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Summary

This thesis is about certain sharp and endpoint inequalities in Harmonic Analysis.

The central theme in the first part of this dissertation is sharp Fourier extension inequal-
ities on spheres. The study of sharp inequalities in Harmonic Analysis can be traced back
to the seminal works of Beckner [Bec7h] for the sharp Hausdorff~Young inequality and of
Lieb [Lie83] for the sharp Hardy-Littlewood—Sobolev inequality. The study of sharp Fourier
restriction and extension inequalities, on the other hand, is a relatively recent development
which has received increasing attention over the last few years.

To begin, let us revisit the Fourier restriction inequality

I flzai-1,0) < Cpgal fllormaey-

Here, S¥~! = {z € R?: |z| = 1} is the unit sphere equipped with the surface measure o = ogq_1
induced by the Lebesgue measure in R¢ and the restriction f — f |sa—1 is originally defined
on Schwartz functions. The complete characterization of the pairs of exponents 1 < p < 2,
1 < g < oo for which this inequality holds is a major open question in Harmonic Analysis.
When p = 1 the inequality can be easily seen to hold for any 1 < ¢ < c0. On the other hand,
the inequality always fails when p = 2. Hence the interesting question is what happens for
1 < p < 2. By duality, such restriction inequality is equivalent, with the very same constant,
to the so-called Fourier extension inequality,

HfUHLp’(Rdfl) < Cipg fHLq’(Sdfl,gy

where p’ and ¢’ are the conjugate exponents of p and ¢, respectively, and f;’ is the Fourier
transform of the measure fo. By testing these inequalities against some carefully chosen
functions one finds the following necessary conditions on the exponents: p < %, q < %p’ .
The Fourier restriction conjecture claims that these necessary conditions are also sufficient.
The conjecture has been completely verified in the case of dimension d = 2, [Fef70l [Zyg74].
Moreover, the celebrated Stein— Tomas theorem establishes that the conjecture is true when
g =2 and 291 < p/ in all dimensions d > 2, [Ste93] [Tom75).

Our focus in this thesis is on the subarea of sharp Fourier restriction — equivalently,
extension — theory. Given a triple (d,p’, ¢’) for which the above Fourier extension inequality
holds we will consider questions like: What is the value of the optimal constant? If maximizers
— that is, functions that attain the optimal constant — exist, what are they? So far, such
questions have been investigated mainly for the case of even exponents p’, and even for these

seemingly more favorable cases many questions are still open.
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A major breakthrough in the subject of sharp spherical restriction came from the work of
Foschi [Fos15|. Foschi showed that constant functions are the unique real-valued maximizers
for the sharp endpoint Stein-Tomas inequality on the sphere S?. A key step in his approach
is the introduction of a weight that exploits some geometric features of the sphere S? and
which neutralizes the singularity at the origin of the twofold convolution o9 * o9. Many of the
successive results in the subject grew out of this approach.

One of the still open problems in the area of sharp Fourier restriction which has attracted
a lot of attention and effort over the last decade is the problem of determining the sharpest
constant for the endpoint Stein—Tomas inequality in dimension 2, namely the problem of
studying .

HfUHLﬁ(R?)
sup -
rer2@sty, ;20 I flz2(st

In [Shal6a] it has been established that such supremum is indeed achieved. It is conjectured
that, also in this case, constant functions are maximizers. One main obstruction in adapting
the strategy from [Fosl5] to this problem is that the threefold convolution o # o1 * 07 has
a singularity at |x| = 1 and the weight that offsets such singularity is partially negative, see
[CEFOeSTTT]. A different way of approaching the problem has been first proposed by Oliveira
e Silva, Thiele, and Zorin-Kranich in [OeSTZK22|]. In their work the case of non-negative,
antipodally symmetric, band-limited functions with Fourier modes up to degree 30 has been
considered establishing that, in this class of functions, constant functions are the unique
maximizers. The result has been later extended to the case of band-limited functions with
Fourier modes up to degree 120 in [BTZK23]. When restricted to the case of band-limited
functions the problem becomes finite-dimensional and it can be addressed numerically as done
in [OeSTZK22, [BTZK23].

Motivated by these previous contributions, in the work [CG24], written in collaboration
with F. Gongalves, we have considered the case of functions whose spectrum is possibly
infinite but satisfies certain arithmetic constraints. These arithmetic constraints arise as a
generalization of the notion of B(3)-sets. A set S < Z is a B(3)-set if for any two triples
(a1,a2,a3) and (b, be, b3) of elements in S such that a; + as + as = by + be + bs one triple
is a permutation of the other. The generalization that we propose extends the definition of
B(3)-set — and more in general, of B(h)-set — by allowing for the possibility of non-trivial
symmetric subsets. We name such generalization a P(3)-set.

Our main result is the following: If f € L2(S') is such that its Fourier support is a P(3)—set
then it holds that - -

I fo] s e - 1o o (r2)

1fl2ey 2y

and equality is attained if and only if f is a constant. The main tools that we utilize in the
proof are certain counting arguments, that are common in the literature on B(h)-sets and
on A(2h)-sets in general, combined with some novel refined estimates for integrals involving
Bessel functions. The article [CG24] is contained in Appendix [Al A detailed overview of the
results in [CG24] is provided in Section

Mixed-norm versions of Fourier extension inequalities on spheres have been studied by
Vega in [Veg92], showing that the Fourier extension operator maps L?(S%1) to L? L2 (RY)
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for p’ > dQle' More recently, the problem of computing the sharp constant for such inequalities

has been studied by Carneiro, Oliveira e Silva, and Sousa in [COeSS19], establishing that
constant functions are extremizers when the exponent p’ is an even integer and that the set of
exponents for which constants are maximizers contains a neighborhood of infinity, (pj(d), 0],
giving some upper-bounds for pf(d).

In the first part of the work [CS23], written in collaboration with M. Sousa, we have
extended the range of exponents for which constant functions are known to be maximizers for
these inequalities in the cases of low dimension 2 < d < 10, covering the entire Stein—Tomas
range of exponents in the cases of dimension d = 2, 3.

In the second part of the work [CS23|, we have considered Fourier extension estimates
in the diagonal case p’ = ¢/. Maximizers for such inequalities are known only when p’ is an
even admissible integer or p’ = oo, [COeS15, [FS24]. Our second main result concerns local
maximizers for these inequalities. We show that, in the same range of exponents (p{(d), 0]
for which constant functions are maximizers for mixed-norm Fourier extension inequalities,
they are also local maximizers for the L? (S*!) to L¥ (R%) Fourier extension estimates. For
example, this gives that in the cases of dimension d = 2, 3 constant functions are local
maximizers for such inequalities for all p’ > 2(ddj11), the Stein—Tomas endpoint. The article
[CS23] is contained in Appendix [B] A detailed overview of the results in [CS23] in provided
in Section

The second part of this thesis deals with optimal weak-type endpoint estimates for certain
square functions and Marcikiewicz multipliers operators.

The Littlewood—Paley square function formed by rough frequency projections adapted to a
lacunary partition of the real line is a classical object in Analysis and it is a bounded operator
on LP for 1 < p < o. Contrary to its smooth counterpart, it fails to be of weak-type (1,1).
The rough Littlewood—Paley square function can be seen as a prototypical Marcinkiewicz
multiplier. Marcinkiewicz multipliers on the real line are bounded functions of uniformly
bounded variation on each Littlewood—Paley dyadic interval. The corresponding multiplier
operators are well known to be bounded on LP(R) for all 1 < p < co. Optimal weak-type
endpoint estimates for these operators have been studied by Tao and Wright in [TWO01]
proving that they map locally the Orlicz space Llogl/ 2L to weak L' and such a result is
sharp, meaning that the exponent 1/2 cannot be replaced by a smaller one. It follows from
this result that the same is true also for the rough Littlewood—Paley square function adapted
to the classical dyadic partition of R. A main tool utilized in the proof of this result is a weak
square function characterization for the Orlicz space Llog"/? I obtained also in [TWOI].

In this dissertation we are interested in Littlewood—Paley square functions formed by rough
frequency projections adapted to higher order lacunary partitions of the frequency line and in
higher order Marcinkiewicz multipliers, that is multipliers of uniformly bounded variation on
each interval arising from a higher order lacunary decomposition of the real line. Recall that
a decomposition of lacunary order 7 > 1, 7 € N, can be produced iteratively by performing
a Whitney decomposition inside each interval of order 7 — 1. It follows from the classical
work of Sjogren and Sj6lin [SS81] that these higher order operators are bounded on LP for
1 <p<oo.

In the work [BCPV24], written in collaboration with O. Bakas, I. Parissis, and M. Vit-
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turi, we obtain optimal weak-type endpoint estimates for higher order square functions and
Marcinkiewicz multiplier operators, recovering for the case of order 7 = 1 the results in
[TWO1]. In fact, in [BCPV24] we establish optimal weak-type endpoint bounds for the more
general class of Ry -multipliers, the higher order analogous of the Ro-multiplier class consid-
ered in [TWO0I] and introduced by Coifman, Rubio de Francia, and Semmes [CRAFS88|. As
a corollary, we also derive sharp endpoint results for higher order Hérmander—Mihlin multi-
pliers — that is, multipliers that are singular on every point of a lacunary set of order (7 — 1)
— and, similarly, for higher order smooth Littlewood—Paley square functions. The starting
point of our analysis in [BCPV24] is the following result which is of independent interest: the
Chang—Wilson—Wolff inequality [CWW85] implies the martingale difference square function
characterization of Llog'/? L obtained in [TWOI]. This enables us to generalize the square
function characterization of Llog? L in [TW0I] to the case of L(log L)?, with o > 1/2. This,
combined with a Calderén—Zygmund decomposition for Orlicz spaces, leads to our endpoint
result. The article [BCPV24] is contained in Appendix |[C| A detailed overview of the results
in [BCPV24] in provided in Chapter

This thesis is cumulative and it is based on the three articles, [CG24], [CS23], and
[BCPV24|, which are included in the Appendices and |C] respectively.

[CG24] Valentina Ciccone and Felipe Gongalves. Sharp Fourier extension on
the circle under arithmetic constraints. J. Funct. Anal., 286(2): Paper
No. 110219, 21, 2024.

[CS23] Valentina Ciccone and Mateus Sousa. Global and local maximizers
for some Fourier extension estimates on the sphere. arXiv preprint
arXiv:2312.07309, 2023.

[BCPV24] Odysseas Bakas, Valentina Ciccone, Ioannis Parissis, and Marco Vit-
turi. Endpoint estimates for higher order Marcinkiewicz multipliers.
arXiv preprint arXiv:2401.06083, 2024.

The thesis is organized as follows. In Chapter [1| we provide a detailed introduction that gives
motivation and background for the results in the articles [CG24], [CS23|, and [BCPV24],
thereby placing them within a broader context. In Chapter [2] we summarize the main results
obtained in the works [CG24] and [CS23]. In Chapter |3| we summarize the main results
obtained in the work [BCPV24]



Contents

i
1__Introductionl 1
[1.1 ~ Sharp Fourier restriction theory{. . . . . . . . .. ... ... 0oL, 1
[1.1.1  Fourier restriction theory| . . . . . . . . ... .. ... . ... ...... 1

[1.1.2  Sharp Fourier extension inequalities on spheres| . . . . . . ... ... .. 4

[1.1.3 A mixed-norm Fourier extension inequality] . . . . . ... ... ... .. 8

[1.2  Littlewood—Paley theory and Marcinkiewicz multipliers] . . . . ... ... ... 9
(1.2.1 Classical Littlewood—Paley theoryl . . . . . . ... ... ... .. .... 9

(1.2.2 Littlewood—Paley sets| . . . . . . ... ... ... ... ... ... ... 11

[1.2.3  Marcinkiewicz multipliers| . . . . . . ... .. ... 0oL 13

[1.2.4  Glimpse of Orlicz spaces| . . . . . . . . . ... ... . ... ... ... 15

(1.3 A(p)-sets in Harmonic Analysis| . . . . . . ... ... ... ... ... .. 16
2__Overview of the main results Il 19
[2.1 A sharp Fourier extension estimates on the circle| . . . . . . .. ... ... ... 19
[2.2  Further results on global and local maximizers| . . . ... ... ... ... ... 22
B__Overview of the main results Il 25
[3.1  Sharp endpoint bounds for higher order Marcinkiewicz multipliers] . . . . . .. 25

|A Sharp Fourier Extension on the Circle Under Arithmetic Constraints| 31
[A.1l Introduction|. . . . . . . . . . 31

[A. LT Overviewl . . . . . . . . e 34

IA.2 A Generalization of By-sets|. . . . . . . . . . . ... 34
[A.2.1 Examples of P(h)-sets| . . . . . .. ... ... 35

|A.3  Estimates for certain integrals of Bessel functions| . . . . . . .. ... ... ... 37

vii



viii

IB.3 Proof of Theorem 23] . . . . . . . .. ... . 59
[B.4 Proof of Theorem 25 . . . . . . . . . .. 60
|C Endpoint estimates for higher order Marcinkiewicz multipliers| 63
IC.1 Introductionl. . . . . . . . . . . e 63
[C.1.1 Lacunary sets of higherorder| . . . . . . ... ... ... ... . ..... 65
C.1.2 Higher order multipliers and endpoint estimates] . . .. ... ... ... 66
C.1.3 The Chang—Wilson—Wolff inequality and a square function for L log”™? L| 68
[C.1.4 Background and history| . . . . . . .. .. ... ... ... ... ... .. 70
[C.1.5 Structurel . . . . . . . . o o 71

[C.2 Preliminaries and notationl. . . . . . . . . . .. ... Lo 72
[C.2.1 Some basic facts for certain classes ot Orlicz spaces|. . . . . . . .. ... 72
[C.2.2° Some tools for handling lacunary sets| . . . . . .. ... ... ... ... 73
[C23 Othermnotationl . . . . . . ... .. ... . . ... . .. 73

[C.3 A weak square function characterization of Llog??L|. . . . . . ... ... ... 74
[C.3.1 Proofof TheoremlI3sl . . . . ... .. ... .. ... 74
[C.3.2 Proot of Corollary [34]. . . . . . . . . . ... .. ... .. ... ... ... 76

|C.4  Generalized Zygmund—Bonami inequalities|. . . . . . ... .. ... ... .... 76
[C.4.1 The main term in the generalized Zygmund—Bonami inequalities| . . . . 77

[C.5 An L%-2(R) Calderén-Zygmund decomposition|. . . . . . ... ......... 83
[C.6 Proof of Theorem I31land Corollariesl . . . . . . ... ... ... ... ... ... 85
[C.6.1 Proofof Theorem 31 . . . . . . . . . .. ... ... ... ... ...... 85
|C.6.1.1 The upper bound in Theorem|[31]. . . . . . .. ... .. .. .. 86

[C.6.1.2  Optimality in Theorem |31} . . . . .. ... .. ... ... ... 91

[C.6.2 Proof of TheoremsB0land 32 . . . . . .. ... ... ... ... .... 92
[C.6.2.1 Proof of Theorem30l. . . . . ... ... ... ... ....... 92

[C.6.22 ProofofTheoremi32. . . .. ... ... ... ... ....... 93

|Bibliography| 97




Chapter 1

Introduction

The study of optimal inequalities plays a pivotal role in the field of Harmonic Analysis. In
the first part of the dissertation, we focus on sharp Fourier extension inequalities on spheres.
Specifically, we aim to determine optimal constants and maximizers for such inequalities.
The second part of this dissertation is dedicated to the study endpoint estimates for certain
square functions and Fourier multiplier operators of Marcinkiewicz type. In particular, we
are interested in obtaining optimal weak-type endpoint bounds for such operators.

In this chapter, we provide a general introduction to the topics and the problems investi-
gated in this dissertation.

1.1 Sharp Fourier restriction theory

In this section, we briefly recall some basic facts about the Fourier restriction problem and
some of the classical results on the topic. Then, we introduce the subarea of sharp Fourier
extension inequalities on the sphere and we briefly survey the main results in the subject pro-
viding background and context for the works [CG24] [(CS23] which are the content of Appendix
[A] and Appendix [B] respectively.

1.1.1 Fourier restriction theory

The role of curvature. The decay properties of the Fourier transform of measure sup-
ported on surfaces that exhibit some degree of curvature are at the foundation of the theory
of Fourier restriction.

Let M be a smooth hypersurface and let ¢ be the surface measure on M. For some
smooth function v with compact support on M define dn := vdo. The Fourier transform of
the measure 7 is given by

Ae) = jM e~ dy(z).

As a consequence of the classical theory of oscillatory integrals we have that if the hypersurface
M has at least m non-vanishing principal curvatures on the support of 1 then it holds that

()] = O(EI™™?)  as [¢] — 0.

1



In particular, if M has non-vanishing Gaussian curvature — namely, if M has (d — 1) non-
vanishing principal curvatures — on the support of the measure n then

7)) = O(g[7“™D72) as [¢] — .

As a simple example of this, let us consider the case of the unit sphere, M = S%1,
with surface measure ¢ = o4_1. The Fourier transform of the measure o can be computed
explicitly,

d
2

~ —dy
(&) = (2m) Jg (lehler=27, (1.1)

-1

where Ji denotes the Bessel function of the first kind of order k. By using the properties of
Bessel functions, and specifically the fact that Jy,(r) = O(r~'/2) as r — oo, it is immediate to
see that indeed |5(€)| = O(|¢]~@1/2) as |¢] — oo.

On the other hand, if curvature is missing, we cannot expect such a nice decay behavior.
For example, if we consider the Fourier transform of the length measure A on the line segment
((0,—1),(0,1)) = R2, we see that

1 .
M) = [ o0, - 2sin(&)
-1 &2
Hence, it is clear that, for a fixed &, [A(¢,&)| does not decay as [¢1] — o.

The Fourier restriction problem. Let S be a subset of R?, § < R%. We may ask ourselves
for which 1 < p < 2 it makes sense to consider the restriction of the Fourier transform of
an arbitrary function f € LP to the set S. If S has a positive Lebesgue measure then by
Hausdorff-Young inequality the restriction of the Fourier transform of a function f e LP(R?)
to S is a function in L¥ (S). The question becomes more interesting when the set S has zero
Lebesgue measure. If f € L' then its Fourier transform is continuous and therefore uniquely
defined at every point. Hence, the restriction to any set S of the Fourier transform of a
function f € L' is well-defined. On the other hand, by Plancherel’s theorem, the Fourier
transform of a function in L? is again a function in L? and therefore there is no meaningful
restriction to a set of zero Lebesgue measure. Consequently, the interesting question is what
happens when 1 < p < 2.

A first piece of evidence that for certain 1 < p < 2 and for certain surfaces with some
degree of curvature, such as the unit sphere S9!, there may be a positive answer to this
question dates back to an unpublished work of Stein in the 1960’s, see [Ste93], indicating
that the Fourier transform of a function in LP, for certain 1 < p < 2, has more structure
than an arbitrary function in ¥ (R4). This led to the so-called Fourier restriction problem,
asking indeed for which subsets S — R? and for which exponents p € (1,2) it does make
sense to consider the restriction of the Fourier transform of functions in LP(R?) to S. This
follows at once if there exist an exponent 1 < ¢ < oo such that the so-called Fourier restriction
inequality,

Hf”LQ(S,u) < Capg fHLP(Rd)v (1.2)



holds. Here p is a measure that is comparable with the Hausdorff measure on S. By duality,
(1.2)) is equivalent, with the very same constant, to the so-called Fourier extension inequality,

HfMHLp’(Rd) < Cd,P,q”f”qu(S’“)u (1.3)

where f;\t is the Fourier transform of the measure fu and p’,q are the conjugate exponents
of p, q respectively.

For simplicity we assume S to be a hypersurface. A first observation, highlighting the role
of curvature, is that we cannot have meaningful restriction estimates (equivalently, extension
estimates) for flat hypersurfaces, except for the trivial estimate p = 1, ¢ = o0. To see an
example of this fact we can consider the hyperplane {¢€ € R? : & = 0}. Let f(x1,...,2q) =
g(x9,...,2q)h(x1) where g is a smooth function with compact support on R4! and h(z;) =
1/(1 + |21]). Then, f e LP(R?) for all p > 1 and the Fourier transform of f is unbounded at
every point of the hyperplane {¢€ € R? : & = 0}. Notably, some degree of curvature for the
considered hypersurface is necessary.

For the remaining of our discussion, we focus on the case of the unit sphere, S = S%1.
Some necessary conditions on the exponents p and ¢ can be derived by testing the inequalities
and against some suitably chosen functions. For example, by testing the extension
inequality against the function f = 1 it is clear that a necessary condition for the
inequality to hold is that & e L¥' (RY), where o = 04_1 is the surface measure on SY~! and an
explicit expression for & is given in . This gives the first necessary condition

, 2d
p>a— (1.4)
A second necessary condition on the exponents p and ¢ can be derived by considering the
indicator function of a small spherical cap on S*!. For example, let

Cs = {weSd_lz 1—x-eq < 6%}

where eq = (0,...,0,1). A routine computation using the properties of the Fourier transform
shows that a necessary condition for the Fourier extension inequality to hold for the indicator
function 1¢; as 0 — 0 is

<— 7. 1.5
q d (1.5)
This is known as the Knapp example.

Conjecture 1 (Fourier restriction conjecture for the sphere). The necessary conditions on

the exponents (1.4), (1.5) are also sufficient.

The Riesz diagram for the exponents in Conjecture (1] is depicted in Figure [1.1} The
conjecture has been fully solved only in dimension d = 2 [Fef70, Zyg74]. The celebrated
Stein—Tomas theorem asserts that the conjecture is true when ¢ = ¢’ = 2 in all dimensions
d > 2 [Ste93, TomT75].

Theorem 1 (Stein-Tomas theorem). Let S = S~'. The Fourier restriction inequality (1.2)

_ 2d+2
holds for ¢ =2 and 1 < p < 575
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Figure 1.1: Range of exponents in the restriction conjecture. The blue dot corresponds to the
Stein—Tomas endpoint.

By Holder inequality, it follows from Stein—Tomas theorem that the restriction conjecture
is verified for all ¢ < 2 — equivalently, for all ¢’ > 2. Moreover, interpolation between the
Stein—Tomas endpoint estimate and the trivial estimate p = 1, ¢ = o verifies the restriction
conjecture for 1 < p < Qdd—j?? and g < %p’ . This corresponds to the blue trapezoid in Figure
INIA

Much effort has been devoted to the study of the Fourier restriction problem over the
last decades. This has led to the development of new tools and techniques of independent
interest. We refer to the surveys [Stol9) Tao04] for a more comprehensive treatment of this
topic. In passing, we stress that the Fourier restriction problem is intimately related with
other important problems in Harmonic Analysis such as the Bochner-Riesz conjecture and the
Kakeya conjecture, as well as with topics in partial differential equations, geometric measure
theory, combinatorics, and analytic number theory.

1.1.2 Sharp Fourier extension inequalities on spheres

In this thesis we are interested in sharp Fourier extension estimates on spheres. For a triple
(d,p',q") for which the Fourier extension inequality

170 1o ety < O @) o gy (1.6)

holds, we study questions like: What is the optimal constant? Namely, what is

Comldot o) = sup LG 17)
) ety T iy

f#0

If maximizers — namely, functions that attain the optimal constant — exist what are they?



The study of sharp Fourier extension inequalities, and especially sharp Fourier extension
inequalities on spheres, has flourished and it has received a great deal of attention over the
last decade although many questions are still open.

The existence of maximizers for (1.7) has been investigated for the case of the Stein-Tomas

range ¢’ = 2 and p’ > % in [FVV11] [CS12a) [Shal6al [FLS16]. In particular, the existence

of maximizers for the case of p’ > %jl%f has been established in [FVV1I]. The existence of
extremizers for the case of the endpoint p’ = %jl%f has been established in [CS12a] for the case
of d = 3 and in [Shal6a] for the case of d = 2. For the remaining cases, namely for d > 4,
a conditional result about the existence of maximizers for the Stein—Tomas sharp endpoint
inequality has been obtained in [FLST16].

More recently, existence of maximizers for ((1.7) for the case p’ > ¢’ has been studied in
[FS24] showing that maximizers exist if p’ > max{q’, %q} orif p’ = %q and some further
conditions are fulfilled. For later considerations, we stress that the existence of maximizers
for (1.7) in the diagonal case p’ = ¢’ is still an open problem, except for a few particular cases

in which maximizers have been characterized and which are discussed below.

The characterization of maximizers for appears to be a very challenging problem
whose solution is known only in a few particular cases. Typically the available results rely
crucially on the exponent p’ being an even integer. In fact, when p’ = 2k is an even integer
the left-hand-side of can be rewritten, using Plancherel’s identity, as the L?-norm of a
k-fold convolution of measures on the sphere and this can be further rewritten as a k-linear
form over a submanifold of (S¢~1)*.

The characterization of maximizers for has initiated with the seminal work of Foschi
[Fos15]. In [Fos15], it has been shown that constant functions are maximizers for in the
case of d = 3 and endpoint Stein—Tomas exponents (p’,¢’) = (4,2). We will briefly recall the
main steps of the elegant proof given by Foschi at the end of this subsection. Most of the
subsequent results in sharp spherical Fourier restriction grew out of this initial work of Foschi.
Maximizers for in the cases (d,p’,q¢') = (d,2k,q') with d,k € N, ¢’ € Ry U {0} satisfying
one of the following: (i) k =2, ¢ >2and 3 <d < 7; (ii) k = 2, ¢ = 4, and d > 8; (iii)
k >3, ¢ = 2k, and d > 2; have been studied in [COeS15] showing that constant functions
are maximizers also in these situations. More recently, in [OeSQ21a] it has been shown that
constant functions are maximizers for when 3 <d<7,¢ =2, and p’ > 4 is an even
integer. Moreover, in [OeSQ21a] also the following conditional result has been established:
if constant functions are maximizers for in the endpoint case (d,p’,q") = (2,6,2) then
constant functions are also maximizers for the cases (d,p’,¢") = (2,p',2) with p’ > 6 an even
integer.

It is manifest that many questions remain open. A major one that has received a great
deal of attention over the last years is whether constant functions are maximizers also for
the sharp version of the endpoint Stein-Tomas inequality for S', corresponding to the case of
exponents p' = 6, ¢ = 2. We will discuss more about this question in Section

An intermediate step towards the characterization of maximizers is the study of local
maximizers. We say that a function h is a local maximizers for (1.7)) if there exists § > 0 such



that whenever | f — hly a1y < 0 < it holds that

HfU”Lp’ (Re) HhU“Lp/(Rd)

y |

||fHLq’ (Sd-1 |h||Lq' (Sd-1) '

Constant functions have been shown to be local maximizers for (1.7) in the Stein—Tomas
endpoint cases: (d,p’,q') = (3,4,2) in [CS12a], (d,p,¢') = (2,6,2) in [COeSS19], (d,p',q) =
(d, 2j_+12,2) for 2 < d < 60 in [GN22]. More recently, local maximizers for (1.7 in the diagonal
case p' = ¢’ have been studied in [CS23], which is the content of Appendix We will introduce

these results in Section

Foschi’s proof of the sharp Stein—Tomas endpoint inequality on S?. Foschi proved
the following sharp version of the Stein-Tomas endpoint Fourier extension inequality on S2.

Theorem 2 (Theorem 1.1 in [FosIH]). For all f € L*(S?) it holds that

| folramsy < @m)[ flL2s2)- (1.8)
In particular, constant functions are the unique real-valued mazximizers.

Combining this with [CS12b, Theorem 1.2] it follows that all the complex-valued maxi-
mizers are given by f(w) = ke, for some k > 0, § € R, £ € R3.

In this paragraph, we briefly describe the main steps and ideas in the elegant proof of
Foschi.

The first natural and key observation is that, thanks to the evenness of the exponent
p' = 4, the left-hand-side of can be rewritten as

||f0'||%4(R3) = ||f0'fb0||%2(11g3) =|[fo = be’H%z(RS) = (27)3||f0* fb0'||%2(R3)»

where we have used the notation f,(w) = f(—w).

It is not difficult to check that the study of maximizers for can be restricted to
functions that are non-negative and antipodally symmetric. We denote by f; the antipodally
symmetric rearrangement of a function f e L?(S?),

2 2
g - [1/] ‘;|fb| _

Then, clearly | f|lz2s2) = | fi]z2(s2) and it is not too difficult to see that || fo * beH%Q(Rg,) <
|| fso fﬁa||%2 (R3)" Hence, without loss of generality, we can assume f to be non-negative and
antipodally symmetric.

Next, the L2-norm of the two-fold convolution of measures on S? can be rewritten as the
quadrilinear form

1fo % foll2ags) = f( o ST ) ) ).



where d¥ := 5(2?:1 wi) do(w1)do(w2)do(ws)do(wy) is a positive measure supported on the
submanifold

= {(w1,ws,ws,ws) € (S : wy + wa + w3 + wy = 0}

At this point, the main technical difficulty is due to the fact that the convolution of the surface
measure 0 = oo on S? with itself, o * o, has a singularity at the origin. In fact,

27
oxo(r)= mlumsz}(@,

see [Fos15, Lemma 2.2]. To overcome this difficulty, the key idea of Foschi was to exploit the
following geometric property of the sphere: If wy, wa,ws, ws € S? are such that wy + ws + wz +
w4 = 0 then

|U.)1 + OJ2||W3 + W4| + \wl +W3||UJ2 + OJ4’ + |w1 +W4HWQ —I—(/J3| = 4.

Foschi used this identity to offset the singularity of ¢ * o at the origin. In fact, using this
geometric identity one can rewrite

o+ ollbagn = 5 [ e fen)lon +walf@a)fn)lus + wrldz.
I

At this point, an application of Cauchy—Schwarz inequality leads to
fo+ Solltagy < [ PPl + o s ol +w)do,dow,
(5?)
_ QWJ F(@1)2F (@)1 + wnldo, do,.
(S2)4

Finally, the last step of the program is a spectral decomposition of the quadratic form

Hig) = | slg)lo ~ vldoudo,.

(52)?

The functional H is well-defined, real-valued, and continuous on L!(S?). In [FosI5, Theo-
rem 5.1] it has been shown that if ¢ = -t (s, f(w)do is the mean value of the function g
then

H(g) < H(clg),

with equality if and only if g is constant. By density, it is enough to prove this result for
functions in L?(S?). Foschi’s proof relies on a spectral decomposition of the functional H. An
alternative proof of this inequality has been more recently given in [NOeST23].

One can check that all the encountered inequality holds with equality if f is a constant
function.
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Figure 1.2: In blue, the range of exponents for which inequality [I.9 holds.

1.1.3 A mixed-norm Fourier extension inequality

In [Veg92|, Vega proved that the following mixed-norm Fourier extension inequality holds for
alld > 2 and p' > 2d/(d — 1),

/

—~ 0 - ) p'/2 i1 1/p’
”fUHL”'dLgnq(Rd) = <L (Ldl |fo(rw) daw> T d7"> < Capr| fllpzga-—y.  (1.9)

As we are only requiring J/C;' € Lf;dLgng(Rd) this can be seen as a weaker version of Stein—
Tomas inequality. In Figure the range of exponents for which ([1.9) holds are depicted in
the Riesz diagram for Conjecture

To see that (1.9) holds, we start by recalling the following well-known formula

Vio(6) = (2m)2 it PR |5|—3+1Yk(5), ceRr? (1.10)

€]

where Y}, is a spherical harmonic of degree k, see e.g. [SWT71, Chapter IV]. Given a function
f e L?(S%1), we can expand it as f = 2k>0 @k Y and, for convenience, we may assume
IYk[ £2(ga-1) = 1. Relying on (1.10) and by orthogonality of spherical harmonics we have

—1+k

—~ d 0
’ = (2 2

2 2, —d+2
Dl g, 0P

Let w e L* (R, r?ldr), |lwllps®, ya-14ry < 1, where s == (p'/2)’, and consider

J:“ (2 ar*Ta_, ()’ r‘d”)w(r)rd—ldr

k 2

d
(2m)2




For convenience we may assume that f has finite expansion f = ), a;Y}, and in case argue by
limiting arguments at the end. By Hélder’s inequality and the fact that ||w| g, ri-14r) < 1
we can bound the last display as follows

0
2 2 ,.—d+2 d—1
L(;\ak\ J%lil%(r)r >w(7")7" dr
© , 2/p 0 1/s
Sl ([ 1, 0220 ) ([t pre-iar)
k 2

0 0
0 d , 2/p’
> laxl® J [Ja_, () r 2 Py
’ 0 i*l“rk

By taking the supremum over w € L*(R, 7% 1dr) with 1w s, ra-14r) < 1 we have

0 d , 2/p'
Sl ( [ 17, 05 P )
. 5—1+k

0

d
(2m)2

d 1/2
< (27)2

d 1/2
< (27)2

1/2

—~ d
< (27)2
1715y, 23, ey < )

To conclude, one can invoke the classical bounds for Bessel functions in [BC89] to see that
there exists a constant Cy,y > 0 such that for all p’ > 2d/(d — 1)

” iy d-1 v
Gy ,
<L NG dr) <Cu,
uniformly with respect to k. Hence inequality ((1.9)) follows. As before, one can check that the
range of exponents p’ > 2d/(d — 1) is sharp by testing (1.9)) against f = ¢, for some constant
c#0.

Sharp versions of the inequality (1.9) have been investigated in [FOeS17, [COeSS19], and
more recently in [CS23]. We will discuss more about this in Subsection

1.2 Littlewood—Paley theory and Marcinkiewicz multipliers

In this section we briefly review some basic facts in classical Littlewood—Paley theory and
multipliers theory, which will serve as a background and motivation for the work [BCPV24]
which is the content of Appendix [C] First, we will focus on the case of square functions with
rough frequencies projections adapted to some suitable partitions of R. Then, we will discuss
an application of Littlewood—Paley theory to the theory of Marcinkiewicz multipliers on R.
We refer for example to [Grald, Duo01] for a more comprehensive treatment of such theories.
We will conclude the section by recalling some basic facts about Orlicz spaces which will be
useful in studying weak-type endpoint bounds for the aforementioned square functions and
multipliers.

1.2.1 Classical Littlewood—Paley theory

Littlewood—Paley theory is a classical tool in analysis that allows to decompose functions
on the frequency side into pieces that have disjoint, or almost disjoint, frequency support.
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Littlewood—Paley theory provides a partial substitute to the Plancherel theorem for general
LP spaces, with p # 2.

A heuristic motivation for this can be easily provided in the framework of one-dimensional
Fourier series — where the theory has been originally developed — by considering the case
of lacunary sequences of frequencies {ei2“2k9}k€N. In fact, for a square summable sequence
{ak}ren, the LP-norm of », ake’g”zke is comparable with its L?-norm, namely there exist
0 < ¢p, Cp < o0 such that

Z ap ei2ﬂ'2k0

keN

Z ap ei271'2k0

keN

Cp

1/2
< (Z ak2> <G
p

keN p

In passing, we mention that the same equivalence of norms property holds for any lacunary
Fourier series [Rud60]. This may suggest similar considerations in the continuous setting.
Formally, we may decompose a function f on R as

F=Y Mnf, BRf(E) = Lighapeaaren, F()-

keZ

When k; and ky are sufficiently far apart, Ay, f and Ay, f oscillate at very different frequencies
and their behavior resembles that of independent random variables.

The dyadic frequency projection Ay is a bounded LP-to-LP operator for any 1 < p < oo.
In fact, Ag can be expressed as a linear combination of two modulated Hilbert transforms
whose LP-to-LP mapping properties hold in the same range.

Our main object of interest is the Littlewood—Paley square function,

1/2
Sf = (Z |Akf|2) :
k
By Plancherel theorem, it is immediate to see that when f € L?(R) it holds that

ISfI72 = 1£17-

Littlewood—Paley theory tells us that these quantities are comparable also in LP. The classical
result in the theory is the following.

Theorem 3 (Littlewood-Paley theorem). Let 1 < p < co. Then there ezist 0 < ¢p, Cp < ©
such that for all f € LP it holds that

ol flor < [Sfllze < Gl flze-

The result in Theorem [3] is sharp, in the sense that it fails at the endpoints p = 1,00. We
are particularly interested in the mapping properties of S near L'.

We start by recalling that the square function S is not of weak-type (1,1). The behavior
of the operator norm |Sf|r—rr as p — 17 has been first studied by Bourgain in [Bou89] in
the periodic setting. By transference, it follows from the results in [Bou89] that

1S ] Lor) Loy ~ (p— 1) asp— 1T
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Other proofs of this fact follow from [Bakl9, [Lerl9]. By Yano extrapolation [Yan51] this
implies that the square function S maps locally the Orlicz space Llog?’/ 2L to L'. This may
suggest that the S could also map locally Llogl/ 2L to L®. Indeed this can be seen to be
the case as a corollary of certain results of Tao and Wright in [TWO01] about the endpoint
mapping properties of certain Marcinkiewicz multipliers. We will come back to these results
in Section [3.1]

A few words about the smooth square function. Theorem [3] can be conveniently
proven as a consequence of the boundedness result for the smooth Littlewood—Paley square
function, namely a square function with frequency projections

ALf(€) = w2616,

where 1) is a smooth function with compact support in [—4, —1/2] U[1/2, 4] which is identically
one on [—2,—1] u [1,2]. Now the operator Ay maps LP to itself for any 1 < p < 0. Let S
be the smooth square function, Sf := >k |Akf|2)1/2. Then, for all 1 < p < o, there exist
0< Cw'p < oo such that

1SFle < Col fllze-

Such an estimate can be shown, for example, by relying on vector-valued Calderén—Zygmund
theory or using Khintchine’s inequality. One can recover the result of Theorem [3] by using
the fact that Akﬁk = Ay together with the LP-to-LP boundness of vector-valued frequency
projections. Finally, it follows from Calderén-Zygmund theory that S is of weak-type (1,1).

1.2.2 Littlewood—Paley sets

So far, we have considered only the case of the classical Littlewood—Paley dyadic decomposi-
tion of the real frequency line. A natural question is whether a similar result holds for square
functions associated with different decompositions.

Let T = {I;}; be a collection of mutually disjoint intervals in R. We define A;;, and St as

o R 1/2
RIT(O) = Lieery(OF©).  S2f = (2 Afjfﬁ) |
J

The following result is due to Rubio de Francia [RAF85] and establishes that Sz maps LP to
itself for all 2 < p < o0.

Theorem 4 (Rubio de Francia square function). Let Z and St be as defined above. Then for
2 < p < o there exist 0 < C), < o0 such that

ISz flLr®) < Coll fllLrw)-

This result is sharp in the sense that there exist partitions of R into mutually disjoint
intervals such that the associated square function fails to map LP to itself when 1 <p < 2. A
classical counterexample is given by the collection of mutually disjoint intervals Z = {[n,n+1) :
n € Z}, see for example [RAF83]. In fact we may consider the function f € LP defined by
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2k 2k +.2k—2 2k + 2k—1 2k+1 _ 2k—2 2k+1

Figure 1.3: Blue dots correspond to elements in the set {2" : n € Z}. Red dots correspond
to elements in the successor set {2™ +2"2 : ny,ng € Z, ny > ng} U {2MFL —2m2 1 g ny e
Z, ny > ng}.

~

f(&) = 1[o,n)(€)- One can easily check that f(z) = NI[OJ] (Nz). Hence, the desired estimates
is
1Szflomay = INY* 1011l o) < ONTYP 110 1] 1o r)-

By taking the limit N — oo we see that this can hold only for p > 2. Accordingly, the reverse
square function estimate fails in the range 2 < p < co.

In this subsection we are interested in Littlewood—Paley sets. Following [SS81], we consider
a closed null (i.e. of zero Lebesgue measure) set £ — R and we define Zg to be the collection
of intervals I;, j = 1,2, ..., that are complementary to E in R. The following definition can
be found, for example, in [SS8&1].

Definition 1. For a certain 1 < p < o0 we say that E satisfies the Littlewood—Paley property
LP(p), or that E is a LP(p)-set, if there exist 0 < ¢,, C,, < o0 such that for all f € LP(R) it
holds that

ol fllrrm) < 157p fllr®) < Cpl fllrrm)-
The property LP(p) is preserved under translation, dilation, and by taking subsets. In
their work [SS81], Sjogren and Sjdlin have provided a strategy to construct, starting from

a LP(p)-set E, a possibly larger set E' with the LP(p) property. They gave the following
definition.

Definition 2. A closed null set E' < R is said to be a successor of a closed null set E < R
if there exist ¢ > 0 such that if x,y € E', with © # y, then |z —y| = cd(z, E).

As exemplification, we may consider a bounded interval I ¢ R\E, where E is a closed null
set in R, with I = (a,b), a,b € E. If E' is a successor of E then E’ n I is contained in the
union of two sequences {¢;} and {f;} converging to a and b, respectively, and such that, for
some 61,0y > 1, it holds that (a;; — a)/(aj41 —a) = 61 for all j and (B —b)/(Br+1 — b) = 62
for all k. An example of this is depicted in Figure For example, the (dyadic) lacunary
set of order £ given by

(@2 + .+ 25) kL k€ Z k> > k)
is a successor of the (dyadic) lacunary set of order ¢ — 1
(@M 4 2Ry ke €2, k> > k)
The following has been established by Sjogren and Sj6lin in [SS81].

Theorem 5 (Theorem 1.2 in [SS81]). If E is a LP(p)-set then any successor of E is a
LP(p)-set.
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In particular, any successor of the set {#2¥ : k € Z} has the LP(p) property for all
1 < p < 0. Similarly, if {\;} is a lacunary sequence of positive real numbers one can check,
by the very same arguments used in the dyadic case, that the set {A\p}r U (—{Ax}k) is a
LP(p)-set for all 1 < p < o0. Hence, the same is true for all its successor sets. In particular,
finite order lacunary sets are LP(p)-sets for all 1 < p < o0.

The problem of the characterization of LP(p)-sets has been studied in [HK89, HK92|
HK95] and, more recently, in [BCDP™24] an abstract characterization of LP(p)-sets has been
provided.

1.2.3 Marcinkiewicz multipliers

Given a function m € L*(R) we define implicitely the operator T,, associated to m by

— ~

T f(€) = m(&) f(£)-

By Plancherel theorem we see that T}, is a bounded operator on L? with operator norm
1 Ton ] L2m)y—r2@®) = [mlLo®). We say that T;, is a Fourier multiplier operator with symbol
m. We may ask ourselves under what conditions 7T, extends to a bounded operator on LP for
some p # 2.

An example of a Fourier multiplier operator is the Hilbert transform which is a bounded
operator on LP for 1 < p < oo associated with the symbol m(§) = —icsgn(§), where c is
some constant depending on the chosen normalization.

We say that a multiplier operator T;, is a Marcinkiewicz multiplier operator if m € L®
and if the following condition holds,

sup |[dm|(&) < Cp, < 0.

keZ j(—2k+1,—2k]u[2k,2k+1)

We use the notation {; |dm| to indicate the total variation of m over the interval I where this
is defined as

N
sup sup 2 |m(zy) — m(zp_1)|.
N x(),...,.Z‘NGIn 1

r0<...<TN

Simple examples of Marcinkiewicz multiplier operators are those whose symbol is constant on
each Littlewood—Paley dyadic interval.

The following result about Marcinkiewicz multipliers can be derived as a consequence of
the classical Littlewood—Paley theory.

Theorem 6 (Marcinkiewicz multiplier theorem). Let T,, be a Marcinkiewicz multiplier as
defined above. Then T,, extends to a bounded operator on LP for 1 < p < 0. Moreover,

| T fllLe@) < Collmize@) + Com) [ fll e ®)-

As for the Littlewood—Paley theorem, also in this case we may ask ourselves whether the
result still holds if we consider a different decomposition of the real frequency line.
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In the periodic setting, in [Mar39] Marcinkiewicz multiplier operators on the torus formed
with respect to second order (dyadic) lacunary partitions of the integers have been considered
showing that these operators are bounded on LP(T) for all 1 < p < o0.

In their work [SS81], Sjogren and Sjolin established that a closed null set £ < R is a
LP(p)-set, as per Definition [} for a certain 1 < p < oo if and only if for any m € L*(R) such
that supy Slk |dm| < oo, where {I}} is the collection of intervals complementary to F in R, the
corresponding multiplier operator 7T, is bounded on LP.

A remarkable improvement of the classical Marcinkiewicz multiplier theorem has been
obtained by Coifman, Rubio de Francia, and Semmes in [CRAFS8§] by relying on the Rubio
de Francia square function that we have encountered in the previous subsection. For some
q = 1 we use the notation |mlly, ;) to denote the total g-variation of m over the interval I,
that is

N 1/q
Il = sup_sup (2\m<xn>—m<xn_1>|q) .
n=1

z0,...,t NEL
r0<...<TN

Theorem 7 (Coifman, Rubio de Francia, and Semmes theorem). Let I,f = (—2k+1 2],
I = [2F, 2K+Y) for every k € Z. Let m € L®(R). If for some 1 < q < o0 it holds that

sup (Imlly, ey + Imllv,ap)) <

then T, extends to a bounded Fourier multiplier on LP(R) for every 1 < p < oo satisfying
|l — 1| <1
P2 q

The case ¢ = 1 corresponds to the classical Marcinkiewicz multiplier theorem.

This class of multipliers has been considered by Tao and Wright in [TWO01] where they
have studied the endpoint mapping properties of such multipliers operators near L'. We will
say more about this in Section [3.1]

We conclude this subsection with a few words about Héormander—Mihlin multiplier oper-
ators on R.

Theorem 8 (Hormander—Mihlin multiplier theorem). Let m be a bounded function on R\{0}
such that

|0m(&)] < Cmlé] ™.
Then T, extends to a bounded operator on LP for 1 < p < o and
| T f ey < Cpllm Loy + Cm) £l e w)-
Moreover, Tp, is of weak-type (1,1) for some constant C(||m| = ®) + Cm)-
Note that for the particular case of d = 1 the above Marcinkiewicz multipliers theorem is

stronger than the Hormander—Mihlin multiplier theorem, as the pointwise condition |[0m ()| <
Cn|€]7! implies the Marcinkiewicz condition.
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1.2.4 Glimpse of Orlicz spaces

A convex increasing function ® : [0,00] — [0,00] is said to be a Young function if ®(0) =
0, there exists 0 < ¢ < oo such that ®(¢f) < oo, and lim o () = o, see e.g. [Wil08]
Chapter 10]. Given a Young function ® and a measure space (X, M, 1) we define the Orlicz
space L®(X, M, ;1) as the set of measurable functions f such that

j (| f/N)dp < o0
X

for some A > 0. Orlicz spaces can be seen as a generalization of LP spaces. In fact, on one
hand, if we consider the case of the Young function ®(¢t) = t#, 1 < p < o0, we have that
L®(X,M,pu) = LP(X, M, ). On the other hand, Orlicz spaces allow us to catch a scale of
integrability that may not be captured by LP spaces. To see an example of this phenomenon
we may consider the function

f() = 1/(z(|log(z)| +1)?) for0<z <1
o otherwise,

which belongs to L' but it does not belong to LP for all p > 1. Such function is indeed
somewhat more than L*. Consider the function Wy 5(t) = t(log(e + t))1/2, one can check that

this is a Young function and the function f belongs to L¥1/2.
We endow the Orlicz space L*® with the following norm, known as the Luxemburg norm

1fll Lo (x 0y 2= inf{/\ >0: L{ O(|f|/N)dp < 1},

The space (L®(X, M, p), | - I Lo (x,m, ) 18 @ Banach space.
Let @ be a Young function such that lim;_,, ®(¢)/t = o0 and consider the function

O*(t) := sup{st — ®(s)}, t=0.

520

For example, if ®(¢) = tP then ®*(¢) = 7', with p/ = p/(p — 1). In particular, ®* is itself a
Young function. The following holds

ry < ®(z) + 2*(y).

This is instrumental to the proof of the following variant of Holder’s inequality for Orlicz
spaces: If fe L® and h e L‘I)*, then

[ 17hla < 21 el e
We refer to [Wil08, Theorem 10.2] for a proof of this fact. Moreover, it holds that

|flpe ~  sup | fh|dp.
he | g <1



16

1.3 A(p)-sets in Harmonic Analysis

A subset S < Z is said to be a A(p)-set for some p > 2 if there exists a constant Cs, > 0
such that

Iflzr(ry < Cspl fllz2emy

for all trigonometric polynomials with frequency support in S, see for example [BouOl]. Sev-
eral instances of A(p)-sets will appear throughout the thesis.

Simple examples of A(p)-sets are lacunary sequences of positive integers. A sequence of
positive integers A = {ay}x is said to be lacunary if it holds that infy agy1/ax > 1. For such
a set A there exist a constant 0 < Cy < o such that the inequality

HfHLQ('JT) < CAHfHLlog1/2 L(T) (1'11)

holds for all trigonometric polynomials with frequency support in A, [Zyg02, Chapter XII].

A further example of A(p)-sets is Sidon sets. We recall that a subset S c Z is said to
be a Sidon set if any continuous function with frequency support in S has an absolutely
convergent Fourier series, see for example [Rud60]. In particular, lacunary sequences are an
example of Sidon sets. It has been observed by Rudin, see [Rud60, Theorem 3.1], that any
trigonometric polynomials with frequency support on a Sidon set satisfy . Later, Pisier
[Pis78)] established that the inequality completely characterizes Sidon sets. In other
words, a trigonometric polynomial with frequency support on a set S c Z satisfies (1.11]) if
and only if S is a Sidon set.

On the other hand, examples of A(p)-sets that are not Sidon sets are higher-order lacu-
nary sequences. Following [Bon70l, let {ax};r be a lacunary sequence of integers such that
infy, agt1/ar = 2. Define A; to be the set of integers that can be written as

iakl + G, + ..+ Q. kl > kQ > > ,ICT.
Then there exists a constant 0 < C'4_ < oo such that the inequality

Hf“LQ(’]I‘) < CAer“Llog‘fﬁ L(T) (1-12)

holds for all trigonometric polynomials with frequency support in A;.

A further instance of A(p)-sets that will feature in this thesis is B(h)-sets. A subset S < Z
is said to be a B(h)-set if for any two h-tuples (a1, ..., ap), (b1, ..., b) of elements in S such that
ai + ...+ ap = by + ... + by, we have that one h-tuple is a permutation of the other. B(h)-sets
are A(2h)-sets, see for example [BouOl]. In fact for any square summable sequence {ag}xes it
holds that

keS

h

ak, ...akhei(k1+"'+kh)'

kh...,kheS

L2h (']T)

h/2
< (27rh!)1/2<2 |ak|2> :

keS

L2(T)

Finally, a last example of A(p)-sets that is of interest to us is Littlewood—Paley sets that
we have encountered in Subsection Following [HK89], let E be a subset of Z and take
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T = {I;} to be the partition of the integers into disjoint intervals that is induced by E. For
a function f on T define f; := f1;; and

1/2
Stpf = (Zlfﬁ) :
J

If E is LP(p)-set then there exists 0 < ¢, C}, < o0 such that

cpl flloeery < 1Sz flreery < Cpl fllor(m)

for all f € LP(T). Hence, if f is a trigonometric polynomial with Fourier support in E it
follows that there exists 0 < c]’D < o0 such that

(Sifee)”

I £l ey < €}

L (T)

In particular, E' is a A(p)-set.

Further connections between Littlewood—Paley sets and A(p)-sets have been recently stud-
ied in [BCDPT24].
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Chapter 2

Overview of the main results I

In this chapter we summarize the results in the theory of sharp Fourier extension inequalities
on spheres obtained in the works [CG24] and [CS23].

2.1 A sharp Fourier extension estimates on the circle

The results presented in this section have been obtained in collaboration by the author of this
thesis and F. Gongalves. They are contained in the article [CG24] written jointly by the
author of this thesis and F. Gongalves. The article is reproduced in Appendiz [A] and it has
been published in:

Valentina Ciccone and Felipe Gongalves. Sharp Fourier extension on the circle
under arithmetic constraints. J. Funct. Anal., 286(2): Paper No. 110219, 21, 2024.
https://doi.org/10.1016/j.jfa.2023.110219

Motivation

A major open problem in the area of sharp Fourier extension estimates is the one of deter-
mining the sharp constant and maximizers for endpoint Stein-Tomas inequality on S!,
Folusey < Comlflizony.  Com = sup TILE, 2.)
rer2sh), 1flrzey
f#0
As mentioned in Subsection existence of maximizers for has been established in
[Shal6a]. Moreover, it has been shown in |[OeSQ21b] that maximizers are smooth. The
problem of characterizing maximizers for has received a great deal of attention over the
last years. In particular, it is conjectured that constant functions are maximizers for . A
program, similar to the one proposed by Foschi in [Fos15] and outlined in Subsection m,
has been implemented in [CFOeST17] to study this problem. We briefly describe the main
steps and challenges.
Using the evenness of the exponent and Plancherel’s identity one can rewrite the left-

hand-side of the inequality in (2.1)) as

|foliomey = 2m)%|fo* fox folTa e,
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which can be further rewritten as

|fo * fox folTagme) = j( flwr) fw2) f(ws) fy(wa) fo(ws) fo (we)d P,

SI)G
where we use the notation f,(w) = f(—w) and W is the measure

6
v = 5( Z w¢> do(w1)do(we)do(ws)do(wy)do(ws)do(we)

i=1
supported on the submanifold
Q= {(w1,ws, w3, wy, ws, we) € (Sl)6 D w4 wo + w3 + wy + ws + wg = 0}.

Without loss of generality, arguing as in [Fos15] f can be assumed to be non-negative and
antipodally symmetric. In fact, denoting by f; the antipodally symmetric rearrangement of

the function f,
[P+ 152
PNl g

1ol o ga) | folloee)

it holds that

rerzsyy, Ifl2sy  perzsy), Iflz2ey
f#0 f#0, f=fy
The three-fold convolution ¢ * o * o has been computed explicitly in [CEOeST17, Lemma 2.2]
showing that it has a logarithmic singularity at |z| = 1. Also in this case, it is possible to
exploit some geometric properties of the circle to compute a weight that offsets the singularity
of 0 * o % 0. In particular, the following identity can be found in [CFOeST17, Lemma 1.3]: If
(w1, wa, w3, wq,ws, we) €  then

D (lwj + wp + wil> = 1) = 16
(5)
where the sum is over all the twenty different choices of the unordered, distinct indexes

Jik,i€{1,2,3,4,5,6}.
This allows to rewrite

(27) 2 Fo 1o ga) = 5f F(w1) F(w2) F(ws) (1) £ (e5) () (Jwr + wn + wal” — 1)av.
4 (S1)6

However, in this case the weight is partially negative and applying Cauchy—Schwartz as in

[Fos15] won’t lead to the desired result. This step of the program is left as a conjecture in
[CEOeST1T].

Conjecture 2 (Conjecture 1.4 in [CFOeST17]). Let f € L*(S') be non-negative and antipo-
dally symmetric, then

ﬁsm Fwn) fw2) f(ws) fwa) f(ws) f (we) (Jwr +wa + ws|* —1)dP

< f f(w1)2f(w2)2f(w3)2(|w1 + wo + w3|2 — 1)d\11.
(S1)6
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The trilinear form appearing in the right-hand side of the last display,

T = | | oo + o+ sl - 1av
S

has been studied in [CFOeST17] obtaining the following result in the same spirit as the one

in the last step of the proof in [Fos15].

Theorem 9 (Theorem 1.2 in [CFOeST17]). Let g € LY(S') be non-negative and antipodally
symmetric with mean value ¢ = 3= §o, g(w)do. Then

T(9,9,9) < T(c,c,c),
with equality if and only if g is constant.

Later, further progress towards the characterization of maximizers for has been
achieved in [0eSTZK22, [BTZK23|. In particular, in [OeSTZK22] (and then in [BTZK23])
the case of non-negative, antipodally symmetric, band-limited functions with Fourier modes
up to degree 30 (respectively, degree 120) has been considered showing that, among this class
of functions, constant functions are the unique maximizers. Note that, when restricting to the
band-limited case the problem becomes finite-dimensional and it can be studied numerically
as done in [OeSTZK22, BTZK23].

Main results in [CG24]

Inspired by these previous contributions, in the work [CG24] we have considered the case of
functions whose Fourier support is possibly infinite — and therefore the problem is no longer
finite-dimensional — but it satisfies certain arithmetic constraints. Such arithmetic constraints
arise as a generalization of the notion of B(h)-sets — namely, sets of integers whose h-term sums
uniquely express numbers up to permutations. B(h)-sets have been discussed in Section
and, as observed therein, they are A(2h)-sets. The generalization that we propose is motivated
by the following observation: B(h)-sets cannot have a non-trivial symmetric subset, in other
words, if A is a B(h)-set then |A n (—A)| < 2. Simple examples of this fact are the following:

e Let h =3, ce A. If there exist a, b € An (—A) such that |a| # |b|, then ¢+ a + (—a) =
¢+ b+ (—b) contradicting the definition of B(3)-set.

e Let h = 2. If there exist a, b € A n (—A) such that |a| # |b|, then a + (—a) = b+ (—b)
contradicting the definition of B(2)-set.

The generalization that we propose extends the definition of B(h)-set by allowing for the
possibility of non-trivial symmetric subsets. We name such a generalization a P(h)-set. We
refer to Section for a precise definition of P(h)-sets as well as for an overview of their
properties and some examples. We mention in passing that P(h)-sets are also A(2h)-sets.

For the case of P(3)-sets, which are of more direct interest to us, the definition simplifies
as follows (see also Definition |4| which corresponds to [CG24, Definition 1]).

Definition 3. We say that a set A < Z is a P(3)-set if for every D e A+ A+ A one (and
only one) of the following holds:
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e cither D = aj + ag + a3 with the triple (a1, a2,a3) € Ax Ax A unique up to permutations
and such that a; # —a;j for i # j;

o or all the ways of representing D as sum of three terms in A are of the form D = D4+a—a
for some ae An (—A).

Simple examples of P(h)-sets are B(h)-sets. A simple example of a P(3)-set with a non-
trivial symmetric subset is {£(6™) : n € N} U {0}. Further examples of P(3)-set are provided
in Subsection Our main result in [CG24] is the following and it corresponds to Theorem

in Appendix [A]
Theorem 10 (Theorem 1 in [CG24]). Let f € L*(S') be such that its spectrum, spec(f) =

~

{neZ: f(n) # 0}, is a P(3)-set. Then

o0
17515 ) < <2w>4( jo J8<r>rdr) 1718251, -

FEquality is attained if and only if f is a constant.

By translation invariance, the same result holds for a function w + €% f(w) whose
spectrum is a P(3)-set for some 7 € R2. Our result provides a further evidence towards the
conjecture that constant functions are maximizers for .

Two main tools are utilized in the proof. The first is counting arguments. As discussed
above, results in sharp Fourier extension theory typically rely crucially on the evenness of
the exponent as this allows for the rewriting of the left-hand-side of the Fourier extension
inequality as a k-linear form which usually is more amenable to be dealt with. In [CG24] we
depart from this approach and we take a different route. Our key, simple, observation is the
following: in this setting the evenness of the exponent allows us to rely on counting arguments,
very much typical of the literature on B(h)-sets and, more generally, on A(2h)-sets.

The second main tool is some novel refined estimates on integrals involving the product
of six Bessel functions which are the content of Lemma [20]in Appendix [A] which corresponds
to [CG24, Lemma 2].

2.2 Further results on global and local maximizers

The results presented in this section have been obtained in collaboration by the author of this
thesis and M. Sousa. They are contained in the article [CS23] written jointly by the author
of this thesis and M. Sousa. The article is reproduced in Appendiz [B and it appears online
in the ArXiv at the link https://arxiv.org/abs/2312.07309. The article is currently submitted
for publication.

Motivation

Recall the mixed-norm Fourier extension inequality (|1.9)) discussed in Subsection m The
problem of computing the optimal constant for such inequality has been studied by E.
Carneiro, D. Oliveira e Silva, and M. Sousa in [COeSS19], showing that constant functions are
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the maximizers for the sharp version of inequality whenever the exponent p’ is an even
integer and that the set of exponents for which constant functions are extremizers is open
and contains a neighborhood of infinity, (p,(d), o], see [COeSS19, Theorem 1]. Moreover in
[COeSS19, Theorem 3] some upper-bounds for p((d) are provided. In particular, they have
shown that, in low dimension:

po(2) < 6.76, py(3) <5.45, py(4) <5.53, pi(5) <6.07, py(6) < 6.82,

Ph(7) <770, ph(8) < 8.69, ph(9) <9.78, ph(10) < 10.95,

and, in general,

po(d) < (5 + o(1))dlogd.

[COeSS19| is the first work in sharp Fourier extension theory on sphere addressing non-even
exponents, although in a mixed-norm setting.

In [COeSS19], the problem of computing the sharp constant for has been observed
to be equivalent to the problem of computing

0 d , 1/p’
sup <J |Jq (r) r2tl | rd_ldr> , (2.2)
k=0 \Jo 271tk

which is in itself a problem of interest in the theory of special functions. Properties of Bessel
functions guarantee that in the range p’ > 2d/(d — 1) such a supremum is indeed a maximum.
In particular, constant functions are maximizers for the sharp version of inequality if
and only if the maximum in is attained at k = 0.

Main results in [CS23]

In |CS23] we have extended the aforementioned result from [COeSS19] to a wider range
of exponents for the case of lower dimensions, in certain cases including the Stein—Tomas
endpoint.

Our first result is the following and it corresponds to Theorem 23] in Appendix [B]

Theorem 11 (Theorem 1 in [CS23]). It holds that
Po(2) <6, po(3) <4, po(4) <348, py(5) < 3.50,

po(6) < 3.58, p(7) < 3.7, pp(8) <3.86, pp(9) < 4.06, pp(10) < 4.46.

In particular, for d = 2,3 it holds that pjy(d) < %, the Stein—Tomas endpoint.

The main tool that we utilze for the proof are some novel monotonicity results (with
respect to the order k) for certain weighted LP-norm of Bessel functions which are the content
of Section (namely, [CS23, Section 2]) and which were inspired, for the case d = 2, by
certain estimates for integrals involving Bessel functions obtained in [CG24, Lemma 2.

Note that the Stein—Tomas range is of relevance because it is conjectured that constant
functions are maximizers for the sharp Stein—Tomas inequalities and this would imply, by
Holder inequality, that constant functions are also maximizers for the sharp version of the
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mixed-norm inequality for p’ in the same range. Our result gives further corroboration
to this conjecture.

In the second part of the project, we study some connections between sharp mixed-norm
Fourier extension inequalities and sharp L7 (S1) to L (R%) Fourier extension estimates for
the diagonal case p’ = ¢/, namely

fo 170l o e
HfUHLp'(Rd) < COpt(d’p/)HfHLP’(Sdfl)’ Copt(d, p/) — sup WSO Lr (rd) (2.3)
fng'(Sd—l) Hf”LP’ (Sd-1)
f#0

Maximizers for such inequalities are known only when p’ is an even admissible integer or
p' = oo, [COeS15, [FS24]. In all these known cases constant functions are maximizers. For the
remaining cases, as mentioned in Section also the existence of global maximizers is still
an open question.

Our second main result concerns local maximizers for these inequalities and it corresponds

to Theorem [25] in Appendix [B]

Theorem 12 (Theorem 2 in [CS23]). Let d > 2 and p’ > d2—_d1. Assume that the L (S%1) to

LY (RY) Fourier extension inequality holds and that p' € (pj(d),c]. Then there exists § > 0
such that whenever || f — 1 ga-1y <0,

HfU”Lp’(sd—l) - H1‘7”Lp’(md)

< . 2.4
HfHLP’ (S-1) HluLp/(gd—l) (2.4)

That is, constant functions are local mazimizers for the L' (S%1) to LV (R%) Fourier extension
estimates.

In particular, it follows from the above discussion that constant functions are local maxi-
mizers for ([2.3)) for all p’ = p’(d) such that

p'(2) =6, p'(3)=4, p(4) =348 p'(5) = 3.50,

p(6) =358, p'(7) =37 1'(8) =386 p(9) =406 p(10)=>4.46,

and, in general, for p/(d) > (3 + o(1))dlogd.

As discussed in Section [1.1.2] previous results on local maximizers have been established
only for inequalities in the Stein—-Tomas range for the cases of (d,p’,q’) = (d, 2;%12, 2) with
2 < d < 60 in [GN22], see also [CS12a] for the case of (d,p’,q') = (3,4,2) and [COeSS19| for

the case of (d,p’,¢') = (2,6,2).
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The results presented in this chapter have been obtained in collaboration by O. Bakas, I.
Parissi, M. Vitturi, and the author of this thesis. These results are contained in the article
|BCPV2J|] written jointly by O. Bakas, 1. Parissi, M. Vitturi, and the author of this the-
sis. The article is reproduced in Appendiz[C] and it appears online in the ArXiv at the link
https://arziv.org/abs/2401.06085. The article is currently submitted for publication.

3.1 Sharp endpoint bounds for higher order Marcinkiewicz
multipliers

Motivation

In their work [TWO0I], Tao and Wright have studied the weak-type endpoint mapping prop-
erties of classical Marcinkiewicz multipliers on R. From the classical theory, briefly reviewed
in Subsection [I.2.3] it is well-known that Marcinkiewicz multipliers are bounded on LP for
1 < p < . While Hérmander multipliers are Calderén—Zygmund operators and therefore
map L' to L® this may not be the case for Marcinkiewicz multipliers, meaning that there
exist Marcinkiewicz multipliers that are not of weak-type (1,1). The mapping properties
near L! of such operators have been studied in [TWO0I]. In particular, one of the questions
addressed in [TWO0I] can be stated as follows:

What is the smallest v = 0 such that a Marcinkiewicz multiplier T,,, maps locally

Llog" L to LY*?
Here, we say that T}, maps locally Llog" L to LY if it maps Llog" L(K) to LY*(K) for
all compact sets K < R. In [TWOI] this question has been answered for a more general
class of multipliers, the so-called Ro-multipliers. These include Marcinkiewicz multipliers
with bounded g-variation for 1 < ¢ < 2 that we have already encountered in the multiplier
theorem of Coifman, Rubio de Francia, and Semmes. We refer to Subsection for a
precise definition of Ry-multipliers (which correspond to Rg j-multipliers with the notation of

Subsection [C.1.2)).

Theorem 13 ([TWO01]). Re-multipliers locally map L log'/? L to LY* and such result is sharp,
meaning that we cannot replace 1/2 with a smaller exponent.
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It follows from this result that the very same is true for the classical Littelwood—Paley
square function formed by rough frequency projections adapted to a lacunary partition of R.

The main tools utilized in the proof are a sort of square function characterization for
Llogl/ 2L and an ad-hoc vector-valued Calderén—Zygmund decomposition. We say a few
words about the former.

While the Hardy space H' admits a square function characterization in the sense that
ISflz1 ~ | fllz1, this does not appear to be the case for the Orlicz space Llog"/? L. However,
in [TWO01] the authors proved a sort of square function characterization for Llog!? L which
is very much inspired by the one for the Hardy space H'. First, they have shown a discrete
variant of it involving martingale difference. It reads as follows. Let D be the collection
of dyadic intervals in [0,1] and Dy < D, for k a non-negative integer, the sub-collection of
intervals I € D such that |I| = 27%. We define the martingale averages and differences as

B = 5 (|}| | f(y)dy> 11(2),

and
Dyf :=Egs1f — Exf.

Proposition 14 (Propo. 9.1 in [TWO01]). Let f € Llog"/? L([0,1]) with Eof = 0. Then there
exists a collection of non-negative functions fi, supported on [0,1] such that for any k € N,
Ie Dk

D f(2)] < Epfr(x),

and
/2

' > rfk|2 1

keN

S M lzrogie Lo,y
11

It is worth mentioning that the proof of this result is rather technical. From this discrete
variant a smooth one can be derived using some averaging arguments. Such a smooth version
reads as follows.

Proposition 15 (Propo. 4.1 in [TWO0I]). Let ¢x be a smooth function of the form ¢i(x) =
2k (1 + 28|z|)~« for some o > 1. For any f € Llog"? L([—¢,¢]) such that § f(z)dz = 0 there
exist a collection of non-negative functions fi, k € Z, such that for any k € Z the following
pointwise estimate holds,

|ARf] < fi * bk,
and they satisfy
/2
Sl rog2 L—e.e):

1
H > \fk’Z

keZ

Ll

We stress that, as observed in [TWO01], if we were to choose fi = |Ak f| = which would
be the natural choice in the case of H!, possibly up to a small enlargement of the frequency
interval over which we are projecting — then the result in Proposition [15| won’t hold. We refer
to [TWO1l, Section 4] for a counterexample.
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As a final remark, we mention that the above square function characterization, beside
being of interest in itself and being instrumental for the proof of Theorem has also some
further interesting applications. One of them, as observed in [TWO0I], is the following: It
implies the classical inequality of Zygmund for functions with frequency support on
{2F : k e N}. In fact, let f be a function on T such that f(n) = 0 unless n € {2¥ : k € N}.
Then by the definition of the frequency projection &k and the Hausdorff-Young inequality it
follows that

1F25)] = 1(Ae )" (2%)] < |Apflr(m.

By Proposition (adapted to the case of the torus T) we get that HﬁkaLl(T) < | fex bkl
By combining this with Young’s and Minkowski’s inequalities and, again, with Proposition
15 we obtain that

1/2 1/2
Fls < (2 nfkrﬁlm) < \(2 fk|2)
keN

keN

< 1l sogrrz £ (T)
LY(T)

hence reproving the classical inequality of Zygmund.

Main results in [BCPV24]

Motivated by the aforementioned results in [TWO0I], we are interested in understanding weak-
type endpoint bounds for higher order Marcinkiewicz multipliers.

We consider higher order lacunary partitions of the real line. These can be defined as
follows. For a dyadic interval I < R of finite measure we define its Whitney decomposition as
the collection of its maximal dyadic subintervals J < I such that dist(.J,R\I) = |J|. Denoting
by A; the classical Littlewood—Paley dyadic partition of R\{0}, we then define inductively the
T—order (dyadic) lacunary partition A, as the collection of intervals obtained by taking the
Whitney decomposition of each interval I € A;_;. Denoting by lac, the set of the endpoints
of such intervals, we see that lac; is a successor of lac,_1 according to Definition

We consider T-order Marcinkiewicz multipliers, namely, multipliers of uniformly bounded
variation over each interval in A, and 7-order Hérmander—Mihlin multipliers, that is, multi-
pliers that are singular on the set of endpoints lac,, we refer to Subsection for rigorous
definitions. The rough and the smooth square functions formed by frequency projections
adapted to A, can be seen as prototypical examples of the aforementioned multipliers. We
denote such rough and smooth square functions as Sy, and §A7a respectively. As reviewed
in Section all these operators are bounded on L? for 1 < p < co. We are interested in
weak-type endpoint estimates for such operators.

Our first main result is the following and corresponds to and Theorem [30] in Appendix [C]

Theorem 16 (Theorem A in [BCPV24)). Let T, a Marcinkiewicz multiplier operator of order

7 eN. Then
T/2
HreR: Tmf(x)]>a}\$JR@<log (e—l—i)) , a>0.

The same holds for the rough Littlewood—Paley square function Sy . Such endpoint estimates
are sharp, meaning that the exponent 7/2 cannot be replaced by any smaller one.



28

Theorem [I6] implies at once the following local estimate: let T, be a Marcinkiewicz
multiplier operator of order 7, then for every interval I ¢ R and function f with suppf < [
it holds that

T/2
et sl > ol s ¢ [ 1o (4 1)) dfbrs= it [ 1
aJr AfDr I
Theorem [16|is obtained as a consequence of a more general endpoint result for a 7-order gen-
eralization of the class of multipliers introduced by Coifman, Rubio de Francia, and Semmes.
We name such generalization Ry r-multipliers. They include 7-order Marcinkiewicz multiplier
operators as well as 7-order Hormander—Mihlin multiplier operators. We refer to Subsection
for a precise definition of these multipliers and to Theorem [31] for the corresponding
endpoint result. As a consequence, we obtain also the following endpoint result for higher or-
der Hormander—Mihlin multiplier operators, which is the content of Theorem [32]in Appendix

Theorem 17 (Theorem C in [BCPV24]). Let T, a Hérmander—Mihlin multiplier operator
of order T € N. Then

(r=1)/2
HreR: \Tmf(x)\>a}\$fR@<log<e+?)) , a>0.

The same holds for the smooth Littlewood—Paley square function §AT' Such endpoint estimates
are sharp, meaning that the exponent (T — 1)/2 cannot be replaced by any smaller one.

One of the main tools utilized in the proof of the aforementioned endpoint results is a
sort of square function characterization of the Orlicz spaces Llog" L, for r > 1/2, which in
the case r = 1/2 recovers the analogous result in [TWO0I]. Recall the Chang—Wilson—Wolff
inequality [CWW85|] which can be stated as

If = Eoflexpez2yoa)) S ISm Sl e o1 (3.1)

with Spf = Q=1 [Drf 2)1/2 the martingale square function. Our square function charac-
terization for Llog" L, r > 1/2, stems from the following observation which is of independent
interest: the Chang—Wilson—Wolff inequality implies the discrete square function charac-
terization of L logl/ 2 L established in [TWO01] and described in Proposition This provides
a different approach to prove Proposition [14] which can be generalized to the case of Llog" L,
r = 1/2, leading to our next main result which is the content of Theorem [33|in Appendix

Theorem 18 (Theorem D in [BCPV24]). Let f € Llog®™ /2 L, with o = 0. Then for each
k € Ng there exist functions fi such that

1/2
Dif =Drfr Vk € Ny, (2 ’fk’2> S 1 L 10gte+r2 £

k=0 Llog/2 L

The implicit constant depends only on o.
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A smooth version of this square function characterization, generalizing the one in Proposi-
tion can be derived using averaging arguments as in [TWO01], see Corollary [34|in Appendix
As a final remark, we observe that such square function characterization implies the in-
equality of Bonami for functions with frequency support in {28 + ...+ 2% . ki ..k, €
No, k1 > ... > k;} by the very same arguments utilized at the end of the previous paragraph.
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Appendix A

Sharp Fourier Extension on the
Circle Under Arithmetic
Constraints

This Appendiz contains the article [CG24] written jointly by the author of this thesis and F.
Gongalves. The article has been published in

Valentina Ciccone and Felipe Gongalves. Sharp Fourier extension on the circle un-
der arithmetic constraints. J. Funct. Anal., 286(2): Paper No. 110219, 21, 2024.
https://doi.org/10.1016/j.jfa.2023.110219

Abstract

We establish a sharp adjoint Fourier restriction inequality for the end-point Tomas—Stein
restriction theorem on the circle under a certain arithmetic constraint on the support
set of the Fourier coefficients of the given function. Such arithmetic constraint is a
generalization of a Bs-set.

A.1 Introduction
In this paper we are interested in the optimal constant for the Fourier extension inequality
1 Foll$6 g2y < CoptllFIlS2 (s - (A1)
where ¢ is the arc length measure on S, f;’ is the Fourier transform of the measure fo,
fa(x) = . flwe @¥do,, xeR?
and Cgpt is the optimal constant

Copt:= sup [|follfemeI1FlI5e) -
P ferash), s20 PEDTIEED
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This problem has attracted a lot of attention in the last decade. Existence of maximizers have
been established in [Shal6al and it is known that maximizers are smooth [Shal6blOeSQ21Db],
and that they can be chosen to be non-negative and antipodally symmetric, see [CEOeST17].
In [CFOeST1T], and later in [GN22], it has been established that constant functions are local
maximizers. In fact, it is conjectured that constant functions are indeed global maximizers in
which case

0
Copt = (277)4J JS(ryrdr .
0

If this were true, a full characterization of the complex valued maximizers is provided in
[CEOeSTT1T]. Moreover, in [OeSQ21a] it is shown that if (A.1)) is maximized by constants
then the following inequality

[ follLormey < Coroptl| fllL2st)

is also maximized by constants for every k > 3.

A major technical challenge in the study of extremizers for lies in the fact that the
threefold convolution o * o * o(x), which arises naturally when exploiting the evenness of the
exponent in the right hand side of and using Plancharel, blows up when |z| = 1, see
[CEOeSTTT].

We recall that any complex-valued f € L?(S') can be expanded in Fourier series

flw) =

mn

n)w",

A>

m
N

where we let w = x + iy if w = (x,y) € S'. We also define the spectrum of f to be

~

spec(f) ={neZ: f(n) # 0}.

In [OeSTZK22, BTZK23| the case of band-limited functions was explored, that is, when
|spec(f)| < oo. Specifically, it has been shown that constant functions are the unique maximiz-
ers among the class of real-valued, non-negative, antipodally symmetric functions f € L?(S')
with spec(f) € [—30,30] and spec(f) < [—120, 120], respectively. Note that when restrict-
ing to the band-limited case the problem becomes finite-dimensional (a matter of comput-
ing the eigenvalues of a quadratic form) and it can be addressed numerically as done in
[0eSTZK22, [BTZK23].

In this paper we consider functions in L?(S') whose spectrum can be infinite, but it satisfies
certain arithmetic constraints. More specifically, we establish the desired sharp inequality for
functions in L2(S') whose spectrum is sufficiently sparse in the following sense:

Definition 4. A set A c Z is said to be a P(3)-set if for every D e A+ A+ A one (and only
one) of the following holds:

e D is unique, that is, D = a1 + as + as, the triple (a1,a2,a3) € A x A x A is unique
modulo permutations and a; # —aj for i # j;

o D is trivial, that is, D is not unique and the only way of representing D is D = D+a—a
for some a e An (—A).
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We use the terms unique and trivial here merely for useful case distinction to be used later
on in the proof of our main result. We extend such notion and give a more general definition
in Section for arbitrary h-sums A+ A+ ... + A, what we call P(h)-sets. A complete list
of all P(3)-sets A = [-3,3] nZ is

(0}, {1}, {2}, +{3}, {=3.,3}, {-2,2}, £{-2,3}, {~1,1}, +{-1,2},
+{—1,3}, +{0,1}, +{0,2},+{0,3}, +{1,2}, +{1,3}, £{2,3}, {-3,0,3},
+{-3,2,3}, +{-2,-1,3}, +{—2,0,2}, +{—2,0,3}, {-2,1,2}, +{-2,1,3},
+{=2,2,3}, {—1,0,1}, +{—1,0,3}, +{—1,2,3}, {-3,-2,2,3}.

A simple example of a symmetric infinite P(3)-set is A = {£6™ : n = 0} U {0} (see Example
).
Beside providing explicit examples of constructions of P(3)-sets one may ask how fast can
the counting function
z — spec(f) N [z, ]|

grow. In Example 3| we construct an infinite symmetric P(3)-set A (via greedy choice) such
that

[An -z, 2]l 2 331/57
On the other hand, if A is a P(3)-set then it is easy to see that A n [1, 0] and (—A4) n [1, ]
are Bs-sets (see Section and thus if we consider the (\A23|+2) multi-sets of size 3 in
A, = An|[1,x], the sums of the elements represent each number in [1,3z] N Z, at most once,
hence

ALl +2
3z > <‘ g ) = L(|As] + 2)(JAs| + 1)| A,

and so |A N [—x, z]| < #'/3. Constructing By-sets with large density is a very hard task that
have drawn a lot of attention in the literature, especially in the interplay of combinatorics,
probability and number theory, and we refer to the introduction of |Cil14] and the references
therein for further information. Since any Bs-set is a P(3)-set we can simply rely on Cilleruelo’s
result [Cill4], see also Cilleruelo and Tesoro [CT15], to obtain existence of a P(3)-set A with
only positive integers and counting function satisfying

A A [—z,2]| 2 2572,

which is the current best existence result in terms of the exponent v/5 — 2 = 0.23....
We are now ready to state our main result.

Theorem 19. Let f € L?(S') be such that its spectrum

~

spec(f) = {neZ: f(n) # 0}
is a P(3)-set. Then

P o0
1Foll% e < <2w>4( fo Jg(r)rdr>|!f\|§z<sl)-

and equality is attained if and only if f is constant.
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To the best of our knowledge it is the first time that this inequality is established for
functions f with an infinite spectrum and that simultaneously do not need to be “close” to
constant functions. A simple function which is not comtemplated by the previous results
[CFOeST17, [0eSTZK22, BTZK23] is f(w) = 1 + cw™ for arbitrary n and large c¢. The
function f is not real-valued nor non-negative antipodally symmetric, hence we cannot apply
the results in [OeSTZK22, BTZK23|. Moreover, for large ¢ we cannot apply the local result
of [CFOeST17]. However, the set A = {0,n} is a P(3)-set, and thus Theorem [19| applies.

Clearly, by translation invariance, one could instead ask that the spectrum of w —
e’ f(w) is a P(3)-set for some 7 € R? and obtain the same inequality.

The proof of Theorem [19| relies crucially on some refined estimates on integrals involving
the product of six Bessel functions. Some of these integrals involve Bessel functions of lower
order and need to be estimated numerically. In Lemma we estimate such integrals by
employing a new method (quite different from [OeST17, [OeSTZK22, BTZK23|) that avoids
doing any numerical integration, and makes use instead of a known quadrature formula for
band-limited functions in R2.

A.1.1 Overview

This paper is organized as follows. In Section we give a precise definition of P(h)-set.
Then we propose some examples of P(h)-set with non-trivial symmetric subsets. In Section
we study some refined estimates on integral involving the product of six Bessel functions.
In Section [A~4] we prove our main result. Finally, in Section[A-5] we propose a further example
of application of the developed strategy to the study of sharp inequalities.

A.2 A Generalization of Bj-sets

A subset S € Z is said to be a Bp-set, with h > 2, if for any aqy,...,ap,b1,...,by € S such
that a1 + ... + ap, = b1 + ... + by, we have that (ai,...,ap) is a permutation of (by,...,bp). If
h = 2 the set S is sometimes said to be a Sidon set H We are interested in defining a suitable
generalization of Bp-sets to account for the case of sets A € Z with non-trivial symmetric
subsets, namely such that |[A n —A| > 3. It is immediate to see that such symmetric sets
cannot be Bj-sets: in fact, for example, when h is even there is always more than one way
of representing zero as sum of h elements in A, whereas when h is odd there is always more
than one way of representing any element in A as a sum of elements in A.

In what follows we let A* denotes the iterated sum of k copies of A4, e.g. A3 = A+ A+ A.

Definition 5 (Property P(h)). We say that the set A satisfies property P(h) (with h = 2),
or that A is a P(h)-set, if for any D € A" there exists 0 < £ < h with the same parity of h
and a unique set of £ elements {a1, ..., ar}, with a1, ...,ap € A, a; # —a; for all i # j, and such
that any h—tuple (by,...,by), with by,....,.bp, € A and by + ... + by, = D is a permutation of a
h—tuple (a1, ..., @, Ut, —U1, oo U(h—1) /2, —U(h—1)/2) fOr some uy, ..., u@p_p)0 € A (—A).

!This has not to be confused with the other definition of Sidon set according to which a set F is a Sidon set
if every continuous function f : S' — C with spec(f) € E has absolutely convergent Fourier series. To avoid
confusion we will always refer to Bp-sets with h = 2 as Ba-sets.
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We recall that a set F < Z is said to be a Ap-set, for some p > 2, if there exists a constant
C such that

ety < Cllfllz2esn

for all functions f € L?(S!) whose spectrum is contained in E. It is well known that Bj-sets
are Agp-sets (see e.g. [BouOI]).
The following observations follow immediately from the definition of property P(h).

o If Ais a P(h)-set then A nN and —A n N are Bj,-sets, and thus A is a Agy-set.

o If Ais a By-set then A is a P(h)-set.

If |[An—A| <2 and A is a P(h)-set then A is a By-set.

If Ais a P(h)-set and S < A then S is a P(h)-set.

If Ais a P(h)-set then —A is a P(h)-set.

If Ais a Bp-set, the set Au—A does not necessarily satisfy property P(h): in fact, for ex-
ample, the set of powers of two, {1,2,4, ...}, is a By-set, however the set {—1,—2, —4, ...} U
{1,2,4, ...} does not satisfy property P(2), since, for example, 1 + 1 =4 — 2.

A.2.1 Examples of P(h)-sets

Since any Bj-set is a P(h)-set, the more interesting task is to provide examples of sets A that
satisfy property P(h) for some h and that are such that |[A n —A| > 3.

Example 1. A sequence of positive integers {\,,} is said to be (Hadamard) lacunary if A\, 11 >
gAn for some g > 1. Let Ay, := {A\,} U (—={\n}) U {0}. We claim that A) , satisfies property
P(h) whenever ¢ > 2h — 1. To see this assume ay, ..., ap, b1, ..., by, € Ay 4, are such that

a1+ ...+ap=by + ...+ by . (A.2)

On both sides of we omit the zero terms and simplify terms of the form a; + a; with
a; = —a; and b, + b, with b, = —b,. If no term is left on both sides of then
ai + ...+ap =b; + ...+ by, =0and (ay,...,ap), (b1,...,by) are consistent with property P(h).
On the other hand, if terms are left on at least one side of we further arrange them so
that to have only positive terms on both sides obtaining

o1+ o tagy =P1+ ...+ By (A.3)

where {1, ...,ap, B1, ..., B} S {lail, ..., lanl, |b1]s -y |OR]}s @1y ooy sy B1y ooy B > 0 and n +
" < 2h, B/ h" = 1. We want to show that {1, ...,ap} = {B1, ..., B }. We proceed in a similar
way as in [Grald, Proof of Theorem 3.6.4.]. We start by showing that max{aq,...,ap} =
max{f1, ..., Bpr}. Assume by contradiction that max{aj,...,ap} > max{fi,..., Bp}. Then
max{aj, ..., ap } = gmax{fi, ..., Bpr}. On the other hand we have

max{aq, ...,ap} < B + ... + Bur < K max{Bi, ..., B} < qmax{pi, ..., Bpr}
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where in the last inequality we have used the fact that h” < 2h — 1 < ¢. By assuming that
max{f1, ..., Bpr} > max{ayq, ..., ap } we have a similar contradiction. Hence max{ay, ..., ap } =
max{f1, ..., B }. Proceeding by induction we see that h’ = h” and {aq,...,ap} = {51, ..., Bpr}
as claimed. Because we got rid of the cases a; = —a;, by, = —b, in the very beginning this
further implies that there exists a unique (up to permutation) h’-tuple of elements in Ay,
that sums up to D = a1 + ... +ap =b1 + ... + by, .

Example 2. As a particular case of the above result, the set S; := {#¢" : n > 0} U {0} is a
P(h)-set whenever g > 2h. Note that the set S, for ¢ = 2h — 1 does not satisfy property P(h)
since

hg=q+..+q=¢+(—q—...—q)
—_ e —
h times h—1 times

It begs the question whether we can still prove Theorem [19| with an adaptation of our method
for the functions f with spec(f) < S, for ¢ = 5,4,3,2. We leave this question for future work.
One interesting and possibly useful feature is that for ¢ = 5,4,3 we only have finitely many
exceptions (modulo multiplication by ¢") breaking property P(3). For instance, for ¢ = 3,4,5
the only exceptions are 1+1+1=9-3-3=3+04+0,1+14+1=4—1-0,1+1+1=5-1-1.
In generality, for h < ¢ < 2h the set S, only has finitely many exceptions not satisfying the
property P(2h). To see this, let 2 < h < ¢, be Z and m > 2 with |b| + m < 2h + 1. We claim
there are only finitely many solutions to

m—1
b= ajqb (Ad)
j=1

with a; = +1, [; = ;11 = 0 and with the property that [; = [; implies a; = a;. Such claim
with b = 0 easily shows what we want. Note that if [,,_; > 0 then ¢ divides b and so b = ¢,
Im—1 =1, and we obtain 1+ 1 =3""2a;¢ . If I,,_y = 0 then 1+ 1 = 3™ *a;¢"". In any
case, if we let P, = {(a;, lj);.”:_ll : solves (A.4)} we deduce that

|Pm,b| = |Pm—1,b—1‘ + ‘Pm—l,b-‘rl"

Now note that by unique expansion in base ¢ the set Py is a singleton for [b] < h except
when b = 0, in which case P, = &, or |b| = ¢ = h, in which case |P,p| = 2. This
shows that |P,, 3| < 0. The case ¢ = h — 1 has infinitely many exceptional cases, such as:
I+h—1)"+..+h-1"=((h-1)""+1+0.

Example 3. For a given set E let E(z) be the counting function E(x) := |E n [—x,z]]. Tt
is easy to check that the above examples are such that Ay ,(z) < logy,_1(x) and Sy(x) ~
log, (7). An example of a denser set that satisfies property P(h) can be straightforwardly
constructed applying the following greedy algorithm that generalizes the one of Erdos for

By-sets, see [Erd81) [Cill4]. We start by setting a; := 1 and a_; := —aj. Then we de-
fine the element a, to be the smallest integer greater than a,_1 and such that the set
{—an,a—pt1,...,a-1,01,...an_1,a,} satisfies property P(h). Then we set a_, := —a, and

iterate the procedure. It is easy to check that the resulting sequence of integers A is such
that A(z) = #/#h=1) In fact at each step there cannot be more than (2n — 2)2*~1 distinct
elements of the type a;, +...+a;, —aj, —...—aj, , with —(n—1) <i1,..., %, j1, ..., Jh—1 <n—1
and therefore a, < (n — 1)>»~! + 1 and A(z) 2 z¥/(h=1,
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Example 4. The construction of the following example is adapted from [Rud60] (see also
[HZ59]) where a similar strategy is used to construct Sidon sets that are not (Hadamard)
lacunary. For n = 0,1,2,... we set N := 2. Then we define A, to be the set of elements of
the type
(2R + 2RV i =0,.,N—1,n=0,1,2,....

Such a set is not of the type of Example 1, in fact Aj; contains IV elements between a,, o :=
(2R)*N + 2N and ap n—1 = ((2R)*N + 20NN a4, yo1 < 2an0 , while sets of
the type in Example 1 contain a bounded number of elements between z and 2z as = tends
to infinity. We claim that the set Aj, satisfies property P(h). To see that, let ay, j;, bn, j; €
Ap, i =1,...,h, be such that

Anyji T oo F Ay gy = bng gy + oo+ bny gy

After simplifying on both sides the elements of the type x + (—z) and rearranging we obtain
something like
Q1Cpyjy + oo+ QsCpy i, = 0 (A.5)

where |o;| < 2h — 1, s < 2h, ¢, 5, € Ap, © = 1,...,s, and we assume that ¢,, ;, < ... <
Cn,,j,- But then if oy # 0 we would have that ¢, ;, is divisible by a lower power of 2h than
Cno.jos - Cny,j, and therefore (A.5]) is impossible.

A.3 Estimates for certain integrals of Bessel functions

A simple computation (using the integral representation for Bessel functions) shows that if
we let w = 2 + iy for w = (x,y) € R? then

Q/"\U(x,y) = 271-(_@)"‘]"(x—m n

(@2 + y2)2 2

where ¢ is the arc measure on S! and .J,, is the Bessel function of first kind. The following
lemma is crucial for the proof of our main result. In what follows, all numerical computations
were performed using the [BBBT98, version 2.15.3] computer algebra system.

Lemma 20. We have the following inequalities:

(i) For all integers n > 1 it holds that

o0 1 o0
J Jé(r)J,%(r)rdr < 5f Jg(r)rdr
0 0

and

0 1 Q0
J Jo(r) JE(r)rdr = j JS(r)rdr.
0 5 Jo
(ii) For all integers n > 0 it holds that

0 2 e}
j Jg(r)Jé(r)rdr < — Jg(r)rdr.
0 15 Jo
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(iii) For all integers n > 0 it holds that

Q0 1 Q0
J JS(r)rdr < f JS(r)rdr.
0 3 Jo

(iv) For all integers n,m > 0, n # m and such that (n,m) # (1,2) it holds that

0 1 0]
f Jﬁ(T)an(T)rdr < QJ Jg(r)rdr.
0 0

Moreover,

e} 1 o0
J Jf(r)J%(r)rdr < 6j Jg(r)rdr.
0 0

(v) For all integers n > m > £ = 0 such that (n,m,¥) # (3,2,0) it holds that

o0 1 o0
J Jg(T)an(r)Jg(r)rdr < 5 Jg(r)rdr.
0 0

Moreover,

L J2(r)J3(r)JE(r)rdr < éL JS (r)rdr.

We start by recalling some known bounds on Bessel functions and Bessel integrals.

e The following pointwise bound can be found in [OeST17, Corollary 9]

2 Jo(r)] <y

for r > 0, where v = 0.89763 (which is a truncation of %\/g).

e The following pointwise bound was proven in [Ole06]

2
P2 ()] < B/ + S+ 3
for r > 0 and n > 0 where 8 = 0.674886 and o = 1.855758.

e The following identity can be found in [GR07, Equation 6.574-2]

00]
2 -2 _ 2
fo S (55T + 1)

for 0 < A < 2n + 1.

We are now ready to prove the lemma. For simplicity we define

0¢]

I(ny,...,ng) := J Iny (r).odng (r)rdr and Z(ny,ne,ng) := I(n1,ni,na, na, n3, ns).

0

(A.6)

(A7)

(A.8)
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Proof. First we require a good lower bound for Z(0,0,0) which is
7(0,0,0) > 0.33682.

Such numerical lower bounds (and the upper bounds below) were done using Lemma [21] n and
evaluating the sum 7 (n,m,¢) with high precision (nowadays most computer algebra systems
can do it extremely fast).

We start by proving the estimate in (i). Using (A.6) and ( we obtain

o0
1
7(0,0,n) < ’y4j JS(T)Tfldr = 74% (A.10)
0

One can easily check that 74ﬁ < %0.33682 when n > 5. For n = 2, 3,4 we have
7(0,0,n) < Z(0,0,n) + 107* < Z(0,0,2) + 10~ = 0.0370...

which is visibly less than %0.33682 = 0.067364. Integration by parts in conjunction with the
relation Jo(r) = Ji(r) + 2.Ji(r) shows the desired identity Z(0,0,0) = 5Z(0,0, 1).
To prove item (ii) we use (A.6), (A.7) and (A.§)) to obtain

Q 3a _ « 302\ 1
o) <% (0 55 ) [t =t (o0 G

The right hand side above is a decreasing function of n and one can check that it is less than
2 150.33682 for n > 14. For 1 < n < 13 we have the numerical bounds

Z(0,n,n) < Z(0,n,n) +10~* < Z(0,1,1) + 10~* = 0.0424...,

which is less than %0.33682 = 0.0449093....
To prove item (iii) we use (A.7) and (A.8) to obtain

A ) < (By[n3+ — + 302\ 1
n,n,n n — — -_—.
T 1/3 10n ) 2n

Also in this case the right hand side is a decreasing function of n. When n > 9 the right hand
side is less than %0.33682, while for 1 < n < 8 we have the numerical bounds

~

Z(n,n,n) < Z(n,n,n) + 1074 <Z(1,1,1) + 10~* = 0.1049...,

which is less than £0.33682 = 0.112273....
To prove the estimate in (iv) first let for n > 1

3a2
1/3 ndl
B\/n * 1/ 5" 10n
and By = 7. One can show that B, is increasing for n = 6 and maxgg<n<s Bn = B1 < Bsg.
Next we let k = max{n,m} and we use and - to obtain

max{B§6, B/,%}2

0
Z(n,n,m) < max{B&,Bi}QJ J2(ryr~tdr = ok
0
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The right hand side is a decreasing function of k and one can easily check that it is less than
50.33682 when k > 49. For 1 < k < 48 with (n,m) # (1,2) we rely on the numerical bounds

Z(n,n,m) < Z(n,n,m) + 1074 < Z(2,2,3) + 10~* = 0.0335...,

which is visibly less than §0.33682 = 0.037424.... Moreover, Z(1,1,2) < 7(1,1,2) + 107% =
0.0424... < %0.33682 = 0.0561....
To prove the estimate in (v) we can then use (A.7)) and (A.8)) to obtain

BEBTQn < maX{B§6>Btg}maX{B§6>B72n}
on 2n
< max{B3s, By _,} max{B3, B _,}

= 2n

0 0]
Z(n,m,fl) < B?Bglf J2(t)rtdr =
0

A tedious computation shows again that the right hand side above is indeed a decreasing
function of n. One can easily check that it is less than 1—150.33682 when n > 145, while for
1 <n < 144 with (n,m,¢) # (3,2,0) we have the numerical bounds

Z(n,m,0) < Z(n,m,0) +107* < Z(4,2,0) + 10~* = 0.0185...,

which is less than £0.33682 = 0.0224546.... Moreover, Z(3,2,0) < Z(3,2,0) + 10~ =
0.0243... < £0.33682 = 0.0561.... u

Lemma 21. For all integers k,m,{ > 0 with max{k, m, ¢} < 11519 we have

Z(k,m,0) < Z(k,m,0) < Z(k,m,¢) +107%,

where
22000
~ 2 JeAn/3)2 T (An/3)2 e (M /3)?
Z(k = — E
( ,m,f) 9 fopry JO()‘n)2

and {\n}n=0 are the nonnegative zeros of the Bessel function Jy (with \g =0) .

Proof. First we use a particular case of a formula of Ben Ghanem and Frappier [BGF98]
(although this identity can be found in disguise in much older papers) which says that if

~

f € LY(R?) is radial and supp(f) = B1(0) (or equivalently, if f is analytic in C? and has
™

exponential type at most 2) then

f(An)
Jo(n)?’

o f(z)dx = 47 Z

n=0

We can apply this formula for f(z) = Ji(}|z])?Jm(]2|)?Je(}]z])? to deduce that

2« Je(A/3)2 T (Mn/3)2 e (An/3)?
I(kam,5)=§2 k( /) JO(()\n/)2) K( /)

n=0
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We then let Z(k,m, /) be the above sum truncated up to n = 22000. To bound the tail we
first apply [Kral4l Theorem 3], from which one easily deduce that

r 2| ()] < 1 (A.11)
for all k > 1 and r > 2k. Noticing that Ag2001/3 = 23039.65... > 2 x 11519 we obtain

2 Z Jk()\n/?))QJm(/\n/3)2Jg()\n/3)2<6 Z 1

Jo(An)? A% Jo(An)?

n>22000 " "™

9 n>22000

Secondly, we apply Krasikov’s effective envolope [Kra06, Lemma 1] for ¥ = 0 (noting that
p =3 and Jj(x) = —Ji(z)) to obtain that

2
Jo(An)? > 0.99 x ——
0(An)” > % T\
for n > 22000 (indeed Jo(A\,)% ~ %) Now we apply a result of Makai [Mak78] that shows
that v — X, /v is decreasing, where ), ,, is the n-th zero of J,. It is also well-known that
Avtin > Ay foralln > 1 and v > —1. Hence

B )\l,n > )\3/2,71 < >‘1/2,n . zﬂn
1 3/2 3/2 37

An

because Jy () = +/27/x sin(z) (with a more careful search in the literature one could possibly
derive A\, = .997n for n > 22000, since A\, ~ 7n). We obtain that

1 0 0]
<218 Y < 2.18J z”%dr < 1074,

1
6 -
Z )\%JO()\ﬂ)Q n>22000 n 22000

n>22000

A.4 Proof of the main result

Let f € L?(S') be a complex valued function and let A = spec(f). Then by Hecke-Bochner
formula we can write

—~

@m) 7| FollSs gz = (2m)7 N fo(@)fo(z)fo(z)fo(x)fo(x)fo(z)dz

= D F(m1) f(n2) f(n3) f(na) f (n5) f (ng) I (11, ..., 1)

n1 ,...,n6€A
n1+nz2+ng=n4s+ns+ne

Yoo D F)f(n2)f(ng) f(na) f(ns) f(ne)I(na, ..o me)
DA e
na+ns+neg=D

where we are using the notation introduced in (A.9)). Now if A satisfies P(3) we can split the
last summation over the D € A3 that are unique and over those that are trivial. Note that
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by Definition 4] if 0 € A% then 0 is trivial. We focus first on the case D € A3 that are unique
for which we obtain the following

(n:= > > f(n1) f(n2) f(ns) f(na) f(ns) f(ne)I(n1,n2, n3, 14, N5, 16)
DeA3 ni1,n2,n3,n4,n5,n6€A
D unique ni+ng+nz=D
na+ns+neg=D

=6 > |f ) PIF(n2) Pl (ns) P (1, 2, m)

nl,ng,ngeA
[ng|#|n;| for i#j

+9 > 1fm)[* (n3)PZ(n1,n1,ns)
n1€A\{0}, n3eA
|n1|#|ns|

+ > () Z(ny, e, na),

nyeA\{0}

Now we focus on the sum over the set {D € A3: D trivial}. We use the short hand notation
A = An (—A), Ay = A trivial and Agy = As n Ay In this case the set {(ni,ng,n3) €
Ax AxA: ng+ng+nsg= D} is the disjoint union of the following sets

S1(D) ={(D,a,—a) : a € A\{£D}}
So2(D) ={(—a,D,a) : a € A\{x£D}}
S3(D) ={(—a,a,D) :ae A\{+D}}
S4(D) ={(D,D,-D),(—-D,D,D),(D,—D, D)}.

Letting ep = |S4(D)| we obtain

4
(U= > > > F(m) f(n2)f(ns) f(na) F(n5) F () I (na, ... mg)

DeA3 17_7:1 (TL1 U] .TL3)ESi (D)

D trivial (na,ns5.n6)€S;(D)
=9 > A(D)F () F(=m) F(D)f(n2) f(—na)I(D,ny, =1, D, g, —ns)
DeA;

ni ,nQEAS\{iD}

+18 m( Y. F(D)FD)F(=D)f(m)f(=m) f(D)I(D, D, =D, D,m, —m>>

DeAs +\{0}
ni€As\{xD}
+69%(FOROFO Y Fou)Fonn F0)10,0.0.01, 1)
nleAs\{O}
+9 > (D) (~D)PI(D.D,~D,D.D,~D)
DeA; +\{0}

+[£(0)°1(0,0,0,0,0,0)
=9 > A(D)F(n)F(=m) F(D)f(n2) f(—na)I(D,n1, =1, D, g, —ns)

DEAz
ni ,nQEAS\{iD}
n1|#[n2]
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+9 Z (2_57"01:0)‘f(D)‘2|f(n1)|2|f(_n1)|2I(DvD7n17_nlvnlv_nl)

DeA;
ni€As\{xD}
+18 %e( Y FD)F(D)F(=D)f(m)f(—m)f(D)I(D,D,—D,D,ny, —n1)>
DeAs :\{0}
ni€A\{xD}
+63(FOROFO 3 Fou)Fnn F0)10,0.0.0,00, 1)
n1€As\{0}
+9 Y IfD)If(-D)EID. D,~D, D, D,~D)
DeA, :\{0}

+1£(0)/51(0,0,0,0,0,0)
Then using the identity J_, = (—1)"J, and by the triangle inequality we obtain
In<9 Y, FOPIFm)f(=n)lf (n2) f(=na)Z(D,n1,no)

DEAt
nl,ngeAs\{iD}
1] #|nal

+9 D (2= =0)lFD)PIf ()P (=) PL(D, 1, ma)
nlegse\j?ij}

+18 Y F(D)PIFD)F(=D)||f(m)f(—n1)|Z(D, D, ny)
DeA, :\{0}
ni1€A\{xD}

+6 > |FO)PIF0)F0)]1f(n) f(—=n1)|Z(0,0,m1)
n1€As\{0}

+9 )] |f(D)]*|f(~D)*Z(D, D, D)
DeAs :\{0}

+1£(0)°Z(0,0,0) .

Next, by using the known inequalities

rs < %TQ + %52 and r3s < %r4 + %34 + irQSQ

for r, s > 0, we further get the following inequality

N Fn) 24| f(=n1)|? Fno) 2+ f(—n2)|?
<o Y ]f(D)]Z(W ] )(u( 2)[2+f(na) )I(D,nhng)
DEAt
n1,n2eAs\{£ D}
In1|#|ne|

+9 D (2= =) lF(D)PIF ()P (=) PZ(D, 1, ma)
nlegf\l?f_i-D}

vis Y f(D)2<|f(D>2+2|f<—D>2>(f<n1>|2+2f<—m>2)I(D7D7nl)

DeA, :\{0}
ni GAS\{iD,O}
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+18 ) (2|f<D>|4+§|A<D>|4+ir (D) <D>|2)|f<o>|QI<D,D,o>

DeA, :\{0}

iy F(n))|2+f(=n
S ‘f(0)|4<f( O\ fm)
n1€As\{0}
+9 > If(D)f(=D)PT(D, D, D)
DeA, :\{0}

+1£(0)1°Z(0,0,0)
=9 > FDPIF )P (n2) PZ(D, 1, ma)

DEAt
nlv”QEAs\{iD}
In1|#[n2|

+9 Y 2= 8u=)lf(D)PIF(m) P (=n) PZ(D, 1)
nlegse\l?fiD}

b1 X ()P () ) P, D)

DeA; \{0}
ni1€A\{£D, 0}

2 o) 0PLD, D0
9
>

o
——
|
=
=
S

=
~—

DEASYt\{O}

+ /D)’ F(=D)P|}(0)PZ(D, D,0)

DeAg ;\{0}

+6 > [FO)f(n)PZ(0,0,n1)
n1€A5,t\{0}

+9 > |f(D)*f(-D)Z(D,D,D)
DeA, \{0}

+1£(0)[°Z(0,0,0).

~ ~

We note that such inequalities hold with equality whenever —A = A and f(—n) = (—=1)"f(n)
which is the case, for instance, if f is real-valued and antipodally symmetric. Now we sum
everything together and replace A; by A (observing that A; = A if Ay # ¢ and Ay = & if
As = ) to obtain the following upper bound

@) "I FollSo ey = (1) + (1)
< D (6 + 9y maca,) | F(n1)[21F(n2)[?1 F (n3)*Z (1, ma, m3)

ny,n2,n3€A
[nil#In;| Vi,5€{1,2,3}, i#j

+9 D (2= Gn=0)lf (n3) PIF (n1) I F (=) [PZ (13, 71, m1)

n1€As, n3eA
In1|#|ns|
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+9 Y f )Pl (—ns) [P f (n1)[PZ(ng, ng,n1)
nl,n3€A5\{0}
|n1[#|ns|

9 D1 (U buymaeanop) F()[*1F (n3) PZ (01, 1, ms)
TL1€A\{0},TL3€A

|n1]#|ns]
27 n 417700 (2
2 Fm) I FOPLms, ns,0)
na€As\{0}
9 ~ ~ ~
B D1 1fms)PlF(—ns)?[£(0)[*Z(ns, ns, 0)
nzeA\{0}
+6 > FO)*1f(n)PZ(0,0,m)
n1eA\{0}
+9 Y [F(na)["F(—na)PZ(ns, n3, ns)
’n3€A5\{0}
+ Z n1|In1,n1,n1)
ni1eA\{0}

+1£(0)[°Z(0, 0, 0).

Next we observe that we may write (27)~3||f H%Q(Sl) as

(27) 3 S er) = D Fn) P Fn2) P Fns) P

nl,ng,ngeA
Inil#In;| vi,je{1,2,3}, i#]

+3 > |F ()21 (=) 2] f(ns) 2
nleAs\{O}, ngeA\{O}
[n1|#|ns]
+3 > |F(n)[*] £ (n3)[?
n1€A\{0}, n3eA\{0}
[n1|#|ns|

+3 > [fe)F )P

nleA\{O}

+3 3 Fm)PIf(=n)PIFO)P

ni1€As\{0}

+3 > F O F ()

n1eA\{0}

+3 2 )Pl )l

n1€A:\{0}

o

n1eA\{0}

+17(0)[°.
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Then by comparison of coefficients (going from bottom to top), the inequality ||f;||%6 ®2) S
(2m)*Z(0,0,0)|| £ T2(gty would follow if

¢ 3Z(n,n,n) < Z(0,0,0), 5Z(0,0,n) <Z(0,0,0), BZ(n,n,0)<Z(0,0,0) (n>0)
¢ 9Z(n,n,m) < Z(0,0,0), 15Z(n,m,¥) < Z(0,0,0) (n,m,¢ >0 distinct).

All of them follow easily by Lemma [20] except that the last two above are actually false, the
exceptions being (n,m) = (1,2) and (n,m,¢) = (3,2,0) respectively. However, note that
the inequality 97(1,1,2) < Z(0,0,0) is only needed if {1,2} < A \{0} which is impossible
since 1+1+1=2+2-—1 and so A would not be a P(3)-set. We conclude that in fact
we only need 6Z(1,1,2) < Z(0,0,0), which is true by Lemma Similarly, the inequality
15Z(3,2,0) < Z(0,0,0) is only required if {3a,2b,0} < A for some a,b € {£+1} and either 2 or
3 also belong to —A. This cannot be true since 3 +3+ 0 =2+ 2 + 2, and A would not be
a P(3)-set. We conclude that the inequality we actually need is 6Z(3,2,0) < Z(0,0,0), which
follows from Lemma This finishes the proof. |

A.5 A further example of application

Arguments similar to those in the previous section can be used to establish other sharp
extension inequalities for functions in L?(S') whose spectrum satisfies property P(h) for some
suitable h. In this section we provide a further example of application for the case of the
L2(S") to LY, L3, (R?) Fourier extension estimates. The case of sharp L*(S') to LS, L2, (R?)
Fourier extension estimates has been studied in [FOeS17], see also [COeSS19].

ang(
Theorem 22. Let f € L?(S') be such that its spectrum A satisfies property P(2). Then

e}
17515, 15, < n?2( [ I500Irdr )18

The inequality is sharp and equality is attained if and only if f is constant.

Proof. Without loss of generality we can assume that ), _, | Fn) |2 = 1. Using Hecke-Bochner
formula we have that

- 0 Py 6/4
15513 00 [, ([ Fotelidote) var
ra G 0 Sl

= (27)15/2 JOO

0

R R S 3/2
( Y, f(m)f(n2)f(ng) (M)Jm(T)an(?“)Jns(r)Jm(T)) rdr.

n1,n2,n3,M4€A
n1+nz=nz+n4

Now we use the fact that A satisfies property P(2) to rewrite the sum in the integral as follows.
Z f(n1)f(n2) ( 3).J (na) Iy Ing Ing Iy

n1,n2,n3,M4€A
ni+n2=ng-+ng
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= Z Z f(nl) A(nQ)mJTH an Jng Jn4

DeA2? ni,nanz,ng€A

ni+na=D
ng+ng=D
= > T(nane)f(n) P F(no) 27, 7,
nl,nQEA
n1#F—n2
+ 0 f) F(=m) F(n2) F(=n2) Ty Ty Ty Ty
nl,TLQEAg
< Y r(ma,m) | Fnn) P (m2) 22, T2,
TLl,’nQEA
n1F—n2
2 2
nl,ngeAS

= D (T(1,19)0ny s + Oy maea )| F ()P F () P2 T2,

TLl,’nQEA

where 7(n1,n2) = 1+ 0y, £n, is the number of permutations of (n1,n2). Hence by Jensen’s
inequality we obtain

@m) 2| follGe 1o gy

0 R R 3/2
< ( D (<n1,n2>6n1¢m+6m,n2eAs>|f(n1>2|f<n2>|2J£1<r>J22<r>) rdr

ni, 7L2€A

J Z T(n1,12)0n, % —ny + Ony maeAs ) /2|Jn1(T)’3|Jn2(T)|3|J?(nl)‘2’f(n2)’27'dr

n1,n2€A

- Z (T(nl’ n2)5n1¢*n2 + 5n1,n2€As)3/2 (J;) |Jn1 (T)|3|Jn2 (’r‘)|3’l“d7‘> |f(n1)|2|f(n2)|2

ni ,ngEA

To conclude we need the following estimates on integrals involving the products of six Bessel
functions. First, we observe that for all m # ¢, m,£ > 0 it holds that

o0 o0
33/2J \Jm(r)]3|Jg(r)\3rdr<J JS(r)rdr
0 0

In fact, by Hoélder inequality and by the estimates in Lemma [20] we have that

[ 1B Prar < ([ Lo rar 1/2< [ 1 )P 1/2

0 1/2
< (%&nfzo + %5{m,£}7&{1,2},m2¢0 + 31W5{m7e}:{1’2} )(L Jg’(r)rdr>

0
< 3_3/2f JS(r)rdr.
0
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The second estimate that we need is the following: for all n > 0 it holds that

o0 Q0
23/2J JS(ryrdr < j JS(ryrdr
0 0

which follows from Lemma [20] again. Hence, we conclude that

17515, ey < oY ([ a8 war) % 1Fn) 1)

0 n1,n2€A
o0
= ([ B0 )1

Equality is attained if and only if f is constant.
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Appendix B

Global and local maximizers for
some Fourier extension estimates on
the sphere

This Appendiz contains the article [CS23] written jointly by the author of this thesis and M.
Sousa.

Valentina Ciccone and Mateus Sousa. Global and local maximizers for some Fourier
extension estimates on the sphere. arXiv preprint arXiv:2312.07309, 2023.

Abstract

In this note we improve, for the case of low dimensions, the known range of exponents for
which constant functions are the unique maximizers for the L2(S%™1) to LfadLgng(Rd)
mixed-norm Fourier extension estimate on the sphere. Moreover, we show that in the
same range of exponents for which constant functions are the unique maximizers for the

L2(8%71) to LY, L2, (RY) mixed-norm Fourier extension estimates they are also local

maximizers for the LP(S?~1) to LP(R?) Fourier extension estimates. As a by-product, we
obtain that for the cases of dimensions d = 2,3 constant functions are local maximizers
for all p = ps(d), where ps; denotes the Stein-Tomas endpoint, pst(d) := 2(d+1)/(d —1).

B.1 Introduction

Let d > 2 be an integer, J,, denote the Bessel function of the first kind of order v, and k be
a non-negative integer. It follows by the asymptotic behaviour of Bessel functions that the

weighted LP norms
ee d 1/p
f |Ja (7“)7'2+1]p7“d_1d7°> ,
0 5*1+k

Aa(h) =

Aaoo(k) = sup Ty (ryr 2+
/0 ) r=0 §7l+k ’
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are bounded whenever d2—_dl <p < o0.

The problem of determining for which k£ such weighted norms are maximized, which is
a problem of independent interest in the theory of special functions, has been studied in
[COeSS19] in connection with certain mixed-norm sharp Fourier extension problems. In
particular, in [COeSS19] the authors have studied the problem of computing

sup Agp(k). (P1)
k=0

The properties of Bessel functions (see e.g. [Ste00]) guarantee that such supremum is a
maximum. It has been shown in [COeSS19] that such maximum is achieved at k = 0 (and
only at k = 0) whenever p is an even exponent and that the set of exponents for which the
maximum is achieved at k£ = 0 is open and it contains a neighborhood of infinity (po(d), o],
providing some upper-bounds for pg(d). In particular, they obtained the following upper-
bounds in low dimensions:

po(2) <6.76, po(3) <5.45, po(4) <5.53, po(5) <6.07, po(6) < 6.82,

po(7) < 7.70, po(8) <8.69, po(9) <9.78, po(10) < 10.95,

and, more in general, they showed that
po(d) < (3 + o(1))dlogd. (B.1)

Problem ([P1)) is related to several problems in sharp Fourier restriction theory.
The Fourier restriction problem for the sphere asks for which pairs of exponents (p, ¢) the
inequality

[follreme) < Capgl fllrager) (B.2)

holds. Here 0 = o4_; is the surface measure on S*~! and fo is the Fourier transform of the
measure fo,

Fotw) = || e r©ote).

The Fourier restriction problem has been fully solved only in dimension d = 2 and for the
case ¢ = 2 for which a complete answer is given by the Stein—-Tomas inequality. A mixed-
norm version of the problem has been studied in [Veg92, [Veg88] showing that the mixed-norm
Fourier extension inequality

foller 12, @) < Capllfllrz(si-1) (B.3)

ang

holds when %dl < p, where

1701z, 12, m0) = (J ([, Fotarase) ledr>
rad—ang 0 cd—1

1/p
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The problem of determining the sharpest constant for (B.3) has been studied in [COeSS19].
Namely, in [COeSS19] the authors have studied the problem of computing

Ifolle 12 @
sup I;,léll(f)a Eg(f) = ||f‘|md _g
feL2(Sa-1), f#0 L2(Sd-1)

(P2)

It was observed in [COeSS19] that the studying of such problem can be restricted to functions
f which are spherical harmonics. In other words

sup  BFN(f) = sup DUH(VR),
f€L2(Sd*1)7 f#0 Y, Y #0

where Y} denotes a spherical harmonics of degree k. Due to the identity

Veo(w) = (2m) 20 M| 5 0s (2 V(o) (B.4)

x
]

we have that

o d o} d 1/p
|YkaL¢adLgng(Rd)=<2w>2( | a0 2“rprd—1dr> IYil 2.

0 E-1vk
Hence, the problem of establishing the sharpest constant for , namely , is equivalent
to the problem of determining for which non-negative integer k the maximum in is
achieved.

Problem has been addressed in [COeSS19] by relating the integrals Ag,(k)’s to in-
tegration on spheres using delta-calculus. Our approach, on the other hand, relies on some
sharper estimates (with an improved constant) between weighted norms of Bessel functions
inspired by those obtained in [CG24, Lemma 2] for the case of dimension d = 2, see the
forthcoming inequality .

Our first result lowers, for the case of low dimensions, the upper bounds for py(d) estab-
lished in [COeSS19], hence extending the ranges of exponents for which the maximum in

is achieved when k£ = 0. We use the notation pgs(d) to denote the Stein-Tomas endpoint
. 2(d+1)

exponent in dimension d, pg(d) := SR

Theorem 23. It holds that
po(2) <6, po(3) <4, po(4) <3.48, po(5) < 3.50,

po(6) < 3.58, po(7) <3.7, po(8) <3.86, po(9) <4.06, po(10) < 4.46.
In particular, for d = 2,3 this gives that po(d) < ps(d).

The fact that po(d) < pst(d) is of interest because constant functions are natural candi-
dates to be extremizers for the full range of exponents of the Stein—Tomas Fourier extension
inequality. If this were true, then by Holder inequality, constant functions would be also max-
imizers for @gj; when p > pst(d). This has been verified only when p > 4 is an even integer
and d € {3,4,5,6,7} (see [COeS15, [Fosl5l [0eSQ21a]), but it is open for all other cases. In
particular the case where d = 2 has received a great deal of attention and many partial results
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have been achieved (see [CEOeST17, (0eSTZK22, [BTZK23| [CG24, [Bec23)]), yet still remains
unsolved. Hence, our result provides further evidence in this direction.

As mentioned above Problems and are equivalent. Next, we observe that the
same holds true if one considers the problem of finding extremizers among functions of the
form aY; € L*(S% 1), with a € C and Y} a spherical harmonic of degree k, for LP(S%1) to
LP(R?%) Fourier extension estimates. Namely, if one considers the problem of computing

1 f ol o e
sup Ppa(Yr), Ppal(f): IR

— . (P3)
Yi, Y #0 1] ze(sa-1y

In fact,

Yio a0 i1 d1 e
¥t langusy = @0 ([ 174 087 prtar ) Wileony

and, therefore,

d
sup  ®p q(Yy) = sup dp(f) = (2m)2 sup Ag (k).
Yy, Y #0 feL?(Sa-1), f+#0 k>0

In words, this simple observation asserts that the problem of computing the optimal constant
for the mixed-norm Fourier extension inequality is equivalent to the problem of com-
puting the optimal constant for the LP(S?!) to LP(R?) Fourier extension inequality when
restricting to spherical harmonics.

The following corollary is an immediate consequence of the above considerations.

Corollary 24. For all p € (po(d), 0] we have that

sup  @P(f) < @pa(1)
JEL2(S471), f#0

sup @, 4(Vi) < ®pa(Y0) -
Y, Y #0

That is, for all such p’s, constant functions are maximizers for (P2) and (P3)).

Note that the fact that constant functions are extremizers for (P3| is a necessary condition
for this to be the case also for the more general problem of computing

sup Py a(f). (P4)
feLp(sd=1), f£0

Extremizers for are known only when p is an even admissible exponent, in which case
it has been shown in [COeS15] that constant functions are maximizers, and when p = oo in
which case the same conclusion holds [F'S24]. Except for these cases, even the question of the
existence of global extremizers for Problem is open [FS24]. Due to symmetry, constant
functions would be natural candidate to be extremizers. Also, it was noted in [CQ14] that
constant functions are always solutions to the corresponding Euler—Lagrange equations for any
admissible pair of exponents (p, ¢) for the Fourier extension inequality , S0, in particular,
for any admissible pair (p,p).
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A further intermediate step toward a solution of Problem is to understand the be-
havior of local extremizers. Local extremizers have been studied before for the case of the
endpoint Stein—Tomas inequalities in [CFOeST17], [CS12a], and [GN22] showing, respectively,
that constant functions are local maximizers for such inequalities when d = 2, when d = 3, and
when 2 < d < 60. The next question that we would like to address here is whether constant
functions are local maximizers also for the case of the LP(S?1) to LP(R?) Fourier extension
inequalities, namely for . We answer this question by providing a further connection with

Problem .

Our second main result is the following.

Theorem 25. Letd > 2 andp > dzfdl. Assume that the LP(S%™1) to LP(R?) Fourier extension
inequality holds and that the maximum in (P1)) is achieved at k = 0. Then there exists 6 > 0
such that whenever | f — 1| ppga-1y <9,

Dpalf) < Bpa(1). B.5)
That is, constant functions are local maximizers for (P4)).

As an immediate consequence we have that constant functions are local maximizers for the
LP(S™1) to LP(R?) Fourier extension inequality for all p € (po(d), o] for which the inequality
holds and upper bounds on pg(d) is provided by Theorem for the cases of dimensions
2 < d < 10, and, in general, by for greater dimensions.

The proof of Theorem [25] is contained in Section [B.4] the proof of Theorem [23] is the
content of Section [B.3] while some auxiliary results about hierarchies between weighted norms
of Bessel functions are presented in Section

The topic of sharp spherical restriction has received much attention over the last years,
in particular for the case of inequalities in the Stein-Tomas range [FVV1I1] [(CS12al [Fos15
COeS15, [FLS16, [Shal6al [CEFOeST17, [0eSTZK22, BTZK23|, [OeSQ21a), [(CG24, Bec23]. We
refer to the survey [NOeST23] for an up-to-date description of the state of the art.

B.2 Hierarchies between weighted norms of Bessel functions

It is known that when p € 2N, p > d%dl, or when p = oo then
Agp(F) <1
Aap(0)

for all positive integers k, see [COeSS19]. In this section, we are interested in obtaining
sharper estimates for such ratio, at least for certain values of the exponent p.
In this direction, for the case of dimension d = 2 and exponent p = 6 it has been shown
in [CG24] that
L6

Ag,6(k) < §A2,6(0) (B.6)

for all £k > 1.
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Moreover, in [COeSS19] combining the identity

1

Agop(0) = ———,
d,oo( ) 2%_1F(g)

(B.7)

with a decreasing upper-bound (with respect to the order k) for Ag4,(k), it has been shown
that

_1
Moo (k) _ (162 °T(5) )%
Ag0(0) b d3d—4

for all k > 1, where the constant L is defined as

L:= sup |r'/3J,(r)] = 0.785746... (B.8)

v>0,r>0

and it has been found by Landau [Lan00)].

Our first result of this section establishes a hierarchy between the Ay (k)’s, hence deter-
Ag,o0 (k)
Ag,(0)"

Proposition 26. For all positive integers k it holds that

mining the sharpest upper-bound on the ratio

Agoo(k = 1) > Agoo(k).

In particular,
Ad,oo(k) < Coo(d)Ad,oo(O)
1

for all positive integers k, where Co(d) := ﬁj’zgog, and equality is attained if and only if

k=1.

Proof. We begin with the case d = 2. In such case Agq (k) = sup,>q|Jk(r)|. It has been
shown in [Lan00] that sup,.q |Jx(7)] is a strictly decreasing function of k. In particular, if we
denote by j;. ; the first positive zero of J;, with k a positive real number, then

sup |Jx (1) = Je(Jk.1),

>0

and therefore

sup | Ji(r)| = Jk (1) > sup [Jer1(r)] = Tk (ky1,0)-

r>0 r>0

As sup,>q |Jo(k)| = Jo(0) = 1 > Ji(j; ;) the claim in the statement is verified for the case
d=2. 4
We turn to the case of d > 3. In these cases Ag (k) = sup,>q \7“_§+1Jd 1+k|' We start
d_

d
by observing that as r~ 2! is a strictly decreasing function of r and sup,.- |J, ()| = J, (Jy1)
it holds that

d d
sl 5, 0= s R, )
r>0 2 0<r<jym_14k1
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Hence to conclude it would be enough to show that
Ju(r) > Jy11(r) for all 7 € (0,7, ;). (B.9)

We recall that j;,; < jj,; 1, see e.g. [Wat66]. In particular, J,, Jy41, J,, Jj,,; are strictly
positive in (0,7j;), and Jy(j;,1) > Ju+1(j,,1). Hence to prove it suffices to show that
there exist no 7 € (0, j;,;) such that J,(7) = J,11(7). We argue by contradiction. Consider
the recursive relations for Bessel functions

LIu(r) = Jua(r) + Ty (1), (B.10)

2J,,(r) = Jy—1(r) — Jy41(r). (B.11)
By taking the sum of and we obtain the identity
o) = Jua(r) = (),
and shifting v — v 4+ 1 we obtain
L (r) = T (r) = T (),

Assume there exist 7 € (0, j,, ;) such that J,(¥) = J,+1(7). Evaluating the last display at 7
we get

Jh(7) = (1= Y, 0 (7)

and, as J;; and J,41 are strictly positive on (0, j{/,1)a we have that necessarily
T>v+ 1. (B.12)
Next, we take the difference between (B.11)) and (B.10) obtaining the identity
J,(r) = 2I(r) = Jysa(r).
Evaluating it at 7 we get that
T, () = (% = 1)Ju(7)
and, as both J/, and J, are strictly positive on (0, j,C’l), we have that necessarily

v>T.

Comparing this with (B.12)) yields the contradiction. [ |
The values of Aj (1) can be computed by using Mathematica. For the case of 2 < d < 10
one obtains, with 6 significant figures (s.f.),

Agoo(1) = 0581865, Asoo(1) = 0.348023, Ay0(1) = 0.179963,
As.o(1) = 0.0830013, Agoo(1) = 0.0348492, A7 (1) = 0.0135129, (B.13)
Ag.o(1) = 0.00489072,  Agoo(1) = 0.00166575, A1g.(1) = 0.000537364.

By combining them with (B.7]) one can obtain a numerical evaluation for Cy(d).
<

Our second observation is for the case of exponent p = 4 and dimensions 3 < d < 10.
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Proposition 27. Let 3 < d < 10. Then

Ag (k) < Ca(d) Aga(0)

holds for all positive integers k, where Cy(d) := ﬁj’igé;. Equality is attained if and only if

k=1.

To prove Proposition [27| we need the following upper-bound; see also [GN22].

Lemma 28. Let d > 2. In the range of exponents 3 6d 2 <p< 132j+4 it holds that

DOOD(§ = 1+k +15%)
ZAF(T) F(§ —1+k+ T)

AG (k) <1777

for all positive integers k, where \ = p(f — 7) d +

To establish the upper-bound in the lemma we rely on the following identity which can
be found in [GRO7, Equation 6.574-2]

(1-))
P (v + 45 i (B4

PER) T+ 1)

o0
f Jf(r)r_kdr =
0

for 0 < A< 2v+ 1.

Proof. We use (B.8|) to obtain the upper-bound

0 d 2 1
Agp(k)P < 172 f 2 yprli-i)raig,

0 5—1+k‘
By applying identity (B.14)) to the right hand side of the last display we further obtain

PG —1+k+15%)

d
A 2
202204 — 1+ &k + L2)

(k) < LP

where \ = p(% — 2) —d + 3. Such upper-bound holds whenever 0 < A < 2(4 —1+k) + 1.
In particular, for a fixed dimension d > 2 the upper-bound holds for all positive integers k
whenever gg 2<p< 132ddj44. [ |

Note that both the case of p = 4 and the case of Stein—Tomas endpoint pg(d) are included
in the range of exponents covered by Lemma Also, note that, for a fixed exponent p and
a fixed dimension d, the above upper bound is a decreasing function of k. Throughout, we
use the notation Ug,(k) to denote the upper bound for As’p(k) in Lemma

Proof of Proposition . We compare the upper bound Uqg4(k) for Ay, (k) established
in Lemma |28| with a (lower) estimate for Afm(l). To this end, we rely on Mathematica to
evaluate the integrals

40 d
f |Ja (r)r_§+l\4rd_1dr (B.15)
0 2



o7

for 3 < d < 10 obtaining, respectively, the following values (with 6 s.f.)

0.144681 0.0337263 0.00661348 0.00107217
0.000146318 0.0000171549 1.75867 x 1075 1.59953 x 107",

By comparison, one can see that Uy 4(k) < AfM(l) for all integers k > 2 when d € {5,6,7,8,9},
for all integers k > 3 when d € {4,10}, and for all integers k > 5 when d = 3. We check the
remaining cases separately. We rely on Mathematica to evaluate the integrals

200 d
|J 4 (T)T_§+1|4’I”d71d7‘
0 §7l+k

for the cases of interest obtaining, for the case of d = 3 and k = 2, 3,4, the values (6 s.f.)
0.0992828 0.0757045 0.0615859,
respectively, and for the cases d = 4 and k = 2, and d = 10 and k = 2, the values (6 s.f.)
0.0172602 4.00184 x 1078,
respectively. Then, we use the estimate
|, (r)] < =12 (B.16)

which holds for all ¥ > 1 and r > 3v (see [COeSS19, Lemma 8] and [Krald, Theorem 3]) to

upper bound the tails obtaining that

| g (ryr 2 Al <

F d 200~ 42
200 2 1tk d—2 °

Hence, by comparison, we see that also for these cases it holds that AflA(k:) < Afm(l). As
it is known from [COeS15, [COeSS19] that AflA(l) < AfM(O) when d > 3, the result in the

statement follows. |
To evaluate Cy(d) one can rely on the identity
*© T'(v)['(2
f |, ()| 2r =2 dr = v) 1( ) .
0 2rl'(v + 5)*I'(3v)

which can be found, for example, in [COeSS19, Lemma 7] (see also [GR0O7, Equation 6.5793-
3]) and which provides an explicit expression for Afl, 4(0), together with a numerical estimates
for A4 ,(1).

Our last result of this section is for the case of the Stein-Tomas endpoint, pst = pst(d).

Proposition 29. Let 4 < d < 10. Then the following inequality holds for all positive integers
k

Adpe (k) < Cpy(d) Mgy, (0),

where Cp,, (d) 1= 23:: E(l); Equality is attained if and only if k = 1.
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Proof. We compare the upper bound Uy, (k) for AZS;st(kz) established in Lemma [28 with a
(lower) estimate for Aj7, (1). To this end, we rely on Mathematica to evaluate the integrals

50 d
f |J% (r)r_§+1|p5trd71dr (B.17)
0

for 4 < d < 10 obtaining, respectively, the following values (with 6 s.f.)
0.143391 0.131693 0.118941 0.10719 0.0969753 0.088279 0.0807943.

By comparison, one can see that Ugp, (k) < Aff;“(l) for all integers k > 3 when d €
{5,6,7,8,9,10}, and for all integers k > 4 when d = 4. We check the remaining cases
separately. We use Mathematica to evaluate the integral

200 d
|Jq (r)yr—2 T Pstpd=lqy
0 5—14—]{2

obtaining for the cases k = 2 and 5 < d < 10 the values (6 s.f.)
0.0998066 0.0938562 0.0875322 0.0814907 0.075952 0.0709569
and for the cases d = 4 and k = 2,3 the values (6 s.f.)
0.103492  0.080522.

We use the estimate (B.16|) to upper bound the tail of the integrals obtaining

o d
J ryrm2 P psepd=lqe < —
J‘200| %*”k( ) | =200

Hence, by comparison, it follows that A% (2) < A, (1).

We are left to show that Aj (1) < Al (0) whenever 4 < d < 10. The cases of d = 4,5
have already be verified in [COeSS19|. To verify the remaining cases 6 < d < 10 we compare
the bound for Aflftst(l) obtained by combining the numerical evaluation of the truncated
integral and an upper bound for the tail obtained using with a (lower) estimate

for AZS;St (0). To this end we numerically evaluate the integral

50 d
J |J¢+1(T)r_§+1|p“rd71dr
0 2

for 6 < d < 10 obtaining the values (6 s.f.)
0.173201 0.147926 0.1286 0.113331 0.101086.

By comparison, we see that AZS;St(l) < AZS;“(O) also for 6 < d < 10 hence concluding the
proof. |
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B.3 Proof of Theorem 23

Case d =2

We combine the estimate from [CG24] and the estimate in Proposition [26] (here for the
case d = 2) with the interpolation strategy utilized in [COeSS19]. Let p > 6 and k be a
positive integer. It follows from Holder inequality that

Ao p(k) < Moo (k)%/P Ag,oo (k)07

Using and the sharp estimate from Proposition [26| we further obtain that

Az p(k) < o A26(0)P Az o (1) 707,

31/17

We need the following lower bound on Ag,(0) which has been established in [COeSS19,
Equation 4.8]

Ad’p(O) >

(24-1(g) ) (p+1)F() e
2 (r ) . (B.18)

202-10(5) \T(p+4+1)

Then, we rely on standard numerical evaluation to determine for which p > 6 it holds that

A, 6(0)6/pA2 OO(1>176/p < 21/pM

31/1’ I'(p+2)

We obtain that such inequality is satisfied for all p > 6. Hence, pp(2) < 6 as claimed.

Case d >3

We proceed in two steps. First, we combine the estimates in Proposition [27] and Proposition
with the interpolation strategy utilized in [COeSS19]. This will establish the upper bound
on po(d) in the statement of Theorem for the cases of d = 3,9,10. Second, we use the
estimates in Proposition [27]and Proposition [29|and interpolation to establish the upper bound
on po(d) for the cases of d = 4,5,6,7,8.

Step 1

Let p = 4 and k be a positive integer. It follows from Holder inequality that
Aap(k) < Mg a(k)YVPAg oo (k) VP,

Using the sharp estimate from Proposition [26| and Proposition [27] we further obtain that
Aap(k) < Aga(1)¥PAg00 (1) Y7,

Then, we compare the right-hand side of the last display with the lower bound for A4, (0) in
equation (B.18|) to determine for which p > 4 the following inequality is satisfied

Q21 Y2) e (T (p+ DT (D) \ P
24/2-11(4) <F(p+2+1)> '

Aga(D)YPAg (1) 47 <
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We use the numerical values for Agq, (1) in and the bound for Ag4(1) obtained by
combining the numerical evaluation for the truncated integral in with an upper bound
for the tail obtained using Via a standard numerical evaluation, we obtain that
Agp(k) < Agp(0) for all p > 4 for the cases of dimensions d = 3,4,5,6,7,8, for all p > 4.06
for the case of d = 9, and for all p > 4.46 for the case of d = 10.

Step 2

Let 4 < d < 8, pst(d) < p <4 and k be a positive integer. It follows from Hélder inequality
that
Aap(k) < Mg, (B) "D Nga(k)°,

with 6 := %Eiiz zz) Using the estimates of Proposition 27| and Proposition [29| we further

obtain that

~—

Nap(k) < Adpe (DT Aga(1)°.
As before, we bound A44(1) by combining the numerical evaluation for the truncated integral
in with an upper bound for the tail obtained using and we proceed analogously
for Agp,, (1). Then, we compare this upper bound with the lower bound for Ag,(0) in equation
to determine, for a fixed 4 < d < 8, for which ps(d) < p < 4 the former is greater
than the latter. We obtain that Ag,(k) < Agp(0) for all p > p(d) with

p(4) =348, p(5) =35, p(6) =358 ,p(7) =37, p(8)=3.86.

[
B.4 Proof of Theorem [25]
Consider the deficit functional
Glf1 = Cpa(V)P|fI7,gay ~ | folf, (Rd)
Inequality is equivalent to
Glf1 =0, (B.19)

therefore it is enough to prove that there is a § > 0 such that [ f] > 0 when | f =1 ppga-1) < §
and f is not constant, which we proceed to do.

We recall that here p > 2 and we are assuming that the Fourier extension operator is
bounded from LP(S%1) to LP(RY). We compute

f To(2) + g0 (x)Pdz = j To(@)Pdz + pe j To ()P 2080 ()5 () da
Rd R4 R4

p(p — 2)¢? Lo(z) P *(1o(2)35 (x))>?
+ B2 Rdug(x)'p (1o(z)go(x))"dz (B.20)

2
P | @) g ) s
Rd

+ o(e?).
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and

|, 1 o Paote) =101, a4 e | oo

+ p(p_42)69% s g(x)?do(x) (B.21)
+ % o) Pdo(z) + o).

We take f to be of the form f = 1 +eg, with 0 < ¢ < 0 and |g[»@e) = 1. By applying
(B.20) and (B.21)) one has

R(g(x))do(z) - f rﬁm)\p-?m(ﬂ(x)ﬁf(x))dx)

gd—1

R4
ol do(e) -t [ TP *(go(e)Pr )

§d-1

+ 5t =2) (@pa0r
2
= P z)[*do(z) — 1o (z)|P~2%|go (2)>dx o(e?).
+ 5 (Bpatr [ oo - [ 1Tl (ks + o

(B.22)

Furthermore, due to the aforementioned observation that 1 is a critical point of ®, 4, the
first order terms in ¢ of all vanish. To deal with the second order terms, we use the
fact that LP(S9™1) < L2(S?"!) since p > 2 in order to expand ¢ in spherical harmonics. For
that purpose we choose for each k an orthonormal basis {Y}}; of ’Hg where each Y}, is a
real-valued spherical harmonic of degree k. Then

9= Z a;j kYK
g

By combining identity (B.4)) with the observation that the first order terms vanish at (B.22)
we can integrate in polar coordinates to obtain

2

9
Golfl =" plp—2) ( 29‘* (aj)°
_ —1-p(1—2
Y O N R e T )

* — —1—p(1—2
+4PZ‘%’“‘2<‘DP@<1>”—<27f>”d/2 L [Ta (2T g gy ()PP 2)d7">
k!j

+ o(e?).
(B.23)

Lastly, using Holder inequality and the fact that by hypothesis Agp,(k) < Agp(0) for all
positive integers k we observe that

Q0
J [ a_y (NP2 a_y i (r P [2pd 1P 4) g
0
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” d (r—2)/p 0 ] 2/p
= (J BF 1(7")|prd1p(12)dr> (J |J g (7”)|prd1p(12)dr>
d_

0 0 5—1-&-]{?

0
< [ Vg @t Dar - an) e, a1y
0 27

hence concluding the proof of Theorem
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Appendix C

Endpoint estimates for higher order
Marcinkiewicz multipliers

This Appendixz contains the article [BCPV24] written jointly by O. Bakas, I. Parissis, M.
Vitturi, and the author of this thesis.

Odysseas Bakas, Valentina Ciccone, loannis Parissis, and Marco Vitturi. Endpoint es-
timates for higher order Marcinkiewicz multipliers. arXiv preprint arXiv:2401.06083,
2024.

Abstract

We consider Marcinkiewicz multipliers of any lacunary order defined by means of uni-
formly bounded variation on each lacunary Littlewood—Paley interval of some fixed order
7 = 1. We prove the optimal endpoint bounds for such multipliers as a corollary of a
more general endpoint estimate for a class of multipliers introduced by Coifman, Rubio
de Francia, and Semmes and further studied by Tao and Wright. Our methods also yield
the best possible endpoint mapping property for higher order Hormander—Mihlin multi-
pliers, namely multipliers which are singular on every point of a lacunary set of order 7.
These results can be considered as endpoint versions of corresponding results of Sjogren
and Sj6lin. Finally our methods generalize a weak square function characterization of the
space Llogl/ 2L in terms of a square function introduced by Tao and Wright: we real-
ize such a weak characterization as the dual of the Chang—Wilson—Wolff inequality, thus
giving corresponding weak square function characterizations for the spaces L 1ogT/ 2L for
general integer orders 7 > 1.

C.1 Introduction

Our topic is endpoint estimates for Marcinkiewicz-type multipliers on the real line. We recall
that a Marcinkiewicz multiplier is a bounded function m : R — C which has bounded variation
on each Littlewood-Paley interval Ly := (—2F*1 —2F] U [2F, 2¥+1) uniformly in k € Z. Tt is
well known that the operator Ty, f := (mf)" is bounded on LP(R) for all p € (1,0). Endpoint

63
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estimates for Marcinkiewicz multipliers were proved by Tao and Wright in [TW01] where the
authors prove that they locally map L logl/ 2 I into weak L'.
A prototypical Marcinkiewicz multiplier is given by the signed sum

ZEkILk, ske{—l,—l—l},
keZ

while an orthogonality argument provides the link between Marcinkiewicz multipliers and the
classical Littlewood—Paley square function

1
2\ 2

, Ppf =15, f)",

> erPrf

keZ

LP, f(z) := (2 |Pk.f|2> =|E

keZ

the expectation being over choices of independent random signs.

In the present paper we are interested in higher order versions of Marcinkiewicz multipliers.
In order to motivate such a study it is very natural to consider square functions that project
to Littlewood—Paley intervals given by lacunary sets of order 2 or higher. For example letting

L) = {5 eR: [¢] e (28 +2m 1 2k 1 om] | [2k+l — gm ok+l 2’”—1)} . k>m,

denote the family of Littlewood—Paley intervals of second order, we naturally define

% N
LPof = > Pumfl’| = [E] D) emPomf| | »  Pomf = Aol
(k,m)ezZ? (k,m)ezZ?
k>m k>m

initially for Schwartz functions with compactly supported Fourier transform. This is a second
order Littlewood—Paley square function while the multiplier

Z 6(k,m)1L(k,m)v E(k,m) € {*17 +1}7
(k,m)eZ?

k>m
can be considered as a prototypical Marcinkiewicz multiplier of order 2. A Littlewood—
Paley partition {L : L € A;} of lacunary order 7 > 1 is naturally produced by iterating
Whitney decompositions inside each Littlewood—Paley interval of order 7 — 1. Accordingly,
a Marcinkiewicz multiplier of order 7 is a bounded function which has bounded variation
uniformly on all Littlewood—Paley intervals of order 7. Likewise, the Littlewood—Paley square
function of order 7 is

1/2
LP,f = (2 |PLf|2> =|E

LeA,

9\ 1/2

; Prf:= <1Lf)v :

> erPrf

LeA,

With precise definitions to follow, a punchline result of this paper is the following.
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Theorem 30. If m is a Marcinkiewicz multiplier of order 7 € N then T,,, satisfies the estimate

T/2
|{33€R:Tmf(x)|>oz}|$JR|£|(log<e+|Cj;)> , a>0.

The same is true for the Littlewood—Paley square function LP; of order 7. In both cases the
endpoint estimates are best possible in the sense that the exponent T/2 in the right hand side
cannot be replaced by any smaller exponent.

We will deduce Theorem [30]as a consequence of the more general Theorem [31| below which
applies to the wider class of Ro, multipliers.

C.1.1 Lacunary sets of higher order

In order to describe the classes of higher order multipliers we are interested in, it will be neces-
sary to introduce some notation for lacunary sets of general order. The standard Littlewood—
Paley partition of the real line is the collection of intervals A; = {+[2¥,2"*1) : k € Z} and
it is a Whitney decomposition of R\{0}. For a finite dyadic interval I < R the standard
Whitney partition W(I) of I is the collection of the maximal dyadic subintervals L < I such
that dist(L,R\I) = |L|. Now for any integer 7 > 1 we set

A= | wa)

I€A7—71

and call A; the standard Littlewood—Paley collection of intervals of order 7. We denote by
lac, the collection of all endpoints of intervals in A;. Observe that, as in [Bon70], the set lac,
has the explicit representation

lac, = {£2™" £2"2 + ... £2" :ny >ng>--->n,, n;€Z Vj}.

For uniformity in the notation we also set Ag = {(—0,0), (0, +0)} and lacy := {0}. It will
be useful throughout the paper to truncate the scales of lacunary intervals and numbers by
defining

Al ={LeA;:|L|=n}, ne 2%

Accordingly lac! denotes endpoints of intervals in A”.

We need a smooth way to project to frequency intervals in A.. For this we consider a
smooth even function 0 < 7 < 1 such that 7 is identically 1 on [—1/2,1/2] and vanishes
off [-5/8,5/8]. For a positive integer 7 and L € A, we define the (rescaled) L-th frequency
component of some multiplier m : R — C as

mp(§) =n(€mlcr +¢|L)),  EeR,

with ¢, denoting the center of L.
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C.1.2 Higher order multipliers and endpoint estimates

With this notation at hand we will say that m : R — C is a Hérmander—Mihlin multiplier of
order 7 if
Imls, == sup sup |0%my = < +oo,
|| <M LeA-

for some sufficiently large positive integer M which we will not keep track of. Note that the
higher order Hormander—Mihlin condition is essentially the natural assertion

|0%m(&)| < dist(€,lac,—1)” %, e R\lac,_1.

Likewise we will say that a bounded function m : R — C is a Marcinkiewicz multiplier of
order 7 € N if the components mj, have bounded variation uniformly in L € A,. Here we use
the standard variation norms defined for r € [1, 0] as follows

T

I Ely, = sup - sup (Z IF(fL‘kH)—F(mk)!T)

ro<---<x
0 N \o<k<N

Note that usually Marcinkiewicz multiplier are defined by asking that the pieces m1y have
bounded 1-variation, uniformly in L. One can check that our definition, using the smooth
cutoff 7, is equivalent to the classical one. For one inequality of this equivalence we just
use that n = 1 on [—1/2,1/2], while for the converse inequality it suffices to notice that
|IFG|v, < |F|v,|G|v, together with the fact that the support of 7 is contained in three
adjacent intervals of length 1. We will actually consider the wider class of Ra  -multipliers
defined below.

Definition 6. Let R to be the space of all functions of the form
m = Z crly
I
with I ranging over a family of disjoint arbitrary subintervals in [1,2) and the coefficients
{er}r satisfying
e < 1.

1

Then R is the Banach space of functions m ==Y, A\amq with >, |Aa| < +00; we equip R with

the norm
Im|l7 = inf {Z |Aa| : m = Z)\ama, Mg € R} )

For 7 € N we say that the bounded function m : R — C is an Rg r-multiplier if

|m||R,,, = sup [mr|z < +o0.
LeA,

The class Ra ; contains all Marcinkiewicz multipliers of order 7 as well as Hormander—
Mihlin multipliers of order 7. This follows by the fact that Hérmander multipliers of order
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7 = 1 are Marcinkiewicz multipliers of the same order and the latter belong to the class Vi -
consisting of functions which have uniformly bounded 1-variation on each lacunary interval of
order 7; the inclusion relationship then follows for example by the fact that V; , < R ;, proved
in [CRAFS88, Lemma 2]. Our main result proves the sharp endpoint bound for multipliers in
the class Rg .

Theorem 31. Let 7 be a positive integer and m € Ry . Then the operator Ty, f = (mf)"

satisfies
T/2
|{:1:ER:Tmf(a:)]>a}\$JRE|<log<e+|£>> , a>0.

Furthermore this estimate is best possible in the sense that the exponent /2 in the right hand
side of the estimate cannot be replaced by any smaller exponent. The implicit constant depends
only on T and the Ry r-norm of m.

For 7 = 1 the local version of the theorem above is contained in [TW01]. We note that
Theorem easily implies the following local estimate: For every interval I and m € Ra,
there holds

Hzel: |T,f(x )>oz}|<f\f|<log<e+<||jf||>>) , a >0, suppf < I,
where (| f])r := |I|7"]|f]11(s). The global estimate of Theorem (31| appears to be new even

in the first order case 7 = 1, although a proof of a global result can be deduced for the first
order case 7 = 1 from the methods in [TWO01] without much additional work.

While Hérmander-Mihlin multipliers are Ry » multipliers, they are in general much better-
behaved as the case 7 = 1 suggests: indeed for 7 = 1 Hérmander-Mihlin multipliers map L' to
LY in contrast to the sharpness of the L logl/ 2 — LY estimate for general Marcinkiewicz
or Ra 1 multipliers. In analogy to the Littlewood-Paley square function LP. of order 7 it is
natural to define a smooth version as follows. For C > 0, M € N and L € A; we consider the
class of bump functions

b}
Pr = {m psupp (¢r) € 7L, sup |06 < 1010}.
as<M

Now for some fixed large positive integer M (whose precise value is inconsequential) suppose
that ¢, € & ar for all L € A, and define, initially for f e S(R),

1/2
- <Z \ALf|2> ;o Apf(a f or(6)f(E)e*™ ¢, zeR,

LeA,

The following theorem is the sharp endpoint estimate for higher order Héormander—Mihlin
multipliers and corresponding square functions.

Theorem 32. Let 7 be a positive integer and m € H, be a Hérmander—Mihlin multiplier of
order 7. Then

(r—1)/2
HreR: |Tmf(:1:)|>a}|$J ‘f‘<log( @)) , a > 0.
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The same holds for the smooth Littlewood—Paley square function S; of order T and these
results are best possible. The implicit constant depends only on T and the H--norm of m, and
also on M in the case of square functions.

The case 7 = 1 of this corollary is classical. The local version of the case of Hérmander—
Mihlin multipliers of order 7 = 2 is implicit in [TWOI] as it can be proved by combining
[TWO1l, Proposition 5.1] with [TWO01, Proposition 4.1]. All the higher order cases for H,-
multipliers appear to be new.

C.1.3 The Chang—Wilson—Wollff inequality and a square function for L logT/ ’L

Throughout this section we work on the probability space ([0, 1], dz) unless otherwise stated.
A central result in the approach in [TWO01] was a weak characterization of the space L log'? L
in terms of an integrable square function, inspired by the analogous and better-known char-
acterisation of the Hardy space H!. More precisely, the authors in [TWOI] prove that if
fe Llogl/ 2L and f has mean zero then for each L € A; one can construct nonnegative
functions Fy, such that

1/2
|ALf] < FL* @1 VLEe A, jR ( Z |FL|2> < I fl 1012 1o (C.1)
LEA1

where Ay is as in and
oa(x) = A o(z/A) = ATHA + [z/AP) ¥4 zeR.

Here and throughout the paper we use local Orlicz norms and corresponding notation as

described in
There is a dyadic version: denoting by D}, the dyadic subintervals of [0,1] of length 27,
k € No:= N u {0}, we consider the conditional expectation and martingale differences

Eifi= > {rl;,  Dpf=Epf —Epf, k=1, Dof =Eof, felL
IeDy,

For future reference we record the definition of the dyadic martingale square function

1/2
Smf = (Z |Dkf|2> -

k=1

The dyadic analogue of (C.1]) is that if f € L logl/ 2 L then for each k € Ny there exist functions
fr such that

1/2
|Dxf| < Eilfi] Vk e N, f[o ; (Z |fk‘2> < 1l p1ogr2 1o (C.2)

k=0

In fact, the authors in [TWOI] first prove (C.2)) by constructing the functions fj through a
rather technical induction scheme, and then deduce (C.1)) from ((C.2)) via a suitable averaging

argument.
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Several remarks are in order. Firstly one notices that (C.2)) combined with a simple duality
argument based on the fact that exp(L2?) = (Llog!/? L)* implies the Chang—Wilson-Wolff
inequality

1f = Eof lexp(rz) < [Samflre- (C.3)

Estimate was first proved in [CWWR&5]; see also the monograph [Wil0§| for an in-depth
discussion of exponential square integrability in relation to discrete and continuous square
functions in analysis. Thus the proof of in [TWO01] is of necessity somewhat hard as it
reproves ((C.3)).

A second observation that goes back to [TWOI], see also [ST09] for an analogous remark
on the dual side, is that implies the weaker estimate

2

2 IALFIL | S 1Fpogun pe (C.4)
LeAl

Indeed, follows by and the Minkowski integral inequality. Alternatively, as ob-
served in [ST09], the dual of is a —again weaker— consequence of the Chang—Wilson—
Wolff inequality .

Finally, a consequence of is the Zygmund inequality

1
2

3 P[] £ 111

Aelact

See for example [Zyg02) Theorem 7.6, Chapter XTI]. Indeed, if Ly is an interval which has A
as an endpoint we have |f(\)| < [(Ar, f)"|lLe < ||AL, f|z: for a suitable choice of symbol in
the definition of the Littlewood—Paley projection and Zygmund’s inequality follows by .

All the estimates above have a higher order counterpart which plays an important role
in our investigations in this paper. However, our point of view is somewhat different than
in [TWOI]. Firstly we want to emphasize that the proof of our main theorem, Theorem
hinges on a higher order version of the generalized Zygmund inequality which loosely
has the form

2

2 IALFIL | W lpigreg: TEN (C.5)
LeAl

Estimates of the form will be referred to as generalized Zygmund—Bonami inequalities
and will be stated precisely and proved in Section [C.4] The terminology comes from the fact
that they imply the higher order version of Zygmund’s inequality, due to Bonami [Bon70],
and which can be stated as follows:

N|=

FO[ ] $17lpgraz: TeN. (C6)

2

Aelacl
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A novelty in our approach is the realization that the weak square function characterization
of the space Llogl/ 2 I, in the dyadic case, is precisely the dual estimate of the Chang—
Wilson—Wolff inequality . This relies on a duality argument involving quotient spaces
which is inspired by the work of Bourgain, [Bou89]. We can then use the Chang—Wilson—Wolff
inequality for general order of integrability, see

Hf - EOfHeXp(LQ/(U‘*'l)) S HSMfHexp(LQ/U)7 c=>0, <C7)

to conclude the following weak square function characterization of the space Llog(‘7+1)/ 2L in
the form of the following theorem.

Theorem 33. If f € Llog("ﬂ)/2 L for some o = 0 then for each k € Ny there exist functions
fx such that

1/2
Dyf = Difr Vke Ny, (Z |fk|2> S L 1ogte+r2 £

k=0 Llog®/2 L

The implicit constant depends only on o.

We will prove Theorem [33|in Section as a consequence of . While this is a rather
deep implication, as in the case o = 0, it is not hard to see that the conclusion of Theorem
combined with the fact exp(L??) = (Llog"/ 2L)* actually implies the Chang-Wilson—Wolff
inequality for the same value of . We note that while the conclusion of Theorem
and of the subsequent corollary below are already in [TWQ1] for the case o = 0, our approach
provides an alternative proof even for Llog? L. This approach has the advantage of being
able to deal with all spaces L log(”H)/ 2 I at once, hence leading to the more general conclusion
of Theorem [33]

As in the case o0 = 0, Theorem [33] readily implies the continuous version below.

Corollary 34. Let J < R be a finite interval, o > 0 and f € Llogl+1)/? L(J). Then for each
L e Ay with |L| = |J|7! there exists a nonnegative function Fy, such that for every v > 1

1/2

ALl < FL* o(r))-1s Z |FL|? S0 \\f\’Llog(g+1>/zL(J7d7:v)-

LEA‘JF1 1
! L 1og"/2 L("/J,%)

If in addition SJ f =0 then the conclusion holds for all L € Ay with the summation extending
over all L € Ay. With or without this additional assumption, for |L| = |J|™! the functions Fy,
are supported in 5J. The implicit constant depends only on v and o, as indicated.

C.1.4 Background and history

The fact that Marcinkiewicz multipliers are LP-bounded is classical; see for example [Duolll
Theorem 8.13]. The first endpoint result concerning multiplier operators of Marcinkiewicz-
type is arguably a theorem due to Bourgain [Bou89] which asserts that, in the periodic setting,
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the classical Littlewood-Paley square function LP; has operator norm ||LPy|,, ~ (p—1)~%/?
asp — 17. Tao and Wright proved in [TW0T] the optimal local endpoint estimate L logl/ 2L -
LY® for the class of Ry = Rs 1 multipliers, which contains Marcinkiewicz multipliers. It
was later observed in [Bakl9] that Bourgain’s estimate follows by the endpoint bound of
[TWO1] combined with a randomization argument and Tao’s converse extrapolation theorem
from [Tao01I]. Recently, Lerner proved in [Lerl9] effective weighted bounds for the classical
Littlewood—Paley square function LP;; these weighted bounds imply the correct p-growth for
the LP — LP norms of these operators as p — 1*. In addition, as observed in [Bak21], the
arguments of [Lerl9] can be used to establish weighted Az estimates for LP, that imply sharp
LP — LP estimates for LP; as p — 1T for any order 7. The class Ry contains all multipliers
m whose pieces my, have bounded g-variation uniformly in L € Ay, for all 1 < ¢ < 2; see
[CRAFS88| where the authors showed that all Re multipliers are bounded on LP for p € (1, 0).

As already discussed, the authors in [TWO01] rely on the weak square function character-
ization of Llogl/ 2L as in for their proof. Our argument here is a bit different, relying
on the weaker generalized Zygmund—Bonami inequality instead; a hint of a different proof
already appears in [TWOIl, p. 540]. The Zygmund inequality first appeared in [Zyg30] in its
dual form; see also [Zyg02, Theorem 7.6, Chapter XII|. The higher lacunarity order is
due to Bonami and it is contained in [Bon70]. We note that our results provide an alternative
proof for the case of finite order lacunary sets. On the other hand, a dual version of the gen-
eralized Zygmund-Bonami inequality in the first order case (that is, inequality ) appears
in [ST09).

The LP-boundedness of Marcinkiewicz multipliers of order one and higher in the peri-
odic setting was established by Marcinkiewicz in [Mar39]; see also Gaudry’s paper [GauT7§].
Generalized versions of Hormander—Mihlin and Marcinkiewicz multipliers, together with their
square function counterparts of higher order, have been introduced in [SS81] in a very broad
context. There the authors proved the equivalence of LP-boundedness between different classes
of such multipliers. Our setup is focused on the finite order lacunary case and provides the
optimal endpoint bounds for such classes.

C.1.5 Structure

The general structure of the rest of this paper is as follows. Section contains some basic
facts and properties of Orlicz spaces, together with a small toolbox for dealing with lacunary
sets; the reader is encouraged to skip this section on a first reading and only consult it when
necessary. In Section we will prove Theorem [33] and Corollary In Section we will
critically use Corollary [34] in order to conclude the generalized Zygmund-Bonami inequality
of arbitrary order alluded to above. This inequality will be stated and proved in different
versions which can be local or non-local, depending on the type of cancellation assumptions we
impose. The reader can find the corresponding statements in Propositions |37 and see also
Corollary In Section we present the details of a Calderén—Zygmund decomposition for
the Orlicz space Llog?/? L, adapted to the needs of this paper. The proof of Theoremtakes
up the best part of Section where the Calderén—Zygmund decomposition of Section
is combined with the generalized Zygmund-Bonami inequality of Section [C.4l The proofs of
Theorem and Theorem [32] are discussed in Section as a variation of the proof of
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Theorem [311

C.2 Preliminaries and notation

In this section we collect several background definitions and notations that will be used
throughout the paper.

C.2.1 Some basic facts for certain classes of Orlicz spaces

We adopt standard nomenclature for Young functions and Orlicz spaces as for example in
[Wil08, Chapter 10]. Given a Young function ® : [0,00] — [0, 0] we will use the following
notation for local L® averages: For a finite interval I ¢ R

dfDa,r = inf{A >0: },L(I) ('fE\w)') dr < 1}.

For the usual local L averages we just set (| f[)p 1 := |I|_1/prHLp(I) for1<p<oo. Foro >0
we use the Young function B, (t) := t(log(e + t))? to define local Llog” L-spaces and we will
also write

Wl () = s > g [ 0 (o8 (e F0) ) e )

The last approximate equality can be found in [Wil08, Theorem 10.8]. For future reference it
is worth noting that the function B, is submultiplicative and thus doubling; see [CUMP11]
§5.2]. We will write instead L?7(R) to denote the (global) space of measurable functions f
such that {5 Bo(|f|) < +o0.

The dual Young function of B, can be taken to coincide with E,-1(t) := exp(cot"/?) — 1
for t = 1; here we insist on the equality only for sufficiently large values of ¢; with this
function we define the local exp(L'/?) norms and we have the Hélder inequality (| fg[>1.r <
<]f\>30,1<|f]>E0717I. We reserve the notation Llog? L and exp(LY?) for the case I = [0,1]

and the space of functions supported in [0, 1] for which

| flrogr L= <fDB, 01 < +%0, | flexp ey = <fDE, 1 01] = Sggp_"l\f\\p <+,
p=

respectively (see [Tri93 §2.2.4] for the last approximate equality); there holds exp(Ll/ 7) =
(Llog? L)*. For o = 0 we adopt the convention that Llog’ L = L' and exp(LY?) = L. The
following Minkowski-type integral inequality

[kl 06 2]z < 153

Llog® L

will be used with no particular mention. Its proof can be obtained by a simple duality
argument.
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C.2.2 Some tools for handling lacunary sets

We introduce some useful notions concerning lacunary sets of arbitrary order. Let 7 > 1 and
L e A;. We will denote by L the unique interval Le A1 such that L L and call L the
(lacunary) parent of L. Furthermore we will denote by A(L) the unique element A € lac,_
such that dist(L,R\f/) = dist(L, A\) = |L|. We note that A\(L) is one of the endpoints of L.
These definitions also make sense in the case 7 = 1 remembering the definitions of Ay and
lacg.

If L € A; then L* := L — A(L) € Ay; in fact L* is one of the intervals (—2|L|,—|L|) or
(|L], 2|L]) depending on the original relative position of L with respect to A(L). The point of
the definitions above is that if L € A; then, upon fixing a suitable choice of bump functions
¢r, € ®r v, we can write the identity

ALf = 2TANLY A (6—27ri)\(L)-Aif> — 2TALYA L, (e—Qm’/\(L)-f) .

This will be crucially used in several parts of the recursive arguments in the paper. We will
also use the intuitive notation Az := Aps_p*) for the smooth Littlewood-Paley projection
of first order at frequencies |£| ~ |L| which takes advantage of the fact that L* essentially
only depends on the length of L. The following notation will be useful to localize in a certain
lacunary parent:
ANL)={LeAl: Lc L’} L' cR;

similarly we define A-(L’). Note that if L' € A,_; and L € A,(L') then necessarily L = L'.

The following simple lemma relies on the fact that lacunary sets are invariant under dyadic

dilations with respect to the origin and will be used to allow rescaling of intervals of dyadic
length to [0, 1].

Lemma 35. Let 7€ N and a € 22. Then a 'lac® := {\a: X € lac?} = lacl.

To showcase the typical application of this lemma let J < R be an interval of dyadic
length and a = {a)}aelac, @ finite collection of complex coefficients. By a standard change of
variables

)= X o b= [ L e

1 )
1= el Jflack!1 ™!

P
dy, (C.9)

A€lacy

|71~

and we crucially note that the sum on the right hand side is for A € |J|lacy'' = lac! because
of the lemma. Of course the same change of variables will be valid for {|p,|)s, s for any Young
function ®. We will use this rescaling argument in several places in the paper.

C.2.3 Other notation

For any function g and A > 0 we write gj(z) := A"'g(x/\) for the L'-rescaling. Two special
kinds of bump functions will appear. Firstly w(z) == (1 4 |z|?)"/? is the smooth tailed
indicator of [—1/2,1/2] with N any large positive integer. It will be enough to take N = 10
for the arguments in this paper but more decay is available if needed. We will also write
o(x) == (1 + |z|?)~3/* which is still an L'-bump but has only moderate decay. In some cases
we are restricted to using ¢, most notably in the statement and proof of Corollary
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C.3 A weak square function characterization of Llog"/ °L

In this section we provide the proof of Theorem (33| as a consequence of the Chang—Wilson—
Wolff inequality of general order . The conclusion of Corollary |34 will then follow by a
standard averaging argument using almost orthogonality between the continuous Littlewood—
Paley projections and martingale differences.

C.3.1 Proof of Theorem [33]

We recall that we work on the probability space ([0, 1],dz). It clearly suffices to prove the
theorem for k > 1 as for k = 0 we can set fy := Eof = Dgf. Our starting point is the Chang—
Wilson—Wolff inequality of general order of integrability, (C.7). This is pretty standard but a
quick proof can be produced by using the usual Chang—Wilson—Wolff inequality in the
form

plf —Eoflp <p 0 2|SMm Sl =2, 0 >0,

which readily implies

If —Eoflp |Smfllp
(= EOfHexp(m/(oH)) = 21;12) W < 21;12) PO/ = HSMfHexp(L2/o)

which is (C.7)). Observe that (C.7) has the form

> ok

k=1

1/2
< (Z |gk2> , gk =Dyl (C.10)
exp(L2/(o+1))

=t exp(L2)

We will write (C.10) as a continuity property for the operator T({gx}r) = D>, gr between
suitable Banach spaces. To that end let us consider the subspace of L log?/? L([0,1]; £?) given
by

Y = {{m}k € Llog?? L([0,1];¢%) : Dyapy = 0 for all ke N} .

We observe that Y is closed. To see this consider a sequence (¢"), < Y with ¢" = {¢}'};
converging to some 1) = {¢}r in Llog L7/2L([0,1];¢?). Clearly the limit 1/ belongs to
Llog L°/2L([0,1]; £2), the latter being a Banach space and, additionally, Yy converges to
Y in Llog”/? L([0,1]) and so also in L'([0,1]), uniformly in k. Now it follows by Fatou’s
lemma that for each k € N there holds

Hhﬂiorolf Dy (Vg — )|

< liminf — Yy =0
L1 ([o)) 1m i [ wkHLl([o,l])

yielding Dyv) = Dyt = 0 a.e., where we also used the uniform boundedness of Dj, on
L1 ([0, 1]).

Since (L log?/2 L([0, 1];52))* ~ exp(L??)([0,1];£?), the annihilator of Y is given equiva-
lently by

v+ — {{gk}k € exp(LZ/a)([O, 1];62) . f <29k¢k> =0 forall {¢}r€ Y} .
k
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Since Y is a closed subspace of Llog®? L([0,1]; £2) we have that (Llog?? L([0,1];£2)/Y)*
is isometrically isomorphic to Y1; see [Rud91, Theorem 4.9]. We equip Y1 with the norm
appearing on the right hand side of (C.10). We will use the following fact.

Lemma 36. If {gi}x € Y then Dygp = gi for every k e N.
Proof. Fix an index ko € N, let ¢ € Llog?? L be arbitrary and let {¢r}r be defined by

b = 0 it & # ko,
b 1 — Dy, otherwise.

Clearly {tx}r € Llog®/? L([0,1]; ?) and, moreover, Dy, (1) — Dy,¢)) = 0 so that {¢z}z € Y.
By the definition of Y1 we have then

0= | ot = | 910t = D) = [(91, - D)o

where we have used the fact that Dy is self-adjoint; but this is only possible for arbitrary ¢

if Dok, = 9k, as claimed. [
Now ((C.10) can be written in the form
ITEg3 ) |expz2ro+0) S Hordelye s THgde) =D, gk (C.11)
k

Let X := Llog?? L([0,1];#?) and denote by Xy, Yy the functions in X,Y, respectively,
which are constant on dyadic intervals of length smaller than 27V, In particular, such func-
tions f have finite Haar expansion which implies the apriori qualitative property that the
spaces Xy, Yy are finite dimensional. We note that (Xxy/Yn)* is isometrically isomorphic
to Y]\i[, with Z* denoting the dual of the finite-dimensional vector space Z. By the Riesz
representation theorem we then get that

I

{gk}keyﬁ: {gk}keYﬁ:
{gr}ely L <1 [{gr}rly L <1
N N

DSkl xyvy < sup UEQkaf = sup UT({gk}k)f
k:

where we also used Lemma [30] in passing to the equality in the right hand side above. Using
(C.11}) together with Holder’s inequality in Orlicz spaces it follows that

1/2
HDrfnelxy = {wir}»l;er (Zk: Dy fn + ¢k|2> S SNl 1oge+vre s

Llog®? L

where fy is the truncation of the Haar series of f € X at scale 27V, We stress that the
approximate inequality above holds uniformly for all N € N. This inequality extends to all
fe Llog(‘”l)/ 2 I by a standard approximation argument, using the fact that the truncated
Haar series of functions f € f € Llog("+1)/2L converge to f in Llog(‘”’l)/2 L; see [Osw8&3].
The extension of the operator f +— {Dyf} is the obvious one given by the same expression.
In order to conclude the proof of the theorem we notice that for every {¢x}r € Y there
holds Dy f = Dyg(Dyf + ¢r) and the last inequality guarantees the existence of a vector
{tr}r € Y such that the functions fy := Dy f + v satisfy the conclusion of the theorem.
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C.3.2 Proof of Corollary

The corollary follows from the dyadic case of Theorem [33] via an averaging argument which is
essentially identical to the one in [TWO1] §9]; see also [Vit19] where the argument in [TWO01]
§9] is explained in detail. We can clearly assume that v > 3 and by affine invariance we can
take vJ = [0, 1], so that |J| =y~ !, and supp f < [1/3,2/3].

For all € [—1/3,1/3] we define fy(x) := f(z—0). By Theorem33] for each 6 € [—1/3,1/3]
and k > 0 there exists a function fpj such that Dy, fo = Dy, fo . and

1/2
Z | fo, k|2 < | foll progtervre = 1 fl proge+nr - (C.12)
k=0 Llog®/? L
Setting for L € A]
Fi(o)i= ) 2 lowllbR | g o)) ds
S [-1/31/3]

and arguing as in [TWOI1] we see that [Ap f(x)| < FL * ¢p-1 and

< > \FL(@P) v < J[_1/371/3] < D for(z + 9)]2>1/2 dé.

LeA] k=0

By the Minkowski integral inequality for the space L logg/ 2 I we have

1/2

1/2
2, IPif Sf[ 1/3,1/3] <Z ‘fa’k(.+0)’2> de

hent Liog”? L K20 Llog?/? L
and the proof follows for L € A]. Under the additional cancellation assumption S[o 1 f=0

we consider also L € Ay with |L| < «, and for these we define F, := |Arf| and note that
|ALf| < @)1 * Fr. Using the cancellation condition we have also

IALfI < @1 * (LI £l 2 Lpo,17)s

which readily yields the estimate HH{FL}|L\<7H42HL1 < | fllzr and the proof is complete. Note
that we used that since 7 = 1 there are at most two intervals L € A; of any given length.

C.4 Generalized Zygmund—Bonami inequalities

In this section we prove the versions of the generalized Zygmund—Bonami inequality presented
in the introduction, where the Littlewood—Paley projections Ay for L € A; are replaced by
their 7-order counterparts Ay, for L € A, where 7 is an arbitrary positive integer. As already
discussed, the estimate corresponding to order 7 = 1 is and it follows rather easily from
the case o = 0 of Corollary For 7 > 1 we first state the generalized Zygmund—Bonami
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inequalities in the case of L € A, with |L| > |J|7!, where J is an interval in which f is
supported; this is the harder and deeper case. In the rest of the section we will also provide
the statements and proofs for the easier case |L| < |J|7!; the latter will rely on pointwise
estimates for Ay f and recursive arguments, assuming suitable cancellation conditions for f
in the same spirit as Corollary

C.4.1 The main term in the generalized Zygmund—Bonami inequalities

We encourage the reader to keep in mind the notation of for the local Orlicz norms and
the definitions concerning lacunary sets from for the rest of this section. Our first result
below gives a version of the generalized Zygmund—Bonami inequality in which the intervals
L are restricted to those for which |L| > |.J|7!, as anticipated above.

Proposition 37. Let J < R be a finite interval and f be a compactly supported function with
supp(f) € J. Let T be a positive integer, o a nonnegative integer and vy > 1. There holds

1/2

Z <|ALf’>1290/2,7J Sorn <‘f|>B<a+7)/2J7

-1
LeALJ|

2 1AL S [T DB ) -
LeA‘TJV1

Proof. The proof is by way of induction on 7, with the base case 7 = 1 being an easy

consequence of Corollary as we shall now illustrate. Indeed, let Cy(o,7,7) and Ca(T,7)

denote the best constants in the first, and the second estimate in the statement, respectively.
-1

Corollary |34] implies that for L € A|1J| we have

UALIDB,pms < eqray-1 * FLDB, prd < FLDB, o

using Young’s convolution inequality and the L!-normalization of each ©qr|g)-1- Now the
proof of the first estimate in the conclusion for 7 = 1 can be concluded by yet another
application of Minkowski’s inequality, this time to yield that the left hand side of the first
estimate in the conclusion is bounded by a constant multiple of

1/2 1/2

Z <|FL|>2BG/2,7J b < Z |FL|2 > b3 <|f‘>B(o'+1)/27J

LZJ_I L2J—1
ILIz1] L1217 By

by the estimate for the square function of the {F7}z in Corollary Thus C1(o,1,7) < +0
for all nonnegative integers ¢ and v > 1.
For the second estimate we have for |L| > |J|~! and z € R\yJ

[Apf@)] < LTI+ Lz = e )T Drs € wipmr = (Do) (@), (C.13)
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with wj -1 as given in @ Using the first approximate inequality above, the square of the
left hand side of the second estimate in the conclusion of the proposition can be estimated by
a constant multiple of

2 <|f>iJ(!L||JI>2IL!2°f @ —c) Pde <UD, Y (L)

LeAl/l™ Ry LeAs:|L||J|>1

which sums to the desired quantity since, for 7 = 1, there is exactly one interval L € A; per
dyadic scale. This shows that Ca(1,7) < 40 for all v > 1.
Consider now the case 7 > 1 and let @ > 1 be such that v = a”. Recalling the discussion

in we write
= ) o (120
= [Apxfi,o| + [ALsfa,Ll-

(C.14)

For clarity, we remind the reader that A(L) is either of the endpoints of L (depending on
the position of L) and therefore we can partition the intervals L into two families such that

f1,0, fo,r actually depend only on L — this will be relevant below. Fixing for a moment L’ €

AL{'? we note that for any L € ALJl_l(L’) there holds L = L/ and so lfiol = A7 fllgray =
—1 —1

|(Ap/ f)1g7—17]. As the collection {L*: L€ A'TJ_|1 (L")} < A‘l‘” we can use the conclusion of

—1
proposition for 7 = 1 to estimate for fixed L' € AL{'I

1/2
2
S AAhiih s | <@L AAL D, 0
LeA? 1)
Thus we can recursively estimate
1/2 2
2 2
Z 2 <!AL*f1,L\>BJ/2,aTJ < Ci(o,1,a) Z <’AL’f|>B(U+1)/Q,aT—1J
veall peal! ™ (1) veall!

< Ci(o,1,a)Ci(0 + 1,7 — 1, aT71)<|f|>B(T+U)/2J

which takes care of the contribution of the fi 1’s. Considering now the fs1’s, we have by

Holder’s inequality for Orlicz spaces that {|Ar«fo.r|)p ] S {|Arxf2,L])y ., and therefore
—1

J
for any fixed L' € A'T_|1

1

a’|J| Jpgr—1g

1
Z <|AL*f2,L|>%a/27aTJ < MJ}RU&LP = |AL/f|2a

LeAl? 1)

where we have used the L2 — L? boundedness of the smooth Littlewood-Paley square function
together with the fact remarked above that fo 1, depends essentially only on L = L. It follows
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that we can bound recursively

1/2 1/2
2 1 2
Z Z \AL*fz,LDBg/Q’aTJ So m 2 1J|AL/f|
1 / 1 a™
reAl’lT |LLE\£|§|L |J|

Co(t —1,a"71) 9 1/2
< (BTSETNA,

Sor (Co(T — 1, aT_l)/aT)1/2<|f|>B(U+T)/2,J'
This proves that
Ci(o,7,a7) < Ci(0,1,a)C1(0 + 1,7 — 1,a" 1) + o, Co(T — 1,07 1) V/2a77/2

for some numerical constant ¢, , depending only on o, T.
We move to the proof of the inductive step for the L?-estimate and we use again the
splitting of (C.14)). For the term corresponding to the fi 1’s we can estimate again recursively

2 Y A fiilfagars < Co(La)la™ M Y <|AL’f|>%,aT—1J

eI T el () eA’lT
1y 2
< 02(17(1)01(077-— 17a )a‘r 1|l]| <‘f|>B(Tfl)/2,J °

Finally, for the contribution of the fs ;’s we use again the L? — L? boundedness of the smooth
Littlewood—Paley square function and the inductive hypothesis to estimate

Z Z HAL*f27LHi2(R\aTJ) < Z HAL’fH%Q(R\aT—lJ)

eI T el T () eI T
-1 2
< Colr =1 I,
We have thus shown that for some numerical constant ¢, ,
Cy(t,a") < Co(1,a)C1 (0,7 — 1,a™ a1 + cf”C’g(T —1,a77h).
This completes the proof of the inductive step and with that the proof of the proposition. W

Remark 1. The first estimate in Proposition implies the Zygmund-Bonami inequality of
general order. Indeed assume for a moment that J = [0,1] and for A € lacl let Ly € A be an
interval that has \ as an endpoint. We have

F] = [AL D] < 1as, ()l

for a suitable choice of symbol in the definition of Ay, and so the first estimate of the propo-
sition for o = 0 implies

N[

~ 2
T[] <02

2

Aelacl
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which is the Zygmund—Bonami inequality of lacunary order 7. Dualizing and rescaling as in

(C.9) tells us that for any finite interval J < R with |J| € 2% we have

Py = D> ae®  {ahle =1 = {pDp,, s <L (C.15)

)\GlacL-J‘_l
This formulation of the higher order Zygmund—Bonami inequality will be used in several points
in the rest of the paper. As it follows from Proposition [37 above this makes the proofs in the
paper somewhat self contained.

Remark 2. One can easily verify that the L*-estimate of Proposition can be upgraded
to the following form for “molecules”. Let J be a family of pairwise disjoint intervals and
f = 217e7bs where supp(by) = J for each J € J. For every positive integer 7 and v = 2

there holds
2

2 Z AL(bJ)]'R\’YJ g Z |J‘<’bJ‘>2B<T,1)/27J'

LeAr || J: |J|=|L|~! L2(R) JeJ

Indeed an inductive proof is again available. The case T = 1 follows by the same pointwise

estimate (C.13)) which implies that

1,
> AL rgs Sw [ D] <’b‘7|>1’JW
oS- |J|=|L|—1

which sums using that there are at most two intervals L € Ay of any given length. The
inductive step relies again on the identity , applied to each by in place of f. Then
the contribution of the first term is estimated by an appeal to the case T = 1 followed by
an application of the first estimate in Proposition [37. The contribution of the second term
m 1s estimated by the Littlewood—Paley inequalities and the inductive hypothesis. We
omit the details.

We proceed to prove the easier range, corresponding to |L| < |J|71. As in Corollary
we require cancellation conditions, which in the case at hand amount to vanishing Fourier
coefficients of the function at lacunary frequencies corresponding to order 7 — 1. In this range
we can prove the stronger L? inequality that follows. For simplicity we state the result below
for f with support of dyadic length, but it is obvious that this is no real restriction.

Proposition 38. Let J < R be a finite interval of dyadic length and f be a compactly
supported function with supp(f) < J. Let T be a positive integer. We assume that f(A) =0

21
1l Then

for all A e laucl)‘]‘i1 u---ulac .

> 1AL Tamy S I DE,

LeA,:
|LI<|J|~
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Proof. We argue by induction as in the proof of Proposition Let us denote by C(7) the
best constant in the inequality we intend to prove. Note that for 7 = 1 the assumption reads
§ ; f =0 and the conclusion C(1) < +c0 follows immediately by the pointwise estimate

AL @) <ar ILPITPA + Lz = es) ™A Drs S wipmr = (LI Drals)  (C.16)

for any large positive integer M, where c; is the center of J and |L||J| < 1. In order to see
the first estimate above let us take ¢ € ®1, s to be the symbol of Ay, which can be written
in the form ¢ (z) = e?? .| L|$(|L|z), with ¢z, denoting the center of L € A;. We compute
using the cancellation of f and the mean value theorem

|AL(f f [or(x —y) = ¢rle — el [f(y |dy<J !Jlsuglcbi(w—Z)Hf(y)!dy-

Using that |cr| ~ dist(L,0) ~ |L| we have for z € J

|91 (@ = 2)| S erLI$(|LI(z — 2)) + [LPS(|LI(z — 2)) < [LP* (1 + |Llle — =)~
~ |LI (1 + |Llle = es) ™"

The last approximate equality can be checked by considering the cases © € 3J and = ¢ 3J
separately, remembering that |L||J| < 1. The combination of the last two displays yields the
first estimate in (C.16). The second estimate in follows by the first since (1 + |L||x —
ci)™ ~ (1 + |L||z — z|)™™ for z € J 2 supp(f).

For 7 > 1 we first do the same reduction as in the proof of Proposition For 7 > 1 we
can estimate

Z HALfH%Q(R) < 2 Z HAL* <e_2’”’\(L)'AL/f> 2

P L€, 1 Leh( g
Li<|J|~ L J 1
<1 2 .17
f 3B [ae (PO L
Lrepl?I Tt LeA( (®)
T—1
|L|<|J|

The first summand above is estimated by < C(7 — 1)\J!<|f|>2B(T72)
for the smooth Littlewood—Paley square function and the inductive hypothesis.

The second summand above can be estimated by

T by using the L?-bound

Z Z Z ‘Agé ( —2miA(L) f) 22 _ Z Z Z HAz‘v’ ( —27miNe f)
C26<| I e AT L LeA (L) L®) £:20<|J|71 y el TITY LEAS
|L|=2¢ FA% -1 A(L)=A
|L|=2¢
< Z Z HAQZ ( —2miAe f) .
0:20<| g1 )\Elacl‘]l L2(R)

where, in passing to the last line, we used that for each X € lac,_; there are at most O, (1)
intervals L € A, of fixed length with A(L) = \. Fixing for a moment 2¢ < |J|™! and z € R we

L2

(R)
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write
2
—27ie 2 —27i e 2
S A () @] = A | Y e @) =y () (@)]
)\elaclTJlI ! )\elacﬂ; !

where {ax}\ = {ax(z,€)}, is in the unit ball of £3 and p, ¢, implicitly defined above, is as in
C.9). Using the cancellation assumptions on f we see that § yPzef = 0 so by appealing to

C.16|) we get

Bgr (Fa )| S wame 5 (L1TK D115 € woe s (21T DBy 010

where we used the Hoélder inequality in Orlicz spaces together with the Zygmund—Bonami
inequality of order 7 — 1 from Remark (1| to control {|p,¢|)E, J-—1) < 1. Squaring the estimate

in the last display, integrating, and then summing for 2¢ < |J|~! yields that the second
summand in (C.17)) is controlled by a constant multiple of |J|{|f |>QB(771)/27 ;- We have proved

that C'(7) < (1 + C(r — 1)) and this concludes the proof of the inductive step and of the
proposition. |

Remark 3. As in Remark @ there is an upgrade of the L?-estimate of Proposition 38 from
“atoms” to “molecules” f =3 ;. 7 by where J is a family of pairwise disjoint dyadic intervals
and each by satisfies the cancellation assumptions of Proposition[38, namely

2

S Ay < 2 OB, -

LeAr | J:J]<|L| 1 w7

The base case T = 1 is essentially identical to the corresponding step in the proof of Proposi-
tion [38 relying on the pointwise estimate

Ap Db swps (12 ), [TKbsDL
J:|L|<|J|~1 J:|L<|J|!

This is a consequence of (C.16) using the cancellation assumption §by = 0 for each J € J.
For the inductive step with T > 1, denoting again by C(7) the best constant in the desired
L?-estimate we clearly have that

2 2

Z Z AL(bJ) < Z Z A|L|(ef2m')\(L).bJ)

LeA, || J: | J|<|L| -1 2wy LEAT LI <)< (L) L2(R)

+C(r=1) Y T 0
JeJ
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Using a linearization trick as in the proof of Proposition[38 we have

2

SY ApET @) =X Y Ax| N ey,

LeAr | g |L)-1<|J|<|L|Y e | J:|J|<2-¢ LeA,
|L|=2", LI~ <]J]

for some collection {ar}ren. = {ar(z,€)}Len, in the unit ball of 2. Fizing for the moment

teZ and x € R we have

Do = Z ape2mAD): _ Z Z ap |e 2@ Z By 2N

LeA |J1=1 | LeA, (L' |J—1
PN weny \ Aclacr—,

with H{BA}‘H@ = O(1). Here we used that there at at most O(1) intervals L € A; with

fized length |L| = 2¢ inside L. Using the cancellation of p, by we can estimate pointwise
| Aot (reb)| S 28\ [P, sbs| D10 woe + 1, and by Remark and Holder’s inequality for Orlicz
spaces we have that
pa,ebiDr,s < b )Bi 1) 000
With this information the proof of the estimate can now be completed summing over |J|2£ <1
as in the proof of Proposition[38.
We conclude this section by recording the generalized Zygmund—Bonami inequality under

cancellation conditions. This is just a combination of Propositions [37] and

Corollary 39. Let o be a nmonnegative integer and T be a positive integer. Assume that
|1t
T—1 *

~

supp(f) < J for some finite interval J and that f(\) =0 for all X € la(:l)‘]r1 v - ulac
Then

1/2
(Z <|AL(f)|>2BU/2,'yJ> SEQUADI T

LeA,

C.5 An L5%~2(R) Calderé6n—Zygmund decomposition

We describe in this section a Calderén—Zygmund decomposition adapted to the (global) Orlicz
space LP72(R) for o > 0. Such a Calderén-Zygmund decomposition, which is influenced by
the one appearing in [CUMP11l, Appendix A], is available to us because of the specific choice
of the Young function B,/; and it is adapted to the finite order lacunary setup.

Recall that for o > 0 we write f € LP+/2(R) if for some (or equivalently all) A > 0 there

holds
[ 50 (V) o <o
R A

There is an Orlicz maximal operator associated with B,

Mg, , f(z) = sup{|fB, 0  T€R,
Q3x
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with the supremum being over all intervals () of R containing z. The dyadic version of Mp,_ ,
is defined similarly with the supremum over all dyadic intervals ) € D with D some dyadic
grid. We will write Mp,_ ,p for the dyadic version. Below we denote by @) € D a dyadic

interval, QY its dyadic parent and set Q**1) to be the dyadic parent of Q).

Remark 4 (Existence of stopping intervals). For the Calderén—Zygmund decomposition we
will choose stopping intervals that are mazimal under the condition {|f[)B,, 1 > A. The

existence of these stopping intervals relies on the following fact: If f € LPor (R) for some
o =0 and I is a dyadic interval in some grid D, then <|f|>Ba/2J(k) — 0 as k — +o0. This can
be easily proved using for example the fact that the Young function B,y is submultiplicative.

Proposition 40. Let o be a fized nonnegative integer, f € LB/2(R), and o > 0. There exists
a collection J of pairwise disjoint dyadic intervals J and a decomposition of f

=9+ bcanc,o + blac,a
such that the following hold:
(i) The function g satisfies ||g] Le®) < @ and g r) < [ fllLr(w)-

(ii) The function beanc,o i supported in U jezJ and in particular

beancs = D by, supp(by) SJ,  by(A) =0  ¥Aelacgu - U lac,.
JeJ

Furthermore we have that {|bj|)p ., 7 < « for all J€ J and

o /2

)
J;7|J|<LB,,/2 ( ~ )

(i1i) The function by s is also supported on U jegJ and satisfies

/
|%2(R) < Z ’JK‘bJDQBU/Q,J < a2 JR BO'/2 (U ’

JeJ

“blac,o

Proof. We begin by recalling that f € LP7/2(R) implies that Sg Boja(|fl/a) < +oo for all
a > 0. By Remark 4] and [CUMP11, Theorem 5.5] we have that the dyadic Orlicz maximal
operator Mp 12D satisfies

|Eo| =|{xreR: MBG/Q,Df($)>a}|<JRBa/2 <E|>, a> 0.
Letting J denote the collection of maximal dyadic intervals contained in E, we have that for
every J € J

a <{|fDB, < 20, Z |J‘<f B, <|f|> ;
JeJ R (8%
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The upper bound in the approximate inequality of the leftmost estimate above follows by the
maximality of J and the convexity of the Young function of B, which implies that

QfDByjas < pUfDByppss P> 15

see[CUMP11], Proposition A.1] and [CUMP1I1, eq. (5.2)]. One routinely checks that g :=

flr\u,., g satisfies (i).
For the “atoms” we set fy := f1; and define

o . ‘ 1
bJJac,U(y) = Z Z fJ()\)eQﬂ—My M bJ = fJ - bJ,lac,07

— . 71

p=0 )\elauc‘p‘l| !

and blac,o = 2 je.7 bilac,o and beanc,o = 2, je 7 bs. The cancellation conditions of (ii) for beanc,o
follow immediately by the definition above. Furthermore by the Holder inequality for Orlicz
spaces and the Zygmund-Bonami inequality of order p € {1,...,0} as in Remark [} one sees
that

{Ubsrac,o DB, 0,0 < (bspace2,0 S f1DB, 0 < o

This and the triangle inequality also yield {|b;|)B, s < {|fs])B, s < o thus completing the
proof of the desired conclusions in (ii). Finally for (iii) we estimate as above

/
Zowy S 2 DY, b0 < 0F fR B, (Ll)

JeJ

Hblac,o
and the proof is complete. |

C.6 Proof of Theorem [31] and Corollaries

In the first part of this section we compile together the results of the previous sections to
conclude the proof of Theorem [31] In the second part we show how to conclude our corollaries,
namely Theorem [30] and

C.6.1 Proof of Theorem [31]

Let us fix a positive integer 7 and m € Ry ;. Before entering the heart of the proof we note
that it suffices to prove the theorem for multipliers m having the form

m = ZC[].]

IeT

where the family of intervals Z has overlap at most N, for each I € 7 there exists a unique
L = L;e A, such that I < L and for each fixed L € A, there holds

Z |C[|2 <N
I: D=L
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See the analysis in [TWOI, p. 533| for the details of this approximation argument. For m of
this form, we now can write

To(f) = Y. eiPrf = >, Y, ePr(ALf),  Pif:=(11f)",

IeZ LeA; I: Ly=L

a fact that we will use repeatedly in what follows.

C.6.1.1 The upper bound in Theorem

Let f be a function in L?7(R) and a > 0 be fixed. We decompose f according to the
Calderon—Zygmund decomposition in Proposition [40| with ¢ = 7 yielding

f=g+ bcanc,T + blac,T-

We directly estimate g + bjac.- in L? using (i) and (iii) of Proposition

2 /]
LQ(R) g J;R BT/Q <a> .

The main part of the proof deals with the bad part beanc,r = D je 7bs and it suffices to
estimate

1
[{z € R [Tin(g + biacr) ()] > a} | S —5 g + biac,r

\{x € R\ UJjeJ 6J : ‘Tm(bcanc,T)’ > 0‘}‘

as the measure | U jes 6.J] satisfies the desired estimate by (ii) of Proposition We will
adopt the splitting

T (ZJ} bJ) = ZI:CIPI D AL () Irgs |+ D ePr D1 ALy

Jo|JI= Lt I J:|J|<|L|~t

+ > ey D AL (by)lsy | =1+ I1+1IL
I J:|J|=|L|t

The main term is III. Indeed we can estimate the term I in L?(R) using Remark [2| while
IT is also estimated in L?(R) using Remark [3| this time. Note that each b; has the required
cancellation by (ii) of Proposition Using also (ii) of Proposition [40] to control the averages
<|bJ|>B(771)/2,J N <|bJ’>BT/2:J S a we have

1
T+ > o} < — 2 KD, s € ) 11 < fR B, (If|/e)

JeJ JeJ

as desired.
It remains to deal with III and we make a further splitting. Let k; € Z be such that
2k < |I] < 2F1+1. Of course we will always have that |L;| > 2% since I < L;. We write

I =) c/P; > Ap,(bs)lss |+ erPr D AL (by)lsy | =TI + 1L,
I J: 27k > | J|=|L| ! I Ji|J|=27Fk1
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We first handle the term III;. Let Ar be the smooth frequency projections on the interval
I as fixed in then in particular we can write P;A; = P; and we have the familiar
pointwise estimate

|Ar(AL (bs)13g)] S w1 * ({[AL (bs)D1,3010)

as |I|7' ~ 27%1 > |.J|. We thus get

2

1
> a2 5 SN N falf [ | X dAGnbian
L

LeA; I:Lj= i[>k
: /
S5 Y X WKAGDe < YIS [ B (lr)
JeT LeAIT‘”f1 JeJ R

where we used the ¢2-control on the coefficients {cr}r,=r in passing to the second line and
the generalized Zygmund—Bonami inequality of Proposition [37] together with the properties
of the Calderén—Zygmund decomposition in the penultimate approximate inequality.

The steps required for dealing with the the term IIls are essentially the same as those in
[TWO1], however, as here we are dealing with a higher order set up, we include them for the
sake of completeness. We will split the estimate for IIl; into two parts. In the first we keep
the part of the multiplier 1; = 1y, 7 at scale O(].J|™!) around its singularities which are at
the endpoints. We make this precise now.

Let 0 < t; y < 1 be a smooth bump which is 1 on the (10].J|)~!-neighborhood of the end-
points {¢7, 7} of I and vanishes off the (5|J|)~t-neighborhood of the endpoints, and satisfies
[0%r 7| Le < |J|* for all a up to some sufficiently large integer M. Letting Wy ; denote the
operator with symbol 17 ; we define

E({bstres) =D Py D1 U (AL (bs)1sy)
I J:|J|=27 k1

The following lemma shows that the operator £({b;}jec7) can be dealt with, again, by L2-
estimates.

Lemma 41. We have the estimate

(b2} e < 33 KD, < 0* [ B (1))

JeJ

Proof. First note that by the overlap assumption on the intervals I we have
2 2
BN PRI ASESS YD S =T I B YR TR AR )]
LeA, I:L;=L R J:7)z2-F1
The following pointwise estimate can be routinely verified

(W7 (AL (b)) ()| < M(1y) () UAL(b) D130
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Using the Fefferman—Stein inequality and rearranging the sums we can conclude that

€GO e izm < N D0 > del® D) ALBADT 3517]

k ok I: Ly=L J|=2-k
LeA? Py, 7]

< 2D AL®)Dia

JeT  peal™?

where we used the ¢*-control on the coefficients {c;}r,—1 in passing to the second line. An
appeal to the generalized Zygmund-Bonami inequality of order 7 in Proposition [37] concludes
the proof of the lemma. [ |

We are left with studying the contribution of the operator

L({bsyses) =Y eiPr Y, (Id =T ;) (AL (by)1ss).
I |J|=27k1

For this we consider the multiplier {7,y := 1;(1—1); ;) which is a smooth function with values
n [0, 1], supported in I, is identically 1 on |x —¢;| < |I| and drops to 0 with derivative O(|.J])
close to the endpoints of I. More generally, one easily checks that (7 ; satisfies

10%Cral < |J|a1116ft(J)u1right(J) Va =1,

where

Fen () i= [t + 10701+ 5701 e
Liignt (J) = [r1 — 577ty — 10—1|J|—1] -1

Remembering that we are dealing with the case |I||J| 2 1 we see that the function (; ; has
support of size O(|/|) and a-derivatives of size O(|.J|*); thus the function ¢}’ ; is not a good
kernel. The important observation is however that the derivatives of (7 ; of order a > 1 have
support of size |Deg(J) U Lyignt (J)] ~ [J| 71
Given an interval J < R we will also use an auxiliary function p; defined as follows. We
choose 0 < p < 1 to be a smooth bump function which is identically 1 on [—1,1] and vanishes
ff [—3/2,3/2] and define p;(x) = p (z/|J|) for z € R.

Lemma 42. Let I,J be intervals and (1 and py be defined as above. If ur.y = (1 — pJ)ZL/J
then for any nonnegative integers v, 8 there holds

nra(©)| < 1P A+ |JldistE R\ T, geR

Proof. We begin by noting that since (s ; is a Schwartz function and (1 — p;) is a smooth

bounded function, we have we have that (1 —p J)C\I/J is a Schwartz function. Furthermore, by
the comments preceding the statement of the lemma we have that (7 ; satisfies

‘a?CIJ’ S |J|allleft(J)UIright(J) Va = 1.
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Note that by symmetry it suffices to prove the estimate for £ € R such that dist(&,R\I) =
|¢ — ¢1] where we remember that I = [¢7,r;]. For simplicity we will write I(J) for Ieg(J).
Thus the conclusion of the lemma reduces to showing

10711, S5 1P (L + | T1IE = 1)

We will henceforth drop the subindices I, .J in order to simplify the notation. We record the
following standard integration by parts identity; for nonnegative integers v, v we have

(00 — 2mily)Y [Z( )] — (<1 (2mi)7~ VJ 8” 5 KI)WC(@] 627rim§d£'

In order to make sure that all terms in J¢ [(§ — £7)7((§)] contain at least one derivative we
take v > . Then we have

2 o
3¢ [(€ — er)¢le }]] (6= M| £ Y 1€ =l H IRy ()
k=0 k=0

S V"M (6)

provided that v > ~. Plugging this estimate into our integration by parts identity we get

‘(agc . zm'el)V[E(x)]\ A (C.18)

Using this estimate we have for nonnegative integers 3,

—27i)P . A
(27?2(52—)51))7 JR(&L« —2mily)7 [xﬁ(l — p($/|J|))<(x)] o 2mizE go.

Using (C.18) with v large together with the fact that supp (1 — ps) < {|z| = |J|} and that
supp (0z[ps]) < {\a;| ~ |J|} and combining with the previous identity yields

‘85 ’ < |£ £[|7 JR |x|5*k1

k1 +k2+k3 =7y
JV ks—1
< 2 ij | da +
b=y 1§ U Jiizia kT =
k1<p k1<B,ka=1
’ J|5*7
S
€= &)
Combining this estimate for general v with the special case v = 0 yields the conclusion of the
lemma. |

HNGIE

082 (1 = p(w/|1)) (00 — 2mit) ()] da

ljyufkgfl

7|f—€]|7 j' ] |$|5—/€1—V|J|—k2 dz
x|~

We can now prove the desired estimate for the remaining term.

Lemma 43. There holds

j E({bstsen)| < X VKb Ds, 0
R\U je76J

JeJ



90

Proof. For convenience we set

L;j:=Pr(Id— Yy ), Frj=Ar,(by)lsy, L({bs}iers) = Z 2 crLr, g (Fr.g).
I g:|gj=2=%1

We immediately note that it will be enough to prove the desired estimate for a single b; and
then sum the estimates. Furthermore, by translation and scale invariance it will be enough
to to assume that J = [—|J|/2,|J|/2]; here we critically use that the operator L; ; depends
only on the length and not on the position of J. The left hand side in the conclusion of the
lemma for a single such b; can be estimated by

Ay ::f 2 ciLy jFr g :j Z CI(CI,J*FI,J)(:E) dx
2123191 |7, gh7 5| 711 2311 | 1ok g1
2 3
< v f 22| S ey s Fry)e)| do
|| >3].J|

I:2k1>1

Now let p be as before. It is then the case that for |x| > 3 and |y| < 3/2 we have

T —y
1— —1— ) =1
, p(|J|) ps(x—y)

| W

o=y Sal >

r—yl = |z =
=s

for such pairs (z,y). As Fy j is supported in [—3|J|/2,3|J|/2] we have for all |x| > 3|J| that

(G Fry)(x) = j Fr )i — ) (- ps(a — ) dy.
[—3171/2,3|J1/2]

Using this identity and setting 7 == (1 — p(])a-f] we get

1
2 2

Ar < jR Z cr0¢ [m(ﬁ)ﬂl,J(ﬁ)] d§

I:2F1>|J|—1

Using the elementary estimates Hf;]“LCE(R) < |Fr,g ) and Ha&f;]“[/m(ﬂ{) < |JFralw)
together with the estimate of Lemma [42| for 5 € {0, 1} we get for v a large positive integer of
our choice

717
1+ |J|dist(&, R\]))"

Hence, by using the Fefferman—Stein inequality, the Cauchy—Schwarz inequality, and the -
overlap assumption on the intervals I, we get

& [nr,(9)] < ( < TPMA g (Do g (1) -

Aps 2L 30 1ealPIIAL (00D 35N e (J) © Ligne(J))]

2k >| g1
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Here note that we use that I (J) U Liight(J) & I by construction, and hence

Z 111eft(J)UIright(J) < 2 ]_[ < N.
21}2“\71 I
Further, using also the control on the 2-norm of the sequence {cr}; yields

1/2 1/2

Ay |72 YT IPALGDD s | = D AAL®)DIas | S 1T DB, 00
LeAl/I™! LealI™

by the generalized Zygmund—Bonami inequality of Proposition This concludes the proof
of the lemma. |

Using Lemmas [41] and 43| we complete the estimate for the term III and with that the
proof of the endpoint bound of the theorem.

C.6.1.2 Optimality in Theorem

We briefly comment on the optimality of the Young function ¢ — t(log(e +t))™/? in the upper

bound of the theorem. Suppose that r» > 0 is such that whenever T, is an Ry, multiplier
operator then the bound of Theoremholds with r in the place of 7. Since T,,, is L?-bounded,
it follows by a Marcinkiewicz interpolation type of argument that the LP(R)-bounds for the
Littlewood—Paley square function LP; of order 7 can be estimated by

Z ELPL

LeA,

p \ /P

[LP-lp—p < | E < swp [Tfrorr S (p— 170D as p— 17,

gy, =1

p—p

where the expectation in the display above is over independent choices of random signs {1} 1.
However, a modification of an example in [Bou89|, see [Bak21l §3], shows that the estimate
in the display above does not hold for r < 7/2. This argument also shows that our theorem
implies that the LP bounds for Ry, multipliers are O(max(p, p’ )1”/ 2,

Alternatively, sharpness can also be obtained by adapting the corresponding argument in
[TWO1, §3.2] to the higher order case. Let us briefly outline the second order case. For a
smooth function 1 supported in [—1/2,1/2] with ¥(0) = 1 and (k,l) € Z? with k > | we
consider the multiplier m ;) given by

_ ok
man(© = mo (S5 ) where ma(€) = e~ Dl (@), €<

One then has

. ei2n2ke 1 o o

For N e N, that will be eventually sent to infinity, we consider the second order ¢?-valued
multiplier operator

Tn(g) = {Tm(k,l)(g)}

1<i<k<N
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Consider a smooth function f such that f is supported in [—4,4] and i (&) =1 forall £ €
[~2,2]. We then set fy(x) =2V f(2Vx), 2 € R. For r > 0 we have

N : _
ITn(fn) (@) 2 —  if |z = 27°N/8

||

d
[0 e 20 s () o

Hence, if we choose a = 2°V/% then ! (log(e + OF12N))T ~ 275N/ENT and

an

e e [-1/2,1/2] : [Tw () @)l > )] > stm co<ta: Yz 25N/8} ~ Na-L.

x| ~

To complete the proof, define gn := fnX[1/2,1/2] S0 that gn is supported in [-1/2,1/2] and
9Nz 10gm L(=1/2,1/2]) S N". Moreover, for all 1 <! <k < N one has

‘ka,z(fN —gn) ()| < 272N for all =z e [2_5N/8, 1/4]

and hence
T (g2l oo 12,127y = -

It follows from Khintchine’s inequality that there exists a choice of signs € ¢, depending on
gn, such that

2 N.

~

}: 5kfj%%J<gN)

1<I<k<N

Lbo([=1/2,1/2])
from which it follows that r > 1 = 7/2.

C.6.2 Proof of Theorems and 32

We begin by explaining the modifications needed in order to obtain a proof of the endpoint
bounds in Theorems 30 and B2

C.6.2.1 Proof of Theorem

Since Marcinkiewicz multipliers of order 7 are contained in the class Ra , we only need to
briefly discuss the conclusion of Theorem [30| for the Littlewood—Paley square function. Note
that the proof of Theorem [31| relies on L?(R) estimates and L!-type estimates. Then we can
repeat the proof for the operator

o\ 1/2

ILP.f| ~ E ~ | E

Z erlPrLf

LeA;

Z erlPrLf

LeA;

using the first approximate equality whenever L'-estimates are needed, and the second one for
the L2-estimates. We omit the details. The optimality follows by the discussion in §C.6.1.2
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C.6.2.2 Proof of Theorem [32]

We proceed to prove Theorem [32 concerning endpoint bounds for higher order Hérmander—
Mihlin multipliers and smooth Littlewood—Paley square functions, which requires just small
modifications compared to the proof of Theorem Consider a positive integer 7 and f €
LB71: we apply the Calderén-Zygmund decomposition of Proposition [40| with ¢ = 7 — 1 at
some fixed level o > 0 to write f = g + bcanc,r—1 + blac,r—1 and let J be the collection of
stopping intervals. The good part g + bjacr—1 is estimated in L? by the L?-bounds of the
operator T,,, using that

. In
Hg + blaC,TfluLQ(]R) e J;R B(Tfl)/2 < a >

by the Calderén-Zygmund decomposition. As before, it remains to estimate the part of
the operator acting on the cancellative atoms. We consider a partition of unity {¢r}ren, ,

subordinated to the collection of Littlewood—Paley intervals A._1, with ggL € ®r, yr for each
L. We set

~

Ar(g) = (q?Lg)V, Id = Z AL.

LeAs

With Ay the smooth Littlewood—Paley projections as fixed in 3 we have ALAp = A
We have thus the decomposition

Tm= Z TmﬁLZZ Z TLZ Z TLAL
LeA,_1 LeA,_1 LeA,_1

and let (7, denote the Fourier multiplier of the operator T;. We then estimate

T, <Zb]>= Z Ty Z AL(bJ)].R\gJ + Z Tz, Z Ar(by)
J

LeAr J:|J|=|L|-L LeAr—a J:|J|<|L|71

+ > Tg D Ap(bs)lsy | =I+II+1IL
LeAr J:|J|=|L|~t

As in the proof of Theorem [31] Remarks 2 and [3]take care of the terms I and II, respectively, by
using L2-bounds for each Ty, and L?-orthogonality for smooth Littlewood-Paley projections
of order 7. Once again the main term is III.

We will split III into two parts, which are defined in the same way as the operators £ and
L from the proof of Theorem [3I] with the role of the interval I being replaced by an interval
L € A;_y. For the first part consider for each L,J the function ¢, ; as defined before the
proof of Lemma Defining

E{bsties) = D, Ti D WLy (AL(by)1sy) |,
LeAr— J:|J|=|L|t
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and following the same steps as in the proof of Lemma [41], we get

E(bsbser) > ol 5 o5 S 11 S AALeDRar 5 [ B (1)

JeJ LEALJ,lzl

by the generalized Zygmund-Bonami inequality of Proposition [37] and the properties of the
Calderén—Zygmund decomposition. It remains to deal with the operator

£({bJ}Jej) = Z Z TL (Id—\I/LJ) (AL(bJ)].gJ).

LeAr 1 |J|=|L|~

Letting ¢z, s be the Fourier multiplier of the operator T, (Id—W¥, ;) and p; as in the statement
of Lemma {42 we set pur j := (1 — ps)(r,s. Lemma @ for I = L € A._; yields the estimate

02nra(©)] < 17P (1L + dist (€ R\L)) 7, € R (C.19)

The proof for the operator £ is then completed in the by now usual way. First we have

1 _ —_— ~
HI£{bs}ses)l > ajf < — DT | ) mnaFr , o Fry=Ap(bs)lsy.
JeJ |7 =1
LeAT”, L2(R)
Now ((C.19) implies that

| D) praFrs || < 1IPMAL, ) UALOB) D130
LeA(‘,‘Ili1

where Ly = [¢1 + (10[J))~', & + (5]J])7!] < L. The estimates above together with the
Fefferman—Stein inequality, the Cauchy—Schwarz inequality and the generalized Zygmund-—
Bonami inequality complete the estimate for the operator £ and with that the upper bound
of Theorem for Hormander—Mihlin multipliers of order 7. The proof for the smooth
Littlewood—Paley square function of order 7 follows the same randomization argument as
the one used in the proof of Theorem

Finally, the optimality of the power (7 —1)/2 on the endpoint inequality can be checked by
testing a local endpoint L log” L — L%* inequality for the smooth Littlewood-Paley square
function of order 7 on a smooth bump function supported in a small neighborhood of the
origin. A routine calculation shows that necessarily » > (7 — 1)/2. Note also that a local
Llog" L — L%* for Hérmander-Mihlin multipliers implies the corresponding endpoint square
function estimate by a randomization argument as in [Bak19].
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