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1 Abstract

The analysis of longitudinal data plays an important role in medical research. The data is typ-

ically collected during follow-up visits in epidemiological observational studies. These studies

often investigate the natural history of (slowly) progressing diseases, with endpoints focusing

either on changes in outcome variables over time (longitudinal change endpoints) or the time

taken to reach a more severe disease stage (time-to-event endpoints).

This dissertation focuses mainly on the application of these methods in ophthalmology based

on the experience gained evaluating the MACUSTAR study. The study aims to develop and

validate new candidate endpoints for the early stages of age-related macular degeneration

(AMD).

This cumulative dissertation consists of four scientific publications that cover several aspects

of modeling longitudinal data using novel statistical learning methods and regression, looking

into both longitudinal change and time-to-event endpoints. The first project investigates the

challenge of recruiting participants with low disease burden. To this end, a Poisson mixed-

effects regression model was applied to identify factors associated with increased screening

rates of participants with asymptomatic early AMD stages in the multi-center MACUSTAR

study. The second work deals with modeling the growth of geographic atrophy (GA) using a

novel linear mixed-effects regression framework that directly incorporates the unknown dis-

ease age at baseline using random effects. To capture nonlinear GA enlargement, possible

transformation parameters were systematically assessed using Box-Cox transformation. The

last two publications present approaches to evaluate time-to-event data in the presence of

competing events in statistical learning algorithms. Here, an imputation approach was ap-

plied, transforming competing event data such that existing single-event methods could be

trained. The methods were evaluated using extensive simulation studies and applied on real-

world data sets.

All research articles have been accepted for publication in international peer-reviewed journals

(see Publications A - D).
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2 Introduction

Longitudinal observational data plays an important role in various scientific fields. In a clinical

research context, longitudinal data from clinical or epidemiological studies can be used to gain

insights into disease progression or to identify underlying risk factors associated with a faster

or slower disease progression. Typical endpoints in longitudinal studies may be either defined

as a change in a (metric) outcome variable or by time-to-event outcomes.

In the field of ophthalmology, one example would be to study the progression of age-related

macular degeneration (AMD), a slowly progressing disease and a leading cause of blindness

in older populations (Fleckenstein et al., 2021). The progression of early disease is often

symptom-free, but geographic atrophy (GA) and choroidal neovascularisation (CNV), the two

late stages of the disease, are associated with severe vision loss (Colijn et al., 2017; Li et al.,

2020). To date, no clinical trial endpoints have been developed and accepted by regulators to

test new therapies to prevent the progression from early or intermediate AMD stages to late

AMD (Terheyden et al., 2021). The development and validation of new candidate endpoints

acceptable for clinical trials in intermediate AMD is the main objective of the MACUSTAR

study (Finger et al., 2019).

Previous longitudinal AMD studies included both longitudinal change endpoints or time-to-

event endpoints. Changes in continuous endpoints included the growth of atrophic lesions in

participants with GA (Biarnés et al., 2023), changes in retinal layer thickness (Nittala et al.,

2019) or the change of functional outcome measures (Guymer et al., 2014; Terheyden et al.,

2021). Examples of time-to-event endpoints in AMD studies are the time to progression to

late-stage AMD (Finger et al., 2019), or the time to a visual acuity loss of at least 15 letters

(Chew et al., 2014; Terheyden et al., 2021).

In trials employing time-to-event endpoints, early disease-stage participants who are often still

symptom-free have to be recruited. Therefore, achieving the required study sample size can

be particularly challenging. As part of the MACUSTAR study, we investigated which factors

in the management of a multi-center study are crucial to reaching the recruitment goals.

From a statistical perspective, a major challenge in modeling continuous outcomes in late-
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stage AMD, such as GA growth, arises when the progression over time is assumed to be non-

linear and when the disease age at study inclusion is unknown. If participants are enrolled

with high variability in GA sizes, modeling of disease progression and identification of risk

factors may become problematic. The clinical onset of GA is defined by a small atrophy

size of 0.05 mm2 (Sadda et al., 2018). At this size, vision may not be severely impaired yet,

especially if the central fovea is not affected, and often only participants with larger GA sizes

are recruited. Therefore, it is relevant to develop suitable statistical methods that can account

for different disease ages at the start of the study. Another open problem in modeling GA

growth is that there is no consensus in the literature on whether GA enlargement should be

assumed linear, quadratic, or exponential (Dreyhaupt et al., 2005; Holz et al., 2007; Feuer

et al., 2013; Keenan et al., 2018).

On the other hand, time-to-event endpoints also bear statistical challenges, especially if a

disease such as AMD is studied in elderly populations. Here, the study population is not

only prone to right-censoring but also exposed to competing events. For example, when the

aim is to study progression to late AMD, participants may experience competing events, i.e.,

death during the study period (Joachim et al., 2015). Additionally, in evaluations in which

CNV is regarded as a competing event on the pathway to developing GA (Klein et al., 2008;

McGuinness et al., 2021), appropriate methods for competing events must also be applied. If

the occurrence of CNV is incorrectly treated as censoring, this type of informative censoring

can lead to biased estimates of the cumulative incidence for GA (McGuinness et al., 2021).

While classical regression methods exist that handle competing events, e.g., the subdistri-

bution hazard model by Fine and Gray (Fine and Gray, 1999), only some methods exist for

statistical learning approaches (Kantidakis et al., 2023). Statistical learning methods are help-

ful for developing risk predictions for the development of late AMD from high-dimensional data,

e.g., from genetic data or medical imaging. Although, e.g., Ghahramani et al. (2021) and Ri-

vail et al. (2023) applied machine learning (ML) methods to predict progression to late AMD,

handling of competing events could not be addressed by the methods used. In these applica-

tions, analyses could be greatly simplified if existing and well-established ML methods could
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be used by shifting the handling of competing events to a preprocessing step.

2.1 Thesis outline: Novel methods for statistical learning and regression

The objective of this cumulative dissertation was to apply and develop novel methods for

statistical learning and regression when modeling longitudinal observational data.

While the first article deals with challenges and facilitators when recruiting asymptomatic in-

termediate AMD participants for longitudinal observational studies (Publication A), the other

articles develop and implement novel methods for statistical learning and regression.

Specifically, novel methods were developed for the following situations: (i) in regression anal-

yses, when a non-linear growth rate is assumed (Publication B) and (ii) in statistical learning

with time-to-event endpoints in the presence of competing events (Publication C - D).

The appendix lists additional research articles resulting from the work for the MACUSTAR

study and consulting projects at the Institute of Medical Biometry, Informatics, and Epidemi-

ology during the years of this PhD.

2.2 Advanced regression

Analyzing disease progression using a continuous outcome variable over time is straightfor-

ward when linear progression can be assumed and when the study population has the same

disease severity at baseline. However, more advanced modeling strategies are needed if

these assumptions do not hold. Also, more advanced regression methods are required if the

outcome variable refers to count data.

2.2.1 Count data as the outcome

Count data can occur in longitudinal observational studies, e.g., the occurrence of certain

incidents per unit of time. For count data outcomes, standard linear models are inappropriate.

Instead, specialized models such as Poisson or negative binomial regression (Hilbe, 2011)

can be used to handle the discrete nature of count data (Publication A).
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In Publication A, the count data outcome we aimed to model was the number of screenings per

week per clinical site in the multi-center, longitudinal, low interventional MACUSTAR study.

We applied a mixed-effects model with a Poisson distribution to model factors influencing the

screening rates. The covariates of the model included possible recruitment factors and follow-

up time since the first site’s opened as fixed effect terms. A random effect was used to account

for repeated measures per clinical site. As the official start of recruitment was scheduled at

different times for each clinical site, the random effect was included as an interaction with the

site’s activity status.

2.2.2 Non-linear growth rate and varying starting points

If we assume non-linear growth (e.g., of GA size), aligning the timeline to a starting point of the

disease is essential. If this cannot be captured appropriately, e.g., by study inclusion criteria,

the growth rate might be dependent on the starting point, i.e., the disease age at study entry

(Publication B, Fig. 1). In Publication B, we provide a comprehensive framework for modeling

the possibly non-linear progression of GA. This involves modeling the unknown disease age

directly as a random effect. In addition, a possible non-linear progression is captured via the

optimal transformation parameter of a Box-Cox transformation (Box and Cox, 1964), which

was determined with regard to the Akaike information criterion (AIC). More details on the

modeling strategy can be found in the Method section in Publication B.

2.3 Competing events in statistical learning methods

Analyzing time-to-event endpoints can be complicated by the presence of competing events,

whichmay prevent the occurrence of the events of interest andmay violate the non-informative

censoring assumption. Handling such competing events in time-to-event statistical learning

algorithms is often solved by constructing more complex architectures, e.g., training event-

specific sub-networks or event-specific trees, or by using cause-specific splitting rules (Ish-

waran et al., 2014; Lee et al., 2018).

In Publication C - D, we used a rather different strategy. Instead of creating new architec-
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tures, we transformed the input data in a way that allowed training and estimating the cumu-

lative incidence function (CIF) of the event of interest using single-event ML architectures.

The training of single-event architectures offers several advantages. For example, it is less

resource-intensive than training multiple cause-specific sub-architectures, which may even

be infeasible if only a few competing events are observed. In addition, the statistical proper-

ties of single-event architectures are often already better understood and have already been

published in simulation studies.

In a longitudinal data set with a time-to-event endpoint, we assume to have observed i = 1, ..., n

participants with p baseline covariates Xi = (xi1, ...xip)
>. These participants have either ex-

perienced the event of interest (denoted by εi = 1), a competing event (εi = 2), or remained

event-free and were therefore censored. Here, we assume all event times Ti ∈ {1, ..., k} and

censoring times Ci ∈ {1, ..., k} on a discrete time-scale, where k denotes the maximum ob-

servable time interval.

Analogous to the work of Fine and Gray (1999) and Berger et al. (2020), we are interested

in modeling the CIF for the event of interest (εi = 1) using a subdistribution hazard approach.

The CIF is defined as F1(t|Xi) = P(Ti ≤ t, εi = 1|Xi), or in other words, the probability of

experiencing the event of interest at time t or prior given the baseline covariates Xi.

Similar to imputation methods on a continuous time scale proposed by Ruan and Gray (2008),

we imputed the unobserved censoring times Ci for all participants who experienced a compet-

ing event first. For an illustration of the imputation strategy, see Publication C, Figure 1. The

imputation approach uses a life-table estimate of the censoring distribution G(t) = P(Ci > t),

estimated on the observed censoring times Ci of the population. For participants who expe-

rienced a competing event first, we sampled the unobserved censoring time Ĉi using sub-

distribution weights. These censoring times Ĉi were then used as imputed censoring times,

and a single-event architecture was trained. For further details, see the Method section of

Publication C and D.

In Publication C, this imputation approach was evaluated for deep neural networks (DNNs)

and in Publication D for random survival forests (RSFs). Publication C compared the per-
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formance of the imputation method using both a DNN architecture with event-specific sub-

networks (Lee et al., 2018) and a single-event DNN (Ren et al., 2019). In the RSF, several

variations of the imputation approach were explored, which included (i) an imputation step

before fitting the forest, (ii) imputation in each tree of the forest, and (iii) imputation in each

node in all trees.

The performance was evaluated using calibration plots of the CIF, C-index, and integrated

Brier score (see Method section of Publication C and D for further details).
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Abstract

Background: Recruiting asymptomatic participants with early disease stages into studies is challenging and only
little is known about facilitators and barriers to screening and recruitment of study participants. Thus we assessed
factors associated with screening rates in the MACUSTAR study, a multi-centre, low-interventional cohort study of
early stages of age-related macular degeneration (AMD).

Methods: Screening rates per clinical site and per week were compiled and applicable recruitment factors were
assigned to respective time periods. A generalized linear mixed-effects model including the most relevant
recruitment factors identified via in-depth interviews with study personnel was fitted to the screening data. Only
participants with intermediate AMD were considered.

Results: A total of 766 individual screenings within 87 weeks were available for analysis. The mean screening rate
was 0.6 ± 0.9 screenings per week among all sites. The participation at investigator teleconferences (relative risk
increase 1.466, 95% CI [1.018–2.112]), public holidays (relative risk decrease 0.466, 95% CI [0.367–0.591]) and
reaching 80% of the site’s recruitment target (relative risk decrease 0.699, 95% CI [0.367–0.591]) were associated
with the number of screenings at an individual site level.

Conclusions: Careful planning of screening activities is necessary when recruiting early disease stages in multi-
centre observational or low-interventional studies. Conducting teleconferences with local investigators can increase
screening rates. When planning recruitment, seasonal and saturation effects at clinical site level need to be taken
into account.

Trial registration: ClinicalTrials.gov NCT03349801. Registered on 22 November 2017.
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Background
Recruiting asymptomatic participants with early disease
stages into clinical or epidemiological studies is challen-
ging because these individuals might not be aware of
their disease and their perceived disease burden is often
low. In order to overcome these challenges, careful plan-
ning of screening and recruitment activities is crucial.
This includes careful evaluation of screening and recruit-
ment facilitators as well as barriers. A number of studies
have reported factors that impact recruitment at differ-
ent levels [1–7], but knowledge about how to best iden-
tify the specific target population of asymptomatic
participants with early disease stages into studies re-
mains limited. Against this background we assessed the
recruitment process and any measures which impacted
screening numbers in a study of early, largely asymp-
tomatic stages of age-related macular degeneration
(AMD). Our goal was to retrospectively identify facilita-
tors and barriers to screenings from a sponsor’s perspec-
tive in a multi-center cohort study of early disease
stages.
The reason for addressing early AMD stages in clinical

research today is to reduce the signicficant burden of
late-stage AMD by developing novel interventions that
stop or delay progression from early AMD stages to late
AMD and prevent potentially irreversible loss of vision
which make late AMD a leading cause of visual loss in
industrialised countries [8, 9]. Early stages of AMD pro-
gress slowly at an estimated rate of 5–20 per 100
person-years to late AMD [10] and frequently cause no
or only little symptoms [11, 12]. Similar to other early
disease stages such as early Alzheimer’s disease, predia-
betes or pre-clinical cancer [13–15], individuals with
early stages of AMD are frequently not aware of their
disease [16]. This makes it important to investigate
which measures facilitate or impede screening activities
for clinical studies of early AMD as identified factors are
of potential relevance to other studies recruiting asymp-
tomatic participants. We herein report the impact of
both facilitators and barriers to screening participants
for the MACUSTAR study, a multi-national cohort
study focusing on the most high-risk early stage of AMD
(“intermediate AMD”) from a sponsor’s perspective [17].

Methods
The MACUSTAR study
The MACUSTAR study is a multi-centre cohort study
focusing mainly on “intermediate AMD”, a high-risk
type within the early AMD stages. The main study ob-
jective is the development of new candidate endpoints
for intermediate AMD clinical trials. For this purpose,
participants at all AMD disease stages (no, early, inter-
mediate and late AMD) undergo a battery of functional
tests and imaging procedures and several patient-

reported outcome measures are administered. The ma-
jority of participants of the MACUSTAR study has inter-
mediate AMD and was recruited at 20 study sites while
the other groups (early AMD, late AMD, no AMD) were
recruited only at five study sites. More details on the
study protocol including the eligibility criteria, visit
schedule, outcome measures and their assessment, con-
founders, sources of bias and sample size considerations
have been published previously [18].
Recruitment for the MACUSTAR study started in

March 2018 and lasted for 87 weeks. Patients were
screened and recruited at 20 ophthalmological clinical
sites in seven European countries (Denmark, France,
Germany, Italy, Netherlands, Portugal and United King-
dom). Five of them were academic core partners within
the MACUSTAR consortium, the other sites were affili-
ated with the consortium and members of the European
Vision Clinical Research Network (EVICR.net). To facili-
tate planning of screenings, all sites confirmed their abil-
ity to recruit a minimum of 20 individuals into the
MACUSTAR study before study initiation; the core part-
ners agreed to a higher target of 40–70 recruited partici-
pants. Herein we retrospectively analyse and report the
impact of screening measures, and other factors found
to be either facilitators or barriers to screening
participants.
All institutional ethic committees approved the study

and participants gave written informed consent prior to
participation. The MACUSTAR project receives funding
from the European Union Innovative Medicines Initia-
tive (IMI2) Horizon 2020 programme. It has been regis-
tered at the website clinicaltrials.gov with the identifier
NCT03349801. Inclusion criteria for this analysis were
individuals screened for the MACUSTAR study with the
screening diagnosis intermediate AMD, a high-risk type
of the early AMD stages (determined at the clinical site).
Study inclusion at all study sites was based on the evalu-
ation and confirmation of AMD diagnosis by a central
reading centre, as described previously [17]. Exclusion
criteria were missing informed consent, participation in
any of the other MACUSTAR study groups (early, or late
AMD or control group) or relocation to another clinical
site within the time of the study. The MACUSTAR clin-
ical study is managed by the academic clinical research
organization AIBILI (Association for Innovation and Bio-
medical Research on Light and Image, www.aibili.pt) and
monitored by the European distributed infrastructure net-
work ECRIN-ERIC (www.ecrin.org).

Qualitative evaluation of screening measures
Screening strategies and measures were planned cen-
trally by a coordination team and then implemented
through AIBILI and ECRIN-ERIC across all sites. In
order to be able to systematically assess the impact of
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any of these on screening numbers, we extracted all rele-
vant information retrospectively from the study protocol,
protocol amendments, clinical site communications such
as newsletters and briefings, status reports, meeting mi-
nutes and emails from March 2018 to March 2020. All
factors that may have contributed to screening rates
were compiled and assigned to time periods and clinical
sites within the recruitment phase of the study where
they had been implemented. Time is measured in weeks
since the first site opened. Furthermore, we conducted
four in-depth interviews with personnel actively involved
in the study (clinical project managers, study site coordi-
nators and research personnel) to identify the most rele-
vant screening factors based on the available screening
numbers and factors previously identified. The inter-
views consisted of two parts to identify additionally rele-
vant factors: Firstly, all interviewed persons were asked
to name which factors (a) facilitated screenings or (b)
impeded screenings. Secondly, the factors were ranked
by the perceived impact on screening numbers by each
person interviewed. All persons were interviewed once
and only qualitative methods were applied during this
step.

Screening data compilation
Due to the availability of devices, ethics approvals, con-
tracting and the necessity to implement the upcoming
European Union General Data Protection Regulation in
2018, the first participants were screened at different
time points at the participating study sites. After com-
pletion of recruitment, data from the electronic case re-
port form and imaging data were collected and cleaned
as reported in the study protocol [18]. Screening num-
bers and recruitment numbers were compiled per clin-
ical site and per week. We assigned week 1 to the first
week of recruitment at the first site and used a global
consecutive numbering of weeks for all sites. Factors
that were considered relevant in the qualitative evalu-
ation (listed chronologically and preceded by a # sign in
the results) were assigned to specific clinical sites and to
specific time periods within the screening number data-
base based on where and when they were implemented
or occurred.

Statistical modelling
We explored the relationship between different screen-
ing factors and screening numbers per week at each clin-
ical site. The inter-correlation of recruitment factors was
assessed using Pearson correlation coefficients. When
two variables correlated with r > 0.8, only the factor
more strongly associated with screening numbers in
qualitative evaluation was used for further analyses. To
account for repeated measurements within the study
sites, a generalized mixed-effects model was built to

investigate the effect of screening factors on the screen-
ing numbers per site. As the official start of the recruit-
ment phase was scheduled at different time points for
each clinical site, a random intercept depending on the
site’s activity status was included. Each selected screen-
ing factor entered the model as a fixed effect. To capture
a possible time-trend, the week number (measured in
weeks since first site has opened) was also considered as
a fixed linear effect. Since the screening numbers can be
treated as count data, we used the Poisson family with a
logarithmic link function. Associations between screen-
ing numbers and factors contributing to screening num-
bers are presented in terms of relative risk increases
(exp(β)) with 95% confidence intervals, where β denotes
the coefficient estimate obtained from the mixed-effects
Poisson model.
The analyses were performed with the software R, ver-

sion 3.6.1 (R Core Team 2020, Vienna, Austria), using
the packages lme4 and MuMIn [19, 20].

Results
The overall number of screenings for the intermediate
AMD group was 767 in 87 weeks. One participant was
excluded from the analysis due to relocating after the
screening visit. The last site was opened for recruitment
37 weeks after the first site (Fig. 1). The mean screening
rate was 0.6 ± 0.9 screenings per week among all sites.
At total of 584 participants of the 766 individuals with
intermediate AMD included in the analysis (76%) were
included in the MACUSTAR study.

Qualitative evaluation
Twenty factors with a possible impact on patient screen-
ings were identified at global study level (Table 1). While
some of them occurred continuously, others were linked
to specific periods of time.
Screenings in the MACUSTAR study proceeded in

three phases. During an initiation period (weeks 1–25),
the overall screening trend increased and most partici-
pating clinical sites were successively opened for recruit-
ment (factor #1). The weekly screening numbers
increased noticeably after the summer holiday season of
2018 (#2). Several screening / recruitment measures im-
plemented continuously throughout the MACUSTAR
study were initiated in this period, including the recruit-
ment of patients from pre-screening lists, use of dissem-
ination material and a study newsletter as well as
individual contacts with investigators (i.e. phone calls
and emails to the principal investigator).
In the ensuing execution period (weeks 26–60) weekly

screening numbers varied more (range: 0–25 total
screenings per week). The implemented measures at the
beginning of the execution period included an increase
of participant travel expenses reimbursement from initial
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EUR 50 per visit to EUR 75 per visit (#3), an increased
MACUSTAR newsletter distribution frequency from
monthly to biweekly (#4) and the initiation of regular
coordination teleconferences with the project manage-
ment and monitors (#5). Three teleconferences with the
principal investigators (#6) were conducted during the
execution period and screening numbers increased after
these teleconferences. The teleconferences were used to
provide data from recent interim analyses to the study
staff (principle investigators, study coordinators, study
technicians) as well as to allow anyone to ask questions
and share approaches on common organizational hur-
dles, such as the organization of the study schedule,
feedback on why screenings failed or pitfalls in the re-
cruitment. Two in person investigator meetings (#7)
were also followed by an increase in weekly screenings.
The recruitment period was extended beyond the initial
end in week 48 until week 87 in order to meet recruit-
ment targets. The two lowest weekly screening rates in
the execution period (weeks 39 and 56) coincided with
Christmas 2018 and the planned end of recruitment be-
fore being extended.
The third phase of screenings was a transition period

(weeks 61–87). It was characterized by more steady

screening rates. The number of weekly screenings de-
creased in the summer holiday season 2019 but in-
creased noticeably afterwards. A change in the inclusion
criteria (#8), which opened up recruitment for individ-
uals with unilateral intermediate AMD, was associated
with an increase of the screenings at the end of the re-
cruitment period before the transition to the follow-up
phase of the study.
At the single clinical site level, the cumulative screen-

ings followed two different patterns. At eight sites, this
development increased continuously while at 12 sites, a
saturation of the screening rates towards the end of the
recruitment period was observed (#9). The core partner
sites reached higher recruitment rates (overall median
recruitment per site: 66 people) than the other clinical
sites (overall median recruitment per site: 29 people;
#10).

Variable selection process
Three of the 10 global variables identified (Table 1) were
highly correlated (#3 – #5; increase of travel expenses
reimbursement, increase of newsletter frequency, initi-
ation of regular coordination teleconferences with the
project management and monitors). In the in-depth

Fig. 1 Participants screened and participants eligible for the MACUSTAR study with intermediate age-related macular degeneration as well as
number of active sites and factors impacting screenings, displayed per week since start of recruitment at the first study site (80% target reached
refers to individual clinical sites; all other factors are global). The blue curves represent cumulative numbers; the grey curve represents numbers
per week
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interviews (see above), higher travel expenses reimburse-
ments were considered to have the largest impact on the
overall screening numbers and we therefore included
this factor in the multivariable model only. Thus, we
identified the following eight parameters for further stat-
istical evaluation in a multivariable model: Modification
of inclusion criteria, increase of participant travel ex-
penses reimbursement, organization of investigator tele-
conferences and meetings in person, public holidays,
saturation of screening numbers (80% of overall recruit-
ment per site), week and being a core partner in the
MACUSTAR consortium.

Multivariable screening number model
A mixed-effects model including the variables identified
qualitatively, excluding highly correlated variables (fac-
tors #1 – #3, #6 – #10, Table 1) was fitted to the screen-
ing data. The participation at investigator
teleconferences, public holidays and reaching a high pro-
portion (80%) of the site recruitment target showed
strong associations with screening rates at an individual
site level (Table 2). The conditional R2 value of the
model was 0.95 [19, 20]. According to this modelling ap-
proach, expected screening numbers increased by the
factor exp.(β) = 1.466 (95% CI [1.018–2.112]) after inves-
tigator teleconferences were implemented, decreased by
the factor exp.(β) = 0.446 (95% CI [0.367–0.591]) during
public holidays and decreased with a factor of exp.(β) =

0.669 (95% CI [0.367–0.591]) after a site reached 80% of
their recruitment target (after adjusting for the other
factors included in the model). This is in line with the
average screenings per week, which increased from 0.56
to 0.97 at the time of investigator teleconferences. They
decreased from 0.65 to 0.29 during holiday periods and
from 0.67 to 0.40 when individual sites reached 80% of
their recruitment target.

Discussion
In the MACUSTAR study, we successfully recruited a
large cohort of participants with early, mostly asymp-
tomatic AMD stages and found that constant interaction
with clinical sites including newsletters, investigator
meetings, teleconferences, individual contacts and trou-
bleshooting improve overall recruitment performance.
Out of this flurry of activities, however, regular investi-
gator teleconferences were the only measure which was
significantly associated with increased screenings at site
level. As was to be expected, public holidays were associ-
ated with decreased screening performance. Sites slowed
down screenings when they reached 80% of their recruit-
ment target. In summary, regular interactions with the
site investigators are crucial for a smooth recruitment,
and this should likely be increased once sites need to re-
cruit the last 20% as this was when screenings slowed
down again.

Table 1 Relevant global screening factors identified for the MACUSTAR study in qualitative evaluation ordered by estimated
magnitude of impact on screening numbers

Screening
measures

Factors prioritized in qualitative interviews* Other factors

All sites Change of inclusion criteria (opening for individuals with
unilateral intermediate disease) (#8)

Dissemination material (patient flyer, referral letter, study
procedure flyers, sample visit schedules)

Increase of participant travel expenses reimbursement (#3) Distribution of study newsletter

Investigator teleconferences (#6)

Investigator meetings (conferences) (#7) Letter of appreciation for clinical sites at recruitment start

Increase of study newsletter frequency (monthly to biweekly) (#4) Implementation of a clinical site questionnaire to identify
unsolved issues

Regular coordination teleconferences with the project
management and monitors (#5)

Single sites Pre-screening lists

Individual contacts with investigators (e-mail, phone, in person)

Individual contacts with site coordinators

Appearing in the newsletter as a “top recruiter”

Interacting
factors

Public holiday (#2) Competitive recruitment

Reaching a high proportion of the initial “recruitment target” or
exceeding this target (#9)

Communication of recruiting problems by individual sites

Successive initiation of screening activity (#1) Problems with study devices at individual sites

Consortium core membership (#10)

* only global factors that could be assigned to specific time periods were allowed
Factors preceded by a # sign were considered relevant in the qualitative evaluation and are displayed in the ranking order obtained in the qualitative evaluation
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Failure to recruit a sufficient number of participants in
any study can have dire consequences. In an evaluation
of two funding agencies, 36% of 195 trials reached less
than 80% of their recruitment targets, resulting in a re-
duced power which had medical, scientific, financial and
ethical implications [21, 22]. In addition, low recruit-
ment is a frequent cause for early termination of clinical
studies [23]. Careful recruitment planning is therefore
an absolute necessity in all clinical studies. In MACUS-
TAR, no single measure resulted in successful comple-
tion of recruitment alone. This is in keeping with
available literature where it has previously been noted
that only a combination of recruitment measures can
lead to successful completion of study recruitment [24].
A review and meta-analysis of recruitment facilitators

identified telephone reminders to non-responding candi-
date participants as a significant facilitator of recruit-
ment to randomized controlled trials [1]. We assume
that one of the mediators of this effect was that partici-
pants were encouraged to allocate their resources in
ways that supported the studies. Similarly, teleconfer-
ences with the investigators had a significant positive
impact on the MACUSTAR screenings in a multi-site
setting. In our experience, teleconferences as well as in-
dividual calls allow for a personal relationship and multi-
or bidirectional conversations with the site staff on e.g.
goals and site-specific difficulties. It also supports peer
group learning and creates a common sense of responsi-
bility for the study. In contrast to our findings, Caldwell
et al. did not find significantly increased recruitment
when keeping increased contact with investigators [2].
Screening rates for the MACUSTAR study dropped

significantly during public holidays. This result has not
been reported in the available literature [1–3, 5, 21, 25–
29] but seems self-evident as facilities are closed during
holidays. Gkioni and colleagues reviewed models for the
prediction of recruitment when trials are designed [6].
They described that seasonal variations were considered

by only 17% of the predictive models found in the litera-
ture. We observed high absolute increases in weekly
screenings shortly after the end of holiday periods. This
finding could be of strategic value for the initiation of re-
cruitment measures in other clinical studies. We assume
that facilitating recruitment with new measures could be
particularly effective after public holidays.
Besides the assumed influence of teleconferences and

public holidays, we observed significant saturation effects
of screening numbers in the MACUSTAR study. These
would be expected in a study with committed recruit-
ment goals for each clinical site. However, with competi-
tive recruitment in the MACUSTAR study this was an
unexpected finding and future research is needed to fur-
ther assess this effect. In terms of practical implications,
sponsor contact should be increased for clinical sites
which have almost reached their recruitment target.
Besides these global factors which were present or im-

plemented across all clinical sites in this study, site spe-
cific factors such as existing referral networks or a
history of clinical research projects are likely to impact
screenings numbers and recruitment as well. Unfortu-
nately, it is impossible to assess the impact of any site-
specific factors in a systematic fashion as they cannot be
quantified across sites.
The main strengths of our analysis include its qualita-

tive and quantitative research methodology, its focus on
multi-centre epidemiological research and its inclusion
of recruitment factors also identified by previous studies
following a thorough review of the literature. We fo-
cused our analysis on screening numbers on a site level.
Recruitment was not directly assessed in our model
since recruited participants out of the pool of screenings
were determined by a central reading centre, not by the
local investigator. The main limitation of our study is its
retrospective character and thus limited generalizability
to other studies. As the very few previous studies on re-
cruitment facilitators were done in controlled

Table 2 Model parameters for the screening numbers per week in a multivariable generalized mixed-effects model (Poisson family
with logarithmic link function)

Predictor β coefficient* exp (β)* 95% interval for exp(β)* p value

Revision of inclusion criteria 0.186 1.204 (0.881–1.647) 0.243

Increase of travel expenses reimbursement 0.149 1.161 (0.859–1.570) 0.331

Investigator teleconferences 0.382 1.466 (1.018–2.112) 0.0398

Investigator meetings −0.084 0.919 (0.705–1.199) 0.534

Core partner site 0.379 1.460 (0.254–8.392) 0.671

Reaching 80% of site recruitment target −0.357 0.699 (0.542–0.903) < 0.001

Public holidays −0.763 0.466 (0.367–0.591) < 0.001

Week −0.006 0.994 (0.986–1.003) 0.202

Intercept −4.19 0.015 (0.005–0.045)

* adjusted values. No evidence for overdispersion was found (dispersion parameter: 1.0098, p = 0.3820 [19]). Only a shared fixed intercept is added when the site
is inactive (β0 = − 4.19, exp.(β0) = 0.015, 95% CI [0.005–0.045]). Random intercepts α for active clinical sites ranged from 3.42 to 4.35
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interventional trials, our results from this observational
study have to be interpreted with caution but add to the
existing literature. In addition, our analyses provide valu-
able information in particular relevant to studies recruit-
ing difficult to recruit populations such as early and
asymptomatic disease stages [30].
In conclusion, many different facilitators and barriers

likely interacted during the recruitment phase of the
MACUSTAR study, a multi-site cohort study of early
stages of AMD. Regular teleconferences with site investi-
gators increased while public holidays and screening ac-
tivity saturation at individual clinical sites decreased
screening performance. These factors should be given
special attention in the design and conduction of future
studies as well as selection of clinical sites in particular
when recruiting participants with early and largely
asymptomatic disease stages.
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Modeling of atrophy size trajectories:
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Abstract

Background: To model the progression of geographic atrophy (GA) in patients with age-related macular
degeneration (AMD) by building a suitable statistical regression model for GA size measurements obtained from
fundus autofluorescence imaging.

Methods: Based on theoretical considerations, we develop a linear mixed-effects model for GA size progression that
incorporates covariable-dependent enlargement rates as well as correlations between longitudinally collected GA size
measurements. To capture nonlinear progression in a flexible way, we systematically assess Box-Cox transformations
with different transformation parameters λ. Model evaluation is performed on data collected for two longitudinal,
prospective multi-center cohort studies on GA size progression.

Results: A transformation parameter of λ = 0.45 yielded the best model fit regarding the Akaike information
criterion (AIC). When hypertension and hypercholesterolemia were included as risk factors in the model, they showed
an association with progression of GA size. The mean estimated age-of-onset in this model was 67.21 ± 6.49 years.

Conclusions: We provide a comprehensive framework for modeling the course of uni- or bilateral GA size
progression in longitudinal observational studies. Specifically, the model allows for age-of-onset estimation,
identification of risk factors and prediction of future GA size. A square-root transformation of atrophy size is
recommended before model fitting.

Keywords: Geographic atrophy, Age-related macular degeneration, Box-Cox transformation, Mixed-effects models,
Prediction, Age-of-onset estimation

Background
Age-related macular degeneration (AMD) is a leading
cause of blindness, especially for people in developed
countries older than 60 years [1, 2]. AMD has two
late stages: choroidal neovascularization (CNV) and geo-
graphic atrophy (GA). Here we consider GA, which is
thought to be the end stage of AMD when CNV does

*Correspondence: charlotte.behning@imbie.uni-bonn.de
1Department of Medical Biometry, Informatics and Epidemiology, University
Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
Full list of author information is available at the end of the article

not develop [3] and which is responsible for vision loss
in approximately 20% of all patients with AMD [4]. More
than five million people are estimated to be affected by
GA worldwide, a number which is supposed to increase
with the aging of the population [2]. To date, there is no
effective standard treatment available [5].
GA is defined by atrophic lesions of the outer retina

resulting from loss of retinal pigment epithelium (RPE),
photoreceptors and underlying choriocapillaris (reviewed
by [6]). These areas enlarge with time and lead to irrever-
sible loss of visual function [7]. A relevant clinical measure

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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of disease progression is the eye-specific size of GA which
can be quantified based on imaging techniques including
color fundus photography, spectral domain optical coher-
ence tomography imaging, or fundus autofluorescence
(FAF) imaging [8, 9].
A better understanding of the risk factors that accel-

erate GA size progression is necessary for the develop-
ment of treatment options, in particular for the design
of (interventional) clinical trials. To date, empirical evi-
dence on GA size progression is usually collected through
longitudinal observational studies (e.g. [10–12]). In these
studies, it is essential to analyze GA size trajectories over
time using an adequate statistical model. Specifically, in
the absence of a randomized study design, data analysis
needs to account for confounding issues as well as corre-
lation patterns, for instance when both eyes of a patient
are included in the study. In the latter case, the corre-
lations between the eyes within one patient need to be
incorporated as well as the correlations due to repeated
measurements over time.
The aim of this analysis is to systematically derive a

statistical approach for modeling GA size in observa-
tional ophthalmologic studies. As will be demonstrated
in the following sections, the proposed approach general-
izes various statistical models for GA size progression that
have been used in previous publications (see below). Spe-
cial focus will be given to the following issues, which are
considered to be of particular importance for the planning
and design of future interventional trials:

(i) Transformation of GA size. Before model fitting,
it is important to consider whether the response (here,
GA size) should be transformed. Finding an appropri-
ate transformation can provide information about the
underlying natural processes that drive the progression
of GA. In recent publications on GA size progression,
there has been an ongoing discussion about the opti-
mal choice of transformation [11, 13–15]. Three main
modeling paradigms have emerged: The first set of mod-
els assumes a linear relationship between GA size and
covariables (e.g. risk factors or confounding variables).
This implies a constant enlargement of GA size over time.
Examples of this modeling approach can be found in [13,
14]. The second approach assumes a quadratic enlarge-
ment of the lesion size. This is motivated by the thought of
circular atrophic lesions that constantly enlarge with their
radiuses [11, 15]. The third model type is an exponen-
tial model in which atrophic lesions enlarge exponentially.
Compared to a linear growth model, Dreyhaupt et al. [13]
found that the assumption of exponential growth led to
improved model fits.

(ii) Age-of-onset estimation. Another relevant topic for
modeling GA size progression is the estimation of the

age of disease onset. Research on this topic is motivated
by the fact that in many clinical trials patients can only
be included when the disease is already manifested in a
later stage. The estimated age-of-onset may, in contrast to
lesion size, be considered as time-invariant variable, and
facilitate association analyses with other time-invariant
variables such as the genotype.

(iii) Identification of risk factors and confounding
variables. For the development of AMD treatments, it is
essential to specify meaningful inclusion and exclusion
criteria for use in future clinical trials. It is therefore of
high importance to identify relevant risk factors and
confounding variables, and to analyze their relation-
ships with GA size progression. Such an analysis can be
achieved by building a multivariable regression model
from observational data that includes relevant risk factors
and confounders as covariables.

To address the issues described above, we derive a
statistical regression model that includes (possibly trans-
formed versions of) GA size as response variable, as well
as potential risk factors and/or confounders (such as e.g.
age, smoking) as covariables. To account for the above
mentioned correlations between eyes of the same patient
as well as temporal correlations, we investigate the use
of a mixed-effects modeling approach with patient- and
eye-specific random effects terms. In this framework, we
identify the “optimal” transformation of GA size by con-
ducting a systematic search within the family of Box-Cox
transformations [16]. As will be shown, this systematic
approach also allows for the derivation of formulas for
age-of-onset estimation. Furthermore, we demonstrate
how predictions of future (untransformed) GA size values
can be obtained from the fitted regression model.
For model derivation and illustration, we will apply the

proposed methods to a data set collected by the multi-
center Fundus Autofluorescence in AMD (FAM) study
(NCT00393692) and by its single-center extension study,
the Directional Spread in Geographic Atrophy (DSGA)
study (NCT02051998). These noninterventional, prospec-
tive natural history studies adhered to the tenets of the
Declaration of Helsinki and were approved by the institu-
tional review boards of the participating centers. Written
informed consent was obtained from each participant
after explanation of the studies’ nature and possible con-
sequences of participation.

Methods
Data
The data set used here was collected from patients with
GA secondary to AMD that were recruited for the FAM
study and followed-up in the DSGA study.
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The inclusion and exclusion criteria have been
described elsewhere [14, 17]. In brief, the two studies
included eyes without any history of retinal surgery, radi-
ation therapy, laser photocoagulation or retinal diseases
other than AMD. GA size measurements were obtained
by grading FAF retinal images that were recorded at the
baseline and follow-up visits. Data was only used for sta-
tistical analysis if the difference in total GA size between
two graders was smaller than 0.15mm2 and if the patients
had at least two visits.
Our analysis data set contained N = 150 eyes from

n = 101 patients that where examined in up to nine
follow-up visits. At baseline, the median age was 75.7
years (IQR: 70.7 − 80.6 years); 61.4% of the patients were
female, and themean follow-up time was 3.36 years (range
0.5− 13.7 years) due to the extension by the second study.
The GA size varied strongly between eyes: mean GA
size at baseline was 5.64mm2, ranging between 0.07mm2

and 31.41mm2. The status of hypertension and hyperc-
holesterolemia was assessed by a patient-reported ques-
tionnaire at the baseline visit. Information was obtained
based on patients’ reports and current medication; med-
ical reports were included in the assessment if available.
For details see Table 1.

Regression modeling
Within a typical ophthalmologic study setting, patients
participate in several follow-up visits at which one or
both eyes are examined. This leads to correlated measure-
ments, both within the patients and over time. Thus, a
model is needed that captures complex correlation struc-
tures. A popular regression model, which has been used
regularly in the literature on GA [11, 13] and which is also
considered here, is a mixed-effects model with random
effects terms for both eye and patient. Yet, there exists a
variety of model specifications and the specific structure
is still a matter of debate [18].
Before introducing the full mixed-effects model with

possible risk factors and confounders, we start with a
model that contains a time trend as only (continuous)
covariable. This model serves as a basic model that cap-
tures the time dependency of GA enlargement.

Mixed-effects model with time as only covariable. As
suggested by Shen et al. [18], we follow the hypothesis that
the progression of GA has an underlying process of GA
expansion that is mostly the same over time for all eyes.
Differences in eyes may arise due to different exposition to
environmental conditions, and, most importantly, GA size
varies between patients as they enter the study at different
time points in their disease history. We therefore propose
to include the disease age �i ≥ 0 of an eye i at study entry
directly in the model. We further assume that the atrophy
size yit of an eye i depends on the (unknown) age of the

Table 1 Characteristics of the analysis data set used for statistical
modeling

Count Percent

Patients (n) 101

Eyes (N) 150

Bilateral GA 49 48.50%

Unilateral GA 52 51.50%

Hypertension

yes 56 55.40%

no 44 38.60%

Hypercholesterolemia

yes 28 27.70%

no 70 69.30%

No. of patients with no. of visits

2 visits 25 24.75%

3 visits 23 22.78%

4 visits 23 22.78%

5-9 visits 30 29.70%

Mean (Range) Median (IQR)

Age at baseline 75.61 75.66

[years] (57.23 - 95.06) (70.67 - 80.62)

Follow-up time 3.36 2.90

[years] (0.50 - 13.70) (1.61 - 4.57)

GA size at baseline 5.64 4.30

mm2 (0.07 - 31.40) (1.76 - 7.60)

All data considered in this paper was collected from patients with GA secondary to
AMD that were recruited for the FAM study. If further monitoring of these patients
was performed via the DSGA study, the further progression is included in the
analysis data set

disease at study entry �i and the (observable) follow-up
time t ≥ 0 that has passed since. Time is assumed to be
measured on a continuous scale, e.g. in days or years since
baseline. Under the assumptions by Shen et al. [18], and
considering (for the moment) a linear enlargement of GA,
this leads to the following regression model:

yit = β · (�i + t) + εit , (1)

where β denotes the regression slope (i.e. the constant
enlargement rate). The residuals εit , i = 1, . . . ,N , are
assumed to be normally distributed with zero mean and
variance σ 2.
If it is further assumed that the disease age at study entry

can be approximated by a normal distribution, the model
in (1) can be parameterized such that it becomes a linear
mixed-effectsmodel. This is seen by defining θi := β·�i ∼
N

(
μθ , σ 2

θ

)
and αi := θi − μθ ∼ N

(
0, σ 2

θ

)
, so that Model

(1) can be written as

yit = μθ + βt + αi + εit . (2)

In this form, the model reads as follows: The atrophy size
yit depends on a fixed intercept μθ , an eye-specific ran-
dom intercept αi that reflects the deviation of the disease
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age of eye i at study entry from the mean disease age at
study entry, and an overall linear time trend βt that is the
same for all eyes.
When there are patients in the study that contributed

data from both eyes, one needs to consider the nested data
structure and account for the correlations between mea-
surements taken from the same patient. This can be done
by extending the model equation as follows:

yijt = μθ + βt + ζj + αi + εijt , (3)

where ζj ∼ N
(
0, σ 2

ζ

)
, j = 1, . . . , n, is a normally dis-

tributed patient effect and αi the effect of an ’eye within a
patient’. Note: While it is assumed that the residual terms
εijt are independent of the random effects αi and ζj, the
latter two terms are generally allowed to be correlated. For
simplicity, and without loss of generality, we will assume
independence of all random effects terms in the following.

Mixed-effects model with covariables. When intro-
ducing covariables into the model, it is reasonable to
assume that risk factors and/or confounders equally influ-
ence the enlargement of GA before and after inclusion of
an eye in the study. This assumption can be incorporated
in Model (1) by adding a covariable-dependent slope to
the model equation:

yit = (
β + β

ᵀ
x xi

) · (�i + t) + εit , (4)

where xi = (x1, ..., xk)
ᵀ
i is a vector of k (possibly

time-dependent) risk factors for each eye and βx =(
βx1 , ...,βxk

)ᵀ is a vector of parameters that accelerate or
slow down GA size progression (βxs > 0 and βxs < 0,
respectively, s ∈ {1, . . . k}). Note that in the following, we
will not distinguish between risk factors and confounders
any more, as we assume that both are collected in the
vectors xi.

Similar to the reparametrization used above, we write
�i := (μ� + γi) ∼ N

(
μ�, σ 2

�

)
, where μ� and σ 2

� denote
the mean and the variance of the i-the eye at study entry.
The mixed-effects model with covariables can then be

written as

yit = (
β + β

ᵀ
x xi

)
μ� + (

β + β
ᵀ
x xi

)
γi + βt + β

ᵀ
x xit + εit

= βμ� + βt + μ�β
ᵀ
x xi + β

ᵀ
x xit + βγi + β

ᵀ
x xiγi + εit .

(5)

with eye-specific random effects γi ∼ N
(
0, σ 2

�

)
. The lin-

ear enlargement in Model (5) thus implies dependency of
yit on an interaction term between t and xi, and also on
random slopes of the covariable values xi. Importantly,
Eq. 5 implies numerous dependencies between the slope
parameters associated with t, xi, xit, γi, and xiγi, so that
the model no longer possesses the structure of a “stan-
dard” mixed-effects model with unrestricted estimation of
coefficients. Details on model fitting will be given below.
Finally, when considering patients that contribute data

from both eyes, one specifies

yijt = βμ� + βt + μ�β
ᵀ
x xi + β

ᵀ
x xit + βγi

+ β
ᵀ
x xiγi + βζj + β

ᵀ
x xiζj + εijt

(6)

with patient-specific random effects ζj ∼ N
(
0, σ 2

ζ

)
, j =

1, . . . , n, and an additional interaction term between xi
and ζj.
The model equations presented so far ascribe a linear

relationship between time, risk factors, and GA size. In
the following section, possible transformations are exam-
ined, so that the modeling approach is extended to model
nonlinear progressions.

Transformation of the response
As an example, Fig. 1 A shows the GA size trajectories of
four eyes contained in the analysis data set. Considering

Fig. 1 Progression of GA size. A Untransformed GA size trajectories of four different eyes contained in the analysis data set and B trajectories on a
transformed scale with transformation parameter λ = 0.45
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these progressions, it is conceivable to assume that the tra-
jectories are not strictly linear. Since the model equations
above (Models (1) to (6)) refer to linear enlargement pro-
cesses, a transformation of the response is convenient for
modeling non-linear progression (see Fig. 1B).
Three different transformation approaches have been

used in recent publications on GA size progression (e.g.
[11, 13–15]): (i) Linear models with no response trans-
formation implying a linear relationship between GA
size and the covariables, (ii) linear models with square
root transformation of the response, and (iii) linear
models with log-transformed response – or equivalently
exponentially transformed models with no transformed
response – implying an exponential enlargement of the
lesion size.

Box-Cox transformation Instead of comparing only the
most commonly used transformations, we consider a sys-
tematic and more comprehensive strategy for finding an
appropriate transformation of the GA size. For this sys-
tematic approach, the Box-Cox model class is applied
because it covers a wide range of transformations, includ-
ing the transformations (i) to (iii) above. More specifically,
for an atrophy size y > 0 we consider the class of Box-Cox
transformations

fλ(y) := y(λ) =
{

yλ−1
λ

if λ �= 0,
log(y) if λ = 0,

(7)

as introduced by [16]. Applying (7) to one of the Mod-
els (1)-(6) reads as follows: λ = 1 refers to a model with
no response transformation, λ = 0.5 corresponds to a
square-root transformation of the response and λ = 0 can
be interpreted as exponential enlargement of the GA size.

Model comparison The main criterion used for our
model comparisons was Akaike’s Information Criterion
(AIC) [19]. More specifically, our aim was to choose the
transformation parameter λ that minimized AIC on the
analysis data set while assuring that the assumptions of
Models (1) to (6) were best possibly met, in particular
the normality of the residuals. The AIC is defined by
AIC = −2 · log(L) + 2 · nparams, where L is the likelihood
of the model under consideration (evaluated at the maxi-
mum likelihood estimate) and nparams denotes the number
of parameters used in the model. As we compared mod-
els with a transformed response, we applied the density
transformation theorem to compute the likelihood L.

Maximum likelihood estimation The estimation of the
model parameters was performed bymaximum likelihood
(ML) estimation. ML estimation was carried out for a
grid of fixed transformation parameters λ using the trans-
formed GA size values. Subsequently, the likelihoods were

compared and the transformation parameter referring to
the model with minimum AIC was considered best.
We initially assumed that there was an “optimal” value

λ for which the transformed atrophy size given the ran-
dom effects followed a normal distribution. In addition,
we briefly considered random effects with an unspecified
mixing distribution as a non-parametric cross-check. The
two approaches will be described in the next paragraphs.

Normally distributed random effects As noted above,
the linear model in (6) imposes numerous side conditions
on the slope parameters associated with t, xi, xit, γi, and
xiγi. In order to fit Model (6) using readily available soft-
ware for the estimation of the slope parameters (without
side conditions, such as the R add-on package lme4[20],
version 1.1-25), we propose to iterate the following steps:

(i) For given estimates β̂ and β̂x compute the values of
the working covariable x̃i := β̂ + β̂

ᵀ
x xi.

(ii) Fit the linear mixed-effects model

yijt = βt + β
ᵀ
x xit + μ�x̃i + x̃iγi + x̃iζj + εijt (8)

to obtain updates of the coefficient estimates of μ̂�,
β̂ , and β̂x. Note, that Model (8) is just a
re-formulation of Model (6) that can be fitted
without side conditions on its slope parameters. For
the fitting procedure a fixed intercept term is added
to increase computational stability and to relax the
condition that the empirical mean of estimated
random effects terms is forced to be zero.

The starting values for β̂ and β̂x in Step (i) may be
obtained from (8) with an initial value of x̃i = 1. As
demonstrated in the supplementary materials (see Addi-
tional file 1), repeated execution of (i) and (ii) will typically
converge to the final estimates after less than 20 iterations.

Random effects with unspecified mixing distribution
As an alternative tomixed-effects modeling with normally
distributed terms, Almohaimeed et al. [21] proposed to
consider a nonparametric maximum likelihood (NPML)
approach. This approach approximates the distribution of
each random effect by a discrete distribution with finite
number of mass points K. It then uses an expectation-
maximization algorithm to find the nonparametric max-
imum likelihood estimate. Here, the NPML approach
is used to verify the optimal transformation parameter
obtained from modeling with normally distributed ran-
dom effects.

Age-of-onset estimation
Model without covariables As defined by [22], a diag-
nosis for GA can be given at a minimum lesion diameter
of 250 μm and thus a lesion area of 0.05mm2. Based on
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this specification and denoting λopt as the value of λ that
is optimal w.r.t. AIC, the time t̂0ij at which the atrophy size
was ŷijt0 = 0.05[mm2] (i.e. ŷ(λ)

ijt0 = λ−1
opt · (0.05λopt − 1))

can be obtained by solving the model equation of the
transformed mixed-effects Model (3) for t:

t̂0ij =
λ−1
opt · (

0.05λopt − 1
) −

(
μ̂θ + ζ̂j + α̂i

)

β̂
, (9)

where β̂ and μ̂θ denote the ML estimates of β and μθ ,
respectively, and ζ̂j and α̂i denote the realizations of the
random effect terms. As a consequence, subtracting the
estimated time t̂0ij from the patient’s age at study entry
results in the estimated age-of-onset of GA in the i-th eye
of patient j. Remark: While from a modeling perspective a
theoretical atrophy size of yijt0 = 0mm2 could be defined
at the time of disease onset, we will focus on the clinically
relevant definition

(
yijt0 = 0.05mm2) here. For y = 0 it

holds that t0ij = �ij = 1
β

· (μθ + ζj + αi).

Model with covariables Analogous to (9) one can esti-
mate the ages of GA onset of the study eyes in a model
with additional covariables. From Eq. 8 one obtains

t̂0ij =
λ−1
opt · (

0.05λopt − 1
) − x̃i

(
μ̂� + ζ̂j + α̂i

)

x̃i
(10)

where x̃i := β̂ + β̂
ᵀ
x xi contains the parameters obtained

fromML estimation.

Prediction
Evaluating a model and its coefficients only on a trans-
formed scale is challenging as the linearity of the
predictor-response relationships in Models (5) and (6)
only holds on the transformed scale but not on the original
scale of the response (provided that λ �= 1). As a con-
sequence, the calculation of the expected GA size E(y|x)

– and hence any prediction of expected disease progres-
sion – cannot be done in an unbiased way by a simple
back-transformation.
To see this, consider a non-linear Box-Cox transforma-

tion f (y) with an arbitrary parameter λ �= 1 and, where
existent, the corresponding inverse Box-Cox transforma-
tion f −1(y). Further, let f (yijt|xi) = zijt + εijt , where
zijt := E(f (yijt|xi)) and εijt denote the linear predictor
and the residual, respectively in one of the above mod-
els. A naive back-transformation would directly take the
inverse of the linear predictor, i.e. f −1(zijt), which dif-
fers from the desired expected GA size value E(yijt|xi) =
E

(
f −1 (

zijt + εijt
))

by Jensens’s inequality [23]. In other
words, f −1 (

E
(
f
(
yijt|xi

))) �= E(yijt|xi). To address this
issue and to obtain unbiased predictions of the GA size,
we propose to sample r = 10, 000 residuals from the
empirical distribution ε̂1, ..., ε̂r in the respective fitted
model. The expected atrophy size on the original scale can
then be estimated by ̂E(yijt|xi) := 1

r
∑r

u=1 f −1 (
ẑijt + ε̂u

)
,

where ẑijt denotes the fitted value of f (yijt|xi).

Results
In this section, we present the results obtained from fit-
ting Models (2), (3) and (6) to the analysis data set (150
eyes of 101 patients). Missing values in the covariables
were imputed using the R package mice [24] with one
imputation run. Fitting was done using lme4 [20] with the
algorithm described above.

Modeling of GA size trajectories
Determination of the transformation parameter In
order to determine the optimal value of the transfor-
mation parameter λ, we evaluated linear mixed-effects
models of the forms (3) and (6) on the analysis data set.
Box-Cox-transformed responses with varying values of λ

were considered in each of the models. As seen in Fig. 2A,
the minimum AIC value was reached at λopt = 0.45 in the
model without covariables. The model with covariables

Fig. 2 Determination of the optimal Box-Cox transformation. For each value of the transformation parameter λ, parametric mixed-effects models A
without covariables as in Model (3) and B with covariables as in Model (6) were fitted to the analysis data set. Model fitting was performed using the
R package lme4. The orange dot indicates the optimal fit, which was achieved at λopt = 0.45. For Model (3), the optimal AIC value was
AICλ=0.45 = 1413.69 and for Model (6) the optimal AIC value was AICλ=0.45 = 1347.78
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Fig. 3 Optimization using NPML approach. Log-likelihood values obtained from fitting Model (2) to the analysis data set with the NPML method, as
implemented in the R package boxcoxmix [21]. The black line indicates the optimal values of the transformation parameter λ for varying numbers
of mass points K. The corresponding values can be found in Table 2

also yielded an optimal AIC value at λopt = 0.45 (Fig. 2B).
The NPML approach led to similar results for the opti-

mal value of λ in the setting without covariables. As seen
in Fig. 3, the obtained values for the optimal λ ranged
between 0.35 and 0.5. For a larger number of mass points
(K > 7) the same optimal λ (= 0.45) as in the parametric
approach was found.

Normality of the residuals Figure 4 shows the residual
diagnostics obtained from fitting Model 6 to the analysis
data, including hypercholesterolemia and hypertesnsion
as risk factors. It is seen that even after transformation
the fitted residuals were not normally distributed. How-
ever, homoscedasticity was better met after transforma-
tion with λopt = 0.45. Furthermore, the distribution of the
residuals was less skewed after transformation.

Effects of risk factors As shown in Fig. 4, the residu-
als obtained from fitting Model 6 to the analysis data set
did not perfectly follow a normal distribution, even after
transformation of the response. Therefore, inference pro-
cedures that rely on asymptotic normality may not be the
best choice to investigate the effects of risk factors on
(transformed) GA size. To address this issue, we used a
bootstrap approach to obtain the 95% confidence intervals
of the parameters within Model (6). The results are pre-
sented in Table 3 and in Fig. 5. It is seen, that time was
associated with the transformed GA size, growing by 0.42
(95% CI [0.36,0.50]) per year. Also the absence of hyper-
cholesterolemia was associated with more rapid enlarge-
ment of the lesion size (estimate: 0.11, 95% CI [0.06,0.17]),
while a slower progression in patients without hyperten-
sion (estimate: −0.09, 95% CI [−0.17,−0.03]) was found.

Note that the estimated coefficients refer to transformed
GA size and thus cannot be directly interpreted in terms
of an enlargement of the GA size measured in mm2.
Remark: Model fitting was performed on an imputed

data set, using the R package mice [24] with one impu-
tation. Results obtained from complete case analysis were
almost identical.

Age-of-onset estimation
Figure 6 presents the estimated ages of disease onset of the
study eyes, as obtained from Models (3) (without covari-
ables) and (6) (with covariables). For the simple model

Table 2 Optimization using NPML approach

K loglik λopt AICbm

1.00 -1593.02 0.35 3192.04

2.00 -1402.21 0.35 2814.41

3.00 -1310.29 0.45 2634.57

4.00 -1230.15 0.40 2478.30

5.00 -1164.85 0.40 2351.70

6.00 -1142.70 0.35 2311.39

7.00 -1127.57 0.35 2285.14

8.00 -1107.63 0.45 2249.26

9.00 -1102.10 0.45 2242.19

10.00 -1096.30 0.45 2234.60

The table presents the optimal values of the transformation parameter λ that were
obtained from fitting Model (2) with the boxcoxmix package [21] using the
analysis data set. In addition, the respective log-likelihood and AICbm values
(evaluated at the optimal λ values) are shown for varying numbers of mass points K.
Following [21], the information criterion was defined as
AICbm = −2 log(L) + 2 · (p + 2K). Hence the AIC values in the fourth column
cannot be directly compared to the AIC values presented in Fig. 2
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Fig. 4 Distribution of residuals. Residual diagnostics for Model (6) with transformation parameter λ = 1 (left column) and optimal transformation
parameter λ = 0.45 (right column). Note that λ = 1 corresponds to a model with untransformed response. Panels A and B present normal
quantile-quantile plots of the estimated residuals that were obtained from fitting Model (6) to the analysis data set. Panels C and D contain plots of
estimated residuals vs. fitted values (fitted values include random effect terms)

without further covariables, the estimated mean age-of-
onset was 66.93 (±7.56) years and for the model with
covariables the estimated median age-of-onset was 67.21
(±6.49) years. This is in line with previously reported
results, e.g. Li et al. [26] estimated the prevalence of GA
in people under 64 years to range between 0.1% and 0.2%,
depending on the country.

Estimation of GA size on the original scale
To obtain the distribution of GA size on the original
scale, we sampled 10,000 times from the empirical

distribution of the estimated residuals (obtained from
Model (6)) and added these values to the fitted trans-
formed GA size values fλ(y) before applying a reverse
Box-Cox transformation. The back-transformed expected
GA size values are shown in Fig. 7.
The rootmean squared difference between the observed

GA size and the modeled GA size was 1.10mm2, imply-
ing that estimated expected GA size values deviated by
ca. 1mm2 on average from the true GA size values. The
respective mean squared differences for alternative values
of the transformation parameter λ are shown in Fig. 8.

Table 3 Analysis of risk factors in the analysis data set

Variable Estimate 95% CI p-value

time [in years] 0.42 (0.36, 0.50) < 0.0001

time x (hyperchol.= no) 0.11 (0.06, 0.17) < 0.0001

time x (hypertension = no) -0.09 (-0.17 ,-0.03) 0.0004

Variance Term Estimate

Eye:Patient γi 1.832

Patient ζj 4.032

Residuals ε 0.422

The table presents the coefficient estimates and bootstrap 95% confidence intervals that were obtained from fitting Model (6) with transformed response (λ = 0.45) to an
imputed version of the analysis data set. The model parameter μ� , which reflects the mean disease age at study entry, was estimated to be μ̂� = 4.74 (95% CI [3.41, 4.83]).
P-values were obtained using the R package lmerTest [25]
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Fig. 5 Analysis of risk factors in the analysis data set. The plot shows
the coefficient estimates (red dots) that were obtained from fitting
Model (6) with transformed response (λ = 0.45) to an imputed
version of the analysis data set. Bootstrap 95% confidence intervals
are indicated by blue lines. For further details see Table 3

As can be seen here, the λ, that lead to a minimal dif-
ference on the original scale, was slightly larger than the
optimal λ = 0.45 obtained by AIC-based methods.
However, the variation in the average distances between
observed and predicted values was rather small (minimal
distance 1.05mm2 at λ = 0.55, 1.06mm2 at λ = 0.50, and
1.10mm2 at λ = 0.45).

Prediction of next observation In clinical context, a
prediction of the next observation of a patient already
included in a clinical trial might be of interest. For each
observed eye, for which values of more than three visits
were present, we predicted the last observation. To this
purpose we fitted a model to a training data set exclud-
ing the last observation while performance was measured
on the last observation. The root mean squared difference
between observed atrophy sizes and the mean predicted
atrophy sizes was

√
avg(( ¯̂y − y)2) = 1.67mm2.

Discussion
Despite a high prevalence and extensive research efforts,
there are currently no effective standard treatment

Fig. 6 Age-of-onset estimation. Boxplots of the observed ages at
baseline (orange) and the modeled ages of disease onset (Models (3)
and (6), blue) of the eyes in the analysis data set

Fig. 7 Agreement between the estimated expected GA size values
and the measured GA size values modeled distributions show one
boxplot per observation and were generated by sampling from the
residual distribution of Model (6), followed by a back-transformation
of zijt + εu to the original scale. The orange line indicates a perfect fit

options for GA. It is therefore essential to develop accu-
rate models for disease progression that enable resear-
chers to efficiently plan and design clinical trials.
In this article, we presented a comprehensive framework

for modeling the course of GA size progression in lon-
gitudinal observational studies. Our modeling approach
was derived from a linear enlargement model using trans-
formed GA size as response variable. As shown in the
Results section, the resulting model can be embedded
in the class of linear mixed-effects models [27], allowing
for the incorporation of risk factors, confounding vari-
ables, and measurements taken repeatedly from the same
patients and eyes. Since the assumption of linear enlarge-
ment imposes numerous restrictions on themodel param-
eters, it is necessary to adapt standard (unrestricted)
mixed-effects modeling approaches to the specific struc-
ture of the proposedmodel. To this purpose, we developed

Fig. 8 Root mean squared deviation between modeled response and
observed values for different transformation parameters. Deviation
was measured by avg(( ¯̂y − y)2). Here, the back-transformed estimate

was defined by ŷ = −1
(ŷ(λ) + ε̂) (if

−1
existed), where

−1
was the

inverse Box-Cox transformation, and ¯̂y was its mean (computed from
sampling 10,000 times from the fitted residuals). For λ = 0.45, the
deviation was 1.10mm2 and a minimal squared deviation was
reached at λ = 0.55 with a deviation of 1.05mm2
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an algorithm for GA size modeling that can be imple-
mented using readily available software for fitting linear
mixed-effects models.
To obtain the best transformation of GA size, we con-

ducted a systematic search within the class of Box-Cox
transformation models that included both parametric and
non-parametric approaches. Our experiments yielded an
optimal transformation that was close to the square-root
function, thereby justifying earlier modeling strategies
that assumed linear trajectories of square-root trans-
formed GA size over time [18]. Of note, the square-root
transformation has a straightforward interpretation in
terms of a linear enlargement of the atrophy radius [15].
A convenient feature of the proposed modeling

approach is that it yields estimates of the disease age of
the eyes at study entry. This is important because patients
can only be included in trials when the disease has already
manifested. When applied to the analysis data set consist-
ing of patients included in the FAM-study, disease age at
study entry was estimated to range between 3.5 and 13.4
years (Model (6)). These estimates are in line with esti-
mated prevalence values reported in the literature [4], but
the resulting ages of disease onset were smaller than previ-
ously modeled ages using data partly from the same study
[28].
Since the proposed modeling approach employs a trans-

formed response variable, care has to be taken when
making predictions of future values of atrophy size. As
argued in the Results section, predictions with a naive
back-transformation may show a bias due to the non-
linearity of the square-root function. To address this issue,
we proposed a sampling approach that allows for drawing
valid conclusions and making undistorted predictions of
GA size on its original scale. In the analysis data set, esti-
mated expected GA size values derived from the proposed
model deviated 1.10mm2 on average from the respective
observed values.
Generally, the model proposed here allows for perform-

ing statistical hypothesis tests on a set of risk factors sus-
pected to accelerate or slow down GA size enlargement.
This strategy was illustrated in the Results section, where
an analysis of a GA patient sample of the FAM study iden-
tified significant interaction effects between hypercholes-
terolemia, hypertension and time. Although a number of
studies have shown a link between cardiovascular risk fac-
tors and AMD, the role of hypertension, atherosclerosis,
high BMI, diabetes mellitus, higher plasma fibrinogen and
hyperlipidaemia remain equivocal owing to inconsistent
findings (reviewed in [29]). High blood pressure is shown
to be associated with lower choroidal blood flow and dis-
turbed vascular homeostasis [30]. Since perfusion deficits
in the choriocapillaris, the innermost layer of the choroid,
are associated with future GA progression [31], an asso-

ciate between hypertension and increasedGA progression
appears biologically plausible. Regarding the association
of hypercholesterinemia and decreased GA progression,
the biological plausibility remains elusive. The majority
of previous studies did not find any relationship between
systemic cholesterol levels and progression to early AMD,
GA or nAMD (reviewed in [29]), although two studies
found an association between serum cholesterol on the
development of late stage AMD [32, 33]. Interestingly,
one of these studies reported that serum cholesterol lev-
els have a protective effect on the development of nAMD,
while they are a risk factor for the development of GA
[32]. These observations apparently are in contrast to our
results; however, there is evidence that different mecha-
nisms may be involved in driving GA enlargement than
those increasing the risk of de novo GA development [6].
Further validation of the risk factors, especially on an
external data set, is necessary
While it has been established that so-called nascent GA

progresses to manifest GA [34], the trajectory of early
GA – prior to the minimum lesion size requirement for
clinical trials (e.g., 2.5mm2) – is poorly understood. The
information derived by this modeling strategy can be used
to design future intervention studies, for example regard-
ing the stratification of patient groups and the definition
of inclusion criteria. Of note, the proposed modeling
approach is not restricted to established epidemiological
covariables like hypertension but may also incorporate
novel markers of disease progression such as patient-
reported outcome measures [35], digital biomarkers, and
machine-learning-based scores derived from structural
imaging data [36]. The proposed model constitutes a flex-
ible framework to systematically investigate the transition
from intermediate to late AMD in large observational
studies such as theMACUSTAR study (ClinicalTrials.gov:
NCT03349801) [37].

Conclusions
We have provided a comprehensive framework for mod-
elling the trajectories of uni- or bilateral Ga size progres-
sion in longitudinal observational studies. Our analysis
shows that a square-root transformation of atropy size is
recommended before model fitting. The proposed mod-
elling approach allows for the estimation of age-of-onset,
identification of risk factors and prediction of future GA
size. The risk factors analyzed here require further valida-
tion in an external study population.
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An imputation approach using 
subdistribution weights for deep 
survival analysis with competing 
events
Shekoufeh Gorgi Zadeh*, Charlotte Behning & Matthias Schmid

With the popularity of deep neural networks (DNNs) in recent years, many researchers have proposed 
DNNs for the analysis of survival data (time-to-event data). These networks learn the distribution 
of survival times directly from the predictor variables without making strong assumptions on the 
underlying stochastic process. In survival analysis, it is common to observe several types of events, 
also called competing events. The occurrences of these competing events are usually not independent 
of one another and have to be incorporated in the modeling process in addition to censoring. In 
classical survival analysis, a popular method to incorporate competing events is the subdistribution 
hazard model, which is usually fitted using weighted Cox regression. In the DNN framework, only 
few architectures have been proposed to model the distribution of time to a specific event in a 
competing events situation. These architectures are characterized by a separate subnetwork/pathway 
per event, leading to large networks with huge amounts of parameters that may become difficult to 
train. In this work, we propose a novel imputation strategy for data preprocessing that incorporates 
weights derived from a time-discrete version of the classical subdistribution hazard model. With this, 
it is no longer necessary to add multiple subnetworks to the DNN to handle competing events. Our 
experiments on synthetic and real-world datasets show that DNNs with multiple subnetworks per 
event can simply be replaced by a DNN designed for a single-event analysis without loss in accuracy.

In the recent years deep networks have become the state-of-the-art method in various applications, for instance in 
object detection 1, image captioning 2, image  classification3,4, speech recognition 5, and many other areas. One key 
advantage of deep neural networks is their capacity to learn specific intermediate representations/features of the 
data in a hierarchical  manner6 in order to create a mapping from the input predictor variables onto the outcome. 
In addition to other novel machine learning methods developed for survival  analysis7, recently, there has been 
a growing interest in using deep neural networks for this purpose, see for example, the works by Giunchiglia 
et al.8, Lee et al.9, Zafar Nezhad et al.10 and many  others11–16.

In survival analysis the outcome is usually defined by the time duration until one or more events  occur17. For 
instance in the medical field this event could be recurrence of a disease or patient’s death after an intervention. 
A multitude of examples can e.g. be found in the work by Lee et al.18. Since survival data (also called time-to-
event data) are collected over time, they are often subject to right censoring, which means that the event times of 
some instances are only known up to a minimum survival time. The real event times of these instances remain 
unknown as they are no longer observed beyond the time of censoring. Often, right censoring occurs when 
patients drop out of a study or when patients have not experienced any event before study end.

Many observational studies track more than one event. Often these so-called competing events do not occur 
independently, and therefore require to be analyzed together in order to avoid bias. For instance, in the CRASH-2 
 trial19, which is a large randomized study on hospital death in adult trauma patients, there are multiple recorded 
causes of death throughout the study. The causes include death due to bleeding, head injury, multi-organ failure 
and others. Obviously, the occurrences of these causes are not independent. More examples on competing risks 
data can be found in the works by Lau et al.20 and Austin et al.21.

For modeling the time span until a specific event of type j ∈ {1, . . . , J} occurs, multiple approaches have 
been proposed. For example, Prentice et al.22 model the cause-specific hazard functions of each event sepa-
rately as ξj(t|x) = lim�t−→0{P(t ≤ T < t +�t, ǫ = j |T ≥ t, x)/�t} , where x = (x1, . . . , xp)

T is the vector of 
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time-constant predictor variables and ǫ is a random variable indicating the type of the event that occurs at the 
first observed event time T. In their approach, a separate model is used for each ξj , treating the individuals that 
experience any of the respective competing events as censored. Another approach, on which the methods con-
sidered in this paper are based, is the subdistribution hazard model by Fine and  Gray23. This approach aims at 
modeling the cumulative incidence functions Fj(t|x) = P(T ≤ t, ǫ = j | x) . For any event j of interest, the model 
considers a subdistribution hazard function �j(t|x) = lim�t−→0{P(t ≤ ϑj < t +�t |ϑj ≥ t, x)/�t} , where ϑj 
is the “subdistribution time” defined by ϑj = T if ǫ = j and ϑj = ∞ otherwise. Thus, ϑj corresponds to the time 
to the occurrence of a type-j event, assuming that such an event can never be observed (i.e. ϑj = ∞ ) if a com-
peting event occurs first. It can be  shown23 that specifying a regression model for �j(t|x) allows for modeling 
cumulative incidences of type-j events without having to model the hazard functions of the other events. Thus, 
only one subdistribution hazard model is required if the interest is in the cumulative incidence function of the 
type-j event. This is unlike cause-specific hazards modeling, where all ξ1, . . . , ξJ need to be considered together 
to calculate cumulative incidence probabilities.

To analyze competing events data using deep neural networks, Lee et al.9 proposed the DeepHit network 
that directly learns the distribution of survival times for an event of interest while at the same time handling 
the competing events. In their architecture, a separate subnetwork is added for each competing event. Similarly, 
Gupta et al.11 use separate subnetworks per event. In another work, Nagpal et al.24 proposed a Deep Survival 
Machine (DSM) to learn a mixture of parametric distributions (e.g. Weibull or log-normal) for estimating the 
conditional survival function S(t|x) = P(T > t|x) . Again, in this model an additional set of parameters is added 
to describe the event distribution for each competing risk.

In this work, instead of extending a network’s architecture by multiple subnetworks to handle competing 
events, we follow the approach by Fine and Gray and propose to employ deep network architectures for a single 
event of  interest8,25–27. To incorporate competing events, our method works on input data that have been pre-
processed using an imputation strategy based on subdistribution weights (see Methods section for details). As 
will be demonstrated, this strategy allows analysts to benefit from the advantages of existing single-event imple-
mentations for time-to-event data (particularly, from much simpler architectures with smaller sets of parameters) 
while being able to avoid a possible bias caused by ignoring competing events. In our experiments on simulated 
and real-world datasets, we show that approximately the same performance can be gained without the need for 
specifying a complex network architecture with multiple event-specific parameter sets.

The key contributions of this work are: (1) We propose a novel preprocessing strategy for deep survival net-
works that enables a valid analysis of competing-risks data, even if the respective network architecture was origi-
nally designed to handle one event only. (2) We demonstrate the feasibility of our approach by comparing two 
variants of the DeepHit architecture. Specifically, we compare a DeepHit model with two subnetworks (designed 
to analyze the original input data with two competing events) to a DeepHit model with only one subnetwork 
(designed to analyze one event of interest and based on a modified input data set that was preprocessed using 
our imputation method). (3) Using simulations, we analyze the behavior of deep survival architectures that are 
designed to analyze one event of interest. Specifically, we demonstrate that these architectures perform better (in 
terms of both calibration and discrimination) when the proposed preprocessing strategy is applied than when 
the original input data (treating observations with a competing event as censored) are used.

Methods
Notations and definitions. To be able to use single-event DNN architectures like  DeepSurv25, 
 SurvivalNet26, RNN-Surv8 and  DRSA27, continuous survival and censoring times have to be grouped. To this 
end, we define time intervals [0, a1), [a1, a2), ..., [ak−1,∞) , where k is a natural number. Further denote by 
Ti ∈ {1, ..., k} and Ci ∈ {1, ..., k} the resulting discrete event and censoring times, respectively, of an individual 
contained in an i.i.d. sample of size n, i = 1, . . . , n . In this definition, Ti = t means that the event has happened 
in time interval [at−1, at) . It is assumed that Ti and Ci are independent random variables (“random censoring”). 
Furthermore, it is assumed that the censoring time does not depend on the parameters used to model the event 
time, i.e. the censoring mechanism is “non-informative” for Ti

22,28. For right-censored data, the observed time 
is defined by T̃i = min(Ti ,Ci) , i.e. T̃i corresponds to true event time if Ti ≤ Ci , and to the censoring time other-
wise. The random variable �i := I(Ti ≤ Ci) indicates whether T̃i is right-censored (�i = 0) or not (�i = 1) . In 
addition to the event of interest (defined without loss of generality by j = 1 ), we assume that each individual can 
experience one out of J − 1 competing events, j ∈ {2, . . . , J} . The type of event that the i-th individual experi-
ences at Ti is represented by the random variable ǫi ∈ {1, ..., J}29. The values of the predictor variables of the i-th 
individual are denoted by xi = (xi1, . . . , xip)

T . Analogous to the works by Fine and  Gray23 and Berger et al.30, 
we are interested in modeling the cumulative incidence function F1(t|x) = P(T ≤ t, ǫ = 1 | x) of a type-1 event 
using the subdistribution hazard approach described above. To fit their proposed models, both Fine & Gray 
and Berger et al. considered the optimization of weighted versions of the underlying partial and binomial log-
likelihood functions. While these techniques turn out to be highly effective when fitting parametric models to 
sets of lower-dimensional data, it is challenging to adapt them to learning tasks involving deep survival models. 
Specifically, the method by Fine & Gray relies on a continuous time scale and does not apply directly to the dis-
crete (grouped) event times specified above. On the other hand, the method by Berger et al., which extends the 
Fine & Gray method to discrete event times, requires the input data to be “augmented” to up to n · k instances, 
implying a potentially huge increase in dimension. Clearly, this approach is not feasible for deep learning tasks, 
which typically rely on large values of n. We propose to address the aforementioned challenges by specifying a 
preprocessing strategy that operates directly on the discrete event times, while at the same time preserving the 
dimension of the input data.
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Imputation strategy. In this section we describe the imputation strategy to preprocess the time-discrete 
input data. The aim is to modify the data such that it is possible to obtain valid estimates of the cumulative inci-
dence function F1(t|x) by training a single-event DNN. As outlined in the Introduction section, training could 
be based on the specification of a subdistribution time ϑ ≡ ϑ1 , which could be subsequently used to learn a 
single-event DNN with input data (min(ϑi ,Ci), I(ϑi ≤ Ci), x

⊤
i ) , i = 1, . . . , n . A problem of this strategy is that 

it cannot be readily applied in practice, as the aforementioned input data are partly unknown. We therefore pro-
pose to apply additional preprocessing steps to the available input data. The details are as follows:

First, consider those individuals i with �iǫi ∈ {0, 1} . Clearly, it is not necessary to preprocess the input data 
of these individuals, since both min(ϑi ,Ci) = T̃i and I(ϑi ≤ Ci) = �i are known in these cases. Next, consider 
those individuals who experience a competing event first, i.e. �iǫi > 1 . For these individuals ϑi = ∞ , so that 
I(ϑi ≤ Ci) = 0 is known. However, min(ϑi ,Ci) = min(∞,Ci) = Ci is unknown in these cases due to the fact 
that the value of the censoring time Ci is unobserved.

The main idea of our approach is, therefore, to impute the missing values of Ci by sampling a censoring time 
for any individual i who experiences a competing event first. Our strategy is as follows:

(i) Following Berger et al.30, we first define the set of discrete subdistribution weightsuit = I(t ≤ min(ϑi ,Ci)) , 
i = 1, . . . , n , t = 1, . . . , k − 1 , indicating whether individual i is at risk of a type-1 event at time point t ( uit = 1 ) or 
not ( uit = 0 ). We further denote by r(t) the risk set of individuals who have neither experienced a type-1 event nor 
have been censored before t. As outlined above, r(t) is not fully known for individuals who experience a compet-
ing event first. These individuals remain at risk beyond T̃i until eventually they experience the censoring event.

(ii) In line with Fine &  Gray23 and Berger et al.30, we specify an estimate of the subdistribution weights that 
can be computed from the available data. Denoting this estimate by wit , i = 1, . . . , n , t = 1, . . . , k − 1 , we set 
wit = 1 if t ≤ T̃i , knowing that individuals remain at risk (i.e. belong to r(t)) until T̃i . For t > T̃i and �iǫi > 1 , 
we estimate uit by the conditional probability of individual i being part of r(t), given knowledge that it is part of 
r(T̃i) . This conditional probability can in turn be estimated by

where Ĝ(t) is an estimate of the censoring survival function G(t) = P(Ci > t) . For the experiments in this paper, 
we used the R package discSurv31, which implements a nonparametric life table estimator to obtain estimates 
of G(t).

(iii) In the final step, we use wit to sample estimates of the censoring times of individuals who experience 
a competing event first. For this, we generate random numbers Ĉi from discrete distributions with supports 
(T̃i + 1, . . . , k − 1) that are defined by P(Ĉi = t) = �wit , where �wit = wit−1 − wit . The so-obtained numbers 
are subsequently used to impute the unobserved values min(ϑi ,Ci) . A visualization of the proposed imputation 
strategy is presented in Fig. 1.

Note that our method bears some similarities to the work by Ruan and  Gray32, who suggested a multiple 
imputation approach to model continuous-time survival data in a non-DNN context. The preprocessing strat-
egy proposed here differs from Ruan and  Gray32 in three aspects: First, Ruan and Gray considered models in 
continuous time, whereas the DNN architectures considered here operate on a discrete time scale. Accordingly, 
Ruan and Gray used a conditional Kaplan-Meier estimator to estimate the censoring distribution, implying that 
the resulting weight differences �wit occur at random time points (whereas we consider fixed [user-specified] 
interval borders a1 < a2 < . . . < ak−1 to define �wit ). Second, Ruan and Gray proposed to estimate their quanti-
ties of interest (e.g. the parameters of a proportional subdistribution hazard model and/or cumulative incidence 
functions at selected time points) by applying a multiple imputation strategy. Accordingly, the authors proposed 
to generate multiple imputed data sets and to average estimates from the respective (multiple) analyses based on 
the imputed data. This is in contrast to our approach, which assumes that DNN architectures are able to capture 
the relevant aspects of the data-generating process using a single imputation only. Third, Ruan and Gray mostly 
focus on semiparametric survival models in a non-machine-learning context (“allowing standard software to be 
used for the analysis”), whereas the focus of this work is on the nonparametric estimation of cumulative incidence 
functions using DNN architectures with potentially higher-dimensional predictor spaces.

In the next section we demonstrate that without loss of accuracy, the use of the imputed data simplifies the 
analysis of competing-risks data by training single-event DNNs.

Experimental analysis
DeepHit network. To investigate the effectiveness of the proposed method, we used the DeepHit architec-
ture by Lee et al.9. DeepHit is a DNN that allows to have a learnable survival function that maps the predictor 
variables vector xi into a probability distribution vector yi =

[

y1,1, . . . , y1,k , . . . , yJ ,1, . . . , yJ ,k
]

 . In this vector, ele-
ment yǫ,t is the estimated probability that instance i with predictor variables xi will experience the ǫ th event at 
time point t. Through non-linear activation functions, DNNs, and in particular DeepHit can learn potentially 
non-linear, even non-proportional, relationships between the predictor variables and the  events9. A fully con-
nected layer consists of neurons connected to all neurons in the adjacent layer. Each neuron works as a simple 
linear classifier ( h = f

(
∑

vmxm
)

 , where h is the output, vm is the network weight, xm the input from the mth 
neuron in the previous layer, and f is the activation function) that receives input from the neurons in the previ-
ous layer and sends output to every neuron in the next layer. DeepHit consists of a “shared sub-network” that 
has two fully connected layers. (Note that in the work by Lee et al.9, the authors use one fully connected layer 
for their experiments. However, empirically we found that using two fully connected layers improves the overall 
accuracy.) The shared sub-network creates an intermediate representation that is further combined with the 

(1)wit :=
Ĝ(t − 1)

Ĝ(T̃i − 1)
, T̃i < t ≤ k − 1,
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Figure 1.  Illustration of the imputation strategy. The left panel presents the subdistribution times of eight 
randomly sampled individuals. Individuals 1 and 5 experienced the competing event first, implying that 
their censoring times are unobserved (as illustrated by the time span for i = 1 in the right panel). For these 
individuals, censoring times are estimated by first calculating estimated subdistribution hazard weights wi,t (see 
upper right diagram). From that, the weight differences �wi,t are calculated and used to sample censoring times 
Ci , which are in turn used to impute the unobserved values of Ci = min(Ci ,ϑi) . Note that the bars in the lower 
right panel correspond to the heights of the steps in the upper right panel.

Figure 2.  Visualization of the DeepHit1 and DeepHit2 architectures used in the experiments.
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input features and passed on to J “cause-specific sub-networks”. As recommended by Lee et al.9, we used two fully 
connected layers in each sub-network. The output of each cause-specific sub-network is a vector that estimates 
the probability of the first hitting time of a specific cause j at each time point t (see Fig. 2). For training DeepHit, 
the authors use the log-likelihood of the joint distribution of the first hitting time as well as another loss term 
to incorporate a mixture of cause-specific ranking loss functions. They also modified the loss to handle right-
censored data. In our experiments, we use the same loss term that was used to optimize  DeepHit9.

To assess the performance of our proposed method we compared three different setups: (1) New approach 
using single-event DNN with preprocessed input data: We trained the DeepHit network with only one subnetwork 
(see Fig. 2, DeepHit1 ). Instead of the original input data, we used the modified version of the input data (with 
Ti replaced by ϑi ), in which the censoring times corresponding to individuals with observed competing events 
were imputed using the subdistribution weights. (2) Original DeepHit approach with J subnetworks: We trained 
the DeepHit network with a separate cause-specific subnetwork per event (see Fig. 2, DeepHit2 ) (3) Single-
event DNN that ignores competing events: Similar to the first setup, we train the DeepHit network with only one 
subnetwork. Instead of replacing Ti by ϑi , we ignored the competing events and treated all individuals with an 
observed competing event as censored (i.e., we treated the observed time to the occurrence of the competing 
event as the censoring time).

Each experiment was repeated 10 times per dataset in order to reduce the effect of random sampling and 
random initialization on the results.

DRSA network. To assess the effectiveness of the imputation strategy on a deep neural network designed 
for time-to-event data analysis without competing events, we used the deep recurrent survival analysis (DRSA) 
architecture by Ren et al.27. We picked this architecture because a) it is primarily designed for a single-event 
discrete-time survival analysis setting and b) because DRSA differs structurally from the DeepHit architecture, 
therefore, allowing us to assess the effectiveness of the proposed approach with different types of deep neural 
networks. In contrast to DeepHit that consists of consecutive fully connected layers, DRSA consists of a layer 
of Long Short-Term Memory (LSTM)33 units in addition to fully connected layers. In other words, the DRSA 
network consists of an initial layer that embeds the input features xi into a set of vectors. Then through a fully 
connected layer, the embedded vectors are turned into a middle-representation of the input. The output of this 
layer is concatenated with the observed time points (t) and is fed into the recurrent layer, consisting of a series 
of LSTM units. In the end, a fully connected layer is used with the Sigmoid activation function to estimate the 
hazard rates at each time point t. For better-calibrated prediction rules and improved discriminatory power, 
instead of the cross-entropy loss that was used in the original DRSA network, we used the loss function derived 
from the negative log-likelihood of the discrete time-to-event  model16. The loss function that was considered 
for the optimization consisted of two terms Ll and Lz , i.e., argminθ (1− α)Ll(θ)+ αLz(θ) , where θ denotes the 
set of network parameters, α denotes the tuning parameter balancing the two loss terms, Ll denotes the negative 
log-likelihood loss and Lz denotes a part of the negative log-likelihood that was only computed for the set of 
uncensored instances in the training  data16.

To assess the performance of our proposed method with DRSA, we compared two different setups: (1) New 
approach using DRSA with preprocessed input data: Similar to the experiments with DeepHit, instead of the 
original input data, we used the modified version of the input data (with Ti replaced by ϑi ), in which the censor-
ing times corresponding to individuals with observed competing events were imputed using the subdistribution 
weights. (2) DRSA that ignores competing events by treating them as censored: Similar to the first setup, instead 
of replacing Ti by ϑi , we ignored the competing events by treating all individuals with an observed competing 
event as censored.

Again, each experiment was repeated 10 times per dataset in order to reduce the effect of random sampling 
and random initialization on the results.

Data description. In this subsection, we describe the datasets that were used in the experiments. To show 
the effectiveness of the imputation strategy, we created three sets of simulated competing risks data. Addition-
ally, to test our method in real-world scenarios, we used two datasets from clinical and epidemiological research: 
The first one was collected for the CRASH-2 clinical  trial19 mentioned above; the second one was the 2013 breast 
cancer dataset from the Surveillance, Epidemiology, and End Results (SEER)  program34.

Simulated data. For generating simulated data, we used the discrete model by Berger et al.35. Their data genera-
tion approach was adopted from Fine and  Gray23 and Beyersmann et al.36, and allowed to create datasets from a 
discretized subdistribution hazard model with two competing events ǫi ∈ {1, 2}.

More specifically, Berger et al.35 defined their discretized subdistribution hazard model based on the continu-
ous subdistribution hazard model

where Tcont,i ∈ R
+ denotes a continuous time variable and γ 1 is a set of regression coefficients for individual i, 

with predictor variables xi . We used the parameter q to tune the probability of having the event ǫi = 1 (defined 
by P(ǫi = 1|xi) = 1− (1− q)exp (x

⊺

i γ i) ) and the probability of having the competing event ǫi = 2 (defined by 
P(ǫi = 2|xi) = 1− P(ǫi = 1|xi) = (1− q)exp (x

⊺

i γ i) ). Further, the continuous times for the second event were 
drawn from an exponential model Tcont,i|ǫi = 2 ∼ Exp(ξ2 = exp (x

⊺

i γ 2)) , with rate ξ2 and regression param-
eters γ 2 for the predictor variables xi . To obtain grouped data, we discretized the continuous event times into 
k = 20 time-intervals using empirical quantiles. Analogous to Berger et al.30, discrete censoring times were 

(2)F1(t|xi) = P(Tcont,i ≤ t, ǫi = 1 | xi) = 1− (1− q+ q · exp(−t))exp (x
⊺

i γ 1),
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drawn from the probability distribution P(Ci = t) = b(k+1−t)/
∑k

i=1 b
i , where the parameter b ∈ R

+ affected 
the overall censoring rate. Furthermore, we generated four predictor variables: two of them were normally dis-
tributed, x1, x2 ∼ N(0, 1) , and the other two followed a binomial distribution each, x3, x4,∼ Binomial(1, 0.5) . 
The regression coefficients were the same as in the work by Berger et al.35, with γ1 = c(0.4,−0.4, 0.2,−0.2)⊺ 
and γ2 = c(−0.4, 0.4,−0.2, 0.2)⊺ . We simulated datasets of size n = 30, 000 with different type-1 event rates 
q ∈ {0.2, 0.4, 0.8} and a medium censoring rate of b = 1 . In the simulated datasets the empirical censoring rates 
corresponding to b = 1 were {47.4%, 47.6%, 48.0%} , the proportion of type-1 event rates corresponding to values 
of q were {11.5%, 21.8%, 38.6%} , and consequently type-2 event rates were {41.1%, 30.6%, 13.4%}.

CRASH-2 data. The first real-world dataset used in our experiments was collected for the randomized 
CRASH-2 (Clinical Randomisation of an Antifibrinolyticin Significant Haemorrhage 2) trial, which was con-
ducted in 274 hospitals in 40 countries between 2005 and  201019. The data provide information on hospital death 
in adult trauma patients with or at risk of significant haemorrhage. Death was recorded during hospitalization of 
the patients for up to 28 days after randomization. Up to this date, patients had either died, been discharged alive, 
transferred to another hospital, or were still alive in hospital. For our analysis we used the publicly available ver-
sion of the study database at https:// hbios tat. org/ data/. Based on Table 1 in 19, we selected eight variables for anal-
ysis: Categorical variables included the sex of the patient (male/female) and type of injury (blunt/penetrating/
blunt and penetrating). Continuous and ordinal variables included total Glasgow Coma Score (range 3 to 15, 
median = 15), the estimated age of the patient (mean = 34.6 years, sd = 14.3 years), number of hours since injury 
(mean = 2.8, sd = 2.4), systolic blood pressure in mmHg (mean = 97.5, sd = 27.4), respiratory rate per minute 
(mean = 23.1, sd = 6.7), and heart rate per minute (mean = 104.5, sd = 21.0). After discarding patients with 
missing values, we analyzed this dataset in two ways: 1) We specified death due to bleeding as the event of inter-
est for analysis ( ǫ = 1 ) and considered discharge from the hospital or death due to other causes as the competing 
event ( ǫ = 2 ). In this scenario, the censoring rate is 16.8% , the type-1 event rate was 4.9% and the type-2 event 
rate was 78.3% . 2) We specified death from any cause as the event for interest for analysis ( ǫ = 1 ) and considered 
discharged from the hospital as the competing event ( ǫ = 2 ). In this scenario, the censoring rate was 16.8, the 
type-1 event rate was 14.9% and the type-2 event rate was 68.3% . Table 1 summarizes the percentage of patients 
experiencing each event first. These analyses enabled us to investigate the performance of different methods for 
varying event rates while censoring remained the same.

SEER breast cancer data. The second real-world dataset used in our experiments was the 2013 breast cancer 
data from the Surveillance, Epidemiology, and End Results (SEER)  program34. Here our focus was on female 
patients with breast cancer, aged 18-75 years at the time of diagnosis. We specified patient’s death due to breast 
cancer as event of interest ( ǫ = 1 ) and considered death due to other causes as the competing event ( ǫ = 2 ). 
The predictor variables included TNM stage (twelve T stage and four N stage categories), tumor grade (I - IV), 
estrogen and progesterone receptor statuses (positive/negative), primary tumor site (nine categories), surgery of 
primary site (yes/no), type of radiation therapy and sequence (seven and six categories, respectively), laterality 
(right/left), ethnicity (white, black, American Indian/Alaska Native, Asian or Pacific Islander, unknown), Span-
ish origin (nine categories), and marital status at diagnosis (single, married, separated, divorced, widowed). In 
addition to these categorical variables, we selected the following continuous and ordinal features; patient’s age at 
diagnosis (recorded in years, mean age = 55.6 years, standard deviation (sd) = 10.8 years), the number of positive 
and examined lymph nodes (0-84 and 1, 2, . . . , 89,  90 , respectively), the number of primaries (1-6), and tumor 
size ( 0, 1, . . . , 988,  989 mm). After discarding patients with missing values, 121, 798 patients remained. For this 
dataset the censoring rate was 88.4% , the type-1 event rate was 6.9% and the type-2 event rate was 4.7% . For a 
detailed explanation of the features, see the SEER text data file description at http:// seer. cancer. gov.

Table 1.  Characteristics of the datasets used in the experiments. The three leftmost columns represent the 
censoring, type-1 ( ǫ = 1 ), and type-2 ( ǫ = 2 ) rates in the training/validation/test datasets. The three rightmost 
columns represent the respective numbers of instances in the simulated, CRASH-2, and SEER breast cancer 
data. For CRASH-2, ǫ = 1 indicates either death due to bleeding event (upper row) and death due to any 
recorded cause (lower row).

Censoring rate Type-1 rate Type-2 rate Training Validation Test

Simulated data

47.4% 11.5% 41.1% 15,000 5000 10,000

47.6% 21.8% 30.6% 15,000 5000 10,000

48.0% 38.6% 13.4% 15,000 5000 10,000

CRASH-2 data

16.8% 4.9% 78.3% 9729 3256 6851

16.8% 14.9% 68.3% 9729 3256 6851

SEER breast cancer data

88.4% 6.9% 4.7% 60,898 24,361 36,539
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Training setup. Simulated data. For our experiments we split the 30,000 instances of each set of simulated 
data into training ( Dtrain ) , test ( Dtest ) and validation ( Dvalidation ) sets randomly, making sure that the event and 
censoring rates were the same across the three datasets. The sizes of the train, test and validation datasets were 
15,000, 10,000 and 5000 respectively. Table 1 briefly summarizes the size of the datasets used in each experi-
ment. Since in our method the censoring times for individuals with an observed competing event are randomly 
imputed, we repeated the experiments 10 times and report the average performance. For each repetition, all of 
the individuals in training, test, and validation sets remained unchanged, except for the censoring times that 
were re-imputed.

CRASH-2 data. For this dataset, we used the same training setup as for the simulated data. We randomly split 
the 19, 836 instances into the training, test, and validation sets, using a stratified sampling approach that ensured 
all had approximately the same censoring and competing event rates (see Table 1). The sizes of the training, test 
and validation datasets were 9, 729, 6, 851 and 3, 256 respectively.

SEER data. We used the same training setup as for the other datasets. We randomly split the 121, 798 instances 
into the training, test, and validation sets, making sure all had 88.4% , 6.9% , and 4.7% , of censoring, event of 
interest and competing event rates respectively (see Table 1). The sizes of the training, test and validation datasets 
were 60, 898, 36, 539 and 24, 361 respectively.

Evaluation metrics. Calibration plots based on the cumulative incidence function (CIF). To assess the cali-
bration of the fitted models, we performed graphical comparisons of the estimated (model-based) CIF for type-1 
events and a respective nonparametric estimate obtained from the Aalen-Johansen  method37.

Specifically, for input predictor variables xi from Dtest , the model-based CIF at timepoint t for the event of 
interest was estimated by

where the probability estimates P̂(·) in (3) were taken from the output of the DeepHit network (for details, see 
Lee et al.9). Details on the Aalen-Johansen estimator, which is a covariate-free estimator of the CIF, have been 
given in the book by Klein et al.37. In our experiments, we considered a fitted DNN model to be well calibrated 
if the model-based and covariate-free CIF estimates agreed closely.

Concordance index (C-index38,39). To evaluate the discriminatory power of each method for the event of inter-
est we used the C-index as defined by Wolbers et al.40. For a pair of independent individuals i and j in the Dtest , 
this measure compares the ranking of a risk marker M(t, xi) at timepoint t with the ranking of the survival times 
of the event of interest. More specifically, summarizing all competing events by ǫ = 2 , the C-index is defined by

In our experiments we defined M(t, x) by the cumulative incidence function (Equation 3). Ideally, the C-index 
takes value 1 if the rankings of the risk marker and the type-1 survival times are in perfect disagreement (i.e., 
larger marker values are associated with smaller survival times). For our experiments, we used the inverse-
probability-weighted estimator by Wolbers et al.40 (Equation 4) that is implemented in the R package pec.

Results
The calibration plots for the various model fits are presented in Fig. 3. It is seen that despite the smaller learning 
capacity of the imputation-based DeepHit1 approach, this network resulted in similarly well-calibrated models 
as the DeepHit2 with two sub-networks. Note that in all cases, using the sub-distribution weights for imputing 
the censoring times led to a better calibration compared to the single-event DeepHit architecture that treated 
individuals with an observed competing event as censored (thus ignoring the competing events).

Generally, the calibration of the overall average CIF estimate improved with our method when the rate type-1 
events became larger. This is seen from the last row of Fig. 3. For the same censoring rates and predictor variables 
(for CRASH-2), DeepHit2 resulted in an underestimation of the CIF when the rate of type-1 events was high. 
This is also evident in the results from our experiments on simulated data. On the other hand, our proposed 
method showed an overall less sensitivity to the type-1 event rate. This effect could possibly be due overfitting 
issues, as adding an additional sub-network for each competing event to the architecture increases the learning 
capacity of the network without providing enough data to train each pathway.

The calibration plots for training with DRSA are presented in Fig. 4. It is seen that despite the single-event 
structure of the DRSA, this network resulted in a well-calibrated model when the type-1 event rate was small. In 
all cases, using the sub-distribution weights for imputing the censoring times led to a better calibration compared 
to the experiments that treated individuals with an observed competing event as censored (thus ignoring the 
competing events). For the same censoring rates and predictive variables, DRSA resulted in an underestimation 
of the CIF when the rate of type-1 events was high. On the other hand, again our proposed method showed an 
overall less sensitivity to the type-1 event rate compared to when the competing event was ignored.

Analogous to the results from the calibration plots, the C-indices obtained from our imputation-based method 
showed a discriminatory power that was similar to the respective performance of the other methods (see Table 2). 
In a number of settings, the discriminatory power even improved when using our method. For instance, in 
the experiments with the simulated data, the estimated mean C-index was highest for the DeepHit1 method 
with imputed censoring times. For CRASH-2 with a type-1 event rate of 4.9% the observed difference ( 0.01% ) 

(3)F̂1(t|xi) = P̂(T ≤ t, j = 1|xi) =

t
∑

s=1

P̂(T = s, j = 1|xi) ,

(4)C1(t) := P
(

M(t, xi) > M(t, xj) | ǫi = 1 and Ti ≤ t and (Ti < Tj or ǫj = 2)
)

.
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between imputation-based DeepHit1 and DeepHit2 was small. For the type-1 event rate of 14.9% our proposed 
method performed slightly better. For the SEER breast cancer data, however, DeepHit1 without imputation had 
the best average performance with regard to the C-index. This could be due to the fact that the rate of observed 
competing events was low to the degree that treating the respective event times as censoring times might not 
have substantially affected the censoring survival function.

Analogous to the experiments with DeepHit, for DRSA, the C-indices obtained from our imputation-based 
method showed an improved discriminatory power compared to the scenario when competing event time was 
used as censoring (see Table 3). It can be observed that the gap between the performance of our imputation 
method and ignoring the competing events became smaller with the decrease of type-2 event rate. The reason 
could be that by the decrease of the observed competing events rate, treating the respective event times as cen-
soring times might not have substantially affected the censoring survival function. Overall, compared to DRSA, 
DeepHit showed better discriminatory power on the simulated data. Note, however, that systematic performance 
comparisons of different deep survival architectures are beyond the scope of this work.

Figure 3.  Calibration plots obtained from the test data in Table 1, using the DeepHit architecture. Each plot 
presents the averaged type-1 cumulative incidence functions as obtained from (i) training the DeepHit1 with 
the preprocessed data (cyan), (ii) training DeepHit1 treating individuals with observed competing events as 
censored (orange), and (iii) training DeepHit2 for both the event of interest and the competing event (gray). Red 
curves refer to the nonparametric Aalen-Johansen reference curves.
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In terms of execution time, we observed that the average time needed for training the deep networks reduced 
by 21% for the simulated data, 10% for the SEER, and 37% for the CRASH-2 dataset using our method. This time 
reduction is possibly due to the reduced number of parameters involved in the training of DeepHit1 compared 
to DeepHit2 (see Table 4). Consequently, in applications with more than one competing event, where three or 
more subnetworks are added to the architecture, the decrease in computation time when using our algorithm is 
expected to be even greater. The average number of iterations, however, was on the same order of magnitude for 
both DeepHit1 and DeepHit2 . For all datasets on average DeepHit1 took 15, 022 iterations and DeepHit2 15, 277. 
Note that the stopping criterion for all of the networks was the performance on the validation data.

Figure 4.  Calibration plots obtained from the simulated test data in Table 1 using the DRSA architecture. 
Each plot presents the averaged type-1 cumulative incidence functions as obtained from (i) training the DRSA 
network with the preprocessed training data (cyan) and (ii) training DRSA treating individuals with observed 
competing events as censored (orange). Red curves refer to the nonparametric Aalen-Johansen reference curves.

Table 2.  Mean estimated C-indices (averaged over time) with estimated standard deviations, as obtained 
from training the DeepHit architecture on the simulated, CRASH-2, and SEER breast cancer data. DeepHit1 
= DeepHit architecture with one sub-network trained with the preprocessed input data; DeepHit2 = DeepHit 
architecture with two subnetworks; DeepHit1 , no imp. = DeepHit architecture with one sub-network trained 
on the original input data (treating individuals with observed competing events as censored individuals). 
Best-performing methods are marked bold. Note that the C-indices must be compared within each row, 
as the datasets used for training were different in terms of size, censoring, and event rates across the rows. 
For CRASH-2, in the upper and the lower rows ǫ = 1 indicates death due to bleeding and death due to any 
recorded cause, respectively. The numbers in this table are obtained from the test datasets.

Data Type-1-rate Type-2-rate DeepHit1 DeepHit1 , no imp. DeepHit2

CRASH-2 4.9% 78.3% 78.17 ± 1.04 76.80 ± 4.96 78.18 ± 0.94

CRASH-2 14.9% 68.3% 80.14 ± 1.77 79.88 ± 2.01 80.05 ± 4.23

SEER 6.9% 4.7% 81.75 ± 3.46 81.80 ± 3.49 81.73 ± 3.34

Simulated 11.5% 41.1% 64.13 ± 0.75 62.58 ± 2.17 63.71 ± 0.96

Simulated 21.8% 30.6% 65.90 ± 0.69 64.59 ± 2.25 65.20 ± 3.26

Simulated 38.6% 13.4% 66.05 ± 0.47 64.97 ± 2.51 64.39 ± 6.26

Table 3.  Mean estimated C-indices (averaged over time) with estimated standard deviations, as obtained 
from training the DRSA architecture on the simulated data. The first column on the right-hand side contains 
results from DRSA architecture trained with the preprocessed input data; The second column shows the results 
from the DRSA architecture, trained on the original input data (treating individuals with observed competing 
events as censored individuals). Best-performing methods are marked bold. Note that the C-indices must be 
compared within each row, as the datasets used for training are different in terms of censoring and event rates 
across the rows. The numbers in this table are obtained from the test datasets.

Data Type-1-rate Type-2-rate DRSA, subdist.-based imp. DRSA, no imp.

Simulated 11.5% 41.1% 58.04 ± 0.88 55.62 ± 0.86

Simulated 21.8% 30.6% 60.10 ± 0.95 57.60 ± 0.93

Simulated 38.6% 13.4% 64.29 ± 0.93 63.41 ± 1.00

46



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3815  | https://doi.org/10.1038/s41598-022-07828-7

www.nature.com/scientificreports/

Discussion
Even though deep neural networks are increasingly used for survival analysis, it is still relatively complicated 
to adapt the available methodology to situations with competing events. This is in contrast to the classical sta-
tistical literature, in which a wide variety of methods are  available20–23,41, and in which it is widely agreed that 
competing-risks analyses are often necessary to avoid biased estimation results and/or  predictions36. Although 
several adaptations to DNN architectures have been proposed  recently9,11,24, these adaptions rely on a huge 
number of parameters, making network training and regularization a challenging task. In this work, we showed 
that an imputation strategy based on subdistribution weights could convert the competing risks survival data 
into a dataset that is specifically tailored to analyzing the event of interest only. This conversion enables the use 
of any of the much simpler deep survival network architectures that are designed to handle a single event of 
interest in the presence of right censoring. Our experiments on simulated and real-world datasets illustrated 
that this preprocessing step not only simplifies the training in terms of number of parameters and running time 
but also preservers the accuracy in terms of discriminatory power and calibration. The method could be further 
stabilized by implementing a multiple imputation approach (analogous to the continuous-time method by Ruan 
and  Gray32); however, such an approach would dramatically increase the run time and would be infeasible in 
the context of training DNN architectures. Further, in our experiments we observed that multiple imputations 
did not have a major effect on predictive performance in our datasets containing several thousands of instances 
with event rates larger than ∼ 5% . Our codes for simulated data generation, censoring time imputation, and the 
experiments are available at https:// github. com/ sheko ufeh/ Deep- Survi val- Analy sis- With- Compe ting- Events.
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ABSTRACT
Random survival forests (RSF) can be applied to many time-to-event research questions and are particularly useful in situations
where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical
settings, the occurrence of the event of interest is affected by competing events, which means that a patient can experience an
outcome other than the event of interest. Neglecting the competing event (i.e., regarding competing events as censoring) will
typically result in biased estimates of the cumulative incidence function (CIF). A popular approach for competing events is
Fine and Gray’s subdistribution hazard model, which directly estimates the CIF by fitting a single-event model defined on a
subdistribution timescale. Here, we integrate concepts from the subdistribution hazard modeling approach into the RSF. We
develop several imputation strategies that use weights as in a discrete-time subdistribution hazard model to impute censoring
times in cases where a competing event is observed. Our simulations show that the CIF is well estimated if the imputation already
takes place outside the forest on the overall dataset. Especially in settings with a low rate of the event of interest or a high censoring
rate, competing eventsmust not be neglected, that is, treated as censoring.When applied to a real-world epidemiological dataset on
chronic kidney disease, the imputation approach resulted in highly plausible predictor–response relationships and CIF estimates
of renal events.

1 Introduction

Survival analysis aims to model the time until the occurrence of a
specific event (e.g., progression or death due to a certain disease)
in dependence on a set of covariates. In clinical contexts, time-
to-event data are often collected in observational studies that are
prone to right censoring. Right censoring happens, for example,
when patients drop out of a study or do not experience their
event before the end of the observation period. In addition to a

single event of interest, other event types are often recorded in
observational studies and present in survival datasets. Often, the
occurrence of these competing events cannot be assumed to be
independent of the occurrence of the event of interest, especially
if shared underlying (disease) mechanisms or shared risk factors
are present.

An example would be examining kidney failure (KF) as the
event of interest in patients with chronic kidney disease (CKD),

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work
is properly cited, the use is non-commercial and no modifications or adaptations are made.
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while death by other causes than KF is a competing event (Hsu
et al. 2017). In the German Chronic Kidney Disease (GCKD)
study (Titze et al. 2015), for instance, 5217 participants with
CKD are followed up annually, so data can be evaluated at
the discrete time points corresponding to 1-year time intervals.
One of the aims of the study is to better understand the
factors underlying the progression of the disease. Potential risk
factors that were collected in the study at baseline included,
for example, leading kidney disease, as well as kidney func-
tion measures, such as serum creatinine, estimated glomerular
filtration rate (eGFR), and U-albumin/creatinine ratio (UACR).
Since CKD is a risk factor for heart failure (HF) and CKD and
HF share common risk factors (Beck et al. 2015), death (e.g.,
from cardiovascular causes) should be considered as a competing
event.

A popular approach to analyzing survival data (i.e., time to first
event) in the presence of competing events is the subdistribution
hazardmodel by Fine andGray (1999), which extends the classical
Cox proportional hazard model (Cox 1972). The Fine and Gray
model introduces a subdistribution hazard function, which is
a modification of the hazard function in traditional survival
analysis. This function quantifies the instantaneous rate of the
event of interest occurring, given that the subject has not yet
experienced the event of interest until that time (assuming that
the event of interest will never occur first once a competing event
has already occurred (cf. Fine and Gray 1999).

Aswith other classical regression approaches, the subdistribution
hazard model is not designed for high-dimensional data set-
tings or complex covariate–risk relationships. In such scenarios,
machine learning models such as deep survival neural networks
(e.g., Giunchiglia, Nemchenko, and van der Schaar 2018; Gupta
et al. 2019; Lee et al. 2018) and random survival forests (RSF) can
be applied (Ishwaran et al. 2008; Schmid, Wright, and Ziegler
2016; Wright, Dankowski, and Ziegler 2017). While neural net-
works can be most beneficial for unstructured data, such as text
and images, random forestsmight be advantageous for structured
data exploration and for identifying important clinical covariates
(Archer and Kimes 2008). Also, random forests are easy to train
and require less resource-consuming hyperparameter tuning.

While numerous methods for competing events exist in classical
regression, only some implementations ofmachine learningmod-
els for survival analysis consider competing events. In existing
approaches, competing events in random forests are addressed
by, for example, adapting the split rules (Ishwaran et al. 2014;
Therrien and Cao 2022) or by using pseudo-value regression
approaches (Mogensen and Gerds 2013). The latter method
transforms the categorical event status into a continuous pseudo-
value. Consequently, a random forest with regression trees is
fitted instead of survival trees.

In this paper, we take a different approach for modeling com-
peting risk data with RSF: Rather than introducing new split
rules or new architectures for competing events, we transform
the competing event problem into a single-event problem. This is
achieved bymanipulating the (input) dataset via an appropriately
defined imputation scheme. More specifically, we consider three
types of imputation approaches: In the first approach, the dataset
is only preprocessed once before training theRSF. In the other two

approaches, the dataset is adjusted directly at the tree instance of
the forest: at the root node of the trees or at every node of the
trees. As a consequence, well-established split rules and variable
importance measures of single-event RSF can be applied. Also,
the cumulative incidence function (CIF) for the event of interest
can be directly calculated from the output of the single-event RSF.

The idea of using imputed censoring times instead of the observed
competing event time has been applied successfully already for
classical statisticalmodeling andneural networks: Ruan andGray
(2008) presented an imputation approach for continuous-time
and semiparametric models based on Kaplan–Meier estimates.
Gorgi Zadeh, Behning, and Schmid (2022) took a similar approach
and proposed a method to train single-event deep neural survival
networks on competing-event data, in which the unobserved
censoring times of subjects with a competing event were imputed
using subdistribution weights.

In this article, we describe the proposed methods and use
a simulation study to evaluate their applicability and perfor-
mance metrics in different situations. Finally, we report on a
first application of the methods to real data obtained in the
GCKD study.

2 Methods

2.1 Discrete Survival Analysis for Competing
Risks

The aim of our proposed method is to estimate the CIF for an
event of interest given a set of covariates. In a typical setting
with right-censored data, we assume to follow-up the subjects
𝑖 = 1, … , 𝑛 with baseline covariates 𝑋𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)

𝑇 . Either an
event time 𝑇𝑖 or a censoring time 𝐶𝑖 is observed, with the status
indicator Δ𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶𝑖) and the type of event denoted by 𝑒𝑖 .
For each subject, either the event of interest (𝑒𝑖 = 1, Δ𝑖 = 1), a
competing event (𝑒𝑖 ≠ 1, Δ𝑖 = 1) or a censoring event (Δ𝑖 = 0)
is observed. Just as in Fine and Gray’s modeling approach, all
competing events 𝑒𝑖 > 1 are combined into one single competing
event, denoted 𝑒𝑖 = 2. We assume that the event time 𝑇𝑖 and the
censoring time 𝐶𝑖 are independent random variables (random
censoring). In a naive approach, where competing events are
ignored and treated as censored, the random censoring assump-
tion may be violated. We further assume that the censoring
mechanism is noninformative, meaning that the distributions of
𝑇𝑖 and 𝐶𝑖 do not share any common parameters. In our approach,
time is modeled on a discrete scale (possibly after grouping
the continuous times into intervals), that is, 𝑇𝑖 ∈ {1, 2, … , 𝑘},
where 𝑘 denotes the maximum observable time (interval). This is
motivated by the observation that most versions of RSF implicitly
treat time as an ordinal variable (Ishwaran et al. 2008), and
that many other available implementations of machine learning
methods also use discrete-time data structures (e.g., Ren et al.
2019).

In this article, we focus on modeling the occurrence of the event
of interest (𝑒𝑖 = 1). The CIF for the event of interest is defined as
𝐹1(𝑡|𝑋𝑖) = 𝑃(𝑇𝑖 ≤ 𝑡, 𝑒𝑖 = 1|𝑋𝑖), so the probability of experiencing
the event of interest at time 𝑡 or prior with a given set of covariates
𝑋𝑖 .
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2.2 Random Survival Forest for Single Events

The central architecture of the RSF is similar to the standard
random forest approach (Breiman 2001; Ishwaran et al. 2008).
In the first step, a number of (bootstrap) samples are generated.
Next, a survival tree (Hothorn et al. 2004) is grown on each
bootstrap sample. At each tree, 𝑚𝑡𝑟𝑦 covariates are considered
for splitting into child nodes, and the best split is selected. Many
split rules have been proposed, including splitting based on the
maximum log-rank statistic, C-index, Hellinger distance, and
manymore (Schmid et al. 2020). In this paper, we use the log-rank
statistic, which can deal with both continuous and discrete-time
data. The tree is grown until it reaches a termination constraint,
for example, tree depth, minimum number of observations, or
if no increase with respect to splitting criteria is possible. A
cumulative hazard function (CHF; 𝐻1(𝑡|𝑋𝑖)) is calculated at the
terminal nodes of each tree. Averaging across all trees leads to the
ensemble CHF. In settingswithout competing events, the CIF can
be obtained from the CHF by 𝐹1(𝑡|𝑋𝑖) = 1 − exp(−𝐻1(𝑡|𝑋𝑖)).

2.3 Imputation Using SubdistributionWeights

To enable the algorithm to use split rules designed for single-
event scenarios, we propose first to impute censoring times in
case competing events were observed. For this, we estimate the
subdistributionweights based on the censoringmechanism in the
dataset. The subdistribution weights for subjects who experience
a competing event are defined as in Berger et al. (2020):

𝑤𝑖𝑡 ∶=
�̂�(𝑡 − 1)

�̂�(�̃�𝑖 − 1)
, �̃�𝑖 < 𝑡 ≤ 𝑘 − 1, �̃�𝑖 = min(𝑇𝑖, 𝐶𝑖),

for all time points 𝑡 after the observed competing event time.
Here, �̂�(𝑡) is an estimate of the censoring survival function𝐺(𝑡) =
𝑃(𝐶𝑖 > 𝑡). Based on the subdistribution weights, we sample a
censoring time with probability 𝑃(�̂�𝑖 = 𝑡) = Δ𝑤𝑖𝑡 = 𝑤𝑖𝑡−1 − 𝑤𝑖𝑡 .
Thus, the imputation changes the data as follows: For subjects
experiencing a competing event, the competing event time𝑇𝑒𝑖=2 is
replaced by the estimated censoring time �̂�𝑖 . The observed times
𝑇𝑒𝑖=1 or𝐶𝑖 remain unchanged for subjectswith an event of interest
or a censoring recorded. The imputed data are then used as input
data for a single-event RSF, and estimates of the CIF are obtained
as described in the previous subsection.

The RSF architecture allows the introduction of the described
imputation at several stages of the fitting procedure. We propose
the following three options:

1. Single imputation of the entire (training) dataset, performed
outside the RSF architecture.

2. Imputation in the root node of each tree in the dataset. With
this approach, theweights are calculated on the subset of data
in the respective tree only.

3. Imputation in each node of each tree. Here, the weights are
calculated only on the samples present in the respective node.

To gain an understanding of the distribution of the true 𝐶𝑖

compared to the imputed �̂�𝑖 , or the resulting �̂�(𝑡), for the

three imputation approaches, please see the Illustration subsec-
tion below.

2.3.1 Implementation

We incorporated the described imputation approaches in the C++
implementation of the R package ranger (Wright and Ziegler
2017). The implementation involved adding a function to the
survival trees that calculates a life table estimate of the censoring
survival function �̂�(𝑡) analogous to the function estSurvCens
of the R package discSurv (Welchowski et al. 2022). The C++
command line interface has been used for benchmarks described
below. The source code can be found here https://github.com/
cbehning/ranger.

2.4 Simulation Setup

We conducted a simulation study to investigate whether
subdistribution-based imputation in the case of competing
events can improve the estimation of the CIF in RSF compared
to ignoring the competing events.

2.4.1 Data-Generating Mechanisms

In each simulation run, we created a set of subjects 𝑖 = 1, … , 𝑛,
with 𝑛 = 1000. For each subject, we first generated a vector of
50 normally distributed covariates 𝑋1, … , 𝑋50 ∼  (0, 1). Next,
three time variables were created: a time 𝑇𝑒𝑖=1 for the event of
interest, a time 𝑇𝑒𝑖=2 for the competing event, and a censoring
time 𝐶𝑖 . Afterwards, we sampled from a binary distribution with
parameter 𝑞 ∈ (0, 1) whether the event of interest (𝑒𝑖 = 1) or the
competing event (𝑒𝑖 = 2) was observed (see below). Next, the
status indicator Δ𝑖 was generated as follows: the subject was
censored if the censoring time was before the event time (Δ𝑖 = 0).
If the censoring time for this subject was after the event time, the
subject remained uncensored (Δ𝑖 = 1).

The experimental design used by Beyersmann, Allignol, and
Schumacher (2011) and Berger et al. (2020) was adapted to create
the event times and the censoring times. They simulated the event
times 𝑇𝑒𝑖=1 based on a time-continuous subdistribution hazard
model defined by

𝐹1(𝑡|𝑋𝑖) = 𝑃(𝑇𝑐𝑜𝑛𝑡,𝑖 ≤ 𝑡, 𝑒𝑖 = 1 |𝑋𝑖)

= 1 − (1 − 𝑞 + 𝑞 ⋅ exp(−𝑡))exp (𝜂1(𝑋𝑖 )),

where 𝑇𝑐𝑜𝑛𝑡,𝑖 was a true underlying continuous time variable for
the event of interest and 𝜂1(𝑋𝑖) was a linear predictor associated
with the subdistribution time, which is described in more detail
below. The parameter 𝑞 was associated with the rate of the event
of interest by 𝑃(𝑒𝑖 = 1|𝑋𝑖) = 1 − (1 − 𝑞)exp(𝜂1(𝑋𝑖 )). The continuous
event times for competing eventswere drawn froman exponential
distribution with

𝑇𝑐𝑜𝑛𝑡,𝑖|𝑒𝑖 = 2 ∼ Exp(𝜆 = exp(𝜂2(𝑋𝑖))) ,

where 𝜂2(𝑋𝑖) is a linear predictor associated with the competing
event time.
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FIGURE 1 Specification of the covariate–risk relationships in the simulation Setup 1 for the event of interest (left) and the competing event (right).

To discretize the continuous event times,we categorized the event
times into 𝑘 = 20 intervals with interval borders obtained by
empirical quantiles of width 5%. The empirical quantiles were
pre-estimated once per parameter 𝑞 from an independent sample
with 1,000,000 observations.

The discrete censoring times were generated from

𝑃(𝐶𝑖 = 𝑡) = 𝑏(𝑘+1−𝑡)

/
𝑘∑

𝑗=1
𝑏𝑗,

where the parameter 𝑏 was associated with the overall censoring
rates. As in Berger et al. (2020), the parameter 𝑞 was set to 𝑞 ∈

{0.2, 0.4, 0.8} and the parameter 𝑏 ∈ {0.85, 1, 1.25}, corresponding
to low, medium, and high censoring rates of {24%, 47%, 76%} (see
Figures S1 and S2).

The following two covariate–risk relationships were investigated
in this simulation study.

2.4.2 Setup 1: Tree-Like Covariate–Risk Relationship

To mimic a rather complex relationship between covariates and
event times, we modified the linear predictor functions used in
Berger et al. (2020) to have a tree-like structure as depicted in
Figure 1. The covariates 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5 are associated with the
event of interest, and the covariates 𝑋1, 𝑋3, 𝑋4, 𝑋6 are associated
with the competing event. The tree-like predictor function for the
event of interest can be written as follows:

𝜂1(𝑋𝑖) = 𝐼(𝑋𝑖1 < 0.5) ⋅ (𝐼(𝑋𝑖2 < 0) ⋅ 𝑋𝑖4 + 𝐼(𝑋𝑖2 ≥ 0) ⋅ 𝑋𝑖5)

+ 𝐼(𝑋𝑖1 ≥ 0.5) ⋅ (𝐼(𝑋𝑖3 < 0) ⋅ 𝑋𝑖4 + 𝐼(𝑋𝑖3 ≥ 0) ⋅ 𝑋𝑖4 ⋅ 𝑋𝑖5) ,

where 𝐼(⋅) is the indicator function. The predictor for the
competing event is given by

𝜂2(𝑋𝑖) = 𝐼(𝑋𝑖1 < 1) ⋅ (𝐼(𝑋𝑖1 < 0) ⋅ (−𝑋𝑖4) + 𝐼(𝑋𝑖1 ≥ 0) ⋅ 𝑋𝑖5)

+ 𝐼(𝑋𝑖1 ≥ 1) ⋅ (𝐼(𝑋𝑖3 < 0) ⋅ 𝑋𝑖4 + 𝐼(𝑋𝑖3 ≥ 0) ⋅ 𝑋𝑖4 ⋅ 𝑋𝑖6) .

2.4.3 Setup 2: Interactions

In a second simulation setting, multiple interaction terms are
included in the data-generating model. Here, the predictors for
the event of interest 𝑒1 and the competing event 𝑒2 are specified
as follows:

𝜂1(𝑋𝑖) = 2 ⋅ (𝑋𝑖1 ⋅ 𝑋𝑖2 ⋅ 𝑋𝑖3 + 𝑋𝑖1 ⋅ 𝑋𝑖4 ⋅ 𝑋𝑖5 + 𝑋𝑖1 ⋅ 𝑋𝑖3 ⋅ 𝑋𝑖5

+ 𝑋𝑖1 ⋅ 𝑋𝑖3 ⋅ 𝑋𝑖4 + 𝑋𝑖2 ⋅ 𝑋𝑖3 ⋅ 𝑋𝑖4) ,

𝜂2(𝑋𝑖) = 2 ⋅ (𝑋𝑖1 ⋅ 𝑋𝑖3 + 𝑋𝑖4 ⋅ 𝑋𝑖6 ⋅ 𝑋𝑖7 + 𝑋𝑖1 ⋅ 𝑋𝑖4 ⋅ 𝑋𝑖6

+ 𝑋𝑖1 ⋅ 𝑋𝑖3 ⋅ 𝑋𝑖7 + 𝑋𝑖1 ⋅ 𝑋𝑖3 ⋅ 𝑋𝑖4) .

In this setup, the covariates 𝑋1, 𝑋3, and 𝑋4 are associated with
both events, while 𝑋2 and 𝑋5 are only associated with the event
of interest and 𝑋6 and 𝑋7 are only associated with the competing
event. Only the interaction term 𝑋1 ⋅ 𝑋3 ⋅ 𝑋4 is shared between
both linear predictors. Thus, the dependency structure is similar
to Setup 1, but here 𝑋7 is added.

As illustrated in Table 1, the simulated datasets included event
times for the event of interest as well as the competing event
and censoring times. The competing event times need to be
replaced by the (true or estimated) censoring times to make the
simulated competing event datasets usable in the single-event
RSF.After replacement, the status for the subjectswith competing
event was set to “censored” (Δ𝑖 = 0). Table 2 illustrates the
different imputation strategies for obtaining a reference dataset
(A), a dataset preprocessed outside the RSF (B, C), and a dataset
processed within the RSF (D). More specifically, the following
imputation methods to estimate the CIF were compared:

1. Reference: If a subject 𝑖 experiences the competing event, this
is replaced with the true (simulated) censoring time 𝐶𝑖 in the
dataset. With these input data, the RSF for single events will
model the true censoring rate and serves as a reference (see
Table 2A).

2. Naive approach: Ignoring the competing event and treating
the competing event time 𝑇𝑒𝑖=2 as if a censoring happened
(see Table 2B).

3. Impute once (imputeOnce): Single imputed dataset before
fitting the standard single-event RSF implementation (see
Table 2C).

4. Impute in root (imputeRoot):RSF implementationwith impu-
tation in each root node, thus imputing once in each tree on
all subjects available at the tree’s root node (see Table 2D).

5. Impute in each node (imputeNode):RSF implementation with
imputation in every node, thus imputing multiple times per
tree on the subjects available in the respective node (see
Table 2D).
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TABLE 1 Example table in a simulation setting. The columns with light gray background {event, 𝑇, 𝐶} are produced by the data-generating
mechanism but are not available during the training of the forest. The column time refers to �̃�𝑖 = min(𝑇𝑖 , 𝐶𝑖) and the column status is defined by
Δ𝑖 ⋅ 𝑒𝑖 .

𝒊 Time Status Event 𝑻 𝑪 𝑿𝟏 𝑿𝟐 𝑿𝟑 …

1 15 1 1 15 18 −0.4411 −0.9011 −0.0924 …

2 7 2 2 7 12 −1.1834 0.7352 −0.1028 …

3 13 0 1 17 13 0.3930 −1.0282 1.2740 …

4 10 2 2 10 20 0.0181 −1.8797 −3.5290 …

5 3 1 1 3 14 0.7355 −1.0863 1.3222 …

… …

TABLE 2 Illustration of data processing: Training time and status generated from data in Table 1. (A) The event time is replaced by the simulated
(true) censoring time (usually not available for training in practice). (B) The competing event time is taken as censoring time, effectively ignoring the
presence of competing events. (C) The censoring time ? is replaced once before fitting the forest by an estimated censoring time (based on weights
𝑤𝑖𝑡 computed from the censoring survival function estimated from the entire training dataset). (D) The censoring time ?? is replaced repeatedly by an
estimated censoring time based on weights 𝑤𝑖𝑡 computed from the censoring survival function estimated from the training data subset available in the
training data subset that is available in the specific node (root node) at the random forest.

A: Simulated 𝑪 B: Naive approach C: Impute once D: Impute in forest

𝒊 Time Status 𝒊 Time Status 𝒊 Time Status 𝒊 Time Status

1 15 1 1 15 1 1 15 1 1 15 1
2 12 0 2 7 0 2 ? 0 2 ?? 0
3 20 0 3 13 0 3 13 0 3 13 0
4 10 0 4 10 0 4 ? 0 4 ?? 0
5 3 1 5 3 1 5 3 1 5 3 1

In each simulation run, we divided the dataset into a training
( 2
3
) and a test set ( 1

3
) before applying the methods above.

Splits were stratified by the event types (event of interest,
competing event, censoring). We carried out 1000 simulation
runs for each combination of setup, parameters 𝑞 and 𝑏 and
for each imputation method, resulting in an overall number
of 90,000 simulation runs. We chose 1000 runs because this
number guaranteed the width of the reference limits for the
CIF (provided in Figures S6 and S7) to be smaller than 0.1
(i.e., 2 ⋅ 1.96 ⋅

√
0.5 ⋅ (1 − 0.5)∕1000 = 0.0619 < 0.1). Apart from

the described incorporated imputation approaches, the RSFs
were fitted using the R package ranger from the command
line interface with default parameters. This means fitting
𝑛𝑡𝑟𝑒𝑒 = 500 trees with𝑚𝑡𝑟𝑦 = 8 covariates selected in each node
(𝑚𝑡𝑟𝑦 =

√
𝑝), the log-rank split rule, samplingwith replacement,

and a minimal node size of 3.

2.5 Illustration

To gain an understanding of the distribution of the imputed
censoring times �̂�𝑖 in the imputeOnce method compared to the
true censoring times 𝐶𝑖 and the censoring times used in the naive
approach (�̂�𝑖 = 𝑇𝑒𝑖=2), Figure S3 depicts the distribution of 𝐶𝑖 and
�̂�𝑖 for one simulation run. As the censoring times are imputed
multiple times in imputeNode and imputeRoot this visualization
would be less meaningful, and we show the variation across life
table estimates of 𝐺 instead. To illustrate the variability of the life

table estimates across trees and nodes, Figures S4 and S5 show
examples for a setup, a simulation run, and a combination of 𝑏
and 𝑞. Here we see that the estimation of G on the subsets in
the trees (imputeRoot) leads to increased variability of �̂�. The
estimation in each node of the trees (imputeNode) increases the
variability even further. The mean squared error between the
true censoring time 𝐶𝑖 and the imputed censoring times �̂�𝑖 was
lowest for imputeOnce and highest for imputeNode (see captions
of Figures S3–S5).

2.6 Performance Measures

2.6.1 Calibration Graph

The agreement between the reference and estimated CIFs was
evaluated using calibration graphs. Here, we directly compared
the estimated CIF (averaged over the 1000 simulation runs)
across the different (imputation)methods on the test dataset. The
method containing the simulated true censoring times instead
of the imputed censoring times served as a visual reference
(see Table 2A). Generally, the methods are well calibrated if the
averaged estimated CIF curve agrees closely with the reference.

2.6.2 C-Index

The concordance index (C-index) was used to evaluate the dis-
criminatory power of the different model fits on the test data. The
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FIGURE 2 Calibration graph for the test data of Setup 1 for different values of 𝑞 (columns), determining the rate of the event of interest, and
different censoring rates 𝑏 (rows). A low value of 𝑞 corresponds to a low rate of the event of interest, and a low value of 𝑏 corresponds to a low censoring
rate. In most scenarios, the black dotted line (reference based on true censoring times) visually overlaps with imputeOnce (yellow). (See Figure S1 for
the relative frequencies of the event and censoring rates.) The CIF was averaged over 1000 simulation runs in each setting.

C-index essentially measures how well the ranking of the (time-
averaged) estimated CHFs matches the ranking of the observed
event times. A stronger alignment between these rankings with
higher C-index values implies greater discriminatory power.
The C-index as implemented in the function cIndex in the R
package discSurv (Welchowski et al. 2022; Heyard et al. 2020)
was calculated.

2.6.3 Brier Score

The predictive performance of the approaches was compared
using the Brier score (Gerds and Schumacher 2006). The Brier
score at time point 𝑡 is defined as the (estimated) squared
difference between the observed and modeled status (Δ𝑖) at that
time. The integrated Brier score (IBS) is calculated by integrating
the Brier score over all possible time points 𝑡. Lower values imply
a better prediction. The Brier score was calculated using the R
package pec (Mogensen, Ishwaran, and Gerds 2012).

3 Results

The calibration graphs in Figure 2 (simulation Setup 1) and
Figure 3 (simulation setup 2) show the CIF on the test dataset that
was not seen during training, averaged over 1000 simulation runs.
They include nine different scenarios, that is, nine combinations
of the parameters 𝑞 and 𝑏, where 𝑞 determines the rate of the
event of interest, and 𝑏 affects the censoring rate.

In all scenarios, all RSF architectures show similar CIF estimates
for the first time points and tend to diverge for later time
points. Here, the naive approach (gray lines), where competing
events are treated as censoring, always shows the strongest
overestimation and highest deviation from the reference method
(dotted lines). The CIF of the imputeOnce approach visually
overlaps with the dotted reference line that was obtained by
training the single-event RSF on the simulated (true) censoring
times (Reference).

The methods where the imputation is directly implemented in
the nodes of the trees show the highest differences in the setting
with a low censoring rate (𝑏 = 0.85, first row). In all settings,
the method with only one imputation in each root node tends
to underestimate the CIF. In contrast, the imputation in each
node tends to overestimate the CIF, especially in the scenario that
corresponds to a low event-of-interest rate and a low censoring
rate (𝑞 = 0.2, 𝑏 = 0.85). For a better understanding of the overlap
of the estimated CIF, Figures S6 and S7 provide reference limits
for the estimated CIF at time points 10, 15, and 20.

Concerning the C-index and the Brier score, all methods perform
similarly Tables S1–S4). The methods that do not impute directly
in the random forest (imputeOnce, naive approach) performed
slightly better with regard to thesemetrics in Setup 2. However, in
Setup 1, the imputation in the root nodes of the RSF (imputeRoot)
performed similarly to imputeOnce. To further gain insight on
the properties of the simulation design, we divided the 1000
simulation runs into 10 batches. Using these batches, an estimate
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FIGURE 3 Calibration graph for the test data of Setup 2 for different values of 𝑞 (columns), determining to the rate of the event of interest, and
different censoring rates 𝑏 (rows). A low value of 𝑞 corresponds to a low rate of the event of interest, and a low value of 𝑏 corresponds to a low censoring
rate. The CIF was averaged over 1000 simulation runs in each setting. In most scenarios, the black dotted line (reference with censoring times from
simulation) visually overlaps with imputeOnce (yellow). (See Figure S2 for the relative frequencies of the event rates.)

of the Monte Carlo error was calculated. The corresponding
results are presented in Figures S8–S15.

In addition to the described performancemeasures, we calculated
the permutation variable importance (VIMP) on the training
dataset using the time-aggregated CHF as a marker in Harrell’s
C-index (cf. Ishwaran et al. 2008). Figures S16–S20 show the 10
variableswith the highestmean permutationVIMPaveraged over
1000 simulation runs of the training datasets in Setup 1. Note
that the covariates 𝑋1 to 𝑋5 were included in the data-generating
mechanism for the event of interest (only the covariates 𝑋4 and
𝑋5 were associated on a continuous level), while the covariates
𝑋1, 𝑋3, 𝑋4, 𝑋6 were associated with the competing event (see
Figure 1). The variables 𝑋4 and 𝑋5 are indeed the two most
important variables throughout for the reference, the naive
approach, and imputeOnce, while mostly only𝑋5 was considered
in the first 10 variables for imputeRoot and imputeNode in the
scenarios with a low and medium rate of the event of interest
(𝑞 ∈ {0.2, 0.4}). In scenarios with a high rate of the event of
interest (𝑞 = 0.8), 𝑋2, 𝑋3, 𝑋4, 𝑋5 were included for imputeRoot
and imputeNode.

For Setup 2 (Figures S21–S25), the variables associated with the
event of interest 𝑋1 to 𝑋5 are among the five most important
variables in all scenarios for the Reference, the naive approach,
and imputeOnce. In contrast, for the approaches imputeRoot and
imputeNode, variables that are not associated with the event of
interest get selected, especially in the scenarios with lower 𝑏.
For imputeRoot and imputeNode, all of the variables 𝑋1 to 𝑋5

are only included in the first most important variables when the
censoring rate is high (𝑏 = 1.25). For the high censoring scenario,
the variables𝑋6 and𝑋7, which are associated with the competing
event, are also in the top 10 most important variables.

3.1 Limitations

We acknowledge that our simulation study has several limita-
tions: First, our study did not have a preregistered study protocol.
This was mainly because we designed our simulation study to
gain insight into the properties of the proposed methodology
and to provide the first empirical evidence on its functioning
(“phase II” in the framework by Heinze et al. 2024). Clearly,
more extended simulations covering a broader range of scenarios
(corresponding to later phases in the framework by Heinze et al.
2024)will have to be based on preregistered protocols. Second, our
simulation study used a rather limited set of values for the param-
eters 𝑘, 𝑞, and 𝑏. We chose these values because they had already
been used in previous simulation studies with competing events
(Beyersmann, Allignol, and Schumacher 2011; Berger et al. 2020),
thus making our design consistent with earlier publications.
Third, simulation Setups 1 and 2 were chosen to represent data-
generating mechanisms with multiple interactions and arbitrary
cut-offs, allowing us to mimic a scenario in which we typically
would not fit a classical Cox proportional hazards model. These
setups could be extended by data-generating mechanisms in
which the competing event and the event of interest do not share
risk factors (not explored in our simulations). They could further
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be extended to high-dimensional data settings where the number
of covariates exceeds the number of observations.

4 Application to the GCKD Study Data

We applied the methods described above to a subset of the GCKD
study. In the observational, multicenter GCKD study (Titze et al.
2015), 5217 participants with CKD are followed up annually.
Here, we look at data of up to 6.5 years of follow-up (data
freeze: 03/2022), such that 𝑘 ∈ {1, … , 7}, corresponding to 1-year
intervals. We focus on one of the main events of interest in the
GCKD study, namely reaching KF (dialysis, transplantation, or
death due to forgoing kidney replacement therapy), while death
by any other cause is considered a competing event (Table S5).
More details on the data collection can be found in the Supporting
Information (Section Application) and has been published, for
example, in Steinbrenner et al. (2023). We included demographic
and family history parameters as well as clinical and laboratory
baseline parameters on categorical and continuous scales in the
analyses. More specifically, we have considered the following
baseline parameters:

∙ Demographic: age (in years), sex (male/female), alcohol
(low-normal drinking/heavy drinking), smoking (nonsmo-
kers/former smokers/smokers), family status (single/married
or in a stable partnership/separated or divorced/widowed),
number of siblings, number of people living in the
household, employment (fully employed/part time/
housework/pension/job-seeker/training/other), private
insurance (yes/no), professional qualification (still in
training/apprenticeship/master (craftsperson)/university
degree/without degree/other/unknown);

∙ Clinical: enrollment (inclusion based on low eGFR value
or proteinuria), body mass index (BMI, in kg∕m2), hyper-
tension (yes/no), coronary heart disease (CHD: yes/no),
stroke (yes/no), asthma (yes/no), chronic obstructive bron-
chitis (COPD: yes/no), taking painkillers (regularly/when
required/never/unknown);

∙ Laboratory: serum creatinine (in mg∕dL), eGFR (in
mL∕min ⋅ 1.73 m2), UACR (in mg∕g), CRP (in mg∕L),
low-density lipoprotein (LDL) cholesterol (in mg∕dL),
high-density lipoproetin (HDL) cholesterol (inmg∕dL);

∙ Family history: number of siblings with stroke, number of
siblings with kidney disease.

Further, diseases underlying CKD were dummy-coded for each
participant (diabetic nephropathy, vascular nephropathy, sys-
temic disease, primary glomerulopathy, interstitial nephropa-
thy, acute kidney injury, single kidney, hereditary kidney dis-
ease, obstructive nephropathy, miscellaneous, undetermined). In
many of the participants, more than one underlying disease was
present, and a leading kidney disease was assigned by the treating
nephrologist. Both the dummy encoded diseases underlying CKD
and the assigned leading kidney disease are provided as covariates
during the training of the forests, resulting in a total number of
38 covariates. Baseline characteristics are provided in Tables S6–
S10. Note that several covariates are highly correlated, including
individual and leading CKD causes and laboratory parameters.
For example, the eGFR is calculated from the creatinine value,

race, gender, and age using the CKD Epidemiology Collaboration
(EPI) equation (Levey et al. 2009).

We compare the approaches described above on a complete
case subset of the GCKD dataset. The dataset included 4256
participants. Of those, 412 (9.1%) reached KF (event of interest),
and 409 (9.6%) died without reaching KF first (competing event,
participants who died due to forgoing dialysis or transplantation
are considered as KF). The estimated CIF and the 10 covariates
with the highest VIMP can be seen in Figure 4. The CIF is lowest
for the imputeOnce approach and imputeRoot. Due to the high
sample size, imputeRoot and imputeOnce may lead to similar
imputation results. We suspect the CIF of these two approaches
to be the most realistic estimate based on the results of the
simulation study, where the naive approach and imputeNode
generally overestimated the CIF. Although the differences appear
small, they will presumably become even more relevant with the
longer observation period that can be evaluated in the future.
The imputation method proposed by Ruan and Gray (2008)
included analyses of multiple imputed datasets instead of a
single imputation. Therefore, we performed 10 imputations of the
imputeOnce method and compared the pooled results to single
runs (see Table S11). In this application, however, the variability
of the estimated CIF was quite low.

All approaches describe creatinine, UACR, eGFR, the leading
CKD cause, and having a hereditary disease cause as the
first five most important variables. This is followed by
CRP, LDL cholesterol, and having diabetic nephropathy for
imputeNode, imputeRoot, and naive approach. For imputeOnce,
the demographic parameters age and sex were selected next
instead of the laboratory parameters. The order of the selected
covariates differs slightly between the approaches. A table
containing VIMP values for all four methods can be found in
Table S12. Both eGFR and UACR are reasonable covariates, as
their progression is being discussed as a surrogate endpoint for
progression to KF (Levey et al. 2020).

5 Conclusion

We have proposed three variants of a subdistribution-based
imputation approach to handle competing risks in RSF. Our
simulation study showed that the CIF is well estimated when
imputation already takes place outside the forest on the training
data (imputeOnce).

In survival analysis, the occurrence of competing events must
be appropriately taken into account. The naive approach of
considering competing events as censoring can lead to biased
estimates of the CIF, although our simulation study has shown
that this approach may lead to similar results in terms of C-
index and IBS. Differences in the estimatedCIF became apparent,
especially in scenarios with a high censoring rate or a low rate
of the event of interest. By including the naive approach in the
simulation,wewanted to raise awareness for the proper treatment
of competing events when using machine learning applications.

It should be emphasized that the naive approach estimates the
cause-specific CHF of the event of interest, ignoring the hazards
of the competing events. Hence, it cannot be directly transformed
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FIGURE 4 (A) Estimated CIF when defining KF as the event of interest and death as the competing event on the GCKD dataset. Time is measured
in years after baseline. Event times were discretized into 1-year intervals. (B)Mean permutation VIMP on the GCKD dataset for the different approaches.
The 10 variables with the highest values are selected for each approach. The VIMP is calculated with respect to the prediction accuracy in the out-of-bag
sample of the trees.

into the event of interest’s CIF. While the CIF for the event of
interest could be derived from a combination of all cause-specific
hazard functions, we chose not to use this approach due to its
complexity in analyzing covariate effects. Instead, we preferred
the Fine and Gray method, as it provides a single (direct) effect
per covariate. With random forests and other machine learning
methods, having such a direct effect per covariate is a major
advantage, in particular when it comes to the interpretation
of measures like variable importance. Furthermore, the Fine
and Gray method can reduce the computational effort, as it
avoids having to fit separate machine learning models (one per
cause-specific hazard). Also, note that the performance of the
cause-specific hazard approach may strongly depend on the
availability of sufficient numbers of observed events in the data.

A major finding of our simulation study is that imputing the
estimated censoring times once before fitting the random forest
(imputeOnce) essentially results in unbiased CIF estimates.
Compared to imputations of the estimated censoring times
in every tree node (imputeNode) or in the root node of the
trees (imputeRoot), imputeOnce showed a systematically better
performance with respect to the calibration graph of the CIF.

The question remains as to why the strategies imputeNode and
imputeRoot resulted in an under/overestimation of the CIF in

our simulation study. We considered the following two possible
explanations:

i. In contrast to single imputation, with imputeNode, the
sample sizes for estimating 𝐺(𝑡) are much smaller, especially
in the direction of the terminal nodes, which are usually
very small for RSF (default minimum node size: 3 in our
simulation study). Therefore, the estimation of weights is
less accurate, probably translating into less accurate, or
even biased, estimates of CIF. In the imputeRoot scenario,
the sample size is smaller than that of imputeOnce for
subsamples, while with bootstrapping, there are additional
problems due to ties, which can also lead to biases in the CIF
estimates. We have seen this in the GCKD data: With a large
sample size and a higher number of events, the differences
between imputeOnce and imputeRoot are smaller and the
estimate of 𝐺(𝑡) stabilizes.

ii. With imputeNode, the censoring survival function 𝐺(𝑡) is
reestimated in each node and thus on the subset of data that
is available in the specific node. Consequently, due to smaller
sample sizes in the lower levels of the trees, imputeNode
tends to show much higher variability in the estimation
of the censoring survival function than imputeOnce. The
censoring times might thus be imputed with reduced pre-
cision, resulting in a decreased estimation accuracy of the
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CIF. Similar arguments hold for the imputeRoot strategy
(effectively operating on data samples with a reduced size).

In conclusion, the proposed single-imputation strategy
(imputeOnce) allows for converting the competing-risks
setting into a single-event setting. All RSF features and options
(split rules, variable importance measure, etc.) are immediately
available for this setting, making it much more straightforward
to apply RSF in the competing-risks context. Issues for future
research include a comparison to other machine learning
methods and other techniques for dealing with competing events
in RSF. This could, for example, be done in the framework of a
neutral comparison study (see, e.g., the recently published Special
Collection on “Neutral Comparison Studies in Methodological
Research” in Vol. 66 of Biometrical Journal).
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4 Discussion

The articles in this dissertation address aspects of planning and analyzing longitudinal data

using novel approaches for statistical learning and regression. Due to the work on the MA-

CUSTAR study during the dissertation period, the statistical methods presented here cover

topics relevant to longitudinal research on age-related macular degeneration. First, factors

influencing the recruitment of participants into a longitudinal observational study were evalu-

ated using a Poisson regression model. Second, a novel regression framework for disease

progression and unknown disease onset was presented. The third and fourth articles pre-

sented imputation approaches for the evaluation of time-to-event endpoints in the presence

of competing events in statistical learning methods.

4.1 Understanding early disease progression

Recruitment failure can result in reduced power and has ethical, scientific, and financial impli-

cations (McDonald et al., 2006; Sully et al., 2013). The findings from the MACUSTAR study

as presented in Terheyden et al. (2021) showed that increased teleconferencing with site in-

vestigators, public holidays, and reaching 80% of impaired screening performance impacted

recruitment rates. These factors should be carefully considered in future study designs and

site selection, especially when recruiting early, asymptomatic diseased participants.

Themixed-model framework presented in Behning et al. (2021) found that a square-root trans-

formation is a reasonable choice to model enlargement of GA lesions. While several studies

in manifested GA, including interventional phase 2 and 3 trials, have been using the square-

root-transformation to study progression (Steinle et al., 2021; Khanani et al., 2023; Keenan

et al., 2024a; Keenan et al., 2024b), the trajectory and associated risk factors of early GA

smaller than the often used minimum lesion size requirement for clinical trials (e.g., 0.5 mm2)

is poorly understood. Further research is needed to study the preceding AMD disease states,

such as incomplete to complete retinal pigment epithelium and outer retinal atrophy (iRORA

and cRORA), and nascent GA (Wu et al., 2020; Rajanala et al., 2023).
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Based on the proposedmodeling framework in Behning et al. (2021), the (unknown) age at GA

onset was estimated using the information from baseline covariates. In the future, additional

risk factors could be included in order to identify the age of GA onset more precisely. This can

help to assess the influence of genetic and environmental factors and design more targeted

clinical trials that consider the specific needs of different patient subgroups.

To summarize, the findings derived from Publications A and B help to define study inclu-

sion criteria and facilitate screening for future clinical trials in multi-center settings for disease

stages preceding GA. In addition, the modeling framework in Publication B allows for ade-

quate modeling of continuous endpoints in study populations with unknown age of onset and

unknown progression patterns (e.g., linear, quadratic, exponential).

4.2 Time-to-event endpoints and competing risks

To date, no clinical trial endpoints have been validated and accepted as clinical endpoints

by regulatory agencies for drug development in early AMD-stages (Finger et al., 2019). At

present, both continuous and time-to-event endpoints are potentially suitable for future clini-

cal trials. Should future clinical trials in intermediate AMD populations employ time-to-event

endpoints, possible occurrences of competing events must be carefully considered.

Publications C and D included in this dissertation demonstrated the importance of analyzing

competing events in longitudinal data and showed a practical option for addressing them in

statistical learning methods.

The imputation strategy proposed by Ruan and Gray (2008) bears some similarities to the

imputation strategy in Publications C and D. However, their method was developed in a

continuous-time framework, used multiple imputations, and applied to a Cox proportional haz-

ards model. Here, we applied a related imputation method to statistical learning methods. As

many implementations of statistical learning methods treat time as an ordinal variable and

thus use discrete-time data structures (Lee et al., 2018; Ren et al., 2018; Ishwaran et al.,

2008), both publications considered a discrete-time modeling framework. We showed that

the imputation strategy using subdistribution weights transformed competing event survival
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data so that it can be used in single-event statistical learning methods. We have demon-

strated this approach both in deep survival network architectures (Gorgi Zadeh et al., 2022)

and single-event random survival forests (Behning et al., 2024a).

The imputation of unknown censoring times in a preprocessing step provides a practical so-

lution to avoid biased estimation results and predictions in the presence of competing events.

Well-established ML architectures for single events can easily be applied to competing event

data that may not have been initially considered during the study planning. Training a single

subdistribution survival ML model facilitates the fitting and interpretation of associated risk

factors compared to training multiple cause-specific architectures, especially as the perfor-

mance of cause-specific architectures may also depend on the availability of sufficiently large

numbers of observations per event type.

Publication C (Gorgi Zadeh et al., 2022) and Publication D (Behning et al., 2024a) provide

application examples using data from longitudinal medical studies, more specifically for data

sets from oncology, emergency medicine, and nephrology. Although these methods were not

applied in the field of ophthalmology, they can also be utilized in future analysis of longitudinal

studies in ophthalmology. For example, these methods can be applied to identify risk factors

associated with faster progression to late-stage AMD as collected in the MACUSTAR study.

Progression was modeled in discrete time based on the six-monthly visits in the study (Finger

et al., 2019; Behning et al., 2024b; Dunbar et al., 2024; Sassmannshausen et al., 2024). The

DNN approach can be trained with semi-structured baseline data, such as images arising

from optical coherence tomography. The RSF approach can be beneficial for structured high-

dimensional data, e.g., combining multiple structural, functional, genetic, or patient-reported

outcome measures at baseline.

While this dissertation implemented new imputation methods for DNN and RSF, an extension

to other statistical learning methods could also be possible. In fact, the imputation step can

already be carried out as part of the data preprocessing and is largely independent of the

subsequently applied statistical learning method. The imputation can also offer a practical

alternative if no competing risk implementations are yet available for a particular ML method.
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4.3 Conclusion

In summary, the four publications of this dissertation contribute to improving the planning and

analysis of longitudinal studies, with a focus on application in AMD research. As no regulatory

accepted endpoint exists for clinical trials in earlier stages of AMD, it is necessary to inves-

tigate the statistical methods used for both longitudinal change endpoints and time-to-event

endpoints. Crucially, if future studies consider GA and CNV, the two late stages of AMD, as

separate time-to-event endpoints, an awareness of the correct treatment of competing risks is

important. While this dissertation focused on ophthalmological research, the presented meth-

ods are not limited to this field but can also be applied to other slowly progressing diseases,

e.g., chronic kidney disease.
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