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Introduction

This dissertation explores the question of how people learn if they desire to hold certain

beliefs. When deciding whether to incorporate new information into pre-existing knowledge,

an agent faces a trade-off between belief accuracy and its desirability (Bénabou and Tirole,

2016).1 Studying the formation of beliefs in the presence of conflicting motives is crucial

for understanding various behavioral phenomena, such as overconfidence, the demand for

information, and belief polarization. These phenomena have important implications not

only for individual decision-makers but also for various types of organizations and society

as a whole. For example, both individuals and private companies can be affected by the

negative consequences of overconfidence, e.g., excessive selection into competitive environ-

ments (Camerer and Lovallo, 1999; Niederle and Vesterlund, 2007), excessive trading (Barber

and Odean, 2001), or suboptimal investment decisions (Malmendier and Tate, 2005, 2008).

Moreover, overconfidence and belief polarization can impact democratic systems and the

functioning of modern societies—polarization of political beliefs being the prime example

(McCarty et al., 2016). Overconfidence is an important predictor of ideological extremeness,

voter turnout, and partisan identification (Ortoleva and Snowberg, 2015). Yet, there are still

open questions regarding how overconfidence arises, why it persists, and what can be done

to prevent it. This dissertation includes three self-contained essays, each considering a dif-

ferent question on the process of belief formation that can leave the decision-maker with

biased beliefs. In the first essay, I demonstrate how the learning process of an overconfident

agent can go awry, making the agent more mistaken about the state of the world with every

decision he makes. In the second essay, I take a closer look at the fundamental processes that

govern belief formation, as I examine how people interpret favorable and unfavorable feed-

back. The final essay describes the complexities of belief formation, uncovers the underlying

factors, and links them to overconfidence. The three essays constitute the chapters of this

thesis. I describe them in more detail below.

1For example, we all want to see ourselves as smart, attractive, moral individuals with a bright future ahead of us.
Learning about our traits or future prospects is likely to be affected by our preferences.
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In the first chapter, “Experimental Evidence on Misguided Learning” (joint work with

Lorenz Götte), we study how people form beliefs in environments with multiple unknown

parameters, some of which are relevant to agents’ self-esteem. In particular, we examine

how initial bias in beliefs about an ego-relevant characteristic affects learning about the state

of the world. Using data from a laboratory experiment, we demonstrate that the learning

process of an overconfident agent is self-defeating: the agent repeatedly takes suboptimal

actions, misinterprets the output, and forms increasingly mistaken beliefs about the state.

Therefore, we corroborate the theory of misguided learning formulated by Heidhues et al.

(2018). We provide the first empirical evidence that allowing a biased agent to experiment

and acquire new information is not only ineffective but in some cases counterproductive.

Furthermore, we move beyond the theory as we examine how learning about multiple pa-

rameters evolves in ego-relevant and ego-neutral environments. When none of the parame-

ters point to their characteristics, subjects are engaging in self-defeating learning to a lesser

extent. This is partly because overconfident subjects are more willing to revise their beliefs

about a neutral parameter downwards. The results show that misguided learning is more

likely to arise (and persist) when one’s ego is at stake.

In the second chapter, “Belief-based Utility and Signal Interpretation”, I attempt to an-

swer the following question: Do people perceive favorable feedback in a different way than

unfavorable one? The existing literature disagrees not only on the magnitude but also the di-

rection of the bias (Benjamin, 2019). Using data from a new experiment, I provide strong evi-

dence that people perceive favorable feedback as more likely to be informative. Furthermore,

I design a new control condition to better understand the nature of the bias. Participants in

the control group evaluated the informativeness of a signal ex-ante, conditioned on possible

signal realizations. By comparing beliefs reported after a signal to the reports stated ex-ante,

I show that subjects distort their perception in a motivated way after receiving a signal. The

effect of receiving a signal amounts to 10.6 percentage points (a 27.9% increase in relative

terms) for favorable feedback. In other words, when a person gets a signal that he is smart, he

becomes 27.9% more certain that this signal is accurate, compared to the evaluation of the

same signal ex-ante. There is no significant difference after unfavorable feedback. Conse-

quently, even though signals significantly shifted subjects’ beliefs, they did it selectively, and

the average overconfidence level remained the same at the end of the study. The results cast a
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new light on the origins of overconfidence, pointing towards the role of affect (or utility from

beliefs shifted by the signal) in asymmetric updating.

In the final chapter, “Hope for the Best, Prepare for the Worst: Signal Anticipation and

Ex-ante Belief Manipulation”, I further investigate how people form beliefs when they derive

utility from their self-perception. In this part, I experimentally test a model of belief choice

with reference-dependent utility. The basic idea is that people can “prepare themselves” for

the arrival of new information by adopting overly pessimistic beliefs. By distorting her prior

beliefs, an agent can 1) hedge against a painful downward shift in beliefs after a negative sig-

nal and 2) enhance a pleasant surprise from a positive signal. To test the model, I designed a

lab experiment in which subjects solve an IQ test and subsequently report beliefs about their

relative performance. I introduce an exogenous variation in subjects’ expectations over the

upcoming signal, which allows me to identify belief manipulation. The results confirm the

main predictions of the model, substantiating the claim that utility from beliefs is reference-

dependent. Moreover, I examine a previously unexplored link between gain-loss attitudes

and overconfidence and confirm it in the data. As predicted, overconfident subjects tend to

be low-ability and non-loss-averse, and they end up with a bias that is larger than the bias of

underconfident participants. These results provide further support for the theory and bring

us one step closer to understanding the sources of overconfidence.

The conclusions of the three chapters suggest that, although the process of belief for-

mation is rather complex, we can identify its systematic components. Learning about ego-

relevant parameters is driven by two distinct forces: the need for accuracy and the desire to

maintain a positive self-view. The latter induces the agent to interpret feedback in a self-

serving manner by misattributing it to the state of the world (as described in Chapter 1) or

by distorting his beliefs about signal informativeness (discussed in Chapter 2). However, the

hedonic motive does not always direct the agent towards a more optimistic belief. As shown

in Chapter 3, the decision-maker might adopt pessimistic beliefs to make himself feel good

in the future—after receiving new information. In this case, the extent of belief manipulation

is determined by individual parameters such as the agent’s true ability and his aversion to

losses. Investigating the interplay between these factors and motives gives us a fuller picture

of how people learn about themselves and why they end up with biased beliefs.

3





CHAPTER 1

Experimental Evidence on Misguided Learning

Many economic decisions require an accurate assessment of the state of the world. Often,

more than one decision-relevant aspect is unobservable, and people have to form beliefs

simultaneously about multiple parameters. Learning in such environments is particularly

challenging. Agents need to not only keep track of actions and their consequences but also

disentangle the effects of various factors in order to update beliefs about specific parameters.

If an agent holds biased beliefs about one parameter, e.g. overconfident beliefs about his own

ability, he is likely to make incorrect inferences from the observed data.

Heidhues et al. (2018) show that, in some cases, the learning process goes awry: the agent

repeatedly misinterprets the data, takes suboptimal actions, and forms more and more incor-

rect beliefs about the state of the world.1 Learning is “misguided” and, since it is the agent

who generates the observations that lead him astray, one can describe it as “self-defeating”.

Importantly, even if initially the agent has correct beliefs about all other aspects of the world,

biased perception of ability can start a process that drives beliefs away from the truth. The

theory predicts this pattern in a range of applications: it can explain why overconfident in-

dividuals exert too little effort, managers do not delegate enough tasks to subordinates, and

CEOs engage in unprofitable mergers. It can also explain why additional feedback doesn’t

always help to correct one’s actions. Yet, the extent to which people engage in misguided

learning has not been examined.

In this paper, we use data from a carefully designed laboratory experiment to provide the

first empirical evidence on misguided learning.2 We test the comparative statics of the model

1An illustrative example considers an overconfident agent who is learning about the state of the world by taking
actions and observing output, which also depends on his unknown ability. After observing an unexpectedly low
output, the agent does not interpret it as a result of his low ability but concludes that the state must be worse than
expected. He adjusts his action to match the new belief about the state. The increased mismatch between the
action and the state further lowers the output. This reinforces the agent’s pessimism and leads to an action that, in
reality, fits even worse. Over time, the agent takes more and more inadequate actions and becomes increasingly
mistaken about the state.
2A laboratory setting is particularly suitable for studying misguided learning. Firstly, it enables us to elicit beliefs
multiple times in an incentive-compatible way, providing a precise measure of overconfidence and changes in
beliefs (rarely observable in the field). Secondly, it gives us tight control over technology and information available
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by Heidhues et al. (2018) and document the learning processes of biased agents. Secondly, we

move beyond the model as we investigate how learning about multiple parameters evolves in

ego-relevant and ego-neutral environments.

Our experiment integrates all features of the model in a simple way. The main goal was

to create an environment in which subjects take actions, observe output and learn about

the underlying state of the world. Importantly, the output also depends on an unknown pa-

rameter that is relevant to subjects’ self-esteem. For this purpose, we used subjects’ relative

performance in an IQ test taken in the first part of the study.3 Before the main task, we also

elicited participants’ beliefs about their relative performance.

In the second part of the experiment, participants completed several rounds of a learning

exercise. In every round, the task was to estimate an unknown state of the world: a randomly

drawn integer between −10 and 10. Participants had 4 trials to guess the state and were re-

munerated based on the accuracy of their guesses. After making a guess, each participant

received feedback in the form of a real number between 4 and 51 displayed on the individ-

ual computer screen. Feedback was determined by the state of the world and one’s relative

performance in the IQ test. In every trial, the optimal strategy was to enter one’s best guess

about the state of the world. Therefore, we could directly track participants’ belief formation

process. After the learning exercise, we again elicited subjects’ beliefs about their relative

performance.

To help participants correctly interpret the feedback, we provided them with tables to

look up which states of the world and relative performances are consistent with the feedback

they observed. We did not preclude subjects from considering different performance levels

and they were free to choose any combination of the two parameters. Giving subjects the

opportunity to reconsider their beliefs about ability allows us to see if misguided learning

emerges even in environments where beliefs are not restricted.

We introduced two experimental conditions: treatment and control. In the treatment

condition, participants received informative feedback based on their last guess, whereas in

to subjects. In the field setting, technology is usually unobservable, and without the knowledge of the output
generating process, one cannot formulate the model’s predictions.
3We decided to use intelligence as an input to the production function for several reasons. Firstly, intelligence is
known as a personal characteristic that people deeply care about, so a measure of IQ seems to be a good candi-
date for a genuinely ego-relevant parameter. Secondly, the literature provides evidence that people have biased
assessments of their relative cognitive ability (see, for example, Burks et al., 2013). One would expect misguided
learning to arise in this context. Last but not least, cognitive ability as a component of human capital is an actual
input to many production functions.

6



the control condition, feedback did not depend on subjects’ guesses. Thus, the main mecha-

nism of the model – the interdependence between actions and feedback – was shut down in

the control condition. We kept all other features of the experiment unchanged: participants

were asked to make four guesses and after each one, a number was displayed on their com-

puter screens. We use the control condition to exclude alternative explanations, for example,

that the effect is an artifact of repeated choice-based elicitation. Rather, we show that it is in-

duced by informative feedback as in Heidhues et al. (2018). The experiment was conducted

in November 2017 in BonnEconLab at the University of Bonn. We collected data from 171

subjects, mostly university students.

Furthermore, we designed an ego-neutral condition in which output depends on a pa-

rameter that does not affect agents’ self-esteem. In this condition, subjects performed the

task based on the performance of some other, randomly selected individual who reported

similar beliefs (we assume that the performance of another subject is irrelevant to one’s ego).4

The structure of the experiment was identical to that of the main condition, and it allows us

to isolate the effect of ego-relevance of one of the parameters. The data from 155 participants

in the ego-neutral condition was collected in November 2018.

Overall, we find strong support for the predictions of the misguided learning model.

When overconfident individuals can adjust their actions and learn about the state of the

world, repeated feedback leads them to form increasingly mistaken beliefs. Their learning

process is self-defeating: overconfident participants tend to attribute an unsatisfactory out-

come to the realized state instead of their relative performance, take suboptimal actions, and

become pessimistic about the state over time. Importantly, we find a significant difference

between the treatment and the control condition, confirming that the effect is driven by the

mechanism described in Heidhues et al. (2018).

The effect is more pronounced for participants who are more biased about their ability.

We test the model’s comparative statics and show that the more overconfident the participant

is, the more mistaken about the state he becomes. We also corroborate the qualitative predic-

tions for underconfident and unbiased subjects.5 The learning process of the underconfident

4After eliciting beliefs about subjects’ relative performance, participants were informed that they will be ran-
domly matched to a person from one of the previous sessions, who took the same IQ test and reported the same
beliefs but not necessarily obtained the same IQ test score. Before the main task, we elicited subjects’ beliefs
about the relative performance of the person matched to them.
5We use the term “misguided learning” to describe the learning of biased (over- or underconfident) agents, and
we only refer to the overconfident agents’ misguided learning as “self-defeating learning”.
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agent is misdirected and its trajectory is different from that of the overconfident agent. We

do not detect any similar pattern in the behavior of unbiased participants. In line with the

model, the unbiased subjects immediately learn the true state and take the optimal action in

the following trials.

However, the effects observed in the data are quantitatively lower than the theory pre-

dicts. The gap between the theoretical predictions and the observed behavior is caused by

some participants updating their beliefs about ability during the experiment. We observe

a significant difference in beliefs measured before and after the learning exercise, with 25%

of participants revealing unbiased beliefs after the task (compared to 7.6% before the task).

Notwithstanding, almost 80% of subjects who were classified as overconfident at the begin-

ning of the experiment remained overconfident, and many of them were engaging in self-

defeating learning until the end of the last round.

Using data from the ego-neutral condition, we show that self-defeating learning is more

likely to arise and persist when one’s ego is at stake. When the output is based on the IQ test

performance of some other, randomly selected individual, misdirected learning of overcon-

fident agents is significantly mitigated. Overconfident participants in the ego-neutral condi-

tion are engaging in self-defeating learning to a lesser extent partly because they are willing

to revise downwards their beliefs about the ability of their match.6

The opposite is true for underconfident agents. Underconfident participants are more

likely to become unbiased in the ego-relevant condition, that is, when learning about their

own ability, compared to similarly underconfident subjects in the ego-neutral condition. The

results demonstrate that, when learning involves multiple parameters and some of them are

ego-relevant, people are steered to learn along the dimension that brings them higher ego

utility. While motivated attribution of ego-relevant outcome is a phenomenon well-known in

the psychological literature (see Coutts et al., 2020, for a review of the literature), our paper is

the first to demonstrate it in a dynamic setting.

Our work is partially motivated by the behavioral literature on motivated reasoning, which

suggests that people might interpret feedback in a self-serving manner (see Bénabou and Ti-

role, 2016, for a comprehensive literature review). A large body of work demonstrates that

6Importantly, we are comparing overconfident subjects in the ego-relevant condition with similarly overconfident
participants in the ego-neutral control. This allows us to control for any confounding factors and disentangle the
effect of agents’ bias from the ego-relevance of the unknown parameter.
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people use various strategies to manipulate their beliefs to maintain a positive self-view.

These strategies include information avoidance (Golman et al., 2017), selective recall (Chew

et al., 2020; Zimmermann, 2020; Huffman et al., 2022), and asymmetric updating (Eil and

Rao, 2011; Buser et al., 2018; Coutts, 2019; Möbius et al., 2022). Our experiment was not

designed to test any of these mechanisms directly, but to examine how motivated reasoning

unravels in a more complex, dynamic environment.

We view our paper as complementary to the literature investigating the consequences

of holding inaccurate beliefs with some degree of persistence. Overconfidence, a widely-

studied phenomenon by both psychologists and economists, is believed to generate great

costs for both the individual and the society.7 We contribute to the literature concerning the

implications of overconfidence as we document its detrimental effect on learning.

Our work is based on a model by Heidhues et al. (2018) that we describe in Section 1.1.

Learning with biased beliefs about ability was also studied by Hestermann and Le Yaouanq

(2021). They also consider two parameters that are not separately identifiable, but in their

model, the agent is learning about both.8 The remaining literature on belief formation and

learning focuses on failures of reasoning that are conceptually different from the one we

study. One should mention the work on selective attention in learning (Schwartzstein, 2014,

Hanna et al., 2014), redundancy neglect in social learning (Eyster and Rabin, 2014, Enke

and Zimmermann, 2017), difficulties in hypothetical thinking (Charness and Levin, 2009,

Esponda and Vespa, 2014, Esponda and Vespa, 2016), overlooking selection problems (Esponda

and Vespa, 2018, Enke, 2020), and misattribution of reference dependence in learning from

experience (Gagnon-Bartsch and Bushong, 2022, Bushong and Gagnon-Bartsch, 2023). Per-

haps the closest to our work, Coutts et al. (2020) test two different theories of self-attribution

bias and show that, although people tend to update more favorably about themselves than

about their teammates, they do not attribute the negative outcome to the other player. We

contribute to the literature by providing empirical evidence on misguided learning and tak-

ing the first step towards understanding how people learn in environments with multiple

unknown parameters.

7Negative consequences of overconfidence include excessive selection into competitive environments (Camerer
and Lovallo, 1999; Niederle and Vesterlund, 2007), excessive trading (Barber and Odean, 2001), suboptimal in-
vestment decisions (Malmendier and Tate, 2005, 2008), and political polarization (Ortoleva and Snowberg, 2015).
8Unfortunately, their framework is different from our experimental setup, and we cannot directly test the model’s
predictions.
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The paper is organized as follows. In Section 1.1, we describe a simplified version of the

model and its testable predictions. Section 1.2 outlines our experimental design and Section

1.3 presents the empirical results. In Section 1.4, we discuss the results of the ego-neutral

condition. Section 1.5 concludes.

1.1. Theoretical Framework

In this section, we present a version of the misguided learning model by Heidhues et al.

(2018) and state its testable predictions. We adopted a simplified version of the model in

order to focus on testing the main mechanism.9 For the general framework, as well as the

proofs, we refer the reader to the original paper.

1.1.1. The Model of Heidhues et al. (2018). In each period t ∈ {1,2,3, ...}, the agent pro-

duces an observable output qt according to the following production function:

qt =Q(et , A,Φ) = A+Φ−L(et −Φ),

where et ∈ (e, ē) denotes the agent’s action in period t , A ∈ R is the agent’s true ability, Φ ∈
(φ, φ̄) is the unknown state of the world, and L(·) is a symmetric loss function with L(0) = 0 and

|L′(x)| < k < 1 for all x. The loss is minimized when the agent matches his action to the state

of the world. The state Φ is drawn from the continuous prior distribution π0 : (φ, φ̄) → R>0,

and the agent has a prior belief about the state φ0 = 0.

In each period, the agent takes an optimal action given his belief φ about the state Φ.

To minimize the loss function, he chooses e∗(φ) = φ. The agent follows a myopic decision

rule: the action maximizes the expected output in a given period.10,11 In the first period, the

optimal action is equal to the agent’s prior belief: e∗1 = φ0 = 0. It produces the following

output (normalizing A =Φ= 0):

q1 =Q(e1, A,Φ) =−L(0) = 0.u′−P (x)u2 −Q(x)u −R(x)︸ ︷︷ ︸
9In Heidhues et al. (2018), the agent observes multiple noisy output realizations in every period and updates his
beliefs based on the average output in that period (he averages out the random component). We decided not to
include this feature of the model, as we were concerned that biases in information aggregation could obscure the
results.
10The assumption implies that there is no learning motive at play. The agent is neither intentionally experi-
menting nor gathering data about his environment to make better choices in the future. Misguided learning is a
by-product of a sequential, short-sighted optimization.
11We decided not to impose this assumption onto participants in our experiment. However, we expected that the
task will induce short-sighted behavior to some extent.
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The agent observes the output q1 and compares it to the output that he expected. The

difference between the observed and the expected output depends on the direction and mag-

nitude of the agent’s bias.

1.1.2. Overconfidence and Self-Defeating Learning. An overconfident agent believes

that his ability is ã > A (it is higher than his actual ability A). After taking an action e∗1 =φ0 = 0,

he expects to observe the output q̃1:

q̃1 =Q(e1, ã,φ0) = ã > 0.

The agent is not suffering from any other information-processing bias and uses Bayes’ rule to

update his beliefs about the state of the world. As in Heidhues et al. (2018), we assume that

the agent never updates his beliefs about his ability (we discuss this assumption in Section

1.1.4). Consequently, he attributes the difference between q1 and q̃1 to the state of the world.

The agent concludes that the state is worse than he thought and he adopts a new belief that

is lower than his prior: φ1 <φ0.

In Period 2 the agent chooses e∗2 =φ1. He observes the output −L(φ1), while he expected

to produce ã >−L(φ1). Once again, he is surprised by the output and attributes the difference

to the state of the world. As a result, he becomes even more pessimistic about the state:

(1.1) φ2 <φ1 <φ0.

With each observation, the agent’s beliefs are driven further away from the true state. Hy-

pothesis 1.OC summarizes the learning process of an overconfident agent:

Hypothesis 1.OC (Overconfident Agents)

The learning process of an overconfident agent is self-defeating: in each period, after taking

an action and observing the output, the agent forms increasingly pessimistic beliefs about the

state.

The change in beliefs in each each period depends on the difference between q1 and q̃1,

which is in turn a function of agent’s bias |ã − A|. An overconfident agent with a larger bias

has higher output expectations relative to a less biased individual. He will be more surprised
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by the actual output and will attribute this larger difference to the state of the world. As a re-

sult, he will form more biased beliefs about the state compared to a less overconfident agent.

Hypothesis 2.OC (Overconfident Agents)

An overconfident agent with a larger bias will form more pessimistic beliefs compared to a less

overconfident agent, and will end up further away from the true state.

Under the model’s assumptions, the agent’s belief about the state is not decreasing indef-

initely but converges to a unique limiting belief φ∞. This limiting belief is stable in the

sense that the agent has no incentive to abandon it – at this point, he ends the learning pro-

cess. Intuitively, a stable belief is a point belief that induces action and output that exactly

matches the agent’s expectations, thereby confirming his belief. It could be found by set-

ting the difference between the actual and the expected outputs to zero: Q(e∗(φ∞), A,Φ)−
Q(e∗(φ∞), ã,φ∞) = 0. With the loss-function specification, that condition reads:

(1.2) (A− ã)+ (Φ−φ∞)−L(Φ−φ∞) = 0.

By rearranging the above equation one can derive a formula for the stable belief φ∞. It is

worth noting that the stable belief is a function of the agent’s bias.

1.1.3. Underconfident and Unbiased Agents. The model also predicts the behavior of

underconfident agents. The analysis is analogous, with the only difference that the agent

underestimates his true ability, i.e. ã − A < 0. With the normalization of A = 0, this implies

ã < 0. In Period 1, the agent chooses e∗1 = φ0 = 0. He observes the output of −L(0) = 0, while

he expected to produce ã < 0. The agent does not update his beliefs about his ability, but

instead he looks for φ that would explain the output. The updated belief φ1 is higher than his

prior – the agent concludes that the state of the world is better than expected.

In Period 2, the agent chooses e∗2 = φ1. He observes the output of −L(φ1), while he ex-

pected to produce Q(e2, ã,φ1) = ã +φ1. The output falls short of his expectations, so he con-

cludes that the state is worse than he thought. The adjustment in the following period goes in

the right direction, bringing the agent closer to the true state. In contrast to the overconfident

agent, the underconfident agent’s misguided learning is self-correcting. The model predicts
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that the underconfident agent’s beliefs satisfy:

(1.3) φ1 >φ0 ∧ φ2 <φ1.

This allows us to formulate the following prediction about the belief-formation process of

underconfident agents:

Hypothesis 1.UC (Underconfident Agents)

The learning process of an underconfident agent is self-correcting: after the initial overly opti-

mistic assessment, the agent corrects his beliefs downwards.

In the first period, an underconfident agent with a larger bias is more surprised by the output

than an underconfident agent with a smaller bias. Because the agent attributes the entire

difference to the state of the world, he becomes more mistaken about the state compared to

the less biased individual.

Hypothesis 2.UC (Underconfident Agents)

In the first period, an underconfident agent with a larger bias forms beliefs that are further

away from the true state compared to the beliefs of a less underconfident individual.

While we cannot form a hypothesis similar to Hypothesis 2 for underconfident agents in ev-

ery period, one can use (1.2) to derive a testable prediction for long-term learning outcomes

of overconfident and underconfident agents.12

Hypothesis 3.UC&OC (Stable Belief)

The stable belief of an underconfident (overconfident) agent with a larger bias lies further from

the true state than the stable belief of a less underconfident (overconfident) agent.

Last but not least, the model characterizes the behavior of unbiased agents. An unbiased in-

dividual correctly evaluates his ability ã = A. After choosing the optimal action in the first

12While we admit that our setting is more suitable to test the short-term dynamics of the model, we argue that
we can provide some evidence on the long-term. We discuss this point in more detail in Section 1.3.
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period, e∗1 = φ0 = 0, he observes exactly the output he expects: ã +φ = 0 = −L(0). The unbi-

ased agent has no reason to update his beliefs any further, implying:

(1.4) φ2 =φ1 =φ0.

We summarize it in the following hypothesis:

Hypothesis 1.UB (Unbiased Agents)

The learning process of an unbiased agent is immediate and stable afterwards.

1.1.4. Quantitative Predictions. It is important to note that the model is based on the

assumption that agents never update their beliefs about their ability. Although there is some

evidence that people are reluctant to update beliefs about ego-relevant characteristics, es-

pecially if prompted to revise them downwards (see, for example, Eil and Rao, 2011), the

assumption of no updating is rather extreme. Still, the qualitative predictions of the model

will hold on aggregate if beliefs about ability are sufficiently sticky. Even if some agents cor-

rectly update their beliefs, as long as the bias is not entirely reduced in the population we

will observe misguided learning. In this case, one would expect the effect to be of the same

direction, but quantitatively lower than predicted by the model.

1.2. Experimental Procedures

The experiment took place in November 2017 in the Laboratory for Experimental Eco-

nomics at the University of Bonn. We conducted 8 two-part sessions with 19 to 25 partici-

pants each. In sum, we collected data from 171 male participants, mostly students from the

university.13 The first and the second part of the experiment lasted around 45 minutes and

90 minutes, respectively. Participants earned 30 euros on average.

In the first part of the experiment, subjects completed an IQ test and filled out a ques-

tionnaire. The second part of the experiment took place one week later, after all subjects

had completed the first part, and included the learning exercise as well as the elicitation of

13We invited only male subjects as our main research question concerns the consequences of overconfidence,
and men are known to be more overconfident than women (Niederle and Vesterlund, 2007). We are not the only
study that uses a group of male subjects to investigate overconfidence: see, for example, Burks et al. (2013).
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both prior and posterior beliefs.14 Both parts of the experiment were programmed using

zTree (Fischbacher, 2007) and completed by subjects on computers in private cubicles. We

describe each part in detail below.

1.2.1. IQ Test and Belief Elicitation. In the first part of the experiment, we evaluated

subjects’ relative performance in the IQ test, which consisted of 29 standard logic questions.

Participants were asked to solve as many of them as possible in 10 minutes. The individual

score was calculated based on the number of correctly answered questions minus the num-

ber of incorrect answers. To incentivize effort during the test, participants were told that the

individual result is important for the next part of the experiment, and their earnings will de-

pend on their scores. After the IQ test, subjects were asked to fill out a questionnaire designed

to assess their character traits and individual anxiety levels. At the end of the first session, we

reminded participants about the second session one week later, and that they will not be paid

unless they show up for the second session.

Between the sessions, we ranked participants according to their IQ test results. For ev-

ery subject, we calculated his position in the group. The individual position was defined as

a number equal to the percent of participants whose test scores were lower or equal to the

score obtained by the subject. We defined 20 equilength “performance intervals” ranging

from 0% to 100% in steps of 5%. Every participant was assigned the performance interval

that his position fell under (with 0−5% denoting the lowest and 95−100% the highest perfor-

mance interval). We refer to the midpoint of that performance interval as the agent’s relative

performance (denoted by A).

At the beginning of the second session, we elicited subjects’ prior belief about their rela-

tive position (Confidence I) using the crossover method that is known to be incentive-compatible

independently of subjects’ risk attitudes (see Schlag et al., 2015). We presented participants

with a choice list and asked them to indicate their preferred option in each of the 20 lines.

Option A was a lottery with p chance of receiving 5 euros and 1−p chance of receiving 0; the

winning probability was increasing from p = 0.05 to p = 1 in 5% steps. Option B stood for a

competition with a randomly selected individual, which granted 5 euros if one’s IQ test score

was higher than their partner, and nothing otherwise. A rational individual would choose

14To match subjects’ data between the sessions without violating anonymity, we followed a special procedure,
which included generating private codes that were used to match subjects to cubicles at the beginning of the
second session.
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Option A if and only if p is larger than his perceived relative performance. Therefore, we in-

terpret the switching probability as a measure of confidence in one’s skills. The procedure

was explained to subjects in a simple language, with two examples on how to translate one’s

beliefs into choices. We followed the same procedure in the second belief elicitation (Confi-

dence II).

1.2.2. Learning Task. After the first belief elicitation, participants completed 6 rounds of

a learning task. For every participant, we drew one number for each round, with replacement,

from the set {−10,−9, ...,9,10}.15 We refer to this collection of 6 numbers as an “individual set”

and to the set containing all feasible numbers “the feasible set”. Participants were reassured

that the numbers had been drawn before the experiment started.16

In each round, participants were guessing one number taken from their individual set

without replacement.17 For each number, they had to make 4 guesses and enter them into the

interface one at a time. After each guess, the computer program calculated a payoff according

to the formula:

(1.5) Π(e, A,Φ) = 20+0.8× (28.6× A + Φ − 0.48 |e −Φ|),

where A denotes the agent’s relative performance,Φ is the number drawn, and e refers to his

guess. The formula corresponds to the specification of the absolute value loss function. We

decided to use this specification because of its simple form and straightforward interpreta-

tion. The parameters were chosen such that misguided learning could arise for moderately

biased agents. The formula was presented to participants in a descriptive form with an in-

tuitive explanation of the absolute value in terms of distance on the linear scale. We drew

15The numbers were drawn from a distribution that put slightly higher weight on numbers in the interval [−4,4].
Participants were not presented the exact distribution but were told that the sum of numbers drawn is equal to
zero in every round. We explained that some participants had been assigned the number 0, and among the rest
half of the participants had been assigned a positive number, while the other half had the same number with the
opposite sign.
16We informed subjects that the numbers from their individual set had been printed and placed in a sealed en-
velope next to their seat. They were told not to open the envelopes until the end of the study. As an additional
precautionary measure, we placed the envelopes within the sight of the person supervising the session.
17We framed the task as “guess the number” instead of “guess your ability and the number”, as we aim to test the
theory that describes this particular type of situation. We argue that this framing is more suitable to study the
implications of overconfidence. In many real-world situations learning about ability is not explicit. For example,
when an investor is trading stocks his main task is to generate profits and learn about the market, and not about
his ability (even though the profits depend on his analytical skills).
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subjects’ attention to the fact that the payoff is the higher the closer their guess is to the num-

ber drawn (with the highest payoff for the exact match). Participants were informed that, at

the end of the experiment, two out of 4×6 = 24 guesses will be randomly drawn and paid out

(with the exchange rate of 0.3).18

After entering a guess e, every participant received private feedback. The feedback was

equal to one’s payoff with an added random component and was displayed on the individual

computer screen. The noise was introduced only to ensure that subjects would not be able to

infer their ability by matching the feedback to a single identical number in the table.19

Participants were informed that they can infer the actual number they are guessing in

a given round from their feedback. Knowing their relative performance A, the last guess e,

and the payoff Π, they can calculate the unknown number Φ. However, it requires some

arithmetical skills. Considering that computational mistakes could influence the learning

behavior and obscure the results, we provided subjects with a tool to help them with the task.

1.2.2.1. Introducing Tables. Before the learning exercise, every participant was given a set

of 21 tables (see Appendix A), from which they could obtain the value ofΦ using the feedback

they received. The tables contained payoffs for every possible combination of e, Φ, and A.

The three parameters jointly determine the payoff, and hence the set of two-dimensional

tables contains all feasible payoffs. There is one table for each possible guess e (indicated in

the title), the rows indicate the relative performance A (performance intervals are listed in

the first column), whereas the columns indicate the numberΦ (its values are listed in the first

row).

We provided participants with detailed instructions on how to correctly read the tables.

Firstly, we described how to find the payoff given e, Φ, and A. A user has to look for a table

with his guess in the title, and then look for the intersecting cell corresponding to the row

with his relative performance and the column with the number. Secondly, we explained that

18One may raise a question whether paying subjects for two elicitation procedures and the learning exercise
could induce participants to misreport their beliefs. We admit this possibility, however, we argue that this com-
ment applies only to the second belief elicitation (Confidence II) and does not undermine our main result. Firstly,
the instructions for each part were distributed separately, and beforehand participants were not given any infor-
mation about the remaining tasks. Secondly, in the learning exercise, subjects were not able to influence their
payoffs by misreporting their beliefs about themselves. Participants were informed that it is their actual relative
performance that enters the payoff function, not their subjective belief.
19The random component was drawn from the uniform distribution over the interval [−0.18,0.18] known to the
subjects. Importantly, the noise was not big enough to influence the update. Thus, the set-up can be still de-
scribed using a model without a random component introduced in Section 1.1.
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if someone knows the payoffΠ, his last guess e, and his relative performance A, he can obtain

the value ofΦ by reversing the last steps. After finding the right table, the subject should look

at the row with his relative performance and search for his payoff in this row. The column in

which lies the payoff indicates the number.

We presented participants with multiple examples and strongly encouraged them to raise

questions when in doubt. Every participant had to answer control questions that not only

tested their understanding but also pointed out important aspects of the task. Feedback was

only displayed after the first guess and participants were not given any information prior to

it. Therefore, the first guess that maximizes the expected payoff was e = 0. To avoid misun-

derstandings, we directly told subjects that it is in their best interest to choose zero as their

first guess.

1.2.2.2. Experimental Conditions and Groups. We introduced two conditions: treatment

(we refer to it as “multiple-feedback rounds”) and control (“single-feedback rounds”). The

two conditions differed with respect to the information provided to participants after each

guess. In the multiple-feedback rounds, participants received feedback calculated according

to the formula (1.5) after each guess.

In the single-feedback rounds, subjects received feedback calculated according to (1.5)

only after their 1st guess. After the 2nd and the 3rd guess computers displayed feedback calcu-

lated using the 1st guess in that round. Subjects were notified that no matter what they enter

as their 2nd or 3rd guess, the feedback will not reflect their choices. Nevertheless, they were

asked to enter their best guess two more times keeping in mind that every guess is equally im-

portant for their earnings. By comparing the 3rd and the 4th guess in the multiple-feedback

rounds to the corresponding guesses in the single-feedback rounds, one can isolate the effect

of informative feedback on misguided learning and prove that the mechanism described in

Heidhues et al. (2018) drives the results.

Every participant completed a total of 6 rounds, alternating between the treatment and

control conditions. We randomly assigned subjects to two groups (see Table 1.1), with the first

group starting with a single-feedback round and the second group starting with a multiple-

feedback round.
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TABLE 1.1. Experimental conditions and groups.

Round Group 1 Group 2

1. SF MF
2. MF SF
3. SF MF
4. MF SF
5. SF MF
6. MF SF

SF – single-feedback round

MF – multiple-feedback round

1.3. Results

In this section, we present the results of our empirical analysis. Firstly, describe the data

on test performance and beliefs, as well as our independent measure of overconfidence. In

Section 1.3.2, we look at learning in the multiple-feedback rounds and test the model’s pre-

dictions for overconfident, underconfident, and unbiased subjects. Next, we use the data

from the control condition to exclude alternative explanations of the results. Finally, we dis-

cuss learning about ability during the experiment in Section 1.3.3.

1.3.1. IQ Test Results and Elicited Beliefs. In Figure 1.1.(A), we present a histogram of

the IQ test results. The scores range from −11 to 16, with over 90% of participants obtain-

ing between 0 and 10 points. The score distribution is fairly symmetrical, with a mean score

of 5.29, and a standard deviation of 3.38. In Figure 1.1.(B), we present the distribution of

subjects’ beliefs about their relative performance elicited before the main task (Confidence

I). The average prior belief equals 59.46% and is significantly higher than the average actual

position, 55.25% (p-value = 0.092).20 The average participant is overconfident, yet the mag-

nitude of bias in our sample is not very high. The correlation between subjects’ prior beliefs

and their actual performance is 0.31 and significant at the 1%-level.

We classify an agent as overconfident (underconfident) if he assessed his performance to

be higher (lower) than his actual position within the group. An unbiased participant correctly

estimated his relative performance. As revealed in Confidence I, there are 79 overconfident,

79 underconfident, and 13 unbiased subjects in our sample. On average, underconfident

20The average actual position is different from 50% as participants with the same IQ test score were, based on
our definition, falling together into one performance interval. We decided not to randomly break ties to avoid
misattribution of the result to the random component.
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FIGURE 1.1. IQ test results and subjects’ beliefs about relative performance.
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(B) Distribution of prior beliefs.

participants held beliefs 20 percentiles lower than their actual position. The average bias of

overconfident subjects was around 30 percentiles, meaning that overconfident participants

tend to believe that their relative performance was 30 percentiles higher than it actually was.

There is a significant difference in the actual performance of overconfident and underconfi-

dent subjects. The low-ranked participants tend to overestimate their relative performance,

and the high-ranked subjects tend to underestimate it (we address this issue in the following

section). The exact values are presented in Table 1.2.

TABLE 1.2. Average performance and beliefs of different types of subjects.

Underconfident Unbiased Overconfident

Actual Performance:

Mean (Std. Dev.) 77.50 (16.41) 62.12 (13.14) 31.87 (19.81)

Prior Beliefs:

Mean (Std. Dev.) 57.31 (16.71) 62.12 (13.14) 61.17 (15.76)

1.3.2. Model Predictions Based on Elicited Beliefs.

1.3.2.1. Misguided Learning. First of all, we look at participants’ choices in each of the

4 trials. The average guesses of overconfident subjects are presented in Figure 1.2. The blue

line connects subjects’ actual guesses, and the black points denote the average number being
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FIGURE 1.2. Learning of overconfident subjects.
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guessed.21 For every subject, we calculate the 2nd, 3rd and 4th guess predicted by the model,

based on the number he was guessing and his bias revealed in Confidence I. The red line con-

nects the average predicted guesses. Although subjects’ actual guesses do not coincide with

the predicted guesses, the belief path resembles the one predicted by the model. The learning

of overconfident agents is self-defeating, with each guess diverging from the true state. We

test this formally, by comparing coefficients of a simple regression explaining the difference

between a guess and the number with dummy variables, one for each guess (see Table 1.3).

The 2nd guess is significantly lower than the 1st guess (one-tailed test: p-value = 0.000), and

the 3rd guess is significantly lower than the 2nd guess (one-tailed test: p-value = 0.019).

Although we cannot attest the strict inequality for the 3rd and the 4th guess with similar

confidence level, the difference between the 2nd and the 4th guess is highly significant (one-

tailed test: p-value = 0.003). Thereby, we confirm the qualitative predictions of the model for

overconfident agents. Quantitatively, the effect is around 40% lower than predicted by the

model. This may be due to conservatism (under-responsiveness to information known in the

literature on asymmetric updating, e.g. Möbius et al., 2022) or subjects learning about their

ability over the course of the experiment. We provide evidence for the latter explanation in

Section 1.3.3.

21Although in every round the sum of numbers given to participants was equal zero, we could not predict the way
in which they were distributed among the overconfident, the underconfident and the unbiased agents. Thus, the
average of the numbers estimated by different groups was not exactly zero.
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FIGURE 1.3. Learning of underconfident and unbiased subjects.
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(A) Underconfident subjects.
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(B) Unbiased subjects.

The patterns revealed by the underconfident and unbiased agents also follow the model’s

predictions. For the underconfident agents, the 2nd guess is significantly higher than the 1st

guess (one-tailed test: p-value = 0.000), and the 3nd guess is significantly lower than the 2st

guess (one-tailed test: p-value = 0.000). After receiving the first feedback, underconfident

agents tend to overshoot, but in the following guess they correct their predictions downwards

– a pattern also visible in Figure 1.3.(A). Quantitatively, however, the effect is even more mit-

igated compared to that of the overconfident agents: it is between 53% to 62% lower than

predicted by the model. Unbiased agents neither overshoot nor become pessimistic about

the state over time, as we can see in Figure 1.3.(B). Their second guess is indistinguishable

from the true state, and there is little change in the following trials. Thereby, we confirm Hy-

pothesis 1 for overconfident, underconfident, and unbiased agents (Hypothesis 1.OC, 1.UC,

and 1.UB).

1.3.2.2. Excluding Alternative Explanations. Before we conclude that participants in our

experiment were engaging in misguided learning, we test whether our results were driven by

factors outside of the model. For example, the observed patterns might stem from the dif-

ferences in cognitive ability between underconfident and overconfident subjects, and might

not be specific to the environment described in the model. We address this concern with a

control condition, in which the main mechanism of the model is switched off.

In the single-feedback rounds, participants received meaningful feedback only after their

1st guess. After the 2nd and the 3rd guess, the number displayed on screen was independent
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TABLE 1.3. Learning in the multiple-feedback (MF) rounds.

Overconfident Unbiased Agents Underconfident

(1) (2) (3)

Dependent variable: difference between a guess and the number in MF rounds.

Independent variables: dummy variables for each guess in the MF rounds.

2nd guess MF -3.684∗∗∗ -0.487 2.793∗∗∗
(0.342) (0.570) (0.381)

3rd guess MF -4.245∗∗∗ 0.103 1.325∗∗∗
(0.391) (0.466) (0.291)

4th guess MF -4.519∗∗∗ 0.051 1.266∗∗∗
(0.426) (0.829) (0.548)

Const. -0.004 0.359 0.346
(0.243) (0.574) (0.254)

N 948 156 948

Note: The coefficients at the 2nd, 3rd, and 4th guess MF remain unchanged if we control

for subjects’ relative performance (their actual position in the IQ test score distribution).

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

of the preceding guess. We kept all other features of the experiment unchanged: as in the

multiple-feedback rounds, participants were asked to make four guesses and after each one,

a number was displayed on their computer screens. Subjects were informed that the number

displayed after the 2nd and the 3rd guess will be based on their 1st guess. Thus, the feedback

after the 2nd and the 3rd guess does not bring any new information. The essential feature

of the model – the interdependence between actions, feedback, and beliefs – is no longer

present, so misguided learning should not arise. However, if there is a downward trend in

beliefs of overconfident agents that is independent of the model mechanism, it should be

present in the control condition as well.

Firstly, we show that there is no evidence of self-defeating learning in the single-feedback

rounds after the second guess. Again, we compare the coefficients of subsequent guesses in

a simple regression (Table 1.4). The 3rd guess is not significantly lower than the 2nd guess

(one-tailed test: p-value = 0.953), and the 4th guess is not significantly lower than the 3rd
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TABLE 1.4. Learning in the single-feedback (SF) rounds.

Overconfident Unbiased Agents Underconfident

(1) (2) (3)

Dependent variable: difference between a guess and the number in the SF rounds.

Independent variables: dummy variables for each guess in the SF rounds.

2nd guess SF -3.350∗∗∗ 0.333 3.493∗∗∗
(0.360) (0.786) (0.392)

3rd guess SF -2.958∗∗∗ 0.718 3.080∗∗∗
(0.378) (0.779) (0.381)

4th guess SF -2.992∗∗∗ 1.051 3.198∗∗∗
(0.361) (0.828) (0.387)

Const. 0.278 -0.513 -0.118
(0.258) (0.749) (0.237)

N 948 156 948

Note: The coefficients at the 2nd, 3rd, and 4th guess SF remain unchanged if we control

for subjects’ relative performance (their actual position in the IQ test score distribution).

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

guess (one-tailed test: p-value = 0.431). The results prove that, for overconfident agents,

the belief path in the single-feedback rounds does not exhibit the pattern characteristic of

self-defeating learning. While we cannot reject the hypothesis that the learning process of

underconfident agents is self-correcting in the single-feedback rounds, the extent of correc-

tion is much lower. In the multiple-feedback rounds, participants corrected 55% of the initial

overshooting, and the correction in the single-feedback rounds did not exceed 7%.

Secondly, we pool the data from the single- and multiple-feedback rounds and look at

the effect of receiving informative feedback on learning. We regress the difference between a

subject’s guess and the number on a dummy variable indicating a multiple-feedback round.

The results are gathered in Table B.2 in Appendix B. For overconfident participants, being in

a multiple-feedback round increases the negative difference between a guess and the num-

ber by −1.57 in the 3rd guess (one-tailed test: p-value = 0.000) and by −1.81 in the 4th guess
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(one-tailed test: p-value = 0.000).22 Informative feedback makes overconfident subjects more

mistaken both in the 3rd and in the 4th guess.23 As a final test, we regress the difference be-

tween the 4th and the 2nd guess on a dummy variable indicating a multiple-feedback round

(see Table B.4 in Appendix B). The coefficient is negative and highly significant: providing

overconfident subjects with informative feedback shifts their beliefs downwards by −1.19,

which constitutes 67% of the effect predicted by the model. Moreover, receiving informative

feedback affects underconfident but not unbiased subjects, in line with the model predic-

tions. The results for underconfident and unbiased agents are delegated to Appendix B.

1.3.2.3. Individual Heterogeneity. In this section, we analyze how misguided learning de-

pends on subjects’ bias. To this end, we conduct a regression analysis similar to the one pre-

sented in the previous section, but we allow for the effect to depend on the bias (the degree of

over- and under-confidence measured before the task). The results are gathered in Table 1.5.

The dependent variable is the difference between the subject’s guess and the number in the

multiple-feedback rounds, whereas independent variables include dummy variables indicat-

ing consecutive guesses and their interactions with a measure of agents’ bias. “Bias” variable

takes values between −1 and 1, with positive (negative) values characterizing overconfident

(underconfident) subjects. We analyze separately the behavior of overconfident and under-

confident subjects. However, this time, we include unbiased agents in each group, as they

provide a useful benchmark for studying the effect of bias (similar regressions without unbi-

ased subjects could be found in Table B.5 in Appendix B).

The coefficients at the interaction terms provide evidence for a significant effect of bias

on the learning process. For the overconfident subjects, a 10-percentile increase in bias ex-

acerbates mislearning by −0.68, −0.74, and −0.76 in the 2nd, 3rd, and 4th guess, respectively.

Thus, we confirm Hypothesis 2.OC that more overconfident participants tend to form more

pessimistic beliefs and end up further away from the true state compared to less overconfi-

dent subjects. Moreover, we observe a similar effect in the group of underconfident subjects.

A 10-percentile increase in bias results in additional overestimation of the number by 0.65 in

the 2nd guess (underconfident agents’ bias takes negative values, hence the effect goes in the

22While the differences might appear small, they are close to the values predicted by the model (−1.59 in the 3rd

guess and −2.05 in the 4th guess).
23The negative sign indicates that overconfident subjects became more pessimistic about the state.
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TABLE 1.5. The effect of bias on learning in the multiple-feedback rounds.

Overconfident Underconfident
or Unbiased or Unbiased

(1) (2)

Dependent variable: the difference between a guess and the number in MF rounds.

Independent variables: dummy variables for each guess and their interactions.

2nd guess MF -1.509∗∗∗ (0.438) 1.198∗∗ (0.521)

3rd guess MF -1.758∗∗∗ (0.467) 0.225 (0.383)

4th guess MF -1.961∗∗∗ (0.524) 0.179 (0.419)

Bias -0.914 (1.113) -1.212 (1.461)

Bias × 2nd guess MF -6.848∗∗∗ (2.089) -6.526∗∗ (2.642)

Bias × 3rd guess MF -7.440∗∗∗ (2.001) -5.346∗∗∗ (1.783)

Bias × 4th guess MF -7.600∗∗∗ (2.227) -5.278∗∗∗ (1.914)

Const. 0.277 (0.350) 0.138 (0.372)

N 1104 1104

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

predicted direction). It confirms Hypothesis 2.UC, as more underconfident participants end

up further away from the true state after the first feedback.

The results also shed light on Hypothesis 3.UC&OC. While we admit that our setting is

more suitable to test the short-term dynamics of the model, we argue that the last guess is

informative about the long-term. In our setting, most participants are expected to reach the

stable belief within 4 trials.24 The average stable belief is 3.78 for underconfident and −8.42

for overconfident subjects – both values are very close to the average predicted 4th guess of

3.62 and −7.80, respectively. For this reason, we treat the 4th guess as close enough to the sta-

ble belief and test Hypothesis 3.UC&OC. The coefficient at the interaction with the 4th guess

in Table 1.5 informs us about the effect of bias on the end belief. Both for the underconfident

24It is due to the chosen parameters, as well as the discrete action space (if we did not require subjects’ guesses
to be integers, the convergence to the stable belief would take longer than 4 periods).
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and overconfident subjects, more biased individuals end up further away from the true state,

in line with the model predictions.

1.3.3. Learning about Ability. As we have already mentioned, there is a substantial gap

between subjects’ guesses and the decisions predicted by the model. Why is misguided learn-

ing less pronounced than the model predicts? While the model is based on the assumption

that agents do not change their beliefs about ability, we did not impose this assumption on

our subjects.25 As a result, we observe learning about ability over the course of the exper-

iment. In Figure 1.4, we present the distributions of participants’ bias before and after the

task (based on Confidence I and Confidence II).

FIGURE 1.4. Distribution of subjects’ bias before and after the task.
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The average bias of underconfident subjects decreased from 20.2 to 6 percentiles after

the learning exercise, and the average bias of the overconfident subject decreased from 29.4

to 16.5 percentiles. The changes in mean beliefs are statistically significant both for the over-

confident and the underconfident subjects. After the learning exercise, 18% of overconfident

and 30% of underconfident subjects became unbiased. Nevertheless, Confidence II reveals

25It was our intention from the beginning to leave participants with an opportunity to revise their beliefs about
their cognitive ability. We believe that imposing too many restrictions on subjects’ behavior would make the test
meaningless, as it would tell us little about how subjects would behave if not restricted. In our view, this design
provides a more powerful and interesting test of the theory. Our results show that even without requiring subjects
to hold on to their initial assessment, they follow the theoretical predictions as they choose to stick to their biased
beliefs about their cognitive ability.
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that a significant portion of the sample held incorrect beliefs even after the learning exercise,

and many of them were engaging in misguided learning till the very last round.

The data from Confidence I and II tells us little about the changes in subjects’ beliefs

about ability during the learning exercise. Fortunately, the experimental design enables us to

divulge the beliefs about one’s relative performance with few additional assumptions (see Ap-

pendix C.1). We assume that participants update their beliefs about ability at the beginning

of each round, and use their initial guesses to obtain a measure of those updated beliefs (we

use the 2nd guess, as in the 1st guess subjects were instructed to enter 0). The round-to-round

changes in subjects’ beliefs about ability are described in detail in Appendix C.2. Here, let us

only point out their implications for the model’s performance. We use beliefs revealed from

the 2nd guess to calculate the model’s predictions for the 3rd and the 4th guess. The results for

the underconfident and overconfident agents are presented in Figure 1.5.

The average predicted 3rd and 4th guess (the red line) is now much closer to the average

actual guess (the blue line). The better fit is reflected in the estimates of how well the model

fits the data. The model based on revealed beliefs explains 73.5% variation in the choice data

(the 3rd and the 4th guess), compared to 52.3% if we use its predictions based on elicited

beliefs (see Appendix C.3). We conclude that the difference between our initial theoretical

predictions and the actual guesses is due to participants learning their ability during the task.

If we control for changes in beliefs from round to round, the model closely tracts subjects’

behavior.

FIGURE 1.5. Model’s predictions based on revealed beliefs (MF rounds).
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(B) Underconfident subjects.
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1.4. Comparison with Ego-neutral Environment

We hypothesize that our results are driven in part by participants’ tendency to inter-

pret feedback in a self-serving manner. We designed an additional control condition to test

whether motivated reasoning is driving our results. In this condition, participants were learn-

ing about two parameters that were both ego-neutral. We used the same experimental design,

with the only difference being that subjects performed the main task based on the perfor-

mance parameter of another subject.26 We assume that the performance of another individ-

ual is irrelevant to one’s ego. Participants were informed that each of them will be randomly

matched to another subject who completed the same IQ test and revealed similar beliefs

through the same elicitation procedure. Before the main task, we elicited subjects’ beliefs

about the relative performance of the subject matched to them and distinguished overconfi-

dent, underconfident, and unbiased agents (with respect to their partner’s performance). We

again elicited beliefs about the performance of the matched partner after the task.

We collected data from 151 male participants, mostly students from the University of

Bonn. There is no significant difference between the two groups in relative performance nor

initial bias about own performance (see Table 1.6). In the control group, 73 subjects were

classified as overconfident about their partners’ performance, 73 as underconfident, and 9 as

unbiased. In what follows, we refer to a control subject as overconfident (underconfident) if

he overestimated (underestimated) his match’s performance.27

TABLE 1.6. Differences between participants in the two conditions.

Ego-neutral Ego-relevant Diff < 0 Diff ̸= 0 Diff > 0

Performance 0.579 0.552 p-value: 0.780 0.401 0.200
(0.023) (0.022)

Initial Bias 0.014 0.042 p-value: 0.180 0.360 0.820
(0.022) (0.021)

N 155 171

26The almost identical experimental design enables to control for possible confounds such as, for example, the
way subjects’ attention was directed during the experiment.
27One consequence of the random assignment of partners in the ego-neutral condition is that the average perfor-
mance of overconfident subjects in the ego-neutral condition (overconfidence defined with respect to the other’s
performance) is higher than that of the overconfident subjects in the ego-relevant condition (overconfidence de-
fined with respect to own performance). See Appendix D.2 for details. We address this problem by controlling for
the performance of the decision-maker and his initial bias.
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1.4.1. Learning about the Number. Figure 1.6 presents the average distance between

the overconfident agent’s guess and the estimated number in the two conditions (as a mea-

sure of distance we use the absolute difference between a guess and the number). The dis-

tance is larger in the ego-relevant condition, that is, for agents whose feedback was based

on their own relative performance. Table 1.7 presents the results of a corresponding regres-

sion analysis. The distance between the agent’s last guess and the number is larger by 1.14 in

the ego-relevant condition. The effect persists when we control for the relative performance

of the decision-maker (the second column in Table 1.7) or his initial bias and relative per-

formance (the third column in Table 1.7).28 Overconfident participants in the ego-relevant

condition end up more mistaken about the state of the world compared to similar subjects

in the ego-neutral condition. In the last two columns in Table 1.7, we test for the treatment

effect using the nearest neighbor matching estimator. In Specification 4, we match partici-

pants based on the relative performance of the decision-maker, and in Specification 5, based

on the initial bias and relative performance. Both specifications yield similar results.29

FIGURE 1.6. Distance between a guess and the number in the ego-relevant
and the ego-neutral condition.
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28Similar regressions for the 2nd and the 3rd guess are presented in Appendix D.3.
29As a final test, we add to specifications 1-3 a control for the model’s predictions (decisions implied by the
model). The coefficients at the “Ego-relevant” variable remain similar and highly significant. We report them
in Appendix D.3.
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TABLE 1.7. The effect of ego-relevance on learning of overconfident agents.

Dependent variable: the absolute difference
between the 4th guess and the number.

(1) (2) (3) (4) (5)

Ego-relevant 1.143∗∗ 1.698∗∗∗ 1.630∗∗∗ 1.570∗∗∗ 1.229∗∗∗
(0.539) (0 .522) (0.492) (0.382) (0.375)

Controls 1 No Yes Yes

Controls 2 No No Yes

Adjustment Type Regression Regression Regression Matching Matching

Observations 456 456 456 456 456

Note: The dependent variable is the absolute difference between the 4th guess and the number. The
sample includes only overconfident participants. “Ego-relevant” indicates assignment to the ego-
relevant condition (learning about own ability). Controls 1 include the relative performance of the
decision-maker. Controls 2 include the initial bias of the decision-maker. In the matching estimator,
observations are matched to the nearest neighbor based on the relative performance (Specification
4), and the initial bias and relative performance (Specification 5). In Specification 1-3, standard
errors clustered at the individual level. In Specification 4-5, consistent standard errors as in Abadie

and Imbens (2006). Their values in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

What makes participants in the ego-relevant condition more mistaken about the state of

the world? In the ego-relevant condition, overconfident agents might be reluctant to aban-

don their model of the world, as it would require them to admit to lower performance. Con-

sequently, they will be less willing to correct their guesses compared to overconfident agents

in the ego-neutral condition.30

Our hypothesis finds support in the data from underconfident agents. In the ego-relevant

condition, underconfident participants tend to overshoot significantly less compared to sim-

ilarly underconfident subjects in the ego-neutral condition. The effect is highly significant

even after controlling for the initial bias and relative performance (see Table 1.8). The sign of

the effect is opposite to that of the overconfident agents – the ego-relevance of the task makes

underconfident agents less misguided. However, the direction is consistent with motivated

reasoning: in the ego-relevant condition, underconfident agents are more willing to abandon

30Nonetheless, misguided learning is not entirely eliminated in the control condition, pointing towards the role
of biased beliefs as its main source (the analysis of the control data analogous to Section 1.3.2 could be found in
Appendix D.1). Our results suggest that misguided learning can emerge in ego-neutral settings, although it is not
as pronounced if agents are more willing to update their beliefs.
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TABLE 1.8. The effect of ego-relevance on learning of underconfident agents.

Dependent variable: the absolute difference
between the 2nd guess and the number.

(1) (2) (3) (4) (5)

Ego-relevant -0.849∗∗ -1.099∗∗∗ -0.976∗∗∗ -1.056∗∗∗ -0.816∗∗∗
(0.403) (0.393) (0.367) (0.314) (0.312)

Controls 1 No Yes Yes

Controls 2 No No Yes

Adjustment Type Regression Regression Regression Matching Matching

Observations 456 456 456 456 456

Note: The dependent variable is the absolute difference between the 2nd guess and the number. The
sample includes only underconfident participants. “Ego-relevant” indicates assignment to the ego-
relevant condition (learning about own ability). Controls 1 include the relative performance of the
decision-maker. Controls 2 include the initial bias of the decision-maker. In the matching estimator,
observations are matched to the nearest neighbor based on the relative performance (Specification
4), and the initial bias and relative performance (Specification 5). In Specification 1-3, standard
errors clustered at the individual level. In Specification 4-5, consistent standard errors as in Abadie

and Imbens (2006). Their values in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

their previously held beliefs, as it allows them to admit that they performed better than ex-

pected. This interpretation is also supported by the data on learning about ability presented

in the next section.

1.4.2. Learning about Own versus Other’s Ability. The data from the second belief elic-

itation (Confidence II) reveals that, in the ego-neutral condition, 33 participants became un-

biased about the ability of their match (compared to 38 participants in the ego-relevant con-

dition). While the fraction of subjects who became unbiased is almost the same in the two

conditions, the composition of types differs. In the ego-relevant condition, 30% of under-

confident and 18% of overconfident participants revealed unbiased beliefs about their ability

after the task. In the ego-neutral condition, these proportions are reversed: 18% of under-

confident and 27% of overconfident subjects were classified as unbiased after the task.

The results in Table 1.9 demonstrate that overconfident participants in the ego-relevant

condition are less likely to become unbiased compared to similarly overconfident partici-

pants in the ego-neutral control. At the same time, underconfident participants are more

likely to become unbiased when learning about their own ability. Importantly, the effect is
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TABLE 1.9. The effect of ego-relevance on becoming unbiased after the task.

Dependent variable: binary variable indicating
whether subject became unbiased after the task.

Overconfident Underconfident

(1) (2) (3) (1) (2) (3)

Ego-relevant -0.097 -0.168∗∗ -0.147∗ 0.126∗ 0.159∗∗ 0.165∗∗
(0.068) (0.070) (0.075) (0.069) (0.072) (0.075)

Controls 1 No Yes Yes No Yes Yes

Controls 2 No No Yes No No Yes

Observations 152 152 152 152 152 152

Note: The dependent variable is a binary variable indicating whether subject became unbi-
ased after the task, as revealed in Confidence II. “Ego-relevant” indicates assignment to the
ego-relevant condition. Controls 1 include the relative performance of the decision-maker.
Controls 2 include the initial bias of the decision-maker.

Standard errors clustered at the individual level. Their values in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

present if we control for the relative performance of the decision-maker (the second specifi-

cation) or his initial bias and relative performance (the third specification). The sign of the

effect is indicative of motivated reasoning: overconfident subjects are less inclined to learn

that they performed worse than expected, and underconfident subjects are more inclined to

learn that they did better.

1.4.3. Discussion: Learning about Multiple Parameters. Our results show that self-defeating

learning is more likely to arise and persist when one’s ego is at stake. Overconfident partic-

ipants, reluctant to revise their beliefs about ability downwards, are bound to become mis-

taken about the state of the world. On the other hand, underconfident agents are more willing

to correct their beliefs about their own ability, making them less susceptible for mislearning in

ego-relevant settings. The results also indicate that, when learning involves multiple param-

eters and some of them are ego-relevant, people will be steered to learn along the dimension

that brings them higher ego utility. In the case of overconfident agents, this means holding

onto their inflated beliefs, while for underconfident agents – revising them upwards. Still, as

we have seen, neither underconfident nor overconfident subjects go the full length in updat-

ing or holding on to their biased beliefs about ability. More research is needed to understand
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how people make the trade-off between ego utility and the expected benefit of learning the

state.

1.5. Conclusions

Successful decision-making often requires forming beliefs about various characteristics

of the environment. However, learning about multiple parameters is rarely independent: the

way an agent updates his beliefs about one aspect might influence his reasoning about other

parameters. In particular, if the agent overestimates his ability, he may repeatedly misinter-

pret the data and fail to take the optimal action time after time, falling into a vicious circle of

misguided learning. In this paper, we experimentally test subjects’ propensity to engage in

this kind of behavior. The results corroborate the theory formulated by Heidhues et al. (2018)

and demonstrate that misguided learning is a real-world phenomenon that is likely to afflict

biased agents. As long as people hold on to their overconfident beliefs, they will continue to

misread the data and form erroneous beliefs about their environment. The problem is ag-

gravated when agents hold overconfident beliefs about characteristics they care about: their

reluctance to revise their beliefs downwards exacerbates the tendency to mislearn. Allowing

agents to experiment and acquire new information is, in these cases, counterproductive.
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APPENDIX A

The Use of Tables by Biased Agents

In the following section we show how a myopic agent who only updates his beliefs about

the state of the world uses the tables in the multiple- and single-feedback rounds.

In the first example, we assume that the agent’s relative performance parameter is A =
47.5% and he is guessing the numberΦ=−1 in a multiple-feedback round. The agent is over-

confident and believes that his performance lies in the 55−60% interval. Figure A.1 illustrates

this case: we depicted the agent’s actual performance and the number in red, and the agent’s

beliefs and actions in blue. The agent enters e1 = 0 as his first guess. Afterwards, the computer

displays the feedback of 29.71, which consists of the payoffΠ1 = 29.68 and the added random

component ϵ1 = 0.03. The agent believes that his relative performance lies in the 55− 60%

interval, therefore he looks at the row outlined in blue, and searches for a value that is the

closest to his feedback. There is only one such value (29.60), and the agent concludes that

the number he is guessing is equal to φ2 =−3. The agent updates his beliefs about the num-

ber and enters e2 = −3 as his second guess. The computer displays a new feedback: 29.45.

The agent browses the tables looking for the one with the number −3 in the title (see Figure

A.2). Once again he looks at the row with the relative performance between 55% and 60% and

compares his feedback to the values in that row. The overconfident agent concludes that the

number must be equal to φ3 =−4 and he chooses e3 =−4 as his third guess. In the following

step, he becomes even more mistaken, concluding that the number is φ4 =−5 and choosing

e4 =−5 as his last guess (presented in Figure A.3). The overconfident agent’s beliefs change in

the following way: φ1 = 0, φ2 =−3, φ3 =−4, φ4 =−5. As predicted by the model, the learning

process is self-defeating: the additional feedback drives the agent’s beliefs further away from

the true state.

In a single-feedback round, the agent’s reasoning after the first guess is the same as in the

multiple-feedback round. He forms a beliefφ2 =−3 and enters the optimal action e2 =−3. In

contrast to the multiple-feedback round, any feedback the agent receives afterward is based

on his first guess, hence he should use the table with 0 in the title. The agent receives the
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feedback 29.59 (the noise component is ϵ2 = −0.09). The closest value in the table is again

29.68, so he should enter e3 = −3. The last feedback differs only with respect to the noise

term, inducing a belief φ4 = −3 and prompting the action e4 = −3. In the single-feedback

rounds, the agent’s beliefs change as follows: φ1 = 0, φ2 =−3, φ3 =−3, φ4 =−3. Severing the

link between the actions and output precludes self-defeating learning.

The next example considers an underconfident agent with the relative performance A =
62.5% who is guessing the number Φ = 4 in a multiple-feedback round. The agent believes

that his relative performance is 10% lower and lies in the 50−55% interval. When he sees the

feedback of 35.85 (the actual payoff 35.96 with the added noise term ϵ1 = −0.11), he infers

that the number is equal to φ2 = 9. We depict the first step in Figure A.4. The agent’s actual

performance parameter and the number are in red, and his beliefs and choices are in blue.

The underconfident agent enters e2 = 9 as his second guess and obtains the feedback 35.57

that includes the noise term ϵ2 = −0.01. He goes to the table with the number 9 in the title

(presented in Figure A.5). The value closest to his feedback, i.e. Π = 35.66, points to the

number φ3 = 6. The agent updates his beliefs, enters the optimal action e3 = 6 and receives

the feedback of 36.78 (ϵ3 = 0.05). In the last step, he turns to table 6 (presented in Figure A.6),

from which he infers that φ4 = 6 is the number he is looking for, thus he enters e4 = 6. The

underconfident agent’s beliefs follow the path: φ1 = 0, φ2 = 9, φ3 = 6, φ4 = 6. As predicted

by the model, the underconfident agent first overshoots and then corrects his actions. In a

single-feedback round, the agent would not update his beliefs after the second guess, thus

entering e3 = e4 = 9 as his third and fourth guess.

The last example illustrates the behavior of an unbiased agent, who has the relative per-

formance of A = 72.5% and is guessing the number Φ = −4 in a multiple-feedback round.

After entering e1 = 0 the agent receives the feedback of 31.82 (the actual payoff is 31.85 and

the added noise term ϵ1 = −0.03), which points to the correct number φ2 = −4. The agent

enters e2 =−4 and turns to the table with −4 in the title (presented in Figure A.7). The feed-

back displayed on his screen is the payoff of 33.39 with a perturbation, which points to the

number φ3 = −4. Regardless of the noise realization, the feedback will not be closer to any

other value but 33.39. The agent chooses the optimal action e4 =−4 as his fourth guess. The

learning process of the unbiased individual is immediate and his belief is stable afterward.
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FIGURE A.1. The use of tables by an overconfident agent: the 2nd guess.

FIGURE A.2. The use of tables by an overconfident agent: the 3rd guess.



FIGURE A.3. The use of tables by an overconfident agent: the 4th guess.

FIGURE A.4. The use of tables by an underconfident agent: the 2nd guess.



FIGURE A.5. The use of tables by an underconfident agent: the 3rd guess.

FIGURE A.6. The use of tables by an underconfident agent: the 4th guess.



FIGURE A.7. The use of tables by an unbiased agent: the 2nd guess.

FIGURE A.8. The use of tables by an unbiased agent: the 3rd and the 4th guess.



APPENDIX B

Misguided Learning: Additional Results

In this section, we present results complementing Section 1.3.2 of the paper. We describe

decisions in the single-feedback rounds for the three types of agents in Section B.1. In Section

B.2, we gather the estimates based on the pooled sample (described in the last paragraph in

Section 1.3.2.3). In Section B.3, we present tables complementing Table 1.5 from the paper.

Lastly, we present evidence on the model’s performance.

B.1. The single-feedback rounds

We present graphically the decisions of overconfident, underconfident, and unbiased

agents in the single-feedback rounds. Figure B.1 corresponds to Figures 1.3 and 1.2 in the

paper. Recall that, in the single-feedback rounds, feedback was independent of subjects’

guesses (participants were aware that the number displayed after the 2nd and the 3rd guess

will be based on their 1st guess). Thus, there is no reason for subjects to change their deci-

sions – the predicted 2nd, 3rd, and 4th guess are of the same value.

In Table B.1, we present the results of comparing pairs of coefficients from regressions in

Tables 1.3 and 1.4 in the paper. The tests are described in Sections 1.3.2.1 and 1.3.2.2 in the

paper. Here, we only gather them in one table for completeness.
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FIGURE B.1. Learning process in the single-feedback rounds.

-8

-7

-6

-5

-4

-3

-2

-1

0

1

1 2 3 4

Learning Period

Guess Predicted Guess
Number 95% conf. interval

(A) Overconfident agents in SF Rounds.
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TABLE B.1. The regression coefficients in the multiple- and single-feedback
rounds in the ego-relevant condition.

(a) Overconfident Agents

H0: β2
MF ≤β3

MF H0: β3
MF ≤β4

MF H0: β2
MF ≤β4

MF

p-value 0.019∗∗ 0.159 0.003∗∗∗

H0: β2
SF ≤β3

SF H0: β3
SF ≤β4

SF H0: β2
SF ≤β4

SF

p-value 0.953 0.431 0.958

(b) Unbiased Agents

H0: β2
MF =β3

MF H0: β3
MF =β4

MF H0: β2
MF =β4

MF

p-value 0.056∗ 0.885 0.102

H0: β2
SF =β3

SF H0: β3
SF =β4

SF H0: β2
SF =β4

SF

p-value 0.251 0.307 0.226

(c) Underconfident Agents

H0: β2
MF ≤β3

MF H0: β3
MF =β4

MF

p-value 0.000∗∗∗ 0.681

H0: β2
SF ≤β3

SF H0: β3
SF =β4

SF

p-value 0.008∗∗∗ 0.394

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.2. The effect of providing informative feedback

In this section, we present the analysis based on pooled data from the multiple- and

single-feedback rounds. We look at the effect of receiving informative feedback (the “MF

Round” variable) on learning. In the specification presented in Table B.2, the dependent vari-

able is the difference between a subject’s guess and the number. The results for overconfident

agents are described in the last paragraph in Section 1.3.2.3. For underconfident agents, re-

ceiving informative feedback reduces the difference between a guess and the number by 1.29

in the 3rd guess (one-tailed test: p-value = 0.000), and by 1.47 in the 4th guess (one-tailed

test: p-value = 0.000). The direction of the effect is in line with the model predictions.1 As

expected, informative feedback does not affect unbiased subjects. In another specification,

presented in Table B.3, we use the absolute difference between a guess and the number as

a dependent variable.2 Because of the absolute value, the effect in the second specification

is positive for overconfident agents (informative feedback enlarges the absolute difference).

Taking this into account, one can conclude that the two specifications yield consistent results.

In the specification presented in Table B.4, the dependent variable is the difference be-

tween the 4th and the 2nd guess. We look at participants’ decisions after the 2nd guess, be-

cause only at this point the two conditions diverge (after the 1st guess, participants received

informative feedback both in the multiple- and single-feedback rounds). We interpret the

difference between the 4th and the 2nd guess as a change in beliefs about the number in the

final guesses. As it is evident in Table B.4, being in a multiple-feedback round makes overcon-

fident participants more pessimistic about the number by around −1.19, which constitutes

67% of the effect predicted by the model. In the case of underconfident agents, the coefficient

captures the degree of correction after the second guess. It is equal to −1.23 (68% of the effect

predicted by the model) and significant at the 1%-level. Taken together, the results support

our claim that the effect is driven by the model’s mechanism and not by external factors.

1The model predicts that in the 3rd guess underconfident agents correct their decisions from the 2nd guess. In
the single-feedback rounds, however, this is no longer the case, as agents do not receive any meaningful feedback
after the 2nd guess. Consequently, the effect of being in a multiple-feedback round is negative – the sign indicates
the correction after the second feedback.
2Although this specification might be viewed as more appropriate, we decided to include the other one in the
main text because it can be directly linked to the graphs and the sign of the effect is indicative of agents’ pessimism
(optimism) about the number.
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TABLE B.2. The effect of feedback on difference between guess and number.

Overconfident Unbiased Agents Underconfident

(1) (2) (3)

Dependent variable: the difference between the number and the 4th guess.

MF Round -1.810∗∗∗ -0.128 -1.468∗∗∗
(0.391) (0.422) (0.268)

Const. -1.264∗∗ 0.538 2.229∗∗∗
(0.545) (0.408) (0.526)

Dependent variable: the difference between the number and the 3rd guess.

MF Round -1.570∗∗∗ 0.256 -1.291∗∗∗
(0.363) (0.215) (0.287)

Const. -1.230∗∗ 0.205 1.898∗∗∗
(0.531) (0.154) (0.500)

Dependent variable: the difference between the number and the 2nd guess.

MF Round -0.616∗ 0.051 -0.236
(0.334) (0.214) (0.259)

Const. -1.207∗∗ -0.179 2.625∗∗∗
(0.550) (0.185) (0.558)

N 474 78 474

“MF Round” is a dummy variable taking value 1 if in a multiple-feedback round.

Controlling for subjects’ relative performance does not change the results.

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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TABLE B.3. The effect of feedback on absolute difference between guess and
number.

Overconfident Unbiased Agents Underconfident

(1) (2) (3)

Dependent variable: the absolute difference between the number and the 4th guess.

MF Round 1.211∗∗∗ -0.333 -1.308∗∗∗
(0.303) (0.423) (0.235)

Const. 1.895∗∗∗ 0.949 2.924∗∗∗
(0.433) (0.512) (0.438)

Dependent variable: the absolute difference between the number and the 3rd guess.

MF Round 1.122∗∗∗ 0.0513 -1.350∗∗∗
(0.293) (0.268) (0.230)

Const. 1.692∗∗∗ 0.615∗∗ 2.737∗∗∗
(0.443) (0.197) (0.408)

Dependent variable: the absolute difference between the number and the 2nd guess.

MF Round 0.236 -0.205 -0.0928
(0.221) (0.206) (0.212)

Const. 1.494∗∗∗ 0.333 3.086∗∗∗
(0.361) (0.197) (0.453)

N 474 78 474

“MF Round” is a dummy variable taking value 1 if in a multiple-feedback round.

Controlling for subjects’ relative performance does not change the results.

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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TABLE B.4. The effect of informative feedback on learning.

Dependent variable: the difference
between the 4th and the 2nd guess.

Overconfident Unbiased Underconfident

(1) (2) (3)

MF Round -1.194∗∗∗ -0.179 -1.232∗∗∗
(0.337) (0.499) (0.267)

Const. 0.359∗ 0.718 -0.295∗
(0.205) (0.559) (0.153)

Observations 474 78 474

Note: The dependent variable is the difference between the 4th and the 2nd guess.
The independent variable “MF Round” is a dummy variable taking value 1 if the
round is a multiple-feedback round. Controlling for the number being guessed
and subjects’ relative performance does not change the results.

Standard errors clustered at the individual level. Their values in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.3. The effect of initial bias

In Table B.5, we present the estimation results from Table 1.5 in the paper based on a

sample of underconfident and overconfident agents excluding unbiased participants. While

the coefficients are quantitatively different from the one in Table 1.5 in the paper, the direc-

tion of the effect remains the same. In Table B.6, we gather corresponding results based on

the data from the single-feedback rounds.

TABLE B.5. The effect of bias in MF rounds.

Overconfident Underconfident
(1) (2)

Dependent variable: the difference between a guess and the number in MF rounds.

Independent variables: dummy variables for each guess and their interactions.

2nd guess MF -2.162∗∗∗ (0.608) 2.257∗∗∗ (0.717)

3rd guess MF -2.949∗∗∗ (0.645) 0.302 (0.557)

4th guess MF -3.248∗∗∗ (0.713) 0.259 (0.597)

Bias -0.782 (1.318) -1.720 (1.798)

Bias × 2nd guess MF -5.191∗∗ (2.495) -2.654 (3.139)

Bias × 3rd guess MF -4.421∗ (2.344) -5.064∗∗ (2.297)

Bias × 4th guess MF -4.337∗ (2.608) -4.985∗∗ (2.448)

Const. 0.225 (0.454) 0.001 (0.498)

N 948 948

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE B.6. The effect of bias in SF rounds.

Overconfident Underconfident
or Unbiased or Unbiased

(1) (2)

Dependent variable: the difference between a guess and the number in SF rounds.

Independent variables: dummy variables for each guess and their interactions.

2nd guess SF -0.980∗ (0.516) 1.761∗∗∗ (0.562)

3rd guess SF -0.960∗ (0.502) 1.569∗∗∗ (0.533)

4th guess SF -0.836 (0.515) 2.022∗∗∗ (0.544)

Bias -0.305 (1.287) 0.215 (1.739)

Bias × 2nd guess SF -7.351∗∗∗ (2.169) -7.418∗∗ (2.831)

Bias × 3rd guess SF -5.876∗∗∗ (2.216) -6.790∗∗∗ (2.525)

Bias × 4th guess SF -6.295∗∗∗ (2.050) -5.035∗ (2.623)

Const. 0.243 (0.420) -0.137 (0.384)

N 1104 1104

Overconfident Underconfident
(1) (2)

Dependent variable: the difference between a guess and the number in SF rounds.

Independent variables: dummy variables for each guess and their interactions.

2nd guess SF -1.821∗∗∗ (0.661) 2.658∗∗∗ (0.732)

3rd guess SF -2.033∗∗∗ (0.613) 2.104∗∗∗ (0.708)

4th guess SF -2.044∗∗∗ (0.593) 2.632∗∗∗ (0.707)

Bias -1.531 (1.426) 1.079 (1.850)

Bias × 2nd guess SF -5.220∗∗ (2.544) -4.138 (3.274)

Bias × 3rd guess SF -3.155 (2.549) -4.834 (2.999)

Bias × 4th guess SF -3.234 (2.299) -2.805 (3.054)

Const. 0.727 (0.497) 0.100 (0.428)

N 948 948

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01



B.4. Model’s performance

In this section we address the question of the model’s explanatory power. We test how

well the model explains our data and report the results in Tables B.7, B.8, and B.9. Firstly, we

pool the data from the multiple- and single-feedback rounds and look separately at early and

late rounds. We refer to the first three rounds as “early rounds”, and to the last three rounds as

“late rounds”. Secondly, we distinguish overconfident, underconfident, and unbiased agents;

we look at the model’s performance in the groups.

The model seems to better explain the data in early rounds (especially in the first round)

than in later rounds. The results are in line with the observation that, during the experiment,

subjects were updating their beliefs about their relative ability. At early stages of the exper-

iment, subjects’ beliefs were closer to those assumed in the model. The estimation results

gathered in Table B.9 demonstrate that choices of the unbiased agents are well-explained by

the model. With the R2 of 0.85 the model explains much variation in the data. The fit is less

adequate in case of underconfident agents and much worse for overconfident subjects.

TABLE B.7. Model’s performance in early and late rounds.

All Rounds Early Rounds Late Rounds 1st Round

(1) (2) (3) (4)

Model 0.563∗∗∗ 0.633∗∗∗ 0.493∗∗∗ 0.688∗∗∗
(0.030) (0.031) (0.036) (0.035)

Const. -0.119 -0.102 -0.132 -0.0213
(0.182) (0.185) (0.217) (0.213)

R2 0.523 0.605 0.441 0.696

N 3078 1539 1539 513

The dependent variable denotes subjects’ actual guesses. The independent variable

“Model” denotes guesses predicted by the model.

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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TABLE B.8. Model’s performance in multiple- and single-feedback rounds.

All Rounds Early Rounds Late Rounds

(SF) (MF) (SF) (MF) (SF) (MF)

Model 0.559∗∗∗ 0.563∗∗∗ 0.609∗∗∗ 0.650∗∗∗ 0.502∗∗∗ 0.482∗∗∗
(0.034) (0.032) (0.040) (0.033) (0.043) (0.042)

Const. 0.0731 -0.310 0.150 -0.340 -0.0499 -0.213
(0.212) (0.181) (0.249) (0.193) (0.268) (0.239)

R2 0.516 0.522 0.567 0.634 0.458 0.422

N 1539 1539 813 726 726 813

The dependent variable denotes subjects’ actual guesses. The independent variable ...

“Model” denotes guesses predicted by the model.

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

TABLE B.9. Model’s performance for different types of agents.

Overconfident Unbiased Agents Underconfident

Model 0.575∗∗∗ 0.969∗∗∗ 0.689∗∗∗
(0.068) (0.028) (0.035)

Const. 0.247 0.220 -1.151∗∗∗
(0.312) (0.132) (0.220)

R2 0.182 0.850 0.463

N 1422 234 1422

The dependent variable denotes subjects’ actual guesses. The independent variable

“Model” denotes guesses predicted by the model.

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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APPENDIX C

Revealed Beliefs

C.1. Deriving beliefs from guesses

The data from Confidence I and II tells us little about the changes in subjects’ beliefs

about their performance during the learning exercise. To investigate this issue, we attempt to

retrieve agents’ beliefs from their guesses. The experimental design enables us to divulge the

beliefs about one’s relative performance with few additional assumptions. The loss-function

specification implies that the myopically optimal action is to enter one’s beliefs about the

number in every guess. There is only one ability level that “rationalizes” the agent’s optimal

guess, given the feedback he obtained. Thus, to derive agents’ beliefs from their actions, we

need to assume that the participants chose optimally in every period and without errors.

Assumption R1. (Optimal Actions)

The agent chooses his action optimally and without mistakes in every period.

In every round, we can derive beliefs about the relative performance parameter from the 2nd,

the 3rd and the 4th guess. In principle, we can use all 18 revealed beliefs to examine beliefs

formation during the task. However, we decided to use only beliefs revealed from the second

guess in each round to obtain a less noisy measure (agents might make more mistakes or start

experimenting in later trials).

Assumption R2. (Updating at the beginning of the round)

The agents updates beliefs about his performance right before the second guess each round and

keeps them unchanged till the beginning of the next round. In other words, the second guess in

each round reveals the agent’s beliefs in that round.
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C.2. Beliefs revealed in rounds 1 to 6

It is instructive to juxtapose the revealed beliefs with the beliefs elicited before and af-

ter the learning exercise. In Figure C.1, we present the mean relative performance, beliefs

elicited in Confidence I and Confidence II, and beliefs retrieved from the 2nd guess in each

round. The beliefs derived from agents’ guesses seem to be consistent with the beliefs elicited

before and after the learning exercise.1 From the first to the last round, we observe a grad-

ual change in beliefs in the direction of the true performance level for the overconfident and

underconfident agents. The cumulative effect of updating over rounds, measured as the dif-

ference between beliefs revealed in the first and last round, is significant for the overconfident

and underconfident, but not for the unbiased agents.

To describe the revealed beliefs, complementing the data discussed so far, we present the

distributions of beliefs in terms of subjects’ bias. In Figure C.2, we present the distribution

of bias based on the beliefs elicited in Confidence I and II in panels (a) and (h), and the bias

based on the beliefs revealed in rounds 1 to 6 in panels (b) to (g). There is a notable hetero-

geneity among participants with respect to the magnitude of bias. The distribution changes

visibly from round to round, with more participants becoming unbiased towards the end of

the experiment. Neither the distributions presented in panels (a) and (b), nor the distribu-

tions shown in (g) and (h), are alike.2 It might be due to the differences in the two elicitation

methods or the feedback provided to the subjects (see footnote 2). In particular, the feedback

provided after the 1st guess is likely to have a large effect on beliefs revealed in the first round.

1When comparing the elicited and revealed beliefs one should keep in mind several points. Firstly, between
Confidence I and the 2nd guess in Round 1, as well as the 2nd guess in Round 6 and Confidence II, agents received
feedback that was likely to change their beliefs. Secondly, the two elicitation methods are very different, and
participants may not be invariant to the two procedures.
2Looking at the last two panels, one can notice that over 35% of all participants entered their choices in Round 6 as
if they were unbiased, but only 25% indicated their actual performance as a switching probability in Confidence
II. We suspect that the difference is due to dissimilar elicitation methods or agents’ (unwarranted) attempt to
hedge, rather than participants “unlearning” their abilities at the end of the last round.
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FIGURE C.1. The average performance and beliefs.
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FIGURE C.2. Distribution of participants’ bias.
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(A) Bias elicited in Confidence I.
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(B) Bias revealed in Round 1.
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(C) Bias revealed in Round 2.
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(D) Bias revealed in Round 3.
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(E) Bias revealed in Round 4.
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(F) Bias revealed in Round 5.
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(G) Bias revealed in Round 6.
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TABLE C.1. The number of subjects of different type classified as unbiased.

Conf. I R1 R2 R3 R4 R5 R6 Conf. II

Overconfident∗ 0 9 7 9 10 14 17 14

Unbiased 13 12 12 12 12 12 12 4

Underconfident 0 3 16 20 27 29 32 24

All subjects 13 24 35 41 49 55 61 42

∗ Classification based on Confidence I.

Table C.1 presents the number of participants becoming unbiased during the course of

the experiment based on beliefs elicited (Conf. I and Conf. II), and revealed (R1 to R6). The

agents classified as underconfident in Confidence I are more likely to become unbiased dur-

ing the experiment than the overconfident agents. 32 participants out of 79 classified as un-

derconfident entered their guesses in the sixth round as if they were unbiased, but only 17

out of 79 overconfident agents did so. Almost all agents classified as unbiased in Confidence

I entered their choices as if they were unbiased, but only one third of them indicated the

switching point equal to their relative performance in Confidence II. We can only speculate

whether the agents were driven by an impulse to hedge, or encountering no difficulties dur-

ing the main task served as some kind of a signal.

C.3. Model predictions based on revealed beliefs

So far, we have tested the model’s predictions assuming that there is no change in agents’

beliefs during the experiment. We relax this assumption here, allowing agents to update their

beliefs at the beginning of each round. For each agent, we calculate the predicted actions

based on his revealed beliefs.

In Figure C.3, we plot the average actual guess and the average guess predicted by the

model, separately for the overconfident, underconfident and unbiased agents in the multiple-

and single-feedback rounds. Compared to the model predictions based on elicited beliefs,

the average predicted guesses (in red) are much closer to the actual choices (in blue). The

better fit is reflected in the regression estimates in Table C.2. The coefficients of the Model

variable are higher than the respective coefficients in Tables B.7 and B.8 in the previous sec-

tion, and now there is little difference between the early and late rounds. Overall, the model

explains 73.5% variation in the data. Moreover, it does a much better job at explaining the
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choices of overconfident and underconfident agents, in comparison to the analysis based on

elicited beliefs.

Secondly, we re-examine the impact of agent’s bias on learning. To this end, we look at

the distance between the agent’s guess and the number. We classify participants as over-

confident, underconfident or unbiased on the basis of their revealed beliefs.3 In Table C.2,

we gathered the estimates for subjects’ guesses in the multiple-feedback rounds. Comparing

with the results based on elicited beliefs (see Table 1.5 in the paper), the effect of subjects’

bias is much stronger. For overconfident agents, subjects’ guesses are no longer significant

unless interacted with participant’s bias. It should not come as a surprise, since the main

mechanism of the model operates through the agent’s bias. Using a more accurate measure

of beliefs leads to a higher and more precise estimates of the effect of subjects’ bias.

The results presented in this section lend further support to the claim that the differ-

ences between theoretical predictions based on elicited beliefs and the actual guesses are

due to participants learning about their ability during the task. If we use an alternative mea-

sure of beliefs, allowing for updating from round to round, the model closely tracts subjects’

behavior.

3It is possible for an agent to change his type at the beginning of a round. For this reason, the groups of overcon-
fident and underconfident agents are no longer equinumerous.
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FIGURE C.3. The estimated numbers, the participants’ actual and predicted
guesses.
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(A) Overconfident in MF rounds.
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(B) Overconfident in SF rounds.
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(C) Unbiased in MF rounds.
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(D) Unbiased in SF rounds.
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(E) Underconfident in MF rounds.
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(F) Underconfident in SF rounds.
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TABLE C.2. How well the model predicts the 3rd and 4th guess.

All Rounds Early Rounds Late Rounds

Model 0.831∗∗∗ 0.826∗∗∗ 0.838∗∗∗
(0.025) (0.030) (0.030)

Const. 0.242∗∗ 0.238∗ 0.247∗
(0.091) (0.119) (0.096)

R2 0.735 0.742 0.728

N 2052 1026 1026

All Rounds Early Rounds Late Rounds

SF MF SF MF SF MF

Model 0.834∗∗∗ 0.832∗∗∗ 0.818∗∗∗ 0.835∗∗∗ 0.854∗∗∗ 0.827∗∗∗
(0.027) (0.033) (0.040) (0.040) (0.030) (0.045)

Const. 0.181 0.305∗∗ 0.260 0.238 0.104 0.362∗∗
(0.126) (0.110) (0.189) (0.188) (0.151) (0.117)

R2 0.758 0.697 0.751 0.706 0.767 0.684

N 1026 1026 542 484 484 542

Overconfident Unbiased Agents Underconfident

Model 0.753∗∗∗ 0.890∗∗∗ 0.860∗∗∗
(0.046) (0.056) (0.037)

Const. -0.261 0.554 0.282
(0.179) (0.286) (0.149)

R2 0.534 0.743 0.744

N 948 156 948

Classification of confidence types was based on elicited beliefs.

The dependent variable denotes subjects’ actual guesses (the 3rd and 4th guess).

The independent variable “Model” denotes guesses predicted by the model.

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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TABLE C.3. The effect of revealed bias on learning in MF rounds.

Classification of types based on revealed beliefs:

Overconfident Underconfident
or Unbiased or Unbiased

(1) (2)

Dependent variable: the difference between a guess and the number in MF rounds.

Independent variables: dummy variables for each guess and their interactions.

2nd guess MF -0.060 (0.260) 1.230∗∗∗ (0.338)

3rd guess MF -0.248 (0.327) 0.646∗∗ (0.300)

4th guess MF -0.487∗ (0.288) 0.455 (0.300)

Bias -2.241∗ (1.150) -15.419∗∗∗ (1.897)

Bias × 2nd guess MF -20.358∗∗∗ (0.976) -16.713∗∗∗ (3.449)

Bias × 3rd guess MF -18.206∗∗∗ (2.480) -3.182 (2.828)

Bias × 4th guess MF -19.542∗∗∗ (1.858) -6.434∗∗ (2.448)

Const. -0.038 (0.263) -0.595∗∗ (0.285)

N 1348 1220

“Bias” is based on beliefs revealed at the beginning of each round. It takes values between

−1 and 1; positive values for overconfident and negative values for underconfident agents.

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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APPENDIX D

Ego-neutral Condition

In this section, we present the results from the ego-neutral control condition. First of all,

we analyze the data in the same way as our main dataset: we re-do the analysis described

in Section 1.3.2 in the paper using the data from the ego-neutral condition. Secondly, we

combine the two datasets and analyze them jointly, complementing the results presented in

Section 1.4 in the paper.

D.1. Misguided learning in the ego-neutral condition

In Figures D.1 and D.1, we present the learning outcomes of overconfident and under-

confident participants in the ego-neutral condition. Tables D.1 and D.2 contain the results

of the corresponding regressions, and in Table D.3 we gather the results of comparing pairs

of coefficients. Overall, one can notice learning trajectories similar to those of overconfident

and underconfident participants in the ego-relevant condition. A slight improvement could

be spotted in the last guess of overconfident subjects in the multiple-feedback rounds. Those

subjects seem to correct their choices in the direction of the true state. However, the cor-

rection is not significant at any acceptable level. Misguided learning is not eliminated in the

ego-neutral condition, pointing towards the role of biased beliefs as its main source.
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FIGURE D.1. The learning process in the ego-neutral control (MF rounds).
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(A) Overconfident participants in
multiple-feedback rounds.
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(B) Underconfident participants
in multiple-feedback rounds.

TABLE D.1. The learning process in the ego-neutral control (MF rounds).

Overconfident Unbiased Agents Underconfident

(1) (2) (3)

Dependent variable: difference between a guess and the number in the SF rounds.

Independent variables: dummy variables for each guess in the SF rounds.

2nd guess MF -3.311∗∗∗ 0.407 4.388∗∗∗
(0.337) (0.510) (0.376)

3rd guess MF -3.945∗∗∗ 0.296 2.548∗∗∗
(0.404) (0.629) (0.290)

4th guess MF -3.799∗∗∗ -0.074 2.530∗∗∗
(0.429) (0.885) (0.300)

Const. 0.406 -0.148 -0.210
(0.756) (0.749) (0.246)

N 876 108 876

Note: The coefficients at the 2nd, 3rd, and 4th guess SF remain unchanged if we control

for subjects’ relative performance (their actual position in the IQ test score distribution).

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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FIGURE D.2. The learning process in the ego-neutral control (SF rounds).
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(A) Overconfident subjects in
single-feedback rounds.
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(B) Underconfident subjects in
single-feedback rounds.

TABLE D.2. The learning process in the ego-neutral control (SF rounds).

Overconfident Unbiased Agents Underconfident

(1) (2) (3)

Dependent variable: difference between a guess and the number in MF rounds.

Independent variables: dummy variables for each guess in the MF rounds.

2nd guess SF -2.228∗∗∗ 1.185∗∗∗ 3.621∗∗∗
(0.341) (0.324) (0.352)

3rd guess SF -2.219∗∗∗ 1.000∗∗∗ 3.447∗∗∗
(0.353) (0.225) (0.358)

4th guess SF -2.045∗∗∗ 1.370∗∗∗ 3.265∗∗∗
(0.387) (0.371) (0.343)

Const. -0.507∗∗ -1.185∗∗ 0.337
(0.222) (0.494) (0.250)

N 876 108 876

Note: The coefficients at the 2nd, 3rd, and 4th guess MF remain unchanged if we control

for subjects’ relative performance (their actual position in the IQ test score distribution).

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE D.3. Comparison of the regression coefficients in the multiple- and
single-feedback rounds in the ego-neutral condition.

(a) Overconfident Agents

H0: β2
MF ≤β3

MF H0: β3
MF ≤β4

MF H0: β2
MF ≤β4

MF

p-value 0.002∗∗∗ 0.725 0.027∗∗

H0: β2
SF ≤β3

SF H0: β3
SF ≤β4

SF H0: β2
SF ≤β4

SF

p-value 0.524 0.890 0.879

(b) Unbiased Agents

H0: β2
MF =β3

MF H0: β3
MF =β4

MF H0: β2
MF =β4

MF

p-value 0.846 0.399 0.617

H0: β2
SF =β3

SF H0: β3
SF =β4

SF H0: β2
SF =β4

SF

p-value 0.282 0.174 0.184

(c) Underconfident Agents

H0: β2
MF ≤β3

MF H0: β3
MF =β4

MF

p-value 0.000∗∗∗ 0.897

H0: β2
SF ≤β3

SF H0: β3
SF =β4

SF

p-value 0.070∗ 0.009∗∗∗

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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D.2. Differences between subjects in the two conditions

As we have already mentioned in the paper, there is little difference between the treat-

ment and the control group (see Table 1.6 in the paper) in the average relative performance

or initial bias about own performance. If we look separately at the group of overconfident

and underconfident participants (defined with respect to own performance) in the two con-

ditions, there is a small difference in the performance of underconfident agents that is signif-

icant at the 10% level. Also, there are small differences in the initial bias within each group.

We suspect that these differences are a consequence of having a relatively small sample. The

exact values and tests in the two groups are gathered in Table D.4.

However, there are significant differences between overconfident subjects (with respect

to own performance) in the ego-relevant condition and overconfident subjects (with respect

to the other’s performance) in the ego-neutral condition. One consequence of the random as-

signment of partners in the ego-neutral control is that the negative correlation between the

decision-maker’s performance and his bias is absent in this condition. The high (low) per-

forming participants in the ego-neutral condition are not necessarily underconfident (over-

confident) about the other’s performance. As a result, the average performance of overconfi-

dent subjects in the ego-neutral condition is higher than that of the overconfident subjects in

the ego-relevant condition, and the average performance of underconfident subjects in the

ego-neutral condition is lower than that of the underconfident subjects in the ego-relevant

condition. The exact values and tests for overconfident and underconfident agents could be

found in TableD.5. We address this concern in the analysis by controlling for the performance

of the decision-maker and his initial bias.
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TABLE D.4. Differences between biased participants in the two conditions.

Underconfident p-value

Ego-neutral Ego-relevant H0: Diff < 0 Diff ̸= 0 Diff > 0

Performance 0.817 0.775 0.935 0.130 0.065
(0.021) (0.018)

Initial Bias -0.233 -0.202 0.088 0.177 0.912
(0.019) (0.014)

N 69 79

Overconfident p-value

Ego-neutral Ego-relevant H0: Diff < 0 Diff ̸= 0 Diff > 0

Performance 0.349 0.319 0.825 0.349 0.175
(0.023) (0.022)

Initial Bias 0.256 0.293 0.090 0.181 0.910
(0.019) (0.020)

N 71 79

TABLE D.5. Differences between biased participants in the two conditions.

Underconfident p-value

Ego-neutral Ego-relevant H0: Diff < 0 Diff ̸= 0 Diff > 0

Performance 0.634 0.775 0.000 0.000 1.000
(0.032) (0.018)

Initial Bias -0.218 -0.202 0.212 0.424 0.788
(0.014) (0.014)

N 73 79

Overconfident p-value

Ego-neutral Ego-relevant H0: Diff < 0 Diff ̸= 0 Diff > 0

Performance 0.532 0.319 1.000 0.000 0.000
(0.035) (0.022)

Initial Bias 0.247 0.293 0.043 0.086 0.957
(0.018) (0.020)

N 73 79
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D.3. Learning in the ego-relevant and ego-neutral conditions

In this section, we present results complementing Tables 1.7 and 1.8 in the paper. In

Tables D.6 and D.7, we present the regressions from Tables 1.7 and 1.8 in the paper control-

ling for the model’s predictions (decisions implied by the model). The effect remains strong

and significant for both overconfident and underconfident agents, with the regression coef-

ficients similar to those in our initial specifications. Furthermore, we present the effect of the

ego-relevant condition on learning in the remaining guesses – those not included in Tables

1.7 and 1.8 in the paper. In Tables D.8 and D.9, we show the results for the 2nd and 3rd guess of

overconfident agents. The coefficients at the “Ego-relevant” variable in the 2nd and 3rd guess

are slightly lower than the corresponding coefficients in the last guess (Table 1.7 in the paper)

but remain positive and highly significant. In Tables D.10 and D.11, we present the results for

the 3rd and 4th guess of underconfident agents. The difference between the ego-relevant and

ego-neutral conditions in the 3rd and 4th guess is smaller than in the 2nd guess. This should

not come as a surprise: learning of underconfident agents is characterized by overshooting

in the second guess, and one would expect the largest differences in decisions after the first

feedback. Still, the sign of the effect in the 3rd and 4th guess is in line with our interpretation

that underconfident agents become less mistaken about the state in the ego-relevant condi-

tion.
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TABLE D.6. The effect of ego on learning of overconfident subjects.

Dependent variable: the absolute difference
between the 4th guess and the number.

(1) (2) (3)

Ego-relevant 1.085∗∗ 1.632∗∗∗ 1.553∗∗∗
(0.520) (0.510) (0.243)

Controls 1 No Yes Yes

Controls 2 No No Yes

Controls 3 Yes Yes Yes

Observations 456 456 456

Note: The dependent variable is the absolute difference between the 4th guess
and the number. The sample includes only overconfident participants. “Ego-
relevant” indicates assignment to the ego-relevant condition (learning about
own ability). Controls 1 include the relative performance of the decision-maker.
Controls 2 include the initial bias of the decision-maker. Controls 3 include the
decisions implied by the model.

Standard errors clustered at the individual level. Their values in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE D.7. The effect of ego on learning of underconfident subjects.

Dependent variable: the absolute difference
between the 2nd guess and the number.

(1) (2) (3)

Ego-relevant -0.695∗ -0.916∗∗ -0.900∗∗∗
(0.396) (0.385) (0.371)

Controls 1 No Yes Yes

Controls 2 No No Yes

Controls 3 Yes Yes Yes

Observations 456 456 456

Note: The dependent variable is the absolute difference between the 2nd guess
and the number. The sample includes only underconfident participants. “Ego-
relevant” indicates assignment to the ego-relevant condition (learning about
own ability). Controls 1 include the relative performance of the decision-maker.
Controls 2 include the initial bias of the decision-maker. Controls 3 include the
decisions implied by the model.

Standard errors clustered at the individual level. Their values in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE D.8. The effect of treatment on learning (overconfident, 2nd guess).

Dependent variable: the absolute difference
between the 2nd guess and the number.

(1) (2) (3) (4) (5)

Ego-relevant 0.969∗∗ 1.322∗∗∗ 1.294∗∗∗ 1.232∗∗∗ 1.019∗∗∗
(0.404) (0.354) (0.309) (0.286) (0.280)

Controls 1 No Yes Yes

Controls 2 No No Yes

Adjustment Type Regression Regression Regression Matching Matching

Observations 456 456 456 456 456

Note: The dependent variable is the absolute difference between the 2nd guess and the number. The
sample includes only overconfident participants. “Ego-relevant” indicates assignment to the ego-
relevant condition (learning about own ability). Controls 1 include the relative performance of the
decision-maker. Controls 2 include the initial bias of the decision-maker. In the matching estimator,
observations are matched to the nearest neighbor based on the relative performance (Specification
4), and the initial bias and relative performance (Specification 5). In Specification 1-3, standard
errors clustered at the individual level. In Specification 4-5, consistent standard errors as in Abadie
and Imbens (2006). Their values in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE D.9. The effect of treatment on learning (overconfident, 3rd guess).

Dependent variable: the absolute difference
between the 3r d guess and the number.

(1) (2) (3) (4) (5)

Ego-relevant 0.869∗ 1.330∗∗∗ 1.363∗∗∗ 1.228∗∗∗ 1.160∗∗∗
(0.520) (0.495) (0.443) (0.367) (0.347)

Controls 1 No Yes Yes

Controls 2 No No Yes

Adjustment Type Regression Regression Regression Matching Matching

Observations 456 456 456 456 456

Note: The dependent variable is the absolute difference between the 3rd guess and the number. The
sample includes only overconfident participants. “Ego-relevant” indicates assignment to the ego-
relevant condition (learning about own ability). Controls 1 include the relative performance of the
decision-maker. Controls 2 include the initial bias of the decision-maker. In the matching estimator,
observations are matched to the nearest neighbor based on the relative performance (Specification
4), and the initial bias and relative performance (Specification 5). In Specification 1-3, standard
errors clustered at the individual level. In Specification 4-5, consistent standard errors as in Abadie
and Imbens (2006). Their values in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE D.10. The effect of treatment on learning (underconfident, 3rd guess).

Dependent variable: the absolute difference
between the 3r d guess and the number.

(1) (2) (3) (4) (5)

Ego-relevant -0.480 -0.664∗∗ -0.514∗ -0.657∗∗∗ -0.452∗
(0.303) (0.303) (0.286) (0.220) (0.242)

Controls 1 No Yes Yes

Controls 2 No No Yes

Adjustment Type Regression Regression Regression Matching Matching

Observations 456 456 456 456 456

Note: The dependent variable is the absolute difference between the 3rd guess and the number. The
sample includes only underconfident participants. “Ego-relevant” indicates assignment to the ego-
relevant condition (learning about own ability). Controls 1 include the relative performance of the
decision-maker. Controls 2 include the initial bias of the decision-maker. In the matching estimator,
observations are matched to the nearest neighbor based on the relative performance (Specification
4), and the initial bias and relative performance (Specification 5). In Specification 1-3, standard
errors clustered at the individual level. In Specification 4-5, consistent standard errors as in Abadie
and Imbens (2006). Their values in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE D.11. The effect of treatment on learning (underconfident, 4th guess).

Dependent variable: the absolute difference
between the 4th guess and the number.

(1) (2) (3) (4) (5)

Ego-relevant -0.344 -0.525∗ -0.398 -0.515∗∗ -0.300
(0.320) (0.308) (0.290) (0.225) (0.212)

Controls 1 No Yes Yes

Controls 2 No No Yes

Adjustment Type Regression Regression Regression Matching Matching

Observations 456 456 456 456 456

Note: The dependent variable is the absolute difference between the 4th guess and the number. The
sample includes only underconfident participants. “Ego-relevant” indicates assignment to the ego-
relevant condition (learning about own ability). Controls 1 include the relative performance of the
decision-maker. Controls 2 include the initial bias of the decision-maker. In the matching estimator,
observations are matched to the nearest neighbor based on the relative performance (Specification
4), and the initial bias and relative performance (Specification 5). In Specification 1-3, standard
errors clustered at the individual level. In Specification 4-5, consistent standard errors as in Abadie
and Imbens (2006). Their values in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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CHAPTER 2

Belief-based Utility and Signal Interpretation

People tend to overestimate their abilities and chances of success, making costly mistakes

as they hold on to their biased beliefs at the expense of accuracy. This tendency, commonly

referred to as overconfidence, generates significant costs for both the individual and society.

A long-standing question in behavioral economics is how it can persist in environments with

frequent feedback. In this paper, I explore one possible explanation.1 I consider an agent who

does not know his ability and receives a signal that either reveals it or not. The agent forms

beliefs about both his ability and informativeness of the signal. Importantly, he values his

beliefs about his ability, so that any change in these beliefs directly affects his utility function

(Brunnermeier and Parker, 2005; Kőszegi, 2006; Caplin and J. V. Leahy, 2019). I attempt to

answer the following questions: Does the agent perceive a favorable signal to be more infor-

mative than an unfavorable one? Would he perceive the signal differently if the signal did not

affect his utility function?

To this end, I designed a simple experiment in which participants learn about their per-

formance in an IQ test. In a treatment condition, participants received a signal about their

performance and reported their beliefs about the signal’s informativeness. I incorporate sev-

eral changes to the classical design that allow me to better capture asymmetry in response to

“good” and “bad” news. Moreover, I introduce a new control condition, in which participants

decide about hypothetical signal realizations. They faced the same decision as subjects in the

treatment condition but without receiving an actual signal. The difference between reports in

the treatment and the control condition reveals the extent of belief manipulation in response

to favorable and unfavorable signals, and pins down a causal effect of signal valence on up-

dating. Moreover, it informs us about the underlying mechanism by showing how a change in

beliefs (triggered by a signal) and the ensuing belief-based utility affect signal interpretation.

1Other explanations that are similar to my work (as they consider motivated reasoning rather than cognitive pro-
cesses) can be divided into three categories: information avoidance (see Golman et al., 2017, for a comprehensive
literature review), selective recall (Chew et al., 2020; Zimmermann, 2020; Huffman et al., 2022), and asymmetric
updating. The last point mentioned comes the closest to my work and I review it in detail in the following section.
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The data from the treatment condition shows that subjects perceive favorable signals

as more likely to be informative. The average difference in the reported probability after a

“good” versus a “bad” signal amounts to 13 percentage points and is significant at the 1%

level. The result holds after controlling for potential selection. Moreover, the comparison

between the treatment and the control condition indicates that the perception of a signal is

significantly altered after receiving it. In the treatment condition, participants reported a 10.6

percentage points higher (a 27.9% increase) probability of a favorable signal being entirely

informative about their performance. There is no significant difference after unfavorable sig-

nals. The inference about the signal has a lasting effect on subjects’ beliefs about their ability.

We observe additional asymmetry in how participants translate their beliefs about the signal

into beliefs about ability. As a result, although signals significantly shifted subjects’ beliefs,

they did it selectively, and the aggregate overconfidence level remained virtually unchanged.

My study provides the first clear evidence of a causal effect of belief-based utility on sig-

nal interpretation. While the research on updating beliefs about ego-relevant traits has a long

tradition, establishing causality has always been challenging. One difficulty lies in introduc-

ing exogenous variation in “ego-relevance”: the way signals affect belief-based utility. Ideally,

we would like subjects to receive the same feedback, but the feedback would have no valence

– it would not be “positive” or “negative” in the sense that it would not bring participants ad-

ditional belief-based utility. But how to separate feedback from its valence? Previous work

focused on comparing how people update their beliefs about some ego-relevant parameter

(e.g., one’s performance in an IQ test) and how they update beliefs about some ego-neutral

parameter (e.g., performance of a robot).2 However, this comparison involves not only learn-

ing about ego-relevant and ego-neutral parameters, but also updating subjective beliefs, pos-

sibly multiple priors, and updating objective probabilities given by the experimenter. Treat-

ment manipulation affects more than one aspect of the study undermining causal inference.

In this paper, I propose a novel experiment in which both the treatment and the control

condition are based on the same subjective beliefs over the same ego-relevant characteris-

tic. However, I introduce exogenous variation in how signals affect subjects’ beliefs and their

2See, for instance, Eil and Rao (2011), Coutts (2019), and Möbius et al. (2022). One exception is a study by Buser
et al. (2018), which compares how participants update beliefs about their performance in various tasks that dif-
fer in how relevant they are to the subject’s self-esteem. However, in their set-up, it is not possible to introduce
exogenous variation in ego-relevance. Grossman and Owens (2012) propose a control condition in which partic-
ipants learn about the test result of another subject. In this case, subjects update their subjective beliefs about an
unknown, ego-neutral variable.
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belief-based utility: in the control condition, a signal is not realized, hence it does not affect

subjects’ beliefs nor their belief-based utility. Thereby, I separate feedback from its valence

without changing other decision-relevant aspects of the design.

The study was conducted in August 2020 in the BonnEconLab at the University of Bonn.

In total, I collected data from 222 participants. The experiment consisted of several parts.

First, participants were given an IQ test and incentivized to do their best. After the test, they

were asked to report their beliefs about their relative performance. Using an incentive com-

patible mechanism, I elicited subjective beliefs about one’s test score falling into the 1st , 2nd ,

..., 10th decile of the score distribution. I referred to the deciles as “ranks”, with 1 denoting the

highest and 10 denoting the lowest rank.

After the belief elicitation, we described the framework to the subjects as follows: “There

are two boxes. Box 1 contains 10 balls with numbers 1 to 10 written on them (each number

occurs exactly once). Box 2 contains 10 balls with the same number written on every one of

them. That number is equal to your rank.” For example, if a subject’s rank is 4, Box 2 contains

10 balls with the number “4” written on them.

In the main task, one ball was randomly drawn from one of the boxes (either box could

be selected with equal probability) and presented to the subject. After seeing the ball, the

participant reported his beliefs about the event that the ball came from Box 2 (with his rank).

The report was made by dividing 100 points between the two boxes. I incentivized truthful re-

porting with the Binarized Scoring Rule (Hossain and Okui, 2013). The method was explained

to the participants and they were informed that their chances to win the highest reward were

maximized when they divided their points in a way that corresponded to their true beliefs

about the box. We explained in intuitive terms how one can arrive at a Bayesian update given

one’s prior beliefs about the rank.

The design described above differs from experiments on belief updating in several ways.3

First, I shift the focus from beliefs updating to subjects’ inferences about the signal. I argue

that updating takes two steps: assessing the information bore into a signal and incorporating

it into prior beliefs.4 I aimed at disentangling the effect of signal valence on the first step

3A detailed comparison of the designs used in the literature can be found in Appendix D.
4This holds true even in experiments that give participants a signal that is accurate with a certain probability (e.g.,
75%). Before forming a posterior belief, one needs to answer the question of whether the observed realization
reveals the state or should be attributed to noise.
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from the way agents are aggregating information.5 For this reason, I restricted the number of

signals that participants receive to one.

Second, I use a richer state and signal space compared to previous studies. To understand

why it is important, imagine a participant who believes that he is in the 80th percentile of

the IQ test score distribution. Receiving a coarser signal, e.g., a signal indicating that his

score was above the median, would not influence his beliefs as it merely confirms what he

already knows. If the signal was more precise, e.g., it revealed that his score was only in the

60th percentile, it would affect his beliefs and, according to my hypothesis, induce a stronger

reaction.

Last but not least, I define signal valence with respect to subjects’ expectations. Being

among 40% best performers is hardly good news if you expect to be among the top 10%. I

incorporate this idea by defining a “good” signal to be the one above or equal to the median

of individual belief distribution, which I elicited before the main task.6

An ideal counterfactual to the treatment condition would include a subject who has the

same prior belief distribution (or the same set of prior belief distributions if the agent had

multiple priors) and observes the same signal, but the signal has no effect on his belief-based

utility function. To come as close as possible to the ideal counterfactual, I designed a control

condition, which I describe below.

In the control condition, subjects do not see a ball being drawn, but are asked to report

their beliefs about signal informativeness ex-ante, for every possible signal realization. The

procedure, known as the Strategy Method, is commonly used in experiments investigating

strategic interactions in games (Brandts and Charness, 2009). To alleviate concerns about

the non-comparability of the two treatments, I adopted procedures that specifically targeted

the issues raised in the literature.7 I argue that a participant in the control condition faces

5Thus, my study is also related to the literature on self-serving attribution bias. It has been extensively stud-
ied by psychologists (see Mezulis et al., 2004, for a meta-analysis of the existing studies) and, more recently, by
economists (Van den Steen, 2004; Coutts et al., 2020; Hestermann and Le Yaouanq, 2021). None of the studies,
however, consider the counterfactual discussed in my paper.
6As a robustness check, I use different definitions of a “good” signal relative to beliefs: considering only signals
that are strictly better than the median belief or replacing median with the mean.
7One concern raised in the experimental game theory literature is that players may gain a better understanding
of the game if they are induced to think about the best strategies from the perspective of other players. One
can imagine that considering every possible signal in the control condition could influence subjects’ beliefs. I
address this issue by presenting participants in the treatment condition with the screenshots from the control
condition and asking them to consider every possible draw before they proceed to the main task. Moreover, I
hope to alleviate another concern, the problem of framing the answers in the strategy method with the order of
options, by randomizing the order of the signals presented to the subjects in both conditions.
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the same decision as a subject in the treatment condition but without the signal affecting his

beliefs and belief-based utility.8

The results lend support to the hypothesis that asymmetry in updating is due to an in-

stantaneous reaction to signals. While there is a 6 percentage point difference in the beliefs

reported after “good” versus “bad” signals in the control condition, the additional effect of a

“good” signal in the treatment condition is almost twice as large (10 pp). I show that the effect

strongly depends on the subjects’ expectations. It is no longer present if a subject assigned

zero prior probability to the rank indicated by the signal. Moreover, asymmetric updating

about the box is followed by asymmetric updating about the rank. In the last part of the

study, we again elicited subjects’ beliefs about their rank (the entire belief distribution). The

data reveal that participants translate their beliefs about the signal into beliefs about the rank

in a motivated way, with those who received “good” signals being more consistent in their fi-

nal reports. In the end, even though more participants received signals that were below their

median beliefs, the average posterior belief in the sample was not significantly different from

the average (overconfident) prior.

Using subjects’ responses in questionnaires, I provide additional evidence to support my

interpretation of the results as being driven by changes in belief-based utility. In the treat-

ment condition, those participants who report experiencing hopelessness (a negative antic-

ipatory emotion) tend to deviate more from the Bayesian benchmark. The effect is counter-

acted by the habitual use of emotion regulation strategies. Subjects who reported using more

emotion regulation in their daily life tend to deviate less from Bayesian updating, even if they

admit to feeling more hopeless. While only suggestive, the evidence supports the view that

the treatment effect is stemming from the visceral, emotion-based reaction to signals that are

indicative of a belief-based utility.

My work is based on the theoretical literature on overconfidence and belief formation.

That literature postulates that people derive utility not only from physical outcomes but also

from their beliefs about the current or future state (Brunnermeier and Parker, 2005; Kőszegi,

2006; Caplin and J. V. Leahy, 2019). The individual can choose his beliefs but faces a trade-off

8It is reasonable to assume that only realized signals induce subjects to revise their beliefs and bring them addi-
tional belief-based utility. The gain in utility can be sustained (or, in the case of unfavorable signals, mitigated) by
distorting one’s beliefs about signal informativeness.
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between their accuracy (necessary to take the optimal action) and their desirability (a con-

sequence of the non-monetary value beliefs bring to the agent). The tension is resolved by

the agent manipulating his beliefs to the extent that he is not losing too much from actions

taken based on those beliefs. Several studies demonstrated that agents significantly deviate

from Bayes’ rule when forming beliefs about their own intelligence or beauty (Eil and Rao,

2011; Ertac, 2011; Grossman and Owens, 2012; Buser et al., 2018; Coutts, 2019; Schward-

mann and Van der Weele, 2019; Möbius et al., 2022). The main conclusion emerging from

this strand of literature is that belief formation over ego-relevant characteristics significantly

differs from learning about ego-neutral variables. At the same time, the direction of the effect

and its magnitude vary across studies. The idea presented in this paper is related to research

on emotions and decision-making (Lerner et al., 2015). One conclusion from the psychologi-

cal literature is that emotions may influence decisions via changes in the content of thought,

and vice versa. A similar hypothesis has been tested in a recent study of Engelmann et al.

(2019) who investigate the impact of anxiety on wishful thinking. Using data from a carefully

designed experiment, they show a causal effect of anticipatory anxiety on belief formation.

Although I cannot argue about the causal impact of anticipatory emotions in my experiment,

the suggestive evidence is in line with their findings.

The paper is organized as follows. The next section outlines the experimental design. In

Section 2.2, I describe the main results. Section 2.3 presents the data from the final belief

elicitation, and Section 2.4 describes the additional evidence. Section 2.5 concludes.

2.1. Experimental Design

The experiment consisted of two parts and is outlined in Figure 2.1. In the first part, sub-

jects completed an IQ test intended to assess their cognitive ability. The second part included

the elicitation of prior and posterior beliefs and a stage in which subjects received signals (or

considered every possible signal realization in the control condition). I describe the proce-

dures in detail in the following subsections.

2.1.1. IQ Test. In the first part of the experiment, I evaluated the subjects’ cognitive abil-

ity using an IQ test.9 The test consisted of 29 standard logic questions and participants were

9I decided to use intelligence as a basis for the learning exercise for several reasons. First, it is known that intel-
ligence correlates strongly with educational achievement, success in the labor market, and income. Because of
that, I expect people to care deeply about their cognitive ability. Therefore, IQ measure seems to be a good can-
didate for a genuine ego-relevant parameter. Second, the literature provides evidence that people have biased
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IQ test

Questionnaire I

Belief Elicitation I

Treatment:

Signal Stage

(observe a signal, report beliefs
about its informativeness)

Control:

Strategy Method

(consider every possible signal,
report beliefs for each realization)

Belief Elicitation II

Questionnaire II

FIGURE 2.1. The outline of the experiment.

asked to solve as many of them as possible in 10 minutes. Individual scores were calculated

based on the number of correctly answered questions minus the number of incorrect an-

swers, and subjects were paid 0.75 Euro for every point they obtained.

Participants were informed that their earnings from the IQ test will be added to their

earnings from the remaining parts of the experiment and paid at the end of the session. They

were also informed that, although they will receive the entire sum of money at the end of the

study, they will not learn immediately the exact number of points they obtained in the IQ test,

nor how much money they earned in each part. Participants were informed that their IQ test

results and the details of their payoffs will be available to them in one week after the session.

Every participant received a personal link to a website on which his individual information

was posted one week later.10

beliefs about their cognitive ability (with overconfidence prevailing among men), which suggests that learning
about one’s cognitive ability may be one of natural settings in which the mechanism is in play.
10This procedure served two purposes. First of all, I wanted to minimize dynamic concerns (e.g., subjects may
adopt overly pessimistic beliefs to prepare themselves for the arrival of “bad news”). Second, this feature of the
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2.1.2. Belief Elicitation. At the beginning of the second part, participants were told that

they have to complete 3 tasks, for which they can earn up to 12 Euro. They were informed

that one task will be drawn at random at the end of the session, and they will be paid only for

that task.

In the first task, I elicited subjects’ beliefs about their test scores being in the 1st ,2nd , ...,9th ,

and 10th deciles of the distribution of the test scores of 300 participants who took the same

test in the BonnEconLab in previous sessions. I introduced 10 “ranks”, with Rank 1 denoting

the highest rank (assigned to participants whose IQ test scores were higher than or equal to

the test scores of 90−100% of all participants), and Rank 10 denoting the lowest rank (defined

analogously). The first task was to allocate 100 points among the ranks in a way that reflects

one’s beliefs about the relative performance in the IQ test.

The screen-shot of the computer interface used by subjects is presented in Figure 2.2.

Participants were allocating points by dragging blue arrows to selected positions. They were

informed that they can move the arrows back and forth to correct their choices. The text be-

low the scales informed a participant how many points are being allocated to a given rank and

the allocation was immediately appearing on the graph to the right. The number above the

graph indicated how many points the participant still has to allocate before he can proceed

to the next task.

To incentivize truthful reports, I used the Binarized Scoring Rule following Hossain and

Okui (2013). The random variable X can take one of 10 values: (1,0,...,0,0), (0,1,...,0,0), ...,

(0,0,...,1,0), (0,0,...,0,1); the position of 1 indicates in which decile subject’s IQ test score fell.

After receiving agent’s report x = (x1, ..., x10), where xi denotes the share of points allocated to

decile i ∈ {1, ...,10}, I observed his IQ test score in the k th decile, and the agent won the prize

if the QSR for multiple events,

s(x,k) = 2xk −
∑

i
x2

i +1,

exceeded a uniformly drawn random variable with the support [0,2].

The formula was presented to the subjects in a simple way (avoiding mathematical nota-

tion). Importantly, I told participants the main implication of the method, that is, the proba-

bility of getting a large prize (12 Euro) is maximized when they allocate their points in a way

that reflects their beliefs about their rank.

design enables me to collect data on who decided to check the test results. I describe the data on information
acquisition in Appendix F.

78



FIGURE 2.2. The screen-shot of the interface used in the first task.

I followed the same procedure during the second belief elicitation, after the signal stage

(after the strategy method in the control condition). However, during the first belief elicita-

tion, subjects were not aware that they will be asked to state their beliefs one more time.

2.1.3. The Signal Stage. After eliciting the prior beliefs, participants were given instruc-

tions for the second task. We explained the nature of the task in a simple language, using

pictures and two illustrative examples. The task was framed in a neutral way and described

as follows.

There are two boxes: Box 1 and Box 2. Each box contains 10 balls with numbers written

on them. Box 1 contains balls with numbers from 1 to 10, and every number appears exactly

once. The composition of the second box depends on the subject’s rank in the IQ test. Box 2

contains 10 balls that all have one number written on them, and this number is equal to the

individual rank. The composition of the boxes of a person assigned Rank 2 is presented in

Figure 2.3.

For every participant, the computer program randomly selected one of the two boxes.

Next, a ball was drawn from the selected box and displayed on the participant’s screen. The

participant did not know which box the ball was drawn from, but he knew that either box can
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FIGURE 2.3. The composition of the boxes of a person whose rank was 2.

be selected with equal probability. After seeing the ball, he had to state his beliefs about the

box selected by the computer.

I used the same incentive-compatible elicitation method as for the prior and posterior

belief elicitations. Participants had 100 points to allocate between Box 1 and Box 2 in pro-

portions that reflect their beliefs about the source of the signal, and were rewarded for the

truthful report with a higher probability of getting a large prize (12 Euro).

Importantly, subjects were instructed how to arrive at the Bayesian posterior given one’s

prior belief distribution. I explained it with an example in two steps. First, I demonstrated

how a person should allocate her points after different signal realizations if she knew precisely

her rank. Then, I showed how a person should allocate her points if she was not sure about

her rank, but was assigning a certain probability to it.

Step 1: How should a person ranked 2 allocate her points if she knew for sure that her

rank is 2, and saw a ball with a number “2” on it? There are 10-times as many balls with “2”

in Box 2 as there are in Box 1, hence it is 10-times as likely that the ball came from the second

box. Therefore, the person should allocate 9 points to Box 1, and 10-times as many, 90 points,

to Box 2 (the remaining point should be allocated to the box with higher probability).

Step 2: What if a person did not know her true rank, but she believed that there is 30%

chance that her rank is 2? The same logic applies to this case. One can visualize 30% chance

as 3 out of 10 balls in Box 2 having a number “2” on them.11 In this imaginary case, there

11One reason why I decided to introduce 10 balls was the ease of exposition in a case when a person is uncertain
about his rank.
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FIGURE 2.4. The screen-shot of the interface used in the second task.

are 3-times as many balls with the number “2” on them in Box 2 as in Box 1, implying an

allocation of 25 points to Box 1 and 3-times as many (75 points) to Box 2.

The interface enabled subjects to split their points in desired proportions without cal-

culating the respective ratios. The screen-shot of the interface used in the second task is

presented in Figure 2.4. Crucially, the text below the scale informed subjects about their cur-

rent allocation and the ratio between points allocated to the two boxes. By moving the cursor,

participants could choose the number of points corresponding to allocating x-times as many

points to one of the boxes (with x ∈ {1,1.1, ...,99}). The graph below was illustrating the cur-

rent allocation.

Before proceeding to the signal stage, participants were required to answer a set of control

questions, designed to check their understanding of the task (including the steps necessary

for arriving at the Bayesian posterior). The control questions also pointed out the aspects that

participants may have missed at the first reading, but were necessary to fully comprehend the

task.

2.1.4. Experimental Conditions. I introduced two experimental conditions: treatment

and control. In the control condition, subjects did not see the number that was drawn but
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were asked to state their beliefs for every possible draw. The procedure, known as the Strategy

Method, is commonly used in experiments investigating strategic interactions in games.

I informed participants in the control condition that the choices they are making are not

entirely hypothetical. At the end of the session, one box was selected by the computer pro-

gram and one ball was randomly drawn from the selected box. Subjects were paid as in the

treatment condition, based on the decision that corresponded to the number drawn from

the box. Note that the procedure is incentive-compatible as the probability of drawing any

number is at least 5%.12

To alleviate concerns of the non-comparability of the two conditions, I adopted special

procedures targeting the issues discussed in the literature. One concern raised in the exper-

imental game theory literature is that players in the strategy method gain a better under-

standing of the game as a consequence of considering the problem from the point of view

of different players. In my set-up, one can imagine that considering every possible signal

realization may influence reported beliefs in the control condition.

For this reason, we asked the participants in the treatment condition to consider every

possible signal realization before they saw the actual draw. Subjects were required to go

through 10 slides, presented in random order, with the actual screen-shots of the interface

displayed in the control condition. Participants were asked to contemplate a hypothetical de-

cision in each slide before clicking on the button “Continue”, which appeared on the screen

only after 15 seconds. While only subjects in the control condition were allowed to enter their

choices, both groups were required to go through the task.

Another problem that may arise in the Strategy Method is framing the answers with the

order of options. I addressed the issue by randomizing the order of the numbers displayed

to a subject in the control condition, and the order of slides presented to participants in the

treatment.

2.1.5. Questionnaires. After each part of the experiment, I asked participants to fill in a

3-page questionnaire. The first set of questions, displayed on individual computer screens

after the IQ test, included a short version of the Big-5 personality test (Gerlitz and Schupp,

2005) and the state-trait anxiety inventory STAI (Spielberger, 1983).

12However, if subjects were weighting the cost of cognitive effort against the expected payoff, they may exert less
effort in the control condition. In this case, one would expect subjects to behave less rationally: their decisions
would be characterized by a higher variance and they would end up further away from Bayesian update. This is
the opposite of what I found.
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The Big-5 personality test was designed to measure personality along five dimensions:

extroversion, conscientiousness, openness to experience, neuroticism, and agreeableness.

The STAI measures the current state of anxiety and anxiety level as a personal characteristic.

The second set of questions, answered by the participants after the main task, comprised the

Emotion Regulation Questionnaire (Gross and John, 2003) and a subset of questions from the

Achievement Emotions Questionnaire (Pekrun et al., 2011).

The Emotion Regulation Questionnaire was designed to assess the habitual use of two

strategies commonly used to alter emotions. To alleviate the emotional impact of a situa-

tion, one may try to reinterpret it in a different way. This emotion regulation strategy, broadly

referred to as reappraisal, relies on “applying mental models to the often ambiguous and in-

complete information” (Uusberg et al., 2019). The second emotion regulation strategy, sup-

pression, involves “inhibiting ongoing emotion-expressive behavior” (Gross and John, 1998,

cited in Uusberg et al., 2019).

People differ in their use of reappraisal and suppression, and these differences have im-

plications for their experiences of emotions, behavior in response to those emotions, and

general well-being (Gross and John, 2003). The habitual use of the two strategies is measured

by the degree to which subjects agree with particular statements, e.g., “I keep my emotions to

myself” or “When I want to feel less negative emotion, I change the way I’m thinking about

the situation”. I use the exact 10-item questionnaire developed by Gross and John (2003).

The Achievement Emotions Questionnaire was designed to measure achievement emo-

tions (emotions that are directly linked to achievement activities or achievement outcomes)

experienced by students in academic settings (Pekrun et al., 2011). I adopted part of the

questionnaire to measure the following test-related emotions: enjoyment, hope, pride, relief,

anger, anxiety, shame, and hopelessness.

Participants in both conditions were asked to report what they felt after learning the na-

ture of the task, but before they saw the number(s). They had to indicate, using a 7-point

Likert scale, how strongly they agree (or disagree) with various statements, e.g., “I was proud

of how well the test went”, or “I was angry about the task I had to do”.

83



2.2. Results

The experiment took place in August 2020 in the BonnEconLab at the University of Bonn.13

I conducted 52 sessions, with 1 to 6 participants in each session. I collected data from 167

participants in the treatment condition and 55 participants in the control condition. The ex-

periment lasted around 80 minutes and the participants earned 21.25 Euro on average. In the

following section, I report the analysis based on the data from 209 participants who correctly

answered at least half of the control questions (I excluded 13 participants, that is 5.8% of the

sample).

2.2.1. IQ Test Results and Individual Ranks. Figure 2.5 presents the distribution of the

IQ test scores and ranks assigned to the participants based on the test results. The IQ test

score distribution is fairly symmetrical (skewness −0.83), with a mean of 5.13 and a standard

deviation of 3.73. The average rank is 5.65 with a standard deviation of 2.67. Importantly,

there is no significant difference in the average IQ test score or rank assigned to the partici-

pants in the treatment and control group (see Appendix A).

FIGURE 2.5. IQ Test Results and Beliefs.
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13Due to the Covid-19 pandemic, I followed special procedures to ensure the safety of participants and others
involved. The number of participants per session was restricted to 6 to ensure each participant a place in a
separate room. Desks, chairs, and computer equipment were disinfected after every session and the rooms were
aired before every session for at least half an hour. At the time of the experiment (August 2020), the Covid-19
pandemic was mostly under control in Germany; the lockdown restrictions were eased, allowing restaurants,
schools, and public places to open with appropriate safety measures.
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2.2.2. Prior Beliefs about Rank. Before the main task, we elicited from every participant

his entire belief distribution. I analyze the data in two ways. First, I look at the aggregate belief

distribution. Then, I examine individual distributions and report the averages of individual

measures (these include mean belief about rank, median and range). To look at the aggre-

gate of individual belief distributions, I treat separately every decision to allocate x points,

x ∈ {0, ...,100}, to rank k, k ∈ {1, ...,10}. For each of the 10 ranks, I calculate the average num-

ber of points allocated by the participants. The resulting aggregate distribution is presented

on Panel (B) in Figure 2.5 (each bar indicates the average +/− standard errors). It is visibly

skewed to the right, with the mean belief of 4.47 and the median of 4. On average, the subjects

appear to be overconfident, as they put a higher probability mass on lower (better) ranks.

In Table 2.1, I report the averages of individual measures of belief distribution. I look at

the average mean belief, median belief, the first and third quartile, and range. Importantly,

there is no significant difference between the treatment and the control group (see Appendix

A). The averages, however, mask the fact that only 26 participants revealed symmetric belief

distribution. Almost half of all subjects (100 participants) revealed a positively skewed belief

distribution, and the remaining 83 participants revealed a negatively skewed belief distribu-

tion (the average difference between mean and median in both groups was 0.21). I define a

person to be overconfident if his median belief is lower than his true rank. Similarly, I use a

term underconfident to describe a person who assigns 50% or more probability mass to ranks

higher than his true rank. A person is defined to be unbiased if his median belief matches

his true rank.14 Using this definition, there are 127 overconfident, 58 underconfident, and

24 unbiased participants in my sample. Importantly, there is no significant difference in the

average bias (defined as a difference between the true rank and the median belief) between

the treatment and the control group (see Appendix A).

TABLE 2.1. Individual belief distributions.

Mean Belief Q1 Median Q3 Range

Mean 4.47 3.71 4.45 5.16 4.89

(Std. Dev.) (1.75) (1.74) (1.79) (1.87) (1.57)

14In common language, Rank 1 denotes “the highest” rank, while Rank 10 is “the lowest”. To avoid confusion, I
will not use the customary phrases, but the terms that match the values (for example, a subject whose rank is 5
and median belief is 4 puts higher probability on lower ranks).

85



2.2.3. Decisions in the Main Task. The main experimental task, neutrally framed as “the

second task”, differed depending on the condition. In the treatment condition, subjects ob-

served one number and reported their beliefs about the box from which the number was

drawn. In the control condition, participants saw, in random order, numbers from 1 to 10,

and stated a report for each one of them. In this section, I describe the raw data on subjects’

decisions in the two conditions and present the results of the data analysis with and without

using subjects’ decisions in the control condition.

2.2.3.1. Reports in the Treatment Condition (Raw Data). First, I describe the raw data on

the decisions made by participants in the second task. This was our main task: allocating

points to Box 1 (with numbers from 1 to 10) and Box 2 (indicating one’s rank) in a way that

corresponds to one’s beliefs about the source of the signal. I interpret points allocated to

Box 2 as the probability that a subject assigns to the event that the number displayed on the

computer screen is his rank.

Figure 2.6 presents the average number of points allocated to Box 2 after a signal received

in the treatment condition. The numbers above the x-axis indicate how many participants

received a given signal and stated a report. For example, 14 participants in the treatment

condition saw “4” displayed on their computer screens and allocated, on average, 65 points

to Box 2 (revealing the average subjective probability of 65% that the number “4” is their

rank). It is useful to contrast these decisions with the Bayesian benchmark. For each partic-

ipant, I calculated a Bayesian posterior about the box given his priors and signal realization.

FIGURE 2.6. Points allocated to Box 2 in the Treatment condition.
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FIGURE 2.7. Mean deviation from Bayes for different signals in Treatment.
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(B) Signals outside priors.

The average deviations from the Bayesian update in the treatment condition are presented in

Figure 2.7. I separately plotted cases in which subjects assigned a non-zero prior probability

to the number displayed on the screen (the graph on the left) and those in which subjects

assigned the prior probability of zero (the graph on the right). I refer to the latter as “outside

priors”. One can notice that the average decisions are below zero for higher numbers – after

worse signals, subjects tend to allocate fewer points than prescribed by the Bayes’ rule. Af-

ter better signals (indicated by lower numbers), subjects’ decisions are closer to the bayesian

benchmark.

However, by looking only at the signals’ values one can miss an important point: signals

might be perceived differently depending on subjects’ expectations. A person who believes

that her rank is “5” might perceive a signal “4” as a “good” signal. At the same time, a person

who firmly believes that her rank is “1” can be disappointed after seeing a “4” and view it as a

“bad” signal. We take this into account in the next section.

2.2.3.2. Results Based on the Treatment Condition. Our experimental design enables us

to define the signal’s valence depending on subjects’ expectations.15 In Figure 2.8, I present

average deviations from the Bayesian update after signals that were worse than one’s median

belief (the left bar) and those that were better or equal to one’s median belief (the bar on

the right). Participants tend to allocate fewer points after signals that were worse than their

median belief.

15Previous work on asymmetric updating mostly used binary state and signal space, and referred to the signal
indicating a higher state as a “good” signal (see the literature review in Appendix D).
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FIGURE 2.8. Deviations from Bayesian update after different signals.
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The pattern visible on Figure 2.8 is confirmed by estimates presented in Table 2.2. The

dependent variable is the number of points allocated to Box 2 (indicating one’s rank). The in-

dependent variable “Bayes” denotes the number of points prescribed by the Bayes’ rule. The

variable “Good Signal” takes value 1 if the signal was lower or equal to the median belief and

zero otherwise.16 In the second column, we control for individual median belief, and in the

last column, we add a control for individual rank (both variables could potentially influence

the probability of receiving a “good” signal). The sample is restricted to the participants who

assigned non-zero prior belief to the signals they received.17 The coefficient at the “Good Sig-

nal” variable is around 13.0 and is significant at the 1% level, meaning that subjects report 13

percentage points higher beliefs that the signal is their rank after a “good” signal.

16The result is robust to using different definitions of a “good” signal relative to beliefs: considering only signals
that are lower than the median belief as “good” signals, or replacing median with the mean of individual belief
distribution.
17The estimation based on the entire sample and controlling for signals to which participants assigned zero prior
probability (“outside priors”) yield similar results, see Appendix B.
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TABLE 2.2. The effect of the signal’s valence.

(1) (2) (3)

Bayes 0.956∗∗∗ 0.954∗∗∗ 0.961∗∗∗
(0.121) (0.122) (0.123)

Good Signal 13.629∗∗∗ 13.724∗∗∗ 12.976∗∗∗
(4.241) (4.256) (4.418)

Median Belief -0.815 -0.537
(1.167) (1.245)

Rank -0.604
(0.914)

Constant -9.527 -5.757 -3.819
(7.651) (9.383) (9.862)

N 87 87 87

Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is the number of points allocated to Box 2
by participants in the treatment condition. “Bayes” denotes the number
of points that should be allocated according to the Bayes’ rule. The sam-
ple is restricted to subjects who received a signal to which they assigned
non-zero probability. “Good Signal” indicator variable takes value 1 if the
signal was below or equal to the median of subject’s belief distribution,
and 0 otherwise.

Importantly, this effect would not be captured if we defined “good” and “bad” signals in

absolute terms. In the Appendix B.1, we replicate Figure 2.8 and Table 2.2 using the definition

of “good” and “bad” signals commonly used in the literature: we define signals from 1 to 5 as

“good” and signals from 6 to 10 as “bad”. The effect is much lower and not significant at any

acceptable level. The result points toward the importance of taking into account subjects’

expectations to determine the signal’s valence. Being among 50% best performers is hardly a

good news if you expect to be among the top 10%. We later argue that asymmetric updating

is mostly driven by an emotional reaction to signals, and one’s prior beliefs likely serve as a

reference point from which the signals are evaluated.18

18It is important to note that we gave participants much finer signals than most of the literature (usually signaling
whether or not a subject is in the upper half of the distribution). We admit that subjects are likely to respond
differently to coarser/finer signals and taking a simple average might not be a perfect comparison. Whether or
not it is the case remains an open question for future research. Our hypothesis is that the average over finer
signals is likely to be stronger than a response to a coarser signal due to a stronger emotional reaction: learning
that one’s performance is in the bottom 10% is likely to be more painful than a signal of being in the lower half.
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2.2.3.3. Data Analysis Using Control Condition. In this section, I describe the data from

the control condition. In Figure 2.9, I present participants’ decisions separately for signals to

which they assigned non-zero prior probability (Panel A), and those to which they assigned

the prior probability of zero (Panel B). The averages are consistently below zero in the left

panel, meaning that subjects tend to allocate fewer points than prescribed by the Bayes rule

regardless of the signal under consideration. Note that the decisions were incentivized, thus

allowing us to argue that participants made the best decisions using their prior beliefs about

their rank and information from the signal. The only difference between the two conditions

is that in the treatment condition participants received an actual signal.

In Table 2.3, I present the results of a regression analysis based on the data from both

conditions. I restrict the sample to the participants who assigned a non-zero prior proba-

bility to the signal that appeared on their screen (the estimation based on the entire sample

controlling for signals “outside priors” yielded similar results, see Appendix B). The depen-

dent variable is the number of points allocated to Box 2. First, I regress it on the number

of points prescribed by the Bayes’ rule (the independent variable “Bayes”) and a treatment

dummy. As reported in the first column, both coefficients are positive and significant. In

the second specification, I add an indicator variable “Good Signal”, which takes value 1 if the

signal was better or equal to one’s median belief. A high and significant coefficient informs

us that subjects tend to allocate more points to Box 2 in face of “good” signals. In the third

specification, I add our main coefficient of interest – the interaction between the “Good Sig-

nal” and the “Treatment” variable. The coefficient at the interaction term is equal to 9.5 and

FIGURE 2.9. Mean deviation from Bayes for different signals in Control.
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(A) Signals within priors.
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TABLE 2.3. The effect of the signal’s valence.

(1) (2) (3) (4) (5)

Bayes 0.827∗∗∗ 0.765∗∗∗ 0.767∗∗∗ 0.767∗∗∗ 0.764∗∗∗
(0.093) (0.094) (0.093) (0.093) (0.092)

Treatment 5.761∗ 6.382∗∗ 1.012 1.015 1.005
(2.982) (2.884) (4.111) (4.125) (4.170)

Good Signal 8.608∗∗∗ 5.944∗ 5.936∗ 5.943∗
(2.783) (3.368) (3.382) (3.353)

Treatment × Good 9.474∗ 9.478∗ 10.247∗
(5.415) (5.429) (5.511)

Median Belief 0.048 -0.231
(1.124) (1.151)

Rank 0.661
(0.596)

Constant 0.331 -1.126 0.381 0.164 -2.306
(5.296) (5.466) (5.660) (7.443) (7.684)

N 319 319 319 319 319

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is the number of points allocated to Box 2 in the treatment
condition. “Bayes” is the number of points that should be allocated according to the Bayes’
rule. The sample is restricted to the participants who received (or considered) a signal to
which they assigned non-zero probability.“Treatment” is a variable indicating assignment to
the treatment condition. “Good Signal” indicator variable takes value 1 if the signal was be-
low or equal to the median of subject’s belief distribution, and 0 otherwise.

significant at the 10% level. Importantly, the effect is similar if we add controls for individual

rank and median belief.

One may worry about the fact that participants in the treatment condition with a prob-

ability of 50% decide about a signal that is their rank, while in the control condition, they

decide about all 10 numbers. As a robustness check, we restrict the sample to the partic-

ipants who saw a random number in the treatment condition. The results are gathered in

Table B.4 in Appendix B. While the coefficient at the interaction term is not significant (p-

value = 0.152), due to the small sample size, the coefficient of 9.8 is not different from the one

presented in Table 2.3. We conclude that the differences in the probability of observing one’s

rank are not driving our results.

91



2.3. Belief Elicitation II

In this section, I take a closer look at beliefs about the rank elicited after the main task. I

attempt to answer the following question: Do beliefs about the box translate to the posterior

about the rank? Furthermore, I discuss the caveats of repeated belief elicitation and their

consequences for the interpretation of the results.

2.3.1. Raw Data. Before delving into the analysis, I present the raw data on beliefs about

the rank before and after the task. In Figure 2.10, I replicate Figure 2.5(B), juxtaposing the

data from the first and the second belief elicitation. The graphs were created using only ob-

servations from the Treatment condition. There is little difference in aggregate beliefs before

and after the signals. This result may seem surprising as it suggests that, on aggregate, sub-

jects have not learned much, even though they received informative signals. I will show in the

following section that it is not the case that our treatment manipulation failed to move par-

ticipants’ beliefs. Rather, it is a consequence of conservatism (updating too little in response

to informative signals) and asymmetry (updating differently after negative and positive sig-

nals), as well as the fact that many of the “bad” signals that subjects received were outside

their prior belief distributions.

First of all, I show that the signals indeed moved subjects’ beliefs about the respective

rank. In Figure 2.11, I plot the average number of points allocated to the rank indicated by

FIGURE 2.10. Average number of points allocated to 10 ranks.
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FIGURE 2.11. Points allocated to the relevant rank (before and after signals).
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the signal (i.e., if a participant received a signal “2”, only his allocations to Rank 2 are in-

cluded). One can notice significant differences between the prior and posterior beliefs, and

that those differences vary depending on the signal received. In Table 2.4, I present average

allocations after “good” and “bad” signals separately for signals to which subjects assigned

non-zero prior probability (I refer to them as “within prior”) and those to which subjects as-

signed zero prior probability (“outside prior”). Two things are worth noting. First, although

participants received more “bad” signals (n=91) than “good” signals (n=69), they received

more “good” signals to which they assigned non-zero probability (n=48) than “bad” signals

of a similar kind (n=39). Second, there is a larger change in beliefs after “good” signals within

TABLE 2.4. Points allocated to relevant rank (“good” and “bad” signals).

“Good” Signals “Bad” Signals

within prior outside prior within prior outside prior

Belief Elicitation I 27.52 0 17.18 0
(2.43) (0) (1.54) (0)

Belief Elicitation II 47.75 6.52 23.77 6.08
(4.14) (2.73) (2.89) (1.62)

Difference 20.23 6.52 6.59 6.08

N 48 21 39 52

*Standard errors in parentheses.
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priors than after “bad” signals within priors (20.23 versus 6.59 difference). In the following

section, I analyze these differences in relation to the bayesian benchmark.

2.3.2. Data Analysis: Bayesian Benchmark. In Figure 2.12, I contrast beliefs elicited af-

ter the signal with the Bayesian benchmark, calculated based on the subject’s prior beliefs

about the rank.19 If a subject assigned zero prior probability to the signal that he received I

assume the benchmark to be zero. There are two things to be noted. First, subjects tend to al-

locate fewer points than prescribed by Bayes’ rule. This could be a sign of conservatism, that

is, under-reaction to new information. Second, the differences vary depending on signal re-

alization. We use regression analysis to examine to what extent they are driven by differential

responses to “good” and “bad” news.

FIGURE 2.12. Points allocated to the rank corresponding to the signal.
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The estimation results are presented in Table 2.5. The dependent variable is the number

of points allocated to the rank corresponding to the received signal. The first two columns

report estimates based on observations from participants who received signals to which they

assigned non-zero probability (signals “within prior”). The regression in the last column in-

cludes only participants who received signals to which they assigned a prior probability of

zero (“outside prior”). In the first specification, I regress the dependent variable on the num-

ber of points they should have allocated according to Bayes’ rule (the “Bayesian Posterior”

19Note that, since the signal is either entirely informative or uninformative, it should not affect any rank other
than the one that corresponds to its realization. The prior beliefs on the relevant rank are all we need to calculate
the Bayesian posterior.
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TABLE 2.5. The effect of signal valence on beliefs about the respective rank.

Signals “within prior” “outside prior”

(1) (2) (3)

Bayesian Posterior 0.921∗∗∗ 0.811∗∗∗
(0.117) (0.114)

Good Signal 15.547∗∗∗ 0.447
(4.361) (3.088)

Constant -26.735∗∗∗ -27.687∗∗∗ 6.077
(8.388) (7.869) (1.656)

N 87 87 73

Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is the number of points allocated to Box 2 by par-
ticipants in the treatment condition. “Bayes” denotes the number of points that
should be allocated according to the Bayes’ rule. “Good Signal” indicator vari-
able takes value 1 if the signal was below or equal to the median of subject’s be-
lief distribution, and 0 otherwise. The results are virtually unchanged if we con-
trol for individual rank and/or median belief.

variable). The coefficient at the “Bayesian Posterior” variable is 0.92 and statistically signifi-

cant. Note, however, the negative coefficient at the constant variable, which informs us that

participants allocated fewer points than they should have. In the second specification, we

add the “Good Signal” variable, which takes value 1 if a signal was above or equal to one’s me-

dian belief. The coefficient at the “Good Signal” variable is high and significant – participants

tend to allocate 15.5 points more to the corresponding rank if they received a good signal.

Thus, they revealed 15.5 percentage points higher beliefs that the signal is their rank after a

“good” compared to a “bad” signal. The result remains the same if we control for individual

rank and/or median belief (not shown in the table). There is no significant effect of signal

valence for signals that were “outside” subject’s prior belief distribution – the coefficient at

the “Good Signal” variable is not significant in the last column in Table 2.5.

Several points should be kept in mind when interpreting the data from the second be-

lief elicitation. First of all, one problem common in experiments measuring beliefs multiple

times is that consistency motives may play a role. It has been shown in the literature (Falk

and Zimmermann, 2017) that people prefer to act consistently in order to signal their skills

to others. Despite our best efforts to ensure anonymity and instruct subjects to treat each

part of the experiment independently, the second belief elicitation data may be tainted by
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the desire to be seen as a consistent decision-maker.20 If the consistency motives are in play,

and people desire to make consistent reports in the two elicitation procedures, then what we

found is a lower bound on the effect.

Second, while we explained to the subjects in intuitive terms how to arrive at a Bayesian

posterior about the box, we provided no such guidance on how to translate the prior belief

distribution and the signal to the posterior belief about the rank (nor we explained how to

arrive at the posterior belief distribution given one’s beliefs about the box). We believe this

approach has both advantages and disadvantages. On the one hand, we did not frame par-

ticipants in any way on what “should” be done in the experiment. On the other hand, we are

losing control over what participants believe to be a rational course of action in an environ-

ment that is far from natural.21 Yet, the posterior beliefs about the box and the belief distri-

bution elicited in Belief Elicitation II are surprisingly consistent, lending credit to the use of

these methods and corroborating the main results. We describe the comparison between the

two in the following section.

2.3.3. Data Analysis: Consistency. During the experiment, participants’ beliefs were elicited

three times: before the task (Belief Elicitation I), as a part of the main task (beliefs about the

box), and after the task (Belief Elicitation II). In Section 2.2, I described the data from Belief

Elicitation I and subjects’ beliefs about the box, while in the previous section, I contrasted

Belief Elicitation I and II. There is one more comparison to be made, namely, beliefs about

the box and Belief Elicitation II. This comparison enables us to answer the question: Do be-

liefs about the box translate to the posterior about the rank? The answer is important for the

validity of our results – whether the asymmetry in beliefs about signal informativeness that

we captured has any effect beyond the decisions in the main task.

To investigate this question, I construct a new variable “Consistent Posterior” that is a

Bayesian posterior based on the subject’s beliefs about the box. Then, I examine its relation

to the posterior beliefs about rank. In Table 2.6, I present the results of a regression analysis

based on observations from the treatment condition (those participants received actual sig-

nals), separately for signals to which subjects assigned non-zero prior probability (left side

of the table) and signals to which subjects assigned zero prior probability (on the right). The

20This concern is alleviated in our main analysis, as it is based on a comparison between the Treatment and the
Control, and there is no reason to believe that consistency motives differ in the two conditions.
21Although students are regularly given grades that are, to some extent, based on their relative performance, it is
rather unusual to be asked to specify the entire belief distribution.
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TABLE 2.6. The effect of signal valence on beliefs about the respective rank.

“within prior” “outside prior”

(1) (2) (3) (1) (2) (3)

Consistent Posterior 0.783∗∗∗ 0.712∗∗∗ 0.537∗∗∗ 0.134∗∗ 0.134∗∗ 0.185∗∗
(0.076) (0.082) (0.117) (0.063) (0.063) (0.075)

Good Signal 8.926∗∗ -12.173 0.081 2.660
(4.230) (11.064) (3.020) (3.627)

Good × Consistent 0.332∗∗ -0.175
(0.161) (0.138)

Constant -14.142∗∗ -14.436∗∗∗ -5.045∗∗∗ 4.391∗∗∗ 4.368∗∗ 3.705∗
(5.354) (5.250) (6.883) (1.874) (1.808) (5.354)

N 87 87 87 73 73 73

Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is the number of points allocated to Box 2 by participants in the treatment condi-
tion. The independent variable “Consistent Posterior” refers to the Bayesian prediction based on the belief about
the box. “Good Signal” indicator variable takes value 1 if the signal was better or equal than the median of individ-
ual prior belief distribution, and 0 otherwise. The results are virtually unchanged if we control for individual rank
and/or median belief.

dependent variable is the number of points allocated in Belief Elicitation II to the rank corre-

sponding to the signal received.

The coefficient at the “Consistent Posterior" variable in Specification 1 tells us that this

number is strongly related to the number of points subjects should have allocated given their

beliefs about the boxes. While the coefficient is significantly lower than 1, it is clear that the

beliefs about the box affect subjects’ posterior beliefs about the rank. The relation is much

weaker for the signals “outside” subjects’ prior belief distributions. Moreover, for signals

“within prior”, there is a strong effect of a “good” signal, significant at the 5% level. Even af-

ter controlling for their decisions about the boxes, participants tend to allocate more points

to the respective rank after a “good” signal, but only if they assigned a non-zero probability

to the signal they received. In Specification 3, I add an interaction of the two variables. For

signals “within prior”, the coefficient at the interaction term is equal to 0.33 and significant

at the 5% level. The results show that, in addition to motivated reasoning about the source

of the signal, there is an asymmetry in translating those beliefs to the posterior beliefs about

the rank, and participants who received “good” signals were more consistent in their final

reports.
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2.4. Additional Evidence

In this section, I examine a complementary data set of subjects’ answers to question-

naires described in Section 2.1. First, I look at the subjects’ personality traits, anxiety levels,

as well as habitual use of emotion regulation strategies, and report their correlations with

subjects’ decisions in the second task.

2.4.1. Emotion Regulation Questionnaire. In Table 2.7, I report correlations between

subjects’ decisions in the treatment condition (relative to the Bayesian benchmark) and BIG-5

and STAI. The absolute deviations from Bayesian updating are correlated with the habitual

use of reappraisal. The coefficient value of −0.18 indicates a weak, negative correlation sig-

nificant at the 0.05 level. In Table 2.8, I present the estimates of regressions based on deci-

sions made by participants in the treatment condition. I regress the independent variable,

the absolute deviations from Bayesian update, on the independent variable “Reappraisal”

that measures subject’s habitual use of reappraisal. The coefficient at the “Reappraisal" vari-

able is negative and significant at the 0.05 level. Reporting one point higher response on the

7-point Likert scale in questions about one’s habitual use of reappraisal leads to a 3-point

decrease in the distance from Bayesian update. The value doesn’t change much if I control

TABLE 2.7. Correlations between the deviation from rationality and personal
traits in the Treatment condition.

DevB Extr Cons Open Neur Agre Trait State Reapp Supr

DevB 1.00
Extr 0.00 1.00
Cons 0.05 −0.01 1.00
Open −0.09 0.22∗ 0.10 1.00
Neur 0.12 −0.24∗ −0.26∗ 0.16∗ 1.00
Agre −0.03 0.07 0.07 0.07 −0.13 1.00
Trait −0.07 0.29∗ 0.35∗ −0.09 −0.71∗ 0.23∗ 1.00
State −0.15 0.28∗ 0.17∗ −0.03 −0.58∗ 0.24∗ 0.70∗ 1.00
Reapp −0.18∗ 0.09 0.15 0.18∗ −0.17∗ 0.22∗ 0.13 0.17∗ 1.00
Supr −0.04 −0.19∗ 0.05 −0.17∗ −0.04 0.03 −0.13 −0.14 0.38∗ 1.00
∗ p < 0.05

Note: “DevB” stands for deviations from Bayesian update. I use the labels: “Extr”, “Cons”, “Open”,
“Neur”, and “Agre” for BIG-5 personality traits: extraversion, conscientiousness, openness to experi-
ence, agreeableness and neuroticism, respectively. I denote Anxiety trait and state with “Trait” and
“State” (the two measures are defined such that a higher score indicates less anxious individual).
“Reapp” and “Supr” stands for emotion regulation strategies: reappraisal and suppression.
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for subject’s rank, median belief or whether the signal he received was below or above his

median belief or not within the prior belief distribution. The results show that subjects’ de-

cisions correlate with the way they handle positive and negative emotions in their daily life.

The more used they are to regulate their emotions by thinking differently about the situation

they found themselves in, the more they adhere to rational decision-making. To investigate

this further, I take a closer look at emotion regulation strategies together with self-reported

emotions experienced before the task.

TABLE 2.8. The effect of reappraisal on deviations from rationality.

(1) (2)

Reappraisal -2.96∗∗ -2.82∗∗
(1.29) (1.29)

Constant 26.61∗∗∗ 27.33∗∗∗
(5.76) (7.50)

Controls No Yes

Observations 160 160

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is absolute devia-
tions from the Bayesian update. Controls include
the subject’s rank and median prior belief, a dummy
variable equal 1 if the signal was below or equal
to the median prior belief, and a dummy variable
equal 1 if the signal was outside of the subject’s prior
beliefs.

2.4.2. Test-related Emotions. In addition to the data presented so far, I collected survey

data about test-related emotions experienced by participants before receiving the signal.22

Out of eight test-related emotions, anxiety and hopelessness significantly correlate with

absolute deviations from Bayesian updating in the treatment condition. However, when

I regressed absolute deviations from Bayesian updating on all test-related emotions, only

hopelessness was highly statistically significant (p-value = 0.02) and remained so, even after

adding additional controls on subjects’ rank, median belief, and signal’s value or its relation

to the subject’s beliefs.

22In the instructions displayed on the screen, I highlighted that questions refer to the particular moment in time:
after learning the nature of the task, but before seeing the number.
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Hopelessness was measured by agreement with the statement “I felt that I would rather

not do this part because I’ve lost all hope.”. As reported in the first column in Table 2.8, stat-

ing a 1-point higher answer to the question translates to an increase of 4.3 points in abso-

lute deviation from Bayesian updating (controlling for all remaining test-related emotions).

The coefficient at the “Hopelessness" variable remains unchanged if I control for the emo-

tion regulation strategies: suppression and reappraisal (Specification 2) in Table 2.8. Of the

two strategies, only reappraisal is different from zero and significant. Moreover, it has the ex-

pected negative sign and value similar to that reported in Table 2.4. I hypothesize that the use

of reappraisal counteracts the negative impact of Hopelessness. To test this hypothesis, I add

to the regression the interaction of “Hopelessness" and “Reappraisal". I report the estimation

results in the last column of Table 2.8. The coefficient at the interaction term is negative and

highly significant, whereas the coefficient at the “Reappraisal" variable loses its significance.

At the same time, the coefficient at Hopelessness increases fourfold and gains significance,

suggesting that its impact is much larger without the offsetting effect of reappraisal.

TABLE 2.9. The effect of emotions on deviations from rationality.

(1) (2) (3)

Hopelessness 4.31∗∗ 4.30∗∗ 17.23∗∗∗
(1.83) (1.82) (4.62)

Reappraisal -2.82∗∗ 2.21
(1.42) (2.16)

Hopelessness × Reappraisal -3.10∗∗∗
(1.02)

Constant 10.00 20.18∗∗ 2.73
(8.28) (10.11) (11.40)

Controls 1 Yes Yes Yes

Controls 2 No Yes Yes

Observations 160 160 160

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is absolute deviations from the Bayesian
update. The independent variable “Hopelessness” was measured by the
extent to which a subject agreed with the statement “I felt that I would
rather not do this part because I’ve lost all hope.”. “Reappraisal” refers
to self-reported habitual use of reappraisal. Controls 1 include all other
emotions reported by subjects; Controls 2 include the measure of habit-
ual use of suppression.
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While only suggestive, the evidence presented in this section supports the view that the

treatment effect is stemming from the visceral, emotion-based reaction to signals. That reac-

tion lies at the heart of what economists call “the belief-based utility” and is the driving force

behind asymmetric updating.

2.5. Conclusions

In this paper, I propose a new test of the hypothesis that people interpret favorable feed-

back as more informative. To this end, I designed a simple experiment with two conditions.

In the treatment condition, participants observe a signal about their intelligence and decide

whether the signal is informative or not. In the control condition, participants make the same

choice without receiving a factual signal: they are asked to specify their actions conditioning

on possible signal realizations. This design allows me not only to pin down the causal effect of

signal valence on updating but also to uncover the underlying mechanism. The experimen-

tal data reveal that people tend to interpret favorable signals as more informative due to the

changes in belief-based utility. Participants reported a 10 percentage point higher probability

of a positive signal being entirely informative about their rank after receiving it, compared to

what they would conclude ex-ante, without observing its realization. The results cast a new

light on the origins of overconfidence, pointing towards the role of affect in asymmetric up-

dating. Moreover, we observe additional asymmetry in how subjects translate their beliefs

about signal informativeness into beliefs about ability – participants who received “good”

signals were more consistent with their previous reports. Even though signals significantly

shifted subjects’ beliefs, they did it selectively, with “good” signals having a larger impact on

final beliefs. As a result, the aggregate overconfidence level remained the same at the end of

the experiment.
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APPENDIX A

Differences between the treatment and the control group

TABLE A.1. Differences between participants in Treatment and Control.

p-value

Treatment Control H0: Diff < 0 Diff ̸= 0 Diff > 0

IQ score 5.12 5.16 0.47 0.94 0.53
(0.30) (0.50)

Rank 5.59 5.82 0.31 0.61 0.69
(0.21) (0.39)

Bias 1.18 1.23 0.46 0.91 0.54
(0.22) (0.43)

Absolute Bias 2.38 2.60 0.24 0.47 0.76
(0.14) (0.28)

N 160 49

Note: “Bias” is defined as difference between rank and median belief. Standard errors in parenthesis.

1
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TABLE A.2. Differences in prior belief distributions (Treatment vs Control).

p-value

Treatment Control H0: Diff < 0 Diff ̸= 0 Diff > 0

Prior Beliefs:

Mean 4.43 4.56 0.33 0.65 0.67
(0.14) (0.26)

1st Quartile 3.69 3.79 0.35 0.70 0.65
(0.13) (0.27)

Median 4.41 4.58 0.28 0.56 0.72
(0.13) (0.27)

3r d Quartile 5.11 5.34 0.23 0.45 0.77
(0.15) (0.27)

N 160 49

TABLE A.3. Deviations from Bayes in the main task (Treatment vs Control).

Dependent variable: absolute difference between
subjects’ reports and the Bayesian benchmark.

(1)

Treatment -0.46
(1.72)

Constant 14.23∗∗∗
(0.93)

Observations 650

Standard errors clustered at the participant level.

Their values in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is the absolute difference between subjects’
belief about the box and the Bayesian benchmark (in cases when subjects’
assigned zero prior probability to the signal displayed on-screen the ratio-
nal benchmark is assumed to be 0). I interpret the dependent variable as a
measure of rationality demonstrated during the task. “Treatment” is an in-
dicator variable taking value 1 if the subject was in the Treatment condition
and 0 otherwise (the Control condition).
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APPENDIX B

Additional Results

B.1. Defining signal valence in absolute terms

FIGURE B.1. The average deviation from Bayes for signals above/below 5.
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TABLE B.1. The effect of the signal’s valence defined in absolute terms.

(1) (2)

Bayes 1.037∗∗∗ 1.048∗∗∗
(0.125) (0.125)

Good Signal (below 5) 5.699 3.446
(4.511) (4.965)

Rank -1.038
(0.960)

Constant -10.732 -4.456
(8.189) (10.030)

N 87 87

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.2. Results based on the entire sample

In this section, we replicate the results from Table 2.2 and Table 2.3 using the data from

the entire sample. The results show that the coefficients at the “Good Signal” variable and the

interaction term are very similar to the ones reported in the main text.

TABLE B.2. The effect of the signal’s valence in the Treatment condition.

(1) (2) (3) (4) (5)

Bayes 0.713∗∗∗ 0.992∗∗∗ 0.956∗∗∗ 0.956∗∗∗ 0.967∗∗∗
(0.051) (0.129) (0.130) (0.131) (0.131)

Good Signal 9.694∗∗∗ 8.958∗∗ 13.629∗∗∗ 13.662∗∗∗ 12.320∗∗∗
(3.496) (3.461) (4.558) (4.573) (4.616)

Outside Prior 20.239∗∗ 22.315∗∗ 22.041∗∗ 23.072∗∗∗
(8.633) (8.694) (8.775) (8.745)

Outside Prior × Good Signal -10.893 -10.302 -9.745
(6.961) (7.289) (7.255)

Median Belief -0.283 0.260
(1.004) (1.050)

Rank -1.079∗
(0.644)

Constant 9.231∗∗∗ -9.241 -9.527 -8.217 -4.970
(2.515) (8.260) (8.224) (9.466) (9.609)

N 160 160 160 160 160

Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is the number of points allocated to Box 2 by participants in the treatment
condition. “Bayes” denotes the number of points that should be allocated according to the Bayes’ rule (or
zero if a subject assigned zero prior probability to the signal displayed on screen). “Good Signal” indicator
variable takes value 1 if the signal was below or equal to the median of subject’s belief distribution, and 0
otherwise. “Outside Prior” indicator variable takes value 1 if a subject assigned zero prior probability to the
rank corresponding to the signal he received.

1
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TABLE B.3. The effect of the signal’s valence in the two conditions.

(1) (2) (3) (4) (5)

Bayes 0.695∗∗∗ 0.670∗∗∗ 0.670∗∗∗ 0.767∗∗∗ 0.765∗∗∗
(0.039) (0.039) (0.039) (0.093) (0.093)

Treatment 4.547∗∗ 4.841∗∗ 1.616 1.012 1.015
(1.952) (1.914) (2.601) (4.105) (4.136)

Good Signal 5.0767∗∗ 3.290 5.944∗ 5.924∗
(2.140) (2.587) (3.362) (3.361)

Treatment × Good 7.357∗ 9.474∗ 9.875∗
(5.415) (5.407) (5.437)

Outside Prior 9.962∗ 10.004∗
( 5.890) (5.951)

Controls 1 No No No Yes Yes

Controls 2 No No No No Yes

Constant 9.494 7.853 8.685 0.381 -1.477
(1.291) (1.464) (1.640) (5.651) (6.249)

N 650 650 650 650 650

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is the number of points allocated to Box 2 in the treatment
condition. “Bayes” is the number of points that should be allocated according to the Bayes’
rule. The sample is restricted to the participants who received (or considered) a signal to
which they assigned non-zero probability.“Treatment” is a variable indicating assignment to
the treatment condition. “Good Signal” indicator variable takes value 1 if the signal was be-
low or equal to the median of subject’s belief distribution, and 0 otherwise. “Outside Prior”
is an indicator variable taking value 1 if a subject assigned a probability of zero to the signal.
Controls 1 include interactions of the “Outside Prior” variable with “Treatment” and “Good
Signal”. Controls 2 include individual rank and median belief.

1
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B.3. Results based on a restricted sample

TABLE B.4. The effect of the signal’s valence (restricted sample).

(1) (2) (3) (4) (5)

Bayes 0.795∗∗∗ 0.735∗∗∗ 0.731∗∗∗ 0.732∗∗∗ 0.731∗∗∗
(0.101) (0.104) (0.104) (0.104) (0.103)

Treatment 8.551∗∗ 9.140∗∗ 3.668 3.480 3.173
(3.669) (3.508) (5.379) (5.392) (5.458)

Good Signal 7.696∗∗ 6.323∗ 6.260∗ 6.226∗
(3.021) (3.338) (3.363) (3.341)

Treatment × Good 9.799 10.005 10.019
(6.784) (6.839) (6.952)

Median Belief 0.351 0.131
(1.230) (1.240)

Rank 0.629
(0.642)

Constant 2.311 1.230 2.299 0.700 -2.023
(5.850) (5.996) (8.102) (7.443) (8.526)

N 270 270 270 270 270

Standard errors clustered at individual level. Their values in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is the number of points allocated to Box 2 in the treatment
condition. “Bayes” is the number of points that should be allocated according to the Bayes’
rule. The sample is restricted to the participants who were not guessing their own rank.
“Treatment” is a variable indicating assignment to the treatment condition. “Good Signal”
indicator variable takes value 1 if the signal was below or equal to the median of subject’s
belief distribution, and 0 otherwise.
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APPENDIX C

Manipulation Check

I argue that the treatment effect is caused by the utility from beliefs induced by the signal.

First of all, I provide evidence that the signal received in the treatment condition affected sub-

jects’ beliefs. In Figure C.1, I present subjects’ beliefs before and after the main task, that is,

beliefs revealed in the first and the second belief elicitation. The graph shows points allocated

to the rank corresponding to the number displayed on subjects’ screens. I compare these val-

ues to the counterfactual: how many points they would allocate to the respective ranks if they

did not receive a signal. There is no change in beliefs in the counterfactual scenario (denoted

with a blue line). In the treatment condition, the change in beliefs is significant (marked in

red on the graph). Subjects allocated almost two times as many points in the second belief

elicitation to the rank displayed on the screen.

Second, I exclude alternative hypotheses. One may worry that subjects in the control

condition exerted less effort per decision (e.g., due to increasing marginal cost of effort or

FIGURE C.1. Beliefs before and after the signal.
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lower monetary incentives in the control condition). To alleviate this concern, we asked par-

ticipants in the treatment condition, before they received an actual signal, to consider about

every possible signal realization. We showed them, one by one, every possible number and

asked them to think what they would do if this number was drawn later. This additional part

makes the total time spent on the second task similar in both conditions. One may argue that

the total time spent on the task may not be a perfect measure of effort and there still may be

differences in cognitive effort exerted when making a decision in the treatment and in the

control condition. However, if this was the case, one would expect larger deviations from the

rational benchmark in the control condition. As reported in Table A.3 in Appendix A, there

is no significant difference in absolute deviations from the Bayesian benchmark in the two

conditions. I provide additional evidence to support my interpretation of the results as being

driven by changes in belief-based utility in Section 2.4.
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APPENDIX D

Literature: Design Comparison

The experiment developed for this paper differs from designs used in the literature in

several ways. First of all, the new control condition addresses the problem of causal identi-

fication of the effect of signal valence, as described in the main body of the paper. Second,

also the treatment condition diverges from the paradigm commonly used in experimental

studies on belief formation. Guided by the hypothesis that it is the belief-based utility what

drives the updating about ego-relevant characteristics, I aimed at designing an updating task

that induces a strong emotional reaction to the signal. In order to clarify the differences be-

tween my design and experiments conducted in the past, I gathered and described dissimilar

features of the design in Table D.1.

While there are many papers studying overconfidence and asymmetric updating, in this

review, I focus on papers that study updating about ego-relevant characteristics and do so

by asking subjects to update their beliefs about their relative performance. For a review of

the beliefs updating literature that includes updating about absolute performance as well as

updating about non-ego-relevant parameters, I refer the reader to the recent works of Barron

(2021) and Coutts (2019). An even broader review of the literature on errors in probabilistic

reasoning could be found in Benjamin (2019).

The papers gathered in the first column in Table D.1 are categorized based on various de-

sign features. In the second column, I describe the corresponding design feature used in my

experiment. The last column presents the rationale behind choosing this particular feature

for my work. One important design feature that requires an additional comment is the infor-

mation structure. In almost all of the work reviewed in this section, the information structure

follows the scheme presented in Figure D.1.1 There are two states of the world H and L in-

dicating whether one’s score was in the upper or the lower half of the test score distribution,

and each subject receives a signal that is informative about the state with known precision,

1See Table D.1 for the references. Two papers that deviate from this signal structure are Eil and Rao (2011) and
Zimmermann (2020) who introduce 10 states of the world and binary signals. A signal informs a subject whether
or not he ranked higher than another participant who was randomly drawn from a group of 10 (see Figure D.3; I
denote the signals with H and L). The signal precision depends on the state and, for the first signal, can take one
of the values: 55.6%, 66.7%, 77.8%, 88.9% or 100% (for the second signal it is 50%, 62.5%, 75%, 87.5% or 100%, as
comparisons are made without replacement).
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e.g., 75%, as shown in Figure D.1. However, this signal structure becomes more complicated

if extended to a larger signal and state space (see Figure D.2) and I am not aware of any exper-

imental work that implements it. The papers that used 10 states of the world in their design,

Eil and Rao (2011) and Zimmermann (2020), use binary signals (see Figure D.3).

FIGURE D.1. Design used in the literature (2 states).

FIGURE D.2. Design used in the literature extended to 10 states.

FIGURE D.3. Design used in Eil and Rao (2011) and Zimmermann (2020).
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The design used in the literature extended to 10 states (Figure D.2) can be simplified by

distinguishing two urns: one with balls indicating the state (“IQ” urn), and the other with

every possible number (“Random” urn).2 This is presented on Figure D.4 and Figure D.5 that

illustrate the cases of 2 and 10 states of the world, respectively. Note that the information

structure introduced in Figure D.4 is equivalent to the one used in the literature that we de-

picted on Figure D.1, if the IQ urn and the Random urn are being selected with equal prob-

ability. If the state is H , a ball indicating H is drawn with probability 0.5 ·0.5+0.5 ·1 = 0.75,

exactly the same as in Figure D.1. Similarly, Figure D.5 is equivalent to the information struc-

ture in Figure D.2 with the signal precision of 55%.

FIGURE D.4. Design developed in this paper (2 states).

FIGURE D.5. Design developed in this paper (10 states).

2One could also distinguish the two urns along the dashed line in Figure D.2, with the Random urn containing
all numbers except the one that indicates the state. This design, however, lacks the intuitive interpretation of “a
random urn” from which any number can be drawn with the same probability, hence it might be more difficult to
explain to the participants.
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TABLE D.1. Literarure review: design comparison.

Other Work This Paper Purpose

1. Number of signals:

– more than 1 signal – 1 signal – separating reaction to
signals from information
aggregation.Eil and Rao, 2011; Buser et al., 2018; Coutts, 2019;

Zimmermann, 2020; Drobner and Goerg, 2021;
Möbius et al., 2022.

– 1 signal

Ertac, 2011; Schwardmann and Van der Weele, 2019;

Drobner, 2022.

2. State space, signal space, signal precision:

– 2 states (above or below 50%;
above or below 85% in Coutts, 2019),

– 2 signal values,
– signal precision: 67%

– 10 states (deciles
of distribution)

– 10 signal values
– a signal is either

perfectly
informative
or entirely
uninformative
(with equal
probability.).

– richer state space and
signal space to induce a
stronger emotional reaction
to a signal (based on the
observation that it is more
painful for subjects to be
in the bottom 10% than in
the bottom 50%).

– by introducing signals that
are perfectly informative
or entirely uninformative
(with equal probability),
we reduce the compression
effect described by
Ambuehl and Li (2018).

Coutts, 2019; Drobner and Goerg, 2021; Drobner,

2022.

– 2 states (above or below 50%)
– 2 signal values
– signal precision: 70%

Buser et al., 2018.

– 2 states (above or below 50%)
– 2 signal values
– signal precision: 75%

Schwardmann and Van der Weele, 2019;

Möbius et al., 2022.

– 3 states (lower 20%, middle 60%,
or upper 20%)

– 2 signal values
– perfectly informative

but coarse signals

Ertac, 2011.

– 10 states (deciles of the distribution)
– 2 signal values
– signal precision depends on the state:

56%, 67%, 78%, 89% or 100%.

Eil and Rao, 2011; Zimmermann, 2020.
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Other Work This Paper Purpose

3. Information structure and implementation:

– information structure as in Figure D.1
– a signal is true or false with precision

known to the subjects

– info structure
as in Figure D.4.

It is equivalent
to the structure
in Figure D.2
with a signal
precision
of 55%.

– it would not be possible
to introduce richer state
and signal space using any
other information structure
from the literature.Buser et al., 2018; Coutts, 2019; Schwardmann and

Van der Weele, 2019; Drobner and Goerg, 2021;
Möbius et al., 2022. Drobner, 2022, uses the same
information structure (Figure D.1), but the signal is a
comparison with another subject.

– information structure as in Figure D.3
– a signal is a pairwise comparison

with another subject

Eil and Rao, 2011; Zimmermann, 2020.

– a signal is always true, but only reveals
whether the subject is in the top or
the bottom half of the distribution,
and not precisely the state

Ertac, 2011.

4. Comparison group:

– a group of 4 – 300 subjects – a larger comparison group
makes it more difficult to
use reappraisal to lessen
the impact of the negative
signal (e.g., in the case of
a group of four, one can
easily attribute a negative
signal to being assigned to
a particularly strong pair
of subjects). When there is
another way of “explaining”
a bad signal, there may be
no need for (costly) belief
distortion.

Schwardmann and Van der Weele, 2019; Drobner,

2022.

– a group of 8

Buser et al., 2018.

– a group of 10

Eil and Rao, 2011; Ertac, 2011;

Zimmermann, 2020.

– a group larger than 10

Coutts, 2019; Drobner and Goerg, 2021;

Möbius et al., 2022.

5. Timing of revealing information:

– In most of the papers mentioned above
it is unclear whether and when subjects
expected the resolution of uncertainty
(see Drobner, 2022, for a comprehensive
literature review). This problem was
noticed and tested in a contemporaneous
work of Drobner (2022).

– available online
one week after
the session

– to describe the behavior with
a one-period model without
dynamic concerns

– to bring the design closer
to the real-world situations:
grades are rarely immediate,
need to be checked etc.

114



APPENDIX E

Data Analysis: Payoffs

In this section, I look at the payoffs from the main task in the treatment and the control

conditions. In both conditions, subjects were remunerated with “lottery tickets”: a higher

probability of receiving a large reward of 12 Euro. Decisions of participants in the treatment

condition brought them, on average, 65.5% probability of receiving a large reward. At the

same time, the average payoff taking all decisions in the control condition amounts to 78.2%

probability of receiving a large reward (see Table E.1). However, the actual payoffs subjects

received in the Control condition were much lower and not significantly different from the

payoffs of participants in the Treatment condition. The discrepancy between the two is due

to the fact that participants made much worse decisions when deciding about their actual

rank than when deciding about a random number. This holds true both for the Treatment

and the Control condition.

There are notable differences when comparing decisions in the Treatment and the Con-

trol condition separately for signals equal to one’s rank and other signals, see Table E.2. When

guessing about their actual rank, participants in the Treatment condition did better than sub-

jects in the Control, although the difference of 8.4 percentage points is not statistically signif-

icant (p-value = 0.118). At the same time, subjects in the Control condition performed bet-

ter when evaluating signals different from their true rank – the difference of 6.15 percentage

points is significant at the 5% level (p-value = 0.024). The average payoffs in the two con-

ditions mask considerable heterogeneity, which should be taken into account when making

welfare comparisons.
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TABLE E.1. Differences in payoffs from the main task.

p-value

Treatment Control H0: Diff < 0 Diff ̸= 0 Diff > 0

Payoffs (all decisions) 65.57% 78.16% 0.000 0.000 1.000
(2.79) (1.33)

Payoffs (actual draw) 65.57% 64.96% 0.541 0.919 0.459
(2.79) (5.60)

N 160 49

TABLE E.2. Differences in payoffs when guessing one’s rank.

p-value

Treatment Control H0: Diff < 0 Diff ̸= 0 Diff > 0

Payoffs (Signal = Rank) 53.51% 45.11% 0.882 0.237 0.118
(4.41) (5.57)

N 73 49

Payoffs (Signal ̸= Rank) 75.69% 81.84% 0.024 0.048 0.976
(3.19) (1.23)

N 87 441

E.1. Payoffs from Belief Elicitation I and II

In this section, I describe subjects’ payoffs from the first and the second belief elicitation

as well as the payoffs subjects would have gotten if they had rationally updated their beliefs

about rank. First, let me compare the payoffs in the two conditions. The results are gathered

in Table E.3. While signals moved subjects’ beliefs in the Treatment condition ensuring a

larger payoff, there is no significant difference in payoffs in the Control condition (which

should not come as a surprise, since participants in the Control condition did not receive any

new information).
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TABLE E.3. Payoffs from Belief Elicitation I and II in the two conditions.

Belief Belief p-value
Elicitation I Elicitation II H0: Diff < 0 Diff ̸= 0 Diff > 0

Treatment 47.35% 51.02% 0.046 0.092 0.954
(1.32) (1.72)

Control 45.97% 48.41% 0.236 0.471 0.764
(2.39) (2.41)

TABLE E.4. Payoffs from Belief Elicitation II and the rational update.

Payoff Payoff p-value
Elicitation II if rational Diff H0: Diff < 0 Diff ̸= 0 Diff > 0

51.02% 53.87% 2.86% 0.97 0.06 0.03
(1.72) (2.37)

Sample restricted to the subjects who assigned non-zero prior to the signal:

Payoff Payoff p-value
Elicitation II if rational Diff H0: Diff < 0 Diff ̸= 0 Diff > 0

55.83% 64.03% 8.20% 1.00 0.00 0.00
(2.37) (2.31)

Since only participants in Treatment received information that shifted their beliefs, let me

focus only on these subjects. The difference in payoffs between the first and the second be-

lief elicitation shows that even though the aggregate belief distribution seems to change little

after the task (see Figure 2.10), the individual distributions changed in a way that guaranteed

higher payoffs. Still, the payoffs would have been 2.86 percentage points higher (5.61% in-

crease in relative terms), if participants had updated their beliefs rationally based on their

prior belief distribution and the signal they received. The averages and the corresponding

tests are gathered in Table E.4. However, the first difference was calculated including par-

ticipants who assigned a prior probability of zero to the signal displayed on their screens.

For those subjects, the rational posterior is assumed to be zero, and it reduces the average
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difference. Indeed, for participants who assigned a non-zero prior probability to the signal

displayed on-screen, the difference between the second belief elicitation and the rational

benchmark is equal to 8.20 percentage points (14.69% increase in relative terms). It means

that, for those participants, the payoff would have been almost 15% higher, if they had up-

dated according to the Bayes rule.

Those subjects would also be better-off if they formed a rational posterior using their be-

liefs about the box. In Table E.5, I compare the payoffs from the second belief elicitation with

the payoffs that participants would have gotten if they updated their beliefs about the rank

in a way consistent with their decisions about the signal. The difference between payoffs in

Belief Elicitation II and the Consistent Posterior is equal to 2.42 percentage points (4.74% in-

crease in relative terms) and is significant at the 10% level. If we restrict the sample to the

participants who assigned non-zero prior belief to the signal they received, the difference in-

creases to 5.50 percentage points (9.85% increase in relative terms) and is significant at the

1% level.

TABLE E.5. Payoffs from Belief Elicitation II and consistent beliefs.

Payoff Payoff p-value
Elicitation II if consistent Diff H0: Diff < 0 Diff ̸= 0 Diff > 0

51.02% 53.44% 2.42% 0.948 0.103 0.051
(1.72) (2.31)

Sample restricted to the subjects who assigned non-zero prior to the signal:

Payoff Payoff p-value
Elicitation II if consistent Diff H0: Diff < 0 Diff ̸= 0 Diff > 0

55.83% 61.33% 5.50% 0.993 0.013 0.007
(2.37) (3.70)

Note: “Payoff if consistent” refers to the payoff from Belief Elicitation II if subjects formed
beliefs consistent with their inference about the signal. “Restricted sample” includes only
participants who received a signal to which they assigned a non-zero prior probability (87
subjects in the Treatment condition).
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APPENDIX F

Information Acquisition

In this section, I describe the data from the very last part of the study. As I already men-

tioned in the main text, we informed participants that they will not learn the test result on the

day of the experiment. They could obtain this information only one week later by clicking on

a website that was created for the experiment. Every participant was given a sealed envelope

with a personal link inside.1 Under this link, one week after their session, they could find their

rank in the IQ test, as well as the details of their payment. This personal information was not

accessible to other participants, as only the person who knew the link (part of which was the

participant’s number and a four-digit code) could access it. The website was programmed in

oTree and enabled us to collect information about participants who decided to check it.

Overall, 51% of all participants checked their links even though this part of the study was

not incentivized (subjects did not get any money for it). There is no significant difference

in information acquisition between the treatment and the control group (p-value = 0.962).

While we cannot say for sure what motivated subjects to click or not (the reasons may range

from simply losing the envelope to various motives described in the information avoidance

literature, see Golman et al., 2017, for a literature review), we can check for individual traits

that correlate with subjects’ choices.

The results of simple regression analysis are gathered in Table F.1. The independent vari-

able is an indicator variable taking value 1 if a subject decided to check the website. We ob-

serve that the lower the relative performance of a subject (the higher the rank) the lower the

likelihood of checking the link. A person whose rank was Rank 1 will acquire information

with 74% probability, while a subject ranked 10 – only with 29% chance. One possible ex-

planation is that less cognitively able participants may be more likely to forget or lose the

envelope, however, the next column in the regression shows that beliefs about the rank play

a role. Participants with higher beliefs (lower perceived performance) tend to check the link

1Each envelope was placed in front of the subject, and its purpose was explained in the instructions. At the end
of the experiment, research assistants reminded subjects not to forget the envelopes. The text inside informed
subjects about the date and the type of information they can find under the link.
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TABLE F.1. Performance, beliefs, and information acquisition.

(1) (2) (3) (4) (5)

Median Belief -0.05∗∗
(0.02)

Bias 0.05∗∗
(0.02)

Overconfident 0.15
(0.09)

Rank -0.05∗∗∗ -0.04∗∗∗ -0.09∗∗∗ -0.07∗∗∗
(0.01) (0.01) (0.02) (0.017)

Constant 0.51∗∗∗ 0.79∗∗∗ 0.95∗∗∗ 0.95∗∗∗ 0.80∗∗∗
(0.03) (0.08) (0.10) (0.10) (0.08)

Observations 209 209 209 209 209

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is a dummy variable indicating whether or not a par-
ticipant checked his IQ test result. The independent variable “Median Belief” refers
to the rank that lies in the middle of the subject’s prior belief distribution. “Bias” de-
notes the difference between the subject’s actual rank and his median belief. It takes
positive values for agents who overestimate their performance and negative values
for those who underestimate it. The indicator variable “Overconfident” takes value
1 if the subject’s bias is larger than zero.

less. An increase in the median belief by one rank translates to a 5 percentage point decrease

in the probability of acquiring information.

To further investigate the link between the subject’s rank, beliefs, and information ac-

quisition, we look at the effect of the subject’s bias, which we define as a difference between

one’s true rank and median belief (positive values indicate an overestimation of one’s relative

performance). The coefficient at the “Bias" variable is positive and significant, revealing that

the larger the bias the more likely a subject is to acquire information if his bias has a positive

sign (he tends to overestimate his performance) and the less likely if it has a negative sign

(he underestimates his performance). In other words, overconfident subjects tend to seek

information, while underconfident participants shy away from it. We obtain a qualitatively

similar result if we regress our dependent variable on an indicator variable “Overconfident”

taking value 1 if the subject’s bias, as defined above, is larger than zero. Being overconfident

is associated with a 15 percentage point higher probability of checking the link, controlling
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TABLE F.2. Received signals, beliefs, and information acquisition.

(1) (2) (3) (4) (5) (6)

Signal Value -0.026∗ -0.015 -0.014
(0.014) (0.014) (0.014)

Good Signal 0.002 -0.030 0.032
(0.080) (0.078) (0.081)

Median Belief -0.054∗∗ -0.058∗∗
(0.022) (0.024)

Rank -0.048∗∗∗ -0.038∗∗ -0.052∗∗∗ -0.040∗∗∗
(0.015) (0.015) (0.014) (0.015)

Constant 0.647 0.860∗∗∗ 1.035∗∗∗ 0.505∗∗∗ 0.813∗∗∗ 0.974∗∗∗
(0.087) (0.106) (0.128) (0.053) (0.099) (0.117)

Observations 160 160 160 160 160 160

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is a dummy variable indicating whether or not a participant checked
his IQ test result. The independent variable “Signal Value” denotes the value of the signal received (the
number displayed onscreen). Higher values indicate worse signals. The independent variable “Me-
dian Belief” refers to the rank that lies in the middle of the subject’s prior belief distribution. “Good
Signal” is a dummy variable taking value 1 if a signal was better or equal to the subject’s median belief.

for individual rank. However, the coefficient misses the conventional threshold for statistical

significance (p-value = 0.117).

The relationship between the signal received and information acquisition is less clear,

as presented in Table F.2. While the value of the signal seems to be related to our variable

of interest as expected (the higher the rank displayed on-screen the lower the probability

of checking the link), the effect is only significant at the 10% level (p-value = 0.071) and it

loses significance once we control for subject’s rank. There is also no significant effect of

the signal valence, nor a positive or a negative surprise (defined as a difference between the

signal and the median belief, not shown in the table). However, in all these cases, we can only

analyze the behavior of participants in the treatment condition – those who received signals

– reducing our sample size to 160. Any more complex relation between the subject’s rank,

beliefs, received signal, and information acquisition is unlikely to be found in the collected

dataset.

121



TABLE F.3. Personality traits and information acquisition.

(1) (2) (3)

Extraversion 0.003 0.008 0.009
(0.01) (0.01) (0.01)

Conscientiousness -0.015 -0.015 -0.012
(0.01) (0.01) (0.01)

Openness -0.007 -0.010 -0.011
(0.01) (0.01) (0.01)

Neuroticism -0.010 -0.008 -0.013
(0.01) (0.01) (0.01)

Agreeableness 0.019 0.012 0.014
(0.01) (0.01) (0.01)

Anxiety Trait -0.005
(0.01)

Anxiety State 0.002
(0.01)

Rank -0.049∗∗∗ -0.048∗∗∗
(0.01) (0.01)

Constant 0.589∗ 0.929∗∗∗ 1.089∗∗
(0.32) (0.32) (0.46)

Observations 209 209 209

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is a dummy variable indicating
whether or not a participant checked his IQ test result.

Last but not least, we look at correlations between information acquisition and personal-

ity traits, emotions experience during the task, and habitual use of emotion-regulation strate-

gies. We report no significant correlation between any of the Big-5 personality traits nor STAI

and information acquisition. In a regression including all personality and anxiety measures

as independent variables, only Agreeableness comes close to being statistically significant

(p-value = 0.107), with more agreeable individuals being more likely to check the link. How-

ever, its effect disappears if we control for the individual rank. In the second specification, we

regress our variable of interest on the measures of achievement emotions and emotion reg-

ulation strategies, controlling for the subject’s rank. Out of the eight achievement emotions,

two are significantly correlated with information acquisition: anger and anxiety. Reporting
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a 1 point higher feeling of anger on a 7-point Likert scale is associated with a 4.9 percentage

point lower probability of checking the link (p-value = 0.063). At the same time, reporting a

1 point higher feeling of anxiety is related to a 9.6 percentage point higher probability of ac-

quiring information (p-value = 0.040). Neither reappraisal nor suppression is correlated with

information acquisition.

TABLE F.4. Achievement emotions and information acquisition.

(1) (2) (3)

Enjoyment 0.004 -0.005 -0.006
(0.02) (0.02) (0.02)

Hope 0.006 -0.001 -0.003
(0.03) (0.03) (0.03)

Pride 0.044 0.050 0.050
(0.03) (0.03) (0.03)

Relief 0.046 0.044 0.043
(0.03) (0.03) (0.03)

Anger -0.043 -0.049∗ -0.047∗
(0.03) (0.03) (0.03)

Anxiety 0.089∗ 0.096∗∗ 0.095∗∗
(0.05) (0.05) (0.05)

Shame -0.024 -0.004 -0.004
(0.03) (0.03) (0.03)

Hopelessness 0.019 0.006 0.007
(0.04) (0.04) (0.04)

Reappraisal 0.022
(0.03)

Supression -0.020
(0.04)

Rank -0.048∗∗∗ -0.048∗∗∗
(0.01) (0.01)

Observations 209 209 209

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: The dependent variable is a dummy variable indicating
whether or not a participant checked his IQ test result. The in-
dependent variables denote survey measures of the achieve-
ment emotions. “Reapp” and “Supres” denote the two emo-
tion regulation strategies: reappraisal and supression. All
specifications include a constant (omitted in the table).
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CHAPTER 3

Hope for the Best, Prepare for the Worst: Signal Anticipation and

Ex-ante Belief Manipulation

This paper investigates how people form beliefs about parameters relevant to their self-

esteem. In particular, I look at the formation of beliefs about one’s cognitive ability (intel-

ligence). Beliefs about cognitive ability drive many economic decisions, e.g., the choice of

career path, the decision to become an entrepreneur, the formation of expectations about

future earnings, and consumption-savings decisions. A large body of work has shown that

people tend to overestimate their abilities – a bias known as overconfidence. While many pa-

pers document the bias and its consequences, there are still open questions about the way it

arises.1 The mechanism that I examine in this paper concerns systematic distortions in the

process of belief formation.

Most economists conceptualize belief formation as belief updating assuming that an

agent starts with a well-defined prior and incorporates new information using the Bayes’ rule.

Although it is a good approximation to reality in some contexts, the Bayesian model seems

to be less adequate in others. One such example is a situation in which the decision-maker

has a strong preference over the states of the world, as in the case of ego-relevant characteris-

tics. Several studies demonstrated that people significantly deviate from the Bayes’ rule when

forming beliefs about their intelligence or beauty (Benjamin, 2019). Yet, the direction of the

effect and its magnitude differ across studies.2

An alternative modeling approach, developed to explain unrealistically optimistic beliefs

in the financial domain (Brunnermeier and Parker, 2005), acknowledges additional motives

to form specific beliefs and allows an agent to directly choose her beliefs. The agent max-

imizes her consumption utility and utility derived from beliefs. When selecting her beliefs,

1For a comprehensive review of the literature on the origins of overconfidence I refer the reader to Burks et al.
(2013), Bénabou and Tirole (2016), and Huffman et al. (2022).
2Some authors found positive asymmetry in updating (Eil and Rao, 2011; Kozakiewicz, 2020; Drobner and Goerg,
2021; Möbius et al., 2022), others found no asymmetry (Buser et al., 2018; Schwardmann and Van der Weele, 2019;
Zimmermann, 2020), or even negative asymmetry (Ertac, 2011; Coutts, 2019).
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she faces a trade-off between belief accuracy – necessary to take a profit-maximizing action –

and their desirability. While some models predict overly optimistic beliefs (Brunnermeier and

Parker, 2005; Bracha and Brown, 2012; Caplin and J. V. Leahy, 2019), others describe condi-

tions under which the agent adopts pessimistic beliefs (Gollier and Muermann, 2010; Macera,

2014). Our theoretical framework builds upon the latter. I assume that the agent’s utility is

reference-dependent (Kőszegi and Rabin, 2006), hence I introduce incentives to adopt overly

pessimistic beliefs. The idea of reference-dependent utility from beliefs was developed by

Kőszegi and Rabin (2009). However, their approach is conceptually different, as beliefs are

not subject to a choice but are rationally formed based on credible plans of future behavior.3

The intuition behind the model presented in this paper is that people can “prepare them-

selves” for the arrival of new information by adopting overly pessimistic beliefs. The prior is

not fixed but can be manipulated depending on subjects’ expectations over the upcoming

signal. While the phenomenon of “expectation management” (also referred to as “bracing”)

is well-established in the psychological literature (see, for example, Shepperd et al., 1996; Car-

roll et al., 2006; Sweeny et al., 2006; Sweeny and Krizan, 2013), none of the studies look at a

shift in beliefs before a partial information revelation.4

Why would people brace themselves before receiving a noisy signal? If an agent expects

a signal to move his beliefs and bring him (dis)utility, he can lower his prior to 1) reduce

the painful downward shift in beliefs after a negative signal and 2) increase the pleasant up-

ward shift after a positive signal. The crucial assumption is that the utility from beliefs is

reference-dependent, and the current belief level serves as a reference point. Then, the agent

can increase his expected utility by shifting it – adopting a more pessimistic belief. However,

there is a trade-off: lower beliefs imply lower utility from beliefs right now. The solution to

the problem depends on the agent’s attitudes towards gains and losses in belief-based utility.

The model makes several predictions. First of all, when an agent expects to receive a noisy

signal, he chooses beliefs that are lower (more pessimistic) than the beliefs he would choose

3In the rational-expectations models, an agent derives utility from beliefs that are consistent with his actions in
equilibrium (Caplin and J. Leahy, 2001; Kőszegi and Rabin, 2009; Kőszegi, 2010).
4I postpone explaining why it is important to look at a noisy signal (partial information revelation) instead of the
outcome (full information revelation) until I describe the experimental design. The robust finding in the case of a
full information revelation (the state is fully revealed at the end of the waiting period) is that beliefs tend to follow
a downward path, reaching the lowest point right before learning the state. One would expect a similar shift in
beliefs, albeit with a lower magnitude, before a signal.
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if he did not expect any new information. In the latter, the incentives to hedge are miti-

gated, making the motive to maintain a positive self-view the dominant one. Second, more

loss-averse subjects will lower their beliefs to a larger extent. Intuitively, an agent who expe-

riences losses in belief-based utility as more painful will react more strongly to the prospect

of a signal. Third, the negative effect of loss aversion will be mitigated for agents with higher

ability. The probability of receiving a “bad” signal is lower for high-ability agents, resulting in

a lower weight placed on the loss component.

The model also predicts that agents who are non-loss-averse and have low ability will

overestimate their ability, and those characterized by aversion to losses and high ability will

underestimate it. The bias of agents who overestimate their ability (overconfident agents) is

expected to be larger than the bias of underconfident individuals. Since beliefs are driven

by loss aversion, so is the agent’s bias: it will be decreasing (increasing) in the loss aversion

parameter for overconfident (underconfident) agents.5

In order to test the model predictions, I designed a simple experiment. First, subjects

solved an IQ test that allowed us to measure their cognitive ability.6 After the test, they re-

ported subjective probability that their test score placed them in the i th decile of the distri-

bution of IQ test scores obtained from a large group of former participants. We informed

subjects that their results will be available to them online, one week after their session.7 I de-

layed the full information revelation to minimize confounding factors (see footnote 10) and

focus on the trade-off captured by the model.

I introduced two experimental conditions that varied with respect to the timing of infor-

mation given to subjects. In the Treatment condition, we informed participants before belief

elicitation that, later in the session, they will receive a noisy signal about their relative perfor-

mance. They were familiarized with the signal structure and instructed on how the signal will

be drawn. In the Control condition, participants received the same information but only after

5Here, I refer to the absolute bias (defined as the absolute difference between one’s beliefs and ability).
6I use cognitive ability as the ego-relevant parameter of choice for several reasons. First, intelligence is a personal
characteristic that people deeply care about. It is particularly relevant in a university setting (for this reason, I run
in-person sessions at the University of Bonn). Importantly, there are established methods to assess it, providing
us with a measure that is reliable, valid, and easy to obtain.
7Each participant was given a link to an anonymous website on which he could see, one week after the session, his
(and only his) IQ test result, position in the distribution, and payment details. Moreover, we prevented subjects
from inferring their scores from the final payoffs by adding up their earnings from different tasks. Subjects were
informed that they will be paid at the end of the session, but the details of their payments (how much they earned
in each task) will be available to them only one week later.
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they reported their prior beliefs. At the moment of belief elicitation, they had no information

about a signal. In both conditions, subjects completed additional tasks designed to obtain

two independent measures of loss aversion.8 The first measure was based on a hypothetical

scenario. Before the IQ test, participants were told to imagine that they took an important

exam and are about to receive information about its outcome – whether their result was bet-

ter or worse than they expected. The instructions made it clear that the signal will only shift

their beliefs from 50% to 70% and it will not fully reveal the state. Then, subjects answered

two hypothetical questions intended to assess their utility before receiving a signal. Those

who indicated higher responses on a 9-point Likert scale were classified as more loss-averse.

The second measure of loss aversion was based on the willingness to pay for a signal con-

ditional on its realization (unlike the first measure, the second measure was incentivized).

Participants were told that, before displaying a signal, the computer program will check the

draw and, depending on their choice for this realization, display it to them or not. They filled

in 10 price lists, one for each signal, knowing that one of them (the one corresponding to the

actual draw) would be implemented.

The experiment was conducted in the summer of 2022 at BonnEconLab – the decision lab

under the patronage of the University of Bonn. I collected data from 234 participants, mostly

university students. The sessions lasted around 85 minutes and the average earnings were

equal to 19 euros. I test the model predictions using the mean of individual belief distribu-

tion reported in the main task (the results are the same when I use the median or any quartile

instead). On average, subjects revealed the mean belief above the 6th decile of the distribu-

tion – the belief that was significantly higher than the average actual position. The average

treatment effect is negative, as predicted by the model, and equal to −0.25 (one-fourth of a

decile). Unfortunately, it is not significant at any acceptable level (p-value of one-sided t-test

= 0.287).

In order to test the second prediction of the model, I examine the relationship between

participants’ beliefs and their loss attitudes. The first measure of loss aversion is character-

ized by a distribution that is close to symmetric, with a mean of 4.84 and a standard deviation

of 1.76. The median is equal to 5, which is also the middle value on the Likert scale used in

8Goette et al. (2019) prove the importance of controlling for gain-loss attitudes when testing models of reference-
dependent preferences. They also show that loss attitudes are not correlated across domains, hence one could
not use the aversion to losses in the financial domain in place of belief-based utility.
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this task. The results of a regression analysis reveal heterogeneous treatment effects: more

loss-averse participants adopted more pessimistic beliefs in the Treatment condition. The

coefficient at the interaction between the Treatment dummy and the loss aversion parame-

ter is equal to −0.271 and is significant at the 5% level (p-value of one-sided t-test = 0.036).

There is no correlation between beliefs and the loss aversion parameter in the Control condi-

tion. Both results are in line with the model predictions. Moreover, the effect of loss aversion

on beliefs is mitigated for participants with higher ability (higher position in the IQ test score

distribution). As predicted, the coefficient at the interaction of the loss aversion parameter

and ability is positive and highly significant (p-value of one-sided t-test = 0.022). Lastly, I

estimate a saturated model, in which the mean belief is regressed on the treatment dummy,

the loss aversion parameter, subject’s ability, and their interactions. While the theory predicts

that the coefficient at triple interaction should be positive, I cannot confirm this in the data:

the estimated coefficient is equal to 0.001 and not significant.

The attempt to obtain a second measure of loss aversion was less successful. Most par-

ticipants were not willing to forgo as little as 10 cents to lower the probability of receiving a

signal. Around 80% of all decisions were payoff-maximizing and differed only in participant’s

decision to see or not to see the signal at the point of monetary indifference. This prevented

me from retrieving loss aversion parameters from the choice data. Instead, I coarsely classify

subjects as “loss-averse” and “non-loss-averse” based on their decisions regarding whether or

not to see the worst signals. I test the theory using an indicator variable “Loss Aversion”. The

effects are 20-50% lower and much noisier, however, it is reassuring to see that all estimates

go in the predicted direction.

Last but not least, I examine the data on subjects’ bias. I define a person as overconfi-

dent (underconfident) if their mean belief was higher (lower) than their position in the test

score distribution. 60% of participants were classified as overconfident, and 40% as under-

confident. As predicted by the model, the majority of the low-ability, non-lost-averse sub-

jects were overconfident (the fraction amounts to 94%). At the same time, the fraction of

underconfident among high-ability and loss-averse subjects was 74%. However, the relation-

ship between confidence and ability can arise mechanically in any setup with relative per-

formance: low-ability subjects are less likely to be underconfident because their beliefs are

bounded from below. To address this confound, I test whether the respective probabilities

are higher than they would be if subjects’ beliefs were assigned randomly. I simulate the data
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by randomly drawing ability and loss aversion parameters from their empirical distributions,

and beliefs from the uniform distribution. A comparison with coefficients estimated on sim-

ulated data strongly confirms the hypothesis for overconfident, but not for underconfident

agents.

Moreover, the absolute bias of overconfident subjects is 80% higher than the bias of un-

derconfident participants. The difference is significant at the 1% level, providing strong evi-

dence for the model. It is also much larger than any difference that emerged in the simulation:

the estimated coefficient is equal to 1.155, whereas the value at the 99th percentile of the dis-

tribution of simulated coefficients is lower than 0.5. For overconfident subjects, bias is driven

by the loss aversion parameter as predicted: a higher aversion to losses results in a lower bias.

I do not find the effect for underconfident subjects, which is not surprising – underconfident

participants tend to be of higher ability, and the model predicts that, for high-ability agents,

the effect of loss aversion is mitigated.

All things considered, the collected data is in line with the theory. Although the treatment

manipulation is rather subtle, it provides evidence for the mechanism of the model, that is,

the way loss aversion drives subjects’ beliefs in the two conditions. At the same time, all other

estimates have the predicted signs (including those that cannot be accepted with sufficient

confidence). Moreover, the evidence on over- and underconfidence provides further support

for the theory. These results are encouraging; they suggest that, with additional data, one can

confirm all predictions of the model.

This paper contributes to the empirical literature on belief formation. In particular, the

formation of beliefs when the decision-maker derives utility from his convictions.9 To the

best of my knowledge, it is the first paper to directly test a model of belief choice with reference-

dependent utility. Consequently, there is no study measuring gain-loss attitudes towards sig-

nals. A few papers looked at beliefs formed before learning the final outcome.10 This in-

cludes an experimental study by Van Dijk et al. (2003), which provides evidence on lowering

9Behavioral economics has long recognized anticipatory feelings – emotions such as anxiety or hope, arising
from beliefs about the future – as drivers of human behavior. One of the first papers incorporating anticipatory
emotions into an economic model were Akerlof and Dickens (1982) and Bell (1985).
10A set-up in which agents observe the outcome instead of receiving a noisy signal has several disadvantages.
First, the willingness to pay to get to know the result might reflect factors different from gain-loss attitudes, e.g.,
curiosity or a desire to end the painful waiting period. These are less of a concern when the state is not fully
revealed. Second, I aim to examine the functional form of belief-based utility. Providing evidence on the special
case of beliefs shifting to certainty would be less informative about the general formulation. Lastly, subjects might
respond to learning their IQ by manipulating their beliefs about test accuracy (Kozakiewicz, 2020). In this case,
the decision to lower one’s beliefs ex-ante would depend on the expected manipulation in the second period. By
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one’s beliefs before learning a test score.11 A more recent work by Drobner (2022) shows that

people update more optimistically when they know that the outcome will not be revealed to

them.12 Belief choice in a different setting was also studied in Engelmann et al. (2019). The

authors provide evidence on “wishful thinking” (Caplin and J. V. Leahy, 2019), a tendency to

adopt optimistic beliefs when expecting an unpleasant outcome. Contrary to my work, they

study the formation of beliefs about a physically painful experience (an electric shock) and

do not consider reference dependence. Other experimental literature focused so far on doc-

umenting deviations from the rational update (Eil and Rao, 2011; Ertac, 2011; Coutts, 2019;

Kozakiewicz, 2020; Drobner and Goerg, 2021; Möbius et al., 2022), with more recent papers

unraveling the factors driving these deviations. My results add to this line of research as they

suggest that the inconsistent findings in the updating literature might be partly due to differ-

ences in subjects’ expectations and gain-loss attitudes between the samples.

More broadly, my work contributes to the literature on motivated reasoning (see Bén-

abou and Tirole, 2016, for a review of the literature). This strand of research describes various

strategies that people use to bias their beliefs to achieve certain goals. I add to this litera-

ture by providing evidence on the functional form of belief-based utility, which can be used

further to describe processes behind phenomena such as asymmetric updating or informa-

tion avoidance. Moreover, this is the first paper to establish a direct link between gain-loss

attitudes and overconfidence. I propose and test a new mechanism that gives rise to overcon-

fidence, complementing the literature that investigates its origins (see, for example, Burks et

al., 2013; Schwardmann and Van der Weele, 2019; Huffman et al., 2022). The paper proceeds

as follows. In the next section, I describe the model. The experimental design is outlined in

Section 3.2 In Section 3.3, I formulate the hypotheses and explain in detail how I test them in

the data. The data analysis and results can be found in Section 3.4. The last section concludes.

3.1. Model

An agent is learning about an unknown, ego-relevant state of the world ω ∈ {H ,L}. Let us

interpret the state to be the level of cognitive ability, either high or low. The agent has a prior

postponing the full information revelation, we make this strategy less salient, so one can focus on the trade-off
described in the model.
11A result very much in line with the psychological literature on bracing (see footnote 4).
12In line with the updating literature, Drobner (2022) focuses on changes in beliefs and not the belief choice per
se. Although belief updating is no less important, I believe that the first step – how an agent forms her prior – is
necessary to fully understand the dynamics of belief formation.
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belief about his ability being high: p0. There are two periods t ∈ {0,1}. At the beginning of

the last period, Period 1, he receives a signal about the state s ∈ {H ,L} with known precision,

and forms a posterior belief p1. The agent updates his beliefs according to Bayes’ rule and

does not suffer from any information-processing bias. However, the agent derives utility from

his beliefs about his cognitive ability. At any point in time, his utility from beliefs is u(pt ) =
pt uH + (1− pt )uL .13 Because of belief-based utility, the agent has incentives to manipulate

his beliefs, forming a new prior p̃0, which then enters his utility function.

The manipulation of beliefs in Period 0 comes at a cost. First of all, there is a cost of belief

distortion, γ
2 (p̃0 − p0)2, that is a function of the distance to the true belief p0.14 Moreover,

the agent knows that he will receive a signal in Period 1 and, although he values his beliefs

in Period 0, he dislikes being negatively surprised by the signal. In Period 1, he experiences

1) utility from updated beliefs, and 2) gain-loss utility that is captured by a function µ(·) and

stems from a comparison between the utility induced by the posterior belief p1 and the utility

from prior beliefs.

In Period 0, the agent chooses p̃0 to maximize the following:

U0 = u(p̃0)+ P (s = H
∣∣p0)

[
u(p H

1 ) + µ
(
u(p H

1 )−u(p̃0)
)]

︸ ︷︷ ︸
the utility in Period 1 after a signal s = H

+

+P (s = L
∣∣p0)

[
u(pL

1 ) + µ
(
u(pL

1 )−u(p̃0)
)]

︸ ︷︷ ︸
the utility in Period 1 after a signal s = L

− γ

2
(p̃0 −p0)2,

(3.1)

where u(p̃0) = p̃0uH + (1 − p̃0)uL is utility from beliefs manipulated in Period 0, u(p H
1 ) =

p H
1 uH + (1− p H

1 )uL and u(pL
1 ) = pL

1 uH + (1− pL
1 )uL denote the utility from unmanipulated

beliefs shifted by a signal s = H and s = L, respectively. P (s = H
∣∣p0) denotes the probabil-

ity of receiving a “good” signal s = H given the prior belief p0. The probability of receiving

a “bad” signal is P (s = L
∣∣p0) = 1−P (s = H

∣∣p0). Our model is very similar to Gollier and Muer-

mann (2010), as the agent chooses subjective probabilities facing a trade-off between ex-ante

13The current belief-based utility could be also interpreted as anticipatory utility about future consumption. In
this interpretation, uH (uL) is the utility from being a high (low) type experienced in the future, e.g., a high con-
sumption level after getting a well-paid job as a high type.
14The parameter γ captures the costs that are unrelated to the gain-loss component of the utility function. They
can include, for example, the agent’s cognitive limitations or how far he can move his beliefs without losing con-
fidence in them. Although in principle these costs can differ depending on the direction of belief manipulation, I
assume that they are symmetrical.
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anticipatory utility and ex-post disappointment, but I add a quadratic cost of belief manip-

ulation as in Engelmann et al. (2019). In order to evaluate the utility in Period 1, I use the

gain-loss utility function as in Kőszegi and Rabin (2009): µ(x) = ηx for the arguments in the

domain of gains, and µ(x) = ληx in the domain of losses, with η > 0 and λ > 0. The pa-

rameter η denotes the weight placed on the gain-loss component and λ is the loss aversion

parameter. I set the reference point to the agent’s beliefs from the previous period. In what

follows, I focus on the case when an agent is in the gain domain after a good signal, and in

the loss domain after a bad signal.

Importantly, I do not allow an agent to freely choose every belief-based aspect of the prob-

lem. In doing so, I follow the literature (Brunnermeier and Parker, 2005; Gollier and Muer-

mann, 2010; Macera, 2014; Caplin and J. V. Leahy, 2019). I assume that 1) the agent is not

distorting the probability of receiving a “good” signal P (s = H
∣∣p0), and 2) the posterior prob-

abilities p H
1 and pL

1 follow from the true prior p0.15 The second point embodies the observa-

tion that, while people tend to perceive themselves in an unrealistically positive way, they do

not seem to act upon these beliefs all the time. While the assumption that people can hold

more than one belief might seem unusual, there is recent experimental evidence that people

hold multiple prior beliefs (Abdellaoui et al., 2021). One can also view this assumption as a

modeling technique, conceptually similar to describing time inconsistency with a dual-self

model (Fudenberg and Levine, 2006). I use it to describe an internal, subconscious process

of coming to the belief about one’s ability.

The first-order condition gives us the following formula for the optimal prior:

(3.2) p̃ *
0 = p0 + 1

γ

(
1−P (s = H

∣∣p0) η−P (s = L
∣∣p0) λη

)
(uH −uL).

Expecting to receive a signal creates an additional incentive for the agent to manipulate his

beliefs to 1) reduce the disutility from being negatively surprised, and 2) increase the util-

ity from a positive surprise. These two effects are weighted with the objective probabilities of

receiving a signal of each type. Additionally, the loss in belief-based utility might be more pro-

nounced than a similar gain; this idea is captured by the loss aversion parameter λ. The two

motives pull the beliefs downwards, counteracting the incentive to adopt overly optimistic

beliefs to derive higher utility in Period 0.

15The next step would be to develop a dynamic model, in which the agent can manipulate his belief in Period 1
and takes it into account when choosing beliefs in Period 0.
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3.1.1. No information about a signal. How one can describe an agent who does not

know that he will receive a signal? The answer to this question is relevant for our experi-

mental design. I model this situation in the following way. When choosing a new belief p̂0,

the agent knows that he will keep this belief in Period 1 and derive belief-based utility from

it. I assume that receiving a signal is not a zero-probability event – the agent assigns a prob-

ability ϵ to it. He expects to keep the manipulated belief with probability (1− ϵ) and, with

probability ϵ, to receive a signal that will shift his beliefs.16 He chooses p̂0 to maximize:

U0 = u(p̃0)+ (1−ϵ) u(p̃0)+ ϵ P (s = H
∣∣p0)

[
u(p H

1 ) + µ
(
u(p H

1 )−u(p̃0)
)]
+︸ ︷︷ ︸

the utility in Period 1

+ ϵ P (s = L
∣∣p0)

[
u(pL

1 ) + µ
(
u(pL

1 )−u(p̃0)
)]

︸ ︷︷ ︸
the utility in Period 1

− γ

2
(p̃0 −p0)2.

(3.3)

The first-order condition gives us the following formula for the optimal prior:

(3.4) p̂ *
0 = p0 + 1

γ

(
2−ϵ−ϵP (s = H

∣∣p0)η−ϵP (s = L
∣∣p0)λη

)
(uH −uL).

For λ> 0, η= 1, and ϵ ∈ (0,1), we have: p̃ *
0 < p̂ *

0 . The optimal prior chosen when expecting a

signal is always lower than the prior chosen not knowing about a signal.

Prediction 1

Optimal prior chosen knowing about an upcoming signal is lower (more pessimistic) than the

optimal prior chosen when not knowing about a signal.

In the case of no information, chances of being disappointed (or elated) by a signal are di-

minished. The incentives to lower one’s beliefs in anticipation of future shifts are less pro-

nounced, making the utility from beliefs right now a dominating factor. The resulting belief

is more optimistic than the belief adopted when the agent expects to receive a signal.

16It implies that the agent knows the signal structure and how a signal will shift his beliefs bringing belief-based
utility. While these assumptions might appear unrealistic at first sight, one can argue that the agent could have
encountered similar situations in the past that left a lasting impression of what kind of signals he receives and
how they make him feel. For example, a student might not expect an unannounced test but he does assign ϵ

probability to it and, having solved similar tests in the past, has some idea of what kind of signals about his
knowledge or ability it will generate.
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3.1.2. Comparative statics: loss aversion. The optimal solution (2) depends on the loss-

aversion parameter:

(3.5)
∂p̃ *

0

∂λ
=−1

γ
η P (s = L

∣∣p0)(uH −uL) < 0.

The more loss-averse the agent is, the lower the prior he chooses in Period 0. Anticipating a

painful loss, a loss-averse agent tries to mitigate its impact by setting a lower reference point.

This leads us to the following testable prediction:

Prediction 2.1

A more loss-averse agent will adopt a lower prior belief p̃∗
0 compared to a less loss-averse agent

with the same unmanipulated belief p0.

Note that, even when not expecting a signal, the optimal prior depends on λ:

(3.6)
∂p̂ *

0

∂λ
=−1

γ
ϵ η P (s = L

∣∣p0)(uH −uL) < 0.

Since ϵ ∈ (0,1), we have:

(3.7)
∂p̃ *

0

∂λ
< ∂p̂ *

0

∂λ
.

The slope is steeper in (5), meaning that the optimal prior is more responsive to changes in λ

when the agent knows about a signal.

Prediction 2.2

The loss aversion parameter λ has a more negative effect on the optimal prior p̃ *
0 when expect-

ing a signal compared to the effect in the case of no information.

When the agent expects a signal, the weight placed on the gain-loss component is higher than

in the no-information scenario, enhancing the effect of loss aversion.

3.1.3. Comparative statics: unmanipulated beliefs. The probability of receiving a high

signal, P (s = H
∣∣p0), depends on a signal structure as well as the unmanipulated belief p0. Let

us consider the following signal structure: if the state is H , the agent receives a signal H with

probability c, c > 0.5, and a signal L with probability (1−c). If the state is L, the agent receives a
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signal L with the same probability c, and a signal H with probability (1−c). The probability of

receiving a high signal is P (s = H
∣∣p0) = (2c−1)p0+1−c. Rewriting (2) and taking the derivative

with respect to p0 gives us the following condition:

(3.8)
∂p̃ *

0

∂p0
= 1− 1

γ
(2c −1)η(1−λ)(uH −uL).

For λ > 1, (8) is always larger than zero. The effect of unmanipulated prior on the optimal

belief p̃ *
0 is positive. For λ < 1, the sign is positive for loss aversion parameters higher than

λ̄= 1−γ / [(2c −1)η(uH −uL)] and negative otherwise:17

∂p̃ *
0

∂p0
< 0 for λ< 1 and λ< λ̄,

∂p̃ *
0

∂p0
> 0 for λ< 1 and λ> λ̄,

∂p̃ *
0

∂p0
> 0 for λ> 1.(3.9)

Prediction 3.1

For loss-averse agents, an increase in the unmanipulated belief p0 has a positive effect on the

optimal belief p̃ *
0 . For non-loss-averse agents, it depends on parameters λ, γ, c, uH , and uL in

a way described by (9).

The intuition behind Prediction 3.1 is the following. As p0 increases, the agent can increase

the manipulated belief staying at the same cost curve. He can change p̃0 to the same extent,

which is the meaning behind the “1” in (3.8). Manipulating one’s beliefs upwards is desirable,

as it increases the utility in Period 0. At the same time, an increase in p̃0 has a negative ef-

fect on utility due to the gain-loss component. It lowers the gains after s = H and increases

the losses after s = L. However, an increase in p0 also affects the posterior beliefs as well

as the probabilities of receiving a “good” and a “bad” signal. It shifts P (s = H
∣∣p0) upwards,

exacerbating the negative effect of an increase in p̃0 from the gain component, and it shifts

P (s = L
∣∣p0) downwards, mitigating the negative effect from losses. For loss-averse agents, the

latter receives a higher weight as λ> 1. The net effect of increasing p̃0 is positive, so the agent

will adopt a higher belief. If the loss aversion parameter λ is below 1, the mitigating effect

17The threshold value λ̄ can be found by equating (8) to zero.
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receives a lower weight. Adopting a higher p̃0 might be profitable, depending on the relation

between λ and other parameters.

Secondly, I compare the scenario when the agent expects to receive a signal to the no-

information case. In the later, the partial derivative with respect to p0,

(3.10)
∂p̂ *

0

∂p0
= 1−ϵ1

γ
(2c −1)η(1−λ)(uH −uL),

is positive for non-loss-averse agents. For loss-averse agents, it follows conditions similar

to (8), with a threshold λ̄ϵ derived from (9). Comparing the two scenarios, we obtain the

following conditions:

∂p̃ *
0

∂p0
< ∂p̂ *

0

∂p0
for λ< 1,

∂p̃ *
0

∂p0
> ∂p̂ *

0

∂p0
for λ> 1.(3.11)

Prediction 3.2

For loss-averse agents, the effect of the unmanipulated belief p0 on the optimal belief p̃ *
0 is

larger when an agent expects to get a signal compared to the case when he does not expect a

signal. For non-loss-averse agents, the opposite is true.

As the gain-loss component loses its importance in the no-information case, the effect of

p0 on p̃0 is reduced. When an increase in p0 causes an increase in p̃ *
0 (the case of loss-

averse agents), the belief in the no-information scenario is lower than the belief chosen when

expecting a signal. When an increase in p0 causes a decrease in p̃ *
0 (non-loss-averse agents),

the opposite is true. (11) also holds when derivatives have opposite signs.

3.1.4. Comparative statics: loss aversion and unmanipulated beliefs. Lastly, I examine

interaction effects between the loss aversion parameter and unmanipulated beliefs. I look at

the sign of:

∂∂p̃ *
0

∂λ∂p0
= 1

γ
η(2c −1)(uH −uL),(3.12)
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which is a mixed derivative with respect to λ and p0. Since c > 1
2 and uH > uL , the derivative

has a positive sign. An increase in the unmanipulated belief p0 has a positive effect on the

relation between loss aversion and chosen beliefs. In other words, increasing p0 counteracts

the negative effect of loss aversion. As a result, the loss aversion parameter will have a lesser

effect on agents with higher p0. I conclude that:

Prediction 4.1

An increase in the unmanipulated belief p0 lessens the negative effect of loss aversion on the

optimal belief p̃ *
0 .

Moreover, the effect is more pronounced when the agent expects to receive a signal. By com-

paring (12) to the analogous mixed partial derivative based on (10), we get:

(3.13)
∂∂p̃ *

0

∂λ∂p0
> ∂∂p̂ *

0

∂λ∂p0
.

One can state the following prediction:

Prediction 4.2

An increase in the unmanipulated belief p0 lessens the negative effect of loss aversion on the

optimal belief p̃ *
0 to a larger extent when the agent expects to receive a signal compared to the

case when he does not expect a signal.

3.1.5. Boundary cases. It is important to consider two limiting cases: when the unma-

nipulated belief is equal to zero (being a low type with probability one) and when it is equal to

one (being a high type with probability one). In the first case, the optimal belief is described

by:

(3.14) p̃ *
0 = 1

γ
c (1−λ)(uH −uL).

The optimal belief cannot be negative, so an agent with λ> 1 chooses the boundary solution

p̃ *
0 = 0 (regardless of whether he expects a signal or not). The prediction p̃ *

0 < p̂ *
0 cannot be

made for those agents. For non-loss-averse agents (λ < 1), the inequality p̃ *
0 < p̂ *

0 holds –

they adopt more optimistic beliefs when expecting a signal.

138



In the second case, p0 = 1, the optimal belief is equal to:

(3.15) p̃ *
0 = 1+ 1

γ
(1− c)(1−λ)(uH −uL).

Since 0.5 < c < 1 and p̃ *
0 cannot be larger than one, an agent with λ < 1 will choose the

boundary solution p̃ *
0 = 1. The non-loss-averse agent of a high type cannot lower his beliefs.

In the second part of the paper, I empirically test whether people adopt lower beliefs when

expecting a signal, thus it is important to identify agents for whom the strict inequality does

not hold.

3.1.6. Implications for the agent’s bias. I define agent’s bias as a difference between the

chosen belief p̃ *
0 and the unmanipulated belief p0. If p0 fully captures the state of the world

(agent’s ability), this bias coincides with over- and underconfidence discussed extensively in

the literature (see, e.g., Bénabou and Tirole, 2016). This implies p0 = 0 if an agent has low

ability, and p0 = 1 for a high-ability individual. As explained in the previous section, a high-

ability agent cannot boost his beliefs any further, hence he cannot be overconfident, whereas

a low-ability individual cannot be underconfident. One can obtain the formula for agent’s

bias by moving p0 to the other side of equation (3.2):

(3.16) p̃ *
0 − p0 = 1

γ

(
1−P (s = H

∣∣p0) η−P (s = L
∣∣p0) λη

)
(uH −uL).

Assuming η = 1, γ > 0, and uH > uL , the middle term is larger than zero for λ < 1 and lower

than zero for λ > 1. The bias is positive for non-loss-averse and negative for loss-averse

agents. Moreover, in our model, loss aversion (non-loss aversion) is a necessary condition

for the negative (positive) bias to occur.

Prediction B.1

If p0 is a degenerate belief that reflects the state of the world, the following is true:

i) an agent is overconfident if and only if he is non-loss-averse and low-ability,

ii) an agent is underconfident if and only if he is loss-averse and high-ability.

The model links the direction of agent’s bias to his actual ability and the attitude towards

losses in belief-based utility. Moreover, the agent’s bias is varying with the probability of re-

ceiving a “good” or a “bad” signal. One can rewrite the formula for agent’s bias using the
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signal structure introduced in Section 3.1.3:

(3.17) p̃ *
0 − p0 = 1

γ
(p0 −2cp0 + c)(1−λ)(uH −uL),

where c is signal precision, c > 1
2 . For overconfident agents, the middle term reduces to (p0 −

2cp0+c) = c. For underconfident individuals, this term becomes (1−c). It is important to note

that, since c > 1
2 , we have c > 1−c. The absolute bias, understood as the distance between the

manipulated belief and the true state, will be larger for overconfident than for underconfident

agents. Secondly, the absolute bias will be more responsive to changes in λ for overconfident

agents. One can show this by comparing the derivatives taken with respect to λ, but it is

also clearly visible in (3.16): lowering the probability of receiving a “bad” signal reduces the

effect of λ on agent’s bias. Since overconfident and underconfident agents are characterized

by p0 = 0 and p0 = 1, and the signals are informative, the weight placed on λ is higher for

overconfident agents. Taken together, this brings us to formulate the following prediction:

Prediction B.2

i) The absolute bias is larger for overconfident than for underconfident agents.

ii) The absolute bias is decreasing in the loss aversion parameter λ for overconfident agents,

and increasing in λ for underconfident individuals.

iii) λ has a stronger impact on the absolute bias for overconfident agents.

Predictions B.1 and B.2 hold regardless of whether the agent expects to get a signal or not,

because the agent’s confidence type is not affected by treatment manipulation. We do not

examine how the agent’s bias changes in the two conditions – there is little to learn beyond

what was presented in the previous sections. The above predictions are more interesting, as

they demonstrate a link between overconfidence and loss aversion (B.1), and show how bias

responds to changes in λ for different types of agents (B.2).

Another interesting implication of (3.17) is that the absolute bias is increasing in c for

overconfident and decreasing in c for underconfident agents.18 The precision of a signal af-

fects agents differently, depending on their type. High-ability, underconfident agents become

18Our experiment was not designed to test this prediction, however, one could easily modify our design to check
how the agent’s bias changes when one increases the signal precision.
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more accurate, whereas low-ability, overconfident individuals less accurate in their assess-

ments.19 For overconfident agents, the intuition is the following: if an agent is low-ability

and the signal becomes more precise, the probability of receiving “good news” decreases, so

the motive to lower one’s beliefs to enhance utility from a positive surprise is reduced. The

incentive to lower one’s beliefs to avoid disappointment is still present but it is weighted with

λ < 1, so the incentive to enjoy optimistic beliefs right now dominates. If I am almost sure

that I will get a “bad” signal tomorrow, the best I can do is to enjoy the belief that I am smart

today. An underconfident agent, on the other hand, expects to receive “bad news" with a

lower probability, so a more precise signal decreases the incentive to adopt overly pessimistic

beliefs, reducing the bias.

Although the set-up with two states of the world and p0 ∈ {0,1} is very limited, one should

note that the conditions described in this section are not a purely theoretical possibility. In

any relative-performance setting, there are agents whose performance hits the upper or the

lower bound. What can we say about those agents? The model suggests that agents with the

lowest ability will be overconfident (on average, as those with λ > 1 will adopt p̃ *
0 = p0 = 0)

and those with the lowest values of the loss-aversion parameter will be the most overconfi-

dent. At the same time, agents with the highest ability will be underconfident (on average),

with their bias increasing in loss aversion.

3.2. Experimental Design

In this section, I describe the experimental design and how it allows us to test the pre-

dictions formulated in Section 3.1. The outline of the experiment is presented in Figure 3.1

The experiment consists of several parts, which are the same in the Treatment and in the

Control condition.20 The two conditions differ only with respect to the timing of information

provision (marked in blue in Figure 3.1). In the Treatment condition, the information about

the signal was provided before the first belief elicitation, and in the Control condition, the

information was given to subjects’ after eliciting their beliefs.

19This might seem counter-intuitive. It is important to note that the bias we consider emerges before the infor-
mation arrives as a result of a mechanism that is different from, e.g., asymmetric updating.
20Instructions for each part were distributed separately, and at the time of the IQ test and Questionnaire partic-
ipants were not given any information about the remaining parts of the study. Before the IQ test, subjects were
told that they will not receive the results of the test today, but this information will be available to them online,
one week later. I followed the same procedure as Kozakiewicz (2020).
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FIGURE 3.1. Outline of the experiment.

Measure LA I

IQ test

Information Belief Elicitation I

Belief Elicitation I Information

Measure LA II

Signal

Belief Elicitation II

Questionnaire

At the beginning of the study, participants solved an IQ test consisting of 29 standard

logic questions. Participants were given 10 minutes to solve as many as they could knowing

that they will be remunerated for their test score, which we will calculate based on the num-

ber of correctly answered questions minus the number of incorrect answers. Afterward, par-

ticipants were either presented with a signal structure and information about an upcoming

signal and then asked to report their beliefs about their relative performance (the Treatment

condition), or were firstly asked to report their beliefs and only after they finished, they re-

ceived the same information about the upcoming signal (the Control condition). The signal

structure and elicitation procedure are described in detail in the following section.

Moreover, I introduced additional procedures to obtain two different measures of in-

dividual loss aversion. The first procedure was implemented at the very beginning of the

experiment, before the IQ test (it is denoted with “Measure LA I” in Figure 3.1). The sec-

ond procedure was implemented after the information provision and belief elicitation (de-

noted with “Measure LA II” in Figure 3.1). I describe these procedures in Sections 3.2.2 and
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3.2.3. Once participants completed the stage “Measure LA II”, each subject received a signal

as specified in the instructions. The signal was followed by the posterior belief elicitation

(Belief Elicitation II)" and a two-page questionnaire.

3.2.1. Signal Structure and Belief Elicitation. I followed a procedure similar to the one

developed in Kozakiewicz (2020). All participants were informed that in previous sessions

over 300 subjects solved the same IQ test. Those participants were ranked according to their

test scores and grouped into 10 groups which we refer to as “ranks”. Rank 1 was assigned to

participants with the highest test scores, Rank 2 to participants with the second-highest test

scores, and so on, up to Rank 10, which was assigned to subjects with the lowest scores.

In the Treatment condition, participants were instructed that, although their IQ test result

will not be fully revealed to them during the session, they will receive a signal about their

rank – the rank assigned to them by comparing their IQ test score to the scores of previous

participants. I used the same signal structure as in Kozakiewicz (2020) and explained it in

the same way. Participants were told that there are two boxes and each box contains 10 balls

with numbers written on them. In the first box, the balls are numbered from 1 to 10 and

each number occurs exactly once. In the second box, all balls have one number written on

them, and this number is equal to the participant’s rank (the composition of the second box

differs across subjects). For example, a person whose rank was Rank 4 will be facing two boxes

presented in Figure 3.2. Subjects were informed that one box will be selected at random by

the computer program (either box can be selected with equal probability) and one ball will

be randomly drawn from the selected box. They will not get to know which box was selected

FIGURE 3.2. Boxes of a person whose rank was 4 (the “Signal” condition).
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FIGURE 3.3. The screen-shot of the interface for belief elicitation.

by the program nor the composition of the boxes. Instead, the ball drawn for them will be

displayed on their computer screens.

After providing information about the reference group and the signal, we explained to the

subjects the belief elicitation task. Participants were asked to report their beliefs by allocating

100 points among the 10 ranks using a computer interface (see Figure 3.3). Subjects were

allocating points by dragging blue arrows and were able to correct their choices as many times

as they wished. The allocation immediately appeared on the graph to the right. The text

above the graph informed participants how many points they still have to allocate before

they can finish the task.

To incentivize truthful reporting, I used the Binarized Scoring Rule, following Hossain

and Okui (2013). The formula was presented to the subject in a simple way, and we explained

its implication: the chances of receiving a reward of 5 euros are maximized when one re-

ports his true beliefs. Formally, the random variable X can take one of 10 values: (1,0,...,0,0),

(0,1,...,0,0), ..., (0,0,...,1,0), (0,0,...,0,1); the position of 1 indicates the participant’s rank. After

receiving the agent’s report x = (x1, ..., x10), where xi denotes the share of points allocated to

rank i ∈ {1, ...,10}, I observe his true rank k, and the agent wins the prize if the QSR for multiple
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events,

s(x,k) = 2xk −
∑

i
x2

i +1,

exceeds a uniformly drawn random variable with the support [0,2].

In the Control condition, participants were given the same information about the com-

parison group and were asked to report their beliefs about their rank. We use the same in-

structions for the belief elicitation as in the Treatment condition. The only difference be-

tween the two conditions is that in the Control condition, participants were not given infor-

mation about the upcoming signal. The information about the upcoming signal, together

with the explanation of the signal structure, was given to the subjects immediately after they

finished the elicitation task.

3.2.2. Measuring Loss Aversion I. In order to obtain an independent measure of the loss

aversion parameter λi , I designed a short survey that would capture the same concept. Be-

fore the IQ test, we presented subjects with a hypothetical, real-life scenario and asked them

to answer several questions. The scenario that subjects were considering reads as follows:

Imagine that you took an important exam. After the exam, you are completely unsure

whether the result will meet the expectations you have set for yourself. You think that there is

a 50% chance that you will receive a score that you would consider a “bad” result (i.e. a result

that does not meet your expectations) and a 50% chance that you will receive a score that you

would consider a “good” result (i.e. a result that is equal to or better than your expectations).

You will know the result in one week.

Today you will meet with someone who has more information about the outcome of your

exam. This person cannot tell you the exact result but can give you a tendency whether you

will get a “good” or a “bad” result. If the person tells you that you will receive a “good” result, it

means that the probability that you will actually get a “good” result is 70% and the probability

of getting a “bad” result is 30%. If the person tells you that you will get a “bad” result, it means

that the probability that you will actually get a “bad” result is 70% and the probability of getting

a “good” result is 30%. However, regardless of what the person will tell you, you cannot be

absolutely sure about the result of the exam.
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Participants did not receive paper instructions for this part – the hypothetical scenario

and the questions appeared on their computer screens. They were asked to answer two ques-

tions intended to assess their utility before receiving a signal. The first question read: “How

willing would you be to talk to that person about your score?” and the possible responses on

a Likert scale ranged from 1=“I would like to talk to this person about the test very much.”

to 9=“I would not like to talk to this person about the test at all.”. The second question read:

“How would you feel right before that conversation?” and the responses ranged from 1=“I

would feel very relaxed before the conversation.” to 9=“I would feel very anxious before the

conversation.”.

I use the answers to the two questions as a measure of anticipatory utility that people

experience before a signal. In light of our theory,

UQ = P (s = H
∣∣p0)

[
u(p H

1 )+η
(
u(p H

1 )−u(p0)
)]
+

+P (s = L
∣∣p0)

[
u(pL

1 )+ηλ
(
u(pL

1 )−u(p0)
)]

,

(3.18)

where u(p) = puH + (1−p)uL , as before. The equation is slightly different from (1). I assume

that there is no need for belief manipulation when considering a hypothetical scenario. The

agent takes the probabilities as given, and assesses his utility with p0 = 0.5, P (s = H
∣∣p0) = 0.5,

p H
1 = 0.7, and pL

1 = 0.7, with no manipulation costs. Furthermore, we asked about subjects’

feelings over the upcoming signal, so there is no current belief-based utility component. After

substituting the numbers, we obtain:

UQ = 0.5
{

0.7uH +0.3uL +η
[

0.7uH +0.3uL −
(
0.5uH +0.5uL

)]}
+

+ 0.5
{

0.3uH +0.7uL +ηλ
[

0.3uH +0.7uL −
(
0.5uH +0.5uL

)]}
=

= 0.5 (uH +uL) + 0.1 η (1−λ)
(
uH −uL

)
.

(3.19)

If we assume that uH and uL are the same for all participants, the differences in anticipatory

utility reflect the differences in the loss aversion parameterλ. The two questions are intended

146



to capture these differences. Intuitively, a more loss-averse person would be 1) less willing to

receive a signal, and 2) more anxious before the signal realization.21

3.2.3. Measuring Individual Loss Aversion II. I introduce two additional tasks to obtain

another measure of individual loss aversion – one that could possibly validate the measure

from the hypothetical scenario. The tasks were performed after Belief Elicitation I, but be-

fore subjects’ received a signal. Recall that the utility in Period 0 (before seeing the signal

realization) is:

U0 = u(p̃0) + P (s = H
∣∣p0)

[
u(p H

1 ) + η
(
u(p H

1 )−u(p̃0)
) ]

︸ ︷︷ ︸
Ug (utility after a “good” signal s = H)

+

+ P (s = L
∣∣p0)

[
u(pL

1 ) + η λ
(
u(pL

1 )−u(p̃0)
) ]

︸ ︷︷ ︸
Ul (utility after a “bad” signal s = L)

− γ

2
(p̃0 −p0)2,

(3.20)

where p̃0 is the manipulated belief elicited in the first task. If one knew Ug and Ul , as well as

p H
1 and pL

1 (subjects’ posterior beliefs after “good” and “bad” signals), one could back out the

loss aversion parameter λ. However, the parameter derived in this way would be a function

of the manipulated belief p̃0.

In order to obtain a measure of λi that does not depend on the manipulated belief, I use

incentivized, conditional choices.22 I designed two additional tasks to measure the monetary

equivalent of Ug and Ul , the posterior beliefs p H
1 and pL

1 , as well as the unmanipulated prior

p0 conditioning on a signal realization.

Posterior Beliefs. To elicit prior and posterior beliefs using conditional choices, I follow

Kozakiewicz (2020) and ask participants to report their beliefs about the source of a signal

conditioning on signal realization. For every x ∈ {1, ...,10}, subjects were asked to consider

each number as if this number was actually drawn and report their subjective probability

that the number came from Box 2. Subjects made their reports by allocating 100 points be-

tween Box 1 and Box 2 using a computer interface (see Figure 3.4) and were incentivized to

report truthfully with binarized scoring rule (Hossain and Okui, 2013). While participants

21I assume that there is no heterogeneity in how agents value partial information beyond anticipatory utility.
If people derive utility from being more certain about any outcome, this utility is the same for all agents. The
differences in preferences over the degree of uncertainty are not captured by our model.
22I assume that there is no need for belief manipulation when making a decision conditioning on the signal
realization. This assumption is similar to the assumption considered in Section 3.2.2: there is no need for belief
manipulation when considering a hypothetical scenario. Both assumptions are based on the idea that belief
manipulation emerges in a state of emotional arousal (Kozakiewicz, 2020).
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FIGURE 3.4. The screen-shot of the interface used in hypothetical questions.

were free to choose any allocation, we instructed them on how to arrive at the Bayesian pos-

terior given one’s prior belief distribution. Moreover, we explained that the choices they are

making are not entirely hypothetical. At the end of the session, one box will be selected by

the computer program and one ball will be randomly drawn from the selected box. Although

they will not see the number drawn, their payoff will depend on the decision they made for

this number. For the details of the procedure, see Kozakiewicz (2020).

Monetary Equivalents. Secondly, we elicited subjects’ willingness to pay to avoid a signal

x. For every x ∈ {1, ...,10}, participants were presented with a price list, using which they

decided between two options. Option A was: “Do not see the number x and get y Euro”,

whereas Option B was: “See the number x and get 2 Euro”, with y ranging from 1 to 3 in

increments of 10 cents. Participants were informed that this task will be implemented with

probability 50% and with probability 50% they will be given the signal as specified earlier in

the instructions. If this task is implemented, then one signal will be drawn at random and the

decisions they made for this signal will apply. Specifically, one of the 21 lines in the price list

will be drawn at random, and the decision they made in this line will be realized. Participants’

decisions provide a measure of Ug and Ul – the utilities they experience after a “good” and a

“bad” signal. In Appendix D, I describe how to use subjects’ responses to identify λi .
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FIGURE 3.5. The screen-shot of the interface used by subjects in WTP.

3.3. Testable Predictions

Belief Elicitation I provides us with our main outcome variable: the optimal prior p̃ *
0 . By

comparing the average belief in the Treatment and in the Control condition, we shed light

on Prediction 1. One would expect the average prior in the Treatment condition to be lower

(more pessimistic) than the average prior in the Control condition.

Hypothesis 1

The average prior belief chosen in the Treatment condition is lower (more pessimistic) than the

average prior belief chosen in the Control condition.

The model predicts that there should be a negative correlation between the prior belief p̃∗
0

and the measure of loss aversion λ in the Treatment condition. More loss-averse subjects

should adopt lower beliefs compared to less loss-averse subjects (Prediction 2.1). In the Con-

trol condition, this correlation should be weakly negative due to the discount factor ϵ ∈ (0,1).

Moreover, the negative effect should be stronger in the Treatment condition (Prediction 2.2).
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In order to test these predictions, we look at the following regression:

(3.21) Priori =α0 + α1 Treatmenti + α2 λi + α3 Treatmenti ×λi + ϵi ,

where Priori denotes subject i ’s reported prior belief, Treatmenti is an indicator variable tak-

ing value 1 if participant i was in the Treatment condition and 0 otherwise, λi is a measure

of participant i ’s loss aversion. The coefficient α2 informs us about the correlation between

subjects’ prior beliefs and their gain-loss attitudes in the Control condition (Treatmenti = 0).

It is expected to be negative or equal to zero. The correlation between beliefs and gain-loss

attitudes in the Treatment condition is captured by α2 +α3. Based on Prediction 2.2, we ex-

pect this sum to be negative. The coefficient α3 at the interaction term informs us whether

an increase in the loss aversion parameter has a larger negative effect in the Treatment com-

pared to the Control condition. We expect this coefficient to be negative.

Hypothesis 2

i) In the Treatment condition, there is a negative correlation between subjects’ loss

aversion and their prior beliefs. Coefficient α2 +α3 in (3.21) is negative.

ii) In the Control condition, the correlation is weakly negative. The coefficient α2 in

(3.21) is negative or no different than zero.

iii) The loss aversion parameter has a larger negative effect in the Treatment condition com-

pared to the Control condition. The coefficient α3 in (3.21) is negative.

In order to test Prediction 4.1, I use a specification that allows for examining a joint effect of

the loss aversion parameter λ and unmanipulated beliefs p0. Note that we did not elicit un-

manipulated beliefs in the experiment. However, it is reasonable to assume that these beliefs

are correlated with agents’ actual cognitive ability. Therefore, I use subjects’ rank, which is a

measure of one’s cognitive ability, as a proxy for the former. I consider the following regres-

sion:

(3.22) Priori =β0 + β1 Abilityi + β2 λi + β3 Abilityi ×λi + ϵi ,

where λi is the measure of participant i ’s loss aversion. The coefficient β3 captures the joint

effect of λ and subject’s ability on prior beliefs. According to Prediction 4.1, this effect should
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be positive. Considering that an increase in λ has a negative effect on prior beliefs, an in-

crease in participant’s ability counteracts this force – it lessens the negative effect of loss aver-

sion.

Hypothesis 3

The effect of loss aversion on prior beliefs is less negative for subjects with higher ability. The

coefficient β3 in (3.22) is positive.

Next, I examine the joint effect of the treatment and 1) the loss aversion parameter, 2) unma-

nipulated beliefs. I construct the following regression:

Priori = γ0 + γ1 Treatmenti + γ2 λi + γ3 Abilityi +

+ γ4 Abilityi ×λi + γ5 Treatmenti ×λi + γ6 Treatmenti ×Abilityi +

+ γ7 Treatmenti ×Abilityi ×λi + ϵi .

(3.23)

In line with Prediction 4.2, an increase in the unmanipulated belief p0 weakens the negative

effect of λ on prior beliefs to a larger extent in the Treatment condition. This relation is cap-

tured by the coefficient γ7 in (3.23). A positive coefficient implies that the mitigating effect is

stronger in the Treatment than in the Control condition.

Hypothesis 4

An increase in the unmanipulated belief p0 lessens the negative effect of the loss aversion pa-

rameter on the optimal belief to a larger extent in the Treatment than in the Control condition.

The coefficient γ7 in (3.23) has a positive sign.

Since our measure of λ is ordinal, not cardinal, I cannot use it to test Predictions 3.1 and 3.2.

In the second part of the analysis, I divide subjects into two groups: loss-averse and non-

loss-averse. A subject is classified as loss-averse if the average of his responses to the two

hypothetical questions was above the neutral value of 5. In the view of the fact that this clas-

sification is discretionary, I delegate the tests I perform based on it to Appendix A. In the main

body of the paper, I describe tests performed using a discrete variable: subjects’ responses on
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the Likert scale. I use the categorical variable only to control for the boundary cases, that is,

participants for whom Predictions 1-4 do not necessarily hold, as explained in Section 3.1.5.

3.4. Data Analysis

In this section, I present the results of the data analysis. First, I briefly describe raw data.

In Sections 3.4.2 and 3.4.3.1, I test Hypotheses 1-4 using two measures of loss aversion. In

what follows, I restrict the sample to the participants who correctly answered at least two out

of four control questions. Out of 234 participants, 7 subjects made mistakes in three or four

questions (they constitute 3% of the sample). The results remain very similar, albeit noisier,

if I include those subjects in the analysis (see Appendix B).

3.4.1. Raw Data. The distribution of participants’ IQ test scores is presented in Figure

3.6. The average test score was 5.17, with a standard deviation of 3.42. Table 3.1 presents the

average score and the average rank of participants in the Treatment and the Control condi-

tion. There is a difference in the average IQ test score in the two conditions, which translates

to a difference in assigned ranks (see Table 3.1).23
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FIGURE 3.6. Distribution of the IQ test scores.

23Due to the differences in the instructions, we could not randomly assign the treatment status to participants
within a session. We randomized at the session level, alternating between the Treatment and the Control condi-
tion. The small number of sessions is likely to be the reason behind the differences in the IQ test scores. There is
no significant difference in other measures we collected: loss aversion, cognitive reappraisal, and suppression.
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TABLE 3.1. Differences between participants in the two conditions.

Treatment Control Diff < 0 Diff ̸= 0 Diff > 0

IQ test score 4.81 5.51 p-value: 0.940 0.121 0.061

Rank 5.99 5.34 p-value: 0.964 0.073 0.036

Loss Aversion 4.93 4.75 p-value: 0.778 0.443 0.222

N 110 117

The average mean of belief distributions reported by participants in Belief Elicitation I

is 4.66, while the average median equals 4.65 (both values expressed in terms of individual

rank). However, only 14 participants revealed a symmetric belief distribution, the remaining

subjects reported right- or left-skewed distributions.24 The average range was 5.1, meaning

that, on average, participants’ belief distributions span over 5 ranks. There is a positive and

significant correlation between subjects’ beliefs and their true rank (the Pearson correlation

coefficient r = 0.287 is significant at the 1%-level).

Participants in our sample tend to be overconfident, revealing belief distributions with

means that were, on average, 1 lower than their true rank.25 Note that, in our set-up, a lower

rank corresponds to a better performance. Similarly, a lower mean belief (expressed in terms

of rank) indicates a belief in a higher performance. To avoid confusion, I reverse the two

variables so that they are increasing in the agent’s ability and perceived ability. The new vari-

able takes values from 1 to 10 and denotes the decile of the IQ test score distribution that

the agent’s score fell into (or was believed to fall into), with higher values corresponding to a

better performance.

Our first measure of loss aversion is defined as the average response to the two hypothet-

ical questions. Its distribution is presented in Figure 3.7. The distribution has an inverted

U-shape with a mean of 4.84 and a standard deviation of 1.76. There is no significant dif-

ference in the average loss aversion between the Treatment and the Control condition (see

24Almost as many participants revealed a right-skewed distribution as a left-skewed distribution. The average
difference between the mean and the median in these groups was 0.27 and -0.24, respectively.
25I define a participant to be overconfident if his mean belief was lower than the actual rank (lower rank corre-
sponds to a better performance). Using this definition, I classified 60% of participants as overconfident and 40%
as underconfident. There was only one subject whose mean belief exactly matched the actual rank (assigning
him to either group does not change the results presented later in the paper). The distribution of subjects’ bias
can be found in Appendix E.
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FIGURE 3.7. Distribution of loss aversion in the sample.
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Table 3.1). At the same time, our measure of loss aversion correlates with beliefs as predicted

by the model – I explore this relationship in the following sections.

3.4.2. Testing Model Predictions. In this section, I test the model predictions using the

experimental data. As explained in Section 3.1.5, the model predictions do not hold for 1)

loss-averse agents with the lowest ability, and 2) non-loss-averse agents with the highest abil-

ity. For this reason, I always present two sets of results. The first results are based on the

sample of all participants. The second set is based on a restricted sample, which is created by

excluding 1) subjects with the lowest rank who were classified as loss-averse, and 2) subjects

with the highest rank classified as non-loss-averse. I classify a subject as loss-averse if his av-

erage response to the two hypothetical questions was above 5 – a value that is the median of

distribution presented in Figure 3.7 and, at the same time, the mid-point on a 9-point Likert

scale that we used. The remaining subjects were classified as non-loss-averse.26

3.4.2.1. Hypothesis 1. First of all, I examine the effect of being assigned to the Treatment

condition on prior beliefs about cognitive ability. The dependent variable is the mean of

individual belief distribution reported in Belief Elicitation I.27 It takes values from 1 to 10,

and a higher value indicates a belief that one obtained a higher test result.28 I regress the

26In Appendix B.4, I present the results based on alternative definitions: 1) a subject is classified as loss-averse if
his response to each of the two questions was above the median response, and 2) 40% of subjects with the lowest
loss aversion are classified as “non-loss-averse” and the rest as “loss-averse” (the ratio is set to match the results
in Goette et al., 2019). Our results are robust to these changes.
27The results are the same if I use the median, the 1st or the 3r d quartile instead (see Appendix B).
28For example, a subject who revealed the mean belief of 9 believes that he was among the best performers – his
IQ test score was better or equal to the IQ test scores of 90% other participants.
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TABLE 3.2. The effect of treatment on mean beliefs.

All subjects BC R
(All - BC)

Treatment -0.141 0.549 -0.249
(0.225) (0.745) (0.233)

Const. 6.408∗∗∗ 5.793∗∗∗ 6.506∗∗∗
(0.157) (0.509) (0.163)

N 227 30 197

The dependent variable is the mean belief revealed in Belief Elicitation I. “All

subjects” refers to the whole sample. “BC” are the boundary cases – subjects

who do not fulfill the conditions necessary for the negative effect to occur (see

Section 3.1.5). “R": the remaining subjects (all subjects minus boundary cases).

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

dependent variable on a treatment dummy. The first column contains the estimates based on

the sample of all participants. The coefficient at the “Treatment” variable has the predicted

sign but is not significant.

However, it is important to note that the model does not predict a negative treatment

effect for all subjects. As explained in Section 3.1.5, the treatment manipulation should not

affect 1) loss-averse participants with the worst performance, and 2) non-loss-averse sub-

jects with the best performance. In the second column in Table 3.2, I show that, indeed, the

direction of the effect for those subjects is inconsistent with Prediction 1. Therefore, I restrict

the sample to the subjects who fulfill the assumptions of the model necessary for the effect to

occur. In the last column in Table 3.2, I present the estimates based on the restricted sample.

The treatment effect is negative, as predicted by the theory, but not significant (p-value of

one-sided t-test = 0.287). More data is needed to confirm Hypothesis 1.

Result 1

The average prior belief reported in the Treatment condition is not significantly lower than the

average prior belief in the Control condition.
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3.4.2.2. Hypothesis 2. Before I test Hypothesis 2, I plot the averages of subjects’ beliefs

for groups with different loss aversion parameters (see Figure 3.8). Observations in the Treat-

ment condition are denoted with red triangles and in the Control condition with navy circles.

Their sizes correspond to the relative frequencies. The blue and red line corresponds to the

regression fitted on the data from the Treatment and the Control condition, respectively. One

can notice that, for more loss-averse subjects, the average beliefs in Treatment tend to be be-

low the averages in Control (the triangles are below the circles on the right side of the graph).

For subjects with lower values of the loss aversion parameter, the averages in Treatment are

slightly above or equal to the averages in Control.

FIGURE 3.8. The mean belief and loss aversion in the two conditions.
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However, the graph does not take into account the differences in ability between the

two groups. For this reason, I turn to the regression analysis. The results are presented in

Table 3.3. The first two columns contain the estimates based on the entire sample, and the

last columns contain the estimates based on the restricted sample. The dependent variable

is the mean of individual belief distribution revealed in Belief Elicitation I. In the first speci-

fication, I regress it on an indicator variable “Treatment”, a discrete variable “Loss Aversion”

(which takes values between 1 and 9 in a step of 0.5), and their interaction. In the second

specification, I add a control for individual rank.
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TABLE 3.3. The effect of treatment and loss aversion on mean beliefs.

Dependent variable: the mean belief revealed in Belief Elicitation I.

All subjects Restricted sample (R)

(1) (2) (1) (2)

Treatment 1.038 1.049∗ 1.240∗ 1.114∗
(0.657) (0.632) (0.664) (0.648)

Loss Aversion -0.021 -0.022 0.075 0.020
(0.085) (0.082) (0.089) (0.088)

Treatment × Loss Aversion -0.238∗ -0.218∗ -0.311∗∗ -0.271∗∗
(0.127) (0.123) (0.131) (0.128)

Ability 0.173∗∗∗ 0.165∗∗∗
(0.040) (0.049)

N 227 227 197 197

“Loss Aversion” takes values from 1 to 9 and denotes the average response to the two

hypothetical questions. “Ability” takes values from 1 to 10 and denotes the position in

the IQ test distribution (with 10 assigned to subjects with the highest test scores).

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

First, the sum of coefficients at the “Loss Aversion” variable and its interaction informs us

about the correlation between the mean belief and the loss aversion parameter in the Treat-

ment condition. I reject the null hypothesis that the sum of coefficients is larger or equal to

zero (p-value of the one-sided t-test = 0.004). Second, the coefficient at the “Loss Aversion”

variable in Table 3.3 is not significantly different from zero. There is no correlation between

the mean belief and the loss aversion parameter in the Control condition. Both results are

in line with the model predictions. Lastly, the coefficient at the interaction term is negative

and significant, as predicted by the model. An increase in the loss aversion parameter by 1

point translates to a 0.218 decrease in the mean belief reported in the Treatment compared

to the Control condition. In relative terms, this effect corresponds to 5% of the average be-

lief in the sample or 13% of its standard deviation. The effect is stronger when I restrict the

sample as prescribed by the theory. With the p-value of 0.036, the interaction effect is signif-

icant at the 5% level. Based on these results, I confirm the second prediction of the model
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(Hypothesis 2).29

Result 2

i) In the Treatment condition, there is a negative correlation between the loss aversion param-

eter and prior beliefs. As predicted, more loss-averse subjects adopt lower beliefs.

ii) In the Control condition, there is no correlation between the two variables.

iii) The interaction effect is negative and significant, in line with the model predictions. More

loss-averse subjects lower their beliefs more in the Treatment compared to the Control condition.

3.4.2.3. Hypothesis 3 and 4. In order to test Hypothesis 3, I run the regression specified in

(3.22). The results are presented in Table 3.4. The dependent variable is the mean of individ-

ual belief distribution. In the first specification, I regress it on subjects’ ability, loss aversion,

and their interaction. “Ability” and “Loss Aversion” are defined in the same way as before. Ad-

ditionally, I control for whether an individual was assigned to the Treatment condition (the

results are the same without this control). The coefficient at the interaction term is positive

and significant, which is consistent with the model prediction: an increase in the unmanip-

ulated beliefs (proxied by ability) lessens the negative effect of the loss aversion parameter

on the optimal belief. The result prevails if we add the remaining two-way interactions (it

is worth noting that the coefficient at “Treatment × LA” in Specification (2) is negative and

significant as in Table 3.3, providing support for Result 2).

Result 3

The effect of loss aversion on the mean belief is less negative for participants with higher ability.

The coefficient β3 in (3.22) is positive.

Lastly, I consider the triple interactions with the “Treatment” variable. An increase in ability

should reduce the negative effect of loss aversion to a larger extent in the Treatment com-

pared to the Control condition. The coefficient at the triple interaction “Treatment × Ability

× Loss Aversion" should be positive and significant. As we see in Table 3.4, the coefficient is

29One might wonder whether the results could be driven by a small number of participants with extremely inac-
curate beliefs about themselves. In Appendix B.3, I show that this is not the case.
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TABLE 3.4. The effect of treatment, loss aversion, and unmanipulated beliefs.

All subjects Restricted sample (R)

(1) (2) (3) (1) (2) (3)

Treatment 0.011 0.507 -0.445 -0.111 0.461 0.480
(0.215) (0.767) (1.437) (0.227) (0.773) (1.622)

Loss Aversion -0.403∗∗∗ -0.297∗∗ -0.377∗∗ -0.477∗∗∗ -0.325∗ -0.323
(0.136) (0.150) (0.181) (0.173) (0.185) (0.238)

Ability -0.083 -0.107 -0.178 -0.126 -0.187 -0.186
(0.118) (0.123) (0.152) (0.140) (0.147) (0.190)

Ability × LA 0.053∗∗ 0.050∗∗ 0.064∗∗ 0.065∗∗ 0.063∗∗ 0.063
(0.023) (0.023) (0.029) (0.028) (0.028) (0.038)

Treatment × LA -0.194 0.000 -0.279∗∗ -0.283
(0.122) (0.275) (0.128) (0.343)

Treatment × Ability 0.083 0.262 0.139 0.136
(0.079) (0.242) (0.098) (0.278)

Treatment × Ability × LA -0.037 0.001
(0.047) (0.057)

N 227 227 227 197 197 197

“Loss Aversion” takes values from 1 to 9 and denotes the average response to the hypothetical questions.

“Ability” is subject’s position in the test score distribution taking values from 1 to 10, with 10 assigned

to participants with the highest test scores. All specifications include a constant (omitted for clarity).

“All” refers to the sample of all participants, and with “R” I denote the restricted sample.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

not statistically significant. Based on these results, we cannot confirm Hypothesis 4 in our

sample.

Result 4

Contrary to the model prediction, an increase in ability does not reduce the negative effect of

loss aversion to a larger extent in the Treatment compared to the Control.

There might be several reasons why the last effect is not present in our dataset. First, one can

reckon that the treatment manipulation is rather subtle. Detecting an effect might require a

larger sample size, especially since the comparisons are made between subgroups. Further

data collection, preceded by a power analysis, would be necessary.
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Second, while we take into account that participants with the highest or the lowest rank

are constrained in their manipulation, the same is true (to some extent) for subjects with the

second-highest or the second-lowest rank and so on. This likely contributes to the noisiness

of the data and cannot be corrected using standard methods for analyzing censored data.

People for whom the strategy of lowering beliefs is unavailable (probably not only in the ex-

periment but throughout life) are likely to develop different ways of dealing with unpleasant

news. My recommendation would be to collect enough data to be able to perform the analy-

sis on a sample of people in the middle of the distribution, and separately examine subjects

with the highest and the lowest ability.

3.4.3. Measure of Loss Aversion II. In this section, I report the results of eliciting the

willingness to pay for signals. Unfortunately, the attempt to retrieve the loss aversion param-

eter from subjects’ choices was not entirely successful.30 Participants in our experiment were

not willing to forgo money – even as little as 10 cents – to increase the probability of receiving

(or not receiving) a signal. Depending on the signal realization, between 76% and 82.5% of

all participants followed a strategy of maximizing monetary outcome by choosing Option B

in the first 10 or 11 lines, and then switching to Option A.31 In the line number 11, subjects

were deciding between “Option A: Do not see the number x and receive 2 euro.” and “Option

B: See the number x and receive 2 euro.”. There is some variation in whether subjects chose

Option A or B in this line, which I exploit in the analysis below.32

In Figure 3.9, I present the average willingness to pay for a signal depending on its realiza-

tion. Recall that the price lists were designed with 10-cent steps and participants could pay

or accept up to 1 euro (starting with an endowment of 2 euro). I assume the switching point

to be the mid-point between the monetary gain or loss relative to the endowment in the last

line in which Option B was chosen, and the monetary gain or loss in the first line in which

30I describe in detail how one can retrieve loss aversion parameters from choice data in Appendix D.
3165% of subjects followed the profit-maximizing strategy in every decision they made.
32Suggestions for improvement include 1) changing the design of the price lists, and 2) increasing the relevance
of a signal. As for 1), I would suggest using a price list that requires less effort, for example, reducing the number
of lines by using the staircase method or asking participants to directly enter their price. Each of these options
has its disadvantages, however, I think that reducing the effort required to fill in multiple price lists is crucial to
improve the measurement. Secondly, one could think about making the signal more relevant. Increasing the
precision of a signal is one possibility, however, one should keep in mind that very precise signals might have the
opposite effect: subjects might be willing to acquire them regardless of their loss aversion to shorten the painful
waiting period. Sweeny and Falkenstein (2015) show that, in some cases, waiting for an adverse event is more
unpleasant than experiencing it. Another possibility is postponing revealing test results indefinitely, making the
signal the only opportunity to receive information about the result.
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FIGURE 3.9. The average willingness to pay for a signal.
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Option A was chosen.33 For example, if a participant chose Option B in every line up to 1.70

euro, and chose Option A for the first time when given a choice between “Option A: Do not

see the number x and receive 1.80 euro” and “Option B: See the number x and receive 2 euro”,

I assume that his willingness to pay/accept is δx = −0.25 euro. The negative (positive) sign

indicates that he is willing to pay (accept) 25 cents for not seeing the number. In other words,

a negative δ indicates that the subject is willing to pay money to decrease the probability of

seeing the number, while positive values indicate that he is willing to forgo money to increase

the probability of seeing the number.

In Panel (A) in Figure 3.9, we see that, on average, subjects were willing to forgo 6 cents

to see a signal “1”, while the amount is not significantly different from zero for signals “8”

or “9”.34 The difference is statistically significant and consistent with our theory – high sig-

nals are more desirable as they entail higher belief-based utility. In Panel (B) in Figure 3.9, I

present the average willingness to pay for signals below or equal to 5 (“Good Signal”) and sig-

nals above 5 (“Bad Signal”). With the p-value of 0.119, the difference is not significant at any

acceptable level. Note that this definition does not take into account subjects’ prior beliefs

about their ability. A signal “5” might be considered a “good” signal by someone who believes

33If a subject chose Option A (Option B) in every decision, he is assumed to have the willingness to pay/accept
δ=−1.05 (δ= 1.05).
34According to the definition, a person who prefers to keep 2 euro and decides to see the number is assigned the
willingness to pay of 5 cents. In other words, the value of 0.05 (-0.05) was assigned to a subject who maximized
the monetary gain and only chose to see (not see) the signal at the point of monetary indifference.
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to rank above 5, and a “bad” signal for a person believing to be in the top deciles. When I de-

fine signal valence individually, based on one’s beliefs revealed in the hypothetical choices,

the difference grows larger and becomes significant (p-value of a one-sided t-test = 0.054).

Consequently, defining the signal valence in absolute terms might lead to misclassification.

In the following section, I choose a middle ground and define a “bad” signal to be one of the

three worst signals (“8”, “9”, or “10”). This definition allows us to have the same number of

“bad” signals for each participant, while only 3 subjects could be potentially misclassified. As

a robustness check, I conduct the same analysis using the other two definitions (signal va-

lence based on individual beliefs or five worst signals) and present the results in Appendix C.

3.4.3.1. Results Based on Loss Aversion II. Although I cannot derive a precise measure of

loss aversion using subjects’ willingness to acquire signals, I can coarsely classify participants

as avoiding negative information (possibly due to loss aversion) based on their decisions in

the price lists. Afterward, I test the model predictions using this classification. I define a

person as avoiding information if she was willing to forgo any amount of money to not receive

a “bad” signal or, in case of monetary indifference, decided to not see a signal. I look at the

willingness to pay for signals “8”, “9”, and “10”, that is, the three worst signals.35 I define a

person as “loss-averse” if she avoided at least two out of the three worst signals.36 There were

53 participants of this type; they constitute 30% of the restricted sample of 178 participants.37

The measure of loss aversion described above coincides with the loss aversion based on the

hypothetical questions for 60% of subjects.

I conduct the same analysis as in Section 3.4.2. The most important results are gathered

in Table 3.5 (complete analysis can be found in Appendix C). First, the difference in average

beliefs between the Treatment and the Control condition is negative but not significant. Sec-

ond, I run the same regression as Specification (2) in Table 3.3 using the second measure of

loss aversion. The coefficient at the interaction term is negative, as predicted by the model,

35In Appendix C, I conduct the same analysis for 1) the five worst signals (signals from 6 to 10), and 2) signals that
were higher or equal to one’s mean belief revealed through the hypothetical choices. The results are consistent
with the estimates presented in this section.
36As a robustness check, I conduct the same analysis using a different definition: a person was classified as loss-
averse if he or she avoided all three signals. This condition leaves us with 50 loss-averse subjects (23% of the
restricted sample). The results are almost the same as presented in this section.
37Note that our model cannot explain a decision to pay any amount of money to receive a “bad” signal. I restrict
the sample to subjects who did not contradict the theory (allowing for one mistake). Participants that violated
this condition constituted 11.5% of the original sample. I present the results with and without this restriction in
Appendix C. Moreover, as in the previous section, I exclude participants for whom the predictions of the model
do not hold.
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TABLE 3.5. Model predictions based on the second measure of loss aversion.

Hypothesis 1

Coeff. at “Treatment” (p-value) -0.191 (0.437)

Hypothesis 2

Coeff. at “Treatment × Loss Aversion” (p-value) -0.857 (0.102)

Hypothesis 3

Coeff. at “Ability × Loss Aversion” (p-value) 0.140 (0.205)

Hypothesis 4

Coeff. at the triple interaction (p-value) 0.284 (0.202)

and close to significant at the 10% level (p-value of one-sided t-test = 0.102). The coefficient

is around 25% lower than the estimate based on the first measure.38 I also use Specification

(1) from Table 3.4 to examine the joint effect of loss aversion and unmanipulated beliefs. The

coefficient at the interaction term is positive but not significant (p-value of one-sided t-test

= 0.205). Although the results are much noisier than those based on the first measure, it is

reassuring to see that the effects go in the same direction. Lastly, I re-run the regression from

Specification (3) in Table 3.4. The coefficient at the triple interaction is positive but not signif-

icant (p-value of one-sided t-test = 0.202). More data of a better quality is needed to reconcile

these findings.

3.4.4. Over- and Underconfidence. In this section, I examine the link between the mea-

sure of loss aversion and the agent’s bias: I test the two predictions formulated in Section 3.1.6.

3.4.4.1. Prediction B.1. In order to test the first prediction, I classify subjects according

to the relevant characteristics. I define a participant as “high-ability” if his rank is below or

equal to 5 (lower ranks correspond to better results). Participants whose ranks were above

5 are classified as “low-ability”. Furthermore, I follow my baseline definition of loss aver-

sion. A subject is classified as “loss-averse” if the average of his responses to the hypothetical

questions was above 5, which is the middle value on the Likert scale that I used. I look at

38I compare this coefficient to the results based on a binary variable gathered in Appendix A (in the main text, the
“Loss Aversion” variable takes discrete values based on the 9-point Likert scale).
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TABLE 3.6. Confidence, ability, and loss aversion.

Overconfident Underconfident

Non-Loss-Averse & Low-Ability 62 (94%) 4 (6%)
Loss-Averse & High-Ability 11 (28%) 28 (72%)

This table shows how many of non-loss-averse and low-ability subjects (loss-averse and high-

ability subjects) are overconfident or underconfident.

two groups: 1) subjects who are “low-ability” and “non-loss-averse”, and 2) subjects who are

“high-ability” and “loss-averse”. Participants in these groups constitute 50% of the sample.

The remaining 50% include subjects who are: 3) low-ability and loss-averse, 4) high-ability

and non-loss-averse. Due to the presence of 3) and 4), the strong version of Prediction B.2

does not hold. Still, I find it worthwhile to test a weaker version of our hypothesis: if an agent

is low-ability and non-loss-averse (high-ability and loss-averse) then he is more likely to be

overconfident (underconfident), as well as its converse. In Table 3.6, I show how many low-

ability and non-loss-averse (high-ability and loss-averse) subjects were overconfident (un-

derconfident). Table 3.7 shows what fraction of overconfident subjects belong to group 1)

versus the remaining groups. Although the numbers seem to be in line with our hypotheses

– 94% of subjects in group 1) tend to be overconfident, and 72% of subjects in group 2) tend

to be underconfident – we cannot draw conclusions based on these fractions alone. Because

I am using relative performance, which is bounded, some relations will arise mechanically.

In particular, low-ability individuals will be more likely to be overconfident, and high-ability

TABLE 3.7. Confidence, ability, and loss aversion.

NLoss & Low Loss & High

Yes No Yes No

Overconfident 62 (53%) 56 (47%) Underconfident 28 (35%) 51 (65%)

This table shows how many of overconfident (underconfident) subjects are non-loss-averse and low-

ability, versus loss-averse and high-ability subjects. “Loss & High”: subjects are loss-averse and

high-ability (rank lower or equal to 5). “NLoss & Low”: non-loss-averse with a rank above 5.
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subjects – underconfident.39 I deal with this confound by constructing a counterfactual sce-

nario in which subjects’ beliefs are drawn from the uniform distribution, whereas ranks and

loss aversion parameters from their empirical distributions (for each simulation, I permute

subjects’ ranks and loss aversion parameters).40 I simulate the counterfactual 5000 times,

each time calculating the logit coefficient, and compare the distribution of coefficients to the

one from our sample.41 The logistic regression I estimate is of the following form:

(3.24) ln

(
POveri

1−POveri

)
=α0 + α1 N L Ai + ϵi ,

where POveri is the probability that the agent is overconfident, N L Ai is an indicator variable

taking value 1 if the agent is non-loss-averse and low-ability and 0 otherwise. The equation

for underconfident subjects is similar, with the only difference being that the probability of

interest is the probability of being underconfident, and the indicator variable takes value 1 if

the agent is loss-averse and high-ability.

FIGURE 3.10. Coefficients in the simulation (gray bars) and in the data (solid
red line).
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For overconfident participants, the coefficient α1 is equal to 2.927 and highly significant

(p-value = 0.000). On Panel (a) in Figure 3.10, I present a histogram of coefficients from the

simulation. The dashed lines correspond to the 95th and the 99th percentile of the distribu-

tion. The solid red line denotes the value of the actual coefficient. It is much higher than the

39However, there should be no mechanical relation between loss aversion and rank or beliefs.
40In the baseline, I keep the matching between ranks and loss aversion as in the original dataset. The results are
no different if I assign a loss aversion parameter to a rank randomly (see Appendix E.1).
41One consequence of drawing from empirical distributions is that the number of people who are 1) loss-averse
and high-ability, and 2) non-loss-averse and low-ability, will not be the same, as neither of the two distributions
is perfectly symmetric. Therefore, the distributions of logit coefficients presented in Figure 3.10 will not be the
same.
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simulated coefficients, meaning that the estimate could not arise as a result of the mechan-

ical relation between overconfidence and ability. Unfortunately, we cannot say the same for

underconfident participants, depicted on Panel (b) on Figure 3.10. The estimated coefficient

equals 1.595 and, although it is higher than the median value in the simulation, is not high

enough to pass the 95% threshold. The odds of being underconfident when one belongs

to the group of high-ability, loss-averse individuals are no higher than those produced by a

model with randomly assigned beliefs. Therefore, we confirm Hypothesis B.1 for overconfi-

dent but not underconfident agents.

Result B.1

Overconfident participants are more likely to be low-ability and non-loss-averse. Underconfi-

dent subjects, although more likely to be high-ability and loss-averse in absolute terms, are no

more likely than they would be if their beliefs were assigned randomly.

3.4.4.2. Prediction B.2. In order to test the second prediction of the model, I use the fol-

lowing specification:

(3.25) Biasi =β0 + β1 Overi + β2 λi + β3 Overi ×λi + ϵi ,

where Biasi denotes the absolute bias, Overi is an indicator variable taking value 1 if the

agent is overconfident and 0 otherwise, and λi is the measure of loss aversion. The results are

gathered in Table 3.8. As in the previous sections, I present two sets of results: estimates based

on the sample of all participants (the first two columns in Table 3.8) and estimates based on

the restricted sample (the last two columns in Table 3.8). The criteria for the exclusion are

the same as previously. First of all, I regress the dependent variable, the absolute bias, on

the indicator variable “Overconfident”. The coefficient is positive and highly significant: the

average absolute bias of overconfident subjects is 1.155 rank higher than the absolute bias

of underconfident participants (80% increase in relative terms). This result confirms the first

part of Prediction B.2.42

42As an additional exercise, I simulated Specification (1) from Table 3.8 using permutated ranks and beliefs drawn
from the uniform distribution. The coefficient at the 99th percentile is equal to 0.381 – a value much lower than
1.155 (the actual coefficient). This result confirms that the difference in biases between overconfident and un-
derconfident subjects would not arise if beliefs were not subject to motivated reasoning.
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TABLE 3.8. The effect of overconfidence and loss aversion on absolute bias.

Dependent variable: the absolute bias.

All subjects Restricted sample

(1) (2) (1) (2)

Overconfident 1.154∗∗∗ 1.539∗∗ 1.155∗∗∗ 2.433∗∗∗
(0.230) (0.680) (0.230) (0.662)

Loss Aversion -0.041 0.021
(0.103) (0.099)

Overconfident × Loss Aversion -0.080 -0.277∗∗
(0.132) (0.129)

Const. 1.637∗∗∗ 1.837∗∗∗ 1.422∗∗∗ 1.316∗∗
(0.178) (0.533) (0.178) (0.528)

N 227 227 197 197

“Loss Aversion” takes values from 1 to 9 and denotes the average response to the two

hypothetical questions. “Overconfident” is an indicator variable taking value 1 if the mean

of individual belief distribution was lower (better) than the actual rank.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In the second and the last column, I gather the results of estimating (3.25). One can notice

that restricting the sample has a big effect on the estimates. Again, the decisions of subjects

at the boundary differ considerably from the decisions of the remaining participants. The

theory provides a valid reason to exclude those participants from the analysis, hence we only

interpret coefficients based on the restricted sample.

For overconfident subjects, there is a negative and significant effect of loss aversion on

the absolute bias. In line with the model predictions, more loss-averse subjects end up with

a smaller bias. For underconfident participants, there is no analogous effect. Although the

model predicts that loss aversion should be positively correlated with the bias in this case, it

also provides the reason why the effect should be much weaker than the effect for overconfi-

dent agents. This is indeed the case in our dataset: the loss aversion parameter has a stronger

impact on the absolute bias for overconfident subjects compared to its effect on the bias of

underconfident participants.
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Result B.2

i) The absolute bias is larger for overconfident than for underconfident agents.

ii) The absolute bias is decreasing in the loss aversion parameter λ for overconfident subjects,

but it is not increasing for underconfident individuals.

iii) λ has a stronger impact on the absolute bias of overconfident participants.

Results B.1 and B.2 provide additional support for the model. In both cases, the results are

stronger for overconfident than for underconfident agents. It is important to note that Pre-

diction B.2 iii) provides us with an explanation for why this could be the case. Underconfident

agents tend to be high-ability, so the probability of receiving a “bad” signal is lower for them

than for overconfident individuals. As a result, the loss component has a lower weight in the

utility function compared to its weight in the utility function of overconfident agents, and the

effect of the loss aversion parameter λ is diminished. Although the probability of receiving a

“bad” signal is never zero (there is always the noise component), the effect might be hard to

detect in a small sample.

3.5. Conclusions

In this paper, I present an experimental test of a model of belief choice when an agent de-

rives utility from his beliefs. Importantly, the utility is reference-dependent, and the current

belief level serves as a reference point. The model makes several predictions, most of which

find confirmation in the data. The results demonstrate that, although the process of belief

formation is rather complex, its outcome is far from random.

The systematic component documented in this paper is aversion to losses in utility de-

rived from beliefs. In the experiment, we look at loss aversion with respect to beliefs about

one’s cognitive ability. The experimental data provides evidence that gain-loss attitudes in

this domain drive the choice of individual beliefs. It is important to note that cognitive abil-

ity is a model example of a source of belief-based utility. The results can be generalized to

any setting where an agent strongly prefers some states of the world and derives utility from

believing that these states will realize. That being the case, the gain-loss attitudes should be

taken into account when modeling situations such as learning about personal characteristics

(or that of one’s in-group/out-group), the choice of moral/selfish action in the presence of

externalities, or the formation of political beliefs. As for the latter, special emphasis should
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be placed on the formation of beliefs on politically contentious issues (e.g., climate change or

vaccinations), since the divides on these issues are deeply rooted in personal identity, which

is likely to be an important source of belief-based utility.

Moreover, as I show in the paper, loss aversion is a significant factor driving agents’ bias.

In this case, the relevant bias is overconfidence – a tendency to overestimate one’s ability or

performance. The data shows that participants who believe that their ability is higher than it

actually is, tend to be low-ability and non-loss-averse – a result that brings us one step closer

to understanding the sources of overconfidence. On a general level, this result emphasizes

the importance of studying fundamental processes that govern belief formation. Unraveling

the forces behind these processes could help us understand not only overconfidence but also

related behavioral phenomena: information avoidance, the demand for inaccurate or slanted

information, and belief polarization.
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APPENDIX A

Additional Results

A.1. Results based on an indicator variable

In this section, I test Hypotheses 1-4 using a binary measure of loss aversion. I define a

subject as “loss-averse” if her average response to the two hypothetical questions was above

5, which is not only the neutral value on the Likert scale we used but also the median aver-

age response. Based on this definition, there were 90 loss-averse subjects in our sample and

they constituted 40% of all participants (in the restricted sample, this number dropped to 73

participants, 37% of the restricted sample). In Figure A.1, I present the average belief in the

Treatment and the Control condition depending on the agent’s type (“1" denotes loss-averse

subjects). For non-loss-averse subjects, the average belief in Treatment is slightly above the

average in Control. For loss-averse subjects, the average in Treatment is lower than in Con-

trol, in line with the model prediction.

FIGURE A.1. Beliefs of loss-averse and non-loss-averse subjects.
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TABLE A.1. The effect of treatment and loss aversion on mean beliefs.

Dependent variable: the mean belief revealed in Belief Elicitation I.

All subjects Restricted sample

(1) (2) (1) (2)

Treatment 0.416 0.480∗ 0.343 0.363
(0.286) (0.276) (0.288) (0.282)

Loss Aversion 0.355 0.355 0.761∗∗ 0.518
(0.322) (0.310) (0.337) (0.338)

Treatment × Loss Aversion -1.326∗∗∗ -1.224∗∗∗ -1.589∗∗∗ -1.450∗∗∗
(0.453) (0.437) (0.473) (0.464)

Ability 0.169∗∗∗ 0.158∗∗∗
(0.040) (0.049)

N 227 227 197 197

“Loss Aversion” is a dummy variable that takes value 1 if the average response to the two

hypothetical questions was above the neutral value of 5, and 0 otherwise.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

However, the graph does not take into account the differences in ability between the two

groups. For this reason, we turn to the regression analysis. In Table A.1, I present the esti-

mates of the same regressions as in Table 3.3, with the only difference being that I replace the

discrete variable “Loss Aversion” with the binary variable defined above. The coefficient at

the interaction term is negative and highly significant meaning that loss-averse subjects tend

to adopt lower beliefs in the Treatment condition. The results based on the indicator variable

confirm Hypothesis 2.

To test Hypotheses 3 and 4, I run the regressions specified in (3.22) and (3.23) using the

indicator variable. The results are gathered in Table A.2 – they correspond to the results pre-

sented in Table 3.4. The coefficients at the interaction terms in the first two columns are

positive and close to significant: p-values of one-sided t-test are equal to 0.102 and 0.103

(for all participants and the restricted sample, respectively). Although the results miss the

10% significance level, they speak in favor of Hypothesis 3. Unfortunately, we cannot say the

same about Hypothesis 4. The coefficient at the triple interaction is positive in the restricted
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TABLE A.2. The effect of treatment, ability, and loss aversion.

All subjects Restricted sample (R)

(1) (2) (3) (1) (2) (3)

Treatment 0.016 0.072 -0.438 -0.128 -0.519 -0.320
(0.218) (0.513) (0.627) (0.230) (0.566) (0.658)

Loss Aversion -0.959∗∗ -0.205 -0.790 -1.245∗ -0.089 0.280
(0.480) (0.552) (0.688) (0.662) (0.737) (0.961)

Ability 0.121∗∗ 0.097 0.059 0.116∗ 0.041 0.059
(0.052) (0.061) (0.067) (0.060) (0.074) (0.079)

Ability × LA 0.132 0.099 0.202∗ 0.176 0.119 0.059
(0.081) (0.081) (0.109) (0.107) (0.106) (0.146)

Treatment × LA -1.126∗∗ 0.076 -1.551∗∗∗ -2.284∗
(0.442) (0.958) (0.480) (1.315)

Treatment × Ability 0.072 0.166 0.175∗ 0.135
(0.080) (0.104) (0.098) (0.119)

Treatment × Ability × LA -0.228 0.127
(0.162) (0.213)

N 227 227 227 197 197 197

“Loss Aversion” is a dummy variable based on our measure of loss aversion. It is equal to 1 if the average

response to the hypothetical questions was above 5. “Ability” is subject’s position in the test score distri-

bution (taking values from 1 to 10, with 10 assigned to subjects with the highest scores). All specifications

include a constant (omitted for clarity). “All” refers to all subjects and “R” to the restricted sample.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

sample, as predicted, but far from significant (p-value of one-sided t-test = 0.550). Therefore,

we cannot confirm Hypothesis 4.

The results presented in the first and the fourth column in Table A.2 shed light on Prediction 3.1.

Since I do not have the measure of the cost parameter γ nor the utility uH and uL , I cannot di-

rectly test the prediction for non-loss-averse subjects, however, I can test the first part of Pre-

diction 3.1, that is, the effect of p0 (proxied by agent’s ability) on beliefs of loss-averse agents.

The sum of the coefficients at “Ability” and “Ability × Loss Aversion" variables is significantly

larger than zero: with the p-value of a one-sided t-test = 0.000, I reject the hypothesis that

the sum is lower or equal to zero. This is also true for the restricted sample. As for the sec-

ond part of Prediction 3.1, all I can say is that the effect of ability for non-loss-averse subjects

172



is positive but lower than for loss-averse participants – the coefficient at the “Ability × Loss

Aversion" variable is positive and close to significant. We conclude:

Result 3.1 (Prediction 3.1)

For loss-averse agents, an increase in ability has a positive effect on prior beliefs. For non-loss-

averse agents, the effect is positive and significantly lower than for loss-averse subjects. Both

results are in line with the model predictions.

In order to confirm Prediction 3.2, one has to show that the coefficient at the triple interaction

is larger than the coefficient at the “Ability × Loss Aversion" variable (the case of loss-averse

subjects), and the coefficient at the “Treatment × Ability” variable is lower than the coeffi-

cient at the “Ability” variable (the case of non-loss-averse agents). It is evident in Table A.2

that neither prediction holds (I confirm this observation with appropriate tests). Therefore, I

cannot confirm Prediction 3.2 in our dataset.

Result 3.2 (Prediction 3.2)

For loss-averse agents, being assigned to the Treatment condition does not enhance the effect of

unmanipulated beliefs (proxied by ability) on prior beliefs. For non-loss-averse agents, being

assigned to the Treatment condition does not reduce this effect.

As described in the last paragraph of Section 3.4.2, this is most likely due to the treatment

manipulation being not strong enough to generate an effect that would be detectable when

diving sample into subgroups.
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APPENDIX B

Robustness Checks

B.1. Results based on the entire sample

Before the main task, we asked participants to answer 4 control questions intended to

check their understanding. In Figure B.1, I present the distribution of the number of incor-

rectly answered questions. Almost 80 % of participants answered correctly 3 or more ques-

tions, and more than 15% answered correctly 2 out of 4 questions.

In the analysis presented in the main text, we excluded 7 participants who gave incorrect

answers to 3 or 4 questions. These participants constituted 3% of the initial sample. In this

section, I present the results of the data analysis including those subjects. Tables B.1, B.2,

and B.3 correspond to Tables 3.2, 3.3, and 3.4. One can see that the results are very similar,

albeit noisier (which is to be expected, as the added subjects had problems understanding

the tasks).
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TABLE B.1. The effect of treatment on mean beliefs.

All subjects BC R
(All - BC)

Treatment -0.131 0.633 -0.248
(0.225) (0.724) (0.235)

Const. 6.360∗∗∗ 5.793∗∗∗ 6.446∗∗∗
(0.156) (0.503) (0.163)

N 234 31 203

The dependent variable is the mean belief revealed in Belief Elicitation I. “All

subjects” refers to the whole sample. “BC” are the boundary cases – subjects

who do not fulfill the conditions necessary for the negative effect to occur (see

Section 3.1.5). “R": the remaining subjects (all subjects minus boundary cases).

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE B.2. The effect of treatment and loss aversion on mean beliefs.

Dependent variable: the mean belief revealed in Belief Elicitation I.

All subjects Restricted sample

(1) (2) (1) (2)

Treatment 0.935 0.915 1.075 0.956
(0.658) (0.633) (0.676) (0.658)

Loss Aversion -0.049 -0.050 0.037 -0.019
(0.085) (0.082) (0.090) (0.089)

Treatment × Loss Aversion -0.216∗ -0.190 -0.275∗∗ -0.236∗
(0.128) (0.123) (0.133) (0.130)

Ability 0.175∗∗∗ 0.174∗∗∗
(0.040) (0.049)

N 234 234 203 203

“Loss Aversion” takes values from 1 to 9 and denotes the average response to the two

hypothetical questions. “Ability” takes values from 1 to 10 and denotes the position in

the IQ distribution. “Restricted sample” denotes sample restricted in line with theory.
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TABLE B.3. The effect of treatment, ability, and loss aversion.

All subjects Restricted sample (R)

(1) (2) (3) (1) (2) (3)

Treatment 0.014 0.347 -0.582 -0.111 0.295 0.320
(0.214) (0.771) (1.438) (0.227) (0.780) (1.652)

Loss Aversion -0.405∗∗∗ -0.317∗∗ -0.399∗∗ -0.507∗∗∗ -0.379∗∗ -0.376
(0.137) (0.150) (0.184) (0.175) (0.187) (0.241)

Ability -0.065 -0.101 -0.172 -0.129 -0.195 -0.193
(0.118) (0.123) (0.154) (0.142) (0.150) (0.194)

Ability × LA 0.050∗∗ 0.048∗∗ 0.063∗∗ 0.067∗∗ 0.066∗∗ 0.066∗
(0.023) (0.023) (0.030) (0.029) (0.029) (0.039)

Treatment × LA -0.168 0.022 -0.244∗ -0.250
(0.122) (0.277) (0.130) (0.349)

Treatment × Ability 0.091 0.263 0.142 0.138
(0.079) (0.239) (0.098) (0.283)

Treatment × Ability × LA -0.036 0.001
(0.046) (0.058)

N 234 234 234 203 203 203

“Loss Aversion” takes values from 1 to 9 and denotes the average response to the two hypothetical questions.

“Ability” is subject’s position in the test score distribution (taking values from 1 to 10, with 10 assigned to

subjects with the highest test scores). All specifications include a constant (omitted for clarity). “All”

refers to all participants and “R” to the restricted sample.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

B.2. Results based on the median, the first and the third quartile

In this section, I present the results using an alternative dependent variable. In Tables

B.4, B.5, and B.6, the analysis is based on the median of individual belief distribution (instead

of the mean belief). The results are not very different from the ones presented in the main

body of the paper. In Tables B.7, B.8, and B.9, I use the first and the third quartile of individual

belief distribution as a dependent variable. Again, the estimated parameters are in line with

the parameters from the original specification.
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TABLE B.4. The effect of treatment on median beliefs.

All subjects BC R
(All - BC)

Treatment -0.120 0.509 -0.219
(0.230) (0.750) (0.240)

Const. 6.406∗∗∗ 5.813∗∗∗ 6.500∗∗∗
(0.160) (0.513) (0.167)

N 227 30 197

The dependent variable is the median belief revealed in Belief Elicitation I. “All

subjects” refers to the whole sample. “BC” are the boundary cases – subjects

who do not fulfill the conditions necessary for the negative effect to occur (see

Section 3.1.5). “R": the remaining subjects (all subjects minus boundary cases).

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE B.5. The effect of treatment and loss aversion on median beliefs.

Dependent variable: the median belief revealed in Belief Elicitation I.

All subjects Restricted sample

(1) (2) (1) (2)

Treatment 0.960 0.971 1.058 0.926
(0.671) (0.646) (0.684) (0.667)

Loss Aversion -0.051 -0.052 0.031 -0.027
(0.087) (0.084) (0.092) (0.091)

Treatment × Loss Aversion -0.217∗ -0.196 -0.266∗∗ -0.224∗
(0.130) (0.125) (0.135) (0.132)

Ability 0.175∗∗∗ 0.172∗∗∗
(0.041) (0.051)

N 227 227 197 197

“Loss Aversion” takes values from 1 to 9 and denotes the average response to the two

hypothetical questions. “Ability” takes values from 1 to 10 and denotes the position in

the IQ distribution. “Restricted sample” denotes sample restricted in line with theory.

1
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TABLE B.6. The effect of treatment, ability, and loss aversion.

All subjects Restricted sample (R)

(1) (2) (3) (1) (2) (3)

Treatment 0.039 0.315 -0.464 -0.072 0.268 0.434
(0.219) (0.782) (1.466) (0.232) (0.794) (1.667)

Loss Aversion -0.445∗∗∗ -0.351∗∗ -0.416∗∗ -0.528∗∗∗ -0.403∗∗ -0.385
(0.139) (0.153) (0.185) (0.177) (0.190) (0.245)

Ability -0.101 -0.135 -0.192 -0.143 -0.207 -0.193
(0.121) (0.125) (0.155) (0.143) (0.151) (0.196)

Ability × LA 0.057∗∗ 0.054∗∗ 0.066∗∗ 0.070∗∗ 0.069∗∗ 0.066∗
(0.023) (0.023) (0.030) (0.029) (0.029) (0.039)

Treatment × LA -0.169 -0.011 -0.230∗ -0.268
(0.124) (0.281) (0.132) (0.353)

Treatment × Ability 0.102 0.249 0.140 0.109
(0.081) (0.246) (0.100) (0.285)

Treatment × Ability × LA -0.030 0.007
(0.048) (0.058)

N 227 227 227 197 197 197

“Loss Aversion” takes values from 1 to 9 and denotes the average response to the two hypothetical

questions. “Ability” is subject’s position in the test score distribution (taking values from 1 to 10,

with 10 assigned to participants with the highest test scores). All specifications include a constant

(omitted for clarity). “All” refers to the sample of all participants, and with “R” I denote the

restricted sample. Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE B.7. The effect of treatment on the 1st and the 3r d quartile.

Dependent variable:
the 1st quartile the 3r d quartile

Treatment -0.232 -0.323
(0.232) (0.248)

Const. 7.252∗∗∗ 5.792∗∗∗
(0.162) (0.173)

N 197 197

The dependent variable is the 1st or the 3r d quartile of belief distribution revealed

in Belief Elicitation I. For the sake of space, I look only at the restricted sample

(all subjects minus boundary cases), for whom the model predictions should hold.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE B.8. The effect of loss aversion on the 1st and the 3r d quartile.

Dependent variable: the 1st quartile the 3r d quartile

(1) (2) (1) (2)

Treatment 1.281∗ 1.149∗ 1.260∗ 1.134
(0.662) (0.644) (0.707) (0.693)

Loss Aversion 0.086 0.028 0.110 0.054
(0.089) (0.088) (0.095) (0.095)

Treatment × Loss Aversion -0.316∗∗ -0.274∗∗ -0.331∗∗ -0.291∗∗
(0.130) (0.127) (0.139) (0.137)

Ability 0.173∗∗∗ 0.165∗∗∗
(0.049) (0.053)

N 197 197 197 197

The dependent variable is the 1st or the 3r d quartile of individual belief distribution.

“Loss Aversion” takes values from 1 to 9 and denotes the average response to the two

hypothetical questions. “Ability” takes values from 1 to 10 and denotes the position in

the IQ distribution. Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

1
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TABLE B.9. The effect of treatment, ability, and loss aversion.

Dependent variable: the 1st quartile the 3r d quartile

(1) (2) (3) (1) (2) (3)

Treatment -0.083 0.520 0.741 -0.193 0.525 0.607
(0.224) (0.765) (1.606) (0.243) (0.830) (1.742)

Loss Aversion -0.523∗∗∗ -0.371∗∗ -0.348 -0.424∗∗ -0.260 -0.252
(0.171) (0.183) (0.236) (0.185) (0.199) (0.256)

Ability -0.161 -0.220 -0.201 -0.103 -0.159 -0.152
(0.138) (0.145) (0.188) (0.150) (0.158) (0.204)

Ability × Loss Aversion 0.075∗∗∗ 0.072∗∗ 0.068∗ 0.060∗∗ 0.058∗ 0.056
(0.028) (0.028) (0.038) (0.030) (0.030) (0.041)

Treatment × Loss Aversion -0.278∗∗ -0.328 -0.299∗∗ -0.317
(0.127) (0.340) (0.138) (0.369)

Treatment × Ability 0.133 0.092 0.130 0.115
(0.097) (0.275) (0.105) (0.298)

Treatment × Ability × Loss Aversion 0.009 0.003
(0.056) (0.061)

N 197 197 197 197 197 197

The dependent variable is the 1st or the 3r d quartile of individual belief distribution. “Loss Aversion” takes values

from 1 to 9 and denotes the average response to the hypothetical questions. “Ability" is subject’s position in the test

score distribution (taking values from 1 to 10, with 10 assigned to subjects with the highest scores). All specifications

include a constant (omitted for clarity). Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

B.3. Results based on a different restricted sample

One might wonder whether the results might be driven by a small number of people with

extremely inaccurate beliefs about themselves. In Tables B.10, B.11, B.12, I show how the re-

sults from Tables 3.2, 3.3, and 3.4 change if I exclude participants with the most extreme bias.

I exclude subjects 1) who were among 5% subjects with the highest bias or 5% subjects with

the lowest bias (thus, I exclude participants with the most extreme positive or negative bias),

and 2) whose bias exceeded the average bias ± 2 standard deviations. Because the treatment

manipulation affects the variable of interest, I calculated the percentiles, the average, and the

standard deviation separately for the treatment and the control group. The estimated coeffi-

cients are very similar to the ones obtained without the restrictions.
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TABLE B.10. The effect of treatment on mean beliefs.

Restricted sample I Restricted sample II

Treatment -0.124 -0.253
(0.224) (0.225)

Const. 6.457∗∗∗ 6.451∗∗∗
(0.155) (0.156)

N 207 220

“Restricted sample I” denotes a sample without 5% of subjects with the highest and

5% with the lowest bias (I exclude subjects with extreme positive or negative bias).

“Restricted sample II” includes only subjects whose bias did not exceed the average

bias ± 2 std. The exclusion criteria were calculated separately for the treatment and

control condition. Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE B.11. The effect of treatment and loss aversion on mean beliefs.

Dependent variable: the mean belief revealed in Belief Elicitation I.

Restricted sample I Restricted sample II

(1) (2) (1) (2)

Treatment 1.381∗∗ 1.359∗∗ 0.894 0.850
(0.649) (0.578) (0.658) (0.614)

Loss Aversion -0.004 0.001 -0.005 0.002
(0.083) (0.074) (0.084) (0.079)

Treatment × Loss Aversion -0.299∗∗ -0.264∗∗ -0.231∗ -0.200∗
(0.124) (0.111) (0.127) (0.119)

Ability 0.280∗∗∗ 0.227∗∗∗
(0.038) (0.039)

N 207 207 220 220

Restricted sample I and II defined as in Table B.10.

1
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TABLE B.12. The effect of treatment, ability, and loss aversion.

Restricted sample I Restricted sample II

(1) (2) (3) (1) (2) (3)

Treatment 0.082 0.940 -1.031 -0.111 0.282 -1.350
(0.198) (0.727) (1.391) (0.208) (0.766) (1.454)

Loss Aversion -0.356∗∗∗ -0.222 -0.396∗∗ -0.331∗∗ -0.233 -0.363∗∗
(0.131) (0.143) (0.177) (0.135) (0.147) (0.176)

Ability 0.065 0.057 -0.093 0.007 -0.021 -0.135
(0.114) (0.118) (0.148) (0.117) (0.121) (0.149)

Ability × LA 0.044∗∗ 0.039∗ 0.070∗∗ 0.045∗∗ 0.042∗ 0.066∗∗
(0.022) (0.022) (0.028) (0.022) (0.022) (0.029)

Treatment × LA -0.241∗∗ 0.151 -0.179 0.146
(0.111) (0.260) (0.118) (0.273)

Treatment × Ability 0.059 0.418∗ 0.089 0.389
(0.076) (0.229) (0.079) (0.241)

Treatment × Ability × LA -0.072∗ -0.061
(0.043) (0.046)

N 207 207 207 220 220 220

“Loss Aversion” takes values from 1 to 9 and denotes the average response to the hypothetical questions.

“Ability” is subject’s position in the test score distribution. All specifications include a constant (omitted

for clarity). “RS I” denotes the sample without 5% of subjects with the highest and 5% with the lowest

bias (hence, I exclude subjects with extreme positive or negative bias). “RS II” includes only subjects

whose bias did not exceed the average bias ± 2 std. The exclusion criteria were calculated separately

for the two conditions. Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

B.4. Results based on a different classification of “loss-averse” subjects

In this section, I present the results of the data analysis using different ways of identifying

loss-averse and non-loss-averse participants. Recall that our measure of loss aversion pre-

sented in Section 3.4.1 is ordinal, so the question of classifying subjects as loss-averse is not

straightforward. Yet, to exclude the boundary cases described in Section 3.1.5, one needs to

specify agents’ types. In the main text, we used the average responses to the two questions as

a basis for classification. Here, I present two alternative methods.

First, I classify a subject as loss-averse if his response to each of the hypothetical ques-

tions was above or equal to the median response in the sample. Using this definition 75

participants were classified as loss-averse (in the baseline, 90 were classified as loss-averse).

Second, I use the average answer to the two hypothetical questions as in the baseline, but I

set a lower threshold. I define a participant as loss-averse if his average answer was above 4,
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a condition that gives me 136 loss-averse participants (60% of the sample) – a fraction similar

to the results in Goette et al. (2019).

Importantly, we use this classification only to exclude subjects for whom the model pre-

dictions do not hold. We excluded loss-averse subjects who had the lowest ability, as well as

non-loss-averse participants with the highest ability. In the baseline, we excluded 30 partici-

pants. Using the first alternative specification, this number drops to 26, but also we exclude

different observations. 12 participants have a different value of the variable indicating exclu-

sion compared to the baseline. When we use the second alternative specification, 30 partici-

pants are removed from the original sample; 10 of those have a different indicator value than

in the baseline. In Tables B.13, B.14, and B.15, we present the same regressions as in Tables

3.2, 3.3, and 3.4, but exclude participants based on the new definitions of loss aversion. The

results are very similar to the results presented in the main text. Therefore, we show that our

results are not driven by the definition of loss aversion, and they are robust to various changes

in the classification of agents’ types.

1

183



TABLE B.13. The effect of treatment on mean beliefs.

Loss Aversion I Loss Aversion II

Treatment -0.247 -0.121
(0.237) (0.235)

Const. 6.480∗∗∗ 6.488∗∗∗
(0.166) (0.164)

N 201 197

Results based on data without the boundary cases, which were defined using alternative

classifications. “Loss Aversion I” defines a subject as loss-averse if his responses to each

of the hypothetical question were above the median response. “Loss Aversion II” assigns

a status of non-loss-averse to 40% of subjects with the lowest loss aversion parameters

defined as in Section 3.4.1. Standard errors in parentheses.

TABLE B.14. The effect of treatment and loss aversion on mean beliefs.

Dependent variable: the mean belief revealed in Belief Elicitation I.

LA I LA II

(1) (2) (1) (2)

Treatment 1.334∗ 1.200∗ 1.358∗∗ 1.240∗
(0.677) (0.658) (0.670) (0.659)

Loss Aversion 0.064 0.014 0.071 0.021
(0.091) (0.090) (0.090) (0.090)

Treatment × Loss Aversion -0.328∗∗ -0.282∗∗ -0.309∗∗ -0.272∗∗
(0.133) (0.130) (0.132) (0.130)

Ability 0.175∗∗∗ 0.144∗∗∗
(0.048) (0.050)

N 201 201 197 197

Results based on data without the boundary cases, which were defined using alternative

classifications. In “LA I”, we define a subject as loss-averse if his responses to each of the

two hypothetical question were above the median response. In “LA II”, we assign a status

of non-loss-averse to 40% of subjects with the lowest loss aversion defined in Section 3.4.1.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

1
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TABLE B.15. The effect of treatment, ability, and loss aversion.

LA I LA II

(1) (2) (3) (1) (2) (3)

Treatment -0.080 0.426 0.547 0.008 0.461 0.543
(0.228) (0.782) (1.615) (0.230) (0.773) (1.643)

Loss Aversion -0.512∗∗∗ -0.348∗ -0.335 -0.493∗∗∗ -0.325∗ -0.311
(0.168) (0.181) (0.236) (0.176) (0.185) (0.242)

Ability -0.148 -0.215 -0.205 -0.158 -0.188 -0.227
(0.140) (0.146) (0.193) (0.141) (0.147) (0.192)

Ability × LA 0.071∗∗ 0.067∗∗ 0.065∗ 0.068∗∗ 0.063∗∗ 0.062
(0.028) (0.028) (0.038) (0.029) (0.028) (0.039)

Treatment × LA -0.283∗∗ -0.309 -0.279∗∗ -0.339
(0.129) (0.332) (0.128) (0.348)

Treatment × Ability 0.158∗ 0.136 0.139 0.147
(0.095) (0.278) (0.098) (0.280)

Treatment × Ability × LA 0.005 0.009
(0.056) (0.057)

N 201 201 201 197 197 197

Results based on data without the boundary cases, which were defined using alternative classifications. In

“LA I”, we define a subject as loss-averse if his responses to each of the hypothetical questions were above

the median response. In “LA II”, we assign a status of non-loss-averse to 40% of subjects with the lowest

loss aversion defined in Section 5.1. Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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APPENDIX C

Simplified Measure of Loss Aversion II

In this section, I describe the results based on a binary measure of loss aversion that is

derived from subjects’ willingness to pay for signals. Since the criteria I use to classify subjects

as “loss-averse” are discretionary, I present several ways in which one could define them. The

results are gathered in Sections C.1 - C.4 in tables that correspond to Tables 3.2, 3.3, and 3.4

from the main text. In every table, I present two sets of results. In the first set, I exclude

“boundary cases” (BC) – participants for whom the effect should not occur according to the

theory.1 In the second set, I exclude participants whose WTP for “bad” signals was positive in

most decisions, indicating that they would pay to see “bad” signals. These decisions cannot

be explained by our model. I label them as “wrong” (W) and exclude those participants from

the analysis (depending on the measure of loss aversion, they constitute around 10% of the

original sample).

In Section C.1, I show the results summarized in the main text (Table 3.5). The results

would be almost the same if, instead of the method described in the body of the paper, I

looked at the average willingness to pay for the three signals and classified a person as “loss-

averse” if the average indicates paying a positive amount to avoid “bad” signals. Only 1 per-

son would be assigned a different status compared to the baseline. For the sake of brevity, I

omit these results.

In Section C.2, I conduct the same analysis as in the baseline for the five worst signals

(“6”, “7”, “8”, “9”, and “10”). I classify a participant as “loss-averse" if she was willing to forgo

any amount of money to not receive a “bad” signal or, in the case of monetary indifference,

decided to not see a signal. At least 3 out of 5 signals must be avoided to be classified as

“loss-averse”. I classify a person as “wrong” if her WTP for “bad” signals was positive for at

least 2 signals (allowing for 1 mistake). Using this definition, 34% of subjects were classified

as “loss-averse” – this fraction drops to 30% if I exclude “‘wrong” individuals. In Section C.3, I

1Whether or not a subject is in BC depends on the measure of loss aversion under consideration, therefore the
number of observations in BC differs from section to section.
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use the average willingness to pay for the five worst signals instead of the “at least 3 out of 5”

condition. I classified a person as “loss-averse” if the average was negative. I classify a person

as “wrong” if her average WTP was indicative of paying to see “bad” signals. Using this defi-

nition, 35% of subjects were classified as “loss-averse” (30% if I exclude “wrong” individuals).

Results presented in Section C.4 are based on a different definition of a “good” and a

“bad” signal. I use the prior belief distribution revealed through the hypothetical choices

(see Appendix D for details) and define a signal as “bad” if it was worse than the mean of

this distribution. I classify a participant as “loss-averse" if the average willingness to pay for

(individually defined) “bad” signals indicated information avoidance. I classify a person as

“wrong” if her average WTP for “bad” signals indicated that she wanted to see these signals,

contrary to the model predictions.

The results are very similar across the four specifications. I compare them to the results

described in Appendix A, which are also based on a binary variable (in the main text I use the

discrete 9-point Likert scale). Although the main effect – the coefficient at the interaction of

“Treatment” and “Loss aversion” – is 35-60% lower than the effect based on the first measure

(see Table A.1) and passes the threshold for significance only in Section C.2, in all specifica-

tions it goes in the predicted direction. Moreover, in the saturated model (the last columns

in the last table), the interaction “Treatment × Loss Aversion” is negative and significant, as

predicted by the theory.

Interestingly, Prediction 3.2, which is confirmed with the first measure of loss aversion

(see Result 3.2 in Appendix A), finds some confirmation in the results based on the second

measure. Although we cannot confirm it with sufficient confidence (the p-values range from

0.191 to 0.220, depending on the specification), the coefficient at the triple interaction is

larger than the coefficient at the “Ability × Loss Aversion" variable, in line with the first part

of Prediction 3.2 (the case of loss-averse subjects). At the same time, the coefficient at the

“Treatment × Ability” variable is lower than the coefficient at the “Ability” variable in every

specification, although it also does not pass the 10%-significance level (the p-values range

from 0.175 to 0.252). This result is in line with the second part of Prediction 3.2 (the case of

non-loss-averse agents).
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C.1. Results based on coarse classification (three worst signals)

TABLE C.1. The effect of treatment on mean beliefs.

R1 R2 R3

(All - BC) (BC) (All - BC - W)

Treatment -0.349 1.444 -0.191
(0.229) (0.963) (0.245)

Const. 6.575∗∗∗ 5.549∗∗∗ 6.522∗∗∗
(0.164) (0.472) (0.176)

N 202 25 178

“R1” denotes the sample without the boundary cases – subjects who do not

fulfill the conditions necessary for negative effect to occur (based on the new

measure of loss aversion). “R2” includes only the boundary cases. In “R3”,

I also exclude subjects whose decisions cannot be explained by the model:

those willing to pay to see a negative signal. Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE C.2. The effect of treatment and loss aversion.

Dependent variable: the mean belief revealed in Belief Elicitation I.

R1 (All - BC) R3 (All - BC - W)

(1) (2) (1) (2)

Treatment -0.207 -0.033 0.046 0.198
(0.267) (0.262) (0.292) (0.288)

Loss Aversion 0.379 0.222 0.475 0.340
(0.373) (0.363) (0.384) (0.375)

Treatment × Loss Aversion -0.541 -0.625 -0.793 -0.857
(0.521) (0.505) (0.536) (0.521)

Ability 0.181∗∗∗ 0.178∗∗∗
(0.048) (0.052)

N 202 202 178 178

“R1” denotes a sample without the boundary cases: those who don’t fulfill conditions

necessary for the negative effect to occur (based on the new measure of loss aversion).

In “R3”, I also exclude subjects willing to pay to see a negative signal.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE C.3. The effect of treatment, ability, and loss aversion.

RS1 RS3

(1) (2) (3) (1) (2) (3)

Treatment -0.211 -0.690 -0.434 -0.074 -0.148 0.364
(0.226) (0.559) (0.640) (0.242) (0.630) (0.745)

Loss Aversion -0.802 -0.402 0.149 -0.922 -0.389 0.518
(0.671) (0.751) (1.008) (0.701) (0.784) (1.055)

Ability 0.145∗∗ 0.086 0.113 0.128∗∗ 0.106 0.158∗
(0.056) (0.076) (0.083) (0.064) (0.086) (0.095)

Ability × LA 0.120 0.109 0.021 0.140 0.121 -0.025
(0.105) (0.106) (0.152) (0.110) (0.111) (0.159)

Treatment × LA -0.688 -1.715 -0.836 -2.513∗
(0.518) (1.355) (0.534) (1.415)

Treatment × Ability 0.122 0.072 0.059 -0.038
(0.096) (0.113) (0.105) (0.129)

Treatment × Ability × LA 0.174 0.284
(0.212) (0.222)

N 202 202 202 178 178 178

“R1” denotes the sample without the boundary cases – those who do not fulfill the conditions

necessary for negative effect to occur (based on the second measure of loss aversion). In “R3”, I

also exclude subjects whose decisions cannot be explained by the model: to see a negative signal.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

1
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C.2. Results based on coarse classification (five worst signals)

TABLE C.4. The effect of treatment on mean beliefs.

R1 R2 R3

(All - BC) (BC) (All - BC - W)

Treatment -0.338 1.302 -0.164
(0.229) (0.959) (0.253)

Const. 6.571∗∗∗ 5.570∗∗∗ 6.531∗∗∗
(0.165) (0.470) (0.181)

N 202 25 172

“R1” denotes the sample without the boundary cases – subjects who do not

fulfill the conditions necessary for negative effect to occur (based on the new

measure of loss aversion). “R2” includes only the boundary cases. In “R3”

I also exclude subjects whose decisions cannot be explained by the model:

those willing to pay to see a negative signal. Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE C.5. The effect of treatment and loss aversion.

Dependent variable: the mean belief revealed in Belief Elicitation I.

R1 (All - BC) R3 (All - BC - W)

(1) (2) (1) (2)

Treatment -0.206 -0.037 0.068 0.210
(0.265) (0.259) (0.300) (0.293)

Loss Aversion 0.485 0.341 0.566 0.452
(0.389) (0.376) (0.406) (0.393)

Treatment × Loss Aversion -0.554 -0.685 -0.817 -0.942∗
(0.530) (0.511) (0.558) (0.540)

Ability 0.193∗∗∗ 0.196∗∗∗
(0.047) (0.054)

N 202 202 172 172

“R1” denotes a sample without the boundary cases: those who don’t fulfill conditions

necessary for the negative effect to occur (based on the new measure of loss aversion).

In “R3”, I also exclude subjects willing to pay to see a negative signal.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE C.6. The effect of treatment, ability, and loss aversion.

RS1 RS3

(1) (2) (3) (1) (2) (3)

Treatment -0.232 -0.759 -0.553 -0.092 -0.225 0.284
(0.224) (0.550) (0.629) (0.248) (0.652) (0.775)

Loss Aversion -0.846 -0.369 0.100 -0.984 -0.414 0.474
(0.669) (0.741) (1.015) (0.731) (0.800) (1.084)

Ability 0.150∗∗∗ 0.087 0.108 0.136∗∗ 0.107 0.156
(0.056) (0.074) (0.080) (0.067) (0.087) (0.096)

Ability × LA 0.140 0.125 0.048 0.159 0.146 0.000
(0.105) (0.105) (0.154) (0.114) (0.114) (0.165)

Treatment × LA -0.779 -1.622 -0.964∗ -2.608∗
(0.521) (1.348) (0.550) (1.464)

Treatment × Ability 0.134 0.094 0.074 -0.021
(0.094) (0.112) (0.108) (0.133)

Treatment × Ability × LA 0.143 0.276
(0.210) (0.228)

N 202 202 202 172 172 172

“R1” denotes the sample without the boundary cases – those who do not fulfill the conditions

necessary for negative effect to occur (based on the second measure of loss aversion). In “R3”,

I also exclude subjects whose decisions cannot be explained by the model: to see a negative signal.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

1
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C.3. Results based on coarse classification (five worst signals, average)

TABLE C.7. The effect of treatment on mean beliefs.

R1 R2 R3

(All - BC) (BC) (All - BC - W)

Treatment -0.338 1.353 -0.230
(0.228) (0.983) (0.256)

Const. 6.570∗∗∗ 5.518∗∗∗ 6.533∗∗∗
(0.163) (0.491) (0.182)

N 203 24 166

“R1” denotes the sample without the boundary cases – subjects who do not

fulfill the conditions necessary for negative effect to occur (based on the new

measure of loss aversion). “R2” includes only the boundary cases. In “R3”

I also exclude subjects whose decisions cannot be explained by the model:

those willing to pay to see a negative signal. Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE C.8. The effect of treatment and loss aversion.

Dependent variable: the mean belief revealed in Belief Elicitation I.

R1 (All - BC) R3 (All - BC - W)

(1) (2) (1) (2)

Treatment -0.223 -0.056 -0.029 0.095
(0.266) (0.260) (0.311) (0.304)

Loss Aversion 0.384 0.206 0.470 0.314
(0.372) (0.361) (0.392) (0.384)

Treatment × Loss Aversion -0.437 -0.558 -0.631 -0.711
(0.521) (0.502) (0.551) (0.535)

Ability 0.192∗∗∗ 0.182∗∗∗
(0.047) (0.055)

N 203 203 166 166

“R1” denotes a sample without the boundary cases: those who don’t fulfill conditions

necessary for the negative effect to occur (based on the new measure of loss aversion).

In “R3”, I also exclude subjects willing to pay to see a negative signal.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

192



TABLE C.9. The effect of treatment, ability, and loss aversion.

RS1 RS3

(1) (2) (3) (1) (2) (3)

Treatment -0.221 -0.827 -0.554 -0.153 -0.442 0.121
(0.223) (0.547) (0.626) (0.251) (0.654) (0.786)

Loss Aversion -0.829 -0.456 0.137 -0.984 -0.553 0.366
(0.674) (0.740) (0.992) (0.726) (0.797) (1.070)

Ability 0.153∗∗∗ 0.083 0.111 0.121∗ 0.079 0.135
(0.056) (0.074) (0.080) (0.068) (0.089) (0.099)

Ability × LA 0.126 0.118 0.022 0.158 0.148 -0.002
(0.104) (0.104) (0.149) (0.113) (0.113) (0.163)

Treatment × LA -0.687 -1.807 -0.752 -2.483∗
(0.515) (1.351) (0.548) (1.456)

Treatment × Ability 0.145 0.092 0.095 -0.012
(0.094) (0.111) (0.109) (0.137)

Treatment × Ability × LA 0.187 0.291
(0.208) (0.226)

N 203 203 203 166 166 166

“R1” denotes the sample without the boundary cases – those who do not fulfill the conditions

necessary for negative effect to occur (based on the second measure of loss aversion). In “R3”, I

also exclude subjects whose decisions cannot be explained by the model: to see a negative signal.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

1
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C.4. Results based on coarse classification (the relative measure)

TABLE C.10. The effect of treatment on mean beliefs.

R1 R2 R3

(All - BC) (BC) (All - BC - W)

Treatment -0.357 1.550 -0.239
(0.228) (0.916) (0.258)

Const. 6.570∗∗∗ 5.518∗∗∗ 6.519∗∗∗
(0.163) (0.485) (0.184)

N 202 25 164

“R1” denotes the sample without the boundary cases – subjects who do not

fulfill the conditions necessary for negative effect to occur (based on the new

measure of loss aversion). “R2” includes only the boundary cases. In “R3”

I also exclude subjects whose decisions cannot be explained by the model:

those willing to pay to see a negative signal. Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE C.11. The effect of treatment and loss aversion.

Dependent variable: the mean belief revealed in Belief Elicitation I.

R1 (All - BC) R3 (All - BC - W)

(1) (2) (1) (2)

Treatment -0.224 -0.070 -0.013 0.103
(0.263) (0.257) (0.308) (0.302)

Loss Aversion 0.389 0.202 0.492 0.330
(0.381) (0.371) (0.402) (0.394)

Treatment × Loss Aversion -0.550 -0.603 -0.761 -0.780
(0.534) (0.516) (0.564) (0.548)

Ability 0.186∗∗∗ 0.178∗∗∗
(0.047) (0.055)

N 202 202 164 164

“R1” denotes a sample without the boundary cases: those who don’t fulfill conditions

necessary for the negative effect to occur (based on the new measure of loss aversion).

In “R3”, I also exclude subjects willing to pay to see a negative signal.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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TABLE C.12. The effect of treatment, ability, and loss aversion.

RS1 RS3

(1) (2) (3) (1) (2) (3)

Treatment -0.226 -0.801 -0.550 -0.139 -0.349 0.194
(0.224) (0.551) (0.625) (0.254) (0.663) (0.790)

Loss Aversion -0.800 -0.407 0.154 -0.932 -0.455 0.456
(0.686) (0.766) (1.012) (0.739) (0.824) (1.093)

Ability 0.153∗∗∗ 0.086 0.112 0.126∗ 0.091 0.145
(0.055) (0.074) (0.080) (0.068) (0.090) (0.100)

Ability × LA 0.117 0.108 0.019 0.146 0.132 -0.015
(0.106) (0.107) (0.150) (0.115) (0.116) (0.164)

Treatment × LA -0.694 -1.775 -0.780 -2.519∗
(0.529) (1.381) (0.562) (1.487)

Treatment × Ability 0.138 0.089 0.079 -0.023
(0.095) (0.111) (0.111) (0.137)

Treatment × Ability × LA 0.181 0.293
(0.214) (0.232)

N 202 202 202 164 164 164

“R1” denotes the sample without the boundary cases – those who do not fulfill the conditions

necessary for negative effect to occur (based on the second measure of loss aversion). In “R3”, I

also exclude subjects whose decisions cannot be explained by the model: to see a negative signal.

Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

195



APPENDIX D

Extended Measure of Loss Aversion II

One can derive the measure of loss aversion in two steps. First, I use the hypothetical

choices to obtain a posterior belief distribution. Then, I use the posteriors and subjects’ will-

ingness to pay to avoid signals to retrieve the individual measure of loss aversion λ.

Posterior Beliefs. For every x ∈ {1, ...,10}, participants report a probability px
B2

that the

signal x would come from Box 2. I assume that subjects report their beliefs truthfully and

their beliefs about the box correspond to the posterior beliefs about the signal.1 I argue that

this assumption is not very demanding considering our signal structure. For example, if an

agent reports that, after seeing “5”, the probability of the ball being drawn from Box 2 is 70%,

I assume that she would conclude that with probability 70% the number “5” is her rank and

with probability 30% it is not. Because the person believes that with probability 30% the

number came from the entirely uninformative Box 1, I assume that she places the remaining

30% probability on her prior. Let us denote the posterior probability after receiving a signal

x with a 10-element vector px
1 (each element of the vector corresponds to the probability

placed on one of the 10 ranks). I calculate the posterior using the following formula:

(D.1) px
1 = px

B2
·ei=x + (1−px

B2
) ·p0

where ei=x is a null vector with one entry equal to 1 at x, and p0 is the vector of prior prob-

abilities. I derive the latter using the subjects’ decisions about all 10 numbers. Intuitively, if

a participant concludes that, after seeing number “5”, it is his rank with probability 60%, and

after seeing number “4”, it is his rank with probability 30%, then he places twice as high prob-

ability on the number being “5” in his prior beliefs. With the decisions on all 10 numbers,

one can back out the prior beliefs distribution that they use for their choices. Importantly, I

derive p0 and px
1 using a different method than the stated belief p̃0. Although I have no di-

rect proof that p0 and px
1 are the “unmanipulated” belief, there is some evidence that people

1The beliefs in Period 0 about the posterior that the agent will form in Period 1 might be different from the actual
posterior she forms in Period 1. However, since the utility U0 in equation (3.20) is evaluated by the agent in Period
0, it is not inappropriate to use her beliefs in Period 0 about the posterior she will form in Period 1.
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reveal beliefs that are closer to the truth in hypothetical choices (Kozakiewicz, 2020). In what

follows, I use beliefs revealed from hypothetical choices as a measure of the unmanipulated

posterior belief in (3.20).

Reducing the State Space. In the experiment, subjects are learning about the state of the

world that can take one of ten values (recall that the rank is an integer between 1 and 10). In

order to test the mechanism of the model in our dataset, I reduce the state space as follows. I

define a “high” state to be a state that is better than or equal to the median of the distribution

revealed through hypothetical choices. A “good” signal is a signal that indicates a “high” state

– a signal that is better than or equal to the median belief (a “low” state and a “bad” signal are

defined in the same way).

The posterior p H
1 is defined as an average of the posterior probabilities that the agent

form after signals that are lower (better) than the median. I use the following formula:

(D.2) p H
1 = 1

|S|
∑
x∈S

∑
s≤m̄

px
1,s

where S denotes the set of all “good” signals. With px
1,s I denote the posterior probability

assigned to the state s after a signal x (the s-th element of px
1 , the vector of posterior beliefs

after a signal x). The inner sum calculates the total probability that a subject assigns, after a

signal x, to the ranks that are lower (better) than his median belief m̄. In other words, this is

the probability assigned to the state being “high” after a signal x. The outer sum, divided by

the number of elements of S, gives us the average posterior belief assigned the “high” state

(the average is calculated over all “good” signals). The average posterior probability after a

“bad” signal, pL
1 , is defined analogously.

Example 1. Consider an agent whose point allocation is summarized in a vector: pB2 =
[0,0,30,40,60,40,20,0,0,0] (the n-th element of the vector corresponds to the decision con-

sidering a signal n). Using his decisions about the boxes, I obtain his prior belief vector p0 =
[0,0,0.16,0.21,0.32,0.21,0.1,0,0,0] (the n-th element of the vector corresponds to the proba-

bility assigned to rank n). One can note that the agent perceives signals below or equal to “5”

to be “good” signals. I use the same choices to construct conditional posterior probabilities:

after receiving a signal “3”, the agents would form a posterior px=3
1 = [0,0,0.41,0.14,0.22,0.15,0.08,0,0,0];

after receiving a signal “4”, he would form a posterior px=4
1 = [0,0,0.1,0.52,0.19,0.12,0.07,0,0,0];

after a signal “5”, it would be px=5
1 = [0,0,0.065,0.085,0.72,0.085,0.045,0,0,0], and so on.
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Hence, after a signal “3” the agent would assign 77% probability that the state is high (his

rank is below or equal to 5), after a signal “4” this probability would be 81%, and after a signal

“5” it would be equal to 87%. After a signal “1” or “2”, the agent’s posterior would be equal to

his prior p0, and the probability assigned to the state being high would be 67%. The average

posterior probability p H
1 is therefore 1

5 (0.67+0.67+0.77+0.81+0.87) = 0.758.

Monetary Equivalents. Subject’s choices in the price lists provide us with a monetary

equivalent δx for every signal x ∈ {1, ...,10}. I reduce the state space in the same way as for the

posterior beliefs. The monetary equivalent of receiving a “high” signal is the average taken

over the monetary equivalents for “good” signals:

(D.3) δH = 1

|S|
∑
x∈S

δx

where S denotes the set of all “good” signals, that is, signals indicating a state that is better

than or equal to the median belief, and δx is the highest amount of money the participant is

willing to pay to avoid a signal x. The monetary equivalent of a “low” signal, δL , is defined

analogously.

As for δx , I derive it from subjects’ decisions in price lists as follows. I assume a sub-

ject’s switching point to be the midpoint between the two decisions in which the participant

switched from Option B to Option A. For example, if the agent chooses Option A over Option

B when the monetary transfer in Option B is lower or equal to 1.70 Euro, but decides to take

Option A when he gets 1.80 Euro or more, I assume that his switching point is 1.75 Euro. I

assume that the agent is willing to forgo 25 cents to avoid seeing the signal and I assign him

δx = −0.25 for the signal x. In the case of participants whose switching points are not cap-

tured by the list (e.g., a person who chose Option A in every decision), I assume the monetary

equivalent to be δx =−1.05 or δx = 1.05.

Loss Aversion Measure. Having constructed the posterior beliefs p H
1 and pL

1 , as well as

the monetary equivalents δH and δL , one can derive the individual measure of loss aversion

in the following way. From the equation (3.20), we have:

δH = p H
1 uH + (1−p H

1 )uL +η
[

p H
1 uH + (1−p H

1 )uL −
(
p0uH + (1−p0)uL

)]
,(D.4)

δL = pL
1 uH + (1−pL

1 )uL +ηλ
[

pL
1 uH + (1−pL

1 )uL −
(
p0uH + (1−p0)uL

)]
.(D.5)
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After setting uL = 1 and assuming η= 1, we have two equations with two unknowns, uH and

λ. By rearranging the first equation in (D.4), we get the formula for uH :

uH = [
δH + (2p H

1 −p0)
] 1

2p H
1 −p0

= 1− 1−δH

2p H
1 −p0

.

The second equation, if we set uL = 1, η= 1 and rearrange, takes the form:

δL = pL
1 uH + (1−pL

1 )+λ(pL
1 −p0)(uH −1),

which can be further rearranged:

λ= δL −pL
1 uH +pL

1 −1

(uH −1)(pL
1 −p0)

.

After substituting uH derived from the first equation, we get the following formula:

(D.6) λ= (δL −1)(2p H
1 −p0)

(δH −1)(pL
1 −p0)

− pL
1

pL
1 −p0

,

where p0 is the probability of the state being “high” revealed through the decision about the

boxes, whereas p H
1 and pL

1 are the average posterior probabilities after a “good” and a “bad”

signal, respectively.

An important question is whether agents take into account the utility from the future

belief level – the first two terms in (D.4) – when evaluating the prospect. One could imagine

that, for various reasons (e.g., imperfect attention or difficulties in hypothetical thinking), the

agent might only consider the shift represented by the gain-loss component.2 If this was the

case, the equations for δH and δL would take the form:

δH = η
[

p H
1 uH + (1−p H

1 )uL −
(
p0uH + (1−p0)uL

)]
,(D.7)

δL = ηλ
[

pL
1 uH + (1−pL

1 )uL −
(
p0uH + (1−p0)uL

)]
.(D.8)

After taking the same steps as above (solving the first equation for uH , which is then substi-

tuted into the second equation), we get the formula:

(D.9) λ = δL

δH

p H
1 −p0

pL
1 −p0

,

2Using this assumption when specifying the utility function (1), would not change the comparative statics nor the
model predictions. Which specification is better in describing the decision problem remains an open question.
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which is more straightforward than (D.6). Intuitively, the measure of loss aversion depends on

the amount of money a subject is willing to forgo to avoid “bad” news (relative to the amount

of money he would pay to avoid “good” news) weighted by how much his beliefs would move

after each signal.
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APPENDIX E

Over- and Underconfidence

In this section, I describe the results of an additional simulation, in which subjects’ ranks

and loss aversion parameters were no longer matched like in the data. I start by describing

overconfident and underconfident participants in more detail. I classify a subject as over-

confident if the mean of belief distribution he reported in Belief Elicitation I was higher than

his actual position (using the reversed variables, which I described in Section 3.4.1). The re-

maining subjects are classified as underconfident. There were 135 overconfident and 92 un-

derconfident subjects in our sample.1 The distribution of subjects’ bias is presented in Figure

E.1. The average bias of overconfident participants was equal to 2.79 (the standard deviation

was equal to 1.89), whereas the average bias of underconfident participants was −1.64 (the

standard deviation was 1.37). As expected, the two types differ in terms of cognitive ability.

The average position of underconfident agents was equal to 7.54 (expressed in deciles of the

IQ distribution), and that of overconfident participants was 3.84. The difference in the aver-

age levels of loss aversion arises only in the restricted sample. The average response to the

hypothetical questions was equal to 4.58 for overconfident subjects, a value that was lower

than the average revealed by underconfident subjects (the difference of 0.43 is significant at

the 5% level).

FIGURE E.1. Distribution of subjects’ bias (based on Belief Elicitation I).
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1One participant revealed a mean belief equal to his position. I classify him as underconfident, however, assign-
ing him to the other group does not change the results.
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E.1. Simulation (robustness check)

The results described in this section complement the results of a simulation described

in Section 3.4.4.1. The simulation shown in the main text involved 1) random assignment of

beliefs about rank, and 2) permutation of the distribution of actual ranks and loss aversion

parameters without breaking the matching between the two. If a participant i ’s rank was 5

and he revealed a loss aversion parameter equal to 4, this participant will keep his rank and

loss aversion in the simulated data set, and only his belief (thus, also the confidence type)

will be assigned at random in each iteration. In Figure E.2, I show the results of a simulation

without the empirical relation between the subject’s rank and loss aversion parameter. For

each participant, I randomly draw belief from the uniform distribution and the loss aversion

parameter from the empirical distribution. The results are very similar to the ones presented

in Figure 3.10. For overconfident agents, the actual coefficient is much higher than any esti-

mated value, including the values indicating 95th and 99th percentile of the distribution (de-

noted with dashed red lines on the graph). For underconfident agents, the coefficient based

on the actual data does not pass the 5% threshold. Therefore, I confirm that the results pre-

sented in Section 3.4.4.1 are robust to the described modification, hence they are not driven

by the relationship between ability and loss aversion.

FIGURE E.2. Simulated coefficients (gray bars) and estimated (solid red line).
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