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Kurzfassung 

Ziel dieser Dissertation ist die Bewertung landwirtschaftlicher Innovationen und politischer 

Maßnahmen zur Verbesserung der Nachhaltigkeit von Agrar- und Lebensmittelsystemen, 

indem das Potential und die Auswirkungen von Innovationen und politischer Maßnahmen 

kontextuell bewertet werden. Das erste Thema untersucht die Wirksamkeit von digitalen 

landwirtschaftlichen Beratungsdiensten bei der Verbesserung des Wissensstandes, der 

Praxisübernahme und der landwirtschaftlichen Produktivität von Kleinbauern. Die Ergebnisse 

von zwei randomisierten Kontrollstudien zeigen, dass das Format der digitalen 

Informationsübermittlung und der Studienkontext einen erheblichen Einfluss auf ihre 

Wirksamkeit haben. Während SMS-Nachrichten möglicherweise nicht ausreichen, um 

komplexes Wissen zu vermitteln, können multimediale Inhalte über Plattformen wie WhatsApp 

bei gut ausgebildeten Bauern erfolgreicher sein. Daher sollten digitale Maßnahmen auf den 

spezifischen Kontext und die vorhandenen Fähigkeiten der Landwirte abgestimmt sein. 

Das zweite Forschungsthema geht über die Auswirkungen auf Betriebsebene hinaus und 

untersucht die Verbreitung von landwirtschaftlichen Innovationen. Die Untersuchung der 

Verbreitung einer Pflanzenschutz-App in Indien zeigt die entscheidende Rolle der 

Netzwerkinfrastruktur bei der Überwindung der digitalen Kluft und dass lokale Lernnetzwerke 

eine frühe und intensive Nutzung der Technologie fördern. Eine globale Meta-Analyse zeigt, 

dass Faktoren wie Boden und Kapital im Allgemeinen kritischer für Innovationen sind, die stark 

auf diese Faktoren angewiesen sind, dieser Effekt jedoch kontextuell systematisch variiert. Dies 

unterstreicht die Relevanz, bei der Entwicklung und Förderung landwirtschaftlicher 

Innovationen den lokalen Kontext zu berücksichtigen. 

Das dritte Thema dieser Forschungsarbeit verlagert den Schwerpunkt von digitalen 

Innovationen auf politische Ansätze für eine nachhaltige ländliche Entwicklung, indem es die 

Umweltauswirkungen von Landbewirtschaftungspraktiken bewertet. Konkret wird der 

Zielkonflikt zwischen landwirtschaftlicher Produktivität und biologischer Vielfalt auf räumlich 

explizite Weise am Beispiel der Schnitthäufigkeit im Grünland untersucht. Darüber hinaus wird 

die Wirksamkeit von REDD+-Initiativen bei der Eindämmung des Klimawandels untersucht. 

Die Studien verdeutlichen die Notwendigkeit einer kontextsensitiven Umweltpolitik und liefern 

entsprechende Instrumente. Insgesamt unterstreicht die Forschung die Relevanz, digitale 

Interventionen maßzuschneidern, Netzwerkeffekte zu fördern und den lokalen Kontext zu 

berücksichtigen. Die Forschung unterstreicht die Notwendigkeit einer räumlich differenzierten 

Umweltpolitik, die Zielkonflikte berücksichtigt. 





 

Abstract 

This dissertation aims to explore how agricultural innovation and policies can make agri-food 

systems more sustainable by assessing impacts and diffusion patterns of innovations, as well as 

policy impacts across geographic contexts. The first theme investigates the effectiveness of 

digital farm advisory services on farm level in improving knowledge, practice adoption, and 

agricultural productivity among smallholder farmers. Results from two randomized control 

trials show that the format of digital information delivery and study context significantly 

impacts its effectiveness. While SMS messages may be insufficient for conveying complex 

agricultural knowledge, multimedia content delivered through platforms like WhatsApp can be 

more successful among well-trained farmers. This highlights the importance of tailoring digital 

interventions to the specific context and the existing skillset of farmers.  

The second theme of the research goes beyond farm-level impacts and explores the diffusion 

of agricultural innovations. Studying the spread of a plant health app in India reveals the critical 

role of network infrastructure in overcoming the digital divide, and that extension agents and 

peer-to-peer learning networks promote early and intensive use of the technology. Widening 

the scope, a global meta-analysis reveals that factors like land availability, access to capital, 

and existing knowledge are generally more critical for innovations that heavily rely on these 

factors. However, this effect diminishes in regions where these factors are already abundant. 

This underscores the importance of considering the local context when designing and promoting 

agricultural innovations.  

The third topic of this research moves the focus from digital innovations towards broader policy 

considerations for sustainable rural development by assessing environmental implications of 

land management practices. Specifically, the trade-off between agricultural productivity and 

biodiversity are explored in a spatially explicit manner using mowing frequency in grasslands 

as an example. In addition, the effectiveness of REDD+ initiatives in mitigating climate change 

is examined. The studies highlight the need and provide tools for context-sensitive 

environmental policies.  

Overall, the research emphasizes the importance of tailoring digital interventions, fostering 

network effects, and considering the local context for maximizing the impact of these 

technologies. The research also underscores the need for environmental policies that account 

for trade-offs and the importance of spatial policy targeting sustainable rural development.  
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Chapter 1  
Research Context1 

1.1 Background 

The agricultural sector faces the challenge of responding to the increasing 

demand for food, feed, and fiber in an environmentally sustainable manner. 

Agri-food systems are responsible for over 30% of global greenhouse gas 

emissions, including emissions from crop and livestock production and land 

use change (Tubiello et al. 2022). Agriculture is the main driver of land-use 

change and its expansion and intensification continue to degrade natural 

habitats (Kehoe et al., 2017; Pendrill et al., 2022). This degradation of 

natural ecosystems such as forests and grasslands drives biodiversity loss on 

a global scale (IPCC 2022; Newbold et al. 2015). In addition to effects of 

land use change, the application of chemical inputs such as nitrogen fertilizer 

and pesticides creates risks for surrounding ecosystems, and human health 

(Robertson and Vitousek 2009; Tang et al. 2021). In consequence, the 

agricultural sector contributes to the transgression of multiple planetary 

boundaries (Campbell et al. 2017). However, the ability to address these 

challenges is stressed by intersecting crises including climate change, 

conflicts, and shocks such as the Covid-19 pandemic (Hendriks et al. 2022). 

                                                 
1 The present research has been funded by the Deutsche Forschungsgemeinschaft (DFG, 

German Research Foundation) under Germany’s Excellence Strategy—EXC 2070—

390732324 as part of the cluster of excellence “Robotics and phenotyping for 

sustainable crop production – PhenoRob”. 
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Regarding the Sustainable Development Goals (SDGs) as an overarching 

policy agenda for 193 United Nations member states (United Nations 2015), 

solutions require alignment of multiple social, environmental, and economic 

outcomes. While there are many synergies among the SDGs, there are also 

trade-offs resulting from competing objectives (Pradhan et al. 2017). In the 

context of agriculture, specific land use decisions may imply trade-offs 

between ecosystem services. For example, they can affect levels of 

provisioning services such as yields, regulating services such as carbon 

sequestration, and services supporting biodiversity. Failure to address and 

minimize these trade-offs risks surpassing irreversible biophysical tipping 

points (Rockström et al. 2009) or violating the second principle of the 

Sustainable Development Goals of leaving no on behind (United Nations 

2015). Thus, solutions to navigate these trade-offs are required for 

safeguarding the intertwined goals of food security and sustainability. 

Agricultural innovation has been identified as a key factor to mitigate some 

of the negative consequences of modern agriculture (Costa et al. 2022; Poore 

and Nemecek 2018). Innovations, encompassing technologies and practices 

impacting productivity, are typically adopted and impact directly at the farm 

level. In particular, digital innovations are expected to contribute to more 

sustainable production (Herrero et al. 2020; von Braun et al. 2021), i.e., 

reduce tradeoffs between production and adverse environmental effects. For 

example, remote sensing tools enable precision agriculture, leveraging 

variability in site-specific conditions to improve resource use efficiency. 

Furthermore, information and communication technologies (ICTs), have 

become increasingly available across the world and can reduce existing 

barriers of access to and transmission of information (Nakasone and Torero 

2016; Spielman et al. 2021). The use of ICTs has been linked to improved 

farm-level decision making resulting in higher land- and labor productivity 

(Fabregas et al. 2019; Rajkhowa and Baumüller 2024). However, although 
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many innovations are seemingly economically and environmentally 

beneficial, uptake has often been limited in scale.  

In consequence, upscaling innovation adoption to generate the desired 

impacts requires the development and implementation of different policies 

(Finger 2023). Agricultural policies can stimulate innovation adoption via 

market based or regulatory measures. Digital innovations such as remote 

sensing tools can also enable new types of policies and programs based on 

the scalability of information flows and analytical tools for planning, 

intervening, and monitoring (Ehlers et al. 2021; Jain et al. 2019).  

A key function of policies is to reduce the negative consequences of market 

failures. In the absence of markets as a price-setting institution, one refers to 

externalities, which are situations in which individual decisions do not lead 

to socially optimal outcomes, for example when private and social costs of 

pollution diverge. Given the many market failures around regulating and 

supporting ecosystem services, conservation policies are particularly 

important for steering and adjusting their provision. Environmental policies 

may target different environmental objectives, such as climate change 

mitigation or biodiversity preservation, and employ different mechanisms 

including incentives such as subsidies and conditional payments, or 

disincentives such as command and control regulation of alternative 

technologies. Such environmental policies directly affect land use decisions 

and are often tightly linked to or embedded in agricultural policy. Many 

agricultural policies mitigate some negative externalities, for example by 

regulating environmental pollutants including nitrate and pesticides 

(Fermeglia 2023; Wuepper et al. 2023). Yet, many negative environmental 

externalities remain inadequately or incompletely addressed by current 

policies, partially because of trade-offs between goals.  
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The potential for digital innovation to deliver expected improvements to the 

agri-food system rests on their adoption and actual impact, but these 

adoption patterns and impacts are often heterogeneous (Ogundari and 

Bolarinwa 2018; Ruzzante et al. 2021). That is, they may vary across 

geographic regions, socioeconomic subgroups, biophysical gradients - in 

short: the context. Similarly, environmental policies have been found to vary 

in their effectiveness and cost-efficiency across institutional contexts 

(Börner et al. 2020; Wuepper et al. 2024, 2019). Therefore, this research's 

overall goal is to better understand the role of context for agricultural 

innovation and to inform context-aware policies.  

In general terms, profitability is a necessary condition for innovation at the 

farm level, primarily incentivized by private gains. While societal benefits 

may arise as positive externalities, they are not essential for farm-level 

innovations. This contrasts agricultural and environmental policies, which 

often target public goods like intact nutrient cycles and climate regulation. 

These policies sometimes require mitigating private losses through 

mechanisms like compensating forgone profits or providing subsidies. 

Policies also differ regarding the required scope of analysis. Since they are 

developed and implemented at the national level, they necessitate a broader 

assessment scope, often at the national or global level. Given these 

considerations, the structure of this dissertation is organized along these 

spatial scopes of analysis, ranging from the farm level to the global level, 

and from the focus on private gains from innovations to the consideration of 

public gains from policies. The benefits of private innovation can be gauged 

in dimensions of impact and adoption, while implementation effectiveness 

of policies requires monitoring and targeting for efficient resource 

allocation. 
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The remainder of this thesis is organized into three topics: (1) the impacts of 

farm-level innovations; (2) patterns of spatial innovation adoption; and (3) 

the broader impacts of policy interventions. This thematic and geographic 

scope is illustrated in Figure 1.1. 

Figure 1.1: Schematic framework of chapters 

 

Note: Numbers refer to chapters and are positioned along the thematic (Y-axis) and 

geographic (X-axis) scope. Thematic scope is divided into innovations and policies, based 

on their primary function of providing private and public benefits, respectively. Geographic 

scope ranges from local studies covering a specific subnational region, via national to 

global analyses. Experimental evidence is indicated by circle, observational evidence by 

diamond, evidence synthesis by rounded square. Black boxes indicate the three overarching 

research topics, and which individual chapters contribute to it. A grey-shaded arrow 

indicates empirical shift from internal to external validity. Reading example: Chapter 4 

provides observational evidence on the adoption of agricultural innovation that provides 

private benefits covering an entire country; Chapter 7 assesses policies via a global 

evidence synthesis dealing with monitoring and targeting of these policies.  
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1.2 Motivation and general research question 

The uptake of information and communication technologies has been 

associated with higher agricultural productivity in low- and middle-income 

countries (Rajkhowa and Baumüller 2024). Digital farm advisory services 

can be a scalable and effective way to provide relevant information to 

farmers with low transaction costs. Previous studies identified overall 

positive impacts of digital advisory tools on farmer’s knowledge, adoption 

of recommended practices and production related outcomes (Fabregas et al. 

2019; Rajkhowa and Qaim 2021; van Campenhout et al. 2021). Yet, 

evidence on farm-level impacts of digital innovations in low- and middle-

income countries remains limited to specific digital information 

interventions and is context-specific (Baumüller 2018; Spielman et al. 

2021). Previously evaluated interventions focused on specific topics such as 

weather and market prices (Camacho and Conover 2019) or how to tackle a 

specific disease (Tambo et al. 2019). The contextual differences among low- 

and middle-income countries and the diversity of digital advisory services 

warrant additional evidence to generalize and learn from previous findings. 

Therefore, the guiding research question for the first thematic block is: 

- Research Question 1: What impact do digital agricultural advisory 

services have at farm level in different contexts?  

This first research question and thematic block motivates chapters 2 and 3, 

both of which evaluate the causal impact of a digital farm advisory service 

at farm level. They differ with respect to the concrete information 

intervention technology and geographic study context, namely short text 

messages in Haiti (chapter 2) and WhatsApp chats in El Salvador (chapter 

3), respectively.  
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The second thematic block evolves around spatial factors of innovation 

adoption. The profitability of innovations often depends on agro-ecologic 

conditions as well as input- and output markets and prices. The same profit 

maximizing farmer could thus take different rational adoption decisions 

depending on external conditions. Understanding the innovation adoption 

vis-à-vis variation in contextual conditions is therefore the main motivation 

for chapters 4 and 6. Therefore, the guiding research question for the second 

topic question is: 

- Research Question 2: How does context shape the adoption and 

diffusion of agricultural innovation across scales? 

Individuals access markets and information through infrastructure which in 

turn affects their decision to adopt innovations. Specific to digital 

innovations, the relevance of internet coverage and remoteness for 

innovation diffusion have often been highlighted (Mehrabi et al. 2021), but 

so far not been empirically assessed across large spatiotemporal scales. 

Moreover, diffusion studies often rely on spatiotemporally aggregated 

administrative records such as census data (e.g. Assunção et al. 2019). Such 

aggregation may mask relevant environmental and socioeconomic processes 

that influence innovation adoption but occur at spatial scales smaller than an 

administrative region but larger than a farm. Phenomena like social learning, 

or spatial neighborhood effects have received increasing attention (Abdulai 

2023; Genius et al. 2014; Maertens and Barrett 2013), but previous studies 

have been limited to short time frames, small study regions and a limited 

subset of innovation adopters. Expanding the evidence of contextual 

innovation diffusion determinants and spatial neighborhood effects based on 

a comprehensive set of digital innovation adopters across an entire country 

(here India) is the main motivation for Chapter 4.  



8 1.2 Motivation and general research question 

 

In addition to contextual drivers and barriers at higher spatial scales, there 

are farm-level determinants of innovation adoption. A large body of 

literature has been concerned with identifying and quantifying determinants 

of innovation adoption at farm level, resulting in several qualitative and 

quantitative reviews (Feder & Umali, 1993; Knowler & Bradshaw, 2007; 

Ruzzante et al., 2021; Shang et al., 2021). However, most primary studies of 

innovation adoption focused on small samples of adopters using cross-

sectional or short panel data, often limited to specific regions. Consequently, 

there are substantial knowledge gaps with respect to how findings from 

individual primary studies can be generalized across agricultural contexts 

and innovation types. Specifically, the theoretical linkage between micro-

level adoption determinants and macro-level structural factors has not been 

empirically assessed. This missing link motivates chapter 5, in which the 

global variation of farm-level innovation adoption determinants is explored 

using the induced innovation hypothesis (Binswanger 1974; Hicks 1932). 

The induced innovation hypothesis postulates that innovation occurs to 

make more efficient use of the relatively more expensive production factor, 

implying that global differences in factor abundances influence the adoption 

of innovations that rely on these factors (Hayami and Ruttan 1971).  

Research topics 1 and 2 focus on farm-scale innovations, that are driven by 

expected private gains for the adopters. Although chapter 5 initializes a 

broad scale understanding of driving factors relevant to policy makers that 

want to target innovation adoption, it still focuses on farm-level innovations 

that may or may not provide positive externalities. In contrast, a central goal 

of many environmental policies is to provide public benefits, and 

incentivizing the adoption of innovations and practices with positive 

externalities is one means for achieving it. Hence, policy makers must be 

aware of the potential and realized effectiveness and spatial distribution of 

public gains and tradeoffs from such policies (Cord et al. 2017). 
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Understanding impacts of environmental policies and its contextual 

heterogeneity beyond individual farms and farmers is therefore the main 

motivation for research topic 3, accompanied by the research question: 

- Research Question 3: How can geographic context inform the design 

of environmental policies? 

To make an informed decision about the trade-offs between competing 

objectives such as food security and biodiversity conservation, policy 

makers need to assess cost and benefits of the counterfactual scenario, i.e., 

the hypothetical scenario where a policy was (not) implemented (depending 

on whether it is an ex-ante or ex-post assessment). The availability of high-

resolution remote sensing products in combination with spatial models 

provides new opportunities to assess such costs and benefits across policy-

relevant scopes (Ehlers et al. 2021). The complexity of many 

socioecological systems requires the combination of empirical and 

modelling approaches for policy analysis (Schlüter et al. 2023) and thereby 

motivates the development of a novel approach described in Chapter 6. For 

the case of grasslands, which provide a wide range of provisioning, 

regulating, and supporting ecosystem services, the chapter illustrates the 

integration of remote sensing, causal machine learning, and biophysical 

modelling to assess cost and benefits of a hypothetical conservation policy. 

Previous experimental and correlational studies have established a negative 

relationship between grassland mowing frequency and species richness 

(Weber et al. 2023), but a positive relationship between mowing frequency 

and yields (Isselstein et al. 2005). A hypothetical incentive-based 

biodiversity conservation approach could therefore compensate farmers for 

lower mowing frequencies by the value forgone yields, but this requires 

knowledge about the counterfactual biodiversity gains and forgone yields. 

Spatially explicit information about the impact of extensification on species 



10 1.2 Motivation and general research question 

 

richness and yields are not yet available, but needed to assess the potential 

trade-off in ecosystem services (Cord et al. 2017). The goal of chapter 6 was 

therefore to provide such context-specific impact estimates at a national 

scale and to assess spatial targeting scenarios in terms of their effectiveness 

and cost-efficiency. 

The effectiveness of environmental policies not only differs within 

countries. A rapidly increasing body of literature evaluates the effectiveness 

of environmental policies, pointing towards variation across policy tools and 

context specific environmental pressure (Börner et al. 2020). Reduced 

Emissions from Deforestation and Degradation (REDD+) is the umbrella 

term for a range of carbon market financed policies and programs that aim 

to mitigate carbon emissions by means of forest protection (Turnhout et al. 

2017). Over the past fifteen years, there have been multiple REDD+ projects 

around the world, ranging from regional pilot projects to national level 

initiatives (Simonet et al. 2018). Some of these initiatives have been 

evaluated with respect to their effectiveness, but so far, a systematic 

synthesis of the available evidence is missing. Furthermore, an assessment 

of impact variability across settings and comparison relative to other 

conservation policies and programs is missing. Therefore, the goal of 

chapter 7 is to collect and analyze the available evidence on REDD+ 

effectiveness regarding its environmental and socioeconomic outcomes. 

Aligned with the central topic of this dissertation, a central question is how 

deforestation pressure as a contextual factor moderates REDD+ 

effectiveness. 

Given the context-dependent effectiveness of environmental policies, a 

central question concerns the underlying mechanisms at different scales. 

Farm-level observations can relate to very different geographic scales, 

depending on farm size. Especially in the context of farm structural change 
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it is important to understand how these scales relate to aggregate policy 

outcomes. The last chapter 8 therefore revolves around the argument that 

smaller farms are globally better able to mitigate the trade-off between 

biodiversity and yields, a claim put forward by Ricciardi et al. (2021). They 

conducted a meta-analysis on the association between landscape 

heterogeneity and levels of yields and biodiversity, finding a negative 

association between landscape heterogeneity and both crop yields and 

biodiversity indicators. Based on these results, they suggest that smaller 

farms provide higher area-yields and are better for the environment. The 

goal of chapter 8 is to verify the soundness of the empirical evidence and the 

validity of the implied argument. 

To answer these questions, a range of empirical methods is introduced in the 

following section before summarizing the contribution of each chapter to 

answer the research questions. 

1.3 Overview of Methods 

Reliable evidence is crucial to inform public policy making, justify public 

spending or to scale up beneficial innovations. Ex-ante studies anticipate 

potential impacts and contribute to the design of policies or upscaling 

programs, while ex-post studies monitor performance. Rigorous impact 

evaluations have been conducted for decades in the field of development, in 

particular agricultural research (Banerjee and Duflo 2009) and key 

methodological advancements occurred in the domains of causal inference 

and statistical representativeness (Stevenson et al. 2023). In comparison, the 

field of conservation has been lagging in terms of rigorous impact 

evaluations, albeit past calls for more systematic evidence generation 

(Baylis et al. 2016; Ferraro and Pattanayak 2006; Wauchope et al. 2021). 

The increasing body of evidence from both fields raises questions about the 
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reliability, generalizability, and complementarity of methods, particularly if 

findings contrast. Burivalova et al. (2019) highlight that there are three types 

of studies that can – at least in principle – estimate the causal impact between 

intervention exposure and outcomes: First, experimental studies such as 

randomized control trials (RCTs), second quasi-experimental studies (also 

referred to as observational studies), and third systematic reviews including 

meta-analyses. However, biases and limitations can still arise from sample 

representativeness, study design, and empirical assumptions. This thesis 

illustrates methodological pluralism by integrating and considering different 

forms of rigorous evidence motivated by their complementing degrees of 

validity, as described in the following. 

RCTs have become a widely used method in social science over the past 20 

years and gained public attention after the Sveriges Riksbank Prize in 

Economic Sciences in Memory of Alfred Nobel was given to Esther Duflo-

Banerjee, Abhijit Banerjee, and Michael Kremer for their contributions in 

experimental economics (The Prize in Economic Sciences 2023). The basic 

principle is that a certain intervention is randomly assigned to a treatment 

and control group, and its attributable impact can be measured as the 

difference in means between treatment and control group outcomes (Angrist 

and Pischke 2009). If implemented correctly, RCTs provide a high level of 

internal validity and credibility and are particularly well-suited to assess 

competing behavioral assumptions or intervention mechanisms. Chapter 2 

and 3 of this dissertation present two applications of randomized control 

trials to evaluate the impact of digital information provision. The 

methodological choice to conduct these studies as RCTs was based on the 

low anticipated costs, ethically uncritical intervention setup and in one case 

the timeline of the intervention which did not allow for a detailed baseline 

survey. RCTs are often considered to be the gold standard of evaluation, but 

Bédécarrats et al. (2020) critically questions this stand. Experimental studies 
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are often prone to sample bias and provide limited external validity because 

implementation constraints and ethical considerations may result in 

deliberate study samples not representative of the wider population. Both 

RCTs presented here were implemented among clients of the identical social 

enterprise providing access to inputs and markets to small-scale farmers, 

pointing towards limitations with respect to sample representativeness and 

limits to upscaling on the one hand, but also enhanced between-study 

comparability on the other hand. One critical aspect of RCTs is the 

pronounced information- and power asymmetry between study participants 

on the one side and implementer and evaluators on the other side, thereby 

often reflecting and potentially reproducing sensitive socioeconomic 

gradients (Bédécarrats et al. 2020). The chapters presented here addressed 

such concerns by establishing prior informed consent and institutional 

ethical assessment of the study plan. In sum, RCTs are useful to evaluate 

impact channels of certain types of interventions such as the digital advisory 

services assessed here with high level of credibility. Yet, the focus on the 

identification of impacts allows only limited knowledge gains about the 

process of intervention take up, which may be more relevant for the 

aggregate policy outcome than the impact on compliers. Since practical, 

epistemic and ethical hurdles often restrict their applicability and 

generalizability of findings, observational studies and quasi-experimental 

designs play a crucial role for understanding and modelling population-level 

processes for a wide range of interventions. 

The limited scale and generalizability of many experimental studies can be 

overcome with methods based on observational data that may be more easily 

and cost-efficiently scaled (Bédécarrats et al. 2020; Heckman 2020). Such 

studies may be feasible for a wider array of research questions, including 

those related to interventions that would not be feasible to randomize. Also, 

they can often be based on already existing secondary data such as 
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administrative data or remote-sensing products, which often have the 

advantage of being more representative. This increased generalizability to 

entire populations makes resulting findings more relevant for policy makers 

if the identification strategy is convincing. Causal identification of 

intervention impacts can be convincingly achieved by using quasi-

experimental designs on observational data (Angrist and Pischke 2009). 

Especially for cross-sectional studies, causality is harder to establish because 

it typically relies unconfoundedness conditional on observed variables. 

Therefore, the main disadvantage of observational studies compared to 

RCTs is that internal validity relies on additional and stricter assumptions.  

Chapters 4 and 6 use observational datasets and quasi-experimental methods 

to study innovation diffusion and environmental policy impacts, 

respectively. Both cases leverage secondary remote sensing data to enable 

the analysis at national scale. Chapter 4 focusses on spatiotemporal diffusion 

patterns of agricultural innovation across India, using more traditional 

econometric techniques such as duration analysis and fixed effects 

regression, which allow to assess associations between contextual factors 

and innovation diffusion. However, policy makers are increasingly 

interested in causal impacts on individuals or specific subpopulations, for 

example for targeting. Some machine learning tools allow us to go beyond 

average towards individual and heterogeneous treatment effects (Athey and 

Imbens 2016). Therefore, chapter 6 builds upon the causal forest approach 

to empirically model individual counterfactual impacts of a hypothetical 

management intervention across Germany. Causal forests follow the 

principle of weighting observations by an inverse probability score, like 

matching. A key advantage here is the non-parametric estimation of an 

augmented probability score, that leverages not only linear combinations of 

observed variables into account, but also all their linear and non-linear 

interactions (Stetter et al. 2022). In doing so, it controls also for non-



1.3 Overview of Methods  15 

 

observed confounders that are indirectly represented in the observed variable 

space, and thereby provides stronger support for the conditional 

unconfoundedness assumption.  

In sum, key strengths of observational studies lie in the wide range of 

addressable research questions, the possibility to rely on less costly 

secondary data and thereby evaluate potentially causal processes of policy 

relevance with higher external validity than RCTs with a comparable budget. 

However, the variability in secondary data collection protocols and 

empirical methods used to deal with the specifics of the data generating 

process often make it hard to disentangle whether results are driven by the 

study design or actual differences in underlying populations, which are 

themselves dynamic. Therefore, it is useful to synthesize and analyze 

findings of (quasi-) experimental primary studies. 

The central idea of meta-analysis is to collect the relevant body of literature 

on a given topic in a systematic way, ensure comparability of findings and 

then synthesize and analyze them by means of weighted regression. Chapters 

5 and 7 comprise and leverage empirical results from globally distributed 

primary studies in combination with spatially explicit contextual data to 

understand the association between geographic context and variability in the 

outcomes of interest. Meta-analyses depend crucially on a sizeable body of 

literature, so especially for very newly emerging topics this approach is often 

not feasible. In the case of chapter 5, we identified hundreds of studies 

ranging back up to fifty years, so this was no concern, but in chapter 7 fewer 

empirical studies had implications for the generalizability of results. A key 

advantage of meta-analysis is the increased external validity and clear 

statement of confidence in the body of evidence, which can be used to inform 

future research. Research and publication bias are serious concerns that can 

to a certain degree be identified using meta-analytic techniques, as illustrated 
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in chapters 5, 7, and 8. Thus, meta-analytic approaches help to overcome 

limited generalizability of individual study findings across populations and 

contexts, and to assess to what extent specificities of the data and method 

shape results. However, their reliability crucially depends on characteristics 

of included primary studies and credibility of the research framing, because 

aggregation any synthesis by itself does not ensure the quality thereof, nor 

the validity of the imposed research question.  

Re-analysis is a means to validate previous findings, and potentially 

contribute a new perspective on them. Hence, re-analysis can either 

strengthen credibility if results are reproducible, or contribute to the 

scientific debate around consensus if results or their interpretation deviate. 

Thereby, it is a means to address research bias, i.e., validating that the right 

questions are asked, appropriate methods are applied and transparently 

communicated. This is particularly relevant in the context of the p-value 

debate and replication crisis (Heckelei et al. 2021). This motivates the 

concluding chapter 8, which is not original research, but a re-analysis of a 

published article by Ricciardi et al. (2021). Along these lines, all chapters 

presented here contain data available statements and readers are invited to 

engage in replication exercises and explore the “universe of uncertainty” 

(Breznau et al. 2022). 

1.4 Contribution 

This thesis contributes to the three overarching research topics by assessing 

impacts of digital innovations at farm level, diffusion drivers of agricultural 

innovation at national and global level and disentangling contextual factors 

that shape the effectiveness of different environmental policies within and 

across countries. To do that, it leverages different data types and empirical 

approaches with complementing degrees of internal and external validity. 
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The approach, key results and overall contributions of the chapters are 

summarized in the following.  

Research topic 1: farm-level impacts of digital innovations 

Chapter 2 describes a pre-registered and ethically approved experiment 

among smallholder peanut farmers in the central plateau of Haiti, a region 

characterized by a large yield gap and political instability. The chapter 

contributes by increasing the evidence base on overall impacts of a real-

world2 short text-message based information intervention on knowledge, 

practice adoption and yields, or rather the lack thereof in the Haitian context. 

Contrary to previous studies (Fafchamps and Minten 2012; Larochelle et al. 

2019), our findings indicate that the intervention was not effective in 

increasing any of the measured outcome levels, not even within subgroups 

or after repeating the intervention in the following year, which few studies 

considered previously (Oyinbo et al. 2022). Thus, we contribute by 

discussing the role of contextual factors in shaping our findings and 

discussing lessons learned for similar studies being carried out in settings 

with implementation constraints. We argue that short text messages provide 

little incremental benefits in contexts of relatively well-trained farmers, and 

external shocks may have restricted trust in non-personal information 

sources. The trade-off between using more elaborate digital communication 

channels that may provide personalized advice such as mobile apps and 

reaching marginalized groups that need such advice the most, requires 

further investigation.  

Taking up the identified need to evaluate more elaborate information 

channels, chapter 3 provides complementary experimental evidence on the 

farm level impact of a pilot digital farm advisory service among 

                                                 
2 I thank Robert Finger for pointing out this important attribute. 
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smallholders in El Salvador. It was implemented by the identical social 

enterprise as in Chapter 2 to assess the impact of an interactive chat tool 

providing multimedia content about pest management, thereby extending 

previous studies in which farmers could not request contents and content 

complexity was limited (160 signs). A novelty and advancement compared 

to the SMS intervention was the availability of administrative data that 

allowed to monitor treatment status, i.e., whether a participant engaged with 

the chat-tool and visualized the contents. In contrast to chapter 2, the 

intervention was more personalized and resulted in significant knowledge 

gains among treated participants that engaged with the tool. These findings 

indicate that more elaborate multimedia content provided on-demand was 

effective in this setting, which is consistent with other studies (Arouna et al. 

2021; Giulivi et al. 2022; Rajkhowa and Qaim 2021), but had not been 

documented in the Latin American context.  

Regarding the first research question, digital advisory services can positively 

impact farmers’ knowledge, but their effectiveness depends on the content 

complexity and usefulness. Contextual factors like pre-existing knowledge 

levels, trust in non-personal information sources and access to digital tools 

influence their effectiveness. 

Research topic 2: contextual patterns of innovation adoption 

This research topic shifts the focus from farm level impacts within specific 

regions to geographically broader innovation diffusion patterns (Figure 1.1). 

Establishing that some digital advisory tools are effective in generating 

farm-level impacts on knowledge or practices is a crucial step in 

understanding their overall contribution to solve challenges related to 

sustainable production and food security. But being implemented as 

experiments, chapter 2 and 3 allocated the innovation randomly within a 

specific sample of farmers. In reality, there is a complex interplay of 
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contextual and behavioral factors governing the adoption and diffusion of 

innovations (Dessart et al. 2019; Rogers 2003). Unravelling these factors for 

larger populations requires observing not experimentally assigned, but 

endogenously driven adoption patterns, which previous studies on 

agricultural apps did not observe at large (Bounkham et al. 2022; Michels et 

al. 2020; Thar et al. 2021). Chapter 4 contributes in this respect by 

characterizing the spatiotemporal digital innovation diffusion at country 

scale along with the quantification of spatially explicit drivers and barriers 

of adoption. Using a unique large and comprehensive but proprietary dataset 

of GPS-referenced and time-stamped user requests in Plantix, a plant health 

monitoring app, we identify a clear digital divide; specifically, that more 

remote regions with lower network connectivity lag in terms of adoption. 

Furthermore, we confirm and extend evidence on peer effects on adoption 

by using a weekly panel dataset covering four years to model spatiotemporal 

spillover effects, whereas previous studies relied on less frequent and 

spatially more restricted observations (Genius et al. 2014; Maertens and 

Barrett 2013). This high resolution enabled to estimate quickly diminishing 

spillover effects in our case, i.e., within just four weeks and within a radius 

of 50 kilometers. Finally, we illustrate a novel approach to differentiate 

between stationary and mobile users based on the spatial radius of their 

requests, contributing to the literature on network structure and spatial 

effects (Abdulai 2023; Krishnan and Patnam 2014). The spillover effect of 

stationary users – likely peers – is larger in magnitude, but the effect of 

mobile users – potentially extension agents - play a bigger role for adoption 

at the extensive margin.  

To bridge the micro- and macro level of innovation diffusion, chapter 5 

contributes to the generalizability of agricultural innovation adoption 

determinants. We overcome limitations of previous reviews in terms of 

innovation and geographic focus (Feder and Umali 1993; Knowler and 
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Bradshaw 2007; Prokopy et al. 2019; Ruzzante et al. 2021; Shang et al. 

2021) by generating a unique dataset of adoption determinants and applying 

a theoretical framework that allows us to derive some more generalizable 

insights regarding their variation. This dataset is unprecedented in size and 

detail, containing adoption determinants for a wide range of agricultural 

innovations originating from over 300 primary studies across the world, and 

we use it to formulate reporting guidelines that aim to enhance comparability 

of future adoption studies. Results from our meta-analysis underline the 

importance of extension and access to capital as most important drivers for 

farm level innovation, and quantify numerous other drivers. In a second step, 

we formulate and apply a theoretical framework motivated by the induced 

innovation hypothesis, which postulates that innovation occurs to make 

more efficient use of the relatively more expensive production factor and 

was previously used to link innovation adoption to macro level context 

variables (Hayami and Ruttan 1971). Using country-level secondary data on 

the abundance of land, labor, capital and knowhow, and characterizing 

innovations via traits related to these four factors, we quantify the interplay 

of context and traits using multi-level meta-regression. By formulating the 

theoretical foundation and widening the geographic scope, we extend the 

analysis by Ruzzante et al. (2021). Our results show that farm size and 

capital matter more for the adoption of land- and capital intensive 

innovations, respectively, if these factors are less abundant in the geographic 

study context. These findings are in line with the induced innovation 

hypothesis and emphasize the role of policy to align targeting strategies to 

regional production contexts and user characteristics.  

Regarding the second research question, contextual factors such as network 

infrastructure had a significant influence on the spatiotemporal diffusion of 

a digital agricultural advisory services Plantix across India. Spatial spillover 

effects were substantial, but short-lived and limited in radius. Macro-level 
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land- and capital endowments explain between-country variation in adoption 

determinants of agricultural innovations that use these factors intensively.  

Research topic 3: contextual impacts of policy interventions 

The last research topic shifts the focus from farm level innovations to 

broader level policy analysis covering national to global scopes (Figure 1.1). 

We contribute to better understanding context-driven heterogeneity in 

environmental policy effectiveness. Chapter 6 provides a new 

methodological approach to estimate causal, spatially explicit effects of 

mowing frequency as proxy of management intensity on plant species 

richness in grasslands across Germany. A unique, remote-sensing based big 

dataset in combination with generalized random forests (Athey et al. 2019) 

enables us to assess the causal effect of changes in mowing frequency on 

species richness at parcel level across Germany. In line with Weber et al. 

(2023), we find that increases in mowing frequency cause plant species 

richness to decrease, but we expand this previous assessment by quantifying 

the spatial heterogeneity of the effect along biophysical and socioeconomic 

contextual gradients. In a second step, we combine these estimates with 

those derived from a biophysical grass growth model to quantify the changes 

in yields under different mowing frequencies, illustrating an integration of 

empirical and modelling approaches, as recently called for by Schlüter et al. 

(2023). Using these counterfactual estimates of plant species richness and 

associated changes in yields, we assess effectiveness and cost-efficiency of 

different conservation strategies. Based on the foregone yields associated 

with reduced mowing frequency, we estimate that opportunity cost per 

additional plant species vary by an order of magnitude across Germany, 

implying considerable efficiency gains from spatial policy targeting in a 

scenario where farmers would be compensated for reducing their 

management intensity. Our flexible approach could help to design and 
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implement novel model-based biodiversity payment schemes (Bartkowski 

et al. 2021). 

Chapter 7 assesses the evidence on the effectiveness of forest conservation 

programs under the umbrella of Reduced Emissions from Deforestation and 

Degradation (REDD+), adding to previous qualitative reviews (Turnhout et 

al. 2017) and meta-studies on related, but conceptually wider payments for 

ecosystem services (Samii et al. 2014; Wunder et al. 2020). We here 

systematically review and quantitatively synthesize the available rigorous 

impact evaluations of REDD+ initiatives and carbon-related payment for 

ecosystem services schemes globally. Results from our meta-analysis show 

that REDD+ impacts on environmental and social outcomes are small and 

heterogeneous, yet similar in magnitude compared to other forest 

conservation mechanisms. We then try to disentangle this heterogeneity 

using program-specific REDD+ design characteristics and regional 

estimates of preceding deforestation pressure as a contextual variable in a 

moderation analysis. Adding to previous analysis on a wider range of forest 

conservation interventions (Börner et al. 2020), we find that REDD+ 

initiatives are more effective in contexts of high deforestation pressure and 

where initiatives applied spatial targeting approaches. This underscores the 

importance of considering context-driven impact heterogeneity for future 

policy design.  

In the last chapter 8 we take a closer look at farm structure as a moderating 

element of the often implied trade-offs between regulating and provisioning 

ecosystem services, i.e., the biodiversity-yield relationship. We were able to 

reproduce results from Ricciardi et al. (2021) using their provided data and 

methods. However, we describe and document several limitations, including 

the data collection process, the effect size calculation, data 

representativeness, the empirical estimation technique and - most crucially - 
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the interpretation of the results. We raise doubts about the generalizability 

of the findings, and add a conceptual critique independent of the soundness 

of empirical findings. We sustain previous studies (Garzón Delvaux et al. 

2020) and the long standing theoretical debate (Helfand and Taylor 2021) 

that land productivity (yields) alone is not a valid performance indicator 

because it neglects productivity of other factors such as labor. Along these 

lines, we caution to draw policy conclusions based on associations rather 

than causal effects, implying that policy should not aim to reduce farm sizes, 

but rather support the mechanisms that lead to better productivity and 

environmental performance – independent of farm size. 

Regarding the third research question, the geographic (i.e., biophysical and 

socioeconomic) context explains substantial variation in environmental 

policy effectiveness, both at plot level and country level. Environmental 

policies may target areas that are a-priori more sensitive to policy-induced 

changes to improve effectiveness. However, such policies should be based 

on understanding the causal relationships that drive their effectiveness, 

rather than taking associations as a shortcut.  

1.5 Limitations and future research avenues 

The two experimental studies on the first research topic are limited in their 

sample representativeness. Both studies recruited participants from a pool of 

clients of a locally active social enterprise, and results should therefore be 

generalized with caution. The implementation within specific contexts and 

subpopulations is also a common critique RCTs in general (Bédécarrats et 

al. 2020). Future meta studies should therefore synthesize the available 

evidence and quantify to what extent contextual factors vis-à-vis 

intervention characteristics matter for effectiveness. On an epistemic level, 

RCTs lend themselves particularly well to study impact of goods and 
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services that are rival and excludable because they can be individually 

targeted. Thereby, the use of RCTs may contribute to a research bias away 

from public goods, and - based on their often comparably high cost 

associated with randomization, intervention, and data collection – contribute 

to suboptimal research funding allocation (Bédécarrats et al. 2020).  

A key limitation of Chapters 4 and 5 is the observational nature of the 

underlying data and corresponding stronger assumptions required to make 

causal claims. Therefore, we interpret the contextual drivers and barriers of 

Plantix app diffusion only as associations. Similarly, although we try to 

control for unobserved time-variant confounders at the district level in the 

neighborhood analysis, endogenously driven self-selection at levels below 

district could affect our results, for example if local app usage results in 

effective pest-management measures and thus reducing the need to use the 

app again. More detailed farm-level data on related decisions and impacts 

would be required. Based on the spatially heterogeneous adoption patterns, 

it is likely that benefits of usage are also not homogenously distributed. This 

also links to a limitation of Chapter 5, in that the available adoption literature 

may reflect context-dependent (expected) benefits of the studied innovation. 

This may imply a research bias in the sense that not all innovations are 

implemented and their adoption studied everywhere at the same rate. The 

implication of non-adoption in regions were benefits would be high 

therefore needs to be assessed and appropriate diffusion mechanisms should 

be implemented to improve overall impact. This, however, requires spatially 

explicit knowledge about the potential impact of changing management 

decisions caused by innovation adoption. 

For the grassland study (Chapter 6), the availability and quality of remote-

sensing products should be expanded to enable applications to other 

conceptually relevant variable constructs of environmental indicators, i.e., 
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beyond plant species richness and yields. The adequacy of the employed 

proxies of use intensity and ecosystem services depends ultimately on the 

application and must be carefully considered. For the REDD+ meta-analysis 

(Chapter 7), we can in principle claim causal effects, but must be cautious 

regarding its external validity. We identified potential publication bias for 

environmental outcomes, indicating that negative or non-significant findings 

may have been published less frequently. Most of the included studies 

focused on small scale pilot projects with a regional bias towards Latin 

America, so it is hard to extrapolate findings to potentially national level 

schemes at the global level.  

The integration of feasibility- and impact assessments are a promising way 

to identify priority areas and improving targeting efficacy. Future research 

should expand the range of impact dimensions, which requires innovative 

data products and a closer linkage of modelling- and causal analysis 

(Schlüter et al. 2023). Harmonization of research protocols wherever 

possible is useful to compare findings across contexts and methods to 

increase learning potential from them (Slough and Tyson 2022). Practices 

like pre-registration and open science principles such as providing FAIR 

data access are important pillars of a transparent, replicable, and thereby 

credible and trustworthy research (Schwab et al. 2022). Since the available 

empirical methods have their merits and limitations in terms of internal and 

external validity, they form the basis for methodological triangulation and 

evidence complementarity. Especially in times of big data, statistical power 

should not be used exclusively as a proxy of credibility, and new methods 

need to be developed to aggregate, weight, and (re-)valuate evidence on 

additional metrics of validity and soundness. 
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1.6 Conclusion and Policy Implications 

The research findings have implications for various stakeholders including 

extension service providers, developers of digital agricultural innovations, 

and agricultural and environmental policymakers. These implications are 

relevant on both local and global scales, spanning low- to high-income 

countries. The findings shed light on the challenges and opportunities faced 

by digital advisory services in generating impacts at the farm level (Chapter 

2 + 3). In the context of upscaling, the research identifies factors driving and 

hindering the adoption of digital innovations (Chapter 4). By providing 

generalizable insights into spatial diffusion patterns and adoption 

determinants of other agricultural innovations, this research aids in targeting 

them more effectively (Chapter 5). Additionally, the heterogeneous impacts 

of different environmental policies are quantified, enabling policymakers to 

improve policy targeting for enhanced effectiveness and cost-efficiency 

(Chapter 6 + 7). 

To make their services impactful, digital extension service providers should 

prioritize making information sources trusted and providing added value to 

recipients; this includes timeliness, usefulness and actionability of advice. 

More elaborate communication vehicles such as apps, multimedia contents 

and chatbots have therefore a higher potential, because more complex 

contents can be made available. Developers of digital advisory services 

should optimize content for the respective target groups, considering 

information needs, digital literacy, and access to different communication 

vehicles. Policy makers should support the development and 

implementation of advisory services; this support can be in terms of 

collaborating in data collection to identify farmer’s needs and evaluate 

impacts of provided services, but also marketing- and awareness campaigns 

as well as structurally improve access through network infrastructure and 
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education investment. We underscore the globally high importance of 

extension as an innovation adoption determinant (Chapter 5) and the role of 

mobile Plantix users in the case of India (Chapter 4). Providers of traditional 

extension services and developers of (digital) innovations may therefore 

collaborate closer to disseminate information about innovations, because 

both formal and informal information networks are important to create trust 

and adoption of innovations. This may include public-private or private-

private partnerships to improve extension quality and reach. Digital 

extension may supplement traditional extension where it is sufficiently 

effective, while they may complement each other in situations where the 

latter is less effective, be it due to lacking digital infrastructure or other 

information barriers such as literacy or trust. Thereby, the cost-efficacy and 

reach of overall extension system can be improved to the benefit of 

marginalized communities.  

An overarching implication of our research is the role of context in shaping 

both the development of innovations and the formulation of policies. By 

tailoring innovations to address context-specific challenges, higher 

innovation adoption rates may be achieved. As illustrated by the results of 

Chapter 5, initiatives promoting capital-intensive innovations like 

agroforestry or agricultural robotics may be more effective in regions with 

ample access to capital. However, in contexts where capital is scarce, 

innovation developers should explore ways to reduce capital intensity, or 

policymakers should focus on improving access to capital. Similarly, spatial 

targeting is essential for infrastructural development and context-sensitive 

policy design. This research demonstrates significant potential gains in 

policy effectiveness and cost-efficiency when environmental policies are 

targeted to specific geographic areas, such as those with the highest a-priori 

sensitivity to policy-induced changes. Similarly, digital innovations can 

benefit from targeted investments in network infrastructure and education to 
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ensure maximum impact. Yet, the spatial targeting must also consider 

tradeoffs in outcomes, which may include socioeconomic versus 

environmental gains. In such cases, compensating actors’ private costs can 

mitigate undesirable consequences in terms of welfare or equality resulting 

from environmental policies. Knowing these costs requires spatially explicit 

modelling and innovative trade-off assessment tools, such as those presented 

in Chapter 6.  

The context specificity of research imposes challenges for transferability of 

findings, but this should not be seen a reason for not trying to identify 

generalizable patterns. Rather, context emerges on the meta-level and helps 

to disambiguate findings. This dissertation illustrates how the availability of 

case-based literature can serve as basis for meta-analysis and secondary data 

in combination with tools such as machine learning facilitates better 

understanding of the role of context. The chapter complement each other by 

their varying degrees of internal and external validity, by considering both 

agricultural innovation and environmental policy, and by considering both 

feasibility and impacts of different interventions. What emerges from the use 

of different methods, is that they all have their merits and should not be 

hierarchized a-priori. In conclusion, understanding the role of context in 

determining innovation and policy impacts by employing the range of 

empirical tools is essential for designing and implementing effective 

context-sensitive policies that contribute to solving the challenges the agri-

food system is confronted with. 

  



1.8 References  29 

 

1.8 References 

Abdulai, A. (2023). Information acquisition and the adoption of improved 

crop varieties. American Journal of Agricultural Economics, 105(4), 

1049–1062. 

Angrist, J. D., and Pischke, J.-S. (2009). Mostly harmless econometrics: an 

empiricist’s companion. Princeton: Princeton University Press. 

Arouna, A., Michler, J. D., Yergo, W. G., and Saito, K. (2021). One Size 

Fits All? Experimental Evidence on the Digital Delivery of 

Personalized Extension Advice in Nigeria. American Journal of 

Agricultural Economics, 103(2), 596–619. 

Athey, S., and Imbens, G. (2016). Recursive partitioning for heterogeneous 

causal effects. Proceedings of the National Academy of Sciences of 

the United States of America, 113(27), 7353–7360. 

Athey, S., Tibshirani, J., and Wager, S. (2019). Generalized random forests. 

The Annals of Statistics, 47(2), 1148–1178. 

Banerjee, A. V., and Duflo, E. (2009). The Experimental Approach to 

Development Economics. Annual Review of Economics, 1(1), 151–

178. 

Bartkowski, B., Droste, N., Ließ, M., Sidemo-Holm, W., Weller, U., and 

Brady, M. V. (2021). Payments by modelled results: A novel design 

for agri-environmental schemes. Land Use Policy, 102, 105230. 

Baumüller, H. (2018). The Little We Know: An Exploratory Literature 

Review on the Utility of Mobile Phone-Enabled Services for 

Smallholder Farmers. Journal of International Development, 30(1), 

134–154. 

Baylis, K., Honey-Rosés, J., Börner, J., Corbera, E., Ezzine-de-Blas, D., 

Ferraro, P. J., … Wunder, S. (2016). Mainstreaming Impact 



30 1.8 References 

 

Evaluation in Nature Conservation: Mainstreaming impact 

evaluation. Conservation Letters, 9(1), 58–64. 

Bédécarrats, F., Guérin, I., and Roubaud, F. (Eds.). (2020). Randomized 

control trials in the field of development: a critical perspective. 

Oxford: Oxford University Press. 

Binswanger, H. P. (1974). A microeconomic approach to induced 

innovation. The Economic Journal, 84(336), 940–958. 

Börner, J., Schulz, D., Wunder, S., and Pfaff, A. (2020). The Effectiveness 

of Forest Conservation Policies and Programs. Annual Review of 

Resource Economics, 12(1), 45–64. 

Bounkham, P., Ahmad, M. M., and Yaseen, M. (2022). Determinants and 

benefits of using smartphone-based information for vegetable 

production and marketing: a case of Lao farmers. Development in 

Practice, 32(7), 981–994. 

Breznau, N., Rinke, E. M., Wuttke, A., Nguyen, H. H. V., Adem, M., 

Adriaans, J., … Żółtak, T. (2022). Observing many researchers using 

the same data and hypothesis reveals a hidden universe of 

uncertainty. Proceedings of the National Academy of Sciences of the 

United States of America, 119(44), e2203150119. 

Burivalova, Z., Miteva, D., Salafsky, N., Butler, R. A., and Wilcove, D. S. 

(2019). Evidence Types and Trends in Tropical Forest Conservation 

Literature. Trends in Ecology & Evolution, 34(7), 669–679. 

Camacho, A., and Conover, E. (2019). The impact of receiving SMS price 

and weather information on small scale farmers in Colombia. World 

Development, 123(3), 104596. 

Campbell, B. M., Beare, D. J., Bennett, E. M., Hall-Spencer, J. M., Ingram, 

J. S. I., Jaramillo, F., … Shindell, D. (2017). Agriculture production 

as a major driver of the Earth system exceeding planetary 

boundaries. Ecology and Society, 22(4), art8. 



1.8 References  31 

 

Cord, A. F., Bartkowski, B., Beckmann, M., Dittrich, A., Hermans-

Neumann, K., Kaim, A., … Volk, M. (2017). Towards systematic 

analyses of ecosystem service trade-offs and synergies: Main 

concepts, methods and the road ahead. Ecosystem Services, 28, 264–

272. 

Costa, C., Wollenberg, E., Benitez, M., Newman, R., Gardner, N., and 

Bellone, F. (2022). Roadmap for achieving net-zero emissions in 

global food systems by 2050. Scientific Reports, 12(1), 15064. 

Dessart, F. J., Barreiro-Hurlé, J., and van Bavel, R. (2019). Behavioural 

factors affecting the adoption of sustainable farming practices: a 

policy-oriented review. European Review of Agricultural 

Economics, 46(3), 417–471. 

Ehlers, M.-H., Huber, R., and Finger, R. (2021). Agricultural policy in the 

era of digitalisation. Food Policy, 100, 102019. 

Fabregas, R., Kremer, M., and Schilbach, F. (2019). Realizing the potential 

of digital development: The case of agricultural advice. Science 

(New York, N.Y.), 366(6471). 

Fafchamps, M., and Minten, B. (2012). Impact of SMS-Based Agricultural 

Information on Indian Farmers. The World Bank Economic Review, 

26(3), 383–414. 

Feder, G., and Umali, D. L. (1993). The Adoption of Agricultural 

Innovations: A Review. Technological Forecasting and Social 

Change, 43, 215–239. 

Fermeglia, M. (2023). The Nitrates Directive under the European Green 

Deal: time to deliver! ERA Forum, 24(2), 169–182. 

Ferraro, P. J., and Pattanayak, S. K. (2006). Money for Nothing? A Call for 

Empirical Evaluation of Biodiversity Conservation Investments. 

PLoS Biology, 4(4), e105. 



32 1.8 References 

 

Finger, R. (2023). Digital innovations for sustainable and resilient 

agricultural systems. European Review of Agricultural Economics, 

50(4), 1277–1309. 

Garzón Delvaux, P. A., Riesgo, L., and Gomez y Paloma, S. (2020). Are 

small farms more performant than larger ones in developing 

countries? Science Advances, 6(41), eabb8235. 

Genius, M., Koundouri, P., Nauges, C., and Tzouvelekas, V. (2014). 

Information Transmission in Irrigation Technology Adoption and 

Diffusion: Social Learning, Extension Services, and Spatial Effects. 

American Journal of Agricultural Economics, 96(1), 328–344. 

Giulivi, N., Harou, A. P., Gautam, S., and Guereña, D. (2022). Getting the 

message out: Information and communication technologies and 

agricultural extension. American Journal of Agricultural Economics, 

ajae.12348. 

Hayami, Y., and Ruttan, V. W. (1971). Agricultural development: An 

international perspective. Baltimore: Johns Hopkins University 

Press. 

Heckelei, T., Huettel, S., Odening, M., Rommel, J., Heckelei, T., Huettel, 

S., … Rommel, J. (2021). The replicability crisis and the p-value 

debate – what are the consequences for the agricultural and food 

economics community? (Discussion Paper No. 2021:2). Bonn: 

Institute for Food and Resource Economics. Retrieved from 

https://ageconsearch.umn.edu/record/316369 

Heckman, J. J. (2020). Epilogue: Randomization and Social Policy 

Evaluation Revisited. In F. Bédécarrats, I. Guérin, and F. Roubaud, 

editors, Randomized Control Trials in the Field of Development, 

pages 304–330. Oxford University PressOxford. 



1.8 References  33 

 

Helfand, S. M., and Taylor, M. P. H. (2021). The inverse relationship 

between farm size and productivity: Refocusing the debate. Food 

Policy, 99, 101977. 

Hendriks, S. L., Montgomery, H., Benton, T., Badiane, O., Castro De La 

Mata, G., Fanzo, J., … Soussana, J.-F. (2022). Global environmental 

climate change, covid-19, and conflict threaten food security and 

nutrition. BMJ, e071534. 

Herrero, M., Thornton, P. K., Mason-D’Croz, D., Palmer, J., Benton, T. G., 

Bodirsky, B. L., … West, P. C. (2020). Innovation can accelerate the 

transition towards a sustainable food system. Nature Food, 1(5), 

266–272. 

Hicks, J. R. (1932). The Theory of Wages. London: Palgrave Macmillan UK. 

IPCC. (2022). Climate Change and Land: IPCC Special Report on Climate 

Change, Desertification, Land Degradation, Sustainable Land 

Management, Food Security, and Greenhouse Gas Fluxes in 

Terrestrial Ecosystems. Cambridge University Press. 

Isselstein, J., Jeangros, B., and Pavlů, V. V. (2005). Agronomic aspects of 

biodiversity targeted management of temperate grasslands in Europe 

- A review. Agronomy Research, 3, 139–151. 

Jain, M., Balwinder-Singh, Rao, P., Srivastava, A. K., Poonia, S., Blesh, J., 

… Lobell, D. B. (2019). The impact of agricultural interventions can 

be doubled by using satellite data. Nature Sustainability, 2(10), 931–

934. 

Kehoe, L., Romero-Muñoz, A., Polaina, E., Estes, L., Kreft, H., and 

Kuemmerle, T. (2017). Biodiversity at risk under future cropland 

expansion and intensification. Nature Ecology & Evolution, 1(8), 

1129–1135. 



34 1.8 References 

 

Knowler, D., and Bradshaw, B. (2007). Farmers’ adoption of conservation 

agriculture: A review and synthesis of recent research. Food Policy, 

32(1), 25–48. 

Krishnan, P., and Patnam, M. (2014). Neighbors and Extension Agents in 

Ethiopia: Who Matters More for Technology Adoption? American 

Journal of Agricultural Economics, 96(1), 308–327. 

Larochelle, C., Alwang, J., Travis, E., Barrera, V. H., and Dominguez 

Andrade, J. M. (2019). Did You Really Get the Message? Using Text 

Reminders to Stimulate Adoption of Agricultural Technologies. The 

Journal of Development Studies, 55(4), 548–564. 

Maertens, A., and Barrett, C. B. (2013). Measuring Social Networks’ Effects 

on Agricultural Technology Adoption. American Journal of 

Agricultural Economics, 95(2), 353–359. 

Mehrabi, Z., McDowell, M. J., Ricciardi, V., Levers, C., Martinez, J. D., 

Mehrabi, N., … Jarvis, A. (2021). The global divide in data-driven 

farming. Nature Sustainability, 4(2), 154–160. 

Michels, M., Bonke, V., and Musshoff, O. (2020). Understanding the 

adoption of smartphone apps in crop protection. Precision 

Agriculture, 21(6), 1209–1226. 

Nakasone, E., and Torero, M. (2016). A text message away: ICTs as a tool 

to improve food security. Agricultural Economics, 47(S1), 49–59. 

Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. 

A., … Purvis, A. (2015). Global effects of land use on local terrestrial 

biodiversity. Nature, 520(7545), 45–50. 

Ogundari, K., and Bolarinwa, O. D. (2018). Impact of agricultural 

innovation adoption: a meta-analysis. Australian Journal of 

Agricultural and Resource Economics, 62(2), 217–236. 

Oyinbo, O., Chamberlin, J., Abdoulaye, T., and Maertens, M. (2022). Digital 

extension, price risk, and farm performance: experimental evidence 



1.8 References  35 

 

from Nigeria. American Journal of Agricultural Economics, 104(2), 

831–852. 

Pendrill, F., Gardner, T. A., Meyfroidt, P., Persson, U. M., Adams, J., 

Azevedo, T., … West, C. (2022). Disentangling the numbers behind 

agriculture-driven tropical deforestation. Science, 377(6611), 

eabm9267. 

Poore, J., and Nemecek, T. (2018). Reducing food’s environmental impacts 

through producers and consumers. Science, 360(6392), 987–992. 

Pradhan, P., Costa, L., Rybski, D., Lucht, W., and Kropp, J. P. (2017). A 

Systematic Study of Sustainable Development Goal (SDG) 

Interactions. Earth’s Future, 5(11), 1169–1179. 

Prokopy, L. S., Floress, K. M., Arbuckle, J. G., Church, S. P., Eanes, F. R., 

Gao, Y., … Singh, A. S. (2019). Adoption of agricultural 

conservation practices in the United States: Evidence from 35 years 

of quantitative literature. Journal of Soil and Water Conservation, 

74(5), 520–534. 

Rajkhowa, P., and Baumüller, H. (2024). Assessing the potential of ICT to 

increase land and labour productivity in agriculture: Global and 

regional perspectives. Journal of Agricultural Economics, 1477-

9552.12566. 

Rajkhowa, P., and Qaim, M. (2021). Personalized digital extension services 

and agricultural performance: Evidence from smallholder farmers in 

India. PloS One, 16(10), e0259319. 

Ricciardi, V., Mehrabi, Z., Wittman, H., James, D., and Ramankutty, N. 

(2021). Higher yields and more biodiversity on smaller farms. 

Nature Sustainability, 4(7), 651–657. 

Robertson, G. P., and Vitousek, P. M. (2009). Nitrogen in Agriculture: 

Balancing the Cost of an Essential Resource. Annual Review of 

Environment and Resources, 34(1), 97–125. 



36 1.8 References 

 

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, 

E. F., … Foley, J. A. (2009). A safe operating space for humanity. 

Nature, 461(7263), 472–475. 

Rogers, E. M. (2003). Diffusion of innovations. New York: Free Press. 

Ruzzante, S. W., Labarta, R., and Bilton, A. (2021). Adoption of agricultural 

technology in the developing world: A meta-analysis of the empirical 

literature. World Development, 146(1), 105599. 

Samii, C., Lisiecki, M., Kulkarni, P., Paler, L., Chavis, L., Snilstveit, B., … 

Gallagher, E. (2014). Effects of Payment for Environmental Services 

(PES) on Deforestation and Poverty in Low and Middle Income 

Countries: A Systematic Review. Campbell Systematic Reviews, 

10(1), 1–95. 

Schlüter, M., Brelsford, C., Ferraro, P. J., Orach, K., Qiu, M., and Smith, M. 

D. (2023). Unraveling complex causal processes that affect 

sustainability requires more integration between empirical and 

modeling approaches. Proceedings of the National Academy of 

Sciences, 120(41), e2215676120. 

Schwab, S., Janiaud, P., Dayan, M., Amrhein, V., Panczak, R., Palagi, P. M., 

… Held, L. (2022). Ten simple rules for good research practice. 

PLOS Computational Biology, 18(6), e1010139. 

Shang, L., Heckelei, T., Gerullis, M. K., Börner, J., and Rasch, S. (2021). 

Adoption and diffusion of digital farming technologies - integrating 

farm-level evidence and system interaction. Agricultural Systems, 

190(1), 103074. 

Simonet, G., Agrawal, A., Bénédet, F., Cromberg, M., de Perthuis, C., Hag-

gard, D., … Vaillant, G. (2018). ID-RECCO, International Database 

on REDD+ projects and programs, linking Economic, Carbon and 

Communities data (Version 3.0) [Data set]. 



1.8 References  37 

 

Slough, T., and Tyson, S. A. (2022). External Validity and Meta‐Analysis. 

American Journal of Political Science, ajps.12742. 

Spielman, D., Lecoutere, E., Makhija, S., and van Campenhout, B. (2021). 

Information and Communications Technology (ICT) and 

Agricultural Extension in Developing Countries. Annual Review of 

Resource Economics, 13(1). 

Stetter, C., Mennig, P., and Sauer, J. (2022). Using Machine Learning to 

Identify Heterogeneous Impacts of Agri-Environment Schemes in 

the EU: A Case Study. European Review of Agricultural Economics, 

49(4), 723–759. 

Stevenson, J. R., Macours, K., and Gollin, D. (2023). The Rigor Revolution: 

New Standards of Evidence for Impact Assessment of International 

Agricultural Research. Annual Review of Resource Economics, 

15(1), 495–515. 

Tambo, J. A., Aliamo, C., Davis, T., Mugambi, I., Romney, D., Onyango, 

D. O., … Byantwale, S. T. (2019). The impact of ICT-enabled 

extension campaign on farmers’ knowledge and management of fall 

armyworm in Uganda. PloS One, 14(8), e0220844. 

Tang, F. H. M., Lenzen, M., McBratney, A., and Maggi, F. (2021). Risk of 

pesticide pollution at the global scale. Nature Geoscience, 14(4), 

206–210. 

Thar, S. P., Ramilan, T., Farquharson, R. J., Pang, A., and Chen, D. (2021). 

An empirical analysis of the use of agricultural mobile applications 

among smallholder farmers in Myanmar. The Electronic Journal of 

Information Systems in Developing Countries, 87(2), e12159. 

The Prize in Economic Sciences. (2023). NobelPrize.org (Nobel Prize 

Outreach AB). Retrieved from 

https://www.nobelprize.org/prizes/economic-

sciences/2019/summary 



38 1.8 References 

 

Tubiello, F. N., Karl, K., Flammini, A., Gütschow, J., Obli-Laryea, G., 

Conchedda, G., … Torero, M. (2022). Pre- and post-production 

processes increasingly dominate greenhouse gas emissions from 

agri-food systems. Earth System Science Data, 14(4), 1795–1809. 

Turnhout, E., Gupta, A., Weatherley‐Singh, J., Vijge, M. J., De Koning, J., 

Visseren‐Hamakers, I. J., … Lederer, M. (2017). Envisioning 

REDD+ in a post‐Paris era: between evolving expectations and 

current practice. WIREs Climate Change, 8(1), e425. 

United Nations. (2015). Transforming our World: The 2030 Agenda for 

Sustainable Development. 

van Campenhout, B., Spielman, D. J., and Lecoutere, E. (2021). Information 

and Communication Technologies to Provide Agricultural Advice to 

Smallholder Farmers: Experimental Evidence from Uganda. 

American Journal of Agricultural Economics, 103(1), 317–337. 

von Braun, J., Afsana, K., Fresco, L. O., and Hassan, M. (2021). Food 

systems: seven priorities to end hunger and protect the planet. 

Nature, 597(7874), 28–30. 

Wauchope, H. S., Amano, T., Geldmann, J., Johnston, A., Simmons, B. I., 

Sutherland, W. J., and Jones, J. P. G. (2021). Evaluating Impact 

Using Time-Series Data. Trends in Ecology & Evolution, 36(3), 

196–205. 

Weber, D., Schwieder, M., Ritter, L., Koch, T., Psomas, A., Huber, N., … 

Boch, S. (2023). Grassland‐use intensity maps for Switzerland based 

on satellite time series: Challenges and opportunities for ecological 

applications. Remote Sensing in Ecology and Conservation, 

rse2.372. 

Wuepper, D., Borrelli, P., and Finger, R. (2019). Countries and the global 

rate of soil erosion. Nature Sustainability, 3(1), 51–55. 



1.8 References  39 

 

Wuepper, D., Crowther, T., Lauber, T., Routh, D., Le Clec’h, S., Garrett, R. 

D., and Börner, J. (2024). Public policies and global forest 

conservation: Empirical evidence from national borders. Global 

Environmental Change, 84, 102770. 

Wuepper, D., Tang, F. H. M., and Finger, R. (2023). National leverage 

points to reduce global pesticide pollution. Global Environmental 

Change, 78, 102631. 

Wunder, S., Börner, J., Ezzine-de-Blas, D., Feder, S., and Pagiola, S. (2020). 

Payments for Environmental Services: Past Performance and 

Pending Potentials. Annual Review of Resource Economics, 12(1), 

209–234. 



 

 

 

 

 

 

 



 

41 

 

Chapter 2  
No impact of repeated digital 

advisory service to Haitian peanut 

producers3 

2.1  Introduction 

Digital technologies are considered an important pillar of agricultural 

transformation towards food security and sustainability (von Braun et al. 

2021). Smallholder farmers in developing countries often take production 

decisions based on limited information, which dampens productivity and 

farm-household incomes. Information and Communication Technologies 

(ICT) in particular have received increasing attention for their potential to 

disseminate information to farmers in developing countries (Baumüller 

2018; Spielman et al. 2021). ICTs are expected to support farmers on 

different levels, from digital platforms for input procurement and capital 

access to digital advisory services and marketing channels. Agricultural 

advisory services for farmers rely on diverse communication channels 

                                                 
3 This chapter is published as: Schulz, D., and Börner, J. (2023). No impact of repeated 

digital advisory service to Haitian peanut producers. Q Open, qoad023. DOI: 

10.1093/qopen/qoad023 

Author contribution: DS: conceptualization, data collection and curation, formal analysis, 

writing original draft; JB: conceptualization, funding acquisition, writing - review and 

editing the paper. 
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including videos, interactive voice recordings, smartphone apps for 

extension agents, and short text messages (SMS). The emerging empirical 

evidence across different contexts and ICTs indicate overall promising 

positive impacts on recommended practice adoption and yields (Fabregas et 

al. 2019). 

Several studies have tried to identify mechanisms through which ICT-

enabled information provision can lead to productivity- and livelihood 

improvements. According to the common theory of change, sub-optimal 

input use decisions result from a lack of knowledge or attention to employ 

it. Sending SMS to farmers has been shown to increase their knowledge and 

adoption of recommended practices (Camacho & Conover 2019; Carrión-

Yaguana et al. 2020; Ding et al. 2022; Larochelle et al. 2019). Similarly, 

knowledge and adoption were shown to increase when exposing farmers to 

extension videos, or a combination of video and SMS (Maredia et al. 2018; 

Tambo et al. 2019; Vandevelde et al. 2021). Going beyond adoption of 

practices, van Campenhout et al. (2021) found a positive impact of a video-

based training on yields, but no clear evidence that SMS-nudges or 

interactive voice recordings further added to that effect. Finally, several 

studies investigated the effectiveness of smartphone applications for 

personalized agricultural advice, such as in nutrient management or input 

procurement, finding sizable positive impacts on yields and profits (Arouna 

et al. 2021; Oyinbo et al. 2022; Rajkhowa & Qaim 2021). While such apps 

can provide tailored contents and enable bidirectional information flows, 

they are also less accessible than direct messaging and require prior training, 

a smartphone, and eventually also an internet connection. This makes such 

services costlier and less inclusive than unidirectional information 

provision, especially in areas with limited internet connectivity, smartphone 

adoption, and digital literacy. That is why app-based services are rarely 
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provided to farmers directly, but instead used by extension agents or local 

group leaders as intermediaries. 

The overall impacts of digital information provision are well-documented, 

but there is limited evidence on at least four related aspects. First, 

information spillovers received limited attention, with notable exceptions 

such as Vandevelde et al. (2021). Such spillovers may occur when digital 

information is shared or neighbouring peers learn about recommended 

practices by observation. Second, most previous studies looked at single 

intervention periods, but Oyinbo et al. (2022) reported that the impact 

decreased from the first to the second year. This relates to the question of 

permanence, i.e. the stability of the effect of an intervention over time. 

Furthermore, it remains important to understand whether a positive impact 

can be maintained or even increased by repeating an intervention in 

consecutive seasons. Third, little is known about whether ICT-enabled 

information delivery works in isolation or only in combination with other 

support mechanisms. In particular, whether digital advice can or should 

replace traditional extension service, or rather complement it (Maredia et al. 

2018). Most previous studies were performed in a setting where farmers had 

homogeneous access to additional support, such as extension service or 

group training (e.g. Larochelle et al. 2019). Relatedly, information provision 

may not produce the desired changes in agricultural practices if the required 

inputs are not accessible (Jack 2011). Hence, it remains to be understood 

how reliably ICT works along a gradient of input- and market access. Fourth, 

some studies suggest substantial impact heterogeneity across socially 

sensitive gradients such as farm size (Ding et al. 2022; Mehrabi et al. 2021) 

and education (Carrión-Yaguana et al. 2020). 

This research aimed at addressing these knowledge gaps by expanding the 

experimental evidence on SMS-based information provision to Haiti, a 
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challenging environment for both agricultural production and extension. Our 

study contributes in two ways. First, we examine the relationship between 

digital information provision and changes in agricultural practices via 

knowledge gain and changes in farming income via increased yields. By 

harmonizing our intervention and outcome measures for comparability with 

existing studies, we also enhance the generalizability of research in this 

topic. Second, we aimed to enrich our understanding of the causal 

mechanisms behind ICT impacts by focusing on spatial and temporal 

spillovers and heterogeneous impacts by considering them in our research 

design (see Section 2.4). Several implementation constraints implied 

limitations in our ability to do so and we hope to contribute to future research 

by systematically highlighting both constraints and lessons learned 

throughout the manuscript. To conduct this study, we identified a local 

enterprise that was planning to launch an ICT-based extension service and 

was willing to do it in in a randomized fashion. Notably, the intervention 

was not initiated by researchers and thus reflects a real-world setup. 

Agronomic and organizational experience of local partner organization and 

especially existing survey infrastructure can be a great advantage; in our case 

it allowed this research to be planned and implemented in a few months. On 

the other hand, such existing organizational structures may be less flexible 

in certain aspects and require some compromises. In our case this implied, 

among other things, to accept a) the unavailability of baseline data, b) 

limited control over timing and content of messages, and c) limited sample 

representativeness of the organization’s clients. While some shortcomings 

are known ex-ante, others may appear as violations of implicit assumptions 

ex-post. For example, in the absence of baseline data group imbalances and 

partial non-random treatment allocation are notoriously hard to detect at an 

early stage. Since this study is about ICTs, it is worth mentioning that this 

entire research was conducted during the COVID-19 pandemic and all 
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communication occurred digitally. This made it particularly challenging in 

the context of regional and temporal connectivity gaps, because conducting 

an experiment requires substantial transfer of knowledge and information 

between researcher and implementing organization. Further constraints 

particular to politically unstable contexts such as Haiti included temporal 

unavailability of gasoline (needed by enumerators to visit farmers), and 

security concerns that impeded field visits by the investigators to conduct 

focus group discussions. More details and some implications of these 

challenges are discussed in section 2.4. 

Our results showed that the SMS-based intervention was ineffective in 

improving any of the measured outcomes. Given these unexpected results, 

we repeated the intervention in a slightly modified manner, which enabled 

us to vary the treatment intensity and consider effect permanence. Again, we 

found that the intervention was overall not effective, with no evidence of 

subgroup differences. This paper is structured as follows. In Section 2.2 we 

describe the context of our study as well as the ICT-intervention design and 

empirical framework. Section 2.3 presents our results, which are discussed 

in the light of internal and external validity in Section 2.4. Finally, we 

conclude in Section 2.5. 

2.2  Material and Methods 

This study was pre-registered at the Open Science Foundation and approved 

by the Research Ethics Committee of the Center for Development Research 

(ZEF), University of Bonn4. All study participants orally gave prior 

informed consent to partake in the study. 

                                                 
4 Pre-analysis plan for this study: https://osf.io/cazqw. 
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2.2.1  Study context 

Figure 2.1 shows our study region: the central plateau, one of the main areas 

for peanut production in Haiti (Fulmer 2018). This region has two seasons, 

the first starting in March, the second around August. Typically, farmers 

plant peanuts only in the first season and another crop such as beans during 

the second, although two peanut seasons are also common. At an estimated 

300-900 kg/ha, average yields remain far below the reported 3-4 tons/ha 

achieved during agronomic trials in the same region (Fulmer et al. 2020; 

Kostandini et al. 2021; Tyroler 2018). The main factors responsible for these 

low yields include soil- and seed quality, management practices related to 

planting, weed- and pest control, improper storage methods that do not 

protect from rodents and fungi, floods, droughts and theft (Fulmer et al. 

2020; ICF International 2013). We conducted the experiment among 

smallholder peanut farmers that work with a local social enterprise (SE). The 

local partner has been active in Haiti since 2015 and provides agricultural 

extension services as well as input-, credit-, and market access to 

smallholders as part of a contract farming scheme. Our study aligns with 

efforts along the peanut value chain by the SE aiming to overcome several 

structural barriers by providing support along all production stages from 

field preparation to selling. In particular, the SE conducts physical farmer 

group trainings and offers a range of services such as provision of seeds, 

fertilizer, pesticide application, management advice and market access as 

part of a contract farming scheme. Such schemes have been shown to 

improve input usage and yields (Ruml & Qaim 2020). The location of depots 

where farmers can purchase inputs or sell their produce is indicated by the 

green dots in Figure 2.1 on the right side. 
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Figure 2.1: Study region in Haiti 

 

Note: Red line indicates central plateau region in Haiti. Black dots are villages 

participating in the experiment, green dots indicate location of depots of the social 

enterprise where farmers can get inputs and sell produce.  

Around 3.000 farmers attend the seasonal group trainings every year, while 

due to organizational constraints only about 300 are offered the farming 

contract scheme. The contract is conditional on stated interest by the farmers 

and observed farm characteristics that are conducive to peanut production. 

However, all participants of the initial group trainings could state their 

interest to receive information via SMS and thereby formed the pool of 

eligible farmers for receiving the GAP-intervention. Independent of the 

intervention, all interested farmers received weather warnings on their 

phones. The delivery status of these messages was used to verify that farmers 

in the control group would have been technically able to receive the content. 

2.2.2  GAP intervention design 

We used a random phase-in experimental design to study the impact of 

providing information about good agricultural practices (GAP) via SMS 

(Duflo et al. 2006). Our theory of change is presented in the supplementary 

material (see also Figure S7). All GAP-contents were developed and 

checked by local agronomists and then sent to a randomly selected treatment 
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group in Haitian Creole (TechnoServe 2014). A complete overview of all 

messages with English translation is presented in Table S2. To select our 

sample, we used the database of farmers that participated in any group 

training on peanut cultivation conducted by the SE in 2021. Therefore, while 

only (self-)selected farmers became contract farmers, our ICT-based 

information intervention also targeted farmers not participating in the 

contract scheme and thus allowed us to study the complementarity of 

physical and digital information provision under varying sets of market 

constraints in the heterogeneity analysis. The intervention occurred in two 

separate waves, namely between April and August of the years 2021 and 

2022, but with slight differences between the two years. Figure 2.2 

summarizes the intervention and sampling design in a timely order with the 

respective group sizes in form of a Sankey diagram. In 2021, the treatment 

was randomized in two steps with the intention to identify spillover effects. 

In the first step, the total of 46 available villages were randomly assigned as 

treatment or control with equal probability. We chose to randomize at the 

village level in order to reduce information spillovers among farmers within 

the same village. However, due to the low number of available villages (46), 

we chose to employ non-bipartite covariate matching (Imai et al. 2009) to 

ensure that key village-level characteristics (such as distance to major roads) 

were balanced across both groups. In the second step, we randomly assigned 

treatment intensities among the treated villages. With equal probabilities, the 

share of known farmers in a village that would receive GAP-content could 

be 15%, 30%, 60% or 100%. The intention was to create a gradient in the 

probability of spillovers: the more farmers in a given neighborhood receive 

GAP-content, the higher the likelihood that one of them would share that 

information with a non-receiving farmer. We planned to detect spillover 

effects on the individual level among farmers in treatment villages that were 

randomly assigned to not receive the treatment using the village-level 
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treatment share as a continuous treatment indicator. Therefore, we also 

surveyed farmers in treatment villages that did not receive the GAP-

messages to measure potential spillovers. In the absence of a measurable 

impact, we decided in 2022, to randomize the treatment on the individual 

level but within strata of the 2021 treatment status. That is, we randomly 

assigned 50% of the treated farmers and 50% of the control farmers from 

2021 to treatment and control, respectively. This resulted in four distinct 

treatment arms: 1) TT received treatment in both years; 2) TC received 

treatment in 2021 but not in 2022; 3) CT received treatment in 2022 but not 

in 2021; and 4) CC did not receive treatment in either year. The reason for 

randomization at the individual level in 2022 were concerns about lack of 

statistical power under a cluster randomization with four de-facto treatment 

arms. 

2.2.3  Sampling design and sample characteristics 

Before treatment assignment in 2021, we conducted power calculations to 

inform the required sample size (see pre-registration for details), and 

employed a truncated proportional random sampling approach to account for 

vastly different village sizes (min=1, max=433). Our intention was to limit 

an expected high intra-cluster correlation in proportional samples from large 

villages by imposing an upper limit. Eligible farmers must be reachable via 

phone, grow peanuts, and have attended at least one group event organized 

by the social enterprise. Based on this approach, we anticipated a total 

sample size of 1001 farmers, but only obtained consent and follow-up data 

from 933. A phone-based baseline survey was conducted in May 2021 to 

obtain prior informed consent by all participants and verify their eligibility. 

A follow-up survey was conducted during physical visits at the farms during 

August and September of the years 2021 and 2022, respectively. Both 

treatment and the follow-up survey were organized by the social enterprise. 
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Farmers were rewarded with a small token of gratitude after finishing the 

follow-up surveys, because initial tests showed that it would lead to a higher 

survey completion rate. Nevertheless, for several reasons, it was not possible 

to visit the exact same farmers in both years. Known reasons include death, 

migration or repeated non-presence of farmers, constrained mobility of local 

supervisors and enumerators due to temporal unavailability of gasoline, lack 

of internet connectivity in the field to supervise the sampling remotely and 

a short time-window imposed by budget constraints. Therefore, we have an 

unbalanced panel dataset, where 592 farmers were visited in both years, and 

an additional 199 and 198 farmers were interviewed in 2021 and 2022, 

respectively. Figure 2.2 also shows the number of surveyed farmers in each 

group and year. 

Figure 2.2: SMS intervention and sampling overview 

 

Note: Sankey diagram showing group sizes and survey status for 2021 and 2022. T indicates 

treatment, i.e. receival of SMS with good agricultural practice recommendations and 

weather warnings, C indicates control, i.e., receival of weather warnings only. TC indicates 

treated in 2021 and control in 2022, whereas CT indicates Control in 2021 and Treatment 

in 2022. CC and TT indicate consecutive control and treatment, respectively. The 2021 
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survey contained questions about household variables prior to the intervention, which we 

used to assess balance. For example: “What kind of roof material did your house have five 

years ago?”. 

 

2.2.3.1   Independent variables 

For this analysis, our treatment indicator is whether GAP content for each 

production stage was delivered to a farmer’s phone number as indicated by 

administrative records. We collected control variables relating to farmer and 

farm characteristics, and show their summary statistics for both years and by 

treatment status in Table 2.1. However, control variables in the 2021 survey 

are based on five-year recall questions and thus refer to the pre-treatment 

status. This was done to assess covariate balance in the absence of a 

complete baseline survey. There are several missing control variables in both 

groups and years as indicated by the number of “Unknown”. As specified in 

our pre-analysis plan, we excluded these observations from the analysis, but 

provide results with imputed (mean) values as a robustness check in the 

supplementary information (Figure S5). Columns 4 and 7 of Table 2.1 

indicates whether significant differences between treatment and control 

group were detected via Wilcoxon rank sum test (for continuous variables) 

and Pearson’s Chi-squared test (for binary variables). Notably, covariates 

are only balanced for the year 2022, but not prior to the intervention (data 

collected in 2021 referred to 2016). Respondents in the treatment group in 

2021 were significantly closer to major roads and cities and had significantly 

more ICT-relevant assets (TV, electricity) than the control group. The fact 

that these imbalances exist in both time-variant and time-invariant variables 

implies that our randomization was not fully successful in the first year, 

which we attribute to deviations from our study design (Section 2.5). The 

variable “priority village” indicates that respondents were located in one of 
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the villages in which the SE reported relatively intense activity and positive 

feedback during previous years. 

Table 2.1: Control variable summary 

Characteristic 2021 Sample 2022 Sample 

 Control  

N = 4871 

Treated  

N = 3041 

p-

value2 

Control  

N = 3881 

Treated  

N = 4021 

p-

value2 

Age (years) 47.41 (13.34) 46.32 

(13.46) 

0.18 47.33 

(13.71) 

48.21 

(13.01) 

0.28 

    Unknown 13 5  7 13  

Gender 

(1=female) 

172 (35%) 112 (37%) 0.66 126 (32%) 135 (34%) 0.74 

Literate (1=yes) - -  301 (78%) 316 (79%) 0.73 

    Unknown 487 304     

years of 

schooling 

- -  6.94 

(4.95) 

7.20 (4.89) 0.60 

    Unknown 487 304     

Number of 

rooms 

2.78 (0.81) 2.86 (0.85) 0.42 3.20 

(1.11) 

3.13 (1.08) 0.33 

Material roof 16 (3.3%) 13 (4.3%) 0.47 22 (5.7%) 14 (3.5%) 0.14 

Material floor 1.67 (0.84) 1.95 (0.81) <0.001 1.72 

(0.83) 

1.71 (0.85) 0.74 

Material wall 2.28 (0.45) 2.46 (0.50) <0.001 2.32 

(0.47) 

2.31 (0.46) 0.83 

Draft animals 

(#) 

1.37 (1.30) 1.24 (1.32) 0.12 1.46 

(1.32) 

1.53 (1.52) 0.96 

Owns plough 

(1=yes) 

110 (23%) 52 (17%) 0.063 113 (29%) 119 (30%) 0.88 

Crops 

cultivated (#) 

2.57 (1.41) 2.47 (1.14) 0.89 2.53 

(1.36) 

2.48 (0.97) 0.89 

Sanitary facility 

quality 

2.30 (0.97) 2.17 (0.85) 0.22 2.25 

(0.80) 

2.17 (0.79) 0.15 

Water access 2.40 (0.50) 2.51 (0.51) 0.005 2.43 

(0.53) 

2.43 (0.52) >0.99 

Charcoal stove 

(1=yes) 

163 (33%) 188 (62%) <0.001 103 (27%) 115 (29%) 0.52 

Has electricity 

(1=yes) 

80 (16%) 110 (36%) <0.001 91 (23%) 78 (19%) 0.17 

Owns vehicle 

(1=yes) 

84 (17%) 60 (20%) 0.38 56 (14%) 65 (16%) 0.50 

Owns TV 

(1=yes) 

39 (8.0%) 69 (23%) <0.001 46 (12%) 48 (12%) 0.97 

Has off-farm 

job (1=yes) 

90 (18%) 47 (15%) 0.27 80 (21%) 82 (20%) 0.94 

Income farming 

(HTG) 

10,747.01 

(16,017.35) 

9,465.59 

(9,586.17) 

0.62 4,987.50 

(6,316.12) 

5,182.32 

(5,861.99) 

0.41 

    Unknown 290 189  85 82  
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Characteristic 2021 Sample 2022 Sample 

 Control  

N = 4871 

Treated  

N = 3041 

p-

value2 

Control  

N = 3881 

Treated  

N = 4021 

p-

value2 

Income total 

(HTG) 

20,110.30 

(26,023.87) 

14,253.68 

(23,067.15) 

0.072 10,040.98 

(9,012.14) 

10,429.34 

(10,913.08) 

0.86 

    Unknown 299 192  85 82  

Distance any 

road (km) 

0.41 (0.66) 0.38 (0.50) 0.055 0.42 

(0.64) 

0.35 (0.60) 0.050 

    Unknown 13 9  51 110  

Travel time 

(min) 

38.45 (22.61) 29.65 

(26.45) 

<0.001 35.03 

(22.63) 

37.17 

(23.02) 

0.29 

    Unknown 13 9  51 110  

Total farm size 

(ha) 

1.62 (1.29) 1.70 (1.85) 0.73 1.18 

(1.00) 

1.33 (1.22) 0.26 

    Unknown 88 68     

Cultivated 

peanut area (ha) 

0.87 (0.72) 0.75 (0.60) 0.002 0.68 

(0.48) 

0.71 (0.50) 0.34 

Contract 2020 

S1 (1=yes) 

47 (9.7%) 33 (11%) 0.58 37 (9.5%) 42 (10%) 0.67 

Contract 2020 

S2 (1=yes) 

43 (8.8%) 19 (6.3%) 0.19 29 (7.5%) 34 (8.5%) 0.61 

Contract 2021 

S1 (1=yes) 

78 (16%) 49 (16%) 0.97 62 (16%) 68 (17%) 0.72 

1 Mean (SD); n (%)      

2 Wilcoxon rank sum test; Pearson's Chi-squared test  

 

2.2.3.2   Outcome variables 

We collected information on knowledge, self-reported practice adoption, 

and self-reported productivity. Knowledge questions relating to different 

stages of crop-production had three answer options; one correct answer, one 

wrong answer and an option “I don’t know”. They were recoded into binary 

variables taking the value of one if the correct answer was given and zero 

otherwise. Six knowledge questions were aggregated into a knowledge score 

by taking the simple mean5. Similarly, eight practice adoption questions 

                                                 
5 The knowledge score includes three questions on disease identification and three on (post-

) harvest practices. Following the pea-analysis plan, two questions regarding storage 

were excluded because more than 95 per cent of respondents gave the correct answer. 
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were aggregated into a practice score6. We extend previous studies by 

including (post-)harvest recommendations and outcomes related to aflatoxin 

contamination, a qualitative yield dimension that is often overlooked 

because it is not directly visible (Ricker-Gilbert et al. 2022). We report 

impact on reported yields, but acknowledge that effects on the intermediate 

outcomes are expected to be more directly affected by our intervention. 

 

Table 2.2: Outcome variable summary 

Characteristic 2021 Sample 2022 Sample 

Control  

N = 4871 

Treated  

N = 3041 

p-

value2 

Control  

N = 3881 

Treated  

N = 4021 

p-

value2 

Knowledge Index 0.54 

(0.23) 

0.60 

(0.21) 

<0.001 0.57 

(0.27) 

0.59 

(0.26) 

0.40 

Practice Index 0.63 

(0.22) 

0.70 

(0.18) 

<0.001 0.64 

(0.14) 

0.64 

(0.15) 

0.71 

Yield: Buckets per 

area (log) 

2.26 

(1.04) 

2.49 

(0.74) 

0.39 2.63 

(0.61) 

2.65 

(0.63) 

0.32 

    Unknown 189 108   8 12   

1 Mean (SD) 
2 Wilcoxon rank sum test 

Note: The difference in the unconditional means of outcome indices in 2021 ceases to be 

significant when controlling for the misallocated treatment and resulting covariate 

imbalance. Therefore, these differences rather indicate a selection bias in 2021 treatment 

allocation than genuine effects of treatment (see Section 2.4 for how we controlled for 

imbalances). In the 2022 sample, differences are no longer significant, which is consistent 

with the lack of impact we report. 

 

                                                 
6 We included two questions regarding field preparation, pest management, harvest and 

post-harvest practices, respectively. Two questions regarding storage were excluded 

because more than 95 per cent of respondents had adopted them. 
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2.2.4  Empirical Framework 

Conceptually, our study builds on the Neyman-Rubin framework of 

potential outcomes to identify causal effects (Neyman 1923; Rubin 1974). 

The internal validity of our estimation rests on the stable unit treatment value 

assumption, i.e. the potential outcome of one unit is not affected by the 

treatment status of another unit and treatment allocation is random7. 

Conceptual pathways to identify the main impact of the GAP-intervention, 

village level spillover effects, impact of repeated treatment and effect 

permanence are shown in Figure 2.3.  

Figure 2.3: Two-period impact identification framework 

Note: Green lines indicate hypothesized changes in outcomes due to the intervention, while 

blue lines indicate no change. Dashed boxes show implicit assumptions at different stages. 

Main impact is the difference between T and C (in 2021 without controlling baseline 

outcomes) and the difference between CT and CC (in 2022, with 2021 outcome levels as 

control). SO denotes the spillover sample of farmers that live in treatment villages, but did 

not receive GAP-messages in 2021. The intensity of indirect exposure to village neighbors 

                                                 
7 To avoid potential bias from spillovers in 2021, we excluded farmers who did not receive 

GAP messages but were located in treatment villages. The individual-level 

randomization in 2022 did no longer allow for this procedure, but the absence of a 

clear impact in 2021 suggests a negligible role of spillovers. 
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serves as an indicator of spillovers when compared to the pure control sample (C). In 2022, 

The difference between TT and CT quantifies the additionality of repeated treatment. In 

theory, the difference between TC and TT or between TC and CC would serve as an 

indicator of impact permanence over time, but it was not possible to assess this due to the 

null-result in the first period. The question mark indicates the unverified assumption of 

equal outcome levels across groups prior to treatment; the exclamation mark denotes that 

this assumption was verified. 

Empirically, we estimated the average treatment effect on the annual cross-

sectional samples via the linear model 

𝑌𝑖𝑗 =  𝛽0 +  𝛽1𝑇𝑖 +  𝛽2𝑋𝑖𝑗 +  𝜖𝑖𝑗 (Eq. 2.1) 

where y is the outcome of farmer i in village j, T is the binary treatment 

indicator with the parameter of interest β, X is a set of control variables, and 

ϵ is an identically distributed error term with mean zero. For the first year 

(2021), treatment 𝑇𝑖 indicates the groups C and T in Figure 2.2, while for the 

second year (2022), 𝑇𝑖 indicates the groups CC and CT, since the second 

year’s specification is based on the subsample that did not receive treatment 

in 2021. For cross-sectional regressions, we clustered the standard errors at 

the village level. We included all observable covariates to account for 

remaining imbalances (see Table 2.1) to account for potential pre-treatment 

group differences. The covariates collected during 2021 are based on a five-

year recall and thus reflect the pre-intervention year 2016. We include a 

sparse model specification with no covariates in the Figure S6 as a 

robustness check. For the regression using the cross-sectional sample of 

2022, we add a control variable indicating treatment status in the year 2021 

to account for different levels of treatment intensity. 

To exploit the panel data structure, we employed fixed-effects to eliminate 

time-invariant unobserved heterogeneity:  

𝑌𝑖𝑗𝑡 =  𝛼𝑖 +  𝛽1𝑇𝑖𝑡 +  𝛽2𝑋𝑖𝑗𝑡 + 𝑢𝑗𝑡 +  𝜖𝑖𝑗𝑡 (Eq. 2.2) 
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where 𝑌𝑖𝑗𝑡 is outcome i of farmer j at time t, α are individual fixed effects, 

while the other model elements are the same as in (2.1), with additional 

subscripts representing the time dimension. The treatment indicator 𝑇𝑖𝑡 takes 

the value of zero for never treated farmers (CC), one for farmers treated in 

either year (CT and TC), and two for farmers treated in both years (TT). 

With this continuous treatment indicator, we assume constant effects, i.e., 

that going from never treated to once treated has the same average effect as 

going from once to twice treated. We report an alternative specification 

where we explicitly estimate the additive effect of repeated treatment 

indicated by a dummy variable in the supplementary material (Figure S4). 

To ensure our assumption of parallel trends between years, we controlled 

whether a farmer had a contract with the SE in season 2 of the year 2021, 

but this was only the case for 11% of farmers. Of the 791 farmers that 

completed the 2021 survey, only 592 also completed the 2022 survey. The 

attrition rate in the treatment group was at 36% twice as high as in the control 

group (18%). This was expected, since we oversampled some treatment 

villages in 2021 and decided to prioritize a more uniform number of farmers 

per village for the 2022 survey. To account for selective attrition, we 

followed Weuve (2012) and employed inverse attrition probability weights 

to adjust our FE estimates. 

Finally, we created subgroups along relevant dimensions to study impact 

heterogeneity based on the internally valid CC vs. CT sample. To do so, we 

split continuous variables at their median, and binary variables into their 

respective levels to understand whether impacts differ along age, sex, 

education, farm size, income, road distance and contract farming scheme. 

The latter particularly served to identify the complementarity of digital and 

traditional extension, since the contract farming included four physical 

extension visits and access to inputs. 
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2.2.5   Deviations from study plan and robustness checks 

During the year 2021, relevant deviations from the pre-registered study 

design occurred with potential implications for the internal validity. Given 

the unexpected result, our most relevant robustness check was the repetition 

of the experiment in the subsequent year. In addition, we conducted multiple 

robustness tests in addition to our main specification for the 2021 cross-

section, as described below. 

First, the SMS were intended to accompany the phenological stages during 

the season (i.e. content on planting, fertilization, weed- and pest 

management, maturity checks and post-harvest practices), but due to 

technical delays not all GAP-content arrived in time to be relevant for 

farmers. We therefore used a reduced practice adoption index in the 

Supplementary Material (Figure S1) that excludes early-stage practices, 

since no effect can be expected8. 

Second, the village-level covariate balancing was compromised, because the 

village-level information obtained from local exerts was partially inaccurate 

– a fact that we could only verify after collecting follow-up data with the 

exact GPS-based location of all farms. In addition, due to unreproducible 

technical glitches, the treatment was administered to 46 farmers in the 

planned control group, but there were also 93 farmers in the planned 

treatment group that did not receive SMS. The result was a significant 

imbalance between treatment and control group as shown in Table 2.1. To 

test whether our results are sensitive to selection bias we provide alternative 

estimates based on different purposefully chosen subsets of observations 

(Figure S2). First, we ran separate regressions for the subset of farmers 

                                                 
8 We did not create a reduced knowledge index since farmers can still learn even if 

messages arrive later. 
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located in and outside of priority villages, respectively, to check for 

heterogeneous treatment effects. Second, we use nearest-neighbor 

propensity-score matching. Matching aims to reduce selection bias and 

relies on the assumption that all variables relevant for the selection process 

have been observed. We used the logit link with replacement and a caliper 

of 0.1 in the MatchIt package (Ho et al. 2011) in R (R Core Team 2020) and 

visually verified post-matching covariate balance. For time-variant 

covariates, we used the recall data collected during the 2021 survey, which 

refer to the year 2016 (pre-treatment). In this way we sought to avoid control 

variables being affected by treatment status. 

2.3 Results 

A simple comparison of means for the 2021 outcomes indicates significant 

differences between the treatment and control group (Table 2.2). However, 

attribution of these differences to the SMS-intervention is not 

straightforward because of potential selection bias resulting from potential 

non-random treatment allocation in 2021. Points in Figure 2.4 shows the 

estimated intention-to-treat effect GAP-messages had on the overall 

knowledge- and practice adoption scores as well as yields. Corresponding 

error bars show three levels of cluster robust confidence intervals, namely 

90%, 95% and 99%. All estimates were divided by the standard deviation of 

the outcome and can be interpreted as standardized mean differences. Red 

and green estimates are based on Formula (2.1) using the 2021 and 2022 

cross-sections, respectively. The light blue estimates are based on Equation 

(2.2) and the full panel data, i.e., the farmers with available observations in 

both years. Finally, the purple estimates are also based on Equation (2.2), 

but rely only on farmers from the 2021 control group. This last one is our 

preferred model specification, since it provides a clean before-after-control-

intervention contrast. None of the estimates are significantly different from 
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zero, and we cannot reject the hypothesis that GAP-messages did not 

increase knowledge, practice adoption and yields. Statistical significance 

aside (Heckelei et al. 2021), the estimated 90-99% confidence intervals 

suggest rather small to moderate effect ranges. 

 

Figure 2.4: GAP SMS impact estimates 

 

Note: For the three outcomes knowledge, practice adoption and yield, points indicate 

Intention to treat (ITT) estimates, lines are cluster-robust 90, 95, and 99% confidence 

intervals. Colors show different subsamples; red and olive-green employ cross-sectional 

regressions for 2021 and 2022, respectively (Eq.2.1). Dark green is an attrition-adjusted 

two-ways panel regression with all available observations, Light-blue uses only panel 

observations that did not receive treatment in 2021 (Eq. 2.2). Pink estimates compare 

farmers in control villages to farmers in treatment villages that did not receive GAP-

messages. All regressions include household control variables presented in Table 2.1. 

The null-result prevented us from proceeding to assess within-village 

spillover effects as we had planned. We report spillover estimates in pink 

for completeness, but in the absence of an overall effect it would be 

surprising if they were anything but insignificant, so we do not consider 

them any further. Still, we tested whether estimates differed for a range of 

subgroups. To create the subgroups, we split the sample at the median of the 
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respective variables (farm size, income, travel time, years of schooling, age), 

or into the two categories of binary variables (having a contract with the SE 

or not, being male or female). We did not find evidence for any 

heterogeneous effects (Figure 2.5). Furthermore, we used available 

secondary outcomes such as self-reported sales, harvest losses, and pest 

incidence, but did not find any impacts on any of them (Figure S1, 

Supplementary Information). Across a wide range of tested model 

specifications, including a covariate matching estimator, excluding subsets 

of control variables, and imputing missing covariate values, we found no 

coherent impact of the intervention (Figures S2-S6, Supplementary 

Information) 

2.4 Discussion 

The lack of evidence for any impact of the intervention was unexpected. 

Repeating the experiment in the consecutive year confirmed the null-result. 

This finding partially contrasts with prior research on this topic (see Section 

2.1), which warrants a discussion of potential empirical and conceptual 

explanations. From a policy learning point of view, even experiments with 

methodological drawbacks are valuable. They can help to reduce the 

uncertainty around a given phenomenon and enable us to gauge the 

sensitivity of impacts to the violation of specific assumptions, design 

choices, and contextual factors. Moreover, even findings with very local 

external validity can be incorporated in meta-analyses, as long as they are 

target-equivalent and unbiased (Slough & Tyson 2022). 
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Figure 2.5: Heterogeneity impact estimates 

 

Note: For the three outcomes knowledge, practice adoption and yield, points indicate 

Intention to treat (ITT) estimates, lines are cluster-robust 90, 95, and 99% confidence 

intervals. For this heterogeneity analysis we split the data in high/low values of the 

respective variable of interest at the median (or 1/0 in case of binary variables). Colors 

show different subsamples based on the internally valid sample of farmers that did not 

receive treatment in 2021 and treatment was randomly allocated in 2022 (i.e. CC vs. CT 

groups). 

 

2.4.1  Empirical considerations 

We sent out SMS and ensured that farmers were technically able to receive 

them. However, this does not imply that they actually read the messages and 

paid attention to its content. Therefore, rather than the actual treatment 

effect, we could only identify intention-to-treat (ITT) estimates, which is 

what other studies also did. 

Our power calculations and resulting sampling strategy in 2021 were 

informed by local partners and literature on similar experiments. Our 

original sampling strategy was based on a power calculation aiming at 

identifying effect sizes in the order of 0.1 standard deviations at 95% 
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confidence with 80% power. The pre-analysis plan specifies the relevant 

assumptions we made in terms of number of villages (clusters), cluster sizes, 

intra-cluster correlation (ICC), detectable effect sizes and desired power. As 

a result of the deviations from our study design, the de-facto sample 

considerably deviated from our planned sample in terms of cluster group 

sizes due to organizational constraints, so we conducted an ex-post power 

calculation. We anticipated 46 clusters, each with 10-30 farmers, assuming 

an intra-cluster correlation of 0.2. De facto, we had higher variation in 

cluster size and therefore also higher intra-cluster correlation. Hence, the 

power dropped substantially, as illustrated in Figure S9. While we expected 

to detect changes in binary outcomes in the order of 10-20 percentage points 

with 80% power, we only achieved detectable changes in binary outcomes 

in the order of 15-30%. Similarly, for continuous outcomes we expected to 

detect effect sizes of 0.15 standard deviations, but in fact were only able to 

detect effect sizes of 0.38 standard deviations based on our cluster-

randomization design. Notably, an effect size of 0.38 standard deviations 

translates to a 0.1 unit change in our main outcome indices, the knowledge 

and adoption scores. Importantly, an impact below that threshold is unlikely 

to have a relevant economic implication. In addition, we repeated the 

intervention in 2022, but randomized at the individual level. This allows for 

potential spillovers within villages, but if we assume that such spillovers do 

not exist, the power of that design increases dramatically, and we could have 

detected effect sizes greater than 0.12 standard deviations with 80% power 

in the 2022 cross-section. We thus argue that our study was still sufficiently 

powered. 

Based on our pre-analysis plan, we tested our hypothesis using conventional 

levels of confidence, i.e., 95%. This implies by definition that one in 20 

studies will not show a significant statistical effect even if it actually exists. 

As indicated by the additional confidence bars for 90% and 99% in Figure 
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2.4, our results are not sensitive to the chosen level of confidence. Moreover, 

since we repeated our experiment and did not find any impact on any of the 

measured outcomes, we are confident that we are not looking at a false 

negative. This conclusion is supported by the individual-level randomization 

we opted for in the second year, which gave us much more statistical power 

at the expense of being able to detect potential spillovers. Finally, we tested 

an alternative ANCOVA model specification in which we controlled for pre-

intervention outcomes as suggested by McKenzie (2012), but did not find 

any significant impacts (Figure S8)9. 

2.4.2  Conceptual considerations 

2.4.2.1  Study participants 

The participating farmers in our study may have different characteristics 

from Haitian farmers in the general. In particular, they all had attended at 

least one workshop with the social enterprise, where they received peanut-

related information and could sign up for a contract involving extension 

visits and input-provision in exchange for peanuts at the end of the season. 

That is, the farmers that attended these events are at least partially market-

oriented land-owners, most with previous experience in peanut cultivation. 

Promotion of the events originally occurred via local groups (including 

churches), but since the organization has been active for almost a decade 

there is no particular bias to be expected with respect to who has heard of it. 

Table S3 contains a comparison between household- and outcome 

characteristics of our sample with representative secondary data sources 

(ICF International, 2013; Kostandini et al., 2021). The large majority of 

variables is within a ten percent margin of wider population estimates, 

indicating general representativeness. However, farmers in our sample had 

                                                 
9 We thank an anonymous reviewer for this suggestion to improve statistical power. 
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higher levels of knowledge regarding peanut production than average 

farmers as indicated by higher levels of certified seed adoption and 

knowledge regarding post-harvest practices. Previous studies indicate that 

overall higher knowledge levels make incremental effects harder to achieve 

(Casaburi et al. 2013), especially via information that can only occupy 160 

signs in a short text message (van Campenhout 2021). Nevertheless, the 

range of average knowledge- and adoption scores between 60-70% (Table 

2.2) in our view still suggest sufficient opportunity for improvement and 

detectable impacts. 

One study from Ecuador found heterogeneous impacts on practice use of an 

SMS-intervention along education levels although they did not find a 

significant overall effect on knowledge (Carrión-Yaguana et al. 2020). 

Although prevailing illiteracy is high in our study region, farmers had 

previously reported that at least one household member could read and 

understand the messages. Our results provide no evidence for heterogeneous 

effects across levels of education (Figure 2.5). Anecdotal evidence suggests 

no signs of message fatigue or mistrust in the context of this study. 

2.4.2.2  Setting 

Previous studies in Haiti found that subsidies did not improve input use or 

yields because farmers substituted rather than complemented their former 

input use for reasons of incorrect expectations (Gignoux et al. 2022). 

Specific for peanuts, another study found that a technology transfer program 

did not improve food security, production value or even the use of post-

harvest technologies (Macours et al. 2018). Such findings may be specific 

to Haiti, which has been repeatedly exposed to external shocks over the past 

years and also during our study period, thus limiting generalizability. On 

July 7th 2021, Haiti’s president was assassinated, leading to political 

instability and social unrest that persisted throughout the following year. In 
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addition, the southwestern part of Haiti was struck by an earthquake with a 

magnitude of 7.2 on August 14 followed by a Tropical Depression on August 

16 of 2021. These shocks were not concentrated in our study region, but may 

have affected aspirations and thereby production and consumption decision 

of both treatment and control group (Tabe-Ojong et al. 2021). We speculate 

that as a result of social instability, farmers may put less trust in external 

information and their risk- and time preferences could become more 

attenuated. As a consequence, farmers could have paid less attention to 

messages and relied on sub-optimal, but known production practices. 

We initially expected that effects may be stronger in priority villages due to 

other unobserved characteristics, but did not find clear evidence for such 

heterogeneous effects (Figure S2). As shown in Table 2.1, farmers in the 

treatment group had significantly more assets and shorter travel times. If 

these characteristics are also indicative of better pre-intervention managerial 

skills, impact estimates would be biased upwards. The fact that we did not 

find any impact thus supports the null-result. The likelihood that farmers 

were systematically unable to receive messages due to a lack of electricity 

or network coverage is low, since we verified message reception in both 

groups. Nonetheless, such infrastructural barriers could reduce the potential 

of ICT-based extension services in our study region and contribute to a 

digital divide through channels beyond the studied intervention (Mehrabi et 

al. 2021).  

2.4.2.3   Design 

Our evaluation design differed in various aspects from previous studies on 

the same topic. Although we aimed to control for pre-treatment differences 

by asking farmers to recall information on time-variant control variables five 

years ago, recall information may be subject to non-random measurement 

error. Therefore, we cannot be certain of the (im-) balances presented in 
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Table 2.1, left side, and rather rely on the robustness of our results with and 

without these control variables to derive our conclusions. Additionally, we 

did not collect outcome variables before the intervention in 2021. This in 

turn affected our intervention design, because identification of knowledge- 

and practice adoption gaps and the content design were necessarily obtained 

from local experts. Participatory development of message content in 

collaboration with the target group could have increased the effectiveness, 

but there is a limit to the complexity of short text messages. Previous studies 

found communication vehicles that allow for more content complexity, such 

as apps, to be more effective than SMS (Giulivi et al. 2022). In 2021, the 

SMS-intervention was delayed several weeks, which made the content of 

some messages useless because they did not arrive in a timely manner. Our 

robustness check using a reduced adoption score underlined that this source 

of error was not influential (Figure S1). 

2.4.3  Lessons learned for experimental studies in presence of 

implementation constraints  

Many constraints dictated by field reality may limit both the implementation 

of an intervention as well as the experimental design for its evaluation. 

Constraints are less of a problem if they can be effectively mitigated or do 

not drastically affect the validity of a research design. On the other hand, 

unanticipated constraints that compromise the validity of results can pose 

substantial challenges. In the following, we provide examples of both types 

of constraints and give practical strategies to avoid and address some 

limitations that may occur in experimental studies.  

We anticipated that the context in which the intervention of this study took 

place would make it challenging to adhere to all aspects of our registered 

pre-analysis plan. However, a pre-registration does not mean that one cannot 

adapt a research design to unforeseen circumstances. Rather, it facilitates 
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thoroughly study planning and enabled us to transparently put empirical 

weaknesses into perspective vis-à-vis a baseline scenario. Consequently, we 

recommend pre-registration under all circumstances, even under high risk of 

partial deviation from the study plan dictated by field conditions.  

A more critical constraint includes the unavailability of baseline data and 

difficulty to identify baseline group imbalances at an early stage. One way 

to account for potential imbalances post-hoc is to collect recall data that can 

be used as control or to support covariate matching as we did during the 

follow-up survey. An additional possibility for outcomes such as yields and 

certain agricultural practices is to use remote sensing data to measure pre-

intervention outcomes (Cole 2020); but this requires exact knowledge of the 

field boundaries while we only knew the coordinates of the farm. The 

evaluation procedure can be kept more flexible by collecting additional 

outcome variables or use different aggregation methods. In our case we 

created a reduced practice adoption index to account for unforeseen delays 

in message timing as a robustness check. 

Finally, there are constraints that are both unforeseen and critical to a study’s 

validity. In our case, this included not being able to conduct field visits and 

do qualitative work such as focus group discussions in person due to travel 

restrictions and security concerns. While digital communication can 

ameliorate some issues, it is not agile in contexts of limited connectivity and 

provides no first-hand opportunity to evaluate how a survey went or to 

collect spontaneous reactions of farmers. Building up trust and effective 

communication with implementers – ideally accompanied by real-time 

monitoring of all relevant field operations - thus remains crucial. 

From a policy learning perspective, it is important to conduct experiments 

in challenging settings, since research bias could omit important policy 

implications. This is particularly the case for real-world interventions which 
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are typically not designed by researchers. Furthermore, some constraints 

may be overcome by planning and empirical methods ex-post. But even 

when everything goes as planned, experiments have many limitations and it 

remains crucial to determine their adequacy for a given setting and research 

question (Bédécarrats et al. 2020). 

2.5 Conclusion 

This study found no evidence that ICT-based information affected 

knowledge, practice adoption or yields among Haitian peanut farmers. We 

discussed the validity of these findings and argue that two context-specific 

factors have contributed to these particular outcomes. First, our sample was 

relatively well-informed already before the intervention, suggesting 

diminishing marginal returns to SMS-based information provision. Second, 

exogenous shocks during the study period may have increased risk aversion 

and reduced trust in non-personal information sources. 

In addition, similar studies in other contexts suggest that more personally 

tailored information based on bidirectional information flows provide larger 

benefits. Yet, the required technical means (e.g. Apps, Interactive Voice 

Recordings) have higher entry barriers in terms of required literacy and 

access. Therefore, it is important for policy makers to consider and limit the 

effect of how differentiated (digital) information access may intensify 

existing inequalities and marginalization of certain groups. More research is 

needed to understand how contextual factors shape the efficacy of digital 

farm advisory services. 

Future studies would benefit from using measured as opposed to self-

reported outcome data, such as via quantifying actual field-level yields as an 

indicator of productivity using remote sensing. This could help to provide 
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more personalized and timely advice that would be of higher relevance to 

the receivers. 
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Chapter 3  
On-demand multimedia farming 

advice increases knowledge on pest 

management among vegetable 

farmers in El Salvador10 

3.1 Introduction 

Digital technologies are emerging as important means of agricultural 

transformation towards food security and sustainability (von Braun et al. 

2021). Information and Communication Technologies (ICT), in particular, 

have received increasing attention for their potential to disseminate 

information to farmers promptly, also in remote locations (Baumüller 2018; 

Fabregas et al. 2019). However, the effectiveness of various ICT formats on 

knowledge acquisition and adoption of practices varies. 

Previous research investigated the impacts of text messages (Carrión-

Yaguana et al. 2020; Casaburi et al. 2013; Larochelle et al. 2019), interactive 

voice recordings, and videos presented on tablets during personal meetings 

(Tambo et al. 2019; van Campenhout 2021). Overall, they report positive 

impacts of ICTs on agronomic know-how. In contrast, the effect on adoption 

                                                 
10 This chapter is an unpublished report, drafted to complement the study presented in 

Chapter 2.  
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of recommended practices and production-related outcomes are less 

common and generally smaller in magnitude. Interventions based on short 

text messages struggle to effectively deliver more complex advice and a 

recent trial with short text messages conducted in Haiti found no impact on 

farmer’s knowledge (Schulz and Börner 2023). Another limitation is that 

text messages and video screenings contain rather generic content and are 

pushed to recipients. At the same time, recent studies have shown a sizeable 

positive impact of personalized advice provided to farmers (Arouna et al. 

2021; Rajkhowa and Qaim 2021). Therefore, there is a need to evaluate 

alternative ICT channels that are able to convey more complex advisory 

contents that are actionable and relevant. 

With the diffusion of smartphones and steadily improving internet network 

coverage in many rural areas, farm advisory services can leverage more 

refined and visually interpretable information such as multimedia content 

and interactive communication platforms. However, previous studies have 

not rigorously evaluated interactive multimedia content such as audios, 

videos, infographics and pictures as an ICT-based communication vehicle 

for farming advice.  

In this study we address this gap by examining the effectiveness of a real-

world pilot intervention using demand-driven multimedia content delivered 

through an interactive chat tool. The pilot intervention was executed 

simultaneously to an SMS-based intervention in Haiti, which yielded no 

discernible impacts (Schulz and Börner 2023) and was implemented by the 

identical social enterprise. We present experimental evidence of the 

randomly phased-in digital extension service among vegetable farmers in El 

Salvador to assess the impact on farmers' knowledge and adoption of 

recommended practices. Several contextual factors, such as regular 

extension visits by the social enterprise, the trust level in information 
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provided by them, and the provision of input and market access, were similar 

to the intervention in Haiti, enhancing the comparability of results alongside 

the harmonization of the follow-up survey; however, the distinct 

socioeconomic and biophysical setting as well as the unique intervention 

also pose limitations on direct comparison with Schulz & Börner (2023). 

Our preliminary results from the pilot study indicate significantly higher 

knowledge during the follow-up survey among farmers who requested 

multimedia content. We attribute this difference to the uptake, i.e., active 

participation by compliers, of the randomly phased-in intervention. These 

results suggest that demand-driven multimedia content has the potential to 

enhance agricultural knowledge acquisition and potentially improving 

farming practices in our study setting. 

The following Section 3.2 describes the context, intervention, sampling 

design and empirical framework of our study. Section 3.3 shows the results 

which are discussed and set into perspective in Section 3.4 before we 

conclude with policy recommendations in Section 3.5. 

3.2 Material and Methods 

This study was approved by the Research Ethics Committee of the Center 

for Development Research (ZEF), University of Bonn. All study participants 

gave their prior informed consent in written form. An analysis plan for the 

study was pre-registered at the Open Science Foundation11. The study 

region is located in the Chalatanango district in the highlands of El Salvador. 

The climate is tropical, with a wet season between May and October. We 

partnered with a locally operating social enterprise that has been actively 

providing agricultural training, inputs, and market access to vegetable 

                                                 
11 The pre-registration plan can be accessed via: https://doi.org/10.17605/OSF.IO/854K7. 
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farmers in the region for more than three years. To complement their 

physical extension activities, the organization tested the digital information 

intervention during a random phase-in to assess its efficacy. The author did 

not visit the study regions due to travel restrictions and instead relied on 

virtual meetings with the partner organization to plan and oversee 

intervention and data collection. 

3.2.1 Intervention 

The social enterprise actuating in the study region supports vegetable 

farmers with regular physical extension visits, material inputs, and market 

access. All farmers working with the social enterprise and owning a 

smartphone received regular weather forecasts via WhatsApp. This 

continued throughout the pilot intervention and was not affected by 

treatment allocation. The pilot intervention provided a mixture of texts, 

images, audio, and videos with Good Agricultural Practices (GAP) and was 

offered to farmers via WhatsApp in Spanish. All GAP content was 

developed by local agronomists. Based on a predefined schedule, treated 

farmers would first receive a text message offering further information on 

weekly topics. For example, “Hello [name of farmer], we want to inform 

you about the thrips plague. To receive daily information on how to combat 

it you only have to answer YES.” If farmers responded accordingly within a 

24-hour time window, they would automatically receive further multimedia 

content, such as pictures containing the different growth stages of the plague, 

options of recommended pesticide products, and the recommended dosage. 

Similarly, a short video showing how and where to set up insect traps was 

offered to farmers. A screenshot of an exemplary chat is depicted in Figure 

3.1 below. This study did not aim to assess whether these multimedia 

formats had different impacts. 
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Figure 3.1: Example of simple chatbot interaction 

 

Note: Translation from top to bottom: 1) „Hello [name], Extensio brings you the week of 

paratrioza: Today and on Friday you receive information about this plague and you only 

have to respond ‚YES‘ to learn how to combat it. Greetings.“. 2) „YES“. 3) „Pest control 

Paratrioza“ [close-up picture of paratrioza] „What to apply? For a 18 liter canister 1. 

Products with thiocyclam (preventive): Tryclan 50 SP (one cup); 2. Products with 

Spirotetramat: Movento 15 OD (1-2 cups); 3. Products with Flupyradifurone: Sivanto 

Prime 20 SL (25-50 CC)“. One cup refers to the lid of the product container and is 

equivalent to 25 cubic centimeters (CC).  
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We obtained message logs containing detailed delivery status (sent, 

delivered, read) and created a binary variable “GAP-request” that took the 

value of 1 if farmers responded affirmatively to the content offering and zero 

otherwise. Based on the delivery status of the weather messages that were 

sent to all farmers independent of treatment status, we verified the eligibility 

of the control group, namely whether farmers could receive WhatsApp 

messages at all (see  

Figure 3.2 for more details).  

3.2.2 Sampling approach 

To be eligible to receive the intervention, farmers had to fulfill three criteria: 

1) actively work with the local input provider in the study region; 2) give 

their prior informed consent to participate in the study; and 3) own a 

smartphone and be able to receive WhatsApp messages. 

Within the scope of the regular extension visits, 233 farmers working with 

the local organization at the time were visited to obtain prior informed 

consent. After explaining the study design and objective, a subgroup of 140 

farmers agreed to participate. The implication of this convenience sample in 

terms of external validity is discussed in Section 3.4. To avoid information 

spillovers and the associated violation of the stable unit treatment 

assumption, interventions are often randomized at the village level (Duflo et 

al. 2006). However, in our case, the available sample size only allowed for 

individual randomization for an acceptable statistical power. We address the 

concern of potential information spillovers below. Due to the small sample 

size, we applied non-bipartite covariate matching based on already available 

baseline data to increase statistical power (Beck, Lu, & Greevy, 2016; Imai, 

King, & Nall, 2009). The baseline data was collected via in-person 

household surveys in December 2020 by extension agents working for the 

social enterprise. Summary statistics of all baseline characteristics by 
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intervention group are presented in Table 3.1. The WhatsApp-intervention 

occurred between May and June 2021 and the follow-up survey occurred 

between July and August 2021. The follow-up survey was also conducted 

by the regular extension agents during their visit to the farm. Four farmers 

moved away during the study period and did not finish the follow-up survey, 

so attrition was 3%, resulting in a final sample size of 136. Figure 3.2 shows 

the number of farmers in both groups that received weather messages and 

were thus considered eligible for the intervention. Around 80% of farmers 

with a smartphone received and read the weather messages; the missing 20% 

are likely due to a temporary lack of internet access and were transferred to 

the group of never-takers. We here define never-takers as farmers without 

smartphones or who did not receive the messages and use them as an 

alternative control group. The rationale to include this group in the analysis 

was to assess potential information spillovers because we assumed that 

messages could be easily forwarded to farmers in the control group, but not 

to never-takers without a smartphone. Overall, there were 43 farmers who 

did not have a smartphone or could not receive complementary weather 

messages during the intervention. Following the pre-analysis plan, one 

outlier was removed from the analysis due to heavily diverging production 

characteristics, leaving three final groups: treatment (n=47), control (n=45), 

and never-takers (n=43). 
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Figure 3.2: Eligibility and treatment compliance 

 

3.2.3 Empirical Framework 

Our primary outcome of interest is an agricultural knowledge index, 

calculated as the average score across six multiple-choice questions (one 

correct answer, one wrong answer and one opt-out) gauging farmers' 

understanding of recommended agricultural practices. To evaluate changes 

in application behavior, we created a correct dosage index. This index 

reflects the proportion of times farmers reported using the correct product 

and dosage when addressing a specific pest, based on three separate pests. 

Additionally, we collected data on self-reported production changes 

perceived by farmers after the intervention. This included their subjective 

assessments of yield losses (increased/decreased) and changes in spending 

on pesticides and fungicides (more/less).  
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Distributing the intervention via WhatsApp has the positive side effect that 

treatment delivery status can be measured by checking whether messages 

were delivered, visualized by the recipient, and responded to. This allowed 

us to estimate different effects for assigned treatment status and actual 

treatment status. First, we estimate the effect of being offered GAP as the 

intention-to-treat (ITT) effect and use as its indicator a binary variable that 

takes the value of one if the farmer received GAP-content in the smartphone 

and zero otherwise. We refer to this as ITT because it does not mean that the 

recipient paid attention to the message content. On the other hand, if the 

person actively requested additional information by answering to a GAP-

content offering, we expect the probability that the person will also pay 

attention to subsequent multimedia content to be higher. We, therefore, use 

a binary treatment indicator variable that takes the value of one if a person 

requested GAP content to estimate a Local Average Treatment Effect 

(LATE). 

Both treatment indicators are used within the same empirical framework, 

which can be written as 

𝑌𝑖 = 𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑋𝑖 +  𝜖𝑖 (Eq. 3.1) 

Where Y is the outcome of interest for farmer i, T is the treatment indicator, 

X are control variables and ϵ is a randomly distributed error term. We include 

baseline controls to improve the precision of our estimate (Duflo et al. 2006). 

The estimated effect β is obtained via OLS regression. 

Information spillovers can easily occur because our study region covers a 

relatively small area and the cost of sharing digital information with peers 

via the same communication channel is very low (Fabregas et al., 2019). 

Therefore, we assess potential spillover effects by comparing our control 

group with the group of never-takers that do not use a smartphone. If they 
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are similar in both baseline and outcome characteristics, it is unlikely that 

the control group benefitted from information spillovers. 

3.2.4 Sample characteristics 

Table 3.1 summarizes the independent variables across different groups and 

test for differences. In general, we find good balance across the observed 

covariates. The treatment group seems to be somewhat better educated 

compared to the other groups. We consider the randomization to be 

successful, but nevertheless control for all baseline characteristics during 

impact estimation.  

Following our pre-analysis plan, we excluded two practice adoption 

outcomes because more than 95% of farmers had adopted them. The 

excluded outcomes were 1) whether they sprayed pesticides during fresh 

hours and 2) whether they washed their spraying equipment between usage. 

Based on the remaining outcomes, we calculated scores for knowledge and 

correct dosage application by taking the unweighted mean across the 

respective index components. Regarding the outcome variables during the 

follow-up survey, we find significant differences between groups, as shown 

in Table 3.2. Notably, never-takers had significantly fewer correct answers 

among the knowledge questions than the control group. This could indicate 

information spillovers or existing information barriers and points towards a 

potential digital divide (Mehrabi et al., 2021). The comparison of means 

indicates no significant differences in pest management practices or 

pesticide use. However, treated farmers spent significantly more resources 

on pesticide products and their application than the control group, although 

both groups interacted with the input supplier in the same frequency. 

Notably, the control group spent the lowest amount of time and money on 

pesticide products in self-reported absolute terms but, at the same time, did 

not report to have spent less on it when asked for relative changes. Due to 
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this inconsistency in measurements, we must interpret related results 

cautiously. 

Table 3.1: Group-wise summary statistics of independent baseline variables 

Variable N All 

N = 

1351 

Control 

N = 451 

Never-

Takers 

N = 431 

Treated 

N = 471 

Control 

vs. 

Never-

Takers 

Control 

vs. 

Treated 

Never-

Takers 

vs. 

Treated 

Married 

(1=yes) 

12

2 

67 

(55%) 

20 

(48%) 

24 

(63%) 

23 

(55%) 

0.17 0.51 0.45 

Gender 

(1=female) 

12

3 

7 

(5.7%) 

2 (4.7%) 2 (5.3%) 3 (7.1%) 0.91 0.62 0.72 

Owns 

greenhouse 

(1=yes) 

12

3 

53 

(43%) 

17 

(40%) 

15 

(39%) 

21 

(50%) 

>0.99 0.34 0.35 

Has 

irrigation 

system 

(1=yes) 

12

3 

103 

(84%) 

35 

(81%) 

33 

(87%) 

35 

(83%) 

0.51 0.81 0.68 

Owns 

tractor 

(1=yes) 

12

3 

5 

(4.1%) 

1 (2.3%) 2 (5.3%) 2 (4.8%) 0.51 0.57 0.91 

Owns water 

pipe 

(1=yes) 

12

3 

62 

(50%) 

22 

(51%) 

21 

(55%) 

19 

(45%) 

0.72 0.59 0.38 

Has natural 

gas (1=yes) 

12

3 

66 

(54%) 

24 

(56%) 

18 

(47%) 

24 

(57%) 

0.45 0.90 0.39 

Has cable 

TV (1=yes) 

12

3 

83 

(67%) 

30 

(70%) 

22 

(58%) 

31 

(74%) 

0.26 0.69 0.13 

SE primary 

market 

(1=yes) 

12

2 

96 

(79%) 

32 

(76%) 

28 

(74%) 

36 

(86%) 

0.79 0.29 0.19 

With SE > 

3 years 

(1=yes) 

12

2 

83 

(68%) 

25 

(60%) 

30 

(79%) 

28 

(67%) 
0.065 0.48 0.24 

Tertiary 

education 

(1=yes) 

12

2 

6 

(4.9%) 

0 (0%) 2 (5.3%) 4 (9.5%) 0.28 0.045 0.38 

Secondary 

education 

(1=yes) 

12

2 

34 

(28%) 

15 

(36%) 

7 (18%) 12 

(29%) 
0.088 0.47 0.31 

Primary 

education 

(1=yes) 

12

2 

35 

(29%) 

10 

(24%) 

11 

(29%) 

14 

(33%) 

0.62 0.34 0.67 

No formal 

education 

(1=yes) 

12

2 

47 

(39%) 

17 

(40%) 

18 

(47%) 

12 

(29%) 

0.53 0.26 0.087 
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Variable N All 

N = 

1351 

Control 

N = 451 

Never-

Takers 

N = 431 

Treated 

N = 471 

Control 

vs. 

Never-

Takers 

Control 

vs. 

Treated 

Never-

Takers 

vs. 

Treated 

Income < 1 

min. wage 

(1=yes) 

12

2 

49 

(40%) 

15 

(36%) 

12 

(32%) 

22 

(52%) 

0.71 0.12 0.059 

Income 1-2 

min. wages 

(1=yes) 

12

2 

61 

(50%) 

22 

(52%) 

23 

(61%) 

16 

(38%) 

0.47 0.19 0.046 

Income > 2 

min. wages 

(1=yes) 

12

2 

12 

(9.8%) 

5 (12%) 3 (7.9%) 4 (9.5%) 0.55 0.72 0.81 

Age (years) 11

9 

41.20 

(13.02

) 

39.80 

(12.43) 

44.42 

(12.13) 

39.59 

(14.10) 

0.12 0.94 0.10 

log(Area 

cultivated) 

(ha) 

12

2 

0.37 

(0.34) 

0.40 

(0.29) 

0.33 

(0.36) 

0.37 

(0.37) 

0.36 0.68 0.61 

Dependent 

people (#) 

12

2 

2.53 

(1.42) 

2.57 

(1.48) 

2.66 

(1.38) 

2.38 

(1.41) 

0.79 0.54 0.39 

Household 

size (#) 

12

2 

3.87 

(1.75) 

3.81 

(1.61) 

3.89 

(2.14) 

3.90 

(1.53) 

0.83 0.81 0.98 

Full-time 

employees 

(#) 

12

2 

1.41 

(1.45) 

1.43 

(1.21) 

1.08 

(1.58) 

1.69 

(1.51) 

0.28 0.41 0.060 

Part-time 

employees 

(#) 

12

2 

2.02 

(1.39) 

2.05 

(1.65) 

2.16 

(1.28) 

1.88 

(1.19) 

0.72 0.58 0.38 

Weather 

received (#) 

11

3 

3.47 

(2.00) 

4.36 

(1.17) 

0.00 

(0.00) 

4.17 

(1.31) 
<0.001 0.43 <0.001 

log(Distanc

e to road) 

(km) 

12

5 

0.29 

(0.35) 

0.34 

(0.40) 

0.26 

(0.35) 

0.29 

(0.30) 

0.30 0.52 0.70 

Note: Group sizes given in the column label refer to sizes after imputing covariates by 

taking the mean of observed values. Statistics in this table refer only to observed sample 

characteristics with number of observations indicated on the left. For binary variables 

numbers indicate frequency (percentage) where value is equal to one; p-statistics are for 

Pearson's Chi-squared test. For continuous variables we report mean and standard 

deviation (in brackets); p-statistic refers to Wilcoxon rank sum test. 
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Table 3.2: Groupwise summary statistics of outcome variables during the 

follow-up 

Characteristic Overall,  

N = 135 

Control  

N = 45 

Never-

Takers  

N = 43 

Treated 

N = 47 

Control 

vs. 

Never-

Takers 

Control 

vs. 

Treated 

Never-

Takers 

vs. 

Treated 

Knows material 

(y/n) 

21 

(16%) 

4 (8.9%) 7 (16%) 10 

(21%) 

0.34 0.10 0.52 

Knows shape 

(y/n) 

70 

(52%) 

24 

(53%) 

19 

(44%) 

27 

(57%) 

0.39 0.70 0.21 

Knows trap 

mechanism 

(y/n) 

103 

(76%) 

35 

(78%) 

25 

(58%) 

43 

(91%) 

0.025 0.11 <0.001 

Knows blue 

trap (y/n) 

69 

(51%) 

22 

(49%) 

14 

(33%) 

33 

(70%) 

0.11 0.035 <0.001 

Knows yellow 

trap (y/n) 

82 

(61%) 

26 

(58%) 

17 

(40%) 

39 

(83%) 

0.065 0.010 <0.001 

Knows mixture 

steps (y/n) 

107 

(79%) 

36 

(80%) 

28 

(65%) 

43 

(91%) 

0.080 0.17 0.002 

Knows 

paratrioza 

product (y/n) 

109 

(81%) 

36 

(80%) 

28 

(65%) 

45 

(96%) 

0.067 0.048 <0.001 

Knows blue 

trap product 

(y/n) 

37 

(27%) 

9 (20%) 7 (16%) 21 

(45%) 

0.69 0.007 0.002 

Knowledge 

(index) 

0.50 

(0.20) 

0.48 

(0.17) 

0.43 

(0.22) 

0.60 

(0.17) 

0.15 0.005 <0.001 

Used color 

traps (y/n) 

23 

(17%) 

7 (16%) 5 (12%) 11 

(23%) 

0.63 0.32 0.14 

Correct dosage: 

Paratrioza 

(y/n) 

101 

(75%) 

35 

(78%) 

30 

(70%) 

36 

(77%) 

0.39 0.90 0.46 

Correct dosage: 

Pulgon & 

MB (y/n) 

78 

(58%) 

28 

(62%) 

24 

(56%) 

26 

(55%) 

0.55 0.51 0.96 

Correct dosage: 

Trips (y/n) 

98 

(73%) 

32 

(71%) 

29 

(67%) 

37 

(79%) 

0.70 0.42 0.24 

Correct dosage 

(index) 

0.70 

(0.31) 

0.72 

(0.29) 

0.66 

(0.32) 

0.72 

(0.31) 

0.35 0.94 0.31 

Higher losses 

(SR; y/n) 

24 

(18%) 

8 (18%) 3 (7.0%) 13 

(28%) 

0.18 0.21 0.010 

Lower losses 

(SR; y/n) 

81 

(60%) 

27 

(60%) 

26 

(60%) 

28 

(60%) 

0.96 0.97 0.93 

Higher 

spending 

(SR; y/n) 

27 

(20%) 

11 

(24%) 

9 (21%) 7 (15%) 0.68 0.26 0.48 

Lower 

spending 

(SR; y/n) 

71 

(53%) 

23 

(51%) 

17 

(40%) 

31 

(66%) 

0.27 0.15 0.012 
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Characteristic Overall,  

N = 135 

Control  

N = 45 

Never-

Takers  

N = 43 

Treated 

N = 47 

Control 

vs. 

Never-

Takers 

Control 

vs. 

Treated 

Never-

Takers 

vs. 

Treated 

Phytosanitary 

spending [$] 

137.65 

(119.46) 

108.11 

(75.05) 

134.30 

(125.34) 

169.00 

(141.32) 

0.30 0.014 0.16 

Phytosanitary 

work 

(hours/week) 

26.04 

(20.71) 

21.60 

(16.43) 

26.74 

(23.81) 

29.66 

(20.98) 

0.24 0.063 0.50 

Note: For binary (y/n) variables numbers indicate frequency (percentage) where value is 

equal to one; p-statistics are for Pearson's Chi-squared test. For continuous variables we 

report mean and standard deviation (in brackets); p-statistic refers to Wilcoxon rank sum 

test. Indices were calculated as the inverse covariance weighted mean of the respective 

questions (i.e. knowledge, dosage). Changes in yield losses and input spending are self-

reported (SR). 

3.3 Results 

Among our sample, about 30% of farmers could not receive messages, 

which points out the relevance of alternative communication channels for 

agricultural extension. Among the farmers that received the intervention, we 

found that almost 80% decided to request GAP content, which constitutes a 

high rate of interaction (Figure 3.2). Table 3.3 shows the estimated intention 

to treat effect (ITT) and local average treatment effect (LATE) on the 

aggregated knowledge outcome and selected production-related outcomes. 

The ITT-estimator refers to the eligible sample and is based on the assigned 

treatment status (including non-compliers, i.e., farmers that could receive 

GAP-content but did not request it). The LATE estimator uses GAP-requests 

as the treatment indicator and therefore mirrors the treatment effect on those 

intended to be treated and decided to receive treatment (compliers). Our 

results indicate that the intervention increased complying farmer’s 

knowledge by 9%. Regarding the adoption of recommended practices, we 

only report the impact on the use of color traps because all other practices 

were being used by more than 95% of the sample, so they were excluded as 
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specified in the pre-analysis plan. We did not find any significant impact on 

the probability of using the recommended type and concentration of 

pesticide for a given pest, but we did find that farmers in the treatment group 

reported significantly higher pesticide spending. 

Table 3.3: Estimated impacts of ICT-intervention on selected outcomes 

Outcome ITT LATE N 

 Estimate1 SE p-

value 

Estimate1 SE p-

value 

 

Knowledge (index) 0.05 0.04 0.15 0.09 0.04 0.03 92 

Used color traps (y/n) −0.02 0.08 0.84 −0.04 0.08 0.57 92 

Reported any pest (y/n) −0.11 0.09 0.23 −0.05 0.10 0.59 92 

Correct product usage 

(index) 

0.09 0.07 0.15 0.02 0.07 0.76 92 

Higher losses (SR; y/n) 0.11 0.09 0.26 0.12 0.10 0.22 92 

Higher spending (SR; y/n) −0.03 0.09 0.77 −0.07 0.09 0.47 92 

log Phytosanitary spending 

[SVC]2 

0.36 0.16 0.03 0.52 0.16 0.00 92 

log Phytosanitary work 

(hours) 

0.01 0.14 0.96 0.10 0.14 0.50 92 

1 All control variables included.     

2 Currency: 1 SVC = 0.1143 USD (31.08.2021). The minimum salary for agricultural 

workers in El Salvador was approximately 240 US$ per month. 

Note: Indices were calculated as the inverse covariance weighted mean of the respective 

questions (i.e., knowledge, dosage). Changes in yield losses and input spending are self-

reported (SR). 

 

Robustness checks 

We compared the outcomes between the control group and never-takers to 

identify potential spillover effects. Results in Table 3.4 indicates no 

evidence for spillovers in outcomes. If, due to the limited sample size, we 

were unable to detect spillover effects, their presence would lead to an 

underestimation of the measured treatment effect. That is, if famers in the 

control group indirectly benefitted from the treatment the difference in 
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estimated outcomes would be smaller. In that sense, spillovers may from a 

practical point of view even be desired. 

Table 3.4: Spillover analysis 

 ITT spillovers  

Outcome Estimate SE p-value N 

Knowledge index 0.11 0.15 0.44 88 

Used color traps 0.47 0.30 0.13 88 

Reported any pest 0.07 0.29 0.80 88 

Correct product usage (index) −0.12 0.22 0.58 88 

Higher losses (SR) 0.11 0.31 0.72 88 

Higher spending (SR) −0.20 0.34 0.57 88 

Phytosanitary spending [SVC] 0.15 0.44 0.74 88 

Phytosanitary work (hours) 0.35 0.58 0.54 88 

Note: Spillovers were estimated as the difference between the control group and never-

takers based on Eq. 3.1 where T took the value of 1 for never-takers. All variables reported 

in Table 3.1 were included as covariates. 

3.4 Discussion 

The high rate of interaction with the simplistic chat-bot (i.e. demand for 

GAP-content by those to whom it was offered) indicates curiosity and 

openness by most farmers to test such communication channels. We 

received positive feedback from farmers regarding the pictures with pests 

since they allow for better identification of adequate pest management 

strategies. Multimedia content such as pictures and (animated) videos can 

thus be considered an inclusive tool for informing farmers.  

The main results presented in the previous section align with previous 

studies that found positive impacts of digital information provision on 

farmer’s knowledge on pest management (Larochelle et al. 2019). Contrary 

to expectations, we did not find evidence that the information intervention 

changed pest management practices. This is possibly due to the limited 

sample size and short time between intervention and follow-up survey. 
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Farmers may require additional time to acquire inputs and adapt their 

practices. Finally, we estimated a significantly higher pesticide spending in 

the treatment group; however, based on the observed differences between 

the control group and never-takers reported in Table 3.2 and Table 3.4, we 

are skeptical to what extent this estimate reflects an actual treatment effect. 

From a theoretical point of view, higher spending on pesticides is ex-ante, 

not an expected outcome of our information intervention, because the 

intervention did not affect pest incidence. It is, however, possible that treated 

farmers were more alerted to pests and thus acted either preventively or 

curatively. Since the messages originate from an input supplier, farmers may 

perceive the message itself (not its content) as an indicator or reminder of 

imminent pest risk. If farmers become more sensitive and capable of 

identifying pests, a reported increase in pesticide-related spending could 

translate into lower yield losses and overall benefits as long as the gains in 

yield exceed the additional cost of application. However, such changes may 

take more than a few weeks to materialize. Since the time between the 

intervention and follow-up survey was relatively short in this study (between 

three and six weeks depending on when follow-up was carried out), it is 

possible that farmers used up their existing stock of products before 

changing their pest management practices.  

Digital divide 

Only one farmer in our sample reported having broadband internet access at 

home; all others relied on mobile network coverage. Depending on available 

data plans, some multimedia content may be more appropriate than others if 

the goal is to overcome the digital divide. While farmers without 

smartphones are exempt from receiving multimedia content, high data 

volumes of videos could still be a de-facto barrier for information access, 

especially if perceived benefits are low.  
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Table 3.5: Probit selection results 

 Dependent variable: 

  

 Smartphone user (y/n) Requested GAP (y/n) 

 (1) (2) 

Married (1=yes) 0.69** (0.35) -2.33* (1.25) 

Gender (1=female) 0.72 (0.72) -4.82 (793.77) 

Owns greenhouse (1=yes) -0.03 (0.39) -2.97* (1.77) 

Has irrigation system (1=yes) 0.40 (0.48) 1.55 (2.54) 

Owns tractor (1=yes) -0.64 (0.87) -14.51 (43,111.73) 

Owns water pipe (1=yes) -1.28** (0.62) 3.91 (866.31) 

Has natural gas (1=yes) 0.63 (0.55) -5.27 (866.31) 

Has cable TV (1=yes) -0.03 (0.35) 3.39** (1.56) 

SE primary market (1=yes) -0.66 (0.43) -0.66 (1.61) 

With SE > 3 years (1=yes) -0.06 (0.35) 0.44 (0.86) 

Tertiary education (1=yes) 0.21 (0.73) 36.04 (36,037.46) 

Secondary education (1=yes) -0.12 (0.45) -1.20 (1.55) 

Primary education (1=yes) 0.15 (0.37) -0.08 (1.16) 

Income < 1 min. wage (1=yes) 0.86** (0.38) 0.47 (1.10) 

Income > 2 min. wages (1=yes) -0.95 (0.65) -0.64 (1.94) 

Age (years) -0.03** (0.02) -0.06 (0.05) 

log(Area cultivated) (ha) 2.02*** (0.73) -0.87 (2.50) 

Dependent people (#) 0.03 (0.11) -0.30 (0.58) 

Household size (#) 0.05 (0.10) 0.97 (0.74) 

Full-time employees (#) 0.11 (0.12) 0.15 (0.34) 

Part-time employees (#) -0.08 (0.12) 0.54 (0.38) 

log(Distance to road) (km) -0.11 (0.45) -0.86 (1.33) 

Constant 0.96 (0.94) -1.19 (3.27) 

 

Observations 135 47 

Log Likelihood -66.29 -16.25 

Akaike Inf. Crit. 178.57 78.50 

 

Significance levels: * p<0.1; ** p<0.05; *** p<0.01 

 

Note: Estimates in column 1 are based on the full sample, while column 2 is based on the 

subset of farmers that were offered the information (treatment group). We used a probit 

model to estimate the binary outcomes. 
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To address the extent to which smartphone-based ICTs overcome or 

contribute to a digital divide, Table 3.5 shows which characteristics were 

associated with using ICTs. This was not part of the pre-analysis plan and is 

therefore considered explorative. Results on the two binary outcome 

variables 1) whether or not a farmer used a smartphone (column 1) and 2) 

whether or not farmers actively requested GAP-contents (column 2) are 

reported. These estimated probit regression coefficients indicate that 

smartphone use is positively associated with area under cultivation, being 

married, and having less than one minimum wage of income. Especially the 

low income and higher area under cultivation are contradictory since they 

typically correlate, so a characterization of non-users as economically 

marginalized was not found in this case. At the same time, smartphone use 

was negatively associated with farmer’s age, the latter of which can be 

expected. Among the farmers in the treatment group offered the GAP-

intervention, farmers with cable TV at home were more likely to request 

GAP-contents. This could point towards the role of digital literacy and 

differences in utilized information sources. Since this sample is very small 

and not representative, future studies should assess the uptake of digital 

information sources by different user groups more systematically and align 

the targeting of interventions accordingly. 

Limitations 

The convenience sample employed here may differ from the general 

population of farmers since they are relatively well-trained and may have 

better access to inputs and markets. Since this pilot study was conducted 

among farmers working with the local agribusiness, the results must be 

extrapolated with caution. While we did control for training duration and 

many observed farm characteristics, treatment effects may differ for farmers 

with lower propensities of making a contract with the agribusiness.  In 
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particular, our results may not hold for less market-oriented farmers. In 

addition, the small sample size restricted the statistical power of this 

analysis. However, from a policy learning perspective, an imprecise 

measurement is better than no measurement because it reduces uncertainty.  

Since previous studies focus on different geographic regions (predominantly 

African countries and India) and different ICT interventions (predominantly 

SMS, Videos, and interactive voice recordings), this study complements and 

fills an important research gap. Self-reported outcomes are inherently prone 

to measurement error, which could explain the lack or counter intuitiveness 

of production-related impacts. Due to budgetary constraints, it was 

impossible to collect more detailed information on these outcomes within 

the scope of this pilot study. 

3.5 Conclusion 

The diffusion of smartphones among farmers in developing countries offers 

new possibilities for providing farming-related information that could 

stimulate the uptake of improved production practices. This study adds to 

the growing body of literature investigating the impacts of digital advisory 

services in agriculture. We conducted a randomized control trial among 

vegetable farmers in El Salvador to study the effect that digital information 

provision has on farmer’s knowledge and production behavior. Specifically, 

we implemented a simplistic chatbot that allowed farmers to request 

multimedia content with recommendations on agricultural practices. Results 

indicate a 9% increase in knowledge of recommended production practices. 

There was no evidence for impacts on production outcomes, but this study 

may also have been statistically underpowered to detect such effects. Future 

studies should compare different types of demand-driven multimedia 

content for increased information transfer. Developing more sophisticated 

chat-bots could be a cost-effective way to provide farmers personalized and 
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locally relevant information. In addition, interactive information flows offer 

new opportunities for information collection at scale (Bartling et al. 2022). 

For example, geographically explicit information on crop status and 

production practices could help farm advisors and input suppliers better 

accommodate farmers' needs in a timely manner. 

In sum, the available evidence from this pilot study points towards 

promising effects of demand-based multimedia advice. Future research 

should disentangle the synergistic and complementary effects of information 

format (image, video, audio), using a larger sample for statistical power and 

eliminating spillovers. 

 

Data availability  

The data and code underlying this article are available upon request. 
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Chapter 4  
Spatial diffusion of digital farm 

advisory app across India12 

4.1 Introduction 

Digital innovations are a central element to achieve food security, 

sustainable development and more resilient agri-food systems (von Braun et 

al. 2021; Finger 2023). Information and communication technologies such 

as digital agricultural advisory services have the potential to support 

farmers’ decision making and contribute to higher productivity in low- and 

middle income countries (Fabregas, Kremer and Schilbach 2019; Spielman 

et al. 2021; Rajkhowa and Baumüller 2024). To leverage their full potential, 

it is important to understand adoption patterns. A vast body of literature 

evolves around the determinants of innovation adoption, highlighting the 

importance of environmental and socioeconomic context (Munshi 2004; 

Assunção, Bragança and Hemsley 2019; Schulz and Börner 2022). In 

                                                 
12This chapter is currently under peer-review. A previous version has been accepted for 

oral presentation at the International Conference of Agricultural Economists (ICAE 

2024) in New Delhi, India. It is co-authored with Johannes Kopton, and Gustavo 

Magalhães de Oliveira. 

Author contributions: DS: conceptualization, data collection and curation, formal analysis, 

writing original draft; JK: conceptualization, review and editing the paper; GMO: 

conceptualization, writing - review and editing the paper. 
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addition to structural drivers and barriers, inadequate information on the 

benefits of the innovations and knowledge about how to use them can hinder 

adoption and then null their potential positive impact (Abate et al. 2023). 

Therefore, particular attention has been given to the role of social networks 

on adoption patterns, showing how information shared within families, local 

communities or via formal extension networks can increase adoption rates 

in new agricultural technologies (Foster and Rosenzweig 1995; Maertens 

and Barrett 2013; Burlig and Stevens 2023). While some network studies 

highlight the role of local peer farmers and extension agents for information 

and innovation diffusion (Krishnan and Patnam 2014; Genius et al. 2014; 

Shikuku et al. 2019; Abdulai 2023), there also is empirical evidence for null 

effects (Duflo, Kremer and Robinson 2011). With respect to the adoption of 

digital information technologies such as smartphones and agricultural 

mobile applications, previous studies focus on farmer characteristics, and 

not on spatial network effects (Michels, Bonke and Musshoff 2020; Thar et 

al. 2021; Bounkham, Ahmad and Yaseen 2022; Soodan et al. 2023). 

However, as demonstrated by other forms of innovation (Lapple and Kelley 

2015; Graziano and Gillingham 2015), social learning and the structure and 

composition of neighborhoods may play a key role in the diffusion of digital 

innovations such as agricultural mobile applications. Assessing 

neighborhood effects for digital innovations matters because the upfront 

investment costs associated with this type of digital technology may differ 

from those of traditional innovations such as new crop varieties. Hence, their 

adoption and diffusion among risk-averse farmers may differ from costlier 

innovations. Overall, empirical evidence on the role of contextual as well as 

socioeconomic drivers on the adoption of agricultural mobile applications 

remains restricted to a subset of surveyed adopters, limited in regional scope 

or relying on heavily aggregated spatiotemporal scales such as from census 

data. 
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Here, we address these gaps by investigating whether and how contextual 

socioeconomic factors and spatiotemporal spillover affect the diffusion of 

Plantix in India. We focus on India as a study region due to the high 

dependence by most of its rural households on agriculture while crop yield 

losses from insect pests and weeds are substantial (Sharma, Kooner and 

Arora 2017; Gharde et al. 2018). Existing data indicates that arthropods are 

responsible for a loss of approximately 18–20% in global annual crop 

production, with an estimated economic impact surpassing US$470 billion 

(see Sharma, Kooner and Arora 2017 for an overview). In the Indian 

agriculture, magnitudes of crop loss attributed to insect pests reach up to 

30% in cotton and 25% in rice production (Dhaliwal, Jindal and Mohindru 

2015). In this study we utilize the to our knowledge largest proprietary 

dataset of digital plant health advisory service usage by farmers across 

continental India. Based on more than 70 million GPS-referenced, 

timestamped, anonymized, and spatially aggregated uploaded images for 

pest and disease identification between 2017 and 2023 we characterize the 

spatial and temporal diffusion of Plantix, a free digital farm advisory mobile 

app widely used in India. Plantix aids farmers inter alia with the 

identification and management of plant diseases, pests, and nutrient 

deficiencies through the application of image recognition technology.  

Our empirical analyses leverage a panel dataset with weekly temporal 

resolution and country-wide coverage of users in combination with 

contextual factors obtained from secondary data sources. First, we use a Cox 

proportional hazard model to estimate the probability of adoption of an 

agricultural mobile application at time t given that no previous usage was 

recorded in the region. This analysis quantifies contextual drivers and 

barriers of diffusion of agricultural mobile applications. Second, using fixed 

effects regressions, we estimate spatiotemporal spillovers effects at the 

extensive margin (adoption or non-adoption) and at the intensive margin 
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(number of users) in the context of the agricultural mobile applications. In 

particular, we investigate the magnitude and duration of spillover effects 

depending on neighborhood structure, leveraging available information on 

user mobility to differentiate neighboring effects of local peers (stationary 

users) and extension agents (mobile users). The remainder of this article is 

organized as follows. Section 4.2 provides details about the data and 

explains the methodology and specification of the models. The empirical 

results and discussion are presented in Section 4.3. Finally, we bring some 

concluding remarks and limitations in Section 4.4. 

4.2 Material and Methods 

Our primary data consists of (not publicly available) records of Plantix app 

usage that was anonymised to protect privacy. Plantix is a smartphone app 

for Android, developed by PEAT GmbH, and to our knowledge currently 

the largest agricultural app worldwide in terms of users. Its core feature 

which is the focus of this analysis allows users to take a picture of a crop and 

identify pests and diseases. Other features not included in this analysis are 

local weather forecasts, fertilization calculator, a user forum, and market 

information. The app supports English and Hindi, as well as 9 local 

languages spoken in India. Disease identification is performed using an 

ensemble of state of the art image classification models including ConvNets 

and vision transformers and currently supports more than 350 diseases 

across 55 crops (i.e., 688 crop-disease combinations). Once a picture is taken 

and uploaded, Plantix users receive detailed information about the detected 

disease along with management recommendations and access to input 

markets, while the company retains user information and stores all geo-

referenced data associated with the images. Since its initiation in 2017, 

Plantix has been used for image-based pest and disease identification on 13 

million mobile devices in India, with a clear take-up in adoption since 2019, 
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when user image uploads requests surpassed half a million per month during 

the Kharif season. As a free application, Plantix users incur low initial usage 

costs (i.e., smartphone and internet). We here rely on a subset of users that 

regularly used the pest-recognition tool via uploaded images, but exclude 

users that only used other functionalities of the app such as weather forecast. 

That is, we define frequent proactive users as those with more than five 

image uploads within more than one day.  

4.2.1 Data aggregation 

Our study region is the entire continental India. As identification of nearest 

neighbors is ambiguous when using a rectangular grid, we use a hexagonal 

grid to investigate spatial neighborhood effects. Furthermore, the crop 

disease occurrence which may drive Plantix usage is an ecological process 

and its spatial connectivity better modeled based on a hexagonal grid (Birch, 

Oom and Beecham 2007). We chose a cell width of four kilometers, 

resulting in a total of 231,473 grid cells. We discuss implications of the 

selected cell size below. 

We first assess the land use and land cover attributes of the locations where 

Plantix was used (see next subsection). We confirm our intuition that 98.9% 

of images uploaded by users stem from grid cells containing at least some 

cropland, and 94.6% from grid cells with at least 10% cropland cover 

(Figure S2). Second, we calculate the crop-specific disease identification 

requests from frequent proactive users within the crop-specific growing 

region. Table 4.1 displays the total number of uploaded images, the number 

of frequent proactive users and to what extent these pest-identification 

requests overlap with the production area for 15 crop types matching those 

available in the secondary data source (Grogan et al. 2022). As shown in 

Column 5 in Table 4.1, the vast majority of user-supplied images originate 

from grid cells that overlap with the growing region of the respective crop 
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according to the secondary data source. Our sampling grid is of higher 

resolution (4 km cell width) than the secondary data (5 arc minutes or 

approximately 10 km), so our spatial aggregation does not inflate the 

growing area reported in secondary data. Furthermore, the last column 

indicates the share of cells covering the respective growing region with at 

least one frequent proactive user. We display an aggregated vegetable 

category here13, but do not use it in our subsequent analysis since it is not 

directly comparable.  

Table 4.1: Plantix usage by crop type 

(1)  

Crop Name 

(2) 

Image 

Uploads 

[1.000] 

(3)  

Frequent 

Proactive 

Users 

[1.000] 

(4) 

Production 

area [Mio. 

km2] 

(5) 

Share of 

image 

uploads in 

production 

area 

(6) 

Share of 

production 

area with 

frequent 

proactive 

users 

VEGETABLE 6,997 1,398 2.50 84.4% 72.5% 

RICE 2,066 500 2.49 97.0% 46.2% 

COTTON 1,799 421 2.80 98.2% 28.5% 

MAIZE 377 157 2.35 91.7% 34.4% 

PEANUT 320 106 2.10 86.1% 25.2% 

SOYBEAN 295 101 1.16 81.4% 28.7% 

SUGARCANE 253 86 1.74 86.4% 18.4% 

BANANA 233 81 0.66 31.4% 24.7% 

POTATO 231 73 2.48 88.9% 16.3% 

WHEAT 180 78 1.59 75.1% 28.9% 

SORGHUM 45 27 2.82 99.8% 9.6% 

MILLET 38 23 2.00 50.2% 6.0% 

                                                 
13 The crop category vegetable includes of the following crops:  cucumber, pepper, 

eggplant, tomato, cabbage, pumpkin, onion, cauliflower, zucchini, garlic, okra, bitter 

gourd, pea, gram, chickpea, lentil, ginger, and turmeric. 
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TOBACCO 8 4 0.80 70.2% 2.7% 

MANIOC 6 3 1.49 78.1% 1.6% 

BARLEY 1 1 0.98 64.7% 0.8% 

Note: Own calculations based on Plantix geo-referenced image uploads and crop-specific 

growing area (Grogan et al. 2022). Calculations are based on 4 km hexagonal grid cells 

across continental India (n=231,474). We consider growing area of the respective crop all 

cells that have any overlap with the growing area data, not only those that are fully covered. 

We count only Plantix requests fulfilling our minimum quality criteria regarding crop 

identification confidence (>85%) and location accuracy (<1.000m). 

In addition to the maximum share of production area with active users (Table 

4.1, column 6), we also investigated how it developed over time, depicted in 

Figure 4.1. It shows a clear increase in spatial diffusion after 2019, and the 

temporal pattern related to how marked the different crop seasons are. For 

example, rice wheat and soybean show clearly marked seasonal patterns 

(plateaus followed by steep increases), while maize and peanuts show less 

pronounced seasonal variation (more monotonous slope).  
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Figure 4.1: Spatiotemporal innovation diffusion 

 

Note: Share of crop-specific growing area (Grogan et al. 2022) with any Plantix image 

uploads for that crop over time, calculated on a 4 km hexagonal grid. The prominent 

staircase pattern results from concentrated usage and uptake during the respective main 

growing seasons. The steep increase after 2019 follows a country-wide marketing 

campaign. 

4.2.2 Time until adoption analysis 

To characterize the spatiotemporal diffusion of Plantix, we first investigate 

the duration between the day it became first available and the active user 

appearing in a given grid cell. Figure 4.2 shows a non-random pattern 

indicating that some areas adopted rather early, while others lagged behind 

or never used it. Therefore, we are interested in exploring the association 

between contextual factors and the time until technology adoption. To 

quantify the relationship between contextual factors and Plantix diffusion 

we use spatially explicit secondary data. Based on previous studies pointing 
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towards a possible digital divide in agriculture (Mehrabi et al. 2021), we are 

particularly interested in socioeconomic contextual factors as proxies of 

(digital) marginalization. The Plantix feature we assess here is conditional 

on access to the internet at some point to upload images, so we include data 

on network coverage and number of mobile devices (Ookla 2023). We also 

use population density as a proxy of potential users and degree of social 

network density (CIESIN 2017) and travel times to larger cities as a proxy 

of urban infrastructure and market access (Weiss et al. 2020).  

In addition to these key variables of interest, we control for geographic 

factors that may affect both agricultural production and therefore the 

potential benefits of using Plantix. To identify the potential areas of Plantix 

usage, we use data on land cover such as total cropland area and land use; 

i.e. production areas of specific crops for the years 2020 and 2015, 

respectively (Karra et al. 2021; Grogan et al. 2022). As a measure of 

agricultural suitability we additionally use soil and topography maps 

(Poggio et al. 2021; Hawker et al. 2022). We expect that crop choice can 

partially be explained by soil conditions, but also note that soil quality may 

act as a proxy of land value, which may be linked to farmer characteristics 

such as income and innovativeness. Since Plantix usage is likely to be driven 

by disease exposure, which – apart from crop and soil characteristics - is 

linked to climatic conditions, we also include temperature and precipitation 

data (Abatzoglou et al. 2018). Variable values from these datasets were 

extracted to our sampling grid. Multiple values within one grid cell were 

aggregated by taking the area-weighted mean. Given that many of the 

contextual variables are highly correlated, we perform feature selection by 

identifying the most important spatial predictors using random survival 

forest (Pölsterl 2020). Supplementary Table S1 shows summary statistics of 

all included contextual and control variables. 
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Empirically, we use time-to-event analysis, also known as duration analysis, 

on a cross-sectional version of our dataset. Duration analysis has been 

previously used to study agricultural innovation diffusion (Genius et al. 

2014). We use the Cox proportional hazard model, which is given as: 

ℎ(𝑋) = ℎ0(𝑡)𝑒𝑥𝑝(𝛽𝑋) (Eq. 4.1) 

where h(X) is the hazard of the event (first adoption by an active user) 

occurring in week t given X, h_0 (t) is the baseline hazard in week t, i.e. 

without any covariates, X are standardized covariates and exp(β) their 

estimated hazard ratios. The model assumed that the latter are constant over 

time, which in our case holds since we are interested in time-invariant 

contextual drivers. We use the non-parametric Breslow method as 

implemented in the lifelines Python package (Davidson-Pilon 2019). 
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Figure 4.2: Time until first frequent proactive user 

 

Note: Colors indicate the number of days between September 28, 2016, and the date, on 

which the first user made more than four image uploads for pest identification on at least 

one day in any given grid cell. White indicates no such image uploads as of December 2023, 

but there could be users for other features of the app in these areas. 

 

4.2.3 Spatial spillover analysis 

Spatial spillover effects occur when events are linked by geographic 

proximity. That is, when the occurrence of an event in one region affects the 

probability of the event occurring in another region. In our case, at least two 

distinct mechanisms may contribute to spatiotemporal spillover of Plantix. 
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First, the natural occurrence and dispersion of pests and diseases is driven 

by interactions between weather, soil and management practices, which tend 

to be regionally confined. Therefore, the probability of finding a disease is 

itself geographically clustered. Second, information sharing and social 

learning among peers or other networks often occurs on a local basis, for 

example among neighbors or during farmer field days. Motivated by the 

literature on spatial information spillovers through networks, we assess how 

the previous use of Plantix in the neighborhood is linked to current usage.  

Empirically, we use multiple fixed effects regression as implemented in the 

fixest package (Bergé 2018). For the extensive margin, i.e. whether any users 

used Plantix in a given grid cell i at time t, we use a logit model, whereas 

we use a poisson model for the intensive margin, i.e. the number of active 

users. For the extensive margin, we use all available observations, for the 

intensive margin we restrict the data to observations with at least one active 

user. Both models can then be written as: 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛽𝑋𝑖𝑡 + 𝛾𝑑𝑡 + 𝜖𝑖𝑡 (Eq. 4.2) 

Where 𝑌𝑖𝑡 is the binary- or count-outcome value respectively for the 

extensive and intensive margin in grid cell i at time t, 𝛼𝑖 is a time invariant 

grid cell fixed effect, 𝛾𝑑𝑡 is a time-variant fixed effects interacting district 

with time, 𝑋𝑖𝑡 is a set of spatiotemporal user lags with its associated 

coefficient β to be estimated, and  𝜖𝑖𝑡 is an identically distributed error term. 

We include fixed effects for each grid cell to account for time-invariant 

characteristics such as soil properties, climate and socioeconomic context 

factors including internet access, language, education and market access. 

The time-varying fixed effects capture unobserved characteristics at the 

district level including weather patterns that affect pest occurrence, regional 

marketing campaigns, different seasonal growth patterns of crops and 

district-level extension activities, fluctuations in agricultural commodities, 
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all of which could affect the probability of using Plantix. By iteratively 

adding these fixed effects, we aim to isolate the effect of social networks. In 

all model specifications based on Eq. (4.2), we cluster our standard errors at 

the district and week level. 

We count the number of unique users in the spatial neighborhood across 

increasing order by increasing the radius. That is, first order spatial 

neighbors (O1) refer to the six direct adjacent cells, second order neighbors 

(O2) to their twelve outer adjacent cells and so on, as illustrated in Figure 

S3. If a user was active across neighborhood orders, we only take into 

account the most inner observation to avoid double counting. We then 

estimate social network effects as the association between digital technology 

users in surrounding neighborhoods (i.e. order O1, O2, etc.) during previous 

time periods (i.e., week t-1, week t-2 etc.) and the usage in the target cell in 

week t. Given the time-sensitive nature of plant health management, we 

consider four weeks a suitable time frame for effective information sharing. 

For our main specification we use the first spatiotemporal lag, i.e., the 

number of active users within the first order neighborhood during the 

previous week (O1, t-1) as our lag variable of interest (X in Eq. 4.2). In a 

second step, we include higher level spatiotemporal lags up to the fifth order 

to account for broader and longer lasting spillover effects. 

We use a 10 kilometer sized grid for our main estimation and provide a 

higher resolution (i.e. 4 km grid) for a selected state14 as a robustness check. 

The reason is that with increasing spatial resolution, the share of cells 

without any observed users increases and thereby reduces our effective 

sample size, i.e. cells with variation in the outcome variable. Considering 

the observed increase in diffusion after 2019, we focus the analysis on the 

                                                 
14 We focus on Maharashtra in the robustness check, because it is the state with most 

observations and covered for the longest time period. 
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2020-2023 period and temporally aggregate the data to weekly time steps, 

resulting in 209 weeks. The spatiotemporal lag variables are then created by 

counting the active users during each of the previous four weeks. Summary 

statistics of all user spatiotemporal lags are shown in supplementary Table 

S2.  

4.2.4 User classification 

We estimate how the presence of different types of peers is associated with 

varying levels of adoption. The subset of frequent proactive users is 

characterized with respect to their geographic usage pattern by calculating 

the maximum geographic distances between their requests. We classify 

these frequent proactive users as a) “stationary” if their app usage radius is 

less than four kilometers; b) “mobile” if their app usage radius is more than 

100 kilometers. In this way, we classify approximately 1.3 million frequent 

proactive users as stationary and 70,000 as mobile. While farms in India are 

on average much smaller than four kilometers in diameter (i.e. well below 2 

ha), stationary farmers may use the app in a field in walking distance, so the 

minimum distance should not be too small. The upper cut-off is purely 

illustrative for identifying potential “innovation ambassadors” such as 

extension agents or farmer group leaders that visit several farms across a 

larger geographic area. We discuss implications and possible improvements 

of these thresholds in Section 4.3. Similar to the main analysis described in 

Section 4.2, we estimate whether a grid cell had any active users at a given 

time (binary) and how many active users it had (count), to differentiate 

adoption at the extensive and intensive margin. To estimate the association 

between stationary and mobile users during previous weeks, we use their 

first-order spatiotemporal lag, but counting only the number of stationary 

and mobile users in neighborhood cells, respectively. Empirically, we again 

use the multiple fixed effects model (Eq. 4.2). 
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4.3 Results and Discussion 

4.3.1 Time to adoption 

Our results from the time-to-event analysis using Eq. 4.1 show that socio-

economic factors, in particular travel time to bigger cities and internet speed, 

are associated with digital innovation diffusion. Table 4.3 shows estimated 

hazard ratios related to the time until a cell had any request (left) or an active 

app user (right). We focus on the socioeconomic variables which are 

relevant for the discussion of the digital divide, while controlling for 

environmental and other geographic factors. We find that a one standard 

deviation higher mobile upload speed is associated with a 14% (95% CI: 12-

15%) higher hazard ratio for having an active user. Furthermore, a standard 

deviation increase in travel time is associated with a 17% (95% CI: 15-18%) 

lower hazard ratio of a grid cell having the first active user. Our estimates 

for mobile devices and population density show a much smaller impact, as 

shown in Table 4.3.  

These results corroborate some previous findings on agricultural technology 

adoption. Aparo, Odongo and De Steur (2022) show in their systematic 

literature review that poor quality mobile phones (battery), poor internet and 

mobile network connectivity and high cost of internet services are relevant 

constraints in adoption and usage of mobile phone technologies by farmers. 

Moreover, despite being a key driver in the diffusion of smartphone 

applications for agriculture (Michels, Bonke and Musshoff 2020; Thar et al. 

2021), mobile internet coverage remains a challenge in rural areas even in 

developed countries (Michels et al. 2020).  
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Table 4.2: Results of time-to-event analysis 

 Active user  

  Hazard 

ratio 

Lower 

bound 

Upper 

bound 

z p-value 

Contextual variables      

   Upload speed [kb/s] 1.14 1.12 1.15 24.40 <0.005  

   Mobile devices [#] 1.04 1.02 1.06 5 <0.005  

   Population density 1.00 1.00 1.01 0.93 0.04 

   Travel time [min] 0.83 0.82 0.85 -16.05 <0.005 

Control variables  

   Climate  long term temperature (average, minimum, 

maximum), mean precipitation 

   Soil  land cover shares (crop land, trees, built up, 

rangeland), soil clay content, volumetric fraction of 

coarse fragments 

   Land cover land cover shares (crop land, trees, built up, 

rangeland) 

   Topography  slope, elevation 

   State dummies  binary indicators for each state 

Observations 231,474  

Events 173,948  

Partial log-likelihood -1,891,339.31  

Concordance 0.72  

Partial AIC 3,782,776.61  

Note: Table shows results of own calculations based on Eq. (4.1).  Standard errors used for 

confidence intervals are clustered at the municipal level. 

 

We interpret our findings as evidence of a spatial digital divide, where 

farmers in more rural locations with less internet connectivity clearly lag 

behind in terms of innovation adoption. This underlines the risk of further 

marginalizing disadvantaged communities. Our results are in line with 

studies on the global divide in digital farming technologies that show that 
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while the majority of India is covered by 3G and 4G services, only 31% of 

Indian farming households have internet access (Mehrabi et al. 2021). This 

holds particular significance since a 2018 survey in India showed that only 

6% of farmers received technical advice from agricultural extension 

workers, while a substantial 70% expressed distrust in the recommendations 

provided by these workers (Cole and Sharma 2018).  

4.3.2 Neighborhood analysis 

Our results using Eq. 4.2 show that the number of active users in the first 

order neighborhood during the previous week is positively associated with 

the usage and number of frequent proactive users in the target cell at present 

(t=0) (Table 4.3). Even after the inclusion of approximately 150,000 fixed 

effects capturing time invariant and time variant unobserved heterogeneity 

we find a standardized direct neighborhood effect of 0.3 (SE: 0.016) and 0.2 

(SE: 0.015) on the usage and number of users in the target cell, respectively 

(Table 4.3, Model 3 and 6). This effect is large and statistically significant. 

In a next step, we include higher order spatiotemporal lags, namely up to the 

fifth neighborhood order and five previous weeks. Our estimated beta 

coefficients are shown in Figure 4.3 (see SI Tables S3 and S4 for tabular 

presentation and additional model specifications). The plot shows how the 

effect diminishes across time and space steps, such that the number of users 

in the third neighborhood order three weeks before observation is no longer 

statistically different from zero to explain innovation adoption (0.0124; SE: 

0.007). This suggests that spatiotemporal spillover effects diminish over 

time and are with less than one month relatively short-lived in our case. Our 

results show a similar pattern although smaller in magnitude for the user 

count, modelled with a poisson distribution. Furthermore, using a higher 

spatial resolution of 4 kilometers in a robustness check, we find a similar 

overall pattern, although the effects on the intensive margin are considerably 
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smaller in magnitude (Tables S5). This can be expected, since the 10 

kilometers grid size may approximate actual social network size and 

mobility patterns more closely. Notably, including higher order lag effects 

using the smaller grid led to a similar decrease of the effect across time, but 

not across space (Tables S6 + S7). This corroborates our findings and choice 

of grid cell size, in that these results show that spatial effects are relatively 

constant in the close surrounding (<20km) and then drop quickly (20-50km).  

Figure 4.3: Spatiotemporal lag effects 

 

Note: Both plots show estimated beta coefficients of a fully saturated model, i.e. including 

all spatiotemporal lags from O1 T1 to O5 T5. Outcome variable is whether any active user 

was observed at the specific time (plot a), and how many active users were counted (plot 

b). 

Our findings support previous empirical studies on network effects on 

technology (Beaman et al. 2021; Abdulai 2023). These studies observe that 

signals from peer adoption decisions and experiences influence the adoption 

process through enhanced learning opportunities and reduced uncertainty. 

However, like most of the existing literature, their analysis focuses on annual 

windows to assess impact. Murage et al. (2011), for example, argue that 
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farmers, on average, take more than two years to adopt a specific technology 

after the first learning exposure. Our study, however, illustrates that network 

effects can be considerably more time-sensitive. Our results suggest that 

peer effects may diminish dramatically within a month after exposure, 

highlighting the need for further research using high temporal resolution 

data.  

Table 4.3: Fixed effects structures for lagged neighbour estimate 

  Any usage Number of user 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

(Intercept) -1.1401 

(0.0292)*** 

  0.2643 

(0.0213)*** 

  

Active 

users O1 T1 

1.3474 

(0.0267)*** 

0.7082 

(0.0316)*** 

0.3092 

(0.0166)*** 

0.5018 

(0.0194)*** 

0.3854 

(0.0189)*** 

0.2222 

(0.0153)*** 

Num. obs. 7,569,771 6,719,977 6,481,774 2,226,931 2,226,931 2,226,931 

Pseudo R2 0.2393 0.3063 0.3196 0.1373 0.1916 0.2001 

Num. 

groups: 

grd_id 

 32,153 32,147  32,153 32,153 

Num. 

groups: 

year_week 

 209   209  

Num. 

groups: 

year_week 

× district 

  117,642   118,940 

***p < 0.001; **p < 0.01; *p < 0.05 

Note: Table shows results of own calculations based on Eq. 4.2. Active user O1 T1 refers 

to the lagged count of frequent proactive users in the first order neighborhood (O1) in the 

first order time, i.e. one week before the observed outcome (T1). Model structures are 

without fixed effects (Model 1 and 4), with two-way grid and time fixed effects (Models 2 

and 5), and grid plus time-district interaction fixed effects (Models 3 and 6). Fixed effects 

clusters without variation in the outcome were dropped, e.g. when all observations within 

a cell or district × week are equal to zero. Standard errors are clustered at district and 

week level. 
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4.3.3 Spillover effects by user type 

Finally, we estimate neighborhood spill overs for different user groups and 

margins. Table 4.4 shows estimated coefficients for the number of stationary 

and mobile users in neighboring cells during the previous week, 

respectively. Estimates for the extensive margin relate to whether or not any 

active users were in a cell. Our standardized estimates indicate a sizeable 

and statistically significant (p < 0.001) association between the two user 

types and the adoption and number of adopters of the agricultural mobile 

application. Taken together, these findings illustrate that both types of peers 

- stationary and mobile - are relevant for the initial adoption of a new 

technology. Looking at the absolute effect magnitudes of mobile users at the 

extensive margin (0.043; SE: 0.0025) and intensive margin (0.02; SE: 

0.0012), it seems that mobile users play a more important role for initial 

innovation adoption than for the number of adopters in a given region. This 

emphasizes the role of mobile peers in spatially diffusing innovation by 

encouraging the initial adoption of a new technology in new areas. We 

speculate that mobile users may be extension agents or farm advisors that 

travel to different farms, while stationary users are mostly farmers using the 

app on their own land. Overall, however, the estimated effect of stationary 

users is six to eight times larger in magnitude compared to mobile users. 

Therefore, stationary peers emerge as seemingly more relevant for the 

effects at both margins. We interpret these findings as indications for the 

important role of social ties and trust within local, stationary peers for the 

uptake and continued use of innovation. 
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Table 4.4: Neighborhood effect by user group 

  Any frequent 

proactive usage 

Number of frequent 

proactive user 

Stationary users O1 T1 0.2346 (0.0126)*** 0.1695 (0.0115)*** 

Mobile users O1 T1 0.0426 (0.0025)*** 0.0204 (0.0012)*** 

Num. obs. 6,481,774 2,226,931 

Num. groups: grd_id 32,147 32,153 

Num. groups: year_week × district 117,642 118,940 

Pseudo R2 0.3192 0.2000 

***p < 0.001; **p < 0.01; *p < 0.05 

Note: Stationary users are the number of frequent proactive users whose requests originate 

within a radius of up to four kilometers. Mobile users are the number of frequent proactive 

users whose requests have a radius of more than 100 kilometers. O1 T1 refers to the first 

order neighborhood (O1) in the first order time, i.e. one week before the observed outcome 

(T1). Standard errors are clustered at district and week level. 

 

The role of extension agents for innovation adoption is well documented 

(Schulz and Börner 2022). Yet, our small effect estimate for mobile users 

supports the idea that trust in agricultural extension services may still be a 

barrier in technology adoption in India (Cole and Sharma 2018). Our study 

indicates that both types of ties—local and professional peers — should 

complement each other to drive agricultural technology diffusion. This view 

is in line with Fernando (2021), who finds that although mobile extension 

substantially lower the importance of peers as a source of information, it 

does not crowd-out peer interactions. Our findings complement previous 

research showing that the impact of extension agents on information 

diffusion – although high – diminished over time compared to peer effects 

(Krishnan and Patnam 2014). We also find that general peer effects diminish 

over time and space, and that both mobile and stationary users have a 

sizeable effect which is in line with reported complementarity of peer and 
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extension network effects on innovation diffusion (Genius et al. 2014). 

Other studies pointed out the importance of information credibility (Abdulai 

2023) and potential reputational gain from information sharing (Shikuku et 

al. 2019) as potential mechanisms. Digital innovations such as free advisory 

apps may have advantages in this respect. It is easy to recommend them to 

peers, since no upfront costs of adoption are required, and information 

quality and credibility (i.e. plant health status) can be assessed directly. 

Trust-building as a pre-requisite for adapting management decisions based 

on the gathered information is therefore a helpful trait.  

4.4 Conclusion 

This study provides empirical evidence on the spatial diffusion of a digital 

farm advisory app across India. We find that (i) remote regions with lower 

internet speeds clearly lag behind in terms of time until adoption, indicating 

a digital divide that should be addressed structurally by policymakers; (ii) 

neighborhood effects are considerably time-sensitive, diminishing 

dramatically over short time windows (weeks) in our case; (iii) while both 

extensive agents and local peers drive the adoption of agricultural 

innovation, the former is particularly relevant for the initial usage of new 

technological innovation, and the latter affects both the first use (extensive 

margin) and frequency of usage (intensive margin). 

To the best of our knowledge, this is the first study to leverage a 

comprehensive dataset of digital technology users across entire India to 

characterize the spatial and temporal diffusion of innovation. Plantix 

adoption has occurred across most parts of India, with a clear increase in 

uptake speed since 2020. As of 2023, Plantix has been used for cotton, 

maize, peanut, wheat, soybean, and banana in more than a quarter of the grid 

cells that grow these crops and almost half of the rice growing grid cells.  
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One policy implication of our study is the need to improve infrastructure, in 

particular internet coverage in rural areas, to enable farmers to benefit from 

digital innovations. Promisingly, there were more new internet users in rural 

than in urban areas between 2019 and 2021, and the topic continues on the 

government agenda with ongoing initiatives in the suggested direction such 

as the Bharat Net project (Government of India 2023). However, access to 

digital infrastructure can only support those with the capacity to use it, so 

additional initiatives to foster digital literacy and trust may be needed. Along 

those lines, existing extension schemes could be spatially redirected to 

places where digital tools are not available or underutilized. Given the 

limited funding, physical extension services focusing on plant health may 

concentrate on regions currently not leveraging the full potential of digital 

farm advisory tools like Plantix.  

Our results should be interpreted with the following caveats in mind. First, 

our analysis concentrates on specific contextual factors, but there may be 

further sociodemographic aspects worth considering. In particular, access to 

digital tools may differ by education, income, gender or social status (i.e. 

cast), as micro-level studies have shown (Thar et al. 2021), and a nuanced 

consideration thereof may explain more of the adoption patterns. Spatially 

disaggregated data, e.g. on district level, could shed light on the contribution 

of these factors, but this is beyond the scope of our work. Second, this study 

illustrates how information on user mobility can be used to classify them and 

draw conclusions about their potential roles within information networks. 

Unfortunately, we were unable to gather evidence on how suitable our 

classification was to differentiate the user groups. Therefore, the utilized 

spatiotemporal scales as well as our selected thresholds for differentiating 

users should be carefully examined. Apart from testing how sensitive our 

results are to alternative specifications, the data enables to evaluate how 
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temporal and spatial resolution of spatial panel data affects spillover effects 

across scales by analyzing arbitrary combinations thereof.  

 

Supplementary Information and codes 

Supplementary Information containing additional figures and tables as well 

as the codes to replicate all results can be accessed at 

https://osf.io/4atku/?view_only=e0ceeb21cb83433ca33ac96e5d55c12a.  

 

Data availability  

The raw data is proprietary and sensitive. It can therefore not be made 

available. However, upon reasonable request, a subset of the aggregated 

(i.e., pre-processed) data can be made available. Note, that this subset will 

not allow for exact numerical, but rather qualitatively similar replication of 

the results. 
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Chapter 5  
Innovation context and technology 

traits explain heterogeneity across 

studies of agricultural technology 

adoption: a meta-analysis15 

5.1 Introduction 

Innovations in agricultural production are essential to achieve global food 

security, affordable and healthy diets, and more sustainable use of natural 

resources (Rockström et al., 2017; Herrero et al., 2020; Braun et al., 2021). 

We conceptualize innovations as technologies and practices that change 

production factor composition or increase factor productivity. In developing 

countries, agricultural innovation has often resulted in positive impacts on 

productivity and food security (Ogundari and Bolarinwa, 2018; Stewart et 

al., 2015; Gollin et al., 2018), although heterogeneous social and ecological 

                                                 
15 This chapter is published as: Schulz D, Börner J. 2023. Innovation context and 

technology traits explain heterogeneity across studies of agricultural technology 

adoption: A meta‐analysis. Journal of Agricultural Economics. 74(2):570–90. DOI: 

10.1111/1477-9552.12521. A previous version was presented at the 31st International 

Conference of Agricultural Economists, August 17-31, 2021 (online event). 

Author contributions: DS: conceptualization, data collection and curation, formal analysis, 

writing original draft; JB: conceptualization, review and editing the paper, funding 

acquisition. 
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impacts have been reported (Pingali, 2012). Along with other innovations 

under the umbrella of digitalization and smart farming, remote sensors and 

robots performing autonomous operations in crop and livestock production 

are expected to power the next agricultural revolution (Lowenberg‐DeBoer, 

2015; Barrett and Rose, 2020; Torero, 2021). Therefore, a better 

understanding of the underlying diffusion patterns is needed to inform future 

rural development policy and agricultural extension strategies. Designing 

such strategies for adoption is challenging, especially in agriculture, because 

adoption depends on a wide range of interacting factors, such as biophysical 

context, farm structure, decision-maker characteristics, technology 

attributes, and institutions. The literature on the determinants of agricultural 

innovation is correspondingly rich in both theoretical and empirical studies 

from all over the world (Feder et al., 1985; Knowler and Bradshaw, 2007; 

Foster and Rosenzweig, 2010; Prokopy et al., 2019; Mwangi and Kariuki, 

2015). Review studies have so far struggled to produce consistent evidence 

on the direction and magnitude of adoption determinants (Knowler and 

Bradshaw, 2007), or have done so with limited generalizability in terms of 

geography and types of innovation (Baumgart-Getz et al., 2012; Prokopy et 

al., 2019; Shang et al., 2021; Ruzzante et al., 2021). 

We propose a theoretical framing that explicitly considers interactions 

between innovation traits and geographic contexts. This enables us to derive 

somewhat more generalizable insights than prior studies based on a meta-

regression approach. Using a new comprehensive global data set of adoption 

studies and correlated hierarchical effects meta-regression analyses, we 

exploit variation across space and time to investigate how production 

contexts influence innovation adoption drivers depending on innovation 

traits. 
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We contribute to policy design and technology development. First, we 

estimate the magnitude of various farm-level innovation adoption 

determinants over a global range of contexts. Second, we quantify how 

innovation traits and key geographic context factors affect the relative 

importance of adoption determinants. This knowledge can inform R&D 

initiatives and policy makers in the design of locally adapted technologies 

and corresponding dissemination strategies that account for heterogeneous 

innovation contexts. 

Section 5.2 motivates our theoretical framing. Section 5.3 describes the 

identification and information extraction from primary studies, and 

documents our empirical framework and secondary data. Section 5.4 

presents our meta-regression results. In Section 5.5, we discuss policy 

implications and limitations of our study before we conclude with avenues 

for future research.  

5.2 Conceptual Framework 

Rather than looking at groups of similar innovations separately as other 

studies have done, we use some of the inherent economic innovation traits 

across innovation groups to derive more general, theory-informed insights 

into patterns of adoption. This is justified by prior reviews suggesting that 

innovations can be categorized meaningfully to relate their adoption 

determinants to specific traits (Fliegel and Kivlin, 1966; Rubas, 2004; Blair 

et al., 2021; Arslan et al., 2022) We expand global coverage by including 

OECD countries and a wider range of innovation traits, thereby adding to 

the meta-analysis by Ruzzante et al. (2021) who adopted a similar approach.  

The induced innovation hypothesis (IIH) suggests that innovation is driven 

by the quest to use relatively more expensive production factors more 

efficiently (Hicks, 1932). The set of potential factor-augmenting 
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technologies has been conceptualized as the innovation possibility frontier 

by early microeconomic theorists (Ahmad, 1966; Binswanger, 1974a; Funk, 

2002). The first prominent empirical application by Hayami and Ruttan 

(1971) and related empirical work in agriculture found partial support for 

the hypothesis (Binswanger, 1974b; Cowan et al., 2015; Goldman, 1993). 

Based on improved methods and national datasets in the 1990s, several 

studies cast doubt on the general validity of the IIH (Olmstead and Rhode, 

1993; Liu and Shumway, 2009). Clearly, a comprehensive understanding of 

innovation processes requires a broader theoretical approach linking micro-

level, including behavioural, perspectives with system theories (Edler and 

Fagerberg, 2017). Still, the induced innovation rationale remains popular as 

a conceptual framework to motivate thinking about innovation processes in 

bio-based sectors (Asche and Smith, 2018; Stark et al., 2022).  

As with most microeconomic optimization problems, the IIH can be 

formulated either in terms of highest gain (profit maximization) or in terms 

of least resistance (cost minimization). As such, technological change is 

usually factor-augmenting. A rational decision maker facing the choice 

between innovations augmenting different factors along the innovation 

possibility frontier (IPF) will choose the innovation that augments the most 

expensive factor, as it maximizes output (Funk, 2002). Similarly, one could 

argue that a rational decision maker would choose the technology along the 

IPF that minimise use of the more expensive factors.  

In addition to the production factors (land, labour, and capital) that are 

commonly used in the literature ( Blair et al., 2021; Pardey et al., 2010 we 

also consider knowhow as a proxy of management skills (Dawson and 

Lingard, 1982; Huffman, 2020). We make four related propositions:  

 P1) The extent to which the farm size determines the adoption of 

land-intensive innovations is moderated by relative land-abundancy;  
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 P2) The extent to which labour availability determines the adoption 

of labour-intensive innovations is moderated by relative labour-

abundancy;  

 P3) The extent to which capital availability determines the adoption 

of capital-intensive innovations is moderated by relative capital-

abundancy;  

 and P4) The extent to which knowhow determines the adoption of 

knowhow-intensive innovations is moderated by relative knowhow-

abundancy. 

Framing the IIH in terms of factor intensities rather than relative factor 

prices allows us to use globally available data and a theoretically motivated 

classification of innovation options in our empirical approach below. 

Accordingly, we do not claim to test IIH directly – rather we seek to provide 

complementary economic evidence to explain adoption patterns of 

agricultural technologies at global scale. 

5.3 Materials and Methods 

5.3.1 Primary Data Collection 

We closely followed the guidelines for meta-analyses in economics by 

Havránek et al. (2020). A database containing agricultural innovation 

adoption determinants from prior studies was created in five steps (see 

Supplementary Information Text S1 and Text S2, on-line). First, we 

gathered and assessed the eligibility of 1,423 adoption studies from the 

reference lists of prior reviews (Table S1). Second, we followed Grames et 

al. (2019) and used text mining on the eligible studies to derive a data-driven 

systematic search string before we retrieved a total of 27,043 peer-reviewed 

articles from three literature databases, namely Web of Knowledge, 
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EBSCOhost and AgEcon. Third, with the support of automation tools to 

prioritize relevant abstracts and titles, we screened all unique records 

according to the eligibility criteria presented in Table S2, on-line. Fourth, 

we extracted and coded the results of 534 randomly selected16 primary 

studies along with meta data into a detailed spreadsheet, following Stanley 

and Doucouliagos (2012) and Floress et al. (2019). We thus base our 

analysis on a convenience sample of the innovation adoption literature 

similar to prior reviews (Oca Munguia and Llewellyn, 2020; Ruzzante et al., 

2021). Apart from the estimated adoption coefficients and their precision 

estimates, we collected sample characteristics such as sample size, mean and 

standard deviation of independent variables, distribution of adopters/non-

adopters, information about empirical specifications (e.g., logit, probit), and 

dependent variable characteristics (e.g. scale and innovation description). 

Fifth, we categorized all innovations and adoption determinants and 

expanded the approach of Floress et al. (2019) by including detailed 

information on measurement units, for example whether farm size was 

defined as total farm size or area cultivated, measured in hectares, acres, or 

a (non-) linear transformation of the same. An extended PRISMA diagram 

(Page et al., 2020) with the number of studies that were excluded at each 

stage of the screening process along with the filtering process of comparable 

effect sizes is shown in Figure 5.1.  

                                                 
16 We expect that not all relevant studies were identified by our approach, but do not expect 

that non-identified studies differ systematically from the identified ones. 
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Figure 5.1: Extended PRISMA diagram of included studies and effect sizes 

 

5.3.2 Effect sizes 

The primary data for this study are estimated log odds ratios of adoption 

determinants, which can be used in meta-analysis without further 

standardization (Cooper et al., 2009; Stanley and Doucouliagos, 2012). As 

a measure of precision, this study used the variance of the log odds ratio, 

calculated from the standard errors, t-statistics, p-values or p-significance 

thresholds (typically coded as stars) depending on availability. Although we 

recognize that the majority of our observed effects is neither causal nor 

unbiased, we assume these estimates to be unbiased on average based on the 

central limit theorem applying to large samples (see Text S3 for further 

discussion). 

Meta-regression relies on the condition that observations (effects) are 

measured in a homogeneous manner. We thus carefully ensure the 

comparability of adoption determinants by using a fine-grained 

categorization procedure and rigorous filtering. A total of 32079 beta 

coefficients of agricultural innovation adoption determinants were extracted 
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from 524 unique studies (see SI Full list of included studies, on-line). Out of 

these, 22137 were eligible based on the reported outcome (Text S6, Table 

S3) and categorized into 42 categories of adoption determinants (Text S5, 

Table S4). For comparability, only studies using logit or probit estimation 

methods are included in this analysis, further reducing the number of 

observations to 18807. These restrictions could introduce a bias against 

lumpy innovations or those that can be partially or dynamically adopted, 

because their adoption is typically not studied as a binary outcome (Doss, 

2006; Pannell and Claassen, 2020). We found no drastic differences between 

the frequency of innovations before and after filtering (Figure S4), but 

recognize that this check fails to account for studies that did not meet our 

PICOS criteria. Since some primary studies did not report test statistics or 

only effect estimates that could not be converted to log odds ratios, 

comparable effect size estimates and their variance could be calculated for 

8235 observations. To ensure comparability, effect sizes within each 

category of adoption determinants were grouped into the respective 

measurement units whenever we could obtain sufficiently detailed 

information. For this analysis, we only used measures of adoption 

determinants that were used by at least five different studies. 

5.3.3 Empirical Framework 

5.3.3.1 Aggregation of dependent effect sizes 

Meta-analysis without moderators is used to estimate a weighted mean for 

each adoption determinant, where the weights are inversely related to the 

variance. We used the estimated log odds ratios as the outcome measure and 

employed multilevel random effects models with robust variance estimation 

(RVE). Doing so requires us to deal with non-independent effects and 

correlated sampling errors. The correlated and hierarchical effects (CHE) 
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model described by Pustejovsky and Tipton (2021) addresses these types of 

dependencies and can be written as follows for the average effect:  

𝑦𝑖𝑗 = 𝛽0 + 𝑢𝑗 + 𝑣𝑖𝑗 + 𝑒𝑖𝑗 (Eq. 5.1) 

Where 𝑦𝑖𝑗  is the ith effect size (innovation) in study j (i=1…m, j=1…k),  𝛽0 

is the average population effect, 𝑢𝑗  are study-level random effect with 

variance 𝜎1
2  (between study variance), 𝑣𝑖𝑗 are observation-level random 

effects with variation 𝜎2
2, and 𝑒𝑖𝑗 are the known sampling variances of the 

respective effect sizes with variance sj
2 and Cov(𝑒𝑖𝑗, 𝑒𝑖𝑗)= ρ𝑠𝑗

2 where we 

assume a constant correlation17 among estimates from the same study of 

ρ=0.5. The unknown variance components 𝜎1
2 and 𝜎2

2 are estimated using 

the Restricted Maximum Likelihood estimator (Viechtbauer, 2005).  

5.3.3.2 Induced innovation: meta-regression framework 

We use interaction terms between the country- and time-specific factor 

endowments and innovation-specific factor intensities to test the 

propositions outlined in Section 5.2. Table 5.1 provides an overview of the 

dependent variables (adoption determinants), the factor intensities assigned 

as binary variables to each innovation and the proxies for factor abundance 

used in the analysis. For the binary trait-indicators, we developed a coding 

scheme with predefined criteria to assign factor intensities. Four trained 

analysts independently assigned all innovation traits to all innovations based 

on the coding scheme, reaching a final inter-coder agreement of 96% (see SI 

Text S6, on-line, for further details). The selection of context indicators was 

informed by pragmatic criteria of comparability and availability across 

countries; we discuss the implications below. We consider quantity ratios 

                                                 
17 The simplifying assumption of having the same constant correlation of outcomes within 

studies was taken because with the available data we were not able to model 

heteroscedastic variances. 
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adequate because they provide an intuitive proxy of relative scarcity, 

reflecting the material conditions of production, while being less sensitive 

to agricultural policies than price ratios, in the short term. 

Empirically, interaction terms along with a set of control variables were 

added to the CHE model so that the extended model can be written as 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑇𝑖𝑗 + 𝛽2𝐶𝑖𝑗 + 𝛽3𝐶𝑖𝑗 ∗ 𝑇𝑖𝑗 + 𝛽4𝑀𝑖𝑗 + 𝑢𝑗 + 𝑣𝑖𝑗

+ 𝑒𝑖𝑗 

(Eq. 5.2) 

Where 𝛽0 is an intercept, 𝛽1 the estimated coefficient for the factor intensity 

dummy T, 𝛽2 the coefficients for country-year specific factor abundancies 

𝐶, 𝛽3the coefficient of the interaction between factor abundance and factor 

intensity, 𝛽4 the coefficients for additional control moderators 𝑀; 𝑢𝑗  𝑣𝑖𝑗 and 

𝑒𝑖𝑗 are defined as in Eq. 5.1. The aggregated effect was considered 

economically meaningful when its estimated 95% confidence interval did 

not include zero. To better interpret the magnitude, the aggregated log odds 

ratios were transformed to odds ratios. Results from estimating Eq. 5.2 must 

be interpreted with care given that context factors (C) may be endogenous 

to technology adoption. For example, if mechanisation reduces labour 

requirements, fewer workers per hectare of cropland are needed. We address 

this issue by adopting measures of context factors that were taken before 

levels of adoption were measured in the studies that enter our meta-analyses. 

Moreover, these studies largely focus on innovations at subnational scale in 

relatively early stages of dissemination, which are unlikely to affect context 

factors measured at national scales. That said, we do not claim to have found 

a strategy that rigorously identifies the causal effect of context factors on 

adoption factors, but expect to find plausible correlations. We show 

correlations and geographic distribution of each context factor in the on-line 

Figures S5 and S6, respectively. Summary statistics of all independent 
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variables and adoption determinants are reported in on-line Tables S5 and 

S6, respectively.   

Table 5.1: Definition of dependent and independent variables 

Dependent variables Independent variables 

Adoption 

determinant 

Scale & 

measuring units 

Innovation factor intensity (traits) Geographic 

factor abundance 

(context) 

Land Continuous 

variables: 

hectares or acres 

of total farm 

size or area 

under 

cultivation 

T1: Land intensity (i.e. 1 for contour 

farming, buffer strips, agroforestry, 

conservation practices, organic 

farming, 0 for all other) 

C1: Land-

abundance: 

(1) Log of 

hectares of 

cropland 

equivalent per 

worker (Fuglie 

2012) 

Labour Continuous 

variables: 

number of 

women, men, 

adults or 

household 

members 

T2: Labour intensity (i.e. 1 for 

permanent cover, contour farming, 

buffer strips, agroforestry, 

conservation practices, fertilizer, 

non-chemical pest control, nutrient 

intensity optimization, organic 

farming, soil analysis, 0 for all 

other) 

C2: Labour-

abundance: 

(1) Share of 

workforce 

employed in 

agriculture (ILO 

2021) 

Capital Binary 

variables: access 

or use of formal 

credit 

T3: Capital intensity (i.e. 1 for 

buffer strips, agroforestry, fertilizer, 

non-chemical pest control, chemical 

pest control, soil analysis, 

mechanization, precision farming 

analysis support, precision farming 

interventions, improved seeds, 

C3: Capital-

abundance: 

(1) Log of 

agricultural 

machinery stock 

per hectare of 

cropland 
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Dependent variables Independent variables 

Adoption 

determinant 

Scale & 

measuring units 

Innovation factor intensity (traits) Geographic 

factor abundance 

(context) 

GMOs, crop insurance, 0 for all 

other) 

equivalents 

(Fuglie 2012) 

Knowhow Binary 

variables: access 

and use of 

traditional 

extension 

services 

T4: Knowhow intensity (i.e. 1 for 

permanent cover, agroforestry, 

reduced tillage, conservation 

practices, non-chemical pest 

control, nutrient intensity 

optimization, chemical pest control, 

organic farming, soil analysis, 

analysis support for precision 

farming, contract farming, crop 

insurance, 0 for all other)  

C4: Knowhow-

abundance: 

(1) Education 

index (Smits & 

Permanyer 2019) 

Note: Dependent variables (adoption determinants) and their measuring units were 

extracted from primary studies. Innovation traits were assigned to each innovation category 

based on predefined criteria. Country-level indicators of factor abundance were obtained 

for the year of data collection of the primary study. The indicator listed under (1) are our 

primary set of context variables.  

 

5.3.3.3 Robustness checks and publication bias assessment 

We checked the robustness of our estimates by consecutively adding sets of 

control variables These were: 1) other innovation traits, 2) context 

indicators, 3) study- and regression characteristics, and 4) dummies 

indicating whether the primary study controlled for other selected adoption 

drivers such as assets, education, or income. Our main results are based on 

the full set of control variables. In the random effects model, true population 
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effects may differ even in the absence of sampling error. We therefore tested 

within each outcome, whether the effect sizes belong to different populations 

by testing the significance of the Q statistic using a χ^2 distribution (Hedges 

and Olkin, 1985). We tested for the presence of publication bias using 

Egger’s regression test with a significance threshold of p=0.10 (Egger et al., 

1997; Sterne and Egger, 2005). Results of the main regressions with 

moderators after excluding influential observations are reported as 

robustness checks. Potentially influential observations were identified using 

Cook’s distances larger than four standard deviations. As a constant 

correlation between estimates from the same study, we assumed a value of 

0.5 and conducted a sensitivity analysis by varying this value between 0 and 

1. We also tested whether results could be driven by studies that provide 

multiple estimates of the adoption of the same innovation (i.e. different 

model specifications) by considering only one average estimate per study 

(Gleser and Olkin, 1994). Finally, we tested whether results were sensitive 

to the choice of context-indicator by using an alternative set of context 

variables given in the SI.  

Figure 5.2: Geographic distribution of comparable studies and innovation 

 

Note: The colour of the country indicates the number of adoption studies in the respective 

country, while the size of the circles indicates for how many different innovations in a given 
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country adoption determinants were estimated. In the US, for example, we found 68 studies 

reporting adoption determinants for 16 different innovations.  

 

The analysis was conducted using the metafor package (Viechtbauer, 2010) 

and clubSandwich package (Pustejovsky, 2020) for R (R Core Team, 2020). 

Further information including summary statistics, variable descriptions, 

robustness checks, publication bias assessment, and a full list of included 

studies are provided in the online supplementary material. 

5.4 Results 

This study synthesizes a total of 4596 estimated beta coefficients of 

innovation adoption determinants. They originate from 305 unique 

publications, of which 257 report results for a specific region, 46 at the 

country level, and 2 across countries. Figure 5.2 illustrates the geographic 

distribution of studies and innovations. Most studies focus on the United 

States, suggesting a potential language selection bias because we 

incorporated part of the data from Floress et al. (2019). In terms of number 

of observations, Sub-Saharan countries, predominantly Ethiopia, were 

strongly represented in the adoption literature, whereas Latin America, 

Europe, and Oceania are underrepresented in our dataset (see Table S6, on-

line). 

5.4.1 Effect Size Aggregation 

Figure 5.3 and Figure 5.4 show the average odds ratios for comparable 

categories of binary and continuous adoption determinants respectively 

along with their robust 95% confidence intervals for all measuring units with 

at least 20 observations. The columns on the right indicate the number of 

effect sizes used for the estimate (N), the number of studies from which these 

effects were extracted (S) and the p-value indicating whether the estimated 
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intercept significantly differed from zero. Odds ratios can be interpreted as 

changes in the odds of adopting the innovation against the reference of one, 

all else being equal. For example, binary variables indicating that extension 

services were received have an average odds ratio of 1.69, which translates 

to an increase of 69% (95% CI: 37.6-106.7%) in the odds of adoption. 

Similarly, binary variables indicating access to and use of formal credit were 

grouped together in the FULL model specification, resulting in an average 

increase in the odds of adoption by 48% (95% CI: 18.7-84.1%). 

Figure 5.3: Weighted mean odds ratios (OR) for binary adoption 

determinants grouped by measuring unit 

 

Note: Within each category (grey boxes on left side) we report separate regressions for 

each measuring unit (written on right side). The bold estimates (FULL) combine all 
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measuring units with the respective category. N= number of observations, S=number of 

studies, p=Satterthwaite p-value of OR being equal to one. Dotted line indicates zero effect, 

namely odds of adoption equal odds of non-adoption. For exact numerical representation 

of estimates and additional model statistics see Table S7, on-line. 

The only adoption determinants that are consistently (i.e. for all measuring 

units) and significantly (i.e. p<0.1) different from zero were Assistance 

(binary and cont.), Credit (binary), Tenure (binary), Education (cont.), 

Experience, Livestock, while farm size – although generally positive and 

significant - exhibited substantial variation when measured in log hectare 

unit. These findings are more conclusive than those of previous vote-count 

analyses (Knowler and Bradshaw, 2007; Shang et al., 2021) Other 

commonly used determinants such as gender and age were not found to 

significantly differ from zero on average; the latter is contrary to findings by 

Baumgart-Getz et al. (2012), who focussed on North America. Market 

distance was the only measure negatively associated with adoption. In 

general, our findings are in line with those by Ruzzante et al. (2021), as 

expected.  Binary measures tended to have larger magnitudes than related 

continuous measures. For example, having graduated from a university 

increases the odds of adoption by 29% (95% CI: 6.6-57.2%), while one 

additional year of education has an effect of 5% (95% CI: 3.3-6.9%). At the 

same time, variables measured on a continuous scale tended to have a lower 

variance. Binary measures must be interpreted with caution avoiding 

conclusions about relative magnitudes, because we could not control for the 

reference categories since this would drastically reduce the sample size. If 

tertiary school attainment is compared to secondary school attainment, one 

can expect a lower magnitude than when it is compared to another baseline 

category, for example, having received no primary education, which may be 

the case in developing countries. Hence, our estimates of categorical 

adoption determinants should be interpreted as upper-bound estimates. 
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Notably, even within the relatively fine-grained outcome measures, all 

estimates still have significant residual heterogeneity (p<0.01) (reported in 

Table S7, supplementary material on-line). We thus proceed to meta-

regression analysis and assess whether moderators can explain this 

heterogeneity. 

Figure 5.4 Weighted mean odds ratios for continuous adoption determinants 

grouped by measuring unit: 

 

Note: Within each category (grey boxes on left side) we report separate regressions for 

each measuring unit (written on right side). The bold estimates (FULL) combine all 

measuring units with the respective category. N= number of observations, S=number of 

studies, p=Satterthwaite p-value of OR being equal to one. Dotted line indicates zero effect, 

namely odds of adoption equal odds of non-adoption. For exact numerical representation 

of estimates and additional model statistics see Table S7, on-line. 
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5.4.2 Revisiting the Induced Innovation Hypothesis 

The meta-regression results presented in Table 5.2 show the interaction 

effects between innovation specific factor intensity and country specific 

factor abundance for the four adoption categories land, labour, and capital 

and knowhow. The innovation traits T1-T4 are assigned the value of one if 

the innovations use the respective factor intensively, and zero otherwise, 

while the context factors C1-C4 are continuous measures (see Table 5.1 for 

details). 

Table 5.2: Interaction effects of factor intensity and factor abundance for 

Land, Labour, Capital and Knowhow 

  Farmsize Labour Credit Assistance.B 

Innovation traits         

          

     T1: land-intensive 0.24*** 0.00 0.00 0.21 

  (0.07) (0.02) (0.12) (0.17) 

     T2: labour-intensive -0.10** 0.03 0.06 -0.12 

  (0.07) (0.06) (0.12) (0.11) 

     T3: capital-intensive 0.10* -0.02 -0.48** 0.87*** 

  (0.06) (0.03) (0.25) (0.34) 

     T4: knowhow-intensive -0.03 0.02 -0.15 1.47*** 

  (0.04) (0.02) (0.11) (0.54) 

Context indicators         

          

     C1: land-abundance 0.03 -0.06** -0.25 -0.01 

  (0.04) (0.04) (0.35) (0.15) 

     C2: labour-abundance 0.00 -0.00 -0.00 -0.00 

  (0.00) (0.00) (0.02) (0.01) 

     C3: capital-abundance 0.00 -0.00 0.08 0.08 

  (0.02) (0.01) (0.09) (0.09) 

     C4: knowhow-abundance -0.05 -0.14 1.18 0.24 

  (0.25) (0.11) (2.36) (1.16) 

Interaction terms         

          

     T1 * C1 -0.07***       

  (0.03)       

     T2 * C2   -0.00     

    (0.00)     

     T3 * C3     -0.12***   

      (0.05)   
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  Farmsize Labour Credit Assistance.B 

     T4 * C4       -1.79* 

        (1.06) 

Constant 0.11 0.26** 0.99 0.35 

  (0.24) (0.12) (2.13) (1.36) 

Regression Type Yes Yes Yes Yes 

Measurement Units Yes Yes Yes Yes 

Model Specification Yes Yes Yes Yes 

sigma2.1 0.04 0.00 1.06 0.18 

sigma2.2 0.06 0.01 0.14 0.28 

cochran.qe 5470.97 4085.72 1660.44 1154.95 

p.value.cochran.qe 0 0 0.00 0.00 

cochran.qm 41.89 25.75 21.03 31.78 

p.value.cochran.qm 0.01 0.26 0.40 0.08 

df.residual 343 338 172 165 

logLik -187.32 96.70 -190.79 -191.84 

deviance 374.63 -193.41 381.59 383.68 

AIC 428.63 -143.41 427.59 433.68 

BIC 532.25 -47.83 499.98 511.33 

AICc 433.43 -139.24 435.04 443.04 

observations 368 361 193 188 

*** p < 0.01;** p < 0.05;* p < 0.1 

Note: Column labels indicate dependent variable, i.e. adoption determinant as specified in 

Table 5.1. Innovation traits (T1-T4) refer to binary variables of factor intensity, while 

context indicators (C1-C4) indicate factor abundance for land, labour, capital, and 

knowhow, respectively (see Table 5.1 for details). A set of control dummies accounts for 

model specifications in primary studies: regression type (logit, probit), scale of dependent 

variable (binary and multivariate), observation level (plot or farm), spatial level (regional 

or national); model specification dummies for whether the original model controlled for 

farm size, labour, credit, assets, income and education or not, and in case of farm size 

whether a squared term was included in the primary regression. Distribution of 

measurement units for each regression is shown in Table S5, on-line. Brackets contain 

robust standard errors clustered at the study-level. The sigmas refer to estimated variation 

components between studies (𝜎1
2) and within study (𝜎2

2). Cochrane test for residual 

heterogeneity (QE) and its significance (QEp) as well as omnibus moderator test statistic 

(QM) and its significance (QMp) are reported. 

 

We found significant (p<0.1) negative interaction terms for the proxies of 

land, capital and knowhow, i.e. farm size, credit access/use, and extension 

access. A negative interaction term indicates that a higher value of the 
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context indicator is associated with a lower odds ratio of adopting 

innovations that use the interacted factor intensively. We did not find a 

significant interaction effect on labour, but note that the estimated between-

study heterogeneity in true effects (𝜎1
2) was close to zero, so that potential 

moderators that could explain this variation would have an economically 

rather insignificant magnitude. The omnibus moderator tests were 

marginally significant for farm size (p=0.08) and extension (p=0.08). 

5.4.3 Robustness 

Regarding the aggregated effects (Figure 5.3, Figure 5.4), Egger’s regression 

test indicated no evidence for publication bias. However, the Q-statistic 

indicated significant heterogeneity in the true effects for all estimated 

average effects, which we attribute to differences in innovation, sample and 

study characteristics (Table S7, on-line). Hence, even though the average 

odds ratio is significantly greater than one, the distribution of true effects 

estimated by the random effects model may include effects smaller than one.  

The QE-test for residual heterogeneity in the regression reported in Table 

5.2 remained highly significant after the inclusion of all moderators. The 

moderators included in this analysis thus only explain a part of the variation 

in true effects. The interaction effects for farm size and credit shown in Table 

2 remain stable after the exclusion of potentially influential studies identified 

via Cook’s distance (Table S10, on-line). As shown in Table S8 and Table 

S9 both estimates and their p-values are sensitive to the assumed within-

study correlation of estimates; at an extreme hypothetical intra-study 

correlation of 1 the effects are only marginally significant. Yet, the 

sensitivity analysis supports our belief that the within-study correlation of 

effects plays an important role and should be modelled accordingly. Our 

interaction effect estimates are robust to a variety of model specifications 

and when considering only one estimate per innovation per study (Table 
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S12-16). An alternative set of context variables produced similar magnitudes 

and directions of estimated interaction effects (Table S11), but the 

coefficients were no longer significant. The original set of context indicators 

was chosen to minimize the number of missing observations; for the 

alternative context variables much fewer observations are available, which 

explains the reduced statistical power. 

5.5 Discussion 

We found large and significant positive average effects for binary adoption 

determinants related to assistance, credit access and group affiliation. We 

also found statistically significant positive average effects, albeit an order of 

magnitude smaller, for continuously measured determinants related to years 

of formal education, experience, and livestock herd size. These findings are 

broadly in line with prior meta-analyses. Ruzzante et al. (2021), for example, 

reported similar effect directions, with only minor differences in absolute 

magnitudes. They used a different effect size measure (the partial correlation 

coefficient) and included both binary and continuous adoption measures, 

which may partially explain the difference.  

We further found no evidence for a uniform effect of age or gender on 

adoption. We found mostly positive associations for labour endowment, 

farm size, risk preferences, and tenure status as adoption determinants, 

although some measuring units did not indicate a significant average impact. 

Importantly, we show that some of these factors matter more or less under a 

selected set of contextual conditions that reflect factor abundance and 

corresponding technology traits. Since direction and magnitudes of adoption 

determinants have been extensively discussed in earlier reviews (see Section 

5.1 and Table S1, on-line), we focus here on the results of our moderation 

analysis. Regarding the interaction effect of innovation factor intensity and 
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context factor abundance, we found that our propositions (Section 5.2), 

based on induced innovation can explain some of the variation in true effects 

across countries and innovations. 

5.5.1 Land 

Consistent with proposition P1, our results suggest that the extent to which 

land-availability at farm-level determines the adoption of land-intensive 

innovations decreases with increasing land-abundance. Our interpretation of 

land (farm size) as an adoption determinant deviates from Ruzzante et al. 

(2021) in that we do not interpret the positive sign as sufficient evidence for 

increasing returns to scale of the innovation. Prior studies have emphasized 

the role of fixed transaction costs involved in changing the production 

system. Often a critical scale of operation is needed to overcome an 

innovation threshold (Foster and Rosenzweig, 2017). Relying on fixed 

transaction costs as an impact channel for farm size is therefore consistent 

with the idea that the positive effect of farm size on adoption reflects 

economies of scale. Differences in the farm size estimate would then be 

attributable to different marginal cost of implementing the innovation. 

However, the fact that larger farms are more likely to adopt innovations may 

also relate to alternative mechanisms such as affluence, risk-affinity, 

management style, or bargaining power – which are likely endogenously 

linked to farm size. 

Ruzzante et al. conjecture based on their findings that NRM-technologies 

may be implemented in a capital-intensive fashion in the USA, whereas 

labour-intensive implementation would dominate in developing countries. 

Indeed, within-innovation differences in factor intensities could explain 

heterogeneity in adoption determinants at various scales. Since our data 

allows us to empirically test for these relationships, we focus on the 

between-innovation variation in factor intensities by assuming each 
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innovation to be homogenous with respect to factor intensities. Our 

theoretical framework based on induced innovation (IIH) provides a 

mechanistic interpretation of the relationship between factor abundance and 

factor intensity and for the macro-scale interpretation, it does not matter 

whether the variation occurs within or between innovations.  

5.5.2 Labour 

We did not find a statistically significant interaction effect for the factor 

labour. This may be due to a lack of statistical power to explain very small 

variations (see Figure 5.4). Furthermore, household size related variables are 

typically included in adoption studies as a proxy for farm labour usage in the 

presence of imperfect labour markets. Under functioning labour markets, the 

size of the household is not expected to have any influence on the farm 

labour usage, since labour supply and labour demand of the farm household 

are separable (Benjamin, 1992). Instead of low wages as a reason for farm 

labour being less of a driver for innovation, labour supply may actually be 

low due to imperfect markets, even though the country is labour abundant. 

Thus, the findings may point towards a discrepancy between labour 

abundance and actual labour supply. However, our data did not allow for 

tests with other farm labour indicators or an assessment of the role of 

seasonal fluctuations in labour availability.  

5.5.3 Capital 

Consistent with proposition P3, we find that a change in access to formal 

credit has a relatively smaller effect on the adoption decision in capital 

abundant contexts. This must be interpreted with caution because our 

observations are limited to non-OECD countries, which is not surprising 

given that capital markets work comparatively well in OECD countries and 

credit access is thus virtually never considered. This is in line with the 

sizeable impact of access to capital on US-agricultural productivity during 
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the first half of the 20th century, when rural capital markets were less 

developed (Hutchins, 2022). Data limitations did not allow us to test the 

effect on adoption determinants such as debt-asset-ratio, which is more 

commonly measured in capital abundant OECD-countries. To corroborate 

our findings with respect to capital, we report additional moderation 

analyses for tenure status, livestock and gender in   
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Table 5.3. Following Arslan et al. (2020), we also used livestock (herd size 

measured in tropical livestock units or total heads) as a proxy of capital 

because of its function as collateral18. We tested whether the effect of this 

capital proxy is moderated by capital-intensity and abundance (Column 4 in 

Table 5.3) and found a positive interaction effect indicating that livestock is 

relatively more important for adopting capital-intensive innovations in 

capital-abundant settings. This result may seem at odds with the IIH. But, 

livestock often serves as a collateral and its effect is then indirect and 

mediated mainly by the availability of (in-) formal capital markets, which 

tend to be more developed in capital-abundant settings. In addition, we 

report results for tenure status (1=being full owner, 0 otherwise) and gender 

(1=male, 0=female). Similar to livestock, the effect of tenure status is 

positively influenced by capital abundance in the study context independent 

of capital intensity of the innovation. That is, being a full owner and having 

more livestock is more important where capital is available (and land can be 

employed as collateral on capital markets).  

Interestingly, none of the context or trait-related variables were significantly 

associated with the estimated coefficients for gender as an adoption 

determinant. Although insignificant, we cautiously interpret the negative 

point estimate in the gender regression as a sign that identifying as male may 

be more important for the adoption of innovations in capital scarce contexts. 

This is intuitive considering the gender-based differences in access to capital 

and underlines to continued need for inclusive (esp. gender-sensitive) 

financial institutions.  

                                                 
18 For formal credit, livestock has been argued to be a poor collateral for being prone to 

theft and disease (Binswanger & McIntire 1987), but some microcredit institutions do 

accept it nowadays (Chapoto & Aboagye 2017). 
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5.5.4 Knowhow 

The large magnitude of the assistance effect (Figure 5.3) highlights that 

agricultural extension plays an important role in the innovation adoption 

process, even though a lack of accountability, performance gaps and 

distributional shortcomings were highlighted in the literature on agricultural 

knowledge systems (Anderson et al., 2006; Norton and Alwang, 2020). 

While we cannot rule out that some primary studies labelled “extension” 

relates to any type of professional in-person knowledge transfer, we assume 

that extension predominantly relates to the more traditional “Train & Visit” 

approaches. Such approaches were subject to criticism in favour of more 

bottom-up approaches (Chambers, 1998; Scoones and Thompson, 1994; 

Scoones et al., 2009), but our estimates show that they effectively enhance 

the adoption of agricultural innovations. Clearly, bottom-up approaches 

could have been even more effective in doing so and may have beneficial 

effects beyond promoting technology adoption. 
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Table 5.3: Additional regression results for adoption determinants related to 

capital 

  Tenure.B Tenure.B Livestock Livestock Gender Gender 

Innovation traits             

              

     T1: land-

intensive 0.08 0.08 -0.00 -0.01 -0.07 -0.06 

  (0.12) (0.14) (0.04) (0.03) (0.18) (0.18) 

     T2: labour-

intensive 0.10 0.10 0.04 0.04* -0.24* -0.25** 

  (0.15) (0.16) (0.03) (0.03) (0.15) (0.15) 

     T3: capital-

intensive -0.09 -0.10 0.04 0.18*** -0.28* -0.39* 

  (0.23) (0.31) (0.03) (0.05) (0.12) (0.17) 

     T4: knowhow-

intensive 0.21 0.21 0.00 0.01 0.05 0.05 

  (0.19) (0.22) (0.03) (0.03) (0.14) (0.14) 

Context indicators             

              

     C1: land-

abundance 0.01 0.01 0.04 0.03 0.01 0.00 

  (0.31) (0.31) (0.04) (0.04) (0.09) (0.09) 

     C2: labour-

abundance -0.02 -0.02 -0.00 -0.00 0.00 0.01 

  (0.02) (0.02) (0.00) (0.00) (0.01) (0.01) 

     C3: capital-

abundance 0.17 0.17 0.05*** 0.04** -0.04 -0.02 

  (0.12) (0.13) (0.02) (0.02) (0.05) (0.06) 

     C4: knowhow-

abundance -4.01* -4.00* -0.38 -0.36 0.53 0.49 

  (1.55) (1.55) (0.21) (0.24) (0.95) (0.94) 

Interaction terms             

              

     T3 * C3   -0.00   0.04***   -0.04 

    (0.11)   (0.01)   (0.05) 

Constant 4.94*** 4.94*** 0.22 0.23 0.27 0.35 

  (2.72) (2.71) (0.17) (0.18) (0.99) (0.98) 

Regression Type Yes Yes Yes Yes Yes Yes 

Measurement Units Yes Yes Yes Yes Yes Yes 

Model Specification Yes Yes Yes Yes Yes Yes 

sigma2.1 0.89 0.89 0.00 0.00 0.00 0.00 

sigma2.2 0.15 0.15 0.01 0.01 0.48 0.48 

cochran.qe 1415.33 1411.90 1674.14 1637.12 4274.09 4268.68 

p.value.cochran.qe 0.00 0.00 0.00 0.00 0 0 

cochran.qm 32.06 31.89 32.98 43.73 30.39 30.92 

p.value.cochran.qm 0.04 0.06 0.03 0.00 0.08 0.10 

df.residual 126 125 139 138 299 298 

logLik -135.55 -135.11 102.01 106.56 -373.77 -372.77 

deviance 271.11 270.23 -204.02 -213.12 747.54 745.55 
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  Tenure.B Tenure.B Livestock Livestock Gender Gender 

AIC 317.11 318.23 -158.02 -165.12 795.54 795.55 

BIC 382.34 386.11 -90.53 -94.86 884.35 887.97 

AICc 327.93 330.23 -148.42 -154.50 799.92 800.33 

Observations 147 147 160 160 321 321 

*** p < 0.01;** p < 0.05;* p < 0.1 

Note: Innovation traits (T1-T4) refer to binary variables indicating land intensive, labour 

intensive, capital intensive, and knowhow intensive, respectively (see Table 5.1 for details). 

A set of control dummies accounts for model specifications in primary studies: regression 

type (logit, probit), scale of dependent variable (binary and multivariate), whether the 

original model controlled for other independent variable categories or not, observation 

level (plot or farm), spatial level (regional or national). Brackets contain cluster robust 

standard errors. The sigmas refer to estimated variation components between studies (𝜎1
2) 

and within study (𝜎2
2). Cochrane test for residual heterogeneity (QE) and its significance 

(QEp) as well as omnibus moderator test statistic (QM) and its significance (QMp) are 

reported. 

 

We interpret the results in Table 5.2 (column 4) in favour our proposition 

P4, namely that extension as a proxy of knowhow positively influenced the 

adoption of knowhow-intensive innovations especially in knowhow scarce 

contexts. Our finding contradicts Ruzzante et al. (2021), who found that the 

education level in the same context was negatively associated with the effect 

extension has on the adoption of improved seeds (not knowhow-intensive), 

but positively associated with the effect it has on the adoption of natural 

resource management (knowhow-intensive). This is a surprise because we 

based our calculation on the same education index. In addition, we found 

that extension was more effective for the adoption of capital- and knowhow-

intensive innovations opposed to land and labour-intensive ones. We 

speculate that our finding can be explained by factor mobility: capital and 

knowhow tend to move more freely than land and family labour 

(Binswanger and McIntire, 1987), making it easier for extension agents to 

successfully advocate capital and knowhow-intensive innovations. The 

finding may also indicate effectiveness of the facilitating role knowledge 
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networks such as extension agents or associations play in promoting access 

to rural credit (Linh et al., 2019; Carrer et al., 2020; Balana and Oyeyemi, 

2022).  

Two factors limit our confidence in the coefficient of the corresponding 

interaction term. First, we did not find consistent results using alternative 

proxies of knowhow, namely experience and formal education (Table S17, 

on-line). The estimates of the interaction terms are also inconsistent across 

model specifications, outcomes, and particularly sensitive to the choice of 

alternative context indicators. As with labour, this may have to do with the 

difficulty of decomposing very limited heterogeneity in true effects. Second, 

the relative focus on non-OECD-countries in our sample, once again, limit 

generalizability to the global level. In OECD-countries, assistance is often 

measured by the presence of (self-paid) advisors rather than publicly 

financed extension agents. Including observations with this assistance proxy 

in the regressions led to inconsistent results. We excluded these observations 

due to the difference in their total heterogeneity (Figure 5.3: rows 1, 3, and 

4); the corresponding dummy would have been correlated with the error term 

and thus biased our estimates. 

5.5.5 Limitations 

Our meta-analysis was constrained by the diversity of empirical strategies, 

(partially) unreported results, and notably by a lack of consistency in the 

measurement of commonly used adoption determinants. Overcoming 

comparability related issues by rigorously filtering out non-comparable 

observations and controlling for the exact measurement units increased the 

geographical imbalance in our final dataset. Our categorization of 

innovations and consecutive assignment of factor intensities did not account 

for potential heterogeneity of factor intensities, especially when 

endogenously influenced by the geographic context (see also Section 
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5.3.3.2). In addition, there may be a pre-existing geographic bias in terms of 

the innovations (and thus factor intensities) under study and thus covered in 

the literature. The same holds true for measurement scales and units. For 

example, capital was commonly measured as access to credit in developing 

countries and as debt-asset ratio in industrial countries.  

Finally, the available context indicators may not be optimal for testing 

theory-based propositions. In addition, our indicators did not capture 

distributional asymmetries of context factors within countries, although we 

included the Gini-coefficient as a control (Table S13-16, column 7, on-line). 

Other proxies such as factor price ratios could be more intuitive in the 

context of induced innovation and would facilitate interpretability for policy 

makers, but to the best of our knowledge such data do not exist with global 

coverage.  

5.5.6 Future Directions 

Abstracting from specific innovations in terms of innovation traits merits 

closer attention both in meta-analyses and primary studies, because they may 

facilitate transferability of research findings. Our results point towards 

potential transferability of past research findings by abstracting traits and 

applying known (or assumed) combinations thereof to future innovations. 

The factor intensities employed in this study represent only a subset of 

distinct innovation traits and other dimensions should be considered more 

systematically. For the case of agricultural robots, for example, capital- and 

knowhow intensity may be useful traits, but they should be complemented 

by inherent impacts (e.g. environmental footprint), attributes relevant for 

social learning diffusion processes (e.g. observability) as well as 

differentiation between labour-augmenting and labour-replacing innovation 

(Marinoudi et al., 2019). For the ex-ante diffusion assessment of new 

technologies, a trait-based uncertainty reduction of adoption determinants 
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could provide important insights. Interacting innovation characteristics and 

the affinity of innovators towards these characteristics has been proposed as 

a mediation mechanism in the ADOPT model by Kuehne et al. (2017; 2011). 

Our estimated ranges of odds ratios for the most commonly used categories 

of adoption determinants may serve as credible input ranges in agent-based 

models for modelling diffusion patterns of digital agricultural information 

(Shang et al., 2021). Finally, many environmental indicators (e.g. potential 

productivity or vulnerability to climate change impacts) as well as 

socioeconomic context indicators (e.g. population density, land prices, 

access to digital infrastructure) are available on subnational scales. 

Therefore, a promising avenue for policy-oriented future research would be 

a more regional analysis of certain subsets in terms of innovation and/or 

context to better understand the role of within-country production context 

variation. 

Previously identified challenges for generalization include the various 

definitions of adoption, measures of adoption determinants, and 

representations of temporal adoption dynamics (Doss, 2006).  Our findings 

therefore suggest that established minimum standards for agricultural 

adoption studies are needed to extract further generalized lessons from this 

important subfield in agricultural economics.  Below we provide a non-

exhaustive list of practical recommendations towards this goal, 

complementing previous attempts to create reporting guidelines for adoption 

studies. At a minimum, authors of adoption studies should: 

1. Report all estimated effects in tabular format along with a measure 

of their sampling error independent of their significance.  

2. Indicate model specifications and variables that were used in the 

regression, but omitted in the results table to save space. 
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3. Indicate any (non-)linear transformation of variables. Independent 

variables should be measured in or converted to the International 

System of Units (i.e. hectares, tons, years), where applicable. 

4. Report the number of observations for each regression. Especially 

for data structures with multiple observations per individual (e.g. 

panel data, multiple plots), the unit of observation should be clearly 

indicated. 

5. Provide summary statistics in tabular format and include at least the 

mean and standard deviation (proportion for binary variables) of all 

(in-)dependent variables for the entire sample as well as for different 

subgroups (e.g. adopters and non-adopters). 

6. Provide a description of (a) the study area(s), (b) the innovation(s) 

considered, such as claimed advantages, historical adoption levels, 

and (c) the sample characteristics in terms of market orientation (e.g. 

subsistence vs. commercial), product specialization (e.g. rice 

farmers, mixed livestock farmers etc.). 

7. Make preferential use of continuous independent variables as such 

and not recode them into categorical or ordinal scales.  

Of course, following such guidelines is subordinate to a rigorous research 

design that contributes to better understand behaviour, as well as the role of 

gender, innovation characteristics and digitalization in agriculture (Pannell 

and Claassen, 2020).  

5.6 Policy Implications 

Innovation in agricultural production remains one of the most important 

strategic pillars in the transformation towards sustainable food systems, as 

pointed out during the UN Food Systems Summit (Braun et al., 2021). 
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Despite the large number of existing adoption studies worldwide, we still 

poorly understand why apparently beneficial agricultural technologies suffer 

from low or stagnating uptake. Here we have systematically taken stock of 

the existing mostly context-specific empirical evidence and found that 

agricultural knowledge and extension systems as well as alleviation of credit 

constraints may deserve more attention than they currently receive, 

especially in the developing world. In particular, our findings warrant more 

emphasis on the design of policies and interventions that improve technical 

knowledge, skills, and capital access.  

For example, agricultural extension programmes could boost the uptake of 

new technologies by aligning dissemination strategies with regionally 

heterogeneous target group characteristics and agricultural factor scarcities. 

As digital technologies become increasingly available to farmers worldwide, 

the importance of technical knowledge and skills as adoption determinants 

will grow. Digital literacy thus also has to feature more prominently in the 

curricula of rural training and education programmes.  

Agricultural extension is also often the vehicle for rural credit programmes. 

Our findings suggest considerable synergies from packaging agricultural 

extension and rural credit lines, such that they coherently promote 

technologies with attributes that address region and farm-specific output and 

input market constraints. Considering spatially heterogeneous endowments 

and access to production factors across prospective user groups may also 

allow technology developers to better tailor future innovations to local 

needs.  

Beyond market-related factor scarcities, environmental policies are likely to 

play an increasingly important role as drivers of innovation in the 

transformation toward sustainable and climate-resilient agriculture (Ambec 

et al., 2011). For example, conservation policies that limit access to land in 
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a context of land abundance, were shown to induce agricultural 

intensification (Koch et al., 2019). Similarly, smart environmental 

regulation could increase the attractiveness of eco-efficient technologies, 

such as weeding robots, if contextual variability in the abundance of other 

production factors were properly taken into account. A successful digital 

transformation thus implies increased and interdisciplinary collaboration 

between new and traditional stakeholders of agricultural knowledge systems 

in order to avoid innovation system failure (Hermans et al., 2015) .  

Finally, the temporal dynamics of context factors imply that forward-

looking policy design must be informed by a structural understanding of the 

embeddedness of production systems. This, at the same time, warrants great 

caution in the transfer of research findings across space and time, because 

differences in geographic context and accelerating climate change impacts 

clearly influence sample-specific findings of adoption studies. If we want to 

leverage innovation to overcome food system challenges, policy must take 

into account their context-specific (dis-) advantages and recognize macro-

structural barriers of innovation diffusion.  
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Chapter 6  
Mow it or grow it: heterogeneous 

biodiversity-yield tradeoffs in 

grasslands19 

6.1 Introduction 

Grasslands are a major part of the global ecosystem, covering more than a 

third of the earth's terrestrial area and two thirds of its agricultural area (FAO 

2022). Grasslands are a key source of feed for livestock production, but also 

provide a wide range of ecosystem services, such as erosion protection and 

water purification, carbon storage and sequestration as well as habitat for 

numerous species (Bai & Cotrufo 2022; Liu et al. 2022; Petermann & 

Buzhdygan 2021; Zhao et al. 2020). Thus, grasslands are an integral element 

                                                 
19 A revised version of this chapter is published as Schulz, D., Stetter, C., Muro, J., Spekker, 

J., Börner, J., Cord, A., Finger, R. (2024) Trade-offs between grassland plant 

biodiversity and yields are heterogenous across Germany. Communications Earth & 

Environment 514(5). DOI: 10.1038/s43247-024-01685-0. A previous version was 

presented as a poster at the XVII Congress of the European Association of Agricultural 

Economists (EAAE) from August 29 to September 1, 2023, in Rennes, France. It is 

the result of a research visit at the Agricultural Economics and Policy group at the 

Federal Institute of Technology Zurich, supported by the PhenoRob international 

exchange program.  

Author contribution: DS, CS, JB, and RF conceptualized the study, wrote and edited the 

original draft. DS and CS designed the methodology, DS in addition curated the data, 

implemented the formal analysis and created visualizations. JS contributed data. JM 

contributed data, supplementary visualizations and edited the draft.   
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of food security and to reach ambitious agri-environmental goals and to halt 

degradation of natural habitats and biodiversity loss as targeted by 

Sustainable Development Goal 15.5(United Nations 2015). Higher plant 

species richness is often associated with increased ecosystem services in 

both intensively and extensively managed grasslands. For example, plant 

species richness may contribute to increased biomass yield and yield 

stability, regulating services such as carbon sequestration and cultural 

ecosystem services (Binder et al. 2018; Daleo et al. 2023; Schaub et al. 

2020). Management factors such as the fertilization, mowing, and grazing 

regimes are important determinants of plant species richness (Plantureux et 

al. 2005; Socher et al. 2012; Tälle et al. 2016; van Vooren et al. 2018). 

However, evidence on the direction and magnitude of these relations 

remains mixed and context-dependent (Le Clec’h et al. 2019; Le Provost et 

al. 2022; Tälle et al. 2018). Moreover, adjusting management towards higher 

plant species diversity may imply foregoing yields (Isselstein et al. 2005; 

Pan et al. 2022; Wang et al. 2019).  While existing studies often relied on 

experimental evidence, the causal identification of large scale real world 

evidence of the management intensity-biodiversity-yield gradient as well as 

quantification of the underlying heterogeneity is missing.  

Here we provide a new methodological approach to estimate causal, 

spatially explicit effects of mowing frequency as proxy of management 

intensity on plant species richness using large, satellite-sourced data across 

entire Germany for the period 2017-2020 (1,313,073 parcels observed for 

up to four years resulting in n=5,008,614 total observations). We also 

quantify the implied trade-offs of lower mowing frequency in terms of yield 

losses and quantify the opportunity costs associated with higher plant 

species richness. 
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We extend previous research by considering the impact of changing mowing 

frequency rather than focusing on the static relation between current (i.e. 

observed) mowing frequency and different biodiversity indicators. 

Modelling spatially explicit causal effects of changes in mowing frequency 

is important to guide policies to be effective and cost- efficient (Schlüter et 

al. 2023; Weber et al. 2023). Information on the spatial and temporal 

variability of a conservation policy’s impact can help to target contexts 

where expected benefits of changing or maintaining certain management 

practices is largest (Gocht et al. 2016; Huber et al. 2022).  

We exploit here the increasing availability of high resolution remote sensing 

products on mowing frequency and plant species richness that makes our 

approach scalable and allows us to build a unique dataset and evaluate 

grassland management policies at national scale (Ehlers et al. 2021; Klein et 

al. 2020). We consider the estimated number of mowing events (Schwieder 

et al. 2022) per year as a proxy of grassland use intensity (see Method 

Section for details). As a proxy of biodiversity we use annual plant species 

richness estimates (Muro et al. 2022). Both variables are remotely sensed. 

More specifically, plant species richness estimates refer to the number of 

plant species per 16 m2 squared plots and are produced using time series of 

Sentinel-2 images and plant inventories across Germany (Fischer et al. 

2010).  Using generalized random forests (Athey et al. 2019) to analyze the 

resulting data set enables us to evaluate context-specific, spatially explicit 

causal impacts at field level, i.e. we estimate the effect of higher frequency 

of mowing events on species richness in the following year. The core 

principle behind this approach is to estimate non-observed counterfactual 

plant species richness under a hypothetical mowing frequency based on 

observed variables and their nonlinear interactions using inverse probability 

weights (see Section 5.5). We thus contribute to the causal identification of 

biodiversity impacts of agricultural management using a cutting edge 
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combination of innovative remote sensing data and generalized random 

forests (Schlüter et al. 2023). The established empirical relation allows us to 

assess the effectiveness of different conservation strategies. Finally, we 

expand our analysis and additionally assess yield implications of lower 

mowing frequency. Thus, we provide a spatial explicit quantification of 

species richness-yield trade-offs, as moderated by mowing frequency. This 

allows to inform policy makers draw conclusions for the effective targeting 

of conservation policies accounting also for provisioning services and thus 

food security.  More specifically, we estimate opportunity cost of marginally 

extensifying 30 percent of German grasslands to address the 30 by 30 goal. 

6.2 Methods 

This study covers a random subset of the available data (N=50,000) sampled 

from all permanent grassland parcels across the entire Federal Republic of 

Germany (n=1,313,073) observed over the four years 2017-2020. We use 

temporally and spatially explicit contextual variables to identify 

determinants of different mowing frequencies and to estimate heterogeneous 

treatment effects along the most relevant of these variables. Table S1 shows 

details for all data sources used. The following subsections provide a 

description of the outcome variable, treatment indicator, contextual 

variables and sampling strategy. Summary statistics of all input variables are 

presented in Table S2. 

6.2.1 Outcome variable: Plant species richness 

To approximate biodiversity, we use a novel dataset of plant species richness 

generated for entire Germany at 20-meter resolution for the years 2017-2021 

based on a previously published method (Muro et al. 2022). The calibration 

of the model had already been performed with plant species inventories from 

Biodiversity Exploratories (Fischer et al. 2010; Muro et al. 2022). Time 
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series of Sentinel-2 imagery for Germany were downloaded and interpolated 

using FORCE processing software (Frantz 2019), before applying the 

predictive model. The resulting product is a 20 m resolution raster estimating 

the number of species by 16m2, which is the transect size. The spatial 

mismatch between transect size and raster size does not affect our 

interpretation of species number as an intensive variable. It implies, that we 

cannot sum up the plant species in a parcel, but only work with parcel 

averages. To ensure spatial transferability of the trained model for predicting 

across Germany, the feature space of the input data is used to mask out areas 

where the model is not applicable (Meyer & Pebesma 2021). That is, 

grasslands whose spectral-temporal signature differs from the training 

parcels are excluded from the prediction map. In addition, a grassland mask 

is applied (Riembauer et al. 2021). Based on the area of applicability, the 

prediction is valid for 70% of grassland areas. To avoid bias of non-

applicable areas in our estimation, we use the percentage of overlap with 

grassland parcels as inverse weights in our analysis. We use independent 

secondary data (Hünig & Benzler 2017) to validate the spatial 

representativeness of our estimates (see Figure S8 for details). 

6.2.2 Treatment variable: mowing frequency 

The intensity of grassland use is commonly characterized along three 

dimensions: mowing frequency, fertilization input and grazing pressure 

(Blüthgen et al. 2012; Gómez Giménez et al. 2017). In this study, we use the 

number of mowing events per year as a proxy of grassland management 

intensity for the years 2017-2020(Schwieder et al. 2022).  Mowing 

frequency represents management intensity because it directly reflects the 

human impact on the ecosystem and as a proxy has the advantage of a 

measurable temporal reflectance signature in satellite time-series. The 

temporal reflectance signature of a mowing event may be indistinguishable 
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from an intensive rotational grazing scheme, whereas extensive grazing 

typically generates a less pronounced temporal reflectance signal and is thus 

not always identified as a mowing event. Nevertheless, the frequency of both 

events can still serve as a proxy of use intensity since the algorithm picks up 

drops in the near infrared signal caused by the removal of vegetation. The 

number of mowing events was mapped across Germany on a pixel-basis 

using a rule-based classification approach with dynamic thresholds varying 

across environmental conditions using imagery from Sentinel-2 and 

Landsat-8 satellites. The authors report a state-of-the-art overall accuracy of 

60% with a slight tendency to underestimate mowing events in regions that 

were often covered by clouds and could thus be not observed with sufficient 

temporal resolution. We calculated the mean mowing frequency per parcel, 

resulting in a continuous indicator. 

6.2.3 Contextual variables 

We include a wide range of topographical, climatical, meteorological, and 

pedological properties to account for environmental conditions that may 

affect both management intensity and species richness (Le Clec’h et al. 

2019) (see Table S1 for sources). Apart from these plot-specific 

environmental conditions, regional production structures as well as social 

networks may affect management intensity through market proximity or 

economies of scale (Spörri et al. 2023). Therefore, we include 

socioeconomic variables relating to the structure of the agricultural economy 

such as the average farm sizes or share of organic farms in the NUTS-3 

regions in the year 2016. Farm size is often associated with larger fields and 

lower landscape heterogeneity. Landscape structure and heterogeneity in 

turn have been shown to increase bird biodiversity in Germany (Noack et al. 

2021). As a proxy of landscape heterogeneity we calculate a land cover 

diversity index within a buffer of 1000 meters around each parcel. In 
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addition, we control for parcel shapes since the distance to field boundaries 

has been shown to affect species composition and dispersion over time. 

Local and regional differences in regulations are accounted for by including 

binary indicators for strictly protected area status, Natura 2000 site, and each 

federal state. We also include latitude and longitude as well as binary year-

indicators to control for unobserved heterogeneity. The selection of 

contextual variables follows the basic principles of causal identification to 

omit potential endogeneity problems (Pearl 2010). 

6.2.4 Sampling strategy 

We conduct a field-level analysis focusing on permanent grasslands across 

Germany. To identify fields with permanent grassland we use a unique, not 

yet publicly available dataset of field boundaries (Tetteh et al. 2023). We 

use only those field boundaries labeled permanent grassland. Within each 

parcel, we calculate the average number of mowing events. the spatial 

aggregation resulted in a continuous mowing frequency variable that serves 

as a proxy of grassland use intensity. In a robustness check we also consider 

the majoritarian mowing frequency per parcel as the treatment indicator. For 

every model run, including robustness checks, we draw a simple random 

sample of 50,000 fields for reasons of computational efficiency and to avoid 

spatial autocorrelation. 

6.2.5 Empirical Framework 

We are interested in the grassland species richness for the counterfactual 

scenario of a different mowing frequency. We build upon the potential 

outcomes framework where treatment effects are estimated by comparing 

observed outcomes to counterfactual outcomes under an alternative 

treatment (Neyman 1923; Rubin 1974). 
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To estimate the causal impact that the mowing frequency has on plant 

species richness we use causal forests, a specific case of generalized random 

forests (Athey et al. 2019; Athey & Imbens 2016). In particular, we used the 

augmented inverse probability-weighted estimator (Athey et al. 2019). This 

approach has been previously used to estimate, e.g., the impact of tillage on 

yields (Deines et al. 2019), the impact of agri-environmental schemes on 

environmental outcomes (Stetter et al. 2022), or the effect of cover crop 

adoption on maize and soybean yield losses in the United States (Deines et 

al. 2023). A key advantage of using generalized random forests is the 

possibility to learn about treatment effect heterogeneity. Furthermore, 

generalized random forests are doubly robust, i.e. they will give unbiased 

treatment effects as long as the assumption of unconfoundedness holds for 

either the treatment propensity model or the outcome model (Wager & 

Athey 2018). Another advantage of generalized random forests is their 

ability to partially capture the latent unobserved heterogeneity as long as 

these latent variables are some (non-)linear representation of the observed 

covariate space (see Figure S9). 

In general terms, the approach consists of two steps. First, a prediction of 

the mowing frequency is created to serve as propensity score. In a second 

step, the propensity score is used as inverse weight to create the causal 

impact mowing has on species richness, while controlling for all other 

observed context variables. Since the treatment (mowing frequency) is not 

randomly distributed, we control for potential selection bias by including a 

range of contextual variables described in Table S1. In particular, we 

calculate a propensity score for the treatment variable to account for 

selection bias. We assume unconfoundedness, i.e. we expect that our chosen 

set of conceptual variables largely capture self-selection and serve as proxies 

for the effects of potential unobserved confounders that are not included in 

the analysis. We assess the validity of this assumption by comparing the 
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distribution of propensity scores across quintiles of grassland mowing 

frequency (Figure S1). We identify and discuss the most important variables 

for prediction of the mowing propensity as well as the overall treatment 

effect. 

6.2.6 Yield data 

We model dry matter grass yields using the biophysical growth model 

LINGRA-N which was developed to model grass yields across the European 

Union (Bouman et al. 1996; Wolf 2012) and is available as open source 

software in R (Butikofer 2023; R Core Team 2023). The model takes daily 

weather data, hydraulic soil properties, nitrogen applications and mowing 

dates as inputs. Details on input data and validation can be found in the 

supplementary material, Text S3. 

6.3 Results 

Plant species richness estimations in our parcel level panel-dataset 

(N=5.008.614) across the four considered years 2017-2020 varies between 

4 and 69 species across all mowing frequencies, with a mean of 23.3 

(SD=5.7). The observed mowing frequency ranges between 0 and 5.5 with 

a mean of 1.9 (SD=0.82). This treatment indicator proxies the gradient of 

number of uses per year and is continuous due to within-field heterogeneity.  

Descriptive analysis already reveals a relationship between mowing 

frequency and species richness.  Under the lowest mowing frequency (i.e. 

zero), the average species richness is 25.6 (SD=6.3), whereas under the 

highest mowing frequency (i.e. 5.5) this number decreases to 21.1 (SD=3.5).  

6.3.1 Causal effect of mowing frequency on plant species richness 

We find that plant species richness decreases with increasing mowing 

frequency. Our generalized random forest analysis shows that, on average, 
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a unit increase in mowing frequency leads to 1.6 (SE: 0.05) fewer plant 

species, with a full range from -3.5 to 0.2 (SD: 0.39) (Fig. 1A). Using 

discrete mowing frequency instead of a continuous indicator as treatment 

variable leads to an effect of similar magnitude (Figure S5).  The results of 

model calibration tests show a strong predictive capacity of the generalized 

random forest model (p<0.001). The omnibus tests of heterogeneity indicate 

that the effect varies across space and time (p<0.001, Table S3, row 1). The 

spatial heterogeneity identified in our analysis is highly policy relevant. For 

example, policy makers may be interested to spatially prioritize or avoid 

changes in mowing regimes in specific areas, e.g. depending on the expected 

impact of increased mowing frequency on species richness and the current 

level of species richness. Panel B and C in Figure 6.1 show how the effect 

varies along mowing frequency and original species richness. It shows that 

intensification has a slightly lower negative impact in already intensively 

used parcels, whereas it has a much higher impact in parcels that started off 

with a high species richness. Panel D shows the geographic distribution of 

extensification impacts; the largest gains from management extensification 

in terms of plant species richness occur in the northeast, while the lowest 

gains occur in the more intensively managed northwest and south of 

Germany. 
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Figure 6.1: Heterogeneous impacts of mowing frequency 

  

Note: Panels on the left show doubly robust average partial effects across (a) quantiles of 

the predicted effect, (b) quantiles of mowing frequency and (c) outcome variable with 95 

percent confidence intervals. The impact magnitude slightly diminishes with increasing 

mowing frequency. In contrast to that, the impact of mowing frequency becomes drastically 

more marked for very species rich parcels. Panel d shows the geographic distribution of 

predicted field-level impacts of a one-unit increase in mowing frequency aggregated to 1km 

grid cells. Source: own calculations. 

 

6.3.2 Drivers of impact heterogeneity 

These spatial patterns are driven by spatial and temporal patterns in 

contextual factors, which we uncover using their variable importance. 

Average temperatures and precipitation in spring and summer months are 

among the most important variables to predict the impact of mowing 

frequency on plant species richness (Figure S4). Furthermore, municipal 
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level structural variables such as average farm size and cattle densities but 

also variables describing field structure (size, diameter) are important impact 

predictors. On the contrary, soil properties, location dummies and 

surrounding landscape diversity are not found to be important predictors. In 

the context of generalized random forests, this does not necessarily imply 

that these predictors are irrelevant, but rather that their explanatory power 

may be captured by other variables. 

The temporal variability of a mowing regime might affect species richness 

by creating specific ecological niches. To explore this underlying 

mechanisms, we test the sensitivity of our estimates using subsets of parcels 

that monotonously increased or decreased in mowing frequency over the 

four years previous to observation. Furthermore, we estimate the average 

mowing frequency over time and use it as a treatment indicator. All three 

subsets result in much larger effect magnitudes, implying that the impact 

proliferates over time (see Table S3, rows 4, 7, and 8). 

6.3.3 Robustness checks 

Our treatment variable (mowing frequency) may not capture all relevant 

dimensions of management that affect species richness. As an alternative 

proxy we therefore use a composite index containing mowing frequency, 

grazing intensity and fertilization intensity mapped across Germany 

available for 2017 and 2018(Blüthgen et al. 2012; Lange et al. 2022). We 

find a similar, although 30% smaller average partial effect size. This could 

be due to the temporal limitation of the alternative data; our main indicator 

also results in smaller effects when restricted to the years 2017 and 2018 

(see Table S3, rows 18+19). 

We visually confirm that our common support assumption holds, namely 

that the probabilities of different mowing frequencies overlap (Figure S1). 

Our results are robust to spatial and temporal restrictions of the training data, 
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the omission of important predictor variables, as well as potential 

observation bias, i.e. different probabilities of plot to be covered by remote 

sensing (Table S3, rows 9-20). Furthermore, placebo tests show that our 

model is not sensitive to spurious patterns in the training data that could bias 

our estimates (Table S3, rows 23-24).  

6.3.4 Quantifying yield trade-off implied by lower mowing frequency 

Reducing mowing frequency increases plant species richness. However, this 

could imply yield reductions (relevant for food security) and thus also 

opportunity costs for farmers (i.e. they may lose money). To quantify this 

biodiversity-yield trade-off arising from lower mowing frequencies, we 

assess the implications of reduced mowing frequency on primary 

production. We aim to derive spatially explicit upper bound opportunity 

costs for parcel owners in three steps (see Section 6.2.6 for details). First, 

we use a biophysical growth model to estimate baseline plot level dry matter 

yields based on actual weather, soil and management (Wolf 2012). Second, 

we use generalized random forests to predict the change in yield associated 

with a change in mowing frequency (Athey et al., 2019). That is, we re-

estimate yields under a marginally changed mowing frequency to get the 

difference between actual and counterfactual yields. Since mowing 

frequency and yields are highly endogenous, we use latitude, longitude and 

altitude as the only predictors, so our yield model has no causal 

interpretation. Third, we multiply the predicted changes in dry matter yield 

with an average hay price of 70€ per ton (KTBL 2023) to monetarize yield 

losses. Panel A in Figure 6.2 shows the distribution of yield losses associated 

with marginal changes in mowing frequency. They range between 1 and 3 

tha-1 dry matter yield (mean: 2.4t ha-1). Panel B in Figure 6.2 shows the 

cumulative monetary value of forgone yields (i.e., opportunity cost) from a 

unit decrease in mowing frequency averaged over the years 2017-2020. For 
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example, having one additional plant species as a result of lower mowing 

frequency on the 30,000 km2 grassland with lowest opportunity costs is 

associated with forgone yields worth approximately 70 million euro. Panel 

C shows the spatial distribution of opportunity cost. Notably, an additional 

plant species would incur ten times higher opportunity costs in terms of 

forgone yields in the southern parts of Germany compared to the center and 

eastern parts. This is likely partly due to the lower prevailing plant species 

richness in these intensively used regions, resulting in lower impacts of 

extensification on this outcome (see Figure 6.1), and potentially partly due 

to environmental factors that favor higher mowing frequencies. 

Figure 6.2: Opportunity costs of higher plant species richness 

 

Note: Panel A shows the distribution of forgone dry matter yields per hectare under a one-

unit lower mowing frequency. Panel B shows the cumulative upper-bound opportunity cost 

curve in terms of forgone hay production, assuming an average hay price of 70€/t. The grey 

confidence band indicates annual variability and prediction error. Panel C shows the 

spatial distribution of opportunity costs in terms of monetary value of forgone hay yields 

per unit increase in plant species richness. Plot-level estimates are aggregated over four 

years (2017-2020) and to a 1 by 1 km grid for visualization. Source: own calculations. 
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6.3.5 High potential for effective spatial targeting 

Cost-effective targeting of biodiversity policies is crucial to efficiently 

balance biodiversity and food security as well as costs for farmers (if we 

impose measures) and taxpayers (if we compensate farmers for voluntary 

measures) and thus acknowledging that funding for protecting species is 

limited (McCarthy et al. 2012). However, the past Common Agricultural 

Policy of the European Union has been shown to be ineffective in targeting 

high value grasslands and promote biodiversity (Kaligarič et al. 2019). To 

shed light on the relevance of spatial targeting, we compare the 

environmental and economic performance of different contextual targeting 

policies. We consider the “30 by 30” goal (Parties to the United Nations 

Convention on Biological Diversity 2022), which aims to protect 30% of 

land by 2030, and was agreed at the 15th meeting of the Conference of 

Parties to the United Nations Convention on Biological Diversity. In Table 

6.1 we compare the effectiveness and cost-efficiency of different policy 

scenarios that compensate for a marginal decrease in mowing frequency. 

The first column of Table 6.1 shows the baseline area protected, average 

plant species richness and yields (at status quo levels), while subsequent 

columns indicate differences relative to the baseline. In the second column, 

we consider a scenario in which grassland parcels located within currently 

existing protected areas marginally decrease their current mowing frequency 

by one unit. Our results indicate that this would affect 19.7% of permanent 

grasslands and increase the average species richness by 1.72 (7%), but it 

would also be associated with a decrease in dry matter biomass yields of, on 

average, 1.8 t ha-1 (20%). Column 3 shows that without any spatial targeting, 

reducing mowing frequency on randomly chosen30% of the grasslands in 

our sample causes an average increase of 1.46 plant species but also implies 

an average reduction in dry matter yield of 1.9 t ha-1. When targeting the 

30% of land with the highest predicted impact on plant species richness from 
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extensification, the average species gain is 2.1 (i.e. 47% more effective, see 

column 4). Furthermore, column 5 shows that when targeting parcels with 

lowest yield losses when reducing the mowing frequency, the forgone yields 

can be reduced by 0.5 t ha-1 while achieving a higher impact on plant species 

richness as a non-targeting policy (1.68 vs. 1.46). Finally, we estimate in 

column 6 that the most cost-efficient policy targeting minimum forgone 

yields per gained species would incur only 40 percent of the compensation 

costs of a non-targeting policy. 

Table 6.1: Comparison of targeting scenarios 

  Base

line 

Protected 

areas 

No 

spatial 

targetin

g 

Target high 

plant species 

richness 

Target 

low yield 

changes 

Target low 

opportunity 

cost 

Area extensified 

[%] 

19.6

7 

19.67 30 30 30 30 

Average plant 

species richness  

23.5

6 

+1.72 +1.46 +2.16 +1.68 +2.05 

Average dry 

matter yield 

[t/ha] 

8.99 -1.82 -1.91 -1.4 -1.39 -1.49 

Average 

opportunity cost 

[€/Species] 

- 87.77 126.43 60.71 71.86 51.19 

Note: baseline column indicates status quo levels; all other columns show scenario based 

changes relative to the baseline. Source: own calculations. 

6.4 Discussion 

Our main contribution is the quantification of the causal relationship 

between changes in mowing frequency and species richness in grasslands. 

The here presented causal estimate of -1.6 species per additional mowing 

event is smaller than correlational estimates reported in previous studies 

(Socher et al. 2013; Weber et al. 2023), which underlines the importance to 

control for confounding context variables (Dee et al. 2023). This estimate 

does not consider the direction and variability of change, i.e. intensification 
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or extensification. However, it may be reasonable to assume that plant 

species disappear quicker after intensification than they repopulate after 

extensification because of the altered habitat structure that could impede 

non-adapted species to grow (Socher et al. 2013). This is also of large policy 

relevance, e.g. where to support higher species richness or avoid its losses. 

While we find that impacts proliferate over time, our approach does not lend 

itself to directly test the above mentioned hypothesis. 

Improvements in mapping indicators of land use intensity and biodiversity 

using remote sensing are required to enable more comprehensive 

assessments. In particular, future research should aim to overcome technical 

challenges, such as cloud coverage and refine the accuracy of indicators, and 

verify the spatial transferability of mapping products across diverse 

landscapes (Weber et al. 2023). Regarding the latter, we address the 

potential bias arising from geographically clustered training data (Fischer et 

al. 2010; Muro et al. 2022) by using an area of applicability mask (Meyer & 

Pebesma 2021). The validation of our plant species predictions against 

spatially representative independent data (Hünig & Benzler 2017) (SI Figure 

S8) shows no indication of systematic bias, but we recognize the need to 

harmonize data collection protocols for better comparability. Restricting our 

predictions to the area of applicability limits spatial error propagation, 

thereby avoiding spatially correlated errors (Meyer & Pebesma 2022). Given 

the large sample size, this approach addresses potential issues related to the 

unknown degree of individual prediction uncertainty. We also recognize the 

possibility of correlated measurement errors in both treatment and outcome 

indicators due to partial reliance on the same Sentinel-2 satellite imagery. 

Such errors could affect both indicators in the same way and thus introduce 

unobservable bias. In our particular case, we are not concerned that 

correlated measurement errors could invalidate our findings, because of 

fundamentally different mapping approaches (rule-based for mowing 
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frequency versus neural network for species richness) used to generate 

outcome and treatment variables.  

Future research could benefit from overcoming technical and other 

limitations of remote sensing products in order to increase measurement 

precision and allow for a larger range of conceptually relevant variable 

constructs. This could include ecologically more nuanced indicators that 

differentiate mowing from grazing as well as biodiversity indicators like 

relative abundances or the presence of endangered species (Roswell et al. 

2021), since effects could vary by subgroups (Socher et al. 2013). Similarly, 

the focus on measuring outcomes should extend beyond singular dimensions 

of provisioning ecosystem services, like yield, to encompass the broader 

spectrum of potential impacts on various ecosystem services (Huber & 

Finger 2020; Le Clec’h et al. 2019; van Vooren et al. 2018). Finally, future 

investigations should refine the opportunity cost estimates by considering 

not only revenues but also production costs to enable more comprehensive 

economic analysis. 

To the best of our knowledge, this study is the first to leverage a 

comprehensive set of remotely sensed, parcel-level estimates of 

management changes on biodiversity both measured in real world 

agricultural systems to inform conservation targeting at the national level 

(here Germany). In addition, our results contribute to better understand the 

spatial explicit trade-offs between different objectives such as high yields 

and high biodiversity. Our methodological framework illustrates the 

potential of integrating high-resolution remote sensing data with causal 

machine learning (Schlüter et al. 2023). It is flexible and can accommodate 

improved and more comprehensive data sources that are likely to emerge 

over time. 
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Overcoming current limitations could substantially improve the targeted 

design of conservation policies, but important implications arise already at 

this stage. Our results reveal that one-size-fits-all policy solutions, such as 

decreasing mowing frequency everywhere by the same magnitude, tend to 

be ineffective. This insight follows from the spatial heterogeneity of mowing 

impacts and corroborates findings from earlier studies (Gocht et al. 2016; 

McDonald et al. 2018). In practice, however, this impact heterogeneity has 

often been ignored, which resulted in heuristic, yet suboptimal, policy design 

and legislation (Armsworth et al. 2012). Since impacts of higher mowing 

frequency on plant species richness are highest in areas currently 

characterized by high plant species richness, policy should focus on 

maintaining mowing frequencies low in these areas. This is supported by 

research showing that agro-environmental schemes to be more effective in 

marginal areas than in intensively used farmland (Batáry et al. 2015). 

Conversely, extensification efforts in areas of high mowing frequency, such 

as the north-west and southern regions of Germany are likely less effective 

and cost-efficient. This implies a need for the development and sustainable 

use of technological and management innovations that raise the profitability 

of species rich grasslands. In other words, innovations that focus on 

grassland productivity only can affect the intensive and extensive margin of 

production leading to tradeoffs with species richness. 

In sum, we show that considerable gains in policy efficacy and efficiency 

can be expected from leveraging large spatial data sets and digital tools for 

grassland management (Ehlers et al. 2021). For example, our parcel specific 

estimates of plant species richness and associated opportunity cost can be 

used to design and monitor more cost-efficient agri-environmental schemes. 

In particular, our spatially explicit impact predictions may help to design and 

implement change-based or result-based rather than action-based payment 

schemes (Bartkowski et al. 2021). Such schemes have been shown to be the 



194 6.4 Discussion 

 

preferred option among farmers (Šumrada et al. 2022) and could be 

implemented using a revealed cost approach, e.g. when combined with 

auctions. The policy analysis shows that targeting areas with low 

opportunity costs is not only the most cost-efficient, but also a very effective 

approach to increase plant species richness. Our results underscore the need 

for targeted, context-specific conservation policies, rather than one-size-fits-

all solutions, enabled by the integration of large spatial datasets and digital 

tools. Our findings may support the design of tailored agri-environmental 

schemes, ultimately contributing to the broader efforts towards reconciling 

biodiversity conservation and provisioning ecosystem services in 

grasslands. 

Data availability 

For a detailed overview of data sources see Table S1. The parcel shapes 

and plant species estimations are available at 

https://zenodo.org/records/10619783; the indicator of mowing frequency is 

available at https://doi.org/10.5281/zenodo.5571613; the database of 

protected areas at www.protectedplanet.net; topography at 

https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn; land cover at 

http://doi.org/10.1594/pangaea.910837; weather and climate data at 

https://opendata.dwd.de/climate_environment/CDC/; soil grids at 

https://soilgrids.org; soil hydraulic properties at 

https://esdac.jrc.ec.europa.eu/resource-type/datasets; soil depth at 

http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1304; and agricultural 

census data at https://www.regionalstatistik.de/genesis/online. 

Supplementary Information and Code Availability 

Supplementary material along with all codes to replicate figures and tables 

shown here can be accessed at 

https://osf.io/peh4a/?view_only=f4b37667a25745cdb6bf56f1116c9b56.  

https://zenodo.org/records/10619783
https://doi.org/10.5281/zenodo.5571613
https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn
http://doi.org/10.1594/pangaea.910837
https://opendata.dwd.de/climate_environment/CDC/
https://soilgrids.org/
https://esdac.jrc.ec.europa.eu/resource-type/datasets
http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1304
https://www.regionalstatistik.de/genesis/online
https://osf.io/peh4a/?view_only=f4b37667a25745cdb6bf56f1116c9b56
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Chapter 7  
Modest forest and welfare gains 

from current REDD+ initiatives20 

7.1 Introduction 

In 2003, at the United Nations Framework Convention on Climate Change 

(UNFCCC) 9th Conference of the Parties (COP9), researchers from Brazil 

and the USA launched the notion of “compensated reduction”: tropical 

countries should be ex-post rewarded for reducing their national forest loss 

below a pre-agreed baseline (Santilli et al. 2005). The European Union’s 

(EU) Joint Research Centre also linked national forest-cover baselines to 

possible compensations between countries (Mollicone et al. 2007). 

Simultaneously, a high-level review of the economics of climate change 

concluded that for US$5-10 billon, two thirds of global deforestation could 

                                                 
20 A revised version of this chapter is published as Wunder, S., Schulz, D., Montoya-

Zumaeta, J.G., Börner, J., Ponzoni Frey, G., Betancur-Corredor, B. (2024) Modest 

forest and welfare gains from initiatives for reduced emissions from deforestation and 

forest degradation. Communications Earth & Environment 394(5). DOI: 

10.1038/s43247-024-01541-1 
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figures, and wrote and edited the manuscript. JMZ collected and curated the data, 

edited and reviewed the manuscript. JB helped to conceptualize the study, wrote and 

edited the manuscript. GF collected data and created figures. BBC collected data, 

contributed to the analysis, and wrote and revised the manuscript. 
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be ‘bought out’, thus curbing one major source of global greenhouse gas 

emissions at low costs (Stern 2007). Since much land clearing in the forested 

hinterlands of the Global South only provides marginal economic returns, 

conservation opportunity costs there often remain modest, so allegedly they 

could be compensated or ‘bought out’ rather cheaply. The conceptual scope 

was later broadened towards an all-inclusive term of political consensus: 

“reduced emissions from deforestation, forest degradation and the role of 

conservation, sustainable management of forests and enhancement of forest 

carbon stocks in developing countries” (short: REDD+) (Turnhout et al. 

2017). 

REDD+ would basically work as an international multilevel system of 

conditional, performance-based payments for environmental services (PES) 

(Angelsen 2017; Pagiola 2011; Wunder 2009). In this global architecture, 

carbon markets would mobilize funding, while recipient national 

governments would incentivize on-the-ground landholders and forest-

dwelling indigenous populations, invest in economic alternatives, capacity 

building, and improve protected areas – thus delivering the enabling 

conditions for achieving emission reductions on the ground (Wertz-

Kanounnikoff & Angelsen 2009). Hence, REDD+ as a model of intervention 

is usually associated with global performance-based forest-carbon funding, 

but implementation is de facto an umbrella term for a broad mix of ground-

level initiatives, designed in contextually customized ways.  

A swath of local-level REDD+ projects has been implemented since the 

COP13 Bali Action Plan in 2007 (Sills 2014; Simonet et al. 2018). Across 

governance scales, “nested approaches” were to resolve issues of attributing 

carbon credits between projects, subnational programmes, and the national 

level, including to avoid double-counting (Pedroni et al. 2009). REDD+ 

came out strengthened from the UNFCCC Paris Agreement (UNFCCC 
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2015). 377 REDD+ projects cover 53 million hectares in 56 countries, based 

on CIFOR’s International Database on REDD+ Projects (ID-RECCO) 

(Atmadja et al. 2022). These projects were to avoid some 1% of annual 

forest-based emissions, but quite recently only 5% of their carbon credits 

had been sold (Simonet et al. 2018).  

Across the Global South, Brazil (48), Colombia (33), and Peru (25) are 

project-leading; the density of REDD+ implementation (project 

area/national forest area) is highest in Kenya, Nepal, Central America, and 

the Andes region (Figure 7.1); conversely, REDD+ implementation is 

negatively biased against Central Africa and South Asia. Our map also 

clearly depicts the nesting challenges of REDD+ credits between 

overlapping national, subnational, and project scales of action (e.g., in 

Brazil). Finally, mapping the interventions evaluated by at least one of our 

included studies (black triangles; for sample selection, cf. Methods—case 

sources are listed in the Supplementary Information, SI) also points to some 

light research imbalances: compared to REDD+ implementation, only few 

rigorous impact evaluations have been done in Asia, Africa, Colombia, and 

Mexico.   

Figure 7.1: Mapping REDD+: projects, programmes, and location of study 

sample 
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Note: Overlapping subnational, regional and national initiatives occur with variable 

implementation and research densities across the tropics. 

Rather than carbon markets assuming the lead role in financing large-scale 

jurisdictional-level implementation, REDD+ has remained ‘project-ified’, 

with bilateral or conservation donors financing only incipient actions 

(Nepstad et al. 2013). Bilateral donors and the UN-REDD programme 

implement so-called REDD+ “readiness” preparatory processes (increasing 

forest monitoring capacities, analysing deforestation drivers, etc.); 50+ 

countries have created national REDD+ programmes (Duchelle et al. 2019).  

The originally envisaged model of REDD+ large-scale national 

implementation has in practice only in a few countries advanced towards 

large-scale conditional payments. Those comprise notably Norway’s 

International Climate and Forest Initiative (NICFI), launched as early as 

2007 (Angelsen 2017), followed by Germany’s REDD Early Movers 

programme (Pistorius & Kiff 2014). More recently, two multilateral 

organizations started piloting large-scale, results-based payments: the Green 

Climate Fund (GCF) and the Forest Carbon Partnership Facility (FCPF), as 

well as efforts to mobilize public-private blended funding under the LEAF 

coalition.  

A sometimes-harsh debate has accompanied REDD+ projects. Strong 

criticisms of REDD+ processes and impacts have focused inter alia on 

problems related to social inclusion, indigenous rights, and other welfare 

outcomes (Chomba et al. 2016; Corbera 2012; Fletcher et al. 2016; Griffiths 

2007). Conversely, more optimistic outlooks stressed the experimental 

nature of project-scale REDD+ initiatives (with some encouraging 

outcomes), the time-consuming complexity of governance transitions, and 

the embryonic stage of the genuine national-level REDD+ that largely 
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remains untested (Angelsen et al. 2017; Duchelle et al. 2019; Pham et al. 

2018). 

At this stage, how much do we know about the on-the-ground successes or 

failures of REDD+? Impact evaluations should answer this question; they 

are becoming standard tools in many sectors (Gertler et al. 2016). Following 

emphatic calls for solidly formalized empirical impact assessments also in 

environmental and biodiversity conservation (Ferraro & Pattanayak 2006), 

the field of environmental impact evaluation has recently expanded, as 

evidenced by various reviews and meta-studies (Börner et al. 2020; Samii et 

al. 2014; Snilsveit et al. 2019). 

For REDD+ funded initiatives, so far less stylized evidence is available. The 

literature-synthesizing work has been mostly qualitative, ranging from 

reviews of the REDD+ literature (Turnhout et al. 2017), its governance 

challenges (Ravikumar et al. 2015) and perspectives for future REDD+ 

implementation (Duchelle et al. 2019). More formal evaluations include 

lessons from early carbon project (Caplow et al. 2011), and first REDD+ 

environmental and welfare effects (Duchelle et al. 2018). 

Against this backdrop, this REDD+ meta-study systematically takes stock 

of the currently expanding evidence, which required careful delimitations 

(cf. Methods). In our Web-of-Knowledge based literature search using text-

mining algorithms, we target rigorous quantitative evaluations of the 

environmental and welfare-related impacts of REDD+ interventions. This 

includes (corporate or NGO) projects, public programmes (e.g., national 

payments for environmental services (PES) schemes with forest-carbon 

components), and a few bilateral jurisdictional agreements (e.g. Norway’s 

forest agreements with Guyana and Indonesia). Our focus is on avoided 

deforestation and degradation, rather than re-, afforestation, or restoration. 

Included evaluation studies sport impact estimates that can be scaled and 
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ranked, i.e., effect sizes (and their precision) are comparable including 

across categories defined by relevant contextual and design variables. 

Finally, as often generically called for (Editorial 2021), we compare REDD+ 

impact sizes to those of other forest conservation instruments. To our 

knowledge, no such analysis pre-exists in the REDD+ literature.  

7.2 Methods 

7.2.1 Delineating the concept of REDD+ 

As we saw above, REDD+ is typically seen as a prototype type of action 

(i.e., a means) that generically remains described exclusively by its 

outcomes of reduced emissions (i.e., an end). This is fundamentally different 

from other interventions; for instance, “protected areas” or “forest 

certification”, describing means not ends. Observers can thus conceptually 

come to confuse a model for action (the alleged market-based offsetting 

strategy of REDD+) with an expected final goal (of having forests store 

more carbon) (Wunder et al. 2020b). 

Here we thus explicitly walk through the typical stages and assumptions 

underlying a REDD+ intervention, using a Theory of Change (ToC) 

approach, designed for causally linking the stages of inputs, treatments, 

outputs, outcomes and impacts (Weiss 1997). Figure S2 (SI) outlines these 

stages going from left to right, with key critical assumptions flagged in 

bubble shapes. As for inputs, REDD+ is directly triggered by, and thus 

essentially dependent on the presence of external finance flows, be it from 

global markets for carbon credits (as originally envisaged), or from bilateral 

development/ environmental donors (such as Norway’s NICFI), 

multilaterals with a climate mandate (e.g. the Global Environment Facility 

or the Green Climate Fund), and private-sector non-market flows for direct 

emission offsets, based on notions of corporate social responsibility.  
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Generally, serious claims for REDD+ achievements can eventually only be 

made if knowledge about pre-existing carbon stocks, land-use trends, key 

drivers and stakeholders triggering forest loss (and protection) jointly can be 

merged into a credible baseline: what would have happened under the 

laissez-faire baseline assumption of ‘no-REDD+ intervention’? Notably, a 

proper assessment of levels/ changes in threat is quintessential: if threats 

from deforestation drivers are rising, treatment may have to be intensified. 

Conversely, if a projected threat was not to materialize at all, then neither 

the dynamic counterfactual nor the project will exhibit any deforestation. 

REDD+ treatments are highly heterogeneous in their composition. We thus 

distinguish between the subcategories of incentives, disincentives, and 

enabling measures (Börner & Vosti 2013). First, invariably some incentives 

are present in REDD+ as a general local benefit-sharing mechanism, or 

compensation for the opportunity costs of newly introduced/ enforced 

restriction in forest use or conversion to alternative land uses. Incentives can 

either be conditioned upon compliance with certain land-use rules (e.g. PES-

type of contracts), or unconditional investments into alternative, 

environmentally more benign livelihoods, social sectors (health, education), 

etc. Often, REDD+ interventions also entail disincentives, through newly 

introduced restrictions or a more thorough monitoring and sanctioning of 

incompliance with already existing ones. Typically, REDD+ has thus 

included both carrots and sticks. Third, enabling measures as a residual 

category include tools such as the free prior informed consent (FPIC) of 

local people’s participation in REDD+, a clarification of land tenure and 

access rules, etc.  

Many real-world REDD+ projects and programmes, such as the Bolsa 

Floresta Programme in Brazil’s Amazonas State (Cisneros et al. 2019), or 

the Sustainable Settlements in the Amazon (PAS) project in the 
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Transamazon region of Pará State (Simonet et al. 2019; Carrilho et al. 2022) 

have been using the full spectrum of conditional and unconditional 

incentives, disincentives, and enabling measures. Pilot interventions 

experimented with different components, but an underlying belief prevailed 

that holistic, locally customized approaches carried higher probabilities of 

success, especially in market-remote, cash-strapped frontier regions. 

Unsurprisingly, many REDD+ projects are in their holistic range of actions 

‘ICDP-like’, with a predominant focus on non-conditional livelihood 

enhancements (Sills 2014; Sunderlin et al. 2014). For the same reason, 

REDD+ projects have also had much to learn from ICDPs (Wunder et al. 

2020b). 

Public PES programmes with a partial focus on forest carbon goals 

constitute a second type of intervention. Often, carbon financing has helped 

to boost the funding of these national-level, or at least regional-scale 

programmes. Costa Rica’s PSA, Peru’s National Forest Conservation 

Programme, and Ecuador’s Socio Bosque all constitute such examples, 

although the latter two combined PES with ICDP components (Giudice et 

al. 2019; Jones and Lewis 2015). Hence, with forest carbon enhancement for 

climate change mitigation being flagged as an explicit goal, these PES-based 

interventions need to be included as another pathway of implementing 

REDD+.  

Outputs are to be understood as the immediate, often short-term results of 

the ‘treatment’: the treated recipients need to understand the goals and 

modalities of the intervention, the rules of the game (incl. land and resource 

tenure) are clarified, and (dis)incentives well-applied. Delivered outputs 

imply that stakeholder motivations have been successfully aligned with the 

goals of the intervention. For this to occur, treatments need to have been 

well-designed and carefully implemented. From the PES literature, we know 
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that spatial targeting in the selection of participants and their to-be-treated 

land areas is an Achilles Heal, vis-à-vis two complementary dimensions: a) 

the site-specific environmental service density (here: forest carbon stocks 

per hectare), and b) the on-site projected threat (here: of deforestation/ 

degradation) of that stock to become endangered over time. Also, 

customization of the benefits (e.g. multiple payment levels) can help making 

the intervention more cost-effective and equitable (Ezzine-de-Blas et al. 

2016; Wunder et al. 2018). The outcome level is where the REDD+ rubber 

hits the road: do critical stakeholders undertake the required behavioural on-

the-ground changes? That is, do they reduce forest clearing, charcoal 

making, or timber harvesting in the by REDD+ required manner 

(environmental outcomes)? Similarly, do income, consumption, and assets 

increase among those targeted stakeholders (socioeconomic outcomes)? 

These are all measurable indicators that can potentialy be impact-evaluated.   

The final transition towards impacts – the overarching primary carbon-

related goal of reduced forest-based emissions, as well as ethically and 

politically important side-objectives related to biodiversity, self-perceived 

human wellbeing, equity, and tenure security – entail further subtleties. First, 

a reality check is to what extent intervention-targeted stakeholders and 

deforestation drivers have been adequately aligned. For instance, many 

REDD+ projects are focused on addressing smallholders to reduce their 

deforestation, but a local surge in land grabbing from more powerful 

external agents might render these efforts less fructiferous in terms of 

mitigating deforestation. Second, income and consumption outcomes trigger 

development feedback loops on the final impacts. Rebound effects refer to 

treatment-induced changes in household incomes potentially affecting 

consumption patterns (e.g., higher incomes stimulating meat and dairy 

consumption) that per se change ecological footprints. Magnet effects refer 

to the potential of these income changes to attract outside migrants, e.g. 
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through successful employment creation in REDD+ projects. Pull migration 

could have a bearing on land use, as migrants open up new land plots for 

subsistence agriculture. Both effects are well-established in the PES 

literature (Wunder et al. 2020a). Third, the goal of mitigating climate change 

is both universal and perpetual. Classical concerns vis-à-vis REDD+ projects 

are thus to what extent these time- and place-bound interventions contribute 

to the universal and perpetual impacts. As for permanence, the impact of a 

time-limited treatment on carbon stocks may also only be transitory – though 

as such still important for mitigating climate change in the short run. 

Conversely, to the extent the treatment triggers desirable structural changes 

at the output and outcomes level, permanence might be increased.  

Likewise, a REDD+ treatment may not only reduce on-site deforestation, 

but also push some pressures outside the intervention area – a phenomenon 

known as leakage. This spillover effect will typically diminish, though not 

fully erase REDD+ mitigation impacts (Meyfroidt et al. 2020; Pfaff & 

Robalino 2017). The larger the scale of the REDD+ intervention, the less 

leakage we should expect – a key argument for favouring national 

programmes over REDD+ projects. The size of leakage in conservation 

incentive programmes is seldom quantified (Wunder et al. 2020a). For high-

value products sold on international markets, such as harvesting precious 

timbers, leakage may be exceptionally high (Sohngen & Brown 2004). In 

general, the higher the price elasticity and the geographical mobility on 

output and input markets (incl. access to land), the larger leakage we should 

expect (Wunder et al. 2020a). 

7.2.2 Sample delimitation 

As mentioned, we aim to take stock of the currently available evidence from 

rigorous quantitative impact evaluations for REDD+ interventions. This 

means that we need to apply various apriori filters of inclusion (cf. Table 
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S1), related both to the underlying REDD+ intervention (Factors 1-4), and 

subsequently to the case study evaluating its impacts (Factors A-F).  

As “REDD+ interventions” (1), we understand here, firstly, actions that 

implementers self-denominated using the RED(D)+ label, and secondly, 

other actions that fully or partially featured forest-based climate mitigation/ 

carbon outcomes in an explicit way. As mentioned above, this would include 

also national-level PES programmes that pretend to further forest-carbon 

objectives; in turn, some large watershed-focussed PES programmes (e.g. in 

China, Mexico, and Vietnam) remain excluded. As for actions (2), many 

forest carbon programmes include both conservation/ regeneration of 

standing forests and afforestation/reforestation (A/R) activities; those 

focused entirely on A/R do not functionally fit the REDD+ definition, and 

we thus excluded them. In terms of scale (3), we chose to be inclusive of 

both subnational REDD+ (incl. projects) and emerging national 

programmes, keeping in mind they likely have different characteristics – cf. 

also (1). Finally, as a temporal cut-off point for the start of REDD 

implementation (4), we used year 2007, coinciding with the Bali UNFCCC 

COP13: pre-2007 forest-carbon initiatives (Joint Implementation, Clean 

Development Mechanism, etc.) were of comparative interest (Caplow et al. 

2011), but were inevitably bound to differ from REDD+.  

A second layer of filters refers to the analytical level. First, we chose to 

include in the screened literature not only peer-reviewed but also grey-

literature studies (A) – considering in a quickly-moving field also recent 

working paper-staged contributions (assessed by us as ‘high-quality'). As for 

analysed impacts (B), we looked at both forest carbon (main goal) and 

welfare effects (primary side-objective). As “bottom-line”, we understand 

effects to be observed at the right-hand side of the REDD+ ToC, i.e. both 

outcomes and impacts (see above). Impact evaluations are often stated in 
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terms of outcomes (C), such as forest-cover (deforestation areas, rates) and 

land-use proxies (e.g. fire incidences), which are more precisely observable 

than forest carbon in the short-to-medium term. More process-oriented, 

intermediary outputs (middle part of ToC) are not of our interest (D): they 

are often more qualitative than quantitative, and less clearly (sometimes, 

ambiguously) linked to REDD+ bottom-line outcomes. Notably, we 

included subjectively stated wellbeing (“do you now feel better/worse-off/ 

unchanged than prior to the REDD+ project start?”), as a popular 

socioeconomic bottom line of evaluation (E). Admittedly, these indicators 

feature potential response biases, and are thus best triangulated with more 

objectively measurable socioeconomic outcomes.       

The final, yet ponderous filtering criterion refers to the quality of impact 

evaluation (F). To rigorously attribute impacts to interventions, 

counterfactuals are needed: what would have happened without the REDD+ 

intervention? We only included impact studies using counterfactuals, i.e. 

experimental and quasi-experimental methods. This includes the alleged 

‘gold standard’ of randomized controlled trials (RCT), and Before-After-

Control-Intervention (BACI) designs. Various econometric techniques 

attempt to ex-post model counterfactuals, including using matching to 

identify adequate control observations, or selecting non-treated units to 

synthesize control units. Yet, different recall techniques can also be used to 

gather baseline data ex post in the field. To make impact estimates 

quantitatively comparable, we also needed standard deviation estimates. 

Many case-study authors did not publish these; we had to contact several for 

obtaining this supplement.  
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7.2.3 Study identification strategy 

Our literature search strategy, data extraction procedures, and meta-analysis 

protocols were registered on the Open Science Framework (OSF)21. We 

started by screening our pool of studies from prior REDD+ reviews (Börner 

et al. 2020; Burivalova et al. 2019; Duchelle et al. 2018; Montoya-Zumaeta 

2021). Initially, 15 eligible studies with quantitative estimates of REDD+ 

and carbon-focused PES projects using counterfactual impact evaluation 

methods was identified. A Boolean search string based on title and abstract 

of this initial sample was semi-automatically generated, following the 

method described by Grames et al. (2019) (cf. SI, Figure S1).  

We extracted study characteristics such as location, intervention details, 

sample characteristics along with Hedge’s G effect sizes. Our final sample 

comprises a total of 30 REDD+ interventions, analysed in 32 studies, with 

52 effect sizes being included (35 forest-related, 17 socioeconomic 

outcomes). This includes disaggregated effects being used in the moderation 

analysis. For the main analyses, we aggregated effects resulting in 23 and 12 

estimates for environmental and socioeconomic indicators, respectively. For 

a meta-study, this remains a fairly small sample, restricting also our 

analytical options: although the number of rigorous impact studies has 

expanded rapidly in recent years (more than half of the articles included have 

been published since 2017), more is needed to reach a critical mass for 

detailed statistical analysis. Our studies are just about equally divided 

between specialized REDD+ projects/programmes and PES schemes; yet 

the latter concentrate on fewer cases. In the former category, some studies 

are multi-case comparisons, e.g. a pool of Amazon Fund-financed and VCS-

certified private REDD+ projects (West et al. 2020) and cases from CIFOR’s 

                                                 
21 Available at: https://osf.io/mydbk/?view_only=1cbc13ed180e4263962846605dacc510 
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Global Comparative Study on REDD+ (GCS-REDD) (Bos et al. 2017; 

Duchelle et al. 2017; Larson et al. 2018; Sunderlin et al. 2017).  

How well does our final sample represent the REDD+ universe? For recall, 

it is shaped by the filters we have applied (cf. Tables 1), overlaying 

geographically an initial implementation bias (where have REDD+ investors 

gone?) with a research bias (where have scientists preferred to work, and 

found access to data?), and publication bias (is it more likely that positive 

results are published than negative or null results?). Our small sample 

mirrors an ‘absolute’ implementation bias towards Latin America (Brazil, 

Andes, Mesoamerica); it covers less well some ‘high-density’ REDD+ 

countries (Kenya, Colombia, Guatemala). In addition, we also find a 

significant research bias towards Latin America, but we found no evidence 

that evaluated REDD+ projects systematically differ in terms of their project 

area or annual deforestation pressure from those not evaluated (cf. SI Table 

S3). We did find evidence for a moderate publication bias based on Egger’s 

regression test on funnel plot asymmetry (cf. SI): environmentally positive, 

significant results have a slightly higher likelihood of getting published. On 

aggregate, the external validity of our sample is deficient, yet still vastly 

exceeds that of earlier meta-studies of forest conservation incentives, having 

been based on smaller and geographically much more biased samples (Samii 

et al. 2014; Snilsveit et al. 2019).  

7.2.4 Meta-analysis 

The meta-analysis was carried out using the standardized mean difference 

(Hedges’g) as the outcome measure. We use the metafor along with 

clubSandwich packages in R (version 4.3.1) (R Core Team 2023). A multi-

level random-effects model was fitted to the data, including random effects 

at the study and country level. For the main estimates, we assumed a 

correlation of 0.8 within studies and countries, and report robust variance 
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estimates based on the correlated hierarchical effects procedure 

(Pustejovsky 2020; Pustejovsky & Tipton 2021). We conducted subgroup 

analyses, testing for differences between self-declared REDD+ and PES-

cum-carbon programmes. Similarly, we tested for differences between the 

outcome and impact levels of the socioeconomic variables. For the 

moderation analysis we also included binary moderators indicating a) 

deforestation pressure (1 for high pressure; 0 otherwise); b) spatial targeting 

(1 if study explicitly mentions ecosystem service density and/or 

deforestation threat as determining factors for the location and/or intensity 

of the intervention; 0 otherwise); and c) benefit differentiation (1 if study 

explicitly mentions differently sized benefit levels within the same scheme; 

0 otherwise). Our binary division between high and low deforestation threat 

was based on the position vis-à-vis the mean annual deforestation rate over 

the period 2001-21 across all countries (0.28% y-1) from Global Forest 

Watch (GFW). We compare this threshold with the average case-level 

deforestation rate during the last five years prior to REDD+ start.  

7.2.5 Environmental effects 

Among the 23 observations in our main analysis. the observed standardized 

mean differences ranged from −0.1999 to 0.4623; most estimates were 

positive (91%). The Q-test indicated heterogeneity among the true outcomes 

(Q(22)=98.2097, p<0.0001, τ2=0.0018, I2=78.5150%): while the average 

outcome was estimated to be positive, in some studies the true outcome 

might be negative. Inspection of the studentized residuals did not reveal any 

values larger than ±3.0654, indicating the absence of outliers in this model. 

Additionally, based on Cook’s Distance, one study (Roopsind et al. 2019) 

appeared to exert a notable influence. Figures S4a and b present funnel plot 

of the estimates. The regression test showed funnel plot asymmetry 

(p=0.0321), although the rank correlation test did not (p=0.8346). 
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7.2.6 Socioeconomic effects 

For the 12 included observations, the observed standardized mean 

differences ranged from −0.1249 to 0.2422; half of the estimates were 

negative (51%). The Q-test indicated heterogeneity among the true 

outcomes (Q(11)=27.7393, p=0.0035, τ2=0.0045, I2=62.8001%): although 

the average outcome was estimated to be positive, in some studies the true 

outcome may be negative. The studentized residuals showed no values 

exceeding ±2.8653, i.e., no indication of outliers. Based on Cook’s Distance, 

none of the studies could be considered overly influential. Figures S4a and 

b present funnel plots of the estimates. Neither the rank correlation nor the 

regression test indicated any funnel plot asymmetry (p=0.8406 and 

p=0.7048, respectively). 

7.3 Results 

7.3.1 Environmental impacts 

We used the correlated hierarchical effects model with random effects for 

our impact calculations. In total, 32 quantitative studies (listed in SI) with 

26 forest-related and 12 socioeconomic primary effect sizes fulfilled our 

data selection criteria (cf. Methods). Figure 7.2 shows a forest plot of our 

meta-regression results for comparable forest impact sizes from REDD+ 

treatments (results fully reproduced in SI). We only have one (insignificant) 

estimate for forest carbon—the primary goal and final impact of REDD+ 

according to its Theory of Change (cf. SI). Most estimates are for forest-

cover proxy outcomes (including absolute and relative forest loss) leading 

to these impacts, which can be more easily compared. Our mean overall 

estimated REDD+ effect of 0.08 (95% Confidence Interval: 0.04-0.11) can 

be considered “small”. The Q-test indicates heterogeneity, meaning one can 

find true effects outside of this confidence interval. Yet, the positive 
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significant estimate confirms modest forest conservation gains from 

REDD+.  

Figure 7.2: REDD+ environmental impacts: projects, programmes, and 

permanence 

 

Note: Indicator labels refer to Deforestation (Def) Forest cover (FC), and Ecosystem 

Services Index (ESI). Random Effects (RE) models without moderators, standard errors 

clustered at the country- and study level. We report Cochran’s Q test statistic of residual 



220 7.3 Results 

 

heterogeneity (Q) along with its corresponding p-value. Random effect models of both 

subgroups show small but significant impacts of REDD+ initiatives, incl. carbon-focused 

PES schemes, with insignificant permanence. 

Two intervention subgroups can be distinguished in Figure 7.2: self-declared 

REDD+ projects (commercial, NGO-led, or national—cf. upper panel) 

versus carbon-inclusive multipurpose conservation PES (public, mostly 

national programmes schemes—middle panel). We found no significant 

effect difference between the two (p=0.57). The precision of estimates is 

lower among especially some of the smaller-sized projects. Even in public 

PES-for-carbon schemes, the same programmes evaluated in different 

studies reached quite divergent estimates – including studies carried out by 

the same authors (Arriagada et al. 2011, 2012; Mohebalian & Aguilar 2016, 

2018), seemingly reflecting both variations in output variables and in 

matching methods (cf. Methods). Of special interest would also be the 

performance of larger-scale, jurisdictional-level REDD+, given the ongoing 

implementation shift towards those. These results are moderately 

encouraging, with conservation impacts in Guyana (Roopsind et al. 2019), 

Indonesia (Groom et al. 2022) (both NICFI) and Amazonas, Brazil (Cisneros 

et al. 2022) all being significantly positive, although the latter two very 

small-sized (all case references in SI).   

Looking at the secondary impacts, i.e., indicators not directly comparable to 

forest-cover proxies (SI, Figure S3), we observe here also some larger, 

significant impacts, such as boosting tree-species richness, avoiding wildfire 

incidence or slowing forest encroachment. Yet, this extended picture 

remains variable, too. Notably, impacts on forest degradation, the second 

“D” in REDD+, are just like for deforestation small or statistically 

insignificant.     
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Finally, little is globally known so far about the permanence of REDD+, i.e. 

to what extent prospective conservation impacts last after the intervention 

has ended. Estimates across the three permanence studies (excluded from 

our overall REDD+ effect sizes in the upper panels) originating from 

Uganda (Jayachandran et al. 2018), Brazil (Carrilho et al. 2022), and 

Colombia (Pagiola et al. 2016) differ somewhat, but all coefficients are 

insignificant (Figure 7.3, lower panel). The dominant pattern here is thus 

that, following confirmed REDD+ deforestation reductions during 

implementation, post-REDD+ forest loss returns approximately to its pre-

intervention speed, but without eliminating the temporary conservation and 

climate mitigation gains achieved. 

7.3.2 Socioeconomic impacts 

In our REDD+ Theory of Change (SI, Figure S2), the most important side-

objective of REDD+ is it to improve local people’s wellbeing. Figure 7.3 

thus shows comparable socioeconomic effects from rigorous REDD+ 

impact evaluations. Like for environmental impacts, these are divided 

between outcomes (changes in income, consumption, or asset holdings) and 

proper impacts: the self-stated subjective wellbeing, and changes herein, on 

behalf of REDD+ participants and other residents. Also here, our outcome 

variables are very close impact proxies – and can often be verified more 

objectively.  

Empirically, the two types of indicators perform differently (p=0.03): at the 

outcome stage REDD+ has a significant positive, welfare-improving effect 

of 0.09 (95% CI: 0.03-0.15), while at the impact stage the mean effect of -

0.01 is statistically indifferent from zero. Hence, the good news is that 

REDD+ on average tends to make benefit recipients slightly better off 

materially. The bad news is that this may not always boost self-perceived 

welfare. The few studies where outcomes and impacts are measured 
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simultaneously (Arriagada et al. 2015; Montoya-Zumaeta et al. 2022) 

confirm this trend: the material benefits provided may come to fall short of 

community expectations, especially when these are ex-post assessed, after 

benefit flows have ceased. Thus, self-stated subjective wellbeing may also 

become a strategic vote of protest by local participants over REDD+ benefit 

sharing. 

 

Figure 7.3: REDD+ socioeconomic outcomes and impacts 

 

Note: Indicator label “SW-pos” refers to self-reported changes in subjective wellbeing. 

Random Effects (RE) models without moderators, standard errors clustered at the country- 

and study level. We report Cochran’s Q test statistic of residual heterogeneity (Q) along 

with its corresponding p-value. Random effect models suggest small positive effect at 

outcome level (i.e. material welfare proxies) but no significant effect at impact level (i.e. 

subjective wellbeing). 
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Looking at other socioeconomic outcomes (SI, Figure S4), we observe that 

several impacts for subgroups can come out negative, such as the subjective 

wellbeing of female REDD+ participants (Larson et al. 2018). This is a 

reminder that modest average gains in material welfare from REDD+ do not 

necessarily warrant equity or a do-no-harm principle: distributional and non-

material effects may still create (objective or self-perceived) losers. 

7.3.3 Contextual and design factors 

We conducted a moderator analysis for potential hints about the implicit role 

different REDD+ context and design factors in co-determining the above-

assessed effect sizes. Hence, we plot conditional impact sizes against 

selected variables (Figure 7.4, A-H). We used all available observations to 

account for within-study subgroup differences in the design variables. 

Figure 7.4 shows the estimated coefficients along with its 95% confidence 

intervals. Our number of effect-size observations is low for solidly exploring 

correlations, but we can set hypotheses for future research.  

First, this includes baseline deforestation pressure (Figure 7.4 A,B,E,F), 

which for other conservation tools correlated positively with impact size 

(Börner et al. 2020; Wunder et al. 2020a). Intuitively, the lower ex-ante 

forest-loss threats are, the harder it would become to counterfactually 

demonstrate progress. For REDD+, indeed we confirm a positive 

relationship between threat and impact, statistically insignificant at national 

(Figure 7.4 A) but significant (p=0.057) at the zoomed-in scale of 

subnational deforestation pressure (Figure 7.4 B) (cf. Methods for 

classification). Socioeconomically, low-threat REDD+ might go along with 

higher welfare gains (e.g. through lower opportunity costs), as also indicated 

by the coefficient sign here, yet this correlation is insignificant (Figure 7.4 

E,F).  
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Figure 7.4: Moderator analysis 

 

Note: The model did not include an intercept, so the coefficients can be directly interpreted 

as conditional mean effects. We report p-values from a Wald-test of moderator equality 

clustered at the study-level. Numbers of observations differ because a) we used 

disaggregated effect sizes, i.e. all available observations per study to exploit within-study 

variation, and b) we do not show observations with missing moderator values (in particular 

all cross-country studies). Pre-intervention deforestation pressures are positively 

associated with environmental REDD+ effects when measured at subnational (but 

insignificant at national) scale. Payment/ benefit differentiation in programme design is 

positively associated with socioeconomic benefits, but does not affect environmental 

outcomes. Spatial targeting strongly boosts environmental outcomes, but does not affect 

socioeconomic effects. 

 

Turning to design factors, the PES literature indicates that providing 

differentiated, beneficiary-customized, rather than uniform benefits can 

boost environmental effectiveness (Ezzine-de-Blas et al. 2016; Wunder et 
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al. 2018). Again, we find the expected coefficient sign, but the correlation is 

insignificant (Figure 7.4 C). Yet, socioeconomic welfare improvements 

were significantly higher in programmes with differentiated, rather than 

uniform benefits (p=0.045). This indicates that social customization may be 

important in REDD+ benefit-sharing strategies. As for the second REDD+ 

design variable, spatially targeting lands with high density of/ high threat 

towards environmental benefits is again in the PES literature featured as key 

for additionality outcomes (Ezzine-de-Blas et al. 2016; Wunder et al. 2018). 

However, we only observed initiatives with spatial targeting in Latin 

America (cf. SI, Table S2), which restricts our ability to clearly distinguish 

between regional and design-induced differences. Given this caveat, spatial 

targeting for forest-carbon density and/or expected deforestation strongly 

(p=0.001) correlates with environmental impacts (Figure 7.4 D) and may 

thereby have contributed to the larger effects observed in Latin America. 

Meanwhile, it did not moderate the socioeconomic outcomes (Figure 7.4 H).  

7.3.4 Comparing with other conservation instruments 

Finally, we know generally too little about the comparative performance 

across conservation instruments (Editorial 2021). In Figure 7.5, we compare 

the normalized Hedges’ G effect sizes recorded for the two types of REDD+ 

with those of pre-existing conservation instruments, such as other incentives, 

disincentives, and enabling actions–-drawing on previous studies (Börner et 

al. 2020; Wunder et al. 2020a). As in Figure 7.2, we accounted for dependent 

effect sizes from the same study by assuming a correlation of 0.8 and used 

robust variance estimation.  
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Figure 7.5: Environmental impacts from REDD+ vs. other conservation 

tools 

 

Note: REDD+ data from own calculations; other tool effect sizes from Börner et al. (2020). 

“Other incentives” include certification and PES without carbon focus. Comparing 

Cohen’s D effect sizes across environmental policy instruments, REDD+ mean impacts 

rank 2nd and 3rd among the five tools, but differences are insignificant. 

 

As for performance, the two REDD+ subgroups (defined as in Figure 7.2) 

compare fairly well to the other three instrument categories, in terms of mean 

effect sizes to protect forests (2nd and 3rd numerical ranks, among five). 

However, there is also a large variability of REDD+ outcomes underlying 

the rather small intervention samples. Consequently, no statistically 

significant differences between REDD+ and any of the alternative 

conservation instruments could be found. Comparatively speaking, REDD+ 

exhibited a middling, yet also changeable conservation performance.    

7.3.5 Robustness checks 

Lacking significant differences between the two forest-size outcomes (forest 

cover, deforestation rate), we included them both in the same primary-effect 
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analysis. In addition, we found no evidence that impact estimates would vary 

systematically with programme duration. We tested to what extent our 

results were driven by a few influential studies by a) consecutively excluding 

studies with high weights, namely Groom et al. (2022) and Guizar‐Coutiño 

et al. (2022); b) excluding studies using the synthetic control method, and c) 

excluding studies with a Cook’s Distance larger than two standard 

deviations. The coefficient sizes slightly changed, but our conclusions 

remained robust.  

Several studies employed matching techniques, and to calculate effect sizes 

one requires the correlation between pairs of observations (Borenstein 

2009). Due to missing data, we assumed a correlation coefficient of 0.5 for 

our main specification, but tested also more extreme values (0.3 and 0.7) as 

a robustness check. Indeed, we found that REDD+ effect estimates are 

sensitive to the assumed parameter in the calculation method, but not enough 

to alter our findings in Figure 7.2 and Figure 7.3.  

Based on the regional implementation and research bias towards Latin 

America, we were concerned that regional characteristics could affect the 

precision of our estimates, but found no evidence for error heteroscedasticity 

(cf. SI). 

7.3.6 Risk of bias assessment 

The risk of bias assessment (Supplement Text S5; Figures S5a-d) revealed 

some variations in methodological quality, both for studies reporting 

environmental and socioeconomic outcomes: some revealed low risk of bias, 

others some concerns, or high risk. Caution is needed in interpreting 

findings, particularly for studies with high risk of bias, as they may impact 

the overall strength of evidence. For environmental outcomes, bias sources 

included missing data and deviations from intended interventions; for 
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socioeconomic outcomes, randomization and deviations from interventions 

were significant sources of bias. 

7.4 Discussion 

Since 2007, the world has incipiently gathered experiences with REDD+, a 

tool designed to conserve and enhance forest carbon in non-Annex I 

countries (i.e. largely developing/ emerging economies, plus China), in 

exchange for economic compensations from the industrialized Global North. 

REDD+ is an objectively desirable end (the goal of reducing forest-based 

emissions) but has equally become a controversial means of using ‘market-

based’ international offsets to help accelerate climate change mitigation.  

A broad range of REDD+ pilot projects has thus emerged. Jointly, they 

annually planned to avoid 84 million tCO2 of emissions (over 33 years of 

mean lifespan). or “around 1% of annual emissions from deforestation, 

forest degradation, harvesting and peat fires in the tropics” (Simonet et al. 

2018). While potentially significant, leakage and credit performance apart 

only 5% of the correspondingly needed carbon credits had so far been sold 

on the voluntary market. In terms of de facto avoiding existing deforestation 

at scale, REDD+ projects have thus been but a drop in the sea (Simonet et 

al. 2018).  

Effectively, REDD+ projects have been starved out by a grossly insufficient 

global willingness to pay for mitigating climate change. Uncertain funding 

prospects have also made many projects quasi-placeholders waiting whether 

funding flows would materialize, meanwhile keeping on-the-ground 

treatment intensities low (Duchelle et al. 2019; Sills 2014). In particularly, 

implementers have been hesitant to introduce PES-type of continuous 

compensations to landholders, since implementers currently cannot promise 

continuity (Sunderlin et al. 2014; Wunder et al. 2020b). Obviously, this has 
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deteriorated the framework conditions under which REDD+ projects were 

expected to deliver efficient results.   

Yet, this does not per se question the potential usefulness of REDD+ projects 

in providing valuable pilot lessons for the potential upscaling to 

jurisdictional REDD+. Above, we have taken stock of the experiences so 

far. We carefully delimited exactly which initiatives were to be labelled as 

REDD+ -- either by proponents, or by analysts. We have also screened 

which impact evaluations were sufficiently rigorous to ensure internal 

validity and deliver trustworthy results, based on realistic counterfactuals 

enabling credible causal attribution. With many new empirical studies 

emerging recently, our larger and geographically more balanced sample than 

in previous meta-studies should also increase confidence in our results. 

We can thus shed some new light on the effectiveness and welfare 

implications of REDD+ initiatives. As for forest-cover and carbon effects – 

the ultimate raison d’être – REDD+ initiatives have had small-sized effects, 

similar to what other conservation instruments have (not) achieved (Börner 

et al. 2020; Wunder et al. 2020a). This holds for both specialized REDD+ 

projects/ programmes and cases where REDD+ has been integrated into 

national PES programmes. When interventions stop, prior pressures tend to 

resume, yet typically without fully undoing REDD+ gains (partial 

impermanence). Overall, given disappointing carbon-market flows, and the 

harsh critique against REDD+, environmental effectiveness is unimpressive, 

but probably still exceeds the expectations of many critical observers.  

For lack of uniform cost data, we could above not systematically compare 

cost-efficiency parameters. The few available case studies with REDD+ 

costs data point to highly variable, in some cases elevated transaction costs, 

but also declining with scale (Nantongo & Vatn 2019; Rakatama et al. 2017; 

Rendón Thompson et al. 2013). A move towards larger-scale jurisdictional 
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REDD+ programmes may thus also push towards more ‘bang for the buck’ 

in climate-change mitigation.  

On the socioeconomic side of local benefits provided – REDD+’s primary 

side-objective – our results on average portray small positive contributions 

to local livelihood outcomes (e.g. incomes, assets), yet insignificant impacts 

(e.g. subjective wellbeing). New incentive-based projects also tend to locally 

build easy-to-disappoint expectations regarding future benefit flows 

(Montoya-Zumaeta et al. 2019). Customized, rather than equal benefit 

transfers seem to improve socioeconomic outcomes. Single cases apart, no 

evidence points to REDD+ making local people systematically worse off: 

while not everybody locally may gain, a narrow outcome range from welfare 

neutrality to modest livelihood improvements is most common. 

But why have the environmental impact results of this highly innovative tool 

overall not been much better? Above we have incipiently pointed to several 

design flaws, such as adverse selection bias and inadequate spatial targeting. 

Insufficient on-the-ground enforcement of contractual conditionality is, 

however, another commonly noted deficiency in REDD+ implementation: 

often implementers will prefer to tolerate land-use violations, safeguarding 

instead the social capital built with local communities (Cisneros et al. 2022; 

Giudice et al. 2019; Montoya-Zumaeta et al. 2022; Rosa Da Conceição et al. 

2018). Moreover, by tolerating exaggerated baselines of future 

deforestation, the bar for REDD+ credits was set far too low; unsurprisingly, 

the majority of credits are non-performing (West et al. 2020, 2023), 

accelerating a public fatigue with environmental offsets. 

Another critical qualitative issue surrounds complexity. REDD+ is to forest 

carbon what integrated conservation and development projects (ICDP) 

projects have been to biodiversity: an umbrella term under which a 

ratatouille of composite, heterogeneous interventions has gathered. Many 
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REDD+ initiatives are ‘ICDP-like’, in terms of using the same integrated, 

multifaceted approach: trying a bit of everything to satisfy multiple 

stakeholders and minimize risks of total failure. Unfortunately, the ICDP 

approach has had a dismal impact-producing record (Börner et al. 2020). 

After 2007, many pre-existing ICDP projects looking for fresh funding were 

remodelled as REDD+ initiatives, producing an opportunistic self-selection 

bias. In Indonesia, for instance, many REDD+ projects were implemented 

by biodiversity-focused organizations; the targeted forest areas were more 

biodiversity-rich than carbon-dense, and only about one quarter of the 

project areas was truly threatened by deforestation (Murray et al. 2015). In 

turn, many genuinely new private sector initiatives adversely targeted de 

facto low-threat areas: avoiding deforestation would here become a low-

hanging fruit (West et al. 2020). Hence, many REDD+ projects may have 

served more as a proof of concept than as a real test of whether the avoided-

deforestation approach is holding water. 

Arguably, it is no shame for pilot projects to underperform or fail, if useful 

lessons are learned for future initiatives. Did early REDD+ interventions 

thus maximize this learning and upscaling potential? Hardly so, mainly since 

too many projects were carried out in ‘high-and-far’, low-pressure settings, 

thus not taking the bull by the horns. Particularly the ICDP-type model was 

also too complex in design and transaction cost-heavy in implementation to 

replicate at scale. Furthermore, REDD+ implementers almost never 

facilitated impact evaluation through (semi-)experimental rollout of 

multiple design options of action. Hence, we stand back with many highly 

customized ICDP-like ‘boutique projects’, including multiple components 

of action; yet we know very little about how well these components worked, 

and why.  



232 7.4 Discussion 

 

What about full national REDD+ programmes, as an alleged future of 

upscaled REDD+? For now, only the NICFI programmes in Guyana 

(Roopsind et al 2019) and Indonesia (Groom et al 2022) have been 

evaluated, finding for both small yet significant forest-protecting impacts. 

The Guyana case is not without controversy though: deforestation especially 

from gold mining actually increased during NICFI support, but less so than 

was predicted by a synthetic matching model for a no-REDD+ 

counterfactual, based on other comparable high-forest low-deforesting 

(HFLD) countries with significant mining sectors.  

For future research, doing further analyses of larger-scale REDD+ 

programmes, be it NICFI or more recently GCF and FCPF interventions, 

looks promising, but impact evaluation needs to be integrated early into 

programme design. These impact evaluation analyses should in turn not just 

provide average effect estimates, but equally be challenged to investigate 

heterogeneous impacts, enabling us to tell causally plausible stories about 

where, how, and why REDD+ might work or fail. 
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Chapter 8  
What we can(not) conclude from 

comparing yields and biodiversity 

across farm sizes22 

8.1 Introduction and Re-analysis 

In their research article, Ricciardi et al. (2021) (RICC) explore the 

relationship between farm size and six production-related outcomes. They 

report a negative association for yields and non-crop biodiversity after 

employing different methods to synthesize findings of prior studies. 

Seemingly interpreting empirical correlation as causal mechanism, they 

derive policy implications suggesting that more small farms improve 

socioeconomic and environmental performance of agriculture. Revisiting 

their empirical strategy, we find limited support for their empirical claims. 

                                                 
22 This chapter is a comment to and re-analysis of: Ricciardi, V., Mehrabi, Z., Wittman, 

H., James, D. & Ramankutty, N. (2021). Higher yields and more biodiversity on 

smaller farms. Nature Sustainability 4, 651–657. The chapter was not peer-reviewed, 

but is available as a pre-print (http://dx.doi.org/10.13140/RG.2.2.19657.47205). It is 

first-authored by Hugo Storm, an additional co-author is Thomas Heckelei.  

Author contribution: HS conceptualized the analysis, wrote and edited the draft. DS helped 

to conceptualize the analysis, implemented the formal re-analysis including replication 

material and visualizations, wrote, edited and reviewed the draft. TH conceptualized 

the analysis, wrote, edited and revised the draft.  

http://dx.doi.org/10.13140/RG.2.2.19657.47205
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In addition, we argue that policy conclusions need to carefully consider the 

mechanisms that drive differences in outcomes.  

One of the claims by RICC is to provide strong empirical support that 

smaller farms have higher yields. Average yield decreases by 5% for each 

hectare increase in farm size.  In their methodical approach deriving this 

result we see fundamental shortcomings. As we lay out in greater detail in 

the SI we consider the search terms used to identify studies included in the 

meta-analysis inappropriate. We consider it likely that the search terms miss 

relevant publications and find it problematic that no systematic derivation of 

search terms is provided. This is particularly worrying given that other meta-

studies focusing on a more restrictive topic identified more than three times 

the number of studies (Garzón Delvaux et al., 2020). There is also no 

disclosure of who identified, read and coded the primary studies, as well as 

the level of agreement in case that more than one reviewer was involved 

which is considered good practice for rigorous meta-analysis (Havránek et 

al., 2020). Further, we are sceptical of the way the effect sizes are derived 

and documented. While the authors referred for the formulas to Rodríguez-

Barranco et al. (2017) the provided supplementary material does not provide 

details about which formulas are specifically used. Inspecting the first two 

references listed in data provided in RICC we find discrepancies to the 

original articles (see SI). Further, we are sceptical about the magnitudes of 

the derived effect sizes. RICC studied relative reduction in yield for a one 

hectare increase in size, reporting effect sizes for the percentage change per 

1 ha increase in farm size up to a -60% (RICC Figure 3). These magnitudes 

appear highly implausible beyond very small farms, while RICC reports an 

(unweighted) average farm size in the primary studies of 7.5 (SD=22.7). 

However, these results seem to be heavily driven by a single outlier (see SI), 

and more than 50% of observations are based on farmer samples having less 
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than two hectares on average. Extrapolating on the basis of this data is 

therefore a sensitive issue to be communicated clearly. 

For the mean estimate, the authors use a multi-level random effects model 

allowing the true effects to vary between studies and crop types but not 

accounting for potentially correlated effects and correlated sampling errors 

arising from overlapping samples in primary studies. In addition, they mix 

different outcome measures (yield as weight and value) and different 

measures for farm size (farm size as “plot size” and “area under cultivation”) 

reported in primary studies. In the last step, RICC use three separate mixed-

effects regressions to determine whether the control of management, labor 

and institutions in the original studies moderate the mean effect. In Figure 

2b of the original paper we believe that the results of those dummies are not 

correctly reported (see SI for details), we reproduce those estimates (red 

estimates in our Figure 8.1). We re-estimate their models and calculate 

predicted mean effect sizes with cluster-robust confidence intervals (CIs) 

and corrected the reporting error (orange estimates in our Figure 8.1). Lastly, 

we propose an alternative model that accounts for correlated sampling errors 

estimated robustly5 and adds dummies for Labor, Management, Institutions 

and a dummy indicating a value-based outcome measure2 (green estimates 

in our Figure 8.1). The results of the corrected reporting and alternative 

model differ somewhat from the RICC results, but also do not warrant strong 

empirical conclusions given the issues discussed above. 

Apart from the inverse yield/size effect, RICC claim to provide empirical 

evidence “that smallholders are [...] stewards of biodiversity” and that 

biodiversity is higher on smaller farms. We are critical regarding the 

empirical evidence for this. The conclusion is based on a vote-counting 

analysis finding that 77% of studies report a significant negative association 

between farm size and non-crop biodiversity. In general, conclusions from 
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vote-counting should be drawn cautiously because they assign equal weights 

to studies with different statistical power6. A sample size of n=87 is reported 

in their Figure 8.1, while the results are in fact based on 31 unique studies, 

counting studies several times if they report various indicators. Additionally, 

the almost exclusive regional focus of the included studies on Europe and 

North America needs a critical reflection. Most importantly, however, RICC 

readily equate farm size with field size and small scale landscape structures, 

with only three studies actually considering farm size while all others look 

at field size and/or landscape composition. Hence, a more precise conclusion 

would be that smaller field size and more fragmented landscapes seem to be 

associated with higher non-crop biodiversity in developed countries.  

These methodological limitations call into question the validity of the 

empirical results RICC present. But even if the empirical results were valid, 

we would still question the policy conclusions drawn by RICC. It seems 

crucial to understand the underlying causes of yield or biodiversity 

differences between large and small farms in order to draw the right policy 

conclusion (see SI for a more detailed discussion). Finally, we ask whether 

comparing small and large farms is really the right approach to identify 

policies helping to achieve sustainable development. Different farm sizes are 

the (temporary) outcomes of complex, long-term behavioural processes. 

Maintaining or changing farm sizes may therefore not only be off-target, it 

may also require massive policy intervention coming at high risks of 

unintended side-effects. The more relevant questions are directly related to 

the outcomes of interest and the processes leading to their differentiation. 

For example, if fragmented landscapes support non-crop biodiversity, then 

scientists should learn to understand what leads to such landscape structures 

and policy should use such knowledge to support their maintenance or 

improvement. Understanding and empirical studying those processes is 
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challenging, but we should not take an empirical correlation between farm 

size and outcomes as a shortcut and basis for policy conclusion.  

Figure 8.1: Updated results of estimated effect from Ricciardi et al. (2021) 

 

Note: Updated results of estimated effect with 95% CI of farm size [ha] on yields [kg ha-1 

and $ ha-1] along with moderation analysis corresponding to Figure 2b in the original 

publication. The first row gives the overall average effect; the six rows below show results 

of the moderation analysis. Red estimates are the original values published in RICC Figure 

2b; orange estimates are based on the original models but including the intercept for the 

prediction and cluster-robust 95% CI; green estimates are predicted values based on our 

alternative model specification. 

Supplementary Information & Data availability 

The data, re-analysis code, and supplementary information is available at 

https://osf.io/2zvwj/?view_only=c9da461b62004be0b7f3de57925cb282. 

https://osf.io/2zvwj/?view_only=c9da461b62004be0b7f3de57925cb282
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