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Abstract

The study of recessive lethal diseases in populations presents significant challenges, from
estimating key parameters - such as the number of genes involved and the mutation rates
driving genetic degeneration - to understanding the increased prevalence of autosomal re-
cessive intellectual disorders (ARID) in the offspring of consanguineous unions.

To address these challenges, we developed a mathematical model based on a diploid individual-
based framework of adaptive dynamics. This model allowed us to make several important
discoveries.

First, we showed that the higher disease burden for ARID observed in consanguineous unions
is a transient phenomenon associated with rapidly expanding population sizes. This finding
highlights the need for widespread carrier screening, as the drop in prevalence in randomly
mating populations is associated with an increased mutation burden.

Second, we extended the drift-barrier hypothesis, which states that the ability of natural
selection to refine traits is limited by genetic drift. We introduced a new parameter - the
recessive gene count. We found that populations with a higher gene count face a similar
barrier to that imposed by an increased mutation rate. In addition, our analysis provides a
new perspective on Muller’s ratchet, a classic concept in population genetics that describes
the irreversible accumulation of deleterious mutations in the absence of recombination. Our
results show how mutations accumulate rapidly after a long period of stability, and how the
population finds its way back to stability after the emergence of clusters of highly correlated
genes.

Finally, we have implemented a simulation framework based on Gillespie’s algorithm, which
allows exact stochastic simulations of our model. This framework permits the study of the
dynamics of complex interacting systems. The tool is flexible, scalable, and designed to
facilitate further studies.
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1 Introduction

Mathematical models have long been essential for understanding, quantifying and predict-
ing natural phenomena. From the first logistic models of population growth developed by
Malthus to the groundbreaking models of population genetics developed by Wright, Fisher
and Haldane in the 1920s and 1930s, mathematics has been a crucial tool in unravelling
the fundamental principles of evolution. The neutral models of Kimura in the 1950s high-
lighted the importance of genetic drift and randomness in evolution. The introduction of
adaptive dynamics models in the 1990s further pushed the boundaries of how we approach
evolutionary processes.

The advent of genome sequencing - beginning with the 1000 Genomes Project and continuing
into the era of third-generation sequencing technologies - has led to a more detailed under-
standing of complex genetic processes. This deeper knowledge has driven the need for more
sophisticated models that can integrate multiple factors and isolate the most critical elements
influencing evolutionary dynamics. Inevitably, any biological model will reproduce certain
aspects of nature with greater fidelity than others: "All models are wrong, but some are
useful". [27] It is also important to recognise that no model can reproduce the full complex-
ity of natural phenomena. It is therefore up to the researcher to identify which information
is essential to answer the questions posed and which elements introduce unnecessary noise:
"Sensing which assumptions may be critical and which are irrelevant to the question at hand
is the art of modelling". [94]

The work that led to the results presented in this thesis can be divided into three distinct
phases. The first step is to generate a mathematical model that accurately describes the
biological, genetic or evolutionary process under consideration. This requires a deep un-
derstanding of the theoretical biological framework that governs the natural phenomenon.
Once we have a clear and rigorous mathematical formulation of the model, we implement it
using stochastic simulation algorithms. The second phase focuses on developing an intuition
for the dynamics of the model and understanding its behaviour. Where possible, we use
mathematical analysis, such as solving ordinary differential equations (ODEs), but this is
often challenging due to the high dimensionality and complexity of the models. As a result,
much of the analysis is numerical. We systematically compare different versions of the model
at three levels of complexity: first, by changing the underlying dynamics (e.g. comparing
adaptive dynamics with population genetics); second, by changing internal model mechan-
isms (e.g. different mating schemes in populations); and third, by varying key parameter
regimes (e.g. mutation rates). Through this comparative approach, we develop an intu-
ition about which mechanisms and parameters are most relevant to the biological questions
being addressed. The final step is to integrate these insights into the applied fields. This
requires not only a solid understanding of existing theory, but also the ability to translate
the mathematical insights into meaningful contributions to biological and genetic research.
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1 Introduction

This work builds on a strong foundation of mathematical modelling to develop and explore
complex systems. The focus is on understanding the spread and persistence of recessive
autosomal diseases across different genetic and population structures.

The prevalence of severe autosomal recessive diseases (i.e. disease frequency within the pop-
ulation) and mutation burden (average number of deleterious mutations per individual) are
analysed under varying population sizes and mating conditions, while holding mutation rates
and genetic architecture constant. The simulations start with a population of 500 individuals
free of deleterious mutations and expand to 10, 000 after an initial equilibrium is reached.
The models compare random and consanguineous mating patterns, the latter influenced by
family size (κ) and the probabilities (α, β) of mating within close or extended family struc-
tures. In randomly mating populations, there is a temporary decrease in disease prevalence
after population expansion, followed by a long-term increase in mutation load. It takes more
than 500 generations for disease prevalence to stabilise, while mutation burden remains elev-
ated. In contrast, consanguineous populations show stable prevalence and mutation burden
during expansion because their mating patterns, constrained by family size, are unaffected
by population growth.

The effects of mutation rate (µ), the number of recessive genes (N , recessive gene count)
and recombination (r) on population stability were also investigated. In the absence of
recombination, the loss of mutation-free haplotypes leads to mutation fixation and potential
extinction. This effect is particularly pronounced at high mutation rates or recessive gene
counts. Recombination stabilises the population by reducing the variance of the mutation
load, allowing tolerance to higher recessive gene counts. The findings could be used to refine
the drift-barrier hypothesis, an evolutionary theory, by including the recessive gene count
as a parameter that influences the genetic drift of a population. In a model of constant
population size in the absence of recombination, the explosive increase in mutation burden
and prevalence only stabilises with the emergence of highly correlated clusters of genes. In
addition, the rate at which successive haplotypes with the lowest burden go extinct appears
to be inhomogeneous, providing a new perspective on Muller’s ratchet, a classic concept in
population genetics.

The results help to generate new research questions, both in the applied sciences and in
the development of mathematical methods. The complexity of these models often pushes
mathematical analysis to its limits. To address this challenge, we implement a simulation
framework based on the Gillespie algorithm. This simulation approach allows us to efficiently
study our high-dimensional models and gain insights that would otherwise be difficult to
obtain using purely analytical methods.

In Chapter 4 serves to preserve the simulation framework, thereby facilitating adaptation
and further development of the algorithm by subsequent researchers. In Chapter 1.1 we first
introduce basic genetic concepts that will serve as the basis for modelling these situations.
We then examine some of the core mathematical models in evolutionary biology in Chapter
1.2, before introducing the primary model that underpins this thesis in Chapter 1.3. Finally,
in Chapters 2 and 3 we adapt and apply this model to different scenarios to answer specific
research questions related to recessive diseases.

2



1 Introduction

1.1 General biological background

To bridge the disciplines by modelling genetic processes, it is essential to have a clear under-
standing of the mechanism that occur in nature. This chapter establishes a general biological
foundation for understanding the applications of the mathematical models discussed in this
thesis and introduces a basic vocabulary to facilitate comprehension of the results presented
in Chapters 2 and 3. These results are addressed to a genetic audience rather than a math-
ematical one. This chapter starts with an exposition of the fundamental genetic principles
that underpin molecular biology. We then proceed to examine the mechanisms that govern
evolutionary processes, delving deeper into the intricacies of inheritance and the evolution
of sexual mating. We conclude this chapter with an exploration of recessive diseases, which
represent the primary application of the models discussed in this thesis.

1.1.1 Genetic background

This section begins with a short investigation of the fundamental structural components of
living organisms at the cellular level, subsequently progressing to an analysis of the mech-
anisms of reproduction. For a more comprehensive exploration of molecular cell biology, we
recommend the textbook by Lodish [144].

All living organisms are composed of cells, which are the fundamental units of life, capable
of performing all essential life functions. Organisms are broadly categorised into two main
types: Prokaryotes and eukaryotes, which differ in their structural composition. Prokaryotes
are unicellular organisms, comprising a single cell. In the absence of a defined nucleus, the
genetic material of prokaryotic cells is located freely within the inside of the cell. These cells
are typically smaller and possess a reduced number of internal structures in comparison to
those observed in eukaryotic cells. The domain of prokaryotes is subdivided into two distinct
groups: bacteria and archaea. In contrast, eukaryotic cells are found in more complex
organisms, including plants, animals, fungi, and protists. They are more advanced, larger in
size and possess a well-defined nucleus that contains the cell’s genetic material. Additionally,
eukaryotic cells possess other specialized structures, known as organelles, which include
mitochondria, the endoplasmic reticulum, and chloroplasts in plant cells.

The genome represents the fundamental unit of biological processes, encompassing the com-
plete set of genetic information present within an organism. The genome is composed of
deoxyribonucleic acid (DNA), which is a molecule comprising two long chains of nucleotides
twisted into a double helix. Each nucleotide comprises a sugar molecule, a phosphate group,
and one of four nitrogenous bases: adenine (A), thymine (T), cytosine (C), or guanine (G).
The specific sequence of these bases encodes all the instructions necessary for the construc-
tion and maintenance of an organism.

In eukaryotic cells, deoxyribonucleic acid (DNA) is organised into structures known as chro-
mosomes. Each chromosome is composed of a single, long DNA molecule that is wrapped
around proteins called histones. The number of chromosomes differs between organisms.
For example, the human genome comprises 46 chromosomes, organised into 23 pairs (Hu-
man Genome Project, 2001; [138]), whereas the fruit fly genome has only eight chromosomes

3



1 Introduction

[187]. Within the DNA, specific sequences of base pairs (bp) form genes, which are the
fundamental units of heredity. The size of a gene can vary, with measurements typically
expressed in 1000 base pairs (kb). For example, in humans the average gene comprises 10
to 15 kb, but can range from approximately 0.2 kb (tyrosine tRNA gene) to over 2,500 kb
(dystrophin gene) [194]. A gene contains the instructions for the synthesis of a specific pro-
tein or set of proteins, which in turn perform a range of functions within the organism. Each
gene is located at a specific position on a chromosome known as a locus. Different versions,
of a gene are called alleles. To illustrate, a gene that determines flower colour in a plant may
possess one allele that codes for purple flowers (P) and another that codes for white flowers
(p). The combination of alleles that an organism possesses for a specific gene is defined as
its genotype. The genotype is defined as the genetic makeup of an organism, specifically the
set of alleles that an individual possesses for a particular gene or set of genes. The term
phenotype is used to describe the observable characteristics or traits of an organism that
result from the interaction of its genotype with the environment. Hence, in the context of
the flower colour gene, the genotype would be defined as the alleles present (e.g. one purple
allele and one white allele), whereas the phenotype would be the actual colour of the flower.
The relationship between genotype and phenotype is not always straightforward. In some
cases, alleles may be designated as dominant, which implies that they can obscure the effects
of other alleles at the same locus. In the case of recessive alleles, the trait is only expressed
when two copies of the same allele are present. Within the example, in pea plants, the allele
responsible for purple flowers (P) is dominant over the allele that causes white flowers (p).
Therefore, a plant with the genotype PP or Pp will exhibit purple flowers, whereas only a
plant with the genotype pp will display white flowers [157]. An organism is described as
homozygous for a particular gene if both alleles at a locus are identical (e.g. PP or pp for
flower colour). An organism is heterozygous if the two alleles at a locus are different (e.g.
Pp).

The majority of eukaryotic organisms undergo sexual reproduction, during which their cells
exist in two forms: haploid and diploid. Haploid cells contain a single complete set of
chromosomes (n). In humans, haploid cells are gametes, specifically sperm and egg cells,
which contain 23 chromosomes. Diploid cells contain two complete sets of chromosomes (2n),
with one set inherited from each parent. Hence, human body cells for example are diploid
and possess 46 chromosomes (23 pairs). Sexual reproduction entails the combination of
genetic material from two parents through the processes of meiosis and fertilisation. During
meiosis, the number of chromosomes is reduced by half, resulting in the production of haploid
gametes (sperm and eggs). The gametes unite during fertilisation to form a diploid zygote.
This introduces genetic diversity, as the offspring inherit a unique combination of alleles from
both parents.

In 1865, Gregor Mendel was the first to observe how traits are transferred from one gener-
ation to the next through his experiments with pea plants [157]. His work, however, went
largely unnoticed until it was rediscovered in 1900 by Hugo de Vries [56], Carl Correns [50],
and Erich Tschermak [201]. Mendel’s observations were subsequently formulated into the
well-known Mendelian rules of inheritance, which consist of three fundamental laws. First,
the Law of Independent Segregation states that during meiosis, the two copies of a gene
segregate from each other, and each gamete carries only one allele for each gene. Second, the
Law of Independent Assortment explains that the segregation of alleles for one gene occurs

4



1 Introduction

independently of the segregation of alleles for other genes. This means that different traits
are inherited independently, leading to a variety of genetic combinations in the offspring.
Lastly, the Law of Dominance and Uniformity states that some alleles are dominant, while
others are recessive. This law explains why, in the case of heterozygous pairs, the dominant
allele will mask the expression of the recessive allele, leading to uniform expression of the
dominant trait in the offspring.

With advances in genome sequencing, the once-clear boundaries of Mendel’s laws have be-
come increasingly blurred. Research has revealed that certain genes do not conform to the
traditional paradigms of dominance and recessiveness; instead, they may display phenomena
such as incomplete dominance or co-dominance. In these cases, the expression of both alleles
results in a novel phenotype that is a blend of the parental traits, challenging the simplicity
of Mendelian inheritance models [195]. Moreover, the emergence of epigenetics has further
complicated our understanding of gene segregation. It has become evident that gene ex-
pression is not solely determined by genetic makeup but is also significantly influenced by
environmental factors and intricate regulatory mechanisms. These influences can disrupt the
assumption of independence in gene segregation, suggesting that the interplay between ge-
netics and environment is far more complex than previously acknowledged [61, 23]. Despite
these advancements and the complexities they introduce, Mendel’s foundational hypotheses
continue to underpin many biological models. His laws provide a fundamental framework
for understanding inheritance, serving as a starting point from which the intricate tapestry
of modern genetics can be explored. Contemporary genetic research builds upon these prin-
ciples, integrating insights from genome sequencing, epigenetics, and molecular biology. This
synthesis not only enriches our comprehension of genetic inheritance but also lays the ground-
work for more sophisticated models in evolutionary biology and population genetics.

During meiosis, recombination may occur, which involves the exchange of genetic mater-
ial between paired chromosomes. This phenomenon further increases genetic variation by
shuffling alleles prior to their transmission to the offspring. Another mode of reproduction
is clonal (asexual) reproduction, whereby offspring are produced by a single parent without
the involvement of gametes. The offspring are genetically identical to the parent (clones),
except for rare mutations, which are random changes in the DNA sequence. A common ex-
ample of clonal reproduction occurs in bacteria, which reproduce by binary fission, a process
whereby a single bacterium divides into two identical daughter cells. All cells are subject
to mutation, with the frequency of mutation dependent on a number of factors, including
radiation, age and other environmental variables. The impact of a mutation can be highly
variable. In some cases, a mutated gene may still result in the same protein, while in others,
the functionality may be completely lost (loss of function).

In Chapter 1.5, we take a closer look at mutation rates across the genome, examining their
variability and the underlying mechanisms driving these differences. In Chapter 1.6, we
dive deeper into the mechanisms of recombination, investigating how genetic material is
exchanged between chromosomes during meiosis.
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1.1.2 Theory of evolution

Evolution shapes biological diversity and the adaptation of organisms to their environments,
and modelling these processes effectively requires a solid grasp of evolutionary theory. This
section provides a brief introduction to the theory of evolution, exploring its historical origins
and laying out the essential concepts necessary for mathematical modelling

When thinking of the theory of evolution, most people immediately recall Charles Darwin’s
seminal work On the Origin of Species, published in 1859 [54]. Darwin’s idea of natural
selection - the survival of the fittest and best-adapted individuals within a species - sparked
significant controversy among biologists, especially in the early 20th century. While much
of the criticism of Darwin’s theory arose from non-scientific circles, debates also occurred
within the scientific community about the nature of evolution.

With the rediscovery of Mendelian inheritance laws in 1900, Darwin’s idea that evolution-
ary changes happen gradually and incrementally faced opposition. Some biologists began
proposing that evolutionary changes occur in more pronounced leaps rather than through
continuous, small adjustments. It was not until the 1920s and 1930s that the founding fathers
of population genetics - Sewall Wright, Ronald Fisher, and J.B.S. Haldane - developed a uni-
fying model that combined the gradualism of Darwinism with the rules of heredity provided
by Mendelism [68, 97, 213]. These groundbreaking population genetic models, which we will
discuss in section 1.2.2, provided a framework for understanding the evolutionary process
more comprehensively.

In this section, we explore the evolutionary process. For readers seeking a broader histor-
ical perspective, we refer to Provine’s work for further classification and insights into the
development of population genetics [181].

As Darwin noted in his original work, three primary mechanisms drive evolution. The first is
heredity, which refers to the process of reproduction in which individuals pass their traits on
to their offspring. Secondly, there is variation, meaning that traits differ between offspring,
and heredity is not perfect. Finally, there is natural selection, which acts on the variations
mentioned above. Different traits confer different fitness levels, meaning that some traits have
a higher probability of being passed on to the next generation due to a higher reproductive
or survival rate.

One of the main criticisms of Darwin’s theory of evolution concerned the origin of variation.
At the time, it was thought that the traits of offspring were a blending of parental traits,
which, in a randomly mating population, would lead to a gradual loss of variation over gen-
erations. Without variation, natural selection would have nothing to act upon. However,
variation was observable within populations, and this suggested that the traits of offspring
must differ from those of their parents. This idea countered the argument that offspring of
parents favoured by natural selection would automatically enjoy the same selective advant-
age. Indeed, we now know that separation fosters evolution. Sub-populations in isolated
habitats, such as the famous Galápagos finches studied by Charles Darwin himself, tend to
be more adapted to their specific environments than panmictic populations.
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In Darwin’s time, mutation was the only known source of variation, though today we under-
stand that there are many others, such as recombination or horizontal gene transfer (HGT),
the transfer of genetic material between individuals rather than inheritance from parent to
offspring. This phenomenon is observed in bacteria, where it plays a major role in adapta-
tion, but has also been documented in some eukaryotes, expanding our understanding of how
genetic material can influence evolution outside traditional inheritance models [112, 169].

Natural selection arises from interactions between individuals and their environment, as
well as with other individuals. These interactions can be competitive, such as competi-
tion between individuals of the same or different species for resources or mating partners.
Alternatively, they can be dependent interactions, like predator-prey or parasite-host rela-
tionships. Additionally, symbiotic relationships can also emerge, where cooperation between
species results in mutual benefits.

It wasn’t until the 1950s that the DNA molecule, now known to be the basis of heredity, was
discovered by James Watson and Francis Crick [207], Maurice Wilkins [210], and Rosalind
Franklin [75]. Unlike the phenotype, which can vary throughout an individual’s life due to
environmental factors, the DNA - or genotype - of an individual remains unchanged, except
for errors that may occur during replication. Another opposition to Darwin’s theory was
Lamarck’s idea of inheritance, which is often illustrated with the image of a giraffe. He
hypothesized that traits acquired during an organism’s lifetime could be passed on to its
offspring [137]. For example, a giraffe that stretches its neck to reach high leaves would pass
this elongated neck to its offspring, leading to the evolution of long necks over generations.
While Lamarck’s theory has been widely refuted, some aspects of his ideas have regained
attention with the advances in epigenetics. In certain traits, it is not just the availability
of the appropriate genetic material that is important, but also which parts of the DNA get
expressed. These epigenetic changes - modifications in gene expression gained throughout
an individual’s lifetime - can, in some cases, be passed on to offspring [143].

Ultimately, as we now understand, heredity ensures that traits are passed down, while vari-
ation introduces new differences upon which selection can act. These mechanisms form the
foundation of evolutionary change and have been greatly clarified by advances in genetics.
For more details on the evolutionary process, we refer readers to the well-curated Encyc-
lopedia Britannica, which provides an extensive and insightful exploration of evolutionary
biology and its key concepts [10].

1.1.3 Evolution of sexual mating

In the overwhelming majority of eukaryotic multicellular organisms, sexual reproduction
represents the exclusive means of reproduction [205]. The evolution of sexual reproduction
has presented a significant challenge to the field of biology for many years. While some
progress has been made and a number of hypotheses have been proposed, a unifying theory
remains elusive. Two principal questions are put forth for consideration. The first question
pertains to the origin and evolutionary history of sexual reproduction. In prokaryotes, such
as bacteria and archaea, one can also find modes of exchange or transfer of genetic material
from one individual to another. Such processes include conjunction, transformation and
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translation. Nevertheless, it remains unclear whether these are the point of origin of sexual
reproduction in eukaryotes [183]. The second question refers to the maintenance of sexual
reproduction: After sexual mating evolved, how does it persist in such a highly competitive
world, especially across such a large class of organisms? Sexual reproduction introduces
several costs compared to asexual reproduction, including the twofold cost of producing
males and the energy required to find a mate (see below, [51, 142, 192]). Yet, despite these
disadvantages, sexual reproduction persists widely across species, including most plants and
animals.

Clonal reproduction, often seen in organisms that reproduce asexually, indeed appears to be
more efficient than sexual reproduction in several respects. Sexual reproduction requires a
significant amount of energy, primarily due to the complex cellular processes involved [141].
In sexual reproduction, meiosis is a key process where a diploid cell undergoes division to
produce haploid gametes. This process is not only energy-intensive but also time-consuming.
After meiosis, sexual reproduction involves the fusion of gametes (fertilization), where the
sperm and egg unite to form a zygote. This step is necessary to restore the diploid state in
the offspring and again requires precise and energy-intensive cellular machinery. Following
gamete fusion, the nuclei of the gametes must also fuse, combining genetic material from
both parents. This process is another layer of complexity that requires additional energy
and time.

In contrast, clonal reproduction, such as binary fission in prokaryotes or mitosis in euka-
ryotes, is much simpler. The genetic material is directly duplicated and divided between two
daughter cells, without the need for meiosis or gamete fusion. Because clonal reproduction
bypasses the elaborate steps required in sexual reproduction, it consumes far less energy.
This makes it a more efficient process at the cellular level, especially in environments where
resources are scarce.

In sexually reproducing species, finding a mate can be a significant challenge. The process of
searching for and selecting a mate involves the time and energy spent locating and courting
potential partners. Many species engage in elaborate mating rituals or displays to attract
mates, such as the colourful plumage displays in birds or the production of pheromones in
insects. These behaviours, while important for sexual selection, require additional energy
and resources. In many species, individuals must compete with others to secure a mate.
In some animals, such as certain mammals and birds, males may physically compete with
each other for access to females, which can lead to injuries or even death. Males may
need to invest in physical attributes (like antlers in deer) or produce elaborate displays to
outcompete rivals, which can divert resources from other survival-related activities. The
time and energy invested in finding and securing a mate can result in missed opportunities
to forage for food, care for offspring, or avoid predators, which can have a direct impact on
survival and reproductive success.

One of the key features of sexual reproduction is the recombination of genetic material dur-
ing meiosis, which shuffles alleles and creates new combinations in offspring. While this can
introduce genetic diversity, which is beneficial for adaptation to changing environments, it
can also disrupt advantageous allele combinations that have been selected for in previous
generations [166]. Over time, certain combinations of alleles can become highly adapted to
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specific environmental conditions, leading to a well-functioning "gene complex." Recombin-
ation can break apart these co-adapted gene complexes, resulting in offspring that may be
less well-adapted to their environment, thus reducing individual fitness.

In many species sexual reproduction requires close physical contact between individuals,
which can facilitate the transmission of infectious diseases. This is particularly relevant
in species where mating behaviours involve prolonged contact or where there are multiple
partners [171]. The spread of diseases within a population can lead to increased mortality
and reduced reproductive rates, which can have broader implications for population stability
and growth. In extreme cases, it could even lead to population decline or extinction if the
disease burden becomes too high.

Another well-known disadvantage of sexual reproduction is the twofold cost of sex. In asexual
populations, all individuals can reproduce, effectively doubling the population size each
generation. In contrast, sexual populations require two individuals (a male and a female) to
produce offspring, which halves the per-capita birth rate compared to asexual population.
Sexual reproduction requires resources to be allocated towards the production of males,
which do not directly produce offspring but are necessary for fertilization. This allocation
can be seen as inefficient when compared to asexual reproduction, where all individuals
contribute directly to the next generation [192].

Theories and models have been proposed to explain the evolution and maintenance of sexual
reproduction in a vast array of species [16, 88, 173]. Below is a brief overview of some of the
most prominent theories:

1. The Red-Queen hypothesis [15, 203]
This theory, named after the Red-Queen’s race in Alice in Wonderland, suggests that
species must continuously evolve to survive in a world where their environment, in-
cluding their predators, parasites, and competitors, is also constantly evolving. Sexual
reproduction provides a mechanism for generating genetic diversity, which allows pop-
ulations to adapt more rapidly to these changing conditions. One of the key examples
supporting the Red-Queen hypothesis is the co-evolution of hosts and parasites. Para-
sites evolve to exploit common host genotypes, while sexual reproduction in hosts
shuffles genes, creating novel genotypes that are more resistant to parasite infections.

2. Muller’s ratchet [67, 162]
In asexual populations, harmful mutations can accumulate over time because there is
no mechanism to eliminate them without some form of genetic recombination. This
process, known as Muller’s Ratchet, leads to a gradual decrease in fitness. Sexual
reproduction, through recombination, can bring together multiple beneficial mutations
while purging deleterious ones, thus maintaining the overall health and fitness of a
population. In section 1.6.2 we discuss this theory in detail, including mathematical
models that underpin the hypothesis.

3. Tangled bank hypothesis [147, 59, 77]
The Tangled Bank Hypothesis proposes that sexual reproduction generates diversity,
which allows organisms to exploit a variety of ecological niches. This diversity can
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reduce competition among offspring by enabling them to specialize in different niches
within the environment, thus improving the survival chances of the species as a whole.

4. Fisher-Muller Hypothesis [69, 161]
This hypothesis suggests that sexual reproduction allows for the combination of benefi-
cial mutations from different individuals. In asexual populations, beneficial mutations
must occur sequentially in the same lineage to combine, which can be a slow process.
In contrast, sexual reproduction can bring together different beneficial mutations from
separate lineages in a single generation, accelerating the process of adaptation.

5. Mutational deterministic hypothesis [124, 125]
This theory posits that sexual reproduction is beneficial when deleterious mutations
interact synergistically, allowing for more effective purging of harmful alleles. While
it provides a robust framework for understanding the advantages of sex under high
mutation rates, empirical support for synergistic epistasis is limited, and the model’s
assumptions may not always hold.

No single theory fully explains the dominance of sexual reproduction, and each theory has
its strengths and limitations. It’s likely that the selective advantages of sexual reproduction
are context-dependent, with different mechanisms being more relevant in different ecological
and evolutionary scenarios.

Some species have evolved to possess both modes of reproduction. Some of these species
even coexist in sexual and asexual lineages, either alternatively through the life cycle [198]
or in spatially or temporally isolated populations [186].

To develop a more unified understanding of sexual reproduction, it is necessary to construct
and analyse more complex population models that can integrate multiple theories. Such
models would need to account for various factors, including genetic diversity, environmental
variability, mutation rates, and species interactions [102, 209].

1.1.4 Complete recessive lethals

In autosomal recessive inheritance, a genetic condition manifests only when an individual
inherits two copies of a pathogenic variant, one from each parent. Since the gene in question
is located on one of the autosomes (the non-sex chromosomes), the inheritance pattern is
independent of the individual’s sex. Individuals with only one copy of the variant (hetero-
zygotes) are typically unaffected by the disorder but are known as carriers. Carriers have a
50% chance of passing the mutated gene to their offspring, but the condition only presents
itself if both parents pass on the mutated gene. In such cases there is a 25% chance that the
child inherits two mutated alleles and expresses the disorder, a 50% chance that the child
inherits one mutated allele and becomes a carrier and a 25% chance that the child inherits
no mutated alleles and is unaffected.

A subset of autosomal recessive disorders is classified as lethal, meaning they result in early
death or prevent the individual from reproducing. One notable group within this subset
is autosomal recessive intellectual disabilities (ARID), which encompass a wide range of
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Figure 1.1: Recessive inheritance. The potential outcomes of inheriting two alleles from two
carriers are as follows. In one case, the offspring inherits both the wild type alleles. In
two cases, the offspring is again a carrier, having a heterogeneous allele combination.
In one case, the individual inherits two mutated alleles, thus expressing the disease.

neurodevelopmental disorders characterized by impaired cognitive functioning and adaptive
behaviours [93].

This class of disorders may also be caused by a compound heterozygous mutation. Com-
pound heterozygousity introduces further complexity into the inheritance and manifestation
of autosomal recessive disorders. In this scenario, an individual inherits two different patho-
genic variants in the same gene, one from each parent. Although each parent may carry a
different mutation, the combination can still result in a recessive disorder.

The mathematical models discussed in this thesis describe the dynamics of such disorders
within populations. By considering factors like mutation rates, the number of ARID genes,
these models try to predict the spread and maintenance of recessive alleles in a population.
The mutation rate and the number of recessive genes are challenging to estimate, even
with the aid of modern sequencing techniques [107]. This makes them one of the principal
variables in our analysis.

The de novo mutation rate is the rate at which new deleterious mutations appear in the
human genome. Current estimates suggest that new mutations occur at a rate of approxim-
ately 1.2× 10−8 per base pair (bp) per generation. However, the coding sequences of genes,
which are most relevant to the expression of ARID, vary significantly in length, ranging from
about 500 to 10 000 bp. This variability implies that the mutation rate per gene can differ
considerably depending on the gene’s length [119, 122].
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Advances in sequencing technologies have identified over 600 genes associated with ARID,
when mutated [122]. However, this figure is likely an underestimation. Many cases of ARID
remain undiagnosed, and it is hypothesized that a significant number of ARID-related genes
have yet to be discovered, particularly in cases of rare intellectual disabilities. The total
number of ARID genes is estimated to be between 2 500 and 3 000, although this figure is
subject to a high degree of uncertainty. This uncertainty poses a challenge for the models,
as the true number of ARID genes directly influences the predictions of disease prevalence
and the mutation burden within populations [106, 163].

The difficulty in accurately estimating the de novo mutation rate and the number of ARID
genes underscores the importance of sensitivity analysis in the models. By varying these
parameters within plausible ranges, the models can provide a more comprehensive under-
standing of how these factors influence the spread and maintenance of recessive alleles in a
population.
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1.2 Mathematical models in evolutionary biology

This section presents an overview of the most commonly used mathematical models repres-
enting population evolution. Each group of models is tailored to capture different aspects
of nature more effectively and is better suited for specific research questions. It places the
models considered in this work within a broader context and provides readers with an op-
portunity to familiarize themselves with the literature on various models. The following list,
although not exhaustive, is guided by the lecture notes of Bovier and Kraut [25], which we
highly recommend as a starting point for further investigation into the topics of stochastic
individual based models and scaling limits in this framework.

1.2.1 Population dynamics

As the name suggests, population dynamics models focus on the population as a whole and
concentrate on the environmental factors that influence population growth or decline within
a given setting. A fundamental initial model for population growth in a limited environment
dates back to Thomas Malthus [150]. He posited that populations would grow exponentially
in an unlimited environment, with this growth being constrained only by limited resources
such as food or space. This theory now known as the Malthusian growth model, which can
be described mathematically as a simple, deterministic differential equation that describes
the population size n(t) over time, namely

d
dtn(t) = rn(t)− cn(t)2.

Here r denotes the exponential growth rate of the unrestrained population, which for example
can be interpreted as the difference between birth and death rates, and c > 0 represents the
competitive pressure for resources within the (monomorphic) population. As long as the
initial population size n(0) is positive and the growth rate r is also positive, the solution to
the differential equation converges to a stable equilibrium r

c . However, if the growth rate is
not positive r ≤ 0, the population will eventually die out, and n(t) will converge to zero.
This equation can also be extended to a system of interacting populations.

d
dtni(t) = ni(t)

ri − k∑
j=1

cijnj(t)

 , i = 1, . . . , k

These types of equations are called competitive Lotka-Volterra equations and go back to
Alfred Lotka [148] and Vito Volterra [204]. Here, the coefficients cij represent the interaction
between subpopulation or species i and j. Notably, these interactions can have either positive
or negative effects. A particularly well-known example of such models is the Lotka-Volterra
equations, which describe predator-prey relationships. In this system, there are k = 2
subpopulations: the prey population, which has a size of n1(t), and the predator population,
which has a size of n2(t) at time t ≥ 0. The prey population grows at a rate of r1 > 0
and declines at a rate of c12 > 0 in response to encounters with predators. Conversely, the
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predator population increases at a rate of c21 > 0 in response to encounters with prey and
decreases at a rate of r2 > 0.

d
dtn1(t) = r1n1(t)− c12n1(t)n2(t)
d
dtn2(t) = −r2n2(t) + c21n1(t)n2(t)

This model is particularly illustrative because, with the right choice of parameters, it pro-
duces periodically oscillating solutions.

Figure 1.2: Predator-pray system. Example of a periodic solution of the two dimensional Lotka-
Volterra system with r1 = 0.5, r2 = 0.25, c12 = 0.07, c21 = 0.07.

While the three-dimensional competitive Lotka-Volterra system is well analysed [219], the
analysis becomes significantly more challenging as the number of dimensions increase. In-
deed, for k ≥ 5, the system is found to exhibit arbitrary complex long-term behaviour.[191].
The challenge of analysing high-dimensional systems of differential equations will reappear
in Chapter 3. For a deeper insight into the field of population dynamics, we recommend the
reading of Hofbauer and Sigmund [105].

1.2.2 Population genetics

In contrast to population dynamics, which focus more on the ecology, environmental in-
fluences are mostly omitted in models of population genetics. Here, the focus is primarily
heredity and on changes in allele frequencies over time. However, as in the previous section,
the emphasis is on the entire population rather than on individual organisms. The founders
of this mathematical subfield and its initial models were Ronald Aymler Fisher [68], John
Burdon Sanderson Haldane [97], and Sewall Green Wright [213], who mathematically com-
bined and framed Mendelian inheritance and Darwinian evolution in the 1920s (see Section
1.1.2).
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One of the most well-known and widely used models in population genetics is the Wright-
Fisher model. In its simplest, neutral form, the model considers a population with a finite,
constant number N of individuals. These individuals are characterized by a single gene with
two alleles a and A. Time is measured in discrete units, or generations, where each generation
replaces the previous one without overlap. In generation t + 1, each individual selects an
individual uniformly at random from generation t and inherits its trait. The process of allele
frequencies of one of the two alleles Na(t) can then be described as a discrete time Markov
chain on 0, . . . , N with transition rates.

P
(
Na(t+ 1) = n|Na(t) = m

)
=
(
N

n

)(
m

N

)n (
1− m

N

)N−n
Hence the gene frequencies evolve due to random fluctuations within the binomial resampling
of each consecutive generation. One of the two alleles a or A will eventually become fixed
due to natural fluctuations, while the other gets lost, representing a fixed point of the
system. This process of changes in allele frequencies that originate from random resampling
is known as genetic drift. Since this is a neutral model, the allele frequency process Na(t) is
a martingale, which is in line with a well known concept in population genetics, the Hardy-
Weinberg theorem. This fundamental theorem states, that in the absence of disturbances
such as mutations, selection, migration or other factors the genetic variation within an
infinitely large population is conserved, hence the expected allele frequencies stay constant
over time [101, 208].

In the Wright-Fisher model, as we rescale time by tN and let the population size N approach
infinity, the model converges to the Wright-Fisher diffusion process

(
X(t)

)
t≥0. It can be

described as the solution of the stochastic differential equation.

d
dtX(t) =

√
X(t)(1−X(t))dB(t)

where B is a standard Brownian motion. This stochastic process, was first introduced by
Motoo Kimura [115] and later formalized as a limit by Ethier and Norman [65]. This process
describes the continuous limit of allele frequencies over time, capturing the evolutionary
dynamics of allele frequencies in a large population.

The Wright-Fisher model can be extended to include additional features such as migration,
mutation, or selection. It is important to note that in this context, selection impacts the
genotype directly, without involving interactions between individuals or competition with
the environment.

One classic example of an extended model is John Haigh’s model [96] to quantify the effect of
Muller’s Ratchet, which describes the inevitable accumulation of deleterious mutations [161].
In his model, individuals are characterized by the number of deleterious mutations they carry,
and those with fewer mutations are preferred when passing on their genes. Mutations occur
randomly and uniformly at a constant rate µ. Thus, the relative fitness of an individual
with k deleterious mutations is (1 − s)k, which is exponentially dependent on the number
of mutations it carries. Here s > 0 is the selection coefficient, which models the strength of
each individual mutation. Hence if Nk(t) is the number of individuals in generation t with
exactly k deleterious mutations, the state of the population in generation t is described by
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the infinite dimensional vector N(t) = (N0(t), N1(t), . . . ) ∈ N∞. The transition rates are
given by multinomial sampling, namely

P
(
N(t+ 1) = n|N(t) = m

)
= N !
∞∏
k=0

nk!

∞∏
k=0

pk(t)nk

where n,m ∈ N∞ with ∑∞k=0 nk = ∑∞
k=0mk = N and with probabilities

pk(t) =
k∑
j=0

mk−j(1− s)k−je−µ µ
j

j!
∞∑
i=0

mi(1− s)i

Note that the exponential term in the probabilities of the multinomial sampling come from
the assumption that mutations are rare and hence the actual number of new mutations has
a Poisson distribution with mean µ [117]. You can find more on the findings of Haigh and
other mathematical frameworks to understand Muller’s ratchet in Chapter 1.6.2.

Furthermore, there are additional adaptations of the Wright-Fisher model that address vari-
ous aspects of population dynamics. Here, we briefly outline a few notable ones:

The Moran model This adaptation introduces a continuous-time version of the model,
allowing for overlapping generations. In the Moran model, birth and death events occur at
exponentially distributed times. Rather than sampling and replacing the entire population
at each event, only one individual is replaced, thereby maintaining a constant population
size throughout. This model provides a more realistic representation of certain population
dynamics compared to discrete generation models [160].

The Canning model This model, also operating in discrete generations, adjusts the number
of offspring per individual, assuming that the number of offspring per parent is exchangeable.
The Canning model introduces more flexibility in modelling varying reproductive outputs
and is useful for studying different reproductive scenarios within a discrete-time framework
[34, 35].

The Fleming-Viot process Similar to the Wright-Fisher diffusion, the Fleming-Viot process
arises as the infinite population limit of the Moran model. It is a continuous-time process
that generalizes the Wright-Fisher model to include additional features such as mutation
and selection, providing a rich framework for studying allele frequency dynamics in large
populations [71].

The F-KPP equation The spread of a beneficial allele in a spatially structured population
is described by the Fisher-KPP (Kolmogorov-Petrovsky-Piskunov) equation. This equation,
highly popular in mathematical circles, models the spatial propagation of advantageous traits
and has garnered significant interest due to its applications in various fields of population
genetics and theoretical ecology [70, 123].
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A highly valuable feature for mathematical analysis of the Wright-Fisher model is the abil-
ity to trace the genealogy of individuals and project it backward in time. This capability
enables the analysis of the process in reverse - known as the coalescent process - and ex-
plores the duality between forwards and backwards in time processes. This approach not
only addresses questions about the past, such as identifying the most recent common an-
cestor, but also aids in interpreting genetic data. One of the pioneers in this field was John
Kingman, who provided a detailed description of the ancestry of the Wright-Fisher diffu-
sion now known as Kingman’s coalescent [118]. His work laid the foundation for modern
analyses, which employ tools such as ancestral selection graphs and recombination graphs
[132, 140]. These contemporary methods offer powerful frameworks for understanding ge-
netic variation and evolutionary processes by modelling the genetic history and relationships
within populations.

For interested readers, we particularly recommend the works of Evans [66] and Etheridge
[63] for a comprehensive exploration of these topics, as well as Crow and Kimura for detailed
insights into neutral mutations and the effects of genetic drift [52].

1.2.3 Adaptive dynamics

While population genetics can explain how certain traits gain or lose frequency within a pop-
ulation, it struggles to model the emergence of new species. This is where adaptive dynamics
becomes crucial. Adaptive dynamics builds upon the interactions between populations ob-
served in population dynamics and combines these with the principles of inheritance and
mutation from population genetics.

Adaptive dynamics addresses the interactions between individuals and their environment,
relaxing the assumption of a constant population size and a fixed fitness landscape. Instead,
it considers that the fitness of an individual depends on the entire state of the popula-
tion, allowing for the co-evolution of the environment with the population. This approach
incorporates density-dependent selection, which considers how population density affects
individual fitness.

Exciting questions in adaptive dynamics often revolve around the evolutionary impact of
stochastic effects such as mutations. To rigorously analyse these processes, a crucial as-
sumption is made: the evolutionary timescale is separated from the ecological timescale.
This means that mutations occur so rarely that beneficial mutants can become fixed in the
population before further mutations arise. However, this assumption may be overly simplistic
for some real-world cases, as Metz, one of the founding fathers of adaptive dynamics, high-
lighted in his essay "Adaptive Dynamics" [158].

Mathematically, these models are rigorously formalized as individual-based Markov pro-
cesses. Moreover, it is possible to derive a pathwise representation of the system in terms of
Poisson point measures [72]. A primary focus is the analysis of limiting processes in large
populations with rare mutations. If the limiting process is monomorphic, it is termed the
Trait Substitution Sequence (TSS) [38], where the process jumps between consecutive fitter
traits. Alternatively, if the process is polymorphic, it is called the Polymorphic Evolution
Sequence (PES) [40].
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Another interesting aspect arises in a continuous trait space, where, in addition to large
populations and rare mutations, a small effect of mutations is considered. In this case, the
limit is described by the canonical equation of adaptive dynamics (CEAD) [58, 39, 11].

Since most models discussed in this thesis are individual-based models of adaptive dynamics,
we will discuss them in detail in Section 1.3. However, our focus is not on scaling limits in
large populations but rather on stochastic effects in finite populations. For readers interested
in scaling limits and the detailed mathematical framework underlying adaptive dynamics,
we recommend the comprehensive book by Méléard [156] or the lecture notes by Bovier and
Kraut [25].

1.2.4 Diploid models

The majority of models in adaptive dynamics consider haploid populations with clonal repro-
duction. While this theory effectively explains the emergence of new species, it falls short in
explaining the effects of genetic variability and diversity that arises from processes involved
in mating.

One key process is gametogenesis, where genetic material from a diploid cell is mixed through
recombination and then divided into haploid germ cells. Another process is the fusion of two
gametes to form a new zygote, merging the genetic material from two parents into a new
offspring.

Mathematical models for diploid populations are well-established and extensively studied in
population genetics [52, 164, 66, 31]. The first diploid models of adaptive dynamics, which
account for fluctuating population sizes, were proposed by Kisdi [121]. Collet, Méléard and
Metz later demonstrated the convergence to the Trait Substitution Sequence (TSS) under
certain conditions in the diploid case [49]. Bovier, Neukirch and Coquille then showed within
the framework of adaptive dynamics that diploid populations exhibit greater diversity [26,
168]. Specifically, they proved that suboptimal traits could persist longer as heterozygotes
in the population, and the extinction of such traits is slower compared to the replacement
of disadvantageous traits in haploid populations.

This dynamic, particularly in combination with mutation and an ever-changing environment,
can lead to a more rapid adaptability of diploid populations.

The greatest challenges in modelling diploid populations are as follows. First, there is the
need to distinguish between genotype and phenotype. In haploid populations within ad-
aptive dynamics, mutations directly affect the phenotype, thus immediately altering traits
that influence fitness. However, the presence of heterozygous genotypes for each trait now
necessitates a clear distinction between genotype and phenotype.

Second, mating now involves the selection of two individuals. Consequently, not only does
the fertility rate of a single individual play a role, but also the rate at which another indi-
vidual is chosen for mating. These factors increase the complexity of the models and make
mathematical analysis more challenging.
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1.3 The core model of this thesis

In this section, we introduce the foundational model that will serve as the basis for the
mathematical models discussed in detail later in this thesis. This model captures the essential
dynamics we are interested in and forms the starting point for our exploration into more
complex scenarios.

1.3.1 A diploid individual based model of adaptive dynamics

We start with the model of adaptive dynamics of Mendelian diploids studied by P. Collet, S.
Méléard, J. Metz et al. [49]. The major adaptation we make is a finite, but high dimensional
genotype space X ⊂ RN and a more general approach on the recombination and propagation
mechanism of genotypes during a mating of individuals. A diploid individual is character-
ized by its genotype x = (x1, x2) ∈ X 2. In the following, we introduce the demographic
parameters that encode the biology of the model. We assume that these parameters depend
on the allele configuration through the phenotype. As the dependence of the phenotype on
the genotype is assumed to be symmetrical, all coefficient functions defined are also assumed
to be symmetric in the allele configuration.

(i) b(x1, x2) ∈ R+ : the per birth rate of an individual with genotype (x1, x2). Further-
more, an individual with genotype (x1, x2) will be selected as a mating partner with
probabilities proportional to b(x1, x2).

(ii) d(x1, x2) ∈ R+ : the intrinsic death rate of an individual with genotype (x1, x2).

(iii) c(x1, x2, y1, y2) ∈ R+ : the competition pressure from an individual with genotype
(y1, y2) exerted onto an individual with genotype (x1, x2).

(iv) m(x1, x2, y1, y2, z1, z2) ∈ [0, 1] : the mating and mutation measure gives the probab-
ility that the mating of an individual with genotype (x1, x2) with an individual with
genotype (y1, y2) produces an offspring with genotype (z1, z2). It is assumed to satisfy

(a) for each x,y ∈ X 2 m(x,y, ·) is a probability kernel on X 2 and for each z ∈ X 2

the function (x,y)→ m(x,y, z) is measurable.

(b) for every (x1, x2), (y1, y2), (z1, z2) ∈ X 2 the following symmetry properties

m(x1, x2, y1, y2, z1, z2) = m(x2, x1, y1, y2, z1, z2)
m(x1, x2, y1, y2, z1, z2) = m(x1, x2, y2, y1, z1, z2)
m(x1, x2, y1, y2, z1, z2) = m(y1, y2, x1, x2, z2, z1)

The first two properties correspond to the fact that we do not want to make a
difference between the two genotypes of an individual. Both are equally present
in the production of the offspring genotype. The second property yields that the
mating of two individuals has the same probabilities of producing a given pair of
genotypes regardless the order of the mating.
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For simplicity we ignore the existence of sexes within the population. Hence an individual
chooses a mate with probabilities proportional to the birthrate of the partner. In Chapter 3
and Section 2.6.1, we challenge the assumption of panmixia and explore scenarios involving
non-random mating, where individuals show a preference for mating with partners who
exhibit certain traits. These traits, although not directly affecting birthrate, influence mate
choice and can have significant implications for the genetic structure and evolution of the
population.

At any point in time t ≥ 0 we consider a finite number Nt of individuals. Denote their
genotypes as (x1

1, x
1
2), . . . , (xNt1 , xNt2 ) ∈ X 2. The population state at time t ≥ 0 is described

by the point measure on X 2

νt =
Nt∑
i=1

δ(xi1,xi2)(t)

where δ(x1,x2) is the Dirac measure at (x1, x2) ∈ X 2. Let 〈ν, f〉 denote the integral of
a measurable function f with respect to the measure ν. Then 〈νt, 1〉 = Nt and for any
(x1, x2) ∈ X 2, the non-negative number 〈νt,1{(x1,x2)}〉 is called the density of genotype
(x1, x2) at time t. In an abuse of notation we define

〈νt,1x〉 := 〈νt(x, dy), 1〉+ 〈νt(dy, x), 1〉

to be the density of the haplotype x ∈ X at time t. Let M
(
X 2
)
denote the set of finite,

nonnegative point measures on X 2, equipped with the weak topology,

M
(
X 2
)

:=


n∑
i=1

δ(xi1,xi2) : n ∈ N0, (x1
1, x

1
2), . . . , (xn1 , xn2 ) ∈ X 2


An individual with genotype (x1, x2) in the population νt reproduces with an individual with
genotype (y1, y2) at a rate b(x1, x2) b(y1,y2)

〈νt,b〉 . The genotype of the offspring is chosen according
to the mutation and mating measure m(x1, x2, y1, y2, dz1, dz2). An individual with genotype
(x1, x2) in the population νt dies at rate

d(x1, x2) + 〈νt, c(x1, x2, dy1, dy2)〉

The population process (νt)t≥0 is defined as a M(X 2)-valued Markov process with the dy-
namics described above. These are encoded in the infinitesimal generator L of the process,
which is defined for any bounded measurable function f :M(X 2)→ R and for all ν ∈M(X ),
by

(Lf) (ν) =
∫
X 2

b(x)
∫
X 2

b(y)
〈ν, b〉

∫
X 2

(
f (ν + δz)− f (ν)

)
m(x,y, dz)ν(dy)ν(dx)

+
∫
X 2

d(x) +
∫
X 2

c(x,y)ν(dy)

(f (ν − δx)− f (ν)
)
ν(dx)

The first term describes the mating and birth event. The second term describes the death
of an individual. We ignore the unnatural fact that an individual can choose itself as a
partner to mate as the probability of that event will become negligible as the population size
increases.
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Remark. Since we assume the model parameters b, d, c take finite, non-negative values, and
the trait space X 2 is finite we immediately get the existence and uniqueness of the process.
Since if the population is of finite size n and in the state ν =

n∑
i=1

δxi the total event rate is

R(ν) =
n∑
i=1

b(x) + d(x) +
∫
X 2

c(x,y)ν(dy) ≤ n
(

max
x∈X 2

{
b(x) + d(x)

})
+ n2 max

x,y∈X 2
c(x, y) <∞

bounded from above as long as the population size is finite.

We see that this is true on finite time intervals as long as we start in a possibly random
population with finite mean. Moreover we have

Lemma 1.1. Assume that there exist b̄, d̄, c̄ <∞ such that for all x,y ∈ X 2

0 ≤ b(x) ≤ b̄, 0 ≤ d(x) ≤ d̄ and 0 ≤ c(x,y)

and that there exists c > 0 such that, for all x ∈ X 2, c ≤ c(x, x). Moreover, assume that
m(x,y, ·) is uniformly bounded for all x,y ∈ X 2 and that E

[
〈ν0, 1〉2

]
< ∞. Then, for any

T <∞,

E
[
sup
t≤T
〈νt, 1〉2

]
<∞.

The proof can be adapted from [72] [Theorem 3.1 (ii)] to a diploid population.

1.3.1.1 The law of large numbers

While the random effects of the dynamics are also of interest, to gain insight into the pro-
cess, it is also informative to understand the equilibrium, deterministic behaviour of the
population. The aim of this section is therefore to examine the dynamics of the process as
the population approaches infinity. It will be demonstrated that this results in a system of
deterministic, ordinary differential equations (ODE) that can be solved in certain instances.
However, due to the high-dimensional nature of the system, analysing these ODEs is typically
very challenging.

In order to obtain a law of large numbers type result, it is necessary to apply the correct
rescaling of the population. This is achieved by accelerating the birth and death events by a
factor ofK, while simultaneously scaling down the step size by a factor of 1/K. Furthermore,
we replace the function c(x,y) with the scaled function c 1

K c(x,y). Thus, as the value of K
increases, the frequency of interaction between individuals decreases, while the population
size simultaneously grows. The factor K is referred to as the carrying capacity, as it places
a limit on the population size in the order of K. Consequently, it can be viewed as the
quantity of resources accessible to the population within its environment. More precisely we
consider the rescaled point measure

νKt = 1
K

Nt∑
i=1

δ(xi1,xi2)
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on the state space

MK(X ) :=

 1
K

n∑
i=1

δ(xi1,xi2) : n ≥ 0, (x1
1, x

1
2), . . . , (xn1 , xn2 ) ∈ X 2


The rescaled generator is then given by

(
LKf

) (
νK
)

=
∫
X 2

b(x)
∫
X 2

b(y)
〈ν, b〉

∫
X 2

(
f

(
ν + 1

K
δz

)
− f (ν)

)
m(x,y, dz)ν(dy)ν(dx)

+
∫
X 2

d(x) + 1
K

∫
X 2

c(x,y)ν(dy)

(f (ν − 1
K
δx

)
− f (ν)

)
ν(dx)

The following theorem was proven by N. Fournier and S. S. Méléard in the case of a haploid,
clonal population, but can be adapted easily to this setup.

Theorem 1.2. Assume that the initial conditions νK0 converge, as K → ∞, in law and
for the vague topology on M(X 2) to some deterministic finite measure ξ0 ∈ M(X 2) and
that supK E

[
〈νK0 , 1〉2

]
< ∞. Then for all T > 0, the sequence νK converges, as K → ∞,

in law, in D([0, T ],M(X 2)), to a deterministic continuous function ξ ∈ C([0, T ],M(X )).
This measure-valued function ξ is the unique solution, satisfying supt∈[0,T ]〈ξt, 1〉 < ∞, of
the integro-differential equation written in its weak form: for all bounded and measurable
functions, h : X 2 → R,∫

X 2

h(x)ξt(dx)−
∫
X 2

h(x)ξ0(dx)

=
t∫

0

∫
X 2

b(x)
∫
X 2

b(y)
〈ξs, b〉

∫
X 2

h(z)m(x,y, dz)

 ξs(dy)ξs(dx)ds

−
t∫

0

∫
X2

h(x)

d(x) +
∫
X 2

c(x,y)ξs(dy)

 ξs(x)ds

Remark. Assume the finite trait space is countable and of size |X | = n and we have a
numbering on that space, such that X = {x1, . . . , xn}. Then we can realize the process as
a Markov process with state space Rn×n+ with generator acting on functions f : Rn×n+ → R.
Therefore, let z = (zij)1≤i,j≤n be a non-negative n×n matrix. Then the generator is defined
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as

(Lf) (z) =
n∑

i1,i2=1
zi1i2b(xi1 , xi2)

n∑
j1,j2=1

zj1j2b(xj1 , xj2)
n∑

l1,l2=1
zl1l2b(xl1 , xl2)

×

×
n∑

k1,k2=1
m(xi1 , xi2 , xj1 , xj2 , xk1 , xk2)

(
f(z + ek1k2)− f(z)

)

+
n∑

i1,i2=1
zi1i2

d(xi1 , xi2) +
n∑

j1,j2=1
zj1j2c(xi1 , xi2 , xj1 , xj2)

(f(z − ei1i2)− f(z)
)

where eij ∈ Rn×n is the n × n matrix with zero everywhere besides at the position (i, j)
where it takes the value one for some 1 ≤ i, j ≤ n. In that case the test functions for the
limiting integro-differential equation from the law of large numbers 1.2 can be limited to the
indicator functions on elements on the trait space X 2 = {x1, . . . , xn} × {x1, . . . , xn}. If we
set 〈ξt,1(xi,xj)〉 := zij(t) we get the n2 ordinary differential equations

d

dt
zi1i2(t) =

n∑
j1,j2=1

zj1j2(t)b(xj1 , xj2)
n∑

k1,k2=1

zk1k2(t)b(xk1 , xk2)
n∑

l1,l2=1
zl1l2(t)b(xl1 , xl2)

m(xj1 , xj2 , xk1 , xk2 , xi1 , xi2)

(1.1)

− zi1i2(t)

d (xi1 , xi2)+
n∑

j1,j2=1
zj1j2(t)c

(
xi1 , xi2 , xj1 .xj2

) (1.2)

for 1 ≤ i, j ≤ n.

Solving this system of ODEs (1.1) is far from straightforward, and depending on the para-
meters (in particular on the size of the trait space n), it can often be impossible to find
analytic solutions. In the next step, we will adapt this base model to our specific context,
focusing on the spread of autosomal recessive diseases. By incorporating the relevant biolo-
gical and genetic factors into the equations, we aim to analyse the dynamics of how these
diseases propagate within a population.

1.3.2 Complete recessive lethal diseases

We study the effect of a group of recessive genetic diseases that share the same structure.
These diseases arise from genetic changes and are inherited from one generation to the
next. As long as the degeneration of the genetic material is present on only one set of
chromosomes, it has no effect on the fitness of the carrier. It is only when the disease is
present in a homozygous state that it manifests. If one of the diseases is expressed, the
individual loses the ability to reproduce, but the life expectancy of an affected individual
remains unchanged. We consider N genes or gene segments in which these diseases can occur.
Mutations in these gene segments trigger the diseases. We ignore both neutral or beneficial
mutations and reversions that restore the genetic material. Each mutation potentially has
a negative effect on the individual. Furthermore, multiple mutations can occur at different
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positions within the same gene segment on the same chromosome without any additional
effect. Therefore, it is only important whether a gene segment is mutated and not how many
mutations it carries. This results in the following selection of parameters:

The trait space is X = {0, 1}N hence every individual is characterized by a 2 × N matrix
with values in {0, 1}. Here zero represents the wild type and a one indicates that (at least
one) mutation is present. Define the set DN ⊂ X 2 as

DN :=
{

(x, y) ∈ X 2 : ∃ 1 ≤ i ≤ N such that xi = 1 = yi
}
.

Then for x, y, z, w ∈ X the birth, death and competition rates are given by

b(x, y) := b̄1X 2\DN (x, y) and d(x, y) := d̄ and c(x, y, z, w) := c̄

for some finite b̄, d̄, c̄ ∈ R+. Moreover define µ > 0 to be the mutation rate per gamete.
Since usually the number of loci N is big and the mutation rate µ is small we assume
that the number of mutation per birth is Poisson distributed with mean 2µ. The mutation
location then is uniform distributed among all 2N possible positions. In Chapter 2, we
introduce an alternative assumption, namely that the genes themselves vary in size and
that the mutations occur in proportion to the size of the gene. We assume that during
gamete formation, each gene is passed on independently, corresponding to the case of a
fully recombining genome. This allows for maximum genetic variation and independence
of loci. In Chapter 3, however, we relax this assumption and examine in more detail the
effects of varying recombination rates. We also explore the scenario where genomes do not
recombine at all, and gamete formation only involves segregation, meaning entire segments
of the genome are inherited together. This change in recombination dynamics has significant
implications for the evolution and spread of genetic traits, particularly recessive diseases, and
will be analysed thoroughly. To model meiosis in the independent form we introduce the
following function. Let τ = (τ1, τ2, . . . , τN ) ∈ {1, 2}N be the choice of each gene, then define
for x ∈ {0, 1}2×N

φτ (x) =
(
x1
τ1 , . . . , x

N
τN

)
In the general form we then define the mating and mutation probabilities as

m(x,y, dz) = 1
22N

∑
τ,τ ′∈{1,2}N

∞∑
k=0

(2µ)k
k! e−2µ 1

Zk

∑
m∈32N

k

δ((φτ (x),φτ ′ (y))+m
)
∧1(dz)

where 32N
k :=

{
m ∈ N2N

+ : m1 + . . .+m2N = k
}
is the set of all lattice vectors in N2N

+ with
one norm equal to k, moreover Zk = ∑2N

j=0
(2N
j

)
pj(k) is the size of the set 32N

k and where
pj(k) is the number of partitions of k into exactly j parts. For notational reasons define for
x ∈ R2N and k ∈ R the component wise maximum as x ∧ k := (x1 ∧ k, . . . , x2N ∧ k).

1.3.3 Prevalence and mutation burden

The state of the population at any given time can be represented as a high-dimensional
vector, detailing the precise genetic configuration of every living individual. However, this
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level of detail is often not particularly insightful for understanding the broader dynamics of
the population. To effectively analyse and observe the stability of the population, we focus
primarily on two key statistics: prevalence and mutation burden (also referred to as mutation
load).

Prevalence refers to the proportion of individuals in the population expressing a severe recess-
ive disease. In this context, prevalence is equivalent to incidence rates because individuals
either express the disease or do not - there is no concept of infection or cure during their
lifetime for such genetic conditions. Prevalence, therefore, is a measure of the phenotype
and can be observed with greater accuracy in real-world studies, as it is based on visible
traits.

On the other hand, mutation burden is a measure of the genotype and represents the av-
erage number of lethal equivalents per individual. This serves as a risk score, indicating
the genetic load of potentially harmful mutations within the population. Unlike prevalence,
mutation burden is much harder to measure in nature. It requires advanced genome se-
quencing techniques, and even then, many rare diseases often remain undetected. Thus,
while mutation burden provides critical insight into the genetic health of the population, it
presents significant challenges in terms of practical measurement and assessment.

Mathematically speaking, the two statistics, prevalence and mutation burden can be defined
as follows: Let νt ∈ M(X 2) be the state of the population at time t ≥ 0. Recall that
DN ⊂ X 2 is the set of all affected configurations. Hence, the prevalence is defined as

P (νt) := 〈νt,1DN 〉
〈νt, 1〉

To define the mutation burden of the population, we first define the (absolut) mutation
burden of a gamete. Let x = (x1, x2, . . . , xN ) ∈ X then the mutation burden of the haploid
configuration x is defined as the sum of all its mutations

B′(x) =
N∑
n=1

xn

and the (relative) mutation burden of the whole population is then defined as

B (νt) = 1
〈νt, 1〉

∫
X 2

B′(x1) +B′(x2)νt (dx)

Although we will introduce additional statistics throughout this thesis to gain deeper in-
sights into more complex phenomena, the prevalence and mutation burden - alongside the
population size - will serve as our primary indicators.
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1.4 Stochastic simulation algorithm

This section explores the necessity of stochastic simulations for the analysis of complex and
high-dimensional models. Given the intricate nature of the dynamics, traditional mathem-
atical analysis often falls short in providing clear insights. As a result, numerical analysis
and stochastic simulations become indispensable tools for exploring these dynamics. One of
the central tools we employ for simulating these complex systems is the Gillespie algorithm,
also known as the stochastic simulation algorithm (SSA). We undertake a brief excursion
into the field of computer science, wherein we elucidate the rationale behind our selection of
the Julia programming language as the foundation for the simulation framework outlined in
Chapter 4.

1.4.1 Gillespie algorithm

This section provides an overview of the main aspects of the methods used to simulate
biological systems. For a more mathematical and comprehensive overview, we refer the
reader to the following useful works [83, 174, 104, 91, 211].

The Gillespie algorithm, developed by Daniel T. Gillespie in 1976 [81], was originally created
to address the problem of simulating the stochastic behavior of chemically reacting systems
at the molecular level. Before its invention, most models used deterministic differential
equations to describe reaction kinetics, which failed to capture the inherent randomness
present in systems with small numbers of molecules [85]. Gillespie’s algorithm introduced a
way to model these systems probabilistically, accounting for the random timing and order
of reaction events.

Initially applied in chemical physics, the Gillespie algorithm has since found widespread use
in various fields, including population genetics, epidemiology, and systems biology. Today, it
is employed to simulate complex stochastic processes, such as gene regulation, cell division,
evolutionary dynamics, and ecological interactions, providing insights into systems where
randomness plays a critical role [154, 155, 14, 47, 6].

The SSA is a Monte Carlo method used to simulate the time evolution of a Markov process.
In the context of population genetics, these states could represent different genetic config-
urations in a population, and the transitions between states correspond to events like birth
(that may include mutation or recombination) and or death.

The key steps of the Gillespie algorithm are:

1. Initialization: Set the initial state of the system (e.g., the genetic composition of the
population).

2. Reaction selection: Calculate the propensity (or rate) of each possible reaction/event
occurring next.

3. Time step calculation: Determine the time until the next event occurs, which is
drawn from an exponential distribution based on the total propensity.

26



1 Introduction

4. Reaction execution: Select and execute one of the possible reactions/events based
on their relative propensities.

5. Update: Update the state of the system according to the reaction executed.

6. Iteration: Repeat steps 2-5 until the desired simulation time is reached or the system
reaches a specified state.

This method is statistically exact, whereby a complete probability distribution would be
constructed from an infinite number of simulations, resulting in a representation that is
identical to the distribution of the underlying Markov process [80]. While this exactness
property is undoubtedly beneficial, it is possible to argue that it is not a crucial factor.
While the simulation results may precisely align with the model, the model itself will (of
course) not be an exact representation of reality [27]. Furthermore, only an infinite number
of simulations would result in an exact representation of the distribution of the model.
However, in reality, computational time is a limiting factor.

One of the main disadvantages of Gillespie’s algorithm is its computational intensity, particu-
larly due to the need to generate two random numbers at every simulation step. For systems
with many reactions or large populations, this results in a high computational cost, as the
algorithm proceeds event-by-event, making it impractical for large-scale or long-duration
simulations. There is a notable solution to improve the speed is the τ -leap method, which
accelerates simulations by allowing multiple reactions to occur simultaneously over a small
time interval τ , rather than handling one event at a time [82]. This method reduces the
number of random number generations by approximating the number of reactions that oc-
cur during τ , balancing accuracy with computational efficiency. While the τ -leap method
sacrifices some precision compared to Gillespie’s exact algorithm, it greatly improves the
simulation speed for large and complex systems. However, within the framework implemen-
ted for this thesis we do not make use of this technique. Besides the above method a number
of algorithmic enhancements have been implemented with the objective of accelerating the
processing speed [78]. In addition, a variety of alternative versions of the SSA have been
developed [36, 216]. For further insight, two reviews are recommended [83, 84].

The Gillespie algorithm is a relatively simple and straightforward approach that can be
readily implemented in a variety of scenarios. It serves as an excellent point of departure
for those interested in exploring stochastic simulation. However, there are numerous altern-
ative simulation methods, each with its own set of advantages and disadvantages. For a
comprehensive overview of stochastic simulation methods, we refer to the mini-review pa-
per by Székely, which provides a valuable introduction to the field of stochastic simulation
algorithms [197].

1.4.2 The Julia programming language

In this section, we provide a brief overview of the advantages and disadvantages of the Julia
programming language, focusing on its practical applications rather than delving deeply into
the technical intricacies of computer science. Those wishing to gain a deeper understanding
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of Julia are encouraged to consult the comprehensive documentation [18] and a selection of
published works on the subject [139, 133].

The Julia programming language was first introduced in 2012 by a team of developers led by
Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman [17]. The language was
designed from the ground up to address the needs of high-performance numerical computing,
combining the ease of use of Python and R with the performance of C and Fortran [30,
131]. Today, Julia is used in various fields, including machine learning, data science, and
scientific computing. It has been downloaded over 45 million times as of August 2024 and
is gaining popularity among data scientists as a potential "future language" for data science
and artificial intelligence [19].

One of the principal advantages of the Julia programming language is its high level of per-
formance. Julia’s just-in-time (JIT) compilation allows it to achieve speeds comparable to
C, making it particularly effective for CPU-intensive tasks. This performance advantage is
crucial in scientific computing where efficiency is paramount. Furthermore, Julia is straight-
forward to use and learn, making it accessible to beginners and enabling researchers to test
hypotheses on the move. Its syntax is clear and concise, resembling mathematical notation,
which simplifies the coding process for scientists and engineers. The interactivity of Julia
facilitates the development of models and the verification of conjectures. Users can easily
build prototypes and modify them interactively using Julia’s REPL (Read-Eval-Print Loop)
interface or an interactive notebook using Pluto [202]. A distinctive attribute of Julia that
facilitates the maintenance of code clarity is its multiple dispatch functionality. In contrast
to other languages, Julia’s multiple dispatch enables the language to determine the appropri-
ate function to execute when a call is made, based on the types of all arguments, not just the
initial one. This feature allows for more flexible and efficient function definitions, which can
ultimately result in more maintainable code in scientific applications. Furthermore, Julia
offers a comprehensive suite of libraries and tools specifically designed for scientific comput-
ing, including advanced packages for linear algebra (in the standard library, [18]), differential
equations [182], and data visualization [53]. This ecosystem is continually expanding, making
Julia an attractive option for researchers. Although Julia’s ecosystem is expanding, it still
lags behind Python in terms of the number of available libraries and community support.
Moreover, some research groups and projects rely on packages and code available only in
other languages. While the decision to transition to Julia is ultimately individual, there is
the possibility to include and compile Python code in Julia, thus maintaining familiarity
with the frameworks one is used to using [109].

In the context of initiating a novel project or evaluating a hypothesis rapidly, we strongly
advise considering Julia as a potential solution [19].

1.4.3 Dense problems

Both the Gillespie algorithm and the Julia ecosystem offer considerable flexibility when
simulating stochastic processes. In particular, the JumpProcess.jl Package in the Scientific
Machine Learning Software Ecosystem in Julia provides a wide range of simulation methods,
including the SSA [218]. The ecosystem is undergoing constant growth, and many problems
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can be solved with relative ease using the tools provided therein. We strongly encourage the
reader to consult the documentation. However, one limitation is that all possible reactants
and interactions between these reactants have to be specified at the beginning of the simu-
lation. In the context of a small number of types this is not the problem as for example in
the classical SIR model [114], where there are three types of individuals. Suscepteble (S),
infected (I) and recovered (R) individuals. With a given rate susceptable individuals get
infected when they interact with infected individuals and then recover after some time.

S + I → 2I
I → R

Here writing down all the possible interactions and types is easy. However, the models we
discuss in this paper have up to 4N possible types, where N can be as large as 1000. It is
not feasible to document all interactions between the types in question. The same holds true
for models where the trait of an individual is a real number x ∈ R (e.g.[57]). In that case
- although at any time during the simulation there are only finitely many individuals - the
number of potential traits that can appear during the course of a simulation is uncountable.
It was thus necessary to devise a variant of Gillespie’s algorithm that is more flexible and
enables simulation in these dense models. This is achieved by calculating the birth and death
rates of each individual at each time interval. These depend on the trait of the individual
at that time. However, to ensure the minimum possible computation time, it is necessary to
implement the birth and death rates function with great care.

In Section 1.7.3, we provide a more detailed account of our efforts to optimise the runtime
of the simulation and to minimise memory usage. In Chapter 4, we present the simulation
framework in the context of a number of use cases.
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1.5 Non-Random mating and population growth

Previously, the dynamics of mutation load and incidence rates for lethal recessive diseases
have been analysed for different demographic models including explosive population growth,
but excluding different mating schemes [103]. In this section, we will therefore focus on
models for random and consanguineous mating in a growing population. Here we lay the
foundation for the research presented in Chapter 2. Part of this section is taken from an
unpublished preprint [134], that was the predecessor of the published paper in Chapter 2.
Here, we introduce the specific biological concepts that are central to the later discussion.
Additionally, we adapt the core model from Chapter 1.3 to suit the particular use case,
ensuring that the model accurately reflects the biological mechanisms and dynamics of a
growing, non-randomly mating population.

1.5.1 Population size

In population genetics and evolutionary biology, the size of a population is a critical factor
that influences the impact of stochastic effects. In finite populations, randomness can have
a profound influence on evolutionary dynamics. Random events, such as genetic drift, can
cause allele frequencies to fluctuate unpredictably, leading to outcomes that deviate from the
predictions of deterministic models[74]. In large populations, these stochastic effects tend to
average out, and the population’s behaviour closely follows deterministic predictions. The
relative magnitude of these fluctuations is inversely proportional to the population size.

Inbreeding occurs when closely related individuals mate (see below), which increases the
probability that offspring will inherit identical alleles from both parents. This increased
homozygosity can reduce the effective population size Ne, a concept that represents the
size of an idealized population with the same genetic drift characteristics as the observed
population [214, 213]. The effective population size is usually smaller than the actual census
size N because factors like inbreeding, unequal sex ratios, and population substructure all
reduce genetic diversity [206]. A smaller effective population size again means that genetic
drift has a stronger influence, increasing the chances of allele fixation or loss and reducing
genetic variability.

The effects of population growth on genetic diversity and evolutionary dynamics are com-
plex and not fully understood. Rapid population growth increases the absolute number
of individuals, potentially enhancing genetic diversity and reducing the relative impact of
stochastic effects. However, if the growth is accompanied by bottlenecks or founder effects
(where a small number of individuals establish a new population), the effective population
size may still be small, maintaining strong genetic drift effects.

The human population has experienced exponential growth since the 1800s. This growth
is expected to plateau within this century, leading to a transition from exponential growth
to a stable or slowly declining population size. This adds another layer of complexity to
understanding the dynamics of mutation load and prevalence of lethal recessive diseases
[185].
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1.5.2 Consanguineous mating

In this section, we explore the effects of different mating schemes, particularly focusing on
consanguineous mating or inbreeding, where closely related individuals mate. Most popu-
lation models assume random mating within a well-mixed population, which often suffices
for many applications. However, this assumption can overlook the nuanced effects of mating
preferences that are prevalent in various natural and human populations.

In the natural world, there are mating strategies where individuals select their partners
based on the resemblance of their phenotypes (assortative mating or dissortative mating).
However, this thesis will focus on mating strategies that are kinship-based, where the degree
of relatedness between mating individuals plays a crucial role. Consanguineous mating refers
to unions between closely related individuals, such as cousins or other family members. In
contrast, outbreeding involves mating between unrelated or distantly related individuals.

To quantify the degree of relatedness between individuals, Sewall Wright introduced the
coefficient of relationship r in 1922 [212]. This coefficient measures the proportion of the
genome that two individuals share due to common ancestry. For example a parent and
offspring share half of their genomes, so r = 0.5. Similarly siblings also share approximately
half of their genomes, resulting in r = 0.5, whereas first cousins share about one-eighth of
their genomes, so r = 0.125. A detailed overview of the coefficient of relationship can be
found in the consanguinity table 1.6.

These values are theoretical considerations, reflecting the genetic similarity expected based
on inheritance patterns. However, it’s important to note that all humans share about 99.6%-
99.9% of their genome [110], which means that the genetic variation affected by consanguin-
ity is a small, but significant portion of the genome. Consanguineous matings are typically
defined as those occurring between individuals who are second cousins or closer, correspond-
ing to a coefficient of relationship r ≥ 0.03125. This definition highlights the genetic closeness
necessary for inbreeding to have notable effects on the offspring’s genetic makeup.

Another way to measure consanguinity is through Wright’s inbreeding coefficient f ∈ [0, 1].
It quantifies the probability that two alleles at a given locus in an individual are identical
by descent (IBD). Two alleles are said to be identical by state (IBS) if they are identical in
their nucleotide sequence. If they are also copies of a single ancestral allele, hence when both
alleles were inherited from a common ancestor without any recombination events breaking
the inheritance chain, they are said to be IBD. An individual with two homologous genes
that are IBD is called autozygous, whereas it is called allozygous if the two alleles are from
different origin or if a common origins is unknown due to incomplete pedigree information.

Thus, an individual with an inbreeding coefficient f has a probability f that the two genes
at a given locus are IBD and a probability 1 − f that they are independent. In the case of
independent genes, the allele frequencies are given by the Hardy-Weinberg equilibrium (see
section 1.2.2, [101, 208]). Thus, for a locus with two alleles a and A with frequencies p and
(1− p) in the population, the genotype frequencies are given by
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Figure 1.3: Table of consanguinity. Relationships at different levels are given together with the
coefficient of correlation r. The orange shaded area is associated with consanguineous
mating if two individuals from that area would mate, whereas the blue shaded area is
no longer associated with consanguinity.

allozygous autozygous
aa p2(1− f) + pf
aA 2p(1− p)(1− f)
AA (1− p)2(1− f) + (1− p)f∑ 1− f f

Unlike the coefficient of relationship, which measures the proportion of genes shared between
two individuals due to common ancestry, the inbreeding coefficient measures the likelihood
that two alleles in an individual are IBD due to inbreeding. For more insight into the effects
of inbreeding and different mating patterns on allele frequencies in the context of population
genetics, we recommend the comprehensive book by James Crow and Motoo Kimura [52].

Consanguineous marriages are more common in certain parts of the world. It is estimated
that approximately 8.5% of all children worldwide are born from consanguineous matings
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[20]. Moreover, around 20% of the global population resides in regions where consanguineous
marriages are culturally preferred or socially accepted [159]. This type of union is particularly
prevalent in parts of the Middle East, West Asia and North Africa, where such practices are
often embedded in cultural or religious traditions [100]. In contrast, there are many countries
where the law prohibits marriage or sexual relations between blood relatives [170].

Inbreeding increases the likelihood that offspring will inherit the same allele from both par-
ents, raising the probability of homozygosity for recessive alleles. This can lead to an in-
crease in the expression of recessive genetic disorders, which may otherwise remain hidden
in heterozygous carriers. The empirical observation that consanguinity is associated with an
increased risk of autosomal recessive disorders, has been made in many countries. Martin, et
al. recently showed that the contribution of autosomal recessive developmental disorders is
31% in the current British population if the autozygosity is above 0.02 [153]. Likewise, in the
Iranian population it is estimated that offspring from first-cousin unions have a probability
for intellectual disabilities that is four times higher than in non-consanguineous partner-
ships [106, 111, 163]. Although most people probably agree that a lower burden of disease
and child mortality is a desirable goal in a society, it is also clear that the occurrence and
coexistence of different marriage patterns over many centuries cannot be understood by pop-
ulation genetics alone, especially as demographic, social and economic factors interact in a
complex manner [22]. However, since there have been repeated attempts to motivate social
conventions by genetic reasoning, we took a closer look at the validity of these arguments.

The European Court of Human Rights case of Stübing v. Germany concerned consanguine
siblings who had four children following consensual intercourse, whereupon both siblings
were charged with incest [2]. One of the siblings lodged a complaint, arguing that the
legislature violated his right to sexual self-determination, his private and family life. The
Court found that 24 out of 44 European States reviewed, criminalized consensual sexual acts
between adult siblings, and all prohibited siblings from getting married. The German gov-
ernment argued that the law against incest partly aimed to protect against the significantly
increased risk of genetic damage among children from an incestuous relationship. Motiv-
ating a law on avoiding a higher probability of disease can be viewed as eugenic. As the
German Ethics Council opined after the judgment, no convincing argument can be derived
from there being a risk of genetic damage, concurring with a statement from the German
Society of Human Genetics that “The argument that reproduction needs to be thwarted in
couples whose children possess an elevated risk for recessively inherited illnesses is an attack
on the reproductive freedom of all” [3, 1]. Furthermore, as our work shows, the argument
that there exists an increased risk of genetic damage, requires the definition of a reference
population for comparison. However, there is neither agreement about a suitable reference
nor an accurate measurement for mutation load.

1.5.3 Model modifications

Building on the core model introduced in Chapter 1.3, we incorporate several additional
features to align the model more closely with the biological reality of autosomal recessive
diseases in a growing, non-randomly mating population.
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Figure 1.4: Problem with family flags. Family flags are represented by distinct colours. The
possibility is presented where siblings born of the same parents do not possess any
shared familial flag.

In many cases, the exact number of genes that can cause autosomal recessive diseases is
not known, and this number can only be estimated approximately [122]. Additionally, these
genes vary significantly in size, with some being as short as 500 base pairs (bp) and others
extending over 10 000 bp. This variation in gene length affects the mutation probability for
each gene. Larger genes, by virtue of having more nucleotides, are more likely to be affected
by mutations than smaller genes. To accurately model this, we introduce a gene-specific
mutation rate that accounts for gene length. We also consider the possibility of compound
heterozygous mutations. In this scenario, even if two mutations occur at different positions
within the same gene on each chromosome copy, the disease can still be expressed. By
incorporating compound heterozygosity into the model, we account for a broader spectrum
of genetic mutations that contribute to disease expression, which is often observed in real-
world scenarios.

Furthermore, we assume that the genes are distributed across nc chromosomes, which re-
combine freely during meiosis. We can easily adjust the population size in our adaptive
dynamics model by spontaneously increasing the carrying capacity K. With more resources,
the population grows naturally until it reaches a new equilibrium.

The most important modification we make is to allow for non-random mating. In our case
mating preferences should not depend on the genotype of individuals, which is the only
characteristic trait in the core model. Therefore, we need to introduce another trait that
is independent of genotype, but rather relatedness. It is not feasible to trace the kinship
of all living individuals in our model, so we introduce family flags, which do not represent
the exact family background, but rather give an idea of the origin of the individual. Each
individual is assigned two additional numbers (f1, f2) ∈ N2 as a trait. When two individuals
with family traits mate, the offspring inherits a randomly selected trait from each parent.
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However, in the event that both parents carry the exact same family flags, the offspring will
also inherit the exact same two flags. When choosing a mate, individuals then make their
choice according to the combination of the two additional traits.

However, this has several flaws. First, there is the possibility that siblings do not share
any family trait and are therefore completely unrelated in this model (see Figure 1.4). Fur-
thermore, since the number of families is finite and no new families arise due to natural
fluctuations, all but one family will eventually die out, leaving us with random mating
again. However, we solve the latter problem by splitting up families when they become too
large. We therefore introduce a maximum family size, and any group that exceeds this size
is split equally at random into two subfamilies. One of the two subfamilies is then given a
new homogeneous family trait that has not been given to any other family before.

A detailed mathematical description of the adapted model can be found in 2.6.1. However,
we can see that, despite these limitations, consanguineous mating works well enough to
answer the question of how recessive lethal diseases behave in a growing population. We
obtain similar results when we compare the results with a simulation that is able to trace
the exact pedigree information for each individual. For more details on this argument, see
section 2.2.3.
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1.6 Recessive gene count and recombination

Despite significant advancements in genome sequencing and the development of sophisticated
estimation methods, there remain considerable uncertainties surrounding the mutation rates
that lead to autosomal recessive diseases [217, 4, 215]. This uncertainty also extends to the
number of genes - referred to as the "recessive gene count" - that, when mutated, can result in
lethal recessive diseases [106, 163, 122]. Given the uncertainties in mutation rates, recessive
gene count, and additionally in population size, and recombination rates, our investigation
focuses on exploring different parameter combinations to understand their effects on the
dynamics of lethal recessive diseases

In this chapter, we introduce some genetic concepts that are fundamental to understanding
the mechanisms of the models presented in Chapter 3. We take a closer look at the mech-
anism of recombination and its role in the emergence of complex organisms. Of particular
interest is Muller’s ratchet, a theory that explains how deleterious mutations accumulate in
asexual, non-recombining populations. Additionally, we explore the evolution of mutation
rates and how random genetic drift can impede the refinement of phenotypes, resulting in
suboptimal traits.

1.6.1 Recombination

Recombination plays a pivotal role in the evolution of populations by introducing genetic
variation, which is crucial for natural selection and adaptation. By reshuffling alleles between
chromosomes, recombination creates new combinations of genes, allowing populations to
respond more effectively to changing environments and selection pressures. The process of
recombination can be broken down into two main types: interchromosomal recombination
and intrachromosomal recombination.

Interchromosomal recombination occurs during meiosis, where homologous chromosomes
(one from each parent) are randomly distributed into two haploid daughter cells. This ran-
dom assortment of chromosomes results in gametes with different combinations of maternal
and paternal chromosomes, contributing to genetic diversity. For example, if a diploid or-
ganism has n chromosomes, there are 2n possible combinations of chromosomes that can be
passed on to the offspring, depending on how the chromosomes are distributed during mei-
osis. As the number of chromosome pairs increases, the potential number of combinations
increases exponentially, greatly enhancing genetic variation in the offspring.

Intrachromosomal recombination, occurs during meiosis when homologous chromosomes pair
up and exchange segments of DNA through a process known as crossing over. This exchange
happens at the chiasmata, points where the chromosomes physically overlap and swap genetic
material. The result is the formation of recombinant chromosomes that contain a mix of
alleles from both the maternal and paternal chromosomes. The exchanged segments can
vary in size, ranging from a few base pairs to entire gene regions. The frequency and exact
locations of crossovers are not uniform across the genome but are influenced by factors like
chromosomal structure, sequence motifs, and the presence of specific proteins that guide the
recombination machinery. This intrachromosomal recombination contributes significantly to
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genetic diversity, such that almost surely no two gametes from one parent carry the exact
same haploid genome. For more details on the mechanisms of recombination, we recommend
the book by Bruce Alberts [5].

In our models, we previously considered only interchromosomal recombination. However,
to better reflect the natural processes and the role of recombination in evolution, we must
now incorporate intrachromosomal recombination. For more details on the modifications we
are making to our core model to better capture recombination, see sections 1.6.4 and 3.6.3.
As we will see in the next section, in the absence of recombination, populations could face
significant challenges.

1.6.2 Muller’s ratchet

Muller’s ratchet is a concept in evolutionary genetics named after Hermann Joseph Muller.
It describes a process by which genomes of an asexual population accumulate deleterious
mutations in an irreversible manner due to the lack of recombination. This phenomenon has
significant implications for understanding the evolution of sex, the degeneration of chromo-
somes, and the persistence of asexual lineages. We will discuss its implications and some
mathematical models around the concept in the following section. For a deeper look into
the topic we recommend to read the article [145] and explore its comprehensive glossary.

Hermann Joseph Muller introduced the concept of Muller’s ratchet in 1932 [161, 162] to
address a fundamental question in evolutionary biology: why do so many organisms re-
produce sexually despite the apparent costs associated with sexual reproduction? Muller
hypothesized that sexual reproduction provides an evolutionary advantage by allowing re-
combination, which helps eliminate deleterious mutations from the genome. In asexual
populations, the absence of recombination means that once a deleterious mutation occurs,
it can only be purged if the entire lineage carrying it is lost. Over time, stochastic events
(genetic drift) can lead to the irreversible accumulation of these mutations, particularly in
small populations. This process is akin to a ratchet mechanism, where the "clicks" represent
the fixation of deleterious mutations, and the ratchet cannot turn back. Even though this
is not the only advantage of sexual reproduction over clonal reproduction, it certainly is a
piece in the puzzle of the evolution of sexual mating. In particular, Muller’s ratchet provides
a reasonable explanation for the degeneration of Y chromosomes in sexual organisms. Y
chromosomes, which do not undergo recombination over most of their length, are especially
susceptible to the accumulation of deleterious mutations. This accumulation can lead to
the loss of functional genes and the shrinkage of the Y chromosome over evolutionary time
[41, 42, 184, 45, 46].

It was John Haigh in 1978 who first quantified the effect of Muller’s ratchet and proposed
a mathematical model [96]. He formulated a Wright-Fisher model, where individuals are
characterized by the number of deleterious mutations. Mutations are added at a constant
rate according to a Poisson-distributed random variable, and the progeny of an individual
with k deleterious mutations is proportional to (1−s)k, where s > 0 is the selection coefficient,
modelling the strength of the deleterious effect of individual mutations. For more details on
the transition rates, see section 1.2.2.
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Haigh divided the population into load classes, where each load class consists of individuals
with the exact same number of deleterious mutations. The ratchet clicks when the least-
loaded class - the class of individuals with the smallest number of deleterious mutations -
goes extinct due to natural fluctuations. In the absence of recombination and back mutation,
this extinction is final.

After the ratchet clicks, a new least-loaded class emerges, where every individual carries one
more mutation than those in the load class that just went extinct. Within this framework,
Haigh identified the stationary distributions of this process. Specifically, he found that
a distribution (nk)k∈N, where nk represents the proportion of individuals with exactly k
mutations has Poisson weights. The only stationary distribution with n0 > 0 - so before the
ratchet has clicked - is given by

nk = Ne−θ
θk

k! ,with θ = λ

s

for k = 0, 1, . . . and where N ∈ N is the population size and λ ≥ 0 is the average number of
new, deleterious mutations per birth. Moreover, Haigh found that shortly after the ratchet
clicks, a new equilibrium is established, which takes the same shape as before. Namely if
the ratchet has clicked J ≥ 1 times one get the following equilibrium distribution

n0 = n1 = · · · = nJ−1 = 0 , nJ+k = Ne−θ
θk

k! ,for k = 0, 1, . . .

Therefore, the shape of the equilibrium load class distribution remains the same, but it shifts
to the right with each click of the ratchet.

1.6.2.1 Click rate

Although the mathematical model of Muller’s ratchet is well understood and many questions
have been explicitly answered, some questions remain open. One intriguing question is
whether the ratchet has an evolutionary effect. Specifically, how many generations will
it take for a population to accumulate deleterious mutations, or mathematically speaking,
what is the rate at which the ratchet clicks? Exact results for this question are still not
available, even in the relatively simple model formulated by Haigh. However, there are good
approximations and simulations for certain parameter regimes.

Haigh initially found a linear relationship between the size of the least-loaded class n0 and
the average time between clicks of the ratchet, though this was only for relatively small values
of n0. For larger values of n0, the selection coefficient becomes more relevant, and rates can
vary as simulations for parameter regimes that mimic large non-recombining chromosomal
sections suggest [193, 90].

Besides numerical approximations also analytic approximations have been made. Etheridge,
Pfaffelhuber and Wakolbinger suggest a diffusion approximation and found that the para-
meter

γ = Nλ

Ns log(Nλ)
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Figure 1.5: Load classes under Muller’s ratchet. The load class distribution under the classical
effect of Mullers ratchet, as described by Haigh, exhibits a consistent shape over time,
with a gradual shift to the right.

plays an important role [64]. Note that they rescaled time in units of the population size
N and therefore parameters like the selection coefficient s and the mutation rate λ get
multiplied by N . They analysed the following Fleming-Viot diffusion, which is an infinite-
dimensional version of the standard multi-dimensional Wright-Fisher diffusion. Let Xk be
the frequency of individuals with exactly k mutations; then the diffusion can be expressed
as a stochastic differential equation. For k = 0, 1, 2, . . .

dXk =
(
s
(
M1(X)− k − λ

)
Xk−1

)
dt+

∑
j 6=k

√
1
N
XjXkdWjk (1.3)

where X−1 := 0 and (Wjk)j>k is an array of independent standard Brownian Motion with
Wkj := Wjk. Moreover M1(X) is the mutation load, hence the average number of mutations
per individual of the population X = (X0, X1, . . . ). Similar to Haigh’s findings in the
discrete model, they discovered a travelling wave solution for the problem, and the speed of
the wave is determined by the variance of the profile. The main challenge is that, to analyse
the dynamics of the least-loaded class, one must know the state of the entire, potentially
infinite-dimensional population. Therefore, they sought to find a good approximation of the
average number of mutations per individual, M1(X), based on the size of the least-loaded
class. Simulations suggested a linear relationship between the two, through which they
derived a one-dimensional diffusion approximation.
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Finally, they were able to formulate the following rule of thumb: The rate of the ratchet is
of order Nγ−1λγ for γ ∈ (1/2, 1), whereas it is exponentially slow in (Nλ)1−γ for γ < 1/2.

One can easily see that the classical Muller’s ratchet model from Haigh clicks almost surely
in finite time, since with probability (1 − e−λ)N , all individuals mutate in one generation,
which necessarily leads to a click. Similarly, in the diffusion approximation, the probability
that the least-loaded class goes extinct in finite time is one [9]. Therefore, the diffusion
approximation from (1.3) is a reasonable approximation for the phenomenon of Muller’s
ratchet, as simulations had already predicted [64]. Moreover, Audiffren proved that the time
to the first click has an exponential moment of some order, which depends on the parameters
N, s and λ [9].

The interest in the mathematical analysis of the accumulation of deleterious mutations in
non-recombining populations remains strong. Several modifications of the diffusion approx-
imation have been explored, such as adding compensatory mutations [179], incorporating
spatial structure [73], or considering different fitness landscapes [89].

Moreover, there has been significant interest in understanding the dynamics between two con-
secutive clicks. Recently, Pardoux proved the existence and uniqueness of quasi-stationary
distributions for both finite and infinite-dimensional diffusion approximations [152].

1.6.2.2 Muller’s ratchet in diplolids

In diploid organisms, Muller’s ratchet acts both in clonal reproduction [151] and in mating
with segregation. The case of diploid individuals that reproduce clonally behaves similar to a
haploid population [45]. An important factor for the analysis of the effect of Muller’s ratchet
on diploids is the selective effect of heterozygous mutations. Hence the dominance coefficient
h is added to the parameters that influence the strength and speed of the ratchet.

Dominance coefficient The dominance coefficient scales the effect of heterozygous muta-
tions in diploid models. More precisely if there are two alleles a and A at a locus and we
assume that A is the deleterious variant with the selection coefficient s, then the fitness effect
of the diploid genetic configurations are

genotype aa aA AA

fitness 1 1− hs 1− s

Hence there are different interpretations of the heterogeneous genotype depending on the
value of h. These are

• Complete dominance (h = 0): The heterozygote aA has the same fitness as the
homozygote aa, implying that allele a is completely dominant over A.

• Complete recessiveness (h = 1): the heterozygote aA has the same fitness as the
homozygote AA, indicating that allele A is completely dominant over a.
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• Incomplete dominance (0 < h < 1): The fitness of the heterozygote aA is in-
termediate between the two homozygotes, reflecting that neither allele is completely
dominant.

• Overdominance (h < 0): The heterozygote aA has higher fitness than both homo-
zygotes, a situation often referred to as heterozygote advantage.

• Underdominance (h > 1): The heterozygote aA has lower fitness that both homo-
zygotes.

Deleterious mutations are often recessive (h ≈ 0), meaning they are less likely to be ex-
pressed in heterozygous individuals and thus can persist at low frequencies in populations
[180]. There is a detailed discussion of complete recessive diseases in section 1.3.2. The dom-
inance coefficient is thus a key factor in understanding the dynamics of allele frequencies,
the persistence of genetic variation, and the evolutionary potential of diploid populations.
However, the actual distribution of dominance coefficients in natural populations remains
under-explored, limiting the predictive power of population genomic approaches [21]

In the case of sexual mating with segregation but without recombination, it is not the
extinction of the mutation-free diploid individual however, that triggers the ratchet and leads
to an irreversible accumulation of deleterious mutations. Even after the loss of the mutation-
free individual, it can be restored through mating between two parents, each providing a
mutation-free gamete. Therefore, it is more the extinction of the mutation-free gamete that
leads to a click of the ratchet. Consequently, even in a diploid population, the focus is on
the extinction of the least-loaded haploid class. Moreover really recombination is the driving
force that prevents the degeneration of a population through Muller’s ratchet. Sexual mating
by itself with only segregation is not enough [192].

Rapid fixation Most models in the context of Muller’s ratchet assume an infinitely large
genome, where each new mutation appears at a completely new locus. Within these models,
the fate of an individual mutation cannot be determined, and the allele frequencies per site
remain infinitesimal regardless of the ratchet’s progression. However, Charlesworth argued
that in a haploid population with a finite genome and a limited number of loci, after a click
of the ratchet, the allele frequency for a single mutation will rise quickly, leading to the
fixation of one particular mutation within the next least loaded class [45].

Charlesworth’s theoretical arguments were based on simulation results in small populations,
where this effect is expected to be more pronounced than in larger populations. The rate of
fixation, therefore, depends not only on the mutation rate but also on the population size.
The reason for this rapid fixation is that if, for example, the class of individuals without any
mutations is lost, the class of individuals with exactly one mutation has no new input due
to the lack of back mutation. Consequently, individuals in this class can only be lost due
to additional mutations, leading to a fixation within the class with one mutation and high
frequencies of this allele in classes with more than one mutation.

In a diploid population, the term fixation is not as clearly defined as in haploid populations.
Depending on the dominance and selection coefficient, fixation can mean either that every
haploid gamete carries the mutation, hence it is homozygous in every individual of that class,
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or that every diploid individual carries the mutation on at least one of its chromosomal
pairs. If the selection coefficient is high and dominance is low, fixation in the first sense
would imply a significant reduction in fitness for this class, which could eventually lead to
its extinction. However, if the dominance coefficient is sufficiently small, the fixation of a
deleterious mutation can be decoupled from the advance of the ratchet.

Moreover, Charlesworth found that in some cases, populations become "crystallized" into
segregating haplotypes, within each of which deleterious alleles are fixed [45]. This phe-
nomenon will be explored in detail in Chapter 3 and Section 1.7.2, providing further insights
into the complex interplay between mutation, selection, and genetic drift in shaping popu-
lation genetics.

1.6.3 Drift-Barrier hypothesis

For a long time, there has been great interest in understanding the origins of mutation
rates. In the 1990s, when mutation rate estimates and genetic data were limited, it was
hypothesized that the genome-wide mutation rate would be constant across species, a concept
that became known as Drake’s rule [60]. However, with advancements in genome sequencing
and mutation rate estimation, it became clear that this does not hold true across the entire
tree of life. The genome-wide mutation rate varies significantly across different species,
raising the question: why? Michael Lynch proposed a unifying theory on the evolution of
mutation rates across different species, emphasizing the interplay between directional forces
such as selection and random forces like genetic drift. This theory became known as the drift-
barrier hypothesis, which we will explain in the following section. For more background and
insight, we recommend reading the article [149] and exploring its comprehensive glossary.

At the core of the drift-barrier hypothesis lies the assumption that directional evolutionary
forces work against random forces to create an evolutionary equilibrium. In particular, this
means that whenever genetic drift is more pronounced (for example, in small populations),
selection as its counterpart as a directional force will be weaker. This has several implications
for evolution.

Firstly, consider the evolution of a phenotype in a fixed environment. If we assume mutations
change a phenotype in a neutral way, meaning that some lead to a fitter and some to a
less fit phenotype with equal probability, then selection will drive the population toward a
better-adapted trait. This improvement comes to a halt when the selective advantage of
new mutations becomes smaller and smaller, and the fixation of a slightly fitter mutant gets
inhibited by the random fluctuations in the system. Hence, at some point, genetic drift
prohibits the further refinement of a phenotype and keeps it below a theoretical optimum.

Additionally, the interplay between selection and genetic drift shapes the mutation rate
itself. This means that the mutation rate for a population is not fixed, but rather evolves
like any other trait under selection. In this context, selection primarily aims to improve the
replication mechanism and, consequently, to lower the mutation rate. However, it needs to
be balanced between the costs of deleterious mutations and the need for genetic diversity for
adaptation.
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In small populations, genetic drift is strong, meaning random fluctuations can dominate
over selection. This allows for higher mutation rates because deleterious mutations are not
efficiently purged by selection. In large populations, however, selection is more effective at
removing deleterious mutations, favouring lower mutation rates. Thus, the mutation rate is
kept low to minimize the accumulation of harmful mutations. This balance between mutation
rates and the strength of selection versus genetic drift is a key aspect of the drift-barrier
hypothesis, explaining the variability in mutation rates observed across different species.

The theory matches with genetic data from a wide range of species, ranging from bacteria and
other prokaryotes to unicellular eukaryotes to complex, multicellular organisms like humans
[149]. Although there have been findings of organisms that deviate from the trajectory drawn
by the drift-barrier hypothesis, the vast majority of species fit the model [200].

A question that still remains is where the drift-barrier appears. As mentioned above it is
shaped by the population size which affects the genetic drift. Lynch and co-authors also found
that the relative frequency of mutator alleles versus anti-mutator alleles plays a significant
role. Mutator alleles are genetic variants that increase the mutation rate, for example by
suppressing repair mechanisms. They can be beneficial in rapidly changing environments by
generating genetic diversity, but they can also increase the load of deleterious mutations. On
the other hand, anti-mutators are genetic variants that decrease the mutation rate. They
reduce the accumulation of deleterious mutations, enhancing genome stability, but may limit
adaptive potential in changing environments.

We found in the model discussed in Chapter 3 that there is another parameter - the recessive
gene count - that influences the genetic variation within a population and thereby also
contributes to the drift-barrier hypothesis.

1.6.4 Model modifications

To better capture the effects of varying parameter regimes and to model recombination more
realistically, we introduce a series of modifications to the core model presented in section
1.3. These modifications focus on refining our understanding of how recombination impacts
the inheritance of genetic traits in the context of autosomal recessive diseases.

In the core model, the inheritance of each gene was treated as independent, meaning that
during reproduction, genes were passed on without considering their relative positions on
chromosomes. This simplification allowed us to model inheritance in a straightforward man-
ner but did not fully capture the complexity of genetic recombination as it occurs in nature
(see 1.6.1).

In earlier modifications (introduced in Section 1.5.3), we took a step towards realism by
dividing the genome at predetermined positions, allowing for independence between segments
while still maintaining some structure. This approach introduced the idea that recombination
could occur between chromosomes, but it still assumed a relatively fixed structure.

Now, we introduce a new parameter, the recombination rate r ∈ [0, 1], which adds a layer of
complexity to how recombination is modelled. This parameter reflects the probability that,
during meiosis, a recombination event occurs independently at each of the N − 1 possible
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Figure 1.6: Mating with recombination. A schematic representation depicts the mating scheme
with recombination, which ultimately forms a new diploid offspring. The orange vertical
lines represent the recombination sites.

breaking points along the genome. The value of r can range from 0 to 1, where r = 0 refers
to no recombination, meaning that only segregation happens, and the haploid genome is
inherited as a single, unbroken unit from one parent. Whereas r = 1 refers to full recombin-
ation, resulting in independent inheritance of each gene, akin to the assumption in the core
model. By varying r, we can simulate different levels of recombination, ranging from com-
plete linkage (no recombination) to full independence (high recombination). This flexibility
allows us to model a spectrum of genetic scenarios and observe how varying recombination
rates affect the spread and persistence of recessive alleles within a population. The modified
version of the mating probabilities with recombination can be found in (3.8).

We will see in section 1.7 that under theses extreme condition of complete recessive lethals
(dominance coefficient h = 0, selection coefficient s = 1) the effect of Muller’s ratchet is fatal.
When the mutation free class (the class of genomes with the no mutations) is lost, the entire
population rapidly heads toward extinction. To gain deeper insights into the mechanisms
that drive population extinction under these conditions, we make a modification to our
model: we adapt the birth rates of fit individuals to counterbalance the increasing disease
prevalence. This adaptation allows us to maintain a relatively stable population size while
observing the effects of Muller’s ratchet more clearly. Thus we maintain a total birth rate
of Ntb̄, as if the whole population were healthy, and distribute it equally among all healthy
individuals. This accelerates the birth rate of all healthy individuals and they compensate
for the individuals lost due to the expression of the disease. The generator for the adapted
model is augmented with an additional birth factor, resulting in the following form. Let
f :M(X 2)→ R be any bounded, measurable function then for all ν ∈M(X ), the generator
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is given by

(Lf) (ν) =
∫
X 2

b(x)

 ν
(
X 2
)

ν
(
X 2)− ν (DN )

 ∫
X 2

b(y)
〈ν, b〉

∫
X 2

(
f (ν + δz)− f (ν)

)
m(x,y, dz)ν(dy)ν(dx)

+
∫
X 2

d(x) +
∫
X 2

c(x,y)ν(dy)

(f (ν − δx)− f (ν)
)
ν(dx)

It is important to note that this adaptation does not reflect the dynamics of a natural
population. In reality, as the disease prevalence increases, we would expect the population
size to decrease.
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1.7 Outline, main results and open questions

The main body of this thesis is structured into three interconnected chapters, each of which
can be read independently, though their contents are closely related. Chapters 2 and 3 give
a concrete genetic application of the model introduced in section 1.3. Chapter 4 introduces
a simulation framework used to perform the stochastic simulations and obtain the results
in this thesis. It serves as a manual so that the framework can be used for other research
questions involving complex systems. In the following, we summarise the contents and main
results of the three chapters. Some results are extended with heuristics, conjectures and
open questions.

1.7.1 Transient drop in prevalence for random mating during population
expansion

In chapter 2 we analyse the mutation burden and prevalence for a recessive lethal disease in a
growing, consanguineous population. We found that the observed reduced incidence rates for
recessive diseases in randomly mating populations are a transient phenomenon induced by
population expansion at the cost of increased mutation burden. This chapter was published
in the American Journal of Medical Genetics as joint work with Julia Frank, Heidi Beate
Bentzen, Jean Tori Pantel, Konrad Gerischer, Anton Bovier and Peter M. Krawitz [135],

L. A. La Rocca, J. Frank, H. B. Bentzen, J. T. Pantel, K. Gerischer, A. Bovier, and P. M.
Krawitz. Understanding recessive disease risk in multi-ethnic populations with different
degrees of consanguinity. American Journal of Medical Genetics, 194(3):e63452, 2024

Chapter 2 contains the published version, with only minor changes to correct some typing
errors and adapt the layout to the format of this thesis.

We have analysed the prevalence and mutation burden of severe autosomal recessive diseases.
The mutation rate and genetic architecture - that is, the number and size of recessive genes
and their distribution across a fixed number of chromosomes - were kept constant through-
out the analysis and were based on estimates from human population data. There are two
things we have changed in the course of this analysis. First, we start the simulation with a
completely healthy, i.e. mutation-free, population of 500 individuals. After a short "burn-
in" period to allow mutation-selection equilibrium to establish, we increased the carrying
capacity to allow for approximately 10 000 individuals. We then continued the simulation
to see the effect of the population increase. Secondly, we ran independent simulations with
a number of different mating schemes. We compared a randomly mating population with
consanguineous mating. We can model the strength of consanguinity by three parameters.
The first is the maximum family size κ. In addition, two weights α and β represent the prob-
ability of mating within the close family and within the wider family group. The remaining
proportion of individuals continue to mate at random.

We found that in a randomly mating population there is a sharp, transient drop in incidence
rates during and after population expansion. However, this is associated with an increase in
mutation load. It takes more than 500 generations after the expansion for the population
to return to equilibrium. The prevalence level of before the increase is reached again, but
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the mutation burden in the larger population is higher than before. In contrast, consan-
guineous populations do not experience this temporary decline. The prevalence level of the
inbreeding population is approximately the same as that of randomly mating populations.
The mutation load, however, is much lower. And unlike the random mating population,
population expansion keeps both statistics constant. This is because, for individuals in a
randomly mating population, the number of potential mates increases with population size.
For a consanguineously mating individual, the number of potential mates is bounded by
the maximum family size and therefore more or less independent of population growth (see
Figure 2.1).

In addition, we compared our simulation framework of an adaptive dynamics model imple-
mented with an exact stochastic algorithm with an evolutionary simulation framework called
SLiM, which works internally with a Wright-Fisher model [98]. The big advantage of the
latter simulation framework was that it works with exact pedigree information. By knowing
exactly how many ancestors individuals have in common, consanguineous mating could be
implemented more realistically (see Figure 2.4). However, the discrete, non-overlapping pop-
ulation of constant or deterministically increasing size of the Wright-Fisher model cannot
model natural population growth as well as the adaptive dynamics model (see Figure 2.5).
It was therefore intriguing to see that when we made all the parameters in both models
as equal as possible, we got similar results, even though the backgrounds of the two sim-
ulation frameworks were quite different. Thus, we saw that the simple implementation of
consanguineous mating with the addition of family flags was sufficient for the purpose of our
research question.

Finally, we analysed the effect of family size and degree of consanguinity on the dynamics.
The prevalence remained constant regardless of the degree of consanguinity, but the muta-
tion load increased with family size. By increasing the family sizes, we obtained a gradual
transition from a consanguineously mating population to a randomly mating population (see
Figure 2.2). The same effect was observed in the statistics of mutation burden and preval-
ence. However, the effect of family size or, in a broader context, population size on mutation
burden is not yet well understood. As well as the influence of the number of recessive genes
and gene architecture on mutation burden and prevalence. We have analysed the latter in
Chapter 3.

1.7.2 The role of recessive genes in genome stability and population collapse

In chapter 3 we analysed recessive lethal diseases from the perspective of different parameter
regimes. We found that natural populations face a barrier when we increase the mutation
rate and/or the number of recessive genes. We compared this with the drift barrier hypothesis
(see section 1.6.3) and further investigated the effect of Muller’s ratchet (see section 1.6.2) on
complete recessive lethals. We found that the extinction of mutation-free gametes destabilises
the population, and that stability is only restored by the formation of clusters of highly
correlated genes. Chapter 3 is available as a preprint as joint work with Konrad Gerischer,
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Anton Bovier and Peter M. Krawitz [136],

L. A. La Rocca, K. Gerischer, A. Bovier, and P. M. Krawitz. Refining the drift bar-
rier hypothesis: a role of recessive gene count and an inhomogeneous Muller‘s ratchet.
https://arxiv.org/abs/2406.09094, 2024

Chapter 3 contains the preprint, with only minor changes to correct some typing errors and
adapt the layout to the format of this thesis.

To produce the results of this research, we ran numerous independent simulations with
different genome-wide mutation rates µ and different numbers of recessive genes N with a
fully recombining genome (r = 1) or in the absence of recombination with only segregation
(r = 0). We found that the haploid load classes ck(t), that is, the fraction of gametes in
the population with exactly k lethal equivalents (defined in (3.3)), play a crucial role in the
stability of the population. Without recombination, the mutation-free gametes c0(t) can go
extinct, leading to mutation fixation, which in our setup leads to extinction of the entire
population (see Figure 1.7).
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Figure 1.7: Population extinction in absence of recombination. In the absence of the fixation
of the total birth rate in the adaptive dynamics model and in the absence of recom-
bination, the extinction of the mutation-free gamete results in the rapid extinction of
the entire population. The plot illustrates the mutation burden (red) and prevalence
(orange) for N = 90 recessive genes and a genome-wide mutation rate of µ = 0.15.
Time is measured in 1000 generations.

The probability of extinction of the least loaded class, leading to a destabilisation of the
population, depends strongly on three parameters. The mutation rate µ, the population
size K and the number of recessive genes N . The drift-barrier hypothesis already finds a
correlation between mutation rate and population size through a balance between natural
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selection and genetic drift [149]. We were able to show that the number of recessive genes also
influences the variation in the population, and therefore adds to the drift-barrier hypothesis
as a trait that influences genetic drift (see Figure 3.4). Moreover, recombination effectively
reduces this variance, allowing the organism to tolerate a higher number of recessive genes.

Switching to the stable population size model (for more details see section 1.6.4), we observed
an inhomogeneous click rate for Muller’s ratchet. After the initial extinction of the least
loaded class c0, which can take several thousand generations depending on the parameter
combination, the next least loaded classes become extinct in a few hundred generations. Only
after a significant mutational load has accumulated the click rate slows down and extinctions
become less frequent (see Figure 3.2). In the classical Muller’s ratchet, the quasi-stationary
distribution of the haploid load classes retains its shape following each click, exhibiting
only a rightward shift [96, 64]. However, our observations indicate not only a shift but
also a complete change in shape, resulting in a distribution that resembles a juxtaposition
of multiple independent distributions. Nevertheless, the shape and characteristics of the
distribution are not maintained (see Figure 1.8).
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Figure 1.8: Haploid load class distribution before and after the transition. The initial
equilibrium haploid load class distribution (blue) is compared with the load class dis-
tribution after the transition (orange). The simulation was conducted with N = 500
recessive genes and a genome-wide mutation rate of µ = 0.03. Both distributions repres-
ent the average of approximately 20 000 generations, during which the mutation burden
and prevalence remained constant.

Looking at the correlation between genes in the population (defined in 3.4), we see that the
stabilisation of the population at a new level of prevalence and mutation burden is associated
with the formation of highly correlated clusters of genes. Before the transition, all genes are
uncorrelated. After the transition, we observe that there are clusters of genes that behave
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almost identically, while the correlation between the clusters remains zero (see Figure 3.4
B). We hypothesize that after the extinction of the mutation-free load class c0 due to lack
of recombination, a lethal equivalent would fix with in the haploid load class c1 with one
mutation as described by Brian Charlesworth [45]. However, if the majority of the population
has a mutation in the exact same recessive gene, this will have lethal consequences, as we
have seen in our natural population model. The population will therefore destabilise, leading
to a series of load class extinctions. This eventually slows down when two or more mutually
exclusive haplotypes emerge. In this case, gametes belonging to one haploid cluster cannot
successfully mate, but the probability of having a healthy offspring with a mate from another
cluster is increased compared to the case where mutations are evenly distributed across the
genome due to the extreme alleviated mutation burden.
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Figure 1.9: Dependence of prevalence and mutation load on cluster sizes. The bottom plot
depicts the time trajectory of the top plot, thereby illustrating the correlation between
the prevalence and mutation burden and the total number of genes associated with one
of the clusters and the total number of distinct clusters. It can be observed that the
prevalence level is correlated with the total number of clusters, whereas the mutation
burden is contingent upon the number of bound genes.

Following the initial click, the dynamics are dependent on the size and number of these
clusters. While not all genes are bound to one cluster and remain uncorrelated, the mutation
burden increases gradually with the incorporation of a new gene into a cluster. However, the
prevalence remains constant during this process. Conversely, when the number of clusters
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changes, the prevalence also changes. If a cluster is outweighed by the others, it collapses,
leading to an increase in prevalence. The genes that were previously bound to the cluster
become free and are then associated with other clusters (see Figure 1.9).

Our findings indicate that the equilibrium allele frequency of the diseased allele is

ϕ =
√

1− e−µ/N ,

as determined by considerations coming from a single gene N = 1 (see section 3.6.1 and
[167]). Following the transition, all the uncorrelated genes maintain this average allele fre-
quency, whereas the genes in the cluster exhibit a significantly increased allele frequency. As
genes within a cluster exhibit near-identical behaviour, the allele frequency is also consistent
across all genes in a cluster. The equilibrium frequency appears to be influenced by the size
of the cluster. A larger cluster size tends to have a lower average allele frequency for the
mutated allele. It can be reasonably assumed that additional factors must be considered
in order to accurately determine the allele frequency, beyond the mere cluster size. This
is evidenced by the existence of clusters with an identical number of recessive genes that
exhibit disparate allele frequencies (see Figure 1.10).
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Figure 1.10: Allele frequencies after the transition. The average allele frequencies per gene
have been calculated following the transition to higher prevalence levels and the emer-
gence of a cluster. The gene positions have been reordered in a manner that facilitates
comparison between clusters, with genes that belong to the same cluster being placed
adjacent to one another and clusters with a smaller gene count beginning on the left.
The colours have been used to indicate the size of the cluster, while the vertical lines
separate the genes from different clusters. The average has been calculated over the
last 20,000 generations, and the full simulation is presented in Figure 3.2.
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1.7.2.1 Gamete model

The analysis of the diploid model focused on the number of gametes with a certain number
of mutations. We looked at the population as a collection of gametes rather than individuals,
and the union of gametes to form individuals became relevant only to determine the fitness
of the two gametes as a combination of recessive genes. We therefore developed a haploid
model, which simplifies the analysis but produces similar dynamics. By focusing only on
"fit" gametes and excluding the creation of gametes pairs that would result in a diseased
individual, we solve the paradox of simulating recessive diseases in a haploid population.

The trait of an ”individual“ in this population is a gamete and characterised by a finite
sequence in X = {0, 1}N . Define Λi = {x ∈ X : xi = 0} and for x ∈ X define Ix :=
{i ∈ {1, . . . , N} : xi = 1}. Every trait x ∈ X has a list of potential partners that (without
mutation) would lead to a healthy individual. These are given as

Λx :=
⋂
i∈Ix

Λi

Let ξt be the state of the population at time t given by the finite point measure

ξt =
Mt∑
i=1

δxi

whereMt is the population size at time t and x1, . . . , xMt are the gametes alive at time t in an
arbitrary order. LetM(X ) be the set of all finite point measures on X . Assume for simplicity
that only one mutation happens per birth event. The measure valued Markov process is
characterized by the following generator. For any φ : M(X )→ R bounded, measurable(

L′φ
)
(ξ) =

∫
X

b
ξ(Λx)
〈ξ, 1〉 e

−µ (φ (ξ + δx))− φ(ξ)
)
ξ(dx)

+
∫
X

b
(
1− e−µ

) ∫
X

1Λx
〈ξ, 1〉

N∑
i=1

1i/∈Ix∪Iy
N

(
φ
(
ξ + δx+ei

)
)− φ(ξ)

)
ξ(dy)ξ(dx)

+
∫
X

(
d+ c〈ξ, 1〉

) (
φ (ξ − δx))− φ(ξ)

)
ξ(dx)

where ei ∈ {0, 1}N denotes the i-th base vector, that is zero everywhere, besides at the
i-th position, where it takes the value one. The first term is clonal reproduction without
mutation by choosing a compatible partner. The second term is birth with mutation by first
choosing the right partner and then a mutation location that does not lead to a homogeneous
mutation. The third term is death due to natural causes or due to competition. Again, we
assumed that birth, death and competition rates were the same for all traits, to ensure that
carriers did not feel the burden of the mutation and to get as close to the diploid model
as possible. As for the diploid model the trait space X = {0, 1}N is high-dimensional, but
finite. Therefore, as in the case of the diploid model, we obtain a finite total event rate and
hence the existence and uniqueness of the process defined by the generator above (see 1.3.1).
Simulation of this model demonstrates that the mutation load classes play a significant role
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in this context as well. As observed in the diploid model, the extinction of mutation-free
gametes results in a population destabilisation, manifested by an increase in prevalence and
mutation burden. The cascade of extinction of load classes only decelerates when highly
correlated clusters emerge. Consequently, we observe the same inhomogeneous click rate
and stabilisation mechanism that we see in the diploid model. Despite the possibility of
reducing the dimensionality of the trait space in the haploid model, classical mathematical
analysis remains a significant challenge. In particular, determining an exact solution to the
system of ODEs that arise as a rescaled, large population limit is not feasible. Nevertheless,
by reducing the level of complexity, it is anticipated that subsequent analysis and research
will become more straightforward using the gamete model over the diploid model. Never-
theless, it becomes evident that a certain degree of complexity is necessary to observe the
phenomena that emerge from our models. A further reduction in the dimensionality of the
trait space results in the loss of inhomogeneity in the click rate of the Muller ratchet, as will
be demonstrated in the following section.
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Figure 1.11: Classical Muller’s ratchet in position-free model. The above plot illustrates the
mutation burden and fitness over time, which is defined as one minus the prevalence.
The dotted vertical lines and dagger at the top indicate the extinction times of the
least loaded classes. It can be observed that the effect of Muller’s ratchet is gradual.
The bottom plot depicts the average of the haploid load class distribution between
consecutive extinctions. The shape of the distribution appears to be maintained, while
it shifts to the right.

1.7.2.2 Position-Free model

In this section, we present a version of the diploid model that neglects to consider the specific
position of the mutation, instead focusing only on the total number of mutations per gamete.
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We have seen that both an adaptive dynamics model with a stable total birth rate and a
Wright-Fisher model produce comparable results. Therefore, we turn here to a Wright-Fisher
dynamic.

Consider a diploid Wright-Fisher model. Suppose there are N known lethal recessive genetic
diseases. Each individual can carry a certain number of these genetic diseases on each of its
two sets of chromosomes. However, for the purposes of this model, we do not keep informa-
tion about which specific diseases an individual is a carrier for. We only record the number
of diseases per set of chromosomes and whether (at least) one of the diseases is manifested,
i.e. present in a homozygous state. In such cases, the individual is excluded from the mating
process and is considered unfit. During mating, a healthy individual chooses a mate from
among all healthy individuals. During gamete formation, one of the two sets of chromosomes
is passed on at random, and mutations occur at a constant rate. We assume that each gene
degenerates with equal probability and that the the number of new mutations for a gamete
carrying k lethal equivalents, during gamete formation follows a Poisson distribution with
parameter µ(1 − k/N), where µ is the total gamete mutation rate as before. Thus, we as-
sume that if a gene that already carries a mutation is hit by another mutation, the number of
mutations for that individual will not increase. If the offspring is formed from two gametes,
one carrying n diseases and the other m, we calculate the probability p(n,m) that none of
the n and m mutations will carry the same disease and would result in a homogeneous state
in a diploid individual. This probability is given by

p(n,m) =
( N
n+m

)(n+m
m

)(N
n

)(N
m

) =
(N−n
m

)(N
m

) = (N − n)!(N −m)!
N !(N − n−m)! (1.4)

This is precisely the probability that, when selecting n positions from theN possible positions
and then independently selecting m positions from the N possible positions, no position is
chosen more than once.

The type of an individual is given as triplet x = (x1, x2, x3) ∈ {0, 1, . . . , N}2 × {0, 1} where
the first two entries are the number of mutations on each of the gametes and the third
entry is the fitness of an individual. In this context, zero means that the individual is
unfit, indicating the presence of at least one homozygous recessive genetic disease, while
one means that the individual is fit. The next generation is formed as follows: Let K be
the constant population size. Each individual from generation t + 1 independently selects
two parents from generation t with fitness one. From each parent, it selects one gamete,
adds a Poisson-distributed number of mutations, and finally, a Bernoulli-distributed random
variable with parameter p(n,m) determines whether the descendant is fit or unfit. Here, n
andm represent the number of mutations per gamete after the addition of de novo mutations.
More precisely the outcome of the mating of the two fit individuals x,y with x3 = 1 = y3 is
given as follows. Let Ux, Uy ∼ Ber(1/2) be two independent random variables and let Px, Py
be two independent Poisson random variables with parameters

µ

(
1− xUx+1

N

)
respectively µ

(
1−

yUy+1

N

)
and finally let Z be a Bernoulli random variable with success probability

p(xUx+1 + Px, yUy+1 + Py).
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Then the offspring is given by the triplet (xUx+1 +Px, yUy+1 +Py, Z) as seen in the following
scheme

(x1, x2, x3) if x3=1−−−−→
(
xUx+1 + Px, yUy+1 + Py, Z

) if y3=1←−−−− (y1, y2, y3)
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Figure 1.12: Mean haploid mutation burden. A comparison of the mean haploid mutation
burden for the three models, with full recombination, without recombination and the
position-free model, is presented as a function of the recessive gene count. While the
position-free model and the model without recombination exhibit a similar trend, with
both remaining close to §N

√
1− e−µ/N , the full recombination model displays a lower

value.

Reduction to haploid model The same dynamics can be achieved once more through the
utilisation of a haploid Wright-Fisher model, as was previously employed. In this instance,
the focus is on haploid gametes, as opposed to diploid individuals. Once more, the pivotal
point is to define an appropriate fitness function, given that a haploid gamete cannot mani-
fest a recessive genetic disease initially. Consequently, the relative fitness of the gametes
within the population is considered, with the aim of determining the likelihood of a gamete
generating a fit diploid individual within the population. This probability determines the
selection of the ancestor for the subsequent generation.

Let Xk(t) be the number of gametes in generation t who carry k mutations and X(t) =
(X0(t), X1(t), . . . , XN (t)). Then the distribution of X(t + 1) conditioned on X(t) will be
multinomial with parameters K and (pk(t))k=0,1,...,N where

pk(t) = Mk(X(t))
T (t)

N∑
j=0

Mj(X(t))p(j, k)
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where M : {0, 1, . . . , N} → {0, 1, . . . , N} shifts the current population by de novo muta-
tions

Mk(X) =
k∑
j=0

Xk−je
−µ
(
1− k−j

N

)µj (1− k−j
N

)j
j!

and T (t) is the total fitness of the population at time t after adding mutations

T (t) =
N∑

i,j=0
Mi(X(t))Mj(X(t))p(i, j).

Here p(i, j) is again the probability form (1.4) that to gametes with i and j uniformly
distributed mutations across N recessive genes express a disease.

Although this model still presents a challenge in terms of identifying stationary distributions,
it offers a more promising avenue for analysis when compared to the models previously dis-
cussed. However, the inability to trace the positions of the mutations prevents the occurrence
of fixation, leading us to revert to the classical homogeneous effect of Muller’s ratchet: The
least loaded class may also become extinct as a result of the lack of recombination. However,
the effect is minor. Both the mutation burden and the prevalence increase gradually, and
the haploid load class distribution shifts to the right while maintaining its shape (see Figure
1.11). These effects are analogous to those described by John Haigh for a population in
which the fitness depends exponentially on the number of mutations [96].

It is therefore evident that monitoring the locations of mutations within the genome is of
paramount importance. This introduces a further layer of complexity to the model, thereby
rendering the application of conventional techniques difficult. The analysis of the click rate
of Muller’s ratchet, for instance, is typically conducted through the use of diffusion approx-
imations (for further details, refer to Section 1.6.2 and [64, 89, 179, 152]). Consequently, it
is necessary to be able to calculate the drift and diffusion terms, which depend on the fitness
of an individual. In this case, however, the fitness of an individual is not solely dependent
on the number of mutations, as in the classical model formulated by Haigh [96]. Rather,
it also dependents on the state of the entire population. This renders the calculation of
these terms and the application of the techniques more challenging. Therefore, we adopted
a simulation-based and comparative approach, whereby we compared multiple modifications
of the model to gain a deeper comprehension of the dynamics of Muller’s ratchet in this
context. We found that without this additional layer of complexity, it is not be possible to
observe nor the intriguing phenomena of "crystallisation" as described by Brian Charlesworth
[45] as the emergence of mutually exclusive haplotypes, nor an inhomogeneous click rate and
a stationary distribution of Muller’s ratchet, which undergo a change in shape following the
initial transition. The behaviour of the system following the initial extinction represents a
significant challenge, as does the analysis of the stationary distributions in the initial equi-
librium, where the mutation-free load class persists. This will be explored in greater detail
in the following subsection.
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Figure 1.13: Haploid load class distribution for r = 0. Each frame illustrates the average
haploid load class distribution (ck)k∈N in the initial equilibrium state prior to the first
click of the ratchet. The number of recessive genes increases from the top left frame,
where N = 10, to the bottom right frame, where N = 1000.

1.7.2.3 Initial quasi-stationary distribution

The identification of quasi-stationary distributions subsequent to the initial click of the
ratchet seems out of reach. Similarly, characterizing the initial quasi-stationary distribution
presents a significant challenge with numerous unanswered questions. Exact solutions of the
deterministic system in the large population limit are only available for a small recessive gene
count N (see for example 3.6.1 for N = 1). Subsequently, the number of potential traits and,
consequently, the dimensionality of the system of ODEs increases exponentially. In a diploid
system, there are 4N potential configurations, whereas in a haploid system, there are 2N .
Since we are interested in genome sizes of several hundred genes, we are limited to numerical
analysis paired with heuristics based on the exact results from small genome sizes.

As previously stated, the allele frequency of the mutated allele for N = 1 is ϕ =
√

1− e−µ,.
The genome-wide mutation rate µ for N > 1 is then dispersed across the N genes. Con-
sequently, we hypothesise that the allele frequency per gene for a genome consisting of N
genes would reduce to

ϕN =
√

1− e−
µ
N .

It can be immediately deduced that the equilibrium mutation burden is

BN = 2NϕN = 2N
√

1− e−
µ
N .
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Figure 1.14: Comparison of initial quasi-stationary distributions. This overview collects
presented information about the haploid load class distribution, its mean, and variance
for the three models under consideration: full recombination, no recombination, and
the position-free model.

Indeed, the results of our simulation indicate that this is actually the average allele frequency
and the mutation burden for N > 1. However, only in the absence of recombination (r = 0).
In contrast, for a fully recombining genome r = 1, the allele frequency is significantly lower,
and the distance increases with N . Furthermore, ϕN is also the allele frequency that is
obtained for the position-free model (see Figure 1.12).

When examining the variance of the haploid mutation burden σ2 (defined in (3.2)) rather
than the average, we observe that the variance for r = 0 increases linearly with the recessive
gene count and exceeds the expectation. Conversely, the variance is equal to the mean for the
fully recombining genome, supporting the hypothesis that the haploid load class distribution
(ck)k∈N for r = 1 follows a Poisson distribution. This finding is consistent with the position-
free model, where the haploid load class distribution is also a Poisson distribution. The
average, however, for r = 1 is lower than that of the position-free model, as previously
stated. Nevertheless, a closed form for the haploid load class distribution for r = 0 could
not be found. In this case, the distribution is neither Binomial, Normal nor Poisson. It
can be observed that as N increases, the right tail becomes heavier, indicating that the
fractions of gametes with a high number of mutated genes rises. In particular, when N
increases, the distribution deviates from a binomial distribution (see Figure 1.13). The table
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(1.14) provides a comprehensive overview of the similarities and differences between the three
versions of the model for recessive diseases, including those with and without recombination,
as well as the model that do not remember the position of mutations.

The intriguing phenomenon observed in the absence of recombination, as well as the com-
parison between a fully recombining genome and one that experiences no recombination
and only segregation, raises a number of open questions as seen above. A more detailed
examination of the click rate and extinction probability would facilitate a more profound
understanding of the heterogeneous nature of the rate. It would be valuable to dedicate
future research to analysing the case of small recombination rates above zero. In this scen-
ario, two competing rare events occur depending on the mutation and recombination rate.
The first is the extinction of the least loaded class due to the accumulation of mutations.
The second is the rebirth of the mutation-free class due to recombination of mutation-free
gene segments. It would be interesting to observe the dynamics between these two events
and whether the rebirth of the mutation-free gamete can stabilise the population before it
crystallises into highly correlated clusters.

1.7.3 Simulation framework for dense problems

In Chapter 4, we present a simulation framework that implements a version of Gillespie’s
algorithm to address the high-dimensional challenges of the models discussed previously. A
manual is provided to facilitate the use and adaptation of the core algorithm to a broad
range of complex and dense problems. The simulation framework is publicly available as a
Julia package,

L.A. La Rocca. DenseGillespieAlgorithm.jl, 2024
https://github.com/roccminton/DenseGillespieAlgorithm.jl

Chapter 4 contains the content of the manual, with only minor changes to adapt the layout
to the format of this thesis.

Without delving too deeply into the technical specifics, we aim to delineate the principal
challenges associated with the implementation of the framework and highlight potential
bottlenecks for optimising both computational time and memory usage.

The simulation is governed by two principal functions: the rate function and the affect func-
tion. In the context of evolutionary biology, both functions can be understood as comprising
two events: birth and death. The rate function calculates the total rate of a birth or death
event, while the affect function then executes the event, following the draw of event time from
random variables. The rates are calculated after each occurrence of an event, and the affect
function is executed for each event. Therefore, during the course of a single simulation, both
functions are called many times. It is therefore important to make them as efficient as pos-
sible; even minor improvements can significantly impact the total runtime of the algorithm.
We encourage every developer to carefully evaluate the performance of these two functions
and to carefully consider all performance tips given in the Julia documentation [19]. This
entails considering or recalculating the rates from scratch after each event or updating them
in accordance with modifications made by the affected function. It is unclear which method
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is more efficient, recalculation or updating. Depending on the model, one may outperform
the other. Consequently, it is essential to experiment with different functions and benchmark
carefully to achieve optimal performance.

In particular, when the traits of individuals become more complex, the utilisation of memory
becomes a crucial factor. In some cases, the high complexity of individual traits is necessary
for calculating rates and determining the dynamics of the population. However, there is no
interest in the exact configuration of every individual over time. In such cases, summary
statistics (such as mutation burden and prevalence, as discussed in Section 1.3) provide more
insight. It is therefore recommended that these summary statistics be calculated during
the runtime of the algorithm, rather than saving the entire population history. It is thus
possible to introduce not only custom rates and affect functions (which are mandatory), but
also, if desired, custom statistics functions that calculate the required information from the
population and save it as a time series for subsequent analysis. It should be noted, however,
that in such a case the detailed population history is lost, necessitating the conduct of new
simulations should different statistics be required.

In the case of highly complex individual traits, it is also necessary to consider the reuse of
memory during the runtime of the simulation. In particular, when the total population size
is expected to remain relatively constant, it is more efficient to initialise and store the traits
for all individuals in an array and then simply save the indices of individuals that are part of
the current population. Then free individual traits can be used and modified as required to
match the characteristics of new offspring. This approach also allows for the implementation
of high-dimensional models without exceeding the CPU capacity.

One of the key strengths of Julia is its inherent parallel computing capabilities. However,
this is not a viable option when performing time series evolution simulations, as the recal-
culation of rates for subsequent events is contingent upon the occurrence of an initial event.
Nevertheless, there are two potential applications of parallel computing in this context that
warrant consideration. The first, and arguably less probable, scenario is that the process of
updating and recalculating the rates is so computationally intensive that it would be more
efficient to divide it into different threads. The second, and arguably more probable, scen-
ario is that it is desired to run multiple simulations. Or, one may wish to compare different
runs of the same parameter setting in order to ascertain the impact of randomness and to
gain insight into the underlying distribution. Or, the effect of different parameter settings
can be evaluated. In both instances, it is advised to utilise distinct kernels and leverage the
computational efficiency of Julia in a parallel computing environment.
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2 Understanding recessive disease risk in
multi-ethnic populations with different
degrees of consanguinity

This chapter was published in the American Journal of Medical Genetics as joint work with
Julia Frank, Heidi Beate Bentzen, Jean Tori Pantel, Konrad Gerischer, Anton Bovier and
Peter M. Krawitz [135],

L. A. La Rocca, J. Frank, H. B. Bentzen, J. T. Pantel, K. Gerischer, A. Bovier, and P. M.
Krawitz. Understanding recessive disease risk in multi-ethnic populations with different
degrees of consanguinity. American Journal of Medical Genetics, 194(3):e63452, 2024
https://doi.org/10.1002/ajmg.a.63452

Population medical genetics aims at translating clinically relevant findings from recent stud-
ies of large cohorts into healthcare for individuals. Genetic counseling concerning reproduct-
ive risks and options is still mainly based on family history, and consanguinity is viewed
to increase the risk for recessive diseases regardless of the demographics. However, in an
increasingly multi-ethnic society with diverse approaches to partner selection, healthcare
professionals should also sharpen their intuition for the influence of different mating schemes
in non-equilibrium dynamics. We, therefore, revisited the so-called out-of Africa model and
studied in forward simulations with discrete and not overlapping generations the effect of
inbreeding on the average number of recessive lethals in the genome. We were able to repro-
duce in both frameworks the drop in the incidence of recessive disorders, which is a transient
phenomenon during and after the growth phase of a population, and therefore showed their
equivalence. With the simulation frameworks, we also provide the means to study and visu-
alize the effect of different kin sizes and mating schemes on these parameters for educational
purposes.

2.1 Introduction

Medical population genetics is dedicated to elucidating the role of genomic variation in
susceptibility to diseases and requires expertise in medical genetics, population genetics,
epidemiological genetics, and community genetics. This knowledge is usually distributed over
many teams and labs and rarely integrated within a single institute, let alone a single person
[86]. For the following work, therefore, we imagine a reader who is likely to excel in one of
these areas but is only familiar with the foundations of others. We hope that the simulation
frameworks we present will be so easy to use that many will end up using them to perform
further analysis. In the following, we will motivate the choice of our parameter settings that
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are based on findings that became available due to recent genome-wide sequencing studies.
Sequencing of large cohorts confirmed estimates the number of recessive, lethal equivalents
per genome which were previously based on epidemiological data of disease prevalences
and stillbirths: On average, healthy individuals carry 0.5 to 2 heterozygous variants that
would prevent reproduction if they occurred in a homozygous state [165, 22, 37, 76]. With
respect to population genetics, it is irrelevant whether such variants cause a severe, lethal
condition in the affected individual before reproductive age or simply result in complete
sterility and are therefore also referred to as lethal equivalents. In simulations that aim
at reproducing empirical findings, individuals who are homozygous for a lethal equivalent
have a fitness of s = −1 and are removed from the gene pool. In contrast, heterozygous
carriers of lethal equivalents have the same fitness as wildtypes, s = 0, and with respect to
simulations, modeling the mating pattern is crucial for the dynamics in population genetics.
However, the question of how the ancestral background and the degree of consanguinity
affect the recessive lethal load per person is still vividly discussed because empirical data
and predictions by theoretical population genetics are partially contradictory [13]: in the
case of mutation-selection balance, the prevalence of recessive disorders should be the same
regardless of ethnicity and mating scheme. However, in the Deciphering Developmental
Disorders (DDD) cohort, the proportion of cases due to recessive coding variants was 3.6%
in patients of European ancestry, compared to 31% in patients with Pakistani ancestry
[153]. Even within the same population, e.g. in Iran, the probability for a recessive cause
of intellectual disability is four times higher for offspring from first-cousin unions than for
offspring of non-consanguineous partnerships [111, 106, 163]. To explain this discrepancy
between the load of recessive lethal variants and the recessive disease burden, some authors
recently argued that the unexpectedly high frequency of lethal equivalents might also be
explained by an ascertainment bias, that is, some of the pathogenic mutations reached high
frequency by chance and are therefore overreported [7]. However, since the assumption
of mutation-selection balance is not justified, other authors studied the effect of different
demographic dynamics including explosive population growth on mutation burden [103].
Expanding populations incur a mutation burden, also referred to as expansion load, which
is a transient phenomenon but can persist for many generations depending on the mating
scheme and the coefficients of selection and dominance [92, 178, 12].

In this work, we explore the influence of different mating schemes in nonequilibrium dynamics
by means of two different simulation frameworks with distinct and overlapping generations.
Each model had the advantage of handling certain aspects of population genetics particularly
well. The first is an adaption of the classical Wright-Fischer model with discrete non-
overlapping generations run in the forward genetic simulation framework SLiM [99, 68]. In
the second model, generations can overlap because diploid individuals die and give birth at
independent exponential times on a continuous timescale [7]. For random mating populations
with two sexes, the equivalence of the effective population size was already delineated for
overlapping generations [62]. In the following, we show that simulations of the discrete,
as well as the overlapping model yield comparable results for an out-of-Africa scenario,
suggesting that the existing modeling approaches can be used to fit empirical data that
result from nonequilibrium dynamics [29].
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2.2 Methods

Throughout this framework, the mutation burden is defined as the average number of lethal
equivalents per individual. The lethal alleles in the genome are deleterious alleles that are
disease-causing if both copies of a gene in an individual harbor at least one such variant.
The totality of these pathogenic variants could also be regarded as the theoretical superset
of an extended carrier screen [8]. By this means, we are able to focus on the incidence
rate of severe recessive disorders with early onset that prevent reproduction almost with
certainty. Likewise, we can study how the selection of a partner, which we refer to as a
mating scheme, influences the disease prevalence and mutation burden and we are able to
monitor these parameters in the population over time. This is done by counting the number
of lethal equivalents that enter the gene pool due to a constant de novo mutation rate, or
leave the gene pool due to selection. If the disease prevalence does not change any more, the
population is in a steady state, that is a flux balance for lethal equivalents.

In population genetics, the lifespan of individuals that do not reproduce does not matter. In
our simulations we therefore used the same age distribution for every individual, regardless of
the number of lethal equivalents or the affection status. With the same life span in affected
and unaffected individuals, disease prevalence and incidence are also equivalent and their
rate is proportional to the amount of lethal equivalents removed from the gene pool per
generation or time unit. In fact, the expected number of lethal equivalents that is lost by
an affected individual that is not propagating is two. This is equivalent to the difference
in the average mutation burden between affected and unaffected individuals and can also
be derived from the simulations. An expansion of the population will affect prevalence and
mutation burden as we will discuss in more detail in the following.

Consider a finite population of individuals where each individual is characterized by a dip-
loid set of N gene segments of different sizes. Pathogenic variants appear at every gene
independently with a rate that is proportional to its size. As long as an individual carries a
pathogenic variant at only one gene, its fitness is unaffected. But as soon as both copies of a
gene carry a pathogenic variant, the individual’s reproductive fitness is reduced to zero. In
this case, the individual will be excluded from the mating process and is not able to reproduce
any more. Other than that, all individuals are equally fit, no matter how many recessive
disorders they carry. Simulations always start with a small, healthy population. After a
period of time in which a mutation selection balance is established, a logistic growth phase
starts, that settles after a new population equilibrium is reached. We investigate changes
of the dynamics of the mutation burden and the prevalence when the population applies
different mating schemes. On one hand, random mating occurs, where individuals select
their partner from all potential partners with non-zero fitness uniformly. On the other hand,
a consanguineous mating scheme is employed, in which individuals exhibit a preference for
mating with close relatives.

2.2.1 Discrete model

In the default setting, the simulation package from Haller and Messer [99] samples a diploid
population evolution according to the standard Wright-Fisher model. Sexes were added such
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that each sex is equally represented in the population at any time. In generation n ≥ 1 there
is a finite number of individuals Mn ≥ 0 with a total of 2Mn genomes alive. In the initial
phase the population size is held constant with Mn = M0 for all generations n ≤ ngrow in
order to establish a mutation selection balance (“burn-in”). Afterwards, the growth phase
begins and the population size of each generation grows logistically with growth rate r > 0
until it approaches the carrying capacityK. Therefore, the population size of each generation
is determined by the following formula

Mn =
⌈

K

1 + C0e−rK(n−ngrow)

⌉
for all n ≥ ngrow,

where C0 = K−M0
M0

.

The two mating schemes - random and consanguineous mating - are introduced as following.
To generate generation (n+1), first selectMn+1 females from generation n independently at
random with replacement among all females with non-zero fitness. For the random mating
scheme, each female then selects a male uniformly at random from the pool of potential part-
ners who possess positive fitness. To implement the consanguineous mating scheme, utilize
the pedigree information provided by SLiM for the last two generations, tracing backwards
in time. For each individual, their parents and grandparents are known. In the consanguin-
eous population, a female now selects a mate using a weighted uniform distribution from
the set of all potential partners. This choice is influenced by weights α, and β ∈ [0, 1] with
α+ β ≤ 1. The individual then chooses a male partner with non-zero fitness with

two common grandparents with probability α
one common grandparent with probability β
no common grandparents with probability 1− (α+ β)

Notice that having two grandparents is akin to a cousin relationship, while sharing one
grandparent relates to a half-cousins relationship, as depicted in Figure 2.4A.

To start the simulation select N gene segments from the entire human genome. Each with
an independently and uniformly distributed number of base pairs w1, . . . , wN ∼ U[a,b], where
a, b > 0, representing the minimum and maximum segment size, respectively. Furthermore,
the entire genome is divided into nc chromosomes. During birth, changes in the offspring’s
genetic information occur not only through mutation but also via recombination. For each
chromosome, initiate an independent Poisson Process with rate rrec > 0, which identifies
the recombination breakpoints. Here rrec represents the overall recombination rate. The
discrete model was implemented in SLiM version 3.2.1.

2.2.2 Adaptive dynamics

We employ a diploid version of the adaptive dynamic models introduced by Fournier and
Collet [72, 49]. A distinct characteristic of these models lies, firstly, in their foundation on
a Poisson process. This entails that individuals produce offspring and undergo mortality at
independent rates. Secondly, a noteworthy feature is the ongoing feedback between demo-
graphics and ecology due to the competition among individuals. This competitive pressure
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for finite resources among individuals enables the modelling of a naturally fluctuating popu-
lation with limited capacity. In the following, we outline the key features of the model. For
a comprehensive mathematical description, please refer to the Appendix. We initiate the
simulations within a small, entirely healthy population. This population not only settles into
a mutation-selection equilibrium but also experiences fluctuations around a natural popu-
lation size. This size is contingent upon birth and death rates, as well as the interplay of
competition among individuals and the mutation rate. Following the initial burn-in phase,
we decrease competition, thereby providing the population with more resources. This alter-
ation triggers logistic population growth until the growth rate tapers off upon reaching the
new population equilibrium. To simulate consanguineous mating, we equip each individual
additionally to the genetic information with two family flags, aimed at indicating the ori-
gin of the individual. During each birth, the newly born individual inherits one randomly
chosen family flag from each parent. If both parents possess the same family information,
the offspring inherits an identical copy of this information. This modelling approach presents
several challenges. Firstly, we must ensure that family groups do not become too large and
should periodically disintegrate once the maximum family size of κ is reached. Secondly,
this identification mechanism only partially mirrors actual families. For instance, in this
model, it’s possible that grandparents and their grandchildren do not belong to the same
family. In the random mating scheme, individuals select partners randomly from the pool
of fit individuals. On the other hand, in the consanguineous mating scheme, partner selec-
tion depends on family affiliation. We model the reproductive compatibility between two
individuals such that, in an equilibrium population, the probability of selecting a partner
with the same family flags is α as long as the family size fluctuates around κ/2. Conversely,
the probability of selecting a partner who shares only one of the family flag with oneself
is β. Finally, a partner outside the family is chosen with a probability of 1 − α − β. This
holds assuming the population is in equilibrium and the relevant family has a size of κ/2.
During each birth, a Poisson-distributed number of pathogenic variants is randomly distrib-
uted across the 2N gene segments. The pathogenic variants are allocated to the N genes
using a weighted uniform distribution, where the weights correspond to the respective sizes
of the genes. Each mutation contributes to the degeneration of the gene segment. There
are no back mutations, beneficial mutations, or neutral mutations in this scenario. Instead
of recombination, we employ a form of genetic information reshuffling. During each gamete
formation, the genetic information is divided into nc chromosomes, and from these, one copy
is randomly selected. We have implemented the simulations in Python version 3.8 using a
Gillespie algorithm.

2.2.3 Comparing both models

Both models, the discrete generation model implemented with SLiM and the adaptive dy-
namics model using the Gillespie algorithm, excel in different aspects of capturing nature.
A prominent advantage of SLiM and the discrete model lies in the precise pedigree in-
formation generated for every individual. However, the adaptive model can only roughly
cluster individuals into family groups and cannot differentiate among members within a
single family, as depicted in Figure 2.4B. Nonetheless, a significant drawback of the discrete
model is its non-overlapping generations. This limitation precludes the possibility of matings
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between individuals on different pedigree levels, such as uncle-niece marriages. This con-
straint is overcome by the continuous-time model. As individuals independently give birth
and die, different generations coexist due to varying ages. The discrete model, similar to the
Wright-Fisher model, operates with constant or deterministically increasing population sizes.
Conversely, the continuous model accommodates a fluctuating and naturally growing popu-
lation, as depicted in Figure 2.5. It is worth noting that for large populations, the random
fluctuations in population size are of order 1

K , and the stochastic process converges in law
to the solution of a deterministic logistic equation [72]. Recombination is also approached
differently in the two models. SLiM operates with genuine interchromosomal recombination,
while the adaptive model simply reshuffles parental chromosomes during gamete production.
This distinction arises from SLiM’s ability to record the precise base positions of mutations
on the human genome. In contrast, the adaptive dynamics model possesses information only
about the number of pathogenic variants per gene segment and lacks knowledge of their
exact locations within each segment. Given the assumption that all genes are compound
heterozygotes, the varying implementations of recombination do not impact the fitness of
individuals. However, this reduction in information brings a significant advantage in terms
of algorithm runtime.

Apart from all the differences outlined, a substantial effort has been made to ensure para-
meter equality between both simulations. This includes factors such as the number of gene
segments N , the initial and equilibrium population size M0 and K, and numerous other
parameters. Additionally, in the continuous model, family sizes are calibrated to attain an
approximate balance between the number of potential partners in the consanguineous setting
of both models. Similarly, the birth rate in the continuous-time model is established at b = 1,
ensuring that within a time interval of t ∈ [n, n + 1], corresponding to one discrete genera-
tion, there are Mt+1 birth events, where Mt denotes the population size at that particular
time. The only distinction lies in the discrete generation model having exactly Mn+1 births
in generation n, whereas the continuous-time model experiences on average that number of
births.

2.3 Results

We initiate our simulations with a population of 500 individuals, allowing for approximately
500 generations to reach a steady state, that is no significant change in the mutation burden.
A comparable size has also been suggested for the population that left the African continent
10,000 to 200,000 years ago [95, 199]. Following this out-of-Africa event, the population ex-
pands to a size of 10,000 individuals in approximately 130 generations. This corresponds to
an estimated duration of around 2,500 years and an average growth of 1-2% per generation.
The population expansion adheres to a logistic growth curve, which takes on the appearance
of a step function (as depicted by the grey curve in Figure 2.1), due to the extensive dur-
ation of our complete simulations spanning 2,000 generations. All individuals have diploid
genomes with 1,000 recessive genes that we deem crucial for reproductive success. Their
coding sequence ranges between 500 and 10,000 base pairs (bp) per gene, novel alleles are
introduced with a de novo mutation rate of 1.2×10−8 per bp, and one out of nine mutations
is expected to be a lethal equivalent [130, 129]. The choice of these parameters are motivated
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Figure 2.1: Dynamics of mutation load and prevalence for severe recessive disorders:
A population expansion from 500 to 10 000 individuals (grey), starting in generation 500
does not affect prevalence (orange) nor mutation load (red) if partners are preferentially
chosen within relatives (consanguineous mating scheme) (B). In contrast, in a random
mating population, there is a transient drop of prevalence at the expense of an increasing
mutation load (A). It takes more than 550 generations after the end of the growth
phase, until the steady state is reached and the prevalence for both mating schemes are
comparable again. The plots show the average of 50 exact trajectories of the stochastic
process simulated with the Wright-Fisher model.

by the distribution of coding lengths and the deleteriousness scores for known autosomal re-
cessive genes [119, 122]. Pairs for procreation are formed either randomly or based on their
relatedness that is traced over the two most recent generations. In a highly consanguineous
mating scheme, the number of potential partners is hardly affected by the population size,
as most marriages happen within families. In our simulations, this mating scheme is realized
as follows: 50% of all partnerships share two grandparents, 30% share one grandparent, and
only 20% share no grandparent. In this scenario, the mutation burden and prevalence do not
change during population growth (Figure 2.1 B). However, linkage disequilibrium suggests
that out-of-Africa populations have only reached effective populations sizes of around 3k,
thus this might be an overestimate [199]. In contrast, in a randomly mating population,
there is a sharp transient drop of incidence rates during expansion at the expense of an
increasing mutation burden (Figure 2.1 A). However, after the final size of the population
is reached, it takes almost another 550 generations until the mutation burden reaches its
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new plateau of approximately three pathogenic variants in 1,000 recessive disease genes. In
contrast to the mutation burden, the prevalence is independent of effective population size
and a function of mutation rate only. For constant µ, the prevalence returns to the initial
value before the expansion. Since affected individuals in our simulation have the same life
expectancy and only do not propagate, prevalence and incidence are the same and there are
roughly 70 affected individuals per generation in a population of 10,000 or 0.7%.

Figure 2.2: Influence of family size on mutation load and prevalence: The mating scheme
is characterized by the family size and a probability function that describes how many
of the partners are chosen within the family. In a preferentially consanguineous mating
population the dynamics change when the maximum family size increases (upper left
panel to lower right from 10, 25, 50, 100, 500 up to 10 000). The mutation load starts
to increase considerably if mating is happening in tribes of 500 individuals. However,
at this stage there is still only a minor effect of further population growth. In the
lower right the maximum of the allowed family size is equivalent to the population size
and thus, dynamics do not differ from a random mating scheme any more. The plots
show the average of 10 exact trajectories of the stochastic process simulated with the
individual-based model of adaptive dynamics model.

The mutation burden in the steady state increases in both mating schemes with the number
of autosomal recessive genes, but with population size only for random mating (Figure 2.3
A,B). This is best explained by a limit of the effective number of available partners that the
consanguineous mating scheme imposes, regardless of the final population size. In line with
that argument, there is a transition from the dynamics of consanguineous to random when
we incrementally increase family size, which would correspond to more potential mating
partners (Figure 2.3). Although the phase of population growth lasts only 130 generations
in our simulations, the time span to reach the new equilibrium for the mutation burden lasts
much longer. In both simulation frameworks, we were able to achieve numbers of lethal
equivalents that are in accordance with observations from the literature that are based on
epidemiological data as well as population genetic data. In a recent study, Narasimhan et al.
analyzed exomes of 3222 British adults of Pakistani heritage with a high parental relatedness
and found a significantly lower number of homozygous knockout genotypes than expected
from the summary statistics of a more outbred population. By this means, they were able
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to compute an average number of 1.6 recessive-lethal equivalents per individual [165]. In
mutation-selection balance, the number of recessive-lethal equivalents is only a function of
genome architecture and the effective population, which the mating scheme influences. In
the non-equilibrium dynamics, however, the choice of the partner has the greatest influence
on the increase of recessive lethal equivalents. Since human societies almost mirror the un-
manageable variety of mating systems in the mammalian kingdom it is noteworthy that with
the discrete and adaptive simulations, different aspects of mating can be modeled [48]. In
the adaptive framework, for example, we allowed partnerships between different generations
and for each offspring the parents were selected anew (lottery polygyny) [33]. Despite the
differences in the implementation details, both simulations yielded comparable dynamics
when the extended family size κ and the autozygosity were adjusted. Over certain historic
periods, the extended family size κ, which was the parameter used in the adaptive model,
might be easier to delineate. Whereas kinship coefficients could be estimated with exact
pedigrees and genomic data. We therefore extended the possibilities of how empirical data
can be explained by population genetic simulations.

2.4 Discussion

The empirical observation that consanguinity is associated with an increased risk of auto-
somal recessive disorders, has been made in many countries but are only based on records of
relatively few generations. Martin et al. showed that the contribution of autosomal recessive
developmental disorders is 31% in the current British population if the autozygosity is above
0.02 [153]. Likewise, in the Iranian population it is estimated that offspring from first-cousin
unions have a probability for intellectual disabilities that is four times higher than in non-
consanguineous partnerships [111, 106, 163]. Although population genetics predicts these
findings as a transient phenomenon in nonequilibrium dynamics, this literature is often not
cited in the empirical works [103, 92, 178, 12, 120, 146, 87, 190]. In our work we studied
how rapid changes in population size affect the expected number of lethal equivalents when
generations overlap, and achieved similar results as in the Wright-Fisher model. By that
means we addressed an outstanding question in nonequilibrium population genetics. We
hypothesize that epidemiological data accumulated over a few centuries, which is a short
time period with respect to recessive selection and a lack of knowledge in population genet-
ics, might frame a biased risk perception that might even influence aspects of social norms.
According to our simulations and previous work, the advantage of outbreeding is a transient
phenomenon for a population that is initially in mutation-selection balance and that starts
to grow. The lower prevalence compared to an inbred population lasts for many genera-
tions even after the expansion phase has ended, until mutation-selection balance is reached
again with a higher count of lethal equivalents. We found it intriguing that e.g. first-cousin
marriage in Europe was banned after several generations of population growth during the
Roman empire and considerable migration and admixture [103]. While this continent clearly
benefitted at that time point from a change of social conventions with respect to the recess-
ive disease burden, the consequences of different mating schemes e.g. on the proportion of
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Figure 2.3: Influence of genomic architecture and population size: The capacity of the
genome for deleterious mutations is larger in the random mating population. With an
increasing number of genes and growing population size, deleterious mutations accu-
mulate (A). In contrast, in the consanguineous mating scheme, family size limits the
effective population size, and therefore mutation load is independent of the total number
of individuals (B). Prevalence increases linearly in both mating schemes when the num-
ber of genes increases and is independent from population size, as regression analysis
indicates (C,D).

congenital malformation are less prominent in populations that were more constant in size
over a long period of time [37]. One of the most extreme examples of descendants of a small
group might be the Hutterites, who increased in population size by more than a factor of
400 in less than 200 years from a founding population of less than 100 people [28]. This
is comparable to a kin of 100 which is still too small to benefit from a drop in prevalence
during growth as shown in Figure 2.2. The few initial lethal equivalents of the founders were
amplified to high prevalence and are now also listed as recessive alleles of high frequency
in the database of genetic disorders in Amish, Mennonite and Hutterite [177]. However, a
transient reduction of recessive disease burden can be achieved by marriage that is colony
exogamous, which is also most likely for that reason a social accepted mating scheme. The
occurrence and coexistence of different marriage patterns over many centuries can certainly
not be understood by population genetics alone since social, cultural and economic factors
interact with demographics in a complex manner [103]. It is therefore concerning when
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questionable genetic reasoning is used in the legislature. For instance, the European Court
of Human Rights case of Stübing v. Germany concerned consanguineous siblings who had
four children following consensual intercourse, whereupon both siblings were charged with
incest [2]. One of the siblings lodged a complaint, arguing that the legislature violated his
right to sexual self-determination, his private and family life. The Court found that 24 out
of 44 European States reviewed, criminalized consensual sexual acts between adult siblings,
and all prohibited siblings from getting married. The German government argued that the
law against incest partly aimed to protect against the significantly increased risk of genetic
damage among children from an incestuous relationship [32]. However, motivating a law to
avoid a higher probability of disease can be viewed as eugenic: As the German Ethics Coun-
cil opined after the judgement, no convincing argument can be derived from there being a
risk of genetic damage [3]. The Council also pointed out that prohibiting procreation in non-
consanguineous couples who carry a genetic burden, would not be allowed to be proposed
or considered in any manner [3]. Any prohibition of consanguineous relationships should
therefore build on non-genetic reasoning. The view of the German Ethics Council concurs
with a statement vy the German Society of Human Genetics criticizing eugenic reasoning
in a judgement by the German Federal Constitutional Court in 2008 on criminal liability
of incest between siblings. The Society stated that “The argument that reproduction needs
to be thwarted in couples whose children possess an elevated risk for recessively inherited
illnesses is an attack on the reproductive freedom of all.” [“Das Argument, es müsse in Part-
nerschaften, deren Kindern ein erhöhtes Risiko für rezessive erbliche Krankheiten haben,
einer Fortpflanzung entgegengewirkt werden, ist ein Angriff auf die reproduktive Freiheit
aller”.] [1]. The Society added that apart from being factually incorrect, eugenic reasoning
also encourages discrimination and should therefore be avoided by the courts [1].

Furthermore, as our work shows, the argument that there exists an increased risk of genetic
damage requires the definition of a reference population for comparison. However, there
is neither agreement about a suitable reference nor an accurate measurement for mutation
burden [103]. When genetic counseling is sought, the predicted recessive disease burden
that is communicated in the consultation might influence decisions e.g. about the choice of
partners or family planning. Since this risk does not only depend on mating schemes but
also on mutation burden it is important to measure this parameter as accurately as possible.
In our simulations, an individual of the outbreed population had on average four times more
lethal equivalents than an individual of the inbred population when the mutation-selection
balance was reached again many generations after the growth phase ended.

Interestingly, these values and the range are comparable to what has also been described in
the literature for real populations. With respect to the British subpopulations of Pakistani
(PABI) and European (EABI) ancestry in Martin et al., this could mean that PABI with
a considerably higher autozygosity and many first-cousin marriages are closer to mutation-
selection balance than EABI. This would imply that the disease prevalence for recessive
disorders will remain constant for PABI while it will approach that level for EABI in the fol-
lowing generations, given that the different mating schemes continue. In contrast, the higher
mutation burden in the EABI subgroup due to the higher effective population size might
already now contribute to a higher risk for autism spectrum disorders, which are also highly
heritable but do not follow monogenic inheritance [108]. Since assessing recessive lethals
based on family history is very challenging, genetic counseling should increasingly focus on
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carrier testing in cases where individuals seek help to gain information to make their own
decisions. Based on current ClinVar statistics, there are more than 150,000 pathogenic alleles
known for recessive genes that cause severe disorders. In large German cohort of individuals
with rare disorders, a diagnosis could be established in 125 cases due to homozygosity or
compound heterozygosity of pathogenic variants. 94 of these causative variants would also
have been classified as pathogenic in the healthy parents in a preconceptional exome ana-
lysis [188]. Expanded carrier screens can play an important role in genetic counselling in
multi-ethnic populations with different degrees of consanguinity, and it should be discussed
who should have access to this test to make their own informed decisions [189, 8].

2.5 Code availability

All scripts to reproduce our simulation results can be found in the following repository:

https://github.com/roccminton/Diploid_Model_Two_Loci

A video clip of our simulations can be found at:

https://youtu.be/5hOgLyRqWPg

2.6 Appendix

2.6.1 Adaptive dynamics model

The adaptive dynamics model is continuous in time, hence time is not measured in n ∈ N
discrete generations, but on the positive real axis t ∈ R+. No exact pedigree are available
for this continuous model, therefore introduce a new diploid family trait, which indicates the
ancestry of an individual. Hence every individual is characterized by two diploid traits. The
first refers to the family origin whereas the second gives insight in the genetical information
of the individual. Introduce F ⊂ N as the finite set of all possible family traits and f =
(f1, f2) ∈ F2 being the family trait of an individual in the current population. Moreover
the diploid genetic information of an individual is a finite vector

x = (x1
1, . . . , x

N
1 , x

1
2, . . . , x

N
2 ) ∈ N2N

≥0

where the entries xi1 and xi2 represent the number of pathogenic variants at the ith gene
segment in the first and second genome. Thus if there are (f1,x1), . . . , (fMt ,xMt) individuals
alive at time t > 0 in an arbitrary order, define the population state as a point measure on
X :=

(
F2 × N2N

)
νt(·) :=

Mt∑
i=1

δ(fi,xi) (·)
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Individuals give birth and die at exponential rates b(f ,x) resp. d(f ,x) which depend on the
family trait and the chromosomal configuration of the individuals. One can think of every
individual carrying two independent clocks, a birth and a death clock. If the birth clock
rings first the individual makes its mating choice, reproduces and resets its clock. Whereas
if the death clock rings the individual disappears from the population. Additional to the
intrinsic death rate every individual sense the competition pressure of every other individual
in the population. The term C(f ,x,g,y) gives the competition pressure executed by an
individual of type (g,y) and felt by an individual of type (f ,x). Hence the total death rate
of an individual in population ν is increased by the term∫

X

C(f ,x,g,y)dν(g,y)

When an individual gives birth it chooses a partner at random from the population according
to the partners birth rate and the reproductive compatibility between them. Notice that the
reproductive compatibility Rf (g) ∈ [0, 1] of two individuals depends only on their family
traits f and g. After a mate was chosen the newborns family trait will be a uniform random
combination of the four parental family traits unless both parents have the same traits. In
this case the child inherits the exact same couple of traits. The genetic configuration of
the newborn is not only a random combination of the parental alleles since the effect of
mutation and the reshuffling of the parental chromosomes come into play. For an accurate
definition of the reshuffling of the diploid parental chromosomes to a mixed haploid set,
define first the sections on the genetic information, that form chromosomes. Let nc ∈ N be
the number of chromosomes for every individual. Introduce the chromosome breakpoints
{c1, c2, . . . , cnc+1} ∈ {1, . . . , N} with 0 = c1 < c2 < · · · < cnc < cnc+1 = N . Divide the
genetic information of every individual x = (x1

1, . . . , x
1
N , x

2
1, . . . , x

2
N ) into chromosomes of

the same length in both copies

x = (x1
1, . . . , x

1
nc , x

2
1, . . . , x

2
nc) with xji =

(
xjci+1, x

j
ci+2, . . . , x

j
ci+1

)
for j ∈ {1, 2} and i ∈ {1, . . . , nc}. Finally get the reshuffled gamete from x via a selection
variable τ : {1, 2, . . . , nc} −→ {1, 2} as follows

xτ :=
(
x
τ(1)
1 , . . . , xτ(nc)

nc

)
Selecting τ among all possible assignments equals an uniform recombination of the diploid
chromosomes into haploid set. At each birth a Poisson distributed number of pathogenic
variants is added to every offspring. The expectation of these identically distributed and
independent Poisson random variables equals the total mutation rate 2µw̄, where µ is the
mutation rate per base pair and w̄ = w1 + · · · + wN is the sum of the length of the gene
segments under consideration. After sampling the number of pathogenic variants per birth,
these variants are distributed equally on the 2N gene segments according to their length.
Finally a pathogenic variant at a given gene increases the genetic value by one. All of
this is captured in the mutation with recombination operator Mrec

f ,x,g,y for a mating between
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individuals (f ,x) and (g,y)

(
Mrec

f ,x,g,yφ
)
(ν)=



1
22nc

∑
τ,τ ′∈{1,2}nc

∫
X

(
φ

(
ν+δf ,(xτ ,yτ ′)+h

)
−φ(ν)

)
m
(
(x,y), dh

)
,for f = g

1
22nc+2

∑
i,j∈{1,2}

τ,τ ′∈{1,2}nc

∫
X

(
φ

(
ν+δfi,gj ,(xτ ,yτ ′)+h

)
−φ(ν)

)
m
(
(x,y), dh

)
,else

and the mutation measure m is defined as

m
(
(x, y), dh

)
:=

∞∑
k=0

(2µw̄)ke−2µw̄

k!
1
Zk

∑
l∈32N

k

 N∑
i=1

(
wlii 1{li>0} + w

li+N
i 1{li+N>0}

) δl(dh)


where 32N

k :=
{
l ∈ N2N

+ | l1 + · · ·+ l2N = k
}
is the set of all lattice vectors in N2N

+ with one
norm equal to k moreover Zk > 0 is a normalizing constant depending on the size of 32N

k .
Let

M(X ) =


n∑
i=1

δfi,xi : n ≥ 0, (f1,x1), . . . , (fn,xn) ∈ X


be the set of all finite point measures on X . The dynamics of the continuous time,M(X )-
valued jump process (νt)t≥0 can be described by the generator L defined for any bounded
measurable function φ : M(X ) −→ R as

Lφ(ν) =
∫
X

b(f ,x)
(∫
X

b(g,y)Rf (g)
〈ν, b ·Rf 〉

(
Mrec

f ,x,g,yφ
)

(ν)dν(g,y)
)
dν(f ,x)

+
∫
X

d(f ,x) +
∫
X

C(f ,x,g,y)dν(g,y)

(φ (ν − δ(f ,x))− φ(ν)
))

dν(f ,x)

Assume the boundedness of the birth and death rates b and d as well as the boundedness of
the competition kernel C. Starting in a initial state ν0 ∈ X such that

E [ν0, 1] <∞

existence and uniqueness in law of the process with infinitesimal generator L and initial
condition ν0 can be derived from [72].

Keep families small To ensure a stable mating scheme during the evolution of the popu-
lation split families which became too big up into two subfamilies. Therefore introduce the
following sequence of stopping times.

θ0 := 0

θk+1 := inf
{
t > θk : ∃f ∈ F2 s.th. 〈ν,1f 〉 > κ

}
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for some fixed κ > 0. Notice that at any stopping time it is always a unique family f ∈ F2

that exceeds the maximum family size, since at any time there is at most one individual
entering or exiting the population. At these random times the big family is split up at
random into two subfamilies, where the size of each subfamily is binomial distributed with
mean 1

2 . One family keeps the old family trait and the other one gets a completely new,
homogeneous one. To make this precise associate a number to each individual in a family.
Therefore let Hf = (Hf

1 , H
f
2 , . . . ,H

f
k , . . . ) :M(X ) −→ (N2N )N defined by

Hf

 n∑
i=1

δgi,xi

 =
(
xσ(1),xσ(2), . . . ,xσ(k), 0, 0, 0, . . .

)

where the xi for i = 1, . . . , k are the genetic configurations of the individuals in ((g1,x1)
, . . . , (gn,xn)) with gi = f and where xσ(1) � · · · � xσ(k) is the lexicographical order �
on N2N and k = 〈ν,1f 〉 is the family size of f . Then the splitting of a family with trait
f ∈ F2 can be expressed with the following operator for any bounded measurable function
φ : MF (X ) −→ R

(Sfφ) (ν) := 1
2〈ν,1f 〉

∑
π∈{0,1}〈ν,1f 〉

(
φ
(
ν + ∆ν,f (π)

)
− φ(ν)

)

where ∆ν,f (π) executes the splitting of the family f in ν into two with configuration π,
hence

∆ν,f (π) :=
〈ν,1f 〉∑
i=1

π(i)
(
−δf ,Hf

i
+ δf new,Hf

i

)
dν(f ,y)

where fnew = (fnew, fnew) with fnew ∈ {g ∈ F | 〈ν,1(g,g′)〉 = 0,∀g′ ∈ F} chosen determin-
istically, is a homogeneous family trait which is entirely new to the population. A possible
way of choosing the new family trait at time θk is to set fnew = nF + k where nF is the
number of different families in the initial population ν0. Hence the dynamics of the evolu-
tionary process with splitting is given as the solution of the following martingale problem.
Let ν0 ∈M(X ) be a initial population then for any real, continuous, bounded function φ on
M(X ) the process

Mφ
t = φ(νt)− φ(ν0)−

 t∫
0

Lφ(νs)ds+
∑

f∈F2

(Sfφ) (νt)1〈νt,1f 〉>κ


is a martingale.

Choices of parameters Introduce the subset DN ⊆ X of traits having at least one patho-
genic variant in the same gene segment on both copies of the chromosome as

DN :=

(f ,x) ∈ X 2
∣∣∣∣∣ ∃n ∈ {1, . . . , N} s.th. x1

n > 0 and x2
n > 0
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and set the birth and death rate to constant unless an individual falls in the set of non-
propagable types

b(f ,x) = b̄1(f ,x)/∈DL , d(f ,x) = d̄

for b̄ > d̄ > 0. To ensure uniform competition among all individuals set the competition
pressure constant to

C(f ,x,g,y) = b̄− d̄
K

for all individuals (f ,x) and (g,y). Therefore the population size in equilibrium fluctuates
around the carrying capacity K of the system. The different mating schemes are defined as
follows. First the randommating, whereRrnd

f (g) = 1 for all f ,g ∈ F2 and the consanguineous
mating scheme with

R
cng
(f1,f2)(g1, g2) :=


2α
κ if (f1, f2) = (g1, g2)

2β
κ if fi ∈ {g1, g2} for i = 1 or i = 2
1−α−β
K−κ2

else

where α, β ∈ [0, 1) and κ > 0 is the maximum family size. Therefore the probability of mating
within their own family that is of size κ

2 in a population that is at its stable equilibrium size
K is constant α. Note that for families with family size smaller than κ

2 the probability
of mating within the family is slightly lower, whereas it gets bitter when the family size
surpasses this size. Furthermore the probability increases at the beginning of the growth
phase when the carrying capacity K gets uplifted and the population size starts to grow
slowly. During this initial phase of expansion there will be more consanguineous mating
overall. This imbalance levels off as soon as the population size approaches K.

Start the evolution with a small, healthy population of sizeM0 > 0 in population equilibrium,
where nobody carries any pathogenic variant. The clonal individuals are following divided
into nF ∈ N>0 families with homogeneous family traits (1, 1), (2, 2), . . . , (nF , nF ). After
an initial phase during which a mutation selection balance is established raise the carrying
capacity to generate a natural exponential population growth up to the new equilibrium.
The population parameters we are particular interested in, the mutation burden and the
prevalence rate for the disability can be formulated in terms of the population process. The
relative mutation burden of a population ν is defined as

L(ν) := 1
〈ν, 1〉

∫
X
l(x)dν(f ,x) with l(x) :=

∑
i∈{1,2}

N∑
n=1

xin

And the relative number of individuals in the population ν belonging to the set DN is

I(ν) := ν(DN )
〈ν, 1〉

To generate stochastically correct trajectories of the population dynamics process we imple-
mented a variation of Gillespie algorithm for the above model in Python.
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Figure 2.4: Comparison of Implementation of consanguineous mating scheme: The upper
image (A) depicts a typical pedigree resulting from the implementation of consanguin-
eous mating in SLiM. Precise inheritance up to two generations in the past are known.
it is highly unlikely for two parents to have more than one child together since females
independently choose partners for each mating. The pivotal factor in partner selection
is the number of shared ancestors in the previous generation lineage. If two parents
have two common ancestors, a mating occurs with probability α; if they share one com-
mon ancestor from tow generations ago, mating occurs with probability β; and if they
lack any common ancestors, mating transpires with probability 1− α− β. In the lower
image (B), a schematic visualization of consanguineous mating in the adaptive model is
presented. Within families, no specific structures is retained. Mating within the family
occurs with a probability of α + β, while mating outside the family transpires with a
probability of 1 − α − β. In addition to the probabilities α, β the average family size
κ/2 plays a decisive role here.
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Wright − Fisher AdaptiveDynamics

Ti
m

e

Figure 2.5: Comparison of population size and life spans of individuals: Each tick repres-
ents the lifespan of an individual. Time progesses from bottom to top. On the left side
in blue, one can observe that all individual in the Wright-Fisher model share the same
lifespan, generations do not overlap, and the population is of constant size initially, then
grows deterministically until the new constant size is reached. In contrast, on the right
side in orange, the adaptive model exhibits varying lifespans among individuals, leading
to population fluctuations. Moreover, birth times of individuals are independent of each
other, resulting in smoothly transitioning generations. At the point where the determ-
inistic growth starts in the Writght-Fisher model the adaptive dynamics population was
given more capacity which also leads to a logistic grow.
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3 Refining the drift-barrier hypothesis: a role
of recessive gene count and an
inhomogeneous Muller‘s ratchet

This Chapter 3 is available as a preprint as joint work with Konrad Gerischer, Anton Bovier
and Peter M. Krawitz [136],

L. A. La Rocca, K. Gerischer, A. Bovier, and P. M. Krawitz. Refining the drift bar-
rier hypothesis: a role of recessive gene count and an inhomogeneous Muller‘s ratchet.
https://arxiv.org/abs/2406.09094, 2024

The drift-barrier hypothesis states that random genetic drift constrains the refinement of
a phenotype under natural selection. The influence of effective population size and the
genome-wide deleterious mutation rate were studied theoretically, and an inverse relation-
ship between mutation rate and genome size has been observed for many species. However,
the effect of the recessive gene count, an important feature of the genomic architecture, is
unknown. In a Wright-Fisher model, we studied the mutation burden for a growing num-
ber of N completely recessive and lethal disease genes. Diploid individuals are represented
with a binary 2 × N matrix denoting wild-type and mutated alleles. Analytic results for
specific cases were complemented by simulations across a broad parameter regime for gene
count, mutation and recombination rates. Simulations revealed transitions to higher muta-
tion burden and prevalence within a few generations that were linked to the extinction
of the wild-type haplotype (least-loaded class). This metastability, that is, phases of quasi-
equilibrium with intermittent transitions, persists over 100 000 generations. The drift-barrier
hypothesis is confirmed by a high mutation burden resulting in population collapse. Simula-
tions showed the emergence of mutually exclusive haplotypes for a mutation rate above 0.02
lethal equivalents per generation for a genomic architecture and population size representing
complex multicellular organisms such as humans. In such systems, recombination proves
pivotal, preventing population collapse and maintaining a mutation burden below 10. This
study advances our understanding of gene pool stability, and particularly the role of the
number of recessive disorders. Insights into Muller‘s ratchet dynamics are provided, and the
essential role of recombination in curbing mutation burden and stabilizing the gene pool is
demonstrated.

3.1 Introduction

The dependency of genome size and mutation rate was first noticed by Drake and fur-
ther developed by Lynch into the drift-barrier hypothesis [60, 149, 196]. The basic idea of
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this theory is that the refinement of a phenotype is ultimately limited by the noise of ge-
netic drift, which is a consequence of effective population size and genome-wide deleterious
mutation rate. The effective population size, K, assumes a sexual diploid population that
mates randomly. Whereas the genome-wide deleterious mutation rate is the product of the
base-substitution rate for deleterious mutations per nucleotide site per generation times an
effective genome size that will evolve under the drift-barrier hypothesis. Drake‘s conjecture
about an approximate constant of 0.003 [deleterious] mutations per genome per generation
was based on a very small number of taxa and the first generation of sequencing technology.
More than twenty years later, Sung et al. [196] refined this conjecture and showed an inverse
relationship between the deleterious mutation rate and genome size over multiple orders of
magnitude for viruses, eubacteria, and archaebacteria [149]. In order to apply the theory
also to eukaryotes, the definition of an effective genome size was introduced, and the size
of the coding DNA was used as a proxy. With the latest data from studies on the human
population, the base substitution rate for humans could be further specified, and the effect-
ive genome size could encompass any region where deleterious mutations may occur. Thus,
certainly the exome, but most probably also other non-coding elements such as enhancers.

Figure 3.1: A shchematic representation of the Drift-Barrier in a three-dimensional
parameter space. Below the hyperplane, populations can exist stably, whereas above
it, the risk of extinction becomes too high. While the effect of the population size has
already been described we observe an exponentially decreasing effect of the recessive
gene count (see Figure 3.3). The combined effect has not yet been investigated. This is
merely a sketch to visualize the extension of the drift-barrier hypothesis.

While the drift-barrier model was originally based on empirical results, there has also been
extensive theoretical work to understand the stochastic nature of this phenomenon. In simple
terms, the dynamics of a gene pool are either stable or unstable, depending on which side
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of the barrier the system operates which is defined by its parameter settings (Figure 3.1).
Most simulations in that field are based on the discrete Wright-Fisher Model or adaptive
dynamics and both frameworks were shown to yield comparable results [136]. In our work,
we consider a deleterious mutation rate µ, that is the number of lethal equivalents introduced
per generation de novo into the recessive genes of a gamete. As an indicator of the fitness
of a population or their gene pool, mutation burden B(t) and disease incidence P (t) were
studied for populations of constant size K over a total time span of 100 000 generations
[103]. The proportion of diploid individuals in the population that are biallelic for such
lethal equivalents in at least one gene is the incidence or prevalence rate P (t). The number
of pathogenic alleles in the entire gene pool is defined as the mutation burden B(t). Incidence
rate and mutation burden are also the system parameters that we use to assess its stability.
All haplotypes in the gene pool can be assigned to a class indicating the number of genes that
harbour pathogenic alleles. By that definition, c0 is the least loaded class containing only the
haplotype without any mutations, c1 consists of all haplotypes with exactly one affected gene,
and so on. Due to maximal selection (s = 1) and total recessivity (dominance coefficient
h = 0), a pathogenic or deleterious allele can also be referred to as a lethal equivalent
that prevents propagation if both haplotypes of a gene are affected. Muller first studied a
simple stochastic process for lethal mutations in haploid genomes without recombination and
observed the irreversible loss of the least loaded class from the population which he described
as clicks of a ratchet [96, 162]. By theoretical arguments, Charlesworth and Charlesworth
argued that in diploid genomes the accumulation of pathogenic or lethal recessive alleles
can result in the “crystalization” of the population, that is, the occurrence of haplotypes
that are incompatible with each other [45]. In our work, we study the stochastic process of
Muller‘s ratchet in the limit of strong selection on completely recessive diploid genomes in a
parameter space with a variable number of genes that operates close to the drift-barrier. We
find evidence for the crystalization phenomenon when increasing the genome-wide deleterious
mutation rate or gene count beyond the drift-barrier. A particular focus of our work are the
inhomogeneous or metastable dynamics that follow after the extinction of the mutation-free
gametes until the emergence of haploid clusters, when the population regains stability after
several thousand generations [24]. Unlike in other models, we do not reach an equilibrium
every time between two successive clicks [152]. In agreement with all other models, we
can show that recombination weakens the selective disadvantage of a pathogenic recessive
allele by exporting mutations to other members of the population [44, 55, 116, 126, 128].
Therefore, recombination is also the force that helps to balance genetic load to a certain
degree in genomes with an increasing number of recessive genes, which we introduced as a
novel parameter of the drift-barrier.

3.2 Methods

Consider a diploid population where individuals are characterized by N diploid genes or
gene sections that when mutated can carry and express a lethal disease. When an individual
expresses one or more of such diseases it will be excluded from the mating process and thus
cannot reproduce further. If a gene segment has already mutated once, further mutations
on its same haplotype are neglected. Therefore, we can think of the genome of an individual
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as a 2 × N matrix with values in {0, 1}, where a zero represents the wild type and a one
indicates the presence of at least one mutation at that location. The fitness of an individual
x ∈ {0, 1}2×N is optimal (fitness=1) unless it carries at least one mutation at each copy
of at least one gene and hence expresses the disease. In this case the reproductive fitness
is reduced to zero. In a classical Wright-Fisher Model with a constant population size of
K individuals, in every generation for every offspring two parents are chosen according to
their fitness and the offspring then inherits a combination of the parental genetic material.
The creation of the offspring’s genes is influenced by two parameters: the probability of
recombination r and the mutation rate µ.

The recombination rate r ∈ [0, 1] denotes the probability that a potential crossover break-
point occurs between neighbouring genes (see Supporting Information for details). The av-
erage number of potential breakpoints is hence Binomial distributed with parameter N − 1
and r. In the course of the copying of the DNA to form a new gamete each of the two
haploid sets of chromosomes is chosen independently with equal probability. After these
recombination events, each newly born individual receives a gamete from each of their par-
ents, creating their new diploid set of chromosomes. Lastly, de novo mutations are added
independently with rate µ at every gene on either genome. Therefore, the diploid mutation
rate is 2µ, and the probability of changing the wild type to a mutated site at a specific locus
is approximately µ

N . There are no back mutations. Due to the usually small mutation rates
and comparatively large number of possible sites, it is reasonable to assume that the total
number of mutations per birth is Poisson distributed with mean 2µ.

3.2.1 Model description

For notational reasons, we interpret the 2×N matrix x ∈ {0, 1}2×N as two binary numbers,
where each number represents the maternal or paternal genome. Therefore, take an integer
i ∈ {0, . . . , 2N − 1} and denote by zi = (zi1, . . . , ziN ) ∈ {0, 1}N the N digits of the dual
representation of i with leading zeros if necessary. Hence the values zi1, . . . , ziN ∈ {0, 1} are
chosen such that

i =
N∑
n=1

zin · 2n−1

The vector zi is called haploid configuration or gamete. With this interpretation of the
diploid configuration we can easily enumerate all configurations. For i, j ∈ {0, . . . , 2N − 1}
denote by xij ∈ {0, 1}2×N the genetic configuration

xij =
(
zi
zj

)
=
(
zi1 zi2 . . . ziN
zj1 zj2 . . . zjN

)
∈ {0, 1}2×N

and denote by Xij(t) the number of individuals in generation t with configuration xij . Fur-
ther, let X(t) =

(
Xij(t)

)
0≤i,j≤2N−1 be the state of the population at time t. The reproductive

fitness f of an individual with configuration xij is defined as

f
(
xij
)

:=

0 , if ∃n = 1, . . . , N : zin = zjn = 1
1 , else
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The distribution of X(t+ 1) given X(t) is multinomial with parameters K and probabilities(
pij(t)

)
0≤i,j≤2N−1 given by

pij(t) :=
2N−1∑

h,h′,k,k′=0

Xhh′(t)f(xhh′)Xkk′(t)f(xkk′)
T (t)2 mij(xhh′ , xkk′ ; r, µ) (3.1)

with

T (t) :=
2N−1∑
i,j=0

Xij(t)f(xij)

the total fitness of the population. The term mij(xhh′ , xkk′ ; r, µ) denotes the probability of
two configurations xhh′ and xkk′ producing an offspring with configuration xij . Note that,
due to the inheritance rules described above, we obtain the following symmetries. First,
there is no distinction between the maternal and paternal genomes, and second, the order of
the partners in the composition of the genome is irrelevant. Hence for any i, j, h, h′, k, k′ ∈
{0, . . . , 2N − 1} we have

(i) mij (xhh′ , xkk′) = mji (xkk′ , xhh′)
(ii) mij (xhh′ , xkk′) = mij (xh′h, xk′k)

Subsequently, we introduce further statistics to investigate genetic phenomena within the
population. Starting with the fraction of gametes Zi(t) in the population at time t with the
haploid configuration zi ∈ {0, 1}N , which is defined as

Zi(t) := 1
2K

2N−1∑
j=0

(
Xij(t) +Xji(t)

)
and Z(t) =

(
Zi(t)

)
0≤i≤2N−1 the gamete distribution at time t. For a gamete zi ∈ {0, 1}N

we define the mutation burden b(zi) as the number of lethal equivalents on that specific
haploid configuration, hence

b(zi) :=
N∑
n=0

zin

By some abuse of notation we set the mutation burden of a diploid configuration xij ∈
{0, 1}2×N to be b(xij) := b(zi) + b(zj). The mean haploid mutation burden β(t) of the pop-
ulation X(t) in generation t is defined as the weighted mean of Z(t) with weights according
to b, hence

β(t) :=
2N−1∑
i=0

b(zi)Zi(t)

To measure fluctuations within the haploid mutation burden of a population, we also look
at the weighted variance σ2

b (t) of Z(t) with weights b at time t ≥ 0 and set

σ2
b (t) :=

2N−1∑
i=0

Zi(t)
(
b(zi)− β(t)

)2 (3.2)
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When we speak about mutation burden usually, we mean the average number of mutations
per individual in the population at time t ≥ 0. Hence the mutation burden B(t) of the
population at time t ≥ 0 is defined as B(t) := 2β(t). Moreover, we define the prevalence
P (t) as the inverse of the relative fitness

P (t) := 1− T (t)
K

= 1
K

2N−1∑
i,j=0

Xij(t)(1− f(xij))

At every haploid locus there are two possible alleles. The wild type (0) and the mutant allele
(1). For n = 1, . . . , N , we define the haploid allele frequency ϕn(t) of the mutant allele at
locus n at time t as

ϕn(t) :=
2N−1∑
i=0

zin · Zi(t)

and the average allele frequency across all loci as ϕ(t) := 1
N

∑N
n=1 ϕn(t). For any k ∈

{0, . . . , N}, define the haploid load class ck(t) as the fraction of gametes at time t ≥ 0
with exactly k mutated genes

ck(t) :=
2N−1∑
i=0

Zi(t)1{b(zi)=k} (3.3)

The discrete probability distribution H(t) on {0, 1, . . . , N} with weights
(
ck(t)

)
k=0,...,N is

called the haploid load class distribution. Note that by assigning each gamete uniquely to
one of the N + 1 disjoint load classes, we obtain ∑N

k=0 ck(t) = 1. The mean and variance
of the haploid load class distribution are given by β(t) and σ2

b (t) respectively. Lastly, we
are interested in the level of linkage (dis-)equilibrium between different genes within the
population, and we introduce the joint allele frequency ϕn,m(t) of the mutated allele at the
two distinct loci n,m ∈ {1, . . . , N} as

ϕn,m(t) :=
2N−1∑
i=0

zinz
i
m · Zi(t)

The square coefficient of correlation between the pair of loci is defined as

ρ2
n,m(t) :=

(
ϕn,m(t)− ϕn(t)ϕm(t)

)2
ϕn(t)

(
1− ϕn(t)

)
ϕm(t)

(
1− ϕm(t)

) (3.4)

and consequently
(
ρn,m(t)

)
1≤n,m≤N is called the correlation matrix between the loci at

time t ≥ 0. All notations are summarized in table 3.5 at the end of this paper.

3.3 Results

3.3.1 Mutation burden beyond the Drift-Barrier

The initial model that we analyzed, consisted of a genome with 2µ = 0.05, N = 600 recessive
genes, and an effective population size ofK = 10 000 diploid individuals. Exact values are not
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known, but empirical data suggest that the orders of magnitude should be correct [153, 215,
165, 92, 103]. In the simulation shown in Figure 3.2, mutation burden and prevalence remain
constant over many generations. In this equilibrium, the count of deleterious mutations that
are added to the gene pool, is equal to the number of such variants that are removed due
to the affected individuals who do not procreate. To calculate these equilibria from the
differential equations coming from the multinomial sampling in (3.1) is very hard. Already
giving explicit formula for the probabilities

(
pij(t)

)
i,j=0,...,2N−1 is quite challenging and in

many cases does not give much insight. However in the simplest case for N = 1 explicit
calculations are feasible (see Appendix). These match the considerations of Nei [167] for
complete recessive lethals, which result in an allele frequency that is equal to the square root
of the mutation probability. Extending these results to N > 1, assuming that in equilibrium
the allele frequencies across all loci are equal yields an equilibrium allele frequency of

ϕ =
√

1− e−
µ
N ,

per gene, since the mutation probability for every individual gene with N total genes is equal
to 1− e−

µ
N . This leads to a mutation burden for an individual with 2N genes of

B = 2Nϕ = 2N
√

1− e−
µ
N

and a prevalence of
P = 1− (1− ϕ2)N = 1− e−µ.

Note that the prevalence is independent from the number of loci N and equals the prob-
ability that a mutation appears on a gamete at birth. In Figure 3.4 A we see that in the
case of no recombination (r = 0) the simulations match these considerations. In the case of
full recombination (r = 1) however the allele frequency and hence also the haploid mutation
burden is lower that what was expected by Nei [167]. However in the absence of recombin-
ation, these equilibria, while they may remain stable for several thousand generations, are
fragile. For example, in Figure 3.2 at around generation 20k we observe a transition to a
higher mutation burden and prevalence within a few generations. Further transitions follow
over a larger time frame in a stochastic manner. On the level of haplotypes, these transitions
are a consequence of the extinction of the least loaded classes, which has also been referred
to as clicks of Muller‘s ratchet (Figure 3.2 B). After the extinction of the c0 class the new
least loaded class c1 of gametes with exactly one lethal equivalent is left without influx, but
rather looses gametes due to de novo mutations. This would lead to a rapid fixation of
one mutation within the population, even under weaker selection coefficients [45]. Fixation
however is not possible without the extinction of the whole population for recessive lethals.
Instead we observe that the extinction of the mutation free gamete sets off a cascade of
extinction events that is only reassured by the formation of clusters of similar haplotypes
that are mutually exclusive. This phenomenon of “crystalization” was already predicted for
low dominance coefficients by Charlesworth and Charlesworth [45]. In the period after the
population has stabilized, there can be instances of further genes being incorporated into
one of the clusters. This may or may not be accompanied by the extinction of the least
loaded class. Moreover, there can be a reduction in the number of clusters as they compete
with each other. This results not only in an increase in mutation burden but also in a rapid
rise in prevalence (see Figure 3.2 at around 50k).
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3.3.2 Influence of recessive gene count on metastability

The metastability that we observed for mutation burden and prevalence occurred on the
time scale of 100k generations in all of our simulations but at different time points, indicat-
ing the stochastic nature of this process (Muller‘s ratchet). Under natural conditions, the
transitions to a much higher mutation burden in the gene pool result in the extinction of the
population for the combination of µ and K, which would be in accordance with the drift-
barrier hypothesis (see Supporting Information for details). In the following experiments, we
aimed to characterize the interplay of µ and the number of recessive genes. We, therefore,
counted how often and when the first click of Muller‘s ratchet, which is the loss of the c0
class, happened (Figure 3.3). We found that for a given K the drift-barrier depends not only
on µ but also on the recessive gene count N . As long as the proportion of c0 haplotypes
in the gene pool remains above roughly 7.3 · 10−3 a transition to higher mutation burden
and prevalences is unlikely to occur within 100k generations (dotted line in Figure 3.3). For
a genome with N = 400 recessive genes, there were still enough haplotypes in the c0 class
at a mutation rate of 2µ = 0.03. However, when the gene count increased to N = 1000,
mutations started to accumulate and c0 died out unless the mutation rate was lowered to
roughly 2µ < 0.015. This suggests that Drake‘s Rule can also be formulated as the minimal
proportion of the haplotypes without deleterious mutations, c0, in the gene pool that is
required to avoid Muller‘s ratchet.

3.3.3 Recombination can avoid the extinction of the least loaded class

Beyond the drift-barrier, the gene pool quickly acquires deleterious mutations that can even-
tually result in a collapse of the entire population. In finite populations this stochastic mech-
anism can be counteracted by amphimixis, that is sexual reproduction involving the fusion
of two different gametes, that have to undergo meiosis [113, 128, 162, 172]. During meiosis,
recombination can occur that counteracts linkage disequilibrium (LD) between deleterious
mutations in different genes by negative selection. In our simulations, the recombination
rate is the probability of a crossing over between genes. That is, for a recombination rate of
r = 0, either the grandmaternal or grandpaternal haplotype is transmitted. In contrast, for a
recombination rate of r = 1, the resulting haploid genome of the gamete would be a random
sequence of the ancestral genes. We observed that in a population without recombination,
metastability occurs for 2µ = 0.05 around N = 500 genes. That means the mutation burden
in the gene pool after 100 000 generations deviates strongly from the beginning. The intro-
duction of recombination, however, is able to control the mutation burden effectively and
keep it below 10 for N = 1000, and probably above (Figure 3.4). Even in the initial equilib-
rium stage during which the mutation free gamete is present, the frequency of the mutated
allele is reduced by recombination. This inevitably is followed by an - albeit small - reduc-
tion in the size of the least loaded class (Figure 3.4 B). And yet recombination prevents the
extinction of the mutation free gamete, because of two reasons. First, recombination lowers
the fluctuation within the population. On the one hand for full recombination the haploid
load class distribution H is a Poisson distribution, the variance of the haploid mutation
burden stays comparable low for large N , like the expectation. Whereas on the other hand
we observe a linear growth in N for the variance in the case of no recombination (Figure 3.4
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C). These higher variances due to the absence of recombination, similar to a reduction of the
population size, favour the extinction of the least loaded class due to natural fluctuations.
Second - and more important - recombination can restore the mutation free gamete after it
got lost. To see that denote by gr : {0, 1}2×N → [0, 1] the probability that a given genetic
configuration with recombination rate r ∈ [0, 1] produces a mutation free gamete. Here, we
consider only the effect of recombination during gamete formation, without the influence of
de novo mutation, as they are added only to the newly formed diploid individual. Then

g1(xij) =


0 , if f(xij) = 0(

1
2

)b(xij) , else.

In particular note, that even if at some point in time c0 = 0 the class of mutation free
gametes may still have an influx with positive probability. That is true whenever r > 0.
Only in the absence of recombination and only segregation we get

g0(xij) =


1 , if i+ j = 0
1
2 , if i · j = 0 and i+ j > 0
0 , else.

In that case, if at some point t† > 0 the class of mutation free gametes goes extinct by
natural fluctuations it will stay extinct for all t ≥ t† and every new gamete will carry at
least one mutation, which is known as a click of Mullers ratchet [161]. Theoretical models
widely acknowledge that even low recombination rates can decelerate the accumulation of
mutations [67, 162].

3.4 Discussion

In this work we showed that the recessive gene count is another parameter that is required
to decide whether a population can reach a mutation selection balance or in other words
whether it is able to operate on the stable side of the drift-barrier (Figure 3.1). In fact,
we observed the complex dynamics of the mutation burden beyond the barrier for the first
time by coincidence in our previous work, in which we studied the effect of different mating
schemes and demographic histories on the recessive disease risk and incidence rates [136]. We
expected that selection would be sufficient as an opposing force to counteract the effect of
deleterious mutations and genetic drift in the full range of population sizes that we simulated.
However, for certain parameter settings, particularly many recessive genes that are linked on
the same chromosome, we noticed a metastability of the mutation burden and investigated
this phenomenon further. Prior to us, the puzzling observation of a population collapse
had been made by theoretical biologists studying molecular evolution and e.g in the book
the “Crumbling Genome”, Kondrashov theorised about the origins of sexual mating [127].
Amphimixis, that is reproduction of a diploid multicellular organism by means of haploid
sperm or egg cells, is just one possibility how Nature implemented genetic recombination
[128]. By recombination, a reconstruction of the wildtype sequence becomes possible, even if
lethal equivalents affect multiple recessive genes. Kondrashov estimated that the average rate
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of “contamination” cannot surpass 10 in a human genome, or otherwise mutation-selection
balance would not be sustainable [127]. Kondrashov defined contamination as the sum of
all heterozygous pathogenic variants in recessive genes weighted by their selection coefficient
and coined the term “muller” for this unit. 10 mullers would be 10 lethal equivalents per
genome, or 100 pathogenic variants with a selection coefficient of s = −0.1, and so on.
In retrospect, we can confirm that passing this threshold in our previous work caused the
metastability, which also explains the reproducibility issues that we had for different seeds
in our simulations. However, with recombination we were able to keep the mutation burden
below 10 effectively for N = 1 000, 2µ = 0.05, and a population size of K = 10 000.

In the present work, we aimed at approaching the drift-barrier by numerical simulations for
wide parameter ranges in all three dimensions. We did so by means of adaptive dynam-
ics that behave equivalently to classical Wright-Fisher population genetics. We could also
confirm the emergence of multiple mutually exclusive haplotypes, and for smaller numbers
of genes. This “crystallization” into two complementary segregating haplotypes, is a phe-
nomenon predicted by Brian Charlesworth after studying earlier works from Pàlsson, et al.
[43, 176, 175]. In fact, we see our work as a new part of a long sequence of findings ever since
John Haigh established a mathematical model in 1978 to quantify certain effects of Muller’s
ratchet [96]. Particularly, the question of the click rate - that is, the speed at which success-
ive least loaded classes become extinct - is of great interest. Recently, good approximations
depending on effective population size have been achieved using diffusion approximation [64].
However, all these models observe time-homogeneous click rates. Interestingly, we observe
highly inhomogeneous click rates and we hypothesized that this is due to the higher com-
plexity of the genomic architecture that we modelled. This makes techniques like diffusion
approximation or coalescent approaches from previous studies inapplicable [89, 9]. Indeed,
after simplifying our model to only consider the number of deleterious mutations per gamete
and assuming these mutations are always uniformly distributed across the genome in each
step, we observed a homogeneous click rate again. Thus, the position of mutations is cru-
cial, making mathematical analysis very challenging. The inhomogeneity is an interesting
finding from a mere stochastic point of view and could be motivation enough to analyse
the timespan between clicks and determine their distribution. Furthermore, for evolutionary
biology it might be interesting to focus not only on the clicks of Muller’s ratchet but also on
the addition of recessive genes to a cluster - which correlates with an increase in mutation
burden - and the extinction of clusters - which correlates with an increase in prevalence.
By this means our model can also contribute to the understanding of multilocus dynamics,
that have recently been shown to the associative overdominance and background selection
[79]. Providing these measures in terms of the order of effective population size would be
a significant challenge. We share Charlesworth’s hypothesis that this evolution stops only
when either the entire population becomes extinct or two exclusive clusters emerge, each
encompassing the entire set of genes.

3.5 Code availability

The code that supports the findings of this study has been deposited in an open-access
repository and can be accessed via the following link:
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https://doi.org/10.5281/zenodo.10985649

The repository contains detailed instructions for code usage, dependencies, and any other
relevant information to facilitate reproducibility of the results.

89

https://doi.org/10.5281/zenodo.10985649


3 The Effect of Mullers Ratchet on Recessive Disorders

Figure 3.2: Metastability of mutation burden. For K = 10 000, N = 600, 2µ = 0.05, the pop-
ulation operates close to the drift-barrier. A) Over a time span of 100 000 generations,
several transitions to higher levels of mutation burden and prevalence can be observed
that occur within a few generations and remain constant over many generations (meta-
stability). B) The molecular cause for a transition to a higher level is the extinction
of the least loaded class cn, indicated by † ( the first dagger is the loss of c0, the class
of haplotypes without any pathogenic mutation, and so on). C) The correlation or
similarity matrix of the haplotypes changes over time. In the beginning, mutations are
randomly distributed over the genes, and haplotypes are not correlated (T1). At gener-
ation 40k, most haplotypes can already be assigned to one out of thirteen clusters with
a heterozygote advantage. The cluster sizes, as well as the proportion of haplotypes
assigned to clusters, increase over time, and the number of clusters decreases. In this
simulation, presumably, a fixed state with twelve clusters was reached at T3.
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Figure 3.3: Influence of recessive gene count on the drift-barrier. If the extinction of the
least loaded class occurs within 100 000 generations, metastability occurs. The grid
visualizes the outcome of three iterations for each parameter combination, and the
radius of the circles in the squares indicates the probability of extinction. E.g. for a
deleterious mutation rate of 2µ = 0.05 and N = 600 genes, the least loaded class c0
died out in all three simulations. In contrast, for N = 200, this event was not observed
despite the same mutation rate. This indicates that the phase transition depends not
only on the genome-wide mutation rate µ but also on N , and the recessive gene count
becomes an additional parameter of the genomic architecture. The dotted line indicates
the 99% quantile of extinction events.
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Figure 3.4: Recombination can effectively control mutation burden for higher gene
counts. A) The number of recessive genes N and the genome-wide deleterious mutation
rate µ affect the drift-barrier. For 2µ = 0.05 and N = 500, metastability would already
occur (see Figure 3.3), and the average mutation burden after 100 000 generations devi-
ates from the beginning of the simulations. The average haploid mutation burden before
and after the transition is indicated by circles and diamonds. The mutation burden be-
fore any transition and without recombination can be described byN

√
1− e− µ

N , and the
variance increases linearly (C). However, beyond the drift-barrier, the system becomes
unstable, and mutation burdens after the transitions can differ. With recombination,
the mutation burden in more than 500 recessive genes can remain below 10, which is
considered an important threshold for lethal equivalents in the mutation-selection equi-
librium. Likewise, the variance of the haploid mutation burden increases considerably
slower with recombination (B).
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Figure 3.5: Notation used within this paper.
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3.6 Appendix

3.6.1 Only one gene

In general, providing explicit formulas for the probabilities (3.1) is not a fruitful endeavor,
and identifying stationary distributions for the multinomial resampling is an intractable
problem. The system of equations that one needs to solve grows exponentially with the
number of genes. However, for very small genes, the equations can be obtained. More
precisely, for N = 1, the system consists of 4 equations. Using symmetry properties, the
dimensionality can be reduced even further. Symmetric configurations like x10 and x01 are
indistinguishable in the sense that they have the same reproductive rates, hence there are
three distinct configurations

x00 =
(

0
0

)
, x01 =

(
0
1

)
, x11 =

(
1
1

)
.

The terms
(
mij

)
i,j∈{0,1}, which describe the likelihood of a given mating resulting in an

offspring of type ij, are given by the following table.

x00 × x00 x00 × x01 x01 × x01

m00 e−2µ 1
2e
−2µ 1

4e
−2µ

m01 2e−µ
(
1− e−µ

)
e−µ

(
1− e−µ

)
+ 1

2e
−µ 1

2e
−µ
(
1− e−µ + 1

2e
−µ
)

m11
(
1− e−µ

)2 1
2

(
1− e−µ

)2
+ 1

2

(
1− e−µ

)
1
4

(
1− e−µ

)2
+ 1

2

(
1− e−µ

)
+ 1

4

Given that individuals exhibiting the phenotype x11 possess a reproductive fitness of zero and
are therefore excluded from the mating process, it follows that their probability of generating
any configuration is effectively negligible. A particular distribution k = (k00, k01, k11) is
stationary if

E
[
X(t+ 1)|X(t) = Kk

]
= Kk

Since X(t+ 1)|X(t) ∼ Multinomial (K; p00, p01, p11) we have that

E
[
Xij(t+ 1)|X(t)

]
= Kpij ,for 0 ≤ i ≤ j ≤ 1.

which yields

k00 =
k2

00 + k00k01 + 1
4k

2
01

(k00 + k01)2 e−2µ (3.5)

k01 =
k2

00 + k00k01 + 1
4k

2
01

(k00 + k01)2 2e−µ
(
1− e−µ

)
+
k00k01 + 1

2k
2
01

(k00 + k01)2 e−µ (3.6)

k11 =
k2

00 + k00k01 + 1
4k

2
01

(k00 + k01)2

(
1− e−µ

)2
+
k00k01 + 1

2k
2
01

(k00 + k01)2

(
1− e−µ

)
+

1
4k

2
01

(k00 + k01)2 (3.7)

It should be noted that there are in fact two distinct heterogeneous types, which introduces
a factor of two into the mating of a heterogeneous couple.
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Theorem 3.1. The unique positive solution of the system (3.5- 3.7) is given by

k00 =
(
1−
√

1− e−µ
)2
, k01 = 2

(
1−
√

1− e−µ
)√

1− e−µ, k11 = 1− e−µ

Proof. Set

ρ =
k00 + 1

2k01

k00 + k01

then the system (3.5- 3.7) changes to

k00 = ρ2e−2µ

k01 = 2ρe−µ
(
1− ρe−µ

)
k11 =

(
1− ρe−µ

)2

and we can solve for ρ in

ρ =
ρ2e−2µ + ρe−µ

(
1− ρe−µ

)
ρ2e−2µ + 2ρe−µ (1− ρe−µ) = 1

2− ρe−µ

which results in
ρ = 1±

√
1− e−µ
e−µ

.

Therefore the only solutions with only positive entries is given by

k00 =
(
1−
√

1− e−µ
)2
, k01 = 2

(
1−
√

1− e−µ
)√

1− e−µ, k11 = 1− e−µ

Remark. It is evident that the equilibrium population adheres to the Hardy-Weinberg prin-
ciple, exhibiting frequencies for the mutated allele of

ϕ =
√

1− e−µ

Moreover we find the equilibrium mutation burden and prevalence for N = 1 as

B̂ = 2
√

1− e−µ and P̂ = 1− e−µ

3.6.2 A diploid individual based model of adaptive dynamics

In addition to the Wright-Fisher model, we also implemented an adaptive dynamics model.
Unlike Wright-Fisher models, the latter operates with a fluctuating population size and
overlapping generations. Here, individuals reproduce and die at independent, exponentially
distributed times, determined both by the individual’s fitness and, in the case of the death
rate, by the competitive pressure of the population. Accordingly, it can better capture
effects that lead to growth or shrinkage of the population than population models with a
fixed, constant population size. In the limit of large populations, we observe no differences
however between the Wright-Fisher and the adaptive dynamics model for populations in
equilibrium [136].
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3.6.2.1 Model description

We use a variation of the model of adaptive dynamics of Mendelian diploids studied by P.
Collet, S. Méléard, J. Metz et al. [49]. The major adaptation we make is a finite, but high
dimensional genotype space X ⊂ RN and a more general approach on the recombination
and propagation mechanism of genotypes during a mating of individuals. Here the dimen-
sion N corresponds to the number of gene segments under consideration. Hence a diploid
individual is characterized by its genotype x = (x1, x2) ∈ X 2. In the following we introduce
the demographic parameters that encode all of biology. We assume that these paramet-
ers are influenced by the allelic traits through the phenotypic trait. As this dependency is
symmetrical, all coefficient functions defined are also assumed to be symmetric in the allelic
traits.

(i) b(x1, x2) ∈ R+ : on the one hand this is the birth rate of an individual with genotype
(x1, x2) and on the other hand an individual with genotype (x1, x2) has probabilities
proportional to b(x1, x2) to be chosen as a mate during the birth event of another
individual.

(ii) d(x1, x2) ∈ R+ : the intrinsic death rate of an individual with genotype (x1, x2).

(iii) c(x1, x2, y1, y2) ∈ R+ : the competition pressure from an individual with genotype
(y1, y2) exerted onto an individual with genotype (x1, x2).

(iv) m(x1, x2, y1, y2, z1, z2) ∈ [0, 1] : the mating and mutation measure gives the probab-
ility that the mating of an individual with genotype (x1, x2) with an individual with
genotype (y1, y2) produces an offspring with genotype (z1, z2). It is assumed to satisfy

(a) for each x,y ∈ X 2

∫
X 2

m(x,y, dz) = 1 and
∫

R2N\X 2

m(x,y, dz) = 0.

Note that since |X 2| <∞ this means, thatm(x,y, ·) is a probability mass function
with mass exclusively on X 2.

(b) for every (x1, x2), (y1, y2), (z1, z2) ∈ X 2 the following symmetry properties

m(x1, x2, y1, y2, z1, z2) = m(x2, x1, y1, y2, z1, z2)
m(x1, x2, y1, y2, z1, z2) = m(x1, x2, y2, y1, z1, z2)
m(x1, x2, y1, y2, z1, z2) = m(y1, y2, x1, x2, z2, z1)

The first two properties correspond to the fact, that we do not want to make a
difference between the two genotypes of an individual. Both are equally present
in the production of the offsprings genotype. Whereas the second property yields
that the mating of two individuals has the same probabilities of producing a given
pair of genotypes regardless the order of the mating.
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For simplicity we ignore the existence of sexes and spacial structures within the population.
Hence an individual chooses a mate with probabilities only proportional to the birthrate
of the partner. At any point in time t ≥ 0 we consider a finite number Nt of individuals.
Denote their genotypes as (x1

1, x
1
2), . . . , (xNt1 , xNt2 ) ∈ X 2. The population state at time t ≥ 0

is described by the point measure on X 2

νt =
Nt∑
i=1

δ(xi1,xi2)

where δ(x1,x2) is the Dirac measure at (x1, x2) ∈ X 2. Let 〈ν, f〉 denote the integral of
a measurable function f with respect to the measure ν. Then 〈νt, 1〉 = Nt and for any
(x1, x2) ∈ X 2, the non-negative number 〈νt,1{(x1,x2)}〉 is called the density of genotype
(x1, x2) at time t. In an abuse of notation we define

〈νt,1x〉 := 〈νt(x, dy), 1〉+ 〈νt(dy, x), 1〉

to be the density of the haplotype x ∈ X at time t. Let M
(
X 2
)
denote the set of finite,

nonnegative point measures on X 2, equipped with the weak topology,

M
(
X 2
)

:=


n∑
i=1

δ(xi1,xi2) : n ≥ 0, (x1
1, x

1
2), . . . , (xn1 , xn2 ) ∈ X 2


An individual with genotype (x1, x2) in the population νt reproduces with an individual with
genotype (y1, y2) at a rate b(x1, x2) b(y1,y2)

〈νt,b〉 . The genotype of the offspring is chosen according
to the mutation and mating measure m(x1, x2, y1, y2, dz1, dz2). An individual with genotype
(x1, x2) in the population νt dies at rate

d(x1, x2) + 〈νt, c(x1, x2, dy1, dy2)〉

The population process (νt)t≥0 is defined as a M(X 2)-valued Markov process with the dy-
namics described above. These are encoded in the infinitesimal generator L of the process,
which is defined for any bounded measurable function f :M(X 2)→ R and for all ν ∈M(X ),
by

(Lf) (ν) =
∫
X 2

b(x)
∫
X 2

b(y)
〈ν, b〉

∫
X 2

(
f (ν + δz)− f (ν)

)
m(x,y, dz)ν(dy)ν(dx)

+
∫
X 2

d(x) +
∫
X 2

c(x,y)ν(dy)

(f (ν − δx)− f (ν)
)
ν(dx)

The first term describes the mating and birth event. The second term describes the death
of an individual. We ignore the unnatural fact that an individual can choose itself as a
partner to mate as the probability of that event will become negligible as the population size
increases.
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Remark. Since we assume the model parameters b, d, c take finite, non-negative values, and
the trait space X 2 is finite we immediately get the existance and uniqueness of the process.
Since if the population is of finite size n and in the state ν =

n∑
i=1

δxi the total event rate is

R(ν) =
n∑
i=1

b(x) + d(x) +
∫
X 2

c(x,y)ν(dy) ≤ n
(

max
x∈X 2

{
b(x) + d(x)

})
+ n2 max

x,y∈X 2
c(x, y) <∞

bounded from above as long as the population size is finite.

We see that this is true on finite time intervals as long as we start in a possibly random
population with finite mean.

The trait space is X = {0, 1}N hence every individual is characterized by a 2 × N matrix
with values in {0, 1}. Here zero represents the wild type and a one indicates that (at least
one) mutation is present. Define the set DN ⊂ X 2 as

DN :=
{

(x, y) ∈ X 2 : ∃ 1 ≤ i ≤ N such that xi = 1 = yi
}
.

Then for x, y, z, w ∈ X the birth, death and competition rates are given by

b(x, y) := b̄1X 2\DN (x, y) and d(x, y) := d̄ and c(x, y, z, w) := c̄

for some finite b̄, d̄, c̄ ∈ R+. Moreover define µ > 0 to be the mutation rate per gamete.
Since usually the number of loci N is big and the mutation rate µ is small we assume
that the number of mutation per birth is Poisson distributed with mean 2µ. The muta-
tion location then is uniform distributed among all 2N possible positions. During gamete
formation, recombination events occur with constant rates. Let r ∈ [0, 1] be the probab-
ility that a crossover breakpoint occurs between two adjacent gene sequences. At these
points the genetic information is split and any copy is chosen at uniformly at random to
produce the gamete. We assume that a crossover breakpoint occurs at any possible cutting
point with equal probability c, independently of all other points. Knowing this the prob-
abilities m(x1, x2, y1, y2, z1, z2) can be calculated for any three pairs of genetic information
x1, x2, y1, y2, z1, z2 ∈ X that the paring of (x1, x2) with (y1, y2) results in (z1, z2). First define
the function γ : {1, . . . , N − 1} → {0, 1} that determines weather there is a crossover point
between two genes or not in the sense that

γ(i) =

1 if there is a crossover breakpoint between genes i and i+ 1
0 else.

Then define the choice function τγ : {1, . . . , ‖γ‖1 + 1} → {1, 2} that chooses one of the two
copies of each gene segments. Adding both together we define the function φγτγ : X 2 → X that
determines the gamete of an individual with crossover points determined by γ ∈ {0, 1}N−1

and chromosome selection τγ ∈ {1, 2}‖γ‖1+1 as

φγτγ (x1, x2) =
(
x1
τγ(1), x

2
τγ(γ(1)+1), . . . , x

N
τγ(γ(1)+...+γ(N−1)+1)

)
k=1,...,N
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Then we can define the mating and mutation probabilities in a general setting as

m(x,y, dz) =
∑

γx,γy∈{0,1}N−1

r‖γx‖1+‖γy‖1(1− r)2N−2−‖γx‖1−‖γy‖1 1
2‖γx‖1+‖γy‖1+2 (3.8)

×
∑

τx∈{1,2}‖γx‖1+1

τy∈{1,2}‖γy‖1+1

∞∑
k=0

(2µ)k
k! e−2µ 1

Zk

∑
m∈32N

k

δ((
φγxτx (x),φγyτy (y)

)
+m
)
∧1

(dz)

where 32N
k :=

{
m ∈ N2N

+ : m1 + . . .+m2N = k
}
is the set of all lattice vectors in N2N

+ with
one norm equal to k, moreover Zk = ∑2N

j=0
(2N
j

)
pj(k) is the size of the set 32N

k and where
pj(k) is the number of partitions of k into exactly j parts. For notational reasons define for
x ∈ R2N and k ∈ R the component wise maximum as x ∧ k := (x1 ∧ k, . . . , x2N ∧ k).

3.6.2.2 Results

In the initial equilibrium state, where the parameter c0 is present, specific combinations of
the parameters N and µ may result in a total population size that is less than the carrying
capacity. Nevertheless, all relative statistics, such as prevalence and mutation burden, remain
comparable to those of the constant size model. The reduction in population size associated
with specific parameter combinations gives rise to heightened relative fluctuations, thereby
increasing the likelihood of extinction for the least loaded class due to natural fluctuations.
The extinction of c0 in this scenario precipitates a rapid escalation in mutation burden and
prevalence. In contrast to the constant size model, the remaining healthy individuals are
unable to effectively manage the rapidly rising prevalence, resulting in the population’s rapid
extinction. By modifying the model to maintain a constant overall birth rate distributed
evenly among all healthy individuals, the exact dynamics observed in the Wright-Fisher
model can be replicated.

3.6.3 Remark on Recombination

In this study, recombination is conducted in two stages. Firstly, potential crossover break-
points are identified within the genome. Subsequently, the respective gene segments are
selected with equal probability from either the maternal or paternal genome. Consequently,
the mean number of true crossover breakpoints is approximately equal to the number of po-
tential breakpoints, divided by two. A true crossover breakpoint occurs only when different
origins are chosen for two consecutive genes, which occurs at each potential breakpoint with
probability 1

2 . An alternative implementation, frequently encountered in the literature, com-
bines these two processes into a single one. In this approach, crossover breakpoints are also
determined for each individual with equal probability between each gene. However, these
automatically result in switching between the maternal and paternal genomes, or vice versa.
Consequently, a single starting genome is selected (maternal or paternal), and switching oc-
curs automatically at each breakpoint. The two implementations are equivalent. However,
since the selection process is already incorporated into the latter, the recombination rate,
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which is the probability of a crossover breakpoint occurring between neighbouring genes,
ranges from 0 to 1

2 instead of r ∈ [0, 1] as in the former. Accordingly, the case of full recom-
bination, which is the focus of this study, is equivalent to a recombination rate of r = 1/2
for models with the second implementation of recombination.
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4 DenseGillespieAlgorithm.jl

4.1 Home

This package implements a version of the Gillespies algorithm that performs exact stochastic
simulations for dense problems. The Gillespie algorithm [80], introduced by Daniel Gillespie
in 1976, is a fundamental tool for simulating the time evolution of systems with discrete,
stochastic events, particularly in contexts like biochemical reactions and population dynam-
ics. Its applications are particularly prevalent in contexts such as biochemical reactions and
population dynamics. The Gillespie Algorithm is employed to simulate the behaviour of
systems wherein reactions or events occur at random intervals. The algorithm generates a
sequence of events and their timings by first calculating the rates at which different events
or reactions occur. Subsequently, the time until the next event is determined based on these
rates, and the type of event that occurs next is selected according to its probability. In the
final step, the system state is updated based on the event, and the process is repeated.

The Gillespie algorithm is a highly renowned and widely utilised technique across diverse
communities and ecosystems. A particularly efficient, flexible and comprehensive implement-
ation can be found in the JumpProcess.jl package within the SciML ecosystem. We strongly
recommend the use of this framework wherever feasible.

However, the majority of implementations of the Gillespie algorithm require prior knowledge
of all potential types and all reactions between these types before the reaction commences.
A classic illustration of this is the SIR model (see 4.3). The objective of our implementation
in this package is to eliminate this restriction and permit the consideration of both high-
dimensional systems, where the precise interactions between every conceivable combination
are theoretically possible but practically infeasible, and additionally, systems where the trait
space is uncountable, such as the real line. In both cases, the number of distinct traits that
are present at any given time is finite, given that the population size is limited. However,
new types emerge during the course of the simulation, and the interactions between these
types are determined by their specific characteristics.

4.1.1 Manual Outline

• Manual

– Installation

– Setting up the model functions

– Setting up the model parameter, population history and initial population
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– Execute the simulation

– Customized statistics

• Examples

– 1. SIR-Model

– 2. Continuous trait space

– 3. High-dimensional model

• Performance tips

– Julia performance tips and benchmarking

– Natural bottleneck in Gillespies Algorithm

– Reuse memory space

– Recalculate vs. update

– Keep calm

• Public API

– Detailed API

4.1.2 Index

• DenseGillespieAlgorithm.chooseevent

• DenseGillespieAlgorithm.chooseevent

• DenseGillespieAlgorithm.dropzeros!

• DenseGillespieAlgorithm.dropzeros!

• DenseGillespieAlgorithm.historylength

• DenseGillespieAlgorithm.mainiteration!

• DenseGillespieAlgorithm.mainiteration!

• DenseGillespieAlgorithm.nexteventandtime

• DenseGillespieAlgorithm.nexteventandtime

• DenseGillespieAlgorithm.onestep!

• DenseGillespieAlgorithm.run_gillespie!

• DenseGillespieAlgorithm.run_gillespie!

• DenseGillespieAlgorithm.saveonestep!

• DenseGillespieAlgorithm.stop!
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• DenseGillespieAlgorithm.sumsumdict

4.2 Manual

The DenseGillespieAlgorithm framework is designed to assist researchers in simulating their
complex models in an exact stochastic manner. It is the responsibility of the user to im-
plement all model-specific functions, such as those pertaining to birth and death events or
rate functions. Once this has been done, the framework executes the Gillespie Algorithm
and saves the population history. The following section provides an overview of the main
function of this package.

4.2.1 Installation

4.2.1.1 Install from GitHub

You can install the package directly from this GitHub repository:
us ing Pkg
Pkg . add ( " https : // github . com/ roccminton/DenseGi l l e sp i eAlgor i thm . j l " )

4.2.1.2 Install from Julia

Once the package is registered in the official Julia package registry, you can install it via:
us ing Pkg
Pkg . add ( " DenseGi l l e sp i eAlgor i thm " )

This will install the latest stable version of the package and all required dependencies.

Package dependencies When loading the package directly from GitHub, the following
packages must be available Random, Distributions, ProgressMeter, SparseArrays

4.2.2 Setting up the model functions

The initial step is to define all interaction functions for the model. In population models,
these are typically limited to two: birth and death. However, there is no upper limit on the
number of interactions that can be included. As the number of fundamentally different in-
teractions increases, the efficiency of the algorithm is reduced. The framework is speciallised
to a small number of different events.

Subsequently, all the interaction functions should be incorporated into a single execute func-
tion. This function must accept three inputs: an index, the current population state, and
the model parameter. The index specifies which of the defined events should be executed.
The current population state is then modified by the event functions.
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execute ! ( i , x , par )

Next we need to define the rates function. There must be as many rates as there are
interaction events. Therefore the variable initrates is usually a Vector with as many
entries as there are events. The rates function takes as input the initial rates, the current
population state and the additional model parameters. The function should calculate the
rates according to the population state and modify the initrates accordingly.

r a t e s ! ( i n i t r a t e s , x , par )

Function names The function name may be designated as desired, as they are passed to
the core function. The nomenclature is inconsequential.

Function signature Nevertheless, it is crucial to maintain the original function signature,
which entails retaining the sequence and the number of arguments as they are called within
the algorithmic structure.

Parameter variable There are no restrictions on the parameter variable par. Any addi-
tional information used to calculate rates and to change the current population state can
be added to the parameter element that is passed through all functions. For example, if
you want to know the current time of the simulation within the functions you run for time-
inhomogeneous models, you could add this to your model parameter.

4.2.3 Setting up the model parameter, population history and initial population

The final step before running the simulation is to define the model parameters, including the
time horizon of the simulation and the initial population state, as well as a blank population
history.

The time horizon of the simulation is tipically a UnitRange, but can be anything that can
be enumerated. The type of initial population state should correspond to the functionalities
defiend in the function rates! and execute! as they use and modify this type. The empty
population history should also match the type of population state, as it will be copied into
the population history. In addition, if the population history is a vector or matrix, it should
be at least as long as the time horizon. You can customise the saving process with your
own Statistics! function. In this case, you will have to adapt the coupling history to the
functionalities of this function. For more details, see Customized Statistics (4.2.5)
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4.2.4 Execute the simulation

With everything in place, it is time to run the simulations. To do this, call the run_gillespie!
function from the package.

r un_g i l l e s p i e ! (
time , n_0 , par ,
execute ! , r a t e s ! ,
i n i t r a t e s ,
popu lat ion_his tory [ ,
h s t a r t =0, s t a t i s t i c !
] )

Run a exact stochastic simulation, return and fill the population_history.

Arguments

• time::AbstracVector: time interval for the simulation

• n0: initial population state

• par: additional parameter (gets passed to ‘execute¡ and ‘rates¡)

• execute!: execute function

• rates!: rates function

• initrates: initial rates

• population_history: empty population history

• hstart=0: time shift for parameter change (opitonal)

• statistic!: additional statistic function (optional)

Extended help

• Note that n0,initrates,population_history all three get modified during the sim-
ulation.

• The algorithm expects the execute! function to have the following signature

execute ! ( i : : Number , n0 , par )

where the i is the event that gets executed and the population state n0 gets modified
accordingly. The only exception is when the initrates are given as a dictionary. In
that case the signature is execute!(i,trait,n0,initrates,par), where trait is the
key that is modified.

• The algorithm expects the rates! function to have the following signature

r a t e s ! ( i n i t r a t e s , n0 , par )

105



4 DenseGillespieAlgorithm.jl

where the rates get modified according to the current population state given in n0.

• The algorithm expects the statistic! function to have the following signature

s t a t i s t i c ! ( populat ion_hist , t , n0 , par )

where the population history gets modified at position t with the current population
state n0.

• Note that the population_history needs to be accessible via index from 1 to length(time),
or if hstart is given from 1+hstart to length(time)+hstart. Unless a specified
statistic! function is given.

• Note that the initial population state n0 must match the population_history in
the sense that population_history :: Vector{typeof(n0)}. Unless a specified
statistic! function is given.

• The parameter variable par is passed through all functions (execute!,rates!,statistics!),
thereby affording the user additional flexibility.

Once the simulation has reached its conclusion, the modified population history is returned
for further analysis.

4.2.5 Customized statistics

For many high-dimensional models, the exact configuration at any given time is too much
information. In many cases only summery statistics are needed. To avoid accumulating too
much data during the runtime of the algorithm that is not needed afterwards, you can define
your own statistic! function. In this case, only the information you want to collect is
stored for further analysis.

As for the rates! and execute! functions, the function signature is of particular signific-
ance. The function accepts as input the population history, which is modified by the function
and the current time index, hence the index at which the statistics of the current population
state are saved. Additionally, the current state and the model parameter are required.

s t a t i s t i c s ! ( populat ion_history , t , x , par )

4.3 Examples

Three illustrative examples are provided. The first is a minimal working example, designed
to facilitate the initial implementation of the framework on the user’s machine. The second
is a slightly more advanced example, which illustrates the use of an uncountable trait space
and caching for performance improvement in a particular use case. The third is a highly
complex example, which demonstrates the comprehensive versatility of the package.
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4.3.1 1. SIR-Model

The SIR model is a tree-dimensional model that is used to model infectious diseases. It is
a simple model that assumes that individuals can be placed into one of three categories:
susceptible, infected, or recovered. Infected individuals can infect susceptible individuals
through random interactions. After becoming infected, individuals can recover and become
immune. For more details, see for example here.

The initial step is to implement the fundamental interaction functions. In this scenario, two
events are occurring: infection and recovery. The objective is to implement these functions
in a manner that modifies the population state, which is represented as a vector with three
entries, one for each possible state of an individual.
us ing Plot s
us ing DenseGi l l e sp i eAlgor i thm

# Def ine the r e a c t i o n s
func t i on i n f e c t i o n ! ( x )

x [ 1 ] += −1
x [ 2 ] += 1
nothing

end

func t i on recovery ! ( x )
x [ 2 ] += −1
x [ 3 ] += 1
nothing

end

The subsequent step is to combine the aforementioned two functions into a single execute
function, which will subsequently be provided to the algorithm.
#Combine a l l r e a c t i o n s in to one execute ! f unc t i on
func t i on execute ! ( i , x , par )

i f i == 1
i n f e c t i o n ! ( x )

e l s e i f i == 2
recovery ! ( x )

e l s e
e r r o r ( "Unknown event number i = $ i " )

end
nothing

end

Furthermore, define the rate at which the events occur, which also depends on the population
state. It should be noted that a modification of an existing variable that holds the current
rates is necessary. In this case, as there are two events, namely infection and recovery, the
rates variable will be a vector with two entries.
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# Def ine the r e a c t i o n s ( r e a c t i on r a t e s and s p e c i e s i n t e r a c t i o n s )
func t i on r a t e s ! ( ra te s , x , par )

#ra t e o f i n f e c t i o n
r a t e s [ 1 ] = par . b ∗ x [ 1 ] ∗ x [ 2 ]
#ra t e o f recovery
r a t e s [ 2 ] = par . g ∗ x [ 2 ]
nothing

end

Prior to commencing the study, it is essential to define all relevant model parameters. These
include the interaction rates, the initial population state and the time horizon for the sim-
ulation. Prior to commencing the simulation, it is essential to define all relevant model
parameters. These include the interaction rates, the initial population state and the time
horizon for the simulation. Additionally, it is necessary to provide the algorithm with an
empty population history, which will be populated with data during runtime.

#Def ine the model parameter
par = (

b = 0.000005 ,
g = 0.005

)

# Def ine the i n i t i a l s t a t e o f the system
x0 = [ 9999 , 1 , 0 ]

# Def ine the time hor i zon f o r the s imu la t i on
t = 0:2000

# I n i t i a l i z e populat ion h i s t o r y
h i s t = ze ro s ( Int , ( l ength ( t ) , 3 ) )

At this point in the process, all the necessary components have been put in place, and the
task can be handed over to the core function of the package. Once the simulation has been
executed, the results are plotted.

# Run the s imu la t i on
r un_g i l l e s p i e ! (

t , x0 , par ,
execute ! , r a t e s ! ,
Vector {Float64 }( undef , 2 ) , h i s t

)

# Analyze or p l o t the r e s u l t ( example with a s imple p r i n t )
p l o t ( h i s t , l a b e l =["S " " I " "R" ] )
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Figure 4.1: SIR plot

JumpProcess.jl While it is feasible to construct such straightforward examples using the
DenseGillespieAlgorithm, this is not the typical application. For relatively simple models, the
JumpProcess.jl package offers greater flexibility and facilitates the implementation process.

4.3.2 2. Continuous trait space

In this example, we consider an individual-based model of adaptive dynamics, wherein the
trait space is a subset of the real line. It is therefore impossible to list all the types and
interaction rates between them, as there are uncountably many. It is thus necessary to
implement the rates and interactions in a dynamic manner.

In the context of adaptive dynamics models, individuals are characterised by a specific trait,
which in this case is a real number. The mortality and fertility rates of individuals are
contingent upon this trait. Moreover, competition among individuals is contingent upon the
trait in question. Furthermore, at birth, with a probability of µ, the offspring undergoes a
mutation and displays a distinct trait in comparison to its parents.

For further insight into the subject of adaptive dynamics models, we would direct the reader
to the lecture notes by Anton Bovier.

We present a specific case study of an adaptive dynamics model, originally proposed by
Dieckmann and Doebeli [57]. Here the trait space is X = [−1, 1] ⊂ R. The birth rate is
given by b(x) = exp(−x2/2σ2

b ) for some σb > 0. The death rate is constant d(x) = d and
the competion between individuals depends only on theri distance by c(x, y) = exp(−(x −
y)2/2σ2

c ) for some σc > 0. Moreover the mutation kernel, that chooses the new trait of an
offspring at birth is a Gaussian law with mean 0 and variance 0.1 conditioned to [−1, 1].

The next step is to begin the implementation of this model, starting with the rates function.
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us ing D i s t r i bu t i o n s

#b i r th ra t e
b(x , g ) = exp(−x^2 / (2 g ^2))
#death ra t e
d(x , d) = d
#competiton ke rne l
c (x , y , g , K) = inv (K) ∗ exp(−(x − y)^2 / (2 g ^2))
#mutation ke rne l
mutation (x ) = rand ( truncated (Normal (x , 0 . 1 ) , −1, 1 ) )

Given that we anticipate a relatively limited number of distinct traits to be present at any
given time, but a considerable number of representatives for any given trait that we elect to
implement this model with, we have opted to utilise dictionaries. Each trait is a key within
the dictionary, with the value being a triple consisting of the size of the subpopulation and
its intrinsic birth and death rate. By saving the birth and death rate, the need for repeated
recalculation of the same rate in each step is avoided; instead, the rate is simply read from
the dictionary. To illustrate,starting in a monomorphic equilibrium at the boudary x0 = −1,
the initial population state would be as follows.

x0 = −1.0

n0 = Dict (
x0 => [

(b( x0 , g_b) − d(x0 , d ) ) / c ( x0 , x0 , g_c , K) ,
b( x0 , g_b) ,
d( x0 , d)
]

)

In this manner, the rate values for each trait are stored in a cache once they are incorpor-
ated into the population. A similar approach is employed for the competition rates between
individuals, with a dedicated dictionary being established to accommodate the various com-
petition rates. In order to establish the competition dictionary, it is necessary to define the
following function.

#Generate a cach d i c t i ona ry f o r a l l compet i t ion r a t e s between
#ind i v i d u a l s from the populat ion s t a t e ps
func t i on generatecompdict ( ps , compet i t ion )

Indiv idualType = keytype ( ps )
I nd i v i dua l s = c o l l e c t ( keys ( ps ) )
#generate empty d i c t i ona ry
C = Dict {

Tuple{ IndividualType , Indiv idualType } ,
Real

} ( )
#populate d i c t i ona ry
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f o r x in keys ( ps ) , y in keys ( ps )
C[ ( x , y ) ] = compet i t ion (x , y )

end
return C

end

The cached values will be passed to the functions via the parameter variable. Additionally,
the birth, death, mutation and competition functions, with their fixed parameter values, will
be stored there. Furthermore, it is necessary to adjust all model parameters, including the
variances of the Gaussian birth and competition rates, the population size, and the time
frame.

t = 0:1000

par = (
b i r th = x −> b(x , 0 . 9 ) ,
death = x −> d(x , 0 . 0 ) ,
compet i t ion = (x , y ) −> c (x , y , 0 . 8 , 1000) ,
mutate = mutation ,
mu = 0.00015 ,
K = 1000 ,
compdict = generatecompdict (n0 , ( x , y ) −> c (x , y , 0 . 8 , 1000) ) ,
h i s t o r y l e ng th = length ( t )

)

History length As the population history will be stored in the dictionary, it is necessary to
inform the algorithm of the duration of the simulation. To this end, the field "historylength"
must be added to the parameter variable.

The next step is to define the rates function. In this case, the rates are also provided as
a dictionary. Each subpopulation has two rates: a birth rate and a death rate. These are
calculated from the cache and written to the dictionary.

#de f i n e r a t e s func t i on
func t i on r a t e s ! ( r a t e s : : Dict , ps : : Dict , par )

#i t e r a t e through cur rent populat ion
f o r (x , vx ) in ps

#s i z e o f subpopulat ion
nx = vx [ 1 ]
#check i f r a t e s are a l r eady cached , i f not do so
! haskey ( rate s , x ) && (

r a t e s [ x ] = va l type ( r a t e s ) ( undef , 2 )
)

#b i r t h r a t e n_x ∗ b(x )
r a t e s [ x ] [ 1 ] = nx∗vx [ 2 ]
#deathrate n_x ∗ (d(x ) + sum c (x , y ) n_y)
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r a t e s [ x ] [ 2 ] = nx∗ vx [ 3 ]
f o r ( t r a i t t up l e , c ) in par . compdict

t1 , t2 = t r a i t t u p l e
t1 == x && (

r a t e s [ x ] [ 2 ] += nx ∗ ps [ t2 ] [ 1 ] ∗ c
)

end
end

end

The process of adding a new trait to the population at birth is rendered challenging by the
presence of extensive caching, particularly in relation to competition rates. Consequently, a
preliminary function is first devised to facilitate the addition of new traits to the population,
prior to the implementation of the birth! and death! functions.

#add a new t r a i t to cur rent populat ion
func t i on addnewtrait ! ( ps , ra te s , par , t r a i t )

#add to populat ion s t a t e
ps [ t r a i t ] = [ par . d i f f , par . b i r th ( t r a i t ) , par . death ( t r a i t ) ]
#s e t compet i t ion
f o r o the r_t ra i t in keys ( ps )

par . compdict [ ( t r a i t , o the r_t ra i t ) ] =
par . compet i t ion ( t r a i t , o the r_t ra i t )

par . compdict [ ( o ther_tra i t , t r a i t ) ] =
par . compet i t ion ( other_tra i t , t r a i t )

end
end

The birth! and death! functions can now be defined with relative ease and combined into
a single execute! function.

func t i on b i r th ! ( ps , ra te s , par , t r a i t )
#Birth with or without mutation
i f par .mu > 0 .0 && rand ( ) <= par .mu

#mutate to new type/ s p e c i e s and add to s p e c i e s
new_trait = par . mutate ( t r a i t )
#setup the s i z e o f the new type
i f haskey ( ps , new_trait )

ps [ new_trait ] [ 1 ] += par . d i f f
e l s e

addnewtrait ! ( ps , ra te s , par , new_trait )
end

e l s e
ps [ t r a i t ] [ 1 ] += par . d i f f

end
nothing

end

112



4 DenseGillespieAlgorithm.jl

f unc t i on death ! ( ps , t r a i t , pr )
ps [ t r a i t ] [ 1 ] −= par . d i f f

end

func t i on execute ! ( i , t r a i t , ps , ra te s , pr )
i f i==1

b i r th ! ( ps , ra te s , pr , t r a i t )
e l s e i f i==2

death ! ( ps , t r a i t , pr )
e l s e

e r r o r ( " Index Error : Unknown event #$ i " )
end

end

To initiate the simulation, it is merely necessary to establish an empty rates dictionary and
population history, and then to execute the run_gillespie! function.

#empty populat ion h i s t o r y
h i s t = Dict ( x=>ze ro s ( e l t ype ( va l type ( n0 ) ) , l ength ( t ) ) f o r x in keys ( n0 ) )
#empty r a t e s d i c t i ona ry ( ge t s populated in f i r s t i t e r a t i o n )
i n i t r a t e s = Dict {keytype ( n0 ) , Vector {Real }}( )

#execute the s imu la t i on
r un_g i l l e s p i e ! (

t ,
n0 ,
par ,
execute ! ,
r a t e s ! ,
i n i t r a t e s ,
h i s t

)

To observe the findings, the size of the subpopulations is plotted over time, with the different
traits represented by varying colours.

us ing Plot s

#func t i on to determine the c o l o r o f the t r a i t
f unc t i on c (x )

#f i nd the b i g g e s t and sma l l e s t key in the populat ion h i s t o r y
min = min ( keys ( h i s t ) . . . )
max = max( keys ( h i s t ) . . . )
#i f the re ever has been only one t r a i t r e turn 1
#otherwi se a c o l o r inbetween
i f min == max
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re turn 1
e l s e

re turn f l o o r (
Integer , (

(x−min )/(max−min ) ) ∗ l ength (
cgrad ( : thermal )

)−1
) + 1

end
end

#setup p lo t
p=p lo t ( legend=f a l s e )

f o r (x , his_x ) in h i s t o r y
p l o t ! ( p , time , his_x , c o l o r=cgrad ( : thermal ) . c o l o r s . c o l o r s [ c ( x ) ] )

end

p

Figure 4.2: Simulation results with a mutation rate of 1/K where K is the carrying capacity.

Mutation rate In this scenario, the runtime of the algorithm is highly dependent on the
mutation rate. An increase in the mutation rate results in a greater number of different
traits. This implementation with dictionaries is most suited for a small number of traits
being alive at the same time. However, if the mutation rate is increased to levels of frequent
mutation, it is recommended that dictionaries are not used, but instead vectors should be
employed for saving the data. The following example demonstrates this technique.
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Population size Nevertheless, increasing the population size in this scenario does not sig-
nificantly prolong the runtime of the algorithm. This is an advantage of using dictionaries
and caching the competition. However, this approach is only effective when the mutation
rate is scaled with the population size (as demonstrated in the above example).

Empty cache It should be noted that the algorithm performs regular checks for subpopula-
tions in the dictionary with a population size of zero. In the event that such subpopulations
are identified, they are removed in order to prevent an excessive expansion of the dictionary.
This process is carried out by the DenseGillespieAlgorithm.dropzeros! function.

Switch-off caching It is possible to implement the same dynamics without the caching of
competition rates. In this case, the only necessary modification is to alter the for-loop in
the rates! function, which iterates over all pairs of tuples to

f o r t1 in keys ( ps )
r a t e s [ x ] [ 2 ] += nx ∗ ps [ t1 ] [ 1 ] ∗ par . compet i t ion (x , t1 )

end

and delete the for-loop over all other traits in the addnewtrait! function. In instances
where the number of distinct traits is considerable, this approach is advised.

4.3.3 3. High-dimensional model

The final example we will present is the most complex. We implement a model to analyse
the dynamics of complete recessive lethal diseases. Each disease is triggered by the mutation
of a gene and is expressed only in a homozygous state. Therefore, the traitspace for this
model is X = {0, 1}2×N where N is the number of genes. A detailed description and results
of numerous simulations with this exact framework can be found here [136].

Individuals expressing a disease are excluded from the mating process. At birth, each indi-
vidual randomly selects a fit partner from the population. Following the process of recombin-
ation, whereby the diploid genetic information is reduced to a haploid zygote incorporating
crossover events, the gametes of the two parents fuse to form a new offspring. New mutations
emerge at a constant rate. It is assumed that the intrinsic death rate and the competition
among all individuals are identical. Only the birth rate is reduced to zero for infected
individuals.

Given that there are 22N potential configurations with interactions between them, it is not
feasible to enumerate them all prior to the start of the simulation. Furthermore, it is of
no particular interest to ascertain the precise genetic configuration of the entire population.
Typically, one is only concerned with summary statistics, such as the mutation burden (the
average number of mutations per individual) and the prevalence (the fraction of individuals
affected by a disease). It is therefore only these statistics that will be retained for subsequent
analysis. However, for the propagation of the population dynamics, it is essential to have
access to the exact configurations. To be more precise, the total birth and death rates can
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be calculated via the summary statistics, which we utilise. However, in order to employ an
offspring, the configurations are required.

In order to enhance the efficacy of the algorithm, it is essential to make extensive use of the
parameter variable, which is passed to all relevant functions. The intrinsic configuration is
stored therein in an optimal way, while the population state encompasses only the summary
statistics and the total population size, as these are the necessary components for computing
the event rates.

The initial stage of the process entails the establishment of all model-specific parameters,
including the constant birth, death, and competition rates; the expected number of mutations
at birth, denoted by µ; the number of recessive genes; the initial population size; and the
recombination rate.

us ing SparseArrays
us ing Random

t = 0:1000

par = (
b i r th = 1 . 0 ,
death = 0 . 9 ,
compet i t ion = 0 .1 / 1000 ,
mu = 0 . 1 ,
Nloc i = 100 ,
K = 1000 ,
recombinat ion = 0.01

)

n0 = Dict (
" PopSize " => par .K,
" I l l " => 0 ,
"ML" => 0

)

The only two possible events are birth and death, the rates! function can be expressed as
follows:

f unc t i on r a t e s ! ( ra te s , ps , par )
#l i n e a r b i r th f o r a l l propagable i n d i v i d u a l s
r a t e s [ 1 ] = par . b i r th ∗ ( ps [ " PopSize "]−ps [ " I l l " ] )
#uniform l o g i s t i c death
r a t e s [ 2 ] = ps [ " PopSize " ] ∗ par . death

+ ps [ " PopSize " ] ∗ ( ps [ " PopSize " ] − 1) ∗ par . compet i t ion
nothing

end
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The definition of the function that executes the birth is a more challenging undertaking, given
that it involves three mechanisms: mating, recombination and mutation. Nevertheless, prior
to an explication of the implementation of the execute! function, it is necessary to describe
the means by which the population configuration is saved internally. Since the size of any
given trait is relatively large (2N bytes), and since we anticipate a significant number of
different traits, but a limited population size, we have chosen to construct a vector of traits
that is as large as the expected population size, with additional space for fluctuations. This
vector will store all the traits. Furthermore, a dictionary of indices is maintained, which
points to the indices of traits in the vector. The dictionary differentiates between traits
that are either alive and healthy, or alive but ill (thus expressing the disease and unable to
reproduce), or that are not part of the current population. The aforementioned free traits
can then be modified if new offsprings are born, eliminating the necessity of initiating a new
2×N matrix of Bool‘s each time. This method allows for the saving of a considerable amount
of memory. The production of new traits is dependent upon the absence of free indices. Upon
the death of a fey individual, the index is released into the group of free indices, where it
may be reborn as a new trait at a future point in time. In order to initiate the trait vector,
which encompasses all individual genetic configurations, we have implemented a function
that takes the initial population state as an input and draws a possible trait configuration
from it.

#empty g ene t i c c on f i gu r a t i on
emptytra i t s ( Nloci ,T=Bool ) = [ spze ro s (T, Nloc i ) , spze ro s (T, Nloc i ) ]

#produce t r a i t c o l l e c t i o n from populat ion s t a t e
func t i on i n i t t r a i t s ( par , n0 )

#Setup hea l thy g ene t i c in fo rmat ion
l o c s = 1 : par . N loc i
#Generate hea l ty populat ion with some bu f f e r f o r f l u c t u a t i o n s
t r a i t s = [

emptytra i t s ( par . N loc i )
f o r _ in 1 : round ( Int , par .K + sq r t ( par .K) )

]
#add two mutations to complete ly hea l thy i nd i v i d u a l s
#to get the r equ i r ed number o f i l l i n d i v i d u a l s
f o r i in 1 : n0 [ " I l l " ]

l = rand ( l o c s )
t r a i t s [ i ] [ 1 ] [ l ] = 1
t r a i t s [ i ] [ 2 ] [ l ] = 1

end
i nd i v i d u a l s = 1 : n0 [ " PopSize " ]
#add the remaining mutaions to the populat ion
#to get the r equ i r ed mutation load
f o r i in n0 [ " I l l " ]+1 : n0 [ "ML"]−2∗n0 [ " I l l " ]

#choose random ind i v i dua l and l o c a t i o n
ind = rand ( i n d i v i d u a l s )
l = rand ( l o c s )
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#recoo s e random ind i v i dua l and l o c a t i o n
#i f the i nd i v i dua l has a l r eady a mutation
#at that l o c a t i ono or at the homologe gene
whi l e t r a i t s [ ind ] [ 1 ] [ l ]+ t r a i t s [ ind ] [ 2 ] [ l ] !== 0

ind = rand ( i n d i v i d u a l s )
l = rand ( l o c s )

end
t r a i t s [ ind ] [ rand ( par . choosecopyfrom ) ] [ l ] = 1

end
return t r a i t s

end

Subsequently, both the traits and the corresponding index dictionary are incorporated into
the parameter variable. Additionally, other necessary elements are included, allowing for
their reuse rather than generation on each occasion. These include a vector of random
numbers for mate selection, the mutation distribution, the distribution of mutation locations
and a unit range for gene segment selection.

par = ( par . . . ,
rndm = Vector { Int }( undef , 2 ) ,
MutationsPerBirth = Poisson ( par .mu) ,
MutationLocation = 1 : par . Nloci ,
t r a i t s = i n i t t r a i t s ( par , n0 ) ,
i n d i c e s = Dict (

" hea l thy " => c o l l e c t ( n0 [ " I l l " ]+1 : n0 [ " PopSize " ] ) ,
" i l l " => c o l l e c t ( 1 : n0 [ " I l l " ] ) ,
" f r e e " => c o l l e c t (

n0 [ " PopSize " ]+1 : round ( Int , par .K + sq r t ( par .K) )
)

) ,
h i s t o r y l e ng th = length ( t ) ,
choosecopyfrom = 1 :2 ,

)

The initial step on implementing the birth! function is to implement a function that es-
tablishes the crossover breakpoints for recombination at random, in accordance with the
specified recombination rate. The function initially draws the number of crossover break-
points from a Poisson distribution, and subsequently selects the position at random from
among all N −1 positions. The resulting vector of ‘UnitRange‘ segments is then returned.

#output f o r recombinat ion ra t e 1
f u l l r e c c u t s ( par ) = [ i : i f o r i in 1 : par . N loc i ]
#output f o r recombinat ion ra t e 0
noreccut s ( par ) = [ 1 : par . N loc i ]

f unc t i on r e c cu t s ( par )
i f par . recombinat ion == 1
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re turn f u l l r e c c u t s ( par )
e l s e i f par . recombinat ion == 0

return noreccut s ( par )
e l s e

#draw number o f chromosome cuts
ncuts = rand ( Poisson ( par . recombinat ion ∗par . Nloc i ) )
#equa l s f u l l recombinat ion
ncuts >= par . Nloc i − 1 && return f u l l r e c c u t s ( par )
#equa l s no recombinat ion
i s z e r o ( ncuts ) && return noreccut s ( par )
#otherwi se produce i nd i v i dua l segments at random
cut sa t = so r t ! (

sample ( 1 : par . Nloci −1, ncuts , r ep l a c e=f a l s e )
)

ccut s = [ 1 : cu t sa t [ 1 ] ]
f o r i in 2 : l ength ( cut sa t )

push ! ( ccuts , cu t sa t [ i −1]+1: cu t sa t [ i ] )
end
push ! ( ccuts , cu t sa t [ end ]+1: par . N loc i )
r e turn ccut s

end
end

Subsequently, once two parents have been identified for mating, the process of the offspring
generation is defined. This encompasses recombination, mating and mutation. The new
genetic configuration of the offspring is stored at a designated index.

func t i on o f f s p r i n g ! ( o f f spr ing_index , par , n_mut)
#randomly recombine the parenta l g en e t i c in fo rmat ion
#f i r s t f o r one then f o r the other parent
f o r i in par . choosecopyfrom # =1:2

#randomly choose one copy f o r each
#chromosome/gene block
ccut s = r e c cu t s ( par )
choosecopy = rand ( par . choosecopyfrom , l ength ( ccut s ) )
f o r ( r , chromosome ) in enumerate ( ccut s )

view (
par . t r a i t s [ o f f sp r ing_index ] [ i ] ,
chromosome
) .=

view (
par . t r a i t s [ par . rndm [ i ] ] [ choosecopy [ r ] ] ,
chromosome
)

end
end
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#add n_mut mutations to random po s i t i o n s mutation
#i f the re are no mutations to add sk ip the mutation proce s s
i f n_mut > 0

f o r _ in 1 :n_mut
par . t r a i t s [

o f f sp r ing_index
] [

rand ( par . choosecopyfrom )
] [

rand ( par . MutationLocation )
] = 1

end
end
nothing

end

The final step before integrating all components into a unified system is to implement a
function that updates the population state following the generation of the offspring’s genetic
configuration.It is therefore necessary to ascertain whether the offspring in question exhibits
a mutation in a homogeneous state, which would render it unsuitable for reproduction.
Furthermore, the mutation burden of the offspring must be calculated.
#check i f c on f i gu r a t i on has homogeneous mutation
i sp ropagab l e ( a : : Vector , N loc i ) = i sp ropagab l e ( a )
func t i on i sp ropagab l e ( a : : Vector )

f o r ( i , p ) in enumerate ( a [ 1 ] )
i s one (p) && i sone ( a [ 2 ] [ i ] ) && return f a l s e

end
return true

end
#ca l c u l a t e mutation load
mutationload ( a : : Vector ) = sum(sum( svec ) f o r svec in a )
#modify populat ion s t a t e at b i r th o f o f f s p r i n g
func t i on updateps_birth ! ( ps , par , o f f sp r ing_index )

i f i sp ropagab l e ( par . t r a i t s [ o f f sp r ing_index ] , par . N loc i )
push ! ( par . i n d i c e s [ " hea l thy " ] , o f f sp r ing_index )

e l s e
ps [ " I l l " ] += 1
push ! ( par . i n d i c e s [ " i l l " ] , o f f sp r ing_index )

end
ps [ " PopSize " ] += 1
ps [ "ML" ] += mutationload ( par . t r a i t s [ o f f sp r ing_index ] )

end

The aforementioned processes are unified in the birth! function, which initially identi-
fies potential parents for mating, subsequently generates offspring, and finally updates the
population state.
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#execute the add i t i on o f an i nd i v i dua l
func t i on b i r th ! ( ps , par )

#choose two gene t i c c on f i g u r a t i o n s to mate
rand ! ( par . rndm , par . i n d i c e s [ " hea l thy " ] )
#c l ean up parenta l c on f i g u r a t i o n s
f o r i in par . choosecopyfrom , j in par . choosecopyfrom

dropzeros ! ( par . t r a i t s [ par . rndm [ i ] ] [ j ] )
end
#s e l e c t f r e e index f o r o f f s p r i n g
i f isempty ( par . i n d i c e s [ " f r e e " ] )

o f f sp r ing_index = length ( par . t r a i t s ) + 1
push ! ( par . t r a i t s , emptyt ra i t s ( par . N loc i ) )

e l s e
o f f sp r ing_index = pop ! ( par . i n d i c e s [ " f r e e " ] )

end
#generate o f f s p r i n g s g en e t i c c on f i g u r a t i on
o f f s p r i n g ! (

o f f spr ing_index ,
par ,
rand ( par . MutationsPerBirth )
)

#add the i nd i v i dua l to the cur rent populat ion s t a t e d i c t i ona ry
updateps_birth ! ( ps , par , o f f sp r ing_index )

end

The removal of an individual at death is a relatively straightforward process. It merely
entails freeing the index and updating the population state in accordance with the relevant
changes.

#modify populat ion s t a t e at death o f an i nd i v i dua l
func t i on updateps_death ! ( ps , par , fey_index )

ps [ " PopSize " ] −= 1
ps [ "ML" ] −= mutationload ( par . t r a i t s [ fey_index ] )

end
#execute the removal o f an i nd i v i dua l
func t i on death ! ( ps , par )

#choose f ey
i f rand()<=ps [ " I l l " ] / ps [ " PopSize " ]

fey_index = popat ! (
par . i n d i c e s [ " i l l " ] ,
rand ( 1 : ps [ " I l l " ] )
)

ps [ " I l l " ] −= 1
e l s e

fey_index = popat ! (
par . i n d i c e s [ " hea l thy " ] ,
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rand ( 1 : ( ps [ " PopSize "]−ps [ " I l l " ] ) )
)

end
#add fey to grave ja rd
push ! ( par . i n d i c e s [ " f r e e " ] , fey_index )
#update populat ion s t a t e
updateps_death ! ( ps , par , fey_index )

end

As in the preceding cases, it is necessary to collate both the birth! and death! functions
into a single execute! function.
func t i on execute ! ( i , ps , par )

i f i == 1
b i r th ! ( ps , par )

e l s e i f i == 2
death ! ( ps , par )

e l s e
e r r o r ( "Unknown event index : $ i " )

end
end

Finally, the simulation can be executed following the initialisation of both a blank rates
vector and a blank population history.
#setup empty r a t e s vec to r
i n i t r a t e s = Vector { typeo f ( par . b i r th )} ( undef , 2 )

#setup empty populat ion h i s t o r y
h i s t = Dict ( x=>ze ro s ( va l type ( n0 ) , l ength ( t ) ) f o r x in keys ( n0 ) )

r un_g i l l e s p i e ! (
t , n0 ,
par ,
execute ! ,
r a t e s ! ,
i n i t r a t e s ,
h i s t

)

In order to facilitate the analysis of the data, we present a straightforward graphical repres-
entation.
us ing Plot s
#p lo t the preva l ence
p l o t ( t , h i s t [ " I l l " ] . / h i s t [ " PopSize " ] , c o l o r =:orange , l a b e l ="")
#p lo t the populat ion s i z e ( without ax i s t i c k s )
p l o t ! ( twinx ( ) , h i s t [ " PopSize " ] , c o l o r =:gray , y t i c k s=f a l s e , l a b e l ="")
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#plo t the mutation burden
p lo t ! ( twinx ( ) , h i s t [ "ML" ] . / h i s t [ " PopSize " ] , c o l o r =: red , l a b e l ="")

Population extinction In the event of the population becoming extinct, the aforementioned
method will result in an error, as the division of zero will occur. To circumvent this issue, it
is recommended to first invoke the following function on the data set.

replace_NaN (v ) = map(x −> isnan (x ) ? zero (x ) : x , v )

Figure 4.3: Simulation result showing the mutation load, prevalence and population size.

The grey line in Figure 4.3 represents the population size, which is not represented by any
axis. On the left y-axis, the prevalence is represented by the yellow line, while the mutation
burden is shown by the red line on the right y-axis.

4.3.3.1 Custom statistic! function

Thus far, the only function employed for the purpose of saving the population history was
the built-in DenseGillespieAlgorithm.saveonestep! function, which in this case saves
the mutation burden, prevalence, and population size over time. However, given the intricate
population structure of the model, it may be beneficial to consider saving additional statistics
that extend beyond mere numbers over time. For this example, we are interested in saving
the allele frequencies of the mutated allele per position over time. This necessitates the
definition of a custom statistic! function.

The initial step is to incorporate an additional function call into the existing functions
updateps_death! and updateps_birth! of the form updatestats_death!(ps, par,
fey_index) and updatestats_birth!(ps, par, offspring_index), respectively. This
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allows us to modify the new statistic that we wish to utilise at each event, rather than re-
calculating it from the current population state after every full time step, which is the usual
process.

Empty functions In the event that there is no intention to update the statistical data at
each stage, it is nonetheless recommended that the function call updatestats_event! be
retained in order to ensure the flexibility and reusability of the code. In the absence of a
required function, the implementation of a generic function of the form

func t i on updatestats_death ! end
func t i on updates tat s_bi r th ! end

is sufficient.

In order to enhance the flexibility of the system, a custom data type has been defined to
accommodate the various statistical elements associated with the population history. This
approach facilitates the incorporation of new statistics, should the need arise.

#type to hold populat ion h i s t o r y
s t r u c t PopHist

#mutation burden , preva l ence and populat ion s i z e
mlp : : Dict
#a l l e l e f r e qu en c i e s per pos t i on
loadpos : : Array

end

Unmutable struct It is important to note that the variable type of the population history
has been defined as unmutable, which may appear counterintuitive at first glance. However,
upon closer examination, it becomes evident that the elements within the struct are only
generated once and then populated with data. Meanwhile, the container itself (array, dict,
etc.) remains unchanged. This allows for the use of a faster and lighter unmutable object.
Conversely, if there is a need to modify the fields within the struct, it would be necessary to
define it as a mutable struct.

We choose to save the allele frequencies of the mutated allele at each position as a T × N
matrix, where T is the total length of the simulation. Each column of the matrix represents
the allele frequencies for a single time step. In fact, we will save the precise number of
mutations per gene, leaving the division by the population size to be performed subsequently,
once the simulation has been completed. In order to utilise the enhanced performance
afforded by the addition of the updatestats_event! function, it is necessary to create a
temporary storage location for the current allele frequencies prior to their final saving to the
storage medium for subsequent analysis. Once again, the parameter variable that is passed
to every significant function is employed for this purpose.

#add blank cur rent a l l e l e f r e qu en c i e s to parameter v a r i ab l e
par = (

par . . . ,

124



4 DenseGillespieAlgorithm.jl

c a f s = ze ro s ( Int , par . N loc i )
)

Given the type configuration that is added or removed from the population, the adjustment
of the current allele frequencies is a relatively straightforward process.

#add or remove one i nd i v i dua l from a l l e l e f requency vec to r
func t i on upda t e_a l l e l e f r e q s ! ( af , ind , i )

a f .+= i .∗ ind [ 1 ]
a f .+= i .∗ ind [ 2 ]

end

Furthermore, the corresponding functions for birth and death can be developed upon this
function.

updatestats_death ! ( ps , par , index ) =
upda t e_a l l e l e f r e q s ! ( par . ca f s , par . t r a i t s [ index ] ,−1)

updates tat s_bi r th ! ( ps , par , index ) =
upda t e_a l l e l e f r e q s ! ( par . ca f s , par . t r a i t s [ index ] ,+1)

The additional statistics have now been incorporated into the system, and the next stage is
to save the data at each time step within the specified time horizon into the PopHist type.
This process is carried out by the following function. Additionally, the function responsible
for saving the supplementary statistical data is merged with the one that stores the mutation
burden, prevalence, and population size, which were previously saved in the basic example.
This allows the creation of the custom statistic! function.

func t i on s avea f s ! ( a l l e l e f r e q s , index , ps , par )
view ( a l l e l e f r e q s , index , : ) .= par . c a f s

end

func t i on s t a t i s t i c ! ( pophi s t : : PopHist , index , ps , par )
#save standard s t a t i s t i c
DenseGi l l e sp i eAlgor i thm . saveonestep ! ( pophi s t . mlp , index , ps , par )
#save add i t i ona l s t a t i s t i c
s av ea f s ! ( pophi s t . a l l e l e f r e q s , index , ps , par )

end

As previously described, the final stage of the process is to set up the initial rates, the initial
population history, and then to execute the run_gillespie! function together with the
newly defined statistic! function as a keyword argument.

#setup empty r a t e s vec to r
i n i t r a t e s = Vector { typeo f ( par . b i r th )} ( undef , 2 )

#setup empty populat ion h i s t o r y
h i s t = PopHist (

Dict ( x=>ze ro s ( va l type ( n0 ) , l ength ( t ) ) f o r x in keys ( n0 ) ) ,
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z e ro s ( Integer , ( l ength ( t ) , par . Nloci , ) )
)

r un_g i l l e s p i e ! (
t , n0 ,
par ,
execute ! ,
r a t e s ! ,
i n i t r a t e s ,
h i s t ,
s t a t i s t i c ! =s t a t i s t i c !

)

To analyse the data, one possible approach would be to construct a small GIF that generates
plots of the allele frequencies at each position over time.
us ing Plot s

#c a l c u l a t e f r e qu en c i e s from abso lu te numbers o f mutations
a f s = h i s t . a l l e l e f r e q s . / h i s t . mlp [ " PopSize " ]
#maximal f r e qu en c i e f o r ax i s l im i t
ymax = maximum( a f s )
#c r ea t e animation
anim = @animate f o r i in 0 :100

bar ( view ( a f s , i +1 , : ) , yl im=(0 ,ymax) , l a b e l ="")
end every 10
#show animation
g i f ( anim )

Time intervals In certain instances, the requisite statistic may require a considerable
amount of memory space or a significant amount of time to calculate. In such cases, it
may be more efficient to save and calculate the statistic not in every time step, but rather
only after larger intervals. This can be achieved in two ways. First, the time horizon provided
to the algorithm can be adjusted to a coarser resolution, for instance, 0:10:1000 instead of
0:1000, resulting in a step size of 10 rather than 1. It should be noted that in such instances,
the events continue to occur at the (potentially very small) event rates, but the saving mech-
anism is executed at each full time step. In this scenario, however, all the statistics that are
generated are saved exclusively at the larger time steps. Second, in the event that a specific
statistic is particularly resource-intensive, it is possible to implement an if condition within
the statistic! function that will then save the statistic only if the time index meets the
specified condition.

Snapshots It is a source of considerable frustration to have invested a significant amount
of time in running a comprehensive simulation only to realise, upon completion, that an
alternative statistic might also warrant examination. Consequently, it was beneficial on
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Figure 4.4: As a print medium is static, we’re showing a snapshot of the GIF at generation 100.
You’ll find the moving image in the online version of the documentation.

occasion to also take "snapshots" at every couple of generations. Therefore, a random sample
of the population was selected and all the information for that subpopulation was stored.
As the population size was reduced by taking a sample from the population and the time
horizon was reduced by taking these snapshots on a coarse time grid, the amount of memory
required remained within acceptable limits.

4.4 Performance tips

One of the key benefits of the Gillespie algorithm is its ability to trace a single, precise
stochastic trajectory. Nevertheless, in order to achieve this for each individual event, the
rates must be calculated and re-calculated whenever there is a change in the population
configuration. This makes the algorithm computationally demanding. There are numerous
modifications that can be made in order to enhance performance, such as τ -leaping[82].
However, in this section, our objective is to maintain the precision of the stochastic simulation
and to identify potential bottlenecks and strategies for optimising the performance of the
simulation in its current form.

4.4.1 Julia performance tips and benchmarking

The Julia documentation contains a comprehensive and invaluable array of performance
tips. Should you encounter any unexpected delays in your simulations, we advise you to
consult these tips. It is likely that you will find a solution to the problem by following
the guidance provided. Additionally, we recommend that you review the workflow tips and
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the style guide. These resources assist in enhancing the efficiency, readability, and overall
quality of your code. In particular, we recommend these chapters of the documentation
for researchers who are new to Julia. To assess the efficacy of the functions within your
model, Julia offers an exemplary benchmarking package called BenchmarkingTools.jl. This
enables the comparison of different versions of your code, facilitating the selection of the
most optimal version.

4.4.2 Natural bottleneck in Gillespies Algorithm

It should be noted that both the rates! and execute! functions will be called a considerable
number of times during the course of the simulation. To illustrate, consider a species with
a reproduction rate of 1 within a population of 1 000 individuals over a time horizon of
1 000 generations. In this scenario, the rates! and execute! functions will be called
approximately one million times solely for reproduction events. Consequently, it is crucial to
implement these functions with optimal performance. Every millisecond gained, every byte
saved can significantly impact the runtime and efficiency of the program.

4.4.3 Reuse memory space

Avoid to recreate containers such as arrays or dictionaries, particularly within the execute!
and rates! function. Reuse of these containers is preferable to the allocation of new memory
space with each iteration. The accumulation of data over the course of a simulation can lead
to a reduction in performance.

4.4.4 Recalculate vs. update

In certain scenarios, it is preferable to recalculate data from the current population state
rather than update the data after every event, depending on the model and model parameter
in question. For other models the opposite is may be true. In cases where there is uncertainty
about the optimal implementation strategy, it is recommended to implement both versions
and evaluate their performance using the BenchmarkingTools.jl package. This is the case for
the event rates, which should be recalculated or updated depending on the circumstances
and for the additional statistics that may be saved. However, it should be noted that the
rates! function is usually called much more frequently than the statistics! function.
The statistics are saved at regular intervals, as specified by the time horizon input to the
algorithm, whereas the rates function is called after each event.

4.4.5 Keep calm

The Gillespie Algorithm is a computationally intensive algorithm due to its exact nature.
Following the implementation of complex networks on a high-dimensional trait space, the
execution may require a significant amount of time. It is recommended to test the algorithm
on a smaller scale, benchmark and adapt functions regularly, and only to be concerned if
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the time required to produce the simulation is unexpectedly long or if a disproportionate
amount of memory is allocated. Otherwise, grab a coffee and check out the progress meter
to see how things are going with the simulation.

4.5 Public API

Puplic documentation of all internal functions.

4.5.1 Detailed API

• DenseGillespieAlgorithm.chooseevent - Method

chooseevent (
r a t e s : : Vector {Float64 } ,
t o ta l_ra t e : : Float64

)

Choose from the vector of total rates at random one of the indices of the vector ac-
cording to their rates. The value 0 is returned if the total rates are positive, but too
smale to let the evolution continue.

• DenseGillespieAlgorithm.chooseevent - Method

chooseevent (
r a t e s : : Dict ,
t o ta l_ra t e : : Float64

)

Choose from the dictionary of total rates at random one of the keys of the dictionary
according to their values. The value 0 is returned if the total rates are positive, but
too smale to let the evolution continue.

• DenseGillespieAlgorithm.dropzeros! - Method

dropzeros ! ( ps )

Do nothing for non-dictionary inputs.

• DenseGillespieAlgorithm.dropzeros! - Method

dropzeros ! ( ps : : Dict {Any , Vector })

Eliminates all key value pairs for which the the firts entry of the vector of the value is
zero.

• DenseGillespieAlgorithm.historylength - Method

h i s t o r y l e ng th ( populat ion_hisotry , par )
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Return the simulation time based on the length of the population history. If the
population history is neither a Vector nor a Matrix it is assumed that the Parameter
has a field called historylength that is then returned.

• DenseGillespieAlgorithm.mainiteration! - Method
ma in i t e r a t i on ! (
pop_hist ,
ra te s ,
n0 ,
ct ,
time ,
par ,
ex ! : : F1 ,
r ! : : F2 ,
s t a t ! : : F3 ,
h s t a r t
)

Main iteration of the GillespieAlgorithm for complex models.

• DenseGillespieAlgorithm.nexteventandtime - Method
nexteventandtime ( r a t e s : : Vector {Float64 })

Sample a exponential distributed random variable to determine the time for the next
event and calls choose_event. The return value is a tuple consiting of the envent
index returned by choose_event and the time to the next event.

• DenseGillespieAlgorithm.nexteventandtime - Method
nexteventandtime ( r a t e s : : Dict )

Sample a exponential distributed random variable to determine the time for the next
event and calls choose_event. The return value is a triple consisting of the event
index and trait returned by choose_event and the time to the next event.

• DenseGillespieAlgorithm.onestep! - Method
onestep ! (

x_0 ,
rate s ,
t_0 ,
t_end ,
par ,
ex ! : : F1 ,
r ! : : F2

)

Execute one step of the evolution by modifying x0 and rates and returning the current
time t0.
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• Dense.GillespieAlgorithm.run_gillespie! - Method

run_g i l l e s p i e ! (
time ,
n_0 ,
par ,
execute ! ,
r a t e s ! ,
i n i t r a t e s ,
popu lat ion_his tory [ ,
h s t a r t =0,
s t a t i s t i c !

] )

Run a exact stochastic simulation, return and fill the population_history.

Arguments

– time::AbstracVector: time interval for the simulation

– n0: initial population state

– par: additional parameter (gets passed to ‘execute¡ and ‘rates¡)

– execute!: execute function

– rates!: rates function

– initrates: initial rates

– population_history: empty population history

– hstart=0: time shift for parameter change (opitonal)

– statistic!: additional statistic function (optional)

Extended help

– Note that n0,initrates,population_history all three get modified during the
simulation.

– The algorithm expects the execute! function to have the following signature

execute ! ( i : : Number , n0 , par )

where the i is the event that gets executed and the population state n0 gets
modified accordingly. The only exception is when the initrates are given as a
dictionary. In that case the signature is execute!(i,trait,n0,initrates,par),
where trait is the key that is modified.

– The algorithm expects the rates! function to have the following signature
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r a t e s ! ( i n i t r a t e s , n0 , par )

where the rates get modified according to the current population state given in
n0.

– The algorithm expects the statistic! function to have the following signature

s t a t i s t i c ! ( populat ion_hist , t , n0 , par )

where the population history gets modified at position t with the current popu-
lation state n0.

– Note that the population_history needs to be accessible via index from 1 to
length(time), or if hstart is given from 1+hstart to length(time)+hstart.
Unless a specified statistic! function is given.

– Note that the initial population state n0 must match the population_history
in the sense that population_history :: Vector{typeof(n0)}. Unless a spe-
cified statistic! function is given.

– The parameter variable par is passed through all functions
(execute!,rates!,statistics!), thereby affording the user additional flexibil-
ity.

• DenseGillespieAlgorithm.saveonestep! - Method

saveonestep ! ( pop_hist , index , ps , par )

Save one step of the simulation. Generic method if no explicit statistic! function is
given.

• DenseGillespieAlgorithm.stop! - Method

stop ! ( pop_hist , index , n0 , par , s t a t ! )

Fill the remaining population history with the (statistic of) the current population
state if the evolution came to a halt.

• DenseGillespieAlgorithm.sumsumdict - Method

sumsumdict (D : : Dict { Str ing , Vector })

Calculate the sum of the sums of the vectors that are the values of a dictionary.

132



Bibliography

[1] Eugenische Argumentation im Beschluss des Bundesverfassungsgerichts zum Inzestver-
bot: Stellungnahme der Deutschen Gesellschaft für Humangenetik (GfH). Medizinische
Genetik, 20(2):239–239, 2008.

[2] Stübing v. Germany. European Court of Human Rights., Application no. 43547/08,
2012.

[3] Incest Prohibition. Opinion. German Ethics Council, 2016.
https://www.ethikrat.org/fileadmin/Publikationen/Stellungnahmen/englisch/opinion-
incest-prohibition.pdf.

[4] M. Abouelhoda, T. Sobahy, M. El-Kalioby, N. Patel, H. Shamseldin, D. Monies, N. Al-
Tassan, K. Ramzan, F. Imtiaz, R. Shaheen, and F. S. Alkuraya. Clinical genomics can
facilitate countrywide estimation of autosomal recessive disease burden. Genetics in
Medicine, 18(12):1244–1249, 2016.

[5] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell. New York, Garland Science, xxv + 1552 pp., 4 edition, 2002.

[6] G. E. Allen and C. Dytham. An efficient method for stochastic simulation of biological
populations in continuous time. Biosystems, 98(1):37–42, 2009.

[7] C. E. G. Amorim, Z. Gao, Z. Baker, J. F. Diesel, Y. B. Simons, I. S. Haque, J. Pickrell,
and M. Przeworski. The population genetics of human disease: The case of recessive,
lethal mutations. PLOS Genetics, 13(9):e1006915, 2017.

[8] S. E. Antonarakis. Carrier screening for recessive disorders. Nature Reviews Genetics,
20(9):549–561, 2019.

[9] J. Audiffren and E. Pardoux. Muller’s ratchet clicks in finite time. Stochastic Processes
and their Applications, 123(6):2370–2397, 2013.

[10] F. J. Ayala. Evolution. https://www.britannica.com/science/evolution-scientific-
theory, 2024.

[11] M. Baar, A. Bovier, and N. Champagnat. From stochastic, individual-based models
to the canonical equation of adaptive dynamics in one step. The Annals of Applied
Probability, 27(2):1093 – 1170, 2017.

[12] D. J. Balick, R. Do, C. A. Cassa, D. Reich, and S. R. Sunyaev. Dominance of De-
leterious Alleles Controls the Response to a Population Bottleneck. PLOS Genetics,
11(8):e1005436, 2015.

133



Bibliography

[13] M. A. Ballinger and M. A. F. Noor. Are Lethal Alleles Too Abundant in Humans?
Trends in Genetics, 34(2):87–89, 2018.

[14] F. Baumdicker, G. Bisschop, D. Goldstein, G. Gower, and A. P. Ragsdale, et. al.
Efficient ancestry and mutation simulation with msprime 1.0. Genetics, 220(3):iyab229,
12 2021.

[15] G. Bell. The Masterpiece of Nature: The Evolution and Genetics of Sexuality. Croom
Helm, vi + 638 pp., 1982.

[16] H. Bernstein, F. A. Hopf, and R. E. Michod. The molecular basis of the evolution of
sex. Advanced Genetics, 24:323–370, 1987.

[17] J. Bezanson, A. Edelman, and S. Karpinski. Why we created Julia.
https://web.archive.org/web/20200502144010/https://julialang.org/blog/2012/02/why-
we-created-julia/, 2012.

[18] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to
numerical computing. SIAM Review, 59(1):65–98, 2017.

[19] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. The Julia Programming
Language. https://www.julialang.org, 2024.

[20] S. Biglari, A. Biglari, and S. Mazloomzadeh. The Frequency of Consanguinity and Its
Related Factors in Parents of Children with Genetic Disorders. Journal of Advances
in Medical and Biomedical Research, 30(143):501–506, 2022.

[21] S. Billiard, V. Castric, and V. Llaurens. The integrative biology of genetic dominance.
Biological reviews of the Cambridge Philosophical Society, 96(6):2925–2942, 2021.

[22] A. H. Bittles and M. L. Black. Evolution in health and medicine Sackler colloquium:
Consanguinity, human evolution, and complex diseases. PNAS, 107 Suppl 1(Suppl
1):1779–1786, 2010.

[23] D. Boffelli and D. I. K. Martin. Epigenetic inheritance: a contributor to species
differentiation? DNA and Cell Biology, 31(Suppl 1):S11–S16, 2012.

[24] A. Bovier and F. den Hollander. Metastability: A Potential-Theoretic Approach. Die
Grundlehren der mathematischen Wissenschaften. Springer International Publishing,
xxi + 581 pp., 2015.

[25] A. Bovier and A. Kraut. Stochastic individual based models: From adaptive dynamics
to modelling of cancer therapies. https://wt.iam.uni-bonn.de/bovier/lecture-notes, ix
+ 148 pp., 2019. Lecture Notes.

[26] A. Bovier, R. Neukirch, and L. Coquille. The recovery of a recessive allele in a
mendelian diploid model. Journal of Mathematical Biology, 77(4):971–1033, 2018.

[27] G. E. Box. Robustness in the strategy of scientific model building. In Robustness in
statistics, pages 201–236. Elsevier, 1979.

134



Bibliography

[28] K. M. Boycott, J. S. Parboosingh, B. N. Chodirker, R. B. Lowry, D. R. McLeod,
J. Morris, C. R. Greenberg, A. E. Chudley, F. P. Bernier, J. Midgley, L. B. Moller, and
A. M. Innes. Clinical genetics and the Hutterite population: a review of Mendelian
disorders. American Journal of Medical Genetics, 146A(8):1088–1098, 2008.

[29] Y. Brandvain and S. I. Wright. The Limits of Natural Selection in a Nonequilibrium
World. Trends in Genetics, 32(4):201–210, 2016.

[30] A. Bryant. MATLAB, R, and Julia: Languages for data analysis.
https://web.archive.org/web/20140426110631/https://strata.oreilly.com/2012/10/matlab-
r-julia-languages-for-data-analysis.html, 2012.

[31] R. Bürger. The Mathematical Theory of Selection, Recombination, and Mutation.
Wiley Series in Mathematical and Computational Biology. John Wiley and Sons, Ltd.,
Chichester, xii + 424 pp., 2000.

[32] BVerfG. Beschluss des Zweiten Senats vom 26. Februar 2008. ht-
tps://www.bverfg.de/e/rs20080226_2bvr039207.html, 2 BvR 392/07,:Rn. 1–128, 2008.

[33] A. Caballero. Developments in the prediction of effective population size. Heredity,
73(6):657–679, 1994.

[34] C. Cannings. The latent roots of certain Markov chains arising in genetics: A new
approach, I. Haploid Models. Advances in Applied Probability, 6(2):260–290, 1974.

[35] C. Cannings. The Latent Roots of Certain Markov Chains Arising in Genetics: A New
Approach, II. Further Haploid Models. Advances in Applied Probability, 7(2):264–282,
1975.

[36] Y. Cao, H. Li, and L. Petzold. Efficient formulation of the stochastic simulation
algorithm for chemically reacting systems. Journal of Chemical Physics, 121(9):4059
– 4067, 2004.

[37] R. Chakraborty and A. Chakravarti. On consanguineous marriages and the genetic
load. Human Genetics, 36(1):47–54, 1977.

[38] N. Champagnat. A microscopic interpretation for adaptive dynamics trait substitution
sequence models. Stochastic Processes and their Applications, 116(8):1127–1160, 2006.

[39] N. Champagnat, R. Ferrière, and G. Ben Arous. The canonical equation of adaptive
dynamics: a mathematical view. Selection, 2:73–83, 2001.

[40] N. Champagnat and S. Méléard. Polymorphic evolution sequence and evolutionary
branching. Probability Theory and Related Fields, 151(1):45–94, 2011.

[41] B. Charlesworth. Model for evolution of Y chromosomes and dosage compensation.
PNAS, 75(11):5618–5622, 1978.

[42] B. Charlesworth. The evolution of chromosomal sex determination and dosage com-
pensation. Current Biology, 6(2):149–162, 1996.

[43] B. Charlesworth. The effects of deleterious mutations on evolution at linked sites.
Genetics, 190(1):5–22, 2012.

135



Bibliography

[44] B. Charlesworth. Why we are not dead one hundred times over. Evolution, 67(11):3354–
3361, 2013.

[45] B. Charlesworth and D. Charlesworth. Rapid fixation of deleterious alleles can be
caused by Muller’s ratchet. Genetics Research, 70(1):63–73, 1997.

[46] B. Charlesworth and D. Charlesworth. Some evolutionary consequences of deleterious
mutations. Genetica, 102-103(1-6):3–19, 1998.

[47] M. Cieslak and P. Prusinkiewicz. Gillespie-Lindenmayer systems for stochastic simu-
lation of morphogenesis. in silico Plants, 1(1):diz009, 2019.

[48] T. H. Clutton-Brock. Mammalian mating systems. Proceedings of the Royal Society
B: Biological Sciences, 236(1285):339–372, 1989.

[49] P. Collet, S. Méléard, and J. A. J. Metz. A rigorous model study of the adaptive
dynamics of Mendelian diploids. Journal of Mathematical Biology, 67:569–607, 2013.

[50] C. E. Correns. G. Mendel’s Regel über das Verhalten der Nachkommenschaft der
Rassenbastarde. Berichte der Deutschen Botanischen Gesellschaft, 18(4):158–168,
1900.

[51] J. F. Crow. Advantages of sexual reproduction. Developmental Genetics, 15(3):205–
213, 1994.

[52] J. F. Crow and M. Kimura. An Introduction To Population Genetics Theory. Harper
and Row, iv + 609 pp., 1970.

[53] S. Danisch and J. Krumbiegel. Makie.jl: Flexible high-performance data visualization
for Julia. Journal of Open Source Software, 6(65):3349, 2021.

[54] C. Darwin. On the origin of species by means of natural selection, or the preservation
of favoured races in the struggle for life. John Murray, London, xiv + 502 pp., 1859.

[55] K. J. Dawson. The dynamics of infinitesimally rare alleles, applied to the evolution
of mutation rates and the expression of deleterious mutations. Theoretical Population
Biology, 55(1):1–22, 1999.

[56] H. de Vries. Das Spaltungsgesetz der Bastarde. Berichte der Deutschen Botanischen
Gesellschaft, 18(3):83–90, 1900.

[57] U. Dieckmann and M. Doebeli. On the origin of species by sympatric speciation.
Nature, 400:354–357, 1999.

[58] U. Dieckmann and R. Law. The dynamical theory of coevolution: a derivation from
stochastic ecological processes. Journal of Mathematical Biology, 34(5):579–612, 1996.

[59] M. Doebeli. Quantitative Genetics and Population Dynamics. Evolution, 50(2):532–
546, 1996.

[60] J. W. Drake. A constant rate of spontaneous mutation in DNA-based microbes. PNAS,
88(16):7160–7164, 1991.

136



Bibliography

[61] S. R. Eichten, R. J. Schmitz, and N. M. Springer. Epigenetics: Beyond Chromatin
Modifications and Complex Genetic Regulation. Plant Physiology, 165(3):933–947,
2014.

[62] S. Engen, T. H. Ringsby, B.-E. Saether, R. Lande, H. Jensen, M. Lillegärd, and H. El-
legren. Effective size of fluctuating populations with two sexes and overlapping gener-
ations. Evolution, 61(8):1873–1885, 2007.

[63] A. Etheridge. Some Mathematical Models from Population Genetics: École d’Été de
Probabilités de Saint-Flour XXXIX-2009. Springer, viii + 119 pp., 2011.

[64] A. Etheridge, P. Pfaffelhuber, and A. Wakolbinger. How often does the ratchet click?
Facts, heuristics, asymptotics. https://arxiv.org/abs/0709.2775, 2007.

[65] S. N. Ethier and M. F. Norman. Error estimate for the diffusion approximation of the
Wright–Fisher model. PNAS, 74(11):5096–5098, 1977.

[66] W. J. Ewens. Mathematical Population Genetics. I, volume 27. Springer, New York,
xx + 418 pp., second edition, 2004.

[67] J. Felsenstein. The evolutionary advantage of recombination. Genetics, 78(2):737–756,
1974.

[68] R. A. Fisher. The correlation between relatives on the supposition of Mendelian in-
heritance. Transactions of the Royal Society of Edinburgh, 42:399–433, 1918.

[69] R. A. Fisher. The genetical theory of natural selection. Oxford, Clarendon Press, xii
+ 286 pp., 1930.

[70] R. A. Fisher. The wave of advance of advantageous genes. Annals of Eugenics,
7(4):355–369, 1937.

[71] W. H. Fleming and M. Viot. Some Measure-Valued Markov Processes in Population
Genetics Theory. Indiana University Mathematics Journal, 28(5):817–843, 1979.

[72] N. Fournier and S. Méléard. A microscopic probabilistic description of a locally reg-
ulated population and macroscopic approximations. Annals of Applied Probability,
14(4):1880–1919, 2004.

[73] F. Foutel-Rodier and A. M. Etheridge. The spatial Muller’s ratchet: Surfing of dele-
terious mutations during range expansion. Theoretical Population Biology, 135:19–31,
2020.

[74] R. Frankham, J. D. Ballou, D. A. Briscoe, and K. H. McInnes. Introduction to Con-
servation Genetics. Cambridge University Press, xx + 644 pp., 2002.

[75] R. E. Franklin and R. G. Gosling. Molecular Configuration in Sodium Thymonucleate.
Nature, 171:740–741, 1953.

[76] Z. Gao, D. Waggoner, M. Stephens, C. Ober, and M. Przeworski. An estimate of the av-
erage number of recessive lethal mutations carried by humans. Genetics, 199(4):1243–
1254, 2015.

137



Bibliography

[77] M. Ghiselin. The Economy of Nature and the Evolution of Sex. University of California
Press, 346 pp., 1974.

[78] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems
with many species and many channels. Journal of Physical Chemistry A, 104(9):1876
– 1889, 2000.

[79] K. J. Gilbert, F. Pouyet, L. Excoffier, and S. Peischl. Transition from Background
Selection to Associative Overdominance Promotes Diversity in Regions of Low Re-
combination. Current Biology, 30(1):101–107, 2020.

[80] D. T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics, 22(4):403
– 434, 1976.

[81] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal
of Physical Chemistry, 81(25):2340–2361, 1977.

[82] D. T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting
systems. Journal of Chemical Physics, 115(4):1716 – 1733, 2001.

[83] D. T. Gillespie. Stochastic Simulation of Chemical Kinetics. Annual Review of Physical
Chemistry, 58:35–55, 2007.

[84] D. T. Gillespie, A. Hellander, and L. R. Petzold. Perspective: Stochastic algorithms
for chemical kinetics. Journal of Chemical Physics, 138(17), 2013.

[85] D. T. Gillespie and M. Mangel. Conditioned averages in chemical kinetics. The Journal
of Chemical Physics, 75(2):704 – 709, 1981.

[86] R. Giugliani, F. Bender, R. Couto, A. Bochernitsan, and A. C. Brusius-Facchin, et.
al. Population medical genetics: translating science to the community. Genetics and
Molecular Biology, 42(1):312–320, 2019.

[87] S. Glémin. How are deleterious mutations purged? Drift versus nonrandom mating.
Evolution, 57(12):2678–2687, 2003.

[88] M. R. Goddard, D. Greig, and A. Burt. Outcrossed sex allows a selfish gene to
invade yeast populations. Proceedings of the Royal Society B: Biological Sciences,
268(1485):2537–2542, 2001.

[89] A. González-Casanova, C. Smadi, and A. Wakolbinger. Quasi-equilibria and click times
for a variant of Muller’s ratchet. Electronic Journal of Probability, 28:1 – 37, 2023.

[90] I. Gordo and B. Charlesworth. The degeneration of asexual haploid populations and
the speed of Muller’s ratchet. Genetics, 154(3):1379–1387, 2000.

[91] J. Goutsias and G. Jenkinson. Markovian dynamics on complex reaction networks.
Physics Reports, 529(2):199 – 264, 2013.

[92] S. Gravel, B. M. Henn, R. N. Gutenkunst, A. R. Indap, G. T. Marth, A. G. Clark,
F. Yu, and R. A. Gibbs, et. al. Demographic history and rare allele sharing among
human populations. PNAS, 108(29):11983–11988, 2011.

138



Bibliography

[93] A. Gulani and W. T. Genetics, Autosomal Recessive. StatPearls Publishing, 2023.

[94] J. Gunawardena. Models in biology: ‘accurate descriptions of our pathetic thinking’.
BMC Biology, 12(1):29, 2014.

[95] R. N. Gutenkunst, R. D. Hernandez, S. H. Williamson, and C. D. Bustamante. In-
ferring the Joint Demographic History of Multiple Populations from Multidimensional
SNP Frequency Data. PLOS Genetics, 5(10):1–11, 2009.

[96] J. Haigh. The accumulation of deleterious genes in a population—Muller’s Ratchet.
Theoretical Population Biology, 14(2):251–267, 1978.

[97] J. B. S. Haldane. A Mathematical Theory of Natural and Artificial Selection, Part
V: Selection and Mutation. Mathematical Proceedings of the Cambridge Philosophical
Society, 23(7):838–844, 1927.

[98] B. C. Haller and P. W. Messer. SLiM: An Evolutionary Simulation Framework, 2018.
http://benhaller.com/slim/SLiM_Manual.pdf.

[99] B. C. Haller and P. W. Messer. SLiM 3: Forward genetic simulations beyond the
Wright-Fisher model. Molecular Biology and Evolution, 36(3):632–637, 2019.

[100] H. Hamamy. Consanguineous marriages. Journal of Community Genetics, 3(3):185–
192, 2012.

[101] G. H. Hardy. Mendelian Proportions in a Mixed Population. Science, 28(706):49–50,
1908.

[102] M. Hartfield and P. D. Keightley. Current hypotheses for the evolution of sex and
recombination. Integrative Zoology, 7(2):192–209, 2012.

[103] B. M. Henn, L. R. Botigué, C. D. Bustamante, A. G. Clark, and S. Gravel. Estimating
the mutation load in human genomes. Nature Reviews Genetics, 16(6):333–343, 2015.

[104] D. J. Higham. Modeling and Simulating Chemical Reactions. SIAM Review, 50(2):347–
368, 2008.

[105] J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cam-
bridge University Press, xxii + 323 pp., 1998.

[106] H. Hu, K. Kahrizi, L. Musante, Z. Fattahi, R. Herwig, and M. Hosseini, et. al. Genetics
of intellectual disability in consanguineous families. Molecular Psychiatry, 24(7):1027–
1039, 2019.

[107] R. Jamra. Genetics of autosomal recessive intellectual disability. Journal of Medical
Genetics, 30(3):323–327, 2018.

[108] X. Ji, R. L. Kember, C. D. Brown, and M. Bućan. Increased burden of deleterious
variants in essential genes in autism spectrum disorder. PNAS, 113(52):15054–15059,
2016.

[109] S. G. Johnson. PyCall.jl: Calling Python functions from the Julia language. https:
//github.com/JuliaPy/PyCall.jl, 2012.

139

https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaPy/PyCall.jl


Bibliography

[110] L. B. Jorde and S. P. Wooding. Genetic variation, classification and ’race’. Nature
Genetics, 36(11 Suppl):S28–S33, 2004.

[111] K. Kahrizi, H. Hu, M. Hosseini, V. M. Kalscheuer, and Z. Fattahi, et. al. Effect of
inbreeding on intellectual disability revisited by trio sequencing. Clinical Genetics,
95(1):151–159, 2019.

[112] P. J. Keeling and J. D. Palmer. Horizontal gene transfer in eukaryotic evolution. Nature
Reviews Genetics, 9(8):605–618, 2008.

[113] P. D. Keightley and S. P. Otto. Interference among deleterious mutations favours sex
and recombination in finite populations. Nature, 443:89–92, 2006.

[114] W. O. Kermack, A. G. McKendrick, and G. T. Walker. A contribution to the math-
ematical theory of epidemics. Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 115(772):700–721, 1927.

[115] M. Kimura. Solution of a process of random genetic drift with a continuous model.
PNAS, 41(3):144–150, 1955.

[116] M. Kimura. On the evolutionary adjustment of spontaneous mutation rates. Genetical
Research, 9(1):23–34, 1967.

[117] M. Kimura and T. Maruyama. The mutational load with epistatic gene interactions
in fitness. Genetics, 54(6):1337–1351, 1966.

[118] J. F. C. Kingman. On the Genealogy of Large Populations. Journal of Applied Prob-
ability, 19:27–43, 1982.

[119] M. Kircher, D. M. Witten, P. Jain, B. J. O’Roak, G. M. Cooper, and J. Shendure. A
general framework for estimating the relative pathogenicity of human genetic variants.
Nature Genetics, 46(3):310–315, 2014.

[120] M. Kirkpatrick and P. Jarne. The Effects of a Bottleneck on Inbreeding Depression
and the Genetic Load. The American Naturalist, 155(2):154–167, 2000.

[121] É. Kisdi and S. A. H. Geritz. Adaptive dynamics in allele space: Evolution of ge-
netic polymorphism by small mutations in a heterogeneous environment. Evolution,
53(4):993–1008, 1999.

[122] K. Kochinke, C. Zweier, B. Nijhof, M. Fenckova, P. Cizek, F. Honti, S. Keerthiku-
mar, M. A. W. Oortveld, T. Kleefstra, J. M. Kramer, C. Webber, M. A. Huynen, and
A. Schenck. Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intel-
lectual Disability into Biologically Coherent Modules. American Journal of Human
Genetics, 98(1):149–164, 2016.

[123] A. Kolmogorov, I. Petrovsky, and N. Piskunov. Investigation of the Equation of Dif-
fusion Combined with Increasing of the Substance and Its Application to a Biology
Problem. Bulletin of Moscow State University Series A: Mathematics and Mechanics,
1:1–25, 1937.

[124] A. S. Kondrashov. Selection against harmful mutations in large sexual and asexual
populations. Genetical Research, 40(3):325–332, 1982.

140



Bibliography

[125] A. S. Kondrashov. Classification of hypotheses on the advantage of amphimixis.
Journal of Heredity, 84(5):372–387, 1993.

[126] A. S. Kondrashov. Modifiers of mutation-selection balance: general approach and the
evolution of mutation rates. Genetical Research, 66(1):53–69, 1995.

[127] A. S. Kondrashov. Crumbling Genome: The Impact of Deleterious Mutations on Hu-
mans. Wiley, xv + 281 pp., 2017.

[128] A. S. Kondrashov. Through Sex, Nature Is Telling Us Something Important. Trends
in Genetics, 34(5):352–361, 2018.

[129] A. Kong, M. L. Frigge, G. Masson, S. Besenbacher, and P. Sulem, et. al. Rate of de
novo mutations and the importance of father’s age to disease risk. Nature, 488:471–475,
2012.

[130] A. Kong, D. F. Gudbjartsson, J. Sainz, G. M. Jonsdottir, and S. A. Gudjonsson, et.
al. A high-resolution recombination map of the human genome. Nature Genetics,
31(3):241—247, 2002.

[131] P. Krill. New Julia language seeks to be the C for scientists.
https://web.archive.org/web/20140913234252/http://www.infoworld.com/d/application-
development/new-julia-language-seeks-be-the-c-scientists-190818, 2012.

[132] S. M. Krone and C. Neuhauser. Ancestral Processes with Selection. Theoretical Pop-
ulation Biology, 51(3):210–237, 1997.

[133] T. Kwong. Hands-On Design Patterns and Best Practices with Julia. Packt Publishing,
xii + 532 pp., 2020.

[134] L. A. La Rocca, J. Frank, H. B. Bentzen, J. T. Pantel, K. Gerischer, A. Bovier, and
P. M. Krawitz. Drop of Prevalence after Population Expansion: A lower prevalence for
recessive disorders in a random mating population is a transient phenomenon during
and after a growth phase. https://doi.org/10.1101/2021.09.29.462290, 2021.

[135] L. A. La Rocca, J. Frank, H. B. Bentzen, J. T. Pantel, K. Gerischer, A. Bovier,
and P. M. Krawitz. Understanding recessive disease risk in multi-ethnic popula-
tions with different degrees of consanguinity. American Journal of Medical Genetics,
194(3):e63452, 2024.

[136] L. A. La Rocca, K. Gerischer, A. Bovier, and P. M. Krawitz. Refining the drift barrier
hypothesis: a role of recessive gene count and an inhomogeneous Muller‘s ratchet.
https://arxiv.org/abs/2406.09094, 2024.

[137] J.-B. Lamarck. Philosophie Zoologique. Dentu, Muséum d’Histoire Naturelle, x + 428
pp., 1809.

[138] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, and J. Baldwin, et.
al. Initial sequencing and analysis of the human genome. Nature, 409:860–921, 2001.

[139] B. Lauwens and A. B. Downey. Think Julia: How to Think Like a Computer Scientist.
O’Reilly Media, Inc., xxi + 295 pp., 2019.

141



Bibliography

[140] U. Lenz, S. Kluth, E. Baake, and A. Wakolbinger. Looking down in the ancestral
selection graph: A probabilistic approach to the common ancestor type distribution.
Theoretical Population Biology, 103:27–37, 2015.

[141] W. M. Lewis. Interruption of Synthesis as a Cost of Sex in Small Organisms. The
American Naturalist, 121(6):825–833, 1983.

[142] W. M. Lewis. The Evolution of Sex and its Consequences: The costs of sex, volume 4.
Birkhäuser Verlag, Basel, xv + 404 pp., 1987.

[143] M. I. Lind and F. Spagopoulou. Evolutionary consequences of epigenetic inheritance.
Heredity, 121(3):205–209, 2018.

[144] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell.
Molecular Cell Biology. W.H. Freeman, xxxvi + 1084 pp., 4 edition, 1999.

[145] L. Loewe. Quantifying the genomic decay paradox due to Muller’s ratchet in human
mitochondrial DNA. Genetics Research, 87(2):133–159, 2006.

[146] K. E. Lohmueller, A. R. Indap, S. Schmidt, A. R. Boyko, R. D. Hernandez, M. J.
Hubisz, J. J. Sninsky, T. J. White, S. R. Sunyaev, R. Nielsen, A. G. Clark, and C. D.
Bustamante. Proportionally more deleterious genetic variation in European than in
African populations. Nature, 451:994–997, 2008.

[147] A. Lomnicki. Carrying capacity, competition and maintenance of sexuality. Evolution-
ary Ecology Research, 3:603–610, 2001.

[148] A. J. Lotka. Quantitative Studies in Epidemiology. Nature, 88:497–498, 1912.

[149] M. Lynch, M. S. Ackerman, J.-F. Gout, H. Long, W. Sung, W. K. Thomas, and P. L.
Foster. Genetic drift, selection and the evolution of the mutation rate. Nature Reviews
Genetics, 17(11):704–714, 2016.

[150] T. R. Malthus. An Essay on the Principle of Population as it Affects the Future Im-
provement of Society, with Remarks on the Speculations of Mr. Goodwin, M. Condorcet
and Other Writers. London: J. Johnson in St. Paul’s Church-yard, xix + 134 pp., 1798.

[151] J. T. Manning. Diploidy and Muller’s ratchet. Acta Biotheoretica, 32(4):289–292, 1983.

[152] M. Mariani, É. Pardoux, and A. Velleret. Metastability between the clicks of Muller’s
ratchet. https://arxiv.org/abs/2007.14715v3, 2020.

[153] H. C. Martin, W. D. Jones, R. McIntyre, G. Sanchez-Andrade, and M. Sanderson,
et. al. Quantifying the contribution of recessive coding variation to developmental
disorders. Science, 362(6419):1161–1164, 2018.

[154] N. Masuda and C. L. Vestergaard. Gillespie Algorithms for Stochastic Multiagent
Dynamics in Populations and Networks. Elements in the Structure and Dynamics of
Complex Networks. Cambridge University Press, xi + 107 pp., 2023.

[155] W. H. Mather, J. Hasty, and L. S. Tsimring. Fast stochastic algorithm for simulating
evolutionary population dynamics. Bioinformatics, 28(9):1230–1238, 2012.

142



Bibliography

[156] S. Méléard and V. Bansaye. Stochastic Models for Structured Populations: Scaling
Limits and Long Time Behavior. Springer International Publishing, x + 107 pp.,
2015.

[157] G. Mendel. Versuche über Pflanzen-Hybriden. Verhandlungen des Naturforschenden
Vereines in Brünn, 4:3–47, 1866.

[158] J. A. J. Metz. Adaptive dynamics. IIASA Interim Report IR-12-052, IIASA, Laxen-
burg, Austria, 2012.

[159] B. Modell and A. Darr. Genetic counselling and customary consanguineous marriage.
Nature Reviews Genetics, 3(3):225–229, 2002.

[160] P. A. P. Moran. Random processes in genetics. Mathematical Proceedings of the
Cambridge Philosophical Society, 54(1):60–71, 1958.

[161] H. J. Muller. Some Genetic Aspects of Sex. The American Naturalist, 66(703):118–138,
1932.

[162] H. J. Muller. The relation of recombination to mutational advance. Mutation Re-
search/Fundamental and Molecular Mechanisms of Mutagenesis, 1(1):2–9, 1964.

[163] L. Musante and H. H. Ropers. Genetics of recessive cognitive disorders. Trends in
Genetics, 30(1):32–39, 2014.

[164] T. Nagylaki. Introduction to Theoretical Population Genetics. Springer Berlin, Heidel-
berg, xii + 369 pp., 1 edition, 1992.

[165] V. M. Narasimhan, K. A. Hunt, D. Mason, C. L. Baker, and K. J. Karczewski, et.
al. Health and population effects of rare gene knockouts in adult humans with related
parents. Science, 352(6284):474–477, 2016.

[166] M. Nei. Modification of linkage intensity by natural selection. Genetics, 57(3):625–641,
1967.

[167] M. Nei. The frequency distribution of lethal chromosomes in finite populations. PNAS,
60(2):517–524, 1968.

[168] R. Neukirch and A. Bovier. Survival of a recessive allele in a Mendelian diploid model.
Journal of Mathematical Biology, 75(1):145–198, 2017.

[169] H. Ochman, J. G. Lawrence, and E. A. Groisman. Lateral gene transfer and the nature
of bacterial innovation. Nature, 405:299–304, 2000.

[170] K. O’Sullivan. Access to marriage: consanguinity and affinity prohibitions in national
and international context. Irish Journal of Family Law, 22(2):8–12, 1 2019.

[171] S. P. Otto. The evolutionary enigma of sex. Irish Journal of Family Law, 174(Suppl
1):S1–S14, 2009.

[172] S. P. Otto and N. H. Barton. Selection for recombination in small populations. Evol-
ution, 55(10):1921–1931, 2001.

143



Bibliography

[173] S. P. Otto and T. Lenormand. Resolving the paradox of sex and recombination. Nature
Reviews Genetics, 3(4):252–261, 2002.

[174] J. Pahle. Biochemical simulations: Stochastic, approximate stochastic and hybrid
approaches. Briefings in Bioinformatics, 10(1):53 – 64, 2009.

[175] S. Pálsson. The effects of deleterious mutations in cyclically parthenogenetic organisms.
Journal of Theoretical Biology, 208(2):201–214, 2001.

[176] S. Pálsson and P. Pamilo. The effects of deleterious mutations on linked, neutral
variation in small populations. Genetics, 153(1):475–483, 1999.

[177] M. Payne, C. A. Rupar, G. M. Siu, and V. M. Siu. Amish, mennonite, and hutterite
genetic disorder database. Paediatrics and Child Health, 16(3):e23–e24, 2011.

[178] S. Peischl and L. Excoffier. Expansion load: recessive mutations and the role of stand-
ing genetic variation. Molecular Ecology, 24(9):2084–2094, 2015.

[179] P. Pfaffelhuber, P. R. Staab, and A. Wakolbinger. Muller’s ratchet with compensatory
mutations. The Annals of Applied Probability, 22(5):2108–2132, 2012.

[180] N. Phadnis and J. D. Fry. Widespread correlations between dominance and homozyg-
ous effects of mutations: implications for theories of dominance. Genetics, 171(1):385–
392, 2005.

[181] W. B. Provine. The origins of theoretical population genetics. Chicago, University of
Chicago Press, v + 240 pp., 1971.

[182] C. Rackauckas and Q. Nie. Differentialequations.jl–a performant and feature-rich eco-
system for solving differential equations in Julia. Journal of Open Research Software,
5(1):15, 2017.

[183] R. J. Redfield. Do Bacteria Have Sex?, chapter 19, pages 139–144. John Wiley and
Sons, Ltd, 2012.

[184] W. R. Rice. Degeneration of a nonrecombining chromosome. Science, 263(5144):230–
232, 1994.

[185] M. Roser and H. Ritchie. How has world population growth changed over time? Our
World in Data, 2023. https://ourworldindata.org/population-growth-over-time.

[186] V. Rossi, A. Gandolfi, F. Baraldi, C. Bellavere, and P. Menozzi. Phylogenetic re-
lationships of coexisting Heterocypris (Crustacea, Ostracoda) lineages with different
reproductive modes from Lampedusa Island (Italy). Molecular Phylogenetics and Evol-
ution, 44(3):1273–1283, 2007.

[187] J. Sang. Drosophila melanogaster: The Fruit Fly. In Encyclopedia of Genetics, page 23.
Taylor and Francis, 2015.

[188] A. Schmidt, M. Danyel, K. Grundmann, T. Brunet, H. Klinkhammer, and T.-C. Hsieh,
et. al. Next-generation phenotyping integrated in a national framework for patients
with ultra-rare disorders improves genetic diagnostics and yields new molecular find-
ings. Nature Genetics, 56:1644–1653, 2024.

144



Bibliography

[189] J. Schmidtke and M. C. Cornel. Contentious ethical issues in community genetics:
let’s talk about them. Journal of Community Genetics, 11(1):5–6, 2020.

[190] Y. B. Simons and G. Sella. The impact of recent population history on the deleterious
mutation load in humans and close evolutionary relatives. Current Opinion in Genetics
and Development, 41:150–158, 2016.

[191] S. J. Smale. On the differential equations of species in competition. Journal of Math-
ematical Biology, 3(1):5–7, 1976.

[192] J. Smith. The Evolution of Sex. Cambridge University Press, xi + 236 pp., 1978.

[193] W. Stephan, L. Chao, and J. G. Smale. The advance of Muller’s ratchet in a hap-
loid asexual population: approximate solutions based on diffusion theory. Genetics
Research, 61(3):225–231, 1993.

[194] T. Strachan and A. Read. Human Molecular Genetics. Garland Science, xxii + 770
pp., 5th edition, 2018.

[195] S. Strome, N. Bhalla, R. Kamakaka, U. Sharma, and W. Sullivan. Clarifying Mendelian
vs non-Mendelian inheritance. Genetics, 227(3):iyae078, 2024.

[196] W. Sung, M. S. Ackerman, S. F. Miller, T. G. Doak, and M. Lynch. Drift-barrier
hypothesis and mutation-rate evolution. PNAS, 109(45):18488–18492, 2012.

[197] T. Székely and K. Burrage. Stochastic simulation in systems biology. Computational
and Structural Biotechnology Journal, 12(20):14–25, 2014.

[198] N. Tagg, C. P. Doncaster, and D. J. Innes. Resource competition between genetically
varied and genetically uniform populations of Daphnia pulex (Leydig): does sexual
reproduction confer a short-term ecological advantage? Biological Journal of the
Linnean Society, 85(1):111–123, 2005.

[199] A. Tenesa, P. Navarro, B. J. Hayes, D. L. Duffy, G. M. Clarke, M. E. Goddard,
and P. M. Visscher. Recent human effective population size estimated from linkage
disequilibrium. Genome Research, 17(4):520–526, 2007.

[200] C. C. Traverse and H. Ochman. Conserved rates and patterns of transcription errors
across bacterial growth states and lifestyles. PNAS, 113(12):3311–3316, 2016.

[201] E. Tschermak. Über künstliche Kreuzung bei Pisum sativum. Berichte der Deutschen
Botanischen Gesellschaft, 18(6):232–239, 1900.

[202] F. van der Plas, M. Dral, P. Berg, R. Huijzer, and M. Bocheńsk, et. al. Pluto.jl, 2024.
https://doi.org/10.5281/zenodo.13329704.

[203] L. van Valen. A new evolutionary law. Evolutionary Theroy, 1(1):1–30, 1973.

[204] V. Volterra. Variations and Fluctuations of the Number of Individuals in Animal
Species living together. ICES Journal of Marine Science, 3(1):3–51, 1928.

[205] R. C. Vrijenhoek. Animal Clones and Diversity: Are natural clones generalists or
specialists? BioScience, 48(8):617–628, 1998.

145



Bibliography

[206] J. Wang, E. Santiago, and A. Caballero. Prediction and estimation of effective popu-
lation size. Heredity, 117(4):193–206, 2016.

[207] J. D. Watson and F. H. C. Crick. Molecular Structure of Nucleic Acids: A Structure
for Deoxyribose Nucleic Acid. Nature, 171:737–738, 1953.

[208] W. Weinberg. Über den Nachweis der Vererbung beim Menschen. Jahreshefte des
Vereins für vaterländische Naturkunde in Württemberg, 64:368–382, 1908.

[209] S. A. West, C. M. Lively, and A. F. Read. A pluralist approach to sex and recombin-
ation. Journal of Evolutionary Biology, 12(6):1003–1012, 1999.

[210] M. H. F. Wilkins, A. R. Strokes, and H. R. Wilson. Molecular Structure of Nucleic
Acids: Molecular Structure of Deoxypentose Nucleic Acids. Nature, 171:738–740, 1953.

[211] D. J. Wilkinson. Stochastic modelling for quantitative description of heterogeneous
biological systems. Nature Reviews Genetics, 10(2):122–133, 2009.

[212] S. G. Wright. Coefficients of Inbreeding and Relationship. The American Naturalist,
56(645):330–338, 1922.

[213] S. G. Wright. Evolution in Mendelian populations. Genetics, 16:97–157, 1931.

[214] S. G. Wright. Breeding Structure of Populations in Relation to Speciation. The
American Naturalist, 74(752):232–248, 1940.

[215] Q. Xiao and V. M. Lauschke. The prevalence, genetic complexity and population-
specific founder effects of human autosomal recessive disorders. NPJ Genomic Medi-
cine, 6(1):41, 2021.

[216] C. A. Yates and G. Klingbeil. Recycling random numbers in the stochastic simulation
algorithm. Journal of Chemical Physics, 138(9):094103, 2013.

[217] B. Yuan, K. V. Schulze, N. Assia Batzir, J. Sinson, H. Dai, W. Zhu, F. Bocanegra,
C.-T. Fong, J. Holder, J. Nguyen, C. P. Schaaf, Y. Yang, W. Bi, C. Eng, C. Shaw, J. R.
Lupski, and P. Liu. Sequencing individual genomes with recurrent genomic disorder
deletions: an approach to characterize genes for autosomal recessive rare disease traits.
Genome Medicine, 14(1):113, 2022.

[218] G. A. Zagatti, S. A. Isaacson, C. Rackauckas, V. Ilin, S. Ng, and S. Bressan. Extend-
ing JumpProcesses.jl for fast point process simulation with time-varying intensities.
Proceedings of the JuliaCon Conferences, 6(58):133, 2024.

[219] M. L. Zeeman. Hopf bifurcations in competitive three-dimensional Lotka–Volterra
systems. Dynamics and Stability of Systems, 8(3):189–216, 1993.

146


	Introduction
	General biological background
	Genetic background
	Theory of evolution
	Evolution of sexual mating
	Complete recessive lethals

	Mathematical models in evolutionary biology
	Population dynamics
	Population genetics
	Adaptive dynamics
	Diploid models

	The core model of this thesis
	A diploid individual based model of adaptive dynamics
	Complete recessive lethal diseases
	Prevalence and mutation burden

	Stochastic simulation algorithm
	Gillespie algorithm
	The Julia programming language
	Dense problems

	Non-Random mating and population growth
	Population size
	Consanguineous mating
	Model modifications

	Recessive gene count and recombination
	Recombination
	Muller's ratchet
	Drift-Barrier hypothesis
	Model modifications

	Outline, main results and open questions
	Transient drop in prevalence for random mating during population expansion
	The role of recessive genes in genome stability and population collapse
	Simulation framework for dense problems


	Understanding recessive disease risk in multi-ethnic populations with different degrees of consanguinity
	Introduction
	Methods
	Discrete model
	Adaptive dynamics
	Comparing both models

	Results
	Discussion
	Code availability
	Appendix
	Adaptive dynamics model


	Refining the drift-barrier hypothesis: a role of recessive gene count and an inhomogeneous Muller`s ratchet
	Introduction
	Methods
	Model description

	Results
	Mutation burden beyond the Drift-Barrier
	Influence of recessive gene count on metastability
	Recombination can avoid the extinction of the least loaded class

	Discussion
	Code availability
	Appendix
	Only one gene
	A diploid individual based model of adaptive dynamics
	Remark on Recombination


	DenseGillespieAlgorithm.jl
	Home
	Manual Outline
	Index

	Manual
	Installation
	Setting up the model functions
	Setting up the model parameter, population history and initial population
	Execute the simulation
	Customized statistics

	Examples
	1. SIR-Model
	2. Continuous trait space
	3. High-dimensional model

	Performance tips
	Julia performance tips and benchmarking
	Natural bottleneck in Gillespies Algorithm
	Reuse memory space
	Recalculate vs. update
	Keep calm

	Public API
	Detailed API


	Bibliography

