Nonetheless, there were some methodological differences between Chapters 2 and 3, that
need further attention: for the analysis of the plant-pollinator networks of caraway in Chapter
2, DNA metabarcoding was combined with the morphological identification of pollen loads.
In contrast, the sole baseline data to analyze the plant-pollinator network of apple in Chapter
3 was the metabarcoded pollen samples. By combining both methodologies, it was possible
to morphologically identify those plant species that may be challenging to be identified via
DNA metabarcoding, due to a low number of pollen grains and, consequently, low DNA
quantity. When merging the data, the number of plant taxa in the network might have been
artificially inflated due to differences in taxonomic resolution between the methodologies.
Here, the morphological identification of phenotypically similar but phylogenetically distant
pollen types, as well as the identification up to family level was particularly challenging when
combining with the DNA metabarcoding results. For example, the Aster-Solidago pollen type
compiles Aster spp. and Solidago spp.. While both belong to the family of Asteraceae, they are
currently polyphyletic and, therefore, not sister groups (Kang et al., 2024; Zhou et al., 2022).
While a more conservative approach merging both datasets could have been performed
following the approach from Jedrzejewska-Szmek & Zych (2013), it would have resulted in
the loss of many insect-plant interactions. However, since the plant taxa identified with DNA
metabarcoding and morphological identification matched at least at a higher taxonomic level,
the plant-pollinator networks of apple, presented in Chapter 3, were then only analyzed by
metabarcoding pollen loads. The differences in taxonomic resolution of morphological
identification and DNA metabarcoding of pollen samples opens the question to what extent
the plant-pollinator networks based on these two approaches generate comparable results

and to what extant the network structure is otherwise the result of methodological biases.
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The versatility of DNA metabarcoding is also showcased in Chapter 4 in the analysis of insect
specimens from bulk samples. A common question remains to which extent metabarcoding
results can be compared or aligned to morphological identifications of insect specimens to be
able to conduct and interpret reliable bioassessment efforts with metabarcoding. Therefore,
in Chapter 4, a combination of different bioinformatic pipelines with a non-destructive
extraction protocol was tested to match the closest the morphological identification of
Brachycera and Hymenoptera from bulk samples collected with Malaise traps on spinach
fields. The use of a non-destructive protocol allows to keep the samples as a voucher, enabling

later reexamination if necessary.

However, similarly to any emerging technique, there are also challenges and limitations
associated with DNA metabarcoding that need to be considered when interpreting the results.
These are also some the reasons why metabarcoding remains underutilized in
agroecosystems (Compson et al., 2020; Kestel et al., 2022). For the analysis of mixed pollen
and bulk samples, the lack of reliable quantitative or abundance data, the differences in
quality and resolution of reference databases, and the correct selection of barcodes or
primers are general limitations to consider when deriving conclusions from these analyses.
Additionally, the lack of standardized protocols in DNA metabarcoding compared to the more
established DNA barcoding hinders the comparison among similar studies. Differences in
DNA extraction protocols, PCR reagents, sequencing protocols, and finally, the in-silico
bioinformatic analysis are among the main components that can generate differing results
(Bailet et al., 2020; Bohmann et al,, 2022; Jeunen et al., 2019). To achieve standardization
during DNA extraction, a universal modular DNA extraction method (Mu-DNA) could be a
promising solution (Sellers et al., 2018). However, biases can be introduced also after the DNA
extraction. A potential standardized solution for multiple steps using a modular framework
to harmonize metabarcoding data was recently suggested by Arribas et al. (2022). This
modular approach allows, in particular, flexibility for future methodological developments.
While these two promising solutions are just a few of a long list of other methods, they all

generally need further validation and testing.

An accurate identification at species level also depends highly on the proper selection of DNA
barcodes and primers. For the analysis of arthropods and other animals, COI has been the
standardized DNA barcode since the methodology was first introduced by Hebert et al.
(2003), even though it may not always provide an adequate number of conserved regions,
which are essential in amplicon-based metabarcoding (Deagle et al., 2014). Alternatives such
as the ribosomal 16S marker could be more appropriate depending on the application goals;

however, the most extensive and most established reference databases for animals are still
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based on COI (Deagle et al., 2014; Elbrecht et al., 2016). In agroecosystems, where the main
goal is often to identify harmful insect pest species, multi-gene surveys (Cowart et al., 2015)
and targeted primer sets could improve detection rates (Avalos et al,, 2023). A proper
selection of DNA barcodes to analyze plant material is sometimes even more challenging;
While ITS2 still has the highest successful identification rate (S. Chen et al,, 2010), a multi-
gene approach combining this nuclear ribosomal with a plastid DNA barcode, such as rbcL,
matK, trnH-psbA or trnL-trnF may enhance the detection and delimitation of plant species
(Chase & Fay, 2009; S. Chen et al., 2010; CBOL Plant Working Group, 2009; Kolter &
Gemeinholzer, 2021b). Still, ITS reference databases show the highest identification rate and,
therefore, remain the preferred barcode to use, even though ITS plant reference databases
are far from complete (Kolter & Gemeinholzer, 2021b). Consequently, conducting a study of
plant-pollinator networks by metabarcoding the pollen loads, especially in remote areas,
could be challenging, as flora in remote areas is typically not extensively studied and often

missing in reference databases.

Moreover, the reference databases' scope, resolution, and quality can also impact the species
identification rate (Cowart et al,, 2015; Keck et al., 2023; Kolter & Gemeinholzer, 2021b).
Taxonomic mislabelling, sequencing errors, sequence conflicts, taxonomic conflicts, low
taxonomic resolution, missing taxa, and missing intraspecific variants are the most common
obstacles (Keck et al., 2023). Proper curation of the databases with the removal or correction
of false entries when necessary, the performance of multi-marker surveys, and the continuing
addition of missing taxa could significantly improve the performance of databases. At least
for insects, initiatives like GBOLIII: Dark Taxa can help to fill specific gaps in reference
databases (Hausmann, Segerer, et al, 2020). Future developments in machine learning
algorithms could also help to improve local databases, for example, by including spatial
distribution data of targeted taxa (Kolter & Gemeinholzer, 2021b). Especially for the DNA
metabarcoding of pollen from insects, developing local references with all surrounding
flowering plant species is also a good alternative to improve taxonomic identification (Pornon
etal, 2016). Nonetheless, many of these solutions are also associated with high management,

curation and storage costs.

Another limitation between classical methodological approaches and DNA metabarcoding is
the limited ability to gather abundance (quantitative) data from DNA metabarcoding. This
was particularly relevant for the analysis of the pollen loads in Chapters 2 and 3, contributing
to a limited interpretation of the interaction's strengths in the plant-pollinator networks.
When analyzing plant-pollinator networks, the strength of the interaction is usually based on

the interactions frequency which is often measured as visitation frequency (Bascompte et al.,
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2006; Vazquez et al,, 2007, 2012). Here, the underlying data to analyze the plant-pollinator
network was a binary dataset of the presence-absence of a plant taxon, limiting the possibility
of adding the pollen quantity. While some positive relationship between sequence count and
flower-visiting frequency (Baksay et al., 2022; Pornon et al., 2016) or the number of pollen
grains (Baksay et al.,, 2020) has been detected, it is still limited to certain plant species and
therefore not universally applicable. Some of the possible solutions to get more accurate
semi-quantitative data of pollen when applying DNA metabarcoding include the use of long-
read technologies and limitation of amplification biases, such as shotgun metagenomics or
minion sequencing (Lowe etal.,, 2022; Peel et al., 2019), as well as PCR-free genome-skimming
(Lang et al., 2018). For the analysis of bulk samples, aside also from long-read technologies,
pre-lab processing steps such as sieving (Elbrecht et al, 2017) or the use of mock
communities as quantitative (Lamb et al., 2019) controls have been particularly compelling
to get quantitative data. However, none of the methods mentioned before has yet led to a
universal solution. However, quantitative data is a requirement in biodiversity monitoring
and one of the biggest challenges when using metabarcoding for this purpose. By
continuously improving the methodology, this issue could be overcome in the near future
(Piper et al.,, 2019). Further developments and improvements in metabarcoding will also
make this versatile methodology more accessible for researchers, governments, and NGOs

(Compson et al,, 2020; Hawthorne et al., 2024b; Macgregor et al,, 2019).

5.3. Implications and recommendations for stakeholders

Considering the high levels of dependency on insect pollination of many crop species,
mitigating the threats and safeguarding the diversity of pollinators and ecosystem services
they provide is a critical matter that needs collective action and collaboration from diverse
stakeholders. In agroecosystems, the recommendations and goals can be grouped into the
following two categories: (1) support pollinators on agricultural landscapes and (2) enhance

the scientific knowledge on pollinator diversity.

Support pollinators on agricultural landscapes

Farm management practices and the degree of intensification have a direct effect to the
availability of qualitative foraging and nesting resources for pollinators (Kovacs-Hostyanszki
etal, 2017; Kremen et al., 2002; Potts et al., 2010); therefore, affecting directly and indirectly
pollination services. Some farming systems and techniques can mitigate the negative impacts

of intensified management to some degree. Yet, the quantity of research validating this
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statement is derived primarily from studies of intensively or frequently studied pollinating
species, such as wildbees or hoverflies. Studies on agricultural measures that can improve the
conditions for other wild pollinators are rare (Davis et al., 2023). Nonetheless, under the
assumption that wild pollinators identified in this study profit from alternative farming
systems and techniques similar to prominent bee and syrphid pollinators, wild pollinators
also benefit from agroecological principles and organic farming practices. While organic
farming is restricted to the management type used by farmers, agroecological practices go
beyond the field scale by considering the position, quality, and connectivity of the fields, as

well as semi-natural or natural habitats at a landscape level (Jeanneret et al., 2021).

Generally, retaining or creating patches of natural vegetation helps to preserve local
pollinator diversity (Cole et al.,, 2017; IPBES, 2019; Rahimi et al., 2021). However, given the
limitations of retaining natural habitats and the potential financial burdens it may impose on
farmers, a commonly implemented solution are so-called agri-environmental schemes (AES)
(Batary et al, 2015). Some of these schemes involve providing short-term payments to
farmers in exchange for implementing prescribed environmental management practices to
compensate for the farmer's loss (IPBES, 2019). Maximizing the potential benefits of the AES
can be achieved by distributing them equally across a landscape, allowing an accumulation of
their effect radius (Gill et al.,, 2016). Among the most popular AES is the establishment of
flowering strips (Batary etal.,, 2015), which are typically implemented along the edge of fields
and are aimed to attract pollinators and provide secondary food sources after the main
flowering period of the crop species (Ganser et al., 2018). Additionally, biocontrol properties
for crop species have been identified, implying flowering strips also interrelate with
parasitoids (Windsor et al., 2021). Flowering strips are usually composed of annual and
perennial plant species: perennial plant species provide overwintering and nesting sites for
insects (Ganser et al., 2019), while annual plant species are ecological focus areas that can be
included in the usual crop rotation (Klatt et al., 2020). Generally, the plant species
composition of the flowering strips determines the abundance and diversity of insect species
being attracted (Albrecht et al., 2020; Kuppler et al., 2023; Ouvrard et al., 2018; N. M. Williams
et al,, 2015) and are particularly attractive for generalist and common pollinating species
(Burkle et al., 2020). Nonetheless, the effect of flowering strips can significantly be enhanced
when combined with other productive and non-productive measures, such as patches of
natural vegetation, hedges, or organic crops (Gayer et al., 2021; Kremen et al., 2019; Sanchez
etal, 2014; Von Konigslow et al., 2021; Wood et al., 2015), or diminished when e.g. pesticides
are being used nearby (Fountain, 2022). Plant species like caraway or other medicinal plants

could also function as "magnet-species” or ecologically beneficial mass-flowering crops
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(Thomson, 1978; Zych, 2007), as discussed in Chapter 2. These plant species have the
potential to increase the population of pollinators and other beneficial insects while also
serving as an additional source of income for farmers, in contrast to flowering strips
(Christmann et al.,, 2021). However, it is imperative to note that current AES may be
inadequate to support non-honeybee pollinators (Dib et al., 2012; Pywell et al., 2005). A
worldwide biased view toward bees as pollinators and little knowledge of the actual diversity
of pollinators has caused a skewed development of AES and other conservation effort
(Geldmann & Gonzalez-Varo, 2018; Sivinski et al,, 2011). Many AES usually focus on the
provision of sufficient pollen and nectar; neglecting non-food related conditions that need
equal consideration (Requier & Leonhardt, 2020; Wood et al,, 2015). For instance, to
efficiently enhance dipteran and other non-bee pollinating species, it is essential that current
pollinator conservation strategies in agroecosystems not only consider food sources, but also
the conditions needed during larval stages (Ramos-]Jiliberto et al., 2020): wet organic
material, dung or streams as habitat as well as other non-floral resources are substantial for

many Diptera larvae (Davis et al., 2023; Raitif et al., 2019).

Farming practices can also have an effect on pollinator diversity. Organic farming does not
only increase the overall species richness in agricultural landscapes (Tuck et al., 2014) but is
particularly highly beneficial for many pollinator species (Gabriel & Tscharntke, 2007; Happe
et al.,, 2018; Rosas-Ramos et al., 2020). This is primarily due to the exclusion of synthetic
pesticides and mineral fertilizers that negatively impact the fitness of insects and greater
variability in crop rotation and diversification (Beillouin et al., 2021; Bengtsson et al., 2005).
While organic farming does not directly enhance pollination in apple orchards due to the
limited timeframe where the service is being provided (Porcel et al., 2018), field size itself
and the restoration of natural orchard edges have a cascading effect on pollination services
(Hulsmans et al., 2023) by, exemplarily, increasing the biological control of apple orchards

(Porcel etal., 2018).

On a more global scale, is the responsibility of policies and policy makers to develop best-
management practices to ensure pollination services (Dicks et al, 2016; IPBES, 2019).
Unfortunately, due to increased pressure on insect pollination in conjunction with a
worldwide decline of pollinator species, policy measures targeting pollinator conservation in
agroecosystems have only recently been brought to the forefront of the global agenda since
the start of the 21st century. The International Pollinator Initiative, coordinated by the Food
and Agriculture Organization (FAO), was among the first to address this issue (I. H. Williams,
2003). This first pioneering guidance has been since then further developed, among others,

by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
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(IPBES, 2019) and, most recently, the revised EU Pollinators Initiative from 2023 (European
Commission, 2023) (Gemmill-Herren et al., 2021; Rose et al., 2016). Among the most pressing
issues that still need to be improved are pesticide regulatory standards by, for example,
promoting integrated pest management. Additionally, strategies to enhance wild pollinators'
health through diversified farming systems and the conservation and restoration of semi-
natural or natural habitats in agricultural and urban landscapes should be set up. Finally, it is
vital to further develop long-term monitoring programs for pollination services, given their
significance in understanding long-term stressors and their impact (Dicks et al., 2016;

Hipdlito et al,, 2021; Stout & Dicks, 2022).

Research outlook

While this thesis showed the potential of many non-bee Hymenoptera and Brachycera to be
pollinators of apple and caraway as two exemplarily different crop species, many questions
still open that limit the interpretation of the results presented here. To give at least a
preliminary assessment of the efficiency and effectiveness of the pollinators, it is necessary
to get a deeper understanding of the ecology, phenology, and life-cycle dynamics of the
potential pollinators since this information can directly affect the efficiency of conservation
efforts. For example, for many dipteran pollinators, many floral management schemes can be
insufficient to enhance dipteran pollinators (Davis et al, 2023). Additionally, there are
substantial knowledge gaps regarding the conservation status and of many species, which are
substantial to develop more efficient conservation and management efforts (Saunders et al,,

2020).

The analysis of meta-networks, a combination or meta-analysis of plant-pollinator networks,
could unravel underlying ecological processes at a landscape level as they provide new
possibilities to map interactions across time or sites and identify the central nodes (Emer et
al,, 2018; Jordan, 2009). Central nodes can be understood as those key plant and insect species
maintaining the structure of the networks and, when lost, have the most substantial
detrimental effects on the whole system (Martin Gonzalez et al., 2010). Especially when
conservation efforts can just be targeted toward specific areas or periods in a mosaic
landscapes, these measures could have their greatest positive impact by targeting these key

plant-pollinator interactions (Devoto et al., 2014; Hall et al., 2022; Libran-Embid et al., 2024).

Despite the methodological limitations of DNA metabarcoding as outlined in section 5.2, DNA
metabarcoding of pollen loads attached to Brachycera and Hymenoptera specimens allowed

the identification of over two times more interactions than with traditional palynological
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methods. Recent developments in the extraction and analysis of eDNA (environmental DNA)
on flowers (Avalos et al., 2023; Banerjee et al., 2022; Johnson et al., 2023; Newton et al., 2023;
Thomsen & Sigsgaard, 2019) or in combination with other conventional entomological
sampling techniques, such as metabarcoding the pan trap water (Hawthorne et al., 2024b;
Kestel et al., 2024) has paved new pathways away from an insect-targeted to a plant-targeted
sampling (Evans & Kitson, 2020). For instance, Gamonal Gomez et al. (2023) detected eDNA
of 12 out of 19 flower-visiting taxa on apple flowers, showcasing this method's current and
future potential. Although there are still unresolved uncertainties surrounding the origin of
the traces, the extent of visits required to leave genetic material on these flowers and whether
these flower visitors also serve as pollinators may offer insight into potentially overlooked or
rare interactions due to sampling restrains (Buxton et al., 2022; Macgregor & Scott-Brown,
2020; Requier et al,, 2023b). Moreover, the study by Thomsen & Sigsgaard (2019) detecting
DNA traces of at least 135 arthropod species from diverse ecological groups (e.g., pollinators,
parasitoids, or predators) also revealed the potential to use eDNA approaches for
biomonitoring through accurate analyses of large sample numbers. Challenges in assessing
nocturnal pollinators could also be breached by analyzing eDNA on flowers. These nocturnal
flower visitors are rarely addressed as important pollinators in crop production (Buxton et
al,, 2022) and have already been identified as significant contributor for apple production

(Robertson et al. (2021).

Moreover, since insects are the primary pollen vectors of many flowering plants, the
assessment of plant diversity targeting plant traces (e.g. pollen) extracted from the ethanol of
Malaise traps harbors also has the potential to assess the plant diversity at a landscape level.
While Malaise trap samples in combination with DNA metabarcoding can be utilized to
determine the diversity of Brachycera and Hymenoptera as described in Chapter 4, when
instead targeting plant traces, it is possible to effectively identify flowering species. This
include plant species listed in the Red List or additionally pest species. By metabarcoding
plant material from bulk samples could be much more efficient than relying on plant surveys

alone (Swenson et al., 2022).

Finally, the combination of methods such as DNA metabarcoding of pollen loads, eDNA
analysis, and inclusion of phylogenetic or functional traits as an integrative approach into
higher complex ecological networks provide new opportunities to comprehend mutualistic
and antagonistic interactions in agroecosystems such as pollination, predation, or herbivory
(Allen et al,, 2022; Banerjee et al., 2022; Evans & Kitson, 2020; Hawthorne et al., 2024b;
Saunders et al,, 2020). These complex ecological network analyses are a significant part of

assessing ecosystem functioning and resilience to environmental changes and stressors
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(Bohan et al,, 2017; Derocles et al.,, 2018; Evans et al., 2016; Evans & Kitson, 2020). The
analysis of ecological networks could additionally help to elaborate more efficient long-term
monitoring schemes in more extensive spatial (from plant to landscape) and temporal scales
to mitigate in the long-term insect decline (Petsopoulos et al., 2021; Xiao et al,, 2016) while
also enhancing the efficiency of current practices and guiding the future development of

sustainable agricultural ecosystems (Allen et al., 2022).
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Conclusions

DNA metabarcoding is a valuable method to analyze pollen samples retrieved

from the pollen loads attached to Brachycera and Hymenoptera.

DNA metabarcoding of pollen samples does not only showcase a similar diversity
than palynological identifications, but also determined plant taxa at a higher

taxonomic level.

DNA metabarcoding of pollen loads is a valuable methodology to analyze plant-

pollinator networks in temperate agroecosystems.

The diversity of potential brachyceran and hymenopteran pollinators of caraway
and apple is much higher than previously studied, as it includes many non-
syrphid Brachycera and non-wildbee Hymenoptera. Unlike previous studies,
which relied on surveying plant-pollinator interactions under the assumption
that flower-visitors are usually pollinators, the studies presented here were able

to identify accurately specific species responsible for pollen transport.

The analysis of plant-pollinator networks with a focus on potential Brachycera
and Hymenoptera as pollinators provides more ecological information than just
analyzing the pollinator diversity of the targeted crop. Particularly the dynamics
in plant-pollinator interactions along various temporal scales can be identified

and outlined, as well niche complementarity between different insect taxa.

With the analysis of the plant-pollinator networks” structure, it is possible to
identify species essential to preserve the network architecture and the associated

resilience.
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DNA metabarcoding on pollen loads revealed temporal variation in plant taxa
composition, specifically between Brachycera and Hymenoptera species sampled
from caraway fields or between the years for species collected in apple orchards.
These variations were likely attributed to differing flower affinity in the case of
caraway pollinators or differing availability of flowering plants during the apple

flowering period.

Although non-destructive DNA metabarcoding can improve the assessment of
Brachycera diversity in bulk samples, challenges remain in analyzing
Hymenoptera. For Hymenoptera, a proper diversity assessment still relays on

morphological identifications.

Depending which bioinformatic pipeline combining clustering and filtering tools
is being used in combination with a non-destructive extraction protocol, DNA
metabarcoding of insect bulk samples can lead to substantially different diversity
assessments. For Brachycera, a combination of ASVs clustered to OTUs inferred

the closest the diversity identified with morphological traits.

Despite current limitations in DNA metabarcoding, it is a powerful method to

assess plant-pollinator interactions.
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