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Abstract

Legislation like the EU Water Framework Directive demands the development as well as implementa-
tion of catchment-scale monitoring and management plans to control pollution of surface waters and
ensure their good status. Water pollution with excess amounts of reactive nitrogen (N) - for example ni-
trate (NO5 ™) - can cause environmental problems like eutrophication while also posing potential health
risks to humans. Knowledge of pollution sources and their relative importance in a given catchment
is a prerequisite for developing targeted monitoring strategies and efficient management plans. The
process of quantifying the contribution of each pollution source to overall pollution in a catchment is
called source apportionment. Due to the abundance of pollution sources as well as their heterogeneity in
time and space, source apportionment solely based on water quality monitoring is not feasible in large
catchments, especially with regard to non-point source (diffuse) pollution. Ecohydrological computer
models can be used to complement water quality monitoring data in space and time, identify critical
source areas and carry out source apportionment studies. The overall research aim of the present thesis
is to assess N pollution of surface waters in the Swist river basin, Germany, from 2012 to 2018 using the

ecohydrological catchment model SWAT (Soil and Water Assessment Tool).

Calibration of SWAT using Monte Carlo analysis generated a SWAT model ensemble allowing for analy-
sis of modeling uncertainty. Furthermore, two independent reference data sets on diffuse N pollution in
the Swist basin were available for comparison with the SWAT simulation results: (1) An emission inven-
tory from upscaled edge-of-field monitoring data and (2) raster data generated by the AGRUM modeling
system. The calibrated SWAT models predicted a mean diffuse N emission load of 8.1 kg/(haa) for the
entire Swist catchment area in the study period (median: 6.9 kg/(haa)). Agricultural tile drainage was
identified as the most important emission pathway in the catchment, shaping much of the spatial vari-
ability in diffuse N pollution. In contrast, due to missing groundwater contact in large parts of the catch-
ment (a consequence of lignite mining north of the study area), surface waters received only minimal
N from groundwater, possibly indicating a dominance of faster (tile drains) over slower (groundwater)
emission pathways in the catchment. The highest diffuse N loads were predicted near the headwaters of
the Schiessbach tributary by all SWAT models, making this region a likely critical source area for N in
the catchment. On average, wastewater treatment plants contributed approximately one fourth (26.8 %)
of overall N pollution in the simulations. As all these findings were basically consistent between the
SWAT simulations and the two reference data sets, they can be used with relative confidence in the fu-
ture to focus monitoring efforts, devise emission control strategies and implement effective mitigation

measures.
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Abstract

However, comparison of the available data also revealed some meaningful discrepancies, highlighting
the remaining uncertainties in the results. Diffuse N emission loads simulated by the SWAT ensemble
ranged from 4.7 to 11.4kg/(ha a) (excluding one outlier at 15.9 kg/(ha a)). Since the two reference data
sets mostly agree with SWAT in the order of magnitude of these values, the results are considered a
realistic appraisal of diffuse N pollution in the Swist catchment. Still, with a factor of more than two (or
three when including the outlier) between the upper and lower end of the uncertainty interval, the exact
amount of N released to the Swist and its tributaries remains difficult to quantify. Although the general
ranking of the individual pathways is mostly stable between the SWAT models and likewise confirmed
by the reference data, the relative uncertainty intervals associated with their N contributions are even
wider than for the overall emission loads. Apart from the Schiessbach headwaters, no other obvious
critical source area candidate emerged among the SWAT simulation results and the reference data, with
regions of high N emission loads mostly fluctuating between the different model results. The simulated
contributions from wastewater treatment plants ranged from 14.7 to 36.7 % of overall N emissions in the

catchment.

For a future continuation of SWAT modeling in the Swist catchment to assess N pollution, there are
several possibilities to potentially reduce the uncertainty in the simulation results. First, including addi-
tional data and/or objective functions in model calibration probably helps to better constrain the SWAT
parameters. Second, the correction of some deficiencies in the model setup (i.e. input data and model
structure) - for example in the amounts of applied N fertilizer or the omission of combined sewer over-
flows - makes model calibration presumably more efficient and may eliminate potential bias in the sim-
ulation results. In summary, ecohydrological catchment modeling with SWAT in the present thesis was
successful in generating novel insights regarding N pollution in the Swist catchment. Here, model-based
source apportionment benefited immensely from the extraordinary wealth of monitoring data available
for the Swist catchment and the possibility to compare the SWAT modeling results to two independent
reference data sets for the study area. This underscores the importance of comprehensive monitoring
and knowledge of relevant local conditions to reach a sound understanding of surface water pollution

on the catchment scale.
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Zusammenfassung

Rechtliche Vorgaben wie die EU-Wasserrahmenrichtlinie verlangen die Entwicklung und Umsetzung
von Uberwachungs- und Bewirtschaftungsplinen auf Einzugsgebietsebene, um Schadstoffeintrige in
Oberflachengewdsser zu kontrollieren und den guten Gewasserzustand zu gewéhrleisten. Gewasserbe-
lastungen durch reaktiven Stickstoff (N) - zum Beispiel in Form von Nitrat (NO3 ~) - kénnen Umwelt-
probleme wie Eutrophierung verursachen und stellen zudem ein potenzielles Gesundheitsrisiko fiir den
Menschen dar. Die Kenntnis der Belastungsquellen und ihrer relativen Bedeutung in einem bestimm-
ten Gewissereinzugsgebiet ist eine Voraussetzung fir die Entwicklung gezielter Monitoring-Strategien
sowie effizienter Bewirtschaftungsplane. Der Prozess der Quantifizierung des Beitrags einzelner Be-
lastungsquellen zur Gesamtbelastung eines Gewassers wird als Source Apportionment bezeichnet. Auf-
grund der Vielzahl moglicher Belastungsquellen sowie ihrer zeitlichen und raumlichen Heterogenitat
ist ein Source Apportionment allein aufgrund von Monitoring-Mafinahmen in grofien Einzugsgebie-
ten nicht durchfiihrbar, insbesondere im Hinblick auf diffuse Gewiisserbelastungen. Okohydrologische
Computermodelle kénnen hier verwendet werden, um Monitoring-Daten in Raum und Zeit zu ergénzen,
wichtige Quellgebiete (critical source areas) zu identifizieren und ein Source Apportionment durchzufiih-
ren. Das tibergeordnete Forschungsziel dieser Arbeit ist es, die N-Belastung der Oberflichengewisser
im Einzugsgebiet der Swist (Nordrhein-Westfalen) in den Jahren zwischen 2012 und 2018 mit Hilfe des
okohydrologischen Einzugsgebietsmodells SWAT (Soil and Water Assessment Tool) zu untersuchen.

Die Modellkalibrierung per Monte-Carlo-Analyse lieferte ein SWAT-Modell-Ensemble, das zur Analyse
der Modellunsicherheit genutzt werden kann. Daneben standen zwei unabhéngige Referenzdatensatze
zur diffusen N-Belastung im Swist-Einzugsgebiet fiir Vergleichszwecke zur Verfiigung: (1) Ein Emissi-
onsinventar aus hochskalierten Edge-of-Field-Monitoring-Daten und (2) gebietsweite Rasterdaten, die
mit dem AGRUM-Modellsystem erzeugt wurden. Die kalibrierten SWAT-Modelle sagten eine mittlere
diffuse N-Emissionsfracht von 8,1 kg/(ha a) fiir das gesamte Swist-Einzugsgebiet im Untersuchungszeit-
raum voraus (Median: 6,9 kg/(ha a)). Als wichtigster Emissionspfad im Einzugsgebiet wurden landwirt-
schaftliche Felddrainagen identifiziert, die fiir einen Grof3teil der raumlichen Variabilitit in den dif-
fusen N-Emissionen verantwortlich sind. Aufgrund von oftmals fehlendem Grundwasserkontakt (eine
Folge des Braunkohletagebaus nérdlich des Untersuchungsgebiets) erhielten die Oberflichengewisser
nur wenig N tiber das Grundwasser, was insgesamt eine Dominanz schnellerer (Felddrainagen) gegen-
iiber langsameren (Grundwasser) Emissionspfaden im Einzugsgebiet nahelegt. Die hochsten diffusen
N-Frachten wurden iiber alle Modelllaufe hinweg fiir den Oberlauf des Schiessbaches vorhergesagt,
was darauf hindeutet, dass sich in diesem Bereich hochstwahrtscheinlich ein mafigebliches Quellge-

biet fiir N an der Swist befindet. Die Kldranlagen trugen im Durchschnitt ein Viertel (26,8 %) zur ge-
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samten N-Belastung in den Simulationen bei. Da all diese Ergebnisse im Wesentlichen zwischen den
SWAT-Simulationen und den beiden Referenzdatensitzen tibereinstimmen, konnen sie diesbziiglich als
belastbare Grundlage dienen um Monitoring-Mafinahmen zu fokussieren, Emissionskontrollstrategien

zu entwickeln und wirksame Mafinahmen zur Eintragsminderung umzusetzen.

Der Vergleich der Simulationsdaten untereinander sowie mit den verfiigbaren Referenzdaten forderte
jedoch auch einige bedeutsame Unterschiede zutage, welche die verbleibenden Unsicherheiten in den
Ergebnissen aufzeigen. So reichten die diffusen N-Emissionsfrachten aus dem SWAT-Modell-Ensemble
von 4,7 bis 11,4kg/(haa) (ein Ausreiler von 15,9 kg/(ha a) ausgenommen). Da die beiden Referenzda-
tensatze in der Groflenordnung hier weitgehend mit SWAT iibereinstimmen, wird dieser Wertebereich
als realistische Einschétzung der diffusen N-Gewisserbelastung im Swist-Einzugsgebiet angesehen. Mit
einem Faktor von mehr als zwei (bzw. drei mit Ausreifier) zwischen der oberen und der unteren Gren-
ze dieses Unsicherheitsintervalls bleibt es jedoch schwer die genauen N-Eintragsmengen in die Swist
und ihre Nebenfliisse zu quantifizieren. Obwohl die Reihenfolge der einzelnen Eintragspfade zwischen
den SWAT-Modellen weitgehend stabil ist und auch durch die Referenzdaten bestatigt wird, sind die
relativen Unsicherheitsbereiche fiir die pfadspezifischen N-Emissionsfrachten noch breiter als fir die
Gesamtfracht. Abgesehen vom Oberlauf des Schiessbachs ging unter den SWAT-Modellen kein wei-
terer klarer Kandidat fiir ein kritisches Quellgebiet aus den SWAT-Simulationsergebnissen oder den
Referenzdaten hervor: Die Lage von Belastungsschwerpunkten im Untersuchungsgebiet schwankte zu-
meist stark von einem Modelldurchlauf zum nichsten. Beziiglich der Belastungsbeitrige aus Klaranla-
gen reichte der Unsicherheitsbereich aus dem Modell-Ensemble von 14,7 bis 36,7 % aller N-Emissionen

im Einzugsgebiet.

Fiir eine kiinftige Fortfithrung der SWAT-Modellierung im Swist-Einzugsgebiet zur Untersuchung der
N-Gewissereintrige ergeben sich mehrere Ansétze, um die Unsicherheit der Simulationsergebnisse zu
verringern. Erstens wiirde die Einbeziehung zusétzlicher Daten und/oder Zielfunktionen in die Modell-
kalibrierung voraussichtlich helfen, die Schwankungsbreiten der unsicheren SWAT-Parameter besser
einzugrenzen. Zweitens kann die Korrektur einiger Unzulanglichkeiten in den Modelleingangsdaten
(z.B. die Menge ausgebrachten Stickstoffdiingers im Untersuchungsgebiet) sowie in der Modellstruktur
(wie die Nicht-Berticksichtigung von Mischwasserabschligen) helfen, die Modellkalibrierung effizienter
zu gestalten und etwaige systematische Fehler in den Simulationsergebnissen zu beseitigen. Zusammen-
fassend ldsst sich sagen, dass die Einzugsgebietsmodellierung mit SWAT in dieser Arbeit erfolgreich war,
neue Erkenntnisse tiber die N-Belastung im Einzugsgebiet der Swist zu gewinnen. Dabei hat das modell-
basierte Source Apportionment von der auflerordentlichen Fiille an Messdaten im Swist-Einzugsgebiet
sowie der Moglichkeit, die Modellergebnisse mit unabhiangigen Referenzdaten zu vergleichen, profitiert.
Dies unterstreicht die Bedeutung eines umfassenden Gewassermonitorings und der genauen Kenntnis
wichtiger Gebietseigenschaften, um ein Verstindnis von Gewisserbelastungen auf Einzugsgebietsebene

zu erhalten.
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1. Introduction

1.1. Problem Statement

1.1.1. Surface Water Pollution

Freshwater resources are essential for human and environmental well-being. Most promi-
nently, they provide drinking water, ensure food production, enable various industrial activities
and form the basis for a multitude of freshwater ecosystems. On the global scale, freshwater
makes up only 2.5 % of the hydrosphere, nearly 70 % of which is perennially frozen (Carpenter
et al. 2011). Freshwater habitats such as rivers, lakes and reservoirs contain only 0.01 % of the
world’s water, yet harbor almost 6 % of estimated global biodiversity. 40 % of all fish species and
one third of all vertebrate species live in freshwater or are tied to freshwater habitats (Dudgeon
et al. 2006). Anthropogenic pollution of freshwater (i.e. the excessive release and accumula-
tion of adverse physicochemical influences due to human activities) is a major driver of both
a worldwide decline in biodiversity (Dudgeon et al. 2006, Reid et al. 2019) and increasing wa-
ter scarcity (Boretti & Rosa 2019). Notable pollutants include nutrients like nitrogen (N) and
phosphorus (P), heavy metals, pathogens, plastics, pesticides and pharmaceuticals (Carpenter
et al. 2011, Reid et al. 2019, Walker et al. 2019). Limiting emissions of these pollutants is crucial

for protecting aquatic life and securing long-term freshwater availability for human use.

Legislation aimed at controlling water pollution and protecting water quality includes the Clean
Water Act (CWA) in the United States (US) and the Water Framework Directive (WFD) in the
European Union (EU). The CWA in its modern form was enacted in 1972 and primarily applies
to surface (“navigable”) water bodies. The WFD was put into effect in the year of 2000 and seeks
to achieve a good status for all surface and groundwater water bodies in the EU member states
until 2027 at the latest. Comparative descriptions of the CWA and the WFD are provided by
Coffey et al. (2014) as well as McDowell et al. (2016). As water bodies transcend regular adminis-
trative units, the WFD establishes river basin districts (i.e. catchments) as the primary spatial
entities for water management. Originating from the CWA, the Total Maximum Daily Load
(TMDL) program of the US Environmental Protection Agency (USEPA) similarly encourages

a catchment-scale approach to restore water quality in polluted US surface waters (Radcliffe
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et al. 2009, Daniel et al. 2011). In order to meet water quality standards, the WFD demands the
development and implementation of management plans for all river basin districts. In the US,
TMDLs need to be developed for all impaired water bodies (McDowell et al. 2016).

Knowledge of pollution sources and their relative importance in a given river basin is a pre-
requisite for designing efficient management plans as well as developing targeted monitoring
strategies, prioritizing mitigation efforts and implementing the polluter pays principle (Kern
et al. 2007). Table 1.1 gives an overview of different surface water pollution sources.! With
respect to their spatial characteristics, they are commonly classified as point and non-point
sources. Whereas point sources may be assigned a specific coordinate at which pollutants are
released into the water body, emissions from non-point sources occur over a wider area and
may enter the water body at multiple locations that are usually unknown. As they cannot be re-
duced to a single spatial coordinate, non-point sources are often synonymously called “diffuse”
sources. Considering temporal aspects, pollution sources may further be classified as contin-
uous, episodic and event-specific. Emissions from continuous pollution sources occur steadily
over long periods (months, years). They may vary in time, but rarely cease entirely. In contrast,
emissions from event-specific sources are a direct response to precipitation events. As such,
they are short-lived (minutes, hours) and virtually unpredictable. Episodic pollution sources
are also bound to precipitation events, but pollutant release is often delayed and stretched out

over longer time periods (days, weeks).

The process of quantifying the contribution of each pollution source to overall pollution in a
catchment is called source apportionment (Begestrand et al. 2005). Due to the abundance of
pollution sources as well as their heterogeneity in time and space, monitoring-based source
apportionment is not feasible in large-scale catchments (Shirmohammadi et al. 2006). While
continuous point sources like the effluents of wastewater treatment plants (WW'TP) are easily
accessible for sampling, monitoring of other pollution sources is considerably more difficult.
Comprehensive data on pollutant quantities emitted by event-specific point sources like com-
bined sewer overflows (CSO) is usually scarce due to the short duration and unpredictability
of emission events (Christoffels 2008). The same is true for all event-specific or episodic non-
point pollution sources. Establishing and maintaining edge-of-field (EOF) monitoring systems

for runoff sampling is laborious and costly. Even more importantly, EOF monitoring is typically

IThere is some ambiguity in the exact meaning of the term ‘pollution source” in the literature. A pollution source
may either refer to an entire domain of human activity that pollutants originate from (e.g. agriculture, industry,
road traffic) or to the specific process or structure that releases pollutants into a water body (erosion, atmo-
spheric deposition, wastewater treatment plants). Imagining an emission pathway that encompasses pollutant
mobilization, pollutant transport and pollutant input into a water body (Kern et al. 2007), the first interpretation
places the source at the start of this pathway, whereas the second interpretation places it at the end. This thesis
primarily makes use of the second interpretation.
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Table 1.1.: Overview of different surface water pollution sources classified with respect to their spatial
and temporal characteristics (Christoffels et al. 2016, expanded and modified). From left to right and
from top to bottom, the listed pollution sources get increasingly inaccessible to source monitoring.

Temporal characteristics

Spatial characteristics Continuous source Episodic source Event-specific source
Point source Wastewater treatment plants Combined sewer overflow
(known coordinates) Direct discharge from indus- Separate sewer outlets

try or trade

Point source Tile drainage flow
(unknown coordinates)

Non-point source Groundwater flow Interflow Surface runoff
Atmospheric deposition Erosion

restricted to individual hillslopes, fields or tile drain outlets?, but does not provide information
for the greater catchment area. Similarly, monitoring sites for continuous non-point pollution
sources like groundwater flow and atmospheric deposition only allow for point-scale measure-

ments.

Extrapolating monitoring results from non-point sources to the catchment scale is subject to
considerable uncertainties. The density of monitoring networks is usually not sufficient to
draw reliable conclusions on overall emission loads. Often, it is not entirely clear how repre-
sentative the selected monitoring sites are for the complete catchment area (e.g. in terms of
agricultural management practices). Furthermore, for many pollutants such as nutrients, the
catchment-wide distribution of emission loads per unit-area is highly skewed, meaning that
a disproportionate share of non-point source emissions originates from a very limited num-
ber of source areas. Such areas are commonly referred to as critical source areas (CSA) (White
et al. 2009). If overall emissions of a pollutant are dominated by only a few CSAs, projecting the
outcomes of point- or hillslope-scale measurements to the entire catchment area bears the risk
of introducing substantial bias to the resulting estimates for the total emission load. Indirect
estimation of diffuse emission loads from observed in-stream loads relies on comprehensive

knowledge of pollution from point sources as well as reliable information on in-stream reten-

%In theory, each individual tile drain outlet can be seen as a point source. In practice however, tile drain outlets
effectively act as non-point sources, since their number and exact position is usually unknown. Mapping tile
drained fields with available data like aerial photographs is a complex task that usually comes with considerable
uncertainties (Tetzlaff et al. 2009, Mgller et al. 2018, Tetzlaff 2021, Kothe et al. 2021).
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tion and transformation, which is unavailable in most cases. To overcome the various limita-
tions of monitoring-based assessment of non-point source pollution in large river basins, often
catchment-scale computer models are being used to support the implementation of TMDLs and
river basin management plans in the US and Europe, respectively (Borah et al. 2006, Radcliffe
et al. 2009, Daniel et al. 2011). These models are able to simulate non-point source pollution and
its effect on water resources. Section 1.2 will give an overview of different types of catchment-
scale computer models, their application for simulating water quality and water pollution as

well as the associated uncertainties and limitations.

1.1.2. Nitrogen in the Environment

As a macronutrient, nitrogen (N) is essential for every living organism on Earth. Despite its
abundance in the atmosphere, triple-bonded nitrogen gas (N,) is chemically inaccessible for
most organisms and has to be converted into various forms of reactive nitrogen to be available
for biomass production. Reactive nitrogen is created when the triple bond of N is broken and
the single N atoms are incorporated into other inorganic molecules containing either hydrogen
or oxygen, including for example ammonia (NHj) and nitrate (NO; 7). In nature, this process
of nitrogen fixation is mainly mediated by specialized microorganisms (biological N fixation),
some of them living in close symbiotic association with the roots of certain plants like legumes.
To a lesser extent, nitrogen fixation also occurs in the atmosphere with help of lightning. Inor-
ganic forms of reactive N can subsequently be converted to organic forms through assimilation
by plants and other autotrophic organisms, forming the basic nitrogen supply for all ecosys-
tems. Biogeochemical processes continuously interconvert the various forms of reactive N in
the environment, before it is eventually returned to the atmosphere as N by denitrification. See
Figure 1.1 for a comprehensive overview of the processes involved in environmental nitrogen

cycling illustrated for an agricultural ecosystem.

Since the beginning of the 20th century, human activities such as production of mineral fertil-
izers (via the Haber-Bosch process) and fossil fuel combustion have led to a surge in reactive N
inputs to the environment compared to natural background levels (Galloway et al. 2004, Gal-
loway et al. 2021). As denitrification is unable to fully compensate for the increasing inputs
(Galloway & Cowling 2002), reactive N accumulates in various environmental compartments
(Van Meter et al. 2016, Ascott et al. 2017). The benefits of rising supplies of reactive N - first
and foremost increased agricultural production - are contrasted by various adverse effects re-
active N can have on human health and the environment, including surface waters (Galloway
& Cowling 2002, Erisman et al. 2013). Ammonia and nitrite (NO; ™) are directly toxic to many

aquatic organisms and may also pose health risks for humans. As the primary forms of reactive
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Figure 1.1.: Major components of the nitrogen cycle in agricultural soils. N inputs with fertilization
usually are the dominant source of reactive N in agricultural environments. Some of the N added with
manure or fertilizer may be lost again via ammonia volatilization. Natural processes that introduce
reactive N to soils are biological (symbiotic) fixation and atmospheric fixation with subsequent deposi-
tion. Human activities like livestock farming and fossil fuel combustion can increase the natural back-
ground levels of atmospheric N deposition. Most plants primarily use nitrate (NO3~) to meet their N
demand, and only resort to ammonium (NH4*) if supply with the more accessible nitrate is insufficient.
Decomposition of dead biomass and subsequent mineralization leads to the re-release of inorganic N
compounds in the soil, where the balance between N mineralization and immobilization is controlled
by the C:N ratio of the soil organic matter. Nitrification is the two-step oxidative conversion of ammo-
nium to nitrite (NO; ™) and nitrate by chemoautotrophic bacteria to meet their energy demand. Nitrate
(and other forms of oxidized N) may subsequently be reduced to N, by certain heterotrophic bacteria
that switch to alternative electron acceptors for their respiratory chain in the absence of oxygen (deni-
trification under anaerobic conditions). High mobility of nitrate due to anion exclusion at the interface
between soil solution and soil matrix makes the NO3;~ molecule prone to leaching with percolating
water. The figure is taken from Neitsch et al. (2011).
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N available to plants, algae and cyanobacteria, excess release of ammonium (NH; ") and nitrate
into surface waters can cause eutrophication, harmful algae blooms, hypoxia and “dead zones”
(areas with minimal aquatic life due to oxygen depletion) (Galloway & Cowling 2002, Withers
et al. 2014). This is particularly true for coastal waters, where N is usually the limiting factor
for algal growth, although it may often play a role in eutrophication of inland surface waters as
well (Paerl et al. 2016). In the long term, elevated levels of reactive N alter aquatic biocenoses

and reduce biodiversity.

Nitrogen enters surface waters from both point and non-point sources, the former typically
associated with wastewater and the latter primarily associated with agriculture. Past decades
have seen a steady decline in N emission loads to surface waters where regulations have been
put in practice to counteract pollution of water resources, with an overall pattern of a more
rapid decline in N emissions from point sources (as an example, see Fuchs et al. (2010) for the
progression of N emissions in the major German river catchments since the early 1980s). De-
spite such advances, reactive N levels in surface waters have often failed to decline correspond-
ingly, which is explained with the effects of historical nitrogen accumulation in environmental
compartments causing long delays between the implementation of mitigation measures and
visible effects in monitored surface water bodies (“legacy pollution”) (Withers et al. 2014, As-
cott et al. 2021, Basu et al. 2022). Legacy pollution and the associated lag times in catchment
response have been identified as a key research question in hydrology (Kirchner 2003, Bloschl
et al. 2019), with calls to illuminate the underlying processes and adequately account for them
in computer simulation models (Hrachowitz et al. 2016, Lutz et al. 2022, Golden et al. 2023).
Globally, creation of new reactive N and its use in agriculture as well as other sectors is still
increasing. N pollution of surface waters will almost certainly follow that trajectory, as will
N accumulation in other environmental compartments and the accompanying legacy effects
(Galloway et al. 2021, Bijay-Singh & Craswell 2021).

1.2. State of the Art

1.2.1. Ecohydrological Catchment Modeling

Past decades have seen the emergence of a variety of computer models capable of simulating
water quality and surface water pollution on the river catchment scale. Such models are ap-
plied for instance to complement water quality monitoring data in space and time, identify
CSAs for a specific pollutant, carry out source apportionment studies, conduct scenario analy-
sis and assess management impacts (Borah & Bera 2003, Radcliffe et al. 2009, Fu et al. 2019). To

accomplish all this, the models need to integrate a wide array of catchment processes includ-
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ing runoff generation and streamflow, erosion, biogeochemical nutrient cycling and transport,
plant growth as well as land and water management. Therefore, they are often referred to
as ecohydrological catchment models (Krysanova & Arnold 2008). Ecohydrological models are
very diverse in their capabilities and representation of the relevant processes. For comprehen-
sive overviews of important ecohydrological models with emphasis on different applications
and modeling aspects, see Borah & Bera (2003), Horn et al. (2004), Borah et al. (2006), Radcliffe
et al. (2009), Schoumans et al. (2009), Daniel et al. (2011), Pandey et al. (2016), Hrachowitz et al.
(2016) and Fu et al. (2019).

Figure 1.2 proposes a concept for systematic classification of ecohydrological models along
three dimensions: model complexity as well as spatial and temporal scale. Model complex-
ity describes the level of detail a model applies for process representation. At the lower end
of the complexity spectrum, empirical models derive their results exclusively from observed
data (e.g. via regression functions). This purely data-driven approach is often referred to as
a black box because it relates model inputs to outputs with little to no insight into the ac-
tual physical quantities and processes that govern the catchment behavior. On the opposite
side of the spectrum, physically-based models make explicit assumptions about the processes
involved using established physical descriptions. In theory, this completely process-driven
approach allows the underlying assumptions to be scrutinized for their ability to reproduce
observed system behavior and - since the associated parameters have direct physical mean-
ing - the model to be parameterized independently from any calibration exercise (e.g. through
field measurements). The process-driven approach is also thought to better extrapolate to new
catchments and environmental conditions than the data-driven approach. In practice however,
these alleged advantages are usually compromised by a lack of available data at the needed
spatial and temporal resolution as well as scale-dependencies of the employed process descrip-
tions (Beven 1989, Beven 2001, Refsgaard et al. 2010). Furthermore, the models require con-
siderable computational resources, which can become prohibitive for large catchment areas
or research designs that involve repeated simulations (e.g. for uncertainty assessment) (Borah
& Bera 2003, Hrachowitz et al. 2016, Herrera et al. 2022). Conceptual models take a middle-
ground between the purely data-driven and process-driven approaches described above. To
a varying degree, they combine empirical methods with explicit process descriptions that are
often based on simplifying assumptions (e.g. the subdivision of the entire environment into

discrete compartments and generalized storage elements).

Regarding spatial scale, it is common to distinguish lumped, semi-distributed and distributed
models. The output from lumped models is calculated for the entire catchment area at once,

working with area-aggregated input data and neglecting all spatial differences. Semi-distributed



1. Introduction

models account for spatial heterogeneity by dividing the catchment area into smaller enti-
ties. While some authors already consider the division of the catchment area into several
sub-catchments to be a semi-distributed approach (Daniel et al. 2011), others merely inter-
pret that as the iterated application of a lumped approach (Fu et al. 2019). In the latter case,
(sub-)catchments are instead viewed to consist of even smaller spatial units, defined either by
similarity in important landscape properties such as land use and soils, or by their position in
the topographic continuum between upland areas and valley bottoms (Fu et al. 2019). Fully dis-
tributed models operate on arbitrarily fine spatial resolutions that can be defined by the model
user based on the available data and computational power. Typically, they superimpose the
entire catchment area with a network of hydrologically connected entities (typically cells in a

grid) that form the basic processing units.

With respect to temporal scale, models can be static or dynamic. The output of static models
consists of average values representative of longer time periods (years to decades). In contrast,
dynamic models are capable of generating time series output of varying resolution (annual,
monthly, daily, hourly, etc.). At low temporal resolutions, there usually is a smooth transi-
tion from dynamic to static models and it becomes increasingly difficult to distinguish both
model types. Looking at the three classification criteria in combination, there is a tendency
of empirical models working on low and physically-based models operating on high spatial
and temporal resolutions. This general pattern is inherent to the operating principles of the
different model types. However, it does not apply to all ecohydrological models as illustrated

by the small selection of models included in Figure 1.2. These models are:

1. MIKE SHE (Refsgaard & Storm 1995) is a commercial hydrological model developed at
the Dansk Hydraulisk Institut (DHI) originating from the Systéme Hydrologique Européen
(SHE) (Abbott et al. 1986a, Abbott et al. 1986b). MIKE SHE can be coupled with the
root zone model DAISY to include emissions of nitrogen or pesticides in the simulations
(Styczen et al. 1999, Hoang et al. 2014).

2. SWAT (Soil and Water Assessment Tool) (Arnold et al. 1998) is an open source catchment
model initiated by the US Department of Agriculture (USDA). It can simulate emissions

of nutrients (N, P), pesticides, heavy metals and other pollutants.

3. MONERIS (Modelling of Nutrient Emissions in River Systems) (Venohr et al. 2011) is a
model for assessment of nutrient emissions (N, P) developed at the Berlin-based Leibniz

Institute of Freshwater Ecology and Inland Fisheries (IGB).

4. MoRE (Modeling of Regionalized Emissions) (Fuchs et al. 2017) is an open source model-
ing system developed at the Karlsruhe Institute of Technology (KIT) in Germany. MoRE
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is an independent branch of MONERIS with added functionality and a broader range of
pollutants that can be simulated (nutrients, heavy metals, different organic micropollu-

tants).

5. The AGRUM (Agro-Environmental Measures) (Zinnbauer et al. 2023) model suite en-

compasses several models for estimation of non-point source emissions of nutrients (N,
P):

a) RAUMIS (Regionalized Agro-Environmental Information System)

b) mGROWA (Monthly Large-Scale Water Balance Model)

c) DENUZ (Denitrification in the Vadose Zone)

d) WEKU (Residence Times and Reactive N-Transport in Groundwater)
e) MEPhos (Model for the Determination of Phosphorus Inputs)

(RAUMIS is developed at the Thiinen Institute in Braunschweig, Germany, while the
other four models are developed at the Forschungszentrum Jiilich, Germany. They are
complemented by MONERIS to account for nutrient emissions from urban systems and
point sources as well as in-stream nutrient retention. Note that this set of models is
referred to as AGRUM only in part of its application contexts, for example Zinnbauer
et al. (2023). For the sake of simplicity and brevity, this thesis adopts the name AGRUM.)

As evident from Figure 1.2, model complexity as well as spatial and temporal scale positively
correlate for MONERIS/MoRE, SWAT and MIKE SHE+DAISY, whereas AGRUM - as a concep-
tual distributed modeling system operating on an annual time step - is set apart to another

region of the model space.

The classification system outlined in Figure 1.2 does not claim to be comprehensive. Apart from
model complexity, spatial scale and temporal scale, the literature mentions other classification
criteria for ecohydrological models not included in the figure. For instance, it can also be
distinguished between deterministic and stochastic modeling techniques. Strictly deterministic
models have definite parameters, inputs and outputs, whereas stochastic models work with
distributions that can account for environmental variability and input uncertainty. Models
furthermore differ in their general scope. For example, some catchment models are limited
to the terrestrial domain and neglect in-stream processes like pollutant retention and reactive
transport, while typical river water quality models focus on the aquatic domain and are unable
to simulate pollutant inputs into surface waters from the surrounding environment (Horn et al.

2004, Fu et al. 2019). The range of different pollutants a model is able to simulate is another
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Figure 1.2.: lllustrative selection of different ecohydrological catchment models classified in terms of
model complexity as well as spatial and temporal scale. As classification is always ambiguous to a
degree, all model characteristics have been deliberately plotted on a continuous scale. The models are
positioned in accordance with their highest possible (spatial or temporal) resolution. Note however that
the simulation results can always be downscaled for each individual model (e.g. SWAT is also capable
of generating monthly and annual simulation results).
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1. Introduction

possible classification criterion. While some models (e.g. MoRE) take a universal approach
that can accommodate many different pollutants, other models (e.g. MONERIS) are specifically

designed to simulate a certain pollutant class and are thus restricted to this set of substances.

1.2.2. Modeling Uncertainty and Equifinality

Although catchment modeling is arguably indispensable for assessing and ultimately mitigat-
ing non-point source pollution on a larger scale, it is also met with criticism especially when
models demonstrably fail to reproduce observed catchment behavior or predict the system
response to specific mitigation measures (Rissman & Carpenter 2015). Such prediction fail-
ures are the result of the spatiotemporal complexity of catchments (Beven 2000) and their - by
definition - imperfect representation in computer models, making all model output inevitably
subject to considerable uncertainty. Model uncertainty, as well as the need to adequately assess
and communicate it, has long been recognized in the hydrologic scientific community (Beven
& Binley 1992, Reckhow 1994, Pappenberger & Beven 2006, Beven & Binley 2014, Harmel
et al. 2014, Beven 2016, Bloschl et al. 2019). In its broadest sense, uncertainty may be defined
as “any deviation from the unachievable ideal of completely deterministic knowledge” (Walker
et al. 2003). Daggupati et al. (2015) describe model uncertainty as the lack of precision in the
simulation results (as opposed to model error, which is a lack of accuracy in the results). Un-
certainty in hydrological modeling originates from several interdependent sources, the most
important of which being measurement error, spatiotemporal scale, the model parameters and

the model structure (Shirmohammadi et al. 2006, Guzman et al. 2015):

Measurement Error Random as well as systematic measurement error in environmental data
largely depends on the employed measuring instrumentation and the environmental con-
ditions under which it operates. In principle, all monitoring data is subject to measure-
ment error that may affect simulation results when used in a modeling study. In the
context of hydrological modeling, error in precipitation data is a particularly important

source of uncertainty.

Spatiotemporal Scale Field measurements are usually unavailable on the spatiotemporal
scale needed to adequately represent the spatial heterogeneity and temporal variability
of real catchments. Instead, measured data is often aggregated or interpolated, adding a
further layer of uncertainty to the modeling process. Closely related is the issue of incom-
mensurability between model inputs and field measurements. Both are often treated as
directly comparable, even if there is a mismatch in the underlying spatiotemporal scales

(Beven 2012, pp. 18, 245). A typical example are point measurements of soil proper-
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1. Introduction

ties or precipitation being up-scaled to larger areas like grid cells or Thiessen polygons,

respectively.

Model Parameters Parameter-based uncertainty stems from incomplete knowledge of the
model parameter values, their plausible ranges and variability. Empirical parameters
have no physical meaning and thus cannot be measured or estimated a priori. Although
the parameters of physical process descriptions are theoretically measurable, their spatial
representation in even the most sophisticated distributed models is often much coarser
than the scale at which they actually vary (e.g. hydraulic conductivities of soils). Instead,
they are usually interpreted to integrate over and be representative of all the small-scale
variability within each model spatial element. However, the non-linear nature of the un-
derlying equations will make the model results deviate from the actual system response
(Beven 2001) even if this assumption was justified (which it is not, see the issue of in-

commensurability mentioned above).

Model Structure A model is always an imperfect representation of an actual catchment.
Structural uncertainty arises from the inevitable discrepancies between model and real-
ity. These include oversimplification, misrepresentation or complete omission of impor-
tant processes in the model equations. Moreover, structural uncertainties may originate
from the spatiotemporal setup and discretization of the model as well as technical issues
like numerical instabilities in the routines that solve model differential equations. Struc-
tural uncertainty is particularly difficult to assess quantitatively, but its contribution to
overall model uncertainty is probably substantial (van Griensven & Meixner 2006). In
the context of ecohydrological models, an interesting example of structural uncertainty
is the often neglected difference between pressure wave celerities and flow velocities,
which is likely responsible for the long time spans many catchments need to adjust to a

new water quality regime following pollution control measures (Hrachowitz et al. 2016).

Due to the numerous uncertainties and potential errors that propagate through the models,
their parameters are usually calibrated against observed data (typically streamflow and pollu-
tant data at the catchment outlet) to give plausible simulation results. However, model calibra-
tion does not reduce uncertainty. In essence, calibration is an inverse problem which for hydro-
logical catchment models is typically ill-posed (Herrera et al. 2022) in that different parameters
may compensate for each other to give the same (or very similar) calibrated model output. As
a consequence, calibration of catchment models is unable to identify a single unique parameter
set that fits the calibration data significantly better than all others. This problem is commonly
referred to as the non-uniqueness or equifinality of parameter sets (Beven 2006). It is further

aggravated in distributed and semi-distributed models, where each spatial element may be pa-
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1. Introduction

rameterized differently, resulting in a proliferation of model parameters (Beven 2001). Each
additional parameter provides an extra dimension of flexibility for model output adjustment,
exacerbating parameter equifinality (Schoups et al. 2008) and effectively creating a “mathe-
matical marionette” (Kirchner 2006) that can easily be overfit to the calibration data. Although
calibrated models are able to capture the integrated catchment response (i.e. the calibration
data at the catchment outlet), it remains unclear if this is based on a realistic representation of
the internal processes generating that response (“getting the right answers for the right reasons”)
(Kirchner 2006).

Model parameters do not only compensate for each other, but may equally compensate for mea-
surement errors in the input data, spatiotemporal inaccuracies or structural model deficiencies.
They may furthermore compensate for problems with the calibration data, either measurement
errors (Harmel et al. 2006, Harmel & Smith 2007) or incommensurability with the model out-
put data (Beven 2012, p. 18). Hence, the concept of equifinality extends beyond just the model
parameters. Instead it encompasses all possible sources of modeling uncertainty, and param-
eter calibration implicitly accounts for all of these uncertainties at once, which questions the
existence of a single “true” parameter set altogether (Beven & Binley 1992, Beven 2006). Equifi-
nality is a major challenge for catchment modeling in general, and for simulation of non-point
source pollution in particular. When using an ecohydrological model to assess catchment-wide
water pollution, the values of the parameter values that govern pollution have been obtained in
a model calibration process. However, due to equifinality, there are many different parameter
sets that can reproduce the calibration data equally well, with no indication which parame-
ter set is the best approximation to reality. Consequently, the results of model-based source

apportionment or identification of critical source areas are subject to incalculable uncertainty.

There are some approaches and strategies that, if not completely solve the fundamental prob-
lem of equifinality, then at least help to mitigate its most severe effects. Of course, calibrated
ecohydrological models are routinely validated against independent data, although there are
objections that the commonly used temporal split-sample test is too weak to assess model per-
formance in conditions that deviate greatly from the calibration period (Kirchner 2006). In
these cases, Klemes (1986) advocated the use of a differential split-sample approach, where
calibration and validation data are deliberately selected to reflect diverging environmental
conditions. Differential model validation could also be a viable option for controlling equi-
finality, as it likely poses a higher barrier for models with an unrealistic representation of
catchment processes to pass the performance test. Another approach to account for equifi-
nality is uncertainty analysis, which provides a means to explicitly assess uncertainty in the

model outputs. It entails the variation of uncertain model elements - in most cases (a subset
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of) the model parameters - across multiple model runs, leading to simulation results brack-
eted by an uncertainty band. As argued by Abbaspour et al. (2017), calibration and uncertainty
are “intimately linked”. Hence, several techniques have been developed that directly couple
model calibration and uncertainty analysis, e.g. Generalized Likelihood Uncertainty Estimation
(GLUE) (Beven & Binley 1992, Beven & Binley 2014) or Sequential Uncertainty Fitting, version
2 (SUFI-2) (Abbaspour et al. 2004, Abbaspour et al. 2007), which is a GLUE descendant. These
calibration techniques identify multiple parameter sets (instead of only one) that satisfy some

form of performance criterion.

A further strategy for limiting the impact of equifinality is the use of parsimonious models,
meaning models with a minimum number of parameters to be determined via calibration. It
has been repeatedly demonstrated that around five model parameters® are usually enough to
reproduce essential parts of typical hydrological calibration data (e.g. a streamflow time series),
and that additional parameters will likely introduce parameter non-uniqueness and identifia-
bility problems into the calibration process (Jakeman & Hornberger 1993, Schoups et al. 2008).
In this sense, most complex, fully distributed or semi-distributed catchment models are overpa-
rameterized, meaning that the quantity and quality of calibration data does not support unam-
biguous parameter identification. However, many tasks in catchment-scale pollution modeling
(e.g. CSA identification) require exactly these complex, spatially distributed models. In such
cases, further information can be used to better constrain the model output in a multi-objective
calibration approach (Gupta et al. 1998, Efstratiadis & Koutsoyiannis 2010), possibly incorpo-
rating qualitative or semi-quantitative soft data to complement the quantitative hard data used
in the calibration process (Seibert & McDonnell 2002, Arnold et al. 2015). Alternatively, addi-
tional information or data may also be consulted in the model validation process to apply a

stricter and more incisive test regime.

1.3. Research Aim and Study Design

The overall research aim of this thesis is to quantitatively assess surface water nitrogen (N)
pollution in the Swist catchment (290 km?), with a focus on non-point source pollution using
the ecohydrological catchment model SWAT (Arnold et al. 1998). The Swist is a tributary of
the Erft river in North Rhine-Westphalia, Germany. The necessary data basis has largely been

30f course, the minimum number of model parameters may deviate from this value depending on the modeling aim
and the level of detail required in the process descriptions. For example, reproducing data on in-stream pollutant
loads is likely to require additional model parameters to account for the increased number of processes involved.
However, a value of five may give a rough indication for the order of magnitude in the necessary number of
parameters.
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1. Introduction

made available by courtesy of the Erftverband local water board (see Section 2.5), which is
commissioned with wastewater disposal and surface water maintenance in most of the Erft
catchment area as well as groundwater monitoring in the Rhenish lignite mining region. Ni-
trogen pollution encompasses all emissions of reactive N compounds with potentially adverse
effects on the aquatic environment. These include all forms of organically bound N, as well
as the inorganic N compounds nitrate (NOs ), nitrite (NO; ~) and ammonium (NH4"). If not
stated otherwise, quantitative statements on N concentrations or loads throughout this thesis
will be made in terms of the mass fraction of N contained in these compounds (i.e. as organic N,
NO;3; " -N,NO, " -N or NH4"-N ). The EU Nitrates Directive from 1991, which complements the
WFEFD, defines a general NO3; ™~ concentration limit of 50 mg/1 (corresponding to approximately
11.3mg/l of NO3 ™ -N ). Several water bodies within the Swist river basin have repeatedly ex-
ceeded this value during multiple WFD monitoring cycles in the more recent past (State Min-
istry for Climate Protection, Environment, Agriculture, Nature Conservation and Consumer
Protection NRW 2015, State Ministry for Environment, Agriculture, Nature Conservation and
Consumer Protection NRW 2021).

The study period encompasses the years from 2012 to 2018 (seven years in total), which is long
enough to allow for comprehensive model calibration and validation as well as examination of
N emissions over several years. At the same time, this period is short enough to consider it
approximately stationary, in particular with regard to the number and location of wastewater
point sources that influence the N loads transported in the Swist river network. For the largest
part of the study period, a total of four wastewater treatment plants discharged wastewater
into the surface waters of the Swist catchment (see Section 2.3). All of them were explicitly
accounted for in the simulations. In contrast, wastewater discharges from combined sewer
overflows and separate sewer outlets were not considered explicitly, as the available data was
insufficient to accurately represent them in the model. However, SWAT implicitly accounts
for these additional sources of water in its simulation routines for urban runoff, albeit without
considering the additional pollutant release from combined sewer overflow events. In order to
assess the SWAT simulation results, they are compared to two reference data sets on (diffuse) N
emissions in the Swist catchment: The first of these data sets is based on upscaled edge-of-field
(EOF) monitoring data collected during previous research projects in the Swist catchment and
representing the years from 2005 to 2009 (Kistemann et al. 2007, Mertens et al. 2012). The sec-
ond reference data set is based on raster data of N emissions from diffuse sources covering the
entire German federal state of North Rhine-Westphalia. This raster data represents the years
2014 to 2016 and has been generated in a research project using the static AGRUM modeling
system briefly described in Section 1.2 (Wendland et al. 2021a).
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1. Introduction

1.4. Research Questions

As a dynamic and conceptual catchment model, SWAT requires calibration. Equifinality im-
plies that calibration will yield multiple SWAT model parameterizations (i.e. a model ensemble)
for the Swist catchment that can recreate the available observed data in the study period simi-
larly well. The various N emission scenarios associated with the SWAT model ensemble can be
compared among each other as well as with the two reference data sets mentioned in Section
1.3, which serves several purposes: First, to identify the similarities between the various emis-
sion estimates, i.e. the conclusions about non-point source N pollution in the Swist river basin
that are substantiated across different data sets. More specifically, this entails the following

research questions:

1. How high are the (average) annual non-point source nitrogen emission loads in the Swist
catchment during the study period, and what are the contributions of the different emis-

sion pathways?

2. How important are point source nitrogen emissions from wastewater treatment plants

in the Swist catchment compared to non-point source nitrogen emissions?

3. Which spatial patterns of non-point source nitrogen emissions in the Swist catchment
emerge in the modeling results? In particular, do the results indicate the existence of
critical source areas for diffuse nitrogen pollution in the Swist catchment, and where are
they located?

Second, to explore the discrepancies between the various emission estimates, i.e. assess the

uncertainty in the simulation results. This addresses the following research questions:

4. How wide is the range of simulated non-point source nitrogen emissions in the Swist
catchment between different calibrated SWAT models (i.e. how large is the parameter-

based model uncertainty)?

5. How much do the simulated non-point source N emissions as well as critical source areas

differ between SWAT and AGRUM (i.e. how large is the structural model uncertainty)?

Third, to examine the origins of the differences in the various emission estimates, which leads

to the practically relevant final research question:

6. What are the relative strengths and weaknesses of the different approaches to assess
catchment-wide non-point source pollution (edge-of-field monitoring, static AGRUM mod-
eling or dynamic SWAT modeling)? Which level of effort is necessary and feasible to

draw reliable conclusions particularly on nitrogen pollution?
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1. Introduction

1.5. Thesis Outline

The present thesis is structured as follows: Chapter 2 provides a description of the study area,
the Swist river basin. Chapter 3 gives insights into the functionality and inner workings of the
SWAT model, its capabilities (as well as limitations) and why it is chosen as the model to pursue
the research aims of this thesis. Furthermore, Chapter 3 portrays the methods and procedures
used to evaluate the SWAT simulation results. The Chapters 4 to 6 present and discuss the
research results of this thesis: Chapter 4 describes the model setup and examines the effect of
different model setup choices on the uncalibrated SWAT model output. Chapter 5 gives account
of the SWAT model calibration as well as validation results and explores the model parameter
sets yielding the best model performances. Chapter 6 analyzes the SWAT-simulated N emis-
sion scenarios associated with the best parameter sets identified in Chapter 5 and compares
them to the two reference data sets based on EOF monitoring and AGRUM modeling. Finally,
Chapter 7 provides a synthesis of the main research results of this thesis and discusses them
in an overarching manner, addressing the individual research questions of this thesis stated in
Section 1.4. Moreover, Chapter 7 provides an outlook on potential improvements for a future
continuation of the modeling studies in the Swist catchment as well as open research needs

and perspectives.
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2. Study Area and Data Basis

2.1. General Geography

At a length of 43.6 km, the Swist is the longest tributary of the Erft river in North Rhine-
Westphalia, Germany, and part of the greater Rhine river system (Mertens et al. 2012). Origi-
nating from the northern edge of the Eifel mountain range, the largest part of the Swist water-
course traverses the loess regions of the Lower Rhine Embayment west of Bonn from south to
north. In this area, it displays the typical features of a loess-clay (middle reaches) and gravel
(lower reaches) dominated lowland brook (Christoffels et al. 2016). The Eifel foothills and the
Ville mountain ridge form the major divides of the Swist river basin to the south and east,
respectively (Koch 2004). Elevation ranges from 330 m.a.s.l. at the source of the Swist down
to 108 m.a.s.l. near the mouth to the Erft river. The average slope along the Swist river bed is
1.3 % in the headwater region upstream of the village of Vettelhoven and 3 %. for the rest of the

watercourse (Mertens et al. 2012).

Following the watercourse downstream, major Swist tributaries are Altendorfer Bach, Mors-
bach, Eulenbach, Wallbach, Steinbach! and Schiessbach, all of which originate from the hilly re-
gions of the Eifel foothills and join the Swist from the left hand-side. The whole stream network
including all tributaries is about 250 km long (Schreiber et al. 2016). Among its most distinctive
features are two dammed reservoirs located within the Steinbach subbasin, the Steinbach reser-
voir and the considerably smaller Madbach reservoir. While the stream beds of the uppermost
Swist reaches and many of the Swist tributaries exist in a nearly natural condition, the middle
and lower reaches have been considerably affected by engineering measures: The largest part
of the Swist main watercourse has been straightened and framed in a trapezoidal cross sec-
tion profile, particularly within residential and commercial areas (Schreiber 2011, Christoffels
et al. 2016).

! Being the largest tributary of the Swist, only the upper reaches are known as “Steinbach”. The middle reaches
downstream of Schweinheim are named “Ohrbach”, while the lower reaches just before entering the Swist are
called “Jungbach”. For the sake of simplicity, the entire water body will be exclusively referred to as “Steinbach”
in this thesis.
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Figure 2.1.: Location of the Swist river basin in Europe and Germany, in relation to the surrounding
larger stream network and major towns in its vicinity. The catchment borders contain a digital elevation
model (DEM) with a 10 m resolution and a superimposed hillshade depiction of that same DEM. For
reasons of scale and space, the Swist river network and tributaries are omitted in this map. Instead,
they are included in the more detailed map on page 21 (Figure 2.2).

Most of the Swist river basin is located in North Rhine-Westphalia (NRW). A smaller portion
of the catchment area (around 10 %) near the Swist headwaters in the southeast belongs to the
federal state of Rhineland-Palatinate (RLP). In its entirety, the catchment area covers approxi-
mately 290 km? and harbors around 92 000 inhabitants (Christoffels et al. 2016). This amounts
to a population densitiy of 317 inhabitants per km?, which is well below the general population
density of NRW (Kistemann et al. 2007). Compared to the adjacent Cologne and Bonn agglom-
eration, the Swist river basin can be characterized as rural. Major administrative units are the
Rhein-Sieg-Kreis district in the east and the Euskirchen district in the west, with the former
containing the largest towns within the catchment, Rheinbach and Meckenheim. The munici-
palities of Rheinbach, Meckenheim, Swisttal and Bornheim in the Rhein-Sieg-Kreis district as
well as Euskirchen and Weilerswist in the Euskirchen district cover the majority of the Swist

catchment area in NRW. The municipality of Grafschaft is located in the southeast and belongs
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to the Ahrweiler district in Rhineland-Palatinate. Minor area shares belong to the municipali-
ties of Alfter, Altenahr, Bad Miinstereifel and Wachtberg. Figure 2.1 shows the location of the
Swist river basin in Europe and Germany, the surrounding major water bodies and adjacent
towns as well as elevation within the catchment. Figure 2.2 on page 21 provides a more detailed

depiction of the stream network within the catchment, including the major Swist tributaries.

2.2. Soils and Land Use

In the Eifel headwater regions of the Swist catchment, the parent material for soil formation is
mostly clay- and siltstone, whereas the downstream regions along the Swist main watercourse
are dominated by unconsolidated siliciclastic sediments of the Rhine fluvial terrace sequence
(Koch 2004, Gumm et al. 2016). Predominantly, these sediments are covered with widespread
periglacial layers of loess, which in some parts can reach down to a depth of 2 m (Kistemann
et al. 2001). The influence of loess contributed to the formation of exceptionally fertile soils in
the area, which in some places - however - can be affected by local perched water tables over
highly compacted Rhine terrace deposits (Mertens et al. 2012). The soils in the Eifel foothills
that formed over consolidated parent rock tend to be shallower than those in the lower parts
of the catchment (Geological Survey NRW 2019). Following German soil systematics?, Pseu-
dogley® (about 25 %), Parabraunerde* (about 21 %) and Braunerde® (about 13 %) are the most
dominant soil types in the Swist catchment, followed by the transitional soil types Pseudogley-
Parabraunerde (about 10 %), Pseudogley-Braunerde (about 7 %) and Parabraunerde-Pseudogley
(about 7 %)® (Geological Survey NRW 2019, Kothe et al. 2021).

Due to the excellent conditions for crop cultivation, most agricultural holdings in the region
have specialized on crop farming. Livestock farming plays only a very subdued role and is
mostly restricted to horses and dairy cattle (Koch 2004, Schreiber 2011). Around 40 % of the
entire catchment area is used as arable land, with orchards constituting an additional 5 %. To-
gether with tree nurseries (less than 2 %), these orchards are a special land use trait of the Swist

river basin and concentrate in the southeastern part around Meckenheim. About 95 % of the

2The German soil systematics classifies soils based on pedogenesis and is laid out in the official German Pedological
Mapping Guidelines (Bodenkundliche Kartieranleitung, KA) (Ad-hoc AG Boden 2005).

3Pseudogley describes mineral soils affected by stagnating surface water over a horizon with destroyed or clogged
soil pores (e.g. by relocated clay particles from upper horizons).

4Parabraunerde describes mineral soils of four horizons which display redistribution of clay minerals and iron
oxides under an upper humus-rich surface horizon.

Braunerde describes mineral soils with an upper humus-rich surface horizon overlaying a horizon rich in weath-
ering products like clay minerals and iron oxides (with no visible redistribution of these components in separate
horizons).

STransitional soil types are termed with the more important soil type named last.
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Figure 2.2.: Monitoring activities and land use inside the Swist catchment area.
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entire agricultural land in the basin is located within a distance of 500 m away from the nearest
water body (including ditches), and 10 % lies within a distance of 50 m (Christoffels et al. 2016).
Approximately 10 % of the catchment area is grassland, which is located mainly in the hilly Ei-
fel regions, or where stagnating water renders soils unfavorable for crop cultivation. In many
places, stagnating soil water or perched water tables may also affect cropland soils, which is the
main reason for relatively widespread tile drains: About one fifth of the entire basin area and
one third of the agricultural area in the river basin have been tile drained (Kothe et al. 2021).
Forests make up around 29 % of the catchment area, which concentrate on the Ville and Eifel
moutain ridges in the northeast and southwest, respectively. Urban areas constitute around
10 % of the catchment area. Figure 2.2 gives a detailed overview of the spatial distribution of

land uses within the catchment borders.

2.3. Climate and Hydrology

The climate in the Swist river basin can be characterized as temperate oceanic (climate class Cfb
according to the Koppen-Geiger system), with mild winters and moderately warm summers.
Average annual air temperature is approximately 10 °C. Precipitation is distributed evenly over
the entire year, with increases typically during midsummer and winter (Kistemann et al. 2007).
Being located on the leeward side of the Eifel mountains, rainfalls in the region are limited
in comparison: Average annual precipitation is between 600 and 700 mm and thus below the
German average. Figure 2.3 shows monthly air temperature averages and precipitation heights
for Weilerswist close to the Swist mouth. The data from the Weilerswist weather station rep-
resents the climate in the lower parts of the Swist catchment. The elevated Eifel foothills in
the very south of the catchment exhibit significantly higher precipitation, with average annual
precipitation exceeding 650 mm. Due to relatively steep slopes and shallow soils, the rainfalls
in this area are of particular importance for the occurrence of streamflow peaks in the Swist

main watercourse and its tributaries (Koch 2004).

The hydrology of the Swist catchment is affected by large scale groundwater extraction due to
lignite mining. The lignite seams of the Lower Rhine Embayment are embedded in extensive
layers of unconsolidated sediments of marine and fluviatile origin. The oldest of these sedi-
ments date back to the Oligocene (Lenk 2008). In the center of the embayment, they exhibit
a thickness of more than 1000 m and contain a complex sequence of sedimentary aquifers. As
part of a larger rift system, several geological faults intersect the Lower Rhine Embayment in
the northwest to southeast direction and divide the region into distinct tectonic blocks. Al-

though some faults may connect aquifers vertically (Gumm et al. 2016), they mostly inhibit
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Figure 2.3.: Walter and Lieth climate diagram for Weilerswist. The underlying air temperature and
precipitation data stem from measurements at the Erftverband weather station in Weilerswist and
span the calendar years from 1998 to 2020.

lateral groundwater transfer between blocks (Lenk 2008). The northern part of the Swist catch-
ment belongs to the Erft block, which is separated from the Cologne block in the east by the
Erft fault.” Although being situated several kilometers away from the active opencast mining
pits of Hambach, Inden and Garzweiler, the water table draw down within the Swist catchment
reaches as far south as Meckenheim and has in parts completely drained the uppermost aquifer

to a depth of approximately 100 m (Erftverband personal communication).

As a consequence, large parts of the Swist river network have lost permanent groundwater
contact, and several Swist tributaries display intermittent or ephemeral discharge behavior.
Local geological faults contribute to this by often preventing the formation of large and co-
hesive groundwater bodies where water tables may otherwise be sufficiently high (Kistemann
etal. 2007). In the southern headwater region of the catchment, the Eifel fractured rock aquifers

provide a more steady source of baseflow. However, many surface waters are affected by water

7A southward continuation of the Erft fault - the Swist fault - is visibly excavated in the Flerzheim gravel pit
northeast of Rheinbach.
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loss and seepage further downstream. Stream water loss occurs - for example - along the Stein-
bach: Discharges at the upstream Kirchheim gauge often exceed corresponding discharges at
the downstream Essig gauge. Water flow in many streams and ditches regularly ceases during
extended dry weather periods, and severe droughts in the summers of 2018 to 2020, as well as
2022, even caused the Swist main watercourse to fall dry upstream of the wastewater treatment
plant (WWTP) in Flerzheim.

The long-term Swist mean discharge near the mouth to the Erft river in Weilerswist is 0.8 m> s ™1,

which amounts to a mean specific discharge of 2.81s™! km™. On average, 13.3 % of annual pre-
cipitation reached the Swist catchment outlet from 2012 to 2018 (see Table 2.2 on page 27).
Estimates of average annual evapotranspiration for the Swist catchment are about 80 % of an-
nual precipitation, albeit with a notable degree of uncertainty (see Section 6.2). Depending
on the actual height of annual evapotranspiration, seepage and underground water loss due
to groundwater extraction at the lignite mining pits may constitute a meaningful part of the
water balance in the Swist catchment. However, underground flow paths and the ultimate fate
of percolated surface water are highly uncertain and difficult to verify. As a consequence of the
relatively low streamflow quantities, the principal watercourses inside the catchment transport
a markedly high municipal wastewater load. On average, wastewater constitutes around 40 %
of annual streamflow at the catchment outlet. Under low flow conditions, this percentage can
rise to values above 80 % (Christoffels et al. 2016). Wastewater is discharged into the stream
network either continuously from the wastewater treatment plants inside the catchment, or
discontinuously during combined sewer overflow events. Table 2.1 gives an overview of the
wastewater treatment plants along the Swist and its tributaries as of 2018 (see Figure 2.2 and

Appendix A for their positions inside the catchment).

Table 2.1.: Wastewater treatment plants in the Swist river basin and their operational character-
istics (as of 2018). From left to right, the wastewater treatment plants are ordered by size and
- coincidentally - from south to north or upper to lower stream reaches (compare with Figure 2.2 on
page 21). Capacity and connection state are specified in population equivalents (PE). The data is taken
from the Erftverband annual review 2018 as well as Brunsch et al. (2018).

WWTP Flerzheim Rheinbach Miel Heimerzheim
Water Body Swist Wallbach Swist Swist
Capacity [PE] 50000 27000 11000 10700
Connected [PE] 42060 25184 10758 7948
Annual Wastewater [m3] 3555490 1809 659 767 646 488954

Base Flow Rate [1/s] 78 37 18 12
Maximum Flow Rate [1/s] 400 200 110 107
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2.4. Hydrological Conditions in the Research Period

Figure 2.4 gives an overview of annual precipitation measured at the meteorological station
in Weilerswist during the research period from 2012 to 2018. Again, precipitation data from
the Weilerswist station was chosen to illustrate the conditions in the lower part of the catch-
ment. It is important to remember that the depicted data may not be representative of pre-
cipitation in other locations, especially the elevated headwater regions of the Eifel foothills
where average annual precipitation is significantly higher. However, interannual variation of
total precipitation heights is mostly comparable with that measured at other weather stations
within the Swist catchment, the year of 2016 being a notable exception (see below). Moreover,
total annual precipitation from Weilerswist generally correlates well with measured annual
mean discharges given in Table 2.2, which integrate over different gauge catchments and thus

practically the entire Swist basin.

Comparing total annual precipitation in Weilerswist for each year with the long-term aver-
age value (i.e. comparing the endpoints of the blue cumulative curves in Figure 2.4 with the
endpoint of their grey counterparts), the years 2013 to 2015 may be described as wetter than av-
erage, whereas the remaining four years may be attributed to be drier than average. However,
deviations from the long-term average are relatively small for most study years. Assuming
relative differences smaller than 10 % to indicate average conditions, only two years can be
characterized as markedly wet or dry. In 2014, a series of heavy rainfall events during sum-
mer compensates for an unsusally dry spring and drives overall precipitation to exceed the
long-term average by approximately 13 % at the end of the year. In contrast, 2018 is marked
by an extended period of almost no rainfalls during summer which causes annual total pre-
cipitation to stay below the long-term average by approximately 23 %. Data from the other
weather stations (not shown) suggests that annual precipitation in Weilerswist considerably
underestimates precipitation over the entire Swist catchment area for 2016, especially for the
elevated Eifel foothills in the south. Annual mean discharges in Table 2.2 are highest in 2016 at
all gauging stations, indicating that 2016 probably was at least as wet as 2014 when considering

the entire catchment area.

For three of the four stream gauges listed in Table 2.2 (Essig, Morenhoven, and Weilerswist),
mean discharges for the entire research period are below the official long-term values.® There-
fore, according to measured stream discharges, the research period as a whole may be charac-

terized as slightly drier than the long-term average. However, this can largely be attributed to

8 As retrieved from https: //www.erftverband.de/hochwasser-aktuelle-messwerte/ on January
4, 2023.
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Figure 2.4.: Annual precipitation measured in Weilerswist in the research period from 2012 to 2018
(calendar years). For comparison, cumulative precipitation for each year is depicted next to mean
cumulative precipitation from 1998 to 2020 (calendar years). See for reference the climate diagram for
Weilerswist in Figure 2.3 based on data from the same time period.
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Table 2.2.: Streamflow characteristics at the gauging stations along the Steinbach (top) and Swist (bot-
tom) from 2012 to 2018. Areas of the individual gauge catchments are given in parantheses. Q denotes
annual mean discharge, g denotes corresponding specific discharge and r denotes the overall ratio of
streamflow to precipitation for the respective year. r was estimated by constructing Thiessen polygons
around each precipitation station and calculating the area weighted mean of annual total precipitation
for each gauge catchment. See Figure 2.2 on page 21 for gauge positions inside the catchment. See Fig-
ure 2.5 for a visual impression of observed daily streamflow time series in Weilerswist near the Swist
catchment outlet. Long-term mean values are official values made available by the gauge operators.

Kirchheim (14 km?) Essig (40 km?)
Year O [m¥s]  GU(skm?)] 1r[%] O[m’s] ¢l/(skm?)] r[%]
2012 0.033 2.4 11.8 0.062 1.6 7.7
2013 0.070 5.0 23.4 0.129 3.2 15.2
2014 0.062 4.5 18.6 0.111 2.8 12.0
2015 0.078 5.6 26.7 0.137 3.4 16.3
2016 0.097 6.9 28.9 0.160 4.0 17.4
2017 0.029 2.1 9.7 0.045 1.1 5.2
2018 0.053 3.8 22.9 0.056 1.4 8.9
Arithmetic Mean 0.060 43 20.3 0.100 2.5 11.8
Long-term Mean 0.06 4.3 - 0.12 3.0 -
Morenhoven (108 km?) Weilerswist (288 km?)

Year QO m’/s] G/Gskm?)] r[%] O[mds] ¢/(skm?)] r[%]
2012 0.335 3.1 15.4 0.611 2.1 10.8
2013 0.476 4.5 20.7 0.857 3.0 14.3
2014 0.425 4.0 17.8 0.823 2.9 13.1
2015 0.484 4.5 21.0 0.892 3.1 14.8
2016 0.525 4.9 22.9 0.974 34 16.6
2017 0.320 3.0 13.8 0.629 2.2 10.4
2018 0.269 2.5 17.2 0.574 2.0 13.4
Arithmetic Mean 0.405 3.8 18.4 0.766 2.7 13.3
Long-term Mean 0.43 4.0 - 0.80 2.8 -

the very dry year of 2018. Mean discharges computed only for the years 2012 to 2017 match
the official values very closely. For the fourth gauge in Kirchheim, the research period average
(including 2018) and the long-term value are almost exactly the same. However, the gauging
station is situated directly downstream of the Steinbach reservoir and thus probably gives a
distorted impression of upstream wetness conditions. Taking a closer look at Table 2.2, it is no-
table that the downstream gauges along the Steinbach (Essig) and Swist (Weilerswist) exhibit
considerably lower specific mean discharges and streamflow to precipitation ratios than their
upstream counterparts in Kirchheim and Morenhoven, respectively. Regarding the specific
discharges, this pattern may in part be an effect of higher annual precipitation in the elevated

headwater regions. The lower streamflow to precipitation ratios however cannot be explained
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with differences in the spatial distribution of precipitation. Instead, they may be a result of the
water table draw down in the lignite mining district extending into the northern part of the
Swist catchment, lowering groundwater contributions to overall streamflow and facilitating

seepage of stream water.

2.5. Prior Research and Monitoring Activities

The Swist river basin has been chosen as the study area for this thesis due to the vast pool of en-
vironmental data made available by the Erftverband, as well as the wide array of prior research
activities carried out within the catchment. The Erftverband provided access to streamflow
data from four online gauging stations along the Swist and Steinbach watercourses (includ-
ing the Weilerswist gauging station near the basin outlet), meteorological data from several
weather stations (seven of which being located inside the Swist catchment area) and oper-
ational data from the four wastewater treatment plants emitting wastewater into the Swist
and its tributaries. Furthermore, the Erftverband maintains a water quality monitoring net-
work for the surface water bodies in the Erft catchment. This monitoring network includes
an online water quality station in Metternich near the catchment outlet recording continuous
time series of NO3; ~-N and NH,*-N concentrations in the Swist with a measurement interval
of five minutes. Figure 2.5 gives an impression of daily streamflow observed in Weilerswist
and daily NOs; ™ -N concentrations observed in Metternich during the study period. In addition
to the continuous water quality monitoring data from Metternich, the Erftverband determines
nutrient concentrations (including NO3; ™ -N, NH4*-N, NO, ™ -N as well as organic N) via grab
sampling at several routine monitoring points along the Swist main watercourse and some of

its tributaries. Grab sampling at these monitoring points takes place up to four times a year.

In the course of the past decades, several research projects with emphasis on water quality
and surface water pollution have been conducted in the Swist catchment (Christoffels et al.
2016, Schreiber et al. 2016). These research projects spawned a variety of specific literature
on the Swist river basin, as well as additional water quality data supplementing routine mon-
itoring records by expanding the number of data points as well as adding completely new
sampling sites. For the specific purposes of the research projects, qualified grab sampling and
24 h composite sampling in part replaced grab sampling at the monitoring points. Moreover,
some of the projects examined non-point source pollution at the field and hillslope scale, col-
lecting edge-of-field data on pollutant concentrations in surface and subsurface runoff as well
as tile flow. This includes concentrations of nutrients like NO3; ™ -N and organic N (Kistemann
et al. 2007, Mertens et al. 2017, Kothe et al. 2021). Catchment-scale emission loads projected
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from parts of this data are presented in Mertens et al. (2012). Figure 2.2 on page 21 gives an
overview of Erftverband monitoring activities within the Swist catchment. It depicts the lo-
cation of all sampling points that in some way are relevant for the research presented in this

thesis.
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Figure 2.5.: Observed daily time series of streamflow (in Weilerswist) and NO3 ™ -N concentrations
(in Metternich) near the Swist catchment outlet during the study period (2012-2018). The horizon-
tal dashed line in grey indicates the limit concentration of NO3™-N set by the EU Nitrate and Water
Framework Directives (corresponding to 50 mg/l of NO3; ™). Note that under German legislation, this
limit concentration applies to the annual average NO3; ™ -N concentration (not the maximum concen-
tration).
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3.1. The Soil and Water Assessment Tool

3.1.1. General Overview

The Soil and Water Assessment Tool (SWAT) is a conceptual, dynamic and deterministic eco-
hydrological catchment model. It was originally developed by the Agricultural Research Ser-
vice (ARS) of the US Department of Agriculture (USDA) in the early 1990s, with the purpose
to evaluate the impact of land management decisions on water supply and pollution (Arnold
et al. 1998). At its heart, SWAT draws on functionalities of several ARS field scale models de-
veloped in response to the US Clean Water Act in the 1970s and 1980s, but adds channel routing
and other routines to apply them to arbitrary large river basins and simulate all major hydro-
logical processes (Gassman et al. 2007, Krysanova & Arnold 2008, Arnold et al. 2012). Over the
years, several updated SWAT versions with new features have been released and model capabil-
ities have been continuously reviewed, refined and expanded (Arnold & Fohrer 2005, Douglas-
Mankin et al. 2010, Tuppad et al. 2011, Gassman et al. 2014, Krysanova & White 2015, Bieger
et al. 2017).

SWAT is a semi-distributed model in that it disaggregates the entire basin area into so-called
hydrologic response units (HRU). These are the basic processing units all calculations are per-
formed on, as far as catchment response prior to in-stream routing is concerned. Each HRU
is defined as being approximately uniform in terms of land use, soil and often slope charac-
teristics. However, HRUs are not spatially identified and need not even represent continuous
stretches of land. Instead, they are expressed as area fractions of stream subbasins (Gassman
et al. 2007). Being attached to a specific segment of the stream network, a subbasin constitutes
the smallest georeferenced landscape unit in SWAT. Runoff and pollutant exports calculated
on the HRU level are aggregated proportionately for each subbasin and subsequently passed

on to the corresponding stream segment (Arnold et al. 2010).

Based on this spatial setup, SWAT is able to dynamically simulate catchment hydrology and

streamflow, plant growth, land management, erosion, nutrient cycling and water quality on a
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daily time step. Supported water quality parameters include sediment, nitrogen, phosphorus,
pesticides, heavy metals and bacteria. Due to its vast scope and versatility, SWAT has emerged
as one of the most wideley used tools worldwide to simulate catchment hydrology and water
quality, and a plethora of peer-reviewed SWAT studies have been published over the years
(Gassman et al. 2007, Refsgaard et al. 2010, Fu et al. 2019). Reported SWAT studies have been
conducted on a multitude of spatial scales, ranging from headwater catchments smaller than
1km? (Musyoka et al. 2021, Musyoka et al. 2023) to transnational multi-catchment study areas
covering 1000 000 km? and more (Abbaspour et al. 2015, Poméon et al. 2018).

In general, SWAT is designed for long-term simulations spanning several years and decades, en-
abling researchers to assess the effects of land management on water supply and water quality.
SWAT has frequently been used for modeling studies assessing the regional impact of land use
and climate change on water resources and the hydrological cycle. Recent examples include
Néschen et al. (2019) for land use change and Schafthauser et al. (2023) for climate change
analysis. Additionally, a major focal point of SWAT applications is the simulation of non-point
source water pollution, with a large number of published SWAT studies dealing with source
apportionment and CSA identification for different pollutants. A collection of SWAT source
apportionment studies includes Salvetti et al. (2006), Lam et al. (2010), Malag6 et al. (2017) and
De Girolamo & Lo Porto (2020). Examples of CSA studies conducted with SWAT includes Tri-
pathi et al. (2003), Gitau et al. (2004), Srinivasan et al. (2005), White et al. (2009), Ghebremichael
et al. (2010), Niraula et al. (2012), Niraula et al. (2013), Winchell et al. (2015), Lee et al. (2018)
and Evenson et al. (2021).

3.1.2. Model Components

This section will give a broad summary of the SWAT model components which have the largest
relevance for the present thesis. A detailed and comprehensive documentation of all process
representations and the underlying equations is given in Neitsch et al. (2011). SWAT distin-
guishes between land phase and routing phase hydrology. Land phase hydrology is simulated
at the HRU level and depicted schematicaly in Figure 3.1. Taking this figure as a basis, the daily
HRU water balance as simulated by SWAT may be formulated as:

t
St =80+ Z(Ri —Eqi— Qsi— Qui — Qqi — Li) (3.1)

i=1

where S; is the final amount of water stored after ¢ days, S is the initial amount of water stored

at the start of the simulation, R; is the amount of precipitation on day i, E, ; is the actual evapo-

31



3. Modeling Approach

AAAAAAA AR A A A4

Evaporation and
Transpiration

,’ Precipitation

AWV
Root Zone Infiltration/plant uptakes

Soil moisture redistribution Surface

Runoff

Vadose (unsaturated) Lateral

Zone Flow ™

T N -
Revap from shallow aquifer Percolation to shallow aquifer Return Flow
: —_—
Shallow (unconfined)
Aquifer

Deep (confined)
Aquifer w Recharge to deep aquifer

Figure 3.1.: Schematic summary of land phase hydrology as represented in SWAT. Management prac-
tices that affect the water balance but are not depicted include irrigation, agricultural tile drainage as
well as consumptive water use. The figure is taken from Neitsch et al. (2011).

transpiration on day i, Qs ; is the surface runoff generated on day i, Q;; is the lateral subsurface
flow generated on day i, and Qy; is the return flow from groundwater generated on day i. L; is
the amount of water lost from the system on day i because of percolation to a confined aquifer.
Water storage S encompasses soil water and groundwater, as well as other more transient water
reservoirs like snow cover or rainfall intercepted by the vegetation canopy. The quantities in
brackets represent the daily inputs and outputs of water that result in a net change of storage.
In addition, SWAT is also capable of simulating management practices that increase or deplete
water storage, like irrigation, tile drains or consumptive water use (for example groundwater

extraction). SWAT assumes all the quantities in Equation 3.1 to be expressed in mm H,O.

Daily precipitation R; is provided as measured time series data. Alternatively, SWAT comes
with the built-in WXGEN weather generator which is able to simulate daily precipitation. The
weather generator is a stochastic model parameterized with statistical data of the regional
climate. It may also be used to impute gaps in the measured daily precipitation time series.
Further meteorological inputs are needed for estimating daily evapotranspiration. SWAT pro-
vides several routines for calculating potential evapotranspiration Ej, ;, the most data demand-
ing of which being the Penman-Monteith method (Monteith 1965). Calculation of E,; with

the Penman-Monteith method requires daily time series of air temperature, relative humidity,
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solar radiation and wind speed. As with daily precipitation, these may also be simulated by
the built-in weather generator. SWAT estimates daily actual evapotranspiration E,; by first
evaporating intercepted rainfall held in the vegetation canopy. Depending on the amount of
available water, the remainder of the atmospheric demand defined by E,; is satisfied by plant
transpiration and direct evaporation from the soil. Additionally, sublimation may occur in case

a snow cover is present in the HRU.

The remaining water may either infiltrate into the soil or contribute to surface runoff. SWAT
provides several routines for estimating surface runoff. The most commonly used routine is
the curve number (CN) approach developed by the USDA Soil Conservation Service (SCS).
The CN approach is empirical in that it relates direct runoff to previously fallen precipitation
based on monitoring data from small stream catchments and hillslope plots (Mockus 1972).
The formulation used in SWAT is

_ (R —0.25)°

"~ (R; +0.89) (32

Qs,i
where S is called the retention parameter (in mm H,0). Runoff will only occur if R; > 0.2S,
otherwise Qg ; is set to zero. The retention parameter calculates as follows:

1000 ) (33)

S§=254——-10
[N

The dimensionless curve number CN is an empirical parameter. As Equation 3.3 has originally
been derived to calculate the value of S in inches, the constant 25.4 serves to convert the result

to mm.

Tabulated CN values have been published for different groups of soils, land uses and man-
agement practices (Cronshey 1986). These values can be used to let the SWAT curve number
parameter vary in space according to the local conditions represented in each HRU. SWAT pro-
vides two different modes to adjust the effective curve number for each simulation day. The
traditional approach is to let the daily CN vary with soil moisture. As this approach tends to
overpredict runoff from shallow soils, the option to vary the daily CN with evapotranspiration
has been introduced to the model (Yen et al. 2015). By using the second option, the effective CN
is supposed to become more dependent on antecedent climate rather than current soil water
conditions. As an optional feature, the effective curve number may additionally be adjusted
by slope. Although there have been attempts to link CN runoff predictions to hydrological

theory, it is important to note that the curve number approach by itself is purely empirical
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and generalizes over different runoff generating mechanisms such as inflitration or saturation
excess (Garen & Moore 2005). As an alternative to the curve number approach, SWAT pro-
vides the process-based Green-Ampt method to estimate infiltration and surface runoff. The
Green-Ampt method requires subdaily instead of daily precipitation time series as input data,

however.

Water neither evaporating nor contributing to surface runoff infiltrates into the soil profile,
which may consist of up to ten different layers. For each layer, water not frozen and in excess
of the field capacity may either percolate to the layer below or enter the stream network; the
latter either as lateral subsurface flow or via tile drainage pipes (if these are present in the
HRU). Water can only percolate if the receiving soil layer below is not saturated. The amount

of water that leaves a soil layer by percolation is calculated as

| pr- |
Wpere,ly = valy,excess : (1 — e Tpere ) (3.4)

where Wperc 1y is the amount of water percolating out of the respective soil layer on a given
day and SWjy excess is the drainable volume of water held in the soil layer (both in mm H,O).
TTyerc is the travel time for percolation (in h) and At is the simulation time step (24 h). The

travel time is given by

SAT;, — FC;
TTyere = ——" (3.5)

sat
where SAT}, and FCy, are the water contents of the layer (in mm H,O) at saturation and field
capacity, respectively (the difference of which being the maximum drainable volume of water).
Ksa is the saturated hydraulic conductivity of the soil layer (in mm/h). Water that percolates
past the lowermost soil layer enters the vadose zone and ultimately becomes groundwater
recharge. SWAT allows defining an impervious zone below the soil profile, in which case per-
colation out of the soil profile is reduced depending on the distance of the impervious zone to
the bottom of the soil profile. As a consequence, a perched water table may build up in the
profile, inhibiting percolation of water from above by successively saturating soil layers from

bottom to top.

Lateral subsurface flow (or synonymously interflow) occurs when percolating water meets an
impermeable or nearly impermeable layer in the soil profile. Water ponding above the imper-

meable layer may subsequently move along a hillslope gradient and enter the stream network.
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In SWAT, each individual soil layer may contribute lateral subsurface flow. SWAT calculates

the daily amount of subsurface flow from a specific layer as

0.024 - valy,excess “ Ksar - Slp

Pry.d - Luin

Qry.i = (3.6)
where Qjy; is the daily lateral subsurface flow calculated for the soil layer. The hillslope
gradient slp of the interface between the permeable and impermeable soil layer is usually as-
sumed to be equal to the gradient of the soil surface. It is expressed as elevation per unit length
of lateral distance (m/m). ¢, 4 is the drainable porosity of the soil layer (in mm/mm), which
is equivalent to the fraction of porosity filled with air when the soil layer is wetted to field
capacity. Ly is the hillslope length in m and the constant 0.024 serves to convert the result
from hourly to daily lateral flow in mm H,O. The overall daily lateral subsurface flow Q;; for

the entire HRU is obtained by summing Qy,,; over all soil layers: Q;; = Z?y:l Qly,i-

Additionally, water may be removed from the soil via tile drainage pipes. Several different
routines to estimate tile flow have been incorporated in SWAT and tested over the years (Du
et al. 2005, Moriasi et al. 2012, Guo et al. 2018). The simplest tile flow routine detailed in Du
et al. (2005) calculates daily tile flow as

hwtbl - hdrain
Rt

Qi =  SWercess + (1 eFaran ) (37)
where Q; ; is the daily tile flow from the HRU and SW,xcess = Z;‘yzl SWiy excess is the drainable
soil water content for the entire soil profile. Both quantities are measured in mm H;O. t4,4;y, is
the time needed to drain the soil from saturation to field capacity (in h) and At is the simulation
time step (24 h). h,,;p; is the current height of the water table above an impervious zone below
the soil profile, and hgyqi, is the height of the tile drains above the impervious zone (both in
mm). Tile flow will only occur if hyp; > hdrain, otherwise Qy; is set to zero. h,,;p; calculates

as follows:

SM/@X‘CESS d
(SWsar — SWee) (1= ¢air) 7

Rl = (3.8)
SWsg; is the water content in the entire soil profile at saturation, SWgc is the water content of
the entire soil profile at field capacity (both in mm H;0), @,;, is the porosity of the entire soil
profile currently filled with air (in mm/mm) and d;p,, is the depth of the impervious zone from

the soil surface (in mm).
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Groundwater recharge from percolating water reaches the groundwater zone with a delay and
is subsequently directed into one of two aquifers. Partitioning of recharge between the two
aquifers is governed directly by a model parameter. The shallow aquifer is in contact with
surface water bodies and allows return flow of groundwater into the stream network. Return
flow from the shallow aquifer is dependent on a threshold water level. If the water level in
the shallow aquifer is below this threshold parameter, return flow is set to zero. Otherwise it

calculates as

g g
Qg,i = Qg,i—l ce %Al 4 Wrchrg,sh * (1 —e % t) (3-9)

where Q,; is the return flow from the shallow aquifer on day i, Qg;-1 is the return flow from
the shallow aquifer on the preceding day i — 1 and wycprgsn is the recharge that reaches the
shallow aquifer on day i (all in mm H;0). g, is the base flow recession constant for the shal-
low aquifer (in 1/d) and At is the simulation time step (1 d). Apart from return flow, the shallow
aquifer also allows “revap” of groundwater to the soil profile to compensate soil moisture defi-
ciencies during dry periods. In contrast to the shallow aquifer, the deep aquifer is assumed to
be confined and does not allow any water exchange with the stream network or soil profile.!
Water directed to the deep aquifer is thus considered lost from the system and consitutes the

loss term L; in Equation 3.1.

Besides land phase hydrology, other processes simulated on the HRU level are plant growth,
management operations, nutrient cycling, erosion and pollutant mobilization. SWAT applies
the heat unit approach to simulate maximum daily plant growth. Heat units are defined as the
number of degrees the daily average air temperature is above a species-dependent threshold
value. The threshold value is called the plant’s base temperature, below which plant growth is
not possible. The heat unit approach assumes that specific stages of plant development can be
linked to the number of heat units a plant has accumulated during the current growth cycle,
provided there is sufficient access to water and nutrients. SWAT uses inidcators like biomass
and leaf area index (LAI) to track plant growth. Optimal development of these indicators is
directly governed by the amount of received heat units. Their actual development may be
inhibited due to water, temperature, nitrogen or phosphorus stress. Management operations
can be scheduled either by heat units or by calender date. In the first case, the management
operation is triggered once a specified threshold value of accumulated heat units is exceeded. In

the second case, the management operation is performed on a specified date. SWAT supports

ILater SWAT revisions actually allow return flow from the deep aquifer. Computation of return flow from the deep
aquifer is analogous to Equation 3.9. Deep return flow is governed by a seperate base flow recession constant
gy,d- In contrast to shallow return flow, deep return flow is not restricted by a threshold water level.
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Figure 3.2.: Soil nitrogen pools and conversion processes in SWAT. Partitioning between active and
stable organic N depends on the current mass ratio between both pools. Decay of fresh organic N and
mineralization require soil temperatures above 0°C. Note that SWAT adds all mineralized N directly to
the NO3; ™ -N pool. Volatilization and nitrification occur only at temperatures above 5 °C. Denitrification
requires wet (anaerobic) conditions. Uptake from the root zone by growing vegetation is governed by
plant N demand, which is dependent on species and growth stage. Mineral N may also be added to the
soil profile by atmospheric deposition (not depicted). The figure is taken from Neitsch et al. (2011).

a wide range of management operations for different land uses. Agricultural management
operations include planting and harvesting of crops, plowing as well as fertilizer or manure

application (among others).

Considering nutrients, SWAT models both nitrogen and phosphorus. The nitrogen cycle is
simulated in the soil profile and the shallow aquifer. SWAT assumes instantaneous mixing for
all soil and groundwater compartments. Figure 3.2 gives an overview of the five soil nitro-
gen pools included in SWAT as well as the major conversion processes between them. Details
are given in the corresponding caption. Nitrogen bound as nitrate (NO3; ~-N ) and ammonium
(NH4*-N) constitute the two mineral nitrogen pools. The other three N pools represent dif-
ferent forms of organic nitrogen: The fresh organic nitrogen pool is associated with plant and
microbial biomass, whereas the active and the stable organic nitrogen pool are associated with
soil humus. Soil nitrogen may be transported into the aquatic environment either via erosion

or with moving soil water:

1. SWAT uses the Modified Universal Soil Loss Equation (MUSLE) to model soil erosion
and sediment delivery (Williams 1975). Eroded nitrogen is taken from the organic N
pool at the soil surface and transported to the nearest stream segment. Corresponding

organic N loads are calculated directly from the amount of transported sediment and the
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concentration of organic nitrogen in the top 10 mm of the soil profile, modified by an

enrichment ratio accounting for the preferential transport of clay particles.

2. As nitrate is highly mobile in soils due to anion exclusion at the interface between soil
solution and soil matrix, nitrogen transported with moving water is taken from the
NO;3; ™ -N pool. As such, it may either move downwards with percolation or laterally
with surface runoff, interflow or tile flow. In the former case, nitrogen may move past
the bottom of the soil profile and leach to the groundwater, whereas in the later case it

is transported to surface water bodies.

Transported NO; ™ -N loads are computed by simply multiplying NO; ™ -N concentrations in the
mobile soil water fraction with flow rates, where mobile soil water is the sum of moving soil
water volumes calculated for the respective simulation day. For example, NO3 ™ -N transported

with surface runoff calculates as

Ls,i = ﬁ : Cs,i : Qs,i (3-10)

where L ; is the NO3; ™ -N load lost from the HRU with surface runoff on day i (in kg) and Cs ; is
the NO; ™ -N concentration in the mobile soil water of the top 10 mm on day i (in kg/mm). f is
the dimensionless nitrate percolation coefficient, a conceptual model parameter ranging from
0.01 to 1 governing the share of soil NO3 ™ -N available for transport with surface runoff. The
NO; ™ -N loads transported with the remaining fractions of moving soil water are calculated
analogously. However, note that f is not considered for NO; ~-N loads in lateral flow below

10 mm from the soil surface, tile flow and percolation.

Additionally, NO3 ™ -N may enter surface water bodies with groundwater flow from the shallow
aquifer. In order to account for nitrate fluctuations in groundwater over time, SWAT explicitly
models nitrate dynamics in the shallow aquifer. The NO3; ™ -N pool there grows with nitrate
reaching the aquifer in shallow groundwater recharge and shrinks with nitrate leaving the
aquifer in groundwater flow to surface water bodies or “revap” to the soil profile. Furthermore,
NO3 ™ -N levels in the shallow aquifer may be reduced in response to depletion processes like
denitrification. Instead of modeling different depletion processes individually, SWAT lumps
them together by means of a generic nitrate half life for groundwater which may be adjusted
by the user as a model parameter. Hence, groundwater NO3; ™ -N depletion in SWAT is governed

by first order kinetics.
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Once the different runoff components as well as sediments, nutrients and other pollutants have
been directed to the receiving stream segment, they are subject to the in-stream processes mod-
eled as part of the routing phase. Two alternative methods to model streamwater routing are
provided: The variable storage and the Muskingum method. Both essentially treat the stream
network as a cascade of discrete storage elements - the individual stream segments. Down-
stream routing of water is dependent on current storage in the segments. Additionally, the
model accounts for evaporation and transmission losses as well as bank storage. Transmission
losses can only occur on simulation days on which the respective reach does not receive any
groundwater; their magnitude is directly dependent on the hydraulic conductivity of the chan-
nel bed. If they occur, they are partitioned between bank storage, from where they can re-enter
the stream with a certain delay, and the deep aquifer, where they are permanently lost from

the modeled system.

Sediment and pollutants are routed along with the stream water. Nutrients are tracked both
dissolved in the stream water and adsorbed to the transported sediment. The latter fraction
is allowed to be deposited to the channel bed. In-stream nutrient cycling is modeled based on
equations adapted from the stream water quality model QUAL2E (Brown & Barnwell 1987).
These include the stepwise transformation of organic N to NH4"-N and then to NO; ™ -N (via
NO; ™ -N), as well as incorporation of mineral N into algal biomass and re-release of organic N as
a consequence of decomposition. Relevant state variables like water depth are estimated on the
assumption of a trapezoidal cross section profile. In-stream denitrification is not represented,
neither in the water column nor in the channel bed. Hence, deposition with settling particles
and subsequent burial is the only permanent N loss process included in the SWAT routing
phase. Importantly, this is true both for the stream segments and for ponded water bodies like

reservoirs.

3.1.3. Model Capabilities and Limitations

The research aim pursued in this thesis (see Section 1.3) requires a computer model that is
capable of simulating long-term catchment hydrology, agricultural land management, plant
growth as well as nitrogen cycling and transport. SWAT combines all of these features and
enables the user to examine the impact of different management practices on the simulation
results. As a dynamic model, SWAT explicitly accounts for temporal effects like elevated nitro-
gen emissions from rainfall events directly after fertilizer applications (Schiirz et al. 2017). With
regard to usability, there is extensive model documentation in the form of the SWAT Theoret-
ical Documentation (Neitsch et al. 2011) and the SWAT Input/Output Documentation (Arnold

et al. 2013). In addition, the open source model code makes SWAT completely transparent in
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terms of model equations and simulation routines. As the model is free to use for everyone, a
large and active community of scientists and practitioners has grown around SWAT, together
with a rich software ecosystem encompassing i.a. interfaces for model setup or environments
for model calibration. Finally, the widespread use of the model in catchments around the world

has generated a large body of published SWAT studies that the present thesis can draw from.

However, these advantages of the SWAT model are counterbalanced by several drawbacks,
some of which being of particular concern with regard to non-point source pollution model-
ing. First, HRUs in SWAT possess no exact position within each subbasin and do not interact
with each other. More specifically, there is no explicit representation of water flow and pol-
lutant transport across different HRUs. Instead, water and pollutants mobilized in any HRU
are instantly transferred to the stream segment and outlet of the respective SWAT subbasin.
Their transport, deposition and retention in the landscape are not explicitly accounted for
(Arnold et al. 2010, Rathjens et al. 2015, Bieger et al. 2017). The model is therefore unable to
directly represent how runoff and pollutant transport are affected by the small-scale topogra-
phy within each subbasin (e.g. upslope-downslope relationships, divergence and convergence,
surface depressions, hydrologic connectivity, variable source areas). This however is impor-
tant for modeling the spatiotemporal variability of non-point source surface water pollution,
precisely identifying CSAs inside individual subbasins and assessing the impact of local miti-
gation measures such as riparian buffer zones and filter strips (Arnold & Fohrer 2005, Gassman
et al. 2007, Krysanova & Arnold 2008, Krysanova & White 2015, Bieger et al. 2017).

Second, the use of the CN method in most SWAT studies futher complicates the interpretability
of the simulation results (Garen & Moore 2005). As stated before, the CN method is a purely
empirical approach to estimate direct runoff for individual flood events in small catchments. It
makes no assumptions and gives no indication about the runoff generating processes involved
in the predicted stormflow response. Hence, the CN method is unable to distinguish between
different runoff source areas and flow paths, which is particularly important to predict erosion,
pollutant mobilization and pollutant transport in the landscape (Garen & Moore 2005). Further-
more, SWAT misapplies the CN method to estimate (hortonian) surface runoff that individual
HRUs contribute to daily streamflow. Other forms of direct runoff like interflow and tile flow
are calculated separately, although they should already be subsumed in the runoff calculated by
the CN method. As a result, SWAT tends to overpredict surface runoff and calibration of SWAT
models often leads to the downward correction of curve numbers (see for example Douglas-
Mankin et al. (2010) or Tuppad et al. (2011)). Additionally, it is unclear if the CN method as
a flood event model is suited to estimate ordinary daily flow volumes as it is used in SWAT
(Garen & Moore 2005).
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Finally, SWAT possesses a plethora of model parameters. The SWAT Input/Output Documen-
tation (Arnold et al. 2013) lists hundreds of parameters that can be modified in SWAT, for
example affecting the simulated water balance, soil and groundwater processes, plant growth,
land and water management, erosion, nutrient cycling, pollutant transport and transformation
as well as streamflow routing and water quality. In addition, many of these parameters are
distributed within the modeled catchment and vary between different SWAT subbasins, HRUs
as well as soil depth zones, amplifying the effective number of model parameters that need to
be calibrated. Hence, SWAT is often considered to be overparameterized (Beven 2012, p. 222),
making it difficult to disentangle the effects of the unknown model parameters during model
calibration and subsequently identify the parameter sets that yield realistic emission scenarios
for the examined catchment (equifinality). As argued in Section 1.2, equifinality can be detri-
mental to many typical aims of catchment-scale pollution modeling. Whittaker et al. (2010)
as well as Her & Chaubey (2015) argue that SWAT offers enough physical constraints to suffi-
ciently regularize the model parameters. However, in the opinion of the author of this thesis,
this remains doubtful, particularly considering the fundamentally empirical nature of the CN

method that is central to runoff simulation in most SWAT applications.

3.2. Model Evaluation

3.2.1. Performance Criteria

Quantitative performance (or “goodness-of-fit”) criteria summarize model agreement with ob-
served data in a single number. By means of this number, they can be used to establish a ranking
of different models. In comparison with purely qualitative or graphical methods, they allow for
a less subjective assessment of model performance and may also be used to construct objective
functions for automated model calibration (see Subsection 3.2.4). It has to be noted, however,
that performance criteria differ in how exactly they measure agreement with observed data.
Different criteria may thus yield different or even contradictory assessments of model per-
formance. It is therefore good practice to make complementary use of multiple performance
criteria when evaluating modeling results (Krause et al. 2005). Moriasi et al. (2007) and Mo-
riasi et al. (2015) give an overview of many - albeit not all - performance criteria commonly
applied in hydrological modeling. This section lists the criteria used throughout the present
thesis, states the equations to compute them and briefly summarizes their individual strengths
and weaknesses. It looks at them mainly through the lense of hydrological modeling, although
many of them are well-known in other application contexts as well. For more details, please

refer to the literature cited in the following paragraphs.
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In hydrological modeling, the coefficient of determination R? is commonly used as a measure

of collinearity between the predicted and observed data:

L.(0; - O0)(P; - P)

R? =2 =
\/Z?:I(Oi - 0)2‘/2?:1(131‘ - p)z

(3.11)

r is Pearson’s correlation coefficient between predicted and observed data. O; denotes a spe-
cific data point in the time series of observed values and O is the mean of all observed values.
Correspondingly, P; denotes a specific data point in the time series of predicted values and P
is the mean of all predicted values. n is the number of data points in either of the two time
series (observed as well as predicted). R® ranges between 0 and 1, with the former indicat-
ing no correlation and the latter indicating perfect (linear) correlation between observed and
predicted values. Legates & McCabe (1999) point out that as a measure of collinearity, R? is
unable to detect “additive and proportional differences” between observed and predicted values
(i.e. differences in magnitude as well as variability). Consequently, even sharp disagreement in
the means and variances of the observed and predicted data may result in a value of R* = 1 as
long as there is perfect linear correlation between both data sets. Futhermore, R? is sensitive
to outliers and shows considerable sampling uncertainty when applied to typical hydrological
time series data with high levels of variability and skewness (Legates & McCabe 1999, Barber
et al. 2020). Despite these shortcomings, R? is widely used as a performance metric in hydro-
logical modeling studies of the past and present (Moriasi et al. 2015). A good R? score usually
indicates co-occurrence of peaks in observed and predicted time series of streamflow or pol-

lutant loads, which is an aspect of particular concern in many hydrological modeling studies.

The percent bias (PBIAS) metric is a relative measure of over- or underestimation (Gupta et al.
1999). It is expressed in % and calculates as:

1 Pi—0;
PBIAS = 25— . 100% (3.12)

r L 0;

i=1 1
PBIAS may be interpreted as the ratio of residual mean (i.e. bias) to the observed mean or -
equivalently - the relative deviation of the predicted mean from the observed mean. Hence, a
value of 0 % represents the optimal result for PBIAS. In the formulation presented in Equation
3.12, a positive PBIAS indicates a tendency of the predictions to overestimate the observations,
whereas a negative value indicates a tendency to underestimate the observations. As R?, PBIAS

is a widely used and frequently reported performance measure in hydrological modeling stud-

42



3. Modeling Approach

ies. It is particularly suited to quickly identify bias in continuous long-term simulations. As
a relative measure of model error, PBIAS may also be used to compare model performance
across different catchments or time periods. As it only accounts for differences in the means of
observed and predicted data, PBIAS is unable to assess how well a model reproduces temporal
patterns like timing of peaks, seasonality or long-term trends in the observations. Further-
more, PBIAS is insensitive to differences in variance and may give misleading results if the
model overpredicts as much as it underpredicts. In this case PBIAS ~ 0% in spite of model

residuals which may be large in absolute value.

The mean squared error (MSE) overcomes this limitation by squaring the residuals.

n

MSE = (3.13)

The MSE is an absolute (rather than relative) measure of the average deviance of the predictions
from the observations. Hence, its value depends on the unit of the considered quantity and
ranges between 0 and oo, with 0 being the optimal result. It does not distinguish between over-
and underprediction. Due to the squaring of the residuals, MSE exhibits a marked sensitivity
to outliers (Legates & McCabe 1999, Krause et al. 2005). For the often right-skewed time series
in hydrology (e.g. streamflow), prediction outliers typically co-occur with large values. As a
result, time series peaks tend to have a disproportionately strong effect on MSE scores, which

may however be a desirable property for many purposes in hydrology.

Two related criteria are the mean absolute error (MAE) and root mean squared error (RMSE).

nop. — 0.
Ziz 1P~ Ol (3.14)
n

RMSE = \/w (3.15)

Both MAE and RMSE share many of the properties described above for the MSE. However, they

MAE =

express model error in the unit of the observed quantity and thus provide an interpretation that
is more intuitive as well as easier to communicate. Since the MAE applies absolute instead of
squared residuals, MAE scores usually are below their RMSE counterparts and are less sensitive
to outliers (Legates & McCabe 1999). To a certain degree, the spread between MAE and RMSE
may serve as an indicator for the presence of outliers in the data (Ritter & Mufioz-Carpena
2013).
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The Nash-Sufcliffe-Efficiency (NSE) has emerged as one of the most widely applied perfor-
mance criteria in hydrology (Moriasi et al. 2015) and has originally been proposed specifically
for use in hydrological modeling (Nash & Sutcliffe 1970).

m (P = 0y)?

NSE=1-————
?:1(01' _0)2

(3.16)
A popular interpretation of Equation 3.16 is that NSE is a normalized version of MSE designed
to vary between —oco and 1 (Gupta et al. 2009).2 A negative NSE score indicates that the model
MSE is larger than the variance in the observed data meaning that the mean of the observa-
tions outperforms the model as a predictor. This inherent benchmark is one of the appealing
features of the NSE as a performance metric. A value of 1 is the best possible NSE score, indi-
cating a perfect fit to the observed data. As a normalization of MSE, the NSE inherits the draw-
backs coming with squared residuals, e.g. sensitivity to outliers, high sampling uncertainty
and disproportionate emphasis on model error in peak values (Legates & McCabe 1999, Krause
et al. 2005, Ritter & Murioz-Carpena 2013, Lamontagne et al. 2020, Clark et al. 2021).

NSE (and by extension MSE) may be decomposed into a bias, variance and correlation compo-
nent (Gupta et al. 2009). NSE thus gives a comprehensive performance rating by considering all
possible error components at once. However, Gupta et al. (2009) show that the different com-
ponents interact when calclulating NSE scores and that this interaction may yield misleading
results. First, NSE puts different weight on the bias component depending on the variance in
the observed data. Second, NSE systematically favours models that underestimate the vari-
ance in the observed data. Gupta et al. (2009) propose the Kling-Gupta-Efficiency (KGE) as an
alternative performance metric that also includes all error components but avoids interaction

between them.

KGE=1-+(r—12+ (a—1)2+(f-1)? (3.17)
r is Pearson’s correlation coefficient and represents the correlation component. a = ZZ:((S))

is the variance component expressed as the ratio of predicted variance to observed variance,

whereas f§ = g is the bias component expressed as the ratio of predicted mean to observed

2 Alternatively, (positive) NSE values may be interpreted as the fraction of explained variance in the observations.
This is equivalent to the generalized definition of the coefficient of determination R? (see for example James
et al. (2013), p. 70). NSE may therefore be seen as the R? score of the hydrological model, measuring model fit
to the observed data. In contrast, the R? defined in Equation 3.11 represents the coefficient of determination for
the simple linear regression model between the observed and predicted data fit by minimizing the residual sum
of squares.
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mean. Imagining the space spanned by the three components, the square root in Equation 3.17
is the Euclidian distance to the point of perfect agreement between observations and predic-
tions at r = @ = f = 1. By substracting the Euclidian distance from 1, the KGE is made to fall
on the interval from —oo to 1, where a value of 1 indicates the best possible result. Despite the
analogy implied by their identical ranges, KGE and NSE are not directly comparable, mean-
ing that high KGE may correspond to low NSE scores and vice versa. In particular, the KGE
does not share the inherent benchmark property of the NSE at value 0 (Knoben et al. 2019).
Negative KGE scores do not necessarily indicate “unacceptable” model performance, whereas
some distinctly positive KGE scores may be associated with distinctly negative NSE scores.
Consequently, modelers should be cautious not to transfer their habitual interpretation of NSE
scores to KGE scores (Knoben et al. 2019). The complex relationship between NSE and KGE is

investigated in more detail within Knoben et al. (2019) as well as Lamontagne et al. (2020).

3.2.2. Latin Hypercube Sampling

Global sensitivity analysis (Subsection 3.2.3) and calibration of hydrological models (Subsec-
tion 3.2.4) often require sampling of large parameter spaces to perform a Monte Carlo (MC)
analysis. For the present thesis, SWAT parameter spaces are sampled using Latin Hypercube
Sampling (LHS) (McKay et al. 1979). LHS is a so-called quasi-random sampling technique. In
order to obtain a Latin Hypercube sample of size n, the entire range of each model parameter is
subdivided into n non-overlapping intervals with equal probability of occcurence. The interval
boundaries are equidistant if model parameters are assumed to follow a uniform probability
distribution. For all parameters, exactly one parameter value is drawn from each of the n in-
tervals - either at random or by using the interval midpoints (Rajabi et al. 2015). The drawn

values for the different model parameters are randomly combined to form n parameter sets.

LHS is more efficient than random MC sampling in that it generates a more stable result with
the same number of sample points n (equivalently, it requires a smaller number of sample points
to reach a stable result) (McKay et al. 1979, Helton & Davis 2003).> The superior efficiency of
LHS comes along with several desirable properties of the associated sampling design. First, LHS
tends to fill the parameter space more evenly than simple random sampling, which is prone
to clumping of individual sample points (Helton & Davis 2003). Second, LHS guarantees that

sampling points are spread over the entire range of each model parameter and do not conincide

3Sampling of the model parameter space leads to a set of simulation results that may be evaluated using one of the
performance criteria described in Subsection 3.2.1 (e.g. NSE or KGE). Then each sample of parameter sets corres-
ponds to a sample of values for the performance criterion. A “stable result” is reached when repeated sampling
from the parameter space results in similar estimates for the mean, variance and possibly other distributional
properties of the performance criterion.
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when projected into a subspace with lower dimensionality (Pronzato & Miller 2012). Several
variants of LHS have been developed to optimize its space filling properties (see for instance
Rajabi & Ataie-Ashtiani (2014)). This thesis makes exclusive use of LHS in its original form as

described above.

3.2.3. Sensitivity Analysis

Sensitivity analysis (SA) refers to the process of investigating how model output variability can
be attributed to the variation of input factors (Pianosi et al. 2016). It is closely related to uncer-
tainty analysis which deals with error propagation in the opposite direction - from the input
factors to the model output. Quite often, the input factors of interest are the model parameters
(either all of them or a subset). However, any other model element that can be changed before
model execution may equally serve as an input factor for sensitivity analysis. This includes
the meteorological forcing data used to run the model, the applied temporal as well as spatial
resolution and even the model equations themselves. Due to the complexity of most catchment
models and the diversity of potential input factors, it is generally not possible to assess model
sensitivity analytically. Instead, sensitivity analysis usually relies on repeated model runs to
approximate the model response surface across a multitude of different input factor combina-
tions. Model response is commonly measured either as an aggregate output variable like mean
streamflow (called a “prediction function”) or a performance metric like NSE or KGE (called an
“objective function”) (Pianosi et al. 2016). Typically, SA results for hydrological models do not
generalize well. Rather, they are strongly dependent on the specific catchment and time period
under investigation, as well as design choices like included input factors and model parameters,

applied parameter ranges and choice of evaluated model response (Shin et al. 2013).

Pianosi et al. (2016) name three main purposes that may be pursued with sensitivity analysis
(note that this list does not claim to be exhaustive). Screening aims at identifying those input
factors that have no measurable effect on the model output, ranking attempts to order input
factors according to their relative contribution to output variability, and mapping tries to deter-
mine regions in the input variability space that produce a particular kind of output behavior.
Each of these settings favors different methods of sensitivity analysis that require different
numbers of model evaluations to reach a stable result. Yuan et al. (2015) and Pianosi et al.
(2016) provide an overview of SA methods applied in the context of environmental modeling.
Very broadly, they distinguish qualitative and quantitative as well as local and global meth-
ods. Qualitative methods often rely on visualizations, for example scatter plots (“dotty plots”)
of model response against parameter values. Quantitative methods assign numerical values

(“sensitivity indices”) to the input factors that provide a basis for direct comparison. Local SA
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evaluates sensitivity by varying input factors one-at-a-time (OAT) around a fixed reference
point in the input variability space. Results strongly depend on the chosen reference point and
do not account for input factor interactions. In contrast, global SA assesses sensitivity across
the entire input variability space, making it better suited to deal with factor interactions and
avoid crucial type II error (“false negatives”) in identification of influential factors than local SA
(Saltelli et al. 2008, pp. 35-36). For global SA, input factors are often - but not always - varied
all-at-a-time (AAT).

The Elementary Effect (EE) test is an efficient global SA method often used for parameter
screening (Morris 1991). Compared with other global SA methods, it requires only a small
number of model evaluations by using an OAT (instead of AAT) approach for parameter sam-
pling. It is thus particularly suited for models with high computational cost or a large number
of parameters (Saltelli et al. 2008, Pianosi et al. 2016). Briefly, the EE test repeats local sensitiv-
ity analyses at multiple reference points in the parameter space. An elementary effect EE is the
quotient of finite differences that measures deviation in the model response to a single param-
eter perturbation from the reference point. The EE with regard to the i-th model parameter at

the j-th reference point is defined as

i J J J o J J
oy xg, L x A L x) YK, X X, X))
ER/ = L2 ’ - L2 l LGP (3.18)
A
y is the model response for the inserted parameter values x{ , xg e x{n, while A is a predefined

perturbation of the i-th model parameter and m is the overall number of considered model
parameters. ¢; is a scaling factor to accommodate different units of measurement. Computing
the EE at n different reference points in the parameter space and averaging the results provides

a global sensitivity index y; for parameter i:

J
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n

A second index o; computes the standard deviation of elemental effects and is usually inter-
preted as a measure of interaction of the i-th model parameter with all other included param-

eters:

n J
i1 (EE; — p1;)*
o; = \/u (3.20)

n
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As the model response has to be evaluated once for every reference parameter set and again for
every perturbed parameter, the EE test requires n- (m+1) model evaluations. A common recom-
mendation in the literature is to set n ~ 10 (Saltelli et al. 2008, p. 273), although n ~ 100 prob-
ably is a safer option to guarantee stable sensitivity estimates in a screening setting (Sarrazin
et al. 2016). Several variations of the EE test have been proposed since its initial formulation
(Campolongo et al. 2007, Campolongo et al. 2011). These variations affect the choice of the n
reference points, the sampling design around the reference points and the computation of the
indices given in Equations 3.19 and 3.20 (for example, the use of absolute EEs in Equation 3.19
prevents that positive and negative values compensate for each other, see Campolongo et al.
(2007)).

3.2.4. Model Calibration and Validation

Calibration of a catchment model is the process of adjusting the model so that the model output
matches observed catchment behavior sufficiently well. Typically, this adjustment procedure is
restricted to the model parameter values. However, it may equally extend to other input factors
like the model equations and structure (Beven & Binley 1992). There are many different ap-
proaches to model calibration, with no standardized or generally accepted optimum procedure.
Daggupati et al. (2015) criticize that model calibration often is “ad hoc, piecemeal, incomplete
and inadequate” for meeting the requirements of the indended model use. Broadly, one can
distinguish manual and automated calibration approaches. Manual calibration involves the in-
cremental adjustment of model parameters or input factors by hand, guided by the modelers
expertise and knowledge of the modeled catchment. As such, it allows the direct incorpora-
tion of qualitative (“soft”) data into the calibration process as well as the intuitive examination
of the model response to specific input adjustments. However, manual calibration is inher-
ently subjective and irreproducible if not thoroughly documented. Furthermore, it is often
time-consuming and labor-intensive for complex models with many possible combinations of

parameter values or input factors (Arnold et al. 2012, Daggupati et al. 2015).

Advances in computer performance in the past decades have led to the increasing use of au-
tomated calibration approaches (Daggupati et al. 2015). The classical strategy in automated
model calibration is the computer-aided use of optimization algorithms to improve the fit be-
tween simulated and observed data. Whereas manual calibration is achievable by visual inspec-
tion of the model fit, automated model calibration necessitates the definition of an objective
function using quantitative performance criteria like those described in Subsection 3.2.1. At
this point, it is important to note that while automated calibration provides a more objective

and reproducible course of action than the manual approach, the results still are strongly de-
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pendent on the applied optimization procedure (including the starting parameter values) and
objective function (Abbaspour et al. 2017). Furthermore, the classical strategy for automated
calibration typically yields exactly one optimum set of model parameters or input factors to fit
the observed data?, implying the existence of a “true” model that can be identified by rigor-
ous optimization. In contrast, Beven & Binley (1992) argue that this assumption is wrong due
to the multiple sources of uncertainty and potential model error that may interfere with the
calibration process. In accordance with the idea of equifinality (see Section 1.2), they instead
make the case for accepting many different models as potential predictors for the catchment

response of interest.

To that effect, an alternative type of automatic model calibration makes use of MC analysis
to identify entire sets of acceptable catchment models (Beven 2012, pp. 249 - 252). A promi-
nent example is the GLUE technique proposed by Beven & Binley (1992) (see also Section 1.2).
Model calibration based on MC analysis searches the parameter space for regions and parame-
ter combinations that yield viable model performance. As long as no evidence to the contrary
emerges, all of these models are considered to be more or less accurate predictors of the real
system. In this manner, MC analysis also provides a means of assessing the uncertainty in the
parameter values or the model output (assuming the respective uncertainty bands cover the
“real” catchment behavior). Within this setting, there are basically two options to distinguish
acceptable and unacceptable model performance. The first option is the application of a limit
of acceptability, a performance threshold a model needs to exceed to be deemed behavioral, i.e.
sufficiently representative of the observed catchment response (Beven 2006). The threshold
value should be set in accordance with the intended use of the model and completely indepen-
dent of any prior assessment of model performance. The second option for model selection is
the identification of the Pareto-optimal set of parameterizations in a multi-objective calibration
strategy (Gupta et al. 1998). The Pareto-optimal set includes those models that cannot improve
on one performance criterion without deterioration in another criterion. Both options can be
combined and may then complement each other, as illustrated by Efstratiadis & Koutsoyiannis
(2010): Whereas the size of the Pareto-optimal set increases with each considered calibration
objective (i.e. performance criterion), the combination of multiple limits of acceptability (one

for each performance criterion) works towards a reduction in the number of included models.

Model validation is the process of testing the performance of a calibrated model against in-
dependent data not used during calibration. There are countless possibilities to allocate the
available data to model calibration and validation. A systematic and exhaustive approach, that

is however computationally too expensive for many purposes in catchment modeling, is k-

4The same is true for manual model calibration.
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fold cross validation (James et al. 2013, Schoups et al. 2008). As models are typically calibrated
on time series data (e.g. streamflow), it is common to instead simply split the available data
by time periods (what Klemes (1986) called the split-sample approach). There are no universal
rules for the relative lengths of the calibration and validation periods in this setting (Daggupati
et al. 2015). A commonly-held believe is that both the calibration and validation periods should
cover the full range of conditions (e.g. wet and dry) under which the model is supposed to op-
erate (Arnold et al. 2012). Although this may be a viable option if the intended model use is
prediction alone, it is most likely insufficient in other cases. If the modeling purpose is gaining
an understanding of the catchment response (particularly within scenario analysis), it may be
more promising to deliberately validate the model in conditions not covered by the calibration

data (what Klemes (1986) called the differential split-sample approach).

As an alternative, data may be split in space instead of time to reserve data for model validation,
e.g. between different stream gauges within the same river basin. For streamflow simulation
in ungauged catchments, Klemes (1986) proposed the proxy-basin approach, where calibra-
tion and validation are performed on two gauged catchments in the vicinity of the ungauged
catchment of interest (assuming comparable conditions across all of these catchments). The
validated parameters are subsequently transferred to the model for the ungauged catchment.
Finally, a model may also be validated on types of model output that remained completely
unconsidered during calibration. For example, for their large-scale study on multiple West
African catchments, Poméon et al. (2018) used remote sensing data on evapotranspiration, soil
moisture and total water storage to complement split-sample validation of SWAT on observed

streamflow data.
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4.1. Introductory Remarks

This chapter examines the effect of different input data sets and model subroutines (i.e. model
structures) on the SWAT model output for the Swist river basin. It has originally been moti-
vated by a recommendation of Abbaspour et al. (2017) to test all available model input data sets
prior to model calibration. The tested input data include different georeferenced land use and
soil data sets as well as alternative versions of the applied N emission time series for waste-
water treatment plants (WWTPs). The tested model structures include different procedures to
update the effective curve number (CN) in each HRU (either with soil moisture or evapotran-
spiration, see Subsection 3.1.2). With respect to agricultural management, they furthermore
omit or include simulation of tile drains and crop rotation. The present chapter serves several
purposes: First, it aims to make model setup transparent and reproducible. Second, it strives to
test the robustness (i.e. sensitivity) of the model output towards various decisions made during
model setup and raise awareness for their potential impact on the simulation results. Third,
it attempts to make an informed decision on a particular model variant to achieve the wider

goals of this thesis (see Chapter 1) and build confidence in the modeling results.

The chapter is organized as follows: Section 4.2 details the model setup and initial parameteri-
zation. It does so in a tiered manner, with each tier representing a further level of sophistication
(and effort) in the model setup process. Alternating between the different land use and soil data
sets as well as subroutines for CN adjustment (Subsection 4.2.1) requires no additional effort
during model setup. In contrast, building a regression model to impute missing data in WWTP
N emissions (Subsection 4.2.2) as well as identifying tile drained areas and introducing repre-
sentative crop rotation (Subsection 4.2.3) are considerably more laborious. Section 4.3 compares
the (uncalibrated) model performances originating from the different land use and soil data as
well as CN adjustment routines. It does so for the base model setups (Subsection 4.3.2), for the

model setups with regression-based imputation of WWTP N emissions (Subsection 4.3.3) as
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well as for the model setups that include tile drains and crop rotation (Subsection 4.3.4). Sec-
tion 4.4 provides a concluding discussion of the results. All considered SWAT models were built
with help of the ArcSWAT interface, which is implemented as an extension of the ArcGIS ge-
ographic information sytem (GIS). Specifically, ArcSWAT version 2012.10_5.22 was used with
ArcMap 10.5.1. As for the rest of the thesis, all simulations were run using SWAT2012, revision
670.

4.2. Model Setup and Parameterization

4.2.1. Base Models

Although all model variants differ in various aspects, their fundamental design is identical
and summarized in this section. SWAT model setup requires the definition of a stream net-
work along with the associated subbasins. An ESRI shapefile of the Swist river network was
provided by the Erftverband. The shapefile consisted of line features usually running from
one confluence or bifurcation point to the next. Additionally, features were split at the loca-
tion of wastewater treatment plants, reservoirs and monitoring points like stream gauges. In
some cases, lines were additionally split at their middle point, where otherwise they would
have been disproportionately long. As a result, 153 line features were generated, each of them
representing a stream segment in the SWAT models. The corresponding 153 subbasins were
delineated using the ArcHydro toolbar extension for ArcGIS and a 10 m raster DEM. The DEM
was put together from two distinct laserscanning data sets for North Rhine-Westphalia and
Rhineland-Palatinate, respectively (State Office for Land Surveying NRW 2002, State Office for
Land Surveying and Geoinformation RLP 2006). In order to ensure hydrologic connectivity
of the calculated flow direction grid as well as flow accumulation along the actual stream lo-
cations, sinks in the DEM were filled and the stream shapefile was “burned” into the DEM
applying the AGREE method (Hellweger 1997). The resulting subbasin areas were highly vari-
able and skewed towards small values, ranging from 3 to 2052 ha, a mean of 189ha and a
standard deviation of 240 ha. Appendix A provides a map depicting the 153 stream segments
and subbasins. Both the stream segments and their subbasins were fed directly into ArcSWAT
to establish the river network topology and to calculate subbasin and stream parameters for
SWAT.

In ArcSWAT, HRU definition within these subbasins is based on similarity in land cover, soil
characteristics and slope. Two geodata sets for land cover in vector format were available for

HRU definition and land use dependent model parameterization:
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1. The first data set is the European CORINE! Land Cover (CLC) data set for Germany
(German Federal Agency for Cartography and Geodesy 2012). The reference point in
time is the vegetation period of 2012. The data set is derived from the Digital Land Cover
Model Germany (LBM-DE), which in turn is derived from the Digital Basic-Landscape
Model (Basis-DLM) of the German Authorative Topographic-Cartographic Information
System (ATKIS). The underlying data has been generalized so that the minimum area for
the mapped polygon features is 10 ha (in contrast to 25 ha for the Europe-wide data set).
Each feature is assigned one of 37 different CLC classes used in Germany, which were
identified with SWAT land cover classes using an ArcSWAT look up table.

2. The second data set is the ATKIS Basis-DLM for North Rhine-Westphalia with 2019 as
the reference year (Geobasis NRW 2019). In order to account for the parts of the Swist
catchment not located in North Rhine-Westphalia, the Basis-DLM was complemented
with its 2001 counterpart for Rhineland-Palatinate (State Office for Land Surveying and
Geoinformation RLP 2001). The Basis-DLM describes the spatial relationship of different
topographical objects based on land register data, aerial photographs and other official
information. The declared maximum spatial error is 3 m. As CLC data for Germany is in
effect aggregated from Basis-DLM data, the latter contains considerably more detailed
information on land cover and land use. In order to obtain a SWAT land use data set with
complete coverage for the Swist river basin, selected Basis-DLM object types from the
categories vegetation (including agriculture), settlement, traffic and water bodies were
combined. These were identified with SWAT land use classes by constructing a look up

table for ArcSWAT. Figure 2.2 on page 21 depicts the resulting land use map.

Similarly, two digital geodata sets for soils in vector format were available to define HRUs and
determine SWAT soil parameters. Both data sets are different versions of the Authorative Soil
Map for North Rhine-Westphalia in the scale of 1:50 000 (BK50):

1. The first data set is the BK50 from 2015 (Geological Survey NRW 2015). The BK50 is
based on semiquantitative data on soil type, soil composition and texture reaching down
to a depth of 2 m from the soil surface. For the map sheet covering the Swist river basin,
this data has originally been collected in 2002. From this, the BK50 makes a quantitative
assessment of soil parameters (e.g. contents of sand, silt and clay, field capacity as well
as saturated hydraulic conductivity) in accordance with the third edition of the German
Pedological Mapping Guidelines (AG Bodenkunde 1982). As the BK50 did not extend
beyond the administrative border to Rhineland-Palatinate, soil types in this part of the

1Coordination of Information on the Environment
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Swist catchment were derived from geological data. For the area directly adjacent to the
border, the most common BK50 soil type for each parent rock material was determined
and subsequently transfered to areas of comparable geology in Rhineland-Palatinate. All
parameter values for these soils were estimated by assuming uniformity over the entire
soil depth and assigning soil type specific averages over all depth zones from the BK50

data within the Swist catchment.

2. The second data set mostly consists of the BK50 for North Rhine-Westphalia from 2019
(Geological Survey NRW 2019). This BK50 version is based on the same soil data as
that from 2015, however with updated data for the map sheet covering the Swist river
basin. Furthermore, soil parameters have been estimated in accordance with the fifth
(instead of third) edition of the German Pedological Mapping Guidelines (Ad-hoc AG
Boden 2005), resulting in larger differences for some soil parameters like saturated hy-
draulic conductivity. In order to avoid having to extrapolate large parts of the NRW soil
data to Rhineland-Palatinate (as for the 2015 soil data), the 2019 BK50 was complemented
with the 2019 Soil Map Data for Rhineland-Palatinate in the scale of 1:50 000 (BFD50)
(State Office for Geology and Mining RLP 2019). Still, while providing qualitative infor-
mation on soil texture, the BFD50 was missing quantitative information on sand, silt, clay
and rock contents needed for SWAT. These were instead estimated by averaging sand,
silt and clay contents for each textural class in the BK50 data within the Swist catchment
and subsequently applying these averages to the respective textural class of each depth
zone in the BFD50 data. As sand, silt and clay contents (particles with a diameter of up
to 2 mm) as well as rock contents (fragments with a diameter above 2 mm) are assumed
to make up the entire soil dry matter in the BK50 data, rock contents in the BFD50 data
were estimated by substracting the contents of sand, silt and clay from 100 %. All other
important soil parameters provided by the BK50 were also present in the BFD50 data.
Soil bulk density classes given in the BFD50 were translated to numerical estimates by

by applying the class middle points as specified by Ad-hoc AG Boden (2005).

Most SWAT soil parameters could be derived from these two soil data sets, either by adopting
them directly (barring unit conversions) or by calculating them based on the data. Sand, silt
and clay contents were rescaled to add up to 100 %. Soil hydrologic groups as described in
Neitsch et al. (2011) to set SCS curce number values were assigned based on mean sand and clay
contents as well as soil profile depth, following a procedure described by Gijsman et al. (2007).
As the 2015 version of the BK50 does not contain any information on soil bulk densities, they
were estimated from sand, silt and clay contents based on tabulated values given by Bachmann
et al. (2014, p.37).
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Two SWAT soil parameters could not be inferred from the available data and had to be estimated
based on other information. Soil albedo was set universally to a value of 0.13, as suggested for
moist topsoils of brown and grey color by Gijsman et al. (2007). Organic carbon content (in
that portion of soil dry matter that passes through a 2 mm sieve) was set as a function of land
use, depth and rock content. The basis for these estimates was soil monitoring data from the
second German Forest Soil Inventory and the German Agricultural Soil Inventory. The related
monitoring campaigns were conducted from 2006 to 2008 and from 2011 to 2018, respectively.
Results have been published for example in Griineberg et al. (2014) or Wellbrock et al. (2017)
for forest soils and in Poeplau et al. (2020) for agricultural soils?. Data on organic carbon in
forest soils of North Rhine-Westphalia has been made available for this thesis by courtesy of
the State Office for Nature, Environment and Consumer Protection in NRW (LANUV), whereas
organic carbon contents in agricultural soils for all of Germany have been taken directly from
Poeplau et al. (2020). Mean soil organic carbon contents were calculated for each combination
of land use and depth zone included in these data sets and subsequently redistributed according
to the depth zones defined in the BK50 data. As organic carbon contents were sampled not
deeper than 90 cm for forest soils and 100 cm for agricultural soils, organic carbon contents
were assumed to be zero below these thresholds. Similarly, soil organic carbon contents were
assumed to be zero for all land uses other than forest, cropland, grassland, orchards and tree

nurseries (essentially all urban land uses in the Swist catchment).

The two land use data sets and the two soil data sets outlined above give rise to a total of
four different base models, each resting on a different combination of land use and soil data.
Furthermore, since HRU definition is based on land use and soils, each of these base models
corresponds to one of four distinct sets of HRUs. ArcSWAT additionally allows for slope to
be considered in the HRU definition process. Using slope for HRU definition requires identi-
fication of areas with comparable slope characteristics. For this purpose, ArcSWAT provides
a tool to classify the obtained slope gradients. Two slope classes were created for the present
study: the first class includes slopes not larger than 2 % and the second class includes all steeper
slopes. As slope gradients were calculated from one and the same DEM (also used for subbasin
delineation), they were identical for all base model setups and did not contribute additional

model variants with different underlying sets of HRUs.

ArcSWAT identifies each unique combination of land use, soil and slope class inside a subbasin

as a seperate HRU, where minor area shares may be eliminated from the analysis by setting

2Here, agriculutural soils encompass (i) cropland soils, (ii) grassland soils, (iii) soils under permanent crops like
orchards or vineyards, and (iv) organic soils of agricultural use. Since there are no organic soils present in the
Swist catchment, organic carbon data for these soils has not been used in this thesis.

55



4. Model Setup and Sensitivity to Different Model Specifications

threshold values. Land uses, soils or slope classes that cover a percentage of subbasin area less
than the chosen threshold values are ignored. Increasing the threshold values thus leads to a
smaller number of HRUs in each subbasin, which in turn results in increased simulation speed
at the expense of accuracy in spatial representation. For this study, the R package topHRU
(Strauch et al. 2016) was used to identify threshold combinations with minimal spatial aggre-
gation error for any given number of HRUs. For all four model variants, exclusion thresholds
of 5% for land use, 10 % for soil and 20 % for slope were found to give acceptable results both
in terms of aggregation error and number of HRUs. As for subbasin areas, the distribution of
HRU areas is of considerable width and highly skewed towards small values. Table 4.1 gives
an overview over the four sets of HRUs and the associated statistics. The ATKIS land use data
produces a distinctly larger number of HRUs than the CLC data, reflecting the higher level of
spatial detail in the ATKIS data. Accordingly, the ATKIS data set also results in smaller mean
(as well as median and minimum) HRU areas. According to Tuppad et al. (2011), the typical
size of an HRU in SWAT ranges from about 50 to 500 ha. Both median as well as mean HRU

areas are well below this range for all four model variants.

The meteorological time series that was applied to run the SWAT simulations covered eleven
years in total, including a model warm-up period of four years (2008 to 2011) in addition to the
seven simulation years actually evaluated in this thesis (2012 to 2018). Daily amounts of precip-
itation were obtained from the seven Erftverband weather stations that are located within the
borders of the Swist catchment (Weilerswist, Heimerzheim, Rheinbach, Meckenheim, Stein-
bach, Todenfeld, Gelsdorf). The exact positions of the weather stations are mapped in Figure
2.2 on page 21. The applied rain gauges measure precipitation automatically by weighing of
collected rain- and snowfall. The orifice area of the collecting unit is exactly 200 cm? (in accor-
dance with standards of the World Meteorological Organization). Daily minimum and max-

imum air temperatures as well as daily averages of relative humidity were obtained from a

Table 4.1.: Statistics for the HRU sets asscociated with each of the four base model setups. Base model
setups are defined by different combinations of underlying land use and soil data. The table column
“HRUs” gives the total number of HRUs in the respective model setup. HRU areas have been calculated
from subbasin areas and the percentages of area each HRU covers in its respective subbasin. SD denotes
the standard deviation.

HRU Area [ha]

Model Land Use Data  Soil Data HRUs Mean SD Min Median Max
1 CLC 2012 BK50 2015 1423 20.3 37.8 0.12 8.40 399
2 CLC 2012 BK50 2019 1462 19.8 36.9 0.16 8.12 386
3 ATKIS 2019 BK50 2015 1730 16.7 33.6 0.04 6.58 433
4 ATKIS 2019 BK50 2019 1824 15.8 32.7 0.06 6.09 417
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subset of five of the weather stations (Weilerswist, Rheinbach, Meckenheim, Steinbach, Toden-
feld, Gelsdorf). Capacitance-based sensors are applied to measure relative humidity, with air

temperature measurement usually integrated in the same device.

Daily averages of wind speed and solar radiation are not measured at any of the seven Erftver-
band weather stations in the Swist river basin and had to be taken from other stations operated
by the German Meteorological Service (DWD) outside of the catchment borders. Wind speed
data was obtained from DWD weather stations in Bonn-Roleber and at Cologne Bonn airport.
Solar radiation was estimated based on daily sunshine duration data collected at the DWD
stations in Weilerswist-Lommersum, Bonn-Roleber and at Cologne Bonn airport. Both daily
wind speed and sunshine duration time series contained a small number of days with no data:
fourteen days for sunshine duration measured in Bonn-Roleber and well below ten days for all
other time series. None of these data gaps was longer than a single day. They were filled with
the respective values measured at the nearest other station. For sunshine duration, a single day
was missing data at all three DWD stations and was instead estimated by linear interpolation

between the preceding and successive day.

The applied method to convert from sunshine duration to solar radiation is taken from guide-
lines of the United Nations Food and Agriculture Organization (FAO) on estimating crop evapo-

transpiration from meteorological data (Allen et al. 1998). It is based on the Angstrém equation:

R, = (as+bs%) ‘R, (4.1)
where R; is the solar radiation reaching earth’s surface on a specific day in the year (in MJ/m?)
and n is the number of sunshine hours on the same day. N is the maximum possible number
of sunshine hours (daylight hours) on that day in the year and calculates as N = %ws, with
ws being the respective sunset hour angle day expressed in radians. as and bs are constants
assumed to be 0.25 and 0.5, respectively. R, is the extraterrestrial radiation on the evaluated

day, which calculates as

R, = # - Gsc - dy - (ws sin(¢) sin(8) + cos(¢) cos(9) sin(ws)) (4.2)

where Gsc is the solar constant (0.0820 MJ m 2 min~') and d, is the inverse relative distance
between sun and earth on the evaluated calendar day. ¢ denotes latitude and ¢ is the solar
declination on the evaluated calendar day (both expressed in radians). See Allen et al. (1998)

for more details.
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In order to account for the four® wastewater treatment plants (WWTP) in the Swist catch-
ment, Erftverband data on water quantity and quality in the WWTP effluents was used. Daily
discharge of wastewater volumes into the streams was measured continuously and thus was
available for almost every single day in the simulation period. Remaining gaps in the records
were filled by fitting a random forest (RF) regression model (Breiman 2001) to the available dis-
charge data for each WWTP. The random forest implementation in the ranger package (Wright
et al. 2022) for the R programming language (R Core Team 2022) was used for this purpose. The
applied predictor variables for the discharged wastewater volume on a specific day were the
discharged volume on the preceding day as well as precipitation (measured at the treatment
plant) on the same day and the seven preceding days. The number of discharge and precip-
itation values on preceding days used as predictor variables was chosen by optimizing the
out-of-bag RMSE for each of the four treatment plants to avoid overfitting. The models were
fit by constructing 500 bootstrapped samples from the training data and building regression
trees on these samples with | /p] = 3 randomly chosen predictor variables at each node split
(p = 9 is the overall number of predictor variables). The R? values associated with the out-of-
bag model predictions (which may be understood as standardized measures of out-of-bag error
in this context) were 0.68 for WWTP Flerzheim, 0.74 for WWTP Rheinbach, 0.71 for WWTP
Miel and 0.66 for WWTP Heimerzheim. Built on an example from WWTP Miel, Figure 4.1
illustrates that the RF model is capable of filling even longer gaps in the discharge time series

with plausible estimates.

Records of wastewater quality in the WWTP effluents were available for roughly one day per
week (in accordance with the prevailing self-monitoring regulations in NRW) and encom-
passed mean concentrations of NO3 ™ -N, NH;"-N, NO, " -N as well as total nitrogen (Total
Nitrogen bound, TNb). The weekday the measurement was taken varied from one week to the
next. Since the gaps between the measured values in the time series were considerably larger,
more frequent and of variable length, an auto-regressive modeling approach as with discharged
wastewater volumes could not be applied for N concentrations. In a first attempt, the missing
values in the concentration times series were simply imputed with the mean of the known con-
centrations. This procedure is incapable of properly representing long-term trends, seasonality
and other temporal patterns. Furthermore, it probably introduces bias to the data. Long-term
average concentrations as well as average emission loads calculated from these concentrations

are only preserved under the strong assumption that the unknown values are missing com-

3Initially, a fifth treatment plant - WWTP Loch - was operational in the catchment, treating the wastewater of
approximately 800 residents (Kistemann et al. 2001). It was decommissioned in 2013. Due to its only small
contribution to the overall wastewater load in the Swist catchment, WWTP Loch was considered negligible for
the research aims of this thesis and thus not included in the SWAT simulations.
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Figure 4.1.: Imputed values in the daily wastewater discharge time series for WWTP Miel. The figure
depicts a section of the time series with an exceptionally long stretch of missing data in fall 2011. The
black line and dots indicate measured wastewater discharge values while the red line and dots indicate
imputed values estimated by random forest (RF) regression. Note how the estimated discharges react
to daily rainfall inputs depicted as blue bars at the top (measured at the WWTP).

pletely at random. Subsection 4.2.2 describes a more sophisticated regression-based approach
to impute the missing data. In both cases, the different N loads were calculated by multi-
plying measured or imputed daily mean concentrations with the respective daily wastewater
discharges. Organic N concentrations were estimated by substracting measured or imputed
mineral N concentrations (NO3 ™ -N, NH4"-N, NO; ™ -N) from the measured or imputed total
N concentrations. In the rare cases where this procedure yielded negative values, they were

set to zero.

Of the two reservoirs in the Swist catchment, only the Steinbach reservoir was built into the
SWAT models used in this study, whereas the smaller and unmanaged Madbach reservoir was
deemed negligible. There are no binding operational rules in place to control outflow from the
Steinbach reservoir, other than a regulatory limit for discharge from the principal spillway at
0.5m3/s (Erftverband personal communication). Consequently, it is generally difficult to ac-
count for the reservoir in hydrological models. For this study, daily discharge data recorded at
the online gauging station in Kirchheim downstream of the dam was used to read outflows from
the Steinbach reservoir directly into the model. The observed discharge time series contained
a small amount of gaps (mostly shorter than ten days) which were filled by linear interpola-
tion. Predicting reservoir outflow from precipitation in the Steinbach catchment with a random

forest model (as with wastewater discharges from treatment plants) did not give satisfactory
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results and could possibly have benefitted from including reservoir water levels as a predictor
variable. However, reservoir water levels were not available for large parts of the simulation
period. As a consequence of reading in observed outflow for the Steinbach reservoir, subbasins
upstream of the reservoir only have a limited impact on simulated discharge in the downstream
reaches (exceptions occur when the reservoir runs empty or water volumes exceed the storage
capacity, in which cases the reservoir outflow either ceases entirely or increases when stored
water is released via the emergency spillway, in both cases overriding the observed outflow
time series). See Chapter 6 for a discussion of reservoir representation in the SWAT models

and its implications for the research aims of this thesis.

Several “switch” parameters determine the use of multiple alternative sub-models to simulate
specific hydrological processes in SWAT. For the simulation of infiltration and surface runoff
generation, the Curve Number (CN) approach was preferred to the Green-Ampt method be-
cause it is less demanding in terms of data requirements and computational cost. The effective
CN values can be adjusted for either soil moisture or evapotranspiration (ET) in the modeled
HRUs. Both methods were tested in separate model runs for this thesis. Further CN adjustment
with slope was disabled, as was the simulation of preferential flow in cracked soil structures.
Tile flow from agricultural fields was set inactive in the base models, but was included in the
more refined model versions described in Subsection 4.2.3. The variable storage instead of
Muskingum method was used for streamflow routing. In-stream transformation of nutrients
using the QUALZ2E equations was enabled, whereas variable channel geometry due to degra-

dation and sediment dynamics was switched off.

For the purposes of this chapter, the majority of all other model parameters were left unchanged
from the default values set by the ArcSWAT interface. Exceptions were made where better
knowledge was available or the specific characteristics of the Swist catchment required a de-
viation from the default settings. The respective parameters and their changes are listed in
Table 4.2. The FFCP.bsn parameter was set manually to make the initial soil water storage
independent of the contents in the weather generator data files. Moreover, the channel cross
sections were set to resemble an isosceles trapezium with banks inclined by 45°. The default
half-life of nitrate in the shallow aquifer was considered unrealistically low and set to the
maximum possible value. Both the initial NO; ™ -N concentration in the shallow aquifer and
the water storage capacity of the vegetation canopy (to estimate rainfall interception) were
set as a function of land use. The NO;3; ™ -N concentrations in the shallow aquifer were esti-
mated in accordance with Erftverband groundwater monitoring data in the Swist catchment.
Depending on the vegetation type and structure, empirical canopy storage capacities are be-

tween 0 mm and 5 mm (de Jong & Jetten 2007, Zhong et al. 2022). To a varying degree, canopy
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storage capacity is related to LAI (de Jong & Jetten 2007). Considering the default LAI param-
eters in the ArcSWAT plant database, a value of 2 mm for forest and 1 mm for all other land
uses seems to be roughly realistic and consistent with general SWAT plant parameterization.
Both NO; ™-N groundwater concentrations and canopy storage capacities are associated with
considerable uncertainties and are essentially meant to be further adjusted during model cali-
bration. Note that proportions between land use specific NO3; ™ -N groundwater concentrations
as well as canopy storage capacities are preserved when varying them by a constant fraction

relative to their base values given in Table 4.2.

Most of the remaining groundwater parameters were set to reflect the effects of the water table
draw down around the lignite mining pits in the Lower Rhine Embayment. Streambed eleva-
tions of the Swist main watercourse and its largest tributaries were compared to groundwater
levels from October 2018 to provide an assessment of surface water contact to groundwater
(Erftverband personal communication). Simplistically, it was assumed that in regions with suf-
ficiently high water tables there is unhindered direct exchange between surface waters and
groundwater over the entire simulation period, whereas in all other regions surface waters
have permanently lost groundwater contact. These regions were subsequently mapped onto
the SWAT stream segments and associated subbasins. For all subbasins without groundwater
contact, initial groundwater storage and seepage to the deep aquifer were set to 0, while water
use for both the shallow and deep aquifer (i.e. groundwater extraction) was set to the maxi-
mum possible value. By this means, it was effectively guarenteed that groundwater storage in
the shallow aquifer never reaches the threshold levels that trigger groundwater flow into the
stream segments in these subbasins. Additionally, groundwater flow from the deep aquifer to
the stream segments was prohibited over the entire catchment area by setting the deep aquifer
baseflow recession constant to 0. For a map depicting the spatial distribution of stream reaches

and subbasins with and without groundwater contact, see Appendix A.

The default ArcSSWAT management schedules for each land use are controlled by the number
of accumulated heat units during the current growth cycle. In order to get more control over
the exact timing of each management operation, the scheduling-by-date mode was applied
instead. Additionally, for almost all land uses except urban areas, the SWAT auto-fertilizing
operation was replaced by fixed date application of fertilizer. For the sake of simplicity, all
fertilizer applications added 100 % NOs ™ -N to the HRU soils (no NH4"-N or organic N). As
this study deals exclusively with N pollution, application of P fertilizer was omitted from the
simulations (as plants did not experience phosphorus stress during the entire simulation period
with or without P fertilizer, plant growth remained unaffected). For cropland HRUs, fertilizer

was given in three applications of 60 kg NO3 ™ -N per ha in mid to late March, April and May. All
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Table 4.2.: Modified SWAT model parameters for the base model setup. All parameters that deviate
from the ArcSWAT default values are listed. If the changes only apply to a subset of HRUs or subbasins,
this is indicated in parantheses.

Parameter Value Unit Meaning

Basin-wide Parameters
FFCB.bsn 0.6 Initial soil water storage as fraction of field capacity
HLIFE_NGW _BSN.bsn 500 d Groundwater NO3 ™ -N half-life

Groundwater Parameters (HRU level)

SHALLST.gw
DEEPST.gw
RCHRG_DP.gw

ALPHA_BF_D.gw
SHALLST N.gw

SHALLST _N.gw

SHALLST N.gw

0 mm Shallow aquifer initial storage

(subbasins without groundwater contact)
0 mm Deep aquifer initial storage

(subbasins without groundwater contact)
0 Deep aquifer percolation fraction

(subbasins without groundwater contact)

0 1/d Deep aquifer baseflow recession coefficient
100 mg/1 Initial NO3 ™ -N groundwater concentration
(cropland, orchard)

20 mg/1 Initial NO3 ™ -N groundwater concentration

(grassland)
10 mg/1 Initial NO3 ™ -N groundwater concentration

(all other land uses)

Water Use Parameters

WUSHAL.wus

WUDEEP.wus

10000 10*m3/d  Shallow aquifer water removal for all months
(subbasins without groundwater contact)

10000 10*m3/d  Deep aquifer water removal for all months
(subbasins without groundwater contact)

HRU Parameters

CANMX.hru

CANMX hru

2 mm Maximum canopy storage
(forest)

1 mm Maximum canopy storage
(all other land uses)

Routing Parameters

CH_SIDE.rte

1 Tangent of channel bank angle
(trapezoidal cross section profile with 45° bank)

Soil Parameters

SOL_ALB.sol

0.13 Moist soil albedo
(according to Gijsman et al. (2007))

Plant Parameters

BIO_LEAF
ALAI MIN
ALAI MIN

ALAI_MIN

0 Fraction of tree biomass converted to residue
for dormancy (forest, orchard, tree nursery)

0 Minimum LAI for plant during dormancy
(deciduous forest, orchard, tree nursery)

1 Minimum LAI for plant during dormancy
(mixed forest)

4.5 Minimum LAI for plant during dormancy
(evergreen forest)
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cropland HRUs were parameterized to grow winter wheat (Triticum aestivum), which is planted
in mid to late March and harvested in late July. For grassland and orchard HRUs, fertilizer was
given as 50 kg NO3; ™ -N per hectare in mid March and as 100 kg NO3; ™ -N per hectare in mid
to late April, respectively. Grassland HRUs were parameterized to grow tall fescue (Festuca
arundinacea), which is mowed once a year in late May. All orchard HRUs were parameterized

to grow apple trees (Malus domestica) with a harvest in late September.

The default management schedules for forest land use include annual felling and replanting of
tree biomass. The rationale for this setup could be to simulate leaf growth and senescence in a

steady-state mature forest. However, this explanation is inconsistent with. ..

1. ...biomass development in evergreen forests, which do not exhibit seasonal leaf senes-

cence,

2. ...the SWAT plant growth model, which explicitly accounts for both leaf shedding and

biomass accumulation over several years for tree vegetation.

An attempt to simulate fully-developed, high-biomass forest stands failed, as the mature tree
vegetation suffered from excessive nitrogen stress, which in turn inhibited biomass growth,
LAI development and plant transpiration. Varying soil parameters to increase nitrogen supply
did not sufficiently improve the simulation results. Neither did modifying initial tree biomass
and plant parameters, e.g. as suggested by Yang & Zhang (2016), Yang et al. (2018) or Haas
et al. (2022). Consequently, the ArcSWAT default settings for forests were retained, albeit with
date scheduling and the parameter changes for trees specified in Table 4.2 to better reconcile
the annual felling and replanting operations with the notion of modeling seasonal develop-
ment of leaf biomass in mature forests. Inadequate representation of forest processes as well
as deficient parameterization of tree growth has been a reoccurring concern in several peer-
reviewed SWAT publications of the more recent past (Yang & Zhang 2016, Yang et al. 2018, Guo
et al. 2019, Yang et al. 2019, Haas et al. 2022).

4.2.2. Refinement of Point Source Emissions

Building on the procedure of imputing gaps in the daily N concentration time series for the
WWTP effluents with the averages of the known values (see the preceding Subsection 4.2.1), a
second string of SWAT models were setup that incorporated a more sophisticated imputation
approach. In summary, the missing values in the concentration time series were predicted
from additional daily time series of the WWTP operational data records. These included daily

measurements of...
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1. ...precipitation,

2. ...minimum and maximum air temperatures,

3. ...total wastewater volumes at the WWTP influent and effluent,

4. ...daily maximum flow rates at the WWTP influent and effluent,

5. ...mean wastewater temperatures at the biological treatment effluent,

6. ...minimum and maximum pH-values at the WWTP effluent and the biological treatment

effluent.

In a preliminary test of different regression approaches, the results for linear regression were
on a par with (if not better than) non-parametric methods such as k-nearest neighbor (kNN)
or random forest regression. Thus, multiple linear regression was the method of choice for

imputing the missing N concentrations in the context of this thesis.

For each of the sixteen different combination of WWTPs (Flerzheim, Rheinbach, Miel, Hei-
merzheim) and N parameters (NO; ™ -N, NH;"-N , NO, ™ -N, TNb), an individual set of predic-
tor variables from the above list was chosen. Completeness of the respective daily time series
was the first criterion for predictor selection. The second criterion was lack of multicollinearity
between the predictor candidates, which was assessed using the variance inflation factor (VIF).
See James et al. (2013, pp.101-102) for a basic explanation of the VIF calculation, as well as its
interpretation and underlying concept. In repeated iterations, the candidate with the highest
VIF score (i.e. highest degree of multicollinearity) above a value of 4 was removed, until either
all VIF scores remained below 4 or only one candidate was left. The remaining predictors were
used to fit an ordinary least squares linear regression model to each of the sixteen sets of N
concentration data, applying the Im() function from base R’s stats package (R Core Team 2022).
These models covered all possible subsets that could be combined from the predictor variables,
including their two-way interactions (meaning multiplicative combinations of two individual
predictors in the model equation, ignoring quadratic terms). Models containing two-way in-
teractions as predictors had to follow the hierarchical principle, i.e. each predictor included in

an interaction term also had to be present as an independent predictor in the model.

Among all of the fitted models, for each WWTP and N parameter the one with the best predic-
tive power was chosen for filling the gaps in the concentration time series. Predictive power
was evaluated by means of Mallow’s C,, as specified in James et al. (2013, p. 211). C,, is calcu-

lated as
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Cp= % (RSS +2d5?) (4.3)

where RSS denotes the sum of squared residuals (also called residual sum of squares, hence
RSS), d is the number of predictors of the considered model and 6 is a sample estimate of the
model’s error variance o?. The squared residual standard error RSE? of the full model is used
to estimate o2 for all sub-models.* In the context of this study, the full model is the one which
includes all predictors that survived VIF assessment of multicollinearity, along with all their
two-way interactions. The sub-models are those that include a (strict) subset of all predictor
variables used to fit the full model. Provided that 6% = RSE? is an unbiased estimate of o2, C,
is an unbiased estimate of the MSE for model predictions on out-of-sample data (and thus a

measure of predictive power).

For all sixteen combinations of WWTPs and N parameters, the model with the lowest C,, score
was chosen to predict the missing values in the respective concentration time series. In order
to meet the common linear regression assumptions (in particular linearity and independent,
homoscedastic residuals), in some cases it was necessary to perform a logarithmic transforma-
tion or a square root transformation of the N concentration data (i.e. the response variable)
before model fitting. Predictions from these models were subsequently backtransformed with
the respective inverse functions, applying the corrections suggested by Miller (1984) to handle
backtransformation bias. The basic properties of the sixteen best models are listed in Table
4.3. It should be noted that the procedure described for identifying the predictors that yield
the models with the best predictive power is a purely data-driven, brute force approach. As
such, the models are not expected to generalize well beyond the specific WWTP and N param-
eter combination for which they were fitted. For this reason, a detailed account of the selected
predictors and the associated coefficients for each individual model is omitted. The most im-
portant predictors that were reoccurring across the best performing models were those related
to wastewater quantity and temperature, governing dilution and residence times in the treat-
ment plants as well as biological activity and the kinetics of chemical reactions, respectively.

In contrast, pH values rarely emerged as strong predictors in the regression models, probably

4The squared residual standard error is given as

2
< 552=( / RSS ) __RSS @
n—-p-1 n—-p-1

with n and p being the number of data points and the number of predictors used to fit the model, respectively.
Regarding Equation 4.3 and the difference between d and p, note that d = p for the full model and d < p for all
sub-models.
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Table 4.3.: Summary of the linear regression models used to impute missing N concentrations in the
WWTP effluents. For each model, the type of response transformation (if any) and the number of
predictors used to fit the model are specified. R* assesses the quality of the model fit, while C, is
the criterion used to identify the model fit with the best predictive power. Since C, is an estimate of
the model’s MSE for out-of-sample data, the in-sample MSE is provided for reference. C, scores are
generally plausible, as C, > MSE for all models, which follows from Equation 4.3 (note that MSE =
RSS/n). In case of a response transformation, please be aware that R%, MSE and C, are given for the
model fit to the transformed data. A meaningful comparison of their values between models with
different response transformations is not possible. Furthermore, while MSE and Cp are measured in
mg?/1? for untransformed model responses, this is no longer the case for transformed responses. This
needs to be considered when interpreting the given MSE and C,, values.

WWTP Parameter Transformation Predictors R? MSE Cp
Flerzheim NO3; ™ -N - 8 0.145 6.82 7.09
NO, -N - 11 0.143 1.76x107% 1.86x107%
NH,*-N - 6 0.079 1.07x1072 1.10x1072
TNb - 7 0.111 7.93 8.25
Rheinbach NO3; -N  Square Root 14 0.237 3.33x107! 3.58x107!
NO; -N  Square Root 4 0.073 1.09x1072 1.11x1072
NH;*-N Square Root 10 0.111 1.04x1072 1.09x1072
TNb Square Root 8 0.192 2.82x1071 2.95x1071
Miel NO3™-N - 6 0.235 4.05 4.17
NO; -N  Logarithm 8 0.487 3.92x107! 4.08x1071
NH;*-N Square Root 10 0.340 5.80x1072 6.09x1072
TNb - 6 0.210 5.77 5.96
Heimerzheim NOs3 ™ -N - 14 0.318 5.00 5.35
NO, -N  Square Root 12 0.207 1.20x1072 1.27x1072
NH;*-N - 6 0.076 5.74x1072 5.91x1072
TNb - 12 0.360 4.97 5.32

because pH values were relatively constant in most WWTPs and almost never diverged from

their optimum ranges to impair biological treatment conditions.

Figure 4.2 gives a visual impression of how the time series of repredicted TNb concentrations
in the four WWTP effluents compare to their measured counterparts. It is noteworthy that the
regression models are capable of reproducing the basic seasonality in the concentration data
for the WWTPs in Rheinbach, Miel and Heimerzheim. The seasonality in the predicted time
series originates from the temperature time series used as predictors in most of the regression
models. Interestingly, the measured concentrations for WWTP Flerzheim do not exhibit the
same degree of seasonality, which is reflected in the reduced importance of temperature-related
predictors for the Flerzheim regression models. As a result, the overall model fit for Flerzheim
does not appear to be of the same quality as for the other WWTPs, which is confirmed by
the relatively low R? value of 0.111 reported in Table 4.3. Although a direct comparison of

the R? scores in Table 4.3 is not always possible due to different response transformations, a
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Figure 4.2.: Time series of measured and predicted TNb concentrations in the WWTP effluents from
201210 2018. The plots are ordered with decreasing WWTP size from top to bottom. For comparison, the
predicted time series encompasses only those data points for which measured values exist. They have
been repredicted with help of the linear regression models for TNb detailed in Table 4.3. For further use
of the time series in SWAT, the measured data points were retained and only the gaps between them
were filled with regression estimates.
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general pattern of poorer model fits in Flerzheim is also evident for the other N parameters.
For TND concentrations, WWTP Heimerzheim exhibits the best model fit, according to both
the reported R? value and visual inspection of Figure 4.2. In this case, the regression model
is clearly capable of reproducing temporal trends, as shown by the notable downward shift of

measured concentrations in 2013, which is captured well by the prediction.

TNDb concentrations in WWTP effluents were generally dominated by NO; ™ -N concentrations,
whereas NO, ™ -N and NH,"-N concentrations were negligibly low in most cases (the WWTP
in Miel being an exception). As in the base model setups (see Subsection 4.2.1), concentrations
of organic N were estimated by substracting the concentrations of the inorganic N compounds
from the TNb concentrations. This procedure was identical for both measured and predicted
data points. Occasional negative values for organic N were set to 0. As expected, organic N
was the second most abundant nitrogen fraction in the WWTP effluents after NO; " -N. The
daily WWTP emission loads were calculated by multiplying the measured or imputed mean
concentrations for each day with the corresponding wastewater discharge volumes. In order
to generate data for the warm-up period from 2008 to 2011, a four-year constant sequence of
average daily emission loads was added to the beginning of each time series. The annual N
emission loads for each WWTP during the simulation period from 2012 to 2018 are presented

and discussed in Chapter 6.

4.2.3. Refinement of Agricultural Management and Crop Growth

The third set of model variants built for this thesis includes refined model parameterization
with respect to agricultural management, in addition to the linear regression time series impu-
tation of WWTP nitrogen emissions described in Subsection 4.2.2. One of the features of the
new models is tile drainage of agricultural areas. A digital map of tile drained fields, pastures,
orchards and tree nurseries in the Swist catchment was obtained from Kothe et al. (2021), who
digitized and assembled historical maps of tile drainage systems from engineering consultan-
cies, government agencies and farmers. Most of these historical maps originate from construc-
tion or land consolidation measures. They were complemented by an extensive analysis of
aerial photographs. It should be noted that the Kothe et al. (2021) data set is not guaranteed
to be complete or up-to-date. The underlying map material dates as far back as the 1950s and
may include drainage systems that are now damaged or heavily modified. In effect, entries in
the data set neither are necessary nor sufficient for the current existence of functional drainage
systems at the mapped location and should therefore be interpreted as potentially (rather than
actually) drained areas. Further information on the compilation and interpretation of the digital

tile drainage map can be found in Kothe et al. (2021).
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Of the various approaches to tile flow simulation available in SWAT, the most parsimonious
(in terms of model parameters) has been chosen (Du et al. 2005, see Subsection 3.1.2). In order
to determine the regions inside the Swist catchment that are able to contribute tile flow in the
models, a GIS overlay of tile drained areas with agricultural areas in the Swist catchment was
created. The drained areas were taken from the digital map described above. The agricultural
areas encompassed cropland, orchards, pastures and tree nurseries from the ATKIS 2019 land
use data set described in Subsection 4.2.1. From the GIS overlay, the proportion of the total
agricultural area that is tile drained was determined for each individual SWAT subbasin. Tile
flow simulation was activated for all agricultural HRUs in subbasins that exceeded 40 % tile
drained area by setting the DDRAIN.mgt parameter to a value of 1000 mm (see Table 4.5 on
page 74). Appendix A shows a map with the location of all subbasins with active tile drainage
simulation, together with the map of tile drained areas compiled by Kothe et al. (2021) for

reference.

Apart from tile flow simulation, the refined management models also include rotation of dif-
ferent field crops from one simulation year to the next. For this purpose, the management
schedules for each cropland HRU were heavily modified compared to their counterparts in the
first two sets of model variants. A total of 35 different management schedules were prepared,
based on conversations with local farmers as well as the annual best practice recommendations
published by the Chamber of Agriculture (LWK) in NRW (Paffrath et al. 2021). Each manage-
ment schedule represents one archetypal crop rotation cycle of three to five years before it is
repeated, and each year represents a defined sequence of planting, fertilizing, harvesting and
plowing operations for the specific crop cultivated that year. Appendix C details all manage-
ment schedules and associated crop rotation cycles prepared for this thesis in tabular form.
Table 4.4 gives an overview of the rotated field crops, together with the estimated quantities
of annual N fertilizer applied in the simulations for each field crop. Depending on the crop,
the total amount of fertilizer is given in several applications at different times during the re-
spective crop year. Note that that the fertilizing routine for winter wheat is the same as in the
default cropland management schedules of the base model setups described in Subsection 4.2.1,
meaning three application of 60 kg NOs; " -N /(haa) each in March, April and May. Details on
the timing of all management operations can be inferred from the tables in Appendix C. As in

the base models, date scheduling was applied.

In addition to the crops listed in Table 4.4, “Polish” canola (Brassica rapa, or synonymously
Brassica campestris) is used as a winter catch crop whenever a main crop harvested in fall
is followed by another main crop planted in spring. The catch crops do not receive any N

fertilizer and freeze before the start of the next growing season (“kill” operation in SWAT).
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Table 4.4.: Rotated field crops with annual N fertilizer quantities. Management schedules for corn and
corn silage only differ in the timing of the harvest operation. Annual N fertilizer quantities have been
estimated based on the best practice recommendations provided by Paffrath et al. (2021). Field peas
are not fertilized due to N fixation.

SWAT Crop Code  Crop Name Taxonomic Name N Fertilizer [kg NO3 ~-N /(ha a)]

CANA Canola Brassica napus 170
CORN Corn Zea mays 150
CSIL Corn Silage Zea mays 150
FPEA Field Peas Pisum arvense 0
OATS Oats Avena sativa 80
POTA Potato Solanum tuberosum 130
RYE Rye Secale cereale 130
SGBT Sugar Beet Beta vulgaris 110
WBAR Winter Barley ~ Hordeum vulgare 140
WWHT Winter Wheat  Triticum aestivum 180

Their residues are either incorporated into the soil in a springtime plowing operation or left
at the soil surface before planting of the following crop for soil conversation purposes (“mulch
tillage”). It should be noted that Brassica rapa is not suitable to be grown directly before sugar
beet and potatoes, due to the promotion of nematodes, a major soil-borne pest of root crops.
However, parameterizations for nematode-resistant catch crops (e.g. oilseed radish, Raphanus
sativus) were not available in the ArcSWAT database. As pests and their effects on crop growth
are not simulated in SWAT and Brassica rapa was assumed to be reasonably similar to oilseed
radish in terms of height, habitus and physiology, it was grown prior to sugar beet and potatoes

nonetheless.

The management schedules and rotation cycles were assigned to the different cropland HRUs
so that the resulting distribution of area shares for each crop in the total arable area of the Swist
catchment resembles the actual distribution as closely as possible. For this purpose, the follow-
ing algorithm for assigning management schedules to the cropland HRUs in the SWAT models
was implemented in R. First, randomly select a cropland HRU. Second, applying every available
management schedule and associated starting crop configuration to the current HRU, calculate
the area share of each crop in each simulation year in the total area of all HRUs evaluated so
far (as a real number between 0 and 1). The area share for each simulation year is calculated
by adding the area of the current HRU to the combined area of all HRUs the respective crop
has already been assigned to for the same year, and dividing this value by the total area of all
previously considered HRUs (obviously, for the very first HRU the resulting area share will be
exactly 1 for the crop grown each year and exactly 0 for all other crops). The starting crop con-
figuration of a management schedule determines which crop of the associated rotation cycle is

grown in the first simulation year (e.g. for a management schedule that covers five years, there
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are five possible starting crop configurations). Third, compare the area shares obtained by this
procedure to observed area shares by calculating their MSE over all considered field crops for
every year. Fourth, sum the MSE over all simulation years and pick the management schedule
(and the respective starting crop) that yields the lowest MSE sum. Repeat this procedure with

all cropland HRUs until all of them have been considered.

Figure 4.3 illustrates this process using the model setup that is based on the ATKIS 2019 land
use data and the BK50 2019 soil data as an example. In part A of the figure, a heat map shows
the progression of the MSE calculated for each simulation year (including the warm-up period)
with each newly evaluated cropland HRU. This heat map directly corresponds to part B of the
figure, which tracks the optimization criterion - the MSE sum over all years - over all evaluated
HRUs. Both part A and B of Figure 4.3 show the results for the best possible (i.e. smallest) value
of the optimization criterion. As can be seen from part B, the drop of the optimization criterion
is extremely steep (note the logarithmic scale), but not monotonous. At multiple points along
the downward progression of the MSE sum, the curve jumps back up, indicating stages in the
process when the algorithm was unable to improve the fit to the observed area shares with any
of the available crop rotation cycles. The large number of options (35 different rotation cycles,
along with their respective starting crop configurations) facilitated rapid alignment of modeled
with observed area shares by reducing the number of upward spikes in the depicted curve. Part
C of Figure 4.3 shows the final distribution of crop area shares for each simulation year in the
model compared to the reference data set of observed values used for MSE calculation. As
can be seen, the procedure recreated the reference data extremely well, with relative errors
being particularly low for the three most common field crops in the catchment: winter wheat
(WWHT), winter barley (WBAR) and sugar beet (SGBT). Taken together, these crops cover

more than three quarters of the entire arable land area in the Swist catchment.

The reference data set stems from the German agricultural structure survey of 2016 for the
federal states of NRW and RLP (State Office for Information and Technology NRW 2016, State
Office for Statistics RLP 2016). The survey data includes municipality-level information on
the acreages of various field crops and other agricultural plants cultivated by farmers in 2016.
The reference area shares were calculated by summing the acreages for each crop over all
municipalities with substantial shares of arable land inside the Swist catchment and dividing
them by the total arable area. The crops listed in Table 4.4 constitute the vast majority of
cultivated field crops in the Swist catchment according to the survey data. As triticale was not
included in the ArcSWAT crop database, triticale acreages were reclassified as rye acreages for
the model setup. The associated area shares were generally small (see rye area shares in the

stacked bar chart of Figure 4.3 C). Furthermore, the survey data does not distinguish between
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Figure 4.3.: Assignment of crop rotation cycles to cropland HRUs. Only results for the SWAT model
variant built upon the ATKIS 2019 land use and the BK50 2019 soil data are shown (356 cropland HRUs).
(A) Progression of MSE between surveyed and assigned crop area shares for each simulation year and
included cropland HRU. (B) Progression of the optimization criterion - the MSE sum over all simulation
years - with each included cropland HRU. (C) Resulting area shares of field crops for each simulation
year compared to surveyed data. For the meaning of the SWAT crop code please refer to Tables 4.4 and
4.6. Survey data stems from the agricultural structure survey of 2016 for NRW as well as RLP and is an
aggregate for the Swist municipalities.
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different legumes. Therefore, acreages used to grow legumes according to the survey data were

unanimously identified with field pea acreages in the SWAT models.

The described procedure guaranteed that the refined SWAT models included realistic rotation
cycles of field crops typically grown in the region. Moreover, as the dates of specific man-
agement operations varied between different field crops and rotation cycles, the assignment
process quasi-randomized the timing of management operations throughout the study area,
ensuring that operations are not carried out simultaneously in all cropland HRUs (excessive
stream nutrient peaks due to fertilizer application on the same day in the entire catchment are
a known issue with SWAT raised for instance by Schiirz et al. (2017)). However, these upsides
of the method are contrasted with some imperfections. First, as the modeled crop area shares
are fit exclusively to data for 2016, the procedure is unable to generate temporal changes in
crop cultivation patterns (see the bar charts in Figure 4.3 C for confirmation). Second, the
agricultural structure survey allocates acreages to municipalities based on where the farm that
cultivates the respective fields is situated, not the fields themselves, as pointed out by Gémann
et al. (2021). The reference data for a specific municipality may therefore include acreages ly-
ing outside the municipality’s boundaries, while omitting other acreages situated within but
farmed by an agricultural holding located elsewhere. Although this most probably leads to
spatial misallocations at the municipality-level, it is considered unlikely to introduce unac-
ceptable distortions in the regional crop area shares. Keep in mind that crop area shares were
aggregated over several different municipalities and that spatial variability within the Swist
catchment remained unconsidered. Furthermore, some misallocations already are inherent to
the mismatch between administrative and catchment boundaries, whenever municipalities are

not completely enclosed by the catchment boundaries.

Average annual crop yields simulated with the default crop parameterization were implausi-
bly low for some of the rotated field crops (for the base model setup described in Subsection
4.2.1, harvest yields were not investigated). This was of particular concern for winter wheat,
sugar beet, potato, corn and corn silage. Although SWAT is known to have difficulties in sim-
ulating interannual variation in crop yields, it should be capable of reproducing long-term
average yields (Srinivasan et al. 2010, Abbaspour et al. 2015, Bauwe et al. 2019). The inability
to do so may indicate problems in simulating either plant growth or biomass withdrawal with
harvest operations, both of which possibly being detrimental to the simulated soil nitrogen bal-
ance. Partly following the suggestions of Bauwe et al. (2019), the crop parameters BIO_E and
HVSTI were set to the values listed in Table 4.5, affecting parameterization for winter wheat,
sugar beet, potatoes, corn and corn silage. In addition, harvest parameters for apple trees were

changed to better reflect the notion of tree growth simulation only representing annual de-
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Table 4.5.: Modified SWAT management and crop parameter values. All parameters that deviate from
the ArcSWAT default values, in addition to those in Table 4.2, are listed. If the changes only apply to a
subset of HRUs, subbasins or field crops, this is indicated in parantheses.

Parameter Value Unit Meaning

Management Parameters

DDRAIN.mgt 1000 mm Depth to tile drain from soil surface
(cropland, grassland, orchard and tree nursery HRUs
in subbasins with tile drainage)

Crop Parameters

BIO_E 36 1x107*kg/MJ  Radiation-use efficiency
(winter wheat)

BIO_E 45 1x10"*kg/MJ  Radiation-use efficiency
(corn, corn silage)

BIO_E 35 1x107*kg/MJ  Radiation-use efficiency
(sugar beet, potato)

HVSTI 0.57 Harvest index for optimal growing conditions
(winter wheat)

HVSTI 0.95 Harvest index for optimal growing conditions
(corn silage)

HVSTI 1.25 Harvest index for optimal growing conditions
(potato)

HVSTI 0.7 Harvest index for optimal growing conditions
(apple)

WSYF 0.35 Harvest index for highly stressed growing conditions
(apple)

velopment of leaves, flowers and fruits (see Subsection 4.2.1). The modifications resulted in
significant increases in plant growth and harvested yields for the respective crops, for example

with annual dry weight yields for winter wheat almost doubling.

Table 4.6 gives an overview of long-term average crop yields that were simulated with the
modified crop parameterization. Across the different combinations of land use and soil data
underlying the various model setups, differences in simulated dry weight yields stay well be-
low 1000 kg/(ha a) for all field crops, indicating low sensitivity of the simulated yields to the
applied land use and soil data sets. In purely qualitative terms, the simulated yields are largely
considered to be reasonable, with yields for sugar beet and corn silage being the highest, fol-
lowed by winter barley, winter wheat and corn. From a quantitative point of view, most yields
align well with their expected values, albeit with a small subset of crops (potatoes and corn
silage) undercutting their expected yields by implausibly wide margins. Potato yields are par-
ticularly concerning, remaining approximately three times below their expected value despite
the modified growth and harvest parameterization. Under normal conditions, potato yields

would be expected to exceed those of cereals such as wheat and barley. Furthermore, barley
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Table 4.6.: Average simulated crop yields over all cropland HRUs (2012-2016). Expected values have
been estimated on the basis of typical fresh weight yields and dry matter contents. Note that these
are meant only as a rough guide to assess the plausibility of the simulated values. Simulated yields are
reported for the four combinations of soil and land use data sets used for model setup (see Subsection
4.2.1) and each field crop included in the refined SWAT models. They exclusively refer to the model
versions with CN adjustment based on evapotranspiration and refined management parameterisation,
including the modified crop parameters detailed in Table 4.5. For completeness, yields for agricultural
land uses other than cropland (apples for orchards and fescue for pastures) are added at the end of the
table.

Average Dry Weight Yields [kg/(ha a)]

SWAT Crop Expected CLC 2012 CLC 2012 ATKIS 2019  ATKIS 2019
Code Name (approx.) BK50 2015 BK50 2019 BK50 2015 BK50 2019
CANA Canola 4000 4231 4197 4354 4278
CORN Corn 8000 6799 7183 7332 7250
CSIL Corn Silage 15000 9719 9470 9425 8924
FPEA Field Peas 3500 4578 4502 4582 4449
OATS Oats 4000 4776 4470 4639 4516
POTA Potato 9000 3466 3306 3344 3242
RYE Rye 5000 5502 5424 5431 5531
SGBT Sugar Beet 15000 12922 12834 12877 12839
WBAR Winter Barley 6000 7319 7296 7168 7188
WWHT  Winter Wheat 7000 7290 7166 7383 7187
ORCH Apple 5000 7275 7134 7155 7197
WPAS Tall Fescue 3500 3360 3169 3462 3378

yields are probably slightly overestimated and should not exceed long-term yields for winter
wheat. Similarly, simulated apple yields are higher than expected, which may be attributed to
the modified harvest parameters that have been re-estimated without a sound scientific basis.
In general, the simulated yields are considered acceptable, especially since the three most im-
portant crops in the Swist river basin - winter wheat, winter barley and sugar beet - exhibit
only relatively low yield deviations from their expected values. Keep in mind that the expected
yields given in Table 4.6 only constitute general estimates, and that actual yields are dependent

on the specific growing conditions in the research area during the simulated time period.

4.3. Uncalibrated Model Performance

4.3.1. Performance Evaluation

In the following subsections, the different (uncalibrated) model setups described in the first part
of this chapter are compared in terms of model performance. Model performance was evalu-

ated by assessing the capability of the models to reproduce various observed time series of
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streamflow and in-stream NO3 ™ -N loads in the Swist river basin. Performance evaluation with
regard to streamflow was carried out using daily streamflow time series measured at three of
the four online gauging stations in the river basin (names of the associated streams are given
in parantheses): Essig (Steinbach), Morenhoven (Swist) and Weilerswist (Swist). Streamflow
measurements in Kirchheim (Steinbach) were unavailable for calibration since they had al-
ready been used to set the model outflow from the Steinbach reservoir. Model performance
with respect to in-stream NOs3; ™ -N loads was evaluated using daily NO; ™ -N load time series
observed at the online water quality monitoring station in Metternich. See the map in Ap-
pendix A for the position of the gauging stations and the water quality monitoring station in

the river basin.

As the results of the model comparison were also used to select an appropriate model ver-
sion for parameter calibration (and thus can be considered part of the calibration process), the
performance evaluation was limited to five years from 2012 to 2016, whereas the remaining
two simulation years 2017 and 2018 were reserved for model validation (see Chapter 5). The
observed daily discharge time series were complete (i.e. without gaps) at all three discharge
gauges. The observed daily NOs; ™ -N loads were based on five-minute NO3; ™ -N concentration
measurements exhibitung considerable gaps due to maintenance and repair interruptions. If
gaps in the five-minute concentration data did not exceed one hour, they were filled using linear
interpolation. NO3; ™ -N loads transported in the river were calculated by multiplying the five-
minute NO; ™-N concentrations data with five-minute streamflow data measured at the gaug-
ing station in Weilerswist, with remaining gaps in the concentration time series translating
into gaps in the resulting load time series. The five-minute NO3; ™ -N loads were subsequently
summed up to daily values, with remaining gaps (all longer than one hour) also generating a

gap in the daily time series.

The water quality monitoring station in Metternich lies several river kilometers upstream of
the gauge in Weilerswist, which corresponds to a temporal offset between concentration and
streamflow measurements of approximately 1 to 2h, depending on the current flow condi-
tions (Erftverband personal communication). Therefore, load calculations were repeated for
NO; ™ -N concentrations that were shifted relative to the streamflow data to represent water
travel times between Metternich and Weilerswist of 5, 10, ..., 120 min. For each time interval,
the relative error to the daily loads based on unshifted concentration data was calculated (see
Figure 4.4). For days on which the relative error exceeds a value of 10 %, the respective daily
load was removed from the time series and thus remained unconsidered in performance eval-
uation. Similarly, for days on which a disproportianate amount of rainfall is concentrated on

the region between Metternich and Weilerswist (i.e. high daily precitation measured at the
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Figure 4.4.: Relative error of daily NO3; ™ -N loads due to different assumed water travel times between
Metternich and Weilerswist. Each data point represents the relative error of the calculated in-stream
NO; ™ -N load transported on one day in the simulation period (2012-2018), assuming different water
travel times. For days on which the absolute relative error exceeds 10 % for any assumed water travel
time, the respective load is removed from the daily load time series and thus remains unconsidered in
model performance evaluation.

weather station in Weilerswist compared to low daily precipitation in the rest of the Swist
catchment), the respective daily load was removed from the time series as well. The observed
and simulated daily time series were used to calculate four of the performance criteria intro-
duced in Subsection 3.2.1 for each of the four monitoring sites. The coefficient of determination
R? was calculated by determining Pearson’s correlation coefficient r using the cor () function
in base R’s stats package (R Core Team 2022) and squaring the result. The PBIAS, NSE and KGE
metrics were calculated using the various functions implemented in the R package hydroGOF

(Zambrano-Bigiarini 2020), applying the equations given in Subsection 3.2.1.

4.3.2. Performance of Base Models

Table 4.7 lists the performance ratings at the four different monitoring sites achieved by dif-
ferent versions of the base model setup described in Subsection 4.2.1. These model versions
encompass the four different combinations of land use (LU) and soil data used to build the
models, as well as two different methods of dynamic CN adjustment, either via daily soil mois-

ture or daily evapotranspiration (ET, see Subsection 3.1.2). Consequently, performance was
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tested for eight different model versions at each monitoring site (Essig, Morenhoven, Weilers-
wist, Metternich). In general, the choice of the CN adjustment method produces the largest
performance differences between the model setups, whereas performance differences originat-
ing from varying land use and soil data are mostly minuscule. Considering streamflow, models
adjusting the CN with evapotranspiration are clearly superior to those using CN adjustment
based on soil moisture. The performance differences are particularly pronounced for the Es-
sig gauge, where there is a considerable increase of all performance metrics when applying
the evapotranspiration approach. To a lesser, but still significant degree, this effect is also vis-
ible at the other stream gauges in Morenhoven and Weilerswist, with NSE and KGE scores
unanimously turning from negative to positive. Considering NOs ™ -N loads in Metternich, the
evapotranspiration based method for CN adjustment tends to perform better as well, albeit
not across all metrics. While R? and NSE scores are slightly higher for the evapotransiration

method, differences between the PBIAS and KGE scores are ambiguous.

Given that the models are not yet calibrated, some R?, NSE and KGE scores already reach rea-
sonably high. NSE values for Essig in particular are distinctly positive for all model setups
involving evaporation based CN adjustment. For the same model setups, the Essig R* scores
reach as high as 0.5, indicating reasonable good correlation of simulated and observed stream-
flow peaks (however, note that the gauge in Essig receives a large part of its water from the
Steinbach reservoir, for which the Kirchheim discharge time series is used to fix daily reservoir
outflow in the SWAT models). KGE scores for simulated streamflow in Morenhoven and Wei-
lerswist are consistently above 0.4 (for Morenhoven sometimes even above 0.5) when evapora-
tion based CN adjustment is used. However, the respective NSE scores are considerably lower,
in Weilerswist even staying below 0 for all but one model setup. With respect to in-stream
NO3 ™ -N loads in Metternich, NSE scores are positive for all model setups, albeit unanimously

staying well below 0.2. The corresponding KGE scores are in a similar numerical range.

With regard to the PBIAS scores listed in Table 4.7, there is a clear pattern of overpredicted
streamflow at all stream gauges. This general pattern is independent of the CN adjustment
method, although streamflow overprediction is less pronounced for CN adjustment based on
evapotranspiration. The PBIAS scores never fall below 20 % at any of the three stream gauges.
For the Essig gauge, streamflow overprediction is particularly strong, with PBIAS scores rang-
ing from 83.2 to 149.1 %. Overprediction of streamflow is contrasted by systematic underpredic-
tion of NO3 ™ -N loads in Metternich. For all model setups, PBIAS scores for NO; ™ -N load pre-
diction are below —30 %. There are many possible explanations for these systematic deviations
from the observed data. NO5;™-N load underprediction may be caused by misrepresentation

of N inputs (in agricultural catchments particularly via fertilization), soil nitrogen cycling (e.g.
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Table 4.7.: Perfomance criteria for the simulation results of the eight uncalibrated base model vari-
ants. The different model variants are defined by their underlying land use (LU) and soil data as well
as CN adjustment procedure. Model performance is evaluated for streamflow at the gauges in Essig,
Morenhoven and Weilerswist as well as NO3; ™ -N loads at the water quality monitoring station in Met-
ternich (simulation years 2012-2016). The best value for each performance criterion and monitoring site

is typeset in bold.

Monitoring Site LU Data Soil Data CN Adjustment R? PBIAS NSE  KGE
Essig CLC 2012 BK50 (old)  Soil Moisture 0.09 1244 -7.99 -1.52
Essig CLC 2012 BK50 2019  Soil Moisture 0.09  140.0 -8.68 -1.69
Essig ATKIS 2019 BK50 2015  Soil Moisture 0.08 132.8 -9.11 -1.71
Essig ATKIS 2019 BK50 2019  Soil Moisture 0.09 149.1 -9.96 -1.89
Essig CLC 2012 BK50 2015  Evapotranspiration 0.50 96.3 0.27 -0.03
Essig CLC 2012 BK50 2019  Evapotranspiration 0.49 83.2 0.31 0.09
Essig ATKIS 2019 BK50 2015  Evapotranspiration 0.50 100.7 0.26 -0.07
Essig ATKIS 2019 BK50 2019  Evapotranspiration 0.47 83.2 0.30 0.09
Morenhoven CLC 2012 BK50 2015  Soil Moisture 0.24 441 -340 -0.52
Morenhoven CLC 2012 BK50 2019  Soil Moisture 0.24 46.4 -3.95 -0.66
Morenhoven ATKIS 2019 BK50 2015  Soil Moisture 0.24 44.2 -321 -0.48
Morenhoven ATKIS 2019 BK50 2019  Soil Moisture 0.25 46.9 -3.62 -0.59
Morenhoven CLC 2012 BK50 2015 Evapotranspiration 0.34 29.6 0.13 0.49
Morenhoven CLC 2012 BK50 2019  Evapotranspiration 0.33 24.9 0.10 0.51
Morenhoven ATKIS 2019  BK50 2015  Evapotranspiration 0.34 30.4 0.17 0.48
Morenhoven ATKIS 2019 BK50 2019  Evapotranspiration 0.33 25.8 0.09 0.50
Weilerswist CLC 2012 BK50 2015  Soil Moisture 0.13 51.5 -691 -1.14
Weilerswist CLC 2012 BK50 2019  Soil Moisture 0.13 54.3 -7.11 -1.19
Weilerswist ATKIS 2019  BK50 2015  Soil Moisture 0.13 51.6 -6.76  -1.12
Weilerswist ATKIS 2019 BK50 2019  Soil Moisture 0.13 54.3 -6.84 -1.14
Weilerswist CLC 2012 BK50 2015  Evapotranspiration 0.26 29.6 -0.07 0.43
Weilerswist CLC 2012 BK50 2019  Evapotranspiration 0.25 25.2 -0.12 0.43
Weilerswist ATKIS 2019 BK50 2015  Evapotranspiration 0.28 29.1 0.06 0.44
Weilerswist ATKIS 2019  BK50 2019  Evapotranspiration 0.26 23.9 -0.02 0.45
Metternich CLC 2012 BK50 2015  Soil Moisture 0.15 -31.3 0.08 0.11
Metternich CLC 2012 BK50 2019  Soil Moisture 0.13 -334 0.05 0.09
Metternich ATKIS 2019 BK50 2015  Soil Moisture 0.16 -31.6 0.09 0.10
Metternich ATKIS 2019  BK50 2019  Soil Moisture 0.14 -35.6 0.05 0.07
Metternich CLC 2012 BK50 2015  Evapotranspiration 020 -324 0.13 0.10
Metternich CLC 2012 BK50 2019  Evapotranspiration 0.21  -35.6 0.11 0.07
Metternich ATKIS 2019 BK50 2015  Evapotranspiration 0.22 -32.8 0.13 0.10
Metternich ATKIS 2019 BK50 2019  Evapotranspiration 0.22 -389 0.10 0.05
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rates of mineralization and denitrification) and in-stream retention. Subsection 4.3.4 provides a
broader discussion of this issue in connection with simulated agricultural management. A gen-
eral explanation for streamflow overprediction could be systematic error in the measurement
of precipitation heights and/or river discharge. However, considering the applied measurement
approaches, the multitude of precipitation and discharge gauges and their instrumentation, in-
put data errors are deemed an unlikely cause for streamflow overestimation of more than 10 %

at all monitoring sites.

Instead, two other explanations for streamflow overprediction are more plausible, especially
considering the characteristics of the Swist catchment. First, the option to update the CN with
evapotranspiration has been introduced to SWAT to address overprediction of surface runoff
from shallow soils by the classical soil moisture method (Yen et al. 2015). Shallow soils are
prevalent in the elevated Eifel foothills on the southern edge of the Swist catchment (Geological
Survey NRW 2019) and may thus contribute excess surface runoff in simulations with soil
moisture based CN adjustment. Indeed, overpredicted streamflow is mostly concentrated in
the hydrograph peaks directly after rainfall events in these simulations. In contrast, hydro-
graph peaks are substantially reduced for evapotranspiration based CN adjustment (see Figure
4.5 for illustration). Given that the largest part of the Essig gauge catchment is situated in the
Eifel foothills, this may furthermore explain the particular strong effect the choice of the CN
adjustment method has on performance metrics for this specific gauge. Second, the uncali-
brated base models do not account for transmission losses from the SWAT main channels, as
the hydraulic conductivity of the main channel bed (model parameter CH_K2.rte) has been left
at its general default value of 0 mm/h.> As described in Chapter 2, transmission losses from the
streams very likely play an important role in the hydrology of the Swist catchment. Neglect-
ing them in the simulations may therefore lead to severe overprediction of the actual stream
discharges, especially along the Steinbach watercourse, for which transmission losses are well

documented.

Although performance differences between models based on different land use and soil data
are to a large part negligible, there is a slight tendency towards better simulation results for
the land use and soil data sets from 2019. The updated soil data set (BK50 2019) in particular
seems to mitigate overestimation of streamflow when applying CN updating based on evapo-
transpiration, with PBIAS scores dropping markedly compared to the models built on the older

soil data (BK50 2015). On the one hand, seeing better model performances ratings for the more

> Although this was considered unrealistic, better knowledge of hydraulic channel bed conductivities and their
spatial distribution was unavailable. Determining better values for CH_K2.rte was therefore left to subsequent
parameter calibration (see Chapter 5).
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Figure 4.5.: Observed and simulated hydrographs at the Weilerswist gauge for the second and third
quarter of 2013. The two simulated hydrographs belong to the uncalibrated base model setup that
dynamically updates the CN either with soil moisture or with evapotranspiration. The method based
on soil moisture substantially overpredicts the hydrograph peaks. Both model setups have been built
on the ATKIS 2019 land use data set and BK50 2019 soil data set.

recent land use and soil data sets is reassuring (even with models being still uncalibrated at
this stage and model error being difficult to attribute), as they were expected to be superior
to the older data. The ATKIS 2019 land use data set incorporates more spatial detail than the
CLC 2012 data, and the BK50 2019 soil data set is based on a more recent soil mapping for the
Swist river basin, more reliable data for the soils located in RLP as well as updated methods
to determine important soil parameters. On the other hand, the older land use and soil data
sets mostly produce similar performance ratings, which is not necessarily surprising given that
both share structural similarities and a common origin with their counterparts from 2019 (see
Subsection 4.2.1).

4.3.3. Performance of Models with Refined Point Source Emissions

Replicating the structure of Table 4.7, Table 4.8 gives an overview of model performances cal-
culated for the refined imputation of point source N emissions (see Subsection 4.2.3). Since
the revised time series of N emission loads from the four WWTP effluents in the catchment

do not affect water quantities, performance metrics for the three streamflow gauges in Essig,
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Morenhoven and Weilerswist are exactly the same as those listed in Table 4.7. However, the
revised time series do affect water quality. Considering in-stream NO; ™ -N loads at the water
quality monitoring station in Metternich, the unexpected result is that model performance de-
teriorates compared to the base model results provided in Table 4.7. Although performance
ratings generally differ only by a small amount, they unanimously worsen for each perfor-
mance metric and model setup. In part, this result can be explained with the overall point
source N quantities released into the streams in both sets of models. For the time period for
which the performance ratings in Tables 4.7 and 4.8 are calculated (2012-2016), the regression
based imputation approach results in total N emissions from WWTPs that are approximately
6 % lower than those resulting from simply filling emission time series gaps with the mean of
the known values. As the base models already underestimate in-stream NO; ™ -N loads, reduc-
tion of point source emissions obviously pushes the PBIAS scores towards even more negative
values. Similarly, bias in predicted NO; ~-N loads may also be responsible for lower NSE and
KGE scores.

However, R? scores decrease as well, although they exclusively measure correlation between
observed and predicted NOs; ™ -N loads in Metternich. This means that the lower model perfor-
mance is not only an expression of stronger bias, but is also due to poorer representation of
the NO; ™-N in-stream load dynamics. Although the effect is only weak, it nevertheless is the
exact opposite of what was originally hoped to be achieved with the revised time series. Even if
differences to the base model performance ratings are considered to be insignificant, the results
still show that the comparatively elaborate and time consuming regression approach offers no
benefit over the extremely simple mean substitution approach in this application case. Regres-
sion models with stronger fits to the WWTP effluent data (see the relatively low R? values in
Table 4.3) may improve these results, but the available data did not allow to build such models
as long as they assume linearity between predictor and response variables. Non-linear models
may be able to provide better fits and possibly more predictive power, although they are also
more likely to overfit the available data. In this regard, remember that some non-parametric re-
gression approaches that can accommodate non-linear relationships have already been tested

for this study but did not appear to provide better results (see Subsection 4.2.2).

Although the regression approach for imputing the time series gaps was unable to improve sim-
ulation of daily NO3; ™ -N in-stream dynamics, Figure 4.2 suggests that it may be better at cap-
turing seasonal variations. To confirm this, the performance metrics for Swist NO3 ™ -N loads
in Metternich were recalculated based on the monthly simulation results both for the base and
the refined model setups. However, while overall performance ratings expectedly increased

due to the coarser temporal aggregation level, the base models again slightly outperformed the
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Table 4.8.: Performance criteria for the simulation results of the eight uncalibrated model variants
extended by regression-based point source inputs. The different model variants are defined by their
underlying land use (LU) and soil data as well as CN adjustment procedure. Model performance is
evaluated for streamflow at the gauges in Essig, Morenhoven and Weilerswist as well as NO; ™ -N loads
at the water quality monitoring station in Metternich (simulation years 2012 - 2016). The best value for
each performance criterion and monitoring site is typeset in bold.

Monitoring Site LU Data Soil Data CN Adjustment R? PBIAS NSE  KGE
Essig CLC 2012 BK50 2015  Soil Moisture 0.09 124.4 -7.99 -1.52
Essig CLC 2012 BK50 2019  Soil Moisture 0.09  140.0 -8.68 -1.69
Essig ATKIS 2019 BK50 2015  Soil Moisture 0.08 132.8 -9.11 -1.71
Essig ATKIS 2019 BK50 2019  Soil Moisture 0.09 149.1 -9.96 -1.89
Essig CLC 2012 BK50 2015  Evapotranspiration 0.50 96.3 0.27 -0.03
Essig CLC 2012 BK50 2019  Evapotranspiration 0.49 83.2 0.31 0.09
Essig ATKIS 2019 BK50 2015  Evapotranspiration 0.50 100.7 0.26 -0.07
Essig ATKIS 2019 BK50 2019  Evapotranspiration 0.47 83.2 0.30 0.09
Morenhoven CLC 2012 BK50 2015  Soil Moisture 0.24 44.2 -340 -0.52
Morenhoven CLC 2012 BK50 2019  Soil Moisture 0.24 46.5 -3.94  -0.66
Morenhoven ATKIS 2019 BK50 2015  Soil Moisture 0.24 44.3 -321 -0.48
Morenhoven ATKIS 2019 BK50 2019  Soil Moisture 0.25 47.0 -3.62 -0.59
Morenhoven CLC 2012 BK50 2015 Evapotranspiration 0.34 29.7 0.14 0.49
Morenhoven CLC 2012 BK50 2019  Evapotranspiration 0.34 25.0 0.10 0.51
Morenhoven ATKIS 2019  BK50 2015  Evapotranspiration 0.34 30.5 0.17 0.48
Morenhoven ATKIS 2019 BK50 2019  Evapotranspiration 0.33 259 0.10 0.50
Weilerswist CLC 2012 BK50 2015  Soil Moisture 0.13 51.5 -6.90 -1.14
Weilerswist CLC 2012 BK50 2019  Soil Moisture 0.13 54.3 -7.11 -1.19
Weilerswist ATKIS 2019  BK50 2015  Soil Moisture 0.13 51.6 -6.76  -1.12
Weilerswist ATKIS 2019 BK50 2019  Soil Moisture 0.13 54.4 -6.84 -1.14
Weilerswist CLC 2012 BK50 2015  Evapotranspiration 0.26 29.6 -0.07 0.43
Weilerswist CLC 2012 BK50 2019  Evapotranspiration 0.25 25.3 -0.11 0.44
Weilerswist ATKIS 2019 BK50 2015  Evapotranspiration 0.28 29.1 0.06 0.44
Weilerswist ATKIS 2019  BK50 2019  Evapotranspiration 0.26 24.0 -0.02 0.45
Metternich CLC 2012 BK50 2015  Soil Moisture 0.13 -33.4 0.05 0.07
Metternich CLC 2012 BK50 2019  Soil Moisture 0.11 -35.6 0.02 0.06
Metternich ATKIS 2019 BK50 2015  Soil Moisture 0.13 -33.8 0.06 0.07
Metternich ATKIS 2019  BK50 2019  Soil Moisture 0.12 -37.8 0.02 0.04
Metternich CLC 2012 BK50 2015  Evapotranspiration 0.17  -345 0.09 0.07
Metternich CLC 2012 BK50 2019  Evapotranspiration 0.18 -37.8 0.07 0.04
Metternich ATKIS 2019 BK50 2015  Evapotranspiration 0.19 -35.0 0.10 0.06
Metternich ATKIS 2019 BK50 2019  Evapotranspiration 0.19 -41.1 0.06 0.01
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refined models across all performance metrics, including R? (data not shown). Thus, the refined
models are unable to improve simulation of seasonal variability as well. Multiple factors work
together to produce this outcome. First, WWTP emission loads are dominated by discharge
volumes, which are the same in both sets of model variants. While load seasonality was more
pronounced in the refined models due to the increased variability of N concentrations, the basic
seasonal pattern was discernible in both the base models and the refined models. Second, the
largest WWTP in Flerzheim exhibits the smallest amount of seasonality in N emissions, pos-
sibly reducing the seasonal variability of the total emission loads from all WWTPs across the
catchment. Finally and most importantly, the effect of seasonality in WWTP emissions on in-
stream loads in Metternich is probably overridden by other catchment processes, like seasonal
differences in in-stream N retention (Schwientek & Selle 2016) as well as increased nitrate
wash-out from soils during winter in response to plant dormancy (Bauwe et al. 2020, Kothe
et al. 2021).

4.3.4. Performance of Models with Refined Agricultural Management

Table 4.9 summarizes the performance ratings for the models with refined agricultural man-
agement, which includes active tile drains in parts of the agricultural area, as well as updated
management schedules with crop rotation. Focusing on the simulation results for streamflow,
there is a clear tendency of improved model performance at all three gauging stations compared
to Tables 4.7 or 4.8, barring some exceptions: In Essig, the already too high PBIAS scores fur-
ther increase for the models that adjust the CN with evapotranspiration, however only by small
and probably insignificant amounts. The corresponding KGE scores show no clear tendency
in either direction. All other performance ratings for Essig improve slightly but noticeably. At
the gauges in Morenhoven and Weilerswist, performance ratings improve by small amounts
across almost all model variants and performance metrics (only the change in NSE scores for
Weilerswist remains inconclusive when ET based CN adjustment is used). Although altered
plant growth due to modified management schedules and crop parameters may affect catch-
ment hydrology, the improved model performance for streamflow is probably caused mostly
by the inclusion of tile flow in the models. Tile drains are common under many agricultural
areas in the Swist catchment, but were neglected completely in all preceding model variants.
Omission of tile flow in catchments with widespread tile drainage can severely compromise

SWAT simulation results, as shown for instance by Koch et al. (2013).

In contrast to the streamflow simulation results, the effects of the modifications on simulated
NO; ™ -N loads in Metternich are more ambiguous. While there is a clear increase in R? scores,

the already distinctly negative PBIAS scores from Tables 4.7 and 4.8 further decrease to values
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Table 4.9.: Performance criteria for the simulation results of the eight uncalibrated model variants with
refined management parameterization. The different model variants are defined by their underlying
land use (LU) and soil data as well as CN adjustment procedure. Model performance is evaluated
for streamflow at the gauges in Essig, Morenhoven and Weilerswist as well as NO;™-N loads at the
water quality monitoring station in Metternich (simulation years 2012 - 2016). The best value for each
performance criterion and monitoring site is typeset in bold.

Monitoring Site LU Data Soil Data CN Adjustment R? PBIAS NSE  KGE
Essig CLC 2012 BK50 2015  Soil Moisture 0.09 120.7 -7.57 -1.44
Essig CLC 2012 BK50 2019  Soil Moisture 0.10  136.3 -8.23 -1.61
Essig ATKIS 2019 BK50 2015  Soil Moisture 0.08 128.9 -8.64 -1.63
Essig ATKIS 2019 BK50 2019  Soil Moisture 0.09 145.5 -9.46 -1.82
Essig CLC 2012 BK50 2015  Evapotranspiration 0.52 96.7 0.29 -0.02
Essig CLC 2012 BK50 2019  Evapotranspiration 0.52 84.6 0.35 0.09
Essig ATKIS 2019 BK50 2015  Evapotranspiration 0.53 101.0 0.28 -0.07
Essig ATKIS 2019 BK50 2019  Evapotranspiration 0.51 84.9 0.33 0.08
Morenhoven CLC 2012 BK50 2015  Soil Moisture 0.25 36.0 -2.86 -0.39
Morenhoven CLC 2012 BK50 2019  Soil Moisture 0.26 37.4 -3.07 -045
Morenhoven ATKIS 2019 BK50 2015  Soil Moisture 0.26 36.7 -2.60 -0.33
Morenhoven ATKIS 2019 BK50 2019  Soil Moisture 0.27 39.8 -2.89 -0.42
Morenhoven CLC 2012 BK50 2015 Evapotranspiration 0.37 244 0.17 0.54
Morenhoven CLC 2012 BK50 2019  Evapotranspiration 0.37 21.3 0.13 0.55
Morenhoven ATKIS 2019  BK50 2015  Evapotranspiration 0.37 25.9 0.21 0.53
Morenhoven ATKIS 2019 BK50 2019  Evapotranspiration 0.38 23.5 0.16 0.55
Weilerswist CLC 2012 BK50 2015  Soil Moisture 0.14 43.4 -5.80 -0.94
Weilerswist CLC 2012 BK50 2019  Soil Moisture 0.14 45.8 -581 -0.95
Weilerswist ATKIS 2019  BK50 2015  Soil Moisture 0.14 433 -5.54  -0.89
Weilerswist ATKIS 2019 BK50 2019  Soil Moisture 0.15 47.3 -5.66 -0.92
Weilerswist CLC 2012 BK50 2015  Evapotranspiration 0.28 26.3 -0.08 0.46
Weilerswist CLC 2012 BK50 2019  Evapotranspiration 0.28 23.5 -0.12 0.46
Weilerswist ATKIS 2019 BK50 2015  Evapotranspiration 0.30 26.0 0.06 0.48
Weilerswist ATKIS 2019  BK50 2019  Evapotranspiration 0.30 234 0.02 0.49
Metternich CLC 2012 BK50 2015  Soil Moisture 0.21 -45.0 0.07 0.05
Metternich CLC 2012 BK50 2019  Soil Moisture 0.16  -47.7 0.01 0.01
Metternich ATKIS 2019 BK50 2015  Soil Moisture 0.21  -459 0.06 0.04
Metternich ATKIS 2019  BK50 2019  Soil Moisture 020 -46.2 0.05 0.03
Metternich CLC 2012 BK50 2015  Evapotranspiration 0.27  -46.2 0.09 0.06
Metternich CLC 2012 BK50 2019  Evapotranspiration 0.24 -485 0.06 0.02
Metternich ATKIS 2019 BK50 2015  Evapotranspiration 0.28  -47.9 0.08 0.04
Metternich ATKIS 2019 BK50 2019  Evapotranspiration 0.31 479 0.10 0.05
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below -40 % for all model setups. On the one hand, the higher R? scores hint at improved sim-
ulation of in-stream NO; ~-N dynamics. On the other hand, the drop in PBIAS signals greater
underestimation of overall NO; ™ -N loads transported in the Swist and its tributaries. NSE
and KGE scores for the different model setups change only by small amounts in both direc-
tions, which is plausible given that the two metrics incorporate various error components
- including both bias and lack in collinearity. The improved simulation results in terms of
NO;3 ™ -N dynamics are most likely due to the introduction of tile drains to the models and
the overall better performance in simulating streamflow. In contrast, the increased underpre-
diction of overall NO3; ™ -N loads can mostly be attributed to the changes in crop growth and
agricultural management that were adopted in the refined models. First, rising agricultural
yields caused by the modified crop parameter values detailed in Table 4.5 lead to increased N
withdrawal from cropland HRUs during harvest and consequently a long-term reduction of
the N quantities available for transport into surface waters. Second, the introduction of crop
rotation in the refined models comes with smaller overall inputs of N fertilizer, as winter wheat
receives the greatest amount of N fertilizer of all field crops (see Table 4.4 on page 70) but is
grown only on approximately 40 % of the arable land area in the Swist catchment (remember
that wheat is grown on 100 % of the arable land area in the base model setups while receiving

the same amount of N fertilizer).

Expanding on this, there is some uncertainty as to whether the N fertilizer quantities applied
in the SWAT models are high enough to realistically represent the actual fertilizer use by farm-
ers. Anecdotal evidence from conversations with farmers suggests this is not the case and that
the values given in Table 4.4 are in fact an underestimate. In this respect, it should be noted
that the basis for fertilizer quantities applied in the models are merely best practice recom-
mendations by the Chamber of Agriculture in NRW (Paffrath et al. 2021) with no guarantee
these recommendations resemble actual agricultural management practices in the study area.
Furthermore, Paffrath et al. (2021) base their recommendations on the 2020 amendment of the
German Fertilizer Application Ordinance, which imposes stricter requirements on the appli-
cation of N fertilizers to agricultural land. These stricter requirements were not yet active
during the study period from 2012 to 2018, providing further indication for underestimated
levels of applied N fertilizer in the models. In order to assess the numbers listed in Table 4.4,
additional sources with information on applied N fertilizer quantities were consulted for com-
parison. These sources encompass official data for all administrative districts in NRW compiled
by the Chamber of Agriculture (“nutrient reports”), management records for a small number of
agricultural fields in the Swist river basin obtained from farmers, as well as small-scale SWAT
studies that had access to agricultural management records from farmers in other parts of Ger-

many and Europe.
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The nutrient report of the Chamber of Agriculture NRW analyzes data on organic and mineral
fertilizer in NRW and is updated approximately every three years. The nutrient report of 2017
estimates average annual N fertilization for the agricultural area in NRW to be 206 kg N/ha in
2016 (Chamber of Agriculture NRW 2018). Applying a different methodology, the 2021 report
estimates average annual N fertilization for the agricultural area in NRW to be 196 kg N/ha in
the years between 2015 and 2017 (Chamber of Agriculture NRW 2021). The local estimates for
the two administrative districts that cover the majority of the Swist catchment area are substan-
tially lower than the NRW-wide averages. For the Rhein-Sieg-Kreis district, the reports assume
the total N fertilizer inputs to be approximately 175 kg N/ha in 2016 (Chamber of Agriculture
NRW 2018) and 165 kg N/ha in the three years from 2015 to 2017 (Chamber of Agriculture
NRW 2021). For the Euskirchen district, the reports assume the total N fertilizer inputs to be
approximately 175 kg N/ha in 2016 (Chamber of Agriculture NRW 2018) and 169 kg N/ha from
2015 to 2017 (Chamber of Agriculture NRW 2021). Note that these numbers include fertilizer
application to agricultural land uses other than cropland (e.g. grassland and orchards), which
makes it difficult to directly compare them with the fertilizer quantities implemented in the
SWAT models. Still, they most likely exceed N fertilization in both the base and refined model
setups, especially since cropland (which typically receives more fertilizer than other forms of
agricultural land) is over-represented in the Swist river basin when compared with both NRW
as a whole as well as the Rhein-Sieg-Kreis and Euskirchen districts (Chamber of Agriculture
NRW 2021).

As part of a broader research project, Kothe et al. (2021) requested management records from
farmers to interpret nutrient and pesticide concentrations measured in three agricultural tile
drains in the Swist catchment. These management records encompass five individual fields that
cover a total area of around 28 ha. Four of the five fields are used for cultivation of grain, root
crops, and other annual field crops, while the fifth field is an orchard planted with apple trees.
The fields are farmed by three different agricultural holdings. The management records span
the time period from 2016 to 2020 for three of the four fields for crop cultivation. Management
data for the fourth cropland field covers the years 2019 and 2020. The cultivated crops during
these years include winter wheat, winter barley, sugar beet, winter canola, winter rye and soy-
bean. Data for the orchard was only available for 2020. All management records give detailed
account on all applied fertilizer and pesticide quantities during these years. For most years,
N is exclusively supplied as mineral fertilizer like calcium ammonium nitrate (CAN), whereas
organic fertilizers like manure or fermentation residues are used only occasionally. Annual N
fertilization for all fields and years is roughly 80 to 160 kg N/ha, depending on the cultivated
crop. Soybeans did not receive any N fertilizer in the year they were grown. The apple trees

received approximately 110 kg N/ha in 2020. All these numbers are in very good agreement
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with the N fertilizer quantities listed in Table 4.4 for the refined model setups. Of course, they
represent only a small portion of all cropland areas and cultivation practices within the Swist

catchment and cannot be extrapolated to the entire river basin.

Musyoka et al. (2023) conducted a SWAT study in a small agricultural catchment (66 ha) in
Petzenkirchen, Lower Austria. Detailed agricultural management records were available for
each of the 37 agricultural fields in the catchment from 2008 to 2018. These fields cover around
87 % of the entire catchment area and are cultivated mostly with corn, winter barley, winter
wheat and canola. The authors provide a two-year excerpt (2012 and 2013) of a management
schedule applied in their SWAT model including applied fertilizer quantities.® According to
this schedule, winter wheat was supplied with 183 kg N/ha in 2012. After cultivation of clover
as a winter catch crop, corn was supplied with 127 kg N/ha in 2013. Average annual N input
on each field via mineral fertilizers was 121 kg N/ha from 2008 to 2018 (Musyoka et al. 2023).
Seen in isolation, these numbers are in good agreement with the N fertilizer quantities listed
in Table 4.4 for the specified field crops. However, they do not include organic fertilizers like
pig slurry applied to some of the fields in the Petzenkirchen catchment (Musyoka et al. 2023).
In an earlier SWAT study, Musyoka et al. (2021) estimate overall annual N fertilization in the
catchment to be approximately 200 kg N/ha from 2008 to 2016, which is considerably higher
than N fertilizer quantities applied in both the base and the refined SWAT models for the Swist
river basin. Of course, conditions for crop cultivation (e.g. in terms of climate and soils) as well
as spatial scale differ between both study areas, which has to be kept in mind when comparing

and interpreting the given numbers.

Bauwe et al. (2019) used SWAT to investigate the effect of N fertilization on exported NO; " -N in-
stream loads and crop yields in a small agricultural catchment (167 ha) in Mecklenburg-Western
Pomerania near the German Baltic Sea coast. During the research period from 2004 to 2015,
the entire cropland in the catchment (four different fields covering about 95 % of the catchment
area) was farmed by one agricultural holding providing detailed management records for the
study. The principal field crops grown in the catchment were winter wheat, winter barley,
canola and corn silage, with occasional planting of other crops like sugar beet and peas. Av-
erage annual N fertilization was 180 kg N/ha, which is in very good agreement with the base
model setups but higher than the fertilizer quantities in the SWAT models with refined agricul-
tural management. Crop-specific quantities of N fertilizer applied in the SWAT model of Bauwe
et al. (2019) are 221 kg N/ha for winter wheat, 176 kg N/ha for winter barley, 204 kg N/ha for

®Musyoka et al. (2023) specify N fertilizer quantities as kg NAC/ha, stating NAC to mean N-acetyl cysteine. How-
ever, N-acetyl cysteine is a medical drug. NAC also is a trade name for some CAN fertilizer products, which
contain approximately 27 % elemental N. Accordingly, fertilizer quantities provided by Musyoka et al. (2023)
were converted to kg N/ha assuming a nitrogen mass fraction of 27 %.
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canola and 117 kg N/ha for corn silage. For three of the four crops, these values are markedly
higher than those given in Table 4.4 for the refined SWAT models of the Swist river basin
(with the notable exception of corn silage, which receives considerably more N fertilizer in the
present study). Again, all numbers need to be interpreted with care, as conditions in both study

areas may not be directly comparable.

In summary, although parts of the reference data support the N fertilizer inputs derived from
Paffrath et al. (2021) for the Swist catchment, most of the consulted sources suggest higher
fertilization rates to be more realistic. Given the relatively wide spread of fertilizer quantities
in the reference data, the best practice recommendations of Paffrath et al. (2021) have the ad-
vantage of providing a clear and reproducible method to derive catchment-wide N fertilization
rates. But even if the applied fertilization rates are considered to be realistic, it is clear that they
most likely constitute the lower end of the plausible range of values, especially taking into ac-
count the stricter regulatory framework enforced after the end of the study period. Therefore,
underestimation of fertilization rates is a reasonable explanation for systematic underpredic-
tion of in-stream NOs3 ™ -N loads. Fertilization rates however work in complex interaction with
many other factors that influence the resulting NO3; ™ -N loads. In principle, these factors may
thus be equally responsible for model error at the catchment outlet. They include processes
of (soil-borne) nitrogen cycling, like mineralization and denitrification, as well as in-stream N
retention. Their representation and relative contribution to the overall N burden in the Swist

catchment will be examined in more detail in subsequent chapters.

4.4. Concluding Discussion

On the one hand, the results in this chapter demonstrate the significant impact that individ-
ual model setup decisions can have on SWAT model output and performance. Specifically,
in this study, the choice of CN adjustment procedure and the representation of agricultural
management had particularly strong effects on the SWAT simulations. On the other hand, cer-
tain decisions that were anticipated to be influential had only marginal effects. This notably
includes the imputation method for filling gaps in N emission data from WWTPs — whether
through simple mean substitution or utilizing multivariate regression models to generate more
dynamic estimates. From a practical point of view, providing recommendations from these re-
sults for future SWAT studies regarding the importance of specific model setup choices would
be intriguing. However, due to the unique nature of surface water catchments and the plethora
of potential SWAT model specifications and environmental data sets available for parameter-

ization, it is not deemed feasible to draw generalizable conclusions on model setup from the
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results in this chapter. Instead, it is advised to thoroughly document all major decisions taken
during model setup and evaluate the impact of diverging model setup alternatives prior to cal-
ibration (as done in this thesis chapter). In this respect, it is crucial to remember that all results
of subsequent model calibration are conditioned on the model setup, i.e. the specification of

the model input data and model structure along with the associated errors.

The question remains which of the twenty-four model variants scrutinized in this chapter
should be chosen for calibration and subsequent assessment of N emissions in the Swist river
basin. In principle, the decision on a specific model could be made part of the calibration pro-
cess, varying the model setup along with the parameter values and thereby accounting for error
interaction between parameter values, input data and model structure. This would be in the
spirit of Beven & Binley (1992), who envisioned the application of GLUE to evaluate different
model structures on top of the model parameters. However, this procedure was deemed to be
too computationally expensive’ and a decision was made to base calibration and all subsequent

analysis on only one of the examined model setups. This model setup is based on:
1. ATKIS 2019 land use data.
2. BK50 2019 soil data.
3. Daily CN adjustment with evapotranspiration.
4. Imputation of WWTP N emission data with linear regression estimates.
5. Tile drained agricultural areas and crop rotation.

Although only slightly superior in terms of the performance metrics listed in Tables 4.7 to 4.9,
the 2019 land use and soil data sets were preferred to their older counterparts because they
are based on updated information and - in the case of land use - exhibit a greater level of de-
tail. The decision for these two data sets corresponds to the fourth spatial configuration in
Table 4.1 comprising a total of 1824 HRUs (in 153 subbasins). Clearly, evapotranspiration was
preferred to soil moisture as the basis for CN adjustment due to the vastly enhanced model per-
formance associated with this option (also see Tables 4.7 to 4.9). In contrast, the decision for
linear regression imputation of WWTP emission data as well as tile drainage and crop rotation
in agricultural management is not unequivocally backed by the model performances evaluated
in this chapter. Regression-based imputation of WWTP N emissions leads to slight deterio-

ration of the model fit to observed NO; ™ -N in-stream loads across all performance metrics as

"Parameter calibration as described in Chapter 5 took about a week of model runtime using the available hardware.
In an exhaustive approach that incorporates all model setups, each of the examined parameter sets would have
to be combined with every model setup variant, amounting to approximately twenty-four weeks of overall
processing time.
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evident from Table 4.8. Inclusion of tile drains and crop rotation in the models leads to slightly
improved streamflow simulation as well as better correlation of simulated NO; ~-N in-stream
loads with observed data, while simultaneously causing substantially increased underestima-

tion of NO3; ™ -N in-stream loads.

Despite these shortcomings, both regression-based imputation of WWTP data and refined agri-
cultural management are likely to provide a more realistic representation of important factors
influencing N pollution in the Swist catchment. In this respect, keep in mind that model errors
may equally arise from the model parameters, which at this stage are mostly unchanged from
their ArcSWAT default values. Hence, they do not yet sufficiently reflect the characteristics
of the Swist catchment. Again, all results of subsequent model calibration are conditioned on
the model setup, and a more realistic model setup may thus facilitate parameter identifiability
and lead to better results in model calibration and validation. The likely underestimation of N
fertilization may pose a problem in this regard, but to some degree is probably present in all
model setups examined. The impact of N fertilizer inputs on the calibrated parameter values

and model output will be given special attention in the forthcoming thesis chapters.
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5.1. Introductory Remarks

This chapter deals with the identification of SWAT parameter values that significantly improve
the preliminary SWAT simulation results for the Swist river basin presented in Chapter 4. For
this purpose, the SWAT model setup selected in Chapter 4 is calibrated and validated. In or-
der to account for equifinality and assess the effect of parameter uncertainty on the simulation
results, a calibration approach based on Monte Carlo (MC) analysis is applied to identify multi-
ple viable parameter sets. To be considered viable, parameter sets need to satisfy two different
requirements: acceptable simulation results for both streamflow and in-stream NO; ~-N loads
(multi-objective model calibration). Limiting the number of calibrated parameters, a global sen-
sitivity analysis serves to screen model parameters with substantial impact on the simulation
results prior to calibration. Considering model validation, a differential split-sample strategy
(Klemes 1986) is pursued in that the validation period (2017 - 2018) features extraordinarily
dry conditions not present in the calibration period (2012 - 2016). The calibrated modeling
results are additionally checked for plausibility by comparison with monitoring data not used
in split-sample calibration and validation. Only those parameter sets that yield satisfactory
model performance in both the calibration and validation period are considered in subsequent

analysis of simulated N emissions in Chapter 6.

Model performance was evaluated based on the same observed data as in Chapter 4 (names
in parentheses indicate the surface water stream each monitoring site is located at): Daily
streamflow time series at the gauging stations in Essig (Steinbach), Morenhoven (Swist) and
Weilerswist (Swist), as well as daily in-stream NO3; ™ -N loads at the water quality monitoring
station in Metternich (Swist). See Subsection 4.3.1 for a more detailed description of these data
sets. The fit of the simulation results to each set of observed data was assessed calculating
the four performance metrics R2, PBIAS, NSE and KGE with R’s stats (R Core Team 2022)
and hydroGOF (Zambrano-Bigiarini 2020) packages (see Subsection 4.3.1). As a holistic metric
that integrates over several independent facets of model error (Gupta et al. 2009) and exhibits

relatively low sampling uncertainty (Lamontagne et al. 2020), KGE was the performance metric
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used to construct objective functions for sensitivity analysis as well as model calibration and
validation. The other performance metrics were used to complement KGE where appropriate
to gain a deeper understanding of the simulation results. Section 5.2 presents the results of
global sensitvity analysis, while Sections 5.3 and 5.4 summarize and discuss the results of model
calibration and validation, respectively. As for the entire thesis, all SWAT simulations were run
using SWAT2012, revision 670.

5.2. Sensitivity Analysis

Sensitivity analysis (SA) is used in this study to distinguish influential from non-influential
model parameters and thus narrow the set of parameters considered in model calibration. As
streamflow and NO3 ™ -N loads are supposed to be calibrated simultaneously (see Section 5.3),
the ultimate goal is to identify a combined set of influential parameters for both streamflow
and nitrate simulation. This is a typical screening setting for sensitivity analysis. As it enables
efficient global screening for parameter-rich models like SWAT, the Elementary Effect (EE) test
(Morris 1991) described in Subsection 3.2.3 was the SA method of choice for this purpose. The
R package SAFER (Sensitivity Analysis for Everyone, R version) (Pianosi et al. 2015) was used
to generate parameter samples for the EE method, calculate sensitivity as well as interaction
indices and assess their sampling uncertainty using bootstrapping. The R package SWATplusR*
(Schiirz 2019) was used to automatically vary parameter values in the SWAT input files, run
the SWAT2012 executable file and extract the relevant simulation results from SWAT output

files for subsequent analysis in R.

In large parts, the present study follows the procedure and recommendations of Sarrazin et al.
(2016) in their application of the EE test to SWAT. This entails the sampling of n = 100 reference
points using ordinary Latin Hypercube Sampling (LHS), which led to a stable SWAT screening
result in Sarrazin et al. (2016). The reference points were sampled using a uniform probability
distribution for each model parameter. Around each reference point, a radial sampling de-
sign was employed, setting each parameter back to its reference value before perturbing the
next parameter (this corresponds to the repeated one-at-a-time sampling approach described
in Subsection 3.2.3). The perturbation A is randomly chosen for each parameter and reference

point. Consequently, perturbations are unequal between the tested parameters at each refer-

1For most of this thesis, SWATplusR was preferred to the widely applied SWAT-CUP (SWAT Calibration Uncer-
tainty Program) and the SUFI-2 calibration scheme (Abbaspour et al. 2004, Abbaspour et al. 2007) as it freely
enables parallel processing, unlimited simulation runs and more flexible output analysis. However, access to the
SWAT output files is more restricted in SWATplusR. Specifically, access to reservoir output files is unavailable
in SWATplusR as of the writing of this thesis.
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ence point. Campolongo et al. (2011) showed that the radial sampling design is more efficient
than the trajectory-based design originally proposed by Morris (1991). In order to calculate the
sensitivity indices, the absolute values of the EEs were used to avoid compensation between
values with opposite signs as suggested by Campolongo et al. (2007). The sensitivity threshold
used to distinguish influential and non-influential parameters was set to 5% of the maximum

sensitivity index.

SWAT features hundreds of individual model parameters (Arnold et al. 2013). Including all
of them in sensitivity analysis was not feasible in terms of computational cost and defining
meaningful parameter ranges. Instead, the published SWAT literature was reviewed to identify
commonly calibrated SWAT parameters with respect to streamflow and nitrogen simulation.
Compilations of such parameters can be found for instance in Douglas-Mankin et al. (2010),
Tuppad et al. (2011), Arnold et al. (2012) and Yuan et al. (2015). To limit the dimensionality of
the investigated uncertainty space, QUAL2E parameters for in-stream water quality simulation
were generally excluded from analysis. This approach led to a set of m = 45 parameters listed
in Table 5.1 along with their uncertainty ranges (lower and upper bounds). The ranges were
set as wide as necessary to reflect the associated uncertainty. Spatially distributed parameters
(marked with an astersik in Table 5.1) were varied relative to their base values, and uncer-
tainty ranges were expressed as fractions of change mostly between +50 %. Soil bulk densities
(SOL_BD.sol) had a considerably narrower uncertainty range (between +10 %) to stay within
physically meaningful limits throughout the catchment. SWAT curve numbers (CN2.mgt) were
limited to negative fractions of change (from —50 to 0 %) to adress overprediction of streamflow
peaks in the uncalibrated model. Additional information on the parameters in Table 5.1 can be

found in Appendix B.

With n = 100 reference points and m = 45 parameters, the EE test in this study encompasses
n - (m+ 1) = 4600 parameter combinations that need to be evaluated in separate model runs.
To quantify the model response with regard to streamflow, the (unweighted) arithmetic mean
of KGEs across the three gauges in Essig, Morenhoven, and Weilerswist was used as an ob-
jective function. With regard to nitrate simulation, the objective function was the KGE for
NO;3;™-N loads at the water quality station in Metternich. Figures 5.1 and 5.2 give a visual
impression of the resulting sensitivity indices y; (EE Mean) and interaction indices o; (EE Stan-
dard Deviation) for each parameter i regarding streamflow and in-stream NO; ~-N loads, re-
spectively. Both figures show a considerable degree of correlation between sensitivity and

interaction indices. The bars in Figures 5.1 and 5.2 indicate the widths of the 95 % confidence
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Table 5.1.: Results of the elementary effects sensitivity analysis. The 45 considered model parameters
have been varied within the specified bounds. The EE Mean columns list the obtained sensitivity indices
for streamflow and nitrate loads. Parameters are sorted by descending sensitivity indices for nitrate.
Ranks with respect to nitrate are specified in the first column, ranks with respect to streamflow are
added in reduced font size. Asterisks behind parameter names indicate variation relative to preset base
values. Units refer to the parameter bounds, not necessarily to the parameter values in SWAT (for
parameters with relative variation). See Appendix B for more details on the listed parameters.

Bounds EE Mean
Rank Parameter Lower Upper Unit Streamflow Nitrate Load
1 1 TRNSRCH.bsn 0 1 - 6.6x1071 4.7x107
2 2 CH_K2.rte 0 127 mm H;0/h 5.8x107! 4.0x107!
3 4 DEPIMP_BSN.bsn 2000 6000 mm 1.8x107! 2.0x107!
4 5 ALPHA_BNK.rte 0 1 - 1.8x107! 1.6x1071
5 20 SDNCO.bsn 0.9 13 - 3.1x1073 1.2x107!
6 31 ANION_EXCL_BSN.bsn 0 1 - 1.2x1073 1.2x107!
7 3 CN2.mgt* -0.5 0 - 2.0x107! 9.8x1072
8 8 SOL_AWC.sol* -0.5 0.5 - 4.1x1072 8.9x1072
9 25 CDN.bsn 0 3 - 2.7x1073 8.6x1072
10 41 NPERCO.bsn 0.01 1 - 3.0x107° 8.4x1072
11 6 CNCOEF.bsn 0.5 2.0 - 1.6x107! 6.9x1072
12 45 DIS_STREAM.hru 4 50 m 0 4.9x1072
13 10 SOL_BD.sol* -0.1 0.1 - 2.3x1072 4.6x1072
14 15 EPCO.bsn 0 1 - 1.3x1072 4.2x1072
15 9 SOL_K.sol* -0.5 0.5 - 2.9x1072 4.1x1072
16 27 CMN.bsn 0.0003 0.003 - 2.3x1073 4.0x1072
17 12 ESCO.bsn 0.6 1.0 - 1.9x1072 3.4x1072
18 7 CANMX hru* -0.5 0.5 - 5.0x1072 3.0x1072
19 33 SOL_CBN.sol* -0.5 0.5 - 1.1x1073 2.9x1072
20 14 TDRAIN.mgt 0 72 h 1.4x1072 2.5%1072
21 24 SOL_ALB.sol 0 0.3 - 2.7x1073 8.1x1073
22 11 CH_N2.rte 0.014 0.065 s/m'/3 2.2x1072 7.7x1073
23 21 SURLAG.bsn 1 24 - 3.0x1073 6.3x1073
24 17 SMTMP.bsn -2 2 °C 4.9x1073 6.0x1073
25 13 RCHRG_DP.gw 0 1 - 1.4x1072 5.9x1073
26 22 TIMP.bsn 0.01 1 - 2.9x1073 5.7x1073
27 38 N_UPDIS.bsn 1 20 - 2.3x1074 4.8x1073
28 19 SFTMP.bsn -2 2 °C 3.6x1073 3.3x1073
29 16 GWQMN.gw 500 1500 mm H,0 7.1x1073 2.9x1073
30 18 SNO50COV.bsn 0.01 0.9 - 4.7x1073 2.4x1073
31 26 SNOCOVMX.bsn 0 5 mm H,0 2.6x1073 2.4x1073
32 30 SMFMN.bsn 1.4 4.2 mm H,0/°C 1.4x1073 2.1x1073
33 23 GW_REVAP.gw 0.02 0.2 - 2.7x1073 1.9x1073
34 28 REVAPMN.gw 500 1500 mm H,0 2.2x1073 1.3x1073
35 35 OV_N.hru* -0.5 0.5 - 7.0x1074 1.2x1073
36 37 SMFMX.bsn 4.1 6.9 mm H,0/°C 45x1074 1.1x1073
37 32 EVRCH.bsn 0 1 - 1.1x1073 9.8x1074
38 44 HLIFE_NGW_BSN.bsn 5 500 d 0 8.7x1074
39 34 DRAIN_CO_BSN.bsn 10 51 mm H,0/d 7.9x1074 8.6x1074
40 29 GW_DELAY.gw 0 500 day 1.6x1073 8.3x107%
41 39 CH_N1.sub 0.014 0.065 s/m*/3 2.2x1074 3.9x107%
42 a2 RCN.bsn 0 2 mg N/1 3.2x107° 1.8x107*
43 40 ALPHA_BF.gw 0 1 1/d 1.2x107* 9.2x107°
44 23 SHALLST N.gw* -0.5 0.5 - 0 5.0x107°
45 36 RES_K.res 0.0 0.5 mm H,0/h 5.2x1074 3.5x107°
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Figure 5.1.: Results of the elementary effects sensitivity analysis with respect to streamflow. Model
response is measured as the average KGE for the three streamflow gauges in Essig, Morenhoven and
Weilerswist. Part (A) shows the space spanned by the sensitivity indices (EE Mean) and interaction
indices (EE Standard Deviation) for all considered parameters. Part (B) zooms in on the region around
the chosen sensitivity threshold marked by the red dashed vertical line (5 % of the maximum sensitivity
index). The bars indicate 95 % confidence intervals for both indices obtained via bootstrapping. The
influential parameters (on the right of the threshold line) are marked by a symbol in the plots and
legend to make them more recognizable compared to the non-influential parameters (on the left of the
threshold line).

intervals for both index types obtained via bootstrapping? taking 100 subsamples from the
original sample. There is a general pattern towards wider confidence intervals with larger sen-
sitivity and interaction indices. The dashed red lines indicate the chosen threshold value for the
sensitivity index to distinguish influential and non-influential parameters. On that basis, the
EE test finds that streamflow is insensitive to a total of 37 parameters and that NO3 ™ -N loads
are insensitive to a total of 25 parameters. Accordingly, there remain eight parameters that are
deemed influential for streamflow and twenty parameters that are considered influential for
NO;3 ™ -N loads.

2See for example James et al. (2013). Briefly, the bootstrap technique uses iterative resampling from the original
sample with replacement to approximate the sampling distribution of a specific quantity (here the sensitivity
and interaction indices).
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Focusing on the influential streamflow parameters in Figure 5.1, the prominent role of param-
eters governing transmission losses from the main channels to the deep aquifer is particularly
noteworthy. This includes the parameters TRNSRCH.bsn and CH_K2.rte that exhibit by far
the largest sensitivity indices. In this regard, they even surpass the curve number parameter
CN2.mgt in position three; one of the most influential and frequently calibrated SWAT param-
eters according to the literature (Arnold et al. 2012, Yuan et al. 2015, Abbaspour et al. 2015).?
Another channel parameter sits in position five: ALPHA_BNK.rte controls residence times and
re-release of water in bank storage. It is just barely less influential on simulated streamflow
than DEPIMP_BSN.bsn in fourth place. This parameter specifies the depth to a subsurface im-
pervious layer. It is crucial for the buildup of perched water tables in the soil profile and is
therefore closely linked to the occurrence of tile flow in SWAT. Notably, for reasons discussed
in Chapter 6, there are no groundwater parameters that significantly affect streamflow. As
expected, N cycling and transport parameters are practically irrelevant for streamflow simula-
tion. The same is true for snow parameters. The list in Table 5.1 gives detailed account of the
sensitivity indices for each parameter with regard to streamflow. The ranks of the parameters

with respect to their influence on streamflow simulation are given in reduced font size.

A closer look at the twenty influential nitrate parameters in Figure 5.2 reveals that they include
all of the eight influential streamflow parameters. At the top, they even mirror the SA results
for streamflow to a large extent: Again, the channel parameters TRNSRCH.bsn and CH_K2.rte
lead the field by a wide margin, followed by DEPIMP_BSN.bsn and ALPHA_BNK rte in posi-
tions three and four (the curve number parameter CN2.mgt has a lower relative importance
for NO3 ™ -N loads than for streamflow simulation and occupies position seven). Additional
parameters only affecting nitrate simulation include those that specifically control soil-borne
N cycling and transport, most importantly ANION_EXCL_BSN.bsn and SDNCO.bsn. While
the former governs nitrate mobility in the soil profile, the latter determines the soil moisture
threshold for denitrification. Distributed soil parameters (with suffix “sol”) also play a more
prominent role for nitrate simulation than for streamflow simulation: While only one of them
(SOL_AWC .sol, the available water capacity) has a meaningful impact on streamflow, the SA
results show that four of them are influential regarding the simulated NO3; ™ -N loads. Inter-
estingly, the evapotranspiration parameters EPCO.bsn and ESCO.bsn (modulating availability
of soil water for plant transpiration and evaporation, respectively) emerge as influential for
nitrate simulation although considered irrelevant for streamflow simulation. Again, ground-
water parameters are generally deemed unimportant. Table 5.1 lists the sensitivity indices for

each parameter with regard to nitrate simulation and ranks the parameters in descending order

3The comparatively small impact of CN2.mgt on streamflow in this study may in part be explained with the
restriction to negative fractions of change from -50 to 0 %.
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Figure 5.2.: Results of the elementary effects sensitivity analysis with respect to NO3 ™ -N load. Model
response is measured as the KGE score for NO3; ™ -N loads at the water quality monitoring station in
Metternich. Part (A) shows the space spanned by the sensitivity indices (EE Mean) and interaction
indices (EE Standard Deviation) for all considered parameters. Part (B) zooms in on the region around
the chosen sensitivity threshold marked by the red dashed vertical line (5 % of the maximum sensitivity
index). The bars indicate 95 % confidence intervals for both indices obtained via bootstrapping. The
influential parameters (on the right of the threshold line) are marked by a symbol in the plots and
legend to make them more recognizable compared to the non-influential parameters (on the left of the
threshold line).

of nitrate sensitivity. All parameters with a rank of 21 or lower are considered non-influential
for both streamflow and nitrate simulation (as indicated by the horizontal line in Table 5.1).
The twenty parameters with higher ranks represent the combined set of influential parameters

for both streamflow and NO3 ™ -N loads this sensitivity analysis aimed for.

The question remains whether this screening result is stable, meaning whether the number
of evaluated model runs is high enough to come to the same conclusion about influential and
non-influential parameters when the EE test is repeated as described above but with a different
set of sampled reference points and parameter perturbations. To answer this question, Sarrazin
et al. (2016) developed a test for screening convergence which - in the context of this analysis -
is equivalent to verify if all confidence intervals for the sensitivity indices left of the threshold

lines in Figures 5.1 and 5.2 are narrower than the interval from 0 up to the threshold line. Visual
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inspection of part B in both figures reveals that this is indeed the case and the obtained screen-
ing result (i.e. the position of the horizontal line in Table 5.1 that separates the non-influential
parameters from the influential parameters) would probably be stable across multiple reitera-
tions of the EE test. Note that this is not necessarily the case for the ranks given in Table 5.1,
although the results of Sarrazin et al. (2016) suggest that screening convergence in many cases
also entails ranking convergence. The stability of the parameter ranks has not been indepen-
dently tested, however, as parameter ranking was not the primary goal of sensitivity analysis
in this thesis. Convergence of the sensitivity indices themselves towards stable values is prob-
ably not achieved in this thesis, as that usually requires a considerable larger number of model

evaluations (Sarrazin et al. 2016).

Another issue that needs to be discussed is the dependence of the screening results on specific
SA design choices. Note that this is different from convergence as convergence exclusively ad-
dresses uncertainty associated with the underlying sampling process within one and the same
SA design. Two design choices are of particular importance in the context of the EE test as
applied in this thesis: First the choice of the objective function that quantifies the model re-
sponse (Shin et al. 2013), and second the choice of the sensitivity threshold to filter out the
non-influential parameters (Sarrazin et al. 2016). Considering the objective function, the EE
test as described above was repeated applying three performance criteria other than KGE: NSE,
PBIAS and R? (data not shown). Rerunning the analysis with the NSE to quantify the model
response identifies soil hydraulic conductivity SOL_K.sol as an additional influential parame-
ter for streamflow simulation. In contrast, for nitrate simulation it only detects seventeen of
the twenty parameters that are considered influential using the KGE. While PBIAS generally
identifies a considerably smaller subset of parameters as influential than KGE and NSE for both
streamflow and nitrate simulation, R? detects more influential parameters. However, the only
completely new influential parameter outside the set of twenty listed in Table 5.1 is Manning’s

roughness coefficient for the main channel, CH_N2.rte.

The choice of the sensitivity threshold is usually associated with a considerable degree of sub-
jectivity, given the continuous scale of sensitivity indices. The sensitivity threshold selected in
this study corresponds to the preliminary value used by Sarrazin et al. (2016) for their test of
screening convergence (0.05 applied to a scale normalized by the maximum sensitivity index).
As such, the threshold is - by design - relatively high compared to the general recommenda-
tions and validation results provided by Sarrazin et al. (2016). While a smaller threshold would
probably not lead to diverging screening results for nitrate simulation, it might identify a con-
siderable larger number of parameters to be influential for streamflow simulation (consider the

pronounced gap between the threshold line and the sensitivity indices left of it in Figure 5.2 B
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as well as the complete absence of such a gap in Figure 5.1 B). However, most of these param-
eters are already included in the set of twenty specified in Table 5.1 due to there influence on
nitrate simulation. A notable exception again is Manning’s roughness coefficient for the main
channel, CH_N2, making this parameter the most likely candidate for a false negative screen-
ing error. As there are no other obvious candidates for additional parameters with significant
influence on the simulation results, the choice of sensitivity threshold was deemed reasonable
for the purposes of this study without further simulations to validate the threshold value as

proposed by Sarrazin et al. (2016).

5.3. Model Calibration

Model calibration in this study is based on Monte Carlo (MC) analysis encompassing a total
of 10 000 parameter sets evaluated in individial model runs. The calibration period covers the
simulation years 2012 to 2016, following a four-year warm-up period. The parameter space was
sampled using the R package lhs (Carnell 2022) to conduct ordinary Latin Hypercube Sampling
(LHS). Of the twenty influential parameters identified in sensitivity analysis, only eighteen
were considered for Monte Carlo analysis. The parameters CNCOEF.bsn and CDN.bsn were
left out due to their interaction in the model equations (Neitsch et al. 2011) with the even
more influential* parameters CN2.mgt and SDNCO.bsn, respectively. The eighteen remaining
parameters were assumed to follow a uniform distribution within the bounds given in Table 5.1.
Again, SWATplusR (Schiirz 2019) was used to automatically vary parameter values in the SWAT
input files, run the SWAT2012 executable file and extract the simulation results from the SWAT
output files. For multi-objective calibration, the same two objective functions as in sensitivity
analysis were applied to assess model performance: The average KGE score across the three
gauges in Essig, Morenhoven and Weilerswist with regard to streamflow (KGEgteamflow), and
the KGE score at the water quality station in Metternich with regard to NO3; ™ -N in-stream
loads (KGEnitrate). For both objective functions, a behavioral threshold of 0.5 was applied to

determine satisfactory model performance.

An important consequence of this calibration strategy is that the model response is evaluated
simultaneously at all considered monitoring sites and that the model parameters are varied
homogeneously over the entire catchment area. In particular, there is no nested calibration of
streamflow at individual gauges, where parameter values may differ in different gauge catch-

ments and calibrated parameter values at downstream gauges depend on pre-calibrated param-

4 According to the ranks specified in Table 5.1, which of course do not necessarily represent a stable ranking result
and depend on the objective function used to quantify the model response.
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eters at upstream gauges. Furthermore, there is also no sequential calibration of streamflow and
NO; ™ -N in-stream loads, where calibrated NO; ™ -N parameter values depend on pre-calibrated
streamflow parameters. Such calibration strategies - that involve what Daggupati et al. (2015)
termed a stepwise “staging design” for calibration - are often used to guide manual or automatic
parameter optimization (Arnold et al. 2012). When applied to MC-based calibration, they re-
strict sampling to specific regions of the parameter space and thus tend to underappreciate the
implications of equifinality. In contrast, by evaluating the model performance simultaneously
for all considered model outputs and monitoring sites, the present study explores the parame-
ter space across the entire range of its 18 dimensions in a single sampling stage (albeit with a

comparatively low sampling density).

The scatter plot in Figure 5.3 depicts the objective space each sampling point in the parameter
space is mapped into. It gives an overview of the vast majority of model runs that show perfor-
mance ratings from -1 to 1 for both objective functions (a handful of runs with performance
ratings below -1 are not included). Of the 10 000 evaluated model runs, a total of 133 surpass
the behavioral threshold for streamflow and a total of 105 exceed the behavioral threshold for
NO3 ™ -N in-stream loads. Only 32 model runs exceed the behavioral threshold for both objec-
tives. The maximum objective function scores are roughly 0.60 for streamflow and 0.72 for
NO; ™ -Nloads. Although deemed satisfactory for the purposes of this thesis, these calibra-
tion performances leave ample room for improvement, especially regarding performances for
streamflow simulation which exhibit a distinct ceiling near the maximum score around 0.60.
This ceiling most likely is an effect of the averaging between three different KGE ratings and
hints at a trade-off between the involved gauges (keep in mind that the model parameters are
varied homogeneously across all gauge catchments). The maximum KGE scores at each indi-
vidual gauge are roughly 0.63 in Essig and 0.70 in Morenhoven as well as Weilerswist. Only 27
of the 133 model runs that show behavioral streamflow performance yield KGE scores above
the applied threshold of 0.5 at each individual gauge, with only 5 of them additionally sur-
passing the threshold for nitrate simulation. The option of assessing the model performance
in four dimensions (with one objective function for each stream gauge) was dismissed, as the
higher dimensionality would have reduced the density of solutions in the objective space and

diminished the role of NO; ™ -N loads in the calibration process.

The triangular shape and orientation of the point cloud in Figure 5.3 reveals a significant degree
of correlation between both objective functions, with a Pearson’s correlation coefficient of
r = 0.87. The causality of this relationship seems to be mostly unidirectional: Behavioral
simulation of NO3 ™ -N in-stream loads strictly requires values for KGEstreamflow that are well

above 0, whereas behavioral streamflow simulation is possible even for some distinctly negative
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Figure 5.3.: Scatter plot of model performances during the calibration period (2012-2016) in the two-
dimensional objective space. The objective function for streamflow simulation is the average KGE
score across the three gauges in Essig, Morenhoven and Weilerswist. The objective function for nitrate
simulation is the KGE score for NO3 ™ -N loads at the water quality monitoring station in Metternich.
The behavioral threshold for both objectives is 0.5. Keep in mind that the KGE metric does not share
the same benchmark property as the NSE metric at value 0.

values of KGEnjtrate. Consequently, reasonable model performance regarding streamflow seems
to be a prerequisite for reasonable model performance with respect to nitrate, but not vice versa.
This is plausible, as hydrology is the main driver of N emissions into surface waters as well as
the height and dynamics of the resulting in-stream loads (Bauwe et al. 2020). The set of Pareto-
optimal solutions (the Pareto front) at the right and upper edges of the point cloud exhibits a
more or less “rectangular” shape, indicating little trade-off between both objective functions
for the very best model runs. However, the comparatively low density of points in this area

suggests an only imprecise approximation of the real Pareto front. Care should therefore be
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taken when drawing conclusions from the apparent shape of the Pareto front in Figure 5.3. The
most densely populated area of the point cloud is located opposite of the Pareto front around

a performance rating of approximately —0.5 for both objective functions.

As cautioned by Abbaspour et al. (2017), calibration results are highly dependent on the ap-
plied objective functions. Figure 5.4 assesses the effect of analogous objective functions built
on other performance metrics than KGE - R?, PBIAS and NSE. These objective functions clearly
would have identified different sets of behavioral model runs compared to KGE, as evident from
the wide scatter of the original behavioral solutions in Figure 5.4 A, D and G.> At the same time,
Figure 5.4 B, E and G as well as C, F and I reveal a certain degree of alignment and correla-
tion between the alternative objective functions and their KGE-based counterparts. Regarding
PBIAS, note that KGE selects behavioral solutions that are centered around the perfect PBIAS
score of 0 % for both streamflow simulation and nitrate simulation, albeit with a relatively large
degree of variability and a preference for negative PBIAS scores for nitrate simulation. Inter-
estingly, KGE selects behavioral solutions for streamflow that concentrate on R? scores roughly
between 0.4 and 0.5, with many non-behavioral model runs reaching notably higher values for
R? (panel B in Figure 5.4).

Keep in mind that R? and PBIAS exclusively assess collinearity and bias in the model fits, respec-
tively. Used on their own, both are inadequate objective functions, as they ignore important
forms of model error and thus only provide an incomplete performance assessment (see Sub-
section 3.2.1). Similar to KGE, NSE considers all possible forms of model error, and therefore
is the best suited alternative to KGE as an objective function. The shape of the point cloud in
the NSE objective space (Figure 5.4, G) to a large extent mirrors the point cloud in the KGE
objective space of Figure 5.3, although with an even more pronounced ceiling for streamflow
performances at a NSE of approximately 0.5. NSE scores for nitrate simulation reach markedly
higher, with a maximum value of around 0.6. Panel H in Figure 5.4 reveals high variability of
NSE scores for streamflow among the KGE-based behavioral solutions, with some NSE scores
even falling narrowly below the critical benchmark of 0. In contrast, although also highly vari-
able, NSE scores for nitrate simulation are strictly positive among the KGE-based behavioral
solutions, as shown in panel I of Figure 5.4. The very best NSE scores for nitrate (> 0.5) are
almost always classified as behavioral by the KGE criterion. The general conclusion is that
NSE and KGE - despite some discrepancies regarding their assessment of streamflow perfor-

mance - exhibit an overall acceptable degree of alignment assessing the performance of nitrate

>In the following, the use of the term “behavioral” exclusively refers to model runs that surpass one or both of the
behavioral thresolds for the KGE-based objective functions. Note that behavioral thresholds remain undefined
for the alternative objective functions examined in Figure 5.4, so there is no definitive set of behavioral solutions
for these objective functions.
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Figure 5.4.: Scatter plots of model performances during the calibration period (2012-2106) for alter-
native objective functions. The alternative objective functions are based on the performance metrics
R? (top row, panels A, B and C), PBIAS (middle row, panels D, E and F) and NSE (bottom row, panels
G, H and I) instead of KGE, but constructed analogously. The scatter plots in the left column (panels
A, D and G) mimic Figure 5.3 in depicting the objective space for the alternative performance metrics.
The middle column (panels B, E and H) compares each alternative objective function for streamflow
to the KGE-based objective function for streamflow. The right column (panels C, F and I) compares
each alternative objective function for NO3 ™ -N in-stream loads to the KGE-based objective function
for NO3 ™ -N in-stream loads. Color-coding indicates the behavioral status according to the KGE-based

objective functions (as in Figure 5.3).
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simulation. As the ultimate goal of this thesis revolves around the simulated N emissions, the
behavioral set of model runs identified using the KGE was deemed adequate for all further

analysis.

For each included SWAT parameter, Figure 5.5 depicts the posterior distributions for the differ-
ent classes of behavioral calibration runs, compared to the prior distributions for all 10 000 runs.
The distributions are approximated using kernel density estimation (KDE) as implemented in
base R’s stats package (R Core Team 2022, see figure caption for details). The density esti-
mates for the prior distributions resemble horizontal lines (apart from KDE artefacts at the
interval boundaries), confirming uniform coverage of the parameter space during Latin Hy-
percube Sampling.® The degree to which the posterior distributions deviate from the prior
distribution is a visual indicator of parameter influence on the simulation results (i.e. model
sensitivity). The posterior distributions furthermore give insights into parameter identifiabil-
ity. Guse et al. (2020) distinguish three cases in a multi-objective calibration setting: First, low
parameter identifiability when all posterior distributions deviate only insignificantly from the
prior distribution. Second, low parameter identifiability when (a subset of) posterior distribu-
tions deviate greatly from the prior distribution, but with multiple diverging maxima that may
imply a trade-off between different calibration objectives. Third, high parameter identifiability
when (a subset of) posterior distributions deviate greatly from the prior distribution and their
maxima are aligned on a relatively narrow range of values. In this sense, parameter influence

may be interpreted as a necessary but not sufficient precondition for identifiability.

For most parameters, at least one of the single-objective posterior distributions - for streamflow
or nitrate alone - deviates significantly from the uniform prior distribution in Figure 5.5, con-
firming parameter influence on the simulation results. Furthermore, when the single-objective
distributions are both strongly non-uniform, their maxima are mostly well aligned. Still, many
parameters remain rather loosely identified by single-objective calibration: The posterior dis-
tributions for only one of the two objectives often have maxima that are stretched out over
relatively wide intervals, and in some cases their shape may even be distinctly bimodal. The
multi-objective posterior distributions in Figure 5.5 - based on model runs that satisfy both
calibration objectives - can frequently narrow and/or shift the feasible parameter ranges to a
moderate extent (see for example CN2.mgt). Moreover, when one of the single-objective distri-
butions is bimodal, multi-objective calibration sometimes manages to alleviate that bimodality

in the combined distribution (see SDNCO.bsn). These findings are consistent with the com-

%Stable reproduction of the uniform shape in the prior parameter distributions is a consequence of the large
overall number of model evaluations used for calibration. Given the far lower number of behavioral model runs
available for estimating the posterior distributions, their shape in Figure 5.5 is much more likely to be affected
by sampling uncertainty. Keep that in mind when interpreting the KDE results for the posterior distributions.
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Figure 5.5.: SWAT parameter distributions for the calibration period (2012-2016). The parameter dis-
tributions were approximated using kernel density estimation (KDE) with Gaussian kernels as imple-
mented in base R’s stats package (R Core Team 2022). The density estimates are based on all 10 000
model runs for the prior distributions, as well as 133, 105 and 32 model runs for the posterior distri-
butions regarding streamflow, nitrate and both objectives, respectively. The downward bends at either
side of the distributions are KDE artefacts that originate from uncorrected boundary bias. While more
visible for the uniform prior distributions, they equally affect the posterior distributions.
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mon wisdom that multi-objective calibration tends to better constrain model parameters and
improve their identifiability (Guse et al. 2020, Sprenger et al. 2022). However, in contrast to
this notion, there are also cases where the combined posterior distribution more or less resem-
bles the single-objective distributions and does not seem to add much information in terms of
parameter identifiability (e.g. CANMX hru and ESCO.bsn).

Looking at the few parameters with divergent maxima in the single-objective distributions,
there are further examples for both enhanced and unaffected parameter identifiability after
multi-objective calibration. For parameters CMN.bsn and SOL_K.sol, the combined distribu-
tions offer a clear indication on how to reconcile the conflicting results of single-objective
calibration. While for CMN.bsn the maximum of the combined distribution picks a side and
aligns with the maximum of the nitrate posterior distribution, it takes a middle ground for
SOL_K.sol, falling on a relatively narrow interval between the two single-objective maxima.
In contrast, the combined distribution for DEPIMP_BSN.bsn has a plateaued maximum that
spans the entire distance between the two single-objective maxima, providing no additional
information about the most feasible range of parameter values. Such failure of multi-objective
calibration to further constrain individual model parameters is not unusual and has been re-
ported for example by Holmes et al. (2020). In these cases, parameter identifiability would likely
benefit from alternative and/or additional calibration objectives. Efstratiadis & Koutsoyiannis
(2010) suggest a ratio of 1:5 or 1:6 between calibration objectives and calibrated parameters
as a criterion for parsimony in catchment modeling, extending an empirical rule established
and repeatedly confirmed in various studies (Jakeman & Hornberger 1993, Schoups et al. 2008,
among others). Following this argument, calibration of SWAT in the present thesis would need
to include at least one additional objective besides streamflow and NO3; ~-N in-stream loads to

adequately accommodate the 18 considered model parameters.

The channel parameters TRNSRCH.bsn and especially CH_K2.rte exhibit by far the highest
identifiability, with pronounced maxima of all posterior distributions that align at or very close
to values of 0. This means that the calibration process strongly favors model parameterizations
that result in only small transmission losses of water from the SWAT main channels to the deep
aquifer. Figure 5.6 shows various dotty plots for CH_K2.rte for closer examination of the model
response to this parameter. The two rightmost panels in the bottom row depict overall model
response as measured by the KGE-based objective functions, with a clear pattern of increasing
model performances when CH_K2.rte approaches 0 both for streamflow and nitrate simulation.
This basic pattern is replicated for all alternative objective functions based on R?, PBIAS and
NSE (see the remaining panels in the two rightmost columns), underscoring the robustness of

the identified parameter range. Furthermore, the same pattern emerges when looking at the
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Figure 5.6.: Dotty plots for the SWAT channel parameter CH_K2.rte (hydraulic conductivity of the main
channel alluvium) in the calibration period (2012-2016). Each row shows the dotty plots for another
performance metric (R, PBIAS, NSE or KGE). Each column shows the dotty plots for another model
output (“Streamflow, All” denotes the mean value of the respective performance metric across the
three gauging stations in Essig, Morenhoven and Weilerswist). The regression fits depicted as red lines
were obtained using local polynomial regression as implemented in the loess function of base R’s stats
package (R Core Team 2022).

performance ratings for streamflow at the individual gauges (i.e. the three leftmost columns
in Figure 5.6), with one notable exception: The regression line for the PBIAS scores at the
Essig gauge reveals a slight tendency to overpredict streamflow when CH_K2.rte is too close
to 0, reflecting the problem of extended “no-flow”-periods in Essig despite constant discharge
from the upstream Steinbach reservoir fed into the model. For SWAT, the only possibility to
reproduce the streamflow cessation observed in Essig is setting CH_K2.rte to values above 0
to remove water from the main channel before it reaches the gauging station. As CH_K2.rte
and TRNSRCH.bsn are varied uniformly over the entire catchment area, there is a trade-off
between the gauging stations in the calibration process regarding simulation of transmission
losses, with a need to find a balance between the Steinbach (Essig gauge) and Swist watercourse

(Morenhoven and Weilerswist gauges).
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5.4. Model Validation

5.4.1. Split-Sample Validation

The 32 parameter sets that produce behavioral model performance for both streamflow and
NOs; ™ -N in-stream loads in the calibration period from 2012 to 2016 have been validated in ex-
tended model runs that add the years 2017 and 2018. Crucially, this validation period includes
exceptionally dry conditions not present in the relatively wet calibration period, especially in
the year 2018 (see Figure 2.4 and Table 2.2 in Chapter 2). In this respect, the present study thus
aims at a differential split-sample strategy for model validation, as advocated by Klemes (1986).
Figure 5.7 gives an overview of the model performances in both the calibration and validation
period across the 32 behavioral parameter sets. Interestingly, there is no clear difference in the
objective function medians between calibration and validation with respect to both streamflow
and NO; ™ -N loads (see the two rightmost panels in the bottom row of Figure 5.7). Therefore,
in terms of the objective functions, the validation period does not yield a systematic decline in
model performance as typically reported (Gassman et al. 2007, Gassman et al. 2014), despite the
fact that there is a deliberate discrepancy in environmental conditions between the calibration
and validation period. However, there is a clear increase in variability around the medians,
meaning that there are both substantially better and worse model performances in the valida-
tion period with regard to streamflow as well as NO3; ™ -N loads. In total, there remain 11 of the
original 32 parameter sets that continue to produce behavioral model performance (regarding
objective functions based on KGE) for both streamflow and NO3; ™ -N loads in the validation
period.

A closer look at the various other metrics included in Figure 5.7 gives further insight into
the differences between the calibration and validation periods. Considering overall stream-
flow simulation across all gauges, the alternative objective functions based on R? and NSE
substantially improve from calibration to validation with more or less unchanged variability.
In contrast, the alternative objective function that is based on PBIAS systematically increases
from values centered around 0 to a mostly positive range of values (see panels in the second
column from left). Taken together, these performance ratings indicate an improvement in cap-
turing the streamflow peaks and overall dynamics in the validation period, at the expense of
introducing considerable streamflow overprediction (with both developments likely being bal-
anced out in the practically unchanged median of the combined KGE measure). Looking at the
model performance ratings at the individual stream gauges (see the three leftmost columns in
Figure 5.7), it is evident that the increase in the overall PBIAS rating can solely be attributed

to streamflow overprediction in Essig. Here, the PBIAS scores, which already indicate a mod-
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Figure 5.7.: Achieved performance measures for the n = 32 calibrated model runs in the calibration
(2012 - 2016) and validation period (2017 - 2018). Each row shows the performance results with regard
to a different metric (R?, PBIAS, NSE or KGE). Each column shows the performance results with regard
to a different model output (“Streamflow, All” denotes the mean value of the respective performance
metric across the three gauging stations in Essig, Morenhoven and Weilerswist). The two rightmost
panels in the bottom row represent the results for the objective functions applied for model calibration
and validation. The boxplot whisker length is limited to one and half of the interquartile range.

erate upward bias in the calibration period, become excessive in the validation period, with a
median value of approximately 75 % and a maximum that exceeds 100 %. This likely reflects
extended stretches of low flow at the Essig gauging station in the exceptionally dry year of
2018, which the model fails to capture possibly due to trade-off effects with the Swist gauges

in Morenhoven and Weilerswist already discussed at the end of Section 5.3.

Considering NO3; ™ -N loads in Metternich, the PBIAS metric indicates an equal amount of un-
derestimation in the calibration and validation period, with median PBIAS scores of approxi-
mately -16 % and -18 %, respectively. The vast majority of the 32 behavioral model runs yield
PBIAS scores that are negative. The systematic underestimation of NO; ™ -N in-stream loads
is a deficiency already seen in the results of the uncalibrated model examined in Chapter 4.
Apparently, model calibration was unable to identify parameter sets that shift the nitrogen

regime of the Swist catchment towards higher NO3; ™-N exports at the mouth of the river. As
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already discussed, the most likely cause for the low nitrate loads simulated by SWAT is an un-
derestimation of applied N fertilizer amounts, although other explanations are also possible.
The systematic error in simulated NO3 ™ -N loads is a crucial issue regarding the aims of this
thesis and will therefore be reviewed in greater detail in the upcoming Chapter 6. Looking at
the remaining performance metrics, there is an overall increase of R? scores for nitrate simula-
tion in the validation period, hinting at better reproduction of the NO3; ™ -N in-stream dynamics
in the drier simulation years. This increase in R? scores is however less pronounced than for
streamflow. At the same time, NSE scores deteriorate for the validation periods, with minimum
values falling well below the critical benchmark at 0, indicating a tendency towards impaired

simulation of nitrate load peaks.

Table 5.2 lists the KGE-based objective function results in the calibration and validation pe-
riod for all 32 behavioral model runs. Additionally, the table specifies the nitrate PBIAS scores
for both periods to assess the simulated long-term nitrogen balance in the Swist catchment,
which is particularly relevant for quantifying non-point source nitrogen pollution in the fol-
lowing Chapter 6. The 11 model runs that surpass the behavioral threshold for KGEsireamflow
and KGEnjtrate in both simulation periods are listed separately at the top of Table 5.2. Most
of the other model runs stay well below the behavioral thresholds in the validation period for
at least one of the two objective functions. The sole exception is model run 5275, which fails
only narrowly in achieving the required validation result for streamflow while surpassing the
threshold for NO; ™ -N loads and reaching excellent nitrate PBIAS scores both during calibra-
tion and validation. Figure 5.8 visualizes the performance results listed in Table 5.2 by showing
the behavioral domain of the objective space in the calibration period (also see Figure 5.3) as
well as validation period. In addition, the figure identifies the Pareto-optimal solutions in the
sampled model runs for both time intervals. Model run 2868 is particularly interesting, being
in the Pareto-optimal set during calibration as well as validation, with favorable results for
PBIASNitrate in both time periods and by far the best rating for KGEyjitrate during validation.
For calibration, model run 1434 gives the highest KGEyjrate result and seems to offer an ex-
cellent Pareto-optimal solution with only marginal trade-off between streamflow and nitrate
simulation performance. However, keep in mind that the in-sample solutions presented in Fig-
ure 5.8 are presumably too sparse to adequately approximate the population Pareto fronts in
both simulation periods. For instance, there may be many unexplored parameter sets that are
Pareto-optimal and outperform model run 1434 in simulating nitrate in the calibration period
(compare with model run 2868 during validation). In other words, Pareto-optimal solutions
in the sample are so sparse that they may only give an incomplete picture of the real Pareto
front, and the apparently good trade-off properties of model run 1434 during calibration may

therefore be misleading.
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Table 5.2.: Calibrated model performances in the calibration period (2012 - 2016) and validation period
(2017 - 2018). The list is restricted to the 32 model runs that surpass the behavioral threshold of 0.5
for both objective functions KGEstreamflow and KGEnitrate during calibration. The 11 model runs that
additionally surpass both behavioral thresholds in the validation period are listed separately at the top
of the table. Both sub-lists are ordered by model run number. PBIAS\itrate is included as an additional
performance metric to assess simulation of the overall nitrogen balance in the Swist catchment in the
calibration and validation period.

Calibration Validation

Run KGEstreamflow KGENitrate PBIASNjtrate KGEstreamflow KGENitrate PBIASNitrate

349 0.540 0.646 -20.6 0.573 0.645 -25.8
1054 0.535 0.571 -27.4 0.611 0.623 -34.4
1434 0.583 0.708 -15.8 0.606 0.574 -20.3
2868 0.583 0.663 -5.3 0.511 0.778 -6.6
4648 0.575 0.564 -29.9 0.533 0.556 -40.5
5221 0.519 0.656 11.3 0.602 0.712 5.8
5502 0.530 0.700 -3.2 0.570 0.552 -8.8
6388 0.554 0.503 -18.9 0.537 0.709 -19.2
7739 0.534 0.529 -344 0.567 0.512 -42.3
8638 0.552 0.647 -20.7 0.599 0.680 -27.7
8957 0.573 0.509 -29.3 0.526 0.630 -24.9

228 0.514 0.605 20.4 0.361 0.470 244
1227 0.506 0.558 -27.4 0.395 0.621 -34.7
1248 0.526 0.548 -24.5 0.417 0.710 -23.9
1696 0.523 0.550 -6.1 0.665 0.366 -4.4
1994 0.551 0.537 37.9 0.487 0.413 32.7
3878 0.502 0.610 25.4 0.333 0.587 21.1
3883 0.532 0.516 -15.9 0.461 0.517 -11.4
5212 0.557 0.607 -19.3 0.668 0.461 -23.3
5275 0.524 0.683 3.9 0.493 0.687 -4.4
5382 0.506 0.525 -32.2 0.623 0.366 -37.9
5626 0.547 0.507 -32.2 0.635 0.364 -40.4
6842 0.549 0.607 -22.6 0.477 0.668 -26.5
7038 0.548 0.517 -13.3 0.464 0.494 -15.4
7265 0.501 0.581 -14.4 0.370 0.242 -10.6
8006 0.509 0.525 28.2 0.618 0.347 28.4
8294 0.515 0.541 3.0 0.451 0.282 6.3
8503 0.521 0.614 -16.1 0.362 0.711 -17.8
8504 0.523 0.569 -20.9 0.455 0.456 -23.6
8550 0.535 0.670 -4.9 0.621 0.383 -17.4
8774 0.589 0.601 7.1 0.625 0.386 6.3
9485 0.569 0.610 -10.8 0.449 0.637 -15.7

112



5. Model Calibration and Validation

A
0.8 A
1434
0.7
) 2868
©
-
L
Q
4
° 8774
0.6 °
Pareto-optimal
[ ]
] ® No
A Yes
0.5
T T T T
0.5 0.6 0.7 0.8
KGEStreamﬂow PBIASNma‘e
' B
0.8+ 10
2868 10
-30
|
5221
0.7 A
)
©
E
L
g 1054
0.6 1
[ J
[ ]
0.5 1
05 06 0.7 08

KGEStreamrow

Figure 5.8.: Scatter plots of the calibrated model performances during the calibration (2012 - 2016) and
validation period (2017 - 2018). The scatter plots are limited to the behavioral domain of the applied
objective space for calibration (A) and validation (B). The color of the points indicates the PBIAS result
for simulated NO3 ™ -N loads in Metternich. The shape of the points signifies Pareto-optimality among
the sampled model runs. Notice that Panel A represents a detail of the objective space shown in Figure
5.3. As validation was restricted to the 32 calibrated model runs in Panel A, there may be further model
runs among the original 10000 that surpass both behavioral thresholds during validation but are not
included in Panel B.
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Figures 5.9 to 5.12 show the observed and simulated time series of streamflow at the Essig, Mo-
renhoven and Weilerswist gauging stations, and of in-stream NO; ~-N loads at the Metternich
water quality monitoring station in the calibration and validation period. The figures depict
the model results of the 32 calibrated model runs as uncertainty bands from the minimum to
the maximum value and from the 10th to the 90th percentile for each simulation day. The time
series depictions confirm many of the conclusions already drawn from the calculated perfor-
mance metrics. Considering the hydrographs at the three gauging stations, the simulated min-
imum and maximum values manage to bracket the observed data for most of the study period.
Exceptions occur most frequently in Essig, where the simulated uncertainty band repeatedly
is above the observed values, particularly during low flow periods. This general pattern of low
flow overprediction in Essig is contrasted by a pattern of low flow underprediction at the gaug-
ing station in Weilerswist, where the simulated uncertainty band manages to bracket observed
low flows during most of the study period, but fails to do so symmetrically. A sizable share of
model runs even approach streamflow cessation during certain time intervals in Weilerswist,
which is not supported by the gauge records. In Morenhoven, the simulation results show a
tendency to underpredict low flows as well, but to a clearly lesser extent than in Weilerswist.
In this respect, note that base flow in Morenhoven is supported by the continuous wastewater
contribution from the upstream WWTP in Flerzheim. The basic patterns of low flow over- and
underprediction at the individual gauges are reflected in the PBIAS scores depicted in Figure
5.7, demonstrating the impact of errors in low flow simulation on the general water balance.
The divergent model behavior in simulating low flows at the Steinbach and Swist watercourses
likely is a consequence of trade-offs in calibrating water transmission losses from the main

channel (see Section 5.3).

With regard to streamflow peaks, the models overall perform well in reproducing their occur-
rence and timing. However, there are some peaks that are notably overpredicted by individual
model runs, as indicated by upward spikes of the dotted line marking the maximum simula-
tion results without a correspondingly high peak in the observed hydrograph. Overprediction
of streamflow peaks primarily occurs during the calibration period in Morenhoven and Wei-
lerswist. In the validation period, observed streamflow is less dynamic and streamflow peaks
are smaller than in the calibration period, especially during the particularly dry year of 2018.
Accordingly, overprediction of streamflow peaks is less pronounced in the validation period.
In fact, the improvement of performance criteria during validation that emphasize correlation,
timing and capturing of peak discharges (R?, NSE) may be an effect of drought and reduced
discharge dynamics in this period, effectively shrinking the room for error in capturing these
dynamics during validation. Conversely, reduced observed discharges in the validation period

may increase variability and error sensitivity in relative performance measures that assess the
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Figure 5.9.: Observed and simulated time series of daily streamflow in Essig. The solid blue line shows observed streamflow. Results of the 32
simulation runs selected during model calibration are depicted in aggregated form. The two dotted light blue lines indicate minimum and maximum
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Figure 5.10.: Observed and simulated time series of daily streamflow in Morenhoven. The solid blue line shows observed streamflow. Results of
the 32 simulation runs selected during model calibration are depicted in aggregated form. The two dotted light blue lines indicate minimum and
maximum simulated streamflow for each day, while the light blue ribbon frames simulated streamflow between the 10th and 90th percentile. For
reasons of scale, some simulated peaks are cut off.
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Figure 5.11.: Observed and simulated time series of daily streamflow in Weilerswist. The solid blue line shows observed streamflow. Results of
the 32 simulation runs selected during model calibration are depicted in aggregated form. The two dotted light blue lines indicate minimum and
maximum simulated streamflow for each day, while the light blue ribbon frames simulated streamflow between the 10th and 90th percentile. For
reasons of scale, two simulated peaks are cut off.
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overall water balance, like PBIAS (Gupta et al. 1999, Moriasi et al. 2007) and the bias component
of KGE (Santos et al. 2018, Clark et al. 2021). This effect may play a role in the extreme PBIAS
deterioration for streamflow in the validation period at the Essig gauge, where the general wa-
ter balance is more dominated by base flow than in Morenhoven and Weilerswist. Comparison
of the Essig hydrographs between calibration and validation in Figure 5.9 does not suggest as
large an increase in absolute streamflow overprediction as implied by the relative performance

measure PBIAS in Figure 5.7.

Looking at the NO; ™ -N load data at the Metternich water quality monitoring station in Figure
5.12, the models largely succeed in capturing the overall dynamics in the observed time series
both in the calibration and validation period. This may be seen as an expected outcome given
the good representation of streamflow dynamics in the simulation results (go back to Figures 5.9
to 5.11 for confirmation) and the typically high correlation between discharge and transported
NO; ™ -N loads (Oeurng et al. 2010, Pellerin et al. 2014, Bauwe et al. 2020). At the same time,
individual model runs introduce additional peaks to the simulated time series not present in
the same magnitude in the observed data. While this kind of error is also present in simulated
streamflow, it is more pronounced and more frequent in the NO; ™ -N load data, both during
calibration and validation. Furthermore, the nitrate time series shows that the overall load
deficit in the simulations as seen in the mostly negative PBIAS scores can largely be attributed
to underprediction of NO3; ™ -N base loads, with a large portion of the simulated uncertainty
band undercutting the observed values in-between the high emission events. This stands in
contrast to underprediction of NO; ~-N loads in the uncalibrated model (see Chapter 4), which
originates mostly from a failure in reproducing the peaks in the observed load time series while

the base loads during low flow are captured better (data not shown).

Generally, the time series plots confirm that there is no systematic decline in model perfor-
mance between calibration and validation, both with respect to streamflow and NO3 ™ -N loads.
Although not perfect, the model fits to the observed data are not fundamentally different in the
calibration and validation period, neither in terms of their strengths nor regarding their weak-
nesses. Against the background of the sustained drought in the last simulation year, it can thus
be stated that the applied SWAT model has been successfully validated in a differential split-
sample test regarding climatic conditions. Although no definite prove on its own, this outcome
provides confidence that the calibrated parameters represent the Swist catchment character-
istics as realistically as possible given the applied model structure and input data. Errors in
the model structure and input data are the most likely cause for the remaining deficiencies
in the simulation results, effectively posing a ceiling for the calibrated model performance.

An example of such an error is the lack of spatial differentiation in the parameter governing
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Figure 5.12.: Observed and simulated time series of daily NO3; ™ -N loads in Metternich. The solid blue line shows observed loads. Results of the
32 simulation runs selected during model calibration are depicted in aggregated form. The two dotted light blue lines indicate minimum and
maximum simulated loads for each day, while the light blue ribbon frames all simulated loads between the 10th and 90th percentile. For reasons
of scale, one simulated peak is cut off.
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transmission losses from the SWAT main channel (CH_K2.rte), which makes it difficult to ade-
quately represent low flow periods at all considered stream gauges simultaneously. In order to
gain further understanding of the calibrated simulation results, Subsection 5.4.2 will compare

the simulation results to additional monitoring data on in-stream N concentrations.

5.4.2. Comparison with In-Stream N Concentrations

The comparison of the simulation results with data on in-stream N concentrations serves two
main purposes: First, it aims to complement split-sample validation of the SWAT models with
additional data not previously used in either calibration or validation. The N concentration
data originates from the Erftverband routine water quality monitoring network in the Swist
catchment (see Figure 2.2 in Chapter 2). Hence, it can be used to examine the simulated water
quality along the entire Swist watercourse (and some of its tributaries), rather than exlusively
at the Metternich monitoring station near the catchment outlet, effectively testing the model in
space instead of only time. Second, the comparison makes it possible to extend model validation
towards forms of reactive nitrogen other than NO3; ™ -N . The Erftverband routine monitoring
data encompasses several different fractions of reactive N. The most important of these addi-
tional nitrogen fractions is organic N, which most likely constitutes a meaningful part of the
nitrogen balance in the catchment, but so far has not been considered in the calibration and
validation process. However, note that the Erftverband monitoring data is mostly based on
grab samples on a few days per year, with additional qualified grab samples’ and 24h com-
posite samples taken for research projects. In contrast, the simulated values represent average
concentrations for each simulation day. This means that the measured and simulated concen-
trations are incommensurate (Beven 2012, p. 18, also see Subsection 1.2.2) and do not allow a
meaningful one-to-one comparison or calculation of standard performance measures. Instead,
measured and simulated values are compared in terms of their medians and maxima (i.e. their

distributional characteristics).

Table 5.3 lists the median and maximum values of the measured and simulated N concentra-
tions at all considered monitoring points. In total, the monitoring data comprises approxi-
mately 300 water samples taken in the entire Swist catchment during the study period (2012
to 2018). The measurements show by far the lowest burden of reactive N in the upstream
region of Ersdorfer Bach, a tributary that enters the Swist in the town of Meckenheim. The
monitoring point at Ersdorfer Bach represents “pristine” conditions, being situated at the out-

let of a small headwater catchment that is dominated by forest with no urban or agricultural

7 A qualified grab sample is a composite sample consisting of at least 5 grab samples taken with a maximum time
gap of 2min inside a time frame of not more than 2 h.
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influences. For the Swist main watercourse, measured N concentrations are lowest in Mecken-
heim and Flerzheim, although already one order of magnitude higher than at Ersdorfer Bach.
Both monitoring points are influenced by intensive agriculture (particularly orchards) in the
southeast of the catchment, while still located upstream of the first (and largest) continuous
wastewater discharger along the Swist watercourse: WWTP Flerzheim. From there, measured
N concentrations rapidly increase until the monitoring point in Miel, which is additionally in-
fluenced by wastewater from WWTPs Rheinbach and Miel. Between Miel and Weilerswist,
measured N concentrations gradually decrease again, despite further wastewater inflow from
WWTP Heimerzheim. The highest measured N burden of all monitoring points is present in
the Schiessbach, a tributary that is influenced by intensive cropland farming and enters the
Swist between Miel and Heimerzheim. According to WFD monitoring results for the Swist
river basin district, the Schiessbach is one of the water bodies that failed to meet the quality
requirements for NO; ~ from 2009 to 2011 (State Ministry for Climate Protection, Environment,
Agriculture, Nature Conservation and Consumer Protection NRW 2015). However, it met the
requirements in the time span from 2015 to 2018 (State Ministry for Environment, Agriculture,

Nature Conservation and Consumer Protection NRW 2021).

As expected, the measured data shows NO; ™ -N to be the most abundant form of reactive ni-
trogen in the surface waters at all monitoring points, followed by organic N. In contrast, mea-
sured concentrations of NH,"-N and NO, ~-N are negligible in comparison: In most cases, the
medians and even maxima for both compounds cannot be stated in Table 5.3, as too many con-
centrations are below the analytical limit of quantification (LOQ). From a purely qualitative
point of view, the simulation results replicate this basic pattern, with NO; ~-N exhibiting by
far the highest median and maximum concentrations, organic N taking second place, whereas
concentrations of NH,"-N and NO; ™ -N are much lower, not exceeding 1 mg/l at all reference
points. In quantitative terms, however, there are some meaningful differences between the
measured and simulated data: While median NO; ~-N concentrations by and large agree well
between both data sets (especially at the middle and lower reaches of the Swist main water-
course as well as Schiessbach), the models generally overpredict the maximum concentrations
of NO; ™ -N by several orders of magnitude. Overestimation of the NO3; ™ -N median concen-
tration in the Ersdorfer Bach by approximately one order of magnitude can be attributed to a
spatial mismatch between the monitoring point and the respective subbasin outlet, with the
latter being situated further downstream and receiving additional nutrient inputs from agri-
cultural and residential areas. Looking at organic N, the models tend to undercut the medians
and exceed the maxima of the measured concentrations, but manage to stay in the same order
of magnitude, which overall is a reassuring outcome given that organic N remained uncon-

sidered during model calibration. Here, the monitoring data may actually underestimate peak

121



5. Model Calibration and Validation

Table 5.3.: Measured and simulated concentrations of reactive nitrogen compounds at the Erftverband
routine water quality monitoring points in the Swist river network (medians and maxima). The moni-
toring points are roughly ordered from headwaters to Swist mouth. Measured concentrations mostly
stem from grab samples - in some cases qualified grab samples or 24h composite samples - taken during
the simulation period (2012-2018). Medians of the measured concentrations are omitted if more than
50 % of the n data points are below the limit of quantification (LOQ). Correspondingly, the maxima of
the measured concentrations are omitted if 100 % of the n data points are below the LOQ. The declared
LOQs for NH4*-N, NO;7-N, NO3;™-N and organic N are 0.10 mg/l, 0.10 mg/l, 0.20 mg/l and 1.00 mg/I,
respectively. The simulated values are average concentrations for each simulation day, obtained by
dividing simulated daily loads by simulated daily streamflow. Medians and maxima of the simulated
data represent the simulation results of all 32 behavioral model runs.

Measured (2012-2018) Simulated (2012-2018)
Monitoring Point Parameter n Median [mg/l] ~ Maximum [mg/l]  Median [mg/l]] Maximum [mg/1]
Ersdorfer Bach NH4*-N 13 - - 0.00 0.15
Ersdorfer Bach NO, ™ -N 13 - - 0.00 0.00
Ersdorfer Bach NO; ™ -N 13 0.60 1.3 4.00 105.98
Ersdorfer Bach OrganicN 13 - 2.8 0.00 13.27
Swist Meckenheim NH;*-N 40 - 1.0 0.01 0.35
Swist Meckenheim NO, ™ -N 40 - - 0.00 0.04
Swist Meckenheim NO;3; ™ -N 40 5.28 9.3 6.76 3146.45
Swist Meckenheim  Organic N 40 - 2.7 0.00 12.86
Swist Flerzheim NH;*-N 49 - 1.0 0.01 1.47
Swist Flerzheim NO, -N 49 - - 0.00 0.07
Swist Flerzheim NOs3; ™ -N 49 4.69 8.0 8.23 7571.88
Swist Flerzheim OrganicN 40 - 29 0.00 34.29
Swist Morenhoven NH;*-N 31 - 1.0 0.04 0.59
Swist Morenhoven NO, -N 31 - - 0.01 0.10
Swist Morenhoven NO;3; ™ -N 31 5.90 10.0 8.06 272.76
Swist Morenhoven OrganicN 22 1.20 2.4 0.69 8.59
Swist Miel NH;*-N 40 - 1.0 0.08 0.48
Swist Miel NO, ™ -N 40 - - 0.02 0.16
Swist Miel NO; ™ -N 40 7.16 10.2 7.86 193.65
Swist Miel OrganicN 40 1.10 2.7 0.90 8.29
Schiessbach NH;*-N 9 - - 0.01 0.52
Schiessbach NO, -N 9 - - 0.00 0.05
Schiessbach NO; ™ -N 9 8.00 27.4 7.44 1114.06
Schiessbach Organic N 8 1.40 1.8 0.00 10.20
Swist Heimerzheim  NH;*-N 40 - 1.0 0.08 0.63
Swist Heimerzheim  NO; ™ -N 40 - - 0.01 0.21
Swist Heimerzheim  NO3; ™ -N 40 6.80 10.0 7.21 242.32
Swist Heimerzheim  OrganicN 40 1.45 6.4 0.59 8.35
Swist Metternich NH;*-N 16 - 0.4 0.09 0.79
Swist Metternich NO, ™ -N 16 - - 0.02 0.29
Swist Metternich NO3; ™ -N 16 6.50 9.4 7.24 252.27
Swist Metternich OrganicN 15 1.20 2.1 0.54 8.12
Swist Weilerswist NH;*-N 59 - 1.2 0.09 0.80
Swist Weilerswist NO, -N 59 - - 0.02 0.34
Swist Weilerswist NO3 ™ -N 59 6.40 10.0 7.17 254.46
Swist Weilerswist OrganicN 59 1.20 3.0 0.48 7.40
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5. Model Calibration and Validation

concentrations of organic N, as these typically occur during high flows and are thus most likely

missed by grab sampling on only a few days per year.

Note that the simulated median and maximum concentrations in Table 5.3 represent all 32 cal-
ibrated model runs at once. In order to compare the simulated N concentrations across the
different models, Figure 5.13 shows the concentration distributions at the monitoring point
in Weilerswist during the study period for each individual model run as boxplots. Weilers-
wist was chosen because it is the monitoring point closest to the Swist mouth, integrating
discharge and nitrogen emissions from almost the entire Swist catchment area. In addition,
it is the monitoring point with the highest number of examined water samples in the study
period, with median and maximum values of the measured concentrations indicated in Fig-
ure 5.13 as red and blue lines, respectively. Considering NO3;™-N, it is obvious that there is
considerable variability in the simulated maximum concentrations between the various model
runs.® While all model runs overpredict the maximum values to a certain extent, only a minor-
ity reach NO3; ™ -N concentrations of 100 mg/l and more. Other model runs manage to better
control the maximum values and produce upward tails in the simulated distributions that are
relatively short with no or only a few moderate outliers. An example is model run 2868, which
yields favorable results in many other aspects as well, as already discussed in Subsection 5.4.1.
The patterns of higher and lower simulated maxima between the different model runs in Wei-

lerswist generally carry over to most of the other monitoring points as well (data not shown).

When interpreting the simulated concentrations, keep in mind that N concentrations are not
a SWAT output variable and remained unconsidered in the model calibration process. Instead,
the model was calibrated on streamflow and in-stream NO3 ™ -N loads, and the simulated con-
centration values are derived from the streamflow and N load results. Consequently, errors
in these two model outputs may interact and introduce even larger errors in the simulated
N concentration values. In this respect, remember that common errors in the simulations in-
clude a tendency to underestimate discharge during low flow periods along the Swist main
watercourse as well as massive overestimation of some NO3 ™ -N load peaks near the catch-
ment outlet in Metternich (see Subsection 5.4.1). Extreme overprediction in the simulated
NO;3 ™ -N concentrations may thus result from co-occurrence of these errors on the same simu-
lation day. In order to verify this, Figure 5.14 shows the simulated time series of streamflow at
the Weilerswist gauge and NOs; ™ -N in-stream loads at the Metternich water quality station for

two example model runs against the corresponding observed time series in 2016 and 2017 (i.e.

8NO3; ~-N is chosen here for detailed discussion as it is the most important N compound and clearly dominates
the overall N burden in the Swist river network. However, differences in the maximum concentrations between
the model runs are also roughly mirrored in the distributions for the other N fractions, as seen in Figure 5.13.
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Figure 5.13.: Simulated N concentrations in Weilerswist near the Swist mouth. The boxplots show the
distribution of daily simulated N concentrations for each of the 32 calibrated model runs during the
study period (2012-2018). Hence, the number of data points behind each boxplot is the number of days
in the simulation period (2557). The concentrations are given for each of the four reactive N fractions
in surface waters. For quick reference, medians and maxima of the measured concentrations at the
corresponding Erftverband monitoring point in Weilerswist are indicated as red and blue dashed lines,
respectively (if available for each fraction of reactive N, see Table 5.3).
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the last year of the calibration period and the first year of the validation period). The two exam-
ple model runs (2868 and 5502) were selected as they both surpass the behavioral thresholds for
the KGE-based objective functions during calibration and validation as well as yield favorable
nitrate PBIAS scores over the entire study period (Table 5.2). However, they give completely
opposite results regarding peak concentrations of NO3; ~-N , with the predicted maximum con-
centration being approximately three times higher for model run 5502 than for model run 2868

in Weilerswist (see Figure 5.13).

Looking at Figure 5.14 A, it becomes clear that model run 5502 is prone to low flow under-
prediction at the Weilerswist gauging station, whereas model run 2868 captures low flows
excellently (albeit with a greater tendency to overpredict the hydrograph peaks). At the same
time, Figure 5.14 B reveals that model run 5502 immensely overpredicts several NO; ~-N load
peaks that model run 2868 mostly captures quite well. For model run 5502, the maximum
NO;3 ™ -N concentration in Weilerswist is about 86 mg/l and it occurs end of June 2017, when a
longer period of consistently underestimated streamflow coincides with an enormously overes-
timated load peak. This outcome basically confirms the above-stated notion that concentration
outliers are mostly a consequence of simultaneous errors in streamflow and NO3; ™ -N load sim-
ulation. As a final remark on Figure 5.14, notice that model run 2868 not only avoids the errors
leading to overpredicted peak concentrations, but also captures NO3; ™ -N base loads generally
well. In contrast, model run 5502 undercuts the observed loads during dry periods through-
out 2016 and 2017, providing a good example for the marked underprediction of NO3; ™ -N base

loads that is present in many of the calibrated models examined in this chapter.
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Figure 5.14.: Details from selected simulated time series of daily streamflow in Weilerswist (A) and
daily NO3™-N loads in Metternich (B). The selected simulated time series originate from the behavioral
model runs 2868 (violet) and 5502 (yellow). The corresponding observed time series are depicted in blue.

The excerpt from the overall time series encompasses the last year of the calibration period (2016) and
the first year of the validation period (2017).
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5.5. Concluding Discussion

The results of MC-based SWAT model calibration and validation for the Swist catchment pre-
sented in this chapter clearly demonstrate the implications of equifinality in the modeling pro-
cess: On the one hand, several behavioral parameter sets manage to approximate the observed
calibration data within reasonably narrow uncertainty bands. From 10 000 model evaluations,
a total of 11 parameter sets were identified as behavioral in both the calibration and validation
period (2012-2018). On the other hand, although multi-objective calibration helped to better
constrain the model parameters compared to a single-objective setting (see Figure 5.5), most
calibrated parameters still vary over relatively wide ranges. In a nutshell, different model pa-
rameter sets produce similar model outputs. The diversity in the 11 behavioral parameter sets
entails a range of N pollution scenarios for the Swist catchment that are consistent with the
applied model structure as well as input and calibration data. The different scenarios may be
seen as a representation of uncertainty in simulated N emissions and will be examined at length
in the forthcoming Chapter 6. Of course, the selected parameter sets represent only a random
fraction of an infinite number of behavioral solutions in the parameter space. In addition, they
are dependent on many subjective decisions even within an automated MC-based calibration
framework as applied in this thesis. These decisions include (among others) the choice of pa-
rameter ranges, calibration data sets, objective functions and behavioral thresolds. They come

on top of the many subjective decisions already taken during model setup (see Chapter 4).

The selected parameter sets have been classified as behavioral solely in terms of the KGE-
based objective funtions assessing streamflow and NO3; ™ -N in-stream loads. Despite similarly
good KGE scores, they differ in a range of aspects, first and foremost their success in capturing
the long-term N balance of the Swist catchment. This is quantified by the PBIAS metric for
NO;3 ™ -N in-stream loads in Metternich: While a small number of behavioral model runs pro-
duce PBIAS scores that are reasonably close to the ideal value of 0, the majority of them are
distinctly negative, clearly showing a bias towards underestimating N exports from the Swist
catchment. Thinking further, this also suggests underestimation of N emissions to surface wa-
ters (although other explanations are plausible as well, like excessive simulated in-stream re-
tention). Given the large number of behavioral model runs that exhibit negative bias in nitrate
simulation, calibration as conducted in this study seems mostly unable to identify parameter
values that eliminates this bias, suggesting structural model errors or data errors as its most
probable cause (e.g. representation of fertilizer inputs, see Chapter 4). The small number of pa-
rameter sets that yield good PBIAS results for NO3; ™ -N loads may then be right for the wrong
reasons on the Swist N balance. Again, Chapter 6 will expand on this and give a more detailed

analysis of the simulated N emission scenarios simulated by the 11 behavioral model runs.
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Apart from the general N balance in the catchment, the behavioral model runs furthermore dif-
fer in their ability to reproduce the concentrations (as opposed to loads) of NO3; ™ -N and other
forms of reactive nitrogen at various points along the Swist stream network. As worked out
in this chapter, this is due to simultaneous errors in streamflow and nitrogen simulation exac-
erbating each other when looking at the resulting N concentrations. Differences in capturing
measured concentrations are thus a consequence in different performances regarding simula-
tion of streamflow and transported N loads, and may furthermore be read as varying model
capacity to adequately correlate the dynamics of both quantities (in terms of N mobilization
and dilution in response to the catchment hydrology). There are many more potential criteria
that can be used to distinguish the 11 selected parameter sets from each other, for example
their capability to balance out the trade-offs between the two applied objective functions (i.e.
Pareto-optimality between streamflow and NO3; ™ -N load simulation, see Figure 5.8). In spite
of their potential shortcomings and the subjectivity associated with their selection, the 11 se-
lected model runs are the “best guess” in this thesis for representing the N emissions at the Swist
in the study period as well as estimating the associated (parameter-based) model uncertainty:.
Consequently, they will serve as the basis for examining non-point source N pollution in the

upcoming thesis chapter.
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Apportionment

6.1. Introductory Remarks

This chapter examines the nitrogen emission scenarios that correspond to the simulation re-
sults of the 11 SWAT model runs validated in Chapter 5. As argued there, these model runs
(along with their associated parameter sets) represent the best approximation of actual N pol-
lution in the Swist catchment during the study period (2012-2018), given the applied model
setup and calibration strategy. Contrary to model calibration and validation, the analysis in
this chapter is no longer based on in-stream simulation results, but on the HRU and subbasin
level results for the SWAT land phase prior to channel routing. Hence, the focus of the present
chapter are the N loads entering the Swist river network. The ultimate goal of the analysis is
to quantify overall emission loads for reactive nitrogen in the Swist catchment and to assess
the contribution of different emission sources, including a breakdown of point and non-point
emission loads and an identification of potential critical source areas (CSAs). In principle, this
corresponds to what is commonly referred to as source apportionment (Bogestrand et al. 2005).
The resulting emission load estimates are compared to independent data to check for their
plausibility. With regard to load contributions from non-point emission sources, there are two

reference data sets available for N emissions specifically in the Swist river basin:

1. The first reference data set is based on edge-of-field (EOF) monitoring data collected
during several Erftverband research projects in the Swist catchment from 2005 to 2012
(Kistemann et al. 2007, Mertens et al. 2012). The monitoring data consists of N con-
centrations measured in surface runoff, interflow and tile flow from individual fields
and hillslopes, covering all major natural land uses in the catchment (cropland, forests,
grassland and orchards). The sampling devices applied for collecting surface runoff and
interflow are described in Christoffels et al. (2016). The map in Figure 2.2 (see Chapter 2)
gives an overview of the various EOF monitoring locations along the Swist and its trib-

utaries during past Erftverband research activities (note that the reference data is based
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on water samples from only part of these locations). Using additional data and estimates
on point source emissions, Mertens et al. (2012) upscaled the monitoring data to estab-
lish a broad surface water emission inventory for total nitrogen in the Swist catchment
from 2005 to 2009. For this purpose, catchment-wide emission loads for total nitrogen via
surface runoff and interflow were estimated from the medians of the measured N con-
centrations at all EOF monitoring locations, a general water balance for the Swist river
basin as well as the area fractions of different land uses within the basin area. Nitrogen
emission loads from groundwater are quantified assuming equivalence between baseflow
and groundwater recharge, estimating the average groundwater recharge rate across the
entire Swist catchment to be roughly 901/s (Kistemann et al. 2007). As catchment-wide
tile flow estimates were unavailable, note that the emission inventory does not include N

loads from tile drains, offering no reference value for this particular pollution pathway.

. The second reference data set is based on modeled raster data of diffuse total N emis-
sions, covering the entire German federal state of North Rhine-Westphalia (NRW) at a
resolution of 1ha and representing the years from 2014 to 2016. The raster data has
been generated in the GROWA+NRW 2021 project using the various sub-models of the
static AGRUM model suite briefly described in Subsection 1.2.1. For each raster cell,
this entailed establishing agricultural N budgets with RAUMIS (Gémann et al. 2021), as-
sessing the long-term water balance with mGROWA (Herrmann & Wendland 2021) and
estimating the fate of the mobile reactive N fraction in the soil and groundwater com-
partment with DENUZ and WEKU, respectively (Wendland et al. 2021a). These steps
are informed by an identification of areas with agricultural tile drains (Tetzlaff 2021), an
evaluation of denitrification potential in soils and aquifers (Kunkel et al. 2021) as well
as an estimation of N residence times in different environmental subsurface compart-
ments (Wendland et al. 2021b). The corresponding model output comprises - among
other data - distributed average N emissions via surface runoff, erosion, interflow, tile
flow and groundwater flow that could be aggregated on the level of SWAT subbasins
in the Swist catchment. The result is a georeferenced data set that makes it possible to
not only compare the catchment-wide emission loads to surface waters between both
modeling approaches (SWAT and the AGRUM models), but also the spatial distribution

of emission loads within the catchment boundaries.

The comparison of the SWAT ensemble results with the two reference data sets (the monitoring-

based Erftverband emission inventory as well as the georeferenced GROWA+NRW 2021 model

data) is used to evaluate the relative strengths and weaknesses of the different approaches in

examining N pollution in the Swist case study. In this process, parameter-based uncertainty in
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the SWAT emission estimates is assessed by intercomparison of the 11 validated model runs,
whereas structural uncertainty is considered by comparing the overall SWAT results with the
alternative model results from the GROWA+NRW 2021 project. As hydrology plays a key role
for surface water pollution, Section 6.2 first assesses the overall water balance of the Swist
catchment simulated by the 11 validated SWAT models, discussing the major implications for
the interpretation of the simulated N emission loads. Thereafter, Section 6.3 presents the cor-
responding nitrogen regimes of the Swist catchment, focusing first on the simulated soil N
balances (Subsection 6.3.1) before subsequently examining non-point source emission loads
(Subsection 6.3.2) along with their seasonal variability (Subsection 6.3.3), point source emis-
sion loads (Subsection 6.3.4) and critical source areas in the catchment (Subsection 6.3.5). Lastly,

Section 6.4 gives a joint discussion of the results presented in this chapter.

6.2. Water Balance

Table 6.1 gives an overview of the different water balance components simulated across the
11 selected model runs, representing land phase hydrology in the Swist catchment from 2012
to 2018. Allocating the point-scale precipitation records to individual subbasins by distance,
SWAT estimates average areal precipitation for the Swist catchment to be 631.5 mm/a in the
study period. In the same time span, the model runs predict the average water yield from the
HRUs (i.e. “effective” precipitation) to be 99.7 mm/a, which roughly amounts to 16 % of over-
all areal precipitation. Across all model runs, simulated water yield fractions roughly vary
between 13 % and 22 % of precipitation. This range of values is systematically higher than
the approximately 13 % reaching the catchment outlet according to the long-term Weilerswist
gauge records (see Chapter 2), but seems plausible given that the water balance components
in Table 6.1 refer to the land phase only and do not yet account for transmission losses during
channel routing for example along the Steinbach (see Chapter 2). The models estimate actual
evapotranspiration in the Swist catchment to be 503.4 mm/a on average, amounting to approx-
imately 80 % of areal precipitation. The remaining difference of 28.4 mm/a - more than 4 % of
the catchment precipitation - most likely constitutes water loss in the water balance of the
Swist catchment (hydrological conditions in the study period - see Section 2.4 - do not imply
significant change in shorter-term water stores like soils). In SWAT, this loss term corresponds
either to the fraction of groundwater recharge that is directed to the deep aquifer and is thus
permanently removed from the system, or to water that is removed as “consumptive water use”

(see the corresponding model parameters in Table 4.2).
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Table 6.1.: Simulated water balance in the study period (2012-2018) for the behavioral SWAT model runs (land phase only). The listed values are
averages for all simulation years and the entire Swist catchment area. The given percentages denote fractions of average annual precipitation.
Average annual precipitation is 631.5 mm/a for all simulation runs. Average annual potential evapotranspiration is 732.2 mm/a for all simulation
runs. Total water yield is the sum of surface runoff, interflow, tile flow and groundwater flow. Loss is average annual precipitation minus evap-
otranspiration and total water yield. As the water balance only encompasses land phase hydrology, transmission losses from the main channel
are not considered and thus increase losses (i.e. reduce water yield) at the catchment outlet after channel routing. The sum of total water yield,
evapotranspiration and loss gives a closed balance, i.e. equals average annual precipitation (100 %). Minor discrepancies occur due to rounding.

Water Yield Components [mm/a] Total Water Yield Evapotranspiration Loss

Model Run  Surface Runoff Interflow Tile Flow Groundwater Flow [mm/a] [%] [mmy/a] [%] [mmy/a] [%]

349 21.60 78.17 39.73 0.00 139.50 22.09 482.8 76.45 9.20 1.46
1054 21.98 41.72 40.27 0.03 104.00 16.47 501.6 79.43 25.90 4.10
1434 13.30 35.59 31.06 5.41 85.36 13.52 492.3 77.96 53.84 8.53
2868 17.36 34.23 30.54 4.43 86.56 13.71 503.6 79.75 41.34 6.55
4648 12.23 61.29 31.83 2.86 108.21 17.14 497.3 78.75 25.99 4.12
5221 21.87 54.34 31.52 0.01 107.74 17.06 499.8 79.14 23.96 3.79
5502 11.17 35.10 25.76 10.91 82.94 13.13 494.6 78.32 53.96 8.54
6388 14.87 42.53 27.86 0.94 86.20 13.65 521.6 82.60 23.70 3.75
7739 20.62 44.89 29.52 0.84 95.87 15.18 510.2 80.79 25.43 4.03
8638 22.79 53.56 36.10 0.00 112.45 17.81 508.6 80.54 10.45 1.65
8957 17.99 44.38 25.49 0.00 87.86 13.91 524.8 83.10 18.84 2.98
Min 11.17 34.23 25.49 0.00 82.94 13.13 482.8 76.45 9.20 1.46
Median 17.99 44.38 31.06 0.84 95.87 15.18 501.6 79.43 25.43 4.03
Max 22.79 78.17 40.27 10.91 139.50 22.09 524.8 83.10 53.96 8.54
Mean 17.80 47.80 31.79 2.31 99.70 15.79 503.4 79.71 28.42 4.50
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The occurrence of underground water loss in the simulations is consistent with the presumed
effects of the mining-induced water table draw down on the catchment hydrology formulated
in Chapter 2. However, the actual extent of water loss is difficult to verify and depends on re-
liable estimates of evapotranspiration. There is some independent data that allows for a rough
quantification of actual evapotranspiration in the Swist catchment. The Hydrological Atlas of
Germany (HAD) (German Federal Ministry for the Environment 2003) specifies annual actual
evapotranspiration to be above 500 mm in almost the entire Swist river basin for the reference
period from 1961 to 1990.! Koch (2004) states that annual actual evapotranspiration for the
Swist catchment is 535 mm, without providing specific references. In their application of the
mGROWA model in the GROWA+NRW 2021 project, Herrmann & Wendland (2021) calculate
annual actual evapotranspiration in NRW for the reference period from 1981 to 2010.> Aggre-
gating the mGROWA raster output for the part of the Swist catchment that is located inside
NRW yields an estimate of almost exactly 500 mm annual evapotranspiration. In summary,
estimates of long-term annual evapotranspiration for the Swist catchment range from approx-
imately 500 to 535 mm. Relating these values to annual precipitation of 600 to 700 mm results
in a minimum estimate of slightly more than 70 % and a maximum estimate of slightly less than
90 % of annual precipitation that evapotranspirates. This is in good accordance with simulated
annual evapotranspiration across the 11 selected SWAT runs, which varies roughly between
76 % and 83 % of precipitation. The corresponding simulated water loss fractions range from

approximately 1.5 to 8.5 % (land phase only) .

Looking at the individual flow components contributing to total water yield in Table 6.1, the
generally low values for groundwater flow are particularly noteworthy. On average, mod-
eled groundwater contributions are only at 2.31 mm/a, compared to 47.80 mm/a for interflow
- the largest individual flow component - followed by tile flow with 31.79 mm/a and surface
runoff with 17.80 mm/a. For almost half of the selected model runs, groundwater flow is prac-
tically 0 mm/a, and only one model run exhibits groundwater flow above 10 mm/a. Low or
non-existent groundwater flow often coincides with high overall water yields above 100 mm/a,
whereas higher groundwater contributions well above 1 mm/a usually fall together with rela-
tively small water yields of less than 90 mm/a (Spearman’s rank correlation coefficient between
both quantities is —0.75). Here, the model seems to overcompensate missing groundwater con-
tributions by increasing contributions from the other flow components, possibly in an attempt

to sustain streamflow even during longer dry periods (as evident from the gauge records from

https://geoportal.bafg.de/mapapps/resources/apps/HAD/index.html?lang=en, as retrieved
on January 7, 2023.

’https://www.opengeodata.nrw.de/produkte/umwelt_klima/wasser/grundwasser/mgrowa/,
as retrieved on January 7, 2023.
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Morenhoven and Weilerswist, streamflow never completely ceases along the Swist main water-
course downstream of WWTP Flerzheim). This compensation seems to come mainly from the
interflow component, which exhibits by far the largest variability with an absolute difference

between the simulated minimum and maximum value of more than 40 mm/a.

Kistemann et al. (2007) assume overall groundwater recharge in the Swist catchment to equal
901/s and use this value as a proxy for baseflow at the catchment outlet in Weilerswist. Sub-
tracting WWTP contributions from annual summer low flows in the Weilerswist gauge records
yields a similar baseflow estimate of around 1001/s (Erftverband personal communication).
The only simulated groundwater contribution that roughly corresponds to this flow rate is
the maximum value of 10.91 mm/a. All other simulations would fail to reproduce baseflow
in the same order of magnitude assuming baseflow to exclusively originate from groundwa-
ter contributions. This deficit in groundwater contributions is closely related to the SWAT
parameter DEPIMP_BSN.bsn, which defines the depth to an impervious layer in the subsur-
face. Setting this parameter enables simulation of a perched water table and tile flow in SWAT,
while at the same time restricting groundwater recharge with decreasing depth of the imper-
vious zone in the subsurface (Neitsch et al. 2011). For shallow impervious layers, this may
lead to a quick depletion of groundwater storage in the shallow aquifer below the threshold
value for groundwater flow to occur (see Subection 3.1.2). Indeed, low groundwater flows at or
very near 0 mm/a coincide with shallow impervious layers in the simulations, whereas higher
groundwater contributions are associated with deeper impervious layers (i.e. higher values for
DEPIMP_BSN.bsn, data not shown).

The effect of DEPIMP_BSN.bsn on the simulation results is a plausible explanation for the
low sensitivity indices of all groundwater parameters in global sensitivity analysis (see Sec-
tion 5.2). While the default setup in the uncalibrated model corresponds to virtually unhin-
dered groundwater recharge, parameter variation for sensitivity analysis includes values for
DEPIMP_BSN.bsn that prevent groundwater recharge almost entirely, rendering groundwa-
ter parameters uninfluential in a significant portion of evaluated model runs. In this respect,
note that - for lack of better knowledge about the actual extent of the restrictive subsurface
layer in the study area - DEPIMP_BSN.bsn affects the simulated hydrology in the entire Swist
catchment.? Therefore, a possible workaround to this problem would be to vary DEP_IMP.hru
- the equivalent of DEPIMP_BSN.bsn on the HRU level - in only a portion of the SWAT sub-
basins, possibly using the spatial distribution of the known agricultural tile drains (see map in

Appendix A) as a proxy for those areas where perched water tables have the most palpable ef-

3This rationale is similar to that applied to the hydraulic conductivity of the main channel alluvium (i.e. the SWAT
parameter CH_K2.rte, see the statements in Subsection 4.3.2).
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fect on soil hydrology. However, the real extent of the restrictive subsurface layer in the Swist
catchment remains ultimately uncertain, just as it is unclear in how far the SWAT model struc-
ture allows for an accurate representation of the actual runoff generating processes in the Swist
catchment. Together with the HRU approach for spatial disaggregation as well as the empirical
nature of the SCS curve number method and its misapplication for simulating infiltration and
surface runoff in SWAT (Garen & Moore 2005), this reaffirms the basic limitations of SWAT in
discerning the individual contributions of different non-point source pollution sources already

pointed out in Subsection 3.1.3.

Finally, it should be noted that the selected SWAT model runs in Table 6.1 fail to reproduce wa-
ter storage in the Steinbach reservoir, with all of them gravely underestimating observed water
volumes held in the reservoir throughout the study period* (data not shown). Such misrepre-
sentation of the reservoir water balance is not necessarily unexpected, as observed streamflow
records from the Kirchheim gauge were fed directly into SWAT to simulate reservoir outflows,
to alarge degree decoupling the upstream area from model calibration (see Subsection 4.2.1). If
simulated streamflow in the reservoir catchment is too low (possibly due to missing groundwa-
ter contributions in the majority of model runs), inflows to the reservoir will fail to adequately
compensate for the predefined reservoir outflows as well as evaporation losses. Regardless of
the exact causes, there is considerable potential for errors in the simulated reservoir storage
to affect in-stream nitrogen transport and processing, as reservoirs may act as important N
sinks within surface water catchments (Harrison et al. 2009, Schmadel et al. 2018). In this par-
ticular case, however, two factors make it unlikely for the reservoir to significantly influence
in-stream nitrogen in the Swist catchment. First, the catchment area of the Steinbach reservoir
is approximately 14.5 km?, which amounts to only 5 % of the entire Swist catchment area. Sec-
ond, the Steinbach reservoir catchment is almost entirely covered by forest and thus mostly
unaffected by nitrogen inputs from urban or agricultural sources. Therefore, it is similar to the
catchment of the Erftverband water quality monitoring point at the Ersdorfer Bach, which is
representative of “pristine” conditions in the Swist catchment and is characterized by only very
low levels of in-stream reactive nitrogen (see the measured N concentrations in Table 5.3, note
that the considerably higher simulated concentrations refer to a location further downstream

already influenced by agricultural and residential areas).

4Observed water levels and corresponding water volumes in the Steinbach reservoir were available for most of
the study period, albeit with a long gap from late October 2013 to mid-August 2015.
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6.3. Nitrogen Balance and Emissions

6.3.1. Soil Nitrogen Balance

Table 6.2 gives an overview of the simulated land phase nitrogen balance across the 11 selected
SWAT model runs, representing the entire Swist catchment area from 2012 to 2018. Note that
the presented data is not restricted to agricultural land uses. Furthermore, it does not account
for in-stream N retention in the Swist river network, which is simulated as part of the SWAT
routing phase. Instead, the land phase comprises all soils and vegetation in the catchment,
and the nitrogen balance includes all additions of reactive N to these compartments, as well
as all removals of reactive N from these compartments. Processes that add reactive N include
fertilization, biological N fixation and atmospheric deposition. Processes that remove reactive
N encompass crop harvesting, denitrification, ammonia volatilization, leaching of nitrate to
the groundwater as well as lateral nitrogen transport to adjacent surface waters. As expected
for a study area heavily influenced by intensive crop cultivation, the dominant N input process
is fertilization, with a catchment-wide average of 90.9 kg N/(ha a) added to the soil-vegetation
system with fertilizer.> Inputs from biological N fixation amount to only 3.1kg N/(haa) on
average. As predefined by the applied ArcSWAT default settings, atmospheric N deposition is
inactive in the simulations and therefore omitted from Table 6.2. Potential consequences of

missing atmospheric deposition are discussed further below in this subsection.

According to the simulations, the most important loss process for reactive nitrogen from the
soil-vegetation system is harvesting from agricultural land® which averages 67.8 kg N/(ha a)
over all model runs and the entire catchment area. Denitrification constitutes the second most
important loss process with 37.0 kg N/(ha a) on average, followed by lateral transport to sur-
face waters (8.1 kg N/(ha a)) and NO3 ™ -N leaching to groundwater (2.4 kg N/(ha a)). As N fer-
tilizer is added exclusively as NO; ™ -N in the applied model setup (see Chapter 4), ammonia
volatilization does not occur in any model run and thus remains unaccounted for as a nitrogen
loss process in the simulations. Subtracting aggregated N losses from aggregated N gains to the
soil-vegetation system yields an average, catchment-wide N budget of -21.2kg N/(haa). Al-
though N budgets show a considerable degree of variation between the simulations, negative
values are a stable feature of all calibrated model runs listed in Table 6.2, indicating an overall

reduction of N stocks in the Swist catchment soils and plant biomass.

> Although agricultural fertilizer quantities are specified in the applied management schedules (see Appendix C)
and thus should remain unaffected during calibration, there is some variability in fertilizer inputs between
model runs originating from auto-fertilization of green spaces in urban/residential areas.

®Including some non-agricultural N losses due to mowing of green spaces in urban/residential areas.
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Table 6.2.: Simulated nitrogen balance in the study period (2012-2018) for the behavioral SWAT model runs (land phase only). The listed values
are averages for all simulation years and the entire Swist catchment area. The land phase N balance comprises all soils as well as vegetation, but
excludes groundwater (in contrast to the water balance in Table 6.1). The N budget is the difference between all nitrogen gains and losses in the
soil-vegetation system and thus represents the simulated change in storage during the study period, with minor discrepancies due to rounding.
Atmospheric N deposition and ammonia volatilization have been inactive in the simulations and are therefore omitted from the gain and loss
processes, respectively. Fertilizer inputs vary between model runs due to differences in SWAT auto-fertilization of green spaces in urban areas.
N cycling involves processes that neither add nor remove nitrogen from the soil-vegetation system. For comparison, the bottom row shows the
simulated nitrogen balance for the uncalibrated default model setup.

N Gains [kg/(ha a)] N Cycling [kg/(haa)] N Losses [kg/(ha a)]

Model Run Fertilizer ~ Biol. Fixation  Plant Uptake = Mineralization =~ Harvest  Denitrification = Leaching  Lateral Loss  Budget [kg/(haa)]

349 95.4 3.0 108.2 84.4 59.1 52.0 0.0 11.4 -24.0
1054 93.3 2.8 115.6 90.0 62.9 52.2 0.4 8.7 -28.1
1434 93.0 3.1 105.9 61.1 60.7 32.7 3.9 6.0 =7.2
2868 94.1 3.5 107.6 76.6 59.9 47.6 4.6 6.1 -20.5
4648 89.5 3.2 126.2 92.8 70.9 40.2 1.2 6.4 -25.9
5221 89.0 3.2 128.0 99.7 71.9 28.7 4.1 15.9 -28.3
5502 88.8 2.7 139.4 108.3 78.6 32.8 7.9 6.5 -34.3
6388 90.1 3.3 119.3 72.0 67.6 29.7 1.2 5.3 -10.3
7739 88.1 3.0 129.6 95.1 73.0 30.3 3.1 8.3 -23.6
8638 92.5 2.9 115.9 83.5 63.7 42.4 0.1 9.3 -20.0
8957 86.1 3.1 136.5 94.9 77.4 18.2 0.4 4.7 -11.4
Min 86.1 2.7 105.9 61.1 59.1 18.2 0.0 4.7 -34.3
Median 90.1 3.1 119.3 90.0 67.6 32.8 1.2 6.5 -23.6
Max 95.4 3.5 139.4 108.3 78.6 52.2 7.9 15.9 -7.2
Mean 90.9 3.1 121.1 87.1 67.8 37.0 2.4 8.1 -21.2
Uncalibrated 85.8 3.5 125.1 60.0 73.2 6.9 3.4 1.2 4.8
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6. Model-Based Nitrogen Source Apportionment

Since many N loss processes (e.g. denitrification) are notoriously hard to quantify and typically
associated with large uncertainties, mass balance studies for environmental nitrogen often do
not explicitly account for them (Oenema et al. 2003). Instead, they focus on N losses with crop
harvesting and possibly ammonia volatilization during fertilization, and compare these with
the combined inputs through fertilization, biological N fixation and atmospheric deposition,
usually yielding relatively large N surpluses (see for example Batool et al. (2022) for a recent
evaluation of N surpluses in Europe from 1850 to 2019). These surpluses represent the overall
potential for surface water N pollution, but may equally be released to the atmosphere via
denitrification (Seitzinger et al. 2006) or be retained via long-term storage in soils, the vadose
zone and aquifers (Van Meter et al. 2016, Ascott et al. 2017). The N budgets in Table 6.2 explicitly
account for most lost processes and thus cannot be compared to N surplus estimates from other
studies. When calculating N surpluses instead of budgets from the data in Table 6.2 (ignoring
denitrification, leaching and lateral transport of N), the results range from 12 to 39 kg N/(ha a)
over all model runs (not included in Table 6.2). Several independent N surplus estimates with

a significant spatial and temporal overlap are generally higher than this range of values:

1. For the municipalities in the Swist catchment, Gémann et al. (2021) estimate agricul-
tural N surpluses to range roughly from 30 to 75 kg N/(ha a) between 2014 and 2016, not

accounting for atmospheric N deposition.

2. For the Euskirchen district and the Rhein-Sieg-Kreis district, respectively, the Chamber
of Agriculture NRW (2021) estimates agricultural N surpluses to be 45 and 36 kg N/(ha a)
between 2015 and 2017, as well as 55 and 58 kg N/(ha a) in 2020, again not accounting

for atmospheric N deposition.

3. For the entire land area of Germany, Batool et al. (2022) estimate the total N surplus (for
both agricultural and non-agricultural soils) to roughly range from 40 to 55 kg N/(ha a)
in 2019.

However, when comparing this data to the SWAT simulation results, keep in mind that Gémann
et al. (2021) as well as the Chamber of Agriculture NRW (2021) only consider agricultural land
in their estimations, whereas the Swist catchment also includes significant portions of forested
areas without fertilizer inputs as well as urban areas. Hence, the N surplus estimates from
GoOmann et al. (2021) and the Chamber of Agriculture NRW (2021) should be expected to be
higher than N surpluses simulated by SWAT for the entire Swist catchment. Moreover, the N
surplus estimate from Batool et al. (2022) applies to all of Germany. Therefore, it is unlikely to
be representative of the land use distribution and management practices in the Swist catchment,

making direct comparison with the SWAT simulation results difficult.
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Besides the different N gain and loss processes, Table 6.2 furthermore provides some informa-
tion on the internal N cycling within the soil-vegetation system, in the form of plant uptake
of inorganic N as well as mineralization of organic N. As these processes neither add nor re-
move reactive N from the overall system, they do not contribute to the specified N budgets.
However, they give further insight into the internal N fluxes and partitioning. For example, it
is evident from the additional information that plants take up more N than supplied via fer-
tilization, with plant uptake and mineralization being highly correlated, as emphasized by a
Pearson’s correlation coefficient of r ~ 0.74. This suggests that plant nitrogen demands in
the SWAT simulations are to a large extent met with help of N that is mineralized from soil
organic matter. Compared to the estimations compiled by Galloway & Cowling (2002) for crop
production, the associated ratio of N plant uptake to fertilization seems too high, as does the
nitrogen use efficiency (i.e. the ratio of N harvest removal to fertilization). However, keep in
mind again that the data in Table 6.2 includes non-agricultural land uses like forests that are
neither fertilized nor harvested, as well as green spaces in urban or residential areas that are
(auto-)fertilized and mowed. Consequently, although Table 6.2 may possibly hint at an under-
supply of field crops with fertilizer in the SWAT simulations, calculating agricultural uptake

ratios and use efficiencies for N fertilizer from that data is potentially misleading.

Remember that PBIAS scores indicate underestimation of NO3; ~-N loads at the catchment out-
let already for the uncalibrated model setup (Chapter 4). Furthermore, remember that point
source N inputs from wastewater treatment plants are fixed, model calibration ignores all pa-
rameters affecting in-stream N retention as well as groundwater N (see Chapter 5) and cali-
brated models mostly shut down groundwater contributions. Consequently, upward correc-
tion of NO; ™ -N loads in the calibrated models most likely requires adjustment of the soil N
balance to increase N emissions to surface waters. In order to assess the direction in which
the calibration process changes the simulated soil N balance, the bottom row of Table 6.2 lists
the individual parts of the N balance for the uncalibrated default model (see Chapter 4). In-
deed, comparison of the lateral N losses in the uncalibrated model with the corresponding
average for the calibrated models reveals a more than sixfold increase in diffuse N emissions
from the catchment soils to surface waters (from 1.2 to 8.1kg N/(haa)), which comes along
with a surge in denitrification from 6.9 kg N/(ha a) in the uncalibrated model to an average of
37.0 kg N/(haa) in the calibrated models. The other two simulated loss processes for nitrogen
from the soil-vegetation system - leaching and harvest removal - remain mostly unchanged on
average, although leaching is greatly reduced in the majority of calibrated model runs probably
due to impeded groundwater recharge. The relatively constant harvest removals are reassur-

ing as they indicate that the crop yields in Table 4.6 remain stable in most calibrated model
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runs (albeit with a substantial drop for a subset of model runs when looking at the lower end

of simulated harvest removals).

From a purely qualitative point of view, the ranking of the simulated N loss processes is gen-
erally plausible in both the uncalibrated model and the calibrated models, with the vast major-
ity of reactive N in agricultural landscapes being removed with crop harvesting, followed by
denitrification and exports to ground- and surface waters in variable proportions (Galloway
et al. 2004). From a quantitative view, the accuracy of simulated denitrification is particu-
larly difficult to assess given the usually high variability of environmental denitrification rates
and the large uncertainties associated with their quantification (Seitzinger et al. 2006). A first
point of reference for denitrification is the worldwide estimate for agricultural soils of about
14kg N/(ha a) mentioned by Seitzinger et al. (2006), a value that is roughly consistent with
the uncalibrated model output of 6.9 kg N/(ha a) for the entire Swist catchment (denitrification
rates can be expected to be higher in agricultural soils due to greater availability of reactive N
from fertilization). More specific to the study area, Kunkel et al. (2021) rate the overall poten-
tial for soil-borne denitrification to be “low” to “moderate” in the Swist catchment (classes 2
and 3 in a classification system ranging from 1 - “very low” - to 5 - “very high”), which corre-
sponds to a maximum denitrification rate between 10 and 50 kg N/(ha a). These values mirror
the range of denitrification rates simulated by the 11 calibrated model runs quite well, although
it is important to stress that they merely represent denitrification potential and that actual den-
itrification is probably lower. In summary, the available reference data in both Seitzinger et al.
(2006) and Kunkel et al. (2021) suggests that calibrated denitrification rates in this thesis may

be too high, albeit with considerable uncertainty.

As the calibration process needs to raise NO; ™ -N loads transported to the catchment outlet,
it is striking to see that model calibration leads to an increase in denitrification across all se-
lected model parameterizations, effectively reducing the amount of reactive N available for
displacement to surface waters. According to the theoretical SWAT documentation (Neitsch
et al. 2011, pp. 194-195), two of the the calibrated model parameters have a direct impact on
simulated denitrification: The threshold soil water content for denitrification SDNCO.bsn and
soil organic carbon content SOL_CBN.sol. In addition, other soil parameters like SOL_K.sol
affect denitrification indirectly by controlling water residence times in the soil profile (Neitsch
et al. 2011, pp. 151-152, 162-164). Looking at the posterior distributions in Figure 5.5, it is
evident that calibration of these parameters works in opposite directions regarding denitrifi-
cation: On the one hand, nitrate calibration clearly tends to move SDNCO.bsn up from the
default value of 1.1, while also increasing SOL_K.sol to reduce water residence times in the

soil profile. Taken on their own, both changes should lead to decreased denitrification. On the
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other hand, however, streamflow calibration appears to necessitate lower values for SOL_K.sol
(i.e. longer water residence times in the soil profile), to a large extent erasing the effects of
nitrate calibration in the combined posterior distribution, which is centered around the default
value of 0. When considering SOL_CBN.sol, nitrate calibration favors higher soil organic car-
bon contents, presumably to increase the amount of organic N in the catchment soils, while at
the same time facilitating denitrification. Furthermore, low values of DEPIMP_IMP.bsn may
help to raise soil water levels above the denitrification threshold (SDNCO.bsn) by impeding

percolation and creating perched water tables throughout the Swist catchment.

In summary, the calibrated SWAT models produce much higher N losses due to denitrifica-
tion and surface water emissions than the uncalibrated model. At the same time, they largely
maintain agricultural crop yields and the associated harvest N removals. Taken together, both
requires higher supplies of soil reactive N. However, as neither fertilization nor biological N
fixation rise enough to compensate for the additional N losses, model calibration instead leads
to a marked increase in mineralization of soil organic N from 60.0 kg N/(ha a) to an average
of 87.1kg N/(haa) (see Table 6.2). This increase in mineralization is the reason why overall
N budgets turn from slightly positive in the uncalibrated model to distinctly negative in the
calibrated models, corresponding to an overall depletion in soil organic N stocks. While the
ultimate fate of N surpluses is difficult to investigate, there is evidence that they may actu-
ally contribute to N accumulation in many agricultural soils (Galloway et al. 2004, Van Meter
et al. 2016), supporting the uncalibrated model output and contradicting the calibrated model
results. Hence, while the calibrated models succeed in elevating soil-borne N emissions to sur-
face waters, the uncalibrated model presumably generates more realistic estimates for soil N
accumulation and denitrification. In conclusion, there seems to be a general shortage of soil
reactive N in the simulations, with both the uncalibrated model and the calibrated models fail-
ing in different ways to realistically partition the available reactive N and simulate a plausible

nitrogen balance for the Swist catchment.

There are several options to resolve the apparent shortage of reactive N in the SWAT sim-
ulations. First, as detailed in Chapter 4, the amounts of applied N fertilizer in the models
are probably too low to adequately represent agricultural management practices in the Swist
catchment during the study period. In order to assess the effect of higher fertilization on the
simulation results, the 11 calibrated SWAT models have been rerun with a general 20 % increase
of fertilization rates across all agricultural land uses in the Swist catchment (cropland, grass-
land and orchards). Figure 6.1 illustrates the corresponding impact on various performance
metrics assessing NO; ~-N loads at the catchment outlet in both the calibration and validation

period. Indeed, the additional N fertilizer leads to an elevated distribution of PBIAS scores that
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Figure 6.1.: Distributions of various performance measures evaluating nitrate simulation with and
without additional N fertilizer in the Swist catchment during the study period (2012-2018). The perfor-
mance measures are calculated based on in-stream NO3; ™ -N loads near the catchment outlet in Met-
ternich. Their distributions include the n = 11 calibrated (and successfully validated) SWAT models
with and without a 20 % increase in fertilization rates for agricultural land uses (cropland, grassland,
orchards). For the boxplots, the length of the whiskers is limited to one and a half of the interquartile
range. In addition to the boxplots, the individual model performances are plotted as transparent points.

is centered around a value near 0, effectively eliminating much of the systematic error present
in the original simulations. Interestingly, the added amounts of fertilizer also improve R? and
KGE, whereas NSE scores deteriorate, most likely due to misrepresentation of NO; ™ -N load
peaks (keep in mind that model calibration is based on the original fertilizer quantities listed
in Table 4.4). In general, these results demonstrate that low fertilization is a reasonable expla-

nation for underestimated NO3; ™ -N loads in the simulations.

As an alternative to an adjustment of fertilization rates, inputs of reactive N to the catch-
ment soils may also be raised by activating atmospheric deposition in the SWAT models. Ac-
cording to the GROWA+NRW 2021 data, atmospheric deposition roughly contributes an ad-
ditional 13.5 kg N/(ha a) to the Swist catchment area on average. For the entire state area of

North Rhine-Westphalia, the corresponding average value equals approximately 15 kg N/(ha a)
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(Wendland et al. 2021a). Although considerably lower than N inputs via fertilization, these
numbers show that atmospheric deposition likely constitutes a meaningful part of the N bal-
ance in the study area and could therefore explain part of the apparent nitrogen deficit in the
behavioral SWAT models. However, keep in mind that the impact of missing atmospheric N
deposition might to a certain extent be offset by omission of ammonia volatilization in the
models. Hence, in order to explicitly account for the combined effect of both processes in
the simulations, the possible future inclusion of atmospheric deposition in the SWAT models
should ideally come along with the likewise inclusion of ammonia volatilization as a loss pro-
cess, necessitating an estimation (or educated guess) of NH,*-N shares in the fertilizers applied

to the Swist catchment area.

Instead of raising nitrogen inputs via fertilization and/or atmospheric deposition, supply with
reactive N can also be increased by lowering nitrogen losses for example via denitrification. A
possible starting point for this is the DEPIMP_BSN.bsn parameter, which defines the depth to
an impervious layer in the subsurface needed to simulate perched water tables and tile flow.
As suggested in Section 6.2, use of the DEP_IMP.hru (instead of DEPIMP_BSN.bsn) parame-
ter would allow to restrict the impervious layer to subbasins with prevalent agricultural tile
drainage, increase catchment-wide groundwater recharge and reconnect surface waters to the
shallow aquifer in those calibrated SWAT models with low values of DEPIMP_BSN.bsn. Simul-
taneously, the same approach may also help to better drain the soil profile in the rest of the
subbasins and thus reduce soil-borne denitrification in a large part of the catchment area. In
addition, reconnecting surface waters with the shallow aquifer entails reconnecting them to
the pool of groundwater N initialized at simulation start (see the initial NO3; ™ -N concentrations
in the shallow aquifer specified in Table 4.2), which in turn may alleviate the in-stream load
deficits of NO3; ™ -N during low flows present in most calibrated SWAT models (see the uncer-
tainty band of simulated NO5; ™ -N loads in Figure 5.12).

Finally, in-stream NO; ™ -N loads at the catchment outlets may also be adjusted without any
changes to land phase nitrogen cycling and transport, by instead modifying model parameters
that affect in-stream nitrogen retention during the SWAT routing phase. As stated in Chapter 5,
QUALZ2E parameters for simulation of in-stream water quality and retention remained uncon-
sidered for model calibration. Despite this, in-stream N retention varies noticeably between
the different calibrated model runs. According to the SWAT check software for model error
screening (White et al. 2014), simulated overall retention in the Swist river network is between
5.9% and 30.2 % of transported N across all model runs, with a median of 14.3 % and a mean
of 16.1 %. This variability can largely be attributed to differences in N emissions between the

model runs, with a Pearson’s correlation coefficient of r = 0.81 between lateral N losses (see
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Table 6.2) and in-stream N retention rates. The remaining variability possibly originates from
different spatiotemporal patterns of N inputs to surface waters. The simulated range of in-
stream N retention generally agrees well with literature data, although the median and mean
value may be too low in comparison: The model-based estimates of Seitzinger et al. (2002) cor-
respond to in-stream retention of approximately 35 % of annual nitrogen inputs for a drained
area equaling that of the Swist catchment (290 km?), while the monitoring-based maximum
estimate of Schwientek & Selle (2016) for the Steinlach catchment (140 km?) in southern Ger-
many is 27 % of annual nitrogen inputs. Note that all in-stream N retention in SWAT can be
ultimately attributed to sedimentation and burial of organic N (Neitsch et al. 2011), although in
reality denitrification is the only permanent loss process for reactive N and probably substantial

in rivers and streams (Seitzinger et al. 2002, Seitzinger et al. 2006).

6.3.2. Non-Point Source Nitrogen Emissions

Figure 6.2 shows the simulated N emissions from non-point pollution sources in the Swist
catchment during the study period (2012-2018). Emissions are depicted for each simulation year
and pollution pathway” as a separate bar chart, with the bars visualizing the annual nitrogen
loads for the 11 behavioral SWAT model runs. The bar charts in the bottom row and rightmost
column show total annual emission loads as well as pathway-specific average loads over all
simulation years, respectively, with the panel in the bottom right corner aggregating the total
emissions over the entire study period. For each panel, the dotted horizontal lines in black
indicate average emission loads across all behavioral model runs. In the bottom right panel,
this corresponds to an overall estimate for non-point source N emissions of approximately
8.1kg N/(ha a). Due to the mostly subdued influence of groundwater flow in the SWAT models,
this value is practically equal to the mean estimate for lateral N losses from the soil profile
in Table 6.2. As it represents the entire Swist catchment area and is not restricted to - for
example - agricultural areas, it is difficult to compare this overall estimate to the results of other
catchment-scale N pollution studies with divergent land use compositions and management
practices. However, the general order of magnitude is completely plausible, with for instance
Malag) et al. (2017) deriving a SWAT estimate of about 6.1 kg N/(ha a) for total diffuse nitrogen

emissions in the Danube catchment from 1995 to 2009.

The emission loads vary considerably from year to year: As evident from the bottom row of
Figure 6.2, total load averages across all model runs range from approximately 5 kg N/(ha a) in

2018 to more than 10 kg N/(ha a) in 2013. This interannual variability of N emissions appears

"Nitrogen emissions via surface runoff encompass both dissolved NO3 ~-N and eroded organic N.
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Figure 6.2.: Simulated non-point source N emission loads in the Swist catchment during the study
period (2012-2018) for the behavioral SWAT model runs. The bars indicate the average simulated load
of the individual model runs for the respective simulation year and emission pathway. N emissions via
surface runoff encompass dissolved NO3;™-N as well as organic N transported with eroded soil. The
dotted black lines indicate the average emission loads across all model runs. The dotted blue and red
lines indicate the reference loads obtained from upscaled edge-of-field (EOF) monitoring data (Mertens
et al. 2012), as well as modeling results from the GROWA+NRW 2021 project (Wendland et al. 2021a)
aggregated for the Swist catchment, respectively. As the former reference data set lacks information
on N emission loads via tile flow, calculation of a total load is omitted to discourage comparison with
modeled total loads.
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to be related to the general wetness conditions in the Swist catchment: The years from 2013 to
2016 all are wetter than average according to the annual precipitation data and gauge records
presented in Section 2.4 (see Figure 2.4 and Table 2.2, respectively). At the same time, these
simulation years unanimously produce high emission loads around 10 kg N/(ha a). In contrast,
annual emission estimates for the years 2012, 2017 and 2018 - all of them drier than average -
remain distinctively below 10 kg N/(ha a), with the exceptionally dry year of 2018 coinciding
with the lowest simulated N emissions. A possible explanation for this apparent relationship
between N pollution and wetness conditions are differences in soil-borne N mineralization
and possibly nitrification. In the SWAT equations, both processes are directly dependent on
soil water content (Neitsch et al. 2011, pp. 187-194), modeling the general influence of water
availability on microbial activity. In the calibrated SWAT models, this effect may be particularly
pronounced due to the prominent role of mineralization in supplying the catchment soils with

inorganic N compounds that are mobile and plant-available (see Subsection 6.3.1).

Table 6.3 provides a summary of the same data visualized in Figure 6.2 averaged over the entire
seven-year simulation period. It thus serves to complement Figure 6.2 by explicitly listing the
emission load values, breaking down the contribution of the individual emission pathways to
the total N loads and quantifying the spread between the different simulation results. Regarding
the individual emission pathways, both Table 6.3 and the rightmost column in Figure 6.2 clearly
demonstrate the lack of groundwater contribution to the overall N pollution in the simulations,
with emission loads from groundwater averaging merely 0.1 kg N/(ha a) across all model runs.
According to the simulations, the most important non-point source emission pathway is tile
flow with an average emission load of 3.7 kg N/(haa), followed by interflow (2.7 kg N/(ha a))
and surface runoff (1.7 kg N/(haa)). The dominant role of tile flow in the overall emission
loads is all the more remarkable because tile drainage is present in only part of the agricultural
area of the Swist catchment, whereas surface runoff and interflow may occur across the entire
catchment. This highlights the substantial degree to which agricultural tile drains may affect

catchment-scale nutrient balances.

Considering the spread between the lowest and highest N emission estimates, both Figure 6.2
and Table 6.3 reveal substantial differences between the 11 behavioral SWAT models. For ex-
ample, simulated total emission loads range from 4.7 kg N/(ha a) to 15.9 kg N/(ha a) for model
runs 8957 and 5221, respectively, amounting to a more than threefold difference between the
minimum and maximum estimate. As the total emission load simulated by model run 5221 is
extremely high and mainly driven by an extraordinary amount of N contributions from inter-
flow, this value may be treated as an outlier and excluded from the analysis. However, even

then, the second highest simulation result of 11.4 kg N/(ha a) for model run 349 still exceeds
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Table 6.3.: Nitrogen emission loads in the study period (2012-2018) for the behavioral SWAT simula-
tion runs. The listed values are averages for all simulation years and the entire Swist catchment area.
N emissions via surface runoff encompass dissolved NO3; ™ -N as well as organic N transported with
eroded soil. The stated total loads are the sum of the pathway specific loads, with minor discrepancies
due to rounding. The bottom rows show reference loads obtained from upscaled edge-of-field (EOF)
monitoring data (Mertens et al. 2012) as well as modeling results from the GROWA+NRW 2021 project
(Wendland et al. 2021a) aggregated for the Swist catchment. As the former reference data set lacks
information on N emission loads via tile flow, calculation of a total load is omitted to discourage com-
parison with modeled total loads.

Nitrogen Emission Loads [kg/(haa)]

Model Run Surface Runoff Interflow Tile Flow  Groundwater Flow  Total Load
349 2.7 3.9 4.8 0.0 114
1054 2.1 2.0 4.7 0.0 8.7
1434 1.3 1.3 3.4 0.2 6.2
2868 1.1 2.1 2.9 0.2 6.3
4648 1.3 2.1 3.0 0.1 6.5
5221 2.2 9.1 4.6 0.0 15.9
5502 14 14 3.7 0.5 6.9
6388 1.3 1.7 2.3 0.0 5.3
7739 14 3.4 3.5 0.0 8.4
8638 2.2 2.3 4.8 0.0 9.3
8957 1.5 0.3 2.9 0.0 4.7
Min 1.1 0.3 2.3 0.0 4.7
Median 14 2.1 3.5 0.0 6.9
Max 2.7 9.1 4.8 0.5 15.9
Mean 1.7 2.7 3.7 0.1 8.1
EOF Monitoring 2.7 3.7 - 0.5 -
GROWA+NRW 2021 0.1 3.5 4.5 8.4 16.5

the minimum by a factor of well above 2. Looking at the individual emission pathways, the
variability between the models is even more pronounced for N emissions with interflow: Here,
the minimum value is 0.3 kg N/(ha a) and the maximum value is 9.1 kg N/(ha a) for exactly the
same model runs as above (8957 and 5221, respectively), identifying emissions via this path-
way to be the most important source of intermodel variability. This has major implication for
the proportional makeup of the total loads, with interflow accounting for more than half of
all N inputs in the highest emission scenario but less than a tenth in the lowest emission sce-
nario. Although not as distinctive as for interflow, emissions via surface runoff and tile flow
are also quite varied, with a more than twofold difference between minimum and maximum for
both pathways. As stated above, groundwater emissions are generally negligible and practi-
cally non-existent for the majority of model runs, with model run 5502 being the most notable

exception at 0.5 kg N/(ha a).
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Since the differences in the 11 behavioral model runs originate exclusively from parameter
calibration, intermodel variability is an indicator of parameter-based model uncertainty. As
evident from the water balance components presented in Table 6.1, this kind of uncertainty
already affects the simulated catchment hydrology to a notable degree. For example, the sim-
ulated total water yields increase by almost 70 % between the minimum and maximum value
(82.94mm/a and 139.5 mm/a, respectively). For the corresponding N loads transported with
these water fluxes, parameter-based uncertainty is even greater, with the aforementioned in-
crease of more than a factor of 3 between the simulated minimum and maximum emission
loads (see Table 6.3). As discussed in Chapter 5, the behavioral SWAT model runs differ in
their ability to reproduce long-term average NO3; ™ -N loads at the catchment outlet and cap-
ture measured in-stream N concentrations along the Swist and its tributaries. Model run 2868
is the only one that excels in both of these aspects, while also yielding Pareto-optimal solutions
for streamflow and nitrate simulation during both calibration and validation (see Figure 5.8).
Consequently, the total emission load of 6.3 kg N/(ha a) simulated by this model may be seen as
a more reliable estimate for overall non-point source N pollution in the Swist catchment than
the mean emission load over all behavioral model runs (8.1 kg N/(ha a)). The result for model
run 2868 is also nearer to the median estimate of 6.9 kg N/(ha a) (corresponding to model run
5502), which is less affected by the potential outlier from model run 5221 than the mean es-
timate. However, keep in mind that errors in the model input data and model structure may
introduce bias and inaccuracies that interfere with parameter calibration. Thus, there is no
guarantee that the predictions of model run 2868 really are superior to those of the remaining
SWAT models.

In summary, despite the wealth of available monitoring data in the Swist catchment and the
considerable effort devoted to model setup and parameter calibration, the uncertainty in the
SWAT emission load estimates for nitrogen is considerable. Assuming a fixed number of in-
fluential parameters and associated parameter ranges, the most promising option to reduce
parameter-based uncertainty is the inclusion of additional objectives to the calibration and/or
validation process. As discussed in Section 5.3, model calibration probably requires at least
three instead of only two objectives to adequately constrain the 18 involved model parame-
ters. An obvious candidate is the PBIAS metric for nitrate simulation (PBIASNitrate) to place
additional emphasis on systematic error in the simulated NO; ™ -N loads. Applying a third be-
havioral threshold for PBIASNitrate of £10 % while otherwise retaining the same calibration
scheme would result in a much stricter filter for behavioral model performances and thus a
substantial reduction in the number of behavioral simulations (see Table 5.2 for confirmation).
A smaller sample of behavioral model parameterizations implies a less reliable assessment of

model uncertainty. Possible solutions for this problem include increasing the overall number
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of calibration runs from the outset as well as adjusting the model setup to enhance model
performances (see the upcoming Chapter 7 for a list of potential improvements to the model

setup).

The blue and red dotted lines in Figure 6.2 indicate the non-point source N emission loads ob-
tained from two reference data sets (also see Section 6.1): First, load estimates from upscaled
Erftverband edge-of-field (EOF) monitoring data to create an emission inventory for the en-
tire Swist catchment (Mertens et al. 2012). Second, distributed estimates for emission loads
in the Swist catchment from the NRW-wide application of the AGRUM model suite in the
GROWA+NRW 2021 project (Wendland et al. 2021a). Keep in mind that these reference values
are not necessarily representative for the entire SWAT study period from 2012 to 2018: The
EOF monitoring data behind the Erftverband emission inventory reflect conditions between
2005 and 2009, whereas the GROWA+NRW 2021 modeling results are based on agricultural N
surplus estimates for the years 2014 to 2016 (Gomann et al. 2021). In the bottom rows of Table
6.3, the pathway-specific and the total N emission loads for both reference data sets are stated
explicitly. As the EOF monitoring-based emission inventory does not include agricultural tile

drainage, the respective tile flow emissions and the resulting total emissions are omitted.

Excluding the unknown reference N load from tile flow, the data from the emission inventory
of Mertens et al. (2012) largely confirms the general ranking of the emission pathways obtained
from the SWAT simulations: Almost negligible N contributions from groundwater are exceeded
by considerably higher N emission loads from surface runoff and interflow. This is a clear hint
that groundwater N emissions indeed only play a minor role in the Swist catchment due to
the large-scale groundwater extraction in the region, although the calibrated SWAT models
may overestimate this effect by excessively impeding groundwater recharge (see Section 6.2
and Subsection 6.3.1). From a more quantitative point of view, the reference values and SWAT
simulation results also agree well on the general order of magnitude in N emissions. Taken
together, the N emission load estimates for surface runoff, interflow and groundwater flow
by Mertens et al. (2012) amount to 6.9 kg N/(haa), which remains below the average total N
emission load from SWAT (8.1 kg N/(haa)) but is plausible given that the latter additionally
comprises N emissions via tile flow. When comparing pathway-specific emission loads in Table
6.3, however, it becomes clear that the SWAT results consistently undercut the reference data.
Thinking further, this suggests that tile flow emission estimates obtained from EOF monitoring
must contradict the simulation results one way or another: On the one hand, if they were high
enough to match the SWAT predictions for tile flow, the emission load sum across all pathways

would surpass the corresponding model average of 8.1 kg N/(ha a). On the other hand, if EOF

149



6. Model-Based Nitrogen Source Apportionment

monitoring revealed markedly lower tile flow emissions than predicted by SWAT, this would

imply a different ranking and relative importance of the various emission pathways.

Regarding the second reference data set that is based on the GROWA+NRW 2021 modeling
results (Wendland et al. 2021a), the most striking aspect is the total non-point source emission
load for the Swist catchment of 16.5 kg N/(ha a) - a more than twofold difference compared to
the average value from the SWAT simulations. This surge in N input loads can almost com-
pletely be attributed to vast emissions from groundwater: With 8.4 kg N/(ha a), groundwater
contributes more than half of the total emission load in the GROWA+NRW 2021 data set. This
result stands in stark contrast to the almost non-existent groundwater N emissions in the SWAT
simulations and also the Erftverband emission inventory of Mertens et al. (2012). It is further-
more implausible considering the widespread disconnect in the Swist catchment between sur-
face waters and groundwater (see Section 2.3). For the GROWA+NRW 2021, groundwater flow
directions and the receiving surface water bodies were identified using modeled groundwater
levels for the whole of NRW (Wendland et al. 2021b), most likely yielding incorrect results
for the Swist catchment. Validation of the GROWA+NRW 2021 emission loads for nitrogen
confirms this: While the combination of non-point source N emission loads from the RAUMIS-
mGROWA-WEKU-DENUZ model chain with point source N emission loads and in-stream N
retention from the MONERIS model agrees well with observed river nitrogen loads in most
of NRW, validation fails for the Erft catchment. The study authors explain this with the ef-
fects of lignite mining and groundwater extraction in the Lower Rhine Embayment (Wendland
et al. 2021a). As a consequence, it is plausible to assume that the groundwater N emission loads
in the GROWA+NRW 2021 data are an extreme overestimate.

Subtracting groundwater emissions from total emissions in the GROWA+NRW 2021 data pro-
duces a remaining surface water burden of 8.1 kg N/(ha a), which corresponds exactly to the
average SWAT simulation result. However, this remaining N load originates almost exclusively
from tile flow at 4.5 kg N/(ha a) and interflow at 3.5 kg N/(ha a), with only negligible contribu-
tions from surface runoff at 0.1 kg N/(ha a). This result contradicts the considerably higher N
emissions from surface runoff predicted by the behavioral SWAT models and most likely re-
flects the major restrictions imposed on this emission pathway in the GROWA+NRW 2021 data
(Wendland et al. 2021a). These restrictions include for example a requirement for hydrologic
connectivity: If the terrain does not provide a direct topographic link between potential source
areas and nearby water bodies, N emissions via surface runoff or erosion are ruled out for these
parts of the catchment. This is a crucial difference to SWAT, which makes use of the HRU ap-
proach to represent spatial heterogeneity and thus enables N emissions via surface runoff from

the complete area of each modeled subbasin, disregarding the effects of small-scale topography
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on surface water pollution (see Subsection 3.1.3). While the Erftverband emission inventory
from Mertens et al. (2012) provides an even higher N emission load estimate for surface runoff
than the SWAT simulations, it may be similarly hampered given that the inventory is based on
edge-of-field monitoring data (collected in direct proximity of the receiving streams) upscaled

to the entire Swist catchment area.

6.3.3. Seasonality of Non-Point Source Nitrogen Emissions

A major benefit of dynamic models like SWAT (as opposed to static models like the AGRUM
models applied in the GROWA+NRW 2021 project) are their ability to simulate temporal trends
and seasonality. Figure 6.3 gives an impression of the seasonality in the simulated non-point
source N emissions by visualizing the distribution of monthly average N loads across all be-
havioral SWAT models as boxplots - both pathway-specific and in total. The means across
all SWAT models depicted as blue diamonds in Figure 6.3 are also explicitly listed in Table
6.4. In general, the simulated N emissions are highest in winter and lowest in summer, with
the cross-model means of monthly average total N emission loads reaching a maximum of
39.3 g N/(had) in January and a minimum of 11.8 g N/(ha d) in August. This seasonality is most

pronounced in emissions via interflow and groundwater, although groundwater emissions are

Table 6.4.: Monthly means of simulated non-point source N emission loads in the Swist catchment dur-
ing the study period (2012-2018) across all 11 behavioral model runs. The total loads are the summed
pathway specific loads, with minor discrepancies due to rounding. The pathway-specific annual means
in the bottom row are equal to the cross-model means stated in Table 6.3 (again with minor discrepan-
cies due to rounding). The monthly values correspond to the blue diamonds in Figure 6.3.

Monthly Nitrogen Emission Loads [g/(ha d)]

Month  Surface Runoff Interflow Tile Flow Groundwater Flow  Total Load

Jan 7.3 11.3 20.5 3.2x1071 39.3
Feb 7.1 12.0 15.7 3.9x1071 35.2
Mar 6.5 11.8 11.7 4.3x107! 30.5
Apr 2.0 10.8 3.8 4.0x107! 17.1
May 3.8 7.7 2.2 3.1x107! 14.1
Jun 115 6.3 7.4 2.2x1071 25.4
Jul 6.8 5.1 5.0 1.5x107! 17.1
Aug 13 3.9 6.5 1.3x107! 11.8
Sep 0.6 3.6 9.9 1.4x1071 144
Oct 0.5 3.6 8.7 1.8x107! 13.0
Nov 3.7 4.7 10.8 2.0x1071 19.3
Dec 4.6 7.4 19.1 2.3x1071 31.3
Mean 4.6 7.4 10.1 2.6x1071 224
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Figure 6.3.: Seasonality of non-point source N emission loads in the Swist catchment during the study
period (2012-2018) as simulated by the 11 behavioral model runs. The boxplots illustrate the distribution
of the monthly averages from all model runs. The length of the whiskers is limited to one and half of
the interquartile range. The blue diamonds indicate the mean across all model runs and correspond to
the values listed in Table 6.4. The shaded lines in the background are meant as a help to better track
the seasonality in the individual model runs. Please note the different scales of the y-axes, which serve
to better resolve the seasonal differences for each emission pathway.
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too minuscule to meaningfully shape the annual course of the total emissions. Markedly in-
creased non-point source N emissions during winter is a phenomenon typically observed in
monitoring campaigns (Bauwe et al. 2020, Kothe et al. 2021) and can be attributed to higher

NO; ™ -N availability due to plant dormancy as well as elevated water yields.

Interestingly, the monthly averages of total emission loads show a temporary peak in June
before dropping to their lowest values in August. Although not as high as total emissions in
winter and early spring, this peak is a distinctive interruption of otherwise relatively low N
emissions during summer. It originates mainly from emissions with surface runoff, which ex-
hibit a clear maximum in June. When looking at the cross-model means in Table 6.4, surface
runoff contributes almost half of all N emissions in June - namely 11.4 of 25.4 g N/(had). At
7.4 g N/(had), the second largest component are emissions from tile flow that also increase in
June but remain well below their winter counterparts. The resulting overall increase of summer
N emissions can most likely be attributed to (heavy) rainfall events co-occuring with elevated
levels of soil reactive nitrogen due to fertilization. Regarding the spread of monthly average
emissions between the different behavioral SWAT models, the applied convention for the box-
plot whiskers in Figure 6.3 identifies some marked outliers in the simulated emission data: As
already noted in Subsection 6.3.2, model run 5221 produces extremely high N emissions via in-
terflow, which Figure 6.3 reveals to be systematically shifted upwards over the entire course of
the year. The same can be said for emissions from groundwater in model run 5502. The high-
est N emissions from surface runoff in June stem from model run 349, which also produces the

maximum overall emission value for this pathway (as well as tile flow, see Table 6.3).

6.3.4. Point Source Nitrogen Emissions

Apart from non-point source N emissions, the SWAT models also include point source N emis-
sions from wastewater treatment plants (WWTP). The WWTP emission loads are calculated
from daily observed time series of wastewater discharge volumes and N concentrations in the
WWTP effluents (see Subsection 4.2.2 for a detailed description of the N concentration data
as well as the linear regression approach used to fill time series gaps). The resulting WWTP
emission loads are fed directly into SWAT and do not differ between the 11 behavioral model
variants; they are listed in Table 6.5. In total, N emissions from the four active WWTPs in the
catchment amount to nearly 80 t N/a released into the Swist river network during the study pe-
riod. The individual N loads from each WWTP are roughly proportional to the annual waste-
water quantities as stated in Table 2.1 for 2018, with WWTP Flerzheim emitting about twice
as much reactive N as WWTP Rheinbach, followed by the considerably smaller WWTP Miel

and WWTP Heimerzheim. The interannual variability in WWTP emissions mirrors that in the
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Table 6.5.: Annual emissions of total N from the four WWTPs in the Swist catchment during the study
period (2012-2018). The emission loads are calculated from observed wastewater discharge volumes
and effluent N concentrations as detailed in Subsection 4.2.2. WWTP N emissions are the same in each
of the 11 behavioral SWAT models.

Annual Nitrogen Emissions from WWTPs [t/a]

Year Flerzheim Rheinbach Miel  Heimerzheim All

2012 43.97 20.67 7.58 5.51 77.73
2013 46.98 21.58 7.79 5.41 81.75
2014 43.81 21.93 7.13 4.45 77.32
2015 48.38 22.72 8.24 4.77 84.10
2016 47.52 23.71 8.43 4.67 84.34
2017 44.08 22.21 8.10 4.96 79.35
2018 37.91 19.74 7.25 4.38 69.29
Annual Average 44.66 21.79 7.79 4.88 79.13

non-point source emissions (see Subsection 6.3.2), with the relatively wet years of 2015 and
2016 exhibiting the highest total loads and the exceptionally dry year of 2018 producing the
lowest total load. Note however that the relative differences between the annual WWTP loads

are much less pronounced than for their non-point source counterparts.

Figure 6.4 shows the simulated overall WWTP emission loads in relation to the corresponding
non-point source emission loads examined in Subsection 6.3.2. On average, the WWTPs con-
tribute 26.8 % to the total simulated N emissions in the Swist catchment between 2012 and 2018,
with the WWTP load fraction varying from 14.7 to 36.7 % across the different SWAT models. As
the WWTP emissions are fixed for all models, this variability originates exclusively from the
differences in the simulated non-point source N emission loads. Just like the spread in the simu-
lated non-point source emissions, the spread in the WWTP load fractions is thus a consequence
of parameter-based model uncertainty. In general, the SWAT-based estimates of WWTP con-
tributions to the overall Swist N burden is in good agreement with independent literature data:
From their monitoring-based emission inventory roughly representing the years 2005 to 2009,
Mertens et al. (2012) estimate the N emission load fraction from WWTPs to be 23 % in the Swist
catchment. For NRW between 2014 and 2016, the modeling results from GROWA+NRW 2021
suggest the WWTP emission load fraction to be approximately 16 %, with the regional esti-
mate for the entire Erft catchment being slightly lower (Wendland et al. 2021a). In a long-term
continuation of source apportionment studies such as Fuchs et al. (2010), the German Federal
Environment Agency (UBA) publishes surface water pollution data derived from the MoRE
modeling system (Fuchs et al. 2017).8 For the reference period from 2012 to 2016, MoRE esti-

8https://www.umweltbundesamt.de/daten/wasser/fliessgewaesser/eintraege-von-naehr
-schadstoffen-in-die, as retrieved on May 18, 2024.
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Figure 6.4.: Fractions of the total N emission loads from WWTPs and non-point (diffuse) sources during
the study period (2012-2018) for the 11 behavioral model runs. The small labels state the absolute N
emissions from WWTPs and diffuse sources, with the former being independent of the calibrated model
parameters and thus constant across all model runs (also see Table 6.5). The dashed horizontal line
indicates the average WWTP load share across all model runs (26.8 %).

mates the contribution of WWTPs to overall N pollution of German surface waters to be about
17 %. The noticeably higher WWTP contributions for the Swist catchment in both the SWAT
results and the Mertens et al. (2012) data are plausible given the generally high wastewater

load in the Swist (see Section 2.3).

When interpreting the above-stated numbers, be aware that the SWAT simulations omit further
types of point sources that are mostly considered in the cited literature data. These include
discharges from combined sewer overflow (CSO) events, stormwater discharges from separate
sewer outlets (SSO) as well as direct discharges from industry or trade. In their monitoring-
based emission inventory for the Swist catchment between 2005 and 2009, Mertens et al. (2012)
estimate CSO and SSO contributions to overall N pollution in the Swist catchment to be 4 %
and 2 %, respectively. The authors do not consider direct discharges from industry or trade in
their study. The GROWA+NRW 2021 data yields a combined contribution from CSO and SSO
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to overall N emissions of 8 % for all of NRW between 2014 and 2016, with direct discharges from
industry or trade being negligible (less than 0.1 %) (Wendland et al. 2021a). For all of Germany,
the MoRE results rates the combined contribution from CSO and SSO to be 5% of overall N
pollution between 2012 and 2016, while estimating direct industrial contributions in the same
time period to be about 1.5 %. In summary, all the reference data sets agree that the remaining
emissions from point source types not considered in the SWAT simulations amount to a value
of less than 10 % of overall N pollution. This in turn suggests that the simulated WWTP N
load fractions that are depicted in Figure 6.4 are slight overestimates, but that they probably
reproduce the general order of magnitude of WWTP nitrogen emissions.’ Inclusion of point
sources other than WWTPs would nevertheless be an appealing option for refinement of the
SWAT models applied in this thesis, but is likely going to be challenging due to data constraints
(see Section 6.4).

6.3.5. Critical Source Areas

The spatial variability of non-point source N emissions as simulated by SWAT can be evaluated
either at the HRU level (Ghebremichael et al. 2010, Winchell et al. 2015, Lee et al. 2018, among
others) or at the subbasin level (Tripathi et al. 2003, Niraula et al. 2013, Evenson et al. 2021,
among others). This thesis makes use of the second option, acknowledging several drawbacks
of the HRU-level approach: First, HRUs represent area fractions that - while being more or
less uniform in terms of land use, soils and slope - cannot be meaningfully identified with
continuous and specifically managed stretches of land in most SWAT studies, including the
present thesis. Second, even if special measures are taken to better relate HRUs to well-defined
landscape units like individual cropland fields, there is usually not enough information on man-
agement practices in each landscape unit available to notably improve the simulation results,
as demonstrated for example by Apostel et al. (2021). Third, as SWAT directly transfers runoff
and pollutants from each HRU to the stream network, basically neglecting the spatiotemporal
variability of runoff generation as well as pollutant mobilization and transport in the landscape,
it is highly doubtful that SWAT is able to accurately recreate differences in non-point source
pollution patterns at the HRU level. Therefore, resorting to subbasins avoids purporting a level

of spatial precision in the simulation results SWAT is probably unable to provide.

90n another note, the omission of certain point sources in the SWAT models may imply bias in calibrating the
model against observed in-stream N loads in Metternich (see Chapter 5). However, keep in mind that emis-
sions from the omitted point sources are mostly restricted to high rainfall events. Furthermore, remember that
the model is calibrated solely on NOs ™ -N loads, whereas the presumably highest unconsidered N emissions
from CSO events mainly comprise NH4*-N and organic N (the predominant N forms in untreated wastewater).
Therefore, omission of point sources other than WWTPs is considered unlikely to meaningfully affect the model
calibration process with regard to N emissions.
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Figure 6.5 gives an overview of the simulated non-point source N emissions in the different
SWAT subbasins of the Swist catchment during the entire study period, averaged over all be-
havioral SWAT model runs. Mirroring the presentation of the catchment-wide emission loads
in Figure 6.2, the individual maps show the subbasin emission loads for each simulation year
and pollution pathway (with the exception of groundwater flow, which contributes so little
N that the spatial differences cannot be visibly resolved on the same scale against the other
pathways). The bottom row and rightmost column depict the sum of emission loads over all
pathways and the pathway-specific average emission loads over all simulation years, respec-
tively. The panel in the bottom right corner aggregates the subbasin N emission loads for all
pathways (including groundwater flow) and the entire study period. According to the various
maps in Figure 6.5, the simulated non-point source N emissions primarily seem to concentrate
in two separate parts of the Swist catchment: First, the Schiessbach headwater region in the
west of the study area, and second, the region along the upper and middle reaches of the Swist
main watercourse around Meckenheim in the southeast of the catchment. Both are located in
areas with intensive cropland and/or orchard agriculture. In contrast, forested areas - espe-
cially the Eifel foothills in the south and southwest of the catchment - exhibit generally low N

emission loads.

Although the subbasins show a notable degree of interannual variation in overall emissions
(see bottom row of Figure 6.5), elevated N emission loads along the Schiessbach headwaters as
well as the upper and middle Swist main watercourse are a recurring result in all simulation
years. The same can be said when comparing simulated total emissions for the entire study
period between the behavioral SWAT model runs (data not shown). Hence, both regions are the
most obvious candidates for nitrogen critical source areas (CSA) in the Swist catchment. Look-
ing at the contributions of the individual emission pathways in Figure 6.5, it becomes clear that
high overall input regions for nitrogen predominantly co-occur with high tile flow emissions:
Pearson’s correlation coefficient between subbasin tile emission loads and the total subbasin
loads is r = 0.74, with the corresponding correlation coefficients for the other emission path-
ways all remaining below 0.5. This underscores the important role of tile drains as pathways
for nitrogen pollution in the SWAT simulations. Hence, high N availability due to fertilization
and tile drainage in agricultural areas seem to be determining factors for the occurrence of

critical source areas in the Swist catchment according to the simulation results.

Figure 6.6 compares the SWAT overall N emission map (see the bottom right panel of Figure 6.5)
to the corresponding emission map for the GROWA+NRW 2021 raster data, aggregated for
each SWAT subbasin. Since N emissions from groundwater in the GROWA+NRW 2021 data

are excessive for the Swist catchment (see Subsection 6.3.2) and would override any meaning-

157



8GT

2012 2013 2014 2015 2016 2017 2018 All Years

AAAAAAAL--
AAAAAAAL -

30

AAAAAAADL !
AAAAAAAA -

Figure 6.5.: Simulated non-point source N emission loads for the SWAT subbasins of the Swist catchment during the study period (2012-2018),
averaged over all behavioral SWAT models. As N emissions from groundwater are minuscule for every simulation year, they are not depicted.
However, they are included in the total N emission loads (bottom row).
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Figure 6.6.: Overall non-point source N emission loads for the SWAT subbasins in the Swist catchment
from the behavioral SWAT models (2012-2018) and GROWA+NRW 2021 raster data (2014-2016). The
map on the left hand-side depicts subbasin emissions according to the SWAT simulations and corre-
sponds exactly to the map in the bottom right panel of Figure 6.5, albeit with a rescaled color-coding
for the emission loads. The map on the right-hand side depicts subbasin emissions that result from
aggregating N loads transported to surface waters from the GROWA+NRW 2021 raster data, excluding
groundwater emissions. As the GROWA+NRW 2021 raster data does not extend beyond North Rhine-
Westphalia, it provides no information for the SWAT subbasins located in Rhineland-Palatinate (i.e. the
grey area in the southeast of the catchment).

ful differences between the individual subbasins, data aggregation excludes the groundwater
pathway, only considering N emissions from surface runoff, erosion, interflow and tile flow. As
evident from the higher contrast in the colors on the left-hand side of Figure 6.6, the non-point
source N emission loads simulated by SWAT clearly exhibit a higher degree of spatial hetero-
geneity than the GROWA+NRW 2021 results. Both data sets also differ in the exact location
of many high-input areas, especially when looking at the region along the upper to middle
reaches of the Swist in the southeastern part of the catchment (excluding the subbasins located
in Rhineland-Palatinate, for which there are no GROWA+NRW 2021 results). Apart from these
differences, both SWAT and the AGRUM models behind the GROWA+NRW 2021 data agree

on the high N inputs near the Schiessbach headwaters, where tile-drained cropland areas co-
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incide with high simulated water yields (data not shown), providing additional evidence that

this region may be a critical source area for nitrogen in the Swist catchment.

In general, the results presented in Figure 6.6 are consistent with other studies that compare
CSA predictions from different models: Although there often is a certain amount of overlap
in CSAs, models tend to disagree on a large part of CSA locations, indicating a high degree of
cross-model uncertainty when evaluating the spatial variability of simulated pollutant emis-
sion loads. For example, Evenson et al. (2021) found that for their two different multi-model
ensembles (including various SWAT models) of the Maumee catchment in the Great Lakes re-
gion of the US, only 16 % and 27 % of CSA candidates were identified as such by more than one
model. Of course, areas for which different models do agree on elevated pollutant loads - such
as the Schiessbach headwaters in the present study - may vice versa be flagged as potential
CSAs with greater confidence. For the Schiessbach headwaters, this is further substantiated
by the Erftverband water quality monitoring data in Table 5.3, showing that observed concen-
trations of NO3; ™ -N and organic N tend to be higher in the Schiessbach than the Swist main
watercourse right before their confluence. In addition, the Schiessbach is one of the water bod-
ies in the Swist catchment that has failed to meet quality requirements for NO; ™ according to
WFD monitoring conducted by the NRW state authorities between 2009 and 2011 (State Min-
istry for Climate Protection, Environment, Agriculture, Nature Conservation and Consumer
Protection NRW 2015).

Figure 6.7 shows the cumulative load curves for non-point source N emissions according to
the different data sets. The more the load curves deviate from the identity line between catch-
ment area fraction on the x-axis and the corresponding load contribution to the catchment-
wide N emissions on the y-axis, the more pronounced are the differences in the non-point
source emission loads from the individual subbasins. According to the cumulative load curve
for the SWAT results averaged over all 11 behavioral model runs, the leading 10 % (50 %) of
the Swist catchment area contribute 29 % (79 %) of all non-point source N emissions. Tak-
ing into account parameter-based model uncertainty (see the light black load curves for the
individual SWAT model runs in Figure 6.7), the corresponding load contributions vary be-
tween approximately 24 % (72 %) and 35 % (87 %) of all N emissions. The load contributions
for the GROWA+NRW 2021 data set correspond almost exactly to the lower end of this un-
certainty range for the SWAT simulations: In large parts, the light blue load curve for the
GROWA+NRW 2021 data in Figure 6.7 is practically identical to the load curve for the out-
lier model run 5221 that defines the minimum values of the SWAT uncertainty interval given
above. Although contributing by far the highest absolute non-point source N emission loads

of all behavioral SWAT model runs (see Table 6.3), the extraordinarily high interflow emission
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loads override much of the spatial heterogeneity across the Swist catchment area for model
run 5221 (data not shown). In general, all load curves presented in Figure 6.7 are comparable

to other N load curves in the literature, for example from Niraula et al. (2012).
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Figure 6.7.: Cumulative nitrogen emission load curves for the Swist catchment during the study period
(2012-2018) as simulated by the 11 behavioral SWAT models. The curves are based on non-point source
N emission loads from the individual subbasins. The light black lines represent the cumulative load
curves for each individual SWAT model run. The bold black line represents the cumulative load curve
that results from averaging subbasin emission loads over all SWAT model runs (see the map on the left
hand-side of Figure 6.6). The light blue line indicates the corresponding cumulative load curve for the
GROWA+NRW 2021 data excluding groundwater emissions (note that it partly overlaps with the load
curve for the SWAT outlier model run 5221). Keep in mind that the GROWA+NRW 2021 data represents
a shorter time period (2014-2016) and does not include the model subbasins located in Rhineland-
Palatinate (see the map on the right hand-side of Figure 6.6).
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6.4. Concluding Discussion

Taken together, the behavioral SWAT model results presented in this chapter suggest a plau-
sible range of non-point source N emissions in the Swist catchment somewhere between 4.7
and 11.4 kg N/(ha a) during the study period (2012-2018), corresponding to approximately 136
and 330t/a for the entire catchment area. A single SWAT model that simulated a consider-
ably higher emission load of 15.9 kg N/(ha a) (460 t/a) can probably be classified as an outlier.
The average simulated non-point source emission load across all behavioral SWAT model runs
amounts to 8.1kg N/(haa), corresponding to 235t/a for the entire study area. The median,
which is less affected by the presumptive outlier value mentioned above, is 6.9 kg N/(ha a)
(200t/a). When comparing these simulation results to literature data, note that they repre-
sent total N emission loads for the entire Swist catchment and are not restricted to agricultural
areas. Comparison of the simulation results to other studies can probably be facilitated by
HRU-level evaluation of the SWAT emission loads to distinguish between different land uses

and possibly even field crops. However, this was beyond the primary scope of this thesis.

Since most of the behavioral SWAT models underestimate in-stream NO3; ™ -N loads near the
catchment outlet (see PBIAS scores for nitrate in Table 5.2), this may translate to biased N
emissions in the simulations, suggesting that the above-stated range of emission loads as a
whole may also be too low. This is not implausible given the potential underestimation of
agricultural fertilization and overestimation of soil-borne denitrification in the SWAT models,
as discussed in Subsection 6.3.1. However, it is unclear how these uncertainties interact with
possible model errors in the SWAT routing phase after nitrogen has entered the stream net-
work, especially considering the wide spread in the simulated in-stream N retention rates (see
Subsection 6.3.1). This is probably best exemplified by SWAT model run 2868, which is one
of the few behavioral runs that manages to produce nearly unbiased in-stream NO3 ™ -N loads
although the corresponding catchment-wide emission load of 6.3 kg N/(ha a) (182 t/ha) is in the
lower half of values simulated by all included SWAT models.

The uncertainty in the simulation results is quite large given that the upper bound of the range
of plausible SWAT emission estimates is more than twice as high as the corresponding lower
bound and more than three times as high when also considering the presumed outlier result of
15.9kg N/(ha a) (for model run 5221). As brought up in Subsection 6.3.2, it may be possible to
make a difference between the individual SWAT models based on their performance during cal-
ibration and validation and possibly further criteria, thereby establishing a ranking of emission
load estimates. Such a ranking of different behavioral models for the purpose of uncertainty

assessment is a feature of the GLUE method, for which Beven & Binley (1992) suggest to use
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rescaled objective function scores as likelihood weights to derive a distribution function for the
simulation results. However, performance advantages of any one model (such as SWAT model
2868) are always conditional on the model setup, which has not been part of the calibration
process in this thesis. The performance advantages may vanish or even be reversed in a more
rigorous calibration/validation design involving more and other kinds of observed data (or, for
that matter, other objective functions to rate model performance, see Figure 5.4). Hence, the
results of all behavioral SWAT models are treated as equally plausible in this thesis, with the
possible exception of the outlier model run 5221. As discussed in Subsection 6.3.2, the most
promising way forward to reduce the uncertainty in the simulation results of this study is the
refinement of the model setup and the inclusion of additional calibration objectives to better

constrain the model parameters.

In this respect, keep in mind that the simulated range of N emission loads exclusively repre-
sents parameter-based uncertainty. In particular, it does not include the effects of structural
model uncertainty, which in many cases may be the most dominant source of modeling un-
certainty (van Griensven & Meixner 2006). Consequently, the spread in viable N emission
estimates may be even greater when also considering the results of additional models. Indeed,
the AGRUM models applied in the GROWA+NRW 2021 project predict a non-point source N
emission load for the Swist catchment that is clearly above the upper end of the parameter-
based SWAT uncertainty interval, with a more than twofold difference to the average SWAT
result of 8.1 kg N/(ha a) (see Table 6.3). However, this difference can mainly be attributed to ex-
cessive N contributions from groundwater in the GROWA+NRW 2021 results, most likely due
to an insufficient consideration of the disconnect between groundwater and surface waters in
large parts of the Swist catchment and thus a structural error in the operational setup of the
AGRUM model chain employed in North Rhine-Westphalia (see Subsection 6.3.2). When omit-
ting groundwater-borne N emissions to surface waters in the GROWA+NRW 2021 data, the

remaining N load from non-point sources corresponds exactly to the average SWAT estimate.

In general, the parameter-based SWAT uncertainty interval of 4.7 and 11.4 kg N/(ha a) is consid-
ered to be a realistic appraisal of non-point source N emissions in the Swist catchment during

the study period. This assessment is supported by...

1. ...the overall consistency of the SWAT simulation results with the (corrected) non-point

source N load estimates from the two reference data sets for the Swist catchment.

2. ...the plausible N emission characteristics provided by the SWAT simulations, particu-
larly regarding the seasonal and interannual variability of non-point source N loads as

well as their spatial heterogeneity.
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3. ...the good agreement of the relative N contributions from WWTPs with independent
literature data (Fuchs et al. 2010, Mertens et al. 2012, Wendland et al. 2021a) as well as
UBA estimates for all of Germany.

Due to the empirical nature of the SCS curve number technique and the inability of the HRU
approach to represent pollutant mobilization and transport in the landscape from source ar-
eas to water bodies (see Subsection 3.1.3), it is not entire clear whether the SWAT simulations
accurately capture the relative N contributions from the individual non-point source emission
pathways. Notwithstanding this, the diminished role of the groundwater pathway in the sim-
ulations is in line with the hydrogeological features of the Swist catchment. Similarly, the high
simulated tile flow N loads are not unexpected, given the high mobility of NO3; " -N in soils
and the widespread agricultural tile drains in the Swist catchment. Tile drains probably play a
key role for the occurence of CSAs in the catchment according to the SWAT results, although
spatial variability of non-point source N pollution may also be affected by other aspects of agri-
cultural management which are however considered uniform across the entire catchment area
in the applied SWAT model setup (see Subsection 4.2.3). For a refinement of the source appor-
tionment study presented in this chapter, it would be desirable to explicitly add event-specific
point sources such as seperate sewer outlets (SSO) and combined sewer overflows (CSO) to
the employed SWAT model. The abundance of potential discharge sites (more than 50 only
along the Swist main watercourse according to Erftverband information) and lack of available
data make this a challenging task, although approaches like those developed by Christoffels
(2008), Mailhot et al. (2015) or Quaranta et al. (2022) may show a way forward to close data

gaps regarding discontinuous point source emissions.

164



7. General Conclusions and Outlook

7.1. Introductory Remarks

Ecohydrological catchment modeling with SWAT in this thesis revealed a series of novel in-
sights into surface water pollution with nitrogen (N) in the Swist river basin. These include the
identification of likely critical source areas in the catchment and the determination of domi-
nant emission pathways for N release to surface waters, both of which may become valuable
information when it comes to devising emission control strategies and implementing effective
mitigation measures (some Swist tributaries have been repeatedly identified as water bodies
with elevated nitrate levels in the past). At the same time, the SWAT ensemble results and refer-
ence data sets highlight the considerable uncertainties associated with model-based assessment
of emission loads and source apportionment, while also showing opportunities to reduce these
uncertainties. In this regard, the present thesis demonstrates the crucial role of available mon-
itoring data and a sound understanding of the local conditions in a given catchment along with

its most distinctive features (hydrological and other).

This chapter provides an overview of the main research results in the present thesis and dis-
cusses them in an overarching manner. For this purpose, Section 7.2 addresses the individual
research questions stated in Chapter 1, focusing first on the similarities in the different N emis-
sion estimates to identify the most substantiated findings on diffuse N pollution in the Swist
catchment during the study period (Subsection 7.2.1). Thereafter, the discrepancies in the mod-
eling results are discussed to analyze the associated uncertainties (Subsection 7.2.2), before the
various approaches for source apportionment brought up in this thesis (edge-of-field monitor-
ing, static modeling with AGRUM and dynamic modeling with SWAT) are compared to find
the origins of the discrepancies in the results and reach a general conclusion about the rel-
ative strengths and weaknesses of the different approaches. This also entails an assessment
of their suitability and efficiency in deriving reliable estimates of diffuse nitrogen pollution
(Subsection 7.2.3). In closing of this thesis, Section 7.3 gives an outlook on open research needs
and perspectives as well as possible improvements for a future continuation of model-based

source apportionment with SWAT regarding N pollution in the Swist catchment.
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7.2. General Conclusions

7.2.1. Nitrogen Pollution in the Swist Catchment

Research Question 1
How high are the (average) annual non-point source nitrogen emission loads in the Swist catchment

during the study period, and what are the contributions of the different emission pathways?

On average, the 11 behavioral SWAT simulations evaluated in this thesis predict a non-point
source N emission load of 8.1kg/(haa) (or 235 t/a) for the Swist catchment from 2012 to 2018.
The corresponding median, which is less affected by a potential outlier result, is 6.9 kg N/(ha a)
(or 200t N/a). Although these results are associated with a considerable degree of uncertainty
(see Subsection 7.2.2), their general order of magnitude is consistent with the two available
reference data sets: An emission inventory for the years 2005 to 2009 derived from edge-of-
field monitoring data (Kistemann et al. 2007, Mertens et al. 2012) and the static AGRUM mod-
eling results from the GROWA+NRW 2021 project representing the time span from 2014 to
2016 (Wendland et al. 2021a). The order of magnitude of the SWAT estimates is also roughly
consistent with the outcomes of further studies on diffuse N pollution in other surface water
catchments, although the results are often difficult to compare to one another due to differences
in land use distribution and agricultural management between the investigated catchments as
well as differing choices in study design like spatiotemporal scale or evaluated N parameters
(e.g. NO3 ™ -N versus total N). Looking at the temporal variability of diffuse N emissions, the
SWAT simulation results show pronounced but generally plausible interannual and seasonal

differences that are in line with prior expectations.

Considering only the average simulation results, the 11 SWAT models identify tile flow as the
most important diffuse emission pathway for nitrogen in the Swist catchment (3.7 kg N/(ha a)),
followed by interflow (2.7 kg N/(ha a)) and surface runoff (1.7 kg N/(ha a)), although this rank-
ing is different for some of the individual model runs. The models unanimously agree however
on the diminished role of groundwater flow, occupying the last place among the different non-
point source emission pathways for nitrogen in every behavioral SWAT model run evaluated
for this thesis (the average groundwater contribution across all model runs is very close to
0kg N/(haa)). This is consistent with the large-scale groundwater extraction in the Rhenish
lignite mining region and the resulting disconnect between groundwater and many surface
waters in the study area (see Chapter 2), effectively shutting down groundwater flow as a nitro-
gen emission pathway particularly in the lower parts of the catchment where most agricultural
cropland with intensive fertilizer use is situated (see the map in Figure 2.2). The combination

of widespread tile drains and impeded groundwater flow seems to be a special characteristic
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of the Swist catchment (and probably also the surrounding river catchments) with regard to
N pollution, shifting the individual load contributions from slow (groundwater flow) to fast
(tile flow) emission pathways. This in turn reduces the residence times of reactive N in under-
ground environmental compartments and decreases the potential for denitrification to alleviate

the overall N burden on nearby surface waters (Seitzinger et al. 2006).

The prominent role of tile flow as an N emission pathway in the SWAT simulations is com-
pletely plausible given the high mobility of NO3; ™-N in soils due to anion exclusion at the in-
terface between soil solution and soil matrix. Agricultural tile drains are often indispensable
to maintain farmland productivity. However, tile drains pose a challenge for the successful
implementation of mitigation measures, as they circumvent classical nutrient barriers like ri-
parian buffer zones and filter strips. Of course, further optimization of fertilization practices
may help to reduce overall non-point source nutrient emissions, but stricter requirements are
already in place since the latest amendments to the German Fertilizer Application Ordinance
in 2017 and 2020. Direct treatment of tile flow at or near the drainage outlets for example in
reactive ditches using wood chips can be effective in reducing N emissions to surface waters
(Pfannerstill et al. 2016, Kothe et al. 2021). However, implementation of such mitigation mea-
sures is dependent on local conditions and must probably be put into practice on a site-by-site
basis (Kothe et al. 2021). A promising and more generally applicable alternative are controlled
tile drainage systems that enable the storage of soil water during dry periods and thus pro-
long residence times in the soil profile, potentially reducing the exports of nutrients and other
pollutants to adjacent surface waters while also enhancing cropland productivity (Sunohara
et al. 2016).

Research Question 2
How important are point source nitrogen emissions from wastewater treatment plants in the Swist

catchment compared to non-point source nitrogen emissions?

When combining the simulated non-point source N emission loads for the Swist catchment
with point source N emission loads from the four wastewater treatment plants (WWTP) in the
study area, SWAT predicts a WWTP contribution to overall N pollution of 26.8 % on average
(from 2012 to 2018). This value agrees quite well with independent literature data: For the
Swist catchment from 2005 to 2009, Mertens et al. (2012) state a WWTP contribution to over-
all N pollution of 23 %. For the years from 2014 to 2016, Wendland et al. (2021a) estimate the
WWTP contribution to overall N pollution in all of North Rhine-Westphalia (NRW) to be ap-
proximately 16 %. And finally, official estimates from the German Federal Environment Agency
(UBA) derived with the static MoRE modeling system (Fuchs et al. 2017) assume an average
WWTP contribution to overall N pollution of 17 % for all of Germany from 2012 to 2016. The

167



7. General Conclusions and Outlook

elevated WWTP contributions for the Swist catchment (compared to the average estimates for
all of NRW and Germany) most likely orginates from the high municipal wastewater load in
the Swist (approximately 40 % of annual streamflow at the catchment outlet, Christoffels et al.
(2016)). There is probably still potential for lowering the N emission loads from wastewater
treatment plants. However, note that the authorative quality requirements for wastewater dis-
charged into the Swist and its tributaries are already comparatively high (Erftverband personal
communication) and long-term efforts to improve wastewater treatment have generally led to
a steady reduction of WWTP contribution to surface water pollution in Germany over past

decades that tended to outpace emission reductions from other source types (Fuchs et al. 2010).

Research Question 3
Which spatial patterns of non-point source nitrogen emissions in the Swist catchment emerge in
the modeling results? In particular, do the results indicate the existence of critical source areas for

diffuse nitrogen pollution in the Swist catchment, and where are they located?

At the level of the subbasins delineated for the modeling project in this thesis, the SWAT simu-
lation results show a considerable degree of spatial heterogeneity in the Swist catchment (from
2012 to 2018). On average, the leading 10 % of the catchment area contribute 29 % of all non-
point source N emissions. Correspondingly, the leading 50 % of the catchment area contribute
79 % of all non-point source N emissions. There is a considerable degree of correlation between
total and tile flow emission loads from the individual subbasins, with high emission areas often
co-inciding with subbasins dominated by tile-drained cropland or orchards. This underscores
the important role of agricultural tile drains as pathways for surface water N pollution in the
Swist catchment according to the SWAT simulations. All behavioral SWAT models and the
GROWA+NRW 2021 distributed modeling results agree on particularly high non-point source
N emission loads near the Schiessbach headwaters, making this region a likely critical source
area (CSA) for nitrogen pollution in the Swist catchment. This finding is further substanti-
ated by routine water quality monitoring data from the Schiessbach: Erftverband monitoring
results for the study period reveal elevated nitrogen concentrations in the lower reaches of
the Schiessbach compared to the Swist main watercourse (Table 5.3). Furthermore, NRW state
authorities identified the Schiessbach as one of the water bodies in the Swist catchment that
failed to meet the requirements for the good chemical status based on NO3; ™ -N concentrations
observed during the Water Framework Directive (WFD) monitoring cycle from 2009 to 2011
(State Ministry for Climate Protection, Environment, Agriculture, Nature Conservation and
Consumer Protection NRW 2015).
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7.2.2. Remaining Uncertainties

Research Question 4
How wide is the range of simulated non-point source nitrogen emissions in the Swist catchment
between different calibrated SWAT models (i.e. how large is the parameter-based model uncer-

tainty)?

In the study period from 2012 to 2018, the behavioral SWAT models predict a range of total
non-point source N emission loads in the Swist catchment between 4.7 and 15.9 kg/(ha a) (or
136 and 460 t/a), amounting to a more than threefold difference between the minimum and
maximum simulation result. When excluding the potential outlier model run that produces
the value at the upper end of this interval, the second highest result of 11.4 kg N/(haa) (or
330 t/a) is still more than twice as high as the lowest value, indicating a considerable degree
of uncertainty associated with the SWAT simulations. There is also a substantial amount of
variability in the pathway-specific emission loads, with a particularly large difference between
the simulated minimum and maximum for nitrogen inputs via interflow (0.3 to 9.1 kg N/(ha a)).
The spread in the simulated total non-point source emission loads translates directly to variable
N contributions from WWTPs that range from 14.7 % to 36.7 % of overall nitrogen pollution.
With regard to the spatial variability of non-point source emissions, the N contributions from
the leading 10 % of the catchment area to overall non-point source pollution vary between 24 %
and 35 % (72 % and 87 % for the leading 50 % of the catchment area). In this respect, the region
along the upper and middle Swist reaches near Meckenheim emerges as the only obvious CSA

candidate in the catchment apart from the Schiessbach headwaters.

As the differences between the behavioral SWAT models are restricted to the parameter values,
all the described variability between the individual simulations can exclusively be attributed
to parameter-based model uncertainty. The behavioral parameter sets are the product of a
model calibration (and validation) process (see Chapter 5) in which the individual parameter
values may compensate for each other as well as deficiencies in the model setup (i.e. model
structure and input data) to meet the in-stream calibration objectives. The calibrated SWAT
models are therefore subject to equifinality (Beven 2006), making it practically impossible to
distinguish them in terms of their ability to accurately reproduce surface water pollution in the
Swist catchment: From the perspective of the calibration objectives, they all may be similarly
good predictors of diffuse nitrogen emission loads, with little potential to further narrow the
above-stated uncertainty interval from 4.7 to 11.4 kg N/(ha a). Furthermore, parameter calibra-
tion is conditioned on the model setup as described in Chapter 4, which in several ways seems
to promote a shortage of reactive N in the Swist catchment (see the analysis of simulated N

balances in Subsection 6.3.1). Accordingly, a majority of calibrated SWAT models tend to un-
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derestimate in-stream NO; ™ -N loads at the catchment outlet that - if not overly affected by
excessive N retention during the SWAT routing phase - may translate to similar underestima-
tion of N emission loads as they enter the Swist river network. Section 7.3 will go into more
detail on potential improvements in the model setup that may help to reduce this potential

source of bias in the simulation results.

Research Question 5
How much do the simulated non-point source N emissions as well as critical source areas differ

between SWAT and AGRUM (i.e. how large is the structural model uncertainty)?

The AGRUM modeling results in the mGROWA+NRW 2021 project (Wendland et al. 2021a)
yield an overall estimate of non-point source N emissions for the Swist catchment area in
NRW of 16.5kg/(haa) (2014-2016). This amounts to a more than twofold difference com-
pared to the average simulation result from the behavioral SWAT models, while also being
outside the parameter-based uncertainty interval defined by the lowest and highest SWAT re-
sults (see above). The discrepancy between the AGRUM and SWAT results suggests a substan-
tial amount of structural model uncertainty. However, the surplus in N emissions predicted
by the AGRUM results can almost completely be attributed to N emissions from groundwa-
ter, which constitute more than half of the entire diffuse N surface water burden according to
the GROWA+NRW 2021 data. Such high groundwater contributions are implausible given the
widespread disconnect between groundwater and surface waters in the Swist catchment due to
groundwater extraction near the Rhenish lignite mining pits. Although the GROWA+NRW 2021
results fit observed in-stream nitrogen loads well for most of NRW, validation fails for the Erft
catchment most likely due to human interference with the regional hydrogeology (Wendland
et al. 2021a), suggesting an error in the operational setup of the AGRUM model chain as em-
ployed in the GROWA+NRW 2021 project for the Erft catchment and its surroundings (includ-

ing the Swist catchment).

Subtracting the groundwater N emissions from the overall non-point source N emissions in
the GROWA+NRW 2021 data set produces a remaining N load that corresponds exactly to the
average SWAT estimate (8.1 kg N/(ha a)). Hence, the order of magnitude of the SWAT results is
generally consistent with the (corrected) GROWA+NRW 2021 data. As the same is true regard-
ing the SWAT results and the monitoring-based emission inventory of Mertens et al. (2012), it is
concluded in this thesis that the parameter-based uncertainty interval of 4.7 to 11.4 kg N/(ha a)
probably is a realistic appraisal of non-point N pollution in the Swist catchment during the
study period (excluding the potential outlier result at 15.9 kg N/(ha a)). Alternatively, the range
of likely non-point loads may also be stated as being in the vicinity of approximately 5 to

10kg N/(ha a) to not purport a level of precision that the applied SWAT models are unable to
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provide. Looking at the three non-point source emission pathways other than groundwater,
the GROWA+NRW 2021 results reproduce the same ranking as the average SWAT results, al-
though with a substantially lower estimate for nitrogen emissions via surface runoff. This is
a consequence of the greater restrictions imposed on nutrient emissions via surface runoff in
the distributed AGRUM models, among them a requirement for potential source areas to be
hydrologically connected to nearby surface water bodies (Wendland et al. 2021a), standing in
stark contrast to the HRU approach in SWAT that allows pollutant transfer to the river network

from any point in the landscape.

Regarding the spatial variability of the non-point source N emissions in the Swist catchment,
the load estimates obtained from the GROWA+NRW 2021 raster data (without N contributions
from groundwater) are more uniform between the different subbasins than the corresponding
estimates from the behavioral SWAT simulations. The relative nitrogen contributions from the
leading 10 % and 50 % of the catchment area in the GROWA+NRW 2021 data correspond almost
exactly to the lower end of the parameter-based uncertainty interval from the SWAT simulation
results (approximately 25 % and 72 %), indicating a lower degree of spatial heterogeneity than
most SWAT model runs. With respect to critical source areas, there is no clear overlap in
high emission subbasins between the SWAT and GROWA+NRW 2021 results apart from the
Schiessbach headwater region. This confirms the findings of Evenson et al. (2021) on cross-
model uncertainty in CSA identification: On the one hand, different models usually tend to
disagree on a majority of potential CSA locations. On the other hand, when different models
do agree on certain areas with elevated pollutant loads - such as the region along the upper
reaches of the Schiessbach - these can subsequently be targeted with all the more confidence

in the case of focused monitoring campaigns or the implementation of mitigation measures.

7.2.3. Strengths and Weaknesses of Source Apportionment Approaches

Research Question 6

What are the relative strengths and weaknesses of the different approaches to assess catchment-
wide non-point source pollution (edge-of-field monitoring, static AGRUM modeling or dynamic
SWAT modeling)? Which level of effort is necessary and feasible to draw reliable conclusions

particularly on nitrogen pollution?

Comparing the non-point source emission estimates for nitrogen in the Swist catchment from
edge-of-field (EOF) monitoring (Mertens et al. 2012), static AGRUM modeling (Wendland et al.
2021a) and dynamic SWAT modeling in this study, it is reassuring to see that all approaches

- with some exceptions - agree on the general order of magnitude of the predicted emission
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loads and the overall ranking of emission pathways, an outcome not necessarily expected be-
forehand. However, going beyond these more qualitative aspects, many quantitative results
are associated with considerable uncertainties, as exemplified by the relatively wide range of
total and pathway-specific load estimates predicted by the various SWAT models as well as
some major discrepancies between the average SWAT modeling results, the AGRUM model-
ing results and the results from EOF monitoring. Most notably, these discrepancies include
the excessively high nitrogen emissions from groundwater flow in the AGRUM data, probably
originating from insufficient consideration of the mining-induced water table draw down af-
fecting a large portion of the Swist catchment. Here, although successfully validated for the
vast majority of higher-order stream catchments in NRW for the GROWA+NRW 2021 project
(Wendland et al. 2021a), the AGRUM model chain fails when confronted with exceptional local

conditions the model structure is unable to accommodate.

On the one hand, the overestimation of groundwater N contributions in the Swist catchment
by the AGRUM models highlights the need for appropriate consideration of local conditions in
different (sub-)catchments when assessing surface water pollution. This of course is difficult for
a large-scale, “one-size-fits-all” approach as applied in the GROWA+NRW 2021 project for the
entire state area of NRW, and can be more naturally realized with a catchment-scale model like
SWAT. On the other hand, AGRUM is a more parsimonious modeling sytem than the complex
and potentially overparameterized SWAT. As argued by Radcliffe et al. (2009) in the context of
phosphorus modeling, the use of parsimonious models may be beneficial in many cases as they
can be more readily applied and sidestep the typical problems arising from model calibration
as well as parameter equifinality. At the same time, the lack of formal parameter calibration in
many static models may reduce transparency about persisting uncertainties (originating from
the input data, the model structure or scale issues) and suggest an unwarranted level of confi-
dence in the model predictions. Again, quantitative as well as qualitative local knowledge about
the study area (“hard” and “soft” data, Seibert & McDonnell (2002), Arnold et al. (2015)) may
be used to better constrain the viable parameter ranges in complex calibrated catchment mod-
els like SWAT and validate the simulation results. In this respect, the wealth of data available
for the Swist catchment (see Section 2.5) has been extraordinarily helpful for nitrogen source
apportionment in this thesis, as has been intercomparison of multiple independent reference
data sets on catchment-wide N pollution to verify the most common findings and evaluate the
associated uncertainties. Combination of various methods that complement each other may in
fact be the most promising approach to draw reliable conclusions on surface water pollution,

but will presumably be difficult in many catchments due to data constraints.
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In general, the method of choice for catchment-wide assessment of non-point source pollu-
tion will depend on the specific research context and motivation. If the goal is to estimate
annual emission loads, a static modeling system like AGRUM may suffice, whereas the deter-
mination of seasonal or event-specific pollutant loads requires a dynamic model like SWAT.
Edge-of-field monitoring alone is insufficient for the identification of critical source areas on
the catchment scale, but may be helpful or even mandatory for the correct interpretation of
distributed or semi-distributed modeling results for this purpose. In order to fulfill legal re-
porting obligations for large-scale river catchments or state areas (like those imposed by the
WFEFD on the EU member states), a static and relatively comprehensible modeling system such
as AGRUM is probably the most appropriate tool. In contrast, planning of effective mitigation
measures to reduce pollutant emissions in a specific catchment requires targeted monitoring
efforts and/or the application of more complex, dynamic and process-based computer models.
Additionally, the pollutant of interest may also play a role in model selection: For example,
the semi-distributed HRU approach in SWAT to represent spatial heterogeneity may be better
suited to assess nitrogen than phosphorus pollution. Whereas phosphorus mobilization is often
dominated by erosive processes in the small-scale topography of a subbasin, diffuse nitrogen
pollution tends to be governed by transport of dissolved NO; ™ -N in groundwater flow or tile

drainage systems, making it less dependent on natural terrain and surface runoff flow paths.

7.3. Outlook

In a future continuation of SWAT modeling in the Swist catchment to assess nitrogen pollution,
there are several potential improvements to the SWAT models that could reduce uncertainty
in the simulation results and give additional insights into the likely amounts and origins of
reactive N entering the Swist river network. Here, model improvement mainly pertains to the
model setup (i.e. the model input data and model structure) prior to parameter calibration and
pursues two closely related objectives: First, it strives to increase the achievable model per-
formance ratings, allowing the introduction of additional calibration objectives to better con-
strain the model parameters while at the same time maintaining (or increasing) the number
of behavioral SWAT parameter sets available for uncertainty analysis after model calibration
and validation. Second, it attempts to eliminate the shortage of reactive N in the models that
likely contributes to underestimation of in-stream NOs ™ -N loads and promotes mineralization
as well as depletion of soil organic N stocks in the model calibration process, correcting the rep-
resentation of internal catchment processes and counteracting potential bias in the simulated

N emissions. In summary, improvement of the SWAT model setup aims to enhance both the
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precision and accuracy of the simulated uncertainty intervals for non-point source N pollution

in the Swist catchment.

Analysis of the SWAT simulation results in this thesis suggests an increase in N fertilizer quan-
tities to be one of the most promising options for change in the model setup to reduce underesti-
mation of in-stream NO3 ™ -N loads. Although the fertilizer quantities applied in the model (see
Table 4.4) capture the order of magnitude of fertilization in the Swist catchment reasonably well
(see Subsection 4.3.4), a certain degree of underestimation is not implausible especially since
the fertilization rates are based on best practice recommendations by Paffrath et al. (2021) that
take into account stricter legal requirements for fertilizer use in Germany not yet active dur-
ing the study period. In line with that, an experimental increase of N fertilizer quantities by
20 % in the behavioral SWAT models almost completely eliminated the bias in the simulated
in-stream NOs3 ™ -N loads (see the top right panel in Figure 6.1), showing a mostly positive im-
pact of increased fertilization rates on model performance. As an alternative, inputs of reactive
N to the catchment soils may equally be raised by activating atmospheric deposition in the
SWAT models. However, keep in mind that the effects of missing atmospheric N deposition
in the simulations might be partially offset by likewise omission of ammonia volatilization,
which should consequently also be included in the SWAT models when adding atmospheric

deposition as an input process.

Instead of raising nitrogen inputs via fertilization and/or atmospheric deposition, supply with
reactive N can also be increased by lowering nitrogen losses for example via denitrification.
Despite high uncertainties in the quantification of catchment-scale denitrification, comparison
of simulated denitrification losses (see Table 6.2) with literature data suggests that soil-borne
denitrification in the SWAT models is presumably too high. A possible starting point to lower
denitrification in the model results is the simulation of perched water tables on top of an im-
pervious subsurface layer in SWAT: Restricting the occurrence of perched water tables only
to places where they are necessary to simulate tile flow may help to better drain the soils
in the rest of the catchment and thus reduce soil-borne denitrification. The same approach
may simultaneously stimulate groundwater flow and better connect surface waters to preex-
isting N pools in the shallow aquifer, potentially alleviating simulated in-stream load deficits
of NOs3 ™ -N particularly during base flow conditions. For the stream segments in the lower
parts of the catchment without groundwater contact, simulation of base flow and transmission
losses would probably benefit from spatial differentiation in the hydraulic conductivities of the
channel bed. In a simultaneous calibration scheme as applied in this thesis, conductivities for
example may be set independently for the Swist and its tributaries to resolve trade-offs between

the different stream gauges.
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There are several other possible model improvements that could enhance performance rat-
ings and refine catchment representation, most notably the explicit inclusion of discontinuous
point sources for nitrogen emissions like combined sewer overflows (CSO) or separate sewer
outlets (SSO) in the model structure. Although N emissions from these sources are gener-
ally considered to be of minor importance on an annual time scale (Fuchs et al. 2010, Mertens
et al. 2012, Wendland et al. 2021a), they probably still constitute a meaningful part of the entire
N burden in most stream catchments with substantial shares of developed residential or com-
mercial areas. Moreover, with a dynamic model like SWAT, it may be possible to examine the
short-term effects of single-event N emission loads from these sources on surface water qual-
ity, especially with regard to NH,*-N and NO; ™ -N in basically untreated wastewater from CSO
events. However, difficulties arise from the unpredictable nature of emission events and the
abundance of potential discharge locations in a given river catchment. Therefore, despite grow-
ing awareness for the significance of CSO and SSO discharges regarding surface water quality
and ongoing efforts to close persisting data gaps (Christoffels 2008, Mailhot et al. 2015, Quar-
anta et al. 2022), accounting for these emission sources in catchment-scale models will likely

remain challenging in the foreseeable future.

An intriguing research perspective would be to incorporate the effects of the latest amendments
to the German Fertilizer Application Ordinance (“Diingeverordnung”) into the SWAT models.
These amendments impose stronger restrictions for agricultural fertilizer use in Germany and
should therefore have led to a noticeable decrease in N fertilization since 2017. In their cur-
rent state, the SWAT models assume all agricultural management practices to be constant over
time, meaning there is no systematic shift in the applied management schedules during the
simulation period (see Appendix C for the various schedules used to model crop rotation). In a
combined effort to both raise the levels of reactive N in the model (see above) and account for
the changed regulations, quantities of N fertilizer specified in the management schedules could
be raised until the end of 2016 and be left at their current values afterwards. Extending the sim-
ulation period beyond the year 2018 would subsequently allow to examine how the change in
fertilizer use affects long-term water quality in the simulations, with special emphasis on the
occurrence of legacy effects that might cause a long delay in the associated response of in-
stream nitrogen levels (Withers et al. 2014, Ascott et al. 2021, Basu et al. 2022). Van Meter et al.
(2016) distinguish between a biogeochemical legacy of organic N stocks in soils and a hydrolog-
ical legacy of inorganic N traveling through the vadose zone and aquifers. While SWAT should
in principle be able to capture biogeochemical N legacies (see Figure 3.2), it is thought to be
largely incapable of accounting for hydrological N legacies (Lutz et al. 2022, Golden et al. 2023).

However, the latter may be of minor importance in the study area, if the premise is true that
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the surface-groundwater disconnect and widespread tile drainage favor fast flow paths to the

surface waters of the Swist catchment.

Finally, consideration of alternatives to the spatial model setup of SWAT may prove helpful to
explore another facet of model uncertainty (scale dependencies) and build confidence in model-
based identification of critical source areas. This includes the number and size of delineated
subbasins and HRUs, both of which may have a considerable impact on the SWAT simula-
tion results in particular regarding sediment and nutrients (Jha et al. 2004, Her et al. 2015).
A refinement in the number and size of the model subbasins (see Appendix A) may become
necessary in the future to accommodate additional monitoring points and discharge sites for
discontinuous point sources like CSO and SSO along the network of stream segments. Inves-
tigating the effects of different land use and soil data sets on model performance in Chapter 4
resulted in diverging HRU configurations in SWAT (see Table 4.1) and thus already entails a
basic uncertainty assessment in this regard. However, a more explicit consideration of HRU
threshold values applied during model setup as in Her et al. (2015) may give a more compre-
hensive picture of the associated error potential. With regard to the inherent shortcomings of
the HRU approach regarding pollutant transport in the landscape, transition from SWAT to its
successor SWAT+ (Bieger et al. 2017) may be worthwhile for future modeling applications in
the Swist catchment. SWAT+ keeps the HRU approach, but introduces landscape units (LSU) as
an additional level of spatial differentiation in-between subbasins and HRUs enabling transfer
of water and pollutants between them (Bieger et al. 2019). Alternatively, SWAT+ also provides
an option for a fully distributed grid-based model setup adopted from Rathjens et al. (2015),
which may however become computationally prohibitive in larger catchments and/or tied to
MC-based model calibration.
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A. SWAT Model Setup Map of the Swist

River Basin

Figure A.1.: SWAT model setup map of the Swist river basin (see next page). The stream network
was subdivided into 153 stream segments, with the same number of delineated subbasins. Stream
segments were classified in terms of their groundwater contact by comparing 2018 groundwater levels
with streambed elevations (Erftverband personal communication). Agricultural areas with tile drains
were mapped by Kothe et al. (2021). The SWAT models simulated tile flow in all subbasins with at least
40 % tile drained agricultural area (depicted in grey).
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A. SWAT Model Setup Map of the Swist River Basin
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B. Description of SWAT Parameters

Table B.1.: Description of SWAT model parameters included in sensitivity analysis (see next page). Pa-
rameters are ordered according to their influence on simulation of in-stream nitrate loads (as in Table 5.1
on page 95). The horizontal line separates the influential parameters above from the non-influential pa-
rameters below. Parameter descriptions according to the SWAT Input/Output Documentation (Arnold
et al. 2013).
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B. Description of SWAT Parameters

Parameter Description Unit
TRNSRCH.bsn Fraction of transmission losses from main channel that enters deep aquifer -
CH_K2.rte Effective hydraulic conductivity in main channel alluvium mm H,O/h
DEPIMP_BSN.bsn Depth to impervious layer for modeling perched water tables mm

ALPHA_BNK.rte

Recession constant for bank storage

SDNCO.bsn Denitrification threshold soil water content -
ANION_EXCL_BSN.bsn  Fraction of soil porosity from which anions are excluded -

CN2.mgt Initial SCS runoff curve number for moisture condition II -
SOL_AWC.sol Available water capacity of a specific soil layer mm HyO/mm soil
CDN.bsn Denitrification exponential rate coefficient for the soil -
NPERCO.bsn Nitrate percolation coefficient for the soil -
CNCOEF.bsn Plant ET curve number coefficient -
DIS_STREAM.hru Average distance to the stream m
SOL_BD.sol Moist bulk density of a specific soil layer g/cm®
EPCO.bsn Plant water uptake compensation factor -
SOL_K.sol Saturated hydraulic conductivity of a specific soil layer mm H;O/h
CMN.bsn Rate factor for humus mineralization of active organic nutrients (N and P). -
ESCO.bsn Soil evaporation compensation factor -

CANMX hru Maximum canopy storage mm HyO
SOL_CBN:.sol Organic carbon content of a specific soil layer % (m/m)
TDRAIN.mgt Time to drain soil to field capacity via tile drains h
SOL_ALB.sol Moist soil albedo -
CH_N2.rte Manning’s roughness coefficient for the main channel s/m'/3
SURLAG.bsn Surface runoff lag coefficient -
SMTMP.bsn Snow melt base temperature °C
RCHRG_DP.gw Deep aquifer percolation fraction -

TIMP.bsn Snow pack temperature lag factor -
N_UPDIS.bsn Plant nitrogen uptake distribution parameter -
SFTMP.bsn Snowfall temperature °C
GWQMN.gw Threshold storage in the shallow aquifer required for groundwater flow mm HyO
SNO50COV.bsn Fraction of snow volume that corresponds to 50 % snow cover -
SNOCOVMX.bsn Minimum snow water content that corresponds to 100 % snow cover mm H,;O0
SMFMN.bsn Melt factor for snow on December 21 mm H,0/°C
GW_REVAP.gw Groundwater “revap” coefficient -
REVAPMN.gw Threshold storage in the shallow aquifer for “revap” mm H,O0
OV_N.hru Manning’s roughness coefficient for overland flow s/m"/3
SMFMX.bsn Melt factor for snow on June 21 mm H;0/°C
EVRCH.bsn Reach evaporation adjustment factor -
HLIFE_NGW_BSN.bsn Half-life of nitrate in the shallow aquifer d
DRAIN_CO_BSN.bsn Daily drainage coefficient (maximum tile flow) mm H,0/d
GW_DELAY.gw Groundwater flow delay time day
CH_N1.sub Manning’s roughness coefficient for the tributary channels s/m'3
RCN.bsn Concentration of nitrogen in rainfall mg N/1
ALPHA_BF.gw Baseflow recession constant for the shallow aquifer 1/d
SHALLST_N.gw Initial concentration of NO3 ~-N in the shallow aquifer mg N/1
RES_Kres Hydraulic conductivity of the reservoir bottom mm H,O/h
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C. Management Schedules and Crop
Rotation Cycles

Table C.1.: Canola, wheat, peas, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 62: Peas, 75: Polish Canola, 76: Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i’ for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

3 1 0 3 70 0
4 1 0 3 1 50 0
7 30 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
8 10 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 50 0
5 7 0 3 1 40 0
7 14 0 5 0
8 7 0 6 1 0
8 25 0 1 76 0 1800 0 0 0 0 0
8 25 0 3 1 50 0
0

181



C. Management Schedules and Crop Rotation Cycles

Table C.2.: Canola, wheat, oats, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 32: Oats, 75: Polish Canola, 76: Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgtdi mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

3 1 0 3 1 70 0

4 1 0 3 1 50 0

7 30 0 5 0

10 14 0 6 1 0

10 26 0 1 28 0 1800 0 0 0 0 0
0

3 20 0 3 1 60 0

4 20 0 3 1 60 0

5 20 0 3 1 60 0

7 31 0 5 0

8 12 0 6 1 0

8 30 0 1 75 0 1800 0 0 0 0 0
0

1 1 0 8

3 7 0 6 2 0

3 21 0 1 32 0 1800 0 0 0 0 0

3 21 0 3 1 40 0

4 21 0 3 1 40 0

8 4 0 5 0

9 15 0 6 1 0

10 3 0 1 99 0 1800 0 0 0 0 0
0

3 7 0 3 1 50 0

4 7 0 3 1 50 0

5 7 0 3 1 40 0

7 14 0 5 0

8 7 0 6 1 0

8 25 0 1 76 0 1800 0 0 0 0 0

8 25 0 3 1 50 0
0
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Table C.3.: Canola, wheat, sugar beet, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 69: Sugar Beet, 75: Polish Canola, 76: Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

3 1 0 3 1 70 0
4 1 0 3 1 50 0
7 30 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
8 15 0 6 1 0
8 29 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 50 0
5 7 0 3 1 40 0
7 14 0 5 0
8 7 0 6 1 0
8 25 0 1 76 0 1800 0 0 0 0 0
8 25 0 3 1 50 0
0
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Table C.4.: Canola, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat 76: Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

3 1 0 3 70 0
4 1 0 3 1 50 0
7 30 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 1 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 1 50 0
5 7 0 3 1 40 0
7 14 0 5 0
8 7 0 6 1 0
8 25 0 1 76 0 1800 0 0 0 0 0
8 25 0 3 1 50 0
0
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Table C.5.: Canola, wheat, barley, corn, peas.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 19: Corn, 28: Wheat, 62: Peas, 75: Polish Canola, 76: Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgtdi mgt5i  mgtéi  mgt7i mgt8i  mgtoi

3 1 0 3 1 70 0
4 1 0 3 1 50 0
7 30 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 50 0
5 7 0 3 1 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 30 0 6 2 0
4 25 0 1 19 0 1800 0 0 0 0 0
4 25 0 3 1 70 0
6 7 0 3 1 80 0
10 26 0 5 0
0
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
8 19 0 6 1 0
8 25 0 1 76 0 1800 0 0 0 0 0
8 25 0 3 1 50 0
0
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Table C.6.: Canola, wheat, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 76: Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i mgtéi  mgt7i  mgt8i  mgtoi

3 1 0 3 70 0
4 1 0 3 1 50 0
7 30 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 1 60 0
5 20 0 3 1 60 0
7 31 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 1 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 1 50 0
5 7 0 3 1 40 0
7 14 0 5 0
8 7 0 6 1 0
8 25 0 1 76 0 1800 0 0 0 0 0
8 25 0 3 1 50 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.7.: Corn silage, wheat, peas, wheat, rye.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 20: Corn Silage, 28: Wheat, 30: Rye, 62: Peas, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgtdi mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
3 30 0 6 2 0
4 25 0 1 20 0 1800 0 0 0 0 0
4 25 0 3 70 0
6 7 0 3 1 80 0
9 20 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
8 10 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 5 0 1 30 0 1800 0 0 0 0 0
0
3 15 0 3 1 50 0
4 15 0 3 1 50 0
5 15 0 3 1 30 0
7 25 0 5 0
8 5 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.8.: Corn silage, wheat, peas, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 20: Corn Silage, 28: Wheat, 62: Peas, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgtdi mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
3 30 0 6 2 0
4 25 0 1 20 0 1800 0 0 0 0 0
4 25 0 3 70 0
6 7 0 3 1 80 0
9 20 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
8 10 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 1 50 0
5 7 0 3 1 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.9.: Corn silage, wheat, oats, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 20: Corn Silage, 28: Wheat, 32: Oats, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
3 30 0 6 2 0
4 25 0 1 20 0 1800 0 0 0 0 0
4 25 0 3 1 70 0
6 7 0 3 80 0
9 20 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 1 60 0
5 20 0 3 1 60 0
7 31 0 5 0
8 12 0 6 1 0
8 30 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 7 0 6 2 0
3 21 0 1 32 0 1800 0 0 0 0 0
3 21 0 3 1 40 0
4 21 0 3 40 0
8 4 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 50 0
4 7 0 3 1 50 0
5 7 0 3 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.10.: Corn silage, wheat, rye.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 20: Corn Silage, 28: Wheat, 30: Rye, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt3i mgtdi mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8

3 30 0 6 2 0

4 25 0 1 20 0 1800 0 0 0 0 0

4 25 0 3 1 70 0

6 7 0 3 1 80 0

9 20 0 5 0

10 14 0 6 1 0

10 26 0 1 28 0 1800 0 0 0 0 0
0

3 20 0 3 1 60 0

4 20 0 3 1 60 0

5 20 0 3 1 60 0

7 31 0 5 0

9 15 0 6 1 0

10 5 0 1 30 0 1800 0 0 0 0 0
0

3 15 0 3 1 50 0

4 15 0 3 1 50 0

5 15 0 3 1 30 0

7 25 0 5 0

8 5 0 6 1 0

8 20 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.11.: Corn silage, wheat, rye, corn, peas.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 19: Corn, 20: Corn Silage, 28: Wheat, 30: Rye, 62: Peas, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
3 30 0 6 2 0
4 25 0 1 20 0 1800 0 0 0 0 0
4 25 0 3 1 70 0
6 7 0 3 1 80 0
9 20 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 1 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 5 0 1 30 0 1800 0 0 0 0 0
0
3 15 0 3 1 50 0
4 15 0 3 50 0
5 15 0 3 1 30 0
7 25 0 5 0
8 5 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 30 0 6 2 0
4 25 0 1 19 0 1800 0 0 0 0 0
4 25 0 3 1 70 0
6 7 0 3 1 80 0
10 26 0 5 0
0
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
8 21 0 6 1 0
9 1 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.12.: Corn silage, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 20: Corn Silage, 28: Wheat, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt3i mgtdi mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8

3 30 0 6 2 0

4 25 0 1 20 0 1800 0 0 0 0 0

4 25 0 3 1 70 0

6 7 0 3 1 80 0

9 20 0 5 0

10 14 0 6 1 0

10 26 0 1 28 0 1800 0 0 0 0 0
0

3 20 0 3 1 60 0

4 20 0 3 1 60 0

5 20 0 3 1 60 0

7 31 0 5 0

9 15 0 6 1 0

10 3 0 1 99 0 1800 0 0 0 0 0
0

3 7 0 3 1 50 0

4 7 0 3 1 50 0

5 7 0 3 1 40 0

7 14 0 5 0

7 31 0 6 1 0

8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.13.: Corn silage, wheat, barley, corn, peas.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 19: Corn, 20: Corn Silage, 28: Wheat, 62: Peas, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
3 30 0 6 2 0
4 25 0 1 20 0 1800 0 0 0 0 0
4 25 0 3 1 70 0
6 7 0 3 1 80 0
9 20 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 1 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 50 0
5 7 0 3 1 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 30 0 6 2 0
4 25 0 1 19 0 1800 0 0 0 0 0
4 25 0 3 1 70 0
6 7 0 3 1 80 0
10 26 0 5 0
0
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
8 21 0 6 1 0
9 1 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.14.: Corn silage, wheat, wheat, rye.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 20: Corn Silage, 28: Wheat, 30: Rye, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU mgtli mgt2i mgt3i mgtdi mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

[=}
T

1 1 0 8
3 30 0 6 2 0
4 25 0 1 20 0 1800 0 0 0 0 0
4 25 0 3 70 0
6 7 0 3 1 80 0
9 20 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 5 0 1 30 0 1800 0 0 0 0 0
0
3 15 0 3 1 50 0
4 15 0 3 50 0
5 15 0 3 1 30 0
7 25 0 5 0
8 5 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.15.: Corn silage, wheat, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 20: Corn Silage, 28: Wheat, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU mgtli mgt2i mgt3i mgtdi mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

[=}
T

1 1 0 8
3 30 0 6 2 0
4 25 0 1 20 0 1800 0 0 0 0 0
4 25 0 3 70 0
6 7 0 3 1 80 0
9 20 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 50 0
5 7 0 3 1 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.16.: Potato, wheat, peas, wheat, rye.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 30: Rye, 62: Peas, 70: Potato, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
3 30 0 1 70 0 1800 0 0 0 0 0
3 30 0 3 1 70 0
4 25 0 3 1 60 0
8 10 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 1 60 0
5 20 0 3 1 60 0
7 31 0 5 0
8 10 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 5 0 1 30 0 1800 0 0 0 0 0
0
3 15 0 3 50 0
4 15 0 3 1 50 0
5 15 0 3 30 0
7 25 0 5 0
8 5 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.17.: Potato, wheat, peas, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 62: Peas, 70: Potato, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
3 30 0 1 70 0 1800 0 0 0 0 0
3 30 0 3 1 70 0
4 25 0 3 1 60 0
8 10 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 1 60 0
5 20 0 3 1 60 0
7 31 0 5 0
8 10 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 50 0
4 7 0 3 1 50 0
5 7 0 3 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.18.: Potato, wheat, oats, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 32: Oats, 70: Potato, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i mgt8i  mgtoi

1 1 0 8
3 30 0 1 70 0 1800 0 0 0 0 0
3 30 0 3 1 70 0
4 25 0 3 1 60 0
8 10 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
8 12 0 6 1 0
8 30 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 7 0 6 2 0
3 21 0 1 32 0 1800 0 0 0 0 0
3 21 0 3 1 40 0
4 21 0 3 1 40 0
8 4 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 50 0
5 7 0 3 1 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.19.: Potato, wheat, rye.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 30: Rye, 70: Potato, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
3 30 0 1 70 0 1800 0 0 0 0 0
3 30 0 3 1 70 0
4 25 0 3 1 60 0
8 10 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 5 0 1 30 0 1800 0 0 0 0 0
0
3 15 0 3 50 0
4 15 0 3 1 50 0
5 15 0 3 30 0
7 25 0 5 0
8 5 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.20.: Potato, wheat, rye, corn.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 19: Corn, 28: Wheat, 30: Rye, 70: Potato, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgtdi mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8

3 30 0 1 70 0 1800 0 0 0 0 0

3 30 0 3 1 70 0

4 25 0 3 60 0

8 10 0 5 0

10 14 0 6 1 0

10 26 0 1 28 0 1800 0 0 0 0 0
0

3 20 0 3 1 60 0

4 20 0 3 1 60 0

5 20 0 3 1 60 0

7 31 0 5 0

9 15 0 6 1 0

10 5 0 1 30 0 1800 0 0 0 0 0
0

3 15 0 3 1 50 0

4 15 0 3 1 50 0

5 15 0 3 1 30 0

7 25 0 5 0

8 5 0 6 1 0

8 20 0 1 75 0 1800 0 0 0 0 0
0

1 1 0 8

3 30 0 6 2 0

4 25 0 1 19 0 1800 0 0 0 0 0

4 25 0 3 1 70 0

6 7 0 3 80 0

10 26 0 5 0

11 1 0 6 1 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.21.: Potato, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 70: Potato, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
3 30 0 1 70 0 1800 0 0 0 0 0
3 30 0 3 1 70 0
4 25 0 3 1 60 0
8 10 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 50 0
4 7 0 3 1 50 0
5 7 0 3 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.22.: Potato, wheat, barley, corn.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 19: Corn, 28: Wheat, 70: Potato, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgtdi mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8

3 30 0 1 70 0 1800 0 0 0 0 0

3 30 0 3 1 70 0

4 25 0 3 60 0

8 10 0 5 0

10 14 0 6 1 0

10 26 0 1 28 0 1800 0 0 0 0 0
0

3 20 0 3 1 60 0

4 20 0 3 1 60 0

5 20 0 3 1 60 0

7 31 0 5 0

9 15 0 6 1 0

10 3 0 1 99 0 1800 0 0 0 0 0
0

3 7 0 3 1 50 0

4 7 0 3 1 50 0

5 7 0 3 1 40 0

7 14 0 5 0

7 31 0 6 1 0

8 15 0 1 75 0 1800 0 0 0 0 0
0

1 1 0 8

3 30 0 6 2 0

4 25 0 1 19 0 1800 0 0 0 0 0

4 25 0 3 1 70 0

6 7 0 3 80 0

10 26 0 5 0

11 1 0 6 1 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.23.: Potato, wheat, wheat, rye.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 30: Rye, 70: Potato, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
3 30 0 1 70 0 1800 0 0 0 0 0
3 30 0 3 1 70 0
4 25 0 3 1 60 0
8 10 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 5 0 1 30 0 1800 0 0 0 0 0
0
3 15 0 3 50 0
4 15 0 3 1 50 0
5 15 0 3 30 0
7 25 0 5 0
8 5 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.24.: Potato, wheat, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 70: Potato, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
3 30 0 1 70 0 1800 0 0 0 0 0
3 30 0 3 1 70 0
4 25 0 3 1 60 0
8 10 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 50 0
4 7 0 3 1 50 0
5 7 0 3 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.25.: Sugar beet, wheat, peas, wheat, rye.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 30: Rye, 62: Peas 69: Sugar Beet, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 1 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 1 60 0
5 20 0 3 1 60 0
7 31 0 5 0
8 10 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 5 0 1 30 0 1800 0 0 0 0 0
0
3 15 0 3 50 0
4 15 0 3 1 50 0
5 15 0 3 30 0
7 25 0 5 0
8 5 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.26.: Sugar beet, wheat, peas, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 62: Peas 69: Sugar Beet, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 1 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 1 60 0
5 20 0 3 1 60 0
7 31 0 5 0
8 10 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 50 0
4 7 0 3 1 50 0
5 7 0 3 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.27.: Sugar beet, wheat, oats, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 32: Oats 69: Sugar Beet, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i mgt8i  mgtoi

1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 1 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
8 12 0 6 1 0
8 30 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 7 0 6 2 0
3 21 0 1 32 0 1800 0 0 0 0 0
3 21 0 3 1 40 0
4 21 0 3 1 40 0
8 4 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 50 0
5 7 0 3 1 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.28.: Sugar beet, wheat, rye.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 30: Rye, 69: Sugar Beet, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 1 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 5 0 1 30 0 1800 0 0 0 0 0
0
3 15 0 3 50 0
4 15 0 3 1 50 0
5 15 0 3 30 0
7 25 0 5 0
8 5 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.29.: Sugar beet, wheat, rye, corn, peas.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 19: Corn, 28: Wheat, 30: Rye, 62: Peas, 69: Sugar Beet, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i mgt8i  mgtoi

1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 5 0 1 30 0 1800 0 0 0 0 0
0
3 15 0 3 1 50 0
4 15 0 3 50 0
5 15 0 3 1 30 0
7 25 0 5 0
8 5 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 30 0 6 2 0
4 25 0 1 19 0 1800 0 0 0 0 0
4 25 0 3 70 0
6 7 0 3 1 80 0
10 26 0 5 0
0
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
8 21 0 6 1 0
9 1 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.30.: Sugar beet, wheat, sugar beet, wheat, rye.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 30: Rye, 69: Sugar Beet, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgtdi mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 1 60 0
4 30 0 3 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
8 15 0 6 1 0
8 29 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 5 0 1 30 0 1800 0 0 0 0 0
0
3 15 0 3 1 50 0
4 15 0 3 1 50 0
5 15 0 3 1 30 0
7 25 0 5 0
8 5 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.31.: Sugar beet, wheat, sugar beet, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 69: Sugar Beet, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgtdi mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 1 60 0
4 30 0 3 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
8 15 0 6 1 0
8 29 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 1 50 0
5 7 0 3 1 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.32.: Sugar beet, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 69: Sugar Beet, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 1 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 50 0
4 7 0 3 1 50 0
5 7 0 3 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.33.: Sugar beet, wheat, barley, corn, peas.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 19: Corn, 28: Wheat, 62: Peas, 69: Sugar Beet, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i mgt8i  mgtoi

1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 1 60 0
4 20 0 3 60 0
5 20 0 3 1 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 1 50 0
4 7 0 3 50 0
5 7 0 3 1 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
1 1 0 8
3 30 0 6 2 0
4 25 0 1 19 0 1800 0 0 0 0 0
4 25 0 3 70 0
6 7 0 3 1 80 0
10 26 0 5 0
0
3 21 0 6 2 0
4 1 0 1 62 0 1800 0 0 0 0 0
8 12 0 5 0
8 21 0 6 1 0
9 1 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.34.: Sugar beet, wheat, wheat, rye.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 30: Rye, 69: Sugar Beet, 75: Polish Canola.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 1 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 5 0 1 30 0 1800 0 0 0 0 0
0
3 15 0 3 50 0
4 15 0 3 1 50 0
5 15 0 3 30 0
7 25 0 5 0
8 5 0 6 1 0
8 20 0 1 75 0 1800 0 0 0 0 0
0
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C. Management Schedules and Crop Rotation Cycles

Table C.35.: Sugar beet, wheat, wheat, barley.

Operations: 1: Plant, 3: Fertilize, 5: Harvest, 6: Plow, 8: Kill, 0: End of year flag.

Field Crops: 28: Wheat, 69: Sugar Beet, 75: Polish Canola, 99: Barley.

Each table row represents a management operation (column “op”) carried out on the specified day
and month. Quantities of N fertilizer in kg NO3;™-N per ha are given in column “mgt4i” for fertilizing
operations. Please refer to Arnold et al. (2013, pp. 257-296) for further information.

mon day HU op mgtli mgt2i mgt3i mgt4i mgt5i  mgtéi  mgt7i  mgt8i  mgtoi

1 1 0 8
4 8 0 1 69 0 1800 0 0 0 0 0
4 8 0 3 1 60 0
4 30 0 3 1 50 0
10 7 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
10 14 0 6 1 0
10 26 0 1 28 0 1800 0 0 0 0 0
0
3 20 0 3 60 0
4 20 0 3 1 60 0
5 20 0 3 60 0
7 31 0 5 0
9 15 0 6 1 0
10 3 0 1 99 0 1800 0 0 0 0 0
0
3 7 0 3 50 0
4 7 0 3 1 50 0
5 7 0 3 40 0
7 14 0 5 0
7 31 0 6 1 0
8 15 0 1 75 0 1800 0 0 0 0 0
0
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