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Abstract

Neutral atoms trapped in optical microtraps, so called optical tweezers, have emerged as a platform for
controlling large many-particle quantum systems, with applications in many-body physics, metrology,
quantum information processing and cavity quantum electrodynamics. A key requirement for building a
programmable quantum simulation platform is to gain control over the initial state of the system. It is
essential to eliminate uncertainties in the initialization process, especially caused by variations in the
number of stored atoms but also by uncertainties associated with the electronic and motional degrees of
freedom of a trapped atom itself.

In this work, we report on the design and characterization of a new optical tweezer setup, aimed at
preparing, detecting, and manipulating single strontium atoms cooled to their motional ground state.
We design a tweezer system around a high-NA microscope objective (NA= 0.7) with different tweezer
wavelengths to exploit their respective advantages. We load the tweezers from a MOT and by employing
light-assisted collisions, we create highly sub-Poissonian atom number distributions, where a trap is
occupied by a single atom at most. In tweezers at 515 nm, we cool atoms using resolved sideband cooling,
where we observe a three-dimensional motional ground state fraction of 95+2

−10 % at a tweezer aspect ratio
of 5.1 ± 0.1, improving on existing experimental implementations. Further, we use a sisyphus cooling
process to cool atoms in tweezers at 532 nm and 813 nm, where we also confirm temperatures close to
the motional ground state. At 813 nm, we confirm array homogeneities on the 1 %-level, measured with
up to 60 ultracold trapped atoms. The characterization of the sisyphus cooling process in tweezers at
532 nm is, to our current knowledge, the first time that strontium atoms have been investigated in high
NA tweezers at this wavelength. They confirm that a tweezer wavelength of 532 nm is a viable candidate
for future research, as commonly available lasers and optical elements can reduce complexity and cost of
the experimental setup.

As described above, we can reliably prepare single atoms in their electronic and motional ground state
in a tweezer array. To address the remaining initial entropy of the atom array, namely the uncertainty
associated with partially filled arrays, we rearrange atoms in the underlying array using a separate,
spatially tunable optical tweezer. We develop a control-theory optimal trajectory model for moving an
atom between sites, based on the kinematic parameters of the motion. We then present the assembly
of defect-free arrays of 16 tweezers, where we determine a single move success probability ("move
fidelity") of (97.8 ± 2.2) %, on par with other state-of-the-art implementations.

With this work we lay the foundation of a programmable quantum simulation platform, and in the
future, the new experiment can be used to create large many-particle states, enabling exciting studies at
the frontiers of experimental quantum simulation research.
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CHAPTER 1

Introduction

The study of light and matter sparked the development of early quantum theories at the end of the 20th
century, and it opened the door to an entirely new world that is counterintuitive to the classically trained
human mind. An indispensable tool for exploring and developing new fundamental concepts were
thought experiments. These thought experiments allowed scientists to investigate single quantum systems
in isolation and mathematically study the effects of newly theorized quantum rules. But even up until
the 1950s, Erwin Schrödinger argued that manipulating single atoms would forever be impossible [1].
This was a bleak prediction, as atoms and molecules of the same species are, to our current knowledge,
indistinguishable, allowing us to predict and replicate the behavior of these systems with high precision.
This makes them ideal candidates for ultra-precise measurements to test our hypotheses on.

Fortunately, Schrödinger was wrong about this specific aspect, and the field of experimental physics
was on the verge of a radical transformation. This transformation came with the invention of the laser in
the 1960s, a prime example for the symbiosis between fundamental research and technological progress.
Theoretically proposed during the early development of the new quantum theories in the 1910s, the
laser led to one of the most profound technological advancements of the 20th century. Access to the
(arguably) most important modern precision measurement tool enabled the detailed study of atomic
and molecular structures with unprecedented accuracy, previously inaccessible for conventional, less
coherent and spectrally impure, light sources.

Scientists quickly recognized the enormous potential of lasers for the study of atomic and molecular
systems which led to the idea of cooling atomic samples solely by scattering laser light. Proposed by
Hänsch and Schawlow [2] and independently Wineland and Dehmelt [3] in 1975, it took only three
years for Wineland and Dehmelt to realize it experimentally in 1978. Laser cooling, whether in the
form of Doppler cooling or one of its more advanced successors, paved the way to the engineering
of artificial quantum systems. It became possible to store, manipulate and systematically investigate
isolated quantum systems, making the early thought experiments come full circle, as experiments were
now able to test and advance our understanding of the quantum world [4].

In the 1980s, the concept of building quantum simulators to investigate the behavior of quantum
systems became more refined [5], and these ideas have been further concretized since [6–8]. A quantum
simulator, compared to a classical one, exploits the quantum behavior of the system, including effects
like superposition and entanglement, to simulate the dynamics of a system or carry out computations.
Similar to the classical case, a simulation can be of digital or analog nature, akin to understanding
aerodynamics either through digital simulation or in a purpose-built wind tunnel [9]. A long term goal
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Chapter 1 Introduction

in the field of quantum simulation is the development of a fully digital quantum simulator, a quantum
computer, where the state of a system is encoded in quantum bits ("qubits") which are manipulated using
elementary quantum gates to create a circuit-based quantum computer. A digital quantum computer
is expected to be able to tackle demanding computing tasks, with applications in material science
and chemistry, logistics and optimization, encryption and information processing but also artificial
intelligence, on a level that is inaccessible with classical super-computers. A key milestone is the point
of quantum advantage or quantum supremacy, where computational capabilities of quantum devices
surpass that of traditional supercomputers [9]. However, leveraging quantum effects to solve intricate
problems is a highly non-trivial task [10], and consequently, recent efforts primarily focus on solving
artificially tailored problems, serving as proof-of-concept demonstrations [11]. Furthermore, large-scale
quantum computations require fault-tolerant qubits and error-corrections schemes, which have only been
implemented in few-qubit systems, impractical for realizing a general digital quantum computer. The
current era is therefore referred to as noisy intermediate-scale quantum (NISQ) computing [12, 13].

A second approach to the topic of quantum simulation are analog quantum simulators. This approach
involves engineering a specific system to study, resembling the wind tunnel-based study from the analogy
above. The object under investigation in this case might be a subsystem of a larger entity, or it might even
be a system merely mimicking the behavior of another system. The analog approach offers less flexibility
in some areas, for example the tunability of certain parameters, but it has a decisive advantage compared
to the digital case: The system itself implements the dynamics of, and the interactions between, its
constituents. An example of an analog quantum simulation is the realization of the Hubbard-model
for studying magnetism in solids, by investigating the effect with single fermions trapped in periodic
optical potentials [14]. In addition to neutral atoms [15–18], various other experimental platforms for
analog quantum simulators are currently under investigation, including superconducting systems [19,
20], trapped ions [21–23] and photons [24, 25].

A short history of neutral atoms in optical tweezers

The first use of optical gradient forces to trap micrometer sized particles is attributed to Arthur Ashkin1

and his colleagues at Bell Labs in 1970 [26]. Since then, biologists used optical tweezers in the form of
tightly focussed laser beams to trap viruses and bacteria [27] to investigate cell structures and dynamics
on the molecular scale. In physics, the idea to use strong, off-resonant laser light to spatially confine
atoms was also not new [28, 29], but the required technology to create three-dimensional potentials for
single atoms was simply not available. Compared to other atom traps, like magneto optical traps (MOTs)
or radiofrequency-traps for ions which work at up to room temperature, optical tweezer are comparably
shallow, with depths in the order of one millikelvin. Loading atoms into such shallow potentials needs
sophisticated pre-cooling protocols, and to create and maintain such ultracold conditions requires a
strong decoupling from the environment that only an ultrahigh vacuum (UHV) system can achieve.
Combining these experimental constraints with the demands on laser and optical technologies necessary
for creating (sub-)micrometer sized potentials took experimentalists time to master. It was therefore
only at the beginning of the 2000s that physicists began to investigate single neutral atoms in optical
tweezers [30, 31]. Initial research was focused on achieving the first milestone of a quantum simulation
platform: Gaining precise control over the initial state. The latter includes the knowledge of the atom
number per trap but also control over the internal and external (motional) degrees of freedom of a
1 Ashkin would go on to receive the 2018 Nobel Prize in Physics for this discovery.
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trapped atom. It was demonstrated that the tightly confining potential can be used to induce collisions
between atoms which in turn leads to a single atom inside a trap at most [32]. Further important early
work includes the development of detection schemes [33], thermometry [34] and later also cooling to the
quantum-mechanical ground state of the trap [35, 36].

Extending the system from one to many optical tweezers by using multiple laser beams, established
optical tweezers as a promising quantum simulation platform. As compared to other neutral-atom based
systems, like quantum gas microscopes [16], dynamically tunable traps can be used to rearrange atoms
between tweezers and assemble systems in a bottom-up approach [37–39], achieving arbitrarily low
entropy [40]. Since then, neutral atoms in optical tweezers have been used for simulating quantum
many-body systems [41, 42], for research in quantum information processing [43, 44] and cavity quantum
electrodynamics (CQED) [45].

The choice of atom species initially fell on alkali elements like rubidium which had been investigated
for decades in other cold-atom experiments and were therefore well known. However, starting from the
mid 2010s, experimenters began to also investigate alkaline-earth(-like) elements, like strontium [46–48]
and ytterbium [49], in optical tweezers. Alkaline-earth or alkaline-earth-like elements exhibit a rich
level structure which opens up new possibilities for fast and efficient cooling and spectroscopy schemes.
The interaction of two valence electrons results in a triplet-manifold which connects to the electronic
ground-state by one or more dipole-forbidden transitions. These narrow transitions allow for efficient
multi-state cooling protocols with achievable temperatures in the region of microkelvin in MOTs, from
which atoms can be directly transferred to the tweezers. In addition to the low temperature, these thermal
laser-cooling techniques can also cool atoms to the motional ground state of the potential in tens of
milliseconds, which is orders of magnitudes faster than methods like evaporative cooling, enabling
fast experiment cycle times [50]. In recent years, alkaline-earth(-like) atoms in optical tweezers have
been used for research in many-body physics [51, 52], metrology [53–55] and quantum information
processing [56, 57] and have thus matured to a state-of-the-art implementation of an analog quantum
simulation platform.

Thesis outline

Optical tweezers are a versatile experimental platform for studying various physical phenomena, and the
goal of this work was to lay the foundation for a programmable quantum simulator. This requires the
ability to prepare and detect single atoms in arrays of optical tweezers, along with single-site addressing
capabilities to move atoms between different tweezers as needed, thus reducing the uncertainty associated
with the probabilistic loading of tweezers. Ultimately, we aim to create defect-free arrays of single atoms
cooled to their motional ground state.

As such a large endeavor cannot be undertaken by a single person within a reasonable time frame, this
project has been a team effort. Two key colleagues are Jonas Schmitz and Tobias Kree. Jonas Schmitz
designed the vacuum system, developed the experimental control system, and set up the initial cooling
stages, detailed in his thesis [58]. The latter also covers aspects like trapping different isotopes and the
magnetic trapping of 88Sr that are not directly relevant for this work. Tobias Kree built the 461 nm and
689 nm laser systems during his Master’s thesis [59] before joining the project as a PhD student. His
work includes detailed descriptions of the electronics and stability measurements for the 689 nm laser.
The relevant aspects of their works are summarized in Chapter 3.

3



Chapter 1 Introduction

My work focused on creating static and dynamic optical potentials as described in Chapter 4,
characterizing trapped single atoms in these potentials as detailed in Chapter 5 and assembling defect-free
arrays outlined in Chapter 6. To gain insight in these topics, we will discuss the considerations for
designing the experimental setup in Chapter 2. The results will be summarized in Chapter 7, together
with a discussion of potential future developments.

4



CHAPTER 2

Experimental considerations for building an optical
tweezer experiment

An experiment aimed at the manipulation and detection of single atoms, with control over all degrees of
freedom, is a complex machine requiring the precise coordination of many components. This chapter
seeks to unravel this complexity by examining the different elements, through the example of a single
atom trapped in an optical potential. Subsequent chapters will delve into these components in greater
detail. We begin by introducing the light shift, that gives rise to the trapping effect in strongly focused
laser beams. Next, we will discuss how to prepare a single atom for further measurements and control
its motion within the trap. Following this, we will explore methods for detecting a single atom with
sub-micrometer resolution. Finally, we conclude the chapter by presenting a method for achieving
single-particle control in arrays of trapped atoms.

A graphical representation of the all relevant components is shown at the end of the chapter in
Figure 2.1.

2.1 The dipole force

The dipole force is the result of the coupling of an external oscillating electric field to an induced dipole.
This coupling shifts the level structure of a system which is the reason for the effect also being referred
to as light shift. To quantify the effect, we can model the atom as a driven two-level system with energy
spacing ℏ𝜔0. The Hamiltonian Ĥ describes the interaction between a classical oscillating electric field
®𝐸 and the induced dipole moment ®𝜇𝑒 [60]:

Ĥ = − ®𝐸 (®𝑟, 𝑡) · ®̂𝜇𝑒 = −𝑒 ®𝐸 (®𝑟, 𝑡) · ®̂𝑟 (2.1)
®𝐸 (®𝑟, 𝑡) = 𝐸0𝜖 cos

(
𝑘𝑧 − 𝜔𝑙𝑡

)
, (2.2)

where we chose the z-axis as the propagation direction of the light field. ®𝜖 =

(
𝜖𝑥 , 𝜖𝑦 , 𝜖𝑧 = 0

)
is the

polarization vector of the light field. This interaction leads to off-diagonal terms in the Hamiltonian
and the new eigenstates- and energies are different from the unperturbed ones. It is common to refer to
the new states as dressed-states, as the light field dresses the energy levels of the atom. We define the
detuning 𝛿 = 𝜔𝑙 −𝜔0 as the difference between the driving frequency 𝜔𝑙 and the resonance frequency of
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Chapter 2 Experimental considerations for building an optical tweezer experiment

the system 𝜔0. In order to solve for the new eigenenergies of the system and finally the dipole force,
we make use two approximations. The first one is the rotating-wave-approximation (RWA) where we
neglect terms of order 1/𝜔𝑙 compared to 1/𝛿. Secondly, we assume that the spatial variation of ®𝐸 over
the size of the atom can be neglected, known as the dipole-approximation. Transforming into a frame
rotating at 𝜔0, the Hamiltonian in the unperturbed basis reads:

Ĥ =
ℏ

2

[
−2𝛿 Ω

Ω 0

]
(2.3)

leading to the eigenenergies:

𝐸+,- =
ℏ

2
(
−𝛿 ∓Ω

′) (2.4)

where Ω′
=

√︁
Ω

2 + 𝛿
2 is the generalized Rabi frequency. With Ω ≪ |𝛿 | we arrive at:

Δ𝐸e ≈ Δ𝐸+ ≈ ℏΩ
2

4𝛿
(2.5)

Δ𝐸g ≈ Δ𝐸- ≈ −ℏΩ
2

4𝛿
. (2.6)

With the intensity of the light field 𝐼 ∝ ®𝐸2 ∝ Ω
2, the resulting force for the ground state is given by:

®𝐹dip = −®∇
(
Δ𝐸g

)
≃ ℏ

4𝛿
®∇

(
Ω (®𝑟)2

)
(2.7)

≃ ℏ

4𝛿
®∇𝐼 (®𝑟) , (2.8)

which is proportional to 1/𝛿. The dipole force ®𝐹dip competes against the scattering force ®𝐹scatt, and we
have to compare the two to determine where the ®𝐹dip dominates.

The scattering force ®𝐹scatt is given by [60]:

®𝐹scatt =
ℏ𝑘𝑠0𝛾/2

1 + 𝑠0 + (2𝛿/𝛾)2 , (2.9)

for a transition with linewidth 𝛾, where 𝑠0 = 𝐼/𝐼𝑠 is the saturation parameter with the saturation intensity
𝐼𝑠. As ®𝐹scatt is proportional to 1/𝛿2 and constant for 𝑠0 ≫ 1, it is possible to trap atoms for a sufficiently
large detuning 𝛿 and intensity 𝐼. In general, one would like the atoms to stay trapped in the electronic
ground state, as they spend more time in the ground state than the excited state. To create a confining
potential for the electronic ground state, dipole traps therefore commonly operate at a negative detuning
compared to the atomic resonance, i.e. by using a laser frequency smaller than the optical resonance
frequency of the system (red-detuned). This results in ground-state atoms being pulled towards regions
of large intensity ("high-field seekers"), whereas the excited state is anti-trapped ("low-field seekers"). It
is also possible to use blue-detuned traps by sculpturing e.g. a hollow-beam potential [61].

In order to create the optical potential, a focused laser beam is used, usually a Gaussian beam in the
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TEM00 mode. We can describe the intensity profile for such a beam traveling in 𝑧-direction by:

𝐼 (𝑟, 𝑧) = 𝐼0

(
𝑤0
𝑤(𝑧)

)2
· exp

(
−2𝑟2/𝑤2(𝑧)

)
(2.10)

where 𝑤(𝑧) = 𝑤0

√︃
1 +

(
𝑧/𝑧R

)2 is the 1/𝑒2-radius at axial position 𝑧, and 𝑤0 is the minimum waist at
𝑧 = 0. The Rayleigh range 𝑧R is given by 𝑧R = 𝜋𝑤

2
0/𝜆, where 𝜆 is the wavelength of the trapping light.

𝑧R gives a length-scale for the axial direction as it determines the divergence of the beam. Around the
focal spot, the potential can be approximated as harmonic and trap frequencies for the radial direction
𝜔𝑟 and axial direction 𝜔𝑎 can be defined. A detailed treatment of the harmonic approximation and
the parameters that influence the confinement, for example finite apertures in the optical setup, are
investigated at the beginning of Chapter 4 in Section 4.2.

Historically, dipole traps have been used to confine quantum gases and condensates (see e.g. [62] for
an overview) and it is instructive to take a look at the differences. Common parameters for these traps
are waists on the order of 10 µm and powers on the order of 1 W. This leads to trap frequencies on the
order of 100 Hz and depths of 100 µK. Additionally, the large waist leads to a weak axial confinement,
and optical setups therefore often combine multiple laser beams to create a three-dimensional confining
potential. The difference to an optical tweezer is that the latter creates such a confinement with a single
beam. This requires O

(
𝑤0

)
≈ O

(
𝑧R

)
which in turn requires 𝑤0 ≲ 𝜆. Together with the harmonic

approximation, a single optical tweezer can then be seen as an idealized three-dimensional harmonic
oscillator. A schematic of a single atom trapped in a tightly focused optical potential, together with
a harmonic approximation close to the center is shown in Figure 2.1(a). For optical tweezers, trap
frequencies are on the order of 100 kHz and it is thus possible to resolve the quantized motional states
of a trapped particle optically. A sketch of the full state of the atom, consisting of the the internal
(electronic) state and the external (motional) state is shown in Figure 2.1(d).

To achieve 𝑤0 ≲ 𝜆, the input beam diameter has to be of similar size as the focal length of the focussing
lens (high numerical aperture NA), which imposes strict requirements on the optical setup. We will
discuss the demands on the vacuum system, which is necessary to isolated the trapped atom from the
environment, in Chapter 3.

2.2 Single atom preparation

Dipole traps with depths around 𝑘B × 1 mK cannot be loaded with atoms at room temperature directly.
Therefore, one or more laser-cooling steps are required, often in the form of a magneto-optical trap
(MOT) [60, 63]. The MOT combines magnetic field gradients with a three-dimensional optical molasses
to trap and cool atoms. It has become a standard component in modern cold atom experiments, where it
is often the first step to capture and cool atoms emerging from an atom oven. The final temperature
of a MOT is given by the Doppler-temperature 𝑇D = ℏ𝛾/2𝑘B, which depends on the linewidth of the
transition 𝛾. For an 𝑠 → 𝑝 transition in alkali elements with 𝛾 ≈ 2𝜋 × 10 MHz, 𝑇D is about 300 µK. As
this is on the order of the tweezer depth, sub-Doppler protocols like polarization gradient cooling are
used to lower the temperature further to reliably load atoms into the trap [35] . For alkaline-earth(-like)
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elements, the existence of narrow intercombination lines means that MOTs with temperatures ≲ 10 µK1

can be created, from which the tweezer can be loaded directly. We will discuss these initial cooling
stages to create MOTs at a few microkelvin at the end of Chapter 3.

Loading an optical tweezer from a cold sample of atoms results in the trap being occupied by more than
one atom on average. The atom-number follows a Poissonian-distribution 𝑃(𝑛), often with an average
around ⟨𝑁atom⟩ ≈ 10 atoms for a MOT2 and a corresponding standard deviation of 𝜎atom =

√︁
⟨𝑁atom⟩.

Our goal to experiment with single atoms requires us to lower the atom number to the single atom
level. A mechanism that can be used to remove excess atoms from the trap, is the effect of light-assisted
collisions (LACs). Due to the tightly confining potential, two atoms are likely to be excited to a molecular
state which can then leave the trap (see Figure 2.1(b), drawn after [50]). This process leads to a pair-wise
removal of atoms, given a light field tuned to a molecular resonance is present. LACs reducing the atom
number have been observed in optical lattices [16] and optical tweezers [32] where highly sub-Poissonian
atom-number distributions with 𝜎atom <

√︁
⟨𝑁atom⟩ have been reached. More precisely, the LAC-process

results in 𝑃(𝑛 > 1) ≈ 0 and we are therefore assured to experiment with a single atom per trap at
most. The probability of preparing a single atom compared to an empty trap depends on the specific
LAC-process, but for this work we can assume 𝑃(0) = 1/2 and 𝑃(1) = 1 − 𝑃(0) = 1/2. We will
demonstrate and verify that we can prepare single atoms in Section 5.3.

Inside the tweezer, different cooling protocols can be used to reach the motional ground state of the
trap. These mechanisms depend on the details of the light shift which in turn depends on the trapping
wavelength. We motivate the choice of the trapping wavelengths in Section 4.1 where we also expand
the model of the light shift from a two level system to a real atom. We investigate cooling of a single
atom to the motional ground state in Section 5.4.

2.3 Single particle imaging

While the previous section focussed on the trapping and preparation of a single atom in an optical tweezer,
this section discusses the detection. In general, there are two ways to take an image of an object: Either
by shining light onto it and detecting a shadow, known as absorption imaging, or by shining in light
and detecting the scattered light, known as fluorescence imaging. Although single particles have been
detected using absorption imaging [64], the canonical way is to adhere to fluorescence imaging. This type
of imaging has been used in trapped ion experiments since the 1980’s (see e.g. [65, 66] for an overview
of ion trap experiments), and the process can be transferred to neutral atoms as well. To understand the
signature we can expect from a single trapped atom, it is instructive to investigate the number and the
distribution of scattered photons detected by a camera or a photo diode. When illuminating an atom, it
scatters photons with the rate [60]:

𝑅 =
𝑠0𝛾/2

1 + 𝑠0 + (2𝛿/𝛾)2 . (2.11)

1 At this point, also the recoil limit of the transition 𝑇R = ℏ
2
𝑘

2

𝑚𝑘B
with 𝑘 = 2𝜋/𝜆 becomes important. For the 1S0 → 3P1

transition in strontium, the recoil temperature of 500 µK is actually larger than the Doppler temperature of 180 nK (see
Table 3.4.)

2 Assuming a center density of 1 × 1013 cm−3 and a tweezer volume of 1 µm3. This atom number can be significantly larger
when loading from e.g. a degenerate quantum gas.
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In a time 𝜏, we thus detect 𝑁 = 𝛼𝑅𝜏 photons on average. Here, 𝛼 is the detection efficiency of the system,
combining the finite solid angle we collect photons from and finite efficiencies of optical elements and
detectors. However, the true number of scattered photons follows a Poissonian distribution, and we will
detect a varying number of photons between repetitions of the experiment.

We can estimate the number of photons reaching the detector for a 𝑠 → 𝑝-transition for 𝑠0 ≪ 1, that
is for non-destructive imaging. Non-destructive in this case means, that we can image the atom, without
heating it out of the trap. For 𝑠0 ≪ 1, Equation (2.11) simplifies to 𝑅 = 𝛾/2𝑠0. We can estimate the
requirements on the detection system, by considering the total number of scattered photons together with
the collection efficiency. Assuming 𝛾 = 2𝜋 × 10 MHz and 𝑠0 = 0.005 this results in 𝑅 ≈ 20 000 s−1.
For common detection efficiencies around 5 to 10 %, calculated from the solid angle that is covered by
the imaging lens, and a detection efficiency of ≈ 50 %3, we can expect around 100 photons/100 ms on
average. This estimation shows, that a single photon counting device is required to detect a single atom.

The specific number of photons for a single repetition of the experiment follows a Poissonian
distribution with mean 𝑁avg if an atom is present. This value has to be significantly larger than the
background signal due to stray light, electronic noise and electronic gain. We will see later, that the
background can be approximated to follow a normal distribution when we investigate the imaging process
in Section 5.5. The two components of this bimodal distribution can be separated by choosing a threshold
at a certain photon number 𝑁cut that essentially divides the signal into binary no-atom vs. one-atom
events. The accuracy with which we can make this distinction is called the fidelity of the imaging system
which is of great importance for the single atom addressing presented in Chapter 6. We will make use of
the imaging fidelity when we optimize the detection process for our system in Chapter 5. An example of
a histogram showing the bimodel distribution is shown in Figure 2.1(c).

2.4 Single site addressing

The previous sections explained different tweezer concepts, like trapping and detection, at the example
of a single trap. However, a key strength of the tweezer platform is the ability to create multiple traps,
often arranged in a grid or an array, in which atoms can further be manipulated dynamically during
the experiment. Multiple and tunable traps can be created using devices that alter the wavefront of an
incident beam. For this work, we will use two of such devices, one to a create static grid to trap multiple
atoms, and a second one to address a single site out of this grid for site-selective manipulation. Both of
these devices are discussed in detail in Chapter 4.

There are two main reasons why controlling individual particles out of an array is desirable. The first
reason is related to the preparation of the quantum system, particularly to the uncertainty associated with
the initial state. By employing light-assisted collisions, we can ensure that each site contains at most one
atom. Therefore, populating a single tweezer is akin to a Bernoulli experiment, much like flipping a coin.
For multiple tweezers, each with a probability 𝑝 of being populated, the total number of populated sites
in an array of 𝑁sites sites follows a binomial distribution with a mean of ⟨𝑁sites⟩ = 𝑁sites 𝑝. To decrease
the entropy of this distribution, atoms can be transferred between traps to create a smaller, defect-free
region [40] (see Figure 2.1(e)). This process involves (a) identifying populated and empty sites with low
error rates and (b) transferring atoms between traps with low loss rates. The second reason involves
the ability to locally tune light-matter interactions for site-specific manipulation or readout. This local

3 This efficiency combines multiple factors, for example transmittance/reflectance from optical elements or the quantum
efficiency (QE) of the detection device.
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tunability is crucial for the design of quantum simulators, enabling partial read-out and error correction
[9, 13, 57] (see Figure 2.1(f)). While this work does not focus on this type of single-site addressing,
the rearrangement step inherently includes this capability. We will present the assembly of defect-free
regions from larger, partially filled arrays in Chapter 6.
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Figure 2.1 – (a) A single atom trapped in an optical tweezer, created by a tightly focussed laser beam. The three-dimensionalconfinement is on the order of the wavelength of the trapping light. Around the focal position, the potential can beapproximated as harmonic (inset). (b) Light-assisted creation of bound molecular states leads to pairwise loss of atoms,leaving a single atom per trap at most. (c) Images of a single atom captured with an electron-multiplying CCD (EMCCD) camerafor a single image and averaged over many repetitions of the experiment. The accumulated signal in a region of interest (ROI)on the camera around the trap follows a bimodal distribution, shown in the histogram. The signal can be separated intoatom-events, where the scattered number of photons follows a Poissonian distribution and a background peak centered atzero, separated by the vertical line. (d) For optical transitions with linewidths 𝛾 smaller than the trap frequency 𝜔trap thequantized motional states can be addressed individually. This fact can be exploited to cool atoms to their motional groundstate. (e) A spatially tunable trap is used to transport a single atom between two traps, which allows for the assembly oflow-entropy defect-free arrays. (f) An additional local tweezer is used to shift the energy levels at a specific site, shown by thedifferent energy spacing of the idealized two-level system. This shift can be used for site selective manipulation or readout.
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CHAPTER 3

Experimental setup and cold atom preparation

We will now take a look at the experimental setup and the cooling stages that are needed to create
microkelvin-cold atomic samples. In the first part, we describe the vacuum- and laser- and optical setup,
the magnetic field coils and the accompanying control system. In the second part, we discuss the initial
cooling stages that are needed to bring evaporated strontium to microkelvin temperatures in several
magneto-optical traps (MOTs) to be further trapped in optical tweezers.

The singlet- and triplet level structures of alkaline-earth elements allow for fast and efficiency
multi-stage laser cooling protocols on different optical transitions. Specifically, we use an initial broad
MOT phase on the 1S0 → 1P1-transition where the 31 MHz broad transition allows for rapid cooling
of more than 106 atoms from room temperature to a few millikelvin in about a second. The resulting
temperature prevents loading into a narrow-line MOT on the 1S0 → 3P1-transition directly. We therefore
insert a stage with an artificially broadened laser that increases the transfer probability to the narrow-line
MOT, leading to atom-numbers of around 105 atoms at 10 µK.

1S0

1P1 1D2

2
1
0

3Pj

3S1

3Dj

689 nm
7.4 kHz

698 nm
~ 1mHz  in ⁸⁷Sr

461nm
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τ~300 µs 707 nm
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497 nm

1:20000 - 1:50000

Figure 3.1 – Strontium level scheme [67]
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3.1 Vacuum system

Push beam

Oven

Indium seal

Vacuum window

10mm

2D MOT

2D MOT
Zeeman

Figure 3.2 – Rendered CAD image of the vacuum system. Beams, optics and other surrounding infrastructure have beenomitted.
The vacuum system is separated into two regions: one high pressure region where the oven is located

and one low pressure region where the main chamber is attached. The design is inspired (among others)
by [68, 69]. The two regions are connected by a differential pumping system (DPS) which has a length of
38.5 mm and increases from a diameter of 1.5 mm initially to 4.2 mm at the end. The initial size is given
by the maximum possible divergence angle of the atomic beam from the 2D MOT into the main chamber,
where it allows for a full-angle of around 70 mrad. This value is larger than the expected divergence
corresponding to the radial Doppler temperature of the 2D MOT and an axial velocity of 40 m/s and
does therefore not limit the atomic beam flux.

The DPS, together with a 75 L/s ion-pump1 on either side, creates a pressure difference of more than
two orders of magnitude between the oven and the main chamber side. To compensate outgassing of
the vacuum components we additionally make use of titanium sublimation-pumps on each side that we
activate every few months. We observe an increase in pressure from 1.5 mBar (8.8 × 10−11 mBar) to
1 × 10−10 mBar (6.4 × 10−10 mBar) with the oven turned off (on) over the course of two months. The
pressure on the main chamber site ranges below the detection limit for the pump’s pressure sensor of
1.3 × 10−11 mBar. As the pressure on this side does not increase for most of the time, we are confident
that the actual pressure is even lower. We use the sublimation pump once the pressure on the main side
increases above the detection limit.
1 Gamma Vacuum 75S TiTan Ion Pump
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Figure 3.3 – Rendered CAD image of the main chamber. The vertical viewports are sealed using an indium wire. Below aretwo electrodes to compensate possibly accumulating charges on the windows. The connections are fed through the CF16cross attached to one port. It also features a small RF-coil to create microwave pulses if hyperfine-state addressing is desiredin the future.

Lifetime measurements of atoms in the tweezers Section 5.8 suggest that the pressure at the position
of the atoms in the main chamber is up to two orders of magnitude higher than the reading of the pump.
We attribute this pressure difference to the complicated geometric structure of the main chamber which
can trap particles for a long time before they reach the pump. Additionally, we suspect that there might
be one or more virtual leaks in an imperfect weld inside the CF16-cross attached to the main chamber.
The weld opened up multiple times over the course of the last four and a half years and had to be sealed
with VacSeal. A simulation using Molflow2 supports this claim and requires the main chamber to be
replaced depending on the future goals of the experiment.

The main chamber is an in-house design built out of titanium shown in Figure 3.3. We chose titanium
for its non-magnetic properties compared to stainless steel at a similarly low outgassing rate [70]. The
chamber has outer dimensions of 120 mm × 140 mm × 35 mm and features ten CF16 viewports in the
𝑥𝑦−plane (later also referred to as the radial-plane) Behind each window there is a 7 mm wide channel
leading to the center of the chamber. The size of this aperture limits the divergence of the atomic beam
from the 2D MOT to around 40 mrad. The distance between the 2D MOT and the center of the main
chamber was therefore deliberately kept as short as possible at 18 cm. The top and bottom windows
are 30 mm wide, 4 mm thick and coated with a novel nano-structure3 technique. The latter allows for
low reflectivities of below 0.05 % over the whole visible spectrum even at large incident angles. This is

2 https://molflow.web.cern.ch/
3 TELAZTEC LLC
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important because two high microscope objectives with numerical apertures (NAs) of 0.7 are used to
project the tweezer through the windows and to collect the atomic fluorescence. Standard broadband
dielectric anti-reflective coatings have strong dependence on the angle of incidence, which ranges from
roughly −45 to 45° for an NA of 0.7. We therefore decided to use the aforementioned nano-structured
windows, which have performed well so far. We have yet to explore how well these windows can be
cleaned with e.g. Acetone or Methanol.

The windows are sealed using indium wire which is pressed into a bezel engraved into the chamber.
Indium chemically bonds to the titanium and the glass which allows for ultra-high vacuum operation
[71]. After breaking the surface oxide layer of the indium by immersing it in 5 to 10 % hydrochloric acid
for a few minutes, it has to be evenly squeezed between the window and the chamber to chemically bond
with both. This process is even more delicate in our case because of the constraints on the parallelity of
the windows and the chamber. We aim for an angle of less than 0.05° which we confirm by reflecting
a 532 nm laser pointer off of both windows during the sealing process. We overlap the reflections of
the windows with the incident beam after traveling a distance of 2 m and observe the number of fringes
on the interference pattern while tightening the screws on both flanges. We ensure that the chamber is
aligned perpendicular to the alignment beam by glueing a small mirror to a spare flange which we in
turn mount flush to the chamber without a window. Placing the chamber on a translation stage allows us
to move either the center of the windows or the mirror on the flange into the beam. After moving the
stage several times we could not see a deviation in the position of the reflected beam and decided that the
chamber is sufficiently well aligned. Although the alignment of the windows to the chamber is not as
crucial as the alignment of the windows with respect to each other, it is important for the sealing process.
A misalignment can lead to an uneven pressure distribution on the indium wire which can later lead
to (virtual) leaks. In the worst case the windows touches the chamber leading to physical damage of
the window as they crack due to the additional stress. It is instructive to practice the procedure a few
times with low-cost dummy windows, to get a feeling for the behavior and creeping characteristics of the
indium wire during the sealing process.

To keep the options for future measurements as wide as possible, we additionally install coils to create
static electric fields and radiofrequency (RF) pulses. On the inner side of the vertical windows we have
silver-electrodes printed onto Polyimide that can help with compensating stray charges which build up
on the windows under the exposure of UV-light. This could be important if we decide to go in to the
direction of Rydberg-physics, as these states are sensitive to stray electric fields while also relying on
UV-lasers (see Chapter 7).

The fermionic isotope of 87Sr has a rich 11-fold degenerate ground-state state can be used for
hyperfine-qubits or 𝑆𝑈 (𝑁)-physics (see e.g. [72, 73]). To manipulate these states, we installed a small
RF-coil close to the center of the chamber in the channel of the CF-16 port. We feed the wires through a
connector on the bottom port of the CF16 cross, that way the port can still be used for optical access to
the center.

3.2 Atom source

A home-built oven serves as the source for the atoms, shown in Figure 3.4(a). The ceramic pellet heating
element has been converted into a reservoir with a titanium plug cemented into the bottom of the ceramic
base which holds the electrical connections as well. It can hold about 3 to 4 g of 99.99 %-pure strontium
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(a) (b)

Figure 3.4 – Oven assembly (a) and fluorescence (b) from the push-beam passing through the atomic gas when viewedthrough the Zeeman-beam viewport.

chunks4 and was filled under an inert gas atmosphere to prevent oxidation. We estimate this amount to
last for several years with continuous operation under the current experimental conditions.

A thermocouple element embedded into the bottom of the ceramic tube is used to monitor the
temperature of the oven. We measured the temperature distribution of the heated system in air and
suspect that there is a difference of about 130 °C between the sensor and the hottest part of the filament.
A third temperature, calculated from the linearly rising resistance of the heating element suggests a
temperature around 30 °C higher than the sensor reading. The actual temperature of the strontium inside
the oven probably lies somewhere in between. We estimate the flux after [74] to be:

Φ =
1
4
𝑛

√︂
4
𝜋
𝑣𝑝𝐴 (3.1)

with the atom density of 𝑛 =
𝑝

𝑘B𝑇
with the pressure 𝑝(𝑇) determined from the vapor pressure curve [75].

𝑣𝑝 =
2𝑘B𝑇
𝑚

is the most probable velocity and 𝐴 = 0.5 cm2 is the aperture of oven. The resulting flux is
around Φ = 1.2 × 1014 atoms/s.

We usually operate the oven at 270 °C sensor temperature which requires around 9 W. This power
level increases the temperature of the heat sink attached to the vertical connection tube between the oven
and the 2D MOT to around 45 ◦C.

3.3 Magnetic field control

Around the main chamber there are four pairs of coils to control the magnetic fields (see Figure 3.5). As
the name suggests the MOT coils are used to create the magnetic field gradients for both magneto-optical
traps (MOTs). They are built from 6 mm × 1 mm wire with 16 turns each, resulting in an inductivity of
about 24 µH per coil. The wire is glued to a monolithic slitted aluminium mount that is cooled with two

4 Sigma Aldrich dendritic pieces
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Figure 3.5 – Rendered CAD image of the coils.

commercial CPU cooling blocks per side. For the blue MOT, gradients of around 50 G/cm are required
for which around 40 A are needed. During continuous operation with cooling, the coils heat up to about
34 °C which, although not a serious problem, already causes misalignment in the upper objective. We
find that a gradient of 24 G/cm leads to a steady-state temperature of 24 °C which is roughly equal to the
value that is reached during the tweezer sequences, preventing misalignment.

For the red MOT we have to decrease the gradient from 55 G/cm to about 4 G/cm, ideally on a
timescale of a millisecond. To achieve this, we use two power supplies5: one to supply the required
current for the red MOT gradient of around 4 G/cm, to which we add the much larger current required
for the blue MOT. We then switch off the larger current using a power MOSFET and dump the inductive
voltage spike into a varistor. With this technique we measure a field decay time of around 10 µs when
switched from 50 A which we cross-check by a circuit simulation software6. This decay rate is much
faster than required for tweezer operation.

To add constant offset fields, we have three pairs of coils in a Helmholtz-configuration. We use
the same wire as for the MOT-coils at 8, 20 and 6 turns for the 𝑥-, 𝑦- and 𝑧-coils. In hindsight, this
was a suboptimal choice. Although lower inductivity coils can be switched faster, the higher currents
also lead to more heat dissipation. The coils were initially designed for fields around 5 G which is
much smaller than the large magnetic offset fields around 20 G required for the tweezer operation at
515 nm, where currents around 35 A are necessary. For a resistance of around 15 mΩ these currents
result in about 10 to 20 W of dissipated power leading to significant temperature increases. Attempts to

5 Delta Elektronika SM 60-100 and Delta Elektronika SM 30-5
6 LTSpice by Linear Technology
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cool the coils were not successful and they reach more than 40 °C (depending on the duty cycle) for
measurements with the 515 nm tweezer sequence. This temperature itself is again not problematic, but it
causes misalignment in the upper objective which must be avoided. In the future, a replacement of the
coils with an updated design using more turns of thinner wire could be combined with the replacement
of the main vacuum chamber. Using an TTL-controlled H-bridge we can change the direction of the
current flow and therefore the orientation of the magnetic field.

3.4 Experiment control system

Figure 3.6 – Schematic of the experiment control system. The real-time I/O is handled by the commercial ARTIQ system,which is a combination of a processor and an FPGA.
The experiment is controlled by a combination of a real-time7 I/O FPGA/CPU system, several

non-real-time servers and computers. The former is a commercial system by ARTIQ (Advanced
Real-Time Infrastructure for Quantum physics) systems, featuring an Artix-7 FPGA8. The system is
divided into two 19 "-rack mountable crates linked by a SFP-fiber connection, and the available channels
are shown in Table 3.1.

Communication with the ARTIQ-system is done a by server running on the main experiment computer
which can be connected to from a client via network. For a measurement sequence (real-time-sequence),
7 We adapt the common definition of real-time as everything that is guaranteed to take a certain time independent of system or

network load.
8 Xilinx XC7A100T
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Channel type Channels Specifications Chip

Digital outputs 56 5 V TTL, 150 MHz max toggle rate SN74BCT25245
Digital inputs 8 5 V TTL, 3 ns min pulse width SN74BCT25245

Analog outputs 64 ±10 V, 16 bit, 20 µs settling time AD5372
Analog inputs 16 ±10 V, 16 bit, 1.5 MHz max sampling rate LTC2320-16

DDS 12 0 to 400 MHz, −32 to 10 dBm, switch in < 100 ns AD9910

Table 3.1 – ARTIQ system hardware specifications.

a sequence of commands (sequence-script) together with a list of parameters is send to the ARTIQ-
server, which then gets compiled and uploaded to the FPGA. Hardware that is also needed during a
real-time-sequence such as the spatial-light-modulator, arbitrary-waveform-generator (see Section 4.3
and Section 4.4) or the EMCCD camera is controlled using a second PC. The PC is only used to initialize
the hardware where any changes (like taking an image) during the sequence are triggered by TTL-pulses.
The atom rearrangement described in Chapter 6 is an exception to this, as the algorithm that determines
how atoms are rearranged, the computation and upload of the RF-waveform is currently run on the CPU.
In the future, this could be outsourced to a dedicated real-time-system to be again independent of system
load.

3.5 Laser system

3.5.1 461 nm

Beam Detuning/MHz Power on experiment table/mW
Spectroscopy 0 30

Zeeman -220 45
2D MOT -30 30
3D MOT -30 10

Push/Excitation ±25 0.1
MOT imaging ±25 10

Tweezer imaging ±25 0.1
Table 3.2 – Laser setup 461 AOM parameters

The 461 nm light used to drive the main cooling and imaging is generated by a home-built frequency-
doubling cavity. The latter is pumped by a titanium-sapphire (Ti:sapph) laser9 giving about 4 W at
922 nm. It is pumped by a 25 W laser at 532 nm10 which we usually operate at 21 W. We follow the
standard practice and place the laser setup on a separate optical table to reduce the mechanical and
thermal coupling and to reduce stray light. This also means that all beams are passed through optical
fibers to the main experiment table.
9 Sirah Matisse CS

10 Spectra Physics Millenia eV 25
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We use a periodically-poled KTP crystal for frequency doubling to reduce the complexity of the cavity
design compared to a Brewster-cut crystal. We see that the current design becomes inefficient for higher
powers because of thermal dephasing of the phase-matching condition caused by the buildup of 461 nm
light inside the crystal [76]. The cavity generates around 550 mW of second-harmonic light at a pump
power of 3 W which could be increased in the future by changing the radii of the curved intracavity
mirrors. We see a drift in the divergence of the infrared beam leaving the Ti:sapph cavity on the order of
months which requires us to reposition the incoupling lens from time to time. After such an optimization
we reach up to 700 mW of second-harmonic light which then decreases over the course of a week back
to the 550 mW level. We further split the light after the pick-off after the spectroscopy according to
Table 3.2. We noticed that the order of separation matters as we see that back-reflections from the higher
power beams can be coupled into the lower power beams even through multiple beamsplitters. The
last three beams are therefore the imaging beams where for tweezer operation microwatt-accuracy and
-precision is required. We also shutter the axial beam of the 3D MOT as it otherwise increases stray light
on the EMCCD camera which works in direct line of sight.

Laser stabilization - hollow cathode lamp lock The Ti:sapph laser has an internal reference cavity
which can be used to stabilize the frequency to a linewidth of 50 kHz. This cavity has a sufficient
short-term stability for the 31 MHz wide main transition but it tends to drift on the time-scale of minutes.
To compensate this drift we use about 30 mW to stabilize the frequency with a PDH locking scheme
[77] to a hollow cathode lamp11. For that we employ a pump-probe saturation spectroscopy scheme
[63] which generates a Doppler-free signal of the otherwise > 1 GHz broadened transition. Because
of the small volume of around 1 mm × 1 mm × 20 mm and low density of the atomic vapour the signal
strength is low, with a signal-to-noise ratio of about 5. To get rid of the Doppler-broadened background,
we chop the pump beam using a 117 kHz square-wave and demodulate the Doppler-free signal with the
Doppler-broadened signal (see [78]). We feed the resulting error signal back to the reference cell of the
Ti:Sapph cavity. In the future, the hollow cathode lamp will be replaced by a home-built spectroscopy
cell that can also be used for spectroscopy of the 1S0 →3P1 transition. We will comment on the design of
the cell in Section 3.7.3 where we explain the methods used to locate the 1S0 →3P1 transition frequency.
We also did some brief testing by stabilizing the frequency using the reading from our wavemeter. This
locking scheme is good enough to see MOTs of 84Sr, 86Sr and 87Sr but is not feasible in practice for
tweezer operation.

3.5.2 689 nm

Beam Detuning/MHz Power/mW
MOT radial 1 −10 to 1 4
MOT radial 2 −10 to 1 4
MOT axial −10 to 1 10
Probe beam −20 to 10 1

Table 3.3 – Parameters of the different beam paths at 689 nm.

11 Heraeus 3BAXSR
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To drive the 1S0 → 3P1-transition requires it to have a linewidth on the order of a kilohertz at output
powers of around 60 mW which makes the 689 nm laser system the most delicate laser used in the
experiment. It is based on a Toptica DLPro diode laser which gives around 30 mW of power at a linewidth
of less than 5 kHz. To reduce the laser linewidth from the free-running value of 100 kHz to below 5 kHz,
it is locked to an ultra high-finess cavity12 using an offset-locking technique. We use about 50 µW
of light that is passed through a fiber-coupled electro-optic modulator (EOM)13. The latter generates
sidebands at ≈ 370 MHz of which one is locked to the cavity using a standard PDH-lock [77]. Using this
technique, we can shift the laser frequency by adjusting the frequency of the EOM which is controlled by
a signal generator14. After an initial drift of around 14 kHz per day for the first ≈ 20 months, it gradually
slowed down to 8 kHz per day for the last 12 months.

To increase the output power to 60 mW which are required to for experiment, we use two additional
laser diodes15 which are injected by the seed [79]. We could not find an influence of the seeding process
on the linewidth of the emitted light [59]. The injection status is monitored using a wavemeter16. We
found the system to be quite robust, not requiring realignment on the order of weeks. When a diode
loses its injection status, it is usually enough to slightly tune the injected diode current which can be
controlled remotely and automated. The system has been in operation for three years and we did not see
any damage or decline in power, something that has been reported to be an issue with tapered amplifiers
at this wavelength [80, 81].

We further split the light into four different beams, two for each diode. The first two beams drive the
radial MOT beams. To adjust the frequency and power we again use AOMs in a double pass configuration
with an efficiency of 70 %. Together with the fiber coupling efficiency, each beam has a power of 6 mW,
enough to supply the 4 mW required. The second two beams are the axial MOT beam and an additional
probe-beam. Due to the objectives, the axial MOT beam cannot be retroreflected and is split after the
optical fiber before entering the main chamber. This in turn means that the required power is about a
factor of two larger than the radial beams. The probe beam is used for spectroscopy and cooling of
atoms in the tweezers with a detuning between ±5 MHz and a power of up to 2 mW. We use this beam
for the sisyphus cooling processes described in Section 5.4.2. For the sideband cooling described in
Section 5.4.1 three (nearly) orthogonal beams are required. In this case we have to use the MOT beams
as there is not enough optical access to add a second set of beams along all spatial directions.

3.5.3 Tweezer lasers 515 nm, 532 nm & 813 nm

For the 515 nm laser, we use a 10 W system by Azur Light Systems, for 532 nm a Verdi V-18 by Coherent
and for 813 nm light a second titanium-sapphire laser by Sirah17. In addition to the 922 nm model,
the latter features an additional intracavity EOM to reduce the linewidth below 30 kHz. Due to the
off-resonant nature of the dipole trap, the frequency stability requirements for the tweezer lasers are
comparably low and we do not use any additional locking techniques. However, to prevent parametric
heating in the traps, the power stability of the tweezer lasers is of great importance. We use intensity-
servoing capabilities of the ARTIQ-system to stabilize the lasers to 0.2 % in front of the vacuum chamber.

12 Stable Laser Systems, Finesse > 250000
13 Jenoptic PM705
14 Rohde & Schwarz SMA100A
15 Thorlabs HL6750MG
16 HighFinesse WS7
17 Matisse CX, linewidth < 30 kHz
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We also measure the stability in frequency space using a spectrum analyzer and do not find any peak
above −95 dBm between 0 to 300 kHz.

3.5.4 Repumping lasers 679 nm & 707 nm

Figure 3.1 shows that there is a chance of about 1 : 20000 to 1 : 50000. The 2D1-state decays to the
3P{1,2} triplet states, and atoms in the 3P0 (which is populated after repumping by the 3S1 decay) and
3P2 are effectively lost due to their long lifetimes. The effect can be mitigated by repumping both states
via the 3S1 state back into the 3P1-state, which then decays to the ground state 1S0. We currently do
not have a repumping laser for 3P1 →3S1 which could be useful to add in the future at it is required for
certain spectroscopy protocols in the tweezers. The other two repumping lasers itself are home-built
external-cavity diode lasers.

3.6 Optical setup

3.6.1 Microscope objectives

To create the tweezers and to collect the scattered fluorescence, we use two microscope objectives by
Special Optics, each with an NA of 0.7. Each objective has an effective focal length (EFL) of 13.477 mm,
a clear aperture of 18.88 mm and an 𝑓 -number of 𝑓 /# = 0.714. The 𝑓 -number and the numerical
aperture NA are related by 𝑓 /# = 1

2NA (see e.g. [82]). The lower objective is used the image the atoms
and project tweezers at 515 nm while the upper objective project the tweezer arrays at 813 nm. To ensure
that our objective performs like expected, we measure the PSF of a point-like source.

3.6.1.1 PSF and wavefront measurements

To directly measure the point spread function of the objective, a point source has to be imaged. Of the
four available wavelengths (461 nm, 515 nm, 689 nm, 813 nm) we decided to perform the measurements
with 461 nm, as shorter wavelengths are generally more sensitive to misalignments.

We considered two approaches: a back illuminated pinhole or a scanning-near-field-microscopy fiber
(SNOM-fiber) 18. The latter is a stretched and then etched single mode optical fiber with an aperture
around 70 nm. We measure the point-spread-function by capturing a few ten microwatts of light from
the SNOM-fiber which we image onto a CMOS camera19 using a lens with a focal length of 1 m. For the
effective focal length of 13.5 mm for our objective this results in a magnification of 75. This setup was
helpful for getting used to the alignment procedure, but the overall stability was insufficient. The vertical
mounting shown in Fig. 3.7(a) showed to be sensitive to vibrations which made it difficult to capture
a good image. An example image is shown in Fig. 3.8(a) and Figure 3.8(b) which confirmed that the
objective performed as expected. We explain the residual aberrations by the deviation of the window
thickness from the ideal case. We also repeated the procedure by focussing a collimated beam using a
different microscope objective20 with an NA of 0.65 and imaged the focus using the 0.7NA objective. It
requires some experience to couple a laser beam orthogonally aligned on the optical axis and additionally
the window that simulates the vacuum window (see Appendix B). Due to this complexity and because it
18 Spectrum Instruments Ltd. MF002
19 Thorlabs CS165MU1
20 40X Olympus Plan Achromat Objective, 0.65 NA, 0.6 mm WD
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Figure 3.7 – Shining SNOM fiber in our test setup (blue dot) (a). The distance to the window is monitored with a cheap USBmicroscope. The vacuum window dummy and high NA objective can also be seen. Because of insufficient stability we repeatthe procedure using a second microscope objective with an NA of (b).
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Figure 3.8 – (a) Image of the point-spread-function (PSF) measured by imaging a SNOM fiber. (b) Fitting the PSF we extract anNA matching the design value of 0.7. The larger side-lobes can be explained by a residual spherical aberration caused by adeviation of the window thickness from the optimal value.

is strictly speaking not a point-source at an NA of 0.7, it was not considered as an initial approach, but it
helped later on to investigate the influence of artificially introduced misalignment on the quality of the
imaging. The optical setup is shown in Fig. 3.7(b).

3.6.1.2 Focal shifts

The objectives show a focal shift of around 50 µm between 461 nm and 515 nm and 200 µm between
461 nm and 813 nm. This means we cannot use a single objective to image atoms in 813 nm traps and
the fluorescence light at 461 nm is aberrated for imaging atoms in 515 nm traps. Additionally, we see a
drift of the upper objective in both radial and axial direction caused by the micrometer-stage21 which
further complicates the alignment-process and severely limits the stability of the system. This drift has
multiple contributions: first, the screws of the stage show a hysteresis which relaxes over the course of

21 Newport 8081
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∼ 24 h. Secondly, drifts caused by thermal coupling to the mot and compensation coils, even though not
in direct contact, also leads partly reversible misalignment. In the future, this could be solved by a single
new microscope objective that has a focal shift in the region of a few micrometers.

813nm tweezer beam

5-axis stage

Tip-�lt stage

Main chamber

a�achment points

Custom beamspli�er /

dicrhoic mirror

Figure 3.9 – CAD render mounted objectives
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3.6.2 Beam path in and around the vacuum chamber
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Figure 3.10 – Beams around the chamber passing through the objectives in the radial 𝑥𝑦-plane.
To conclude description of the experimental setup, we will now take at the look of the laser beams

in and around the main chamber. Figure 3.10 shows the optical setup in the radial plane, whereas
Figure 3.11 shows the 𝑦𝑧-plane.

Radial plane

The push beam transfers the atoms from the two-dimensional MOT in the main chamber. The blue
and red MOT beams use the same ports, where only the radial beams are retroreflected. A dedicated
MOT-imaging beam at 461 nm is used to take absorption images of the MOTs, whereas the push-beam is
used to excite the atoms in the traps for fluorescence imaging. We use two imaging beams as the power
levels and beam sizes are vastly different. Especially the red MOT takes up to several milliwatts for
imaging due to its high density, compared to around 10 µW for the tweezer imaging. A probe beam
at 689 nm is used for probing and cooling in the traps at 532 nm and 813 nm. It has a power of up to
2 mW for detunings between −5 to 5 MHz at a beam size of 2.7 mm at the position of the atoms. For
resolved sideband cooling in 515 nm traps we have to use the MOT beams because of spatial constraints.
This is not ideal as standing-wave effects from the retroreflection might lead to unwanted local intensity
deviations.
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Figure 3.11 – Beams around the chamber passing through the objectives in the 𝑦𝑧-plane.

Axial direction

Along the axial direction things get a little crowded. The MOT beams, which have to be collimated at
the position of the atoms are focussed into the back focal plane of the objectives. Because the tweezer
and fluorescence light have to also pass the objective we have a custom-built beamsplitter in front of
each objective. These beamsplitters transmit light at 689 nm and also 10 % at 461 nm independent of the
polarization. They reflect 90 % of the light at 461 , around 93 % at 515 and 532 nm and close to 100 %
at 813 nm. This ensures, that the tweezer and fluorescence light are reflected instead of transmitted
whenever possible to reduce optical aberrations. In fact, the fluorescence light is only reflected all the
way to the camera to reduce aberrations as it is convergent due to the difference in focal lengths. The
green tweezer light is passed through a dichroic mirror once, separating the fluorescence light from the
counterpropagating tweezer light. The tweezer light, compared to the imaging light, can be ensured to be
collimated. We find that the coating slightly rotates the polarization axis at 515 nm which is a problem
for the magic-traps (see Section 5.4.1.4). In the future, this could be solved by designing a coating with a
zero phase delay for both polarizations at an angle of 45° at 515 nm.
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3.7 Initial cooling stages

We now describe several different magneto-optical trap (MOT) stages that are required to load the
tweezers. The MOT has become a standard ingredient in modern cold atom experiments and a detailed
description can be found in e.g. [60, 63].

1S0 → 1P1
1S0 → 3P1

Linewidth 𝛾/2𝜋 30.5 MHz 7.4 kHz
Lifetime 𝜏 = 1/𝛾 5 ns 21 µs

Saturation intensity 𝐼sat =
𝜋
3
ℎ𝑐𝛾

𝜆
3 42.7 mW/cm2 2.95 µW/cm2

Maximum acceleration 𝑎max =
ℏ𝑘𝛾

2𝑚 9.5 × 105 m/s2 150 m/s2

Doppler temperature 𝑇D =
ℏ𝛾

2𝑘B
0.7 mK 180 nK

Recoil temperature 𝑇R = ℏ
2
𝑘

2

𝑘B𝑚
1 µK 0.5 µK

Table 3.4 – Relevant parameters for laser-cooling and trapping strontium atoms on the 1S0 → 1P1 and 1S0 → 3P1 trans-itions [67].

3.7.1 2D MOT

The design of the 2D MOT is heavily influenced by [68] where further details can be found. For the
magnetic field of the 2D MOT we use stacks of permanent magnets22. These stacks have a surface field
strength of up to 1.5 T and their arrangement leads to a gradient of 24.5 G/cm at the position of the 2D
MOT. The residual magnetic field and field gradient in the center of the main chamber are around 0.2 G
and 0.05 G/cm which is comparable to the earth’s magnetic field of 0.5 G.

The 2D MOT uses a single cycling beam with a diameter of 24 mm at a power of 40 mW, resulting in
a saturation of 𝐼/𝐼𝑠 ∼ 0.4 at a detuning of −30 MHz. Assuming a capture velocity 𝑣𝑐 of around 60 m/s
for the 2D MOT, we capture less than around 3 × 10−4 % of the atoms leaving the oven. We arrive at
this conclusion by estimating the captured fraction of the atoms following [83] with:

Φ𝑐 = Φ ×Ω × 1
2

(
𝑣𝑐

𝑣𝑝

)4
. (3.2)

Here Φ is the total flux from the oven, 𝑣𝑐 is the capture velocity of the MOT, determined from a
simulation and Ω = 0.48 % is the fractional solid angle of the MOT capture region from the oven.
1
2

(
𝑣𝑐
𝑣𝑝

)4
≈ 0.055 % is the fraction of atoms with a velocity 𝑣 lower then the capture velocity 𝑣𝑐 for a

one-dimensional Maxwell-Boltzmann distribution with 𝑇 = 300 ◦C ⇒ 𝑣𝑝 ≈ 330 m/s. This leads to a
capture rate of 3.2 × 108 atoms/s. We investigate the 2D MOT performance by measuring the flux inside
the main chamber with a single photon counter (Fig. 3.10). For these measurements, we use a push beam
with 10 µW and a detuning of 20 MHz. We observe a saturation of the flux for 2D MOT beam diameters
of 15 to 25 mm and saturations above 0.4 and conclude that the atomic beam from the oven is at least
somewhat directed.

22 Eclipse block magnet, 10 mm × 5 mm × 25 mm, neodymium N35, holding force 4.9 kg
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Zeeman slower

To increase the fraction of captured atoms we additionally use a Zeeman-like slower beam, focussed into
the aperture of the oven. Ideally a square-root shaped magnetic field should be used to keep the slowing
atoms on resonance [60]. This is not true in our case and the actual efficiency depends on the magnetic
field present in the experiment and the (to some degree unknown) velocity of the atoms exiting the oven.
We see an atom number increase of a factor of 5 to 10 in the blue MOT when using this Zeeman beam at
a power of 55 mW at an intensity of ∼ 7𝐼𝑠.

An annotated CAD image of the 𝑦𝑧 2D MOT plane, including the oven and Zeeman slower viewport
is shown in Figure 3.12.

Zeeman beam

Cycling 2D

MOT beam

2D MOT

Permanent

magnets

Permanent

magnets

Figure 3.12 – Rendered CAD image of the oven and the 2D MOT. The U-shaped aluminium block is attached to a stage toalign the permanent magnets to the chamber. The ceramic oven tube is encased in a enclosure to limit the divergence of theatomic beam and to help with heat dissipation. The Zeeman beam enters through the top viewport, and an intra-vacuummirror guides it directly into the oven aperture.
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3.7.2 Blue MOT

Figure 3.13 – (a) Fluorescence image of the blue MOT. The curved structure on the right is the shadow of the small microwavecoil with an outer diameter of 6mm. (b) A photo taken with a common smartphone camera. The red circle shows the blueMOT while the diffuse clouds above and below are the MOT beams scattering off of the vacuum windows.
The first three-dimensional cooling stage is the blue MOT formed on the 1S0 → 1P1 transition in the

main chamber, where it can be continuously operated. The atoms are transported from the 2D MOT into
the main chamber using a 20 MHz blue-detuned beam with a power of 10 µW at an intensity of 𝐼/𝐼𝑠 ∼ 8,
focussed at the position of the 2D MOT. The resulting velocities are on the order of 30 m/s roughly equal
to the capture velocity 𝑣𝑐 ≈ 28 m/s of the blue MOT, and we conclude to capture most of the atoms. We
use radial beams with diameters of 6 mm and intensities of 𝐼/𝐼𝑠 = 0.4 and a magnetic field gradient of
55 G/cm. For the axial beams, the shape is difficult to estimate, as the process of focussing the beam
through the beamsplitter into the back focal plane of the objective introduces severe aberrations (see
Section 3.6.2). We estimate a beam size of ∼ 2 to 3 mm at the position of the atoms at a power of 2 mW
per beam.

With the aforementioned parameters, we measure a flux of 3 × 107 atoms/s in the main chamber. The
resulting atom number is much higher than needed for tweezer operation and we will measure the
tweezer occupation probability depending on the loading time in Section 5.3. A larger atom number is
still desirable to reduce the necessary loading time and increase the repetition rate of the experiment.
The MOT has a maximum optical density of ∼ 1, resulting in a atomic density of 3 × 1010 cm−3. We
determine the temperature by performing a time of flight measurement, resulting in temperatures of
2 mK and 3 mK for the radial and axial direction(s) respectively. The final temperature of 2 mK results
in a Doppler broadened linewidth of 1.5 MHz for the 1S0 → 3P1 transition.

3.7.3 1S0 →
3P1 spectroscopy

To determine the frequency 1S0 → 1P1 transition, our wavemeter with an accuracy of 60 MHz can be
used, and we can detect a signal from the hollow cathode lamp after that. This, however, does not work
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for the 1S0 → 3P1 transition frequency, as the signal is not strong enough (a possible solution in the
form of a proper spectroscopy cell will be discussed at the end of this section). We are thus required
to come up with a different technique, where we have to use the atoms in the blue MOT to measure
the 1S0 → 3P1 transition frequency. To locate the transition frequency from the 100 MHz-level of the
wavemeter down 100 kHz-level required for the MOT, we use a two step process. We first perform
spectroscopy on the 1S0 → 3P1 transition in the blue MOT first and then on the cold atomic cloud
immediately after switching off the magnetic field gradient of the blue MOT.
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Figure 3.14 – (a) Fluorescence measurement using a single photon counter while loading the blue MOT. After 600ms, a100ms long pulse of 689 nm light is applied which shelves atoms to the 3P1 state, reducing the detected fluorescence. Afterthe pulse ends, the atoms return to the ground state leading to a spike in fluorescence. (b) Peak-to-peak variation of thefluorescence spike between 550ms and 750ms for different probe detunings.
For the first step, we use a photon counter23 at 461 nm to collect the fluorescence of the blue MOT. We

shine in a 100 ms long pulse of 689 nm light while measuring the blue fluorescence. Because the pulse
shelves atoms to the 3P1 state, the detected fluorescence signal reduces. After the pulse stops, the atoms
can be excited to the 1P1 state again, leading to a spike in fluorescence. An example of the measured
fluorescence against time is shown in Figure 3.14. Because atoms in the 3P1 state cannot be lost via the
1P1 → 1D2 channel, this method has recently been described as an atom-number enhancement in the
MOT in [84]. We change the frequency of the shelving pulse and calculate the peak-to-peak variation in
the signal around the pulse normalized to the steady state value at 1.2 s. With this measurement we can
determine the actual frequency on the 1 MHz level as shown in Figure 3.14. At this level, the maximum
Zeeman shift of ∼ 3.1 MHz over the size of the blue MOT limits the accuracy of the measurement. We
therefore move on to perform spectroscopy of the atomic cloud without magnetic fields which does not
show a Zeeman shift but only the Doppler-broadened linewidth. At the stated temperature, the atoms
are around for about 2 ms which gives us enough time to collect the fluorescence at 689 nm using the
photon counter shown in Figure 3.10. The extracted frequency is accurate enough to be used for the
red broadband and single frequency MOTs. After the red MOTs are implemented, we can repeat the
procedure using a depletion technique to determine the frequency on the 10 kHz, described at the end of
Section 3.7.4.

23 Excelitas SPCM AQRH 15
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In the future, a custom-built spectroscopy cell which can to be heated to around 500 °C could help to
simplify the process. Standard CF vacuum components, especially common copper gaskets can be heated
to 450 °C [70], so care has to be taken when exceeding this limit. Following [85], we designed a cell
that features an inner custom-built stainless steel chamber which sits inside an outer chamber built from
standard CF-components. The inner cell sits on two Macor-rods which thermally decouple it from the
outer rest of the system. It uses uncoated sapphire windows which are pressed against the inner chamber
using two heated copper flanges to prevent the strontium vapour to escape to the outer chamber. These
flanges can be heated to several hundred degrees Celsius and the expansion of the material seals the inner
chamber while also heating the metallic strontium inside it. Keeping the windows hot is important to
prevent deposition of strontium on the windows which would essentially result in an absorptive coating.

3.7.4 Red MOT

The Doppler-broadened linewidth of 1.5 MHz cannot be compensated by power-broadening alone, as
several watts of laser power would be required. We therefore have to insert an additional broadband
phase to precool the atoms before we can trap them inside a single frequency operated red MOT, reaching
temperatures around 10 µK.

Another aspect to consider is the large mismatch in magnetic field gradients between the blue and
red MOTs of 55 G/cm to 4 G/cm. The strong magnetic field gradient in the blue MOT phase leads to a
Zeeman shift of more than 103 linewidths which, together with most probably velocity of 𝑣𝑝 = 1 m/s,
requires the magnetic field gradient to be reduced in around 1 ms. We achieve this by using two power
supplies in parallel where we switch the large current using a power MOSFET and dump the inductive
voltage spike into a varistor (see Section 3.3). Compared to the blue MOT, the red MOT is also sensitive
to offset fields and 0.5 G from the earth’s magnetic field can lead to shifts larger than the MOT size. It is
therefore crucial to compensate this field appropriately.

3.7.4.1 Broadband MOT

In recent years, a technique called sawtooth-wave adiabatic passage (SWAP)-cooling has been demon-
strated in optical molasses [86, 87]. SWAP cooling makes use of an adiabatic transfer to an excited
state and cools more efficiently compared to traditional modulation techniques, like triangular ramps or
frequency combs. The adiabatic transfer prevents spontaneous emission by forcing stimulated emission
from the counter-propagating beam. In result, a larger directed momentum transfer is achieved which
leads to faster cooling compared to a process relying on spontaneous emission alone.

Inside a MOT, the magnetic field gradient in combination with the polarization selection rules prevent
exploiting stimulated emission. Compared to free-space SWAP cooling, it still relies on spontaneous
emission but it suppresses stimulated emission from the same beam that transferred the atom to the
excited state [88, 89]. The technique therefore provides colder and denser samples of atoms faster while
being less sensitive to frequency and intensity fluctuations.

We start the SWAP-phase 5 ms − 10 ms before the blue MOT is switched off. We use a power of
4 mW in each of the radial beams and 3.5 mW in the axial beam. The latter cannot be retro-reflected
and is therefore split into two beams. After capturing the atoms, we reduce the power to 1 mW (1 mW)
radially (axially) while keeping the frequency broadening.
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Chapter 3 Experimental setup and cold atom preparation

3.7.4.2 Single frequency MOT

We stop the SWAP ramp after 50 ms and enter a single frequency phase. We reduce the power instantly
to 360 µW (300 µW) radially (axially) and ramp the detuning linearly over 40 ms from −600 kHz to
−60 kHz. During that time, the power is also ramped to a final value of 7 µW (5.3 µW). We find the final
temperature to be roughly constant for final detunings between −250 to −60 kHz with a difference of
around 10 % in the atom number. Towards the resonance, the temperature quickly increases while the
atom number decreases. Together with the broadband phase, this results in around 1.5 × 105 atoms at a
final temperature of 1.3 µK (1.0 µK) in radial (axial) direction which can be achieved in ∼200 ms. The
MOT has a size of 110 µm (75 µm) in radial (axial) direction and a central density of 𝑛0 = 6.9×1012 cm−3.

3.7.4.3 The red MOT as a frequency reference

The cold sample of atoms serves as an excellent system to perform further spectroscopy on. At 1 µK, the
atoms have a velocity of ∼ 1 cm/s and can therefore be observed for durations of more than 10 ms24.
Similar to the spectroscopy on the blue MOT described above, we switch off the magnetic field gradient
to avoid any Zeeman shifts. To measure the 1S0 → 1P1-transition frequency, we scan the frequency of
the imaging pulse while taking an absorption image. We measure the strongest absorption and therefore
the largest perceived atom number on resonance. For the 1S0 → 3P1-transition, we make use of an
depletion scheme (see Figure 5.8(a)). We use a 100 µs long pulse at 689 nm to excite atoms to the 3P1
state and take an absorption image at 461 nm. On resonance we therefore detect the lowest perceived
number of atoms. With this technique we can determine the frequency of the 1S0 → 1P1-transition with
an accuracy of ∼3 MHz and ∼5 kHz for the 1S0 → 3P1-transition. An example of such a measurement is
shown in Fig. 3.15.
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Figure 3.15 – Spectroscopy of (a) the 1S0 → 1P1- and (b) the 1S0 → 3P1-transition frequency on the microkelvin cold atomcloud after switching off the magnetic field. This measurement allows us to determine both frequencies on the 3MHz and
∼5 kHz level respectively.

24 At this point the expansion of the cloud is not the limiting factor but rather the fact that the MOT leaves the field of view due
to gravity.
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CHAPTER 4

Optical potentials for single atom trapping

The following chapter focuses on the details of creating optical tweezer potentials suitable for single
particle trapping and manipulation. In Chapter 2 we introduced the light shift as the origin of the
trapping force at the example of the driven two-level system. Chapter 3 covered the experimental setup,
specifically the vacuum system and microscope objectives that are used to create the traps and also
collect fluorescence light from the atoms. We now delve into the details which are required to project a
controllable set of optical traps.

For real atoms, the two-level approximation breaks down and we introduce the polarizability to
quantify the coupling of between an induced dipole and an electric field. We then motivate the choice of
trapping wavelengths used in the experiment based on the polarizability and its consequences. Extending
the Gaussian beam model of the trapping beam presented earlier, we show the influence of clipping at
finite apertures in real optical systems on the trapping confinement.

In Section 2.4 we motivated the desire to rearrange atoms in an underlying tweezer grid or array.
It is therefore not enough to use a single unmodulated laser beam to create a trap, but we need the
ability to create more than one trap, and additionally, we would like to tune the position of another trap
dynamically. Both of these functionalities require a dedicated device and the second half of this chapter
is concerned with these beam modulating devices and their description and precise application.. More
precisely, we realize static tweezer arrays with a liquid-crystal-based spatial light modulator (LCoS SLM)
and a dynamic trap with a pair of acousto-optic deflectors (AODs). Both devices modulate the wavefront
of the incident light, which determines the spatial evolution of the beam’s amplitude distribution. To
quantify to wavefront modulation, this chapter, particularly the section on the liquid-crystal-based spatial
light modulator, heavily relies on the Fourier theory of optics. We will keep the discussion concise
and reduce the mathematics to a minimum here. A summary of key theoretical insights is given in
Appendix A which is itself based on [90]. We close the discussion by combining the knowledge gained
throughout this chapter for the design of the tweezer setup used for this work.

4.1 Polarizability and choice of tweezer wavelengths

The two-level system from the description in Section 2.1 is not a good approximation for alkaline-earth(-
like) elements, and if more than two levels are involved, all couplings between the levels have to be
considered. This effect is described by the polarizability tensor 𝛼 (𝜔, ®𝜖) which is related to the induced
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Chapter 4 Optical potentials for single atom trapping

dipole moment ®𝜇𝑒 by [91]:

®𝜇𝑒 = 𝛼 (𝜔, ®𝜖) ®𝐸 (4.1)

with the electric field ®𝐸 . 𝛼 depends on the frequency of the light field 𝜔 and also on the polarization
®𝜖 . For simplicity, we will only look at the scalar part of the polarizability for now by omitting the
dependence on ®𝜖 and discuss corrections later on. The potential energy resulting from the coupling is
related to 𝛼 by:

𝑉dipole (𝜔) = − ®𝜇𝑒 · ®𝐸 = −Re [𝛼 (𝜔)] | ®𝐸 |2 (4.2)

= −Re [𝛼 (𝜔)] 𝐼

2𝜖0𝑐
, (4.3)

where we expressed the absolute square of the electric field by the intensity 𝐼 with the vacuum
polarizability 𝜖0 and the speed of light 𝑐. The potential for a state 𝑖 can be written as a sum over all other
states 𝑘 ≠ 𝑖 by (see e.g. [91]):

𝑉𝑖,dipole (𝜔) = −
∑︁
𝑘

𝜔𝑖𝑘 | ⟨𝑖 | �̂�𝑒 |𝑘⟩ |
2 ®𝐸2

2ℏ
(
𝜔

2 − 𝜔
2
𝑖𝑘

) (4.4)

which gives

Re [𝛼 (𝜔)] =
∑︁
𝑘

2𝜔𝑖𝑘 | ⟨𝑖 | �̂�𝑒 |𝑘⟩ |
2

ℏ

(
𝜔

2 − 𝜔
2
𝑖𝑘

) . (4.5)

Compared to the two-level system, it is now possible for two states related by an optical transition to
be trapped. The polarizability is often expressed in the unit-system of atomic units [a.u.] which can
be converted to SI-units with the factor 1/4𝜋𝜖0𝑎

3
0 with the Bohr-radius 𝑎0. However, this is again only

almost the final truth. For states featuring a non-zero total angular momentum 𝐽, the polarization of the
trapping light and additional static magnetic fields also play a role. This results in different components
of the polarizability, namely the scalar 𝛼𝑠, vector 𝛼𝑣 and tensor polarizabilities 𝛼𝑡 . The polarizability in
strontium is of great importance for the optical clock community and we refer to [91, 92] for further
details on the calculation and [93–95] for results for strontium.

For this work we are interested in the scalar polarizability 𝛼𝑔 of the ground state 1S0 which is necessary
to estimate trap depths from the laser power per trap. Using data from [95], we calculate 𝛼𝑔 which
we show in Figure 4.1(a). Note that only dipole-allowed transitions contribute to the value, which is
why 𝛼𝑔 only shows a divergence at 461 nm from the 1S0 → 1P1-transition but not at 689 nm from the
1S0 → 3P1-transition. The values for important wavelengths for this work, together with values obtained
from the literature, are shown in Table 4.1.

Another important quantity is the difference in polarizabilities Δ𝛼 ("differential light shift") for two
given states, if driving a transition between said states is of interest. Depending on the value (and
especially the sign) of Δ𝛼, the transition frequency changes compared to the free-space resonance,
which in turn can affect the cooling and imaging inside the trap drastically. We calculate the difference
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Chapter 4 Optical potentials for single atom trapping

between scalar polarizabilities 𝛼𝑔 and 𝛼𝑒 for the excited state 3P1 with |𝑚 | = 11, to motivate the choice
of our trapping wavelengths. Combined with the 10 kHz-wide transition from 1S0 to 3P1, the quantized
motional state of an atom inside the trapping potential can be optically resolved.

Figure 4.1(b) shows the resulting differential polarizability Δ𝛼. It can be seen, that there are two
crossings where the difference vanishes: around 515 nm and around 915 nm. These wavelengths are
also referred to as magic wavelengths and a trapped particle experiences the same potential in both states.
This situation can be used to cool an atom and also directly measure the motional state in the trap, a
feature that we will investigate in Section 5.4.12. An important aspect is the sign of the difference of the
ground and excited state polarizabilities, as it changes the trapping and cooling characteristics depending
on the chosen tweezer wavelength. In this work we will make use of three different trapping wavelengths
which we now briefly introduce.
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Figure 4.1 – (a) Polarizability of the 1S0 ground state. The divergence at 461 nm is caused by the 1S0 → 1P1-transition. As themodel only includes dipole-allowed transitions, there is no divergence at 689 nm from the 1S0 → 3P1-transition. (b) Scalardifferential light shift Δ𝛼, calculated for the 1S0 and 3P1 states. The divergence at 461 nm from the 1S0 → 1P1-transition isvisible, and in addition a divergence at 688 nm from the 3P1 → 3S1-transition. If vector- and tensor-components are included,the zero-crossings lie at 515 nm and 915 nm respectively.

Wavelength / nm Our result / a.u. Literature / a.u.
515 930 910 to 950 [46], 900 [47]
532 745 750 [96]
813 280 286 [56, 93], 280 [96]

Table 4.1 – 1S0 ground state polarizability together with values from the literature.

1 As discussed in the introduction, the narrow intercombination line in alkaline-earth(-like) elements offer a great advantage
for cooling, spectroscopy, and even imaging compared to standard 10 MHz-wide 𝑠 → 𝑝 transitions in alkali elements.

2 Due to vector and tensor components the tweezer polarization and external magnetic fields have to be fine-tuned to realize
Δ𝛼 = 0
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515 nm Around 515 nm, the differential light shift Δ𝛼 = 𝛼

(
3P1

)
− 𝛼

(
1S0

)
vanishes ("magic

wavelength"). Additionally, the large ground state polarizability allows for deep traps due to the small
waist and large polarizability reducing the power requirement per trap. It is also beneficial for the atom
rearrangement described in Chapter 6, where a deep tweezer is used to transport an atom between two
shallow traps at 813 nm to achieve an atom pick-up, without turning of the static traps. A disadvantage
at this wavelength are multiple known loss channels, as the trapping wavelength is not red-detuned to
all transitions. First, the 5s4d1D2 state, which is populated by a decay from 1P1, is antitrapped at this
wavelength which leads to atom loss due to the long lifetime of 300 µs. As imaging is performed on the
1S0 → 1P1-transition, this leads to an increased loss during the imaging process. Recently, a possible
repumping scheme inside a MOT for this state has been identified [97], but it has not been investigated in
tweezers yet. Furthermore, off-resonant excitation from 3P1 to 5s5d3D2 by trap photons can also lead to
atom loss during cooling or imaging [47]. The currently established way is therefore to combine 515 nm
with a second (near-infrared) wavelength with fewer loss channels at the expense of shallower traps.

813 nm 813 nm is the most well investigated trapping wavelength for strontium, as the differential
light shift for the 1S0 → 3P0-transition in 87Sr vanishes here. In result, it has been investigated for
almost two decades for the creation of optical lattices and lattice clocks with strontium [98, 99] and
in recent years also for single strontium atoms in optical tweezers [48] and tweezer clocks [53, 55].
Compared to 515 nm, 813 nm is red-detuned to all lower-lying transitions which closes the loss-channels
mentioned above and reduces the loss during the imaging process. However, the lower polarizability and
larger wavelength also leads to a high power requirement per trap (or shallower traps at similar powers).
Although we currently do not plan to work with 87Sr and the 3P0 clock state, working at 813 nm keeps
this as an option for the future.

532 nm 532 nm can be seen as an alternative to 515 nm, where similarities include the short
wavelength and large polarizability but also the loss-channels. The largest limitation compared to 515 nm
is the fact the condition of a vanishing differential light shift cannot be realized which blocks access to
the experimental tools described above. The benefit that could compensate for this drawback is the fact
that 532 nm is a common wavelength used in other cold-atom experiments to create dipole traps, and
high-power single-mode lasers and optical elements are readily available. Up to now, strontium has only
been investigated in low NA tweezers [100] and the cooling measurements in this work are therefore the
first time where strontium is investigated in high NA tweezers at this wavelength. This makes 532 nm a
more "experimental" choice but progress at this wavelength for (strontium) tweezer experiments could
be of great benefit for the community in the future.

Mentionable future options In addition to the wavelengths mentioned above, two additional
candidates that (to our current knowledge) have not yet been explored, are 915 nm and 1 064 nm. First,
1 064 nm could be a viable candidate for replacing 813 nm, especially if the clock state in 87Sr is not of
interest. 1 064 nm is a common wavelength in cold-atom research and thus shows similar availability for
optical components and high-power single-mode lasers as 532 nm. Compared to 813 nm, 1 064 nm has a
positive Δ𝛼 for 1S0 → 3P1 which requires a cooling scheme similar to 532 nm. A lower polarizability
than 813 nm requires even more power per trap, but on the other hand lasers with several tens watts of
output power are available. The benefit would therefore be similar to 532 nm: Progress at an established
wavelength which could lead to reduced complexity and costs. Secondly, the second zero crossing for Δ𝛼
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at 915 nm could be used to perform resolved sideband spectroscopy and cooling at this wavelength. This
makes 915 nm the most interesting candidate as an alternative to 813 nm from a scientific perspective.
The largest drawback is the wavelength itself where high power (≳ 5 W) lasers are not commercially
available. However, 915 nm also lies inside the range of the anti-reflective optical coatings of the vacuum
windows and the objective and the latter shows nearly diffraction limited performance at this wavelength.
It is therefore possible to add the wavelength later on, to investigate it alongside other options.

4.2 Trap potential simulation - Fourier optics calculations

Just as the polarizability extends the rather idealized model of a two-level system to a real atom, this
section is dedicated to exploring the experimental realization of an optical tweezer where clipping at
finite-sized apertures or finite laser powers has to be considered. Starting from Equation (2.10) with
𝑉 ∝ 𝐼, the potential close to the center can be approximated as harmonic by:

𝑉 (𝑟, 𝑧) = 𝑉0 +
1
2
𝜕

2
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2

�����
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2
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2

�����
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2 + . . . , (4.6)

which is shown in Figure 4.2. Comparing the coefficients for the radial and axial direction with the
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Figure 4.2 – Harmonic approximation of a Gaussian potential in radial and axial direction for 𝑤0 = 0.8𝜆.
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By measuring both trap frequencies we can then fully characterize the trap by calculating the waist

𝑤0 =
𝜔𝑟

𝜔𝑎

𝜆
√

2𝜋
(4.8)

and in result the trap depth 𝑉0 with either frequency from Equation (4.7). Different methods to measure
the trap frequencies exist, and we will make use of resolved sideband spectroscopy in Section 5.4.1 and
parametric excitation in Section 5.7.

We would now like to investigate which values for experimental parameters, for example the potential
depth 𝑉0 or the waist 𝑤0, are preferable. In order to do this, we define the efficiencies 𝜖𝑟 and 𝜖𝑎 as the
second derivative of the potential at the position of the focus. This quantity combines the trap depth, trap
frequency, the spot size and the power loss and can therefore be used to determine the parameters which
maximize performance. In order to determine 𝜖𝑖 , however, we first have to understand how to calculate
the trapping potential from an initial electric field distribution 𝐸 . We already know from Chapter 2, that
a lens is required to achieve a small focal spot and we will quantify this statement now.

4.2.1 Numerical calculations - the Fourier lens

Focal length f f

Fourier plane Image plane

Figure 4.3 – An idealized lens performs a Fourier transformation F of the electric field distribution in the front focal plane(Fourier plane) to the back focal plane (image plane).
Starting from Kirchhoff’s diffraction law, it can be shown that (with certain assumptions) an object

that imprints a parabolic phase-change on an incident wavefront performs the mathematical operations
of a Fourier transformation. The parabolic phase-changing object is much more commonly known as a
lens. Appendix A summarizes the main results of the theory of Fourier optics where we also briefly
comment on the numerical methods. In summary, the electric field distribution (and therefore the
intensity distribution) in the focal- or image-plane is related to the electric field distribution in the lens-
or Fourier-plane by a Fourier transformation. We can therefore numerically compute the electric field
of a focused beam from the electric field distribution of the incident beam and investigate the trapping
parameters derived from the spot size.
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4.2.2 Truncation effects

The calculation from the beginning of this section holds true, if the intensity profile can be assumed to be
Gaussian without significant truncation effects3. In reality, optical elements have finite clear apertures,
always resulting in truncation to some degree. We can describe this truncation by a truncation factor 𝜁 ,
which we define as the ratio of beam waist 𝑤 (1/𝑒2-radius) to aperture radius 𝑟ap, thus 𝜁 = 𝑤/𝑟ap. The
limiting aperture can be located anywhere in the beam and essentially determines the NA of the final lens.
We can therefore assume, that the aperture is given by the final lens as this determines the achievable
spot size. In this picture, the ideal Gaussian beam is described by 𝜁 = 0 and a flat-top beam is described
by 𝜁 = ∞. The former produces a perfectly Gaussian spot size, while the latter produces a sinc2-shaped
intensity profile in one dimension and an Airy disk in two dimensions. The Gaussian beam case has
perfect power efficiency as no power is clipped at the aperture, but it does not produce the smallest
spot size, leading to lower trap frequencies. On the other hand, the flat-top beam achieves the smallest
possible potential curvature in the center, at the expense infinite power loss. Furthermore, side-fringes of
the Airy disk might form unwanted additional potentials which can lead to interference between traps.
These two cases can therefore be seen as limiting cases of the efficiency scale defined above, and in
reality on would therefore like to work in an intermediate regime between the two aforementioned edge
cases, balancing power loss, spot size and side-fringe depth.
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Figure 4.4 – Radial (a) and axial (b) intensity distribution of a focussed Gaussian beam with initial waist 𝑤 truncated at anaperture with radius 𝑟ap for different truncations ratios 𝜁 = 𝑤/𝑟ap.
To determine the value of the truncation ratio that we would like to work with, we calculate the radial-

and axial intensity profiles in the focal plane numerically for a beam with size 𝑤, clipped at an aperture
with radius 𝑟ap, focussed down by a lens with focal length 𝑓 . From the intensity profile we can extract
the trap depth 𝑈, trap frequency 𝜔 and efficiency 𝜖 , all in arbitrary units. The power loss L is given by
the transmitted power of a Gaussian beam through a circular disk. The efficiency 𝜖 combines the trap
depth 𝑈, given by the power loss L and the trap frequency 𝜔, given by the curvature of the potential.

3 We only consider beams with an initial intensity profile following the Gaussian fundamental mode TEM00.
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Figure 4.5 – Trap performance considering diffraction at a two-dimensional aperture for different truncation ratios 𝜁 . Fixedparameters are an NA of 0.7 and a wavelength of 515 nm. Left: Trap depth, trap frequencies together with the power loss
L. For low 𝜁 , no power is lost but the achieved trap frequencies are also low. For large 𝜁 , the trap frequencies increase buttrap depth decreases due to increasing power loss. Center: Deriving the efficiency 𝜖 and confinement 𝜔𝑟/𝜔𝑎 from the trapdepth and the trap frequencies shows that 𝜁 ∈ [0.6, 1.0] achieves the best confinement for close to maximum efficiency.
Right: Comparison of the 1/𝑒2-waist extracted from a simulation and the waist calculated from 𝑤0 = 𝜔𝑟/𝜔𝑎𝜆/

√
2𝜋 for awavelength of 𝜆 = 515 nm. The green curve shows the ratio 𝛽 of the simulation and the waist calculated from the aspect ratio.The violet curve shows a common approximation [101] and the grey dashed line shows the limit for 𝜁 → ∞ of 310 nm.

We calculate 𝑈, 𝜔, L and 𝜖 from the intensity distribution in the focal plane 𝐼 (𝑟, 𝑧, 𝜁) by:

𝑈 (𝜁) = 𝐼 (0, 0, 𝜁) (4.9)

𝜔𝑖 (𝜁) =

√︄
− 1
𝑈 (𝜁)

𝜕
2
𝐼 (𝑟, 𝑧, 𝜁)
𝜕𝑖

2

�����
𝑟=0,𝑧=0

for 𝑖 ∈ {𝑟, 𝑧} (4.10)

L (𝜁) = exp
[
−2/𝜁2

]
(4.11)
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𝜕𝑖
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�����
𝑟=0,𝑧=0

for 𝑖 ∈ {𝑟, 𝑧} (4.12)

where we assume 𝜔𝑧 = 𝜔𝑎. The electric field on the lens is given by

𝐸 (𝜌) = 1√︃√︁
𝜋/2𝑤

exp

[
− 𝜌

2

𝑤
2

]
× 𝑃(𝜌) with 𝑃(𝜌) =

{
1 |𝜌 | < 𝑟ap

0 else
(4.13)

for a beam of waist 𝑤, where 𝜌 is the radial coordinate in the Fourier plane. The resulting intensity
distribution in the focal plane is then given by:

𝐼 (𝑟, 𝑧) = |F {𝐸} |2 (𝑟, 𝑧) . (4.14)

We have dropped the 𝑤-dependence since we start with a normalized electric field in Equation (4.13)
before applying the truncation and therefore only the truncation ratio 𝜁 matters. The result is shown in
Figure 4.5. It can be seen, that for 𝜁 ≲ 0.4 virtually no power is lost, but the trap frequency also only
increases to about 60 % of its maximum value. Maximum efficiency is reached for 𝜁 = 1.0 (𝜁 = 0.95) for
the radial (axial) direction where the combination of trap frequency to trap depth reaches its maximum.
After that point, the trap frequency does still increase but at the expense of power losses larger than
∼40 %. The strongest confinement, expressed by the ratio of trap frequencies 𝜔𝑟/𝜔𝑎, is reached at
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𝜁 = 0.65, far below the Airy limit of 𝜁 → ∞.
To still be able to estimate the trap size and depth from the trap frequencies𝜔𝑟 and𝜔𝑎 via Equation (4.8),

we introduce a scale factor 𝛽 (𝜁) that corrects for the deviation from the Gaussian case. We determine
𝛽 (𝜁) by extracting the ratio 𝜔𝑟/𝜔𝑎 and the 1/𝑒2-waist 𝑤0,𝑠 by simulating the intensity distribution for
different 𝜁 . The scale factor 𝛽(𝜁) is then given by the ratio 𝑤0, 𝑓 /𝑤0,𝑔 where 𝑤0,𝑔 is calculated from
Equation (4.8). The rightmost plot in Figure 4.5 shows the result for a wavelength of 515 nm. In the
limit of 𝜁 → ∞, a possible approximation for the waist is 𝑤0,approx ≈ 0.84𝜆𝑁 with the 𝑓 -number 𝑁
and the wavelength 𝜆 [102]. 𝑁 is given by 𝑓 /𝐷 with the focal length 𝑓 and diameter of the lens 𝐷 and
can therefore be calculated from the NA as 𝑁 = 1

2NA . Using this approximation we calculate a waist
of 𝑤0,approx ≈ 310 nm which is shown as the black dashed line in Figure 4.5 and compares well to the
simulation.

The simulation represents the best-case scenario, as every real optical system will contain additional
aberrations due to misalignments or imperfect optical elements. In this case the simulation can serve as
a benchmark to identify misalignments in the optical setup.

4.3 Liquid-crystal based spatial light modulation

Coverglass

Incoming wavefront

Transparent electrode

Electrodes Liquid crystals Dielectric coa�ng

Reflected wavefront

Figure 4.6 – Liquid-crystal based spatial light modulator. Applying a voltage to the electrodes rotates the liquid-crystals,leading to a change in refractive index and therefore optical path lengths. The back electrode is divided into pixels, similar toa liquid-crystal display (LCD), so a spatially varying phase pattern ("phasemask") can be imprinted on the incident wavefront.
The LCoS SLM is a type of liquid crystal display and the general working principle is shown in

Figure 4.6. By changing an externally applied voltage, the orientation of the crystal can be rotated, which
rotates the polarization axis and in turn changes the refractive index due to the crystal’s anisotropy. To
achieve a locally varying refractive index, the electrode on the backside is separated into pixels, with
common pitches around 10 to 20 µm, resulting in filling fraction > 95 %. When light passes through the
crystals, the phase-delay of the wavefront depends on the local crystal orientation, which can be used
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to change the wavefront globally. As the liquid crystal layer itself is not pixelated, the effect washes
out at the border between adjacent pixels where the electric field is the sum of values at the center of
the pixels. This so called pixel-crosstalk limits the achievable efficiency of the device. To sustain the
dynamic operation the pixels are toggled with frequencies around 1 kHz, otherwise a stable crystal
orientation cannot be maintained. The device is used similar to a standard LCD monitor, where an image
or phasemask is written to the device, which changes the voltage at every pixel electrode. In contrast to
standard RGB(A) images, the phasemasks are monochromatic ("grayscale") with an 8 bit modulation
depth. The direct mapping of the digital value to applied voltage, which in turn results in a nonlinear
change of the refractive index, requires a linearization step, see Section 4.3.1.

For this work we use two SLMs, a full-HD 1 920 px × 1 152 px SLM by Meadowlark4 for 785 nm5

and an older model by Hamamatsu6 with a resolution of 800 px × 600 px with a dielectric coating
for (800 ± 50) nm. The following calibration was carried out for the SLM by Meadowlark at 515 nm
and 813 nm. During the measurements in Chapter 5, we noticed a strange behavior with the SLM by
Meadowlark where the pattern was not stable in time anymore. This resulted in fluctuations in the
tweezer arrays and finally atom loss. Meadowlark could not determine the root cause of the issues,
and we assume that the SLM is damaged in a way that results in increased phase noise, rendering it
inadequate for tweezer projection. We therefore continued with the SLM from Hamamatsu.

Fourier plane operation

Incident beam

SLM

Fourier plane Image plane

Focal length f f

0th order

-1st order

+1st order

Diffrac�on

Figure 4.7 – Fourier plane operation of the SLM. A diffractive phase grating on the SLM is used to create different diffractionorders, where the +1st order is aligned to the optical axis of the Fourier lens. With the depth of the grating and its slope theposition and amplitude of a diffracted spot can be controlled. Unwanted orders can be blocked by an aperture in the focalplane.
Two methods exist to operate the SLM, one directly in reflection and one in the Fourier plane. The

difference is, that in the first case the SLM has to operate in the far-field, which is impractical for our
application (see Appendix A). In Fourier plane operation the SLM is placed in the front focal plane of a
lens and illuminated with a collimated beam. The incident angle should be as small as possible, otherwise

4 HSP1920-600-1300-HSP8
5 The SLM has a broadband coating and is usable between 500 nm and 1 000 nm. The backplane is made from aluminium

which reduces the reflectivity to around 60 % around 800 nm.
6 X10468-02
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the efficiency will be reduced as a photons passes through multiple pixels before being reflected by the
backplane. As described in Section 4.2.1, we calculate the electric field distribution in the focal plane
by Fourier transforming the electric field distribution on the SLM. In this case, the beam amplitude
distribution is given by the electric field modulus of the laser beam. The phase-pattern, however, is given
by the phasemask displayed on the SLM. A key result that helps to understand the operation of the SLM,
is the relation between the deflection angle 𝛼 and the displacement Δ𝑥 it causes in the image plane (see
Appendix A.1.4). By changing the slope of the wavefront written to the SLM we can therefore move the
focus in radial direction in the focal plane.

It is important to ensure that the mapping from the grayscale levels of the digital phasemask to
the analog pixel voltage (and in turn the phase delay of the pixels) correctly matches the expectation.
Furthermore, the phase pattern we apply later on to create tweezer arrays only yields the desired result if
the wavefront of the diffracted laser beam does not have other contributions. The latter could stem from
optical aberrations in the system and can severely alter the change of the electric field distribution in the
focal plane.

The first step, before creating any tweezers or tweezer arrays, is therefore to calibrate the SLM for the
wavelengths used in the experiment to ensure it performs as intended.

4.3.1 Calibration

As mentioned before, the first calibration requires us to determine and correct the linear mapping from
[0, 256) → [0, 2𝜋). This calibration is only necessary for the Meadowlark SLM, as the Hamamatsu
SLM is already internally calibrated for the correct wavelength.

In a second calibration step, we need to measure the wavefront interferometrically, and we use the
result as a correction that we apply to the SLM to flatten the wavefront. Compared to the first calibration
step, this one applies to both SLMs.

4.3.1.1 Phase response

To measure the mapping from [0, 256) to [0, 2𝜋), we make use of a binary grating and the associated
change in intensity when the depth of the grating is changed. Imagine a phase grating like the one shown
in Fig. 4.8. By varying the depth of the grating Δ𝜙 = 𝜙max − 𝜙min, the intensity in different orders will
change. Figure 4.9(a) shows the dependence of the 1st- order intensity on Δ𝜙. The functional form of
this variation is that of a squared sine and can be intuitively understood by the fact that after Δ𝜙 = 𝜋 is
reached, the effective grating depth decreases again, until a flat wavefront is reached at Δ𝜙 = 2𝜋 (see also
end of Appendix A.3). It can be also seen, that the measured intensity dependence starkly differs from
the expectation, where the first minimum, corresponding to a grating depth of 2𝜋, is already reached at
∼ 160 compared to 256. Additionally, the peak which corresponds to a grating depth of 𝜋 is not reached
at the expected value of 128 but also not at 160/2, signalling the nonlinearity of the mapping.

In order to correct for this nonlinearity, a lookup table (LUT) is generated which maps the 8 bit input
value to the correct output-value that linearizes the pixel stroke. For our Meadowlark-SLM , the 8 bit
input value is internally converted to a 11 bit value. This is necessary to preserve the full 8 bit resolution
once the linearization LUT is applied. If we were to correct the mapping in software, we would reduce
our resolution by about one third (160/255). By expanding to 11 bit in hardware, we still have more
than four times of the required phase levels left (2/3 · 211 ≈ 1365).
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Figure 4.8 – Binary phase grating in the SLM plane (a) and the image plane (b).
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Figure 4.9 – (a) Shows the expected and measured first order intensity dependence on the binary grating depth. The expectedfunction form follows a sinusoid. The deviation in the measured intensity can be explained by the (spatially varying) non-linearphase response of the liquid crystals. (b) To determine the spatial dependence, the relevant area of the sensor (blue square)sensor is divided into smaller areas (checkerboard pattern) which are then measured sequentially. The checkerboard patternis the result of a superimposing two binary grating along two orthogonal directions. The red circle shows the aperture that isused for tweezer operation.

The linearization step will procede in a two-step process. The center region of the sensor is divided
into 9 × 9 smaller sections7 as shown in Figure 4.9(b). In a first step, we will compensate for the
nonlinearity on a global level by averaging the measurements from all subregions, but as the nonlinearity
varies from pixel to pixel, we have to repeat the correction locally.

7 For the center square area of the SLM of 1 152 px × 1 152 px this results in patches of 128 px × 128 px.
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Global correction To extract the underlying (averaged) phase, the inverse of the analytically known
form is applied:

𝜙 = 2 arcsin(
√︁
𝐼/𝐼max), (4.15)

where 𝐼/𝐼max is the intensity normalized to the maximum value. Due to slightly different nonlinearities,
the sum of many pixels will show a dephasing effect, which in turn will produce a curve between 0 and
𝜙max < 2𝜋. To correct for this, the phases are rescaled such that 𝜙max = 2𝜋.

Figure 4.10 shows the computed correction for different wavelengths and Figure 4.11(a) shows the
dependence with and without the global lookup table applied. It can be seen that although the endpoints
of the intervals [0, 256) → [0, 2𝜋) are now well aligned, the inner part varies significantly for different
regions on the sensor. A second fix-point for the calibration is the peak position which should lie at 𝜋=̂128.
The deviation from the 𝜋-position with and without the global correction is shown in Figures 4.11(b)
and 4.11(d). It can be seen, that the correction lowered the difference from the 𝜋-position from (68 ± 5) %
to (13 ± 8) %. We will therefore now apply a second correction where we again divide the sensor in
smaller segments and determine the nonlinearity locally without the averaging of the first step.
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Figure 4.10 – Lookup tables compensating the nonlinear pixel response for different wavelengths. The data for 785 nm issupplied by Meadowlark.

Local correction To further linearize the mapping, we apply a second, spatially resolved LUT which
maps input values in the interval [0, 256) to output values in the interval [0, 256). This LUT is only
applied in software, i.e. the grayscale values in a phasemask are replaced before it is written to the SLM
where the hardware LUT is applied. This slightly reduces the resolution as some of the grayscale values
are mapped to the same value. We measure the loss of resolution to be below 5 %, by counting the
average number of unique output grayscale values in the calibrated region. With the global and local
correction we now get a deviation of (5 ± 5) % from the real 𝜋-position .
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Figure 4.11 – Measurement of the first order intensity dependence on the applied grayscale level without correction (a)/(b),with a global correction (c)/(d) and with a global and a local correction (e)/(f). The lower row shows the spatially resolveddifference between the measured and the real 𝜋-position at a grayscale value of 128 in percent. The red circle shows thecenter aperture that is used for tweezer creation. From initially (68 ± 5) %, the deviation is reduced to (13 ± 8)% by the globalcorrection and to (5 ± 5) % with the local correction.

4.3.1.2 Wavefront flattening

Aberrations present in every real optical system can lead to severe image distortions which in our case
manifest in low intensity efficiencies and imperfect point spread functions for the tweezer array. In the
following section, we will present a method to measure and correct these aberrations. It is based on the
idea described in [103], where interference of light refracted by different regions of the sensor is used to
directly measure the wavefront. Subtracting this measured wavefront from the pattern on the SLM can
reduce the peak-to-peak wavefront deviation from ∼ 𝜆 down to 𝜆/108.

Different regions of the sensor are compared to a fixed reference which results in a map of relative
phases (a constant global offset can be ignored). To isolate the contribution of different sensor regions,
we write a blazed phase grating to the regions of interest ("patch") and observe the interference pattern
in first order. Blazed gratings play a key role for the operation of the SLM as they allow to separate
different diffraction orders with higher efficiencies than a binary grating. More details for the different
gratings are given in Appendix A.3. To measure the wavefront, we now have to extract the phase of the
interference pattern for every two-patch-image.

Figure 4.12(a) shows the two patches on the sensor and 4.12(b) shows the corresponding interference
pattern in the image plane. We now want to extract the phase of the interference pattern reliably and

8 This value depends strongly on the number of optical elements and the length of the beam path. 𝜆/10 can be reached in the
first Fourier plane after the SLM, however for the full experimental setup we measure a value 𝜆/6 right before the vacuum
chamber.
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(a) (b)

Figure 4.12 – (a)Two gratings in SLM plane. (b) Interference pattern in image plane. We find no difference in performancebetween circular- and square-shaped gratings.

efficiently. For this we model the pattern using the following functional form:
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×
[
1 + 𝐶 cos
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(
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)
+ 𝑘y

(
𝑦 − 𝜇y

))
+ 𝜙

)]
, (4.17)

where 𝐴 is the amplitude and 𝐶 is the contrast of the pattern. The above equation is only an
approximation, as the real envelope is either an Airy-disk for circular patches, or a two-dimensional
sinc2 for square/rectangular patches instead of a two-dimensional Gaussian function. This leads to
deviations in the wings but as it turns out we can neglect that. We can now try to fit the image using a
two-dimensional least-square algorithm. In order for the fit to work, we have to estimate initial values for
the fit parameters, especially the frequency components 𝑘x and 𝑘y, as precisely as possible. The latter
can easily be determined from a two-dimensional numerical Fourier transform (FFT).

(a) (b)

Figure 4.13 – (a) Moving patch positions which maximize the 𝑘-vector components. (b) Center positions
To avoid scanning the whole Fourier space to extract the frequencies we estimate the frequency from
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the images alone without any dependence on external parameters. The interference pattern will have the
largest | ®𝑘 | if the distance between the patches on the sensor is maximal. We can therefore look at the
four corner patch positions (see Fig. 4.13(a)) to estimate the maximum 𝑘-vector components in units of
the FFT pixel spacing. From the position of the moving patch compared to the reference patch in the
center, we can then estimate the magnitude and sign of the 𝑘-vector components to restrict our search to
a small area in the output of our FFT. In principle, it would now be possible to also extract the phase at
the detected position. However, we find that even for perfectly accurate data without any kind of noise9

determining the phases from an FFT is unreliable. We therefore still have to fit the original image to
extract the phase. Given the fact that we already have the frequencies, we can fit the interference pattern
but with the frequencies as fixed parameters this time. It turns out that this indeed works well both in
terms of runtime speed and reliability of the fit.

There are several optimizations we can apply to Eq. (4.17) to reduce correlations between the fit
parameters to accelerate the computation. The simplest one is to combine 𝜙x and 𝜙y into a single
phase 𝜙. However, there is an important second simplification. The cosine term depends on three free
parameters

(
𝜇x, 𝜇y, 𝜙

)
which are therefore strongly correlated. We can reduce the corrlations by making

the substitution 𝜙
′ := −2𝜋

(
𝜇x𝑘x + 𝜇y𝑘y

)
+ 𝜙. That way, we only have a single free parameter in the

cosine as 𝑘x and 𝑘y are fixed and Eq. (4.17) simplifies to:
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Of course we have to undo this replacement after the fit, otherwise our phase would not be referenced
to the center of the interference pattern. We find, however, that it is not precise enough to reference
every phase to the current interference pattern and that we have to determine the global reference point
to which we reference all phases. We get an initial value from the four center-patches which overlap
with the reference patch (see Figure 4.13(b)). These images show only one antinode and by averaging
the positions of the maxima we get a good starting point ®𝜇est for the real reference position. We can now
rereference to this position using the following transformation:

𝜙new = 𝜙 + 2𝜋®𝑘 ·
(
®𝜇real − ®𝜇fit

)
mod 2𝜋 (4.19)

where ®𝜇real is the real center position and ®𝜇fit =
(
𝜇x
𝜇y

)
is the center position extracted from the respective

fit. We vary ®𝜇real around ®𝜇est while calculating the global standard deviation of the pattern. The real
reference position will be the position that minimizes the global standard deviation of the wavefront.
This procedure is justified by the following argument: If we assume a well aligned optical system, the
aberrations (see Appendix A.4 and Figure A.7) are rotationally symmetric about the optical axis. By
referencing all phases to a point radially displaced from the optical axis, we introduce an additional
phase gradient along the displacement vector. This gradient is not radially symmetric and can therefore
not cancel the "real" aberration in the system, thus enhancing it.

Finally, we repeat the measurement for different positions of the static "center" patch and determine
the wavefront for two reference positions. To determine the actual wavefront, the raw measurement has to

9 We generated the interference pattern artificially, by performing a numerical FFT on the SLM plane electric field distribution.
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be phase-unwrapped, expanded to a single pixel level and then smoothed. We unwrap the phases using a
Python package called unwrap and apply a Gaussian filter with a standard deviation of half the patch size.
This correction can now be subtracted from the phasemask written to the SLM. The measured wavefront
with and without correction is shown in Figure 4.14. Inside the aperture, the peak-to-peak wavefront
deviation is reduced from 𝜆 to 𝜆/6 and the standard deviation reduces from 𝜆/7 to 𝜆/40. Figure 4.15(a)
shows the peak-to-peak deviation depending on the radius of the center disk. It can be seen, that an error
of no more than 𝜆/10 is maintained until 75 % of the maximum radius, where it rises to 𝜆/6 at the end.
Further reduction is possible by repeating the measurement and combining the resulting corrections. We
find, however, that noise in the measurement data increasingly becomes an issue, especially along the
edges of the center aperture. At this point, the measurement and evaluation take a significant amount of
time, but peak-to-peak deviations of 𝜆/10 can be reached. The correction is stable for weeks but only on
the 𝜆/6 level. For this work, we perform two iterations to reach the 𝜆/6 level which, compared to the
error the alignment of the objective to the vacuum window causes, is more than enough.

Without correction With correction

0.0 0.2 0.4 0.6 0.8 1.0
Phase/

Figure 4.14 – (Left)Wavefront measurement without correction and with correction (right). Inside the aperture the peak-to-peak deviation is reduced from 𝜆 to 𝜆/6 and the standard deviation reduces from 𝜆/6 to 𝜆/40.
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Figure 4.15 – (a)Wavefront deviation (peak-to-peak and standard deviation 𝜎) depending on aperture size. (b) Point spreadfunction with (top) and without (bottom) wavefront correction. Different magnifications have been used, leading to differentresolutions.

4.3.2 Tweezer array generation

Displacing the beam in the image plane can be achieved by a blazed grating in the fourier plane. Hence,
the superposition of a set of blazed gratings with different slopes and angles creates an array of foci
in the image plane. The problem with this approach is, that it leads to a poor homogeneity of the
intensity distribution in the array. The reason for this is, that the pattern is sensitive to small deviations
of the phases and that the computation does not account for interference effects. A variety of different
approaches have been developed and a good overview of the results is given in [104]. For this work,
we will use an algorithm based on an iterative feedback, known as the Gerchberg-Saxton algorithm
(GS-algorithm) [105]. Since its initial proposal in 1972, several modifications to increase convergence
rate and quality of the final image have been developed. We will first discuss the basic algorithm and
two of these extensions afterwards.

4.3.2.1 Standard Gerchberg-Saxton algorithm

Figure 4.16 shows the general layout of the phase-retrieval algorithm. We start in the upper left corner
in the SLM plane. Here, the electric field modulus is given by the radial intensity distribution of the
incident laser beam. The phase distribution is initially assumed to be random and we find that a flat
phase distribution can lead to significantly longer convergence times. The electric field distribution is
propagated to the image plane with a two-dimensional numerical Fourier transformation. We compare
the amplitudes of the field at the desired trap positions, and if a certain difference threshold is crossed,
the computation is stopped. Otherwise, we replace the amplitudes by the target amplitudes while keeping
the phases and transform back to the SLM plane. Here, we again replace the amplitudes by the intensity
distribution of the laser beam and again keep the phases. The phasemask is the free parameter of the
optimization process.

The SLMs, that we use, have a center aperture diameter of around 1 000 px, which we further pad
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Figure 4.16 – Iterative Gerchberg-Saxton phase-retrieval algorithm [105]. The algorithm starts with a random phase distribution
𝜙0 and an amplitude distribution 𝐴0 given by the beam. As long as the desired target intensity distribution is not sufficientlywell approximated, it projects between the SLM plane and the focal plane connected by a Fourier transformation. In the focalplane the calculated amplitude distribution �̃� is discarded and replaced by the target intensity distribution √︁

𝐼𝑡 . In the SLMplane the calculated amplitude distribution 𝐴 is discarded and replaced by the electric field modulus of the laser beam 𝐴0.The phase distribution 𝜙 is the parameter to be optimized.

to 8 192 px10 to increase the resolution in the image plane ("zero padding", see Appendix A.2.2).
With a complex float or double value for every pixel, the SLM- and image-plane both use around
16 B · (8192)2 ≈ 1 GB of memory. To compute the Fourier transformations efficiently, we implement
the algorithm in C++ and compute the Fourier transformations on a graphics processing unit (GPU) with
the CUDA toolkit11. This decreases to computation time by a factor of 50 to 100 to around 100 ms per
iteration (compared to a CPU implementation), depending in the GPU.

We quantify the homogeneity of the array with the relative standard deviation 𝑐𝑣 = 𝜎/⟨𝐼⟩, where 𝜎

is the standard deviation of the trap intensities and ⟨𝐼⟩ is the mean peak intensity. For this work, we
assume that all traps have the same size and therefore power and intensity are interchangeable. We will
later see, that this is not true for small spacings where interference between adjacent sites becomes an
issue. Although the standard GS-algorithm is able to produce 𝑐𝑣s below 40 %, this is still far from what
we can achieve at best. We will therefore first discuss the modifications that have been developed to
improve uniformity and convergence rate, before we present the results.

10 Powers of two are computationally desirable for the fast fourier transformation algorithm.
11 https://developer.nvidia.com/cuda-toolkit
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4.3.2.2 Modified Gerchberg-Saxton algorithm

Adaptive target amplitude weighting The first modification is to let the algorithm adapt to the
current result, that is, it actively updates the target intensities based on the current intensities. This is
also known as the "adaptive Gerchberg-Saxton algorithm" and has been presented in [106, 107]12. To
increase the resulting homogeneity, we replace the amplitudes in the image plane by a scaled version of
the target intensities, see Figure 4.17.

I) II)

III) IV) Result

Target intensity Real intensity

Figure 4.17 – Visualization of the weighting process. I) Initially, all target intensities are equal. II) After an iteration of thealgorithm, we compare the current intensities to the target intensities. III) Compared to the standard GS-algorithm, the targetintensities are updated according to the current intensities. The updated target intensities are then used during the updatestep in the focal plane in Figure 4.16. IV)Weighting the target intensities improves the resulting homogeneity.
We calculate the weighting factor for each trap 𝑖 according to:

𝑤𝑖 =
1

1 − 𝑔0

(
1 −

(
𝐼
′
𝑖

𝐼𝑡,𝑖

)𝑔1
) (4.20)

where 𝐼
′
𝑖 is the current intensity of the 𝑖−th tweezer, normalized to the mean of the current intensities.

Similarly, 𝐼𝑡 ,𝑖 is the target intensity of tweezer number 𝑖 normalized to the mean of the initial target
intensities. The gain factor 𝑔0 determines how much of the current result is mixed into the new target
intensity. In cases where all target intensities are equal, 𝐼 ′𝑖/𝐼𝑡 ,𝑖 simplifies to 𝐼

′
𝑖/⟨𝐼⟩. In contrast to [106],

we include a second gain 𝑔1 which allows us to change the strength of the feedback13. We find that 𝑔1
becomes useful to increase convergence rates, if data from the trapped atoms is used for further intensity
homogeneization (see Section 5.6).

12 These are also the references that we will compare our results to.
13 We also considered to use the field amplitudes instead of intensities but found it to perform worse.

51



Chapter 4 Optical potentials for single atom trapping

Phase fixing The second modification, referred to as phase-fixing, increases the convergence rate at
the cost of a lower modulation efficiency14 and has been described in [107].

The weighting step only rescales the amplitude depending on the current amplitude or intensity, but
the computation is also sensitive to changes of the phases. Changes in the latter are thus not accounted
for but can have large influences on the uniformity and convergence rate, as they appear in the exponent
of the electric field distribution. A possible solution to this problem is to keep the phases 𝜙𝑖 for each
trap constant while rescaling the amplitudes. This leads to a better homogeneity which is also achieved
with less iterations, but it reduces the modulation efficiency by a few percent. A common approach is
therefore to fix the phases after a certain number of iterations, or when a certain threshold is crossed.
This greatly improves the final homogeneity, whereas the reduced modulation efficiency can be neglected
compared to other losses in the system. Figure 4.18(a) shows the convergence for a rectangular 30 × 50
array with a spacing of 4𝑤0 with and without the phase fixing. The phase is fixed at a non-uniformity of
3 % which limits the modulation efficiency to about 91 %. It can be seen, that the phase-fixing achieves
about three times better uniformity in one-third of the iterations. Additionally, it can be seen that the
result is deterministic for the same initial random phase distribution. We also compare the convergence
for different weighting factors where we fix the phase at a non-uniformity of 1.5 %. We achieve the best
result with an intensity feedback with gains of 𝑔0 = 1, 𝑔1 = 1, compared 𝑔0 = 0.7, 𝑔1 = 1 in [106] and
𝑔0 = 1, 𝑔1 = 1 with amplitudes instead of intensities in [107]. Despite initial overshoots, we reach the
same non-uniformity faster, as shown in Figure 4.18(b).
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Figure 4.18 – (a) Convergence with and without phase-fixing for a 30 × 50 array with a spacing of 4𝑤0. The phase is fixedwhen 𝑐𝑣 ≤ 3 %. (b) Convergence for the same array as (a) but for different weighting functions. Blue dots show our bestresult, red squares show a computation with parameters from [106] and green triangles show a computation with parametersfrom [107].

4.3.2.3 Camera feedback

Although theoretical non-uniformities of less than 0.5 % can be achieved, in reality the nonuniformity
will be higher due to effects that are not accounted for in the computation, including aberrations in the
optical path and pixel cross talk in the SLM. We therefore perform an additional feedback step where we
14 The modulation efficiency is defined as the fraction of the diffracted light that is modulated into the traps 𝜖 =

∑
𝑛 𝐼𝑛/

∫
𝐼 (x)d2

𝑥.

52



Chapter 4 Optical potentials for single atom trapping

use intensities measured by a camera in the optical setup in the algorithm, once a certain threshold is
reached. We apply the phasemask to the SLM, together with an underlying blazed grating to separate it
from the 0th order. Afterwards, we capture the image with a camera placed in the image plane.

Locating the array To extract the individual intensities 𝐼𝑖, we first have to determine the correct
orientation of the camera image before we have to locate the array in the camera image. This can
be achieved by creating an array without mirror-symmetries for example a character or a word. We
compare the camera image to the orientation of the theoretical intensity distribution and apply the correct
transformation.

To locate the array in the camera image, we make use of a convolution algorithm explained below. The
advantage of this method compared to a peak detection algorithm is that we get the correct assignment
"for free", whereas the peak detection might return the positions in an arbitrary order. We know the
spacing in the image plane in SI-units and from this we compute the spacing in units of the camera pixel
pitch. Next, we define a binary kernel that is non-zero at the tweezer positions and zero everywhere
else. To reduce the influence of noise, we apply a Gaussian-filter to the image which can be thought
of as replacing every pixel by a local average of the intensities around it. We convolve the kernel with
the filtered camera image and determine the position of the maximum value which is equal to the
offset that we are looking for. This offset is the vector that has to be added to the kernel, to maximize
the overlap. The position for each trap is then computed by the sum of the offset vector and the trap
position inside the kernel. To account for small inaccuracies, for example in the spacing, we create
small square lookup-windows around the approximate trap positions and perform a peak detection in
these lookup-windows. We extract the intensities and in turn the amplitudes. The latter are combined
with the phases from the theoretical iteration to be used in the feedback loop. Figure 4.19(a) shows the
convergence of the camera feedback for different weights and array spacings. It can be seen, that the final
non-uniformity is limited by the array spacing and not the feedback function. We also find no difference
in convergence or resulting non-uniformity for arrays of sizes 10×10 to 30×30. Smaller arrays converge
faster but with the same resulting non-uniformity of around ≈ 1.5 %. The latter number has to be taken
with a grain of salt, as it depends on the method that is used to extract the intensity from an image.

To compare our result with values from the literature, we evaluate the arrays from the embedded
images in [106] and [107] where the authors state a 𝑐𝑣 of 1.4 % and 1.4 % respectively. With our method,
we determine a 𝑐𝑣 of 1.9 % for the 10 × 10 array and 2.5 % for the 30 × 50 array. For comparison,
we compute a 𝑐𝑣 of 1.1 % (3.0 %) for a 10 × 10 (30 × 50) array generated with our algorithm. The
distribution of trap depths with and without the camera feedback for the 10 × 10 array is shown in
Figure 4.19(b). It can be seen that the camera feedback significantly reduces the spread of the trap
intensities and the result is comparable to [106].

We conclude that we can achieve the same non-uniformities for different array sizes as observed in the
literature. Care has to be taken to evaluate images with the same algorithm to get comparable results.
Examples of tweezer arrays used in this work are shown in Figure 5.22.

Spacing limitations We find that for spacings below 4𝑤0, the interference between adjacent traps
dominates the intensity distribution and traps start to coalesce, see Figure 4.20. This can be problematic
for e.g. Rydberg- or Hubbard-experiments where small spacings for the blockage or tunneling are
required. These smaller spacings can still be created with an acousto-optic device where each trap
has a slightly different frequency and interference is therefore suppressed. This type of tweezer array
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Figure 4.19 – (a) Camera feedback convergence for a 30 × 50 array for different weighting functions and array spacings.
(b) Distribution of trap intensities with and without camera feedback for a 10 × 10 array. The nonuniformity 𝑐𝑣 (relativepeak-to-peak deviation) was reduced from 6.5% (34.4%) to 1.1 % (5.5%).

generation is covered in e.g. [108].

(a) (b) (c)

Figure 4.20 – Influence of interference between adjacent spots for different lattice spacings. Spacings are (a) 13.5𝑤0, (b)
6.5𝑤0 and (c) 3.5𝑤0. For small separations the traps start to merge due to interference and continuous structures begin toform.

4.3.3 Combined phasemask and diffraction efficiency

The phasemask that is finally written to the SLM is a superposition of several constituents. We combine
the wavefront correction that we calculated in Section 4.3.1.2, a blazed grating to separate different
diffraction orders and the tweezer phasemask. The blazed grating has a period of 7 px leading to a
separation of ≲ 1 mm in the first focal plane (see Appendix A.1.4). Here, a tradeoff between the size
of the image plane and in turn the maximum array size and the diffraction efficiency has to be made.
Details for the grating efficiency can be found in Appendix A.3. A blazed grating with seven phase steps
has a maximum diffraction efficiency of 𝜖 = 94 % which is squared as it is applied along both axes, i.e.
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𝜖
2
= 87 % (see Appendix A.3 and Figure A.5). Together with the zeroth-order diffraction efficiency

(given by the reflectivity of the backplane) of around 97 % and a modulation efficiency of around 90 %
this leads to a fraction of the power of about 75 % that is modulated into the traps. With additional losses
through optics of 80 %, the whole setup has an efficiency of 60 % (The clipping loss at the aperture of
the SLM is around 1 % which is negligible, see Section 4.2).

To fine tune the radial- and axial position of the arrays, we use additional linear phase gradients
and Fresnel lenses, see Appendix A. More generally, a set of orthogonal polynomials, called Zernike
polynomials, can be used to add and compensate certain optical aberrations. An overview of these is
given in Appendix A.4. The superposition of the different contributions and the final result are shown in
Figure 4.21.

+ + + =

Tweezer Gra�ng Wavefront

correc�on

Fresnel lens Combined

Figure 4.21 – Combined phasemask. The grating is used to separate different diffraction orders. In addition, a small phasegradient is used to fine tune radial position of the array. Similarly, the Fresnel lens is used to fine tune the axial position of thearray.

4.4 Acousto-optic spatial light modulation

The second dynamic device that we will use for this work to create spatially varying intensity patterns
is a crossed pair of acousto-optic deflectors (AODs)15. Acousto-optic deflectors or modulators are a
common tool in modern cold atom experiments where they are often used as frequency shifters and
intensity stabilizers or switches. In this work, we will create dynamic optical tweezers with a pair of
crossed AODs. We will see that by changing the frequency of the radio-frequency drive we can displace
the trap spatially in the atom plane, which allows us to pick up and to rearrange atoms at will.

4.4.1 Working principle

AODs are based on Bragg scattering of photons off acoustic phonons inside a crystal [82], which leads
to momentum transfer causing a deflection of the photon. The optimal deflection angle ΘB can be
calculated from the Bragg condition:

ΘB =
𝜆

2Λ
, (4.21)

where the wavelength of the acoustic wave Λ is given by

Λ = 𝑣𝑎/ 𝑓RF. (4.22)

15 DTSXY-400-515 by AA OPTO-ELECTRONIC
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Figure 4.22 – AOD working principle. A radio-frequency (RF) wave is translated to an acoustic wave using a piezo-crystal.Photons of an incident laser beam can scatter on the acoustic wave with wavelength Λ, similar to Bragg-scattering inside acrystal. The deflection-angle and the intensity of the deflected part can be controlled by the frequency and the power of theRF-wave. For optimal efficiency, Θ𝑖 should be tuned to the Bragg angle ΘB = 𝜆/2Λ for an incident beam with wavelength 𝜆.

With the speed of sound 𝑣𝑎 in the crystal we arrive at:

ΘB =
𝜆

2𝑣𝑎
· 𝑓RF. (4.23)

A schematic of the process is shown in Figure 4.22. We already saw in Section 4.2.1, that a change in
angle in the front focal plane of a lens is translated to a change in position in the backfocal plane (see
also Appendix A.1.4). It is therefore possible to tune the output angle Θ𝑜 of a beam by changing the
frequency of the RF-signal. The amount of light that is modulated into the deflected order depends
on the RF-amplitude but also on the frequency itself and the bandwidth of the device16. Compared to
the SLM, which operates on timescales of 100 ms, an RF-frequency can be changed on a microsecond
timescale and we can therefore use the AOD to create a dynamically moveable trap. The functional form
of the change in frequency is of great importance if an atom inside a trap is to be moved, and we will
discuss it in detail in Section 6.1.

We can calculate the displacement by combining Equation (4.23) and Equation (A.22)17. The angle is
changed by the magnification 𝑀 of the optical system which is 𝑀 = 750/150 · 200/100 = 10 in our
case. With 𝜆 = 515 nm and 𝑓 = 13.48 mm we get a displacement of around 1.25 µm/MHz.

We will now briefly describe the principle behind the RF-wave generation using an arbitrary waveform
generator. Afterwards, we discuss a method of intensity stabilization, which is needed to compensate for
changes in the deflected beam power, if the RF-frequency is changed.

16 A common value is a bandwidth of 10 MHz for RF-frequencies around 100 MHz.
17 For 𝜆 = 515 nm, 𝑣𝑎 = 650 m/s for TeO2 and 𝑓RF = 82 MHz we compute ΘB = 1.86◦.
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4.4.2 Arbitrary waveform generation

The pair of crossed AODs is driven by an arbitrary waveform generator18 (AWG). The generation of
different waveforms and the implementation of the atom rearrangement scheme in Chapter 6 is a result of
the intrinsics of the AWG card. To understand the calculation of the different waveforms used throughout
this work, we will first therefore discuss some of the relevant parts of the AWG card and the software
implementation.

The output converter stage of the AWG has a resolution of 16-bit with a maximum voltage output of
±2.0 V into 50Ω. We further amplify the signal with an amplifier19 to achieve a maximum power of
1 W that we apply to the AODs. For 515 to 532 nm the AODs have their maximum diffraction efficiency
at around 82 MHz. The maximum sampling rate of 𝑓𝑆 = 1.25 GHz therefore allows to sample one sine
period with roughly 15 points. For this work, we will only consider the case of driving both outputs, in
which case the data is written in an interleaved format like shown in Table 4.2. Every change in amplitude
and frequency has to be computed explicitly for every timestep 1/ 𝑓𝑆 ≈ 1 ns which requires a substantial
amount of samples to compute even for a few milliseconds. We again implement the computation in C++
making use of CPU-multithreading without GPU-acceleration this time. We find the latter to not be
appropriate for the amounts of data and the more-or-less real-time nature of the streaming process in
Chapter 6. From March 2024 on, a new DDS-mode is available for the AWG-card which simplifies the
implementation greatly as it only requires the computation of values for the amplitude and frequency
without sampling the full waveform. It still has to be seen if this mode can achieve the same stability in
amplitude and frequency as the explicit computation.

sample 0 sample 1 · · · sample N
16-bit data 16-bit data 16-bit data 16-bit data · · · 16-bit data 16-bit data
channel 0 channel 1 channel 0 channel 1 · · · channel 0 channel 1

Table 4.2 – AWG data layout. For every timestep, both channels are sampled and written in an interleaved data format to thecard.

Sequency replay mode

The AWG has several different operating modes that can be used to stream data to the outputs. The
mode we will use is called sequence replay mode where the available memory is divided into 𝑁 different
segments, each with length 𝐿𝑖, where 𝑁 is an integer power of two, that we are free to choose. The
length 𝐿𝑖 of a segment can also be chosen freely but the hardware dictates a minimum size of 384 and
divisibility by 32 (with the maximum size given by the total memory divided by 𝑁 .). The sequence
replay mode then leaves us with the freedom to connect these segments however we want as Fig. 4.23
shows.

Phase matching

To use different segmented signals as building-blocks for more complex sequences we would to like to
arrange them arbitrarily. This requires the phases at the transition from one segment to the next one to be

18 M4i.6631-x8 by Spectrum Instrumentation
19 AA OptoElectronics AMPB-B-34-10.500, 34 dBm, 10 to 500 MHz
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Figure 4.23 – Example of the sequence replay mode. The total number of segments has to be a power of two but not allsegments have to be used. The full memory is divided into the number of segments, but the memory of each segment canalso be used partially and each segment that is currently not active can be updated while the card is running. Segments canloop a specific number of times or indefinitely if the next segment number is set to the current segment number. In thisexample segment will loop until a trigger is detected which will change the frequency in segment 1 before entering an infiniteloop in segment 2.

matched (difference ≲ 𝜋/12) otherwise the RF-intensity will drop inside the modulator. Depending on
the frequency and segment lengths, the phase difference can be anything between 0 and 2𝜋, and we have
to explicitly incorporate this into the computation. One possible solution is to find a segment size 𝐿𝑆

that, together with a certain sampling rate 𝑓𝑆 , allows to sample a certain set of frequencies with a phase
mismatch of 0. Specifically we would like to sample frequencies 𝑓 = 𝑓𝑏 + 𝑛Δ 𝑓 for a base frequency 𝑓𝑏
and a "resolution" of Δ 𝑓 . We determine how many full wave sine samples with frequency 𝑓𝑏 we need to
fill a memory segment with a size of an integer multiple of the minimum memory size 𝑀min by:

𝑛 =

⌈
𝑀min × 𝑓𝑏

𝑓𝑆,max

⌉
. (4.24)

For example, for a base frequency of 𝑓𝑏 = 80 MHz and the maximum sampling rate 1 250 MHz
we compute 𝑛 = ⌈24.6⌉. To get an integer value we scale the sampling rate which in this case is
𝑓𝑆 = 1 228.8 MHz. The segment length now depends on the desired frequency spacing Δ 𝑓 . We compute
the number of samples per channel (twice the segment size) as 𝑁 = 4 𝑓𝑏

𝑛Δ 𝑓
𝑀min = 49152 for a frequency

resolution of 100 kHz. This setup works well for single frequencies or superpositions but not if a
frequency is changed continuously in time. The latter becomes important for the rearrangement of atoms
and we will discuss a solution for that case in Section 6.1.2.

4.4.3 Deflection efficiency and passive intensity stabilization

When using the AODs to create foci at different positions in the image plane, it is important to ensure
a constant trap intensity. The bandwidth of the AODs, together with the output stage of the AWG
card, yields a frequency dependent maximum amplitude that we have to compensate for, as seen in
Figure 4.24(a). An active intensity stabilization cannot be used in this case, as we would like to perform
amplitude ramps in combination with changing the frequency, so we decided for a passive stabilization.

The first approach we tried was to fit the deflected intensity 𝐼 ( 𝑓𝑥 , 𝑓𝑦) with a two dimensional function.
Converting the measured intensity back to a correction however did not work reliably, probably due to
the nonlinearity of the output stage and the amplifiers. We therefore decided to determine the correction
with a direct measurement, where we determine the output amplitude for each frequency that results in a
certain reference intensity.

To stabilize the amplitude in a frequency interval
[
𝑓0, 𝑓1

]
, we measure the deflected intensity for an
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Figure 4.24 – Normalized deflected intensity without (a) and with (b) passive intensity stabilization. Inside the red squareof 20MHz × 20MHz the intensity shows a peak-to-peak deviation of 29% and 10% respectively. In 4MHz × 4MHz (blue)subdivisions the maximum peak-to-peak deviation is 18% (5%) without (with) stabilization. The horizontal and verticalpatterns are a result of the measurement process, where the frequencies for each channel are only scanned once for thecenter frequency of the other.

amplitude ramp from
[
0, 𝐴max

]
with 𝑁steps = 20 steps for frequencies spaced by 1 MHz. We do not

raster the whole frequency space but only vary the frequency of one axis at a time while keeping the
other at the center frequency. We then determine the frequency 𝑓min that has the lowest 𝐴max, which is
the amplitude that all other amplitudes have to be scaled to. For every frequency 𝑓 inside the interval,
we interpolate the amplitude ramps and determine the amplitude 𝐴 for which 𝐴( 𝑓 ) = 𝐴max( 𝑓min). We
create a lookup-table for all frequencies for both channels by storing the determined amplitude scaling
factors in an array, where the frequency in megahertz is used as the index (we pad this array towards
0 MHz). During the waveform computation, we then only have to look up the appropriate amplitude
scaling factor in the lookup-table without the need for a, possible expensive, computation.

Figure 4.24 shows the resulting intensity on a photodiode in dependence of the RF-frequency with and
without the passive stabilization enabled. For this work, we are interested in the stabilization in a square
region of 20 MHz × 20 MHz, as this is the size of the static tweezer array in which we would like be
able to address every site. Inside the square centered around 𝑓𝑥 = 𝑓𝑦 = 82 MHz, we find a peak-to-peak
deviation of around 10 % with a standard deviation of 1 %. However, for the rearrangement process in
Chapter 6, the frequency never changes by 20 MHz in a single frequency chirp and in more than 80 % of
the cases we stay inside a 4 MHz × 4 MHz-square. Tiling the center square in 4 MHz × 4 MHz-squares,
we find a maximum peak-to-peak variation of 5 % at a mean of 3 %. This is a good improvement to
the values of a maximum peak-to-peak variation of 29 % at a mean of 10 % without stabilization. In
the future, the deviation can be further reduced by performing a full two-dimensional measurement to
determine a scale factor for every ( 𝑓𝑦 , 𝑓𝑥)-combination. We will measure the intensity stability and
estimate its influence on the movement of atoms in Section 6.3.3.
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4.5 Tweezer beam path

We conclude the description of the SLM and AODs with an overview of the optical setup around the
main chamber. Both setups receive the light through an optical fiber from the laser table. Behind the
fiber, a half-waveplate is be used to fine tune the polarization before the light passes through a polarizing
beamsplitter (PBS). The PBS converts polarization drifts into intensity drifts which, together with other
intensity drifts, can be reduced by an active stabilization.
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Figure 4.25 – Optical setup for the SLM
SLM setup - Figure 4.25 The beam exiting the fiber is collimated to by a 1 " achromatic lens with a

focal length of 35 mm to a waist of 3.1 mm. The beam is expanded to a waist of 3.9 mm on the SLM,
which has a aperture radius of 6 mm. The setup is build such that the sensor is imaged to the back-focal
plane of the objective through a series of telescopes. This ensures that angles are mapped to angles
between the two planes while minimizing changes in position. We choose the magnification such that
the SLM aperture matches the clear aperture of the back-focal plane of the objective, thus 𝜁 ≈ 0.65.
Different diffraction orders are filtered with a pinhole in the first image-plane after the SLM. The beam is
collimated again to a waist of 4.6 mm to fit through 10 mm PBSs and the center of 20 mm waveplates to
reduce aberrations. From the collimated beam, we also pick-off a small percentage of light for the active
stabilization which can therefore also compensate the flickering noise of the SLM. After the pick-off, a
half- and quarter-waveplate can be used to tune the polarization at the position of the atoms, which we
measure with a polarization analyzer shortly before the objective. For the wavefront flattening and the
camera feedback for the tweezer array generation, we place an additional mirror in front of the objective
and guide the light through a 500 mm lens to a camera.

AOD setup - Figure 4.26 The AOD setup follows the same design principles as the SLM setup,
however, the power has to be stabilized before the AODs to be able to drive amplitude ramps correctly.
Notice that the relay to the back-focal plane is less precise, as the deflection for both axis happen at
two different locations. We did not see an influence of this mismatch yet but in the future this can be
optimized by placing the two AODs in a 4 𝑓 -configuration. Due to spatial constraints and the requirement
to relay the center positions of the AODs to the back focal plane of the objective, the magnification ratios
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Figure 4.26 – Optical setup for the AODs

could not be chosen freely and in result the truncation ratio of 𝜁 = 1.5 deviates from the optimal value
around 𝜁 ≈ 0.65.
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Figure 4.27 – Optical setup for the atom rearrangement

4.6 Summary and conclusion

In this chapter, we discussed the details for the creation of optical potentials for single atom trapping.
We presented and characterized two devices to create static and dynamic optical tweezers. First, we
discussed a liquid-crystal based SLM that we use to create static optical tweezer arrays at a wavelength of
813 nm. Using an interferometric wavefront measurement, we reduce aberrations in the optical system
by up to a factor of 10. We discussed an algorithm for the generation of tweezer arrays and compared
the results to the literature. The comparison showed, that we can create tweezer arrays of the same
homogeneity of more than 98 % for up to 1 500 tweezers, similar to the literature. We finished the first
part with a summary of the experimental parameters and efficiencies.

In the second part, we presented the tweezer generation using acousto-optic deflectors (AODs).
We presented the underlying implementation of the arbitrary waveform generation that provides the
radio-frequency signal. To realize single site addressing in a tweezer array, we developed a method of
passive intensity stabilization, to ensure a constant trap depths in cases where an active stabilization
cannot be used.
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CHAPTER 5

Single atoms in optical tweezers

The previous chapter discussed the creation of optical tweezer potentials, and we will now populate
these potentials with atoms. Building a quantum simulation platform requires the ability to prepare the
system in a well-defined initial state, to maximize reproducibility. All deviations from a single initial
state can be seen as a form of increased entropy, for example uncertainties associated with different atom
numbers or the motional state of an atom inside a trap. The core objective of this chapter is to decrease
this entropy, for which we need to learn to prepare a single atom in or close to the motional ground state.

The following description is loosely divided into two parts: We begin by investigating the loading
process of the tweezers from the red narrow-line MOT and then move on to the preparation, cooling and
detection of single cold atoms. In order to do this, we first discuss how light-assisted collisions (LACs)
can be used to reduce the atom number to a single atom per trap at most. After preparing a single atom,
we then cool it towards the motional ground state of the confining potential. Finally, we discuss how the
detection of these single, ultracold atoms works. In general, we make no distinction between atoms in a
tweezer array or in a single trap, except where mentioned explicitly.

As motivated in Section 4.1, we use tweezer wavelengths of 515 nm, 532 nm and 813 nm for this work.
The focus for the goal of this work lies on tweezers at 813 nm, as this is the wavelength in which atoms
will be rearranged and detected in Chapter 6. Tweezers at 515 nm or 532 nm are used to move atoms
between sites, and during the transfer-phase no cooling light is applied. Even though it is not directly
relevant for the main goal of this work, it is still instructive to also investigate the light-assisted-collisions
and sideband cooling in traps at 515 nm and separately sisyphus cooling at 532 nm. At 515 nm, it is
possible to realize a condition where the ground state and the excited state experience the same trapping
potential, which can be exploited to address the quantized motional states of a trapped atom for cooling or
thermometry. For 532 nm, the cooling measurements in this work present the first time where strontium
is investigated in high NA tweezers at 532 nm. 532 nm is an attractive choice of wavelength due to
commonly available optical elements and lasers, and progress at this wavelength for (strontium) tweezer
experiments could be of great benefit for the community in the future.

The second part aims to further characterize and and benchmark the system. We present a fast and
robust method to determine the trap depths in a tweezer array which we use in a feedback step to increase
the homogeneity of the array. We then investigate the trap quality where we use a parametric excitation
method to measure and infer trap parameters. Finally, we determine the vacuum lifetime of an atom in a
tweezer, as this quantity inherently limits the deterministic preparation of an atom array and hence the
final entropy.
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5.1 Overview of the experimental sequence

Blue MOT

Tweezer

MOT coils

Red MOT

LAC Cooling CoolingLAC/cooling

Imaging

Bias coils

Figure 5.1 – Full schematic of the tweezer sequence. A repetition of the experiment takes around 500ms.
A visual representation of the full tweezer sequence is given in Figure 5.1. We load the blue MOT

for around 100 ms before moving to a 50 ms long SWAP-phase with an overlap of 5 ms. The single
frequency red MOT phase has a duration of 50 ms and we enable the tweezers 10 ms before the end.
After the red MOT follow several different blocks of operations performed on atoms in the tweezers
and each block is described in detail in this chapter. First, a 30 to 50 ms long block of light-assisted
collisions (Section 5.3) is used to reduce the atom number to a single atom at most. We then cool the
single atom for around 30 to 50 ms where the details of the cooling process depend on the tweezer
wavelength (Section 5.4). On the single cold atom(s) we can now perform measurements (Sections 5.6
to 5.8, also Chapter 6) which can take up to several seconds when e.g measuring the trap lifetime. Before
we enter the detection phase, we apply a second block of cooling for around 30 to 50 ms, such that atoms
always enter the imaging step with the same temperature, irrespective of the measurements performed
earlier in the sequence. The experimental sequence finishes with a 100 ms long imaging block, where
we collect blue fluorescence light to determine if an atom is present or not (Section 5.5). In total the
sequence takes around 500 ms, depending on the performed measurements.

5.2 Atom transfer from MOT to tweezers

The first step for preparing a single atom is to populate the tweezer potential by a transfer from the
red MOT operating on the 1S1 → 3P1-transition. The narrow-line MOT produces a cold cloud of
1 × 105 atoms with a center density of roughly 7 × 1012 cm−3. By shining in the tweezer light, several
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atoms1 get trapped in the millikelvin-deep potential which is a visible signature for the EMCCD camera.
Two components are required to detect fluorescence signal from the atoms trapped in a tweezer: First, the
EMCCD camera and the accompanying beam path has to be aligned such that the atomic fluorescence is
imaged onto the camera chip. Secondly, the red MOT and the tweezer potential have to be overlapped by
displacing the MOT using magnetic offset fields. The displacements are on the order of the red MOT
and therefore do not influence its performance.

To align the imaging system, we align a laser beam to the optical axis of the lower objective, as this is
also the axis along which the fluorescence light exits the objective. We then retroreflect this beam by
placing a mirror just below the objective and guide the reflection to the camera using a non-polarizing
dichroic beamsplitter. The detailed procedure is described in Appendix B.2. The second step is to
optimize the spatial overlap of the tweezers and the MOT. In order to do this, we shine in light at 461 nm
with a power of 20 µW during the single frequency MOT phase, in addition to the tweezer light. The red
MOT has a size around 150 µm which is larger than the field of view (FOV) of the camera of around
100 µm. We displace the red MOT by applying magnetic offset fields on the order of 1 G, until we see a
comet-shaped signal, depicted in Figure 5.2(a). The comet is caused by atoms that are first trapped in the
tweezer and which are then accelerated out of the trap by the imaging beam. The direction of the tail is
thus opposite to the direction of the exciting beam. By increasing the time point of the image step-by-step
beyond the end of the MOT phase, the fluorescence signal from the MOT faints and the signal from
atoms inside the tweezer becomes more prominent. This allows us to fine tune the magnetic fields and
the axial position of the camera such that signals from single atoms can be optimized (see Figure 5.2(b)).
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Figure 5.2 – (a) Fluorescence signal from a tweezer (red square) in the red MOT. As atoms leave the trap, they still scatter lightwhich shows up as the comet-shaped vertical signal, opposite to the direction of the imaging beam. (b)Magnetic offset fieldscan used to overlap the tweezers and the red MOT. The displacement is on the order of the size of the red MOT of ∼ 150 µm.

5.3 Single atom preparation using light-assisted collisions

We load the tweezers by overlapping the tweezer light with the red MOT for 10 to 20 ms before disabling
the latter. This results in a distribution of atom numbers inside the trap with a mean of more than one.
To reduce the uncertainty associated with the distribution of atom numbers 𝑁atom, we employ a phase of
light-assisted collisions (LACs) leading to photoassociation. Two atoms in the tightly confining potential
can be excited to a bound molecular state [109, 110] which can leave the trap. Repeating the process
1 probably ten(s) of atoms given the 1 µm3 volume of the tweezer
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Figure 5.3 – Light-assisted collision frequency dependence for (a) 515 nm and (b) 813 nm. Detunings are measured against therespective free-space resonance. Further light-assisted collisions during the imaging process prevent the occupation to reach100%, even for large detunings.

leads to a pairwise loss and results in either zero or one atom per trap, depending on whether the initial
number of atoms was even or odd. It is therefore also referred to as a parity-projection (PP) process
and is one of the reasons we need the rearrangement step presented in Chapter 6 to produce defect-free
arrays. The resulting atom number distribution is highly sub-Poissonian as 𝑃(𝑁atom > 1) = 0 [32, 111] .

The probabilities for obtaining zero atoms 𝑃 (0) and one atom 𝑃 (1) depend on the details of the
LAC process. In the case described above, where a bound molecular state leaves the trap, there is no
preference for an initially even or odd atom number, so we can expect a single atom in 50 % of the cases,
thus 𝑃 (0) = 𝑃 (1) = 0.5. In other atom species, for example rubidium, nearly dark states can be used to
increase the probability of loading a single atom [112, 113]. The following discussion is restricted to
515 nm and 813 nm, as we have not investigated light-assisted collisions in tweezers at 532 nm yet. We
leave a detailed investigation for the future and load the trap at 532 nm by a handover from 813 nm to
investigate the cooling process in Section 5.4.2.

Following [46], we use red detuned light at 689 nm to trigger LACs, but [47] suggests that 461 nm
can be used as well. We measure the occupation depending on the detuning of the LAC beam for both
515 nm and 813 nm for durations between 30 ms and 50 ms respectively, averaged over several hundred
repetitions of the experiment. As discussed in Section 2.3, we place a threshold at a certain number
of scattered photons to determine if the trap is empty. A rigorous treatment of this placement will be
presented in Section 5.5. Figure 5.3(a) shows the occupation in a trap at 515 nm where it can be seen that
for detunings between −400 to −150 kHz with respect to the free-space resonance, we detect an atom
in roughly 50 % of the cases. Going more towards and then beyond the resonance at 0 kHz heats the
atoms and ultimately leads to atom loss. For detunings below −400 kHz we are too far detuned from the
molecular resonance and can therefore not trigger the LAC process. The fact that 100 % occupation is
not reached is caused by additional LACs during the detection process. The frequency dependence is in
good agreement with the data from [46]. For 813 nm, shown in Figure 5.3(b), the frequency dependence
looks similar but is found at a more negative detuning of around −1 750 kHz for a trap depth of 300 µK.
Compared to the resonance, which is light-shifted to around −1 500 kHz, the process is therefore again
red-detuned by a few hundred kilohertz.
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To confirm that we do not accidentally stop at the time where 50 % occupation is reached while atoms
are continuously lost, we measure the occupation depending on the duration of the LAC phase, shown in
Figure 5.4(a). As it can be seen from the figure, a plateau of 50 % is reached after around 30 ms which
stays until at least 100 ms. A similar argument could be constructed for the loading time of the blue
MOT, such that only half an atom is trapped on average. To refute this, we also measure the occupation
while varying the loading time of the blue MOT (Figure 5.4(b)). In this case, the average occupation
again saturates to 50 % after 40 ms and we conclude that a loading time of 50 ms is sufficient.
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Figure 5.4 – (a) Time dependence of the light-assisted collision process. A plateau is reached after 30ms which shows thatthe atoms are not continuously lost. (b) Tweezer occupation dependency on blue MOT loading time. Again a plateau can beseen as the light-assisted collisions cap the maximum number of atoms per trap. Both measurements are for a single trap at813 nm.
To verify the binomial nature of the occupation we investigate the histogram of occupied sites in an

array of tweezers. The distribution should follow a binomial distribution around the mean ⟨𝑁⟩ = 𝑁sites 𝑝

as the occupation for every site in all 𝑁sites sites is a Bernoulli-experiment with probabilities 𝑝 and 1 − 𝑝.
An example of such a histogram is shown in Figure 5.5. We fit a binomial distribution to the data and
extract a value for 𝑝 of 48 %. We explain the deviation from the ideal case of 50 % by additional losses
due to the finite lifetime and losses during the imaging process. Both of these loss mechanisms are
further discussed in Section 5.5 and Section 5.8 respectively.
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Figure 5.5 – Histogram of occupied sites in a tweezer array with 36 sites for 1 000 realizations of the experiment. The graybars show a fitted Binomial distribution from which we extract 𝑝 ≈ 48 %.

5.4 Cooling and thermometry

To experiment with single atoms, we strive to control all degrees of freedom, internal (|𝑔⟩ and |𝑒⟩) and
external (|𝑛⟩). In our case this means that we would like to prepare the system in the electronic ground
state of the atom in the motional ground state of the harmonic potential. Preparing the electronic ground
state is comparably simple, as we can just wait for other states (1P1 or 3P1 specifically) to decay within
21 µs at most. Reaching the motional ground state of the trap is considerably more complex, and we
have to actively extract energy from an atom to reduce its temperature. The cooling process is inherently
tied to the differential light shift Δ𝛼 = 𝛼𝑒 − 𝛼𝑔 between the ground state |𝑔⟩ ≡ 1S0 and excited state
|𝑒⟩ ≡ 3P1. Three fundamentally different cases exist: a vanishing differential light shift 𝛼𝑔 = 𝛼𝑒, a
stronger confined ground state 𝛼𝑔 < 𝛼𝑒 and a weaker confined ground state 𝛼𝑔 > 𝛼𝑒. We can realize
these cases for the wavelengths of 515 nm, 532 nm and 813 nm respectively (see Figure 4.1(b)).

5.4.1 Resolved sideband cooling at 515 nm

If the ground state polarizability 𝛼𝑔 and the excited state polarizability 𝛼𝑒 are equal, the differential light
shift vanishes and trap frequencies for both states are equal. In this case, transitions between different
motional states are independent of the current state and these sideband-transitions |𝑔, 𝑛⟩ → |𝑒, 𝑛 ± 1⟩
can be driven directly. This process is known as resolved sideband cooling and a common cooling
technique for ions trapped in radio-frequency traps [114, 115]. We begin with a theoretical description
of the process, together with a numerical simulation to estimate parameter limits for the experiment.
Afterwards, we present the experimental realization and the result, comparing it to the literature. A
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schematic overview is shown in Figure 5.6.
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Figure 5.6 – Resolved sideband cooling schematic. (a) The state of the trapped atom consists of the external contribution fromthe confining potential |𝑛⟩ and the internal electronic levels |𝑔⟩ and |𝑒⟩) (b) For a dipole transition linewidth 𝛾 smaller thanthe trap frequency 𝜔trap transitions to different motional states |𝑔, 𝑛⟩ → |𝑒, 𝑛′⟩ can be driven directly. The transition strength
depends on the Lamb-Dicke parameter 𝜂 ≪ 1 where transitions with 𝑛

′
= 𝑛 ± 1 ("sideband-transitions") are weaker by afactor of 𝜂 compared to 𝑛

′
= 𝑛 ("carrier-transition"). (c) The different transition strengths cause the spontaneous emissionto primarily happen on the carrier-transition. Tuning a laser to the red-sideband transition |𝑔, 𝑛⟩ → |𝑒, 𝑛 − 1⟩ followed byspontaneous emission |𝑒, 𝑛 − 1⟩ → |𝑔, 𝑛 − 1⟩ leads to an average reduction in energy per cycle of ℏ𝜔trap.

5.4.1.1 Theory

The system can be modeled by the Hamiltonian �̂� = �̂�0 + �̂�int, where �̂�0 describes the trapped two-level
atom and �̂�int describes the interaction with an external electric field. �̂�0 takes the internal as well as the
external degrees of freedom into account [4, 115]:

�̂�0 = ℏ𝜔0 |𝑒⟩ ⟨𝑒 | + ℏ𝜔trap

(
�̂�
†
�̂� + 1

2

)
, (5.1)

where 𝜔0 describes the energy difference between the ground state |𝑔⟩ (1S0 in our case) and the excited
state |𝑒⟩ (3P1 for us). 𝛼𝑔 = 𝛼𝑒 means that the ground and excited state trapping potentials are equal and
we only need a single trap frequency 𝜔trap to describe the harmonic oscillator potential approximation.
The interaction Hamiltonian �̂�int describing the coupling of internal and external degrees of freedom by
a classical (=̂ consisting of many photons) field reads:

�̂�int = − ®𝐸 (®𝑟, 𝑡) · ®𝜇𝑒 (5.2)

=
𝑑𝐸0

2

(
𝑒
𝑖𝑘 �̂� + 𝑒

−𝑖𝑘 �̂�
)
�̂�𝑥 (5.3)

(5.4)
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where we expressed the dipole operator ®𝜇𝑒 through �̂�𝑥 = ( |𝑔⟩ ⟨𝑒 | + |𝑒⟩ ⟨𝑔 |) and the electric field in
terms of the position operator 𝑥 =

𝑥0√
2

(
�̂� + �̂�

†
)
. 𝑘 = 2𝜋/𝜆 is the (absolute value of the) wavevector and

𝑥0 =
√︁
ℏ/𝑚𝜔 is the ground state harmonic oscillator length. Similar to the description in Section 2.1, we

remove the trivial time-evolution by transforming into an interaction picture with respect to �̂�0:

�̂�
𝐼
int = −ℏΔ |𝑒⟩ ⟨𝑒 | + 1

2
ℏΩ𝑅

(
𝑒
𝑖𝜂

(
�̂�+�̂�†

)
+ 𝑒

−𝑖𝜂
(
�̂�+�̂�†

) )
. (5.5)

We defined the Lamb-Dicke parameter 𝜂 = 𝑘𝑥0, which measures the extend of the ground state
wavefunction 𝑥0 in terms of the wavelength 𝜆. The first requirement for the resolved sideband cooling
technique is 𝜂 ≪ 1 (also called the Lamb-Dicke-regime [116]) where the atom is stronger localized than
the wavelength of the exciting light. Expressing 𝜂 as the (square-root of the) ratio of the trap frequency
𝜔trap and the single photon recoil energy 𝐸𝑟 = ℏ

2
𝑘

2

2𝑚 as 𝜂 =

√︃
𝐸𝑟

ℏ𝜔trap
shows, that 𝜂 describes how much the

motional state is influenced by the absorption or emission of a photon. The ratio is an important quantity
to consider, as it expresses the heating effect due to the photon recoil. The emission follows a dipole
pattern oriented along the quantization axis of the system [117] which leads to a coupling between the
different axes. Cooling along one axis can therefore increase the motional state of the others, however,
with 𝜂 ≪ 1 this effect is negligible if all axes are cooled simultaneously or alternated with a short cycle
duration. Using 𝜂 ≪ 1, we can further approximate the dipole operator by:

𝑒
𝑖𝜂

(
�̂�+�̂�†

)
𝜂≪1
≈ 1 + 𝑖𝜂

(
�̂� + �̂�

†
)
+ O

(
𝜂

2
)
. (5.6)

This shows, that the dipole operator in the Lamb-Dicke-limit of 𝜂 ≪ 1 only couples states |𝑛⟩ to states
separated by at most one motional quantum

��𝑛′〉 ∈ {|𝑛⟩ , |𝑛 ± 1⟩} with higher orders being strongly
suppressed.

The second ingredient for the cooling scheme is called the festina-lente-regime [118, 119], where
the linewidth 𝛾 of the driven dipole transition is smaller than the trap frequency 𝜔trap. In this case,
it is possible to drive these transitions directly − the sidebands can be resolved2. The key factor for
the cooling effect is the mismatch of Rabi frequencies for the three transitions |𝑔, 𝑛⟩ ↔ |𝑒, 𝑛⟩ and
|𝑔, 𝑛⟩ ↔ |𝑒, 𝑛 ± 1⟩. The Rabi frequencies for the sidebands scale with 𝜂, so the Rabi frequencies for
the blue- and red-sidebands ΩRSB/BSB are related to the Rabi-frequency main- or carrier-transition
ΩC by ΩRSB/BSB ∼ 𝜂ΩC. This means, that an excited state |𝑒, 𝑛⟩ is more likely to decay to |𝑔, 𝑛⟩ than
to |𝑔, 𝑛 ± 1⟩, as the latter transition is weaker by a factor of 𝜂. On average the atom loses an energy
of ℏ𝜔trap when an excitation on the red-sideband |𝑔, 𝑛⟩ → |𝑒, 𝑛 − 1⟩ is followed by an emission on
the carrier-transition |𝑒, 𝑛 − 1⟩ → |𝑔, 𝑛 − 1⟩. The cooling stops when |𝑔, 𝑛 = 0⟩ is reached, as the
red-sideband transition cannot be driven anymore. Two first order heating processes limit the achievable
temperature: Off-resonant excitation on the carrier transition, followed by spontaneous emission on
the red sideband |𝑒, 𝑛⟩ → |𝑔, 𝑛 + 1⟩ or off-resonant excitation on the blue sideband |𝑔, 𝑛⟩ → |𝑒, 𝑛 + 1⟩
followed by emission on the carrier transition. Combining these processes in a heating rate allows us to

2 If this is not the case, the cooling loses its efficiency as other (heating) transitions are also driven which limits the achievable
minimum quantum number as shown in Equation (5.7). This is the case for the 1S0 → 3P1 transition in ytterbium with a
linewidth of around 180 kHz. In this case Raman sideband cooling can be used [120–122].
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express the limit as [123]:

⟨𝑛⟩min =
5
16

𝛾
2

𝜔
2
trap

(5.7)

with the transition of the linewidth 𝛾. For 𝜔trap ≈ 10𝛾 we compute ⟨𝑛⟩min < 0.01 which means a
motional ground state fraction of around 99 % can be reached.

We can simulate the time-evolution of the system using the Lindblad Master-equation [124] which can
model the coupling of a closed system to the environment, leading to non-unitary time-evolution. Using
a Master-equation solver from the Python-package Qutip, we simulate the cooling process numerically
with the results shown in Figure 5.7. It can be seen, that the initial coherent Rabi-oscillations quickly
decay and that the population accumulates in the ground state. Heating between different axes was
omitted as the real sequence alternates between different axes, and in the Lamb-Dicke regime this leads
to negligible heating rates, as the energy increase due to photon recoil is small compared to the energy
loss per scattered photon. The result compares well to [47] and suggests that a few ten milliseconds of
cooling are enough even in the presence of laser frequency and intensity noise.
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Figure 5.7 – Numerical Master equation simulation of the sideband cooling process in one-dimension for the radial (a) andaxial direction (b) . We choose parameters close to the experimental parameters with𝜔𝑟 = 2𝜋× 217 kHz andΩ𝑟 = 2𝜋× 65 kHz(radial) and 𝜔𝑎 = 2𝜋× 43 kHz and Ω𝑎 = 2𝜋× 10 kHz (axial) respectively. We truncate the trap at 𝑁 = 20 motional states.

5.4.1.2 Experimental implementation and calibration

The differential polarizability vanishes for the 1S0 → 3P1 transition for a wavelength around 515 nm
("magic wavelength"). However, to fine-tune the compensation down to a 10 kHz-level, external magnetic
fields and the polarization of the tweezer beam also have to be considered. The correction arises from
vector and tensor components 𝛼𝑣 and 𝛼𝑡 in the polarizability, see Section 4.1.

Two approaches to fine-tune the differential light-shift have been demonstrated in the literature: The
first one achieves the magic condition by using an elliptical polarization with the ellipticity angle 𝛾

("magic ellipticity angle"). In this case, the elliptic polarization acts as an effective magnetic field
®𝐵eff ∝ 𝛼𝑣𝐸

2
0 sin (2𝛾) 𝑒𝑧 , with the vector polarizability 𝛼𝑣, and is directed in the direction of tweezer

propagation 𝑧 (axial direction). ®𝐵eff couples to the total angular momentum vector ®𝐽 like usual. In
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addition, the elliptic tweezer-polarization vector ®𝜖 = (cos 𝛾, 𝑖 sin 𝛾, 0) also couples to ®𝐽 and in turn to the
vector and tensor polarizabilities 𝛼𝑣 and 𝛼𝑡 . By changing 𝛾, the relative contributions of the vector and
tensor coupling can be tuned to compensate the difference in polarizabilities for the ground and excited
states. Further details for the method can be found in [46]. The second method uses a strong bias field
®𝐵bias in the tweezer plane (radial plane) at an angle 𝜃𝐵 ("magic angle") to the linear tweezer polarization,
described in [47]. Similar to ®𝐵eff , ®𝐵bias couples to ®𝐽, however no coupling to the vector polarizability
exists. In contrast to the elliptic angle method, the strong magnetic field induces a Zeeman-shift which
dominates the light shift and defines the quantization axis of the system. By tuning the magnetic field
angle, the Zeeman-resonances can be shifted to compensate for the light-shift, however, the required
magnetic field strength also depends on the tweezer depth. Details for the second method can be found
in [47]. Up to now, we only implemented the second method experimentally where we made this choice
as we found it more convenient to change the field strength and angle, which we could easily automate
compared to fine-tuning the polarization.
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Figure 5.8 – (a) Depletion spectroscopy scheme used to determine the 1S0 → 3P1 frequency. 1) Atoms are shelved to 3P1 by a100 µs long probe pulse. 2) During the probe pulse, a short (< 10 µs) blow away pulse, resonant to the 1S0 → 1P1 transition,is applied. This pulse removes all atoms in the electronic ground state from the trapping region. 3) 200 µs after the probepulse atoms have returned to electronic the ground state. 4) The previously shelved fraction is detected on the standardimaging transiton. (b) Spectrum of the 1S0 → 3P1 transition, measured with many atoms using the depletion technique.The resonance can be shifted by changing the magnetic field angle with a sensitivity of 100 kHz/°. After the peak is alignedwith the free-space resonance at zero detuning, the measurement is repeated with a single atom to reduce the width of theresonance and increase the resolution.
To determine the correct angle magnetic field angle 𝜃B, we start with a field of 20 G at an angle of

about 30° relative to the tweezer polarization axis [47]. As described in Section 5.3, we load the tweezer
by overlapping it with the red MOT for 20 ms. To simplify the initial determination of 𝜃B, we do not
employ light-assisted-collisions and determine the light shift by measuring the 1S0 → 3P1-transition
frequency using a depletion technique, shown in Figure 5.8(a). After employing a 689 nm pulse along
any direction for 100 µs, we switch on a strong (𝑠 ≳ 20) blow-away-pulse resonant to the 1S0 → 1P1
transition for 5 µs. During this pulse, we briefly switch off the trap for 1 µs which removes all atoms
in the electronic ground state from the trapping region. We let the atoms return to the ground state
by waiting for an additional 200 µs, and image with a lossy one-shot imaging pulse on the 461 nm
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transition afterwards. The resulting spectrum is shown in Figure 5.8(b). The transition is broadened
by the temperature of the atoms as they enter the dipole trap with a potential energy up to roughly the
trap depth3. We can tune the carrier transition using the magnetic field angle relative to the tweezer
polarization with a sensitivity of about 100 kHz/°. After the peak is aligned with the free-space resonance
at zero detuning, the measurement is repeated with a single atom to reduce the width of the resonance
and increase the resolution to a level of 10 kHz.

With the carrier-transition aligned to the free-space resonance, we can now proceed with the cooling
procedure. To calibrate the cooling power for three orthogonal axes, we drive Rabi-oscillations from
which we determine the local intensity at the position of the atoms. An example of a fitted Rabi-oscillation
is shown in Figure 5.9(a) where we determine a Rabi-frequency of 2𝜋 × (46 ± 2) kHz and a decay
constant of 𝜏 = (15 ± 3) µs. The latter is lower than the lifetime of the 3P1-state of 21 µs which we
explain by fluctuating intensity during the probe time, leading to shorter coherence times. Due to limited
optical access we have to use the retroreflected red MOT beams, which might not be ideal as standing
wave or polarization-gradient effects could influence the measurement. This claim is supported by the
fact that we observe longer coherence times when using a non-retroreflected beam. For the cooling
process, however, itself it seems to not be a problem.
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Figure 5.9 – Beam power calibration with Rabi oscillations. (a) Oscillation with Ω = 2𝜋 × (46 ± 2) kHz. (b)Measured Rabifrequencies for different beam powers.

5.4.1.3 Resolved sideband spectroscopy

After loading the tweezer and reducing the atom number using light-assisted collisions, we shine in
cooling light along three orthogonal directions for 50 ms. Radially, we cool at a detuning of −𝜔𝑟 with a
Rabi frequency of Ω𝑟 = 2𝜋×65 kHz. Axially, we start at −5𝜔𝑎 at a Rabi frequency of Ω𝑎 = 2𝜋×50 kHz
and switch to −𝜔𝑎 and Ω𝑎 = 2𝜋 × 10 kHz after 2/3 of the cooling duration. Figure 5.10 shows the
measured sideband spectra after employing sideband cooling for 50 ms. Probing is done at the final
cooling Rabi frequencies with a 100 µs (200 µs) long pulse radially (axially). From the extracted trap

3 The fitted width of 200 kHz corresponds to a Doppler temperature of 0.2 mK which is a bit lower than the trap depth of
1 mK. Additional cooling or removal of hot atoms during the imaging process can explain this deviation.
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Figure 5.10 – Sideband spectra after employing sideband cooling for 50ms. In the axial direction, second order sideband-transitions can be seen due to the Lamb-Dicke parameter of 𝜂 = 0.33 compared to the radial direction with 𝜂 = 0.15. Fromthe fits, we extract trap frequencies of (217 ± 1) kHz, (217 ± 2) kHz and (43 ± 1) kHz for two orthogonal radial directions and theaxial direction respectively.

frequencies of 𝜔𝑟1
= 2𝜋 × 217 kHz, 𝜔𝑟2

= 2𝜋 × 217 kHz and 𝜔𝑎 = 2𝜋 × 43 kHz we can calculate the
aspect ration 𝜔𝑟/𝜔𝑎, the waist of the trap after Equation (4.8) and the trap depth 𝑈0 to be:

𝜔𝑟

𝜔𝑎

=
2𝜋 × (217 ± 2) kHz
2𝜋 × (43 ± 1) kHz

= 5.05 ± 0.13

𝑤0 =
𝜔𝑟

𝜔𝑎

𝜆
√

2𝜋
𝛽 = (439 ± 11) nm

𝑈0 =
𝜔

2
𝑟𝑚𝑤

2
0

4𝑘B
= 0.95 mK

where 𝛽 (𝜉 ≈ 0.76) = 0.75 is the scale factor to account for the truncation of the Gaussian beam (see
Section 4.2). The aspect ratio is slightly higher compared to the value obtained from the simulation of
4.9 at this truncation ratio, but this is to be expected due to optical aberrations4. It compares well to
the values in the literature summarized in Table 5.1. The lower aspect ratio in our case compared to
the literature for a similar NA could be explained the fact that we used a single trap at 515 nm without
the AODs. As the AODs require more optical elements for beam shaping and polarization rotation we
expect larger wavefront aberrations. We support this claim by the fact that we observe a larger aspect
ratio after the installation for the measurements in Section 5.7.

5.4.1.4 Thermometry and probe influence

We can directly determine the mean occupation number ⟨𝑛⟩ from the height of the sidebands [115]:

⟨𝑛⟩ =
𝐴RSB

𝐴BSB − 𝐴RSB
(5.8)

4 In addition to misalignments in the setup causing astigmatisms and comas, there is a residual spherical aberration from the
mismatch of the vacuum window thickness from the value the objective is designed for. See Appendix A.4 for an overview
of optical aberrations.
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where 𝐴RSB is the height of the red-sideband and 𝐴BSB is the height of the blue sideband. We fit a
superposition of Lorentzian-peaks to the spectrum with seven free parameters: one amplitude for each
peak, and the carrier- and sideband-positions and -widths. We assume the red- and blue-sideband
positions to be equal in magnitude with respect to the carrier frequency, and we also assume an equal width
for both sidebands. The resulting ⟨𝑛⟩ are ⟨𝑛𝑟1

⟩ = 0.00+0.07
−0.00, ⟨𝑛𝑟2

⟩ = 0.00+0.07
−0.00 and ⟨𝑛𝑎⟩ = 0.14+0.05

−0.05.
Care has to be taken to not underestimate ⟨𝑛⟩: During the probing process the atom is further cooled

(heated) when probing the red (blue) sideband which has to be taken into account. To estimate the
influence of the probing process, we again use a numerical simulation. We simulate a sideband spectrum
with an initial ⟨𝑛⟩initial that we then fit to extract the fitted ⟨𝑛⟩fitted. The result is shown in Figure 5.11 and
compares well to the literature [47]. Note that the simulation fails to predict the behavior for the axial
direction at ⟨𝑛𝑎⟩ ≲ 0.05 correctly, as the fitted value is larger than the underlying value. It shows that
the radial (axial) direction is underestimated by a factor of ∼1/3 (3/4) and the corrected values read:

⟨𝑛𝑟1
⟩ = ⟨𝑛𝑟2

⟩ = 0.00+0.21
−0.00

⟨𝑛𝑎⟩ = 0.15+0.09
−0.07.

Comparing this result to [47] shows that we can achieve a better result in the radial direction. In the axial
direction our final ⟨𝑛⟩ is higher as [47] but lower than [46]. We followed the latter for the cooling protocol
where the cooling detuning and amplitude are changed during the process. This might not be optimal
and the constant cooling approach from [47] could result in better results at that level. Nevertheless,
we conclude that the result compares well to the literature and that we can prepare an atom in the
three-dimensional ground state with 95+2

−10 %.

Source NA Aspect ratio 𝜔𝑟/𝜔𝑎

Ground state fraction / %
Radial Axial Total

[46] 0.5 6.6 83 ± 14 52 ± 7 72 ± 7
[47] > 0.65 5.5 95+4

−16 100+0
−10 97+2

−11
Our result 0.7 5.1 100+0

−15 85+7
−9 95+2

−10

Table 5.1 – Comparison of our results to values from the literature.
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Figure 5.11 – Probe beam influence simulation. To estimate the effect of the probing pulse on the perceived motional state,we simulate the probe pulse on a system with an initial state 𝑛initial. We fit the spectrum and compare the fitted 𝑛fit to 𝑛initialto determine a correction factor for the experimentally determine values.

Carrier shift

Although not strictly needed for this work, we also investigated tweezer arrays at 515 nm created with
both the SLM and the AODs. We noted an interesting behaviour of the positions of the carrier peaks
when we tried to perform sideband cooling in an array that is worth mentioning. Figure 5.12(a) shows
the carrier detuning extracted from the sideband spectrum for a 6 × 6 rectangular array. A left-to-right
gradient, corresponding to the 𝑦-axis in the experiment, is clearly visible. The absolute values can be
shifted with the magnetic field angle with a slope of 100 kHz/° and the gradient can be inverted if the
angle is inverted with respect to the tweezer polarization axis. We explain this phenomenon by a slight
rotation of the tweezer polarization for different traps. We exclude a difference in trap depths, as this
would also lead to gradient in sideband frequencies, however, no such signature is observed. Every trap
corresponds to a beam component with a unique 𝑘-vector which results in slightly different propagation
angles and therefore directions. The complex beamsplitter coating that is used to combine (or split)
the different wavelengths before or after the objective shows a strong dependence of the phaseshift on
the incident beam angle (see Figure 5.12(b)). Translating the different 𝑘-vectors into angles leads to
differences on the order of a few degrees, leading to the observed rotation of the polarization of around
±0.5°. For the rearrangement of atoms described in Chapter 6 this is not an issue, as we do not cool the
atom in the dynamic trap at 515 nm but in general it is problematic. By designing a new coating with a
zero phase-shift for both s- and p-polarization around 45° at 515 nm the problem could be solved.

76



Chapter 5 Single atoms in optical tweezers

54 35 25 8 -12 -26

51 47 33 4 -14 -33

42 47 30 -7 -11 -28

47 39 19 3 -14 -19

43 42 27 18 -12 -33

48 34 18 17 -11 -25

(a)

30 35 40 45 50 55 60
Angle of incidence / °

150

100

50

0

50

100

150

Ph
as

e 
sh

ift
 / 

°

Rs

Rp

(b)

Figure 5.12 – (a) Carrier positions in kilohertz, extracted from the sideband spectrum for a 6 × 6 array. (b) Phaseshift ofthe dielectric coating in front of the objective, for s- and p-polarization, depending on the incident angle. Data courtesy of
Laseroptik GmbH.

5.4.2 Sisyphus cooling at 532 nm and 813 nm

In general, the polarizabilities for the ground-and the excited state are not equal. This means that the
ground and excited state trap-frequencies are different and the sideband transitions cannot be driven as
before, as the transition-frequency depends on the current state. Therefore, a different cooling scheme
has to be used, for example the sisyphus-like process depicted in Figure 5.13. This cooling protocol
has its name from the Greek myth, where Sisyphos has to roll a boulder up a hill time and again only
to see it falling down just before reaching the top. The term has been in use since the late 1980’s
for different sub-Doppler cooling techniques like polarization-gradient cooling [60, 125]. A periodic
potential landscape constructed by clever choices for the polarization causes atoms to absorb only in a
valley of the potential which results in a net-loss of energy by continuously climbing the hill5. Later, it
was studied theoretically for laser-induced potentials in general [117] and specifically for strontium and
ytterbium atoms in optical tweezers [126]. Experimental realizations for strontium in optical tweezers
include [46, 48, 56].

5.4.2.1 Theory

𝜶𝒈 < 𝜶𝒆 The left part in Figure 5.13 shows the process as a sequence of four steps: A laser tuned to
the transition frequency at the center of the trap excites the atom 1 . Once excited, the atom moves in
the trap, potentially "climbing the hill" to the outer regions of the trap 2 . The atom de-excites (relaxes?)
and emits a photon with at least the energy it absorbed during the excitation 3 . Back in the ground state
the atom moves around until is excited again while being close to the center of the trap 4 . To understand
the differences between this cooling protocol and other (sub-Doppler) cooling protocols, we will briefly
summarize the main results from [126]. In this letter the authors compute and simulate characteristics of
the cooling process for strontium and ytterbium in optical tweezers using a classical model.

5 The process was actually discovered after experimenters observed temperatures lower than the Doppler-limit.
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Figure 5.13 – Classical picture of sisyphus cooling processes in an optical tweezer. An energy difference between the excitation(red solid arrow) and the spontaneous emission (red wiggly line) leads to a cooling effect, if the excitation happens at thecorrect position inside the trap. Left: For 𝛼𝑔 < 𝛼𝑒 a laser tuned to the energy difference at the trap center excites an atom. Asit moves inside the trap, it emits at a position with a larger energy difference, leading to a net energy loss. Right: For 𝛼𝑔 > 𝛼𝑒the excitation has to happen away from the trap center where the energy difference is largest. Compared to 𝛼𝑔 < 𝛼𝑒, theoptimal detuning depends on the current temperature of the atom. The separation between the ground- and the excitedstates compared to the trap depth is not drawn to scale.

The average energy lost per scattering event is given by:

⟨𝐸⟩ = 𝑘B𝑇

(
1 −

𝛼𝑔

𝛼𝑒

)
1
2

1

1 +
(
𝛾/2𝜔𝑒

)2 (5.9)

computed for polarizabilities 𝛼𝑔 and 𝛼𝑒 and trap frequencies 𝜔𝑔 and 𝜔𝑒 for the ground- and excited
states respectively. where 𝛼𝑔/𝛼𝑒 = 𝜔

2
𝑔/𝜔

2
𝑒 < 1. For 𝜔2

𝑒 ≫ 𝛾
2 (in our case 𝜔𝑒 ≈ 10𝛾) we get an average

reduction of:

⟨𝐸⟩ ≈ 1
2
𝑘B𝑇

(
1 −

𝛼𝑔

𝛼𝑒

)
. (5.10)

This is an interesting result, as it shows that the energy reduction per cycle is proportional to the
temperature of the atom, in contrast to e.g. the sideband cooling protocol where it is constant at ℏ𝜔trap or
to conventional Doppler-cooling where it is given by photon momentum ℏ

2
𝑘

2/2𝑚. Intuitively this is
also clear: An atom with higher energy can "climb" higher in the potential of the excited state and thus
lose more energy in a single event on average. Emission at higher potential energies are favorable as
the probability for the position of emission is inversely proportional to the velocity at that point. The
process can therefore reduce the temperature significantly with only a few tens of scattered photons and
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is finally limited by either the recoil- or the Doppler-temperature, whichever is higher. While the former
is obvious, the latter is due to the uncertainty in the position of excitation due to the finite linewidth
of the transition, which ultimately limits the cooling efficiency. For cooling strontium atoms on the
1S0 → 3P1 transition, both temperatures of 𝑇R = 500 nK and 𝑇D = 180 nK (see Table 3.4) are smaller
than the ground state temperature of several millikelvin, and to understand the cooling process at this
level a quantum mechanical description is required.

𝜶𝒈 > 𝜶𝒆 The other option is that the excited state experiences a weaker trapping force than the ground
state. In this case a sisyphus-cooling process can again be used but the physics changes significantly.
The process has been investigated for strontium in optical tweezers at 515 nm [46] and 540 nm [127]
before and also in long working distance tweezers at 532 nm [100]. Compared to the 𝛼𝑔 < 𝛼𝑒 case, it
was shown that tuning the cooling parameters during the cooling process is required to achieve similarly
low temperatures.

For a positive differential light shift, exciting an atom at the center of the trap would heat the atom.
The sequence therefore has to be changed to the following: A laser blue-tuned to the free-space transition
frequency excites the atom 1 . Once excited, the atom moves in the trap 2 . The atom de-excites and
emits a photon with at least the energy it absorbed during the excitation with a high probability 3 . Back
in the ground state the atom moves around until is excited again on the outside of the trap 4 .

The main difference can intuitively be understood as the optimal detuning of the cooling beam now
depends on the current temperature of the atom which suggests that a static cooling process as before is
suboptimal. It can also happen that the atom is heated, if the excitation happens to close to the center of
the trap or if the emission is on the far outside. A second difference lies in the fact that for maximum
energy loss per cycle, the atom has to emit close to the center of the trap which is the position it spends
the least time at, thus reducing the cooling efficiency.

5.4.2.2 Release-and-recapture technique

To probe the resulting temperature, we have to resort to a different method than the resolved sideband
spectroscopy used before. Although it is possible to use this method at trapping wavelengths with
non-zero differential light shifts [56], the lack of a repumping laser for the 3P1 → 3S1-transition prevents
us from using this spectroscopy scheme. We therefore utilize a release-and-recapture method which has
been used to probe single atoms in optical lattices [128] and also in optical tweezers [34]. By rapidly
switching off the potential, the energy of the atoms is unaltered and they disperse according to their
current energy. After a time 𝑡𝑑 ("dark-time"), the traps are turned on again and an atom is recaptured if
the kinetic energy is less than the potential depth at the new position. For single atoms this measurement
gives a robust, binary signal, as an atom is either lost or recaptured and no information must be extracted
from e.g. varying levels of fluorescence. To ensure that every atom that is recaptured is also detected,
we insert a second cooling block after the dark-time before imaging.

A common approach to estimate the temperature of the atoms is to compare the measurement results to
a classical Monte Carlo simulation [34, 48, 127]. To simulate the system, a thermal Maxwell-Boltzmann-
distribution is assumed and position-velocity pairs are randomly drawn. We calculate the evolution in
steps of 1 µs and average 105 trajectories for the final result. The positions follow normal distributions
with 𝜎𝑟/𝑎 =

√︃
𝑘B𝑇/𝑚𝜔

2
𝑟/𝑎 with the trap frequencies 𝜔𝑟/𝑎, and the velocity components follow normal

distributions with standard deviations of 𝜎𝑣 =
√︁
𝑘B𝑇/𝑚. Free parameters in the simulation are the trap

79



Chapter 5 Single atoms in optical tweezers

size, the trap depth (or trap frequency) and the temperature.
Figure 5.14(a) shows a simulation for a trap depth of 300 µK for different temperatures 𝑇 . The latter

can be compared to the temperature associated with the ground state 𝑇gs = 𝐸gs/𝑘B with Boltzmann’s
constant 𝑘B. The three dimensional ground state energy is 𝐸gs = 2𝐸𝑟 + 𝐸𝑎 with 𝐸𝑖 = ℏ𝜔𝑖/2. With
𝜔𝑟 ≳ 𝜔𝑎/5 for our optical tweezers, we have 𝐸gs ≈ 2𝐸𝑟 from which 𝑇gs = ℏ𝜔𝑟/𝑘B follows.

We repeat the simulation for different trap depths (see Figure 5.14(b)), aspect ratios 𝜔𝑟/𝜔𝑎 and also
trap frequencies 𝜔𝑟 , but we find the result to be rather insensitive to all three quantities. We attribute this
observation to the fact that the harmonic oscillator length is much smaller than the size of the potential.
The mismatch between 𝜔𝑟 and 𝜔𝑎 leads to easier recapture along the axial direction and the recapture is
therefore mainly determined by the radial direction.
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Figure 5.14 – Release-recapture simulation for different temperatures (a) and trap depths (b). It can be seen that the recapturebehavior is mainly depending on the temperature 𝑇 and not on the depth of the potential. We further find the simulation tobe insensitive to changes in trap frequencies over an order of magnitude, as the harmonic oscillator length is much smallerthan the size of the potential. The difference in potential size between the radial and axial direction also makes the behaviorto be insensitive to the aspect ratio 𝜔𝑟/𝜔𝑎 , as the dynamics is governed by the radial direction.

5.4.2.3 Thermometry for 813 nm

We optimize the cooling parameters at a dark-time of 50 µs. Figure 5.15(a) shows the dependence
detuning for a power of 200 µW where a light-shifted resonance lies at −2 500 kHz. Figure 5.15(b) shows
the time dependence at a detuning of −2 750 kHz for three difference powers. The recaptured fraction of
∼ 60 % after 60 µs compares well to the literature [48, 56]. Converting the optimal power of 200 µW to
an intensity for the 1.35 mm (1/𝑒2-radius) cooling beam gives a value of 2500𝐼𝑠 with 𝐼𝑠 = 3.4 µW/cm2.
This result seems unrealistic, as the scattering rate saturates to 𝛾/2 at such high intensities and the
differences in Figure 5.15(b) should be less prominent. We suspect that the cooling beam is not centered
on the tweezers and to verify this, the cooling beam can be displaced in the radial plane to map out the
correct positioning. Comparison to the literature with values of 200𝐼𝑠 [48] and 90𝐼𝑠 [56] supports this
argument. Another option would be to calibrate the cooling intensity by measuring Rabi oscillations,
similar to Section 5.4.1.

To estimate the temperature using the release-and-recapture method we calculate the trap size and
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depth from the radial trap frequency of 𝜔𝑟 = 2𝜋 × 60 kHz measured in Section 5.7. Together with a
known optical power of 9 mW per trap, we compute a waist of 950 nm and a depth of 300 µK. This waist
is larger than the theoretical limit, where the deviation is probably caused by aberrations due to a slight
misalignment of the upper objective (for the alignment procedure see Appendix B). We fit the data with
our simulation for different temperatures, but also for different trap depths and aspect ratio. We find
the resulting temperature to be is insensitive to the axial trap frequency and trap depth and we observe
differences of less than 0.5 µK when varying the aspect ratio between 4 to 10 and the trap depth between
300 to 600 µK. We show a measurement for a single atom, a 5 × 5 array and a best-fit simulation with a
temperature of 𝑇 = 2.8 µK for the single atom case in Figure 5.16.

In result, the determined temperature is close to the temperature corresponding to the ground state
𝑇gs = ℏ𝜔𝑟/𝑘B ≈ 3 µK. The extracted temperature is also consistent with the literature [56]. For a more
accurate comparison, the trap waist has to be determined more precisely and a fully quantum mechanical
model is needed to include the discrete level structure and ground state energy. To avoid this complication
it would be helpful to develop a method that does not rely on a comparison with a simulation.

This could be possible by closer inspection of the difference between the single atom versus array
behavior, also shown in Figure 5.16. In an array, we measure larger recaptured fractions at longer dark
times compared to the single tweezer case. We explain this observation by the fact that atoms can be
re-trapped in other tweezers as they mainly expand in the radial direction. The change of trend around
60 µs compared to the single tweezer can be used to roughly estimate the temperature of the sample.
Assuming a lattice spacing of 5.2 µm, atoms have to travel at least half that distance to be re-trapped in a
different trap. From the distance and time we calculate a velocity of 40 mm/s which equals a temperature
of 8 µK. This temperature is not too far off for such a quick back-of-the-envelope calculation and by
repeating the measurement for different lattice spacings it could be possible to infer the temperature
without relying on a simulation with free parameters.

Additionally, the value for the cooling detuning can be used to estimate the trap depth as a cross-check
by comparing the result to the literature [48, 56]. However, we have to be careful when comparing the
absolute values of the detunings as they depend on the light-shifted sublevel. In addition to the cooling
resonance at −2 750 kHz in Figure 5.15(a), we measure a second cooling frequency at −1 600 kHz.
The optimal cooling frequency depends linearly on the trap depth and we compute a trap depth of
−1 600 kHz × 450 µK

−2 600 kHz ≈ 280 µK where 450 µK (−2 600 µK) is the trap depth (cooling detuning) from
[48]. Comparing to [56], the authors state optimum cooling at −775 kHz at a depth of 135 µK, which
translates to a depth of 280 µK in our case. Both estimates are in excellent agreement with our trap depth
estimation from the polarizability used for the simulation above. Cooling on the far detuned resonance is
favorable, as the energy loss depends on the differential light shift (see Equation (5.10)) and it profits
from a larger mismatch. For this work, we therefore always cool around −2 750 kHz for 300 µK deep
traps at 813 nm.

5.4.2.4 Thermometry for 532 nm

Similar to the 𝛼𝑔 < 𝛼𝑒 case, we perform thermometry with a release-and-recapture technique. Fig-
ure 5.17(a) shows the survival probability after a dark-time of 6 µs for different detunings of the cooling
beam. The measurement follows the expectation: The strongest cooling effect happens between the
free-space resonance and the blue-shifted resonance (dashed and dotted vertical lines). Comparing the
temperature to the result from 813 nm in Figure 5.17(b) shows that the final temperature is higher. From
the Monte-Carlo simulation for a waist of 500 nm and a trap depth of 2 mK we obtain a temperature
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Figure 5.15 – Sisyphus detuning and cooling duration 300 µK deep tweezers at 813 nm, measured after a darktime of 50 µs ina 5 × 5 array at 813 nm. Data in (a) is taken at a cooling power of 200 µW and (b) is at a detuning of −2 750 kHz.
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Figure 5.16 – Release and recapture measurements in 300 µK deep tweezers at 813 nm for a variable dark time at 200 µW,
−2 750 kHz and 30ms. Data is taken for a single trap (red) and a 5 × 5 array and shown with a best-fit Monte-Carlo simulationfor 2.8 µK. The change of trend around 60 µs hints towards a recapture effect in an array, which artificially decreases thetemperature compared to the single tweezer case.

of 14 µK, determined by fitting the simulation to the data. This is close to the radial ground state
at 14 µK for a radial trap frequency of 𝜔𝑟 = 2𝜋 × 280 kHz, however, it can be seen that the classical
simulation does not model the data accurately. As a reference, we can compare the result to [127], where
the cooling is investigated in traps at 540 nm. In this letter, the authors use a chirp-cooling technique,
which achieves better results than the static approach. Our result with static cooling lies between their
chirp-measurements with final detunings of 𝛿 𝑓 = −5.5𝜔𝑔 and 𝛿 𝑓 = −2.4𝜔𝑔. The result shows that the
static cooling can perform better than dynamic cooling, if suboptimal parameters are chosen for the latter.
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With the correct parameters, the dynamic approach can significantly reduce the temperature approaching
the limit of the ground state.
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Figure 5.17 – Release and recapture thermometry in a 532 nm tweezer. (a) Dependence of the cooling efficiency on thecooling detuning for a duration of 30ms at a dark-time of 6 µs. Optimal cooling happens at 1 250 kHz between the free-spaceresonance at 0 kHz (dashed line) and the light-shifted resonance at 2 000 kHz (dotted line). (b) Comparison of the recapturedfraction after sisyphus cooling in 532 nm- versus 813 nm-traps. The trap depth of 532 nm is around 2mK compared to 300 µKat 813 nm. The dashed lines show the simulated dependence for 13 µK (33 µK) with (without) cooling at 532 nm and 2.8 µK at813 nm.

5.5 Detection

Until now, we have been quite vague about the detection process and we will now proceed to a detailed and
precise description. As described in Section 2.3, we detect an atom in a trap by collecting its fluorescence
after an excitation pulse on an electron-multiplying CCD (EMCCD) camera6. We ensure optimal
alignment of the imaging system with the procedure described in Section 5.2 (see also Appendix B) and
define a region-of-interest (ROI) around a signal from the trap on the camera. For every repetition of the
experiment, we determine the total signal in a ROI and investigate the distribution of the signal strength
in a histogram. A ROI and a corresponding histogram are shown in Figure 5.18.

The number of photons scattered from a single atom follows a Poissonian distribution centered around
a mean photon number ⟨𝑁photon⟩ > 0. Electronically, this photon signal in converted to a certain number
of electrons by the EMCCD camera with a certain gain 𝐺, again leading to a Poissonian distribution.
However, even when no fluorescence light from an atom is observed, an electronic signal is measured.
This background signal includes everything that does not stem from an atom: stray light, dark counts
and also electronic noise from the chip itself. The background in units of electron counts also shows
a Poissonian distribution around a certain mean larger zero. Converting the electronic signal back
to photon counts is done by the camera itself, where the mean count number from the background
peak is subtracted from the signal which is then divided by the gain. (see e.g. [129, 130]). This also
explains why histograms of the signal, for example the one shown in Figure 5.18(c), show only half of a

6 Andor iXon Ultra 897
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a) b)

c)

Figure 5.18 – Summary of the imaging principle. (a) A single shot of a 6 × 6 tweezer array. Due to the light assisted collisionshalf of the sites are occupied on average. (b) Superposition of many images. (c) The detected photon number in a smallregion of interest (ROI) around a tweezer follows a bimodal distribution consisting of a background- and an atom-peak.

Poissonian/Gaussian peak. It is known that the internal gain calibration of the camera might become
inaccurate over time [131], however, we believe the measured photons counts to be reasonable, as we
measure values as other groups [46–48].

An important quantity to describe the quality of the detection is the fidelity, which describes how well
the atom-signal is separated from the background. The task boils down to the placement of a threshold
for the detected number of photons above which we can assume with some certainty that an atom is
present. As both distributions have an infinite extend, they overlap and there will be a contribution from
both of either side of the threshold. To determine the fidelity, we have to determine all four elements for
binary classification, namely true positive (TP), true negative (TN), false positive (FP) and false negative
(FN) where TP + FN = 1 and FP + TN = 1. In the end, we would like to keep TP, i.e. the fraction of
correctly identified atom-events, as close to unity as possible, while keeping FP as low as possible.

Different methods to set the threshold exist, and in this work we use a fit to the data to extract the
threshold that separates the peaks optimally. We model the signal as the superposition of two Gaussian
curves that we fit to the data7. For the example in Figure 5.19, we extract a mean and a width of the
atom-peak of 100 photons and 14 photons respectively. The width is larger than the expectation for a
Poissonian distribution of

√
100, and we attribute the deviation to loss during imaging which skews

the distribution and results in a broader distribution. To estimate the fidelity, we place a threshold (red
vertical bar in Figure 5.19) close to the minimum of the fit. The fidelity can be calculated via F = 𝐴atom,𝑟 ,
where 𝐴atom,𝑟 is the area of the fitted atom-signal to the right of the threshold. The false positives can
be determined similarly from the area of the background peak to the right side of the threshold 𝐴bg,𝑟 .
Our definition is therefore a relative measure and especially suited for optimizing the imaging process,

7 A Possionian distribution with a mean ≫ 1 can be approximated by a normal distribution.

84



Chapter 5 Single atoms in optical tweezers

0 50 100 150
Photon counts

  0

  5

 10

 15

 20

 25

 30

 35

Ap
pe

ar
an

ce
 / 

%

Average
Single tweezer

(a)

0 50 100 150
Photon counts

10 5

10 4

10 3

10 2

10 1

100

101

Ap
pe

ar
an

ce
 / 

%

Average
Single tweezer

(b)

Figure 5.19 – (a) Histogram of the scattered photon number averaged over 36 sites (blue) compared to a single tweezer (red),with a fit to the single tweezer distribution (dashed curve). Different sites scatter a different amount of photons and theaveraged distribution is therefore wider than the single tweezer distribution. Additionally, loss also leads to a broadening ofthe Poissonian distribution. (b) Logarithmic histogram that shows the deviation from the fit in the region between the peaksif atoms are lost during the imaging process.

as it determines the threshold that separates the two peaks optimally, without the need for a dedicated
calibration measurement. A shortcoming of this model is the fact, that it cannot account for loss during
the imaging process, which leads two a deviation from the theoretical bimodal distribution. Atoms lost
during the imaging process scatter less photons which manifests itself in a bridge between the two peaks.
In result, our method for quantifying the quality of the imaging might not be optimal for comparison to
values from the literature if authors use different definitions for F . In the future, an analysis of our data
using a method from the literature will lead to a more comparable result.

5.5.1 Imaging parameters

To compensate the heating due to photon recoil during the imaging, we cool the atoms, where the
details depend on the trapping wavelength and in turn the details of the cooling process. Here, we will
only comment in detail on the imaging in 813 nm traps, which is relevant wavelength for this work.
We briefly investigated imaging in 515 nm and 532 nm, which indicates that high fidelity imaging is
possible, albeit with higher losses compared to 813 nm (similar observations have been made in the
literature [47]). First, the 1P1-state decays to the 4d1D2-state, which is anti-trapped at these wavelengths
and the comparably long lifetime of 300 µs leads to atom loss. A second loss channel is off-resonant
excitation from 3P1 → 5d3D2 which also leads to atom loss.

For imaging, we use a single non-retroreflected, linearly polarized beam at 461 nm with a diameter
of around 1 mm. The polarization is chosen to lie in the radial plane to ensure maximum collection
efficiency due to the orientation of the emission pattern [117]. We confirm that the signal vanishes for a
polarization axis parallel to the axial direction (the tweezer propagation axis) by rotation the polarization
axis of the imaging beam. The total collection efficiency is around 6 %, consisting of the collection
efficiency of our objective of 11 %, the quantum efficiency of 75 % of the camera and 75 % for the
efficiency of the imaging path.
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We continuously apply the cooling light while the imaging light is pulsed with a duty cycle of 10 to
15 % at powers of 12 to 25 µW and a cycle time of 1 ms. We find a strong dependence of the imaging
loss on the duty-cycle on the per-cent-level and the imaging power on the microwatt-level. Detunings of
less than −25 MHz help to fine-tune the scattering rate as they reduce the sensitivity to intensity noise of
the imaging beam. To ensure that the atoms survive the imaging process, we take two images with an
exposure time of 100 ms each, separated by about 120 ms, while scanning the imaging parameters.

Figure 5.20(a) shows the measurement for the imaging power at a duty cycle of 10 %. We see that the
second image is necessary to visualize the loss for higher imaging powers which is not possible with a
single image alone. This is to be expected, as atoms that get lost towards the end of the first imaging
process still scatter enough photons to be classified as an atom-event. The signal peaks around 20 µW
which corresponds to a saturation factor of 0.03 at a scattering rate of 2𝜋 × 400 kHz, assuming the trap
sits in the center of the beam. This values are larger than expected from the measured number of photons
and also compared to the scattering rates of less than 50 kHz in [48]. We therefore assume that the beam
is not centered on the array which reduces the intensity. In fact, by reversing the argument, we can
calculate the displacement from the center of a Gaussian beam with a waist of 0.5 mm. For a scattering
rate of 𝑅 = 2𝜋 × 20 kHz, we compute8 an off-center position around 0.7 mm, which is well within the
error margins of our knowledge of the beam size and of the alignment precision. By displacing the
imaging beam in the radial plane the position can be mapped out in the future to get a reliable estimate
for the actual imaging beam intensity.

We measure a saturation of the loss at a value around 10 %, see Figure 5.20(b) and Figure 5.20(d),
whereas other groups measure losses on the order of 0.1 % (see e.g.[48]). To exclude an imaging
independent loss, we wait for the same time without taking the first image. In this case the loss is
lower at around 5 % which can be explained by the vacuum lifetime of the traps, see Section 5.8. A
likely explanation is insufficient repumping of the 3P2 state during the imaging process as we do not
see an influence of the repumping lasers. This could either be caused by insufficient power due to a
misalignment or by off-resonant operation caused by light shifts of the 3S1/

3P2/1 states. We can estimate
the magnitude of this effect from the branching ratio of the 1P1 → 4d1D2 decay and the average number
of scattered photons. In 100 ms we detect an average number of 100 photons which, together with the
detection efficiency of 6 %, means an atoms scatters 1 700 photons on average. Each of these excitations
can lead to a decay of the 1P1 state to the 4d1D2 state with a probability between 1 : 20000 to 1 : 50000
(see Figure 3.1). The D-state decays to the 3P1 and 3P2 states with a branching ratio of 2 : 1 and therefore
one-third of the the atoms end up in 3P2. The probability of this happening is on the order of a few
percent9, which is a bit lower than the observed loss of 5 to 7 % but the latter is well within the error
margin of this estimation.

Another explanation for the large loss due to the imaging could be due to a residual atom stream from
the 2D MOT, as we currently use the push beam for imaging. However, at the time of the first image the
2D MOT has been disabled for more than 50 ms which renders the explanation unlikely. It can still be
prevented by setting up an additional imaging path that does not pass through the 2D MOT region.

We also measure loss depending on the cooling detuning and amplitude for different imaging powers
and cycle times. These parameters all depend on one another but we found the best result for an imaging

8
𝑅 is computed by 120 photons/100 ms at an imaging efficiency of 6 %. From 𝑅 we calculate the saturation 𝑠0 and it turn
the local intensity 𝐼𝑙 . Finally, we compute the radius at which a Gaussian beam with a center intensity 𝐼0 = 2𝑃/𝜋𝑤2

0 for
𝑃 = 20 µW equals 𝐼𝑙 .

9
(
1 − (1 − 1/50000)1700

)
× 1/3 ≈ 1 % and

(
1 − (1 − 1/20000)1700

)
× 1/3 ≈ 3 %
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power of 12 µW with a duty cycle of 10 % at a cycle time of 1 ms and a detuning of −25 MHz. We do
not see a dependence on the cooling power above a power of 100 µW. A measurement for the cooling
detuning during imaging is shown in Figure 5.20(c) which again compares well to the literature [48].

Because the optimal cooling detuning during the imaging process depends on the trap depth in a linear
manner for small deviations, it can be used to measure the relative trap depths in a tweezer array. We
will exploit this fact in Section 5.6 for an efficient method to quickly homogeneize the trap depths in a
tweezer array.
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Figure 5.20 – Imaging parameters for atoms in 813 nm tweezers. The parameters are optimized for minimum loss betweentwo images. For all measurements, the imaging light is applied with a duty cycle of 10% at a cycle duration of 1ms and at adetuning of −30MHz. Cooling light is continuously applied with a power of 200 µW but similar results are obtained from100 µW to 1 500 µW. Results are averaged over 36 tweezers. (a) Imaging power averaged over a 6 × 6-array together withthe loss in (b). (c) Imaging cooling detuning averaged over a 6 × 6-array together with the loss in (d). The dashed lines in (b)and (d) show a minimum loss of 9% and 11 % respectively. In general, this value depends on other losses (e.g. the vacuumlifetime) as well and slight deviations from the mean value around 10% occur between measurements.
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5.6 Tweezer array trap depth balancing

Although camera images of the tweezer array in front of the objective show non-uniformities on the
few percent level, we see that this is not a good indicator for the balancing in the atom plane. The
effect of the complex phase-pattern of the SLM is sensitive to misalignments, especially of the high NA
objectives with respect to the vacuum windows. An indicator for a potential misalignment could be the
visible astigmatism on some traps in the arrays shown in Figure 5.22. The latter does not necessarily
mean that the traps projected with the upper objective suffer from the same aberrations as the imaging
light is collected with the lower objective but it gives a hint that the alignment process described in
Appendix B.1 might be not precise enough. We would therefore like to carry out a final balancing step
of the tweezer array with a signal from the atoms that can be used in the Gerchberg-Saxton algorithm
(see Section 4.3.2).

In order to do this, we reuse the phases that are calculated initially which are kept constant during the
fixed-phase phase (see Section 4.3.2.2). We thus only need to determine the electric-field amplitude of
each trap, which we can infer from the trap depth (or trap intensity). Different ways to measure the trap
intensity exist and in this work we demonstrate resolved sideband spectroscopy in Section 5.4.1 and
modulation spectroscopy by parametric excitation described in Section 5.7. However, we find another
robust method that can produce accurate results with less data obtained from less complex measurements.

The non-vanishing differential light shift at 813 nm between the 1S0 and the 3P1 state allows an atom
in a deeper trap to be excited at larger negative detunings, compared to a shallower trap (see Figure 5.13).
As this shift is proportional to the trap depth, we can infer the trap depth by changing the cooling detuning
during the imaging process (see Figure 5.20(c)). Atoms that are not properly cooled due to a suboptimal
cooling detuning are lost during the imaging process which leads to a straightforward signature to further
work with. We find this method to be more robust for large initial spreads compared to direct trap
frequency measurements which rely on proper cooling to gain information about the trap depths.
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Figure 5.21 – Relative trap depths before and after correction for 25 tweezers at 813 nm. The relative peak-to-peak variation of25.3% and standard deviation of 6.0% are reduced to 2.3% and 0.7% respectively by updating the phasemask on the SLM.
Figure 5.21(a) shows the left flanks of the cooling feature for 25 traps before and after the correction

step. Fitting a sigmoid curve to the data allows us to extract the inflection point. The latter is normalized
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to the mean of all values which is then taken as a relative trap depth deviation. We use the relative trap
depths, which are proportional to the relative intensities, in the feedback function Equation (4.20) to
optimize the phasemask written to the SLM. For the feedback we use gains of 𝑔0 = 1.0 and 𝑔1 = 2.0
for the first iteration and after that 𝑔0 = 1.0 and 𝑔1 = 1.2. Using this technique we can homogenize
even large irregular arrays, as shown in Figure 5.22. We find that this leads to the fastest convergence
without overshoot for small, rectangular arrays but more complicated geometries (like the 88Sr array in
Figure 5.22) can benefit from more iterations at larger gains. We have not investigated the convergence
process in detail yet, but for small, rectangular arrays, with no prior optimization, around 4 − 5 iterations
are enough to reduce the peak-to-peak deviation to the final level of around 3 %. For the example in
Figure 5.21, we reduce the initial spread of around 700 kHz to 70 kHz which equals a reduction of the
relative peak-to-peak deviation from 25.3 % to 2.3 % and 6 % to 0.7 % for the relative standard deviation.

In addition to a balancing of the relative trap depth, it is also possible to optimize the mean trap depth
of all traps at once by an additional wavefront-correcting phasemask on the SLM. Different optical
aberrations, like astigmatic or spherical corrections (see Appendix A.4), can be added to the phasemask
which can increase the overall trap depths significantly [42]. In the future, this method can be used to
reduce the overall power demand of the system.

5.2µm5.2µm 5.2µm

Figure 5.22 – Different tweezer array geometries. The center image shows an astigmatism caused by a slight misalignment ofthe imaging system at the time.

5.7 Trap characterization - Modulation Spectroscopy

A method to measure the trap frequencies (and in turn the trap size and depth), even for non-zero
differential light shifts, is to parametrically heat atoms out of the trap. In contrast to an external driving
force, parametric excitation is based on the modulation of the trap parameters itself. Consider the child
on a swing example: The amplitude of the oscillation can either be increased by periodically pushing the
child at a frequency 𝜔 which is close to the resonance frequency 𝜔0, or the child can do it themselves by
changing the effective length of the swing by shifting its weight. The latter is an example of parametric
excitation as a parameter of the system, in this case the mass distribution, is changed or modulated. For
sufficiently low damping, the amplitude of the oscillation will increase to infinity, which in our case
means that atoms are heated out of the trap.
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Theory

In our case we will modulate the depth of the potential 𝑉 periodically and we can describe the process
with the following Hamiltonian:

�̂� = − ℏ

2𝑚

(
𝜕

𝜕𝑥

)2
+ �̂� (𝑥, 𝑡) (5.11)

�̂� (𝑥, 𝑡) = �̂�0
(
1 + 𝜖 sin

(
𝜔ext𝑡

) )
(5.12)

where �̂�0 = 1
2𝑚𝜔

2
trap𝑥

2 with the trap frequency 𝜔trap. If 𝜖 ≠ 0, the depth of the trap is periodically
changed, leading to the parametric excitation. To stay in the perturbative regime, we will assume 𝜖 ≪ 1
and we can therefore model the system using time-dependent perturbation theory (see e.g. [132]). We
will not go into a lengthy derivation of the solution here but rather highlight the important aspects from
which we derive the expected signal. Separating the unperturbed problem 𝐻0 and the perturbation in
Equation (5.11) leads to:

�̂� = �̂�0 + 𝜖�̂�0 sin
(
𝜔ext𝑡

)
(5.13)

= �̂�0 +
𝜖

2
𝑚𝜔

2
trap𝑥

2 sin
(
𝜔ext𝑡

)
. (5.14)

Expressing the Hamiltonian in terms of the ladder operators �̂�† and �̂�, leads to the well known energy
ladder for the unperturbed case of �̂�0 = ℏ𝜔trap

(
�̂�
†
�̂� + 1

2

)
. The effect of the perturbation is visible when

we compute the motional states that it couples:〈
𝑚

��� 𝑥2
��� 𝑛〉 ∝

〈
𝑚

���� (�̂�† + �̂�

)2
���� 𝑛〉 =

√︁
𝑛 (𝑛 − 1)︸       ︷︷       ︸

𝑀−

𝛿𝑛−2,𝑚 + (2𝑛 + 1)︸   ︷︷   ︸
𝑀0

𝛿𝑛,𝑚 +
√︁
(𝑛 + 2) (𝑛 + 1)︸              ︷︷              ︸

𝑀+

𝛿𝑛+2,𝑚

(5.15)

It can be seen, that the perturbation couples levels separated by 𝜔𝑛,𝑛+2 = 2𝜔trap which can be explained
by the even parity of the perturbation. From 𝑀+ > 𝑀− we can further see that, for a suitably long
excitation at frequency 2𝜔trap, the average motional quantum number will increase. For the trapped atom
in the experiment, this will ultimately lead to atom loss as it is heated out of the trap. The measured
width of the resonance depends on the amplitude of the excitation and also on the anharmonic parts of
the trapping potential.

Results

Figure 5.23(a) shows a measurement for a single atom in a trap at 515 nm. The first resonance at
(82.1 ± 0.3) kHz corresponds to an excitation at twice the axial trap frequency and the resonance at
(438.9 ± 0.7) kHz corresponds to twice the radial trap frequency.

With the trap frequencies 𝜔𝑟 = 2𝜋 × (219.5 ± 0.4) kHz and 𝜔𝑎 = 2𝜋 × (41.0 ± 0.2) kHz we can
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determine the aspect ratio, the trap size and depth:

𝜔𝑟

𝜔𝑎

= 5.34

𝑤0 =
𝜔𝑟

𝜔𝑎

𝜆
√

2𝜋
𝛽 = 360 nm

𝑈0 =
𝜔

2
𝑟𝑚𝑤

2
0

4𝑘B
= 0.7 mK

where 𝛽 (𝜉 ≈ 1.5) = 0.58 is the correction factor of the waist due to truncation at the aperture (see
Section 4.2). Compared to the theoretical limit for the aspect ratio for a truncation ratio of ≈ 4.9, the
measurement shows a larger value. It is also larger than the aspect ratio, determined with resolved
sideband spectroscopy in Section 5.4.1. We explain this deviation by the fact, that at the time of the
modulation measurement the AODs were already installed. The additional optical elements lead to
additional aberrations in the system that reduce the quality of the trap, and we therefore suspect the
actual waist to be larger than the one extracted from the aspect ratio. A more realistic value for the waist
can be determined from the power per trap of around 3.5 mW, the ground state polarizability of 900 a u
and the radial trap frequency of 2𝜋 × 220 kHz. Using these values in Equation (4.3) and Equation (4.7),
we compute a waist around 460 nm and a trap depth of 1.1 mK. These values compare well to the values
in [47] and show that the 515 nm tweezer beam path, including the objective in relation to the vacuum
windows, is well aligned.

We repeat the modulation measurement for a tweezer array at 813 nm and show the result for the
radial direction in Figure 5.23(b). We could not resolve the axial sideband yet and can therefore not
infer the aspect ratio directly. Although the wavefront is corrected to around 𝜆/6 peak-to-peak deviation
before the objective, we suspect stronger residual aberrations from misalignment with respect to the
vacuum window. This can be seen for the single trap in Figure 5.23(b), where we measure a double
resonance with frequencies of 𝜔𝑟1

= 2𝜋 × (47 ± 1) kHz and 𝜔𝑟2
= 2𝜋 × (60 ± 1) kHz. The underlying

aberration is probably a combination of an astigmatism and a coma caused by a tilt of the objective
relative to the window, in addition to a residual spherical aberration caused by a deviation from the
window thickness from the optimal value. A simulation to estimate the angular misalignment for a
correction in the experiment is difficult to carry out due to the large number of free parameters.

The existence of aberrations in the system and no knowledge about the axial trap frequency requires
us to estimate the trap parameters from additional quantities. As described in Section 5.4.2 for 𝛼𝑔 < 𝛼𝑒,
we compute the waist from the power per trap of 9 mW, the trap frequency of 2𝜋 × 60 kHz and a ground
state polarizability of 286 a u (see Table 4.1). The waist of 950 nm and depth of 300 µK confirm the
suspicion that the traps are strongly aberrated. It is not clear, if this can be corrected with the current
setup, as our alignment method is apparently not precise enough. The cleanest solution would be to
replace both objectives with a single objective which shows a negligible focal shift between the different
tweezer wavelengths used in the experiment. This would also prevent the need of frequent realignment
caused by a drift in the upper objective stage.

From the data for every site, we calculate a relative standard deviation, normalized to the mean, of 4 %.
Note that this result has to be taken with care, as its accuracy is limited by the low resolution of 5 kHz.
We expect lower deviations and a better agreement with other methods when repeating the measurement
with a frequency resolution < 1 kHz.
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Figure 5.23 – Modulation spectra together with fits to extract the trap frequencies. (a) Single tweezer at 515 nm. From theratio of trap frequencies, the quality of the trap can be inferred. (b) Averaged spectrum for 36 tweezers at 813 nm, togetherwith a spectrum for a single representative tweezer in the array.

5.8 Lifetime

Current quantum simulators based on neutral atoms in optical tweezers are assembled in an atom-by-atom
manner [39, 41, 42, 133] from an initially disordered state (see Chapter 6). An important factor for
the assembly of larger arrays in this bottom-up-approach is the lifetime of the traps. If an atom in a
trap has a lifetime of 𝜏, the total lifetime of an array of 𝑁 atoms is given by 𝜏/𝑁 . Different mechanism
limit the lifetime 𝜏, for example heating due to intensity-noise of the trap but even in the absence of
these heating effects the lifetime is ultimately limited by collisions with residual background atoms. At
room temperature, pressures of 1 × 10−11 mBar can be reached [70] which can lead to vacuum lifetimes
of several minutes. The collision rate can further by reduced if the vacuum system itself is cooled to
cryogenic temperatures [134]. For strontium in 813 nm tweezers these minute-long lifetimes at room
temperature have been demonstrated [48], which serves as a benchmark for our system. To measure the
vacuum lifetime, we vary the delay between the two cooling blocks in Figure 5.1 before continuing with
the standard imaging sequence. Figure 5.24 shows the results for atoms in 813 nm traps, but 515 nm
and 532 nm traps show similar results. In this measurement, the extracted lifetime is (3.56 ± 0.15) s, but
repeating the measurement over several months shows lifetimes between 2 to 10 s. Before discussing the
absolute value of the lifetime, we will briefly comment on the differences with and without cooling. We
see that cooling, pulsed or continuously applied, does not influence the lifetime in 813 nm traps. It does,
however, reduce the lifetime in the 515 nm traps significantly to around 600 ms. We explain this by the
fact that 515 nm trap photons can lead to off-resonant excitation to from the 3P1 to the 5d3D1,2-state [67].
We have yet to investigate the influence of the cooling light in 532 nm traps, but we expect similar results
as for 515 nm, as both wavelengths share the same loss channels.

The absolute value of the lifetime is far from the values reached in the literature of several minutes.
First, we exclude parametric heating from the laser by investigating the frequency components with and
without intensity stabilization and by repeating the measurement. We measure the frequency spectrum
with a spectrum analyzer and find no components above −95 dBm between 0 to 300 kHz even without
an active laser stabilization. We also exclude intensity noise (both in amplitude and spatial position)
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from the SLM as we observe similar results with the AODs and even without a modulating device at all.
A simulation of the vacuum system using Molflow10 suggests that the pressure at the position of the

atoms might be one to two orders of magnitude higher than the pump reading. This is caused by the
complex geometry of the chamber with channels that can trap background gas consistents for a long time
before they reach the pump. The CF16 connection between the chamber and the rest of system also acts
as a differential pumping system which increases the pressure inside the main chamber. We confirm this,
by measuring the lifetime after using the titanium-sublimator pump which increased the pressure reading
to more than 3 × 10−10 mBar without a change in the lifetime.

Finally, a faulty weld that had to be resealed several times over the last few years could lead to a virtual
leak that releases a particle-stream of varying intensity directed at the atoms. A strong indicator for this
hypothesis is the fact, that we measure large deviations when repeating the experiment on the order of
weeks, consistent with a non-constant particle-stream from a virtual leak [70, 135]. To investigate the
influence of a virtual leak, it could help to heat the system locally around the suspected position of the
leak by around 10 to 15 °C while measuring the lifetime. The increased temperature should have an
influence on the intensity of the particle-stream which should result in a change of the lifetime.

All in all, the problem itself does not seem to be fixable without major changes to the vacuum system,
like replacing the vacuum chamber or installing an additional pump to one of the CF16 ports of the main
chamber. For the goal of this work, the assembly of small defect-free arrays, the current lifetime has a
value that complicates the measurement and evaluation process, but it is long enough to obtain a reliable
result.
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Figure 5.24 – Lifetime measurement of an atom in a tweezer array at 813 nm with an extracted value of (3.56 ± 0.15) s. Similarvalues are obtained for 515 nm and 532 nm tweezers.

10 https://molflow.web.cern.ch/
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5.9 Summary and open questions

In this chapter, we investigated the preparation, cooling and detection of single ultracold atoms in optical
tweezers. We discussed the process of light-assisted collisions that we use to create sub-Poissonian atom
number distributions in the tweezers, limiting the atom number to either 0 or 1 atom. We investigated
three different cooling protocols for the different wavelengths used in the experiment. For traps at
515 nm, we showed that we can cool atoms to the three-dimensional motional ground state with a
probability of 95+2

−10 %. We also showed that we can cool atoms in tweezers at 813 nm to the level that
has been observed in the literature. Finally, we briefly investigated the cooling in traps at 532 nm, where
a significant cooling effect can be seen even with a suboptimal protocol.

We showed that we can take high-fidelity images of atoms in 813 nm traps. The high loss of around
7 % during the imaging process is likely caused by insufficient repumping, either due to low power due
to misalignment or by off-resonant operation caused by light-shifts. This can be verified by adding
acousto-optic modulators to tune the frequency of the repumping lasers and also by displacing the
beams in the radial plane to identify a potential misalignment. To compare the absolute values for the
imaging fidelity with values from the literature, a different model which accounts for the loss has to be
developed. For example multiple images can be used to determine the number of events where an atom
is only detected in the second image [47]. This can be done with the current data without additional
measurements. In addition, a dedicated imaging beam to prevent a residual atom flow from the 2D
MOT region is needed in the future. However, as the error induced by the imaging loss dominates the
uncertainty in the detection fidelity, we neglect the latter in the discussion for the rearrangement results
in Chapter 6.

A second major issue is the vacuum lifetime. It seems, that this can only be fixed by making major
changes to the setup by e.g. adding a small additional pump or by replacing the vacuum chamber all
together.

Irrespective of the technical improvements, a more fundamental open question is how well the limit of
the sisyphus cooling protocol represents the quantum mechanical motional ground state. In the future,
sideband thermometry can be used to investigate this in greater detail. The ability to directly infer the
average motional quantum number ⟨𝑛⟩ is a robust absolute measure, independent of a possibly inaccurate
simulation. The release-and-recapture method can still be used to optimize the cooling parameters in
a relative manner as much less data is needed and progress can be made faster. It could therefore be
beneficial to cool the atoms in a trap at 532 nm or 813 nm before transferring them to 515 nm where
resolved sideband spectroscopy is possible. The details and the influence of this transfer-process can
be characterized by a double-handover: First, sideband-cooling at 515 nm ensures a well known initial
state. Secondly, a transfer to a different trapping wavelength and back again, followed by sideband
thermometry can be used to characterize the transfer process.

Cooling an atom to the motional ground minimizes the uncertainty associated with the initial in-
ternal state of the system, and we also reduced the uncertainty associated with the probabilistic
distribution by reducing the atom number to a single atom at most. However, this still leaves around 2𝑛

initial configurations for 𝑛 traps, and the final chapter will now discuss how this uncertainty can actually
be minimized by rearranging atoms to a defect-free configuration.
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Assembling defect-free atom arrays

1st image 2nd image

5 m

Figure 6.1 – Nine atoms randomly distributed in an underlying 5 × 5 square array have been rearranged into a defect-free
3 × 3 square array.

In this last chapter, we will now present the single site addressing capability of the experiment by
rearranging partially filled arrays to defect-free configurations. Finite filling fractions are a result of the
probabilistic nature of the tweezer loading process which inherently prevents a deterministic preparation
of the system. To reduce the uncertainty (or entropy) associated with the binomial distribution of initially
populated tweezers (see Section 5.3), the currently established approach is to rearranged atoms between
sites to create a defect-free configuration in an atom-by-atom manner to a smaller target-region [39, 41,
42, 133]. The assembly is carried out by a dynamic optical tweezer, which moves atoms between different
sites of an underlying tweezer array. For this work, we combine two different trapping wavelengths to
make use of their respective advantages. The static arrays in which atoms are rearranged are created
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at 813 nm, as the wavelength allows for low loss imaging and long lifetimes. For the single dynamic
tweezer we use light at 515 nm or 532 nm, as these wavelengths allow us to create deep potentials due to
the small waist and large polarizability (see Section 4.1).

We first investigate how to move a single atom with a dynamic tweezer, created with the pair of
acousto-optic deflectors (AODs) characterized in Section 4.4. We develop a model based on the kinematic
parameters of the motion and construct a control-theory optimal trajectory. Afterwards we discuss the
algorithm that is used to rearrange a partially-filled array into a smaller target-region of full density,
making use of additional reservoir-sites. The process has been demonstrated in arbitrary geometries
[136], in optical lattices [137] and even in complex large-scale arrangements where target regions are
separated for different tasks [133]. We benchmark the performance of the algorithm using a simulation
and discuss two modifications that increase the probability to find a solution which minimizes the number
of moved atoms. We then present an overview of the combination of all hard- and software components
and the experimental parameters that we work at. Finally, we discuss the experimental results where
we estimate the single move success probability (also called move fidelity) with two different methods
to reduce the influence of experimental uncertainties. From the single move fidelity we determine the
probability of preparing a defect-free array. We close the chapter by discussing the current bottlenecks
and possible improvements.

6.1 Moving a single atom

To create a trap in the focal- or atom-plane, RF-waveforms with frequencies 𝑓𝑥 and 𝑓𝑦 are applied to the
AODs. The position of the trap depends linearly on the angle of the deflected light which itself depends
linearly on the RF-frequency (see Figure 4.22 in Section 4.4). We can therefore correlate changes of the
position to changes in the frequency as shown in Table 6.1. We start the discussion with the simplest
form of motion connecting two positions, namely a linear change in position over time. Afterwards, we
identify its flaws and propose a more sophisticated model. For simplicity, we discuss the problem in one
dimension first and extend it to the two-dimensional case at the end.

𝑓 (𝑡) ⇔ Position 𝑟 (𝑡)
𝑓
′(𝑡) ⇔ Velocity 𝑣(𝑡)

𝑓
′′(𝑡) ⇔ Acceleration 𝑎(𝑡)

𝑓
′′′(𝑡) ⇔ Jerk 𝑗 (𝑡)

𝑓
′′′′(𝑡) ⇔ Snap 𝑠(𝑡)

Table 6.1 – Frequency space correspondence

6.1.1 Constructing an optimal trajectory

The aforementioned linear motion corresponds to a linear frequency ramp, or frequency chirp, that we
apply to the modulator. We can describe the instantaneous frequency 𝑓 (𝑡) of the chirp by:

𝑓 (𝑡) = 𝑓0 + ( 𝑓1 − 𝑓0)
𝑡

𝑇
= 𝑓0 + Δ 𝑓

𝑡

𝑇
, (6.1)
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Figure 6.2 – A linear frequency chirp with its waveform (a) and the resulting kinematic motion parameters (b). The linearchange in position leads to discontinuities in the acceleration which can lead to excess heating or even loss of the atom dueto high-frequency components.

where 𝑇 is the time over which the frequency changes by Δ 𝑓 from 𝑓0 to 𝑓1. We obtain the full waveform
𝑆(𝑡) from the phase 𝜙(𝑡) by integrating out the frequency:

𝜙(𝑡) = 2𝜋
∫ 𝑡

0
𝑓 (𝑡′)d𝑡′ = 2𝜋

(
𝑓0𝑡 +

1
2
Δ 𝑓

𝑇
𝑡
2
)

(6.2)

𝑆(𝑡) = 𝐴(𝑡, 𝑓 (𝑡)) sin (𝜙(𝑡)) (6.3)

where 𝐴(𝑡, 𝑓 (𝑡)) is the instantaneous amplitude, which in general depends on the time 𝑡 and the
instantaneous frequency 𝑓 (𝑡). 𝑆(𝑡) is the resulting waveform that will be written to the arbitrary
waveform generator (AWG) which drives the AODs (see Figure 6.2(a)). To analyze the effect of
the waveform on the atoms, we can investigate the time-dependence of the spatial position and its
time-derivatives. As shown in Fig. 6.2(b), the position 𝑟 varies linearly in time and the velocity 𝑣 is
therefore constant. A problem arises at the start and end of the chirp, where the constant velocity leads
to a jump in acceleration 𝑎 at the very first and last timestep. This impulse carries high-frequency
components, that can lead to unwanted excitation of the external (motional) state, resulting in heating or
atom loss in the worst case. The precise effect on an atom is difficult to predict, as it depends on the
bandwidth of the AWG, the amplifiers and the response-time of the AODs which have to be determined
experimentally. To mitigate the effect of instantaneous changes of 𝑎, we will therefore design the
frequency chirp starting from the jerk 𝑗 , while respecting maximum values for 𝑗 , 𝑎 and 𝑣. We already
saw that a finite 𝑗max is required to avoid high-frequency impulses in the acceleration (and therefore the
force) acting on the atom. Finite maximum values for 𝑎 and 𝑣 are also necessary, as both can lead to a
deformation of the trapping potential. More specifically, an acceleration 𝑎 leads to a tilt of the tweezer
potential which, for a sufficiently large value of 𝑎, can lead to atom loss. A large velocity 𝑣 can also lead
to a deformation of the trap, as the wave inside the AOD takes a finite time to cross the clear aperture due
to a finite speed of sound which can therefore lead to different deflection angles and in turn an elliptical
shape of the trap. Both effects are visualized in Figure 6.3.
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Figure 6.3 – Visualization of trap deformation due to excessive acceleration or velocity. Left: Applying an acceleration 𝑎 leadsto an additional linear potential energy slope. If this slope becomes too large, the atom can leave the trap. At the sametime, changes in acceleration (jerk 𝑗 ) that are fast compared to the "reaction time" of the wavefunction, given by the inversetrap frequency, can lead to unwanted excitation resulting in heating or atom loss. Right: The acoustic wave inside the AODtakes a finite time to travel through the clear aperture. If the change in frequency (and therefore the velocity) is too large,different parts of the beam deflect with different angles, leading to a deformation of the trap. The effect also leads to an axialdeformation (not shown) which can lead to out-of-plane trapping or atom loss.

6.1.1.1 Mechanical model - a control-theoretic approach

We can express the problem in the language of control theory in one dimension, where ®𝑥(𝑡) describes the
state of the system and ®𝑢(𝑡) describes the control input. The time-evolution is given by [138]:

¤®𝑥(𝑡) = 𝑓 (®𝑥(𝑡), ®𝑢(𝑡), 𝑡), (6.4)

where 𝑓 is a vector-valued function encoding the dynamics of the system. Control-theory is concerned
with the task to find an optimal solution to problem where optimal is defined as the optimization of a
cost functional1 𝐽. The task is to find a control input ®𝑢∗(𝑡) that optimizes 𝐽 which is usually written as:

𝐽 = ℎ(®𝑥(𝑡 𝑓 ), 𝑡 𝑓 ) +
∫ 𝑡 𝑓

𝑡0

𝑔(®𝑥(𝑡), ®𝑢(𝑡), 𝑡)d𝑡 (6.5)

where ℎ and 𝑔 are scalar functions, again specific to the system. The form of the cost functional is deeply
rooted in the mathematical theory of optimization. Expressed in a language familiar to a physicist, 𝑔 is
also written as 𝐿 and named the Lagrangian of the system, which makes the resemblance of 𝐽 to the
action 𝑆 encountered in physical problems more obvious.

1 Sometimes also referred to as performance measure.
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We define the state ®𝑥(𝑡) and the control input ®𝑢(𝑡) by:

®𝑥(𝑡) =
©«
𝑟 (𝑡)
𝑣(𝑡)
𝑎(𝑡)
𝑗 (𝑡)

ª®®®¬ and ®𝑢(𝑡) =
©«

0
0
0
𝑗 (𝑡)

ª®®®¬ (6.6)

where we truncate the motion at the jerk 𝑗 (𝑡). We justify this model as a reasonable compromise based
on our current knowledge, as we do not know how delicate the process of displacing a quantum-state
actually is. The literature [39, 136] suggests that linear chirps, with discontinuities in the acceleration,
can work reliably for moving an atom. Other groups use higher-order chirps [139], and recently also
other control-theory optimal trajectories have been investigated [140]. One of our future goals is to
develop a deeper understanding of the connection between the shape of the trajectory and its influence on
a quantum state. We therefore choose an approach that is more refined than the simple linear chirp but at
the same time not overly complex before it is proven to be necessary. It also turns out that our approach
can be reduced analytically to multiple one-dimensional optimization problems, which simplifies the
implementation. As explained above, we impose maximum values for 𝑗 , 𝑎 and 𝑣:

0 ≤ 𝑣(𝑡) ≤ 𝑣max with 𝑣max > 0 (6.7)
−𝑎max ≤ 𝑎(𝑡) ≤ 𝑎max with 𝑎max > 0 (6.8)
− 𝑗max ≤ 𝑗 (𝑡) ≤ 𝑗max with 𝑗max > 0, (6.9)

which force finite durations for changes of these parameters. 𝑣max, 𝑎max and 𝑗max are free parameters in
our model that have to be determined experimentally. We will comment on the values used for this work
in Section 6.3.3. In addition to the limits, we have to satisfy the boundary conditions:

®𝑥(𝑡0 = 0) =
(
𝑟1, 0, 0, 0

)
(6.10)

®𝑥(𝑡 𝑓 = 𝑇) =
(
𝑟2, 0, 0, 0

)
(6.11)

which state that the atom should be fully at rest at the start and the end of the trajectory.

Solution

Finding an optimal trajectory requires us to determine the duration 𝑇 and the time dependence of
®𝑢(𝑡), such that an atom is moved by the required distance 𝑑 = 𝑟 (𝑇) − 𝑟 (0). We include higher-order
position derivatives by assuming a certain functional dependence for changes of the jerk, which results
in continuity to fourth order of the motion, also referred to as snap 𝑠(𝑡). Although less frequently
encountered in the canonical mechanics courses for physicists, the snap is a crucial parameter to
consider in other disciplines. An example is the field of robotics, where it is used to compute drone
trajectories [141]. This could be an interesting field to benefit from by utilizing the developed models
and mathematical techniques to design even smoother atom trajectories.

We optimize the control input ®𝑢∗(𝑡) for minimum time 𝑇 . With ℎ = 0 and 𝑔 = 1 in Equation (6.5) we
have:

𝐽 =

∫ 𝑇

0
d𝑡 = 𝑇. (6.12)
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Figure 6.4 – (a) Time-series of the acceleration, split into seven segments. (b) Control input required to produce theacceleration from (a). By making use of the symmetries of the problem, the complexity can be reduced to three one-dimensional optimization problems to determine the three durations 𝜏1, 𝜏2 and 𝜏3.

It is important to stress that this is merely one of many possible choices. In the future, the measure could be
defined as the minimum motional excitation or lowest decoherence based on a fully quantum-mechanical
model.

Instead of trying to solve the problem directly, we will simplify it further by making use of the
symmetries of the motion. Figure 6.4(a) shows the most general form the acceleration can take, where
we assume an equal magnitude for acceleration and deceleration and an equal maximum or minimum
change of acceleration (jerk ( 𝑗)). Of the seven segments, segments 0, 1 and 2 combined describe the
process of acceleration to a certain velocity 𝑣

′
max. This velocity is smaller or equal to the maximum

velocity 𝑣max, which imposes the absolute limit for the velocity. In segment 3 the velocity is constant for
𝜏3 until we decelerate again in segments 4, 5 and 6. 𝑗 (𝑡) in the zeroth segment is by:

𝑗0(𝑡, 𝜏1, 𝑗max) = 𝑗max sin2
(
𝜋
𝑡

𝜏1

)
(6.13)

where 𝑗max = 2 𝑗avg and the other components of ®𝑥(𝑡) are obtained by a straightforward analytical
integration. 𝑗0(𝑡, 𝜏1, 𝑗max) is chosen such that the motion is continuous up to fourth order in time. 𝜏1 is
the first of three characteristic timescales of the problem. It describes the time it takes to reach maximum
acceleration and is given by the ratio 𝑎

′
max/ 𝑗avg. Depending on the values for 𝑗max, 𝑎max and 𝑣max, it can

happen that 𝑣max/2 is reached before 𝑎max is reached. The latter happens after:

𝑣max/2 !
= 𝑣0(𝜏

′
, 𝜏

′
, 𝑗max𝜏

′) (6.14)

=
1
2
𝑗max𝜏

′2 (6.15)

⇒ 𝜏
′
=

√︂
𝑣max
𝑗max

, (6.16)

where 𝑣0 is obtained by integrating 𝑗0 twice. This statement is making use of one of the symmetries
mentioned before: because of equal magnitudes for maximal and minimal changes in acceleration, it
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takes the same time to go from 𝑣 = 0 to 𝑣 = 𝑣max/2 as it does from 𝑣 = 𝑣max/2 to 𝑣 = 𝑣max. If we find
𝜏
′
< 𝜏1, the maximum acceleration has to be scaled to 𝑎max =

√︁
𝑣max 𝑗max, to have enough time left to

decelerate in segment 2, without exceeding 𝑣max at the beginning of segment 3.
Assuming additionally equal magnitudes for the maximum acceleration and deceleration, the duration

of segments {0, 2, 4, 6} have to be equal and it follows:

𝑗0 = − 𝑗2 = 𝑗4 = − 𝑗6 (6.17)

where 𝑗𝑖 describes the functional dependence of the jerk in segment 𝑖. In segment 1, the constant
maximum acceleration is reached, thus 𝑗1 = 0. To satisfy the boundary condition from Equation (6.11),
the acceleration and velocity have to be symmetric about half of the total duration 𝑇

2. This symmetry
argument can be used to show that the durations for segments 1 and 5 are both equal, which we define as
𝜏2, and thus:

𝑗1 = 𝑗5 = 0. (6.18)

The last free parameter is the duration 𝜏3 of segment 3 where 𝑗3 = 𝑎3 = 0 and 𝑣3 = 𝑐𝑜𝑛𝑠𝑡. We now
have a piecewise definition of ®𝑢∗(𝑡), shown in Figure 6.4(b), and the next step is to find the durations{
𝜏1, 𝜏2, 𝜏3

}
, such that the covered distance 𝑑 is equal to the required distance 𝑑target, and that it is covered

in the minimum amount of time. This three-dimensional optimization problem can further be broken
down into three one-dimensional problems, which can then be solved independently. The link between 𝑣,
𝑎 and 𝑗 also connects 𝜏1, 𝜏2 and 𝜏3, leading to three different cases.

Case 1 - Distance limited The first case is characterized by the fact that maximum acceleration or
velocity cannot be reached, as the distance is too short. This results in 𝜏2 = 𝜏3 = 0. 𝜏1 must be varied
until the covered distance matches the required distance.

Case 2 - Acceleration limited The second case only exists if 𝑎max <
√︁
𝑣max 𝑗avg, otherwise 𝑎max is

scaled accordingly. If this holds true, maximum acceleration is reached and there is time to accelerate
for 𝜏2/2 until 𝑣max is reached. If the distance covered is larger than the desired distance, 𝜏2 is lowered,
such that the difference vanishes. If it is smaller, we move to case 3.

Case 3 - Velocity limited The third and last case is reached for long distances where also a constant
velocity 𝑣max is reached for a finite time 𝜏3. After 𝜏3/2 the motion is reversed.

Case 𝜏1 𝜏2 𝜏3 |𝑎 | 𝑣 𝑇

Distance-limited < 𝜏1,max 0 0 < 𝑎max < 𝑣max 4𝜏1
Acceleration-limited 𝜏1,max < 𝜏2,max 0 𝑎max < 𝑣max 4𝜏1 + 2𝜏2

Velocity-limited 𝜏1,max 𝜏2,max ≥ 0 𝑎max 𝑣max 4𝜏1 + 2𝜏2 + 𝜏3

Table 6.2 – Summary of the trajectory cases

2 The acceleration is an odd function about the midpoint 𝑇/2, while the velocity is even.
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After the correct case is identified, the respective duration has to be adjusted, such that the correct
distance is covered. This can be done analytically or numerically with a one-dimensional optimization
algorithm. We chose to solve the problem numerically to ensure greater expandability, as a more complex
approach might not be analytically solvable anymore. The parameters for the three cases are summarized
in Table 6.2 and the shape of the trajectory, together with the velocity and acceleration are shown in
Figure 6.5

0 T/2 T
Time 

Acceleration a
Velocity v
Position r

0 T/2 T
Time 

0 T/2 T
Time 

Figure 6.5 – Resulting trajectories for three different cases. left: Maximum acceleration and velocity are not reached. center:Maximum acceleration is reached but not the maximum velocity. right: Maximum acceleration and velocity are reached. Fullexplanation in main text.

6.1.2 Waveform
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Figure 6.6 – (a) The precalculated trajectory is split among the two axes to reach any point in the atom plane. (b) Each chirpstarts and ends with a sin2-shaped amplitude waveform to pick up the atom. During the frequency chirp, the amplitude isapproximately constant.
With the problem being solved theoretically, the trajectory now has to be converted to a waveform,

which can be applied to the AODs. To compute the two-dimensional waveform, we do not apply the
calculated trajectories to both axes, as this would violate the maximum parameter constraints. Instead,
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we use it as a magnitude in polar coordinates and split it among the axes accordingly. Assuming we
move from 𝑃0 = (𝑥0, 𝑦0) to 𝑃1 = (𝑥1, 𝑦1), we calculate the trajectory for the distance between the two

points 𝑑 := | |𝑃1 − 𝑃0 | | =
√︃(

𝑥0 − 𝑥1
)2 +

(
𝑦0 − 𝑦1

)2 (see Figure 6.6(a)). To map the one-dimensional
motion to the distance change per axis, we use the angle3

𝜙 = arctan
(
𝑦1 − 𝑦0, 𝑥1 − 𝑥0

)
to compute:

𝑑𝑥 (𝑡) = 𝑑 (𝑡) cos 𝜙 (6.19)
𝑑𝑦 (𝑡) = 𝑑 (𝑡) sin 𝜙. (6.20)

The final step is to integrate out the trajectory, that we determined earlier, using:

𝑓𝑥/𝑦 (𝑡) = 𝑓𝑥/𝑦,0 + 𝛼 · 𝑑𝑥/𝑦 (𝑡) (6.21)

𝜙𝑥,𝑦 (𝑡) = 2𝜋
∫ 𝑡

0
𝑓𝑥/𝑦 (𝑡

′)d𝑡′ (6.22)

= 2𝜋 𝑓𝑥/𝑦,0𝑡 + 2𝜋𝛼
∫ 𝑡

0
𝑑𝑥/𝑦 (𝑡

′)d𝑡′ (6.23)

= 2𝜋 𝑓𝑥/𝑦,0𝑡 + 2𝜋𝛼𝑥/𝑦𝜒𝑥/𝑦 (𝑡), (6.24)

where 𝛼𝑥/𝑦 is a conversion factor given by the optical system. In our case 𝛼𝑥 = 𝛼𝑦

!
= 𝛼 ≈ 1.25 µm/MHz

(see Section 4.4). 𝜒𝑥,𝑦 (𝑡) is a "spatial phase", defined by the integral of the position 𝑑𝑖 (𝑡). 𝜒 and 𝜙 share
the same proportionality constant 𝛼 as 𝑓 (𝑡) and 𝑑 (𝑡). 𝜒𝑥,𝑦 (𝑡) has no immediate interpretation in the
mechanical picture and is merely a tool needed to compute the waveform. The discretized AWG signal
at index 𝑖 is calculated by:

𝑡 = 𝛿𝑡 · 𝑖 (6.25)
𝐴(𝑡) = 𝐴max𝜉 ( 𝑓 (𝑡)) (6.26)
𝑉 (𝑡) = 𝐴(𝑡) sin (𝜙(𝑡)) , (6.27)

where 𝛿𝑡 = 1/ 𝑓𝑆 with the sampling frequency 𝑓𝑆 and 𝐴max is the maximum amplitude. 𝜉 ( 𝑓 (𝑡)) is the
amplitude scaling factor, which depends on the instantaneous frequency as the AODs and the AWG have
finite bandwidths. We round 𝑓 (𝑡) to the nearest megahertz and use a lookup-table for 𝜉 ( 𝑓 ) as discussed
in Section 4.4.3.

Frequency chirp computation

Computing the chirp this way leads to two issues, both related to underlying AWG functionality. The
first one arises from the length of the chirp, which is arbitrary in the mechanical picture but the AWG
requires segment lengths being multiples of 32. We therefore pad the chirp by [1 − 31] single frequency
RF-values which prolongs the chirp by 31/ 𝑓𝑠. With a sampling frequency of 𝑓𝑠 = 1 228.88 MHz this
nanosecond delay is negligible.

The second problem is related to the phase at the end of a chirp, which in general is not equal to zero.
We would therefore need to compute the ramp-down amplitude segment depending on the phase for

3 Care has to be taken to determine the quadrant correctly. For numerical computations many programming languages
implement an atan2-function, that ensures that the correct sign is used.
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every possible combination of start- and end-sites. To avoid this, we calculate the phase of the signal one
step after the final step:

𝜙final = 2𝜋𝑁samples × 𝛼 × 𝑟final mod 2𝜋 (6.28)

and update the phase of the 𝑛-th sample according to 𝜙𝑛 → 𝜙𝑛 − 𝑛 · 𝜙final/𝑁steps. With this substitution
the next segment can start with a phase of zero and no phase-jump occurs. The error equates to
one oscillation in 𝑇 𝑓𝑏 ≈ 16000 oscillations for a chirp duration of 𝑇 = 200 µs at a base frequency
of 𝑓𝑏 = 80 MHz. As lattice sites are separated by several megahertz, a deviation of a few kilohertz
compared to the base frequency is again negligible.

Full move waveform

In addition to the frequency chirp phase, during which the trap depth is constant, two amplitude ramp
phases are needed before and after a frequency chirp. During these ramps, the amplitude is smoothly
ramped up or down with a sin2-dependence at the start and end frequency, which again avoids any
parametric excitation of the trapped atom (see Section 5.7) due to sudden changes in the trap depth. The
duration of these amplitude ramps is a free parameter and we will comment on the value that we use in
Section 6.3.3. However, we can still make a statement about the possible values based on the intrinsic
timescale of the problem. The latter is given by the inverse trap frequency at around 100 µs, as this is the
time it takes the wavefunction to respond to a perturbation. As a rough estimate, a sin2-ramp with a
duration of 100 µs does not carry frequency-components larger −60 dB above 10 kHz which is therefore
slow enough to prevent an excitation. A schematic for the full waveform is shown in Figure 6.6(b).

6.2 Rearrangement algorithm

To decide how atoms are rearranged, we make use of a compression algorithm (similar to [39, 136]),
which moves atoms from outer regions towards the center. We will introduce the algorithm, by solving
an example configuration, before we discuss its shortcomings and two possible improvements.

6.2.1 Compression-algorithm

The compression-algorithm can be thought of as an ordered nearest-neighbor algorithm. Ordered
in this case means, that it starts in the center of the array and moves outwards in circles or shells
which we characterize by their Euclidean distance to the center. This approach solves a flaw of a pure
nearest-neighbor approach, where it can happen that some atoms are moved multiple times because
they block each other. The compression-algorithm does not find the minimum number of moves but it
limits the maximum number of moves, with the limit being the number of empty target-sites. Details
for the performance compared to other approaches can be found in [39]. To create a defect-free array,
target-sites are defined which will be filled from reservoir-sites. On average, the total number of sites
should be at least twice the number of target-sites, as the binomial distribution for 𝑁 sites with 𝑝 ≈ 0.5
has a mean of 𝑁/2. Otherwise, many configurations will not contain enough occupied sites.
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Figure 6.7 – Visualization of the compression-algorithm sorting a partially filled array (dashed 3×3 area) to full density usingadditional reservoir atoms (dotted circles). The color of the sites represents the distance to the center of the array. The latteris filled from the inside out to avoid moving an atom twice. The solution filles the innermost (blue) sites first (a), continueswith the second set (orange) in (b) and finishes with the last (green) sites in (c).

Steps

Figure 6.7 shows the solution for a 5 × 5 square array, filled with nine sites, that are rearranged to a 3 × 3
target region. The global shells are represented as solid blue/orange/green circles in the target region and
dotted red/violet/brown circles in the reservoir.

The first step is to check if the number of occupied sites is equal or larger than the number of target
sites, otherwise the configuration is considered to be not sortable. If enough sites are occupied, the
algorithm iterates through the sites in the target region to decide how sites are filled.

It starts at the innermost shell, consisting of sites with indices {12}4. Local shells 𝑙𝑛 are constructed
around the current target site, but only sites that are located outside of the current global shell are
included. For site 12, this includes sites 𝑙1 = {7, 11, 13, 17} for the first, and sites 𝑙2 = {6, 8, 16, 18} for
the second local shell. We truncate the shells at sites with a distance of 2.85 (in units of lattice spacing)
for the adjacent sites. This distance means that for every site a 5 × 5-block of sites is checked (for site 12
this would be the whole grid)5. If the center of the populated site distribution deviates from the center of
the array, it is possible that no site to move from is found, and the configuration is considered as not
sortable. For every site 𝑠𝑖 in the first local shell 𝑙1, a local density based on the surrounding occupied
sites is computed. For the local density only sites that lie outside the current global shell are considered
and again only sites with a relative distance to 𝑠𝑖 of less than 2.85. If more than one possible site to
move from exists, the local density value is used to pick atoms from higher density regions first. If two
sites have the same local density, the site with the smallest index is picked. This choice introduces a bias
that we discuss in the next section.

For the case at hand, site 12 is filled from site 7 and the algorithm moves on to the next shell with sites
{7, 11, 13, 17}. The now empty site 7 has to be refilled, and the first local shell is constructed from sites
{2, 6, 8}. Site 12 is not considered, as it is not outside of the global shell of site 7. As site 6 is the only

4 For an even number of sites along both axes, the center shell would consist of four sites, and two sites if one is even and one
is odd.

5 The distances for sites contained in the local shells 𝑙𝑖 are therefore: 𝑑
(
𝑙1

)
= 1, 𝑑

(
𝑙2

)
=
√

2, 𝑑
(
𝑙3

)
= 2, 𝑑

(
𝑙4

)
=
√

3,
𝑑

(
𝑙5

)
= 2

√
2. The next possible distance for is 𝑑

(
𝑙6

)
= 3 and therefore not considered.
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occupied site, it is moved to site 7 and we continue. Following the logic, site 11 is filled from site 16, 17
from 22 and 13 from 18, which completes the shell.

The third and last global shell in the target region consists of sites {6, 8, 16, 18}. In this example, the
assignment in Figure 6.7 gives a collision-free6 solution, but we will now see that this was merely a
coincidence.

Optimizations

One problem is the bias in the selection, based on the index of a site, which results in an unwanted
ordering. For example, filling the last shell with sites {6, 8, 16, 18}, the solution would produce a
collision, if site 6 is filled from site 5 instead of site 1 as site 16 then has to be filled from site 1. This is
not happening purely because for site 6 site 1 and 5 are equal candidates and site 1 is picked because it
has a lower index. If the configuration is e.g. rotated by 90◦ counter-clockwise, the assignment would
produce a collision when site 1 is moved through sites 6 and 11 to site 16.

Relying on chance is of course something we would like to avoid and there are modifications to the
algorithm which can help in a case like this. Another issue is the fact that target sites that are already
filled are moved-from and then have to be refilled. This increases the number of moves, which in general
we would like to minimize because every move has a finite success probability.
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Table 6.3 – Possible array transformations. 𝑇 , 𝑇𝐴, 𝑅+ and 𝑅− are only applicable to square arrays.

Unique configurations The first change reduces the influence of randomness in the solubility. After
checking if enough sites are filled, we transform the array into a different configuration which we then
solve. This other configuration is a special configuration out of all configurations that are related by
symmetry transformations. Table 6.3 shows the possible transformations at the example of a 3× 3 square
grid. Note that the result for a transformation is not necessarily unique. Before solving a configuration,
we compute all eight transformed configurations and pick the smallest7, which we then solve. After
solving the (possibly transformed) configuration, the set of moves has to be transformed back to solve the

6 We define a collision as a move that passes through an occupied site, or within a certain distance 𝑑coll.
7 We enumerate all configurations and compare them with respect to this ordering. For smaller configurations ≤ 8 × 8, we can

interpret the flattened array as an unsigned integer and configurations can be directly compared. Otherwise, we can iterate
through two configurations and make a decision based on the largest position index where they differ in value. Picking the
smallest is just a convention, the largest would also work.
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original configuration. This procedure prevents the issue mentioned above, where a rotated configuration
results in a different solution. It does however not change the fact, that the solved configuration might be
the one that fails because of the index bias. The best option, in terms of success rate, would be to solve
all possibilities, however this increases the runtime exponentially. Depending on the array size and the
frequency of such branching events, it might still be a viable option that is worth to be explored in the
future.

Chain optimization The second modification that we include, is a post-selection of the computed
moves. If we look at the solution of the grid above, we can detect two chains of more than one move:
{1 → 6 → 7 → 12} and {24 → 18 → 13}. We label these chains by the number of connections, so the
first would be a three-move chain and the second one a two-move chain. Let us focus on the two-move
chain first. If such a chain is detected, we can check if the intermediate site can be skipped, in this case
site 18. For this, we check if there is an occupied site closer to the line connecting the start and end
site than a certain distance 𝑑collision. If this is the case, we do not make the replacement, otherwise we
replace both moves by the move {24 → 13}. We have to be careful though, as it could be that the first
move (moving from the intermediate site) and the second move (refilling it) might be at different times in
the sequence of steps and it could happen that an atom is moved over the intermediate site in the mean
time. Optimizing the moves would therefore lead to a collision, which was not present before. We will
investigate the increase in collisions compared to the reduction in moves in the next section.

For three-move (or longer) chains it gets more complex. If we find that connecting the start and end
site directly produces a collision, we still have the option to optimize sub-chains. For three-moves this
leaves two options and we can check both for possible collisions. If both produce collisions or if only
one is collision-free, the choice is obvious but if both are possible, further factors have to be considered.
In the future, a more elaborate approach for example by reordering the moves or partially resolving
the colliding part probably yields better results, for now chains with more than three sites involved are
omitted.

6.2.2 Algorithm performance

To benchmark our modifications, we simulate 106 configurations for 6 × 6 square arrays that we solve8.
We exclude solutions that contain moves which pass by an occupied site with a distance of 𝑎/

√
2, where

𝑎 is the lattice spacing, or less. Overall, 45.4 % of the configurations are sortable without the chain
optimization and 45.8 % with the optimization. We further compare the number of moves in a solution
and the number of suboptimal solutions. We define suboptimal solutions as solutions that deviate from
the minimum number of moves, where the latter is given by the number of empty sites in the target
region. Note that this underestimates the performance of the algorithm, as the existence of an optimal
collision-free solution is not guaranteed. Currently, we can only test if a solution is optimal but we
cannot prove its existence, let alone compute it9.

We show the results of the analysis in Figure 6.8. The average length of a solution without optimizing
chains is 9.64 compared to 9.03 with the optimization. Compared to the mean minimum number of
moves of 8, this is reduction of 40 % in excess number of moves. Additionally, we resolve the deviation
from the optimal solution in Figure 6.8(b). Note that we do not normalize the deviation to the optimal

8 We obtain similar results for other array sizes, e.g. 5 × 5 or 8 × 8 arrays.
9 If we had access to an algorithm that could compute a collision-free optimal solution we would use that instead.
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solution, as the absolute number of moves is the quantity to be minimized. As an example, a reduction of
an 8 move solution to a 5 move optimal solution is a larger improvement than reducing a 2 move solution
to a 1 move optimal solution, even though the relative decrease is less. The improvement is shown in
Figure 6.8(c), where a significant improvement for 0 to 2 move solutions can be seen.
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Figure 6.8 – Rearrangement algorithm benchmark for 5 × 105 random configurations of 6 × 6 square array with 16 target sites.
(a) Number of moves in a solution. The average number of moves in a solution is reduced from 9.6 to 9, which is a 40%improvement compared to the mean minimum number of moves of 8. (b) Length of a solution compared to the optimalsolution. Note that the latter does not necessarily exist and the performance of the algorithm is therefore underestimated. (c)Improvement of the chain optimization, where a significant improvement for shorter solutions can be seen. For visualizationpurposes, values have been clipped to -100%.

6.3 Experimental implementation

6.3.1 Overview

The combined hard- and software components and their interplay are shown in Fig. 6.9. The sorting
process itself can be broken down into six steps:

1. First image

2. Determine site occupation

3. Compute moves

4. Compute and upload waveforms

5. Move atoms

6. Second image

To take high-fidelity images, the process described in Section 5.5 is used, where we optimize the
imaging parameters by taking two images with a delay of about 120 ms. The latter is the average time
between two images when rearranging a 6 × 6 array into 4 × 4 center sites. The frame-transfer together
with the binarization takes 26 ms with a jitter of less than 1 ms. The solution for the moves is computed in
around 0.5 ms which we determine as the average time from a simulation by solving 106 configurations.
For a single repetition, we measure around 1 to 2 ms where the difference can be explained by an
overhead and jitter. The duration is consistent with values observed in the literature for a CPU-based
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Figure 6.9 – Schematic of the sorting sequence

implementation [136]. The time it takes to compute the waveform and upload it depends linearly on the
duration for a single move, which in turn depends on the kinematic parameters. For the parameters in
this work (see upcoming Section 6.3.3), a move takes around 800 µs, consisting of two amplitude ramps
of 300 µs and a frequency chirp of 200 µs. It takes around 3 ms to compute a single-move waveform and
6 ms to upload it to the card. For an average number of moves of 9 for the 6 × 6 grid this is a significant
overhead10. Depending on the array size, it is possible to precompute and even preupload all waveforms.
We precompute all moves but do not preupload them, which results in an average duration of 50 ms to
upload the sequence. We will discuss possible solutions to this problem at the end of this chapter. The
execution of moves scales linearly with the number of moves, so in our case around 7 ms for an average

10 This value is slightly larger than the theoretical value of 8, as the filling is less than 50 % due to losses.
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number of 9 moves. Finally, we wait and cool for an additional 50 ms before taking the second image.
The cooling itself is necessary, to ensure that all atoms enter the second imaging phase with the same
temperature. However, the duration is longer than required for cooling alone, as the camera is read out
using a USB2 connection which limits the time between images to around 100 ms. It also features a
CameraLink which could be used in the future to speed up the process making the delay obsolete.

We optimize the sequence step by step by using multiple trigger signals from the ARTIQ system, the
AWG and the software which we detect with a logic-analyzer11. Specifically, we monitor the camera
frame trigger, to detect the start of the rearrangement block. To differentiate between the first and the
second frame, we use a second trigger which starts at the first image and ends at the start of the second
image. We use an option of the AWG to encode the sequence into a two-bit number12, which we route to
two TTL-channels. The output is intrinsically linked to the current segment being replayed and therefore
follows the analog output stream in real-time. This allows us to detect the start and end of the stream and
the correct order of segments.

To gain insight in the timings of the code running on the CPU, we use an output port from the AWG
that can be triggered from software. This non-real-time trigger has a higher jitter, as it is not independent
on the system load, and it is therefore limited to a resolution of a few milliseconds. The events and
durations are shown in Figure 6.10 and summarized in Table 6.4.

0 50 100 150 200 250 300
Time / ms
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Camera trigger
Frame identification
AWG real-time trigger
AWG non-real-time trigger
Photodiode

Figure 6.10 – Overview of time events during the sequence, where details for the timings are given in Table 6.4. The physicalrearrangement of atoms happens between 𝑡5 and 𝑡6, which is further explained in Figure 6.13. The photodiode-signal is pickingup from the main beam after the AODs, see Figure 4.27. We apply an RF-signal to the AODs with a frequency correspondingto a position outside of the array before the moves to avoid thermal switching effects.

6.3.2 Alignment

We find that the dynamic tweezer and the center of the array have to be aligned within 0.25 µm in radial
direction, which we ensure by displacing the dynamic trap relative to the static array. We optimize
the alignment by sorting 500 − 1000 configurations and determine the success probability given the
starting site. Figure 6.11(a) shows an example of a well aligned system, where no spatial dependence is
visible compared to Figure 6.11(b) where the frequency spacing in horizontal direction is incorrect. The
four center-most sites are never moved-from and therefore do not contribute to the measurement. We
repeat the analysis for the end sites of the moves and observe the same behavior. The axial alignment is
difficult to optimize, as the dynamic trap cannot be shifted continuously. Moving the static array is also
11 Saleae Logic Pro 8
12 The output resolution is reduced by one bit per channel to 15-bit. The value of the free bit can be programmed in the segment

and its value is routed to a TTL output.
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Event Duration

𝑡1 − 𝑡0 First camera trigger 100 ms
𝑡2 − 𝑡1 Camera readout and frame transfer 26 ms
𝑡3 − 𝑡2 Move computation 1 to 2 ms
𝑡4 − 𝑡3 Waveform computation 3 ms per 800 µs move, 25 µs for lookup if precomputed
𝑡5 − 𝑡4 Waveform upload 6 ms per 800 µs move
𝑡6 − 𝑡5 Stream < 10 ms
𝑡7 − 𝑡6 Additional cooling 50 ms
𝑡8 − 𝑡7 Second camera trigger 100 ms

𝑡8 − 𝑡0 Total duration for 9 moves 340 ms

Table 6.4 – Durations of events in the rearrangement sequence.

85 87 88 89 87 87

85 84 86 88 87 88

85 84 85 87

86 84 88 84

84 84 93 86 88 87

87 85 88 89 85 86

(a)

76 80 71 78 81 70

39 63 81 86 75 63

32 31 42 37

36 28 49 58

39 70 71 73 45 48

73 75 66 63 50 29

(b)

Figure 6.11 – Success probability depending on the starting site in a 6 × 6 grid. (a) For a well aligned system the successprobability shows no spatial dependence. (b) An incorrect space-frequency conversion factor for the AOD in horizontaldirection leads to a spatial dependence. The four center-most sites are never moved-from and do not contribute to themeasurement.

complicated to automate, as the intensity balancing of the array changes for axial displacements and
additionally the EMCCD camera has to be repositioned13. We find that the axial focus positions have to
be aligned within a micrometer but for a more precise value the overlap has to be tuned continuously.
Overall, we find that the alignment has to be optimized every 6 to 9 h, due to the movement of the stage of
the upper objective. Small radial drifts can in principle be compensated automatically, but the unknown
axial mismatch is still an issue. Therefore, the proper solution is to use a single microscope objective
which is used to project both trapping wavelengths, to avoid any relative movement.

13 It is also possible to verify this by transferring from a static trap to the dynamic trap and back without moving the dynamic
trap.
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6.3.3 Dynamic tweezer parameters
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Figure 6.12 – Full array mean (blue) and target-region only (red) occupation in the second image for different dynamic trapdepths. For low dynamic trap depths, atoms are not moved but rather heated due to the modulated potential. Data for othermeasurements in this work is taken at 9.5mK.

6.3.3.1 Kinematic parameters

The three regimes for the atom trajectories developed in Section 6.1.1.1 describe the intuitive fact that
the transfer time is minimized, if we move as fast as we can at every instant, without exceeding the
parameter limits. However, this shifts the problem to the determination of these limits. Up to now, we
did not map out the whole parameter space, but we found a working point based on physical arguments
which also matches values from the literature.

As a conservative measure, we limit 𝑗max to 𝑎max/100 µs, although values down to 𝑎max/10 µs might
be possible. This is slower than the inverse trap frequency which is the intrinsic timescale of the problem
and dictates how quickly the wavefunction can respond to a perturbation. We find an increased atom
loss for accelerations above 1 500 µm/ms2 and therefore work at 1 000 µm/ms2 ≈ 100𝑔 (and in turn
𝑗max = 1 × 104 µm/ms3). Further investigation is necessary to precisely map out the loss mechanism, as
the value for the acceleration is still orders of magnitude below the value obtained for a loss due to a
tilted potential alone.

For the velocity, we base our argument on the finite propagation time of the acoustic wave inside the
AOD, as shown in Figure 6.3. Assuming a clear aperture for the AOD of 5 mm and a speed of sound
inside the crystal of 650 m/s, it takes the around 1 µs to pass the aperture. If the frequency changes
significantly during this time, different parts of the incident beam will be deflected at different angles
and in turn the trap deforms. This deformation can lead to heating caused by the parametric modulation
and to a lower confinement, especially in the axial direction. Changing the frequency by 0.8 MHz in
1 µs leads to an change in RF-frequency around 1 % at a base frequency of 80 MHz and corresponds
to a displacement of 1 µm with a velocity of 1 000 µm/ms in the atom plane. As the deflection angle,
and therefore the trap deformation, is proportional14 to the RF-frequency, the trap deforms by the same
14 To be precise, only the deformation in the radial plane is directly proportional to the angle, the axial direction scales roughly
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amount, which we declare to be negligible. To preserve some margin of error, we choose a maximum
value of 150 µm/ms, similar to references values of 10 to 100 µm/ms from [136] and [39].

For our lattice spacing of 5.2 µm, moves traveling one lattice spacing along either axis or along the
45°-diagonal lie in the distance limited case. Therefore, 𝑎max and 𝑣max are not reached but lie around
750 µm/m2 and 60 µm/ms respectively. The precise values that are reached for different distances are
shown in Table 6.5.

Parameter Distance / 𝑎
1

√
2

√
3 2

𝑎max 650 µm/ms2 730 µm/ms2 780 µm/ms2 820 µm/ms2

𝑣max 42 µm/ms 53 µm/ms 61 µm/ms 67 µm/ms

Table 6.5 – Maximum acceleration and velocity an atom reaches while traveling different distances in a square lattice withspacing 𝑎 = 5.2 µm.

6.3.3.2 Trap depth

We optimize the dynamic tweezer depth by measuring the averaged occupation in the reservoir and target
region. If atoms are moved, the fraction of occupied sites in the reservoir-region drops, while it rises in
the target-region. Figure 6.12 shows a measurement, where it can be seen that a steady state is reached
for trap depths larger than 8 mK. This trap depth is much deeper than the 300 µK deep static array
and the values are consistent with the literature [136]. An interesting observation is the loss averaged
over all sites depending on the dynamic trap depth. Below 6 mK, we measure an increased loss, before
it settles to a value of 10 % above 8 mK. The latter is consistent with values we observe without the
rearrangement and gives a hint that the loss due to the latter is close to zero. We explain the increased
loss below 6 mK by the fact, that the dynamic and the static tweezer are of comparable depths and the
dynamic trap leads to parametric excitation by deformation of the local potential, without picking up an
atom. We could not observe a dependence on the ramp duration from 80 to 500 µs and therefore work
at 320 µs, similar to the literature [136]. Shorter times might be possible but the changes on the order
of 100 µs correspond to frequencies of 10 kHz, which come close to the axial trap frequency. This is
not necessarily a problem during the ramp-up, because the atom is trapped in the deeper trap, but for
the ramp-down the increased temperature could lead to atom loss in the shallow static tweezers. We
therefore continuously apply cooling light on the light-shifted resonance of the static array to mitigate
heating after an atom is moved. Due to the strong light-shift in the dynamic trap, the latter is not affected.
For this work we work at a trap depth of 9.5 mK.

6.3.3.3 Intensity stability

As the RF-frequency changes by several megahertz during a chirp, the amplitude also changes. We
stabilize the intensity with a frequency-dependent lookup-table (LUT) to scale the instantaneous intensity
accordingly (see Section 6.1.2). To evaluate the quality of the stabilization, we measure the intensity
with a photodiode and a pick-off plate in the beam. Figure 6.13(a) shows an example for six chirps,

with the square of the radial direction.
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where the vertical dashed lines mark the start and end of a chirp. The dotted lines mark the transition of
one move to the next one. For the chirp, we measure a standard deviation of 0.75 % and a peak-to-peak
deviation of 3.6 % when averaged over 640 chirps. Comparing to the loss measurement in Figure 6.12, a
fluctuation in depth of this order around the depth of 10 mK is not an issue. To estimate the effect of
the intensity noise in terms of heating, we compute the frequency spectrum from a numerical Fourier
transformation. The time resolution of 0.64 µs leads to a Nyquist-limit of around 750 kHz, which is large
enough to include the radial trap frequency of the deep dynamic trap of ≈ 500 kHz. The spectrum is
shown in Figure 6.13(b) and shows no peaks above −70 dB for frequencies larger 35 kHz which is well
below the axial trap frequency of the dynamic trap15.

This is a good result for this type of stabilization, however, it could still be improved. One option
would be a more precise LUT, for example using frequency oversampling and filtering. A second
option would be to decrease the magnification of the telescope creating the dynamic tweezer, which
reduces the frequency-to-space conversion factor, leading to smaller frequency changes. This would
also increase the trap size and confinement (see Section 4.2) towards the optimal truncation ratio of
𝜁 = 0.65, which is currently not possible due to spatial constraints on the optical setup. Nevertheless, the
passive stabilization is expected to not reach the stability level of 0.1 %, which can be obtained with an
active stabilization for our system. However, the active stabilization has a maximum bandwidth around
200 kHz and is therefore probably not fast enough to stabilize chirps with durations of ∼ 200 µs or less.

We therefore conclude that the intensity is sufficiently well stabilized to not limit the rearrangement
success probability.

0 1 2 3 4 5
Time / ms

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ize
d 

in
te

ns
ity

0 200 400 600 800
Frequency / kHz

120

100

80

60

40

20

0

Po
w

er
 / 

dB

(a) (b)

Figure 6.13 – Performance of the passive intensity stabilization using a lookup-table. (a) Intensity stability during six moves,separated by red dotted lines. The amplitude is changed with sin2-ramps between the frequency chirps (dashed lines). Wecompute a mean relative standard deviation (mean relative peak-to-peak) of 0.75% (3.6%) averaged over 650moves for theintensity during the chirps. (b) Power spectrum of the intensity during the chirp, averaged over 650moves.

15 In Section 5.7 we measure an aspect ratio of 5.3 for the dynamic tweezer setup. From the calculated radial trap frequency of
500 kHz an axial trap frequency of 90 kHz follows.
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6.4 Fidelity estimation

A key question that we would like to answer is how well we can prepare a defect-free array. The answer
depends on the single-move fidelity F , defined as the success probability of moving an atom, which has
to be determined experimentally. Global losses L, stemming from the finite lifetime and loss during
the imaging process, complicate the seemingly straightforward task and require the development of a
method to separate F and L. For the analysis, we do not consider errors associated with a finite imaging
fidelity, as the latter is dominated by the uncertainty of other losses L. If L and its uncertainty are
reduced in the future, a finite imaging fidelity has to be accounted for in the analysis. We will present
two methods to do so: First, we correct the measured success probability by the losses determined from
a separate measurement without the rearrangement step. Secondly, we develop a statistical approach,
that determines F and L from a single measurement, at the cost of requiring a larger dataset.

For the analysis, we only consider collision-free solutions, where we define a collision as a move which
passes by an occupied site with a distance of less than 𝑑coll = 𝑎/

√
2 with the lattice spacing 𝑎. This can

be seen as a safety measure, as we have not yet explored what happens if this distance is undercut on a
single-move basis. We briefly comment on the observation in the first part of the following discussion,
but we exclude colliding solutions for the determination of F and L.

6.4.1 Distance based analysis

We first investigate the move fidelity depending on the distance of the move. A success is defined as a
move, whose target site is not empty afterwards, which combines the move fidelity and the aforementioned
imaging and lifetime losses. Figure 6.14 shows the evaluation of a dataset of 700 repetitions. We label
moves by their distances, 𝑑1 for a move which travels (1, 0) or (0, 1) sites, 𝑑√2 for (1, 1) and so on. The
left 𝑦-axis shows the fraction of moves with a given distance (blue) and the fraction of moves for a
given distance that were successful (red striped). Their ratio, the uncorrected success probability, is
shown by the green dots referenced to the right 𝑦-axis. For 𝑑1 and 𝑑√2 moves, we determine a success
probability of (87.7 ± 0.5) % and (87.9 ± 1.0) % respectively. The low occurrence of 𝑑√3 results in a
large uncertainty for an estimate of the success probability, but there are multiple reasons why the latter
could actually be lower. First, for the current parameters, the acceleration could be too high, leading
to heating and subsequent atom-loss during the handover at the end of a move. A second explanation
could be the distance to a static trap for such a move, which would lead to a modulation of the trapping
potential, also causing heating. The precise effect on the motional state of the atom strongly depends
on how the static potential is passed, where minor spatial deviations can lead to significant differences.
A preliminary analysis on a single-move basis, including colliding solutions with 𝑑2 and 𝑑2

√
2 moves,

shows similar success probabilities around 80 % for both distances. However, with minimum distances
between the dynamic and static trap between 0 to 0.44𝑎, which results in vastly different modulation
strengths, this explanation is rather unlikely. In order to locate the issue, repeating the measurement with
different values for 𝑎max, i.e. limiting it to a maximum value below the value reached for a 𝑑1 move,
could be performed.

Coming back to the results for 𝑑1 and 𝑑√2 moves, we correct the success probability by the known
losses of around L = (10.5 ± 1.0) % at the time16. Correcting the averaged success probability for 𝑑1

16 This is done by taking two images without the rearrangement step at otherwise equal parameters and timings, followed by a
comparison of the populated fraction of all sites.
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and 𝑑√2 by this value leads to a fidelity of F = (98.1 ± 1.3) %. This value is in great agreement with
the values of 0.98 − 0.99 observed in the literature [39, 142]. A drawback of this method is that the
calculated value and its uncertainty crucially depend on the precise knowledge of L, which has to be
determined separately. However, as these losses are present in the data, we now present a second method,
which allows us to isolate the sorting fidelity and global losses without taking additional data.
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Figure 6.14 – Success probability depending on the move distance including global losses. With knowledge of the latter thesingle move fidelity can be calculated.

6.4.2 Number-of-moves based analysis

The model

The second approach is based on the distribution of occupied target sites after the rearrangement
process. Figure 6.15(a) shows the latter together with the distribution before the rearrangement step.
For configurations that have at least 𝑁𝑡 populated sites, the mean is increased from 9.2 to 14.2, which
corresponds to a probability per site of 0.58 and 0.89 respectively for a binomial distribution. However,
the distribution after the rearrangement is not binomial but rather a superposition of binomial distributions
𝐵 ∝ ∑

𝑛 𝐵𝑛 (𝑁𝑡 , 𝑝𝑛) with mean-values ⟨𝑁𝑛⟩ = 𝑁𝑡 𝑝𝑛, where 𝑁𝑡 is the number of target sites17. In this
case, the 𝑝-value of the distribution depends on the global losses but also on the number of moves 𝑛.
Imagine for a second that there are no losses and that we have a perfect move fidelity, leading to 𝑝𝑛 = 1
and every target site always being populated. Adding finite global losses reduces 𝑝𝑛 by L and the
distribution is given by 𝐵(𝑁𝑡 , 1 − L). If we now also include a finite move fidelity F < 1 (independent
on the move distance), every move has a probability of 1 − F to fail. The compression algorithm tells
us, that every move ends at a target site and if the move fails, this site is empty. Therefore, every move
reduces the mean number of occupied target sites ⟨𝑁𝑛⟩ by 1−F and in turn 𝑝𝑛 is reduced by (1−F )/𝑁𝑡 .

17 The resulting distribution is a Poisson Binomial Distribution.
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Figure 6.15 – (a) Histogram of populated target sites averaged over all solutions. The blue (red) bars show the distributionbefore (after) the rearrangement process where the mean is increased from 7.9 to 14. Note that the mean of the distributionafter the rearrangement step is reduced by imaging losses and finite lifetimes. As the 𝑝-parameter depends on the numberof moves, the distribution is actually a sum of many binomial distributions, known as a Poisson binomial distribution. (b)Populated target sites after the rearrangement step, resolved for the number of moves that have been performed. Eachcolumn follows a binomial distribution and by a linear fit (dashed line) to the mean value (red dots) of each distribution thefidelity and losses can be calculated. To visualize the result, each column has been normalized to the accumulated number ofcounts in that column. The occurrence of a solution with a specific number of moves is shown by the red colorbar below. Thered errorbars depict the standard deviation of the respective binomial distribution, whereas the fit is performed with weightsdetermined by the accumulated counts from the red colorbar below.

Combining the global losses L and the loss for 𝑛 moves leads to:

𝑝𝑛 = 1 − L − 1 − F
𝑁𝑡

𝑛 𝑛 ∈
[
0, 𝑁𝑡

]
. (6.29)

By counting the number of populated target sites depending on the number of moves 𝑛 in a solution, we
can determine the mean ⟨𝑁𝑛⟩, the probability 𝑝𝑛 and in turn L and F . To satisfy the requirement of a
constant F , independent of the move distance, we only consider solutions that contain 𝑑1 and 𝑑√2-moves
(see Figure 6.14). We extract the mean ⟨𝑁𝑛⟩ of the distribution of 𝑁𝑛 depending on n. We fit ⟨𝑁𝑛⟩ with
the linear model from Equation (6.29), where each mean-value has a weight given by the number of
counts in the respective histogram. This includes the distribution of solution-lengths in the model (see
also Figure 6.8(a)). An example is shown in Figure 6.15(b).

From two experimental datasets of sizes 700 and 14000 we determine fidelities of (96.3 ± 2.2) %
and (95.6 ± 0.5) % and losses of (10.1 ± 1.3) % and (8.1 ± 0.3) % respectively. Before we can further
comment on these values and compare them to other results, we have to determine the error introduced
by the analysis method.

Systematic error estimation

To determine the systematic error of the method, we simulate configurations using a Monte Carlo method.
For a given initial configuration 𝐶𝑖, we calculate the moves M for the smallest configuration together
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with the chain-optimization method (see optimizations in Section 6.2.1) . We apply the post-selection
and discard solutions with moves longer than

√
2. We simulate the final configuration 𝐶 𝑓 by applying

the sequence of moves, each with success probability F . In the end, each site has a probability of L to
be emptied.

We generate 2 × 106 configurations with an occupation of at least 16 and simulate the result with a
move fidelity of 96 % and losses of 10 %, as these are the approximate values determined above. Out of
these configurations, 900000 are sortable and around 720000 have a short-move solution. To estimate
the influence of the size of the dataset, we draw subsets of different sizes out of the solutions which we
analyze with our method. We keep the total number of configurations per dataset size roughly constant at
250000 by drawing more samples for smaller dataset sizes, i.e. size 2000 is sampled 125 times, whereas
size 125000 is only sampled twice (similar to a binning). Averaged over dataset sizes of 500 to 250 000,
the fit values reproduce the underlying losses of with a deviation of −0.08 p.p.18 and the fidelity with a
deviation of 0.25 p.p.. To estimate the mean deviation and the standard deviation for our experimental
datasets with sizes of 700 and 14000, we average over 360 and 18 repetitions respectively.

In general, the method relies on the correct determination of the mean value for each histogram of 𝑛
moves. For fidelities approaching unity, these histograms are compressed into the upper few bins, which
in turn requires a large number of repetitions for sufficient resolution. The method also benefits from
larger array sizes, as more bins are available but for these arrays the number of short-move solutions
reduces as well.

Dataset size Quantity Fit / % Systematic error / p.p. Corrected / %

700 L (10.1 ± 1.3) (−0.2 ± 1.5) (10.3 ± 2.0)
F (96.3 ± 2.2) (0.1 ± 2.6) (96.2 ± 3.4)

14000 L (8.1 ± 0.3) (−0.1 ± 0.4) (8.2 ± 0.4)
F (95.6 ± 0.5) (0.2 ± 0.4) (95.4 ± 0.7)

Table 6.6 – Fidelity estimation with statistical method to isolate global losses L from per-move losses of 1 − F .

Evaluation

Table 6.6 shows the fitted values from two datasets and the correction by including the systematic error
of the method. The extracted value for the losses is in excellent agreement with the value obtained by
other measurements at the time. The fidelity for the first dataset also compares well to the value of
0.98 − 0.99 from [39, 142]. For the second dataset with a measurement duration of ∼ 12 h, a reduced
fidelity is to be expected, as the alignment drifts for such long measurement durations.

In general, the second evaluation method works well to extract and isolate losses and fidelities with a
single measurement but it requires sufficiently large (> 10000) dataset sizes. This is currently prevented
by the stability of the system, where a manual realignment after ∼ 6 to 9 h is required to overlap the
static array with the dynamic tweezer. These drifts are on the order of 500 nm both radially and axially
and can only partially be automated (Section 6.3.2).

For now, the most reliable result can be obtained by analyzing a single dataset by combining
both methods. In this case, we determine the loss with the second method, which we then use
18 percentage points
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Figure 6.16 – Random initial configurations are created and rearranged by a numerical simulation with a fidelity of 96% andlosses of 10%. We analyze the result to estimate the systematic error of the analysis method. On average (horizontal dashedlines) the loss is underestimated by 0.08 p.p. whereas the fidelity is overestimated by 0.25 p.p.. The experimental datasetsizes are shown by the dashed vertical lines.

to correct the single move success probability from Figure 6.14. By combining the corrected loss
of Ltotal = (10.3 ± 2.0) % with the averaged success probability of (87.8 ± 0.6) %, the final fidelity
estimation reads:

F = (97.8 ± 2.2) %, (6.30)

which is consistent with sorting fidelities observed in the literature [39, 142]. Although the uncertainty is
larger than the one determined with the first method, we argue that this value is the most reliable, as both
F and L are determined from a single measurement. From this value it follows that we can create a
defect-free array of 16 sites from half filling (nine moves on average, see Figure 6.8) with a probability
of F 9

= (84 ± 10) % which equals (15 ± 6) % when including L. However, before possible limitations
for the absolute value of F can be discussed, the large uncertainty has to be reduced by taking more data.
In order to do that, it is possible to collect and combine smaller datasets with sizes around ∼ 1000 with a
re-optimization of the alignment in between.

6.5 Improvements

Before we conclude the chapter, and with that also the technical part of this work, we will now briefly
discuss the main bottlenecks and give a technical outlook for future developments.
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6.5.1 Sequence duration

As of now, a limitation to the repetition rate of the experiment is the computation and upload time of the
RF-waveforms to the AWG card and the camera readout time. The upload and camera readout amount to
an additional ∼ 100 ms which is about 17 % of the full duration. Reducing the sequence by that time
would reduce the lifetime losses by a factor of 2.

The camera readout time can be reduced by using the CameraLink-interface which increases the
bandwidth from 50 MB/s up to 700 MB/s. Additionally, a region of interest can be defined that is applied
in hardware and reduces the transferred data payload.

For the computation and upload time, different optimizations are possible. The first is to preupload
the full waveforms for all moves. A conservative estimation is that for every target-site 24 (a surrounding
5 × 5 block) starting sites are possible. For the 6 × 6 array the total sequence would then consist of 32
ramp-up segments, 16 ramp-down and 16 × 24 frequency chirps. With the given sampling rate and
durations this amounts to data of 1.5 GB which fits into the 4 GB of RAM of the card. During the
sequence, the preuploaded segments have to be connected in the correct order which only requires a
negligible amount of data to be written.

A second option would be to reduce the amount of samples itself. Picking up the argument from
Section 6.3.3, the time resolution of the AODs is around 1 µs. We currently operate the AWG at a
sampling rate of 1 228.8 MHz (see Section 4.4) as we are required to sample the 80 MHz wave with
sufficient resolution, resulting in a time step of around 10 ns. If the timestep could be increased from
10 ns to 1 µs this would reduce the waveform computation and upload time by a factor of 100 to less
than 100 µs. This option requires that the base-frequency is generated by the device itself and only the
amplitude- and frequency-changes are supplied, e.g. a DDS-operation. An open question in this case is,
if a standalone DDS device can reach the same amplitude and frequency stability as the AWG card.

We recently became aware of a new option for the AWG card available since March 2024, which
features a DDS-mode that can be used to program amplitude and frequency ramps without the need to
compute the full waveform. If this DDS-mode can be used to realize the complex non-linear frequency
chirps, it would not only speed up the sequence but also simplify the software implementation

6.5.2 Algorithm and moves

The algorithm and its implementation are tied to the rearrangement of square arrays investigated in this
work. In general, many different geometries and even differently shaped reservoir- and target-regions
can be useful [39, 133]. In these cases, different algorithms might be needed to achieve the best sorting
fidelity possible. For example, in hexagonal structures longer moves, that do not move across an empty
trap could be preferable as the atom or qubit is not heated by the modulated potential.

There are also cases where it could be favorable to move along a non-straight line or multiple atoms at
once. For the latter, a superposition of RF-tones can be used to create multiple traps with the AODs [108].
These waveforms have strict requirements for the phases of different tones to prevent interference at
reasonable efficiencies. It is therefore difficult to move multiple sites along their connection line as the
frequency chirp changes the respective phases and thus the interference. It is however possible to move a
chain of traps perpendicular to their orientation. This could be useful in the future to sort multiple rows
or columns at once, see e.g. [113].
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Chapter 6 Assembling defect-free atom arrays

6.5.2.1 Resorting

To increase the probability for obtaining a defect-free array of 𝑁 sites 𝑃(𝑁), it is possible to repeat the
rearrangement step one or more times, however, with the current losses this is not feasible. Figure 6.17
shows 𝑃(16), given finite losses and fidelities and for different number of defects. Without losses ≲ 1 %
and sorting fidelities of ≳ 98 % obtaining a defect-free array is unlikely, as the global loss dominates.

14.8 %

19 %

24.1 %

30.6 %

38.8 %

49.1 %

62.1 %

78.4 %

99 %0.0

2.5

5.0

7.5

10.0

1 defect
14.8 %

19 %

24.1 %

30.6 %

38.8 %

49.1 %

62.1 %

78.4 %

99 %

2 defects

14.8 %

19 %

24.1 %

30.6 %

38.8 %

49.1 %

62.1 %

78.4 %

94 96 98 100
0.0

2.5

5.0

7.5

10.0

3 defects
11.6 %

14.8 %
19 %

24.1 %

30.6 %

38.8 %

49.1 %

62.1 %

78.4 %

94 96 98 100

4 defects

Sorting fidelity  / %

Lo
ss

es
 

 / 
%

Figure 6.17 – Success probability for obtaining a defect-free arrays of 16 sites after two rearrangement steps, depending on thenumber of defects given finite losses and sorting fidelity. The dots and ellipses show the current values of F = (97.8 ± 2.2) %and L = (10.3 ± 2.0) % including the uncertainties.

6.5.2.2 Pattern matching

To increase the number of collision-free solution, it is possible to precompute (parts of) solutions, which
can be verified to be collision-free. For arrays with 𝑁 ≲ 30, it is possible to compute the solutions for
all configurations. It is not only instructive to do so to evaluate the algorithm with a simulation, but
the solutions can also be optimized and used as a lookup-table. One optimization to the compression
algorithm that we discussed in this chapter is to always solve the smallest configuration of differently
transformed arrays (see Table 6.3). This reduces the computational effort by less than the number of
transformations, as some transformations produce the same configuration.

We can compute the number of unique configurations using Burnside’s lemma:

|𝑋/𝐺 | = 1
|𝐺 |

∑︁
𝑔∈𝐺

|𝑋𝑔 |, (6.31)
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Chapter 6 Assembling defect-free atom arrays

where (in colloquial terms) |𝑋/𝐺 | is the number of unique configurations of the set 𝑋 under the action of the
group𝐺 with |𝐺 | elements. The sum runs over all transformations 𝑔 ∈ 𝐺 =

{
𝐼, 𝐻,𝑉, 𝑅180, 𝑇, 𝑇𝐴, 𝑅+, 𝑅−

}
,

where |𝑋𝑔 | is the number of elements that are invariant under the transformation 𝑔. To determine |𝑋𝑔 |
we can look at the following example for a 3 × 3-array with 𝑔 = 𝑇 :

©«
𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ 𝑖

ª®¬ 𝑇⇒ ©«
𝑎 𝑑 𝑔

𝑏 𝑒 ℎ

𝑐 𝑓 𝑖

ª®¬ (6.32)

For a configuration to be invariant under transposition, 𝑏 = 𝑑, 𝑐 = 𝑔 and 𝑔 = ℎ is required, reducing the
number of free parameters from 9 to 6. This results in 26 configurations that are invariant under the
transpose-operation. Extending this analysis to all 8 transformations 𝑔 results in:

|𝑋/𝐺 | = 1
8

(
29 + 26 + 26 + 25 + 26 + 26 + 23 + 23

)
= 102 (6.33)

unique configurations, which is about a factor of 5 less than the 512 initial number of solutions. We
can further exclude configurations which have less than the required number of populated sites and
also the ones where all sorting-sites are already populated. Table 6.7 shows the total number of unique
configurations for different lattice sizes.

Array size Initial configurations Number of unique configurations Reduction factor

3 × 3 512 102 ∼ 5
4 × 4 65 536 8 552 ∼ 7.7
5 × 5 33 554 432 4 211 744 ∼ 8
6 × 6 68 719 476 736 8 590 557 312 ∼ 8

Table 6.7 – Unique configurations example. Not included is the additional reduction due to low occupation or an alreadyfully-filled target region.

Although it is not feasible to compute all solutions for arrays with more than ≳ 30 sites, the results
for smaller arrays can be used to assist with solving larger arrays. Looking at a 6 × 6 array, we can for
example determine the number of configurations for which each quadrant consisting of 9 sites containing
at least 4 occupied sites19. For the example at hand, the probability of occupying 4 or more sides out of
9, each with independent probability of 50 %, is about 75 % and the probability of every quadrant having
4 or more occupied sites is therefore 0.754

= 30 %. If the algorithm detects one of the configurations
where this condition is true, we know that it is possible to find a solution without moves between different
quadrants. It is therefore possible to create a lookup-table with all possible solutions which can be
verified to be collision-free. Whether that is practical depends on different experimental parameters, for
example the collision-distance and whether more but shorter moves are preferable.

This train of thought is merely a basic example of a more general approach to the problem making
use of pattern matching. Enormous progress in the fields of machine learning and neural networks in
recent years resulted in tools and frameworks like tensorflow20 which can be used by scientists outside

19 For arrays with an odd number of sites along one dimension, an asymmetric partition scheme can be chosen.
20 https://www.tensorflow.org/
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of the field of computer science (see [143] as an example). These tools could be used to develop an
entirely new approach to the problem, like shown in [144], where the set of moves necessary to create a
defect-free array is produced by a trained neural network.

6.6 Conclusion

In this chapter, we presented the single particle control capability of the experiment by moving single
ultra-cold atoms between sites in an optical tweezer array. We demonstrated that we can rearrange
partially filled arrays into smaller, defect-free arrays with a single move fidelity of (97.8 ± 2.2) %,
consistent with the literature [39, 142]. At this level, the large uncertainty makes it difficult to think
about and discuss possible limitations for F , however, this can readily be achieved by taking more
data. During the course of the experiment, we identified the current bottlenecks and listed possible
solutions. With the aforementioned optimizations and a more refined understanding of the atom transfer
process, it is possible to increase the repetition rate of the experiment while simultaneously increasing
the probability of producing defect-free arrays. Together with a reduction of the imaging loss to less
than 1 % as observed in the literature, it will be possible to create large defect-free structures for exciting
future research.
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Summary and Outlook

This work described the design and characterization of a new optical tweezer setup aimed at preparing,
detecting, and manipulating single atoms cooled to their motional ground state.

The first part concentrated on the creation of static and dynamic optical tweezer potentials. We
combine a liquid crystal-based spatial light modulator which creates static tweezer arrays, and a pair of
crossed acousto-optic deflectors which is used to create a dynamic trap. In combination, the setup is
used to prepare and detect atoms in a tweezer array, whereas the dynamic trap is used to address single
sites within said array. Our results show, that we can create optical tweezer arrays with homogeneities
above 98 % for up to 1 500 tweezers, comparable to existing literature [106, 107]. We further optimized
the uniformity with the tweezer depths obtained from spectroscopy with trapped atoms, which we used
in a feedback step to ensure the same level of uniformity in the atom plane for up to 60 trapped atoms.

We then discussed the preparation of cold atoms in the tweezer potentials loaded from microkelvin cold
atom clouds. We first described the preparation of single atoms in optical tweezers at 515 nm and 813 nm.
Using light-assisted collisions, we achieve highly sub-Poissonian atom-number distributions, ensuring
each tweezer is occupied by a single atom at most. We then implemented and evaluated different cooling
protocols in tweezers at 515 nm, 532 nm, and 813 nm. At these three wavelengths, different relative
potential depths for ground and excited states can be created, leading to unique trapping conditions
enabling the use and need for different cooling protocols. Using resolved sideband cooling in tweezers
at 515 nm, we achieve three-dimensional motional ground-state fractions of 95+2

−10 % at an aspect ratio
of 5.1 ± 0.1, which improves on existing implementations [46, 47] and is close to the theoretical limit.
At 813 nm, we cooled atoms using a sisyphus cooling scheme, and we confirm temperatures near the
motional ground state by comparison to a classical simulation, similar to results documented in existing
research [48]. Additionally, we find that releasing an atom from one trap followed by a capture in another
trap can be used to determine temperatures in tweezer arrays without relying on a simulation, offering
potential improvements in thermometry accuracy. Our cooling measurements at 532 nm are, to our
current knowledge, the first for strontium in high-NA optical tweezers, yielding results comparable to
other wavelengths [46, 127]. Our measurements indicate 532 nm as a promising tweezer wavelength for
future research, and readily available lasers and optical components at this common wavelength can
reduce complexity and cost of the experimental setup.

Finally, we demonstrated single-particle control by assembling defect-free square arrays of 16 sites
with separations of 5.2 µm from half-filling using an atom-by-atom approach. To realize the atom
rearrangement, we first developed a control-theory optimal trajectory model to reliably move single
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atoms between different sites. We implemented an existing algorithm to compute the required atom
moves, which we further improved to reduce excess atom moves by 40 % and to increase the probability
of finding the solution of minimal length by 40 %. We assessed the success probability of single-atom
moves, the sorting fidelity, using two methods: a correction of a direct measurement and a novel
statistical analysis technique. By combining both methods, we minimize the uncertainty and determine a
single-move fidelity of (97.8 ± 2.2) %, on par with current state-of-the-art implementations [39, 142].
This imposes a theoretical limit for obtaining a defect-free array of 16 sites of (84 ± 10) %.

Outlook

In this work, the first step for building a quantum simulation platform — the state preparation — has been
realized. Now, interactions between atoms are necessary to create multi-qubit entangled states by building
on the basis of isolated single atoms trapped in an optical tweezer array. Collisions between atoms
affecting the internal state are largely eliminated, which leads to strong isolation and long coherence
times, however, it also means that interactions need to be artificially introduced into the system. Different
methods to do so exist and we now sketch two possibilities in the form of Rydberg interactions and
interactions mediated by an optical cavity.

Rydberg

blockage

Interatomic separa�on

En
er

gy

a)

b)

Figure 7.1 – Two examples of effects that can create multi-qubit entangled states. (a) The interaction between two Rydbergatoms separated by less than 𝑟𝑏 can be used to create an entangled state ��𝜓+
〉
= ( |𝑔𝑟⟩ + |𝑟𝑔⟩) /

√
2. For more than two atoms,multi-qubit entangled states can be created. (b) The coupling of trapped atoms to the mode of a high-finesse optical cavitycan be used to create multi-qubit entangled states.

Rydberg interactions arise from van der Waals interactions between two Rydberg states, where the
latter are highly excited atomic states with principal quantum numbers 𝑛 ≳ 50 [145, 146]. The interaction
distance of Rydberg states can reach several micrometers, thus bridging the gap between adjacent
sites in an optical tweezer array. Rydberg states have lifetimes of tens to thousands of microseconds,
depending on the Rydberg-level and the decay strength due to radiative processes or blackbody induced
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transitions. On the other hand, the energy scale of the interaction is on the order of tens to hundreds of
megahertz, depending on the interatomic separation. The use of Rydberg interactions to create two qubit
entanglement with neutral atoms has been investigated theoretically [147] and has been applied with
great success since [41, 52, 148, 149]. To create an entangled state, the strong dipole-dipole interaction
is used to prevent excitation of adjacent ground-state atoms to a collective Rydberg state, by shifting the
latter out of resonance (see Figure 7.1(a)).

The excitation of strontium atoms to Rydberg states with 𝑛 > 50 requires wavelengths around 320 nm.
Furthermore, Rydberg states are sensitive to perturbation by external electric fields, caused for example
by accumulated charges on the vacuum windows. To incorporate such an UV laser into the setup, the
coatings of the vacuum cell windows are transmissive at this wavelength, rendering the integration
technically possible. To compensate electric stray fields, the setup also includes two electrodes which can
be used for compensation. Choosing the path of Rydberg physics requires to add at least one excitation
laser but multi-stage excitation schemes have also been used [150]. An open question for this path is
the minimum reachable spacing between traps, to increase entanglement fidelity and to (possibly) also
create larger entangled states.

Another, less explored option is to use cavity-mediated interactions to realize all-to-all connectivity
between multiple qubits. Strong light-matter couplings between a single emitter and the mode of
a high-finesse optical cavity have been investigated theoretically in terms of the Jaynes-Cummings
model [151] which have been realized with ions [152] and neutral atoms [45, 153, 154]. It was shown,
that, compared to the Rydberg approach, cavity-mediated interactions allow to create entangled states of
the whole system with a single gate operation [155, 156]. To pursue this path, a cavity has to be built and
installed in the vacuum chamber. A key requirement in this case is to reach the strong-coupling-regime
where the cavity-atom coupling 𝑔 dominates the spontaneous decay 𝛾 and the cavity lifetime 𝜅. This
requires a small mode volume 𝑉 with waists on the order of ≲ 10 µm and cavity lengths around
1 mm. An experimental challenge lies in the shape of the mirrors itself, to allow for the projection
of high NA tweezers into the cavity mode (see Figure 7.1(b)). To ensure a constant coupling along
the cavity axis, a near planar cavity configuration is favorable, but mirrors satisfying these geometric
requirements are not commercially available and have to be custom-designed and -manufactured. An
additional open question is the precision and stability of the tweezer alignment relative to the cavity mode,
and it could be necessary to add an optical lattice along the cavity axis to ensure a constant cavity coupling.

Using either Rydberg- or cavity mediated-interactions, it will be possible to create multi-particle
entanglement, which enables the new experiment to conduct exciting studies at the frontiers of experi-
mental quantum simulation research.

126



APPENDIX A

Fourier Optics

This chapter is a compilation of aspects of the Fourier-theory of optics that is required for parts of
the tweezer array generation for this work. It recaps the derivation of the Fourier-lens and shows the
approximations made along the way. The first part is in essence a summary of parts of chapters three,
four and six of [90] which are relevant for this thesis. The second part is concerned with methods for
performing numerical computations in the field of Fourier optics.

A.1 Huygens-Fresnel principle

Figure A.1 – A screen in the 𝜉𝜂-plane is illuminated from the left. We would like to calculate the electric field distribution inthe 𝑥𝑦-plane.
Figure A.1 shows an optical setup where a screen (𝜉𝜂-plane) is illuminated from the left and we would

like to compute the beam amplitude at a position 𝑃0 in the 𝑥𝑦-plane. The Huygens-Fresnel (sometimes
just Huygens) principle, states that every point of a wavefront is itself the starting point of a new spherical
wave. The field at position 𝑃0 is therefore given by the convolution of the initial field 𝑈 (𝑃1) at a point
𝑃1 in the 𝜉𝜂-plane, and the propagated field of all elemetary waves progagated from 𝑃1 to 𝑃0, for all
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points 𝑃1 inside the aperture Σ. Expressing the explanation mathematically leads to:

𝑈𝐼 (𝑃0) = − 1
2𝜋

∫ ∫
Σ

𝑈 (𝑃1)
(
𝑖𝑘 − 1

𝑟01

)
exp

(
𝑖𝑘𝑟01

)
𝑟01

cos
(
®𝑛, ®𝑟01

)
d𝑠 (A.1)

𝑈𝐼 (𝑥, 𝑦, 𝑧) = ℎ(𝑥, 𝑦, 𝑧) ∗𝑈 (𝑥, 𝑦, 0) (A.2)

ℎ(𝑥, 𝑦, 𝑧) = 1
2𝜋

𝑧

𝑟

(
1
𝑟
− 𝑖𝑘

)
exp (𝑖𝑘𝑟)

𝑟
, (A.3)

where ®𝑛 is the outward normal vector in negative 𝑧−direction and ®𝑟01 points from 𝑃0 to 𝑃1 and

𝑟 =

√︃
𝑥

2 + 𝑦
2 + 𝑧

2. 𝑘 = 2𝜋/𝜆 is the wavevector of the light with wavelength 𝜆 and cos
(
®𝑛, ®𝑟01

)
= 𝑧/𝑟01

with 𝑟01 =

√︃(
𝑥1 − 𝑥0

)2 +
(
𝑦1 − 𝑦0

)2 +
(
𝑧1 − 𝑧0

)2
01. Assuming that the separation between the two points

in the two planes is large compared to the wavelength, i.e. 𝑟01 ≫ 𝜆 we can simplify Equation (A.1)
further to:

𝑈𝐼 (𝑃0) =
1
𝑖𝜆

∫ ∫
Σ

𝑈 (𝑃1)
exp

(
𝑖𝑘𝑟01

)
𝑟01

cos (𝜃) d𝑠, (A.4)

(A.5)

where cos (𝜃) is given by 𝑧/𝑟01. We thus arrive at:

𝑈 (𝑥, 𝑦) = 𝑧

𝑖𝜆

∫ ∫
Σ

𝑈 (𝜉, 𝜂)
exp

(
𝑖𝑘𝑟01

)
𝑟

2
01

d𝜉d𝜂, (A.6)

where 𝜉 and 𝜂 are the coordinates describing the position in the aperture plane and 𝑥 and 𝑦 describe the
position in the image plane.

In addition to the approximations made for the scalar diffraction theory itself and 𝑟01 ≫ 𝜆 we will

now additionally make approximations for 𝑟01 =

√︃
𝑧

2 + (𝑥 − 𝜉)2 + (𝑦 − 𝜂)2

A.1.1 Fresnel

The Fresnel approximation assumes that the separation between the two planes 𝑧 is much larger than the
changes in radial coordinates. We can therefore approximate 𝑟01 as:

𝑟01 =

√︃
𝑧

2 + (𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 (A.7)

= 𝑧

√︄
1 +

(
𝑥 − 𝜉

𝑧

)2
+

(
𝑦 − 𝜂

𝑧

)2
(A.8)

≈ 𝑧

[
1 + 1

2

(
𝑥 − 𝜉

𝑧

)2
+ 1

2

(
𝑦 − 𝜂

𝑧

)2
]
. (A.9)
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in Equation (A.6) the 𝑟2
01 in the denominator can safely be approximated by 𝑧

2 but for the exponential
have to keep the quadratic terms, leading to:

𝑈 (𝑥, 𝑦, 𝑧) =
∫ ∞

−∞

∫
𝑈 (𝜉, 𝜂, 0) exp

(
𝑗
𝑘

2𝑧

[
(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2

] )
d𝜉d𝜂 (A.10)

which is a convolution of the field 𝑈 (𝜉, 𝜂, 0) with ℎ(𝑥 − 𝜉, 𝑦 − 𝜂) with the kernel ℎ(𝑥, 𝑦):

ℎ(𝑥, 𝑦) = 𝑒
𝑖𝑘𝑧

𝑖𝜆𝑧
exp

[
𝑖𝑘

2𝑧

(
𝑥

2 + 𝑦
2
)]

(A.11)

A.1.2 Fraunhofer

The stronger Fraunhofer approximation:

𝑧 ≫
𝑘

(
𝜉

2 + 𝜂
2
)

max
2

(A.12)

simplifies Eq. (A.10) further by omitting the quadratic terms of 𝜉 and 𝜂:

𝑈 (𝑥, 𝑦, 𝑧) = 𝑒
𝑖𝑘𝑧

𝑒
𝑖 𝑘

2𝑧

(
𝑥

2+𝑦2
)

𝑖𝜆𝑧

∫ ∞

−∞
𝑈 (𝜉, 𝜂, 0) exp

[
−𝑖2𝜋

𝜆𝑧
(𝑥𝜉 + 𝑦𝜂)

]
d𝜉d𝜂 (A.13)

which is a Fourier transform with the spatial frequencies 𝑓𝑋 = 𝑥/𝜆𝑧 and 𝑓𝑌 = 𝑦/𝜆𝑧. However, to fulfill
Eq. (A.12) at optical frequencies and apertures around 1 cm requires 𝑧 to be larger than several hundred
meters. The approximation is therefore also referred to as far-field-approximation (compared to near-field
for the Fresnel approximation). To still be able to work in this regime, we will move one step further and
add an additional optical element to our setup

A.1.3 The Fourier lens

Let us assume that the 𝜉𝜂-plane has the following transparency function:

𝑡𝑙 (𝜉, 𝜂) = exp
[
−𝑖 𝜋

𝜆 𝑓

(
𝜉

2 + 𝜂
2
)]

(A.14)

which we will call a "lens". We will additionally limit its spatial extent by the pupil function

𝑃(𝑥, 𝑦) =
{

1 inside lens aperture
0 else

. (A.15)

The field inside the aperture is then given by:

𝑈
′
𝑙 (𝜉, 𝜂) = 𝑈𝑙 (𝜉, 𝜂)𝑃(𝜉, 𝜂) exp

[
−𝑖 𝑘

2 𝑓

(
𝜉

2 + 𝜂
2
)]

, (A.16)
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where 𝑈𝑙 (𝜉, 𝜂) = 𝐴 𝑡𝐴(𝜉, 𝜂) describes a normally incident, monochromatic plane wave with amplitude
𝐴. Inserting Eq. (A.16) into Eq. (A.10) to calculate the field in the back-focal plane of the lens (thus
𝑧 = 𝑓 ) results in:

𝑈 𝑓 (𝑥, 𝑦) =
exp

[
𝑖 𝑘

2 𝑓

(
𝑥

2 + 𝑦
2
)]

𝑖𝜆 𝑓

×
∫ ∞

−∞
𝑈𝑙 (𝜉, 𝜂)𝑃(𝜉, 𝜂) exp

[
−𝑖 2𝜋

𝜆 𝑓
(𝑥𝜉 + 𝑦𝜂)

]
d𝜉d𝜂 (A.17)

exp
[
𝑖 𝑘

2 𝑓

(
𝑥

2 + 𝑦
2
)]

𝑖𝜆 𝑓

×
∫ ∞

−∞
𝑈𝑙 (𝜉, 𝜂)𝑃(𝜉, 𝜂) exp

[
−𝑖 2𝜋

𝜆 𝑓
(𝑥𝜉 + 𝑦𝜂)

]
d𝜉d𝜂 (A.18)

which is again the two-dimensional Fourier transformation of our aperture function 𝑈𝑙 (𝜉, 𝜂)𝑃(𝜉, 𝜂) (up
to a phase factor). We further define the spatial frequencies 𝑘𝑋 and 𝑘𝑌 as:

𝑘𝑋 =
2𝜋
𝜆 𝑓

𝑥

𝑘𝑌 =
2𝜋
𝜆 𝑓

𝑦. (A.19)

A lens thus performs a Fourier transformation so that we get the Fraunhofer diffraction pattern at 𝑧 = 𝑓

without explicitly fulfilling Eq. (A.12). The condition we have to fulfill is still 𝑟01 ≫ 𝜆.
Using this result, it is now possible to relate the amplitude distribution in the front-focal plane of

a lens to the amplitude field distribution in the back-focal plane, as the two are related by a Fourier
transformation.

A.1.4 Angle to position conversion

A known relation of Fourier transformations is:

F
{
𝑒
𝑖𝑎𝑥

}
= 𝛿 (𝑘 − 𝑎) , (A.20)

which relates a phase gradient with slope 𝑎 to a displacement of 𝑎 in the plane of the Fourier conjugate
variable 𝑘

1. In the case of a wavefront that travels to the right (𝑧-direction) the phase slope in the
𝜉𝜂-plane is given by:

exp (𝑖𝑎𝜉) = exp
(
𝑖

(
2𝜋

tan𝛼
𝜆

)
𝜉

)
, (A.21)

where 𝛼 is the tilt of the wavefront with respect to the 𝜉-axis in this case, shown in Figure A.2. This
leads to a displacement of −2𝜋 tan 𝛼

𝜆
along the 𝑘𝑋 direction in the 𝑘𝑋𝑘𝑌 -plane. To convert the latter to

1 For finite extends the input is multiplied by a rectangle function which is Fourier transformed to a sinc shaped peak at
position Δ𝑥.

130



Appendix A Fourier Optics

Focal length f f

Figure A.2 – Angle to position correspondence of a Fourier lens

coordinates in the 𝑥𝑦-plane, we use Equation (A.19) and multiply by 𝜆 𝑓 /2𝜋 to arrive at

|Δ𝑥 | = 𝑓 tan𝛼
𝛼≪1≈ 𝑓 𝛼. (A.22)

A.1.5 Gauss beam transformation

Using the Fourier-transforming properties of a lens, we can also calculate the waist-size 𝑤0 of a focussed
Gaussian beam, by relating it to the beam waist 𝑤1 in the other focal plane of a lens with focal length 𝑓 .
Assuming a Gaussian beam in the front focal plane given by2:

𝐸 (𝜉) ∝ exp
(
−𝜉2/𝑤2

1

)
. (A.23)

Transforming into 𝑘𝑋-space:

𝐸 (𝜉) = F {𝐸 (𝜉)} ∝ exp
(
−1

4
𝑘

2
𝑋𝑤

2
1

)
. (A.24)

2 We describe the problem in one dimension, as the two dimensional case separates, because of the unique properties of the
Gaussian function
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Making the substitution 𝑘𝑋 → 2𝜋
𝜆 𝑓

𝑥 from Equation (A.19) and comparing to a Gaussian beam

exp
(
−𝑥2/𝑤2

0

)
we find:

−1
4
𝑘

2
𝑥𝑤

2
1 = −𝜋

2
𝑤

2
1

𝑓
2
𝜆

2 𝑥
2 !
= −𝑥2/𝑤2

0 (A.25)

⇒𝑤0 =
𝑓 𝜆

𝜋𝑤1
. (A.26)

This result shows that the waists of the initial and final field are inversely proportional, i.e. a larger
diameter beam can be focused to a tighter spot.

A.2 Numerical computations

Equation (A.18) gives us all we need to know to compute the electric field distribution in the back focal
plane of a lens, given the electric field distribution in the front focal plane of a lens. The computation can,
however, in general be quite involved and often analytic results cannot be obtained. Luckily, numerical
Fourier transformations are among the most well optimized algorithms due to their applications in
signal processing with examples of audio or image compression or filtering. One of these algorithms
is the fast Fourier transformation (FFT), discovered in 1965 by Cooley and Tukey which efficiently
computes the discrete Fourier transformation. FFT implementations are available in many programming
languages and for this work we use the implementation from the CUDA toolkit3 to quickly compute large
two-dimensional FFTs.

A.2.1 Fourier frequencies

In this work we mainly deal with spatial Fourier transformations where the spatial coordinates in the
Fourier plane 𝜉 and 𝜂 are transformed to spatial frequencies 𝑘𝑋 and 𝑘𝑌 . Assuming a one dimensional
array of complex values, representing an electric field distribution in the front-focal plane of a lens, we
compute the FFT and need to relate the output to the physical world. An FFT of 𝑁 values, leads to an
output 𝑁 values. The output at index 𝑖 corresponds to a frequencies 𝑓𝑖 , where 𝑓 is ordered as follows:

𝑘𝑋 = [0, 1, · · · , 𝑁/2 − 1,−𝑁/2, · · · ,−1] /(Δ𝜉 𝑁) if 𝑁 even (A.27)
𝑘𝑋 = [0, 1, · · · , (𝑁 − 1)/2,−(𝑁 − 1)/2, · · · ,−1] /(Δ𝜉 𝑁) if 𝑁 odd (A.28)

where Δ𝜉 is the discrete spacing of the Fourier plane array. To finally compute the spatial resolution in
the image plane Δ𝑥, we use Equation (A.19), and arrive at:

Δ𝑥 =
𝜆 𝑓

2𝜋
1

Δ𝜉 𝑁
. (A.29)

From this result we can see the resolution in the image plane is inverse proportional to the size of
the sampling space Δ𝜉 𝑁 in Fourier space. This is well-known fact for Fourier transformations with
fundamental application in physics, for example in form of the Heisenberg uncertainty principle. In the

3 https://developer.nvidia.com/cuda-toolkit
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context at hand, it lays the foundation for a numerical technique to increase the resolution that we will
discuss next.

A.2.2 Zero padding

Zero padding is a technique to increase the resolution in the space of the Fourier conjugate by increasing
the sample size of the signal. It is a commonly used in digital signal processing and it can be intuitively
understood for the time and frequency relation. Inside a certain time interval, we can only make a
statement about differences in frequencies, where the frequency resolution gets smaller the longer a signal
is monitored. The inverse is also true and the base of the Nyquist theorem: The larger the frequency
space is, i.e. if more high-frequencies are included, the higher the time resolution gets. This effect is
visible for example at TTL-pulses where finite bandwidths lead to over- or undershoots at the edges. In
terms of spatial extend and spatial frequencies the same holds true. It is the reason for the fact that laser
beams with larger diameters can be focussed to smaller foci and also why for astronomical telescopes are
so large compared to to terrestrial ones, to name two examples.

Imagine a rectangular aperture illuminated by a plane wave (the 𝜉 = ∞-limit in Section 4.2), as
shown in Figure A.3(a). In the case of a finite aperture, the electric field is zero outside of it, but it still
contributes to the resolution in Fourier space. To calculate the shape of the focus when the aperture
is imaged with a lens, we have to take the Fourier transformation.4 Depending on the electric field
distribution and the shape of the aperture, this is in general not possible to be done analytically and we
have to resort to numerical methods. In this case zero padding helps to replicate the analytical result
accurately. This ensure that the image plane resolution is not limited by the computation but by the
real physical constraints, for example the size of an aperture. Figure A.3(a) shows the aperture and
Figure A.3(b) shows the analytical calculation of the focus along numerical results with different levels
of zero padding. The trade-off one has to make is Fourier space resolution compared to the computation
time.

4 For simplicity we will consider the one-dimensional case here but the results apply to the two-dimensional case as well.
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Figure A.3 – One-dimensional aperture (a) which gives a sinc2 power spectrum in the image plane (b) when illuminated by aplane wave. The aperture is sampled at 𝑁 points inside the aperture and at 𝑁𝜅 points outside, leading to a total of 𝑁 (𝜅 + 1)samples. The analytical result (dashed line) is successively better approximated by larger values of 𝜅.

A.3 Blazed grating diffraction efficiency

To gain amplitude and phase control with the SLM, we have to move the desired pattern away from the
optical axis. This can be achieved by adding a blazed phase grating, i.e. a phase slope in Fourier space,
as described in Appendix A.1.4. Given the discrete nature of the sensor of our SLM we cannot apply
the slope continuously but rather in a discrete form. The deviation from the true phase slope becomes
apparent when the full phase range from 0 to 2𝜋 has to be sampled by roughly less than 10 px. We will
shortly see where this claim is coming from and why we need this large phase slope.

Let us now take a closer look at a single 0 − 2𝜋 section of the grating. To simplify the calculation
and visualizations we will only look at integer numbers of phase steps 𝑁 . We also assume equality
between the pixel width and the pixel pitch, i.e. a fill factor of 100 %. Lower fill factors reduce the
overall diffraction efficiency as the pixels itself form a binary grating. The phase function of the grating
is given by:

𝜙𝑚 (𝑥) =
𝑁−1∑︁
𝑛=0

2𝜋
𝑁

𝑛 · 𝜙𝑠,𝑛 (𝑥) (A.30)

𝜙𝑠 (𝑥) = rect
(
𝑥 − (𝑤/2 + 𝑛 · 𝑤 + 𝐿 · 𝑚)

𝑤

)
, (A.31)

where 𝑤 is the width (or pitch) of a single pixel and 𝐿 = 𝑁 · 𝑤 is the resulting period of the grating. The
transparency function of the grating is then given by:

𝑔(𝑥) = exp

(
−𝑖

∑︁
𝑚∈aperture

𝜙𝑚 (𝑥)
)
. (A.32)

Figure A.4 shows a blazed grating sampled with 𝑁 = 8 phase steps and and aperture size of 𝑀 = 4. It
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Figure A.4 – Approximation of a continous blazed grating with eight phase steps
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Figure A.5 – Diffraction efficiency of a blazed grating into the first order for different numbers of phase steps 𝑁 . The dashed lineshows the analytical result from Equation (A.33) whereas the data points show the result of a numerical Fourier transformation.

does not matter that we only approximate the phase slope from below as we could easily add a constant
phase offset to e.g. center the plateaus on the slope.

The diffraction efficiency can be calculated from the Fourier transformation of the transparency
function as [90]:

𝜖 (𝑘) = sinc2
(
𝑘

𝑁

) 
sinc (𝑘 − 1)

sinc
(
𝑘−1
𝑁

) 
2

(A.33)

A binary grating is a special case of a blazed grating with only two phase steps. In this case the
maximum depth is set to 𝜋 in Equation (A.30). If we substitute the factor 2𝜋

𝑁
𝑛 by a variable depth Δ𝜙, we

can calculate the diffraction efficiency depending on the grating depth. The result is shown in Figure A.6
and it can be seen that increasing the depth Δ𝜙 increases the intensity in the first order. At Δ𝜙 = 𝜋 the
maximum efficiency from Figure A.5 is reached. After that the relative grating depth decreases again
which reduces the diffraction efficiency.
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Figure A.6 – Binary grating diffraction efficiency for different depths of the grating Δ𝜙.

A.4 Optical aberrations and Zernike polynomials

To fine tune the position of a static array created with the SLM, we use two effects in this work. First, a
linear phase gradient which, when taken modulo 2𝜋, has the same effect as a blazed grating. Secondly, a
parabolic phase slope which changes the axial position of the projected beam, similar to the Fourier lens.

Both effects can be seen as elements of a set of known wavefront-changes, described by the Zernike
polynomials (see e.g. [157]). Zernike polynomials 𝑍𝑚

𝑛 (𝜌, 𝜙) are a sequence of orthogonal polymials on
the unit disk and they can be used to describe optical aberrations.

𝑍
𝑚
𝑛 (𝜌, 𝜙) = 𝑅

𝑚
𝑛 (𝜌, 𝜙) cos (𝑚𝜙) (A.34)

𝑍
−𝑚
𝑛 (𝜌, 𝜙) = 𝑅

𝑚
𝑛 (𝜌, 𝜙) sin (𝑚𝜙) (A.35)

with the radial polynomial 𝑅𝑚
𝑛 :

𝑅
𝑚
𝑛 (𝜌) =

𝑛−𝑚
2∑︁

𝑘=0

(−1)𝑘 (𝑛 − 𝑘)!
𝑘!

(
𝑛+𝑚

2 − 𝑘
)
!
(
𝑛−𝑚

2 − 𝑘
)
!
𝜌
𝑛−2𝑘 (A.36)

if 𝑛 −𝑚 even, else 𝑅
𝑚
𝑛 (𝜌) = 0. Also 𝑅

𝑚
𝑛 (1) = 1. The important first order effects that have applications

in optics are shown in Table A.1 and visualized in Figure A.7.
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𝑛 𝑚 𝑍
𝑚
𝑛 Name

0 0 1 Piston
1 -1 𝜌 sin 𝜙 Y-tilt
1 1 𝜌 cos 𝜙 X-tilt
2 -2 𝜌

2 sin 2𝜙 Oblique astigmatism
2 0 2𝜌2 − 1 Defocus
2 2 𝜌

2 cos 2𝜙 Vertical astigmatism
3 -1

(
3𝜌3 − 2𝜌

)
sin 𝜙 Vertical coma

3 1
(
3𝜌3 − 2𝜌

)
cos 𝜙 Horizontal coma

4 0 6𝜌4 − 6𝜌2 + 1 Primary spherical

Table A.1 – Common Zeernike polynomials used to describe optical systems. Astigmatism, defocus and coma might be knownto those who had to visit an ophthalmologist at some point.
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Figure A.7 – Zernike polynomials and their effect on the shape of a point-spread function.
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APPENDIX B

Tweezer alignment

B.1 Objective to vacuum chamber

To minimize aberrations due to misalignment, it is important to enter the objective exactly on the optical
axis. For this we use a beam at 515 nm and look at the reflections of the different surfaces inside the
objective. Because the objective is built out of several lenses, there are multiple circular etalon-like
patterns that need to be overlapped. Using light at 515 nm, which is close to the maximum sensitivity of
the human eye, makes it possible to look at these rings from the backside of a sheet of paper, where the
incident beam is passing through a hole. Using a pair of adjustable mirrors we can then optimize the
coupling into the objective. Once the optimum is reached the concentric rings align along a string along
the axis of the beam. The visibility crucially depends on the size of the coupling beam where a tradeoff
between the size of the rings and locality1 has to be made. We vary the beam size with an iris aperture to
fine tune the contrast during alignment.

We start the alignment process for both objectives with the lower one, without the upper one installed.
Compared to the upper one, which is also adjustable in its position, only the angle with respect to the
vacuum window can be changed. After an initial visual alignment, we shine in a beam from the top
such that we see the reflections of the windows and the interference pattern from the lenses inside the
objectives. The incident beam, the reflections and the circular pattern are iteratively adjusted until they
fully overlap. This ensures that the objective is aligned perpendicular to the vacuum windows and that
the beam is exactly on-axis.

The beam will now serve as a reference to install the upper objective. Again the incident beam and the
interference patterns are overlapped but this time by moving the upper objective and not the beam. This
fact and the issue that we cannot block the back-reflections from the lower objective make the alignment
of the top objective much more complicated and tedious. The measurements in Chapter 5 suggest that
further references and alignment techniques are necessary to ensure a high quality alignment.

1 Locality describes the extent of the objective aperture that is exposed to the coupling beam. A smaller coupling beam shows
smaller rings but is more sensitive to the rough alignment of the coupling beam to the objective axis. A larger beam on the
other hand produces an interference pattern that is more sensitive to small deviations in alignment but more difficult to read
due to its complex structure.
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B.2 Imaging path

To initially adjust the imaging beam path of the EMCCD camera such that a signal from the tweezers can
be picked up, we use a beam at 515 nm or 532 nm that we align to the optical axis of the lower objective
with the procedure above. We then place a retroreflecting mirror in the tweezer path and overlap the
reflection with the incident beam. The dichroic longpass mirror2 reflects about 5 % of the light to the
camera which, for 515 nm and 532 nm, is well detectable for the naked eye. We align the reflected beam
to the aperture of the camera, while making sure the internal shutter is still closed. Only after lowering
the beam intensity as much as possible, we open the shutter and observe the signal. We center the beam
on the chip using the mirrors in the imaging path and can therefore assume that the radial alignment is
good enough to capture the fluorescence from the atoms in the imaging plane. Due to the focal length
at 461 nm being 50 µm shorter than the focal length at 515 nm/532 nm the position of the imaging lens
deviates from the optimal position. The magnification of 750 mm/13.5 mm = 55 in radial direction
results in an axial magnification of 552

= 3000. The difference of 50 µm thus translates into a difference
of 15 cm and the camera has to be placed around 60 cm after the imaging lens. This calculation matches
what we see in the experiment and we fine tune the axial position with the micrometer stage mounted to
the camera.

2 Thorlabs DMLP490L
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