
Rheinische Friedrich-Wilhelms-Universität Bonn

Institut für Geodäsie und Geoinformation

Analyzing Crowd-Sourced Trajectories to

Infer Routing Preferences of Cyclists

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Agrar-, Ernährungs- und Ingenieurwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Axel Forsch

aus

Köln

Bonn 2025



Referent: Prof. Dr. Jan-Henrik Haunert

Korreferentin: Prof. Dr. Sabine Storandt

Tag der mündlichen Prüfung: 15. November 2024

Angefertigt mit Genehmigung der Agrar-, Ernährungs- und Ingenieurwissenschaftlichen

Fakultät der Universität Bonn.



Kurzfassung

Im letzten Jahrzent haben die Aktivitäten vieler Freiwilliger zu fast vollständigen Darstellun-

gen von Straßennetzen und großen Mengen von Trajektorien geführt. Letztere wurden vor

allem von Freizeitsportlern gesammelt, die zum Beispiel Fahrradtouren oder Wanderungen

aufgezeichnet haben. Diese neue Quelle von Geodaten, die im Bereich der freiwilligen geo-

grafischen Informationen (Volunteered Geographic Information, VGI) gesammelt werden, hat

zum Aufkommen von Methoden zur Auswertung von Bewegungsdaten beigetragen.

Auf der einen Seite bietet die Nutzung von nutzergenerierten Daten aufgrund ihrer großen

Menge und Verfügbarkeit sowie der intrinsischen Nutzersicht zahlreiche Vorteile. Auf der an-

deren Seite stellt die große Daten-Heterogenität eine Herausforderung dar. Diese Heterogenität

tritt in verschiedenen Aspekten der Daten auf, was zu vier Herausforderung führt: (1) unbe-

kannte räumliche Genauigkeit, (2) fehlende Metadaten, (3) ungleichmäßige Beteiligung und (4)

ethische Aspekte der Datennutzung.

Diese Arbeit stellt eine methodische Pipeline vor, mit der sich die Routingpräferenzen der

Nutzer aus ihren Bewegungsdaten ableiten lassen. Die Pipeline gliedert sich in Vorverarbei-

tung, Analyse und Visualisierung. Jeder Teil ist darauf ausgerichtet, die oben genannten Her-

ausforderungen zu bewältigen. Die zugrundeliegenden Probleme sind als Optimierungsproble-

me modelliert, und es werden effiziente Algorithmen zu ihrer Lösung entwickelt.

Im Vorverarbeitungsteil wird ein Algorithmus zum Kartenabgleich vorgestellt, der mögli-

che Bewegungen abseits des Straßennetzes explizit modelliert. Außerdem werden Techniken

zum Schutz der Privatsphäre der Nutzer diskutiert.

Im Analyseteil wird ein Algorithmus vorgestellt, mit dem aus Bewegungsdaten Routing-

präferenzen abgeleitet werden können. Der Algorithmus funktioniert auch mit wenigen Ein-

gabedaten und kann selbst Bewegungungen, die nicht durch ein einziges (kombiniertes) Opti-

mierungskriterium erklärt werden können, wie z.B. Rundfahrten, auswerten. Damit wird auf

unterschiedliche Bewegungsintentionen und Ungleichheit der Beteiligung eingegangen.

Der Visualisierungsteil führt eine Methode zur Berechnung von kartographischen Sym-

bolen ein, die die Fortsetzung der Bewegungsdaten außerhalb des Bildschirms visualisieren

und so die Erkundung großer Bewegungsdatensätze erleichtern. Weiterhin werden Ansätze

zur Visualisierung von Reisezeiten durch Isolinien vorgestellt. Diese Visualisierungen nutzen

schematische Darstellungen, um einfache, schnell zu begreifende Abbildungen zu erzeugen.

Insgesamt trägt diese Arbeit zu effizienten Algorithmen bei, die Einblicke in das Routing-

Verhalten von Radfahrern auf der Grundlage von Nutzerdaten bieten. Die Ergebnisse können

zur Unterstützung der Stadt- und Verkehrsplanung eingesetzt werden.

iii





Abstract

In the last decade, the activities of many volunteers have resulted in almost complete repre-

sentations of street networks and large sets of trajectories. The latter have primarily been

collected by recreational sportspeople who, for example, have recorded bicycle tours or hikes

with Global Navigation Satellite System (GNSS) receivers. This new source of geospatial data

collected within the realm of Volunteered Geographic Information (VGI) contributed to the rise

of trajectory data mining methods that analyze movement based on historical movement data.

Using crowd-sourced data has multiple benefits due to its availability and volume, partic-

ularly in domains where administrative data is scarce. Moreover, VGI data is mainly collected

by local users. This local perspective is advantageous when using the data to gain insights

into user behavior, as the data can be assumed to reflect the users’ views. However, working

with VGI data presents challenges due to its high heterogeneity. This heterogeneity occurs in

different aspects of the data, resulting in four main challenges: (1) unknown spatial accuracy,

(2) lack of metadata, (3) participation bias, and (4) ethics in data usage.

This thesis contributes to the analysis of crowd-sourced trajectory data by presenting a

methodic pipeline for inferring the users’ routing preferences from their past movements. The

pipeline is structured into preprocessing, analysis, and visualization. Each part is specifically

designed to address the aforementioned challenges. The underlying problems are modeled as

optimization problems, and efficient algorithms to solve them are developed.

The preprocessing part includes a map-matching algorithm that adapts to varying spatial

data quality and explicitly models potential off-road movement. Additionally, a discussion on

ethical considerations and privacy preservation techniques is performed.

The subsequent analysis part presents an algorithm to infer routing preferences from tra-

jectory recordings. The algorithm accommodates diverse user intents and addresses partici-

pation inequality by working even with sparse input data and trajectories that cannot be ex-

plained by a single (combined) optimization criterion, such as round trips.

The visualization part introduces a method for computing glyphs to visualize the off-screen

parts of trajectories to facilitate the exploration of large trajectory datasets. Additionally, novel

approaches to communicate travel times and distances through schematic isolines are pre-

sented. These visualizations utilize schematic representations to convey potential inaccuracies,

enhancing understanding while acknowledging data limitations.

Overall, this thesis contributes efficient algorithms that offer insights into the routing be-

havior of cyclists based on crowd-sourced data. The results can be applied to support decision-

making in urban planning and transportation.

v



Contents

Kurzfassung iii

Abstract v

1 Introduction 1
1.1 Crowd-sourced trajectory data . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objective and contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Methodological Background 9
2.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Optimal paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I Trajectory Preprocessing 25

3 Trajectory Preprocessing: Motivation & Research Context 27
3.1 Trajectory smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Stay-point detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Privacy preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Map Matching for Semi-Restricted Trajectories 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



CONTENTS

II Inferring Routing Preferences from Trajectories 51

5 Inferring Routing Preferences: Motivation & Research Context 53
5.1 Bikeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Individual routing preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 An Algorithm Using a Compression Criterion 57
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

III Geovisualization 79

7 Geovisualization: Motivation & Research Context 81
7.1 Visual exploration of movement data . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 Visualizing route choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 Visualizing the Off-Screen Evolution of Trajectories 87
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 Multimodal Travel-Time Maps with Schematic Isochrones 103
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.5 Isochrones and routing profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10 Metrochrones: Schematic Isochrones for Schematic Metro Maps 133
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Conclusion & Future Work 155

Bibliography 159

vii





Chapter 1

Introduction

In the last decade, volunteers have impressively contributed to acquiring spatial data. Some

geographic information scientists – among them Goodchild (2007) – have early understood

that volunteered geographic information (VGI) will have a tremendous impact on their disci-

pline since it is driven by citizens who act as a vast network of sensors. A standout example

of VGI’s impact is the OpenStreetMap
1
project, where volunteers contribute to a free map of

the world. This map surpasses many regions’ traditional sources in detail, completeness, and

currency. Beyond OpenStreetMap, VGI refers to other georeferenced data volunteers share,

including geo-tagged social media posts and images. Furthermore, technological advancement

and the resulting increase in consumer-grade, location-enabled devices, such as smartphones

and smartwatches, have empowered individuals to record and share their activities online ef-

fortlessly. This includes activities such as cycling and walking, generating large repositories of

crowd-sourced trajectories.

These datasets contributed to the rise of trajectory dataminingmethods that analyzemove-

ment based on historical movement data (Andrienko and Andrienko, 2013; Laube, 2014; Maz-

impaka and Timpf, 2016). Problems of interest include travel mode detection (Bohte and Maat,

2009; Gong et al., 2012; Zhang et al., 2013), trajectory clustering (Morris and Trivedi, 2009;

Yuan et al., 2016), trajectory segementation (Aronov et al., 2016; Alewijnse et al., 2018), the

identification of places of interest based on trajectories (Feuerhake et al., 2011), the detection

of anomalous traffic patterns (Barragana et al., 2017; Huang, 2015), the manipulation of trajec-

tories to preserve privacy (Brauer et al., 2022; Seidl et al., 2016), and predicting traffic flow from

trajectories (Li et al., 2020; Brauer et al., 2021).

Using crowd-sourced data has been shown to provide benefits but also challenges. Most

importantly, the availability and volume of the data have immense benefits, particularly in do-

mains like movement data, where traditional administrative data is scarce. Figure 1.1 shows

an example for this in form of the GeoPrivacy dataset (National Land Survey of Finland, 2023),

featuring a dense coverage of the target region. Additionally, VGI data is predominantly col-

lected by local users, thereby representing local knowledge, often characterized by a high

(semantic) precision (Antoniou et al., 2017). This inherent local perspective is advantageous

when using the data to gain insights into user behavior, as the data can be assumed to reflect

1
https://www.openstreetmap.org/

1



1. Introduction

Figure 1.1: Excerpt of the GeoPrivacy dataset for the region of Espoo, Finland (National Land

Survey of Finland, 2023). The dataset contains crowd-sourced trajectories of cycling (orange),

running (red), and walking (blue). Visible are the benefits of VGI data, such as good coverage

and a large amount of data, but also challenges, such as the data accuracy (see outliners in

focus region). Background map: ©OpenStreetMap contributors ©CARTO

the users’ views. However, VGI data presents challenges because of its high heterogeneity.

This heterogeneity occurs in different aspects of the data, including the underlying user intent

during contribution, spatial data quality, and the demographic characteristics of contributing

users (Anahid Basiri and Mooney, 2019). An example of the varying spatial data quality can

be seen in the focus region of Figure 1.1. Addressing these challenges requires robust data

processing techniques capable of dealing with the varied nature of VGI data.

This thesis contributes to the analysis of crowd-sourced trajectory data by presenting an al-

gorithmic pipeline for inferring the users’ routing preferences from their past movements. The

pipeline is structured into three parts: preprocessing, analysis, and visualization. Each part is

specifically designed to address the high data heterogeneity of VGI data. We envision two ways

the results of the analysis can improve the cycling experience. Firstly, they offer the potential

to improve route recommendations for individual users, thereby enhancing their navigation

experience. Secondly, these insights can provide valuable support to decision-makers in urban

planning, facilitating informed decisions regarding the development of new infrastructure.

1.1 Crowd-sourced trajectory data

This chapter serves as an introduction to crowd-sourced trajectory data, as the characteris-

tics of these data sets form a crucial motivation for developing the algorithms presented in

this thesis. Volunteered geographic information (VGI) can be classified into actively generated

data, i.e., through a user study, or passively collected data through location-enabled mobile de-

2

"http://www.openstreetmap.org/copyright
https://carto.com/about-carto/


1.1. Crowd-sourced trajectory data

vices (Burghardt et al., 2024). Actively generated VGI offers a controlled environment for data

collection, potentially leading to higher data accuracy. However, significant effort is required

to set up and execute such studies. In contrast, passively generated VGI is generated at a much

larger scale and at lower cost but is more susceptible to inaccuracies and errors. To harness the

potential of the large datasets generated passively, this thesis focuses on this category of VGI.

Challenges. One of the fundamental challenges when working with VGI trajectory data

is its heterogeneous nature (Forsch et al., 2024). According to Senaratne et al. (2017), “data is

produced by heterogeneous contributors, using various technologies and tools, having different

levels of details and precision, serving heterogeneous purposes, and a lack of gatekeepers.”

The first challenge concerns the unknown spatial quality of the data. A central quality

measure for spatial data is the positional accuracy (Senaratne et al., 2017). While nowadays

most VGI trajectory data is recorded by modern Global Navigation Satelite System (GNSS) re-

ceivers, which may offer accuracies of up to 5 to 10 meters (Kealy and Moore, 2017), outliers

may still arise due to external factors such as topography or canopy cover, requiring appro-

priate handling (Ivanovic et al., 2016). A factor of spatial quality that is more challenging than

positional accuracy is the completeness of the data. For instance, the absence of existing roads

in the street network representation can lead to erroneous assumptions regarding users’ routes.

One significant challenge stems from the lack of metadata, which is either available to

a very limited extent or not at all. This particularly holds for the users’ intent to record and

share data, or their transportationmode. This lack of context can result in datasets containing a

mixture of commuting and recreational trips or a mixture of different modes of transportation,

each with distinct characteristics impacting subsequent analysis. An example of the diverse be-

havior of VGI contributors has recently been provided by Korpilo et al. (2017), who discovered

that mountain bikers are more likely to move off-road than pedestrians.

While theoretically open to all, VGI contributions are often skewed toward certain demo-

graphic groups, introducing a social bias (Zhang and Zhu, 2018). Consequently, the data may

not be representative of the broader population. Additionally, VGI contributions are higher

in areas with high population density than in sparsely populated areas, resulting in a spatial

bias (Haklay, 2010). These biases, also referred to as participation inequality, need to be

accounted for when working with VGI (Nielsen, 2006; Haklay, 2016). For instance, a road that

no trajectory has traversed may not necessarily be unfavorable to use, but maybe VGI partici-

pation was too low in the corresponding area.

Another critical challenge in VGI is the ethics in handling the data. Contributors often

share their data for purposes unrelated to academic research, raising concerns about consent

and privacy (Ghermandi and Sinclair, 2019). For example, a cyclist might share their trajectory

for social reasons rather than to be analyzed towards their routing preferences. Moreover,

trajectories are personal data that can give significant insight into a user’s life (Primault et al.,

2019). Dunkel et al. (2020) observe that the users’ privacy can be compromised whether the

data is contributed with explicit knowledge of how the data is used or not. Therefore, privacy-

preserving mechanisms are essential when working with VGI trajectories.

In this thesis, we present algorithms for analyzing trajectories specifically designed with

these challenges in mind.

3



1. Introduction

Data sources. There are many different sources for crowd-sourced trajectory data. One of

the largest repositories is the OpenStreetMap (OSM) traces
2
, containing over 11 million trajec-

tories totaling more than 28 billion location measurements worldwide (OpenStreetMap, 2024).

These trajectories primarily support mapping efforts within OSM and typically lack additional

information, such as transportation mode or temporal details, depending on the user’s chosen

visibility settings.

In the context of urban mobility, two prominent datasets are the Geolife (Zheng et al., 2011)
and the T-Drive (Zheng, 2011) datasets. The Geolife dataset contains 17,621 trajectories of

182 users recorded between 2007 and 2012, featuring different transportation modes such as

walking, cycling, driving, and public transportation. In contrast, the T-Drive dataset contains

10,357 trajectories exclusively recorded by taxis in Beijing, China, over three months in 2012.

In the domain of sports activities, community-driven social networks collect large trajec-

tory datasets. For instance, on the Strava
3
platform alone, more than 120 million athletes

recorded over 10 billion sports activities in 2023 (Strava Inc., 2024). These platforms allow

querying the database for all trajectories inside a target area marked as public by the corre-

sponding user. In the past, datasets generated by bulk downloading the query results have

been used in several publications, e.g., Sports Tracker data
4
(Ferrari and Mamei, 2013; Oksanen

et al., 2015; Brauer et al., 2021) and GPSies data
5
(Oehrlein et al., 2017; Filomena and Verstegen,

2021). However, recent legal frameworks like the General Data Protection Regulation (GDPR)

and stricter terms for using these platforms have limited the creation of new datasets from

these sources. While platforms such as Strava Metro (Strava Inc., 2023) provide access to their

datasets, the access is limited to actors involved in transportation planning, and these datasets

only contain aggregated data (Jokinen et al., 2021). The GeoPrivacy platform (Mäkinen et al.,

2023) bridges the gap between volunteers and scientists by providing a GDPR-compliant tra-

jectory dataset (National Land Survey of Finland, 2023) explicitly targeted for academic use,

see Figure 1.1.

2
www.openstreetmap.org/traces

3
www.strava.com

4
www.sports-tracker.com

5
www.gpsies.com

4



1.2. Objective and contribution

1.2 Objective and contribution

This thesis aims to utilize the large amount of trajectory data available in the context of VGI to

infer the routing behavior of users, with a particular focus on cyclists and pedestrians. Develop-

ingmethods that can deal with the high heterogeneity of the input data is a central requirement

to achieve this objective.

Scientific contribution. The primary contribution of this thesis is amethodological pipeline

for analyzing the routing behavior of individuals based on crowd-sourced trajectory data. The

pipeline integrates methods for preprocessing, analyzing, and visualizing the data to address

the considerable heterogeneity of crowd-sourced data. The methods are formulated as opti-

mization problems for which exact algorithms are presented. Specifically, the methods are de-

signed to address the challenges identified when working with crowd-sourced data: unknown

spatial quality, lack of metadata, participation inequality, and ethics.

In addition to the algorithms targeted at the analysis of trajectories, this thesis also con-

tributes an approach to create schematic isochrones, which are lines that connect points of

equal travel time. The versatility of the approach is highlighted by demonstrating its applica-

bility in visualizing (a) routing preferences, (b) travel times within public transportation net-

works, and (c) fare zones in schematic metro maps.

Technical contribution. Next to the theoretical contributions of this thesis, prototypical

implementations for all presented algorithms are provided as open-source code. The imple-

mentations are written in the Java
6
programming language and can be accessed at:

• Map Matching https://gitlab.igg.uni-bonn.de/graphlibrary

• Inferring Routing Preferences https://gitlab.vgiscience.de/forsch/routing-preferences

• Off-Screen Evolution https://github.com/GeoinfoBonn/offscreen-evolution

• Schematic Isochrones https://github.com/GeoinfoBonn/travel-time-maps

• Metrochrones https://gitlab.igg.uni-bonn.de/forsch/metrochrones

6
www.java.com/

5

https://gitlab.igg.uni-bonn.de/graphlibrary
https://gitlab.vgiscience.de/forsch/routing- preferences
https://github.com/GeoinfoBonn/offscreen-evolution
https://github.com/GeoinfoBonn/travel-time-maps
https://gitlab.igg.uni-bonn.de/forsch/metrochrones


1. Introduction

1.3 Outline

In the following thesis, algorithms for processing crowd-sourced trajectory data are presented.

The algorithms can be divided into three main processing steps, each represented in one part

of this thesis. Figure 1.2 provides a visual overview of the three-part structure of this thesis,

highlighting the content of the individual chapters. Part I focuses on algorithms for trajectory

preprocessing that prepare the raw input data for subsequent analysis. The outcome of this part

is the representation of trajectories as paths within the underlying road network. In Part II, the

analysis of these paths regarding the routing preferences of the recording user is investigated.

For this, a compression-based algorithm is introduced to correlate information about the road

network with the path. Finally, in Part III, the geographic visualization of trajectory datasets

is discussed. Moreover, visualizations aimed at communicating the results of the routing pref-

erence inference are explored. Specifically, isochrone visualizations for public transportation

networks are developed, and their applicability to visualizing routing preferences is shown.

The algorithms have been published in journals or were presented at conferences and pub-

lished in the conferences’ proceedings. In specific, the publications highlighted in this disser-

tation are the following:

Part I Timon Behr, Thomas C. van Dijk, Axel Forsch, Jan-Henrik Haunert, and

Sabine Storandt. Map matching for semi-restricted trajectories. In

Krzysztof Janowicz and Judith A. Verstegen, editors, 11th International Con-
ference on Geographic Information Science (GI-Science 2021) - Part II, volume
208 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:16,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

10.4230/LIPIcs.GIScience.2021.II.12

Part II Axel Forsch, Johannes Oehrlein, Benjamin Niedermann, and Jan-Henrik Haunert.

Inferring routing preferences from user-generated trajectories using a
compression criterion. Journal of Spatial Information Science, 26(5):99–124,
2023. 10.5311/JOSIS.2023.26.256

Part III Axel Forsch, Friederike Amann, and Jan-Henrik Haunert. Visualizing the off-
screen evolution of trajectories. KN - Journal of Cartography and Geographic
Information, 72(3): 201–212, 2022. 10.1007/s42489-022-00106-6

Axel Forsch, Youness Dehbi, Benjamin Niedermann, Johannes Oehrlein, Peter

Rottmann, and Jan-Henrik Haunert. Multimodal travel-time maps with for-
mally correct and schematic isochrones. Transactions in GIS, 25(6):3233–3256,
2021. 10.1111/tgis.12821

Axel Forsch and Jan-Henrik Haunert. Metrochrones: Schematic
isochrones for schematic metro maps. The Cartographic Journal, 2023.

10.1080/00087041.2023.2284436

6

https://www.doi.org/10.4230/LIPIcs.GIScience.2021.II.12
https://www.doi.org/10.5311/JOSIS.2023.26.256
https://www.doi.org/10.1007/s42489-022-00106-6
https://www.doi.org/10.1111/tgis.12821
https://www.doi.org/10.1080/00087041.2023.2284436


1.3. Outline

Map Matching for Semi-Restricted Trajectories

Part I: Trajectory Preprocessing

Inferring Routing Preferences from
User-Generated Trajectories Using a

Compression Criterion

Part II: Inferring Routing Preferences

𝑠

𝑡

Part III: Geovisualization

Visualizing the Off-Screen
Evolution of Trajectories

Multimodal Travel-Time Maps
with Schematic Isochrones

Metrochrones:
Schematic Isochrones for
Schematic Metro Maps

Figure 1.2: The three-part structure of this thesis. Part I deals with preprocessing methods

addressing the data heterogeneity of the input. In Part II, inferring routing preferences from

trajectories is discussed. Part III presents methods to visualize trajectories and analysis results.

7





Chapter 2

Methodological Background

In this chapter, the fundamental methods used throughout this thesis are introduced. In Sec-

tion 2.1, computational complexity is introduced as a measure of an algorithm’s efficiency. In

Section 2.2, graphs as a data structure to store and analyze networks are discussed.

2.1 Computational complexity

Throughout this thesis, algorithms for analyzing geographical data are presented. The process-

ing demands of these algorithms are contingent on the geographic extent of the input data, and

as the scale of data increases, so does the computational workload. Consequently, to assess the

efficiency of an algorithm, it becomes crucial to understand the computing resources it requires.

The computatinal complexity of an algorithm is a means for detailing its time and space re-

quirements in relation to the input size. In this section, we introduce the notation for computa-

tional complexity used within the context of this thesis. For simplicity, we focus the description

on the analysis of time complexity, with the understanding that the introduced notation can

also be extended to address space requirements. Additional details can be found in standard

algorithms textbooks, such as Cormen et al. (2009).

Asymptotic efficiency of algorithms. The time complexity of an algorithm gives informa-

tion on the algorithm’s running time in relation to the input size. The running time is estimated

by counting the number of primitive operations being performed, assuming that each primitive

operation takes a fixed amount of time. The measure for the input size varies depending on

the specific problem; most commonly, the number of items in the input is used.

In many algorithms, even when the input size remains constant, some inputs may be pro-

cessed faster than others. A classic example is that of sorting algorithms, where already sorted

inputs lead to fast termination, while unsorted inputs demand more time. Consequently, it

is valuable to distinguish between best-case and worst-case running time. In particular, the

worst-case running time holds significance as it provides an upper bound on the algorithm’s

complexity, even for complex input.

While it is feasible to compute the exact running time for simple algorithms, in general,

this task is often challenging. Therefore, we only consider the asymptotic efficiency of the

9



2. Methodological Background

algorithm. The asymptotic efficiency expresses how the running time scales with the input

size as it approaches infinity. For sufficiently large input sizes, the impact of multiplicative

constants and lower-order terms becomes negligible compared to the effects of the input itself.

In this context, what matters most is the rate of growth, i.e., the highest-order term, which

provides insights into the algorithm’s scalability for increasingly large inputs. Therefore, it is

common to express the running time with bounds instead of exact values.

Upper bound. The upper bound on the asymptotic behavior of a function expresses that the

function grows no faster than a given rate. We express the upper bound using the O-notation,
which is illustrated in Figure 2.1.

Definition 1 (O-notation). Given two functions 𝑓 (𝑛) and𝑔(𝑛) defined on the real numbers, we

say that 𝑓 is big-oh of 𝑔 as 𝑛 approaches infinity (written as 𝑓 = O(𝑔)) if there exist constants
𝑐 and 𝑛0 such that 0 ≤ 𝑓 (𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛0.

𝑓 (𝑛)

𝑔(𝑛)

𝑐 · 𝑔(𝑛)

𝑛𝑛0

Figure 2.1: Illustration of the upper bound relationship denoted by the O-notation. The func-
tion 𝑓 is O(𝑔) (here: 𝑔 = 𝑛2

) as a constant multiple of 𝑔 bounds its growth rate for 𝑛 > 𝑛0. The

function 𝑓 may represent the exact running time of an algorithm, which, in general, is not fea-

sible to compute. The O-notation provides a tool for assessing and quantifying the algorithm’s

efficiency by characterizing its upper-bound behavior instead.

In the context of this thesis, we call an algorithm efficient if it qualifies as a polynomial-
time algorithm, meaning its running time is bounded by O(𝑛𝑘 ) for some constant 𝑘 . Notewor-

thy categories of polynomial-time algorithms include constant time (O(1)), logarithmic time

(O(log𝑛)), and linear time (O(𝑛)) algorithms. Note that the O-notation is versatile and appli-

cable not only to running times but all mathematical functions. As such, the O-notation can

also be used to express the space requirements of algorithms.

In the context of this thesis, most algorithms require a graph data structure as input, which

consists of vertices and edges. Thus, to analyze the efficiency of these algorithms, it is suitable

to express running times as functions of two input sizes: the number of vertices 𝑛 and the

number of edges𝑚 in the graph. An introduction to graphs follows in Section 2.2.

10



2.2. Graph theory

2.2 Graph theory

In this thesis, the analysis of networks plays an important role, with the most prominent ex-

ample of networks encountered in this thesis being road networks. Typical analysis tasks in

such networks include the computation of paths that are optimal with respect to a specific met-

ric or connectivity analyses. Graphs are employed as a data structure to represent networks

abstractly.

This section introduces the fundamental concepts of graph theory, providing a foundation

for understanding both basic principles and advanced methods applied in the thesis. Compre-

hensive references can be found in textbooks, such as Cormen et al. (2009), for a more in-depth

exploration of graph theory.

Basic terminology. A graph 𝐺 is an ordered pair (𝑉 , 𝐸) where 𝑉 represents the vertex set

and 𝐸 represents the edge set. The members of 𝑉 are denoted as vertices, each representing a

distinct element in the graph. At the same time, themembers of 𝐸 are termed edges, symbolizing

the connections or relationships between the elements in the graph. Hence, each edge in 𝐸

consists of two vertices in 𝑉 . In the context of an undirected graph, an edge 𝑒 between the

vertices 𝑢 and 𝑣 is an unordered pair {𝑢, 𝑣}, meaning that {𝑢, 𝑣} = {𝑣,𝑢}. In a directed graph, an
edge 𝑒′ originating from 𝑢′ and terminating in 𝑣 ′ is represented as an ordered pair (𝑢′, 𝑣 ′). We

call 𝑢′ the source of 𝑒′ and 𝑣 ′ the target of 𝑒′. Figure 2.2 shows an example for a directed graph.

In the context of this thesis, directed graphs are more relevant than undirected ones. For

ease of notation, we focus on concepts for directed graphs in the remainder of this section.

Most of these concepts can be transferred to undirected graphs. We refer to the literature for

a detailed description of undirected graphs.

Given an edge (𝑢, 𝑣), we call the edge incident to vertex 𝑢 and vertex 𝑣 . Furthermore,

vertex 𝑢 is said to be adjacent to vertex 𝑣 . Note that the adjacency relation is, in general, not

symmetric. The in-degree of a vertex 𝑣 is the number of incoming edges to 𝑣 while the out-
degree is the number of outgoing edges from 𝑣 . The degree is the total number of incident

edges to 𝑣 , i.e., the sum of in-degree and out-degree. The maximum degree of a graph is the

highest degree among all of its vertices. We speak of a graph𝐺 as a bounded maximum degree
graph if its maximum degree is a constant 𝑐 ≪ |𝑉 |, meaning 𝑐 is independent of the number of

vertices in 𝐺 .

Graphs can be categorized into dense and sparse graphs. In a dense graph, the number of

edges is close to the maximum possible number of edges (|𝐸 | = 𝑛· (𝑛−1)
2

, with 𝑛 = |𝑉 |), while
sparse graphs have relatively few edges compared to this maximum.

Paths. A path 𝑃 = ⟨𝑣0, 𝑣1, . . . , 𝑣𝑘⟩ is a sequence of vertices such that (𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸 for

𝑖 = 1, 2, . . . , 𝑘 , indicating pairwise connections between consecutive vertices through edges.

Alongside the vertices, the path inherently contains the edges 𝑒1 = (𝑣0, 𝑣1), 𝑒2 = (𝑣1, 𝑣2), . . . , 𝑒𝑘 =

(𝑣𝑘−1, 𝑣𝑘 ). Thus, an equivalent representation for 𝑃 using its edges is ⟨𝑒1, 𝑒2, . . . , 𝑒𝑘⟩. Following
the nomenclature of edges, we call 𝑣0 = 𝑠 the source of 𝑃 and 𝑣𝑘 = 𝑡 its target. If the source and

target vertices hold particular significance, we call 𝑃 an 𝑠-𝑡 path and denote it with 𝑃𝑠𝑡 . A path

is called a cycle, if 𝑠 = 𝑡 . A subpath of a path is a contiguous subsequence of its vertices.

11



2. Methodological Background

𝑎
𝑏

𝑐
𝑑

𝑒

Figure 2.2: A directed graph

with five vertices and seven

directed edges.

𝑎
𝑏

𝑐
𝑑

𝑒𝑃

Figure 2.3: Vertex 𝑐 is reach-

able from 𝑒 through path 𝑃 .

The strongly connected com-

ponents are marked in red.

𝑎
𝑏

𝑐
𝑑

𝑒2

23
2

1 𝑃

Figure 2.4: A weighted graph

with edge weight function 𝑤 .

Path 𝑃 has a weight of𝑤 (𝑃) =
3 according to these weights.

A path’s length is the number of edges on the path. In the general case, vertices and edges

along a path may reoccur. However, a path is called simple if all its vertices (and consequently,
edges) are unique. Figure 2.3 shows a simple 𝑒-𝑐-path 𝑃 of length two for the directed graph

introduced in Figure 2.2.

Reachability and connectivity. A vertex 𝑣 is called reachable from a vertex 𝑢 via 𝑃 if a

𝑢-𝑣 path 𝑃 exists. A directed graph is called strongly connected if all of its vertices are mutu-

ally reachable from each other. Conversely, a directed graph is called weakly connected if all

vertices are mutually reachable in the graph’s undirected counterpart (formed by replacing all

directed edges with undirected edges). The strongly connected components are marked in red

in Figure 2.3. Most notably, vertices 𝑏, 𝑐 , and 𝑑 form a strongly connected component of size 3,

while vertices 𝑎 and 𝑒 form a strongly connected component of size 1. In the following, unless

stated otherwise, references to connectedness imply weak connectivity.

Edge weighting. A weighted graph is characterized by the inclusion of an edge-weight func-
tion. This function, denoted as 𝑤 : 𝐸 → R, assigns numeric weight 𝑤 (𝑒) to each edge 𝑒 in the

graph. By applying the definition of weights to paths, we can define the weight of a path 𝑃 as

the sum of all its edges’ weights: 𝑤 (𝑃) = ∑
𝑒∈𝑃 𝑤 (𝑒). An 𝑠-𝑡 path with the lowest weight, i.e.,

no other path between 𝑠 and 𝑡 with a lower weight exists, is called minimum-weight path with

respect to 𝑤 . Figure 2.4 shows a weighted variant of the graph introduced in Figure 2.2 with

the unique minimum-weight path 𝑃 between vertices 𝑒 and 𝑐 highlighted in blue.

The assigned weights offer additional insights into the relationships between adjacent ver-

tices and can represent factors such as traversal costs, capacities, or distances. Depending on

the context, the edge-weight function is sometimes referred to as edge-cost function, and the

weights themselves as costs. In this thesis, the term “weight” is employed when maximizing a

value is favored, whereas “cost” is used when minimization is the objective.

Planar graphs and embeddings. Graphs are generally location-agnostic, i.e., vertices have

no fixed location. Nonetheless, it is required to draw a graph for many applications, where a

vertex is represented at a location and each edge is represented as a simple arc. Such a drawing

is called embedding.

12



2.2. Graph theory

A planar graph is a graph that can be drawn in the Euclidean plane without edge intersec-

tions. We call such a drawing planar embedding of the graph or simply plane graph. A planar

embedding divides the plane into a set 𝐹 of regions called faces. Analogously to edges and ver-
tices, we call an edge 𝑒 and a face 𝐹 incident to each other if 𝑒 borders 𝐹 . According to Euler’s

formula, in a connected graph 𝐺 = (𝑉 , 𝐸) with planar embedding, |𝑉 | − |𝐸 | + |𝐹 | = 2 holds,

i.e., O(|𝑉 |) = O(|𝐸 |) = O(|𝐹 |). A planar straight-line graph is an embedding of a planar graph

whose edges are drawn as straight lines.

In some contexts, the location of the vertices (and sometimes also the edges) is given.

Graphs with given vertex locations are called geometric graph, and the graph and its embedding

can be treated as equivalent.

Graph representations. There are two common ways to represent a graph 𝐺 = (𝑉 , 𝐸): the
adjacency-matrix and the adjacency-list representation. In the adjacency-matrix representation,
a |𝑉 | × |𝑉 | matrix𝐴 is used to store the adjacency information. Each matrix entry 𝑎𝑖, 𝑗 ∈ 𝐴 with

𝑖, 𝑗 ≤ |𝑉 | is equal to 1 if an edge from the 𝑖-th vertex to the 𝑗-th vertex exists, otherwise it

is 0. This representation allocates memory for all possible |𝑉 |2 edges in the graph and thus is

inefficient for sparse graphs, where |𝐸 | is much smaller than |𝑉 |2.
In the adjacency-list representation, for each vertex 𝑢, an adjacency list A(𝑢) is stored. For

each outgoing edge (𝑢, 𝑣) of 𝑢, the target vertex 𝑣 of the edge is added to A(𝑢). The memory

requirement of this representation scales with the complexity of the graph and is therefore

suitable for sparse graphs. This advantage in terms of memory usage comes at the disadvantage

that looking up specific edges cannot be done in constant time anymore.

Most algorithms that work with graphs require the management of attributes for both

vertices and edges. For instance, the edge weight or other information, such as the semantics

of the abstracted elements, can be considered an attribute. Both graph representations can

easily be extended to store these attributes by replacing the entries in the adjacency matrix

(respectively, the adjacency list) with composite objects holding the attributes. The specifics

of implementing these objects depend on the programming language being used.

In the following thesis, almost all considered graphs are sparse. Therefore, if not stated

otherwise, we assume the adjacency-matrix representation for graphs.

Doubly connected edge list. Next to the two aforementioned generic graph representa-

tions, specialized representations are used to address specific tasks. One such representation

is the doubly-connected edge list (DCEL), designed to represent plane graphs. This represen-

tation provides efficient access to the topological relationships among graph elements. Due

to its ability to handle geometric information within graphs, it is often used in computational

geometry (Berg et al., 2008, pp. 29ff).

Each (undirected) edge in the plane graph is considered as two half edges, one for each side

of the edge. The two half edges for a given edge are called twins. Half edges are directed such

that they are oriented anti-clockwise around their incident face. In the DCEL, one record is

stored for each face, half edge, and vertex of the plane graph. Each record stores geometric

information about the element it represents and topological information about neighboring

graph elements. Additionally, supplemental semantic information can be stored in the record.

13



2. Methodological Background

𝑒
=
out(𝑣)

𝑣 = source(𝑒)

𝑓 = face(𝑒)

ed
ge
(𝑓
)

(a)

𝑒twin(𝑒)

prev
(𝑒)

nex
t(𝑒)

(b)

Figure 2.5: A doubly connected edge representation of the graph is shown in gray. (a) Pointers

between the DCEL elements (vertices, half edges, and faces) store their topological relationship.

(b) Each half edge stores pointers to neighboring half edges to allow navigating the graph.

The topological information is stored in the following way:

• Each vertex 𝑣 stores a reference to an arbitrary outgoing half-edge out(𝑣)
• Each face 𝑓 stores a reference to an arbitrary incident half edge edge(𝑓 ).
• Each half edge 𝑒 stores references to its source vertex source(𝑒) and its incident face

face(𝑒).
For effective graph navigation, each half-edge 𝑒 additionally stores references to the following:

• next(𝑒) and prev(𝑒): The respective next and previous half edge to 𝑒 in an anti-clockwise
sequence around the incident face of 𝑒 .

• twin(𝑒): The twin half edge associated with 𝑒 .

Figure 2.5 gives an overview of the topological information stored in a DCEL for an exam-

ple plane graph. Common tasks efficiently addressed by a DCEL include (a) finding the out-

line of a face 𝑓 , achieved by collecting the half edges found by iteratively following next(·)
on the incident half edge edge(𝑓 ) and (b) finding a neighboring face of a face 𝑓 , accom-

plished by selecting the incident face of the twin half edge associated with 𝑓 ’s incident half

edge: face(twin(edge(𝑓 ))). The inherent structure of the DCEL facilitates these operations,

making it a powerful tool for topological analysis and navigation within plane graphs.

In the context of this thesis, the DCEL is frequently used in Part III to allow us to trace the

outline of a so-called reachable component of a graph representing transit networks.

2.3 Optimal paths

One frequently encountered problem in this thesis is finding an optimal path between two lo-

cations in a network. A typical scenario is routing in a road network, where the objective is

to find the most efficient route from point A to point B. The definition of optimal can vary

depending on the context, such as minimizing geometric distance, expenditure of time, or fuel

consumption. Therefore, when referring to an optimal path, it is crucial to specify the opti-

14



2.3. Optimal paths

mization goal to which the path is optimal. In Chapter 6 we focus on finding the optimization

goal from a given set of paths. Due to the importance of the optimization goal for this thesis, we

speak of optimal paths instead of shortest paths, a term frequently used in literature (Cormen

et al., 2009). This distinction helps prevent potential confusion, as “shortest paths” may imply

a focus on geometric shortest paths, contrasting the broader optimization goals discussed in

this thesis.

Problem definition. The scenario introduced is formalized in the optimal-path problem,

where the goal is to find a path that is optimal with respect to a specified cost metric:

Definition 2 (Optimal path problem). Given a (directed) graph 𝐺 = (𝑉 , 𝐸) with an edge cost

function 𝑐 : 𝐸 → R, a source vertex 𝑠 ∈ 𝑉 and sink vertex 𝑡 ∈ 𝑉 , find an 𝑠-𝑡 path 𝑃 with the

lowest cost 𝑐 (𝑃) in 𝐺 . That is, there is no other 𝑠-𝑡 path 𝑃∗ such that 𝑐 (𝑃∗) < 𝑐 (𝑃).

As there is exactly one source and one target in the optimal path problem, we also refer to

it as the single-pair optimal path problem. A generalized variant of this problem is the single-
source optimal path problem, where optimal paths from a given source vertex to every other

vertex in the graph are sought. Solving this problem also provides a solution to the single-pair

optimal path problem. One naive approach to solving this problem could be enumerating all

possible paths between the source vertex and the individual target vertices. However, even

if we exclude paths that include cycles, the number of paths would be prohibitively large. In

this section, we introduce Dijkstra’s algorithm (Dijkstra, 1959), which efficiently solves single-

source optimal-path problems.

Dijkstra’s algorithm. Dijkstra’s algorithm solves the single-source optimal-path problem

for a directed graph 𝐺 = (𝑉 , 𝐸) with a non-negative edge cost function 𝑐 . That is, for every

edge 𝑒 ∈ 𝐸, 𝑐 (𝑒) ≥ 0 holds.

The core concept of Dijkstra’s algorithm is, starting at the source vertex, to iteratively

explore the neighborhood of parts that have already been visited while keeping track of the

shortest paths already discovered, see Algorithm 1. Throughout the algorithm’s execution, a set

S of vertices is maintained for which the minimum-cost path is already known. These vertices

are termed settled. For all vertices adjacent to a settled vertex, a minimum-cost estimate, called

tentative cost, is tracked, and these vertices are labeled as visited. Due to the distinct costs

associated with the edges, the tentative cost for vertices may change during the algorithm

(line 11). In each iteration, only the path to the visited vertex with the lowest tentative cost

is guaranteed to be optimal. Thus, the corresponding vertex can be settled in that iteration

(line 15). Figure 2.6 gives an example of an execution of Dijkstra’s algorithm on a directed,

weighted graph. Each subfigure displays the state after one step of the exploration loop (line 7).

A min-priority queue is used to determine the vertex with the minimum tentative cost.

This data structure allows storing and manipulating elements associated with an orderable

key. More specifically, it provides two fundamental operations:

• ExtractMin(): This operation removes and returns the element associated with the

lowest key.

• DecreaseKey(𝑥, 𝑘): This operation reduces the key value for the element 𝑥 to 𝑘 .

15



2. Methodological Background

S
0

f
∞

a
3

b
∞

d
10

e
∞

g
∞

c
∞

10

3
2

4

5

9
2

3

3

4

8(a)

S
0

f
∞

a
3

b
5

d
10

e
∞

g
∞

10

3
2

9
2

3

3

4

c
74

58(b)

S
0

f
∞

a
3

b
5

d
8

e
14

g
∞

10

3
2

9
2

3

3

4

c
74

58(c)

S
0

f
12

a
3

b
5

d
8

e
14

g
∞

10

3
2

9
2

3

3

4

c
74

58(d)

S
0

f
12

a
3

b
5

d
8

e
14

g
10

10

3
2

9
2

3

3

4

c
74

58(e)

S
0

a
3

b
5

d
8

e
13

g
10

10

3
2

9
2

3

3

4
f
12

c
74

58(f)

S
0

a
3

b
5

d
8

e
13

g
10

10

3
2

9
2

3

3

4
f
12

c
74

58(g)

S
0

a
3

b
5

d
8

e
13

g
10

10

3
2

9
2

3

3

4
f
12

c
74

58(h)

Figure 2.6: Dijkstra’s algorithm starting at vertex S. Vertices in blue are settled, i.e. the shortest

distance from S is already known. For vertices in orange, a path from S is found, but a shorter

path might exist. Colored incoming edges represent the final (blue) or current best (orange)

predecessor on the shortest path. The tentative distance to each vertex is displayed below it.

(c) Settling vertex b reveals a shorter path to d, prompting an update in d’s tentative distance

and predecessor. (h) On completion, the predecessor edges form the shortest-path tree from S.

16

fig:dijkstra:3
fig:dijkstra:8


2.3. Optimal paths

Furthermore, an initialization, denoted as MinPriorityQueue(𝑆, 𝜅), is assumed to set up a

min-priority queue from a set 𝑆 with an associated key function 𝜅 : 𝑆 → R.
Up to this point, we have only considered the minimum cost for reaching a specific ver-

tex. However, in practice, we are often interested in the actual path associated with this cost.

Dijkstra’s algorithm reconstructs this path by taking advantage of the optimal substructure of
shortest paths, stating that an optimal path is composed of optimal subpaths (Cormen et al.,

2009). Thus, if 𝑃 = ⟨𝑣0, . . . , 𝑣𝑘−1, 𝑣𝑘⟩ is an optimal 𝑣0-𝑣𝑘 path, the subpath 𝑃∗ = ⟨𝑣0, . . . , 𝑣𝑘−1⟩
of 𝑃 is an optimal 𝑣0-𝑣𝑘−1 path. Consequently, the optimal paths can be fully reconstructed

if, for each vertex 𝑢, its predecessor 𝜋 (𝑢) is known, which we keep track of during algorithm

execution, see Algorithm 1, line 13.

Algorithm 1: Dijkstra’s algorithm
Data: graph 𝐺 = (𝑉 , 𝐸) with non-negative edge cost function 𝑐 , source vertex 𝑠 ∈ 𝑉
Result: minimum costs in 𝐺 from 𝑠 to all vertices reachable from 𝑠 , information on

the optimal paths

// — Initialization — //

1 foreach vertex 𝑢 ∈ 𝑉 do
2 𝛾 [𝑢] ← inf; // tenative costs

3 𝜋 [𝑢] ← nil; // predecessors

4 𝛾 [𝑠] ← 0;

5 Q ← MinPriorityQueue(𝑉 ,𝛾); // insert all vertices to the queue
6 S ← ∅; // settled vertices

// —- Exploration —– //

7 while Q ≠ ∅ do
8 𝑢 ← Q .ExtractMin(); // extract vertex with minimum tentative cost
9 foreach outgoing edge (𝑢, 𝑣) of 𝑢 do
10 𝛾∗ ← 𝛾 [𝑢] + 𝑐 (𝑢, 𝑣); // cost to 𝑣 over 𝑢

11 if 𝛾∗ < 𝛾 [𝑣] then // path to 𝑣 over 𝑢 has lower cost than previously found

12 𝛾 [𝑣] ← 𝛾∗; // update tentative cost for 𝑣

13 𝜋 [𝑣] ← 𝑢; // set 𝑢 as predecessor of 𝑣

14 Q .DecreaseKey(𝑣,𝛾∗);

15 S ← S ∪ {𝑢}; // mark 𝑢 settled

Examining the efficiency of Algorithm 1, we notice that each vertex gets extracted exactly

once from the priority queue; see line 8. Furthermore, every edge in the graph is visited ex-

actly once when its source vertex is extracted from Q; see line 9. The DecreaseKey function

potentially gets executed once for each edge. Therefore, the running time of the algorithm is

O(𝑇e |𝑉 | +𝑇d |𝐸 |), where𝑇e is the time needed for ExtractMin and𝑇d is the time needed for De-

creaseKey. Hence, The running time of Dijksta’s algorithm depends on the implementation of

the MinPriorityQueue. The Fibonacci heap (Fredman and Tarjan, 1987) is an implementation

of a priority queue that allows ExtractMin to be performed in amortized logarithmic time

17



2. Methodological Background

and DecreaseKey to be performed in amortized constant time.
1
Using a Fibonacci heap, the

running time of Dijkstra’s algorithm thus is O(|𝑉 | log |𝑉 | + |𝐸 |).
In general, |𝐸 | = O(|𝑉 |2) holds, i.e., the number of edges is quadratic in the number of

vertices. Nonetheless, for planar graphs |𝐸 | = O(|𝑉 |) holds, as discussed in Section 2.2. Many

graphs to which we apply Dijksta’s algorithm in this thesis are planar or at least close to planar.

For these graphs, we can simplify the equation for the running time to O(|𝑉 | log |𝑉 |).

Pseudo-dual graph. In the preceding paragraph, we have introduced Dijkstra’s algorithm

for computing optimal paths in a graph. The edge-cost function 𝑐 of 𝐺 allows distinct costs to

be applied to the edges of𝐺 . In some scenarios, however, costs are associated with the graph’s

vertices. Consider the graph representing the road network in a right-hand driving country.

Due to traffic regulations, taking a right turn is often much easier than taking a left turn.

Therefore, assigning a higher cost for turning left than for turning right might be appropriate.

However, these costs are not associated with a road (i.e., edge) but with an intersection (i.e.,

vertex) of the network. Similarly, turn restrictions, i.e., forbidden edge-to-edge transitions,

cannot be modelled in our current graph.

The pseudo-dual graph introduced by Winter (2002) can be used to address these issues.

This model represents edge-to-edge transitions as explicit edges, enabling the reuse of an edge-

cost function and Dijkstra’s algorithm for the specific problem.

A

BC

(a)

𝑠
𝑡

𝜈𝑡

𝜈𝑠

00

𝑐 (𝑒1 )

𝑐 (𝑒3 )
𝑐 (𝑒2 )

𝑒1

𝑒2

𝑒3

(b)

Figure 2.7: Modeling turn weights and turn restrictions with a pseudo-dual graph. (a) The

pseudo-dual graph 𝐷 (blue) of a primal graph (gray) representing a T-junction. If turning left

(from A to C) is forbidden, the corresponding edge (red) can be removed from 𝐷 . (b) To allow

finding optimal paths between vertices of the primal graph, dummy source (green) and target

(red) vertices are added to the outgoing (resp. incoming) edges of the primal source and target.

Given a directed weighted graph 𝐺 = (𝑉 , 𝐸) – which we call the primal graph in the fol-

lowing –, its complete pseudo-dual graph 𝐷 = (𝑉D, 𝐸D) is a directed weighted graph with the

following structure, displayed in Figure 2.7:

1
The term amortized means that, over a large number of operations, the average performance per operation is

guaranteed to be, at worst, the one stated. While a single operation can be more costly, the amortized analysis

provides a more balanced view of the overall efficiency. Details can be found in textbooks (Cormen et al., 2009).

18



2.3. Optimal paths

• For every primal edge 𝑒 ∈ 𝐸, there is a vertex 𝜈 = 𝑑 (𝑒) in 𝑉D. Here, 𝑑 : 𝐸 → 𝑉D is a

bijective, one-to-one mapping function between primal edges and pseudo-dual vertices,

satisfying 𝑑−1(𝜈) = 𝑒 .

• For each pair of consecutive primal edges {𝑒𝑖 = (𝑢, 𝑣), 𝑒 𝑗 = (𝑣,𝑤)} in 𝐸 there is an

edge 𝜖 = (𝜈, 𝜔) in 𝐸D between the corresponding vertices 𝜈 = 𝑑 (𝑒𝑖) and 𝜔 = 𝑑 (𝑒 𝑗 ).
Analogously to paths in the primal graph, a path Π in the pseudo-dual graph can be repre-

sented as a sequence of vertices Π = ⟨𝜈0, 𝜈1, . . . , 𝜈𝑘⟩, which directly translates to the edge-based
representation of the path 𝑃 in the primal graph by 𝑃 = ⟨𝑑−1(𝜈0), 𝑑−1(𝜈1), . . . , 𝑑−1(𝜈𝑘 )⟩.

In the optimal path problem, see Definition 2, we are given a primal source vertex 𝑠 and

a primal sink vertex 𝑡 . These two vertices have no explicit representation in the pseudo-dual

graph 𝐷 . However, 𝑠 can only be left through one of its outgoing edges, which have an explicit

representation in 𝐷 in the form of vertices. Similarly, 𝑡 can only be entered through one of its

incoming edges, explicitly represented in 𝐷 as vertices. Solving the optimal path problem in

the pseudo-dual graph thus results in a multi-pair optimal path problem, where the vertices𝑉 s

D

corresponding to the primal source’s outgoing edges are the new sources, and the vertices 𝑉 t

D

corresponding to the primal sink’s incoming edges are the new sinks. We can convert this

problem to the single-pair optimal path problem by introducing two dummy vertices to the

pseudo-dual graph. The source dummy 𝜈s is connected by edges to the vertices 𝑉 s

D
while the

sink dummy 𝜈t is connected by edges to the vertices 𝑉 t

D
.

Until now, we have not considered the cost function 𝜅 : 𝐸D → R of 𝐷 . We want to be

able to apply a cost 𝜌 for edge-to-edge transitions while still considering the costs 𝑐 of the

primal graph. For this, the pseudo-dual cost function integrates both of these costs: 𝜅 (𝜖) =
𝜌 (𝜖) + 𝑐 (𝑑−1(source(𝜖))). The edges from the source dummy get zero cost while the edges to

the sink get a cost𝜅 (𝜖) = 𝑐 (𝑑−1(source(𝜖))). In specific, the dummy edges receive no transition

cost 𝜌 . Assuming 𝜌 (𝜖) = 0 for all edges in 𝐸D, this definition guarantees that an 𝑠-𝑡 path 𝑃 in

𝐺 has the same cost 𝑐 (𝑃) as its equivalent path in 𝐷 . This setup is visualized in Figure 2.7b.

Next to the weighting of edge-to-edge transitions, we want to model turn restrictions. Turn

restrictions are forbidden edge-to-edge transitions in the primal graph. Modeling these restric-

tions is achieved by removing the corresponding edges from the complete pseudo-dual graph,

resulting in a restricted pseudo-dual graph.
The complexity of the pseudo-dual graph 𝐷 in relation to the number of graph elements

compared to its primal 𝐺 is as follows. The number of vertices in 𝐷 equals the number of

primal edges, resulting in |𝑉D | = O(|𝐸 |). For each edge-to-edge transition in 𝐺 , there is one

corresponding edge in 𝐷 . For each vertex 𝑣 in 𝐺 , there are InDegree(𝑣) · OutDegree(𝑣)
possible edge-to-edge transitions. Assuming that the maximum degree 𝛿 (𝐺) over all vertices in
𝐺 is a constant with 𝛿 (𝐺) ≪ |𝐸 |, this leads to |𝐸D | = O(|𝑉 |). This assumption particularly holds

for planar graphs, the common type of primal graph considered in this thesis. Utilizing the fact

that O(|𝑉 |) = O(|𝐸 |) in planar graphs (see Section 2.2), we can conclude that |𝑉D | = O(|𝑉 |)
and |𝐸D | = O(|𝐸 |). Therefore, pseudo-dual graphs for planar primal graphs have the same

asymptotic complexity as their primal counterparts.

In this thesis, the concept of pseudo-dual graphs is extensively used in Part III, where the

primal graphs are geometric graphs representing candidates for visualization. Using pseudo-

dual graphs allows penalizing bends, promoting simple visualizations over more complex ones.

19



2. Methodological Background

2.4 Trajectories

The main focus of this thesis is the analysis of mobility data. Specifically, we want to inves-

tigate the routes people take between two locations, 𝐴 and 𝐵, and the underlying reason for

choosing these routes over alternatives. In the context of geographic data, the recording of

routes primarily relies on location-tracking devices, such as GNSS receivers. The data gener-

ated by these devices is referred to as trajectories. Formally, a trajectory 𝑇 is a sequence of

timed points represented by 𝑇 = ⟨𝑝0 = (𝑥0, 𝑦0, 𝜏0), 𝑝1 = (𝑥1, 𝑦1, 𝜏1), . . . , 𝑝𝑛 = (𝑥𝑛, 𝑦𝑛, 𝜏𝑛)⟩, where
𝑥𝑖 , 𝑦𝑖 , 𝜏𝑖 ∈ R and 𝜏𝑖 < 𝜏𝑖+1 for each 𝑖 ∈ {0, . . . , 𝑛}. Here, 𝑥𝑖 and 𝑦𝑖 correspond to the coordi-

nates of points in the Euclidean plane, while 𝜏𝑖 represents the timestamp associated with each

location. Although location information can be extended to include height in some contexts,

this thesis focuses on the simpler 2D variant, as height information is not relevant to the core

objectives. We denote the part between two points 𝑝𝑖 , 𝑝 𝑗 ∈ 𝑇 with 𝑖 ≤ 𝑗 as 𝑇
𝑗

𝑖
and call it a

subtrajectory of 𝑇 .

The time between two location measurements is referred to as sampling interval, typically
remaining constant over a given trajectory. For example, a typical sampling interval for GNSS

receivers in modern smartphones is one second. Between the two trajectory points, no in-

formation about the route is available. It is common to assume straight-line motion between

consecutive points, a reasonable assumption if the sampling interval is sufficiently small. The

line connecting two consecutive trajectory points is referred to as trajectory segment. Figure 2.8
shows a trajectory consisting of 12 trajectory points with a constant sampling interval of two

seconds. Red arrows indicate the trajectory segments.

𝑝0 𝑝1 𝑝11
𝑝2 . . .

0 2
4 6 8 10 12

14 16 18
𝜏𝑖

𝑇

Figure 2.8: A trajectory with 12 points and the underlying road network. The timestamps

(blue) are given as seconds after the initial locationmeasurement. The trajectory has a constant

sampling interval of two seconds.

Trajectory segmentation. Additional, derived information can be computed from the tra-

jectory data that characterizes the movement. Examples are the velocity, the acceleration, the

heading direction, or the sampling interval along the trajectory. The idea of trajectory seg-
mentation is to split an input trajectory into subtrajectories to achieve relative uniformity in

movement characteristics within each subtrajectory. This segmentation process facilitates a

more nuanced comprehension of underlying movement patterns. For instance, analyzing dis-

tinctions between subtrajectories exhibiting high velocity and those with low velocity becomes

feasible, providing insights into the dynamics of the observed movement. In this section, we

introduce the discrete trajectory segmentation following the approaches from Aronov et al.

(2016); Buchin et al. (2011) and Alewijnse et al. (2014), as it is closely related to our algorithm

20



2.4. Trajectories

presented in Chapter 6. A comprehensive literature review on trajectory segmentation follows

in Chapter 6.

Movement characteristics within a trajectory are defined by an attribute function that as-

signs attribute values to each point in time along the trajectory. The desired uniformity of

a subtrajectory is defined through criteria, specifying the allowable differences in attribute

values for them to be considered uniform. The segmentation problem entails determining the

minimum number of subtrajectories such that all subtrajectories meet the specified criteria.

The resulting segmentation is termed optimal. In the following, we approach segmentation as

a discrete problem, meaning that a trajectory can only be split at trajectory points. For a more

comprehensive understanding of the more general continuous variant, we direct readers to the
literature, given its limited relevance within the scope of this thesis.

The segmentation criteria have distinct properties with respect to their behavior when the

corresponding trajectory is extended or shortened. An important class of criteria are mono-
tone criteria. If a monotone decreasing criterion holds for a specific trajectory 𝑇 , it also holds

for any subtrajectory of 𝑇 . An illustrative example of a decreasing criterion is a constraint

on the speed range, wherein the speed can vary by at most 5 km/h. Conversely, a monotone

increasing criterion that holds for a subtrajectory 𝑇
𝑗

𝑖
also holds for any trajectory containing

𝑇
𝑗

𝑖
. An example of an increasing criterion is the trajectory length: if a subtrajectory exceeds a

given length, any trajectory containing that subtrajectory also exceeds this length. In isolation,

increasing criteria may not prove highly effective for segmentation, as they typically result

in either segmenting the entire trajectory into a single subtrajectory or failing to identify a

valid segmentation. Nevertheless, a Boolean combination of increasing and decreasing criteria

can offer utility. For instance, in stay point detection, staying a minimum duration within a

specified area qualifies as a stay point (Ye et al., 2009). Such combinations of increasing and

decreasing criteria lose their monotonicity. Figure 2.9 shows a segmentation of the trajectory

introduced in Figure 2.8 using the decreasing criterion of limited speed variation. The segmen-

tation shown is a minimum segmentation, i.e., there is no way to segment the trajectory with

fewer subtrajectories while still fulfilling the constraint.

𝑞0 𝑞1 𝑟7
𝑞2

2.0

𝑣𝑖
2.1 1.2 0.9 1.2 0.9 0.8

0.8
0.8

𝑟0

𝑟1 𝑟2 . . .

𝑄
𝑅

Figure 2.9: The trajectory depicted in Figure 2.8 with velocity per segment (orange). The tra-

jectory is split into two subtrajectories 𝑄 (red) and 𝑅 (blue), using the speed variance as the

criterion. Within each subtrajectory, the speed varies by at most one unit. The displayed seg-

mentation is a minimum segmentation for this criterion.

In the following, we present a framework for trajectory segmentation for non-monotone

criteria as presented by Aronov et al. (2016). At the core of the segmentation framework lies

a start-stop matrixM, which encodes the relationship between a trajectory 𝑇 = ⟨𝑝1, . . . , 𝑝𝑛⟩
and a criterion 𝐶 . The matrix, of dimension 𝑛 × 𝑛, comprises entries M[𝑖, 𝑗] with 𝑖, 𝑗 ≤ 𝑛,

21



2. Methodological Background

where each entry is a Boolean value indicating whether the subtrajectory 𝑇
𝑗

𝑖
of 𝑇 satisfies

criterion 𝐶 . The entries where 𝐶 is satisfied built up the free space while the other entries

mark the forbidden space of M. Subtrajectories are only defined for 𝑖 ≤ 𝑗 , rendering M a

right triangular matrix. The diagonal elements correspond to individual trajectory points. The

segmentation problem is addressed through a two-step process utilizing the start-stop matrix.

First, M must be populated with a value indicating the fulfillment of 𝐶 . Subsequently, the

optimal segmentation is determined withinM.

The entries of the start-stop matrix indicate whether a criterion is fulfilled or not. An

auxiliary 𝑛 × 𝑛 matrix A holding the corresponding attribute values for the individual sub-

trajectories can be used to fill these entries. Transforming A to M then becomes a binary

decision, i.e.,M[𝑖, 𝑗] = True if A[𝑖, 𝑗] is in the allowed attribute range for criterion 𝐶 , other-

wiseM[𝑖, 𝑗] = False. Using this approach, filling the start-stopmatrix can be done inO(𝑇e ·𝑛2)
time, where 𝑇e is the time needed to evaluate the attribute value for a given subtrajectory of

length𝑚. For many common criteria, 𝑇e = O(𝑚) holds.
Any valid segmentation of 𝑇 can be visualized as a staircase path throughM, connecting

M[1, 1] toM[𝑛, 𝑛]. Each step in the path corresponds to one subtrajectory. Using dynamic

programming, a minimal (discrete) segmentation of 𝑇 can be found in O(𝑛2) time (Aronov

et al., 2016, Section 2.2), resulting in a combined running time of O(𝑇e · 𝑛2) for finding the

optimal segmentation.

Map matching. A trajectory is a sequence of raw location measurements. In various ap-

plications, understanding the context of this trajectory is crucial. In the context of human

mobility data, we are particularly interested in the streets a person traveled while recording

the trajectory.

Like any measurement, trajectory data contains inaccuracies, and the abstraction of the

street network into a graph model introduces an additional layer of complexity. Consequently,

pinpointing the street corresponding to a trajectory segment is not straightforward. Finding

the best trajectory representation within a real-world model of streets is what we call map
matching.

𝑝6
𝑝7

(a) (b)

Figure 2.10: Map matching is demonstrated using the trajectory illustrated in Figure 2.8. Blue,

dotted lines display the relation between the trajectory andmatched points. (a) Naive approach

by mapping each trajectory point to the closest road segment. The resulting path (shown

in orange) in the network performs a detour deviating from the original movement. (b) An

improved matching (shown in green) that closely resembles the original movement. Achieving

such a solution requires advancedmatching algorithms, such as the one presented in Chapter 4.

22



2.4. Trajectories

In map matching, a given trajectory is transformed into a path in a graph. This path, the

matched trajectory, combines information on the street network with information on the mo-

bility data and serves as the basis for many further analysis algorithms. Figure 2.10 gives two

examples of different solutions of the matched trajectory for the (raw) trajectory introduced

in Figure 2.8. The solution presented in Figure 2.10a stems from a simplistic map-matching

approach where each trajectory point is mapped to the geometrically nearest point in the road

network. However, the resulting matched trajectory takes an implausible route, making a left

turn followed by a U-turn to return to the central road. This movement not only seems unnat-

ural but would also imply an unrealistically high velocity between the matched points 𝑝6 and

𝑝7 (recall that the time between two trajectory points is two seconds).

Contrastingly, Figure 2.10b illustrates a matched trajectory that follows the central road.

Although the distance between trajectory points and matched points is larger compared to the

naive solution, this advanced approach better captures the overall shape of the input trajectory.

Such refined solutions are achieved through the implementation of more sophisticated map-

matching algorithms.

For a comprehensive understanding of map matching, including related work, readers are

directed to Chapter 4. Within the same chapter, map matching specifically designed for trajec-

tories that are not restricted to the modeled street network is discussed. For these trajectories,

no suitable path can be found inside the network, hindering the applicability of subsequent

analyses. The presented algorithm resolves this issue by extending the road network in areas

where off-road movement is likely while ensuring that the extended parts of the network only

serve as a fallback solution in case no suitable solution in the original network can be found.

23





Part I

Trajectory Preprocessing

25





Chapter 3

Trajectory Preprocessing:
Motivation & Research Context

Trajectory data obtained from crowd-sourced databases is often not polished, e.g., it contains

outliers or lacks sufficient metadata. It is often necessary to preprocess the data to apply ex-

isting tools to analyze and interpret such trajectory data. This chapter discusses preprocessing

methods that address these challenges, aiming to enhance the utility and reliability of trajec-

tory data.

Usually, trajectories are generated using location-enabled devices that can measure their

location within a given reference system at a specific time. We call the trajectory data obtained

directly from the device the raw trajectory data. Depending on the context, specific properties

of the data are of interest. For instance, when assessing the accuracy of the recording device,

the measurement noise is of interest. Conversely, in many other applications, the goal is to

eliminate the noise from the data. In the following, four challenges related to raw trajectory

data in the context of human mobility analysis are discussed:

1. Noise and outliers: Raw trajectories are prone to noise and outliers, stemming from

inaccuracies in the recording devices or environmental factors. These inaccuracies can

hinder further analysis or distort the analysis results.

2. Periods of stagnation: Raw trajectories often include intervals where the user remains

stationary. These stay points can have a high impact on the analysis – depending on the

application, it is desirable to remove them or focus only on these stay points.

3. Privacy concerns: Raw trajectories may contain sensitive information about the user,

raising privacy concerns. Anonymizing or obfuscating the data while preserving its an-

alytical value is important for ethical processing.

4. Lack of context: Raw trajectories lack contextual information about the surrounding

environment, such as the road network or landmarks. Integrating spatial context opens

new possibilities for trajectory analysis.

This chapter reviews literature dealing with the Challenges 1-3. Subsequently, Chapter 4 ad-

dresses Challenge 4 by introducing a novel algorithm for finding a trajectory representation

in the underlying road network. The algorithm is specifically designed to be robust against

off-road segments in the trajectory as well as missing roads in the road network data.

27



3. Trajectory Preprocessing: Motivation & Research Context

3.1 Trajectory smoothing

In the context of crowd-sourced (sports) trajectories, positioning usingGlobal Navigation Satel-

lite Systems (GNSS) is most relevant. Today, even low-cost GNSS receivers offer spatial ac-

curacies ranging from 5 to 10 meters (Kealy and Moore, 2017), which may suffice for most

applications. However, challenges arise when computing derived metrics such as velocity or

acceleration, as taking these derivatives amplifies the inherent measurement noise. Addition-

ally, external influences can cause erroneous measurements and outliers in the data. Trajectory

filtering and outlier detection algorithms have been proposed to address these problems.

3.1.1 Trajectory filtering

The goal of trajectory filtering is to reduce the measurement noise. One basic approach is em-

ploying mean or median filters, which update each point measurement to the average (respec-

tive median) value of itself and a specified number 𝑘−1 of neighboring points. These filters are

referred to as sliding-window filters due to their window-based processing mechanism, where

the window size 𝑛 determines the extent of data considered for filtering. Despite their sim-

plicity and effectiveness in noise reduction, sliding window filters suffer inherent drawbacks.

Notably, they introduce a lag in the filtered data, meaning that sudden changes in direction

will only gradually be recovered. Larger window sizes – while generating a smoother output –

aggravate this effect. Furthermore, these filters do not produce good estimates for velocity and

acceleration (Lee and Krumm, 2011). To reduce the lag, Schüssler and Axhausen (2008) present

a sliding-window filter based on a Gaussian Kernel. This approach increases the influence of

temporally close measurements on the filter output compared to those further in time.

An advanced filtering method is the Kalman filter, which models the measurement and

process model as well as their corresponding noise (Lee and Krumm, 2011). The Kalman filter

has been shown to provide good estimates for speed and acceleration (Jun et al., 2006). How-

ever, its applicability in crowd-sourced data is limited due to the lack of information about

measurement and process noise in this domain (Schüssler and Axhausen, 2008).

For the specific use case of map creation, Cao and Krumm (2009) propose an energy-based

approach to smooth large sets of trajectories by pulling multiple nearby trajectories onto each

other. This method offers a different perspective on trajectory filtering, focusing on the collec-

tive behavior of trajectories rather than individual point measurements.

3.1.2 Outlier detection

Many of the filtering methods mentioned above are susceptible to outlier points, that is, erro-

neous measurements beyond the expected measurement noise (Lee and Krumm, 2011). Thus,

filtering effectiveness can be improved if these outliers are removed in advance. For instance,

Ivanovic et al. (2016) propose an outlier detection based on changes in metrics and geometrics

characteristics, such as speed and direction, of the measured points. More recently, Ivanovic

et al. (2019) focus on outliers that stem from “secondary human behavior”, which are sections

where the contributor performed actions other than the main movement. Custers et al. (2019)

present an outlier detection method motivated by physical properties of the tracked entity.

28



3.2. Stay-point detection

3.2 Stay-point detection

According to Spaccapietra et al. (2008), a trajectory can be conceptualized into a series of al-

ternating stops and moves. The stops hold significant semantic information regarding the tra-

jectory, indicating points of significance for the user. Conversely, individual trajectory points

within a stop contribute relatively little information. Consequently, numerous approaches have

been developed to detect these stops accurately. Stay-point detection is a crucial step when an-

alyzing routing preferences to identify the origin and destination points of the route. It will,

therefore, be reviewed in the following section. Figure 3.1 gives an overview of the approaches,

categorized into velocity-based, point-of-interest-based, and density-based methods.

𝑡

𝑣

𝑣

𝑠1 𝑠2

(a) velocity based

𝑐1 𝑐2

(b) point-of-interest based

𝜖

(c) density based

Figure 3.1: Sketches of different stay-point-detection approaches. (a) In velocity-based ap-

proaches, trajectory points with velocities lower than a specified threshold are identified as

stops. Slow movement, such as during 𝑠2, may lead to false positives. (b) In point-of-interest-

based approaches, stop candidates are modeled. Some stops, like the ones marked red, may

not be identified if no candidate is present. (c) In density-based approaches, stops are detected

where the trajectory remains within an area of extent 𝜖 for a predefined minimum duration.

3.2.1 Velocity based

Yan et al. (2010) introduce a computing platform for trajectory data processing, where stops

are identified by applying a velocity threshold. Points with velocities lower than this threshold

are classified as stops. Similarly, Stylianou (2017) use extrema in the velocity and acceleration

to identify stay points. These velocity-based methods are sensitive to measurement noise and

often require a constraint on a minimal stop duration to avoid false positives (Yan et al., 2010).

3.2.2 Point-of-interest based

Stops can be classified into personalized stops, relevant to individual users (such as their home

location), and shared stops, relevant for many users (Tran et al., 2011) (such as restaurants).

Existing points of interest (POIs) have been incorporated into stay-point-detection algorithms

to identify shared stops. For instance, Alvares et al. (2007) model candidate stops as polygons

around the given POIs and specify a minimum stay duration for each candidate. A stop is

introduced for every trajectory that stays within a candidate stop for the minimum duration.

A similar approach is proposed by Xie et al. (2009), who use a Voronoi-tesselation based on the

POIs to generate the candidates.

29



3. Trajectory Preprocessing: Motivation & Research Context

3.2.3 Density based

Many popular stay-point detection methods rely on spatio-temporal point density. Palma et al.

(2008) (CB-SMoT) and Tran et al. (2011) (TrajDBSCAN) introduce stay-point-detection algo-

rithms based on modifications to the DBSCAN clustering algorithm (Ester et al., 1996). Both

approaches define a stop as a subtrajectory within a spatial neighborhood of a given extent 𝜖 ,

with a minimum duration 𝜏min. The difference between the approaches lies in the definition

of the neighborhood: CB-SMoT considers the trajectory, while TrajDBSCAN uses straight-line

distance. Similarly, Gong et al. (2015) introduce a DBSCAN variant, which they denote C-

DBSCAN, to extract stop locations. In contrast to modifying the neighborhood definition, the

authors ensure temporal consistency of stops through constraint-based methods. DBSCAN-

based algorithms are sensitive to the parameter choice for 𝜖 and 𝜏min, and inappropriate pa-

rameter sets can lead to a low performance of the algorithms. To address this issue, Kami et al.

(2010) introduce a probabilistic point density estimate. However, their approach overlooks the

temporal aspect of stops, which means that trajectories passing through the same location

multiple times may result in false positive stop detections.

Stop detection can substantially improve the results of subsequent analysis depending on

the research question. For instance, in the context of learning routing preferences, identifying

the subtrajectories between stay points allows the separation of intent, such as reaching a

specific location, from the routing behavior observed between the start and endpoint of the

trajectory. However, revealing the stay points may also compromise the users’ privacy. In the

following section, methods to protect the users’ privacy are discussed.

3.3 Privacy preservation

Trajectories are personal data and the users’ privacy can be compromised when the data or

subsequent analysis reveals sensitive information about the user. In response, Location-Privacy

Preserving Methods (LPPMs) have been developed to mitigate this threat (Primault et al., 2019;

Fiore et al., 2020), reviewed in the following. Then, this thesis gives particular attention to a

truncation-based LPPM introduced by Brauer et al. (2022), which the author contributed to.

This method holds particular importance within the thesis, as it maintains large parts of the

trajectories unchanged, allowing for a representative analysis of the routing behavior while

protecting user privacy. Additionally, this method is employed in processing the trajectory

data of the crowd-sourced Geoprivacy platform (Mäkinen et al., 2023).

3.3.1 LPPMs providing formal privacy guarantees

Crowd-sourced trajectory datasets are often published in anonymized form, meaning they lack

explicit user identifiers, such as their name. However, the threat of re-identification attacks re-
mains. These attacks are designed to link anonymously published data to the individual they

belong to (Henriksen-Bulmer and Jeary, 2016). A widely applied strategy to protect datasets

from re-identification attacks is k-anonymity (Sweeney, 2002). In a 𝑘-anonymous dataset, each

entry cannot be distinguished from at least 𝑘 −1 other entries with respect to a set of attributes

30



3.3. Privacy preservation

called quasi-identifiers. Thus, an attacker can only associate an individual to a group of at

least 𝑘 entries. In the context of location-based services, Bettini et al. (2005) define location-
based quasi-identifiers (LBQID) as a sequence of spatio-temporal points that define a mobility

pattern. Various techniques have been employed to achieve 𝑘-anonymity for trajectories, in-

cluding spatial generalization (Yarovoy et al., 2009), clustering (Nergiz et al., 2008) and sup-

pression (Terrovitis et al., 2017; Pensa et al., 2008). However, despite 𝑘-anonymity’s protection

against re-identification attacks, Ganta et al. (2008) demonstrated its susceptibility when infor-

mation from multiple sources is combined. For instance, attribute linkage attacks aim to infer

sensitive attributes from the data rather than specific records (Fiore et al., 2020). If all 𝑘 trajec-

tories associated with an individual lead to a hospital, the attacker can infer that the individual

visited said hospital.

To address this issue, ℓ-diversity (Machanavajjhala et al., 2007) extends 𝑘-anonymity by

ensuring that each anonymized group contains at least ℓ different sensitive attributes. Going

further, 𝑡-closeness (Li et al., 2007) imposes a statistical criterion on the diversity of the sensitive

attributes rather than a numerical one, as is the case with ℓ-diversity. Both concepts have been

applied to trajectory data (Tu et al., 2019).

Differential privacy is a stricter privacymodel than𝑘-anonymity, requiring that the result of

anonymization exhibits minimal variations depending on whether a specific entry is present or

not (Dwork, 2008). While differential privacy has been applied to trajectories (Chen et al., 2012;

Bonomi and Xiong, 2013; Gursoy et al., 2019), these methods are not suitable for trajectories

with a high sampling rate.

3.3.2 LPPMs reducing the risk of privacy breaches

Location-Privacy Preserving Methods (LPPMs) providing a formal privacy guarantee often

have the drawback that the data is altered to an extent that limits the utility of the data for

subsequent analysis. In cases where this formal guarantee is not needed, heuristic solutions

that reduce the risk of privacy breaches can yield higher utility of the anonymized data. Ac-

cording to Fiore et al. (2020), these methods include:

• obfuscation, where the trajectory is distorted by adding random noise to the location

data (Seidl et al., 2016),

• cloaking, where the spatial and temporal granularity of the trajectory is reduced (Mu-

rakami et al., 2017),

• segmentation, where the trajectory is split into subtrajectories with the motivation that

shorter trajectories are more ambiguous than longer ones (Song et al., 2014b), and

• swapping, where subtrajectories are exchanged between trajectories, such that each

trajectory contains parts of multiple trajectories (Salas et al., 2018).

Additionally, some LPPMs focus on concealing sensitive locations (such as stay points) along

the trajectory while leaving the remainder of the trajectory untouched (Nergiz et al., 2008; Huo

et al., 2012). While these methods may not completely prevent re-identification attacks, they

can mitigate the risk by removing crucial information like workplace or home location.

31



3. Trajectory Preprocessing: Motivation & Research Context

3.3.3 𝒌-site-unidentifiability

Brauer et al. (2022) introduce 𝑘-site-unidentifiability, a privacy model to formalize the protec-

tion of sensitive locations by extending the concept of 𝑘-anonymity to such sites. In the model,

given a set 𝑆 of sites and a destination site 𝑠 ∈ 𝑆 , 𝑘-site-unidentifiability ensures that 𝑠 remains

indistinguishable from at least 𝑘 − 1 other sites in 𝑆 . This is achieved by concealing 𝑠 within a

set 𝐶 (𝑠) of 𝑘 sites, termed the protection set. Further, the authors define an attacker model and

propose an algorithm to ensure 𝑘-site-unidentifiability with respect to this attacker model.

Attacker model. The attacker has access to a set of trajectories Θ = {𝑇1, ...,𝑇𝑙 } sharing a

common destination 𝑠; for instance, this could be the contributor’s home. Furthermore, the

attacker knows a set of sites 𝑆 that is guaranteed to contain 𝑠 . 𝑆 could, for example, be the

set of all buildings present in a dataset. The attacker aims to identify the common destination

based on the trajectories and the sites. The attacker employs several attack functions 𝑓1, ..., 𝑓𝑎
to accomplish this. For each trajectory 𝑇 , an attack function 𝑓 yields a set of candidate sites

𝑓 (𝑆,𝑇 ) ⊆ 𝑆 . The attacker attempts to deduce 𝑠 by aggregating these candidates across all

trajectories. For example, the attacker could assume that 𝑠 is the site that occurs most often

in the joint set. The sites in the protection set 𝐶 (𝑠) are indistinguishable with respect to 𝑓 if

either all or none of the sites in 𝐶 (𝑠) are part of the attack’s result for each trajectory in Θ. As
the attacker knows all the sites in 𝑆 , a mechanism that preserves 𝑘-site-unidentifiability cannot

alter 𝑆 . It can, however, alter the trajectories in Θ.

S-TT algorithm. The authors propose the Site-Dependent Trajectory Truncation (S-TT)

algorithm, which selectively truncates trajectories to maintain 𝑘-site-unidentifiability. The

S-TT algorithm truncates trajectories based on these attack functions, ensuring that 𝑘-site-

unidentifiability is preserved. To that end, it iteratively shortens the trajectories until either all

or none of the sites in 𝐶 (𝑠) remain viable candidates, thereby impeding the attacker’s ability

to distinguish 𝑠 from other sites in 𝐶 (𝑠).

𝛼
𝑅(𝑇 )𝑇

𝑒

Figure 3.2: Schematic representation of a direction-based attack. The sites (round dots) inside

𝑅(𝑇 ) (colored black) are candidate sites this attack function returns. 𝑅(𝑇 ) is based on the

terminating segment 𝑒 of trajectory 𝑇 .

Geometric S-TT. Specifically, the authors introduce a geometric S-TT algorithm by defining

attack functions based on geometric characteristics of trajectories. Firstly, a proximity-based

32



3.3. Privacy preservation

attack function 𝑓p identifies the site closest to the trajectory’s endpoint, building upon the

intuition that trajectories often end near the user’s destination:

𝑓p(𝑆,𝑇 ) := arg min

𝑠∈𝑆
dist(end(𝑇 ), 𝑠), (3.1)

where dist(·, ·) denotes the Euclidean distance. This attack function can easily be extended to

return the 𝜅-nearest sites to end(𝑇 ) to introduce some tolerance.

A second aspect that can be used to infer the destination is the direction in which the

trajectory is headed. Specifically, the trajectory’s last segment 𝑒 is of interest. However, the

segment 𝑒 , most likely, does not point precisely towards 𝑠 . Therefore, a V-shaped region 𝑅(𝑇 )
anchored in end(𝑇 ) that is mirror-symmetric with respect to 𝑒 and has an infinite radius is

considered (Figure 3.2). The opening angle of the V-shape is fixed and denoted with 𝛼 . The

direction-based attack function 𝑓d assumes that 𝑠 is located within the region 𝑅(𝑇 ):

𝑓d(𝑆,𝑇 ) := 𝑆 ∩ 𝑅(𝑇 ) . (3.2)

The attacks 𝑓p and 𝑓d are simple, yet common sense suggests that they may be reasonably

successful. Figure 3.3 displays the geometric S-TT algorithm on an example trajectory. In the

starting situation (Figure 3.3a), the closest site to end(𝑇 ) is 𝑠 . Thus, the algorithm suppresses

the endpoint of 𝑇 until the site closest to its endpoint is not part of the protection set 𝐶 (𝑠)
of 𝑠 anymore (Figure 3.3b). At this point, some, but not all of the sites in 𝐶 (𝑠) are part of

the candidate set for the direction-based attack (Figure 3.3b), violating 𝑘-site-unidentifiability

for this attack function. Thus, truncation continues until either all the sites or none of the

sites in 𝐶 (𝑠) are part of the candidate set of 𝑓d anymore (Figure 3.3c). Note that, at this point,

neither 𝑓p nor 𝑓d allow for a distinction between the sites in𝐶 (𝑠). Thus, 𝑘-site-unidentifiability
is preserved, and the algorithm is done.

𝑇

𝑠 𝐶 (𝑠)

(a)

𝑇 ′

𝑠 𝐶 (𝑠)

(b)

𝑇 ′

𝑠 𝐶 (𝑠)

(c)

Figure 3.3: Schematic illustration of the geometric S-TT algorithm. (a) The original trajectory

𝑇 leads to a destination site 𝑠 , which has to be hidden among the sites in the protection set

𝐶 (𝑠), depicted as squares. The S-TT algorithm suppresses the trajectory’s endpoint iteratively

until (b) the site closest to the endpoint is not part of the protection set𝐶 (𝑠) and (c) a V-shaped
region that is aligned with the last segment of the truncated trajectory 𝑇 ′ contains either all
or, as in the depicted case, none of the sites in 𝐶 (𝑠).

33





Chapter 4

Map Matching for Semi-Restricted
Trajectories

This chapter is mainly taken from collaborative work with Timon Behr, Thomas C. van Dijk,

Jan-Henrik Haunert, and Sabine Storandt (Behr et al., 2021). While all co-authors contributed

to various aspects of the article, their individual contributions are summarized as follows:

• Timon Behr conducted and documented the experimental evaluation of our approach

(refer to Section 4.5).

• Thomas C. van Dijk focused on developing and implementing the extended network

model (refer to Section 4.4.2, Off-road candidates.).
• I (Axel Forsch), with assistance from Jan-Henrik Haunert, developed the map-matching

algorithm, including the energy model (refer to Section 4.4).

• Jan-Henrik Haunert and Sabine Storandt supervised the approach’s development and the

writing process.

The motivation for the work presented in this chapter stems from the field of trajectory

analysis, which often requires associating information from the road network with the trajec-

tory. In order to achieve this, map-matching algorithms are employed to find a corresponding

path in the road network for each trajectory. This chapter covers the problem of matching

trajectories to a road map, particularly considering trajectories that do not exclusively follow

the underlying network. Such trajectories arise, for example, when a person walks through

the inner part of a city, crossing market squares or parking lots. We call such trajectories

semi-restricted. Sensible map matching of semi-restricted trajectories requires distinguishing

between restricted and unrestricted movement. This chapter presents an approach that effi-

ciently and reliably computes concise representations of such trajectories that maintain their

semantic characteristics. The approach utilizes OpenStreetMap data to extract the network,

areas allowing unrestricted movement (e.g., parks), and obstacles (e.g., buildings). This infor-

mation is incorporated into the map-matching process. The method’s applicability is demon-

strated in an experimental evaluation of real-world pedestrian and bicycle trajectories.

35



4. Map Matching for Semi-Restricted Trajectories

4.1 Introduction

Map matching is the process of pinpointing a trajectory (given, e.g., as a sequence of GNSS

measurements) to a path in an underlying network. The goal is to find the path that explains

the observed measurements best. Map matching is often the first step of trajectory data pro-

cessing as there are several benefits when dealing with paths in a known network instead of

raw location measurement data:

• Both location measurements and geometric representations of roads are usually impre-

cise. Hence, constraining the trajectory to a path in a network is necessary to integrate

the information given with a trajectory (e.g., recorded speed, vehicle type) with the in-

formation given with the road data (e.g., speed limit, road type). This is important to

enable applications such as movement analysis or real-time navigation (Lou et al., 2009;

Taguchi et al., 2018).

• Storing raw data is memory-intensive (especially with high sampling densities). Paths

in a given network, on the other hand, can be stored very compactly, and many indexing

methods have been developed that allow huge path sets to be queried efficiently (Funke

et al., 2019; Krogh et al., 2016; Song et al., 2014a).

• Matching a trajectory to the road network enables data mining techniques that link at-

tributes of the road network to attributes of the trajectories. This is used to deduce rout-

ing preferences from given trajectories (Sultan et al., 2017; Oehrlein et al., 2017; Funke

et al., 2016; Brauer et al., 2021). In order to analyze and compare multiple trajectories,

the trajectories need to be matched to a common network beforehand.

However, suppose the assumption that a given trajectorywas derived from restrictedmove-

ment in a particular network is incorrect. In that case, map matching might heavily distort the

trajectory and possibly erase important semantic characteristics. For example, there could be

two trajectories of pedestrians who met in the middle of a market square, arriving from dif-

ferent directions. After map matching, not only would the aspect that the two trajectories got

very close at one point be lost, but the visit to the market square would be removed completely

(if there are no paths across it in the given network). Not applying map matching at all might

also result in misleading results, though, as the parts of the movement that actually happened

in a restricted fashion might not be discovered and – as outlined above – having to store and

query huge sets of raw trajectories is undesirable.

Hence, this chapter aims to design an approach that allows for sensible map matching

of trajectories that possibly contain on- and off-road sections, which we call semi-restricted
trajectories. The experimental evaluation shows that the approach computes paths that are

significantly more compact than the raw trajectory data but, at the same time, still faithfully

represent the original movement.

4.2 Related work

Due to its practical relevance, a vast body of work on map matching exists. Thus, this section

focuses on related work most relevant to the envisioned application scenario.

36



4.2. Related work

Map matching for restricted trajectories. According to a recent survey on map match-

ing (Chao et al., 2020), existing algorithms can be classified into four categories based on the

underlying matching principle: similarity models, state-transition models, candidate-evolving

models, and scoring models. Early map-matching approaches relied on geometric similarities

between the road network and the recorded trajectories (White et al., 2000). One problem with

these approaches is their sensitivity to measurement noise and low sampling rates. In order

to overcome this problem, more sophisticated approaches try to model sensible transitions be-

tween consecutive states. In this context, e.g., Hidden Markov Models (HMM) (Haunert and

Budig, 2012; Koller et al., 2015; Newson and Krumm, 2009) and reinforcement learning tech-

niques (Osogami and Raymond, 2013; Zhang and Masoud, 2020) were applied successfully.

Furthermore, incorporating guiding assumptions, such as that movements most likely follow

shortest paths, can help compute more meaningful matches and decrease the running time

(Eisner et al., 2011; Jagadeesh and Srikanthan, 2019).

Off-road and free space mapmatching. Map matching might also lead to artifacts in case

themovement did indeed happen in an underlying network, but the network data is incomplete.

Hence, several approaches that still produce high-quality matches in this scenario have been

developed by allowing the path to contain off-road sections (Aggarwal et al., 2011; Haunert

and Budig, 2012; Sasaki et al., 2019). However, these approaches rely on the assumption that

the unrestricted movement sequences are short, which is not necessarily true when dealing

with semi-restricted trajectories. Map matching for outdoor pedestrian trajectories with a high

degree of freedom often requires additional data to yield good results, such as data derived

from a smartphone accelerometer or compass (Ren and Karimi, 2012; Shin et al., 2010). In other

lines of work, the goal is to model the possible movement network as precisely as possible

(including, e.g., crosswalks) to be able to adapt conventional map matching techniques for

restricted movement (Bang et al., 2016). Most map-matching approaches for pedestrians focus

on indoor movement, though (Spassov et al., 2006; Wilk and Karciarz, 2014; Zhang et al., 2020).

However, these approaches do not consider the possibility of switching between restricted and

unrestricted movement and do not scale well enough to deal with large networks and rich map

contexts.

Representationmethods for unrestricted trajectories. Existing methods for storing and

indexing raw trajectories are often based on a partitioning of the ambient space, e.g., into

equally-sized grid cells or by constructing spatial data structures as CSE-Trees (Wang et al.,

2008), ST-R-trees or TB-trees (Pfoser et al., 2000). However, these approaches do not feature

any compression and are slow in case large trajectory sets are to be reported in a query. In

contrast, map-matched trajectories can be managed much more efficiently in terms of memory

and retrieval time using methods such as SPNET (Krogh et al., 2016), PRESS (Song et al., 2014a)

or PATHFINDER (Funke et al., 2019). To gain these advantages when dealing with unrestricted

trajectories, methods for computing an underlying graph for a given set of trajectories were

investigated (Buchin et al., 2020). This task is closely related to map generation from trajectory

sets (He et al., 2018; Li et al., 2019). However, these methods either discard outlier trajectories

completely or produce rather large graphs, which is undesirable in our application. Further-

37



4. Map Matching for Semi-Restricted Trajectories

Figure 4.1: Example of a map

with an embedded road network

as well as free spaces and ob-

stacles. The blue measurement-

based trajectory is best explained

by movement along the orange

dashed path, which follows roads

and free spaces where possible

but contains no obstacle intersec-

tions.

more, the computed graphs have to be updated whenever new trajectories arrive. This chapter

will discuss methods to produce graphs that cover free space areas so that all trajectories that

may traverse said free space are represented sufficiently well. This problem has also been in-

vestigated in the context of indoor navigation. One approach is to represent the traversable

space of floor plans by their skeleton, incorporating points of interest such as entrances and

exits (Elias, 2007).

4.3 Contribution

This chapter presents a pipeline that can accurately match semi-restricted trajectories to a map,

thereby overcoming several limitations of previous work. The following points are the main

contributions:

• An extended network model capable of handling semi-restricted trajectories is intro-

duced. In addition to the general graph representation of linear streets, tessellated free-

space polygons that represent areas of unrestricted movement (such as marketplaces or

parking lots) are added. An approach to obtain a sensible tessellation is discussed and an

open-source implementation is provided at https://github.com/tcvdijk/tessa. This contri-
bution was mainly performed by Thomas C. van Dijk.

• The map matching approach presented by Haunert and Budig (2012), originally devel-

oped to enable map matching on incomplete road network data, is extended signifi-

cantly. First, the approach is mademore efficient by incorporating ideas from Eisner et al.

(2011). More importantly, the algorithm is modified to work on the extended network

model. Among other things, this requires a carefully designed penalization scheme for

off-road sections. An open-source implementation is provided at https://gitlab.igg.uni-

bonn.de/graphlibrary. This contribution was mainly performed by Axel Forsch.

• Furthermore, obstacles are incorporated in the tessellation and the map-matching pro-

cess. Obstacles are polygons the map-matched path cannot intersect (e.g., buildings for

38

https://github.com/tcvdijk/tessa
https://gitlab.igg.uni-bonn.de/graphlibrary
https://gitlab.igg.uni-bonn.de/graphlibrary


4.4. Methodology

cycle trajectories). Taking obstacles into account requires additional processing steps

but allows us to produce more meaningful results.

• The approach is evaluated in an experimental study on real-world trajectories. The

evaluation investigates the accuracy of the computed paths, particularly concerning the

recognition of unrestricted movement sections. Figure 4.1 shows an example outcome

of the map-matching pipeline. This contribution was mainly performed by Timon Behr.

4.4 Methodology

In this section, themap-matching algorithm for semi-restricted trajectories is developed, starting
with a baseline method for trajectories restricted to a network (Section 4.4.1) and extending it

to deal with outliers, missing segments in the road data, and matches on designated free spaces

(Section 4.4.2).

4.4.1 A baseline algorithm for trajectories restricted to a network

The algorithm is based on a state-transition model where each point of a given trajectory is

represented by a set of matching candidates – the possible system states, i.e., positions of a

moving subject. This is similar to HMM-based map-matching algorithms, which aim to find a

sequence of positions maximizing a product of probabilities, each corresponding to a system

state or a state transition. In contrast, the presented algorithm aims tominimize a sumof energy

terms. By introducing weights for the energy terms that can be controlled with interactive

sliders, the algorithm user has an intuitive tool for finding a good parameter setting.

Input requirements. The algorithm works on a trajectory 𝑇 = ⟨𝑝1, . . . , 𝑝𝑘⟩ of 𝑘 points in

R2
, which we will call the trajectory points. Additionally, we have a directed, edge-weighted

graph 𝐺 = (𝑉 , 𝐸) that models the transport network. Every directed edge 𝑢𝑣 ∈ 𝐸 corresponds

to a directed straight-line segment representing a road segment with an allowed direction of

travel. For a road segment that can be traversed in both directions, 𝐸 contains the directed

edges 𝑢𝑣 and 𝑣𝑢. For an edge 𝑒 , let 𝑤 (𝑒) be its weight. In the basic setting, we will use the

Euclidean length as the weight, but note that other values are possible.

System states. For every trajectory point 𝑝𝑖 , we compute a set of matching candidates by
considering a disk 𝐷𝑖 of prescribed radius 𝑟 around 𝑝𝑖 : we select all road segments intersected

by𝐷𝑖 and pick the point nearest to 𝑝𝑖 on each. If such a point is not a vertex of𝐺 , we inject it as

a new vertex 𝑣 . (This means that we split each directed edge 𝑢𝑤 containing 𝑣 into two directed

edges 𝑢𝑣 and 𝑣𝑤 ; we distribute the weight of 𝑢𝑤 to the edges 𝑢𝑣 and 𝑣𝑤 proportionally to their

lengths.) Consequently, the set of matching candidates for 𝑝𝑖 is a set of vertices 𝑉𝑖 ⊆ 𝑉 . If 𝑉𝑖 is

empty, we discard the trajectory point 𝑝𝑖 and do not consider it for the matching.

State transitions. Possible transitions between candidates for two consecutive trajectory

points are not modeled explicitly. Instead, they are implicitly modeled with the graph 𝐺 by

39



4. Map Matching for Semi-Restricted Trajectories

assuming that the transition between any two matching candidates 𝑢 ∈ 𝑉𝑖 and 𝑣 ∈ 𝑉𝑖+1 oc-

curs via a minimum-weight 𝑢-𝑣-path in 𝐺 . Accordingly, the matched output path 𝑃 is defined

by selecting, for 𝑖 = 1, . . . , 𝑘 , one candidate 𝑣𝑖 from the set 𝑉𝑖 and connecting every pair of

consecutive vertices in the sequence ⟨𝑣1, . . . , 𝑣𝑘⟩ via a minimum-weight path.

Energy model. To ensure that the output path 𝑃 matches well to the trajectory, we set up

and minimize an energy function that aggregates a state-based and transition-based energy:

• The state-based energy is
∑𝑘

𝑖=1
∥𝑝𝑖 − 𝑣𝑖 ∥2, meaning that the energy increases quadratically

with the Euclidean distance between a trajectory point 𝑝𝑖 and the matching candidate 𝑣𝑖
selected for it.

• The transition-based energy is
∑𝑘−1

𝑖=1
𝑤 (𝑃𝑖,𝑖+1), where 𝑃𝑎,𝑏 is a minimum-weight 𝑣𝑎-𝑣𝑏-path

in𝐺 and𝑤 (𝑃) is the total weight of a path 𝑃 (i.e., the sum of the weights of the edges of

𝑃 ). For now, we use the geometric length of an edge as its weight.

The two energies are aggregated using a weighted sum, parametrized with a parameter 𝛼c.

This yields the overall objective function quantifying the fit between a trajectory ⟨𝑝1, ..., 𝑝𝑘⟩
and an output path defined with the selected sequence ⟨𝑣1, ..., 𝑣𝑘⟩ of vertices:

Minimize E(⟨𝑝1, ..., 𝑝𝑘⟩, ⟨𝑣1, ..., 𝑣𝑘⟩) = 𝛼c ·
𝑘∑︁
𝑖=1

∥𝑝𝑖 − 𝑣𝑖 ∥2 +
𝑘−1∑︁
𝑖=1

𝑤 (𝑃𝑖,𝑖+1) (4.1)

Algorithm. An optimal solution is computed using 𝑘 runs of Dijkstra’s algorithm on a graph

that results from augmenting 𝐺 with a few auxiliary vertices and edges. More precisely, we

use an incremental algorithm that proceeds in 𝑘 iterations. In the 𝑖-th iteration, it computes

for the subtrajectory ⟨𝑝1, . . . , 𝑝𝑖⟩ of 𝑇 and each matching candidate 𝑣 ∈ 𝑉𝑖 the objective value
E𝑣𝑖 of a solution ⟨𝑣1, ..., 𝑣𝑖⟩ that minimizes E(⟨𝑝1, . . . , 𝑝𝑖⟩, ⟨𝑣1, . . . , 𝑣𝑖⟩) under the restriction that

𝑣𝑖 = 𝑣 . This computation is done as follows.

• For 𝑖 = 1 and any vertex 𝑣 ∈ 𝑉1, E𝑣1 is simply the state-based energy for 𝑣 , i.e., E𝑣
1
=

𝛼c · ∥𝑝1 − 𝑣 ∥2.

• For 𝑖 > 1, we introduce a dummy vertex 𝑠𝑖 and a directed edge 𝑠𝑖𝑢 for each𝑢 ∈ 𝑉𝑖−1 whose

weight we set as E𝑢𝑖−1
; see Figure 4.2. With this, for any vertex 𝑣 ∈ 𝑉𝑖 , E𝑣𝑖 corresponds to

the weight of a minimum-weight 𝑠𝑖-𝑣-path in the augmented graph, plus the state-based

energy for 𝑣 . Thus, we are interested in finding for 𝑠𝑖 and every vertex in𝑉𝑖 a minimum-

weight path. All these paths can be found with one single-source shortest path query

with source 𝑠𝑖 and, thus, with a single execution of Dijkstra’s algorithm.

We observe that our objective function E(⟨𝑝1, . . . , 𝑝𝑖⟩, ⟨𝑣1, . . . , 𝑣𝑖⟩) for the whole trajectory has
the minimum value min𝑣∈𝑉𝑘 {E𝑣𝑘 } and is among the values we have computed. It is not difficult

to maintain information during the run of the algorithm to enable the reconstruction of a

solution attaining that value.

40



4.4. Methodology

𝑠𝑖

𝑢

𝑤

𝑣

𝑝𝑖

𝑝𝑖−1

𝑉𝑖

𝑉𝑖−1

Figure 4.2: The incremental step of our algorithm. From the dummy vertex 𝑠𝑖 , the shortest paths

to all vertices in 𝑉𝑖 are computed with one single-source shortest path query (see the dashed

lines). The weight of each path plus the state-based energy of the corresponding terminal is

used as the weight of a dummy edge in the next iteration.

4.4.2 Extensions for semi-restricted trajectories

The algorithm outlined in the previous section forces the output path to the road network,

which can lead to unfavorable solutions. Consider the example in Figure 4.3, where road seg-

ments are missing in the road data. A long and unrealistic detour is generated by forcing the

output path to the road network. More generally, we deal with the following issues:

• The trajectory contains outliers.

• The road data is incomplete, i.e., road segments are not modeled in the data.

• The trajectory traverses open spaces that are modeled as areas.

To deal with the first two issues, we allow trajectory points to be left unmatched and accord-

ingly introduce unmatched candidates. The third issue is handled by augmenting the road

network with additional edges, which we call off-road segments. Accordingly, a matching can-

didate on an off-road segment is called off-road candidate. These concepts are presented in

detail below, followed by a description of the extension of the energy model.

𝑝1

𝑝2 𝑝3

𝑝4

𝑝5

(a)

𝑝1

𝑝2 𝑝3

𝑝4

𝑝5

(b)

Figure 4.3: (a) Forcing the input trajectory (blue) to the network causes a detour in the output

path (dashed). (b) Adding unmatched candidates and connecting segments prevents the detour.

41



4. Map Matching for Semi-Restricted Trajectories

Unmatched candidates. For each trajectory point 𝑝𝑖 , we extend the set of candidates with

a candidate at the observed location. Analogously to the baseline algorithm, we add this can-

didate into the graph by inserting it as a vertex 𝑢𝑖 . For every vertex 𝑣𝑖−1 in the candidate set

of trajectory point 𝑝𝑖−1 and every vertex 𝑣𝑖+1 in the candidate set of trajectory point 𝑝𝑖+1 we

add directed edges 𝑣𝑖−1𝑢𝑖 and 𝑢𝑖𝑣𝑖+1, respectively. Figure 4.4 shows the extended graph for two

consecutive GNSS points with the additional edges shown in green. This approach guarantees

that there is always a fallback solution, which can be chosen if no path in the road network is

similar to the trajectory. We will associate the additional edges with high energy (see below) to

ensure they will be chosen only if necessary. In the following, we refer to the baseline method

with the extension to unmatched candidates as Baseline+.

𝑠𝑖

𝑝𝑖

𝑝𝑖−1

𝑉𝑖

𝑉𝑖−1

Figure 4.4: Extended graph to support unmatched segments. In addition to the candidates in the

road network, every trajectory point is treated as a candidate itself. Additional edges (green)

are introduced, connecting unmatched candidates (blue) to all candidates of the previous and

next trajectory points.

Off-road candidates. Most data sources represent open spaces such as public squares, parks,

or parking lots as polygonal areas. The algorithm described so far does not deal with this (see

Figure 4.5a). We extend the road network by triangulating all open spaces and adding tessella-

tion segments as edges into the graph (Figure 4.5b). In order to accurately represent polygons of

varying degrees of detail and to provide an appropriate number of off-road candidates, CGAL’s

meshing algorithm (Boissonnat et al., 2000) is used with an upper bound on the length of the

resulting edges and a lower bound on the angles inside triangles. The figure shows that this al-

gorithm can introduce additional vertices to achieve these constraints. Note that original road

segments can cross open spaces: this should be respected by the tessellation since on-road

candidates will be preferred over off-road candidates.

Extensions of energymodel. With the addition of the extensions to the baseline algorithm,

we now have three different sets of edges in the graph: the original edges of the road network

𝐸r, the edges incident to unmatched candidate vertices 𝐸u and the off-road edges on open spaces

𝐸t. We prefer on-road matches over off-road matches, while unmatched candidates are used

as a fallback solution and thus should only be selected if no suitable path over on- and off-

42



4.5. Evaluation

(a) (b)

Figure 4.5: (a) Roads in the network data. Movement on the open space (green) cannot be

matched appropriately (dashed). (b) Extended road network. Open spaces are tessellated in

order to add appropriate off-road candidates. Note that the green polygon has a hole that

remains untessellated since it is not open space. Also, note that additional vertices are added

to prevent skinny triangles.

road edges can be found. To model this, we adapt the energy function by changing the edge

weighting 𝑤 of the graph. We introduce two weighting terms 𝛼t and 𝛼u that scale the weight

𝑤 (𝑒) of each edge 𝑒 in 𝐸t or 𝐸u, respectively. The edge weighting function thus is defined as:

𝑤 (𝑒) =


ℓ (𝑒), 𝑒 ∈ 𝐸r

𝛼u · ℓ (𝑒), 𝑒 ∈ 𝐸u

𝛼t · ℓ (𝑒), 𝑒 ∈ 𝐸t

(4.2)

To favor matches in the original road network and keep unmatched candidates as a fallback

solution, 1 < 𝛼t < 𝛼u should hold. Together with the weighting factor 𝛼c for the state-based

energy, our final energy function thus comprises three different weighting factors.

4.5 Evaluation

This section evaluates the presented algorithm on real-world data. For this, a user study was

conducted around Lake Constance, Germany. The used data sources and the experimental

setup are described in Section 4.5.1. In Section 4.5.2, a detailed analysis of the quality of the

produced map-matching results is presented.

43



4. Map Matching for Semi-Restricted Trajectories

4.5.1 Experimental setup

In the experiments, data extracted from OpenStreetMap
1
(OSM) is used to model the road

network. Trajectories of pedestrians and cyclists recorded within the scope of a user study are

used as input trajectories. In the following, this setup is explained in detail.

Modelling the road network. The experimental region is composed of the area around

Lake Constance, Germany. For this region, data from OSM is extracted to build the road net-

work model used for matching. Elements tagged as highways are used to generate the road

network as described in Section 4.4.1. Tomake the road network feasible for cyclists and pedes-

trians, all roads not traversable for these modes of transport are removed. Altogether, a road

graph with 931,698 vertices and 2,013,590 directed edges was extracted.

The open spaces used for tessellation are identified by extracting polygons with special

tags. A list of tags representing spaces with unrestricted movement and tags representing ob-

stacles for movement was carefully selected. As the polygons extracted this way overlapped in

some areas, the input was sanitized: if an obstacle overlapped an open space, the open space

was cropped not to be covered by the obstacle. In the case that two open spaces overlapped,

they were split such that no overlap exists in the final data. This way, 6,827 polygons repre-

senting open spaces were extracted.

The tessellation of the open spaces was performedwith an upper bound of 25meters for the

length of the resulting edges. The lower bound for the inside angles of the triangles was kept

at the CGAL default value of approximately 20.6◦. These parameters were selected through

visual inspection of tessellation results. Subsequently, employing these parameters resulted in

a final graph that includes 1,148,213 vertices and 3,345,426 directed edges.

User study. A user study with five participants was conducted to evaluate the algorithm’s

performance. The participants were asked to record their cycling or walking trips with mobile

phones or similar location-recording devices. After each trip, the participant annotated all

sections of the trip where he or she left roads. This information serves as ground truth for

the evaluation to determine whether these segments were identified correctly. In total, 58

trajectories were gathered during the study. The length of these trajectories varies from 300

meters to 41.3 kilometers, and they contain 66 annotated off-road segments.

4.5.2 Map matching results

The evaluation of the proposed map matching algorithm for semi-restricted trajectories is per-

formed in two steps: In the first step, the sensitivity of the algorithm to parameter choices

in the energy model discussed in Section 4.4.1 and Section 4.4.2 is investigated. Thereupon, a

sensible parameter setting is deduced. In the second step, the matching results are analyzed

more thoroughly by comparing them to the Baseline+ algorithm without tessellation.

1
©OpenStreetMap contributors

44

https://www.openstreetmap.org/


4.5. Evaluation

Parameter tuning. Three crucial parameters in the extended energymodel govern the map-

matching process. First, there are the edge cost coefficients 𝛼t and 𝛼u, which for values larger

than one, penalize the usage of tessellation edges or edges incident to unmatched points, re-

spectively, in comparison to the usage of edges in the road network. Furthermore, the param-

eter 𝛼c allows us to fine-tune the impact of the Euclidean distance from a trajectory point to

its matched point on the map in the objective function.

Including edges incident to unmatched points is considered a last resort. Thus, 𝛼u is set

to 10 in all experiments. This value is sufficiently large to avoid unmatched points whenever

there are road network or tessellation edges in proximity. However, it is also small enough

not to induce unreasonably long detours if the trajectory crosses an area with no roads and is

also not a free space. For 𝛼t and 𝛼c, the best setting is less obvious, though. For too large 𝛼t

and too small 𝛼c, the algorithm would match trajectories only to paths in the road network.

Nevertheless, a too large value 𝛼c would render the algorithm too inflexible to find reasonable

paths, especially in the presence of outliers.

Hence, the following experiment is conducted to see how sensitive our algorithm is to the

choice of 𝛼t and 𝛼c, and to figure out which configuration to use in subsequent studies: 𝛼t is

varied from 1.0 to 3.0 in increments of 0.1 and 𝛼c is varied from 0.01 to 0.1 in increments of

0.01. Each of the resulting 310 combinations is assessed on how well the algorithm identifies

restricted and unrestricted movement in our labeled trajectory benchmark set. More precisely,

the true-positive rate of correctly recognized off-road segments (the higher, the better) and the

false-positive rate of actual road parts treated as off-road segments (the lower, the better) are

compared. The results are summarized on the left in Figure 4.6. The effect of certain parameter

combinations for matching an off-road part is illustrated in Figure 4.6, right.

A significant range of value combinations is clearly dominated by others, in particular the

ones with 𝛼t > 2 or 𝛼c < 0.05. For 𝛼t close to 1.0, unsurprisingly, the highest true-positive

rate is achieved; but also the highest false-positive rate for 𝛼t in [1.0, 2.0]. The true-positive

rate is relatively small for 𝛼c < 0.5. For 𝛼c chosen larger than that, the precise choice is not

that important as 𝛼t then seems to have a more substantial influence on the achieved trade-offs.

Furthermore, the precision and recall for the identification of on-road sections for all parameter

combinations are computed with the results that precision and recall tend to be close to 1.0 for

all tested 𝛼t and 𝛼c. Hence, the conclusion is that the algorithm is not overly sensitive to the

precise parameter choice. For subsequent experiments we chose 𝛼t = 1.1 and 𝛼c = 0.07.

Quality analysis. In the parameter tuning experiment, the analysis was limited to identify-

ing off- and on-road sections. The objective is to comprehensively analyze the overall matching

quality and compare the extended approach for semi-restricted map matching to Baseline+,
which does not use tessellated free spaces. This comparative evaluation will focus on two

aspects: (i) shape preservation of the input trajectories and (ii) compression and indexing of

trajectory sets.

The Fréchet distance and the Dynamic Time Warping (DTW) distance are computed be-

tween the input and the output curve to measure the preservation of the original trajectory’s

shape by the map-matching approach. These two distances are often applied to quantify shape

preservation and are defined as follows.

45



4. Map Matching for Semi-Restricted Trajectories

0.3

0.4

0.5

0.6

0.7

0.200 0.225 0.250 0.275 0.300

false positive rate

t
r
u
e
p
o
s
i
t
i
v
e
r
a
t
e

𝛼𝑡

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

𝛼𝑐

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Figure 4.6: Left: Classification results for off-road section identification for different parameter

configurations. Right: Effect of the parameter choice illustrated for an example instance. In

the upper image (𝛼t = 1.5, 𝛼c = 0.01), the trajectory points (blue crosses) are matched to the

cheap road network edges whenever possible. In the middle image (𝛼t = 1.5, 𝛼c = 0.10), the

increased candidate cost leads to a matching which deviates from the measurements as little

as possible. In the lower image (𝛼t = 1.1, 𝛼c = 0.01), the decreased tessellation edge cost leads

to more deviation from the road network as in the upper image. Despite those differences, the

middle part is matched to the same edges for all three configurations.

46



4.5. Evaluation

Definition 3 (Fréchet Distance). Given two polylines 𝐿, 𝐿′ with length 𝑘 and 𝑘 ′, respectively,
the Fréchet distance is defined as 𝑑𝐹 (𝐿, 𝐿′) ≔ inf𝜎,𝜃 max𝑡 ∈[0,1]



𝐿(𝜎 (𝑡)) − 𝐿′(𝜃 (𝑡))




2
where

𝜎 : [0, 1] → [1, 𝑘] and 𝜃 : [0, 1] → [1, 𝑘 ′] are continuous and monotonic and 𝜎 (0) = 𝜃 (0) =
1, 𝜎 (1) = 𝑘 and 𝜃 (1) = 𝑘 ′.

Definition 4 (DTW Distance). Given two polylines 𝐿, 𝐿′ with length 𝑘 and 𝑘 ′, respectively,
the DTW distance is the cost of the cheapest warping path between 𝐿 and 𝐿′. A warping path

is a sequence 𝑝 = (𝑝1, . . . , 𝑝𝑊 ) with 𝑝𝑤 = (𝑙𝑤, 𝑙 ′𝑤) ∈ [1 : 𝑘] × [1 : 𝑘 ′] for𝑤 ∈ [1 : 𝑊 ] such that

𝑝1 = (1, 1) and 𝑝𝑊 = (𝑘, 𝑘 ′), and 𝑝𝑤+1−𝑝𝑤 ∈ {(1, 0), (0, 1), (1, 1)} for𝑤 ∈ [1 : 𝑊 −1]. Thereby,
the cost of path 𝑝 is defined as

∑𝑊
𝑖=1



𝑝𝑖


2
. The normed DTW distance is the path cost divided

by 2 ·max{𝑘, 𝑘 ′}.
The Fréchet distance is a bottleneck measure, sometimes even used as the main objective

for map matching (Wei et al., 2013). DTW is frequently used in similarity analysis of time se-

ries and other sequenced data. It has the advantage that its value is determined by the whole

shapes and not just by a local dissimilarity maximum. The normed DTW distance is used for

the analysis, allowing for better comparability between input trajectories of different lengths.

Figure 4.7 shows the Fréchet and DTW distances for all off-road sections identified in the user

study; map matched by the tessellation-based algorithm and Baseline+. Although Baseline+ is

0

50

100

150

200

0 25 50 75 100

di
st
an
ce

[m
]

(a) Fréchet distance

0

25

50

75

100

0 25 50 75 100

di
st
an
ce

[m
]

(b) normalized DTW distance

Figure 4.7: Fréchet distance (a) and normalized DTW distance (b) between input trajectories

and the matched paths produced with the tessellation-based approach (blue) and Baseline+
(orange). In both cases, the trajectories (distributed over the x-axis) are sorted by the Fréchet

distance (resp. normalized DTW distance) of the tessellation-based approach.

more likely to keep original trajectory points in the map-matched path whenever free spaces

are traversed—and hence, the shape therein should be perfectly preserved—the tessellation-

based approach achieves comparable or even better shape similarity on most inputs. On aver-

age, paths computed with the tessellation-based approach had a Fréchet/DTW distance to the

47



4. Map Matching for Semi-Restricted Trajectories

original trajectory of 31.81/16.25, while for Baseline+ the respective values are 32.52/18.47. A
possible reason for the better shape preservation with the tessellation-based approach is that

transitions between restricted and unrestricted movement tend to be smoother; see Figure 4.8.

Next, further evaluation is performed to determine whether the tessellation-based addition

of roughly 1.3 million edges to the road network proves beneficial not only for shape preserva-

tion and unrestricted movement identification but also for compression purposes. To this end,

holes in the matched paths are counted. Here, a hole is a continuous subpath that is not repre-

sented by edges in the created graph but uses edges incident to unmatched points. The usage of

Baseline+ led to 43% more holes than the tessellation-based approach. Furthermore, the holes

resulting from Baseline+ are typically significantly longer. Holes require additional storage

and indexing effort as the contained edges are unlikely to be used by any other trajectories.

In contrast, tessellation edges may be traversed by many trajectory matches; see Figure 4.9

(left). This not only allows for better compression of trajectory sets but also helps to efficiently

retrieve and analyze similar trajectories and extract common movement patterns within a tra-

jectory set. Figure 4.9 further shows an example where Baseline+ computes a nonsensical

match for a trajectory that follows the shoreline but is then forced to follow existing paths, but

also an example where the tessellation-based approach fails due to a trajectory traversing an

open space which was not chosen for tessellation based on the existing OSM tags. However,

sensible matches using tessellation edges were identified for most of the tested instances.

4.6 Conclusion

This chapter introduced the notion of semi-restricted trajectories. It proposed a method for

map matching such trajectories to a carefully constructed graph consisting of the road net-

work and tessellated free spaces. It is shown that the resulting combined graph is only about

50% larger than the road network but enables a faithful representation of restricted and unre-

stricted movement at the same time. As evidenced in the experimental analysis, unrestricted

movement is, in most cases, correctly identified as such by the presented map-matching ap-

proach. Nevertheless, many interesting directions for future work could improve or extend the

approach. For example, different tessellation variants could be tested and compared. Currently,

an upper bound for the edge length allowed in the free space triangulations and a lower bound

for the angular resolution is used. The two bounds could be varied to achieve different pre-

cision and compression trade-offs for the matched trajectories. Other tessellation approaches,

e.g., based on polygon skeletons, could further help model natural movement in free spaces.

Furthermore, one could consider trajectories that enter and exit buildings similarly and try to

reliably infer the respective transitions from outdoor to indoor or vice versa. At the moment,

all buildings are treated as obstacles, but it is also possible to apply the model to the interior

of buildings to allow for indoor matching. Finally, while the approach is sufficiently fast with

query times below 0.5 seconds per trajectory, more efficient match computation might be pos-

sible by improved candidate vertex selection, especially within the tessellated free spaces.

48



4.6. Conclusion

Figure 4.8: Original trajectory measurements (blue crosses) and matched paths produced by

the tessellation-based approach (upper image) and Baseline+ (lower image). In tessellation-

basedmatching, the shape of the original trajectory is faithfully preserved, and the unrestricted

movement is correctly identified andmatched to tessellation points and edges. Using Baseline+,
the first part of the unrestricted movement is wrongfully matched to the path network, and

subsequently, the shape is locally distorted when the switch from restricted to unrestricted

movement occurs.

49



4. Map Matching for Semi-Restricted Trajectories

Figure 4.9: Upper left: Trajectories (dashed blue lines) traversing the same free space. The

yellow edges indicate their matched paths. Lower left: A trajectory (blue crosses) following

the shoreline of the lake. The Baseline+ approach matches this trajectory to far-away paths

and several groins, while the tessellation-based approach produces a more sensible match.

Right: Without sufficient tessellation edges, a trajectory traversing a large free space might

be matched to a path with a rather large detour.

50



Part II

Inferring Routing Preferences from
Trajectories

51





Chapter 5

Inferring Routing Preferences:
Motivation & Research Context

The increasing urbanization and the accompanying increase in urban population strain the

urban transportation system, leading to congestion, high levels of pollution, and noise emis-

sions (Sumantran et al., 2017). At the same time, physically inactive lifestyles are a major public

health challenge today. Active modes of transportation, such as walking or cycling, can posi-

tively affect both of these issues (Sallis et al., 2004). Therefore, urban transportation planning

experiences a shift away from private motorized transport towards transportation modes such

as walking, cycling, and public transport (Bertolini, 2020). The share of cycling as a mode of

transportation differs regionally, and infrastructure that meets cyclists’ requirements can en-

courage cycling (Dill and Carr, 2003; Hull and O’Holleran, 2014). Therefore, much research

into bikeability as a measure to quantify the suitability of urban networks for cycling has been

performed (Reggiani et al., 2022). Next to the general suitability for cycling, personal prefer-

ences and movement intent play a crucial role in cycling (Sultan et al., 2017; Oehrlein et al.,

2018). A short introduction to bikeability is given in the following, followed by an overview of

personal routing preference modeling.

5.1 Bikeability

In the context of transportation research, measures to assess the quality of the cycling infras-

tructure have been developed. One frequently cited term in this domain is Bikeability. Despite
its widespread use, the concept of bikeability lacks a universally agreed-upon definition, as

noted by Kellstedt et al. (2021). One commonly referenced definition is given by Lowry et al.

(2012), who characterize bikeability as “an assessment of an entire bikeway network for per-

ceived comfort and convenience and access to important destinations”.

While definitions vary, Arellana et al. (2020) identify five factors commonly considered in

quantifying bikeability: comfort, directness, coherence, attractiveness, and safety. Building

upon these factors, different bikeability indices have been introduced, including the Bikabil-

ity Index (BI, Lowry et al., 2012; Tayebeh Saghapour and Thompson, 2017), Bicycle-Level-of-

Service (BLOS, Landis et al., 1997), Bicycle Level of Traffic Stress (BLTS, Chen et al., 2017a;

53



5. Inferring Routing Preferences: Motivation & Research Context

Kent and Karner, 2019), the Interaction Hazard Score (IHS, Landis, 1994), and the Bicycle Com-

patibility Index (BCI, Harkey et al., 1998). These indices have been employed to evaluate the

Bikeability for numerous cities such as Graz (Krenn et al., 2015), Gothenburg (Manum et al.,

2017), Basel (Grigore et al., 2019), Munich (Schmid-Querg et al., 2021), and Berlin (Hardinghaus

et al., 2021), among others.

Crowd-sourced data holds significant relevance for quantifying factors influencing bike-

ability. For example, in the SimRa project (Karakaya et al., 2020) data on accidents, near-

miss incidents, and bike routes are collected through crowd-sourcing to gain insights into

cycling safety. Similarly, information on available bike parking is inferred from social media

images (Knura et al., 2021; Bimbao et al., 2022).

5.2 Individual routing preferences

The preceding section introduced bikeability as a metric used to assess the suitability of urban

infrastructure for cycling. However, while bikability aims to capture the cycling behavior of

the entire population, cyclists have heterogeneous routing preferences. Consequently, a single

routingmodel that suits all individuals typically does not exist (Reggiani et al., 2022). Moreover,

even for a single individual, preferences may change depending on the purpose of the trip. For

example, while commuting, one might prioritize the shortest route for efficiency, whereas, dur-

ing recreation trips, scenic routes may be preferred (Krizek et al., 2007). Hence, much research

has been performed to identify individual routing preferences.

Explicit vs implicit preferences. In psychology, two kinds of preference are distinguished:

explicit and implicit preferences (Nosek, 2007;Wilson et al., 2000). Explicit preferences describe

which preferences the user will state by themself when specifically asked for them. While the

answer to this question gives valuable insight into the incentives and deterrents of the user, it

is not clear whether the user knows their preference or whether the answer might be biased

due to social pressure (Greenwald and Banaji, 1995). In contrast to that, implicit preferences

correspond to subconscious behavior. Learning these preferences from questionnaires is im-

possible; they can only be derived from user actions (Friese et al., 2006). In some literature on

routing preferences, explicit and implicit preferences are also referred to as stated and revealed
preferences (Menghini et al., 2010; Rossetti et al., 2018; Hardinghaus and Weschke, 2022).

Discrete route choice modeling. Discrete route choice modeling is frequently applied in

transportation science to model route choice behavior. These models have two components:

generating a choice set comprising alternative routes between a given origin and destination

and evaluating the selection among these alternatives (Ben-Akiva et al., 2004).

Several algorithms have been developed for the choice set generation. For instance, Bovy

and Fiorenzo-Catalano (2007) propose a the Doubly-Stochastic Generation Function (DSGF) that
creates alternative routes in a multi-criteria routing model by randomly assigning costs and

cost coefficients to network links for each shortest-path query. In contrast, Hoogendoorn-

Lanser et al. (2006) apply a rule-based approach for choice set generation, where logical con-

straints ensure route diversity. Rieser-Schüssler et al. (2013) introduce the Breadth First Search

54



5.2. Individual routing preferences

on Link Elimination (BFS-LE) algorithm. This algorithm iteratively determines the least-cost

path between the origin and destination and subsequently introduces route diversity by sys-

tematically eliminating links within the network. Knapen et al. (2016) present a method to

segment a path into a minimal number of concatenated least-cost paths. While they do not

learn routing preferences directly, they highlight how to use this information in route choice

problems. In specific, the distribution of the size of the minimum decompositions can be used

for choice set generation. Our work is closely related to these authors’ work, but instead of

using geodesic shortest paths, we consider preference-weighted costs that are a linear combi-

nation of different basic costs.

Given the route choice set and the user’s selected route (either through questionnaires

or real-world observations in the form of GNSS trajectories), a routing preference is com-

puted (Ben-Akiva et al., 2004). The Path Size Logit model, introduced by Ben-Akiva and Bier-

laire (1999), is the most prevalent choice model in the routing context. It is a Multinomial

Logit Model (Washington et al., 2009) with correction terms for overlapping paths. The quality

of the analysis results is highly dependent on the choice set. Therefore, Halldórsdóttir et al.

(2014) conducted an efficiency analysis of choice set generation methods by comparing them

with real-world trajectories. Their findings suggest that both the BSF-LE and DSGF approaches

generate realistic routes. However, the discrete nature of choice set generation poses a limita-

tion, as it is impractical to enumerate all alternative routes.

Continuous preference mining. Continuous preference models have been applied in con-

trast to modeling routing behavior as a decision problem between discrete route choices. Much

research has been done to predict user behavior by analyzing the historical trajectories of the

users (Chen et al., 2011). These methods, however, strongly rely on frequently repeated routes,

such as a user’s daily trip to work. Hence, models that have been learned that way usually can-

not be applied in areas where no trajectories have been recorded. Probably the first method that

infers routing preferences from a sparse set of trajectories has been presented by Balteanu et al.

(2013). Their algorithm can even be applied to single trajectories. However, their method has

two drawbacks with respect to the practical relevance: Firstly, the algorithm yields reasonable

results only if the trajectory is close to the skyline, i.e., the set of all Pareto-optimal paths, and

thus cannot be applied to round trips. Secondly, the learned preference cannot be expressed as

a single edge cost and, thus, it cannot be used to compute new routes with standard routing

algorithms, such as the algorithm by Dijkstra (1959). Since then, further methods that apply to

single trajectories have been developed. Funke et al. (2016) presented a method for inferring

the routing preferences based on linear programming. Their algorithm requires, however, that

a user’s route is optimal for at least one linear combination of the edge costs. This is often

not the case for longer routes. Therefore, several publications focus on combining trajectory

segmentation and preference mining. Similarly, Barth et al. (2020) extended the approach of

Funke et al. (2016) by segmenting a path into as few as possible subpaths, such that for each

subpath, a linear combination of the edge costs can be found, for which it is optimal. However,

as each subpath is explained with a different linear combination, it is not obvious how to calcu-

late new routes from the results. In a later publication, Barth et al. (2021) cluster trajectories by

searching a minimum set of routing preferences so that each trajectory is optimal for at least

55



5. Inferring Routing Preferences: Motivation & Research Context

one of these preferences. Compared to the approach presented in Chapter 6, their approach

can deal with an arbitrary dimension of the preference vector. However, the authors did not

provide an upper bound on the running time of their algorithm. Additionally, the authors refer

to trajectory segmentation approaches to guarantee that there is an optimal routing preference

for each (sub-)trajectory. This segmentation is already included in the approach presented in

Chapter 6. In recent years, deep learning approaches have been applied to preference mining.

For instance, Yu et al. (2020) propose a Recurrent Graph Network model designed to deal with

the sparsity and uneven distribution of trajectory data. Similarly, Marra and Corman (2021)

use a convolutional neural network to model route choice in public transportation networks.

While these deep learning approaches have the advantage that they can capture non-linear

routing objectives, they typically require large amounts of training data, which is often not

available.

Bicycle routing. Previous studies in the field of routing preferences examined the explicit

preferences of cyclists. Sener et al. (2009) performed a survey on preferred route attributes

and found that cyclists prefer routes with no on-road parking, low traffic volume, continuous

bicycle facilities, and lower roadway speed limits. In a further analysis, they evaluated ad-

ditional detours a cyclist is willing to take to stick to these preferences. Emond et al. (2009)

and Majumdar et al. (2015) identified perceived safety as a major incentive for route choice.

Based on this research, Rossetti et al. (2018) propose a choice model to aid cycling infrastruc-

ture planning. Similarly, Ehrgott et al. (2012) present a route choice model based on a bicriterial

routing model. They analyze the trade-off between travel time and suitability for cycling that

cyclists are willing to make. Hardinghaus and Nieland (2021) use a different approach for learn-

ing routing preferences. In their work, they analyzed the routing settings of users of a public

bike routing engine. They conclude that minimizing the trip’s length, using minor roads, and

having a high-quality surface heavily outweigh the importance of dedicated cycling infrastruc-

ture. The diversity of the route preferences among cyclists is highlighted by Hardinghaus and

Weschke (2022), who show that route preferences vary significantly between different demo-

graphic groups. According to the authors, especially for vulnerable road users, such as older

people, dedicated bicycle infrastructure is important. The results of these studies allow for a

pre-selection of routing criteria to be analyzed in the context of the implicit routing preferences

of cyclists.

56



Chapter 6

An Algorithm Using a Compression
Criterion

The following chapter is based on joint work with Johannes Oehrlein, Benjamin Niedermann,

and Jan-Henrik Haunert (Forsch et al., 2023). An outline of a preliminary version of this al-

gorithm has been published by Oehrlein et al. (2017). With support from Johannes Oehrlein,

I (Axel Forsch) have improved the efficiency of the preliminary algorithm. Benjamin Nieder-

mann and Jan-Henrik Hauert supervised me in developing and writing-up the improved algo-

rithm, representing its first detailed publication.

The presented algorithm for inferring routing preferences is tailored for sparse sets of

crowd-sourced trajectories. It addresses two main challenges often overlooked by existing

methods: (a) the small number of trajectories provided per user and (b) the highly heteroge-

neous nature of the input, including round trips or trips with long detours that traditional

preference models cannot explain. These challenges are tackled using a compression-based

model predicated on the assumption that trajectories consist of optimal subpaths.

The optimal path between two vertices in a graph depends on the optimization objective,

often defined as a weighted sum of multiple criteria. When integrating two criteria, their rela-

tive importance is expressed with a balance factor 𝛼 . This chapter presents a new approach for

inferring 𝛼 from trajectories. The core of the approach is a compression algorithm that requires

a graph𝐺 representing a transportation network, two edge costs modeling routing criteria, and

a path 𝑃 in𝐺 representing the trajectory. It yields a minimum subsequence 𝑆 of the sequence of

vertices of 𝑃 and a balance factor 𝛼 , such that the path 𝑃 can be fully reconstructed from 𝑆 ,𝐺 ,

its edge costs, and 𝛼 . By minimizing the size of 𝑆 over 𝛼 , we learn the balance factor that cor-

responds best to the user’s routing preferences. In an evaluation with crowd-sourced cycling

trajectories, the usage of official signposted cycle routes against other routes is weighted. More

than 50% of the trajectories can be segmented into five optimal subpaths or less. Almost 40%

of the trajectories indicate that the cyclist is willing to take a detour of 50% over the geometric

shortest path to use an official cycle path.

57



6. An Algorithm Using a Compression Criterion

6.1 Introduction

Route planning tools play an important role in modern mobility. They are used for commuting,

i.e., to find the best path from one location to another, and for leisure activities, such as scenic

cycling round trips that start and end at the same location. For both applications, it is crucial

to choose the optimization objective, i.e., the definition of "best" such that it reflects a user’s

preferences. Classically, an optimal path from 𝑠 to 𝑡 is the geodesic shortest path in a road

network, i.e., it is optimal with respect to the Euclidean length of the path’s road links or

the path with the shortest travel time. However, many more criteria (e.g., number of traffic

lights, total ascent) can be applied. Hence, the definition of an optimal path varies widely. To

provide users with good route planning, we must work with their personal preferences. Take

the bicycle trajectories depicted in Figure 6.1 as an example. Between 𝑠 and 𝑡 , the red trajectory

corresponds to the length-minimal path in the network. The question arises as to why the

cyclist who recorded the yellow trajectory prefers a longer trip over the length-minimal path.

In the concrete example, the cyclist used a path that, in contrast to the length-minimal path,

consists of paths that are part of signposted cycle routes (green). Thus, a likely explanation is

that the cyclist tried to use recommended paths, still trying to keep the length of the trip short.

𝑠

𝑡

Figure 6.1: Extract of the road map of the German city of Cologne. The road network segments

(gray) that are part of official cycle routes are presented with a green background. Furthermore,

there are two bicycle trajectories with different 𝑠-𝑡 paths (red and yellow). The red trajectory

is optimal with respect to distance and avoids official cycle routes completely. It has a length

of 3.4 km. The cyclist of the yellow trajectory used a path with a length of 5.9 km. It consists

mainly of official cycle routes, namely 95% of its length.

58



6.1. Introduction

While this observation applies to that particular trajectory, a systematic analysis of hun-

dreds of trajectories promises statistical evidence on the chosen optimization criteria and the

extent to which the criteria have been taken into account. These insights into the users’ prefer-

ences and priorities concerning the optimization criteria may help both individual route plan-

ning and infrastructure planning by appropriately balancing the applied optimization criteria.

In the following, we distinguish between implicit and explicit routing preferences. In the ex-

ample given in Figure 6.1, it may be valid to conclude that the cyclist who generated the yellow

trajectory had an implicit preference for signposted cycle paths since the trajectory data sug-

gests a strong bias towards such paths. However, the explicit preferences of the cyclist might

have been to choose scenic routes or routes with low traffic volumes—conditions that are often

found at signposted paths. This chapter focuses on inferring the user’s implicit preferences

based on their recorded trajectories.

Large sets of crowd-sourced trajectories are collected in the context of Volunteered Geo-

graphic Information (VGI, Goodchild, 2007). A key characteristic of these datasets is that they

contain many trajectories of recreational activities. These recreational activities often do not

aim to minimize a specific optimization criterion but to have a scenic route of a specific length.

As such, they contain significant detours that often cannot be explained by a single (combined)

optimization criterion. Thus, many established approaches for preference inference fail to an-

alyze these trajectories. Take the example of a round trip: the corresponding trajectories start

and end at the same location. Therefore, they are not optimal for any optimization criterion.

Nonetheless, it seems natural that the user stuck to favorable roads as much as possible, re-

sulting in multiple optimal subtrajectories. Appropriate tools are needed to analyze the rich

information source provided by VGI sources concerning the underlying implicit optimization

criteria. In this chapter, we suggest such a tool. Our approach is to determine the parameter

of a routing model such that a given trajectory (or set of trajectories) can be partitioned into a

minimum number of optimal paths with respect to that model. We base our approach on the

findings of Gotsman and Kanza (2013) and Lerin et al. (2013), who have, independently of each

other, shown how to compute a compact representation of a user’s path by partitioning it into

a minimum number of optimal paths. The authors have noted that the better the optimization

criterion used by the optimal-path algorithm matches the user’s routing preferences, the more

compact representations are obtained. In this chapter, we reverse this argument by arguing

that if a routing model induces a partition of a trajectory into a small number of optimal paths,

then it reflects the user’s preferences well. This adheres to the Minimum Description Length

Principle, introduced by Grünwald et al. (2005), which states that the best explanation for a

given data set is the one with the highest compression. The presented approach aims to in-

fer routing preferences from a wide range of trajectories, e.g., trajectories of commuters and

recreational cyclists. In particular, we neither require that the trajectories have been chosen to

minimize a specific optimization criterion nor do we exclude such trajectories.

A preliminary version of the algorithm presented in this publication has already been used

by Oehrlein et al. (2017, 2018) to analyze the influence of the slope on bicycle routing and to

approve a classification of road types into favorable and unfavorable types. Both of these publi-

cations focus on the application of the algorithm without explaining its functionality in detail.

This chapter gives a detailed presentation of the algorithm. Additionally, the computational

59



6. An Algorithm Using a Compression Criterion

complexity of the algorithm is improved. The algorithm’s applicability is shown by its ability

to analyze whether and how cyclists prefer signposted cycling routes over other routes. In

the experiments, the algorithm classifies the trajectories in the data set into three classes, with

the trajectories in the class representing cyclists willing to take detours to stick to signposted

cycling routes accounting for 37% of all trajectories.

The chapter is structured as follows. An overview of related work is given in Section 6.2. In

Section 6.3, the approach for finding the optimization criterion corresponding to the minimal

segmentation of the input path is outlined. The results of the experimental evaluation of the

approach are presented in Section 6.4. The chapter is concluded in Section 6.5. The implemen-

tation of the approach is available as open source at https://gitlab.vgiscience.de/forsch/routing-

preferences.

6.2 Related work

The algorithm presented in this chapter is based on compressing the trajectories into as few as

possible subtrajectories. In this section, a review of literature related to trajectory segmentation

and trajectory compression is presented. A summary of related work in bicycle routing and

routing preferences is given in Chapter 5.

Trajectory segmentation. In trajectory segmentation, a trajectory is split into subtrajec-

tories by time interval, shape, or semantic meaning (Zheng, 2015). Existing approaches work

point-based, e.g. by identifying stay points (Li et al., 2008) or by extracting interesting places

(Feuerhake et al., 2011), or segment-based by requiring certain properties to be similar on a

segment. We will focus on the latter, which is closely related to the approach presented in

this chapter. Buchin et al. (2011) present a framework to segment a trajectory into a minimum

number of segments such that each segment fulfills a spatio-temporal criterion. For monotone
criteria (i.e., criteria that, if they hold for a certain segment, they also hold for every subseg-

ment), the authors present an efficient algorithm to compute the segmentation. Aronov et al.

(2016) show that this problem is, in general, NP-hard when considering non-monotone crite-

ria. Nonetheless, they show that for some non-monotone criteria, polynomial-time algorithms

exist. Alewijnse et al. (2014) introduce a broader class of criteria, namely stable criteria, whose
validity does not often change along the trajectory. For such criteria, they present an efficient

segmentation algorithm. Trajectory segmentation is often combined with a classification of the

segments. In a first step, Zhang et al. (2011) segment trajectories based on changes in travel

mode, and in a second step, they classify the segments according to the travel mode. Similarly,

Alewijnse et al. (2018) partition trajectories into classifiable subtrajectories. For the classifica-

tion, they restrict themselves to spatio-temporal information extracted from the trajectories,

whereas we want to derive semantic information from an underlying graph. Depending on the

application, this graph yields information about the road network or its surroundings. Seg-

mentation has also been considered for trajectories matched to a network, which we call paths.
Knapen et al. (2016) segment a path into a sequence of shortest subpaths. They present a

method to enumerate all minimal decompositions of a trajectory, which are decompositions

comprising the fewest subpaths possible. The authors emphasize the utility of their approach

60

https://gitlab.vgiscience.de/forsch/routing-preferences
https://gitlab.vgiscience.de/forsch/routing-preferences


6.3. Methodology

in travel simulation for generating route choice sets. Knapen et al. (2020) developed the concept

of minimum path decompositions focusing on the context of modeling routing behavior. Here,

it is utilized to detect locations in the network that serve as preferred intermediate destina-

tions. However, the authors maintain that geometric shortest paths are used as the underlying

principle for decomposition. The algorithm presented in this chapter relaxes this constraint

by finding the minimal decompositions based on a routing preference model. This approach

yields not only the minimal decomposition but also the corresponding preference value, thus

giving direct insight into the routing behavior of the user.

Trajectory compression. Existing methods in trajectory compression can be classified into

two groups: geometric and network-based approaches. Geometric approaches handle trajec-

tory data in its raw form, represented as a sequence of spatio-temporal points. For instance,

Wang et al. (2014) propose SharkDB, a framework for in-memory trajectory storage. Other al-

gorithms in this context include variations of the R-tree spatial datastructure (Guttman, 1984),

which are optimized for trajectory data (Pfoser et al., 2000; Šaltenis et al., 2000; Tao et al., 2003).

However, in the context of this chapter, network-based storage and indexing techniques are

most relevant. In this variant, the trajectories are conceptualized as paths in an underlying net-

work, obtained by applying map-matching algorithms to the raw trajectories (see Chapter 4).

Song et al. (2014a) present the PRESS framework, which compresses the trajectories’ tempo-

ral and spatial components individually. For compressing the spatial component, they replace

sections of the paths that are geometric shortest paths between their first and last vertex with

these vertices, a process known as shortest-path encoding (Krogh et al., 2016). Similarly, Kel-

laris et al. (2013) adopt a comparable approach but utilize shortest paths based on the number

of vertices along the path to achieve higher compression ratios. Another notable framework,

PATHFINDER by Funke et al. (2019), utilizes Contraction Hierarchies (Geisberger et al., 2012)

to compress trajectories by representing them as shortcut paths in said hierarchy. Remarkably,

this method is capable of handling continent-sized networks efficiently.

In conclusion, the decomposition of trajectories into optimal subpaths plays an essential

role in trajectory compression. Thus, our approach to learning the balance factor that mini-

mizes the number of subpaths could also prove beneficial in this domain.

6.3 Methodology

Section 6.3.1 introduces this chapter’s notation and theoretical background. Subsequently, the

approach for inferring routing preferences from sparse sets of trajectories is presented. The

approach consists of two major components. At first, Section 6.3.2 presents an algorithm that,

given a path, returns the set of balance factors for which this path is optimal. Section 6.3.3

then discusses how this algorithm can be used to calculate the balance factor for which the

path segmentation into optimal subpaths is minimal.

61



6. An Algorithm Using a Compression Criterion

6.3.1 Preliminaries

In this section, the graph-theoretical background of the approach is introduced and the termi-

nology used throughout the chapter is defined. Let 𝐺 = (𝑉 , 𝐸) be a directed weighted graph

with the vertex set 𝑉 and the edge set 𝐸. 𝐺 represents the road network, with edges being

road links and vertices being road intersections or dead ends. Two non-negative edge costs

𝑐0(𝑒) and 𝑐1(𝑒) are assigned to each edge 𝑒 ∈ 𝐸, representing the effort needed to traverse the

edge. These costs model the routing criteria. For example, they quantify the distance along an

edge, the time needed to traverse the edge or its total ascent. The algorithms require 𝑐0(𝑒) and
𝑐1(𝑒) to be integer numbers. However, this is not a severe limitation as we can choose a fine

discretization of continuous edge attributes.

We consider a bicriteria routing model that describes the trade-off between the two criteria

𝑐0 and 𝑐1. We combine these costs linearly using a balance factor 𝛼 ∈ [0, 1]. We obtain a

personalized edge cost

𝑐𝛼 (𝑒) = (1 − 𝛼) · 𝑐0(𝑒) + 𝛼 · 𝑐1(𝑒) . (6.1)

The factor 𝛼 expresses the preference towards the two initial edge costs: a value close to zero

implies a preference towards 𝑐1 while a value close to one implies a preference towards 𝑐0.

Given the balance factor of a user, an optimal route can be found by applying a shortest-path

algorithm on 𝐺 using their personalized edge cost.

A trajectory is a sequence of location measurements reflecting the movement of a person

or an object. To combine the information of the road network and a trajectory, the trajectory is

matched to the road network graph𝐺 (for reference, see Chao et al. (2020); Jiang et al. (2022)).

The matched trajectory is a sequence 𝑃 = (𝑒1, . . . , 𝑒𝑛) of 𝑛, not necessarily distinct edges in 𝐺 ,

which we refer to as path. Equation 6.1 generalizes to the personalized cost of a path 𝑃 by

𝑐𝛼 (𝑃) =
∑︁
𝑒∈𝑃

𝑐𝛼 (𝑒)

= (1 − 𝛼) ·
∑︁
𝑒∈𝑃

𝑐0(𝑒) + 𝛼 ·
∑︁
𝑒∈𝑃

𝑐1(𝑒)

= (1 − 𝛼) · 𝑐0(𝑃) + 𝛼 · 𝑐1(𝑃)
= 𝑐0(𝑃) + 𝛼 ·

(
𝑐1(𝑃) − 𝑐0(𝑃)

)
. (6.2)

We say that 𝑃 is 𝛼-optimal for a given value 𝛼 if there is no other path 𝑄 that starts and ends

at the same vertices as 𝑃 and whose personalized cost 𝑐𝛼 (𝑄) is less than 𝑐𝛼 (𝑃). Following

from Equation 6.2, for a path 𝑃 , the personalized cost 𝑐𝛼 can be treated as a function over

the balance factor 𝛼 , resulting in a line with vertical intercept 𝑐0(𝑃) and slope 𝑐1(𝑃) − 𝑐0(𝑃).
Consequently, we can consider the set of all 𝑠-𝑡 paths, that is, all paths sharing the same terminal

vertices 𝑠 and 𝑡 , as a family of lines, see Figure 6.2. The following refers to a family of 𝑠-𝑡-

lines as line arrangement. The paths that are 𝛼-optimal for some 𝛼 ∈ [0, 1] form the lower
envelope E : [0, 1] → R≥0 of the corresponding line arrangement, see the orange highlighting

in Figure 6.2b. A path (and thus a line) on the lower envelope for a given 𝛼 can be found by

performing a query for a path from 𝑠 to 𝑡 in 𝐺 that is optimal with respect to 𝑐𝛼 .

The section of a line on the lower envelope forms the optimality range of the corresponding
path. For this 𝛼-interval the path is 𝛼-optimal. As a line is linear and defined over the whole

62



6.3. Methodology

𝑠

𝑡(𝑐0, 𝑐1) = (4, 0)

(1, 3)

(4, 3)
(2, 1)

(a)

𝛼0 1

𝑐𝛼

1
2
3
4

1
2
3
4

(b)

Figure 6.2: (a) A set of 𝑠-𝑡 paths with costs (𝑐0, 𝑐1) and (b) the corresponding line arrangement;

colors are chosen accordingly. In (b), the lower envelope E is highlighted in orange.

interval [0, 1], every line has at most one section on the lower envelope. Thus, the optimality

range is either empty, a single value, or an interval. In Figure 6.2, the optimality range of the

red path is empty, and the optimality ranges of the green, blue, and black paths are [0, 1/3],
[1/3, 2/3], and [2/3, 1], respectively.

6.3.2 Calculating optimality ranges for paths

Given an 𝑠-𝑡 path 𝑃 , we want to identify the 𝛼-interval for which 𝑃 is optimal regarding the

routing model introduced in Section 6.3.1. We call this problem OptimalityRange. More

formally, we solve the following problem:

Problem 1 (OptimalityRange). Given a graph 𝐺 with edge cost functions 𝑐0 and 𝑐1, and a

path 𝑃 , find Iopt = {𝛼 ∈ [0, 1] | 𝑃 is 𝛼-optimal}.

A known algorithm for finding elements on the lower envelope. Funke and Storandt

(2013) have solved the problem of decidingwhether a path 𝑃 is part of the lower envelope. Their

algorithm, called WitnessSearch, searches for a single 𝛼 value for which 𝑃 is optimal. If such

a value can be found, 𝑃 is part of the lower envelope; if no value can be found, 𝑃 is not part of

the lower envelope. We use WitnessSearch as the starting point for our algorithm. Due to

the algorithm’s importance for this chapter, we elaborate on their findings in more detail in the

following. The algorithm of Funke and Storandt works iteratively. In every step, an interval I∗
is considered that is guaranteed to contain the optimality range Iopt completely. From step to

step, this interval I∗ is reduced until a point 𝛼∗ within the optimality range is found, or its size

falls below the minimum size of an optimality range,
1
which implies that the optimality range

is empty. If the optimality range is not empty, WitnessSearch returns a point 𝛼∗ within the

optimality range and the interval I∗ as considered in the final iteration of the algorithm. In the

other case, the path is not optimal for any 𝛼 . Thus, the algorithm for finding the full optimality

range can be omitted in this case. The running time of WitnessSearch is in O
(
SPQ · log(𝑀𝑛)

)
,

where SPQ is the running time of an optimal-path query in𝐺 , 𝑛 is the number of vertices in𝐺 ,

and𝑀 is the maximum edge cost among all the edge costs 𝑐0 and 𝑐1.

1
Mehlhorn and Ziegelmann (2000) have shown that the minimal slope difference between two lines is bound by

O(𝑛−2𝑀−2), where𝑀 is the maximum edge cost, resulting in a minimal bound on the size of an optimality range.

63



6. An Algorithm Using a Compression Criterion

𝛼

𝑃

𝛼∗𝑙𝑜𝑤∗ 𝑢𝑝𝑝∗

𝑐𝛼

Figure 6.3: The output of WitnessSearch that we use as input for our algorithm: a balance

factor 𝛼∗ for which path 𝑃 (blue) is 𝛼-optimal and the interval I = [𝑙𝑜𝑤∗, 𝑢𝑝𝑝∗] (green) that is
guaranteed to contain the optimality range Iopt of 𝑃 completely. In specific, 𝑙𝑜𝑤∗ and 𝑢𝑝𝑝∗ are

values where the line for 𝑃 crosses another line of the line arrangement and 𝛼∗ = 𝑙𝑜𝑤∗+𝑢𝑝𝑝∗
2

.

An extension yielding the optimality range. So far, only one element 𝛼∗ within the op-

timality range Iopt = [𝛼 ′, 𝛼 ′′] of 𝑃 is known. We continue by searching for the boundaries

of Iopt. To that end, we use the results of WitnessSearch that are displayed in Figure 6.3. In

particular, these are a balance factor 𝛼∗ for which 𝑃 is optimal with respect to 𝑐𝛼∗ and the inter-

val I∗ = [𝑙𝑜𝑤∗, 𝑢𝑝𝑝∗] that is guaranteed to contain the optimality range Iopt of 𝑃 completely.

More specific, 𝑙𝑜𝑤∗ and 𝑢𝑝𝑝∗ are values where the line for 𝑃 crosses another line of the line

arrangement and 𝛼∗ = 𝑙𝑜𝑤∗+𝑢𝑝𝑝∗
2

.

𝑃

𝛼𝑙𝑜𝑤 𝑢𝑝𝑝

𝑙𝑜𝑤 𝑢𝑝𝑝

𝛼

𝑐𝛼

𝛼 ′

(a) Case 1

𝑃

𝛼𝑙𝑜𝑤 𝑢𝑝𝑝

𝑃

¯̄𝛼 = 𝛼 ′ 𝛼

𝑐𝛼

(b) Case 2a

𝑃

𝛼𝑙𝑜𝑤 𝑢𝑝𝑝

𝑙𝑜𝑤 𝑢𝑝𝑝

¯̄𝛼

𝑃

𝛼 ′ 𝛼

𝑐𝛼

(c) Case 2b

Figure 6.4: Search for the lower bound of the optimality range. The search interval is marked

green (its current state is darker than the next). (a) If 𝑃 is optimal with respect to 𝑐𝛼 , the search

for the lower bound continues in [𝑙𝑜𝑤, 𝛼]. (b) If 𝑃 is optimal with respect to 𝑐 ¯̄𝛼 , the lower

bound of the optimality range is found, and the algorithm terminates. (c) At 𝛼 , the path 𝑃 is

dominated by 𝑃 . The search continues in [ ¯̄𝛼,𝑢𝑝𝑝] where ¯̄𝛼 marks the intersection of 𝑃 and 𝑃 .

We know that 𝛼 ′, 𝛼 ′′ ∈ I∗ = [𝑙𝑜𝑤∗, 𝑢𝑝𝑝∗]. In particular, 𝛼 ′ ∈ [𝑙𝑜𝑤∗, 𝛼∗] and 𝛼 ′′ ∈
[𝛼∗, 𝑢𝑝𝑝∗] hold. In the following, we describe how to determine 𝛼 ′ with a binary search that

64



6.3. Methodology

Algorithm 2: FindOptimalRangeLowerBound

Data: path 𝑃 , 𝛼∗, 𝑙𝑜𝑤∗ as given by WitnessSearch (Funke and Storandt, 2013)

Result: lower bound 𝛼 ′

1 𝑢𝑝𝑝 ← 𝛼∗;
2 while true do
3 𝛼 ← (𝑙𝑜𝑤 + 𝑢𝑝𝑝)/2 ;

4 𝑃 ← argmin𝑃 ′ 𝑐𝛼 (𝑃 ′) ; // optimal path wrt. 𝑐𝛼

5 if 𝑐𝛼 (𝑃) = 𝑐𝛼 (𝑃) then // Case 1: 𝑃 is optimal wrt. 𝑐𝛼 (Figure 6.4a)

6 𝑢𝑝𝑝 ← 𝛼 ;

7 else // Case 2: 𝑃 is not optimal wrt. 𝑐𝛼

8 ¯̄𝛼 ← 𝑐0(𝑃) − 𝑐0(𝑃)
𝑐1(𝑃) − 𝑐0(𝑃) − 𝑐1(𝑃) + 𝑐0(𝑃)

; // crossing of 𝑃 and 𝑃

9 ¯̄𝑃 ← argmin𝑃 ′ 𝑐 ¯̄𝛼 (𝑃 ′) ; // optimal path wrt. 𝑐 ¯̄𝛼

10 if 𝑐 ¯̄𝛼 (𝑃) = 𝑐 ¯̄𝛼 (𝑃) then // Case 2a: 𝑃 is optimal wrt. 𝑐 ¯̄𝛼 (Figure 6.4b)

11 return ¯̄𝛼 ;

12 else // Case 2b (Figure 6.4c)

13 𝑙𝑜𝑤 ← ¯̄𝛼 ;

uses the structure of the line arrangement. The search for 𝛼 ′′ is organized symmetrically. This

procedure is summarized in Algorithm 2 and visualized in Figure 6.4. In every iteration, a

search interval I = [𝑙𝑜𝑤,𝑢𝑝𝑝] is given and the following invariants hold:

(1) the lower bound 𝛼 ′ is contained in I,

(2) at value 𝑙𝑜𝑤 , the line for 𝑃 crosses another line of the line arrangement,

(3) 𝑃 is optimal with respect to 𝑐𝑢𝑝𝑝 .

The interval I1 = [𝑙𝑜𝑤∗, 𝛼∗] as given by WitnessSearch fulfills these properties and is

used as input for the first iteration. We consider the central value 𝛼 =
𝑙𝑜𝑤+𝑢𝑝𝑝

2
of I. In each

iteration, one of the following cases can occur; see Figure 6.4. Figure 6.4a displays Case 1. In

this case, 𝑃 is optimal with respect to 𝑐𝛼 , and the next iteration continues with a search in

[𝑙𝑜𝑤, 𝛼]. Otherwise, in Case 2, there exists another path 𝑃 that is optimal with respect to 𝑐𝛼 .

This path 𝑃 has the same cost as 𝑃 for some value ¯̄𝛼 and dominates 𝑃 in [0, ¯̄𝛼]. Case 2 has two
subcases depending on the 𝛼-optimality of 𝑃 with respect to the crossing point ¯̄𝛼 . Figure 6.4b

shows Case 2a, where 𝑃 is an optimal path with respect to 𝑐 ¯̄𝛼 and thus the lower bound of the

optimality range is found, and the algorithm terminates. Otherwise, in Case 2b highlighted

in Figure 6.4c, the search continues in [ ¯̄𝛼,𝑢𝑝𝑝]. In all cases, the invariants hold, and either the

solution is found or the search interval I is reduced by at least half.

The lower bound, 𝛼 ′, is found at the latest when the size of the search interval I falls below

the minimum size of the optimality range. The search for 𝛼 ′′ is done symmetrically. Hence, in

the worst case, the search interval needs to be reduced from [0, 1] to below the minimal size

65



6. An Algorithm Using a Compression Criterion

twice: once for the lower bound 𝛼 ′, once for the upper bound 𝛼 ′′. Consequently, the optimality

range is found in O
(
SPQ · log(𝑀𝑛)

)
time. Thus, the computational complexity of the presented

algorithm to solve OptimalityRange is lower by a factor of O
(
log(𝑀𝑛)

)
compared to the

version presented by Oehrlein et al. (2017).

6.3.3 Calculating minimal milestone segmentations

Given a path 𝑃 and a balance factor 𝛼 a milestone segmentation is a decomposition of 𝑃 into

the minimum number of subpaths {𝑃1, . . . , 𝑃𝑘 }, such that every subpath 𝑃𝑖 with 𝑖 ∈ {1, . . . , 𝑘}
is 𝛼-optimal. We call the split vertices between the subpaths milestones. To infer the routing

behavior of the user, we search for the balance factor 𝛼 ∈ [0, 1] whose milestone segmentation

has the minimum number of subpaths over all milestone segmentations of 𝑃 .

Problem 2 (MilestoneSegmentation). Given a graph 𝐺 with edge cost functions 𝑐0 and 𝑐1,

and a path 𝑃 , find 𝛼 ∈ [0, 1] and a milestone segmentation of 𝑃 with respect to 𝛼 that is as

small as possible. That is, no 𝛼 yields a milestone segmentation of 𝑃 with a smaller number of

subpaths than 𝛼 .

To solve MilestoneSegmentation, we compute a set that contains a milestone segmenta-

tion of 𝑃 for every 𝛼 , then we select an optimal milestone segmentation. Enumerating the set of

milestone segmentations is done by adopting a concept known as start-stop matrix (Alewijnse

et al., 2014; Aronov et al., 2016). A start-stop matrix is a matrixM, where entryM[𝑖, 𝑗] is a
Boolean value indicating whether the subpath starting at the 𝑖-th vertex of the path and ending

at the 𝑗-th vertex of the path fulfills the segmentation criterion. In our case, 𝛼-optimality is the

segmentation criterion. In MilestoneSegmentation, we do not solve the segmentation for a

single 𝛼 , but we search for the 𝛼 value minimizing the number of subpaths over all 𝛼 ∈ [0, 1].
Therefore, instead of storing Boolean values in the start-stop matrix, we store the optimality

interval for the corresponding subpath. This allows us to use the same matrix for all 𝛼 values.

Figure 6.5 shows the (Boolean) start-stop matrix for a single 𝛼 , retrieved by applying the ex-

pression 𝛼 ∈ M[𝑖, 𝑗] to all elements of the matrix. For a path 𝑃 consisting of 𝑘 vertices, we

consider a (𝑘 × 𝑘)-matrixM of subintervals of [0, 1]. The entryM[𝑖, 𝑗] in row 𝑖 and column 𝑗

corresponds to the optimality range of the subpath of 𝑃 starting at its 𝑖-th vertex and ending at

its 𝑗-th vertex. Since we are interested only in subpaths with the same direction as 𝑃 , we focus

on the upper triangle matrix with 𝑖 ≤ 𝑗 . Solving MilestoneSegmentation with a start-stop

matrix splits the problem into filling the matrix and solving for an optimal segmentation.

Computing the start-stop matrix. Due to the optimal substructure of shortest paths (Cor-

men et al., 2009), for 𝑖 < 𝑘 < 𝑗 , bothM[𝑖, 𝑗] ⊆ M[𝑖, 𝑘] andM[𝑖, 𝑗] ⊆ M[𝑘, 𝑗] hold. This
results in the structure visible in Figure 6.5, where no red cell is below or left of a green cell.

Therefore, when computing the start-stop matrix, we start at the lower left corner and fill each

row starting from its main diagonal. That way, we can limit the search space forM[𝑖, 𝑗] to
the intersection of the already computed values ofM[𝑖 + 1, 𝑗] andM[𝑖, 𝑗 − 1]. This is espe-
cially useful if one of these intervals is empty, meaning the current interval is also empty, and

computation in this row can be stopped.

66



6.3. Methodology

1

ℎ

1 ℎ
stop

st
ar
t

Figure 6.5: Depiction of a start-stop matrix

of a path consisting of ℎ = 8 vertices for a

fixed 𝛼 ∈ [0, 1]. Green elements indicate that

𝛼 ∉ M[𝑖, 𝑗] whereas red elements indicate

the opposite. The black line represents a min-

imum path segmentation into three subpaths

(𝑣1, 𝑣4, 𝑣7, 𝑣8) resulting from a forward search.

1

ℎ

1 ℎ
stop

st
ar
t

Figure 6.6: In addition to the segmentation of

the forward search (black, see also Figure 6.5),

the segmentation when searching backward

(gray) is displayed. The blue lines indicate the

milestone suites. Note that the first milestone

suite degenerated into a single vertex.

Solving for an optimal segmentation. Once the start-stop matrix is set up, the abovemen-

tioned substructure optimality makes it easy to find a solution to the segmentation problem

for a fixed 𝛼 . According to Buchin et al. (2011), for example, an exact solution to this problem

can be found with a greedy approach in O(ℎ) time; see Figure 6.5. Knapen et al. (2016) have

shown that applying the greedy approach twice, once starting from the beginning vertex and

once from the end vertex of 𝑃 , results in pairs of milestones that form the terminal vertices

of a milestone suite. The milestone can be chosen arbitrarily inside a milestone suite without

violating the segmentation into optimal subpaths. Note, however, that choosing a milestone in

a specific milestone suite might fix the milestone location in other milestone suites. The size of

a milestone suite is the distance along the path between its terminal vertices. In Figure 6.6, the

forward and backward searches are indicated by a black and gray line, respectively, resulting

in one milestone suite of size zero and one milestone suite of size one (blue). If multiple seg-

mentations have the same number of subpaths, we use their summed milestone suite sizes as

a tiebreaker. To have the highest adaptability of the learned balance factor, we consider larger

milestone suite sizes better than smaller ones.

Since we consider a finite set of intervals, we know that if a minimal solution exists for

an 𝛼 ∈ [0, 1], it also exists for one of the values bounding the intervals inM. Consequently,

we can discretize our search space without loss of exactness, and each of the O(ℎ2) opti-
mality ranges yields at most two candidates for the solution. For each candidate, a mini-

mum segmentation is computed in O(ℎ) time. Thus, we end up with a total running time

of O
(
ℎ2 · (ℎ+SPQ log(𝑀𝑛)

)
where 𝑛 denotes the number of vertices in the graph and ℎ denotes

the number of vertices in the considered path. Thus, the algorithm is efficient and yields an ex-

67



6. An Algorithm Using a Compression Criterion

act solution to MilestoneSegmentation. The solution consists of the intervals of the balance

factor producing the best personalized costs with respect to the input criteria.

Guaranteeing the existence of amilestone segmentation. Finally, there may be nomile-

stone segmentation for a general graph 𝐺 = (𝑉 , 𝐸) and a path 𝑃 in 𝐺 . Consider, for example,

the case in Figure 6.7a, in which 𝑃 consists of a single edge 𝑒 = {𝑠, 𝑡} whose costs 𝑐0(𝑒) and
𝑐1(𝑒) are larger than the costs 𝑐0(𝑄) and 𝑐1(𝑄), respectively. Since 𝑃 is dominated by𝑄 for any

𝛼 ∈ [0, 1] and since we cannot subdivide 𝑃 into shorter paths in 𝐺 , the path 𝑃 does not admit

a partition into 𝛼-optimal subpaths.

𝑃 = (𝑒)
7, 8

1, 1
2, 11, 2

2, 3

𝑠 𝑡

𝑄

(a)

𝑎
7, 8

2, 2
4, 22, 4

4, 6
7, 8
𝑏

(b)

7, 8
2, 2

4, 22, 4
4, 6

7, 8

𝑃1 = (𝑎) 𝑃2 = (𝑏)

(c)

Figure 6.7: (a) A graph with a path 𝑃 = (𝑒) that does not admit a milestone segmentation

and (b) the result of our method that ensures the feasibility of the problem. Comma-separated

numbers represent 𝑐0 and 𝑐1. (c) Milestone decomposition after applying our method. Path 𝑃

is split into two subpaths, with the newly introduced vertex being the milestone.

However, we can ensure a solution exists with a simple pre-processing step. For this, we

introduce a new vertex 𝑤 for each edge {𝑢, 𝑣} ∈ 𝑃 and replace that edge with two edges

𝑎 = {𝑢,𝑤} and 𝑏 = {𝑤, 𝑣}, both in 𝐺 and 𝑃 . We define 𝑐0(𝑎) = 𝑐0(𝑏) = 𝑐0(𝑒) as well as
𝑐1(𝑎) = 𝑐1(𝑏) = 𝑐1(𝑒) and double the costs of each unchanged edge in 𝐺 ; see Figure 6.7b.

Thereby, we ensure that the costs 𝑐0 and 𝑐1 are still integer. The costs of paths in the original

graph are exactly doubled. Thus, if they were 𝛼-optimal in the original graph, they remain

𝛼-optimal after the modification. After the pre-processing step, however, every edge {𝑢, 𝑣} of
𝑃 is 𝛼-optimal for any 𝛼 ∈ [0, 1]. Therefore, a milestone segmentation exists, and an optimal

milestone segmentation of 𝑃 contains at most |𝑃 | paths — or 2|𝑃 | paths if we consider the size
|𝑃 | of 𝑃 in the original graph. Note that 𝑃 in its entirety is still not 𝛼-optimal for any 𝛼 ∈ [0, 1].
We deliberately do not want to change the optimality of paths in the original graph. Instead,

𝑃 is now guaranteed to have a milestone segmentation using the newly introduced vertices as

milestones; see Figure 6.7c. The asymptotic running time of our algorithms is not affected by

our method to guarantee the existence of a milestone segmentation.

68



6.4. Evaluation

6.4 Evaluation

This section presents the experimental evaluation of the algorithm. The experiments are set

up to examine how much cyclists stick to official bicycle routes. For this, the following edge

costs are defined:

𝑐0(𝑒) =
{

0, if 𝑒 is part of an official bicycle route

𝑑 (𝑒), else.

𝑐1(𝑒) =
{
𝑑 (𝑒), if 𝑒 is part of an official bicycle route

0, else.

(6.3)

Hence, in our cost function, we use edge costs 𝑐0 and 𝑐1 that, apart from an edge’s geodesic

length 𝑑 , depend only on whether the edge in question is part of an official bicycle route. Since

𝑐0 and 𝑐1 are discrete cost functions, the costs of each edge are rounded to the accuracy of one

decimeter. With respect to the personalized cost 𝑐𝛼 = (1− 𝛼) · 𝑐0 + 𝛼 · 𝑐1, the possible outcome

can be interpreted as follows. Suppose there is a path 𝑃1 entirely using official bicycle routes.

Its cost is: 𝑐𝛼 (𝑃1) = 𝛼 · 𝑐1(𝑃1) = 𝛼 · 𝑑 (𝑃1). Further, let 𝑃2 be a path entirely using routes not
part of official bicycle routes. Its cost is 𝑐𝛼 (𝑃2) = (1−𝛼) · 𝑐0(𝑃2) = (1−𝛼) ·𝑑 (𝑃2). If both paths

have the same cost given a certain value for 𝛼 , the following equation holds:

𝛼 · 𝑑 (𝑃1) = (1 − 𝛼) · 𝑑 (𝑃2) (6.4)

A minimal milestone segmentation for 𝛼 = 0.5 suggests that minimizing geodesic length

outweighs the interest in official cycle paths. A value 𝛼 < 0.5 indicates avoidance of official

cycle paths, whereas 𝛼 > 0.5 indicates the opposite, i.e., preference. Specifically, if we are

interested in the relative detour 𝛿Pro a cyclist is willing to take in order to stick to official

bicycle routes, we can transform Equation 6.4:

𝛿Pro =
𝑑 (𝑃2)
𝑑 (𝑃1)

=
𝛼

(1 − 𝛼) (6.5)

In contrast, the detour 𝛿Con a cyclist is willing to take in order to avoid official bicycle routes

can be computed using the inverse of Equation 6.5. For our analysis, we will use the following

combined detour function, which Table 6.1 provides some exemplary values for:

𝛿 (𝛼) =


𝛿Con − 1, if 𝛼 < 0.5

0, if 𝛼 = 0.5

𝛿Pro − 1, if 𝛼 > 0.5

(6.6)

Table 6.1: A selection of 𝛼 values and their meaning. The column 𝛼 = 0.5 ± 0.1 indicates that

with 𝛼 = 0.4 (or 0.6), the user is willing to cover 50% extra distance to use preferred roads.

𝛼 = 0.5 ± 𝑥 0 0.0025 0.01 0.1 1/6 0.25 1/3 0.4 0.45

detour 𝛿 0 1% 4% 50% 100% 200% 400% 800% 1800%

69



6. An Algorithm Using a Compression Criterion

In the experiments, we limit ourselves to 𝛼 ∈ [0.05, 0.95] to avoid 𝛼 ∈ {0, 1}. In these

two cases, for every road segment 𝑒 , either 𝑐0(𝑒) = 0 or 𝑐1(𝑒) = 0 holds. In such a graph, for

any 𝑠-𝑡 path, there are numerous alternatives of the same cost, which only differ in additional

segments of cost zero. Computing shortest paths is time-consuming in this graph since many

vertices must be explored. Besides, considering a detour of up to 1800% seems sufficient.

6.4.1 Data and experimental setup

This section describes the setup in more detail. The road network, including information about

bicycle routes, is obtained from OpenStreetMap
2
(OSM) and comprises the area 5.99

◦ − 7.67
◦ 𝐸

and 50.47
◦ − 51.47

◦ 𝑁 . It contains only roads that are, according to OSM tags, open to cyclists.

(a) road network

0.0% 2.5% 5.0% 7.5%
share of paths

0

5

10

15

20

25

30

35

40

45

50

55

60

le
ng

th
[k
m
]

1179

405

301

215

147

144

112

91

59

49

28

19

(b) path lengths

Figure 6.8: (a) The road network of the city of Cologne, the center of the area containing the

examined trajectories. Only roads and paths that are accessible for cyclists are on display.

Roads and paths that are part of an official signposted cycle route are drawn as green lines. (b)

Geometric length of the matched paths.

Figure 6.8a shows an extract of this road network data. We transform the road network

into a directed graph𝐺 = (𝑉 , 𝐸), such that for each edge (𝑢, 𝑣) ∈ 𝐸 also the reverse edge (𝑣,𝑢)
is contained in 𝐸. This means that we do not consider one-way restrictions in the experiments,

though generally, the algorithm can handle them. The two cost functions 𝑐0, 𝑐1 : 𝐸 → N are

defined as in Equation 6.3.

2
www.openstreetmap.org

70



6.4. Evaluation

In order to reduce the complexity of the graph, we remove vertices with degree two from

𝐺 . More precisely, when removing a vertex 𝑢 with two outgoing edges (𝑢, 𝑣) and (𝑢,𝑤) as well
as the corresponding incoming edges (𝑣,𝑢) and (𝑤,𝑢), we replace the four edges with (𝑣,𝑤)
and (𝑤, 𝑣). The costs of (𝑣,𝑤) are the summed costs of (𝑣,𝑢) and (𝑢,𝑤); the costs of (𝑤, 𝑣)
are the summed costs of (𝑤,𝑢) and (𝑢, 𝑣). We denote the resulting graph by 𝐻 . That way, the

graph could be reduced from 3.5 million vertices and 7.8 million edges to 0.9 million vertices

and 2.5 million edges.

The trajectory data used in the experiments stems from the user-driven platform GPSies
3
.

Different groups of cyclists use this platform, which features a wide range of cycling activities,

from scenic bike touring to mountain biking to road biking. Thus, the analysis is expected to

find different routing preferences. In total, 1016 trajectories are obtained by querying trajecto-

ries recorded by cyclists around the German city of Cologne in a search radius of 25 km. The

trajectories have a length up to 60 km.

To analyze the trajectories with our algorithm, they must be converted to paths in 𝐺 . We

are working with data from VGI sources; therefore, we need a map matching that is robust to

possible data inconsistencies. To that end, the map-matching algorithm Baseline+ as presented
in Chapter 4 is used. This algorithm is designed explicitly for incomplete road networks or

trajectories leaving the road network. If such an inconsistency is detected, the corresponding

trajectory is split into multiple parts, and each part is matched to an individual path. The

map-matching algorithm has two parameters: the candidate and unmatched costs. We set the

parameter candidate cost to 0.02 and the parameter unmatched cost to 3.0. This parameter

choice is recommended by the authors and performed well on our input data, as validated by a

visual examination of the results. We filtered the resulting paths with a minimum length of 100

meters. We end up with a total number of 2750 paths with a mean distance of 12.3 kilometers

(see Figure 6.8b).

In case a start or end point of a path 𝑃 was mapped to a point 𝑝 in the interior of an edge 𝑒

of 𝐺 , we temporarily injected 𝑝 as a new vertex of 𝐺 by splitting 𝑒 into two edges. We obtain

𝑃 as a sequence of edges of𝐺 . We linearly distributed the costs of the edge 𝑒 over the two new

edges. In the reduced graph 𝐻 , we temporarily insert the sequence of degree-two vertices of

𝑃 containing additional vertices (like 𝑝) as well as the connecting edges, which allows us to

consider 𝑃 as a sequence of edges in 𝐻 . We further apply the pre-processing step described

in Section 6.3.3 to ensure that the path has a milestone segmentation. All changes on 𝐻 are

undone before the next path is considered.

The experiments were performed on an AMD Ryzen Threadripper 3970X 32-core proces-

sor. The machine is clocked at 3.7 GHz and provides our program with 13 GB RAM. The

implementation is written as a single-threaded Java application, and the experiments were ex-

ecuted in a Java 11 Runtime Environment. The implementation uses two open-source libraries:

GeoTools (Turton, 2008) for handling geographic data and JGraphT (Michail et al., 2020) for the

graph structures and algorithms.

3
www.gpsies.com, [no longer availiable], downloaded: May 2018

71



6. An Algorithm Using a Compression Criterion

6.4.2 Case study on a single trajectory

Before analyzing the examined 2750 paths, the results for a single path of 10.0 km length are

scrutinized. Figure 6.9 shows the trajectory as well as an optimal solution of MilestoneSeg-

mentation.

a

e

b

c

d

Figure 6.9: The user’s path (yellow) has an optimal milestone segmentation with four mile-

stones: 𝑎, 𝑏, 𝑐 , and 𝑑 (blue). Disregarding minor shiftings of 𝑎 and/or 𝑏, this is a valid optimal

segmentation for each 𝛼 ∈ [0.511, 0.607] (compare with Figure 6.10). The subpath (𝑎, 𝑏) is 𝛼-
optimal for 0.511 ≤ 𝛼 ≤ 0.607 only. Therefore, for 𝛼 = 0.5, i.e., the geodesic shortest path, an

additional milestone 𝑒 (red) is needed.

In this example, we found an optimal segmentation by assuming that cyclists are willing to

take a detour between 𝛿 = 4% and 𝛿 = 54% over the length of the shortest path, corresponding

to 𝛼 ∈ [0.511, 0.607]. The milestone suites for this interval are shown in blue. When assuming

that cyclists are sticking to the geodesic shortest path, an additional milestone must be placed

inside milestone suite 𝑒 depicted in red. Figure 6.10 (right) depicts every segmentation our

algorithm finds for this trajectory. The two segmentations shown in Figure 6.9 are highlighted

by a blue and red line, respectively. In dark gray, the milestones found by the forward search

are shown with the corresponding milestone suite depicted in light gray. We observe that the

72



6.4. Evaluation

0% 20% 40% 60% 80% 100%
progress from 𝑠 to 𝑡 along the path

0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

0 10
size

ba
la
nc
e
fa
ct
or

𝛼

𝑑𝑐𝑏

𝑒

𝑎

Figure 6.10: (left) Milestone plot for the path presented in Figure 6.9. The milestone segmen-

tations over all 𝛼 values are shown. The gray marks indicate the milestone positions as found

by a forward search. The light gray areas denote the milestone suites for the corresponding

milestones. The blue line represents an optimal milestone segmentation at 𝛼 = 0.58 with mile-

stones in 𝑎, 𝑏, 𝑐 , and 𝑑 . For 𝛼 = 0.5 (red), an additional milestone in 𝑒 is needed. (right) The

number of milestones needed per 𝛼 .

sizes of the individual milestone suites grow towards the optimal interval 𝛼 ∈ [0.511, 0.607].
Specifically, look at milestone suite 𝑒: where it first appears at 𝛼 = 0.511, it spans a large

portion of the path, while it quickly shrinks until it is replaced by two separate milestones at

𝛼 ≈ 0.36. This observation supports our initial assumption that larger milestone suites are

more adaptive and, thus, less prone to overfitting. The milestone plot shown in Figure 6.10 is

suitable for further analysis of the trajectory and its surrounding road network as it shows for

every 𝛼 value where milestones are necessary. Since this chapter focuses on analyzing user

preferences, research on this matter is postponed. Figure 6.10 (left) summarizes the milestone

plot by showing how the size of the shortest milestone segmentation depends on 𝛼 .

6.4.3 Analyzing all trajectories

First, we use the algorithm to divide the set of trajectories into three groups: Pro, Con, and

Indiff. The group Pro comprises trajectories for which a milestone segmentation of minimal

size can only be found for 𝛼 > 1

2
. We interpret such a result that way that the trajectory was

planned in favor of official cycle routes. Conversely, we consider it as avoidance of official

cycle routes if milestone segmentations of minimal size exist only for 𝛼 < 1

2
. The group Con

represents these trajectories. Considering trajectories lacking this clarity, we refrain from a

strict categorization into one of the two groups above. These trajectories form a third group,

Indiff. The results of this classification are displayed in Figure 6.11. The group Pro being over

four times larger than the group Con is a first indicator that cyclists prefer official cycle routes

73



6. An Algorithm Using a Compression Criterion

over other roads and paths. The group Con is the smallest group with a share of 8% of all paths.

We assume this group mainly consists of road cyclists who prefer using roads over cycleways.

This could be verified in future research by analyzing a data set of annotated trajectories.

0% 10% 20% 30% 40% 50%

share of paths

Con 𝛼 < 0.5

Indiff else

Pro 𝛼 > 0.5

Figure 6.11: Size of the categories Pro (green, 998 paths), Con (red, 230 paths), and Indiff

(gray, 1522 paths)

For a more detailed evaluation of the results, we introduce the deficiency Δ of a segmenta-

tion S to compare segmentations of different paths to each other. For a path 𝑃 , the deficiency

Δ(𝛼) that compares the number of subpaths in S(𝛼) to the number of subpaths in an optimal

segmentation of 𝑃 , |Sopt |:

Δ(𝛼) = |S(𝛼) ||Sopt |
− 1. (6.7)

Phrased differently, the deficiency describes the share of additional subpaths needed for a given

𝛼 value. Thus, it can be considered a percentage. Following this definition, the deficiency of an

optimal segmentation of 𝑃 is 0%, and the worse an 𝛼 value fits the user’s preference, the more

the deficiency increases.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0%

20%

40%

60%

80%

100%

s
h
a
r
e
o
f
p
a
t
h
s
p
e
r
g
r
o
u
p

All

Indiff

Pro

Con

𝛼

Figure 6.12: Share of paths per group that are optimal for the given 𝛼 . The maxima are marked

with a circle and are achieved for 𝛼 ≈ 0.4974 (Con, red), 𝛼 ≈ 0.5721 (Pro, green), 𝛼 = 1

2
(Indiff,

gray), and 𝛼 = 0.5004 (all trajectories, black).

Figure 6.12 displays for every 𝛼 the share of the evaluated paths that are optimal with

respect to the corresponding combined cost function 𝑐𝛼 . Put differently, the figure shows the

74



6.4. Evaluation

share of paths with zero deficiency for the given 𝛼 . Considering the group Pro (green), the

maximum share is reached with 𝛼 ≈ 0.5721 as the balance factor. This corresponds to detours

of more than 30% and emphasizes the preference for official cycle routes. The second group,

Indiff (gray), reaches its optimum for 𝛼 = 0.5, i.e., for minimizing route length. Indeed, more

than 94% of this group’s paths have an optimum milestone segmentation for this 𝛼 value. This

causes a significant shift in the overall results (black). The balance factor that has, over all

groups, the highest share of optimal paths is 𝛼 ≈ 0.5004, corresponding to detours of about

0.2%. Although this value is relatively small, the relevance of official cycle paths is undeniable.

Figure 6.13 supports this claim. It displays for every 𝛼 the average deficiency of the evaluated

paths. A segmentation for 𝛼 ≈ 0.5004 takes, on average, only about 14% more milestones

than the respective minimum segmentation. Also, on average, less than 50% milestones extra

compared to the minimum segmentation is achieved for 𝛼 ∈ [0.4824, 0.5980] corresponding
to detours of less than 8% (avoiding cycle routes) and 50% (favoring cycle routes), respectively.

This shows howmuch better the trajectories can be described under the assumption that official

cycle routes are preferred. Considering an accepted detour of 50% likewise to avoid official cycle

routes (i.e., 𝛼 = 0.4), one needs, on average, more than 2.5 times the number of milestones

compared to the minimum segmentation, see the red line in Figure 6.13.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0%

100%
200%
300%
400%
500%

av
er
ag
e
de
fic
ie
nc
y

𝛼

Figure 6.13: For every 𝛼 value, the average deficiency over all evaluated paths is displayed. For

the interval 𝛼 ∈ [0.4824, 0.5980] (gray), the average deficiency is lower than 50% (indicated by

the dashed line). For 𝛼 = 0.4120 (red), the symmetric value to 𝛼 = 0.5980 (green), assuming an

avoidance of official cycle routes, the deficiency is three times as high.

Even if cyclists want to stick to official cycle routes, they might not take the optimal path

because the difference between the optimal path and the path taken is too small to be notice-

able. Still, in our mathematical model, a milestone needs to be inserted. Therefore, instead of

only looking at an optimal segmentations, we can evaluate for which 𝛼 values a path can be

segmented with a given maximum deficiency. Not requiring zero deficiency allows for intro-

ducing some inaccuracies into the model. Specifically, for a path 𝑃 , we call a balance factor 𝛼

acceptable if Δ(𝛼) ≤ Δ∗ for a given maximum deficiency Δ∗. Figure 6.14 shows the share of

trajectories in each group acceptable for maximum deficiencies of {0%, 25%, 50%, 75%, 100%}.
Following the definition of the groups, for Δ∗ = 0%, group Pro contains no acceptable paths

for 𝛼 < 0.5, and group Con has no acceptable paths for 𝛼 > 0.5. When the maximum allowed

deficiency increases, the share of acceptable paths naturally increases for a given 𝛼 . Note,

however, how the shapes of the plotted lines change: while the lines for group Pro are very

75



6. An Algorithm Using a Compression Criterion

asymmetric with a steep increase at around 𝛼 = 0.5, the lines for group Con get more or less

symmetric around 𝛼 = 0.5. In fact, for Δ∗ = 100%, the share of acceptable paths for 𝛼 > 0.5

is larger than the share of acceptable paths for 𝛼 < 0.5. While cyclists of this group seem to

avoid official cycling routes, the earlier-mentioned observations reveal that this is only a minor

repulsion.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0%

20%

40%

60%

80%

100%

s
h
a
r
e
o
f
p
a
t
h
s

𝛼

0%

25%

50%

75%

100%

(a) group Pro

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0%

20%

40%

60%

80%

100%

s
h
a
r
e
o
f
p
a
t
h
s

𝛼

0%

25%

50%

75%

100%

(b) group Con

Figure 6.14: Share of trajectories per group acceptable for a given maximum deficiency Δ∗.
Each line per graph shows one maximum deficiency value between 0% and 100%. Note that the

lines for 0% are already displayed in Figure 6.12.

Next to the inference of routing preferences, our approach can be used to compress tra-

jectory data. Assuming no equal-cost 𝑠-𝑡-paths are in the graph 𝐺 , a path 𝑃 in 𝐺 can be fully

reconstructed given 𝑠 , 𝑡 , 𝛼 , and the corresponding milestones. The paths in our data set con-

sist of 172614 vertices in 𝐺 . Using our approach, this data can be expressed by 2357 vertices,

resulting in a compression factor of 98.63%.

Finally, we take a look at the running times. For each of the 2750 paths, we measured

the running time of our algorithm. The median running time of our algorithm per path was

1.40 minutes, and the maximum running time was 4165 minutes. Of the 2750 runs, 984 runs

needed more than five minutes, while 1307 required less than one minute. We further observe

that the shortest path queries dominate the running time. More precisely, the shortest path

queries consume 60% of the running time on average. Hence, the shortest path queries offer

considerable potential for further improvement in the running times. Until now, we are us-

ing a bidirectional variant of Dijkstra’s algorithm (Dijkstra, 1959) as provided by JGraphT. In

previous years, speed-up techniques such as contraction hierarchies have been optimized for

multi-dimensional routing criteria. Using the algorithm presented by Funke et al. (2017) would

result in considerable speed-ups for our approach.

76



6.5. Conclusion

6.5 Conclusion

This chapter presented and elaborated an idea for analyzing user preferences in bicriteria rout-

ing models. To this end, the problems OptimalityRange and MilestoneSegmentation were

formalized. Assuming integral edge costs in the road graph, algorithms that yield exact solu-

tions for both problems were developed and presented. Both algorithms are exact and efficient

with an overall running time in O
(
ℎ2 · (ℎ + SPQ · log𝑛)

)
where 𝑛 denotes the number of ver-

tices in the graph, ℎ denotes the number of vertices in the considered path and SPQ denotes

the time needed for one optimal-path query. The benefits of our approach are demonstrated

by the experimental results obtained from a prototypical implementation. A major difference

of the presented approach compared to the work by Barth et al. (2020) is that the presented

approach segments a user’s path into optimal subpaths of the same underlying cost function.

On the one hand, this improves the approach’s utility by providing an explicit balance factor

for future routing. On the other hand, this also reduces the risk of overfitting the model.

In the experiments, the extent to which cyclists prefer official cycle routes over the shortest

paths was analyzed. To that end, the balance factors that yield minimal milestone segmenta-

tions were determined. Out of the 2750 processed trajectories, only 483 were 𝛼-optimal paths

in the road network. On the one hand, this leads to the conclusion that the criteria considered

—geodesic length and usage of official cycle routes— do not suffice to fully explain how cyclists

choose their routes. On the other hand, we could segment each of the given trajectories into

a small number of 𝛼-optimal paths. Thus, we can conclude that the bicriterial model yields

reasonable results, especially if we take its simplicity into account. The high number of tra-

jectories having an optimal segmentation for 𝛼 values close to 0.5 affirms the importance of

minimizing the geodesic distance when planning a route. However, it is only a little more than

35% of all trajectories with a minimal segmentation for exactly 0.5. In particular, considering

all trajectories, the least number of necessary milestones is achieved for 𝛼 ≈ 0.5013 (see Fig-

ure 6.13), which indicates that the average cyclist in our experiment prefers official cycle paths.

Furthermore, more than 36% of all trajectories have minimal milestone segmentations only if

we assume that official cycle routes are preferred, i.e., if 𝛼 > 0.5. That means a large group of

cyclists accept actual detours to use cycle routes. Here, the highest number of minimum mile-

stone segmentations can be achieved assuming that cyclists are willing to cover 50% distance

extra, i.e., 𝛼 ≈ 0.5721; see Figure 6.14.

Although the developed algorithm is efficient, the observed running times are too long

to be suitable for large-scale applications. On the one hand, running times can probably be

substantially reduced by using specialized shortest-path algorithms, such as those presented

by Funke and Storandt (2013) and Funke et al. (2017). On the other hand, future work could

relax the exactness of our algorithm to speed up the computation. There are several ways one

could achieve this. Firstly, a deficiency could already be introduced in the computation of the

optimality ranges. Instead of strictly requiring a subpath to be optimal, small losses in the

cost function could be accepted. Secondly, instead of computing the milestone segmentation

continuously for 𝛼 ∈ [0, 1], the interval could be sampled. Last but not least, the method for

guaranteeing the existence of a milestone segmentation increases the number of vertices per

path by a factor of two and, thus, the size of the intervalmatrix by a factor of four. The definition

77



6. An Algorithm Using a Compression Criterion

of a milestone segmentation could be relaxed to a segmentation of basic path components (i.e.,
optimal subpaths or single, non-optimal edges) (Knapen et al., 2016). While this might lead to

additional milestones compared to our current approach, introducing the additional vertices is

unnecessary. This has the added benefit that the graph remains unchanged for different paths,

benefiting the compression of the data.

The algorithm’s results yield much more information than this chapter has used and an-

alyzed. Besides testing sets of trajectories on the relevance of specific criteria, we think of a

different application with a more critical role for individual trajectories. Figure 6.10 shows that

the milestones are not distributed equally along the path. In particular, there are accumulations

of milestones for various 𝛼 values. This data promises information about the surrounding road

network, which may be interesting for traffic planners as it indicates where improvements of

the considered network are reasonable or necessary.

An interesting open question is whether the discussed problems provide a basis for efficient

algorithms if more than two criteria are considered. Using our algorithm, one approach for

this multi-criteria problem is first to merge two criteria into a combined criterion. Then, this

combined criterion can be merged with an additional criterion. This process can be iterated

for an arbitrary amount of criteria. Initial tests of this method using six different criteria show

promising results. Nonetheless, there are open questions regarding this approach. For example,

the influence of the merging order on the final result needs to be analyzed. This analysis will

be part of future research.

Finally, we note that users of online route planners such as Google Maps
4
frequently plan

their routes by (first) computing a route between a start and an end vertex and (second) adding

intermediate vertices to tailor the route according to their preferences. We think our algorithm

is beneficial in this route-planning scenario since by using the 𝛼-value that yielded the best

milestone segmentation for existing trajectories; the user will probably be able to plan new

routes with few intermediate vertices. To verify this assumption, however, a further evaluation

of our method is necessary, particularly in interactive route planning.

4
www.google.com/maps

78



Part III

Geovisualization

79





Chapter 7

Geovisualization: Motivation &
Research Context

Geovisualization provides methods for visually exploring, analyzing, synthesizing, and pre-

senting geographic data (MacEachren and Kraak, 2001). The research discipline emerged in the

1990s when the development of digital displays allowed for a shift from static maps to dynamic

visualizations (Çöltekin et al., 2018). Geovisualization draws upon approaches from cartogra-

phy, scientific visualization, information visualization, and exploratory data analysis (Dykes

et al., 2005). The boundaries between the research branches are fuzzy. Nonetheless, the concept

of geovisualization often involves map interaction (Roth, 2013). An important early framework

for geovisualization is “Cartography3
” by MacEachren (1994). In this framework, map use is

defined in a three-dimensional cube with the following dimensions, see Figure 7.1:

1. user: is the map generated and used by individuals (private) or made for public use?

2. task: is the visualization’s goal to explore unknowns or to communicate existing knowl-

edge?

3. interaction: can the user interact with the map or the displayed data, e.g., by switching

layers, or is the visualization static?

task

int
era
cti
on

us
er

low

hig
h

pu
bl
ic

pr
iv
at
e

reveal
unknowns

present
knowns

visualization

communication

Figure 7.1: The Cartography
3
cube as introduced

by MacEachren (1994). According to the model,

(geo)visualizations are characterized by exten-

sive human-map interaction, primarily intended

for individual use. The objective of such visual-

izations is to unveil hidden patterns within the

data. As such, they are contrasting cartographic

communication, primarily aimed at conveying

information to a broader audience.

81



7. Geovisualization: Motivation & Research Context

In this cube, MacEachren locates geovisualization in the corner, representing exploratory, pri-

vate map use with high interaction, and contrasts it to cartographic communication, which is

generally geared to communicate information to the public.

In the context of this thesis, not only the explorative nature of geovisualization but also

the communication aspect is of high relevance. In particular, in our use case, where we learn

complex user preferences based on an abstract mathematical model, geovisualization allows

the users to understand the provided information easily. Especially in the context of VGI, this

can support user engagement: If a user sees how their provided data is used, it can motivate

them to contribute even more data (Composto et al., 2016; Gómez-Barrón et al., 2016; Gómez-

Barrón et al., 2019). The following takes a closer look at related work in two geovisualization

fields closely related to this thesis’s context: visualizing movement data and visualizing routing

choices.

7.1 Visual exploration of movement data

In the context of geospatial data, visual exploration plays a crucial role, particularly in analyz-

ing movement data. In the research field of statistics, Tukey (1977) framed the term exploratory
data analysis to describe methods aimed at visually analyzing data. These methods employ

visualizations to uncover patterns within complex, multidimensional datasets, enabling the

viewer to easily extract insights from the data. The subsequent section provides an overview

of methods utilized to analyze movement data, followed by amore comprehensive examination

of approaches focusing on the visualization of trajectory data.

Movement data analysis. In movement-data analysis, datasets of trajectories, paths, or

flows of objects or phenomena are examined over space and time (Demšar et al., 2021). Geovi-

sualization techniques offer powerful tools for exploring and understanding such data. By em-

ploying interactive maps, time-series visualizations, and animation, analysts can gain valuable

insights into movement patterns, trends, and anomalies (Demšar et al., 2015; Dodge and Noi,

2021). For instance, in transportation planning, geovisualization supports understanding traffic

flows, identifying congestion hotspots, and optimizing route planning (Bachechi et al., 2022;

Scheepens et al., 2016). In wildlife ecology, it facilitates tracking animal movements, study-

ing migration patterns, and assessing habitat suitability (Demšar et al., 2015; Zhang, 2019; Sun

et al., 2021; de Rivera et al., 2022). Moreover, in epidemiology, geovisualization assists in track-

ing disease spread and planning disease prevention and control (Robinson, 2007; Wei et al.,

2020; Meddah, 2022).

Visualizing trajectories. A central part of the visual analysis of movement is the visualiza-

tion of trajectories. In a survey, Andrienko and Andrienko (2013) categorize existing methods

into four groups: (1) visualizing the spatial and temporal component of individual trajectories,

(2) visualizing the movement characteristics and attributes, (3) using generalized visualizations

for multiple trajectories, and (4) investigating movement in relation to other moving objects.

One commonly used trajectory visualization technique is the space-time cube (Kraak, 2003).
This method presents trajectories in a three-dimensional space, where the horizontal plane

82



7.1. Visual exploration of movement data

longitude

tim
e

lat
itu
de

10:00
10:10

10:20

10:30

10:40

10:45

(a) space-time cube

longitude

lat
itu
detr

aj
ec
to
ry

𝑡1

𝑡𝑘

.

.

.

(b) trajectory wall (c) heat map

Figure 7.2: Sketches for different visualization approaches for trajectories. (a) In the space-time

cube, the vertical dimension indicates time. (b) In the trajectory wall, the vertical dimension

displays multiple trajectories. Additional properties like transportation mode (e.g., blue for

walking and red for running) can be color-coded to improve exploration. (c) In heat maps, the

point density is displayed, making identifying areas with high activity easy. Background map:

©OpenStreetMap contributors ©CARTO

represents spatial information while the height dimension encodes the time, see Figure 7.2a.

Tominski et al. (2012) extend this approach of using 3D visualizations with the concept of a

trajectory wall, by visualizing multiple trajectories at varying heights, see Figure 7.2b. They

utilize color-coding to represent attribute data along the trajectories. However, these three-

dimensional approaches are limited by potential obstructions within the scene. Li et al. (2017)

address this issue by optimizing the viewpoint to minimize these obstructions and thus maxi-

mizing the exploration effectiveness. Nonetheless, these methods are only effective for visual-

izing a small number of trajectories.

Heat maps are another prevalent visualization technique, representing spatial values by us-
ing color gradients, see Figure 7.2c. Density-based heat maps visualize the kernel density (Sil-

verman, 2018) of the points and have frequently been applied to visualize large trajectory

datasets. Scheepens et al. (2011) developed an interactive, heat-map-based visualization for

multivariate trajectories by overlaying density fields for different attributes. Similarly, Oksa-

nen et al. (2015) and Sainio et al. (2015) focus on generating heat maps for sports tracking

data, considering participation bias in crowd-sourced data (Antoniou and Skopeliti, 2015) to

safeguard user privacy. Density-based visualizations allow the summarization of large sets of

trajectories and facilitate the extraction of spatial patterns from the data. However, this gener-

alization process results in loss of information, such as the temporal aspect of the trajectories.

To address this limitation, Bonerath et al. (2020) introduce a data structure to dynamically gen-

erate density maps for given time windows.

Baur et al. (2022) present “PATHFINDERVIS”, a framework to efficiently filter and visualize

large sets of trajectories. This tool offers multiple approaches for visualizing data, including

heat map visualizations, clustering common trajectory segments, and continuously refining

results to reduce processing time.

Due to their elongated nature in the direction of travel andminimal extent perpendicular to

it, trajectories pose challenges for display on regular screen sizes. Thus, the entire trajectory

can usually only be visualized on small map scales. However, when zooming in to examine

83

"http://www.openstreetmap.org/copyright
https://carto.com/about-carto/


7. Geovisualization: Motivation & Research Context

details, the overall context of the trajectory gets lost. In Chapter 8, an approach to visualize the

off-screen evolution of trajectories is presented, allowing the user to keep track of the global

context even in larger map scales. Related work addressing the mapping of off-screen objects

is explored in the corresponding chapter.

7.2 Visualizing route choices

In Part II of this thesis, mathematical approaches for learning routing preferences from trajec-

tory data have been discussed. The general field of route choice and travel behavior has also

been studied in the context of geovisualization. Research in this area can be broadly classi-

fied into two groups: communicating visualizations that provide route recommendations and

exploratory visualizations that support extracting patterns from existing routes.

Route recommendations. In addition to providing personalized route optimization for in-

dividual users, route recommendations can also play a crucial role on a policy level in man-

aging traffic flow (Ringhand and Vollrath, 2018; McCall et al., 2015). Geovisualization tools

can support route recommendation systems by enhancing users’ decision-making processes.

Chen et al. (2017b) present, PathRec an interactive recommenation tool for touristic routes in

cities. Based on crowd-sourced image data, their system extracts features for points of inter-

est (POIs) and creates route recommendations while visualizing the diversity of POIs along

different paths. Fuest and Sester (2019) propose a framework for visualizing different routes

between two locations in a road network. They propose two approaches to recommend the

(temporarily) optimal route to the user: one method distorts the length of non-optimal routes,

making them appear longer than they actually are, while the other distorts the smoothness of

non-optimal paths. The primary objective of these approaches is not to dictate a specific path

to the user but to assist them in making informed route choices. In a subsequent study, Fuest

et al. (2021) evaluate six different design variants for route choice recommendation through a

user study. Their findings suggest that route visualizations that create the impression of more

convenient travel, such as those employing length or smoothness distortion, support users’

decision-making process. Rauscher et al. (2024) introduce SkiVis, a route recommendation sys-

tem for skiing. SkiVis enables users to interactively receive route recommendations based on

their preferences. Their recommendation system uses crowd-sourced VGI trajectories from

OSM.

Exploring routing patterns. Several visual analytics systems have been developed to sup-

port route choice modeling (Lu et al., 2017; Shin et al., 2023). These systems commonly support

the analyst in three stages. The trajectory dataset is reduced to specific origin-destination

pairs in the filtering stage. In the second stage, common routes within the filtered trajectories

are visualized to allow for exploration. In the last stage, analysis and hypothesis construction

is supported. Liu et al. (2011) concentrate on extracting and visualizing areas characterized

by high route diversity, wherein numerous trips with the same origin-destination pair exhibit

varying routes. Although the systems mentioned above provide basic modeling of the route

84



7.2. Visualizing route choices

choices, their primary emphasis lies in providing tools and visualizations for interactive visual

analysis.

In contrast to exploring route choice based on existing trajectories, there has been limited

research on visualizing known routing preferences. In Chapter 9, an approach to generate sche-

matic isochrones, i.e., lines of equal travel time, in public transportation networks is presented.

This approach can be utilized for routing profiles, enabling the visualization of reachable areas

based on specific routing preferences. These visualizations can support analysts by helping

them identify road network deficits.

85





Chapter 8

Visualizing the Off-Screen Evolution
of Trajectories

The following chapter is mainly taken from a joint work with Friederike Amann and Jan-

Henrik Haunert (Forsch et al., 2022a). This chapter introduces an approach for visualizing the

off-screen continuation of trajectories. The method resolves around glyphs: for each trajectory

leaving the displayed area, a glyph is generated at the screen’s margin that visually encodes

how the trajectory evolves beyond this margin. Three different glyph designs are introduced,

and their usability is evaluated in an online user study. I (Axel Forsch) developed the glyph de-

sign and algorithm for computing them. With Friederike Amann’s assistance during a student

job, we implemented the algorithm and conducted the user study. Jan-Henrik Haunert pro-

vided overarching support and supervision throughout the process, from conceptualization to

final publication.

In the context of Volunteered Geographic Information, large sets of trajectories of humans

and animals are collected. Visually analyzing these trajectories is often complicated due to

limited display sizes. For instance, when a user chooses a large map scale to inspect the details

of a trajectory, only a small part of the trajectory is visible on the map. Therefore, this chapter

presents an approach for visualizing the off-screen evolution of trajectories, i.e., their contin-

uation outside of the displayed map. The propsed method involves visual cues in the form

of glyphs displayed at the map’s boundary and consisting of one or multiple disk sectors of

varying size and opening angle. These glyphs indicate the direction and variability of a trajec-

tory’s continuation outside the map frame. An algorithm for computing the glyphs efficiently

is presented and the glyphs are evaluated in a user study. The results show that the glyphs are

intuitive to understand even without explanation. Finally, the chapter concludes by suggesting

enhancements to the glyph design based on the study outcomes.

87



8. Visualizing the Off-Screen Evolution of Trajectories

8.1 Introduction

Volunteered geographic information (VGI) provides a rich source for spatial analysis (Good-

child, 2007). In movement pattern analysis, for example, researchers profit from large sets of

crowd-sourced animal and human trajectories (Huang et al., 2013). For instance, we imagine

a city planner working with a map that displays a set of trajectories of cyclists as well as in-

formation on the geographical context. A challenge arises if the city planner zooms in to a

large map scale, e.g., to inspect a local area for planning reasons. Only small parts of the tra-

jectories can be shown at this large map scale, and the overall context gets lost. Therefore, we

aim to augment the map with visual cues about how the trajectories evolve outside the map

frame. With this, we intend to provide the city planner with wider-area information about the

movement of the cyclists.

Apart from movement pattern analysis, the visualization of trajectories also matters in the

context of navigation systems and location-based services (Narzt et al., 2004). For example, a

hiker may wish to follow a route computed by an algorithm or a GNSS track that has been

recorded and voluntarily shared by a different user. In this application, the trajectory must

be visualized on a mobile device such as a smartphone or a hand-held navigation system. The

mobile device shows amap providing a local view of the track to allow the hiker to decidewhere

to turn. Additionally, the hiker is interested in knowing how the trajectory will evolve in the

next few minutes. However, due to the limited size of the device, this part of the trajectory

cannot be displayed on the currently visible part of the map. Thus, the hiker faces a similar

problem as the city planner. Using visual cues to indicate the off-screen evolution of trajectories

could ease this problem.

In this thesis, we follow this idea by using glyphs indicating the off-screen evolution of tra-

jectories (i.e., their continuation outside the displayed map). In particular, we aim to visualize

an initial section of the trajectories’ off-screen evolution to provide a more global compre-

hension of the trajectories’ direction in addition to the mere local view. Figure 8.1 shows an

example with three trajectories (red). The glyphs (blue) are computed for each trajectory leav-

ing the map frame and are displayed as a map overlay within a margin along the currently

displayed map extent (gray). The glyphs are varied in length, opening angle, and orientation

to distinguish different directions and shapes of the off-screen parts of the trajectories.

In detail, each glyph is computed by searching the disk sector with the smallest perimeter

covering the trajectory’s off-screen part. For most applications, not the evolution of the trajec-

tory as a whole is of interest, but only of the neighboring off-screen section. The dimension

of this considered section, the look-ahead value, is part of the parametrization of the glyphs.

The disk sector must only cover a certain share of the off-screen section to account for pos-

sible outliers and filter out the trajectory recordings’ local protrusions. In order to fit onto

the overlay area, the initially calculated disk sector is scaled down with a constant factor for

all glyphs. Next to this basic glyph, we developed two additional glyphs that use multiple disk

sectors. These advanced glyph versions allow for a more detailed trajectory preview at the cost

of higher complexity. A user study is conducted to analyze whether this increase in complexity

is warranted.

88



8.2. Related work

Figure 8.1: The glyphs (blue) indicate the direction in which the displayed trajectories (red)

will evolve outside of the map frame. They are displayed within an overlay area along the map

extent (gray).

The chapter is structured as follows. In Section 8.2, related work is introduced. Section 8.3

presents the methodology for generating the glyphs. Section 8.4 deals with the user study. The

chapter is concluded in Section 8.5. The source code for generating the glyphs can be accessed

at https://github.com/GeoinfoBonn/offscreen-evolution.

8.2 Related work

The visualization of trajectory data has two main applications: user navigation and the visual

analysis of large trajectory data sets in expert user systems. In the context of user naviga-

tion, visualization on small-screen devices has received considerable attention during the last

decades. Much research has been done on visualizing point features outside of the screen, while

visualizing off-screen line features has not been considered yet. At the same time, visual ex-

ploration techniques for trajectory data have been developed. The following reviews previous

work on these topics as the presented approach aims to support both tasks.

Visualization on small-screen devices. With the advent of small mobile devices, new chal-

lenges in cartography have emerged. To deal with a limited storage capability and a low reso-

lution, Sester and Brenner (2005) presented a progressive generalization approach to transmit

89

https://github.com/GeoinfoBonn/offscreen-evolution


8. Visualizing the Off-Screen Evolution of Trajectories

Figure 8.2: The basic glyph with displayed map extent (right of dashed line) and off-screen part

of the map (left of dashed line). The glyph (solid blue) is a scaled-down version of the minimal

disk sector covering a certain share (here: 95%) of the neighboring off-screen trajectory points

(light blue) such that it fits on the overlay area (gray).

detail and overview information. Yoo and Cheon (2006) introduced the fisheye view as a vi-

sualization method that effectively lays out information on the screen. Carmo et al. (2007)

integrate filtering mechanisms based on semantic criteria, object relevance, and number of

displayed objects to visualize icons superimposed on a map. Gedicke et al. (2021) worked on

label placement on small screens. Their method is designed to reduce the necessity to zoom the

map while exploring the data to ensure a high level of detail while keeping the global context.

Visual exploration of trajectory data. In the context of large sets of trajectories Andrienko

and Andrienko (2010) propose aggregation and summarization methods. Given the increasing

amount of available urban data Ferreira et al. (2013) target the visual exploration of the data.

Their model lets users query taxi trips visually and supports origin-destination and spatio-

temporal queries. More recently, Custers et al. (2021) presented a different approach for identi-

fying mobility patterns based on simultaneous aggregation and simplification of both the tra-

jectories and the underlying network. Visual exploration has also been studied in the context

of large groups of moving entities. Scheepens et al. (2014) developed non-overlapping glyphs

representing aggregated groups of moving objects. Cakmak et al. (2020) presentMotionGlyphs
as a visualization technique for dense spatio-temporal networks. They use these glyphs to an-

alyze animal behavior. Similarly, Demšar et al. (2015) perform movement analysis based on

large animal movement data. They use a trajectory’s segmentation into pieces that fulfill ge-

ometric criteria and identify a representative path for a certain set of tracks. Moreover, the

authors apply several multi-dimensional visualization methods, such as the space-time cube.

The space-time cube, initially introduced by Hägerstrand (1970), is one of the most frequently

90



8.2. Related work

used visualizations for spatio-temporal data. The data is visualized in 3-D using two dimen-

sions for the spatial information while the last dimension represents time (Kraak, 2003; Filho

et al., 2020; Ssin et al., 2019). Visual exploration of trajectories in the context of transportation

is investigated by Markovic et al. (2020). The authors create heat maps of important waypoints

and published several interactive online animations.

Visualizing off-screen landmarks. Several studies focus on visualizing off-screen objects

by glyphs displayed at the boundary of the currently displayed map extent. Baudisch and

Rosenholtz (2003) present Halo, an approach that uses an arc to let the user infer the direction

and distance to the off-screen object: A circle surrounds the object and reaches into the bor-

der region on the displayed map. The user can understand the distance information without

needing a legend based on amodal perception, which allows the user to automatically complete

shapes that are only partially visible. At the same time, Zellweger et al. (2003) presented City
Lights, which is a fisheye technique where size and distance information are conveyed using

different colors.

Gustafson et al. (2008) concentrated on aWedge approach using acute isosceles triangles to

achieve a clutter-free visualization. The tip of the Wedge coincides with the off-screen object

while the base and the legs are displayed on screen. Like the Halo approach, the user men-

tally triangulates the tip beyond the screen. Overlap and clutter between different Wedges are

avoided by changing rotation or intrusion on the display window. An evaluation showed that

users were significantly more accurate when using Wedges than Halos.

Li and Zhao (2017) measured the distance perception on resized icons representing off-

screen landmarks. The further away a landmark is, the smaller the corresponding icon is dis-

played. The authors conducted a study that revealed possible misinterpretations of the off-

screen icon’s location and its size which is meant to represent the actual distance.

Burigat et al. (2006) performed a comparative evaluation of the Halo and City Lights ap-
proaches and approaches using arrows. The arrow approaches use small arrow symbols indi-

cating the direction and distance to a certain object using varying arrow orientation and size.

The larger the arrow, the closer the off-screen object is. One central finding is that arrow ap-

proaches are more effective than the Halo approach when the object configuration would cause

cluttering on the small screen.

A further study of Burigat and Chittaro (2011) compared the aforementioned approaches

to Overview+Detail. The latter is not based on contextual cues but shows the map with an

additional detailed view of an area of interest. This approach has limitations, especially on

small mobile devices, due to readability reasons.

Information visualization. The visual exploration of data also received attention in the

context of statistics. Tukey (1977) introduced the term exploratory data analysis for techniques

to discover patterns in data sets. Most related to our work are box-and-whisker plots, which

graphically indicate the locality and spread of the data points by showing a box containing all

points between a lower and an upper percentile. Analogously, we use contextual cues shaped

as disk sectors, which contain a given percentile of the off-screen trajectory points.

91



8. Visualizing the Off-Screen Evolution of Trajectories

The studies discussed above present methods to handle huge sets of trajectories and to display

information on small-screen devices. They also introduce cues to convey information on off-

screen landmarks. Nonetheless, visualizing off-screen trajectories has not been considered in

previous work. This chapter fills this gap by combining these approaches.

8.3 Methodology

In this section, we present the design of the basic glyph and outline our algorithm to compute

it. We then extend this definition to generate more advanced versions of the glyph.

We start by introducing the terminology and formalizing the problem. We are given a map

frame of a fixed extent and one or multiple trajectories passing through it. Following previous

work on off-screen visualization, we define an overlay area of fixed width 𝑏 along the map

display’s boundary. This area is used to display the glyphs. The rest of the map frame is the

main area. Everything outside of the main area we call off-screen (even though the overlay

area is still technically on the current map extent). If a trajectory enters the map frame more

than once, we consider each on-screen part separately. Each trajectory that passes the main

area has zero, one, or two off-screen parts, as both ends can be off-screen. Each off-screen

part is of arbitrary length, and not all of it might be of interest to the application. Therefore,

only an initial section of each off-screen part of a given length defined by a look-ahead value
ℓ is considered, the off-screen section. Each off-screen section’s start point is the trajectory’s

crossing point with the overlay area’s inner boundary.

The problem is finding a suitable visualization for the off-screen section. The key properties

of the off-screen section we want to communicate are its direction and direction variability.

Additionally, we try to keep the visualization as simple as possible. We solve this task using

glyphs in the form of disk sectors that we display on the overlay area of the map. Disk sectors

are suitable for this task as their orientation encodes the direction, the opening angle encodes

the direction variability, and the radius encodes the velocity. To formalize this, the idea is to

find a disk sector attached to the off-screen section’s start point that covers the points of the off-

screen section and that is minimal with respect to a prescribed objective function 𝑓 . We soften

this definition to account for possible outliers and filter out local protrusions in the trajectory

so that only a share 𝜅 of the points must be covered. In order to fit on the overlay area, the

glyphs are scaled down with a constant factor.

The approach for computing a glyph can be broken down into two parts. The first part is

finding theminimal disk sector given the orientation of its right boundary (i.e., the line segment

bounding the disk sector to the right). We developed an algorithm that computes a minimal

enclosing rectangle; by transforming the input points to polar coordinates, we can apply this

algorithm to find the minimal disk sector. The second part is finding the orientation of the

right edge that minimizes the disk sector.

Finding a minimal 𝑘-rectangle. Given a coordinate frame 𝐶 together with a point set 𝑃 =

{𝑝1, 𝑝2, . . . , 𝑝𝑛} of 𝑛 input points with 𝑥𝑖 ≥ 0 and 𝑦𝑖 ≥ 0 for 𝑖 = 1 . . . 𝑛, we search for a rectangle

with one corner at the point of origin o𝐶 of 𝐶 and edges parallel to the coordinate axes of 𝐶 ,

such that it covers at least 𝑘 = ⌈𝜅 · 𝑛⌉ of the input points. We call such a rectangle a 𝑘-rectangle.

92



8.3. Methodology

With MinKRectangle we refer to the problem that asks for a 𝑘-rectangle minimizing 𝑓 . Our

assumptions with respect to 𝑓 are that it is monotonically increasing in both the width and the

height of a 𝑘-rectangle and that it can be evaluated in constant time for a given 𝑘-rectangle.

This assumption holds, for example, if we define 𝑓 as the perimeter or the area of a 𝑘-rectangle.

A 𝑘-rectangle is non-dominated if no other 𝑘-rectangle is smaller in one of the two dimen-

sions, width or height, and at most as large in the other dimension. We solve MinKRectangle

by enumerating the set of all non-dominated 𝑘-rectangles and taking one optimal with respect

to 𝑓 . Using a sweep-line approach, we enumerate the non-dominated 𝑘-rectangles in increas-

ing order of their widths. This yields an algorithm with running time in O(𝑛 log𝑛). Due to

the monotonicity of 𝑓 , any optimal solution has to be non-dominated. Hence, the algorithm

is correct. This approach is visualized in Figure 8.3. Pseudo-code for the algorithm is given in

Algorithm 3.

o𝐶 x𝐶

y𝐶

(a) 𝑓 = 66

o𝐶 x𝐶

y𝐶

(b) 𝑓 = 64

o𝐶 x𝐶

y𝐶

(c) 𝑓 = 70

o𝐶 x𝐶

y𝐶

(d) 𝑓 = 72

Figure 8.3: Visualization of the algorithm for 𝑘 = 4. All four non-dominated 𝑘-rectangles are

displayed in (a)-(d) with the sweep line shown in light red; 𝑓 corresponds to the area. The

optimum with respect to 𝑓 is found in step (b).

Computingminimal disk sectors. The algorithm for solving MinKRectangle is based on

the fact that the parameters of a rectangle, its width and height, are equivalent to the x- and

y-values of its spanning points. In the case of disk sectors, the defining parameters are the

opening angle 𝜃 and the radius 𝑟 . Therefore, we can transform the points of the off-screen

section from cartesian coordinates (𝑥,𝑦) to polar coordinates (𝜑, 𝜌) and use these as input for

the algorithm. The range 𝜌 is equivalent to the radius 𝑟 , and the direction 𝜑 is equivalent to the

disk sector’s opening angle𝜃 . The radius is always positive, and the direction can be normalized

to the interval [0, 2𝜋) so that the requirements on the input points for MinKRectangle are

fulfilled. The objective functions for minimizing area or perimeter are the following:

𝑓area =
1

2

𝜃𝑟 2
(8.1)

𝑓perimeter = 2𝑟 + 𝜃𝑟 (8.2)

For computing the direction, a reference direction 𝜙0 is needed. This reference defines the right

boundary of the resulting disk sector. When searching for the smallest disk sector enclosing a

given set of points, one of the points must be located on the right boundary of the disk sector.

93



8. Visualizing the Off-Screen Evolution of Trajectories

Algorithm 3:MinKRectangle

Data: point set 𝑃 , number of points 𝑘 , objective function 𝑓

Result: width and height of a 𝑘-rectangle minimizing 𝑓 (𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡)
1 𝑋 [1 . . . 𝑛], 𝑌 [1 . . . 𝑛] = 𝑃 sorted by 𝑥-/𝑦-coordinate respectively ;

2 𝑖𝑋 = 𝑘 ; // index in 𝑋

3 𝑖𝑌 = index of point with maximum 𝑦 of first 𝑘 points in 𝑋 ; // index in 𝑌

4 𝑥 = 𝑋 [𝑖𝑋 ] .𝑥 , 𝑦 = 𝑌 [𝑖𝑌 ] .𝑦 ;

5 𝑓best = 𝑓 (𝑥,𝑦) ; // initial solution defined by the 𝑘 left-most points

6 for increment 𝑖𝑋 until ∥𝑃 ∥ do
7 if 𝑋 [𝑖𝑋 ] .𝑦 ≥ 𝑦 then
8 continue ; // skip point as its y-value is higher than current y

9 𝑥 = 𝑋 [𝑖𝑋 ] .𝑥 ;

10 for decrement 𝑖𝑌 until 𝑘 do
11 if 𝑌 [𝑖𝑌 ] .𝑥 > 𝑥 then
12 continue ; // skip point as its x-value is higher than current x

13 𝑦 = 𝑌 [𝑖𝑌 ] .𝑦 ;

14 𝑓curr = 𝑓 (𝑥,𝑦) ;
15 if 𝑓curr < 𝑓best then
16 update 𝑓best and remember solution as (𝑥,𝑦) ;
17 break;

18 return solution (𝑥,𝑦) corresponding to 𝑓best ;

Otherwise, we can shrink the disk sector on this side to obtain a smaller one containing the

same number of points. Therefore, we apply the polar version of MinKRectangle once for

each input point 𝑝𝑖 , using the direction to point 𝑝𝑖 as 𝜙0. Finally, we select the minimal disk

sector as the solution. Applying the algorithm forMinKRectangle𝑛 times results in an overall

running time of O(𝑛2
log𝑛). Sorting the input points only once for each of the two dimensions

reduces the running time to O(𝑛2).

Different glyph designs. Three different glyphs of increasing complexity are developed

based on the described algorithm.

The basic glyph comprises a single disk sector. The look-ahead value ℓ and the inlier ratio 𝜅

parameterize it. This glyph is kept simple to make it easy to read and understand. As a draw-

back, the glyph’s information is limited as the considered off-screen section is summarized into

a single disk sector.

To tackle this issue, the staggered glyph comprises multiple disk sectors, each having dif-

ferent look-ahead values. The number of disc sections 𝑛 is an additional parameter for this

type. The individual disk sectors are layered in order of the look-ahead value, with the largest

value in the back. Figure 8.4a shows the staggered design. The largest disk sector in this glyph

is identical to the basic glyph. The staggered glyph allows for finer differentiation of the tra-

94



8.4. Evaluation

(a) staggered glyph (b) consecutive glyph

Figure 8.4: Considered vertices of the first disk sector (black plus), the second disk sector (gray

dots), and the third disk sector (black cross) for the advanced glyphs. Not all vertices need to

be covered by the disk sectors, so the outlier (marked red) is not included in the glyphs.

jectory’s off-screen section’s shape. For instance, turns at more distant look-ahead values are

only visible in the larger disk sectors.

In the staggered variant, the neighboring off-screen section is part of all disk sectors. To

counteract this, the consecutive glyph decouples the disk sectors by calculating them for con-

secutive subsections of the off-screen section. Each disk sector only considers points between

two given look-ahead values ℓmin and ℓmax. Figure 8.4b shows the consecutive glyph. Due

to the inlier ratio, not all points considered need to be covered by the individual disk sector.

Therefore, the disk sectors can be disjoint. To ensure that a glyph is a contiguous region and

thus to improve readability, the look-ahead ranges of two consecutive disk sectors may overlap

(ℓmax,𝑖 > ℓmin,(𝑖+1) ). This is comparable to a sliding average filter.

Glyph scaling. The glyphs need to be scaled down to fit on the overlay area. By construction,

the glyphs cover the off-screen section of the trajectory, which has a length ℓ . Considering the

extreme case that the off-screen section is a straight line, the maximum possible radius 𝑟max for

a glyph is ℓ . This glyph needs to fit on an overlay area of width 𝑏. We scale each disk sector’s

radius with a scale factor 𝑠 = 𝑏
ℓ
to ensure that all glyphs fit on the overlay area.

8.4 Evaluation

In this section, we evaluate the glyphs. Specifically, we want to analyze whether the glyphs

are intuitive to understand and convey a correct impression of the off-screen evolution of the

trajectory. Particular emphasis lies on the comparison of the glyph types.

For the evaluation, we performed an online user study. The details of the study design are

given in Section 8.4.1. In Section 8.4.2, we present a detailed discussion of our results.

95



8. Visualizing the Off-Screen Evolution of Trajectories

8.4.1 Experimental setup

In the user study, participants were asked questions on the off-screen evolution of trajectories

based on the glyphs. The study is separated into two different tasks:

1. Interpretation Given a real-world trajectory and the corresponding glyph, the participant
has to select the correct off-screen evolution out of three options.

2. Preference The three glyph types and the corresponding on- and off-screen trajectories

are shown. The participant is asked to pick the glyph they prefer for the given situation.

Figure 8.5 shows two examples for these task types. Task 1 (Figure 8.5a) features multiple-

choice questions where exactly one option is correct. The answers to this task give information

on the interpretability of the glyphs. We recorded the given answer and the time each partic-

ipant needed to answer. All options in Task 2 (Figure 8.5b) are correct; they only differ in the

type of the displayed glyph. This task aims to get a subjective opinion of the participant on

which glyph matches the situation best. A fourth option is provided if none of the glyphs

pleases the participant. In the study, participants receive six questions for Task 1 and three for

Task 2. The complete study can be examined at https://www.geoinfo.uni-bonn.de/offscreen-

evolution-study/.

(a) Task 1: Interpretation (b) Task 2: Preference

Figure 8.5: Illustration of the tasks. Task 1 tests if the glyph comprehensively indicates the

further evolution of the track. The correct trajectory continuation has to be selected. Task 2

allows the participant to choose the most appropriate glyph. All three variants fit the trajectory

on the right side, but the participant can select his preferred glyph type.

96

https://www.geoinfo.uni-bonn.de/offscreen-evolution-study/
https://www.geoinfo.uni-bonn.de/offscreen-evolution-study/


8.4. Evaluation

Question layout. To avoid a learning effect in the study, we separated the participants for

Task 1 into three groups: 𝐴, 𝐵, and 𝐶 , and generated six question instances. An instance

corresponds to a map frame with a single real-world trajectory and three possible off-screen

evolutions, of which only one is the original, correct one. All three different glyph types are

shown to each group so that answers for each glyph type are present for each instance. The

instances are sorted by glyph type to each group, starting with the basic glyph, continuing

with the staggered one, and ending with the consecutive one. We choose this order to present

the glyphs in order of rising complexity. An overview of the study layout for Task 1 is given

in Table 8.1.

The study starts with a short tutorial introducing the two tasks. For each task, one intro-

ductory instance is presented. The tutorial guarantees that the timing of the answers is not

skewed at the beginning. We deliberately refrain from explaining the glyphs to evaluate their

intuitiveness.

Task 1

Glyph Type

Basic Staggered Consecu-

tive

Instance 1 𝐴1 𝐵3 𝐶5

Instance 2 𝐶1 𝐴3 𝐵5

Instance 3 𝐵1 𝐶3 𝐴5

Instance 4 𝐴2 𝐵4 𝐶6

Instance 5 𝐵2 𝐴4 𝐵6

Instance 6 𝐶2 𝐶4 𝐴6

Table 8.1: Task 1: each group (𝐴, 𝐵 and 𝐶) receives six questions: two per glyph type. The

subscript indicates the question order.

Instance generation. To simulate a real-world example as closely as possible, we use real-

world trajectories recorded from cyclists in the metropolitan areas of Cologne and Bonn to

generate the instances. The map frames are selected randomly along the trajectories. The

map frames all have the same extent and are rotated such that the trajectory leaves the map

at the right-hand side boundary to ensure equal preconditions. The wrong options for the off-

screen evolution used for Task 1 are generated by selecting an alternative destination outside

the displayed map and using an online bicycle routing service
1
to compute an optimal cycling

path to this destination.

The parameters for the glyphs are identical across all glyph types and instances. We se-

lected the parameters according to the setting of bicycle navigation. Specifically, we limited the

maximum look-ahead value ℓmax to 1000meters as this relates to 3 to 4minutes of cycling, which

seems sufficient for general usage. Further, we selected the inlier ratio 𝜅 = 0.90 and the width

of the overlay area 𝑏 = 200m. For the staggered and consecutive glyph, additional look-ahead

1
http://brouter.de/brouter-web/

97



8. Visualizing the Off-Screen Evolution of Trajectories

values for a second and third disk sector of ℓ0 = 500m and ℓ1 = 750m and an overlap of 50% of

the look-ahead ranges have been chosen, resulting in the ranges I1 = [0, 500],I2 = [250, 750]
and I3 = [500, 1000] (all in meters). All disk sectors are minimized regarding their perimeter

using 𝑓perimeter as the objective function. We refrain from using the 𝑓area as initial testing showed

that this favors narrow disk sectors, which are hard to recognize on a map. Using the perimeter

instead creates compact disk sectors. Using our implementation, the computation of individual

glyphs took less than 0.1 seconds. Further testing showed that glyphs for large instances with

𝑛 = 2000 points and an inlier ratio of 50% could be computed in under 0.3 seconds.

8.4.2 Results and discussion

The study was conducted online and distributed via social media, the student association, and

word-of-mouth recommendations. In total, 72 participants volunteered for the study and ran-

domly got assigned to one of the groups, resulting in the following group sizes: ∥𝐴∥ = 26,

∥𝐵∥ = 22, ∥𝐶 ∥ = 24. The participants were asked for basic demographic and social statistics.

Most participants were in the age range of 16 to 35 years (≈ 74%). Approximately 54% of the

participants stated male as their gender, while 36% stated female.

Quantitative analysis. Task 1 allows us to analyze the interpretability of the glyphs. Par-

ticipants scored one point for each question if they selected the correct answer and zero oth-

erwise. Divided by the number of questions, the score gives information about the share of

correct answers. Figure 8.6a displays the share of correct answers, differentiated by instance

and glyph type. Overall, 75.2% of the answers were correct. However, there are substantial

differences when comparing individual instances to each other. For example, Instance 1 has

a correctness of 94.4% while Instance 4 has only been answered correctly 61.8% of the cases.

While all three glyph types have a similar correctness between 73.2% and 78.3%, the results for

a single instance differ substantially for different types. For example, the consecutive glyph has

nearly twice as much correctness as the basic one in Instance 3. These observations suggest

that the interpretability of the glyph highly depends on the individual instance. The length of

the look-ahead ranges defines the resolution of the glyph. Thus, glyphs for very curvy trajec-

tories, where the lengths of the curves are shorter than the considered look-ahead ranges, are

hard to interpret because this resolution is too low.

In addition to the score, we recorded the answering times for each question to conclude how

intuitive the glyphs are, assuming the faster a participant could answer, the more intuitive the

glyph is. The average answering times for each glyph type were 𝑡basic = 29.6s, 𝑡staggered = 22.5s,

and 𝑡consecutive = 17.9s. While this implies that the more complex glyphs are more intuitive, we

avoid emphasizing these results, as the types occurred in order basic→ staggered→ consec-

utive during the study. Thus, the speed-up might be related to learning effects or subsiding

diligence towards the end of the study. Future study designs should account for such effects.

Figure 8.6b shows the glyph preference as stated by the participants in Task 2. The consec-

utive glyph is preferred bymore users than the other glyph types for all instances. Nonetheless,

the preferred types are pretty balanced, with the lowest preference still above 20%. Noticeable

is the large share (22.2%) of participants that found neither of the shown glyphs fitting for In-

98



8.4. Evaluation

Basic Staggered Consecutive
Instance 1 100.0% 86.4% 100.0%
Instance 2 90.9% 68.2% 92.0%
Instance 3 45.5% 72.0% 86.4%
Instance 4 68.0% 72.7% 45.5%
Instance 5 77.3% 63.6% 64.0%
Instance 6 59.1% 76.0% 81.8%
Total 73.9% 73.2% 78.3%

0.0

0.2

0.4

0.6

0.8

1.0

(a) correctness

Basic Staggered Consecutive None
Instance 7 23.2% 23.2% 33.3% 20.3%
Instance 8 31.9% 30.4% 36.2% 1.4%
Instance 9 20.3% 26.1% 44.9% 8.7%
Total 25.1% 26.6% 38.2% 10.1%

0.0

0.2

0.4

0.6

0.8

1.0

(b) preference

Figure 8.6: (a) Share of correct answers per instance and glyph type; (b) stated preference by

instance and glyph type.

stance 7. This coincides with the previous observation that the instance significantly impacts

glyph quality.

Qualitative analysis. The quantitative analysis of the result revealed that a large factor de-

termining the readability of the glyphs is the individual configuration of an instance. Therefore,

we take a closer look at instances that resulted in ambiguous results in our study.

Even though the consecutive glyph achieved the overall best results, its accuracy in In-

stance 4 is only 45.5% (Figure 8.6a). Of the 22 recorded answers, 12 participants chose the

wrong option 𝐴 instead of the correct option 𝐵. Option 𝐶 was not selected at all. The glyph

thus seems to be ambiguous for the first two options. Figure 8.7 shows Instance 4, with the

given glyph shown in Figure 8.7a. The narrow disk sector for the largest look-ahead value

might convey the wrong perception of evolution more to the top of the map as seen in option

𝐴 (Figure 8.7d) compared to option 𝐵 (Figure 8.7b). For comparison, the correct glyph for the

off-screen trajectory in option 𝐴 is shown in Figure 8.7c. Comparing the two glyphs, the disk

sectors for the first two look-ahead values are nearly identical, but the last changes signifi-

cantly. A reason for the high share of wrong answers might be the arrangement of the options

99



8. Visualizing the Off-Screen Evolution of Trajectories

in the study (see Figure 8.5a): only option 𝐵 is placed right next to the visible map frame, for the

other options the perspective might be skewed and the directions might not be easy to identify.

(a) given glyph (b) Option 𝐵 (correct) (c) glyph for

Option 𝐴

(d) Option 𝐴 (wrong)

Figure 8.7: (a) Instance 4, consecutive glyph: (d) many participants selected answer 𝐴, (b) but

𝐵 is the correct one. (c) Glyph if option 𝐴 was correct.

In Instance 5, all glyph types score a similar correctness of 64.0%-77.3%. Figure 8.8 shows

the glyphs with the off-screen evolution. All three variants look pretty similar. This is because

of the curvy off-screen trajectory section near the cut-off point and the large overlap in the

look-ahead intervals. Figure 8.8d shows the look-ahead values 500m, 750m and 1000m. As

these positions are derived following the trajectory and due to the curvy nature of the off-

screen section, these positions are all very close to the map boundary. The visualization can

be improved by selecting the look-ahead position based on a radius instead of along the tra-

jectory. Another improvement can be achieved by reducing the overlap parameter. Both of

these measures decrease the shared information between the disk sectors and thus increase

the information conveyed by the glyph.

(a) basic (b) staggered (c) consecutive (d) evolution

Figure 8.8: Instance 5: all three variants (a) basic, (b) staggered and (c) consecutive look very

similar due to the curvy evolution of the trajectory in close vicinity to the cut-off point. (d) The

off-screen evolution with loook-ahead values indicated by blue markers.

Many participants could not decide on a preferred glyph in Task 2, Instance 7 (Figure 8.9).

Similar to the previous example, the near-off-screen evolution is quite curvy; thus, the maxi-

mum look-ahead value is close to the map boundary. Again, we suggest using a fixed radius as

a look-ahead value to improve the visualization.

100



8.5. Conclusion

(a) basic (b) staggered (c) consecutive (d) evolution

Figure 8.9: Instance 7: participants cannot decide on a preferred glyph for the given situation.

(d) The look-ahead distances are not evident due to the curves in the off-screen part.

8.5 Conclusion

In this chapter, we have proposed using glyphs in the form of disk sectors to indicate how

trajectories evolve outside of the visible map frame. We have outlined an algorithm that com-

putes the glyphs in O(𝑛2) time under relatively mild assumptions regarding the optimization

objective. Future research may find an algorithm of sub-quadratic time for specific objective

functions, which has been achieved for related algorithmic problems (Eppstein and Erickson,

1994).

We have opted for the perimeter of a glyph as the minimization objective, as minimizing

the area of a glyph resulted in very narrow glyphs. We evaluated the approach in an online

user study. The results show that the glyphs are simple and informative. Nonetheless, the

trajectories’ geometry greatly impacts the glyphs’ readability, and, in some cases, the tested

glyphs do not seem to convey the intended information. In our evaluation, we identified the

parameter settings of the glyphs used in our study as one reason for this. For future applica-

tions, we therefore recommend reducing the overlap of the look-ahead intervals for glyphs.

Additionally, we recommend using a fixed radius to determine the off-screen sections instead

of a distance along the trajectory.

In our evaluation, we focused on the efficacy of single glyphs. For the visual exploration

of large sets of trajectories, many glyphs must be displayed on the same map (see Figure 8.1).

Therefore, challenges such as the overlap between multiple glyphs remain to be addressed in

future research.

101





Chapter 9

Multimodal Travel-Time Maps with
Schematic Isochrones

The following chapter is mainly taken from joint work with Youness Dehbi, Benjamin Nieder-

mann, Johannes Oehrlein, Peter Rottmann, and Jan-Henrik Haunert (Forsch et al., 2021). The

project originated from a student project attended by Peter Rottmann and myself, Axel Forsch,

under the supervision of Johannes Oehrlein and Benjamin Niedermann. The project led to the

development of preliminary algorithms designed for routing inmulti-modal transportation net-

works and for visualizing travel times. Building upon the foundational work established during

the course, I extended the results by integrating the algorithms and developing a schematic vi-

sualization. Jan-Henrik Haunert supervised and supported the development of the algorithms

and the write-up.

The automatic generation of travel-time maps is a prerequisite for many fields of appli-

cation, such as tourist assistance and spatial decision support systems, e.g., to analyze the

accessibility of health facilities. The task is to determine outlines of zones that are reachable

from a user’s location in a given amount of time. The focus of this chapter is on travel-time

maps with a formally guaranteed separation property in the sense that a zone exactly contains

the part of the road network that is reachable within a pre-defined time from a given starting

point and start time. The approach revolves around generating schematized travel-time maps

aimed at reducing visual complexity. Each zone is represented by an octilinear polygon, where

the edges of the polygons adhere to one of eight pre-defined orientations. Further, map legibil-

ity is supported by aiming for polygons with minimal bends. The reachable parts of the road

network are determined by integrating timetable information for different modes of public

transportation, e.g., buses or trains and pedestrian walkways, based on a multi-modal time-

expanded network. Moreover, the generated travel-time maps visualize multiple travel times

using a map overlay and incorporate natural barriers like rivers. In experiments, comparisons

are made between the schematic visualizations and travel-time maps created using other visu-

alization techniques. Simple but robust quality measures, such as the number of bends and the

perimeter of the zones, are used to evaluate the effectiveness of the different approaches.

103



9. Multimodal Travel-Time Maps with Schematic Isochrones

9.1 Introduction

Travel-time maps provide the user with an easily comprehensible visualization of areas that

are reachable from a selected location within a prescribed amount of time. The boundaries

of such areas are commonly referred to as isochrones. We present a new method for gener-

ating schematic travel-time maps automatically – a preview of some results generated with

our method is provided in Figure 9.1. The motivation for using a schematic visualization is to

avoid the high graphical complexity that can occur with existing solutions, which we review

in detail in Section 9.2. However, we not only aim for a low graphical complexity but also for a

visualization inducing a formally correct classification of the transport network into reachable

and unreachable parts.

7:30 min 15:00 min 22:30 min 30:00 minstart
point

travel times:
public transportation: bus tram railway ferry

Figure 9.1: Travel-time maps generated for the city of Bonn, Germany. The maps show the

accessibility of the road network starting from the same location for different start times in the

morning (left) and during the night (right) of a work day.

Before formally defining the property ensured with our method, we discuss a classical ap-

proach (referred to as time buffering in the following) and its possible flaws. An early map of

Melbourne generated with time buffering is shown in Figure 9.2. The approach consists of two

steps:

Step 1: Travel times are estimated from a selected point to all stations in the transport

network (in the map of Melbourne, the tram and railway network).

Step 2: To visualize the area reachable within some amount of time 𝜏 , a disk is drawn

around each reachable station 𝑠 such that the disk’s radius equals the available amount of time

𝜏 − 𝜏𝑠 (where 𝜏𝑠 is the travel time to 𝑠) multiplied with a constant (which may correspond to

the assumed speed of walking outside of the transport network).

104



9.1. Introduction

Figure 9.2: An early travel-time map of Melbourne rail transport travel times, 1910-1922. The

public transportation is considered: for each reachable station, the remaining travel time is

visualized by concentric circles. Source: Melbourne and Metropolitan Tramways Board – State
Library of Victoria.

Usually, as in the example of Figure 9.2, this approach is repeated with multiple different

values for 𝜏 , resulting inmultiple areas (in the following referred to as time zones). Furthermore,

the time buffering approach can be easily generalized to situations where, in Step 1, accurate

travel times are estimated not only for a discrete set of stations but also for the continuous

set of all points in a geometric graph – an example we generated ourselves using public trans-

portation timetable data and road data is shown in Figure 9.3a. We observe that many points

in the network that in Step 1 were classified as unreachable (dashed lines) fall into the area

highlighted as reachable (red region). We consider this inappropriate since no evidence exists

that the space between the roads is traversable. More precisely, the assumed constant walk-

ing speed for areas outside the network lacks a reasonable justification. We do not make this

assumption and keep the classification of points in the network as it results from Step 1. Still,

we would like to use areas to visualize the reachable part of the network. We argue that sche-

matic polygons are particularly well-suited because they lower the graphical complexity. The

travel-time map created with our approach is shown in Figure 9.3b. Aside from the low vi-

sual complexity, another advantage of schematized time zones is that schematization is widely

applied for visualizing transport networks, such as metro maps. Since schematic metro maps

are so commonly applied in practice, it can be assumed that most people understand that the

geometric information provided with schematic polygons needs to be taken with a grain of salt

(i.e., not all points of the map plane contained in a time zone we display are actually reach-

able). Nevertheless, qualitative information displayed for the transport network, such as the

classification into reachable and unreachable parts, is correct.

105



9. Multimodal Travel-Time Maps with Schematic Isochrones

1

2
3

(a)

1

2
3

(b)

Figure 9.3: A single time-zone of 15 minutes starting at the flag. Unreachable roads are dashed.

(a) Time-zone created by buffering the remaining travel time for each point of the road net-

work. 1 – 2 : The time zone covers unreachable roads. 3 : Time zone has ramified outgrowths.

(b) Time-zone created by our approach. 1 – 2 : Time-zone only covers reachable roads.

3 : Schematization simplifies the visualization.

The correct classification of the transport network into reachable and unreachable parts is

formalized as follows. A location 𝑡 in a road networkR is reachable from the user’s location 𝑠 in

time 𝜏 if there is a route 𝑟 from 𝑠 to 𝑡 using footpaths in R and connections in the public trans-

portation network such that it takes at maximum time 𝜏 to travel along 𝑟 ; all other locations of

R are unreachable. Due to the possibly disconnected structure of the reachable subnetwork, we
describe its outline, the time zone of temporal extent 𝜏 , not by a single polygon but rather by

a set of polygons whose boundaries do not intersect; we explicitly allow holes in the polygons

modeling unreachable parts contained in reachable parts of the network. We consider a time

zone formally correct if it satisfies the following separation property:

Definition 5 (Separation Property). The time zone 𝑍 satisfies the separation property if each

reachable location of R is contained in one of the polygons of 𝑍 and each unreachable location

of R is not.

In contrast to previous work (Gamper et al., 2011; Krismer et al., 2017; Baum et al., 2018),

we follow the idea of schematic mapping to only use octilinear orientations for the edges of the
time zone, i.e., they are either horizontal, vertical or diagonal. To that end, we discretize the

solution space by an octilinear grid. In the exceptional case that our algorithm does not find

a strictly octilinear polygon that separates the reachable and unreachable vertices, we allow

non-octilinear lines. To keep the visual complexity low, we heuristically minimize the number

of bends of the polygons.

106



9.1. Introduction

Altogether, the core contribution of this chapter is an algorithm for creating a high-quality,

schematized travel-time zone for a starting location given a start time and maximum travel

times. It fulfills the following requirements:

(1) MultiModalNetworks: The travel-time map is based on a multi-modal transportation

network, considering public transport and pedestrian movement.

(2) LowVisualComplexity: The travel-time map has low visual complexity without ramified

structures.

(3) SeparationProperty: The travel-time map is formally correct and accurately represents

reachable and unreachable locations in the road network.

(4) Schematization: The travel-time map is schematized such that the shape of each time

zone is restricted to a fixed number of edge directions.

We have developed our method, particularly for users roaming through a city, e.g., tourists ex-

ploring different sightseeing spots distributed all over the city. In that scenario, typically, the

user gets around on foot and uses public transportation to bridge larger distances. Hence, to

determine the reachable part of the road network in Step 1, we consider both public transporta-

tion and the parts of the road network that are accessible by foot. Taking public transportation

into account poses additional challenges when creating travel-time maps. Firstly, when deter-

mining the reachable part of the road network in Step 1, the underlying routing component

must support integrated path-finding in the road and public transportation network. To that

end, we utilize the time-expanded model introduced by Pyrga et al. (2008) for routing in public

transportation networks with timetables and connect it with the road network. This enables

us to compute realistic routes whose travel times depend on the current timetable. Secondly, a

time zone is not necessarily a single component but may consist of multiple components, each

possibly containing holes representing unreachable parts. This needs to be taken into account

in Step 2.

Additionally, we show how to embed this algorithm in a holistic framework for creating

travel-time maps with multiple, correctly nested travel-time zones. To that end, we introduce

the following extensions.

1. Multiple travel times. Time zones of different travel times are overlaid. The algorithm is

adapted such that the time zones are correctly nested to avoid cluttered maps.

2. Clipping. Apost-processing step incorporates natural barriers, such as rivers, that cannot

be overcome by foot. Overlaying themwith time zonesmay lead to thewrong impression

that a region is easily accessible by foot; see Figure 9.4a. We, therefore, clip time zones

to natural barriers; see Figure 9.4b.

3. Polishing. To enhance the visualization, amorphological closing operation borrowed from
image processing is adapted on graph structures and applied to resolve small artifacts.

4. Multiple zoom levels. In a generalization step, the time zone is adapted to multiple zoom

levels, showing different levels of detail.

The chapter is organized as follows. We discuss related work in Section 9.2. In Section 9.3,

we give a high-level overview of the components of our approach, which we explain in greater

detail in Section 9.3.1–9.3.3. We describe possible extensions in Section 9.3.4. In Section 9.4, we

present our experiments on real-world data and their evaluation. An implementation of the

approach is available as open source at https://github.com/GeoinfoBonn/travel-time-maps.

107

https://github.com/GeoinfoBonn/travel-time-maps


9. Multimodal Travel-Time Maps with Schematic Isochrones

(a) (b)

5 min
10 min

start point

travel times:

public transp.:

roads

bus
ferry

Figure 9.4: Incorporating natural barriers. (a) Time zones without cutting natural barriers.

(b) Time zones after cutting natural barrier.

9.2 Related work

Two basic algorithmic problems lie at the core of creating travel-time maps. The first is about

determining the reachable part of the transportation network. The result is a possibly dis-

connected set of components of the network that describe the reachable subnetwork for a

given travel time. For our scenario, it must fulfill the requirement of supporting MultiModal-

Networks. The second algorithmic problem is then about the visualization of the obtained

components. This problem is related to our requirements of LowVisualComplexity, Separa-

tionProperty, and Schematization.

For computing the reachable part of the transportation network, previous work has con-

sidered various types of networks and routing algorithms specially engineered for solving this

task in real-time applications. Bauer et al. (2008) present a simple routing algorithm that consid-

ers both a road network and a bus network. Gamper et al. (2011) proposed a formal definition,

which describes an isochrone as the (possibly disconnected) subgraph of a transportation net-

work that can be reached from a given starting point in a specific time. Based on Dijkstra’s

algorithm for finding shortest paths in graphs, they presented an algorithm for computing

isochrones inMultiModalNetworks. Gamper et al. (2012) and Krismer et al. (2017) improved

that algorithm with respect to its running time and memory consumption. Moreover, Krismer

et al. (2014) considered the computation of multiple isochrones for different travel times but

the same starting point. Baum et al. (2019) adapted customized route planning to computing

isochrones in dynamic road networks. They specially engineered their algorithms to deploy

them in interactive scenarios, taking large networks, i.e., spanning entire continents, into ac-

count.

Less research has been conducted on the visualization of isochrones so far. O’Sullivan et al.

(2000) proposed an approach deployed in a geoinformation system for visualizing isochrones

that consider public transportation. They suggested computing for each station the remaining

walking time and visualizing the possible pedestrian movement either by concentric circles

around the stations or more complex regions modeling the area that is accessible on foot. These

regions are joined, and inaccessible parts are cut out. Still, their approach does not enforce the

108



9.2. Related work

𝑠

(a) outline of network

𝑠

(b) minimal bends

𝑠

(c) schematic

Figure 9.5: Sketches of different methods for creating travel-time maps.

SeparationProperty as the concentric circles can overlap unreachable areas. Krajzewicz and

Heinrichs (2016) split the map into cells and, for each cell, computed the required travel time

for a given starting point and multi-modal transportation. They used this information to ag-

gregate and color the cells regarding the required travel time. However, based on the cells, this

easily yields structures with branched outgrowths in the visualization. Marciuska and Gamper

(2010) presented two approaches for visualizing isochrones in road networks. The first creates

a buffer with a user-specific size around each reachable edge in the road network, and the sec-

ond (see Figure 9.5a) constructs a single polygon enclosing the reachable part, which is then

enlarged by buffering. Neither of the two approaches enforces the SeparationProperty, but

when choosing a small buffer size, the time zones only contain a small number of unreachable

roads. Baum et al. (2018) presented an approach for visualizing isochrones in road networks

with a strong focus on algorithm engineering. They represented the isochrones by polygons

thatminimize the number of bends and satisfy the SeparationProperty; see Figure 9.5b. Their

approach consists of the following steps:

1. Determine the reachable and unreachable parts of the road network.

2. Planarize the road network resolving bridges and tunnels.

3. Determine the faces in the planarization that separate the reachable parts from the un-

reachable parts. These faces are merged into one face, separating reachable and unreach-

able regions.

4. For each reachable region, compute a polygon that encloses that region and separates

the unreachable from the reachable part. All of these polygons combined form the time

zone.

In our approach, we apply similar steps in a slightly different order. We planarize the road

network only once and reuse this information for multiple queries. Further, we consider multi-

modal transportation and represent the isochrones by schematized polygons; see Figure 9.5c.

An overview of related work for creating travel-time maps is given in Table 9.1 by categorizing

the methods towards fulfilling the requirements introduced at the beginning of this chapter.

Schematization has also been investigated in other contexts. Most prominently, schema-

tization is used to represent transit networks such as metro systems. The interested reader is

referred to surveys on automated layout methods for transit maps by Nöllenburg (2014) and

Wu et al. (2019, 2020). Moreover, Buchin et al. (2016) studied the automated simplification and

109



9. Multimodal Travel-Time Maps with Schematic Isochrones

MultiModal
Networks

LowVisual
Complexity

Separation
Property

Schema-
tization

Melbourne (1910) no no no circles

O’Sullivan et al. (2000)

yes no no no

Bauer et al. (2008)

yes - yes -

Marciuska and Gamper (2010)

no no no no

Krajzewicz and Heinrichs (2016)

yes no no no

Baum et al. (2018)

no min. bends yes no

our approach yes min. bends yes octilinear

Table 9.1: Overview of different methods for creating isochrones towards fulfilling our require-

ments.

schematization of territorial outlines preserving area and topology constraints. To capture the

shape of arbitrary polygons, Bouts et al. (2016a) presented a mapping to simple grid polygons

based on Hausdorff or Fréchet distance. Recently, Bonerath et al. (2019) presented an approach

for visualizing points annotated with time stamps based on schematized, octilinear 𝛼-shapes.

In order to construct the octilinear polygons, they create a shortcut graph, which represents all

candidate edges of the time zone. Similar graph structures are used for line simplification (Imai

and Iri, 1988) and the simplification of footprints of buildings (Haunert and Wolff, 2010).

Empirical evaluations of LowVisualComplexity have been conducted in the context of

graph drawings. Purchase (2000) identifies the number of bends and the number of crossings

in a graph drawing as the most significant factors for the usability of graph drawings. Further

research on edge crossings showed that the number of crossings should be minimized and

their crossing angle should be maximized (Huang et al., 2008). Ware et al. (2002) highlight

the importance of path continuity for shortest path perception. We incorporate these findings

into our approach by minimizing the number of bends in our time zones and using octilinear

polygons with a fixed smallest opening angle of 45
◦
, thus improving path continuity.

We provide travel-time maps at different zoom levels, selecting the most important roads

in small-scale maps based on their attributes. Other methods for selective omission in road

networks can be applied. Brewer et al. (2013) presented an automated approach for thinning

road networks by removing features. For network generalization, Chimani et al. (2014) intro-

duced an approach that successively deletes the edges, preserving the graph’s connectivity.

Zhou and Li (2016) proposed a method for empirically determining geometric parameters to

decide which roads should be retained or eliminated at a specific scale.

110



9.3. Methodology

9.3 Methodology

We present a workflow for creating travel-time maps consisting of three components, which

can be enhanced by two extensions; see Figure 9.6. The input is public transportation data

consisting of timetable information and station coordinates, a road network, an origin within

the road network, the start time of the query, and a set 𝑇 of travel times.

Component 1:
Preprocessing

Component 2:
Routing

Component 3:
Visualization

shortest path
algorithm

road graph R

labeled vertices:
blue/red

travel
time 𝜏

optional:
closing

dilation factor 𝑑

octilinear visualization
of time zones

optional:
clipping

geometric
relation

natural boundaries

origin 𝑠
in R

start
time 𝜏0

OSM data GTFS data

planarization

optional:
generalization

transportation
graph P

combined
routing graph G

graph R
planarized

Figure 9.6: Illustration of workflow. The Preprocessing Component creates different graph

structures used in the Routing Component and the Visualization Component. The Routing

Component marks all reachable vertices blue and all unreachable vertices red. The Visualiza-

tion Component creates a time zone for each travel time.

Preprocessing component. The input data is prepared by preprocessing graph structures

that can be reused for multiple travel-time maps with different origins. Hence, we execute this

component only once in advance, investing some computation time to accelerate queries made

by the user. In our experiments, we used General Transit Feed Specification (GTFS) data for

public transportation and OpenStreetMap
1
(OSM) data for modeling the road network; other

data sources may also be integrated. We build a graph P modeling the public transportation by

applying the time-expanded model by Pyrga et al. (2008). Further, we represent the road net-

work as a geometric graph R. We merge both graphs to one graph G used in Component 2 for

routing and determining all reachable vertices ofR. Further, we planarize R to obtain a graphR
whose embedding is planar, i.e., there are no crossings between two edges. The planarization is

1
www.openstreetmap.org

111



9. Multimodal Travel-Time Maps with Schematic Isochrones

detailed in Section 9.3.1. We only useR in Component 3 to compute the visualization polygons,

but not for routing in Component 2. The details are discussed in Section 9.3.1.

Routing component. Using a shortest path algorithm on G, we compute the locations in R
that are reachable from a given starting point 𝑠 and start time 𝜏0 within travel time 𝜏 ∈ 𝑇 . We

subdivide each edge 𝑒 that is only partly reachable from 𝑠 by an additional vertex at the point

with time distance 𝜏 from 𝑠 . Hence, afterward, the reachability of R corresponds to a coloring

of the edges: all reachable edges are blue, and all unreachable edges are red. The details are in
Section 9.3.2.

Visualization component. This component creates the time zones of the travel-time map.

It expects the planarized road network R and for each travel time 𝜏 ∈ 𝑇 , the edge coloring

created by the previous component. For each travel time, it creates a set of schematic polygons

containing exactly all reachable edges in R. In case of multiple travel times, the approach

considers the creation of the time zones in an integrated way. The details are in Section 9.3.3.

Extensions. Three optional extensions can enhance the workflow. These aim to further

simplify the shape of the created time zones by removing small holes and considering natural

boundaries and zoom levels. The details are explained in Section 9.3.4.

9.3.1 Preprocessing component

This section explains how the input data is preprocessed, obtaining the graph structures used

in the Routing Component and the Visualization Component.

Road network. We model the road network as a geometric graph R = (𝑉R, 𝐸R), i.e., each
vertex corresponds to a point, and each edge corresponds to a line segment whose endpoints

are the incident vertices of the edge. We assume that the course of a road between two junctions

is described by a path consisting of degree-2 vertices. In order to accelerate routing, we can

contract degree-2 vertices, but for the Visualization Component, we also need to consider these

vertices to maintain the shape of the network. As we consider pedestrians navigating through

the city in a combination of public transportation and walking, we only include paths that

are accessible by pedestrians; in particular, we exclude all highways and speedways. Further,

we annotate each edge 𝑒 ∈ 𝐸R with the time necessary to traverse it; in our experiments, we

assumed a constant walking speed of 5 km/h. Note, however, that we make no assumptions

outside the road network.

Due to tunnels and bridges, the given embedding of the road graph R is not necessarily

plane, i.e., there may be edges that cross each other. However, we do not need this additional

information for the Visualization Component. We can make the embedding plane by subdi-

viding the edges with additional vertices at their intersections, as done in (Baum et al., 2018).

The result is a plane graph R, which we utilize for creating the time zones in the Visualization

Component. We note that we use the road graph R still containing all non-planarized bridges

and tunnels for routing.

112



9.3. Methodology

Public transportationnetwork. Weassume that the timetable for the public transportation

network is given. It is described by a set 𝑆 of stations and a set Γ of trips. Each trip 𝑡 ∈ Γ is

a sequence of stations served by a vehicle in chronological order. Hence, we describe 𝑡 as a

sequence of stops such that each stop is defined by a station 𝜎 ∈ 𝑆 and two times, namely

the arrival and departure times of the bus or train. Based on this timetable we construct a

graph P = (𝑉P, 𝐸P) following the time-expanded model for timetable information presented

by Pyrga et al. (2008); as we introduce some problem-specific adaptions we describe this model

for the convenience of the reader; see also Figure 9.7.

station F

station C

station B

arrival transfer departure

Public Transport Station A

connection to the
road network

Mon

Tue

Wed

Thu

Fri

Sat

Sun

station E

station D

Figure 9.7: Time-expanded model for an example station 𝐴. Four trips occur at the station:

two starting in station 𝐴 and two passing through. Transfer vertices model the change of a

connection. The connection to the road network is marked blue.

For each stop ℎ of each trip, we introduce two vertices 𝑢 and 𝑣 that represent the arrival

and the departure of the means of transportation at a certain station 𝜎 , respectively. We call 𝑢

the arrival vertex and 𝑣 the departure vertex of the stop and annotate 𝑢 with its arrival time 𝜏𝑢
and 𝑣 with its departure time 𝜏𝑣 . Further, we insert a directed edge from 𝑢 to 𝑣 . Per trip, each

pair of consecutive stops ℎ,ℎ′ are concatenated by adding an edge from the departure vertex

of ℎ to the arrival vertex of ℎ′.
In order to model transfers from one trip to another, we introduce a transfer vertex 𝑤 for

each stop ℎ of each trip. We annotate𝑤 with a transfer time 𝜏𝑤 equal to the departure time of ℎ.

We introduce a directed edge from 𝑤 to 𝑣 , modeling the access to a trip. Finally, we connect

the transfer vertices of the same station with each other. To that end, let 𝐻𝜎 be the set of all

stops at a station 𝜎 . We sort 𝐻𝜎 in increasing order with respect to their transfer times. We

113



9. Multimodal Travel-Time Maps with Schematic Isochrones

introduce directed edges between each pair of consecutive transfers in 𝐻𝜎 . These edges model

necessary waiting times at 𝜎 .

Further, each edge is annotated with the time difference between its target and source

vertices. This difference models the cost of traveling along this edge. The model allows us to

find the best journey through the public transportation network, e.g., with Dijkstra’s algorithm.

Further, it supports minimal transfer times and a cyclic repetition of the timetable; for more

details, see Pyrga et al. (2008).

Joining road graph and public transportation graph. For the Routing Component, we

join the road graph R and the public transportation graph P to one graph G as follows. For

each station 𝜎 we use its geographic location to identify the closest vertex 𝑢 in R; we call 𝑢 an

access point of the public transportation system. To keep the experiments simple we merely

used the geographic locations of the stations. However, more sophisticated approaches based

on the entrances of the stations could be used to make the routing more accurate. To model

that the user leaves the public transportation system, we connect each arrival vertex 𝑣 of 𝜎

with the access point𝑢 via a directed edge from 𝑣 to𝑢. As each trip has a pre-defined departure

time at each station, we cannot simply insert edges between 𝑢 and all transfer vertices of 𝜎

modeling that the user enters the public transportation system. Instead, we do this on demand

when computing the shortest journey in G in the following component.

9.3.2 Routing component

We use the graph G defined in the previous component to determine all reachable vertices in

the road network. For a starting point 𝑠 in the road network of G we use Dijkstra’s algorithm

to determine all vertices that are reachable in time 𝜏 . From a technical point of view, the

algorithm determines for each vertex 𝑢 the shortest journey time necessary to reach 𝑢. Thus,

when routing in the part of G representing the road network, we determine for each vertex 𝑢

at which time we arrive earliest, assuming that we are given a start time for the journey, e.g.,

Monday 2 pm. We call this the earliest arrival time at 𝑢. Further, each time when the algorithm

reaches an access point 𝑢 of a station 𝜎 in the public transportation system, it temporarily

introduces an edge to the transfer vertex of 𝜎 whose transfer time suits the earliest arrival time

of 𝑢 best; see the dotted blue arc in Figure 9.7. With this, we obtain for each vertex of G its

earliest arrival time. Using a standard termination criterion, we let Dijkstra’s algorithm only

consider vertices that are reachable in time 𝜏 such that we do not consider the entire network.

We mark all reachable vertices blue and all others red. Further, for each edge 𝑒 that is incident

to both a blue and a red vertex, we determine the location on 𝑒 that is still reachable from 𝑠 in

time 𝜏 ; see Figure 9.8a. We subdivide 𝑒 at this location by a blue dummy vertex. A special case

occurs when the sum of the remaining distances at two adjacent, reachable vertices 𝑢 and 𝑣 is

smaller than the length of edge 𝑒 = {𝑢, 𝑣}, see Figure 9.8b. In this case, 𝑒 is subdivided by two

additional dummy vertices, with the middle part being colored red. We further transfer the

coloring and the newly inserted vertices into the planarized graph R, additionally coloring the
vertices that have been introduced to planarize R; see Figure 9.8c. Each such vertex becomes

blue if it subdivides an edge 𝑒 in R that is only incident to blue vertices; otherwise, it becomes

red. Altogether, we obtain a coloring of R defining all vertices either blue or red. Due to the

114



9.3. Methodology

insertion of the dummy vertices, this vertex coloring induces an edge coloring: edges that are

incident to two reachable vertices are also reachable, and all other edges are unreachable.

𝑢
𝑣

𝑤

𝑣

R

𝑥

𝑦

(a)

𝑢
𝑣

R

(b)

𝑢
𝑣

𝑤

𝑣

R

(c)

Figure 9.8: The reachability is modeled by subdividing edges. (a) The vertex 𝑥 (resp. 𝑦) subdi-

vides the edge (𝑢, 𝑣) (resp. (𝑢,𝑤)) at the last reachable position. (b) Special case: The vertices 𝑢
and 𝑣 are are reachable from different directions. (c) The coloring of R is transferred to R, and
the vertices (squares) introduced for the planarization are colored.

9.3.3 Visualization component

In this section, we describe how to compute the time zones of the travel-time map based on the

coloring of the previous step (see Section 9.3.2). We first explain this for a single travel time

and then for multiple travel times.

𝑠

(a)

𝑠

(b)

Figure 9.9: Reachabilities for a single travel time. (a) The blue vertices and edges form a con-

nected component. (b) The blue and red vertices and edges form multiple connected compo-

nents.

Single travel time

In this section, we assume a single travel time. Thus, we are given the planarized road net-

work R and a coloring such that each edge and each vertex are either blue (reachable) or red

(unreachable). Further, we assume that the outer face only consists of red vertices but no blue

vertices; we can always insert an unreachable bounding box and connect it to the road network.

We first observe that R has faces that have both red and blue edges; see Figure 9.9. We call

an edge that is incident to both a blue and a red vertex a gate. Further, we call the reachable

115



9. Multimodal Travel-Time Maps with Schematic Isochrones

vertex of a gate its port. Removing the gates from R decomposes the graph into a set of com-

ponents𝐶1, . . . ,𝐶ℓ such that each component is either completely blue or red. We call them the

colored components of R.

Base case. Wefirst consider that𝐶2, . . . ,𝐶ℓ have the same color, but𝐶1 has the opposite color;

see Figure 9.10a. We describe a procedure that creates a single octilinear polygon such that𝐶1

lies inside and𝐶2, . . . ,𝐶ℓ lie outside of the polygon. Without loss of generality, we assume that

𝐶1 is blue and the other components are red. Let 𝑣1, . . . , 𝑣𝑘 be the ports of R on the boundary of

𝐶1 in the order in which we encounter them when going along the boundary of𝐶1; we choose

an arbitrary starting point and define 𝑣𝑘+1 := 𝑣1. We observe that any two consecutive ports 𝑣𝑖 ,

𝑣𝑖+1 are incident to the same face of R, which we denote by 𝑓𝑖 .

𝑓1

𝑓2
𝑓3

𝑓5

𝐶1

𝑓4

𝐶2

𝐶3

𝐶4

(a) (b) (c)

Figure 9.10: Creating an octilinear polygon that encloses the component𝐶1 (blue) of all reach-

able vertices and edges. (a) The faces 𝑓1, . . . , 𝑓5 surround the component 𝐶1. (b) Each face is

subdivided by an octilinear grid (Step 1). Furthermore, these grids are connected to one large

grid 𝐺 that is split by the port between 𝑓1 and 𝑓5 (Step 2). (c) An octilinear polygon is con-

structed by computing a bend-minimal path through 𝐺 .

The base case consists of three steps; see Figure 9.10. In the first step, we create for each

pair 𝑣𝑖 , 𝑣𝑖+1 of consecutive ports an octilinear grid𝐺𝑖 contained in 𝑓𝑖 . In the second step, we fuse

these grids to one large grid 𝐺 . In the final step, we use 𝐺 to determine an octilinear polygon

by finding an optimal path through 𝐺 .

Step 1. For each pair 𝑣𝑖 , 𝑣𝑖+1 of consecutive ports with 1 ≤ 𝑖 ≤ 𝑘 we first compute an

octilinear grid 𝐺𝑖 that is contained in 𝑓𝑖 and connects 𝑣𝑖 and 𝑣𝑖+1; see Figure 9.11. To that end,

we shoot from both ports octilinear rays and compute the line segment arrangementL of these

rays restricted to the face 𝑓𝑖 ; see Figure 9.11a. If L forms one component, we use it as grid 𝐺𝑖 .

Otherwise, we refine L as follows. We uniformly subdivide the bounding box of 𝑓𝑖 by further

vertices from which we shoot additional octilinear rays; see Figure 9.11b. We insert them into

L, restricting them to 𝑓𝑖 . We call the number of vertices on the bounding box the degree of
refinement 𝑑 . We double the degree of refinement until L is connected or a threshold 𝑑max

is exceeded; see Figure 9.11c. In the latter case, we also insert the boundary of 𝑓𝑖 into L to

guarantee that L is connected. Later on, when creating the octilinear polygon, we only use

the boundary edges of 𝑓𝑖 if necessary.

116



9.3. Methodology

𝑣𝑖

𝑣𝑖+1

(a) (b) (c)

Figure 9.11: The face 𝑓1 of the example shown in Figure 9.10 is subdivided by octilinear rays

based on vertices on the bounding box. (a) Shooting octilinear rays from 𝑣𝑖 and 𝑣𝑖+1 does not
yield a connected line arrangement (see yellow highlight). (b)–(c) The bounding box of 𝑓1 is

successively refined by vertices shooting octilinear rays until they connect 𝑣𝑖 and 𝑣𝑖+1.

Step 2. In the following, we interpret each grid 𝐺𝑖 as a geometric graph such that the grid

points are the vertices of the graph and the segments connecting the grid points are the edges

of the graph. We union these graphs to one large graph𝐺 . More precisely,𝐺 is the graph that

contains all vertices and edges of the grids𝐺1, . . . ,𝐺𝑘 . In particular, each port 𝑣𝑖 is represented

by two vertices 𝑥𝑖 and 𝑦𝑖 in 𝐺 such that 𝑥𝑖 stems from 𝐺𝑖−1 and 𝑦𝑖 stems from 𝐺𝑖 ; for 𝑖 = 1 we

define 𝑥1 = 𝑣𝑘 . We connect two grids𝐺𝑖−1 and𝐺𝑖 in𝐺 by introducing the directed edge (𝑥𝑖 , 𝑦𝑖)
in 𝐺 for 2 ≤ 𝑖 ≤ 𝑘 . An example is shown in Figure 9.12a.

𝑣1
𝑣3 = 𝑣1

𝑣2

(a)

𝑂

(b)

𝑂

(c)

Figure 9.12: Routing step. (a)–(b) The polygon 𝑂 must not contain unreachable parts. For

the routing step the edges incident to ports are directed accordingly. (c) The path 𝑂 is not

necessarily simple.

Step 3. In the following let 𝑠 := 𝑦1 and 𝑡 := 𝑥1. We compute a path 𝑃 from 𝑠 to 𝑡 in 𝐺 such

that 𝑃 has the minimum number of bends, i.e., there is no other path from 𝑠 to 𝑡 that has fewer

bends; see Figure 9.12b. To that end, we use Dijkstra’s algorithm on the linear dual graph of

𝐺 , allowing us to penalize bends in the cost function. If the choice of 𝑃 is not unique because

there are multiple paths with the same number of bends, we use the geometric length of the

117



9. Multimodal Travel-Time Maps with Schematic Isochrones

path as a tie-breaker, preferring shorter paths. As 𝑠 and 𝑡 have the same geometric location, the

path 𝑃 forms an octilinear polygon 𝑂 . By using directed edges at the ports, we guarantee that

𝑃 crosses the port so that no unreachable component can be enclosed by 𝑂 ; see Figure 9.12b.

If we cannot find a connected octilinear grid for a face in the second step, we relax the

requirement that 𝑃 is octilinear. In that case, 𝑃 might also contain edges of the according face.

In order to minimize the number of these possibly non-octilinear edges, we penalize them with

high costs when searching for 𝑃 . We note that 𝑂 is not necessarily simple, as we individually

calculate each segment between two ports. This can lead to two segments of the same face

crossing each other; see Figure 9.12c. In this exceptional case, we transform 𝑂 into a simple

polygon with holes by joining the overlapping parts. This can change the number of bends in

the polygon’s outline. We consider this appropriate as we do not search for a global optimum

solution towards the number of bends but only an optimal solution in our model.

0

1

2

1

(a)

0

1

2

1

(b)

Figure 9.13: The reachable (blue) and unreachable (red) parts of the road graph consist of mul-

tiple components. (a) Each component has a level. (b) Each internal component is enclosed by

a schematized polygon.

General case. If R has multiple reachable and unreachable colored components, we enclose

the components in multiple polygons. To that end, we assign to each component a level that

states to which degree it is nested into other components; see Figure 9.13a. The idea is that

blue components of an odd level and red components of an even level are enclosed by time

zones. To assign the levels, consider the graph R′ that we obtain from R by removing its gates.

A component in the outer face of R′ has level 0. A component 𝐶 that lies in the internal face

of another component 𝐶′ with level 𝑖 gets assigned to level 𝑖 + 1. For each blue component

with an even level and each red component with an odd level a time zone is computed; see

Figure 9.13b. Hence, we obtain a time zone so that blue and red edges and vertices of R are

separated. Further, time zones of different levels are either disjoint or nested. However, time

zones of the same level might partly intersect. We resolve this by simply computing the union

of all time zones enclosing components of the same level. The resulting set of time zones is

then this union.

118



9.3. Methodology

Multiple travel times

For multiple travel times, we compute the time zones of the travel times in decreasing order.

However, we cannot simply combine them, as routing through the octilinear grids of the dif-

ferent travel times may result in partly intersecting time zones. We observe that the edges and

vertices of R are correctly separated for each travel time, but the map may contain unneces-

sary overlaps between time zones. Therefore, we proceed as follows. Let 𝜏1, . . . , 𝜏ℓ be the travel

times in increasing order, i.e., 𝜏1 < . . . < 𝜏ℓ . For 𝜏ℓ , we compute the set Zℓ of time zones as

described in Section 9.3.3. For 𝜏𝑖 with 𝑖 < ℓ we slightly adapt the procedure of Section 9.3.3.

When computing the grid graph𝐺 of a single colored component, we restrict the graph to the

union of the time zones inZ𝑖+1. More specifically, we intersect its geometric embedding with

the union of the time zones inZ𝑖+1. The result is a smaller grid graph𝐺 ′ that we use for routing
and computing the time zone enclosing the corresponding component. Altogether, we obtain

a set of time zones for all travel times. We draw them in the order as their area decreases and

color each time zone differently.

9.3.4 Extensions

In this section, we briefly describe three extensions that we use to enhance the visualization.

The first can be plugged into the Routing Component, and the second and third can be plugged

into the Visualization Component.

Closing

Initial experiments showed that the Routing Component typically returns a colored graph that

consists of a few large colored components and a variety of small colored components.

𝑠

(a)

𝑠

(b)

Figure 9.14: Closing operation. (a) A small group of unreachable (red) vertices in the blue area.

(b) After the closing operation the hole is filled.

For example, due to the travel time choice, a few vertices and edges may be unreachable

while all others in the direct surroundings are reachable; see Figure 9.14. These small unreach-

able islands “rupture” holes into the time zones, looking unpleasant. To improve the visualiza-

tion, the closing extension removes these holes. A time zone created with this extension thus

does not strictly fulfill the separation property anymore! Nonetheless, we deem it reasonable

119



9. Multimodal Travel-Time Maps with Schematic Isochrones

to fill these small holes, as the time zones depend on the assumption that the user has a walking

speed of precisely 5km/h, which introduces an exaggerated accuracy. To that end, we utilize

the technique of morphological closing applied in image processing to suppress small patches

of noise (Serra, 1983). The idea is first to extend the area of interest, which removes the holes

(dilation), and then to reduce the area to restore the original outer boundaries (erosion).

We adapt this method for our problem as follows. For dilation, we mark every vertex that is

reachable in time 𝜏 with blue; see also Figure 9.14. Then we use an increased time 𝜏𝑑 = 𝜏 · (1+𝑑)
with 𝑑 > 0 to calculate a buffer region, i.e., we compute all vertices that are reachable in time 𝜏𝑑
andmark all vertices𝑦𝑒𝑙𝑙𝑜𝑤 that are not already colored blue; we call𝑑 the dilation factor of the
closing operation. All remaining uncolored vertices become red. For erosion, we determine for

every yellow vertex adjacent to a red vertex the yellow component that contains that vertex. We

color all vertices in that component red. Thus, the original boundaries of the blue components

are restored, while the vertices in small holes of the blue components remain yellow. Finally,

we color the remaining yellow vertices blue, which closes the holes. The greater 𝑑 is chosen,

the larger the hole closed by this operation.

Travel-time maps at different zoom levels

Depending on the concrete zoom level, digital maps typically show different levels of detail.

For example, all roads are shown in large-scale maps, while only the most important roads

are displayed to the user in small-scale maps. We implement this concept in travel-time maps

as follows. While for large-scale maps, we aim at an outline of the time zone that separates

the reachable from the unreachable part of the road network, for small-scale maps, we deem a

rough outline preferable, showing the most important features of the time zone. More specifi-

cally, we compute all reachable and unreachable parts of the road network once at the begin-

ning. When creating the time zone for a specific zoom level, we remove all roads not displayed

for this one and construct the time zone based on the remaining roads. Hence, the separation

property still holds for all drawn roads, but it may be violated for the removed roads. Further,

the time zone directly adapts to the current selection of roads.

Figure 9.15 shows an example of a travel-time map for two zoom levels. Two areas with

many bends are highlighted in Figure 9.15a. The first shows a graveyard with small footpaths,

while the second shows a field path parallel to a residential road. A detailed outline with many

bends is necessary in both cases to satisfy the separation property. Figure 9.15b shows the

generalized time zones of the same example. The visualization for both marked regions is

simplified, and the octilinear structure of the polygons is easily recognizable. The blue area

remains almost unchanged in the given example, as no roads have been generalized here. In

particular, improving the schematization relies on a good selection of roads to be removed.

Clipping

We observe that time zones may overlay important natural barriers such as rivers and lakes;

see Figure 9.4. However, this creates the impression that the region is easily accessible by foot.

Furthermore, schematizing the outline of these natural barriers may compromise the “mental

map” a user has of the area. Therefore, we clip the time zones by subtracting important natural

120



9.4. Evaluation

graveyard

field path

(a) (b)

Figure 9.15: Generalization of time zones for different zoom levels. (a) Small streets yield an

octilinear polygon with many bends. (b) Minor roads are ignored, resulting in a schematization

with fewer bends.

barriers. Sometimes, this creates small scratches of the polygon on the wrong side of the river

in areas with no roads. As we do not have information about accessibility to regions without

roads, we remove these shreds. With this, we obtain an appearance of the time map that blends

in with the natural features of the map.

9.4 Evaluation

In this section, we describe the experiments applied to real-world data. We present the ex-

perimental setup in Section 9.4.1. In Section 9.4.2, we discuss results based on a single travel

time, comparing them to other visualization approaches for travel-time maps. Finally, in Sec-

tion 9.4.3, we present a small case study featuring a travel-time map with multiple time zones.

9.4.1 Experimental setup

We have created travel-time maps for the metropolitan area of Cologne and Bonn, Germany.

The area has a densely developed public transportation network comprising local, regional,

and long-distance transport. Moreover, the Rhine River, a major waterway in central Europe,

passes through the region and separates the considered region into an eastern and western

part. Both parts are connected by eleven bridges and six ferries spread out over 60 kilometers

along the river. Thus, the river constitutes a significant barrier to accessibility, making the

region interesting for our evaluation.

121



9. Multimodal Travel-Time Maps with Schematic Isochrones

The input data stems from two sources: for the road network, we useOpenStreetMap (OSM)

data
2
extracted by Geofabrik

3
. The extent of the used data is approximately 40 kilometers

in latitudes and 60 kilometers in longitudes, centered on the metropolitan area of Cologne

and Bonn. The data of the public transportation network is taken from OpenData VRS
4
in

the General Transit Feed Specification (GTFS) format and contains timetable information for

2018/2019 for local transportation and regional trains. Further, we inserted data about ferries

crossing the Rhine River for our experiments.

We applied the algorithm to 20 different starting locations dispersed around the experimen-

tal region for our evaluation. We used Monday at 9:00 a.m. as the starting time and computed

travel-time maps for eight travel times (in minutes), namely 𝑇 = {5, 10, 15, 20, 25, 30, 35, 40}.
The implementation was written in Java, and the experiments were performed on an AMD

EPYC™ 7402P processor clocked at 2.8 GHz with 128 GB RAM. The planarization of the graph

took 62 seconds, and creating the remaining travel-time map took 18 seconds on average.

In order to decide on a suitable value for the maximum degree 𝑑max of refinement, we

conducted initial experiments. To this end, we calculated time zones for three different travel

times with 𝑑max varying from 𝑑max = 4 to 𝑑max = 128; see Figure 9.16.

4 8 16 32 64 128

94%

96%

98%

100%

10 min
20 min
30 min

𝑑max

(a) octilinearity

4 8 16 32 64 128
1

2

3

4

5

6

10 min
20 min
30 min

𝑑max

(b) running time

Figure 9.16: Evaluation of the maximum degree of refinement 𝑑max. (a) Share of the boundary’s

length that is visualized octilinearly. (b) Running time compared to the running time using the

lowest 𝑑max.

The higher the maximum degree of refinement is, the finer is the octilinear grid. Hence, the

share of the octilinear edges of the resulting polygon increases with an increasing maximum

degree of refinement. For 𝑑max = 32 over 99% of all edges are octilinear; see Figure 9.16a.

Moreover, for 𝑑max = 32 the running time is increased by a factor of at most 1.56 compared to

𝑑max = 4; see Figure 9.16b. Thus, for the experiments, we have chosen 𝑑max = 32 as a suitable

compromise between accuracy and running time.

2 ©
OpenStreetMap contributors

3
www.geofabrik.de

4
www.vrs.de

122



9.4. Evaluation

9.4.2 Result comparison

We evaluate the results of our approach by comparing them with the results of other visual-

ization techniques for travel-time maps. In specific, the techniques we compare our approach

to are the time buffered visualization inspired by our initial example for the city of Melbourne

(see Figure 9.2), the arboreal visualization as presented by Marciuska and Gamper (2010) us-

ing a very small buffer size to ensure best the separation property and theminimum-perimeter
visualization which is a slight adaptation of the technique introduced by Baum et al. (2018),

minimizing the perimeter instead of the number of bends. However, we note that we are using

our implementations of the respective works, and results can differ from those generated by

the original solution. We discuss the results concerning their basic properties and visual com-

plexity. As simple measures for the visual complexity of a polygon, we use its perimeter, area,

the type of angles (acute angle or obtuse angle), and the directions of its edges. These measures

are a common tool to assess the complexity of geometric shapes (Chen and Sundaram, 2005).

1
2

3

(a) octilinear

1
2

3

(b) time buffer

1
2

3

(c) arboreal

1
2

3

(d) minimum perimeter

Figure 9.17: Single time zone for 𝜏 = 15 min. for different visualization types. 1 and 3 show

areas where the separation property is violated in (b) and (c). 2 highlights a hole, which is

hard to recognize using some visualizations such as (d).

123



9. Multimodal Travel-Time Maps with Schematic Isochrones

Octilinear visualization vs time buffered visualization. First, we compare the octilinear

visualizations with time buffered visualizations. At the core of this visualization technique is

a constant off-road speed, which is assumed to be smaller than the walking speed on roads.

For each point of the road network (no matter whether it is a vertex or a point on an edge),

the remaining travel time at this point is visualized by a buffer computed utilizing the off-road

speed; see Figure 9.17b. Consequently, the separation property is not enforced by this visual-

ization technique. While reachable parts of the road network are guaranteed to be contained in

the time zone, also unreachable parts may be covered by the zone, violating our requirement

SeparationProperty; as seen in Figure 9.3a. Another example is shown in Figure 9.17b 1

and 2 , where the zone covers parts of the road network that are not reachable. Similar exam-

ples are easily found all along the zone’s boundary. For the given example, 72 vertices of the

road network are wrongly represented as reachable. In contrast, as our algorithm requires, the

octilinear time zone shown in Figure 9.17a precisely separates the roads. Moreover, the time-

buffered visualization tends to become frayed at the boundary as highlighted in Figure 9.17b 2 ,

also violating the LowVisualComplexity.

We insist on the SeparationProperty as the main requirement for the travel-time maps.

Therefore, we only evaluate approaches that fulfill this requirement in the following.

Octilinear visualization vs arboreal visualization. The second approach visualizes the

outer boundary of the reachable zone, which we call arboreal visualization due to the ramified

shape of the time zones; see Figure 9.17c. We emphasize that this representation gets cluttered

along the zone’s boundaries since the last reachable roads form tree-like dangles attached to a

polygon. Hence, in contrast to our approach, this kind of visualization tends to have substan-

tially larger perimeters; see Figure 9.18a. We observe that, especially for larger travel times,

the perimeter differs from our approach, e.g., for a travel time of 30 minutes, the perimeter is

increased by a factor of 2.9.

To analyze the types of angles and the direction of the time zones’ edges, we create a

histogram of the outer angles of the polygons; see Figure 9.19. To that end, we split the angle

interval [0, 2𝜋] into 16 equi-sized bins such that the 𝑖-th bin is defined by the interval 𝐼𝑖 =

[ 2𝑖−3

16
𝜋, 2𝑖−1

16
𝜋) for 1 ≤ 𝑖 ≤ 16. With this definition, the octilinear directions do not form the

boundaries of these intervals but split them into equally sized subintervals. For each bin 𝑖 , we

count how many bends of the polygon have an outer angle in 𝐼𝑖 .

We observe that the number of acute angles (three backward facing bins, outer angle

smaller 33.75
◦
or greater 326.25

◦
) is significantly higher for the arboreal visualization than

for the octilinear visualizations; see Figure 9.19b. The share of acute angles at the total amount

of angles is 12.2% while it is only 0.07% for our approach. This supports the visual impression

of Figure 9.17 that the complexity for arboreal visualizations is much higher than for octilinear

visualizations.

Octilinear visualization vsminimum-perimeter visualization. Finally, we compare our

approach with visualizations that minimize the perimeter of the travel-time zones; see Fig-

ure 9.17d. The approach presented by Baum et al. (2018) yields visually similar results. We first

observe that the minimum-perimeter and octilinear visualization lead to similar perimeters;

124



9.4. Evaluation

5 10 15 20 25 30 35 40
0

100

200

300

octilinear
arboreal
min. perimeter

av
g.

pe
rim

et
er

[k
m
]

travel time [min]
(a) perimeter

5 10 15 20 25 30 35 40
0

10

20

30

40 octilinear
arboreal

travel time [min]

av
g.

ar
ea

[s
q
km

]

min. perimeter

(b) area

Figure 9.18: Perimeter and area for different visualization types.

see Figure 9.18a. For our approach, the perimeters are 11% longer on average and 23% at max-

imum. Moreover, the area covered by the time zones is comparable to each other, indicating

relatively small differences between the time zones. However, evaluating the distribution of

the outer angles, the effect of the schematization in our approach becomes evident; see Fig-

ure 9.19. Over 98.5% of all outer angles lie in bins corresponding to the octilinear directions.

In particular, the vast majority of 83.7% lies in the bin representing the two obtuse angles 225
◦

and 135
◦
. In contrast, for the minimum-perimeter visualization, the angles are spread across

the whole histogram, leading to a higher visual complexity concerning this criterion.

180◦

30%
50%

1%
270◦ 90◦

10%

0◦

(a) octilinear

270◦

180◦

30%
50%

1%
10%

0◦

90◦

(b) arboreal

180◦

30%
50%

10%
1%

270◦

0◦

90◦

(c) minimum perimeter

Figure 9.19: Histogram of the time zone’s outer angles, averaged over all starting points for a

travel time 𝜏 = 30 min. Orange bins relate to acute angles. The quantity of bends per bin is

proportional to the bin’s area.

Similar to the arboreal visualization, the number of acute angles is larger for the minimum-

perimeter visualization than for the octilinear visualization. The share of acute angles is over

nine times higher than for our approach. These acute angles can create artifacts in the visual-

ization, where parts of the polygon are hard to spot. In Figure 9.17d, the time zone has a hole

125



9. Multimodal Travel-Time Maps with Schematic Isochrones

at 2 , but as it is visualized with a thin polygon having acute angles at its bends, it can hardly

be spotted. In contrast, the hole is clearly visible in the octilinear time zone; see Figure 9.17a.

The analysis shows that the octilinear visualization has a lower visual complexity than

the minimum-perimeter visualization. This coincides with the visual impression of the maps

shown in Figure 9.17. Nonetheless, there can be cases where the octilinear visualization suffers

from stair-shaped lines in graph faces with unfavorable geometry. An example is in Figure 9.20.

These unfavorable geometries occur for long stretched faces whose main direction is not one

of the octilinear directions. In contrast, the minimum-perimeter visualization has one straight

edge at this location. Combining the two visualization approaches thus could lead to an even

better result. For example, we could check if the number of bends in an octilinear face exceeds

a threshold 𝑘 and then fall back to the minimum-perimeter visualization for this face. An

investigation of the combination of both algorithms is future work.

(a) octilinear visualization (b) minimum-perimeter visualization

Figure 9.20: In rare cases, the octilinear visualization has a step-like outline, while the

minimum-perimeter visualization does not suffer from this.

9.4.3 Case study

We conclude the evaluation with a small case study highlighting the important steps for cre-

ating a travel-time map with multiple time zones; see Figure 9.21 and Figure 9.22. We used a

starting location in Wesseling between Cologne and Bonn to obtain four time zones.

Creating each time zone separately might cause inner time zones to overlap the outer ones

if their boundaries share the same graph faces; see Figure 9.21a. The outer time zones are used

as a spatial limit for the inner ones to eliminate this issue. With this, the inner zones strictly

lie inside the outer ones, which leads to a less cluttered map (see Figure 9.21b). Nonetheless,

it remains non-intuitive that time zones are differentiated on the Rhine River. To remove this

issue, we deploy our clipping extension (see Section 9.3.4), removing all parts of the time zones

covering such natural boundaries. As a result, the time zones represent the topography better

and thus become more comprehensible; see Figure 9.21c.

As a last processing step, we apply the closing extension (see Section 9.3.4) to eliminate

small holes in the time zones; see Figure 9.21d. We have used a dilation factor of 10%, i.e., a

hole is closed if it is entirely covered by a travel time increased by 10% of the original travel

126



9.4. Evaluation

(a) (b)

(c) (d)

Figure 9.21: Case study. The travel-time map is created for four time zones with 𝑇 =

{5, 10, 15, 20} inminutes and start timeMonday 11 a.m. (a) Independently generated time zones.

(b) Time zones nested in the next bigger time zone. (c) Clipping to the river. (d) Result after

applying the closing operation.

(a) (b)

Figure 9.22: Continuation of the case study. (a) Travel times with start time Monday, 6pm.

(b) Travel times with start time Tuesday, 2am.

127



9. Multimodal Travel-Time Maps with Schematic Isochrones

time. This further reduces the visual complexity of the resulting travel-time map. In public

transportation, this closing operation can be interpreted as a modeled vagueness in the travel-

time map due to delays or varying walking speeds.

Thanks to the integration of time-table information of public transportation, the travel-time

map can be generated for different starting points, travel times, and starting times. Examples of

the variation in travel-time zones depending on the time of the day are shown in Figure 9.22a.

9.5 Isochrones and routing profiles

In Chapter 6, we presented an algorithm to infer the routing preference of a subject (e.g., a

cyclist) given their past trajectory recordings. The routing preference is quantified by a nu-

merical balancing factor within a mathematical model. However, this output of the algorithm

is hard or even impossible to interpret for non-expert users. To address this issue, we bridge

the gap between expert and non-expert users by implementing isochrones as a visual tool for

illustrating routing profiles. To that end, we use the visualization component as explained in

Section 9.3.3. However, we replace the routing component with one utilizing the routing model

of Chapter 6.

Adapted routing component In Chapter 6, the street network is modeled as a directed

graph 𝐺 with two edge cost functions, 𝑐0 and 𝑐1, representing distinct routing criteria. We

employ a bicriterial routing model to assess the trade-off between these routing criteria by in-

troducing a personalized edge cost function 𝑐𝛼 . This personalized cost ist a linear combination

of 𝑐0 and 𝑐1, controlled by a balance factor 𝛼 ∈ [0, 1] (see also Equation 6.1):

𝑐𝛼 (𝑒) = (1 − 𝛼) · 𝑐0(𝑒) + 𝛼 · 𝑐1(𝑒)

Recall that we used Dijkstra’s algorithm in the original routing component (Section 9.3.2)

on the routing graph to determine all vertices reachable within a given maximum travel time.

Analogously, in graph 𝐺 , we can use Dijkstra’s algorithm with the personalized cost 𝑐𝛼 of a

specific user to determine all vertices that are reachable within a maximum cost 𝑐∗𝛼 . Unlike
the original scenario, the maximum cost 𝑐∗𝛼 lacks specific semantic interpretation. Nonethe-

less, higher values of 𝑐∗𝛼 equate to a more significant effort required to reach the destination.

Therefore, we call 𝑐∗𝛼 themaximum effort and analogously 𝑐𝛼 the effort. As the maximum effort

is not a time-based metric, we will refer to the visualization as isolines instead of isochrones in
this section.

Example: Preference of official bicycle routes. In Section 6.4, the preference for official

bicycle routes is examined using the bicriterial routing model and a dataset of 1016 cycling

trajectories. To this end, the following edge cost functionswere defined (compare Equation 6.3):

𝑐0(𝑒) =
{

0, if 𝑒 is part of an official bicycle route

𝑑 (𝑒), else.

𝑐1(𝑒) =
{
𝑑 (𝑒), if 𝑒 is part of an official bicycle route

0, else.

128



9.5. Isochrones and routing profiles

Rhine river

Figure 9.23: Visualizing different routing profiles. The gray area indicates the region accessible

by a cyclist 𝐼 of the group Indiff (𝛼 = 0.5) covering a maximum distance of 3km from the

specified starting point. In contrast, the green outline shows the reachable area for a cyclist 𝑃

of the group Pro (𝛼 = 0.5721) with the same maximum effort and starting point. Notably, the

dedicated cycle paths (yellow) running along the Rhine River extend 𝑃 ’s reach to exceed that

of 𝐼 along the river while the absence of cycle paths away from the river limits 𝑃 ’s reach in

those directions.

129



9. Multimodal Travel-Time Maps with Schematic Isochrones

Using the algorithm for inferring routing preferences from the trajectories and the bicri-

terial routing model (Equation 6.1), the cyclists are classified into three groups: Pro (𝛼Pro =

0.5721), Indiff (𝛼Indiff = 0.5), and Con (𝛼Con = 0.4974).

Previously, we highlighted that the maximum effort lacks semantic interpretation. How-

ever, 𝛼 = 0.5 is an exception for the given cost functions. In this case, the effort is defined as

𝑐𝛼 (𝑒) = 0.5𝑐0(𝑒) + 0.5𝑐1(𝑒). As either 𝑐0(𝑒) or 𝑐1(𝑒) is 𝑑 (𝑒) and the respective other is zero, it

follows that 𝑐𝛼 (𝑒) = 0.5𝑑 (𝑒). Thus, for 𝛼 = 0.5, cycling for a specific effort equates to traversing

twice the geometric distance.

In Figure 9.23, two isolines for different routing profiles are shown: one using the routing

profile Indiff (gray region) and the other one using the routing profile Pro (green outline).

The maximum effort for both isolines is 𝑐∗𝛼 = 1500 meters. This results in the Indiff iso-

line illustrating the area reachable from the starting point within 3000 meters using the road

network. For the routing profile Pro, traversing official cycle paths (highlighted in yellow in

Figure 9.23) costs less effort than traversing regular roads. This effect is visible along the Rhine

River, where paths of the official cycling network are located, resulting in a farther reach in

those directions. On the contrary, no cycle paths lead away from the river at the specified

starting location, resulting in a reach smaller than the initial three kilometers.

We intentionally opted not to illustrate the routing profile Con, as the resulting isoline

closely mirrors the routing profile Indiff. There are two primary reasons for this. Firstly, the

balance factors for these two routing profiles are very similar (𝛼Indiff = 0.5 and 𝛼Con = 0.4974).

Secondly, the conventional road network is much denser than the official cycle path network,

with official cycle paths often running adjacent to regular roads. Consequently, alternative

routes outside official cycle paths typically involve minimal to no detours compared to the

geometric shortest path.

9.6 Conclusion

This chapter presented an automatic approach for the generation of schematic travel-time

maps. Outlines of reachable regions are generated from a user location for a specific travel

time. Following the spirit of schematized metro maps, our method generates octilinear polyg-

onal zones. This reduces the visual complexity and leads to a higher map legibility attributed

to optimizing the number of polygon bends.

We conclude that the computation of schematic travel-time maps can be modeled as a

search for a minimum-weight path in an appropriately defined graph. In particular, using

the line graph of a graph obtained from augmenting a regular octilinear grid with additional

segments through ports (i.e., points where the unreachable and reachable part of a network

meet) allowed us to heuristically minimize the number of bends of the isochrones. We further

showed how to apply this approach to generate travel-time maps for multiple travel times and

showed its feasibility through a case study.

Future Work. The evaluation of the results has shown that the different visualization ap-

proaches for travel-time maps have advantages and disadvantages. Future research could com-

bine these approaches to benefit from these respective advantages. For example, one could

130



9.6. Conclusion

combine our approach with the approach by Baum et al. (2018) to reduce saw tooth patterns

in the visualization. Moreover, we deem combining our approach with schematized network

maps fruitful. To that end, we extend our approach to create schematized isolines in schema-

tized metro maps. This augmented approach is detailed in the following Chapter 10.

Our approach allows us to visualize different travel times or routing profiles and can, for

example, be used to identify deficiencies in the existing road network. For a more advanced

analysis of the road network, it may be suitable to compare more than two map states to each

other. One way to achieve this is to use animated transitions between the states, so-called

morphs. In our ongoing research, we aim to create morphs between schematized input lines

that preserve the schematic properties of the input. Preliminary results are presented by Forsch

et al. (2022b).

131





Chapter 10

Metrochrones: Schematic Isochrones
for Schematic Metro Maps

This chapter is mainly taken from joint work with Jan-Henrik Haunert (Forsch and Haunert,

2023). It presents an algorithm for creating schematic isochrones for schematic inputmaps. The

presented approach is an adaptation to the visualization component presented in Chapter 9,

thoroughly optimized to suit the use case of metro maps. A significant modification lies in

using a pre-computed grid rather than dynamically creating the grid. This adjustment allows

for a formal guarantee that the isochrone can be consistently generated and always maintains

its schematic nature.

In the context of public transportation, travel-time maps display the area accessible from a

starting point within a given travel time. In these maps, isochrones connect locations of equal

travel time. Transit networks are often displayed using a schematic representation, where

each edge is restricted to a given set of orientations, e.g., the octilinear directions. Methods for

generating isochrones for topographic maps unnecessarily constrain the isochrones to fixed

positions, impeding the visual quality. In this chapter, we present an algorithm for generat-

ing Metrochrones, which are schematic regions enclosing the reachable area of a transit map.

The regions are restricted to the same set of orientations as the underlying transit map. Our

approach guarantees that the regions correctly separate the stations in the network into reach-

able and unreachable stations. Moreover, the result is optimized towards a simple visualization

by (a) minimizing the number of bends in the isochrone, (b) forcing the isochrone away from

lines in the transit network, and (c) avoiding small crossing angles. The approach can easily

be extended to other isolines, such as travel fares.

133



10. Metrochrones: Schematic Isochrones for Schematic Metro Maps

10.1 Introduction

Transit maps are an important tool for exploring the public transportation network of large

cities or metropolitan regions. Traditionally, these maps focus on the topological connectivity

of stations by transit lines instead of a geometrically accurate representation of the network.

For this, schematic layouts are often employed to improve the readability of the connectivity.

A widely applied schematization type is octilinearity. In an octilinear transit map, the transit

lines only run at angles that are restricted to being either horizontal, vertical, or 45
◦
diagonal.

While transit maps allow the reader to understand the connectivity of the transportation

network, they do not give information about the transit schedule and travel times. One fre-

quently applied approach to visualize travel times in cartography is using isochrones. An

isochrone is a line connecting all locations that are reachable within a given travel time. Tra-

ditionally, geographic maps are used as the base map for displaying isochrones. This chapter

presents an algorithm for generating Metrochrones: schematic isochrones in octilinear tran-

sit maps. Figure 10.1 shows two outputs of our approach generated for the tram network of

Cologne, Germany. The reachability within a travel time of 10 minutes is displayed for two

example start locations. Our approach guarantees that the isochrones include all reachable

stations and none of the unreachable stations.

Figure 10.1: Shown are two schematized regions that are generated with our approach. The

reachability from the start location (red) within 10 minutes is displayed. The regions are guar-

anteed to contain all reachable (black) stations and none of the unreachable (grey) stations.

Our approach is based on the work by Forsch et al. (2021), who generate isochrones inside

of a road network. Schematic transit maps have structural properties different from road net-

works, allowing us to use a more specialized approach for generating the isolines. Firstly, in a

transit network, the reachability is only interesting for stations, as one can only enter and leave

the network at these locations. In contrast, in a road network, the reachability is of interest

along the road segments, i.e., the user wants to know how far they can get along a road. Thus,

drawing an isoline in a transit network is more flexible, as the separation point between two

stations can be arbitrarily chosen. In contrast, in road networks, exactly one location separates

reachable and unreachable road segments. Hence, when applied to transit maps, methods for

134



10.2. Related work

creating isolines for topographic maps unnecessarily constrain the isochrones to fixed posi-

tions on the road network, impeding the visual quality. The second difference is related to the

network size. Transit maps are schematized and display the transit network in a single map

frame suitable, e.g., for printing. Therefore, they are much less detailed than road networks

and, due to being schematized, they are much more structured. These properties allow us to

use a pre-computed grid for generating the isochrone instead of setting up a grid on the fly, as

done in Chapter 9. This greatly increases the performance of the approach. We evaluate our

approach based on transit maps of the cities of Cologne, Germany and Paris, France. For this,

we use a Java implementation of our algorithm. The implementation and example instances

are available as open source at https://gitlab.igg.uni-bonn.de/forsch/metrochrones.

The chapter is structured as follows. Section 10.2 discusses related work on transit maps,

schematization, and the generation of isochrones. In Section 10.3, the approach to creating

isochrones is described, and design goals, which are integrated into the process, are derived.

The performed evaluation is discussed in Section 10.4. Section 10.5 concludes the chapter.

10.2 Related work

In cartography, schematization is an extreme type of abstraction and simplification tomaximize

the utility of a map for a specific function or task (Burghardt et al., 2014). Schematization

can, among others, be differentiated by its geometric style and the type of the schematized

object (Meulemans, 2014).

Geometric style. Different geometric styles have been applied in schematization. An impor-

tant property is the shape of drawn lines. Examples include using curves and circular arcs (van

Dijk et al., 2014; van Goethem et al., 2015) and straight-line schematization with an orientation

restriction (Stott et al., 2011; Nöllenburg and Wolff, 2006). A popular concept in this context is

𝑘-linearity (Nickel and Nöllenburg, 2019), where each line in the map must have an angle that

is a multiple of 𝜋/𝑘 . For 𝑘 = 4, this results in octilinear visualizations where each line is either

horizontal, vertical, or 45
◦
diagonal.

Schematization has been applied to different types of geometries, such as point sets (Bon-

erath et al., 2019), lines (Delling et al., 2010, 2014), networks (Nöllenburg and Wolff, 2011), and

regions (Buchin et al., 2016). Most relevant for this chapter is the schematic representation of

networks, which forms the base map of our approach and the schematization of regions, in our

case, accessibility regions.

Schematizing networks. The schematization of networks is often considered in the context

of transit maps. Since the publication of Henry Beck’s map design for the London Tube Map

of 1933 (Garland, 1994), schematic transit maps have been widely used to support commuters.

In Beck’s map, the transit lines are restricted to follow either horizontal, vertical, or 45
◦
diag-

onal orientations. Such maps are referred to as octilinear maps. Over the years, many types of

schematization have been applied to transit maps, such as curvilinear maps, concentric circle

maps, and multilinear maps. For a detailed overview of the different schematization types, we

refer to Wu et al. (2020).

135

https://gitlab.igg.uni-bonn.de/forsch/metrochrones


10. Metrochrones: Schematic Isochrones for Schematic Metro Maps

Schematizing regions. Cicerone and Cermignani (2012) describe a heuristic approach for

generating a rectilinear or octilinear schematization of polygons. However, their approach

does not guarantee that the area of the schematized polygon is similar to the original one.

Buchin et al. (2016) present an algorithm for an area-preserving schematization of polygonal

subdivisions. In contrast to the schematization of single polygons, the topology of neighbor-

ing polygons must be preserved in their approach. While the previous approaches relied on

octilinear or rectilinear visualizations, van Goethem et al. (2015) explored curved schematiza-

tion for polygons. Similar to the approach by Buchin et al. (2016), their approach preserves

the area and topology of the schematized polygons. In the context of transit maps, Galvão

et al. (2020) consider simultaneous schematization of a route with given context information,

such as polygonal landmarks. For this, the authors present an algorithm that creates octilinear

schematizations, preserving the topology of the route and the landmarks.

Grid-based for schematization. Multiple approaches exist that use a regular grid to per-

form the schematization. According to Löffler and Meulemans (2017), using regular grids as

a basis for schematization has several advantages: (1) the grid can easily model different con-

straints, (2) the grid promotes collinear edges and uniform edge lengths, (3) the grid avoids

visual collapses of the schematized shape. Grid-based approaches have successfully been ap-

plied to the schematization of networks (Tamassia, 1987; Bast et al., 2020, 2021) as well as the

schematization of regions (Bouts et al., 2016b; Löffler andMeulemans, 2017). In this chapter, we

also adopt a grid-based approach to schematize the accessible region in a transit network. In

contrast to the aforementioned publications, we are not given the non-schematized input ge-

ometry. Instead, we directly generate the schematized accessible region from the classification

into reachable and unreachable parts of the transit network.

Travel-time maps. Travel-time maps provide the user with information about the acces-

sibility of a region. Different approaches exist for visualizing the travel time on these maps.

Denain and Langlois (1998) present anamorphosis maps, where the base map is distorted such

that the geometric distance between two points on the map is proportional to their travel time.

Similarly, Buchin et al. (2014) visualize the travel time by edges drawn as sinusoids such that

the edges’ lengths are proportional to the travel time.

Isochrone maps. The most relevant type of travel-time maps in the context of this chapter

are isochrone maps. An isochrone map displays areas that are reachable within a given set of

travel times by polygons. The generation of travel-time maps can be divided into two steps:

determining the reachable area and visualizing it (Forsch et al., 2021). Determining the reach-

able area is usually done by applying a routing algorithm such as Dijkstra (1959)’s algorithm

on a transportation network graph. For routing in public transportation networks, Pyrga et al.

(2008) introduce the time-expended graph model that includes information on the schedule.

Baum et al. (2016) present speed-up techniques for routing in the context of isochrones. In this

chapter, we focus on the visualization of the reachable area. Creating a separating polygon

between two sets of points (e.g., reachable and unreachable) has been investigated in computa-

tional geometry, where minimum-perimeter polygons (Edelsbrunner and Preparata, 1988) and

136



10.3. Methodology

minimum-link polygons (Eades and Rappaport, 1993) have been considered.

An early example of visualizing isochrones on a map is the Tramway Time Zones map of

Melbourne (Melbourne and Metropolitan Tramways Board, 1922). In this map, concentric cir-

cles around reachable railway stations indicate the remaining travel time at this location. The

circles only approximate the reachable area; thus, the time zone might cover unreachable areas

and vice versa. Since then, different approaches for the automatic visualization of isochrones

have been developed that enforce that the time zones correctly separate reachable and un-

reachable areas. In the context of road networks, Baum et al. (2018) present an approach for

displaying isolines, i.e., lines connecting locations of equal value. Forsch et al. (2021) present an

approach for visualizing octilinear isochrones for multimodal transportation, i.e., public trans-

portation andwalking. Both approaches guarantee that the road network is correctly separated

into reachable and unreachable roads. Additionally, both approaches use minimizing the num-

ber of bends in the isoline as the optimization criterion.

10.3 Methodology

We are given a schematic transit map consisting of a set of stations 𝑆 and a set of connecting

lines 𝐿. The transit map is schematized using rectilinearity or octilinearity, meaning that all

lines in 𝐿 are restricted in their orientation to a set of rectilinear or octilinear orientations, e.g.,

an octilinear transit map only contains horizontal, vertical, and 45
◦
diagonal lines. We will

describe the octilinear case in the following for ease of notation. The approach can easily be

adapted for the rectilinear case.

Next to the layout of the transit map, we are given a classification of all stations into reach-
able or unreachable. This classification could, for example, stem from the output of a routing

algorithm or result from fare zone regulations. Take Figure 10.2a as an example: the black sta-

tions could represent the stations reachable with a specific tariff. We aim to create a polygon

that encloses all reachable stations while not containing any unreachable stations, following

the same schematization as the transit map. We call the outline of the polygon the isoline.
In Section 10.3.1, an algorithm for creating such an isoline is introduced. The algorithm al-

lows for the integration of different design goals using different edge weightings in the graph,

such as a minimal number of bends or avoiding an isoline close to existing transit lines. Ap-

propriate design goals are reviewed in Section 10.3.2, and their assembly into the framework is

discussed in Section 10.3.3. A result generated with our approach is displayed in Figure 10.2b.

10.3.1 Algorithm for generating a valid isoline

Our approach for generating an isoline is based on minimum-cost routing to generate a closed

path around the reachable part of the network. A pre-computed grid is used to set up an appro-

priate graph for the routing such that the computed path is guaranteed to correctly separate

reachable and unreachable parts of the network.

Input. The transit map consists of a geometric graph 𝐺 = (𝑆, 𝐿) with the stations being its

vertices and the connecting lines being its edges. In general,𝐺 can contain lines crossing each

137



10. Metrochrones: Schematic Isochrones for Schematic Metro Maps

(a) (b)

Figure 10.2: (a) Drawing of a classified, octilinear metro network. The black stations are reach-

able, while the grey stations are unreachable. (b) Our algorithm creates an octilinear isochrone,

which separates the reachable and unreachable stations.

other outside of the stations. Additionally, a line connecting two stations can have bends. We

planarize𝐺 into a graph𝐺 = (𝑆, 𝐿) that is crossing free by subdividing crossing edges in 𝐿 with

additional vertices at their intersections.

As stated before, the stations are classified into reachable and unreachable stations. This

classification can easily be extended to the edges: an edge is reachable if it is incident to two

reachable stations; otherwise, it is unreachable. Additionally, we call an intersection vertex

reachable if one of the two lines intersecting at its location is reachable. As a result, all graph

elements are classified as either reachable or unreachable.

Gates and ports. The planarized graph 𝐺 has edges that are incident to both a reachable

and unreachable vertex. We call these edges gates. Further, we call the reachable vertex of a

gate its port. By removing all gates from𝐺 , we decompose the graph into a set of components

𝐶1, . . . ,𝐶ℓ , where each component consists entirely of reachable parts or entirely of unreachable

parts.

In the following, we assume that we are given only one reachable component𝐶1 that does

not contain a hole, i.e., 𝐶1 is reachable and 𝐶2, . . . ,𝐶ℓ are unreachable. We call this the base
case. At the end of the section, we show how to solve the general case based on the base case.

Let 𝑔1, . . . , 𝑔𝑘 be the gates of 𝐺 on the boundary of 𝐶1 in clockwise order. We can identify

these by following the outline of 𝐶1, starting at an arbitrary location. Moreover, we define

𝑔𝑘+1 := 𝑔1. We observe that any two consecutive gates (𝑔𝑖 , 𝑔𝑖+1) are incident to the same face

of 𝐺 , which we denote 𝑓𝑖 . Collecting the faces for all gates results in a set 𝐹 = (𝑓1, . . . , 𝑓𝑘 ) of
reachability-splitting faces. Note that a face can appear multiple times in 𝐹 if more than two

gates are incident to it; see the faces 𝑓1 and 𝑓10 in Figure 10.3 as an example.

138



10.3. Methodology

Figure 10.3 shows the gates and the reachability-splitting faces for the example shown in

Figure 10.2. Each face in 𝐹 separates the reachable and unreachable parts of 𝐺 . Therefore, the

isoline must split each face into two parts. Recall that the two gates 𝑔𝑖 and 𝑔𝑖+1 are incident

to the face 𝑓𝑖 . These gates denote the separation point between the two parts of the network.

Thus, the section of the isoline running through 𝑓𝑖 must connect these two gates.

f0

f1/f10

f2

f3
f4f5

f6

f7
f8 f9

g0 = g11

g1

g2

g3

g4g5
g6

g7

g8
g9

g10

Figure 10.3: The faces in 𝐹 that separate

the reachable component from the unreach-

able parts of the network are highlighted

(grey). They are identified in clockwise or-

der around the component.

f0f1

f2

f5

f7

f8

f6

f8

Figure 10.4: For each face (here 𝑓8), a grid graph

(green) is extracted from a pre-computed grid

(light grey). At gates (red), the grid graph can

touch the outer boundary of the face.

Our procedure for the base case consists of three steps. In the first step, we identify all

reachability-splitting faces, and for each of these faces, we extract a grid graph from a pre-

computed, octilinear grid that connects its incident gates. We join the individual grid graphs

at the gates to create an octilinear routing graph. In the final step, we perform a minimum-cost

routing in the routing graph to get an octilinear path. This resulting path is the region outline.

Grid graphs. We define an infinitely-large octilinear grid graph from which we generate a

solution space for the segments of the isoline. A grid graph G𝑤 = (V, E) with grid spacing 𝑤

is constructed as follows. For every point (𝑖 ·𝑤, 𝑗 ·𝑤) with 𝑖, 𝑗 ∈ Z, we add a grid vertex 𝑣𝑖, 𝑗 to
V . Each vertex 𝑣𝑖, 𝑗 is connected to each of its eight octilinear neighbors by a grid edge 𝑒 ∈ E.
Using this definition, any path 𝑝 = (𝑒1, . . . , 𝑒𝑛), with 𝑒𝑖 ∈ E is an octilinear line. At the end of

this section, we explain how to choose𝑤 such that G𝑤 contains a valid solution for the isoline

for any classification of the stations in 𝐺 into reachable and unreachable stations.

Step 1: Extracting a grid graph for each face. For each reachability-splitting face 𝑓𝑖 in 𝐹 ,

we extract a subgraph F𝑖 = (𝑉𝑖 , 𝐸𝑖) from G𝑤 that connects its two gate edges 𝑔𝑖 and 𝑔𝑖+1. We

use the pre-computed grid G to initialize𝑉𝑖 and 𝐸𝑖 . Every grid point in G𝑤 inside of 𝑓𝑖 becomes

a vertex in F𝑖 . Every grid segment in G𝑤 that is completely contained in 𝑓𝑖 , i.e., that is inside of

𝑓𝑖 and does not touch its boundary, becomes an undirected edge in F𝑖 . Additionally, for every
segment in G𝑤 that crosses one of the gates of 𝑓𝑖 , we insert this crossing point as a vertex and

139



10. Metrochrones: Schematic Isochrones for Schematic Metro Maps

the part of the segment that is inside of 𝑓𝑖 as an undirected edge to F𝑖 . Figure 10.4 shows the
grid graph created for face 𝑓4 of Figure 10.3. Notice how the grid graph only touches the face’s

boundary at the two gate edges and creates a connection between them.

Step 2: Creating the routing graph. In Step 1, we created grid graphs for the individual

faces in 𝐹 . We combine the grid graphs into one large routing graphR by joining for 𝑖 = 2, . . . , 𝑘

every two consecutive grid graphs F𝑖−1 and F𝑖 by edges. Recall that the grid graphs F𝑖−1 and

F𝑖 share the common gate 𝑔𝑖 ; see Figure 10.5a. By construction, both grid graphs have vertices

on the same locations on 𝑔𝑖 , namely the intersection points of 𝑔𝑖 with the grid G. These are
the gate vertices of 𝑔𝑖 . For each such pair of coincident vertices, we connect the vertices with

a directed edge from the vertex in F𝑖−1 to the vertex in F𝑖 . Figure 10.5b shows an enlarged

version of 𝑔𝑖 highlighting the inserted edges. We refer to these edges as gate edges. Later on,
we can apply different edge weightings to the gate edges to favor specific gate crossings over

others. An important observation is that the two consecutive grid graphs F𝑖−1 and F𝑖 are only
connected along their common gate 𝑔𝑖 . As a result, the gates can only be used in sequence

when routing in the combined routing graph, even when a face appears multiple times in the

set of reachability-splitting faces 𝐹 .

Notice that we did not connect the grid graph F𝑘 to F1 along gate 𝑔1, see Figure 10.5c. We

insert an additional dummy vertex into the routing graph for each vertex of F1 along 𝑔1. These

vertices serve as sources for the routing performed in Step 3. The source vertices are connected

to their corresponding gate vertex by a directed edge, which serves as the gate edge for the first

gate.

gi

fi−1 fi

(a)

gi

fi−1 fi

(b)

s

fk f1

gk+1 = g1

(c)

Figure 10.5: Creating the routing graph R. (a) Along gates (red), the grid graph is extracted so

its edges touch the gate. (b) Detailed view of the gate. Two gate vertices of consecutive grid

graphs are connected by a gate edge (red). (c) The first and last grid graphs are not connected.

Instead, the source vertices 𝑠 are added.

Step 3: Routing. In the previous step, we created a routing graph R that connects all gates.

Figuratively speaking, the routing graph forms a ring around the reachable component of the

transit network. Even though this ring is closed geometrically, the graph itself is separated at

the gate 𝑔1, where the coincident vertices of F1 and F𝑘 are not connected. We assume that

140



10.3. Methodology

we are given a cost function 𝑐 that expresses how suitable an edge in R is for being part of

the isoline. The lower the cost, the better the edge represents the reachability. The details on

setting up cost function 𝑐 are outlined in Section 10.3.3. We generate the isoline by performing

a minimum-cost path query regarding 𝑐 in R. For example, the algorithm of Dijkstra (1959) can

be used for this task. The isoline is only valid if it is closed; its source vertex must coincide with

the target vertex. Therefore, for each vertex 𝑣1 on 𝑔1 that has a coincident vertex 𝑣𝑘+1 on 𝑔𝑘+1,
we perform a minimum-cost path query starting at the dummy source of 𝑣1 and ending at 𝑣𝑘+1.
This will generate a set of candidates for the isoline. From this set, we select the minimum-cost

solution regarding 𝑐 as the final isoline.

Ensuring a valid solution. In the following, we show how to choose a grid spacing𝑤∗ that
ensures that a valid solution for the isoline can be found inG𝑤∗ . In particular, we need to choose
a sufficiently fine grid to ensure that the graphs F𝑖 and F𝑖+1 for 𝑖 = 1, . . . , 𝑘 are geometrically

connected via the incident gate 𝑔𝑖 . However, choosing a very small value for 𝑤∗ will increase
the algorithm’s running time.

Therefore, to choose𝑤∗ appropriately, we use the following result by Brimkov et al. (2011,

Theorem 12): Given a connected surface 𝐴 in R2
and a unit grid (i.e., an integer grid with

spacing 1), the set of grid cells whose centers are within distance 1/2 of 𝐴 is connected via the

8-neighborhood. Since connectivity is not affected by scaling, it also holds for any surface 𝐴

in R2
and grid with spacing 𝑤 that the set of grid cells whose centers are within distance 𝑤/2

of 𝐴 is connected via the 8-neighborhood.

Let 𝑓𝑖 and 𝑓𝑖+1 be two adjacent faces in 𝐺 that share a common gate 𝑔𝑖 . Additionally, let 𝑝𝑖
be a point inside of 𝑓𝑖 furthest away from 𝑓𝑖 ’s boundary. Analogously, 𝑝𝑖+1 is a point inside of
𝑓𝑖+1 furthest away from 𝑓𝑖+1’s boundary. This situation is shown in Figure 10.6a. By removing

𝑔𝑖 , we get a single face 𝑃 . Further, let 𝑑 be the largest distance one can buffer the boundary

of 𝑃 to the inside so that the resulting geometry 𝐴 is connected, includes a point on 𝑔𝑖 , and

includes the points 𝑝𝑖 and 𝑝𝑖+1, see Figure 10.6b. By construction, the area within distance 𝑑

of 𝐴 is guaranteed to be contained inside of 𝑃 . Additionally, following the findings of Brimkov

et al. (2011), all grid points within distance 𝑑 of 𝐴 are octilinearily connected on a grid with

spacing 𝑤 = 2𝑑 . To extend this guarantee to all faces of 𝐺 , we have to compute the minimum

distance 𝑑∗ over all of its faces. We can select 𝑤∗ = 2𝑑∗ to ensure octilinearily connected grid

graphs.
1

General case. Until now, we assumed that 𝐺 only has one reachable component that does

not contain unreachable parts. If 𝐺 has multiple reachable components, we enclose each indi-

vidually. For this, we first select one reachable component and generate the isoline using our

solution to the base case. If a reachable component𝐶𝑟 contains an unreachable component𝐶𝑢 ,

we enclose both 𝐶𝑟 and 𝐶𝑢 . In theory, reachable and unreachable components can be nested

arbitrarily deep, requiring an iteration of this process. In practice, we never encountered more

than a nesting level of one (i.e., an unreachable component being enclosed by a reachable com-

ponent). We refer to Chapter 9 for a more formal definition of the general case.

1
Brimkov et al. (2011) report a minimum distance of

√
2/2 to guarantee connectivity via the 4-neighborhood on a

unit grid, resulting in a minimum grid spacing of𝑤∗ =
√

2𝑑∗ in the rectilinear case.

141



10. Metrochrones: Schematic Isochrones for Schematic Metro Maps

fi

fi+1

gi

P

pi
pi+1

(a)

d
A
pi

pi+1

(b)

d

A

D (A, d)

(c)

Figure 10.6: (a) Two faces 𝑓𝑖 and 𝑓𝑖+1 that are incident to each other and share a common gate

𝑔𝑖 . By removing 𝑔𝑖 , we get a face 𝑃 . (b) The buffer distance 𝑑 is the largest distance that can

be buffered inside of 𝑃 such that the resulting geometry 𝐴 is connected, contains a point on

𝑔𝑖 , and contains 𝑝𝑖 and 𝑝𝑖+1. (c) The area within distance 𝑑 of 𝐴 (green) is contained inside of

𝑃 , and all grid points covered by it are octilinearily connected if the underlying grid has a grid

spacing of𝑤 = 2𝑑 .

10.3.2 Design criteria

In previous research, isochrones have often been generated using basic geometric principles,

leaving little room for design choices. For example, a circle is drawn for each reachable station

whose radius corresponds to the remaining travel-time budget. In the following, we review

design choices from cartography and information visualization domains to adopt them for a

more flexible approach to generating isochrones.

When visualizing information, the simplicity of shapes is known to be a key factor influ-

encing the quality of perception (Van Lier, 1996). In this regard, many researchers focused on

deriving measures that express the aesthetics of a shape (Birkhoff, 1933; Eysenck, 1941; Boselie

and Leeuwenberg, 1984). The list of characteristics used in the proposed formulas is rich and

includes measures of complexity, symmetry, angles, repetition, pattern regularity, and com-

pactness. Especially when dealing with geographic shapes, compactness is considered themost

crucial spatial property (MacEachren, 1985). Compact shapes typically feature a less complex

boundary and are more space-efficient than non-compact ones. Therefore, we aim for compact

shapes when computing schematic isochrones for metro maps.

Another frequently applied design criterion isminimizing the number of bends in polylines,

also often referred to as straightness (Tamassia, 1987; Hong et al., 2006). Studies in the context

of graph drawing have shown that reading graphs with a lower number of bends results in

fewer errors than reading graphs with a higher number of bends (Purchase, 1997, 2000). Some-

times, bends or crossings in the lines cannot be avoided. In these cases, having larger crossing

angles has been proven to increase the readability of the graph layout (Ware et al., 2002; Huang

et al., 2008, 2014). Di Giacomo et al. (2011) study the trade-off between, among others, hav-

ing fewer bends and increasing the minimum angle formed between two crossing segments.

They present algorithms for drawing non-planar embeddings with constrained minimum edge

crossing angles and the number of bends. In this chapter, we aim to increase the crossing angle

142



10.3. Methodology

between line intersections of our isoline and existing lines while minimizing the number of

bends in the isoline.

Design criteria are also considered in the context of external labeling (Bekos et al., 2019). In

external labeling, textual annotations are placed on themargins of an illustration and connected

to the annotation location by so-called leaders. Next to the aforementioned criteria, such as

minimizing the number of bends, the distinctiveness of these leaders was also identified as an

important design criterion (Niedermann et al., 2017). For example, leaders running close to

each other should not be parallel. Therefore, we aim to avoid lines running close to each other

and lines running close to stations.

As a conclusion, we have identified the following design criteria:

C1 minimizing the number of bends,

C2 avoiding acute crossing angles,

C3 avoiding lines close to existing features,

C4 increasing the compactness.

In the following section, we will explain our approach. Afterward, we explain how to incorpo-

rate these design criteria into the approach.

10.3.3 Optimization

In Section 10.3.1, we outlined an approach for generating a valid isoline separating the reach-

able and the unreachable part of the transit network. This approach relies on a cost function 𝑐

that quantifies a segment’s suitability for representing the isoline. This section introduces

appropriate cost functions to quantify the design goals identified in Section 10.3.2. We then

describe how to integrate these cost functions into a combined cost function 𝑐 .

Bends. In Design Criterion C1, we aim at minimizing the number of bends in the isoline. To

be able to penalize bends, we perform the routing step on the pseudo-dual graph 𝜕R of R as

introduced by Winter (2002). This allows us to apply a cost between two consecutive edges

𝑒𝑖 , 𝑒 𝑗 in the grid graph R. We use 𝜃 (𝑒𝑖 , 𝑒 𝑗 ) to denote the angle between 𝑒𝑖 and 𝑒 𝑗 , with 𝜃 = 0

indicating a straight line having no bend.

We suggest two different cost functions to penalize bends. The first one penalizes all bends

uniformly:

𝑐𝑢
𝑏
(𝑒𝑖 , 𝑒 𝑗 ) =

{
1 if 𝜃 (𝑒𝑖 , 𝑒 𝑗 ) > 0,

0 else.

Implicitly, this cost function favors very sharp bends because these bends cover a larger turn

angle at the same cost. These sharp bends reduce the compactness of the resulting shape,

which contradicts Design Criterion C4. Therefore, the second bend cost function 𝑠𝑤
𝑏
weights

the bends according to their bend angle 𝜃 :

𝑐𝑤
𝑏
(𝑒𝑖 , 𝑒 𝑗 ) = 𝜃 (𝑒𝑖 , 𝑒 𝑗 ) ·

𝐶

2𝜋
,

143



10. Metrochrones: Schematic Isochrones for Schematic Metro Maps

where 𝐶 is the schematization number (i.e., the number of allowed directions). For octilinear

grids, i.e., 𝐶 = 8, this results in 𝑐𝑤
𝑏
(𝑒𝑖 , 𝑒 𝑗 ) = 1 for 45

◦
bends, 𝑐𝑤

𝑏
(𝑒𝑖 , 𝑒 𝑗 ) = 2 for 90

◦
bends, and

𝑐𝑤
𝑏
(𝑒𝑖 , 𝑒 𝑗 ) = 3 for 135

◦
bends.

The cost functions 𝑐𝑢
𝑏
and 𝑐𝑤

𝑏
are alternatives to each other. In the following, if the differ-

entiation between 𝑐𝑢
𝑏
and 𝑐𝑤

𝑏
is not relevant, we refer to the cost function penalizing the bends

as 𝑐𝑏 .

Passage location. For best visibility, the location where the isoline crosses a gate should

be far away from the two stations the gate is incident to. While this is, strictly speaking,

not in our design criteria, it is closely related to Design Criterion C3. The optimization goal

gate passage location favors specific crossing locations farther away from stations over closer

ones. In particular, the optimal location is specified by a fraction 𝑓 along the gate starting

at the reachable station. Let 𝑔 = (𝑣r, 𝑣u) be a gate connecting the reachable vertex 𝑣r to the

unreachable vertex 𝑣u. Further, let 𝑒𝑔 be a gate edge in R that crosses 𝑔 at location 𝑝i. The

vu = 1

vr = 0

0.5 = f

0.75

0.25

(a)

0 = vr 0.5 = f 1 = vu0.25 0.75

0.25ρl

0

cl

(b)

Figure 10.7: (a) A gate 𝑔 = (𝑣r, 𝑣u) with visualised fractions. For 𝑓 = 0.5, the optimal passage

location is precisely in the middle of the gate. (b) The gate passage location cost function 𝑐𝑙 for

𝑓 = 0.5. At 𝑓 , the optimal passage location, the cost is zero.

intersection point 𝑝i divides 𝑔 into two sub edges 𝑔r and 𝑔u, with 𝑔r being incident to 𝑣r and 𝑔u

being incident to 𝑣u. The gate passage location cost 𝑐𝑙 is defined as:

𝑐𝑙 =

(
ℓ (𝑔r)
ℓ (𝑔) − 𝑓

)
2

,

where ℓ returns the geometric length of the edge. 𝑐𝑙 evaluates to zero at location 𝑓 and increases

quadratically with the distance to 𝑓 . In the remainder of this chapter, we will use 𝑓 = 0.5, i.e.,

the central location on the gate between the reachable and the unreachable stations as the

optimal passage location. Figure 10.7 visualises the passage location cost. The optimal passage

for the gate shown in Figure 10.7a is close to its bend at 𝑓 = 0.5, where 𝑠𝑙 is almost zero (see

Figure 10.7b).

144



10.3. Methodology

Passage orthogonal crossing. Large crossing angles are more readable than smaller ones

(Design Criterion C2). The optimization goal gate passage angle is applied to favor orthogonal
or near orthogonal crossing angles between the isoline and the gates over more acute ones.

Let 𝑔 be a gate and 𝑒𝑔 be a gate edge in R that crosses 𝑔 at an angle 𝜙 (𝑒𝑔, 𝑔). The gate passage
angle cost 𝑐𝑎 is defined as:

𝑐𝑎 (𝑒𝑔) =
{

1 for

��𝜙 (𝑒𝑔, 𝑔) − 𝜋
2

�� > 𝜙max,

0 else,

where 𝜙max is an angle threshold to decide whether an angle is favorable. In the octilinear

variant, there can only be gate crossings of 90
◦
, i.e., orthogonal crossings and crossings of 45

◦
.

We only want to favor orthogonal crossings. Therefore, we set 𝜙max = 0.

Distance from face boundary. The isoline should be easily distinguishable from the net-

work lines. Following Design Criterion C3, this is not the case if the isoline runs close to the

face boundary. Therefore, we want to force the isoline away from existing network lines. We

scale the length ℓ of a grid edge according to its distance to the face boundary 𝑑 to retrieve the

distance to boundary cost 𝑐𝑑 :

𝑐𝑑 (𝑒) = ℓ (𝑒) · 𝑠𝑑 (𝑒),

where

𝑠𝑑 (𝑒) =
{

1 − 9

10
· 𝑑
𝑑min

for 𝑑 < 𝑑min,

1

10
else.

f7

f8

f0

f4

f9

(a)

dmin

1

0

sd

d

1
10

0

(b)

Figure 10.8: (a) Visualization of the distance to boundary cost (orange). The cost is the highest

at the face boundary, while it is neutral in the face center. (b) The distance to boundary scale

factor 𝑠𝑑 . Edges closer to the face boundary than 𝑑min are penalized.

Here, 𝑑min is the distance an edge needs to be away from the face boundary to not be

penalized. In the remainder of this chapter, we will select 𝑑min = 30. In Figure 10.8, the scale

factor 𝑠𝑑 is shown in detail.

145



10. Metrochrones: Schematic Isochrones for Schematic Metro Maps

Combined cost function. We defined four different cost functions. We combine these fac-

tors to a combined cost function 𝑐 : 𝐸 → R that is applied to all edges in R. To weigh the

importance of the individual factors, we introduce four weighting factors 𝜌𝑑 , 𝜌𝑙 , 𝜌𝑎 , and 𝜌𝑏 .

The combined, weighted cost function 𝑐 is defined as:

𝑐 (𝑒) =
{
𝜌𝑑 · 𝑠𝑑 (𝑒) if 𝑒 is a grid edge,

𝜌𝑙 · 𝑐𝑙 (𝑒) + 𝜌𝑎 · 𝑐𝑎 (𝑒) if 𝑒 is a gate edge.

In the pseudo-dual graph 𝜕R = (𝜕𝑉 , 𝜕𝐸), the edge cost function for two consecutive edges

𝑒𝑖 and 𝑒 𝑗 in the primal graphR is joinedwith the edge cost function ofR. The final cost function
𝜕𝑐 : 𝐸 × 𝐸 → R thus is:

𝜕𝑐 (𝑒𝑖 , 𝑒 𝑗 ) = 𝜌𝑏 · 𝑐𝑏 (𝑒𝑖 , 𝑒 𝑗 ) + 𝑐 (𝑒𝑖) .

For details, we refer to Winter (2002).

Summing up this section, we have a cost function 𝜕𝑐 for our pseudo-linear dual routing

graph 𝜕𝑅. This cost function is a weighted sum of five different cost functions 𝑐𝑢
𝑏
, 𝑐𝑤

𝑏
, 𝑐𝑙 , 𝑐𝑎 , and

𝑐𝑑 , whereas 𝑐
𝑢
𝑏
and 𝑐𝑤

𝑏
are mutually exclusive to each other. Each cost function has a weighting

term 𝜌 associated with it that defines the relative importance of the specific cost compared to

the other costs. The higher 𝜌 , the more important the respective cost factor is.

10.4 Evaluation

In this section, we perform a quantitative analysis of our approach based on the optimiza-

tion criteria defined in Section 10.3.3. As described in Section 10.3.2, minimizing the number

of bends is a common optimization goal in schematization that has also previously been ap-

plied in related work dealing with the visualization of travel times. As such, we select Design

Criterion C1 minimizing the number of bends as our primary criterion for the analysis. In our

evaluation, we want to analyze how strongly the other criteria influence this optimization goal.

For this, we perform a case study based on the transit network of Cologne, Germany.

Evaluation instances. For our evaluation, we are using instances generated for the tram

network of the city of Cologne, Germany. The underlying transit map reflects the layout of the

tram lines in the current rail network plan of the local transportation agency (Verkehrbund

Rhein-Sieg, 2023b). The reachability in these instances is hand-generated using a public jour-

ney planner (Verkehrbund Rhein-Sieg, 2023a) to represent travel times in the network. Note

that this process can be automated by including a routing engine in the code. As our focus is

on visualization, we refrained from doing so.

Baseline Solution. We use the instance shown in Figure 10.9 as our baseline solution. Fig-

ure 10.9a shows the tram network (grey) with reachable stations and lines colored black. Ad-

ditionally, the used grid is shown. Figure 10.9b shows the solution of our approach when only

applying 𝑐𝑢
𝑏
, i.e., minimizing the number of bends. The minimum number of bends needed

to correctly separate the reachable and unreachable stations on the chosen grid is 10. A vi-

sual inspection of the result reveals some weaknesses in the visualization. For example, in the

146



10.4. Evaluation

lower left, the generated region runs very close along the transit lines, making it hard to see

the transit line. Another example is along the top, where the region cuts off very close along

the reachable stations, making it hard to distinguish whether these stations are included.

(a) (b)

Figure 10.9: Evaluation instance showing the tram network of Cologne. (a) Reachable stations

(black) and grid (light grey). (b) Polygon enclosing the reachable stations with a minimal num-

ber of bends.

Parameter tuning. In the first step, we analyze the influence of the weighting factors 𝜌 of

the four optimization criteria. To analyze the effect of the individual cost functions, we perform

a pairwise comparison of our secondary optimization criteria with the number of bends in the

polygon. We do this by fixing 𝜌𝑏 , the weighting factor for minimizing the number of bends to

𝜌𝑏 = 10 and iteratively increasing the weighting factor of the second considered criteria from

𝜌 = 10
−1

to 10
4
(totaling 50 logarithmically spaced values) while not considering the other

criteria (i.e., setting their weighting factor to zero).

Figure 10.10 shows the results obtained for the test instance displayed in Figure 10.9. Fig-

ure 10.10a displays the value of the passage location cost function 𝑐𝑙 on the y-axis over the

weighting factor 𝜌𝑙 for this cost function. The value is scaled to the interval [0, 1]. Addi-

tionally, on the second y-axis, the increase in the number of bends compared to our baseline

solution is shown. Analogously, Figure 10.10b displays the data for the passage angle cost 𝑐𝑎
with 𝜌𝑎 and Figure 10.10c displays the data for the distance to face cost 𝑐𝑑 with 𝜌𝑑 .

For all three optimization criteria, a substantial decrease in the individual cost can be

achieved even without increasing the number of bends. This decrease is the largest for the

passage location cost, down to a remaining cost of ≈ 30% compared to the maximum, and the

lowest for the passage angle, down to a remaining cost of ≈ 60% compared to the maximum.

Subsequently, there is a small interval for which the cost function can be further reduced while

not increasing the number of bends by more than 50% compared to our baseline solution. We

argue that this increase in the number of bends is reasonable. Thus, we select the correspond-

ing weighting factor for the following analysis. This results in the following set of weighting

parameters: 𝜌𝑏 = 10, 𝜌𝑙 = 50, 𝜌𝑎 = 14, and 𝜌𝑑 = 1.

147



10. Metrochrones: Schematic Isochrones for Schematic Metro Maps

10−1 100 101 102 103 104
𝜌𝑙

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz
ed

pa
ss
ag
e
lo
ca
tio

n
co
st
𝑐 𝑙

100%

150%

200%

250%

300%

nu
m
.b

en
ds

co
m
pa
re
d
to

ba
se
lin

e

𝜌𝑙 = 50

(a) passage location 𝑐𝑙

𝜌𝑎 = 14

10−1 100 101 102 103 104
𝜌𝑎

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz
ed

pa
ss
ag
e
an
gl
e
co
st
𝑐 𝑎

100%

150%

200%

250%

300%

nu
m
.b

en
ds

co
m
pa
re
d
to

ba
se
lin

e

(b) passage angle 𝑐𝑎

𝜌𝑑 = 1

10−1 100 101 102 103 104
𝜌𝑑

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz
ed

di
st
an
ce

to
fa
ce

co
st
𝑐 𝑑

100%

150%

200%

250%

300%

nu
m
.b

en
ds

co
m
pa
re
d
to

ba
se
lin

e

(c) distance to existing lines 𝑐𝑑

Figure 10.10: Comparing 𝑐𝑢
𝑏
to the other crite-

ria. For all results, 𝜌𝑏 = 10 is fixed.

𝜌𝑙 = 50

10−1 100 101 102 103 104
𝜌𝑙

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz
ed

pa
ss
ag
e
lo
ca
tio

n
co
st
𝑐 𝑙

100%

150%

200%

250%

300%

nu
m
.b

en
ds

co
m
pa
re
d
to

ba
se
lin

e

(a) passage location 𝑐𝑙

𝜌𝑎 = 14

10−1 100 101 102 103 104
𝜌𝑎

0.0

0.2

0.4

0.6

0.8

1.0
no

rm
al
iz
ed

pa
ss
ag
e
an
gl
e
co
st
𝑐 𝑎

100%

150%

200%

250%

300%

nu
m
.b

en
ds

co
m
pa
re
d
to

ba
se
lin

e

(b) passage angle 𝑐𝑎

𝜌𝑑 = 1

10−1 100 101 102 103 104
𝜌𝑑

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz
ed

di
st
an
ce

to
fa
ce

co
st
𝑐 𝑑

100%

150%

200%

250%

300%
nu

m
.b

en
ds

co
m
pa
re
d
to

ba
se
lin

e

(c) distance to existing lines 𝑐𝑑

Figure 10.11: Comparing 𝑐𝑤
𝑏
to the other cri-

teria. For all results, 𝜌𝑏 = 10 is fixed.

148



10.4. Evaluation

𝑐𝑙 𝑐𝑎 𝑐𝑑 bends

no
rm

al
iz
ed

co
st

100%
120%
140%
160%
180%
200%
220%
240%

nu
m
.b

en
ds

co
m
pa
re
d
to

ba
se
lin

e

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.12: Quality for the individual cost

functions using 𝑐𝑢
𝑏
with 𝜌𝑏 = 10, 𝜌𝑙 = 50,

𝜌𝑎 = 14, and 𝜌𝑑 = 1.

𝑐𝑙 𝑐𝑎 𝑐𝑑 bends

no
rm

al
iz
ed

co
st

100%
120%
140%
160%
180%
200%
220%
240%

nu
m
.b

en
ds

co
m
pa
re
d
to

ba
se
lin

e

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10.13: Quality for the individual cost

functions using 𝑐𝑤
𝑏

with 𝜌𝑏 = 10, 𝜌𝑙 = 50,

𝜌𝑎 = 14, and 𝜌𝑑 = 1.

To confirm that these results achieved on a single instance are representative of our ap-

proach, we apply this set of parameters to different instances and analyze whether the influence

is analogous. For this, we use 13 different instances and compute the enclosing region with the

selected set of parameters. Additionally, we determine the minimum and maximum possible

value for every cost function by setting the corresponding weighting factor to 𝜌 = 10000 and

𝜌 = 10
−6
, respectively (𝜌 = 10

−6
is used to ignore the specific cost function except for using it

as a tiebreaker among equally good solutions in the other objectives). This allows us to analyze

the relative cost for each cost function. Figure 10.12 shows the results of our analysis averaged

over all instances. For the three secondary cost functions, the average cost is decreased to 0.2

or lower with only a few outliers with a cost greater than 0.8 of the maximum cost. Similarly,

the increase in bends averages around ≈ 65%, which aligns with our findings for the initial

instance. We conclude that our results generalize well, independent of the specific instance.

average maximum

number of vertices/edges in R 10,220 / 28.643 24,248 / 68,890

number of vertices/edges in 𝜕R 57,099 / 339,285 137,483 / 820,347

time needed to set up 𝜕R 2.06 sec 3.92 sec

time needed to find the best path in 𝜕R 3.15 sec 6.91 sec

Table 10.1: Performance of the algorithm. The computation times mainly depend on the size of

the (pseudo-dual) routing graph 𝜕R. Displayed are the measures for the evaluation instances

of Cologne.

Table 10.1 shows the running time of our algorithm during the evaluation of the 13 evalu-

ation instances for Cologne. The routing graph’s size is the most important factor influencing

the running time. The experiments show that the individual zones are, on average, computed

within ≈ 5 seconds. The largest instance took approximately 10 seconds to compute. These

149



10. Metrochrones: Schematic Isochrones for Schematic Metro Maps

running times make the approach suitable for manually fine-tuning the parameters for a given

instance. In case faster running times are needed, we suggest two methods for improving the

running times: Firstly, in our experiments, we used a grid width of 𝑑∗ as introduced in Sec-

tion 10.3. While this gives us a formal guarantee that a valid solution can be found, we observed

that even for grid widths up to 3𝑑∗, a solution was found in our instances. This substantially

reduces the size of 𝜕R and thus speeds up the algorithm. In conclusion, an adaptive approach

could be applied, starting with a coarse grid and refining it if no valid solution is found. Sec-

ondly, our current implementation uses a generic variant of Dijkstra’s algorithm without using

the routing graph’s grid structure. More specialized routing algorithms can speed up the rout-

ing part, e.g., the algorithms developed by Wenzheng et al. (2019) or Blum et al. (2021, 2023).

Comparing 𝑐𝑢
𝑏
and 𝑐𝑤

𝑏
. Until now, we only considered a uniform weighting (𝑐𝑢

𝑏
) for weight-

ing the number of bends. As explained in Section 10.3.2, the compactness of a shape is an

essential aspect in the esthetic of a geometric shape. Rounder shapes are more compact than

other shapes, which motivated the introduction of the alternative cost function 𝑐𝑤
𝑏
, penaliz-

ing sharp bends more harshly than multiple minor bends. To assess the applicability of 𝑐𝑤
𝑏
,

we first confirm that the parameter set found in our previous evaluation still applies for 𝑐𝑤
𝑏
.

We then evaluate whether using 𝑐𝑤
𝑏
over 𝑐𝑢

𝑏
increases the compactness of our polygons. For

this, we use the iso-perimetric quotient to quantify the compactness of our polygons. The iso-

perimetric quotient for a polygon 𝑃 is defined as 𝛾 (𝑃) = 4𝜋
area(𝑃 )

perimeter(𝑃 )2 (Osserman, 1978). 𝛾 is

scale-invariant and ranges from 0 to 1. The most compact shape is a circle with 𝛾 = 1, while

less compact shapes have a lower value.

Figure 10.11 shows the results of our parameter tuning when using 𝑐𝑤
𝑏

over 𝑐𝑢
𝑏
for the

baseline solution. The baseline solution for 𝑐𝑤
𝑏
has 15 bends, an increase of 50% over the baseline

solution obtained with 𝑐𝑢
𝑏
. Again, we argue that this increase is reasonable. Similar to the

previous results, the individual costs for 𝜌𝑙 , 𝜌𝑎 , and 𝜌𝑑 can be decreased evenwithout increasing

the number of bends. Additionally, the selected values from our previous parameter tuning still

yield reasonable results, only increasing the number of bends by a maximum of 100%. Even

though this is a more significant increase than with 𝑐𝑢
𝑏
, we argue that this is reasonable, as the

actual number of bends is not the main optimization goal, in this case, anymore. Again, we

analyze the generalisability of the result by applying the parameters to further instances. The

results are shown in Figure 10.13 and are very similar to our findings for the uniformweighting

of bends. This observation supports our claim that the choice of parameters generalizes very

well. Figure 10.14 shows the resulting regions generated using 𝑐𝑢
𝑏
and 𝑐𝑤

𝑏
, respectively. The two

results are similar in general appearance, only slightly differing at the corners. As expected,

𝑐𝑤
𝑏
creates more leveled corners than 𝑐𝑢

𝑏
. Compared to the baseline solution (Figure 10.9b), the

issues with the polygon outline running close to existing lines or stations are resolved.

We evaluate the compactness of the resulting areas for all 13 test instances with our selected

parameter set. For the uniform cost of bends, an average compactness of ≈ 0.45 is achieved

while the compactness is increased to≈ 0.49when using theweighted cost of bends. The differ-

ence in the average compactness between the two approaches is minor. However, considering

the earlier observation that the resulting regions are similar, this is unsurprising. In conclu-

sion, the quantitative analysis between 𝑐𝑢
𝑏
and 𝑐𝑤

𝑏
does not allow for a clear recommendation

150



10.4. Evaluation

(a) (b)

Figure 10.14: Results for the evaluation instance (a) using 𝑐𝑢
𝑏
and (b) using 𝑐𝑤

𝑏
.

towards one of the two optimization goals. The differences are minor and are possibly prone

to the subjective assessment of the map reader. Therefore, we perform a qualitative analysis

based on existing regions in transit maps.

Qualitative analysis. In most cases, transit maps display more than one region. One fre-

quently encountered example is the display of fare zones. In this section, we perform a quali-

tative analysis by comparing results for fare zones generated with our approach with existing

depictions of fare zones hand-drawn by a map designer. For our study, we use the transit map

of Paris and the three central fare zones. Figure 10.15 shows the results of our study. The

original transit map, together with the original depiction of the fare zones, is shown in Fig-

ure 10.15a. Figure 10.15b and Figure 10.15c show the results of our approach using 𝑐𝑢
𝑏
and 𝑐𝑤

𝑏
,

respectively. We used the parameter set identified above (i.e., 𝜌𝑏 = 10, 𝜌𝑙 = 50, 𝜌𝑎 = 14, 𝜌𝑑 = 1).

Remarkably, the original fare zones have much fewer bends than the solutions we generated.

This implies that our selected 𝜌𝑏 compared to the other weighting factors is too small for the

given example. We increased 𝜌𝑏 from 10 to 30 and recalculated the fare zones to verify this

hypothesis. The results are displayed in Figure 10.15d. In particular, the outermost fare zone

resembles the fare zones presented on the official map very closely. Our approach now has

even fewer bends than the official version. Another observation is that the original fare zones

only contain bend angles that are 45
◦
. The same applies to our result generated with 𝑐𝑤

𝑏
.

In our approach, the single fare zones are generated individually. This has two negative im-

plications. Firstly, this can result in overlaps of the individual zones as visible in the lower-left

corner of Figure 10.15b (marked by the red circle). Secondly, this prevents inter-zone rela-

tionships from being considered, such as having equally spaced regions. Take the original fare

zones as an example: they are more or less spaced equally and look similar to concentric circles.

This is not the case for our generated examples. However, our approach can easily be extended

to consider previously generated zones. For example, the zones could be generated starting

from the innermost zone and in every iteration, the previously computed zone is treated as

part of the transit network. That way, intersections are prevented. Additionally, appropri-

151



10. Metrochrones: Schematic Isochrones for Schematic Metro Maps

(a) (b)

(c) (d)

Figure 10.15: The three central fare zones of the transit network in Paris are shown, manually

reproduced based on the official metro map (Régie Autonome des Transports Parisiens, 2023).

(a) Fare zones of the official transit map. (b) Fare zones generated with our approach using

𝑐𝑢
𝑏
. (c) Fare zones generated with our approach using 𝑐𝑤

𝑏
. (d) Fare zones generated with our

approach using 𝑐𝑤
𝑏
and increased 𝜌𝑏 = 30.

152



10.5. Conclusion

ate cost factors could be added to favor equal spacing of the zones. These options should be

explored in future work.

Summarizing the qualitative evaluation based on the transit map of Paris, we can verify

that our approach creates zones that are very similar to the given transit map. Nonetheless,

the parameter choice is crucial for generating a pleasing visualization. For the given example,

a stronger focus on bend minimization compared to our found parameter set and using cost

function 𝑐𝑤
𝑏
over 𝑐𝑢

𝑏
seem to yield the closest results to the given zones.

Evaluation summary. In this chapter, we outlined an empirical method for performing the

parameter tuning based on a pairwise comparison of the optimization criteria. We applied this

method to the transit network of Cologne, identifying 𝜌𝑏 = 10, 𝜌𝑙 = 50, 𝜌𝑎 = 14, and 𝜌𝑑 = 1

as a suitable parameter set. In a second experiment, we tested whether our approach could

reproduce the hand-drawn fare zones for Paris’s transit network. Our approach can generate

visually pleasing results, even when using the parameters optimized for the transit network of

Cologne (i.e., without performing the empirical parameter tuning for the network of Paris). A

manual adaptation of the parameters is necessary to match the hand-drawn zones more closely.

This method is suitable for fine-tuning the parameters thanks to the short computation times.

10.5 Conclusion

This chapter presented an automated method for generating schematized region boundaries in

transit networks based on classifying stations into reachable and unreachable stations. The re-

gion boundaries created with our method correctly separate the stations into unreachable and

reachable stations. Typical examples of such regions in transit networks are fare zones and

isochrones, displaying the area that is reachable within a specific tariff or travel time, respec-

tively. We use a grid-based approach that uses a pre-computed grid to generate a solution space

for the generated region. We ensure the generated solution space contains a valid solution that

correctly separates reachable and unreachable stations.

Enforcing the separation into reachable and unreachable parts only on the station level in-

troduces an additional degree of freedom, which we use to optimize the regions towards pop-

ular design criteria, such as minimizing the number of bends and maximizing crossing angles

with existing lines. These design criteria are incorporated into the approach by cost functions

applied to the grid, allowing for a straightforward extension of the criteria. In an evaluation

based on the transit network of Cologne, Germany, we study the influence of the different

design criteria on the generated regions. The result shows that a suitable trade-off between

the considered design criteria can be found. Nonetheless, when comparing the results gener-

ated with our approach to existing regions in official transit maps, two shortcomings of our

approach become apparent. Firstly, while quantitatively yielding good results, the parameter

choice we selected in the parameter tuning may not always create optimal results for a given

instance. We argue that manually fine-tuning the parameters is not a problem, as computing

times for a single region are within a few seconds. A second shortcoming is that in the current

version, regions are generated independently of each other. In cases where multiple zones are

overlayed on the same transit map, this can lead to unexpected results, such as overlaps in

153



10. Metrochrones: Schematic Isochrones for Schematic Metro Maps

the individual zones. An easy fix for this issue could be incorporating previously generated

regions into the computation of new regions. A more sophisticated solution could incorporate

generating multiple zones at once. Next to preventing overlaps in the generated regions, this

would also allow design criteria like an even spacing of regions or symmetry. Both of these

approaches should be explored in future work.

This chapter analyzed the efficacy of the algorithm for generating isolines based on quanti-

tativemeasures and a qualitative evaluation thatwas conducted. The question remainswhether

the produced visualizations are visually pleasing for a broader audience. An empirical study

involving daily public transportation users should be conducted to verify the applicability of

our approach in practice.

154



Conclusion & Future Work

In this thesis, algorithms for processing crowd-sourced trajectory data with a focus on an-

alyzing the routing behavior of the users are presented. The algorithms are structured into

three parts, each representing a component of a possible processing pipeline: preprocessing,

analysis, and visualization. Working with crowd-sourced information provides many benefits,

such as the availability of datasets not collected by authoritative sources or the inherent lo-

cal perspective, offering insights into user behavior. However, the inherent heterogeneity of

crowd-sourced data also introduces new challenges for subsequent analysis. In Section 1.1, the

following challenges were identified for working with VGI trajectories:

1. Unknown spatial quality: The data is collected in an uncontrolled environment, so

data accuracy is unknown. Similarly, there is no guarantee that the data is complete.

2. Lack of metadata: The data often lacks metadata, such as the user intent for recording

the trajectory or the travel mode.

3. Participation inequality: The data does not represent all regions and demographic

groups equally, resulting in a spatial and social bias. For some regions, no data will be

given at all. Similarly, many individuals will only contribute few or no trajectories at all.

4. Ethics: The data can reveal sensitive information about the user, and the analysis can

breach the users’ privacy.

First, the thesis is concluded by reviewing the design choices implemented into the pre-

sented algorithms to address the challenges of crowd-sourced data. Then, potential directions

for further research based on the presented work are discussed.

11.1 Conclusion

Chapter 4 presented an algorithm for matching the raw trajectory data to the road network,

commonly called map matching. This is a crucial process for handling the heterogeneous spa-

tial quality of the raw input. The energy-based approach adaptively manages measurement

noise, with the flexibility to adjust energy terms for significant noise levels, ensuring reason-

able matches. Further, modeling missing road segments addresses challenges related to incom-

plete road network data (which is often also based on crowd-sourced data). Last, explicitly

modeling off-road movement alleviates constraints introduced by the map matching on user

movement, which could otherwise skew analysis results.

155



Conclusion & Future Work

Contrasting similar algorithms, the algorithm to infer routing preferences presented in

Chapter 6 relaxes the constraint that a trajectory as a whole needs to be optimal for a spe-

cific routing preference. This allows handling all kinds of trajectories, even trips that did not

aim at minimizing a specific objective, such as round trips. As such, missing metadata on the

user intent is mitigated. Further, the algorithm neither requires complete coverage of the road

network with trajectories nor multiple trajectories per user, thus addressing the participation

inequality, especially the spatial bias. However, caution is required in interpreting the results

of large-scale experiments due to potential social bias in the data, which leads to the results

only representing a limited user group’s perspective.

In Chapter 8, an algorithm computing glyphs for visualizing the off-screen evolution of

trajectories is presented. As this algorithm works on raw trajectory input, an outlier ratio is

introduced to account for data inacurracies. Additionally, this method facilitates the explo-

ration of large trajectory datasets, aiding in identifying regions with varying data density and,

hence, the spatial bias.

Chapters 9 and 10 apply schematic visualizations to communicate travel times and dis-

tances. Given the widespread use of schematic metro maps, it is reasonable to assume that

most individuals recognize that geometric information presented in schematic visualizations

should be treated cautiously. While not directly targeted at data accuracy, this effect is used to

communicate the potential inaccuracies in the displayed travel times.

In conclusion, the methodological pipeline presented in this thesis comprehensively ad-

dresses most challenges associated with crowd-sourced trajectories. The only challenge not

extensively targeted in a separate chapter is ethics. However, Chapter 3 presents several exist-

ing algorithms that can be applied to ensure user privacy. Furthermore, visualization methods

allowing feedback to contributors enable them to benefit from their contributions, increasing

user engagement and hopefully building a healthy VGI environment.

11.2 Future research

This thesis raised several research questions that could be followed up upon. The following

discusses some directions for future research.

Empirical evaluation. Chapter 6 introduced an algorithm to infer the balance factor in a

bicriterial routing model. The central motivation for developing this algorithm was to gain

insight into the routing behavior of cyclists and pedestrians. While it was shown that the algo-

rithm can be used to classify cyclists into specific routing archetypes, it remains unclear if the

learned balance factor accurately reflects the routing preferences of the users. Empirical evalu-

ations through controlled user studies are necessary to analyze this aspect. A challenge lies in

the discrepancy between implicit and explicit routing preferences, as discussed in Section 5.2:

users may behave differently fromwhat they explicitly state as their preference. Therefore, any

potential study should consider this and may even involve analyzing the relationship between

these two preference types.

156



11.2. Future research

Multi-criterial routing models. The algorithm presented in Chapter 6 can efficiently infer

the balance factor between two distinct routing criteria to characterize a given trajectory best.

However, empirical studies have revealed that cyclists often consider more than two criteria

when selecting a route (e.g., Casello and Usyukov, 2014). A simple approach to extend the

bicriterial method presented in Chapter 6 to consider more than two criteria has been consid-

ered (Forsch, 2019). The method, sketched in Figure 11.1, integrates multiple criteria through

an iterative process, merging two criteria based on the inferred balance factor between them.

However, this approach is impractical due to long computation times, and the sequence in

which the different criteria are integrated heavily influences the result.

distance surface

combined
criterion C

max. speed turns

combined
criterion B

combined
criterion A

Figure 11.1: Iterative scheme to consider an arbitrary number of routing criteria. First, the

balance factor for two initial criteria is learned and used to create a combined criterion. This

combined criterion can iteratively be merged with additional criteria.

There exist algorithms for learning the balance factor in routing models with an arbitrary

number of criteria, such as the algorithms presented by Funke et al. (2016) and Barth et al.

(2021). However, these algorithms assume that the trajectory is optimal for at least one bal-

ance factor, a condition that often does not hold for real-world trajectories. To address such

scenarios, the authors refer to trajectory segmentation approaches like the one presented in

this thesis. Consequently, future research endeavors could combine these approaches to learn

multi-criteria routing models efficiently.

Polygon simplification. This thesis aimed to gain insights into the routing behavior of

cyclists by learning their trade-offs between different routing criteria. However, similar trade-

offs commonly appear in other contexts as well.

One possible application is polygon simplification, which involves a trade-off between com-

plexity reduction and shape preservation. Bonerath et al. (2023) introduce shortcut hulls for
polygon simplification, where shortcut segments replace a chain of segments in the original

polygon. Each shortcut 𝑒 is assigned two costs: 𝑐𝐿 specifying its complexity reduction and

𝑐𝐴 quantifying its shape preservation. The shortcut hull without holes is computed using an

optimal-path query in the shortcut graph with respect to the cost 𝑐 (𝑒) = 𝜆 ·𝑐𝐿 (𝑒)+ (1−𝜆) ·𝑐𝐴 (𝑒),
where 𝜆 serves as a balance factor between shape preservation and complexity reduction.

The choice of 𝜆 relies on manual selection based on the application. Alternatively, the al-

157



Conclusion & Future Work

gorithm presented in Chapter 6 could infer an optimal balance factor based on existing simpli-

fications. Professional cartographers’ designs in existing maps provide a valuable input source

for this purpose: numerous polygon simplifications are present in maps, such as variations in

building representations across different zoom levels.

Morphing of isolines. Chapter 9 and Chapter 10 introduced algorithms for generating sche-

matic isolines for reachability analysis. A common task performed in these analyses is compar-

ing two map states, such as the state before and after implementing an infrastructure measure.

Animated transitions between states can support detecting map changes but also add com-

plexity to the visualization, which in extreme cases may overwhelm the user, thus limiting

the information the user processes. Thus, animated maps should be generalized to the most

important information to simplify the visualization.

(a) 𝑡 = 0.00 (b) 𝑡 = 0.33 (c) 𝑡 = 0.66 (d) 𝑡 = 1.00

Figure 11.2: Schematic morph animation between two routing-profile isolines. The interme-

diate polylines are schematic, self-intersection free, and contained in the area between the

initial (𝑡 = 0.00) and final (𝑡 = 1.00) isoline (gray).

Ongoing research (Forsch et al., 2022b) deals with generating schematic morph animations

for schematic isolines, as shown in Figure 11.2. To reduce the visual complexity, the inter-

mediate shapes generated during the animation follow the same schematization as the input

isolines, and self-intersections are prohibited. Additionally, the semantic meaning of themorph

is preserved by requiring that the intermediate shapes stay between the two input isolines.

End-user-friendly analytics platform. Finally, it is crucial to advance the technical imple-

mentation of the algorithms further. This thesis has introduced a methodological pipeline for

processing crowd-sourced trajectory data. Although implementations of the individual com-

ponents are available as open-source code, these are primarily research prototypes designed

for testing methods and performing experimental evaluations. To enable urban planners to

enhance their decision-making processes, there is a need for an end-user-friendly analytics

platform that seamlessly integrates these algorithms into a cohesive workflow. This platform

could also be used for closing the loop with VGI contributors by providing feedback and in-

creasing transparency in data processing, thereby improving user engagement. The provided

implementations will serve as a solid starting point for this task.

158



Bibliography

P. Aggarwal, D. Thomas, L. Ojeda, and J. Borenstein. Map matching and heuristic elimination of gyro

drift for personal navigation systems in GPS-denied conditions. Measurement Science and Technology,
22(2):025205, 2011. doi:10.1088/0957-0233/22/2/025205. 37

S. P. A. Alewijnse, K. Buchin, M. Buchin, A. Kölzsch, H. Kruckenberg, and M. A. Westenberg. A frame-

work for trajectory segmentation by stable criteria. In Proc. 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (SIGSPATIAL’14), pages 351–360. ACM,

2014. doi:10.1145/2666310.2666415. 20, 60, 66

S. P. A. Alewijnse, K. Buchin, M. Buchin, S. Sijben, and M. A. Westenberg. Model-based segmentation

and classification of trajectories. Algorithmica, 80(8):2422–2452, 2018. doi:10.1007/s00453-017-0329-x.
1, 60

L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F. de Macedo, B. Moelans, and A. Vaisman. A

model for enriching trajectories with semantic geographical information. In Proc. 15th Annual
ACM International Symposium on Advances in Geographic Information Systems (GIS’07). ACM, 2007.

doi:10.1145/1341012.1341041. 29

G. F. Anahid Basiri, Mordechai Haklay and P.Mooney. Crowdsourced geospatial data quality: challenges

and future directions. International Journal of Geographical Information Science, 33(8):1588–1593,
2019. doi:10.1080/13658816.2019.1593422. 2

G. Andrienko and N. Andrienko. A general framework for using aggregation in vi-

sual exploration of movement data. The Cartographic Journal, 47(1):22–40, 2010.

doi:10.1179/000870409X12525737905042. 90

N. Andrienko and G. Andrienko. Visual analytics of movement: An overview of methods, tools and

procedures. Information Visualization, 12(1):3–24, 2013. doi:10.1177/1473871612457601. 1, 82

V. Antoniou and A. Skopeliti. Measures and indicators of VGI quality: An overview. ISPRS An-
nals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3/W5:345–351, 2015.

doi:10.5194/isprsannals-II-3-W5-345-2015. 83

V. Antoniou, C. Capineri, and M. Haklay. VGI and beyond: From data to mapping. In The Routledge
Handbook of Mapping and Cartography, pages 475–488. Routledge, 2017. 1

J. Arellana, M. Saltarín, A. M. Larrañaga, V. I. González, and C. A. Henao. Developing an urban bike-

ability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments.

Transportation Research Part A: Policy and Practice, 139:310–334, 2020. doi:10.1016/j.tra.2020.07.010.
53

159

https://doi.org/10.1088/0957-0233/22/2/025205
https://doi.org/10.1145/2666310.2666415
https://doi.org/10.1007/s00453-017-0329-x
https://doi.org/10.1145/1341012.1341041
https://doi.org/10.1080/13658816.2019.1593422
https://doi.org/10.1179/000870409X12525737905042
https://doi.org/10.1177/1473871612457601
https://doi.org/10.5194/isprsannals-II-3-W5-345-2015
https://doi.org/10.1016/j.tra.2020.07.010


Conclusion & Future Work

B. Aronov, A. Driemel, M. V. Kreveld, M. Löffler, and F. Staals. Segmentation of trajectories on non-

monotone criteria. ACM Transactions on Algorithms, 12(2):1–28, 2016. doi:10.1145/2660772. 1, 20, 21,
22, 60, 66

C. Bachechi, L. Po, and F. Rollo. Big data analytics and visualization in traffic monitoring. Big Data
Research, 27:100292, 2022. doi:10.1016/j.bdr.2021.100292. 82

A. Balteanu, G. Jossé, and M. Schubert. Mining driving preferences in multi-cost networks. In M. A.

Nascimento, T. Sellis, R. Cheng, J. Sander, Y. Zheng, H.-P. Kriegel, M. Renz, and C. Sengstock, editors,

Proc. 13th International Symposium on Advances in Spatial and Temporal Databases (SSTD’13), Lecture
Notes in Computer Science (LNISA), pages 74–91, Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-

3-642-40235-7_5. 55

Y. Bang, J. Kim, and K. Yu. An improved map-matching technique based on the Fréchet distance ap-

proach for pedestrian navigation services. Sensors, 16(10):1768, 2016. doi:10.3390/s16101768. 37

M. Barragana, L. O. Alvares, and V. Bogorny. Unusual behavior detection and object ranking from

movement trajectories in target regions. International Journal of Geographical Information Science, 31
(2):364–386, 2017. doi:10.1080/13658816.2016.1202415. 1

F. Barth, S. Funke, T. S. Jepsen, and C. Proissl. Scalable unsupervised multi-criteria trajectory segmenta-

tion and driving preferencemining. In Proc. 9th ACM SIGSPATIAL InternationalWorkshop on Analytics
for Big Geospatial Data (BIGSPATIAL’20), pages 1–10. ACM, 2020. doi:10.1145/3423336.3429348. 55,

77

F. Barth, S. Funke, and C. Proissl. Preference-based trajectory clustering – an application of ge-

ometric hitting sets. In H.-K. Ahn and K. Sadakane, editors, 32nd International Symposium on
Algorithms and Computation (ISAAC 2021), volume 212 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 15:1–15:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

doi:10.4230/LIPIcs.ISAAC.2021.15. 55, 157

H. Bast, P. Brosi, and S. Storandt. Metro maps on octilinear grid graphs. Computer Graphics Forum, 39

(3):357–367, 2020. doi:10.1111/cgf.13986. 136

H. Bast, P. Brosi, and S. Storandt. Metromaps on flexible base grids. In Proc. 17th International Symposium
on Spatial and Temporal Databases (SSTD’21), pages 12–22. ACM, 2021. doi:10.1145/3469830.3470899.

136

P. Baudisch and R. Rosenholtz. Halo: A technique for visualizing off-screen objects. In Proc. of the
SIGCHI Conference on Human Factors in Computing Systems (CHI’03), pages 481–488. ACM, 2003.

doi:10.1145/642611.642695. 91

V. Bauer, J. Gamper, R. Loperfido, S. Profanter, S. Putzer, and I. Timko. Computing isochrones

in multi-modal, schedule-based transport networks. In Proc. 16th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems (GIS’08), pages 1–2. ACM, 2008.

doi:10.1145/1463434.1463524. 108, 110

M. Baum, V. Buchhold, J. Dibbelt, andD.Wagner. Fast exact computation of isochrones in road networks.

In A. V. Goldberg and A. S. Kulikov, editors, International Symposium on Experimental Algorithms,
Lecture Notes in Computer Science (LNTCS), pages 17–32. Springer International Publishing, 2016.

doi:10.1007/978-3-319-38851-9_2. 136

160

https://doi.org/10.1145/2660772
https://doi.org/10.1016/j.bdr.2021.100292
https://doi.org/10.1007/978-3-642-40235-7_5
https://doi.org/10.1007/978-3-642-40235-7_5
https://doi.org/10.3390/s16101768
https://doi.org/10.1080/13658816.2016.1202415
https://doi.org/10.1145/3423336.3429348
https://doi.org/10.4230/LIPIcs.ISAAC.2021.15
https://doi.org/10.1111/cgf.13986
https://doi.org/10.1145/3469830.3470899
https://doi.org/10.1145/642611.642695
https://doi.org/10.1145/1463434.1463524
https://doi.org/10.1007/978-3-319-38851-9_2


BIBLIOGRAPHY

M. Baum, T. Bläsius, A. Gemsa, I. Rutter, and F. Wegner. Scalable exact visualization of isocontours

in road networks via minimum-link paths. Journal of Computational Geometry, 9(1):24–70, 2018.
doi:10.20382/jocg.v9i1a2. 106, 109, 110, 112, 123, 124, 131, 137

M. Baum, V. Buchhold, J. Dibbelt, and D. Wagner. Fast exact computation of isocontours in road net-

works. ACM Journal of Experimental Algorithmics, 24, 2019. doi:10.1145/3355514. 108

L. Baur, S. Funke, and T. Rupp. Pathfindervis. In Proc. 30th International Conference on Advances in
Geographic Information Systems (SIGSPATIAL’22). ACM, 2022. doi:10.1145/3557915.3560990. 83

T. Behr, T. C. van Dijk, A. Forsch, J.-H. Haunert, and S. Storandt. Map matching for semi-restricted

trajectories. In K. Janowicz and J. A. Verstegen, editors, 11th International Conference on Geo-
graphic Information Science (GIScience 2021) - Part II, volume 208 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 12:1–12:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

doi:10.4230/LIPIcs.GIScience.2021.II.12. 35

M. A. Bekos, B. Niedermann, and M. Nöllenburg. External labeling techniques: A taxonomy and survey.

Computer Graphics Forum, 38(3):833–860, 2019. doi:10.1111/cgf.13729. 143

M. Ben-Akiva and M. Bierlaire. Discrete choice methods and their applications to short term travel

decisions. In R. W. Hall, editor, Handbook of Transportation Science, pages 5–33. Springer, Boston,
MA, 1999. doi:10.1007/978-1-4615-5203-1_2. 55

M. Ben-Akiva, M. S. Ramming, and S. Bekhor. Route choice models. In M. Schreckenberg and R. Sel-

ten, editors, Human Behaviour and Traffic Networks, pages 23–45, Berlin, Heidelberg, 2004. Springer.
doi:10.1007/978-3-662-07809-9_2. 54, 55

M. Berg, O. Cheong, M. Kreveld, and M. Overmars. Computational Geometry. Springer, Berlin, Heidel-
berg, 3 edition, 2008. doi:10.1007/978-3-540-77974-2. 13

L. Bertolini. From “streets for traffic” to “streets for people”: can street experiments transform urban

mobility? Transport Reviews, 40(6):734–753, 2020. doi:10.1080/01441647.2020.1761907. 53

C. Bettini, X. S. Wang, and S. Jajodia. Protecting privacy against location-based personal identification.

In W. Jonker and M. Petković, editors, Secure Data Management, pages 185–199, Berlin, Heidelberg,
2005. Springer. doi:10.1007/11552338_13. 31

P. Bimbao, J. Antonio, and S. J. Ou. #bikeparking now: Bike parking patterns in the landscape with

instagram crowdsourced data. In Proc. 2021 4th International Conference on Education Technology
Management (ICETM’21), pages 291–296. ACM, 2022. doi:10.1145/3510309.3510354. 54

G. D. Birkhoff. Aesthetic measure. Harvard University Press, Cambridge, MA and London, England,

1933. doi:10.4159/harvard.9780674734470. 142

J. Blum, S. Funke, and S. Storandt. Sublinear search spaces for shortest path planning in grid and road

networks. Journal of Combinatorial Optimization, 42(2):231–257, Aug. 2021. doi:10.1007/s10878-021-
00777-3. 150

J. Blum, R. Li, and S. Storandt. Convexity hierarchies in grid networks. Proc. International Conference
on Automated Planning and Scheduling, 33(1):52–60, July 2023. doi:10.1609/icaps.v33i1.27178. 150

W. Bohte and K. Maat. Deriving and validating trip purposes and travel modes for multi-day GPS-based

travel surveys: A large-scale application in the netherlands. Transportation Research Part C: Emerging
Technologies, 17(3):285–297, 2009. doi:10.1016/j.trc.2008.11.004. 1

161

https://doi.org/10.20382/jocg.v9i1a2
https://doi.org/10.1145/3355514
https://doi.org/10.1145/3557915.3560990
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.12
https://doi.org/10.1111/cgf.13729
https://doi.org/10.1007/978-1-4615-5203-1_2
https://doi.org/10.1007/978-3-662-07809-9_2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1080/01441647.2020.1761907
https://doi.org/10.1007/11552338_13
https://doi.org/10.1145/3510309.3510354
https://doi.org/10.4159/harvard.9780674734470
https://doi.org/10.1007/s10878-021-00777-3
https://doi.org/10.1007/s10878-021-00777-3
https://doi.org/10.1609/icaps.v33i1.27178
https://doi.org/10.1016/j.trc.2008.11.004


Conclusion & Future Work

J.-D. Boissonnat, O. Devillers, M. Teillaud, and M. Yvinec. Triangulations in CGAL. In Proc. 16th Annual
Symposium on Computational Geometry (SoCG’00), pages 11–18, 2000. 42

A. Bonerath, B. Niedermann, and J.-H. Haunert. Retrieving alpha-shapes and schematic polygonal ap-

proximations for sets of points within queried temporal ranges. In Proc. 27th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems (SIGSPATIAL’19), pages 249–258.
ACM, 2019. doi:10.1145/3347146.3359087. 110, 135

A. Bonerath, B. Niedermann, J. Diederich, Y. Orgeig, J. Oehrlein, and J.-H. Haunert. A time-windowed

data structure for spatial density maps. In Proc. 28th International Conference on Advances in Geo-
graphic Information Systems (SIGSPATIAL’20), pages 15–24. ACM, 2020. doi:10.1145/3397536.3422242.

83

A. Bonerath, J.-H. Haunert, J. S. Mitchell, and B. Niedermann. Shortcut hulls: Vertex-

restricted outer simplifications of polygons. Computational Geometry, 112:101983, 2023.

doi:10.1016/j.comgeo.2023.101983. 157

L. Bonomi and L. Xiong. A two-phase algorithm for mining sequential patterns with differential pri-

vacy. In Proc. 22nd ACM International Conference on Information &KnowledgeManagement (CIKM’13),
pages 269–278. ACM, 2013. doi:10.1145/2505515.2505553. 31

F. Boselie and E. Leeuwenberg. A general notion of beauty used to quantify the aesthetic attractivity of

geometric forms. In Cognitive Processes in the Perception of Art, volume 19 of Advances in Psychology,
pages 367–387. North-Holland, 1984. doi:10.1016/S0166-4115(08)62359-6. 142

Q.W. Bouts, T. Dwyer, J. Dykes, B. Speckmann, S. Goodwin, N. H. Riche, S. Carpendale, and A. Liebman.

Visual encoding of dissimilarity data via topology-preserving map deformation. IEEE Transactions on
Visualization and Computer Graphics, 22(9):2200–2213, 2016a. doi:10.1109/TVCG.2015.2500225. 110

Q. W. Bouts, I. Kostitsyna, M. van Kreveld, W. Meulemans, W. Sonke, and K. Verbeek. Mapping poly-

gons to the grid with small Hausdorff and Fréchet distance. In 24th Annual European Symposium on
Algorithms (ESA’16), volume 57 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–
22:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016b. doi:10.4230/LIPIcs.ESA.2016.22. 136

P. H. Bovy and S. Fiorenzo-Catalano. Stochastic route choice set generation: Behavioral and probabilistic

foundations. Transportmetrica, 3(3):173–189, 2007. doi:10.1080/18128600708685672. 54

A. Brauer, V. Mäkinen, and J. Oksanen. Characterizing cycling traffic fluency us-

ing big mobile activity tracking data. Comput. Environ. Urban Syst., 85:101553, 2021.

doi:10.1016/j.compenvurbsys.2020.101553. 1, 4, 36

A. Brauer, V. Mäkinen, A. Forsch, J. Oksanen, and J.-H. Haunert. My home is my secret: concealing

sensitive locations by context-aware trajectory truncation. International Journal of Geographical In-
formation Science, 36(12):2496–2524, 2022. doi:10.1080/13658816.2022.2081694. 1, 30, 32

C. A. Brewer, L. V. Stanislawski, B. P. Buttenfield, K. A. Sparks, J. McGilloway, and M. A. Howard.

Automated thinning of road networks and road labels for multiscale design of the national

map of the united states. Cartography and Geographic Information Science, 40(4):259–270, 2013.
doi:10.1080/15230406.2013.799735. 110

V. E. Brimkov, R. P. Barneva, and B. Brimkov. Connected distance-based rasterization of objects in

arbitrary dimension. Graphical Models, 73(6):323–334, 2011. doi:10.1016/j.gmod.2011.06.002. 141

162

https://doi.org/10.1145/3347146.3359087
https://doi.org/10.1145/3397536.3422242
https://doi.org/10.1016/j.comgeo.2023.101983
https://doi.org/10.1145/2505515.2505553
https://doi.org/10.1016/S0166-4115(08)62359-6
https://doi.org/10.1109/TVCG.2015.2500225
https://doi.org/10.4230/LIPIcs.ESA.2016.22
https://doi.org/10.1080/18128600708685672
https://doi.org/10.1016/j.compenvurbsys.2020.101553
https://doi.org/10.1080/13658816.2022.2081694
https://doi.org/10.1080/15230406.2013.799735
https://doi.org/10.1016/j.gmod.2011.06.002


BIBLIOGRAPHY

K. Buchin, A. van Goethem, M. Hoffmann, M. van Kreveld, and B. Speckmann. Travel-time maps:

Linear cartograms with fixed vertex locations. In M. Duckham, E. Pebesma, K. Stewart, and A. U.

Frank, editors, Geographic Information Science, pages 18–33, Cham, 2014. Springer. doi:10.1007/978-

3-319-11593-1_2. 136

K. Buchin, W. Meulemans, A. V. Renssen, and B. Speckmann. Area-preserving simplification and

schematization of polygonal subdivisions. ACM Transactions on Spatial Algorithms and Systems, 2
(1), 2016. doi:10.1145/2818373. 109, 135, 136

M. Buchin, A. Driemel, M. J. Van Kreveld, and V. Sacristan. Segmenting trajectories: A framework

and algorithms using spatiotemporal criteria. Journal of Spatial Information Science, 3(3):33–63, 2011.
doi:10.5311/JOSIS.2011.3.66. 20, 60, 67

M. Buchin, B. Kilgus, and A. Kölzsch. Group diagrams for representing trajectories. International Journal
of Geographical Information Science, 34(12):2401–2433, 2020. doi:10.1080/13658816.2019.1684498. 37

D. Burghardt, C. Duchêne, andW.Mackaness, editors. Abstracting Geographic Information in a Data Rich
World. Lecture Notes in Geoinformation and Cartography. Springer, Cham, 2014. doi:10.1007/978-3-

319-00203-3. 135

D. Burghardt, E. Demidova, and D. A. Keim, editors. Volunteered Geographic Information: Interpretation,
Visualization and Social Context. Springer, Cham, 2024. doi:10.1007/978-3-031-35374-1. 3

S. Burigat and L. Chittaro. Visualizing references to off-screen content on mobile devices: A com-

parison of arrows, wedge, and overview+detail. Interacting with Computers, 23(2):156–166, 02 2011.
doi:10.1016/j.intcom.2011.02.005. 91

S. Burigat, L. Chittaro, and S. Gabrielli. Visualizing locations of off-screen objects on mobile

devices: A comparative evaluation of three approaches. In Proc. 8th Conference on Human-
Computer Interaction with Mobile Devices and Services (MobileHCI’06), pages 239–246. ACM, 2006.

doi:10.1145/1152215.1152266. 91

E. Cakmak, H. Schäfer, J. Buchmüller, J. Fuchs, T. Schreck, A. Jordan, and D. A. Keim. MotionGlyphs:

Visual abstraction of spatio-temporal networks in collective animal behavior. Computer Graphics
Forum, 39(3):63–75, 2020. doi:10.1111/cgf.13963. 90

L. Cao and J. Krumm. From GPS traces to a routable road map. In Proc. 17th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems (GIS’09), pages 3–12. ACM, 2009.

doi:10.1145/1653771.1653776. 28

M. B. Carmo, A. P. Afonso, and P. P. Matos. Visualization of geographic query results for small screen

devices. In Proc. 4th ACMworkshop on Geographical information retrieval (GIR’07), pages 63–64. ACM,

2007. doi:10.1145/1316948.1316965. 90

J. M. Casello and V. Usyukov. Modeling cyclists’ route choice based on GPS data. Transportation Research
Record, 2430(1):155–161, 2014. doi:10.3141/2430-16. 157

A. Çöltekin, H. Janetzko, and S. I. Fabrikant. Geovisualization. Geographic Information Science & Tech-
nology Body of Knowledge, 2018(Q2), Apr. 2018. doi:10.22224/gistbok/2018.2.6. 81

P. Chao, Y. Xu, W. Hua, and X. Zhou. A survey on map-matching algorithms. In R. Borovica-Gajic,

J. Qi, and W. Wang, editors, Databases Theory and Applications, Lecture Notes in Computer Science

(LNISA), pages 121–133, Cham, 2020. Springer. doi:10.1007/978-3-030-39469-1_10. 37, 62

163

https://doi.org/10.1007/978-3-319-11593-1_2
https://doi.org/10.1007/978-3-319-11593-1_2
https://doi.org/10.1145/2818373
https://doi.org/10.5311/JOSIS.2011.3.66
https://doi.org/10.1080/13658816.2019.1684498
https://doi.org/10.1007/978-3-319-00203-3
https://doi.org/10.1007/978-3-319-00203-3
https://doi.org/10.1007/978-3-031-35374-1
https://doi.org/10.1016/j.intcom.2011.02.005
https://doi.org/10.1145/1152215.1152266
https://doi.org/10.1111/cgf.13963
https://doi.org/10.1145/1653771.1653776
https://doi.org/10.1145/1316948.1316965
https://doi.org/10.3141/2430-16
https://doi.org/10.22224/gistbok/2018.2.6
https://doi.org/10.1007/978-3-030-39469-1_10


Conclusion & Future Work

C. Chen, J. C. Anderson, H. Wang, Y. Wang, R. Vogt, and S. Hernandez. How bicycle level of traffic stress

correlate with reported cyclist accidents injury severities: A geospatial and mixed logit analysis.

Accident Analysis & Prevention, 108:234–244, 2017a. doi:10.1016/j.aap.2017.09.001. 53

D. Chen, D. Kim, L. Xie, M. Shin, A. K. Menon, C. S. Ong, I. Avazpour, and J. Grundy. Pathrec: Visual

analysis of travel route recommendations. In Proc. Eleventh ACMConference on Recommender Systems
(RecSys’17), pages 364–365. ACM, 2017b. doi:10.1145/3109859.3109983. 84

L. Chen, M. Lv, Q. Ye, G. Chen, and J. Woodward. A personal route prediction system based on trajectory

data mining. Information Sciences, 181(7):1264–1284, 2011. doi:10.1016/j.ins.2010.11.035. 55

R. Chen, G. Acs, and C. Castelluccia. Differentially private sequential data publication via variable-

length n-grams. In Proc. 2012 ACM Conference on Computer and Communications Security (CCS’12),
pages 638–649. ACM, 2012. doi:10.1145/2382196.2382263. 31

Y. Chen andH. Sundaram. Estimating complexity of 2D shapes. In 2005 IEEE 7thWorkshop onMultimedia
Signal Processing, pages 1–4, 2005. doi:10.1109/MMSP.2005.248668. 123

M. Chimani, T. C. van Dijk, and J.-H. Haunert. How to eat a graph: Computing selection sequences

for the continuous generalization of road networks. In Proc. 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (SIGSPATIAL’14), pages 243–252. ACM,

2014. doi:10.1145/2666310.2666414. 110

S. Cicerone and M. Cermignani. Fast and simple approach for polygon schematization. In B. Murgante,

O. Gervasi, S. Misra, N. Nedjah, A. M. A. C. Rocha, D. Taniar, and B. O. Apduhan, editors, Compu-
tational Science and Its Applications (ICCSA 2012), pages 267–279, Berlin, Heidelberg, 2012. Springer.
doi:10.1007/978-3-642-31125-3_21. 136

S. Composto, J. Ingensand, M. Nappez, O. Ertz, D. Rappo, R. Bovard, I. Widmer, and S. Joost. How to

recruit and motivate users to utilize VGI-systems? In Proc. 19th AGILE International Conference on
Geographic Information Science, Helsinki, Finland, 2016. URL https://arodes.hes-so.ch/record/4671.

82

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, Cam-

bridge, MA, USA, 2009. 9, 11, 15, 17, 18, 66

B. Custers, M. van de Kerkhof, W.Meulemans, B. Speckmann, and F. Staals. Maximum physically consis-

tent trajectories. In Proc. 27th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (SIGSPATIAL’19), pages 79–88. ACM, 2019. doi:10.1145/3347146.3359363. 28

B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek. Coordinated schematization for visual-

izing mobility patterns on networks. In Proc. 11th International Conference on GIS (GIScience’21)
- Part II, volume 208, pages 7:1–7:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

doi:10.4230/LIPIcs.GIScience.2021.II.7. 90

C. E. de Rivera, L. L. Bliss-Ketchum, M. D. Lafrenz, A. V. Hanson, L. E. McKinney-Wise, A. H. Ro-

driguez, J. Schultz, A. L. Simmons, D. Taylor Rodriguez, A. H. Temple, and R. E. Wheat. Visualiz-

ing connectivity for wildlife in a world without roads. Frontiers in Environmental Science, 10, 2022.
doi:10.3389/fenvs.2022.757954. 82

D. Delling, A. Gemsa, M. Nöllenburg, and T. Pajor. Path schematization for route sketches. In H. Kaplan,

editor, Algorithm Theory - SWAT 2010, Lecture Notes in Computer Science (LNTCS), pages 285–296,

Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-13731-0_27. 135

164

https://doi.org/10.1016/j.aap.2017.09.001
https://doi.org/10.1145/3109859.3109983
https://doi.org/10.1016/j.ins.2010.11.035
https://doi.org/10.1145/2382196.2382263
https://doi.org/10.1109/MMSP.2005.248668
https://doi.org/10.1145/2666310.2666414
https://doi.org/10.1007/978-3-642-31125-3_21
https://arodes.hes-so.ch/record/4671
https://doi.org/10.1145/3347146.3359363
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.7
https://doi.org/10.3389/fenvs.2022.757954
https://doi.org/10.1007/978-3-642-13731-0_27


BIBLIOGRAPHY

D. Delling, A. Gemsa, M. Nöllenburg, T. Pajor, and I. Rutter. On d-regular schematization of embedded

paths. Computational Geometry, 47(3, Part A):381–406, 2014. doi:10.1016/j.comgeo.2013.10.002. 135

U. Demšar, K. Buchin, F. Cagnacci, K. Safi, B. Speckmann, N. Van de Weghe, D. Weiskopf, and R. Weibel.

Analysis and visualisation of movement: an interdisciplinary review. Movement Ecology, 3(1):1–24,
2015. doi:10.1186/s40462-015-0032-y. 82, 90

U. Demšar, J. A. Long, F. Benitez-Paez, V. B. Bastos, S. Marion, G. Martin, S. Sekulić, K. Smolak, B. Zein,

and K. Siła-Nowicka. Establishing the integrated science of movement: bringing together concepts

and methods from animal and human movement analysis. International Journal of Geographical In-
formation Science, 35(7):1273–1308, 2021. doi:10.1080/13658816.2021.1880589. 82

J.-C. Denain and P. Langlois. Cartographie en anamorphose. Mappemonde, 49(1):16–19, 1998.

doi:10.3406/mappe.1998.1347. 136

E. Di Giacomo, W. Didimo, G. Liotta, and H. Meijer. Area, curve complexity, and crossing resolution

of non-planar graph drawings. Theory of Computing Systems, 49:565–575, 2011. doi:10.1007/s00224-
010-9275-6. 142

E.W. Dijkstra. A note on two problems in connexionwith graphs. NumerischeMathematik, 1(1):269–271,
1959. doi:10.1007/BF01386390. 15, 55, 76, 136, 141

J. Dill and T. Carr. Bicycle commuting and facilities in major U.S. cities: If you build them, commuters

will use them. Transportation Research Record, 1828(1):116–123, 2003. doi:10.3141/1828-14. 53

S. Dodge and E. Noi. Mapping trajectories and flows: facilitating a human-centered approach to

movement data analytics. Cartography and Geographic Information Science, 48(4):353–375, 2021.
doi:10.1080/15230406.2021.1913763. 82

A. Dunkel, M. Löchner, and D. Burghardt. Privacy-aware visualization of volunteered geographic infor-

mation (vgi) to analyze spatial activity: A benchmark implementation. ISPRS International Journal of
Geo-Information, 9(10), 2020. doi:10.3390/ijgi9100607. 3

C. Dwork. Differential privacy: A survey of results. In M. Agrawal, D. Du, Z. Duan, and A. Li, editors,

Theory and Applications of Models of Computation, pages 1–19, Berlin, Heidelberg, 2008. Springer.
doi:10.1007/978-3-540-79228-4_1. 31

J. Dykes, A. M. MacEachren, and M.-J. Kraak. Introduction exploring geovisualization. In J. Dykes,

A. M. MacEachren, and M.-J. Kraak, editors, Exploring Geovisualization, International Cartographic
Association, pages 1–19. Elsevier, Oxford, 2005. doi:10.1016/B978-008044531-1/50419-X. 81

P. Eades and D. Rappaport. The complexity of computing minimum separating polygons. Pattern Recog-
nition Letters, 14(9):715–718, 1993. doi:10.1016/0167-8655(93)90140-9. Computational Geometry. 137

H. Edelsbrunner and F. Preparata. Minimum polygonal separation. Information and Computation, 77(3):
218–232, 1988. doi:10.1016/0890-5401(88)90049-1. 136

M. Ehrgott, J. Y. Wang, A. Raith, and C. van Houtte. A bi-objective cyclist route choice model. Trans-
portation Research Part A: Policy and Practice, 46(4):652–663, 2012. doi:10.1016/j.tra.2011.11.015. 56

J. Eisner, S. Funke, A. Herbst, A. Spillner, and S. Storandt. Algorithms for matching and predicting

trajectories. In Proc. 13th Workshop on Algorithm Engineering and Experiments (ALENEX’11), pages
84–95, 2011. doi:10.1137/1.9781611972917.9. 37, 38

165

https://doi.org/10.1016/j.comgeo.2013.10.002
https://doi.org/10.1186/s40462-015-0032-y
https://doi.org/10.1080/13658816.2021.1880589
https://doi.org/10.3406/mappe.1998.1347
https://doi.org/10.1007/s00224-010-9275-6
https://doi.org/10.1007/s00224-010-9275-6
https://doi.org/10.1007/BF01386390
https://doi.org/10.3141/1828-14
https://doi.org/10.1080/15230406.2021.1913763
https://doi.org/10.3390/ijgi9100607
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1016/B978-008044531-1/50419-X
https://doi.org/10.1016/0167-8655(93)90140-9
https://doi.org/10.1016/0890-5401(88)90049-1
https://doi.org/10.1016/j.tra.2011.11.015
https://doi.org/10.1137/1.9781611972917.9


Conclusion & Future Work

B. Elias. Pedestrian navigation – creating a tailored geodatabase for routing. In 2007 4th Workshop on
Positioning, Navigation and Communication, pages 41–47, 2007. doi:10.1109/WPNC.2007.353611. 38

C. R. Emond, W. Tang, and S. L. Handy. Explaining gender difference in bicycling behavior. Transporta-
tion Research Record, 2125(1):16–25, 2009. doi:10.3141/2125-03. 56

D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. Discrete &
Computational Geometry, 11(3):321–350, 1994. doi:10.1007/BF02574012. 101

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large

spatial databases with noise. In Proc. Second International Conference on Knowledge Discovery and
Data Mining (KDD’96), pages 226–231. AAAI Press, 1996. 30

H. J. Eysenck. The empirical determination of an aesthetic formula. Psychological Review, 48(1):83, 1941.
doi:10.1037/h0062483. 142

L. Ferrari and M. Mamei. Identifying and understanding urban sport areas using Nokia Sports Tracker.

Pervasive and Mobile Computing, 9(5):616–628, 2013. doi:10.1016/j.pmcj.2012.10.006. Special issue on

Pervasive Urban Applications. 4

N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual exploration of big spatio-temporal urban

data: A study of New York City taxi trips. IEEE Transactions on Visualization and Computer Graphics,
19(12):2149–2158, 2013. doi:10.1109/TVCG.2013.226. 90

U. Feuerhake, C. Kuntzsch, and M. Sester. Finding interesting places and characteristic patterns

in spatio-temporal trajectories. In Proc. 8th International Symposium on Location-Based Ser-
vices, page 18, 2011. URL https://www.ikg.uni-hannover.de/fileadmin/ikg/Forschung/publications/

lbs2011_feuerhake.pdf. 1, 60

J. A. W. Filho, W. Stuerzlinger, and L. Nedel. Evaluating an immersive space-time cube geovisualization

for intuitive trajectory data exploration. IEEE Transactions on Visualization and Computer Graphics,
26(1):514–524, 2020. doi:10.1109/TVCG.2019.2934415. 91

G. Filomena and J. A. Verstegen. Modelling the effect of landmarks on pedestrian dynam-

ics in urban environments. Computers, Environment and Urban Systems, 86:101573, 2021.

doi:10.1016/j.compenvurbsys.2020.101573. 4

M. Fiore, P. Katsikouli, E. Zavou, M. Cunche, F. Fessant, D. Le Hello, U. M. Aivodji, B. Olivier, T. Quertier,

and R. Stanica. Privacy in trajectory micro-data publishing: a survey. Transactions on Data Privacy,
13:91–149, 2020. URL https://inria.hal.science/hal-02968279. 30, 31

A. Forsch. Automatic learning of multi-criteria routing models from user-generated trajectories. Mas-

ter’s thesis, University of Bonn, 2019. 157

A. Forsch and J.-H. Haunert. Metrochrones: Schematic isochrones for schematic metro maps. The
Cartographic Journal, -(-):–, 2023. doi:10.1080/00087041.2023.2284436. 133

A. Forsch, Y. Dehbi, B. Niedermann, J. Oehrlein, P. Rottmann, and J.-H. Haunert. Multimodal travel-

time maps with formally correct and schematic isochrones. Transactions in GIS, 25(6):3233–3256,
2021. doi:10.1111/tgis.12821. 103, 134, 136, 137

A. Forsch, F. Amann, and J.-H. Haunert. Visualizing the off-screen evolution of trajectories. KN - Journal
of Cartography and Geographic Information, 72(3):201–212, 2022a. doi:10.1007/s42489-022-00106-6. 87

166

https://doi.org/10.1109/WPNC.2007.353611
https://doi.org/10.3141/2125-03
https://doi.org/10.1007/BF02574012
https://doi.org/10.1037/h0062483
https://doi.org/10.1016/j.pmcj.2012.10.006
https://doi.org/10.1109/TVCG.2013.226
https://www.ikg.uni-hannover.de/fileadmin/ikg/Forschung/publications/lbs2011_feuerhake.pdf
https://www.ikg.uni-hannover.de/fileadmin/ikg/Forschung/publications/lbs2011_feuerhake.pdf
https://doi.org/10.1109/TVCG.2019.2934415
https://doi.org/10.1016/j.compenvurbsys.2020.101573
https://inria.hal.science/hal-02968279
https://doi.org/10.1080/00087041.2023.2284436
https://doi.org/10.1111/tgis.12821
https://doi.org/10.1007/s42489-022-00106-6


BIBLIOGRAPHY

A. Forsch, R. Kemna, E. Langetepe, and J.-H. Haunert. Morphing of schematized polygons for animated

travel-time maps. In 3rd Schematic Mapping Workshop, Bochum, apr 2022b. URL https://www.ruhr-

uni-bochum.de/schematicmapping/papers/smw-fklh.pdf. Poster abstract. 131, 158

A. Forsch, J. Oehrlein, B. Niedermann, and J.-H. Haunert. Inferring routing preferences from user-

generated trajectories using a compression criterion. Journal of Spatial Information Science, 26(5):
99–124, 2023. doi:10.5311/JOSIS.2023.26.256. 57

A. Forsch, S. Funke, J.-H. Haunert, and S. Storandt. Efficient mining of volunteered trajectory datasets.

In D. Burghardt, E. Demidova, and D. A. Keim, editors, Volunteered Geographic Information: Interpre-
tation, Visualization and Social Context, pages 43–77. Springer, Cham, 2024. doi:10.1007/978-3-031-

35374-1_3. 3

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization

algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.28874. 17

M. Friese, M. Wänke, and H. Plessner. Implicit consumer preferences and their influence on product

choice. Psychology & Marketing, 23(9):727–740, 2006. doi:10.1002/mar.20126. 54

S. Fuest and M. Sester. A framework for automatically visualizing and recommending efficient routes.

Proceedings of the ICA, 2:34, 2019. doi:10.5194/ica-proc-2-34-2019. 84

S. Fuest, S. Grüner, M. Vollrath, and M. Sester. Evaluating the effectiveness of different cartographic

design variants for influencing route choice. Cartography and Geographic Information Science, 48(2):
169–185, 2021. doi:10.1080/15230406.2020.1855251. 84

S. Funke and S. Storandt. Polynomial-time construction of contraction hierarchies for multi-criteria

objectives. In 2013 Proc. Meeting on Algorithm Engineering and Experiments (ALENEX’13), pages 41–
54, 2013. doi:10.1137/1.9781611972931.4. 63, 65, 77

S. Funke, S. Laue, and S. Storandt. Deducing individual driving preferences for user-aware navigation.

In S. Ravada, M. E. Ali, S. D. Newsam, M. Renz, and G. Trajcevski, editors, Proc. 24th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (SIGSPATIAL’16), pages 1–9.
ACM, 2016. doi:10.1145/2996913.2997004. 36, 55, 157

S. Funke, S. Laue, and S. Storandt. Personal routes with high-dimensional costs and dynamic approxima-

tion guarantees. In C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi, and R. Raman, editors, 16th International
Symposium on Experimental Algorithms (SEA 2017), volume 75 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 18:1–18:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik. doi:10.4230/LIPIcs.SEA.2017.18. 76, 77

S. Funke, T. Rupp, A. Nusser, and S. Storandt. PATHFINDER: storage and indexing of massive trajectory

sets. In Proc. 16th International Symposium on Spatial and Temporal Databases (SSTD’19), pages 90–99,
2019. doi:10.1145/3340964.3340978. 36, 37, 61

M. D. L. Galvão, J. Krukar, M. Nöllenburg, and A. Schwering. Route schematization with landmarks.

Journal of Spatial Information Science, 21(11):99–136, 2020. doi:10.5311/JOSIS.2020.21.589. 136

J. Gamper, M. Böhlen, W. Cometti, and M. Innerebner. Defining isochrones in multimodal spatial

networks. In Proc. 20th ACM International Conference on Information and Knowledge Management
(CIKM’11), pages 2381–2384. ACM, 2011. doi:10.1145/2063576.2063972. 106, 108

167

https://www.ruhr-uni-bochum.de/schematicmapping/papers/smw-fklh.pdf
https://www.ruhr-uni-bochum.de/schematicmapping/papers/smw-fklh.pdf
https://doi.org/10.5311/JOSIS.2023.26.256
https://doi.org/10.1007/978-3-031-35374-1_3
https://doi.org/10.1007/978-3-031-35374-1_3
https://doi.org/10.1145/28869.28874
https://doi.org/10.1002/mar.20126
https://doi.org/10.5194/ica-proc-2-34-2019
https://doi.org/10.1080/15230406.2020.1855251
https://doi.org/10.1137/1.9781611972931.4
https://doi.org/10.1145/2996913.2997004
https://doi.org/10.4230/LIPIcs.SEA.2017.18
https://doi.org/10.1145/3340964.3340978
https://doi.org/10.5311/JOSIS.2020.21.589
https://doi.org/10.1145/2063576.2063972


Conclusion & Future Work

J. Gamper, M. H. Böhlen, and M. Innerebner. Scalable computation of isochrones with network expira-

tion. In Scientific and Statistical Database Management (SSDBM’12), volume 7338 of Lecture Notes in
Computer Science (LNCS), pages 526–543. Springer, 2012. doi:10.1007/978-3-642-31235-9_35. 108

S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Composition attacks and auxiliary information in

data privacy. In Proc. 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’08), pages 265–273. ACM, 2008. doi:10.1145/1401890.1401926. 31

K. Garland. Mr Beck’s underground map. Capital Transport, London, England, 1994. 135

S. Gedicke, A. Jabrayilov, B. Niedermann, P. Mutzel, and J.-H. Haunert. Point feature label place-

ment for multi-page maps on small-screen devices. Computers & Graphics, 100:66–80, 2021.

doi:10.1016/j.cag.2021.07.019. 90

R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. Exact routing in large road networks using con-

traction hierarchies. Transportation Science, 46(3):388–404, 2012. doi:10.1287/trsc.1110.0401. 61

A. Ghermandi and M. Sinclair. Passive crowdsourcing of social media in environmental research: A

systematic map. Global Environmental Change, 55:36–47, 2019. doi:10.1016/j.gloenvcha.2019.02.003.
3

J.-P. Gómez-Barrón, M.-A. Manso-Callejo, R. Alcarria, and T. Iturrioz. Volunteered geographic infor-

mation system design: Project and participation guidelines. ISPRS International Journal of Geo-
Information, 5(7), 2016. doi:10.3390/ijgi5070108. 82

J.-P. Gómez-Barrón, M.-Á. Manso-Callejo, and R. Alcarria. Needs, drivers, participants and engagement

actions: A framework for motivating contributions to volunteered geographic information systems.

Journal of Geographical Systems, 21(1):5–41, 2019. doi:10.1007/s10109-018-00289-5. 82

H. Gong, C. Chen, E. Bialostozky, and C. T. Lawson. A GPS/GIS method for travel mode de-

tection in New York City. Computers, Environment and Urban Systems, 36(2):131–139, 2012.

doi:10.1016/j.compenvurbsys.2011.05.003. Special Issue: Geoinformatics 2010. 1

L. Gong, H. Sato, T. Yamamoto, T. Miwa, and T.Morikawa. Identification of activity stop locations in GPS

trajectories by density-based clustering method combined with support vector machines. Journal of
Modern Transportation, 23:202–213, 2015. doi:10.1007/s40534-015-0079-x. 30

M. F. Goodchild. Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4):211–221,
2007. doi:10.1007/s10708-007-9111-y. 1, 59, 88

R. Gotsman and Y. Kanza. Compact representation of GPS trajectories over vectorial road networks.

In Advances in Spatial and Temporal Databases, Lecture Notes in Computer Science (LNISA), pages

241–258, Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-40235-7_14. 59

A. G. Greenwald and M. R. Banaji. Implicit social cognition: attitudes, self-esteem, and stereotypes.

Psychological review, 102(1):4–27, 1995. doi:10.1037/0033-295x.102.1.4. 54

E. Grigore, N. Garrick, R. Fuhrer, and I. K. W. Axhausen. Bikeability in Basel. Transportation Research
Record, 2673(6):607–617, 2019. doi:10.1177/0361198119839982. 54

P. D. Grünwald, I. J. Myung, and M. A. Pitt. Advances in minimum description length: Theory and appli-
cations. Neural Information Processing. MIT press, 2005. doi:10.7551/mitpress/1114.001.0001. 59

168

https://doi.org/10.1007/978-3-642-31235-9_35
https://doi.org/10.1145/1401890.1401926
https://doi.org/10.1016/j.cag.2021.07.019
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1016/j.gloenvcha.2019.02.003
https://doi.org/10.3390/ijgi5070108
https://doi.org/10.1007/s10109-018-00289-5
https://doi.org/10.1016/j.compenvurbsys.2011.05.003
https://doi.org/10.1007/s40534-015-0079-x
https://doi.org/10.1007/s10708-007-9111-y
https://doi.org/10.1007/978-3-642-40235-7_14
https://doi.org/10.1037/0033-295x.102.1.4
https://doi.org/10.1177/0361198119839982
https://doi.org/10.7551/mitpress/1114.001.0001


BIBLIOGRAPHY

M. E. Gursoy, L. Liu, S. Truex, and L. Yu. Differentially private and utility preserving pub-

lication of trajectory data. IEEE Transactions on Mobile Computing, 18(10):2315–2329, 2019.

doi:10.1109/TMC.2018.2874008. 31

S. Gustafson, P. Baudisch, C. Gutwin, and P. Irani. Wedge: Clutter-free visualization of off-screen loca-

tions. In Proc. SIGCHI Conference on Human Factors in Computing Systems (CHI’08), pages 787–796.
ACM, 2008. doi:10.1145/1357054.1357179. 91

A. Guttman. R-trees: a dynamic index structure for spatial searching. SIGMOD Rec., 14(2):47–57, 1984.
doi:10.1145/971697.602266. 61

T. Hägerstrand. What about people in regional science? Papers of the Regional Science Association, 24
(1):7–24, 1970. doi:10.1007/BF01936872. 90

M. Haklay. How good is volunteered geographical information? A comparative study of OpenStreetMap

and ordnance survey datasets. Environment and Planning B: Planning and Design, 37(4):682–703, 2010.
doi:10.1068/b35097. 3

M. Haklay. Why is participation inequality important? In European Handbook of Crowdsourced Geo-
graphic Information. Ubiquity Press, 2016. 3

K. Halldórsdóttir, N. Rieser-Schüssler, K. W. Axhausen, O. A. Nielsen, and C. G. Prato. Efficiency of

choice set generation methods for bicycle routes. European Journal of Transport and Infrastructure
Research, 14(4), Sep. 2014. doi:10.18757/ejtir.2014.14.4.3040. 55

M. Hardinghaus and S. Nieland. Assessing cyclists’ routing preferences by analyzing extensive user

setting data from a bike-routing engine. European Transport Research Review, 13(1):1–19, 2021.
doi:10.1186/s12544-021-00499-x. 56

M. Hardinghaus and J. Weschke. Attractive infrastructure for everyone? Different preferences for

route characteristics among cyclists. Transportation Research Part D: Transport and Environment,
111:103465, 2022. doi:10.1016/j.trd.2022.103465. 54, 56

M. Hardinghaus, S. Nieland, M. Lehne, and J. Weschke. More than bike lanes – a multifactorial index of

urban bikeability. Sustainability, 13(21), 2021. doi:10.3390/su132111584. 54

D. L. Harkey, D. W. Reinfurt, and M. Knuiman. Development of the bicycle compatibility index. Trans-
portation Research Record, 1636(1):13–20, 1998. doi:10.3141/1636-03. 54

J.-H. Haunert and B. Budig. An algorithm for map matching given incomplete road data. In Proc. 20th
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPA-
TIAL’12), pages 510–513. ACM, 2012. doi:10.1145/2424321.2424402. 37, 38

J.-H. Haunert and A. Wolff. Optimal and topologically safe simplification of building footprints. In Proc.
18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’10),
pages 192–201. ACM, 2010. doi:10.1145/1869790.1869819. 110

S. He, F. Bastani, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, and S. Madden. RoadRunner: im-

proving the precision of road network inference fromGPS trajectories. In Proc. 26th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL GIS’18),
pages 3–12, 2018. doi:10.1145/3274895.3274974. 37

169

https://doi.org/10.1109/TMC.2018.2874008
https://doi.org/10.1145/1357054.1357179
https://doi.org/10.1145/971697.602266
https://doi.org/10.1007/BF01936872
https://doi.org/10.1068/b35097
https://doi.org/10.18757/ejtir.2014.14.4.3040
https://doi.org/10.1186/s12544-021-00499-x
https://doi.org/10.1016/j.trd.2022.103465
https://doi.org/10.3390/su132111584
https://doi.org/10.3141/1636-03
https://doi.org/10.1145/2424321.2424402
https://doi.org/10.1145/1869790.1869819
https://doi.org/10.1145/3274895.3274974


Conclusion & Future Work

J. Henriksen-Bulmer and S. Jeary. Re-identification attacks – a systematic literature re-

view. International Journal of Information Management, 36(6, Part B):1184–1192, 2016.

doi:10.1016/j.ijinfomgt.2016.08.002. 30

S.-H. Hong, D. Merrick, and H. A. do Nascimento. Automatic visualisation of metro maps. Journal of
Visual Languages & Computing, 17(3):203–224, 2006. doi:10.1016/j.jvlc.2005.09.001. 142

S. Hoogendoorn-Lanser, R. van Nes, and P. Bovy. A rule-based approach to route choice

set generation. In 11th International Conference on Travel Behaviour Research, Kyoto,
Japan. Citeseer, 2006. URL https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

639e2b06df40ad0d99ea050af0e40ced4b096903. 54

H. Huang. Anomalous behavior detection in single-trajectory data. International Journal of Geographical
Information Science, 29(12):2075–2094, 2015. doi:10.1080/13658816.2015.1063640. 1

R. Huang, C. Huang, J. Shan, L. Xiong, and J. Yan. Evaluation of GPS trajectories on VGI and

social websites. In 2013 21st International Conference on Geoinformatics, pages 1–5. IEEE, 2013.

doi:10.1109/Geoinformatics.2013.6626121. 88

W. Huang, S.-H. Hong, and P. Eades. Effects of crossing angles. In 2008 IEEE Pacific Visualization
Symposium, pages 41–46. IEEE, 2008. doi:10.1109/PACIFICVIS.2008.4475457. 110, 142

W. Huang, P. Eades, and S.-H. Hong. Larger crossing angles make graphs easier to read. Journal of
Visual Languages & Computing, 25(4):452–465, 2014. doi:10.1016/j.jvlc.2014.03.001. 142

A. Hull and C. O’Holleran. Bicycle infrastructure: can good design encourage cycling? Urban, Planning
and Transport Research, 2(1):369–406, 2014. doi:10.1080/21650020.2014.955210. 53

Z. Huo, X. Meng, H. Hu, and Y. Huang. You can walk alone: Trajectory privacy-preserving through

significant stays protection. In S.-g. Lee, Z. Peng, X. Zhou, Y.-S. Moon, R. Unland, and J. Yoo, edi-

tors, Database Systems for Advanced Applications, pages 351–366, Berlin, Heidelberg, 2012. Springer.
doi:10.1007/978-3-642-29038-1_26. 31

H. Imai andM. Iri. Polygonal approximations of a curve – formulations and algorithms. InComputational
Morphology, volume 6 of Machine Intelligence and Pattern Recognition, pages 71–86. North-Holland,
1988. doi:10.1016/B978-0-444-70467-2.50011-4. 110

S. Ivanovic, A.-M. Olteanu-Raimond, S. Mustiere, and T. Devogele. Detection of outliers in crowdsourced

GPS traces. In Spatial Accuracy 2016 Symposium, Montpellier, France, July 2016. URL https://hal.

science/hal-01505059. 3, 28

S. Ivanovic, A.-M. Olteanu-Raimond, S. Mustière, and T. Devogele. A filtering-based approach for im-

proving crowdsourced GNSS traces in a data update context. ISPRS International Journal of Geo-
Information, 8(9), 2019. doi:10.3390/ijgi8090380. 28

G. R. Jagadeesh and T. Srikanthan. Fast computation of clustered many-to-many shortest paths and its

application to map matching. ACM Transactions on Spatial Algorithms and Systems, 5(3):1–20, 2019.
doi:10.1145/3329676. 37

L. Jiang, C. Chen, C. Chen, H. Huang, and B. Guo. From driving trajectories to driving paths: a survey

on map-matching algorithms. CCF Transactions on Pervasive Computing and Interaction, pages 1–16,
2022. doi:10.1007/s42486-022-00101-w. 62

170

https://doi.org/10.1016/j.ijinfomgt.2016.08.002
https://doi.org/10.1016/j.jvlc.2005.09.001
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=639e2b06df40ad0d99ea050af0e40ced4b096903
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=639e2b06df40ad0d99ea050af0e40ced4b096903
https://doi.org/10.1080/13658816.2015.1063640
https://doi.org/10.1109/Geoinformatics.2013.6626121
https://doi.org/10.1109/PACIFICVIS.2008.4475457
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1080/21650020.2014.955210
https://doi.org/10.1007/978-3-642-29038-1_26
https://doi.org/10.1016/B978-0-444-70467-2.50011-4
https://hal.science/hal-01505059
https://hal.science/hal-01505059
https://doi.org/10.3390/ijgi8090380
https://doi.org/10.1145/3329676
https://doi.org/10.1007/s42486-022-00101-w


BIBLIOGRAPHY

V. Jokinen, V. Mäkinen, A. Brauer, and J. Oksanen. Would citizens contribute their personal location

data to an open database? preliminary results from a survey. In 16th International Conference on
Location Based Services, pages 171–176, 2021. URL https://biblio.ugent.be/publication/8740239/file/

8740242.pdf. 4

J. Jun, R. Guensler, and J. H. Ogle. Smoothing methods to minimize impact of global positioning system

random error on travel distance, speed, and acceleration profile estimates. Transportation Research
Record, 1972(1):141–150, 2006. doi:10.1177/0361198106197200117. 28

N. Kami, N. Enomoto, T. Baba, and T. Yoshikawa. Algorithm for detecting significant locations from raw

GPS data. In B. Pfahringer, G. Holmes, and A. Hoffmann, editors, Discovery Science, pages 221–235,
Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-16184-1_16. 30

A.-S. Karakaya, J. Hasenburg, and D. Bermbach. SimRa: Using crowdsourcing to identify

near miss hotspots in bicycle traffic. Pervasive and Mobile Computing, 67:101197, 2020.

doi:10.1016/j.pmcj.2020.101197. 54

A. Kealy and T. Moore. Land and maritime applications. In Springer Handbook of Global Navigation
Satellite Systems, pages 841–875. Springer, Cham, 2017. doi:10.1007/978-3-319-42928-1_29. 3, 28

G. Kellaris, N. Pelekis, and Y. Theodoridis. Map-matched trajectory compression. Journal of Systems
and Software, 86(6):1566–1579, 2013. doi:10.1016/j.jss.2013.01.071. 61

D. K. Kellstedt, J. O. Spengler, M. Foster, C. Lee, and J. E. Maddock. A scoping review of bikeability

assessment methods. Journal of Community Health, 46(1):211–224, Feb 2021. doi:10.1007/s10900-020-
00846-4. 53

M. Kent and A. Karner. Prioritizing low-stress and equitable bicycle networks using neighborhood-

based accessibility measures. International Journal of Sustainable Transportation, 13(2):100–110, 2019.
doi:10.1080/15568318.2018.1443177. 54

L. Knapen, I. B.-A. Hartman, D. Schulz, T. Bellemans, D. Janssens, and G. Wets. Determining structural

route components from GPS traces. Transportation Research Part B: Methodological, 90:156–171, 2016.
doi:10.1016/j.trb.2016.04.019. 55, 60, 67, 78

L. Knapen, I. B.-A. Hartman, and T. Bellemans. Using path decomposition enumeration to

enhance route choice models. Future Generation Computer Systems, 107:1077–1088, 2020.

doi:10.1016/j.future.2017.12.053. 61

M. Knura, F. Kluger, M. Zahtila, J. Schiewe, B. Rosenhahn, and D. Burghardt. Using object detection

on social media images for urban bicycle infrastructure planning: A case study of dresden. ISPRS
International Journal of Geo-Information, 10(11), 2021. doi:10.3390/ijgi10110733. 54

H. Koller, P. Widhalm, M. Dragaschnig, and A. Graser. Fast hidden Markov model map-matching for

sparse and noisy trajectories. In Proc. 18th IEEE International Conference on Intelligent Transportation
Systems (ITSC’15), pages 2557–2561. IEEE, 2015. doi:10.1109/ITSC.2015.411. 37

S. Korpilo, T. Virtanen, and S. Lehvävirta. Smartphone GPS tracking – inexpensive and efficient

data collection on recreational movement. Landscape and Urban Planning, 157:608–617, 2017.
doi:10.1016/j.landurbplan.2016.08.005. 3

171

https://biblio.ugent.be/publication/8740239/file/8740242.pdf
https://biblio.ugent.be/publication/8740239/file/8740242.pdf
https://doi.org/10.1177/0361198106197200117
https://doi.org/10.1007/978-3-642-16184-1_16
https://doi.org/10.1016/j.pmcj.2020.101197
https://doi.org/10.1007/978-3-319-42928-1_29
https://doi.org/10.1016/j.jss.2013.01.071
https://doi.org/10.1007/s10900-020-00846-4
https://doi.org/10.1007/s10900-020-00846-4
https://doi.org/10.1080/15568318.2018.1443177
https://doi.org/10.1016/j.trb.2016.04.019
https://doi.org/10.1016/j.future.2017.12.053
https://doi.org/10.3390/ijgi10110733
https://doi.org/10.1109/ITSC.2015.411
https://doi.org/10.1016/j.landurbplan.2016.08.005


Conclusion & Future Work

M.-J. Kraak. The space-time cube revisited from a geovisualization perspective. In Proc. 21st International
Cartographic Conference, pages 1988–1996, 2003. URL https://www.icaci.org/files/documents/ICC_

proceedings/ICC2003/Papers/255.pdf. 82, 91

D. Krajzewicz and D. Heinrichs. UrMo accessibility computer – a tool for computing contour ac-

cessibility measures. In System Simulation (SIMUL’16), pages 56–60. IARIA, 2016. URL https:

//elib.dlr.de/106451/. Visited on March 20, 2023. 109, 110

P. J. Krenn, P. Oja, S. Titze, et al. Development of a bikeability index to assess the bicycle-

friendliness of urban environments. Open Journal of Civil Engineering, 5(04):451–459, 2015.

doi:10.4236/ojce.2015.54045. 54

N. Krismer, G. Specht, and J. Gamper. Incremental calculation of isochrones regarding duration. In Proc.
26th GI-Workshop Grundlagen von Datenbanken, volume 1313 of CEUR Workshop Proceedings, pages
41–45, Bonn, Germany, 2014. Gesellschaft für Informatik. URL https://ceur-ws.org/Vol-1313/paper_

8.pdf. Visited on March 20, 2023. 108

N. Krismer, D. Silbernagl, G. Specht, and J. Gamper. Computing isochrones in multimodal spatial net-

works using tile regions. In Proc. 29th International Conference on Scientific and Statistical Database
Management (SSDBM’17), pages 1–6. ACM, 2017. doi:10.1145/3085504.3085538. 106, 108

K. J. Krizek, A. El-Geneidy, and K. Thompson. A detailed analysis of how an urban trail system affects

cyclists’ travel. Transportation, 34(5):611–624, Sep 2007. doi:10.1007/s11116-007-9130-z. 54

B. Krogh, C. S. Jensen, and K. Torp. Efficient in-memory indexing of network-constrained trajectories.

In Proc. 24th ACM SIGSPATIAL international conference on advances in geographic information systems
(ACM SIGSPATIAL GIS’16), pages 1–10, 2016. doi:10.1145/2996913.2996972. 36, 37, 61

B. W. Landis. Bicycle interaction hazard score: a theoretical model. Transportation research
record, 1438:3–8, 1994. URL https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

75a7d62a9d3eb36fed9a79cadda78829fa3ad8a2. 54

B. W. Landis, V. R. Vattikuti, and M. T. Brannick. Real-time human perceptions: Toward a bicycle level

of service. Transportation Research Record, 1578(1):119–126, 1997. doi:10.3141/1578-15. 53

P. Laube. Computational Movement Analysis. Springer Briefs in Computer Science. Springer, Cham,

2014. doi:10.1007/978-3-319-10268-9. 1

W.-C. Lee and J. Krumm. Trajectory preprocessing. In Computing with Spatial Trajectories, pages 3–33.
Springer, New York, NY, USA, 2011. doi:10.1007/978-1-4614-1629-6_1. 28

P. M. Lerin, D. Yamamoto, and N. Takahashi. Encoding network–constrained travel trajectories us-

ing routing algorithms. International Journal of Knowledge and Web Intelligence, 4(1):34–49, 2013.
doi:10.1504/IJKWI.2013.052724. 59

D. Li, J. Li, and J. Li. Road network extraction from low-frequency trajectories based on a road structure-

aware filter. ISPRS International Journal of Geo-Information, 8(9):374, 2019. doi:10.3390/ijgi8090374.
37

J. Li, Z. Xiao, and J. Kong. A viewpoint based approach to the visual exploration of trajectory. Journal
of Visual Languages & Computing, 41:41–53, 2017. doi:10.1016/j.jvlc.2017.04.001. 83

172

https://www.icaci.org/files/documents/ICC_proceedings/ICC2003/Papers/255.pdf
https://www.icaci.org/files/documents/ICC_proceedings/ICC2003/Papers/255.pdf
https://elib.dlr.de/106451/
https://elib.dlr.de/106451/
https://doi.org/10.4236/ojce.2015.54045
https://ceur-ws.org/Vol-1313/paper_8.pdf
https://ceur-ws.org/Vol-1313/paper_8.pdf
https://doi.org/10.1145/3085504.3085538
https://doi.org/10.1007/s11116-007-9130-z
https://doi.org/10.1145/2996913.2996972
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=75a7d62a9d3eb36fed9a79cadda78829fa3ad8a2
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=75a7d62a9d3eb36fed9a79cadda78829fa3ad8a2
https://doi.org/10.3141/1578-15
https://doi.org/10.1007/978-3-319-10268-9
https://doi.org/10.1007/978-1-4614-1629-6_1
https://doi.org/10.1504/IJKWI.2013.052724
https://doi.org/10.3390/ijgi8090374
https://doi.org/10.1016/j.jvlc.2017.04.001


BIBLIOGRAPHY

L. Li, R. Jiang, Z. He, X.M. Chen, and X. Zhou. Trajectory data-based traffic flow studies: A revisit. Trans-
portation Research Part C: Emerging Technologies, 114:225–240, 2020. doi:10.1016/j.trc.2020.02.016. 1

N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and l-

diversity. In 2007 IEEE 23rd International Conference on Data Engineering, pages 106–115, 2007.

doi:10.1109/ICDE.2007.367856. 31

Q. Li, Y. Zheng, X. Xie, Y. Chen,W. Liu, andW.-Y.Ma. Mining user similarity based on location history. In

Proc. 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
(GIS’08), pages 1–10. ACM, 2008. doi:10.1145/1463434.1463477. 60

R. Li and J. Zhao. Off-screen landmarks on mobile devices: Levels of measurement and the perception

of distance on resized icons. KI - Künstliche Intelligenz, 31(2):141–149, 2017. doi:10.1007/s13218-016-
0471-7. 91

H. Liu, Y. Gao, L. Lu, S. Liu, H. Qu, and L. M. Ni. Visual analysis of route diversity. In

2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pages 171–180, 2011.

doi:10.1109/VAST.2011.6102455. 84

M. Löffler and W. Meulemans. Discretized approaches to schematization. In J. Gudmundsson and

M. H. M. Smid, editors, Proc. 29th Canadian Conference on Computational Geometry (CCCG), pages
220–225, Ottawa, Ontario, Canada, 2017. URL https://research.tue.nl/en/publications/discretized-

approaches-to-schematization. 136

Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-matching for low-sampling-rate GPS

trajectories. In Proc. 17th ACM SIGSPATIAL International Conference on Advances in Geographic Infor-
mation Systems (ACM SIGSPATIAL GIS’09), pages 352–361. ACM, 2009. doi:10.1145/1653771.1653820.

36

M. B. Lowry, D. Callister, M. Gresham, and B. Moore. Assessment of communitywide bikeability with

bicycle level of service. Transportation Research Record, 2314(1):41–48, 2012. doi:10.3141/2314-06. 53

M. Lu, C. Lai, T. Ye, J. Liang, and X. Yuan. Visual analysis of multiple route choices based on general GPS

trajectories. IEEE Transactions on Big Data, 3(2):234–247, 2017. doi:10.1109/TBDATA.2017.2667700.
84

A. M. MacEachren. Compactness of geographic shape: Comparison and evaluation

of measures. Geografiska Annaler: Series B, Human Geography, 67(1):53–67, 1985.

doi:10.1080/04353684.1985.11879515. 142

A. M. MacEachren. Visualization in modern cartography: Setting the agenda. In Modern Cartography
Series, pages 1–12. Elsevier, 1994. doi:10.1016/b978-0-08-042415-6.50008-9. 81

A. M. MacEachren and M.-J. Kraak. Research challenges in geovisualization. Cartography and Geo-
graphic Information Science, 28(1):3–12, 2001. doi:10.1559/152304001782173970. 81

A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-diversity: Privacy beyond k-

anonymity. ACM Trans. Knowl. Discov. Data, 1(1):3–es, 2007. doi:10.1145/1217299.1217302. 31

B. B. Majumdar, S. Mitra, and P. Pareekh. Methodological framework to obtain key factors influencing

choice of bicycle as a mode. Transportation research record, 2512(1):110–121, 2015. doi:10.3141/2512-
13. 56

173

https://doi.org/10.1016/j.trc.2020.02.016
https://doi.org/10.1109/ICDE.2007.367856
https://doi.org/10.1145/1463434.1463477
https://doi.org/10.1007/s13218-016-0471-7
https://doi.org/10.1007/s13218-016-0471-7
https://doi.org/10.1109/VAST.2011.6102455
https://research.tue.nl/en/publications/discretized-approaches-to-schematization
https://research.tue.nl/en/publications/discretized-approaches-to-schematization
https://doi.org/10.1145/1653771.1653820
https://doi.org/10.3141/2314-06
https://doi.org/10.1109/TBDATA.2017.2667700
https://doi.org/10.1080/04353684.1985.11879515
https://doi.org/10.1016/b978-0-08-042415-6.50008-9
https://doi.org/10.1559/152304001782173970
https://doi.org/10.1145/1217299.1217302
https://doi.org/10.3141/2512-13
https://doi.org/10.3141/2512-13


Conclusion & Future Work

B. Manum, T. Nordström, J. Gil, L. Nilsson, and L. Marcus. Modelling bikeability. In Proc. 11th Interna-
tional Space Syntax Symposium, Lisbon, Portugal, pages 3–7, 2017. URL https://www.academia.edu/

download/53836190/89_Manum_al_ModellingBikeability.pdf. 54

S.Marciuska and J. Gamper. Determining objects within isochrones in spatial network databases. In Proc.
14th East European Conference on Advances in Databases and Information Systems (ADBIS’10), volume

6295 of Lecture Notes in Computer Science (LNCS), pages 392–405. Springer, 2010. doi:10.1007/978-3-
642-15576-5_30. 109, 110, 123

N. Markovic, S. Miller, Z. V. Laan, and Y. Wang. Visual exploration of Utah trajectory data and their

applications in transportation. Technical report, TREC at Portland State University, 2020. URL https:

//rosap.ntl.bts.gov/view/dot/64589. 91

A. D. Marra and F. Corman. A deep learning model for predicting route choice in public transport. In

21st Swiss Transport Research Conference (STRC’21). STRC, 2021. doi:10.3929/ethz-b-000504159. 56

J. D. Mazimpaka and S. Timpf. Trajectory data mining: A review of methods and applications. Journal
of Spatial Information Science, 13(4), Dec. 2016. doi:10.5311/josis.2016.13.263. 1

R. McCall, V. Koenig, R. Martin, and T. Engel. Changing mobility behaviour through recommendations.

In Proc. ACM Recsys CrowdRec Workshop 2015, 2015. URL https://hdl.handle.net/10993/39663. 84

F. G. Meddah. A novel methodology for geovisualizing epidemiological data. In B. Lejdel, E. Clementini,

and L. Alarabi, editors,Artificial Intelligence and Its Applications, pages 557–564, Cham, 2022. Springer.

doi:10.1007/978-3-030-96311-8_52. 82

K. Mehlhorn and M. Ziegelmann. Resource constrained shortest paths. In M. S. Paterson, editor, Algo-
rithms - ESA 2000, pages 326–337. Springer, 2000. 63

Melbourne and Metropolitan Tramways Board. Minimum railway or tramway time zones, 1922. URL

http://handle.slv.vic.gov.au/10381/170543. 137

G. Menghini, N. Carrasco, N. Schüssler, and K. Axhausen. Route choice of cyclists in zurich. Transporta-
tion Research Part A: Policy and Practice, 44(9):754–765, 2010. doi:10.1016/j.tra.2010.07.008. 54

W.Meulemans. Similarity measures and algorithms for cartographic schematization. PhD thesis, Technis-

che Universiteit Eindhoven, 2014. URL https://pure.tue.nl/ws/portalfiles/portal/3962300/777493.pdf.

135

D. Michail, J. Kinable, B. Naveh, and J. V. Sichi. JGraphT – a Java library for graph data structures and

algorithms. ACM Transactions on Mathematical Software, 46(2):1–19, 2020. doi:10.1145/3381449. 71

B. Morris and M. Trivedi. Learning trajectory patterns by clustering: Experimental studies and compar-

ative evaluation. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 312–319,
2009. doi:10.1109/CVPR.2009.5206559. 1

T. Murakami, A. Kanemura, and H. Hino. Group sparsity tensor factorization for re-identification of

open mobility traces. IEEE Transactions on Information Forensics and Security, 12(3):689–704, 2017.
doi:10.1109/TIFS.2016.2631952. 31

V. Mäkinen, A. Brauer, and J. Oksanen. Geoprivacy platform, 2023. URL https://geoprivacy.fi. 4, 30

174

https://www.academia.edu/download/53836190/89_Manum_al_ModellingBikeability.pdf
https://www.academia.edu/download/53836190/89_Manum_al_ModellingBikeability.pdf
https://doi.org/10.1007/978-3-642-15576-5_30
https://doi.org/10.1007/978-3-642-15576-5_30
https://rosap.ntl.bts.gov/view/dot/64589
https://rosap.ntl.bts.gov/view/dot/64589
https://doi.org/10.3929/ethz-b-000504159
https://doi.org/10.5311/josis.2016.13.263
https://hdl.handle.net/10993/39663
https://doi.org/10.1007/978-3-030-96311-8_52
http://handle.slv.vic.gov.au/10381/170543
https://doi.org/10.1016/j.tra.2010.07.008
https://pure.tue.nl/ws/portalfiles/portal/3962300/777493.pdf
https://doi.org/10.1145/3381449
https://doi.org/10.1109/CVPR.2009.5206559
https://doi.org/10.1109/TIFS.2016.2631952
https://geoprivacy.fi


BIBLIOGRAPHY

W.Narzt, G. Pomberger, A. Ferscha, D. Kolb, R. Müller, J.Wieghardt, H. Hörtner, and C. Lindinger. A new

visualization concept for navigation systems. In C. Stary and C. Stephanidis, editors, User-Centered
Interaction Paradigms for Universal Access in the Information Society, pages 440–451. Springer, 2004.
doi:10.1007/978-3-540-30111-0_38. 88

National Land Survey of Finland. Geoprivacy open data, 11 2023. National Land Survey of Finland,

Finnish Geospatial Research Institute, Department of Geoinformatics and Cartography. 1, 2, 4

M. E. Nergiz, M. Atzori, and Y. Saygin. Towards trajectory anonymization: a generalization-based

approach. In Proc. SIGSPATIAL ACM GIS 2008 International Workshop on Security and Privacy in GIS
and LBS (SPRINGL’08), pages 52–61. ACM, 2008. doi:10.1145/1503402.1503413. 31

P. Newson and J. Krumm. Hidden markov map matching through noise and sparseness. In Proc. 17th
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’09),
pages 336–343. ACM, 2009. doi:10.1145/1653771.1653818. 37

S. Nickel and M. Nöllenburg. Drawing k-linear metro maps. In Proc. 2nd Schematic Mapping Workshop,
2019. URL https://www.ac.tuwien.ac.at/files/pub/smw19-paper-6.pdf. 135

B. Niedermann, M. Nöllenburg, and I. Rutter. Radial contour labeling with straight leaders. In Pacific
Visualization Symposium (PacificVis’17). IEEE, 2017. doi:10.1109/PACIFICVIS.2017.8031608. 143

J. Nielsen. The 90-9-1 rule for participation inequality in social media and online communities, 2006.

https://www.nngroup.com/articles/participation-inequality/, accessed on 27th Feburary 2024. 3

M. Nöllenburg. A survey on automated metro map layout methods. In Schematic Mapping Workshop
2014, 2014. URL https://i11www.iti.kit.edu/extra/publications/n-asamm-14.pdf. Visited on March 20,

2023. 109

M. Nöllenburg and A.Wolff. Amixed-integer program for drawing high-quality metro maps. In P. Healy

and N. S. Nikolov, editors, Graph Drawing, Lecture Notes in Computer Science (LNTCS), pages 321–

333, Berlin, Heidelberg, 2006. Springer. doi:10.1007/11618058_29. 135

M. Nöllenburg and A. Wolff. Drawing and labeling high-quality metro maps by mixed-integer

programming. IEEE Transactions on Visualization and Computer Graphics, 17(5):626–641, 2011.
doi:10.1109/TVCG.2010.81. 135

B. A. Nosek. Implicit–explicit relations. Current Directions in Psychological Science, 16(2):65–69, 2007.
doi:10.1111/j.1467-8721.2007.00477.x. 54

J. Oehrlein, B. Niedermann, and J.-H. Haunert. Inferring the parametric weight of a bicrite-

ria routing model from trajectories. In Proc. 25th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (SIGSPATIAL’17), pages 59:1–59:4. ACM, 2017.

doi:10.1145/3139958.3140033. 4, 36, 57, 59, 66

J. Oehrlein, A. Förster, D. Schunck, Y. Dehbi, R. Roscher, and J.-H. Haunert. Inferring routing preferences

of bicyclists from sparse sets of trajectories. In Proc. 3rd International Conference on Smart Data and
Smart Cities, volume IV-4/W7 of ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, pages 107–114, 2018. doi:10.5194/isprs-annals-IV-4-W7-107-2018. 53, 59

J. Oksanen, C. Bergman, J. Sainio, and J. Westerholm. Methods for deriving and calibrating privacy-

preserving heat maps from mobile sports tracking application data. Journal of Transport Geography,
48:135–144, 2015. doi:https://doi.org/10.1016/j.jtrangeo.2015.09.001. 4, 83

175

https://doi.org/10.1007/978-3-540-30111-0_38
https://doi.org/10.1145/1503402.1503413
https://doi.org/10.1145/1653771.1653818
https://www.ac.tuwien.ac.at/files/pub/smw19-paper-6.pdf
https://doi.org/10.1109/PACIFICVIS.2017.8031608
https://www.nngroup.com/articles/participation-inequality/
https://i11www.iti.kit.edu/extra/publications/n-asamm-14.pdf
https://doi.org/10.1007/11618058_29
https://doi.org/10.1109/TVCG.2010.81
https://doi.org/10.1111/j.1467-8721.2007.00477.x
https://doi.org/10.1145/3139958.3140033
https://doi.org/10.5194/isprs-annals-IV-4-W7-107-2018
https://doi.org/https://doi.org/10.1016/j.jtrangeo.2015.09.001


Conclusion & Future Work

OpenStreetMap. OpenStreetMap stats, 2024. https://planet.openstreetmap.org/statistics/data_stats.

html, accessed on 13th Feburary 2024. 4

T. Osogami and R. Raymond. Map matching with inverse reinforcement learning. In Proc. 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’13), pages 2547–2553. AAAI Press, 2013. URL
https://www.ijcai.org/Proceedings/13/Papers/375.pdf. 37

R. Osserman. The isoperimetric inequality. Bulletin of the American Mathematical Society, 84(6):1182–
1238, 1978. 150

D. O’Sullivan, A. Morrison, and J. Shearer. Using desktop GIS for the investigation of accessibility by

public transport: an isochrone approach. International Journal of Geographical Information Science,
14(1):85–104, 2000. doi:10.1080/136588100240976. 108, 110

A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares. A clustering-based approach for discovering

interesting places in trajectories. In Proc. 2008 ACM Symposium on Applied Computing (SAC’08), pages
863–868. ACM, 2008. doi:10.1145/1363686.1363886. 30

R. G. Pensa, A. Monreale, F. Pinelli, D. Pedreschi, et al. Pattern-preserving k-anonymization of sequences

and its application to mobility data mining. In CEURWorkshop Proceedings, volume 397, pages 44–60,

2008. URL https://iris.unito.it/handle/2318/68392. 31

D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query processing for moving object

trajectories. In Proc. 26th International Conference on Very Large Data Bases (VLDB’00), pages 395–406,
San Francisco, CA, USA, 2000. Morgan Kaufmann. URL https://dl.acm.org/doi/10.5555/645926.672019.

37, 61

V. Primault, A. Boutet, S. B. Mokhtar, and L. Brunie. The long road to computational lo-

cation privacy: A survey. IEEE Communications Surveys & Tutorials, 21(3):2772–2793, 2019.

doi:10.1109/COMST.2018.2873950. 3, 30

H. C. Purchase. Which aesthetic has the greatest effect on human understanding? In G. DiBattista,

editor, Graph Drawing, pages 248–261, Berlin, Heidelberg, 1997. Springer. doi:10.1007/3-540-63938-
1_67. 142

H. C. Purchase. Effective information visualisation: a study of graph drawing aesthetics and algorithms.

Interacting with Computers, 13(2):147–162, 12 2000. doi:10.1016/S0953-5438(00)00032-1. 110, 142

E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient models for timetable informa-

tion in public transportation systems. ACM Journal of Experimental Algorithmics, 12, 2008.

doi:10.1145/1227161.1227166. 107, 111, 113, 114, 136

J. Rauscher, R. Buchmüller, D. A. Keim, and M. Miller. SkiVis: Visual exploration and route plan-

ning in ski resorts. IEEE Transactions on Visualization and Computer Graphics, 30(1):869–879, 2024.
doi:10.1109/TVCG.2023.3326940. 84

G. Reggiani, T. Van Oijen, H. Hamedmoghadam, W. Daamen, H. L. Vu, and S. Hoogendoorn. Under-

standing bikeability: a methodology to assess urban networks. Transportation, 49(3):897–925, 2022.
doi:10.1007/s11116-021-10198-0. 53, 54

M. Ren and H. A. Karimi. Movement pattern recognition assisted map matching for

pedestrian/wheelchair navigation. The Journal of Navigation, 65(4):617–633, 2012.

doi:10.1017/S0373463312000252. 37

176

https://planet.openstreetmap.org/statistics/data_stats.html
https://planet.openstreetmap.org/statistics/data_stats.html
https://www.ijcai.org/Proceedings/13/Papers/375.pdf
https://doi.org/10.1080/136588100240976
https://doi.org/10.1145/1363686.1363886
https://iris.unito.it/handle/2318/68392
https://dl.acm.org/doi/10.5555/645926.672019
https://doi.org/10.1109/COMST.2018.2873950
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1016/S0953-5438(00)00032-1
https://doi.org/10.1145/1227161.1227166
https://doi.org/10.1109/TVCG.2023.3326940
https://doi.org/10.1007/s11116-021-10198-0
https://doi.org/10.1017/S0373463312000252


BIBLIOGRAPHY

N. Rieser-Schüssler, M. Balmer, and K. W. Axhausen. Route choice sets for very high-resolution data.

Transportmetrica A: Transport Science, 9(9):825–845, 2013. doi:10.1080/18128602.2012.671383. 54

M. Ringhand and M. Vollrath. Make this detour and be unselfish! Influencing urban route choice by

explaining traffic management. Transportation Research Part F: Traffic Psychology and Behaviour, 53:
99–116, 2018. doi:10.1016/j.trf.2017.12.010. 84

A. C. Robinson. A design framework for exploratory geovisualization in epidemiology. Information
Visualization, 6(3):197–214, 2007. doi:10.1057/palgrave.ivs.9500155. 82

T. Rossetti, C. A. Guevara, P. Galilea, and R. Hurtubia. Modeling safety as a perceptual latent variable to

assess cycling infrastructure. Transportation Research Part A: Policy and Practice, 111:252–265, 2018.
doi:10.1016/j.tra.2018.03.019. 54, 56

R. E. Roth. Interactive maps: What we know and what we need to know. Journal of Spatial Information
Science, 6(3), June 2013. doi:10.5311/josis.2013.6.105. 81

Régie Autonome des Transports Parisiens. Metro map, 2023. https://www.ratp.fr/en/plan-metro, ac-

cessed on 13th April 2023. 152

J. Sainio, J. Westerholm, and J. Oksanen. Generating heat maps of popular routes online from massive

mobile sports tracking application data in milliseconds while respecting privacy. ISPRS International
Journal of Geo-Information, 4(4):1813–1826, 2015. doi:10.3390/ijgi4041813. 83

J. Salas, D. Megías, and V. Torra. SwapMob: Swapping trajectories for mobility anonymization. In

J. Domingo-Ferrer and F. Montes, editors, Privacy in Statistical Databases, pages 331–346, Cham, 2018.

Springer. doi:10.1007/978-3-319-99771-1_22. 31

J. F. Sallis, L. D. Frank, B. E. Saelens, and M. Kraft. Active transportation and physical activity: oppor-

tunities for collaboration on transportation and public health research. Transportation Research Part
A: Policy and Practice, 38(4):249–268, 2004. doi:10.1016/j.tra.2003.11.003. 53

Y. Sasaki, J. Yu, and Y. Ishikawa. Road segment interpolation for incomplete road data. In Proc.
2019 IEEE International Conference on Big Data and Smart Computing (BigComp’19), pages 1–8, 2019.
doi:10.1109/BIGCOMP.2019.8679461. 37

R. Scheepens, N.Willems, H. van deWetering, and J. J. vanWijk. Interactive visualization ofmultivariate

trajectory data with density maps. In 2011 IEEE Pacific Visualization Symposium, pages 147–154, 2011.

doi:10.1109/PACIFICVIS.2011.5742384. 83

R. Scheepens, H. v. d. Wetering, and J. J. v. Wijk. Non-overlapping aggregated multivariate

glyphs for moving objects. In 2014 IEEE Pacific Visualization Symposium, pages 17–24, 2014.

doi:10.1109/PacificVis.2014.13. 90

R. Scheepens, C. Hurter, H. Van De Wetering, and J. J. Van Wijk. Visualization, selection, and analy-

sis of traffic flows. IEEE Transactions on Visualization and Computer Graphics, 22(1):379–388, 2016.
doi:10.1109/TVCG.2015.2467112. 82

J. Schmid-Querg, A. Keler, and G. Grigoropoulos. The munich bikeability index: A practical approach

for measuring urban bikeability. Sustainability, 13(1), 2021. doi:10.3390/su13010428. 54

N. Schüssler and K. W. Axhausen. Identifying trips and activities and their characteristics from GPS

raw data without further information. Arbeitsberichte Verkehrs- und Raumplanung, 502, 2008. URL
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/9471/eth-30471-01.pdf. 28

177

https://doi.org/10.1080/18128602.2012.671383
https://doi.org/10.1016/j.trf.2017.12.010
https://doi.org/10.1057/palgrave.ivs.9500155
https://doi.org/10.1016/j.tra.2018.03.019
https://doi.org/10.5311/josis.2013.6.105
https://www.ratp.fr/en/plan-metro
https://doi.org/10.3390/ijgi4041813
https://doi.org/10.1007/978-3-319-99771-1_22
https://doi.org/10.1016/j.tra.2003.11.003
https://doi.org/10.1109/BIGCOMP.2019.8679461
https://doi.org/10.1109/PACIFICVIS.2011.5742384
https://doi.org/10.1109/PacificVis.2014.13
https://doi.org/10.1109/TVCG.2015.2467112
https://doi.org/10.3390/su13010428
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/9471/eth-30471-01.pdf


Conclusion & Future Work

D. E. Seidl, P. Jankowski, and M.-H. Tsou. Privacy and spatial pattern preservation in masked GPS

trajectory data. International Journal of Geographical Information Science, 30(4):785–800, 2016.
doi:10.1080/13658816.2015.1101767. 1, 31

H. Senaratne, A. Mobasheri, A. L. Ali, C. Capineri, and M. Haklay. A review of volunteered geographic

information quality assessment methods. International Journal of Geographical Information Science,
31(1):139–167, 2017. doi:10.1080/13658816.2016.1189556. 3

I. N. Sener, N. Eluru, and C. R. Bhat. An analysis of bicycle route choice preferences in Texas, US.

Transportation, 36(5):511–539, 2009. doi:10.1007/s11116-009-9201-4. 56

J. Serra. Image analysis and mathematical morphology. Academic Press, Inc., 1983. URL https://dl.acm.

org/doi/10.5555/1098652. Visited on March 20, 2023. 120

M. Sester and C. Brenner. Continuous generalization for visualization on small mobile devices. In

Developments in Spatial Data Handling, pages 355–368. Springer, 2005. doi:10.1007/3-540-26772-7_27.
89

D. Shin, J. Jo, B. Kim, H. Song, S.-H. Cho, and J. Seo. RCMVis: A visual analytics system for route

choice modeling. IEEE Transactions on Visualization and Computer Graphics, 29(3):1799–1817, 2023.
doi:10.1109/TVCG.2021.3131824. 84

S. H. Shin, C. G. Park, and S. Choi. Newmap-matching algorithm using virtual track for pedestrian dead

reckoning. ETRI Journal, 32(6):891–900, 2010. doi:10.4218/etrij.10.0110.0037. 37

B. W. Silverman. Density estimation for statistics and data analysis. Routledge, 2018.

doi:10.1201/9781315140919. 83

R. Song, W. Sun, B. Zheng, and Y. Zheng. PRESS: A novel framework of trajectory compression in road

networks. Proc. of the VLDB Endowment, 7(9), 2014a. doi:10.14778/2732939.2732940. 36, 37, 61

Y. Song, D. Dahlmeier, and S. Bressan. Not so unique in the crowd: a simple and effective algorithm for

anonymizing location data. In L. Si and H. Yang, editors, Proc. 1st International Workshop on Privacy-
Preserving, volume 2014, pages 19–24, 2014b. URL https://ceur-ws.org/Vol-1225/pir2014_submission_

11.pdf. 31

S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C. Vangenot. A conceptual view

on trajectories. Data & Knowledge Engineering, 65(1):126–146, 2008. doi:10.1016/j.datak.2007.10.008.
29

I. Spassov, M. Bierlaire, and B. Merminod. Map-matching for pedestrians via bayesian inference. In

Proc. European Navigation Conference, 2006. URL https://infoscience.epfl.ch/record/117113. Visited

on March 20, 2023. 37

S. Y. Ssin, J. A. Walsh, R. T. Smith, A. Cunningham, and B. H. Thomas. GeoGate: Correlat-

ing geo-temporal datasets using an augmented reality space-time cube and tangible interactions.

In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 210–219, 2019.

doi:10.1109/VR.2019.8797812. 91

J. Stott, P. Rodgers, J. C. Martínez-Ovando, and S. G. Walker. Automatic metro map layout using multi-

criteria optimization. IEEE Transactions on Visualization and Computer Graphics, 17(1):101–114, 2011.
doi:10.1109/TVCG.2010.24. 135

178

https://doi.org/10.1080/13658816.2015.1101767
https://doi.org/10.1080/13658816.2016.1189556
https://doi.org/10.1007/s11116-009-9201-4
https://dl.acm.org/doi/10.5555/1098652
https://dl.acm.org/doi/10.5555/1098652
https://doi.org/10.1007/3-540-26772-7_27
https://doi.org/10.1109/TVCG.2021.3131824
https://doi.org/10.4218/etrij.10.0110.0037
https://doi.org/10.1201/9781315140919
https://doi.org/10.14778/2732939.2732940
https://ceur-ws.org/Vol-1225/pir2014_submission_11.pdf
https://ceur-ws.org/Vol-1225/pir2014_submission_11.pdf
https://doi.org/10.1016/j.datak.2007.10.008
https://infoscience.epfl.ch/record/117113
https://doi.org/10.1109/VR.2019.8797812
https://doi.org/10.1109/TVCG.2010.24


BIBLIOGRAPHY

Strava Inc., 2023. https://metro.strava.com/faq, accessed on 25th January 2024. 4

Strava Inc. Year in sport – the trend report, 2024. https://press.strava.com/articles/strava-releases-year-

in-sport-trend-report, accessed on 13th Feburary 2024. 4

G. Stylianou. Stay-point identification as curve extrema. CoRR, 2017. URL http://arxiv.org/abs/1701.

06276. 29

J. Sultan, G. Ben-Haim, and J.-H. Haunert. Extracting spatial patterns in bicycle routes from crowd-

sourced data. Transactions in GIS, 21(6):1321–1340, 2017. doi:10.1111/tgis.12280. 36, 53

V. Sumantran, C. Fine, and D. Gonsalvez. Faster, smarter, greener: the future of the car and urban mobility.
MIT Press, 2017. 53

C. C. Sun, J. E. Hurst, and A. K. Fuller. Citizen science data collection for integrated wildlife population

analyses. Frontiers in Ecology and Evolution, 9, 2021. doi:10.3389/fevo.2021.682124. 82

L. Sweeney. k-anonymity: Amodel for protecting privacy. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 10(05):557–570, 2002. doi:10.1142/S0218488502001648. 30

S. Taguchi, S. Koide, and T. Yoshimura. Online map matching with route prediction. IEEE Transactions
on Intelligent Transportation Systems, 20(1):338–347, 2018. doi:10.1109/TITS.2018.2812147. 36

R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM Journal on
Computing, 16(3):421–444, 1987. doi:10.1137/0216030. 136, 142

Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An optimized spatio-temporal access method for predic-

tive queries. In J.-C. Freytag, P. Lockemann, S. Abiteboul, M. Carey, P. Selinger, and A. Heuer, editors,

Proc. 2003 VLDB Conference, pages 790–801. Morgan Kaufmann, San Francisco, CA, USA, 2003. ISBN

978-0-12-722442-8. doi:10.1016/B978-012722442-8/50075-6. 61

S. M. Tayebeh Saghapour and R. G. Thompson. Measuring cycling accessibility in metropoli-

tan areas. International Journal of Sustainable Transportation, 11(5):381–394, 2017.

doi:10.1080/15568318.2016.1262927. 53

M. Terrovitis, G. Poulis, N. Mamoulis, and S. Skiadopoulos. Local suppression and splitting techniques

for privacy preserving publication of trajectories. IEEE Transactions on Knowledge and Data Engi-
neering, 29(7):1466–1479, 2017. doi:10.1109/TKDE.2017.2675420. 31

C. Tominski, H. Schumann, G. Andrienko, and N. Andrienko. Stacking-based visualization of trajectory

attribute data. IEEE Transactions on Visualization and Computer Graphics, 18(12):2565–2574, 2012.
doi:10.1109/TVCG.2012.265. 83

L. H. Tran, Q. V. H. Nguyen, N. H. Do, and Z. Yan. Robust and hierarchical stop discovery in sparse and

diverse trajectories. Technical report, EPFL, Lausanne, Switzerland, 2011. URL http://infoscience.

epfl.ch/record/175473. 29, 30

Z. Tu, K. Zhao, F. Xu, Y. Li, L. Su, and D. Jin. Protecting trajectory from semantic attack considering

𝑘-anonymity, 𝑙-diversity, and 𝑡-closeness. IEEE Transactions on Network and Service Management, 16
(1):264–278, 2019. doi:10.1109/TNSM.2018.2877790. 31

J. W. Tukey. Exploratory data analysis, volume 2. Addison-Wesley, 1977. 82, 91

179

https://metro.strava.com/faq
https://press.strava.com/articles/strava-releases-year-in-sport-trend-report
https://press.strava.com/articles/strava-releases-year-in-sport-trend-report
http://arxiv.org/abs/1701.06276
http://arxiv.org/abs/1701.06276
https://doi.org/10.1111/tgis.12280
https://doi.org/10.3389/fevo.2021.682124
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1109/TITS.2018.2812147
https://doi.org/10.1137/0216030
https://doi.org/10.1016/B978-012722442-8/50075-6
https://doi.org/10.1080/15568318.2016.1262927
https://doi.org/10.1109/TKDE.2017.2675420
https://doi.org/10.1109/TVCG.2012.265
http://infoscience.epfl.ch/record/175473
http://infoscience.epfl.ch/record/175473
https://doi.org/10.1109/TNSM.2018.2877790


Conclusion & Future Work

I. Turton. Geo tools. In G. B. Hall and M. G. Leahy, editors, Open Source Approaches in Spatial Data Han-
dling, Advances in Geographic Information Science, vol 2 (AGIS), chapter 8, pages 153–169. Springer,

Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-74831-1_8. 71

T. C. van Dijk, A. van Goethem, J.-H. Haunert, W. Meulemans, and B. Speckmann. Map schematization

with circular arcs. In M. Duckham, E. Pebesma, K. Stewart, and A. U. Frank, editors, Geographic
Information Science, Lecture Notes in Computer Science (LNISA), pages 1–17, Cham, 2014. Springer

International Publishing. doi:10.1007/978-3-319-11593-1_1. 135

A. van Goethem, W. Meulemans, B. Speckmann, and J. Wood. Exploring curved schematization of

territorial outlines. IEEE Transactions on Visualization and Computer Graphics, 21(8):889–902, 2015.
doi:10.1109/TVCG.2015.2401025. 135, 136

R. J. Van Lier. Simplicity of visual shape: A structural information approach. Nijmegen Instituut voor

Cognitie en Informatie (NICI), 1996. 142

Verkehrbund Rhein-Sieg. Fahrplanauskunft, 2023a. https://www.vrs.de/fahren/fahrplanauskunft, ac-

cessed on 27th February 2023. 146

Verkehrbund Rhein-Sieg. Schienennetz 2023, Region Köln, 2023b. https://www.vrs.de/fileadmin/

Dateien/Downloadcenter/Netzplaene/Schienennetz_RegionKoeln_2023.pdf, accessed on 27th Febru-

ary 2023. 146

S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of continuously

moving objects. SIGMOD Rec., 29(2):331–342, 2000. doi:10.1145/335191.335427. 61

H.Wang, K. Zheng, J. Xu, B. Zheng, X. Zhou, and S. Sadiq. SharkDB: An in-memory column-oriented tra-

jectory storage. In Proc. 23rd ACM International Conference on Conference on Information and Knowl-
edge Management (CIKM’14), pages 1409–1418. ACM, 2014. doi:10.1145/2661829.2661878. 61

L. Wang, Y. Zheng, X. Xie, andW.-Y. Ma. A flexible spatio-temporal indexing scheme for large-scale GPS

track retrieval. In Proc. 9th IEEE International Conference on Mobile Data Management (MDM 2008),
pages 1–8, 2008. doi:10.1109/MDM.2008.24. 37

C. Ware, H. C. Purchase, L. Colpoys, and M. McGill. Cognitive measurements of graph aesthetics.

Information visualization, 1(2):103–110, 2002. doi:10.1057/palgrave.ivs.9500013. 110, 142

S. Washington, P. Congdon, M. G. Karlaftis, and F. L. Mannering. Bayesian multinomial logit: Theory

and route choice example. Transportation Research Record, 2136(1):28–36, 2009. doi:10.3141/2136-04.
55

H. Wei, Y. Wang, G. Forman, and Y. Zhu. Map matching by Fréchet distance and

global weight optimization. Technical Paper, Departement of Computer Science and Engi-
neering, page 19, 2013. URL https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

4c4ea2f8d518ae953ca101a1bbffa0d10cce2a6c. 47

L. L. Y. Wei, A. A. A. Ibrahim, K. Nisar, Z. I. A. Ismail, and I. Welch. Survey on geographic visual dis-

play techniques in epidemiology: Taxonomy and characterization. Journal of Industrial Information
Integration, 18:100139, 2020. doi:10.1016/j.jii.2020.100139. 82

L. Wenzheng, L. Junjun, and Y. Shunli. An improved Dijkstra’s algorithm for shortest path planning

on 2D grid maps. In 2019 IEEE 9th International Conference on Electronics Information and Emergency
Communication (ICEIEC), pages 438–441, 2019. doi:10.1109/ICEIEC.2019.8784487. 150

180

https://doi.org/10.1007/978-3-540-74831-1_8
https://doi.org/10.1007/978-3-319-11593-1_1
https://doi.org/10.1109/TVCG.2015.2401025
https://www.vrs.de/fahren/fahrplanauskunft
https://www.vrs.de/fileadmin/Dateien/Downloadcenter/Netzplaene/Schienennetz_RegionKoeln_2023.pdf
https://www.vrs.de/fileadmin/Dateien/Downloadcenter/Netzplaene/Schienennetz_RegionKoeln_2023.pdf
https://doi.org/10.1145/335191.335427
https://doi.org/10.1145/2661829.2661878
https://doi.org/10.1109/MDM.2008.24
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.3141/2136-04
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4c4ea2f8d518ae953ca101a1bbffa0d10cce2a6c
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4c4ea2f8d518ae953ca101a1bbffa0d10cce2a6c
https://doi.org/10.1016/j.jii.2020.100139
https://doi.org/10.1109/ICEIEC.2019.8784487


BIBLIOGRAPHY

C. E. White, D. Bernstein, and A. L. Kornhauser. Some map matching algorithms for personal

navigation assistants. Transportation Research Part C: Emerging Technologies, 8(1):91–108, 2000.
doi:10.1016/S0968-090X(00)00026-7. 37

P. Wilk and J. Karciarz. Optimization of map matching algorithms for indoor navigation in shopping

malls. In Proc. 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN’14),
pages 661–669. IEEE, 2014. doi:10.1109/IPIN.2014.7275541. 37

T. D. Wilson, S. Lindsey, and T. Y. Schooler. A model of dual attitudes. Psychological review, 107(1):
101–126, 2000. doi:10.1037/0033-295x.107.1.101. 54

S. Winter. Modeling costs of turns in route planning. Geoinformatica, 6(4):345–361, dec 2002.

doi:10.1023/A:1020853410145. 18, 143, 146

H.-Y. Wu, B. Niedermann, S. Takahashi, and M. Nöllenburg. A survey on computing schematic network

maps: The challenge to interactivity. In The 2nd Schematic Mapping Workshop 2019, 2019. URL

https://www.ac.tuwien.ac.at/files/pub/smw19-position-5.pdf. Visited on March 20, 2023. 109

H.-Y. Wu, B. Niedermann, S. Takahashi, M. J. Roberts, and M. Nöllenburg. A survey on transit map

layout – from design, machine, and human perspectives. Computer Graphics Forum, 39(3):619–646,

2020. doi:10.1111/cgf.14030. 109, 135

K. Xie, K. Deng, and X. Zhou. From trajectories to activities: a spatio-temporal join approach. In Proc.
2009 International Workshop on Location Based Social Networks (LBSN’09), pages 25–2. ACM, 2009.

doi:10.1145/1629890.1629897. 29

Z. Yan, C. Parent, S. Spaccapietra, and D. Chakraborty. A hybrid model and computing platform for

spatio-semantic trajectories. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt,

L. Cabral, and T. Tudorache, editors, The Semantic Web: Research and Applications, pages 60–75,

Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-13486-9_5. 29

R. Yarovoy, F. Bonchi, L. V. S. Lakshmanan, andW. H. Wang. Anonymizing moving objects: how to hide

a mob in a crowd? In Proc. 12th International Conference on Extending Database Technology: Advances
in Database Technology (EDBT’09), pages 72–83. ACM, 2009. doi:10.1145/1516360.1516370. 31

Y. Ye, Y. Zheng, Y. Chen, J. Feng, and X. Xie. Mining individual life pattern based on location history. In

2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware,
pages 1–10, 2009. doi:10.1109/MDM.2009.11. 21

H. Y. Yoo and S. H. Cheon. Visualization by information type on mobile device. In Proc. 2006 Asia-
Pacific Symposium on Information Visualisation (APVis’06), pages 143–146. Australian Computer So-

ciety, 2006. URL https://dl.acm.org/doi/10.5555/1151903.1151925. Visited on March 20, 2023. 90

Z. Yu, Y. Guo, and Y. Chen. Learning trajectory routing with graph neural networks. In Proc.
5th International Conference on Big Data and Computing (ICBDC’20), pages 121–126. ACM, 2020.

doi:10.1145/3404687.3404701. 56

G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang. A review of moving object trajectory clustering algorithms.

Artificial Intelligence Review, 47(1):123–144, Mar. 2016. doi:10.1007/s10462-016-9477-7. 1

P. T. Zellweger, J. D. Mackinlay, L. Good, M. Stefik, and P. Baudisch. City lights: Contextual views in

minimal space. In CHI’03 Extended Abstracts on Human Factors in Computing Systems (CHI EA’03),
pages 838–839. ACM, 2003. doi:10.1145/765891.766022. 91

181

https://doi.org/10.1016/S0968-090X(00)00026-7
https://doi.org/10.1109/IPIN.2014.7275541
https://doi.org/10.1037/0033-295x.107.1.101
https://doi.org/10.1023/A:1020853410145
https://www.ac.tuwien.ac.at/files/pub/smw19-position-5.pdf
https://doi.org/10.1111/cgf.14030
https://doi.org/10.1145/1629890.1629897
https://doi.org/10.1007/978-3-642-13486-9_5
https://doi.org/10.1145/1516360.1516370
https://doi.org/10.1109/MDM.2009.11
https://dl.acm.org/doi/10.5555/1151903.1151925
https://doi.org/10.1145/3404687.3404701
https://doi.org/10.1007/s10462-016-9477-7
https://doi.org/10.1145/765891.766022


Conclusion & Future Work

E. Zhang and N. Masoud. Increasing GPS localization accuracy with reinforcement learning. IEEE
Transactions on Intelligent Transportation Systems, 2020. doi:10.1109/TITS.2020.2972409. 37

G. Zhang. Integrating citizen science and GIS for wildlife habitat assessment. In M. Ferretti, editor,

Wildlife Population Monitoring, chapter 2. IntechOpen, Rijeka, 2019. doi:10.5772/intechopen.83681.

82

G. Zhang and A.-X. Zhu. The representativeness and spatial bias of volunteered geographic information:

a review. Annals of GIS, 24(3):151–162, 2018. doi:10.1080/19475683.2018.1501607. 3

L. Zhang, S. Dalyot, D. Eggert, and M. Sester. Multi-stage approach to travel-mode segmentation and

classification of GPS traces. The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XXXVIII-4/W25:87–93, 2011. doi:10.5194/isprsarchives-XXXVIII-4-W25-

87-2011. 60

L. Zhang, S. Dalyot, and M. Sester. Travel-mode classification for optimizing vehicular travel route

planning. In Progress in Location-Based Services, pages 277–295. Springer, Berlin, Heidelberg, 2013.
doi:10.1007/978-3-642-34203-5_16. 1

L. Zhang, M. Cheng, Z. Xiao, L. Zhou, and J. Zhou. Adaptable map matching using PF-

net for pedestrian indoor localization. IEEE Communications Letters, 24(7):1437–1440, 2020.

doi:10.1109/LCOMM.2020.2984036. 37

Y. Zheng. T-drive trajectory data sample, August 2011. URL https://www.microsoft.com/en-us/research/

publication/t-drive-trajectory-data-sample/. 4

Y. Zheng. Trajectory datamining: An overview. ACMTransactions on Intelligent Systems and Technology,
6(3):1–41, 2015. doi:10.1145/2743025. 60

Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li. Geolife GPS trajectory dataset - User Guide, July
2011. URL https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-

user-guide/. 4

Q. Zhou and Z. Li. Empirical determination of geometric parameters for selective omission in

a road network. International Journal of Geographical Information Science, 30(2):263–299, 2016.
doi:10.1080/13658816.2015.1085538. 110

182

https://doi.org/10.1109/TITS.2020.2972409
https://doi.org/10.5772/intechopen.83681
https://doi.org/10.1080/19475683.2018.1501607
https://doi.org/10.5194/isprsarchives-XXXVIII-4-W25-87-2011
https://doi.org/10.5194/isprsarchives-XXXVIII-4-W25-87-2011
https://doi.org/10.1007/978-3-642-34203-5_16
https://doi.org/10.1109/LCOMM.2020.2984036
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://doi.org/10.1145/2743025
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://doi.org/10.1080/13658816.2015.1085538

	Kurzfassung
	Abstract
	Introduction
	Crowd-sourced trajectory data
	Objective and contribution
	Outline

	Methodological Background
	Computational complexity
	Graph theory
	Optimal paths
	Trajectories

	I Trajectory Preprocessing
	Trajectory Preprocessing: Motivation & Research Context
	Trajectory smoothing
	Stay-point detection
	Privacy preservation

	Map Matching for Semi-Restricted Trajectories
	Introduction
	Related work
	Contribution
	Methodology
	Evaluation
	Conclusion


	II Inferring Routing Preferences from Trajectories
	Inferring Routing Preferences: Motivation & Research Context
	Bikeability
	Individual routing preferences

	An Algorithm Using a Compression Criterion
	Introduction
	Related work
	Methodology
	Evaluation
	Conclusion


	III Geovisualization
	Geovisualization: Motivation & Research Context
	Visual exploration of movement data
	Visualizing route choices

	Visualizing the Off-Screen Evolution of Trajectories
	Introduction
	Related work
	Methodology
	Evaluation
	Conclusion

	Multimodal Travel-Time Maps with Schematic Isochrones
	Introduction
	Related work
	Methodology
	Evaluation
	Isochrones and routing profiles
	Conclusion

	Metrochrones: Schematic Isochrones for Schematic Metro Maps
	Introduction
	Related work
	Methodology
	Evaluation
	Conclusion


	Conclusion & Future Work
	Bibliography

