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Summary

This thesis is about certain sharp and endpoint inequalities in Harmonic Analysis.

The central theme in the first part of this dissertation is sharp Fourier extension inequal-
ities on spheres. The study of sharp inequalities in Harmonic Analysis can be traced back
to the seminal works of Beckner [Bec75] for the sharp Hausdorff–Young inequality and of
Lieb [Lie83] for the sharp Hardy–Littlewood–Sobolev inequality. The study of sharp Fourier
restriction and extension inequalities, on the other hand, is a relatively recent development
which has received increasing attention over the last few years.

To begin, let us revisit the Fourier restriction inequality

} pf}LqpSd´1,σq ď Cp,q,d}f}LppRdq.

Here, Sd´1 “ tx P Rd : |x| “ 1u is the unit sphere equipped with the surface measure σ “ σd´1

induced by the Lebesgue measure in Rd and the restriction f ÞÑ pf |Sd´1 is originally defined
on Schwartz functions. The complete characterization of the pairs of exponents 1 ď p ď 2,
1 ď q ď 8 for which this inequality holds is a major open question in Harmonic Analysis.
When p “ 1 the inequality can be easily seen to hold for any 1 ď q ď 8. On the other hand,
the inequality always fails when p “ 2. Hence the interesting question is what happens for
1 ă p ă 2. By duality, such restriction inequality is equivalent, with the very same constant,
to the so-called Fourier extension inequality,

}xfσ}Lp1
pRd´1q

ď Cd,p,q}f}Lq1
pSd´1,σq

,

where p1 and q1 are the conjugate exponents of p and q, respectively, and xfσ is the Fourier
transform of the measure fσ. By testing these inequalities against some carefully chosen
functions one finds the following necessary conditions on the exponents: p ă 2d

d`1 , q ď d´1
d`1p

1.
The Fourier restriction conjecture claims that these necessary conditions are also sufficient.
The conjecture has been completely verified in the case of dimension d “ 2, [Fef70, Zyg74].
Moreover, the celebrated Stein– Tomas theorem establishes that the conjecture is true when
q “ 2 and 2d`1

d´1 ď p1 in all dimensions d ě 2, [Ste93, Tom75].
Our focus in this thesis is on the subarea of sharp Fourier restriction – equivalently,

extension – theory. Given a triple pd, p1, q1q for which the above Fourier extension inequality
holds we will consider questions like: What is the value of the optimal constant? If maximizers
– that is, functions that attain the optimal constant – exist, what are they? So far, such
questions have been investigated mainly for the case of even exponents p1, and even for these
seemingly more favorable cases many questions are still open.
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A major breakthrough in the subject of sharp spherical restriction came from the work of
Foschi [Fos15]. Foschi showed that constant functions are the unique real-valued maximizers
for the sharp endpoint Stein–Tomas inequality on the sphere S2. A key step in his approach
is the introduction of a weight that exploits some geometric features of the sphere S2 and
which neutralizes the singularity at the origin of the twofold convolution σ2 ˚σ2. Many of the
successive results in the subject grew out of this approach.

One of the still open problems in the area of sharp Fourier restriction which has attracted
a lot of attention and effort over the last decade is the problem of determining the sharpest
constant for the endpoint Stein–Tomas inequality in dimension 2, namely the problem of
studying

sup
fPL2pS1q, f‰0

}xfσ}L6pR2q

}f}L2pS1q

.

In [Sha16a] it has been established that such supremum is indeed achieved. It is conjectured
that, also in this case, constant functions are maximizers. One main obstruction in adapting
the strategy from [Fos15] to this problem is that the threefold convolution σ1 ˚ σ1 ˚ σ1 has
a singularity at |x| “ 1 and the weight that offsets such singularity is partially negative, see
[CFOeST17]. A different way of approaching the problem has been first proposed by Oliveira
e Silva, Thiele, and Zorin-Kranich in [OeSTZK22]. In their work the case of non-negative,
antipodally symmetric, band-limited functions with Fourier modes up to degree 30 has been
considered establishing that, in this class of functions, constant functions are the unique
maximizers. The result has been later extended to the case of band-limited functions with
Fourier modes up to degree 120 in [BTZK23]. When restricted to the case of band-limited
functions the problem becomes finite-dimensional and it can be addressed numerically as done
in [OeSTZK22, BTZK23].

Motivated by these previous contributions, in the work [CG24], written in collaboration
with F. Gonçalves, we have considered the case of functions whose spectrum is possibly
infinite but satisfies certain arithmetic constraints. These arithmetic constraints arise as a
generalization of the notion of Bp3q-sets. A set S Ă Z is a Bp3q-set if for any two triples
pa1, a2, a3q and pb1, b2, b3q of elements in S such that a1 ` a2 ` a3 “ b1 ` b2 ` b3 one triple
is a permutation of the other. The generalization that we propose extends the definition of
Bp3q-set – and more in general, of Bphq-set – by allowing for the possibility of non-trivial
symmetric subsets. We name such generalization a Pp3q-set.

Our main result is the following: If f P L2pS1q is such that its Fourier support is a Pp3q´set
then it holds that

}xfσ}L6pR2q

}f}L2pS1q

ď
}x1σ}L6pR2q

}1}L2pS1q

and equality is attained if and only if f is a constant. The main tools that we utilize in the
proof are certain counting arguments, that are common in the literature on Bphq-sets and
on Λp2hq-sets in general, combined with some novel refined estimates for integrals involving
Bessel functions. The article [CG24] is contained in Appendix A. A detailed overview of the
results in [CG24] is provided in Section 2.1.

Mixed-norm versions of Fourier extension inequalities on spheres have been studied by

Vega in [Veg92], showing that the Fourier extension operator maps L2pSd´1q to Lp
1

radL
2
angpRdq
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for p1 ą 2d
d´1 . More recently, the problem of computing the sharp constant for such inequalities

has been studied by Carneiro, Oliveira e Silva, and Sousa in [COeSS19], establishing that
constant functions are extremizers when the exponent p1 is an even integer and that the set of
exponents for which constants are maximizers contains a neighborhood of infinity, pp1

0pdq,8s,
giving some upper-bounds for p1

0pdq.

In the first part of the work [CS23], written in collaboration with M. Sousa, we have
extended the range of exponents for which constant functions are known to be maximizers for
these inequalities in the cases of low dimension 2 ď d ď 10, covering the entire Stein–Tomas
range of exponents in the cases of dimension d “ 2, 3.

In the second part of the work [CS23], we have considered Fourier extension estimates
in the diagonal case p1 “ q1. Maximizers for such inequalities are known only when p1 is an
even admissible integer or p1 “ 8, [COeS15, FS24]. Our second main result concerns local
maximizers for these inequalities. We show that, in the same range of exponents pp1

0pdq,8s

for which constant functions are maximizers for mixed-norm Fourier extension inequalities,
they are also local maximizers for the Lp

1

pSd´1q to Lp
1

pRdq Fourier extension estimates. For
example, this gives that in the cases of dimension d “ 2, 3 constant functions are local
maximizers for such inequalities for all p1 ě

2pd`1q

d´1 , the Stein–Tomas endpoint. The article
[CS23] is contained in Appendix B. A detailed overview of the results in [CS23] in provided
in Section 2.2.

The second part of this thesis deals with optimal weak-type endpoint estimates for certain
square functions and Marcikiewicz multipliers operators.

The Littlewood–Paley square function formed by rough frequency projections adapted to a
lacunary partition of the real line is a classical object in Analysis and it is a bounded operator
on Lp for 1 ă p ă 8. Contrary to its smooth counterpart, it fails to be of weak-type p1, 1q.
The rough Littlewood–Paley square function can be seen as a prototypical Marcinkiewicz
multiplier. Marcinkiewicz multipliers on the real line are bounded functions of uniformly
bounded variation on each Littlewood–Paley dyadic interval. The corresponding multiplier
operators are well known to be bounded on LppRq for all 1 ă p ă 8. Optimal weak-type
endpoint estimates for these operators have been studied by Tao and Wright in [TW01]
proving that they map locally the Orlicz space L log1{2 L to weak L1 and such a result is
sharp, meaning that the exponent 1{2 cannot be replaced by a smaller one. It follows from
this result that the same is true also for the rough Littlewood–Paley square function adapted
to the classical dyadic partition of R. A main tool utilized in the proof of this result is a weak
square function characterization for the Orlicz space L log1{2 L obtained also in [TW01].

In this dissertation we are interested in Littlewood–Paley square functions formed by rough
frequency projections adapted to higher order lacunary partitions of the frequency line and in
higher order Marcinkiewicz multipliers, that is multipliers of uniformly bounded variation on
each interval arising from a higher order lacunary decomposition of the real line. Recall that
a decomposition of lacunary order τ ą 1, τ P N, can be produced iteratively by performing
a Whitney decomposition inside each interval of order τ ´ 1. It follows from the classical
work of Sjögren and Sjölin [SS81] that these higher order operators are bounded on Lp for
1 ă p ă 8.

In the work [BCPV24], written in collaboration with O. Bakas, I. Parissis, and M. Vit-
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turi, we obtain optimal weak-type endpoint estimates for higher order square functions and
Marcinkiewicz multiplier operators, recovering for the case of order τ “ 1 the results in
[TW01]. In fact, in [BCPV24] we establish optimal weak-type endpoint bounds for the more
general class of R2,τ -multipliers, the higher order analogous of the R2-multiplier class consid-
ered in [TW01] and introduced by Coifman, Rubio de Francia, and Semmes [CRdFS88]. As
a corollary, we also derive sharp endpoint results for higher order Hörmander–Mihlin multi-
pliers – that is, multipliers that are singular on every point of a lacunary set of order pτ ´ 1q

– and, similarly, for higher order smooth Littlewood–Paley square functions. The starting
point of our analysis in [BCPV24] is the following result which is of independent interest: the
Chang–Wilson–Wolff inequality [CWW85] implies the martingale difference square function
characterization of L log1{2 L obtained in [TW01]. This enables us to generalize the square
function characterization of L log1{2 L in [TW01] to the case of LplogLqσ, with σ ě 1{2. This,
combined with a Calderón–Zygmund decomposition for Orlicz spaces, leads to our endpoint
result. The article [BCPV24] is contained in Appendix C. A detailed overview of the results
in [BCPV24] in provided in Chapter 3.

This thesis is cumulative and it is based on the three articles, [CG24], [CS23], and
[BCPV24], which are included in the Appendices A, B, and C, respectively.

[CG24] Valentina Ciccone and Felipe Gonçalves. Sharp Fourier extension on
the circle under arithmetic constraints. J. Funct. Anal., 286(2): Paper
No. 110219, 21, 2024.

[CS23] Valentina Ciccone and Mateus Sousa. Global and local maximizers
for some Fourier extension estimates on the sphere. arXiv preprint
arXiv:2312.07309, 2023.

[BCPV24] Odysseas Bakas, Valentina Ciccone, Ioannis Parissis, and Marco Vit-
turi. Endpoint estimates for higher order Marcinkiewicz multipliers.
arXiv preprint arXiv:2401.06083, 2024.

The thesis is organized as follows. In Chapter 1 we provide a detailed introduction that gives
motivation and background for the results in the articles [CG24], [CS23], and [BCPV24],
thereby placing them within a broader context. In Chapter 2 we summarize the main results
obtained in the works [CG24] and [CS23]. In Chapter 3 we summarize the main results
obtained in the work [BCPV24]



Contents

Summary iii

1 Introduction 1

1.1 Sharp Fourier restriction theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Fourier restriction theory . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Sharp Fourier extension inequalities on spheres . . . . . . . . . . . . . . 4

1.1.3 A mixed-norm Fourier extension inequality . . . . . . . . . . . . . . . . 8

1.2 Littlewood–Paley theory and Marcinkiewicz multipliers . . . . . . . . . . . . . 9

1.2.1 Classical Littlewood–Paley theory . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Littlewood–Paley sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Marcinkiewicz multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Glimpse of Orlicz spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Λppq-sets in Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Overview of the main results I 19

2.1 A sharp Fourier extension estimates on the circle . . . . . . . . . . . . . . . . . 19

2.2 Further results on global and local maximizers . . . . . . . . . . . . . . . . . . 22

3 Overview of the main results II 25

3.1 Sharp endpoint bounds for higher order Marcinkiewicz multipliers . . . . . . . 25

A Sharp Fourier Extension on the Circle Under Arithmetic Constraints 31

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.2 A Generalization of Bh-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.2.1 Examples of Pphq-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.3 Estimates for certain integrals of Bessel functions . . . . . . . . . . . . . . . . . 37

A.4 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.5 A further example of application . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B Global and local maximizers for some Fourier extension estimates on the
sphere 49

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.2 Hierarchies between weighted norms of Bessel functions . . . . . . . . . . . . . 53

vii



viii

B.3 Proof of Theorem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.4 Proof of Theorem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C Endpoint estimates for higher order Marcinkiewicz multipliers 63
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

C.1.1 Lacunary sets of higher order . . . . . . . . . . . . . . . . . . . . . . . . 65
C.1.2 Higher order multipliers and endpoint estimates . . . . . . . . . . . . . 66
C.1.3 The Chang–Wilson–Wolff inequality and a square function for L logτ{2 L 68
C.1.4 Background and history . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
C.1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C.2 Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
C.2.1 Some basic facts for certain classes of Orlicz spaces . . . . . . . . . . . . 72
C.2.2 Some tools for handling lacunary sets . . . . . . . . . . . . . . . . . . . 73
C.2.3 Other notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

C.3 A weak square function characterization of L logσ{2 L . . . . . . . . . . . . . . . 74
C.3.1 Proof of Theorem 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
C.3.2 Proof of Corollary 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.4 Generalized Zygmund–Bonami inequalities . . . . . . . . . . . . . . . . . . . . . 76
C.4.1 The main term in the generalized Zygmund–Bonami inequalities . . . . 77

C.5 An LBσ{2pRq Calderón–Zygmund decomposition . . . . . . . . . . . . . . . . . . 83
C.6 Proof of Theorem 31 and Corollaries . . . . . . . . . . . . . . . . . . . . . . . . 85

C.6.1 Proof of Theorem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C.6.1.1 The upper bound in Theorem 31 . . . . . . . . . . . . . . . . . 86
C.6.1.2 Optimality in Theorem 31 . . . . . . . . . . . . . . . . . . . . 91

C.6.2 Proof of Theorems 30 and 32 . . . . . . . . . . . . . . . . . . . . . . . . 92
C.6.2.1 Proof of Theorem 30 . . . . . . . . . . . . . . . . . . . . . . . . 92
C.6.2.2 Proof of Theorem 32 . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 97



Chapter 1

Introduction

The study of optimal inequalities plays a pivotal role in the field of Harmonic Analysis. In
the first part of the dissertation, we focus on sharp Fourier extension inequalities on spheres.
Specifically, we aim to determine optimal constants and maximizers for such inequalities.
The second part of this dissertation is dedicated to the study endpoint estimates for certain
square functions and Fourier multiplier operators of Marcinkiewicz type. In particular, we
are interested in obtaining optimal weak-type endpoint bounds for such operators.

In this chapter, we provide a general introduction to the topics and the problems investi-
gated in this dissertation.

1.1 Sharp Fourier restriction theory

In this section, we briefly recall some basic facts about the Fourier restriction problem and
some of the classical results on the topic. Then, we introduce the subarea of sharp Fourier
extension inequalities on the sphere and we briefly survey the main results in the subject pro-
viding background and context for the works [CG24, CS23] which are the content of Appendix
A and Appendix B, respectively.

1.1.1 Fourier restriction theory

The role of curvature. The decay properties of the Fourier transform of measure sup-
ported on surfaces that exhibit some degree of curvature are at the foundation of the theory
of Fourier restriction.

Let M be a smooth hypersurface and let σ be the surface measure on M. For some
smooth function ν with compact support on M define dη :“ νdσ. The Fourier transform of
the measure η is given by

pηpξq “

ż

M
e´ix¨ξdηpxq.

As a consequence of the classical theory of oscillatory integrals we have that if the hypersurface
M has at least m non-vanishing principal curvatures on the support of η then it holds that

|pηpξq| “ Op|ξ|´m{2q as |ξ| Ñ 8.

1
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In particular, if M has non-vanishing Gaussian curvature – namely, if M has pd ´ 1q non-
vanishing principal curvatures – on the support of the measure η then

|pηpξq| “ Op|ξ|´pd´1q{2q as |ξ| Ñ 8.

As a simple example of this, let us consider the case of the unit sphere, M “ Sd´1,
with surface measure σ “ σd´1. The Fourier transform of the measure σ can be computed
explicitly,

pσpξq “ p2πq
d
2 Jd

2´1
p|ξ|q |ξ|

´
d
2`1 , (1.1)

where Jk denotes the Bessel function of the first kind of order k. By using the properties of
Bessel functions, and specifically the fact that Jkprq “ Opr´1{2q as r Ñ 8, it is immediate to
see that indeed |pσpξq| “ Op|ξ|´pd´1q{2q as |ξ| Ñ 8.

On the other hand, if curvature is missing, we cannot expect such a nice decay behavior.
For example, if we consider the Fourier transform of the length measure λ on the line segment
pp0,´1q, p0, 1qq Ă R2, we see that

pλpξ1, ξ2q “

ż 1

´1
e´ipξ1¨0`ξ2¨x2qdx2 “

2 sinpξ2q

ξ2
.

Hence, it is clear that, for a fixed ξ2, |pλpξ, ξ2q| does not decay as |ξ1| Ñ 8.

The Fourier restriction problem. Let S be a subset of Rd, S Ă Rd. We may ask ourselves
for which 1 ď p ď 2 it makes sense to consider the restriction of the Fourier transform of
an arbitrary function f P Lp to the set S. If S has a positive Lebesgue measure then by
Hausdorff–Young inequality the restriction of the Fourier transform of a function f P LppRdq

to S is a function in Lp
1

pSq. The question becomes more interesting when the set S has zero
Lebesgue measure. If f P L1 then its Fourier transform is continuous and therefore uniquely
defined at every point. Hence, the restriction to any set S of the Fourier transform of a
function f P L1 is well-defined. On the other hand, by Plancherel’s theorem, the Fourier
transform of a function in L2 is again a function in L2 and therefore there is no meaningful
restriction to a set of zero Lebesgue measure. Consequently, the interesting question is what
happens when 1 ă p ă 2.

A first piece of evidence that for certain 1 ă p ă 2 and for certain surfaces with some
degree of curvature, such as the unit sphere Sd´1, there may be a positive answer to this
question dates back to an unpublished work of Stein in the 1960’s, see [Ste93], indicating
that the Fourier transform of a function in Lp, for certain 1 ă p ă 2, has more structure
than an arbitrary function in Lp

1

pRdq. This led to the so-called Fourier restriction problem,
asking indeed for which subsets S Ă Rd and for which exponents p P p1, 2q it does make
sense to consider the restriction of the Fourier transform of functions in LppRdq to S. This
follows at once if there exist an exponent 1 ď q ď 8 such that the so-called Fourier restriction
inequality,

} pf}LqpS,µq ď Cd,p,q}f}LppRdq, (1.2)
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holds. Here µ is a measure that is comparable with the Hausdorff measure on S. By duality,
(1.2) is equivalent, with the very same constant, to the so-called Fourier extension inequality,

}xfµ}Lp1
pRdq

ď Cd,p,q}f}Lq1
pS,µq

, (1.3)

where xfµ is the Fourier transform of the measure fµ and p1, q1 are the conjugate exponents
of p, q respectively.

For simplicity we assume S to be a hypersurface. A first observation, highlighting the role
of curvature, is that we cannot have meaningful restriction estimates (equivalently, extension
estimates) for flat hypersurfaces, except for the trivial estimate p “ 1, q “ 8. To see an
example of this fact we can consider the hyperplane tξ P Rd : ξ1 “ 0u. Let fpx1, ..., xdq “

gpx2, ..., xdqhpx1q where g is a smooth function with compact support on Rd´1 and hpx1q “

1{p1 ` |x1|q. Then, f P LppRdq for all p ą 1 and the Fourier transform of f is unbounded at
every point of the hyperplane tξ P Rd : ξ1 “ 0u. Notably, some degree of curvature for the
considered hypersurface is necessary.

For the remaining of our discussion, we focus on the case of the unit sphere, S “ Sd´1.
Some necessary conditions on the exponents p and q can be derived by testing the inequalities
(1.2) and (1.3) against some suitably chosen functions. For example, by testing the extension
inequality (1.3) against the function f ” 1 it is clear that a necessary condition for the
inequality to hold is that pσ P Lp

1

pRdq, where σ “ σd´1 is the surface measure on Sd´1 and an
explicit expression for pσ is given in (1.1). This gives the first necessary condition

p1 ą
2d

d´ 1
. (1.4)

A second necessary condition on the exponents p and q can be derived by considering the
indicator function of a small spherical cap on Sd´1. For example, let

Cδ – tx P Sd´1 : 1 ´ x ¨ ed À δ2u

where ed “ p0, ..., 0, 1q. A routine computation using the properties of the Fourier transform
shows that a necessary condition for the Fourier extension inequality to hold for the indicator
function 1Cδ

as δ Ñ 0 is

q ď
d´ 1

d` 1
p1. (1.5)

This is known as the Knapp example.

Conjecture 1 (Fourier restriction conjecture for the sphere). The necessary conditions on
the exponents (1.4), (1.5) are also sufficient.

The Riesz diagram for the exponents in Conjecture 1 is depicted in Figure 1.1. The
conjecture has been fully solved only in dimension d “ 2 [Fef70, Zyg74]. The celebrated
Stein–Tomas theorem asserts that the conjecture is true when q “ q1 “ 2 in all dimensions
d ě 2 [Ste93, Tom75].

Theorem 1 (Stein–Tomas theorem). Let S “ Sd´1. The Fourier restriction inequality (1.2)
holds for q “ 2 and 1 ď p ď 2d`2

d`3 .
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1
p

1
q

1d+3
2d+2

1

1
2

d+1
2d

Figure 1.1: Range of exponents in the restriction conjecture. The blue dot corresponds to the
Stein–Tomas endpoint.

By Hölder inequality, it follows from Stein–Tomas theorem that the restriction conjecture
is verified for all q ď 2 – equivalently, for all q1 ě 2. Moreover, interpolation between the
Stein–Tomas endpoint estimate and the trivial estimate p “ 1, q “ 8 verifies the restriction
conjecture for 1 ď p ď 2d`2

d`3 and q ď d´1
d`1p

1. This corresponds to the blue trapezoid in Figure
1.1.

Much effort has been devoted to the study of the Fourier restriction problem over the
last decades. This has led to the development of new tools and techniques of independent
interest. We refer to the surveys [Sto19, Tao04] for a more comprehensive treatment of this
topic. In passing, we stress that the Fourier restriction problem is intimately related with
other important problems in Harmonic Analysis such as the Bochner-Riesz conjecture and the
Kakeya conjecture, as well as with topics in partial differential equations, geometric measure
theory, combinatorics, and analytic number theory.

1.1.2 Sharp Fourier extension inequalities on spheres

In this thesis we are interested in sharp Fourier extension estimates on spheres. For a triple
pd, p1, q1q for which the Fourier extension inequality

}xfσ}Lp1
pRdq

ď Cpd, p1, q1q}f}Lq1
pSd´1q

(1.6)

holds, we study questions like: What is the optimal constant? Namely, what is

Coptpd, p
1, q1q – sup

fPLq1
pSd´1q

f‰0

}xfσ}Lp1
pRdq

}f}Lq1
pSd´1q

? (1.7)

If maximizers – namely, functions that attain the optimal constant – exist what are they?
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The study of sharp Fourier extension inequalities, and especially sharp Fourier extension
inequalities on spheres, has flourished and it has received a great deal of attention over the
last decade although many questions are still open.

The existence of maximizers for (1.7) has been investigated for the case of the Stein–Tomas
range q1 “ 2 and p1 ě 2d`2

d´1 in [FVV11, CS12a, Sha16a, FLS16]. In particular, the existence

of maximizers for the case of p1 ą 2d`2
d´1 has been established in [FVV11]. The existence of

extremizers for the case of the endpoint p1 “ 2d`2
d´1 has been established in [CS12a] for the case

of d “ 3 and in [Sha16a] for the case of d “ 2. For the remaining cases, namely for d ě 4,
a conditional result about the existence of maximizers for the Stein–Tomas sharp endpoint
inequality has been obtained in [FLS16].

More recently, existence of maximizers for (1.7) for the case p1 ą q1 has been studied in
[FS24] showing that maximizers exist if p1 ą maxtq1, d`1

d´1qu or if p1 “ d`1
d´1q and some further

conditions are fulfilled. For later considerations, we stress that the existence of maximizers
for (1.7) in the diagonal case p1 “ q1 is still an open problem, except for a few particular cases
in which maximizers have been characterized and which are discussed below.

The characterization of maximizers for (1.7) appears to be a very challenging problem
whose solution is known only in a few particular cases. Typically the available results rely
crucially on the exponent p1 being an even integer. In fact, when p1 “ 2k is an even integer
the left-hand-side of (1.6) can be rewritten, using Plancherel’s identity, as the L2-norm of a
k-fold convolution of measures on the sphere and this can be further rewritten as a k-linear
form over a submanifold of pSd´1qk.

The characterization of maximizers for (1.7) has initiated with the seminal work of Foschi
[Fos15]. In [Fos15], it has been shown that constant functions are maximizers for (1.7) in the
case of d “ 3 and endpoint Stein–Tomas exponents pp1, q1q “ p4, 2q. We will briefly recall the
main steps of the elegant proof given by Foschi at the end of this subsection. Most of the
subsequent results in sharp spherical Fourier restriction grew out of this initial work of Foschi.
Maximizers for (1.7) in the cases pd, p1, q1q “ pd, 2k, q1q with d, k P N, q1 P R` Y t8u satisfying
one of the following: (i) k “ 2, q1 ě 2 and 3 ď d ď 7; (ii) k “ 2, q1 ě 4, and d ě 8; (iii)
k ě 3, q1 ě 2k, and d ě 2; have been studied in [COeS15] showing that constant functions
are maximizers also in these situations. More recently, in [OeSQ21a] it has been shown that
constant functions are maximizers for (1.7) when 3 ď d ď 7, q1 “ 2, and p1 ą 4 is an even
integer. Moreover, in [OeSQ21a] also the following conditional result has been established:
if constant functions are maximizers for (1.7) in the endpoint case pd, p1, q1q “ p2, 6, 2q then
constant functions are also maximizers for the cases pd, p1, q1q “ p2, p1, 2q with p1 ą 6 an even
integer.

It is manifest that many questions remain open. A major one that has received a great
deal of attention over the last years is whether constant functions are maximizers also for
the sharp version of the endpoint Stein–Tomas inequality for S1, corresponding to the case of
exponents p1 “ 6, q1 “ 2. We will discuss more about this question in Section 2.1.

An intermediate step towards the characterization of maximizers is the study of local
maximizers. We say that a function h is a local maximizers for (1.7) if there exists δ ą 0 such
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that whenever }f ´ h}Lq1
pSd´1q

ă δ ď it holds that

}xfσ}Lp1
pRdq

}f}Lq1
pSd´1q

ď
}xhσ}Lp1

pRdq

}h}Lq1
pSd´1q

.

Constant functions have been shown to be local maximizers for (1.7) in the Stein–Tomas
endpoint cases: pd, p1, q1q “ p3, 4, 2q in [CS12a], pd, p1, q1q “ p2, 6, 2q in [COeSS19], pd, p1, q1q “

pd, 2d`2
d´1 , 2q for 2 ď d ď 60 in [GN22]. More recently, local maximizers for (1.7) in the diagonal

case p1 “ q1 have been studied in [CS23], which is the content of Appendix B. We will introduce
these results in Section 2.2.

Foschi’s proof of the sharp Stein–Tomas endpoint inequality on S2. Foschi proved
the following sharp version of the Stein–Tomas endpoint Fourier extension inequality on S2.

Theorem 2 (Theorem 1.1 in [Fos15]). For all f P L2pS2q it holds that

}xfσ}L4pR3q ď p2πq}f}L2pS2q. (1.8)

In particular, constant functions are the unique real-valued maximizers.

Combining this with [CS12b, Theorem 1.2] it follows that all the complex-valued maxi-
mizers are given by fpωq “ keiθeiξ¨ω, for some k ą 0, θ P R, ξ P R3.

In this paragraph, we briefly describe the main steps and ideas in the elegant proof of
Foschi.

The first natural and key observation is that, thanks to the evenness of the exponent
p1 “ 4, the left-hand-side of (1.8) can be rewritten as

||xfσ||4L4pR3q “ ||xfσyf5σ||2L2pR3q “ || {fσ ˚ f5σ||2L2pR3q “ p2πq3||fσ ˚ f5σ||2L2pR3q,

where we have used the notation f5pωq “ fp´ωq.

It is not difficult to check that the study of maximizers for (1.8) can be restricted to
functions that are non-negative and antipodally symmetric. We denote by f7 the antipodally
symmetric rearrangement of a function f P L2pS2q,

f7 “

c

|f |2 ` |f5|
2

2
.

Then, clearly }f}L2pS2q “ }f7}L2pS2q and it is not too difficult to see that ||fσ ˚ f5σ||2L2pR3q
ď

||f7σ ˚ f7σ||2L2pR3q
. Hence, without loss of generality, we can assume f to be non-negative and

antipodally symmetric.

Next, the L2-norm of the two-fold convolution of measures on S2 can be rewritten as the
quadrilinear form

||fσ ˚ fσ||2L2pR3q “

ż

pS2q4
fpω1qfpω2qfpω3qfpω4qdΣ,
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where dΣ :“ δ

ˆ

ř4
i“1 ωi

˙

dσpω1qdσpω2qdσpω3qdσpω4q is a positive measure supported on the

submanifold

Γ :“ tpω1, ω2, ω3, ω4q P pS2q4 : ω1 ` ω2 ` ω3 ` ω4 “ 0u.

At this point, the main technical difficulty is due to the fact that the convolution of the surface
measure σ “ σ2 on S2 with itself, σ ˚ σ, has a singularity at the origin. In fact,

σ ˚ σpxq “
2π

|x|
1t|x|ď2upxq,

see [Fos15, Lemma 2.2]. To overcome this difficulty, the key idea of Foschi was to exploit the
following geometric property of the sphere: If ω1, ω2, ω3, ω4 P S2 are such that ω1 `ω2 `ω3 `

ω4 “ 0 then

|ω1 ` ω2||ω3 ` ω4| ` |ω1 ` ω3||ω2 ` ω4| ` |ω1 ` ω4||ω2 ` ω3| “ 4.

Foschi used this identity to offset the singularity of σ ˚ σ at the origin. In fact, using this
geometric identity one can rewrite

||fσ ˚ fσ||2L2pR3q “
3

4

ż

Γ
fpω1qfpω2q|ω1 ` ω2|fpω3qfpω4q|ω3 ` ω4|dΣ.

At this point, an application of Cauchy–Schwarz inequality leads to

||fσ ˚ fσ||2L2pR3q ď

ż

pS2q2
f2pω1qf2pω2q|ω1 ` ω2|2σ ˚ σpω1 ` ω2qdσω1dσω2

“ 2π

ż

pS2q4
fpω1q2fpω2q2|ω1 ` ω2|dσω1dσω2 .

Finally, the last step of the program is a spectral decomposition of the quadratic form

Hpgq –

ż

pS2q2
gpωqgpνq|ω ´ ν|dσωdσν .

The functional H is well-defined, real-valued, and continuous on L1pS2q. In [Fos15, Theo-
rem 5.1] it has been shown that if c “ 1

4π

ş

S2 fpωqdσ is the mean value of the function g
then

Hpgq ď Hpc1S2q,

with equality if and only if g is constant. By density, it is enough to prove this result for
functions in L2pS2q. Foschi’s proof relies on a spectral decomposition of the functional H. An
alternative proof of this inequality has been more recently given in [NOeST23].

One can check that all the encountered inequality holds with equality if f is a constant
function.
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Figure 1.2: In blue, the range of exponents for which inequality 1.9 holds.

1.1.3 A mixed-norm Fourier extension inequality

In [Veg92], Vega proved that the following mixed-norm Fourier extension inequality holds for
all d ě 2 and p1 ą 2d{pd´ 1q,

}xfσ}
Lp1

radL
2
angpRdq

–

ˆ
ż 8

0

ˆ
ż

Sd´1

|xfσprωq|2dσω

˙p1{2

rd´1dr

˙1{p1

ď Cd,p1}f}L2pSd´1q. (1.9)

As we are only requiring xfσ P Lp
1

radL
2
angpRdq this can be seen as a weaker version of Stein–

Tomas inequality. In Figure 1.2 the range of exponents for which (1.9) holds are depicted in
the Riesz diagram for Conjecture 1.

To see that (1.9) holds, we start by recalling the following well-known formula

yYkσpξq “ p2πq
d
2 ik Jd

2´1`k
p|ξ|q |ξ|

´
d
2`1 Yk

ˆ

ξ

|ξ|

˙

, ξ P Rd , (1.10)

where Yk is a spherical harmonic of degree k, see e.g. [SW71, Chapter IV]. Given a function
f P L2pSd´1q, we can expand it as f “

ř

kě0 akYk and, for convenience, we may assume
}Yk}L2pSd´1q “ 1. Relying on (1.10) and by orthogonality of spherical harmonics we have

}xfσ}
Lp1

radL
2
angpRdq

“ p2πq
d
2

ˆ
ż 8

0

ˇ

ˇ

ˇ

ˇ

ÿ

k

|ak|2Jd
2´1`k

prq2 r´d`2

ˇ

ˇ

ˇ

ˇ

p1{2

rd´1dr

˙2{p2p1q

.

Let w P LspR`, r
d´1drq, }w}LspR`,rd´1drq ď 1, where s – pp1{2q1, and consider

p2πq
d
2

ˇ

ˇ

ˇ

ˇ

ż 8

0

ˆ

ÿ

k

|ak|2Jd
2´1`k

prq2 r´d`2

˙

wprqrd´1dr

ˇ

ˇ

ˇ

ˇ

1{2

.
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For convenience we may assume that f has finite expansion f “
ř

k akYk, and in case argue by
limiting arguments at the end. By Hölder’s inequality and the fact that }w}LspR`,rd´1drq ď 1
we can bound the last display as follows

p2πq
d
2

ˇ

ˇ

ˇ

ˇ

ż 8

0

ˆ

ÿ

k

|ak|2Jd
2´1`k

prq2 r´d`2

˙

wprqrd´1dr

ˇ

ˇ

ˇ

ˇ

1{2

ď p2πq
d
2

ˇ

ˇ

ˇ

ˇ

ÿ

k

|ak|2
ˆ

ż 8

0
|Jd

2´1`k
prq2 r´d`2 |p

1{2 rd´1dr

˙2{p1ˆ
ż 8

0
|wprq|srd´1dr

˙1{sˇ
ˇ

ˇ

ˇ

1{2

ď p2πq
d
2

ˇ

ˇ

ˇ

ˇ

ÿ

k

|ak|2
ˆ

ż 8

0
|Jd

2´1`k
prq r´

d
2`1

|p
1

rd´1dr

˙2{p1 ˇ
ˇ

ˇ

ˇ

1{2

.

By taking the supremum over w P LspR`, r
d´1drq with }w}LspR`,rd´1drq ď 1 we have

}xfσ}
Lp1

radL
2
angpRdq

ď p2πq
d
2

ˇ

ˇ

ˇ

ˇ

ÿ

k

|ak|2
ˆ

ż 8

0
|Jd

2´1`k
prq r´

d
2`1

|p
1

rd´1dr

˙2{p1 ˇ
ˇ

ˇ

ˇ

1{2

.

To conclude, one can invoke the classical bounds for Bessel functions in [BC89] to see that
there exists a constant Cd,p1 ą 0 such that for all p1 ą 2d{pd´ 1q

ˆ
ż 8

0
|Jd

2´1`k
prq r´

d
2`1

|p
1

rd´1dr

˙1{p1

ď Cd,p1

uniformly with respect to k. Hence inequality (1.9) follows. As before, one can check that the
range of exponents p1 ą 2d{pd´ 1q is sharp by testing (1.9) against f ” c, for some constant
c ‰ 0.

Sharp versions of the inequality (1.9) have been investigated in [FOeS17, COeSS19], and
more recently in [CS23]. We will discuss more about this in Subsection 2.2.

1.2 Littlewood–Paley theory and Marcinkiewicz multipliers

In this section we briefly review some basic facts in classical Littlewood–Paley theory and
multipliers theory, which will serve as a background and motivation for the work [BCPV24]
which is the content of Appendix C. First, we will focus on the case of square functions with
rough frequencies projections adapted to some suitable partitions of R. Then, we will discuss
an application of Littlewood–Paley theory to the theory of Marcinkiewicz multipliers on R.
We refer for example to [Gra14, Duo01] for a more comprehensive treatment of such theories.
We will conclude the section by recalling some basic facts about Orlicz spaces which will be
useful in studying weak-type endpoint bounds for the aforementioned square functions and
multipliers.

1.2.1 Classical Littlewood–Paley theory

Littlewood–Paley theory is a classical tool in analysis that allows to decompose functions
on the frequency side into pieces that have disjoint, or almost disjoint, frequency support.
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Littlewood–Paley theory provides a partial substitute to the Plancherel theorem for general
Lp spaces, with p ‰ 2.

A heuristic motivation for this can be easily provided in the framework of one-dimensional
Fourier series – where the theory has been originally developed – by considering the case
of lacunary sequences of frequencies tei2π2

kθukPN. In fact, for a square summable sequence

takukPN, the L
p-norm of

ř

kPN ake
i2π2kθ is comparable with its L2-norm, namely there exist

0 ă cp, Cp ă 8 such that

cp

›

›

›

›

ÿ

kPN
ake

i2π2kθ

›

›

›

›

p

ď

ˆ

ÿ

kPN
|ak|2

˙1{2

ď Cp

›

›

›

›

ÿ

kPN
ake

i2π2kθ

›

›

›

›

p

.

In passing, we mention that the same equivalence of norms property holds for any lacunary
Fourier series [Rud60]. This may suggest similar considerations in the continuous setting.

Formally, we may decompose a function f on R as

f “
ÿ

kPZ
∆kf, z∆kfpξq – 1t2kď|ξ|ă2k`1u

pfpξq.

When k1 and k2 are sufficiently far apart, ∆k1f and ∆k2f oscillate at very different frequencies
and their behavior resembles that of independent random variables.

The dyadic frequency projection ∆k is a bounded Lp-to-Lp operator for any 1 ă p ă 8.
In fact, ∆k can be expressed as a linear combination of two modulated Hilbert transforms
whose Lp-to-Lp mapping properties hold in the same range.

Our main object of interest is the Littlewood–Paley square function,

Sf :“

ˆ

ÿ

k

|∆kf |2
˙1{2

.

By Plancherel theorem, it is immediate to see that when f P L2pRq it holds that

}Sf}2L2 “ }f}2L2 .

Littlewood–Paley theory tells us that these quantities are comparable also in Lp. The classical
result in the theory is the following.

Theorem 3 (Littlewood–Paley theorem). Let 1 ă p ă 8. Then there exist 0 ă cp, Cp ă 8

such that for all f P Lp it holds that

cp}f}Lp ď }Sf}Lp ď Cp}f}Lp .

The result in Theorem 3 is sharp, in the sense that it fails at the endpoints p “ 1,8. We
are particularly interested in the mapping properties of S near L1.

We start by recalling that the square function S is not of weak-type p1, 1q. The behavior
of the operator norm }Sf}LpÑLp as p Ñ 1` has been first studied by Bourgain in [Bou89] in
the periodic setting. By transference, it follows from the results in [Bou89] that

}S}LppRqÑLppRq „ pp´ 1q´3{2 as p Ñ 1`.
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Other proofs of this fact follow from [Bak19, Ler19]. By Yano extrapolation [Yan51] this
implies that the square function S maps locally the Orlicz space L log3{2 L to L1. This may
suggest that the S could also map locally L log1{2 L to L1,8. Indeed this can be seen to be
the case as a corollary of certain results of Tao and Wright in [TW01] about the endpoint
mapping properties of certain Marcinkiewicz multipliers. We will come back to these results
in Section 3.1.

A few words about the smooth square function. Theorem 3 can be conveniently
proven as a consequence of the boundedness result for the smooth Littlewood–Paley square
function, namely a square function with frequency projections

p

r∆kfpξq :“ ψp2´kξq pfpξq,

where ψ is a smooth function with compact support in r´4,´1{2sYr1{2, 4s which is identically
one on r´2,´1s Y r1, 2s. Now the operator r∆k maps Lp to itself for any 1 ď p ď 8. Let rS
be the smooth square function, rSf :“ p

ř

k | r∆kf |2q1{2. Then, for all 1 ă p ă 8, there exist

0 ă rCp ă 8 such that

} rSf}Lp ď rCp}f}Lp .

Such an estimate can be shown, for example, by relying on vector-valued Calderón–Zygmund
theory or using Khintchine’s inequality. One can recover the result of Theorem 3 by using
the fact that ∆k

r∆k “ ∆k together with the Lp-to-Lp boundness of vector-valued frequency
projections. Finally, it follows from Calderón–Zygmund theory that rS is of weak-type p1, 1q.

1.2.2 Littlewood–Paley sets

So far, we have considered only the case of the classical Littlewood–Paley dyadic decomposi-
tion of the real frequency line. A natural question is whether a similar result holds for square
functions associated with different decompositions.

Let I “ tIjuj be a collection of mutually disjoint intervals in R. We define ∆Ij and SI as

z∆Ijfpξq :“ 1tξPIjupξq pfpξq, SIf :“

ˆ

ÿ

j

|∆Ijf |2
˙1{2

.

The following result is due to Rubio de Francia [RdF85] and establishes that SI maps Lp to
itself for all 2 ď p ă 8.

Theorem 4 (Rubio de Francia square function). Let I and SI be as defined above. Then for
2 ď p ă 8 there exist 0 ă Cp ă 8 such that

}SIf}LppRq ď Cp}f}LppRq.

This result is sharp in the sense that there exist partitions of R into mutually disjoint
intervals such that the associated square function fails to map Lp to itself when 1 ă p ă 2. A
classical counterexample is given by the collection of mutually disjoint intervals I “ trn, n`1q :
n P Zu, see for example [RdF83]. In fact we may consider the function f P Lp defined by
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2k 2k+12k + 2k−12k + 2k−2 2k+1 − 2k−2

Figure 1.3: Blue dots correspond to elements in the set t2n : n P Zu. Red dots correspond
to elements in the successor set t2n1 ` 2n2 : n1, n2 P Z, n1 ą n2u Y t2n1`1 ´ 2n2 : n1, n2 P

Z, n1 ą n2u.

pfpξq “ 1r0,Nspξq. One can easily check that fpxq “ Nq1r0,1spNxq. Hence, the desired estimates
is

}SIf}LppRdq “ }N1{2
q1r0,1s}LppRq ď CN1´1{p}q1r0,1s}LppRq.

By taking the limit N Ñ 8 we see that this can hold only for p ě 2. Accordingly, the reverse
square function estimate fails in the range 2 ă p ă 8.

In this subsection we are interested in Littlewood–Paley sets. Following [SS81], we consider
a closed null (i.e. of zero Lebesgue measure) set E Ă R and we define IE to be the collection
of intervals Ij , j “ 1, 2, ..., that are complementary to E in R. The following definition can
be found, for example, in [SS81].

Definition 1. For a certain 1 ă p ă 8 we say that E satisfies the Littlewood–Paley property
LPppq, or that E is a LPppq-set, if there exist 0 ă cp, Cp ă 8 such that for all f P LppRq it
holds that

cp}f}LppRq ď }SIEf}LppRq ď Cp}f}LppRq.

The property LPppq is preserved under translation, dilation, and by taking subsets. In
their work [SS81], Sjögren and Sjölin have provided a strategy to construct, starting from
a LPppq-set E, a possibly larger set E1 with the LPppq property. They gave the following
definition.

Definition 2. A closed null set E1 Ă R is said to be a successor of a closed null set E Ă R
if there exist c ą 0 such that if x, y P E1, with x ‰ y, then |x´ y| ě c dpx,Eq.

As exemplification, we may consider a bounded interval I Ă RzE, where E is a closed null
set in R, with I “ pa, bq, a, b P E. If E1 is a successor of E then E1 X I is contained in the
union of two sequences tαju and tβku converging to a and b, respectively, and such that, for
some θ1, θ2 ą 1, it holds that pαj ´ aq{pαj`1 ´ aq ě θ1 for all j and pβk ´ bq{pβk`1 ´ bq ě θ2
for all k. An example of this is depicted in Figure 1.3. For example, the (dyadic) lacunary
set of order ℓ given by

t˘p2k1 ` ...` 2kℓq : k1, ..., kℓ P Z, k1 ą ... ą kℓu

is a successor of the (dyadic) lacunary set of order ℓ´ 1

t˘p2k1 ` ...` 2kℓ´1q : k1, ..., kℓ´1 P Z, k1 ą ... ą kℓ´1u.

The following has been established by Sjögren and Sjölin in [SS81].

Theorem 5 (Theorem 1.2 in [SS81]). If E is a LPppq-set then any successor of E is a
LPppq-set.
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In particular, any successor of the set t˘2k : k P Zu has the LPppq property for all
1 ă p ă 8. Similarly, if tλkuk is a lacunary sequence of positive real numbers one can check,
by the very same arguments used in the dyadic case, that the set tλkuk Y p´ tλkukq is a
LPppq-set for all 1 ă p ă 8. Hence, the same is true for all its successor sets. In particular,
finite order lacunary sets are LPppq-sets for all 1 ă p ă 8.

The problem of the characterization of LPppq-sets has been studied in [HK89, HK92,
HK95] and, more recently, in [BCDP`24] an abstract characterization of LPppq-sets has been
provided.

1.2.3 Marcinkiewicz multipliers

Given a function m P L8pRq we define implicitely the operator Tm associated to m by

zTmfpξq :“ mpξq pfpξq.

By Plancherel theorem we see that Tm is a bounded operator on L2 with operator norm
}Tm}L2pRqÑL2pRq “ }m}L8pRq. We say that Tm is a Fourier multiplier operator with symbol
m. We may ask ourselves under what conditions Tm extends to a bounded operator on Lp for
some p ‰ 2.

An example of a Fourier multiplier operator is the Hilbert transform which is a bounded
operator on Lp for 1 ă p ă 8 associated with the symbol mpξq “ ´i c sgnpξq, where c is
some constant depending on the chosen normalization.

We say that a multiplier operator Tm is a Marcinkiewicz multiplier operator if m P L8

and if the following condition holds,

sup
kPZ

ż

p´2k`1,´2ksYr2k,2k`1q

|dm|pξq ď Cm ă 8.

We use the notation
ş

I |dm| to indicate the total variation of m over the interval I where this
is defined as

sup
N

sup
x0,...,xNPI
x0ă...ăxN

N
ÿ

n“1

|mpxnq ´mpxn´1q|.

Simple examples of Marcinkiewicz multiplier operators are those whose symbol is constant on
each Littlewood–Paley dyadic interval.

The following result about Marcinkiewicz multipliers can be derived as a consequence of
the classical Littlewood–Paley theory.

Theorem 6 (Marcinkiewicz multiplier theorem). Let Tm be a Marcinkiewicz multiplier as
defined above. Then Tm extends to a bounded operator on Lp for 1 ă p ă 8. Moreover,

}Tmf}LppRq ď Cpp}m}L8pRq ` Cmq}f}LppRq.

As for the Littlewood–Paley theorem, also in this case we may ask ourselves whether the
result still holds if we consider a different decomposition of the real frequency line.
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In the periodic setting, in [Mar39] Marcinkiewicz multiplier operators on the torus formed
with respect to second order (dyadic) lacunary partitions of the integers have been considered
showing that these operators are bounded on LppTq for all 1 ă p ă 8.

In their work [SS81], Sjögren and Sjölin established that a closed null set E Ă R is a
LPppq-set, as per Definition 1, for a certain 1 ă p ă 8 if and only if for any m P L8pRq such
that supk

ş

Ik
|dm| ă 8, where tIku is the collection of intervals complementary to E in R, the

corresponding multiplier operator Tm is bounded on Lp.

A remarkable improvement of the classical Marcinkiewicz multiplier theorem has been
obtained by Coifman, Rubio de Francia, and Semmes in [CRdFS88] by relying on the Rubio
de Francia square function that we have encountered in the previous subsection. For some
q ě 1 we use the notation }m}VqpIq to denote the total q-variation of m over the interval I,
that is

}m}VqpIq “ sup
N

sup
x0,...,xNPI
x0ă...ăxN

ˆ N
ÿ

n“1

|mpxnq ´mpxn´1q|q
˙1{q

.

Theorem 7 (Coifman, Rubio de Francia, and Semmes theorem). Let Iℓk “ p´2k`1,´2ks,
Irk “ r2k, 2k`1q for every k P Z. Let m P L8pRq. If for some 1 ď q ă 8 it holds that

sup
kPZ

`

}m}VqpIℓkq ` }m}VqpIrkq

˘

ă 8

then Tm extends to a bounded Fourier multiplier on LppRq for every 1 ă p ă 8 satisfying
|1p ´ 1

2 | ă 1
q .

The case q “ 1 corresponds to the classical Marcinkiewicz multiplier theorem.

This class of multipliers has been considered by Tao and Wright in [TW01] where they
have studied the endpoint mapping properties of such multipliers operators near L1. We will
say more about this in Section 3.1.

We conclude this subsection with a few words about Hörmander–Mihlin multiplier oper-
ators on R.

Theorem 8 (Hörmander–Mihlin multiplier theorem). Let m be a bounded function on Rzt0u

such that

|Bmpξq| ď Cm|ξ|´1.

Then Tm extends to a bounded operator on Lp for 1 ă p ă 8 and

}Tmf}LppRq ď Cpp}m}L8pRq ` Cmq}f}LppRq.

Moreover, Tm is of weak-type p1, 1q for some constant Cp}m}L8pRq ` Cmq.

Note that for the particular case of d “ 1 the above Marcinkiewicz multipliers theorem is
stronger than the Hörmander–Mihlin multiplier theorem, as the pointwise condition |Bmpξq| ď

Cm|ξ|´1 implies the Marcinkiewicz condition.
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1.2.4 Glimpse of Orlicz spaces

A convex increasing function Φ : r0,8s Ñ r0,8s is said to be a Young function if Φp0q “

0, there exists 0 ă t ă 8 such that Φptq ă 8, and limtÑ8 Φptq “ 8, see e.g. [Wil08,
Chapter 10]. Given a Young function Φ and a measure space pX,M, µq we define the Orlicz
space LΦpX,M, µq as the set of measurable functions f such that

ż

X
Φp|f |{λqdµ ă 8

for some λ ą 0. Orlicz spaces can be seen as a generalization of Lp spaces. In fact, on one
hand, if we consider the case of the Young function Φptq “ tp, 1 ď p ă 8, we have that
LΦpX,M, µq “ LppX,M, µq. On the other hand, Orlicz spaces allow us to catch a scale of
integrability that may not be captured by Lp spaces. To see an example of this phenomenon
we may consider the function

fpxq “

#

1{pxp| logpxq| ` 1q2q for 0 ď x ď 1

0 otherwise,

which belongs to L1 but it does not belong to Lp for all p ą 1. Such function is indeed
somewhat more than L1. Consider the function Ψ1{2ptq “ tplogpe` tqq1{2, one can check that

this is a Young function and the function f belongs to LΨ1{2 .
We endow the Orlicz space LΦ with the following norm, known as the Luxemburg norm

}f}LΦpX,M,µq :“ inf

"

λ ą 0 :

ż

X
Φp|f |{λqdµ ď 1

*

.

The space pLΦpX,M, µq, } ¨ }LϕpX,M,µqq is a Banach space.
Let Φ be a Young function such that limtÑ8 Φptq{t “ 8 and consider the function

Φ˚ptq :“ sup
sě0

tst´ Φpsqu, t ě 0.

For example, if Φptq “ tp then Φ˚ptq “ tp
1

, with p1 “ p{pp ´ 1q. In particular, Φ˚ is itself a
Young function. The following holds

xy ď Φpxq ` Φ˚pyq.

This is instrumental to the proof of the following variant of Hölder’s inequality for Orlicz
spaces: If f P LΦ and h P LΦ˚

, then

ż

|fh|dµ ď 2}f}LΦ}h}LΦ˚ .

We refer to [Wil08, Theorem 10.2] for a proof of this fact. Moreover, it holds that

}f}LΦ „ sup
h: }h}

Lϕ˚ ď1

ż

|fh|dµ.
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1.3 Λppq-sets in Harmonic Analysis

A subset S Ă Z is said to be a Λppq-set for some p ą 2 if there exists a constant CS,p ą 0
such that

}f}LppTq ď CS,p}f}L2pTq

for all trigonometric polynomials with frequency support in S, see for example [Bou01]. Sev-
eral instances of Λppq-sets will appear throughout the thesis.

Simple examples of Λppq-sets are lacunary sequences of positive integers. A sequence of
positive integers A – takuk is said to be lacunary if it holds that infk ak`1{ak ą 1. For such
a set A there exist a constant 0 ă CA ă 8 such that the inequality

}f}L2pTq ď CA}f}L log1{2 LpTq
(1.11)

holds for all trigonometric polynomials with frequency support in A, [Zyg02, Chapter XII].

A further example of Λppq-sets is Sidon sets. We recall that a subset S Ă Z is said to
be a Sidon set if any continuous function with frequency support in S has an absolutely
convergent Fourier series, see for example [Rud60]. In particular, lacunary sequences are an
example of Sidon sets. It has been observed by Rudin, see [Rud60, Theorem 3.1], that any
trigonometric polynomials with frequency support on a Sidon set satisfy (1.11). Later, Pisier
[Pis78] established that the inequality (1.11) completely characterizes Sidon sets. In other
words, a trigonometric polynomial with frequency support on a set S Ă Z satisfies (1.11) if
and only if S is a Sidon set.

On the other hand, examples of Λppq-sets that are not Sidon sets are higher-order lacu-
nary sequences. Following [Bon70], let takuk be a lacunary sequence of integers such that
infk ak`1{ak ě 2. Define Aτ to be the set of integers that can be written as

˘ak1 ˘ ak2 ˘ ...˘ akτ , k1 ą k2 ą ... ą kτ .

Then there exists a constant 0 ă CAτ ă 8 such that the inequality

}f}L2pTq ď CAτ }f}L logτ{2 LpTq
(1.12)

holds for all trigonometric polynomials with frequency support in Aτ .

A further instance of Λppq-sets that will feature in this thesis is Bphq-sets. A subset S Ă Z
is said to be a Bphq-set if for any two h-tuples pa1, ..., ahq, pb1, ..., bhq of elements in S such that
a1 ` ...` ah “ b1 ` ...` bh we have that one h-tuple is a permutation of the other. Bphq-sets
are Λp2hq-sets, see for example [Bou01]. In fact for any square summable sequence takukPS it
holds that

›

›

›

›

ÿ

kPS

ake
ik¨

›

›

›

›

h

L2hpTq

“

›

›

›

›

ÿ

k1,...,khPS

ak1 ...akhe
ipk1`...`khq¨

›

›

›

›

L2pTq

ď p2πh!q1{2

ˆ

ÿ

kPS

|ak|2
˙h{2

.

Finally, a last example of Λppq-sets that is of interest to us is Littlewood–Paley sets that
we have encountered in Subsection 1.2.2. Following [HK89], let E be a subset of Z and take
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IE – tIju to be the partition of the integers into disjoint intervals that is induced by E. For

a function f on T define pfj :“ pf1Ij and

SIEf :“

ˆ

ÿ

j

|fj |
2

˙1{2

.

If E is LPppq-set then there exists 0 ă cp, Cp ă 8 such that

cp}f}LppTq ď }SIEf}LppTq ď Cp}f}LppTq

for all f P LppTq. Hence, if f is a trigonometric polynomial with Fourier support in E it
follows that there exists 0 ă c1

p ă 8 such that

}f}LppTq ď c1
p

›

›

›

›

ˆ

ÿ

j

| pfpnjq|2
˙1{2›

›

›

›

LppTq

.

In particular, E is a Λppq-set.
Further connections between Littlewood–Paley sets and Λppq-sets have been recently stud-

ied in [BCDP`24].
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Chapter 2

Overview of the main results I

In this chapter we summarize the results in the theory of sharp Fourier extension inequalities
on spheres obtained in the works [CG24] and [CS23].

2.1 A sharp Fourier extension estimates on the circle

The results presented in this section have been obtained in collaboration by the author of this
thesis and F. Gonçalves. They are contained in the article [CG24] written jointly by the
author of this thesis and F. Gonçalves. The article is reproduced in Appendix A and it has
been published in:

Valentina Ciccone and Felipe Gonçalves. Sharp Fourier extension on the circle
under arithmetic constraints. J. Funct. Anal., 286(2): Paper No. 110219, 21, 2024.
https://doi.org/10.1016/j.jfa.2023.110219

Motivation

A major open problem in the area of sharp Fourier extension estimates is the one of deter-
mining the sharp constant and maximizers for endpoint Stein–Tomas inequality on S1,

}xfσ}L6pR2q ď Copt}f}L2pS1q, Copt – sup
fPL2pS1q,
f‰0

}xfσ}L6pR2q

}f}L2pS1q

. (2.1)

As mentioned in Subsection 1.1.2, existence of maximizers for (2.1) has been established in
[Sha16a]. Moreover, it has been shown in [OeSQ21b] that maximizers are smooth. The
problem of characterizing maximizers for (2.1) has received a great deal of attention over the
last years. In particular, it is conjectured that constant functions are maximizers for (2.1). A
program, similar to the one proposed by Foschi in [Fos15] and outlined in Subsection 1.1.2,
has been implemented in [CFOeST17] to study this problem. We briefly describe the main
steps and challenges.

Using the evenness of the exponent and Plancherel’s identity one can rewrite the left-
hand-side of the inequality in (2.1) as

}xfσ}6L6pR2q “ p2πq2}fσ ˚ fσ ˚ fσ}2L2pR2q,

19

https://doi.org/10.1016/j.jfa.2023.110219


20

which can be further rewritten as

}fσ ˚ fσ ˚ fσ}2L2pR2q “

ż

pS1q6
fpω1qfpω2qfpω3qf5pω4qf5pω5qf5pω6qdΨ,

where we use the notation f5pωq “ fp´ωq and Ψ is the measure

dΨ – δ

ˆ 6
ÿ

i“1

ωi

˙

dσpω1qdσpω2qdσpω3qdσpω4qdσpω5qdσpω6q

supported on the submanifold

Ω – tpω1, ω2, ω3, ω4, ω5, ω6q P pS1q6 : ω1 ` ω2 ` ω3 ` ω4 ` ω5 ` ω6 “ 0u.

Without loss of generality, arguing as in [Fos15] f can be assumed to be non-negative and
antipodally symmetric. In fact, denoting by f7 the antipodally symmetric rearrangement of
the function f ,

f7 –

c

|f |2 ` |f5|
2

2
,

it holds that

sup
fPL2pS1q,
f‰0

}xfσ}L6pR2q

}f}L2pS1q

“ sup
fPL2pS1q,
f‰0, f“f7

}xfσ}L6pR2q

}f}L2pS1q

The three-fold convolution σ ˚σ ˚σ has been computed explicitly in [CFOeST17, Lemma 2.2]
showing that it has a logarithmic singularity at |x| “ 1. Also in this case, it is possible to
exploit some geometric properties of the circle to compute a weight that offsets the singularity
of σ ˚ σ ˚ σ. In particular, the following identity can be found in [CFOeST17, Lemma 1.3]: If
pω1, ω2, ω3, ω4, ω5, ω6q P Ω then

ÿ

p63q

p|ωj ` ωk ` ωi|
2 ´ 1q “ 16

where the sum is over all the twenty different choices of the unordered, distinct indexes
j, k, i P t1, 2, 3, 4, 5, 6u.

This allows to rewrite

p2πq´2}xfσ}6L6pR2q “
5

4

ż

pS1q6
fpω1qfpω2qfpω3qfpω4qfpω5qfpω6qp|ω1 ` ω2 ` ω3|2 ´ 1qdΨ.

However, in this case the weight is partially negative and applying Cauchy–Schwartz as in
[Fos15] won’t lead to the desired result. This step of the program is left as a conjecture in
[CFOeST17].

Conjecture 2 (Conjecture 1.4 in [CFOeST17]). Let f P L2pS1q be non-negative and antipo-
dally symmetric, then

ż

pS1q6
fpω1qfpω2qfpω3qfpω4qfpω5qfpω6qp|ω1 ` ω2 ` ω3|2 ´ 1qdΨ

ď

ż

pS1q6
fpω1q2fpω2q2fpω3q2p|ω1 ` ω2 ` ω3|2 ´ 1qdΨ.
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The trilinear form appearing in the right-hand side of the last display,

T pg1, g2, g3q –

ż

pS1q6
g1pω1qg2pω2qg3pω3qp|ω1 ` ω2 ` ω3|2 ´ 1qdΨ,

has been studied in [CFOeST17] obtaining the following result in the same spirit as the one
in the last step of the proof in [Fos15].

Theorem 9 (Theorem 1.2 in [CFOeST17]). Let g P L1pS1q be non-negative and antipodally
symmetric with mean value c “ 1

2π

ş

S1 gpωqdσ. Then

T pg, g, gq ď T pc, c, cq,

with equality if and only if g is constant.

Later, further progress towards the characterization of maximizers for (2.1) has been
achieved in [OeSTZK22, BTZK23]. In particular, in [OeSTZK22] (and then in [BTZK23])
the case of non-negative, antipodally symmetric, band-limited functions with Fourier modes
up to degree 30 (respectively, degree 120) has been considered showing that, among this class
of functions, constant functions are the unique maximizers. Note that, when restricting to the
band-limited case the problem becomes finite-dimensional and it can be studied numerically
as done in [OeSTZK22, BTZK23].

Main results in [CG24]

Inspired by these previous contributions, in the work [CG24] we have considered the case of
functions whose Fourier support is possibly infinite – and therefore the problem is no longer
finite-dimensional – but it satisfies certain arithmetic constraints. Such arithmetic constraints
arise as a generalization of the notion of Bphq-sets – namely, sets of integers whose h-term sums
uniquely express numbers up to permutations. Bphq-sets have been discussed in Section 1.3
and, as observed therein, they are Λp2hq-sets. The generalization that we propose is motivated
by the following observation: Bphq-sets cannot have a non-trivial symmetric subset, in other
words, if A is a Bphq-set then |AX p´Aq| ď 2. Simple examples of this fact are the following:

• Let h “ 3, c P A. If there exist a, b P AX p´Aq such that |a| ‰ |b|, then c` a` p´aq “

c` b` p´bq contradicting the definition of Bp3q-set.

• Let h “ 2. If there exist a, b P A X p´Aq such that |a| ‰ |b|, then a ` p´aq “ b ` p´bq
contradicting the definition of Bp2q-set.

The generalization that we propose extends the definition of Bphq-set by allowing for the
possibility of non-trivial symmetric subsets. We name such a generalization a Pphq-set. We
refer to Section A.2 for a precise definition of Pphq-sets as well as for an overview of their
properties and some examples. We mention in passing that Pphq-sets are also Λp2hq-sets.

For the case of Pp3q-sets, which are of more direct interest to us, the definition simplifies
as follows (see also Definition 4 which corresponds to [CG24, Definition 1]).

Definition 3. We say that a set A Ă Z is a Pp3q-set if for every D P A ` A ` A one (and
only one) of the following holds:
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• either D “ a1 `a2 `a3 with the triple pa1, a2, a3q P AˆAˆA unique up to permutations
and such that ai ‰ ´aj for i ‰ j;

• or all the ways of representing D as sum of three terms in A are of the form D “ D`a´a
for some a P AX p´Aq.

Simple examples of Pphq-sets are Bphq-sets. A simple example of a P p3q-set with a non-
trivial symmetric subset is t˘p6nq : n P Nu Y t0u. Further examples of Pp3q-set are provided
in Subsection A.2.1. Our main result in [CG24] is the following and it corresponds to Theorem
19 in Appendix A.

Theorem 10 (Theorem 1 in [CG24]). Let f P L2pS1q be such that its spectrum, specpfq “

tn P Z : pfpnq ‰ 0u, is a Pp3q-set. Then

}xfσ}6L6pR2q ď p2πq4
ˆ

ż 8

0
J6
0 prqrdr

˙

}f}6L2pS1q .

Equality is attained if and only if f is a constant.

By translation invariance, the same result holds for a function ω ÞÑ eiτ ¨ωfpωq whose
spectrum is a Pp3q-set for some τ P R2. Our result provides a further evidence towards the
conjecture that constant functions are maximizers for (2.1).

Two main tools are utilized in the proof. The first is counting arguments. As discussed
above, results in sharp Fourier extension theory typically rely crucially on the evenness of
the exponent as this allows for the rewriting of the left-hand-side of the Fourier extension
inequality as a k-linear form which usually is more amenable to be dealt with. In [CG24] we
depart from this approach and we take a different route. Our key, simple, observation is the
following: in this setting the evenness of the exponent allows us to rely on counting arguments,
very much typical of the literature on Bphq-sets and, more generally, on Λp2hq-sets.

The second main tool is some novel refined estimates on integrals involving the product
of six Bessel functions which are the content of Lemma 20 in Appendix A which corresponds
to [CG24, Lemma 2].

2.2 Further results on global and local maximizers

The results presented in this section have been obtained in collaboration by the author of this
thesis and M. Sousa. They are contained in the article [CS23] written jointly by the author
of this thesis and M. Sousa. The article is reproduced in Appendix B and it appears online
in the ArXiv at the link https://arxiv.org/abs/2312.07309. The article is currently submitted
for publication.

Motivation

Recall the mixed-norm Fourier extension inequality (1.9) discussed in Subsection 1.1.3. The
problem of computing the optimal constant for such inequality has been studied by E.
Carneiro, D. Oliveira e Silva, and M. Sousa in [COeSS19], showing that constant functions are

https://arxiv.org/abs/2312.07309
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the maximizers for the sharp version of inequality (1.9) whenever the exponent p1 is an even
integer and that the set of exponents for which constant functions are extremizers is open
and contains a neighborhood of infinity, pp1

0pdq,8s, see [COeSS19, Theorem 1]. Moreover in
[COeSS19, Theorem 3] some upper-bounds for p1

0pdq are provided. In particular, they have
shown that, in low dimension:

p1
0p2q ď 6.76, p1

0p3q ď 5.45, p1
0p4q ď 5.53, p1

0p5q ď 6.07, p1
0p6q ď 6.82,

p1
0p7q ď 7.70, p1

0p8q ď 8.69, p1
0p9q ď 9.78, p1

0p10q ď 10.95,

and, in general,

p1
0pdq ď p12 ` op1qqd log d.

[COeSS19] is the first work in sharp Fourier extension theory on sphere addressing non-even
exponents, although in a mixed-norm setting.

In [COeSS19], the problem of computing the sharp constant for (1.9) has been observed
to be equivalent to the problem of computing

sup
kě0

ˆ
ż 8

0
|Jd

2´1`k
prq r´

d
2`1

|p
1

rd´1dr

˙1{p1

, (2.2)

which is in itself a problem of interest in the theory of special functions. Properties of Bessel
functions guarantee that in the range p1 ą 2d{pd´1q such a supremum is indeed a maximum.
In particular, constant functions are maximizers for the sharp version of inequality (1.9) if
and only if the maximum in (2.2) is attained at k “ 0.

Main results in [CS23]

In [CS23] we have extended the aforementioned result from [COeSS19] to a wider range
of exponents for the case of lower dimensions, in certain cases including the Stein–Tomas
endpoint.

Our first result is the following and it corresponds to Theorem 23 in Appendix B.

Theorem 11 (Theorem 1 in [CS23]). It holds that

p1
0p2q ă 6, p1

0p3q ă 4, p1
0p4q ă 3.48, p1

0p5q ă 3.50,

p1
0p6q ă 3.58, p1

0p7q ă 3.7, p1
0p8q ă 3.86, p1

0p9q ă 4.06, p1
0p10q ă 4.46.

In particular, for d “ 2, 3 it holds that p1
0pdq ă 2d`2

d´1 , the Stein–Tomas endpoint.

The main tool that we utilze for the proof are some novel monotonicity results (with
respect to the order k) for certain weighted Lp-norm of Bessel functions which are the content
of Section B.2 (namely, [CS23, Section 2]) and which were inspired, for the case d “ 2, by
certain estimates for integrals involving Bessel functions obtained in [CG24, Lemma 2].

Note that the Stein–Tomas range is of relevance because it is conjectured that constant
functions are maximizers for the sharp Stein–Tomas inequalities and this would imply, by
Hölder inequality, that constant functions are also maximizers for the sharp version of the
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mixed-norm inequality (1.9) for p1 in the same range. Our result gives further corroboration
to this conjecture.

In the second part of the project, we study some connections between sharp mixed-norm
Fourier extension inequalities and sharp Lq

1

pSd´1q to Lp
1

pRdq Fourier extension estimates for
the diagonal case p1 “ q1, namely

}xfσ}Lp1
pRdq

ď Coptpd, p
1q}f}Lp1

pSd´1q
, Coptpd, p

1q – sup
fPLp1

pSd´1q

f‰0

}xfσ}Lp1
pRdq

}f}Lp1
pSd´1q

. (2.3)

Maximizers for such inequalities are known only when p1 is an even admissible integer or
p1 “ 8, [COeS15, FS24]. In all these known cases constant functions are maximizers. For the
remaining cases, as mentioned in Section 1.1.2, also the existence of global maximizers is still
an open question.

Our second main result concerns local maximizers for these inequalities and it corresponds
to Theorem 25 in Appendix B.

Theorem 12 (Theorem 2 in [CS23]). Let d ě 2 and p1 ą 2d
d´1 . Assume that the Lp

1

pSd´1q to

Lp
1

pRdq Fourier extension inequality holds and that p1 P pp1
0pdq,8s. Then there exists δ ą 0

such that whenever }f ´ 1}Lp1
pSd´1q

ă δ,

}xfσ}Lp1
pSd´1q

}f}Lp1
pSd´1q

ď
}x1σ}Lp1

pRdq

}1}Lp1
pSd´1q

. (2.4)

That is, constant functions are local maximizers for the Lp
1

pSd´1q to Lp
1

pRdq Fourier extension
estimates.

In particular, it follows from the above discussion that constant functions are local maxi-
mizers for (2.3) for all p1 “ p1pdq such that

p1p2q ě 6, p1p3q ě 4, p1p4q ě 3.48, p1p5q ě 3.50,

p1p6q ě 3.58, p1p7q ě 3.7, p1p8q ě 3.86, p1p9q ě 4.06, p1p10q ě 4.46,

and, in general, for p1pdq ą p12 ` op1qqd log d.
As discussed in Section 1.1.2 previous results on local maximizers have been established

only for inequalities in the Stein–Tomas range for the cases of pd, p1, q1q “ pd, 2d`2
d´1 , 2q with

2 ď d ď 60 in [GN22], see also [CS12a] for the case of pd, p1, q1q “ p3, 4, 2q and [COeSS19] for
the case of pd, p1, q1q “ p2, 6, 2q.



Chapter 3

Overview of the main results II

The results presented in this chapter have been obtained in collaboration by O. Bakas, I.
Parissi, M. Vitturi, and the author of this thesis. These results are contained in the article
[BCPV24] written jointly by O. Bakas, I. Parissi, M. Vitturi, and the author of this the-
sis. The article is reproduced in Appendix C and it appears online in the ArXiv at the link
https://arxiv.org/abs/2401.06083. The article is currently submitted for publication.

3.1 Sharp endpoint bounds for higher order Marcinkiewicz
multipliers

Motivation

In their work [TW01], Tao and Wright have studied the weak-type endpoint mapping prop-
erties of classical Marcinkiewicz multipliers on R. From the classical theory, briefly reviewed
in Subsection 1.2.3, it is well-known that Marcinkiewicz multipliers are bounded on Lp for
1 ă p ă 8. While Hörmander multipliers are Calderón–Zygmund operators and therefore
map L1 to L1,8 this may not be the case for Marcinkiewicz multipliers, meaning that there
exist Marcinkiewicz multipliers that are not of weak-type p1, 1q. The mapping properties
near L1 of such operators have been studied in [TW01]. In particular, one of the questions
addressed in [TW01] can be stated as follows:

What is the smallest r ě 0 such that a Marcinkiewicz multiplier Tm maps locally
L logr L to L1,8?

Here, we say that Tm maps locally L logr L to L1,8 if it maps L logr LpKq to L1,8pKq for
all compact sets K Ă R. In [TW01] this question has been answered for a more general
class of multipliers, the so-called R2-multipliers. These include Marcinkiewicz multipliers
with bounded q-variation for 1 ď q ă 2 that we have already encountered in the multiplier
theorem of Coifman, Rubio de Francia, and Semmes. We refer to Subsection C.1.2 for a
precise definition of R2-multipliers (which correspond to R2,1-multipliers with the notation of
Subsection C.1.2).

Theorem 13 ([TW01]). R2-multipliers locally map L log1{2 L to L1,8 and such result is sharp,
meaning that we cannot replace 1{2 with a smaller exponent.
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It follows from this result that the very same is true for the classical Littelwood–Paley
square function formed by rough frequency projections adapted to a lacunary partition of R.

The main tools utilized in the proof are a sort of square function characterization for
L log1{2 L and an ad-hoc vector-valued Calderón–Zygmund decomposition. We say a few
words about the former.

While the Hardy space H1 admits a square function characterization in the sense that
} rSf}L1 „ }f}H1 , this does not appear to be the case for the Orlicz space L log1{2 L. However,
in [TW01] the authors proved a sort of square function characterization for L log1{2 L which
is very much inspired by the one for the Hardy space H1. First, they have shown a discrete
variant of it involving martingale difference. It reads as follows. Let D be the collection
of dyadic intervals in r0, 1s and Dk Ă D, for k a non-negative integer, the sub-collection of
intervals I P D such that |I| “ 2´k. We define the martingale averages and differences as

Ekfpxq :“
ÿ

IPDk

ˆ

1

|I|

ż

I
fpyqdy

˙

1Ipxq,

and

Dkf :“ Ek`1f ´ Ekf.

Proposition 14 (Propo. 9.1 in [TW01]). Let f P L log1{2 Lpr0, 1sq with E0f “ 0. Then there
exists a collection of non-negative functions fk supported on r0, 1s such that for any k P N,
I P Dk

|Dkfpxq| À Ekfkpxq,

and
›

›

›

›

›

ˆ

ÿ

kPN
|fk|2

˙1{2
›

›

›

›

›

L1

À }f}L log1{2 Lpr0,1sq
.

It is worth mentioning that the proof of this result is rather technical. From this discrete
variant a smooth one can be derived using some averaging arguments. Such a smooth version
reads as follows.

Proposition 15 (Propo. 4.1 in [TW01]). Let ϕk be a smooth function of the form ϕkpxq “

2kp1 ` 2k|x|q´α for some α ą 1. For any f P L log1{2 Lpr´c, csq such that
ş

fpxqdx “ 0 there
exist a collection of non-negative functions fk, k P Z, such that for any k P Z the following
pointwise estimate holds,

| r∆kf | À fk ˚ ϕk,

and they satisfy
›

›

›

›

›

ˆ

ÿ

kPZ
|fk|2

˙1{2
›

›

›

›

›

L1

À }f}L log1{2 Lpr´c,csq.

We stress that, as observed in [TW01], if we were to choose fk “ | r∆kf | – which would
be the natural choice in the case of H1, possibly up to a small enlargement of the frequency
interval over which we are projecting – then the result in Proposition 15 won’t hold. We refer
to [TW01, Section 4] for a counterexample.
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As a final remark, we mention that the above square function characterization, beside
being of interest in itself and being instrumental for the proof of Theorem 13, has also some
further interesting applications. One of them, as observed in [TW01], is the following: It
implies the classical inequality of Zygmund (1.11) for functions with frequency support on
t2k : k P Nu. In fact, let f be a function on T such that pfpnq “ 0 unless n P t2k : k P Nu.
Then by the definition of the frequency projection r∆k and the Hausdorff-Young inequality it
follows that

| pfp2kq| “ |p r∆kfq^p2kq| ď } r∆kf}L1pTq.

By Proposition 15 (adapted to the case of the torus T) we get that } r∆kf}L1pTq À }fk˚ϕk}L1pTq.
By combining this with Young’s and Minkowski’s inequalities and, again, with Proposition
15 we obtain that

}f}L2pTq À

ˆ

ÿ

kPN
}fk}2L1pTq

˙1{2

ď

›

›

›

›

ˆ

ÿ

kPN
|fk|2

˙1{2›

›

›

›

L1pTq

À }f}L log1{2 LpTq ,

hence reproving the classical inequality of Zygmund.

Main results in [BCPV24]

Motivated by the aforementioned results in [TW01], we are interested in understanding weak-
type endpoint bounds for higher order Marcinkiewicz multipliers.

We consider higher order lacunary partitions of the real line. These can be defined as
follows. For a dyadic interval I Ă R of finite measure we define its Whitney decomposition as
the collection of its maximal dyadic subintervals J Ă I such that distpJ,RzIq “ |J |. Denoting
by Λ1 the classical Littlewood–Paley dyadic partition of Rzt0u, we then define inductively the
τ´order (dyadic) lacunary partition Λτ as the collection of intervals obtained by taking the
Whitney decomposition of each interval I P Λτ´1. Denoting by lacτ the set of the endpoints
of such intervals, we see that lacτ is a successor of lacτ´1 according to Definition 2.

We consider τ -order Marcinkiewicz multipliers, namely, multipliers of uniformly bounded
variation over each interval in Λτ , and τ -order Hörmander–Mihlin multipliers, that is, multi-
pliers that are singular on the set of endpoints lacτ , we refer to Subsection C.1.2 for rigorous
definitions. The rough and the smooth square functions formed by frequency projections
adapted to Λτ can be seen as prototypical examples of the aforementioned multipliers. We
denote such rough and smooth square functions as SΛτ and rSΛτ , respectively. As reviewed
in Section 1.2, all these operators are bounded on Lp for 1 ă p ă 8. We are interested in
weak-type endpoint estimates for such operators.

Our first main result is the following and corresponds to and Theorem 30 in Appendix C.

Theorem 16 (Theorem A in [BCPV24]). Let Tm a Marcinkiewicz multiplier operator of order
τ P N. Then

|tx P R : |Tmfpxq| ą αu| À

ż

R

|f |

α

ˆ

log

ˆ

e`
|f |

α

˙˙τ{2

, α ą 0.

The same holds for the rough Littlewood–Paley square function SΛτ . Such endpoint estimates
are sharp, meaning that the exponent τ{2 cannot be replaced by any smaller one.
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Theorem 16 implies at once the following local estimate: let Tm be a Marcinkiewicz
multiplier operator of order τ , then for every interval I Ă R and function f with suppf Ă I
it holds that

|tx P I : |Tmfpxq| ą αu| À
1

α

ż

I
|f |

ˆ

log

ˆ

e`
|f |

x|f |yI

˙˙τ{2

, x|f |yI :“ |I|´1

ż

I
|f |dx.

Theorem 16 is obtained as a consequence of a more general endpoint result for a τ -order gen-
eralization of the class of multipliers introduced by Coifman, Rubio de Francia, and Semmes.
We name such generalization R2,τ -multipliers. They include τ -order Marcinkiewicz multiplier
operators as well as τ -order Hörmander–Mihlin multiplier operators. We refer to Subsection
C.1.2 for a precise definition of these multipliers and to Theorem 31 for the corresponding
endpoint result. As a consequence, we obtain also the following endpoint result for higher or-
der Hörmander–Mihlin multiplier operators, which is the content of Theorem 32 in Appendix
C.

Theorem 17 (Theorem C in [BCPV24]). Let Tm a Hörmander–Mihlin multiplier operator
of order τ P N. Then

|tx P R : |Tmfpxq| ą αu| À

ż

R

|f |

α

ˆ

log

ˆ

e`
|f |

α

˙˙pτ´1q{2

, α ą 0.

The same holds for the smooth Littlewood–Paley square function rSΛτ . Such endpoint estimates
are sharp, meaning that the exponent pτ ´ 1q{2 cannot be replaced by any smaller one.

One of the main tools utilized in the proof of the aforementioned endpoint results is a
sort of square function characterization of the Orlicz spaces L logr L, for r ě 1{2, which in
the case r “ 1{2 recovers the analogous result in [TW01]. Recall the Chang–Wilson–Wolff
inequality [CWW85] which can be stated as

}f ´ E0f}exppL2qpr0,1sq À }SMf}L8pr0,1sq, (3.1)

with SMf – p
ř

kě1 |Dkf |2q1{2 the martingale square function. Our square function charac-
terization for L logr L, r ě 1{2, stems from the following observation which is of independent
interest: the Chang–Wilson–Wolff inequality (3.1) implies the discrete square function charac-
terization of L log1{2 L established in [TW01] and described in Proposition 14. This provides
a different approach to prove Proposition 14 which can be generalized to the case of L logr L,
r ě 1{2, leading to our next main result which is the content of Theorem 33 in Appendix C.

Theorem 18 (Theorem D in [BCPV24]). Let f P L logpσ`1q{2 L, with σ ě 0. Then for each
k P N0 there exist functions fk such that

Dkf “ Dkfk @k P N0,

›

›

›

›

›

›

˜

ÿ

kě0

|fk|2

¸1{2
›

›

›

›

›

›

L logσ{2 L

À }f}L logpσ`1q{2 L.

The implicit constant depends only on σ.
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A smooth version of this square function characterization, generalizing the one in Proposi-
tion 15, can be derived using averaging arguments as in [TW01], see Corollary 34 in Appendix
C.

As a final remark, we observe that such square function characterization implies the in-
equality of Bonami (1.12) for functions with frequency support in t2k1 ` ...` 2kτ : k1, ..., kτ P

N0, k1 ą ... ą kτu by the very same arguments utilized at the end of the previous paragraph.
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Appendix A

Sharp Fourier Extension on the
Circle Under Arithmetic
Constraints

This Appendix contains the article [CG24] written jointly by the author of this thesis and F.
Gonçalves. The article has been published in

Valentina Ciccone and Felipe Gonçalves. Sharp Fourier extension on the circle un-
der arithmetic constraints. J. Funct. Anal., 286(2): Paper No. 110219, 21, 2024.
https://doi.org/10.1016/j.jfa.2023.110219

Abstract

We establish a sharp adjoint Fourier restriction inequality for the end-point Tomas–Stein
restriction theorem on the circle under a certain arithmetic constraint on the support
set of the Fourier coefficients of the given function. Such arithmetic constraint is a
generalization of a B3-set.

A.1 Introduction

In this paper we are interested in the optimal constant for the Fourier extension inequality

||xfσ||6L6pR2q ď Copt||f ||6L2pS1q , (A.1)

where σ is the arc length measure on S1, xfσ is the Fourier transform of the measure fσ,

xfσpxq “

ż

S1
fpωqe´ix¨ωdσω, x P R2,

and Copt is the optimal constant

Copt :“ sup
fPL2pS1q, f‰0

||xfσ||6L6pR2q||f ||
´6
L2pS1q

.
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This problem has attracted a lot of attention in the last decade. Existence of maximizers have
been established in [Sha16a] and it is known that maximizers are smooth [Sha16b, OeSQ21b],
and that they can be chosen to be non-negative and antipodally symmetric, see [CFOeST17].
In [CFOeST17], and later in [GN22], it has been established that constant functions are local
maximizers. In fact, it is conjectured that constant functions are indeed global maximizers in
which case

Copt “ p2πq4
ż 8

0
J6
0 prqrdr .

If this were true, a full characterization of the complex valued maximizers is provided in
[CFOeST17]. Moreover, in [OeSQ21a] it is shown that if (A.1) is maximized by constants
then the following inequality

||xfσ||L2kpR2q ď C2k,opt||f ||L2pS1q ,

is also maximized by constants for every k ą 3.
A major technical challenge in the study of extremizers for (A.1) lies in the fact that the

threefold convolution σ ˚ σ ˚ σpxq, which arises naturally when exploiting the evenness of the
exponent in the right hand side of (A.1) and using Plancharel, blows up when |x| “ 1, see
[CFOeST17].

We recall that any complex-valued f P L2pS1q can be expanded in Fourier series

fpωq “
ÿ

nPZ

pfpnqωn,

where we let ω “ x` iy if ω “ px, yq P S1. We also define the spectrum of f to be

specpfq “ tn P Z : pfpnq ‰ 0u.

In [OeSTZK22, BTZK23] the case of band-limited functions was explored, that is, when
|specpfq| ă 8. Specifically, it has been shown that constant functions are the unique maximiz-
ers among the class of real-valued, non-negative, antipodally symmetric functions f P L2pS1q

with specpfq Ď r´30, 30s and specpfq Ď r´120, 120s, respectively. Note that when restrict-
ing to the band-limited case the problem becomes finite-dimensional (a matter of comput-
ing the eigenvalues of a quadratic form) and it can be addressed numerically as done in
[OeSTZK22, BTZK23].

In this paper we consider functions in L2pS1q whose spectrum can be infinite, but it satisfies
certain arithmetic constraints. More specifically, we establish the desired sharp inequality for
functions in L2pS1q whose spectrum is sufficiently sparse in the following sense:

Definition 4. A set A Ă Z is said to be a Pp3q-set if for every D P A`A`A one (and only
one) of the following holds:

• D is unique, that is, D “ a1 ` a2 ` a3, the triple pa1, a2, a3q P A ˆ A ˆ A is unique
modulo permutations and ai ‰ ´aj for i ‰ j;

• D is trivial, that is, D is not unique and the only way of representing D is D “ D`a´a
for some a P AX p´Aq.
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We use the terms unique and trivial here merely for useful case distinction to be used later
on in the proof of our main result. We extend such notion and give a more general definition
in Section A.2 for arbitrary h-sums A`A` ...`A, what we call Pphq-sets. A complete list
of all Pp3q-sets A Ă r´3, 3s X Z is

t0u, ˘t1u, ˘t2u, ˘t3u, t´3, 3u, t´2, 2u, ˘t´2, 3u, t´1, 1u, ˘t´1, 2u,

˘ t´1, 3u, ˘t0, 1u, ˘t0, 2u,˘t0, 3u, ˘t1, 2u, ˘t1, 3u, ˘t2, 3u, t´3, 0, 3u,

˘ t´3, 2, 3u, ˘t´2,´1, 3u, ˘t´2, 0, 2u, ˘t´2, 0, 3u, t´2, 1, 2u, ˘t´2, 1, 3u,

˘ t´2, 2, 3u, t´1, 0, 1u, ˘t´1, 0, 3u, ˘t´1, 2, 3u, t´3,´2, 2, 3u.

A simple example of a symmetric infinite Pp3q-set is A “ t˘6n : n ě 0u Y t0u (see Example
2).

Beside providing explicit examples of constructions of Pp3q-sets one may ask how fast can
the counting function

x ÞÑ |specpfq X r´x, xs|

grow. In Example 3 we construct an infinite symmetric Pp3q-set A (via greedy choice) such
that

|AX r´x, xs| Á x1{5,

On the other hand, if A is a Pp3q-set then it is easy to see that AX r1,8s and p´Aq X r1,8s

are B3-sets (see Section A.2) and thus if we consider the
`

|Ax|`2
3

˘

multi-sets of size 3 in
Ax “ AX r1, xs, the sums of the elements represent each number in r1, 3xs XZ` at most once,
hence

3x ě

ˆ

|Ax| ` 2

3

˙

“ 1
6p|Ax| ` 2qp|Ax| ` 1q|Ax|,

and so |AX r´x, xs| À x1{3. Constructing Bh-sets with large density is a very hard task that
have drawn a lot of attention in the literature, especially in the interplay of combinatorics,
probability and number theory, and we refer to the introduction of [Cil14] and the references
therein for further information. Since anyB3-set is a Pp3q-set we can simply rely on Cilleruelo’s
result [Cil14], see also Cilleruelo and Tesoro [CT15], to obtain existence of a Pp3q-set A with
only positive integers and counting function satisfying

|AX r´x, xs| Á x
?
5´2,

which is the current best existence result in terms of the exponent
?
5 ´ 2 “ 0.23....

We are now ready to state our main result.

Theorem 19. Let f P L2pS1q be such that its spectrum

specpfq “ tn P Z : pfpnq ‰ 0u

is a Pp3q-set. Then

||xfσ||6L6pR2q ď p2πq4
ˆ

ż 8

0
J6
0 prqrdr

˙

||f ||6L2pS1q.

and equality is attained if and only if f is constant.
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To the best of our knowledge it is the first time that this inequality is established for
functions f with an infinite spectrum and that simultaneously do not need to be “close” to
constant functions. A simple function which is not comtemplated by the previous results
[CFOeST17, OeSTZK22, BTZK23] is fpωq “ 1 ` cωn for arbitrary n and large c. The
function f is not real-valued nor non-negative antipodally symmetric, hence we cannot apply
the results in [OeSTZK22, BTZK23]. Moreover, for large c we cannot apply the local result
of [CFOeST17]. However, the set A “ t0, nu is a Pp3q-set, and thus Theorem 19 applies.

Clearly, by translation invariance, one could instead ask that the spectrum of ω ÞÑ

eiτ ¨ωfpωq is a Pp3q-set for some τ P R2 and obtain the same inequality.

The proof of Theorem 19 relies crucially on some refined estimates on integrals involving
the product of six Bessel functions. Some of these integrals involve Bessel functions of lower
order and need to be estimated numerically. In Lemma 20 we estimate such integrals by
employing a new method (quite different from [OeST17, OeSTZK22, BTZK23]) that avoids
doing any numerical integration, and makes use instead of a known quadrature formula for
band-limited functions in R2.

A.1.1 Overview

This paper is organized as follows. In Section A.2 we give a precise definition of Pphq-set.
Then we propose some examples of Pphq-set with non-trivial symmetric subsets. In Section
A.3 we study some refined estimates on integral involving the product of six Bessel functions.
In Section A.4 we prove our main result. Finally, in Section A.5 we propose a further example
of application of the developed strategy to the study of sharp inequalities.

A.2 A Generalization of Bh-sets

A subset S Ď Z is said to be a Bh-set, with h ě 2, if for any a1, ..., ah, b1, ..., bh P S such
that a1 ` ... ` ah “ b1 ` ... ` bh we have that pa1, ..., ahq is a permutation of pb1, ..., bhq. If
h “ 2 the set S is sometimes said to be a Sidon set 1. We are interested in defining a suitable
generalization of Bh-sets to account for the case of sets A Ď Z with non-trivial symmetric
subsets, namely such that |A X ´A| ě 3. It is immediate to see that such symmetric sets
cannot be Bh-sets: in fact, for example, when h is even there is always more than one way
of representing zero as sum of h elements in A, whereas when h is odd there is always more
than one way of representing any element in A as a sum of elements in A.

In what follows we let Ak denotes the iterated sum of k copies of A, e.g. A3 “ A`A`A.

Definition 5 (Property Pphq). We say that the set A satisfies property Pphq (with h ě 2),
or that A is a Pphq-set, if for any D P Ah there exists 0 ď ℓ ď h with the same parity of h
and a unique set of ℓ elements ta1, ..., aℓu, with a1, ..., aℓ P A, ai ‰ ´aj for all i ‰ j, and such
that any h´tuple pb1, ..., bhq, with b1, ..., bh P A and b1 ` ... ` bh “ D is a permutation of a
h´tuple pa1, ..., aℓ, u1,´u1, ..., uph´lq{2,´uph´lq{2q for some u1, ..., uph´lq{2 P AX p´Aq.

1This has not to be confused with the other definition of Sidon set according to which a set E is a Sidon set
if every continuous function f : S1

Ñ C with specpfq Ď E has absolutely convergent Fourier series. To avoid
confusion we will always refer to Bh-sets with h “ 2 as B2-sets.
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We recall that a set E Ă Z is said to be a Λp-set, for some p ą 2, if there exists a constant
C such that

||f ||LppS1q ď C||f ||L2pS1q

for all functions f P L2pS1q whose spectrum is contained in E. It is well known that Bh-sets
are Λ2h-sets (see e.g. [Bou01]).

The following observations follow immediately from the definition of property Pphq.

• If A is a Pphq-set then AX N and ´AX N are Bh-sets, and thus A is a Λ2h-set.

• If A is a Bh-set then A is a Pphq-set.

• If |AX ´A| ď 2 and A is a Pphq-set then A is a Bh-set.

• If A is a Pphq-set and S Ď A then S is a Pphq-set.

• If A is a Pphq-set then ´A is a Pphq-set.

• If A is a Bh-set, the set AY´A does not necessarily satisfy property Pphq: in fact, for ex-
ample, the set of powers of two, t1, 2, 4, ...u, is aB2-set, however the set t´1,´2,´4, ...uY

t1, 2, 4, ...u does not satisfy property Pp2q, since, for example, 1 ` 1 “ 4 ´ 2.

A.2.1 Examples of Pphq-sets

Since any Bh-set is a Pphq-set, the more interesting task is to provide examples of sets A that
satisfy property Pphq for some h and that are such that |AX ´A| ě 3.

Example 1. A sequence of positive integers tλnu is said to be (Hadamard) lacunary if λn`1 ě

qλn for some q ą 1. Let Aλ,q :“ tλnu Y p´tλnuq Y t0u. We claim that Aλ,q satisfies property
Pphq whenever q ą 2h´ 1. To see this assume a1, ..., ah, b1, ..., bh P Aλ,q are such that

a1 ` ...` ah “ b1 ` ...` bh . (A.2)

On both sides of (A.2) we omit the zero terms and simplify terms of the form aj ` ai with
ai “ ´aj and bm ` bn with bm “ ´bn. If no term is left on both sides of (A.2) then
a1 ` ...` ah “ b1 ` ...` bh “ 0 and pa1, ..., ahq, pb1, ..., bhq are consistent with property Pphq.
On the other hand, if terms are left on at least one side of (A.2) we further arrange them so
that to have only positive terms on both sides obtaining

α1 ` ...` αh1 “ β1 ` ...` βh2 (A.3)

where tα1, ..., αh1 , β1, ..., βh2u Ď t|a1|, ..., |ah|, |b1|, ..., |bh|u, α1, ..., αh1 , β1, ..., βh2 ą 0 and h1 `

h2 ď 2h, h1, h2 ě 1. We want to show that tα1, ..., αh1u “ tβ1, ..., βh2u. We proceed in a similar
way as in [Gra14, Proof of Theorem 3.6.4.]. We start by showing that maxtα1, ..., αh1u “

maxtβ1, ..., βh2u. Assume by contradiction that maxtα1, ..., αh1u ą maxtβ1, ..., βh2u. Then
maxtα1, ..., αh1u ě qmaxtβ1, ..., βh2u. On the other hand we have

maxtα1, ..., αh1u ď β1 ` ...` βh2 ď h2 maxtβ1, ..., βh2u ă qmaxtβ1, ..., βh2u
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where in the last inequality we have used the fact that h2 ď 2h ´ 1 ă q. By assuming that
maxtβ1, ..., βh2u ą maxtα1, ..., αh1u we have a similar contradiction. Hence maxtα1, ..., αh1u “

maxtβ1, ..., βh2u. Proceeding by induction we see that h1 “ h2 and tα1, ..., αh1u “ tβ1, ..., βh2u

as claimed. Because we got rid of the cases ai “ ´aj , bm “ ´bn in the very beginning this
further implies that there exists a unique (up to permutation) h1-tuple of elements in Aλ,q
that sums up to D “ a1 ` ...` ah “ b1 ` ...` bh .

Example 2. As a particular case of the above result, the set Sq :“ t˘qn : n ě 0u Y t0u is a
Pphq-set whenever q ě 2h. Note that the set Sq for q “ 2h´ 1 does not satisfy property Pphq

since
hq “ q ` ...` q

h times

“ q2 ` p´q ´ ...´ q

h´1 times

q

It begs the question whether we can still prove Theorem 19 with an adaptation of our method
for the functions f with specpfq Ă Sq for q “ 5, 4, 3, 2. We leave this question for future work.
One interesting and possibly useful feature is that for q “ 5, 4, 3 we only have finitely many
exceptions (modulo multiplication by qn) breaking property Pp3q. For instance, for q “ 3, 4, 5
the only exceptions are 1`1`1 “ 9´3´3 “ 3`0`0, 1`1`1 “ 4´1´0, 1`1`1 “ 5´1´1.
In generality, for h ď q ă 2h the set Sq only has finitely many exceptions not satisfying the
property Pp2hq. To see this, let 2 ď h ď q, b P Z and m ě 2 with |b| `m ď 2h` 1. We claim
there are only finitely many solutions to

b “

m´1
ÿ

j“1

ajq
lj (A.4)

with aj “ ˘1, li ě li`1 ě 0 and with the property that li “ lj implies ai “ aj . Such claim
with b “ 0 easily shows what we want. Note that if lm´1 ą 0 then q divides b and so b “ q,
lm´1 “ 1, and we obtain 1 ˘ 1 “

řm´2
j“1 ajq

lj´1. If lm´1 “ 0 then 1 ˘ 1 “
řm´2
j“1 ajq

lj . In any

case, if we let Pm,b “ tpaj , ljq
m´1
j“1 : solves (A.4)u we deduce that

|Pm,b| “ |Pm´1,b´1| ` |Pm´1,b`1|.

Now note that by unique expansion in base q the set Ph,b is a singleton for |b| ď h except
when b “ 0, in which case Ph,b “ H, or |b| “ q “ h, in which case |Ph,b| “ 2. This
shows that |Pm,b| ă 8. The case q “ h ´ 1 has infinitely many exceptional cases, such as:
1 ` ph´ 1qn ` ...` ph´ 1qn “ ph´ 1qn`1 ` 1 ` 0.

Example 3. For a given set E let Epxq be the counting function Epxq :“ |E X r´x, xs|. It
is easy to check that the above examples are such that Aλ,qpxq À log2h´1pxq and Sqpxq „

logqpxq. An example of a denser set that satisfies property Pphq can be straightforwardly
constructed applying the following greedy algorithm that generalizes the one of Erdös for
B2-sets, see [Erd81, Cil14]. We start by setting a1 :“ 1 and a´1 :“ ´a1. Then we de-
fine the element an to be the smallest integer greater than an´1 and such that the set
t´an, a´n`1, ..., a´1, a1, ...an´1, anu satisfies property Pphq. Then we set a´n :“ ´an and
iterate the procedure. It is easy to check that the resulting sequence of integers A is such
that Apxq Á x1{p2h´1q. In fact at each step there cannot be more than p2n ´ 2q2h´1 distinct
elements of the type ai1 ` ...`aih ´aj1 ´ ...´ajh´1

with ´pn´1q ď i1, ..., ih, j1, ..., jh´1 ď n´1

and therefore an ď pn´ 1q2h´1 ` 1 and Apxq Á x1{p2h´1q.
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Example 4. The construction of the following example is adapted from [Rud60] (see also
[HZ59]) where a similar strategy is used to construct Sidon sets that are not (Hadamard)
lacunary. For n “ 0, 1, 2, ... we set N :“ 2n. Then we define Ah to be the set of elements of
the type

˘pp2hq4N ` p2hqN`jq j “ 0, ..., N ´ 1, n “ 0, 1, 2, ... .

Such a set is not of the type of Example 1, in fact Ah contains N elements between an,0 :“
pp2hq4N ` p2hqN`0q and an,N´1 :“ pp2hq4N ` p2hqN`N´1q, an,N´1 ă 2an,0 , while sets of
the type in Example 1 contain a bounded number of elements between x and 2x as x tends
to infinity. We claim that the set Ah satisfies property Pphq. To see that, let ani,ji , bni,ji P

Ah, i “ 1, ..., h, be such that

an1,j1 ` ...` anh,jh “ bn1,j1 ` ...` bnh,jh .

After simplifying on both sides the elements of the type x` p´xq and rearranging we obtain
something like

α1cn1,j1 ` ...` αscns,js “ 0 (A.5)

where |αi| ď 2h ´ 1, s ď 2h, cni,ji P Ah, i “ 1, ..., s, and we assume that cn1,j1 ă ... ă

cns,js . But then if α1 ‰ 0 we would have that cn1,j1 is divisible by a lower power of 2h than
cn2,j2 , ..., cns,js and therefore (A.5) is impossible.

A.3 Estimates for certain integrals of Bessel functions

A simple computation (using the integral representation for Bessel functions) shows that if
we let ω “ x` iy for ω “ px, yq P R2 then

yωnσpx, yq “ 2πp´iqn
Jnp

a

x2 ` y2q

px2 ` y2qn{2
ωn,

where σ is the arc measure on S1 and Jn is the Bessel function of first kind. The following
lemma is crucial for the proof of our main result. In what follows, all numerical computations
were performed using the [BBB`98, version 2.15.3] computer algebra system.

Lemma 20. We have the following inequalities:

(i) For all integers n ą 1 it holds that

ż 8

0
J4
0 prqJ2

nprqrdr ă
1

5

ż 8

0
J6
0 prqrdr

and
ż 8

0
J4
0 prqJ2

1 prqrdr “
1

5

ż 8

0
J6
0 prqrdr.

(ii) For all integers n ą 0 it holds that

ż 8

0
J2
0 prqJ4

nprqrdr ă
2

15

ż 8

0
J6
0 prqrdr.
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(iii) For all integers n ą 0 it holds that

ż 8

0
J6
nprqrdr ă

1

3

ż 8

0
J6
0 prqrdr.

(iv) For all integers n,m ą 0, n ‰ m and such that pn,mq ‰ p1, 2q it holds that

ż 8

0
J4
nprqJ2

mprqrdr ă
1

9

ż 8

0
J6
0 prqrdr.

Moreover,
ż 8

0
J4
1 prqJ2

2 prqrdr ă
1

6

ż 8

0
J6
0 prqrdr.

(v) For all integers n ą m ą ℓ ě 0 such that pn,m, ℓq ‰ p3, 2, 0q it holds that

ż 8

0
J2
ℓ prqJ2

mprqJ2
nprqrdr ă

1

15

ż 8

0
J6
0 prqrdr.

Moreover,
ż 8

0
J2
3 prqJ2

2 prqJ2
0 prqrdr ă

1

6

ż 8

0
J6
0 prqrdr.

We start by recalling some known bounds on Bessel functions and Bessel integrals.

• The following pointwise bound can be found in [OeST17, Corollary 9]

r1{2|J0prq| ă γ (A.6)

for r ą 0, where γ “ 0.89763 (which is a truncation of 9
8

b

2
π q.

• The following pointwise bound was proven in [Ole06]

r1{2|Jnprq| ă β
b

n1{3 ` α
n1{3 ` 3α2

10n (A.7)

for r ą 0 and n ą 0 where β “ 0.674886 and α “ 1.855758.

• The following identity can be found in [GR07, Equation 6.574-2]

ż 8

0
J2
nprqr´λdr “

ΓpλqΓpn`
p1´λq

2 q

2λΓ
`

1`λ
2

˘2
Γ

`

n` 1`λ
2

˘

(A.8)

for 0 ă λ ă 2n` 1.

We are now ready to prove the lemma. For simplicity we define

Ipn1, ..., n6q :“

ż 8

0
Jn1prq...Jn6prqrdr and Ipn1, n2, n3q :“ Ipn1, n1, n2, n2, n3, n3q. (A.9)
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Proof. First we require a good lower bound for Ip0, 0, 0q which is

Ip0, 0, 0q ą 0.33682.

Such numerical lower bounds (and the upper bounds below) were done using Lemma 21 and
evaluating the sum rIpn,m, ℓq with high precision (nowadays most computer algebra systems
can do it extremely fast).

We start by proving the estimate in (i). Using (A.6) and (A.8) we obtain

Ip0, 0, nq ă γ4
ż 8

0
J2
nprqr´1dr “ γ4

1

2n
. (A.10)

One can easily check that γ4 1
2n ď 1

50.33682 when n ě 5. For n “ 2, 3, 4 we have

Ip0, 0, nq ă rIp0, 0, nq ` 10´4 ď rIp0, 0, 2q ` 10´4 “ 0.0370...,

which is visibly less than 1
50.33682 “ 0.067364. Integration by parts in conjunction with the

relation J0prq “ J 1
1prq ` 1

rJ1prq shows the desired identity Ip0, 0, 0q “ 5Ip0, 0, 1q.
To prove item (ii) we use (A.6), (A.7) and (A.8) to obtain

Ip0, n, nq ă γ2β2
ˆ

n1{3 `
α

n1{3
`

3α2

10n

˙
ż 8

0
J2
nprqr´1dr “ γ2β2

ˆ

n1{3 `
α

n1{3
`

3α2

10n

˙

1

2n
.

The right hand side above is a decreasing function of n and one can check that it is less than
2
150.33682 for n ě 14. For 1 ď n ď 13 we have the numerical bounds

Ip0, n, nq ă rIp0, n, nq ` 10´4 ď rIp0, 1, 1q ` 10´4 “ 0.0424...,

which is less than 2
150.33682 “ 0.0449093....

To prove item (iii) we use (A.7) and (A.8) to obtain

Ipn, n, nq ă

ˆ

β

c

n1{3 `
α

n1{3
`

3α2

10n

˙4 1

2n
.

Also in this case the right hand side is a decreasing function of n. When n ě 9 the right hand
side is less than 1

30.33682, while for 1 ď n ď 8 we have the numerical bounds

Ipn, n, nq ă rIpn, n, nq ` 10´4 ď rIp1, 1, 1q ` 10´4 “ 0.1049...,

which is less than 1
30.33682 “ 0.112273....

To prove the estimate in (iv) first let for n ě 1

Bn “ β

c

n1{3 `
α

n1{3
`

3α2

10n

and B0 “ γ. One can show that Bn is increasing for n ě 6 and max0ďnď5Bn “ B1 ă B36.
Next we let k “ maxtn,mu and we use (A.7) and (A.8) to obtain

Ipn, n,mq ă maxtB2
36, B

2
ku2

ż 8

0
J2
k prqr´1dr “

maxtB2
36, B

2
ku2

2k
.
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The right hand side is a decreasing function of k and one can easily check that it is less than
1
90.33682 when k ě 49. For 1 ď k ď 48 with pn,mq ‰ p1, 2q we rely on the numerical bounds

Ipn, n,mq ă rIpn, n,mq ` 10´4 ď rIp2, 2, 3q ` 10´4 “ 0.0335...,

which is visibly less than 1
90.33682 “ 0.037424.... Moreover, Ip1, 1, 2q ă rIp1, 1, 2q ` 10´4 “

0.0424... ă 1
60.33682 “ 0.0561....

To prove the estimate in (v) we can then use (A.7) and (A.8) to obtain

Ipn,m, ℓq ă B2
ℓB

2
m

ż 8

0
J2
nptqr´1dr “

B2
ℓB

2
m

2n
ď

maxtB2
36, B

2
ℓ umaxtB2

36, B
2
mu

2n

ď
maxtB2

36, B
2
n´2umaxtB2

36, B
2
n´1u

2n
.

A tedious computation shows again that the right hand side above is indeed a decreasing
function of n. One can easily check that it is less than 1

150.33682 when n ě 145, while for
1 ď n ď 144 with pn,m, ℓq ‰ p3, 2, 0q we have the numerical bounds

Ipn,m, ℓq ă rIpn,m, ℓq ` 10´4 ď rIp4, 2, 0q ` 10´4 “ 0.0185...,

which is less than 1
150.33682 “ 0.0224546.... Moreover, Ip3, 2, 0q ă rIp3, 2, 0q ` 10´4 “

0.0243... ă 1
60.33682 “ 0.0561.... ■

Lemma 21. For all integers k,m, ℓ ě 0 with maxtk,m, ℓu ď 11519 we have

rIpk,m, ℓq ă Ipk,m, ℓq ă rIpk,m, ℓq ` 10´4,

where

rIpk,m, ℓq “
2

9

22000
ÿ

n“0

Jkpλn{3q2Jmpλn{3q2Jℓpλn{3q2

J0pλnq2

and tλnuně0 are the nonnegative zeros of the Bessel function J1 (with λ0 “ 0) .

Proof. First we use a particular case of a formula of Ben Ghanem and Frappier [BGF98]
(although this identity can be found in disguise in much older papers) which says that if
f P L1pR2q is radial and suppp pfq Ă B 1

π
p0q (or equivalently, if f is analytic in C2 and has

exponential type at most 2) then

ż

R2

fpxqdx “ 4π
ÿ

ně0

fpλnq

J0pλnq2
.

We can apply this formula for fpxq “ Jkp13 |x|q2Jmp13 |x|q2Jℓp
1
3 |x|q2 to deduce that

Ipk,m, ℓq “
2

9

ÿ

ně0

Jkpλn{3q2Jmpλn{3q2Jℓpλn{3q2

J0pλnq2
.
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We then let rIpk,m, ℓq be the above sum truncated up to n “ 22000. To bound the tail we
first apply [Kra14, Theorem 3], from which one easily deduce that

r1{2|Jkprq| ă 1 (A.11)

for all k ě 1 and r ą 2k. Noticing that λ22001{3 “ 23039.65... ą 2 ˆ 11519 we obtain

2

9

ÿ

ną22000

Jkpλn{3q2Jmpλn{3q2Jℓpλn{3q2

J0pλnq2
ă 6

ÿ

ną22000

1

λ3nJ0pλnq2
.

Secondly, we apply Krasikov’s effective envolope [Kra06, Lemma 1] for ν “ 0 (noting that
µ “ 3 and J 1

0pxq “ ´J1pxq) to obtain that

J0pλnq2 ą 0.99 ˆ
2

πλn

for n ą 22000 (indeed J0pλnq2 „ 2
πλn

). Now we apply a result of Makai [Mak78] that shows
that ν ÞÑ λν,n{ν is decreasing, where λν,n is the n-th zero of Jν . It is also well-known that
λν`1,n ą λν,n for all n ě 1 and ν ą ´1. Hence

λn “
λ1,n
1

ą
λ3{2,n

3{2
ą
λ1{2,n

3{2
“ 2

3πn,

because J1{2pxq “
a

2π{x sinpxq (with a more careful search in the literature one could possibly
derive λn ě .99πn for n ą 22000, since λn „ πn). We obtain that

6
ÿ

ną22000

1

λ3nJ0pλnq2
ă 2.18

ÿ

ną22000

1

n2
ă 2.18

ż 8

22000
x´2dx ă 10´4.

■

A.4 Proof of the main result

Let f P L2pS1q be a complex valued function and let A “ specpfq. Then by Hecke-Bochner
formula we can write

p2πq´7||xfσ||6L6pR2q “ p2πq´7

ż

R2

xfσpxqxfσpxqxfσpxqxfσpxqxfσpxqxfσpxqdx

“
ÿ

n1,...,n6PA
n1`n2`n3“n4`n5`n6

pfpn1q pfpn2q pfpn3q pfpn4q pfpn5q pfpn6qIpn1, ..., n6q

“
ÿ

DPA3

ÿ

n1,...,n6PA
n1`n2`n3“D
n4`n5`n6“D

pfpn1q pfpn2q pfpn3q pfpn4q pfpn5q pfpn6qIpn1, ..., n6q

where we are using the notation introduced in (A.9). Now if A satisfies Pp3q we can split the
last summation over the D P A3 that are unique and over those that are trivial. Note that
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by Definition 4 if 0 P A3 then 0 is trivial. We focus first on the case D P A3 that are unique
for which we obtain the following

pIq :“
ÿ

DPA3

Dunique

ÿ

n1,n2,n3,n4,n5,n6PA
n1`n2`n3“D
n4`n5`n6“D

pfpn1q pfpn2q pfpn3q pfpn4q pfpn5q pfpn6qIpn1, n2, n3, n4, n5, n6q

“6
ÿ

n1,n2,n3PA
|ni|‰|nj | for i‰j

| pfpn1q|2| pfpn2q|2| pfpn3q|2Ipn1, n2, n3q

` 9
ÿ

n1PAzt0u, n3PA
|n1|‰|n3|

| pfpn1q|4| pfpn3q|2Ipn1, n1, n3q

`
ÿ

n1PAzt0u

| pfpn1q|6Ipn1, n1, n1q,

Now we focus on the sum over the set tD P A3 : D trivialu. We use the short hand notation
As “ A X p´Aq, At “ A X trivial and As,t “ As X At. In this case the set tpn1, n2, n3q P

AˆAˆA : n1 ` n2 ` n3 “ Du is the disjoint union of the following sets

S1pDq “tpD, a,´aq : a P Aszt˘Duu

S2pDq “tp´a,D, aq : a P Aszt˘Duu

S3pDq “tp´a, a,Dq : a P Aszt˘Duu

S4pDq “tpD,D,´Dq, p´D,D,Dq, pD,´D,Dqu.

Letting εD “ |S4pDq| we obtain

pIIq :“
ÿ

DPA3

D trivial

4
ÿ

i,j“1

ÿ

pn1,n2.n3qPSipDq

pn4,n5.n6qPSjpDq

pfpn1q pfpn2q pfpn3q pfpn4q pfpn5q pfpn6qIpn1, ..., n6q

“9
ÿ

DPAt
n1,n2PAszt˘Du

pfpDq pfpn1q pfp´n1q pfpDq pfpn2q pfp´n2qIpD,n1,´n1, D, n2,´n2q

` 18Re

ˆ

ÿ

DPAs,tzt0u

n1PAszt˘Du

pfpDq pfpDq pfp´Dq pfpn1q pfp´n1q pfpDqIpD,D,´D,D, n1,´n1q

˙

` 6Re

ˆ

pfp0q pfp0q pfp0q
ÿ

n1PAszt0u

pfpn1q pfp´n1q pfp0qIp0, 0, 0, 0, n1,´n1q

˙

` 9
ÿ

DPAs,tzt0u

| pfpDq|4| pfp´Dq|2IpD,D,´D,D,D,´Dq

` | pfp0q|6Ip0, 0, 0, 0, 0, 0q

“9
ÿ

DPAt
n1,n2PAszt˘Du

|n1|‰|n2|

pfpDq pfpn1q pfp´n1q pfpDq pfpn2q pfp´n2qIpD,n1,´n1, D, n2,´n2q
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` 9
ÿ

DPAt
n1PAszt˘Du

p2 ´ δn1“0q| pfpDq|2| pfpn1q|2| pfp´n1q|2IpD,D, n1,´n1, n1,´n1q

` 18Re

ˆ

ÿ

DPAs,tzt0u

n1PAszt˘Du

pfpDq pfpDq pfp´Dq pfpn1q pfp´n1q pfpDqIpD,D,´D,D, n1,´n1q

˙

` 6Re

ˆ

pfp0q pfp0q pfp0q
ÿ

n1PAszt0u

pfpn1q pfp´n1q pfp0qIp0, 0, 0, 0, n1,´n1q

˙

` 9
ÿ

DPAs,tzt0u

| pfpDq|4| pfp´Dq|2IpD,D,´D,D,D,´Dq

` | pfp0q|6Ip0, 0, 0, 0, 0, 0q

Then using the identity J´n “ p´1qnJn and by the triangle inequality we obtain

pIIq ď 9
ÿ

DPAt
n1,n2PAszt˘Du

|n1|‰|n2|

| pfpDq|2| pfpn1q pfp´n1q|| pfpn2q pfp´n2q|IpD,n1, n2q

` 9
ÿ

DPAt
n1PAszt˘Du

p2 ´ δn1“0q| pfpDq|2| pfpn1q|2| pfp´n1q|2IpD,n1, n1q

` 18
ÿ

DPAs,tzt0u

n1PAszt˘Du

| pfpDq|2| pfpDq pfp´Dq|| pfpn1q pfp´n1q|IpD,D, n1q

` 6
ÿ

n1PAszt0u

| pfp0q|2| pfp0q pfp0q|| pfpn1q pfp´n1q|Ip0, 0, n1q

` 9
ÿ

DPAs,tzt0u

| pfpDq|4| pfp´Dq|2IpD,D,Dq

` | pfp0q|6Ip0, 0, 0q .

Next, by using the known inequalities

rs ď 1
2r

2 ` 1
2s

2 and r3s ď 5
8r

4 ` 1
8s

4 ` 1
4r

2s2

for r, s ą 0, we further get the following inequality

pIIq ď 9
ÿ

DPAt
n1,n2PAszt˘Du

|n1|‰|n2|

| pfpDq|2
ˆ

| pfpn1q|2`| pfp´n1q|2

2

˙ˆ

| pfpn2q|2`| pfp´n2q|2

2

˙

IpD,n1, n2q

` 9
ÿ

DPAt
n1PAszt˘Du

p2 ´ δn1“0q| pfpDq|2| pfpn1q|2| pfp´n1q|2IpD,n1, n1q

` 18
ÿ

DPAs,tzt0u

n1PAszt˘D,0u

| pfpDq|2
ˆ

| pfpDq|2`| pfp´Dq|2

2

˙ˆ

| pfpn1q|2`| pfp´n1q|2

2

˙

IpD,D, n1q
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` 18
ÿ

DPAs,tzt0u

ˆ

5
8 | pfpDq|4 ` 1

8 | pfp´Dq|4 ` 1
4 | pfpDq pfp´Dq|2

˙

| pfp0q|2IpD,D, 0q

` 6
ÿ

n1PAszt0u

| pfp0q|4
ˆ

| pfpn1q|2`| pfp´n1q|2

2

˙

Ip0, 0, n1q

` 9
ÿ

DPAs,tzt0u

| pfpDq|4| pfp´Dq|2IpD,D,Dq

` | pfp0q|6Ip0, 0, 0q

“ 9
ÿ

DPAt
n1,n2PAszt˘Du

|n1|‰|n2|

| pfpDq|2| pfpn1q|2| pfpn2q|2IpD,n1, n2q

` 9
ÿ

DPAt
n1PAszt˘Du

p2 ´ δn1“0q| pfpDq|2| pfpn1q|2| pfp´n1q|2IpD,n1, n1q

` 18
ÿ

DPAs,tzt0u

n1PAszt˘D, 0u

| pfpDq|2
ˆ

| pfpDq|2`| pfp´Dq|2

2

˙

| pfpn1q|2IpD,D, n1q

`
27

2

ÿ

DPAs,tzt0u

| pfpDq|4| pfp0q|2IpD,D, 0q

`
9

2

ÿ

DPAs,tzt0u

| pfpDq|2| pfp´Dq|2| pfp0q|2IpD,D, 0q

` 6
ÿ

n1PAs,tzt0u

| pfp0q|4| pfpn1q|2Ip0, 0, n1q

` 9
ÿ

DPAs,tzt0u

| pfpDq|4| pfp´Dq|2IpD,D,Dq

` | pfp0q|6Ip0, 0, 0q.

We note that such inequalities hold with equality whenever ´A “ A and pfp´nq “ p´1qn pfpnq

which is the case, for instance, if f is real-valued and antipodally symmetric. Now we sum
everything together and replace At by A (observing that At “ A if As ‰ H and At “ H if
As “ H) to obtain the following upper bound

p2πq´7||xfσ||6L6pR2q “ pIq ` pIIq

ď
ÿ

n1,n2,n3PA
|ni|‰|nj | @i,jPt1,2,3u, i‰j

p6 ` 9δn1,n2PAsq | pfpn1q|2| pfpn2q|2| pfpn3q|2Ipn1, n2, n3q

` 9
ÿ

n1PAs, n3PA
|n1|‰|n3|

p2 ´ δn1“0q| pfpn3q|2| pfpn1q|2| pfp´n1q|2Ipn3, n1, n1q
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` 9
ÿ

n1,n3PAszt0u

|n1|‰|n3|

| pfpn3q|2| pfp´n3q|2| pfpn1q|2Ipn3, n3, n1q

` 9
ÿ

n1PAzt0u, n3PA
|n1|‰|n3|

p1 ` δn1,n3PAszt0uq| pfpn1q|4| pfpn3q|2Ipn1, n1, n3q

`
27

2

ÿ

n3PAszt0u

| pfpn3q|4| pfp0q|2Ipn3, n3, 0q

`
9

2

ÿ

n3PAszt0u

| pfpn3q|2| pfp´n3q|2| pfp0q|2Ipn3, n3, 0q

` 6
ÿ

n1PAszt0u

| pfp0q|4| pfpn1q|2Ip0, 0, n1q

` 9
ÿ

n3PAszt0u

| pfpn3q|4| pfp´n3q|2Ipn3, n3, n3q

`
ÿ

n1PAzt0u

| pfpn1q|6Ipn1, n1, n1q

` | pfp0q|6Ip0, 0, 0q.

Next we observe that we may write p2πq´3||f ||6L2pS1q
as

p2πq´3||f ||6L2pS1q “
ÿ

n1,n2,n3PA
|ni|‰|nj | @i,jPt1,2,3u, i‰j

| pfpn1q|2| pfpn2q|2| pfpn3q|2

` 3
ÿ

n1PAszt0u, n3PAzt0u

|n1|‰|n3|

| pfpn1q|2| pfp´n1q|2| pfpn3q|2

` 3
ÿ

n1PAzt0u, n3PAzt0u

|n1|‰|n3|

| pfpn1q|4| pfpn3q|2

` 3
ÿ

n1PAzt0u

| pfpn1q|4| pfp0q|2

` 3
ÿ

n1PAszt0u

| pfpn1q|2| pfp´n1q|2| pfp0q|2

` 3
ÿ

n1PAzt0u

| pfp0q|4| pfpn1q|2

` 3
ÿ

n1PAszt0u

| pfp´n1q|2| pfpn1q|4

`
ÿ

n1PAzt0u

| pfpn1q|6

` | pfp0q|6.
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Then by comparison of coefficients (going from bottom to top), the inequality ||xfσ||6L6pR2q
ď

p2πq4Ip0, 0, 0q||f ||6L2pS1q
would follow if

‚ 3Ipn, n, nq ď Ip0, 0, 0q, 5Ip0, 0, nq ď Ip0, 0, 0q, 15
2 Ipn, n, 0q ď Ip0, 0, 0q pn ą 0q

‚ 9Ipn, n,mq ď Ip0, 0, 0q, 15Ipn,m, ℓq ď Ip0, 0, 0q pn,m, ℓ ě 0 distinctq.

All of them follow easily by Lemma 20 except that the last two above are actually false, the
exceptions being pn,mq “ p1, 2q and pn,m, ℓq “ p3, 2, 0q respectively. However, note that
the inequality 9Ip1, 1, 2q ď Ip0, 0, 0q is only needed if t1, 2u Ă Aszt0u which is impossible
since 1 ` 1 ` 1 “ 2 ` 2 ´ 1 and so A would not be a Pp3q-set. We conclude that in fact
we only need 6Ip1, 1, 2q ď Ip0, 0, 0q, which is true by Lemma 20. Similarly, the inequality
15Ip3, 2, 0q ă Ip0, 0, 0q is only required if t3a, 2b, 0u Ă A for some a, b P t˘1u and either 2 or
3 also belong to ´A. This cannot be true since 3 ` 3 ` 0 “ 2 ` 2 ` 2, and A would not be
a Pp3q-set. We conclude that the inequality we actually need is 6Ip3, 2, 0q ă Ip0, 0, 0q, which
follows from Lemma 20. This finishes the proof. ■

A.5 A further example of application

Arguments similar to those in the previous section can be used to establish other sharp
extension inequalities for functions in L2pS1q whose spectrum satisfies property Pphq for some
suitable h. In this section we provide a further example of application for the case of the
L2pS1q to L6

radL
4
angpR2q Fourier extension estimates. The case of sharp L2pS1q to L6

radL
2
angpR2q

Fourier extension estimates has been studied in [FOeS17], see also [COeSS19].

Theorem 22. Let f P L2pS1q be such that its spectrum A satisfies property Pp2q. Then

||xfσ||6L6
radL

4
ang

ď p2πq9{2

ˆ
ż 8

0
J6
0 prqrdr

˙

||f ||6L2pS1q.

The inequality is sharp and equality is attained if and only if f is constant.

Proof. Without loss of generality we can assume that
ř

nPA | pfpnq|2 “ 1. Using Hecke-Bochner
formula we have that

||xfσ||6L6
radL

4
angpR2q

“

ż 8

0

ˆ
ż

S1
|xfσprωq|4dσpωq

˙6{4

rdr

“ p2πq15{2

ż 8

0

ˆ

ÿ

n1,n2,n3,n4PA
n1`n2“n3`n4

pfpn1q pfpn2q pfpn3q pfpn4qJn1prqJn2prqJn3prqJn4prq

˙3{2

rdr.

Now we use the fact that A satisfies property Pp2q to rewrite the sum in the integral as follows.

ÿ

n1,n2,n3,n4PA
n1`n2“n3`n4

pfpn1q pfpn2q pfpn3q pfpn4qJn1Jn2Jn3Jn4
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“
ÿ

DPA2

ÿ

n1,n2,n3,n4PA
n1`n2“D
n3`n4“D

pfpn1q pfpn2q pfpn3q pfpn4qJn1Jn2Jn3Jn4

“
ÿ

n1,n2PA
n1‰´n2

τpn1, n2q| pfpn1q|2| pfpn2q|2J2
n1
J2
n2

`
ÿ

n1,n2PAs

pfpn1q pfp´n1q pfpn2q pfp´n2qJn1J´n1Jn2J´n2

ď
ÿ

n1,n2PA
n1‰´n2

τpn1, n2q| pfpn1q|2| pfpn2q|2J2
n1
J2
n2

`
ÿ

n1,n2PAs

ˆ

| pfpn1q|2J2
n1

` | pfp´n1q|2J2
´n1

2

˙ˆ

| pfpn2q|2J2
n2

` | pfp´n2q|2J2
´n2

2

˙

“
ÿ

n1,n2PA

pτpn1, n2qδn1‰´n2 ` δn1,n2PAsq| pfpn1q|2| pfpn2q|2J2
n1
J2
n2

where τpn1, n2q “ 1 ` δn1‰n2 is the number of permutations of pn1, n2q. Hence by Jensen’s
inequality we obtain

p2πq´15{2||xfσ||6L6
radL

4
angpR2q

ď

ż 8

0

ˆ

ÿ

n1,n2PA

pτpn1, n2qδn1‰´n2 ` δn1,n2PAsq| pfpn1q|2| pfpn2q|2J2
n1

prqJ2
n2

prq

˙3{2

rdr

ď

ż 8

0

ÿ

n1,n2PA

pτpn1, n2qδn1‰´n2 ` δn1,n2PAsq3{2|Jn1prq|3|Jn2prq|3| pfpn1q|2| pfpn2q|2rdr

“
ÿ

n1,n2PA

pτpn1, n2qδn1‰´n2 ` δn1,n2PAsq3{2

ˆ
ż 8

0
|Jn1prq|3|Jn2prq|3rdr

˙

| pfpn1q|2| pfpn2q|2.

To conclude we need the following estimates on integrals involving the products of six Bessel
functions. First, we observe that for all m ‰ ℓ, m, ℓ ě 0 it holds that

33{2

ż 8

0
|Jmprq|3|Jℓprq|3rdră

ż 8

0
J6
0 prqrdr .

In fact, by Hölder inequality and by the estimates in Lemma 20 we have that

ż 8

0
|Jmprq|3|Jℓprq|3rdr ď

ˆ
ż 8

0
|Jmprq|4|Jℓprq|2rdr

˙1{2ˆ
ż 8

0
|Jℓprq|4|Jmprq|2rdr

˙1{2

ď p
?
2

5
?
3
δmℓ“0 ` 1

9δtm,ℓu‰t1,2u,mℓ‰0 ` 1
3

?
6
δtm,ℓu“t1,2u q

ˆ
ż 8

0
J6
0 prqrdr

˙1{2

ă 3´3{2

ż 8

0
J6
0 prqrdr.
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The second estimate that we need is the following: for all n ą 0 it holds that

23{2

ż 8

0
J6
nprqrdr ă

ż 8

0
J6
0 prqrdr

which follows from Lemma 20 again. Hence, we conclude that

||xfσ||6L6
radL

4
angpR2q

ď p2πq15{2

ˆ
ż 8

0
J6
0 prqrdr

˙

ÿ

n1,n2PA

| pfpn1q|2| pfpn2q|2

“ p2πq9{2

ˆ
ż 8

0
J6
0 prqrdr

˙

||f ||6L2pS1q.

Equality is attained if and only if f is constant. ■
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Appendix B

Global and local maximizers for
some Fourier extension estimates on
the sphere

This Appendix contains the article [CS23] written jointly by the author of this thesis and M.
Sousa.

Valentina Ciccone and Mateus Sousa. Global and local maximizers for some Fourier
extension estimates on the sphere. arXiv preprint arXiv:2312.07309, 2023.

Abstract

In this note we improve, for the case of low dimensions, the known range of exponents for
which constant functions are the unique maximizers for the L2pSd´1q to Lp

radL
2
angpRdq

mixed-norm Fourier extension estimate on the sphere. Moreover, we show that in the
same range of exponents for which constant functions are the unique maximizers for the
L2pSd´1q to Lp

radL
2
angpRdq mixed-norm Fourier extension estimates they are also local

maximizers for the LppSd´1q to LppRdq Fourier extension estimates. As a by-product, we
obtain that for the cases of dimensions d “ 2, 3 constant functions are local maximizers
for all p ě pstpdq, where pst denotes the Stein–Tomas endpoint, pstpdq :“ 2pd`1q{pd´1q.

B.1 Introduction

Let d ě 2 be an integer, Jν denote the Bessel function of the first kind of order ν, and k be
a non-negative integer. It follows by the asymptotic behaviour of Bessel functions that the
weighted Lp norms

Λd,ppkq :“

ˆ
ż 8

0
|Jd

2´1`k
prqr´

d
2`1

|prd´1dr

˙1{p

,

Λd,8pkq :“ sup
rě0

|Jd
2´1`k

prqr´
d
2`1

| ,

49
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are bounded whenever 2d
d´1 ă p ď 8.

The problem of determining for which k such weighted norms are maximized, which is
a problem of independent interest in the theory of special functions, has been studied in
[COeSS19] in connection with certain mixed-norm sharp Fourier extension problems. In
particular, in [COeSS19] the authors have studied the problem of computing

sup
kě0

Λd,ppkq. (P1)

The properties of Bessel functions (see e.g. [Ste00]) guarantee that such supremum is a
maximum. It has been shown in [COeSS19] that such maximum is achieved at k “ 0 (and
only at k “ 0) whenever p is an even exponent and that the set of exponents for which the
maximum is achieved at k “ 0 is open and it contains a neighborhood of infinity pp0pdq,8s,
providing some upper-bounds for p0pdq. In particular, they obtained the following upper-
bounds in low dimensions:

p0p2q ď 6.76, p0p3q ď 5.45, p0p4q ď 5.53, p0p5q ď 6.07, p0p6q ď 6.82,

p0p7q ď 7.70, p0p8q ď 8.69, p0p9q ď 9.78, p0p10q ď 10.95,

and, more in general, they showed that

p0pdq ď p12 ` op1qqd log d. (B.1)

Problem (P1) is related to several problems in sharp Fourier restriction theory.

The Fourier restriction problem for the sphere asks for which pairs of exponents pp, qq the
inequality

}xfσ}LppRdq ď Cd,p,q}f}LqpSd´1q (B.2)

holds. Here σ “ σd´1 is the surface measure on Sd´1 and xfσ is the Fourier transform of the
measure fσ,

xfσpxq “

ż

Sd´1

e´ix¨ξfpξqdσpξq.

The Fourier restriction problem has been fully solved only in dimension d “ 2 and for the
case q “ 2 for which a complete answer is given by the Stein–Tomas inequality. A mixed-
norm version of the problem has been studied in [Veg92, Veg88] showing that the mixed-norm
Fourier extension inequality

||xfσ||Lp
radL

2
angpRdq ď Cd,p||f ||L2pSd´1q (B.3)

holds when 2d
d´1 ă p, where

||xfσ||Lp
radL

2
angpRdq “

˜

ż 8

0

ˆ
ż

Sd´1

|xfσprωq|2dσpωq

˙p{2

rd´1dr

¸1{p

.
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The problem of determining the sharpest constant for (B.3) has been studied in [COeSS19].
Namely, in [COeSS19] the authors have studied the problem of computing

sup
fPL2pSd´1q, f‰0

Φmn
p,d pfq, Φmn

p,d pfq :“
||xfσ||Lp

radL
2
angpRdq

||f ||L2pSd´1q

. (P2)

It was observed in [COeSS19] that the studying of such problem can be restricted to functions
f which are spherical harmonics. In other words

sup
fPL2pSd´1q, f‰0

Φmn
d,p pfq “ sup

Yk, Yk‰0
Φmn
p,d pYkq,

where Yk denotes a spherical harmonics of degree k. Due to the identity

yYkσpxq “ p2πq
d
2 i´k|x|´

d
2

`1J d
2

´1`kp|x|qYk
` x

|x|

˘

(B.4)

we have that

}yYkσ}Lp
radL

2
angpRdq “ p2πq

d
2

ˆ
ż 8

0
|Jd

2´1`k
prqr´

d
2`1

|prd´1dr

˙1{p

}Yk}L2pSd´1q.

Hence, the problem of establishing the sharpest constant for (B.3), namely (P2), is equivalent
to the problem of determining for which non-negative integer k the maximum in (P1) is
achieved.

Problem (P1) has been addressed in [COeSS19] by relating the integrals Λd,ppkq’s to in-
tegration on spheres using delta-calculus. Our approach, on the other hand, relies on some
sharper estimates (with an improved constant) between weighted norms of Bessel functions
inspired by those obtained in [CG24, Lemma 2] for the case of dimension d “ 2, see the
forthcoming inequality (B.6).

Our first result lowers, for the case of low dimensions, the upper bounds for p0pdq estab-
lished in [COeSS19], hence extending the ranges of exponents for which the maximum in (P1)
is achieved when k “ 0. We use the notation pstpdq to denote the Stein–Tomas endpoint

exponent in dimension d, pstpdq :“ 2pd`1q

pd´1q
.

Theorem 23. It holds that

p0p2q ă 6, p0p3q ă 4, p0p4q ă 3.48, p0p5q ă 3.50,

p0p6q ă 3.58, p0p7q ă 3.7, p0p8q ă 3.86, p0p9q ă 4.06, p0p10q ă 4.46.

In particular, for d “ 2, 3 this gives that p0pdq ă pstpdq.

The fact that p0pdq ă pstpdq is of interest because constant functions are natural candi-
dates to be extremizers for the full range of exponents of the Stein–Tomas Fourier extension
inequality. If this were true, then by Hölder inequality, constant functions would be also max-
imizers for Φmn

d,p when p ě pstpdq. This has been verified only when p ě 4 is an even integer
and d P t3, 4, 5, 6, 7u (see [COeS15, Fos15, OeSQ21a]), but it is open for all other cases. In
particular the case where d “ 2 has received a great deal of attention and many partial results
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have been achieved (see [CFOeST17, OeSTZK22, BTZK23, CG24, Bec23]), yet still remains
unsolved. Hence, our result provides further evidence in this direction.

As mentioned above Problems (P1) and (P2) are equivalent. Next, we observe that the
same holds true if one considers the problem of finding extremizers among functions of the
form aYk P L2pSd´1q, with a P C and Yk a spherical harmonic of degree k, for LppSd´1q to
LppRdq Fourier extension estimates. Namely, if one considers the problem of computing

sup
Yk, Yk‰0

Φp,dpYkq, Φp,dpfq :“
||xfσ||LppRdq

||f ||LppSd´1q

. (P3)

In fact,

}yYkσ}LppRdq “ p2πq
d
2

ˆ
ż 8

0
|Jd

2´1`k
prqr´

d
2`1

|prd´1dr

˙1{p

}Yk}LppSd´1q ,

and, therefore,

sup
Yk, Yk‰0

Φp,dpYkq “ sup
fPL2pSd´1q, f‰0

Φmn
d,p pfq “ p2πq

d
2 sup
kě0

Λd,ppkq.

In words, this simple observation asserts that the problem of computing the optimal constant
for the mixed-norm Fourier extension inequality (B.3) is equivalent to the problem of com-
puting the optimal constant for the LppSd´1q to LppRdq Fourier extension inequality when
restricting to spherical harmonics.

The following corollary is an immediate consequence of the above considerations.

Corollary 24. For all p P pp0pdq,8s we have that

sup
fPL2pSd´1q, f‰0

Φmn
p,d pfq ď Φmn

p,d p1q ,

sup
Yk, Yk‰0

Φp,dpYkq ď Φp,dpY0q .

That is, for all such p’s, constant functions are maximizers for (P2) and (P3).

Note that the fact that constant functions are extremizers for (P3) is a necessary condition
for this to be the case also for the more general problem of computing

sup
fPLppSd´1q, f‰0

Φp,dpfq. (P4)

Extremizers for (P4) are known only when p is an even admissible exponent, in which case
it has been shown in [COeS15] that constant functions are maximizers, and when p “ 8 in
which case the same conclusion holds [FS24]. Except for these cases, even the question of the
existence of global extremizers for Problem (P4) is open [FS24]. Due to symmetry, constant
functions would be natural candidate to be extremizers. Also, it was noted in [CQ14] that
constant functions are always solutions to the corresponding Euler–Lagrange equations for any
admissible pair of exponents pp, qq for the Fourier extension inequality (B.2), so, in particular,
for any admissible pair pp, pq.
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A further intermediate step toward a solution of Problem (P4) is to understand the be-
havior of local extremizers. Local extremizers have been studied before for the case of the
endpoint Stein–Tomas inequalities in [CFOeST17], [CS12a], and [GN22] showing, respectively,
that constant functions are local maximizers for such inequalities when d “ 2, when d “ 3, and
when 2 ď d ď 60. The next question that we would like to address here is whether constant
functions are local maximizers also for the case of the LppSd´1q to LppRdq Fourier extension
inequalities, namely for (P4). We answer this question by providing a further connection with
Problem (P1).

Our second main result is the following.

Theorem 25. Let d ě 2 and p ą 2d
d´1 . Assume that the LppSd´1q to LppRdq Fourier extension

inequality holds and that the maximum in (P1) is achieved at k “ 0. Then there exists δ ą 0
such that whenever }f ´ 1}LppSd´1q ă δ,

Φp,dpfq ď Φp,dp1q. (B.5)

That is, constant functions are local maximizers for (P4).

As an immediate consequence we have that constant functions are local maximizers for the
LppSd´1q to LppRdq Fourier extension inequality for all p P pp0pdq,8s for which the inequality
holds and upper bounds on p0pdq is provided by Theorem 23 for the cases of dimensions
2 ď d ď 10, and, in general, by (B.1) for greater dimensions.

The proof of Theorem 25 is contained in Section B.4, the proof of Theorem 23 is the
content of Section B.3, while some auxiliary results about hierarchies between weighted norms
of Bessel functions are presented in Section B.2.

The topic of sharp spherical restriction has received much attention over the last years,
in particular for the case of inequalities in the Stein–Tomas range [FVV11, CS12a, Fos15,
COeS15, FLS16, Sha16a, CFOeST17, OeSTZK22, BTZK23, OeSQ21a, CG24, Bec23]. We
refer to the survey [NOeST23] for an up-to-date description of the state of the art.

B.2 Hierarchies between weighted norms of Bessel functions

It is known that when p P 2N, p ą 2d
d´1 , or when p “ 8 then

Λd,ppkq

Λd,pp0q
ă 1

for all positive integers k, see [COeSS19]. In this section, we are interested in obtaining
sharper estimates for such ratio, at least for certain values of the exponent p.

In this direction, for the case of dimension d “ 2 and exponent p “ 6 it has been shown
in [CG24] that

Λ6
2,6pkq ă

1

3
Λ6
2,6p0q (B.6)

for all k ě 1.
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Moreover, in [COeSS19] combining the identity

Λd,8p0q “
1

2
d
2

´1Γpd2q
, (B.7)

with a decreasing upper-bound (with respect to the order k) for Λd,ppkq, it has been shown
that

Λd,8pkq

Λd,8p0q
ď

ˆ

L6 2
3d´6Γpd2q

d3d´4

˙
1

3d`2

for all k ě 1, where the constant L is defined as

L :“ sup
νą0, rą0

|r1{3Jνprq| “ 0.785746... (B.8)

and it has been found by Landau [Lan00].
Our first result of this section establishes a hierarchy between the Λd,8pkq’s, hence deter-

mining the sharpest upper-bound on the ratio
Λd,8pkq

Λd,8p0q
.

Proposition 26. For all positive integers k it holds that

Λd,8pk ´ 1q ą Λd,8pkq.

In particular,
Λd,8pkq ď C8pdqΛd,8p0q

for all positive integers k, where C8pdq :“
Λd,8p1q

Λd,8p0q
, and equality is attained if and only if

k “ 1.

Proof. We begin with the case d “ 2. In such case Λd,8pkq “ suprě0 |Jkprq|. It has been
shown in [Lan00] that suprą0 |Jkprq| is a strictly decreasing function of k. In particular, if we
denote by j1

k,1 the first positive zero of J 1
k with k a positive real number, then

sup
rą0

|Jkprq| “ Jkpj1
k,1q,

and therefore

sup
rą0

|Jkprq| “ Jkpj1
k,1q ą sup

rą0
|Jk`1prq| “ Jkpj1

k`1,1q.

As suprě0 |J0pkq| “ J0p0q “ 1 ą J1pj1
1,1q the claim in the statement is verified for the case

d “ 2.

We turn to the case of d ě 3. In these cases Λd,8pkq “ suprě0 |r´
d
2`1Jd

2´1`k
|. We start

by observing that as r´
d
2`1 is a strictly decreasing function of r and suprą0 |Jνprq| “ Jνpj1

ν,1q

it holds that

sup
rą0

|r´
d
2`1Jd

2´1`k
prq| “ sup

0ărăj1
d{2´1`k,1

|r´
d
2`1Jd

2´1`k
prq|.
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Hence to conclude it would be enough to show that

Jνprq ą Jν`1prq for all r P p0, j1
ν,1q. (B.9)

We recall that j1
ν,1 ă j1

ν`1,1, see e.g. [Wat66]. In particular, Jν , Jν`1, J
1
ν , J

1
ν`1 are strictly

positive in p0, j1
ν,1q, and Jνpj1

ν,1q ą Jν`1pj1
ν,1q. Hence to prove (B.9) it suffices to show that

there exist no r P p0, j1
ν,1q such that Jνprq “ Jν`1prq. We argue by contradiction. Consider

the recursive relations for Bessel functions

2ν
r Jνprq “ Jν´1prq ` Jν`1prq, (B.10)

2J 1
νprq “ Jν´1prq ´ Jν`1prq. (B.11)

By taking the sum of (B.10) and (B.11) we obtain the identity

J 1
νprq “ Jν´1prq ´

pνq

r Jνprq,

and shifting ν ÞÑ ν ` 1 we obtain

J 1
ν`1prq “ Jνprq ´

pν`1q

r Jν`1prq.

Assume there exist r P p0, j1
ν,1q such that Jνprq “ Jν`1prq. Evaluating the last display at r

we get
J 1
ν`1prq “ p1 ´

pν`1q

r qJν`1prq

and, as J 1
ν`1 and Jν`1 are strictly positive on p0, j1

ν,1q, we have that necessarily

r ą ν ` 1. (B.12)

Next, we take the difference between (B.11) and (B.10) obtaining the identity

Jνprq1 “ ν
rJνprq ´ Jν`1prq.

Evaluating it at r we get that
J 1
νprq “ pνr ´ 1qJνprq

and, as both J 1
ν and Jν are strictly positive on p0, j1

ν,1q, we have that necessarily

ν ą r.

Comparing this with (B.12) yields the contradiction. ■
The values of Λd,8p1q can be computed by using Mathematica. For the case of 2 ď d ď 10

one obtains, with 6 significant figures (s.f.),

Λ2,8p1q “ 0.581865, Λ3,8p1q “ 0.348023, Λ4,8p1q “ 0.179963,

Λ5,8p1q “ 0.0830013, Λ6,8p1q “ 0.0348492, Λ7,8p1q “ 0.0135129,

Λ8,8p1q “ 0.00489072, Λ9,8p1q “ 0.00166575, Λ10,8p1q “ 0.000537364.

(B.13)

By combining them with (B.7) one can obtain a numerical evaluation for C8pdq.
Our second observation is for the case of exponent p “ 4 and dimensions 3 ď d ď 10.
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Proposition 27. Let 3 ď d ď 10. Then

Λd,4pkq ď C4pdqΛd,4p0q

holds for all positive integers k, where C4pdq :“
Λd,4p1q

Λd,4p0q
. Equality is attained if and only if

k “ 1.

To prove Proposition 27 we need the following upper-bound; see also [GN22].

Lemma 28. Let d ě 2. In the range of exponents 6d´2
3d´4 ă p ă 12d`4

3d´4 it holds that

Λpd,ppkq ď Lp´2 ΓpλqΓpd2 ´ 1 ` k ` 1´λ
2 q

2λΓp1`λ
2 q2Γpd2 ´ 1 ` k ` 1`λ

2 q

for all positive integers k, where λ “ ppd2 ´ 2
3q ´ d` 1

3 .

To establish the upper-bound in the lemma we rely on the following identity which can
be found in [GR07, Equation 6.574-2]

ż 8

0
J2
ν prqr´λdr “

ΓpλqΓpν `
p1´λq

2 q

2λΓ
`

1`λ
2

˘2
Γ

`

ν ` 1`λ
2

˘

(B.14)

for 0 ă λ ă 2ν ` 1.

Proof. We use (B.8) to obtain the upper-bound

Λd,ppkqp ď Lp´2

ż 8

0
J2
d
2´1`k

prqr´p
`

d
2´

2
3

˘

`d´
1
3dr.

By applying identity (B.14) to the right hand side of the last display we further obtain

Λpd,ppkq ď Lp´2 ΓpλqΓpd2 ´ 1 ` k ` 1´λ
2 q

2λΓp1`λ
2 q2Γpd2 ´ 1 ` k ` 1`λ

2 q

where λ “ ppd2 ´ 2
3q ´ d ` 1

3 . Such upper-bound holds whenever 0 ă λ ă 2
`

d
2 ´ 1 ` k

˘

` 1.
In particular, for a fixed dimension d ě 2 the upper-bound holds for all positive integers k
whenever 6d´2

3d´4 ă p ă 12d`4
3d´4 . ■

Note that both the case of p “ 4 and the case of Stein–Tomas endpoint pstpdq are included
in the range of exponents covered by Lemma 28. Also, note that, for a fixed exponent p and
a fixed dimension d, the above upper bound is a decreasing function of k. Throughout, we
use the notation Ud,ppkq to denote the upper bound for Λpd,ppkq in Lemma 28.

Proof of Proposition 27. We compare the upper bound Ud,4pkq for Λ4
d,4pkq established

in Lemma 28 with a (lower) estimate for Λ4
d,4p1q. To this end, we rely on Mathematica to

evaluate the integrals

ż 40

0
|J d

2
prqr´

d
2`1

|4rd´1dr (B.15)
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for 3 ď d ď 10 obtaining, respectively, the following values (with 6 s.f.)

0.144681 0.0337263 0.00661348 0.00107217

0.000146318 0.0000171549 1.75867 ˆ 10´6 1.59953 ˆ 10´7.

By comparison, one can see that Ud,4pkq ă Λ4
d,4p1q for all integers k ě 2 when d P t5, 6, 7, 8, 9u,

for all integers k ě 3 when d P t4, 10u, and for all integers k ě 5 when d “ 3. We check the
remaining cases separately. We rely on Mathematica to evaluate the integrals

ż 200

0
|Jd

2´1`k
prqr´

d
2`1

|4rd´1dr

for the cases of interest obtaining, for the case of d “ 3 and k “ 2, 3, 4, the values (6 s.f.)

0.0992828 0.0757045 0.0615859,

respectively, and for the cases d “ 4 and k “ 2, and d “ 10 and k “ 2, the values (6 s.f.)

0.0172602 4.00184 ˆ 10´8,

respectively. Then, we use the estimate

|Jνprq| ď r´1{2 (B.16)

which holds for all ν ě 1
2 and r ě 3

2ν (see [COeSS19, Lemma 8] and [Kra14, Theorem 3]) to
upper bound the tails obtaining that

ż 8

200
|Jd

2´1`k
prqr´

d
2`1

|4rd´1dr ď
200´d`2

d´ 2
.

Hence, by comparison, we see that also for these cases it holds that Λ4
d,4pkq ă Λ4

d,4p1q. As

it is known from [COeS15, COeSS19] that Λ4
d,4p1q ă Λ4

d,4p0q when d ě 3, the result in the
statement follows. ■

To evaluate C4pdq one can rely on the identity

ż 8

0
|Jνprq|4r´2ν`1dr “

ΓpνqΓp2νq

2πΓpν ` 1
2q2Γp3νq

,

which can be found, for example, in [COeSS19, Lemma 7] (see also [GR07, Equation 6.5793-
3]) and which provides an explicit expression for Λ4

d,4p0q, together with a numerical estimates

for Λ4
d,4p1q.

Our last result of this section is for the case of the Stein–Tomas endpoint, pst “ pstpdq.

Proposition 29. Let 4 ď d ď 10. Then the following inequality holds for all positive integers
k

Λd,pstpkq ă Cpstpdq Λd,pstp0q,

where Cpstpdq :“
Λd,pst

p1q

Λd,pst
p0q

. Equality is attained if and only if k “ 1.
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Proof. We compare the upper bound Ud,pstpkq for Λpstd,pstpkq established in Lemma 28 with a

(lower) estimate for Λpstd,pstp1q. To this end, we rely on Mathematica to evaluate the integrals

ż 50

0
|J d

2
prqr´

d
2`1

|pstrd´1dr (B.17)

for 4 ď d ď 10 obtaining, respectively, the following values (with 6 s.f.)

0.143391 0.131693 0.118941 0.10719 0.0969753 0.088279 0.0807943.

By comparison, one can see that Ud,pstpkq ă Λpstd,pstp1q for all integers k ě 3 when d P

t5, 6, 7, 8, 9, 10u, and for all integers k ě 4 when d “ 4. We check the remaining cases
separately. We use Mathematica to evaluate the integral

ż 200

0
|Jd

2´1`k
prqr´

d
2`1

|pstrd´1dr

obtaining for the cases k “ 2 and 5 ď d ď 10 the values (6 s.f.)

0.0998066 0.0938562 0.0875322 0.0814907 0.075952 0.0709569

and for the cases d “ 4 and k “ 2, 3 the values (6 s.f.)

0.103492 0.080522.

We use the estimate (B.16) to upper bound the tail of the integrals obtaining

ż 8

200
|Jd

2´1`k
prqr´

d
2`1

|pstrd´1dr ď
1

200
.

Hence, by comparison, it follows that Λpst4,pst
p2q ă Λpst4,pst

p1q.

We are left to show that Λpstd,pstp1q ă Λpstd,pstp0q whenever 4 ď d ď 10. The cases of d “ 4, 5
have already be verified in [COeSS19]. To verify the remaining cases 6 ď d ď 10 we compare
the bound for Λpstd,pstp1q obtained by combining the numerical evaluation of the truncated
integral (B.17) and an upper bound for the tail obtained using (B.16) with a (lower) estimate
for Λpstd,pstp0q. To this end we numerically evaluate the integral

ż 50

0
|J d

2
`1prqr´

d
2`1

|pstrd´1dr

for 6 ď d ď 10 obtaining the values (6 s.f.)

0.173201 0.147926 0.1286 0.113331 0.101086.

By comparison, we see that Λpstd,pstp1q ă Λpstd,pstp0q also for 6 ď d ď 10 hence concluding the
proof. ■
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B.3 Proof of Theorem 23

Case d “ 2

We combine the estimate (B.6) from [CG24] and the estimate in Proposition 26 (here for the
case d “ 2) with the interpolation strategy utilized in [COeSS19]. Let p ě 6 and k be a
positive integer. It follows from Hölder inequality that

Λ2,ppkq ď Λ2,6pkq6{pΛ2,8pkq1´6{p.

Using (B.6) and the sharp estimate from Proposition 26 we further obtain that

Λ2,ppkq ď
1

31{p
Λ2,6p0q6{pΛ2,8p1q1´6{p.

We need the following lower bound on Λd,pp0q which has been established in [COeSS19,
Equation 4.8]

Λd,pp0q ą
p2d´1pd2qd{2q1{p

2d{2´1Γpd2q

ˆ

Γpp` 1qΓpd2q

Γpp` d
2 ` 1q

˙1{p

. (B.18)

Then, we rely on standard numerical evaluation to determine for which p ě 6 it holds that

1

31{p
Λ2,6p0q6{pΛ2,8p1q1´6{p ď 21{pΓpp` 1q

Γpp` 2q
.

We obtain that such inequality is satisfied for all p ě 6. Hence, p0p2q ă 6 as claimed.

Case d ě 3

We proceed in two steps. First, we combine the estimates in Proposition 27 and Proposition
26 with the interpolation strategy utilized in [COeSS19]. This will establish the upper bound
on p0pdq in the statement of Theorem 23 for the cases of d “ 3, 9, 10. Second, we use the
estimates in Proposition 27 and Proposition 29 and interpolation to establish the upper bound
on p0pdq for the cases of d “ 4, 5, 6, 7, 8.

Step 1

Let p ě 4 and k be a positive integer. It follows from Hölder inequality that

Λd,ppkq ď Λd,4pkq4{pΛd,8pkq1´4{p.

Using the sharp estimate from Proposition 26 and Proposition 27 we further obtain that

Λd,ppkq ď Λd,4p1q4{pΛd,8p1q1´4{p.

Then, we compare the right-hand side of the last display with the lower bound for Λd,pp0q in
equation (B.18) to determine for which p ě 4 the following inequality is satisfied

Λd,4p1q4{pΛd,8p1q1´4{p ď
p2d´1pd2qd{2q1{p

2d{2´1Γpd2q

ˆ

Γpp` 1qΓpd2q

Γpp` d
2 ` 1q

˙1{p

.
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We use the numerical values for Λd,8p1q in (B.13) and the bound for Λd,4p1q obtained by
combining the numerical evaluation for the truncated integral in (B.15) with an upper bound
for the tail obtained using (B.16). Via a standard numerical evaluation, we obtain that
Λd,ppkq ă Λd,pp0q for all p ě 4 for the cases of dimensions d “ 3, 4, 5, 6, 7, 8, for all p ě 4.06
for the case of d “ 9, and for all p ě 4.46 for the case of d “ 10.

Step 2

Let 4 ď d ď 8, pstpdq ď p ď 4 and k be a positive integer. It follows from Hölder inequality
that

Λd,ppkq ď Λd,pstpkqp1´θqΛd,4pkqθ,

with θ :“ 4
p

pp´pstq

p4´pstq
. Using the estimates of Proposition 27 and Proposition 29 we further

obtain that
Λd,ppkq ď Λd,pstp1qp1´θqΛd,4p1qθ.

As before, we bound Λd,4p1q by combining the numerical evaluation for the truncated integral
in (B.15) with an upper bound for the tail obtained using (B.16) and we proceed analogously
for Λd,pstp1q. Then, we compare this upper bound with the lower bound for Λd,pp0q in equation
(B.18) to determine, for a fixed 4 ď d ď 8 , for which pstpdq ď p ď 4 the former is greater
than the latter. We obtain that Λd,ppkq ă Λd,pp0q for all p ě ppdq with

pp4q “ 3.48, pp5q “ 3.5, pp6q “ 3.58 , pp7q “ 3.7, pp8q “ 3.86.

■

B.4 Proof of Theorem 25

Consider the deficit functional

ζprf s “ Φp,dp1qp}f}
p
LppSd´1q

´ }xfσ}
p
LppRdq

.

Inequality (B.5) is equivalent to
ζprf s ě 0, (B.19)

therefore it is enough to prove that there is a δ ą 0 such that ζprf s ą 0 when }f´1}LppSd´1q ă δ
and f is not constant, which we proceed to do.

We recall that here p ą 2 and we are assuming that the Fourier extension operator is
bounded from LppSd´1q to LppRdq. We compute

ż

Rd

|x1σpxq ` εxgσpxq|pdx “

ż

Rd

|x1σpxq|pdx` pε

ż

Rd

|x1σpxq|p´2Rpx1σpxqxgσpxqqdx

`
ppp´ 2qε2

4
R

ż

Rd

|x1σpxq|p´4px1σpxqxgσpxqq2dx

`
pε2

4

ż

Rd

|x1σpxq|p´2|xgσpxq|2dx

` opε2q.

(B.20)
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and
ż

Sd´1

|1 ` εgpxq|pdσpxq “}1}
p
LppSd´1q

` pε

ż

Sd´1

Rpgpxqqdσpxq

`
ppp´ 2qε2

4
R

ż

Sd´1

gpxq
2dσpxq

`
pε2

4

ż

Sd´1

|gpxq|2dσpxq ` opε2q.

(B.21)

We take f to be of the form f “ 1 ` εg, with 0 ă ε ď δ and }g}LppRdq “ 1. By applying
(B.20) and (B.21) one has

ζprf s “ζpr1 ` εgs “ pε

ˆ

Φp,dp1qp
ż

Sd´1

Rpgpxqqdσpxq ´

ż

Rd

|x1σpxq|p´2Rpx1σpxqxgσpxqqdx

˙

`
ε2

4
ppp´ 2q

ˆ

Φp,dp1qpR

ż

Sd´1

gpxq
2dσpxq ´ R

ż

Rd

|x1σpxq|p´2pxgσpxqq2dx

˙

`
ε2

4
p

ˆ

Φp,dp1qp
ż

Sd´1

|gpxq|2dσpxq ´

ż

Rd

|x1σpxq|p´2|xgσpxq|2dx

˙

` opε2q.

(B.22)

Furthermore, due to the aforementioned observation that 1 is a critical point of Φp,d, the
first order terms in ε of (B.22) all vanish. To deal with the second order terms, we use the
fact that LppSd´1q Ă L2pSd´1q since p ą 2 in order to expand g in spherical harmonics. For
that purpose we choose for each k an orthonormal basis tYj,kuj of Hd

k where each Yj,k is a
real-valued spherical harmonic of degree k. Then

g “
ÿ

k,j

aj,kYj,k.

By combining identity (B.4) with the observation that the first order terms vanish at (B.22)
we can integrate in polar coordinates to obtain

ζprf s “
ε2

4
ppp´ 2q

ˆ

Φp,dp1qp
ÿ

k,j

Rpaj,kq2

´ p2πqpd{2
ÿ

k,j

p´1qkRpaj,kq2
ż 8

0
|J d

2
´1prq|p´2|J d

2
´1`kprq|2rd´1´pp1´ d

2
qdr

˙

`
ε2

4
p

ÿ

k,j

|aj,k|2
ˆ

Φp,dp1qp ´ p2πqpd{2

ż 8

0
|J d

2
´1prq|p´2|J d

2
´1`kprq|2rd´1´pp1´ d

2
qdr

˙

` opε2q.

(B.23)

Lastly, using Hölder inequality and the fact that by hypothesis Λd,ppkq ă Λd,pp0q for all
positive integers k we observe that

ż 8

0
|J d

2
´1prq|p´2|J d

2
´1`kprq|2rd´1´pp1´ d

2
qdr
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ă

ˆ
ż 8

0
|Jd

2´1
prq|prd´1´pp1´ d

2
qdr

˙pp´2q{pˆ ż 8

0
|Jd

2´1`k
prq|prd´1´pp1´ d

2
qdr

˙2{p

ă

ż 8

0
|Jd

2´1
prq|prd´1´pp1´ d

2
qdr “ p2πq´pd{2Φp,dp1qp,

hence concluding the proof of Theorem 25.
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Appendix C

Endpoint estimates for higher order
Marcinkiewicz multipliers

This Appendix contains the article [BCPV24] written jointly by O. Bakas, I. Parissis, M.
Vitturi, and the author of this thesis.

Odysseas Bakas, Valentina Ciccone, Ioannis Parissis, and Marco Vitturi. Endpoint es-
timates for higher order Marcinkiewicz multipliers. arXiv preprint arXiv:2401.06083,
2024.

Abstract

We consider Marcinkiewicz multipliers of any lacunary order defined by means of uni-
formly bounded variation on each lacunary Littlewood–Paley interval of some fixed order
τ ě 1. We prove the optimal endpoint bounds for such multipliers as a corollary of a
more general endpoint estimate for a class of multipliers introduced by Coifman, Rubio
de Francia, and Semmes and further studied by Tao and Wright. Our methods also yield
the best possible endpoint mapping property for higher order Hörmander–Mihlin multi-
pliers, namely multipliers which are singular on every point of a lacunary set of order τ .
These results can be considered as endpoint versions of corresponding results of Sjögren
and Sjölin. Finally our methods generalize a weak square function characterization of the
space L log1{2 L in terms of a square function introduced by Tao and Wright: we real-
ize such a weak characterization as the dual of the Chang–Wilson–Wolff inequality, thus
giving corresponding weak square function characterizations for the spaces L logτ{2 L for
general integer orders τ ě 1.

C.1 Introduction

Our topic is endpoint estimates for Marcinkiewicz-type multipliers on the real line. We recall
that a Marcinkiewicz multiplier is a bounded functionm : R Ñ C which has bounded variation
on each Littlewood–Paley interval Lk :“ p´2k`1,´2ks Y r2k, 2k`1q, uniformly in k P Z. It is
well known that the operator Tmf :“ pmf̂q_ is bounded on LppRq for all p P p1,8q. Endpoint
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estimates for Marcinkiewicz multipliers were proved by Tao and Wright in [TW01] where the
authors prove that they locally map L log1{2 L into weak L1.

A prototypical Marcinkiewicz multiplier is given by the signed sum

ÿ

kPZ
εk1Lk

, εk P t´1,`1u,

while an orthogonality argument provides the link between Marcinkiewicz multipliers and the
classical Littlewood–Paley square function

LP1fpxq :“

˜

ÿ

kPZ
|Pkf |2

¸
1
2

“

¨

˝E

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPZ
εkPkf

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1
2

, Pkf :“ p1Lk
f̂q_,

the expectation being over choices of independent random signs.

In the present paper we are interested in higher order versions of Marcinkiewicz multipliers.
In order to motivate such a study it is very natural to consider square functions that project
to Littlewood–Paley intervals given by lacunary sets of order 2 or higher. For example letting

Lpk,mq :“
!

ξ P R : |ξ| P p2k ` 2m´1, 2k ` 2ms Y r2k`1 ´ 2m, 2k`1 ´ 2m´1q

)

, k ą m,

denote the family of Littlewood–Paley intervals of second order, we naturally define

LP2f :“

¨

˚

˚

˝

ÿ

pk,mqPZ2

kąm

|Ppk,mqf |2

˛

‹

‹

‚

1
2

“

¨

˚

˚

˝

E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

pk,mqPZ2

kąm

εk,mPpk,mqf

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2˛

‹

‹

‚

1
2

, Ppk,mqf :“ p1Lpk,mq
f̂q_,

initially for Schwartz functions with compactly supported Fourier transform. This is a second
order Littlewood–Paley square function while the multiplier

ÿ

pk,mqPZ2

kąm

εpk,mq1Lpk,mq
, εpk,mq P t´1,`1u,

can be considered as a prototypical Marcinkiewicz multiplier of order 2. A Littlewood–
Paley partition tL : L P Λτu of lacunary order τ ą 1 is naturally produced by iterating
Whitney decompositions inside each Littlewood–Paley interval of order τ ´ 1. Accordingly,
a Marcinkiewicz multiplier of order τ is a bounded function which has bounded variation
uniformly on all Littlewood–Paley intervals of order τ . Likewise, the Littlewood–Paley square
function of order τ is

LPτf :“

˜

ÿ

LPΛτ

|PLf |2

¸1{2

“

¨

˝E

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

LPΛτ

εLPLf

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1{2

, PLf :“
´

1Lf̂
¯_

.

With precise definitions to follow, a punchline result of this paper is the following.
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Theorem 30. If m is a Marcinkiewicz multiplier of order τ P N then Tm satisfies the estimate

|tx P R : |Tmfpxq| ą αu| À

ż

R

|f |

α

ˆ

log

ˆ

e`
|f |

α

˙˙τ{2

, α ą 0.

The same is true for the Littlewood–Paley square function LPτ of order τ . In both cases the
endpoint estimates are best possible in the sense that the exponent τ{2 in the right hand side
cannot be replaced by any smaller exponent.

We will deduce Theorem 30 as a consequence of the more general Theorem 31 below which
applies to the wider class of R2,τ multipliers.

C.1.1 Lacunary sets of higher order

In order to describe the classes of higher order multipliers we are interested in, it will be neces-
sary to introduce some notation for lacunary sets of general order. The standard Littlewood–
Paley partition of the real line is the collection of intervals Λ1 :“ t˘r2k, 2k`1q : k P Zu and
it is a Whitney decomposition of Rzt0u. For a finite dyadic interval I Ă R the standard
Whitney partition WpIq of I is the collection of the maximal dyadic subintervals L Ă I such
that distpL,RzIq “ |L|. Now for any integer τ ą 1 we set

Λτ :“
ď

IPΛτ´1

WpIq

and call Λτ the standard Littlewood–Paley collection of intervals of order τ . We denote by
lacτ the collection of all endpoints of intervals in Λτ . Observe that, as in [Bon70], the set lacτ
has the explicit representation

lacτ “ t˘2n1 ˘ 2n2 ` ¨ ¨ ¨ ˘ 2nτ : n1 ą n2 ą ¨ ¨ ¨ ą nτ , nj P Z @ju .

For uniformity in the notation we also set Λ0 “ tp´8, 0q, p0,`8qu and lac0 :“ t0u. It will
be useful throughout the paper to truncate the scales of lacunary intervals and numbers by
defining

Λnτ :“ tL P Λτ : |L| ě nu , n P 2Z.

Accordingly lacnτ denotes endpoints of intervals in Λnτ .

We need a smooth way to project to frequency intervals in Λτ . For this we consider a
smooth even function 0 ď η ď 1 such that η is identically 1 on r´1{2, 1{2s and vanishes
off r´5{8, 5{8s. For a positive integer τ and L P Λτ we define the (rescaled) L-th frequency
component of some multiplier m : R Ñ C as

mLpξq :“ ηpξqmpcL ` ξ|L|q, ξ P R,

with cL denoting the center of L.
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C.1.2 Higher order multipliers and endpoint estimates

With this notation at hand we will say that m : R Ñ C is a Hörmander–Mihlin multiplier of
order τ if

}m}Hτ
:“ sup

|α|ďM
sup
LPΛτ

}BαmL}L8 ă `8,

for some sufficiently large positive integer M which we will not keep track of. Note that the
higher order Hörmander–Mihlin condition is essentially the natural assertion

|Bαmpξq| À distpξ, lacτ´1q´α, ξ P Rzlacτ´1.

Likewise we will say that a bounded function m : R Ñ C is a Marcinkiewicz multiplier of
order τ P N if the components mL have bounded variation uniformly in L P Λτ . Here we use
the standard variation norms defined for r P r1,8s as follows

}F }Vr
:“ sup

N
sup

x0ă¨¨¨ăxN

˜

ÿ

0ďkďN

|F pxk`1q ´ F pxkq|r

¸
1
r

.

Note that usually Marcinkiewicz multiplier are defined by asking that the pieces m1L have
bounded 1-variation, uniformly in L. One can check that our definition, using the smooth
cutoff η, is equivalent to the classical one. For one inequality of this equivalence we just
use that η ” 1 on r´1{2, 1{2s, while for the converse inequality it suffices to notice that
}FG}V1 À }F }V1}G}V1 together with the fact that the support of η is contained in three
adjacent intervals of length 1. We will actually consider the wider class of R2,τ -multipliers
defined below.

Definition 6. Let R to be the space of all functions of the form

m “
ÿ

I

cI1I

with I ranging over a family of disjoint arbitrary subintervals in r1, 2q and the coefficients
tcIuI satisfying

ÿ

I

|cI |
2 ď 1.

Then R is the Banach space of functions m :“
ř

a λama with
ř

a |λa| ă `8; we equip R with
the norm

}m}R :“ inf

#

ÿ

a

|λa| : m “
ÿ

a

λama, ma P R
+

.

For τ P N we say that the bounded function m : R Ñ C is an R2,τ -multiplier if

}m}R2,τ
:“ sup

LPΛτ

}mL}R ă `8.

The class R2,τ contains all Marcinkiewicz multipliers of order τ as well as Hörmander–
Mihlin multipliers of order τ . This follows by the fact that Hörmander multipliers of order
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τ ě 1 are Marcinkiewicz multipliers of the same order and the latter belong to the class V1,τ

consisting of functions which have uniformly bounded 1-variation on each lacunary interval of
order τ ; the inclusion relationship then follows for example by the fact that V1,τ Ă R2,τ , proved
in [CRdFS88, Lemma 2]. Our main result proves the sharp endpoint bound for multipliers in
the class R2,τ .

Theorem 31. Let τ be a positive integer and m P R2,τ . Then the operator Tmf :“ pmf̂q_

satisfies

|tx P R : |Tmfpxq| ą αu| À

ż

R

|f |

α

ˆ

log

ˆ

e`
|f |

α

˙˙τ{2

, α ą 0.

Furthermore this estimate is best possible in the sense that the exponent τ{2 in the right hand
side of the estimate cannot be replaced by any smaller exponent. The implicit constant depends
only on τ and the R2,τ -norm of m.

For τ “ 1 the local version of the theorem above is contained in [TW01]. We note that
Theorem 31 easily implies the following local estimate: For every interval I and m P R2,τ

there holds

|tx P I : |Tmfpxq| ą αu| À
1

α

ż

I
|f |

ˆ

log

ˆ

e`
|f |

x|f |yI

˙˙τ{2

, α ą 0, suppf Ă I,

where x|f |yI :“ |I|´1}f}L1pIq. The global estimate of Theorem 31 appears to be new even
in the first order case τ “ 1, although a proof of a global result can be deduced for the first
order case τ “ 1 from the methods in [TW01] without much additional work.

While Hörmander–Mihlin multipliers are R2,τ multipliers, they are in general much better-
behaved as the case τ “ 1 suggests: indeed for τ “ 1 Hörmander–Mihlin multipliers map L1 to
L1,8, in contrast to the sharpness of the L log1{2 L Ñ L1,8 estimate for general Marcinkiewicz
or R2,1 multipliers. In analogy to the Littlewood–Paley square function LPτ of order τ it is
natural to define a smooth version as follows. For C ą 0, M P N and L P Λτ we consider the
class of bump functions

ΦL,M :“

"

ϕL : supp pϕLq Ď
5

4
L, sup

αďM
|L|α}BαϕL}L8 ď 1010

*

.

Now for some fixed large positive integer M (whose precise value is inconsequential) suppose
that ϕL P ΦL,M for all L P Λτ and define, initially for f P SpRq,

Sτf :“

˜

ÿ

LPΛτ

|∆Lf |2

¸1{2

, ∆Lfpxq :“

ż

R
ϕLpξq pfpξqe2πixξ dξ, x P R.

The following theorem is the sharp endpoint estimate for higher order Hörmander–Mihlin
multipliers and corresponding square functions.

Theorem 32. Let τ be a positive integer and m P Hτ be a Hörmander–Mihlin multiplier of
order τ . Then

|tx P R : |Tmfpxq| ą αu| À

ż

R

|f |

α

ˆ

log

ˆ

e`
|f |

α

˙˙pτ´1q{2

, α ą 0.
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The same holds for the smooth Littlewood–Paley square function Sτ of order τ and these
results are best possible. The implicit constant depends only on τ and the Hτ -norm of m, and
also on M in the case of square functions.

The case τ “ 1 of this corollary is classical. The local version of the case of Hörmander–
Mihlin multipliers of order τ “ 2 is implicit in [TW01] as it can be proved by combining
[TW01, Proposition 5.1] with [TW01, Proposition 4.1]. All the higher order cases for Hτ -
multipliers appear to be new.

C.1.3 The Chang–Wilson–Wolff inequality and a square function for L logτ{2 L

Throughout this section we work on the probability space pr0, 1s,dxq unless otherwise stated.
A central result in the approach in [TW01] was a weak characterization of the space L log1{2 L
in terms of an integrable square function, inspired by the analogous and better-known char-
acterisation of the Hardy space H1. More precisely, the authors in [TW01] prove that if
f P L log1{2 L and f has mean zero then for each L P Λ1 one can construct nonnegative
functions FL such that

|∆Lf | À FL ˚ φ|L|´1 @L P Λ1,

ż

R

˜

ÿ

LPΛ1

|FL|2

¸1{2

À }f}L log1{2 L, (C.1)

where ∆L is as in §C.1.2 and

φλpxq :“ λ´1φpx{λq :“ λ´1p1 ` |x{λ|2q´3{4, x P R.

Here and throughout the paper we use local Orlicz norms and corresponding notation as
described in §C.2.1.

There is a dyadic version: denoting by Dk the dyadic subintervals of r0, 1s of length 2´k,
k P N0:“ N Y t0u, we consider the conditional expectation and martingale differences

Ekf :“
ÿ

IPDk

xfyI1I , Dkf :“ Ekf ´ Ek´1f, k ě 1, D0f :“ E0f, f P L1.

For future reference we record the definition of the dyadic martingale square function

SMf :“

˜

ÿ

kě1

|Dkf |2

¸1{2

.

The dyadic analogue of (C.1) is that if f P L log1{2 L then for each k P N0 there exist functions
fk such that

|Dkf | ď Ek|fk| @k P N0,

ż

r0,1s

˜

ÿ

kě0

|fk|2

¸1{2

À }f}L log1{2 L, (C.2)

In fact, the authors in [TW01] first prove (C.2) by constructing the functions fk through a
rather technical induction scheme, and then deduce (C.1) from (C.2) via a suitable averaging
argument.
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Several remarks are in order. Firstly one notices that (C.2) combined with a simple duality
argument based on the fact that exppL2q “ pL log1{2 Lq˚ implies the Chang–Wilson–Wolff
inequality

}f ´ E0f}exppL2q À }SMf}L8 . (C.3)

Estimate (C.3) was first proved in [CWW85]; see also the monograph [Wil08] for an in-depth
discussion of exponential square integrability in relation to discrete and continuous square
functions in analysis. Thus the proof of (C.2) in [TW01] is of necessity somewhat hard as it
reproves (C.3).

A second observation that goes back to [TW01], see also [ST09] for an analogous remark
on the dual side, is that (C.1) implies the weaker estimate

¨

˝

ÿ

LPΛ1
1

}∆Lf}
2
L1

˛

‚

1
2

À }f}L log1{2 L. (C.4)

Indeed, (C.4) follows by (C.1) and the Minkowski integral inequality. Alternatively, as ob-
served in [ST09], the dual of (C.4) is a —again weaker— consequence of the Chang–Wilson–
Wolff inequality (C.3).

Finally, a consequence of (C.4) is the Zygmund inequality

¨

˝

ÿ

λPlac11

ˇ

ˇ

ˇ

pfpλq

ˇ

ˇ

ˇ

2

˛

‚

1
2

À }f}L log1{2 L.

See for example [Zyg02, Theorem 7.6, Chapter XII]. Indeed, if Lλ is an interval which has λ
as an endpoint we have | pfpλq| ď }p∆Lλ

fq^}L8 ď }∆Lλ
f}L1 for a suitable choice of symbol in

the definition of the Littlewood–Paley projection and Zygmund’s inequality follows by (C.4).

All the estimates above have a higher order counterpart which plays an important role
in our investigations in this paper. However, our point of view is somewhat different than
in [TW01]. Firstly we want to emphasize that the proof of our main theorem, Theorem 31,
hinges on a higher order version of the generalized Zygmund inequality (C.4) which loosely
has the form

¨

˝

ÿ

LPΛ1
τ

}∆Lf}
2
L1

˛

‚

1
2

À }f}L logτ{2 L, τ P N. (C.5)

Estimates of the form (C.5) will be referred to as generalized Zygmund–Bonami inequalities
and will be stated precisely and proved in Section C.4. The terminology comes from the fact
that they imply the higher order version of Zygmund’s inequality, due to Bonami [Bon70],
and which can be stated as follows:

¨

˝

ÿ

λPlac1τ

ˇ

ˇ

ˇ

pfpλq

ˇ

ˇ

ˇ

2

˛

‚

1
2

À }f}L logτ{2 L, τ P N. (C.6)
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A novelty in our approach is the realization that the weak square function characterization
(C.2) of the space L log1{2 L, in the dyadic case, is precisely the dual estimate of the Chang–
Wilson–Wolff inequality (C.3). This relies on a duality argument involving quotient spaces
which is inspired by the work of Bourgain, [Bou89]. We can then use the Chang–Wilson–Wolff
inequality for general order of integrability, see §C.3.1,

}f ´ E0f}exppL2{pσ`1qq À }SMf}exppL2{σq, σ ě 0 , (C.7)

to conclude the following weak square function characterization of the space L logpσ`1q{2 L in
the form of the following theorem.

Theorem 33. If f P L logpσ`1q{2 L for some σ ě 0 then for each k P N0 there exist functions
fk such that

Dkf “ Dkfk @k P N0,

›

›

›

›

›

›

˜

ÿ

kě0

|fk|2

¸1{2
›

›

›

›

›

›

L logσ{2 L

À }f}L logpσ`1q{2 L.

The implicit constant depends only on σ.

We will prove Theorem 33 in Section C.3 as a consequence of (C.7). While this is a rather
deep implication, as in the case σ “ 0, it is not hard to see that the conclusion of Theorem 33
combined with the fact exppL2{σq “ pL logσ{2 Lq˚ actually implies the Chang–Wilson–Wolff
inequality (C.7) for the same value of σ. We note that while the conclusion of Theorem 33
and of the subsequent corollary below are already in [TW01] for the case σ “ 0, our approach
provides an alternative proof even for L log1{2 L. This approach has the advantage of being
able to deal with all spaces L logpσ`1q{2 L at once, hence leading to the more general conclusion
of Theorem 33.

As in the case σ “ 0, Theorem 33 readily implies the continuous version below.

Corollary 34. Let J Ă R be a finite interval, σ ě 0 and f P L logpσ`1q{2 LpJq. Then for each
L P Λ1 with |L| ě |J |´1 there exists a nonnegative function FL such that for every γ ě 1

|∆Lf | À FL ˚ φp|L||J |q´1 ,

›

›

›

›

›

›

›

›

¨

˚

˝

ÿ

LPΛ
|J|´1

1

|FL|2

˛

‹

‚

1{2
›

›

›

›

›

›

›

›

L logσ{2 L
´

γJ,
dx
|J |

¯

Àγ,σ }f}
L logpσ`1q{2 L

´

J,
dx
|J |

¯.

If in addition
ş

J f “ 0 then the conclusion holds for all L P Λ1 with the summation extending
over all L P Λ1. With or without this additional assumption, for |L| ě |J |´1 the functions FL
are supported in 5J . The implicit constant depends only on γ and σ, as indicated.

C.1.4 Background and history

The fact that Marcinkiewicz multipliers are Lp-bounded is classical; see for example [Duo11,
Theorem 8.13]. The first endpoint result concerning multiplier operators of Marcinkiewicz-
type is arguably a theorem due to Bourgain [Bou89] which asserts that, in the periodic setting,
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the classical Littlewood–Paley square function LP1 has operator norm }LP1}pÑp » pp´1q´3{2

as p Ñ 1`. Tao andWright proved in [TW01] the optimal local endpoint estimate L log1{2 L Ñ

L1,8 for the class of R2 “ R2,1 multipliers, which contains Marcinkiewicz multipliers. It
was later observed in [Bak19] that Bourgain’s estimate follows by the endpoint bound of
[TW01] combined with a randomization argument and Tao’s converse extrapolation theorem
from [Tao01]. Recently, Lerner proved in [Ler19] effective weighted bounds for the classical
Littlewood–Paley square function LP1; these weighted bounds imply the correct p-growth for
the Lp Ñ Lp norms of these operators as p Ñ 1`. In addition, as observed in [Bak21], the
arguments of [Ler19] can be used to establish weighted A2 estimates for LPτ that imply sharp
Lp Ñ Lp estimates for LPτ as p Ñ 1` for any order τ . The class R2 contains all multipliers
m whose pieces mL have bounded q-variation uniformly in L P Λ1, for all 1 ď q ă 2; see
[CRdFS88] where the authors showed that all R2 multipliers are bounded on Lp for p P p1,8q.

As already discussed, the authors in [TW01] rely on the weak square function character-
ization of L log1{2 L as in (C.1) for their proof. Our argument here is a bit different, relying
on the weaker generalized Zygmund–Bonami inequality instead; a hint of a different proof
already appears in [TW01, p. 540]. The Zygmund inequality first appeared in [Zyg30] in its
dual form; see also [Zyg02, Theorem 7.6, Chapter XII]. The higher lacunarity order (C.6) is
due to Bonami and it is contained in [Bon70]. We note that our results provide an alternative
proof for the case of finite order lacunary sets. On the other hand, a dual version of the gen-
eralized Zygmund–Bonami inequality in the first order case (that is, inequality (C.4)) appears
in [ST09].

The Lp-boundedness of Marcinkiewicz multipliers of order one and higher in the peri-
odic setting was established by Marcinkiewicz in [Mar39]; see also Gaudry’s paper [Gau78].
Generalized versions of Hörmander–Mihlin and Marcinkiewicz multipliers, together with their
square function counterparts of higher order, have been introduced in [SS81] in a very broad
context. There the authors proved the equivalence of Lp-boundedness between different classes
of such multipliers. Our setup is focused on the finite order lacunary case and provides the
optimal endpoint bounds for such classes.

C.1.5 Structure

The general structure of the rest of this paper is as follows. Section C.2 contains some basic
facts and properties of Orlicz spaces, together with a small toolbox for dealing with lacunary
sets; the reader is encouraged to skip this section on a first reading and only consult it when
necessary. In Section C.3 we will prove Theorem 33 and Corollary 34. In Section C.4 we will
critically use Corollary 34 in order to conclude the generalized Zygmund–Bonami inequality
of arbitrary order alluded to above. This inequality will be stated and proved in different
versions which can be local or non-local, depending on the type of cancellation assumptions we
impose. The reader can find the corresponding statements in Propositions 37 and 38; see also
Corollary 39. In Section C.5 we present the details of a Calderón–Zygmund decomposition for
the Orlicz space L logσ{2 L, adapted to the needs of this paper. The proof of Theorem 31 takes
up the best part of Section C.6 where the Calderón–Zygmund decomposition of Section C.5
is combined with the generalized Zygmund–Bonami inequality of Section C.4. The proofs of
Theorem 30 and Theorem 32 are discussed in Section C.6.2 as a variation of the proof of
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Theorem 31.

C.2 Preliminaries and notation

In this section we collect several background definitions and notations that will be used
throughout the paper.

C.2.1 Some basic facts for certain classes of Orlicz spaces

We adopt standard nomenclature for Young functions and Orlicz spaces as for example in
[Wil08, Chapter 10]. Given a Young function Φ : r0,8s Ñ r0,8s we will use the following
notation for local LΦ averages: For a finite interval I Ă R

x|f |yΦ,I :“ inf

"

λ ą 0 :
1

|I|

ż

I
Φ

ˆ

|fpxq|

λ

˙

dx ď 1

*

.

For the usual local Lp averages we just set x|f |yp,I :“ |I|´1{p}f}LppIq for 1 ď p ă 8. For σ ě 0
we use the Young function Bσptq :“ tplogpe ` tqqσ to define local L logσ L-spaces and we will
also write

}f}
L logσ L

´

I,
dx
|I|

¯ :“ x|f |yBσ ,I »
1

|I|

ż

I
|fpxq|

ˆ

log

ˆ

e`
|fpxq|

x|f |y1,I

˙˙σ

dx. (C.8)

The last approximate equality can be found in [Wil08, Theorem 10.8]. For future reference it
is worth noting that the function Bσ is submultiplicative and thus doubling; see [CUMP11,
§5.2]. We will write instead LBσpRq to denote the (global) space of measurable functions f
such that

ş

RBσp|f |q ă `8.

The dual Young function of Bσ can be taken to coincide with Eσ´1ptq :“ exppcσt
1{σq ´ 1

for t Á 1; here we insist on the equality only for sufficiently large values of t; with this
function we define the local exppL1{σq norms and we have the Hölder inequality x|fg|y1,I À

x|f |yBσ ,Ix|f |yEσ´1,I
. We reserve the notation L logσ L and exppL1{σq for the case I “ r0, 1s

and the space of functions supported in r0, 1s for which

}f}L logσ L :“ x|f |yBσ ,r0,1s ă `8, }f}exp pL1{σq :“ x|f |yEσ´1 ,r0,1s » sup
pě2

p´σ}f}p ă `8,

respectively (see [Tri93, §2.2.4] for the last approximate equality); there holds exppL1{σq –

pL logσ Lq˚. For σ “ 0 we adopt the convention that L logσ L “ L1 and exppL1{σq “ L8. The
following Minkowski-type integral inequality

›

›t}fk}L logσ Lu
›

›

ℓ2k
À

›

›

›
}tfku}ℓ2k

›

›

›

L logσ L

will be used with no particular mention. Its proof can be obtained by a simple duality
argument.
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C.2.2 Some tools for handling lacunary sets

We introduce some useful notions concerning lacunary sets of arbitrary order. Let τ ě 1 and
L P Λτ . We will denote by pL the unique interval pL P Λτ´1 such that L Ă pL and call pL the
(lacunary) parent of L. Furthermore we will denote by λpLq the unique element λ P lacτ´1

such that distpL,RzpLq “ distpL, λq “ |L|. We note that λpLq is one of the endpoints of pL.
These definitions also make sense in the case τ “ 1 remembering the definitions of Λ0 and
lac0.

If L P Λτ then L˚ :“ L ´ λpLq P Λ1; in fact L˚ is one of the intervals p´2|L|,´|L|q or
p|L|, 2|L|q depending on the original relative position of L with respect to λpLq. The point of
the definitions above is that if L P Λτ then, upon fixing a suitable choice of bump functions
ϕL P ΦL,M , we can write the identity

∆Lf “ e2πiλpLq‚

∆L˚

´

e´2πiλpLq‚

∆
pL
f

¯

“ e2πiλpLq‚

∆L˚

´

e´2πiλpLq‚

f
¯

.

This will be crucially used in several parts of the recursive arguments in the paper. We will
also use the intuitive notation ∆|L| :“ ∆L˚Yp´L˚q for the smooth Littlewood–Paley projection
of first order at frequencies |ξ| » |L| which takes advantage of the fact that L˚ essentially
only depends on the length of L. The following notation will be useful to localize in a certain
lacunary parent:

Λnτ pL1q :“ tL P Λnτ : L Ă L1u, L1 Ă R;
similarly we define Λτ pL1q. Note that if L1 P Λτ´1 and L P Λτ pL1q then necessarily pL “ L1.

The following simple lemma relies on the fact that lacunary sets are invariant under dyadic
dilations with respect to the origin and will be used to allow rescaling of intervals of dyadic
length to r0, 1s.

Lemma 35. Let τ P N and a P 2Z. Then a´1lacaτ :“ tλ{a : λ P lacaτu “ lac1τ .

To showcase the typical application of this lemma let J Ă R be an interval of dyadic
length and a “ taλuλPlacτ a finite collection of complex coefficients. By a standard change of
variables

papyq :“
ÿ

λPlac
|J|´1
τ

aλe
iλy, x|pa|y

p
p,J “

ż

r0,1s

ˇ

ˇ

ˇ

ˇ

ÿ

λP|J |lac
|J|´1
τ

aλ|J |´1eiλy
ˇ

ˇ

ˇ

ˇ

p

dy, (C.9)

and we crucially note that the sum on the right hand side is for λ P |J |lac
|J |´1

τ “ lac1τ because
of the lemma. Of course the same change of variables will be valid for x|pa|yΦ,J for any Young
function Φ. We will use this rescaling argument in several places in the paper.

C.2.3 Other notation

For any function g and λ ą 0 we write gλpxq :“ λ´1gpx{λq for the L1-rescaling. Two special
kinds of bump functions will appear. Firstly ωpxq :“ p1 ` |x|2q´N{2 is the smooth tailed
indicator of r´1{2, 1{2s with N any large positive integer. It will be enough to take N “ 10
for the arguments in this paper but more decay is available if needed. We will also write
φpxq :“ p1 ` |x|2q´3{4 which is still an L1-bump but has only moderate decay. In some cases
we are restricted to using φ, most notably in the statement and proof of Corollary 34.
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C.3 A weak square function characterization of L logσ{2 L

In this section we provide the proof of Theorem 33 as a consequence of the Chang–Wilson–
Wolff inequality of general order (C.7). The conclusion of Corollary 34 will then follow by a
standard averaging argument using almost orthogonality between the continuous Littlewood–
Paley projections and martingale differences.

C.3.1 Proof of Theorem 33

We recall that we work on the probability space pr0, 1s, dxq. It clearly suffices to prove the
theorem for k ě 1 as for k “ 0 we can set f0 :“ E0f “ D0f . Our starting point is the Chang–
Wilson–Wolff inequality of general order of integrability, (C.7). This is pretty standard but a
quick proof can be produced by using the usual Chang–Wilson–Wolff inequality (C.3) in the
form

p´σ{2}f ´ E0f}p À p´σ{2p1{2}SMf}p, p ě 2, σ ě 0,

which readily implies

}f ´ E0f}exppL2{pσ`1qq » sup
pě2

}f ´ E0f}p

ppσ`1q{2
À sup

pě2

}SMf}p

pσ{2
» }SMf}exppL2{σq

which is (C.7). Observe that (C.7) has the form

›

›

›

›

›

ÿ

kě1

gk

›

›

›

›

›

exppL2{pσ`1qq

À

›

›

›

›

›

›

˜

ÿ

kě1

|gk|2

¸1{2
›

›

›

›

›

›

exppL2{σq

, gk “ Dkf. (C.10)

We will write (C.10) as a continuity property for the operator Tptgkukq :“
ř

k gk between

suitable Banach spaces. To that end let us consider the subspace of L logσ{2 Lpr0, 1s; ℓ2q given
by

Y :“
!

tψkuk P L logσ{2 Lpr0, 1s; ℓ2q : Dkψk “ 0 for all k P N
)

.

We observe that Y is closed. To see this consider a sequence pψnqn Ă Y with ψn “ tψnk uk

converging to some ψ “ tψkuk in L logLσ{2Lpr0, 1s; ℓ2q. Clearly the limit ψ belongs to
L logLσ{2Lpr0, 1s; ℓ2q, the latter being a Banach space and, additionally, ψnk converges to

ψk in L logσ{2 Lpr0, 1sq and so also in L1pr0, 1sq, uniformly in k. Now it follows by Fatou’s
lemma that for each k P N there holds

›

›

›
lim inf
nÑ8

|Dkpψnk ´ ψkq|

›

›

›

L1pr0,1sq
ď lim inf

nÑ8
}ψk ´ ψnk }L1pr0,1sq “ 0

yielding Dkψ
n
k “ Dkψk “ 0 a.e., where we also used the uniform boundedness of Dk on

L1pr0, 1sq.
Since

`

L logσ{2 Lpr0, 1s; ℓ2q
˘˚

– exppL2{σqpr0, 1s; ℓ2q, the annihilator of Y is given equiva-
lently by

Y K “

#

tgkuk P exppL2{σqpr0, 1s; ℓ2q :

ż

˜

ÿ

k

gkψk

¸

“ 0 for all tψkuk P Y

+

.
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Since Y is a closed subspace of L logσ{2 Lpr0, 1s; ℓ2q we have that pL logσ{2 Lpr0, 1s; ℓ2q{Y q˚

is isometrically isomorphic to Y K; see [Rud91, Theorem 4.9]. We equip Y K with the norm
appearing on the right hand side of (C.10). We will use the following fact.

Lemma 36. If tgkuk P Y K then Dkgk “ gk for every k P N.

Proof. Fix an index k0 P N, let ψ P L logσ{2 L be arbitrary and let tψkuk be defined by

ψk :“

#

0 if k ‰ k0,

ψ ´ Dk0ψ otherwise.

Clearly tψkuk P L logσ{2 Lpr0, 1s; ℓ2q and, moreover, Dk0pψ ´ Dk0ψq “ 0 so that tψkuk P Y .
By the definition of Y K we have then

0 “

ż

ÿ

k

gkψk “

ż

gk0pψ ´ Dk0ψq “

ż

pgk0 ´ Dk0gk0qψ

where we have used the fact that Dk is self-adjoint; but this is only possible for arbitrary ψ
if Dk0gk0 “ gk0 , as claimed. ■

Now (C.10) can be written in the form

}Tptgkukq}exppL2{pσ`1qq À }tgkuk}Y K , Tptgkukq :“
ÿ

k

gk. (C.11)

Let X :“ L logσ{2 Lpr0, 1s; ℓ2q and denote by XN , YN the functions in X,Y , respectively,
which are constant on dyadic intervals of length smaller than 2´N . In particular, such func-
tions f have finite Haar expansion which implies the apriori qualitative property that the
spaces XN , YN are finite dimensional. We note that pXN{YN q˚ is isometrically isomorphic
to Y K

N , with Z˚ denoting the dual of the finite-dimensional vector space Z. By the Riesz
representation theorem we then get that

}tDkfuk}XN {YN ď sup
tgkukPY K

N :
}tgkuk}

Y K
N

ď1

ˇ

ˇ

ˇ

ˇ

ˇ

ż

ÿ

k

gkDkf

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
tgkukPY K

N :
}tgkuk}

Y K
N

ď1

ˇ

ˇ

ˇ

ˇ

ż

Tptgkukqf

ˇ

ˇ

ˇ

ˇ

,

where we also used Lemma 36 in passing to the equality in the right hand side above. Using
(C.11) together with Hölder’s inequality in Orlicz spaces it follows that

}tDkfNuk}X{Y “ inf
tψkukPY

›

›

›

›

›

›

˜

ÿ

k

|DkfN ` ψk|2

¸1{2
›

›

›

›

›

›

L logσ{2 L

À }fN}L logpσ`1q{2 L,

where fN is the truncation of the Haar series of f P X at scale 2´N . We stress that the
approximate inequality above holds uniformly for all N P N. This inequality extends to all
f P L logpσ`1q{2 L by a standard approximation argument, using the fact that the truncated
Haar series of functions f P f P L logpσ`1q{2 L converge to f in L logpσ`1q{2 L; see [Osw83].
The extension of the operator f ÞÑ tDkfuk is the obvious one given by the same expression.

In order to conclude the proof of the theorem we notice that for every tψkuk P Y there
holds Dkf “ DkpDkf ` ψkq and the last inequality guarantees the existence of a vector
tψkuk P Y such that the functions fk :“ Dkf ` ψk satisfy the conclusion of the theorem.
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C.3.2 Proof of Corollary 34

The corollary follows from the dyadic case of Theorem 33 via an averaging argument which is
essentially identical to the one in [TW01, §9]; see also [Vit19] where the argument in [TW01,
§9] is explained in detail. We can clearly assume that γ ě 3 and by affine invariance we can
take γJ “ r0, 1s, so that |J | “ γ´1, and supp f Ă r1{3, 2{3s.

For all θ P r´1{3, 1{3s we define fθpxq :“ fpx´θq. By Theorem 33, for each θ P r´1{3, 1{3s

and k ě 0 there exists a function fθ,k such that Dkfθ “ Dkfθ,k and

›

›

›

›

›

›

˜

ÿ

kě0

|fθ,k|2

¸1{2
›

›

›

›

›

›

L logσ{2 L

À }fθ}L logpσ`1q{2 L “ }f}L logpσ`1q{2 L. (C.12)

Setting for L P Λγ1

FLpxq :“
ÿ

kPN0

2´|log2 |L|´k|{2

ż

r´1{3,1{3s

|fθ,kpx` θq|dθ

and arguing as in [TW01] we see that |∆Lfpxq| À FL ˚ φ|L|´1 and

ˆ

ÿ

LPΛγ
1

|FLpxq|2
˙1{2

À

ż

r´1{3,1{3s

ˆ

ÿ

kě0

|fθ,kpx` θq|2
˙1{2

dθ.

By the Minkowski integral inequality for the space L logσ{2 L we have

›

›

›

›

›

›

›

¨

˝

ÿ

LPΛγ
1

|FL|2

˛

‚

1{2
›

›

›

›

›

›

›

L logσ{2 L

À

ż

r´1{3,1{3s

›

›

›

›

›

›

˜

ÿ

kě0

|fθ,kp¨ ` θq|2

¸1{2
›

›

›

›

›

›

L logσ{2 L

dθ

and the proof follows for L P Λγ1 . Under the additional cancellation assumption
ş

r0,1s
f “ 0

we consider also L P Λ1 with |L| ă γ, and for these we define FL :“ |∆Lf | and note that
|∆Lf | À φ|L|´1 ˚ FL. Using the cancellation condition we have also

|∆Lf | À φ|L|´1 ˚ p|L|}f}L11r0,1sq,

which readily yields the estimate
›

›}tFLu|L|ăγ}ℓ2
›

›

L1 À }f}L1 and the proof is complete. Note
that we used that since τ “ 1 there are at most two intervals L P Λ1 of any given length.

C.4 Generalized Zygmund–Bonami inequalities

In this section we prove the versions of the generalized Zygmund–Bonami inequality presented
in the introduction, where the Littlewood–Paley projections ∆L for L P Λ1 are replaced by
their τ -order counterparts ∆L for L P Λτ , where τ is an arbitrary positive integer. As already
discussed, the estimate corresponding to order τ “ 1 is (C.4) and it follows rather easily from
the case σ “ 0 of Corollary 34. For τ ą 1 we first state the generalized Zygmund–Bonami
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inequalities in the case of L P Λτ with |L| ě |J |´1, where J is an interval in which f is
supported; this is the harder and deeper case. In the rest of the section we will also provide
the statements and proofs for the easier case |L| ă |J |´1; the latter will rely on pointwise
estimates for ∆Lf and recursive arguments, assuming suitable cancellation conditions for f
in the same spirit as Corollary 34.

C.4.1 The main term in the generalized Zygmund–Bonami inequalities

We encourage the reader to keep in mind the notation of §C.2 for the local Orlicz norms and
the definitions concerning lacunary sets from §C.2.2 for the rest of this section. Our first result
below gives a version of the generalized Zygmund–Bonami inequality in which the intervals
L are restricted to those for which |L| ě |J |´1, as anticipated above.

Proposition 37. Let J Ă R be a finite interval and f be a compactly supported function with
supppfq Ď J . Let τ be a positive integer, σ a nonnegative integer and γ ą 1. There holds

¨

˚

˝

ÿ

LPΛ
|J|´1
τ

x|∆Lf |y
2
Bσ{2,γJ

˛

‹

‚

1{2

Àσ,τ,γ x|f |yBpσ`τq{2,J ,

ÿ

LPΛ
|J|´1
τ

}∆Lf}
2
L2pRzγJq Àτ,γ |J |x|f |y2Bpτ´1q{2,J

.

Proof. The proof is by way of induction on τ , with the base case τ “ 1 being an easy
consequence of Corollary 34, as we shall now illustrate. Indeed, let C1pσ, τ, γq and C2pτ, γq

denote the best constants in the first, and the second estimate in the statement, respectively.

Corollary 34 implies that for L P Λ
|J |´1

1 we have

x|∆Lf |yBσ{2,γJ À x|φp|L||J |q´1 ˚ FL|yBσ{2,γJ À x|FL|yBσ{2,γJ ,

using Young’s convolution inequality and the L1-normalization of each φp|L||J |q´1 . Now the
proof of the first estimate in the conclusion for τ “ 1 can be concluded by yet another
application of Minkowski’s inequality, this time to yield that the left hand side of the first
estimate in the conclusion is bounded by a constant multiple of

¨

˝

ÿ

|L|ě|J |´1

x|FL|y2Bσ{2,γJ

˛

‚

1{2

À

C

¨

˝

ÿ

|L|ě|J |´1

|FL|2

˛

‚

1{2
G

Bσ{2,γJ

À x|f |yBpσ`1q{2,J

by the estimate for the square function of the tFLuL in Corollary 34. Thus C1pσ, 1, γq ă `8

for all nonnegative integers σ and γ ą 1.

For the second estimate we have for |L| ě |J |´1 and x P RzγJ

|∆Lfpxq| À |L||J |p1 ` |L||x´ cJ |q´10x|f |y1,J À ω|L|´1 ˚ px|f |y1,J1Jqpxq, (C.13)
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with ω|L|´1 as given in §C.2. Using the first approximate inequality above, the square of the
left hand side of the second estimate in the conclusion of the proposition can be estimated by
a constant multiple of

ÿ

LPΛ
|J|´1

1

x|f |y21,Jp|L||J |q2|L|´20

ż

RzγJ
|x´ cJ |´20 dx À x|f |y21,J

ÿ

LPΛ1: |L||J |ě1

p|L||J |q´18|J |

which sums to the desired quantity since, for τ “ 1, there is exactly one interval L P Λ1 per
dyadic scale. This shows that C2p1, γq ă `8 for all γ ą 1.

Consider now the case τ ą 1 and let a ą 1 be such that γ “ aτ . Recalling the discussion
in §C.2.2 we write

|∆Lf | ď

ˇ

ˇ

ˇ
∆L˚

´

1aτ´1Je
´2πiλpLq‚

∆
pL
f

¯ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
∆L˚

´

1Rzaτ´1Je
´2πiλpLq‚

∆
pL
f

¯ˇ

ˇ

ˇ

“: |∆L˚f1,L| ` |∆L˚f2,L|.
(C.14)

For clarity, we remind the reader that λpLq is either of the endpoints of pL (depending on
the position of L) and therefore we can partition the intervals L into two families such that
f1,L, f2,L actually depend only on pL – this will be relevant below. Fixing for a moment L1 P

Λ
|J |´1

τ´1 we note that for any L P Λ
|J |´1

τ pL1q there holds pL “ L1 and so |f1,L| “ |∆
pL
f |1aτ´1J “

|p∆L1fq1aτ´1J |. As the collection tL˚ : L P Λ
|J |´1

τ´1 pL1qu Ă Λ
|J |´1

1 we can use the conclusion of

proposition for τ “ 1 to estimate for fixed L1 P Λ
|J |´1

τ´1

¨

˚

˝

ÿ

LPΛ
|J|´1
τ pL1q

x|∆L˚f1,L|y
2
Bσ{2,aτJ

˛

‹

‚

1{2

ď C1pσ, 1, aq x|∆L1f |yBpσ`1q{2,aτ´1J .

Thus we can recursively estimate

¨

˚

˝

ÿ

L1PΛ
|J|´1

τ´1

ÿ

LPΛ
|J|´1
τ pL1q

x|∆L˚f1,L|y
2
Bσ{2,aτJ

˛

‹

‚

1{2

ď C1pσ, 1, aq

¨

˚

˝

ÿ

L1PΛ
|J|´1

τ´1

x|∆L1f |y
2
Bpσ`1q{2,aτ´1J

˛

‹

‚

1
2

ď C1pσ, 1, aqC1pσ ` 1, τ ´ 1, aτ´1qx|f |yBpτ`σq{2,J

which takes care of the contribution of the f1,L’s. Considering now the f2,L’s, we have by
Hölder’s inequality for Orlicz spaces that x|∆L˚f2,L|yBσ{2,aτJ

ď x|∆L˚f2,L|y2,aτJ and therefore

for any fixed L1 P Λ
|J |´1

τ´1

ÿ

LPΛ
|J|´1
τ pL1q

x|∆L˚f2,L|y
2
Bσ{2,aτJ

À
1

aτ |J |

ż

R
|f2,L|2 “

1

aτ |J |

ż

Rzaτ´1J
|∆L1f |2,

where we have used the L2 Ñ L2 boundedness of the smooth Littlewood–Paley square function
together with the fact remarked above that f2,L depends essentially only on pL “ L1. It follows
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that we can bound recursively

¨

˚

˚

˚

˝

ÿ

L1PΛ
|J|´1

τ´1

ÿ

LPΛτ pL1q

|L|ě|J |´1

x|∆L˚f2,L|y
2
Bσ{2,aτJ

˛

‹

‹

‹

‚

1{2

Àσ

¨

˚

˝

1

aτ |J |

ÿ

L1PΛ
|J|´1

τ´1

ż

Rzaτ´1J
|∆L1f |2

˛

‹

‚

1{2

ď

ˆ

C2pτ ´ 1, aτ´1q

aτ |J |
|J |x|f |y2Bpτ´2q{2,J

˙1{2

Àσ,τ pC2pτ ´ 1, aτ´1q{aτ q1{2x|f |yBpσ`τq{2,J .

This proves that

C1pσ, τ, aτ q ď C1pσ, 1, aqC1pσ ` 1, τ ´ 1, aτ´1q ` cσ,τC2pτ ´ 1, aτ´1q1{2a´τ{2

for some numerical constant cσ,τ depending only on σ, τ .
We move to the proof of the inductive step for the L2-estimate and we use again the

splitting of (C.14). For the term corresponding to the f1,L’s we can estimate again recursively
ÿ

L1PΛ
|J|´1

τ´1

ÿ

LPΛ
|J|´1
τ pL1q

}∆L˚f1,L}
2
L2pRzaτJq

ď C2p1, aq|aτ´1J |
ÿ

L1PΛ
|J|´1

τ´1

x|∆L1f |y
2
1,aτ´1J

ď C2p1, aqC1p0, τ ´ 1, aτ´1qaτ´1|J | x|f |y
2
Bpτ´1q{2,J

.

Finally, for the contribution of the f2,L’s we use again the L2 Ñ L2 boundedness of the smooth
Littlewood–Paley square function and the inductive hypothesis to estimate

ÿ

L1PΛ
|J|´1

τ´1

ÿ

LPΛ
|J|´1
τ pL1q

}∆L˚f2,L}
2
L2pRzaτJq

À
ÿ

L1PΛ
|J|´1

τ´1

}∆L1f}
2
L2pRzaτ´1Jq

ď C2pτ ´ 1, aτ´1q|J | x|f |y
2
Bpτ´1q{2,J

.

We have thus shown that for some numerical constant c1
σ,τ

C2pτ, aτ q ď C2p1, aqC1p0, τ ´ 1, aτ´1qaτ´1 ` c1
σ,τC2pτ ´ 1, aτ´1q.

This completes the proof of the inductive step and with that the proof of the proposition. ■

Remark 1. The first estimate in Proposition 37 implies the Zygmund-Bonami inequality of
general order. Indeed assume for a moment that J “ r0, 1s and for λ P lac1τ let Lλ P Λτ be an
interval that has λ as an endpoint. We have

ˇ

ˇ

ˇ

pfpλq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

{∆Lλ
pfqpλq

ˇ

ˇ

ˇ
ď }∆Lλ

pfq}L1

for a suitable choice of symbol in the definition of ∆L and so the first estimate of the propo-
sition for σ “ 0 implies

¨

˝

ÿ

λPlac1τ

ˇ

ˇ

ˇ

pfpλq

ˇ

ˇ

ˇ

2

˛

‚

1
2

À }f}L logτ{2 L
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which is the Zygmund–Bonami inequality of lacunary order τ . Dualizing and rescaling as in
(C.9) tells us that for any finite interval J Ă R with |J | P 2Z we have

ppyq :“
ÿ

λPlac
|J|´1
τ

aλe
´2πiλy, }taλuλ}ℓ2 “ 1 ùñ x|p|yE2{τ ,J À 1. (C.15)

This formulation of the higher order Zygmund–Bonami inequality will be used in several points
in the rest of the paper. As it follows from Proposition 37 above this makes the proofs in the
paper somewhat self contained.

Remark 2. One can easily verify that the L2-estimate of Proposition 37 can be upgraded
to the following form for “molecules”. Let J be a family of pairwise disjoint intervals and
f “

ř

JPJ bJ where supppbJq Ă J for each J P J . For every positive integer τ and γ ě 2
there holds

ÿ

LPΛτ

›

›

›

›

›

›

ÿ

J : |J |ě|L|´1

∆LpbJq1RzγJ

›

›

›

›

›

›

2

L2pRq

À
ÿ

JPJ
|J |x|bJ |y2Bpτ´1q{2,J

.

Indeed an inductive proof is again available. The case τ “ 1 follows by the same pointwise
estimate (C.13) which implies that

ÿ

J : |J |ě|L|´1

|∆LpbJq|1RzγJ À ω|L|´1 ˚

¨

˝

ÿ

|J |ě|L|´1

x|bJ |y1,J
1J

p|L||J |q5

˛

‚

which sums using that there are at most two intervals L P Λ1 of any given length. The
inductive step relies again on the identity (C.14), applied to each bJ in place of f . Then
the contribution of the first term is estimated by an appeal to the case τ “ 1 followed by
an application of the first estimate in Proposition 37. The contribution of the second term
in (C.14) is estimated by the Littlewood–Paley inequalities and the inductive hypothesis. We
omit the details.

We proceed to prove the easier range, corresponding to |L| ă |J |´1. As in Corollary 34
we require cancellation conditions, which in the case at hand amount to vanishing Fourier
coefficients of the function at lacunary frequencies corresponding to order τ ´1. In this range
we can prove the stronger L2 inequality that follows. For simplicity we state the result below
for f with support of dyadic length, but it is obvious that this is no real restriction.

Proposition 38. Let J Ă R be a finite interval of dyadic length and f be a compactly
supported function with supppfq Ď J . Let τ be a positive integer. We assume that pfpλq “ 0

for all λ P lac
|J |´1

0 Y ¨ ¨ ¨ Y lac
|J |´1

τ´1 . Then

ÿ

LPΛτ :
|L|ă|J |´1

}∆Lf}
2
L2pRq À |J |x|f |y2Bpτ´1q{2,J

.
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Proof. We argue by induction as in the proof of Proposition 37. Let us denote by Cpτq the
best constant in the inequality we intend to prove. Note that for τ “ 1 the assumption reads
ş

J f “ 0 and the conclusion Cp1q ă `8 follows immediately by the pointwise estimate

|∆Lpfqpxq| ÀM |L|2|J |2p1 ` |L||x´ cJ |q´Mx|f |y1,J À ω|L|´1 ˚ p|L||J |x|f |y1,J1Jq (C.16)

for any large positive integer M , where cJ is the center of J and |L||J | ă 1. In order to see
the first estimate above let us take ϕL P ΦL,M to be the symbol of ∆L which can be written
in the form ϕLpxq “ ei2πicLx|L|ϕp|L|xq, with cL denoting the center of L P Λ1. We compute
using the cancellation of f and the mean value theorem

|∆Lpfqpxq| ď

ż

J
|ϕLpx´ yq ´ ϕLpx´ cJq| |fpyq|dy À

ż

J
|J | sup

zPJ
|ϕ1
Lpx´ zq||fpyq|dy.

Using that |cL| » distpL, 0q » |L| we have for z P J

|ϕ1
Lpx´ zq| À cL|L|ϕp|L|px´ zqq ` |L|2ϕp|L|px´ zqq À |L|2 p1 ` |L||x´ z|q

´M

» |L|2 p1 ` |L||x´ cJ |q
´M .

The last approximate equality can be checked by considering the cases x P 3J and x R 3J
separately, remembering that |L||J | ă 1. The combination of the last two displays yields the
first estimate in (C.16). The second estimate in (C.16) follows by the first since p1 ` |L||x ´

cJ |q´M » p1 ` |L||x´ z|q´M for z P J Ě supppfq.
For τ ą 1 we first do the same reduction as in the proof of Proposition 37. For τ ą 1 we

can estimate

ÿ

LPΛτ

|L|ă|J |´1

}∆Lf}
2
L2pRq ď

ÿ

L1PΛτ´1

|L1|ă|J |´1

ÿ

LPΛτ pL1q

›

›

›
∆L˚

´

e´2πiλpLq‚

∆L1f
¯›

›

›

2

L2pRq

`
ÿ

L1PΛ
|J|´1

τ´1

ÿ

LPΛτ pL1q

|L|ă|J |´1

›

›

›
∆L˚

´

e´2πiλpLq‚

f
¯

›

›

›

2

L2pRq
.

(C.17)

The first summand above is estimated by À Cpτ ´ 1q|J |x|f |y2Bpτ´2q{2,J
by using the L2-bound

for the smooth Littlewood–Paley square function and the inductive hypothesis.
The second summand above can be estimated by

ÿ

ℓ: 2ℓă|J |´1

ÿ

L1PΛ
|J|´1

τ´1

ÿ

LPΛτ pL1q

|L|“2ℓ

›

›

›
∆2ℓ

´

e´2πiλpLq‚

f
¯›

›

›

2

L2pRq
“

ÿ

ℓ: 2ℓă|J |´1

ÿ

λPlac
|J|´1

τ´1

ÿ

LPΛτ
λpLq“λ

|L|“2ℓ

›

›

›
∆2ℓ

´

e´2πiλ‚

f
¯›

›

›

2

L2pRq

À
ÿ

ℓ: 2ℓă|J |´1

ÿ

λPlac
|J|´1

τ´1

›

›

›
∆2ℓ

´

e´2πiλ‚

f
¯›

›

›

2

L2pRq

where, in passing to the last line, we used that for each λ P lacτ´1 there are at most Oτ p1q

intervals L P Λτ of fixed length with λpLq “ λ. Fixing for a moment 2ℓ ă |J |´1 and x P R we
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write

ÿ

λPlac
|J|´1

τ´1

ˇ

ˇ

ˇ
∆2ℓ

´

e´2πiλ‚

f
¯

pxq

ˇ

ˇ

ˇ

2
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∆2ℓ

¨

˚

˝

ÿ

λPlac
|J|´1

τ´1

aλe
´2πiλ‚

f

˛

‹

‚

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“: |∆2ℓ ppx,ℓfq pxq|2

where taλuλ “ taλpx, ℓquλ is in the unit ball of ℓ2λ and px,ℓ, implicitly defined above, is as in
(C.9). Using the cancellation assumptions on f we see that

ş

J px,ℓf “ 0 so by appealing to
(C.16) we get

|∆2ℓpfpx,kτ q| À ω2´ℓ ˚

´

2ℓ|J |x|fpx,ℓ|y1,J1J

¯

À ω2´ℓ ˚

´

2ℓ|J |x|f |yBpτ´1q{2,J1J

¯

where we used the Hölder inequality in Orlicz spaces together with the Zygmund–Bonami
inequality of order τ ´ 1 from Remark 1 to control x|px,ℓ|yE2{pτ´1q

À 1. Squaring the estimate

in the last display, integrating, and then summing for 2ℓ ă |J |´1 yields that the second
summand in (C.17) is controlled by a constant multiple of |J |x|f |y2Bpτ´1q{2,J

. We have proved

that Cpτq À p1 ` Cpτ ´ 1qq and this concludes the proof of the inductive step and of the
proposition. ■

Remark 3. As in Remark 2 there is an upgrade of the L2-estimate of Proposition 38 from
“atoms” to “molecules” f “

ř

JPJ bJ where J is a family of pairwise disjoint dyadic intervals
and each bJ satisfies the cancellation assumptions of Proposition 38, namely

ÿ

LPΛτ

›

›

›

›

›

›

ÿ

J : |J |ă|L|´1

∆LpbJq

›

›

›

›

›

›

2

L2pRq

À
ÿ

JPJ
|J |xbJy2Bpτ´1q{2,J

.

The base case τ “ 1 is essentially identical to the corresponding step in the proof of Proposi-
tion 38 relying on the pointwise estimate

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∆L

¨

˝

ÿ

J : |L|ă|J |´1

bJ

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À ω|L|´1 ˚

¨

˝|L|
ÿ

J : |L|ă|J |´1

|J |x|bJ |y1,J1J

˛

‚.

This is a consequence of (C.16) using the cancellation assumption
ş

bJ “ 0 for each J P J .
For the inductive step with τ ą 1, denoting again by Cpτq the best constant in the desired
L2-estimate we clearly have that

ÿ

LPΛτ

›

›

›

›

›

›

ÿ

J : |J |ă|L|´1

∆LpbJq

›

›

›

›

›

›

2

L2pRq

À
ÿ

LPΛτ

›

›

›

›

›

›

ÿ

J : |pL|´1ď|J |ă|L|´1

∆|L|pe
´2πiλpLq‚

bJq

›

›

›

›

›

›

2

L2pRq

` Cpτ ´ 1q
ÿ

JPJ
|J |xbJy2Bpτ´2q{2,J

.



83

Using a linearization trick as in the proof of Proposition 38 we have

ÿ

LPΛτ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

J : |pL|´1ď|J |ă|L|´1

∆|L|pe
´2πiλpLq‚

bJqpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

ℓPZ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

J : |J |ă2´ℓ

∆2ℓ

¨

˚

˚

˝

ÿ

LPΛτ

|L|“2ℓ, |pL|´1ď|J |

aLe
´2πiλpLq‚

bJ

˛

‹

‹

‚

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

for some collection taLuLPΛτ “ taLpx, ℓquLPΛτ in the unit ball of ℓ2L. Fixing for the moment
ℓ P Z and x P R we have

px,ℓ :“
ÿ

LPΛτ

|L|“2ℓ, |pL|ě|J |´1

aLe
´2πiλpLq‚

“
ÿ

L1PΛ
|J|´1

τ´1

¨

˚

˚

˚

˝

ÿ

LPΛτ pL1q

|L|“2ℓ

aL

˛

‹

‹

‹

‚

e´2πiλpLq‚

“:
ÿ

λPlac
|J|´1

τ´1

βλe
´2πiλ‚

with }tβλu}ℓ2λ
“ Op1q. Here we used that there at at most Op1q intervals L P Λτ with

fixed length |L| “ 2ℓ inside pL. Using the cancellation of px,ℓbJ we can estimate pointwise
|∆2ℓppx,ℓbJq| À 2ℓ|J |x|px,JbJ |y1,J ω2ℓ ˚ 1J , and by Remark 1 and Hölder’s inequality for Orlicz
spaces we have that

x|px,ℓbJ |y1,J À x|bJ |yBpτ´1q{2,J .

With this information the proof of the estimate can now be completed summing over |J |2ℓ ă 1
as in the proof of Proposition 38.

We conclude this section by recording the generalized Zygmund–Bonami inequality under
cancellation conditions. This is just a combination of Propositions 37 and 38.

Corollary 39. Let σ be a nonnegative integer and τ be a positive integer. Assume that

supppfq Ă J for some finite interval J and that pfpλq “ 0 for all λ P lac
|J |´1

0 Y ¨ ¨ ¨ Y lac
|J |´1

τ´1 .
Then

˜

ÿ

LPΛτ

x|∆Lpfq|y
2
Bσ{2,γJ

¸1{2

À x|f |yBpσ`τq{2,J .

C.5 An LBσ{2pRq Calderón–Zygmund decomposition

We describe in this section a Calderón–Zygmund decomposition adapted to the (global) Orlicz
space LBσ{2pRq for σ ě 0. Such a Calderón–Zygmund decomposition, which is influenced by
the one appearing in [CUMP11, Appendix A], is available to us because of the specific choice
of the Young function Bσ{2 and it is adapted to the finite order lacunary setup.

Recall that for σ ě 0 we write f P LBσ{2pRq if for some (or equivalently all) λ ą 0 there
holds

ż

R
Bσ{2

ˆ

|fpxq|

λ

˙

dx ă `8.

There is an Orlicz maximal operator associated with Bσ

MBσ{2
fpxq :“ sup

QQx
x|f |yBσ{2,Q, x P R,
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with the supremum being over all intervals Q of R containing x. The dyadic version of MBσ{2

is defined similarly with the supremum over all dyadic intervals Q P D with D some dyadic
grid. We will write MBσ{2,D for the dyadic version. Below we denote by Q P D a dyadic

interval, Qp1q its dyadic parent and set Qpk`1q to be the dyadic parent of Qpkq.

Remark 4 (Existence of stopping intervals). For the Calderón–Zygmund decomposition we
will choose stopping intervals that are maximal under the condition x|f |yBσ{2,I ą λ. The

existence of these stopping intervals relies on the following fact: If f P LBσ{2pRq for some
σ ě 0 and I is a dyadic interval in some grid D, then x|f |yBσ{2,Ipkq Ñ 0 as k Ñ `8. This can

be easily proved using for example the fact that the Young function Bσ{2 is submultiplicative.

Proposition 40. Let σ be a fixed nonnegative integer, f P LBσ{2pRq, and α ą 0. There exists
a collection J of pairwise disjoint dyadic intervals J and a decomposition of f

f “ g ` bcanc,σ ` blac,σ

such that the following hold:

(i) The function g satisfies }g}L8pRq À α and }g}L1pRq À }f}L1pRq.

(ii) The function bcanc,σ is supported in YJPJ J and in particular

bcanc,σ “
ÿ

JPJ
bJ , supp pbJq Ď J, pbJpλq “ 0 @λ P lac0 Y ¨ ¨ ¨ Y lacσ.

Furthermore we have that x|bJ |yBσ{2,J À α for all J P J and

ÿ

JPJ
|J |ď

ż

R
Bσ{2

ˆ

|f |

α

˙

.

(iii) The function blac,σ is also supported on YJPJ J and satisfies

}blac,σ}2L2pRq À
ÿ

JPJ
|J |x|bJ |y2Bσ{2,J

À α2

ż

R
Bσ{2

ˆ

|f |

α

˙

.

Proof. We begin by recalling that f P LBσ{2pRq implies that
ş

RBσ{2p|f |{αq ă `8 for all
α ą 0. By Remark 4 and [CUMP11, Theorem 5.5] we have that the dyadic Orlicz maximal
operator MBσ{2,D satisfies

|Eα| :“ |tx P R : MBσ{2,Dfpxq ą αu|ď

ż

R
Bσ{2

ˆ

|f |

α

˙

, α ą 0.

Letting J denote the collection of maximal dyadic intervals contained in Eα we have that for
every J P J

α ă x|f |yBσ{2,J ď 2α,
ÿ

JPJ
|J |ď

ż

R
Bτ{2

ˆ

|f |

α

˙

;
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The upper bound in the approximate inequality of the leftmost estimate above follows by the
maximality of J and the convexity of the Young function of Bσ{2 which implies that

x|f |yBσ{2,J ď ρx|f |yBσ{2,ρJ , ρ ą 1;

see[CUMP11, Proposition A.1] and [CUMP11, eq. (5.2)]. One routinely checks that g :“
f1RzYJPJ J satisfies (i).

For the “atoms” we set fJ :“ f1J and define

bJ,lac,σpyq :“
σ

ÿ

ρ“0

¨

˚

˝

ÿ

λPlac
|J|´1
ρ

xfJpλqe2πiλy

˛

‹

‚

1Jpyq

|J |
, bJ :“ fJ ´ bJ,lac,σ,

and blac,σ :“
ř

JPJ bJ,lac,σ and bcanc,σ :“
ř

JPJ bJ . The cancellation conditions of (ii) for bcanc,σ
follow immediately by the definition above. Furthermore by the Hölder inequality for Orlicz
spaces and the Zygmund–Bonami inequality of order ρ P t1, . . . , σu as in Remark 1, one sees
that

x|bJ,lac,σ|yBτ{2,J À x|bJ,lac,σ|y2,J À x|fJ |yBσ{2,J À α.

This and the triangle inequality also yield x|bJ |yBσ{2,J À x|fJ |yBσ{2,J À α thus completing the
proof of the desired conclusions in (ii). Finally for (iii) we estimate as above

}blac,σ}2L2pRq À
ÿ

JPJ
|J |x|fJ |y2Bσ{2,J

À α2

ż

R
Bτ{2

ˆ

|f |

α

˙

and the proof is complete. ■

C.6 Proof of Theorem 31 and Corollaries

In the first part of this section we compile together the results of the previous sections to
conclude the proof of Theorem 31. In the second part we show how to conclude our corollaries,
namely Theorem 30 and 32.

C.6.1 Proof of Theorem 31

Let us fix a positive integer τ and m P R2,τ . Before entering the heart of the proof we note
that it suffices to prove the theorem for multipliers m having the form

m “
ÿ

IPI
cI1I

where the family of intervals I has overlap at most N , for each I P I there exists a unique
L “ LI P Λτ such that I Ă LI and for each fixed L P Λτ there holds

ÿ

I:LI“L

|cI |2 ď N´1.
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See the analysis in [TW01, p. 533] for the details of this approximation argument. For m of
this form, we now can write

Tmpfq “
ÿ

IPI
cIPIf “

ÿ

LPΛτ

ÿ

I:LI“L

cIPIp∆Lfq, PIf :“ p1I f̂q_,

a fact that we will use repeatedly in what follows.

C.6.1.1 The upper bound in Theorem 31

Let f be a function in LBτ pRq and α ą 0 be fixed. We decompose f according to the
Calderón–Zygmund decomposition in Proposition 40 with σ “ τ yielding

f “ g ` bcanc,τ ` blac,τ .

We directly estimate g ` blac,τ in L2 using (i) and (iii) of Proposition 40

| tx P R : |Tmpg ` blac,τ qpxq| ą αu | À
1

α2
}g ` blac,τ }

2
L2pRq

À

ż

R
Bτ{2

ˆ

|f |

α

˙

.

The main part of the proof deals with the bad part bcanc,τ “
ř

JPJ bJ and it suffices to
estimate

|tx P Rz YJPJ 6J : |Tmpbcanc,τ q| ą αu|

as the measure | YJPJ 6J | satisfies the desired estimate by (ii) of Proposition 40. We will
adopt the splitting

Tm

˜

ÿ

J

bJ

¸

“
ÿ

I

cIPI

¨

˝

ÿ

J : |J |ě|L|´1

∆LI
pbJq1Rz3J

˛

‚`
ÿ

I

cIPI

¨

˝

ÿ

J : |J |ă|L|´1

∆LI
pbJq

˛

‚

`
ÿ

I

cIPI

¨

˝

ÿ

J : |J |ě|L|´1

∆LI
pbJq13J

˛

‚“: I ` II ` III.

The main term is III. Indeed we can estimate the term I in L2pRq using Remark 2, while
II is also estimated in L2pRq using Remark 3 this time. Note that each bJ has the required
cancellation by (ii) of Proposition 40. Using also (ii) of Proposition 40 to control the averages
x|bJ |yBpτ´1q{2,J À x|bJ |yBτ{2,J À α we have

|t|I ` II| ą αu| À
1

α2

ÿ

JPJ
|J |x|bJ |y2Bpτ´1q{2,J

À
ÿ

JPJ
|J | À

ż

R
Bτ p|f |{αq

as desired.
It remains to deal with III and we make a further splitting. Let kI P Z be such that

2kI ă |I| ď 2kI`1. Of course we will always have that |LI | ě 2kI since I Ď LI . We write

III “
ÿ

I

cIPI

¨

˝

ÿ

J : 2´kI ą|J |ě|L|´1

∆LI
pbJq13J

˛

‚`
ÿ

I

cIPI

¨

˝

ÿ

J : |J |ě2´kI

∆LI
pbJq13J

˛

‚“: III1 ` III2.
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We first handle the term III1. Let ∆I be the smooth frequency projections on the interval
I as fixed in §C.2.2; then in particular we can write PI∆I “ PI and we have the familiar
pointwise estimate

|∆Ip∆LI
pbJq13Jq| À ω|I|´1 ˚ px|∆LI

pbJq|y1,3J1Jq

as |I|´1 » 2´kI ą |J |. We thus get

|t|III1| ą αu| À
1

α2

ÿ

LPΛτ

N
ÿ

I:LI“L

|cI |2
ż

R

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ω|I|´1 ˚

¨

˝

ÿ

J : |J |ě2´kI

x|∆LpbJq|y1,3J1J

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

À
1

α2

ÿ

JPJ

ÿ

LPΛ
|J|´1
τ

|J |x|∆LpbJq|y21,3J À
ÿ

JPJ
|J | À

ż

R
Bτ{2

ˆ

|f |

α

˙

where we used the ℓ2-control on the coefficients tcIuLI“L in passing to the second line and
the generalized Zygmund–Bonami inequality of Proposition 37 together with the properties
of the Calderón–Zygmund decomposition in the penultimate approximate inequality.

The steps required for dealing with the the term III2 are essentially the same as those in
[TW01], however, as here we are dealing with a higher order set up, we include them for the
sake of completeness. We will split the estimate for III2 into two parts. In the first we keep
the part of the multiplier 1I “ 1rℓI ,rI s at scale Op|J |´1q around its singularities which are at
the endpoints. We make this precise now.

Let 0 ď ψI,J ď 1 be a smooth bump which is 1 on the p10|J |q´1-neighborhood of the end-
points tℓI , rIu of I and vanishes off the p5|J |q´1-neighborhood of the endpoints, and satisfies
}BαψI,J}L8 À |J |α for all α up to some sufficiently large integer M . Letting ΨI,J denote the
operator with symbol ψI,J we define

EptbJuJPJ q :“
ÿ

I

cIPI

¨

˝

ÿ

J : |J |ě2´kI

ΨI,J p∆LI
pbJq13Jq

˛

‚

The following lemma shows that the operator EptbJuJPJ q can be dealt with, again, by L2-
estimates.

Lemma 41. We have the estimate

}EptbJuJPJ q}
2
L2pRq À

ÿ

JPJ
|J |x|bJ |y2Bτ{2,J

À α2

ż

R
Bτ{2

ˆ

|f |

α

˙

.

Proof. First note that by the overlap assumption on the intervals I we have

}EptbJuJPJ q}
2
L2pRq À N

ÿ

LPΛτ

ÿ

I:LI“L

|cI |
2

ż

R

¨

˝

ÿ

J : |J |ě2´kI

|ΨI,Jp∆LpbJq13Jq|

˛

‚

2

.

The following pointwise estimate can be routinely verified

|ΨI,Jp∆LpbJq13Jqpxq| À Mp1Jqpxq10x|∆LpbJq|y1,3J .
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Using the Fefferman–Stein inequality and rearranging the sums we can conclude that

}EptbJuJPJ q}
2
L2pRq À N

ÿ

k

ÿ

LPΛ2k
τ

ÿ

I:LI“L
ℓI“ℓ

|cI |2
ÿ

|J |ě2´k

x|∆LpbJq|y21,3J |J |

ď
ÿ

JPJ
|J |

ÿ

LPΛ
|J|´1
τ

x|∆LpbJq|y21,3J

where we used the ℓ2-control on the coefficients tcIuLI“L in passing to the second line. An
appeal to the generalized Zygmund–Bonami inequality of order τ in Proposition 37 concludes
the proof of the lemma. ■

We are left with studying the contribution of the operator

LptbJuJPJ q :“
ÿ

I

cIPI
ÿ

|J |ě2´kI

pId ´ ΨI,Jq p∆LI
pbJq13Jq .

For this we consider the multiplier ζI,J :“ 1Ip1´ψI,Jq which is a smooth function with values
in r0, 1s, supported in I, is identically 1 on |x´ cI | À |I| and drops to 0 with derivative Op|J |q

close to the endpoints of I. More generally, one easily checks that ζI,J satisfies

|BαζI,J | À |J |α1IleftpJqYIrightpJq @α ě 1,

where

IleftpJq :“
“

ℓI ` 10´1|J |´1, ℓI ` 5´1|J |´1
‰

Ă I,

IrightpJq :“
“

rI ´ 5´1|J |´1, rI ´ 10´1|J |´1
‰

Ă I.

Remembering that we are dealing with the case |I||J | Á 1 we see that the function ζI,J has
support of size Op|I|q and α-derivatives of size Op|J |αq; thus the function ζ_

I,J is not a good
kernel. The important observation is however that the derivatives of ζI,J of order α ě 1 have
support of size |IleftpJq Y IrightpJq| » |J |´1.

Given an interval J Ă R we will also use an auxiliary function ρJ defined as follows. We
choose 0 ď ρ ď 1 to be a smooth bump function which is identically 1 on r´1, 1s and vanishes
off r´3{2, 3{2s and define ρJpxq :“ ρ px{|J |q for x P R.

Lemma 42. Let I, J be intervals and ζI,J and ρJ be defined as above. If }µI,J :“ p1 ´ ρJq}ζI,J
then for any nonnegative integers γ, β there holds

ˇ

ˇ

ˇ
B
β
ξ µI,Jpξq

ˇ

ˇ

ˇ
À |J |β p1 ` |J |distpξ,RzIqq

´γ , ξ P R.

Proof. We begin by noting that since ζI,J is a Schwartz function and p1 ´ ρJq is a smooth

bounded function, we have we have that p1´ ρJq}ζI,J is a Schwartz function. Furthermore, by
the comments preceding the statement of the lemma we have that ζI,J satisfies

|Bαξ ζI,J | À |J |α1IleftpJqYIrightpJq @α ě 1.
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Note that by symmetry it suffices to prove the estimate for ξ P R such that distpξ,RzIq “

|ξ ´ ℓI | where we remember that I “ rℓI , rIs. For simplicity we will write IpJq for IleftpJq.
Thus the conclusion of the lemma reduces to showing

|B
β
ξ µI,Jpξq| Àβ |J |βp1 ` |J ||ξ ´ ℓI |q´γ .

We will henceforth drop the subindices I, J in order to simplify the notation. We record the
following standard integration by parts identity; for nonnegative integers γ, ν we have

pBx ´ 2πiℓIqγrqζpxqs “ p´1qν
p2πiqγ´ν

xν

ż

R
Bνξ rpξ ´ ℓIqγζpξqs e2πixξ dξ.

In order to make sure that all terms in Bνξ rpξ ´ ℓIq
γζpξqs contain at least one derivative we

take ν ą γ. Then we have

ˇ

ˇBνξ rpξ ´ ℓIqγζpξqs
ˇ

ˇ À

γ
ÿ

k“0

ˇ

ˇ

ˇ
Bkξ pξ ´ ℓIqγB

ν´k
ξ rζpξqs

ˇ

ˇ

ˇ
À

γ
ÿ

k“0

|ξ ´ ℓI |γ´k|J |ν´k1IpJqpξq

À |J |ν´γ1IpJqpξq

provided that ν ą γ. Plugging this estimate into our integration by parts identity we get

ˇ

ˇ

ˇ
pBx ´ 2πiℓIqγrqζpxqs

ˇ

ˇ

ˇ
À

|J |ν´γ´1

|x|ν
, ν ą γ. (C.18)

Using this estimate we have for nonnegative integers β, γ

B
β
ξ rµpξqs “

p´2πiqβ

p2πipξ ´ ℓIqqγ

ż

R
pBx ´ 2πiℓIqγ

”

xβp1 ´ ρpx{|J |qqqζpxq

ı

e´2πixξ dx.

Using (C.18) with ν large together with the fact that supp p1 ´ ρJq Ă t|x| Á |J |u and that
supp pBxrρJ sq Ă t|x| » |J |u and combining with the previous identity yields

ˇ

ˇ

ˇ
B
β
ξ rµpξqs

ˇ

ˇ

ˇ
À

1

|ξ ´ ℓI |γ

ż

R

ÿ

k1`k2`k3“γ
k1ďβ

|x|β´k1
ˇ

ˇ

ˇ
Bk2x p1 ´ ρpx{|J |qqpBx ´ 2πiℓIq

k3rqζpxqs

ˇ

ˇ

ˇ
dx

ď
ÿ

k1`k3“γ
k1ďβ

|J |ν´k3´1

|ξ ´ ℓI |γ

ż

|x|Á|J |

|x|β´k1´ν dx`
ÿ

k1`k2`k3“γ
k1ďβ, k2ě1

|J |ν´k3´1

|ξ ´ ℓI |γ

ż

|x|»|J |

|x|β´k1´ν |J |´k2 dx

À
|J |β´γ

|ξ ´ ξJ |γ
.

Combining this estimate for general γ with the special case γ “ 0 yields the conclusion of the
lemma. ■

We can now prove the desired estimate for the remaining term.

Lemma 43. There holds
ż

RzYJPJ 6J
|LptbJuJPJ q| À

ÿ

JPJ
|J |x|bJ |yBτ{2,J .
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Proof. For convenience we set

LI,J :“ PIpId´ ΨI,Jq, FI,J :“ ∆LI
pbJq13J , LptbJuJPJ q “

ÿ

I

ÿ

J : |J |ě2´kI

cILI,JpFI,Jq.

We immediately note that it will be enough to prove the desired estimate for a single bJ and
then sum the estimates. Furthermore, by translation and scale invariance it will be enough
to to assume that J “ r´|J |{2, |J |{2s; here we critically use that the operator LI,J depends
only on the length and not on the position of J . The left hand side in the conclusion of the
lemma for a single such bJ can be estimated by

AJ :“

ż

|x|ě3|J |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

I: 2kI ě|J |´1

cILI,JFI,J

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ż

|x|ě3|J |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

I: 2kI ě|J |´1

cIp}ζI,J ˚ FI,Jqpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dx

À |J |´1{2

¨

˝

ż

|x|ą3|J |

|x|2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

I: 2kI ě1

cIp}ζI,J ˚ FI,Jqpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dx

˛

‚

1
2

.

Now let ρ be as before. It is then the case that for |x| ě 3 and |y| ď 3{2 we have

|x´ y| ě
1

2
|x| ě

3

2
, 1 ´ ρ

ˆ

x´ y

|J |

˙

“ 1 ´ ρJpx´ yq “ 1

for such pairs px, yq. As FI,J is supported in r´3|J |{2, 3|J |{2s we have for all |x| ě 3|J | that

p}ζI,J ˚ FI,Jqpxq “

ż

r´3|J |{2, 3|J |{2s

FI,Jpyq}ζI,Jpx´ yq p1 ´ ρJpx´ yqqq dy.

Using this identity and setting }µI,J :“ p1 ´ ρJq}ζI,J we get

AJ À

¨

˝

ż

R

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

I: 2kI ě|J |´1

cIBξ

”

yFI,JpξqµI,Jpξq

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dξ

˛

‚

1
2

.

Using the elementary estimates } yFI,J}L8pRq ď }FI,J}L1pRq and }Bξ yFI,J}L8pRq ď |J |}FI,J}L1pRq

together with the estimate of Lemma 42 for β P t0, 1u we get for γ a large positive integer of
our choice

B
β
ξ rµI,Jpξqs À

|J |β

p1 ` |J |distpξ,RzIqqγ
À |J |βMp1IleftpJqYIrightpJqq

γ .

Hence, by using the Fefferman–Stein inequality, the Cauchy–Schwarz inequality, and the N -
overlap assumption on the intervals I, we get

AJ À |J |´1{2

¨

˝

ÿ

2kI ě|J |´1

|cI |2|J |4x|∆LI
pbJq|y21,3JN |IleftpJq Y IrightpJq|

˛

‚

1
2
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Here note that we use that IleftpJq Y IrightpJq Ĺ I by construction, and hence
ÿ

2kI ě|J |´1

1IleftpJqYIrightpJq ď
ÿ

I

1I ď N.

Further, using also the control on the ℓ2-norm of the sequence tcIuI yields

AJ À |J |´1{2

¨

˚

˝

ÿ

LPΛ
|J|´1
τ

|J |3x|∆LpbJq|y21,3J

˛

‹

‚

1{2

“ |J |

¨

˚

˝

ÿ

LPΛ
|J|´1
τ

x|∆LpbJq|y21,3J

˛

‹

‚

1{2

À |J |x|bJ |yBτ{2,J

by the generalized Zygmund–Bonami inequality of Proposition 37. This concludes the proof
of the lemma. ■

Using Lemmas 41 and 43 we complete the estimate for the term III and with that the
proof of the endpoint bound of the theorem.

C.6.1.2 Optimality in Theorem 31

We briefly comment on the optimality of the Young function t ÞÑ tplogpe` tqqτ{2 in the upper
bound of the theorem. Suppose that r ą 0 is such that whenever Tm is an R2,τ multiplier
operator then the bound of Theorem 31 holds with r in the place of τ . Since Tm is L2-bounded,
it follows by a Marcinkiewicz interpolation type of argument that the LppRq-bounds for the
Littlewood–Paley square function LPτ of order τ can be estimated by

}LPτ }pÑp À

¨

˝E

›

›

›

›

›

ÿ

LPΛτ

εLPL

›

›

›

›

›

p

pÑp

˛

‚

1{p

ď sup
}m}R2,τ

“1
}Tm}LpÑLp À pp´ 1q´pr`1q as p Ñ 1`,

where the expectation in the display above is over independent choices of random signs tεLuL.
However, a modification of an example in [Bou89], see [Bak21, §3], shows that the estimate
in the display above does not hold for r ă τ{2. This argument also shows that our theorem
implies that the Lp bounds for R2,τ multipliers are Opmaxpp, p1q1`τ{2q.

Alternatively, sharpness can also be obtained by adapting the corresponding argument in
[TW01, §3.2] to the higher order case. Let us briefly outline the second order case. For a
smooth function ψ supported in r´1{2, 1{2s with ψp0q “ 1 and pk, lq P Z2 with k ą l we
consider the multiplier mpk,lq given by

mpk,lqpξq – m0

ˆ

ξ ´ 2k

2l´1

˙

, where m0pξq :“ ψpξ ´ 1q1r1,8qpξq, ξ P R.

One then has

­mpk,lqpxq “
ei2π2

kx

i2πx
`O

ˆ

1

2l|x|

˙

, |x| Á 2´l.

For N P N, that will be eventually sent to infinity, we consider the second order ℓ2-valued
multiplier operator

TN pgq –

!

Tmpk,lq
pgq

)

1ďlăkďN
.
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Consider a smooth function f such that pf is supported in r´4, 4s and pfpξq “ 1 for all ξ P

r´2, 2s. We then set fN pxq – 2Nfp2Nxq, x P R. For r ą 0 we have

}TN pfN qpxq}ℓ2 Á
N

|x|
if |x| ě 2´5N{8

and
ż

R

|fN pxq|

α

ˆ

log

ˆ

e`
|fN pxq|

α

˙˙r

dx À
1

α

ˆ

log

ˆ

e`
2N

α

˙˙r

for α ą 0.

Hence, if we choose α “ 25N{8 then α´1
`

logpe` α´12N q
˘r

» 2´5N{8N r and

|tx P r´1{2, 1{2s : }TN pfN qpxq}ℓ2 ą αu| ě

ˇ

ˇ

ˇ

ˇ

"

2´5N{8 ď x ď 1{4 :
N

|x|
Á 25N{8

*ˇ

ˇ

ˇ

ˇ

» Nα´1.

To complete the proof, define gN :“ fNχr1{2,1{2s so that gN is supported in r´1{2, 1{2s and
}gN}L logr Lpr´1{2,1{2sq À N r. Moreover, for all 1 ď l ă k ď N one has

|Tmk,l
pfN ´ gN qpxq| À 2´2N for all x P r2´5N{8, 1{4s

and hence
}}TN pgN q}ℓ2}L1,8pr´1{2,1{2sq

Á N.

It follows from Khintchine’s inequality that there exists a choice of signs εk,ℓ, depending on
gN , such that

›

›

›

›

›

ÿ

1ďlăkďN

εk,ℓTmk,l
pgN q

›

›

›

›

›

L1,8pr´1{2,1{2sq

Á N.

from which it follows that r ě 1 “ τ{2.

C.6.2 Proof of Theorems 30 and 32

We begin by explaining the modifications needed in order to obtain a proof of the endpoint
bounds in Theorems 30 and 32.

C.6.2.1 Proof of Theorem 30

Since Marcinkiewicz multipliers of order τ are contained in the class R2,τ , we only need to
briefly discuss the conclusion of Theorem 30 for the Littlewood–Paley square function. Note
that the proof of Theorem 31 relies on L2pRq estimates and L1-type estimates. Then we can
repeat the proof for the operator

|LPτf | » E

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

LPΛτ

εLPLf

ˇ

ˇ

ˇ

ˇ

ˇ

»

¨

˝E

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

LPΛτ

εLPLf

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1{2

using the first approximate equality whenever L1-estimates are needed, and the second one for
the L2-estimates. We omit the details. The optimality follows by the discussion in §C.6.1.2.
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C.6.2.2 Proof of Theorem 32

We proceed to prove Theorem 32 concerning endpoint bounds for higher order Hörmander–
Mihlin multipliers and smooth Littlewood–Paley square functions, which requires just small
modifications compared to the proof of Theorem 31. Consider a positive integer τ and f P

LBτ´1 ; we apply the Calderón–Zygmund decomposition of Proposition 40 with σ “ τ ´ 1 at
some fixed level α ą 0 to write f “ g ` bcanc,τ´1 ` blac,τ´1 and let J be the collection of
stopping intervals. The good part g ` blac,τ´1 is estimated in L2 by the L2-bounds of the
operator Tm, using that

}g ` blac,τ´1}
2
L2pRq

À α2

ż

R
Bpτ´1q{2

ˆ

|f |

α

˙

by the Calderón–Zygmund decomposition. As before, it remains to estimate the part of
the operator acting on the cancellative atoms. We consider a partition of unity trϕLuLPΛτ´1

subordinated to the collection of Littlewood–Paley intervals Λτ´1, with rϕL P ΦL,M for each
L. We set

r∆Lpgq :“
´

rϕLĝ
¯_

, Id “
ÿ

LPΛσ

r∆L.

With ∆L the smooth Littlewood–Paley projections as fixed in §C.2.2 we have ∆L
r∆L “ r∆L.

We have thus the decomposition

Tm “
ÿ

LPΛτ´1

Tm r∆L “:
ÿ

LPΛτ´1

TL “
ÿ

LPΛτ´1

TL∆L

and let ζL denote the Fourier multiplier of the operator TL. We then estimate

Tm

˜

ÿ

J

bJ

¸

“
ÿ

LPΛτ´1

TL

¨

˝

ÿ

J : |J |ě|L|´1

∆LpbJq1Rz3J

˛

‚`
ÿ

LPΛτ´1

TL

¨

˝

ÿ

J : |J |ă|L|´1

∆LpbJq

˛

‚

`
ÿ

LPΛτ´1

TL

¨

˝

ÿ

J : |J |ě|L|´1

∆LpbJq13J

˛

‚“: I ` II ` III.

As in the proof of Theorem 31, Remarks 2 and 3 take care of the terms I and II, respectively, by
using L2-bounds for each TL and L2-orthogonality for smooth Littlewood–Paley projections
of order τ . Once again the main term is III.

We will split III into two parts, which are defined in the same way as the operators E and
L from the proof of Theorem 31 with the role of the interval I being replaced by an interval
L P Λτ´1. For the first part consider for each L, J the function ψL,J as defined before the
proof of Lemma 41. Defining

EptbJuJPJ q :“
ÿ

LPΛτ´1

TL

¨

˝

ÿ

J : |J |ě|L|´1

ΨL,J p∆LpbJq13Jq

˛

‚,
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and following the same steps as in the proof of Lemma 41, we get

|t|EptbJuJPJ q| ą αu| À
1

α2

ÿ

JPJ
|J |

ÿ

LPΛ
|J|´1

τ´1

x|∆LpbJq|y21,3J À

ż

R
Bpτ´1q{2

ˆ

|f |

λ

˙

by the generalized Zygmund–Bonami inequality of Proposition 37 and the properties of the
Calderón–Zygmund decomposition. It remains to deal with the operator

LptbJuJPJ q :“
ÿ

LPΛτ´1

ÿ

|J |ě|L|´1

TL pId ´ ΨL,Jq p∆LpbJq13Jq .

Letting ζL,J be the Fourier multiplier of the operator TLpId´ΨL,Jq and ρJ as in the statement

of Lemma 42 we set }µL,J :“ p1 ´ ρJq }ζL,J . Lemma 42 for I “ L P Λτ´1 yields the estimate

ˇ

ˇ

ˇ
B
β
ξ µL,Jpξq

ˇ

ˇ

ˇ
À |J |β p1 ` |J |distpξ,RzLqq

´γ , ξ P R. (C.19)

The proof for the operator L is then completed in the by now usual way. First we have

|t|LptbJuJPJ q| ą αu| ď
1

α

ÿ

JPJ
|J |´1{2

›

›

›

›

›

›

›

Bξ

¨

˚

˝

ÿ

LPΛ
|J|´1

τ´1

µL,JzFL,J

˛

‹

‚

›

›

›

›

›

›

›

L2pRq

, FL,J :“ r∆LpbJq13J .

Now (C.19) implies that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bξ

¨

˚

˝

ÿ

LPΛ
|J|´1
σ

µL,JzFL,J

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À |J |2Mp1LJ
qγx| r∆LpbJq|y1,3J

where LJ :“ rξL ` p10|J |q´1, ξL ` p5|J |q´1s Ă L. The estimates above together with the
Fefferman–Stein inequality, the Cauchy–Schwarz inequality and the generalized Zygmund–
Bonami inequality complete the estimate for the operator L and with that the upper bound
of Theorem 32 for Hörmander–Mihlin multipliers of order τ . The proof for the smooth
Littlewood–Paley square function of order τ follows the same randomization argument as
the one used in the proof of Theorem 30.

Finally, the optimality of the power pτ´1q{2 on the endpoint inequality can be checked by
testing a local endpoint L logr L Ñ L1,8 inequality for the smooth Littlewood–Paley square
function of order τ on a smooth bump function supported in a small neighborhood of the
origin. A routine calculation shows that necessarily r ě pτ ´ 1q{2. Note also that a local
L logr L Ñ L1,8 for Hörmander–Mihlin multipliers implies the corresponding endpoint square
function estimate by a randomization argument as in [Bak19].
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[RdF83] José L. Rubio de Francia. Estimates for some square functions of Littlewood-
Paley type. Publ. Sec. Mat. Univ. Autònoma Barcelona, 27(2):81–108, 1983.
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