
Subtrajectory Clustering, Curve
Averaging and the Complexity of

Underlying Range Spaces

DISSERTATION
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Frederik Sebastian Brüning
aus

Langenfeld, Deutschland

Bonn 2024

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Gutachterin/Betreuerin: Prof. Dr. Anne Driemel
Gutachter: Prof. Dr. Heiko Röglin

Tag der Promotion: 19.11.2024
Erscheinungsjahr: 2024

Abstract

In this thesis, we study the clustering of spatial data with a focus on trajectory data.
Trajectory data appears in various applications. These range from the recorded positions
of moving objects (e.g. animals, humans, vehicles) to the change of measurements over
time (e.g. biomarkers, electricity demand, temperature, sea level). A trajectory is usually
modeled as a polygonal curve that is derived from the data by linear interpolation
between consecutive observations. A clustering area that we are particularly interested
in is subtrajectory clustering which consists of finding reoccurring patterns in trajectory
data. We model subtrajectory clustering as a set cover problem and measure similarity
based on the Fréchet distance. Given a polygonal curve with n vertices, the goal is
to find the smallest set of center curves of complexity ℓ such that each point on the
input curve is part of a subcurve that has Fréchet distance of at most a given ∆ to at
least one of the center curves. We design bicriterial-approximation algorithms for this
NP-hard problem. If there exists a solution of size k, then our algorithms find solutions
of size O(kℓ log(k) log(ℓ)) that solve the problem under distance O(∆). The expected
running time and space requirement of our algorithms is polynomial in k, ℓ, n, 1

∆ and the
arclength of the input curve. Our approach uses a variation of the multiplicative weight
update method on a simplified version of the problem.

The second clustering problem that we study is curve averaging: the problem of
optimizing the center curve for a fixed set of curves. In particular, we study a widely
used heuristic for curve averaging under the dynamic time warping (DTW) distance
called the DTW Barycenter Averaging (DBA) algorithm. The algorithm is very similar
to the popular k-means algorithm. Given an initial center curve, it alternates between
assignment and update steps until convergence. We study the number of iterations that
DBA performs until it converges to a local optimal solution. We assume that DBA is
given n polygonal curves of m points in Rd and a parameter k that specifies the length
of the average curve to be computed. We conduct experiments that support the general
view that DBA converges fast in practice. In contrast, we show that in the worst-case the
number of iterations can be exponential in k. This gap between practical performance
and worst-case analysis suggests that the worst-case behaviour is likely degenerate. To
analyze the number of iterations on non-degenerate input, we further study DBA in the
model of smoothed analysis. This model is based on bounding the expected number of
iterations in the worst-case under random perturbation of the input. We achieve a bound
that is polynomial in k, n and d, and for constant n

d is also polynomial in m.
Additionally, we study the complexity of range spaces underlying clustering problems

where ranges are balls that are implicitly given by a center and a radius ∆ and include
all elements that are at a distance of at most ∆ to the center. As distance measures,
we consider Hausdorff distance, Fréchet distance and DTW. As centers and elements
of the ground set, we consider polygonal curves in Rd and polygonal regions in R2. To
measure the complexity, we bound the VC-dimension and the shattering dimension of
the resulting range spaces. Our approach is based on splitting range queries for the
considered range spaces into simple predicates that can be determined by sign values
of polynomials. This enables us to bound the VC-dimension and shattering dimension
based on the number of cells in the arrangement of zero sets of these polynomials.

Acknowledgments

I would like to take this opportunity to thank all the people who have accompanied me
on my scientific journey over the past years. Without your help, this thesis would not
have been possible.

First and foremost, I thank my advisor Anne Driemel for her guidance and support
throughout the years. She always had time to discuss research with me and contributed
invaluable ideas and approaches to tackle the problems at hand. She encouraged me to
attend workshops, conferences and other research visits, which allowed me to discuss my
academic work with various members of the scientific community.

I also thank my co-authors Hugo Akitaya, Erin Chambers, Jacobus Conradi, Anne
Driemel, Alperen Ergür and Heiko Röglin for their contributions and the fruitful discus-
sions. In this context, I would also like to thank the reviewers of the preliminary versions
of our papers for their helpful feedback.

Furthermore, I would like to thank Anne Driemel, Heiko Röglin, Reinhard Klein and
Jan-Henrik Haunert for agreeing to be part of the doctoral committee. Thank you for
your time and expertise.

Moreover, I am very grateful to my colleagues of department V. They not only created
a pleasant work environment but also left me with numerous unforgettable memories
from board game nights, bouldering sessions and other leisure activities. I especially
thank my officemate Anurag Murty Naredla, who was always open to discussing research
with me and would passionately explain to me any elegant technique he read about.

Finally, I would like to thank my family and friends for their love and encouragement
and for always having my back. Special thanks go to Negar Shariat and Lubia Polo for
their patience and unconditional support.

Contents

1 Introduction 9
1.1 VC-dimension and shattering dimension of elastic distance measures . . . 11
1.2 Subtrajectory clustering . 13
1.3 Curve averaging . 17

1.3.1 DTW Barycenter Averaging . 17

2 Basic notation, concepts and techniques 21
2.1 General notation . 21
2.2 Computational Model . 22
2.3 Distance measures . 22

2.3.1 Voronoi diagram . 25
2.3.2 Free space diagram . 26

2.4 Range spaces . 27
2.4.1 VC-dimension, shattering and generating epsilon-nets 28
2.4.2 Multiplicative weight update method for Hitting sets 30
2.4.3 Zero sets of polynomials: Bounds for VC-dimension and more . . . 32

2.5 Subtrajectory Clustering: Problem definition 36
2.5.1 Range space formulation . 37

3 VC-Dimension for Elastic Distance Measures 39
3.1 Introduction . 39

3.1.1 Results . 40
3.2 Warm-up: Discrete setting . 42
3.3 Predicates . 43

3.3.1 Encoding of the input . 44
3.3.2 Polygonal curves . 44
3.3.3 Polygonal regions . 45

3.4 The predicates are simple . 51
3.4.1 Technical lemmas . 51
3.4.2 Predicates for polygonal curves . 61
3.4.3 Predicates for polygonal regions that may contain holes 62
3.4.4 Putting everything together . 63

4 Subtrajectory Clustering 65
4.1 Introduction . 65

4.1.1 Organization . 65
4.1.2 Main results . 65

4.2 Setup of techniques . 67

5

CONTENTS

4.2.1 A range space for approximation 68
4.2.2 Adaptation of the multiplicative weight update method 69
4.2.3 Bounding the VC-dimension . 70

4.3 Warm-up — Clustering with line segments 71
4.3.1 The range space . 71
4.3.2 Analysis of the approximation error 72
4.3.3 The algorithm . 74
4.3.4 The result . 75

4.4 The main algorithm . 76
4.4.1 Simplifications . 76
4.4.2 The range space . 79
4.4.3 Analysis of the approximation error 80
4.4.4 The approximation oracle . 81
4.4.5 Applying the framework for computing a set cover 87
4.4.6 The result . 88

4.5 Improving the algorithm in the continuous case 88
4.5.1 The range space . 89
4.5.2 The approximation oracle . 89
4.5.3 The VC-dimension . 91
4.5.4 The result . 94

4.6 Additional lower bounds for the VC-dimension 94
4.6.1 Continuous case . 95
4.6.2 Discrete case . 97

5 Faster Subtrajectory Clustering 99
5.1 Introduction . 99

5.1.1 Results . 99
5.1.2 Roadmap . 100

5.2 Structuring the solution space . 101
5.2.1 Simplifications and containers . 101
5.2.2 Structured coverage and candidate space 102
5.2.3 Proof of Theorem 5.2.8 . 103

5.3 A new range space for approximation . 105
5.3.1 On the structure of feasible sets . 106
5.3.2 Analysis of the VC-dimension . 108
5.3.3 Detailed analysis of the VC-dimension 109
5.3.4 Improved analysis of the VC-dimension 112
5.3.5 Improved detailed analysis of the VC-dimension 113

5.4 The main algorithm . 116
5.4.1 Simplification algorithm . 117
5.4.2 The verifier . 118
5.4.3 Data structure for sampling . 120
5.4.4 Result for implicit weight update 122

6 On the number of iterations of the DBA algorithm 125
6.1 Introduction . 125

6.1.1 Preliminaries . 126
6.1.2 The DBA Algorithm . 126

6

CONTENTS

6.2 Upper bounds . 127
6.2.1 An unconditional upper bound . 127
6.2.2 Upper bound based on geometric properties of the input data . . . 129

6.3 Smoothed Analysis . 130
6.4 Lower bound . 132

6.4.1 Construction . 132
6.4.2 Analysis . 134

6.5 Experiments on the M5 data set . 137
6.5.1 Research questions . 137
6.5.2 Data set(s) . 138
6.5.3 Setup of the experiments . 138

6.6 Results of the experiments . 139
6.7 Experiments on the UCR Time Series Classification Archive 141
6.8 Data of the experiments on the M5 data set 143

7 Conclusions 149
7.1 VC-dimension and shattering dimension of elastic distance measures . . . 149
7.2 Subtrajectory Clustering . 150
7.3 The number of iterations of the DBA algorithm 151

Bibliography 153

7

CONTENTS

8

Chapter 1

Introduction

The ongoing technological evolution enables the collection of large quantities of spatial
data in various areas. This can be geospatial data from satellites, cell phone, ocean drifters,
laser scanners, demographics archives and more [20, 93, 94] or other types of spatial
data, e.g. from medical imaging [5, 111], atomic and molecular physics [134], computer
simulations [105] or video games [54]. Analysis of spatial data can help to understand and
address challenges of modern society like climate change [88, 113], epidemics [61], disease
diagnosis [5, 111] or forecasting of natural disasters [135]. The overwhelming flood of
data, however, often makes it difficult to extract relevant information from the data in a
reasonable time (example in Figure 1.1). It is a common goal in modern computer science
to extract relevant information in an automated fashion with the help of algorithms. The
criteria that determine what constitutes relevant information can vary from application
to application. Only the identification of these criteria and a rigorous mathematical
formalization make it possible to evaluate algorithmic solutions to such problems in a
quantitative fashion. The value of an algorithm is typically measured by its running time
and the quality of its solution.

In this thesis, we deal with spatial problems in various ways. We develop algorithms
to solve spatial problems, we analyze the running time and performance of algorithms
to better understand their theoretical and practical behavior, and we analyze general
properties of geometric structures underlying such spatial problems. We focus on problems
where the data is given in the form of polygonal curves in trajectories data or polygonal
regions in polygon data. Trajectory data usually consists of the recorded positions of
moving objects and the analysis of this type of data is based on the underlying assumption
that the inherent order of the measurements carries information. Types of trajectory data
include human full-body-motion [85], analysis of hand gestures [110], analysis of the focal
point of attention during eye tracking [58, 82] and traffic analysis [119, 122]. Polygonal
regions are areas that are enclosed by an ordered sequence of points that are connected
with line segments. Prominent examples are building footprints [77, 133], shapes of
2-dimensional objects [72] or zones and areas on a map like wildlife reserves [121], parking
lots [116], glaciers [70] or districts [86].

A large field that deals with pattern recognition in spatial data is Clustering. In this
field, the task is to partition data into classes according to a similarity measure. Each
class is often additionally characterized by a representative, a so-called center. In the case
of trajectory data, the sub-area of Clustering called Subtrajectory Clustering is concerned
with capturing reoccurring (movement) patterns in long trajectories. One may think,

9

CHAPTER 1. INTRODUCTION

Figure 1.1: Depiction of ocean surface drifters from the NOAA Global Drifter Program
[99]. Each drifter has a randomly assigned color. The overwhelming amount of data has
not yet been processed to extract relevant information.

for example, about video, GPS or motion-tracking recordings of animals that one wants
to classify based on their behavior [38]. Compared to the direct classification of data,
subtrajectory clustering poses an additional challenge in finding the start and end points of
the behavior patterns. Furthermore, it is usually not clear in advance which and how many
different behaviors are to be expected. Since the requirements for good subtrajectory
clustering can vary from application to application, various modeling approaches to
the problem have been developed over time, see also the survey papers [40, 131, 136].
One of the first modeling questions is how to measure the similarity of two trajectories.
For polygonal curves, various similarity measures have been introduced. These include
Hausdorff distance, Dynamic time warping (DTW) distance and Fréchet distance, where
the Hausdorff distance is also suitable for polygonal regions. We will describe the
similarity measures in more detail in Section 2.3 and give a short overview here.

The Hausdorff distance is a classical bottleneck measure for point sets based on the
maximum distance of any of the points to the closest point from the other set. The
Fréchet distance is also a bottleneck measure, but in contrast to the Hausdorff distance, it
takes the natural flow of the polygonal curves into account. It is based on the maximum
distance of any two points of the curves under the best continuous monotone mapping
between the curves. There is also a discrete variant of the Fréchet distance that only
considers the vertices of the curves. For both the discrete Fréchet distance and the
Hausdorff distance, there exists a variant that takes the average instead of the maximum
distance. These are the DTW distance and the average Hausdorff distance. In this work,
we develop algorithms for subtrajectory clustering under the Fréchet distance.

A natural subproblem of subtrajectory clustering is to find the appropriate represen-
tative for a given cluster of trajectories. This problem is also known as curve averaging.
Depending on the application, curve averaging can be modeled in a wide variety of ways
and there are various algorithmic approaches to solving it. One of the most common
heuristics to solve it under DTW is probably the DTW Barycenter Averaging (DBA)

10

CHAPTER 1. INTRODUCTION

algorithm by Petitjean, Ketterlin and Gançarski [107]. We will analyze this algorithm
with respect to its running time in more detail in Chapter 6. The algorithm is a prime
example of an algorithm that has a much faster running time in practice than the
theoretical worst-case analysis would suggest. This makes it suitable for analysis under
random perturbation of its input. This type of analysis is called smoothed analysis. It
goes back to Spielman and Teng [120] and enables to analyze running times of algorithms
under realistic assumptions on the input, in which artificially constructed edge cases are
avoided.

To approach the problems differently, we also consider clustering problems in terms
of underlying geometric structures whose properties can be utilized. For example, if we
take a center and the corresponding cluster, the cluster can be represented as a ball
around the center whose radius is the distance of the center to the furthest curve in the
cluster. The distance is measured in terms of the selected similarity measure. By using
different centers and different radii, we can create balls that represent different clusters.
Overall, we get a set of sets (also called range space) in which each set (range) is a ball.
Techniques that we use in subtrajectory clustering are based on bounding the complexity
of such and similar range spaces. A typical way to measure the complexity is to use the
Vapnik-Chervonenkis dimension (VC-dimension) or the shattering dimension. The VC-
dimension and shattering dimension are general concepts that are most prominently used
to determine bounds on the number of samples needed for classification tasks in statistical
learning theory [128] or for the construction of ε-nets [80] and (η, ε)-approximations
[76] in computational geometry. We give an introduction to the VC-dimension, the
shattering dimension and related techniques in Section 2.4. Using these techniques, we
derive bounds for the VC-dimension and the shattering dimension of the above-described
and similar range spaces in Chapter 3. In the following, we will introduce the topics that
appear in this work in more detail and highlight the contributions.

1.1 VC-dimension and shattering dimension of elastic dis-
tance measures

The VC-dimension is a measure of complexity for range spaces that was introduced by
Vapnik and Chervonenkis in their seminal paper [129]. A range space is a combination of
a ground set (e.g. R3) and a set of subsets of this ground set (e.g. all balls or cubes in
R3). These subsets are also called ranges. In the context of clustering, for example, one
can imagine that the ranges represent possible clusters. Intuitively, the VC dimension
measures how well any kind of classification of the points from the ground set into two
classes (e.g. part of the cluster and not part of the cluster) can be represented by ranges
of the corresponding range space. The shattering dimension is a related concept that
measures the complexity of a range space in a similar way. See Section 2.4.1 for the
specific differences. If the VC dimension or shattering dimension of a range space is
known, it directly provides sample bounds for various applications that contain the
range space as a basis. These applications can be found, for example, in statistical
learning theory or computational geometry and range from the clustering applications
investigated in this thesis to kernel density estimation [87], neural networks [14, 89],
coresets [39, 48, 62, 63], object recognition [96, 97] and more.

The clustering applications that we are interested in have underlying range spaces
consisting of balls with respect to a chosen similarity measure. Since the considered range
spaces only consist of balls with respect to a similarity measure, they are very fundamental

11

CHAPTER 1. INTRODUCTION

Figure 1.2: From left to right: Examples of a polygonal region with holes, the continuous
variant of a polygonal curve and the discrete variant of a polygonal curve.

and their application is not limited to the area of clustering. Other applications include
data structures, prediction, density estimation and classification (see also [43] and Chapter
10 of [57]). In our case, the similarity measures are the Hausdorff distance, the Fréchet
distance and the dynamic time warping distance. As ground sets of these range spaces,
we consider polygonal curves in Rd and polygonal regions in R2 that may contain holes.
For polygonal curves, a distinction is also made between the discrete and the continuous
variant, in which either only the vertices or the entire curve (including the points on the
edges between the vertices) are taken into account. See also Figure 1.2 for examples of
the elements in the ground sets. In the discrete setting with respect to the Hausdorff
distance, polygonal curves are the same as general finite point sets.

Results The VC-dimension of balls around polygonal curves with respect to the
Hausdorff distance and with respect to the Fréchet distance has previously been studied
by Driemel, Nusser, Philips and Psarros [57]. We improve their upper bounds in all
considered cases and obtain upper bounds that are asymptotically tight to their lower
bounds in each of the considered parameters individually. We further extend our results
by applying similar techniques to DTW for polygonal curves and to the Hausdorff distance
for polygonal regions that may contain holes. A comparison of our results with the results
of [57] is given in Table 1.1. Here, m denotes the number of vertices of an element in the
ground set and k denotes the number of vertices of a center. In parallel and independently
of us, Cheng and Huang [43] determined the same upper bounds as ours for the Fréchet
distance of curves using largely the same techniques. For the shattering dimension, we
use the same techniques and get slightly better bounds than the VC dimension bounds
in all considered cases. The improvement is a factor of up to (dk)−1 in the logarithm.
See Table 3.2 in Chapter 3 for the exact bounds.

Approach The approaches used in our work and the related works are all based on
the following idea. The complexity of a range space is related to how easy it is to decide
if a given element of the ground set lies inside a given range. To answer if an element is
inside of a ball one has to decide if the element is within a certain distance to the center
of the ball. Such distance queries can often be split into simple geometric predicates that
are easy to decide individually and together determine the answer to the query. Our
approach lies in finding geometric predicates that are so simple that each can be decided
by looking at the sign value of a single polynomial. Here, such polynomials may only
depend on the radius, the coordinates of the center curve and the coordinates of the
query curve. The VC-dimension and shattering dimension of the corresponding range

12

CHAPTER 1. INTRODUCTION

new ref. Driemel et al. [57]

finite sets
av. Hausdorff O(dk log(kmmk)) Thm. 3.2.4 -

Hausdorff O(dk log(km)) Thm. 3.2.1
O(dk log(dkm))

discrete
polygonal

curves

Fréchet O(dk log(km))(∗) Thm. 3.2.2

DTW
O(dk2 log(m)) Thm. 3.2.3

-
O(dkm log(k)) Thm. 3.2.3

continuous
polygonal

curves

Hausdorff O(dk log(km)) Thm. 3.4.15
O(d2k2 log(dkm))

Fréchet O(dk log(km))(∗) Thm. 3.4.16
weak Fréchet O(dk log(km))(∗) Thm. 3.4.16 O(d2k log(dkm))

polygons R2 Hausdorff O(k log(km)) Thm. 3.4.15 -

Table 1.1: Overview of VC-dimension bounds with references. Results marked with (∗)

were independently obtained by Cheng and Huang [43].

space can then be bounded based on the number of cells in the arrangement of zero sets
of these polynomials. The idea behind the last part of this approach is the following:
Let us assume, we fix some elements of the ground set and want to split these elements
into two classes in as many different ways as possible by using ranges of our range space.
Each ball for which the polynomials have the same sign values splits the points in the
same way. So counting the number of cells in the arrangement of zero sets gives a bound
on the number of ways in which we can classify the points. The general idea behind
this approach goes back to Goldberg and Jerrum [68, 69] and, independently, Ben-David
and Lindenbaum [18]. We use, in particular, a theorem by Anthony and Bartlett [14]
to bound the VC-dimension based on the number and degree of the polynomials that
determine the inclusion in a range (see Theorem 2.4.10). Some of the predicates we use
were developed by Driemel, Nusser, Philips and Psarros [57]. In their paper, they also
decompose the distance query into predicates, but then restrict the VC dimension based
on the number of operations needed to determine a predicate (Theorem 2.4.16), which
leads to weaker results than the approach with sign values of polynomials.

Bibliographical Notes Chapter 3 is based on the work [27] by Frederik Brüning and
Anne Driemel. The paper resulted from a dynamic developing process that both authors
equally contributed to. The idea to improve and extend the VC-dimension bounds of [57]
by the use of a different technique goes back to the author of the thesis. The detailed
analysis was mainly carried out by the author of the thesis under the supervision and
consultation of Anne Driemel.

1.2 Subtrajectory clustering

Subtrajectory clustering is concerned with capturing reoccurring movement patterns in
trajectory data. As already mentioned, there are various ways of modeling the problem
under the Fréchet distance. In one of the early works, Buchin, Buchin, Gudmundsson,
Löffler and Luo [34] address the problem of finding the single most important cluster

13

CHAPTER 1. INTRODUCTION

Figure 1.3: Example of a cluster in subtrajectory clustering: The red center curve
represents the blue subtrajectories that have small Fréchet distance to the center curve.
All other data points (grey) are not part of the cluster since they are not part of any
subtrajectory that has small Fréchet distance to the center curve.

with respect to certain qualities. They consider length, number and distance of the
subtrajectories inside a cluster and define optimization problems that optimize with
regard to each of the parameters while keeping the other ones fixed. They show that
the corresponding decision problems are NP-hard and tackle the problems with a sweep
line approach that yields (2− ε)-approximation algorithms for the maximum length and
the number of subtrajectories. In subsequent work, these ideas were also applied to the
problem of reconstructing road maps from GPS data [32, 33]. In a different work, Buchin,
Kilgus and Kölzsch [38] study the migration of animals with the idea of capturing the
underlying movement patterns in the form of a graph. They build these graphs with
the help of a greedy algorithm that iteratively computes the most significant cluster
and afterwards removes it from the data. Another modeling approach by Agarwal, Fox,
Munagala, Nath, Pan, and Taylor [3] considers subtrajectory clustering under the discrete
Fréchet distance with respect to an objective function that is based on the metric facility
location problem. Their objective is a weighted sum that takes the number of clusters
and the similarity of subtrajectories to their assigned center curves into account and
penalizes uncovered parts of the input trajectories. The authors show the NP-hardness of
their problem and design approximation algorithms. For input trajectories with a total
of n vertices, they obtain a O(log2 n)-approximation.

In line with the above ideas of formalizing the objective function based on classical
clustering problems, we study subtrajectory clustering under an objective function
that is inspired by the k-center problem [71] and especially the (k, ℓ)-clustering variant
for trajectories, where the complexity of the centers is restricted by a parameter ℓ
[56, 35, 104, 37]. In particular, we model subtrajectory clustering as a set cover problem
where each set consists of all subtrajectories that can be represented by a given center
curve. Each set is therefore a potential cluster. See Figure 1.3 for an example of one
potential cluster in subtrajectory clustering.

Problem definition As input, we receive a long trajectory in the form of a polygonal
curve of n points in Rd where d is assumed to be constant. Intuitively, we want to find
the smallest possible set of representatives (center curves) such that the entire curve is
represented. This means, that for each point on the curve, there should be a subcurve
that contains this point and is similar to one of the selected center curves. Each point is,
therefore, part of a behavior (cluster) that can also be represented by a center curve. To

14

CHAPTER 1. INTRODUCTION

α β Running time Space Reference
O(ℓ log(k) log(ℓ)) 19 Õ

(
kℓ3m2 +mn

)
O(n+mℓ) Thm. 4.1.3

O(ℓ log(kℓ)) 12 Õ(nk3ℓ3 log4(m
kℓ)) Õ(nk2ℓ2 log2(m

kℓ)) Thm. 5.4.9

Table 1.2: Overview of results: For optimal center curves C ⊂ (Rd)ℓ of size k, covering
P ∈ (Rd)n under distance ∆, we design bicriteria-approximation algorithms that compute
a set C ′ ⊂ (Rd)ℓ of size αk, covering P under distance β∆. Here, we assume that d is
constant, n is the complexity of P and m = ⌈ λ

∆⌉ where λ is the arclength of P .

measure how similar a subcurve is to a center curve, we use the Fréchet distance. An
additional input parameter ∆ determines how similar two curves must be to each other
to be feasible representations of each other. This parameter ∆ can be seen as a threshold
for the radius of any cluster. Furthermore, we use another parameter ℓ to restrict how
complex a center curve is allowed to be. There are several reasons for this. On the one
hand, the aim of clustering is to summarize data in simple patterns to make them easier
to interpret. On the other hand, this prevents overfitting of the data. To see this, let us
assume that the center curves can be arbitrarily complex. Then the input curve could be
chosen as a center to represent itself and would thus be a trivial optimal solution. This
would obviously not be in line with our goal of finding simple patterns in the data.

Results If we formalize the problem as stated above, then it can be shown that this
problem is NP-hard (see [8]). Since we still want to solve the problem in a reasonable
time, we develop approximation algorithms (more precisely bicriteria-approximation-
algorithms) for this problem. In our case, this means the following: If the optimal
solution is a clustering of size k for radius ∆, then our algorithms return a clustering of
size αk and radius β∆ for some α,β ∈ R+. Let m = ⌈ λ

∆⌉ where λ is the arclength of the
input curve. In Chapter 4, we describe our initial approach that results in approximation
factors α ∈ O(ℓ log(k) log(ℓ)) and β = 19, an expected running time of Õ

(
kℓ3m2 +mn

)
and a space requirement of O(n+mℓ) where the Õ(·) notation hides polylogarithmic
factors in n to simplify the exposition. In Chapter 5, we improve the dependency on
the arclength of the curve and slightly improve the approximation factors α and β. We
design an approximation algorithm with approximation factors α ∈ O(ℓ log(kℓ)) and
β = 12, an expected running time of Õ(n(kℓ)3 log4(m

kℓ)) and a space requirement of
Õ(n(kℓ)2 log2(m

kℓ)). An overview of the results can be found in Table 1.2. Our techniques
can also be applied in the case that the input is given by multiple polygonal curves. The
only reason why we restrict ourselves to one polygonal curve is to simplify the exposition.

Approach The general approach for both algorithms is to replace the set cover instance
by an easier set cover instance that still yields an approximate solution. The resulting set
cover instance is then solved using the multiplicative weight update method [15, 45, 46].
In particular, we use a variant of this method by Anthony and Bartlett [23] that we adapt
to our application. In Section 2.4.2, we describe our adaptation of the method in detail.
On a high level, we apply an iterative sampling algorithm that works in the following
way. In each iteration, the algorithm first samples a set of center curves as candidates for
a solution. If the center curves are a solution and cover the whole input curve P then the
algorithm stops and returns this solution. Otherwise, the sample distribution is updated

15

CHAPTER 1. INTRODUCTION

to increase the probability to sample center curves that cover the currently uncovered
parts of the curve P . In this step, the sample size might also increase, if there was no
solution found in many iterations of the current sample size. The sample size for which
the algorithm finds a solution depends on the VC-dimension of the range space underlying
the set cover instance and the actual size of an optimal solution. The approaches for
constructing an easier set cover instance with corresponding low VC-dimension differ
between Chapter 4 and Chapter 5. We give a brief overview of the differences.

In Chapter 4, we first discretize the problem by distributing points evenly along
the input curve. Here, the arclength of the part between two consecutive points along
the curve depends on ∆. We allow subcurves to start and end only at these so-called
breakpoints and additionally restrict the vertices of eligible center curves to the positions
of breakpoints. To identify if a point is covered by a center curve, we furthermore
simplify the input curve locally and only test the distance to subcurves of the resulting
simplification.

Our approach in Chapter 5 also discretizes the problem, but in contrast to Chapter 4,
we first simplify the input curve globally and then distribute points evenly along the
simplification. We then consider the problem of covering the simplifications with line
segments instead of the general problem of covering the input curve with center curves of
complexity ℓ. This enables us to restrict our candidate space for possible center curves
to subedges of the simplification that start and end in breakpoints. A careful choice of
the global simplification lets us restrict the underlying range space even further. Instead
of checking all possible subcurves that contain a point p to determine if p is covered by
a center curve, we may restrict the range to only consider short subcurves of constant
complexity.

Bibliographical Notes Chapter 4 is based on the work [8] by Hugo Akitaya, Frederik
Brüning, Erin Chambers and Anne Driemel. The paper resulted from a dynamic
developing process that all authors equally contributed to. The author of this thesis
contributed by carrying out the technical parts of the majority of the proofs, specifying
the auxiliary range space together with an approximate range space oracle and showing
upper bounds on the VC-dimension of this range space to adapt the multiplicative weight
update method efficiently. In addition to the results in Chapter 4, the work [8] also
includes an NP-hardness proof of the underlying set cover problem.

Chapter 5 is based on the work [25] by Frederik Brüning, Jacobus Conradi and Anne
Driemel. The general framework of the approach is based on the work [8]. The paper [25]
resulted from a dynamic developing process that all authors equally contributed to. The
author of this thesis contributed the development of the implicit weight update method
and the bounds on the VC-dimension. Furthermore, the author of this thesis contributed
the insight that restricting the center candidates to subedges of the simplification enables
to only consider subedges of constant length when checking their coverage. The reduction
of the general variant of the problem to the variant with line segments is also due to
the author of this thesis. In addition to the results in Chapter 5, the work [25] contains
another approximation algorithm based on restricting the candidate set even more to a
set of O(n3) extremal subedges. This approach results in a purely combinatorial expected
running time of Õ(k2ℓ2n+ kℓn3), a space requirement of Õ(kℓn+n3) and approximation
factors α in O(ℓ log(kℓ)) and β = 11. In [25], it was further shown how the developed
techniques can be directly applied to the maximum coverage problem.

16

CHAPTER 1. INTRODUCTION

1.) 2.) 3.)

Figure 1.4: Example of the steps of the DBA algorithm. The input curves are depicted
in black. The center curve is depicted in blue. 1.) Initialisation with an arbitrary center
curve. 2.) Assignment step: Optimal assignments of the input curves to the center curves
with respect to DTW are depicted in orange and green. 3.) Update step: The center
points are moved to the means of the assigned input points.

1.3 Curve averaging

In curve averaging, the aim is to find a good representative (center curve) for a given
set (cluster) of curves. Various quality measures (also known as objective functions)
have been established in clustering to measure how well a center curve represents a
cluster. The value of the objective function is usually referred to as the cost of the cluster.
Traditional cost functions consider the distance between the center and the given curves
by either taking the maximum distance (1-center), the sum of distances (1-median) or
the sum of squared distances (1-means). These problems can be further generalized to
clustering problems that consider multiple centers instead of one. There are various ways
of combining the costs of the individual centers. The most common way is either to sum
up the costs, which leads to k-min-sum-radii, k-median and k-means for k individual
centers or to take the maximum of the individual costs, which leads to k-center, min-max
k-median and min-max k-means.

We focus on the 1-median problem under DTW. More precisely, we focus on a heuristic
for this problem called DTW Barycenter Averaging (DBA), which was developed by
Petitjean, Ketterlin and Gançarski [107] in 2011.

1.3.1 DTW Barycenter Averaging

The DTW Barycenter Averaging (DBA) algorithm is a curve-averaging algorithm used
for the 1-median problem under DTW. Since DTW only considers the vertices of the
polygonal curves, we consider point sequences instead of polygonal curves in this context.
The objective is to find a center point sequence that minimizes the sum of the DTW
distances to a given set of input curves. This Problem is NP-hard [36, 41] and to the
best of our knowledge there are no efficient approximation algorithms known. DBA
computes a local optimum for this problem. The structure of the DBA algorithm is very
similar to the classical k-means algorithm by Lloyd [98]. Just as the k-means algorithm,
it starts with an arbitrary initial solution and then alternates between assignment steps
and update steps until convergence. See also Figure 1.4 for an illustration of the steps of
the algorithm. In the assignment step, the algorithm computes the optimal assignment
of the points in the input sequences to the current center sequence. Here, the optimal
assignments are the assignments that realize the DTW distance. In the update step, the
algorithm computes the mean of the assigned input points for each center point. The
center sequence is then updated by moving the corresponding center points to these
means.

17

CHAPTER 1. INTRODUCTION

The algorithm is very popular in practice and this despite the fact that there is no
theoretical guarantee for the quality of its solution. It has for example been applied in
the context of optimization of energy systems [124], forecasting of household electricity
demand [123], and human activity recognition [117]. The popularity of DBA is probably
due, among other things, to its fast running time on instances that occur in practice. We
take a closer look at the number of iterations that DBA performs until convergence in
Chapter 6. Convergence properties of the algorithm have been studied before [115], but
our work [30] seems to be the first to rigorously study the number of iterations. Since
the DBA algorithm is closely related to the k-means algorithm, we approach the analysis
of the number of iterations with techniques that were successful for k-means. In the case
of k-means, it has been shown that the number of iterations can be exponential in the
worst-case [17, 75, 84, 130]. Since experiments and applications of k-means reported a
very fast running time, it was studied in the model of smoothed analysis under random
perturbation of the input [16, 101, 120]. Arthur, Manthey and Röglin [16] have shown
that the expected number of iterations of k-means with respect to the perturbation is
only polynomial in the number of points and in 1

σ , where σ is the standard deviation
of the Gaussian perturbations. Following the same ideas, we analyze the number of
iterations of DBA in the worst-case, in experiments and under perturbation of the input.

Results We assume that DBA is given n point sequences of m points in Rd each and
an additional parameter k that specifies the length of the center sequence to be computed.
An overview of all our theoretical bounds on the number of iterations of DBA is given
in Table 1.3. As a lower bound, we show that the number of iterations of DBA can be
exponential in k in the worst-case. This is already the case for instances with only two
curves. To show this lower bound, we construct an instance of two point sequences with
length m = Θ(k) in R2 such that DBA needs 2Ω(k) iterations to converge in Section 6.4.
In contrast to this high theoretical lower bound, we only observe sublinear growth in our
experiments (Section 6.5). This applies to the increase in the number of iterations with
respect to the increase in each individual parameter k,m and n while the others are kept
fixed. The observations suggest that the worst-case behaviour is likely degenerate and
only holds for artificially constructed edge cases.

Concerning upper bounds, we describe two different bounds on the number of itera-
tions in the worst-case in Section 6.2. The first one is an exponential upper bound of
6(4n)dk(m+k−2

m−1)
2dk that can be found in Theorem 6.2.4. In addition to that, we have an

upper bound that is based on geometric properties of the input data in Theorem 6.2.6.
Intuitively speaking, one property bounds the magnitude of each input point by some
parameter B from above and another property bounds the similarity of any two center
curves that appear at any step of the algorithm by another parameter ε from below. The
number of iterations is then bounded by B(m+k)

ε .
In the case of smoothed analysis, we study the number of iterations of DBA under

Gaussian perturbation (with variance σ2) of deterministic data. We show in Theorem 6.3.1
that the expected number of iterations is at most Õ

(
n2m8 n

d
+6d4k6σ−2

)
, where the Õ(·)

notation hides polylogarithmic factors. Note that this bound is polynomial in k for
constant n in contrast to the worst-case lower bound.

Approach Our instance for the lower bound in Section 6.4 is an adaptation of an
instance of Vattani [130] for the k-means algorithm. The points from the instance

18

CHAPTER 1. INTRODUCTION

Model Type Number of iterations Reference
Worst-case analysis Lower bound 2Ω(k) Thm. 6.4.3
Worst-case analysis Upper bound 6(4n)dk(m+k−2

m−1)
2dk Thm. 6.2.4

Worst-case analysis Upper bound B(m+k)
ε Thm. 6.2.6

Smoothed analysis Upper bound Õ
(
n2m8 n

d
+6d4k6σ−2

)
Thm. 6.3.1

Table 1.3: Overview of derived bounds on the number of iterations of the DBA algorithm.

of Vattani are duplicated multiple times and connected to point sequences such that
the behaviour of the k-means algorithm can be reproduced by the DBA algorithm. A
challenge here is to get an assignment that is similar to the k-means assignment and still
respects the ordering of the DBA algorithm.

For our experiments, we take the data set of time series from the M5 Competition [100].
The data set consists of unit sales of products from Walmart stores in the USA. We create
DBA instances either based on natural splits of the data (e.g. product departments) or
via sub-sampling. As an initialization method, we derive the first center sequence from a
random assignment given by a combination of random walks.

The first upper bound in the worst-case analysis (Theorem 6.2.4) uses similar tech-
niques as our VC-dimension bounds in Chapter 3. We bound the number of iterations
based on the cells of the arrangement of zero sets of specific polynomials. The poly-
nomials correspond to differences in the dynamic time warping distance of center and
input curve if we calculate this distance based on two fixed assignments instead of the
optimal assignments. The second upper bound (Theorem 6.2.6) uses a potential function
argument that depends on geometric properties of the input.

The techniques, we use for smoothed analysis include anti-concentration estimates
and standard tail bounds for the norm of a random vector. Intuitively, we bound
the probability that the geometric properties in Theorem 6.2.6 hold for our perturbed
instances.

Bibliographical Notes Chapter 6 is based on the work [30] by Frederik Brüning, Anne
Driemel, Alperen Ergür and Heiko Röglin. The paper resulted from a dynamic developing
process that all authors equally contributed to. The author of this thesis contributed the
initial version of the derivation of the upper bound in the case of smoothed analysis. The
lower bound and the execution of the experiments were also contributed by the author of
this thesis.

19

CHAPTER 1. INTRODUCTION

20

Chapter 2

Basic notation, concepts and
techniques

In this chapter, we introduce basic notation and definitions that are used throughout
the thesis and explain basic concepts and techniques underlying our research. The
introduction of concepts and techniques is divided into three parts. In the first part,
we deal with distance measures including the Hausdorff, dynamic time warping and
Fréchet distance measures for polygonal curves and regions. In this context, we introduce
Voronoi diagrams and the free space diagram as useful tools for these distance measures.
In the second part, we deal with range spaces and explain related concepts including
VC-dimenson, shattering dimension, epsilon-nets, hitting sets and set covers. We deal
with questions like how to bound the VC-dimension, which sample bounds can be derived
for epsilon-nets and how these sample bounds can be used to solve hitting set problems
or set cover problems. In the third part, we give an introduction to the subtrajectory
clustering problem that we study in Chapter 4 and 5. In order to be able to talk about
all of this in a mathematical formal way, we first introduce basic notation for polygonal
curves and regions.

2.1 General notation

When stating asymptotic bounds, we may use the Õ(·) notation hiding polylogarithmic
factors to simplify the exposition. For n ∈ N, we define [n] as the set {1, . . . ,n}.
We call an ordered sequence of points p1, . . . , pn in Rd a point sequence of length
n. For any n > 1, a point sequence p1, . . . , pn ∈ Rd defines a polygonal curve P
by linearly interpolating consecutive points, that is, for each i, we obtain the edge
ei : [0, 1] → Rd; t 7→ (1− t)pi + tpi+1. We may write ei = pi pi+1 for edges and E(P)
for the set of all edges of P . We may think P as a continuous function P : [0, 1]→ Rd

by fixing n values 0 = t1 < . . . < tn = 1, and defining P (t) = λpi+1 + (1− λ)pi where
λ = t−ti

ti+1−ti
for ti ≤ t ≤ ti+1. We call the set (t1, . . . , tn) the vertex parameters of the

parametrized curve P : [0, 1]→ Rd. For n = 1, we may slightly abuse notation to view a
point p1 in Rd as a polygonal curve defined by an edge of length zero with p2 = p1. We
call the number of vertices n the complexity of the curve. Let Xd

n = (Rd)n, and think
of the elements of this set as the set of all polygonal curves of n vertices in Rd.

We define the concatenation of two curves P ,Q : [0, 1]→ Rd with P (1) = Q(0) by
P ⊕Q : [0, 1]→ Rd with (P ⊕Q)(t) = P (2t) if t ≤ 1/2, and (P ⊕Q)(t) = Q(2t− 1) if

21

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

t ≥ 1/2. Note that the concatenation of two polygonal curves P and Q with vertices
p1, . . . , pn and q1, . . . , qm such that pn = q1 is the polygonal curve defined by the vertices
p1, . . . , pn, q2, . . . , qm. For any two a, b ∈ [0, 1] we denote with P [a, b] the subcurve of P
that starts at P (a) and ends at P (b). Note, that a > b is specifically allowed and results
in a subcurve in reverse direction. We call the subcurves of edges subedges.

We call P a closed curve if p1 = pm and we call P self-intersecting if there exist
s ∈ [0, 1], t ∈ (0, 1) with s ̸= t such that P (s) = P (t). In the case that P is a closed
curve in R2 which is not self-intersecting, we call the union of P with its interior a simple
polygonal region S (without holes). We denote with ∂S the boundary of S, which is
P . Given a simple polygonal region S0 and a set of pairwise disjoint simple polygonal
regions S1, . . . ,Sh in the interior of S0, we also consider the set S = S0 −{S1 ∪ · · · ∪ Sh}
a polygonal region and we call S1, . . . ,Sh the holes of S.

2.2 Computational Model

Throughout the thesis, we use the following computational model. We describe our
algorithms in the real-RAM model of computation, which allows to store real numbers
and to perform simple operations in constant time on them. We call the following
operations simple operations. The arithmetic operations +,−,×, /. The comparison
operations =, ̸=,>,≥,≤,<, for real numbers with output 0 or 1. In addition to the
simple operations, we allow the square-root operation.

2.3 Distance measures

Over time, various distance measures for polygonal curves and regions have been es-
tablished [53]. In this section, we will introduce some of the most popular ones in
computational geometry and highlight their properties. In particular, we will introduce
variations of the Hausdorff distance, the Fréchet distance and the dynamic time warping
(DTW) distance. First, we give some background on the distance measures.

The Hausdorff distance is sometimes also referred to as Pompeiu-Hausdorff distance
and was introduced by Pompeiu as the set distance [109]. The distance was later studied
and popularized by Hausdorff [78, 79]. The Hausdorff distance and its variations have
since been used in various applications including shape matching [12, 11], shape morphing
[127, 51], image comparison [83] and medical image segmentation [9, 73, 81]. The Fréchet
distance was originally defined by Fréchet [65] as a measure of similarity between two
parametric curves that takes the flow of the curves into account. Its discrete variant
goes back to Eiter and Mannila [59]. The discrete and continuous Fréchet distance has
been used for all kinds of trajectory data from movement patterns of migrating animals
[38] over tracking of cars [32, 33] and ships [67] to analysis of tropical cyclones [92].
The DTW distance was introduced by Sakoe and Chiba [112] in the 1970s to capture
similarities of time series in speech recognition and just like the Fréchet distance it
belongs to the family of elastic distance measures. It was later rediscovered by Berndt
and Clifford [19] and popularized by Keogh and Ratanamahatana [90]. DTW is often
used as a baseline comparison for time series classification and has been used in areas
like signature verification [118], touch screen authentication [52], gait analysis [66] and
classification of surgical processes [64] to name a few.

All these distance measures can be applied to any metric space, but for our applications,
we restrict ourselves to their use in the Euclidean space Rd for d ∈N. For two points

22

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

p

Q

P

q

Figure 2.1: Illustration of the Hausdorff distance between two polygonal regions P and Q.
The directed Hausdorff distances d−→

H
(P ,Q), d−→

H
(Q,P) are realized at p ∈ P and q ∈ Q,

while the Hausdorff distance dH(P ,Q) = max{d−→
H
(p,Q), d−→

H
(q,P)} is realized at q.

p, q in Rd, we denote with ∥p− q∥ the Euclidean distance, where ∥.∥ is the standard
Euclidean norm. Even though, we only use it for polygonal curves and regions, the
Hausdorff distance is a bottleneck distance measure for any pair of sets in Rd. It is a
limit for the largest distance that any point of the two sets has to its closest point in
the other set. Formally, the directed Hausdorff distance from X ⊆ Rd to Y ⊆ Rd is
defined as

d−→
H
(X,Y) = sup

x∈X
inf
y∈Y
∥x− y∥

and the Hausdorff distance between X and Y is defined as

dH(X,Y) = max{d−→
H
(X,Y), d−→

H
(Y ,X)}.

If a set X consists of a single point p ∈ Rd, we may write p instead of {p} to simplify
the notation, e.g. dH(p,Y) instead of dH({p},Y). It is also possible to take an average
instead of the supremum resulting in the average Hausdorff distance. We introduce it
here with respect to the squared Euclidean distance for the discrete case where the sets
X and Y have finitely many points. The average Hausdorff distance between X and
Y is defined as

daH(X,Y) =
1
2

 1
|X|

∑
x∈X

min
y∈Y
∥x− y∥2 + 1

|Y |
∑
y∈Y

min
x∈X
∥x− y∥2

 .

Polygonal curves always come with an innate order of their vertices. This order carries
information that is not considered by the Hausdorff distance at all. If two curves have
the same complexity, one could argue that you can easily compare them, by mapping
the points in order one by one to the respective points of the respective other curve and
measuring their distance. This might be valid for some applications where it plays a
crucial role to compare events that happen at the same time. But there are also many
applications where the curves have different lengths, measurements are taken within
different time intervals or not even in consistent time intervals or movement patterns
can be identified as similar even if they happen at different speeds or with different
acceleration and deceleration. For these applications, distance measures have evolved
that take the flow of the curves into account and are robust to compression and stretching

23

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

ε

λ

P

Q

Figure 2.2: Example of two line segments P ,Q with Hausdorff distance dH(P ,Q) = ε
and Fréchet distance dF (P ,Q) =

√
ε2 + λ2. Note that the distance is the same for the

weak and the discrete Fréchet distance. For λ≫ ε we have dF (P ,Q)≫ dH(P ,Q).

of time. They can again be divided into bottleneck distance measures (all variants of
the Fréchet distance) and distance measures based on averaging like the dynamic time
warping distance. For an easy example where taking the ordering of the vertices into
account makes a huge difference, see the comparison of the Hausdorff distance and the
Fréchet distance in Figure 2.2. In the discrete case, where we only consider the vertices of
the curves, the compression and stretching of time is realized by so-called warping paths.
For m1,m2 ∈ N, each sequence (1, 1) = (i1, j1), (i2, j2), . . . , (iM , jM) = (m1,m2) such
that ik − ik−1 and jk − jk−1 are either 0 or 1 for all k is a warping path from (1, 1) to
(m1,m2). We denote with Wm1,m2 the set of all warping paths from (1, 1) to (m1,m2).
For any two polygonal curves P ∈ Xd

m1 with vertices p1, . . . , pm1 and Q ∈ Xd
m2 with

vertices q1, . . . , qm2 , we also write WP ,Q =Wm1,m2 , and call elements of WP ,Q warping
paths between P and Q. The dynamic time warping distance (DTW) between P
and Q is defined as

dDT W (P ,Q) = min
w∈WP ,Q

∑
(i,j)∈w

∥pi − qj∥2.

A warping path that attains the above minimum is also called an optimal warping
path between P and Q. We denote with W∗

m1,m2 ⊂ Wm1,m2 the set of warping paths
w such that there exist polygonal curves P ∈ Xd

m1 and Q ∈ Xd
m2 with this optimum

warping path w. The discrete Fréchet distance of two polygonal curves P ∈ Xd
m1

with vertices p1, . . . , pm1 and Q ∈ Xd
m2 with vertices q1, . . . , qm2 is defined as

ddF (P ,Q) = min
w∈WP ,Q

max
(i,j)∈w

∥pi − qj∥.

The dynamic time warping distance and discrete Fréchet distance can also be seen as
distance measures of point sequences instead of polygonal curves because they only
depend on the vertices of the polygonal curves.

In the continuous case, we define the Fréchet distance of P and Q as

dF (P ,Q) = inf
α,β:[0,1]→[0,1]

sup
t∈[0,1]

∥P (α(t))−Q(β(t))∥,

where α and β range over all functions that are non-decreasing, surjective and therefore
continuous. We further define their weak Fréchet distance as

dwF (P ,Q) = inf
α,β:[0,1]→[0,1]

sup
t∈[0,1]

∥P (α(t))−Q(β(t))∥,

where α and β range over all continuous functions with α(0) = β(0) = 0 and α(1) =
β(1) = 1. For the weak Fréchet distance and the Fréchet distance, we call the pair (α,β)

24

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

a traversal. Every traversal has a distance supt∈[0,1] ∥P (α(t))−Q(β(t))∥ associated to
it.

Intuitively you can think of the Fréchet distance as the minimal length needed such
that a dog and a dog walker can traverse along the two curves from start to finish. They
may vary in speed but never (except for weak Fréchet) walk backward. When deciding
which of the introduced distance measures to use, you have to choose between bottleneck
distance measures like the Hausdorff distance and all variants of the Fréchet distance or
distance measures that are based on averaging like the average Hausdorff distance and
the dynamic time warping distance.

Bottleneck distance measures are more sensitive to outliers but usually have a clearer
and simpler geometric interpretation. In our cases, they all fulfill the triangle inequality
where their counterparts based on averaging do not. The introduced bottleneck distance
measures are all, in fact, even pseudo-metrics, which opens up the use of established
tools and techniques for pseudo-metrics. Since the distance measures based on averaging
consider quantities with respect to all data points instead of just an extreme distance,
they offer more statistical insight into the overall behavior of the data.

In the following, we introduce the Voronoi diagram and the free space diagram. Both
are concepts that capture structure induced by and underlying the distance measures.
While the Voronoi diagram has its applications for all distance measures, the free space
diagram is most prominent for its use in algorithms to compute the Fréchet distance of
two curves.

2.3.1 Voronoi diagram

In clustering and classification, a recurring challenge is to find the best representative
for a query data point from a set of possible representatives. The most typical way of
quantifying the value of a representative is to measure its distance to the query point.
The Voronoi diagram captures the essence of this idea by dividing the space into regions,
such that each region corresponds to the points that are closest to a given representative.

While the Voronoi diagram can easily be defined for general spaces and distance
measures, we define it here only for the case that the query points are in R2, the
representatives are sets in R2 and the distance measure is the Hausdorff distance. This
is the single case, where Voronoi diagrams are used in this work (see Chapter 3) and we
can avoid notational overhead by restricting ourselves to this case. The sketch of the
Voronoi diagram of 6 line segments is given in Figure 2.3. Let X be a set of subsets
(called sites) of R2. The Voronoi region reg(A) of a site A ∈ X consists of all points
p ∈ R2 for which A is the closest among all sites in X, i.e.

reg(A) = {p ∈ R2 | d−→
H
(p,A) < d−→

H
(p,B) for all B ∈ X \ {A}}.

The Voronoi diagram is the complement of the union of all regions reg(A) with A ∈ X,
so

vd(X) = R2 \ ∪A∈Xreg(A).
For any two sites A,B ∈ X, we call the set

bisec(A,B) = {p ∈ R2 | d−→
H
(p,A) = d−→

H
(p,B)}

the bisector of A and B. The Voronoi edge of A,B ∈ X is defined as

ve(A,B) = vd(X) ∩ bisec(A,B)

25

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

A1

A2

A3

A5

A6

A4

reg(A3)
ve(A1, A2)

vv(A1, A4, A5)

Figure 2.3: Sketch of the Voronoi diagram of 6 line segments including examples for a
Voronoi region, a Voronoi edge and a Voronoi vertex.

and the Voronoi vertices of A,B,C ∈ X are defined as

vv(A,B,C) = vd(X) ∩ bisec(A,B) ∩ bisec(B,C).

2.3.2 Free space diagram

The free space diagram which was first introduced by Alt and Godau [13] in an algorithm
for computing the Fréchet distance of two polygonal curves. It is a level set of the
Euclidean distance between the points of the two curves and enables to answer a Fréchet
distance query between these curves.

Definition 2.3.1 (Free space diagram). Let P and Q be two polygonal curves parametrized
over [0, 1]. The free space diagram of P and Q is the joint parametric space [0, 1]2 together
with a not necessarily uniform grid, where each vertical line corresponds to a vertex of P
and each horizontal line to a vertex of Q. The ∆-free space of P and Q is defined as

D∆(P ,Q) =
{
(x, y) ∈ [0, 1]2 | ∥P (x)−Q(y)∥ ≤ ∆

}
This is the set of points in the parametric space, whose corresponding points on P and Q
are at a distance at most ∆. The edges of P and Q segment the free space into cells. We
call the intersection of D∆(P ,Q) with the boundary of cells the free space intervals.

See Figure 2.4 for an illustration of the free space diagram. Alt and Godau [13] showed
that the ∆-free space inside any cell is convex and has constant complexity. More precisely,
it is an ellipse intersected with the cell. Furthermore, the Fréchet distance between two
curves is at most ∆ if and only if there exists a continuous path π : [0, 1] → D∆(P ,Q)
that starts at (0, 0), ends in (1, 1) and is monotone in both coordinates.

26

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

P

Q

(0, 0)

(1, 1)

Q

P

π

∆Q(s1)
Q(s2)

P (t3) s2

s1

t3

(0, 1)

(1, 0)

Figure 2.4: Illustration of two curves P and Q and their ∆-free space. The monotone
path π illustrate that the Fréchet distance between P and Q is at most ∆. The line
segment (t3, s1)(t3, s2) is the free space interval corresponding to P (t3) and the first edge
of Q.

2.4 Range spaces

Range spaces are sometimes also called set systems and are in general terms exactly that:
sets that contain sets. Let X be a set. Formally, we call a set R where any r ∈ R is of the
form r ⊆ X a range space with ground set X. The elements of R are called ranges.
We also write (X,R) for a range space R with ground set X. Generally, range spaces
can be any kind of sets. In many applications, the ground set is the Euclidean space.
The ranges can, for example, be geometric objects like hypercubes, balls or half-spaces.
In the case of subtrajectory clustering, we define the ground set to be all points of our
trajectory data and the ranges as all points that can be represented by the same center
curve. So each range is implicitly represented by a ball with a center and a radius (formal
definition in Section 3.1.1). Our goal in subtrajectory clustering is to find the smallest
set of centers such that the whole trajectory data (ground set) is represented. This is
just one application of a general problem for range spaces called the set cover problem.

Let R be a range space with ground set X. A set cover of R is a subset S ⊂ R such
that the ground set is equal to the union of the sets in S. The set cover problem asks
to find a set cover for a given R using a minimum number of sets. Closely related to the
set cover problem is its dual problem, the so-called hitting set problem. A hitting set
of R is a subset S ⊆ X such that every set of R contains at least one element of S. The
hitting set problem is to find a hitting set for a given R of minimum size. We denote
with R∗ the range space dual to R. The range space R∗ has ground set R and each set
rx ∈ R∗ is defined by an element x ∈ X as rx = {r ∈ R|x ∈ r}. The dual range space of
R∗ is again R. The hitting set problem for R is equivalent to the set cover problem for
the dual range space R∗. Sometimes, solving the hitting set problem for the dual range
space is easier than directly solving the set cover problem or the other way around. We
will use this approach for subtrajectory clustering.

A relaxed version of a hitting set is the ε-net. For a given weight function w on the
ground set X and a real value ε > 0, we say that a subset C ⊂ X is an ε-net if every
set of R of weight at least ε ·w(X) contains at least one element of C. For any A ⊆ X,
we write w(A) short for ∑a∈Aw(a). One way to calculate a hitting set is by iteratively

27

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

computing ε-nets and updating the weight function until one of the computed ε-nets is a
hitting set. We will describe this method in detail in Section 2.4.2. The most popular
way to generate ε-nets is via sampling where the sample size depends on the success
probability and either the V C-dimension or the shattering dimension of the range space.
We introduce these concepts in the following section.

2.4.1 VC-dimension, shattering and generating epsilon-nets

The VC-dimension (introduced by Vapnik and Chervonenkis [129]) measures the com-
plexity of a range space based on shattering. We say a subset A ⊆ X is shattered by R
if for any A′ ⊆ A there exists an r ∈ R such that A′ = r ∩A. The VC-dimension of R
(denoted by V Cdim(R)) is the maximal size of a set A ⊆ X that is shattered by R. A
crucial property of the V C-dimension is, that it can be used to bound the number of
ranges in R based on the number of elements in the ground set X. The growth function
of a range space measures this relation and generalizes it to all subsets of X. For m ∈N,
the growth function ΠR(m) is defined as

ΠR(m) := max
A⊆X :|A|=m

|{r ∩A | r ∈ R}|.

Lemma 2.4.1 (Sauer’s lemma [114, 129]). For any (X,R) of finite VC-dimension δ > 1
and m > 1, we have

ΠR(m) ≤
δ∑

i=1

(
m

i

)
≤ mδ

A more direct way to measure this relation is the shattering dimension. The shat-
tering dimension of R (denoted by Sdim(R)) is the smallest s ∈ N such that
ΠR(m) ≤ ms for all m ≥ 2. The shattering dimension and the VC dimension are closely
related. Lemma 2.4.1 already shows that the VC-dimension is always an upper bound for
the shattering dimension. In the other direction, they only differ by a logarithmic factor.

Lemma 2.4.2. For any (X,R) of finite VC-dimension δ > 1and shattering dimension
s, we have

s ≤ δ ≤ 2s log2(s)

Proof. By Lemma 2.4.1, we have s ≤ δ. The largest set that can be shattered by R
has cardinality δ. Therefore, we have ΠR(δ) = 2δ. By the definition of the shattering
dimension, we get

2δ ≤ δs

δ ≤ s log2(δ)

δ

log2(δ)
≤ s

Since δ > 1, we get s > 1 and therefore δ ≤ 2s log2(s).

Depending on the range space, it can be easier to bound either the shattering
dimension or the VC-dimension. After determining either one of the bounds Lemma 2.4.2
directly yields a bound for the respective other dimension. Calculating the VC-dimension

28

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

or even finding good bounds for it, is a challenge in itself. We present in Section 2.4.3 a
technique to derive upper bounds for them.

Both dimensions can be used in the context of sampling ε-nets. Perhaps, the most
well-known sample bounds for generating ε-nets based on the VC-dimension were derived
by David Haussler and Emo Welzl in their seminal work [80]:

Theorem 2.4.3 ([80]). For any (X,R) of finite VC-dimension δ, finite B ⊆ X and
0 < ε, α < 1, if N is a subset of B obtained by at least

max
(4

3 log
(2
α

)
, 8δ
ε

log
(8δ
ε

))
random independent draws, then N is an ε-net of B for R with probability at least 1−α.

The dependency on the VC-dimension in this theorem results from bounding the
growth function ΠR(2m) by (2m)δ. This directly implies that the shattering dimension
can also be used instead of the VC-dimension.

Corollary 2.4.4 ([80, 103, 126]). For any (X,R) of finite shattering dimension s, finite
B ⊆ X and 0 < ε, α < 1, if N is a subset of B obtained by at least

max
(4

3 log
(2
α

)
, 8s
ε

log
(8s
ε

))
random independent draws, then N is an ε-net of B for R with probability at least 1−α.

Theorem 2.4.3 has been extended and improved, in particular by Li, Long, Srini-
vasan [95], Komlós, Pach and Woeginger [91], see also the survey by Mustafa and
Varadarajan [103, 126] and the book of Har-Peled [74] for an overview. The following
direct improvement for the sample bound is based on a precise analysis of the growth
function’s dependency on the VC-dimension.

Lemma 2.4.5 ([74]). Let (X,R) have finite VC-dimension δ > 1. For m ≥ 2δ, we have

(
m

δ

)δ

≤ ΠR(m) ≤
δ∑

i=1

(
m

i

)
≤
(
em

δ

)δ

Theorem 2.4.6 ([74, 91]). For any (X,R) of finite VC-dimension δ, finite B ⊆ X and
0 < ε, α < 1, if N is a subset of B obtained by at least

max
(4

3 log
(4
α

)
, 8δ
ε

log
(16
ε

))
random independent draws, then N is an ε-net of B for R with probability at least 1−α.

It is also possible to generate ε-nets deterministically at the expense of a running
time that is exponential in the VC-dimension.

Theorem 2.4.7 ([22]). For any (X,R) of finite VC-dimension δ, finite B ⊆ X and
0 < ε, α < 1, an ε-net N of B of size O

(
δ
ε log

(
δ
ε

))
can be computed deterministically

in O

(
δ3δ

(
1
ε log

(
1
ε

))δ
|B|
)

time.

29

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

2.4.2 Multiplicative weight update method for Hitting sets

To compute approximate solutions for the hitting set problem, we use an idea that
goes back to Clarkson [45, 46] and was later also applied and extended by Brönniman
and Goodrich [23] for range spaces of low VC-dimension. The underlying technique is
commonly known as the multiplicative weight update method [15]. It can also be used
to compute approximate solutions for the set cover problem by applying it on the dual
range space.

In principle, the technique consists of iteratively generating ε-nets for a weighted
version of the ground set and updating the weights until the generated ε-net is a hitting
set. Generally, all techniques for generating ε-nets, that we discussed in Section 2.4.1 can
be used here. For better readability, we limit ourselves to the version that we will apply.
This version uses a sample-based approach based on the sample bounds in Theorem 2.4.6.
The generated samples are candidates for hitting sets. To evaluate if a sampled candidate
is a hitting set, our algorithm needs a verifier as a subroutine.

Definition 2.4.8 ([23]). A verifier is an algorithm A that, given a subset H ⊆ X,
either states (correctly) that H is a hitting set, or returns a nonempty set r of R such
that r ∩H = ∅.

Algorithm 1 Multiplicative Weight Update Algorithm
1: procedure MWU-Algorithm(X, R)
2: k ← 1
3: δ ← VC-dim(R)
4: repeat
5: k ← 2k ▷ increase target size for solution
6: C ← k-MWU-Algorithm(X,R, k, δ) ▷ search solution with this size
7: until C ̸= ∅ ▷ until we find a solution
8: return C

1: procedure k-MWU-Algorithm(X,R, k, δ)
2: ε← 1

2k , k′ ← ⌈16δk log(16k)⌉, imax ← 4k log2

(
|X|
k

)
3: Let D1 be the uniform distribution over X with weight function w1 : X → {1}
4: i← 1
5: repeat
6: C ←Sample(k′,Di) ▷ sample candidate C with k′ elements from Di

7: r ← Verifier(C,X,R) ▷ Check if C is hitting set
8: if r = ∅ then return C ▷ if C is hitting set, return it as solution
9: if PrDi

[r] ≤ ε then
10: Di+1 ← WeightUpdate(Di, r) ▷ Double weight of elements in r
11: i← i+ 1
12: until i > imax
13: return ∅ ▷ no solution found for this target size

Algorithm Given a range space R with ground set X, our algorithm proceeds as
follows (see also Algorithm 1). Assume, we know there exists a hitting set of size k (see
k-MWU-Algorithm). The algorithm samples a candidate set C ⊆ X for a hitting set

30

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

of R. The sample size is chosen based on Theorem 2.4.6 such that C is an ε-net with
probability 1

2 (for ε = 1
2k). Then, the algorithm calls the verifier to test if C is a hitting

set for R. If this is the case, then the algorithm returns C. If it is not, then the verifier
returns a witness set r that does not contain any element of C. If the weight of r is
at most an ε-fraction of the total weight of the ground set, then the algorithm doubles
the weight of each element of r. It repeats the whole procedure until it finds a hitting
set. Since the algorithm does not know the optimal value of k, it does a doubling search
starting with k = 2: To take care of the case that there may not exist a hitting set of
size k, the algorithm terminates the current round after 4k log

(
|X|
k

)
weight-updates if no

hitting set has been found. If this happens, it doubles the value of k, resets the weights,
and starts over.

In addition to the verifier, the algorithm needs a data structure D that maintains
the probability distributions Di and can answer the following three queries: The first
query Sample(k′,Di) asks to sample k′ elements from Di, the second query Weigh-
tUpdate(Di, r) asks to double the weight of each element in r in the weight function of
the distribution Di, the third query asks to evaluate PrDi

[r] ≤ ε for given r and ε. The
implementation of this data structure and the data structure for the verifier may vary
depending on the structure of the range spaces in different applications. Let PD,PV be
the preprocessing times and SD,SV the space requirements of the two data structures.
Let further TV be the maximal query time for the verifier, let TD be the maximal query
time for all three types of queries of D and let UD be the time needed to reset the weight
function in D to create a uniform distribution.

Theorem 2.4.9. For a given finite range space (X,R) with finite VC-dimension δ,
assume there exists a hitting set of size k. Then, there exists an algorithm that computes
a hitting set of size k′ ∈ O(δk log(k)) with expected running time in

O

(
k log

(|X|
k

)
(TD + TV) + log(k)UD

)
after a preprocessing time in O

(
PD + PV

)
and using space in O

(
SD + SV

)
.

Proof. We use the MWU-Algorithm (Algorithm 1) that does a doubling search on k,
starting with k = 2. In the remaining proof, we analyze the running time of k-MWU-
Algorithm for a fixed k in detail. In each iteration of the algorithm, a random sample
of size O(kδ log(k)) is computed. If the sample is a hitting set, the verifier confirms
this and the algorithm terminates and returns a solution of given size. In each iteration
of the algorithm, the computed random sample is an ε-net with probability greater 1

2
by Theorem 2.4.6. Therefore, the expected number of iterations until we find an ε-net
between any two weight-update steps is at most 2. By construction, 4k log(|X|

k) is the
maximum number of weight-update steps before the algorithm updates k. The analysis
in [23] implies that this number of weight-update steps suffices for the algorithm to find
a hitting set (assuming there exists a hitting set of size k). We include the analysis here
and verify that it also holds in our setting.

Let H be a hitting set of R with |H| = k. Let r be the set returned by the verifier in
one iteration, where w(r) ≤ ε ·w(X). Since H is a hitting set, we have H ∩ r ̸= ∅. Let
w be our weight function and let zh be the number of times the weight of h ∈ H has
been doubled after i weight-update steps. Then we have after i weight-update steps that

w(H) =
∑
h∈H

2zh , where
∑
h∈H

zh ≥ i.

31

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

By the convexity of the exponential function, we get w(H) ≥ k2 i
k . Since ε = 1

2k , we
also have for the ground set X that

w(X) ≤ |X|
(

1 + 1
2k

)i

≤ |X|e
i

2k .

Because H is a subset of X and therefore w(H) ≤ w(X), we get in total

k2
i
k ≤ |X|e

i
2k ≤ |X|2

3i
4k .

It directly follows that i ≤ 4k log
(

|X|
k

)
. Combining this result with the expected number

of iterations until we find an ε-net, we conclude that the expected number of iterations
before the algorithm terminates is smaller than 8k log

(
|X|
k

)
.

In each iteration, the algorithm computes a random sample in TD time and applies
the extended verifier in TV time. The check if a reweighting needs to be applied together
with the reweighting itself can be done in 2TD time. So each iteration of the repeat-loop
(line 5-12) has a running time of O(TD + TV). In total, we get an expected running time
of

O

(
k log

(|X|
k

)
(TD + TV)

)
for all iterations of the repeat loop. Note that this running time is at least linear in k, so
by a geometric series argument, the doubling search incurs only a constant factor in the
total running time. The weights in the data structure D have to be reset to the uniform
distribution every time the value for k gets doubled. This happens at most log(k) times
to get from 2 to k. Therefore the total running time for resetting is in O(log(k)UD).

2.4.3 Zero sets of polynomials: Bounds for VC-dimension and more

In this section, we describe a technique for computing upper bounds on the VC-dimension
and shattering dimension of range spaces. The idea behind the technique goes back to
Goldberg and Jerrum [68, 69] and, independently, Ben-David and Lindenbaum [18]. We
focus on the variant of this technique by Anthony and Bartlett [14].

The fundamental observation on which this technique is based is the following. For
complex range spaces with higher VC-dimension and shattering dimension, it tends to be
harder to evaluate if an element x is part of a range r than for less complex range spaces.
To quantify this relation, the idea is to find a set of boolean functions (predicates) on
x and r that uniquely determines if x is part of r. The boolean functions should be
simple in the sense that they are expressible as sign values of polynomials with bounded
degrees. It turns out that in this case one can bound the VC-dimension and shattering
dimension based on the number and maximum degree of these polynomials. The bound
also depends on the number of real-valued parameters that are needed to describe any
range r as input for the polynomials (see Theorem 2.4.10).

Crucial to this technique is counting the number of cells in the arrangement of zero
sets of polynomials. The VC-dimension bound is not the only application where we use
bounds on the number of these cells. We also use if for deriving running time bounds on
the DBA algorithm. This connection between two combinatorial upper bounds that seem
totally unrelated at first glance shows how versatile the use of the underlying arrangement
is.

Let R be a range space with ground set X, and F be a class of real-valued functions
defined on Rd ×X. For a ∈ R let sgn(a) = 1 if a ≥ 0 and sgn(a) = 0 if a < 0. We say

32

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

that R is a t-combination of sgn(F) if there is a boolean function g : {0, 1}t → {0, 1}
and functions f1, . . . , ft ∈ F such that for all r ∈ R there is a parameter vector y ∈ Rd

such that
r = {x ∈ X | g(sgn(f1(y,x)), . . . , sgn(ft(y,x))) = 1}.

Theorem 2.4.10 ([14], Theorem 8.3). Let F be a class of functions mapping from
Rd ×X to R so that, for all x ∈ X and f ∈ F the function y → f(y,x) is a polynomial
on Rd of degree no more than l. Suppose that R is a t-combination of sgn(F). Then if
m ≥ d

t ,

ΠR(m) ≤ 2
(2emlt

d

)d

and hence V Cdim(R) ≤ 2d log2(12lt).

Note that V Cdim(R) < m if ΠR(m) < 2m since in this case no set of size m can
be shattered by R. By bounding the growth function, Theorem 2.4.10 also implies the
following bound on the shattering dimension.

Theorem 2.4.11. Let F be a class of functions mapping from Rd ×X to R so that, for
all x ∈ X and f ∈ F the function y → f(y,x) is a polynomial on Rd of degree no more
than l. Suppose that R is a t-combination of sgn(F). Then we have

Sdim(R) ≤ max
(
d ln

(15lt
d

)
+ 1, d+ 2

)
Proof. Let m > 1. By Theorem 2.4.10 we have ΠR(m) ≤ mSdim(R) ≤ ms for all s with

2
(2emlt

d

)d

≤ ms.

This implies
d ln

(
2emlt

d

)
+ ln(2)

ln(m)
≤ s.

If d ≥ 2elt then the inequality holds for s = d+ 2 and otherwise for s = d ln
(

15lt
d

)
+ 1.

In the remainder of this section, we give a proof of Theorem 2.4.10. The proof is
included here to enable a better understanding of the technique. The proof is based on
the following lemma which bounds the growth function via the number of connected
components in an arrangement of zero sets.

Lemma 2.4.12 (Lemma 7.8 [14]). Let F be a class of functions mapping from Rd ×X
to R that is closed under the addition of constants. Suppose that the functions in F are
continuous in their parameters and that R is a t-combination of sgn(F) for a boolean
function g : {0, 1}t → {0, 1} and functions f1, . . . , ft ∈ F . Then for every m ∈N there
exist a subset {x1, . . . ,xm} ⊂ X and functions f ′

1, . . . , f ′
t ∈ F such that the number of

connected components of the set

Rd −
t⋃

i=1

m⋃
j=1
{y ∈ Rd : f ′

i(y,xj) = 0}

is at least ΠR(m).

33

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

f1(·, x1) = 0

f1(·, x2) = 0

f2(·, x2) = 0

f2(·, x1) = 0

y1

y2

y

Figure 2.5: Illustration for the proof of Lemma 2.4.12: In this example y1 and y2 differ
in sgn(f2(·,x2)).

Proof of Lemma 2.4.12. The proof is an adaptation of the proof in [14] that uses our
notation. Let A = {x1, . . . ,xm} ⊂ X be any subset of size m of X. Let further
R|A = {A ∩ r | r ∈ R} be the restriction of R to A. Observe that ΠR(m) is equal to
|R|A| for a set A that maximizes this quantity. Let A be such a set. We denote the
arrangement of zero sets of R|A with S := Rd−

⋃t
i=1

⋃m
j=1{y ∈ Rd : fi(y,xj) = 0}. Each

range ry ∈ R|A is defined by a parameter y ∈ Rd such that

ry = {x ∈ A | g(sgn(f1(y,x)), . . . , sgn(ft(y,x))) = 1}.

The elements of S can be interpreted as these parameters y. We want to show that in each
connected component of S all parameters define the same range of R|A. Let y1, y2 ∈ S
with ry1 ̸= ry2 . There exist i and j such that fi(y1,xj) and fi(y2,xj) have different signs.
So on every continuous path from y1 to y2 there must be a y such that fi(y,xj) = 0.
This follows directly from the continuity of fi. Therefore y1 and y2 have to be in different
connected components of S (see Figure 2.5 for an example in the plane). However, in
general, it could happen that some ranges of R|A can only be realized with a parameter
y such that fi(y,xj) = 0 for some i and j. In this case, y /∈ S. To prevent this, we define
slightly shifted variations f ′

1, . . . , f ′
t of the functions f1, . . . , ft such that every r ∈ R|A

can be realized by some y ∈ S′ where S′ := Rd −
⋃t

i=1
⋃m

j=1{y ∈ Rd : f ′
i(y,xj) = 0}. Let

|R|A| = N and y1, . . . , yN ∈ Rd such that R|A = {ry1 , . . . , ryN }. Choose

ε =
1
2 min{|fi(yl,xj)| : fi(yl,xj) < 0, 1 ≤ i ≤ t, 1 ≤ j ≤ m, 1 ≤ l ≤ N}

and set f ′
i(x, y) = fi(y,x) + ε for all i. By construction, the sign values of all functions

stay the same and none of them evaluates to zero for y1, . . . , yN . Therefore the number
of connected components of S′ is at least N .

It remains to bound the number of connected components in the arrangement of
Lemma 2.4.12 by 2(2emlt

d)d for every t-combination of sgn(F) under the specifications on
F and m in Theorem 2.4.10. For the number of connected components in the arrangement

34

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

of zero sets of polynomials, bounds were obtained by Olĕınik and Petrovski [108], Milnor
[102], Thom [125] and Warren [132], see also the survey paper by Alon [10].

Theorem 2.4.13 (Warren [132]). Let f1, . . . , fn be real-valued polynomials in d variables,
each of degree l or less. Then the number of connected components of the set

Rd −
n⋃

i=1
{y ∈ Rd : fi(y) = 0}

is at most 2(2l)d∑d
k=0 2k(n

k). In particular for n ≥ d it is at most
(

4enl
d

)d
.

The bound in Theorem 2.4.13 directly yields an upper bound on the growth function
of
(

4emlt
d

)d
by setting n = mt. A more careful analysis in [14] improves this to 2

(
2emlt

d

)d

for the specific case in Theorem 2.4.10.
In case of our running time bound for DBA (Theorem 6.2.4), we will use a bound on

a slightly different quantity. Instead of the connected components of the arrangement, we
are interested in the total number of sign patterns of the polynomials. Let f1, . . . , fn be
real-valued polynomials in d variables. The sign pattern of f1, . . . , fn at a point x ∈ Rd

is defined as sgn(f1(x)), . . . , sgn(f1(x)). The bounds of Theorem 2.4.13 can directly be
applied to sign patterns as well. This can be proven analogous to the last part of the
proof of Lemma 2.4.12.

Corollary 2.4.14 ([132]). Let f1, . . . , fn be real-valued polynomials in d variables, each
of degree l or less. Let n ≥ d. The total number of sign patterns of f1, . . . , fn is at most
2(2l)d∑d

k=0 2k(n
k). In particular for n ≥ d it is at most

(
4enl

d

)d
.

For the case d ≥ n, the bound 2(2l)d∑d
k=0 2k(n

k) in Corollary 2.4.14 is not easily
interpretable. We instead use the following bound in the worst-case analysis of the DBA
algorithm

Theorem 2.4.15. Let f1, . . . , fn be real-valued polynomials in d variables, each of degree
l ≥ 1 or less. The total number of sign patterns of f1, . . . , fn is at most 6(2ln)d.

Proof. By Theorem 2.4.13, we only have to show that ∑d
k=0 2k(n

k) ≤ 3nd. We first analyze
the case n ≥ d: For d ≥ 4, we have

d∑
k=0

2k

(
n

k

)
≤

d∑
k=4

nk +
3∑

k=0

2k

k!
nk ≤ 2nd + (1 + 2n+ 2n2 +

8
3n

3) ≤ 2nd + n4 ≤ 3nd.

For d ∈ {1, 2, 3} similar calculations show ∑d
k=0 2k(n

k) ≤ 3nd. It remains to analyze the
case d ≥ n: For n ≥ 4, we get

d∑
k=0

2k

(
n

k

)
≤ 2d

d∑
k=0

(
n

k

)
≤ 4d ≤ nd.

For n ∈ {1, 2, 3} calculating the exact value for the term ∑d
k=0 2k(n

k) =
∑n

k=0 2k(n
k) yields

the bound.

The result of Theorem 2.4.10 also enables to bound the VC-dimension of a range space
based on the number of simple operations that are needed to determine if an element of
the ground set is included in a range. This was shown by Anthony and Bartlett [14] in
the following theorem.

35

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

Theorem 2.4.16 (Theorem 8.4 [14]). Suppose h is a function from Rd ×Rn to {0, 1}.
Let R be the range space with ground set Rd, where a set rα ∈ R for α ∈ Rd is defined as

rα = {x ∈ Rn | h(α,x) = 1}.

Suppose that h can be computed by an algorithm that takes as input the pair (α,x) ∈
Rd ×Rn and returns h(α,x) after no more than t simple operations. Then, the VC-
dimension of R is ≤ 4d(t+ 2).

Proof sketch. The algorithm that computes h can be expressed by a computation tree of
depth at most t. Each comparison of the algorithm can be expressed by a comparison
of polynomials of degree at most 2t and the number of comparisons in an algorithm of
depth at most t is bounded by 2t−1 − 1. To be able to compute all types of comparisons
=, ̸=,>,≥,≤,<, also negated copies of the polynomial might be needed. This yields a
bound of 2t − 2 on the number of polynomials. Applying Theorem 2.4.10 directly yields
the result.

Through a careful analysis of the underlying polynomials Theorem 2.4.10 can generally
yield better bounds than Theorem 2.4.16. On the other hand, Theorem 2.4.16 has the
advantage of easier and more intuitive applicability.

2.5 Subtrajectory Clustering: Problem definition

In Chapter 4 and 5, we study subtrajectory clustering under the Fréchet distance in the
following way. For a given polygonal curve P with n vertices in fixed dimension, integers
k, ℓ ≥ 1, and a real value ∆ > 0, the goal is to find k center curves of complexity at
most ℓ such that every point on P is covered by a subtrajectory that has small Fréchet
distance to one of the k center curves (≤ ∆).

To formally define this objective, we first introduce the notion of a ∆-coverage. Let
P : [0, 1] → Rd be a polygonal curve1 of n vertices and let ℓ ∈ N and ∆ ∈ R be fixed
parameters. Define the ∆-coverage of a set of center curves C ⊂ Xd

ℓ as follows:

Ψ∆(P ,C) =
⋃

q∈C

⋃
0≤t≤t′≤1

{s ∈ [t, t′] | dF (P [t, t′], q) ≤ ∆}.

An illustration of the ∆-coverage is given in Figure 2.6. The ∆-coverage corresponds to
the part of the curve P that is covered by the set of all subtrajectories that are within
Fréchet distance ∆ to some curve in C. If for some P ,C, ∆ it holds that Ψ∆(P ,C) = [0, 1],
then we call C a ∆-covering of P . The problem we study in this paper is to find a
∆-covering C ⊂ Xd

ℓ of P of minimum size. We call this problem the (∆, ℓ)-covering
problem on P . In particular, we study bicriterial approximation algorithms for this
problem, which we formalize in the following way.

Definition 2.5.1 ((α,β)-approximate solution). Let P ∈ Xd
n be a polygonal curve,

∆ ∈ R+ and ℓ ∈ N. A set C ⊆ Xd
ℓ is an (α,β)-approximate solution to the (∆, ℓ)-

covering problem on P , if C is an α∆-covering of P and there exists no ∆-covering
C ′ ⊆ Xd

ℓ of P with β|C ′| < |C|.
1We chose the setting of one input curve to keep the presentation of our algorithmic solutions as

simple as possible. All of our algorithms can be easily extended to the setting of multiple input curves.

36

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

P

Q1

∆

s2

s1

s′1

s′2
Q2

s3 s′3

s4

s′4

Figure 2.6: Illustration of the ∆-coverage of a set C = {Q1,Q2} and a curve P . Here we
have Ψ∆(P ,C) = [s1, s′

1] ∪ [s2, s′
2] ∪ [s3, s′

4], since the subcurves P [s1, s′
1] and P [s3, s′

3]
have Fréchet distance ∆ to Q1, the subcurves P [s2, s′

2] and P [s4, s′
4] have Fréchet distance

∆ to Q2 and each other subcurve of P that has Fréchet distance at most ∆ to Q1 or Q2
is a subcurve of P [si, s′

i] for some 1 ≤ i ≤ 4.

We define the radius of the clustering induced by C as the smallest real value ∆
such that Ψ∆(P ,C) = [0, 1], and we denote the radius with ψ(P ,C). Note that our
problem definition requires center curves to be of complexity at most ℓ, which is given as
a parameter.2 Throughout this thesis, we assume that d is a constant independent of n
when discussing subtrajectory clustering.

2.5.1 Range space formulation

Our approach to the (∆, ℓ)-covering problem works via set covers of suitable range spaces.
To this end, we will first define a discrete variant of the problem, that we use in
Chapter 4. In Chapter 5, we discretize the problem slightly differently since we simplify
the input curve first.

Assume that the curve P is endowed with a set of m real values 0 = t1 < t2 < · · · <
tm = 1 which define a set of subcurves of the form P [ti, tj]. We denote the set of values
ti with T and we refer to the respective points on the curve P (ti) for 1 ≤ i ≤ m as
breakpoints. Note that the vertices of the curve do not have to be breakpoints and vice
versa. For a given curve P with breakpoints we define the ∆-coverage of a set of center
curves C ⊂ Xd

ℓ with respect to these breakpoints as follows

Φ∆(P ,C) =
⋃

q∈C

⋃
1≤i≤j≤m

{s ∈ [ti, tj] | dF (P [ti, tj], q) ≤ ∆}

Analogous to the definition in the continuous case, we define the radius of the clustering in
the discrete case as the smallest real value ∆ such that Φ∆(P ,C) = [0, 1] and we denote
this radius with ϕ(P ,C). Consider the range spaceR with ground set X = {1, . . . ,m− 1}
where each set rQ ∈ R is defined by a polygonal curve Q ∈ Xd

ℓ as follows

rQ = {z ∈ X | ∃i ≤ z < j with dF (Q,P [ti, tj]) ≤ ∆} (2.1)

In the discrete case, the problem of finding a minimum-size set of center curves
that cover P now reduces to finding a minimum-size set cover for the range space R.
Stating the problem in terms of range spaces allows us to draw from a rich background

2It is tempting to relax the restriction on the complexity of the center curves in our problem definition.
However, without any other regularization of the optimization problem, this would lead to the trivial
solution of the curve P being an optimal center curve.

37

CHAPTER 2. BASIC NOTATION, CONCEPTS AND TECHNIQUES

of algorithmic techniques for computing set covers (as the multiplicative weight update
method which we introduced in Section 2.4.2).

In the following, we discuss how solutions to the discrete problem help to solve the
continuous (∆, ℓ)-covering problem. We can choose breakpoints for the input curve P ,
such that the distance between two consecutive breakpoints is at most ε∆ for any fixed
ε > 0. This is always possible with m = ⌈ λ

ε∆⌉ breakpoints, where λ is the arclength of
P . The resulting instance of the discrete problem variant approximates the continuous
version of the problem in the following way.

Lemma 2.5.2. Assume there exists a set C∗ ⊂ Xd
ℓ of size k, such that ψ(P ,C∗) ≤ ∆.

Then we have ϕ(P ,C∗) ≤ (1 + ε)∆. Additionally for each C ⊂ Xd
ℓ with ϕ(P ,C) ≤

(1 + ε)∆ we have ψ(P ,C∗) ≤ (1 + ε)∆.

Proof. We show that for any set of center curves C ⊂ Xd
ℓ we have ψ(P ,C) ≤ ϕ(P ,C) ≤

(1+ ε)ψ(P ,C). Indeed, if C covers the curve P in the discrete setting, then it also covers
the curve P in the continuous setting. Therefore, ψ(P ,C) ≤ ϕ(P ,C). For showing the
other inequality we observe that the distance between two consecutive breakpoints is
at most ε∆. Therefore, for any interval [s, t] ⊂ [0, 1] we can choose breakpoints ti ≤ s
and tj ≥ t such that dF (P [s, t],P [ti, tj]) ≤ ε∆. The claim now follows from the triangle
inequality.

38

Chapter 3

Simplified and Improved Bounds
on the VC-Dimension for Elastic
Distance Measures

The main content of this chapter previously appeared as the paper Simplified and Improved
Bounds on the VC-Dimension for Elastic Distance Measures [27] by Frederik Brüning
and Anne Driemel which is available on arXiv. An initial version of the work has also
been presented at the 40th European Workshop on Computational Geometry (EuroCG
2024) [28] based on an extended abstract without formal publication. In this chapter, we
study the VC-dimension and shattering dimension of range spaces, where the ground
set consists of either polygonal curves in Rd or polygonal regions in the plane that may
contain holes and the ranges are balls defined by an elastic distance measure, such as
the Hausdorff distance, the Fréchet distance and the dynamic time warping distance.
This chapter extends the VC-dimension bounds of [27] with bounds on the shattering
dimension and by considering the average Hausdorff distance as an additional distance
measure.

3.1 Introduction

Previous to our work, Driemel, Nusser, Philips and Psarros [57] derived almost tight
bounds on the VC-dimension of balls in the setting of polygonal curves and with respect
to the Hausdorff distance and the Fréchet distance. At the heart of their approach lies
the definition of a set of boolean functions (predicates) which are based on the inclusion
and intersection of simple geometric objects. The predicates depend on the vertices of
a center curve and a radius that defines a metric ball as well as the vertices of a query
curve. Some of the predicates originate from the work of Afshani and Driemel [2] on
range searching. The predicates are chosen such that, based on their truth values, one
can determine whether the query curve is contained in the respective ball. Their proof of
the VC-dimension bound uses the worst-case number of operations needed to determine
the truth values of each predicate. Their approach explicitly uses Theorem 2.4.16 by
Anthony and Bartlett [14]. See Section 2.4.3 for more details on the approach.

In this chapter, we extend the known set of predicates to be able to decide the Haus-
dorff distance between polygonal regions with holes in the plane. We give an improved
analysis for the VC-dimension that considers each predicate as a combination of sign

39

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

new ref. Driemel et al. [57]

finite sets
av. Hausdorff O(dk log(kmmk)) Thm. 3.2.4 -

Hausdorff O(dk log(km)) Thm. 3.2.1
O(dk log(dkm))

discrete
polygonal

curves

Fréchet O(dk log(km))(∗) Thm. 3.2.2

DTW
O(dk2 log(m)) Thm. 3.2.3

-
O(dkm log(k)) Thm. 3.2.3

continuous
polygonal

curves

Hausdorff O(dk log(km)) Thm. 3.4.15
O(d2k2 log(dkm))

Fréchet O(dk log(km))(∗) Thm. 3.4.16
weak Fréchet O(dk log(km))(∗) Thm. 3.4.16 O(d2k log(dkm))

polygons R2 Hausdorff O(k log(km)) Thm. 3.4.15 -

Table 3.1: Overview of VC-dimension bounds with references. Results marked with (∗)

were independently obtained by Cheng and Huang [43].

values of polynomials and bound the VC-dimension based on the number of cells in the
arrangement of zero sets of these polynomials. This approach does not use the computa-
tional complexity of the distance evaluation but instead uses the underlying structure
of the range space defined by a system of polynomials directly (using Theorem 2.4.10
instead of Theorem 2.4.16). By the lower bounds in [57], this approach directly leads
to tight bounds for d ≥ 4 for polygonal curves. In addition to the upper bounds on
the VC-dimension we give upper bounds on the shattering dimension using the same
techniques.

3.1.1 Results

To state our results, we first formally introduce the considered range spaces. We define
the ball with radius ∆ and center c under the distance measure dρ on a set X as
Bρ,∆(c) = {x ∈ X | dρ(x, c) ≤ ∆}. If dρ is the Euclidean distance, we just write B∆(c).
We study range spaces with ground set (Rd)m of the form

Rρ,k = {Bρ,∆(c) | ∆ ∈ R+, ∆ > 0, c ∈ (Rd)k}.

We call (Rd)k the center set of Rρ,k. We derive new bounds on the VC-dimension
for range spaces of the form Rρ,k for some distance measure dρ with a ground set Rd

m

consisting of polygonal curves or polygonal regions that may contain holes. To this end,
we write each range as a combination of sign values of polynomials with constant degrees
and apply Theorem 2.4.10. More precisely, we take predicates that determine if a curve
P ∈ Xd

m is in a fixed range r ∈ Rρ,k and show that each such predicate can be written as
a combination of sign values of polynomials with constant degree. See Section 2.4.3 for a
proof of Theorem 2.4.10 and a more detailed discussion of the underlying technique.

For the Hausdorff distance of polygonal regions (with holes) in the plane, we
show that the VC-dimension of Rρ,k is bounded by O(k log(km)). Interestingly, this
bound is independent of the number of holes. To the best of our knowledge, this is the
first non-trivial bound for the Hausdorff distance of polygonal regions.

40

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

VC shattering

finite sets
av. Hausdorff O(dk log(kmmk)) O(dk log(kmmk/d))

Hausdorff O(dk log(km)) O(dk log(m/d))

discrete
polygonal

curves

Fréchet O(dk log(km)) O(dk log(m/d))

DTW
O(dk2 log(m)) O(dk log(mk/d))

O(dkm log(k)) O(dk log(km/d))

continuous
polygonal

curves

Hausdorff O(dk log(km)) O(dk log(km2/d))

Fréchet O(dk log(km)) O(dk log(km2/d))

weak Fréchet O(dk log(km)) O(dk log(km2/d))

polygons R2 Hausdorff O(k log(km)) O(k log(km))

Table 3.2: Overview of shattering dimension bounds in comparison to the VC-dimension
bounds. In case that the term with the logarithm would have a negative value, the
shattering dimension is bounded by O(dk).

Note that the construction of the lower bound of Ω(max(k, log(m))) for d ≥ 2 in [57]
for polygonal curves under the Hausdorff distance can easily be generalized to a lower
bound for the case of polygonal regions in the plane. To do so, we just have to replace
each edge e of a polygonal curve in their construction with a rectangle containing e with
suitable small width. This directly implies a bound of Ω(max(k, log(m))). Our upper
bounds directly extend to unions of disjoint polygonal regions that may contain holes,
where k and m denote the total complexity (number of edges) to describe the set.

For the Fréchet distance and the Hausdorff distance of polygonal curves,
in the discrete and the continuous case, we show that for the VC-dimension of Rρ,k
our techniques imply the same bound of O(dk log(km)). Parallel and independent of
our work, Cheng and Huang [43] obtained the same result for the Fréchet distance of
polygonal curves using very similar techniques. An overview of our results with references
to theorems and comparison to the known results from [57] and the independent results
from [43] is given in Table 3.1.

The results improve upon the upper bounds of [57] in all of the considered cases. By
the lower bound Ω(max(dk log(k), log(dm))) for d ≥ 4 in [57], the new bounds are tight
in each of the parameters k,m and d for each of the considered distance measures on
polygonal curves. For the Dynamic time warping distance, we show a new bound of
O(min(dk2 log(m), dkm log(k))) and for the average Hausdorff distance, we show
a new bound of O(dkz log(z)) where z = max(m, k). Note that in the discrete setting
with respect to the Hausdorff distance and average Hausdorff distance, polygonal curves
are equivalent to finite point sets.

For the shattering dimension, we get slightly better bounds than the VC-dimension
bounds by applying Theorem 2.4.11 instead of Theorem 2.4.10. The analysis of the
bounds is otherwise analogous to the analysis of the VC-dimension bounds. We therefore
omit details and only state the resulting bounds in Table 3.2. The improvement is a
factor of up to (dk)−1 in the logarithm. For the continuous case and the case of polygonal
regions, any improvement would be hidden in the constants.

41

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

3.2 Warm-up: Discrete setting

In the discrete setting, we think of each curve P ∈ Xd
m as a sequence of its vertices

(p1, . . . , pm) ∈ (Rd)m and not as a continuous function. To emphasize this, we write in
this context P ∈ (Rd)m instead of P ∈ Xd

m.

Theorem 3.2.1. Let RdH,k be the range space of all balls under the Hausdorff distance
centered at point sets in (Rd)k with ground set (Rd)m. Then, we have

V Cdim(RdH,k) ≤ 2(dk+ 1) log2(24mk).

Proof. Let P ∈ (Rd)m with vertices p1, . . . , pm and Q ∈ (Rd)k with vertices q1, . . . , qk.
The discrete Hausdorff distance between two point sets is uniquely defined by the distances
of the points of the two sets. The truth value of dH(P ,Q) ≤ ∆ can therefore be determined
given the truth values of ∥p− q∥2 ≤ ∆2 for all pairs (p, q) ∈ {p1, . . . , pm} × {q1, . . . , qk}.
We can write the points p, q ∈ Rd as tuples of their coordinates with p = (p(1), . . . , p(d))
and q = (q(1), . . . , q(d)). Then we have that ∥p− q∥2 ≤ ∆2 is equivalent to

∆2 −
d∑

i=1
(p(i) − q(i))2 ≥ 0.

The term ∆2 −
∑d

i=1(p(i) − q(i))2 is a polynomial of degree 2 in all its variables. So the
truth value of ∥p− q∥2 ≤ ∆2 can be determined by the sign value of one polynomial
of degree 2. There are in total mk possible choices for the pair (p, q). Let y ∈ Rdk+1

be the vector consisting of all coordinates of the vertices q1, . . . , qk and of the radius ∆.
Then RdH,k is a mk-combination of sgn(F) where F is a class of functions mapping from
Rdk+1 × (Rm)d to R so that, for all P ∈ (Rm)d and f ∈ F the function y → f(y,P) is
a polynomial on Rd of degree no more than 2. The VC-dimension bound follows directly
by applying Theorem 2.4.10.

In the discrete case, the VC-dimension for the Fréchet distance can be analyzed in
the same way as for the Hausdorff distance.

Theorem 3.2.2. Let RdF ,k be the range space of all balls under the discrete Fréchet
distance with ground set (Rd)m. Then, we have

V Cdim(RdF ,k) ≤ 2(dk+ 1) log2(24mk).

Proof. The proof is analogous to the proof of Theorem 3.2.1 given the fact that the
discrete Fréchet distance between two polygonal curves is uniquely defined by the distances
of the vertices of the two curves.

Theorem 3.2.3. Let RDT W ,k be the range space of all balls under the dynamic time
warping distance with ground set (Rd)m. Then V Cdim(RDT W ,k) is in

O(min(dk2 log(m), dkm log(k))).

Proof. Let P ∈ (Rm)d with vertices p1, . . . , pm and Q ∈ (Rk)
d with vertices q1, . . . , qk.

The truth value of dDT W (P ,Q) ≤ ∆ can be determined by the truth values of the
inequalities ∑(i,j)∈w∥pi − qj∥2 ≤ ∆ for all w ∈ W∗

m,k. This inequality is equivalent to

∆−
∑

(i,j)∈w

d∑
t=1

(pi,t − qj,t)
2 ≥ 0

42

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

for which the left side is a polynomial of degree 2 in all its variables. We get |W∗
m,k| ≤

(m+k−2
m−1) ≤ min{mk−1, km−1} by counting all possible optimal warping paths. Let

y ∈ Rdk+1 be the vector consisting of all coordinates of the vertices q1, . . . , qk and of the
radius ∆. Then RDT W ,k is a min{mk−1, km−1}-combination of sgn(F) where F is a class
of functions mapping from Rdk+1 × (Rm)d to R so that, for all P ∈ (Rm)d and f ∈ F
the function y → f(y,P) is a polynomial on Rd of constant degree. The VC-dimension
bound follows directly by the application of Theorem 2.4.10.

The analysis of the VC-dimension for the average Hausdorff distance is similar to the
analysis of the VC-dimension for DTW.

Theorem 3.2.4. Let RdaH,k be the range space of all balls under the average Hausdorff
distance centered at point sets in (Rd)k with ground set (Rd)m. Then, we have

V Cdim(RdaH,k) ≤ 2(dk+ 1) log2(24mkkm).

Proof. Let P ∈ (Rm)d with vertices p1, . . . , pm and Q ∈ (Rk)
d with vertices q1, . . . , qk.

Let Fm,k be the class of all injective functions mapping from {1, . . . ,m} to {1, . . . , k}.
The truth value of daH(P ,Q) ≤ ∆ can be determined by the truth values of

1
2

 1
m

m∑
i=1
∥pi − qf (i)∥2 +

1
k

k∑
j=1
∥qj − pg(j)∥2

 ≤ ∆

for all (f , g) ∈ (Fm,k,Fk,m). This inequality is equivalent to the sign value of a polynomial
of degree 2 in all its variables. We have |Fm,k| = mk. Therefore RdaH,k is a (mkkm)-
combination of sgn(F) where F is a class of functions mapping from Rdk+1 × (Rm)d to
R so that, for all P ∈ (Rm)d and f ∈ F the function y → f(y,P) is a polynomial on Rd

of degree no more than 2. The VC-dimension bound follows directly by the application
of Theorem 2.4.10.

3.3 Predicates

To bound the VC-dimension of range spaces of the form Rρ,k in the continuous setting
we define geometric predicates for distance queries with dρ. These predicates can, for
example, consist of checking the distances of geometric objects or checking if some
geometric intersections exist. They have to be chosen in a way that the query can be
decided based on their truth values. We will show that our predicates can be viewed as
combinations of simple predicates.

Definition 3.3.1. Let F be a class of functions mapping from Rdm ×Rdk+1 to R so
that, for all f ∈ F the function (x, y)→ f(x, y) is a polynomial of constant degree. Let
P be a function from Rdm×Rdk+1 to {0, 1}. We say that the predicate P is simple if P
is a t-combination of sgn(F) with t ∈ O(1). We further say that an inequality is simple
if its truth value is equivalent to a simple predicate.

In our proof of the VC-dimension bounds, we will use the following corollary to
Theorem 2.4.10.

Corollary 3.3.2. Suppose that for a given dρ there exists a polynomial p(k,m) such
that for any k,m ∈N the space Rρ,k with ground set Rdm is a p(k,m)-combination of
simple predicates. Then V Cdim(Rρ,k) is in O(dk log(km)).

43

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

3.3.1 Encoding of the input

To state the predicates, we introduce additional notation. Following [57], we define
the following basic geometric objects. Let s, t ∈ Rd be two points and ∆ ∈ R+

be the radius. We denote with ℓ(st) the line supporting st. We define the stadium,
cylinder and capped cylinder centered at st with radius ∆ as D∆(st) = {x ∈ Rd | ∃p ∈
st, ∥p− x∥ ≤ ∆}, C∆(st) = {x ∈ Rd | ∃p ∈ ℓ(st), ∥p− x∥ ≤ ∆} and R∆(st) = {p+ u ∈
Rd | p ∈ st and u ∈ Rd s.t. ∥u∥ ≤ ∆, and ⟨t− s,u⟩ = 0}. We define the hyperplane
through s with normal vector st as P (st) = {x ∈ Rd | ⟨x − s, s − t⟩ = 0}. Let
e1, e2 ∈ Xd

2 be two edges. We define the double stadium of the edges e1 and e2 with
radius ∆ as D∆,2(e1, e2) = D∆(e1) ∩D∆(e2). Let p = (p1, p2) ∈ R2. We denote with
hr(p) = {(x1,x2) ∈ R2 | x1 ≥ p1,x2 = p2} the horizontal ray starting at p.

For two polygonal curves P ∈ Rdm and Q ∈ Rdk and a radius ∆, each predicate is a
function mapping from Rdm×Rdk+1 to {0, 1} that receives the input (P , (Q, ∆)). In the
case of polygonal regions that may contain holes, we map from R3m ×R3k+1 since we
add a label that associates each vertex with its boundary component. Other encodings
are possible but would only influence the constant in the VC-dimension bound.

3.3.2 Polygonal curves

Let P ∈ Xd
m with vertices p1, . . . , pm and Q ∈ Xd

k with vertices q1, . . . , qk be two polygonal
curves. Let further ∆ ∈ R+. By [57] the Hausdorff distance query dH(P ,Q) ≤ ∆ is
uniquely determined by the following predicates:

• (P1): Given an edge of P , pjpj+1, and a vertex qi of Q, this predicate returns true
iff there exists a point p ∈ pjpj+1, such that ∥p− qi∥ ≤ ∆.

• (P2): Given an edge of Q, qiqi+1, and a vertex pj of P , this predicate returns true
iff there exists a point q ∈ qiqi+1, such that ∥q− pj∥ ≤ ∆.

• (P3): Given an edge of Q, qiqi+1, and two edges of P , {e1, e2} ⊂ E(P), this
predicate is equal to ℓ(qiqi+1) ∩D∆,2(e1, e2) ̸= ∅.

• (P4): Given an edge of P , pjpj+1, and two edges of Q, {e1, e2} ⊂ E(Q), this
predicate is equal to ℓ(pjpj+1) ∩D∆,2(e1, e2) ̸= ∅.

Lemma 3.3.3 (Lemma 7.1, [57]). For any two polygonal curves P ,Q, given the truth
values of all predicates of the type P1,P2,P3,P4 one can determine whether dH(P ,Q) ≤ ∆.

By [57] the Fréchet distance query dF (P ,Q) ≤ ∆ is uniquely determined by the
predicates (P1), (P2) and the following predicates:

• (P5): This predicate returns true if and only if ∥p1 − q1∥ ≤ ∆.

• (P6): This predicate returns true if and only if ∥pm − qk∥ ≤ ∆.

• (P7): Given two vertices of P , pj and pt with j < t and an edge of Q, qiqi+1, this
predicate returns true if there exist two points a1 and a2 on the line supporting
the directed edge, such that a1 appears before a2 on this line, and such that
∥a1 − pj∥ ≤ ∆ and ∥a2 − pt∥ ≤ ∆.

44

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

A

p

C

B

vv(A,B,C)

ve(B,C)ve(A,C)

ve(A,B)

Figure 3.1: Degenerate case: vv(A,B,C) consist of a whole arc and ve(A,B) contains a
region.

• (P8): Given two vertices of Q, qi and qt with i < t and an edge of P , pjpj+1, this
predicate returns true if there exist two points a1 and a2 on the line supporting
the directed edge, such that a1 appears before a2 on this line, and such that
∥a1 − qi∥ ≤ ∆ and ∥a2 − qt∥ ≤ ∆.

Lemma 3.3.4 (Lemma 7.1, [2]). For any two polygonal curves P ,Q, given the truth
values of all predicates of the type P1,P2,P5,P6,P7,P8 one can determine whether
dF (P ,Q) ≤ ∆.

Lemma 3.3.5 (Lemma 8.2, [57]). For any two polygonal curves P ,Q, given the truth
values of all predicates of the type P1,P2,P5,P6 one can determine whether dwF (P ,Q) ≤
∆.

3.3.3 Polygonal regions

In the case of polygonal regions that may contain holes, we define some of the predicates
based on the Voronoi vertices of the edges of the boundary of the polygonal region. Since
degenerate situations can occur if Voronoi sites intersect, we restrict the predicates to
the subset of the Voronoi vertices that are relevant to our analysis.

Relevant Voronoi vertices

If A,B and C are line segments and A and B intersect in a point p, it can happen that
there are Voronoi vertices in vv(A,B,C) for which the closest point in A and B is p.
This may result in degenerate cases where a whole arc of the Voronoi diagram consists of
Voronoi vertices and a region is part of a Voronoi edge (see Figure 3.1). For our distance
queries, we are only interested in extreme points of the distance to the sites. These are
Voronoi vertices that are not degenerate. We define the relevant Voronoi vertices as
the Voronoi vertices for which the distance of the vertices to the sites is realized by at
least three distinct points, i.e.

rvv(A,B,C) =
{
p ∈ vv(A,B,C)

∣∣∣∣∣ ∃a, b, c ∈ A,B,C s.t. a ̸= b ̸= c ̸= a and
d−→

H
(p, a) = d−→

H
(p, b) = d−→

H
(p, c) = d−→

H
(p,A∪B ∪C)

}

45

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

p

Q

P

q

Figure 3.2: Illustration of the two cases: The point p on the boundary of P maximizes
d−→

H
(p,Q). The point q in the interior of Q that is a Voronoi vertex of the edges of P

maximizes d−→
H
(q,P).

Additionally, we introduce the notion of Voronoi-vertex-candidates. Let a = a1a2, b = b1b2
and c = c1c2 be edges of a polygonal region that may contain holes. Consider their
vertices and supporting lines A = {a1, a2, ℓ(a)}, B = {b1, b2, ℓ(b)} and C = {c1, c2, ℓ(c)}.
Let X ∈ A, Y ∈ B and Z ∈ C. If either X,Y or Z is a subset of one of the others, we
set V0(X,Y ,Z) = ∅ otherwise let

V0(X,Y ,Z) = {v ∈ R2 | d−→
H
(v,X) = d−→

H
(v,Y) = d−→

H
(v,Z)}

be the set of points with the same distance to all sets X,Y and Z. The set of Voronoi-
vertex-candidates V (a, b, c) of the line segments a, b and c is defined as the union over
all points that have the same distance to fixed elements of A, B and C, i.e.

V (a, b, c) =
⋃

X∈A,Y ∈B,Z∈C

V0(X,Y ,Z).

Note that the Voronoi-vertex-candidates V (a, b, c) contain all relevant Voronoi vertices
rvv(a, b, c) because a relevant Voronoi vertex v has the same distance to all three edges
and for each edge, the distance to v is either realized at one of the endpoints of the edge
or at the orthogonal projection of v to the supporting line of the edge.

Additional predicates

Let P and Q be two polygonal regions that may contain holes. Let further ∆ ∈ R+. In
this section, we give predicates such that the Hausdorff distance query dH(P ,Q) ≤ ∆ is
determined by them. The query depends on the two queries for the directed Hausdorff
distances d−→

H
(P ,Q) ≤ ∆ and d−→

H
(Q,P) ≤ ∆. We show, how to determine d−→

H
(P ,Q) ≤ ∆,

the other direction is analogous. The distance d−→
H
(p,Q) for points p ∈ P can be maximized

at points in the interior of P or at points at the boundary of P (see Figure 3.2 for the
two cases). Since these cases are different to analyze, we split the query into two general
predicates.

• (B) (Boundary): This predicate returns true if and only if d−→
H
(∂P ,Q) ≤ ∆.

• (I) (Interior): This predicate returns true if d−→
H
(P ,Q) ≤ ∆. This predicate returns

false if d−→
H
(P ,Q) > d−→

H
(∂P ,Q) and d−→

H
(P ,Q) > ∆.

46

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

P2 P4

p

e1

e2

pj
pj+1

`(pjpj+1)q e1

Figure 3.3: Illustration of the predicates P2,P4 : In both depicted cases the corresponding
predicates are true.

Note that it is not defined what the predicate (I) returns if d−→
H
(P ,Q) = d−→

H
(∂P ,Q)

and d−→
H
(P ,Q) > ∆. This does not matter, since the correctness of d−→

H
(P ,Q) ≤ ∆ is still

equivalent to both (B) and (I) being true.
Since (B) and (I) are very general, we define more detailed predicates that can be

used to determine feasible truth values of (B) and (I). To determine (B), we need the
following predicates in combination with P2 and P4 defined in Section 3.3.2:

• (P9): Given a vertex p of P , this predicate returns true if and only if p ∈ Q.

• (P10): Given an edge e1 of P and an edge e2 of Q, this predicate is equal to
e1 ∩ e2 ̸= ∅.

• (P11): Given a directed edge e1 of P and two edges e2 and e3 of Q, this predicate
is true if and only if e1 ∩ e2 ̸= ∅, e1 ∩ e3 ̸= ∅ and e1 intersects e2 before or at the
same point that it intersects e3.

• (P12): Given a directed edge e1 of P and two edges e2 and e3 of Q, this predicate
is true if and only if e1 ∩ e2 ̸= ∅ and if there exists a point b on e3 such that
∥a− b∥ ≤ ∆ where a is the first intersection point of e1 ∩ e2.

• (P13): Given a directed edge e1 of P and two edges e2 and e3 of Q, this predicate
is true if and only if e1 ∩ e2 ̸= ∅ and if there exists a point b on e3 such that
∥a− b∥ ≤ ∆ where a is the last intersection point of e1 ∩ e2.

Using Voronoi-vertex-candidates, we define the detailed predicates for determining (I):

• (P14): Given 4 edges e1, e2, e3, e4 of Q and a point v from the set of Voronoi-
vertex-candidates V (e1, e2, e3), this predicate returns true if and only if there exists
a point p ∈ e4, such that ∥v− p∥ ≤ ∆.

• (P15): Given 3 edges e1, e2, e3 of Q and a point v from the set of Voronoi-vertex-
candidates V (e1, e2, e3), this predicate returns true if and only if v ∈ Q.

• (P16): Given 3 edges e1, e2, e3 of Q and a point v from the set of Voronoi-vertex-
candidates V (e1, e2, e3), this predicate returns true if and only if v ∈ P .

Examples for the predicates P2 and P4 for polygonal regions are depicted in Figure 3.3.
Examples for the predicates P9, . . .P16 are depicted in Figure 3.4.

47

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

P9 P10 P11

P12/P13 P12 P13

P14 P15 P16

p
e1

e2

e1

e2 e3

e1

e2

e3

ba

e1

e2

e3
e1

e2

e3a b a b

v v v

p

e1 e2

e3e4

e1 e2

e3

e1 e2

e3

Figure 3.4: Illustration of the predicates P9, . . . ,P16 : In all depicted cases the corre-
sponding predicates are true.

Lemma 3.3.6. For any two polygonal regions P ,Q that may contain holes, given the truth
values of all predicates of the type P2,P4,P9,P10,P11,P12 and P13 one can determine a
feasible truth value for a predicate of type (B).

Proof. To determine (B) it suffices to check for each edge e of P if d−→
H
(e,Q) ≤ ∆. If this

is true for all edges, we return true, otherwise false. Let e = uv be an edge of P . We
first determine which points of e lie outside of Q. The P9 for the point u, tells us if u
lies in Q. Checking P10 and P11 for e and all edges (respectively pairs of edges) of Q
then determines which edges of Q get intersected and in which order they get intersected.
Each intersection changes the state of the edge e between lying inside and outside of Q.
So in total, we get a sequence of intersections of edges with Q where we know for each
part between two consecutive intersections, if this part is inside or outside of Q.

Let one subset s = s1s2 of e be given that is defined by two edges e1 and e2 of Q that
intersect e consecutively. If s lies inside of Q then we have d−→

H
(s,Q) = 0. If s lies outside

of Q then we claim that d−→
H
(s,Q) ≤ ∆ if and only if there exists a sequence of edges

qj1qj1+1, qj2qj2+1, . . . , qjtqjt+1 for some integer value t, such that P13(e, e1, qj1qj1+1) and

48

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

P12(e, e2, qjtqjt+1) evaluate to true and the conjugate

t−1∧
i=1
P4(e, qjiqji+1, qji+1qji+1+1)

evaluates to true. The proof of this claim is analogous to the key part of the proof of
Lemma 7.1 in [57]. We include a full proof of the claim here for the sake of completeness.

Assume such a sequence qj1qj1+1, . . . , qjtqjt+1 exists. In this case, there exists a
sequence of points a1, . . . , at on the line supporting s, with a1 = s1, at = s2, and such
that for 1 ≤ i < t, ai, ai+1 ∈ D∆(qjiqji+1). That is, two consecutive points of the
sequence are contained in the same stadium. Indeed, for i = 1, we have that there
exists points a1, a2 with the needed properties since the predicates P13(e, e1, qj1qj1+1)
and P4(e, qj1qj1+1, qj2qj2+1) evaluate to true. Likewise, for i = t− 1, it is implied by the
corresponding P12 and P4 predicates and for the remaining 1 < i < t− 1 it follows from
the corresponding P4 predicates. Now, since each stadium is a convex set, it follows that
each line segment connecting two consecutive points of this sequence ai, ai+1 is contained
in one of the stadiums. Note that the set of line segments obtained this way forms a
connected polygonal curve which fully covers the line segment s. It follows that

s ⊆
⋃

0≤i<t

aiai+1 ⊆
⋃

0≤i<t

D∆(qjiqji+1)

Therefore, any point on s is within distance ∆ of some point on Q and thus d−→
H
(s,Q) ≤ ∆

For the other direction of the proof, assume that d−→
H
(s,Q) ≤ ∆. Let E(Q) be the set

of all edges of Q The definition of the directed Hausdorff distance implies that

s ⊆
⋃

e∈E(Q)

D∆(e)

since any point on the line segment s must be within distance ∆ of some point on the
curve Q. Consider the intersections of the line segment s with the boundaries of stadiums

s∩
⋃

e∈E(Q)

∂D∆(e).

Let w be the number of intersection points and let l = w+ 2. We claim that this implies
that there exists a sequence of edges qj1qj1+1, qj2qj2+1, . . . , qjtqjt+1 with the properties
stated above. let a1 = s2, at = s2 and let ai for 1 < i < t be the intersection points
ordered in the direction of the line segment s. By construction, it must be that each ai

for 1 < i < t is contained in the intersection of two stadiums, since it is the intersection
with the boundary of a stadium and the entire edge is covered by the union of stadiums.
Moreover, two consecutive points ai, ai+1 are contained in exactly the same subset of
stadiums - otherwise there would be another intersection point with boundary of a
stadium in between ai and ai+1. This implies a set of true predicates of type P4 with
the properties defined above. The predicates of type P12 and P13 follow trivially from
the definitions of s1, s2 and the directed Hausdorff distance. This concludes the proof of
the other direction.

It remains to consider the first and last parts of e. Let s be a subset of e defined by
its boundaries s1, s2 where one of the boundaries is one of the vertices u and v of e and
the other boundary is the closest intersection of e with an edge of Q or (if this does not
exist) the other vertex of e. The proof for this case is analogous to the previous case. It

49

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

v
v

v
v v

v

v
v

a) b) c)

Figure 3.5: Illustration of the different cases in the proof of Lemma 3.3.7. It is demon-
strated how v can be moved to either increase the distance to Q (a) or to stay in the
same distance to Q (b,c).

only needs predicates of type P2 for u and v instead of the respective predicates of type
P13 and P12.

Lemma 3.3.7. For any two polygonal regions P ,Q, given the truth values of all predicates
of the type P14,P15 and P16 one can determine a feasible truth value for a predicate of
type (I).

Proof. We claim that, if d−→
H
(P ,Q) > d−→

H
(∂P ,Q) and d−→

H
(P ,Q) > ∆, then there has

to be a point v in the interior of P that maximizes the Hausdorff distance to Q (i.e.
d−→

H
(v,Q) = maxp∈P (d−→

H
(p,Q))) and that is a relevant Voronoi vertex of the edges of

Q. Before we prove the claim, we show that it implies the statement of the lemma. It
follows from the claim that in case of d−→

H
(P ,Q) > d−→

H
(∂P ,Q) and d−→

H
(P ,Q) > ∆ there

is a relevant Voronoi vertex v that lies in P and outside of Q with d−→
H
(v, e) > ∆ for

all edges e of Q. The predicates P14,P15 and P16 check exactly these properties for a
superset of the relevant Voronoi vertices of the edges of Q. So, we set (I) to false, if and
only if there is a vertex in this superset that fulfills P16, does not fulfill P15 and does
not fulfill P14 for any edge of Q. Since all relevant Voronoi vertices are checked, (I) will
be set to false in all relevant cases. On the other hand, if we have d−→

H
(P ,Q) ≤ ∆, then

there will be no point that is in P , outside of Q and has distance greater ∆ to all edges
of Q and (I) is set to true. It remains to show the claim.

We prove the claim by contradiction. We assume that d−→
H
(P ,Q) > ∆ and d−→

H
(P ,Q) >

d−→
H
(∂P ,Q) and that none of the points in the interior of P that maximize the Hausdorff

distance to Q is a relevant Voronoi vertex of the edges of Q. Let v ∈ P be a point
maximizing d−→

H
(v,Q). Assume that v lies in the Voronoi region of an edge e of Q. Then

d−→
H
(v,Q) can be increased by moving v in perpendicular direction away from e (see

Fig. 3.5a)). This would contradict that v maximizies d−→
H
(v,Q). So instead, assume that

v lies on the Voronoi edge defined by the Voronoi regions of two edges e1 and e2 of Q and
that v is not a relevant Voronoi vertex. If e1 and e2 are not parallel, then it can be shown
with a straightforward case analysis that there is a direction in which v can be moved
along the Voronoi diagram to increase d−→

H
(v,Q) (see Fig. 3.5a)). The direction depends

on the the closest points v1, v2 to v on e1, e2. If v1 and v2 are perpendicular projections of
v to e1 and e2, then v can be moved along the angle bisector of e1 and e2 away from the
intersection of ℓ(e1) and ℓ(e2). If only one of v1 and v2 is not a perpendicular projection,

50

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

then v can be moved along the parabola defined by v1 and e2 (or v2 and e1) in both
directions. If both v1 and v2 are not a perpendicular projection, then v can be moved
in any direction d with ⟨v − v2, d⟩ ≥ 0 and ⟨v − v1, d⟩ ≥ 0. If e1 and e2 are parallel, it
can happen that locally d−→

H
(p,Q) stays constant for moving v along the Voronoi edge

in both directions until either a relevant Voronoi vertex is reached (see Fig. 3.5b)), the
boundary of P is reached (see Fig. 3.5c)) or the orthogonal projection of v to either one
of the edges e1 and e2 reaches an endpoint of the respective edge (see Fig. 3.5b)). In all
three cases, we get a contradiction. The first case contradicts the assumption that there
is no relevant Voronoi vertex v that maximizes d−→

H
(v,Q), the second case contradicts

the assumption that d−→
H
(P ,Q) > d−→

H
(∂P ,Q) and in the third case d−→

H
(p,Q) would start

increasing and contradict that v maximizes d−→
H
(v,Q).

3.4 The predicates are simple

It remains to show that the predicates defined in Section 3.3.2 and 3.3.3 can be determined
by a polynomial number of simple predicates. Corollary 3.3.2 then implies that all
considered range spaces have V Cdim(Rρ,k) in O(dk log(km)).

3.4.1 Technical lemmas

In this section, we establish some general lemmas that will help us to show that predicates
can be determined by a polynomial number of simple predicates. We first introduce some
new notation.
Definition 3.4.1. Let d ∈ N. We call a function f : Rd → R well behaved if f
is a linear combination of constantly many rational functions of constant degree. Let
x1 ∈ Rd1 , . . . xi ∈ Rdi with

∑i
j=1 dj = d. Let X = {x1, . . . xi} and x be the concatenation

of x1, . . . ,xi. We denote f(x) also with f(x1, . . . ,xi) or f(X).
For many of our predicates, we have to determine the order of two points on a line.

For example, when we check if the intersections of a line with other geometric objects
overlap. The following lemma shows that determining the order is simple.
Lemma 3.4.2. Let d ∈N. Let P ⊂ Rd be a finite set of points and p, q ∈ P . Consider
two points v and w on the line ℓ(pq) given by

v = p+ t1(P)(q− p)
w = p+ t2(P)(q− p)

with ti(P) = ai(P) + bi(P)
√
ci(P) where ai, bi and ci are well behaved functions for

i ∈ {1, 2}. It is a simple predicate to determine the order of v and w in direction (q− p).
Note that the order in Lemma 3.4.2 can be decided by solving t1(P) ≥ t2(P). So

Lemma 3.4.2 directly follows from the following more general lemma.
Lemma 3.4.3. Consider the 3 inequalities

a(x) ≥ 0 (3.1)

b

(
x,
√
c(x),

√
d(x)

)
≥ 0 (3.2)

e

(
x,
√
f(x),

√
g

(
x,
√
f(x)

))
≥ 0 (3.3)

51

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

for well behaved functions a, b, c, d, e, f , g. The following statements hold:

1. Inequality (3.1) is simple.

2. Inequality (3.2) is simple if c(x) ≥ 0 and d(x) ≥ 0.

3. Inequality (3.3) is simple if f(x) ≥ 0 and g(x,
√
f(x)) ≥ 0.

Observe that the inequalities c(x) ≥ 0, d(x) ≥ 0 and f(x) ≥ 0 are simple by the first
statement and g(x,

√
f(x)) ≥ 0 is simple by the second statement.

Proof of Lemma 3.4.3. 1. If we multiply both sides of the inequality a(x) ≥ 0 by the
square of the product of all denominators of the rational functions in a, then we get an
equivalent inequality that only consists of a polynomial of constant degree on the left
side and 0 on the right side. This inequality is by definition simple.

2. If we also here multiply both sides of the inequality b
(
x,
√
c(x),

√
d(x)

)
≥ 0 by

the square of the product of all denominators of the rational functions in b, then we get
an equivalent inequality

b0

(
x,
√
c(x),

√
d(x)

)
≥ 0

where b0 is a polynomial of constant degree. If we rearrange the terms in b0 we get an
equivalent inequality

b1(x) + b2(x)
√
c(x)

√
d(x) ≤ b3(x)

√
c(x) + b4(x)

√
d(x) (3.4)

where b1, b2, b3 and b4 are polynomials of constant degree. To show that (3.4) is simple, we
first show that the sign values of both sides of (4) are determined by simple inequalities.
To check the sign of the left side

b1(x) + b2(x)
√
c(x)

√
d(x) ≥ 0 (3.5)

we have to check the signs of b1(x) and b2(x). Since b1 and b2 are polynomials of constant
degree, their signs are determined by a simple inequality. If sgn(b1(x)) = sgn(b2(x))
then the truth value of (3.5) is directly implied. Otherwise, we can square both sides of

b2(x)
√
c(x)

√
d(x) ≥ −b1(x)

and (3.5) is equivalent to
b2(x)

2c(x)d(x) ≥ b1(x)
2.

After rearranging, this is a simple inequality because it has the same form as (3.1). The
check for the sign value of the right side of (3.4) is analogous. If the sign values of the
two sides differ, we get an immediate solution for the truth value of (3.4). Otherwise we
square both sides and (3.4) is equivalent to

b1(x)
2 + b2(x)

2c(x)d(x) + 2b1(x)b2(x)
√
c(x)

√
d(x) ≤

b3(x)
2c(x) + b4(x)

2d(x) + 2b3(x)b4(x)
√
c(x)

√
d(x) (3.6)

Multiplying both sides of (3.6) by the square of the product of all denominators of the
rational functions in c and d and then rearranging the terms gives an equivalent inequality

b5(x) + b6(x)
√
c(x)

√
d(x) ≥ 0.

52

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

where b5 and b6 are polynomials of constant degree. This inequality is simple as it has
the same form as (3.5). In total, inequality (3.2) is simple as a constant combination of
simple predicates.

3. The structure of the proof of the third statement is very similar to the structure of
the proof of the second statement. We still include the details here for completeness.

If we multiply both sides of inequality e

(
x,
√
f(x),

√
g
(
x,
√
f(x)

))
≥ 0 by the

square of the product of all denominators of the rational functions in e and rearrange
some terms, then we get an equivalent inequality

e1(x) + e2(x)
√
f(x) ≤ e3(x)

√
g

(
x,
√
f(x)

)
+ e4(x)

√
f(x)

√
g

(
x,
√
f(x)

)
(3.7)

where e1, e2, e3 and e4 are polynomials of constant degree. We again show that the sign
values of both sides of (3.7) are determined by a simple inequality. The check of the left
side is analogous to checking inequality (3.5). To check the right side

e3(x)

√
g

(
x,
√
f(x)

)
+ e4(x)

√
f(x)

√
g

(
x,
√
f(x)

)
≥ 0 (3.8)

we have to check the signs of e3(x) and e4(x). Since e3 and e4 are polynomials of constant
degree, their signs are determined by a simple inequality. If sgn(e3(x)) = sgn(e4(x))
then the truth value of (3.5) is directly implied. Otherwise, we can square both sides of

−e3(x)

√
g

(
x,
√
f(x)

)
≤ e4(x)

√
f(x)

√
g

(
x,
√
f(x)

)
to get that (3.8) is equivalent to

e3(x)
2g

(
x,
√
f(x)

)
≤ e4(x)

2f(x)g

(
x,
√
f(x)

)
. (3.9)

After rearranging, this is a simple inequality because it has the same form as (3.2). If
the sign values of the two sides of inequality (3.3) differ, we get an immediate solution
for it. Otherwise, we get the following equivalent inequality by squaring both sides:

e1(x)
2 + e2(x)

2f(x) + 2e1(x)e2(x)
√
f(x) ≤

e3(x)
2g

(
x,
√
f(x)

)
+ e4(x)

2g

(
x,
√
f(x)

)
+ e3(x)e4(x)

√
f(x)g

(
x,
√
f(x)

)
. (3.10)

Rearranging the terms in (3.10) gives an inequality

e0(x,
√
f(x)) ≥ 0

where e0 is a well behaved function. Since this inequality is a special case of inequality
(3.2) it is simple.

In general, we have to deal with different types of points as part of the predicates.
We classify them in the following way.

Definition 3.4.4. Let d ∈ N and ∆ ∈ R+. Let P ⊂ Rd be a finite set of points and
p, q ∈ P . Let further v ∈ Rd. We say that v is a point of root-type 1, 2 or 3 with
respect to P if and only if the coordinates of v = (v1, . . . , vd) can be written as

53

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

1. vi = ai(P)

2. vi = bi

(
P ,
√
c(P),

√
d(P)

)
3. vi = ei

(
P ,
√
f(P),

√
g
(
P ,
√
f(P)

))

where ai, bi, c, d, ei, f , g are well behaved functions for all i with c(P) ≥ 0, d(P) ≥ 0,
f(P) ≥ 0 and g

(
P ,
√
f(P)

)
≥ 0.

Lemma 3.4.5. Let a = a1a2, b = b1b2 and c = c1c2 be edges of a polygonal region
that may contain holes. Let P = {a1, a2, b1, b2, c1, c2}. All points in the set of Voronoi-
vertex-candidates V (a, b, c) are of root-type 1, 2 or 3 with respect to P . There is only
a constant number of combinations of well behaved functions that can define a point in
V (a, b, c) (by using these functions as the well behaved functions in Definition 3.4.4).
These combinations are uniquely determined by a, b and c. For each combination, it is a
simple predicate to check if it defines a point in V (a, b, c).

Proof. Consider the sets A = {a1, a2, ℓ(a)}, B = {b1, b2, ℓ(b)} and C = {c1, c2, ℓ(c)}.
Let X ∈ A, Y ∈ B and Z ∈ C. This combination of X,Y and Z only contributes points
to V (a, b, c) if neither of X,Y and Z is a subset of one of the others. This can be checked
with a simple predicate by Lemma 3.4.3: To check if two points (u1,u2) and (v1, v2) are
the same, we need to check if u1 = v1 and u2 = v2. Checking an equation (=) can be
done by checking both inequalities (≤) and (≥). Checking if a point (u1,u2) lies on a
line ℓ(vw) with v = (v1, v2) and w = (w1,w2) can be done by checking if there exists a t
such that (

v1
v2

)
+ t

(
w1 − v1
w2 − v2

)
=

(
u1
u2

)
.

This is equivalent to the following equation being true.

v2 +
u1 − v1
w1 − v1

(w2 − v2) = u2

To check if two lines ℓ(pq) and ℓ(vw) coincide, we have to check if p is on the line ℓ(vw)
as before and additionally if the lines have the same slope. This can be done by checking
the truth value of p2−q2

p1−q1
= v2−w2

v1−w1
.

If the checks determine that one of X,Y and Z is the subset of one of the others,
then all combinations of well behaved functions based on the combination X,Y ,Z can
be ignored. Otherwise, we have 4 different cases for the types of objects X,Y ,Z. It can
be that there are 3 points, 2 points and 1 line, 1 point and 2 lines or 3 lines. Consider
the biscetors of the pairs (X,Y), (X,Z) and (Y ,Z). The Voronoi-vertex-candidates are
the intersections of these bisectors. It suffices to find the intersections of two bisectors,
since the third one intersects the other two in the same points (by definition).

Case 1 (3 points): The bisector of the 3 points u = (u1,u2), v = (v1, v2) and
w = (w1,w2) intersect if the points are not colinear. This is just a simple predicate to
check, as we have seen before by checking if u lies on the line ℓ(vw). Assume u, v and w
are not colinear. Then the bisector of u and v parameterized in s is given by

ℓ1(s) =
1
2

(
u1 + v1
u2 + v2

)
+ s

(
v2 − u2
u1 − v1

)

54

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

and the bisector of w and v parameterized in t is given by

ℓ2(s) =
1
2

(
w1 + v1
w2 + v2

)
+ t

(
v2 −w2
w1 − v1

)
.

So if we set ℓ1(s) = ℓ2(t), we get two linear equations with the two variable s and t of
the form

f(P) + g(P)s+ h(P)t = 0
where f , g,h are well behaved functions. Since the points were not colinear, the solution
for t is a uniquely determined well behaved function and therefore the intersection point
of the bisectors is a point of root-type 1.

Case 2 (2 points, 1 line): Note that a line between two points in P can be written
as

f1(P)x+ f2(P)y+ f3(P) = 0
where f1, f2, f3 are well behaved functions. The bisector between such a line and a point
(u1,u2) is given by the parabola

f1(P)x+ f2(P)y+ f3(P)

f1(P)2 + f2(P)2 = (x− u1)
2 + (y− u2)

2. (3.11)

For the bisector of two points u = (u1,u2) and (v1, v2) parameterized in t, we have as
before

x =
1
2 (u1 + v1) + t(v2 − u2) (3.12)

y =
1
2 (u2 + v2) + t(u1 − v1) (3.13)

Inserting (3.12) and (3.13) into (3.11) gives a quadratic equation in t with solutions of
the form

t1/2 = g1(P)±
√
g2(P)

where g1, g2 are well behaved functions. If g2(P) < 0 then there is no intersection. This
can be checked with a simple predicate by Lemma 3.4.3. Otherwise, the (up to two)
intersections of the two bisectors are points of root-type 2.

Case 3 (1 point, 2 lines): In this case it can happen that the 2 lines are parallel.
We have already shown that it can be checked by a simple predicate if the two lines have
the same slope. Let the two lines be ℓ(pq) and ℓ(vw) with p = (p1, p2), q = (q1, q2),
v = (v1, v2) and w = (w1,w2).

Case 3.1 (2 lines are parallel): The bisector of ℓ(pq) and ℓ(vw) parameterized in
t is given by

x =
1
2 (p1 + v1) + t(p1 − q1)

y =
1
2 (p2 + v2) + t(p2 − q2)

So analogous to Case 2, the existence of an intersection of such a bisector with a parabola
of the form (3.11) is a simple predicate and if an intersection exists, the (up tp two)
intersections are points of root-type 2.

Case 3.2 (2 lines are not parallel): The bisector of ℓ(pq) and ℓ(vw) is the union of
their two angle bisectors. The angle bisectors are uniquely determined by the intersection

55

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

point of ℓ(pq) and ℓ(vw) and their slopes. Analogous to Case 1, it can be seen that
the intersection of ℓ(pq) and ℓ(vw) is a point (g1(P), g2(P)) where g1 and g2 are well
behaved functions. Let m′ and m′′ be the slopes of ℓ(pq) and ℓ(vw). The angle of two
lines with slope m′ and m′′ is given by tan−1(m′−m′′

1+m′m′′). Since the angle bisectors have
the same angle to both of the lines just with different sign, we get for the slope m of an
angle bisector that

m−m′

1 +mm′ = −
m−m′′

1 +mm′′

Solving this equation for m gives two solutions of the form

m1/2 = g3(P)±
√
g4(P)

where g3 and g4 are well behaved functions with g4(P) ≥ 0. So in total the angle bisectors
are given by

x = g1(P) + t (3.14)

y = g2(P) + t(g3(P))±
√
g4(P) (3.15)

For each of the angle bisectors, inserting (3.14) and (3.15) in (3.11) gives a quadratic
equation in t of the form

t2h1(P ,
√
g4(P)) + th2(P ,

√
g4(P)) + h3(P ,

√
g4(P))

where h1,h2,h3 are well behaved functions. The solutions for t therefore have the form

t1/2 = h4(P ,
√
g4(P))±

√
h5(P ,

√
g4(P))

where h4,h5 are well behaved functions. If h5(P ,
√
g4(P)) < 0, then there is no intersec-

tion. This is simple by Lemma 3.4.3. Otherwise, the (up to two) intersections are points
of root-type 3. In total, there can be up to four intersections because there are two angle
bisectors.

Case 4 (3 lines): As we have seen before, all occurring bisectors are unions of (up
to two) lines of the form given in (3.14) and (3.15). Note that the bisector of two parallel
lines can also be realized in that way by setting g4(P) = 0. Consider the intersection of
two of these bisectors ℓ1(s) and ℓ2(t) where

ℓ1(s) =

(
f1(P)
f2(P)

)
+ s

(
1

f3(P) +
√
f4(P)

)

and

ℓ2(t) =

(
g1(P)
g2(P)

)
+ t

(
1

g3(P) +
√
g4(P)

)
with f1−4, g1−4 being well behaved functions, f4(P) ≥ 0 and g4(P) ≥ 0. If we set
ℓ1(s) = ℓ2(t), we get a system of two linear equations in s and t. The system has a unique
solution if f3(P) +

√
f4(P) ̸= g3(P) +

√
g4(P). Otherwise, there is no intersection (since

the lines X,Y ,Z may not have the same slope). The Inequality is simple by Lemma 3.4.3.
If there is a solution for t it has the form

t = h(P ,
√
f4(P),

√
g4(P))

56

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

where h is a well behaved function. So the intersection is a point of root-type 2. The
proof is analogous if one or two of the considered bisectors have a minus in (3.15).

A reoccurring predicate is the decision if a given point is within a given distance to a
given edge. We show in the following lemma that such predicates are simple.

Lemma 3.4.6. Let d ∈ N and ∆ ∈ R+. Let P ⊂ Rd be a finite set of points and
p, q ∈ P . Let further v ∈ Rd. Let P be the predicate to decide if there exists a point
u ∈ pq such that ∥u− v∥ ≤ ∆. P is simple if v is a point of root-type 1, 2 or 3 w.r.t. P .

Proof. The truth value of the predicate P can be determined by checking if v is in the
stadium D∆(pq). For this check, it suffices to check if v is in at least one of B∆(p), B∆(q)
and R∆(pq). For B∆(p) and B∆(q) ,we have to check the inequalities

∆2 − ∥v− p∥2 ≥ 0 (3.16)
∆2 − ∥v− q∥2 ≥ 0. (3.17)

To check if v ∈ R∆(pq) consider the closest point s to v on the line ℓ(pq). The truth
value of

∆2 − ∥s− v∥2 ≥ 0 (3.18)
uniquely determines if v is in the cylinder C∆(pq). The truth values of

∥p− q∥2 − ∥p− s∥2 ≥ 0, (3.19)
∥p− q∥2 − ∥q− s∥2 ≥ 0 (3.20)

further determine if s is on the edge pq. So the truth values of the inequalities (3.18),
(3.19) and (3.20) determine the truth value of v ∈ R∆(pq). The closest point to v on the
line ℓ(pq) is

s = p+
(p− q)⟨(p− q), v⟩

∥p− q∥2
.

For each coordinate of s, we have

sj = pj + (pj − qj)

∑d
i=1(pi − qi)vi∑d
i=1(pi − qi)2

.

Note that for any two points x, y ∈ Rd, we have that

∥x− y∥2 =
d∑

i=1
(xi − yi)

2

is a polynomial of constant degree. So for any of the inequalities (3.16), (3.17), (3.18),
(3.19) and (3.20) the following is true. If we insert all coordinates of v into the inequality
and rearrange the terms, we get (depending on the root-type of v) an equivalent inequality
of one of the following types

h1(P) ≥ 0

h2

(
P ,
√
c(P),

√
d(P)

)
≥ 0

h3

(
P ,
√
f(P),

√
g

(
P ,
√
f(P)

))
≥ 0

57

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

where c, d, f , g,h1,h2 and h3 are well behaved functions. By Lemma 3.4.3 all three types
of inequalities are simple. So, in all three cases of different coordinates of v only a
constant number of simple inequalities have to be checked to determine P. Therefore P
is simple.

Many of our predicates depend on the intersections of geometric objects. We address
in the next lemmas that these intersections have nice properties and that the existence
of these intersections can be determined by a simple predicate.

Lemma 3.4.7. Let P ⊂ R2 be a finite set of points and p = (p1, p2), q = (q1, q2) ∈ P .
Consider the intersection of the horizontal ray hr(v) starting at v ∈ R2 and the edge pq.
Let P be the predicate to decide if hr(v) ∩ pq ̸= ∅. P is simple if v is a point of root-type
1, 2 or 3 w.r.t. P .

Proof. To check if hr(v) intersects the line ℓ(pq), one can first check if p2 − q2 = 0 by
checking the simple inequalities p2 − q2 ≥ 0 and p2 − q2 ≤ 0. If this is the case, then an
intersection is still possible if v2 − p2 = 0. The inequalities v2 − p2 ≥ 0 and v2 − p2 ≤ 0
are also simple by Lemma 3.4.3. The root-type of v determines which case of the lemma
to use. If v2− p2 ≤ 0 is also true, then it can be determined if hr(v)∩ pq ̸= ∅ by checking
v1 − p1 ≥ 0 and v1 − q1 ≥ 0. These inequalities determine the relative positions of v to
pa and q on the horizontal line. They are again simple by Lemma 3.4.3.

If p2 ̸= q2, then the intersection of the horizontal line through v and the line ℓ(pq) is
a uniquely defined point s = p+ t(p− q) with t = (v2−p2)

(p2−q2)
. In this case, it remains to

check if 1 ≥ t and t ≥ 0 to see if s lies on the edge pq and to check if s1 ≥ v1 to see if
s lies on the right side of v and is on the ray hr(v). The inequalities 1 ≥ t, t ≥ 0 and
s1 ≥ v1 are simple by Lemma 3.4.3 (Rearrange and choose the case of the lemma based
on the root-type of v).

Lemma 3.4.8. Let P ⊂ R2 be a finite set of points and p, q,u, v ∈ P . Consider the
intersection of the edge pq and the edge uv. If the intersection exists, it is either a
uniquely defined point s given by

s = p+ t(P)(q− p)

where t is a well behaved function or the intersection is an edge xy with endpoints
x, y ∈ {p, q,u, v}. Let P be the predicate to decide if pq ∩ uv ̸= ∅. P is simple. In case
that the intersection is an edge, it is also a simple predicate to decide if a given pair of
points x, y ∈ {p, q,u, v} defines the intersection.

Proof. We can write the line ℓ(pq) as p+ t(p− q) parameterized in t an the line ℓ(uv)
as u+ t′(v− u) parameterized in t′. The intersection of the lines is therefore defined by
the solutions of the system of linear equations

p+ t(p− q) = u+ t′(v− u)

which is equivalent to

t(p− q) + t′(u− v) + (p− u) = 0.

The above is a system of two linear equations with two variables t, t′ of the form

ait+ bit
′ + ci = 0

58

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

where ai = (qi − pi), bi = (ui − vi) and ci = (pi − ui) for i ∈ {1, 2}. This system has a
unique solution if a1

a2
̸= b1

b2
, no solution a1

a2
= b1

b2
̸= c1

c2
and an infinite number of solutions

if a1
a2

= b1
b2

= c1
c2

. Each of these equations can be checked by replacing = (or ̸=) with ≤
and ≥ and checking both inequalities. So the existence of an intersection can be checked
by checking a constant number of simple inequalities.

Note that the coefficients of the linear equations are linear combinations of coordinates
of points in P . So, if the system has a unique solution, the solution for t can be written
as a well behaved function with input P . In this case, it still remains to check t ≥ 0
and t ≤ 1 to see if the intersection is on the edge pq. By Lemma 3.4.3, these are simple
inequalities.

If the system does have an infinite number of solutions, the lines ℓ(pq) and ℓ(uv)
must coincide. In this case, the solutions tu and tv of the equations p1 + tu(q1− p1) = u1
and p1 + tv(q1 − p1) = v1 are uniquely determined values that can be written as well
behaved functions with input P . Comparing t1, t2, 0 and 1 decides if the edges pq and
uv intersect and which points x, y ∈ {p, q,u, v} ⊆ P determine the intersection xy (if
existent). Since t1 and t2 are well behaved functions with input P , each comparison is a
simple predicate.

Lemma 3.4.9. Let d ∈ N and ∆ ∈ R+. Let P ⊂ Rd be a finite set of points and
p, q, v ∈ P . Consider the intersection of the line ℓ(pq) and the ball B∆(v). If the
intersection exists, the first and the last point of the intersection in direction (q− p) are
uniquely defined by

s1,2 = p+ t1,2(P)(q− p)

with t1,2(P) = f(P)±
√
g(P) where f and g are well behaved functions. Let P be the

predicate to decide if ℓ(pq) ∩B∆(v) ̸= ∅. P is simple.

Proof. We can write the line ℓ(pq) as p+ t(p− q) parameterized in t. The intersection
of the lines is therefore defined by the solutions of

∥p+ t(q− p)− v∥2 ≤ ∆2 ⇐⇒
d∑

i=1
(t(qi − pi) + (pi − vi))

2 ≤ ∆2

The inequality is equivalent to a quadratic equation of the form t2 + at+ b ≤ 0, where

a =
2∑d

i=1(pi − vi)(qi − pi)∑d
i=1(qi − pi)2

and b =

∑d
i=1(pi − vi)2 − ∆2∑d

i=1(qi − pi)2
.

We therefore have t1,2 = −a
2 ±

√
a2

4 − b as long as a2

4 − b ≥ 0. If we have a2

4 − b < 0 then
the intersection is empty. By Lemma 3.4.3.1 this inequality is simple.

Lemma 3.4.10. Let d ∈ N and ∆ ∈ R+. Let P ⊂ Rd be a finite set of points and
p, q,u, v ∈ P . Consider the intersection of the line ℓ(pq) and the capped cylinder R∆(uv).
If the intersection exists, the first and the last point of the intersection in direction (q− p)
are given by

s1,2 = p+ t1,2(P)(q− p)

59

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

with ti(P) = fi(P) + hi(P)
√
gi(P) where fi, gi and hi are well behaved functions for

i ∈ {1, 2}. Let P be the predicate to decide if ℓ(pq) ∩R∆(uv) ̸= ∅. P is simple. There
exists a constant number of candidates for the first and the last point that are uniquely
defined by p, q,u, v and ∆. It is a simple predicate to decide for two of these candidates if
they define the intersection.

Proof. This proof of Lemma 3.4.10 is based on the proof of Lemma 7.2 in [57] that uses
similar arguments. We can write the line ℓ(pq) as p+ t(p− q) parameterized in t an the
line ℓ(uv) as u+ t′(v − u) parameterized in t′. To determine the intersection of ℓ(pq)
and R∆(uv): The intersection with the boundary of the infinite cylinder C∆(uv) and the
intersections with the two limiting hyperplanes P (uv) and P (vu).

The intersection of ℓ(pq) with the boundary of C∆(uv) is defined by all pairs (t, t′)
that fulfill the equality

∥(p+ t(q− p))− (u+ t′(v− u))∥ = ∆2 ⇐⇒
d∑

i=1
((pi − ui) + t(qi − pi) + t′(v− u))2 − ∆2 = 0 (3.21)

For any fixed t the above equation is a quadratic equation in t′ where the discriminant is
a quadratic equation in t of the form

a(P)t2 + b(P)t+ c(P)

where a, b and c are well behaved functions. If the discriminant is equal to 0, then
equation (3.21) has exactly one solution. This is only the case for points on the boundary
of C∆(uv) since the ball around such points intersects ℓ(uv) exactly once. Note that in
case a(P) = b(P) = c(P) = 0 all points of ℓ(pq) are on the boundary of C∆(uv) and
the intersection of the boundary of C∆(uv) and ℓ(pq) therefore consists of the whole
line ℓ(pq). The truth value of a(P) = b(P) = c(P) = 0 can be checked by checking
a(P) ≥ 0, a(P) ≤ 0, b(P) ≥ 0, b(P) ≥ 0, c(P) ≤ 0 and c(P) ≤ 0 which are simple by
Lemma 3.4.3.1.

If the intersection is finite, the solutions t = s1,2 for a(P)t2 + b(P)t+ c(P) = 0 define
the intersection points of the boundary of C∆(uv) and ℓ(pq). We have

s1,2 = − b(P)

2a(P) ±
√

b(P)2

4a(P)2 −
c(P)

a(P)

as long as b(P)2

4a(P)2 − c(P)
a(P) ≥ 0. If we have b(P)2

4a(P)2 − c(P)
a(P) < 0 then the intersection is empty.

By Lemma 3.4.3.1 this inequality is simple.
The intersection of ℓ(pq) with P (uv) is given by all parameters z ∈ R such that

⟨p+ z(q− p)− u, v− u⟩ = 0 ⇐⇒
⟨p− u, v− u⟩+ z⟨q− p, v− u⟩ = 0

It is possible that either the whole line intersects the plane, there is no intersection
or the intersection is only one point. The truth value of ⟨p− u, v − u⟩ = 0 tells us, if
the line ℓ(pq) is parallel to the plane P (uv) and if that is the case, the truth value of
⟨p− u, v− u⟩ = 0 tells us if it lies on the plane. By replacing = with ≤ and ≥ we can

60

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

get a constant number of simple inequalities that are equivalent to these checks (simple
by Lemma 3.4.3. If the intersection is unique, it is given by the parameter

zu = −⟨p− u, v− u⟩
⟨q− p, v− u⟩

The intersection with P (ba) is analogous and we get in the case of a unique point the
parameter

zv = −⟨p− v, v− u⟩
⟨q− p, v− u⟩ .

To check if the parameters zu and zv define points on R∆(uv), we can check

∥zu − u∥2 ≤ ∆2 and ∥zv − v∥2 ≤ ∆2

which are simple by Lemma 3.4.6 where we choose uu (respectively vv) as the degenerate
edge that just consists of one point. Comparing s1, s2, zu and zv decides which points
determine the intersection of ℓ(pq) and C∆(uv) (if existent). Each comparison is a simple
predicate by Lemma 3.4.3.1.

3.4.2 Predicates for polygonal curves

In this section we show that the predicates P1, . . . ,P8 are simple.

Lemma 3.4.11. For any two polygonal curves P ∈ Xd
m,Q ∈ Xd

k and a radius ∆ ∈ R+,
each of the predicates of type P1,P2,P3,P4 is simple (as a function mapping from
Rdm ×Rdk+1 to {0, 1} that gets the input (P , (Q, ∆))).

Proof. For P1,P2 this statement directly follows from Lemma 3.4.6. Let P be a predicate
of type P3 or P4 with input ((P ,Q), ∆). P can be determined by checking if a line ℓ(pq)
intersects a double stadium D∆,2(uv,xy) for some points p, q,u, v,x, y ∈ P ∪Q. For
P = P3, we have pq = qi, qi+1 and for P = P4, we have pq = pj , pj+1. In both cases, we
have uv = e1 and xy = e2. The truth value of ℓ(pq)∩D∆,2(uv,xy) ̸= ∅ can be determined
with the help of the intersection of ℓ(pq) with B∆(u),B∆(v),B∆(x),B∆(y),R∆(uv) and
R∆(xy). If and only if there is an overlap of the intersection of ℓ(pq) with any of
these geometric objects belonging to the first stadium and the intersection of ℓ(pq) with
any of these geometric objects belonging to the second stadium, then the predicate is
true. By Lemma 3.4.9 and Lemma 3.4.10, it is a simple predicate to check which of
these intersections exists and it can be decided with the help of a constant number of
simple predicates which candidates define each of the intersections. All candidates for
intersection points have the form

v = p+ t(P ∪Q)(q− p)

with t(P ∪Q) = f(P ∪Q) + h(P ∪Q)
√
g(P ∪Q) where f , g and h are well behaved

functions. So by Lemma 3.4.2, the order of two candidates along ℓ(pq) is decided by a
simple predicate. Comparing the order of all pairs of candidates determines the order of all
candidates along the line. Together with the information on which intersections exist and
which candidates determine the intersections, one can decide if ℓ(pq) ∩D∆,2(uv,xy) ̸= ∅.
Since this information is given by a constant number of simple predicates, the whole
predicate P is simple.

61

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

Lemma 3.4.12. For any two polygonal curves P ∈ Xd
m,Q ∈ Xd

k and a radius ∆ ∈ R+,
each of the predicates of type P5,P6,P7,P8 is simple (as a function mapping from
Rdm ×Rdk+1 to {0, 1} that gets the input (P , (Q, ∆))).

Proof. For P5,P6 this directly follows from Lemma 3.4.6 if we interpret points q1 and qk

in P5 and P6 as degenerate edges q1q1 and qkqk. Let P be a predicate of type P7 or P8
with input ((P ,Q), ∆). The truth value of P can be determined by checking if there is an
intersection of a line segment pq with the intersection of two balls B∆(u) and B∆(v). For
P = P7, we have pq = qi, qi+1, u = pj and v = pt. For P = P8, we have pq = pj , pj+1,
u = qi and v = qt. To answer the predicate, one can compute the intersections of the
line ℓ(pq) with each of the balls B∆(u) and B∆(v) and then check if they overlap. The
remainder of the proof is analogous to the proof of Lemma 3.4.11 since it just has to be
checked if two intersections overlap.

3.4.3 Predicates for polygonal regions that may contain holes

In the following, we show that each of the predicates P9, . . . ,P16 is either simple or a
combination of a polynomial number of simple predicates.

Lemma 3.4.13. For any two polygonal regions P ∈ (R2+1)m and Q ∈ (R2+1)k that
may contain holes and a radius ∆ ∈ R+, each of the predicates of type P10,P11,P12,P13
and P14 is simple (as a function mapping from R3m×R3k+1 to {0, 1} that gets the input
(P , (Q, ∆))).

Proof. Let P be a predicate with input ((P ,Q), ∆). If P is of type P10, then it directly
follows by Lemma 3.4.8 that P is simple. If P is of type P11 then it is a simple predicate
to check (Lemma 3.4.8) if the two intersections exist and as described in Lemma 3.4.2,
it needs only a constant number of simple predicates to determine the order of the
intersections (if existent). If P is of type P12 or P13, then it is a simple predicate
(Lemma 3.4.8) to check if the two intersections exist and which points are the first
and the last points of the intersection (if existent). Since all candidates for the first
and last point are of root-type 1, the distance of each of the candidates to the edge e3
can be checked with a simple predicate by Lemma 3.4.6. If P is of type P14 then it
directly follows by Lemma 3.4.6 that P is simple because all Voronoi-vertex-candidates
are vertices of root-type 1, 2 or 3 by Lemma 3.4.5.

Lemma 3.4.14. For any two polygonal regions P ∈ (R2+1)m and Q ∈ (R2+1)k that
may contain holes and a radius ∆ ∈ R+, each of the predicates of type P9,P15,P16 can be
determined by a polynomial number (with respect to k and m) of simple predicates (which
are functions mapping from R3m ×R3k+1 to {0, 1} that get the input (P , (Q, ∆))).

Proof. Let P be a predicate of type P9,P15 or P16 with input ((P ,Q), ∆). The truth
value of P can be determined by checking if a vertex v is contained in a polygonal region
A ∈ {P ,Q}. In all cases, v is a point of root-type 1, 2 or 3 (see Lemma 3.4.5). Consider
the following two types of predicates.

• (P ′) : Given an edge e of A, this predicate returns true if and only if hr(v)∩ e ̸= ∅.

• (P ′′) : Given a vertex a of A, this predicate returns true if and only if hr(v)∩ a ̸= ∅.

62

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

Knowing all of these predicates can determine how many times the horizontal ray hr(v)
crosses the boundary of A. If hr(v) crosses the boundary an even amount of times,
then v /∈ A and for an odd amount of times, we have v ∈ A. The vertices have to be
considered in P ′′ to not count any intersection twice. Each predicate of the form P ′ or
P ′′ is simple by Lemma 3.4.7 (interpret a vertex a as a degenerate edge aa). Since there
are only a polynomial number of predicates of the form P ′ and P ′′ we have that P can
be determined by a polynomial number of simple predicates.

3.4.4 Putting everything together

In the previous sections, it was shown that all predicates for all analyzed range spaces of
the form Rρ,k can be determined by a polynomial number of simple predicates. Together
with Corollary 3.3.2, this implies our following main results.

Theorem 3.4.15. Let RdH ,k be one of the following range spaces under the Hausdorff
distance: Either the range space of balls centered at polygonal curves in Xd

k with ground
set Xd

m or the range space of balls centered at polygonal regions that may contain holes in
(R2+1)k with ground set (R2+1)m. In the case of polygonal curves V Cdim(RdH ,k) is in
O(dk log(km)) and in the case of polygonal regions V Cdim(RdH ,k) is in O(k log(km)).

Theorem 3.4.16. Let Rρ,k be the range space of balls under distance measure ρ centered
at polygonal curves in Xd

k with ground set Xd
m. Let ρ be either the Fréchet distance

(ρ = dF) or the weak Fréchet distance (ρ = dwF). In both cases V Cdim(Rρ,k) is in
O(dk log(km)).

Proof of Theorems 3.4.15, 3.4.16. The number of predicates of each type P1, . . .P13 is
polynomial in k and m. By Lemma 3.3.3, 3.3.4, 3.3.5, 3.3.6 and 3.3.7 the relevant
distance queries are determined by the truth values of these predicates. Furthermore
Lemma 3.4.11, 3.4.12, 3.4.13 and 3.4.14 imply that all these predicates are determined
by a polynomial number (with respect to m and k) of simple predicates. Therefore,
applying Corollary 3.3.2 directly results in the claimed bounds on the VC-dimension.

63

CHAPTER 3. VC-DIMENSION FOR ELASTIC DISTANCE MEASURES

64

Chapter 4

Subtrajectory Clustering

The main content of this chapter previously appeared as the paper Subtrajectory Clus-
tering: Finding Set Covers for Set Systems of Subcurves [8] by Hugo Akitaya, Frederik
Brüning, Erin Chambers and Anne Driemel which was published in Computing in Ge-
ometry and Topology: Volume 2(1), 2023 and is also available on arXiv [6]. An initial
version of the work has been presented at the 37th European Workshop on Compu-
tational Geometry (EuroCG 2021) [7] based on an extended abstract without formal
publication. This chapter extends the algorithm from [8] by a slight improvement of the
VC-dimension analysis in Section 4.5.3 that reduces the bound on the VC-dimension from
O(d2ℓ2 log(dℓ)) to O(dℓ log(ℓ)) based on the techniques from Chapter 3. The improved
bound together with the use of Theorem 2.4.6 instead of Theorem 2.4.3 for generating
ε-nets results in an improved solution size of O(kdℓ log(k) log(ℓ)) instead of the original
O(kδ log(kδ)) with δ = O(d2ℓ2 log(dℓ)).

4.1 Introduction

In this and the following chapter, we study subtrajectory clustering under the Fréchet
distance. In particular, we design bicriterial approximation algorithms for the (∆, ℓ)-
covering problem that was introduced in Section 2.5. While this chapter contains our
initial approach, the next one improves on the results. Both are based on the multiplicative
weight update method described in Section 2.4.2.

4.1.1 Organization

We give an overview of our main results in Section 4.1.2. We then discuss our main
techniques in Section 4.2. Using these techniques, we develop solutions to the discrete
and the continuous variants of the (∆, ℓ)-covering problem. Sections 4.3 and 4.4 contain
our solutions to the discrete variant of the problem and Section 4.5 contains our solution
to the continuous variant of the problem. In Sections 4.6 we discuss additional results on
the VC-dimension of the underlying range space.

4.1.2 Main results

We study the problem of subtrajectory clustering in the concrete form of the (∆, ℓ)-
covering problem as defined in Section 2.5. We think that this problem formulation
provides a natural formalization of the problem as it is studied in many applications (see

65

CHAPTER 4. SUBTRAJECTORY CLUSTERING

also the discussion in Section 7.2). We develop bicriterial approximation algorithms for
this problem, where the approximation is with respect to the following two criteria

(i) the number of clusters k, and

(ii) the radius of the clustering ∆.

In Sections 4.3 and 4.4 we describe our approach for the discrete variant of the
subtrajectory clustering problem defined in Section 2.5.1, before we turn to the main
problem in Section 4.5. We first discuss the special case where cluster centers are
restricted to be directed line segments (the case ℓ = 2). In this case, we get the following
result.

Theorem 4.1.1. Let P : [0, 1]→ Rd be a polygonal curve of complexity n with breakpoints
0 ≤ t1, . . . , tm ≤ 1 and let ∆ > 0 be a parameter. Assume there exists a set C∗ ⊂ Xd

2
of size k ≤ m, such that ϕ(P ,C∗) ≤ ∆. There exists an algorithm that computes a
set C ⊂ Xd

2 of size O(k log2(m)) such that ϕ(P ,C) ≤ 6∆. The algorithm has expected
running time in Õ

(
km2 +mn

)
and uses space in O(n+m2).

The main idea is to define a suitable range space that preserves optimal solutions up
to approximation and at the same time allows for efficient range space oracles. A range
space oracle is a data structure that answers queries with a set r and an element of the
ground set x and returns whether x ∈ r. We solve this by defining a linear number of
“proxy” curves which are simplifications of subcurves that are locally maximal. The proxy
curves allow to solve a range query by computing a partial Fréchet distance with some
additional conditions. In the more general case, where cluster centers can be curves of
complexity ℓ > 2, we use the bi-criterial simplification algorithm of Agarwal, Har-Peled,
Mustafa and Wang [4] to define suitable proxy curves. This is described in Section 4.4
and leads to the following result.

Theorem 4.1.2. Let P : [0, 1]→ Rd be a polygonal curve of complexity n with breakpoints
0 ≤ t1, . . . , tm ≤ 1. Assume there exists a set C∗ ⊂ Xd

ℓ of size k ≤ m, such that
ϕ(P ,C∗) ≤ ∆. Then there exists an algorithm that computes a set C ⊂ Xd

ℓ of size
O(k log2(m)) such that ϕ(P ,C) ≤ 50∆. The algorithm has expected running time in
Õ
(
kℓ2m2 +mn

)
and uses space in O(n+mℓ+m2).

Finally, in Section 4.5, we present our solution to the main problem of subtrajectory
clustering, where subtrajectories can start and end at any two points along the curve
(see Section 2.5). We use the techniques developed in Section 4.4, but we obtain
better approximation factors and running times, compared to a naive application of
Lemma 2.5.2. The improved running time results from the fact that we do not need to
keep track of breakpoints explicitly in the range space oracle. Crucial to obtaining better
approximation factors is the analysis of the VC-dimension of the dual range space. We
obtain the following theorem.

Theorem 4.1.3 (Main Theorem). Let P : [0, 1]→ Rd be a polygonal curve of complexity
n, let ℓ ∈ N and ∆ > 0 be parameters. Let k be the minimum size of a solution to
the (∆, ℓ)-covering problem on P . Let further λ(P) be the arc length of the curve P .
There exists an algorithm that outputs a (19,O(ℓ log(k) log(ℓ)))-approximate solution.
Let m =

⌈
λ(P)

∆

⌉
. The algorithm has expected running time in Õ

(
kℓ3m2 +mn

)
and uses

space in O(n+mℓ).

66

CHAPTER 4. SUBTRAJECTORY CLUSTERING

In particular, in the above theorem, when the complexity of center curves ℓ is constant,
the VC-dimension δ is constant, and the approximation factor for the size of the set cover
is O(log k). Note that we assume that d is constant as stated in the problem definition
in Section 2.5. For a comparison, using Theorem 4.1.2 and Lemma 2.5.2 directly would
result in an approximation factor of O(log2(λ

∆)) which could be large even if ℓ and d are
small. We summarize our results in Table 4.1.

Size k′ ∆′ Running time Space Setting Reference
O(k log2(m)) 6∆ Õ

(
km2 +mn

)
O(n+m2) ℓ = 2, discr. Thm. 4.1.1

O(k log2(m)) 50∆ Õ
(
km2 +mn

)
O(n+m2) ℓ ≥ 1, discr. Thm. 4.1.2

O(k log(k)) 19∆ Õ(k⌈ λ
∆⌉

2 + ⌈ λ
∆⌉n) O(n+ ⌈ λ

∆⌉) ℓ ≥ 1, contin. Thm. 4.1.3

Table 4.1: For optimal C ⊂ (Rd)ℓ of size k, covering P ∈ (Rd)n under distance ∆, we
design bicriteria-approximation algorithms that compute C ′ ⊂ Xd

ℓ′ of size k′, covering P
under distance ∆′. Here, we assume that ℓ and d are constant, n is the complexity of P
and λ is the arclength of P .

The improved approximation factors that are obtained in the continuous case in
Theorem 4.1.3 raise the question if the approximation factor could be improved in
the discrete case. Unfortunately, this does not seem to be the case. In Section 4.6
we study lower bounds to the VC-dimension for two natural problem variants. We
study the dual range space (i) in the discrete case and (ii) the range space directly
corresponding to our main clustering problem. For (i) we show a lower bound of Ω(logm)
directly corresponding to the upper bound, see Theorem 4.6.3. For (ii) we show that—
surprisingly—it inherently depends on the number of vertices of the input curve n, even
when cluster centers are restricted to be line segments, see Theorem 4.6.2 for the exact
statement. Thus, ultimately, our modified range space with proxy curves not only makes
the algorithm faster, but also has the benefit of a significantly lower VC-dimension,
compared to the exact range space inherent to the problem.

In addition to the results in this thesis, we also investigate the question of hardness
for the discrete problem defined, see the paper [8] for details. If the complexity of center
curves ℓ can be large, then NP-hardness follows from the hardness of the shortest common
superstring problem, see also the result by Buchin, Driemel, Gudmundsson, Horton,
Kostitsyna, Löffler and Struijs [35] on (k, ℓ)-center clustering under the Fréchet distance.
In particular, in this case, the problem is also hard to approximate. We show that even
if we require cluster centers to be points by setting ℓ = 1, the problem remains NP-hard,
via a reduction from Planar-Monotone-3SAT.

4.2 Setup of techniques

In this section we introduce the main ideas and concepts that we use in our algorithms.
We start in Section 4.2.1 with a simple algorithm that illustrates our general approach

in a nutshell: we derive an auxiliary range space that has a simpler structure and smaller
size compared to the range space of Section 2.5.1, while preserving optimal solutions up
to approximation. A preliminary result that follows by applying the greedy set cover
algorithm is stated in Theorem 4.2.2. Then, in Section 4.2.2 we adapt the multiplicative

67

CHAPTER 4. SUBTRAJECTORY CLUSTERING

weight update method for hitting sets described in Section 2.4.2 to get an efficient
algorithm. The approximation quality of the resulting algorithm strongly depends on the
VC-dimension of the dual range space. Therefore, we aim for auxiliary range spaces with
constant VC-dimension. This is not always possible when breakpoints are given with the
input. We discuss this in Section 4.2.3.

4.2.1 A range space for approximation

In this section, we discuss a simple algorithmic solution to the discrete variant of the
problem we study. We emphasize that the approach works for any choice of breakpoints
and is thus interesting in its own right. The algorithm yields a bicriteria approximation
in the radius ∆ and the number of clusters k. Although this algorithm is suboptimal, we
include it here as an illustration of our general approach to the subtrajectory clustering
problem: modify the range space in a way that preserves the initial structure up to
approximation but allows for more efficient algorithms for the clustering problem.

To modify the range space, we use simplifications. A curve Q ∈ Xd
ℓ is called an

ℓ-simplification of a curve P if its Fréchet distance to P is minimum among all curves
in Xd

ℓ . We denote with TS(n, ℓ) the time needed to compute such an ℓ-simplification
for a polygonal curve of n vertices. Let S = {(i, j) ∈ N2 | 1 ≤ i < j ≤ m}. For any
(i, j) ∈ S let µℓ(P [ti, tj]) denote the ℓ-simplification of the corresponding subcurve of P .
Consider a range space R̃0 defined on the ground set X = {1, . . . ,m− 1}, where each
set ri,j ∈ R̃0 is defined by a tuple (i, j) ∈ S and is of the form

ri,j = {z ∈ X | ∃i′ ≤ z < j′ with dF (P [ti′ , tj′],µℓ(P [ti, tj])) ≤ 3∆}

We will see (Lemma 4.2.1, below), that R̃0 approximates the structure of R as defined
in (2.1) to the extent that a set cover for R̃0 corresponds to an approximate solution for
our clustering problem. The well-known greedy set cover algorithm, which incrementally
builds a set cover by taking the set with the largest number of still uncovered elements
in each step, yields an O(logm) approximation for a ground set of size m [44]. Applying
this algorithm to the range space R̃0, we obtain a set C consisting of ℓ-simplifications
µℓ(P [ti, tj])) for each ri,j , such that ϕ(P ,C) ≤ 3∆.

Building the incidence matrix To this end, we compute the binary incidence
matrix M of the range space R̃0 explicitly in O(m3(nℓ+m) +m2TS(n, ℓ)) time, as
follows. Initially, we set all entries of the matrix to 0. In the first step, we compute the
O(m2) simplifications µℓ(P [ti, tj]) of all subcurves between two breakpoints. For each
simplification µ, we compute the ∆-free space with the curve P , which was defined in
Section 2.3.2 as the level set

D∆(P ,µ) =
{
(x, y) ∈ [0, 1]2 | ∥P (x)− µ(y)∥ ≤ ∆

}
.

Computing the associated diagram can be done in O(nℓ) time and space [13]. Note that
the simplification µ corresponds to the vertical axis of the ∆-free space diagram and P
corresponds to the horizontal axis. Now, for each breakpoint ti′ we compute the maximal
breakpoint tj′ that is reachable by a monotone path from the bottom of the diagram
at (ti′ , 0) to the top of the diagram at (tj′ , 1). This can be done in O(nℓ) time using
standard techniques [13]. For all i′ ≤ q < j′, we set the entry corresponding to q and µ to
1. This takes O(m) time. We do this for all simplifications. After that, each entry of M
is 1 if the corresponding element is contained in the corresponding set and 0 otherwise.

68

CHAPTER 4. SUBTRAJECTORY CLUSTERING

Applying greedy set cover We initially scan the incidence matrix to compute the
number of uncovered elements ni,j for every range ri,j ∈ R̃0. After this, we can compute
the set with the highest number of uncovered elements in O(m2) time. Then, we can
update all ni,j on the fly every time we select a new set for the set cover. To do so, we scan
for each newly covered element all the m2 entries of the incidence matrix corresponding
to this element and reduce ni,j by 1 if the entry corresponding to ri,j is equal to 1. Since
each of the m elements gets covered for the first time only once, this can be done in a
total time of O(m3).

Lemma 4.2.1. For any rQ ∈ R, there is a ri,j ∈ R̃0 such that rQ ⊆ ri,j.

Proof. Let Y be the set of tuples (i, j) ∈N2 with 1 ≤ i < j ≤ m and dF (Q,P [ti, tj]) ≤ ∆.
We have that rQ =

⋃
(i,j)∈Y [i, j)∩N. Let (i, j), (i′, j′) ∈ Y . Using the triangle inequality,

we can upper bound dF (P [ti′ , tj′],µℓ(P [ti, tj])) by

dF (P [ti′ , tj′],Q) + dF (Q,P [ti, tj]) + dF (P [ti, tj],µℓ(P [ti, tj])) ≤ 3∆.

By the definition of ri,j , we have [i′, j′) ∩N ⊆ ri,j and therefore rQ ⊆ ri,j . In
other words, we can choose any maximal set of covered intervals within rQ and use the
simplification of the corresponding subcurve of P to cover all parts of P that are covered
by Q.

Theorem 4.2.2. Given a polygonal curve P : [0, 1] → Rd with breakpoints 0 ≤
t1, . . . , tm ≤ 1. Assume there exists a set of curves C∗ ⊂ Xd

ℓ of size k, such that
ϕ(P ,C∗) ≤ ∆. There exists an algorithm that computes a set C ⊂ Xd

ℓ of size O(k logm)
and has running time in O(m3nℓ+m4 +m2TS(n, ℓ))) such that ϕ(P ,C) ≤ 3∆, where
TS(n, ℓ) denotes the the running time for computing an ℓ-simplification of a polygonal
curve of n vertices.

Proof. The algorithm builds the incidence matrix of the range space and applies greedy
set cover, as described above. The bound of the running time is immediate. It remains to
argue correctness. The existence of a set of curves C∗ of size k with ϕ(P ,C∗) ≤ ∆ implies
that there exists a set cover of R of size k. Lemma 4.2.1 implies that for any set cover of
R, there exists a set cover of R̃0 of the same size. Thus, the O(logm)-approximate set
cover S computed by the algorithm for R̃0 has size at most O(k logm). Let

C = {µℓ(P [ti, tj]) | ri,j ∈ S}.

Since S is a set cover for R̃0, and by the definition of ri,j , we have ϕ(P ,C) ≤ 3∆.

4.2.2 Adaptation of the multiplicative weight update method

For obtaining our main result, we use the multiplicative weight update method for
hitting sets described in Section 2.4.2. To solve the set cover problem, we compute an
approximately minimal hitting set of the dual range space. Let R be a range space with
ground set X. Think of R as the dual range space for which we want to compute a
hitting set. To apply Theorem 2.4.9 directly, we need to specify how the data structures
for the verifier and for sampling are implemented. In the following, we assume that we
have a range space oracle O for R.

69

CHAPTER 4. SUBTRAJECTORY CLUSTERING

Definition 4.2.3 (Range space oracle). For a given range space R with ground set X
a range space oracle is a data structure O that can be queried with any r ∈ R and
z ∈ X and answers whether z ∈ r. We denote with PO the preprocessing time to build
the data structure O for the oracle and with TO the time needed to answer the query. We
denote with SO the space required by the data structure.

The verifier needs to decide for a query set H ⊆ X if H is a hitting set and return
a nonempty set r of R such that r ∩H = ∅ if it is not. After preprocessing the oracle,
the verifier can be implemented to run in O(|H| · |R| · TO) time by using |R| linear scans
over H, one for each set in R. We determine for every set r ∈ R whether it is hit by
an element of H, by calling the range space oracle on r and the corresponding set and
elements in H.

The data structure D that maintains the probability distributions Di needs to be able
to answer the following three queries: The first query Sample(k′,Di) asks to sample k′

elements from Di, the second query WeightUpdate(Di, r) asks to double the weight of
each element in r in the weight function of the distribution Di, the third query asks to
evaluate PrDi

[r] ≤ ε for given r and ε.
We let D store the cumulative probability distribution explicitly in an array. For

the initial distribution D1, all weights are set to 1. Therefore the initiation and reset
of D takes O(1) time and O(|X|) space. A sample of k′ elements can be drawn from
D in a total time of O(k′ log(|X|)) by a binary search on the array for a given random
number. Furthermore, we can compute the weight of a set r explicitly scanning over
the whole array and calling the oracle O for each element in X. This takes a total time
of O(|X|TO). The same scanning method can be used for doubling the weight of each
element in r. In the first case, you keep track of the weights in the second one, you
update the weight distribution. Using the above implementations of the verifier and the
data structure D, we get the following result directly from Theorem 2.4.9.

Theorem 4.2.4. For a given finite range space (X,R) with finite VC-dimension δ,
assume there exists a hitting set of size k. Then, there exists an algorithm that computes
a hitting set of size k′ ∈ O(δk log(k)) with expected running time in

O

(
k log

(|X|
k

)
(k′ log(|X|) + TO(k

′|R|+ |X|))
)

after a preprocessing time in O
(
PO
)

and using space in O
(
SO + |X|

)
.

4.2.3 Bounding the VC-dimension

In order to use Theorem 4.2.4 of Section 4.2.2, we need to bound the VC-dimension of the
dual range space. In our case, this will be a range space that has a similar structure as the
range space of balls under the Fréchet distance studied in Chapter 3. In Theorem 3.4.16,
we showed a bound of O(dn log(n)) for polygonal curves in Rd of complexity at most n.
Using this result directly would not gain us any useful bounds, as the subcurves P [ti, tj]
in the definition of the range space may have linear complexity in n—even for the simpler
variant of Section 4.2.1. In fact, it turns out that the VC-dimension of the dual range
space for the main problem defined in Section 2.5 does indeed inherently depend on n,
as we show in Theorem 4.6.2 in Section 4.6.1.

In Section 4.5 we instead define an auxiliary range space that preserves solutions up
to approximation and—more importantly—which has low VC-dimension in the dual. We

70

CHAPTER 4. SUBTRAJECTORY CLUSTERING

show this by using the techniques of Chapter 3. Our analysis of the VC-dimension is
given in Section 4.5.3. Crucial to our approach is that we can answer a range query for
the auxiliary range space based on the geometric predicates of Driemel, Nusser, Phillips
and Psarros [57]. This is possible since the range query is a distance evaluation of a
certain type of partial Fréchet distance with specific conditions that occur in our range
space with proxy curves. The result is stated in Theorem 4.5.9 and implies that the
VC-dimension is constant, if the complexity of the center curves ℓ and the ambient
dimension d is constant.

One may ask if a similar bound can be proven in the case where breakpoints are
given with the input. Trivially, the size of the range space already gives a bound of
O(logm), however this depends on the number of breakpoints m and can be large even
if ℓ is small. We study this problem in Section 4.6.2. For the range space defined in
Section 2.5.1 we show a lower bound of Ω(logm) even in the case that d = 1 and ℓ = 2
(see Theorem 4.6.3). Technically, this does not rule out the existence of an auxiliary range
space with low VC-dimension in the dual. However, it is not clear what such a range
space would look like as Theorem 4.6.3 makes only few assumptions on the range space.
Thus, perhaps surprisingly, the discretization with breakpoints which was supposed to
simplify the problem, actually makes it more difficult. Therefore, our approximation
guarantee in the continuous case is better than what we can currently achieve in the
discrete case when breakpoints are given with the input.

4.3 Warm-up — Clustering with line segments

In this section, we show how to apply Theorem 4.2.4 to the discrete problem where we
are given a curve P with breakpoints. We assume in this section that cluster centers are
restricted to be line segments (the case ℓ = 2). The general case (ℓ ≥ 2) is discussed in
Section 4.4. In contrast to the solution described in Section 4.2.1, our algorithm finds an
approximate set cover without computing the range space explicitly leading to better
running times.

4.3.1 The range space

We start by defining the range space R̃2 with ground set Z = {1, . . . ,m− 1}. For a
subsequence i1, . . . , im′ of 1, . . . ,m, denote

π(i1, . . . , im′) = P (ti1)P (ti2)⊕ P (ti2)P (ti3)⊕ · · · ⊕ P (tim′−1)P (tim′).

A tuple (i, j) with 1 ≤ i ≤ j ≤ m defines a set ri,j ∈ R̃2 as follows

ri,j = {z ∈ Z | ∃x ∈ [xz, z], y ∈ [z + 1, yz] with dF (π(x, z, z + 1, y),P (ti)P (tj)) ≤ 2∆},

where xz ≤ z < yz are indices which we obtain as follows. We scan breakpoints starting
from z in the backwards order along the curve and to test for each breakpoint x, whether

dF (P (tx)P (tz),P [tx, tz]) ≤ 4∆. (4.1)

If x satisfies (4.1), then we decrement x and continue the scan. If x = 0 or if x does
not satisfy (4.1), then we set xz = x+ 1 and stop the scan. To set yz we use a similar
approach: we scan forwards from z + 1 along the curve and test for each breakpoint

71

CHAPTER 4. SUBTRAJECTORY CLUSTERING

τi,j

Q

z
z + 1

x

y

j

i

P xz

yz

π(x, z, z + 1, y)

Figure 4.1: Example of a curve P and index z, such that z ∈ ri,j for some ri,j ∈ R̃2.
Also shown is a line segment Q, such that z ∈ rQ of the initial range space R. After
preprocessing, we can test z ∈ ri,j in constant time.

y the same property with P (tz+1)P (ty) and P [tz+1, ty]. If y satisfies the property, we
increment y and continue the scan. If y = m+ 1 or if y does not satisfy the property we
set yz = y− 1 and stop the scan. Figure 4.1 shows an example of z,xz and yz.

4.3.2 Analysis of the approximation error

In this section, we show how we use a set cover of the range space R̃2 to construct an
approximate solution for our clustering problem and analyze the resulting approximation
error. In particular, we prove Lemma 4.3.2 and Lemma 4.3.3. To prove them, we first
prove the following simple lemma.

Lemma 4.3.1. Let 1 ≤ i ≤ j ≤ m and let I = i1, . . . , im′ be a subsequence of i, . . . , j. If
there exists a line segment Q ∈ Xd

2 such that it holds dF (Q,P [ti, tj]) ≤ α, then we have
dF (π(I),P [ti1 , tim′]) ≤ 2α.

Proof. For any pair (i′, j′) of indices in I, there exists a line segment Q[a, b] with
[ai′ , bj′] ⊆ [0, 1] such that dF (Q[ai′ , bj′],P [ti′ , tj′]) ≤ α. Since shortcutting cannot
increase the Fréchet distance to a line segment, we also have dF (Q[a, b],P (ti′)P (tj′)) ≤ α.
By triangle inequality, it now follows that

dF (P (ti′)P (tj′),P [ti′ , tj′]) ≤ dF (P (ti′)P (tj′),Q[ai′ , bj′]) + dF (Q[ai′ , bj′],P [ti′ , tj′]).

Since the inequality holds for all (i′, j′) ∈ I, we have dF (π(I),P [ti1 , tim′]) ≤ 2α.

Lemma 4.3.2. Assume there exists a set cover for R with parameter ∆. Let S be a set
cover of size k for R̃2. We can derive from S a set of k cluster centers C ⊆ Xd

2 and such
that ϕ(P ,C) ≤ 6∆.

Proof. We set C = {P (ti)P (tj) | ri,j ∈ S}. Let ri,j ∈ S and let z ∈ ri,j . By the definition
of ri,j there are x ∈ [xz, z] and y ∈ [z + 1, yz] such that

dF (π(x, z, z + 1, y),P (ti)P (tj))) ≤ 2∆.

In the following we show that dF (P (ti)P (tj),P [tx, ty]) ≤ 6∆. With the triangle inequality
we get that dF (P (ti)P (tj),P [tx, ty]) is at most the sum of

dF (P (ti)P (tj),π(x, z, z + 1, y))

72

CHAPTER 4. SUBTRAJECTORY CLUSTERING

and the maximum of

dF (P (tx)P (tz),P [tx, tz]), dF (P (tz)P (tz+1),P [tz, tz+1]), dF (P (tz+1)P (ty),P [tz+1, ty])).

By the choice of x and y we have that

max(dF (P (tx)P (tz),P [tx, tz]), dF (P (tz+1)P (ty),P [tz+1, ty])) ≤ 4∆.

It remains to show that dF (P (tz)P (tz+1),P [tz, tz+1]) ≤ 4∆. Since there exists a set
cover of R with parameter ∆, there exists a line segment Q ∈ Xd

2 and 1 ≤ i′ ≤ z ≤
z + 1 ≤ j′ ≤ m such that dF (Q,P [ti′ , tj′]) ≤ ∆. Therefore we get with Lemma 4.3.1,
that

dF (P (tz)P (tz+1),P [tz, tz+1]) ≤ 2∆.

Since S is a set cover, it holds for the ground set Z, that Z =
⋃

(i,j)∈S ri,j . Therefore,
if we choose C = {P (ti)P (tj) | ri,j ∈ S}, then ϕ(P ,C) ≤ 6∆.

Lemma 4.3.3. If there exists a set cover S of R, then there exists a set cover of the
same size for R̃2.

Proof. We claim that for any set rQ ∈ R there exists a set r ∈ R̃2, such that rQ ⊆ r.
This claim implies the lemma statement. It remains to prove the claim.

Let Y be the set of tuples (i, j) ∈N2 with 1 ≤ i < j ≤ m and dF (Q,P [ti, tj]) ≤ ∆.
We have that rQ =

⋃
(i,j)∈Y [i, j) ∩N.

Let (i, j) ∈ Y . We show that rQ ⊆ ri,j ∈ R̃2. Let z ∈ rQ. By the definition of rQ we
have

∃ x ≤ z < y s.t. dF (Q,P [tx, ty]) ≤ ∆.

To show that z ∈ ri,j , we prove that the following two conditions hold:

(i) x ∈ [xz, z] and y ∈ [z + 1, yz],

(ii) dF (π(x, z, z + 1, y),P (ti)P (tj)) ≤ 2∆.

Since dF (Q,P [tx, ty]) ≤ ∆ and shortcutting cannot increase the Fréchet-distance to a
line segment, we also have

dF (Q,π(x, z, z + 1, y)) ≤ ∆.

Similarly, we can conclude dF (Q,P (ti)P (tj)) ≤ ∆. It now follows from the triangle
inequality, that

dF (π(x, z, z + 1, y),P (ti)P (tj)) ≤ dF (π(x, z, z + 1, y),Q) + dF (Q,P (ti)P (tj)) ≤ 2∆.

This implies condition (ii).
The first condition (i) follows in a similar way. Since rQ ∈ S, there exists [a, b] ⊆ [0, 1],

such that dF (Q[a, b],P [tx, tz]) ≤ ∆. Therefore, by Lemma 4.3.1, for all x′ ∈ [x, z]
dF (P (tx′)P (tz),P [tx′ , tz]) ≤ 2∆. As such, x is encountered in the scan and ends up
being contained in the interval [xz, z].

We can make a symmetric argument to show that dF (P (tz+1)P (ty),P [tz+1, ty]) ≤ 2∆
and conclude using Lemma 4.3.1 that y ∈ [z + 1, yz]. This proves condition (i).

Together, the above implies that z ∈ ri,j for ri,j ∈ R̃2. Therefore rQ ⊆ ri,j for some
ri,j ∈ R̃2.

73

CHAPTER 4. SUBTRAJECTORY CLUSTERING

4.3.3 The algorithm

We intend to use the algorithm of Theorem 4.2.4 to find a set cover of the range space R̃2,
since such a set cover gives a 6-approximation for our clustering problem. The algorithm
requires a range space oracle for R̃2. In this section, we describe such a range space
oracle. In particular, we show how to build a data structure that answers a query, given
indices i, j and z, for the predicate z ∈ ri,j in O(1) time.

The data structure. To build the data structure for the oracle, we first compute
the indices xz and yz for each 1 ≤ z ≤ m− 1, as specified in the definition of the
range space in Section 4.3.1. Next, we construct a data structure that can answer for
a pair of breakpoints i and z if there is a breakpoint x with xz ≤ x ≤ z such that
∥P (ti) − P (tx)∥ ≤ 2∆ in O(1) time. For this, we build an m×m matrix M in the
following way. For each breakpoint i we go through the sorted list of breakpoints and
check if ∥P (ti)− P (tj)∥ ≤ 2∆ for each 1 ≤ j ≤ m. While doing that, we determine for
each j which is the first breakpoint zi,j ≥ j with ∥P (ti)− P (tzi,j)∥ ≤ 2∆. The entries
zi,j are then stored in the matrix M at position M(i, j). Given the Matrix M the oracle
can answer if there is a breakpoint x with xz ≤ x ≤ z such that ∥P (ti)− P (tx)∥ ≤ 2∆
by checking if M(i,xz) ≤ z. The data structure can also answer if there is a breakpoint
y with z + 1 ≤ y ≤ yz such that ∥P (tj)− P (ty)∥ ≤ 2∆ by checking if M(j, z + 1) ≤ yz.
The final data structure stores the matrix M only.

The query. We answer queries as follows. Given z, i and j, we want to determine if
z ∈ ri,j . We return “yes”, if the following three conditions are satisfied:

(i) M(i,xz) ≤ z

(ii) M(j, z + 1) ≤ yz

(iii) At least one of the following holds:
(1) ∥s−P (tz)∥ ≤ 2∆, where s is the intersection of the bisector between the points

P (tz) and P (tz+1) and the line segment P (ti)P (tj)
(2) ∥o1−P (tz)∥ ≤ 2∆ and ∥o2−P (tz+1)∥ ≤ 2∆, where o1 and o2 are the orthogonal

projections of the points P (tz) and P (tz+1) on the line segment P (ti)P (tj)

Otherwise, the algorithm returns “no”.

Correctness. The above-described range space oracle returns the correct answer.
Correctness is implied by the following observation, which follows from the analysis of
Alt and Godau [13]. See also Figure 4.2.

Observation 4.3.4. dF (π(x, z, z + 1, y),P (ti)P (tj)) ≤ 2∆ if and only if the following
three conditions are satisfied:

(i) ∥P (tx)− u∥ ≤ 2∆

(ii) ∥P (ty)− v∥ ≤ 2∆

(iii) min λ,λ′∈[0,1]
λ≤λ′

(∥a− (λv+ (1− λ)u)∥, ∥b− (λ′v+ (1− λ′)u)∥) ≤ 2∆

where a = P (tz), b = P (tz+1), u = P (ti), and v = P (tj).

74

CHAPTER 4. SUBTRAJECTORY CLUSTERING

τi,j

π(x, z, z + 1, y)

z + 1

z

x
y

i
j

2∆
2∆

λ λ′

λ
λ′

0

1

Figure 4.2: Illustration of Observation 4.3.4. The figure on the right shows the 2∆-free
space diagram of the two curves on the left. A monotone path from the bottom left to
the upper right corner of the diagram is feasible iff the three conditions stated in the
observation are satisfied. We slightly abuse notation by referring to the vertex P (tz)
with z in all figures, when context is clear.

Running time. Next, we analyze the running time of constructing an oracle for the
case ℓ = 2 and query time O(1). In particular, we analyze the running time of the scan
for the indices xz (or yz) with 1 ≤ z < m and the running time for building the matrix
M .

As described above the index-scan for xz, given z, can be done by checking for
breakpoints x ∈ {z − 1, . . . , 1} in backwards order from z if dF (P (tx)P (tz),P [tx, tz]) ≤
4∆. Since P (tx)P (tz) has complexity 2 and P [tx, tz] has complexity at most n, the
check dF (P (tx)P (tz),P [tx, tz]) ≤ 4∆ can be done in O(n) time and O(n) space for any
x, z ∈ {1, . . . ,m} using standard methods [13]. The scan for yz is analogous, so we need
a total time of O(mn) to scan for all indices.

For building the matrix M , the algorithm computes the Euclidean distances of all
(m

2) pairs of breakpoints and while doing that records for each breakpoint tj the smallest
index of a breakpoint after tj that lies within distance 2∆ to this breakpoint. In total,
this it takes O(m2) time. Together with the scan for the indices, we get the following
runtime for building the oracle.

Theorem 4.3.5. One can build a data structure of size O(m2) in time O(m(m+ n))
and space O(n+m2) that answers for an element of the ground set Z and a set of R̃2,
whether this element is contained in the set in O(1) time.

4.3.4 The result

For the range space (Z, R̃2), we have |Z| = m and |R̃2| = O(m2). Thus, the VC-
dimension δ of the dual range space is trivially bounded by O(logm). We combine this
with the result for constructing the oracle in Theorem 4.3.5 and apply Theorem 4.2.4 to
get the following lemma on computing set covers of R̃2. Note that we must have k < m,
since there are only m− 1 elements in the ground set.

Lemma 4.3.6. Let k be the minimum size of a set cover for R̃2. There exists an
algorithm that computes a set cover for R̃2 of size O(k log2(m)) with an expected running
time in Õ

(
km2 +mn

)
and using space in O(n+m2).

As a direct consequence, we get the following result for our clustering problem in the
case ℓ = 2 with the help of Lemma 4.3.2 and Lemma 4.3.3.

75

CHAPTER 4. SUBTRAJECTORY CLUSTERING

Theorem 4.1.1. Let P : [0, 1]→ Rd be a polygonal curve of complexity n with breakpoints
0 ≤ t1, . . . , tm ≤ 1 and let ∆ > 0 be a parameter. Assume there exists a set C∗ ⊂ Xd

2
of size k ≤ m, such that ϕ(P ,C∗) ≤ ∆. There exists an algorithm that computes a
set C ⊂ Xd

2 of size O(k log2(m)) such that ϕ(P ,C) ≤ 6∆. The algorithm has expected
running time in Õ

(
km2 +mn

)
and uses space in O(n+m2).

4.4 The main algorithm

In this section, we extend the scheme described in Section 4.3 to the case ℓ > 2. As in the
previous section, we only consider the discrete problem, where the input is a polygonal
curve with breakpoints. Again, the crucial step is a careful definition of a range space for
approximation which allows for an efficient implementation of a range space oracle. The
main idea is to replace the edges of the proxy curve π from Section 4.3 by simplifications
of the corresponding subcurves. We show that we can do this in a way that ensures that
these simplifications are nested in a certain way. This, in turn, will allow us to build
efficient oracle data structures for this range space. We will later show how to use the
main elements of this algorithm for the continuous case in Section 4.5.

4.4.1 Simplifications

We begin by introducing the following slightly different notion of simplification. A curve
Q ∈ Xd

ℓ is an (ε, ℓ)-simplification of a curve P if Q has at most ℓ vertices and its Fréchet
distance to P is at most ε. We call the simplification vertex-restricted if V (Q) ⊆ V (P)
and the vertices of Q have the same order as in P . In this context, we say that a point
p of P corresponds to an edge e of a vertex-restricted simplification of P if it lies in
between the two endpoints of e in P . The main purpose of this section is to define
simplifications σ+(i, j), σ−(i, j) and σ◦(i, i+ 1) for i, j ∈ {1, . . . ,m} that we will use in
the definition of the range space in the next section. Concretely, the simplifications will
be defined as the output of the algorithm from [4]. In a nutshell, their algorithm works
the following way: Let P be a curve with vertices P (s1), . . . ,P (sn). Let f(ε

2) denote the
minimum number of vertices in a vertex-restricted (ε

2 ,n)-simplification of P . To compute
a vertex-restricted (ε, f(ε

2))-simplification P ′ of the curve P , the algorithm iteratively
adds new vertices to the simplification starting with the first vertex P (s1) of the curve.
In each step it takes the last vertex P (si) of the simplification and determines with an
exponential search the last integer j ≥ 0 such that dF (P (si)P (si+2j),P [si, si+2j]) ≤ ε.
After determining j it finds with a binary search the last integer r ∈ [2j , 2j+1] such that
dF (P (si)P (si+r),P [si, si+r]) ≤ ε and adds P (si+r) to the simplification. The algorithm
terminates when it reaches P (sn).

Generating simplifications. We now describe how to generate a set of simplifications
that will be used in the definition of our range space in Section 4.4.2. We apply the above
described algorithm on subcurves of P in the following way: Consider the parameterization
P : [0, 1]→ Rd of P where P (ti) gives the i-th breakpoint of P for 1 ≤ i ≤ m and P (sj)
gives the j-th vertex of P for 1 ≤ j ≤ n. For each z ∈ {1, . . . ,m} we apply the algorithm
with ε = 4∆ on P [tz, 1] to get a simplification P+

z . We stop the algorithm early if
the complexity of the simplification reaches 2ℓ. If |P+

z | = 2ℓ let P (sz2ℓ
) be the 2ℓ-th

vertex of P+
z . Otherwise set P (sz2ℓ

) = P (sn). Let yz be the last breakpoint of P before

76

CHAPTER 4. SUBTRAJECTORY CLUSTERING

yz+1

y2

y1
z

z + 1P

P (sz+12`)

σ+(z + 1, y1)

σ+(z + 1, y2)

σ+(z + 1, yz+1)

σ◦(z, z + 1)
4∆

:

:

:

:

Figure 4.3: Example of the generated (4∆, 2ℓ)-simplifications for a curve P with break-
points z, z + 1, y1, y2 and yz+1 in the case ℓ = 2.

P (sz2ℓ
). Let z ≤ y ≤ yz. Since P+

z is a (4∆, 2ℓ)-simplification of P [tz, 1], there exists
a subcurve σ+(z, y) of P+

z such that dF (σ+(z, y),P [tz, ty]) ≤ 4∆. From each possible
subcurve with the above property let σ+(z, y) be the longest subcurve that does not
contain any vertex P (si) with si ≥ ty, except for the last vertex of this subcurve. This
subcurve σ+(z, y) is therefore a uniquely defined (4∆, 2ℓ)-simplification of P [tz, ty] that
ends in a point of the edge of P+

z corresponding to P (ty). Analogously we generate the
curve σ◦(z, z + 1) by running the algorithm for the curve P [tz, tz+1] and the σ−(x, z)
by running the algorithm for the direction-inverted curve P [tz, 0]. We define P [tz, 0] to
be the curve Q : [0, 1]→ Rd with Q(t) = P ((1− t)tz). Note that it is possible that the
algorithm does not find a simplification at all for a specific subcurve. In this case we
say the simplification is empty (and we denote this with ⊥). See also Figure 4.3 for an
example of the generated simplifications.

We summarize crucial properties of the generated simplifications in the following two
lemmata. These properties will help to construct an efficient oracle for our range space
later.

Lemma 4.4.1. Let i, j ∈ {1, . . . ,m} with i < j. The curve σ+(i, j) is either a uniquely
defined (4∆, 2ℓ)-simplification of P [ti, ti], or it is σ+(i, j) = ⊥. In the latter case,
there exists no Q ∈ Xd

ℓ such that dF (Q,P [ti, tj]) ≤ ∆. Moreover, for any non-empty
simplification σ+(i, j) and for any i < j′ < j, the simplification σ+(i, j′) is non-empty
and is a subcurve of σ+(i, j).

We get symmetric lemmas for the other simplifications. We will see in the next section
why it is convenient to have these properties in both directions, forwards and backwards
along the curve.

Lemma 4.4.2. Let i, j ∈ {1, . . . ,m} with i < j. The curve σ−(i, j) is either a uniquely
defined (4∆, 2ℓ)-simplification of P [ti, tj], or it is σ−(i, j) = ⊥. In the latter case
there exists no Q ∈ Xd

ℓ such that dF (Q,P [ti, tj]) ≤ ∆. Moreover, for any non-empty
simplification σ−(i, j) and for any i < i′ < j it holds that the simplification σ−(i′, j) is
non-empty and is a subcurve of σ−(i, j).

Lemma 4.4.3. Let z ∈ {1, . . . ,m− 1}. The curve σ◦(z, z + 1) is either a uniquely
defined (4∆, 2ℓ)-simplification of P [tz, tz+1], or it is σ◦(z, z + 1) = ⊥. In the latter case
there exists no Q ∈ Xd

ℓ such that dF (Q,P [tz, tz+1]) ≤ ∆.

Lemma 4.4.1 follows directly from the following lemma. Lemma 4.4.2 and Lemma 4.4.3
follow by using symmetric arguments.

77

CHAPTER 4. SUBTRAJECTORY CLUSTERING

Lemma 4.4.4. Consider the generating process described in Section 4.4.1. Let y be a
breakpoint of P with ty > sz2ℓ

. There exists no Q ∈ Xd
ℓ such that dF (Q,P [tz, ty]) ≤ ∆.

Proof. Let 1 ≤ v ≤ n such that sv−1 ≤ ty ≤ sv. So P (sv) is the first vertex of P after
the breakpoint y. Assume there exists a Q ∈ Xd

l such that dF (Q,P [tz, ty]) ≤ ∆.
To get a contradiction we will show that, with this assumption, we can construct a

vertex-restricted (2∆, 2ℓ− 1)-simplification of P [tz, sv]. Let f(2∆) denote the minimum
number of vertices in a vertex-restricted (2∆,n)-simplification of P [tz, sv]. Note that
v > z2ℓ. So the vertex-restricted (4∆, f(2∆))-simplification P ′ of the subcurve P [tz, sv]
computed with the algorithm of [4] has a complexity of at least 2ℓ+ 1. This follows by
the definition of P (sz2ℓ

). Therefore we have f(2∆) ≥ 2ℓ+ 1. But our constructed vertex-
restricted (2∆, 2ℓ− 1)-simplification then would directly contradictict f(2∆) ≥ 2ℓ+ 1.

For the construction of the (2∆, 2ℓ− 1)-simplification let P̃ = P [tz, sv−1]. Since Q
is a (∆, ℓ)-simplification of P [tz, ty], there exists a subcurve Q̃ of Q with dF (Q̃, P̃) ≤ ∆.
Let e1, . . . , ek be the edges of Q̃ and p̃1, . . . , p̃j be the vertices of P̃ . It is k ≤ l− 1 and
j ≤ n. Let γ be a strictly monotone-increasing function such that

dF (P̃ , Q̃) = sup
t∈[0,1]

∥P̃ (t)− Q̃(γ(t))∥ ≤ ∆.

Let further
ti1 = min{t ∈ [0, 1] | Q̃(γ(t)) ∈ ei, P̃ (t) ∈ {p̃1, . . . , p̃j}}

be the first vertex of P̃ that gets mapped to ei and

ti2 = max{t ∈ [0, 1] | Q̃(γ(t)) ∈ ei, P̃ (t) ∈ {p̃1, . . . , p̃j}}

be the last vertex of P̃ that gets mapped to ei. By construction we have

dF (P̃ (ti1)P̃ (ti2), Q̃(γ(ti1))Q̃(γ(ti2)) ≤ ∆

and therefore with the use of triangle inequality

dF (P̃ (ti1)P̃ (ti2), P̃ [ti1 , ti2])

≤ dF (P̃ (ti1)P̃ (ti2), Q̃(γ(ti1))Q̃(γ(ti2)) + dF (Q̃(γ(ti1))Q̃(γ(ti2), P̃ [ti1 , ti2])

≤ ∆ + ∆
= 2∆

Since P̃ (ti2) and P̃ (t(i+1)1) are consecutive vertices of P̃ , we also have

dF (P̃ (ti2)P̃ (t(i+1)1), P̃ [ti2 , t(i+1)1]) = 0.

So we can construct a (2∆, 2ℓ− 1)-simplification of P [tz, sv] by concatenating the vertices

P̃ (t11), P̃ (t12), P̃ (t21), P̃ (t22), . . . , P̃ (tk1), P̃ (tk2),P (sv).

To see that the resulting curve is indeed a vertex-restricted simplification, we observe that
P̃ (t11) = P̃ (0) = P (tz) and that the edge from P̃ (tk2) = P (sv−1) to P (sv) is entirely
included in P .

78

CHAPTER 4. SUBTRAJECTORY CLUSTERING

Figure 4.4: Example of a curve P such that z ∈ ri,j for some ri,j ∈ R̃3. Also shown is
the 10∆-free space diagram of κz(x, y) and σ+(i, j). Simplification σ+(i, j) demonstrates
that the simplifications do not have to be vertex-restricted.

4.4.2 The range space

We are now ready to define the new range space R̃3 with ground set Z = {1, . . . ,m− 1}.
The range space depends on the simplifications of subcurves of P defined in the previous
section. Let (i, j) be a tuple with 1 ≤ i ≤ j ≤ m. We say ri,j = ∅ if there is no Q ∈ Xd

ℓ

such that dF (Q,P [ti, tj]) ≤ ∆. Otherwise, we define a set ri,j ∈ R̃3 as follows

ri,j = {z ∈ Z | ∃x ∈ [xz, z], y ∈ [z + 1, yz+1] with dF (κz(x, y),σ+(i, j)) ≤ 10∆},

where
κz(x, y) = σ−(x, z)⊕ σ◦(z, z + 1)⊕ σ+(z + 1, y)

and xz ≤ z is the smallest index such that σ−(x, z) ̸= ⊥ for all xz ≤ x ≤ z and
yz+1 ≥ z + 1 is the highest index such that σ+(z + 1, y) ̸= ⊥ for all z + 1 ≤ y ≤ yz+1.
For an example of a curve P with breakpoints z, i, j such that z ∈ ri,j see Figure 4.4.
Note that, by Lemma 4.4.3 the curve σ◦(z, z+ 1) is non-empty for all z ∈ {1, . . . ,m− 1}
if there exists a set of cluster centers C ⊂ Xd

ℓ such that Φ(P ,C) ≤ ∆. So in this case the
range space is well-defined as implied by the Lemmas 4.4.1, 4.4.2 and 4.4.3.

79

CHAPTER 4. SUBTRAJECTORY CLUSTERING

4.4.3 Analysis of the approximation error

We show correctness in the same schema as in Section 4.3.2. In particular, we prove
Lemma 4.4.5 and Lemma 4.4.6.

Lemma 4.4.5. Let S be a set cover of size k for R̃3. We can derive from S a set of 3k
cluster centers C ⊆ Xd

ℓ and such that ϕ(P ,C) ≤ 14∆.

Proof. To construct C from S we take for each tuple ri,j ∈ S the center curve σ+(i, j).
Let z ∈ ri,j . By the definition of ri,j there are x ∈ [xz, z] and y ∈ [z + 1, yz] such that
dF (κz(x, y),σ+(i, j)) ≤ 10∆. In the following we show that dF (σ+(i, j),P [tx, ty]) ≤ 14∆.
With the triangle inequality, we get

dF (σ
+(i, j),P [tx, ty]) ≤ dF (σ

+(i, j),κz(x, y)) + dF (κz(x, y),P [tx, ty])
≤ 10∆ + dF (κz(x, y),P [tx, ty])

Here, the distance dF (κz(x, y),P [tx, ty]) is at most the maximum of the distances
dF (σ−(x, z),P [tx, tz]), dF (σ◦(z, z + 1),P [tz, tz+1]) and dF (σ+(z + 1, y),P [tz+1, ty])).
Since σ−(x, z), σ◦(z, z + 1) and σ+(z + 1, y) are (4∆, 2ℓ)-simplifications of the cor-
responding subcurves, we get

dF (κz(x, y),P [tx, ty]) ≤ 4∆.

and in total dF (σ+(i, j),P [tx, ty]) ≤ 14∆.
Since S is a set cover, it holds for the ground set Z = {1, . . . ,m− 1}, that Z =⋃

(i,j)∈S ri,j . Therefore, if we choose C ′ = {σ+(i, j) | ri,j ∈ S}, we get ϕ(P ,C ′) ≤ 14∆.
Note that C ′ ⊆ Xd

2ℓ. Let c ∈ C ′ with vertices c1, . . . , cN where N ≤ 2ℓ. We can arbitrarily
split c into 3 curves c(1), c(2), c(3) of complexity at most ℓ. Those 3 subcurves can cover
the same parts of P , that c can cover since each subcurve P ′ of P with dF (P ′, c) ≤ 14∆
can be split into 3 subcurves P (1),P (2),P (3) such that dF (P (1), c(1)), dF (P (2), c(2)) and
dF (P (3), c(3)) are each at most 14∆. So, if we split each curve c ∈ C ′ as described above,
we obtain a set C ⊆ Xd

ℓ with |C| = 3|C ′| and ϕ(P ,C) ≤ 14∆.

Lemma 4.4.6. If there exists a set cover S of R, then there exists a set cover of the
same size for R̃3.

Proof. We claim that for any set rQ ∈ R there exists a set r ∈ R̃3, such that rQ ⊆ r.
This claim implies the lemma statement. It remains to prove the claim.

Let Y be the set of tuples (i, j) ∈N2 with 1 ≤ i < j ≤ m and dF (Q,P [ti, tj]) ≤ ∆.
We have that rQ =

⋃
(i,j)∈Y [i, j) ∩N.

Let (i, j) ∈ Y . We show that rQ ⊆ ri,j ∈ R̃3. Let z ∈ rQ. By the definition of rQ we
have

∃ x ≤ z < y s.t. dF (Q,P [tx, ty]) ≤ ∆

To show that z ∈ ri,j , we prove that the following two conditions hold:

(i) x ∈ [xz, z] and y ∈ [z + 1, yz],

(ii) dF (κz(x, y),σ+(i, j)) ≤ 10∆.

80

CHAPTER 4. SUBTRAJECTORY CLUSTERING

As stated above, we have dF (Q,P [tx, ty]) ≤ ∆. Therefore we can subdivide Q into 3
subcurves Qx,Qz,Qy such that

max(dF (Qx,P [tx, tz]), dF (Qz,P [tz, tz+1]), dF (Qy,P [tz+1, ty])) ≤ ∆

Each of the subcurves has complexity at most ℓ since Q has complexity at most ℓ. By the
Lemmas 4.4.2 and 4.4.1, we have σ−(x′, z) ̸= ⊥ for all x ≤ x′ ≤ z and σ+(z + 1, y′) ̸= ⊥
for all z + 1 ≤ y′ ≤ yz+1. We can conclude that x ∈ [xz, z] and y ∈ [z + 1, yz] and
therefore condition (i) is fulfilled.

To prove condition (ii) we can use the triangle inequality to get

dF (κz(x, y),σ+(i, j)) ≤ dF (κz(x, y),Q) + dF (Q,σ+(i, j))

Since we have

dF (κz(x, y),Q) ≤ dF (κz(x, y),P [tx, ty]) + dF (P [tx, ty],Q)
≤ 4∆ + ∆
= 5∆

and

dF (Q,σ+(i, j)) ≤ dF (Q,P [ti, tj]) + dF (P [ti, tj],σ+(i, j))
≤ ∆ + 4∆
= 5∆

we get in total
dF (κz(x, y),σ+(i, j)) ≤ 10∆

Together, the above implies that z ∈ ri,j and therefore rQ ⊆ ri,j .

4.4.4 The approximation oracle

To find a set cover of the range space R̃3 we want to use the adapted version of
the multiplicative weight update method described in Section 4.2.2. But to apply
Theorem 4.2.4 directly we would need to implement an oracle that answers for an element
of the ground set Z = {1, . . . ,m− 1} and a set of R̃3, whether this element is contained
in the set. In this section, we describe how to answer such queries approximately. In the
next section (Section 4.4.5) we then show how to apply Theorem 4.2.4.

The approximation oracle will have the following properties. Given a set ri,j ∈ R̃3
and an element z ∈ Z this approximation oracle returns either one of the following
answers:

(i) ”Yes”, in this case, there exists a breakpoint x ∈ [xz, z] and a breakpoint y ∈
[z + 1, yz+1] with dF (κz(x, y),σ+(i, j)) ≤ 46∆

(ii) ”No”, in this case z /∈ ri,j .

In both cases the answer is correct.
To construct the approximation oracle we build a data structure that answers a query,

given indices i,j and z, for the predicate z ∈ ri,j in O(ℓ2) time. In particular we need a
data structure that can build a free space diagram of the curves κz(xz, yz+1) and σ+(i, j)

81

CHAPTER 4. SUBTRAJECTORY CLUSTERING

z

z + 1

i

j

10∆xz

x

18∆

yz+1

y

P
σ−(xz, z)
σ◦(z, z + 1)
σ+(z + 1, yz+1)
σ+(i, j)

e1

e2

e3
e4

e5

e6

e7

e8

e9

e1 e2 e3 e4 e5 e6 e7 e8 e9

Figure 4.5: Example of a curve P and breakpoints xz, x, z, z + 1, y, yz+1, i and j.
The active edges are e1, e8 and e9 since there are breakpoints corresponding to these
edges within distance 18∆ to i or j respectively. There is, however, no strictly monotone
path from e1 on the bottom to e8 or e9 on the top in the 10∆-free space of σ+(i, j) and
κz(xz, yz+1). So we have z /∈ ri,j .

to bound the distance dF (κz(x, y),σ+(i, j)) for every x ∈ [xz, z] and y ∈ [z+ 1, yz+1]. In
this context, we define active edges of the simplifications σ−(xz, z) and σ+(z + 1, yz+1)
with respect to ri,j since the data structure needs to be able to find these efficiently
to answer the query. Recall that a point of P is said to correspond to an edge e of a
vertex-restricted simplification of P if it lies in between the two endpoints of e in P .

Definition 4.4.7. Let z, i, j be breakpoints of P . An edge e of the simplification σ−(xz, z)
is active with respect to ri,j if there is a breakpoint x ∈ [xz, z] corresponding to e
with d(P (tx),P (ti)) ≤ 18∆. An edge e of the simplification σ+(z + 1, yz+1) is active
with respect to ri,j if there is a breakpoint y ∈ [z + 1, yz+1] corresponding to e with
d(P (ty),P (tj)) ≤ 18∆.

So an active edge is an edge of the simplification that contains the image of a
breakpoint that is close to i or j respectively. The active edges will become relevant
for answering a query since in the case that z ∈ ri,j there exist breakpoints x and y on
active edges such that dF (κz(x, y),σ+(i, j)) ≤ 10∆. For an approximate solution, it will
suffice to check the existence of a strictly monotone path in the free space diagram that
starts on an active edge of σ−(xz, z) and ends in an active edge of σ+(z + 1, yz+1). The
advantage is that this can be done faster than checking if dF (κz(x, y),σ+(i, j)) ≤ 10∆
for each x ∈ [xz, z] and y ∈ [z + 1, yz+1]. See Figure 4.5 for an example.

82

CHAPTER 4. SUBTRAJECTORY CLUSTERING

P

xz

10∆

yz+1

i

j

z

z + 1
ye2

σ−(xz, z)
σ+(i, j)

σ◦(z, z + 1)
σ+(z + 1, yz+1)

σ+(i, j)(1)

σ+(i, j)(0)

σ−(xz, z)(0) z z + 1 σ+(z + 1, yz+1)(1)

xe1

18∆

18∆

pe1 x′

pe2 y′

e1 e2

Figure 4.6: Example for a curve P and breakpoints z, i, j such that the approximation
oracle returns ”Yes” for the query z ∈ ri,j . The path from pe1 to pe2 in the 10∆-free space
diagram is a monotone increasing path from the active edge e1 to the active edge e2.
The edges are active since d(P (ti),P (txe1

)) ≤ 18∆ and d(P (tj),P (tye2
)) ≤ 18∆. The

path from x′ = σ−(xe1 , z)(0) to y′ = σ+(z + 1, ye2)(1) in the free space diagram gives a
parametrization of κz(xe1 , ye2) and σ+(i, j) yielding dF (κz(xe1 , ye2),σ+(i, j)) ≤ 46∆ as
proven in Lemma 4.4.8.

The query. Given z, i, j ∈ {1, . . . ,m} the oracle is therefore checking if z ∈ ri,j the
following way:

First it builds a free space diagram of σ+(i, j) and κz(xz, yz+1) for the distance 10∆.
Then it checks for each edge on σ−(xz, z) and on σ+(z+ 1, yz+1) if it is active. In the end,
the oracle checks if there is a monotone increasing path in the 10∆-free space that starts
on an active edge of σ−(xz, z) in one coordinate and σ+(i, j)(0) in the other coordinate
and ends on an active edge of σ+(z + 1, yz+1) in one coordinate and σ+(i, j)(1) in the
other coordinate. The oracle returns ”Yes” if such a path exists. See Figure 4.6 for an
example of a ”Yes” answer.

To do the above steps efficiently an underlying data structure for the oracle has to be
built in the preprocessing. We will first show how the data structure is built and then
prove the correctness of the oracle and analyze its running time.

83

CHAPTER 4. SUBTRAJECTORY CLUSTERING

The data structure. The data structure is built in two steps. The first step is to
compute the simplifications. The second step consists of constructing a data structure
for the breakpoints that can be used to determine active edges.

We compute the simplifications σ−(xz, z), σ◦(z, z + 1) and σ+(z, yz) for every break-
point z ∈ {1, . . . ,m} by running the algorithm of [4] up to complexity 2ℓ. For each edge
e of σ−(xz, z) and σ+(z, yz), we save the first breakpoint xe and the last breakpoint ye

that corresponds to e.
In addition to these simplifications, the oracle also needs the simplification σ+(i, j) to

build the free space diagram. Note that σ+(i, j) does not need to be stored in the data
structure since for all i, j ∈ {1, . . . ,m}, the simplification σ+(i, j) can be constructed
using σ+(i, ji). To do so, the oracle does binary search to find the edge e of σ+(i, ji) such
that j corresponds to e. Then, the oracle computes the last point of e that intersects the
ball B(tj , 4∆). The subcurve of σ+(i, ji) up to this point is σ+(i, j).

The oracle needs to determine which edges are active. For this, we construct a data
structure in the same way as described for the case ℓ = 2 in Section 4.3.3. We build
an m×m matrix M which stores the following information. For each breakpoint i we
go through the sorted list of breakpoints and check if d(P (ti),P (tj)) ≤ 18∆ for each
1 ≤ j ≤ m. While doing that, we determine for each j which is the first breakpoint
zi,j ≥ j with d(P (ti),P (tj)) ≤ 18∆. The entries zi,j are then stored in the matrix M .

Let xe(ye) be the first (last) breakpoint corresponding to the edge e. To check if there
is one breakpoint z on an edge e of a simplification such that d(P (ti),P (tz)) ≤ 18∆ for
some other breakpoint i, we only have to check if zi,xe ≥ ye. This is exactly what we
need to check to decide if an edge is active and can be done in constant time given the
matrix M .

Overall, the data structure therefore consists of O(m) simplifications with pointers
to the first (last) element of each edge and the matrix M of size O(m2) containing the
zi,j-entries. This data structure is then used for each query to build a free space diagram
and to find the active edges. The existence of a monotone increasing path is then tested
by computing the reachability of active edges from active edges in the free space diagram.
This can be done using the standard methods described by Alt and Godau [13] in the
following way.

The free space diagram of the 10∆-free space F can be divided into cells that each
correspond to a pair of edges, one from each curve κz(xz, yz+1) and σ+(i, j). Let us
denote with Cs,t the cell of the free space diagram corresponding to the s-th edge of
σ+(i, j) and the t-th edge et of κz(xz, yz+1). We further denote with Ls,t and Bs,t the
left and bottom line segment bounding the cell Cs,t. We also define LF

s,t = Ls,t ∩ F and
BF

s,t = Bs,t ∩ F .
We need to calculate the reachable space R ⊆ F where a point p ∈ F is in R if and only

if there exists an active edge et of σ−(xz, z) such that there exists a monotone increasing
path within F from BF

1,t to p. We further define LR
s,t = Ls,t ∩R and BR

s,t = Bs,t ∩R.
Note that given LR

s,t, BR
s,t,LF

s+1,t and BF
s,t+1, we can construct LR

s+1,t and LR
s,t+1 in

constant time. So, given that we know for each edge et of σ−(xz, z), whether it is active
or not, we can compute LR

1,t and BR
1,t for all edges et. With these we can iteratively

construct all LR
s,t and BR

s,t, proceeding row by row in the free space diagram.
Let s∗ ≤ 2ℓ be the number of edges of σ+(i, j). We get the following directly from the

definition of R. There exists an active edge et of σ+(z+ 1, yz+1) such that BR
s∗+1,t ̸= ∅ if

and only if there is a monotone increasing path starting and ending in an active edge. So
we only have to check for all active edges et of σ+(z + 1, yz+1) if BR

s∗+1,t ̸= ∅.

84

CHAPTER 4. SUBTRAJECTORY CLUSTERING

Correctness. To show the correctness of the oracle we show the following lemma.

Lemma 4.4.8. Let z, i, j ∈ {1, . . . ,m}. Consider the query z ∈ ri,j. If the approximation
oracle returns the answer

(i) ”Yes”, then there exists x ∈ [xz, z] and y ∈ [z+ 1, yz+1] with dF (κz(x, y),σ+(i, j)) ≤
46∆

(ii) ”No”, then we have z /∈ ri,j.

Proof. i) Consider the 10∆-free space diagram of κz(x, y) and σ+(i, j). If the oracle
returns the answer ”Yes” then there is a monotone increasing path in the 10∆-free space
that starts on an active edge e and ends on an active edge e′.

We show that this path implicitly gives two breakpoints xe ∈ [xz, z] and ye′ ∈
[z+ 1, yz+1] as well as a monotone increasing path from σ−(xe, z)(0) to σ+(z+ 1, ye′)(1)
in the 46∆-free space of κz(x, y) and σ+(i, j).

Let xe be the first breakpoint corresponding to e such that d(P (txe),P (ti)) ≤ 18∆.
Since e is active, xe has to exist. We distinguish between the cases that the path starts
in a point pe before or after σ−(xe, z)(0) on e:

(I) The path starts in a point pe after σ−(xe, z)(0) on e:
We have

d(σ+(i, j)(0),σ−(xe, z)(0))
≤ d(σ+(i, j)(0),P (ti)) + d(P (ti),P (txe)) + d(P (txe),σ−(xe, z)(0))
≤ 4∆ + 18∆ + 4∆
≤ 26∆

The second inequality above follows by the properties of xe and the fact that
σ+(i, j) and σ−(xe, z) are (4∆, 2ℓ)-simplifications of P [ti, tj] and P [txe , tz]. Since
the path starts in a reachable area of the free space diagram, we have

d(σ+(i, j)(0), pe) ≤ 10∆

Since pe and σ−(xe, z)(0) lie both on the same edge of σ−(xz, z), the segment
pe,σ−(xe, z)(0) is a subcurve of σ−(xz, z). The Fréchet distance

dF (pe,σ−(xe, z)(0),σ+(i, j)(0))

is at most

max(d(σ+(i, j)(0),σ−(xe, z)(0)), d(σ+(i, j)(0), pe)) ≤ 26∆

since the Fréchet distance of a line segment and a point is attained at the start
or end point of the line segment. The horizontal line segment from the point
(pe,σ+(i, j)(0)) to the point (σ−(xe, z)(0),σ+(i, j)(0)) is therefore contained in
the 46∆-free space of κz(x, y) and σ+(i, j).

(II) The path starts in a point pe before σ−(xe, z)(0) on e:
We again have

d(σ+(i, j)(0),σ−(xe, z)(0)) ≤ 26∆

85

CHAPTER 4. SUBTRAJECTORY CLUSTERING

and
d(σ+(i, j)(0), pe) ≤ 10∆

Therefore we have

d(pe,σ−(xe, z)(0)) ≤ d(pe,σ+(i, j)(0)) + d(σ+(i, j)(0),σ−(xe, z)(0))
≤ 10∆ + 26∆
≤ 36∆

The path has to pass the vertical line in the free space diagram through σ−(xe, z)(0)
at some height h. Note that the path is totally included in the 10∆-free space. So
for each point p on σ+(i, j)[0,h] there is a point q on σ−(xz, z) between pe and
σ−(xe, z)(0) such that

d(p, q) ≤ 10∆.

Because q lies on the same edge of σ−(xz, z) as σ−(xe, z)(0) and pe we have

d(σ−(xe, z)(0), q) ≤ d(σ−(xe, z)(0), pe) ≤ 36∆

and therefore

d(σ−(xe, z)(0), p) ≤ d(σ−(xe, z)(0), q) + d(q, p)
≤ 36∆ + 10∆
≤ 46∆

So we can replace the path in the 10∆-free space starting at pe up to height h with
a vertical line segment from (σ−(xe, z)(0),σ+(i, j)(0)) up to height h. This line
segment is then fully contained in the 46∆-free space.

By symmetry, we can apply the same arguments for changing the path in the free space
diagram, so that the path ends in σ−(z + 1, y)(1) for some breakpoint y. Therefore we
can always find a monotone increasing path from σ−(xe, z)(0) to σ+(z+ 1, ye′)(1) in the
46∆-free space of κz(x, y) and σ+(i, j). For an example of such a path see Figure 4.6.
The vertical path starting in x′ is an example for Case II and the horizontal path from
pe2 to y′ is an example for Case I (by symmetry for the end of the path).

ii) We prove that the oracle returns the answer ”Yes” if z ∈ ri,j :
So let z ∈ ri,j Then we have dF (κz(x, y),σ+(i, j)) ≤ 10∆ for some xz ≤ x ≤ z

and z + 1 ≤ y ≤ yz+1. Therefore there is a path in the free space diagram from
(σ+(i, j)(0),σ−(x, z)(0))) to ((σ+(i, j)(1),σ+(z + 1, y)(1))). It remains to show that
the edges corresponding to x and y are active. This follows by triangle inequality. In
particular we have that d(P (ti),P (tx)) is at most

d(P (ti),σ+(i, j)(0)) + d(σ+(i, j)(0),σ−(x, z)(0)) + d(σ−(x, z)(0),P (tx))

and by the above this is at most 18∆, and analogously d(P (tj),P (ty)) ≤ 18∆.

Running time. First, we analyze the preprocessing time needed to build the data
structure for the oracle then we analyze the query time of the oracle.

Since one application of the algorithm of [4] needsO(n log(n)) time andO(n) space, we
need O(mn log(n)) time and O(n+mℓ) space to construct the simplifications σ−(xz, z),
σ◦(z, z + 1) and σ+(z, yz) for every z ∈ {1, . . . ,m}. To construct the pointers from each

86

CHAPTER 4. SUBTRAJECTORY CLUSTERING

edge to the first and last breakpoint on the edge we need an additional O(m+ ℓ) time for
each simplification. In total this needs at most O(mn log(n) +m2) time and O(n+mℓ)
space.

To construct the matrix M with the O(m2) entries of zi,j we need for each breakpoint
i a time of O(m) and a space of O(m) to go through the list of all m breakpoints
and save the entries of zi,j . So in total, we need O(m2) time and O(m2) space for all
entries. Combined with the time and space requirement for the simplifications we need
O(m(n log(n) +m+ ℓ)) time and O(mℓ+m2) space for the whole preprocessing.

To answer a query the oracle builds a free space diagram of σ+(i, j) and κz(xz, yz+1).
To do that, it needs the simplifications σ+(i, j), σ−(xz, z), σ◦(z, z+ 1) and σ+(z+ 1, yz).
The simplifications σ−(xz, z), σ◦(z, z + 1) and σ+(z + 1, yz) were already computed
during preprocessing. The simplification σ+(i, j) can be computed in O(log(l)) time
with binary searches on σ+(i, yi) and σ+(z, yz). With the matrix M , it can be checked
if an edge of σ−(xz, z) or σ+(z + 1, yz) is active in O(1) time. Therefore all active edges
can be found in O(ℓ) time. The construction of the free space diagram of two curves with
complexity O(ℓ) can then be done with standard methods as described earlier in O(ℓ2)
time. Testing the existence of a monotone increasing path from any of the active edges is
then done as described above in the paragraph about the data structure. Note that given
LR

s,t, BR
s,t,LF

s+1,t and BF
s,t+1, we can construct LR

s+1,t and LR
s,t+1 in O(1) time. Therefore,

given that we know for each edge et of σ−(xz, z) if it is active, we can compute LR
1,t and

BR
1,t for all edges et in O(ℓ) time. So we can compute all LR

s,t and BR
s,t in O(ℓ2) time.

Since σ+(z + 1, yz+1) has at most 2ℓ edges, the check for each of the active edges et of
σ+(z + 1, yz+1) if BR

s∗+1,t ̸= ∅ can then be done in O(ℓ) time. This implies that testing
if there exists a monotone increasing path with the described properties can be done
in O(ℓ2) time. Therefore the total query time is O(ℓ2), as well. These results for the
running time imply the following theorem.

Theorem 4.4.9. One can build a data structure for the approximation oracle of size
O(mℓ+m2) in time O

(
m2 +mn log(n)

)
and space O(n+mℓ+m2) that has a query

time of O(ℓ2).

4.4.5 Applying the framework for computing a set cover

In order to apply Theorem 4.2.4 directly, we technically need to define a range space
based on our data structure. Concretely, we define a new range space that is implicitly
given by the approximation oracle. Let I(z, (i, j)) be the output of the approximation
oracle for z ∈ Z and (i, j) ∈ T with

I(z, (i, j)) = 1 if the oracle answers ”Yes”
I(z, (i, j)) = 0 if the oracle answers ”No”

Let R̃4 be the range space consisting of sets of the form

r̃i,j = {z ∈ Z | I(z, (i, j)) = 1}

With Theorem 4.4.9 we immediately get

Theorem 4.4.10. One can build a data structure in O
(
m2 +mn log(n)

)
time and

O(n+mℓ+m2) space that answers for an element of the ground set Z and a set of R̃4,
whether this element is contained in the set in O(ℓ2) time. The data structure has a size
of O(mℓ+m2).

87

CHAPTER 4. SUBTRAJECTORY CLUSTERING

Since for all (i, j) we have that ri,j ⊆ r̃i,j it holds that for each set cover of R̃3, there
is also a set cover of the same size for R̃4. Together with Lemma 4.4.6 this directly
implies

Lemma 4.4.11. If there exists a set cover S of R, then there exists a set cover of the
same size for R̃4.

For the range space R̃4 we further can derive a lemma corresponding to Lemma 4.4.5
using that for z ∈ r̃i,j we have dF (κz(x, y),σ+(i, j)) ≤ 46∆. The proof is in all other
parts completely analogous.

Lemma 4.4.12. Assume there exists a set cover for R with parameter ∆. Let S be a set
cover of size k for R̃4. We can derive from S a set of k cluster centers C ⊆ Xd

l and such
that ϕ(P ,C) ≤ 50∆.

So if we apply Theorem 4.2.4 to the range space R̃4 given by the approximation oracle
we merely lose a constant approximation factor for our clustering problem in comparison
to the direct application on the range space R̃3. This leads to the following result.

4.4.6 The result

Lemma 4.4.13. Let k be the minimum size of a set cover for R̃4. There exists an
algorithm that computes a set cover for R̃4 of size O(k log2(m)) with expected running
time in Õ

(
kℓ2m2 +mn

)
and using space in O(n+mℓ+m2).

Proof. Note that we must have k < m if such a set C∗ exists. Indeed, this is the case
since for each i ∈ {1, . . . ,m− 1} the subcurve P [ti, ti+1] has to be covered by only one
element of C∗. So if we had k > m− 1 then we would have more center curves in C∗

than elements to cover. We apply Theorem 4.2.4 to compute a set cover of (Z, R̃4). For
Theorem 4.2.4, we use Theorem 4.4.10, |Z| = m− 1 and |R̃4| = O(m2). Again, the
VC-dimension of the dual range space is bounded by O(logm).

Theorem 4.1.2. Let P : [0, 1]→ Rd be a polygonal curve of complexity n with breakpoints
0 ≤ t1, . . . , tm ≤ 1. Assume there exists a set C∗ ⊂ Xd

ℓ of size k ≤ m, such that
ϕ(P ,C∗) ≤ ∆. Then there exists an algorithm that computes a set C ⊂ Xd

ℓ of size
O(k log2(m)) such that ϕ(P ,C) ≤ 50∆. The algorithm has expected running time in
Õ
(
kℓ2m2 +mn

)
and uses space in O(n+mℓ+m2).

Proof. The theorem follows directly by the combination of Lemma 4.4.13, Lemma 4.4.11
and Lemma 4.4.12.

4.5 Improving the algorithm in the continuous case

In the previous sections, we considered the discrete variant of the subtrajectory clustering
problem, assuming we are given breakpoints that denote the possible start and end points
of subcurves that cover P . In the continuous case, we do not restrict the subcurves of P
to start and end at breakpoints. Recall that a point of P is covered by a center curve c if
there is any subcurve S of P that contains p and is in Fréchet distance at most ∆ to c.
In the continuous case we do not restrict S to start and end at a breakpoint of P . The
exact problem statement is given in Section 2.5.

88

CHAPTER 4. SUBTRAJECTORY CLUSTERING

In this section, we present an approximation algorithm that applies the algorithmic
ideas developed in the previous sections to the discretization described in Section 2.5.1.
A direct application of Theorem 4.1.2 using Lemma 2.5.2, however, leads to a high
dependency on the arclength of the input curve, see also the discussion in Section 4.1.2.
We will see that some steps of the algorithm can be simplified for this particular choice
of breakpoints, ultimately leading to an improvement in the running time. Again, the
crucial step is to choose the range space and the range space oracle wisely.

4.5.1 The range space

We will again use the range space R̃3 that was defined in Section 4.4.2. Here we choose
m = ⌈ λ

ε∆⌉ breakpoints to ensure that two consecutive breakpoints have a distance of at
most ε∆. The explicit choice of breakpoints was already described in Section 2.5.1. For
the construction of the approximation oracle we can take advantage of the fact that two
consecutive breakpoints are close to each other. This will result in better running times
based on the simpler structure of the oracle. A key factor is the low VC-dimension of the
range space that is dual to the range space which is implicitly given by the oracle.

4.5.2 The approximation oracle

The new approximation oracle will have the following properties. Given a set ri,j ∈ R̃3
and an element z ∈ Z this approximation oracle returns either one of the answers below:

(i) ”Yes”, in this case there exists a breakpoint x ∈ [xz, z] and a breakpoint y ∈
[z + 1, yz+1] with dF (P [tx, ty],σ+(i, j)) ≤ (14 + ε)∆

(ii) ”No”, in this case z /∈ ri,j .

In both cases the answer is correct. Furthermore, we say that the new approximation
oracle answers the query in the same way as the approximation oracle introduced in
section 4.4.4 and therefore also needs the same data structures as before. There is only
one exception. The oracle does not need to check if any edge is active and only needs
to check if there is a monotone increasing path in the 10∆-free space of σ+(i, j) and
κz(xz, yz+1) that starts before or at z and ends after or at z+ 1. So it also does not need
to build the data structure for determining active edges. Neither does it have to save the
first and last breakpoint on the edge of each simplification. As a direct consequence, we
get the following running time result for the new approximation oracle.

Theorem 4.5.1. One can build a data structure for the approximation oracle of size
O(mℓ) in time O (mn log(n)) and space O(n+mℓ) that has a query time of O(ℓ2).

Correctness. We want to show that the oracle is still correct, even though it does not
check for active edges. To do so, we prove the following lemma.

Lemma 4.5.2. Let z, i, j ∈ {1, . . . ,m}. Consider the query z ∈ ri,j. If the approximation
oracle returns the answer

(i) ”Yes”, then there exists x ∈ [xz, z] and y ∈ [z+ 1, yz+1] with dF (P [tx, ty],σ+(i, j)) ≤
(14 + ε)∆

(ii) ”No”, then we have z /∈ ri,j.

89

CHAPTER 4. SUBTRAJECTORY CLUSTERING

Proof. (i) If the oracle returns ”Yes”, then there exists a monotone increasing path in
the 10∆-free space of σ+(i, j) and κz(xz, yz+1) that starts before or at z and ends after
or at z + 1. Let p be the start of the path on σ−(xz, z). Let q be a point of P that gets
mapped to p by a strictly monotone increasing function from P [txz , tz] to σ−(xz, z) that
realises the Fréchet distance dF (P [txz , tz],σ−(xz, z)). So the last breakpoint qε before q
has distance at most ε∆ to q. Therefore we have by triangle inequality

d(p, qε) ≤ d(p, q) + d(q, qε) ≤ (4 + ε)∆

Since d(p, qε) ≤ (4 + ε)∆ and d(p, q) ≤ 4∆, we also have for the line segment qεq that

dF (p, qεq) ≤ (4 + ε)∆

An analogous argument can be made for the end point v of the path. So let v get mapped
to a point u on P by a strictly monotone increasing function from σ−(xz, z) to P [txz , tz]
that realises the Fréchet distance dF (P [txz , tz],σ−(xz, z)). For the first breakpoint uε

after u, we therefore get
dF (v,uuε) ≤ (4 + ε)∆

Let κ̃ be the subcurve of κz(xz, yz+1) starting at p and ending at v and P̃ be the
subcurve of P starting at q and ending at u. By the definition of κz(xz, yz+1) as a
(4∆, 2ℓ)-simplification and the choices of p, q,u and v, we get

dF (κ̃, P̃) ≤ 4∆

So by concatenation, we can get the curve

P̃ε = qεq⊕ P̃ ⊕ uuε

which is a subcurve of P with

dF (κ̃, P̃ε) ≤ (4 + ε)∆

By the use of triangle inequality, we now get

dF (σ
+(i, j), P̃ε) ≤ dF (σ

+(i, j), κ̃) + dF (κ̃, P̃ε) ≤ (14 + ε)∆

(ii) We prove that the oracle returns the answer ”Yes” if z ∈ ri,j :
So let z ∈ ri,j Then we have dF (κz(x, y),σ+(i, j)) ≤ 10∆ for some xz ≤ x ≤ z and

z + 1 ≤ y ≤ yz+1. Therefore there is a path in the free space diagram that starts before
or at z and ends after or at z + 1.

Now that we have shown that the oracle works correctly, we describe how we can use
the oracle to approximate our problem. Analogous to the approach in the discrete case,
we define a range space that is implicitly given by the new approximation oracle. Let
Ĩ(z, (i, j)) be the output of the approximation oracle for z, i, j ∈ {1, . . . ,m} with

Ĩ(z, (i, j)) = 1 if the oracle answers ”Yes”
Ĩ(z, (i, j)) = 0 if the oracle answers ”No”

Let R̃5 be the range space consisting of sets of the form

r̃i,j = {z ∈ Z | Ĩ(z, (i, j)) = 1}

With Theorem 4.5.1 we immediately get

90

CHAPTER 4. SUBTRAJECTORY CLUSTERING

Theorem 4.5.3. One can build a data structure of size O(mℓ) in time O (mn log(n))
and O(n+mℓ) space that answers for a breakpoint z ∈ {1, . . . ,m} and a set of R̃5,
whether z is contained in the set in O(ℓ2) time.

We can also get the following results for the range space R̃5 in the same way as before.
We use that each range in R̃3 is contained in a range of R̃5. Together with Lemma 4.4.6
this directly implies

Lemma 4.5.4. If there exists a set cover S of R, then there exists a set cover of the
same size for R̃5.

To get the next result, we use that for z ∈ r̃i,j we have dF (κz(x, y),σ+(i, j)) ≤
(14 + ε)∆. Imitating the proof of Lemma 4.4.5 we then get

Lemma 4.5.5. Assume there exists a set cover for R with parameter ∆. Let S be a set
cover of size k for R̃4. We can derive from S a set of 3k cluster centers C ⊆ Xd

l and
such that ϕ(P ,C) ≤ (18 + ε)∆.

These results imply that a minimum set cover of R̃5 can be used to find an approximate
solution for our clustering problem. But to apply Theorem 4.2.4 for finding a good set
cover, we first need to bound the VC-dimension of the dual of R̃5.

4.5.3 The VC-dimension

In our proof to bound the VC-dimension of the range space R̃5 and its dual range
space, we apply the techniques established in Chapter 3. We use the predicates defined
in Section 3.3.2 and show that the output Ĩ(z, (i, j)) of the approximation oracle can
be determined by the truth value of these predicates. A bound for the VC-dimension
then directly follows from the simplicity of the predicates. In particular, we consider
the predicates P1,P2,P7,P8 for V = σ+(i, j), W = κz(xz, yz+1) and radius 10∆. Let
v1, . . . , vℓ1 be the vertices of a polygonal curve V and w1, . . . ,wℓ2 be the vertices of a
polygonal curve W . Note that we have ℓ1 = O(ℓ) and ℓ2 = O(ℓ) for the case V = σ+(i, j)
and W = κz(xz, yz+1). We restate the predicates and add a subscript to enable targeting
specific predicates directly by using the indices i, j and t.

i) (P1)(i,j): Given an edge of V , vjvj+1 and a vertex wi of W , this predicate returns
true iff there exists a point p ∈ vjvj+1, such that ∥p−wi∥ ≤ 10∆.

ii) (P2)(i,j): Given an edge of W , wiwi+1 and a vertex vj of V , this predicate returns
true iff there exists a point p ∈ wiwi+1, such that ∥p− vj∥ ≤ 10∆.

iii) (P7)(i,j,t): Given two vertices of V , vj and vt with j < t and an edge of W ,
wiwi+1, this predicate returns true if there exists two points p1 and p2 on the line
supporting the directed edge, such that p1 appears before p2 on this line, and such
that ∥p1 − vt∥ ≤ 10∆ and ∥p2 − vj∥ ≤ 10∆.

iv) (P8)(i,j,t): Given two vertices of W , wi and wt with i < t and an edge of V ,
vjvj+1, this predicate returns true if there exists two points p1 and p2 on the line
supporting the directed edge, such that p1 appears before p2 on this line, and such
that ∥p1 −wt∥ ≤ 10∆ and ∥p2 −wi∥ ≤ 10∆.

91

CHAPTER 4. SUBTRAJECTORY CLUSTERING

The proof of the following lemma is analogous to Lemma 9 in the full version [1]
of the paper [2] by Afshani and Driemel. Much of the argumentation can be applied
verbatim. We need to adapt the proof slightly since the range space is defined based on
a partial alignment instead of a complete alignment. We include the proof here for the
sake of completeness since there are some subtle differences.

Lemma 4.5.6. Let V and W be two polygonal curves with vertices v1, . . . , vℓ1 and
w1, . . . ,wℓ2. Let further 1 ≤ a ≤ b ≤ ℓ2. Given the truth value of all predicates
P1,P2,P7,P8, one can determine if there exists a monotone increasing path in the 10∆-
free space of V and W that starts in wawa+1 at the bottom of the free space diagram and
ends in wbwb+1 at the top of the free space diagram.

Proof. As in the proof of Lemma 9 in [1], we first introduce the notion of a valid sequence
of cells in the free space diagram. We as well denote the cell corresponding to the
edges wiwi+1 and vjvj+1 with Ci,j . The definition of a valid sequence, however, changes
slightly for our application. We call a sequence of cells C = ((i1, j1), (i2, j2), . . . , (ik, jk))
valid if i1 = a, j1 = 1, ik = b, jk = ℓ1 − 1 and if for any two consecutive cells (im, jm)
and (im+1, jm+1) it holds that either im = im+1 and jm+1 = jm + 1 or jm = jm+1 and
im+1 = im + 1. Here each tuple (i, j) represents a cell Ci,j . The only difference to the
definition in [1] is that we require i1 = a and ik = b.

In our application, we say that a monotone increasing path in the 10∆-free space of
V and W is feasible if it starts in wawa+1 at the bottom of the free space diagram and
ends in wbwb+1 at the top of the free space diagram. It is easy to see that for any valid
sequence, there exists a feasible path which passes the cells in the order of the sequence.
On the other hand, it is also true that for each feasible path, there exists a valid sequence
such that the path passes the cells in the order of the sequence. In the following, we
identify with each sequence of cells C a set of predicates P. The set of predicates is
different from the predicates in [1] and consists of the following predicates.

i) (P1)(i,j) ∈ P iff (i, j − 1), (i, j) ∈ C.

ii) (P2)(i,j) ∈ P iff (i− 1, j), (i, j) ∈ C.

iii) (P2)(a,1) ∈ P and (P2)(b,ℓ1) ∈ P

iv) (P7)(i,j,k) ∈ P iff (i, j − 1), (i, k) ∈ C and j < k.

v) (P7)(a,1,k) ∈ P iff (a, k) ∈ C and 1 < k.

vi) (P7)(b,j,ℓ1−1) ∈ P iff (b, j) ∈ C and j < ℓ1 − 1.

vii) (P7)(i,j,k) ∈ P iff (i− 1, j), (k, j) ∈ C and i < k.

As in [1], we say that a valid sequence of cells is feasible if the conjunction of its induced
predicates is true. We claim that any feasible path through the free space induces a
feasible sequence of cells and vice versa. To prove the claim we use the following helper
lemma from [1].

Lemma 4.5.7 ([1], Lemma 10). Let C be a feasible sequence of cells and consider a
monotonicity predicate P of the set of predicates P induced by C. Let a1 and a2 be
the vertices and let e be the directed edge associated with P . There exist two points p1
and p2 on e, such that p1 appears before p2 on e, and such that ∥p1 − a1∥ ≤ 10∆ and
∥p2 − a2∥ ≤ 10∆.

92

CHAPTER 4. SUBTRAJECTORY CLUSTERING

Lemma 4.5.7 holds for our definition of feasible sequences of cells in the same way as
in the original work. For the proof, we refer to [1]. To continue the proof of Lemma 4.5.6,
we claim that any feasible path induces a feasible sequence of cells and vice versa. Assume
there exists a feasible path π that passes through the sequence of cells C. The truth
value of the predicates (P2)(a,1) and (P2)(b,ℓ1) follows directly by the starting and ending
conditions of a feasible path. The truth value of the other predicates can be derived in
the following way (which is exactly the same as in [1]).

Consider a horizontal vertex-edge predicate (P2)(i,j) for consecutive pairs of cells
C(i,j−1), C(i,j) in the sequence C. The path π is a feasible path that passes through the
cell boundary between these two cells. This implies that there exists a point on the edge
wiwi+1 which lies within distance 10∆ to the vertex vj . This implies that the predicate
is true. A similar argument can be made for each vertex-edge predicate.

Next, we will discuss the monotonicity predicates. Consider a subsequence of cells of
C that lies in a fixed column i and consider the set of predicates P ′ ⊆ P that consists of
vertical monotonicity predicates (P7)(i,j,k) for fixed i. Let pj , pj+1, . . . , pk be the sequence
of points along W that correspond to the vertical coordinates where the path π passes
through the corresponding cell boundaries corresponding to vertices vj , vj+1, . . . , vk. The
sequence of points lies on the directed line supporting the edge wiwi+1 and the points
appear in their order along this line in the sequence due to the monotonicity of π. Since
π is a feasible path it lies in the free space and therefore we have ∥pk′ − vk′∥ ≤ 10∆
for every j ≤ k′ ≤ k. This implies that all predicates in P are true. We can make a
similar argument for the horizontal monotonicity predicates (P8)(i,j,k) for a fixed row
j. This shows that a feasible path π that passes through the cells of C implies that the
conjunction of induced predicates P is true.

It remains to show the other direction. Since each cell of the free space is convex, it is
clear that the vertex edge predicates give us the existence of a continuous (not necessarily
monotone) path π that stays inside the free space and connects the edges wawa+1 and
wbwb+1. To show that there always exists such a path that is also (x, y)-monotone we
again use the argumentation of [1].

Assume for the sake of contradiction that the conjunction of predicates in P is true,
but there exists no feasible path through the sequence of cells C. In this case, it must
be that either a horizontal passage or a vertical passage is not possible. Concretely, in
the first case, there must be two vertices vj and vk and a directed edge e = wiwi+1, such
that there exist no two points p1 and p2 on e, such that p1 appears before p2 on e, and
such that ∥p1 − vj∥ ≤ 10∆ and ∥p2 − vk∥ ≤ 10∆. However, (P3)(i,j,k) is contained in P
and by Lemma 4.5.7 two such points p1 and p2 must exist. We obtain a contradiction. In
the second case, the argument is similar. Therefore, a feasible sequence of cells implies a
feasible path, as claimed.

Lemma 4.5.6 now directly implies the following theorem.

Theorem 4.5.8. Given the truth values of all predicates P1, . . . ,P8 for two fixed curves
V = σ+(i, j) and W = κz(xz, yz+1), one can determine the value of Ĩ(z, (i, j)).

Applying Theorem 4.5.8 and the techniques of Chapter 3 directly yields the following
bound on the VC-dimension of (Z, R̃5) and its dual range space.

Theorem 4.5.9. Let Z = {1, . . . ,m}. The VC-dimension of (Z, R̃5) and its dual range
space are both in O(dℓ log(ℓ)).

93

CHAPTER 4. SUBTRAJECTORY CLUSTERING

Proof. By Lemma 3.4.11 and 3.4.12 the predicates P1, . . . ,P8 are simple. Therefore it
follows from Corollary 3.3.2 that the VC-dimension of (Z, R̃5) and its dual range space
are both in O(dℓ log(ℓ)).

4.5.4 The result

We apply Theorem 4.2.4 on the dual of ({1, . . . ,m}, R̃5) to get the following result
for computing a set cover. We use here that |R̃5| = O(m2) and that the result of
Theorem 4.5.9 that the VC-dimension of R̃∗

5 is in O(dℓ log(ℓ)).

Lemma 4.5.10. Let k be the minimum size of a set cover for R̃5. Let further m = ⌈ λ
ε∆⌉

and δ = O(dℓ log(ℓ)), there exists an algorithm that computes a set cover for R̃5 of
size O(δk log(k)) with expected running time in Õ(δkℓ2m2 +mn) and using space in
O(n+mℓ).

This lemma finally implies our main result for the clustering problem in the continuous
case.

Theorem 4.1.3 (Main Theorem). Let P : [0, 1]→ Rd be a polygonal curve of complexity
n, let ℓ ∈ N and ∆ > 0 be parameters. Let k be the minimum size of a solution to
the (∆, ℓ)-covering problem on P . Let further λ(P) be the arc length of the curve P .
There exists an algorithm that outputs a (19,O(ℓ log(k) log(ℓ)))-approximate solution.
Let m =

⌈
λ(P)

∆

⌉
. The algorithm has expected running time in Õ

(
kℓ3m2 +mn

)
and uses

space in O(n+mℓ).

Proof. The theorem follows immediately by the combination of Lemma 4.5.10, 4.5.4 and
4.5.5.

4.6 Additional lower bounds for the VC-dimension

In this section, we derive bounds on the VC-dimension of the dual range spaces in the
discrete and continuous case. Consider the range space R from Section 2.5.1. The dual
range space of R is the range space R∗ with ground set Xd

ℓ where each set rz ∈ R∗ is
defined by a breakpoint z ∈ {1, . . . ,m− 1} as follows

rz =
{
Q ∈ Xd

ℓ | ∃i ≤ z < j with dF (Q,P [ti, tj]) ≤ ∆
}

In the continuous case, the dual range space is the range space R∗
0 with ground set Xd

ℓ

where each set rt ∈ R∗
0 is defined by a parameter t ∈ [0, 1] as follows

rt =
{
Q ∈ Xd

ℓ | ∃t′ ≤ t < t′′ with dF (Q,P [t′, t′′]) ≤ ∆
}

Before deriving bounds on the VC-dimension of R∗ and R∗
0 in the general case,

we observe that in the special case where cluster centers are points ℓ = 1, there is
a simple upper bound to the VC-dimension. In this chapter, we use the notation
b(p, ρ) = {q ∈ Rd | ∥p− q∥ ≤ ρ} for the Euclidean ball of radius ρ ≥ 0 centered at
p ∈ Rd.

Lemma 4.6.1. For ℓ = 1, the VC-dimension of (Xd
ℓ ,R∗

0) and (Xd
ℓ ,R∗) are both at most

d+ 1.

94

CHAPTER 4. SUBTRAJECTORY CLUSTERING

s1

s2

s3

s4

s5

Sj = {s1, s3, s4}

cjc1,j

f(x) = x2

∆

τ ′1

τ ′2

τ ′3

τ ′4

τ ′5

∆

z′

z

P [tj]

Figure 4.7: Construction for the case ℓ = 2 such that the VC-dimension of (Xd
ℓ ,R∗

0) is
high.

Proof. We prove the bound for (Xd
1,R∗

0) here. The proof works verbatim for (Xd
1,R∗).

The ground set of the range space is Xd
1 = Rd. Now, consider a fixed t ∈ [0, 1] and radius

∆ > 0. We claim that
rt = b(P (t), ∆).

Indeed, for any 0 ≤ c ≤ t ≤ d ≤ 1, we can write for the set

R[c,d] = {p ∈ Rd | d(p,P [c, d]) ≤ ∆} =
⋂

s∈[c,d]
{p ∈ Rd | ∥p− P (s)∥ ≤ ∆} ⊆ b(P (t), ∆).

Thus, by the definition of R∗,

rt =
⋃

0≤c≤t≤d≤1
R[c,d] = b(P (t), ∆).

The claim now follows since the VC-dimension of Euclidean balls in Rd is equal to
d+ 1.

4.6.1 Continuous case

We derive a lower bound on the VC-dimension of the dual range space (Xd
ℓ ,R∗

0) in the
general case.

Theorem 4.6.2. For ℓ ≥ 2 and d ≥ 2, the VC-dimension of (Xd
ℓ ,R∗

0) is in Ω(log(n)).

Proof. We show the lower bound for ℓ = 2 and d = 2; this implies the bound for larger
values of ℓ and d. Let m ∈N. We construct a curve P with at most O(4m) vertices such

95

CHAPTER 4. SUBTRAJECTORY CLUSTERING

that the range space (X2
2,R∗

0) defined on P shatters a set S ⊂ X2
2 of m line segments.

For the construction of S = {s1, . . . , sm} we choose line segments that are tangent to
the parabola f(x) = x2

∆ . More specifically, let τi be the tangent that passes through

(xi, yi) = (∆(i−1)
2(m−1) −

∆
4 ,

(∆(i−1)
2(m−1)− ∆

4)
2

∆). Then si is the intersection of τi with the rectangle
[−2∆

3 , 2∆
3]× [−∆

2 , ∆
2]. The construction is visualized in Figure 4.7.

Consider the power set 2S . We show that for each subset Sj ∈ 2A there exists a curve
cj ∈ Xd

m+1 such that for each si ∈ Sj there exists a subcurve ci,j of cj with dF (si, ci,j) ≤ ∆
and for each si ∈ S \ Sj there exists no subcurve ci,j of cj with dF (si, ci,j) ≤ ∆. The
curve P defining the range space instance will later be defined as a concatenation of
these curves cj . This will allow us to find a point tj on cj such that rtj ∩ S = Sj for each
j, which then implies that S can be shattered.

The curve cj can be generated as follows. Let τ ′
i be the line parallel to τi that lies

below τi and has distance ∆ to τi. For Sj ∈ 2S we define with oj the upper contour set
of the lines τ ′

i such that si ∈ Sj . We further define cj to be the intersection of oj with
[−2∆, 2∆]× (−∞,∞). We observe that for si ∈ S \ Sj the intersection of b((xi, yi), ∆)
and cj is empty. Therefore there exists no subcurve ci,j of cj with dF (si, ci,j) ≤ ∆. For
si = piqi ∈ Sj let lpi (resp. lqi) be the line perpendicular to si that contains pi (resp.
qi). We define ci,j to be the subcurve of cj starting at the intersection of lpi and cj and
ending at the intersection of lqi and cj . To show that dF (ci,j , si) ≤ ∆, we divide si into
edges by projecting each vertex z of ci,j orthogonal onto si. Since the slope of each edge
of cj is between −1

2 and 1
2 and also the slope of si is between −1

2 and 1
2 , the projected

vertices appear in the same order on si as the corresponding vertices appear on cj .
So to conclude that dF (ci,j , si) ≤ ∆, it remains to show that each vertex z of ci,j has

distance at most ∆ to its projection z′ on si. This is enough because the Fréchet distance
of two edges is attained at the distances of the start points or the end points of the edges.
So let z be a vertex of ci,j . By construction, ci,j is part of the upper contour set oj . We
observe that the rectangle [−2∆

3 , 2∆
3]× [−∆

2 , ∆
2] that contains all line segments S lies in

the connected component of R2 \ oj that does not contain τ ′
i . Therefore the ray starting

at z′ and containing z′z hits z before or at the same time as it hits τ ′
i . So we have

d(z′, z) ≤ d(z′, τ ′
i) = ∆

Note that the intersection ⋂i:si∈Sj
ci,j always contains the intersection of cj with the

vertical axis through (0, 0). This is the case because the x-coordinate of the start point
of each curve ci,j is smaller than 0 and the x-coordinate of the end point of each curve
ci,j is greater than 0.

Let

P =
2m⊕
j=1

cj .

Since each curve cj has at most m+ 1 vertices, we get that P has at most n = m2m =
O(4m) vertices and thus m is in Ω(log4(n)).

So, it remains to show that the set S is shattered by (X2
2,R∗

0) defined on P . Indeed,
for any Sj ∈ 2S , let tj ∈ [0, 1] be the parameter such that P [tj] is the intersection of cj

with the vertical axis through (0, 0). We claim

rtj ∩ S = Sj .

Since P [tj] ∈
⋂

i:si∈Sj
ci,j , we get by the analysis above that Sj ⊆ rtj ∩ S.

96

CHAPTER 4. SUBTRAJECTORY CLUSTERING

On the other hand, for each si ∈ S \ Sj there exists no subcurve ci,j of cj with
dF (si, ci,j) ≤ ∆. Note that the start points and end points of cj are by construction
more than ∆ away from any point on si. Therefore dF (si,Q) ≤ ∆ for each subcurve Q of
P that contains either the start point or the end point of cj . So in total, we get that
si ∈ rtj ∩ S.

4.6.2 Discrete case

Now we consider the range space (Xd
ℓ ,R∗) that is dual to the range space R, which was

introduced in Section 2.5.1 to discretize our clustering problem through the addition of
breakpoints.

We show that the VC-dimension of (Xd
ℓ ,R∗) is in Θ(logm) in the worst-case for

any reasonable values of d and ℓ. Interestingly, our bounds on the VC-dimension are
independent of d and n. In fact, quite surprisingly, they also hold if P is non-polygonal.
The upper bound that the VC-dimension of R∗ is at most log(m) follows directly from
the upper bound on the size of the range space. It remains to show the lower bound.

Theorem 4.6.3. For d ≥ 2 and ℓ ≥ 1 the VC-dimension of (Xd
ℓ ,R∗) is in Ω(logm) in

the worst-case.

Proof. We show the lower bound for ℓ = 1 and d = 2; this implies the bound for larger
values of ℓ and d. To show the lower bound, we need to construct a set A ⊆ R2 with
|A| = t for t ∈ Ω(logm), and a P with breakpoints t1, . . . , tm, such that A is shattered
by R∗ as defined by P .

We use the lower bound construction of [57] for the VC-dimension of the range space
of metric balls under the Fréchet distance centered at curves of complexity t on the
ground set R2. According to this result, we can find a set A of t points in R2, such that
for every subset A′ ⊆ A we can find a curve PA′ ∈ Xd

t , such that

A′ = A∩ {x ∈ R2|dF (x,PA′) ≤ ∆} (4.2)

We will now construct P as the concatenation of these curves with breakpoints at the
start and endpoints of these curves, where to concatenate them we linearly interpolate
between the endpoints of consecutive curves.

In order to show the correctness of the resulting construction we observe that the
definition of the Fréchet distance can be simplified if one of the curves is a point. Let
x ∈ R2 and let P ′ = P [ti, tj], then

dF (x,P ′) = max
t∈[0,1]

(x,P ′(t)) (4.3)

This implies that for the case ℓ = 1 our range space R∗ actually has a simpler structure.
In particular, any rz ∈ R∗ defined by an index z ∈ Z can be rewritten as follows

rz =
{
x ∈ Rd | ∃i ≤ z ≤ j with dF (x,P [ti, tj]) ≤ ∆

}
(4.4)

=
⋃

i≤z<j

{
x ∈ Rd | dF (x,P [ti, tj]) ≤ ∆

}
(4.5)

=
{
x ∈ Rd | dF (x,P [tz, tz+1]) ≤ ∆

}
(4.6)

Thus, with our choice of P and breakpoints t1 < · · · < tm, we have that for any
A′ ⊆ A there exists an index z with 1 ≤ z < m, such that A′ = A∩ rz holds as required

97

CHAPTER 4. SUBTRAJECTORY CLUSTERING

1

2

3

0

4

5

S′

z

z + 1

rz ∩ S = S′

Figure 4.8: Schematic drawing of P : [0, 1]→ R in the construction for the lower bound
to the VC-dimension. Parameters of the construction are ∆ = 1

3 , ℓ = 2 and t = 3. The
shattered set of line segments in R is S = {1, 5 2, 5, 3, 5} with |S| = t. The subset encoder
segments are shown vertically upwards, the connector segments are shown diagonally
downwards. The horizontal axis shows the parametrization of the curve. The figure
also shows the subset S′ = {1, 5 2, 5} and indicates the breakpoint at index z, such that
rz ∩ S = S′.

by (4.2). Finally, the number of breakpoints we used is m = 2t+1 (two breakpoints for
each subset of A). Therefore, we have t ≥ log(m)− 1.

Theorem 4.6.4. For d ≥ 1 and ℓ ≥ 2 the VC-dimension of R∗ is in Ω(logm) in the
worst-case.

Proof. We construct a curve P with breakpoints as follows. Let t ∈N be a parameter
of the construction. Let ∆ = 1

3 . The curve P is constructed from a series of 2t line
segments starting at 0 and ending at t+ 2 with certain breakpoints along these line
segments to be specified later. We call these segments subset encoder segment. These
line segments are connected by 2t − 1 line segments starting at t+ 2 and ending at
0. Those line segments will not contain any breakpoints and we call them connector
segments. Let A = {1, . . . , t}. For each subset A′ ⊆ A, we create one subset encoder
segment with breakpoints at the values of A′, in addition, we put two breakpoints at
the values t+ 1 and at t+ 2. The curve P is defined by concatenating all 2t subset
encoder segments with the connector segments in between. Figure 4.8 shows an example
of this construction for t = 3. Now, consider the following set of line segments in R.
S = {s1s2 | s1 ∈ A, s2 = t+ 2}. We claim that S is shattered by R∗ defined on P
and ∆. Therefore, the VC-dimension is t. The number of breakpoints m we used is
upper-bounded by (t+ 2)2t and therefore t ≥ Ω(logm).

98

Chapter 5

Faster Subtrajectory Clustering

The main content of this chapter previously appeared as the paper Faster Approximate
Covering of Subcurves Under the Fréchet Distance [25] by Frederik Brüning, Jacobus
Conradi and Anne Driemel which was published in the proceedings of the 30th Annual
European Symposium on Algorithms (ESA 2022). A full version of the paper is available
on arXiv [26]. This chapter considers the same subtrajectory problem as the previous
chapter, i.e. the (∆, ℓ)-covering problem. The approximation algorithms in this chapter
improve upon the ones from Chapter 4 in approximation factors as well as expected
running time and space requirement. The chapter extends [25] with an additional analysis
of the VC-dimension of the underlying range space in Sections 5.3.4 and 5.3.5. The
additional analysis is based on the techniques developed in Chapter 3 and improves
the constants of the already constant VC-dimension which then directly implies better
constants in the solution size.

5.1 Introduction

In this chapter, we study subtrajectory clustering under the Fréchet distance. As in
the previous chapter, we conduct this study by designing a bicriterial approximation
algorithm to the (∆, ℓ)-covering problem (see Section 2.5 for the problem definition). The
resulting algorithm improves upon the algorithm from Chapter 4 in the dependency of
the running time and space requirement on the arclength of the input curve and also has
slightly better approximation factors. A key factor for this improvement is a different
approach for the discretization of the underlying set cover problem. Instead of a direct
discretization of the input curve, we first simplify the input curve and then discretize
it by distributing points evenly along the simplification. We restrict subcurves to start
and end at these points and also restrict the selectable center curves to be subedges of
the simplification that start and end at these points. Another important factor is an
improvement in the adaptation of the multiplicative weight update method that enables
us to keep track of the weights implicitly. Our approach leads to the following results.

5.1.1 Results

Our main result in Theorem 5.4.9 is an algorithm that computes an (α,β)-approximate
solution to the (∆, ℓ)-covering problem with α ∈ O(1) and β = O(ℓ log(kℓ)), where k is
the size of an optimal solution. The algorithm needs O

(
n(kℓ)3 log4

(
nλ
∆kℓ

)
+ n log2(n)

)

99

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

time in expectation and O
(
n(kℓ)2 log2

(
nλ
∆kℓ

))
space, where λ is the arclength of the

input curve. Here, we stated our results for general ℓ using the reduction described at
the end of this section.

In our algorithm, we again use the variant of the multiplicative weights update method
described in Section 2.4.2. As shown in Theorem 4.6.2, the range space underlying the
(∆, ℓ)-covering problem initially has high VC-dimension, —namely Θ(logn) in the worst-
case. Similar to the approach in the last chapter, we circumvent the high VC-dimension
by defining an intermediate set cover problem where the VC-dimension is significantly
reduced. A key idea that enables our results is a curve simplification that requires the
curve to be locally maximally simplified, a notion that is borrowed from de Berg, Cook,
and Gudmundsson [50]. The algorithm improves the dependency on the relative arclength
from quadratic to polylogarithmic as compared to the previous result in Theorem 4.1.3.

Reduction to line segments In the remainder of the paper, we will focus on
finding a ∆-covering with line segments, that is ℓ = 2. The following lemma provides the
reduction for general ℓ at the expense of an increased approximation factor.

Lemma 5.1.1. Let P ∈ Xd
n be a polygonal curve, ∆ ∈ R+ and ℓ ∈N. Let C ⊆ Xd

ℓ be a
∆-covering of P of minimum cardinality. There exists a set of line segments C ′ ⊆ Xd

2
that is a ∆-covering of P with |C ′| ≤ (ℓ− 1)|C|.

Proof. Choose as set C ′ the union of the set of edges of the polygonal curves of C. Clearly,
this set has the claimed cardinality and is a ∆-covering of P .

Remark Note that using Theorem 4.1.3 for line segments and afterwards applying
Lemma 5.1.1 to get a result for general ℓ would directly improve the previous result of
Theorem 4.1.3 to an (α,β)-approximate solution with α ∈ O(1) and β = O(ℓ log(kℓ))
that needs in expectation Õ

(
kℓ(λ

∆)
2 + λn

∆

)
time and O

(
n+ λ

∆

)
space.

5.1.2 Roadmap

In Section 5.2 we develop a structured variant of our problem that allows us to apply
the multiplicative weight update method (see Section 2.4.2) in a more efficient way
than in Chapter 4. Our intermediate goal in this section is to obtain a structured
set of candidates for a modified covering problem that is on the one hand easy to
compute and on the other hand sufficient to obtain good approximation bounds for the
original problem. In Section 5.2.1, we define a notion of curve simplification that is
inspired by the work of de Berg, Gudmundsson and Cook [50]. A crucial property of
this simplification is that subcurves of the input are within small Fréchet distance to
subcurves of constant complexity of the simplification. In Section 5.3, we specify the
range space that can be used in combination with the multiplicative weights update
method to achieve approximate solutions. Crucially, we show that the VC-dimension of
the induced range space which is implicitly used by our algorithm is small by design (see
Sections 5.3.1 to 5.3.5). The Sections 5.3.2 and 5.3.3 present a VC-dimension bound
that is derived with the techniques from [26] and the Sections 5.3.4 and 5.3.5 present
an improved bound that is derived with techniques from Chapter 3. In Section 5.4,
we analyze in how we can adapt the multiplicative weights update method to get an
approximation algorithm. The adaptation mainly consists of specifying how we compute
simplifications (Section 5.4.1), how we implement the verifier (Section 5.4.2) and how we

100

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

implement the data structure for maintaining the probability distribution (Section 5.4.3).
Based on this adaptation, we finally prove our main results in Section 5.4.4.

5.2 Structuring the solution space

In this section, we introduce key concepts that allow us to transfer the problem to a set
cover problem on a finite range space with small VC-dimension and still obtain good
approximation bounds.

5.2.1 Simplifications and containers

We start by defining the notion of curve-simplification that we will use throughout the
paper.

Definition 5.2.1 (simplification). Let P be a polygonal curve in Rd. Let (t1, . . . , tn)
be the vertex-parameters of P , and pi = P (ti) the vertices of P . Consider an index
set 1 ≤ i1 < . . . < ik ≤ n that defines vertices pij . We call a curve S defined by such
an ordered set of vertices (pi1 , . . . , pik

) ∈ (Rd)k a simplification of P . We say the
simplification is ∆-good, if the following properties hold:

(i) ∥pij − pij+1∥ ≥ ∆
3 for 1 ≤ j < k

(ii) dF (P [tij , tij+1], pij pij+1) ≤ 3∆ for all 1 ≤ j < k.
(iii) dF (P [t1, ti1], pi1 pi1) ≤ 3∆ and dF (P [tik

, tn], pik
pik

) ≤ 3∆
(iv) dF (P [tij , tij+2], pij pij+2) > 2∆ for all 1 ≤ j < k− 1

Our intuition is the following. Property (i) guarantees that S does not have short
edges. Property (ii) and (iii) together tell us, that the simplification error is small.
Property (iv) tells us, that the simplification is (approximately) maximally simplified,
that is, we cannot remove a vertex, and hope to stay within Fréchet distance 2∆ to P .

Definition 5.2.2 (Container). Let P be a polygonal curve, let π = P [s, t] be a subcurve
of P , and let (t1, . . . , tn) be the vertex-parameters of P . For a simplification S of P
defined by index set I = (i1, . . . , ik), define the container cS(π) of π on S as S[ta, tb],
with a = max ({i1} ∪ {i ∈ I | ti ≤ s}) and b = min ({i ∈ I | ti ≥ t} ∪ {ik}).

The following lemma has been proven by de Berg et al. [50]. We restate and reprove
it here with respect to our notion of simplification.

Lemma 5.2.3. [50] Let P be a polygonal curve in Rd, and let S be a ∆-good simplification
of P . Let Q be an edge in Rd and let π be a subcurve of P with dF (Q,π) ≤ ∆. Then
cS(π) consists of at most 3 edges and cS(π) can not contain 3 vertices of S.

Proof. Assume for the sake of contradiction, that cS(π) contains 3 vertices s1, s2, s3
of S. Note that in the case that cS(π) has 4 edges, it has three internal vertices. By
Definition 5.2.2 these three vertices are also interior vertices of π. As the Fréchet
distance dF (Q,π) ≤ ∆, there are points q1, q2, q3 ∈ Q, that get matched to s1, s2 and s3
respectively during the traversal, with ∥si− qi∥ ≤ ∆. This implies dF (π[s1, s3], q1 q3) ≤ ∆.
It also implies, that dF (s1 s3, q1 q3) ≤ ∆. But then

dF (s1 s3,P [s1, s3]) = dF (s1, s3,π[s1, s3]) ≤ dF (s1 s3, q1 q3) + dF (π[s1, s3], q1 q3) ≤ 2∆,

contradicting the assumption that S is a ∆-good simplification.

101

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

P

Q1

Q2

0

s1

s′1

s2

s′2

s3

s′3
1

s4 s′4

Figure 5.1: Example of the structured ∆-coverage of a set C = {Q1,Q2} and a curve
P . Here we have Ψ′

∆(P ,C) = [s1, s′
1]∪ [s2, s′

3] since the subcurves P [s1, s′
1] and P [s2, s′

2]
have Fréchet distance ∆ to Q1 and P [s3, s′

3] has Fréchet distance ∆ to Q2. Note that
[s4, s′

4] is not part of the coverage since the subcurve P [s4, s′
4] consists of 4 edges.

5.2.2 Structured coverage and candidate space

We want to make use of the property of ∆-good simplifications shown in Lemma 5.2.3.
For this, we adapt the notion of ∆-coverage from Section 2.5 as follows.

Definition 5.2.4. Let S be a polygonal curve in Rd. Let (t1, . . . , tn) be the vertex-
parameters of S. Let ℓ ∈ N and ∆ ∈ R be fixed parameters. Define the structured
∆-coverage of a set of center curves C ⊂ Xd

ℓ as

Ψ′
∆(S,C) =

⋃
q∈C

⋃
(i,j)∈J

Ψ(i,j)
∆ (S, q)

where

Ψ(i,j)
∆ (S, q) = {s ∈ [t, t′] | ti ≤ t ≤ ti+1; t ≤ t′; tj−1 ≤ t′ ≤ tj ; dF (S[t, t′], q) ≤ ∆},

and where J = {1 ≤ i < j ≤ n | 1 ≤ j − i ≤ 3}.
If it holds that Ψ′

∆(S,C) = [0, 1], then we call C a structured ∆-covering of S.

Observation 5.2.5. In general for any polygonal curve S and set of center curves C it
holds that Ψ′

∆(S,C) ⊆ Ψ∆(S,C).

We now want to restrict the candidate set to subedges of a simplification of the input
curve, thereby imposing more structure on the solution space. For this, we begin by
defining a more structured parametrization of the set of edges of a polygonal curve.

Definition 5.2.6 (Edge space). We define the edge space Tn = {1, . . . ,n− 1} × [0, 1].
We denote the set of edges of P with E(P).

Definition 5.2.7 (Candidate space). Let E = {e1, . . . , en−1} be an ordered set of edges in
Rd. We define the candidate space induced by E as the set ZE = {(i1, t1, i2, t2) ∈ Tn×
Tn | i1 = i2}. We associate an element (i, t1, i, t2) ∈ ZE with the subedge ei(t1) ei(t2).
We may abuse notation by denoting the associated edge to an element t ∈ ZE simply with
t.

102

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

The following theorem summarizes and motivates the above definitions of structured
coverage and candidate space. Namely, we can restrict the search space to subedges of
the simplification S and still obtain a good covering of P . Moreover, we can evaluate the
coverage of our solution solely based on S. The structured coverage only allows subcurves
of S that consist of at most three edges to contribute to the coverage. This technical
restriction is necessary to obtain a small VC-dimension in our main algorithm later on,
and it is well-motivated by Lemma 5.2.3. The proof of the theorem is rather technical
and we divert it to Section 5.2.3.

Theorem 5.2.8. Let S be a ∆-good simplification of a curve P . Let C be a set of
subedges of edges of S. If C is a structured 8∆-covering of S, then C is an 11∆-covering
of P . Moreover, if k is the size of an optimal ∆-covering of P , then there exists such a
set C of size at most 3k.

To get a finite set of candidates, we can approximate the candidate space ZE .

Definition 5.2.9 (ε-approximate candidate set). Let E be a set of edges in Rd and
let ε > 0 be a parameter. We can approximate the candidate space induced by Q by
subsampling the edges as follows. Define Gδ := {i · δ | i ∈ Z}. For each edge ei ∈ E
consider the set

Xi = ([0, 1] ∩Gε/λi
) ∪ {1}

where λi is the length of the edge ei. The ε-approximate candidate set induced by E is
the set

Zε,E =
m⋃

i=1
{(i,x, i, y) | x ∈ Xi, y ∈ Xi}

Assuming E fixed, observe that for any edge p ∈ ZE, there exists an edge p′ ∈ Zε,E, such
that dF (e, e′) ≤ ε.

By applying triangle inequality, we directly get the following corollary to Theo-
rem 5.2.8.

Corollary 5.2.10. Let S be a ∆-good simplification of a curve P . Let C ⊆ Z∆,E . If C
is a structured 9∆-covering of S, then C is an 12∆-covering of P . Moreover, if k is the
size of an optimal ∆-covering of P , then there exists such a set C of size at most 3k.

5.2.3 Proof of Theorem 5.2.8

We want to prove Theorems 5.2.8. We will use the following observation on the Fréchet
distance of a curve and its simplifications.

Observation 5.2.11. Let P be a polygonal curve, and let S be a ∆-good simplification
of P , defined by the index set I = (i1, . . . , ik). Then dF (P ,S) ≤ 3∆. Moreover, there is
a traversal (fS , gS) with 0 ≤ t1 ≤ . . . ≤ tk ≤ 1, such that P (fS(tj)) = S(gS(tj)) = pij ,
with associated distance at most 3∆. This can be seen by concatenating the traversals
induced by conditions (ii) and (iii) on the respective subcurves.

The following Lemma motivates the use of the simplification S. It shows that for any
covering of P there exists a suitable structured covering of S. Moreover, we can transfer
a structured cover of S back to P .

103

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

Lemma 5.2.12. Let P be polygonal curve, and let S be a ∆-good simplification of P .
Let P ′ be a polygonal curve, with dF (P ,P ′) ≤ ∆′. Assume there exists a set C ⊂ Xd

2 of
cardinality k, such that Ψ∆(P ,C) = [0, 1]. Then

(i) Ψ∆+∆′(P ′,C) = [0, 1] and

(ii) Ψ′
4∆(S,C) = [0, 1].

Proof. We start by proving (i). Let (f , g) be a traversal of P and P ′, with associated
cost at most ∆′. Let µP (x) = {y ∈ [0, 1] | ∃t ∈ [0, 1] : f(t) = x, g(t) = y}, that is all the
(parametrized) points along P ′, that get matched to P (x) during some traversal with
associated distance at most ∆′. Note that µP ([0, 1]) = [0, 1], and more importantly for
[a, b] ⊂ [c, d], it holds that µP ([a, b]) ⊂ µP ([c, d]), as f and g are monotone.

We claim that

[0, 1] = µP ([0, 1]) = µP (Ψ∆(P ,C)) ⊆ Ψ∆+∆′(P ′,C)

This would imply the set inclusion [0, 1] ⊆ Ψ∆+∆′(P ′,C), which then also implies equality,
since by definition [0, 1] ⊇ Ψ∆+∆′(P ′,C).

We argue as follows. Observe that by triangle inequality it holds for any t, t′ ∈ [0, 1]
and any Q ∈ C with dF (P [t, t′],Q) ≤ ∆, and for any s ∈ µP (t) and s′ ∈ µP (t′) that

dF (P
′[s, s′],Q) ≤ dF (P

′[s, s′],P [t, t′]) + dF (P [t, t′],Q) ≤ ∆ + ∆′

Therefore we can write

µP (Ψ∆(P ,C)) =
⋃

Q∈C

⋃
0≤t≤t′≤1

{x ∈ µP ([t, t′]) | dF (P [t, t′],Q) ≤ ∆}

⊆
⋃

Q∈C

⋃
0≤s≤s′≤1

{x ∈ [s, s′] | dF (P
′[s, s′],Q) ≤ ∆ + ∆′}

= Ψ∆+∆′(S,C)

Indeed, the second step follows from the above observation since µP ([t, t′]) = [s, s′] for
some s ∈ µP (t) and s′ ∈ µP (t′) with s ≤ s′ since f and g are monotone.

Now for (ii) notice, that when P ′ = S is a ∆-good simplification of P , and ∆′ = 3∆,
S[s, s′] is contained in cS(P [t, t′]) for µP ([t, t′]) = [s, s′]. This follows from the traversal
given in Observation 5.2.11 together with the definition of µP . Thus, because cS(P [t, t′])
consists of at most three edges by Lemma 5.2.3, it holds that⋃

Q∈C

⋃
0≤s≤s′≤1

{x ∈ [s, s′] | dF (S[s, s′],Q) ≤ 4∆} ⊂ Ψ′
4∆(S,C),

implying the claim.

The following lemma shows that we can restrict the search for a covering to the
subedges of the simplification.

Lemma 5.2.13. Let S be a ∆-good simplification of some curve P . Assume there exists
a set C ⊂ Xd

2 of size k, such that Ψ∆(P ,C) = [0, 1]. Then there exists a set CS ⊂ ZE(S)

of cardinality at most 3k such that Ψ′
8∆(S,CS) = [0, 1].

104

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

S

Q2Q1 Q2

e1 e2 e3

π′
1 π′

2 π′
3

4∆

Figure 5.2: Illustration to the proof of Lemma 5.2.13. The example illustrates that the 8∆-
coverage of the edges e1, e2 and e3 is a superset of the 4∆-coverage of Q = Q1⊕Q2⊕Q3.

Proof. We start by applying Lemma 5.2.12 (ii) to P and its ∆-good simplification. Thus
Ψ′

4∆(S,C) = [0, 1]. We show that for each center curve in Q ∈ C there exist 3 subcurves
of edges of S that cover all the parts of S that were covered by Q. An illustration of
the proof is given in Figure 5.2. Let Q ∈ C with Ψ′

4∆(S, {Q}) ̸= ∅. We fix a subcurve
π of S such that dF (π,Q) ≤ 4∆, that consists of at most 3 edges e1, e2, e3 ∈ ZE(S). π
exists by Lemma 5.2.3. The curve Q can be split into 3 subcurves Q1, Q2, Q3 such that
Q = Q1 ⊕Q2 ⊕Q3 with dF (Q1, e1) ≤ 4∆, dF (Q2, e2) ≤ 4∆ and dF (Q3, e3) ≤ 4∆.

Now consider an arbitrary subcurve π′ of S such that dF (π′,Q) ≤ 4∆. The curve π′

can be split into 3 subcurves π′
1, π′

2, π′
3 such that π′ = π′

1⊕π′
2⊕π′

3 with dF (π′
1,Q1) ≤ 4∆,

dF (π′
2,Q2) ≤ 4∆ and dF (π′

3,Q3) ≤ 4∆. By triangle inequality we get

dF (π
′
1, e1) ≤ dF (π

′
1,Q1) + dF (Q1, e1) ≤ 8∆.

In the same way we obtain dF (π′
2, e2) ≤ 8∆ and dF (π′

3, e3) ≤ 8∆. It follows that the
entire curve π′ is covered by e1, e2 and e3. By applying this argument to every subcurve
π′ of S with dF (π′,Q) ≤ 4∆ with π′ consisting of at most three edges, we get

Ψ′
4∆(S, {Q}) ⊆ Ψ′

8∆(S, {e1, e2, e3}).

Applying this to every Q ∈ C and using the fact that Ψ′
8∆(S,C) = ⋃

Q∈C Ψ′
8∆(S, {Q}),

the lemma is implied by constructing the set CS out of the edges e1, e2, e3 for each
Q ∈ C.

Using the above two lemmas, we can prove Theorem 5.2.8, which was the main
theorem in Section 5.2.2.

Proof of Theorem 5.2.8. Lemma 5.2.13 implies that there exists a set C of subedges of
edges of S of size 3k which is a structured 8∆-covering of S. By Observation 5.2.5, C
is also an 8∆-covering of S. Now, Observation 5.2.11 implies that dF (P ,S) ≤ 3∆ and
thus we can apply Lemma 5.2.12 (i) with P ′ = S and ∆′ = 3∆ to conclude that C is an
11∆-covering of P .

5.3 A new range space for approximation

In this section, we present a new range space for which the multiplicative weight update
method described in Section 2.4.2 can be applied to find an approximate solution to the
(∆, 2)-covering problem for a polygonal curve P . The range space is built with respect
to a ∆-good simplification S of P . To formally describe the range space, we introduce
the notion of feasible sets.

105

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

Definition 5.3.1 (Feasible set). Let S : Tn → Rd be a polygonal curve and let B ⊂ Xd
2

be a candidate set of edges and let ∆ ≥ 0 be a real value. For any point t ∈ Tn, we define
the feasible set of t as the set of all elements Q ∈ B with the following property: There
exist i, j with 1 ≤ j − i ≤ 3 and a, b with ti ≤ a ≤ t ≤ b ≤ tj such that dF (S[a, b],Q) ≤ ∆.
We denote the feasible set of t with F∆(t).

Note that for any fixed ∆-good simplification S and B = Zε,E(S) the feasible set
F∆,ε(t) contains all center curves in Zε,E(S) that can cover t in a structured ∆-covering
of S. We study the range space

(X,R) = (Z∆,E(S), {F9∆(t) | t ∈ Tn}).

A hitting set of {F9∆(t) | t ∈ Tn} is a structured 9∆-covering of S and therefore
by Corollary 5.2.10 a 12∆-covering of P . The bounds in Section 5.3.4 and 5.3.5 are
improvements of the bounds in Section 5.3.2 and 5.3.3.

techniques from [26] and the Sections 5.3.4 and 5.3.5 present an improved bound that
is derived with techniques from Chapter 3.

To find small hitting sets, we want to apply the multiplicative weight for hitting
sets described in Section 2.4.2 on (Z∆,E(S), {F9∆(t) | t ∈ Tn}). To do so, we need to
bound the VC-dimension of the range space. In the following sections, we will analyze
the structure of the range space and derive a VC-dimension bounds based on it and
techniques from Section 2.4.3 and Chapter 3.

5.3.1 On the structure of feasible sets

We claim that any feasible set can be split into sets corresponding to the edges of the
simplification, where each set consists of a constant union of rectangles in the candidate
space restricted to the respective edge. Figure 5.3 illustrates one of those rectangles. The
following lemma provides the formal statement.

Lemma 5.3.2. Let P be a polygonal curve in Rd and let e ∈ Xd
2 be an edge. Let

(t1, . . . , tn) be the vertex-parameters of P . For any integer values 1 ≤ i < j ≤ min(i+
3,n) and real value t ∈ [0, 1] with ti ≤ t ≤ tj, either there exist α1,α2,β1,β2 such that

R := {(α,β) ∈ [0, 1]2 | t ∈ Ψi,j
∆ (P , e[α,β])} = [α1,α2]× [β1,β2],

or the set R is empty. Moreover, each αv (respectively βv) for v ∈ {1, 2} can be written as
αv = cv +

√
dv (respectively βv = ev +

√
fv), where the parameters cv and dv (respectively

ev and fv) can be computed by an algorithm that takes (i, j), t and e as input and needs
O(d) simple operations.

Proof. Let R = {(α,β) ∈ [0, 1]2 | t ∈ Ψi,j
∆ (P , e[α,β])}. We first show that either R

corresponds to a rectangle [α1,α2]× [β1,β2] in the parameter space [0, 1]2 of e or R = ∅.
In Figure 5.3, we give an example for the construction of the rectangle R. Let i < v < j.
The intersection of the ∆-free space D∆(P , e) with the edge tv × [0, 1] is either a free
space interval of the form tv × [lv,uv] or is empty. Also the intersection with t× [0, 1]
has the form t× [lt,ut] or is empty. If either of the intersections is empty for t or some
i < v < j then R is empty, since no point on e is within distance ∆ of P (t) respectively
P (tv). Otherwise for all i < v < j the parameters lv,uv, as well as lt and ut are well

106

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

t
j

i

ti j

α1

α2

β1

β2

ui+1

li+1

uj−1

lj−1

ut

lt

bu

al

e

α1

α2

β1 β2

Figure 5.3: Example for the construction of the rectangle R = [α1,α2]× [β1,β2] for fixed
P , i, j, t, ∆ and e. The left image shows the curves P [ti, tj] and e with two circles of
radius ∆ around P (ti+1) and P (tj−1). The middle image shows the corresponding ∆-free
space diagram with a continuous monotone increasing path from al to bu and the right
image shows the rectangle R in the parameter space [0, 1]2 of e.

defined. In the case that j − i = 3 and li+1 > ui+2 we have R is empty since there
is no bi-monotone path in the free space that first passes ti+1 × [li+1,ui+1] and then
ti+2 × [li+2,ui+2]. In the following we therefore assume li+1 ≤ ui+2 for j − i = 3. Let
further a = (ai, al) be the lowest point in the cell of the ∆-free space corresponding to
the edge P [ti, ti+1] and b = (bj , bu) be the highest point in the cell of the ∆-free space
corresponding to the edge P [tj−1, tj]. We define the following parameters

α1 =

{
lt for ai ≥ t
al else

α2 = min(ui+1, . . . ,uj−1,ut)

β1 = max(li+1, . . . , lj−1, lt)

β2 =

{
ut for bj ≤ t
bu else

and show that R corresponds to a rectangle [α1,α2]× [β1,β2] in the parameter space
[0, 1]2 of e. To do so we first show that for each α ∈ [α1,α2] and β ∈ [β1,β2] with α ≤ β
there is a tα ∈ [ti, ti+1] and a tβ ∈ [tj−1, tj] such that

dF (P [tα, tβ], e) ≤ ∆.

The case β < α is analogous. So let α ∈ [α1,α2], β ∈ [β1,β2] with α ≤ β. By the
definition of α1,α2 it directly follows that there is a tα ∈ [ti, min(ti+1, t)] such that
(tα,α) is in the free space D∆(P , e). By the definition of β1,β2 it also follows that there
is a tβ ∈ [max(tj−1, t), tj] such that (tβ,β) is in the free space D∆(P , e). We split the
analysis on how to construct a monotone increasing path in the free space from (tα,α)
to (tβ,β) in three cases depending on j − i.

Case j − i = 1: Since the free space is convex in each cell and α ≤ β, the path
(tα,α)⊕ (tβ,β) is a bi-monotone path in D∆(P , e).

Case j − i = 2: Let γ = min(ui+1,β). Since β ≥ β1 ≥ li+1 and therefore ui+1 ≥ γ ≥
li+1, we have (ti+1, γ) ∈ D∆(P , e). By the convexity of each cell in the free space and
the fact that α ≤ γ ≤ β, we get that

(tα,α)⊕ (ti+1, γ)⊕ (tβ,β)

107

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

is a monotone increasing path in D∆(P , e).
Case j− i = 3: Let γ1 = min(ui+1,ui+2,β) and γ2 = min(ui+2,β). By li+1 ≤ βi+1 ≤

β and li+1 ≤ ui+2, we get (ti+1, γ1) ∈ D∆(P , e). Further by li+2 ≤ β1 ≤ β, we get
(ti+2, γ2) ∈ D∆(P , e). By the convexity of each cell in the free space diagram and the
fact α ≤ γ1 ≤ γ2 ≤ β, we get similar to the last case that

(tα,α)⊕ (ti+1, γ1)⊕ (ti+2, γ2)⊕ (tβ,β)

is a bi-monotone path in D∆(P , e).
It remains to show that no other (α,β) ∈ [0, 1]2 with α ≤ β and e[α,β] ∈ R exist. So

we show that for α /∈ [α1,α2] there is no tα ∈ [ti, ti+1], tβ ∈ [tj−1, tj], β ≥ α such that

dF (P [tα, tβ], e[α,β]) ≤ ∆.

Case α < α1: By the definition of α1 there exists no tα ∈ [ti, ti+1] such that
∥P (tα)− e(α)∥ ≤ ∆.

Case α > α2: Assume there exists a i < v < j such that α2 = uv. Then by the
definition of uv there exists no γ ∈ e[α, 1] such that ∥P (tv)− e(γ)∥ ≤ ∆′. Otherwise,
we have α2 = ut. Then by the definition of ut, there exists no γ ∈ e[α, 1] such that
∥P (tv)− e(γ)∥ ≤ ∆. The combination of the two cases directly implies the claim.

Now we analyze the running time to compute the parameters c1, c2, d1, d2, e1, e2, f1, f2
that define α1,α2,β1,β2. Each of the parameters α1,α2,β1,β2 is equal to one parameter
of the set K = {ui+1, . . . ,uj−1, li+1, . . . , lj−1, al, bu, lt,ut} with |K| ≤ 8. Each of the
intervals [lv,uv] as well as [lt,ut] correspond to the intersections of a line with a ball in
Rd. The points a = (ai, al) and b = (bi, bj) are defined by the intersections of a line
with the union of a cylinder and two balls in Rd. Each extreme point κ ∈ K of such
an intersection can be written as κ = κ1 +

√
κ2 with parameters κ1 and κ2 that can

be computed with O(d) simple operations (see Lemma 17 and 18 in [57]). For each
parameter γ ∈ {α1,α2,β1,β2}, we can find κ∗ ∈ K with κ∗ = γ by comparisons of O(1)
elements of K with each other. For each two element of κ,κ′ ∈ K this can be done
with O(1) simple operations, given the parameters κ1,κ2,κ′

1,κ′
2 with κ = κ1 +

√
κ2 and

κ′ = κ′
1 +

√
κ′

2. So in total we need O(d) simple operations to compute the parameters
c1, c2, d1, d2, e1, e2, f1, f2 that define α1,α2,β1,β2.

5.3.2 Analysis of the VC-dimension

To prove a VC-dimension bound of O(d2) for the range space {F∆(t) | t ∈ Tn} with
ground set Xd

2, we use the above lemma and bound the VC-dimension with the help of
Theorem 2.4.16 based on the number of simple operations that are needed to answer a
range query. A more detailed bound on the VC-dimension of our range space with an
analysis of the constant factors can be found in Lemma 5.3.8.

Lemma 5.3.3. Let S : Tn → Rd be a polygonal curve and let ∆ ∈ R+. The VC-
dimension of the range space {F∆(t) | t ∈ Tn} with ground set Xd

2 is in O(d2).

Proof. Let t = (t′, i′) ∈ Tn. We define the parameter vector vt of t as

vt = (t′, i′,S(ti′−3),S(ti′−2), . . . ,S(ti′+4)) ∈ R8d+2

where tj := t1 for all j < 1 and tj := tn for all j > n. We further define a function
h : R8d+2×Xd

2 → {0, 1} with h(vt,Q) = 1 if and only if Q ∈ F∆(t). In order to show the

108

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

lemma, we first argue that for any given vt ∈ R8d+2 and Q ∈ X2
d the expression h(t,Q)

can be evaluated with O(d) simple operations.
Let (t′, i′) = t and let J = {(i, j) | ti ≤ t ≤ tj ; 1 ≤ j − i ≤ 3}. Note that |J | ≤ 9

and i′ − 3 ≤ i ≤ j ≤ i′ + 4 for each (i, j) ∈ J since ti ≤ t ≤ ti+1. Furthermore, J can
be determined by O(1) simple operations from i′. Note that Q ∈ F∆(t) if and only if
t ∈ Ψi,j

∆ (S,Q) for some (i, j) ∈ J . So, for fixed (i, j), consider the set

R = {(α,β) ∈ [0, 1]2 | t ∈ Ψi,j
∆ (S,Q[α,β])}.

Lemma 5.3.2 implies that R is either empty or can be written as a rectangle [α1,α2]×
[β1,β2]. Note that t ∈ Ψi,j

∆ (S,Q) if and only if R is non-empty and (0, 1) ∈ R. By
Lemma 5.3.2, this test can be performed using O(d) simple operations. Thus, we can
apply Theorem 2.4.16 and conclude that the VC-dimension of ({F∆(t) | t ∈ Tn}, Xd

2) is
in O(d2).

5.3.3 Detailed analysis of the VC-dimension

In Lemma 5.3.3, it was shown that the VC-dimension of the range space {F∆(t) | t ∈ Tn}
with ground set Xd

2 is in O(d). In this section, we explicitly derive constants a and b such
that this VC-dimension is at most ad+ b. This is necessary to obtain exact bounds on
the sample size to be used in the main algorithm. To do so, we give a detailed pseudocode
(Algorithm 2) for the check if an element e ∈ Xd

2 is in the set F∆(t) and analyze the
simple operations that are needed for each step of the algorithm. In the algorithm, we
refer to specific free space intervals by using the following notation. Let Ci be the cell in
the ∆-free space of a curve S and an edge e corresponding to the ith edge of S and e. We
denote with Ih

i,0 = [ai,0, bi,0] the horizontal free space interval that bounds Ci from below
and with Ih

i,1 = [ai,1, bi,1] the horizontal free space interval that bounds Ci from above.
We further denote with Iv

i,0 = [ci,0, di,0] the vertical free space interval that bounds Ci

from the left and with Iv
i,1 = [ci,1, di,1] the vertical free space interval that bounds Ci

from the right.
The following lemmata give us bounds on the number of iterations for specific

operations of the algorithm. Figure 5.4 shows an example of the relevant free space
intervals that are used by the algorithm for checking if t is contained in the structured
coverage of some (i, j) ∈ {(i, j) | i′ − 3 ≤ i ≤ i′ ≤ j ≤ i+ 3}.

Lemma 5.3.4. Let a, b, c ∈ R with b ≥ 0. The truth value of a+
√
b ≤ c can be computed

by an algorithm that takes a, b and c as input and needs at most 4 simple operations.

Proof. To check if a+
√
b ≤ c we can first check if a > c with one simple operation. If

this is the case we can return false. If this is not the case, the statement is equivalent
to b ≤ (c− a)2. We need one subtraction and one multiplication to calculate (c− a)2.
Together with the comparison we get a total of 4 simple operations.

Lemma 5.3.5. Let a, b, c, d ∈ R with b, d ≥ 0. The truth value of a+
√
b ≤ c+

√
d can

be computed by an algorithm that takes a, b, c and d as input and needs at most 11 simple
operations.

Proof. Consider Algorithm 3. It is easy to check that the procedure CheckInequality
outputs the truth value of a +

√
b ≤ c +

√
d. We show that the algorithm can be

implemented such that it needs at most 11 simple operations. The checks in line 2, 3

109

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

Algorithm 2 Alternative definition of feasibility test
1: procedure IsFeasible(e ∈ Xd

2, t = (t′, i′) ∈ Tn, (S(ti′−3),S(ti′−2), . . . ,S(ti′+4)) ∈
R8d, ∆ ∈ R)

2: Denote with Ih
i,0, Ih

j,1, Iv
i,1, Iv

j−1,1 free space intervals of D∆(e,S)
3: J = {(i, j) | i′ − 3 ≤ i ≤ i′ ≤ j ≤ i+ 3}
4: for (i, j) ∈ J do
5: if Ih

i,0 ̸= ∅ and Ih
j,1 ̸= ∅ then

6: if ai,0 ≤ t and t ≤ bj,1 then
7: if i = j then
8: return true
9: if Iv

i,1 ̸= ∅ then
10: if j = i+ 1 then
11: return true
12: if Iv

j−1,1 ̸= ∅ then
13: if ci,1 ≤ dj−1,1 then
14: return true
15: return false

and 11 need one simple operation each. The computation of z = (c− a)2 − b− d in line
5 or 13 can be done by 3 subtractions and one multiplication. The check for z ≥ 0 (
respectively >) in line 14 (respectively 6) is one simple operation. The check z2 ≤ 4bd
(respectively <) in the same line needs 3 multiplications and one comparison. Counting
the number of simple operations together, we see that the algorithm needs at most 11
simple operations.

Algorithm 3 Check for a+
√
b ≤ c+

√
d

1: procedure CheckInequality(a, b, c, d ∈ R)
2: if c ≥ a then
3: if d ≥ b then
4: return true
5: Let z = (c− a)2 − b− d
6: if z ≥ 0 or z2 ≤ 4bd then
7: return true
8: else
9: return false

10: else
11: if d < b then
12: return false
13: Let z = (c− a)2 − b− d
14: if z > 0 or z2 < 4bd then
15: return false
16: else
17: return true

Lemma 5.3.6. Let p, q, r ∈ Rd and let ∆ ∈ R+. The intersection of the line through p and
q and the ball with radius ∆ around r is either {p+ t(q− p) | t ∈ [a−

√
b, a+

√
b] ⊂ R}

110

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

for some a, b ∈ R or is empty. There exists an algorithm that needs at most 10d+ 5
simple operations that takes p, q, r and ∆ as input and outputs the values a and b or
decides that the intersection is empty.

Proof. The algorithm needs to solve the quadratic equation

∥p+ t(q− p)− r∥2 ≤ ∆2

which is equivalent to t2 + αt+ β = 0 where

α =

∑d
i=1 2(pi − qi)ri∑d

i=1(qi − pi)
and β =

−∆2 +
∑d

i=1(p
2
i + r2

i)∑d
i=1(qi − pi)

.

The sum ∑d
i=1(qi − pi) can be computed using 2d− 1 simple operations. For the sum∑d

i=1 2(pi− qi)ri needs 4d− 1 simple operations and the term −∆2 +
∑d

i=1(p
2
i + r2

i) needs
4d+ 1 operations. So with the two extra divisions, we need a total of 10d+ 1 operations
to compute α and β. The solutions of the quadratic equation are

t1,2 = −α2 ±
√(

α

2

)2
− β.

So we need an extra operation to calculate a = −α
2 and an extra two operations to

calculate b = a2 − β. Also, we have to check if b < 0 to decide if the solution is feasible
or if the intersection is empty. This sums up to a total of 10d+ 5

With the help of the above lemmata, we can get the following result.

Lemma 5.3.7. The algorithm IsFeasible (Algorithm 2) can be implemented such that
it needs at most 110d+ 412 simple operations.

Proof. In total, the algorithm needs to compute at most 6 horizontal and 5 vertical free
space intervals. Each of them corresponds to the intersection of an edge with a ball. By
Lemma 5.3.6, the parameters a and b of the intersection of the line containing this edge
with the ball can be computed with an algorithm that needs at most 10d+ 5 simple
operations. To get explicit representations of the borders of the free space interval, we have
to additionally check if a+

√
b ≤ 1, a−

√
b ≥ 0 and a−

√
b > 1. By Lemma 5.3.4, each of

these checks needs at most 4 simple operations. So we need at most 10d+ 17 operations
to compute the parameters c, d, e, f that describe a free space interval [c−

√
d, e+

√
f]

implicitly. In total, we therefore need 110d+ 187 simple operations for all 11 free space
intervals. After computing the intervals, the 4 checks in line 5, 9 and 12 only need
one simple operation each. The checks i = j in line 7 and j = i+ 1 in line 10 are
also only one simple operation each. By Lemma 5.3.4, the two checks in line 6 need 4
simple operations each. The remaining check in line 13 needs 11 simple operations, as
shown in Lemma 5.3.5. So each iteration of the for loop (line 5-15) needs at most 25
simple operations. Since J has at most 9 elements, the whole for loop needs at most
225 simple operations. By adding the simple operations, that we need to compute the
free space intervals, we get that the whole algorithm needs at most 110d+ 412 simple
operations.

Based on Lemma 5.3.7, we can finally bound the VC-dimension.

111

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

ai,0 bi,0 t

cj−1,1

dj−1,1ci,1

di,1

aj,1 bj,1

Figure 5.4: Example of the free space intervals Ih
i,0 = [ai,0, bi,0], Ih

j,1 = [aj,1, bj,1],
Iv

i,1 = [ci,1, di,1] and Iv
j−1,1 = [cj−1,1, dj−1,1] for some t = (t′, i′) and some (i, j) ∈ {(i, j) |

i′ − 3 ≤ i ≤ i′ ≤ j ≤ i+ 3}

Lemma 5.3.8. Let S : Tn → Rd be a polygonal curve and let ∆ ∈ R+. The VC-dimension
of the range space {F∆(t) | t ∈ Tn} with ground set Xd

2 is at most 3520d2 + 14128d+ 3312.
Proof. Since ∆ is fixed for the whole range space, each range F∆(t) is uniquely identified
by vt = (t′, i′,S(ti′−3),S(ti′−2), . . . ,S(ti′+4)) ∈ R8d+2. Applying Theorem 2.4.16 with
Lemma 5.3.7 on {F∆(t) | t ∈ Tn} yields a bound of

4(8d+ 2)(110d+ 412 + 2) = 3520d2 + 14128d+ 3312

on the VC-dimension.

5.3.4 Improved analysis of the VC-dimension

In this section, we show an improved bound on the VC-dimension of O(d) for the
range space {F∆(t) | t ∈ Tn} with ground set Xd

2. We use the same arguments as in
Section 4.5.3 that are based on our techniques from Chapter 3. A more detailed bound on
the VC-dimension with an analysis of the constant factor can be found in Lemma 5.3.12.
Lemma 5.3.9. Let S : Tn → Rd be a polygonal curve and let ∆ ∈ R+. The VC-
dimension of the range space {F∆(t) | t ∈ Tn} with ground set Xd

2 is in O(d).
Proof. Let t = (i′, t′) ∈ Tn and Q ∈ Xd

2. In the following let tj = t1 for j < 1 and tj = tn
for j ≥ n. Evaluating if Q is in the feasible set F∆(t) is based on deciding if there exist
i, j with 1 ≤ j − i ≤ 3 and a, b with ti ≤ a ≤ t ≤ b ≤ tj such that dF (S[a, b],Q) ≤ ∆. So
we only have to consider subcurves of S[ti′−3, ti′+4] when checking if there are subcurves
of S containing t that are close to Q. Note that the vertices ti′+4 and ti′−3 are only
needed for the cases that t′ = 1 or t′ = 0, otherwise the subcurve S[ti′−2, ti′+3] would be
sufficient.

We want to show that the range query Q ∈ F∆(t) can be evaluated using pred-
icates of the types P1,P2,P7,P8 for S[ti−3, ti+4] and Q (as in Section 4.5.3). Since
we also need predicates for S(t), we define S′ to be the polygonal curve with ver-
tices S(ti′−3), . . . ,S(ti′),S(t),S(ti′+1), . . . ,S(ti′+4), i.e. S′ is the subcurve S[ti′−3, ti′+4]
that contains S(t) as an additional vertex between S(ti′) and S(ti′+1). By applying
Lemma 4.5.6 for S′, Q and ∆ instead of 10∆, we immediately get that F∆(t) can be
determined based on the predicates P1,P2,P7,P8 for S′ and Q. By Lemma 3.4.11 and
3.4.12 the predicates P1, . . . ,P8 are simple. Therefore it follows from Corollary 3.3.2 that
the VC-dimension of ({F∆(t) | t ∈ Tn}, Xd

2) is in O(d).

112

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

5.3.5 Improved detailed analysis of the VC-dimension

In the following, we analyze the constants in our VC-dimension bound ofO(d) for the range
space {F∆(t) | t ∈ Tn} with ground set Xd

2. Let t = (i′, t′) ∈ Tn and Q ∈ Xd
2. Let further

S′ to be the polygonal curve with vertices S(ti′−3), . . . ,S(ti′),S(t),S(ti′+1), . . . ,S(ti′+4)
where tj = t1 for j < 1 and tj = tn for j ≥ n. The bound mainly results from an
application of Corollary 3.3.2 (as a version of Theorem 2.4.10) with the Predicates
P1,P2,P7,P8 for Q ∈ Xd

2, ∆ ∈ R+ and S′ ∈ Xd
9. See Section 3.3.2 for a definition of

the predicates. The predicates are functions mapping from R2d+1 ×R9d to {0, 1}. To
calculate the constant in our VC-dimension bound, we analyze how many predicates of
the types P1,P2,P7,P8 are required to answer the range query Q ∈ F∆(t). We further
analyze how many sign values of polynomials are required to determine each of the
individual predicates and we determine the maximum degree of these polynomials.

Number of predicates The curve S′ has 8 edges and Q has 2 vertices. Therefore
there are 16 predicates of type P1. For type P2, we only require the 7 interior vertices of
S′ together with the edge Q. So in total, we have 23 predicates of type P1 or P2. For
the monotonicity predicates P7,P8, we have no predicate of type P8 because Q has just
one edge. Since we only consider subcurves with at most 3 edges of S′, we also only have
to consider monotonicity predicates for consecutive interior vertices of S′. These are 6
predicates in total of type P7.

Lemma 5.3.10. For any two polygonal curves Q ∈ Xd
m,S ∈ Xd

k and a radius ∆ ∈ R+,
each of the predicates of type P1 or P2 is a 6-combination of sgn(F), where F is a class
of functions mapping from Rdm+1 ×Rdk to R so that, for all x ∈ Xd

m and f ∈ F the
function y → f(x, y) is a polynomial on Rdk of degree no more than 4.

Proof. Note that this proof is an in-depth version of the proof of Lemma 3.4.6 that also
considers the exact degree and number of the involved polynomials. Let P be a predicate
of type P1 or P2. The value of P can be determined by checking if a vertex v ∈ Rd is in
the stadium D∆(pq) for some vertices p, q ∈ Rd. For this check, it suffices to check if v is
in at least one of B∆(p), B∆(q) and R∆(pq). For B∆(p) ,we have to check the inequality

∆2 −
d∑

i=1
(vi − pi)

2 ≥ 0

which is the sign value of a polynomial of degree 2. The check for B∆(q) is analogous.
To check if v ∈ R∆(pq) consider the closest point s to v on the line ℓ(pq). The truth

value of
∆2 − ∥s− v∥2 ≥ 0 (5.1)

uniquely determines if v is in the cylinder C∆(pq). The truth values of

∥p− q∥2 − ∥p− s∥2 ≥ 0, (5.2)
∥p− q∥2 − ∥q− s∥2 ≥ 0 (5.3)

further determine if s is on the edge pq. So the truth values of the inequalities (5.1), (5.2)
and (5.3) determine the truth value of v ∈ R∆(pq). The closest point to v on the line
ℓ(pq) is

s = p+
(p− q)⟨(p− q), v⟩

∥p− q∥2
.

113

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

For each coordinate of s, we have

sj = pj + (pj − qj)

∑d
i=1(pi − qi)vi∑d
i=1(pi − qi)2

.

All three inequalities (5.1), (5.2) and (5.3) are of the type

h(p, q, v)− ∥x− s∥2 ≥ 0

where x ∈ {p, q, v} and h(p, q, v) is a polynomial of degree 2. Let z :=
∑d

i=1(pi − qi)2.
We have

∥x− s∥2 =
d∑

j=1

(
(pj − xj) + (pj − qj)

∑d
i=1(pi − qi)vi

z

)2

.

We can check if z > 0 with the sign value of one polynomial of degree 2. If this is not the
case, then p = q and R∆(pq) does not need to be considered. Otherwise, we can multiply
both sides of inequality 5.3.5 by z and get

zh(p, q, v)
d∑

j=1

(
(pj − xj)

2 + 2(pj − xj)(pj − qj)
d∑

i=1
(pi − qi)vi

)
+

d∑
j=1

(pi − qi)
2v2

i ≥ 0

which is the sign value of a polynomial of degree 4. Therefore, we require the sign values
of 6 polynomials of degree at most 4 in total.

Lemma 5.3.11. For any two polygonal curves Q ∈ Xd
m,S ∈ Xd

k and a radius ∆ ∈ R+,
each of the predicates of type P7 is a 9-combination of sgn(F), where F is a class of
functions mapping from Rdm+1 ×Rdk to R so that, for all x ∈ Xd

m and f ∈ F the
function y → f(x, y) is a polynomial on Rdk of degree no more than 4.

Proof. Let P be a predicate of type P7. The truth value of P can be determined by
checking if there is an intersection of a line segment pq with the intersection of two balls
B∆(u) and B∆(v) for some vertices p, q,u, v ∈ Rd. Let z :=

∑d
i=1(pi− qi)2. We can check

if z > 0 with the sign value of one polynomial of degree 2. If this is not the case, then
p = q and P is true if and only if p ∈ B∆(u) and p ∈ B∆(v). This can be determined by
the two inequalities

∆2 −
d∑

i=1
(ui − pi)

2 ≥ 0 and

∆2 −
d∑

i=1
(vi − pi)

2 ≥ 0.

Both are sign values of polynomials of degree 2. If z > 0 then we precede with analysing
the intersection of pq with B∆(u) and B∆(v). If the intersection of ℓ(pq) and the B∆(u)
exists, the first and the last point of the intersection in direction (q − p) are uniquely
defined by

s1,2 = p+ t1,2(u)(q− p)

with

t1(u) = −
a

2 +

√
a2

4 − b

114

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

and

t2(u) = −
a

2 −

√
a2

4 − b

where
a =

2∑d
i=1(pi − ui)(qi − pi)∑d

i=1(qi − pi)2
and b =

∑d
i=1(pi − ui)2 − ∆2∑d

i=1(qi − pi)2
.

Analogously, we have for B∆(v) the values

t1(v) = −
c

2 +

√
c2

4 − d

and

t2(v) = −
c

2 −

√
c2

4 − d

where
c =

2∑d
i=1(pi − vi)(qi − pi)∑d

i=1(qi − pi)2
and d =

∑d
i=1(pi − vi)2 − ∆2∑d

i=1(qi − pi)2
.

To check if the intersections exist, we have to check if a2

4 − b ≥ 0 and c2

4 − d ≥ 0. We
can multiply both sides of the inequalities by z2 and get sign values of polynomials of
degree 4. If the intersections exist, we can determine if they overlap by checking the 4
comparisons t1(u) ≤ t1(v), t1(u) ≤ t2(v), t2(u) ≤ t1(v) and t2(u) ≤ t2(v). We analyze
the comparison t1(u) ≤ t1(v). The other comparisons are analogous. The comparison is
equivalent to

c

2 −
a

2 ≤

√
a2

4 − b−

√
c2

4 − d.

To check the truth of this inequality, we first check the sign values of each individual side.
The left side is the sign value of a polynomial of degree 2 after multiplying with z. Note
that the left side does not change for the other comparisons t1(u) ≤ t2(v), t2(u) ≤ t1(v)
and t2(u) ≤ t2(v). For the right side, we have to check if a2

4 − b ≥
c2

4 − d which is a
polynomial of degree 4 after multiplying with z2. The check for this right side is the same
for t2(u) ≤ t2(v) and the sign is trivially given for t1(u) ≤ t2(v) and t2(u) ≤ t1(v). If
the signs of the left and the right side differ, then the truth of the inequality can already
be determined by these signs. Otherwise, we square both sides and get

b+ d− ac

2 ≤ −2

√
a2

4 − b

√
c2

4 − d.

We check the sign of b+ d− ac
2 which is a polynomial of degree 4 after multiplying with

z2. This is again the same check for all comparisons. Depending on the sign, the truth
of the whole inequality is either directly given or we can square both sides again to get

b2 + d2 − abc− acd+ 2bd ≤ 4db− a2d− bc2.

This is an sign value of a polynomial of degree 4 with respect to the coordinates of u and
v. In total we have 9 sign values of polynomials with a degree of at most 4 with respect
to the coordinates of u and v.

115

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

With the help of Lemma 5.3.10 and Lemma 5.3.11 and a careful analysis of reoccurring
sign values of polynomials, we can achieve the following bound on the VC-dimension.

Lemma 5.3.12. Let S : Tn → Rd be a polygonal curve and let ∆ ∈ R+. The VC-
dimension of the range space {F∆(t) | t ∈ Tn} with ground set Xd

2 is at most 229d.

Proof. Let t = (i′, t′) ∈ Tn and Q ∈ Xd
2. Let further S′ to be the polygonal curve

with vertices S(ti′−3), . . . ,S(ti′),S(t),S(ti′+1), . . . ,S(ti′+4) where tj = t1 for j < 1 and
tj = tn for j ≥ n. By applying Lemma 4.5.6 for S′, Q and ∆ instead of 10∆, we
immediately get that F∆(t) can be determined based on the predicates P1,P2,P7,P8 for
S′ and Q. As argued at the beginning of this section, there are 23 relevant predicates of
type P1 or P2, 7 relevant predicates of type P7 and no relevant predicates of type P8.
The predicates are functions mapping from R2d+1×R9d to {0, 1}. By Lemma 5.3.10 and
Lemma 5.3.11, the range space ({F∆(t) | t ∈ Tn}, Xd

2) is therefore a 201-combination of
sgn(F), where F is a class of functions mapping from Rdm+1 ×Rdk to R so that, for
all x ∈ Xd

m and f ∈ F the function y → f(x, y) is a polynomial on Rdk of degree no
more than 4. In the following, we show that it is even a 139-combination by careful
identification of repeated sign values of polynomials. First of all, note that the checks
for v ∈ B∆(p) and p ∈ B∆(v) are the same for any pair of vertices v, p ∈ Rd and are
answered by

∆2 −
d∑

i=1
(vi − pi)

2 ≥ 0.

We have 9 vertices of S′ and 2 vertices of Q for a total of 18 combinations to check.
However, the predicates contain many repetitions of these checks. Each predicate of
type P1,P2 or P7 contains 2 such checks, resulting in 60 checks in total. This is already
a reduction of 42 sign values from 201 to 159. Let Q = pq. We check if p = q by
checking ∑d

i=1(pi − qi)2 > 0 in all predicates of type P2 and P7. Since 1 check instead
of 13 suffices, we can reduce the 159 sign values further to 147. Similarly, each check∑d

i=1(xi − yi)2 > 0 where x and y are 2 consecutive vertices of S′ is contained in 2
predicates of type P1. This reduces the number of sign values further to 139. Note
that these checks also tell us, if the vertex S(t) is the same as S(ti′) or S(ti′+1). This
information determines which subcurves of S′ that have at most 3 edges contain t and
are relevant for a structured covering. In total the range space ({F∆(t) | t ∈ Tn}, Xd

2) is
a 139-combination of sgn(F), where F is a class of functions mapping from Rdm+1×Rdk

to R. Applying Theorem 2.4.10 yields a bound of

2 · 9d · log2(12 · 139 · 4) ≤ 229d

on the VC-dimension.

5.4 The main algorithm

As our main algorithm, we apply the multiplicative weight update method for hitting sets
described in Section 2.4.2 on (Z∆,E(S), {F9∆(t) | t ∈ Tn}). In this chapter, we discuss
several specifications of our implementation that enable us to apply the framework in
the form of Theorem 2.4.9 to our use case. In Section 5.4.1, we describe how to compute
a ∆-good simplification S of P . In Sections 5.4.2 and 5.4.3, we specify how the data
structures for the verifier and for sampling are implemented. In Section 5.4.4, we combine
everything to derive our main result.

116

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

5.4.1 Simplification algorithm

In this section, we describe an algorithm to construct a ∆-good simplification S for a
given polygonal curve P . Our simplification algorithm utilizes a data structure that is
built on the input curve and which allows querying the Fréchet distance of a subcurve to
an edge (up to some small approximation factor). For this, we use the following result by
Driemel and Har-Peled [55].

Theorem 5.4.1 (Theorem 5.9 in [55]). Given a polygonal curve Z with n vertices in Rd,
one can build a data structure, in O(χ2n log2 n) time, that uses O(nχ2) space, such that
for a query edge p q, and any two points u and v on the curve, one can (1+ ε)-approximate
the distance dF (Z[u, v], p q) in O(ε−2 logn log logn) time, and χ = ε−d log(ε−1).

Algorithm 4 Curve simplification
1: procedure SimplifyCurve(Polygonal curve P in Rd,∆ > 0)
2: Build data structure D of Theorem 5.4.1 on P with ε = 1/3.
3: Let Ŝ be an empty stack.
4: Ŝ.push(1)
5: for 2 ≤ i ≤ n do
6: j ← Ŝ.next to top()
7: while j is defined and D.query(P [tj , ti], pj pi) ≤ (8/3)∆ do
8: Ŝ.pop()
9: j ← Ŝ.next to top()

10: j ← Ŝ.top()
11: if ∥P (tj)− P (ti)∥ ≥ ∆/3 then
12: Ŝ.push(i)
13: return the simplification S defined by the indices in Ŝ

Theorem 5.4.2. Let P be a polygonal curve in Rd. Let (t1, . . . , tn) be the vertex-
parameters of P and pi = P (ti) its vertices. Let ∆ > 0 be given. There exists an
algorithm that outputs an index set defining a ∆-good simplification of P . Furthermore,
it does so in O(n log2 n) time and O(n) space.

Proof. Consider Algorithm 4. We want to show, that the simplification S of P defined by
the index set Ŝ is ∆-good. For this we have to show, that S fulfills properties (i)− (iv)
of Definition 5.2.1. Denote by s the last item of Ŝ, which is updated whenever Ŝ changes.
Note that property (i) follows immediately, as otherwise, the index ij+1 would not have
been added to I in line 12.

For property (ii) we will show the following invariance. Whenever we start some
generic iteration of the loop in line 5, where we try to add i to the index set, then
P [ts, ti−1] ⊂ b3∆(ps). At the start of the first iteration, Ŝ = (1) and i = 2. As
P [t1, ti−1] = P [t1, t1] = p1, the invariance holds.

Now assume we are at the start of some iteration, where we try to add i to Ŝ, and
assume the invariance holds. After exiting the loop in line 7, we either updated Ŝ, or
we did not. In any case, we will assume, that ∥ps − pi∥ < ∆/3, because otherwise, we
add i to Ŝ in this iteration. But then at the start of the next iteration, in which we
consider adding i+ 1, we then have that s = i, for which the invariance trivially holds,
as P [ts, t(i+1)−1] = P [ts, ts] = ps.

117

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

Assume for now, that we did not update Ŝ, that is we never entered line 8. Then
P [ts, ti] ⊂ b3∆(ps), as P [ts, ti−1], pi−1 and pi lie inside b3∆(ps).

Otherwise, dF (P [ts, ti], ps pi) ≤ query(P [ts, ti], ps pi) ≤ 8∆/3, implying together
with our assumption ∥ps− pi∥ < ∆/3, that P [ts, ti] ⊂ b3∆(ps), hence the invariance holds
in every iteration.

This invariance implies, that whenever we start iteration i of the loop, we have that

dF (P [ts, ti], ps pi) ≤ max (dF (P [ts, ti−1], ps, ps), dF (P [ti−1, ti], ps, pi))

≤ max (3∆, dF (P [ti−1, ti], ps, pi))

≤ max (3∆, ∆/3) = 3∆,

where the second inequality follows form the invariance, as ps ps = ps, and the third from
the fact, that P [ti−1, ti] is an edge from pi−1 to pi, and we know, that ∥ps− pi−1∥ ≤ ∆/3.
Thus at the start of each iteration i we have that

dF (P [ts, ti], ps pi) ≤ 3∆ (*)

holds for i and s. As we continuously remove the last item from Ŝ, we only do so, if (*)
holds for Ŝ.next to top() and i. As we remove s, Ŝ.next to top() takes the place of s,
thus at every iteration of the loop in line 7, as well as when we exit the loop, (*) holds.
Thus every time we possibly add any index in line 12, (*) holds, and thus property (ii)
is always maintained.

Property (iii) follows directly for i1 = 1. As ik may be less than n, the property
follows from the invariance, as pik

pik
= pik

. And thus P [tik
, tn] ⊂ b3∆(pik

).
For property (iv) observe that, if dF (P [tij , tij+2], pij pij+2) < 2∆ for some ij and ij+2

in the resulting index set I, the algorithm would have removed ij+1 from I in line 7, as
when we add ij+2, Ŝ.next to top() = ij , and hence

query(P [tij , tij+2], pij pij+2) ≤ (4/3)dF (P [tij , tij+2], pij pij+2) < 8/3∆.

The space is dominated by the space for storing the data structure. For analysing the
running time, note that each vertex of P is inserted to and removed from the index set
at most once. Therefore, the total running time is bounded by the preprocessing time
and the at most O(n) queries to the data structure. Thus the iterations of the loop in
line 7 are bounded by O(n) overall. Thus the claim follows from Theorem 5.4.1.

5.4.2 The verifier

We will now discuss how to implement the verifier. The verifier needs to decide for a query
set C ⊆ Z∆,E(S) if C is a hitting set and return a set F9∆(t) of R = {F9∆(z) | z ∈ Tn}
such that F9∆(t) ∩C = ∅ if it is not. Our implementation of the verifier will return the
set F9∆(t) implicitly by returning the parameter t. To find a fitting t, the verifier will
explicitly compute the structured 9∆-coverage of C.

We will now discuss how to compute the structured ∆-coverage of a fixed solution
and how to test for given i, j, t and ∆, whether t is in Ψ(i,j)

∆ . For technical reasons, we
need to be able to deduce the index of the edge of the curve P that contains a point P (t)
in constant time from the parameter t ∈ [0, 1]. To this end, we introduce the following
more structured edge-parametrization.

118

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

Definition 5.4.3. Let P : [0, 1] → Rd. Let (t1, . . . , tn) be the vertex-parameters of P .
Define the edge-parametrization ηP : Tn → [0, 1] via η(i, t) = (1− t)ti + tti+1. This
induces a function P ◦ ηP : Tn → [0, 1].

The cell Ci,j in the ∆-free space of P and Q corresponding to the ith edge of P and
jth edge of Q is then defined as Ci,j = [ηP (i, 0), ηP (i, 1)]× [ηQ(j, 0), ηQ(j, 1)].

Lemma 5.4.4. Let P be a polygonal curve in Rd, and let (t1, . . . , tn) be the vertex-
parameters of P . Let Q be a point in ZE for some edge set E and let ∆ ≥ 0 be a real
value. Assume that P is given as a pointer to an array storing the sequence of vertices.
Given any integer values 1 ≤ i < j ≤ n, real value t ∈ [0, 1], there exists an algorithm
that decides if t ∈ Ψ(i,j)

∆ (P ,Q), in O(|j − i|) time.

Proof. Note that the ∆-free space diagram of P and the edge Q consists of a single
row of free space cells and each free space cell can be computed locally from the two
corresponding edges. We need to check if there exists a point (b, 1) on the top boundary
with b ∈ [max(t, tj−1), tj] that is reachable by a bi-monotone path in the ∆-free space
which starts in a point (a, 0) with a ∈ [ti, min(t, ti+1)] on the bottom boundary of the
free space diagram. Using the technique by Alt and Godau [13] we can process the subset
of the free space diagram that corresponds to P [ti, tj] from left to right to check if there
exists such a path. If there exists such a path, then we return “yes”, otherwise we return
“no”.

Lemma 5.4.5. Given a polygonal curve P ∈ Xd
n, a set C ⊂ Xd

2 with |C| = k and a real
value ∆ ≥ 0, there exists an algorithm that computes the structured ∆-coverage Ψ′

∆(P ,C)
in O(nk log(k)) time and O(nk) space.

Proof. Let J = {1 ≤ i ≤ j ≤ n | 0 ≤ j − i ≤ 3}. Fix an element q ∈ C and an element
(i, j) ∈ J . We have to compute

R(q, i, j) =
⋃

a,b∈[0,1]
{s ∈ [t, t′] | t = ηP (a, i)), t′ = ηP (b, j), dF (P [t, t′], q) ≤ ∆, t ≤ t′}.

Consider the free space intervals Ih
i,0 = [ai,0, bi,0], Ih

j,1 = [aj,1, bj,1], Iv
i,1 = [ci,1, di,1] and

Iv
j−1,1 = [cj−1,1, dj−1,1] of the ∆-free space D∆(P , q). If any of the Intervals is empty or
ci,1 ≤ dj−1,1, then we have R(q, i, j) = ∅, since there is no bi-monotone path in the free
space from Ih

i,0 to Ih
j,1. Otherwise, we have R(q, i, j) = [ai,0, bj,1]. Each free space interval

corresponds to the intersection of a line with a ball and can be computed in constant
time. So in total, also R(q, i, j) is an interval that can be computed in O(1) time. All
R(q, i, j) can therefore be computed in O(|C||J |) time and need O(|C||J |) space.

Given R(q, i, j) for all q ∈ C and (i, j) ∈ J , we can then compute the structured
∆-coverage Ψ′

∆(P ,C) with a standard scan algorithm over the computed intervals in
O(|C||J | log(|C|)) time. For the derivation of this bound on the running time, note
that the number of overlapping intervals at any point of the scan is bounded by O(|C|),
since any point on the i′-th edge of P can only be covered by an interval R(q, i, j) with
i ≤ i′ ≤ j. The theorem statement follows by |C| = k and |J | = O(n).

After computing the structured 9∆-coverage Ψ′
9∆(S,C), the first uncovered t can be

output in constant time.

119

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

β2

α2

β1

α1

β′
2

α′
2

β′
1

α′
1

α2

α1

α′
2

α′
1

β′
1 β′

2β1 β2i ji′ j′t

t
e

i

j
i′

j′

β′′
1

α′′
2 α′′

2

β′′
1

Figure 5.5: Structure of a feasible set. The image shows an example of the structure of
the feasible set F9∆(t) restricted to the subedges of some edge e of some curve S. The
top image displays the edge e and the subcurve S[ti, tj′] that includes all subcurves of S
with complexity 4 that contain t. The left image shows the 9∆-free space diagram of e
and S[ti, tj′] with notations of the relevant parameters for computing the corresponding
rectangles in the parameter space of e based on Lemma 5.3.2. The right image shows the
feasible set as a union of these rectangles. The rectangle [α1,α2]× [β1,β2] corresponds to
the tuple (i, j), the rectangle [α′

1,α′
2]× [β′

1,β′
2] to (i′, j′) and [α′

1,α′′
2]× [β′′

1 ,β2] to (i′, j).
All other tuples correspond to rectangles that are contained in these three rectangles.

5.4.3 Data structure for sampling

We describe a simple static data structure to store the discrete probability distribution
Di over the finite set Z∆,E(S), which we use in our adaptation of the multiplicative weight
update method. The data structure takes as input a polygonal curve S ∈ Xd

n, and a
sequence of values t1, . . . , ti ∈ [0, 1], which are used for the weight update. The data
structure should support the following operations.

(1) Sample and return an (explicit) element of Z∆,E(S) according to Di.

(2) Given a query point t, determine if PrDi
[F9∆(t)] is at most ε.

In the following, we use the fact that the feasible set restricted to this candidate set
has a nice structure that can be stored implicitly and can be computed fast. In particular,
Lemma 5.3.2 states that the feasible set, when restricted to the subedges of an edge
e ∈ E(S), can be written as the union of constantly many rectangles. This structure is
illustrated in Figure 5.5.

The data structure For each edge e of E(S), we will store an arrangement Ae of
the horizontal and vertical lines that delineate the boundaries of the rectangles that form
the sets F9∆(t1), . . . F9∆(ti) when restricted to the parameter space of subedges of e. For
each cell C of this arrangement, we store the following information (refer to Figure 5.6
for an illustration):

120

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

(i) gC , the number of grid points in the cell |C ∩Z∆,e|

(ii) sC , the number of feasible sets F9∆(t1), . . . F9∆(ti) that contain C

The weight function w : Z∆,E(S) → R+ that defines the distribution Di can then be
evaluated on the cell C as

w(C) = 2sCgC

In particular, this weight function defines the probability distribution Di in the
following sense. The probability of a grid point Q ∈ Z∆,E(S) ∩C is given by

Pr [Q] = 2sC /w(Z∆,E(S))

For computing the set of cells, for each edge e ∈ E(S), we build the arrangement Ae

by first collecting the coordinates of the horizontal and vertical lines that delineate the
feasible sets and then sorting them by x (resp. y)-coordinate. Since the arrangement is a
(non-uniform) grid, the information for all cells can be stored in an array with appropriate
indexing. Initially, for i = 0, we only have one cell C for each edge ej ∈ E(S), which
is the unit square, and we set sC = 0, and gC = |Xj | (see Definition 5.2.9). For i > 0,
we compute the number of feasible sets sC using dynamic programming, by scanning
over the arrangement of cells in a column by column fashion. Computing the number of
grid points gC can be done by scanning over the arrangement in a similar way. Here, we
compute the number of gridpoints in the interval between two horizontal or vertical lines
by using a binary search on the set of gridpoints Xj . Clearly, computing the arrangement
Ae and the values sC and gC for each cell can be done in O(i2 log(|Xj |)) time and space
per edge ej ∈ E(S).

Let M = {C1, . . . ,Cm} denote the union of the set of cells over all arrangements of
the edges of E(S), using an appropriate indexing (i.e., lexicographical ordering in the
horizontal, and vertical direction, and in the index of the edge e of E(S)). In addition to
the values sC and gC , we store the cumulative function f :M→ R+, which is simply
defined as f(Cj) =

∑j
i=1w(Ci) and can be computed by scanning over all cells in the

order of their index. For consistency, we define f(C0) = 0. Note that the total weight
w(Z∆,E(S)) is now stored in f(Cm). The function f can be computed in O(m) time and
space and this also bounds the total space used by the data structure.

Sampling from the distribution Using the cumulative function f defined on the
cells of the arrangements and the additional information for each cell, we can sample from
Di as follows. Draw a sample x uniformly at random from the interval [0,w(Z∆,E(S))].
Perform a binary search on the function values of the cumulative function for x, let cell
Cj be the result of the binary search. Let j′ = ⌈(x− f(Cj−1))/2sCj ⌉ and return the j′-th
grid point (according to a lexicographical ordering) that lies in the cell Cj . Clearly, this
can be done in time in O(logm+ log(λ/∆)), where λ denotes the length of the longest
edge of S.

Evaluating the weight of a feasible set With the data structure as described
above, we can evaluate PrDi

[F9∆(t)] as follows. For each edge e ∈ E(S), we find the set
of cells intersected fully or partially by the feasible set F9∆(t) by scanning over all cells
associated with the edge e. If a cell is intersected only partially, we can determine the
number of grid points that lie in the intersection by using a constant number of binary

121

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

0 0 0
0 0 0

1 1 1

1 1 1

e

e e e

e e

1

1

1

1

1
1
1

1

1

1

1

1

2

2
2
1

1

1

1

1

2

4

4
4
2

1

1

1

2

4

8

8
4
2

1

1

1

2

4

8

8
4
2

2

1

1

2

4

8

8
8
4

2

1

1

1

2

4

4
4
2

2

1

1

1

2

2

2
2
2

2

1

1

1

1

1

2
2
2

1

1

1

1

1

1

1
1
1

1

1

1 1 2 2 2 2 2 2 2 1

Figure 5.6: Left: Example of an arrangement of lines stored in the data structure for one
edge e ∈ S. The left image shows the arrangement of the feasible sets that were used for
the updates. Center: The actual arrangement of lines that is stored in the data structure.
The number shown in each cell is the corresponding weight multiplicator resulting from
doubling the weights in each update where the cell is included in the feasible set. Right:
The grid of candidates in Z∆,E(S) that are subcurves of e. The probability to draw a
candidate is proportional to the weight multiplicator of the cell that contains it.

searches, since F9∆(t) is the constant union of a set of rectangles when restricted to the
parameter space of the edge e. From this, we can compute the weight of the feasible set
by summing over all intersected cells. Dividing this weight by the total weight w(Z∆,E(S))
yields the probability PrDi

[F9∆(t)]. Clearly, the total time for evaluating the weight of
one feasible set is in O(m log(λ/∆)). (Better running times are possible by storing the
cumulative function in a more structured way, but this does not affect our total running
time.)

We conclude the section with a theorem summarizing what we have derived.

Theorem 5.4.6. Given a polygonal curve S ∈ Xd
n, and a sequence of values t1, . . . , ti ∈

[0, 1], we can build a data structure that supports the following operations:
(1) Sample and return an explicit element of Z∆,E(S) according to Di.
(2) Given a query point t, determine if PrDi

[F9∆(t)] is at most ε.
Let m = n · i2, and let λ denote the length of the longest edge of S. The query time for
(1) is in O(log(m) + log(λ/∆)). The query time for (2) is in O(m log(λ/∆)). The data
structure can be built in O(m log(λ/∆)) time and uses space in O(m).

Note that the weight update and weight reset step can be realized by building the
data structure from the ground in O(m log(λ/∆)) which is the same time as the query
time for (2).

5.4.4 Result for implicit weight update

By using the verifier of Section 5.4.2 and using the data structure of Section 5.4.3 for main-
taining the discrete probability distribution on the implicit candidate set Z∆,E(S), we get
the following result for applying the multiplicative weight update method (Theorem 2.4.9)
on (X,R) = (Z∆,E(S), {F9∆(t) | t ∈ Tn}).

Theorem 5.4.7. Let S : Tn → Rd be a polygonal curve and let ∆ ∈ R+. Assume for the
range space (Z∆,E(S), {F9∆(t) | t ∈ Tn}) exists a hitting set of size k. Then, there exists

122

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

an algorithm that computes a hitting set of size k′ ∈ O(k log(k)) with expected running
time in O

(
nk3 log4

(
nλ(P)

∆k

))
and using space in O

(
nk2 log2

(
nλ(P)

∆k

))
.

Proof. We apply Theorem 2.4.9 on the range space (X,R) = (Z∆,E(S), {F9∆(t) | t ∈ Tn}).
By Lemma 5.3.9, the VC-dimension of (X,R) is in O(d) which we assumed in the Problem
definition (Section 2.5) to be constant. Furthermore, by Lemma 5.4.5, the verifier has a
query time TV in O(nk′ log(k′)) and space requirement SV in O(nk′) and does not need
any preprocessing.

Let m = n · i2max where imax is the maximum number of weight updates that can
happen in a single run of k-MWU-Algorithm. Theorem 5.4.6 implies the following for
the data structure that maintains the discrete probability distribution on the implicit
candidate set Z∆,E(S): The query time TD is in O(log(m) + log(λ/∆) +m log(λ/∆))
and the space requirement SD, update time UD and preprocessing time PD are in
O(m log(λ/∆)). As shown in the proof of Theorem 2.4.9, the algorithm k-MWU-
Algorithm always terminates if |H| ≥ k. Therefore, we have

imax ≤ 8k log2

(
|Z∆,E(S)|

k

)
.

It remains to bound |Z∆,E(S)|. For each edge, there are at most λ(P)/∆ + 2 start points
and λ(P)/∆ + 2 end points that together define a candidate in Z∆,E(S). Therefore, the
value |Z∆,E(S)| is in O

(
nλ(P)2

∆2

)
. Inserting all derived bounds in Theorem 2.4.9 yields the

statement of the theorem.

We can apply Theorem 5.4.7 on a ∆-good simplification S of a polygonal curve P .
The simplification S can be computed in O(n log2(n)) time by Theorem 5.4.2. Since a
hitting set of {F9∆(t) | t ∈ Tn} is a structured 9∆-covering of S, we immediately get the
following main result from Corollary 5.2.10.

Theorem 5.4.8. Let P ∈ Xd
n and ∆ ∈ R+. Let k be the minimum size of a solution to the

(∆, 2)-covering problem on P . Let further λ(P) be the arc length of the curve P . There ex-
ists an algorithm that outputs a (12,O(log(k))-approximate solution. The algorithm needs
in expectation O

(
nk3 log4

(
nλ(P)

∆k

)
+ n log2(n)

)
time and O

(
nk2 log2

(
nλ(P)

∆k

))
space.

For general ℓ, we get based on Lemma 5.1.1 the following result

Theorem 5.4.9. Let P ∈ Xd
n and ∆ ∈ R+. Let k be the minimum size of a solu-

tion to the (∆, ℓ)-covering problem on P . Let further λ(P) be the arc length of the
curve P . There exists an algorithm that outputs a (12,O(ℓ log(kℓ))-approximate solu-
tion. The algorithm needs in expectation O

(
n(kℓ)3 log4

(
nλ(P)

∆kℓ

)
+ n log2(n)

)
time and

O
(
n(kℓ)2 log2

(
nλ(P)

∆kℓ

))
space.

123

CHAPTER 5. FASTER SUBTRAJECTORY CLUSTERING

124

Chapter 6

On the number of iterations of the
DBA algorithm

The main content of this chapter previously appeared as the paper On the number of
iterations of the DBA algorithm [30] by Frederik Brüning, Anne Driemel, Alperen Ergür
and Heiko Röglin which was published in the Proceedings of the 2024 SIAM International
Conference on Data Mining (SDM). A full version of the paper is available on arXiv [31].
An initial version of the work has also been presented at the 39th European Workshop on
Computational Geometry (EuroCG 2023) [29] based on an extended abstract without
formal publication.

6.1 Introduction

In this chapter, we analyze the number of iterations that DBA performs until conver-
gence. The DTW Barycenter Averaging (DBA) algorithm is a widely used algorithm for
estimating the mean of a given set of point sequences. We assume the algorithm is given
n sequences of m points in Rd and a parameter k that specifies the length of the mean
sequence to be computed. In this context, the mean is defined as a point sequence that
minimizes the sum of dynamic time warping distances (DTW). The algorithm is similar
to the k-means algorithm in the sense that it alternately repeats two steps: (1) computing
an optimal assignment to the points of the current mean, and (2) computing an optimal
mean under the current assignment. We follow a line of thought that has proved successful
for the closely related k-means algorithm by Lloyd [98]. For this algorithm it is known
that the number of iterations in the worst-case is exponential [17, 75, 84, 130]. However,
on most practical instances the k-means algorithm is reported to converge very fast.
Moreover, using smoothed analysis, it has been shown that the expected running time
under random perturbations of the input is merely polynomial [16]. This raises the
question, to which extent these techniques may be applied in the analysis of DBA.

Overview In Section 6.2 we give two different upper bounds for the number of
iterations of DBA in the worst-case. The first one is an exponential upper bound that
is based on techniques from real algebraic geometry and uses specific properties of the
space of dynamic time warping paths. The second bound is based on a potential function
argument and it depends on certain geometric properties of the input data. More precisely,
we obtain a worst-case upper bound that is linear in the length of the point sequences,

125

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

and linear in 1
ε . Here ε is the minimal distance between any two mean point sequences

that may be visited in the iterations of DBA.
In Section 6.3 we present our upper bounds for the expected number of iterations

in a semi-random data model. More precisely, we perform a smoothed analysis of the
number of iterations of DBA under Gaussian perturbation (with any variance σ2) of
deterministic data. The techniques we use for the smoothed analysis are quite versatile
and include anti-concentration estimates and standard tail bounds for the norm of a
random vector. So the obtained results can be easily generalized to broader distributions,
e.g. sub-Gaussian random variables. However, we prefer to present the ideas in a less
technical manner on Gaussian perturbations. We show that the expected number of
iterations until DBA converges is at most Õ

(
n2m8 n

d
+6d4k6σ−2

)
, where the Õ(·)-notation

omits logarithmic factors.
These upper bounds are complemented by an exponential worst-case lower bound in

Section 6.4. In particular, we show that there is an instance of two point sequences with
length m = Θ(k) in the plane such that DBA needs 2Ω(k) iterations to converge. The
techniques in this section borrow from earlier work of Vattani [130]. Interestingly, our
lower bound shows this behaviour already for only n = 2 sequences. In this setting, there
also exists a dynamic programming algorithm that solves the same problem in O(k5)
time [21], as mentioned above. Furthermore, we observe in Section 6.5 that, when applied
to real-world data, the number of iterations that DBA performs on average is much
lower than our theoretical analysis suggests. In particular, we observe only sublinear
dependencies on any of the parameters n,m and k. These empirical results support the
implicit assumptions in our theoretical study of the algorithm, as the smoothed analysis
under randomly perturbed instances avoids artificially constructed boundary cases and
corresponding artificially high lower bounds.

6.1.1 Preliminaries

Let X = {γ1, . . . , γn} ⊂ (Rd)m be a set of n point sequences of length m and C ∈ (Rd)k

be a point sequence of length k. We call a sequence π of tuples (p, c) where p is an
element of some point sequence in X and c is an element of the point sequence C an
assignment map between X and C. We call an assignment map between X and C
valid if for each 1 ≤ i ≤ n the sequence of all tuples (p, c) of π for which p is a point
of γi forms a warping path w(π)i between γi and C. We call a valid assignment map
optimal if for each 1 ≤ i ≤ n the formed warping path is an optimal warping path. We
define the cost of an assignment map π as Φ(π) =

∑
(p,c)∈π∥p− c∥2. Similarly, we

define the total warping distance of a valid assignment map π with respect to a point
sequence x = (x1, . . . ,xk) as Ψπ(x) =

∑n
i=1

∑
(j1,j2)∈w(π)i

∥γi,j1 − xj2∥2.

6.1.2 The DBA Algorithm

Let X be a set of n point sequences γ1, . . . , γn ∈ (Rd)m. Let C ∈ (Rd)k be another point
sequence and w(1), . . . ,w(n) ∈ Wm,k be chosen such that w(i) is an optimal warping path
between γi and C. Then w(1), . . . ,w(n) define an assignment map π between X and C.
The assignment map π can be represented by sets S1(π), . . . ,Sk(π), where

Si(π) = ∪n
j=1{γj,t | (i, t) ∈ w(j)}.

126

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

By construction, π minimizes the DTW distances between γ1, . . . , γn and C. In the
opposite direction, the following sequence Cπ minimizes the sum of squared distances for
fixed π.

Cπ = (c1(π), c2(π), c3(π), . . . , ck(π))

where ci(π) := 1
|Si(π)|

∑
p∈Si(π) p. DBA alternately computes such assignment maps and

average point sequences as follows.

1. Let π0 be an initial assignment map (e.g. randomly drawn w
(1)
0 , . . . ,w(n)

0). Let
j ← 0.

2. Let j ← j + 1. Compute the average point sequence Cπj−1 based on πj−1.

3. Compute optimal warping paths w(i)
j between γi and Cπj−1 for all 1 ≤ i ≤ n. The

warping paths define an optimal assignment map πj between X and Cπj−1 .

4. If Φ(πj) ̸= Φ(πj−1), then go to Step 2. Otherwise, terminate.

6.2 Upper bounds

We present two different upper bounds on the number of steps performed by the DBA
algorithm. The first approach is based on a theorem from real algebraic geometry and the
resulting bound holds for any input data. The second approach is based on a potential
function argument and it uses a geometric assumption on the input data.

6.2.1 An unconditional upper bound

In this section, we will employ some classical tools from real algebraic geometry to derive
an upper bound on the number of steps performed by DBA. In particular, we will use
a bound on sign patterns of polynomials (Theorem 2.4.15) that is a variation of the
classical bounds by Olĕınik and Petrovski [108], Milnor [102], Thom [125] and Warren
[132].

Suppose the input point sequences to DBA are γ1, γ2, . . . , γn, and consider the set
W∗

m,k of all possible optimal warping paths between a point sequence of length m and a
point sequence of length k. We define quadratic polynomials Fγi,w that encode the cost
of a path w ∈ W∗

m,k on the point sequence γi as follows:

Fγi,w(x1,x2, . . . ,xk) :=
∑

(j1,j2)∈w

∥γi,j1 − xj2∥2

To be able to compare different warping paths between input point sequences and an
average point sequence x, we consider the following family of quadratic polynomials.

F := {Fγi,w(x)− Fγi,v(x) : 1 ≤ i ≤ n , w, v ∈ W∗
k,m}

We make a simple observation: If w is an optimal warping path between γi and Cπ

then for all h ∈ W∗
m,k we have Fγi,w(Cπ)− Fγi,h(Cπ) ≤ 0. Now suppose the warping

path w between γi and Cα ∈ Rdk is part of the optimal assignment map between input
point sequences and Cα. Also suppose that DBA updates the warping path w to another

127

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

path v after the average point sequence is updated to Cβ. This means the following
inequalities are true

Fγi,v(Cβ)− Fγi,w(Cβ) ≤ 0 ≤ Fγi,v(Cα)− Fγi,w(Cα)

Since the cost decreases at every step, both of the inequalities cannot be an equality for
all i at the same time. In particular, there exists an i such that the sign of quadratic
polynomial Fγi,v(x)−Fγi,w(x) or the sign of Fγi,w(x)−Fγi,v(x) is different for the values
x = Cα and x = Cβ. This implies that the sign patterns of quadratic polynomials in
F partition the space Rdk in such a way that two consecutive average point sequences
computed by DBA are separated.

We now argue that the algorithm visits any connected component at most once.

Lemma 6.2.1. DBA does not visit a connected component of the realizable sign patterns
of F more than once (except for the very last step).

Proof. Assume a connected component contains Cπi and Cπj where i < j and the
algorithm does not converge in Cπj . Because two consecutive average point sequences
computed by the algorithm are separated by the realizable sign patterns of F , we have
i+ 1 < j. Since the cost decreases monotonically at every step of the algorithm, we have

Ψπi(Cπi) > Ψπi+1(Cπi+1) > Ψπj (Cπj)

Observe that πi+1 was computed based on Cπi and is thus an optimal assignment map
for Cπi . Within every connected component, the set of optimal warping paths remains
unchanged. Therefore, πi+1 is also optimal for Cπj . Since Cπi+1 is optimal for πi+1, we
have

Ψπj (Cπj) ≥ Ψπi+1(Cπj) ≥ Ψπi+1(Cπi+1).
This contradicts the statement that the cost decreases at every step.

Lemma 6.2.1 implies that the number of steps of DBA algorithm (except the very
last step) is upper bounded by the number of visited regions in the sign realization of
the family F . Using Theorem 2.4.15, we can give an upper bound on the number of sign
patterns of the quadratic forms F .

Lemma 6.2.2. The number of sign patterns of F is at most 6(4n|W∗
m,k|2)dk.

Observation 6.2.3.

|W∗
m,k| ≤

(
m+ k− 2
m− 1

)
≤ min{mk−1, km−1}.

Proof. Indeed, the number of paths on an m× k grid that can take steps (i, j)→ (i+ 1, j)
or (i, j) → (i, j + 1) is given by (m+k−2

m−1), since any such path takes m+ k − 2 steps.
However, our warping paths may have diagonal steps of the form (i, j)→ (i+ 1, j + 1).
Note that such a diagonal step corresponds to ’omitting’ an assignment term between
two points from the total sum and therefore always leads to a decrease in the cost.
Thus, allowing diagonal steps does not increase the total number of realizable warping
paths.

Now, the bound in Lemma 6.2.2 together with Observation 6.2.3 immediately gives
an upper bound on the number of steps of DBA leading to the following theorem.

Theorem 6.2.4. DBA converges in at most 6(4n)dk(m+k−2
m−1)

2dk iterations.

128

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

6.2.2 Upper bound based on geometric properties of the input data

We denote the set of valid assignment maps from n input point sequences of length m to
a point sequence of length k with An,m,k. It is |An,m,k| ≤ mkn. For an assignment map
π ∈ An,m,k and a point sequence x = (x1,x2, . . . ,xk) with xi ∈ Rd, we can rewrite the
total warping distance as

Ψπ(x) :=
k∑

i=1

∑
y∈Si(π)

∥y− xi∥2

Our first observation is that for all x we have Ψπ(x) ≥ Ψπ(Cπ). We would like to express
Ψπ(x) in a way that resembles an inertia. We set Iπ :=

∑k
i=1

∑
y∈Si(π)(∥y∥

2 − ∥ci(π)∥2).
Observe that Iπ = Ψπ(Cπ). We see Iπ as the inertia of π, and we have

Ψπ(x) = Iπ +
k∑

i=1
|Si(π)| ∥xi − ci(π)∥2

We use the following geometric properties of the input:
Normalization Property: Let B > 0. For any vector y in any input point sequence,
we have ∥y∥2 ≤ B.
Separation Property: Let ε > 0. For any two different assignment maps α,β ∈ An,m,k
we have

∥Cα −Cβ∥2 :=
k∑

i=1
(ci(α)− ci(β))

2 ≥ ε

With the help of the following lemma, we can derive an upper bound in Theorem 6.2.6.

Lemma 6.2.5. For all α ∈ An,m,k, it is Iα ≤ Bn(m+ k).

Proof.

Iα =
k∑

i=1

∑
y∈Si(α)

(∥y∥2 − ∥ci(α)∥2) ≤ B
k∑

i=1
|Si(α)|

Note that every warping path between the average point sequence of length k and an
input point sequence of length m consists of at most m+ k many steps. This means
every point sequence contributes to the sum ∑k

i=1|Si(α)| with at most m+ k elements,
and hence we have ∑k

i=1|Si(α)| ≤ n(m+ k).

Theorem 6.2.6. If the input data satisfies the normalization property with parameter B
and separation property with parameter ε, then the number of steps performed by DBA is
at most

B(m+ k)

ε

Proof. Suppose DBA has started from assignment map π0. If DBA takes a step from
some assignment map α to some assignment map β this means

Iα = Ψα(Cα) > Ψβ(Cα)

= Iβ +
k∑

i=1
|Si(β)| ∥ci(α)− ci(β)∥2

129

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

Since |Si(β)| ≥ n for all i, this implies Iα > Iβ + n∥Cα −Cβ∥2. Using the separation
property of the data and Lemma 6.2.5 , we get

Iα > Iβ + nε ≥ Iβ +
ε

B(m+ k)
Iπ0 (6.1)

Let πT be the assignment map after T steps of DBA, then we have by (6.1) that

IπT < Iπ0 − T
ε

B(m+ k)
Iπ0

6.3 Smoothed Analysis

Our randomness model is as follows: An adversary specifies an instance X ′ ∈ ([0, 1]d)nm

of n point sequences γ1, . . . , γn of length m in [0, 1]d, where each sequence γi is given
by its m points γi = (γi,1, . . . , γi,m). Then we add to each point of X ′ an d-dimensional
random vector with independent Gaussian coordinates of mean 0 and standard deviation
σ. The resulting vectors form the input point sequences. We assume without loss of
generality that σ ≤ 1, since the case σ > 1 corresponds to a scaled down instance
X ′ ∈ ([0, 1

σ]
d)nm with additive d-dimensional Gaussian random vectors with mean 0 and

standard deviation 1. We call this randomness model m-length sequences with N (0,σ)
perturbation.

We note that the results in this section hold for a more general family of random
input models (See Section 1.5 of [60] or Section 3.1 of [49]). We conduct the analysis only
for Gaussian perturbation for the sake of simplicity and obtain the following theorem.

Theorem 6.3.1. Suppose d ≥ 2, then the expected number of iterations until DBA
converges is at most

O

(
n2m8 n

d
+6d4k6 ln(nm)4

σ2

)
.

To prove Theorem 6.3.1, we first bound the probability that the normalization property
and the separation property hold for suitable parameters.

Lemma 6.3.2. We have

P{max
1≤i≤n

max
y∈γi
∥y∥ ≥

√
d+ tσ

√
2d ln(nm)} ≤ e1−t2

Proof. By our assumptions, every vector in input sequences is given by D+ Y where D
is a deterministic vector with norm at most

√
d and Y is a random vector with Gaussian

i.i.d coordinates N (0,σ). By triangle inequality ∥D + Y ∥ ≤
√
d+ ∥Y ∥. Since Y has

Gaussian i.i.d coordinates N (0,σ), we can apply the standard tail bound P{∥Y ∥ ≥
tσ
√
d} ≤ e1− t2

2 .

Lemma 6.3.3. Let Cα and Cβ be average point sequences corresponding to two different
assingment maps α and β. Then, we have P{∥Cα−Cβ∥2 ≤ ε} ≤

(
nm

√
ε

σ

)d
. Furthermore,

the separation property with parameter ε holds with probability at least

1−m4n

(
nm
√
ε

σ

)d

.

130

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

Proof. Since the instances are perturbed and the assignment maps are different, we
have with probability 1 that there exists an i ∈ [k] such that ci(α) ̸= ci(β). The event
∥Cα −Cβ∥2 ≤ ε further implies ∥ci(α)− ci(β)∥ ≤

√
ε. We bound the probability that

this event ∥ci(α)− ci(β)∥ ≤
√
ε occurs for the fixed ci(α) and ci(β).

Let Si(α) and Si(β) denote the sets of points in X that were assigned to ci(α) and
ci(β) respectively. Since ci(α) ̸= ci(β), it immediately follows that Si(α) ̸= Si(β). So we
can fix a point s ∈ Si(α)△Si(β). We let an adversary fix all points in Si(α)∪Si(β) \ {s}.
In order for ci(α) and ci(β) to be

√
ε-close, we need s to fall into a hyperball of radius

nm
√
ε. Because s is drawn from a Gaussian distribution with standard deviation σ, this

happens with probability at most
(

nm
√

ε
σ

)d
. So in total, we have P{∥ci(α)− ci(β)∥ ≤

√
ε} ≤

(
nm

√
ε

σ

)d
and therefore P{∥Cα −Cβ∥2 ≤

√
ε} ≤

(
nm

√
ε

σ

)d
.

To prove the second claim, we apply a union bound over all possible choices for ci(α)
and ci(β). Since each ci(α) and ci(β) is uniquely determined by its assigned points
Si(α) and Si(β) it suffices to bound these. For each input point sequence, there are at
most (m

2) possible choices for the set of points that get assigned to a fixed center point:
This is the case since all points that get assigned to the same center point have to be
consecutive. So the points that get assigned to the center point are uniquely determined
by the first and the last point that gets assigned to the center point. For n input point
sequences all possible assignments to an arbitrary center point are therefore bounded by
(m

2)
n. Since we choose two center points ci(α) and ci(β), there are at most (m

2)
2n ≤ m4n

possible choices for the assigned points Si(α) and Si(β) that determine ci(α) and ci(β).
The statement follows by applying the union bound over possible choices for ci(α) and
ci(β).

As a combination of Lemma 6.3.2 and Lemma 6.3.3, we get the following lemma.

Lemma 6.3.4. Let γ1, γ2, . . . , γn be independent m-length sequences with N (0,σ) per-
turbation, and suppose d ≥ 2. Then, the DBA algorithm implemented on the input data
γ1, γ2, . . . , γn converges in at most

s

(
a1n

2m8 n
d
+5d3k5 ln(nm)3

σ2

)

steps with probability at least 1− s− d
2 − (4n)−dk − 2−8mdk2 for all s ≥ 1 where a1 is

constant.

Proof. In Lemma 6.3.2, we set t = 2 ln((4n)dk28mdk2
) ≤ 16mdk2 ln(8n) to get that the

normalization property is fulfilled for some B ≤ a2σ
2d3k4m2 ln(nm)3 with probability

at least 1− (4n)−dk − 2−8mdk2 where a2 is constant. Then we use Lemma 6.3.3 with
ε = σ2

sn2m
8 n

d
+2 and apply Theorem 6.2.6.

With the help of the Lemma 6.3.4, we are now ready to prove Theorem 6.3.1.

Proof of Theorem 6.3.1. Let X be the number of steps that DBA performs. By The-
orem 6.2.4, we have that X ≤ a3(4n)dk28mdk2 for some constant a3. We set M :=
a3(4n)dk28mdk2 for simplicity and get

E[X] =
M∑

i=1
P{X ≥ i} ≤ K +

M∑
t=K

P{X ≥ t}

131

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

for any K. We set K := a1n
2m8 n

d
+5d3k5 ln(nm)3/σ2. By Lemma 6.3.4, it is

P{X ≥ sK} ≤ s− d
2 + (4n)−dk +m−8mdk2

for all s ≥ 1. Therefore, we have

M∑
t=K

P{X ≥ t} ≤ K ·
M
K∑

s=1
s− d

2 + (4n)−dk +m−8mdk2

Since d ≥ 2, we have s−d
2 ≤ 1

s . Moreover, M
K

(
(4n)−dk +m−8mdk2

)
≤ 1. So, we have

M∑
t=K

P{X ≥ t} ≤ K

1 +
M
K∑

s=1

1
s

 ≤ K +K ln M
K

Hence,

EX ≤ 2K +K ln M
K
≤ 2K +Kmdk2 ln (a4n)

for some constant a4.

Remark 6.3.5. Note that for the discrete case, where the positions of the points in the
center point sequence are restricted to the input points, we would get an upper bound
on the number of iterations which would be polynomial in n, instead of exponential in
n, since for the positions of ci(α) and ci(β) in the proof of Lemma 6.3.3, there are only
(nm

2) instead of (m
2)

2n possible choices.

6.4 Lower bound

In this section, we give a lower bound on the worst-case number of iterations until DBA
converges for two input point sequences of length m ∈N and an average point sequence
of length k = Θ(m) in R2. By duplicating the input point sequences this lower bound
immediately yields a lower bound for n ∈N input point sequences of length m and an
average point sequence of length k = Θ(m) in Rd. To construct the instance for our
lower bound, we directly draw from the work of Andrea Vattani on the lower bound
for the worst-case number of iterations of the k-means method [130]. We take his exact
construction and modify it to suit our needs by connecting input points to point sequences
and scaling up the integer weights of the points by a constant factor. Here a point with
integer weight resembles multiple points in the same position that are consecutive points
of the corresponding point sequence. The resulting instance will lead to a lower bound
that is exponential in m.

6.4.1 Construction

Before we give a detailed construction, we give a motivation for modifying a k-means
construction to show a lower bound for the number of iterations of the DBA algorithm.
The reason is that the algorithms are very similar. In fact, we can observe that DBA can
behave exactly like the k-means algorithm and converge in the same number of iterations

132

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

if in all iterations the optimal k-means assignment maps are also valid DBA assignment
maps.

To construct a suitable DBA instance, the idea is to connect the points of the instance
in [130] to point sequences such that this condition holds. This is not directly possible,
so we modify the instance such that we still get the same number of iterations for both
algorithms. A challenge here is that at some steps of the algorithm some points of the
average point sequence would not get mapped to any point of one of the input point
sequences by the assignment map corresponding to k-means. This happens independent
of the choice of the point sequences and implies that the respective assignment maps are
not valid. Intuitively, the challenge is solved by letting the problematic points on the
average sequence ”steal” points from neighboring clusters. To ensure that the general
structure remains unchanged, we replace all points of the input point sequences by
multiple points in the same position. In the following, we give a detailed description of
the construction of the DBA instance based on the instance in [130].

Pi Qi

Ai

Bi

Ci

Di

Ei

ri

Ri

Pi Qi

Ai

Bi

Ci

Di

Ei

γ1

γ2

Figure 6.1: Schematic drawing of gadget Gi (i ≥ 1) in k-means instance (Left) and in
DBA instance (Right).

The instanceX ′ of Andrea Vattani consists of a sequence of gadgetsG0,G1, . . . ,G⌈ k−1
2 ⌉.

For each i ̸= 0, the gadget Gi is given by a tuple (Pi, Ti, ri,Ri) where the set Pi =
{Pi,Qi,Ai,Bi,Ci,Di,Ei} ⊂ R2 determines the positions of the input points, Ti ⊂ R2

determines the initial position of two centers corresponding to the gadget and ri > 0 and
Ri > ri are the inner and outer radius of the gadget. In each position of Pi the gadget
contains a constant number of points determined by weights wP ,wQ,wA,wB ,wC ,wD,wE

that are independent of the index i (see Table 6.1 for the exact values). Note that for our
use of the instance, we scale the weights by a constant factor of 100M , where M ∈N

will be determined later. The positions of each gadget are identical up to translation
of the position Pi and up to a scaling of the relative distance of all other positions to
Pi. The position can be seen in Table 6.1. A k-means instance needs k initial centers
C = {c1, . . . , ck}. We say that a center point cj corresponds to a gadget Gi, if ⌈ j−1

2 ⌉ = i.
The initial position Ti of the two centers corresponding to Gi are determined as the
mean of the points in an initial cluster. The two initial clusters for each gadget Gi

with i ̸= 0 are defined as all points in the position Ai and all points in the positions
Pi,Qi,Bi,Ci,Di,Ei. For an illustration of one Gadget Gi of X ′ with i ̸= 0 see Figure 6.1.
The gadget G0 is given by (P0,C0) where P0 = C0 = {F}. So all the wF points in
position F = (0, 0) determine the position (0, 0) of the initial center c1.

To construct an instance X for DBA out of the instance X ′ for the k-means algorithm,

133

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

Weights Positions Pi Other values
wP = 100M Pi = Si−1 + (1− ε)Ri(1, 0) ε = 10−6

wQ = 1M Qi = Pi + ri(10−5, 0) r1 = 1
wA = 400M Ai = Pi + ri(1,−0.5) ri ≈ 40.41608ri−1

wB = 400M Bi = Pi + ri(1, 0.5) Ri = 1.25ri

wC = 1100M Ci ≈ Pi + ri(1, 0.70223) wF = 5000M
wD = 3100M Di ≈ Pi + ri(1, 1.35739) F = S0 = (0, 0)
wE = 27400M Ei = Pi + ri(0, 1) Si ≈ Pi + ri(1, 0, 99607)

Table 6.1: Approximate weights and positions of the points in the k-means instance X ′

of [130].

we just connect the points of the gadgets together to form two input point sequences.
The first point sequence γ1 starts with half of the points in position F followed by all
points in the positions Ei,Di,Ci,Bi and half of the points in position Ai in the given
order and in the natural order 1, . . . , ⌈k−1

2 ⌉ of the gadgets Gi. The second point sequence
γ2 starts with the other half of the points in position F followed by all points in the
positions Pi,Qi and the other half of the points in position Ai (see also Figure 6.1). The
initial assignment map is chosen as in the k-means instance so that the initial average
point sequence has its points c1, . . . , ck in the same position as the centers of the k-means
instance.

6.4.2 Analysis

For a run of the k-means algorithm on the instance X ′, all the occurring assignment maps
between points and centers in any step of the algorithm are described in [130]. Directly
from the positions of the center points given by these assignment maps, we can observe
the following properties for any set of center points that is present in any iteration of the
k-means algorithm.

Observation 6.4.1. Let C = {c1, . . . , ck} be a set of center points present in any
iteration of the k-means algorithm on X ′. The following properties hold for C and any
0 ≤ i ≤ ⌈k−1

2 ⌉:

1. Let p be a point that lies in the gadget Gi. Let cj ∈ C be the closest center point to
p (i.e. cj = arg minc∈C∥p− c∥). We have

max
c∈{cj−1,cj ,cj+1}

∥p− c∥ ≤ αri

where α > 0 is a constant that is independent of i, p and the number of gadgets.

2. Let p be a point that lies in either one of the gadgets Gi−1,Gi,Gi+1. Let further
c′ = arg minc∈C∥p− c∥ be the closest center point and c′′ = arg minc∈C\{c′}∥p− c∥
bet the second closest center point. We have

∥p− c′′∥ − ∥p− c′∥ ≥ βri

where β > 0 is a constant that is independent of i, p and the number of gadgets.

134

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

Furthermore, it is easy to check that the following method always creates a valid
assignment map to the center point sequence in any iteration of DBA on the instance X,
based on the assignment map in the same iteration of the k-means algorithm.

Method for creating valid assignment map: Take a fixed iteration of the k-means
algorithm on X ′. Let C ′ = (c′

1, . . . , c′
k) be the sequence of centers in this iteration of the

k-means algorithm and let C = (c1, . . . , ck) be the points of the average point sequence in
this iteration of DBA. Let π′ be the assignment map that assigns each point in X ′ to its
nearest neighbor in C ′. We can interpret π′ also as an assignment map of X that assigns
points of X that lie in the same position as points of X ′ to points of the center point
sequence C that have the same index as the assigned centers in C ′. Let I be the set of
the indices of all points in C that do not get assigned to any point of the point sequence
γ2 by this assignment map π′. Note that there are no i, j ∈ I with i = j + 1. For each
point j ∈ I take the last point p−(cj) of γ2 that got assigned to cj−1 and the first point
p+(cj) of γ2 that got assigned to cj+1. Choose p(cj) = arg minp∈{p−(cj),p+(cj)}∥cj − p∥.
Replace the previous assignment of p(cj) with cj . Since we scale up the instance π by a
constant factor M , there are at least M points of Q at position p(cj). Only reassign the
first respectively last of these points to cj . Denote the newly created assignment map
with π.

In the following, we prove that the created valid assignment map π is also always
an optimal assignment map for the instance X (scaled by a suitable constant M) and
its corresponding center point sequence. This result then directly implies that DBA
on X needs as many iterations as the k-means algorithm on X ′ to converge, since
the assignment map changes in each two consecutive iterations of DBA, in which the
corresponding assignment map of the k-means algorithm changes. So DBA only converges
in any iteration, in which the k-means algorithm converges.

Theorem 6.4.2. Let M > 4α
β + 4α2

β2 . For any iteration of DBA on the instance X scaled
up by the factor M , the valid assignment map π is an optimal assignment map.

Proof. Fix an iteration of the k-means algorithm on X ′. If we take the first iteration,
then the center points (that the new assignment map is based on) are the same as the
points of the average point sequence in the first iteration of DBA. Otherwise, let π′

1 be
the assignment map in the previous iteration of the k-means algorithm and π1 be the
corresponding assignment map in the previous iteration of DBA.

We first show that the center points of Cπ′1 that correspond to gadget Gi differ from
their corresponding center points of Cπ1 by at most α

M ri. From the construction of π′
1,

we know that the assigned points to each center point cj(π′
1) in π′

1 and cj(π1) in π1
differ by at most one point. Assume that cj(π1) has one more point p. We have

∥cj(π
′
1)− cj(π1)∥ = ∥cj(π

′
1)−

cj(π′
1) · |Sj(π′

1)|+ p

|Sj(π′1)|+ 1)∥

= ∥ cj(π′
1)− p

|Sj(π′)|+ 1∥

≤ 1
M
∥cj(π

′
1)− p∥

≤ α

M
ri

Here the second to last inequality follows by |Sj(π′)| ≥M (at least one scaled-up point is
assigned) and the last inequality follows by the first part of Observation 6.4.1. The case

135

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

that cj(π′
1) has one more point is analogous. By the second property of Observation 6.4.1,

we know that the difference between the distances of a point from gadget Gi−1,Gi or
Gi+1 to its closest center and its second closest center on Cπ′1 is at least βri. So, for
M > 2α

β , it holds that
2 α
M
ri < βri,

and it is ensured that the closest center of each point in both assignment maps π′
1 and

π1 has the same index. It further holds that the difference between the distances of a
point from gadget Gi−1,Gi or Gi+1 to its closest center c′ and its second closest center
c′′ on Cπ1 is at least

∥c′′ − p∥ − ∥c′ − p∥ ≥ βri − 2 α
M
ri. (6.2)

This is an important property for showing the optimality of the new assignment map.
Let π′ be the assignment map in the fixed iteration of the k-means algorithm corre-

sponding to the assignment map π in the same iteration of DBA. We have to show that
π is an optimal assignment map between the input point sequences the average point
sequence Cπ1 generated from the assignment map of the previous iteration (or the starting
average point sequence in the first iteration). Let OPT =

∑
p∈X minj∥cj(π1)− p∥2 be

the cost of the assignment map π′ between the input point sequences and Cπ1 . We
know that this assignment map is optimal, if it is valid since each point of the input
point sequence has to be assigned to at least one point of the center point sequence
and π′

j assigns each point only to its nearest neighbor. But this assignment map is not
valid, since there are multiple points of Cπ1 that do not get assigned to any point of the
point sequence γ2 in instance X. We denote the index set of these center points with
I and denote the points of Cπ1 simply with c1, . . . , ck instead of c1(π1), . . . , ck(π1). We
show that for suitable M each valid assignment map results in a greater cost than π, by
comparing their resulting costs to OPT . Fix an arbitrary subset I ′ of I. The cost of any
assignment map that does not assign any point cj with j ∈ I ′ to either p+(cj) or p−(cj)
is greater than OPT by at least

M
∑

cj∈I′

min(∆+(j), ∆−(j))

+
∑

cj∈I\I′

∥cj − p(cj)∥2 −min
t
(∥ct − p(cj)∥2)

where

∆+(j) = min
t ̸=j+1

(∥ct − p+(cj)∥2)− ∥cj+1 − p+(cj)∥2,

∆−(j) = min
t̸=j−1

(∥ct − p−(cj)∥2)− ∥cj−1 − p−(cj)∥2.

Here we use that for each cj ∈ I, either all the M points in position p+(cj) or in position
p−(cj) have to get reassigned to another center point. The assignment map π is the
best assignment map that assigns all cj ∈ I to either p+(cj) or p−(cj). The cost of π is
exactly ∑

cj∈I

∥cj − p(cj)∥2 −min
t
(∥ct − p(cj)∥2)

greater than OPT . So, if M is chosen such that

M min(∆+(j), ∆−(j)) > ∥cj − p(cj)∥2 (6.3)

136

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

then π is an optimal assignment map. By the first part of Observation 6.4.1, we have
∥cj(π′

1)− p(cj)∥ ≤ αri. Since the center points of Cπ′1 that correspond to gadget Gi

differ from their corresponding center points of Cπ1 by at most α
M ri ≤ αri, we further

get by triangle inequality

∥cj − p(cj)∥ ≤ ∥cj(π
′
1)− p(cj)∥+ ∥cj(π

′
1)− cj∥ ≤ 2αri

Since cj+1 is the closest center to p+(cj) and cj−1 is the closest center to p−(cj), we get
by Equation (6.2) that

min(∆+(j), ∆−(j) > (β − 2 α
M

)2r2
i .

Here we used that for any a > b > 0 it is (a− b)2 > a2 − b2. It remains to show that
M(β − 2 α

M)2 > 4α2. We have

M (β − 2 α
M

)2 =Mβ2 − 4βα+ 4α
2

M
> Mβ2 − 4βα
> 4α2

The last inequality follows by the assumption of the theorem that M > 4α
β + 4α2

β2 . So
Equation (6.3) is fulfilled and π is an optimal assignment map.

Since M can be chosen as a constant independent of k the point sequences γ1 and γ2
of X have a length Θ(k) each. We technically require that both point sequences have the
same length. The difference in length can easily be balanced by adding an extra gadget
in front of gadget G0 far away from the other gadgets that contains one point of the
longer point sequence and the difference in length plus one points of the smaller point
sequence. Also, add another center point corresponding to the gadget and initialize it
at the mean of all points in the gadget. If all the points are far enough away from any
other points of the instance, the corresponding center point does not change its position
and the gadget does not interfere with any other gadget. By the results of [130], we
know that the k-means algorithm needs 2Ω(k) iterations on the instance X ′. As stated
earlier, Theorem 6.4.2 implies that DBA on X needs the same amount of iterations. We
therefore achieve the following lower bound.

Theorem 6.4.3. Let k ∈ N. There is an instance of two point sequences with length
m = Θ(k) in the plane such that DBA needs 2Ω(k) iterations to converge.

6.5 Experiments on the M5 data set

In this section, we present our empirical observations on the number of iterations of DBA
on real-world data. We run our implementation of the algorithm on real-world data
sets of time series and observe that in practice it runs much faster than the theoretical
guarantees ensure.

6.5.1 Research questions

We are interested in how the number of iterations of the DBA algorithm depends on the
complexity of the input and output for practical data sets. More specifically, we ask the
following research questions.

137

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

• What is the dependency of the number of iterations on the number n of input point
sequences?

• What is the dependency of the number of iterations on the length m of the input
point sequences?

• What is the dependency of the number of iterations on the length k of the output
center?

6.5.2 Data set(s)

To answer our research questions, we apply the DBA algorithm on the data set from the
M5 Competition [100]. Preliminary experiments on data sets from the UCR Time Series
Classification Archive [42] have not shown a clear dependency on any of the quantities in
question. We conjecture that this result can be attributed to the heterogeneity of the
data sets and the relatively short length of the studied input point sequences. For a more
detailed analysis of these preliminary experiments see Appendix 6.7.

The data set of the M5 Competition consists of the unit sales of products from 10
different Walmart stores in the USA. The sold number of units was tracked daily over
1942 days from 2011-01-29 to 2016-06-19 for each product aggregated for each store
separately. The products can be divided into the 7 product departments Hobbies 1-2,
Foods 1-3 and Household 1-2. To create input sequences for DBA, we take for each
product the time series that consists of the summed-up daily sales of this product over
all 10 stores. The number of input sequences in each department is given in Table 6.2.
In our experiments, we run DBA on sets of subsequences of such input sequences.

Hobbies 1 Hobbies 2 Foods 1 Foods 2 Foods 3 Household 1 Household 2
416 149 216 398 823 532 515

Table 6.2: Number of input sequences (different products) per department.

6.5.3 Setup of the experiments

To perform experiments, DBA was implemented in C++. The implementation is based
on the python implementation of Petitjean [106, 107] and can be found at [24]. In the
following, we describe the setup of the experiments. All of our experiments use the same
random initialization method to select the first center point sequence.

Random initialization

We initialize the first center point sequence from a random valid assignment of the input
sequences. The valid assignment is created by a combination of random walks consisting
of one walk per input sequence. Such a random walk starts with assigning the first point
of the input series to the first point of the center point sequence and then chooses the
next assignment by either moving forward on both input and center sequence or only
moving forward on one of them. Each option has probability 1/3. If it reaches the end
of one sequence it continues to only move forward on the other one. After the random
assignment is computed, the center points are chosen as the arithmetic means of the
assigned points from the input series.

138

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

Experiment 1: Dependency on the number n of input point sequences

We run DBA on sets of subsequences of consecutive days with varying sizes. The specific
sizes of the sets are taken exponentially growing as 25, 50, 100, 200, 400, 800, 1600
and 3049. To choose the time series for a specific set of size s, we draw a number r
between 1 and 3049− s uniformly at random and take the time series at the positions
r, r+ 1, . . . , r+ s. We perform the experiment three times for three fixed values 100, 300
and 500 for the length of the subsequences. In each run of the experiment, we run DBA
ten times for each fixed size of input sets and for input subseries of the fixed length, where
we draw the starting day of the input subseries uniformly at random (same starting day
for all series in the same run). For each run of DBA, we track the number of iterations.

Experiment 2: Dependency on the length m of the input point sequences

In this experiment, we run DBA on each product department separately. This approach
leads to a very natural division of the data set that creates data sets of different sizes.
To be able to analyze the dependency of the number of iterations on the length of the
time series, we run DBA on subsequences of input sequences with different lengths. We
explicitly choose for each input sequence, one subsequence of consecutive days. The
values for the length of the subsequences are taken exponentially growing as 15 · 2i for
0 ≤ i ≤ 7 (15, 30, 60, 120, 240, 480, 960, 1920). We run DBA ten times for each fixed
value of the length, where we draw the starting day of the input subseries uniformly at
random (same starting day for all series in the same run). For each run of DBA, we track
the number of iterations.

Experiment 3: Dependency on the length k of the output center

For the same reasons as in Experiment 2, we run the experiment on different Product
departments separately. For the sake of a clearer presentation, we restrict ourselves to
the product departments Foods 1, Foods 2 and Foods 3. As input sequences, we take all
time series that correspond to the respective product department. For each department,
we run DBA for several lengths of the output center, where we test each value of the
length ten times. The values for the length of the center are taken again as 15 · 2i for
0 ≤ i ≤ 7 (15, 30, 60, 120, 240, 480, 960, 1920). For each run of DBA, we track the
number of iterations.

6.6 Results of the experiments

In this section, we state the results of the described experiments. More detailed tables and
box plots of the exact results can be found in Appendix 6.8. The results of Experiment 1,
2 and 3 are depicted in Figure 6.2, 6.3 and 6.4. For Experiment 1, the relation between
the average number of iterations and the number of the input point sequences is shown in
Figure 6.2. For Experiment 2, the relation between the average number of iterations and
the length of the input point sequences is shown in Figure 6.3 and for Experiment 3, the
relation between the average number of iterations and the length of the output center is
shown in Figure 6.4. As we can see in all three figures, the dependency on each parameter
seems to be sublinear. Since the function graphs appear linear in the log-log plots,
the dependencies seem to be polynomial for exponents smaller 1. Estimations for the

139

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

exponents which were computed with linear regression on the points in the log-log-plots
are given in Table 6.3, 6.4 and 6.5.

Figure 6.2: Depiction of the average number of iterations of the DBA algorithm with
respect to the number of time series in the chosen sets. Each function graph corresponds
to a fixed length of all time series in the sets. The left graphic uses normal scales and
the right graphic uses logarithmic scales on both axes.

Figure 6.3: Depiction of the average number of iterations of the DBA algorithm with
respect to the length of the series in the chosen sets. Each function graph corresponds to
one product department. The left graphic uses normal scales and the right graphic uses
logarithmic scales on both axes.

140

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

Figure 6.4: Depiction of the average number of iterations of the DBA algorithm with
respect to the length of the center point sequence. Each function graph corresponds to
one product department. The left graphic uses normal scales and the right graphic uses
logarithmic scales on both axes.

Length 100 200 300
Exponent 0.27 0.35 0.36

Table 6.3: Experiment 1: Estimations for the exponents of the dependency on the size of
the input point sequences for each fixed length of the input point sequences.

Dep. Hobbies 1 Hobbies 2 Foods 1 Foods 2 Foods 3 Househ. 1 Househ. 2
Exp. 0.50 0.38 0.42 0.47 0.50 0.51 0.50

Table 6.4: Experiment 2: Estimations for the exponents of the dependency on the length
of the output center for each Department.

Department Foods 1 Foods 2 Foods 3
Exponent 0.16 0.16 0.20

Table 6.5: Experiment 3: Estimations for the exponents of the dependency on the length
of the input point sequences for each Department.

6.7 Experiments on the UCR Time Series Classification
Archive

The UCR Time Series Classification Archive contains many data sets from different areas.
For our experiments, we selected the same subset of data sets as Schultz and Jain [115].
For each data set, we merge the training and test sets into a single data set. Each data
set is divided into several classes and only contains time series of identical length. In
Table 6.6, we display the name, the number c of classes, the total number n of time series,
the average number n/c of time series per cluster and the length m of each data set.

141

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

Dataset c n n/c m µ1 σ2
1 µ2 σ2

2
50words 50 905 18.10 270 50.66 49.56 45.41 45.86
Adiac 37 781 21.11 176 3.24 3.93 38.05 9.45
Beef 5 60 12.00 470 88.60 61.83 85.6 53.02
CBF 3 930 310.00 128 98.00 39.30 67.77 18.93
ChlorineConc. 3 4307 1435.67 166 78.67 10.34 96.67 38.42
Coffee 2 56 28.00 286 37.50 8.50 40.15 6.37
ECG200 2 200 100.00 96 65.50 12.50 53.40 9.53
ECG5000 5 5000 1000.00 140 110.40 80.50 136.50 144.87
ElectricDevices 7 16637 2376.71 96 50.14 26.44 57.96 47.15
FaceAll 14 2250 160.71 131 40.43 17.88 67.29 28.81
FaceFour 4 112 28.00 350 29.50 9.96 33.45 7.89
Fish 7 350 50.00 463 93.57 33.67 77.84 23.20
Gun Point 2 200 100.00 150 46.00 4.00 62.75 22.29
Lighting2 2 121 60.50 637 80.00 8.00 47.85 10.36
Lighting7 7 143 20.43 319 30.29 24.52 23.64 8.12
OliveOil 4 60 15.00 570 34.75 21.09 49.90 20.10
OSULeaf 6 441 73.50 427 164.00 54.99 126.63 120.17
PhalangesOutl. 2 2658 1329.00 80 57.50 3.50 192.00 74.70
SwedishLeaf 15 1125 75.00 128 28.34 11.01 55.82 15.36
synthetic control 6 600 100.00 60 32.00 8.52 31.05 10.45
Trace 4 200 50.00 275 29.00 4.06 54.55 25.66
Two Patterns 4 5000 1250.00 128 104.25 23.59 81.53 28.97
wafer 2 7164 3582.00 152 67.5 4.50 52.05 7.63
yoga 2 3300 1650.00 426 672.5 197.5 563.95 292.07

Table 6.6: Characteristics of the UCR TS datasets and the results for applying DBA.
Here, c stands for the number of classes, n for the number of series, n/c is therefore the
average number of series in a class and m is the length of each time series. The value µi

stands for the average number of iterations and σ2
i stands for the variance in the number

of iterations over all classes. Here the index i = 1 stands for medoid initialization and
i = 2 stands for random initialization.

We run the DBA algorithm on the chosen data sets for two different initialization
methods (medoid and random) and analyze the dependency of the number of iterations on
the number and length of the series. As input, we take each class of the data set separately
and track the number of iterations needed by the DBA algorithm to converge. In the
end, we compute the average number of iterations over all classes and the corresponding
variances.

For the medoid initialization, we take the input point sequence as the starting center
that minimizes the DTW distance to the other input point sequences. For the random
initialization, we construct the starting center from a valid assignment of the input
sequences. The valid assignment is created by a combination of random walks consisting
of one walk per input sequence. Such a random walk starts with assigning the first point
of the input series to the first point of the center point sequence and then chooses the
next assignment by either going to the next point on the input series while staying at
the same point of the center point sequence, going to the next point on the center point
sequence while staying at the same point of the input series or moving to the next point

142

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

on both series. Each option is taken with probability 1/3. It can also happen, that
there is only one valid option remaining, which is then always chosen. After the random
assignment is computed, the center points are chosen as the arithmetic means of the
assigned points from the input series. In the case of the random initialization, we run
the DBA algorithm 10 times per cluster and calculate the average number of iterations
over all runs on all clusters.

For each data set, we depict the tracked average number of iterations of the DBA
algorithm and the corresponding variances in Table 6.6 and Figure 6.5. The figures do
not suggest any clear dependency of the number of iterations on the number or length of
the input point sequences for any of the two initialization methods. We conjecture that
this result can be attributed to the heterogeneity of the data sets.

Figure 6.5: Depiction of the average number of iterations of DBA with respect to length
and number of series in the corresponding data sets. Each color corresponds to one data
set of the UCR Time Series Clasification Archive. The left side shows the results for the
medoid initialization and the right side shows the results for the random initialization.

6.8 Data of the experiments on the M5 data set

This chapter includes the detailed data of the experiments on the M5 data set. The
data of Experiment 1 about the Dependency on the number of input point sequences
is depicted in Table 6.7, Table 6.8 and Figure 6.7, the data of Experiment 2 about the
Dependency on the length of the input point sequences is depicted in Table 6.9, Table 6.10
and Figure 6.7 and the data of Experiment 3 about the Dependency on the length of the
output center is depicted in Table 6.11, Table 6.12 and Figure 6.8.

143

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

Mean of the number of iterations (Experiment 1)
Sequences 25 50 100 200 400 800 1600 3149

Length
100 14.1 21.2 26.9 28.5 38.5 42.9 55.9 51.5
300 18.3 28.9 42.3 57.9 72.2 78.4 113.2 97.3
500 25.7 32.2 51.1 60.6 80 115.5 116 141.4

Table 6.7: Mean of the number of iterations with respect to the number of input point
sequences. Each row corresponds to one fixed length of the input sequences

Variance of the number of iterations (Experiment 1)
Sequences 25 50 100 200 400 800 1600 3149

Length
100 2.88 4.73 7.53 5.41 8.67 11.94 22.87 17.25
300 5.64 6.99 8.82 14.02 25.72 26.75 57.45 29.33
500 8.94 6.90 7.62 17.49 21.67 34.80 34.35 44.50

Table 6.8: Variance of the number of iterations with respect to the number of input point
sequences. Each row corresponds to one fixed length of the input sequences

Mean of the number of iterations (Experiment 2)
Length 15 30 60 120 240 480 960 1920

Department
Hobbies 1 17.3 27.2 35.2 45.7 80 88.2 142.9 214
Hobbies 2 12.2 22.4 29.9 30.5 38 64.6 71.1 89.3
Foods 1 15 21.5 27.6 37 64.2 75.8 88.1 103.8
Foods 2 14 24.2 37.5 50.8 57.2 89 117.4 150.7
Foods 3 17.7 23.2 36 52 69.1 116.9 136.4 189.3
Household 1 16.4 21.6 30.2 52.3 76.7 75.8 126.1 203.5
Household 2 17.8 27.7 33.5 67 79.1 100.2 162.1 193.5

Table 6.9: Mean of the number of iterations with respect to the length of the input point
sequences. Each row corresponds to one product department.

144

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

Figure 6.6: Experiment 1: Boxplots of the number of iterations for each department and
each number of input sequences. Each graphic corresponds to one fixed length of the
input sequences and has a logarithmic scale on the horizontal axis. Only the last graphic
has regular scale on the horizontal axis. It depicts the mean of the number of iterations
per number of input sequences for each of the departments.

Variance of the number of iterations (Experiment 2)
Length 15 30 60 120 240 480 960 1920

Department
Hobbies 1 3.38 11.12 12.66 15.47 30.43 20.36 44.97 70.87
Hobbies 2 2.56 9.31 18.56 8.09 11.06 12.86 7.99 28.43
Foods 1 4.47 5.57 10.34 12.17 15.07 21.89 10.19 27.32
Foods 2 3.16 7.00 11.81 19.72 14.61 27.66 20.19 54.80
Foods 3 6.42 6.08 11.33 19.44 37.63 45.65 41.44 33.05
Household 1 3.41 3.53 8.22 28.78 32.95 19.1405 47.66 68.82
Household 2 6.87 12.1 9.57 30.94 27.06 21.50 40.80 51.16

Table 6.10: Variance of the number of iterations with respect to the length of the input
point sequences. Each row corresponds to one product department

145

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

Figure 6.7: Experiment 2: Boxplots of the number of iterations for each department and
each length of input sequences. Each graphic corresponds to one product department
and has a logarithmic scale on the horizontal axis. Only the last graphic has regular
scale on the horizontal axis. It depicts the mean of the number of iterations per length
for each of the departments.

146

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

Mean of the number of iterations (Experiment 3)
Length of Center 15 30 60 120 240 480 960 1920

Department
Foods 1 52.5 64.5 85.2 98.9 93.5 93.1 124.6 123.6
Foods 2 62.3 84.1 97 101.1 115.1 132.9 143.4 139.2
Foods 3 83.9 100.3 116.5 126.7 160.1 157 201.3 226.8

Table 6.11: Mean of the number of iterations with respect to the length of the output
center. Each row corresponds to one product department.

Variance of the number of iterations (Experiment 3)
Length of Center 15 30 60 120 240 480 960 1920

Department
Foods 1 6.07 11.60 15.90 17.47 13.07 14.01 20.11 36.69
Foods 2 11.1 19.24 17.78 13.86 28.68 51.42 40.39 32.44
Foods 3 25.78 13.33 27.15 25.08 50.25 36.90 53.62 66.71

Table 6.12: Variance of the number of iterations with respect to the length of the output
center. Each row corresponds to one product department

Figure 6.8: Experiment 3: Boxplots of the number of iterations for each department and
each length of the output center. Each graphic corresponds to one product department
and has a logarithmic scale on the horizontal axis. Only the last graphic has regular
scale on the horizontal axis. It depicts the mean of the number of iterations per fixed
length of the output center for each of the departments.

147

CHAPTER 6. ON THE NUMBER OF ITERATIONS OF THE DBA ALGORITHM

148

Chapter 7

Conclusions

In this thesis, we have studied the clustering of polygonal curves and polygonal regions
in various ways. We have analyzed the VC-dimension and shattering dimension of
elastic distance measures, discussed subtrajectory clustering under the Fréchet distance
and investigated the number of iterations of the DBA algorithm. In the case of our
VC-dimension bounds, we considered range spaces of balls around polygonal curves and
regions with respect to variations of the Hausdorff distance, the Fréchet distance and
the dynamic time warping distance (DTW). We showed bounds that are tight for each
parameter separately in the case of polygonal curves for the Hausdorff distance and the
Fréchet distance. We showed similar bounds for the Hausdorff distance of polygonal
regions. Our techniques also directly implied VC-dimension bounds for DTW and the
average Hausdorff distance. In the context of subtrajectory clustering, we developed
bicriteria approximation algorithms with approximation factors in the size and radius
of the solution. For the number of iterations of the DBA algorithm, we showed lower
and upper bounds in the worst-case that are exponential in the length of the center
sequence and a smoothed upper bound that is exponential in n

d , where n is the number
of input sequences and d is the ambient dimension. We complemented these findings
with experiments that show fast convergence with a growth rate that is sublinear in all
considered parameters. In the following, we discuss open problems and further research
directions.

7.1 VC-dimension and shattering dimension of elastic dis-
tance measures

We considered bounds on the VC-dimension of balls under various distance measures.
In the cases where we have no tight bounds, it is an interesting direction to study
lower bounds and investigate if our upper bounds are already tight or if they can still
be improved. Another natural question is whether our techniques can be applied to
other distance measures or other geometric objects like smoothed curves or unions of
higher-dimensional polytopes as well. Since the techniques only require a distance query
to be answered by simple predicates, it seems reasonable that such predicates can also be
found for other distance measures or other geometric objects. A different direction would
be to consider applications that are based on the studied range spaces. The VC-dimension
results have already been used to improve algorithms for subtrajectory clustering in this
thesis. It would be an interesting direction to consider problems in the areas of prediction,

149

CHAPTER 7. CONCLUSIONS

density estimation, classification or hot spot detection as well. Even without using the
VC-dimension directly, our techniques that split distance queries into predicates, which
just depend on sign values of polynomials, might find applications in these areas. The
arrangement of zero sets of the polynomials captures the structure of the distance query
well and has already been utilized successfully in the case of the Fréchet distance for
range searching, nearest neighbor classification, distance oracles and curve simplification
by Cheng and Huang [43]. The extension of these results to the other distance measures
discussed in this thesis and to polygonal regions in the case of the Hausdorff distance
seems to be a straightforward implication of our results from Chapter 3. It would be
interesting to investigate in which other of the mentioned areas the arrangement proves
to be useful.

7.2 Subtrajectory Clustering

There are many variants of subtrajectory clustering that arise from application-specific
considerations, see also the discussion of related work in Section 1.2. We expect that our
general approach and our problem definition can be applied to a lot of these variants.
For example, all of our algorithms can be easily extended to the setting of multiple input
curves. We mention some other variants that we find interesting.

(1) Outputting a graph: The output of our algorithm is a set of center curves. In
some applications, such as map construction, we may prefer the output to be a
geometric graph. This can be easily obtained by connecting the center curves to form
a geometric graph using additional edges where the input trajectory moves from one
cluster to the next. How to do this optimally would be a subject for future research.

(2) Covering with gaps: One might be interested in a problem variant where not the entire
curve but only a certain fraction of it needs to be covered. It would be interesting to
analyze our techniques in this setting or related settings, like the facility location
version of the problem in [3].

(3) Input curves: In our work, we assume that our input curves are given in the form
of polygonal curves. However, it is conceivable that our general approach to the
discrete problem still works if the input is given in the form of piecewise polynomial
curves with breakpoints; again, we leave this to future work.

(4) Other distance measures: Similarly, we think that our general approach is still
applicable if the Fréchet distance is replaced by some other distance measure that
satisfies the triangle inequality. It would be interesting to study such cases in more
detail or consider distance measures like dynamic time warping that do not satisfy
the triangle inequality.

(5) Maximum coverage problem: The maximum coverage problem is a closely related
problem that asks to maximize the coverage for a given fixed number of center curves.
In [26], we show that our techniques can also be applied in this case to directly yield
an approximate solution. It would be interesting to study this problem in more detail
and try to improve the results.

As mentioned earlier, it may be tempting to allow for center curves of arbitrary
complexity. However, this would lead to the trivial solution of the curve P being an

150

CHAPTER 7. CONCLUSIONS

Figure 7.1: Ocean surface drifters from the NOAA Global Drifter Program [99]: 4 Clusters
of Subtrajectories with their corresponding center curves that were selected in the first
10 selections of the greedy algorithm in [47]. Source of picture: [47]

optimal center curve. In any case, we think that some form of controlled regularization
is necessary in the problem definition. Generally, it would also be interesting to further
study the original problem and try to improve approximation factors, running time
and space or find some hardness of approximation results. Another promising research
direction is to apply our developed algorithms to real-world data. Conradi and Driemel
[47] already applied some of the techniques from our work [25] to perform subtrajectory
clustering on human motion data and ocean drifter data (see also Figure 7.1). It would
be interesting to see if our other techniques, like the implicit weight update approach for
the multiplicative weight update method, would also work well on real-world data.

7.3 The number of iterations of the DBA algorithm

Our experimental results for the number of iterations of the DBA algorithm show a gap
between the theoretical bounds we were able to prove in the model of smoothed analysis
and the number of steps DBA takes on real-world data. This suggests two directions for
further research: (1) developing refined worst-case bounds under realistic input models,
and (2) sharpening the obtained smoothed analysis estimates to better reflect practical
performance.

The structure of DBA is very similar to the classical k-means algorithm. One would

151

CHAPTER 7. CONCLUSIONS

naturally expect the techniques from the analysis of the k-means algorithm to be useful
for the analysis of DBA. This was true for the geometric ideas of Vattani in the case of
proving lower bounds. However, surprisingly, the techniques for the smoothed analysis of
k-means were not effective in the smoothed analysis of DBA. The main difference seems to
be the following: In every step of the k-means algorithm, i.e. every change of assignment
for a point from one center to another, the distance decreases. This gives k-means a
very monotonic behaviour. In DBA we use dynamic time warping distance (DTW) and
the behaviour is not necessarily monotonic: A change in the assignment of a point x in
point sequence γ1 can increase the distance of the point x while the total DTW distance
between point sequence γ1 and the mean point sequence decreases. This behaviour seems
to rule out the usage of most useful techniques from [16]. Instead, we manage to exploit
the specific properties of DBA, as it requires the assignments between the points of an
input sequence and the mean point sequence to respect the ordering along the mean point
sequence and along the input sequence. In the potential function argument that we use
to bound the number of iterations, all of the cost reduction comes from the movement of
the center vertices in individual update steps of the algorithm. It would be interesting
to see if there is a lucrative way to use the cost reduction in the assignment step of the
algorithm or by analyzing the cost reduction of multiple consecutive iterations together.
This has been shown to be difficult because of the non-monotonic and global behaviour
of the assignment in comparison to the monotonic and local behaviour of the assignment
of the k-means algorithm.

152

Bibliography

[1] Peyman Afshani and Anne Driemel. On the complexity of range searching among
curves. CoRR, 2017. doi:10.48550/ARXIV.1707.04789.

[2] Peyman Afshani and Anne Driemel. On the complexity of range searching among
curves. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, 2018. doi:10.1137/1.9781611975031.58.

[3] Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei Pan,
and Erin Taylor. Subtrajectory Clustering: Models and Algorithms. In Proceedings
of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 75–87, 2018. doi:10.1145/3196959.3196972.

[4] Pankaj K. Agarwal, Sariel Har-Peled, Nabil H. Mustafa, and Yusu Wang. Near-
Linear Time Approximation Algorithms for Curve Simplification. Algorithmica,
42(3):203–219, 2005. doi:10.1007/s00453-005-1165-y.

[5] Ravi Aggarwal, Viknesh Sounderajah, Guy Martin, Daniel SW Ting, Alan Karthike-
salingam, Dominic King, Hutan Ashrafian, and Ara Darzi. Diagnostic accuracy of
deep learning in medical imaging: a systematic review and meta-analysis. NPJ
digital medicine, 4(1):65, 2021. doi:10.1038/s41746-021-00438-z.

[6] Hugo Akitaya, Frederik Brüning, Erin Chambers, and Anne Driemel. Covering a
Curve with Subtrajectories. CoRR, 2021. doi:10.48550/ARXIV.2103.06040.

[7] Hugo Akitaya, Frederik Brüning, Erin Chambers, and Anne Driemel. Covering
a Curve with Subtrajectories. In 37th European Workshop on Computational
Geometry (EuroCG 2021), 2021.

[8] Hugo Akitaya, Frederik Brüning, Erin Chambers, and Anne Driemel. Subtrajectory
Clustering: Finding Set Covers for Set Systems of Subcurves. Computing in
Geometry and Topology, 2(1):1:1–1:48, 2023. doi:10.57717/cgt.v2i1.7.

[9] Ehab A. AlBadawy, Ashirbani Saha, and Maciej A. Mazurowski. Deep learning for
segmentation of brain tumors: Impact of cross-institutional training and testing.
Medical Physics, 45(3):1150–1158, 2018. doi:10.1002/mp.12752.

[10] Noga Alon. Tools from higher algebra. Handbook of combinatorics, 2:1749–1783,
1996.

[11] Helmut Alt, Oswin Aichholzer, and Günter Rote. Matching shapes with a reference
point. In Proceedings of the Tenth Annual Symposium on Computational Geometry,
SCG ’94, pages 85–92, 1994. doi:10.1145/177424.177555.

153

https://doi.org/10.48550/ARXIV.1707.04789
https://doi.org/10.1137/1.9781611975031.58
https://doi.org/10.1145/3196959.3196972
https://doi.org/10.1007/s00453-005-1165-y
https://doi.org/10.1038/s41746-021-00438-z
https://doi.org/10.48550/ARXIV.2103.06040
https://doi.org/10.57717/cgt.v2i1.7
https://doi.org/10.1002/mp.12752
https://doi.org/10.1145/177424.177555

BIBLIOGRAPHY

[12] Helmut Alt, Bernd Behrends, and Johannes Blömer. Approximate matching of
polygonal shapes. In Proceedings of the seventh annual symposium on Computational
geometry, pages 186–193, 1991. doi:10.1145/109648.109669.

[13] Helmut Alt and Michael Godau. Computing the Fréchet distance between two
polygonal curves. International Journal of Computational Geometry & Applications,
5:75–91, 1995. doi:10.1142/S0218195995000064.

[14] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical
Foundations. Cambridge University Press, 1999. doi:10.1017/CBO9780511624216.

[15] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing, 8(1):121–164,
2012. doi:10.4086/toc.2012.v008a006.

[16] David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed Analysis of the k-Means
Method. J. ACM, 58(5), 2011. doi:10.1145/2027216.2027217.

[17] David Arthur and Sergei Vassilvitskii. How Slow is the k-Means Method? In
Proc. Symp. on Computational Geometry, SCG ’06, pages 144–153, 2006. doi:
10.1145/1137856.1137880.

[18] Shai Ben-David and Michael Lindenbaum. Localization vs. Identification of
Semi-Algebraic Sets. In Proceedings of the Sixth Annual ACM Conference
on Computational Learning Theory, COLT 1993, pages 327–336, 1993. doi:
10.1145/168304.168364.

[19] Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns
in time series. In Knowledge Discovery in Databases: Papers from the 1994 AAAI
Workshop, pages 359–370. AAAI Press, 1994.

[20] Martin Breunig, Patrick Erik Bradley, Markus Jahn, Paul Kuper, Nima Mazroob,
Norbert Rösch, Mulhim Al-Doori, Emmanuel Stefanakis, and Mojgan Jadidi.
Geospatial Data Management Research: Progress and Future Directions. ISPRS
International Journal of Geo-Information, 9(2), 2020. doi:10.3390/ijgi9020095.

[21] Markus Brill, Till Fluschnik, Vincent Froese, Brijnesh Jain, Rolf Niedermeier,
and David Schultz. Exact mean computation in dynamic time warping spaces.
Data Mining and Knowledge Discovery, 33(1):252–291, 2019. doi:10.1007/
S10618-018-0604-8.

[22] Hervé Brönnimann, Bernard Chazelle, and Jiŕı Matousek. Product Range Spaces,
Sensitive Sampling, and Derandomization. SIAM J. Comput., 28(5):1552–1575,
1999. doi:10.1137/S0097539796260321.

[23] Hervé Brönnimann and Michael T Goodrich. Almost optimal set covers in finite
VC-dimension. Discrete & Computational Geometry, 14(4):463–479, 1995. doi:
10.1007/BF02570718.

[24] Frederik Brüning. DBA implementation. GitHub, 2022. https://github.com/
FrederikBruening/DBA.

154

https://doi.org/10.1145/109648.109669
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1017/CBO9780511624216
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1145/2027216.2027217
https://doi.org/10.1145/1137856.1137880
https://doi.org/10.1145/1137856.1137880
https://doi.org/10.1145/168304.168364
https://doi.org/10.1145/168304.168364
https://doi.org/10.3390/ijgi9020095
https://doi.org/10.1007/S10618-018-0604-8
https://doi.org/10.1007/S10618-018-0604-8
https://doi.org/10.1137/S0097539796260321
https://doi.org/10.1007/BF02570718
https://doi.org/10.1007/BF02570718
https://github.com/FrederikBruening/DBA
https://github.com/FrederikBruening/DBA

BIBLIOGRAPHY

[25] Frederik Brüning, Jacobus Conradi, and Anne Driemel. Faster Approximate
Covering of Subcurves Under the Fréchet Distance. In 30th Annual European
Symposium on Algorithms (ESA 2022), volume 244, pages 28:1–28:16, 2022. doi:
10.4230/LIPIcs.ESA.2022.28.

[26] Frederik Brüning, Jacobus Conradi, and Anne Driemel. Faster Approximate
Covering of Subcurves under the Fréchet Distance. CoRR, 2022. doi:10.48550/
ARXIV.2204.09949.

[27] Frederik Brüning and Anne Driemel. Simplified and Improved Bounds on the
VC-Dimension for Elastic Distance Measures. CoRR, 2023. doi:10.48550/ARXIV.
2308.05998.

[28] Frederik Brüning and Anne Driemel. Simplified and Improved Bounds on the
VC-Dimension for Elastic Distance Measures. In 40th European Workshop on
Computational Geometry (EuroCG 2024), 2024.

[29] Frederik Brüning, Anne Driemel, Alperen Ergür, and Heiko Röglin. On the number
of iterations of the DBA algorithm. In 39th European Workshop on Computational
Geometry (EuroCG 2023), 2023.

[30] Frederik Brüning, Anne Driemel, Alperen Ergür, and Heiko Röglin. On the number
of iterations of the DBA algorithm. In Proceedings of the 2024 SIAM International
Conference on Data Mining (SDM), 2024. doi:10.1137/1.9781611978032.20.

[31] Frederik Brüning, Anne Driemel, Alperen Ergür, and Heiko Röglin. On the number
of iterations of the DBA algorithm. CoRR, 2024. doi:10.48550/ARXIV.2401.
05841.

[32] Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs,
Vera Sacristan, Rodrigo I. Silveira, Frank Staals, and Carola Wenk. Clustering
Trajectories for Map Construction. In Proceedings of the 25th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
SIGSPATIAL ’17, 2017. doi:10.1145/3139958.3139964.

[33] Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Jorren Hendriks, Erfan Hos-
seini Sereshgi, Vera Sacristán, Rodrigo I. Silveira, Jorrick Sleijster, Frank Staals,
and Carola Wenk. Improved Map Construction using Subtrajectory Clustering. In
LocalRec’20: Proceedings of the 4th ACM SIGSPATIAL Workshop on Location-
Based Recommendations, Geosocial Networks, and Geoadvertising, pages 5:1–5:4,
2020. doi:10.1145/3423334.3431451.

[34] Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Maarten Löffler, and Jun
Luo. Detecting Commuting Patterns by Clustering Subtrajectories. International
Journal of Computational Geometry & Applications, 21(3):253–282, 2011. doi:
10.1142/S0218195911003652.

[35] Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina
Kostitsyna, Maarten Löffler, and Martijn Struijs. Approximating (k, l)-center
clustering for curves. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, pages 2922–2938, 2019. doi:10.1137/1.
9781611975482.181.

155

https://doi.org/10.4230/LIPIcs.ESA.2022.28
https://doi.org/10.4230/LIPIcs.ESA.2022.28
https://doi.org/10.48550/ARXIV.2204.09949
https://doi.org/10.48550/ARXIV.2204.09949
https://doi.org/10.48550/ARXIV.2308.05998
https://doi.org/10.48550/ARXIV.2308.05998
https://doi.org/10.1137/1.9781611978032.20
https://doi.org/10.48550/ARXIV.2401.05841
https://doi.org/10.48550/ARXIV.2401.05841
https://doi.org/10.1145/3139958.3139964
https://doi.org/10.1145/3423334.3431451
https://doi.org/10.1142/S0218195911003652
https://doi.org/10.1142/S0218195911003652
https://doi.org/10.1137/1.9781611975482.181
https://doi.org/10.1137/1.9781611975482.181

BIBLIOGRAPHY

[36] Kevin Buchin, Anne Driemel, and Martijn Struijs. On the Hardness of Computing
an Average Curve. In 17th Scandinavian Symp. and Workshops on Algorithm
Theory, SWAT 2020, volume 162, pages 19:1–19:19, 2020. doi:10.4230/LIPIcs.
SWAT.2020.19.

[37] Maike Buchin, Anne Driemel, and Dennis Rohde. Approximating (k, l)-Median
Clustering for Polygonal Curves. ACM Trans. Algorithms, 19(1):4:1–4:32, 2023.
doi:10.1145/3559764.

[38] Maike Buchin, Bernhard Kilgus, and Andrea Kölzsch. Group diagrams for repre-
senting trajectories. International Journal of Geographical Information Science,
34(12):2401–2433, 2020. doi:10.1080/13658816.2019.1684498.

[39] Maike Buchin and Dennis Rohde. Coresets for (k,l)-Median Clustering Under
the Fréchet Distance. In Algorithms and Discrete Applied Mathematics - 8th
International Conference, CALDAM 2022, pages 167–180, 2022. doi:10.1007/
978-3-030-95018-7_14.

[40] Maike Buchin and Carola Wenk. Inferring movement patterns from geometric
similarity. Journal of Spatial Information Science, 21(1):63–69, 2020. doi:10.
5311/JOSIS.2020.21.724.

[41] Laurent Bulteau, Vincent Froese, and Rolf Niedermeier. Tight hardness results for
consensus problems on circular strings and time series. SIAM Journal on Discrete
Mathematics, 34(3):1854–1883, 2020. doi:10.1137/19M1255781.

[42] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, and Gustavo Batista. The UCR time series classification archive,
2015. www.cs.ucr.edu/˜eamonn/time_series_data/.

[43] Siu-Wing Cheng and Haoqiang Huang. Solving Fréchet Distance Problems by
Algebraic Geometric Methods. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 4502–4513, 2024. doi:10.1137/
1.9781611977912.158.

[44] Vasek Chvatal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of
Operations Research, 4(3):233–235, 1979. doi:10.1287/MOOR.4.3.233.

[45] Kenneth L. Clarkson. Algorithms for polytope covering and approximation. In Algo-
rithms and Data Structures, pages 246–252, 1993. doi:10.1007/3-540-57155-8_
252.

[46] Kenneth L Clarkson. Las Vegas algorithms for linear and integer programming
when the dimension is small. Journal of the ACM (JACM), 42(2):488–499, 1995.
doi:10.1145/201019.201036.

[47] Jacobus Conradi and Anne Driemel. Finding complex patterns in trajectory data
via geometric set cover. CoRR, 2023. doi:10.48550/ARXIV.2308.14865.

[48] Jacobus Conradi, Benedikt Kolbe, Ioannis Psarros, and Dennis Rohde. Fast
Approximations and Coresets for (k, l)-Median under Dynamic Time Warping. In
40th International Symposium on Computational Geometry (SoCG 2024), volume
293, pages 42:1–42:17, 2024. doi:10.4230/LIPIcs.SoCG.2024.42.

156

https://doi.org/10.4230/LIPIcs.SWAT.2020.19
https://doi.org/10.4230/LIPIcs.SWAT.2020.19
https://doi.org/10.1145/3559764
https://doi.org/10.1080/13658816.2019.1684498
https://doi.org/10.1007/978-3-030-95018-7_14
https://doi.org/10.1007/978-3-030-95018-7_14
https://doi.org/10.5311/JOSIS.2020.21.724
https://doi.org/10.5311/JOSIS.2020.21.724
https://doi.org/10.1137/19M1255781
www.cs.ucr.edu/~eamonn/time_series_data/
https://doi.org/10.1137/1.9781611977912.158
https://doi.org/10.1137/1.9781611977912.158
https://doi.org/10.1287/MOOR.4.3.233
https://doi.org/10.1007/3-540-57155-8_252
https://doi.org/10.1007/3-540-57155-8_252
https://doi.org/10.1145/201019.201036
https://doi.org/10.48550/ARXIV.2308.14865
https://doi.org/10.4230/LIPIcs.SoCG.2024.42

BIBLIOGRAPHY

[49] Felipe Cucker, Alperen A. Ergür, and Josue Tonelli-Cueto. Plantinga-Vegter
Algorithm takes Average Polynomial Time. In Proceedings of the 2019 on Interna-
tional Symposium on Symbolic and Algebraic Computation, pages 114–121, 2019.
doi:10.1145/3326229.3326252.

[50] Mark de Berg, Atlas F. Cook IV, and Joachim Gudmundsson. Fast Fréchet queries.
Computational Geometry, 46(6):747–755, 2013. doi:10.1016/J.COMGEO.2012.11.
006.

[51] Lex de Kogel, Marc van Kreveld, and Jordi L. Vermeulen. Abstract Morphing
Using the Hausdorff Distance and Voronoi Diagrams. In 30th Annual European
Symposium on Algorithms (ESA 2022), volume 244, pages 74:1–74:16, 2022. doi:
10.4230/LIPIcs.ESA.2022.74.

[52] Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner, and Heinrich
Hussmann. Touch me once and i know it’s you! Implicit authentication based
on touch screen patterns. Conference on Human Factors in Computing Systems -
Proceedings, 2012. doi:10.1145/2207676.2208544.

[53] Michel Marie Deza and Elena Deza. Encyclopedia of Distances. Springer Berlin
Heidelberg, 2009. doi:10.1007/978-3-642-00234-2_1.

[54] Anders Drachen, Rafet Sifa, Christian Bauckhage, and Christian Thurau. Guns,
swords and data: Clustering of player behavior in computer games in the wild. In
2012 IEEE Conference on Computational Intelligence and Games (CIG), pages
163–170, 2012. doi:10.1109/CIG.2012.6374152.

[55] Anne Driemel and Sariel Har-Peled. Jaywalking Your Dog: Computing the Fréchet
Distance with Shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013.
doi:10.1137/120865112.

[56] Anne Driemel, Amer Krivosija, and Christian Sohler. Clustering time series
under the Fréchet distance. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, pages 766–785, 2016.
doi:10.1137/1.9781611974331.ch55.

[57] Anne Driemel, André Nusser, Jeff M. Phillips, and Ioannis Psarros. The VC
Dimension of Metric Balls under Fréchet and Hausdorff Distances. Discrete & Com-
putational Geometry, 66(4):1351–1381, 2021. doi:10.1007/s00454-021-00318-z.

[58] Andrew T. Duchowski. A breadth-first survey of eye-tracking applications. Behavior
Research Methods, Instruments, & Computers, 34(4):455–470, 2002. doi:10.3758/
BF03195475.

[59] Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical
Report CD-TR 94/64, 1994.

[60] Alperen A. Ergür, Grigoris Paouris, and J. Maurice Rojas. Smoothed analysis
for the condition number of structured real polynomial systems. Mathematics of
Computation, 2021. doi:10.1090/MCOM/3647.

157

https://doi.org/10.1145/3326229.3326252
https://doi.org/10.1016/J.COMGEO.2012.11.006
https://doi.org/10.1016/J.COMGEO.2012.11.006
https://doi.org/10.4230/LIPIcs.ESA.2022.74
https://doi.org/10.4230/LIPIcs.ESA.2022.74
https://doi.org/10.1145/2207676.2208544
https://doi.org/10.1007/978-3-642-00234-2_1
https://doi.org/10.1109/CIG.2012.6374152
https://doi.org/10.1137/120865112
https://doi.org/10.1137/1.9781611974331.ch55
https://doi.org/10.1007/s00454-021-00318-z
https://doi.org/10.3758/BF03195475
https://doi.org/10.3758/BF03195475
https://doi.org/10.1090/MCOM/3647

BIBLIOGRAPHY

[61] Munazza Fatima, Kara J. O’Keefe, Wenjia Wei, Sana Arshad, and Oliver Gruebner.
Geospatial Analysis of COVID-19: A Scoping Review. International Journal of Envi-
ronmental Research and Public Health, 18(5), 2021. doi:10.3390/ijerph18052336.

[62] Dan Feldman. Introduction to Core-sets: an Updated Survey. CoRR, 2020.
doi:10.48550/ARXIV.2011.09384.

[63] Dan Feldman and Michael Langberg. A Unified Framework for Approximating
and Clustering Data. In Proceedings of the Forty-Third Annual ACM Symposium
on Theory of Computing, STOC ’11, pages 569–578, 2011. doi:10.1145/1993636.
1993712.

[64] Germain Forestier, Florent Lalys, Laurent Riffaud, Brivael Trelhu, and Pierre
Jannin. Classification of surgical processes using dynamic time warping. Journal of
biomedical informatics, 45(2):255–264, 2012. doi:10.1016/j.jbi.2011.11.002.

[65] Maurice Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo
Matematico di Palermo (1884-1940), 22(1):1–72, 1906. doi:10.1007/BF03018603.

[66] Dariu M. Gavrila and Larry S. Davis. Towards 3-D model-based tracking and
recognition of human movement: a multi-view approach. In International Workshop
on Automatic Face- and Gesture-Recognition. IEEE, pages 272–277, 1995.

[67] Tom Gerson and Thoralf Noack. Generating a Vessel Route Model from AIS Data
Using the Fréchet Distance. In Marine Traffic Engineering Conference 2022, 2022.

[68] Paul Goldberg and Mark Jerrum. Bounding the Vapnik-Chervonenkis dimension of
concept classes parameterized by real numbers. In Proceedings of the Sixth Annual
ACM Conference on Computational Learning Theory, COLT 1993, pages 361–369,
1993. doi:10.1145/168304.168377.

[69] Paul Goldberg and Mark Jerrum. Bounding the Vapnik-Chervonenkis dimension
of concept classes parameterized by real numbers. Machine Learning, 18:131–148,
1995. doi:10.1007/BF00993408.

[70] Sophie Goliber, Taryn Black, Ginny Catania, James M Lea, Helene Olsen, Daniel
Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, et al.
TermPicks: a century of Greenland glacier terminus data for use in scientific
and machine learning applications. The Cryosphere, 16(8):3215–3233, 2022. doi:
10.5194/tc-16-3215-2022.

[71] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306, 1985. doi:10.1016/0304-3975(85)
90224-5.

[72] W. Eric L. Grimson. On the recognition of parameterized 2D objects. International
Journal of Computer Vision, 2(4):353–372, 1989. doi:10.1007/BF00133555.

[73] Jeffrey P. Guenette, Nir Ben-Shlomo, Jagadeesan Jayender, Ravi Teja Seethamraju,
V. Kimbrell, N.-A. Tran, Raymond Y Huang, C. J. Kim, J. I. Kass, C Eduardo
Corrales, and Thomas C. Lee. MR Imaging of the Extracranial Facial Nerve with
the CISS Sequence. American Journal of Neuroradiology, 40(11):1954–1959, 2019.
doi:10.3174/ajnr.A6261.

158

https://doi.org/10.3390/ijerph18052336
https://doi.org/10.48550/ARXIV.2011.09384
https://doi.org/10.1145/1993636.1993712
https://doi.org/10.1145/1993636.1993712
https://doi.org/10.1016/j.jbi.2011.11.002
https://doi.org/10.1007/BF03018603
https://doi.org/10.1145/168304.168377
https://doi.org/10.1007/BF00993408
https://doi.org/10.5194/tc-16-3215-2022
https://doi.org/10.5194/tc-16-3215-2022
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1007/BF00133555
https://doi.org/10.3174/ajnr.A6261

BIBLIOGRAPHY

[74] Sariel Har-Peled. Geometric approximation algorithms. American Mathematical
Soc., 2011.

[75] Sariel Har-Peled and Bardia Sadri. How Fast Is the k-Means Method? Algorithmica,
41(3):185–202, 2005. doi:10.1007/s00453-004-1127-9.

[76] Sariel Har-Peled and Micha Sharir. Relative (p, ϵ)-Approximations in Geome-
try. Discrete & Computational Geometry, 45(3):462–496, 2011. doi:10.1007/
s00454-010-9248-1.

[77] Jan-Henrik Haunert and Alexander Wolff. Optimal and topologically safe simpli-
fication of building footprints. In Proceedings of the 18th sigspatial international
conference on advances in geographic information systems, pages 192–201, 2010.
doi:10.1145/1869790.1869819.

[78] Felix Hausdorff. Grundzüge der Mengenlehre, volume 7. von Veit, 1914.

[79] Felix Hausdorff. Mengenlehre, volume 7. Gruyter, 1927.

[80] David Haussler and Emo Welzl. Epsilon-nets and simplex range queries. Discrete
& Computational Geometry, 2(2):127–151, 1987. doi:10.1007/BF02187876.

[81] Adam Hilbert, Vince I. Madai, Ela M. Akay, Orhun U. Aydin, Jonas Behland,
Jan Sobesky, Ivana Galinovic, Ahmed A. Khalil, Abdel A. Taha, Jens Wuerfel,
Petr Dusek, Thoralf Niendorf, Jochen B. Fiebach, Dietmar Frey, and Michelle
Livne. Brave-net: Fully automated arterial brain vessel segmentation in patients
with cerebrovascular disease. Frontiers in Artificial Intelligence, 3, 2020. doi:
10.3389/frai.2020.552258.

[82] Kenneth Holmqvist. Eye tracking: a comprehensive guide to methods and measures.
Oxford University Press, 2011.

[83] Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge. Com-
paring images using the Hausdorff distance. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(9):850–863, 1993. doi:10.1109/34.232073.

[84] Mary Inaba, Naoki Katoh, and Hiroshi Imai. Variance-based k-clustering algorithms
by Voronoi diagrams and randomization. IEICE Trans. on Information and Systems,
83(6):1199–1206, 2000.

[85] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Hu-
man3.6m: Large scale datasets and predictive methods for 3d human sensing
in natural environments. IEEE transactions on pattern analysis and machine
intelligence, 36(7):1325–1339, 2013. doi:10.1109/TPAMI.2013.248.

[86] Deepti Joshi, Leen-Kiat Soh, and Ashok Samal. Redistricting Using Constrained
Polygonal Clustering. IEEE Transactions on Knowledge and Data Engineering,
24(11):2065–2079, 2012. doi:10.1109/TKDE.2011.140.

[87] Sarang Joshi, Raj Varma Kommaraji, Jeff M. Phillips, and Suresh Venkatasub-
ramanian. Comparing Distributions and Shapes Using the Kernel Distance. In
Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry,
SoCG ’11, pages 47–56, 2011. doi:10.1145/1998196.1998204.

159

https://doi.org/10.1007/s00453-004-1127-9
https://doi.org/10.1007/s00454-010-9248-1
https://doi.org/10.1007/s00454-010-9248-1
https://doi.org/10.1145/1869790.1869819
https://doi.org/10.1007/BF02187876
https://doi.org/10.3389/frai.2020.552258
https://doi.org/10.3389/frai.2020.552258
https://doi.org/10.1109/34.232073
https://doi.org/10.1109/TPAMI.2013.248
https://doi.org/10.1109/TKDE.2011.140
https://doi.org/10.1145/1998196.1998204

BIBLIOGRAPHY

[88] Maged N. Kamel Boulos and John P. Wilson. Geospatial techniques for monitoring
and mitigating climate change and its effects on human health. International
Journal of Health Geographics, 22(1):2, 2023. doi:10.1186/s12942-023-00324-9.

[89] Marek Karpinski and Angus Macintyre. Polynomial Bounds for VC Dimension
of Sigmoidal Neural Networks. In Proceedings of the Twenty-Seventh Annual
ACM Symposium on Theory of Computing, STOC ’95, pages 200–208, 1995. doi:
10.1145/225058.225118.

[90] Eamonn J. Keogh and Chotirat A. Ratanamahatana. Exact indexing of dynamic
time warping. Knowledge and information systems, 7(3):358–386, 2005. doi:
10.1007/S10115-004-0154-9.

[91] János Komlós, János Pach, and Gerhard Woeginger. Almost tight bounds for ε-nets.
Discrete & Computational Geometry, 7:163–173, 1992. doi:10.1007/BF02187833.

[92] Tobias Kremer, Elmar Schömer, Christian Euler, and Michael Riemer. Cluster
Analysis Tailored to Structure Change of Tropical Cyclones Using a Very Large
Number of Trajectories. Monthly Weather Review, 148(10):4209 – 4229, 2020.
doi:10.1175/MWR-D-19-0408.1.

[93] Jae-Gil Lee and Minseo Kang. Geospatial big data: Challenges and opportunities.
Big Data Research, 2(2):74–81, 2015. doi:10.1016/j.bdr.2015.01.003.

[94] Songnian Li, Suzana Dragicevic, Francesc Antón Castro, Monika Sester, Stephan
Winter, Arzu Coltekin, Christopher Pettit, Bin Jiang, James Haworth, Alfred Stein,
and Tao Cheng. Geospatial big data handling theory and methods: A review
and research challenges. ISPRS Journal of Photogrammetry and Remote Sensing,
115:119–133, 2016. doi:10.1016/j.isprsjprs.2015.10.012.

[95] Yi Li, Philip M. Long, and Aravind Srinivasan. Improved Bounds on the Sample
Complexity of Learning. Journal of Computer and System Sciences, 62(3):516–527,
2001. doi:10.1006/JCSS.2000.1741.

[96] Michael Lindenbaum and Shai Ben-David. Applying VC-dimension analysis to 3D
object recognition from perspective projections. In Proceedings of the 12th National
Conference on Artificial Intelligence, pages 985–990, 1994.

[97] Michael Lindenbaum and Shai Ben-David. Applying VC-dimension analysis to
object recognition. In Computer Vision - ECCV’94, Third European Conference
on Computer Vision, pages 239–250, 1994. doi:10.1007/3-540-57956-7_29.

[98] Stuart P. Lloyd. Least Squares Quantization in PCM. IEEE Trans. on information
theory, 28(2):129–137, 1982.

[99] Rick Lumpkin and Luca Centurioni. NOAA Global Drifter Program quality-
controlled 6-hour interpolated data from ocean surface drifting buoys. NOAA
National Centers for Environmental Information. Dataset, 2010. doi:10.25921/
7ntx-z961.

[100] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The M5
competition: Background, organization, and implementation. International Journal
of Forecasting, 38(4):1325–1336, 2022. doi:10.1016/j.ijforecast.2021.07.007.

160

https://doi.org/10.1186/s12942-023-00324-9
https://doi.org/10.1145/225058.225118
https://doi.org/10.1145/225058.225118
https://doi.org/10.1007/S10115-004-0154-9
https://doi.org/10.1007/S10115-004-0154-9
https://doi.org/10.1007/BF02187833
https://doi.org/10.1175/MWR-D-19-0408.1
https://doi.org/10.1016/j.bdr.2015.01.003
https://doi.org/10.1016/j.isprsjprs.2015.10.012
https://doi.org/10.1006/JCSS.2000.1741
https://doi.org/10.1007/3-540-57956-7_29
https://doi.org/10.25921/7ntx-z961
https://doi.org/10.25921/7ntx-z961
https://doi.org/10.1016/j.ijforecast.2021.07.007

BIBLIOGRAPHY

[101] Bodo Manthey and Heiko Röglin. Improved smoothed analysis of the k-means
method. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 461–470, 2009. doi:10.1137/1.9781611973068.51.

[102] John Milnor. On the Betti numbers of real varieties. Proceedings of the American
Mathematical Society, 15(2):275–280, 1964.

[103] Nabil H. Mustafa and Kasturi R. Varadarajan. Epsilon-approximations and epsilon-
nets. CoRR, 2017. doi:10.48550/ARXIV.1702.03676.

[104] Abhinandan Nath and Erin Taylor. k-median clustering under discrete Fréchet and
Hausdorff distances. In 36th International Symposium on Computational Geometry
(SoCG 2020), volume 164, page 58, 2020. doi:10.4230/LIPICS.SOCG.2020.58.

[105] Marcus G. Pandy. Computer Modeling and Simulation of Human Movement.
Annual Review of Biomedical Engineering, 3(Volume 3, 2001):245–273, 2001. doi:
10.1146/annurev.bioeng.3.1.245.

[106] François Petitjean. DBA. GitHub repository, 2014. https://github.com/
fpetitjean/DBA.git.

[107] François Petitjean, Alain Ketterlin, and Pierre Gançarski. A global averaging
method for dynamic time warping, with applications to clustering. Pattern Recog-
nition, 44(3):678–693, 2011. doi:10.1016/j.patcog.2010.09.013.

[108] Ivan Georgievich Petrovskii and Olga Arsen’evna Oleinik. On the topology of real
algebraic surfaces. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya,
13(5):389–402, 1949.

[109] Dimitrie Pompeiu. Sur la continuité des fonctions de variables complexes. Annales de
la Faculté des sciences de l’Université de Toulouse pour les sciences mathématiques
et les sciences physiques, 7(3):265–315, 1905.

[110] Sen Qiao, Yilin Wang, and Jian Li. Real-time human gesture grading based on
OpenPose. In Qingli Li, Lipo Wang, Mei Zhou, Li Sun, Song Qiu, and Hongying Liu,
editors, 10th International Congress on Image and Signal Processing, BioMedical
Engineering and Informatics, CISP-BMEI 2017, pages 1–6. IEEE, 2017. doi:
10.1109/CISP-BMEI.2017.8301910.

[111] Sameera V Mohd Sagheer and Sudhish N George. A review on medical image
denoising algorithms. Biomedical signal processing and control, 61:102036, 2020.
doi:10.1016/J.BSPC.2020.102036.

[112] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Trans. on Acoustics, Speech, and Signal Processing,
26:43–49, 1978. doi:10.1109/TASSP.1978.1163055.

[113] Md. Nazirul Islam Sarker, Bo Yang, Yang Lv, Md. Enamul Huq, and Md.
Kamruzzaman. Climate Change Adaptation and Resilience through Big Data.
International Journal of Advanced Computer Science and Applications, 2020.
doi:10.14569/IJACSA.2020.0110368.

161

https://doi.org/10.1137/1.9781611973068.51
https://doi.org/10.48550/ARXIV.1702.03676
https://doi.org/10.4230/LIPICS.SOCG.2020.58
https://doi.org/10.1146/annurev.bioeng.3.1.245
https://doi.org/10.1146/annurev.bioeng.3.1.245
https://github.com/fpetitjean/DBA.git
https://github.com/fpetitjean/DBA.git
https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.1109/CISP-BMEI.2017.8301910
https://doi.org/10.1109/CISP-BMEI.2017.8301910
https://doi.org/10.1016/J.BSPC.2020.102036
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.14569/IJACSA.2020.0110368

BIBLIOGRAPHY

[114] Norbert Sauer. On the Density of Families of Sets. J. Comb. Theory, Ser. A,
13(1):145–147, 1972. doi:10.1016/0097-3165(72)90019-2.

[115] David Schultz and Brijnesh Jain. Nonsmooth analysis and subgradient methods
for averaging in dynamic time warping spaces. Pattern Recognition, 74:340–358,
2018. doi:10.1016/J.PATCOG.2017.08.012.

[116] Young-Woo Seo, Chris Urmson, David Wettergreen, and Jin-Woo Lee. Building
lane-graphs for autonomous parking. In 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 6052–6057, 2010. doi:10.1109/IROS.
2010.5650331.

[117] Skyler Seto, Wenyu Zhang, and Yichen Zhou. Multivariate time series classification
using dynamic time warping template selection for human activity recognition. In
IEEE Symposium Series on Computational Intelligence, pages 1399–1406, 2015.
doi:10.1109/SSCI.2015.199.

[118] Agram Piyush Shanker and A.N. Rajagopalan. Off-line signature verification using
DTW. Pattern Recognition Letters, 28:1407–1414, 2007. doi:10.1016/j.patrec.
2007.02.016.

[119] Roniel S. De Sousa, Azzedine Boukerche, and Antonio A. F. Loureiro. Vehicle
Trajectory Similarity: Models, Methods, and Applications. ACM Comput. Surv.,
53(5), 2020. doi:10.1145/3406096.

[120] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. Journal of the ACM (JACM),
51(3):385–463, 2004. doi:10.1145/990308.990310.

[121] Rachel St John, Sándor F. Tóth, and Zelda B. Zabinsky. Optimizing the Geometry of
Wildlife Corridors in Conservation Reserve Design. Operations Research, 66(6):1471–
1485, 2018. doi:10.1287/opre.2018.1758.

[122] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. A survey
of trajectory distance measures and performance evaluation. The VLDB Journal,
29(1):3–32, 2020. doi:10.1007/S00778-019-00574-9.

[123] Thanchanok Teeraratkul, Daniel O’Neill, and Sanjay Lall. Shape-based approach
to household electric load curve clustering and prediction. IEEE Transactions on
Smart Grid, 9(5):5196–5206, 2017. doi:10.1109/TSG.2017.2683461.

[124] Holger Teichgraeber and Adam R Brandt. Clustering methods to find representative
periods for the optimization of energy systems: An initial framework and comparison.
Applied energy, 239:1283–1293, 2019. doi:10.1016/j.apenergy.2019.02.012.

[125] René Thom. Sur l’homologie des variétés algébriques réelles. Differential and
combinatorial topology, pages 255–265, 1965.

[126] Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete
and computational geometry. CRC press, 2017.

[127] Marc van Kreveld, Tillmann Miltzow, Tim Ophelders, Willem Sonke, and Jordi L.
Vermeulen. Between shapes, using the Hausdorff distance. Computational Geometry,
100, 2022. doi:10.1016/j.comgeo.2021.101817.

162

https://doi.org/10.1016/0097-3165(72)90019-2
https://doi.org/10.1016/J.PATCOG.2017.08.012
https://doi.org/10.1109/IROS.2010.5650331
https://doi.org/10.1109/IROS.2010.5650331
https://doi.org/10.1109/SSCI.2015.199
https://doi.org/10.1016/j.patrec.2007.02.016
https://doi.org/10.1016/j.patrec.2007.02.016
https://doi.org/10.1145/3406096
https://doi.org/10.1145/990308.990310
https://doi.org/10.1287/opre.2018.1758
https://doi.org/10.1007/S00778-019-00574-9
https://doi.org/10.1109/TSG.2017.2683461
https://doi.org/10.1016/j.apenergy.2019.02.012
https://doi.org/10.1016/j.comgeo.2021.101817

BIBLIOGRAPHY

[128] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer New
York, NY, 2000. doi:10.1007/978-1-4757-3264-1.

[129] Vladimir N. Vapnik and Alexey Ya. Chervonenkis. On the Uniform Convergence
of Relative Frequencies of Events to Their Probabilities. Theory of Probability &
Its Applications, 16(2):264–280, 1971. doi:10.1137/1116025.

[130] Andrea Vattani. k-means requires exponentially many iterations even in the
plane. Discrete & Computational Geometry, 45(4):596–616, 2011. doi:10.1007/
s00454-011-9340-1.

[131] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, and Gao Cong. A Survey on
Trajectory Data Management, Analytics, and Learning. ACM Computing Surveys,
54(2):39:1–39:36, 2022. doi:10.1145/3440207.

[132] Hugh E Warren. Lower bounds for approximation by nonlinear manifolds.
Transactions of the American Mathematical Society, 133(1):167–178, 1968. doi:
10.2307/1994937.

[133] Shiqing Wei, Shunping Ji, and Meng Lu. Toward Automatic Building Footprint
Delineation From Aerial Images Using CNN and Regularization. IEEE Transactions
on Geoscience and Remote Sensing, 58(3):2178–2189, 2020. doi:10.1109/TGRS.
2019.2954461.

[134] Linda Young, Kiyoshi Ueda, Markus Gühr, Philip H Bucksbaum, Marc Simon,
Shaul Mukamel, Nina Rohringer, Kevin C Prince, Claudio Masciovecchio, Michael
Meyer, et al. Roadmap of ultrafast x-ray atomic and molecular physics. Journal
of Physics B: Atomic, Molecular and Optical Physics, 51(3):032003, 2018. doi:
10.1088/1361-6455/aa9735.

[135] Manzhu Yu, Chaowei Yang, and Yun Li. Big Data in Natural Disaster Management:
A Review. Geosciences, 8(5), 2018. doi:10.3390/geosciences8050165.

[136] Guan Yuan, Penghui Sun, Jie Zhao, Daxing Li, and Canwei Wang. A review
of moving object trajectory clustering algorithms. Artifcial Intelligence Review,
47(1):123–144, 2017. doi:10.1007/S10462-016-9477-7.

163

https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1137/1116025
https://doi.org/10.1007/s00454-011-9340-1
https://doi.org/10.1007/s00454-011-9340-1
https://doi.org/10.1145/3440207
https://doi.org/10.2307/1994937
https://doi.org/10.2307/1994937
https://doi.org/10.1109/TGRS.2019.2954461
https://doi.org/10.1109/TGRS.2019.2954461
https://doi.org/10.1088/1361-6455/aa9735
https://doi.org/10.1088/1361-6455/aa9735
https://doi.org/10.3390/geosciences8050165
https://doi.org/10.1007/S10462-016-9477-7

	Introduction
	VC-dimension and shattering dimension of elastic distance measures
	Subtrajectory clustering
	Curve averaging
	DTW Barycenter Averaging

	Basic notation, concepts and techniques
	General notation
	Computational Model
	Distance measures
	Voronoi diagram
	Free space diagram

	Range spaces
	VC-dimension, shattering and generating epsilon-nets
	Multiplicative weight update method for Hitting sets
	Zero sets of polynomials: Bounds for VC-dimension and more

	Subtrajectory Clustering: Problem definition
	Range space formulation

	VC-Dimension for Elastic Distance Measures
	Introduction
	Results

	Warm-up: Discrete setting
	Predicates
	Encoding of the input
	Polygonal curves
	Polygonal regions

	The predicates are simple
	Technical lemmas
	Predicates for polygonal curves
	Predicates for polygonal regions that may contain holes
	Putting everything together

	Subtrajectory Clustering
	Introduction
	Organization
	Main results

	Setup of techniques
	A range space for approximation
	Adaptation of the multiplicative weight update method
	Bounding the VC-dimension

	Warm-up — Clustering with line segments
	The range space
	Analysis of the approximation error
	The algorithm
	The result

	The main algorithm
	Simplifications
	The range space
	Analysis of the approximation error
	The approximation oracle
	Applying the framework for computing a set cover
	The result

	Improving the algorithm in the continuous case
	The range space
	The approximation oracle
	The VC-dimension
	The result

	Additional lower bounds for the VC-dimension
	Continuous case
	Discrete case

	Faster Subtrajectory Clustering
	Introduction
	Results
	Roadmap

	Structuring the solution space
	Simplifications and containers
	Structured coverage and candidate space
	Proof of Theorem 5.2.8

	A new range space for approximation
	On the structure of feasible sets
	Analysis of the VC-dimension
	Detailed analysis of the VC-dimension
	Improved analysis of the VC-dimension
	Improved detailed analysis of the VC-dimension

	The main algorithm
	Simplification algorithm
	The verifier
	Data structure for sampling
	Result for implicit weight update

	On the number of iterations of the DBA algorithm
	Introduction
	Preliminaries
	The DBA Algorithm

	Upper bounds
	An unconditional upper bound
	Upper bound based on geometric properties of the input data

	Smoothed Analysis
	Lower bound
	Construction
	Analysis

	Experiments on the M5 data set
	Research questions
	Data set(s)
	Setup of the experiments

	Results of the experiments
	Experiments on the UCR Time Series Classification Archive
	Data of the experiments on the M5 data set

	Conclusions
	VC-dimension and shattering dimension of elastic distance measures
	Subtrajectory Clustering
	The number of iterations of the DBA algorithm

	Bibliography

