Vermessung der Mandibula junger Frauen in der Magnetresonanztomographie in Bezug auf die Adulte Idiopathische Condylusresorption

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Hohen Medizinischen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität

Bonn

Leonie Carina Ibald, geb. Heuchemer

aus Neuwied

2024

Angefertigt mit der Genehmigung

der Medizinischen Fakultät der Universität Bonn

- 1. Gutachter: Prof. Dr. Martin Mücke
- 2. Gutachter: Prof. Dr. em. Gerhard Wahl

Tag der Mündlichen Prüfung: 12.11.2024

Aus dem Zentrum für Seltene Erkrankungen Bonn

Inhaltsverzeichnis

	Abkürzungsverzeichnis	4
1.	Deutsche Zusammenfassung	6
1.1	Einleitung	6
1.2	Material und Methoden	9
1.3	Ergebnisse	16
1.4	Diskussion	21
1.5	Zusammenfassung	23
1.6	Literaturverzeichnis der deutschen Zusammenfassung	24
2.	Veröffentlichung	27
2.	Veröffentlichung Abstract	27 27
2.	Veröffentlichung Abstract Introduction	27 27 27
2.	Veröffentlichung Abstract Introduction Materials and Methods	27 27 27 28
2.	Veröffentlichung Abstract Introduction Materials and Methods Results	27 27 27 28 30
2.	VeröffentlichungAbstractIntroductionMaterials and MethodsResultsDiscussion	27 27 27 28 30 33
2.	VeröffentlichungAbstractIntroductionMaterials and MethodsResultsDiscussionReferences	27 27 27 28 30 33 36

Abkürzungsverzeichnis

AICR	Adulte Idiopathische Condylusresorption
AN	Antegonial Notch; Tiefster Punkt des Antegonial Notch
В	Gonion
СТ	Computertomographie
DHEAS-S	Dehydroepiandrosteronsulfate
DVT	Digitale Volumentomographie
FABP	Fatty Acid Binding Protein
FRS	Fernröntgenseitenbilder
FSH	Follicle stimulating hormone
hs-CRP	High-sensitive C-reactive protein
HTP	Hinterer Tangentenpunkt; Posterior gelegener Punkt einer von kaudal angelegten Tangente an den Processus Alveolaris
ICR	Idiopathische Condylusresorption
LC -MS/MS	Liquid-Chromatographie- Massenspektometrie/Massenspektometrie
LH	Luteinizing hormone
Low Ram	Low Ramus; Scheitelpunkt des Kieferwinkels
MPRAGE	Magnetization Prepared Rapid Gradient Echo
MRT	Magnetresonanztomographie

Ν	Nasion
NIfTI	Neuroimaging Informatics Technology Innitiative
S	Sella Turcica
SCAT	subcutaneous adipose tissue
SHBG	Sex Hormone Binding Globuline
SNB	Winkel zwischen Sella, Nasion und Gonion
Top Ram	Top Ramus; Höchster Punkt des Processus Condylaris
ТЅН	Thyroid stimulating hormone
VAT	Visceral adipose tissue
VTP	Vorderer Tangentenpunkt; Anterior gelegener Punkt einer von kaudal angelegten Tangente an den Processus
	AIVEUIAIIS

1. Deutsche Zusammenfassung

1.1 Einleitung

Adulte Idiopathische Condylusresorption

Die Adulte Idiopathische Condylusresorption (im Folgenden "AICR" genannt) ist eine seltene Erkrankung des Kiefergelenkes und tritt überwiegend bei Frauen im Alter zwischen 15 bis 35 Jahren auf (Neff und Riechmann, 2022). Genaue Prävalenzzahlen sind bedauerlicherweise nicht eruierbar, da es an exakten und allgemeingültigen Definitionen des Krankheitsbildes, sowie entsprechender Datenerhebung fehlt. Insbesondere die Abgrenzung zur sekundären Condylusresorption ist erschwert. Schätzungen zufolge sieht ein Kieferorthopäde etwa einen Fall mit AICR unter 5000 PatientInnen (Handelmann und Greene, 2012). Bis heute ist die Ursache dieser Erkrankung nicht abschließend geklärt. Die vorwiegende Erkrankung junger Frauen nach der Pubertät legt jedoch eine hormonell bedingte Ursache nahe.

In der aktuellen wissenschaftlichen Literatur und im klinischen Gebrauch werden die Begriffe AICR und ICR nicht einheitlich definiert verwendet, während in der aktuellen Leitlinie betont wird, dass im klinischen Sprachgebrauch zudem auch sekundär verursachte Condylusresorptionen häufig unter dem Begriff ICR verstanden werden (Neff und Riechmann, 2022). Insbesondere die Folgen rheumatischer Grunderkrankungen, wie der rheumatoiden Arthritis des Kiefergelenks, werden häufig mit der ICR gleichgesetzt, sind jedoch durch eine benennbare Ursache nicht im eigentlichen Sinne als ideopathisch zu verstehen. In dieser Arbeit bezieht sich der Begriff AICR auf die auch unter dem Synonym Cheerleader-Syndrom bekannte Erkrankung und schließt definierte sekundäre Ursachen der Condylusresorption aus.

Aktuell gibt es keine allgemein gültigen Diagnosekriterien für ICR oder AICR, sodass die Diagnose häufig in Zusammenschau mehrerer Befunde als Ausschlussdiagnose erfolgt und für den klinisch tätigen Arzt erschwert ist. Allgemeine Symptome, die auf Problematiken des Temporomandibulargelenkes hinweisen, wie beispielsweise Knirschgeräusche beim Kauvorgang oder Schmerzen, können der Grund für die betroffenen Patienten und Patientinnen sein, sich ärztlich vorzustellen (Wolford, 2001).

Weiterhin als typische Symptome in der aktuellen Leitlinie genannt werden eine Hypomobilität des Unterkiefers, eine Retrognatie und Gesichtsdeformitäten mit Assymetrie, Störungen der statischen (Klasse-II-Malokklusion) und dynamischen Okklusion sowie eine Clockwise rotation des Unterkiefers (Neff und Riechmann, 2022). Zudem ist eine Befundprogredienz typisch für eine AICR. Bei Krankheitsbeginn vor Abschluss des Wachstums kann ein vermindertes Unterkieferwachstum bemerkt werde (Neff und Riechmann, 2022). Weiterhin kann es zu einer sekundären Schlafapnoe durch Obstruktion der Atemwege kommen (Neff und Riechmann, 2022).

Zu beachten ist, dass die Condylusresorption auch asymptomatisch verlaufen kann (Wolford und Cadenas, 1999).

Weiterhin sollte bei differentialdiagnostischen Überlegungen auch das Vorliegen von für AICR typischen Risikofaktoren beachtet werden. Nach der aktuellen Leitlinie sind diese Risikofaktoren unter anderem das weibliche Geschlecht, ein Alter von 10-30 Jahren, die verminderte Kapazität der Gelenkregion zur Remodellation oder bestehende degenerative Gelenkerkrankungen (Neff und Riechmann, 2022). Weiterhin ist die Kompression des Condylus durch mechanische Über-/Fehlbelastung wie kieferorthopädische Behandlungen, Trauma oder instabile Okklusion als Risikofaktor zu werten (Neff und Riechmann, 2022). Auch vorhergegangene orthognate chirurgische Eingriffe, ein großer Winkel der Okklusions- und Mandibularebene oder ein Vitamin-D-Mangel oder Mangel an Omega-3-Fettsäuren sind mit einem erhöhten Risiko verbunden (Neff und Riechmann, 2022). Nicht zuletzt scheint auch eine genetische Prädisposition eine Rolle zu spielen (Neff und Riechmann, 2022).

Um den diagnostischen Verdacht weiter untermauern zu können, sollten neben klinischer Untersuchung und Anamnese auch bildgebende Untersuchungen veranlasst werden.

Hierbei kommen FRS-Aufnahmen, sowie CT oder DVT zum Einsatz. Hier zeigen sich entsprechend dem oben bereits dargestellten klinischen Beschwerdebild dann eine Klasse-II-Malokklusion, eine Retrusion des Unterkiefers, eine niedrige hintere Gesichtshöhe, ein großer Mandibularebenen-Winkel, eine Einengung der

7

oropharyngealen Atemwege oder ein Verlust der Ramushöhe um 6-10 % (Neff und Riechmann, 2022; Sansare et al., 2015). Weiterhin kann die MRT beispielsweise Reduktionen der Kortikalis und Verlagerungen des Diskus zeigen oder Hinweise auf das Vorliegen anderer Differentialdiagnosen geben. Insbesondere ist die Progression der Veränderungen, die sich in aufeinanderfolgenden Bildgebungen darstellt, diagnostisch wertvoll. Diese kann jedoch für die Patientinnen eine Verzögerung der Diagnosestellung bedeuten und insbesondere bei Röntgen-basierten Untersuchungen zu wiederholter Strahlenexposition führen.

Gegebenenfalls können sogar Befunde bildgebender Untersuchungen vor dem Auftreten von Beschwerden bereits auffällig sein und somit eine frühzeitige Diagnosestellung ermöglichen (Iwasa und Tanaka, 2022).

Die Therapie erfolgt in vielen Fällen durch kieferorthopädische Behandlung oder mit operativen Eingriffen. Diese Therapieansätze sind als symptomatische Therapien anzusehen und teilweise kritisch zu hinterfragen, da sie ebenfalls als Risikofaktoren für Condylusresorption angesehen werden. Es werden auch medikamentöse Ansätze, wie das Zuführen von Omega-3-Fettsäuren oder Hemmung von bestimmten Zytokinen diskutiert/empfohlen (Neff und Riechmann, 2022), bei fehlender Kenntnis über die Pathogenese der AICR sind diese Therapiekonzepte jedoch bis dato nicht ausreichend belegbar.

Probleme der Forschung an seltenen Erkrankungen

Bei der Forschung an seltenen Erkrankungen wie der AICR stellen sich prinzipiell spezifische Probleme. So ist die Akquise von genügend Probanden für eine Studie mit statistisch validem und signifikantem Ergebnis durch die geringe Prävalenz deutlich erschwert. Zudem ist aus Perspektive des Datenschutzes eine ausreichende Anonymisierung der persönlichen Daten problematisch, da allein durch Kenntnis der Erkrankung auf einen kleinen Personenkreis, aus dem ein beschriebener Datensatz stammt, geschlossen werden kann. Um hierbei über die bloße Beschreibung von Krankheitsbildern Case Reports hinaus in zu kommen. sind alternative Herangehensweisen, wie beispielsweise hier in der Auswertung großer Datensätze aus Kohortenstudien angewandt, sinnvoll.

Ziele der Studie

In der folgenden Dissertationsschrift soll dargelegt werden, wie zunächst Referenzwerte für die Mandibula junger Frauen in der Bildgebung mittels MRT erhoben wurden. Diese wurden mit bereits existierenden Referenzwerten aus der CT-Bildgebung verglichen.

Zudem wurde mithilfe der Daten der LIFE-Kohortenstudie des Universitätsklinikums Leipzig nach möglichen prädiktiven Faktoren für eine Erkrankung an AICR gesucht. Zu beachten ist, dass nicht gezielt Patienten und Patientinnen mit der gesicherten Diagnose einer AICR untersucht wurden. Es ist speziell ein Patientenkollektiv gewählt worden, in dem das Auftreten einer AICR typisch ist und ein besonderes Augenmerk galt hierbei der Korrelation für die AICR typischer Morphologien mit einer Vielzahl weiterer Parameter. Wir gehen davon aus, dass die hierbei gewonnenen Erkenntnisse richtungsweisende Hinweise erbringen können, die Ursachen der AICR weiter zu erforschen.

1.2 Material und Methoden

1.2.1 Material

Die hier genutzten Datensätze wurden mit freundlicher Genehmigung der LIFE-Kohortenstudie der Universität Leipzig zur Verfügung gestellt. Die Erfassung der Daten erfolgte durch das LIFE-Forschungszentrum der Universität Leipzig im Rahmen der LIFE-Adult-Kohortenstudie, für die im Zeitraum von August 2011 bis Dezember 2014 zufällig ausgewählte BürgerInnen der Stadt Leipzig zwischen 18 und 79 Jahren vielfältigen Untersuchungen und Befragungen unterzogen wurden, einige Probanden erhielten in diesem Rahmen zudem eine MRT-Untersuchung des Kopfes (Loeffler et al., 2015).

Aus diesem Kollektiv wurden alle weiblichen Teilnehmer im Alter zwischen 18 und 40 Jahren, also im typischen Manifestationsalter der AICR ausgewählt. Hiermit ergab sich eine Probandenanzahl von 171 Probandinnen für unsere Untersuchung (s. Originalartikel). Im Verlauf mussten hiervon weitere 13 Datensätze aus der Studie genommen werden, da die Datensätze nicht komplett waren oder die Darstellung der Mandibula im MRT nicht ausreichend war. Weitere Einschlusskriterien oder Ausschlusskriterien wurden nicht angewandt, sodass schlussendlich mit 158 Datensätzen gearbeitet wurde.

Die Studie wurde von der Ethikkomission der Medizinischen Fakultät Leipzig genehmigt.

Zu den von uns weiterbearbeiteten Rohdaten gehörten unter anderem MRT-Aufnahmen des Schädels. Sie wurden als NIFTI-Datei in das Software-Programm Materialise Mimics inPrint eingelesen und dort nach dem unten beschriebenen Prozedere segmentiert und danach mithilfe des Software-Programms Materialise ProPlan CMF vermessen.

Weiterhin wurden folgende Parameter aus der LIFE-Studie in dieser Forschungsarbeit einbezogen (es werden die Originalbezeichnungen aus der LIFE-Datenbank verwendet, um durch Übersetzung bedingte Verwechslungen zu vermeiden):

- Age and gender of the participants
- Medical anamnesis, Medication history, Family anamnesis
- Alcohol consumption, Tobacco consumption, Tobacco consumption and passive smoking
- Anthropometry, Body-Mass-Index, Visceral and subcutaneous adipose tissue (VAT; SCAT)
- Diabetes
- Three Factor Eating Questionnaire eating behavior, Food frequency questionnaire, Yale Food Scale
- International Physical Activity Questionnaire
- Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale
- Oral health
- Complete Blood count, HbA1c, Adiponectin, Leptin, Bioavailable leptin, Fatty Acid Binding Protein (FABP), Ghrelin, Thyroid stimulating hormone (TSH), Alkaline phosphatase, Phosphate, Calcium, Osteocalcin, Beta-CTx, Parathormone, 25-OH-Vitamine D3, Luteinizing hormone (LH), Testosterone, Testosterone (LC –

MS/MS), Follicle stimulating hormone (FSH), Estradiol, Estradiol (LC – MS/MS), Progesterone (LC – MS/MS), Sex Hormone Binding Globuline (SHBG), Dehydroepiandrosteronsulfate (DHEAS-S), Dehydroepiandrosteronsulfate (DHEAS-S) (LC – MS/MS), Inhibin-B, Anti-Mullerian Hormone, High-sensitive Creactive protein (hs-CRP), Interleukin-6

1.2.2 Methoden

Die NIfTI-Dateien der Probanden wurden vom Max-Planck-Institut für Kognitions- und Neurowissenschaften bereits anonymisiert bereitgestellt. In einem ersten Schritt wurden aus den jeweiligen Bilddatensätzen die NIfTI-Dateien als MPRAGE in der Software Materialise Mimics inPrint weiterbearbeitet.

Hier wurde zunächst manuell der Kontrast der Darstellung angepasst, um die knöchernen Anteile des Bildes optimal sichtbar zu machen. Danach wurde der Bildausschnitt auf die Mandibula und ihr direktes Umfeld in allen drei Ebenen eingegrenzt und mittels des Tools "Thresholding" die Graustufen angegeben, die die Corticalis der Mandibula möglichst vollständig betreffen. Die gewählten Graustufen wurden so gewählt, dass außer der Mandibula möglichst wenig umliegendes Gewebe miteinbezogen wurde, die Mandibula jedoch vollständig erfasst war.

Nach dieser Vor-Segmentierung wurde das automatisch erstellte Modell in allen drei Ebenen in jedem Schritt manuell überprüft und wenn notwendig mithilfe der Tools "3D-Interpolate" und "Draw" korrigiert. Zum Erhalt der Übersicht wurde vor der Übertragung in die Software Materialise ProPlan CMF die Smoothing Option "low" ausgewählt.

Anschließend wurde der segmentierte Datensatz in Materialise ProPlan CMF aufgerufen und zunächst nach einem standardisierten Prozedere im Unterpunkt "Cephalometry" cephalometrisch vermessen.

Zunächst wurden die in Tabelle 1 genannten Messpunkte am Modell festgelegt, wie auch in Abbildung 1 dargestellt.

Kurzbezeichnung	Bezeichnung	Definition	Bilateral
S	Sella Turcica	Mittelpunkt der Sella turcica	nein
Ν	Nasion	Scheitelpunkt des konkaven Verlaufes im lateralen Profil an der Nasenwurzel	nein
В	Gonion	Scheitelpunkt des konkaven Verlaufes im lateralen Profil in der Mittellinie des Alveolarfortsatzes	nein
Top Ram	Top Ramus	Höchster Punkt des Processus Condylaris	ja
Low Ram	Low Ramus	Scheitelpunkt des Kieferwinkels	ja
AN	Antegonial Notch	Tiefster Punkt des Antegonial Notch	ja
VTP	Vorderer Tangentenpunkt	Anterior gelegener Punkt einer von kaudal angelegten Tangente an den Processus Alveolaris	ja
HTP	Hinterer Tangentenpunkt	Posterior gelegener Punkt einer von kaudal angelegten Tangente an den Processus Alveolaris	ja

Tab. 1: Definitionen der erhobenen Messpunkte

Es wurden aus diesen definierten Punkten folgenden Parameter durch die Software Materialise ProPlan CMF errechnet:

Gemessener Parameter	Definition		
SNB-Winkel	Winkel zwischen den Punkten S, N und B		
Ramuslänge	Länge des Ramus ascendens zwischen den Punkten Top Ram und Low Ram		
Tiefe des antegonial Notch	Strecke zwischen AN und der Tangente durch VTP und HTP		

Tab. 2: Definitionen der errechneten Parameter

Weiterhin wurden die maximale Länge und Breite des Processus condylaris aus der axialen Aufsicht ausgemessen.

Die Volumina der Processus condylaris und muscularis wurden mithilfe des Unterpunktes "Osteotomy" erfasst. Hierbei wurde eine Schnittebene parallel zur Frankfurt Plane erstellt, welche durch die Oberkanten der Meatus acusticus interni und die Unterkanten der knöchernen Orbitaränder verläuft. Diese Schnittebene wurde durch den tiefsten Punkt der jeweiligen Incisura semilunaris an jeder Seite angelegt, wie in Abbildung 1 dargestellt und auf die niedrigste mögliche Dicke von 0,1 mm festgelegt. Die Volumina der hierdurch separierten Segmente des Processus Condylaris und muscularis wurden über die Funktion "Properties" abgelesen.

Abb. 1: (A) Darstellung des SNB-Winkels zwischen Sella turcica, Nasion und Gonion. (B) Darstellung der Schnittebene zur Volumetrie von Processus Condylaris und Processus Muscularis (gestrichelt). Die Schnittebene liegt parallel zur Frankfurt Plane (gepunktet), welche durch die Oberkanten der Meatus acustici interni und die Unterkanten der knöchernen Orbitae verläuft. (C) Darstellung der Messmethodik der Tiefe des Antegonial Notch. Eine Tangente (Schwarz) wird am inferiorsten Processus alveolaris angelegt. Die Tiefe des Antegonial Notch (Rot) wird im rechten Winkel zu dieser Tangente am tiefsten Punkt des Antegonial Notch gemessen. (D) Darstellung der Messung der Ramuslänge zwischen Top Ram und Low Ram. Top Ram bezeichnet den obersten Scheitelpunkt des Processus condylaris. Low Ram bezeichnet den Scheitelpunkt des Kieferwinkes.

1.2.3 Statistische Methoden

Die Zahlenwerte wurden auf zwei Dezimalzahlen gerundet. Um Zusammenhänge numerischer mit binären Variabeln zu testen, wurden der T-Test und der Wilcoxin-Mann-Whithney-Test verwendet. Für Variablen ohne numerischen Wert wurde der X²-Test angewendet. Die p-Werte werden hier nicht im Einzelnen aufgeführt, da sie nie unter 0,05 waren.

P in Tabelle 7 (s. Originalpublikation) wurde mit Binomialverteilung errechnet, in der Annahme, dass die Referenzwerte 95 % einer gesunden Population darstellen.

Korrelationen sind als Pearson-Korrelationskoeffizienten dargestellt. Es ergaben sich keine relevanten Unterschiede zu den ebenfalls errechneten Kendall-Korrelationen, sodass diese hier der Übersicht halber nicht genannt werden.

1.3 Ergebnisse

1.3.1 Messwerte der Mandibula

Der Winkel SNB ist ein häufig genutzter und einfach zu erfassender Parameter zur Erfassung einer Retrognatie bzw. Klasse-II-Malokklusion, wie sie häufig bei AICR vorkommt. Dieser Winkel wird in drei Klassen unterteilt wie folgt:

- Klasse I: 78 82 Grad
- Klasse II: ≤ 78 Grad
- Klasse III: ≥ 82 Grad

In unserer Erhebung hatten von den 158 erfassten Probanden 33 einen retrognaten Biss mit Klasse II und 67 einen prognaten Biss mit Klasse III. Die übrigen Probanden lagen dazwischen. Der kleinste SNB-Winkel wurde mit 59,9 Grad gemessen, der größte mit 89,1 Grad. Der mittlere gemessene SNB-Winkel liegt bei 74,5 Grad (Standardabweichung: 20,64 Grad). Die Werte waren annähernd normalverteilt.

Ein normales Condylusvolumen wurde zwischen dem ersten und dritten Quartil der von uns erhobenen Messwerte für Condylusvolumina definiert. Dies entspricht auf der rechten Seite 1311,25 mm³ bis 1855,37 mm³, links 1387,47 mm³ bis 1873,65 mm³. Darunter liegende Werte wurden dementsprechend als kleines Condylusvolumen gewertet, darüber liegende als großes. Das geringste Volumen auf der rechten Seite wurde mit 656,99 mm³ gemessen, wobei das maximale Volumen rechts bei 3234,58 mm³ lag. Auf der linken Seite war das minimale Volumen bei 769,48 mm³, das maximale Volumen bei 2957,35 mm³. Das mittlere Condylusvolumen beträgt 1112,86 mm³ (Standardabweichung: 415,77 mm³) auf der rechten Seite und 1009,78 mm³ (Standardabweichung: 389,30 mm³) auf der linken Seite. Die Werte für die Volumina waren ebenfalls annähernd normalverteilt.

Wir konnten keine signifikante Korrelation zwischen SNB-Winkel und Condylusvolumen finden. Die Pearson-Korrelation zwischen dem linken Condylusvolumen und SNB war 0,075 zwischen dem rechten Condylusvolumen und SNB war 0,153. Die Pearsonkorrelation zwischen den Condylusvolumina beider Seiten betrug 0,78.

Über beide Seiten war die mittlere Länge des Condylus bei 9,09 mm mit einem median bei 8,9 mm und einer Standardabweichung von 1,42 mm. Die mittlere Länge des rechten Condylus lag bei 9,08 mm mit einem Median von 8,85 mm und einer Standardabweichung von 1,54 mm. Der kürzeste rechte Condylus maß 5,7 mm, der längste 19,5 mm. Links betrug die mittlere Condyluslänge 9,11 mm mit einem Median von 8,9 mm und einer Standardabweichung von 1,30 mm. Der kürzeste Condylus links maß 5,9 mm, der längste 13,5 mm.

Über beide Seiten lag die mittlere Condylusbreite bei 17,88 mm mit einem Median bei 18 mm mit einer Standardabweichung von 2,08 mm. Die mittlere Breite des rechten Condylus wurde mit 17,74 mm mit einem Median von 17,85 mm und einer Standardabweichung von 2,16 mm gemessen. Der schmalste rechte Condylus maß 12,2 mm, der breiteste 22,7 mm. Auf der linken Seite lag die mittlere Breite bei 18,03 mm mit einem Median von 1,99 mm. Der schmalste linke Condylus maß 12,4 mm, der breiteste 23,1 mm.

Die mittlere Länge des Ramus mandibularis lag über beide Seiten bei 53,88 mm mit einem Median von 53,85 mm und einer Standardabweichung von 4,19 mm. Rechts betrug die mittlere Länge 53,54 mm mit einem Median von 53,5 mm und einer Standardabweichung von 4,19 mm. Der kürzeste rechte Ramus mandibularis betrug 38,1 mm, der längste 63,7 mm. Links betrug die mittlere Länge 54,22 mm mit einem Median von 54,2 mm und einer Standardabweichung von 4,17 mm. Das Minimum links lag bei 42,1 mm, das Maximum bei 65,8 mm.

Das mittlere Volumen des Processus muscularis über beide Seiten lag bei 211,32 mm³ mit einem Median von 188,47 mm³ und einer Standardabweichung von 138,80 mm³. Rechts betrug der Mittelwert 210,21 mm³ mit einem Median bei 179,57 mm³ und einer Standardabweichung von 139,34 mm³. Das Minimum rechts liegt bei 10,73 mm³ und das Maximum bei 645,68 mm³. Links betrug der Mittelwert 212,44 mm³ mit einem Median von 188,47 mm³ und einer Standardabweichung von 138,70 mm³.) Das Minimum links betrug 6,27 mm³ und das Maximum 949,46 mm³. Diese Ergebnisse sind bezüglich des Processus muscularis kritisch zu hinterfragen. Die Segmentation der Struktur erwies sich als schwierig, da der Knochen in diesem Bereich besonders dünn ist und er in der Darstellung kaum vom umgebenden Weichgewebe abzugrenzen war. Es ist anzunehmen, dass die Darstellung im dreidimensionalen Modell nicht akkurat gelungen ist. Drei der Processi mucularis auf der rechten und vier auf der linken Seite konnten überhaupt nicht segmentiert und vermessen werden.

Der Antegonial Notch war im Mittelwert 1,85 mm tief mit einem Median von 2 mm und einer Standardabweichung von 0,99 mm. Rechts lag der Mittelwert bei 2,02 mm mit einem Median von 2,15 mm und einer Standardabweichung von 0,99 mm. Der kleinste Notch auf der rechten Seite betrug 0 mm, der tiefste 5,7 mm. Links lag der Mittelwert bei 1,68 mm mit einem Median von 1,8 mm und einer Standardabweichung von 0,98 mm. Der kleinste Notch war 0 mm tief, wohingegen der tiefste auf der linken Seite 6 mm tief war.

1.3.2 Vergleich mit Referenzwerten aus anderen Studien

Es folgt der Vergleich der von uns erhobenen Messwerte basierend auf Daten aus der MRT mit Studien, die ähnliche Messverfahren an Daten aus der Computertomographie nutzten. Die Ähnlichkeiten betonen die Plausibilität der von uns erhobenen Daten. Die Darstellung von Knochenmorphologie im MRT im Bereich des Temporomandibulargelenks ist jedoch insgesamt in der Literatur noch umstritten, wie

beispielsweise nach Florkow et al. (2022), weshalb hier der Vergleich mit der Computertomographie als gängige Messmethode für knöcherne Strukturen vorgenommen wurde.

In einer Studie von Farronato et al. (2020) wurde eine ähnliche Methodik genutzt, um das Condylusvolumen in 3D-Modellen der Mandibula zu vermessen. Es wurde ebenfalls die Frankfurt Plane als Referenzebene genutzt um eine parallel dazu gelegene Schnittebene angelegt an den tiefsten Punkt der Incisura semilunaris festzulegen. In der dortigen gesunden Kontrollgruppe aus 25 Probanden ergab sich ein mittleres Volumen von 1386,47 mm³ (Standardabweichung von 455,21 mm³) (Farronato et al., 2020). Dies ist etwas geringer als die von uns erhobenen Daten. Es kann also nicht ausgeschlossen werden, dass die condylären Volumina mit unserer Messmethodik eher etwas zu groß gemessen werden. Ähnlich zeigten sich in dieser Studie jedoch die längen der Rami mandibulares mit 54,43 mm (Standardabweichung 4,37 mm).

Eine Studie von Serindere et al. (2020) nutzte ebenfalls ein ähnliches Prozedere zum Assessment der Condylusvolumina. Es ergaben sich mit mittleren Volumina von 1546.94 mm² (Standardabweichung 286,71 mm³) rechts und 1526,04 mm² von (Standardabweichung von 282,55 mm³) links ähnliche Messwerte zu den unseren (Serindere et al., 2020). In dieser Studie wurde ebenso die Länge und Breite der Condylen vermessen. Mit einer mittleren Länge von 7,71 mm (Standardabweichung 1,14 mm) rechts und von 7,57 mm (Standardabweichung 1,15 mm) links sind diese Werte etwas kleiner als die von uns für Länge und Breite erhobenen. Serindere et al. (2020) haben zudem auf beiden Seiten eine mittlere Breite des Condylus von 16,08 mm erhoben (Standardabweichung rechts 2,51 mm, links 2,39 mm).

Santander et al. (2020) haben die Länge und Breite des Processus condylaris in Ihrer Arbeit mit 7,5- 8,5 mm bzw. 19,2-20,2 mm erhoben (Santander et al., 2020), dies ist vergleichbar mit den von uns erhobenen Messdaten.

Die Länge und Breite der Condylen zeigte sich in einer Studie von Al-Koshab et al. (2015) mit 7,11 mm (Standardabweichung 1,03 mm) und 17,04 mm (Standardabweichung 2,35 mm) ähnlich zu unseren Werten (Al-Koshab et al., 2015).

In einer Studie von Exposto et al. (2020) wurde die Länge und Breite der Condylen von PatientInnen mit ICR mithilfe von Kegelstrahl-Computertomographie zum Zeitpunkt der Diagnosestellung dargestellt, zudem wurde eine Kontrollgruppe vermessen. In der Kontrollgruppe zeigte sich die Breite der Condylen mit 17,3 mm (Standardabweichung 1,5 mm) und die Länge der Condylen mit 8,3 mm (Standardabweichung 1,0 mm), und somit ähnlich zu den von uns erhobenen Werten (Exposto et al., 2020). Die Messwerte für die PatientInnen mit diagnostizierter ICR bei einer Länge von 15,4 mm (Standardabweichung 2,6 mm) und einer Breite von 8,2 mm (Standardabweichung 2,5 mm) (Exposto et al., 2020).

Ge et al. (2024) verwendeten in Ihrer Studie, wie auch wir und die oben genannten Farronato et al., eine parallel zur Frankfurt Plane gelegene Schnittebene, die durch den tiefsten Punkt der Incisura semilunaris gelegt wurde, um das Condylusvolumen zu bestimmen. Die vermessenen Modelle basierten auf computertomographischer Bildgebung. In der Studie von Ge et al. (2024) wurde zwischen Probanden mit bilateraler Condylusresorption sowie einer Kontrollgruppe unterschieden. Weibliche und männliche Probanden wurden gleichermaßen in die Studie eingeschlossen. Die ProbandInnen der Kontrollgruppe zeigten Condylusvolumina, die über den von uns erhobenen Messwerten liegen (rechts 2280mm³ mit einer Standardabweichung von 514,5 mm³ und links 2334 m³ mit einer Standardabweichung von 547,2 mm³), die ProbandInnen der Gruppe mit bilateraler Condylusresorption zeigten dahingegen Volumina, die deutlich unter unseren Messergebnissen liegen (rechts 977,9 mm³ mit einer Standardabweichung von 314,1 mm³ and 973,5 mm³ mit einer Standardabweichung von 306,0 mm³) (Ge et al., 2024).

1.3.3 Korrelation mit weiteren Parametern

Weiterhin korrelierten wir Größe und Gewicht der Probandinnen mit SNB-Winkel und den condylären Volumina. Die Korrelation von SNB betrug 0,19 zur Körpergröße und 0,14 zum Gewicht. Die rechtsseitigen Condylusvolumina korrelierten mit 0,18 mit der Größe und 0,22 mit dem Gewicht der Probandinnen. Die linksseitigen Condylusvolumina korrelierten mit 0,19 mit der Größe und mit 0,24 mit dem Gewicht der Probanden.

Wir korrelierten weiterhin den SNB-Winkel und die Condylusvolumina mit diversen anderen Parametern z. B. Essgewohnheiten, Sportlicher Aktivität oder Laborparametern, konnten jedoch keine signifikanten Korrelationen finden. Möglicherweise liegt dies an der kleinen Stichprobengröße der Studie. Weiterhin konnten die Werte der Sexualhormone nicht ausgewertet werden, da uns keinerlei Daten zum Zyklus der Probandinnen vorliegen, die eine aussagekräftige Auswertung zulassen würden.

Drei unserer Probandinnen berichteten von Tinnitus in der Anamnese. Auffällig war hierbei, dass alle drei Probandinnen mit Tinnitus ein kleines Condylusvolumen von unter 1300 mm³ auf beiden Seiten hatten. Zu erwähnen ist, dass Alsabban et al. Tinnitus im Zusammenhang mit temporomandibulärer Dysfunktion nennt (Alsabban et al., 2018). Während diese Auffälligkeit hier sicher keine statistische Signifikanz hat, kann dies jedoch in folgenden Studien weiter untersucht werden.

Zehn unserer Probandinnen hatten eine erhöhte Thrombozytenanzahl im Blutbild, hiervon hatten die meisten eher kleine Condylusvolumina und/oder SNB-Winkel. Vier dieser zehn Probandinnen hatten ein kleines Condylusvolumen auf beiden Seiten und drei von diesen vier Probandinnen hatten zudem ein kleines Condylusvolumen.

1.4 Diskussion

In der klinischen Praxis kommen zur Darstellung der knöchernen Strukturen mit FRS, CT und DVT weitestgehend strahlungsbasierte bildgebende Verfahren zum Einsatz. Bilddaten aus der MRT werden vor allem zur Darstellung der Weichteilstrukturen genutzt. Wir konnten in unserer Arbeit zeigen, dass die Darstellung der knöchernen Strukturen im MRT hinreichend akkurat ist, um diese zu vermessen und sowohl wissenschaftlich als auch perspektivisch diagnostisch zu nutzen. Der Vergleich unserer Messdaten mit Ergebnissen anderer Forschungsprojekte die CT-basiert die Mandibula vermessen haben, zeigte ähnliche Messergebnisse. In der Zukunft sollten weitere Untersuchungen folgen, in denen dieselben Probanden und Probandinnen in CT und MRT vergleichend vermessen werden, um diese Annahme weiter zu untermauern. An dieser Stelle sei angemerkt, dass in der Referenzliteratur häufig insbesondere die Angabe der Volumina bis auf 1/100 mm³ erfolgte. Hieran orientiert wurden die entsprechenden Messwerte von uns ebenso angegeben. Tatsächlich erscheint uns diese Messgenauigkeit insgesamt nicht plausibel. Dies sollte auch bei weiteren Studien in der Zukunft bedacht werden.

Wir konnten jedoch hier erste Referenzmesswerte für die Morphologie der Mandibula junger Frauen im MRT erfassen, die Grundlage für weitere Untersuchungen bilden können, auch wenn, wie oben genannt die Darstellung einiger spezifischer anatomischer Strukturen, wie des Processus muscularis, aufgrund der erschwerten Segmentation erwartbar nicht akkurat sind und weiterer Untersuchungen bedürfen.

Zudem konnten wir während der Segmentation der MRT-Datensätze der Probandinnen beobachten, dass feine anatomische Strukturen der Mandibula in den segmentierten Modellen an den zu erwartenden Stellen zu erkennen waren. Hier ist beispielsweise das Foramen mandibulare unterhalb der Incisura Semilunaris mitsamt der Lingula zu nennen.

Die Anwendung von Strahlung zu wissenschaftlichen Zwecken ist aufgrund der Strahlenbelastung ohne direkten Nutzen für die Probanden ethisch fragwürdig. Die Akquise einer Probandenzahl von 170 Probandinnen, zu denen, wie im Falle der LIFE-Kohortenstudie, so viele grundlegende Daten zur Verfügung stehen, wäre deutlich erschwert. Wir hoffen also, mit unserer Untersuchung eine Grundlage gelegt zu haben, die weitere Forschung auf dem Gebiet der Kiefermorphologie und AICR erleichtert.

Auffällig war in unserer Datenerhebung, dass kein signifikanter Zusammenhang zwischen SNB und der Condylusgröße hergestellt werden konnte. SNB wird in der Literatur häufig als grundlegende Messgröße verwendet. Diese Beobachtung ist jedoch in Hinblick auf AICR kritisch zu hinterfragen, da unser Datensatz auf gesunden Probanden basiert und die Zusammenhänge bei AICR anders geartet sein könnten. Jedoch beschrieben im Jahr 2024 Ge et al., dass SNB je nach individueller kranialer Morphologie, einen Retrognatismus im Vergleich zur dreidimensionalen Darstellung nicht adäquat darstellen kann (Ge et al., 2024).

Auf Basis der von LIFE erhobenen Datensätze versuchten wir, auf der Suche nach Hinweisen auf die Pathogenese der AICR, die morphologischen Merkmale mit der o.g. Auswahl weiterer Parameter zu korrelieren. Wir konnten leider keinen starken Zusammenhang zwischen der Kiefermorphologie und anderen von uns einbezogenen Parametern herstellen, dies kann jedoch auf eine zu kleine Anzahl von Probandinnen zurückzuführen sein. Auch grobe biometrische Daten wie Größe und Gewicht der Probandinnen schienen wenig Einfluss auf die Maße der Mandibula zu haben.

Erwähnenswert erscheint jedoch, dass alle drei Probandinnen, die angaben, einen Tinnitus zu haben, beidseitig ein geringes Condylusvolumen aufwiesen. Aufgrund der geringen Anzahl der Probandinnen mit Tinnitus, bedarf es hier jedoch weiterer Untersuchungen.

Weiterhin hatten von zehn Probandinnen mit erhöhten Thrombozytenzahlen die Hälfte einen kleinen SNB-Winkel. Zudem hatten diese Probandinnen eher kleinere Condylusvolumina. Der Zusammenhang von Thrombozytenzahl zu Condylusmorphologie ist bisher nicht ausreichend untersucht.

1.4 Zusammenfassung

Insgesamt konnten wir neue Referenzwerte für die Mandibula junger Frauen in der Magnetresonanztomographie erheben, die vergleichbar mit durch Computertomographiebasierten Untersuchungen erworbene Messdaten sind. Hierdurch wird eine Grundlage für weitere Untersuchungen der Mandibula gelegt, die auch in großen Studien ohne eine erhöhte Strahlenbelastung für die Probanden und Probandinnen durchführbar sind.

Der Versuch, durch die Korrelation unserer Messdaten mit weiteren Parametern aus der LIFE-Kohortenstudie Hinweise auf die Pathogenese und/oder auf mögliche diagnostische oder prognostisch verwendbare Parameter für die Adulte Idiopathische Condylusresorption zu gewinnen, ist durch die geringe Anzahl der Probandinnen nicht gelungen. Weitere Studien mit höheren Stichprobenzahlen sind im Verlauf notwendig.

Dennoch zeigen unsere Untersuchungen interessante Erkenntnisse bezüglich des Zusammenhanges zwischen dem Winkel zwischen Sella turcica, Nasion und Gonion und dem Condylusvolumen. Der Winkel zwischen Sella turcica, Nasion und Gonion wird häufig als Surrogatparameter für das Condylusvolumen genutzt. In unseren Daten zeigt sich der Zusammenhang von dem Winkel zwischen Sella turcica, Nasion und Gonion und Condylusvolumina eher schwach, was daran zweifeln lässt, ob der Winkel zwischen Sella turcica, Nasion und Gonion für die Untersuchung von Patienten mit Verdacht auf Adulte idiopathische Condylusresorption geeignet ist.

1.5 Literaturverzeichnis der deutschen Zusammenfassung

Al-koshab M, Nambiar P, John J. Assessment of Condyle and Glenoid Fossa Morphology Using CBCT in South-East Asians; PLoS ONE 2015; 24/ e0121682

Alsabban L, Amarista FJ, Mercuri LG, Perez D. Idiopathic Condylar Resorption: A Survey and Review of the Literature. J Oral Maxillofac Surg 2018; 76:11; 2316.e1-2316.e13

Exposto CR, Stoustrup P, Kristensen KD, Dalstra M, Pedersen TK. Condylar changes in patients with idiopathic condylar resorption: retrospective 2-year follow-up CBCT-based case–control study. Eur J Orthod 2020; 42: 619-625

Farronato M, Cavagnetto D, Abate A, Cressoni P, Fama A, Maspero C. Assessment of condylar volume and ramus height in JIA patients with unilateral and bilateral TMJ involvement: retrospective case-control study. Clin Oral Investig 2020; 24: 2635–2643

Florkow MC, Willemsen K, Mascarenhas VV, Oei EHG, Van Stralen M, Seevinck PR. Magnetic Resonance Imaging Versus Computed Tomography for Three-Dimensional Bone Imaging of Musculoskeletal Pathologies: A Review. J Magn Reson Imaging 2022; 56: 11-34

Ge J, Bo L, Zhang D, Wei X, Li J, Zhao J, Yue S, Xie Q, Shen P, Ma Z, Fang B, Yang C. Association between bilateral condylar resorption and reduced volumes of the craniofacial skeleton and masticatory muscles in adult patients: A retrospective study. Heliyon 2024; 10: e25037 Handelman CS, Greene CS. Progressive/Idiopathic Condylar Resorption: An Orthodontic Perspective. Semin Orthod 2013; 19: 55–70.

Iwasa A, Tanaka E. Signs, Symptoms, and Morphological Features of Idiopathic Condylar Resorption in Orthodontic Patients: A Survey-Based Study. JCM 2022; 11: 1552.

Loeffler M, Engel C, Ahnert P, Alfermann D, Arelin K, Baber R, Beutner F, Binder H, Brähler E, Burkhardt R, Ceglarek U, Enzenbach C, Fuchs M, Glaesmer H, Girlich F, Hagendorff A, Häntzsch M, Hegerl U, Henger S, Hensch T, Hinz A, Holzendorf V, Husser D, Kersting A, Kiel A, Kirsten T, Krantzsch J, Krohn K, Luck T, Melzer S, Netto J, Nüchter M, Raschpichler M, Rauscher FG, Riedel-Heller SG, Sander C, Scholz M, Schönknecht P, Schroeter ML, Simon JC, Speer R, Stäker J, Stein R, Stöbel-Richter Y, Stumvoll M, Tarnok A, Teren A, Teupser D, Then FS, Tönjes A, Treudler R, Villringer A, Weissgerber A, Wiedemann P, Zachariae S, Wirkner K, Thiery J. The LIFE-Adult-Study: Objectives and Design of a Population-Based Cohort Study with 10,000 Deeply Phenotyped Adults in Germany. BMC Public Health 2015; 15: 691

Neff A, Riechmann M,2022: DGMKG S3- Leitlinie: Idiopathische Kondylusresorption,Langversion1.0.AWMF-Registernummer007/063.https://register.awmf.org/de/leitlinien/detail/007-066 (Zugriffsdatum: 22.05.2023)

Sansare K, Raghav M, Mallya SM, Karjodkar F. Management-related outcomes and radiographic findings of idiopathic condylar resorption: a systematic review. Int J Oral Maxillofac Surg 2015; 44; 209–216

Santander P, Quast A, Olbrisch C, Rose M, Moser N, Schliephake H, Meyer-Marcotti P. Comprehensive 3D analysis of condylar morphology in adults with different skeletal patterns – a cross-sectional study. Head Face Med 2020; 16 :33

Serindere G, Aktuna Belgin C, Serindere M. Volumetric and morphological analysis of condyle and glenoid fossa on computed tomography. Eur Arch Otorhinolaryngol 2020; 277: 2581–2587

Wolford LM, Cardenas L. Idiopathic condylar resorption: Diagnosis, treatment protocol, and outcomes. Am J Orthod Dentofacial Orthop 1999; 116: 667-677

Wolford LM. Idiopathic condylar resorption of the temporomandibular joint in teenage girls (cheerleaders syndrome). Proc Bayl Univ Med Cent 2001; 14: 246–252

2. Veröffentlichung

Oral and Maxillofacial Surgery (2024) 28:373–383 https://doi.org/10.1007/s10006-023-01153-7

RESEARCH

Suggestion of a new standard in measuring the mandible via MRI and an overview of reference values in young women

Leonie Carina Ibald¹ · Veronica Witte^{2,3} · Fank Klawonn^{4,5} · Rupert Conrad⁶ · Martin Mücke^{7,8} · Julia Sellin^{7,8} · Marcus Teschke⁹

Received: 28 February 2023 / Accepted: 7 April 2023 / Published online: 26 April 2023 © The Author(s) 2023, corrected publication 2023

Abstract

Purpose Adult idiopathic condylarresorption (AICR) mainly affects young women, but generally accepted diagnostic standards are lacking. Patients often need temporomandibular joint (TMJ) surgery, and often jaw anatomy is assessed by CT as well as MRI to observe both bone and soft tissue. This study aims to establish reference values for mandible dimensions in women from MRI only and correlate them to, e.g., laboratory parameters and lifestyle, to explore new putative parameters relevant in AICR. MRI-derived reference values could reduce preoperative effort by allowing physicians to rely on only the MRI without additional CT scan. **Methods** We analyzed MRI data from a previous study (LIFE-Adult-Study, Leipzig, Germany) of 158 female participants aged 15–40 years (as AICR typically affects young women). The MR images were segmented, and standardized measuring of the mandibles was established. We correlated morphological features of the mandible with a large variety of other parameters documented in the LIFE-Adult study.

27

Results We established new reference values for mandible morphology in MRI, which are consistent with previous CT-based studies. Our results allow assessment of both mandible and soft tissue without radiation exposure. Correlations with BMI, lifestyle, or laboratory parameters could not be observed. Of note, correlation between SNB angle, a parameter often used for AICR assessment, and condylar volume, was also not observed, opening up the question if these parameters behave differently in AICR patients. **Conclusion** These efforts constitute a first step towards establishing MRI as a viable method for condylar resorption assessment.

Keywords AICR \cdot MRI \cdot Morphology \cdot Mandible \cdot LIFE study

Introduction

Adult idiopathic condylar resorption (AICR) is a temporomandibular joint (TMJ) disease also known as cheerleaders' syndrome or progressive condylar resorption. It mostly

Julia Sellin and Marcus Teschke are the last author

Julia Sellin jsellin@ukaachen.de

- ¹ Centre for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
- ² Cognitive Neurology, University Medical Center Leipzig, Leipzig, Germany
- ³ Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
- ⁴ Biostatistics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany

affects young women aged 15–35 years [1, 2], and other surveys propose a range of 11–45 years [3]. The term cheerleader's syndrome refers to the perception that it mostly affects thin young women taking part in sports [4]. Based on a survey by Handelman and Greene, it is estimated that orthodontists see 1 case of idiopathic condylar resorption in 5000 patients [5].

- ⁵ Department of Computer Science, Ostfalia University, Wolfenbüttel, Germany
- ⁶ Department of Psychosomatic Medicine and Psychotherapy, University Hospital Muenster, Muenster, Germany
- ⁷ Institute for Digitalization and General Medicine, University Hospital RWTH Aachen, Aachen, Germany
- ⁸ Centre for Rare Diseases Aachen (ZSEA), University Hospital RWTH Aachen, Aachen, Germany
- ⁹ Dept. of Maxillofacial Surgery, Parkklinik Manhagen, Großhansdorf, Germany

AICR is often associated with a retruded lower jaw, a class II occlusational relationship, and an anterior open bite [4], while it remains unclear if these changes are caused by changes of the condyle or if they are to be perceived as one of many risk factors. Patients might also report progressive changes of their facial features that are accompanied by pain or cracking of the TMJ [4], headaches, malocclusion, or a decreased range of motion of the jaw [1]. According to Wolford and Cardenas, about 25% of patients with AICR experience no symptoms of TMJ disease at all [6].

Some authors use the term AICR in a way that is not clearly defined and include osteoarthritic changes of the TMJ into their definition [7, 8]. Contrary to that, some authors particularly exclude cases with osteoarthritis, previous craniomaxillofacial surgery, or trauma of the TMJ, to define AICR as truly idiopathic [4, 9, 10]. While some authors want to exclude patients that have undergone orthognathic surgery from the diagnosis, others propose that orthognathic surgery might be a triggering event in the development of AICR and therefore might be part of a pathomechanism leading to the disease. One might also argue that currently AICR is likely under-diagnosed and patients have to undergo a long journey to receive their diagnosis, on which journey they may have received orthognathic surgery anyway, so excluding subjects that have had orthognathic surgery could distort scientific results. On top of that, Wolford supposes that the relationship between orthognathic surgery and AICR might only be coincidental but not causally determined in any direction [4], which further highlights the complexity of the topic and how little we know to this date. It also emphasizes inconsistencies in the definition of AICR, which complicate scientific research and clinical diagnosis, and which are based on gaps in our knowledge regarding AICR. Sansare et al. mention in their systematic review that in research, cases of AICR should be well defined and not mixed up with other diseases [11]. However, this is problematic since the diagnostic process is further complicated as a result of a lack of known laboratory tests that are specific for AICR [4].

As Sansare et al. proposed in 2015, further investigation on the presentation of the TMJ in 3D imaging procedures is needed [11]. It is particularly important to note that the progression of the disease, estimated to be 1.5 mm/year, might be underestimated by only looking at 2D images of the mandible [11]. Therefore, 3D imaging, e.g., via MRI or CT scan, is an important improvement to assess the development and progression of AICR, and condylar resorption in general.

As the variety of radiographic findings in patients with AICR is substantial in the literature and includes both bones and soft tissues [11], we consider MRI to have great potential to assess the disease, as both bones and soft tissues can be observed, and the 3D morphology of the condyle can be visualized. We used datasets of the LIFE-Adult-Study [12], a cohort study initiated by the University of Leipzig, which include MR images of the head suitable for the segmentation of 3D models, and a wide variety of background information to assess possible correlations to the morphology of the mandible.

Aims

The primary aim of this study was to establish reference values for measurements in segmented models of an MRI of the mandible in young women aged 15-40, i.e., the population mostly affected by AICR [1, 2], in order to gain a base line for further research, and to establish MRI measurements as an efficient tool for mandible assessment. As the definition of AICR is inconsistent throughout research and the pathogenesis of AICR is only poorly understood, we chose to include data of a large healthy cohort and put a special focus during evaluation on participants whose mandibles show measurements consistent with AICR (i.e., a low condylar volume or a small SNB angle). We assessed SNB angle, condylar volume, the volume of the processus muscularis, ramus length, depth of the antegonial notch, and length and width of the condyle. To the authors' knowledge, there are no studies available yet that evaluate these measurements of the mandible as presented in MRI.

The second aim was to compare MRI measurements to other parameters surveyed by LIFE, such as blood count, vitamin-D-levels, dietary habits, or anthropometric data, to evaluate if there are any connections to be made between the morphology of the mandible and another parameter, thus to gain new hints on the origins of condylar resorption, and as a baseline for laboratory tests that might be interesting candidates to help the diagnostic process.

Methods

Data set

The age bracket of AICR-affected women is often given as 15–35 years, but 11–45 years are also reported in some studies [3]. We therefore compromised and defined the inclusion criteria as women aged 15–40 years. The data of 171 participants from the collective of the LIFE-Adult study [12] that had an MRI of the head were included in this study. Thirteen participants were subsequently excluded because of incomplete data, or an MRI of insufficient quality or incomplete presentation of the mandible, resulting in a final data set of 158 participants, aged 19–40 years. The parameters that were requested from the LIFE-Adult study database for exploration in this study are listed in Table 1.

MRI segmentation

MRI results were available in the NIFTI (Neuroimaging Informatics Technology Initiative) file format, as they were originally intended to be used for neuroimaging [12]. The sequence used was MPRAGE (Magnetization Prepared Rapid Gradient Echo).

We used the software Mimics InPrint 3.0 and created models of the mandibulae of the participants by a process that was in parts automatized, and refined and corrected manually by looking into every slice. A similar way of segmentation was used by Cevidanes et al. [13].

First, the contrast of the display was adjusted to show the outlines of the bones most clearly. Then, a thresholding tool was used to include the corticalis of the bone as accurately as possible. After that, the segmented model was corrected manually in all three planes by going through every slice. As a last step, the model was smoothed with the option "low" to minimize step-like formations.

Measurements

As the major radiographic findings in AICR include changes of the SNB angle, decreased height of ramus and condyle and a reduced condylar volume [11], we chose to measure those features in our study. An overview of the features measured with the corresponding measuring points is given in Table 2 and illustrated in Fig. 1.

The volumes of the condylar and muscular processes were assessed with the tool "osteotomy". For that, a cutting plane parallel to the Frankfurt plane was placed on the most caudal point of the incisura mandibulae.

The measurements were taken after the segmented model was adjusted in Frankfurt plane horizontally. Frankfurt plane is determined by the cranial edges of both the meatus acustici interni and the caudal edges of the orbital bone.

The mandibulae were classified as presented in Table 3, based on the general approach used in clinical practice. An angle class I SNB angle is considered normal and lies between 78 and 82°. An SNB angle under 78° is angle class II and considered small or retrognathic. Angle class III SNB angles are over 82° and considered large or prognathic.

Software used

Mimics InPrint 3.0 was used for the process of segmentation. The software ProPlan 3.0.1 was used for measuring the segmented 3D models of the mandibles.

Statistical methods

Numbers were rounded to two decimal places unless stated otherwise. For testing associations of numerical variables with binary variables, the *t*-test and the Wilcoxon-Mann-Whitney test were applied. In case of nonnumerical variables including the discretization into the categories small, average and large the χ^2 -test was used. None of these *p*-values was reported because they were never below 0.05. The *p*-values in Table 4 were computed with the binomial test, assuming that the reference range reflects 95% of the healthy population. Correlations are stated as Pearson correlation coefficients. Kendall correlations were also computed to account for possible outliers but no relevant differences to Pearson correlations could be observed. Weight normalized condylar volumes were computed as condylar volume divided by the weight of the person.

Table 1 Assessments requested of LIFE database Theses	Age and gender of the participants
parameters were requested of	Medical anamnesis, medication history, family anamnesis
the LIFE database and included	Alcohol consumption, tobacco consumption, tobacco consumption, and passive smoking
into our analysis to assess	Anthropometry, body-mass-index, visceral and subcutaneous adipose tissue (VAT; SCAT)
the diagnosis of AICR	Diabetes
the diagnosis of There	Three-Factor Eating Questionnaire—eating behavior, Food Frequency Questionnaire, Yale Food Scale
	International Physical Activity Questionnaire
	Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale
	Oral health
	Complete blood count, HbA1c, adiponectin, leptin, bioavailable leptin, fatty acid-binding protein (FABP), ghrelin, thyroid-stimulating hormone (TSH), alkaline phosphatase, phosphate, calcium, osteocalcin, beta: CTx, parathormone, 25-OH-vitamine D3, luteinizing hormone (LH), testosterone, testosterone (LC–MS/MS), follicle-stimulating hormone (FSH), estradiol, estradiol (LC–MS/MS), progesterone (LC–MS/MS), sex hormone-binding globulin (SHBG), dehydroepiandrosteronesulfate (DHEAS-S), dehydroepiandros-teronesulfate (DHEAS-S) (LC–MS/MS), inhibin-B, anti-Mullerian hormone, high-sensitive C-reactive protein (hs-CRP), interleukin-6

Term	Abbreviation	Location		
Sella	S	Middle of the sella turcica		
Nasion	Ν	Vertex of the concave of the nasal root as seen in the lateral profile		
Gonion	В	Vertex of the concave mental part of the mandible as seen in the lateral profile in the centre of the alveolar processus		
Top ramus	Top Ram	Bilateral; Most cranial point of the condylar processus		
Low ramus	Low Ram	Bilateral; Vertex of the jaw angle		
Antegonial notch	AN	Bilateral; Most cranial point of the antegonial notch		
Anterior tangent point	ATP	Bilateral; Anterior point of a caudal tangent on the alveolar processus		
Posterior tangent point	РТР	Bilateral; Posterior point of a caudal tangent on the alveolar processus		
SNB angle	SNB	Angle between S, N, and B		
Ramus length		Bilateral; Distance between Top Ram and Low Ram		
Depth of the antegonial notch	AND	Bilateral; Distance between AN and the tangent on ATP and PTP in a right angle		
Condylar width	CW	Bilateral; Condylar width latero-medial direction in axial view		
Condylar length (antero-posterior direc- tion)	CL	Bilateral; Condylar length (antero-posterior direction) in axial view		

 Table 2
 Measurements applied to our 3D models of the mandibles. This table gives an overview of all morphological measurements of the mandible assessed in our study, the abbreviations used and the exact definitions of the measured parameters

30

Fig. 1 Illustration of the measuring points. An example of a 3D model of the mandible. The red line (P) represents a plane parallel to Frankfurt plane, touching the most inferior point of the mandibular notch, that was used to set the inferior boundary of the muscular processus (Proc. Musc.), in red, and the condylar processus (Proc. Cond.) in green. Also the measurements between the most superior

Results

Changes in SNB angle and condylar volume as well as changes in height of the mandibular ramus are parameters (Top Ram) and inferior points (Low Ram) of the mandibular ramus are presented here in white. The blue line shows the line between the anterior and posterior tangent point (ANP and PNP) that was used to assess the depth of the antegonial notch (ANP) in a 90° angle to the blue line. Also the condylar width (CW) and condylar length (CL) are illustrated

that are associated with condylar resorption [11]. Therefore, we included these measurements into our study. As the length and width of the condyle (2D parameters in the axial view) are linked to the condylar volume and can be

Table 3 Classification based on SNB angle. This table shows the classification of the mandible based on the SNB angle and explains whether mandibles falling into these categories are considered retrognathic, prognathic, or normal

Classification of the mandible	SNB angle
Normal	78–82°
Retrognathic/ "small"	≤78°
Prognathic/ "large"	$\geq 82^{\circ}$
	Classification of the mandible Normal Retrognathic/ "small" Prognathic/ "large"

assessed without segmenting a 3D model of the mandible, and might therefore be helpful in a clinical routine setting, we included these parameters as well.

Of 158 participants, 33 had a class II SNB angle of \leq 78°, 59 had a class I SNB angle of 78–82°, and 67 had a class III SNB angle of \geq 82°. The minimal SNB was 59.9°, the maximum 89.1°.

We defined a normal condylar volume as between the first and third quartile; according to this, a "small" condylar volume was below the first quartile (1311.25 mm³ on the right, 1387.47 mm³ on the left), and a "large" volume above the third quartile (1855.37 mm³ on the right, 1873.65 mm³ on the left). The minimal volume measured on the right side was at 656.99 mm³, on the left side at 769.48 mm³. The maximal volume measured was 3234.58 mm³ on the right side and 2957.35 mm³ on the left. Our measurements of the condylar volume are shown in Table 5.

Condylar volumes of both sides (verage right condylar volume: 1584.21mm³, SD 415.77, average left condylar volume: 1641.67 mm³, SD 389.30) and the SNB angle (average 81.1° SD 4.05) were nearly normally distributed.

Condylar volume on the left and right side showed a correlation of 0.77 (Fig. 2), which is surprisingly low given the bilateral symmetry of the mandible.

The average length of the right condyle was 9.08 mm (median 8.85 mm; SD 1.54 mm) with a minimum of 5.7 mm

Table 4 Number of participants with elevated platelet counts. "Small" refers to an SNB $\leq 78^{\circ}$ or a condylar volume smaller than the first quartile. "Average" refers to an SNB angle between 78 and 82° or a condylar volume between the first and third quartile. "Large" refers to an SNB $\geq 82^{\circ}$ or a condylar volume over the third quartile. *p*-values for the null hypothesis that the corresponding figures occur in a healthy sample are given in brackets

	Small	Average	Large
SNB	5 (0.019)	4 (0.076)	1 (0.555)
Condylar volume left	5 (0.003)	4 (0.131)	1 (0.637)
Condylar volume right	7 (0.0005)	2 (0.584)	1 (0.637)
Condylar volume left weight normalized	4 (0.018)	5 (0.046)	1 (0.637)
Condylar volume right weight normalized	7 (0.0005)	3 (0.310)	0(1)

 Table 5
 Condylar volumes. The volumes of the right and left condyle and distribution parameters are presented in this table

	Condylar volume right	Condylar volume left
Minimum	656.99 mm ³	769.48 mm ³
First quartile	1311.25 mm ³	1387.47 mm ³
Third quartile	1855.37 mm ³	1873.65 mm ³
Maximum	3234.58 mm ³	2957.35 mm ³
Average	1584.21 mm ³	1641.67 mm ³
SD	415.77	389.30

and a maximum of 19.5 mm. On the left condyle, the average length was 9.11 mm (median 8.9 mm; SD 1.30 mm) with a minimum of 5.9 mm and a maximum of 13.5 mm. For both sides, the average length was 9.09 mm with a median of 8.9 mm and a standard deviation of 1.42 mm.

The average width of the right condyle was 17.74 mm (median 17.85 mm; SD 2.16 mm) with a minimum of 12.2 mm and a maximum of 22.7 mm. On the left, the average width of the condyle was 18.03 mm (median 18.1 mm; SD 1.99 mm) with a minimum of 12.4 mm and a maximum of 23.1 mm. The average for both sides combined was 17.88 mm with a median of 18 mm and a standard deviation of 2.08 mm.

We assessed an average mandibular ramus length on the right side of 53.54 mm (median 53.5 mm; SD 4.19 mm) with a minimum of 38.1 mm and a maximum of 63.7 mm. On the left, the mean ramus length was 54.22 mm (median 54.2 mm; SD 4.17 mm) with a minimum of 42.1 mm and a maximum of 65.8 mm. On both sides taken together, the mean ramus length was 53.88 mm with a median of 53.85 mm and a standard deviation of 4.19 mm.

To our knowledge, there are no referential values for antegonial notching and the volume of the muscular processus, neither for CT imaging nor for MRI. We therefore attempted to extract these from the dataset. We measured a mean volume of the muscular processus on the right side of 210.21 mm3 (median 179.57 mm3; SD 139.34 mm3) with a minimum of 10.73 mm³ and a maximum of 645.68 mm³. On the left, the average volume was 212.44 mm³ (median 188.47 mm³; SD 138.70 mm³) with a minimum of 6.27 mm³ and a maximum of 949.46 mm³. For both sides, the average volume of the muscular processus was 211.32 mm³ (median 188.47 mm³; SD 138.80 mm³). However, the segmentation of the muscular processus was limited by the presentation in MRI, as the structure of the processus is very thin and likely not to be captured in the slices properly. On the right side 3 and on the left side 4 processi musculari could not be segmented. Also, the manual correction of the outline during segmentation was hampered as the differentiation between bone and the soft tissue around it was vague. Therefore, we expect our measurements of the muscular processus to be more of an estimate.

Fig. 2 Correlation of condylar volumes. This represents the correlation and distribution of left and right condylar volume

Condylar volume right [mm]

The average depth of the right antegonial notch was 2.02 mm (median 2.15 mm; SD 0.99 mm) with a minimum of 0 mm and a maximum of 5.7 mm. On the left, the average was 1.68 mm (median 1.8; SD 0.98 mm) with a minimum of 0 mm and a maximum of 6 mm. The average of both sides taken together was 1.85 mm with a median of 2 mm and a standard deviation of 0.99 mm.

To the authors' knowledge, none of these parameters has been assessed in MR imaging of the healthy jaw to this date. Ramus length, condylar length and width, and condylar volume have been assessed previously, but only in CT scans [14–17], so the measurements given above represent new referential values for measurements of the mandible in MRI. For a summary and overview of all resulting measurements, see Table 6.

We next analyzed if SNB angle and condylar volume are correlated, as both small SNB angles as well as low condylar volume are used to assess the presence of AICR. Of note, there was no significant correlation between SNB angle and condylar volumes. The Pearson correlation between the left condylar volume and SNB was 0.075, while the correlation between the right condylar volume and SNB was 0.153. For comparison, the Pearson correlation between the condylar volumes of both sides of the mandible was 0.78 (Fig. 2).

To take into account other general physiological parameters that might influence jaw physiognomy, we assessed also correlations between SNB angle or condylar volume and height or weight of the participants as presented in Table 7. The SNB angle correlated with a factor of 0.19 to the height and 0.14 to the weight, so there is a slightly stronger correlation to height. The condylar volumes on the right side correlated with a factor of 0.18 with the height and a slightly higher factor of 0.22 with the weight. On the left, the correlation with height was 0.19 and with weight was 0.24, so condylar volumes seem to correlate slightly more with the weight of the participants.

Nevertheless, the overall correlations were only weak, so the height and weight of the participants do not seem to be the defining parameters for condylar volume or SNB angle.

We were not able to find any relevant correlations between the SNB angle or condylar volumes and other parameters, like eating habits, physical activity, or various laboratory parameters, likely because our sample of participants was

 Table 6
 Measurements of the mandible in MRI. This gives an overview on all morphological parameters assessed and their statistical distribution parameters. All parameters measured are given in mm

Parameter	Mean/average	Median	Minimum	Maximum	Standard deviation
SNB [degrees]	81.1	81.4	59.9	98.1	± 4.05
Volume condylar processus [mm ³]	1612.94	1582.78	656.99	3234.58	± 403.14
Volume condylar processus right [mm ³]	1584.21	1560.45	656.99	3234.58	±415.77
Volume condylar processus left [mm ³]	1641.67	1599.79	769.48	2957.35	± 389.30
Volume muscular processus [mm ³]	211.32	188.47	6.27	949.46	± 138.80
Volume muscular processus right [mm ³]	210.21	179.57	10.73	645.68	±139.34
Volume muscular processus left [mm ³]	212.44	188.47	6.27	949.46	± 138.70
Condylar length [mm]	9.09	8.9	5.7	19.5	±1.42
Condylar length right [mm]	9.08	8.85	5.7	19.5	± 1.54
Condylar length left [mm]	9.11	8.9	5.9	13.5	±1.30
Condylar width [mm]	17.88	18	12.2	23.1	± 2.08
Condylar width right [mm]	17.74	17.85	12.2	22.7	±2.16
Condylar width left [mm]	18.03	18.1	12.4	23.1	±1.99
Antegonial notch [mm]	1.85	2	0	6	±0.99
Antegonial notch right [mm]	2.02	2.15	0	5.7	±0.99
Antegonial notch left [mm]	1.68	1.8	0	6	±0.98
Ramus length [mm]	53.88	53.85	38.1	65.8	±4.19
Ramus length right [mm]	53.54	53.5	38.1	63.7	±4.19
Ramus length left [mm]	54.22	54.2	42.1	65.8	±4.17

too small to detect more subtle effects (for a list of all parameters analyzed, see Table 1).

We hypothesized that there could be a correlation between sex hormones and small condylar volumes or SNB, as AICR often occurs in young women, suggesting that changes in the hormonal balance might play a role in pathogenesis. Unfortunately, the laboratory parameters for sex hormones were not documented in relation to anamnesis of the menstrual cycle, so we chose not to use this data, as this does not permit the reconstruction of the cycle phase and therefore the interpretation of the values measured is prohibited.

We also took a closer look at parameters indicating bone metabolism like calcium, parathormone, 25-OHvitamin D, and alkaline phosphatase, as condylar resorption affects the bone and might be accompanied by altered bone metabolism. We looked at markers of inflammation as well, e.g., hs-CRP or IL-6, as these might hint at inflammatory causes of condylar resorption. While no

 Table 7
 SNB and condylar volume related to height and weight. This table shows the correlation factors of the condylar volumes on both sides and SNB to the height and weight of the participants

	Height	Weight
SNB	0.19	0.14
Condylar volume right	0.18	0.22
Condylar volume left	0.19	0.24

correlations could be observed, it should be mentioned that such a correlation in a pathological situation cannot be ruled out as the data set comprises participants from the general population.

Upon closer inspection of the three groups of small, average, and large SNBs or condylar volumes, we made an interesting observation: Three of our participants reported to be diagnosed with tinnitus in their medical anamnesis, and all three had a low condylar volume under 1300 mm³ on both sides. Of note, Alsabban et al. mention the occurrence of tinnitus in association with temporomandibular disorder [1]. Further research to validate this observation might be warranted.

Of the 10 participants that had elevated platelets, most seemed to have a rather small condylar volume and/or SNB angle. A total of 4 out of 10 had a small condylar volume on both sides and 3 out of those 4 had a small SNB angle also.

Discussion

Use of MRI of the mandible in clinical practice and research

Nowadays mostly CT scans, panoramic radiographs, and MRI are used especially in preoperative assessment of AICR [1]. MRI is a technique that can provide 3D datasets presenting the soft tissue as well as the bony structures, even though

usually CT scans are estimated to be most suitable to show the outlines of the bone. However, in a study by Neubert et al., CT and 3D MRI were established as comparable. Models segmented from MRI tended to be smaller than CT models, but the models all differed less than a millimeter between CT and MRI [18]. Other authors have used MRI to classify TMJ morphology (e.g., as flat, biconvex) [19]. A study by Koehne et al. in 2018 used MRI scans of patients with mucopolysaccharidosis to assess their bone morphology [20]. The characterization of bony structures in MRI is a way to reduce ionizing beams for the patient, and reduce time and cost for medical services, because the CT scans could be spared. Also, MRI is more common to be used in the acquisition of data for research purposes, because there are no ionizing beams and the potential harm for participants is thus reduced. Therefore, we chose to use MRI datasets to assess the measurements of the mandible. To the knowledge of the authors, we are also the first to establish reference values for the measurements of the mandible in MRI.

In this study, we were able to establish a first set of referential values for the measurements of the mandible in MRI in young women. This data can be used not only in further research but also in medical practice to assess the size of the mandible of patients that may have AICR or other forms of condylar resorption, and to estimate whether the patient has rather big or small condyles. This could over time lead to a clearer understanding of which parameters are best suited to predict the presence of AICR.

As we could find no relevant correlation between the SNB angle and condylar volumes, this poses the question if the use of SNB to assess condylar resorption, as defined as the loss of condylar volume, is adequate. However, as mentioned above, correlations could be different in patients suffering from AICR, as the sample population for our study was recruited from the general population. Yang and Hwang measured an average of 71.19° (SD ± 3.17) for the SNB angle in patients with condylar resorption [7], and Troulis et al. measured a mean SNB of 70.1° preoperatively [10] in patients with condylar resorption, which is far below the average of 78-82° and indicates a link between SNB and condylar resorption. However, 32 of the healthy participants in our study have very small SNB angles with the minimum measured being about 60°, shedding doubt on the suitability of SNB angle alone and especially without multiple measurements over a longer period of time to diagnose AICR. A longitudinal study could explore how SNB angles change over time during disease progression in AICR. Further research on this subject seems highly necessary, especially studies including participants already diagnosed with AICR. If SNB further proves insufficient in describing condylar resorption, it enhances the need for 3D imaging of the mandible to assess condylar volumes to diagnose condylar resorption.

Accuracy of our method

Farronato et al. used a similar technique in their study to assess the condylar volume in 3D models based on conebeam-CT-scans, where they also used Frankfurt plane as a reference and used the last slice showing the sigmoid notch as limiting plane and cut off the 3D model there. In their healthy control group consisting of 25 participants, the mean volume was 1386.47 mm³ (SD \pm 455.21 mm³) [14], whereas our mean volume was at 1612.94 mm³ (SD \pm 403.14). Serindere et al. used a similar method and published data for male and female participants, including 66 female participants. The condylar volumes measured by Serindere et al. were 1546.94 mm^3 (SD ± 286.71) on the right side, and 1526.04 mm^3 $(SD \pm 282.55)$ on the left side [16], and we assessed similar volumes of 1584.21 mm³ (SD \pm 415.77) on the right side and 1641.67 mm³ (SD \pm 389.30) on the left side. Lentzen et al. assessed a mean condular volume of 1353 mm³ (SD \pm 0.466) on the left and 1291 mm³ (SD \pm 0.449) on the right [21], which is smaller than our results and the results published by Serindere et al., but is similar to the results of Farronato et al. [14]. Finally, the mean condylar volume was assessed as 1339.65 mm³ (SD \pm 494.93) from a study with 100 healthy female participants by Al-koshab et al. [17].

Santander et al. assessed mean condylar depths of 8.5–7.5 mm depending on the skeletal class and mean condylar widths of 19.2–20.2 mm [15], which resembles our measurements of a mean condylar length of 9.09 mm $(SD \pm 1.43)$ and a mean condylar width of 17.88 mm $(SD \pm 2.08)$. In the study by Serindere et al., participants presented a mean condylar length of 7.71 mm $(SD \pm 1.14)$ on the right side and 7.57 mm $(SD \pm 1.15)$ on the left side [16], which is slightly smaller than the averages of our measurements of the condylar width. They also assessed a mean condylar width on both sides of 16.08 mm $(SD \pm 2.51$ on the right side, $SD \pm 2.39$ on the left side).

Koshab et al. assessed a mean condylar length of 7.11 mm $(SD \pm 1.03)$ and a mean condylar width of 17.04 mm $(SD \pm 2.35)$ [17].

The ramus length in the healthy control in the study by Farronato et al. was 54.43 mm (SD \pm 4.37). We measured a mean ramus length of 53.88 mm (SD \pm 4.19).

Taken together, the abovementioned five studies using CT scans observed similar values for condylar volumes, condylar length and width, and ramus length. The similarities between their results and our measurements confirm the accuracy of our method using MRI. Furthermore, a literature review published by de Melo et al. is also consistent with our findings [22]: They published an average medio-lateral dimension of the condyle of 17.04–20 mm, while we found an average condylar width of 17.88 mm. The average anteroposterior dimension was between 5.12 and 9.6 mm, whereas we found a condylar length of 9.09 mm.

In addition, a study by Coombs et al. confirms the validity of MRI-based measurement of the mandible, as they compared MRI, CBCT, and physical measurements of the mandible and found only minor differences between the CBCT-based data and the data acquired by MRI segmentation, while physical measurements were overall larger than both of the other [23].

Marghalani et al. used a different technique to determine the condylar processus, but they measured a slightly larger left condylar volume as well as we did [24], whereas Serindere et al. in [16] measured a larger mean volume of the condylar processus of the right side.

To the authors' knowledge, there are no studies to this date describing the volumes of the muscular processus and the antegonial notch in healthy participants, by using neither CT scans nor MRI, which makes this the first description of these assessments, even though, as mentioned above, the measuring of the muscular processus proved to be complicated and is likely inaccurate. Further research to put our measurements into context is needed.

Correlations between morphology of the mandible and other parameters

A surprising finding of our study was that height and weight of the participants correlate only weakly with mandibular size. Furthermore, we found only a very weak correlation between the condylar volumes and SNB angles in general, whereby the correlation with the right condylar volume was almost twice as strong as with the left condylar volume. This is an important observation since it challenges the common assumption that SNB angle is a suitable parameter to assess condylar resorption and warrants further investigation. These results of our study are in contrast to Saccucci et al., who found a significantly larger condylar volume in class III mandibles, compared to classes I and II, and a significantly smaller condylar volume in class II mandibles as in classes I and III [25]. Of note, it should be taken into account that Saccucci et al. used the ANB angle to classify the mandibles, which poses the question of how SNB and ANB angle differ in healthy individuals and in patients suffering from TMJ disease.

We chose to use data from a large cohort study because AICR is so poorly understood in its pathogenesis and often not easily distinguished from other diseases of the TMJ. We hoped to gain hints on the origins of condylar resorption by examining participants with a rather small condylar volume. We tried to use the volume of the condyle and the SNB angle as surrogate parameters and chose a population of participants in that AICR generally occurs and tried to find any hints in the laboratory values, eating habits, or assessments used that might lay ground for further research on the origins of this disease and the underlying pathomechanisms. This aim was hindered by the still too small number of participants, so we could only assess weak correlations between condylar volume and any other parameter. Furthermore, it remains unclear if there are general differences in correlations between parameters between healthy participants and people suffering from AICR. In conclusion, further research

Lastly, we want to point out that we found hints that patients with elevated platelets seem to more often have a smaller condylar volume and retrognathic occlusion/SNB. While this is only a hint we gained from our data, it might nevertheless be worth pursuing further, as a higher count of platelets could indicate an altered coagulation system, and therefore point to poor perfusion of some parts of the body. This could be interesting as it is imaginable that coagulation disorders play a role in condylar resorption.

on the subject is needed to put our findings into context.

Limitations

The first aim of this study was to establish reference values for the measurements of the mandibula in MRI-segmented models. While we obtained reference values for women aged 19–40, this data collection should be expanded to other age groups and all genders to gain an impression of the changes in morphology in different ages and the differences between male and female participants. In this context, hormonal status should also be considered in female participants in the future.

The second aim of this study was to correlate the measurements assessed to other parameters. This was mostly limited by the small number of participants with small SNB and small condylar volume, as participants for the LIFE study were recruited from the general population, and AICR is a relatively rare disease. While we were not able to find correlations between SNB or condylar volume and other parameters, this could be different in people suffering from AICR. In the future, larger studies or studies that specifically recruit participants with diagnosed AICR are needed to search further for indicators of the pathogenesis of the disease.

Also, as our study is based on a previously collected data set, our study lacks a longitudinal approach, which would be essential in the diagnosis of condylar resorption as it is a progressive disease and often only can be diagnosed over the course of time. It would be interesting to see if any parameters or correlations change in connection to changes of the mandibular bone during AICR progression.

Also, minor deviations of the measurements of the condylar volume and SNB might have occurred in our study due to the possibility of probands not occluding their jaw fully during the acquisition of the MR image, as the mandible is mobile in relation to the rest of the skull. These minor inaccuracies are common in studies on this subject; e.g., Farronato et al. used a very similar technique to determine condylar volumes in their study, based on the findings of Schlueter et al. [14, 26]. By using a similar way of determining our cutting plane to assess the condylar volume, the comparison between the accuracy of measurements in MRI and CT scans was improved. Nevertheless, we deem it necessary to employ further studies using methods to eliminate this source of measurement in certainties, e.g., by using a cutting plane only determined by clearly defined anatomic structures of the mandible itself.

Conclusion

Our results give an overview on the measurements of the mandible of women aged 19–40 years in MR imaging. As MRI is part of standard diagnostics in any TMJ disease to examine soft tissues like the articular discus, while CT scans are additionally used to assess the morphology of the bone, the possibility to assess the bony structures of the TMJ in the MRI as well enables a more effective use of resources, sparing the CT scan, and imposes less radiation on the patient. These considerations make our referential data on MRI-segmented mandibles an important prerequisite to improve patient care while also sparing resources.

Unfortunately, we did not detect any correlations of SNB and condylar volume to laboratory parameters or conspicuous issues regarding lifestyle, medical anamnesis, or oral health, which could be contributed to the relatively small sample size and the fact that participants were recruited from the general population, with only very few, if any, participants likely suffering from AICR.

We did not find a significant correlation between SNB angle and condylar volume, which is particularly interesting, as the SNB angle is often used as a surrogate parameter to assess condylar resorption in clinical practice. It might therefore be warranted to repeat our measurements with people affected by AICR to elucidate if SNB angles in the presence of AICR indeed correlate with the loss of condylar volume, which is the defining element of condylar resorption.

When correlating height and weight of the participants to SNB and the condylar volumes, we only found weak correlations, while SNB correlated more strongly with height and the condylar volumes showed stronger correlations with the weight of the participants, even though the differences are minor.

As we reported above, three of our participants mentioned having a tinnitus and all three of them had low condylar volume on both sides of the mandible. As tinnitus might be associated with temporomandibular disorder [1], we thought this is an interesting observation that could be followed up in future studies.

Ten participants showed elevated platelets in the complete blood count, and we noted that of those 10 participants, 5 had a small SNB angle and tended to have rather small condylar volumes, as can be seen in Table 7. As an elevated number of platelets is associated with a higher risk of a thrombus, it might be conceivable that inhibition of the blood flow in the condylar region caused by elevated platelets could lead to reduced bone metabolism and smaller condylar volumes. A possible connection to AICR could be explored in future studies.

Acknowledgements We thank our colleagues from Leipzig Research Centre for Civilization Diseases (LIFE) and the Max Planck Institute for Human Cognitive and Neurosciences. We would like to especially thank Dr. Helmut Hayd. We would also like to thank Prof. Markus Nöthen for the help in initiating this project and establishing contact between the institutes involved in this study.

Author contribution All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Leonie Carina Ibald and Frank Klawonn. The first draft of the manuscript was written by Leonie Carina Ibald and all authors reviewed and edited previous versions of the manuscript. All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is no permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Alsabban L, Amarista FJ, Mercuri LG, Perez D (2018) Idiopathic condylar resorption: a survey and review of the literature. J Oral Maxillofac Surg 76:2316.e1-2316.e13
- Posnick JC, Fantuzzo JJ (2007) Idiopathic condylar resorption: current clinical perspectives. J Oral Maxillofac Surg 65:1617–1623
- Mercuri LG (2007) A rationale for total alloplastic temporomandibular joint reconstruction in the management of idiopathic/progressive condylar resorption. J Oral Maxillofac Surg 65:1600–1609

- Wolford LM (2001) Idiopathic condylar resorption of the temporomandibular joint in teenage girls (cheerleaders syndrome). Proc Bayl Univ Med Cent 14:246–252
- Handelman CS, Greene CS (2013) Progressive/idiopathic condylar resorption: an orthodontic perspective. Progress Condylar Resorption Dentofac Deform 19:55–70
- Wolford LM, Cardenas L (1999) Idiopathic condylar resorption: diagnosis, treatment protocol, and outcomes. Am J Orthod Dentofacial Orthop 116:667–677
- Yang HJ, Hwang SJ (2015) Bone mineral density and mandibular advancement as contributing factors for postoperative relapse after orthognathic surgery in patients with preoperative idiopathic condylar resorption: a prospective study with preliminary 1-year follow-up. Oral Surg Oral Med Oral Pathol Oral Radiol 120:112–118
- Kristensen KD, Schmidt B, Stoustrup P, Pedersen TK (2017) Idiopathic condylar resorptions: 3-dimensional condylar bony deformation, signs and symptoms. Am J Orthod Dentofacial Orthop 152:214–223
- Exposto CR, Stoustrup P, Kristensen KD, Dalstra M, Pedersen TK (2020) Condylar changes in patients with idiopathic condylar resorption: retrospective 2-year follow-up CBCT-based case–control study. Eur J Orthod 42(6):619–625. https://doi.org/10.1093/ ejo/cjz099
- Troulis MJ, Tayebaty FT, Papadaki M, Williams WB, Kaban LB (2008) Condylectomy and costochondral graft reconstruction for treatment of active idiopathic condylar resorption. J Oral Maxillofac Surg 66:65–72
- Sansare K, Raghav M, Mallya SM, Karjodkar F (2015) Management-related outcomes and radiographic findings of idiopathic condylar resorption: a systematic review. Int J Oral Maxillofac Surg 44:209–216
- Loeffler M, Engel C, Ahnert P et al (2015) The LIFE-Adult-Study: objectives and design of a population-based cohort study with 10,000 deeply phenotyped adults in Germany. BMC Public Health 15:691
- Cevidanes LHS, Walker D, Schilling J et al (2014) 3D osteoarthritic changes in TMJ condylar morphology correlates with specific systemic and local biomarkers of disease. Osteoarthritis Cartilage 22:1657–1667
- Farronato M, Cavagnetto D, Abate A, Cressoni P, Fama A, Maspero C (2020) Assessment of condylar volume and ramus height in JIA patients with unilateral and bilateral TMJ involvement: retrospective case-control study. Clin Oral Investig 24:2635–2643
- Santander P, Quast A, Olbrisch C, Rose M, Moser N, Schliephake H, Meyer-Marcotty P (2020) Comprehensive 3D analysis of

condylar morphology in adults with different skeletal patterns – a cross-sectional study. Head Face Med 16:33

- Serindere G, Aktuna Belgin C, Serindere M (2020) Volumetric and morphological analysis of condyle and glenoid fossa on computed tomography. Eur Arch Otorhinolaryngol 277:2581–2587
- Al-koshab M, Nambiar P, John J (2015) Assessment of condyle and glenoid fossa morphology using CBCT in South-East Asians. PLoS ONE 10:e0121682
- Neubert A, Wilson KJ, Engstrom C, Surowiec RK, Paproki A, Johnson N, Crozier S, Fripp J, Ho CP (2017) Comparison of 3D bone models of the knee joint derived from CT and 3T MR imaging. Eur J Radiol 93:178–184
- de Farias JFG, Melo SLS, Bento PM, Oliveira LSAF, Campos PSF, de Melo DP (2015) Correlation between temporomandibular joint morphology and disc displacement by MRI. Dentomaxillofacial Radiol 44:20150023
- Koehne T, Köhn A, Friedrich RE, Kordes U, Schinke T, Muschol N, Kahl-Nieke B (2018) Differences in maxillomandibular morphology among patients with mucopolysaccharidoses I, II, III, IV and VI: a retrospective MRI study. Clin Oral Investig 22:1541–1549
- Lentzen M-P, Riekert M, Buller J, Grandoch A, Zirk M, Zoeller JE, Kreppel M (2021) A volumetric study of mandibular condyles in orthognathic patients by semiautomatic segmentation. Oral Maxillofac Surg. https://doi.org/10.1007/s10006-021-00976-6
- de Melo DP, Silva DFB, Campos PSF, Dantas JA (2021) The morphometric measurements of the temporomandibular joint. Front Oral Maxillofac Med 3:14–14
- Coombs MC, Bonthius DJ, Nie X, Lecholop MK, Steed MB, Yao H (2019) Effect of measurement technique on TMJ mandibular condyle and articular disc morphometry: CBCT, MRI, and physical measurements. J Oral Maxillofac Surg 77:42–53
- Marghalani HYA, Barayan MA, Zawawi KH, Afify AR, Alansari RA, Alsulaimani FF (2021) Three-dimensional verification of volumetric measurements and relationships between the condyle and the rest of the mandible; a novel approach. Folia Morphol 80:650–656
- Saccucci M, D'Attilio M, Rodolfino D, Festa F, Polimeni A, Tecco S (2012) Condylar volume and condylar area in class I, class II and class III young adult subjects. Head Face Med 8:34
- Schlueter B, Kim KB, Oliver D, Sortiropoulos G (2008) Cone beam computed tomography 3D reconstruction of the mandibular condyle. Angle Orthod 78:880–888

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

3. Danksagung

Besonders danken möchte ich meiner Familie, allen voran meinem Mann Felix, der mich über viele Jahre hinweg mit schier unendlicher Geduld und Kraft unterstützt hat.

Weiterhin danke ich meinem Doktorvater, Herrn Prof. Martin Mücke, und Frau Dr. Julia Sellin, die mich fachlich sowie menschlich bei dieser Arbeit begleitet haben und mir jederzeit mir Rat und Tat zur Seite standen. Ich danke Euch für Eure große Herzlichkeit, Hilfsbereitschaft, Flexibilität und Euer allzeit offenes Ohr.

Außerdem möchte ich auch Herrn Prof. Frank Klawonn und Herrn Dr. Marcus Teschke danken, ohne deren Unterstützung dieses Forschungsprojekt so nicht möglich gewesen wäre.

Ein großer Dank gilt auch dem ZSE Bonn, ZSE Aachen und der Klinik für Mund-, Kieferund Gesichtschirurgie des Universitätsklinikums Bonn, sowie unseren Kolleginnen und Kollegen am Max-Planck-Institut für Kognititons- und Neurowissenschaften und den Beteiligten der LIFE-Kohortenstudie.