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Summary

First introduced by Cherkis in theoretical physics, bow varieties form a rich family of sym-
plectic varieties generalizing Nakajima quiver varieties. An algebro-geometric definition was
later given by Nakajima and Takayama via moduli spaces of quiver representations. The main
goal of this thesis is to study the torus equivariant cohomology of bow varieties. Our study
is motivated by classical Schubert calculus and lays the foundation for a Schubert calculus
for bow varieties, where the underlying quiver is of finite type A.

The crucial main mathematical tool we use is the theory of stable envelopes of Maulik
and Okounkov. We show that this theory applies to bow varieties and study it with the main
focus on explicit calculations. As a main result of this thesis we generalize a fundamental
ingredient of classical Schubert calculus to the world of bow varieties: The Chevalley—Monk
formula. Our generalization of this formula characterizes the multiplication of tautological
divisors with respect to the stable envelope basis.

In the first part of this thesis, we give a self-contained introduction to the construction of
bow varieties and their geometric properties following the work of Nakajima and Takayama.
In particular, we recall the classification of torus fixed points of bow varieties and use a similar
method to prove that this classification also holds for generic one-parameter torus actions.

In the second part, we redevelop the theory of stable envelopes in the framework of bow
varieties. The main result is a self-contained reproof of the existence of stable envelopes for
bow varieties using the deformation to the normal cone construction due to Fulton. This
proof provides in particular an algorithm which computes the stable basis elements as linear
combinations of the fundamental classes of attracting cells.

Motivated by the localization principle in torus equivariant cohomology, we prove in the
next part a formula which determines the equivariant multiplicities of stable basis elements
at torus fixed points via a diagrammatic calculus of permutations and symmetric groups.
The main ingredient for this formula is the Resolution Theorem due to Botta and Rimanyi.

In the final part of this thesis, we state and prove the Chevalley—Monk formula theorem for
bow varieties. In the proof we use orthogonality properties of stable basis elements which are
similar to the orthogonality properties of (equivariant) Schubert classes. A further important
ingredient in the proof is a certain divisibility theorem for equivariant multiplicities of stable

basis elements which we prove using our diagrammatic calculus of symmetric groups.
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Chapter 1

Introduction

This thesis describes and studies algebraic invariants of bow varieties. Bow varieties are
certain generalizations of Nakajima quiver varieties which form a rich family of holomorphic
symplectic moduli spaces of quiver representations. Their origin goes back to theoretical
physics, where they were introduced by Cherkis, [Che09], [Chel0], [Chell]. In the context
of quiver representations, they were defined by Nakajima and Takayama in [NT17]. The
name bow variety indicates the important part of the quiver which looks like a bow, see
[Che09]. The easiest examples of bow varieties are cotangent bundles of Grassmannians and
(more generally) partial flag varieties. Other famous varieties from geometric representation
theory which can be realized as bow varieties are Nakajima quiver varieties, see [NT17], and
equivariant Slodowy slices, see [Los06], [RR23]. In general, bow varieties can become very
involved.

The main goal of this thesis is to give a detailed and explicit description of the torus
equivariant cohomology of bow varieties corresponding to finite type A quivers. Motivated
by the classical Schubert calculus, which is in particular a powerful tool to describe and
understand cohomology rings of Grassmannians, we develop the foundations of a Schubert
calculus for bow varieties. The generalizations of the Schubert classes are in this picture the
stable envelope classes introduced by Maulik and Okounkov in [MO19).

More precisely, the purpose of this thesis is twofold:

e In the framework of bow varieties, we bring together the general theory of stable en-
velopes of Maulik and Okounkov with concrete combinatorial models. In this way, we

provide a treatment of bow varieties from a new Schubert calculus point of view.

e As a main result (Theorem [10.26]), we give then a general Chevalley—Monk formula. It
describes the multiplication in equivariant cohomology algebras of bow varieties in a

combinatorial way.

1.1 Classical Chevalley—Monk formula

The classical Chevalley—Monk formula, see [Monb9|, [Che94], characterizes the multiplication
of tautological divisors in the singular cohomology of partial flag varieties. Thereby, this for-

mula uniquely determines the ring structure of these singular cohomology rings. The formula
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1. INTRODUCTION

is best known in the special case of Grassmannians, where the cohomology can be described
in combinatorial terms using symmetric functions and partitions. For Grassmannians, the
Chevalley-Monk formula coincides with a special case of the much older Pieri’s formula, see
e.g. [EH16, Proposition 4.9]. We will now describe this formula as well as some applications
and generalizations in the special case of Grassmannians. In this framework, the formula can

be conveniently described using the combinatorics of partitions.

Enumerative problems reformulated via divisors

We go back to the origins of Schubert calculus and consider the following classical question

from enumerative geometry, see [Sch79, Chapter 19]:

(Q1) Given 4 lines Ly, ..., Ly in the complex projective space P? in general position,

how many lines in P? meet all the four lines L1, ..., L4?

It is a well-known result that the answer to this question is 2. We now explain how the
answer can be obtained via the intersection theory on Grassmannians: Let Gr = Gr(2,4)
be the Grassmannian parameterizing 2-dimensional subspaces of C*. To relate to we
identify Gr with the moduli space of lines in P3. The question can then be reformulated

as:
(Q1’) What is the order of the set (i, {V € G | VN L; # 0}?
The variety Gr admits the tautological bundle & and the quotient bundle Q, where
S={(L,v)|veL}cCGrxC! Q= (GrxC")/S.

The global sections of Q are parameterized by C*. For two linear independent vectors v, w €
C*, the global section v A w of the exterior power /\2 Q vanishes at a point V € Gr if and
only if V intersects the plane spanned by v and w. There is a characteristic class of Gr in
the singular cohomology H*(Gr) which is exactly the cohomology class corresponding to this
vanishing locus: The first Chern class of the quotient bundle ¢1(Q) € H?(Gr). Thus, by
Kleiman’s Transversality Theorem [Kle74], we can reformulate as follows:

(Q17) What is the degree of ¢1(Q)* in H*(Gr)?

This degree can be determined in terms of combinatorial intersection theory, the main in-
gredient of Schubert calculus. Going back to Hermann Schubert [Sch79], it describes the
enumerative geometry of subspaces of a vector space which allows to describe in particular
the cohomology ring of Grassmannians. For a general introduction to Schubert calculus, see
e.g. [KL72|, [Ful97], [EH16].

The Gauss decomposition algorithm implies that the singular cohomology H*(Gr(k,n))
of any Grassmannian Gr(k,n) is a free Z-module and is equipped with a homogeneous ba-
sis (6)xep(k,n) Which is called the Schubert basis, see e.g. [Ful97] for more details on the
construction of the Schubert basis. This basis is naturally labeled by the set P(k,n) of all

partitions, where the corresponding Young diagram has at most k rows and n — k columns.
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1.1. Classical Chevalley—Monk formula

(5,4,4,3,3,1) ANNNAAAAAN

Partition

Young diagram

The cohomological degree of the corresponding Schubert class &) equals 2 - |\|, where ||
is the number of boxes in . In the special case (k,n) = (2,4) this leads to the following

basis:

H°(Gr) H?(Gr) H*(Gr) HY(Gr) H8(Gr)

0
Sy S T W

S

The construction of the Schubert basis implies that in general & = ¢1(Qk,n), where Qy ,,
is the quotient bundle on Gr(k,n). By Pieri’s formula, the multitplication of ¢;(Qy ) with

respect to the Schubert basis is given as follows:

1(Qkpn) Gr= > 6, (1.1)
HEM )
Here, M, is the set of yu € P(k,n) with the property that A\ can be obtained from p by
removing a single box.
Using (1.1]), we can now easily determine the product 645 in H*(Gr):

GD & GH+6D:| Ii) 2651 Ii) 265}.

By construction, 653 € H®(Gr) is the cohomology class corresponding to a point. Thus, the
degree of 64D indeed equals 2 which gives the desired answer to |(Q1)

Overall, due to this well established understanding of the multiplication of the tautological
divisor with respect to the Schubert basis a variety of enumerative questions in the flavor of
(Q1)| can be solved, see e.g. the exposition given in [EHI6).

Generalization to torus equivariant cohomology

We may more generally study the torus equivariant cohomology ring H7.(Gr(k, n)), where the
action of the torus T'= (C*)" on Gr(k,n) is induced by the standard T-action on C". The
localization principle in torus equivariant cohomology, see e.g. [AF23| Chapter 7], provides a
strong interplay between local and global data of equivariant cohomology classes which makes
torus equivariant cohomology a powerful cohomology theory which is well-suited for explicit
computations. By construction, H}.(Gr(k,n)) is a module over H7.(pt) which is in fact free.
The Z-algebra H7.(pt) is isomorphic to the polynomial ring Z[t1, . .., t,], where the variable t;
corresponds to the i-th factor of 7. There is also a T-equivariant version of Schubert classes
(63)aeP(k,n) which form a basis of Hj(Gr(k,n)) over Hj.(pt), see e.g. [AF23, Chapter 9].



1. INTRODUCTION

If we set all equivariant parameters equal to 0, the T-equivariant cohomology H7.(Gr(k, n))
specializes to the usual singular cohomology H*(Gr(k,n)) and each torus equivariant Schubert
class 6{ specializes to the classical Schubert class .

The formula extends to the torus equivariant setting by just adding a diagonal term,
see e.g. [AF23, Theorem 9.6.2]:

Q) 6 = (D t) 61+ X el (1.2)

SN HEM )

Here, clT(Qkyn) is the first T-equivariant Chern class of O ,, and
Eyx={1,...;n}\{M+EkX+(k—-1),....+ 1}
For instance, if (k,n) = (2,4) and A =[] then
1 (Q24) - &L = (t2 + t4)ST + GTH + 65

Setting t1 = ... =t, =0 in gives back the classical formula . In general, the
multiplication rules in the torus equivariant cohomology of Grassmannians are connected,
and in fact geometric incarnations, of deep combinatorial results in the theory of symmetric
functions, see e.g. [MS99], [KT03], [MS99], [AF23].

Generalization to the cotangent bundle

Now, we leave classical Schubert calculus and enter the world of holomorphic symplectic
varieties by passing from Gr(k,n) to its cotangent bundle T*Gr(k,n). As T*Gr(k,n) is a
vector bundle over Gr(k,n), this variety admits a further C*-action given by scaling the
fibers and we like to study its (7" x C*)-equivariant cohomology. The fact that we deal with a
holomorphic symplectic variety provides us a very deep and powerful tool: The stable envelope
bases of Maulik and Okounkov from [MO19]. These bases should be viewed as analogues of
the equivariant Schubert bases for Gr(k,n). More precisely, the family of stable envelope
bases should be viewed as analogue of the family of equivariant Schubert bases indexed by
different choices of Borels or cocharacters respectively, see [GKS20)].

Stable envelopes exist for a large family of symplectic varieties with torus action. They
provide families of bases of the torus equivariant cohomology depending on the choice of a
generic cocharacter. These bases are uniquely characterized by three stability conditions: a
normalization, a support and a smallness condition. These stability conditions are similar
to the uniqueness conditions appearing in equivariant Schubert calculus, see e.g. [KT03],
[GKS20]. Just as in equivariant Schubert calculus, the base change matrix of different stable
envelope bases produces a solution of the Yang—Baxter equation and thus provide interesting
braid group actions on cohomology. The usual FRT-construction [FRT8S|, [Kas95|] then can
be applied and provides a Hopf algebra acting on the torus equivariant cohomology of the
respective symplectic variety.

In the special case of cotangent bundles of Grassmannians, this Hopf algebra is a one-
parameter deformation of the Yangian for gly, see [MOI19, Chapter 11] and also [RTV15].

The multiplication of C{XC*(Q]C,”) with respect to the stable envelope basis was determined

4



1.2. New picture: bow varieties

in [MO19, Theorem 10.1.1], see also [Sul6l Theorem 3.1]. As explained in [RTV15], these
matrices coincide with certain limits of the dynamical Hamiltonians for the XXX model for
gly as defined earlier by Tarasov and Varchenko, see [TV00], [TV05]. Amazingly, this formula

can be expressed in terms of partitions as follows, see the explanation in Section [10.8

ClTxc*(Qk,n).Staba()\):(Zti)-Stabg()\)—i— > (=)HERIT L Stab (). (1.3)

i€Ey, LERH,

Here, o: C* — T, t + (t,t2,...,t") is the chosen cocharacter, h is the equivariant parameter
corresponding to the additional C*-factor in 7" x C* and RH) is the set of all partitions
p € P(k,n) such that A can be obtained from p by deleting a single rim hook. Recall that a
rim hook of a Young diagram p is a collection of contiguous boxes running along the border

of u:

| [

1 Rim hook
ANNANANANA

removal

For instance, if again kK = 2, n =4 and A\ =[] then
€ (Qy4) - Staby () = (tg + t4)Staby () + hStab, (H) + hStab, (1) + hStab, (HH).

The stable envelope bases not only share characterizing properties of equivariant Schubert
bases, but can moreover be viewed as one-parameter deformations of Schubert bases: As
explained in e.g. [AMSS23], the stable enevlope basis element Stab,(\) is a one parameter
deformation of &% and Stab,()\) degenerates to &% via the limit

lim (h"\‘_k("_k)Stabg()\)> el

h—o00

This limit implies that ([1.3) degenerates to (1.2)).

1.2 New picture: bow varieties

Nakajima quiver varieties are a fundamental part of geometric representation theory as they
for instance geometrize universal enveloping algebras of Kac—-Moody algebras and their cor-
responding integrable models. For an exposition to the topic see e.g. [Ginl2] or [Kirl6]. As
explained in [NT17, Theorem 2.15], the family of bow varieties extends the family of Naka-
jima quiver varieties. Thus, we can in particular realize cotangent bundles of partial flag
varieties as bow varieties, see Theorem for a precise statement.

In this thesis, we will only consider bow varieties corresponding to finite type A quivers,
see [Gai24] for other types.

Passing from Nakajima quiver varieties to bow varieties adds new features to the theory.
In particular, the family of bow varieties is equipped with a class of isomorphisms between bow

varieties corresponding to different input data. These isomorphisms correspond to certain

5



1. INTRODUCTION

transition moves on the input datum of bow varieties, see [NT17] and the exposition in Sec-
tion 2.4l These transition moves are ultimately motivated by the Hanany-Witten transition
in string theory from [HW97|, see also the explanation in [NT17]. Thus, the corresponding
isomorphisms of bow varieties are called Hanany—Witten isomorphisms.

By their construction, bow varieties are endowed with an action of a torus T which scales
the symplectic form. In the case of cotangent bundles of partial flag varieties, this torus
action matches with the (7" x C*)-action from the previous section. It was proved in [Nakl1§,
Theorem A.5] that bow varieties admit finitely many T-fixed points which can be classified via
matrices with entries in {0, 1} with fixed row and column vectors, see Section for precise
statements. This explicit classification result makes the family of bow varieties well-suited for
explicit computations in torus equivariant cohomology. In particular, the torus fixed point
combinatorics of bow varieties naturally generalizes the torus fixed point combinatorics of
partial flag varieties.

In fact, the classification torus fixed points of bow varieties of finite type A appears as a

shadow of a more general Fock space combinatorics in the affine type A case, see [Nak1§].

Chevalley—Monk formula for bow varieties

The aforementioned classification of T-fixed points is the starting point of our treatment. We
now give an exposition of the main result of this thesis: A Chevalley-Monk formula for bow
varieties (Theorem [10.26).

As mentioned already, bow varieties fit well in the framework of Maulik and Okounkov’s
theory which provides in particular the existence of stable envelope bases for bow varieties.
The elements in a stable envelope basis are labeled by the torus fixed points of the respective
bow variety.

The construction of bow varieties provides a family of tautological bundles ({x)x. As
explained in Section the mutliplication with its first Chern classes uniquely determines
the ring structure on the localized equivariant cohomology rings of bow varieties. In the
special case of cotangent bundles of Grassmannians, the tautological bundles £x are all
isomorphic to the quotient bundle, see Theorem [2.69

Theorem gives a formula for the multiplication of the T-equivariant first Chern

classes of tautological bundles on bow varieties with respect to the stable envelope basis:

Theorem A (Chevalley-Monk formula for bow varieties). Let M be a matriz labeling a
T-fixed point of a bow variety and let £x be a tautological bundle. Then, we have
c1 (§x) - Stabe (M) = 3 (c] (Ex)) - Stabg (M) + > sgn(M, M') - h - Stabg(M'). (1.4)
M’ESMMJ(
Here, 13, (ct (€x)) is the equivariant multiplicity of c} (€x) at the T-fized point of C(D) labeled
by the matrix M and h is an equivariant parameter corresponding to the scaling of the sym-

plectic form. The set SMy x s a certain set of matrices that differ from M by replacing a
(39)-minor of M with (9}).

We refer to the replacement move defining the elements in SMj; x as a simple move, see
Definition for a precise treatment.

6



1.3. Structure of the thesis

Application to classical setting

Consider again the cotangent bundle 7*Gr(k, n). As we explain in Section[3.2] the bow variety
realization of T*Gr(k,n) comes with a labeling of the (T" x C*)-fixed points of T*Gr(k,n)
by the set By, of (2 X n)-matrices M with entries in {0, 1} satisfying the following row and

column sum conditions:

n n 2
ZMl,i:ka ZMQ,i:n—k, ZMM‘:I, forj=1,...,n.
i=1 i=1 i=1
We then discuss in Section that we have a bijection
B < P(k,n)

and under this bijection simple moves correspond to rim hook removals. Hence, the formula

(1.4) naturally generalizes (1.3).

1.3 Structure of the thesis

This thesis consists of four parts:

Part 1: geometry of bow varieties

In the first part of the thesis, we give a self-contained introduction to the geometry of bow
varieties. In Chapter [2| we consider important ingredients of the theory of GIT quotients.
Thereby, we place special focus on the characterization of geometric points of GIT quotients
via stability conditions due to King [Kin94]. We also consider GIT quotients in the framework
of symplectic algebraic geometry and hamiltonian reduction. In particular, we discuss an
algebro-geometric version of the Marsden—Weinstein Theorem, see Theorem [2.17]

Hereafter, we recall the construction of bow varieties from [NT17] as GIT quotients of
specific moduli spaces of quiver representation. For this, we use the language of brane com-
binatorics which was developed in [RS20], [Sho21]. The input data for the construction of a

bow variety is a brane diagram which is an object like this:
0 / 1 \ 3 / 3 / 2 \ 0

That is, a brane diagram is a certain configuration of horizontal black lines with integral labels

and between each adjacent pair of horizontal lines there is a red or a blue line. As explained
in detail in [RR23], Section 2.4], these brane diagrams are motivated from theoretical physics
and arise from brane projections from R x R3 x R? to the plane, but in this thesis we just
consider them as combinatorial data.

The construction of bow varieties goes in three steps:

D AMNAN Qp ANAY M(D) MANy C(D)

In the first step one assigns to a brane diagram D a specific quiver Qp with dimension vector.

If for instance D is as above, (p is as follows:
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—~ 0

O AT A A A
WV WV

To @p, one assigns an affine moduli space M (D) of quiver representations. It is endowed
with a holomorphic symplectic structure. The bow variety C(D) is finally obtained as a GIT
quotient from M (D) via hamiltonian reduction, see Definition m

The explicit construction of C(D) gives that this variety satisfies many convenient prop-
erties, some of which we explain in Section In particular, C(D) is smooth and inherits
a holomorphic symplectic structure from M (D). A further important tool will be explained
in Proposition namely the action of a torus T = A x Cj on C(D) which was introduced
in [NT17, Section 6]. The construction of this T-action is such that the A-action leaves the
symplectic form on C(D) invariant whereas the Cj-action scales the symplectic form.

Chapter [3] is then devoted to the study of the T-fixed points of bow varieties. First, we
recall the classification theorem of T-fixed points from [Nak18| Theorem A.5] via the language
of tie diagrams from [RS20], [Sho21]. These tie diagrams are extensions of brane diagrams
by adding ties between the colored lines in a specific way. The incidence matrices of these tie
diagrams are the matrices with entries in {0, 1} with fixed row and column sums depending
on the brane diagram D which were mentioned already above. From a tie diagram, one can
read off an explicit representation of the quiver @p which yields a T-fixed point of C(D). The
Classification Theorem (Theorem then states that this construction gives a bijection

{Tie diagrams of D} +— C(D)".

As an outcome of Section this explicit T-fixed point combinatorics makes explicit com-
putations in the T-equivariant cohomology of C(D) possible.

Hereafter, we follow [Nakl8, Theorem A.5] to prove the Generic Cocharacter Theorem
(Theorem |3.23)) which improves the Classification Theorem of T-fixed points. This theorem
states that that the T-fixed locus of C(D) coincides with the C*-fixed locus which is induced

by a generic cocharacter of A.

Part 2: stable envelopes for bow varieties

In the second part of the thesis, we redevelop the theory of stable envelopes from [MO19] in
the setup of bow varieties with the focus on a more direct treatment. The theory of stable
envelopes builds on the theory of attracting cells. In Chapter [ we give a self-contained
introduction to attracting cells for bow varieties following [MO19, Chapter 3]. The classical
Biatynicki-Birula decomposition, see [BB73|, gives that the attracting cells of T-fixed points
with respect to generic cocharacters of A are affine and locally closed subvarieties of C(D).
Their closures are then (possibly singular) lagrangian subvarieties of C(D). As in classical
Schubert calculus, the closure relation defines a partial order < on C(D)", see Section 4.1/ and
Section for precise statements. We lay out the theory and illustrate it with examples.

8



1.3. Structure of the thesis

In Section we compare attracting cells of a generic cocharacter ¢ of A with the
attracting cells of the opposite cocharacter c~!. A crucial result is Theorem which
states that the intersection on attracting cells corresponding to opposite cocharacters is always
proper. A further useful result is Theorem [4.23] which states that the attracting cells of o
and o~ ! induce opposite partial orders on C(D)*. We prove Theorem using a smooth
compactification of C(D).

In Chapter [5] we come to some of the main actors in this thesis: The stable envelopes. In
Theorem [5.10] we give a self-contained reproof of the existence and uniqueness of stable en-
velopes from [MO19, Chapter 3] in the case of bow varieties. The uniqueness proof is a direct
application of the defining conditions of stable envelopes and torus equivariant intersection
theory. The existence proof is based on a result which gives that the A-equivariant multi-
plicities of lagrangian subvarieties at a T-fixed point p € C(D)T are uniquely determined (up
to a factor in Z) by the tangent weights at p, see Theorem We refer to this theorem as
Langrangian Multiplicity Theorem. Its proof is based on the deformation to the tangent cone
construction due to Fulton [Ful84] and on further deformation results for conical lagrangian
subvarieties of symplectic vector spaces which we state in Proposition [5.29

In particular, the proof of the existence of stable envelopes yields an algorithm to compute
stable basis elements as Z-linear combinations of the T-equivariant cohomology classes of
attracting cell closures, see Corollary In Section [5.6]and in Chapter [6] we then compute
several stable basis elements using this algorithm.

A convenient consequence of the uniqueness property of stable envelopes is that they are
compatible with Hanany-Witten isomorphisms, i.e. if ®: C(D) = C(D) is a Hanany-Witten
isomorphism then the induced isomorphism H:(C(D)) = H%(C(D)) maps the stable basis
clements of C(D) to the stable basis elements of C(D), see Proposition

In Chapter [7] we study properties of stable basis elements with respect to the virtual
intersection pairing on Hf(C(D)). As bow varieties are quasi-projective varieties, their torus
equivariant cohomologoy is endowed with a virtual intersection pairing which mimics the

Atiya—Bott—Berline—Vergne integration formula for projective varieties:

(-, Jvie: HF(C(D)) x HF(C(D)) —— ST Hi(pt), (o, B)ir= %-
pec@)r TP

Here, er(T,C(D)) is the T-equivariant Euler class of the tangent space T,C(D) and S is the
multiplicative set generated by all tangent weights of torus fixed points of C(D).
An important result is the following Polynomiality Theorem (Theorem :

Theorem B (Polynomiality). The virtual intersection pairings of the form
(v - Staby (p), Stab,-1(q))vie, p, ¢ € C(D)Y, a € HE(C(D))
are all contained in the non-localized equivariant cohomology ring Hi(pt).

In other words, this theorem states that (a-Stabs(p), Stab,-1(q))vir is always a polynomial
in their equivariant parameters which motivates the name Polynomiality Theorem. Its proof

involves the properness statement from Theorem [4.24



1. INTRODUCTION

We finish Chapter [7] by giving a self-contained reproof of the Orthogonality Theorem
(Theorem [7.8) from [MO19, Theorem 4.4.1]. This theorem states that stable basis elements
corresponding to inverse cocharacters are orthogonal with respect to the virtual intersection

pairing:

Theorem C (Orthogonality). For all p, ¢ € C(D)", we have

1 ifp=g,
0 ifp#gq.

(Stab,(p), Stab,-1(q))vir =

This orthogonality property is again analogous to the orthogonality of opposite Schubert

classes in (equivariant) Schubert calculus, see e.g. [Ful97].

Part 3: equivariant multiplicities of stable basis elements

By the Localization Theorem, the equivariant multiplicities of T-equivariant cohomology
classes in Hy.(C(D)) at the T-fixed points carry important information. We therefore deal in

the third part of this thesis with the central question:
How can we compute equivariant multiplicities of stable basis elements of bow varieties?

The compatibility of stable envelopes with Hanany—Witten isomorphisms yields that we can
restrict our attention to separated brane diagrams, these are brane diagrams of the shape
//--.// \\...\\. As explained in Section the quiver representations defining points
of bow varieties corresponding to separated brane diagrams satisfy useful nilpotency and
surjectivity properties. These properties simplify the description of the points on these bow
varieties and also calculations in the equivariant cohomology rings.

In Chapter [§] we study local moves on separated brane diagrams of the form

We refer to the left move above as red extension move, whereas the right move is called blue
extension move. The goal of Chapter [§|is to compare the stable basis elements of the bow
varieties corresponding to red and blue extension moves respectively. This should be com-
pared with [BR23| Section 5.10], where similar questions were considered in the framework
of elliptic cohomology.

If D’ is obtained from a brane diagram D by a red extension move, we show in Proposi-
tion [8.3| that the bow varieties C(D) and C(D’) are torus equivariantly isomorphic and hence
the stable basis elements of C(D) and C(D’) coincide.

On the other hand, in the case where D’ is obtained from D by a blue extension move,
the bow varieties C(D) and C(D’) are in general not isomorphic, see Lemma However,
we prove in Theorem that there is still a closed embedding C(D) < C(D’). Using this
embedding we then prove in Theorem the following crucial result:

Theorem D. The equivariant multiplicities of stable basis elements of C(D) and C(D') co-

incide up to multiplication by a uniform constant factor.
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1.3. Structure of the thesis

For the proof of this theorem, we introduce a certain comparison cocharacter of the torus
T" acting on C(D’). The corresponding C*-fixed locus X is contained in the subvariety C(D).
The proof is then based on a comparison of the attracting cells of Xg, C(D) and C(D’).

Chapter [J] connects back to the classical setting and deals with relations between stable
basis elements of bow varieties and stable basis elements of cotangent bundles of partial flag
varieties. We begin with recalling the localization formula from [Sul7] which expresses equiv-
ariant multiplicities of stable basis elements of cotangent bundles of partial flag varieties via
combinatorics of symmetric groups. In Proposition [9.13] we give an equivalent reformulation
of this formula in terms of string diagrams which gives an illustrative approach to and a
diagrammatic version of this formula.

Hereafter, we study a bijection between the T-fixed points of bow varieties and certain
double cosets of symmetric groups with respect to Young subgroups which we call fully sepa-
rated. As we will show in Section [0.5] fully separated double cosets satisfy strong uniqueness
properties which distinguish them from usual double cosets. One important result that will
turn out to be crucial in the proof of the Chevalley-Monk formula for bow varieties in the

fourth part is Theorem [9.35 which states the following:

Theorem E. Let X\, p be partitions of n and Sy, S, C S, be the corresponding Young
subgroups. Let w € S,, such that S\xwS,, is fully separated. Given u, u' € Sy and v, v' € S,

with uvwv = vw'wv’, then we have u = u' and v ="10'.

In particular, as we will discuss in Section this theorem simplifies computations in
the context of the diagrammatic localization formula from Proposition [9.13

We finish Chapter [9] by combining this symmetric group calculus for bow varieties with
the D5 Resolution Theorem of Botta and Rimanyi [BR23, Theorem 6.13]. In this way, we
derive in Theorem a formula which determines the equivariant multiplicities ¢} (Stab,(p))
of stable basis elements of bow varieties in terms of equivariant multiplicities ¢7(Stabs(p)) of

stable basis elements of cotangent bundles of partial flag varieties:

Theorem F. Given a bow variety C(D), then there exists a partial flag variety F together

with an inclusion of torus fized points
C(D)' — (T*F)™, prr
such that we have for all p, ¢ € C(D)":
Pp - 14(Stabs (p)) = W(15(Stabs(p))),

for some constant factor Pp € Hj(pt) depending only on D. Here, ¢ is a cocharacter of T
depending on o and V: H}. -.(pt) = Hp(pt) is a substitution homomorphism.

As an application of this result and Proposition [9.13] we prove diagrammatic approxima-
tion formulas of stable basis elements of bow varieties in Proposition [9.50] These formulas

allow to diagrammatically compute equivariant multiplicities modulo powers of the parameter
h.

11
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Part 4: Chevalley—Monk formula for bow varieties

The last part of this thesis is devoted to the Chevalley-Monk formula for bow varieties
(Theorem . The proof of this formula combines several different results that appeared
in the previous chapters. First, we use the Orthogonality Theorem [C] to deduce that the
coefficients appearing in the stable envelope basis expansion of the products cj (£x) - Stab, (p)

can be determined via virtual intersection pairings of the form

(c1 (éx) - Stabg(p), Stab,-1(q))vie, P, ¢ € C(D)". (1.5)

Then, using a degree argument, we deduce from the Polynomiality Theorem [B|that it suffices
to compute these virtual intersection pairings modulo h?, where h is the equivariant parameter
corresponding to the torus action which scales the symplectic form on C(D). Via Theorem @
and Theorem [F] we then prove in Theorem the following divisibility result:

Theorem G. Let p, ¢ € C(D)" with corresponding matrices M, and M,. Suppose p # q and
that My is not obtained from M, via a simple move. Then, v%(Stabg(p)) is divisible by h?.

This result gives that (1.5]) vanishes if p # ¢ and M, is not obtained from M), via a simple
move. The remaining cases, i.e. p = g or M, is obtained from M, via a simple move, are then
covered in Theorem [10.15| which states the following:

Theorem H. For all p, q € C(D)", we have
t*(ef (€x)) ifp=aq
(c1 (£x) - Staby (p), Staby-1(g))vir = 4 sen(M,, My)h if M, € SMy, x,

0 otherwise.

The main tools in the proof of Theorem [H]are the uniqueness properties of fully separated

double cosets from Theorem [E] and the approximation formulas resulting from Theorem [F}

Parts of this thesis are already submitted and available as preprint versions:
1. [Weh23], ArXiv number: 2310.11235,

2. [SW23], ArXiv number: 2312.03144.

Conventions

If not stated otherwise, all varieties and vector spaces in this thesis are over C. Varieties are
not necessarily irreducible. If y € Y is a smooth point of a variety Y, we denote by T,V
the tangent space of Y at y. If V is a finite dimensional C*-representation, we denote the

corresponding weight space decomposition as

V=@@Vi Va={veV|tv=t"forallteC}
a€Z
We denote the weight spaces of positive, negative, non-negative and non-positive weights as

Vi=PV., VvV =PV.. V=PV, V'=PV..

a>0 a<0 a>0 a<0
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1.3. Structure of the thesis

We also denote by V the subspace of T-fixed vectors of V. If T = (C*)" is a torus and
X1, x2: T — C* are characters of T'; we denote their product

Tt a(xe()

with the sum notation x1 + x2.
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Chapter 2

Geometry of bow varieties

In this chapter, we give a self-contained introduction to bow varieties and their geometric
properties based in particularly on [NT17]. We begin with recalling fundamental ingredients
of the theory of geometric invariant theory (short GIT) with special emphasis on the char-
acterizations of stability and semistability conditions. Then, we construct bow varieties as
GIT quotients of certain moduli spaces of quiver representations using hamiltonian reduction
following [NT17 Section 2]. To describe the underlying combinatorics, we use the language

of brane diagrams and brane combinatorics from [RS20), Section 2.

The construction of bow varieties implies that these varieties are equipped with many
desirable features: They are smooth, quasi-projective and admit a holomorphic symplectic
form. They come with a torus action which scales this symplectic form and moreover they

also come family of torus equivariant tautological vector bundles.

The combinatorics of brane diagrams is in particular used to describe Hanany-Witten
transitions between different brane diagrams. These transition moves provide isomorphisms

between related bow varieties of these brane diagrams.

We close this chapter with a detailed exposition of the realization of cotangent bundles
of partial flag varieties as bow varieties which form an important family of examples of bow

varieties.

2.1 Reminders on GIT quotients

In this section, we recall the definition of GIT quotients and some of their most important
geometric properties. For more details on this subject, see [MFK94] as well as the expository
works [Muk03] and [New(9]. For the convenience of the reader, we give proofs of many of
the presented results.

We begin with fixing some notation: Let X be an affine variety with coordinate ring O(X).
Let G be a reductive group acting on X with action map G x X — X, (g,z) — g.xz. We
denote the algebra of G-invariants of O(X) by O(X)% and let X/G = Spec(O(X)%) be the
corresponding categorical quotient. Recall that due to a theorem of Hilbert (see e.g. [Muk03,
Theorem 4.51]), X//G is an affine variety.
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2. GEOMETRY OF BOW VARIETIES

Definition and basic properties

GIT quotients are defined as projective spectra of algebras of semi-invariants. These are
defined as follows: For a rational character x: G — C*, the Ny-graded algebra of semi-
invariants of O(X) is defined as

O(X)y =P O(X)yn,

where O(X)y» = {f € O(X) | f(g.x) = x(9)"f(z), for all x € X, g € G}. Note that the
degree 0 piece of O(X), is given as O(X),0 = O(X)“.

The algebra O(X), can also be interpreted as algebra of invariants on the variety X =
X x C. For this, we extend the G-action to X via

g-(z,2) = (9.2, X" (9)2)- (2.1)
Then, there is an isomorphism of C-algebras
O(X)y —— O0(X), [ ], (2.2)

where f(x,z) = f(x)z", for all (z,2) € X. As O(X)C is a finitely generated C-algebra, so is
O(X)x-

Definition 2.1. The GIT quotient X/, G is defined as the scheme
X/yG = Proj(O(X)y).

Since O(X), is a reduced algebra, we conclude that X/, G is also a reduced scheme.

Moreover, the construction of X/, G as projective spectrum yields the following:
Proposition 2.2. The following holds:
(i) The scheme X /G is a quasi-projective variety.

(i) The morphism 7 : X, G — X G induced by the inclusion O(X)¢ — O(X), is pro-

jective.

Proof. Let ai,...,a, be homogeneous generators of O(X), over O(X)Y, where we denote
the degree of a; by |a;|. Let B := Clzy,...,z,] be the graded polynomial algebra, where z;
is homogeneous of degree |a;|. The algebra homomorphism B — O(X), given by x; — a;

induces a closed immersion

X/)yG — XJ/G x Proj(B).

By e.g. [BR86, Theorem 4.B7], the weighted projective space Proj(B) admits a closed im-

mersion Proj(B) — PV, for some N > 0. Thus, we obtain a closed immersion
v XJ\G — X)JG x PV,

Thus, X/, G is a quasi-projective variety. Let pr: X/G x PV — X//G be the projection to

the first factor. Then, pr o « = m which proves that the morphism 7 is projective. O
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2.1. Reminders on GIT quotients

Stable and semistable points

Next, we recall the notion of y-(semi)stable points of X and how they characterize the
geometric points of the GIT quotient X/, G from [MFK94] and in particular in the version
of [Kin94].

Definition 2.3. Let z € X.

(i) We call z x-semistable if there exist n > 1 and f € O(X)y» such that x € D(f), where
D(f) ={z e X | f(z) # 0}.

(ii) We call = x-stable if there exist n > 1 and f € O(X),» such that

(a) =€ D(f),
(b) the action G x D(f) — D(f) is a closed morphism and

(c) the isotropy group G, is finite.

We write X®° resp. X*® for the subset of y-semistable resp. y-stable points of X. By
construction, X is an open subset of X. By the upper-semicontinuity of fiber dimensions,
see e.g. [Mum88, Corollary 1.8.3], the sets

{r € X | dim(Gz) <n}, forn>0

are open in X. In particular, the subset of all points in X with 0-dimensional isotropy group
is open in X. Thus, we conclude that X*® is also an open subset of X.

There are several equivalent definitions for x-semistability resp. y-stability. For instance,
by [MEFK94, Amplification 1.11 and Lemma 0.3], the x-stability condition can be reformulated

as follows:

Lemma 2.4. For a x-semistable point x € X the following are equivalent:
(i) x is x-stable,
(ii) the isotropy group G, is finite and the orbit G.x is closed in X,

(iii) the orbit morphism a,: G — X5, g — g.x is proper.

In addition, King introduced the following topological criteria for x-(semi)stability [Kin94,

Lemma 2.2]:

Proposition 2.5 (King’s stability). As above, let X = X x C with the G-action from (2.1)).
Let x € X and z € C\ {0}.

(i) The point x is x-semistable if and only if the orbit closure G.(x,z) does not intersect
X x {0}.

(i) The point © € X is x-stable if and only if the orbit G.(x,z) is closed in X and the
isotropy group G, ;) is finite for all z # 0.
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2. GEOMETRY OF BOW VARIETIES

Proof. For suppose that x is x-semistable. Thus, there exist n > 1 and f € O(X),» such
that f(z) # 0. Let f € O(X)C be the G-invariant regular function on X associated to f from
(2-2). Then, f vanishes on X x {0} and equals 2" f(z) on G.(x,z). Thus, G.(z,z) does not
intersect X x {0}. Conversely, if G.(z,z) and X x {0} are disjoint then, as G is reductive,
there exists h € O(X)C such that h vanishes on X x {0} and h equals 1 on G.(z,z). By
22, h(y,w) = 3,150 hn(y)w™, for all (y,w) € X, where h, € O(X)yn, for all n > 0. As h
vanishes on X x {0}7, we have hg = 0. Thus there exists m > 0 such that hy,(z) # 0 which
proves that z is y-semistable. For we begin with the following:

Observation 2.6. Let z € X%, n > 1 and f € O(X)y» with z € D(f). We set

Zr ={(y,w) € X | f(y,w) = f(x)z"}.

By definition, Z¢ is a G-invariant closed subvariety of X containing (x,z). Let pr: Zy = X
be the projection to the first factor. Then, the image of pr is contained in D(f) and pr: Zy —
D(f) is a finite G-equivariant morphism. Thus, as properness is a property which is local
on target, we deduce that the orbit morphism a,: G — X*, g — g.x is proper if and only if
Uz,z): G — X, g~ g.(z,z) is proper.

Now, assume that z is y-stable. Then, by Lemma [2.4}(iii), a, is proper. Hence, by
Observation also a(, .y is proper. Therefore, the orbit G.(z,z) is closed in X. By
definition, the stabilizer G, .y equals the preimage a&{z)(x, z). As Q(z,) 1S @ proper morphism,
we conclude that G, . is proper over C. Since G is affine and G, .) is a closed subvariety of
G, we conclude that also G, .) is affine. Hence, G, .y must be finite. Conversely, assume that
G.(7, z) is closed in X and the isotropy group G|, ) is finite. Since X x {0} does not intersect
G.(z, z), we know by [(i)| that z is x-semistable. Let f, Z; and pr be as in Observation
Since pr(G.(z, z)) = G.x and pr is finite, we know that dim(G.(z, z)) = dim(G.x) which gives
dim(G,,-)) = dim(G). Thus, G, is finite. Moreover, the finiteness of pr implies that G.z is
closed in D(f). As this is true for all n > 1 and f € O(X)y» with & € D(f), we conclude
that G.z is closed in X®. Hence, by Lemma this proves that = is x-stable. O

Via Observation and Lemma [2.4]l(iii)] we immediately obtain a further equivalent
definition of x-stability:

Corollary 2.7. With the assumptions of Proposition[2.5, a x-semistable point x € X is
x-stable if and only if the orbit morphism a(, .y: G — X is proper.

After this discussion about equivalent definitions of x-(semi)stability, we now come to the
geometric points of the GIT quotient X/, G. They are characterized by the x-(semi)stable
points of X as follows: For a semi-invariant function f € O(X)yn, let Do (f) C X/, G be the

corresponding principal open subset. That is,
a
D, (f) = Spec(Oy(5)), where O, (y) = {F |7>0,a€ (’)Xm}.

By construction, we have an obvious identification O, (y) = O(D(f ))¢ and hence an isomor-
phism of schemes D(f)/G = D,(f). The canonical quotient morphisms D(f) — Di(f)
glue to a morphism F: X* — X/, G. Then, we have the following theorem, see [MFK94,
Theorem 1.10]:
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2.1. Reminders on GIT quotients

Theorem 2.8 (GIT-Theorem). The following holds:
(i) The morphism F: X% — X/, G is a categorical quotient and surjective.

(ii) Given z, y € X, we have F(x) = F(y) if and only if the orbit closures G.x and G.y
in X intersect non-trivially in X, i.e. G.x N G.y N X £ ().

(1it) Let U = F(X?®). Then, U C X//,G is an open subvariety and the morphism of varieties

Fixs: X® = U is a geometric quotient. In particular, F' induces a bijection

{G-orbits in X5} X1 {Points of U}.

Mumford’s Numerical Criterion

Mumford introduced a numerical criterion for x-(semi)stability [MEK94, Chapter 2] which
proved to be very practical in explicit computations. Our formulation of this criterion is
following [Kin94l, Proposition 2.6].

Recall that a one-parameter subgroup of G is an algebraic cocharacter A: C* — G. Let
(A, x) be the unique integer such that y(\(t)) = tX) for all t € C*. For a given point
x € X, we say that the limit lim;_,o A(t).x exists in X if and only if the morphism C* — X,
t — A(t).z extends to a morphism C — X.

Theorem 2.9 (Mumford’s Numerical Criterion). A point x € X is x-semistable (resp. x-
stable) if and only if for all non-trivial one-parameter subgroups \ such that lim;_,o A(t).x
exists in X, we have (X, x) >0 (resp. (A, x) > 0).

Mumford’s Numerical Criterion can be proved using the following three auxiliary state-
ments. The first one states that one-parameter subgroups detect points on the boundary of
orbits, see [Kem78, Theorem 1.4]:

Lemma 2.10. Let z € X and Y C X be a closed and G-invariant subvariety such that
Y NGz # (0. Then, there exist y € Y and a one-parameter subgroup A of G such that
lim 0 A(t).z = y.

The second auxiliary statement states that properness orbit morphisms can be detected
via the non-trivial one-parameter subgroups of G, see [MEK94, Step (i) in proof of Theo-

rem 2.1]:

Lemma 2.11. Suppose G acts linearly on C" and let x € C"\{0}. Then, the orbit morphism
G — C", g — g.x is not proper if and only if for some non-trivial one-parameter subgroup A
of G, the limit limy_,o \(t).x exists in C".

Proof of Theorem[2.9. Suppose x is x-semistable and A is a one-parameter subgroup of G
such that limy_0 A\(¢).z exists in X. Let xp € X be this limit and fix some z € C with

z # 0. If (A\,x) < 0 then lim;_,o A(¢).(z,2) = (20,0) and hence G.(x, z) intersects X x {0}
non-trivially. By Proposition [2.5]|(1), this contradicts the x-semistability of . Thus, we have

(A, x) > 0. Conversely, if z is not y-semistable then G.(z, z) intersects X x {0}. Hence, by
Lemma there exists a one-parameter subgroup A of G such that lim; 0 A(¢).(x, 2) is
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2. GEOMETRY OF BOW VARIETIES

contained in X x {0}. This is equivalent to the conditions that lim; o A(f).x exists in X and
(A, x) < 0. Now, we prove the statement about stability. To apply Lemma recall from
e.g. |[Bril8, Proposition 2.2.5] that there exists a G-equivariant closed immersion X — W
into a finite-dimensional G-representation W. By Corollary a y-semistable point x is
not x-stable if and only if the orbit morphism a,.: G — X, g g.(x, z) is not proper. By
Lemma this is equivalent to the condition that there exists a non-trivial one-parameter
subgroup A of G such that lim;_, A().(z, z) exists in X. This is equivalent to lim;_,o A(t).z
exists in X and (A, x) > 0 which completes the proof. O

In the following example, we apply Mumford’s Numerical Criterion to explicitly determine

X-(semi)stable points.

Example 2.12. Let X = C? where we denote the canonical basis vectors by e, ez, e3. We
equip X with the G = (C* x C*)-action

(tl, tg).(alel + age9 + 0363) = t%alel + t1toases + t%a3€3.
Let x: G — C*, (t1,t2) — t1t2. The non-trivial one-parameter subgroups of G are
Mopoy 1 €= G, t 72, (b1,by) € Z°\ {(0,0)}.

The following table records for which x € X and parameters by, by the limit lim;_o Xy, 4, (¢).¢

exists in X:
Coordinates of Parameters by, by such that the limit
T = aje] + azes + ases limy—s0 Ap, b, (). exists in X
ai,az #0 b1, b >0

a1 #0,a3 =0 by >0,b1+b2>0
a3 #0,a;1 =0 b >0,b1+b22>0

ai,a3 =0, a9 #0 b1 +b2 >0

a1 =as=a3 =0 b1, bo arbitrary

From this, we deduce that if lim;_o Ay, p, (t).z exists in X then (Ay, p,, x) > 0 if and only
if x # 0. Thus, Mumford’s Numerical Criterion implies that the x-semistable locus of X
equals X \ {0}. Likewise, the above table gives that if lim;_,o Ay, p,(t).2 exists in X then
(Aby bys X) > 0 if and only if x is of the form = = aje; + ases + azes with a1, ag #
0. Thus, by Mumford’s Numerical Criterion, the x-stable locus of X equals {z € X |
x = aje; + ages + ages with aq, az # 0}.

Compatibility with algebraic group actions

Suppose X is endowed with a further action of an affine algebraic group H that commutes
with the G-action. As the pullback O(X) — O(H) ® O(X) restricts to a morphism on the
G-invariants O(X)% — O(H) ® O(X)%, we obtain an H-action on the categorical quotient
X//G. This H-action on X//G is the unique H-action such that the quotient morphism
X — X//G is H-equivariant.

We now use the characterization of the GIT quotient X/, G from Theorem to show
that also X/, G inherits an H-action:
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2.1. Reminders on GIT quotients

Proposition 2.13. There exists a unique H-action on X//yG such that the quotient mor-
phism F: X% — X/, G from Theorem 1s H-equivariant. Moreover, the projection mor-
phism 7: X/),G — X /|G is H-equivariant.

Proof. Let a: H x X — X be the action morphism. As the G- and H-action commute, we
have foh € O(X)yn, for all semi-invariants f € O(X),» and h € H. Thus, X* is invariant
under the H-action. For f € O(X),n, we denote by ay: H x D(f) — X the restriction of
a to H x D(f). Since the composition Foas: H x D(f) = X% — X/, G is G-invariant,
there exists a unique a morphism a;: H x D(f)/G — X /G such that the following diagram

commutes:

H x D(f) —— H x D(f))G

afi laff (2.3)

xs —-F ., Xx)G

Given a further semi-invariant function f’ € O(X)_,/, we have commutative diagrams:

X
H > D(f) H x D(f') HxD(f))G H > D(f'))G
N\ HxDUF) ) \ HxDUMIG |,
f f af . af’
Jaff/ Jaff,
X'ss X//XG

Note that the commutativity of the left diagram implies the commutativity of the right
diagram. We conclude that the morphisms a’f glue to a morphism a': H x X/, G — X/, G.
The morphism o’ defines an H-action on X/, G since identity and associativity conditions
for a’ follow from the respective conditions for a. By , the quotient morphism F' is
H-equivariant. Since F is surjective, a’ is the unique H-action on X/, G such that F is
H-equivariant. To see that 7 is H-equivariant, note that for all h € H and f € O(X)y», the

following diagram commutes:

O(X)¢ —— O(D(f))¢

|+ [

O(X)¢ — O(D(f o h))¢

Therefore, 7 is compatible with the action of A which implies that 7 is H-equivariant. O

Compatibility with Poisson structures

We now restrict our attention to GIT quotients associated to symplectic varieties and consider
the hamiltonian reduction mechanism from symplectic geometry in the framework of algebraic
geometry. In particular, we show that GIT quotients of vanishing loci of moment maps always
inherit a Poisson bracket. For more details on symplectic forms in algebraic geometry, see
e.g. [CGI7, Chapter 1] and [Kirl6, Chapter 9].
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2. GEOMETRY OF BOW VARIETIES

Let Y be a smooth and affine variety with algebraic G-action. We further assume that Y
admits an algebraic and G-invariant symplectic form w. Let f be a regular function on U.
We denote by X the corresponding hamiltonian vector field of f, i.e. Xy is the unique vector
field on Y such that w(-, X¢) = df. The G-invariant symplectic form w induces a G-invariant

Poisson bracket on {.,.} on Y via

{f:9) =w(Xg, Xp), [ g€ OY).

Let g be the Lie algebra of G and g* the dual Lie algebra of g. Then, G-acts on g via the

adjoint action and on g* via the coadjoint action. Let

(50:9"xg—C, (f,9)— f(9)

be the evaluation pairing. A G-equivariant morphism of varieties m: Y — g* is called a

moment map for the G-action on Y if
dH; =w(g,-), forallgeg. (2.4)

Here, H; := (m(-),g) and g is the vector field generated by g. The moment map condi-
tion ([2.4)) is equivalent to

{Hy, f} = —df(§), forall g€ g, f€O(Y). (2.5)

In the following, we show that GIT quotients of X := m~!(0) always inherit a Poisson

bracket from Y. First, we consider the categorical quotient
X /G = Spec((O(Y) /1)),

where I is the ideal generated by all Hy, for g € g. For f € O(Y'), we denote by [f] its residue
class in O(Y)/I.

Proposition 2.14. There exists a unique Poisson bracket {.,.} on X)/G such that

{F1L L1 = [ £, forall [£], [f] € (O(Y)/T)C. (2.6)

We begin with the following auxiliary statement:
Lemma 2.15. Let f € O(Y) such that [f] € (O(Y)/I)¢. Then, we have {f, I} C I.

Proof. 1t suffices to show df (§) = {f, Hy} € I, for all g € g. Recall from e.g. [Bril8, Proposi-
tion 2.2.5] that we can choose a G-equivariant embedding Y < W into a finite dimensional
G-representation W. Hence, there exists a finite dimensional G-subrepresentation V-C O(Y')
containing f and df(g). We equip V with the usual euclidean topology. For t € C*, set
F; = t7Y(f — f oexp(tg)). Then, F; € V and F; converges pointwise to df(§) for t — 0.
Hence, we also have lim;,o F; = df(g) in the equclidean topology on V. Note that I NV
is a subvector space of V and hence I NV is closed in V. Since [f] € (O(Y)/I)Y, we have
F, e VN1, for all t. Thus, also df(g) € V NI which completes the proof. O
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Proof of Proposition[2.14 By Lemma {.,.} is a well-defined regular function on X.
For all g € G and [f],[f'] € (O(Y)/I)€, we have

g ALY =g 1Y =Ag-fo 08 = {3+ {50} + {0 '} + {h, 1},

for some h, b’ € I. Thus, Lemma implies that {[f],[f’]} is G-invariant and hence
{.,.} indeed takes values in (O(Y)/I)®. The Poisson bracket conditions for {.,.}’ follow

immediately from the Poisson bracket conditions for {.,.}. O

Next, we generalize Proposition to GIT quotients. For this, note that if x is a
rational character of G, f € O(X),n a semi-invariant function and f € O(Y) a lift of f then
Proposition [2.14] gives that there is a unique Poisson bracket {.,.}’ on D(f)/G such that

{[n, [0} = [{h, 1'}],  for all [n], [W'] € (O(D(f)/D)°. (2.7)

Proposition 2.16. The GIT quotient X /G admits a unique Poisson bracket {., .} such that
for all semi-invariant functions f € O(X)yn, the restriction of {.,.}' to D(f)/G coincides

with ([2.7)).

Proof. Given semi-invariants f € O(X),» and f' € O(X )x"/ then, by (2.7]), the restrictions of
the Poisson structure from D(f)/G and D(f")//G to D(ff')/G coincide. Hence, the locally
defined Poisson brackets from ([2.7) glue to a global Poisson bracket on X/, G. O

We close this section with the following algebro-geometric version of the Marsden—Wein-
stein Theorem which gives sufficient conditions under which the Poisson bracket on X/, G is
non-degenerated. For more details on the Marsden—Weinstein in the context of symplectic

geometry, see e.g. [AMT78], Chapter 4].

Theorem 2.17 (Marsden—Weinstein Theorem). Suppose that X*° is a smooth variety of
dimension dim(Y') — dim(G) and that the quotient morphism 7: X% — X/, G is a principal
G-bundle (in the Zariski topology). Then, X /G admits a unique algebraic symplectic form
W' such that

W = fw, (2.8)

where 1: X®® < Y s the inclusion. The Poisson bracket corresponding to w' coincides with
the Poisson bracket {.,.}’ from Proposition[2.16

Proof. Since m: X*® — X/, G is a principal G-bundle, we have a short exact sequence of

G-equivariant vector bundles
0= X% x g -2 TX* 25 2*T(X ), G) — 0.

Here, a maps (z,g) to (x,g,). By construction, im(a,) = T,G.z, for all x € X%. Let
“T,G.x denote the orthogonal complement of T,G.x in T,Y with respect to w,. By (2.4)),
T, X% = ker(dym) C “T,G.x. Thus, t*w induces an algebraic bilinear form & on 7*7T(X /,G).

Since w is G-invariant, there exists an algebraic bilinear form w’ on T'(X/,G) such that
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2. GEOMETRY OF BOW VARIETIES

7w’ = £. Thus, o’ satisfies (2.8)). It is left to show that ' is indeed a symplectic form. By
construction, for z € X%, the bilinear form w’ (@) O Tr(a) (X)\G) = T, X*/T,G.x is given as

w;(x)([v}, [w]) = w(v,w), v,weTX>. (2.9)

Since for all x € X*, we have T, X% C “T,G.r and both vector spaces are of dimension
dim(Y) — dim(G), we have T, X% = “T,G.z. This implies “T, X = T,,G.z. Therefore, (2.9)
gives that w’ is non-degenerated. So it is left to show that w’ is closed. By naturality of the

exterior derivative, we have the following equality in ©3(X5):
mfdw’ = dr*w = difw = fw = 0. (2.10)

Here, '(X*%) denotes the sheaf of i-forms on X®. Since 7 is a principal G-bundle, we
conclude that 7*: Q3(X/,G) — Q3(X™) is injective. Thus, gives dw’ = 0. Therefore,
w' is an algebraic symplectic form on X/, G. Finally, implies that the Poisson bracket
of w' coincides with the Poisson bracket {.,.}’ from Proposition [2.16] O

Remark. 1If for all x € X* the differential dym: T, X — T,,,;)g" is surjective then the
Regular Value Theorem implies that X*° is a smooth variety of dimension dim(Y") — dim(G).
In particular, with this assumption the dimension condition from Theorem is always
satisfied.

2.2 Triangle parts

Triangle parts are symplectic varieties that are essential building blocks in the construction of
bow varieties. They emerged from the representation theory of chainsaw quivers, see [NT17]
and the references therein. In this section we recall the definition and fundamental properties
of triangle parts following [Tak16l, Section 2] and [NT17, Sections 3 and 5.

Geometry of triangle parts

Fix finite dimensional vector spaces V; and Vs and set my := dim(V}) and mg = dim(V3).
Let G = GL(V1) x GL(V2) and g = End(V7) @ End(V2) be the corresponding Lie algebra,
where the Lie bracket is given by the commutator bracket [A, B] = AB — BA on End(1}),
End(V2). As usual, G acts on g via base change: (g1,92)(B1, B2) = (nglgl_l,gnggZ_I).

We define the vector space
Ny, v, == Hom(V3, V1) @ End(V1) @ End(V2) @ Hom(C, V1) & Hom(V», C). (2.11)

The elements of Ny, y, are tuples (A, By, By, a, b) of linear maps as illustrated in the diagram:

By Bo

(3 (2

Nt

N A
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2.2. Triangle parts

Then, G acts on Ny, y, via
(91,92)-(A, B1, By,a,b) = (91493 ", 91B1gy ' 92Bagy ' g1, bgy ).
This G-action induces also an action of the Lie algebra g on Ny; y;:
(v1,72)-(4, B1, B2, a,b) = (1A — Ay2,71B1 — Bimi, 72 B2 — Baye, ma, —by2).

Definition 2.18. The triangle part tri(Vy, Va) is defined as the §-semistable locus of x=1(0),
that is {x € u~1(0) | x is f-semistable}, where

12 NVl,VQ —>H0m(‘/2,‘/1)? (A7B17B27aab) HBlA_ABQ_Fab (212)
and

det(g1)
det(g2)

Note that, by definition, tri(V1,V2) is a locally closed G-invariant subvariety of Ny, vs.

0:G— C*, (g91,92) —~

We like to employ Mumford’s Numerical Criterion to characterize the #-semistable points
v = (A, B1,Ba,a,b) of p~(0). For this, we introduce the following subspace conditions,
see [Tak16, Section 2]:

(S1) If S C Vi is a subspace with By(S) C S, A(S) =0, b(S) =0 then S = 0.
(S2) If T C V; is a subspace with B1(T) C T, im(A) 4+ im(a) C T then T' = Vj.

Property |(S1)|is a useful criterion to check vanishing of subspaces of V5 whereas|(S2)|is useful
for proving that subspaces of V; actually coincide with Vi. For instance, a direct application

of these conditions is the following non-degeneracy result:

Proposition 2.19. If x = (A, By, By, a,b) € = (0) satisﬁes (md then A has full

rank.

Proof. Choose bases (v1,i); resp. (vej); of Vi resp. Vo and view A, By, Ba, a, b as matrices
with respect to these bases. Let AT: V;* — V5 and a’: V¥ — C be the transpose of A and
a. Note that if f € V;* and v € V5 such that f € ker(A”) and v € ker(A) then, by ([2.12), we
have

al(f) - b(v) = f((B1A — ABy + ab)(v)) = 0. (2.13)

Suppose that A has not full rank. Then, either ker(A) C ker(b) or ker(AT) C ker(a’) by
(2-13). If ker(A) C ker(b) then ker(A) satisfies and hence ker(A) = 0. If ker(AT) C
ker(a®) then T = {w € V; | ker(AT)(w) = 0} satisﬁesand thus T = Vi and ker(AT) = 0.
Therefore, A has full rank. O

We further introduce the following triangle part conditions:

(T1) If Sy C V4,8, C Vi are subspaces with By(S1) C Si, Ba(S2) C Sa, A(S2) C S1 and
b(S2) = 0 then dim(S71) > dim(Ss).

(T2) If Ty C V4, Ty C Vi are subspaces with Bi(Ty) C Ty, Be(T3) C Ta, A(To) C Ti and
im(a) C Ty then codim(77) < codim(73).
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2. GEOMETRY OF BOW VARIETIES

Clearly, the condition |(T1)|implies |(S1)| by setting S; = 0, So = S and the condition |(T2)|
implies |[(S2)| by setting 71 = T', T» = V2. The next proposition gives that these conditions

are actually equivalent to f-semistability:

Proposition 2.20. For x = (A, By, Bs,a,b) € u~1(0), the following are equivalent:
(i) x is O-semistable,
(ii) = satisfies and[(T2),

(iii) x satisfies and [(S2),

Proof. We begin with = |(i)} To apply Mumford’s Numerical Criterion, let \: C* — G
be a one-parameter subgroup such that limy_,o A(t).x exists in x~1(0). The vector spaces V;

and V5 decompose into weight spaces
V= @1/;”’ where V" ={v e V; | A(t)v=t"vforallt € C*'}, i=1,2,
nez
with corresponding vector space filtrations
F.Vi=@@ V", meZ, i=1.2
n>m

Let ng < 0, ny > 0 such that F;,,V; = V; and F},,V; = 0 for ¢ = 1,2. By Mumford’s Numerical

Criterion, z is #-semistable if and only if (A, 8) > 0 which is equivalent to

ni ni
> jdim(VY) > Y jdim(V3). (2.14)
Jj=no Jj=no

View C as filtered vector space with filtration F},,C = 0if m > 0 and F,,,C = Cif m < 0. Then
the existence of the limit lim;_,o A(t).z is equivalent to the condition that all the operators
A, By, By, a, b are morphisms of filtered vector spaces. Thus, we can apply to the
pairs (F, Vi, i, Vo) with m > 0 which yields » 0L dim(V{) > >t dim(Vy). This directly

implies

ni ni
> jdim(VY) > jdim(V3). (2.15)
j=1 j=1

Similarly, applying |(T2)| to the pairs (F,,V1, Fy,,V2) with m < 0 gives Z;ﬂ:_nlo dim(Vlj) <
ZT=_TLlo d1m(V2]) Hence, we obtain

-1 —1
> jdim(V{) > > jdim(Vy). (2.16)

Jj=no Jj=mno

Combining (2.15)) and (2.16) then gives (2.14)). Thus, z is f-semistable. To show [(i)] =

suppose that z is f-semistable and we are given S C V; satisfying the conditions of [(S1)| Let
W C Vs be a vector space complement of S and define a one-parameter subgroup A: C* - G
via

MO, = idyy,  Af)s = tidg, )y = idw .
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2.2. Triangle parts

Then, the limit lim; ,o A(t).z exists in x~1(0) and hence Mumford’s Numerical Criterion
yields

0 < (\6) =—dim(S).
Thus, S = 0. Analogously, if " C V; satisfies the conditions of |(S2)| then pick a vector space
complement V' C Vi of T and define a one-parameter subgroup \': C* — G via

Nt)r=idr, Nty =t"tidy, N(t)p, =idy,.
Again, lim;_, ' (t).z exists in x~1(0) and Mumford’s Numerical Criterion gives
0<(N,0) =—dim(V).

Hence, V = 0 and T = V;. To prove = we first consider the case dim(V;) <
dim(V3). Suppose S; C V1,82 C Vi satisfy the conditions of From p(z) = 0 follows
that By maps ker(A4) N ker(b) to ker(A). As Sy is contained in ker(d), this implies that
Sa Nker(A) is By-invariant. Hence, Sy N ker(A) satisfies the conditions of which gives
S Nker(A) = 0. Thus, Ajg, is injective and we conclude dim(S2) > dim(S1) as A(S2) C S1
which gives The property follows immediately from the surjectivity of A which
follows from Proposition It remains to consider the case dim(V;) > dim(V2). By
Proposition A is injective which directly implies Assume Ty C V1, T> C V5 satisfy
the conditions of [(T2)] Since u(z) = 0, the operator B maps im(A) to im(A) + im(a). As
im(a) C Ty and Ty is Bj-invariant, we conclude that T} + im(A) is Bj-invariant. Hence,
Ty + im(A) satisfies the conditions of [(S2)] which yields 7} +im(A) = V. As A(T») C T} and
A is injective, we can choose a vector space decomposition To & W/ & W” = V5 such that
Ty W' = ATy Nim(A)). Since A(W")N Ty = 0, we deduce that

codim(7}) = dim(W") < dim(W') 4+ dim(W") = codim(T%)
which completes the proof. ]
A further direct application of the conditions |(S1)}|(S2)|is that tri(Vi, V2) is smooth:

Proposition 2.21. The variety tri(Vy,Va) is smooth and each irreducible component of

tri(V4, Vi) is of dimension
dim(Ny, v,) — dim(Hom(Va, V1)) = m? 4+ m3 4+ my + mo.

For the proof, recall that for finite dimensional vector spaces V and W we have the perfect

trace pairing
(,,.): Hom(V, W) x Hom(W, V), (A, B) =tr(AB) = tr(BA).

Proof of Proposition[2.21l For x = (A, Bi, Ba,a,b) € tri(V1,V2) C Ny, v, the differential of
p at x is given as dypu: Ny, vy, — Hom(Va, V1),

(A", B}, By,d/, V') > ByA' + B4A— A'B; — AB} + a'b+ ab. (2.17)
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Suppose f € Hom(V7, V3) is orthogonal to the image of d,u with respect to the trace pairing,
Le. (dyu(z"), f) =0, for all 2’ € Ny, y,. Thanks to (2.17)), we have

Af =0, fA=0, Byf =Bif, bf=0, fa=0.

This gives that im(f) satisfies and hence f = 0. Thus, dyu is surjective. By the
Regular Value Theorem, z is a smooth point of £ ~1(0) and the dimension of the tangent
space Tpyp~t(0) equals dim(Ny, y,) — dim(Hom(Vs,V7)). Hence, tri(Vi, V2) is smooth and
each irreducible component is of dimension dim(Ny; y;,) — dim(Hom(V3, V1)). O

Affine structure

Using Proposition and the stability conditions |(S1)|and |(S2), Takayama constructed in
[Tak16l, Proposition 2.20] certain normal forms for the points in tri(V1, Va) which we recall in
this subsection. In particular, these normal forms reveal that tri(V;, V2) is an affine variety.

In the case my = mg, these normal forms can be directly obtained from Proposition [2.19}
Proposition 2.22. For each m € Ny, there is an isomorphism of varieties
H: GL(m) x Maty, 1, (C) x Maty ,, (C) x Maty, 1(C) — tri(C™,C™)

given by
H(u,h,1,J) = (u,u" hu,h — IJ, I, Ju).

In particular, tri(C™,C™) is an affine variety.
Proof. By Proposition [2.19
tri(C™,C™) = {z = (A, By, Ba,a,b) € p~1(0) | A € GL(m)}.

Thus, we deduce that H is a well-defined bijective morphism. Since GL(m) x Maty, n,,(C) is
connected and tri(C™,C™) is smooth, Proposition from the next subsection gives that

H is an isomorphism of varieties. O

The crucial ingredient for the normal forms in the case mj # my is a result from [Tak16].

To formulate it let M, ,, C Mat,, ,,(C) with m < n be the set of matrices of the form

h 0 g
n(haga f7 6076) = f 0 €0 | > (218)
0 id e

where

h € Mat,, m(C), ¢ € Mat,, 1(C), f € Maty,(C)
eg € MatLl((C), e c Matn_m_u((C).

Note that M, , is an affine closed subvariety of Mat,, ,,(C). The points of tri(Vi, V5) can be
described via matrices n(h, g, f, eq, ) as follows, see [Tak16, Proposition 2.20]:

Lemma 2.23. Let x = (A, By, B2, a,b) € tri(Vy, V).
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2.2. Triangle parts

(i) If mi < mg then there exist bases

/ / "
(vl,la e 7U1,m1)7 (02,17 ceey U2,m17v2717 e 7U27m2—m1—17 U2)

of Vi, Va and n = n(h, g, f,e0,€) € My, m, such that with respect to these bases we

have

(A7 B, By, a, b) = ((ld 0 0)>h’7 9, (O 0 1))
(i) If my > mg then there exist bases
(V115 .- ,vl,mQ,vi, vi',l, .. 7Ui/,m1*m2*1)7 (V2,15 -+, V2.my)

of Vi, Va and n = n(h, g, f,e0,€) € My, m, such that with respect to these bases we

have

= (§).nn (1) )
Using Lemma [2.23], we obtain the following normal forms for points of triangle parts:
Proposition 2.24 (Normal forms of triangle parts). The following holds:
(i) If mq < mgo then there exists an isomorphism of varieties
H: GL(m2) X M, m, — tri(C™,C™?)
given by H(u,n(h, g, f,eo,e)) = ((id 0 0)u=t, h,un(h, g, f,eo,e)u=t, g, (00 Du"t).
(ii) If my > mg then there exists an isomorphism of varieties
H: GL(m1) X My m, — tri(C™,C™?)
given by H(u,n(h, g, f,eo,e)) = (u (?) ,un(h, g, f,eo,e)u™t, h,u (g) ,ff).
In particular, tri(C™,C™2) is always an affine variety.

Proof. We only proof as follows along similar lines. Given (u,n) € GL(m1) X My m,,
an easy calculation shows that (A, By, Ba,a,b) = H(u,n) € pu~1(0). As A is surjective,
H(u,n) satisfies |(S2)l By construction of H, we have

(1) (tmy 41, Ba(tmy 1), -+, By 7™ (umy 41)) is a basis of ker(A),
(2) (tmyt1, Ba(tmys1)s -+ BY2 ™ 2 (up, +1)) is a basis of ker(A) Nker(b).

Here, u; is the i-th column vector of u. Suppose S C V; satisfies the conditions of
and assume v € S\ {0}. Then, by and we have Bg(v) ¢ ker(b), for some j > 1.
This constradicts the assumption that S is a Be-invariant subspace of ker(b). Hence, S =0
and therefore, H(u,n) satisfies Thus, H is a well-defined morphism of varieties. As
GL(m2) X My, m, is connected and tri(C™!,C™2) is smooth, Proposition implies that
H is an isomorphism of varieties if and only if H is bijective. For surjectivity, recall from
Lemma [2.23)l(i)| that for all (A, By, B2,a,b) € tri(C™!, C™2), there exists n(h,g, f,eo,€) €
My, m, and (g1, 92) € GL(m;) x GL(mg) such that

(A7 Bla B27a7 b) = (gl(ld 0 0)92_1791hgl_179277(h797 f7 €0, e)g2_179197 (0 0 1)92_1)
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Hence, if we set u = 92(91;1 i?j), we get

H(ua U(thgfl,glﬁ fgl_la €0, 6)) = (A7 Bl7 B2a a, b)

Thus, H is surjective. For injectivity, suppose H(u,n) = (A, By, Ba,a,b) = H(u',n’). First,
we show that the column vectors wy, ..., um, and uj,...,u;, of v and u' coincide. From
(id 0 0)u = A = (id 0 0)u’ follows u; = u}, for i = 1,...,m;. Next, note that the vector
space ker(A) N ker(b) N ker(bBy) N ... N ker(bBy2~™~2) is of dimension 1. In addition,
U, +1 and uy, |, are both generators of this vector space. Since bB;”Tml*l(umlH) =1=

By~ ™ (! L 11), we therefore conclude u, 11 = uy, ;. From this, we deduce

7 i,/ l .
Uy +1+i = Botmy+1 = Botp, 1 = Uy 1144, foro=1,....mo—my — 1.

Hence, u = /. As unu™! = u/n/(v/)~!, we also have n = 1. This proves that H is injective.

O]

Remark. The normal forms from Proposition [2.22] and Proposition [2.24] are also called Hur-
tubise normal forms. This is due to the fact that Takayama matched in [Tak16, Section 2]
the normal forms for triangle parts with Hurtubise’s normal forms of solutions of Nahm’s
equation over intervals from [Hur89]. In this way, Takayama gave an interpretation of these
moduli spaces of solutions of differential equations in terms of moduli of representations of

handsaw quivers.

Isomorphism criterion

In the proof of Proposition and Proposition we used the following general result in

algebraic geometry:

Proposition 2.25. Let f: X — Y be a bijective morphism of varieties. If the connected
components of X are all of the same dimension and Y is irreducible and normal then f is

an isomorphism of varieties.
We first prove the following auxiliary statement:
Lemma 2.26. Let f: X — Y be a bijective morphism of varieties. Then, dim(X) = dim(Y').

Proof. By Grothendieck’s version of Zariski’s Main Theorem, see [EGA| Chapter IV, Corol-

lary 18.12.13], there exists a factorization

X ——Y'

\ / (2.19)

where ¢ is an open dense immersion and f’ is a finite morphism. As ¢ is an open dense
immersion, we have dim(X) = dim(Y’). Since f’ is finite and surjective, we also have
dim(Y”) = dim(Y"). O
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Proof of Proposition[2.28, Let Y, v, f' be as in (2.19). Since f’ is surjective, there exists
an irreducible component Yy of Y’/ such that the restriction f"YO: Yy — Y is a dominant
morphism. As f’ is finite and f\,Yo is dominant, we conclude that also f\,YO is finite. Since
f"YO is injective on the open dense subvariety X N Yy, Lemma below gives that f|/Y0 is
birational. Thus, by e.g. [Liu06, Corollary 4.4.6], f|/YO is an isomorphism of varieties. Next,
we show that XNYy = X. Assume X NYy # X and let Z' C Y’ be the union of all irreducible
components of Y’ which are different to Yy. Set Z := f/(Z') and U := X N (Z'\ Yy). Then,
U is a dense open subvariety of Z’ and since f’ is finite, Z is a closed subvariety of Y. As f
is injective, f(U) is disjoint from the open subvariety f(Yp N X) C Y. Hence, f(Yo N X) is
also disjoint from the Zariski closure f(U) in Y. As f’ is closed, we have Z = f(U). Thus,
f(XNYynZ') =0. Since f is bijective, X NYy and X N Z’ are disjoint closed subvarieties
of X. This implies dim(X N Z’) = dim(X) and that f restricts to a bijective morphism

f‘szl:XﬂZ/—>Y\V,

where V := f/(X NY}). As, Y is irreducible and V' C Y is a non-empty open subvariety, we
have dim(Y \ V) < dim(Y’). However, Lemma gives

dim(Y \ V) = dim(X N Z’) = dim(X) = dim(Y).

This contradicts dim(Y \ V) < dim(Y’). Hence, we must have Yy N X = X. Since X is an
open subvariety of Yy and the isomorphism f|’YO restricts to the bijection f: X — Y, we must

have X = Yj. Therefore, f is an isomorphism of varieties. O

Lemma 2.27. Let X, Y be irreducible varieties and f: X — Y be a injective and dominant

morphism. Then, f is birational.

Proof. By definition, the induced morphism of schemes Ay: X — X xy X is a locally closed
immersion. Since f is an injective morphism of varieties, we conclude that im(Ay) contains
all the closed points of X — X xy X. Thus, Ay is a surjective morphism of schemes. This
implies that f is universally injective and hence, by e.g. [Stacks, Lemma 01S4], the extension
of function field f*: C(Y) — C(X) is purely inseparable. As we are in characteristic 0, this

field extension has to be of degree 1 which proves that f is birational. O

Symplectic structure

It was shown in [FR14] that the vanishing locus ~!(0) admits an algebraic Poisson structure.
Then, Nakajima and Takayama proved in [NT17, Proposition 5.7] that the restriction of this
Poisson bracket to tri(Vi, V2) is non-degenerate and therefore corresponds to a symplectic
form on tri(Vy,V3). In this subsection, we recall the definition and important properties of
this Poisson bstructure.
Set
n := Hom(V3, V2) @ Hom(Vy, C) @ Hom(C, V3).

Let [.,.] be the unique Lie bracket on n which satisfies
(a) Hom(V7,V3) is central,
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2. GEOMETRY OF BOW VARIETIES

(b) we have [Hom(V;, C),Hom(V;,C)] = 0 = [Hom(C, V2), Hom(C, V3)],
(c) for all f € Hom(V1,C) and a € Hom(C, V2), we have

[a, f] € Hom(V1,Va), a, fl(v) = f(v)a(1l), for allve V.

The Lie algebra g acts on n via

(91,92)-(A,a,b) = (1A — Aga, gra, —bga)

Thus, we can take the semi-direct product a := g X n where we denote the Lie bracket on

a by [.,.]. The group G acts on a via the usual base change action. A direct computation
shows that [.,.]" is G-invariant.
Next, we use [.,.]" to induce a Poisson structure on Ny, y,. The trace pairing induces a

perfect pairing (.,.): Ny, 1, x a = C satisfying

(9.¢,a) = —(x,g.a), forallz €e Ny, y,, a€a, geg. (2.20)

~Y ~Y

Via (.,.), we obtain identifications of vector spaces Ny; v, & a* and Ny, , = (a")" & a.
We define the Poisson bracket {.,.}’ on Ny, y, to be the unique Poisson bracket such that
{f,9} =1f,9g], for all f, g € a. By (2.20]), this Poisson bracket admits the following moment

map for the G-action:

Proposition 2.28. The projection m': Ny, v, — g, (A, B1, Ba,a,b) — (B, Bz) is a moment
map for the G-action on Ny, v;,.

Proof. By the Leibnitz rule, it suffices to prove (2.5) for a € a = Ny, yv,- Ifg € gand
z € Ny, v, then {(m/(-), 9),a}(z) = (z,g.a). Let g, be the fiber of g over z. Then, da(g,) =
(g.z,a). Thus, the proof follows from ([2.20]). O

In general, the Poisson bracket {.,.}’ is not compatible with the defining equation p = 0
of triangle parts from (2.12)). Thus, in general, {.,.} does not induce a Poisson bracket
on tri(Vy, Va). However, this can be fixed, by twisting {.,.}’ as follows: The vector space

automorphism of a given by
(Bb B2> Aa a, b) - (Bla _B27 Av a, b)

induces an algebra automorphism v: O(Ny,,,) = O(Ny,,1,) via the identification Ny, , = a.
Then, we define the Poisson bracket {.,.} on Ny, v, as

{fvg} = {I/(f),V(g)}/, I, g€ O(NVLVz)‘ (2'21)

By [FR14), Proposition 3.15], we have the following result:

Proposition 2.29. The Poisson bracket {.,.} on Ny, v, from (2.21)) induces o G-invariant
Poisson bracket on p=1(0) and hence also on tri(Vy, Va).
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The Poisson bracket {.,.} admits an explicit description via coordinate functions: Choose
bases (v1,4); resp. (ve,;); of Vi resp. Vo and let Ay ; € O(Ny, v,) be the regular function which
assigns to a point z = (A, By, Ba,a,b) the (k,[)-entry of the matrix of A with respect to
the bases (v1,); and (v ;);. Define (B1)g,, (Bg)kl, ar and by, € O(Ny, y,) in the same way.
Then, inserting these coordinate functions in 1)) yields the following formulas for {.,.}:

{Aij, Aka} =0, {ai,a;} = 0= {b;, b;},
{(B2)ij, (B2)ka} = 0i1(B2)k,j — 95 k(B2)i,
{(B1)ij, (B1)r} = 6i1(B1)k,j — 65 x(B1)i,

{(B2)ij,ar}t = 0={(B1)ij, bk} (2.22)
{(B2)ij,bi} = dixbj,  {(B1)ij: ax} = —dj ki,
{(B2)ij, Ak} = 0igAk g, {(B1)ig, Aka} = =05 1A,

{bisa;t = Aji,  {Aij, bk} =0={A;;,a}.
Via the explicit formulas from (2.22)), we deduce the following crucial result:
Proposition 2.30. The restriction of {.,.} to tri(Vi, Va) is non-degenerate.

Proof. We only prove the case m; = msy = m, as the case m; # my is similar. Set R :=
O(tri(V4, V3)) and let Der(R, R) be the R-module of C-derivations. Set

©: R — Der(R,R), f—A{f, .}

and let E C Der(R, R) be the R-module generated by the image of ©. By definition, {.,.} is
non-degenerated if and only if F = Der(R, R). By Proposition m it suffices to show that
FE contains all the derivations

0 0 0 0
— <ij<m. ‘
04;;" 0(B1)i; Oa;  Ob;’ forl<4,j=<m (2.23)

y ’

By (2.22)), we have
- d .
Aij) = ZAk,jma for 1 <i,7 <m. (2.24)
k=1 *

As the matrix (A; ;)i ; € Maty, .m(R) is invertible over R, (2.24) implies that E contains all

8(%1)@]-' From ([2.22)) follows

i 0 i 0 ,
:Z:Ak’Z% mod E, —@(a,) :kZlAZ’kabk mod E, for 1 = 1,...,m.

Thus, E also contains all é% and aibi' Finally, (2.22)) gives
((B1)i) ZA% 8A mod FF, forl1<i,j<m

which implies that E contains also all BAL”' Hence, all derivations from (2.23)) are contained
in E. This proves that {.,.} is non-degenerated. O
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2. GEOMETRY OF BOW VARIETIES

In particular, Proposition implies that there exists a unique symplectic form w on
tri(V3, V) such that

w(Xy, Xy) ={f,g}, forall f, g e O(tri(V1, V2)). (2.25)

Here, X, X, denote the hamiltonian vector fields of f, g with respect to w.
By Proposition we deduce that w admits the following moment map for the G-action
on tri(Vi, V3):

Corollary 2.31. The G-equivariant morphism
m: tI‘i(Vi, ‘/2) — 9, (A, Bl, BQ, a, b) — (Bl, *Bg) (226)

is a moment map for the G-action on tri(Vy, Va).

2.3 Bow varieties

In this section, we recall the construction and geometric properties of bow varieties from
[NT17, Section 2]. Bow varieties are defined as hamiltonian reductions of certain moduli
spaces of quiver representations that we call affine brane varieties. To construct these affine

brane varieties, we use the language of brane diagrams from [RS20].

Brane diagrams

A brane diagram is an object like this:
0/3\2/3/5\3/4\1\0

That is, a brane diagram is a finite sequence of black horizontal lines drawn from left to right.

Between each consecutive pair of horizontal lines there is either a blue SE-NW line \ or a red
SW-NE line /. Each horizontal line X is labeled by a non-negative integer dx. We further
demand that the first and the last horizontal line is labeled by 0.

Remark. Our terminology is slightly different to the terminology in [NT17] [RS20] and [RR23]
which is motivated from string theory. There the horizontal lines are called D3 branes, the
blue lines D5 branes and the red lines NS5 branes, see in particular the explanation in
[RR23|, Section 2.4]. However, for our purposes, it suffices to view brane diagrams as purely

combinatorial objects. Hence, we will refer to the lines in brane diagrams just by their colors.

Notation 2.32. Let h(D), b(D) and r(D) denote the set of black, blue and red lines in a
given brane diagram D. We denote the number of red lines in D by M and the individual
red lines by Vi, ..., Vyy numbered from right to left. Likewise, let N be the number of blue
lines in D and we denote by Uy, ...,Uy these lines, numbered from left to right. The black
lines in D are denoted by Xi,..., Xa4n+1 also numbered from left to right.
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2.3. Bow varieties

Thus, the lines in the above brane diagram are labeled as follows
/XQ\XS/X4/X5\X6/X7\X8\X9
U Vs Uz Wi Us

Remark. The convention to number the red lines from right to left differs from the one
in [RS20].

Given two lines Y7, Y5 in D, we write
Y1 <Y, (2.27)

if Y7 is to the left of Ys. If Y is a colored line, we denote the black line directly to the left
resp. to the right of Y by Y~ resp. Y*. Similarly, the colored lines directly left and right to
a black line X in D are denoted by X~ and X .

Affine brane varieties

We continue with the definition of affine brane varieties. For this, we assign to each horizontal
line X in D the vector space Wx = C%. Further, we set Wp = D Xeh(D WX We also
denote Wy, just by W;. For any red line V' € r(D), define the variety

My = Hom(WV+, va) S¥ Hom(WV* ) WV+)'

We denote the elements of My as tuples yy = (Cy, Dy) and equip My with the usual
(GL(Wy—) x GL(Wy,+))-action

(9-,9+)-(Cv,Dy) = (9-Cvgi',9+Dvg="), g- € GL(Wy-), g+ € GL(Wy+).

It is well-known, see e.g.[Ginl2) Section 4], that My admits a non-degenerated (GL(Wy-) x
GL(Wy,+))-invariant Poisson bracket {.,.} that is uniquely determined by

{Cviijs Dvgit = —6i10j k. (2.28)

The corresponding symplectic form on My is Zj;’f Zjﬁ; dCy; j N dDy;; and admits the
following moment map for the (GL(Wy,-) x GL(Wy+))-action:

my : My — End(Wy-) & End(Wy+), (C,D)w— (—CD,DC). (2.29)

To any blue line U, we attach the triangle part My = tri(Wy -, Wi+ ). We write the elements
of My as tuples xy = (Ay, By, B(J}, ay, by) and denote by

my: My — End(Wy-) @ End(Wy+),  (Av, By, Bfr,au,bu) — (B, —Bf)  (2.30)
the moment map from Corollary

Definition 2.33. The affine brane variety associated to D is defined as the affine variety

(I )< ( 1T )

Ver(D
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2. GEOMETRY OF BOW VARIETIES

Additionally, we define the vector space

@ Ny ,,WU+> @( P Mv)- (2.31)

Ueb(D Ver(D)

Here, Nw,_ w, is deﬁnedN as in . Note that MV(D) is a locally closed subvariety of
Vp. We denote points of M(D) and Vp as tuples ((AU,B(j,B[J},aU, bv)u, (Cyv,Dy)y). By
Proposition all factors of .M( ) are smooth and affine varieties which yields that also
M(D) is smooth and affine. We endow M( ) with an algebraic (base change) action of the
group
II crowx) (2.32)
Xeh(D)

given as

(9x)x-((Av, By, Bf, av, bu)u, (Cv, Dv)v)
= ((gu-Avgyt. 9u-Byagt, gu+Birapt, gu-av,bugy v, (9v-Cvayt, gv+Dyayt )v).

The Poisson brackets on the factors My and My, induce a non-degenerated G-invariant Pois-
son bracket {.,.} on M(D). We denote the corresponding algebraic symplectic form on
M(D) The moment maps my and my for My and My from (2.30) and (2.29)) induce the

following moment map for the G-action on M(D):

m: M(D)— P EndWx), ((zo)v,(w)v) = Y, mule)+ > mu(yy).
X e h(D) U € b(D) VD)

More explicitly, for a black line X € h(D), the corresponding component m((zv)u, (yv)v)x

is given by
By, — B;, if X, X~ are both blue,
B Dy - Cx- —Cx+Dx+ if Xt X~ are both red,
m((zv)u, (yv)v)x = (2.33)
Dx-Cx- + By, if XT is blue and X~ is red,
—Cx+Dx+ — BY._ if Xt is red and X~ is blue.

The conditions and for triangle parts yield that the points of 7~ *(0) satisfy the

injectivity and surjectivity conditions:
Proposition 2.34. Let y = ((Av, By, Bl av,bu)u, (Cv, Dy)v) € m~1(0).
(i) Given a local configuration in D of the form:

d]’l\ dj /dj+1

v Vv

Then, the map F: W; — W;_1 @ W41 ®C, v~ (Ay(v), Dy (v),by(v)) is injective.
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2.3. Bow varieties

(i) Given a local configuration in D of the form:

dj—1 / d; \dj+1

Vv U

Then, the map F': W;_1 & Wjt1 & C — W;, (v1,v2,03) = (Dy(v1), Ay (v2), a(v3)) is

surjective.

Proof. We begin with By the moment map equation , we have Cy Dy = —Ba“
which implies ker(Dy ) C ker(B;;). Thus, ker(F) is Bji-invariant and therefore satisfies the
conditions of [(S1)l Hence, ker(F) = 0. For note that as DyCy = —B, we have
im(B;;) C im(Dy) and hence im(F’) is By -invariant. This implies that im(F") satisfies
conditions of and thus im(F’) = Wj. O

Example 2.35. Let D = 0/1\1\1/0. We write elements of M(D) as tuples
((As, By, B, ai, b;)i=1,2, (Ci, D;)i=12)
according to the diagram:

By

Cs Q QQ N Q o

K\ Ay

TN Nl T e

By Proposition the conditions |(S1) and |(S2)| are equivalent to A;, Ay # 0. Thus, we
have an isomorphism of varieties M (D) = (C* x C3)? given by

((Ai, By, B, ai,b;)iz12, (Ci, Dy)iz12) = (A1, Bf,a1,b1, Ao, By, as, bs).

Construction of bow varieties

Let D be a brane diagram and M (D) be the corresponding affine brane variety. Let G and

m be as in the previous subsection.

Definition 2.36. The bow variety associated to D is defined as

C(D) =m~(0)/\ G

where

xX:G—C" (9x)x — H det(gx)
Xeh'(D)

and h'(D) is the set of black lines X in D such that X~ is red.

By Proposition [2.2(i), C(D) is a quasi-projective variety. Moreover, Proposition
implies that the Poisson bracket {.,.} on M(D) induces a Poisson bracket {.,.}' on C(D).
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2. GEOMETRY OF BOW VARIETIES

Geometric properties

Recall from Theorem that the points of C(D) are characterized by x-(semi)stability con-
ditions. By applying Mumford’s Numerical Criterion, Nakajima and Takayama proved the

following useful y-(semi)stability conditions for points on /. ~1(0), see [NT17, Proposition 2.8]:

Proposition 2.37 ((Semi-)Stability for bow varieties). Let
z = ((Au, By, Bf;,av,bu)u, (Cv, Dy)v)) € m~1(0).
Then the following holds:

(i) The point x is x-semistable if and only if x satisfies the following condition: For all
graded subspaces T = @x ¢ wpyIx C Wp such that im(ay) + Ay C Ty~ and Ay
induces an isomorphism Wi+ [Ty+ — Wy— [Ty—, for all U € b(D), we have

> codim(Tx) < 0. (2.35)
Xehf,

(ii) The point x is x-stable if and only if we have an strict inequality in (2.35)) unless
T =Wp.

Proposition has many useful consequences. As a direct consequence we get that the

x-semistable and the y-stable locus of 7 71(0) coincide:
Corollary 2.38 (Semistable=stable). We have m~1(0)% = m~1(0)".
Applying Theorem [2.8] then directly gives:
Corollary 2.39. The quotient morphism 7: m~'(0)> — C(D) is a geometric quotient.

Next, we employ Proposition to deduce that the y-stable locus m~1(0)* is actually

smooth and we also have a convenient dimension formula:

Proposition 2.40. The variety m~1(0)° is smooth and each irreducible component is of

dimension
dim(M (D)) — dim(G) =

> (dp +dyy + dy- +dU+)) + ( > 2dv_dv+) ~ ( > dg().
Ueb(D) Ver(D) Xeh(D)

For the proof, recall the definition of Vp from (2.31)) and let m": Vp — €D yep(p) End(Wx)
be given by the formula (2.33)). We also define

w:Vp — @ Hom(Wy+, Wy-) (2.36)
Ueb(D)

as ,LL/((AU, B(;, Bg, ay,by)u, (Cy,Dy)y) = (B(;AU *AUB(JJF +ayby)y. Combining these two

morphisms, we set

Np ::( D End(WX))@( D Hom(WU+,WU-)) (2.37)
Xeh(D) Ueb(D)
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2.3. Bow varieties

and )
()

5: VD I ND. (238)

Note that, by construction, m~1(0) = 87(0) and hence m~1(0)* is an open subvariety of

B71(0). To employ the Regular Value Theorem, we use the following lemma:

Lemma 2.41. Fory = ((AU,BE,Bﬁ,aU,bU)U, (Cy, Dy)v) € m~1(0)%, the differential d,f3

18 surjective.

Proof. The differentials

dym':Vp — @ End(Wx), dyp':Vp— E Hom(Wy+, Wy-)
Xeh(D) Ueb(D)

map a pOil’lt y, = ((Aba (B{])_a (B{])—i_aa/[]vb;])Ua (C{/aD(/)V) € Vp to

(Bl )™ — (By )" if X+, X~ € b(D),
L) D' Cx- + Dx-Cl_ — C,Dx+ — Cx+ Dy it X+, X~ € 1(D),
m\Yy )x =
! Dy Cx- + Dy Cx- + (Bls) it X+ e b(D), X~ € (D),
—Cl,Dxy — Cx+ Dy — (By )T if X+ €1(D), X~ € b(D).
and
dytd(y')v = By Ay + (By) ™ Av = Ay B — Au(By)™ + aybu + avby.-
Suppose
(f:0) = (F)x: (hoJo) € (@D EndWx)) & ( @D Hom(Wy- W)

Xeh(D) Ueb(D)

is orthogonal to im(d,3) with respect to the trace pairing. By the above description of d,m’
and dyp/', we conclude that for U € b(D), V € r(D) holds

B[}hU = hUB(J]r, hyay =0, byhy =0,
Aphy = fu-, hvAu = fu+, (2.39)
Cvfv+ = fv-Cv, Dvfy- = fy+Dy.

Combining (2.36) and (2.39)), we get
B(—’/:fUﬂL = fJBUJr, BEfo = foBE, for U e b(D) (240)

Set Ty := ker(fx), Sx = im(fx) and fix U € b(D). By (2.40)), Ty;-, Sy- are By -invariant
and Ty+, S+ are Bifi-invariant. By (2.39), we have Ay (Ty+) C Ty- and Ay (Sy+) C Sp-.
In addition, also gives im(ay) C Tyy— and Sy+ C ker(by). Thus, we can apply [(T2)| to
the pair (Ty—, Ty+) and to the pair (Sy-, Sy+). Hence, we have

codim(Ty+) < codim(Ty-), dim(Sy-) < dim(Sy+).
By definition, codim(Ty) = dim(Sx), for all X. Therefore,
codim(7Ty+) = codim(Ty-), dim(Sy-) = dim(Sy+). (2.41)
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By and , we can infer that T;- +im(Ay) is By -invariant and therefore 17— +
im(Ay) = Wy- by [(S2)] By (2.41)), we deduce that Ay induces an isomorphism of vector
spaces Wi+ /Ty+ — Wy— /Ty—. Hence, T := @ Xeh(D) Tx C Wp satisfies the conditions of
Proposition which gives T' = Wp. Thus, fx = 0, for all X. Finally, gives that
im(hy) satisfies the conditions of Therefore, hyy = 0, for all U and hence (f,h) = 0.
This proves that d,f is surjective. O

Proof of Proposition[2.40. Let y € m~1(0)* c 8~1(0). By Lemma the differential d,(
is surjective. Therefore, the Regular Value Theorem gives that y is a smooth point of
m~1(0) = B71(0) and the tangent space T,/ '(0) is of dimension dim(Vp) — dim(Np).
By Proposition we have

dim(Vp) — dim(Np) = dim(M(D)) — dim(G).

Thus, we deduce that m~1(0)® is smooth and all irreducible components are of dimension

dim(M(D)) — dim(G). O

A similar argument as in the proof of Lemma m gives that the G-action on m~1(0)® is

free:
Proposition 2.42. The G-action on m~1(0)% is free.

Proof. Let y = ((Au, By, Bfj,av,bu)u, (Cv, Dy)v) € m~*(0)* and g = (g9x)x € G with
gy =y. Set Tx = ker(gx —idw,) C Wx and Tx = im(gx — idw,) C Wx. Note
that codim(Tx) = dim(7%), for all X € h(D). By construction, T := @D xenp) Ix and
T = @Xeh(D) Ty are Ay, By, B(J]r, Cv, Dy-invariant subspaces of Wp. In addition,
we have im(ay) C T and T}, C ker(by), for all U € b(D). Hence, if U € b(D) then
Ty- + im(Ay) satisfies [(S1)] which gives Ty;- + im(Ay) = Wy-. Likewise, T, N ker(Ay)
satisfies which yields that the restriction A|T(/J+ is injective. Since A(T},;) C Ty, , we get
dim(T},+) < dim(7},_). Equivalently, codim(7y+) < dim(Ty-). As Ty- +im(Ay) = Wy,

we conclude codim(7y+) = dim(Ty-) and that Ay induces a vector space isomorphism
Wy+ /Ty+ — Wy /Ty~ Thus, T satisfies the conditions of Proposition and therefore
T = Wp. Thus, g = idw,,. O

We now deduce some geometric properties for bow varieties:
Proposition 2.43 (Geometric properties of bow varieties). The following holds:
(i) The bow variety C(D) is smooth.

(ii) The quotient morphism 7: m~1(0)> — C(D) is a principal G-bundle (in the Zariski
topology).

(11i) The Poisson bracket {.,.}' on C(D) is non-degenerated and the corresponding symplecitc
form w' on C(D) satisfies
W' = w, (2.42)

where t: m~(0)S < MV(D) is the inclusion and w the symplectic form on MV(D)
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Proof. By Proposition and Proposition m~1(0)% is smooth and the G-action on
m~1(0) is free. By Corollary m~1(0)> = m~1(0)* and hence m~1(0)® is covered by
G-invariant open affine subvarieties. Thus, Luna’s Slice Theorem gives that C(D) is smooth
and 7: m~1(0)° — C(D) is a principal G-bundle in the étale topology. Since G is a special
group, see e.g. [Mill3, Theorem 11.4], we deduce that 7 is actually a principal G-bundle in
the Zariski topology. Thus, we proved |(i)| and Finally, is an immediate consequence

of Theorem .17 O
Proposition (ii)] and Proposition [2.40] yield the following dimension formula for C(D):

Corollary 2.44. Each irreducible component of C(D) is of dimension
dim(C(D)) = (Y (- +dd i tdy-tdp))+ (Y 2dy-dys ) (D 2d%). (243)
Ueb(D) Ver(D) X€h(D)
From Proposition [2.43|((ii)| it follows that bow varieties admit a family of tautological
bundles:

Corollary 2.45. Let X € h(D). Then, the diagonal action of G on m~(0)° x Wx is free
and the geometric quotient

Ex = (mH(0)° x Wx)/G (2.44)
is a vector bundle over C(D) (in the Zariski toplology).

Definition 2.46. The vector bundle x from ([2.44)) is called the tautological bundle corre-
sponding to X. We call &p = @Xeh(D) &x the full tautological bundle of C(D).

Remark. In [NT17], Nakajima and Takayama give a more general definition of bow varieties
depending on more stability parameters v and vX. For simplicity, we only consider bow
varieties corresponding to the specializations vS = 0 and vX = —1. One convenient feature

of this family of bow varieties is that they are smooth, which is not true in general.

Explicit example T*P!

We show now that the bow variety C(D), where D is as in Example is isomorphic to a
very familiar quasi-projective variety: The cotangent bundle of the projective line T*P!.

Recall from e.g. [CG97, Lemma 1.4.9] that T*P! is isomorphic to the total space of the
vector bundle Hom(Q, S), where S denotes the tautological bundle on P* and @ = (P! xC)/S
the universal quotient bundle of P!. Thus, the points of T*P! are given by

T'P' = {(V,f) |V € P, f € End(C?), im(f) C V, V C ker(f)}.
Recall the data to specify elements of C(D) from ([2.34) and that for a tuple
y = ((Ai, B, B, ai, bi)i=12, (Ci, Di)i=12) € M(D).
The conditions and are equivalent to A;, Ay # 0. By and (2.33)), y is

contained in /m~1(0) if and only the following equations are satisfied:

Bl_Al — Ale_ + a1by =0, B2_A2 — A2B;_ + agby = 0, (245)
By =0, Bf=B;, By =0. (2.46)
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2. GEOMETRY OF BOW VARIETIES

These equations imply a1b1 + Ajazba A5 1 — 0. By Proposition the x-stability condition
is equivalent to (a1,az2) # (0,0). Hence, ker(a; ag) is of dimension 1. From this, we deduce

that we have a surjective morphism of varieties H: C(D) — T*P! given as

[(As, By, B ai, bi)ie1.2, (Ci, Di)ie1.2] (ker (alAl_la2> : (bgill_l) (alAl_l ag) )
2

To conclude that H is an isomorphism, it suffices by Proposition to show that H is
injective. Let y, v’ € m~1(0)® with H([y]) = H([y]). Write

y = ((A;, B, B, ai,b;)i=1,2,(Cj, D;)i=12)

and
y/ = ((Aga (32)77 (B;)+a agﬁ b;)i=1,27 (C§7 D;’)j=1,2)-

We may assume A; = Ag = A} = A, = 1. Suppose ag # 0. In this case, we can additionally

assume ag = ay. Since ker(a; az) = ker(a} ab), we conclude that also a; = a}. As

(1) (o )= () (o )

and (ay ag) is surjective, we deduce by = b} and by = bl,. Then, (2.45)) yields [y] = [¢]. The
case a1 # 0 follows along similar lines. Thus, we proved that H is injective and hence an

isomorphism of varieties.

Remark. This example shows a very special instance of the general fact that each Nakajima
quiver variety of type A is isomorphic to a bow variety, see [NT17, Theorem 2.15]. In
particular, cotangent bundles of of partial flag varieties can be realized as bow varieties. We

will explicitly discuss this realization in Section [2.5

Torus actions

As we discuss in this subsection, there are two kinds of torus actions on bow varieties. The
first one follows easily from the construction of bow varieties. Thus, we refer to this action
as the obuvious action. The second one was introduced in [NT17, Section 6.9.3] and scales the
symplectic form. We therefore refer to this action as the scaling action. In our exposition, we
follow the conventions from [RS20, Section 3.1], for the precise connection to the definition
of Nakajima and Takayama see [RS20, Section 3.4].

Recall from Notation [2.32)that N = |b(D)] is the number of blue lines in D. The following

two tori will be used:
e A= (C*)" and its elements are denoted by (t1,...,tn) or (tv)yepmp) or just by (tv)u-
e C; = C* and its elements are usually denoted by h.

We set
T :=A x Cj,. (2.47)
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2.3. Bow varieties

The obvious action

Recall the definition of Vp from (2.31)). The torus A acts algebraically on Vp via

(tv)v.((Au, By, By, av,bu)u, (Cv, Dy)v)

(2.48)
= ((Av, By, B, auty! tubu)u, (Cv, Dy)v).

By definition, the A-action and G-action on Vp commute. Let

w:Vp — @ Hom(Wy+, Wy-)
Ueb(D)
be as in . A direct computation gives that p' is A-invariant and that the A-action is
also compatible with and Hence, the A-action restricts to the affine brane variety
M(D). By construction, the moment map m from is A-invariant. Since the A-action
is also compatible with the y-stability criterion from Proposition [2.37, we get an induced

A-action on C(D) which is explicitly given by

(tU)U'[(AU7 B(}v B(J’]_7 ay, bU)U’ (CVa DV)V]

(2.49)
= [(Av, By, Bt aut;* tubu)u, (Cv, Dy)v).

Via the explicit description of the Poisson bracket on MV(D) from (2.22) and (2.28)), we
conclude that the Poisson bracket on MV(D) (and equivalently the symplectic form w on
M (D)) is A-invariant. Hence, by ([2.42)), we conclude that also the Poisson bracket on C(D)

(and equivalently the symplectic form w’ on C(D)) is A-invariant.

The scaling action

We have an algebraic C;-action on Vp via

h.((Au, By, Bl av,bu)u, (Cv, Dy)v)

(2.50)
= ((Au, hBy, hBg, ay, hby)u, (hCy, Dy)y).

Again, the Cj-action and the G-action commute. One can easily check that p' is Cj-
equivariant, where C; acts on @y Hom(Wy+, Wy-) via h.(fx)x = (hfx)x. As the C;-
action is also compatible with and we get an induced Cj-action on MV(D) The
moment map m is also Cj-equivariant where again C} acts on @y End(Wx) via h.(fx)x =
(hfx)x. Since the Cj-action is further compatible with the x-stability condition from Propo-
sition we get an induced Cj-action on the bow variety C(D):

h.[(Av, By, B, av,bu)u, (Cv, Dv)v)

(2.51)
= [(Au, hBy;, hBg au, hby)u, (RCy, Dy)v].

Again employing (2.22) and (2.28)) yields h*w = hw, for all h € C;. By ([2.42), this implies
that the Cj also scales the symplectic form on C(D), i.e. h*w’ = hw'.

Finally, note that the A-action and the Cj-action on Vp commute. Thus, we have the

following result:
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2. GEOMETRY OF BOW VARIETIES

Proposition 2.47. The A- and Cj -action on Vp induce a T = (A x Cj)-action on M(D),
m~1(0)° and C(D).

In addition, each tautological bundle {x of C(D) carries the structure of a T-equivariant

vector bundle via

(t,h).[y,v] = [(t,h).y,v], (t,h) €T, v € Wx, y € m (0)*. (2.52)

Tangent bundle via tautological bundles

Next, we employ the characterization of tangent spaces of the y-stable locus of m~1(0)
from Lemma to describe tangent bundles of bow varieties via tautological bundles. In
particular, we deduce a formula of the T-equivariant K-theory classes of tangent bundles in
terms of tautological bundles. This formula was given in [RS20, Section 3.2] and [Sho21
Theorem 3.1.15] as a consequence of [NT17, Proposition 2.20]. In this subsection, we give a
self-contained reproof of this formula. We lay our focus on the involved morphisms of vector
bundles.

For i € Z, we denote by C;: the T-representation corresponding to the character T — C*,
(t1,...,tn,h) — hi. If W is a T-representation, we denote the tensor product W ® Cj: also
just by hiW.

Recall from Proposition that the projection 7: m~1(0)® — C(D) is a principal

G-bundle. Thus, we have a short exact sequence of G-equivariant vector bundles over Th_l(O)s:
0 — m~1(0)° x ( D End(WX)) 2 P H0)* 4T 7 Te(D) — 0. (2.53)
Xeh(D)

Here,

om0 < (@ End(Wx)) — T (07, 9= (9x)x = 7
Xeh(D)

where § is the vector field assigned to g. If we view T7~1(0)® as locally closed subvariety of

TVp = Vp x Vp then for

y = ((Av, B, B, av,bu)u, (Cv,Dy)v) € Vp,

the induced morphism on the fibers ay: € x ¢ (p) End(Wx) — Vp is given as

ay(9) =((9v-Av — Avgu+, 9u- By — By gu-, 9u+ By — Bigu+, 9u-au, —bugu+)u,
(9v-Cv = Cvgy+, gv+Dv — Dy gy-)v).
As the G-action commutes with the T-action on m~1(0)%, we conclude that (2.53)) is a short
exact sequence of T-equivariant vector bundles. Thus, (2.53)) induces a short exact sequence

of T-equivariant vector bundles over C(D):

0 ( D End(&’X)) (TR Y (0)%)/G — TC(D) — 0. (2.54)
Xeh(D)

Thus, we have the following identity in K1(C(D)):

TC(D)] = [(Ta1(0))/9] = (Y [End(€x)])- (2.55)

Xeh(D)
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2.3. Bow varieties

Next, we characterize the T-equivariant K-theory class [(T7~1(0)%)/G]. Recall the mor-
phism of varieties 8: Vp — Np from . By Lemma we have an isomorphism of
T-equivariant vector bundles T ~1(0)* = 1*ker(df), where ¢: m~1(0)% < Vp is the inclu-
sion. Lemma[2.4] further implies that we have a short exact sequence of G- and T-equivariant

vector bundles over m~1(0)s:
0 — ker(df) — M1 0)° x Vp 25 m~1(0)* x hNp — 0.
Thus, we get an induced short exact sequence of T-equivariant vector bundles over C(D):
0 — v*ker(dB) /G — (M~ 1(0)° x Vp)/G — (m~1(0)* x hNp)/G — 0.

The above quotient bundles can be T-equivariantly expressed via tautological bundles over
C(D) as follows:

(7 (0 x Vp)/G =( €D Hom(&+,&y-) & hEnd(gy-) & hEnd(&y+)
Ueb(D)

&) HOIH((CU, EU—) @ h HOHI(fU-&- 5 CU))

@ hHom(&y+, &y~ ) @ Hom(&y -, §V+))7

Ver(D)

(m~'(0)* x hNp)/G = €D hEnd(éx) ® @5 hHom(&y+, ).

Xeh(D) Ueb(D)
Thus, we have the following identity in K1(C(D)):
(T =Y Ty + Y Tv - Y Tx, (2.56)
Ueb(D) Ver(D) Xeh(D)

where

Ty = (1 = h)[Hom(&y+, &y~ )] + h[End(§y-)] + h[End(&y+)]

+ [HOHI((CU, €U* )] + h[I—Iorn(é‘U+ ) CU)]7
Ty = h[Hom(§y+, &y-)] + [Hom(§y -, &y )],
Tx = [End(&x)]-

(2.57)

Inserting (12.56)) into (2.55]) then immediately gives the following formula for [T'C(D)] in terms

of tautological bundles:

Corollary 2.48. We have the following identity in Kr(C(D)):

= > Ty + Z Ty — > (1+h)Tx,

Ueb(D) Ver(D Xeh(D)

where Ty, Ty and Tx are defined as in (2.57)).

Emptyness conditions

The injectivity and surjectivity constrains for points on 7= ~!(0) from Proposition yield

that C(D) is empty unless D satisfies the following combinatorial properties:
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2. GEOMETRY OF BOW VARIETIES

Corollary 2.49. If C(D) # () then we have dj < dj_1 + dj1 + 1, for all local configurations
dj_l/dj\dj_H and dj_l\dj/dj_H m D.

Proof. 1f the condition is violated, Proposition gives m~1(0) = 0. Thus, C(D) =0. O

Definition 2.50. A brane diagram D is called admissible if d; < dj_1 +d;4+1+1, for all local
configurations dj_1/d;\d;4+1 and d;—_1\d;/d;+1 in D.

Assumption. From now on we assume that each brane diagram D is admissible.

2.4 Hanany—Witten transition

It was shown in [NT17, Proposition 7.1] that the family of bow varieties comes with an
interesting collection of isomorphisms between bow varieties, called Hanany—Witten isomor-
phisms. These isomorphisms correspond to certain moves, called Hanany—Witten transitions,
on brane diagrams and are well-behaved with respect to the torus action. In this section,
we recall some important properties of Hanany—Witten isomorphisms. For their explicit

construction see [NT17, Section 7] and also the exposition in [RS20) Section 3.3].

Hanany—Witten isomorphisms

We begin with describing the underlying combinatorics of Hanany-Witten isomorphisms.

Definition 2.51. Let D and D be brane diagrams. We say that D is obtained from D wvia a

Hanany-Witten transition if D differs from D by performing a local move of the form
dk;—l\ dj, /d/m Ay _de /J;m\ dy,
Ui Vj Vj Ui

where dy,_1+dp1+1 = dy +dj.. If D is obtained from D via a finite number of Hanany—Witten

transitions, we write D YD and call D and D Hanany—-Witten equivalent.

The following proposition (see [NT17, Proposition 7.1] and [RS20, Theorem 3.9]) charac-
terizes the isomorphism corresponding to a Hanany-Witten transition as well as the interplay

of tautological bundles under this isomorphism:

Proposition 2.52. Suppose D is obtained from D via Hanany—Witten transition, where the
blue line U; is exchanged with the red line V;. Let Xy be the black line in D with X, = U;

and X,j = Vj. Then, there exists a p;-equivariant isomorphism of varieties
®: C(D) == C(D), (2.58)
where p; is the algebraic group automorphism
pi: T—"=T, (t1,...,tn,h) > (t1,...,ti_1,hti, tiv1, ..., tn, h).
Furthermore, the following holds:
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2.4. Hanany-Witten transition

(i) We have T-equivariant isomorphisms of vector bundles {p x, = @5 X, forl #k.

(i) There is a short exact sequence of T-equivariant vector bundles
0— éD,Xk — §D7Xk71 ) §D7Xk+1 &) h(CUi — (I)*fﬁ,xl — 0. (2.59)

Here, ®*¢5 x, i the T-equivariant pullback of §5 x, via ® and Cy, denotes the trivial bundle
on C(D) corresponding to the character (ti,...,tn,h) — t;.

Example 2.53. The brane diagram D = 0/1\0 is obtained from D = 0\0/0 by the Hanany—
Witten transition which switches the blue with the red line in D. By construction, C(D) is
isomorphic to a single point C(D) = {pt}. Thus, by Proposition C(D) is also isomorphic
to {pt}.

Hanany—Witten transition allows to move all red lines in a brane diagram to the left of all
blue lines not changing the isomorphism type of the respective bow variety. As we will discuss
in the following subsection, the realization of bow varieties corresponding to this particular

type of brane diagrams admits some useful properties.

Separated brane diagrams

Definition 2.54. For a given brane diagram D the separation degree of D is defined as
sdeg(D) = |{(U,V) € b(D) x x(D)|U <« V}|.
We call D separated if sdeg(D) = 0, i.e. all red lines are in D to the left of all blue lines.

Via Hanany—Witten transition, we deduce that any brane diagram is Hanany-Witten

equivalent to a separated brane diagram:

Proposition 2.55 (Reduction argument). There exists a separated brane diagram D such
HW <
that D '~ D.

Proof. Suppose sdeg(D) > 0. Then, there exist U € b(D),V € r(D) such that U is directly
to the left of V. Since D is admissible, we can apply a Hanany—Witten transition reducing

the separatedness degree by 1. Now just repeat this argument. O

For a separated brane diagram the operators defining points of C(D) satisfy the following

nilpotency conditions:
Proposition 2.56 (Nilpotency). Suppose D is separated and let
((Av, By, Bfr,au,bu)u, (Cv, Dv)y) € m~1(0).
Then, the following holds:
(i) We have (CVJ.DV].)M_j =0 and (DVJ.C'V],)M_j+1 =0, forj=1,...,.M —1.
(ii) We have (Bgl)M =0.
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2. GEOMETRY OF BOW VARIETIES

Proof. By the moment map equations ([2.33)), we have

(Cv; Dv)" ™ = Cv;(Cvyy, Dy )7 Dy,

M—itl M forallj=1,...,M — 1.
(Dv;Cv;)" 7" = Dy, (Dv;,, Cvp )™ ' Dy

Thus, follows from CYy,, = 0, Dy,, = 0 via induction on j. The assertion follows
from |(i)[since By; = —Cvy; Dy;. O
We also have the following surjectivity property of the C-operators:
Proposition 2.57 (Surjectivity of C-operators). Suppose D is separated and let
((Av, By, Bfr,av,bu)u, (Cv, Dv)yv) € m~ 1 (0)".
Then, all Cy are surjective.

Proof. Define the graded subspace T' = D x ¢y (py Tx C Wp as Ty+ = Wy, for all U € b(D)
and Ty- = im(Cy), for all V € r(D). By the moment map equation (2.33), T satisfies
the conditions of Proposition and therefore T' = Wp. Hence, all operators Cy are
surjective. [

Margin vectors

We recall some invariants of brane diagrams from [RS20), Section 2] and [Sho21l Section 2]

that are stable under Hanany—Witten transition. Recall the conventions from Notation [2.32

Definition 2.58. Given a brane diagram D, we assign the following invariants to D:
ri(D) ==dy+ —dy- + {U € b(D) | U aVi}|, ¢(D):=dy- —dy+ + {V € (D) |V U},
3 [ J J

where i € {1,..., M}, j € {1,...,N}. In addition, we set

l M N
R(D) =) (D), CiD):=> ¢;(D), Ry(D):=>» ri(D), CiD):=> c;(D).
=1 Jj=1 i=l j=l

As D is usually a fixed brane diagram, we just denote r;(D), ¢;(D), R;(D), R;(D), C;(D) and
C;(D) by ri, ¢j, Ri, Ri, Cj and C;. The vectors r = r(D) = (r1,...,7y) and ¢ = ¢(D) =

(c1,...,cn) are called margin vectors of D.

The next proposition gives that margin vectors are invariant under Hanany—Witten tran-
sition:

Proposition 2.59. If D "D then (D) = (D) and ¢(D) = ¢(D).

Proof. Tt suffices to consider the case where D is obtained from D by a single Hanany—Witten
transition switching a blue line U; with a red line V;. We denote the red resp. blue lines of

D by V resp. U to distinguish them from the colored lines of D. By definition, we have

{UebD)|UaVi} -1 ifl=4,
{U € b(D) | U< V}}| if 1.

{U eb(D) |U<Vi}| =
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2.4. Hanany-Witten transition

Since d‘%/l = d‘i/l7 for | # i, we conclude
r(D) = dy+ —dy— +{U € b(D) | U< V;}| = r(D).
By the definition of Hanany—Witten transition, we have
d‘~/z_+ - d(/; = dVl+ - de + 1.

This implies
ri(D) = dy+ — dy,— + [{U € b(D) | U aV;}| = ri(D).

Thus, we proved r(D) = r(D). The proof for ¢(D) = ¢(D) is analogous. O
If D is separated, we have r; = d,+ — d,- and ¢; = d;- — d+, for all V; € 1(D),
i i J J
U; € b(D). Thus, we can easily read off the labels of the black lines can be easily read off
from the margin vectors:

M N
dW:Ri:Zrl, de_:Cj:Zc,, i=1,...,M, j=1,...,N. (2.60)
=i I=j
In particular, we have Ry (D) = C1(D).
From (22.60)), we deduce the following improvement of Proposition m

Corollary 2.60. A brane diagram D is Hanany—Witten equivalent to the separated brane

diagram

5__0 /RM/RMl/ /Rg/Rlzél\C’z\ \C_N _0

Here, R; = R;(D) and C; = C;(D) for all i, j. In addition, D is the unique separated brane
diagram such that D Wp.

Proof. By Proposition there exists a separated brane diagram D’ such that D Y
By (2.60) and the invariance of margin vectors under Hanany—Witten transformation, we
conclude D' = D. ]

Example 2.61. As in Example let D = 0/1\1\1/0. As one red line is to the right of

the both blue lines, we have ¢(D) = (1,1). Likewise, since there are two blue lines to the

left of Vi, we have (D) = dV1+ - de +2=0-1+2=1. There is no blue line to the left

of V4. Thus, we deduce r2(D) = dvj —d,~ =1-0=1. Consequently, Ry =C, =2and

Ry = Cy = 1. Therefore, by Corollary D = 0/1/2\1\0 is the unique separated brane
. HW ~

diagram such that D ~> D.

Note that margin vectors can have negative entries. For example for D = 0\1\0 we have
¢(D) = (—1,1). However, Corollary [2.60| ensures that the entries of the numbers R; and C;

are always non-negative.
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2.5 Cotangent bundles of flag varieties as bow varieties

We now consider a key player in geometric representation theory: The cotangent bundles
of partial flag varieties. These varieties form a rich family of symplectic varieties. For their
relevance in geometric representation theory see in particular the exposition in [CG97] and
the references therein.

Given natural numbers 0 < d; < dy < ... < dp, < n, we denote by F(dy,...,dmy;n) the

partial flag variety parameterizing inclusions of vector subspaces
{0ycEi1CEyC---CE,CC"

with dim(E;) = d;, for i = 1,...,m. We denote the cotangent bundle of F(dy,...,dn;n) by
T*F(dy,...,dn;n).

There are several ways in which the variety 7% F(dy, . . ., dmy;n) can be constructed. In this
section, we consider its realization as homogeneous space and as bow variety. As explained in
[NTT17, Theorem 2.15], the bow variety realization is equivalent to the well-known realization

as Nakajima quiver variety from [Nak94, Theorem 7.3].

Realization of cotangent bundles via parabolic subgroups

We like to characterize the points of T*F'(dy, ..., dmy;n) in terms of linear operators. For this,
we recall the following well-known realization of T*F'(dy,...,dmy;n) via parabolic subgroups
of general linear groups, see e.g. [CGI7, Section 1.4].

Set dg =0, dppr1 =n, Eg =0, By =C?and §; =d; —dj—q1, fori =1,... ., m+ 1. Let
G = GL, and P C G be the parabolic subgroup of block matrices of the shape

Py P ... Pimn
Py .. Py

. , Pi’jEMat(;i,gj((C).
Pm+1,m+1

Then, P acts on G via p.g = gp~!. It is a well-known result, see e.g. [Spr98], that the geo-
metric quotient G/ P exists and there is an isomorphism of varieties G/P = F(dy, ..., dmn;n)

given as
lg] = Fg = ({0} C {g1,--,9a) C -+ C {g1,---.Ga,,) CC"). (2.61)

Here, g; denotes the i-th column vector of g.
Let g = End(C") be the Lie algebra of G and p C g be the Lie-subalgebra corresponding
to P. We denote by p* the annihilator of p with respect to the trace pairing on g. That is,

p' is the Lie subalgebra of g consisting of block matrices of the form

0 Pig Pz ... Pimi
0 Pz ... Pymi
' : ,  Pij € Mats, 5,(C).
0 Pumt1
0
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1

)

Note that the parabolic subgroup P acts algebraically on p via conjugation, i.e. p.g = pgp~
where p € P and g € p*. Moreover, we equip G x p* with the diagonal P-action p.(g1,g2) =

(p-91,p-92)-
We then have the following realization of T*F(dy,...,dny;n) as geometric quotient, see
[CGI7, Lemma 1.4.9]:

Proposition 2.62. The geometric quotient (G x p*)/P exists and (G x p)/P is a vector
bundle over F(dy,...,dn;n) via the projection (G x p+)/P — G/P = F(dy,...,dm;n). In
addition, we have an isomorphism of vector bundles over (G x pt)/P = T*F(dy,...,dm;n).

This result characterizes the points of T*F(d1,...,dpy;n) in terms of linear operators:

Corollary 2.63. Let Ty, . 4,..n C F(di,...,dn;n) x End(C") be the closed subbundle over
F(dy,...,dn;n) given by all pairs (F, f) such that f(E;) C E;—1, for alli=1,...,m, where
F=(0CE, C...CE, CC"). Then, we have an isomorphism of vector bundles

(G xp')/P Ty dpim>  [9:0] = (Fg9p9™ ")
over F(dy,...,dn;n). Here, Fy is defined as in (2.61).

In the following, we will always implicitly identify T*F(dy,...,dmy;n) with the variety
Tay.,....dmsn via Corollary [2.63]

Realization of cotangent bundles via bow varieties

Next, we realize T*F(dy, .. .,dmy;n) as bow variety. F

Definition 2.64. Let D(dy, ..., d;n) be the brane diagram:
A A A e e N
Vm+1 Vm Vé Ul n

where d}, =n —d; fori=1,...,m.

We denote elements of the affine brane variety M (f)(dl, ...,dm;n)) and the bow variety
C(D(dy,...,dm;n)) according to the diagram

By B, By B
Cm+1 Cm Cm-1 Cs3 Q Q Ch
O/‘\ i TN 7 N N p /\ M y A, d’/—\o
\_/(C Lo \_/‘ \_/(C 2\_/C (C C
Dm+1 Dm Dp—1 D3 al\ \/blaz\ \/b2 a’n\ /bn D1

Recall the moment map m on Mv(ﬁ(dl, .oy dm;n)) from (2.33)). Let
y = ((Ai, By, Bf ,a;, bi)i, (C;, D;);) € ™' (0).

ol



2. GEOMETRY OF BOW VARIETIES

Proposition gives that Aj,..., A, are vector space isomorphisms. By (2.12), an easy

induction argument yields

n

B =— Z(AZA,L+1 s Ajfl)ajbj(A-ilA;_ll s A-ﬁl) , 1=1,....n. (262)

7 7 7
j=i

We define operators
ay: C" — C%m b, CIm — C" (2.63)
via the matrices
blAfl
—14-1
ay = (al A1a2 e A1 o -An_lan> 5 by =
-1 -1
bn_lAn_l P Al
- -1
b At A7
Note that (2.62) in case i =1 is equivalent to B, = —ayb,.
The x-stability criterion from Proposition [2.37] can be reformulated in terms of the fol-

lowing surjectivity conditions:

Lemma 2.65. The point y is x-stable if and only if the operators ay, Ca,...,Cy, are all

surjective.
Proof. We write W = Wg, ;. If y is x-stable then, by Proposition @, we have
im(Cy, - - - Caay) © ... © im(Caay) @ im(ay) ®Wx,, , © ... & Wx, .y = W.

This is equivalent to the surjectivity of ay, Co,...,Cy,. Conversely, suppose ay, Co,...,Cp,
are all surjective. Let W’ C W be a graded subspace satisfying the conditions of Proposi-
tion [2.37] Then, as W’ is invariant under all A; and contains ai(1),...,an(1), we deduce

W), o1 = im(ay) = Wi,q1. Since Co,...,Cy, are surjective, we get VVJ’ = Wj, for j < m.

As all A; induce vector space isomorphisms Wi, 414/ W,’n 14 = Wi/ W), +i» we also get
W! =W;, fori>m O

In particular, Lemma [2.65| implies that we have a morphism of varieties
m 1 (0)° — F(dy,...,dm;n)
given as
y = ((4, B, B, ai,b;);,(C;,D;);) = Fy=(0C Ey1 C ... C Ey.mm CC"), (2.64)

where Ey ; = ker(C; - - - Caay). As before, let Ey g =0 and E,,,+1 = C". Form (2.62) follows

that the operator bya, is compatible with respect to the flag F, in the following sense:
Lemma 2.66. We have byay(Ey;) C Eyi—1 fori=1,...,m+1.

Proof. If v € ker(C; - - - Caay) then (2.62) implies C;_; - - - Caaybyayv = —Cj_1 - - Co By ayv.
By (2.33), we have —C;j_1---CoBy ayv = Ci_1--- CaDyCrayv = D;C; - - Coayv = 0 which
completes the proof. ]

92



2.5. Cotangent bundles of flag varieties as bow varieties

By combining ([2.64) and Lemma we can realize T*F(dy, . ..,dmy;n) as bow variety:

Theorem 2.67. There is an isomorphism of varieties
H:C(D(dy,...,dm;n)) —— T*F(dy, ..., dm;n),

given by
[v] = [(Ai, B[, B, ai, b:)i, (Cj, Dj)j] = (Fy, byay).

For the proof, we use the following basic lemma from linear algebra:

Lemma 2.68. Let 0 < d <n and f, f' € Hom(C", C%) be surjective with ker(f) = ker(f’).
Then, there exists g € GL(d) such that gf = f’.

Proof. Choose standard basis vectors e;, , . .., e;, of C" such that (f(e;,), ..., f(ei,)) is a basis
of C?. Thus,
(€irs .-, eiy) Dker(f) =C". (2.65)

As ker(f) = ker(f'), (2:65) gives that also (f'(e;),..., f'(ei,)) is a basis of C? Define
g € GL(d) via g(f(ei;)) = f'(ei;), for j =1,...,d. To conclude gf = f', it remains to show
) =

g(flex)) = f'(ex), for k #i1,...,i4. By (2.65), we can write
d
e = (Z)‘ia‘eij> +v, i, € C,v € ker(f).
j=1

Hence, as ker(f) = ker(f’), we conclude

d d
er) = D Ng(flei) =D A f'(ei,) = f'(en)
j=1 j=1

which proves gf = f’. O

Proof of Theorem [2.67. By (2.64) and Lemma[2.66} H is a well-defined morphism of varieties.
By Proposition [2 Hisan 1somorphlsm if and only if H is bijective. For injectivity, suppose
that H([y]) = H ([y’]), where

ly] = [(Ai, B, B, ai, bi)i, (Cy, Dj)j]

and
v = (4}, (B); . (B');, 4}, )i, (C}, D)

Let ay, agj,, b, and b;, be as in (2.63). By Lemma the operators a,, Co, ..., C,, and afy,,
Cs,...,C}, are all surjective. Thus, as F, = F,y, Lemma m gives that after applying the

action of a suitable element in G, we have A} = ... = A, = A] = ... = A}, =1id, ay = ay
and Cj = C7, for all j. Since bya, = bj,a,, = b,ay, we conclude by = b,,. Thus, by (2.62),
B = (B'); as well as B = (B')], for all i. Finally, we prove via induction on j that

D; = D;-, for j = 2,...,m. The base case j = 2 follows from ([2.33)):
DyCy = —By = —(B')] = D)C% = DyCs.
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2. GEOMETRY OF BOW VARIETIES

As (Y is surjective, we conclude Dy = D). If j > 2, (2.33) and the induction hypothesis yield
D;Cj = Cj1Dj_y = C)_\ D, = D\C! = DIC;.

Again, the surjectivity of C; gives D; = D’. Hence, we proved [y] = [y'] which gives that H is
injective. For surjectivity, let (F, f) € T*F(dy,...,dmn;n). Write F=(0C By C...C E,, C
C™). Choose a: C"* — C% and C;: C%1 — C%, for i = 2,...,m such that E; = ker(a)
and E; = ker(C;...Cqa), for i = 2,...,m. This implies that a, Cy,...,C,, are all surjective.
Since a is surjective and E; C ker(f), there exists b: C% — C” such that ba = f. Let

ai,...,ay be the column vectors of a and by, ..., b, be the row vectors of b. Then, we set
n
A; = idcdi’ B = —(Zaﬂy), Bj =B_,, fori=1,...,n. (2.66)
j=i
Finally, we inductively construct operators D;: C% — Cdéfl, for i = 2,...,m such that
CQDQ = _Bl_7 and CZDl = Di_lCi_l, 1= 2, .., M. (267)

For the base case i = 2 note that as f(E;) C f(E2), we have ker(Cea) C ker(By a). Thus,
ker(Cy) C ker(By") and hence there exists a unique Dy: C% — C% such that DyCy = — By .
Now, for ¢ > 0 the induction hypothesis gives

Ci—1D;_1Ci_1Ci—o ... Coa = C;_1Ci_o .. .Cgaf.

As f(FE;) C E;—1, we conclude that the kernel of the above operator contains E;. Since
Ci—1,...,C9,a are all surjective, this implies ker(C;) C ker(C;—1D;_1). Thus, there exists a
unique D;: C% — C%-1 such that D;C; = C;_1D;_1. Now, by (2.66)), the point

y = ((Ai, B, B, ai,b1)i (C5. D)) € Vg gy

satisfies (2.12). As all A; are isomorphisms, y also satisfies|(S1)|and|(S2)} Thus, y is contained
in Mv(ﬁ(dl, ooy dm;n)). By ([2.67), we further have y € m~!(0) and Lemma gives that
y is x-stable. Hence, [y] is indeed a point on C(D) which satisfies H([y]) = (F, f). Thus, H

is also surjective which proves that H is an isomorphism of varieties. ]

The T = (A x Cj)-action from (2.49)) and (2.51)) on C(D) induces the following T-action
on T*F(dy,...,dn;n):

t(F, f) = (dO)(F),dt) fd)™"), h(F, f) = (F,hf),

where t = (t1,...,t,) € A, (F,f) € T*F(dy,...,dn;n) and d(t) is the diagonal operator such

that d(t)(e;) = tie; for i = 1,...n, where ey, ..., e, denote the standard basis vectors of C".

Matching of tautological bundles

Fori=1,...,m, let
SZ-:{(}':(OCE1C...CEmCC"),v)|U€E¢}CF(d1,...,dm;n)x(C"
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2.5. Cotangent bundles of flag varieties as bow varieties

be the i-th tautological bundle and Q; = (F(di,...,dn;n) x C")/S; the corresponding
quotient bundle. By abuse of language, we also denote the pullbacks of S; and Q; to
T*F(dy,...,dn;n) by §; and Q;. The T-action on T*F(dy,...,dyn;n) induces a T-action
on S;:

(t,h).(F, f,v) = (d(t)(F), hd(t) fd(t)~ ', d(t)v), (t,h) € T.

Likewise, we get an induced T-action on Q;:

(t,0).(F, f, [w]) = (d(t)(F), hd(t) fd(t) ", [d(t)w]), (t,h) € T.

In this way, S; and Q; become T-equivariant vector bundles.

The next theorem states that (up to an equivariant twist) the quotient bundles Q; corre-

spond to tautological bundles of C(D(dy, ..., dm;n)):
Theorem 2.69. There is an isomorphism
H: &myo i — Qi @ Cpai,
of T-equivariant vector bundles over T*F(dy,...,dmy;n) given as

Hi(y,w)] = (Fy, byay, Iy_,il(w))v
where y = ((Ai, By, B, ai,b;)i, (Cj, D;);) € m~1(0)°, w € Winya—i = C% and the vector
space isomorphism I, ;: C"/E, ; = i s induced by C;...Caa.
Proof. Theoremm gives that H is bijective and hence an isomorphism by Proposition m
The identity I(; ), = h=1,d(t)~! for all (t,h) € T implies that H is indeed T-equivariant.
O

Realization via separated brane diagrams

In some situations, it is convenient to work with the following bow variety realization of
T*F(dy,...,dn;n) corresponding to a separated brane diagram: By construction, the brane

diagram ﬁ(dl, ..., dm;n) admits the margin vectors

r=(n-d,d —dydy—dy....d _—d .d) c=(1,1,...1).

m? 'm

Thus, by Corollary ﬁ(dl, ..., dm;n) is Hanany—Witten equivalent to the separated brane
diagram D(dy, ..., dmy;n) which is defined as

0 J S/ J NI\ LN\ e

Note that D(dy,...,dn;n) is obtained from ﬁ(dl, ..., dm;n) via Hanany—Witten transitions
by moving V; to the left of Uy, ..., U,. Let

®: C(D(dr,...,dm;n)) — C(D(d1,...,dn;n)). (2.69)
be the corresponding Hanany—Witten isomorphism from Proposition Then,
H :=Hod® ':C(D(dy,...,dn;n)) ——= T*F(dy,...,dmn;n) (2.70)

is a p-equivariant isomorphism of varieties, where p is the automorphism of T given by
(t1,.. . tn, ) = (tth~Y .t h ™1 ).
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Chapter 3
Torus fixed points of bow varieties

In this chapter, we study the action and in particular the torus fixed points if the torus
action from Section Recall that a bow varietiy C(D) is equipped with an action of a
torus T = A x Cj, where A leaves the symplectic form w’ on C(D) invariant whereas Cj
scales w’. Nakajima proved in [Nakl8, Theorem A.5] that this torus action admits only
finitely many fixed points by first giving a classification of the A-fixed points in terms of
certain versions of Maya diagrams or equivalently partitions. The fact that C(D)* is finite
directly implies C(D)* = C(D)".

In this chapter, we recall this classification of T-fixed points of bow varieties using the
language of tie diagrams from [RS20] and [Sho21]. We begin by describing the underlying
combinatorics and the resulting explicit construction of T-fixed points. We will in particular
see in Section that this classification of T-fixed points is well-behaved with respect to
Hanany—Witten transition. Hereafter, we consider in Section the classification of T-
fixed points in the special case of cotangent bundles of partial flag varieties. We match the
classification of torus fixed points in terms of tie diagrams with the classical parameterization
in terms of symmetric (i.e. Weyl) group elements. In the last part of this chapter we follow
[Nak18, Theorem A.5] to prove the Generic Cocharacter Theorem (Theorem which
states that the fixed point locus corresponding to any generic one-parameter subgroup of A
coincides with C(D)T. This result will be crucial in the study of attracting cells in Chapter
and of stable envelopes of bow varieties in Chapter

3.1 Tie data and tie diagrams

Following [RS20l Section 4], we associate combinatorial objects to brane diagrams.

Definitions

Let D be a brane diagram and recall the total order < on the set of lines in D from (2.27)).
Given a pair (Y7, Y2) of colored lines and a black line X in D with Y; <Y, we say that the
pair (Y1,Y3) covers X if Y1 9 X aYs.

Definition 3.1. A Tie data with underlying brane diagram D is the data of D together with
a set D of pairs of colored lines of D such that the following holds:
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3. TORUS FIXED POINTS OF BOW VARIETIES

e If (Y1,Y5) € D then Y7 <Y5.

e If (Y1,Y5) € D then either Y; is blue and Y3 is red, or Y} is red and Y5 is blue.

e For all black lines X of D, the number of pairs in D covering X is equal to dx.
We denote by Tie(D) the set of all tie data associated to D.

As D is usually a fixed underlying brane diagram, we just refer to a tie data associated
to D just by the set D.

We visualize such a tie data D by attaching to the brane diagram D dotted curves con-
necting a red line with a blue line according to the following algorithm: We consider all pairs
(Y1,Y2) € D of one red and one blue line.

e If Y] is blue and Y5 is red, we draw a dotted connection below the diagram D.
e If Y] is red and Y5 is blue, we draw a dotted connection above the diagram D.

The resulting diagram is called the tie diagram of D and the dotted curves are called ties.
Conversely, a diagram with connections between red and blue lines, drawn from red to blue
at the top and from blue to red at the bottom, is a visualization of a tie data, if and only if

each black line X is covered from the top and bottom by a total number of dx arcs.

Example 3.2. Let D be the brane diagram
0 / 2 \ 2 \ 3 / 2 \ 0
Then, the pairs D = {(Va2,U1), (Va,Us), (U1, V1), (U2, V1), (V1,Us)} give the data of a tie

diagram which is visualized by

0/2\2\3/2\0

Note that for instance the first label 2 corresponds to the two curves covering it from above,

whereas the second label 2 corresponds to one curve running above and one curve running

below it.

As tie data and their corresponding tie diagrams are in obvious one-to-one correspondence,

we do not distinguish between them.

Non-negativity of margin vectors

One can easily verify that not every brane diagram can be extended to a tie diagram. However,
if we can extend a given brane diagram D to a tie diagram, we have the following non-
negativity result for margin vectors: For this, recall that M = |r(D)| and N = |b(D)| from
Notation and the definition of the margin vectors r = (r1,...,7ry) and ¢ = (c1,...,cnN)
associated to D from Definition 2.58
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3.1. Tie data and tie diagrams

Lemma 3.3. If D can be extended to a tie diagram then r; > 0 and c; > 0, for all i =
1,...,M,j=1,...,N.

Proof. For D € Tie(D) and V; € r(D), we have
dy+ —dy- =[{U e bU) | (Vi,U) € D} = {U € b(U) | (U, Vi) € D}|.
Since r; = dy+ —dy,— + |[{U € b(U) | U aV;}|, we thus deduce
ri=[{U e bU) | (Vi,U) € D} + {U € b(U) | (U, V;) ¢ D}|.

This implies r; > 0. The proof for ¢; > 0 is analogous. O

Binary contingency tables

Let D still be a fixed brane diagram with margin vectors r and c.
Next, we give an equivalent definition of tie diagrams in terms of matrices with entries
in {0,1}. As we will see in Proposition these matrices are well-behaved with respect to

Hanany—Witten transition.

Definition 3.4. Let bet(D) denote the set of all M x N matrices B with entries in {0, 1}

satisfying following row and column sum conditions:
. zj.VZIBm =y, forallie {1,..., M},
o M Bij=c¢j, forall je{1,...,N}.
The elements of bet(D) are called binary contingency tables of D.
The binary contingency tables of D encode the tie diagrams of D:
Proposition 3.5. There is a bijection
M: Tie(D) +=% bet(D), D+ M(D),

where

if (V;,U;) € D, V; aUj,
U;,V;) ¢ D, U; <V,
Vi,Uj) ¢ D, Vi <Uj,
U;, Vi) € D, U; < V.

M(D);; = (3.1)

) aw] = —
—_
i

The inverse of M is given by bet(D) — Tie(D), B — Dp, where D = Dz U D%, and
Dy ={(V5,U;) | Vi<Uj, Bij =1}, D = {(U;, Vi) | Uj a Vi, By = 0}.

Proof. We first show that for all D € Tie(D), the matrix M (D) is indeed contained in bet(D),
i.e. M (D) satisfies the required row and column sum conditions. Let V; € r(D). Then, we

have

N
Y M(D)i;=H{U € b(D) | (V;,U) € D} +|{U € b(D) | (U, Vi) ¢ D}|. (3.2)
j=1
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3. TORUS FIXED POINTS OF BOW VARIETIES

Since D is a tie diagram, we have
dys —dy- = {U (D) | (Vi,U) € D} — {U € b(D) | (U.i) € D}

This implies (3.2) = dy+ — d,- + [{U € b(U) | U «V;}| = r; and thus proves the row
sum condition for M (D). The column sum condition follows along similar lines and hence
M (D) € bet(D). Next, we prove that Dp € Tie(D), for all B € bet(D). For this, we show

via induction on [ that
Xm = ’{(Y&,Yg) € Dp |Y1 <]Xl<1Y2}’, for all X;. (33)

The case [ = 1 is clear. For the induction step, suppose that V' = X, is red. The row sum

condition for B gives
{U eb(D) | (V,U) € Dp}|+{U € b(D) | (U,V) & Dp}| = dy+—dy-+{U € b(D) | UV }|.

This is equivalent to |[{U € b(D) | (V,U) € Dg}|+|{U € b(D) | (U,V) € Dp}| = dy+ —dy-.
With the induction hypothesis,

dy- =|{(Y1,Y2) € Dp | Y1 < X1, Xi<Ya} + {U € b(D) | (U,V) € Dp}|.
Thus, we obtain

dv+ = ‘{(Yl,Yé) € Dg ‘ Yi< X1, X; <1Y2}’ + ’{U S b(D) ‘ (‘/, U) S DB}‘
= |{(Y1,Yé) € Dp ‘ Y, <1XZ<IY2}|.

Thus, we proved (3.3). The case where X, is blue is analogous. Hence, we conclude that
Dp is indeed a tie diagram over D. Finally, (3.1) yields M(Dg) = B, for all B € bet(D) and
Dyy(py = D, for all D € Tie(D) which proves the proposition. O

Separating line

The separating line of a binary contingency table B is a useful tool to illustrate the cor-
responding tie diagram Dp from Proposition It is constructed as follows: Draw the
matrix B into a coordinate system, where the entry B; ; is put into the square box with side
length 1 and south-west corner at (M —1i,7 —1). Then, we define points py, . .., py+n in this

coordinate system via py = (0,0) and

pi—1+(1,0) if X is blue,
pi—1+(0,1) if X, is red,

pi =

fori=1,...,M + N. The separating line Sp of B is then obtained by connecting each p;
with p; 11 by a straight line.

We can illustrate Dp using the following algorithm:

e For each (i, j) such that B; ; = 1 and the entry B; ; lies below Sp, draw a dotted curve

connecting V; and U;.
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e For each (i, j) such that B; ; = 0 and the entry B ; lies above Sp, draw a dotted curve

connecting V; and U;.

Example 3.6. Let D and D be as in Example The corresponding binary contingency
table M (D) with separating line is given as

U, Uz Uz Uy

Vilijo|o|1
Valo|1|1]o0
Valofo|1|1

3.2 Classification of torus fixed points

Next, we follow [RS20, Section 4] to associate to each tie diagram D over a given brane
diagram D a T-fixed point zp € C(D). This assignment then gives the desired classification
result from [Nak18, Theorem A.5]:

Theorem 3.7 (Classification of T-fixed points). There is a bijection
Tie(D) «+1s ¢(D)T.
The explicit assignment D — xp is given in Definition below.

We prove Theorem [3.7] in Section |3.5| as a consequence of the Generic Cocharacter Theo-
rem.

We now come to the explicit construction of the T-fixed point zp, for D € Tie(D).
For the convenience of the reader, we give self-contained reproofs of statements used in the
construction of xp with special emphasis on the stability properties of the involved quiver

representations.

Butterfly diagrams

Given a tie diagram D € Tie(D), we first assign to D a family of colored graphs which are
called butterfly diagrams. Based on the structure of these butterfly diagrams, we then define
in the subsequent subsection the T-fixed point zp in terms of matrices.

We first define the vertex set of the butterfly diagrams. For this, recall notation from
Notation 2.321

Definition 3.8. Let D be a tie diagram and U be a blue line in D. Let J € {1,...,M + N}
such that U~ = X ;. The set V(D,U) of butterfly vertices corresponding to D and U is a
finite subset of Z2, where a point (ji,j2) € Z? is contained in V(D,U) if and only if the

following conditions (i)—(iii) are satisfied:

i) 2-J<in<M+N-J,

(i) epux; s <J2 <cpux;, .y tdDUX; s
(iii) dp,v,x;,,, #0.
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3. TORUS FIXED POINTS OF BOW VARIETIES

Here, cp y,x and dp y x are integers, depending on a black line X = X, defined as follows:

HV er(D)| (V,U)e D, VaX}| if XaU,

dpyux =
{V ex(D) | (U,V) €D, Vo X} if XoU.

For X; «U, we define CDUX; recursively via cp,y,x, = 0 and for 2 < j < J as

CDU,X 41 if Xj’ is blue,
CD,UX; = \ CDU,X; 11 if XJ+ is red and dD,U,Xj +1= dD7U,Xj+1;

. + . _
CD,U,Xj+1 -1 if Xj is red and dD,U,Xj = dD,U,Xj+1'

In case X; > U, we set
¢pu,x; =dpux,, — dDUX;-

We call the elements of V(D, U) the butterfly vertices, the integers ¢p,u,x; the column bottom
indices and the dp y x; the column heights of D and U.

Example 3.9. Let D be the following tie diagram:

/// o \:é’;/
0/1/2/3\3/5\

4/2\\2/0

We pick U = Us. In order to determine the integers dp 7, x, we remove all ties not connected

to Us and count for each black line X the number of ties which cover X:

//// //// \\\\\
. . N
0/1/2/2\2/3\2/1\1/0

The resulting numbers dp v, x; are the new labels. We denote the underlying brane diagram

by Dp . The column bottom indices c¢p v, x, are

cpux; | 1] -1

62



3.2. Classification of torus fixed points

Following Definition we draw the elements of V (D, U) as dots into the coordinate plane.

For better illustration, we draw the coordinate plane below the brane diagram Dp y .

0/1/2/2\2/3\2/1\1/0

Let still D be a tie diagram and U a fixed blue line in D.

Definition 3.10. A butterfly diagram for (D,U) is a finite, directed, colored graph with
colors black, blue, red, violet and green with vertex set V (D, U).

We assign to each pair (D, U) a butterfly diagram b(D, U). To encode the vertices in the
diagram, we first define subsets of V/(D,U):

Vit = {(i.4) € V(D,U) | X}, , € b(D)}, = {(i.4) € V(D,U) | X;3, € (D)},
Vit = {(i,4) € V(D,U) | X, € (D)}, = {(i.4) € V(D.U) | X;3, € 1(D)}.

In addition, we set Vi, = V;" UV, and V; = V" UV,". The colored arrows of b(D,U) are
recorded in Table [3.11

| Color | Arrows of b(D U) |
blie | (= L)—(h))  (n)) € Vb (-1 ) eVt
red (i+1,5)«Gj) (i) € V+ (i+1,5) eV"
violet | (i — 1,5 — 1)«(i,5) (i,5) €V, , (i—1,7—1)€ VT
(0,dp yuy-)* if dD,U,U 7'é 0
x<(L,dpypy-+1) ifdpyy- <dpuyu+

Table 3.1: Arrows of the butterfly diagram b(D, U).

green

If for instance (D,U) are as in Example then the corresponding butterfly diagram
b(D,U) is illustrated in Figure For further examples of butterfly diagrams see [RS20,
Section 4.6].

From butterfly diagrams to torus fixed points

Next, we associate to a given tie diagram D and its butterfly diagrams b(D, U) the associated

T-fixed point xp by interpreting the dots as basis elements and the arrows as vector space
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0/1/2/2\2/3\2/1\1/0

/
e
vl

o—0

Figure 3.1: Butterfly diagram b(D,U), for (D,U) as in Example

homomorphisms: Let Fpy = @z‘jez Cey;,j and let Cpy = C. Assume a is an arrow in
b(D,U) which is not green. Denote by (i1, j1) the source of a and by (i2, j2) the target of a.

Then, we assign to a the vector space endomorphism

€Ui2,j2 if i =41, j = J1,
¢a: Fpu — Fpu, alev,;) = ,
0 otherwise.

By construction, b(D, U) admits at most one green arrow starting in * and at most one green
arrow ending in . If b(D,U) admits a green arrow a starting in * and ending in (i,5) we

assign to a the vector space homomorphism

/l/}a: CD;U S FD7U7 /llba(]') = 6U7i7j'

If b(D,U) admits a green arrow b starting in (i1, j1) and ending in *, we assign to b the vector

space homomorphism

1 ifi=1dy, j =7,
Uy: Fouv — Cpu,  Yhleviy) =
0 otherwise.

The column indices of the butterfly vertices define finite dimensional subspaces of Fp y:
FD,U,Xi = <€U7i,J,j ’ (’L — J,]) S V(D, U)), for all X; € h(D)

In addition, we set

Fx = @ FD,U,X; for X € h(D)
Ueb(D)

Let U’ be a blue line of D and J' € {1,..., M + N} such that X » = (U’")~. Using the colored

arrows of b(D,U), we define linear operators

Ap vy € Hom(Fpux, »Fpux,), Bpyy € End(Foux,,,), Bpyy € End(Fpux,,)
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as
Apuur(ev—sirg) = Y $alevy—ri1):
a€blue(D,U,J’)

BB,U,U’ (ev,g41-75) = Z(_l)soa(eU,J’Jrl—J,j),
aeblack(D,U,J"+1)

Bp yurev-15) = Z(—l)SOa(eU,J'—J,j)-
a€black(D,U,J")

Here and in the following, for any color ¢, we denote by c¢(D, U, j) the set of arrows colored
¢ in b(D,U) with first coordinate of the target equal to j.

Next, we analogously construct linear operators for each red line. Given a red line V in
Dand I € {1,...,M + N} such that X; = V~, we define linear operators:

Cpuyv € Hom(Fpyx,,,,Fpux,) and Dpyy € Hom(Fpu x;, Fpu.x; )
via the formulas

Cpuyv(evr—it1j) = E valev,r-g+1,5), Dpuv(evr-i;) E valev,r-g5)-
aeviolet(D,U,I—-J) acred(D,U,I—J+1)

Finally, we also define homomorphisms

apu € HOII]((CU, FD,U,U*) and bD,U S HOII](FD7U’U+, (CU), (34)

o (1) if green®(D,U) = {a},
aD,U(l) =
0 if green®(D,U) = (),
Yy(ev,iy) if green™(D,U) = {b},
bpu(eu,;) = ,
0 if green™(D,U) = 0,

where green™(D,U) and green®(D,U) are the sets of green arrows starting respectively
ending in the additional vertex .

Combining the above pieces, we now define the point xp. For this, recall the notation
from Section 2.3l

Proposition 3.11. For D € Tie(D), we set

yp = ((Ap,v, Bp y» Bpy»apv:bo.u)u; (Cpyv, Dpy)v) € Vp,

where

_ + + - _ -
Apu = @U/eb(p) AD,U’,U» BD,U - @U’eb(D) BD,U’,U’ BD,U - ®U’eb(D) BD,U’,U’

Cpv =@uien) Couryv: Doy =@urenpy Doy
and ayr, by are defined as in (3.4). Then, yp € m~1(0)%.
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3. TORUS FIXED POINTS OF BOW VARIETIES

Proof. We have to show that yp satisfies (2.33]) and (2.36) as well as the stability conditions

(S1)] [(S2)| and the x-stability criterion from Proposition 2.37] The equations (2.33) and
(2.36)) can be directly shown using the definition of yp. So we proceed with proving |(S1)[and

(S2)l Let U € b(D). By definition, (Ap v, B, U,BE > ap.U,bp ) satisfies (S1)[if Apy is
injective. So suppose Ap 7 is not injective. Since the Ap 7 are vector space isomorphisms
for U’ # U, we deduce that the operators

- +
(Ap,uu, Bp v Bp s ap,u,bou)

correspond to the diagram

k.
o (L,dy)
®(1,do+1)
(0, do) (1, do)
(0,do — 1) (1,do — 1)

(0,0) e—e (1,0)

We conclude

ker(AD7U) = ker(AD,U,U) = <6U,1,d0+15 e an,l,d1>-

Let w € ker(Ap ) \ {0} and write
w = Aey1do+1 + -+ Ay —do€U,1,d;» i €C.

Choose [ such that \; # 0 and A\; = 0, for ¢ < [. Then, we have

bp.u((Bh ) H(w) = (=1)""'N # 0.

Thus, ker(Ap r) Nker(bp,7) admits no non-trivial BBU—invariant subspaces which is equiva-
lent to|(S1)l For|(S2) note that <(BB’U)i(aD’U(1)) |1 >0) = Fpyy-. Since all Ap v with
U # U’ are vector space isomorphisms, this implies that the only BB’U—invariant subspace
of Wy- containing im(Ap ) and im(ap ) is Wy— which gives Finally, we prove that
yp is x-stable. Suppose T' = P xen) Ix satisfies the conditions of Proposition W To
prove that T' = Wp, we show that 7" contains all Fpy x, for X € h(D) and U € b(D).
Let U € b(D) and write U~ = X;. Since apy(l) € Ty-, we have Fpypy- C Ty-.
As all Apyr and Cpyy are surjective, for all U, V « U, we deduce Fpyx C Tx, for
all X € h(D) with X <U. By construction, all Ap ;0 Fp 774 = Fp gy- are vec-
tor space isomorphisms, for U # U. Thus, as Apy induces an vector space isomorphism
Wi+ [Ty+ = Wy-/Ty-, we conclude that Fp rp+ C Ty+. Finally, we prove via induc-
tion on 4 that Fpyx,,, C Tx,, fori > 1. The case i = 1 is clear as X;41 = U-.
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So suppose i > 2. If V = X;+z’ is red then we have Fpuyx,,, C Tx,., as Dpyyv is
surjective. If U = X}Zri is blue then Apyu: Fpux,,, — Fpux,., , is an isomor-
phism of vector spaces. By the induction hypothesis, we have Fpuyx,,,., C Tx,,, ;-
Hence, we conclude Fpyx,,, C AB}U, (I'x;,,_,). Since Apgr induces an isomorphism
Wx, . /Tx,., = Wx,.i1/Tx,.i > we thus have Fpyx,, , C Tx,,,. Therefore, we proved
that T" contains all Fp y x. Hence, T' = Wp and yp is x-stable by Proposition O

Definition 3.12. We set
zp = [yp] = [(Ap,v, B, s Bpysap.v;bov)u, (Coyv, Dpy)v] € C(D),
where yp is defined as in Proposition [3.11] We call zp the T-fized point corresponding to D.
The next proposition gives that xp is indeed a T-fixed point of C(D).
Proposition 3.13. Lett = (t1,...,tn) € A and h € C;.
(i) We have t.yp = g+.yp, where g = @f\;l gu;t €G and gu,+: Fpu, — Fp,u,, v — tiv.
(ii) We have h.yp = gn.yp, where gy = @f\il gu;.n €G and

id
gu,n: Fou, = Fpu,, euvij— W Pvuvey; ;.

)

Proof. The assertion follows from the fact that the action of ¢ only affects the operators
ap,y and bp . The assertion is a consequence of the fact that the operators BfDﬁU and
Cp,u correspond to arrows that lower the second coordinate of the respective vertices by 1,
whereas the operators Ap  and Dp r correspond to arrows whose source and target have

the same second coordinate. O

3.3 Associated weight spaces

Next, we consider the fibers of tautological bundles of the points xp. Since zp is a T-fixed
point, these fibers are T-representations. Using the structure of the corresponding weight
spaces, we prove in Proposition that two T-fixed points zp and xp/ coincide if and only
if D = D’. Then, we apply this result to characterize the images of the T-fixed points xp
under Hanany—Witten isomorphism.

Recall the definition of the full tautological bundle {p from Definition [2.46] and its T-
equivariant structure from . Let

p = [(Av, By, B, av,bu)u, (Cv, Dy)v] € C(D)".

We identify the fiber £p , with Wp = @ Xen(D) Wx . In this way, we obtain an induced graded

T-action on Wp
p: T—0, (t7 h) = (px(t, h))X (35)

satisfying the following action identity in Vp, for all (¢,h) € T:

p(t).((Av, By, Bl av.bu)u, (Cv, Dv)y)

(3.6)
= ((Au, kB, hB, auty', htuby)u, (hCyv, Dy)y).
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3. TORUS FIXED POINTS OF BOW VARIETIES

We denote the representations (Wp, p) resp. (Wx, px) also just by W), resp. W), x to stress
the dependence on the choice of T-fixed point p.

For a character 7: T — C* and a black line X in D, let W), and W, - x be the corre-
sponding weight space of W, and W), x respectively. The finite-dimensionality of Wp implies

W, =P W, =P @ Wpyr x- (3.7)
T T Xeh(D
Suppose now that p = zp for some D € Tie(D). Then, by Proposition we have the

following weight space decomposition

dp,u,x

Wepx= @ @ oo Co, for X € (D), (35)
Ueb(D) l=cp,u,x

where, as in Section Cy denotes the T-representation corresponding to the character
((ty)v, h) — ty, for U € b(D).

Example 3.14. Consider the brane diagram 0/2/3/4/5\2/3\1/0 with tie diagram D:

X
-

////\_/\/

We like to employ (3.8) to determine the T-weight space decomposition of all W, x. By
Definition @ one can easily read off the column heights dp y,x; from this illustration:

j 2345678

dp,uy,x;
dpanx, 11112230

The resulting indices cp y,; are then given as follows:

j 2 | 3|4 |5|6|7]8
CD,Ul,XJ- -1 -1 -1
o, | =2 =11 0 [0/0][0]0

To determine for instance the T-weight decomposition of W, x,, note that since cp 7, x, =
—1 and dp y, x, = 2, the contribution of U; in (3.8) is given by h=3Cy, ® h—2Cy,. Likewise,
as ¢p,u,,x; = —1 and dp v, x, = 1, the contribution of U; in is given by h=2Cy,. Con-
sequently, W, x, = h=3Cy, ® h~2Cy, ® h~2Cyp,. The other T-weight space decompositions
of the Wy, x, can be computed in exactly the same way and are recorded in the following
table:

68



3.3. Associated weight spaces

‘ Wap x;
h=3Cy, ® h=4Cyj,
h_?’CU1 @ h_Q(CU1 @ h_?’(CU2
h=3Cy, ® h 2Cy, ® h~'Cy, ® h2Cy,
h=2Cy, ® h"1Cy, ® Cy, ® h2Cy, @ h™1Cy,
h=2Cy, ® h"1Cy, ® h2Cy, @ h~'Cy,
h_l(CUl & II_Q(CU2 7] h_l(CU2 @ Cy,
h~'Cy,

R[N || T | W NS,

Reconstructing tie diagrams from weight spaces

We now restrict our attention to weight spaces of W, corresponding to characters of the

subtorus A C T. We begin with the following invariance property:

Lemma 3.15 (Invariance property). Let p € C(D)T and 7 be a character of A. Then, the
weight space Wy, - is invariant under all operators Ay, By, B(J}, Cvy, Dy.

Proof. We only show that W), ; is Ay-invariant, since the proof for the other operators is

analogous. From (3.6) we deduce py-(t)Ay(w) = Avpy+(t)(w) = 7(t)Ay(w), for t € C*,

w € W, - y+. Hence, W), ; is Ay-invariant. O
Now, let p = xp, for some tie diagram D of D. Then, Proposition [3.13] gives

Wy, = Fpuy, foral U e b(D). (3.9)

Thus, the weight space decomposition (3.7) can be used to distinguish T-fixed points for

different tie diagrams:
Proposition 3.16 (Reconstruction of tie diagrams). We have
xp =xp if and only if D =D’
In the proof we use that a tie diagram is uniquely determined by its column heights:

Lemma 3.17. Let D, D' € Tie(D). Then, D = D’ if and only if dpyx = dp'ux, for all
Ueb(D), X €h(D).

Proof. The lemma follows form the fact that (V,U) € D if and only if dp v+ = dp yyv- +1
and that (U, V) c D if and only if dD,U,VJr = dD,U,V7 — 1. O

Proof of Proposition[3.16, If xp = xps then (3.9) gives
dD,U,X = dim(FD,U,X) = dim(FD’,U,X) = dD/,U,Xa for U € b(D), X € h(D)
Thus, Lemma yields D = D'. O
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3. TORUS FIXED POINTS OF BOW VARIETIES

Compatibility with Hanany—Witten transition

Next, we apply to prove in Proposition certain matching identities for the T-
fixed points zp under Hanany—Witten isomorphisms. These matching identities were shown
in [Sho21l, Theorem 3.2.10] by analyzing the explicit construction of Hanany—Witten isomor-
phisms from [NT17]. Our proof of these matching identities avoids the explicit construction of
Hanany-Witten isomorphisms and just uses the reconstruction result from Proposition |3.16

Suppose D 54 D, where D is obtained from D via a local move of the form

\r/m
Xk—1 Xi / Xpq1 X1 X \Xg1
Vj Ui

UV v

We denote the corresponding Hanany-Witten isomorphism by ®: C(D) = C(D). Corre-

sponding to this Hanany-Witten transition, we define a map

i D\{(U;. W)} if (U..Vj) € D,

¢: Tie(D) — Tie(D), ¢(D) = ' (3.10)
DU{(V;,U;)} if (Ui, V) € D.

We refer to ¢ as Hanany—Witten transition for tie diagrams. In pictures, ¢(D) is obtained

from D by performing, in case (U;, V;) € D, the local move

Note that in the first case we removed the tie between U; and V; and in the second case
we created a tie between U; and V;. This pictorial description of ¢(D) gives that D and ¢(D)

admit the same binary contingency tables, i.e. we have
M(D) = M(¢(D)), forall D e Tie(D), (3.11)

where M (D) and M (¢(D)) are defined as in Proposition In particular, we conclude that
the map ¢ in (3.10]) is a bijection.
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From the illustration of ¢ we further deduce that the column heights of D and ¢(D) are

connected as follows:

dpu,x for X # X,
depy,ux = dp,u,x,_1 +4AdD,U,x41 — AD,UX, for X = Xy, U # Uy, (3.12)
dp,v;, X+ T dD,U;, Xy + 1 —dpusx, for X = X, U =Uj.

Since tie diagrams are uniquely determined by their column heights, we deduce the following
compatibility result between the Hanany—Witten isomorphism ® and the Hanany—Witten

transition ¢ for tie diagrams:
Proposition 3.18. For all D € Tie(D), we have ®(zp) = 4(p)-

Proof. By Theorem there exists D € Tie(D) such that ®(xp) = x . By Propositionm7
we have A-equivariant isomorphisms of vector bundles ®*({5 ) = {p x, for X # X; and a

sort exact sequence of A-equivariant vector bundles

0—=&px, = &pxy DED X B Cuy = D7 (Ep x,) = 0. (3.13)
Hence, we obtain dim(Wy; ¢, x) = dim(Wyp, 1, x,), for X # Xj. From we conclude
dim(We 5 1y x,) = dim(Wap, 4y 5, ) + dim(Wep, 4y x ) — dim(Wep 1 x, ), for U # Uj
and also
dim (W 1, x0) = dim(Wap a0 ) + dim(Wapa, x,,0) + 1= dim(Wap i x,).
By and , we conclude dD’ny = dy(p),u,x, for all U, X. Therefore, Lemma

gives D = ¢(D). O

3.4 Torus fixed points of cotangent bundles of flag varieties

It is well-known that the torus fixed points of cotangent bundles of flag varieties are parame-
terized by left cosets of symmetric groups with respect to Young subgroups. In this section,
we illustrate an equivalence between this classification and the classification in terms of tie
diagrams via the realization as bow variety from Theorem For this, recall the notation
of Section 2.5

Consider T*F(dy, . ..,dmn;n) and let S, be the symmetric group on n letters. We usually
denote permutations w € S, in one line notation w = w(1)w(2)...w(n). To each w € S,,

we assign the flag

Fw = ({0} C <6w(1), ceey ew(d1)> C---C <6w(1), R ew(dm)> c C"). (3.14)

By construction, (F,,0) is a T-fixed point of T*F'(d1, ..., dmn;n). Moreover, note that F,, =
Fur if and only if w' € wSs, where S5 = S5, x ... x S5, ., is the Young subgroup. Thus, we
denote F,, also by Fyss. By e.g. [Ful97, Section 10.1], we have a bijection

Sn/Ss ——= (T*F(dy,...,dm;n))", wSs > (Fuss,0).
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3. TORUS FIXED POINTS OF BOW VARIETIES

In the following, we illustrate an equivalence between this classification of torus fixed
points of T*F(dy,...,dy,;n) and the classification of T*F(dy,...,dpy;n) in terms of tie di-
agrams via its realization as bow variety from Theorem Let D(dy,...,dm;n) be the

brane diagram from Definition [2.64] and

H:C(D(dy,...,dm;n)) — T*F(dy,...,dm;n)

be the T-equivariant isomorphism from Theorem [2.67} Given w € S,,, we define a tie diagram
D,, € Tie(D) as D,, = D!, U D" where

={(Vi,U;) |1€{2,3,... m+1}, je{w(di-1 +1),...,w(d;)}},

Dy, ={
Dy ={(U;, V1) | j € {w(dr + 1), w(dy +2)...,w(n)}}.

Note that D,, = Ew/, for all w' € wSs. Thus, we also denote D, by l~)ws5.

Example 3.19. Let m = 3, dy = 2, do2 = 4, d3 = 5 and n = 6. Then, the brane diagram
D(2,4,5;6) equals 0/1/2/4\4\4\4\4\4\4/0 . Let w € Sg be the permutation w = 253614.
To construct Dw, note that since dy = 2, there are no ties in Dw which are connected to U
and Us. As dy = 4, the blue lines Us, Ug are both connected to V7 and V5. Likewise, since
d3 = 5, the blue line Uj is connected to V; and V3. Finally, n = 6 implies that there are ties
between Uy and Vi, V4. Hence, Dw is illustrated as follows:

Lemma 3.20. We have a bijection
Sn/Ss —— Tie(D(dy,...,dm;n)), wSs > Dys,-.
Proof. Let D € Tie(D(dy,...,dm;n)). We set
Ly={j|(U;\)eD}, Li={j|(V;,U;)e D}, fori=2,...,m+1.

In addition, Lo :== {1,...,n}. By construction of D(dy,...,dmn;n), we have |Li| = n — d;
and that for each j € L1, there exists exactly one i € {2,...,m + 1} with (V;,U;) € D. As
r(D) = 9§, we deduce that |L; \ Ljy1| = d;41, for i = 0,...,m. Thus, there exists a unique
left coset cp € S,,/Ss such that for all w € ¢p holds

Li\ Lit1 ={w(di +1),...,w(dis1)}, fori=0,...,m.
This yields D.,, = D as well as ¢p, = ¢, for all ¢ € S,,/Ss which proves the lemma. ]

72



3.4. Torus fixed points of cotangent bundles of flag varieties

The isomorphism H is compatible with the bijection from Lemma, (3.20
Proposition 3.21. For all w € S,,, we have H(Dyg5) = (Fuss,0).
Proof. As H is T-equivariant, H(D,s,) = (F.s;,0), for some z € S,,. We write
F.ss=(0CE C...CE,CC").

Given j € {w(d; +1),...w(d;y1)}, the butterfly diagram corresponding to D,,s, and Uj is

given as

Ly e AR\

Hence, e; € E; and e; ¢ Ei,...,E;—1 which implies 5, = F.,. Thus, we have wSs =
zSs. O

Fixed point matching in the separated case
Let D(dy,...,dmn;n) be the brane diagram from (2.68]). Let
®: C(D(dy,... ,dm;n)) —= C(D(dy,...,dn;n)),
¢: Tie(D(dy, ..., dm;n)) —— Tie(D(dy, ..., dm;n))

be the associated Hanany—Witten isomorphism and the Hanany—Witten transition on tie

diagrams. For w € Sy, we define a tie diagram D,, € Tie(D) via the rule
(Vi,Uj) € Dy & je{w(di—1+1),...,w(d;)}. (3.15)

By construction, D,, = D,y if and only if w’ € wSs. Thus, we also denote Dy, by D,g;.
From Proposition follows that ¢ is given by

¢(l~)w55) = Dnga w e Sn

~

Consequently, the isomorphism H' = H o ®~': C(D(dy,...,dm;n)) = T*F(dy,...,dn;n)
satisfies
Hl($Dw55) = (Fuwss,0), forall we S,. (3.16)

Example 3.22. As in Example 3.19] we choose m = 3, di = 2, do =4, d3 =5 and n = 6.
Thus, D(2,4,5;6) is given by 0/1/2/4/6\5\4\3\2\1\0. Choose w as in Example Since
d1 = 2, the blue lines Uy and Uy are connected in D,, to V7. As do = 4, the blue lines Us and

73



3. TORUS FIXED POINTS OF BOW VARIETIES

Ug are connected to Va. Likewise, ds = 5 gives that there is a tie between U; and V3. Finally,

n = 6 implies that Uy is connected to V4. Therefore, we can illustrate D,, as follows:

>
z ~ -

-
AN

0/1/2/4/6\\5\4\3\2\1\0

3.5 The Generic Cocharacter Theorem

Let D be a fixed brane diagram and
o:C"— A, t— (ou))v
be a cocharacter. We call o generic if oy # oy, for U # U’. In addition, we set
C(D) ={xe€C(D)|o(t)x =uz, forall t € C}.
Theorem 3.23 (Generic Cocharacter Theorem). Let o: C* — A be generic. Then,
C(D)? ={zp | D € Tie(D)}.

We prove the Generic Cocharacter Theorem in the five subsequent subsections. Before

this, we prove some applications. As a direct consequence, we obtain a proof of Theorem

Proof of Theorem[3.7. Let o be a generic cocharacter of A. As A C T, we have C(D)T C
C(D)?. By Proposition every xp is also a T-fixed point. Thus, C(D)? c C(D)T. O

We also obtain a following statement about tangent weights of torus fixed points:

Corollary 3.24 (Tangent weights). Let p € C(D)" and 7 be a T-weight of T,C(D). Then,
there exist i, j € {1,...,N} with i # j and m € Z such that T = t; — t; + mh.

Proof. By Corollary all tangent weights of T,,C(D) are of the form 7/ — 7", where 7/, 7"
are T-weights of W),. Thus, implies that all T-weights are of the form ¢; —¢; +mh, with
i,j€{l,...,N} and m € Z. By the Generic Cocharacter Theorem, p is an isolated A-fixed
point. Thus, the equivariant slice theorem, see e.g. [AF23, Theorem 5.1.4], yields that no
A-weight of T,C(D) is trivial. Thus, no T-weight of T,C(D) is of the form mh, for m € Z

which proves the corollary. O

Remark. In [FS23, Theorem 3.2], Foster and Shou give an explicit formula for the tangent
weights at T-fixed points for bow varieties corresponding to separated brane diagrams. Its
proof relies on a detailed study of the expression of the T-equivariant K-theory class the
tangent bundle in terms of classes tautological bundles from Corollary
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Reduction to separated case

Let o be a generic cocharacter of A. The next lemma gives that it suffices to prove the

Generic Cocharacter Theorem for bow varieties corresponding to separated brane diagrams.

Lemma 3.25. If the Generic Cocharacter Theorem holds for all C(D) with D separated then
it holds for all C(D), where D is not necessarily separated.

Proof. If C(D) is not empty then, by Proposition there exists a separated brane diagram
D with D "Y' D. Let ®: C (D) = C(D) be the corresponding Hanany-Witten isomorphism.

As @ is A-equivariant, we deduce
Tie(D)| = |C(D)’| = [C(D)”].

In addition, |Tie(D)| = |Tie(D)| by Proposition Hence, |C(D)?| = |Tie(D)|. Recall from
Lemma that if D # D’ then also zp # xp. Thus, {xp | D € Tie(D)} and C(D)? have
the same cardinality. Therefore, the inclusion {zp | D € Tie(D)} C C(D)? is an equality. [

Assumption. From now on, we assume that D is a separated brane diagram.

Weight spaces for generic cocharacters

Let p = [(Av, By, Bﬁ,aU, bu)u, (Cv,Dy)y] € C(D)?. Via o we view the T-representations
W, and W), x from (3.5) as C*-representations. For simplicity, we denote weight spaces of
W, and W), x corresponding to a character 7: C* — C* just by W, and W, x. By finite-

dimensionality, we have weight space decompositions

Wp=EPW., Wx=EW,x, for X eh(D). (3.17)

By Lemma the weight spaces W, are all invariant under the operators Ay, B;, Cy and
Dy for U € b(D), V € r(D). In the following, we study the weight spaces W, and provide a
diagrammatic description of the actions of the operators Ay, Bﬁ, Cy, Dy on them.

Proposition 3.26. Let U € b(D). Then, the following holds:

(i) im(ay) C W, -,

(1) Doy, Wru+ C ker(by),
(iii) the operator Ay induces a C-linear isomorphism W+ = W. -, for all T # oy.
Proof. By (3.6)), we have p(t)y+ay(ou(t)'1) = ay(1) and

UU(t)bU(p(t)(;iw) =by(w), forallwe Wy+,teC”

which implies By (or , we now know that ayby vanishes on W_1;+. Hence,
(2.12)) gives
B Ay(w) = AyB(w), for all w € W, p+. (3.18)

75



3. TORUS FIXED POINTS OF BOW VARIETIES

In particular, ker(Aypw ) is Bi-invariant and thus, ker(Agy o+) = 0 by |(S)} Next,
we show that Ay, surjects onto Wy —. By (3.18), im(AU|WT U+) is stable under the
By;-action. By Lemma and the subspace

im(Ayw, ) ® Pw,u- cwy-

VFET
satisfies |(S2)| and thus equals Wy;— which proves O]

Proposition gives the following improvement of (3.17]):
Corollary 3.27. We have Wp = EBUeb(D) Wey -

Proof. We have to show W, = 0, for each 7 with 7 # oy, for all U € b(D). But by
Proposition and Lemma the direct sum €, Ar W,, € Wp satisfies the conditions of
Proposition [2.37 and hence equals Wp. Thus, its complement is zero which gives W, = 0. [

Bases and diagrammatics for the blue part

Let U; be a blue line in D. Next, we employ Proposition and the stability condition |(S2)|
to determine bases of the spaces WgUi X, for j=M+1,..., M+ N+1. We further describe
the restrictions of the operators Ay, By, BE; with respect to these bases, for all U € b(D).

Corollary 3.28. The following holds:

(i) We have W, =0, forj>1.

Uy X Mtit1+4j

(it) The C-vector space W ;- is generated by {(Bgi)ian(l)\i > 0}.

(iii) The operator Ay, induces an isomorphism of vector spaces Woy, x;+1 = Woy, x; for
M4+1<j<M+i—1.

Proof. By Proposition the subspaces Wo,, x,,,,,,, are mutually isomorphic, for
j > 1. Hence, follows from Wx,, ., = 0. For m, let £ = <(Bl}i)lan(1)]l > 0).
Since WUUi,Ui+ = 0, the subspace £ & @, £ou, W, C Wp equals Wp by m This implies
E = WcrUi,U[' Statement is immediate from Proposition 3.26H(iii)} O

Consider WUUi X;, where M +1 < j < M + 4. Using Corollary @ we define a basis
for Wo,, x; as follows: Let r = dim(WO'Ui7XJ\/I+i) and we set yaryi = ay,(1) € Woy, Xargs- I
addition, we define recursively yas1i—r == Av, , .- - Av,_Ym+i € WUU,-7XM+HC= for1 <k<i
and we set Y41k = (—B[}l)kyMH, forl=1,...,i, k>0.

Corollary 3.29. Letl € {1,...,i}. Then, (Ym+1,05--->YM+ir—1) @5 a basis of Wou Xaryi-

Proof. By ([2.12) and Proposition [3.26)((ii), we have

AUjleij = Bﬁj,lAquwv for j=2,...,iand w € WUUZ-,U]‘ (3.19)
Thus, the corollary follows from the statements and from Corollary O
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3.5. The Generic Cocharacter Theorem

We denote the basis (yar41,0,--->Ym+i,r—1) of Wou. X

by By, for il =1,...,4. Our
previous considerations lead to the following diagrammatic description of the operators Ay,

By, B[J} with respect to this choice of bases:

Corollary 3.30 (Blue operators). The restrictions of the operators (Ay,—By;, —B;)U and
ay,, by, to Woy, with respect to the bases Byri1, ..., By+i are illustrated by the following

diagram, where each column contains r dots:

Ul\ Ug\ Ug\ Ui\z Ui\l UZ} Ui+\1
T
|

—
—
—

oo ———eo—— ——ei—e

0— 04— 0 —0&——o

Proof. By Corollary [3.28ll(iii), the dimension of the vector spaces Woy. . X; match with the
diagram. Proposition @ gives that the operators By, are nilpotent. Thus, by Corollary
the operators —B;; (and equivalently —B;}) act on the chosen basis as in the diagram.
It follows from that also the operators Ay act as illustrated in the diagram. By
definition, we have ay,(1) = ya44,0 and since WUUi:X1M+i+1 = 0, we also have by, = 0 by

Proposition (i1) O

Bases and diagrammatics for the red part

Let still U; be a fixed blue line in D and r = dim(W,,, ;;-). Similar to the previous subsection,
we now characterize bases for the weight spaces WUUV x;, for 1 < j < M. Then, we give
diagrammatic descriptions of the restriction of the operators Cy, Dy with respect to these
particular bases.
At first, we set up some notation. Set
ZM+1 = Ym+1 € Woy, Xarpa
and define zpr41—; € Wo

Uy X M1 recursively as zp/41—; = C’ijMJrg_j, for j =1,...,M.

Let 2z = (DVM+2,ZCVM+2,l)kZla fori=2,.... M +1, k>0. Weset E; := <ZU€V€ > 0) and

M N
E = (@Ez) @ (EBWUUZ.,XMHH) C Woy, -
=2 =1

Note that by the moment map equation, we have zyr41 1 = Ynv41,, for all & > 0.
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3. TORUS FIXED POINTS OF BOW VARIETIES

Proposition 3.31. We have E = WUUi.
At first, we investigate how the operators Cy, Dy act on the elements 2y, ;:
Lemma 3.32. The following holds:
(i) We have Cvy,,,_ 21416 = 2k, for k>0, 1=1,..., M.
(ii) We have Dy, , 21k = 214 1,k41, for k>0, 1=1,..., M.
Moreover, E is invariant under all Ay, Blj][, Cv, Dy.

Proof. The assertions and are immediate from the moment map equations. The
invariance of E under all Ay, By, B(Jj follows directly from Lemma Furthermore, |(i)
and imply that F is invariant under all Cy, Dy . O

The proof of Proposition follows now from the stability criterion for bow varieties.

Proof of Proposition[3.31] By Lemma the subspace E' = E& D, 4, Wr C W satisfies
the conditions of Proposition and hence equals W. Thus, we have E = Wy, . O

Proposition [3.31] and its proof lead to the following useful observation:
Corollary 3.33. For V € r(D), the following holds:

(i) The operator Cy induces a surjection W, v+ — Wy y-.

(ii) We have either dim(WUUi’VJr) = dim(WgUwVf) or dim(WgUi,‘H) =dim(W,, -)+1.

U,
Proof. According to Lemma (i1)| and Proposition the image of Cy contains a gen-
erating system of W, i~ which gives For write V =V}, where l = 1,..., M. By

Lemma Dy, surjects onto (zpr42-1k|/k > 1). By Proposition this is a sub-
space of W, -+ of codimension 1. Combining this with we obtain dim(W,, y+)—1<
dim(W,,, v-) < dim(Ws,, x, . ). Thus, we conclude O

Now, by Corollary there exist kg =1 < kb < ... < ky < kry1 = M such that
dim(WoU“th) = dim(Wan,Vk;)'*'l forj=1,...,rand dim(Wan,Vﬁ) = dim(Wan,Vf) in case
kj <1< kjy1 with j =0,...,r. The following corollary is immediate from Proposition [3.31}

Corollary 3.34 (Combinatorial bases). Let X; € h(D) with Vj,,, 9X;<aVj,. Then, the vector
space Wo,, x, has basis (21,055 2ir—j—1). We denote this basis by By, ;.

We now give a diagrammatic description of the operators Cy, Dy :

Corollary 3.35 (Red operators). The operators Cvy,, Dy,, where | = kj... kjq1 — 1, with

respect to the bases By, ..., By, are illustrated by the diagram in Figure @

J+1

Proof. By Proposition we have 2, = 0, for k > dim(Wy,, x,). Hence, Lemmaw gives

that the stated operators act on the given bases exactly as illustrated in the diagram. O
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3.5. The Generic Cocharacter Theorem

Vi,
—/— k‘j <l< k‘j+1

=

AN

NN NN

Figure 3.2: Diagrammatic description of Cy;, Dy, in case [ = kj,...,kj41 — 1.

Proof of the Generic Cocharacter Theorem

The proof of the Generic Cocharacter Theorem is essentially a consequence of the diagram-
matic description of the operators Ay, Bi, Cy, Dy from Corollary and Corollary

Proof of Theorem[3.25 For a given p € C(D)?, we define a tie diagram D via
V,U)e D <« dim(W,, y+)=dim(W,, y-)+1.

For U; € b(D), let r, ko, ..., ky+1 be defined as in the previous subsection. By Corollary
we have dpy, x, = 0, for | > M + ¢ and dpy, x, = r, for M +1 <1 < M + i. Moreover,
Corollary@gives dpu;x, =7 —J, for j=0,...,7 and Vy, 11 < X; < V},. Thus, dpy, x, =
dim(Wy,, x,), for all X; € h(D) which implies that D is indeed a tie diagram of D. The
corresponding column bottom indices are given by cp y, x, = 0, for M +1 <1 < M + i and

cpu;x, =l—M—1+7, for Vi, , <X;<Vy,, j = 0,...,r. Therefore, the vector spaces Fp y, x,
have bases (ey, 1M —i,05 - -+ €U 1—-M—izr—1), for M+1 <1 < M+i. In case Vi, , <X;aVj,, for
some j = 0,...,r, the vector space Fp y, x, has the basis (éy, x,,0---,€v,,x,r—1—j), Where

we set €y, x,.k ‘= eu,,l—M—il—M—2+r—k- Consequently, we can define isomorphisms of vector

spaces ou;,x;: Woy, X, = Fpy.x, via
v, x,(Yik) = evii-mM—ig—k—1, for M+1<I<M+i, k=0,...,r—1

and
CZ)Ui,Xl(Zl,k) = éUi,Xl,k;a for ijﬂ 4X;« ij, k=0,...,57—1.
For the other X;, we have WgUi,Xl = 0, so we set ¢y, x, = 0, for X; <V}, and X;>U;. By
Corollary
dv, v-Av(wy) = Apu,udu, v+ (wt),  du,v-By(w-) = Bp . ydu, - (w-),

¢Ui7U+BE]F (’U)+) = BE,Ui,UgbUi,U"' (er)a
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3. TORUS FIXED POINTS OF BOW VARIETIES

forall U € b(D), w_ € W, -, wy € Wy, y+. Inaddition, Corollary gives ¢y - au, =
ap,y; and by, = bp,y, = 0. Likewise, Corollary implies

¢U¢,V* Cy(vy) = CD,UZ-,V¢U1-,V+(U+)7 ¢Ui,V+DV(v—) = DD,UZ-,V¢U1',V*(U—)7

for all V' € r(D), v— € W, v, vy € Wy, y+. Thus, we proved that p equals the T-fixed
point 2p and hence C(D)° = C(D)". O
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Chapter 4
Attracting cells for bow varieties

In this chapter, we recall several aspects of the theory of attracting cells from [MO19] in the
framework of bow varieties. This theory is an important ingredient for the theory of stable
envelopes which we will discuss in the subsequent chapter.

First, we study the affine structure of attracting cells of torus fixed points of bow varieties
C(D) and show that they are always isomorphic to an affine space of dimension  dim(C(D)),
see Proposition Then, we discuss and study in Sections the partial ordering
on T-fixed points induced from the closure relations of attracting cells. Finally, we show
in Theorem that certain intersections of closures of attracting cells are proper closed
subvarieties of C(D), despite the closures of attracting cells being in general not proper.

In [MO19], Maulik and Okounkov consider attracting cells of smooth and symplectic
varieties X with a torus action which leaves the symplectic structure invariant, and further
assume that X is quasi-projective and that X admits a torus equivariant proper morphism to
an affine variety. By construction, as GIT quotients, bow varieties satisfy all these properties
and hence all the results from [MO19] apply. As we have seen in Section we are addi-
tionally in the preferable situation that bow varieties have finitely many torus fixed points
and these fixed points can be described combinatorially. These facts simplify some aspects of
the theory of attracting cells and make the computation of attracting cells in some examples
possible.

To have a well-behaved theory, we require, as in the classical situation of flag varieties, that
the fixed locus with respect to generic one-parameter subgroups of the torus A is non-empty.
By the Generic Cocharacter Theorem (Theorem , this is equivalent to the following

assumption:
Assumption. From now on, we assume that C(D) is a bow variety with C(D)T # 0.

Recall from Theorem that C(D)T # ( if and only if the brane diagram D can be

extended to a tie diagram.

4.1 Attracting cells

Before we go into details, we prove two general propositions about bow varieties. The first

one is about the existence of important T-equivariant morphisms.
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4. ATTRACTING CELLS FOR BOW VARIETIES

Proposition 4.1. There exists a smooth and projective variety X with T-action and a finite

dimensional T-representation V' such that there exists
(i) a T-equivariant open dense immersion C(D) — X and

(ii) a T-equivariant closed immersion X — P(V).

Proof. By Proposition and Proposition C(D) is a smooth and quasi-projective
variety. Hence, by [Sum74, Theorem 2], there exists a T-equivariant locally closed immersion
C(D) — P(V'), where V' is a finite dimensional T-representation. Let X’ be the Zariski
closure of C(D) in P(V'). Then, X’ is a T-invariant closed subvariety of P(V’) containing
C(D) as open dense subvariety. Let Z be the ideal sheaf on X’ corresponding to the closed
subvariety X'\ C(D) of X’. Applying the Equivariant Hironaka Theorem, see e.g. [Wlo05,
Theorem 1.0.2], to the pair (X, Z) yields that there exists a smooth and projective variety X
with T-action and a birational T-equivariant morphism f: X — X’ such that the restriction
f~YC(D)) — C(D) is a T-equivariant isomorphism. This gives The assertion follows
from applying [Sum74, Theorem 2| to the variety X. O

The next proposition is a useful statement about the existence of T-equivariant proper

morphisms to affine spaces:

Proposition 4.2. There exists a proper and T-equivariant morphism C(D) — V, where V

s a finite dimensional T-representation.

Proof. Let m: MV(D) — @Dx ¢ np) End(Wx) be the moment map from ([2-33). By Propo-
sition and Proposition the projection m: C(D) — m~1(0)/G is a projective
and T-equivariant morphism. Since m~1(0)/G is affine, there exists a T-equivariant closed
immersion ¢: m~1(0)/G — V, where V is a finite dimensional T-representation. Thus,

tom: C(D) — V is a proper and T-equivariant morphism. O

Definition and affine structure

Let 0: C* — A be a generic cocharacter and p € C(D)". By Corollary we have a splitting
T,C(D) = T,C (D)t ®T,C(D), in the subspace of strictly positive respectively strictly negative

[

weights corresponding to . As the symplectic form on C(D) is A-invariant, the vector spaces
T,C(D)} and T,C(D), are both of dimension 1 dim(C(D)).

o g

Definition 4.3. The attracting cell of p with respect to o is defined as
Attr, (p) == {z € C(D) | 1%in(l) o(t).z = p}.
%

By definition, Attr,(p) is just a T-invariant subset of C(D). However, the following
proposition shows that it actually carries the structure of a locally closed affine subvariety of
C(D).

Proposition 4.4. The attracting cell Attry(p) is a locally closed T-invariant subvariety of
C(D) which is T-equivariantly isomorphic to the affine space T,C(D)7.

For the proof, we use the classical Biatynicki-Birula Theorem from [BB73| Theorem 4.3]

and some general applications.
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4.1. Attracting cells

The classical Biatynicki-Birula Theorem

Let X be a smooth and projective variety with algebraic 7' = C*-action. Recall from [Ive72),
Theorem 1] that X7 is a smooth closed subvariety of X. We denote by F,...,F, the

irreducible components of XT and set
X;fi ={reX| }gr(l) t.z is contained in F;}.
Theorem 4.5 (Bialynicki-Birula). The following holds:
(i) Fach X;EZ_ is a locally closed subvariety of X.

(i) The limit map ;: X;fi — F;, w(x) = limyot.z is an affine fiber bundle of F;, where

all fibers are affine spaces.
(iii) For each p € F;, we have an isomorphism of T-equivariant varieties 7'(‘;1(]9) =T, XT.

Theorem generalizes to the quasi-projective setting as follows: Let Y be a smooth and
quasi-projective variety with algebraic T = C*-action. Then, Y7 is again a smooth closed

subvariety of Y. Let FJ,..., F! be the irreducible components of YT and we set
Y;Z ={yeyY| lim £.y exists in ¥ and is contained in F/}.
Corollary 4.6. The following holds:
(i) Each Y};Z s a locally closed subvariety of Y.
(1t) The limit map =} : Y;g — F/, m(y) = limy_o t.y is an affine fiber bundle of F}.
(i4i) For each p € F!, we have an isomorphism of T-equivariant varieties (7})~(p) = T,Y *.

Proof. As in Proposition we can choose an open dense and T-equivariant embedding
Y — X into a smooth and projective variety X with algebraic T-action. As before, let
Fi,...,F, be the irreducible components of X” and 7;: X;'Ji — F; the limit morphism. As

Y is an open dense and T-invariant subvariety of X, we can assume that F] = F; NY for

t=1,...,s. To conclude and it suffices by Theorem to show

i Y(F) =Y,

. ; E fori=1,...,s.

For each p € F], we have that Y N7, L(p) is a T-invariant and open subvariety of T L(p).
Thus, as 7; '(p) = T,X+, Lemmabelow yields Y N7 *(p) = m; '(p). Hence, we conclude
i (F)) =Yg, O

Lemma 4.7. Let W be a finite dimensional T-representation such that all T-weights of W
are strictly positive. Let U C W be an open T -invariant subvariety containing the origin of
W. Then, U =W.

Proof. Let w € W and T.w be the Zariski closure of the T-orbit of w in W. As all T-weights of
W are strictly positive, T.w contains the origin. So U NT.w is a non-empty open T-invariant

subvariety of T.w which implies w € U. O
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4. ATTRACTING CELLS FOR BOW VARIETIES

Suppose 77 = (C*)™ is a further torus acting algebraically on Y such that the T- and
T’-actions commute. This assumtion gives that Yl;z, . 7Y5§ are T’-invariant locally closed
subvarieties of Y. Also, each limit morphism =, is T'-equivariant and hence Y;, is a T'-
equivariant affine bundle over F]. The next proposition gives that if p € F/ OZYT/ then
the identification of fibers (7})~!(p) = T,Y ™ from Corollary can be chosen to be

(2

T’-equivariant:

Proposition 4.8. For each p € F/N YT/, we have a T'-equivariant isomorphism of varieties
(x)2(p) = TY .

For the proof, we use the following result from [Kon96|:

Theorem 4.9. Let V be a finite dimensional T-representation such that all T-weights ap-
pearing in the weight space decomposition of V' are strictly positive. Let Z C V' be a smooth
and T-invariant closed subvariety containing the origin p of V. Consider T,Z C V as T-
subrepresentations and let pr: V. — T,Z be any T-equivariant projection. Then, pr restricts

to a T-equivariant isomorphism Z — T,7.

Proof of Proposition[{.8 By Corollary Z = (m})~1(p) is a smooth and affine variety
with algebraic (7" x T)-action. Thus, there exists a (7" x T')-equivariant closed immersion
Z < V into a finite dimensional (7" x T')-representation. Since all points of (w})~!(p) are
attracted to p under the T-action, we can assume that p is mapped to the origin in V' and
that all T-weights of V' are strictly positive. We view the tangent space T,Z as (T" x T')-
subrepresentation of V. Choose a (T” x T)-equivariant projection pr: V' — T,Z. Then, by

Theorem pr restricts to a (1" x T)-equivariant isomorphism of varieties Z = T,Z. [

Proof of Proposition[{.4. By Corollary Attr,(p) is a locally closed T-invariant subvariety
of C(D). Then, by Proposition Attry(p) is T-equivariantly isomorphic to T,C(D)F. O

(e

4.2 Attracting cells in a concrete example
Let D be the brane diagram

0/1\1/2\2\2/0 (4.1)
We encode the elements of M (D), m~1(0) and the bow variety C(D) as tuples of endomor-

phisms with the notation given by the following diagram:

BY By By
() e () ()
C $ (C /_\ (CQ Az (CQ 4 A3 CZ

Here, we dropped the operators C1, Cs, D1, D3, B] and B; from the picture as they always
vanish. We also identified B; and Bj according to the moment map equation. Moreover,

note that Ay, As, A3 are isomorphisms by Proposition [2.19
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One can easily check that D can be extended to exactly five different tie diagrams:

NN AN/~

Dy . Dy
—/\—/ ;\f\j/ —
SR Ds T T Tl
—/\—/ :\%\j/ — =\ A\~
Dy — Ds —

By Theorem 3.7} the fixed point locus is C(D)T = {zp,,2ZDp,, D5, Dy, TDs }, see Section
for the explicit construction of the zp,. In order to determine the attracting cells of these
T-fixed points, we first describe a covering of C(D) by open affine T-invariant subvarieties.

We start with the following observation:

Claim 4.10. A point

x = (A1, As, A3, BYY, By, By, s, D, a1, as, az, by, b, bs) € i~ *(0)
1s x-stable if and only if the following equalities hold

im(a;)+Im(A;Cyaz) +im(A;CoAsaz) = C,  im(ag)+im(Agaz)+im(DeA ar) = C2. (4.2)
Proof. Define vector spaces
T) ==im(ay), Ty:=im(A;a1), T4 = im(az)+ Im(Asas),

Ty = im(A5 'ag) + Im(az), T4 :=im(A3 Ay ag) +Im(A5 as),

as well as
Ty = im(A;Csaz) + Im(A;C2Azas), Ty =im(Caas) + Im(CyAsa3),
Ty =im(DeA; ar), T =im(A;'DoA ar), TY =im(A3'1A; DA ay).

Set TV = @?:1 T!, T" = @?:1 T} and consider 7" and T"” as graded subspaces of Wp. In
addition, let T; := T} + T/ and T = @?:1 T; C Wp. Note that by construction, x satisfies
(4.2) if and only if T = Wp. Next, we show that T satisfies the conditions of Proposition
Since T contains the images of all ag-operators, it is left to show that T is invariant under all
Ay, Blj][, Cy, Dy and that each Ay induces C-linear isomorphisms W+ /Ty — Wy— /Ty

By definition, we have
A(To) =T, A(Ty) =Ts, A3(T5) =Ta. (4.3)

Therefore, T is invariant under all Ay. As all Ay are vector space isomorphisms, (4.3]) also
yields that each Ay induces a vector space isomorphism W+ /Ty — Wy— /Ty—. By ([2.12),
B3 A3z = —a3bz and Bf = Aflalbl. Therefore, we conclude

im(By) = im(Bz A3) C im(az) C Ty, im(By") C Im(A ay) = Ty,
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Applying again (2.12) gives B, Ay = A2 B3 — asby which implies
im(B3) = im(B3 As) C im(a2) + im(A3B3 ) C Tj.

Thus, we proved that T is invariant under the operators By, By, B; . By definition, Cy(T}) C
Ty and Dy(Ty) C Ty. From follows that B = —C2Dy and By = —DyCs. Hence, we
have Co(T4) C im(B]") C Ty and Do(T¥) C im(B; ) C T4. This implies that T is invariant
under Cy and Dy and consequently T satisfies the conditions of Proposition 2.37] Now, if
does not satisfy then T £ Wp and z is not y-stable by Proposition m Conversely, if
x is not y-stable, there exists a graded subspace S = @?:1 S; C Wp satisfying the conditions
of Proposition with S # Wp. Since S contains the images of all ays, the Aﬁl, Bg, Cy,
Dy -invariance of S implies T' C S. Consequently T' # Wp and S does not satisfy . O

From Claim we deduce the following explicit conditions for y-stability:

Claim 4.11. A point
x = (A1, As, A3, B, By , By, Ca, D2, a1, as, a3, by, by, b3) € m ™ *(0)

18 x-stable if and only if one of the following five conditions is satisfied:

(cov-1) a1 # 0 and det(az D2) # 0,

(cov-2) a1 # 0 and det(Azas D2) # 0,

(cov-3) a1 # 0 and det(az Azasz) # 0,

(cov-4) Caaz # 0 and det(ag Agag) # 0,

(cov-5) CaAza3 # 0 and det(ag Agag) # 0.

Proof. Suppose a1 # 0. By Claim x is x-stable if and if and only if one of the following

pairs is a basis of C:
(a2(1), D2AT ar (1)),  (Azas(1), DaAT ar(1)),  (a2(1), Azas(1)).

Thus, we conclude that z is y-stable if one of |(cov-1)| [(cov-2)| and |(cov-3)| holds. If a; = 0
then Claim yields that z is y-stable if and only if (ax(1), Azas(1)) is a basis of C? and
(Coas(1),CyA%a3(1)) is a generating system for C. Therefore, = is x-stable if and only if
|(cov-4)| or |(cov-5)| is satisfied. O

We use Claim to cover C(D) by T-invariant affine open subvarieties
5
c(p) = Jw (4.4)
i=1

By Claim m~1(0)® is covered by the following open affine T- and G-invariant subvarieties
77171(0)8 = Wl U WQ U Wg U W4 U W5,

where W; = {z € m~1(0) | = satisfies (cov-i)}, for i = 1,...,5. Setting W; := WN/Z/Q C C(D),
provides a cover ({4.4) of C(D) by open affine T-invariant subvarieties. Note that xzp, € W,
for each ¢.The next claim contains explicit normal forms of the elements in the W;. Via these

normal forms, we deduce that each W; is isomorphic to C.
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Claim 4.12. The parameterization from Figure on the next page gives, for any i =
1,...,5, an isomorphism of varieties n;: C* = W; with n:(0) = zp,. In particular, (4.4) is a

covering by affine spaces.

Proof. We only prove the case i = 1 since the other cases can be proved analogously. Let
fi1: C* — m~1(0)° be the morphism of varieties which maps a point (a,b,c,d) € C* to the
tuple displayed by the diagram:

e -(% %) —(Gd 6a)
(ac be)
o @/—\@ (4 @ 4y
~_ )
\ /1 (5) (9) Caary Ny
C C C
Let
m:C* — C(D) (4.5)

be the induced morphism. Clearly, im(n;) C W;. Conversely, given
r = [Ala A27 A37 Bia B;a Bga 02, D2a ai,az, as, b17 b27 bS} S Wla

we may assume by the defining conditions of W; that

10 1 0
—1, A =1, Ay=Ay— . Dy= . ag= .

Let by = (a b) and ag = (). Then, (2.12) implies By = —(25 % ). Moreover, let by = (z )
and Dy = (7). By (2.12) and the moment map equation (2.33), we deduce

( ac bc)_ __(—z —w>

_ = B2 = .

ad+x db+vy 0 0

Hence, * = —ad, y = —bd, z = ac and w = bc. Finally, and also give
by = B = —2 = —ac. This implies € im(n) and thus, im(m) = Wi. To show
that 71 is an isomorphism, it now suffices by Proposition to show that 7; is injec-
tive. Assume 7;(a,b,c,d) = m(d’,b',,d'), so there exists g = (g1,92,93,94,95) € G such
that g.71(a,b,¢,d) = m1(a’, V', ¢, d’). This directly implies g1 = go = 1 and g3 = g4 = g5. In
addition, the conditions g3(})gy " = (§) and g3(9) = () imply that g is the identity matrix.

Hence, (a,b,c¢,d) = (a’,b',,d'). Thus, n; is injective and therefore an isomorphism. O
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e -(6%) - (G389
. (ac bc)
e 1 /\Q (579) Q (69)
C——C C? C? C?
\/y .
rl\ /ﬂc (6) (9) ~ (ad bd) (a4 (a b)
C C C
ue - (%) (att 51)
. (ac be)
e | /\Q (59) Q (69)
C———C C? C? C?
\/y
0
\ /ac (o) (5) Ab) Bt
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Figure 4.1: Parametrizations of the T-invariant affine open neighborhoods W7, ..., W5 of the

T-fixed points xp,,...,zp,. Here, (a,b,c,d) € C*.
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4.2. Attracting cells in a concrete example

Via the explicit parameterizations of the coordinate charts W; = C* from Claim
we can now determine the induced T-action on C%. Tt turns out that the T-action on C% is

always linear and has the following weight space decomposition:

Claim 4.13. The T-action on C* induced by the isomorphism n;: C* = W; is linear and the

standrad basis vectors eq,...,e4 are weight vectors. The corresponding weights are recorded

in Table below.

Proof. We only show that e; is a weight vector of the induced T-action from n;: C* = Wj.
The other statements of the claim can be shown in a similar way. We have to show that for
all (t1,ta,t3,h) € T, we have (t1,ta,t3,h).n1(e1) = mi(tst; *h-e1). Let f: C* — m~1(0) be
as in the proof of Claim Then, 71 (tgtl_lh - e1) is the tuple associated to the diagram:

o (69) (68)
0 () 9
T 10 10
C 1 C > (61) o (61) o
\—/y
0
rl\ % (o) (9) (00) (o) (tst71h 0)
C C C
Likewise, (t1,to,t3,h).7m1(e1) corresponds to
o (89) (89)
et ()
- (69) (69)
C 1 C o 01 o 01 2
\_/{
0
t;l\ % (o) (91)\ ©0) ) eno
C ‘ C C

Thus, we have g.((t1,ta,t3,h).f1(e1)) = A1 (tst h - e1), where

t1 O
9=1(91,92,93,94,95), g1 =g2=t1, g3=9gs=gs= -

0 to
Hence, we indeed have (t1,t2,t3, h).n1(e1) = ni(tat; *h - e1). O
Standard basis
vector el €2 es €4
Open affine
W, ts—ti+h]| ts—tat+th | t—t3 ty — 13
W to—ti+h| ta—ts+h | t—1t2 ts — 13
W3 to — 11 t3 — 1 t1—ta+h | ta—t3+h
Wy to—t1 —h | t1 —ta+ 2h to — t3 t3 —to+h
W tg—t1 —h | t1 —t3+ 2h t3 — to to —ts+h

Table 4.1: T-weight space decomposition of Wy, ...
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4. ATTRACTING CELLS FOR BOW VARIETIES

The affine covering (4.4) with its T-weight space decomposition from Claim lets us

now get a hand on the attracting cells:
Claim 4.14. For a given generic cocharacter o: C* — A, we have

Attr, (zp,) = W,

1,07

for i=1,...,5.

Here, W' is the subvector space of W; generated by all positive weight spaces of W; with

1,0

respect to o.

Proof. By construction, Wt = W; N Attr,(zp,) is an open and T-invariant subvariety
of Attry(zp,). Since Wi'fa contains zp,, Proposition and Lemma imply W;“U =
Attry(xp,). O

Using Claim [£.14] we can now easily determine the attracting cells via Table [{.1] Take
for instance the cocharacter og(t) = (t,t2,#3). Then, by Claim the attracting cell
Attry, (zp,) is equal to the subspace of W) generated by all weight space which are positive
with respect to gg. By Table we have

Wi = Coyt11n ®Cryty1n ® Coy—t5 ® Cry gy
Pairing these characters with og gives
(00;t3 —t1+h) =2, (o0,t3 —ta+h)=1, (00,t1 —t3) =—2, (00,01 —t2) =—1.

Thus, Attre,(zp,) = Ciy—t,+n ® Ciy—t,+n. The remaining attracting cells Attry,(xp,) can be
determined in the same way:

Attrao ($D2) - Ct27t1+h @ Cta—t27 Atton (ng) - (Ct2—t1 ©® Cts—tu

Attrdo (mD4) = Ct2*t1*h ® Ct37t2+h7 Attro’o (xDs) = Cts*h*h ©® CtB—t2'
We leave it as an exercise to the reader to consider other choices of cocharacters and to
determine the respective attracting cells.

We return now to the general framework and will see that the attracting cells are in fact

constant along certain chambers inside the space of cocharacters.

4.3 Independence of choice of chamber

Let A be the cocharacter lattice of A and consider the vector space Ag = A ®z R. For
1 <i,5 < N with ¢ # j, we define the following hyperplanes:

H;j:={(t1,...,tn) | ti = t;} C Ag.

The connected components of

AR\( U sz)
1<i j<N
i#£]

are called chambers. There is a (well-known from Lie theory) one-to-one correspondence

{Chambers} +*15 Sy,
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4.3. Independence of choice of chamber

where we assign to a permutation 7 € Sy the connected component

¢, = {(tl, .. ,tN) ‘ t7r(1) < tﬂ(g) < ... < tW(N)}.

The chamber €4 is called the antidomonant chamber and denoted by €_. The dominant

chamber is defined as € = —C€_.

Remark. This correspondence allows to connect the chambers with the combinatorics of
the symmetric group. Moreover note the parallel to the more Lie theoretic description of
attracting cells, a.k.a. Schubert cells, of Grassmannians, see [GKS20]. For readers new to the

subject it might be helpful to keep for the following this analogous framework in mind.

We have the following independence result for attracting cells:

Proposition 4.15 (Invariance of chambers). Let € be a chamber and o, T € AN E&. Then,

we have

TpC(D)j = TpC(D)ia T,C(D), = T,C(D); - (4.6)
Moreover, attracting cells are constant along chamber, i.e. for all p € C(D)T, we have

Attry (p) = Attr,(p). (4.7)

Proof. Let m € Sy such that €, = € and fix a T-fixed point p. Recall from Corollary
that the A-weights of T),C(D) are of the form ¢; — t;, where i # j. It follows

TPC(D);F = @ TPC(D)ti—tj = TPC(D);F
1<i,j<n
= (@)>771(j)
and
TPC(D); = @ TPC(D)ti—tj = TPC(D);'
1<i,j<n

(i) <m 1 (j)

Thus, we proved (4.6). The equality (4.7)) follows directly from (4.6) and Proposition O

~ and Attr,(p) only depend on the chamber €

[

By Proposition the T,C(D)}, T,C(D)
containing o. Thus, we also denote them respectively by T,C(D){, T,C(D)g and Attre(p).

Remark. In [MOI9], Maulik and Okounkov defined chambers in a slightly different way. They
defined them as connected components of the complement of the union of all hyperplanes or-
thogonal to the A-tangent weights of A-fixed points. Corollary [3.24]implies that the chambers
defined in this subsections refine the chambers in the sense of [MO19]. The inclusion may be
strict as for instance the bow variety C(0/1/3\1\0) is just a single point. Hence, there exists
only a single chamber in the sense of Maulik and Okounkov whereas the chambers defined in
this subsection are in one-to-one correspondence with the elements of the symmetric group

on two letters.
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4. ATTRACTING CELLS FOR BOW VARIETIES

4.4 Partial order by attraction

Given a chamber €, we define a preorder <¢ on C(D)T as the transitive closure of the relation

p € Attre(q) = p=egq, (4.8)

where Attre(q) denotes the Zariski closure of Attrg(q) in C(D).

As we usually work with a fixed choice of chamber, we denote <¢ also just by <.
Lemma 4.16 (Fixed point ordering). The preorder < is a partial order on C(D)".

Proof. Evidently, the preorder < is reflexive and transitive. Hence, it is left to show that <
is antisymmetric. Let p, q € C(D)T with p < ¢ and ¢ < p. For the sake of contradiction,
assume p # ¢q. Given o € €, we can choose by Proposition a smooth o-equivariant com-
pactification C(D) — X. Let F1,..., F, be the C*-fixed components of X and Xt, .. ,X;EZ,
the corresponding attracting cells. By Lemma below, we can order the fixed points
components in such a way such that the subsets
Yi= || XfpcX
1<j<i

are closed subvarieties of X. By the Generic Cocharacter Theorem, we have F; = {p} and
F; = {q} for some i, j. Without loss of generality, we may assume ¢ < j. In particular, we
have ¢ ¢ Y;. Note that Y; N C(D) is Zariski closed in C(D) and stable under attraction, i.e. if
z € C(D) and limy_,¢ o(t).z is contained in ¥; NC(D) then x € Y; NC(D). Therefore, if p’ < p
for some p’ € C(D), we conclude p’ € Y;. Thus, we must have g € Y; which contradicts i < j.

Thus, p = q and hence, < is antisymmetric. ]

Lemma 4.17. Let V be a finite dimensional T' = C*-representation with weight space de-
composition V =@, c; Vin. Let X — P(V') be a smooth and T-invariant closed subvariety.
We denote the irreducible components of X© by F,..., F, and the corresponding attracting
cells by X;l, e ,X;Er. Define a function

wt: {F1,...,F} — 7,

where wt(F}) is the unique integer such that F; C P(Vyy(r,)). Then,

ve=Xpu( | x5
wt(F")>wt(F)

s a closed subvariety of X, for all F=F; andi=1,...,r.
Proof. Suppose wt(F) = m. Let
pr: P(V=")\ P(V>™) — P(V;,)

be the linear projection. Then, X;5 = X Npr~!(F) and thus, X is a closed subvariety of
X N (P(V=")\P(V>™)). Hence, X2 U(X NP(V>™)) is a closed subvariety of X. From

Xnp(v=m = || XA

wt(F')>m

follows that Yp = X}t U (X NP(V>™)) and thus, Yr is a closed subvariety of X. O
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4.4. Partial order by attraction

Partial order by attraction in a concrete example

Let D be the brane diagram from (4.1)) and C(D) the corresponding bow variety. Recall
the cover of C(D) by T-invariant affine opens from (4.4). Again, we choose the generic
cocharacter og = (t,t2,t3). To characterize the corresponding partial order, we first compute

all intersections Attry,(xp,) N Wj.

Claim 4.18. Fori, j € {1,...,5}, the intersection Attry,(xp,) N W;j is a T-invariant linear
subspace of W; whose weight space decomposition is recorded in Table below.

Proof. We only prove the case i = 2 and j = 1 since all other cases are similar. From

Claim we know Attr,, (zp,) = {n2(a,0,0,d) | a,d € C}. By Claim we have that
n2(a,0,0,d) € Wy if and only if d # 0. A direct computation shows

(L1 (520, (8 2%), (8 %)) M2(a,0,0,d) = 1 (—a,0,0,d7 ).

Therefore, we have Attr,,(xp,) N Wi = {n(a,0,0,d) | a,d € C}. Finally, Claim yields

that {7]1 (a, 0,0, d) | a,d € (C} = Ctg—t1+h D Ct2_t3. ]
N 1 2 3 4 5
1
Ciz—t;4h
1 o 0 0 0 0
D Cty—toth
9 Cig—t1+n Ciy—ti+n 0 0 0
D Cy—tqg D Ceg—t,
C, —t Cyy—t Ciy—t
3 1-t3 1—t2 2—t1 0 0
D Cty—tqy D Cry—ty D Cty—tq
4 Cig—totn Q) Ciz—ty Cty—t1-n q)
DCty—tqg DCty—ty+h D Cty—ty+h
5 0 0 Ciy—tot+h Ciy—tg Ctg—t1—n
D Cty—tg+h DCty—ti—n D Ceg—ty

Table 4.2: Intersections Attr,,(zp,) N W; as subspaces of Wj.

Our computations yield that the partial order corresponding to oy is given as follows:
Claim 4.19. We have an isomorphism of partially ordered sets
({1,2,3,4,5},<) — (D), =), i ap,
where < is the usual ordering on {1, 2, 3, 4, 5}.

Proof. We only prove that zp, < xp, as all other cases can be shown in a similar way. By

Claim Attry, (zp,) contains zp,. Thus, xp, < zp,. Likewise, Claim gives that
Attry, (zp,) contains xp, and therefore xp, < xp,. Hence, we also have xp, < xp,. ]
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4. ATTRACTING CELLS FOR BOW VARIETIES

Full attraction cells

Lemma [£.17) implies that for a smooth projective variety with a one-parameter torus action,
we can order the attracting cells such that the successive unions of the attracting cells are all
Zariski closed. Motivated by this general result, we prove an analogous statement for bow
varieties.

Let p € C(D)T. The full attracting cell of p with respect to the chamber € is defined as

Attré(p) = |_| Attre(q).

q=p

We then have the following result:
Proposition 4.20. The full attracting cell Attr’é(p) is Zariski closed in C(D).
For the proof, we use the following basic property of proper morphisms:

Lemma 4.21. Let X, X' be algebraic varieties with T = C*-actions p, p’ and let f: X — X'

be a proper T -equivariant morphism. Then, we have
{reX| %in% p(t).xz exists in X} = f ({2’ € X' | 7yn% o (t).x" exists in X'}).
— —
Proof. The inclusion C is clear. For the converse inclusion, let z € X such that lim; o t.f(x)
exists in X’. Let Oc, be the stalk of the structure sheaf of C at the origin and K be the
function field of C. We denote by a,: T — X, t +— t.x the orbit morphism. By assumption,

we can extend the composition foh to a morphism a),: C — X’. Thus, we have a commuting

diagram:

Spec(K) —%— T —%» X

T

Spec(Ocg) —2s C —=5 X/
Here, k, t, o are the obvious morphisms. By the valuative criterion for properness, see
e.g. [Har77, Theorem II1.4.7], there exists a morphism g: Spec(Oc) — X such that fog =
al, o1y and goj = a, o k. Since X is of finite type over C, there exists an open subvariety
U C C and a morphism ¢': U — X such that ¢’ o9 = ¢g. Since g o j = a, o K, we conclude
that the restriction of ¢’ to U N'T equals the orbit morphism a,. Hence, we can extend a, to

C which gives that the limit lim; .o t.x exists in X. O
Proof of Proposition[{.20. To prove that Attré is closed, we show

Attr]é(p) = U Attre(q). (4.9)
q=p

The inclusion C is clear. For the converse, let ¢ € C(D) with ¢ =< p and let = € Wg(q)
In addition, we fix o € €. By Proposition [£.2] there exists a proper o-equivariant morphism
7: C(D) — V to a finite dimensional C*-representation V. Since 7(Attre(q)) C V=2, we have
Attre(q) € 7~ 1(VZ20). Hence, by Lemma the limit lim;_,o o(f).x exists in C(D). Let
q' = lim;_,o o(t).z. By the Generic Cocharacter Theorem, we have ¢’ € C(D)T. As Attrg(q)
is o-invariant, Attre(q) is also o-invariant and hence o(C*).z C Attre(g). Therefore, also the
limit point ¢’ is contained in Attre(g) which gives ¢ < ¢. Hence, we deduce z € Attré(p)

which completes the proof. ]
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4.5 Opposite attracting cells

We define opposite chambers and attracting cells in analogy to the respective notions in

Schubert calculus:

Definition 4.22. The opposite chamber of € is defined as
CP:={a€cag|—acc}

For p € C(D)", we call Attreon (p) the opposite attracting cell of Attrgos (p).

Note that o € ¢ if and only if 0~ € ¢€°P. The next theorem states that the partial order

=eop is in fact opposite to the partial order of <¢:

Theorem 4.23 (Opposite order). Let p, ¢ € C(D)T. Then, p <¢ q if and only if ¢ <gop p.
We prove Theorem [4.23] using an analytic limit argument and properness properties of

intersections of opposite attracting cells which we consider in the following subsection.

Properness of intersections of opposite cells

In general, the closure of the attracting cells corresponding to € or to €°P need not be proper.

However, the next theorem gives that their intersection is always proper:

Theorem 4.24 (Properness). For p, ¢ € C(D)", the intersection Attre(p) N Attreon(q) is a

proper variety over C.
We immediately conclude, using (4.9)), the analogous result for full attracting cells:
Corollary 4.25. Let p, ¢ € C(D). Then, Attré(p) N Attréop(q) is proper over C.

For the proof of Theorem [4.24] we set up some notation: Pick a cocharacter o € € and,
as in the proof of Proposition a proper o-equivariant morphism 7: C(D) — V to a finite
dimensional C*-representation V. Let pry: V — VY be the linear projection corresponding
to the direct sum decomposition V =V~ @ V°@ VT and set 7 := pryor. Note that we have
7(p) = m(p), for all p € C(D)*. We first establish a technical tool:

Lemma 4.26. Let p € C(D)T, v = n(p) € VO and ¢’ € {€,€°P}. If g € C(D)T N Attre (p)
then Attre(q) C 7 1(v).
Proof. We only prove the case € = € as the proof for ¢ = €°P is analogous. Since 7 is

o-equivariant, we have Attrg(p) € 7 '(v) and hence Attrg(p) € 7 '(v). Thus, 7(q) = v.

Using again that 7 is o-equivriant, we conclude Attre(q) C 7 1(v). O

Proof of Theorem[{.24. As above, we set v := m(p). If 7(¢) # v then Lemma implies

Attre(p) N Attreon () € 7 H(v) N7~ Y (n(q)) = 0.

So let us assume 7(q) = v. Since Attre(p) C 7 H(VZ=Y) and Attreor(q) € 7 H(V=0) we
conclude Attre(p) N Attreor(q) C 7~ 1(V?). Applying Lemma gives

Attre(p) N Attreor (¢) € 71 (v).
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4. ATTRACTING CELLS FOR BOW VARIETIES

Since 7 is proper, we know that the scheme theoretic fiber 7=!(v) is proper over C. As

Attre(p) N Attreos(q) is a closed subvariety of 7~ 1(v), it is also proper over C. O

Example 4.27. Consider again the bow variety C(D) and let o¢ be the cocharacter (¢,t2,t3).

By Claim [4.18, the intersection Attry,(xp,) N Attrao—l(CCDl) is isomorphic to the complex

projective line P! = C U {oo}; an isomorphism is given by co + zp,, = — 11(0,0,0, ), for
x € C. Here, n;: C* = W, is the isomorphism of varieties from Claim m

Proof of Theorem [4.23]

We fix a similar setup as in the proof of Proposition [£.4t Let o € € and we choose a
locally closed T-equivariant immersion ¢: C(D) — P(V'), where V is a finite dimensional T-
representation. For p € C(D)T, we denote by X,, the Zariski closure of +(Attr,(p)) in P(V).
Thus, X, is a closed T-invariant subvariety of P(V') that contains ¢(Attr,(p)) as open dense
T-invariant subvariety.

In this and the subsequent subsection, we usually view the varieties C(D), X, and P(V)
as C*-varieties via the generic cocharacter o. Also, we just view V as C*-representation. As

V' is finite dimensional, we have the usual weight space decomposition

V= @Va, where V, = {v € V | t.v = t%, for all t € C*}.
aE”Z

We denote the dimension of V;, by n,. The C*-fixed point locus of P(V) is given as
P(V)E = {[v] | v € V, \ {0}, for some a € Z}.
Given a € Z and v € V, \ {0}, the attracting cell of [v] in P(V') equals

{z € P(V) y%t.xz[v]}:{[ww] |we @va,}. (4.10)
a'>a
Its Zariski closure in (V') is the projective subspace P({v) © @ /<, Va)-
For each p € C(D)7T, there exists a weight vector v, such that «(p) = [v,]. Let a, € Z be
the weight of v,. Suppose p € m, for some ¢ € C(D)T. Then, implies aq < ap
and we have equality if and only if p = q.

The following lemma will be crucial in the proof of Theorem [4.23

Lemma 4.28. Let p, g € C(D)T with p € Attr,(q) and p # q. Then, there exists p' € C(D)"
and z' € C(D) such that

(i) v, 2’ € Attr,(q) N Attr,—1(p),
(11) ag < ay < ap,
(#3) limy_ot.2" = p' and limy_o t.2" = p.

Proof of Theorem[].23. Assuming Lemma let p, ¢ € C(D)T be distinct with p =<¢ ¢.
Thus, by definition of <¢, there exists pairwise distinct g1, ..., ¢ € C(D)T with ¢1 = ¢, ¢- = p
and ¢;11 € Attr,(g;), for all i. In order to show g <gop p, we prove that ¢; € Attr,—1(qit1),
for all ¢. For given i, there exists, by Lemma a sequence p;, in Wg(q) NC(D)T such
that
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(a) pin € Attry(g;) N Attr,—1(giy1), for all n and
(b) ay,,, = ay;, for almost all n.

Since {p’ € Attr,(¢;) NC(D)T | ay = ag,} = {¢:}, we have p;,, = g;, for almost all n. This
yields ¢; € Attr,-1(qit1)- O

To prove Lemma we use an analytic limit argument. Let p, ¢ € C(D)" with p €

Attr,(¢) and p # gq. We choose bases (vq,1,- - -,Van,) of the weight spaces V,. Without loss

of generality, v, = v,,1 and vy = v,,,1. Moreover, let

Wi (V) & (o vy & (D V) (a1)
a<ap a>ap
Let Z, = {[vp + w] | w € W} C P(V) be the coordinate chart with origin [v,]. We have that
Z, is C*-invariant and t.[v, + v] = v, + t* %0, for all v € V,, a € Z and t € C*. We equip
W with a hermitian product with unitary basis given by and thus view W as metric
space. Via the isomorphism of (analytic) varieties W = Z,, w — [v, + w], we also view Z,
as metric space and denote by |- | the induced absolute value and by dist(.,.) the induced
distance function on Z,.
We set
W= A{[v, + Mg +w] | e C,w e @ Vo) C Z,.

ag<a<ap

Note that W' is a C*-invariant linear subspace of Z,,.

Proof of Lemma[{.28 We want to construct a sequence of elements in Attr,(g) N Z, which
approaches W’ but is far away from [v,]. First, we show that for all € > 0, there exists
z € 1(Attry(q)) N Z, such that

|z] € [1,2] and dist(z, W) < e. (4.12)

By Lemma below, there exists a path ~: [0,1] — X, N Z,, continuous in the analytic
topology, such that v([0,1)) C ¢(Attr,(g)) and v(1) = [vp,]. According to our choice of basis,

we can write

1) = P+ (5 Swalstows) +up

ag<a’<ap i=1

Nap Ny
(X veni6)reyi) + (2 D walshows)]
1=2 a'>ap i=1

The property v([0,1)) C t(Attry(q)) implies 74, (s) # 0, for s € [0,1). Since (1) = [v,], we
have ; j(s) — 0, for s — 1 and all 4, j. Hence, we may assume that all v, ; with i > 0
satisfy for all s € [0, 1]

[Vapsi ()] < n~le, where n = Z N - (4.13)

/
a’'>ayp
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4. ATTRACTING CELLS FOR BOW VARIETIES

Choose tg € C* with [tg| < 1 such that |t5.7(0)| > 2. Thus, as ty.7(1) = [vp], the Intermediate
Value Theorem implies that there exists so € (0,1) such that |tg.7(so)| € [1,2]. In addition,

(4.13) yields
nap gt
dist(to.y(s0), W ’(Z%p’ vam) < Z Zta R va,’i)

a'>ap i=1

<e.

Hence z = to.y(so) satisfies ([£.12). Since t(Attrs(g)) N Z, is C*-invariant, we conclude
z € L(Attry(q)). Thus, z satisfies all desired properties.

As a direct consequence of (4.12), we conclude that there exist a sequence 2, € t(Attr,(g))
such that dist(zp, [vp]) € [1,2], for all m and dist(z,, W’) — 0, for m — co. By the Heine-
Borel Theorem, z,, has a convergent subsequence with limit 2’ € Z,NX,. As dist(z,, W) — 0,
we also have 2z’ € W’. The condition dist(zy,, [vp]) € [1,2] yields 2’ # [v,]. So by the definition

of W', we can write

7= [Wa, + Wag1 + - - + Way—1 + Vp),  Wa, € (Vg), Way+i € Vagti, fori>1.  (4.14)

As 2" # [vp], we have wq, 1 # 0, for some r € {0,...,a, —aq — 1}. Set

ro = min({r € {0,...,ap — ag — 1} | wa 4+ # 0}). (4.15)

By construction,

. r
%gr(l)t 2 = [way4ry) and tli>I20 t.2' = [vp]. (4.16)

Recall that t(Attry(g )) is an open dense C*-subvariety of X,. Since [vp] is contained in
the orbit closure C*.z/, the intersection ¢(C(D)) N C*.z’ is a non-empty open C*-invariant
subvariety of C*.z/. Hence, 2 € (C(D)). As 2’ € Xy, we have 2/ € t(Attr,(g)). Since
limy o0 .2 = [vp], we also have 2’ € ¢(Attr,—1(p)). By Theorem M Attry(q) N Attr,—1(p)

is a closed proper C*-invariant subvariety of C(D). This implies

lim ¢.2" = [Wa,+re) € L(Attre(q) N Attr,—1(p)). (4.17)
t—0
Set p' = 17! ([wa,+r,]). Then, as [wq,1r,] is a C*-fixed point of P(V), we have p’ € C(D)°.

The Generic Cocharacter Theorem then gives p' € C(D)T. By -, we know that |(i)| is
satisfied. Moreover, (4.15) yields a, = a4 + 79 < a, which implies |(ii)} m Finally, - yields
that 2’ satisfies So p’ and 2’ satisfy all desired properties. O

Approximation of boundary points via paths

In the proof of Lemma [4.28] we used the following statement:

Lemma 4.29. Let Y be a smooth algebraic variety of dimension d which is embedded into a
projective variety X as open dense subvariety. Then, for ally € Y\X =: Z, there exists a path
~v:[0,1] = Y continuous with respect to the analytic topology on Y such that v(]0,1)) C X

and y(1) = y.

Proof. By the Monomalization Theorem, see e.g. [Kol09, Theorem 3.35], there exists a smooth

projective variety Y/ and a morphism of varieties f: Y’ — Y such that
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4.6. Partial order via invariant curves

(a) f restricts to an isomorphism f~1(X) = X and
b) f71(Z) is a simple normal crossing divisor.
( P g

Thus, we may assume that Z is a simple normal crossing divisor. Given y € Z. Then,
as Z is a simple normal crossing divisor, there exists an analytic neighborhood of y in Y
which is analytically isomorphic to a neighborhood U of the origin in C? such that under
this isomorphism y is identified with the origin and Z equals the vanishing locus of functions
fi-- fr, where f1,..., fr: U — C are holomorphic functions with » < d and [y,...,[, are
linearly independent, where [; denotes the first order approximation of f;. After applying a
linear transformation, we may assume that [; is the projection the i-th coordinate in C?. By

further shrinking U, we can thus assume that there exists a constant C' > 0 such that
\fi(2) — zi| < C|z%, for z = (21,...,2q) €U, i=1,...,r.

Hence, we conclude {z € U | |z| > C|z[*)} N Z = 0. It follows that u(1,...,1) ¢ Z, for
0<pu<(C \/3)*1. By choosing C' large enough, we may assume that the closed ball centered
at the origin with radius C’ = (C'V/d)~! is entirely contained in U. Thus, if we set

v: [0,1] — U, s+—s-C"-(1,...,1)

then v yields a path with the desired properties. O

4.6 Partial order via invariant curves

In [BFR23| Section 4], an equivalent description of <¢ via T-invariant curves was given. This
description of =g is particularly useful as the computation of T-invariant curves is usually
easier than the computation of all closures of attracting cells. In this section, we give a
self-contained reproof of this result using Lemma and deformation techniques involving
Hilbert schemes.

As before, let o € €. We have the following fundamental result:

Proposition 4.30. For p, ¢ € C(D)T, we have p <¢ q if and only if there exists x1, ...,z €
C(D) and p1,...,px € C(D)T such that py = p and p, = q and for all i, the following

conditions are satisfied
(i) limy_o o (t).z; = pir1 and limy_oo o(t).x; = p;,
(ii) T.x; = o(C*).x;.

The implication = of Proposition is immediate from the definition of <¢. We prove

the converse implication in the subsequent subsections using deformation techniques.

Remark. In the recent work [F'S23], Foster and Shou provide a classification of the T-invariant
curves of bow varieties. Then, in [BER23], this classification is used to explicitly identify the

partial order <¢ with the secondary Bruhat order on (0, 1)-matrices.
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4. ATTRACTING CELLS FOR BOW VARIETIES

Smoothness of one-dimensional T-orbits
We start with the following smoothness result for one-dimensional T-orbits.

Proposition 4.31. Let z € C(D) and p € C(D)" such that the orbit T.x is one-dimensional
and p € T.xz. Then, there exists a character 7: T — C* and a T-equivariant open immersion

t: C — T.x, where T acts on C via 7 and 1(0) = p.
We use the following auxiliary statement:

Lemma 4.32. Let V be a finite dimensional A-representation with A-weight decomposition

of the form
Ve @ i
1<ij<N
i#]
Let Y C V be an irreducible A-invariant closed subvariety with dim(Y') = 1. Suppose we have
0 €Y. Then, we have Y = (v), for some A-weight vector v e V.

Proof. Suppose Y contains a point w = w; + ... + w,, where r > 2 and wy,...,w, € V are
A-weight vectors corresponding to pairwise distinct weights. Let 7; = t;, —t;, be the A-weight
of w;. Since 0 € Y, we can assume that t;, —t;, # t;, —t;;. Thus, there exist cocharacters

o1, o9: C* — A such that
(o1,71) (o2, 11) =0,
1

-1,
(o1, m2) =0, (02, m2) =

This yields that o1(C*).w and o9(C*).w are two distinct connected components of Y. This
contradicts the assumption that Y is irreducible. Hence, we conclude that Y = (v), for some
A-weight vector v € V. ]

Proof of Proposition[{.51 Set Z := T.x. It is a general fact, see e.g. [AF23, Section 7.2],
that there exists a character 7: T — C* and a T-equivariant injective morphism ¢: C — Z
onto an open subvariety Y of Z such that ((0) = p and ¢ restricts to an isomorphism of
varieties C* = T.z. Therefore, to conclude the proposition, it suffices to prove that p is
a smooth point of Z. By the Slice Theorem, see e.g. [AF23, Theorem 5.1.4], there exists a
T-invariant open subvariety U containing p and a T-equivariant étale morphism f: U — V to
a T-invariant open subvariety of T,C(D) with f(p) = 0. As the orbit T.x is one-dimensional,
T.f(x) is also a one-dimensional T-orbit of T,C(D). Since T.x contains p, we conclude that
W contains 0. Thus, by Corollary and Lemma we have W = (w), for some

T-weight vector w € T,C(D). Therefore, 0 is a smooth point of T.f(x). As f is étale, we

conclude that p is also a smooth point of Z. O

Proposition directly implies the following isomorphism types for closures of one-

dimensional T-orbits:

Corollary 4.33. Let Z C C(D) be the Zariski closure of a one-dimensional T-orbit. Then,
Z is a smooth subvariety of C(D). In particular, Z is isomorphic to C*, C or P'.

Thanks to Corollary we call the one-dimensional T-orbits of C(D) also T-invariant

CUTrves.
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4.6. Partial order via invariant curves

Reminders on Hilbert schemes

Before we prove Proposition [£.30} we briefly recall the definition and some properties of
Hilbert schemes. For a general introduction to Hilbert schemes see e.g. the expository works
[Str96] and [Nit05].

Let X be a projective variety with a fixed ample line bundle £. Moreover, let P € Q[z]
be a polynomial. The Hilbert functor

Hilb% : {Schemes over C} — {Sets}

is defined as

HilbY (Y) = {Z € X x Y | Z satisfies [(Hilb-1)H{(Hilb-3)[},

where

(Hilb-1) Z is a closed subscheme of X x Y,

(Hilb-2) the projection pry : Z — Y is flat,

(Hilb-3) for all closed points y € Y, the fiber pr;/1 (y) admits Hilbert polynomial P.
The following fundamental result is due to Grothendieck, see e.g. [Str96, Theorem 8.1]:

Theorem 4.34 (Existence of Hilbert schemes). The functor ”Hilb;} 1s representable by a

projective scheme Hilb% .

This theorem implies that there exists a universal family Z C X x Hﬂb§ such that

for every family Z C X x Y satisfying |(Hilb-1)H(Hilb-3)| there exists a unique morphism
f:Yy— Hilb§ such that f*Z = Z. If Z' is a closed subscheme of X with Hilbert polynomial
P, we denote by [Z] the corresponding closed point on Hilb%.

If G is an algebraic group acting on X then this action induces a G-action on Hilbﬁ. On
the closed points of HilbY, this action is given as g.[Z'] = [¢.Z'], where g and [Z'] are closed
points of G' and Hilb.

Deformation of torus invariant varieties

Consider the general situation, where X is a normal and quasi-projective variety with an
algebraic action of a torus 1. The representability of Hilbert functors allows us to deform

closed subvarieties of X into T-invariant closed subschemes of X as follows:

Lemma 4.35 (Deformation Lemma). Let 7" C T be a subtorus such that T/T" = C* and let
7: C* = T be a chocharacter such that the induced map C* — T/T" is an isomorphism of

algebraic groups. For a T'-invariant closed irreducible subvariety Y C X, set
I"={(r(t)y,t) |yeY, t e C*} C X x C*.

Let T be the Zariski closure of IV in X x C and let Ty be the scheme theoretic fiber of 0 with
respect to the projection X x C — C. Then, the following holds

(i) the projection I' — C is flat,
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4. ATTRACTING CELLS FOR BOW VARIETIES

(ii) To is a T-invariant closed subscheme of X,

(iii) the irreducible components of I'g are T-invariant closed subvarieties of X all of dimen-

sion dim(Y").

Proof. By [SumT74, Theorem 2|, there exists a T-equivariant embedding X — X’ into a
projective variety X’ with a T-action. Let Y be the Zariski closure of Y in X’. Then, Y is a

T-invariant closed subvariety of X’. Set

T ={(r(t)y,t) |yeY,t e C*} c X' x C*.

Then, T contains I" as open dense subvariety. Likewise, let T’ be the Zariski closure of T in
X’ x C and T'y be the fiber of 0 with respect to the projection X’ x C — C. By construction,
T resp. Iy contains I resp. 'y as open dense subscheme. Fix an ample line bundle on X’ and
let P be the corresponding Hilbert polynomial of Y. By definition, the flat family T —cr
corresponds to the 7-orbit of [Y] in Hilb%,. Since T is a closed subvariety of X’ x C* and
X’ x C* is an open subvariety of X’ x C, we have that T' is a locally closed subvariety of
X' x C. We conclude that T' equals the scheme theoretic closure of T in X' x C. Thus,
by e.g. [Har77, Proposition I11.9.7], the projection 7: I' — C is a flat morphism. Since T is
an open subvariety of I', we deduce that also the projection I' — C is flat which proves
Let 7: C* = T/T' be the algebraic group isomorphism induced by 7. We equip C with the
T-action t.x = 771([t]) - , where [t] denotes the class of ¢ in T//T’. Then, the flat family
7: T — C corresponds to a T-equivariant morphism C — Hilb%,. This implies that Ty is
a T-invariant closed subscheme of X’. As the T-action continuously permutes the finitely
many irreducible components of Ty, we conclude that all irreducible components of I'y are
T-invariant. The flatness of 7 implies that the dimension of all irreducible components of Ty
equals dim(Y), see e.g. [Har77, Corollary I11.9.6]. Since I'y = 'y N X, we conclude that Ty
is a T-invariant open dense subscheme of I'y. Thus, and follow from the respective
properties of I'y. O

In the following subsection, we use the Deformation Lemma to deform orbits of generic

cocharacters into one dimensional orbits with respect to the torus T.

Proof of Proposition [4.30

As before, fix o € €. Again, choose a T-equivariant locally closed immersion ¢: C(D) — P(V)
and let a, be defined as in the proof of Theorem In particular, note that if p, p/,
q € C(D)T such that p’ # p, ¢ and p’ € Attr,(q) N Attr,—1(p) then we have a, < ay < ay.

Proof of Proposition[{.30 To prove that <¢ is equivalently characterized by T-invaraint
curves as described in Proposition it suffices to show that for p, ¢ € C(D)T with p # ¢

and p € Attr,(q) there exist x1,..., 2, € C(D) and py,...,pr € C(D)T such that p; = p and

pr = q and for all i, we have
(a) limyo0(t).z; = piy1 and limy_, oo o (t).¢; = p;,
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We prove this statement for fixed ¢ and arbitrary p via induction on a,. If a, = a4 then
p € Attry(g) gives p = ¢ and the statement is trivial. If a, > a4 then, by Lemma there
exists z € Attr,(q) N Attr,—1(p) with limy_,oo 0(t).2 = p. Applying the Deformation Lemma

to o(C*).x gives that there exists a one-dimensional T-invariant irreducible subvariety Y of
Attr, (q) N Attr,—1(p) containing p. Let y € Y \ C(D)*. Note that we have

ay < ap, for all p' € Attry(q) N Attr,—1(p) N C(D)T, p # p.

Thus, we conclude that lim;_, o(t).y = p. The properness of Attr,(g) N Attr,—1(p) implies
that po = lim;00(t).y exists in C(D). By the Generic Cocharacter Theorem, we have

po € C(D)T. As pg € Attr,(q) and a,, < ap, we can apply the induction hypothesis to po
which yields a chain of one dimensional T-orbits with the desired properties @ and @ O

Example of invariant curves

Consider again the bow variety C(D) from . In this subsection, we characterize the
T-invariant curves of C(D). Via Proposition this determines the partial orders <¢ on
C(D)T.

The classification of T-invariant curves of C(D) can be conveniently illustrated via the
GKM-graph T'c(py of C(D), see e.g. [Tym035] for an introduction to GKM-theory. This graph,

named after Goresky, Kottwitz and MacPherson, is defined as follows:
e The vertex set of I'¢(p) is Cc(D)".

e For each T-invariant curve which is isomorphic to P!, draw a an edge between the

T-fixed points corresponding to 0 and oo.

e For each T-invariant curve which is isomorphic to C, draw en edge with one open end

and one end adjacent to the T-fixed point corresponding to O.
Additionally, we decorate each pair (7,p), where 7 is an edge of I'¢(py and p is a vertex of
I'c(py that is adjacent to v with the tangent weight 7).

Remark. As C(D) is only quasi-projective there exist some T-invariant curves that contain
only one T-fixed point. Hence, the GKM-graph of C(D) contains edges that are just adjacent

to one vertex and admit an open end.

Recall the T-invariant affine open subvarieties C(D) = U?:1 W; from (4.4) and the pa-
rameterizations 7;: C* = W; from Claim m

Claim 4.36. The T-invariant curves of C(D) are exactly the Zariski closures of the orbits

T.ni(e;), where eq,. .., eq are the standard basis vectors of C4.
In the proof, we use the following statement:

Claim 4.37. Let x € W;, for somei=1,...,5. Then, T.xz contains 1;(0).
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4. ATTRACTING CELLS FOR BOW VARIETIES

Proof. We only prove the case ¢ = 1 as the other cases are similar. By Claim W1 admits

the weight space decomposition
WI = Ct37t1+h 2] Ct37t2+h 2] Ctl—tg 2] Ctg—t3'

Denote the elements of W as = (A1, A2, A3, A1) according to this decomposition. By using
the Cj-action, we deduce that T.z contains 2’ := (0,0, A3, \s). Let o: C* — A, t — (3,12, 1).
Then, lim; g0 (t).2’ = 0 and thus 0 € T.x. O

Proof of Claim[{.36. Let z € C(D) such that v := T.z is one-dimensional. We have z € W},

for some i = 1,...,5. By Claim we have 7;(0) € v. Thus, Lemma and Claim
imply that T.z = n;(e;), for some j =1,...,4. O

Claim 4.38. The GKM-graph T'¢(py is given as follows:

t1 —t3 + 2h

Proof. By Claim the T-invariant curves of C(D) are exactly the Zariski closures of the
T.ni(e;), for i =1,...,5and j =1,...,4. We just determine the Zariski closure of T.7s(e3)
as all other closures can be determined in the same way. By Claim n5(e3) corresponds

to the diagram

00 00
0 (00) (OO)
1
o 1 C/\Q (59) Q (69) o
\_/
\ % (6) (1) 0 0) () (0 0)
C C C
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4.6. Partial order via invariant curves

Hence, n5(e3) also satisfies and therefore 15(e3) € Wy. Thus, Claim [4.37 gives v =
T.ns(es3) U{xp,,zp,}. Thus, the GKM-graph of C(D) indeed contains an edge e connecting

the vertices labeled by 5 and 4. By Claim the tangent weight of v at zp, is t3 — to.
Hence, the pair (5,e) is decorated with t3 — to, whereas the pair (4,e) is decorated with
ty — 3. O

By Proposition the partial order <¢ corresponding to an arbitrary choice of chamber
can be read off from I'¢c(p) as follows: For p, ¢ € C(D)"', we have p <¢ ¢ if and only if there
exists a finite sequence of vertices p1,...,p, in ey such that

(i) p1 = ¢ and p, = p,
(ii) for all i, p; and p; 41 are connected by an edge 7 such that T}, is positive and T},
is negative with respect to €.
The reader is invited to use this criterion to give another proof that for the cocharacter
oo = (t,t2,3) the corresponding partial order matches with the usual order < on {1, 2, 3,4, 5}.
Remark. The GKM graph of the bow variety C(D) can also be found in [RS20].

Remark. In general bow varieties may admit infinitely many T-invariant curves, see e.g. the

examples in [FS23].
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Chapter 5

Stable envelopes

Stable envelopes were introduced by Maulik and Okounkov in [MO19, Chapter 3| as fam-
ilies of torus equivariant cohomology classes satisfying a certain set of stability conditions
which are analogous to to the stability conditions from equivariant Schubert calculus, see
e.g. [KT03, Lemma 1], [GKS20, Lemma 3.8]. The stability conditions provide different fam-
ilies of stable envelope bases in localized equivariant cohomology (similar to the equivariant
Schubert bases corresponding to different choices of Borel subgroups). Just like in equivariant
Schubert calculus, the base change between different stable envelope bases produces solutions
of the Yang—Baxter equations which provides a connection between algebraic geometry and
integrable systems, see [MO19, Chapter 5]. It in particular allows interesting braid group
actions on equivariant cohomology algebras and constructions of geometric quantum groups.

Maulik and Okounkov consider in their setup smooth algebraic varieties X admitting a

holomorphic symplectic form w satisfying the following conditions on torus actions:

(Torus-1) There exists a pair of tori A C T acting algebraically on X such that w is fixed
by A and scaled by T

(Torus-2) There exists an affine variety X, with algebraic T-action and an T-equivariant

proper morphism X — Xj.

Bow varieties satisfy these conditions, namely by discussion on the torus action in
Section and by Proposition As a consequence, stable envelopes exists for
bow varieties and the results of Maulik and Okounkov’s theory can be applied to them.

The current chapter is devoted to a study of these stable envelopes. We give a detailed
reproof of the uniqueness and existence of stable envelopes in the framework of bow varieties
following [MO19, Chapter 3]. As we are in the preferable situation of finitely many torus
fixed points, some arguments simplify in our setup. The uniqueness property can be shown
via a direct argument which combines the stability properties of stable envelopes and excess
intersection theory.

The proof of the existence of stable envelopes follows the algorithmic procedure from
[MO19, Section 3.5]. In the case of bow varieties, this procedure expresses the stable basis
elements as Z-linear combinations of the Poincaré duals of the fundamental classes of the

attracting cell closures. The crucial input for this algorithmic procedure is a result which
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controls the equivariant multiplicities of torus invariant lagrangian subvarieties. We take
this result from the proof of [MOI9, Lemma 3.4.2] and refer to it as Lagrangian Multiplicity
Theorem, see Theorem [5.15] The Sections and are devoted to a detailed reproof of
Theorem following the general outline from [MOI9, Section 3.4]. Central ingredients of
the proof are the deformation to the normal cone construction from [Ful84] and a further
deformation result, see Proposition [5.29] where we deform lagrangian conic subvarieties of
symplectic vector spaces into lagrangian hyperplanes.

We close this chapter with an example where we explicitly compute stable basis elements

using the algorithm provided by the existence proof.

5.1 Torus equivariant cohomology

Before we discuss stable envelopes, we recall important ingredients of torus equivariant co-
homology and torus equivariant intersection theory which are crucial for the theory of stable
envelopes. For more details on equivariant cohomology see e.g. [Hsi75], [tD87] and [AF23].
For an introduction to equivariant intersection theory, see e.g. [Bri97] and [EG96]. For the
convenience of the reader, prove some of the presented statements.

Let X be a variety with an algebraic action of a torus 7" = (C*)". We denote by H}.(X)
the T-equivariant cohomology and by FZ(X ) the T-equivariant Borel-Moore homology of X
with coefficients in Q. Via the cup product, H}.(X) is equipped with a ring structure denoted
by (a, f) — « - 5. Furthermore, we denote the standard action of an element o € H7}.(X) on
a € FZ(X) by a.a.

Given a T-equivariant morphism f: X — Y of varieties with algebraic T-actions, we
denote the respective pullback and pushforward morphisms in T-equivariant cohomology
and T-equivariant Borel-Moore homology (whenever they are defined) by f* and f..

If X is additionally smooth and Y, Y’ are closed T-invariant subvarieties then via the
usual cup product construction, see e.g. [CGI7, Section 2.6.15], we obtain the corresponding

T'-equivariant intersection product
n:H L (Y)x H (V) — H. (Y N Y).
This pairing satisfies the action identity

(v.a) Nb=1i"(a).(aNb), (5.1)

where a € H}(Y), a € Ff(Y), be ﬁf(Y’) and 7: Y NY’ < Y is the inclusion.

Approximation

The T-equivariant cohomology of a variety X with algebraic T-action can be approximated
via singular cohomology as follows: Set E,, := (C™ \ {0})" and equip E,, with the T' = (C*)"-

action
(t1, ... tp)(v1,...,00) = (f1v1, ..., tpvp),  for (¢1,...,t) €T, (v1,...,v) € E,.
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Then, T-acts freely on E,. Set

Ui ={(x1,...,2) € C"\ {0} | z; # 0}

and note that we have an isomorphism of varieties

cvlxcr = Ui, (vl,...,vn_l,t) — (t'l}l,...,t’l)i_l,t,tvi,...,t’l)n_l). (5.2)
Set Uy :==U;, x...x U, fori= (i1,...,4,). Then, we have a cover of E,, by T-invariant open
subvarieties
E,= |J Ui, where I, = {1,...,n}". (5.3)
iel,

Via , we obtain T-equivariant isomorphisms C"("~1) x T = U, where T acts trivially
on C"™1) and via the regular action on 7. Thus, the geometric quotient E,, /T exists and
and we have an obvious isomorphism of varieties E, /T = (P")". By (5.3)), the projection
pr: E, — P" is a principal T-bundle in the Zariski topology.

Given a complex scheme X with algebraic T-action, we conclude by that E® x X

(equipped with the diagonal T-action) admits a cover by T-invariant opens

Enxf(: UUixf(
icl,

and we have T-equivariant isomorphisms U; x X = C"»1) x X x T. Thus, T acts freely
on E, x X. This gives that the geometric quotient (E, x X)/T exists and the projection
E, x X — (B, x X)/T is a principal T-bundle in the Zariski topology. Moreover, (B, x X)/T

is covered by open subschemes

(B, x X)/T = | J (Ui x X)/T (5.4)
iel,

and we have isomorphisms of schemes (U; x X)/T = €'~ x X. Note that the singular
cohomology groups (with rational coefficients) H'(E,) vanish for 1 < i < 2n — 1. Thus, by
e.g. [AF23, Proposition 2.2.2], we conclude that there exist natural isomorphisms of Q-vector

spaces

fi: HA(X) == H'((E, x X)/T), fori<2n—1. (5.5)

These isomorphism are compatible with the ring structure on H7(X) and H*((E, x X)/T) in
this range, i.e. if « € HL(X) and B € H%(X) with i+j < 2n—1 then fi1;j(a-8) = fi(a)-f;(B).
The analogous result to (5.5 for T-equivariant Borel-Moore homology, see e.g. [AF23|

Section 17.1], states that there are natural isomorphisms of Q-vector spaces
H, (X) 5 Hyron 1) (B x X)/T), fori>—2n+1, (5.6)

where H, denotes the usual Borel-Moore homology with coefficient in Q.
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Fundamental classes

Suppose now that X is additionally irreducible. Let d be the dimension of X (as complex
variety). As explained in e.g. [AF23|, Section 17.1], there exists a unique class [X]? € F;Fd(X )
such that for all n > 1, [X]7 corresponds to the fundamental class [(E, x X)/T] under the
identification ﬁQTd(X) = FQd—‘,—r(Zn—l)((En x X)/T) from (5.6). Consequently, [X]7 is called
the T-equivariant fundamental class of X.

If X is reducible then the T-equivariant fundamental class of X is defined as
S
X7 = gnlx)”,
=1

where X1,..., X, are the irreducible components of X and j;: X; — X are the respective
inclusions.

If X is additionally smooth, we have the T'-equivariant Poincaré duality isomorphism, see
e.g. [AF23| Section 3.4]:

~

Hi(X) =5 He(X), a alX].

If Y C X is a closed T-invariant subvariety then, by definition, the map
—T —T T
H(Y)—H,(Y), a—[X] Na (5.7)

equals the identity on F*T(Y)

Fundamental classes of schemes

Let X be a separated scheme of finite type over C with algebraic T-action and let X = Xred.
As before, denote by X7, ..., X the irreducible components of X. Recall from e.g. [Ful84,
Section 1.5] that the fundamental class [X] € H,(X) of X in the usual non-equivariant

Borel-Moore homology is defined as
(X] = m(Xs, X)ji [ Xil,
i=1

where j;: X; < X is the inclusion. Here, m(X;, X) are the respective geometric multiplicities
which are defined as follows: Let O ¢ X; be the stalk of the structure sheaf of X at X;. Since X;
and X have equal dimension, the Krull dimension of @ %.x, 18 0. As O3 X, 18 also noetherian,
OX, x; s artinian. Thus, every finitely generated OX, x,"module M has finite length which
we denote by lo,  (M).

Definition 5.1. The geometric multiplicity of X; in X is defined as
m(X;, X) = log . (0% x,)-

We now consider how the definition of fundamental classes generalize to the T-equivariant
framework. The next proposition gives that geometric multiplicities are well-behaved with
respect to the quotient construction from ([5.4)).

Proposition 5.2. Let n > 1. Then, the following holds
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(i) (Bp x X1)/T,...,(En x X,)/T are the irreducible components of (E, x X)/T,
(i) we have m((Ep x X;)/T, (Bp x X)/T) = m(X;, X), fori=1,...,s.

Proof. Recall from (5.4]) that we have a cover by open subschemes

(B, x X)/T = | J (Ui x X)/T

iel,

and the isomorphisms (U; x X)/T = C"(®=1) x X. Under these isomorphisms (U; x X;)/T
corresponds to C"~1) x X;. Thus, we conclude For we set

A = OX,XJ-’ B = OCT(”*DXX,(CT("*UXXJ-'

Note that B is isomorphic as C-algebra to the function field A(z1,...,2,(,—1)). Pick an
arbitrary U; C E,. Then, we have

m((E, x X;)/T, (B, x X)/T) =m((U; x X;)/T,(U; x X)/T) = 15(B).
Since the inclusion A < B is flat, we conclude from e.g. [Ful84, Lemma A.4.1] that
ZB<B) = ZA(A) + ZB(B/mB),

where m C A is the unique maximal ideal. We have B/mB = k(z1,...,Z,(,—1)) as rings,
where k = A/m is the residue field. Thus, [g(B/mB) =0 and we Conclude

m((En x X;)/T, (En x X)/T) = La(A) = m(X;, X)
which completes the proof. O

Thus, we derive the following definition of T-equivariant fundamental classes:

Definition 5.3. The T-equivariant fundamental class of X is defined as

Zm is X ]z* Z]T7

where j;: X; < X is the inclusion. Note that [X]” is an element in FZ(X)
One useful aspect of scheme theoretic fundamental classes is the following general result:

Proposition 5.4. Let U C P! be an open subvariety equipped with the trivial T-action and let
Z C X xU be an irreducible T -invariant closed subvariety such that the projection w: Z — U
is flat. Let p, ¢ € U and 7 (p), 7 *(q) be the scheme theoretic fibers. Then, in ﬁZ(X)
holds

ips[r T (P))T = gl ()],

where i,: 7 H(p) <= X and iy: 71(q) = X are the respective closed immersions.
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Proof. Let dim(Z) = d+ 1 and choose n > d. By (5.4)), (E,, x Z)/T is an irreducible closed
subvariety of ((E,, x X)/T) x U and the projection 7: (E, x Z)/T — U is flat. Hence, we
deduce from e.g. [Ful84, Proposition 19.1.1] that i,.[71(p)] = ig [T 1(q)] in Haq(En x X).

By definition, we have

T (p) = B x 7' (p))/T, 7 '(a) = (Bn x 7 '(a))/T.

Hence, by Proposition the isomorphism Hogy(2n—1)((En x X)/T) = F;Fd(X ) maps
i [T H(P)] t0 s [T (D)) and igu[771(q)] to ige[7r(¢)]T. Thus, we conclude iy [r~1(p)]T =

ige[m 1 ()] O

Localization Theorem

The Localization Theorem is a central ingredient of torus equivariant cohomology which
provides a crucial exchange of local and global data. For its formulation, we set up some
notation: Let pt be the topological space consisting of one single point. We view pt as variety
with trivial T-action. Recall from e.g. [AF23, Example 1.1.2] that we have an isomorphism
of Q-algebras

Hi(pt) = H* (B%)) 2 Qlta, ..., 1),

where the variable ¢; corresponds to the first Chern class of the tautological bundle on the
i-th factor of (P*°)". In particular, each ¢; is homogeneous of degree 2. Note that for every
variety X with algebraic T-action, H}(X) is an algebra over H7(pt). Let Char(T") be the
character lattice of T'. We embed Char(T") into Hr(pt), where we map the character

ar

o, foray,...,ar €Z

* a
Ta1,---,ar1T—>(C , ({L’l,...,xT)._)xll...x

to the linear polynomial a1t1 +...+a,t,. Let S C H7(pt) be the multiplicative set generated
by the set
(Char(T) \ {0}) = {a1t1 + ...+ arty | (a1,...,a,) € Z"\ {0}}. (5.8)

Let HA(X )i = STLH(X) be the localized T-equivariant cohomology of X.

The following version of the Localization Theorem can be found in [AF23, Theorem 7.1.1]:

Theorem 5.5 (Localization). The inclusion 1: XT « X restricts to an isomorphism of
HZ.(pt)1oc-algebras
ST HP(X )oe —— HP (X )1oc.

In the important special case where X7 is the disjoint union of isolated points, we have

Hp(X o = [T HE({P)1oe-
peXT

For p € X7, let 1p: {p} < X be the inclusion. For o € Hj(X), the restriction .(a) €
H7({p}) is called the equivariant multiplicity of o at p. According to the Localization The-
orem, the image of o in H7}.(X)joc is uniquely determined by the equivariant multiplicities
of o at all T-fixed points of X. In the next subsection, we discuss possibilities to explicitly

compute equivariant multiplicities.
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Equivariant multiplicities

Assume that X is a smooth variety with algebraic T-action and let p € X7 be a T-fixed
point of X. In the following, we recall important facts about equivariant multiplicities of
Poincaré duals of fundamental classes of T-invariant subvarieties of X. For this, note that if
j: Y — X is the inclusion of a closed T-invariant subvariety and o € H7(X) is the Poincaré
dual of j,[Y]" then

We begin with the following important special case: Let V be a finite dimensional T-
representation of dimension d. We denote the origin of V' by p. j: W < V be the inclusion of
a T-subrepresentation. We like to explicitly determine the T-equivariant intersection product
Wt npl".

For this, let 7: V' — {p} be the projection and ¢,: {p}hookrightarrowV be the inclusion.
By e.g. [AF23, Proposition 17.4.1], we have that =*: Hj(pt) — H;(V) and ¢5: Hp(V) =
HZ(pt) are inverse isomorphisms of Q-algebras. Let s*: Ff(V) = Ff({p}) be the isomor-

*
p

called the T'-equivariant Gysin isomorphism. By definition, s* is homogeneous of degree —2d,
i.e. s* maps FZT(V) to F?_M({p}), for all i. Furthermore, s* satisfies s*[V]7 = [p]T and we
have s*(j«[W]T) = [W]T n [p]T. By e.g. [AF23, Proposition 17.4.1], we have the following
explicit formula for s*(j.[W]T): Let V = @;_; C" and W = @;_, C% be the respective

T-weight space decompositions. Then, we have

phism of H7(pt)-modules corresponding to ¢} via Poincaré duality. The isomorphism s* is

s

S (G WIT) = ex(v/W)[pl” = (TT =) 1ol (5.9)
i=1
Here, e denotes the T-equivariant Euler class.
We now come to the general setup where X is smooth and p is a T-fixed point of X. Next,
we recall how equivariant multiplicities on X can be characterized via Gysin pullbacks of
fundamental classes of tangent cones. For this, let Y C X be a closed T-invariant subvariety.

Suppose Y contains p and let Z be the ideal sheaf over Y corresponding to p. Let

CpY = Spec, ( @ I”/I"‘H)
n>0
be the tangent cone. Here, Spec, denotes the relative spectrum over {p}. Note that C,Y is a
possibly reduced scheme which admits a closed immersion i: C,Y < T, X. By construction,
each irreducible component Z of C},Y is a conical subvariety of T, X, i.e. Z is invariant under
the C*-action on T, X given by the usual scalar multiplication. Via the T-action on Y, C,Y
is equipped with an algebraic T-action and the closed immersion i is T-equivariant. If p is a
smooth point of Y then C},Y is canonically isomorphic to the tangent space T,Y .

By e.g. [AEF23| Proposition 17.4.1], we have the following result:
Proposition 5.6. We have [Y]T N [p]T = s*(i.[C,Y]T).

As a direct consequence, we obtain the following formula for equivariant multiplicities for

smooth subvarieties:
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Corollary 5.7. Let j: Y < X be a closed T-invariant subvariety and suppose p € Y is a

smooth point of Y. Then, we have
YI" N ip)" = er(T,X/T,Y).[p]".

Proof. As p is a smooth point of Y, we have T,,Y = C,Y. Let i: T,Y — T,X be the
corresponding inclusion. By Proposition we have [Y]T N [p]T = s*(i.[T,Y]T). From (5.9)
then follows s*(i.[T,Y]7) = er(T,X/T,Y).[p]". O

From Corollary [5.7] we deduce the following technical result that will be applied later in

the uniqueness proof of stable envelopes:

Corollary 5.8. Let Y C X be a T-invariant closed subvariety, U C Y be a smooth T-

invariant open subvariety, p € U be a T-fixed point and
7 7 K
{p}—U-——=>Y — X

be the respective inclusions. Let a € FZ(Y) and o € H}.(X) be the Poincaré dual of k. (a).
Denote by € H.(U) the Poincaré dual of j*(a). Then, we have

i5(0) = er(T,X/T,U) - i*(5).

Proof. Since there exists an open T-invariant subvariety V' C X with V. NY = U, we may

assume by Proposition that U=Y. By and ,
tp(0).[p]" = (@) (X" N [p]") = (a.[X]T) N [p]" = k(@) N [p]" (5.10)
By the definition of the T-equivariant intersection product, we have
B-10) =anp". (5.11)
Applying first and then Corollary yields
EID = BT N [l = (8).(Y17 N pI7) = (*(8) - ex(TX/T,Y)) o).
Hence, t(a) = i*(B) - er(TpX/TpY ) which proves the corollary. O

For better readability, we use the following convention: Given an inclusion of a T-invariant
subvariety j: Y < X, we also denote the pushforward of a T-equivariant fundamental class
5[V in HE(X) just by [V]7.

5.2 Stable envelopes

We return to the setup where X is a bow variety C(D) and T is either A or T. We denote the
equivariant parameters by H (pt) = Q[t1,...,tny] and Hi(pt) = Q[t1,. .., tN, h] respectively.
A crucial definition from [MO1I9] is the following:
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Definition 5.9. Let d be the dimension of C(D) as complex variety. Stable envelopes are

maps, depending on a choice of a chamber € of A:

Stabg
E—

¢(p)* H{(C(D))

which are uniquely characterized by the properties |[(Stab-1)H(Stab-3)| from Theorem

called the normalization, support and smallness condition, respectively.

Theorem 5.10 (Stable envelopes). Fiz a chamber € of A. Then, there exist a unique family
(Stabe(p))pec(pyr of elements in H(C(D)) satisfying the following conditions:

(Stab-1) We have 1,(Stabe(p)) = er(1,C(D)¢ ), for all p € C(D)T.
(Stab-2) We have that Stabe(p) is supported on Attré(p), for all p € C(D)".
(Stab-3) Let p, q € C(D)" with q < p. Then, 1} (Stabe(p)) is divisible by h.

Recall that a T-equivariant cohomology class v € H3(C(D)) is supported on a T-invariant
closed subvariety A C C(D) if and only if j*(v) = 0, where j: C(D) \ A — C(D) is the
inclusion.

The normalization and support condition directly imply that stable envelopes provide a

basis of the localized equivariant cohomology ring;:

Corollary 5.11 (Stable envelope basis). For a fized chamber € of A, the T-equivariant
cohomology classes (Stabe(p))pec(pyr form a Hi(pt)ioc-basis of Hy(C(D))ioc-

Definition 5.12. We refer to (Stabe(p)),cc(pyr as stable envelope basis corresponding to €

and to the individual T-equivariant cohomology classes Stabg(p) as stable basis elements.

Remark. The stable envelope maps Stabg provide a map
{Chambers} — {Bases of H}(C(D))ioc}-

It is a central result of Maulik and Okounkov that the base change matrices with respect to
adjacent chambers give solutions to Yang—Baxter equations, providing an interesting connec-
tion to the theory of integrable systems. In the special case of cotangent bundles of partial flag
varieties the corresponding integrable system is the inhomogeneous XXX model for general

linear Lie algebras; see [MO19] for more details.

Remark. In the case of Nakajima quiver varieties, the definition of stable envelopes in [MO19]
also includes a choice of signs in the normalization axiom, that corresponds to a choice of
polarization of the involved Nakajima quiver variety. Polarizations can be defined in the
setting of bow varieties too, see [Sho2ll Section 4.4.1] and one could work with the more

general definition. For simplicity, we however choose here all signs to be 1.
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Matching under Hanany—W.itten transition

Before we come to the proof of the uniqueness and existence of stable envelopes, we show
that stable envelopes are compatible with Hanany—Witten transitions in the following way:
Suppose D is obtained from D by Hanany-Witten transition. Let ®: C(D) = C(D) be the
corresponding Hanany-Witten isomorphism and ®*: HA(C(D)) = H#(C(D)) be the induced
isomorphism. Furthermore, let p: T = T be the automorphism of algebraic groups from
Proposition and p*: Hi(pt) = Hi(pt) be the induced isomorphism.

Proposition 5.13. For all p € C(D)T, we have
Stabe(p) = * (Stabe(®(p))).

Proof. Since ®*(h) = h, we conclude that ®*(Stabe(®(p))) satisfies the smallness condition.

As ® is A-equivariant, we have
O (Attre(®(q))) = Attre(q), for all ¢ € C(D)". (5.12)

This implies the support condition for ®*(Stabe(®(p))). Denote by A, € H3(C(D)) and
A, € HX(C(D)) the Poincaré duals of the T-equivariant fundamental classes of Attre(p) and
Attre(®(p)) respectively. Then, (5.12) yields ®*(A,) = A,. Thus, we conclude

er(T,C(D)g) = t5(Ap) = (@7 (Ay)). (5.13)

The normalization condition for Stabe (P (p)) yields
ta(p) (Ap) = er(Top)C(D)g ) = 1y () (Stabe (P(p))).
Thus, we conclude that
(5:-13) = p" (e () (Stabe(®(p)))) = 1, (2" (Stabe(®(p))))-
This proves the normalization condition for ®*(Stabe(®(p))). O

In the remainder of this chapter, we give a proof of Theorem following [MO109,
Chapter 3].

Uniqueness of stable envelopes

We now prove the uniqueness statement of Theorem [5.10}

Proof of Theorem [5.10] (Uniqueness). 1f (Stabe (p))pec(pyr and (Staby(p))pec(pyr satisfy the
conditions of Theorem then the family (Stabe(p) — Stabi(p)),ec(pyr satisfies the condi-
tions of Lemma below. Hence, we have Stabe(p) = Stabj(p), for all p € C(D)T. O

Lemma 5.14. Assume (’Yp)pec(D)T is a family of homogeneous equivariant cohomology classes
in H3(C(D)) of degree d = dim(C(D)) satisfying the following two conditions:

(a) For all p € C(D)Y, the class vy, is supported on Attr]é(p).
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(b) Let p, q € C(D)" with ¢ < p. Then, Ly (yp) is divisible by h.
Then, v, =0, for all p € C(D)T.

Proof. Fix p € C(D)" and let < be a total order on C(D)" which refines <. Let n = |C(D)"|
and denote the T-fixed points of C(D) by q1,...,qn, where ¢; < ¢; if and only if ¢ < j. Let
iop € {1,...,n} such that p = ¢;,. Furthermore, we set

i
A; = |_| Attre(gy), fori=1,...,n
j=1
and Ag := (. According to Proposition [£.20] each A; is a closed T-invariant subvariety of
C(D) and contains Attre(g;) as open subvariety. To prove v, = 0, we show that

if vp is supported on A; for some i € {1,...,n}, then, ~y, is also supported on A;_;.

This implies 7y, = 0, since 1, is supported on Ay and thus has empty support.

So let us prove the above statement. Let x: A; < C(D) be the inclusion. Since 7, is
supported on A;, there exists a € FE(AZ-) such that x.(a) is the Poincaé dual of 7,. Let
fi{a} — Attre(q;) and j: Attre(q;) — A; denote the inclusions and let 5 € Hj(Attre(g;))
be the Poincaré dual of j*(a). By Corollary we have

L;‘ (’Yp) = eT(T(hC(D)E) : f*(ﬁ) (5.14)

By Corollary er(T;,C(D)¢ ) is homogeneous of degree d and not divisible by h. Thus, by
condition @ and (5.14]), we conclude f*(5) = 0. By Proposition f* is an isomorphism
of rings. Therefore, 8 = 0 which is equivalent to a being supported on A;_;. Hence, v, is

supported on A;_1 as well. O

5.3 Existence of stable envelopes

The remainder of this chapter is devoted to the existence of stable envelopes. We will see
that they can be constructed using an iterative procedure based on general properties of
equivariant multiplicities of lagrangian subvarieties which are stated in Theorem [5.15] This
theorem will be proved in Sections [5.4] and using the deformation to the tangent cone
construction from [Ful84. Section 5.1] and further deformation techniques which are similar
to those from Section 4.6 In Section [5.6] we finally illustrate the explicit construction of

stable basis elements in an example.

Equivariant multiplicities of lagrangian subvarieties

We now come to the main ingredient in the proof of the existence of stable envelopes. We call
this the Langrangian Multiplicity Theorem since it characterizes the equivariant multiplicity
of lagrangian subvarieties of symplectic varieties at points in therms of the tangent weights
at p.

Let X be a smooth symplectic variety of dimension 2n. We assume that X is endowed

with an algebraic action of a torus 7" = (C*)" such that the symplectic form w of X is
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invariant under the T-action. Recall that a closed subvariety L C X is called isotropic if the
restriction of w to the smooth locus Lgy, of L vanishes. We call L lagrangian if dim(L) = n
and moreover, L is isotropic.

Given an isolated T-fixed point p € X, we can choose a decomposition into T-invariant

subspaces T, X = Vi @ V3 such that w, induces an isomorphism Vi = V5.

Theorem 5.15 (Langrangian Multiplicity Theorem). Suppose Vi admits the T-weight decom-
position Vi = @, Cy,, where x1,...,xn are characters of T which we view as homogeneous
elements in H7.({p}). Given a T-invariant lagrangian subvariety L C X, we can find ap 1, € Z
such that the following equality holds in FZ({p})

)7 Nl = (ap,L(ﬁXi))-[p]T-

We prove Theorem [5.15|in Section [5.5] First, we apply this result to the setting of bow
varieties. For this, set L, := Attre(p), for p € C (D)T. The next proposition gives that Ly, is

indeed a lagrangian subvariety of C(D).
Proposition 5.16. For all p € C(D)", the variety L, is a lagrangian subvariety of C(D).
We first prove an auxiliary statement:

Lemma 5.17. Let V' be a finite dimensional C*-represenation with all C*-weight spaces

strictly positive. Suppose w: TV x TV — C is a C*-invariant bilinear form. Then, w = 0.

Proof. We use the identification TV = V x V. Suppose w € V and vy, vo € V are weight

vectors of repsective weights a1, as. Then, we have
Wy (V1, V2) = Wit o1, t%%v9), for all t € C*.
By continuity (in the analytic topology), we deduce
ww(vh U2) = }i_r}r(l)(wt‘w(talvl, taQ’UQ)) =0.
Hence, @, = 0. O

Proof of Proposition|5.16. Recall from Proposition that we have a T-equivariant isomor-
phism of varieties Attre(p) = T,C(D)s. Let w be the restriction of the symplectic form w’
of C(D) to T Attre(p) x T Attre(p). As w’ is A-invariant, so is w. Choose o € € and view
Attre(p) as C*-representation via o. Since all C*-weights of Attrg(p) are strictly positive,
Lemma implies w = 0. As Attre(p) is an open dense subvariety of L,, we conclude that

L, is lagrangian. O
Combining Theorem and Proposition [5.16 gives the following consequence:
Corollary 5.18. Let p, ¢ € C(D)" and suppose p € L,. Then,
[Lq]A N LP]A = ap,qu(TpC(D)E)'[p]Av
where a, 4 is an integer depending on p and q.

Proof. By Proposition L, C C(D) is a lagrangian subvariety. Applying Theorem
according to the decomposition 7,C(D) = T,C(D)y @ T,C(D){ then finishes the proof. [
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Proof of existence of stable envelopes

We now use Corollary to give a direct construction of stable envelopes. For this, we use
the following notation: For p € C(D)T, let A, € HE(C(D)) be the Poincaré dual of [L,]".

Proof of Theorem[5.10. Let =<’ be a total order on C(D)T refining < and let s be the cardinal-
ity of C(D)*. Denote the elements of C(D)T by pi,...,ps, where the labeling is compatible
with our choice of total ordering, i.e. we have p; <’ p; if and only if i < j. For each
i € {1,...,s}, we construct a family of cohomology classes 7;1,...,%: € HC(D)) such
that each ; ; satisfies the following three properties:

(a) L;,- (%,j) = eT(TPiC(D)E)a
(b) there exist a; j1,...,aji—; € Z such that v; ; = Ap, + Z;;{ a;jil\p,
c) we have that % (v; ;) is divisible by h, for l =¢— 1,7 —2,...,].
J2ANRAEY)

We set v;; == Ap,. Then, v;; clearly satisfies the properties |(a)} Suppose Vi - - - Yi,j
have been constructed. Then, we define ~; ;_1 as follows: Since ; ; satisfies @, we know by
Corollary [5.18| that there exists a € Z such that

by, (Vi) = aer(Tp; ,C(D)y) mod h.

Set 7ij—1 = vij — al\p,_,. By construction, v; ;1 satisfies @ and L;j_l(%,j,l) is divisible
by h. Hence, properties and follow from p;, pi—1,...,p; ¢ Ly;_,. Thus, v; ;-1 satisfies
all the desired properties.

Now, set Stabe(p;) == vi1, for ¢ = 1,...,s. Then, the normalization condition follows
immediately from @, the support condition from @ and the smallness condition from
This completes the proof of Theorem [5.10 O

The proof of Theorem directly gives the following consequence:

Corollary 5.19. For all p € C(D)", we have

Stabe(p) = Z apqNg,
qeC(D)T

where a, q € Z with ap, =1 and apq =0 if ¢ A p.

Note that the coefficients a,, from Corollary are uniquely determined by Corol-
lary

5.4 Tangent cones of lagrangian subvarieties

In this section, we pass to the analytic setup. The definition of tangent cones in the analytic
framework is analogous to the definition of normal cones in the algebraic framework: Let X
be a complex manifold and Y C X closed analytic subvariety. Let p € Y be a point and Z
the ideal sheaf over Y corresponding to p. The tangent cone of p in Y is defined as

Specan< @ I;L/I;f“) .

n>0
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Here, Z)} is the stalk of I at p and Specan denotes the analytic spectrum, see e.g. IGPR94,
Section IL.3] for a definition.

By e.g. [Serb6l Proposition 3], we have that if X is a smooth (algebraic) variety and Y C X
a closed subvariety with respective analytifications X" Y?" then the canonical isomorphism
T, X" = (T, X)*" restricts to an isomorphism of analytic spaces Cp,Y " = (C,Y)*".

The main result of this section is the following proposition:

Proposition 5.20. Let X be a complex symplectic manifold with symplectic form w and
let L C X be a lagrangian subvariety. Then, for all p € L, we have that all irreducible
components of the tangent cone C,L are lagrangian subvarieties of T,X. Here, we view T, X

as complex symplectic manifold via the symplectic form w,.
For the proof, recall the holomorphic Darboux Theorem:

Theorem 5.21 (Darboux). Let X be a symplectic complez manifold of dimension 2n. We
equip C*™ with the standard symplectic form

n
§= dri Ndzign, (5.15)
i=1
where (1, ...,T2,) are the coordinates of C**. Then, for all x € X, there exists an analytic

neighborhood U C X such that U is isomorphic as symplectic complex manifold to an open
subset of C*".

From now on, let X C C?" be an open subset containing the origin which we denote by
p. Via , we view X as symplectic complex manifold. To prove Proposition we
use the deformation to the tangent cone construction from [Ful84, Section 5.1]. For this, we
recall some basic properties of blow ups in the analytic framework. For more details on this
subject, see e.g. [GPR94, Section VII.2] and [Fis76l Section 4.1].

Definition 5.22. Let Y C X be a closed analytic subvariety containing p. The blow up Bl,Y
of Y at p is defined as the analytic closure of

{1y yom), s -t yam)) | (W1, yen) €Y\ {p}} C Y x P21

By construction, Bl,Y is a closed analytic subvariety of ¥ x P2n=1 If Z C X is a closed
analytic subvariety containing Y then BlL)Y is a closed analytic subvariety of Bl,Z. Let

Ty : BL,Y — Y be the projection. Then, 7 induces an isomorphism 7' (Y'\ {p}) = Y\ {p}.

Definition 5.23. Let Y C X be a closed analytic subvariety containing p. The deformation
to the tangent cone of X at p is defined as

MY := (Bl;(Y x C)) \ BL,Y,
where p is the origin in Y X C. We view Y as closed analytic subvariety of Y x C via y — (y,0).
If P27~1 <3 P2" is the inclusion [z1: ...: To,] > [21: ... Z9,: 0] then
MY = (BL;(Y x C))\ (Y x P*"71).

The following proposition, see [Ful84l Section 5.1], gives that MSY indeed transforms Y into
the tangent cone C),Y:
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Proposition 5.24. Let 7y : MSY — Y x C be the projection.

(i) We have that 7ty induces an isomorphism of complex analytic spaces

(Y x C*) == Y x C*, (5.16)

(i) The fiber fr{,l(ﬁ) is a hypersurface of MZ?Y.

(iii) There exists an isomorphism ﬁ';l(ﬁ) = CoY of complex analytic spaces such that the

following diagram commutes

iy () —— CY

/ I

iy (p) —— T,X
Here, C,Y — T,X is the standard inclusion.

Remark. In [Ful84 Section 5.1], the deformation to the tangent cone is considered in the

setup of algebraic varieties. The results transfer directly to the analytic setup.

The complex manifold structure on MSX can be characterized as follows: Set
X' = {(t g, .t o, t) | (z1,. .., 20,) € X, t € C*IU(CP x {0}) c C" L. (5.17)
Then, there is an isomorphism of complex manifolds
M)(X) — X'
given by
((x1,...,zon, t), [T1: ... Top: t]) — (t_lxl, .. ,t_ll’gn,t), for t #£ 0

and
((0,...,0),[x1: ... @ap: 1)) = (21,..., %20, 0).

Under this identification, the inclusion 7, X — MSX corresponds to

v TpX — X',

= e, (5.18)

T

where e; denotes the i-th standard basis vector in C27+1.
A further convenient property of the deformation to the tangent cone construction is that
it deforms the symplectic form £ from (5.15) into the symplectic form &, on 7, X in the

following sense: Consider the holomorphic bilinear form
E=pr"&: TX' xTX — C,
where pr: X’ — C?" is the projection. Then, by , we have
LE=§p. (5.19)
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5. STABLE ENVELOPES

Let f: X x C* — X’ be the open embedding from ([5.16) using the identification M, X = X'.
Let ¢;: X < X’ be the inclusion

we X s X ox {1y L x

Then, we have
e =172, (5.20)

Combining these pieces, we deduce a proof of Proposition [5.20}

Proof of Proposition[5.20 By the holomorphic Darboux Theorem, we may assume that X is
an analytic open neighborhood of the origin p € C? and X admits the symplectic structure
£ from . Let L C X be a lagrangian subvariety containing p. With the above notation,
implies that ¢ vanishes on the tangent bundle T(Lgm x C*). Let Z be an irreducible
component of C,L. By Proposition Lgy, x C* is an open dense analytic subvariety
of MJ)L and dim(Z) < dim(Lgy, x C*). Hence, Proposition below gives that T Zgy, is
contained in the analytic closure of T'(Lgy x C*) in TMI?L. Thus, é also vanishes on T Z,
which implies that Z is a lagrangian subvariety of T, X by . O

Approximation tangent vectors of analytic varieties
In the proof of Proposition [5.20| we used the following result:

Proposition 5.25. Let X be a complex manifold and Y, Z C X be locally closed smooth

wrreducible analytic subvarieties such that Z is contained in the closure of Y in X. Then, the
closure of TY in T X contains TZ.

We prove Proposition [5.25| via a regularity result due to Whitney. For its formulation, we
first recall some properties of Grassmannians. Let Gr(k,n) be the Grassmannian parameter-
izing k-dimensional subvector spaces of C". Via the analytic topology, we consider consider
Gr(k,n) as compact complex manifold. The analytic topology on Gr(k,n) is metrizable via
the distance function

dist(V, W) = I‘Eléll}‘( . ( mivr%/ lv — w|)7 for V, W € Gr(k,n),
veV, |v|= we

where | - | is the usual euclidean absolute value on C™.

Lemma 5.26. Suppose V,, is a sequence in Gr(k,n) converging to W € Gr(k,n). Then, for

all w € W, there exists a sequence vy, in C" with v, € V,, and v, converges to w in C".

Proof. We may assume |w| = 1. Choose v, € V,, with |v, — w| < dist(W,V},). Then, the

sequence v, converges to w. [

Suppose now that X is an open analytic subvariety of C" and Y C X is a locally closed
irreducible smooth analytic subvariety of dimension k. For each point y € Y there exists
an open neighborhood U C X of y and holomorphic functions f1,..., f.: U — C such that

Y N U equals the vanishing locus of fi,..., fr. Via the identification of vector spaces
T,Y = {v e C"|d,fi(v) =0, for i=1,... r},
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5.5. Flat deformations of conical lagrangian subvarieties

we consider T,Y" as element in Gr(k,n) and TY as locally closed smooth subvariety of TX =
X xC".
The following definition is due to Whitney [Whi65, Section 19]:

Definition 5.27. In the above situation, let Z C X be a further smooth locally closed
irreducible smooth subvariety. We say that Y is (a)-regular over Z if for all sequences yy,

in Y such that y, converges to a point z € Z and the sequence T, Y converges to some
W € Gr(k,n), we have T,Z C W.

We have the following fundamental lemma, see [Whi65, Lemma 19.3]:

Lemma 5.28. Let Y, Z C X be locally closed irreducible smooth analytic subvarieties with
dim(Z) < dim(Y). Then, there exists an open dense subvariety U C Z such that Y is

(a)-regular over U.

Proof of Proposition[5.25. We may assume that X is an open analytic subvariety of C™. As
before, let k = dim(Y’). Since Z is contained in the closure of Y, we have dim(Z) < k.
Hence, by Lemma there exists open dense subvariety U C Z such that Y is (a)-regular
over U. Let w € U and v € T,,U. Let y, be a sequence in Y such that y, converges to u.
Since Gr(k,n) is compact, we can assume that the sequence T}, Y converges to some W in
Gr(k,n). By (a)-regulariy, T,U C W. Thus, by Lemma there exist v, € T}, Y such
that the sequence (yn,vy) converges to (u,v) in TX. Hence, TU is contained in the closure
of TY in TX. As U is dense in Z, the closure of TU in TX contains T'Z. Therefore, the
closure of TY in T'X contains TZ. O

5.5 Flat deformations of conical lagrangian subvarieties

We now return to the algebraic setting of Theorem Let X be a smooth symplectic
variety with algebraic T-action. We assume that the symplectic form w on X is T-invariant.
Let p € X and L be a lagrangian subvariety containing p. In Proposition [5.20] we proved that
the irreducible components of the tangent cone C),L are lagrangian subvarieties of 7, X. The
next proposition shows that it is in fact possible to deform C,L into a possibly non-reduced
union of lagrangian hyperplanes. This enables us to characterize the equivariant multiplicity
of L at p.

Proposition 5.29. We have [C,L)T = Y7, m;[H)T in F*T(TPX), where Hy,...,Hs C T,X

are T-invariant lagrangian hyperplanes and my, ..., mg € Ny.
Assuming Proposition [5.29] we obtain directly a proof of Theorem [5.15

Proof of Theorem [5.15 Recall, with the notation of Theorem that 7,X admits the T-
weight space decomposition T,X = @ ,(Cy, ® C_,,). Thus, if H C T,X is a T-invariant
lagrangian hyperplane then H admits the weight space decomposition H = @, C,y,, where
g; € {£1}. Hence, Corollary implies

51 = ([T oovs) " (5.21)
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5. STABLE ENVELOPES

where s*: F{(TPX ) = Ff({p}) is the Gysin isomorphism. Recall from Proposition 5.6 that
(LN [p]T = s*([CpL]T). Finally, by Proposition and (5.21]), we conclude that s*([C,L]T)
is an integer multiple of (T'; xi).[p]T which completes the proof. O

The remainder of this section is devoted to the proof of Proposition Consider the

symplectic vector space C?" with basis e, ..., es, and standard symplectic form
w(ei, €n+j) = —w(en+j, 61') = 52‘7]', w(ei, ej) = w(enH, €n+j) = O, for i, j € {1, A ,n}.

As before, we view C?" as symplectic variety. Note that the symplectic structure on C2"
induced by w equals ¢ from (5.15). Suppose the torus T = (C*)" acts diagonally on C*"

preserving the symplectic form. Moreover, let T’ = (C*)"*2 acting on C?" via

t1lni1

(t]_, .. ,tn+2) —> tntn+1
t
tr Mg
Proposition is basically a consequence of the following lemmas:
Lemma 5.30. Let C C C?" be an T-invariant conical and lagrangian subvariety. Then,

there exist irreducible, T'-invariant, conical and lagrangian subvarieties Zy,...,Zs C C>"
. =T
and natural numbers my, ..., ms such that [C|T =327_, m;[Z;]T in H, (C*).

Lemma 5.31. Let Z C C?" be an irreducible, T'-invariant, lagrangian subvariety. Then,

there exist v, ...,v, € C*™ with v; € {e;, eixn}, fori=1,...,n, such that Z = (v,...,v,).

Proof of Proposition[5.29. Choose a symplectic identification 7, X = C?", where the symplec-
tic form on T, X gets identified with . By Lemma there exist irreducible, T”-invariant,

conical and lagrangian subvarieties Z1, ..., Z; C C?" and natural numbers my,...,ms such
that [C,L)T = >";_, mi[Z;]T. By Lemma Z1,...,Zs are T'-invariant lagrangian hyper-
planes. O

We finish this section with the proofs of Lemmas and
Proof of Lemma[5.30. Define subtori Ty, ..., Th1o C 1" as
T; = {(tl,...,ti,l,...,l) cT’ ‘ t1,...,t E(C*}, 1=0,....,n+2.

Note that Ty is the trivial subgroup and T, 1o = T". For j = 1,...,n+ 2, define cocharacters
0;j: C* =T as

t if j =1,

oi(t); = (5.22)

1 otherwise.
Claim 5.32. Leti € {1,...,n+ 2} and C C C?* be a T;_1- and T-invariant conical and
lagrangian subvariety. Then, there exist irreducible, T; and T-invariant, conical and la-
grangian subvarieties Z1,...,Zs C C* and natural numbers mq,...,mg such that [C]T =
Sy milZi)T in H, (€,
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5.5. Flat deformations of conical lagrangian subvarieties

Proof of Claim[5.33 As in Lemma let T be the Zariski closure of
I'={(oi(t)x,t) |z € C, te C} CC" x C.

Recall from Lemma that the projection 7: I' — C is flat. Let [y = 7~1(0) be the
scheme theoretic fiber. We denote the irreducible components of I'g by Z1,...,Zs and let
m; = m(Z;,Ty) be the respective geometric multiplicity. By Lemma Z1, ..., Zs
are T;- and T-invariant conical subvarieties of C**. As in the proof of Proposition let
pr: C?* x C — C be the projection and é = pr* £ the induced bilinear form on the tangent
bundle T(C?" x C). Since C is a lagrangian subvariety of C?" and the Tj-action scales the
symplectic structure on C?", we conclude that the restriction of é to TT.,, vanishes. Recall
from e.g. [Mum76, Theorem 2.33] that, as I” is an open dense subset of ' in the Zariski-
topology, I is also an open dense subset of I" in the analytic topology. By Lemma
we have dim(I”) = dim(Z;) + 1, for all ¢ = 1,...,s. Hence, by Proposition T(Zi)sm is
contained in the analytic closure of TT%. in T(C?" x C). Thus, ¢ vanishes on T(Z;)sm and
hence Z; is also a lagrangian subvariety of C?". Finally, as 7 is flat, Proposition gives

s

[C]" = [To]" =) miZ:]"

i=1

which completes the proof of the claim. ]

Using Claim [5.32] we can now easily deduce Lemma [5.30] using a repetitive argument.
By applying Claim to T1 and C, we conclude that there exist irreducible, T7- and 7-
invariant, conical, lagrangian subvarieties Z11,..., 215 C C?" as well as natural numbers

mig,...,mis such that [C]T = Y"1 my,;[Z1,;]7. Now, repeat this procedure by applying

the claim to T3 and Zy 1, ..., 21, and continue repeating. After n+ 2 repetitions, we obtain
subvarieties Z1, ..., Z; C C?" satisfying the desired conditions of Lemma m O

Proof of Lemma[5.31 Since dim(Z) = n, there exists a smooth point z = (z1,...,29,) € Z
such that at least n coordinates of z are non-zero. We show that for each i € {1,...,n},
exactly one of the coordinates z;, z,y; is zero and the other non-zero. Suppose that there
exists ¢ € {1,...,n} such that z; and z,4; are both non-zero. Let o;: C* — T’ be the
cocharacter from and o: C* — T’ be the cocharacter given by

1 ifj#i, n+2,

o(t); = o
t ifj=1i, n+2.

Let v1 = 0;(C*).z and 72 = 0(C*).z be the respective C*-orbits in Z. Then, T,v; = (w;1) and
T.v2 = (w2), where
W1 = 2i€; — Zntibnti, W2 = 2i€; + < Z Zn+j6n+j>-
1<j<n
J#i
Here, we used the standard identification of symplectic vector spaces T,C?" = C?". By
definition, w(wi,ws) = z;zn4; # 0 which contradicts the assumption that Z is lagrangian.

Thus, exactly one of z;, z,4; is zero and the other non-zero.
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5. STABLE ENVELOPES

For i € {1,...,n}, we define

€; if Zi 75 0,
V; =
enti if zZpei # 0.

As Z is T'-invariant, we conclude (v1,...,v,) C Z. Since Z is irreducible and of dimension

n, the inclusion must be an equality. O

5.6 Example computation of stable envelopes

We illustrate the construction of stable envelopes from Section for the bow variety
C(0/1\1/2\2\2/0) from Section Recall the labeling of tie diagrams of D from there. Let
€ be the chamber containing the cocharacter oy = (¢,t2,¢%). We denote by A; € H:(C(D))
the Poincaré dual of [LxDi]T, where Ly, = m, fori=1,...,5.

To apply the algorithmic procedure from Section we first compute all T-equivariant

equivariant multiplicites ¢} & (A;).
J

Claim 5.33. The equivariant multiplicities L?;D_(Ai), fori, j=1,...,5, are recorded in the
J

following table:

N 1 2 3 1 5
1
1 (h=te) 0 0 0 0
(t2 — t3)
(t1 — t3) (t1 — t2) 0 0 0
(t3 —ta + h) (ta2 —t3 4+ h)
(t3 —t1 + h) (t2 —t1 4+ h) (t1 —t2 + h) 0 0
'(tg-tz-‘rh) '(tz-tg-‘rh) '(t] —tg-‘rh)
(tz —t3) 0 (t2 —t1) (t2 —t3) 0
(tz —t1 +h) (t1 — t3 + h) (t1 — ta + 2h)
0 (t3 —t2) (t2 — t1) (t1 — t2 + 2h) (t1 — t3 + 2h)
(t2 —t1+h) (ts —t1) (tz —t2 4+ h) (t2 —t3 4+ h)

Table 5.1: Equivariant multiplicities ¢}, o, (A;)

Proof of Claim[5.33 We only compute ¢, (A3) as all the other equivariant multiplicities

can be determined analogously. By Claim the open subvariety W; containing zp, is

T-equivariantly isomorphic to

Ctg—tl-‘rh S (Ct3—t2+h ) Ctl—tg S Ctg—tg?

where zp, gets identified with the origin. Then, Claim yields that Attre(zp,) N W
corresponds to the subspace C¢,_¢, @ Cy,—¢,. Hence, (5.9) implies

top, (A3) = €1(Coy—t, 40 & Coy—tpn) = (I3 —t1 + h)(t3 — 12 + 1)

which equals the corresponding entry in Table
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Now, to compute for instance the stable basis element Stabe(xp,), we first set v3 3 == As.

By Claim [5.33] we have
L;DQ ("}/373) = (tg -t + h)(tg —t3 + h), L;D2 (AQ) = (tl — tg)(tg — 13+ h)

Thus, we set 732 = Az + A2. By construction, L;;Dl (73,2) = h(ts —ta + h). So L;;Dl (73,2) is

already divisible by i and hence we have
Stab¢($D3) =732 = As + As.

The other stable basis elements can be computed in exactly the same way using Claim [5.33

They are given by

Stabg(xpl) =Aq, Stab¢($D4) =As+As+ A+ Ay,
Stabg(acDQ) =Ay+ Aq, Stabq(:cps) = A5+ Ay + Ao,
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Chapter 6

Explicit examples of stable basis

elements

In this chapter, we explicitly apply the algorithmic procedure from Section to the bow

varieties Cy, attached to the brane diagrams of the form

ne SN\ /N e

k red lines

We express the stable basis elements of Cy as Z-linear combinations of the Poincaré duals of
the fundamental classes of attracting cell closures, see Proposition for the precise formula.

These explicit results are applied later in Section where we compute equivariant
multiplicities of stable basis elements of arbitrary bow varieties.

As we show in Proposition the bow variety C; can be covered with affine and torus
invariant coordinate charts. These charts enable us to explicitly determine the attracting
cells of C, as well as their Zariski closures and their respective equivariant multiplicities, see
Proposition and . These results then allow us to employ the iterative construction
procedure from Section to compute the stable basis elements of Cy.

Note that the multiplicities of stable basis elements for these specific examples of bow
varieties were determined in the framework of elliptic cohomology in [RSVZ22| Section 4].
The technical tools, in particular the elliptic abelianization procedure from [AO21], used
there are however different from ours.

As described in [NT17], the variety Cj also appears in theoretical physics where it can
be interpreted as a Coulomb branch which is connected to the cotangent bundle of the
Grassmannian Gr(k — 1,k) via 3d mirror symmetry. This is a theory from string theory

which connects N = 4 supersymmetric gauge theories.

6.1 Open coordinate charts

In this section, we determine open affine coordinate charts of C;, which are also torus invariant.

For this, we use similar methods as in Section |4.2
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6. EXPLICIT EXAMPLES OF STABLE BASIS ELEMENTS

Recall the definition of the affine brane variety M (Dy) from Definition the corre-

sponding gauge group G from (2.32)) and the moment map m from (2.33]). We denote elements
of .//\/lv(Dk) as tuples

xr = ((AiaB;7Bi+aai,bz)z 127(CjaD ) 1,. .,k)
according to the diagram
By BY
Q 2N ()
A1 /\ /\ N N Ay 0

C C
\/Jl\ﬁk/\_/ \J\El/@\ﬁz

Dy Dy

We view all operators A;, B, B+, a;, b;, C; and D; as elements in C. Note that the
condition for M (Dy) is equivalent to b; # 0 and is equivalent to az # 0. By
definition, m(x) = 0 if and only if

Bf_ = —Cka, BQ_ = —chl, CZDZ = Di+10i+la for i = 1, Ceey k—1. (62)

Therefore, by dropping vanishing and tautological operators, we denote elements of m~1(0)

just as tuples
(b1,a2,C1, D1, ..., Cy, Dy).

The rank 3 torus T acts on m~1(0)* via
(t1,t2,h).(b1,a2,C1, D1, ..., Ck, D) = (htib1, asty ', hCh, D, . .., hCy, Dy,).
Similar to Section we now construct covers of the y-stable locus m~1(0). Set
Q; = {(b1,a2,C1,D1,...,C, D) € m~Y0) | C1,...,Ci_1 #0, Diy1,..., Dy # 0}
and Q == Ule Q.

Lemma 6.1. We have m~1(0)° = €.

Proof. Let = (by,a2,C1,D1,...Ck,Dy) € m~1(0). Note that a graded subspace T =
D Xeh(Dy) Tx CWp =6 X eh(Dy) W satisfies the conditions of Proposition if and only
if

(a) T is invariant under the operators C1, Dy,...,Ck, Dy and
(b) T, v = C and va =C.

Suppose = € ﬁi, for some ¢ and that T satisfies @ and @ Then, as C4,...,C;—1 # 0,
we have va =C, for j =1,...,i — 1. Likewise, D;11,..., D # 0 implies TVj* = C, for
j=i+1,....,k. Hence, T = Wp and = € m~1(0)° by Proposition Conversely, if
z € m~1(0)%, we define T = D xenm,y I'x € Wp via

‘//lJr =C, T‘//k, =C, T‘//; = Im(C] Cl) —|—Im(Dj+1 . Dk), forj=1,...,k—1.
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By (6.2), 7" Satisﬁesand@ Ifx ¢ Q, we have Cj_1 - C1 = 0 as well as Diyq1---Dp =0,
for some 4. Consequently, T"/__ = (0 and z is not y-stable by Proposition [2.37, This gives

m1(0)s € Q. O

By definition, each Q, is a G- and T-invariant open subvariety of 7 ~1(0)5. Thus, we have

a cover by T-invariant open subvarieties

k
Cr=J where Q; :=Q;/G. (6.3)
=1

Next, we show that each €; is T-equivariantly isomorphic to a two dimensional affine space

with linear T-action.
Proposition 6.2. For each i =1,...,k, we have a T-equivariant isomorphism of varieties

i Ctl—t2+(i+1)h @ Ctg—tl—ih s Q;,

where n;(y, z) = [0i(y, 2)] and 7;(y, z) € Q is represented by the following diagram:
U Vi Viee  Vip
yz yz Yz Y 1 1 1
(C/\ /\(C/\(C/\(C/\(C/\ /\C
/ A N NN NS N N A \
L 1 1 z yz yz yz 1
C C

Proof. By Proposition [2.25] 7; is an isomorphism of varieties if and only if #; is bijective.
For injectivity, suppose n;(y, 2) = n;(y/,2"). Hence, there exists ¢ = (g9x)x € G such that
g-ni(y,z) =mi(y',2"). We write

ﬁi(yvz) = (blya27claDl7- . 'CkHDk)7 ﬁi(y,72,) = (b,1>a,27cia /1’ . Cllngg)
Since by = b} =1 and ag = @, = 1, we have gy+ =1 and gy~ = 1. Then,
Ci=..=Ci1=Cl=...=Cl =1, Dy1=...=Dj=Dly=...=Dp=1

implies g+ = g,,- = 1, for all j # i. Thus, g equals the identity which yields y =
J J

Ci = Cl =4y and z = D; = D, = 7. Hence, n; is injective. For surjectivity, let

z = (b, az,C1, D1,...Ck, Dy) € Q. Then, we have

gx=7;(bDy - D 4Gy - Crag, a3 ' CF -+ CZ Dy -+ Dby ),
_ : _ _ -1
where g = (gx)x € G is defined as Gy = b1, Gy = ag and
9v- =ay'Cyt- O u+ =bD;'-DY, forj=1,...,i-1,1l=i+1,... k.

Hence, [z] = n;(h1 D, ' -- D1+1C -Chag,ay *Cy - O Dy - - - Dby t) which proves the sur-
jectivity of n;. Hence, n; is an isomorphism of varieties. To see that 7; is T-equivariant, note
that for t = (t1,t9,h) and (y, 2) € C2, we have

gi-(tn(y, 2)) = mltaty By ot R ),
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where g = (g1,x)x € G is defined as
Gy = toht I, G- =th, forj=1.. i l=i...Fk

Thus, n; is T-equivariant.

6.2 Torus fixed points

By construction, the brane diagram Dy admits exactly k tie diagrams:

Tie(Dy) ={D1,...,Dr}, where D; = {(U1,V;),(V;,Us)}.

The corresponding visualization and butterfly diagrams of D; are given as follows:

0 1/ /1/1/ /1\\0

* *

™~ e

*— —e L]

-

Hence, the corresponding T-fixed point xp, from Definition equals 7;(0,0).

6.3 Attracting cells

As the torus A corresponding to Dy is of rank 2, there are only two chambers assigned to A:

The dominant chamber € and the antidominant chamber €_. The attracting cells of the

dominant chamber and their Zariski closures are characterized as follows:

Proposition 6.3. Fori=1,... k, let L == Attre, (zp,) be the Zariski closure. Then,
p (2 -+ 7

(i) Attre, (zp,) = 1:(Cy, —tyq-(i41)n), where 1; is defined as in Propositz'on

(ii) for j # i, we have

Ni41(Coy—ty —(ir1yn)s forj=i+1,

Lj_ N Qj =
0, otherwise,

(ZZZ) L;-"_ = Attl“ch(xDi) U {iL'Di_l}.
In particular, Lj is smooth and hence isomorphic to P'.

132



6.4. Stable basis elements

Proof. As n; is T-equivariant, we have 7;(Cy, _¢,4(i+1)n) = Attre, (zp;) N Q. By Proposi-
tion Attre, (vp,) = C. Hence, the inclusion 7;(Cy, 4,4 (i41)n) C Attre, (zp,) has to be
an equality which proves For note that for y € C\ {0}, we have

9-7i(y, 0) = i+1(0,371),
where g = (g9x)x € G is defined as g, - = y~!and gx = 1, for X # V,”. Thus, we have
Attre, (#p,) N Qit1 = 1i41(Coy—ty—+0n \ {0}), L 0 Qiv1miv1(Cry—ty—(i+1)n)-

Now, by for each x = [by, a2, C1, D1, ... Cy, Di] € Attre, (xp,), the operators Ciyq,...,Cy
and Dy,..., D;_y vanish. Thus, Attre, (zp,) NQ; =0, for j #4,i+ 1. Hence, we deduce
The assertion follows directly from |(ii)] O

The same proof gives the corresponding statements for the antidominant chamber:
Proposition 6.4. Fori=1,...,k, let L; = m be the Zariski closure. Then,
(i) Attre_(wp,) = 1i(Cey—t,—in),
(ii) for j # i, we have

L»_ N QJ _ ni—l(ctl—t2+ih)7 fOrj =17 — 1)

1 .
0, otherwise,

(iii) L; = Attre (zp,)U {$Di,1}’
In particular, L; 1is isomorphic to Pl

Let A € H:(Cy) be the Poincaré dual of the fundamental class [LF]T. By Corollary 5.7
we can directly read off the equivariant multiplicities of A;r from Proposition

to —t1 — ih if j =1,
o, (AT =t —ta+ (142 ifj=i+1, (6.5)
0 otherwise.

Likewise, the equivariant multiplicities of A; are

ti—to+ (i +1)h ifj =i,
top, (A7) = Qt2—t1 = (i = 1h it j=i—1, (6.6)
0 otherwise.

6.4 Stable basis elements

Using the explicit description of the attracting cells from the previous subsection, we now

determine the stable basis elements of C, as well as their equivariant multiplicities:
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6. EXPLICIT EXAMPLES OF STABLE BASIS ELEMENTS

Proposition 6.5. Fori=1,...,k, we have

Stabe, (xp,) = A + Al + ...+ Af

and
0 ifj <1,
top, (Stabe, (¥p,)) = { ta —t1 —ih if j =1, (6.7)
h ifj>i.

Similarly, we have
Stabe_(xp,) =A; + A +...+A]

and
h if j <1,
top,(Stabe_(¢p,)) = {1 —t2+ (i + Dh if j =1, (6.8)
0 if j > 1.

Proof. We only prove the proposition for the dominant chamber €. Since each Aj is sup-
ported on Lj, we conclude that A" + A;:l + ...+ A: is supported on U;“:z Lj. By Propo-
sition |4.20] we have U;C:Z Lj = Attr£+ (zp,) and thus A} + Af, + ... + A satisfies the
support condition. From (6.5)), we immediately obtain (6.7)) which implies the normalization

and smallness condition. Thus, Stabe, (zp,) = A7 + A + ...+ A} O

134



Chapter 7

Polynomiality and Orthogonality

Theorems

Even though bow varieties are in general not projective, they still admit a virtual intersection
pairing (., .)vir, see Deﬁnition This pairing is modeled on the Atiyah—Bott—Berline—Vergne
integration formula and takes values in the localized torus equivariant cohomology of a point.

In this chapter, we study properties of the stable basis elements of bow varieties with
respect to the virtual intersection pairing. We first prove in Theorem that virtual inter-

section pairings of the form
(a - Stabe(p), Stabeor (q))viet,  « € HE(C(D)), p, ¢ € C(D)"

have in fact values in the non-localized cohomology H7}(pt). In other words, those intersection
pairings are polynomials in the equivariant parameters of Hj(pt). We therefore refer to
Theorem [7.6|as the Polynomiality Theorem. The main ingredient of the proof of Theorem
is the properness result from Theorem [4.24]

The second main purpose of this chapter is a self-contained reproof of the Orthogonality
Theorem from [MOT9, Theorem 4.4.1] which states that the stable basis elements of opposite
chambers are orthogonal with respect to the virtual intersection pairing. This theorem pro-
vides a parallel between stable basis elements and (equivariant) Schubert classes which also
have an analogous orthogonality property, namely Schubert classes and opposite Schubert

classes are orthogonal with respect to the Poincaré pairing, see e.g. [Ful97, Section 10.2].

7.1 The (virtual) intersection pairing

In this section, we recall the definition of intersection pairings in torus equivariant cohomol-
ogy and their virtual versions for quasi-projective varieties. Given a projective variety Y
with an algebraic action of a torus T' = (C*)", we denote by ¥ : Y — pt the projection.
Let ¢): Ff(Y) — F*T(pt) be the corresponding pushforward in T-equivariant Borel-Moore
homology. Assume that Y is additionally smooth. In this case, we also obtain a pushforward
H%(Y) — Hz(pt) via Poincaré duality which we also denote by €Y. Then, the T-equivariant

intersection pairing is defined as

() Hp(Y) x Hi(Y) — Hi(pt), (a,f) =< (a-f).
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7. POLYNOMIALITY AND ORTHOGONALITY THEOREMS

An effective tool to compute T-equivariant intersection pairings is the Atiyah—Bott—Berline—
Vergne integration formula, see [AB84, Eq(3.8)], is based on the localization principle in

T-equivariant cohomology.

The Atiyah—Bott—Berline—Vergne integration formula

Let X be a smooth projective variety with an algebraic T-action. Recall from (5.8)) the
definition of H}.(X)ioc-

Before we state the integration formula, we recall two general results about the T-fixed

components of X. The first one is the following theorem from [Ive72, Theorem 1]:

Theorem 7.1. We have that X is a smooth closed subvariety of X. If F C X7 is an
irreducible component then we have T, F = (T, X)T, for all z € F.

The second result is the following lemma about the invertibility of Euler classes:

Lemma 7.2. Let F C X7 be an irreducible component and E be a T-equivariant vector
bundle over F. Then, er(E) is invertible in H7.(F)ioc.

Proof. As T acts trivially on F', we have a canonical isomorphism of graded (Q-algebras
H7(F) = H*(F) ® Hyp(pt), where H*(F) is the usual singular cohomology and the tensor

product is over Q. In particular, the graded pieces of H}.(F') are given as

J

H}(F) = @ H'(F) @ H} " (pt). (7.1)
=0
Since F' is fixed under T', we have a T-equivariant splitting F = @le Chi, where 71, ..., 7%

are characters of T' and C; denotes the T-equivariant vector bundle F' x C with T-action
t.(x,v) = (z,7(t)v). Let m be the rank of E. Then, by e.g. [EG98, Lemma 3], the HZ™(pt)-
component of er(E) under the identification is given by 7 = Hle 7. Since all
elements in H7(F), for j > 0 are nilpotent, we conclude that er(E) becomes invertible in
HE(F)ioe 2 H*(F) ® HF(pt)10c- O

Theorem 7.3 (Atiyah-Bott-BerlineVergne integration formula). Let Fy,...,Fs C X7 be
the irreducible components of XT. Then, we have the following equality in HZ(pt)ioc:

o) =3 (LB, forae Hy(X),

i=1 er(NF,

where g, : F; — X are the inclusions and Np, = (L*FiTX)/TFi are the respective normal

bundles.

We now pass to the quasi-projective setup and discuss the notion of the virtual intersection

pairing which is modeled on the Atiyah—Bott—Berline—Vergne integration formula.

136



7.1. The (virtual) intersection pairing

The virtual intersection pairing

Suppose now that X is a smooth quasi-projective variety with algebraic T-action. We addi-

tionally assume that X7 is a proper variety over C.

Definition 7.4. The virtual pushforward X . . : H3(X) — H3(pt)oc is defined as

*,virt *

S *
X _ Fi< Uy (@) ) *
ErvirtlQ) = e\ ——=), forae Hp(X),
s rt( ) Zzl eT(NFZ-) f T( )

where I, ..., Fs C X are the irreducible components of X7 and ¢ r,: I — X the respective

inclusions. The virtual intersection pairing on X is defined as
(s vire s HP(X) x Hi(X) — Hi(ptoes (@, B)vine = xvire (@ B).

By definition, the virtual pushforward and the virtual intersection pairing take values in
the localized T-equivariant cohomology ring H7.(pt)joc. However, for T-equivariant cohomol-
ogy classes in H7(X) with proper support, the virtual pushforward is actually contained in
Hi(pt).

Lemma 7.5. Leti: Y — X be a T-invariant closed subvariety which is proper over C. Let
a€ FZ(Y) and oo € H}(X) be the Poincaré dual of ix(a). Then, under the identification of
H(pt)-modules Hi:(pt) = Hy(pt), we have

eX (o) = €Y (a).

*,virt

: X
In particular, €,

(a) is contained in H.(pt).

Proof. As in Proposition there exists a T-equivariant open immersion X C X, where X
is a smooth projective variety with T-action. Denote by j: Y < X the inclusion and let
B € H:(X) be the Poincaré dual of j,(a). As before, let F,..., Fs C X" be the irreducible
components of X7 and tr, + F; — X the respective inclusions. Since X T is proper, Fi,..., Fy
are also irreducible components of X7. We denote the remeining irreducible components of
X7 by Fi,...,F5. It F ¢ X7 is an irreducible component, let Jjr F— X be the respective
inclusion. As Y does not intersect Fj, we have j;z_ (8) =0, for i =1,...,5. In addition, since
F; C X, we conclude j7.(8) = ¢}, (a). Thus, the Atiyah-Bott-Berline-Vergne integration
formula yields

- - S i j*Z(IB) B s i [‘*i(a) B
e (@) = e et =X = L () = e () = (@)

which completes the proof. O

Let X = C(D) be a bow variety and T'= T = A x Cj be the torus of rank N + 1 from
(2.47). Then, Corollary implies that the virtual intersection form C(D) takes values in
Sy 1H;i(pt) C H7(pt)ioc, where Sy is the multiplicative set generated by

{ti—tj+mh|1§i,j§N,i#j,mEZ}. (7.2)

A crucial difference between Sy ' Hz(pt) and Hi(pt)iee is that the equivariant parameter
h is a prime element in S 1HE}(pt) which is an important ingredient of the proof of the

Ortogonality Theorem.
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7. POLYNOMIALITY AND ORTHOGONALITY THEOREMS

7.2 Polynomiality Theorem

Fix a chamber € of A.

Theorem 7.6 (Polynomiality). We have

(a - Stabg(p), Stabgor (¢))virt € HT(pt),
for all o € HA(C(D)) and p, q € C(D)".

Proof. By the support condition, the product Stabg(p) - Stabgor(q) is supported on the in-
tersection A 4 = Attr’é(p) N Attr’éop (¢q). Hence, also « - Stabe(p) - Stabgor(q) is supported on

A, 4. By Corollary A, 4 is proper over C. Therefore, we have
(a - Stabe (p), Stabeor ())vire = €5 oy (e - Stabe(p) - Stabeon (q)) € Hi(pt),

*,virt

by Lemma O

Example 7.7. As in Chapter|[6] let Cy be the bow variety corresponding to the brane diagram
Dy =0\1/1/1\0. We have

Tie(Dg) = {Dl,DQ}, where D1 = {(Ul, ‘/1), (Vi, Ug)}, DQ = {(Ul, Vz), (Vé, UQ)}

Let a = ¢1(€x,) be the first T-equivariant Chern class of the tautological bundle {x,. We

now show by a direct computation that

(a - Stabg_ ($D2), Stab¢+ (xDl))vir (73)

is indeed a polynomial in the equivariant parameters. For this, we determine the necessary

equivariant multiplicities and tangent weights. The butterfly diagrams of D, D- are as

b O \1/1/1\ 0 p_ 0 \1/1 / 1\\ 0
N O N 7

e

Thus, the restriction formula for tautological bundles (3.8) gives lip, (€xy) = Cyyyp and
Vrp, (€x,) = Cyy—p. Hence, Uip, () = t1 + h and Uy () = to — h. By Proposition W’ the

tangent weights at xp, and xp, are
Tep,Co=Ct—tyt2n ® Crymty—n, Tap,Co=Cp_ty43n © Crympy—on. (7.4)
Proposition [6.5] gives the equivariant multiplicities of Stabe, (zp,) and Stabe_(zp,):

L;Dl (Stab¢+ (.’BDl)) =ty —1t1 —h, L;Dl (Stabg_ (acDQ)) = h,

(7.5)
L;DQ (Stabe, (zp,)) = h, L;DQ (Stabe_(xp,)) = t1 — ta + 3h.
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Inserting this into the definition of virtual intersection products yields

F3) — Urp, (@ Stabe_(2p,) - Stabe, (zp,)) L ey (a - Stabe_(zp,) - Stabe, (zp,))
eT(TJ;Dl Cg) eT(TxDQCZ)

(L1 +h)h (t2 — h)h

_tl—t2—|—2h to —t1 — 2h

= h.

Therefore, we proved that (7.3)) is indeed a polynomial in the equivariant parameters.

7.3 Orthogonality Theorem

The Orthogonality Theorem states that stable basis elements corresponding to opposite cham-

bers are orthogonal with respect to the virtual intersection pairing on C(D):

Theorem 7.8 (Orthogonality Theorem). We have

(Stabe(p), Stabeor (¢))virt = Op.gs
for all p, g € C(D)T.

Proof. Recall that the virtual intersection pairing on C(D) takes values in Sy ' H(pt), where
So is defined as in ([7.2)) and that the equivariant parameter h is a prime element in S 1Hii(pt).
By definition, we have

1;(Stabe (p)) - % (Stabeor (¢))
er(T.C(D)) '

(StabC(p)7 Stab@"P (Q))Virt = Z
2eC(D)T

(7.6)

Theorem implies that is actually contained in Hj(pt). If p # ¢, we know by the
smallness condition that h divides ¢%(Stabe(p)) - ¢%(Stabgon (q)), for all z € C(D)T. However,
Corollary gives h 1 er(T.C(D)), for all z € C(D)T. It follows that is divisible by
hin Sy Hi(pt) and hence also in Hi(pt). As t(Stabe(p)) - % (Stabeor(q)) and er(T.C(D))
are homogeneous of the same degree, we conclude that is a degree 0 polynomial in the
equivariant parameters. Hence, has to vanish. Now, let us consider the case p = ¢q. By

the normalization condition, we can infer

ip(Stabe(p)) - ¢ (Stabeor (p))  er(T,C(D)g ) - er(T,L(D))

er(T,C(D)) - er(T,C(D)) -t

In addition, the same argument as in the case p # ¢ gives

_ Lz(stabc(p)) . L’;,(Stab@p (p)) _
zecz(;)ﬂr N er(T.C(D)) = 0.
27p

Thus, we deduce

=1.

v3(Stabe(p)) - ¢ (Stabeor (p))
ZG%)T er(T.C(D))

This finishes the proof of the Orthogonality Theorem. O
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7. POLYNOMIALITY AND ORTHOGONALITY THEOREMS

Example 7.9. Let C2, D1, D be as in Example[7.7] We show by direct computations that the
stable bases (Stabe_(xp,))i=1,2 and (Stabe, (xp,))i=1,2 are indeed orthogonal with respect to
(., .)vir- Recall from Proposition |6.5| that the equivariant mutiplicities ¢ D, (Stabg_ (xp,)) and
vy Dy (Stabe_(xp,)) both vanish. Thus, all summands contributing to the virtual intersection

product (Stabe_(zp,), Stabe, (2p,))vir also vanish. Consequently
(Stabe_(xp, ), Stabe, (zp,))vir = 0.

Likewise, we deduce that

L;iji (Stabg_(xp,) - Stabe, (zp;)) .

Stab ), Stab ) )vir = 7
( a @_($D2> a €+(xDz)> 6T(T$D,L'C2)

where the second equality follows from the normalization condition. Finally, using the for-
mulas for tangent weight from (7.4) and the equivariant multiplicities of Stabe, (zp,) and
Stabe_(zp,) from (7.5), we conclude

h(tz —t — h) (tl —to 4+ 3h)h
Stab Stab vir =
( 2 67($D2)7 & €+(33D1)) (tl —t2+2h)(t2—t1 —h) + (tl —t2+3h)(t2—t1 —2h)
h h
= +
t1 —to + 2h to —t1 — 2h

=0.

Hence, we showed that (Stabe_(2p,))i=1,2 and (Stabe, (xp,))i=1,2 are orthogonal with respect
to (., ‘)vir'
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Chapter 8
Extension moves for bow varieties

In this chapter, we relate the stable basis elements of different bow varieties whose associated
brane diagrams differ by a small local change. More precisely, assume that we are given two

separated brane diagrams D and D’ such that D’ is obtained from D by performing one of

d
X/

+1

the following local moves involving a red or blue line:

d d / d d d
AN or — AN
Xy X/ Xip Xy X

We refer to these moves as extension moves. The central question of this chapter is:

How are the stable basis elements of C(D) and C(D') connected?

It turns out that the answer to this question strongly depends on the color of the line which
is added in the extension move.

If the extension move adds a red line, we prove in Proposition that there is a torus
equivariant isomorphism of varieties between C(D) and C(D’). The induced isomorphism in
torus equivariant cohomology respects stable basis elements as explained in Corollary

In case the extension move adds a blue line, the dimension of C(D’) is in general strictly
greater than the dimension of C(D), see Lemmal8.13] Thus, C(D) and C(D’) are in general not
isomorphic. We prove however in Theorem that there is a torus equivariant embedding
t: C(D) < C(D') which induces a bijection on torus fixed points. This embedding allows
a comparison between the attracting cells of C(D) and C(D’). In particular, we prove in
Proposition that the equivariant multiplicities of closures of attracting cells just differ
by multiplication with a uniform constant factor. Using this result, we prove in Theorem [8.3§]|
that the stable basis elements of C(D) and C(D’) are connected as follows. By Corollary [5.19

the stable basis elements of C(D) and C(D’) can be realized as Z-linear combinations
C C(D’
StabQ(D) (p) = Z apq - Ngs Stabc,(D )(p’) = Z g - Ny
geC(D)" g'ec(p)”

where A, and A’q, are the Poincaré duals of the fundamental class of the Zariski closures of
Attre(q) and Attre/(¢') in C(D) and C(D') respectively. Theorem now states that if ¢’
restricts to € (see Definition for a precise definition) then we have

ap,qg = alb(p),L(q), for all p, ¢ € C(D)".
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8. EXTENSION MOVES FOR BOW VARIETIES

Since ¢ induces a bijection C(D)T = C(D')T" on torus fixed points, this equality uniquely
determines all the coefficients a;,7 o We therefore call Theoremthe Coefficient Theorem.
As an application of Theorem we then deduce that the stable basis elements of C(D)
and C(D') also just differ by a uniform constant factor, see Corollary

These results might be compared with similar observations in the context of elliptic co-
homology from [BR23| Section 5.10].

Assumption. In this chapter, all brane diagrams are assumed to be separated.

We use the following terminology: Given a brane diagram D, we call a colored line Y in
D chargeless if dy- = dy+. If Y is not chargeless, we call Y essential. We call the brane
diagram D essential if all colored lines of D are essential.

Note that in an extension move either a red or a blue chargeless line is added. Also note
that if D is a tie diagram of D and Y is a chargeless line of D then, as we assumed that D is

separated, no tie in D is attached to Y.

8.1 Red extension moves

Let D and D’ be brane diagrams. To distinguish the colored lines of D and D’, we denote
the red, blue and black lines of D by V, U and X whereas the red, blue and black lines of D’
are denoted by V', U’ and X' respectively.

Definition 8.1. Given a black line X; in D, we say that D’ is obtained from D via a red
extension move at X if we obtain D’ from D by replacing the black line X; with label d = dx,

d
X/

I+1

with the following local configuration:

N>
Xl Xl

d d
/

For instance, 0/1/3/3/5\3\2\0 is obtained from 0/1/3/5\3\2\0 via a red extension move
at X3 as the black line X3 of D is replaced by the local configuration 3/3.

Assumption. Throughout this section, we assume that D’ is obtained from D via a red

extension move at Xj.

As we assumed that D, D’ are separated, we have a bijection between the respective sets
of tie diagrams:
f: Tie(D) —— Tie(D'), (8.1)

where for D € Tie(D) the corresponding tie diagram f(D) is given as
(D) ={(V/,Uj) | Vi X, (Vi,U;) € DY U{(V, Uj) | Viea 9 Xo, (Viey, Uj) € D}

Pictorially, f(D) is obtained from D by just replacing the black line X; with the local config-
uration d/d leaving all ties unchanged.

For example, consider D = 0/1/3/5\3\2\0, D' = 0/1/3/3/5\3\2\0 as above and choose
D € Tie(D) as follows:
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8.1. Red extension moves

Then, (D) is obtained from D by replacing the black line X3 with the local configuration

3/3 where we do not change any of the ties:

7 . - \‘\\}\,//_/_’_: R \\‘\\\\
s 7z ’ N ~ N
f(D):0/1/3/3/5\3\2\0

In the next subsection, we compare the corresponding bow varieties of D and D’'.

Isomorphism of bow varieties

Recall from Notation 2.32] that M is the number of red and N is the number of blues lines
in D. Let k € {0,..., M} such that (X;)* = V/,,, i.e. V[ is the red line which is added to
D’ via the red extension move. Since D and D’ are both separated, we have 1 <[ < M + 1
and k=M +1—1.

As D and D’ have the same number of blue lines, their respective bow varieties C(D) and
C(D’) both admit an action of the torus T = A x C}, where A = (C*)¥.

In the following, we show that there exists a T-equivariant isomorphism between C(D)
and C(D'). For this, recall the definition of the affine brane varieties M(D), M(D'), their
ambient spaces Vp, Vp and the associated gauge groups G, G’ from , Definition m
and (2.32). Recall also the moment maps i resp. m’ of M(D) resp. M(D') from
and that the vanishing loci 7 ~1(0) resp. (1) ~1(0) are locally closed subvariety of Vp resp.
Vpr. Let x resp. X’ be the character of G resp. G’ from Definition and m~1(0)" resp.
(m')~1(0)* the corresponding x- resp. x’-stable locus.

We have the following crucial results:

Lemma 8.2. Let O: Vp — Vo be the morphism of varieties which maps a point

y = ((Au, By, Bff,au, bu)u, (Cv, Dy)v) € Vp

to
O(y) = ((Aur, (Bur) ™, (Bu) ™, apr, bur)ur, (Cyry Dyo)yo),
where AU{ = Ay, By, = By, B;_, = BJU:,, ay! = av;, bUi’ =by,, foralli=1,...,N and
Cv, ifj<k, Dy, if j <k,
Cyr={id  ifj=k+1, Dy={CuDy, ifj=k+1, (8.2)
Cv,_, fj>k+1, Dy,_, if j > k+ 1.

143



8. EXTENSION MOVES FOR BOW VARIETIES

ifl<M+1 and

id ifi=1, _B- ifj=1,
Cyr = /7 Dy = o M (8.3)
! Cv,_, ifj>1, ! Dy,_, ifj>1,

if l= M + 1. Then, © restricts to a morphism of varieties ©: m~1(0)> — (')~ 1(0)*.

Proposition 8.3. The morphism of varieties ©: m~1(0)> — (m/)~1(0)® from Lemma

induces a T-equivariant isomorphism of varieties
0: C(D) — C(D").
Remark. The morphism © from Lemma can be illustrated as follows: Let
y = ((Au, By, Bﬁ, ay,by)u, (Cy,Dy)yv) € Vp.

Then, y is presented by the following diagram:

D A

Vier1 Vi1
- +
B, By
Cur Crsr o Ch1 o Q Q
N N v\ N N Ay A
0 Cd Cdi41 dM+1<—

N N NG N e A

Dy Dy 11 Dy, Dy L ON N

Here, as in Proposition k=M — 1+ 1 and hence V,, = X;. We also denote Ay, by A;,
By, by B;” and similarly for the other operators. In case I < M + 1, we obtain a diagram for
O(y) by performing the following replacements:

dl dl / dl
AN
X Xl/ Xl,-i-l

\/ig\
Cd NN Cd Cd
S

Ci Dy,

Hence, (9 ) corresponds to the following diagram:

A A e N

’ / /
Vi Viee  Vin Vi Vi Uy Uy
- +
By By
Cym Crt1 id Cy, Cr-1 C1 Q
N N KN\ N N TN A A
1 N
0 Cd Cd Cdi+1 Cldm41— —0
A NN N N ~ ", o A
Dy D11 Cy Dy, Dy, Dj—1 D, ! 1 ON N
C
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8.1. Red extension moves

Here, we highlighted the newly added arrows. In the special case [ = M + 1, we perform the

following replacement:

dyrs1 dyvi+1 /dy+
oAy —F ha

/ /
Xm+1 Xnpp1/ Xhrgo
id
VRS
Cdm+1 AN Cdm+r Cdmtr
"
_Bl_

Thus, in this case, @ ) corresponds to the following diagram:

AR /e S

/
VM+1
By BY
Car C o id Q Q
N TN TN "N A A
0 Cdm Cdm+1 Qdmy1—

~ NN B—\/*’N“N/’N
M 2 1 -

The next two subsections are devoted to the proof of Lemma [8.2] and Proposition [8-3]

Basis theorem for the blue part

We begin with the following general basis theorem for bow varieties corresponding to sepa-
rated brane diagrams. The statement is similar to Corollary

Recall the margin vectors ¢ = ¢(D) = (ci, ..., cn) from Definition and that dy4; =
Zjvzc],forz—l LN+ 1

Proposition 8.4. Let y = ((Av, By, Bl av.bu)u, (Cv,Dy)yv) € (1n)71(0) and set
s = AvAu,,, - Ay, L Au, (By ) ag, (1) € €l (8.4)
fori=1,...,N,j>4iandr >0. Then,
(l(f;)]r!]—zz—l—l LN, r=0,...,¢; — 1)

is a basis of C™M+i for alli=1,...,N + 1.

Proof. We prove the statement via induction on ¢. The case ¢ = N + 1 is clear as in this case
dyryi = 0. If i < N + 1 then by Lemma [2.23||(ii), we have a decomposition

CoM+i = im(Ay,) ® im(ay,) ® im(By ay,) & ... @ im((B[}i)Ci_lan). (8.5)

By Proposition u Ay, is injective. Hence, by the induction hypothesis, Carm+i+1 admits

the basis (s yl;rr) |j=1+1,...,N, r=0,...,¢; — 1). Therefore, im(Ay,) admits the basis
(sg)jl |j=i+1,...,N, r=0,...,¢; — 1) which completes the proof. O
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8. EXTENSION MOVES FOR BOW VARIETIES

From Proposition we immediately deduce the following consequence about invariant

subspaces of Wp:

Corollary 8.5. Let T = @Xeh(D) Tx C Wp be an Ay- and BjU[—im}ariant graded subspace
such that ay (1) € T, for allU € b(D). Then, Ty« = Wy, for all U € b(D).

In particular, Corollary simplifies applications of the y-stability criterion from Propo-
sition 2.37]

Proofs of Lemma [8.2] and Proposition

As before, suppose that D' is obtained from D by a red extension move at X; and let V}_
be the added red line.

Proof of Lemmal[8.3 Since O leaves the operators corresponding to blue lines unchanged,
O respects ([2.12) as well as the conditions and Thus, we conclude O(M (D)) C
MV(D’ ). By (8.2) and (8.3), O also respects the moment map equation (2.33]) and therefore

O(m~1(0)) c (m)~1(0). Let
y = ((Ay, By, Bt au,bu)u, (Cv, Dy)v) € m*(0)

be x-stable. To see that C:)(y) = ((Apr, By, B(J}/, ayr, by )y, (Cyry, Dyr)yr) is also x/-stable, let
T=6 X'eh(D) Tx+ C Wpr be a graded subspace satisfying the conditions of Propositionw
Note that

(Av,, By, Bfr,» av,, bu,) = (Aur, By, By agrs byr),  fori=1,...,N.

k3

Thus, as T is Ay~ and B;,—invariant and contains all ag/ (1), Corollary yields Tiyny+ =
Wz, for all U’ € b(D). By Proposition m all Cy are surjective which implies T{y)- =
W, for all V! € 1(D). Hence T' = Wp and O(y) is x'-stable by Proposition W

Consequently, © restricts to a morphism of varieties ©: m~1(0)* — (/) ~1(0)®. O

For the proof of Proposition 8.3 we define a surjection

, o [x i<
m: h(D') — h(D), m(X;) = (8.6)
X1 ifi>L

We get an induced map v,: G — G, (9x)x — (9'x/)x7, where g’y = g, (x7, for all X’ € h(D").
The next lemma gives that O indeed induces a surjective morphism on the associated

bow varieties:

Lemma 8.6. The morphism of varieties ©: 1 ~1(0)* — (1')~1(0)* induces a surjective mor-
phism of varieties ©: C(D) — C(D').

Proof. If we are given 1, yo € m~(0)® such that g.y; = yo for some g = (gx)x € G then, by
[8:2) and (8-2), tn(g).O(y1) = O(y2). Hence, © induces a morphism ©: C(D) — C(D'). For
surjectivity, let y/ = ((AU/, B(}/, B[—]i_,, agyr, bU’)U’? (CV/, DV’)V’) € (ﬁl/)_l(())s. As Xm/ = Xm/H’
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8.1. Red extension moves

we deduce from Proposition that C’Vk/_H is an isomorphism of vector spaces. Define
d=(gx)x €G as 9y, o+ = Cyy,, and gxo == id, for X' # (V)" Write
3.y = (A, By, Bl awr, by )ur, (Cyry Dy )yr).

Since éVk'+1 = id, there exists y € m~1(0)® with ©(y) = §.5// by Lemma below. Thus, ©

is surjective. O

Lemma 8.7. Let y’ = ((AU/,B(}/,Bg,,aU/,bU/)U/, (CVHDV’)V’) S (Th/)_l(O)s with Cvkl-»—l =
id. Deﬁne F(y/) = ((AU,BE,B(—}_,GU,Z)U)U,(CV,DV)V) € Vp via AUi = AUZU B[;Z - BE(;

B[J]Fi =B/, ay, = ay, bu, = by, foralli=1,...,N and
Cyr orj <k, Dy or j <k,
oy, = Jmaske Iy dend (5.7)
C’ij+1 for j >k, DVj/Jrl for j > k.

Then, ©(F(y')) =y and F(y') is contained in mm~'(0)".

Proof. By ([2.33), (8.2) and (8.3), we have ©(F(y')) = y/. Thus, it is left to show that F(y/)

is contained in m~1(0)®. As F leaves the operators corresponding to blue lines unchanged, we
conclude that F(y') satisfies (2.12)), m and |(S2)l Thus, F(y') € M(D). From follows
that F(y') also satisfies the moment map equation and therefore F(y') € m~1(0). To
see that F(y') is x-stable let T = P xen) Ix C Wp be a graded subspace satisfying the
conditions of Proposition Since ¢/ is x’-stable, Corollary gives T+ = Wy, for all
U € b(D). As also all Cy are surjective by Proposition we deduce T'= Wp and hence
F(y') is x-stable by Proposition [2.37] O

The next lemma states that the morphism © is indeed T-equivariant.
Lemma 8.8. The morphism of varieties ©: C(D) — C(D') is T-equivariant.

Proof. Note that O leaves the operators attached to blue lines unchanged. Hence (2.48))
implies that © (and hence also ©) is A-equivariant. So it is left to show that © is C;-
equivariant. Let h € C§ and y € m~'(0)*. By (8:2) and (8.3), we have O(h.y) = gn.(h.6(y)),

where

hl.id fori <l
(Qh)X; =
id for i > 1.

Thus, © is C;- and hence also T-equivariant. O

Proof of Proposition 8.5 By Lemma[8.6]and Lemma [8.8] we know that © is a surjective and
T-equivariant morphism of varieties. By Proposition © is an isomorphism of varieties
if and only if © is bijective. Thus, it is left to show that © is injective. Suppose there are
y1, y2 € (M) ~1(0)* with ¢’.O(y1) = O(ya), for some ¢’ = (¢,)x* € G'. Then, and
yield g.y1 = ya, where g = (gx)x € G is given by

93(; for 1 <1,

PN g foris
or 1 > (.
IX

Hence, O is indeed injective. O
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Invariance of stable basis elements

Since the isomorphism ©: C(D) = C(D') is T-equivariant, © induces a bijection C(D)T
C(D")T. The next corollary states that this bijection corresponds to the bijection f: Tie(D)

Tie(D') from (8.1)).

Corollary 8.9. We have ©(xp) = z¢(py, for all D € Tie(D).

~,
~,

Proof. For all i = 1,..., N, the butterfly diagram b(U/,{(D)) is obtained from the butterfly
diagram b(U;, D) by first replacing the column corresponding to X; by the following diagram:

Xi Xl, Xl/+1
[ ] .4.

and then shifting all dots and arrows corresponding to lines which are to the left of X; down by
one. Thus, by Lemmam we have O(yp) = Ys(D), Where yp € m~(0)3, Yr(p) € (m/)~1(0)®
are defined as in Proposition Since xp = [yp] and x¢py = [Y¢(p)], we conclude O(zp) =

O

zf(D)'

From Proposition and Corollary we now deduce that the induced isomorphism
©*: Hi(C(D')) = H%(C(D)) yields the following bijection on the respective sets of stable

basis elements:
Corollary 8.10. For all D € Tie(D) and any choice of chamber € of A, we have
O (Stabe(w¢(py) = Stabe(zp).

Proof. Since the stability conditions for stable basis elements from Theorem [5.10]are invariant
with respect to T-equivariant isomorphisms, @*(Stabg(asf( D)) is a stable basis element. As

O(zp) = Zg(p), we must have 9*(Stab¢($f(D)) = Stabg(zp). O

8.2 Blue extension moves

Again, let D and D’ be brane diagrams.

Definition 8.11. Given a black line X; in D, we say that D’ is obtained from D via a blue
extension move at X; if we obtain D’ from D by replacing the black line X; with label d = dx,

\d
XI

I+1

with the following local configuration:

— AN
Xl Xl

d d
/

148



8.2. Blue extension moves

For example, the brane diagram 0/1/3/5\3\2\2\0 is obtained from 0/1/3/5\3\2\0 via a

blue extension move at X since Xg is replaced with the configuration 2\2.

Assumption. From now until Section we assume that D’ is obtained from D via a blue

extension move at Xj.
Just as in , we have a bijection
f: Tie(D) — Tie(D), (8.8)
where for D € Tie(D) the tie diagram f'(D) is defined as
(D) ={(V{.Uj) | Uj <« Xy, (Vi, U;) € DYU{(V],U}) | Uj—r > Xy, (Vi,Uj—1) € D}

Pictorially, f'(D) is obtained from D by replacing the black line X; with the local configuration

d\d and we leave all ties unchanged.

Example 8.12. Choose as above D = 0/1/3/5\3\2\0 and D' = 0/1/3/5\3\2\2\0. Let
D € Tie(D) be the tie diagram

\

b 0/1/3/5\

Then, we obtain f'(D) from D by just replacing the black line X with the local configuration

7\

2\2 leaving all ties unchanged:

’

<
~N

5

-/ /)

In contrast to the previous section, the next lemma gives that the bow varieties C(D)
and C(D') are in general of different dimension. Hence, C(D) and C(D’) are in general not

isomorphic as varieties.
Lemma 8.13. We have dim(C(D’)) = dim(C(D)) + 2d.

For example, if D and D’ are as in Example we have d = 2 and thus dim(C(D")) =
dim(C(D)) + 4.

Proof of Lemma[8.13 By ([2.43)), we have
dim(C(D")) — dim(C(D)) = 2d(d + 1) — 2d* = 2d
which proves Lemma [8.13 O

However, as we will discuss in the next subsection, there exists a closed embedding of
C(D) into C(D'). The construction of this embedding is similar to the construction of the

isomorphism © from Proposition [8.3
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8. EXTENSION MOVES FOR BOW VARIETIES

8.3 Embedding Theorem

Let Vp, Vpr, G, G, /W(D), /W(D’), m, m’, x and x’ be as in Section Letk € {1,...,N+1}
such that (X])* = U. That is, U}, is the blue line that is added in the blue extension move.

The bow variety C(D) resp. C(D’) is endowed with the action of the torus T = A x Cj,
resp. T = A’ x C;. Note that A has rank N and A’ has rank N + 1. We view T as subtorus
of T via

T‘—>T/, (tl,...,tN,h) — (tl,...,tk_l,l,tk,...,tN,h).
On the other hand, via the quotient map
T/ — Tu (t17 s ,tN+1,h) = (tla s 7tk—17tk+17 s 7tN+la h)7

we view C(D) as T’-variety.
We set

Zo = {[(Avr, By, By, apr, by )ur, (Cvr, Dy)yi] | agr =0, by = 0} € C(D').

Then, Zj is a T’-equivariant closed subvariety of C(D’). The next two results are the main

results of this section. In particular, they provide an isomorphism of varieties C(D) = Z.

Lemma 8.14. Let //: Vp — Vpr be the morphism which maps a point

y = ((Av, By, Bff,au, bu)u, (Cv, Dv)y) € Vp
to
L/(y) - ((AU'7 B[}H th CLU’? bU')U’; (CVH DV’)V’)7
where (C’Vj/,DVj/) = (Cv;, Dy;), for all j and

(AUNB(;NB[—]’_iaanbUi) if i <k,

(Aus, By By avy,buy) = § (d, By, |, By, ,0,0) ifi =k, (8.9)

K3

(AUFU B5i71 , Bail AU, 1 bUFl) ifi >k,

if k> 1 and

(A /B, Bt ai,b ,) = (id’ _DVICVU —Dvlcvl,0,0) ifi=1, (8 10)
U;» UZ_H UZ_H Ul PU; A B B+ b vy 1 .
( Ui—1» Py, » Py, »AUi_1> Uz‘71) e >1,

if k= 1. Then, ' restricts to a morphism ': m~1(0)> — (m')~1(0)s.

Theorem 8.15 (Embedding Theorem). The morphism ': m~1(0)> — (m/)~1(0)5 from
Lemma induces a T'-equivariant closed immersion

: C(D) — C(D)
which restricts to a T'-equivariant isomorphism C(D) = Zj.
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8.3. Embedding Theorem

Remark. The morphism ¢/: Vp — Vpr from Lemma can be illustrated as follows: Let

y = ((Au, By, Bff,av,bu)u, (Cv, Dy)v) € Vp.

Then, y is presented by the diagram:

AR S e e S

Uk—1 Uk+1 Un
— + — —
B; BB, B B, B
o e 00,00 ()
TN ‘/\ Ar A1 Ay Ag41 AN
0 dyrg1 Cd Cdi+1

0
L VATV & T

Again, we write A; for Ay,, B;” for By etc. In case k > 1, we obtain the diagram for !(y)

by performing the following replacement:

d; d; d;
AN
Xy X Xl
B B

C% NN Cd L(Cdz

That is, //(y) is given by the diagram:

YA A VU v ) S

/
Uk 1 Uk‘+1 Uk+2 UN+1
By Bf |, Bf B, By Bp, BY
o (] QQ Q) QQ ()
TN f\ Ay Ap_1 id Ay Ak+1 An
0 dy+1 < 0

W Yl/bl AN A,N /0 "o /bk \/b N4
C C C C C
Here, we highlighted the newly added arrows. In case k = 1, we replace C% as follows:

d; d; \ d;
AANY

X; X\,

—D1Ch —D1Ch

() . 0

Cd AN Cd <7(Cdz
N
C

0
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8. EXTENSION MOVES FOR BOW VARIETIES

Then, ¢/(y) corresponds to the diagram

SR v S

Ui Uy Us Unt1

-Di1C1 —D1Cy BY  Bf By B

e = 0,00,00 . 0

Ch ¢—Cd —C

woow AN

The next two subsections are devoted to the proofs of Lemma and Theorem [8.15

Zy as torus fixed locus

In this subsection, we apply Proposition to show that the subvariety Zy C C(D’) from

Theorem [8.15|is the fixed locus corresponding to the cocharacter

t iU =U,

o0: C*— A", t— (oou/(t))ys, where oo (t) =
1 iU £ UL

(8.11)

Proposition 8.16. We have Zy = C(D')?°
As a direct consequence of Proposition [8.16] we get the following:
Corollary 8.17. We have that Zy is a smooth subvariety of C(D’).

Proof. Recall from Proposition [2.2(i)| that C(D’) is quasi-projective. Thus, by Theorem
the fixed locus C(D')?° is a smooth subvariety of C(D’). Hence, Zy is smooth by Proposi-
tion [8.16 O

The following auxiliary statement will be used in the proof of Proposition 8.16

Lemma 8.18. Let Yy = ((AU’ BU,,BU,,GU/ bU’)U’ (CV/ DV’)V’) S (ml)fl(O)s. Suppose
there exist g = (gx/)x € G’ and t € C* such that g.y = o¢(t).y. Then, we have g = id.

Proof. Denote the margin vector of D’ by ¢(D') = (c},...,cy,,). By construction,
C; if i <k,
=<0 if i = k,
ci—1 ifi>k.
As in Proposition let

s\ = Ay Ayr - Ay

dh. .
y,jr AU’ 1(BU’) aU/( ) eC M+,

Jj—2 Jj—
fori=1,...,N+1,j>4and r >0. From g.y = 0¢(t).y, we deduce
gwry-Av = Avgwns  gonEBo = Bogan=s  gary-au (1) = oo (t) - ape(1),
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8.3. Embedding Theorem

for all U’ € b(D’). Thus, if j # k, we have

9w-Syyr = 9wp-Avy -+ Avy_, (By, ) ay (1)

= Ay, AUJ’._I(Ba]{)T(O'O,U]’- (1) - ag: (1)) (8.12)
(4)

= Sy

Since ¢, = 0, Proposition says that

((i)ﬂ|]—zz+1 NA41, j#k r=0,...,c;-1)

is a basis for C%m+i for i = 1,...,N + 1. Hence, (8.12) yields gz = id, for all U € b(D).
Next, we prove via induction on j that also all gevyy+ are equal to the identity. The case
- . . + _ — . o .

j = 1is clear since (V])" = (U)”. Let j > 1 and recall from Proposition that Cyr |
is surjective. From g.y = o¢(t).y, we deduce g+ Cngl = CVj’,lg(V]Ll)Jf' By the induction
hypothesis 9y = id and hence, as CV].’ is surjective, we also have g+ = id. Thus, we

proved g = id. ]

Proof of Proposition[8.16 Let y = ((Ayr, BU,,BU,,aU/ bu ), (Cyry Dy )yr) € (') ~1(0)®
with agy = 0 and by, = 0. By (8:11), o0(t).y =y, for all t € C*. This proves Zy C C(D)°°

Conversely, let t € C*\ {1} and y = ((Ay+, B, B, aur, by ), (C’V/ Dy1)yr) € (ﬁl’)_l(O)S
with oo(t).y = g.y, for some ¢ = (9x/)x» € G'. By Lemma we conclude ¢ = id.
Therefore, we have 25_1CLU]/c = ayy and thllc = bUfc' Consequently, ay; =0 and bU]/c = 0 which

vields C(D)? C Zo. O
Proofs of Lemma [8.14] and Theorem [8.15]

Define the surjection

X, ifi<l,
X1 ifi>1

m: h(D') — h(D), m(X)) =

(2

and the inclusion t,: G — G', (9x)x = (g/)x’, where g’y = gr, (x7), for all X’ € h(D’).
Proof of Lemma[8.1j Fory = ((Au, By, Bf,au,bu)u, (Cv, Dy)v) € m~1(0)3, we write
(y) = ((Aur, By, Bl aur, bur)ur, (Cyr, Dy ).

By (8.9) resp. ), //(y) satisfies (2.12), |(S1)| and [(S2)l Thus, /(y) € M(D'). Since also
(Cv;, Dy,) = (CV];, va’)7 for all j, we conclude /(y) € (m/)~1(0). To see that ¢/(y) is x'-satble,
suppose that 77 = @ X'eh(D") T, C Wps is a graded subspace satisfying the conditions of
Proposition Define the graded subspace T'= Xeh(D) Tx C Wp as Tyx = T(/V/)i and

T, ifi <k,

T, =] W

i Tl g i >k
'L+1

As T contains all ay(1) and is invariant under all Ay and Bﬁ, Corollary gives T+ =
Wy, for all U € b(D). As T is also invariant under all Cy and all Cy are surjective by
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8. EXTENSION MOVES FOR BOW VARIETIES

Proposition we conclude T' = Wp which implies T%, = Wx, for X’ # (U;)~. Since

A}, =id and T" is invariant under Ay, , we also deduce T(’ Ww)-. Thus, T" = Wp

k Uy’ U T
and ¢/(y) is x'-stable by Proposition [2.37 O

The following lemma will be used in the proof of Theorem [8.15

Lemma 8.19. The morphism of varieties i': m~1(0)% — (m/)~1(0)* from Lemma in-
duces a morphism of varieties 1: C(D) — C(D') and the image of v equals Zy.

Proof. If y € m~1(0)* and g = (gx)x € G then and imply ¢/(g.y) = wm(g)./' ().
Thus, ¢/ induces a morphism of varieties ¢: C(D) — C(D’). Again, by and (8.10), the
image of ¢ is contained in Zy. Conversely, let 3 = ((Ayr, By, BJUF,, ayr, by )y, (Cyry Dyi)yr) €
(m")~1(0)* with ay; =0 and by = 0. Since d(y7)- = dy)+ Propositionm gives that Ag,
is an isomorphism of vector spaces. Define § = (§x/)x’ € G as

14U]/c if X' = (Ullc)+a

9x' = 3. )
id otherwise.

Set 7 := g.y and write
= ((AU”B@?BJUFMdU’vBU')Uu (Cvr, Dyr)yr).

By construction, AU;Q = id. Hence, Lemma below gives that there exists y € m~1(0)3
with /(y) = ¢. Thus, ¢([y]) = [/] which proves im(¢) = Zj. O

Lemma 8.20. Lety' = ((Ayr, By, Ba_,, ayr, by )yr, (Cyry Dyi)yr) € (Tﬁ/)_l(O)S with ay! = 0,

by, =0 and A/U;Q =id. Define

F(y') = ((Av, By, B, au,bu)u, (Cv, Dv)v) € Vp
via
(AUZ{,B_ B+_,,aUz{,bUi/) if i <k,

v Pu
bU{H) ifi >k

(AUiaBEivBﬁﬁanvai) - v (813)

— -
(AUiI+1 ) BU{+1 ) BU1(+17 an/+17
and (Cy;, Dy;) = (C’VJ{,DV}/), for all j. Then, F(y') € m~1(0) and /F(y') = v .
Proof. By and (B8.10), we conclude /F(y') = y'. From (8.13), we deduce that F(y')
satisfies (2.12)), (Sl)l, (S2)| and hence F(y') € M(D). Since F further leaves all operators
corresponding to red lines invariant, we deduce that F(y') € mm~1(0). To conclude that F(y’)

is x-stable, let T = € Xen(D) Tx C Wp be a graded subspace satisfying the conditions of
Proposition We define the graded subspace T = € X'eh(D') Ty, C Wpr as

TS{/ = Tﬂ'h(X,)’ for X/ € h(D/)

As ay; = 0, we deduce that T contains all ay/(1). Since 7" is invariant under all Ay, and
B(jfn Corollary yields T(,U')i = Wz, for all U" € b(D’). As T' is also invariant under
all Cy, Proposition implies that T(/V’)i = Wz, for all V' € ¢(D’'). Thus, T" = Wpr
which also implies T'= Wp. Thus, F(y') is x-stable by Proposition m O
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Proof of Theorem[8.15 By Lemma we have im(:) = Zy. As Zj is smooth, Proposi-
tion implies that ¢ restricts to an isomorphism «: C(D) = Zy if and only if ¢ is injective.

(dx)x €§'. By and (8.10)]),

Suppose ¢’/ (y1) = ' (y2), for some y1, y2 € m~1(0)%, ¢’
we have g.y1 = y2, where g = (9x)x € G is defined as

9%; = /] if 7 >1
Ixr,, 7 > 1.
Thus, ¢ is injective and hence induces an isomorphism ¢: C(D) = Zy. Finally, and (8.10))
give that / is T’-equivariant. Thus, also ¢ is T’-equivariant which completes the proof. ]
Matching of torus fixed points
Recall the bijection f': Tie(D) = Tie(D’) from (8.8).
Corollary 8.21. We have «(xp) = zy(py, for all D € Tie(D).

Proof. Given i = 1,..., N, the butterfly diagram b(U}, f’(D)) is obtained from the butterfly
diagram b(U;, D) by replacing the column and black arrows corresponding to X; by the

T\

I+1

diagram:

——0—0 5 ‘

l L ]

*o—O

Therefore, and (8.10) imply ¢'(yp) = yp/(py, where yp € m~1(0), yp(py € (M')"(0)°
are defined as in Proposition This gives ((zp) = ¢ (p)- O

8.4 Application of basis theorem

As we saw in the proofs of Proposition and Theorem [8.15, Proposition proved to be
useful to prove stability conditions for points on bow varieties. In this section, we prove a
further useful application of Proposition about the triviality of tautological bundles of
C(D).

We say that a black line X € h(D) belongs to the blue part of D if X = U*, for some
U € b(D). Likewise, we say that the tautological bundle £x = &p x belongs to the blue part
of D if X belongs to the blue part of D.

Proposition 8.22. Suppose X belongs to the blue part of D. Then, we have an isomorphism

of T-equivariant vector bundles

c;i—1

Ex = @ @h’j(CUi.

U;pX j=0
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Proof. Suppose X = U, , for some U; € b(D). For
y = ((Av, By, Bff,au,bu)u, (Cv, Dy)v) € ()1 (0)%,

let S(Z;)- € Wx be defined as in (8.4). Given g = (9x)x € G, we have

Y,3,r

(%) _ -1 -1 |
Sg.y,j,T‘ - gUi— AUigU;r e ng_—1AUj_lgU;L,1 (ng— BUngjf)rng— an (1)

= gy-Av, -+ Au, . (Bg,) au; (1)
_ (@)
- gU[ Syl,j,r‘

Thus, the morphism of varieties

A 0) X € — i  0) x W, () = (A=l )

induces a section

S0 D) X C b, (g N) > [y A s,

J?T

Let t = (t1,...,tn,h) € T. Then, we have

s e = Ay, Ay, (W By )ay, (1)

yvjv’r - J
= hrtj—lAUi . AUjfl(BEjy‘an(l)
_ -1 _(9)
=htsy

()
]7r
Therefore, we have a morphism of T-equivariant vector bundles

is actually a T-equivariant section s'” C(D) x (h~"Cy,) — &x.

Thus, we conclude that s ];T:

Cj*l (z)
_ ersjr
D Prcy, 2 g
U;pX r=0

which is surjective by Proposition As both vector bundles are of the same rank, this

morphism is an isomorphism of T-equivariant vector bundles. O

Remark. The triviality of the tautological bundles which belong to the blue part of D was
also observed in [BR23].

8.5 Restrictions of tautological bundles

Next, we consider restrictions of tautological bundles from C(D’) to C(D) via the embedding
t: C(D) < C(D') from Theorem In particular, we show in Proposition that the
tautological bundles on C(D’) restrict to tautological bundles on C(D). As an application,
we show in Proposition [8:24] that the torus equivariant K-theory class of the normal bundle
of this embedding can be expressed as a sum of trivial bundles. This result will be useful in
the study of the attracting cells on C(D) and C(D’).

Proposition 8.23. For each X' € h(D'), there is an isomorphism of T'-equivariant vector

bundles v*§pr x1 = &p my (x7)-
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Proof. Note that Wy, = W, xn). Let '+ m~(0)* < (/) "*(0)* be as in Lemma 8.14] Given
9= (9x)x € G, we have

(99 Gy, ©) = (t0(9)-4' () n(9)xr0),  for all y € m~1(0)%, v € Wi,

Thus, the morphism of varieties

mH(0)° X Wy (xxry — () 7H0)* x Wxr, - (y,0) = (£ (y),v)

induces a surjective morphism of vector bundles

frépmxy — épr xr-

As &p r,(x7) and t"Epr x have the same rank, f is an isomorphism of vector bundles. Since

¢/ is T’-equivariant, so is f. O

K-theory class of the normal bundle

Let N, be the normal bundle of the embedding ¢: C(D) < C(D').

Proposition 8.24. In K1/(C(D)) holds

/
c—1

V)= P @ (hICu; Tyl + [Ty @ T ).
UIbX; j=0 ’ '

Here, CU, denotes the dual vector bundle of (CU/ For the proof of Proposition |8.24} recall
from Corollary [2.48| that in K/ (C(D)) holds

where

Z Ty + Z Ty — Z Ty, (8.14)

Ueb(D ver(D) Xeh(D

Ty = (1 — h)[Hom(ép i+, Ep,y-)] + h[End(§p - )] + R[End(ép p+)]
+ [Hom(Cy, {p - )] + h[Hom(ép i+, Cu)l,

Ty = h[Hom(ép v+, Ep,v-)] + [Hom(§p v—, Ep vt )]s

Tx = (1+ h)[End(ép,x)]-

(8.15)

Likewise, in K1/(C(D’)) holds

where

Tl

T, =
T,

= > T+ >, Th- > Tk, (8.16)

U’eb(D) Vier(D) X'eh(D")

= (1 = h)[Hom(pr (pry+, §pr wry-)] + REnd(§pr r)-)] + h[End(§pr ry+)]
+ [Hom(Cyr, &pr ()~ )] + h[Hom (§pr (pry+, Cur),
= h[Hom(&pr (vry+, Epr (vry-)] + [Hom(Epr (vry—, §vry+ )]s

7

= (1 + h)[End(épr,x7)]-
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Proof of Proposition|8.24. By Proposition [8.23] we have

L*TX/ = Tﬂ},(X)? L*Tvil = TVz"

for all X’ € h(D’') and V; € r(D’). Likewise, for j # k, we have

Ty,

J

TUj,l if j > k.

. if 7 <k,
/,TU]{:

Hence, we deduce from (8.14)) and (8.16] that

[N,] = [TC(D")] — [TC(D)] = Uy — Ty
Proposition gives t"Epr ()= = €p,x; = LV Epr x1- Therefore,
Ty — ' Tx; = [Hom(Cyyy, §pr x7)] + h[Hom(Epr x7, Cyy ).

By Proposition we have a T’-equivariant isomorphism of vector bundles

cj—1
o= @ Droic
UZ{DXZ Jj=0
Hence, we conclude
c,—1
NI= P P (h_j [Cu; ® Ciy ] + B Cyy © Cm)
UlsX; =0
which completes the proof. O

8.6 Comparison of attracting cells

From now on, we view C(D) as closed subvariety of C(D’) via the closed immersion ¢ from
Theorem In this section, we compare the attracting cells of C(D) and C(D’). The main
result of this section is Proposition [8.27] which states that the equivariant multiplicities of
the attracting cell closures of C(D) and C(D’) just differ by the multiplication with a uniform
constant factor.

First, we consider restrictions of chambers from the torus A’ to the subtorus A.

Restrictions of chambers

Define the inclusion

. , Ui' if i <k,

incy: b(D) — b(D'), U; —
Ul ifi> k.

For instance, if D = 0/1/3/5\3\2\0 and D’ = 0/1/3/5\3\2\2\0 then, as k = 3, the
injection incy is given as

Uy '—>U{, UQI—>U£, U3'—>U4.
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Definition 8.25. For a chamber ¢’ of A’, the set
¢ = {o: C* — A | there exists 0’ € ¢ with oy = ai'an(U), forall U € b(D)}  (8.17)
is a chamber of A which we call the restriction of € to A.

Example 8.26. As above, choose D = 0/1/3/5\3\2\0 and D' = 0/1/3/5\3\2\2\0. Let ¢’
is the chamber {t; < t3 < t2 < t4}. Then, (*¢’ is obtained from € by first forgetting the
coordinate t3 which belongs to the chargeless blue line Us and then relabel the indices of the
ti via

t1— 11, tor>ta, 4 ts.
That is, we obtain (*¢ from €’ as follows:

{t1<t3<t2<t4} N> {t1<t2<t4} N> {t1<t2<t3}
Thus, *¢' = {t; < ta < t3}.

Equivariant multiplicities of closures of attracting cells

Let ¢’ be a chamber of A’ and € = (*¢' be the restriction to A. Denote the respective
attracting cells of p € C(D)T = C(D)™ by Attr(é(D) (p) and Attrg,(D/)(p) The respective Zariski
closures in C(D) and C(D’) are denoted by L, and L;. Likewise, let A, € H3,(C(D)) and
A, € Hp(C(D')) be the Poincaré dual of [L,)™ and [L;]T, respectively. We further view
Hi(pt) = Qlt1,. .., tn, h] as Q-subalgebra of Hf, (pt) = Q[t1,...,tn41, ] via the embedding
t; if i <k,
ti — h+— h. (8.18)
tin ifi>k,

Proposition 8.27. For all p, ¢ € C(D)", we have
Lp(Ay) =€ - 13(Ay)

in Hy,(pt). Here,

cj—1 ci—1
¢=( II Tw-t+G+om)-( II TIt-u-in),
>k j=0 >k j=0
UiEbU;ICaGI UiebU'I’C,G/
where
b;}/ o = U € b(D') | (o', t; —t) >0, for all o' € €'},
ko
_ (8.19)
bUI/wE/ ={U! eb(D) | (o', t; —tx) <0, for all ' € ¢'}.
Remark. By Proposition we have
e = ep (N, ,e)s forallpe c(o"H". (8.20)

Here, N, is the fiber of the normal bundle N, over p and N, . is the negative part of N,

L

with respect to the chamber ¢’.
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Equivariant multiplicities via Proposition in a concrete example

Let D' = 0/1/2\1\1\0. Consider the Zariski closures of the attracting cells L), = Attre (p),
for p € C(D)™', where we choose €’ = {t; < t5 < t3}. Our goal is to determine all equivariant
multiplicities of all the Lj,.

For this, let D = 0/1/2\1\0. So D’ is obtained from D by a blue extension move at the
black line X4. We denote by ¢: C(D) — C(D) the inclusion from Theorem Note that
the restriction € := (*¢’ equals the chamber {t; < t2}.

By Proposition the equivariant multiplicities of the closures of attracting cells of
C(D) and C(D’) just differ by multiplication with a uniform constant factor. Hence, we first
determine the equivariant multiplicities of closures of attracting cells of C(D). The brane

diagram D admits two tie diagrams

D1:O/1/2\1\0 D2:0/1/2\1\0
Recall from Theorem and (2.70]) that there exists a p-equivariant isomorphism f varieties
H': C(D) = T*P!, where p: T = T is the automorphism of algebraic groups given as

(tl, tz, h) — (tlh_l, tgh_l, h)

Let : T*P' — P! be the projection. We view P! as subvariety of T*P! via the zero-section
and denote the elements of P! via homogeneous coordinates [z : y], where z, y € C with
(x,y) # (0,0). By (3.16), we have H'(zp,) = [1 : 0] and H'(xp,) = [0 : 1]. Their respective

attracting cells are given as
Attre([1:0)) = {[L:2] |z €C}, Attre([0: 1)) =n"'([0:1]).
The respective Zariski closures are
Lpg =P, Lpy=7""(0:1]). (8.21)

Let Ajj.g) and Ajg.q) be the Poincaré dual of [L[lzo]}T and [L[O;l]]T respectively. By (8.21)), the
equivariant multiplicities A[1.q) and Ag.q) are

Yuof(Apeo) =t —ta+h fig(Apa)) =0, (8.22)
toa](Apoy) =t —t1 + 1, Loy (M) =t — ta.

Now, we come to the attraction cells of C(D’). The brane diagram D’ admits the tie

diagrams

D,_0/1/'2—\\1\1\0 D,_O/1/2\\1\1\\0
1 — 2 —
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By (8.8), we have f'(zp,) = zp; and f'(zp,) = zpy. Let A}, be the Poincaré dual of [L;J]T,,
for p € C(D")T'. By (8.18), we view H3(pt) as subalgebra of H,(pt) via the embedding

Hr(pt) — Hp/(pt), where t] — ty, to > t3, h — h.
By Proposition [8.27 we have
by, (A ) = (ta—t3+h)- Urp, (Aap,),  ford, j=1,2. (8.23)

Hence, inserting (8.22) into (8.23]) yields the following explicit equivariant multiplicities:

tp, (Aap, ) = (ta —ts + h)(t1 —t3 + h), ta,, (Nap, ) =0,
1

Tp} ot 5
L;Dé (AID,I) = (tz — i3+ h)(tg — i1+ h), L;D’Q (AxD/Q) = (tz — 13+ h)(tl — t3).

Thus, we computed all equivariant multiplicities of the Poincaré duals of attracting cell
closures of C(D’).

The next four subsections are devoted to the proof of Proposition In particular,
we define an auxiliary cocharacter to which we refer as comparison cocharacter and study

geometric properties of the corresponding fixed point locus.

Comparison cocharacter

Recall that we assumed that D’ is obtained from D via a blue extension move at the black
line X; and Uy, is the chargeless line added to D.
Fix a chamber ¢’ of the torus A’.

Definition 8.28. We define the cocharacter 7 = 74, ¢ of A" as

t  ifU € bzgm,,
te (), Twt)=q1 U =Uj, (8.24)
1 U € by o0

We call 7 the comparison cocharacter of € with respect to Uj..

Example 8.29. As in Example let D = 0/1/3/5\3\2\0 and D" = 0/1/3/5\3\2\2\0.

Let € be the chamber {t; < t3 < to < t4}. Then, as t; < t3 and t3 < t3, t3 < t4, we have
b;:;“@/ - {Ué7U4/1}7 b(_]é,cf = {U{}

Consequently, the comparison cocharacter 7 = 73 ¢+ is given as (t=1,t,1,1).

The next proposition contains useful positivity (resp. negativity) properties the compar-

ison cocharacter:
Proposition 8.30. Let p € C(D’)T/. Then, the following holds

, + N+ - =N-
(i) We have N o = N r and Nj o = N o

(ii) All A'-weights of T,C(D)F and T,C(D')} are strictly positive with respect to €.

T
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(111) All A'-weights of T,C(D);

T

and T,C(D');

= are strictly negative with respect to €.

Proof. We just prove as the other statements are similar. By Proposition all A/-
weights of N,, are of the form =£(t; — ¢;). Such a weight is positive (resp. negative) with

respect to € if and only if it is positive (resp. negative) with respect to 7. Thus, we have
Nt =Nt _and N, =N_ O

L,p,&’ L,p,T L,p,&’ Lp,T"

Fixed locus of comparison charcacter

We set
Xo=C(D) ={xelC(D)| 7(t).x =z, for all t € C*}.

By Theorem Xo is a smooth and T’-invariant closed subvariety of C(D’). The next

proposition gives that X is actually also contained in C(D).
Proposition 8.31. We have Xy C C(D).
As a preparation, we use the following auxiliary lemma:

Lemma 8.32. Let Yy = ((AU/,B[;,,B[—]F,,QU/,Z)U/)U/,(CV/,DV/)V/) S (ﬁl/)_l(()) and g =
(9)x' € G" and t € C* such that g.y = 7(t).y. As in (8.4), set

Ay

@ .
Sygr = AU{AU£+1 Ay, j—1

Jj—2

(B(;J/_)TQUJ’- (1) € W)~

fori=1,....N+1, >4, r>0. Then, we have

Proof. From g.y = 7(t).y follows
gwn-Avr = Avgwn+,  9wyEBu = Bugwns,  9wry-aur = v (tay:
for all U’ € b(D’). Thus, (8.4) gives

g~k = gwn-Avr Apr_ (By ) ayr (1)
=Ay; - AU;A(B(}]{)TTU; (t)ag: (1)
= 10y (£)s4) -
This finishes the proof. O
Proof of Proposition[8.31 Let y = ((Aur, By, By, avr, bur)ur, (Cyr, Dy)yr) € (/) ~H(0)8
such that [y] € Xo. This means that for all ¢ € C*, there exists ¢ = (g, x/)x» € G’ with

gty = 7(t).y. In the following, we assume that ¢ # 1. By Theorem [y] is contained in
C(D) if and only if ay; = 0 and by, = 0. With the notation from Lemma we set

— k .
B = (S;J)-?l’]:k:—}—l,...,N—Fl, l:()’,.,’c;._l)’

B = (0 | j=k+1,... N+1,1=0,....¢, - 1).

By Proposition BT is a basis of W(U;v)i. Lemma implies that B¥ is an eigen basis
of It (Ul and each eigenvalue is either ¢ or t~!. By Lemma we know that aU;'g(l) is
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an eigenvector of 9t UL)- with eigenvalue 1. Hence, we conclude ay; = 0. To see that also

by; =0, note that g,.y = 7(t).y. This implies bU;Qg;(lU,;)* = by; and thus we have

k — k k k
by (s"HD) = by, gtv(lUl,N(s;,jfl”) = 51y (s81),  for all sUFY € Bt

Hence, bU;C vanishes on all elements in B' and therefore bU;Q = 0. Thus, we deduce [y] €
C(D). O
Attracting fiber bundles over X,

Consider the attraction sets
+ . : S+ NRT
Z" ={xeC(D) | %E}]%T(t).x € Xo}, ZT={xeC(D)| %E}]%T(t).x € Xo}.

By Corollary Z* and Zt are locally closed subvarieties of C(D) and C(D’) respectively.
A similar argument as in the proof of Proposition actually gives that Z* and Zt are

both closed subvarieties:

Lemma 8.33. We have that Z* is a T -invariant closed subvariety of C(D) and Zt s a

T’ -invariant closed subvariety of C(D’).

Proof. By Proposition there exists a proper and T’-equivariant morphism f: C(D) — V,
where V' is a finite dimensional T’-representation. Then, by Lemma zZt = Y (vz29)

and hence, Z* is a T’-invariant closed subvariety of C(D). The same proof works for Z*. [

According to Corollary the limit maps

m Zt — X, zZ %1_1}(1]7(15).2,
7 2T — Xo, z— lim7(t).2
t—0

are morphisms of varieties and Z*, Z1 are both T'-equivariant affine bundles over Xy. More-

over, for all z € Xy, we have isomorphisms of varieties 7~!(x) = T,C(D)f and 7~ !(x) =

T,C(D')+. If additionally z € C(D')T then these isomorphisms can be chosen to be T'-
equivariant by Proposition 1.8

Next we like to relate the attracting cells of C(D) and C(D’) to the affine bundles Z* and
Z*. For this, note that for all p € C(D')T and each cocharacter o/ € €', we have

Attri(,o (p) = Attrg,(D/)(p) N Xo.

Thus, Attrf}’ (p) is independent from the choice of ¢/ and we denote Attrf}) (p) also by
Attré(,o (p). We further denote the Zariski closure of Attr?,o (p) in Xo by LI(,O).

Proposition 8.34. Let p € C(D')T. Then, the following holds:
(i) We have Attrg(p) (p) = W_l(Attr?,O (p)) and L, = W_I(L}(go)).
(ii) We have Attrg,(Dl)(p) = ﬁ_l(Attré{/O (p)) and L;, = 7?_1([/}(00)).
For the proof, we use the following auxiliary lemma:
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Lemma 8.35. For all p € C(D')T', we have
T,C(D)g = (TC(D)DE & (LC(D))E,  TC(D)g = (T,C(D))e @ (L,C(D); e
and
T,C(D)E = (L,C(D))E @ (T,C(D))e, Tpl(D)g = (L,C(D))e & (T,C(D)7 g

Proof. We just prove T,C(D')& = (L,C(D))E @ (T,C(D)F)S as the other assertions are
similar. By definition, (7,C(D)2)¢ and (T,C(D)})E are contained in T,C(D)g,. Conversely,
let v € T,C(D')& be an A'-weight vector of some weight A. By Corollary. A is of the form
ti —t; with ¢ # j and 4, j # k. Suppose (7,t; — ) < 0. Then, by (8.24 -, we have U] € b*/ .

and Uj; Le b;, o where bﬁ, o are defined as in . Equivalently, if o’ € €', we have
ko
(o' t; —tr) <0, (o', t; —tg) > 0.
Consequently,

<U’,ti — tj> = <O’l,ti — tk> — (U/,tj — tk> < 0.

This contradicts the assumption v € T,C(D’). Hence, (r,t; —t;) > 0 and therefore
T,C(D)g = (T,C(D'))e & (T,C(D)] ) gr- O

An important consequence of Lemma is the following statement about dimensions:

Lemma 8.36. For all p € C(D')T holds
dim(AttrS ™) (p)) = dim(z (AttrX0 (p)),  dim(AttrS ") (p)) = dim (7~ (Attra® (p))).

Proof. Note that T,C(D)§, = T,C(D){. Hence, Corollary gives dlm(Attrc(D)( ) =
dim(7T,C(D),). Likewise, Corollary |4.6| implies

dim(7 ™! (Attrg®(p))) = dim((7,Xo)&) + dim(TC(D)1). (8.25)

By Proposition [8.30}{(ii)l TC(DP); = (TC(D)})&. Since T,Xo = T,C(D)?, we conclude
(TpXo)g:) = (TC(D)?)§,. Thus, Lemma@ yields

®2) = dim((T,C(D)2)E) + dim((T,C(D)1)E) = dim(Attrs ™) (p)).
oD’

The statement for dim(Attry, )(p)) can be shown in a similar way. O

Proof of Proposition 8.3 We just prove as the proof of is analogous. We first
show Attr(é(D)(p) - (AttrXO(p)). By Lemma@ T,C(D )ér, C T,C(D)z°. Thus, since
Attrg( )( ) = T,C(D )Q,, we know Attrc( )(p) C Z*. Since the projection 7 is T'-equivariant,
we conclude that Attrc( )(p) is contained in W_l(Attré(,O (p)). By construction, Attrg(D) (p) is
a locally closed subvariety of W*I(Attré(,o (p)). By Lemma we have

dim(AttrS ™) (p)) = dim (7~ (AttrX (p))).

Thus, Attrg(p) (p) is an open dense subvariety of W‘l(Attré(,O (p)). Now let x € w—* (Attré(,o (p))
and let Y := 7(C*).x be the Zariski closure of the orbit 7(C*).z in W‘l(Attré(,O (p)). Via T,
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we view Y variety with algebraic C*-action. Since Attré(,o (p) C Attrg(D) (p), we know that
m(x) € Attrg(p) (p) and thus Attrg(p) (p)NY is an non-empty open and C*-invariant subvariety
of Y. Hence, we conclude Attrg(p) (p) NY =Y and in particular x € Attrg(p) (p). Thus, we
proved Attr(é(p) (p) = W_I(Attré(,o (p)). This equality also implies L, C W_I(LZ(,O)) and hence
L,= ﬂ_l(Lﬁ,o)) as both varieties are irreducible and of the same dimension. This completes

the proof of O

Proof of Proposition [8.27]

Let Aéo) € Hy/(Xp) be the Poincaré dual of [Lé,o)]T/. Using Proposition we now show
that the equivariant multiplicities of A, and A; just differ from the equivariant multiplicities

of A;S,O) by multiplying with a certain Euler class:

Lemma 8.37. For all p, ¢ € C(D)", we have

13(Ay) = en (T,C(D);) - 1 (AL) (8.26)
and
(A) = en (T,E(D);) - (A). (8.27)

Proof. We just prove (8.26) as the proof for (8.27)) follows along similar lines. Recall from
Proposition that L, = 7~ *(L9). Let m: T,Z" — T,C(D)Y and my: T,Z" — T,C(D);

be the projections corresponding to
T,2" =T;Xo @ Tq(”_l(Q)) = TqC(D)g ® T,C(D)}.

Since Z7 is a T’-equivariant affine fiber bundle, these projections induce a T’-equivariant

isomorphism of schemes
m x m: Co(n 1 (L)) —— C,LY) x T,C(D)}.
Thus, Proposition [5.6| gives

(5(Ay) = en (T,C(D)F & T,C(D)7)/TL(D)F) - 15(AY) = en (T,C(D);) - (AP

which proves (8.26)). O

Proof of Proposition[8.27. Let p, ¢ € C(D')T. By Lemma we have

ta(Ay) = en (T,C(D) - 15 (L)) = e (N, 1) - en (T,C(D)) - 15(L)) = em (Niy o) - (M)

q\Tp Lq,T q\Tp Lq,T

By Proposition we conclude e/ (N, ;) = eqr/(NL_q ) and by (8.20)), ¢’ = er (N, , or)-
Therefore, 1 (A}) = €' - 1;(A,) which completes the proof. O
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8.7 Comparison of stable basis elements

We now pass from the attracting cells of C(D) and C(D’) to their respective stable basis
elements. Again, let € be a chamber of A’ and € = /*€' be its restriction to A. We denote
the respective partial orders of € and ¢ on C(D)T = ¢(D')T by < and <’. Recall from
Corollary that for all p € C(D)", we have

Stabg. = apgl, (8.28)

q=p

for uniquely determined a,, € Z with a,, = 1.

We now come to the Coefficient Theorem which is the main result of this section:

Theorem 8.38 (Coefficient Theorem). For all p € C(D')T', we have

C(D)
Stabg” (p) = Y apgAy,

=p
where ap 4 are as in (8.28]).

Remark. A good name for Theorem [8.38 would be Universal Coefficient Theorem. Unfortu-
nately, this name is already taken by algebraic topology.

As a direct consequence of Theorem [8.38] we deduce that the equivariant multiplicities of
stable basis elements of C(D) and C(D’) just differ by multiplication with a uniform constant

factor.

Corollary 8.39. For all p, ¢ € C(D)", we have
vi(Stabe ™ (p)) = ¢ - 12 (Stabe ™ (p))

in H7,(pt), where € is defined as in Proposition .

Proof. By Theorem [8.38 and Proposition [8.27]

(Stang ™ 0) = 1 (D anay) = D dapari(hg) = ¢ - 15(51be ) 9)

q=p q=p

which proves the corollary. O

Proof of Theorem [8.38
First we show that the partial orders < and =<’ coincide.

Lemma 8.40. For all p, ¢ € C(D)"', we have ¢ < p if and only if ¢ <" p

Proof. With the notation from Proposition |8.34] we have g € L, if and only if ¢ € LZ(,O), for

all p, ¢ € C(D")T'. Likewise Proposition |8.34l(ii)| gives ¢ € L, if and only if ¢ € Lz(,o)

. Hence,

q € Ly if and only if g € L;, and therefore the partial orders < and =’ coincide. ]

166



8.8. Reduction to essential brane diagrams

Proof of Theorem [8.38, We prove that A, == 3 o<p p,gNg satisfies the stability conditions
from Theorem As A; is supported on Lf], we conclude that Ap is supported on | J 4=p L,
which equals the full attracting cell Attré, (p) by Prposition and Lemma Thus, the
support condition is satisfied. Next, we prove the normalization condition. As <=='  we

have L;(A;) =0 for ¢ < p. Thus, as a,, = 1,

(Ap) = 15(Ay) = er (T,C(D')g)

which proves the normalization condition. Finally, by Proposition we have
* (N * C(D
vi(Ay) = ¢ - i (Stabg ™ (p)).

If g # p then h divides LZ(Stab(é(D) (p)) and hence also ¢ (A,). Thus, A, satisfies the smallness

condition which implies A, = L;(Stab(é,(pl)(p)). O

8.8 Reduction to essential brane diagrams

In this section, we assign to each brane diagram D an essential brane diagram Dess. Then,
by employing Corollary we show in Proposition that the equivariant multiplicities
of the stable basis elements of C(D) and C(Dess) coincide up to multiplication with a uniform

constant.

Underlying essential brane diagrams

Given a general brane diagram D, we denote by bess(D) and ress(D) the respective sets of
essential blue and essential red lines in D. We set Negss = |bess(D)|, Mess = |ress(D)] and

write

bESS(D) = {Ujl’ R UjNess}7 1“ESS(Z)) = {‘/;17 IR UiMess}'

Definition 8.41. The underlying essential brane diagram Degs is defined as the unique (sep-

3 3 3 ess €SS 3 €SS €SS
arated) brane diagrams with Negs blue lines U™, ..., U N and Megs red lines V™5, ..., VMcss

and the labels of the horizontal lines are given as
d(UESS)7 = dU];’ d(U;:ss)+ - dU;C, d(‘/less)7 = d‘/;;, d(v’less)Jr = deT’
fork=1,...,Nes and [ =1, ..., M.

For instance, if D = 0/1/3/3/5\3\2\2\0 then the chargeless colored lines of D are V2 and
Us. The underlying essential brane diagram of D is then obtained from D by replacing the
local configuration 3/3 with 3 and 2\2 with 2. That is, Dess equals 0/1/3/5\3\2\0.

Just as in and , we have a bijection
fess: Tie(D) —— Tie(Dess), (8.29)
where for D € Tie(D), the tie diagram fess(D) is defined as
V1, Ug) €fess(D) & (V3,,Uj,) € D.
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Example 8.42. If we choose again D = 0/1/3/3/5\3\2\2\0 and D € Tie(D) as follows:

s A2

Then, fess(D) is obtained from D be replacing the local configurations 3/3 and 2\2 by black
lines labeled by 3 and 2. We leave the ties of D unchanged. Thus, fes(D) is given as follows:

(D) = 0/1/3/5\3\2\0
Comparison of equivariant multiplicities

We denote the tori acting on C(D) resp. C(Dess) by A, T resp. Aess, Tess. We have an inclusion
Ags — A, tp—=t;,, fork=1,..., Ne.

Given a chamber € of A, we define €. as the unique chamber of Ay such that for all &,
le{l,..., Ness}, we have

(ot —t;) >0 forallo € €y < (o,tj, —t;) >0 foralloecd.

Example 8.43. If D = 0/2/4\4\3\3\1\0 then the chargeless lines of D are U; and Us. Thus,
Dess = 0/2/4\3\1\0. As the essential blue lines of D are Us, Uy, Us, the inclusion Aggs < A is
given as (t1,ta,t3) — (t2,t4,t5). Consider now the chamber € = {to < t; < t3 < t5 < t5} of A.
Then, we obtain € from € by first forgetting the coordinates ¢; and t3 as they correspond
to chargeless lines. Then, we relabel the coordinates according to (tg,t4,t5) — (t1,t2,t3).

Thus, Cegs is given as {t; < t3 < t2}.

Next, we employ Corollary and Corollary to compare the equivariant multiplic-
ities of stable basis elements of C(D) and C(Dess). For this, we view Hp (pt) as subalge-

bra of Hyp(pt) via the embedding, Hy_ (pt) < Hyp(pt) given by h +— h and ty — tj,, for
k=1,..., Negs.
Proposition 8.44. For all D € Tie(D) and all choices of chambers € of A, we have
Stabg(p) (xp) = €ess(D, €) - StabC(Dess)( feSS(D))
in H3(pt). Here,
c;i—1 c;i—1
cess(D, ) =[] (( IT IIG-ti+G+Dh ) ( IT TIG-t-in ))
Uk€be (D) i>k  j=0 ik j=0
Uieby, o Uieby, ¢

where b (D) is the set of chargeless blue lines in D and baﬁ is defined as in (8.19)).
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8.8. Reduction to essential brane diagrams

Proof. We prove the statement by induction on the number of chargeless lines in D. If D
admits no chargeless lines then D = Des and the proposition is trivial. Suppose now that
D admits n > 0 chargeless lines and D’ is obtained from D by adding a chargeless line Y.
Let fi: Tie(D') =5 Tie(Dess) be the corresponding bijection from (8.29). Suppose Y is red.

Then, by definition, eess(D, €) = eess(D’, €). Let f: Tie(D) — Tie(D’) be as in (8.1). By
construction, f/_ of = fo. Thus, Corollary gives

c(D’ C(D
Stabg " (z¢(py) = Stabs " (zp)
= eess(D, €) - Stab (DSSS)( Tt (D))
= eess(D', €) - StabC(DeSS)(xf;ss(f(D)))’
for all D € Tie(D). This proves the proposition for D’ in case Y is red. Suppose now that
Y is blue. Let A — A’, T — T’ and H}(pt) — Hy, (pt) be as in Section [8.3| and Section
Fix a chamber € of A’ and let € = *¢’ be the restriction of ¢ to A from (8.17). Let
f': Tie(D) = Tie(D’) be as in (8.8). By definition, . of’ = fes. Thus, Corollary |8.39| yields
that in H3, (pt) holds
Stabg,(pl)(mf/(D)) =¢- Stabf}_(p) (xp)
= ees(D, €) - StabC(Dm)( Tf (D))
= ¢ eess(D, €) - Stabg " (20 (11(py).

for all D € Tie(D). Here, €’ is defined as in Proposition By construction, €' -eqs(D, €) =
eess(D’, €'). Hence, we conclude the proposition for D’. O
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Chapter 9

Equivariant multiplicities via a

symmetric group calculus

In this chapter, we consider the question:
How can we compute the equivariant multiplicities of stable basis elements of bow varieties?

First, observe by Proposition [5.13] and Proposition that we can restrict our attention to
separated and essential brane diagrams.

To give an answer to the above question, we first consider the special case of cotangent
bundles of partial flag varieties. In this case, Su proved in [Sul7, Theorem 1.1] a formula
for the equivariant multiplicities of stable basis elements in terms simple roots and subwords
of reduced expressions of permutations. In Proposition we give an equivalent diagram-
matic version of this formula in terms of string diagrams of permutations. This alternative
illustrative approach turns out to be practical in explicit calculations.

We continue in Section with studying a bijection between the set of tie diagrams of a
given brane diagram D and certain double cosets of the symmetric group Sy to which we refer
as fully separated double cosets, see Definition As we will show in Theorem the
permutations which are contained in fully separated double cosets satisfy strong uniqueness
properties.

In Theorem[9.44] we combine the correspondence between tie diagrams and fully separated
double cosets with the D5 Resolution Theorem [BR23, Theorem 6.13]. As a consequence,
we derive a formula for the equivariant multiplicities of the stable basis elements of bow
varieties in terms of the equivariant multiplicities of the stable basis elements of cotangent
bundles of partial flag varieties. Thus, Theorem [9.44] provides a way to compute equivariant

multiplicities via the combinatorics of symmetric groups.

Assumption. All brane diagram in this chapter are assumed to be separated and essential.

9.1 Symmetric groups and their diagrammatics

In this section, we recall the illustration of permutations via string diagrams and important

combinatorial properties of these diagrams that will be useful in the study of equivariant
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multiplicities of stable basis elements of bow varieties.

Preliminaries and notation

We briefly recall some basic facts on symmetric groups. For more details, see e.g. [Hum90]
or [Sag01].

Denote the simple transpositions of the symmetric group S, by si,...,8,-1, where
s; = (i,7+ 1). Every permutation can be written as w = oy ---0,, where all o; are sim-
ple transpositions. If r is as small as possible, we call the expression o1 - -- o, for w reduced
and call r the length of w and denote it by I(w). It is well-known that [(w) is equal to the

number of inversions of w:
l(w) = |Inv(w)], Inv(w)={(i,7) |1 <i<j<mn, w(i)>w()} (9.1)

By definition, a permutation w is larger than a permutation w’ in the Bruhat order if
some (not necessarily a consecutive) subword of a reduced expression for w is a reduced word
for w’. It is a well-known fact that if w dominates w’ in the Bruhat order then every reduced
expression for w admits a subword which is a reduced expression for w’, see e.g. [Hum90,
Theorem 5.10].

Let R = {t; —t; | 1 <i < j <n} C Q[t,...,t,) be the set of positive roots and
R~ ={t; —t; | 1 < j <i < n} the set of negative roots. By (9.1)), we have

l(w) = |{a € R |w.a € R} (9.2)

The set on the right hand side of (9.2) can also be characterized as follows: For s = s; we
denote by as = t; — tit1 € Qlt1,...,t,] the corresponding simple root. Given a reduced

expression w = 01 - -+ 0y(y), We set
,37; = (0'1'-‘0'7;_1).0401., 1= 1,,l(w) (93)

Then, by e.g. [Hum90, Section 5.6], the set of positive roots that gets mapped to negative

roots by w™! is given by
{Br,.... By} ={e € R |wlae R} (9.4)
Example 9.1. Let n =5 and w = 35412. Then, the set of inversions of w equals
Inv(w) = {(1,4),(2,4),(3,4),(1,5),(2,5),(3,5),(2,3)}.

Thus, [(w) = 7 and one can directly check that w = s4$25153528453 =: 01 - - 07 is a reduced
expression of w. To compute for instance 4, note that o4 = s3 and its corresponding simple

root is ag, = t3 — t4. Since oj10903 = 31254, (9.3)) gives
B4 = (010203).as5 = t2 — 5.

The remaining roots §; are recorded in the following table:

7 1 2 3 4 5 6 7
Bi || ta—ts | to—t3 | t1 —t3 | ta—ts5 | t1 —t5 | to—ts | t1 — 14
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Diagrammatics of permutations

We illustrate permutations in the common way using string diagrams. For instance if w =
35412 € Sy then the following string diagram d,, is a permutation diagram for w since it
consists of 5 strands and each number i on the bottom is connected to the number w(i) on

the top by a strand:
1 2 3 45

123 45

To give a formal definition of permutation diagrams, we define a strand as a smooth
embedding \: [0,1] — R2.

Definition 9.2. Let w € S, be a permutation. A collection Ay, ..., A, of n strands is called

a diagram of w if the following holds:
(i) Ai(0) = (2,0) and A;(1) = (w(i),1) for alli =1,...,n,

(ii) every two strands intersect only in finitely many points and all of these intersections

are transversal and
(iii) there are no triple or even higher intersections among the strands Aq,. .., Ay,.
A diagram is called reduced if the number of intersections among A1, ..., \, is equal to I(w).

Example 9.3. Let w = 35412 € S5 be as in Example and d,, as in (9.5)). Since [(w) =7

and d,, contains exactly 7 crossings, the diagram d,, is reduced.

For two diagrams d,, and d, of permutations w, z € S,, the composition is d,,od, is defined
as follows: First draw d,, on top of d, and then apply the linear transformation R? — R?,

(z,y) — (x, %y) The resulting diagram d,, od, is a permutation diagram for the product wz.

Example 9.4. Let w = 2413 and z = 3124. The following picture shows diagrams for d,,,

d, and the composition d,, o d,:

1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4
dw dz dw 9} dz

We now relate the diagrammatics of permutations to (reduced) expressions of permuta-

tions and the Bruhat order.
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Definition 9.5. We call the intersection of two strands a crossing. Given a diagram d,, of
a permutation w, we denote by K(d,,) the set of crossings in d,,. If all crossings of d,, are of
pairwise distinct height, we call d,, a coding diagram for w and denote the crossings of d,, by

K1, .- K(w), Where k1 is the highest crossing, k2 is the second highest crossing etc.

Suppose that d,, is a coding diagram for w € 5,, and let k£ be the number of crossings in
dy. After applying a homotopy which does not change the heights of the crossings in d,,, we
can view d,, as a composition ds, o ...ods,, where o1,...,0} are simple transpositions and
dy, is a reduced diagram for o;. Hence, we have w = oy --- 0. In this way, d,, encodes an

expression of w in terms of simple transpositions.

Example 9.6. Let w and d,, be as in Example Then, d,, is a coding diagram for w and

corresponds to the reduced expression w = $4825153525453.

Definition 9.7. Given a crossing x € K(d,,), we refer to the local move

G~

Resolving crossings connects permutation diagrams to the Bruhat order as follows:

as the resolving of k.

Lemma 9.8. Let w, w' € S, and dy, be a diagram for w. Then, w is larger than w' in the

Bruhat order if and only if we can obtain a diagram for w' by resolving crossings from d.,.

Proof. After applying a homotopy, we can assume that d,, is a coding diagram. Let w =
o1+ +-0p be the corresponding expression for w in terms of simple transpositions. If w is
larger than w’ in the Bruhat order then there exist 1 <r < kand 1 <4y <... <1, <k such

that w' = oy, -+ 0y.. Thus, resolving all crossings in K(dy) \ {Kiy,--., ki, } from dy, gives

-
a diagram for w’. Conversely, suppose that resolving crossings kj,, ..., k;, from d,, gives a

diagram d,, for w’. Then, set r := k — s and write
{K,il <. < /{ir} = K(dw) \ {I{jl, ce ,/{js}.

After possibly applying a homotopy, d,s equals the composition d(,i1 o...0ds, . Thus, we

have w’ = oy, - - - 0;, and hence w is larger than w’ in the Bruhat order. O

r

For w € §,, with reduced diagram d,,, we define a function
wt: K(dy) — Q[t1,...,tn]

as follows: Let k be a crossing between the strands A and \. Let j resp. 5’ be the endpoints

of X resp. ). Assuming j < j', we set
wt(k) =1t —t;.

We call wt(k) the weight of k.
The next proposition gives that the weights of crossings coincide with the 3; from (9.3):
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Proposition 9.9. Let dy, be a reduced coding diagram and let w = o1 - - - 0y, be the reduced

expression corresponding to d,,. Then, we have
wt(k;) = Bi,  foralli=1,...,1(w).

Proof. For giveni € {1,...,l(w)}, set wy = 0101, W2 = Tiy1 - Oy and 0; = (j,5+1).
After applying a homotopy, we can view d,, as a composition of a a reduced diagram of wo,

a reduced diagram of ¢; and a reduced diagram of w;:

[ [ X

Thus, we have Wt(K;) = ty, (j) — tw, (j+1) = W1-(;) = Bi which completes the proof. O

Example 9.10. Let w and d,, be as in Example The strands which are crossed in the
crossing k4 end in 2 and 5. Thus, wt(k4) = t2 — t5 which coincides with 84 from Example

9.2 Localization formula for full flag varieties

Let F = F(1,2,...,n — 1;n) be the full flag variety of C" endowed with the T-action from
Section For simplicity, we refer to a T-fixed point (F,,0) € (T*F)T from (3.14) just by
the permutation w. The localization formula from [Sul7, Theorem 1.1] determines the T-

equivariant multiplicities of the stable basis elements of T* F' with respect to the antidominant
chamber €_.

Theorem 9.11 (Localization formula). Let w € S, and w = o109 Oy be a reduced

expression. Then, for all w' € S, we have

k
stabe () = ([ +m)( > w7 ]8,). (9.6)
a€Ly 1<iy <+ <ip<l(w) Jj=1

w’:0i1~~-aik

where the B; are defined as in (9.3)) and
Ly=R\{ac R |w (o) e R} ={ac RY| a#f, forall).  (9.7)

Remark. In [Sul7], a different sign convention is used: There h is replaced by —h and
Stabe_ (w) is replaced by (—1)®)Stabe_(w).

Example 9.12. Let n = 5 and consider the permutations w = 35412 and w’ = 23415. We
now use Theorem to compute the equivariant multiplicity ¢ (Stabe_(w')). For this,
we have to determine all the ingredients of the formula . As in Example we pick
W = $4825153525453 as reduced expression for w. Checking all possible subwords of this

expression for w gives that there are only two subwords that give w’, namely oj03050607 and
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o30507. We already computed the 5; in Example The only positive roots which are not
equal to one of the (3; are (t1 — t2), (t3 — t4) and (t3 — t5). Thus, (9.7) gives
Loy = A{(t1 — t2), (t3 — ta), (t3 — t5) }.

By Theorem the subword 0103050607 contributes the summand

(tr — b2 + h)(t3 — ta + h)(ts — t5 + h)h*B183 558651,
whereas the subword o30507 contributes
(tr — ta + h)(t3 — ta + h)(ts — t5 + h)h" B3 P57
Hence, Theorem yields

1 (Stabe_(w')) = (t1 —ta + h)(ts —ta + h)(ts —t5 + h) - h2(ﬂ1/36 + h2)ﬂ3/35ﬁ7. (9.8)

Diagrammatic localization formula

Employing the diagrammatics from Section [9.1] leads to the following diagrammatic version
of Theorem [0.11}

Proposition 9.13 (Diagrammatic localization formula). Let w € S,, and d,, be a reduced

diagram of w. Then, for all w' € S, we have

L;(Staba(w'))z(]'[(aM))( S ORET ] Wt(n)),

acl, K'eK g, w KEK (dw)\ K’

where Kgq,, v is the set of all subsets K' C K(dy,) such that resolving all crossings of K' from

dy gives a diagram for w' and
L, ={a € R" | a# wt(k), for all k € K(dy)}.

Proof. We may assume without loss of generality that d,, is a coding diagram. Let 1 < ¢; <
-+ < i < l(w) and let d’ be the diagram obtained from d,, by resolving all crossings x; with
1 # 41,...,1,. By viewing d,, as composition of reduced diagrams corresponding to simple

transpositions, we deduce that w' = oy, --- 0y, if and only if d' is a diagram for w’. Thus,
Proposition [9.9] implies

k
> I wiw =X W],
K€Ky w KEK (duw)\ K’ 1<y << <U(w) Jj=1

I — )
w'=0;, 04y,

In addition, Proposition also gives L,, = L which completes the proof. O

Example 9.14. Let w and w’ be as in Exampleand let dy, be as in Example We now
determine the equivariant multiplicity ¢% (Stabe_(w’)) using the diagrammatic localization
formula from Proposition [0.13] One can easily check that there are just two possibilities
to obtain a diagram for w’ by resolving crossings from d,,. One is given by resolving the

crossings ko and k4, the other by resolving the crossings k1, k2, k4 and kg, in pictures:
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1 2 3 45
1 2 3 45 12 3 45 %ﬁ
1 2 3 45 12 3 45 1 2 3 45
dy Resolving ko, Ky Resolving k1, ko, K4, Kg

The diagram in the middle corresponds to the subword oi103050607 and the diagram on the
right hand side to o30507. The diagram in the middle still contains the crossings x1, k3, K4,

K5, Kg, K7 and thus contributes the summand
(tl — 1o+ h)(tg — 14+ h) (t3 —i5 + h)h2Wt(Hl)Wt(:‘Qg)Wt(/’i5)Wt(/€6)Wt(H7),

whereas the diagram on the right only contains k3, x5, x7 and therefore contributes the
summand
(tl — o+ h)(tg — 4+ h)(tg — 5+ h)h4Wt(I€3)Wt(f€5)Wt(Fd7)

Hence, Proposition [0.13] yields

1 (Stabe_(w')) =
(t1 — to + h)(t3 — tg + h)(t3 — t5 + h) - h2(wt(k1)wt(ke) + h?)wt(k3)wt(ks)wt (k7).

This agrees with the result from the computation in Example

9.3 Localization formula for partial flag varieties

Let F' = F(dy,...,dmn;n) be a partial flag variety and é = (d1,...,dn+1) be as in Section
As before, for a given w € S,,, we also denote the T-fixed point (F,s;s,0) by wSs.

It was proved in [Sul7, Corollary 4.3] that the equivariant multiplicities of the stable
basis elements of T*F' can be computed via equivariant multiplicities of stable basis elements
of T*F(1,2...,n — 1;n). For the formulation of the formula, recall from e.g. [Hum90, Sec-
tion 5.12], that each left coset wSs contains a unique element of minimal Bruhat length which

is called the shortest representative of wSs.

Proposition 9.15. For all w, w' € S,, we have

* (_1)l(w’55)+l(W’)L;(Stabe_ (W/>)
Uhs, (Stabe_(w'Ss)) =
s z%;ﬂ HaER& z.o
zSs=wSs

il

where [(wSs) is the length of the shortest coset representative of wSs and
Rs ={ti—tj | there exist L€ {1,...,r} withdy +---+dj—1 <i<j<di+---+d}.

Example 9.16. Let § = (2,2,1) and w = 25143, v’ = 52314. We now apply Proposi-
tion to determine the equivariant multiplicity ¢, 5 (Stabe_(w'Ss)). For this, note that
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w is the shortest coset representative of wSs. Since I[(w) = 5 and I(w’) = 6, we deduce that
2z = w(s1 X $1 xid) is the only element in wSs that dominates w’ in the Bruhat order. Hence,
Proposition |9.15] gives
s, (Stabe_(w/S5)) = 5 (Stabe_(w')) _ 5 (Stabg_ (w')) . (9.9)
(tz1) = ta2)(ta@) —ta))  (ts —t2)(ta — t1)
To compute ¢} (Stabg_(w')) we use Proposition The following figure shows a reduced

diagram d, for z. Since l(z) = 7 and [(w') = 6, there is only one possibility to obtain a

diagram d,, for w’ from d, by resolving crossings:

1 2 3 4 5 1 2 3 4 5

Resolving &
Mww .
1 2 3 4 5 1 2 3 4 5

We record the weights of the crossings of d, in the following table:

i 1 2 3 4 5 6 7
Wt(k) || ta—t5 | 61 —ta | ts—ts | t1—t5 | t3—ts | ta—t5 | t1 — b4

Thus, Proposition [9.13] yields
Vi(Stabe_(w')) = (t1 — t3 + h)(t2 — ts + h)(ta — ta + B)h - [ [ wt(ss).
i#5
Therefore, by Proposition we have

(9.9) = (t1 —ts + h)(t2 — t3 + h)(t2 — ta + h)h(ts — t5)(t1 — t2)(t3 — t5)(t1 — t5).  (9.11)

Symmetric group equivariance of stable basis elements

For z € S, the vector space isomorphism ,: C* = C", e; €.(;) induces an isomorphism
of varieties
¢:: T'F —= T°F, (F,f) = (a(F) 0= f7").

By construction, ¢, maps a T-fixed point (Fy,g;,0) to (Fuwss,0). In addition, ¢, is equivariant
with respect to the automorphism p,: T = T given as (t1,...,tn, h) — (tz(1)s -+ s ta(n)s 1)
We equip H3(pt) = Q[t1,...,tn, h] with the Sj-action given by w.h = h and w.t; = t, for
i=1,...,n. Then, the induced automorphism p} on H}(pt) = Q[t1,...,t,, h] coincides with
the action of 271

The next proposition gives that the induced automorphism ¢} of H3(T*F) permutes

stable basis elements as follows:

Proposition 9.17. For all w € S, and all choices of chambers € of A, it holds
Stabe(wSs) = ¢ (Stab. ¢ (2wSs)).

In particular, we have

%, (Stabe (wSs)) = z—l.(L;w,sa(swbz,@(zwsa))), for allw' € S,
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Proof. We show that ¢%(Stab, ¢(zwSs)) satisfies the stability conditions for Stabe(wSs) from
Theorem Since ¢, maps each Attrg(ySs) isomorphically onto Attr, ¢(zySs), we have
ySs <¢ y'Ss if and only if zySs <,¢ 2y'Ss, for all y, ¢y € S,. Thus, ¢, maps Attré(wS(;)
isomorphically onto Attrg.g(zws(;). As Stab, ¢(zwSs) is supported on Attr?Q(wag), we
deduce that ¢} (Stab, ¢(2wS5)) is supported on Attrﬁ_c(wa(;) and thus the support condition
is satisfied. Let Ay, € Hi(T*F) be the Poincaré dual of [Attre(wSs)]T. Then, we have

twss (02 (Stab..e(zwS5))) = ty,55 (Aws;s) = er(Twss (T F)¢)-
This proves the normalization condition. The smallness follows from p%(h) = h. Hence,
Stabe(wSs) = ¢%(Stab, ¢(zwSs)). d
Equivariant multiplicities of the bow variety realization

We like to view T*F as bow variety via the realization H': C(D(dy,...,dm;n)) — T*F
from . Recall from there that H' is equivariant with respect to the automorphism p
of T given by (t1,...,tn, k) — (tth™%, ..., t,h~ 1, h). The induced Q-algebra automorphism
p* : Hi(pt) = Hi(pt) is given as h > hand t; —~ t; —h fori=1,...,n.

Recall from that for all w € Sy, we have H'(zp,,s,) = (Fus,,0). Here, Dyg; is
defined as in . Thus, we conclude

Stabe_(Dys;) = (H')*Stabg_(wSs), (9.12)

where we identified the tie diagram D,g; with its associated T-fixed point TD,s,- From

(9.12)), we directly get
L’jjw,s& (Stabe_(Duws;)) = p" (115 (Stabe_(wSs))), for all w' € Sy,. (9.13)

The localization formula implies that the equivariant multiplicities of stable basis elements

of T*F are actually p*-invariant:

Proposition 9.18. For all w, w' € S,, we have

L (Stabe_(Duwss)) = Ly, (Stabe_ (wSs)).

Dw’S(;

Proof. We have p*(t; — t; + mh) = t; —t; + mh, for all 4,5 € {1,...,n} and m € Z. Thus,
Theorem and Proposition [9.15] imply

p*(ts, (Stabe_(w'Ss))) = t7,5,(Stabe_ (w'Ss)).

Hence, the proposition follows from ((9.13]). O

9.4 Symmetric group equivariance for bow varieties

We now return to the general setup of bow varieties. The main result of this section is the
Equivairance Theorem (Theorem [9.20) which states that the symmetric group equivariance
for stable basis elements of cotangent bundles of partial flag varieties from Proposition 9.1

extends to the framework of bow varieties.
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Symmetric group action brane and tie diagrams

Recall the conventions from Notation and the definition of margin vectors from Defini-
tion Also recall that all brane diagrams in this chapter are assumed to be separated
and essential.

Let D be a fixed brane diagram. If D € Tie(D) is a tie diagram and U, U’ € b(D) are blue
lines then swapping the blue lines U, U’ with their connected ties gives a new tie diagram

over a brane diagram that possibly differs from D:

A :—:—;;;x ¢ <-\‘
c{ N c{iohoons,
NN N\
U U’ U U

This gives Sy-actions on the sets
BDy := {Brane diagrams D | |b(U)| = N} and |_| Tie(D).
DEBDy

These Sy-actions can be characterized as follows: For a permutation w € Sy, the brane
diagram w.D is the brane diagram with M red lines, N blue lines and the numbers on the

horizontal lines are given as
dx,(wD) =dx,(D), i=1,....M+1, dx,,, => co1q j=1...,N+1

By construction, the r-margin vectors of D and w.D coincide, i.e. r(w.D) = r(D). On
the other side c(w.D) is obtained from ¢(D) via c(w.D) = (cy-1(1)(D), .-, cp1(n)(D)). If
D € Tie(D), then the tie diagram w.D € Tie(w.D) is given as

(VivUj)ED

Pictorially, the action of w on D is given by moving each blue line U; with its attached ties

to the position of Uy ).

Example 9.19. Consider the following tie diagram D with underlying brane diagram D:

Let w = 3142 € S;. To obtain the tie diagram w.D, we permute the blue lines with the
attached ties according to w, i.e. the blue line U; is moved with its three attached ties to
the position of Us etc. The respective labels of the horizontal lines of w.D can then be easily

determined by counting the number of ties above the horizontal lines:
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== \\

A

Equivariance Theorem

We now come to the main theorem of this section:
Theorem 9.20 (Equivariance Theorem). For D, D’ € Tie(D) and w € Sy we have
er(Np¢) - p(Stabe(D)) = w. (eT(N;.D’w'Q) : L;D,(Stabw@(w.p))),

where Np o (resp. N, ’DwQ) is the negative part of the constant T-equivariant bundle Np
(resp. Ny.p) over C(D) (resp. C(w.D)) from Definition [9.21 below.

We prove Theorem in Section

Remark. In [BR23l, Proposition 6.18], a similar Sy-equivariance statement for stable basis

elements with a different normalization is proved in the framework of elliptic cohomology.

Definition 9.21. The T-equivariant vector bundle Np over C(D) is defined as

N ¢i—1 N c¢j—1
No= (DD r e o)) e (DD Cyog) o1
j=1 I1=1 j=1 1=1

Recall from Proposition that for all U; € b(D), we have an isomorphism of T-

equivariant vector bundles
c;i—1

5U+ = @ @h ‘Cy,. (9.15)

i=j+1 1=0
Thus, the positive and negative part of Np with respect to a choice of chamber € can be
easily read off from the definition. For instance, if € equals the antidominant chamber €_

then the N;)t ¢ are given as follows:

Proposition 9.22. We have

—l¢;—1 —1l¢;—1
D@_ @@ @@hlkc ®(C\/ NBQ_ @@@@hk l-‘rl(c ®(CV>
Jj=11i=j+1 I=1 k=0 j=1li=j+1 [=1 k=0

Proof. By (9.15), all A-weights of {;+ ® C; are positive and all A-weights of Cyy ® £, are
negative with respect to €_. Hence, the proposition follows by inserting (9.15)) into (9.14). O

Example 9.23. Let D = 0/1/2/3\2\0. We like to employ Theorem to determine the
equivariant multiplicity ¢}, (Stabe_(D)) in case D, D’ € Tie(D) are defined as

/NN o /A

181
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Let s = 21 € Sy. Then, s.D (resp. s.D’) is obtained from D (resp. D’) by switching the

positions of the blue lines with its attached ties:

oD 0/1/2/3\1\0 D — 0/1/2/3\1\0
To apply Theorem we first determine the vector bundles Np and Ngp. From ¢(D) =

(1,2), we deduce that Np = 0, whereas ¢(s.D) = (2,1) gives Nsp = C¢, 4, ®Cyy_¢, 4. Since
5.6 =&, we have N, .« = Cy,_¢, 41 Thus, Theorem implies

V5 (Stabe_ (D)) = s.((tg it h)L:_D,(Stab¢+(s.D))). (9.16)

To determine the equivariant multiplicity ¢} ,,,(Stabg, (s.D)) note that the brane diagram
D3 = 0\1/1/1/1\0 from Section|[6.1]is Hanany—Witten equivalent to s.D. By Proposition|[3.18]
the corresponding Hanany-Witten isomorphism & satisfies ®(xzp,) = zsp and ®(zp,) =
s pr, where Do, D3 € Tie(D) are defined as in (6.4)). By Proposition Up, (Stabe, (D2)) =
h. Thus, Proposition gives 1% 1/ (Stabg, (5.D)) = h. Inserting this into finally
yields

tp(Stabg (D)) = h(t1 —ta + h).

Remark. As we will see in Proposition the bundles Np satisfies convenient compatibility

relations which make them useful in practical computations.

Renormalized stable basis elements

Because of Theorem [9.20] it is sometimes more convenient to work this the following renor-

malized version of stable basis elements:
Definition 9.24. With the above notation, we set

Stabe(D) := er(Np ) - Stabe(D), for all D € Tie(D). (9.17)
We call the elements S/t\zﬁ)@(D) the renormalized stable basis elements of C(D).

In the special case D = D(dy, . ..,dpn;n), where D(dy, ..., dp;n) is defined as in (2.68)), we
have ¢; = ... = ¢, = 1. Thus, by (0.14), Np = 0 which yields Stabe(D) = Stabe(D). Thus

in this case the stable basis elements and the renormalized stable basis elements coincide.
9.5 Symmetric group calculus for bow varieties
Let D be a fixed brane diagram and let n = S3M 7 = Zjvzl c¢;. We denote by

Se:=8¢ X ... xS, CSy, and Sp:=95, x...x 85, CS,

the corresponding Young subgroups.
In this section, we describe a correspondence between the binary contingency tables (and

equivalently the tie diagrams) of D and a special class of (Se, Sy)-double cosets which we
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call fully separated, see Definition As we will see in Theorem and Corollary
permutations that belong to fully separated double cosets satisfy strong uniqueness properties

which distinguish fully separated double cosets from general double cosets.

Fully separated double cosets

The usual assignment of a (S, Sy)-double coset to a matrix leads to the following well-known
bijection, see e.g. [JK81, Theorem 1.3.10]:

Theorem 9.25. Let Z(r, ¢) be the set of all M x N-matrices A with entries in Z>q satisfying

N M
ZA“ =r;, ZAW =cj, foralli,j.
=1 =1
Then, the map Z: S, — Z(r, ¢) given by
Z(w)i,j = ‘w({Rz,1 +1,... ,Rz}) N {Oj,1 +1,..., CJ}|
induces a bijection
Z: 8\Sn/Sr —= Z(r,¢), ScwSy+— Z(w). (9.18)

By definition, the elements of bct(D) are exactly the matrices =(r,c) with all entries
contained in {0, 1}. The following notion characterizes the double cosets that correspond to
bet(D) under Z:

Definition 9.26. A permutation w € S,, is called fully separated (with respect to (7, c)) if
”U)({Ri_l —l—l,...,Ri})ﬂ{Cj_l —i—l,...,Cj}‘ <1, for all 7 € {1,...,M}, je {1,,N}

If w is fully separated then so is every element in ScwS;.. Hence, we call a double coset
ScwSy fully separated if all its elements are fully separated. Likewise, we call a left Sp-coset
(resp. right c-coset) fully separated if all its elements are fully separated.

Clearly, a permutation w is fully separated if and only if Z(w) is contained in bct(D).

Thus, we have the following corollary:

Corollary 9.27. The bijection Z from restricts to a bijection
fsepe» — bet(D),

where fsepc,r denotes the set of fully separated (S¢, Sy)-double cosets.

Example 9.28. Let n = 5 and r = (2,2,1), ¢ = (1,2,2). To compute the matrix en-
tries Z(w1)22 and Z(wsg)z2 for the permutations w; = 14253 and we = 14235 note that
{w1(3),w1(4)} N {2,3} = {2}. Hence, Z(w1)22 = 1. Likewise, as {w1(3),w1(4)} N {2,3} =
{2,3}, we have Z(ws)22 = 2. The other entries of Z(w;) and Z(ws) can be computed in the

same way:

1 01 1 01
Zw)=10 1 1|, Z(w)=10 2 0
010 0 01
In particular, w; is fully separated, as all entries of Z(w;) are contained in {0,1}. On the

other hand, Z(ws)22 = 2 and hence ws is not fully separated.
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In diagrammatic language the fully separatedness condition can be reformulated as fol-

lows:

Lemma 9.29. Let w € Sy and d, be a diagram for w. Then, w is fully separated if and only
if foralli € {1,..., M}, j € {1,...,N} there exists at most one strand in d,, with source in
{Ri—1 +1,...,Ri} and target in {Cj_1 +1,...,C;}.

Proof. By definition, w is fully separated if and only if [w({Ri—1 + 1,...,R;}) N {Cj_1 +
1,...,C;} <1, for all 4, j. This is equivalent to the condition that for all 4, j, there exists at
most one strand in d,, with source in {R;_1+1,..., R;} and target in {C;_1 +1,...,C;}. O

Remark. In [JK81] the fully separatedness condition is called trivial intersection property.

Shortest double coset representatives

Recall from e.g. [Hum90, Section 5.12] that each left coset wSy (resp. right coset Scw) con-
tains a unique representative of minimal Bruhat length w; (resp. w,). We have that wj
(resp. wy) is uniquely determined by the condition wi(R;—1 + 1) < ... < wi(R;), for all i
(resp. w1 (Cj—1+1) < ... < w,; Y(C}), for all 5). Likewise, each double coset ScwS, contains
a unique representative of shortest Bruhat length wg which is uniquely characterized by the

conditions
we(Ri—1 +1) < ... <wg(R;) and w;'(Cjo1+1)<...<w;'(C;), foralli,j.

In the following, we describe the shortest representative of (S, Sy)-double cosets corre-

sponding to binary contingency tables. We begin with a hopefully intuitive example:

Example 9.30. Let n =10, r = (3,2,2,3), c = (2,3,2,1,2) and

S = O =
= = O
_ o = O
_ o O O
S O = =

We draw a diagram for the shortest double coset representative of Z~1(A) following the next

steps: At first, we define functions
Fa;:{1,...,r} —A{1,...,N}, i=1,..., M, (9.19)

where F;(l) is the column index of the I-th l-entry in the i-th row of A. For instance,
Fai:{1,2,3} = {1,...,5} is given by Fa1(1) =1, Fa1(2) =2 and F41(3) = 5.

We start drawing our diagram by drawing strands A; startinginl = 1,...,r; and ending in
CFA’l(l)_l +1,..., CFA,l(m)—l + 1. Then, we draw strands A, 4; startingin r; +1,...,71 4+ 12
and the endpoint of A, 4 is the smallest element of {Cr, ,;)-1 + 1,...CF,, (1)} that is
not already the endpoint of a strand. Continuing this procedure leads to the following

permutation diagram:
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C1 C2 C3 (4 Cs

7234 5% 7% 10 1 2''3 4 5" 's' 9 10’
% / %

123456 7,8 910 123456 7,8 910,

T 9 rs3 T4

7234 5% 789 10 7234 5% 7% 10
AN

123456 78 910 123456 78 910,

We denote the resulting permutation by w4, i.e. wa = 13961024578. Our condition to pick
always the smallest entry in {C;_1 +1,...,C;} that is not already the endpoint of a strand
implies w7y (Cj_1 + 1) < ... < ;' (C}), for all j. In addition, as the functions Fy; strictly
increase, we also have w4 (R;—1+1) < ... < wa(R;), for all i. Thus, w4 is a shortest (Se, Sy)-
double coset representative. As wy satisfies wa(Ri—1 +1) € {Cp, ,)-1 +1,...Cp, @} for
all 4, [, we conclude

1 if j = Fau(l),

0 otherwise.

Therefore, Z (1 4) = A which implies that 4 is indeed the shortest representative of Z~1(A).

We return to the general setup: Let D be a brane diagram and A € bet(D). As in the
previous example, let Fq;: {1,...,7;} — {1,..., N} be the function assigning to [ the column
index of the [-th l-entry in the i-th row of A. Likewise, let G4 ;: {1,...,¢;} = {1,..., M}
be the function assigning to ! the row index of the [-th 1-entry in the j-th column of A. We
also set ng;; = Z?:l A; ;. That is, ny;; is the number of l-entries that are in the j-th
column of A and strictly above the entry A1 ;.

Definition 9.31. We define a map w4: {1,...,n} — {1,...,n} as
WA(Ri—1 +1) = CFA,i(l)—l + 1A Fa0) fori=1,.... Mandl=1,...,7;
We now prove that w4 is indeed contained in S,,:
Lemma 9.32. The map w4 is bijective.

Proof. 1t suffices to show that W, is surjective. Let j € {1,...,N}andl € {1,...,¢;}. Then,
let i = Ga;(l) and I’ € {1,...,7;} such that A;; corresponds to the I’-th 1-entry in the i-th
row of A. By construction, we have wa(R;—1 +1') = Cj_1 + | which proves the surjectivity

of Wy. O
The next proposition lists important properties of 4.
Proposition 9.33. The following holds:
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(i) Z(0a) = 4,
(ii) W4 is the shortest representative of Z~1(A),
(iii) we have [(w4) = |Inv(A)|, where
Inv(A) = {((i1, 1), (@2, 42)) | Aivjy = Ai jp = 1, @1 <z, J2 < ja}-
Proof. By construction, wa(Ri—1 +1) € {Cr, ;-1 +1,...,Cp, 1y} which gives

Z(0)i, = L if j = Fau(l),
0 otherwise.
Hence, Z(wy) = A. Moreover, we conclude wa(R;—1 + 1) < ... < wa(R;), for all i.
By definition, we also have w,'(Cj_1 +1) € {Ra, ;-1 +1,....Rg, )} which implies
W, (Cjo1+1) < ... <@, (Cy), for all j. Thus, W, is the shortest representative of Z~1(A).
Finally, note that since w4 is a shortest left Sy-coset representative, the inversions of w, are
exactly the ordered pairs (R;, + 1, Ri, + l2) with

1<ii<ia <M, 1<h<ry, 1<lb<ry, Fa;(l)>Fai(l).

Therefore, we have a bijection Inv(wp) — Inv(D), where an inversion (R;, + l1, R;, + l2) of
wa is mapped to ((i1, Fa, (11)), (i, Fa,i; (I2)). Hence, I(wp) = [Inv(A)]. u

Example 9.34. Let w, w’ € S5 be as in Example and choose r = (2,2,1), ¢ = (2,1,2).

Then, we have

Z(w) = Zw') =

O =
_ o O
O =
S = =
oS = O
_ o

Set A == Z(w) and A" := Z(w'). To determine the permuations w4 and w4/, we first read off
the functions F4; and Fa; from A and A’. We have Fy1 = Fao: {1,2} — {1,2,3}, 1 = 1,
2 +— 3 and Fa3: {1} — {1,2,3}, 1 — 2. Likewise, we have Fa; = Fa1, Fa2: {1,2} —
{1,2,3},1—1,2— 2and Fa3: {1} = {1,2,3}, 1 — 3. Hence, the stepwise construction of

w4 and W4 can be illustrated as follows:

1 234 5 1 234 5 1 234 5
Construction / >« / >%§<
) AN AN
of w A-
12,3 4 5 12,3 4, 5 12,3 4 5
1 234 5 1 234 5 1 234 5
Construction / >%< >%<
) AN AN
of W Al
12,3 4 5 12,3 4, 5 12,3 4 5

Thus, we have w4 = 14253 and w4 = 14235.
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Uniqueness properties

In this subsection, we discuss strong uniqueness properties of fully separated permutations

that distinguish them from general permutations. The central result is the following theorem:

Theorem 9.35. Assume w € Sy, is fully separated. Let v, v' € Sy and u, v’ € S, such that

uwv = v'wv'. Then, u=u" and v ="7".
Before we prove Theorem we illustrate the idea of the proof in the following example:

Example 9.36. Let n, r, c and A be as in Example For a permutation w € S,,, we

define the function

Fo:{l,...n} — {1,...,N}, i Fyu(i),

where Fy, (i) is the unique element on {1,..., N} such that Cp, -1 +1 < w(i) < Cp, ().
In terms of diagrammatic calculus, the function F,, can be characterized as follows: Pick a
diagram d,, for w. On the top of d,,, draw N square brackets around the intervals {1,...,C1},
{Ci1+1,...,Cs},....,{Cn-1 + 1,...,Cn}. Label these square brackets with 1,..., N from
left to right. Then, Fy, (i) is the index of the square bracket containing the endpoint of the
unique strand starting in <.

Let for instance v = v1 X v9 X v3 X v4 € Sy, where v1 = 312, vy = 21, v3 = 12, v4 = 231.

A diagram for wav is given by

C1 (&) C3 Cq4 Cs
1 M1 T

M 2'3 4 5% 7789 10

12345678910

The functions Fi;, and Fy,, can be easily read of from their diagrams:

i [1]2fsfa]s]6]7[s]9]10]
Fz, () |1]2]5[3]|5|1]2|2]3]4
Foo@) [5]1]2|5[3|1]2(3[4]5

Next, we show that if we know Fy,, then we can reconstruct the permutation v. We begin
by reconstructing the factor v; € S3. The first three letters in the row of Fy ,, give the word
512. Then, using the identification 1 — 1, 2 +— 2, 5 +— 3, we see that 512 corresponds to
312 = v;. Next, the fourth and the fifth letters in the row of Fy,, give the word 53. Using
the identification 3 — 1, 5 — 2, we get the word 21 = v. In the same way one can construct
vs and v4 and thus the permutation v.

In our reasoning, the fully separatedness property was essential because this property
ensures that the restriction of Fy,, to {1,2,3}, {4,5}, {6,7}, {8,9,10} is injective.
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We proceed with the general setup. As in Example we define for given w € S), the

function

Fo:{l,...,n} — {1,...,N}, i Fy(), (9.20)
where F, (i) is the unique element in {1,..., N} such that
Cr, -1+ 1< w(i) < Cp,g)-
Likewise, we define
Gy :{l,....n} —{1,.... M}, j+— Gyu(j),
where G, (j) is the unique element in {1,..., M} such that
R, (-1 + 1 < w ' (j) < Rg,)-

Similarly as Fy,, the function GG,, admits the following diagrammatic interpretation: Pick
a diagram for w and draw M square brackets on the bottom around the discrete intervals
{1,...,R1}, {Ri +1,...,Ra},...,{Rpm—1 + 1,...,Rpyr}. Label the square brackets with
1,..., M from left to right. Then, G, (j) is the index of the square bracket containing the
starting point of the unique strand with endpoint j.

If w is fully separated then the restrictions of F,, to the sets {R;_1+1,..., R;} is injective,
for i =1,..., M. Likewise, the restriction of G, to {Cj—1 +1,...,C;} is also injective, for
j=1,...,N.

The next lemma lists useful properties of the functions F, and G,.

Lemma 9.37. Assume w € S, is fully separated. For w € S, and v € Sy, we have
(1) Fuw = Fu,
(i) Guwo = Gu,
(iii) Fuy = Fy if and only if v = id,
(iv) Guw = Gy if and only if u = id.

Proof. Since u leaves the sets {Cj_1 +1,...,C;} invariant, we get Likewise, v leaves the
sets {R;—_1+1,..., R;} invariant which gives For suppose that v # id and Fy,, = F,.
Let I € {1,...,n} such that v(l) #[. Choosei € {1,...,M}suchthatl € {R,_1+1,...,R;}.
As v € Sy, we have that v(l) is also contained in {R;_1 +1,..., R;}. By definition, Fy,(l) =
F,(v(l)) and hence F,,(v(l)) = Fy,(1). This contradicts the fact that the restriction of F,, to
{Ri—1 +1,...,R;} is injective. The proof of [(iv)] is analogous. O

Proof of Theorem[9.35. We may assume u' = id, v" = id. By Lemma Fy = Fuwy =
Fyy. Thus, Lemma [9.37](ii1)| implies v = id. Likewise, Lemma (i1)| gives Gy = Guuww =
G uw which implies u = id by Lemma [9.37 Hence, we proved v = v’ and v = v'. O
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Let A € bet(D). By construction of Fy, and Fy ;, we have
F@A(RZ’,1+Z):FA’i(Z), i=1,.... M, l=R;_1+1,...,R;. (921)

This observation combined with Lemma[0.37]leads to the following characterization of shortest

representatives of fully separated left resp. right cosets:
Corollary 9.38. For A € bet(D), the following holds:
(i) uwy is a shortest left Sp-coset representative, for all u € S,

(i) if wSy is a fully separated left coset then there exist A € bet(D), u € Se such that uw 4

is the shortest representative of wSy,
(iii) WAV is a shortest right Sc-coset representative, for all v € Sy,

(iv) if Scw is a fully separated right coset then there exist A € bet(D), v € Sy such that

wAv is the shortest representative of Scw.

Proof. By Lemma (1)[ and (9.21)), we have
Fui,(Ric1+1) < Fug,(Ric1+2) < ... < Fup,(R;), fori=1,..., M.

This implies ut4(Ri—1+1) < uwa(Ri—1+2) < ... < uwa(R;), fori =1,..., M. Hence, u
is the shortest representative of uw Sy which gives For |(ii)} we use that if wS; is fully
separated then Z(w) € bct(D) and hence there exist u € Se, v € Sy such that w = uib ().
Thus, |(1)| gives that uz(,) is the shortest representative of wSy. The proofs of and

are analogous. O

9.6 Equivariant multiplicities via resolutions

The main results of this section are Theorem [9.42| and Theorem which provide formulas
that express the equivariant multiplicities of stable basis elements of bow varieties in terms of
equivariant multiplicities of stable basis elements of cotangent bundles of partial flag varieties.
In particular, these formulas allow to compute equivariant multiplicities for bow varieties via
the diagrammatic calculus from Proposition [9.13

Theorem [0.42] deals with the stable basis elements corresponding to the dominant cham-
ber, whereas Theorem focuses on the antidominant chamber. As we discuss in Sec-
tion Theorem [9.42] and Theorem [9.44] are actually equivalent.

The formulation of Theorem [9.42] and Theorem [9.44] uses the language of symmetric
group calculus for bow varieties which was developed in the previous section as well as the
language of resolutions of tie diagrams from [BR23]. We therefore refer to these theorems as
the Equivariant Resolution Theorems. More specifically, we call Theorem the Dominant
FEquivariant Resolution Theorem and Theorem [9.44]the Antidominant Equivariant Resolution
Theorem.

We begin with the underlying combinatorics on brane and tie diagrams.
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Resolutions of brane and tie diagrams

As before, let D be a fixed brane diagram. Recall from Definition that R; = Z;\il r; and

C’j = Zi\i ; ¢i- Hence, the labels of the horizontal lines of D are given as follows:

(R[N N

Definition 9.39. The resolution Res(D) of D is the brane diagram defined as
/A /e e N
That is, the resolved brane diagram Res(D) is obtained from D by replacing the part
n\C2\ ... \Cn\0 with n\n — 1\...\2\1\0. Thus, Res(D) is equal to the brane diagram

D(Ry,...,Rp—1;n) from (2.68). Hence, C(Res(D)) is isomorphic to T*F(Ry, ..., Ry—1;n).

Given ©u = uq X - -+ X uy € S¢, we obtain an inclusion

Res,: Tie(D) — Tie(Res(D)), (9.22)

where for a tie diagram D € Tie(D), the resolved tie diagram Res,(D) is obtained via

performing at each blue line U; the local move:

|
|

/
//
/
%

/
/
/

1
1
11

Here, the box around u; represents an arbitrary diagram for u;.

Example 9.40. Let D be the following tie diagram with corresponding binary contingency
table:

Ve v N

S = O =
_ O ==

We choose u; = 21 and ug = 231. Then, Res, (D) and its associated binary contingency table

are given by

______

W W SN

\/

\
o = o ©
o o o =
o o = o
_ o o O
o o o =
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Here, we see the rotated diagrams for u; and wue, where the diagram for u; involves the ties
of the first and the second blue line and the diagram for uo involves the ties of the third,
fourth and fifth blue line.

As in Proposition we denote by M (D) the binary contingency table corresponding to
a tie diagram D € Tie(D). In addition, we set wp = Wys(py, where Wy (p) is the permutation
from Definition [0.311

In terms of left Sy-cosets, we can characterize Res, (D) as follows:

Proposition 9.41. We have
Resy (D) = Dywp s,

where Dy s, 15 defined as in ([3.15]).

Proof. Suppose the blue line U; in D is connected to the red lines V;,, ... Vicj, where 17 <
... <'i¢;. Then, in Resy (D), the blue line Uc,_, 1, is connected to View, fort=1,...,¢;. On
the other hand, by the construction of wp, we have 7])51(0]-_1 +1) e {Ri—1+1,...,R;, }, for
all I. Thus, wplu= (Cj_1 +1) € {Riuj(z)*l +1,... vRiuj(z)}' Hence, the tie diagram Res, (D)
equals Dy, 8, - ]

Equivariant Resolution Theorems

We now come to the main results of this section. We begin with the Dominant Equivariant
Resolution Theorem because its formulation is slightly easier. However, in practical compu-

tations, we will always use the Antidominant Equivariant Resolution Theorem in this thesis.

Theorem 9.42 (Dominant Equivariant Resolution Theorem). Let D, D' € Tie(D) and

u € S.. Then, the equivariant multiplicities of the renormalized stable basis elements from
Definition can be computed via

N ¢;—1 o
(TT TTGR77) - ep(Stabe, (D) = W (s, () (Stabe., (Resy (D)),

i=1 j=1
where U Q[t1,...,th,h] — Q[t1,...,tn,h] is the Q[h]-algebra homomorphism given by
Uo(te, \4k) =ti—(ci—1—k)h, fori=1,...,N, k=1,...,¢.

Theorem is proved in Section By employing the isomorphism C(Res(D)) =
T*F(Ry,...,Ry—1;n), we obtain the following reformulation of Theorem m

Corollary 9.43. With the notation of Theorem[9.3, we have

N Ci—l

(TT TTGm) - th(Stabe, (D) = Wh(15,s, (Stabe, (w'Sy)).
i=1 j=1
where the stable basis element on the right hand side is on T*F(Ry,...,Ry—1;n) and w' €

Scwpr S
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Proof. By Proposition Dy ,s. = Resia(D) and Dyyg, = Res,(D’), for some u € Se.
Thus, Proposition yields

155, (Stabe, (w'Sy)) = LResiq(D) (Stabe (Resy(D"))).

Hence, the statement follows from Theorem [9.42] O

Antidominant Equivariant Resolution Theorem

For the formulation of the Antidominant Equivariant Resolution Theorem, we set
up = (Wo,e; X ... X Woey) € Se, (9.23)
where wg; denotes the longest element in S;, for all /.

Theorem 9.44 (Antidominant Equivariant Resolution Theorem). Let D and D' be tie di-
agrams of D. Then, the equivariant multiplicities of the renormalized stable basis elements
can be computed via

N ¢;—1

(TT TT G ) - ip(Stabe_ (D)) = W (thres,, (o) (Stabe_(Resu(D')))).

i=1 j=1
Here, u € S¢, uy is as in (9.23) and the Q[h]-algebra homomorphism Wp: Q[t1, ..., tn, h] —
Qlt1,...,tn, h] is given by Yp(te, ,4+x) =ti —(k—1)h, fori=1,..., N, k=1,...,¢

We also prove Theorem in Section
For D € Tie(D), we set

wp ‘= ugWp € Sy, (9.24)

The next statement is a version of Corollary for the antidominant chamber and follows

along similar lines:

Corollary 9.45. With the notation of Theorem[9.74], we have

N c¢;—1
(TTTTGR) - th(Stabe_ (D)) = Wp(s5, 5, (Stabe_(w'Sy))),
i=1 j=1
where the stable basis element on the right hand side is on T*F(Ry,...,Ry—1;n), w' €

Scwp' Sy and wp is defined as in (9.24]).
Example 9.46. Let D and D’ be the following tie diagrams:

EVEVE U2\ NIV §; N N\

In the following, we compute the equivariant multiplicity ¢ D(Stab¢_ (D')). Note that n =5,
= (2,2,1) and ¢ = (2,1,2). Let w, w' € S5 be as in Example Then, we have
Z(w) = M(D) and Z(w') = M(D'). Hence, we know from Example that wp = 14253
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and wpr = 14235. Thus, w = (s x id xs)wp, where s = 21 € Sy. This gives w = wp.
Therefore, by Corollary we have

h? - ip(Stabe (D)) = Up(i),s, (Stabe_(w'Sh))), (9.25)

where
\II'D . Q[t17t27t37t47t57h] I @[t17t27t37h]

is the Q[h]-algebra homomorphism given by t1 + t1, to > t1 —h, tg > to, t4 > t3, t5 — tz3—h.

From , we know
Uiys. (Stabe_ (w'Sy)) = h(ty —t3 4 h)(t2 — t3 + h)(t2 — tg + h)(ts — t5)(t1 — t2)(t3 — t5)(t1 — t5).
Thus, we have

Up (1, (Stabe_(w'Sy))) = b (t1 — to + h)(t1 — t2) (1 — ta + h)(t2 — t3)(t1 — t3).  (9.26)

Finally, inserting (9.26)) in (9.25]) yields
Vi (Stabe_(D")) = h(ty — ta + h)(t1 — ta)(t1 — t2 + h)(ta — t3)(t1 — t3).
The following general divisibility statement will be useful in applications of Theorem [9.44

Lemma 9.47. Let i, j € {1,...,n} with i < j. Then, h divides ¥p(t; — t;) if and only if
Ci1+1<i<j <y, for somel=1,...,N.

Proof. Suppose Cj—1 +1<i<j <y, forsomel=1,...,N. Then, Up(t; —t;) = (j — i)h.
On the other hand, if Cj,_1 +1 <1¢ < (), and Cj,—1 +1 < 5 < (,, for some [y < l;. Then,
\I’D(ti - tj) = tlo — tll mod h. ]

9.7 Approximations of equivariant multiplicities

Next, we combine the diagrammatic localization formula from Proposition [9.13] and Corol-
lary to approximate equivariant multiplicities of stable basis elements modulo powers of
h.

For this, we like to choose the reduced diagrams for permutations of a particular form:
Let w = ugwp(v1 X - -+ X vpr), where, as in , Ug = Wo,e; X - .. X Wocy and each v; € S,
is an arbitrary element. By Corollary we can choose a reduced diagram for w of the

form:

Wo,cq Wo,co Wo,cn

Wp (9.27)

U1 V2 UM
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Here, the boxes represent reduced diagrams of the respective permutations. The example
on the right shows the permutation wywpv, where wp is the shortest (Se, Sy)-double coset
representative from Example with r = (3,2,2,3), ¢ = (2,3,2,1,2) and v € S; is chosen
as v = v1 X Vg X v3 X vg with v; = 312, vy = 12, v3 = 21, vq = 231.

If dy, is a diagram of shape then, according to their position in the diagram, we

define the following subsets of crossings in d,,:

Ky (dw) = {k € K(dy) | k belongs to some wq,, for i =1,..., N},
Ky (dy) ={k € K(dy) | k belongs to wp}, (9.28)
Ky (dy) = {k € K(dy) | k belongs to some v;, for i =1,..., M}.

The next proposition shows that the weights of crossings in Ky precisely contribute the

normalization factor which appears in Theorem [9.44

Proposition 9.48. The normalization factor from Theorem[9.44 can be expressed via weights

of crossings as follows:

N c¢;—1
TTTIGne = \pr( I1 wt(m)).
i=1 j=1 KEKy (dw)

The proof is immediate from the following lemma:

Lemma 9.49. Let wo, € Sy be the longest element and dy,, a reduced diagram of wo .

Then, we have

v( 11 wt(n)):ﬁuh)“—j,
KEK (duwy ) Jj=1

where W : Q[t1, ..., tn, h] = Q[t, h] is the Q[h]-algebra homomorphism given by
ti0—>t—(i—1)h, 1=1,...,n.

Proof. Note that by (9.4), the product HK/EK(dwO )Wt(l-i) does not depend on the choice of
reduced diagram. We prove the statement by induction on n. The case n = 1 is trivial. For

n > 1, we choose dy, , to be of the following shape:

1 2 n—1n

[ |
Wo,n—1

1 2 3 n

Here, the box represents a reduced diagram for wg,—1. Let K’ be the set of crossings con-
tained in the box of wg ,—1 and K” be the set of crossings outside of the box of wg 1. From

the diagram d.,, »,, we can read off that the crossings in K" have weights t; —t,,...,t,—1 —1p.
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Thus, we have W(]],.cpn wt(K)) = H?;ll (ih). Applying the induction hypothesis to K’ yields

\Il< H Wt(li)) =Vv H wt(k ) ( H Wt(ﬂ))

KEK (duwyg ,,) KEK' KEK"

n—2 n—1

= (TTaw=7) - w(TTt ~ )
i=1 i=1
n—Jl
= 11Gn"™
7j=1
which finishes the proof. O

Proposition 9.50 (Approximation). Under the same assumptions as in Corollary
choose for all z € wpSy a reduced diagram d, of shape (9.27). Then, we have

(=)D (T]eyy Upla+h)) - Pawrm

(h(Stabe (D) = 3 [Tser, Uo(z-B)

zEwWp Sy
where L, is defined as in Pmposition
Pirm = 3 Pl K (@) p, ( I1 @D(Wt@i)))

K'eK(d,w';m—1) KEK(dy)
kK’ Ky (dz)

mod A", (9.29)

and

K(d;,w',m—1)={K' € Kq, . | |K'\ Ky(d.)] <m — 1},
HIE' 0Ky ()| T wekp (@)K YD (WH(K))
Hz 1HCZ_1(]h‘)Cl
Remark. By Lemma[0.47)and Lemmal[9.49] the factor fx- is always contained in Q. Moreover,
note that for all ¢; —t; € Ry and z € ScwpSy, we have F, (i) # F.(j). Here, F, is defined as

in (9.20). This implies that ¥p(«) is of the form ¢;, — t;, + mh, where 1 < i; < is < N and
m € Z.

frr =

Proof of Proposition[9.50. For z € wpS,y with reduced diagram d, of shape (9.27), define
mo(z) = |K(d,) \ Ky(d,)|- By Corollary we have

(— 1) HE S ( HaeL’z Up(a+ h)> " P mo(2)
[ser, ¥n(2.5) |

If K" € Kg, v \ K(d.,w',m — 1) then, by Proposition the polynomial

S | R 2 )

kEKy (d2)\K'

tp(Stabe (D)) = >

zEwp Sy

is divisible by pale(e—Dtten(en—1))+m, Thus, we have
Py, w'mo(z) = Paow';m mod ™, for all 2 € wpSy.
This proves the proposition. ]
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Example 9.51. Let D and D’ € Tie(D) be the following tie diagrams:

D 0/1/2/3

[\

~
~

- S
N,

D_ 0/1/2/3/4\3\2\0
We now use Proposition to determine the equivariant multiplicity LE(Sftja/ba (D)) mod-
ulo h?. Following the stepwise construction from Definition we deduce that wp, = id

and wp = 3214. Since ¢(D) = (1,1,2), we conclude wp = 1243 and wp = 4213. The next
picture contains our choice of reduced diagram d,,,, of shape (9.27) for wp as well as the only

two possibilities to obtain a diagram for wps from d,,, by resolving crossings:

Diagram for wp: Diagrams for wp:
12 3 4 12 3 4 1 2 3 4
ANNNAN
1 2 3 4 12 3 4 1 2 3 4
up, dy s

Note that the weights of the crossings of d,,,, are
Wt(lﬁ}l) =t3 — 4, Wt(lig) =19 — 14, Wt(lﬁg) =11 —t4, Wt(l<;4) =1t — to.

Hence, L;, = {(t2 — t3), (t1 — t3)}. The diagram d is obtained from d,,, by resolving the
crossing x3 which does not belong to Kyy(dw,,) = {k1}. Likewise, the diagram dJ, is obtained
from d,, by resolving three crossings which are all not contained in Ky (d,,). Hence,
K(dw,,wp,1) = {K'}, where K’ = {k3}. Thus, as r(P) = (1,1,1,1), Proposition [0.50]
yields

V5 (Stabe_ (D)) = Up((ty — ts + h)(ty — ts+ h)) - h- Up(wt(ke)wt(ks)) mod h2.
Since the Q[h]-algebra homomorphism ¥p : Qlt1, o, ts, t4, h] — Q[t1, to, t3, h] is given as
tlf—)tl, tQHtQ, t3*—>t3, t4f—)t3—h,

we conclude that LE(S/t\a/bg_ (D)) is congruent to h(t; — t2)(ta — t3)(t1 — t3)* modulo h2.

9.8 Proofs of main theorems

We now prove Theorem [9.20, Theorem [9.44] and Theorem[9.42] For this, we recall two central
results of [BR23].
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Botta—Rimanyi Embedding Theorem

Fix a brane diagram D and suppose there exists k € {1,..., N} such that ¢; > 1. Let D be

the brane diagram obtained from D by performing the local move

di—1 \ d \dz + 1\ dy

Uk U1

For instance, let D = 0/1/3/4/6/7\5\2\0. Note that we have c¢(D) = (2,3,2). If we
choose k = 2 then D is obtained from D by replacing the local configuration 5\2 with 5\3\2,
i.e. we have D = 0/1/3/4/6/7\5\3\2\0.

As before, we denote the red, blue resp. black lines of D by V, U resp. X. Likewise,
the red, blue resp. black lines of D are denoted by f/, U resp. X. We denote the respective
margin coefficients of D and D by ¢, rj and ¢;, 7j. Let T=Ax C;, be the torus from
acting on C(D).

The following embedding theorem was proved in [BR23, Proposition 6.3]:

Theorem 9.52 (Botta-Rimanyi Embedding Theorem). There exists a closed immersion

1 : C(D) < C(D) which is equivariant with respect to
@:Te——T, (t1, ...t h) = (trse oottty gty - - -5 EN, B).

Moreover, we have isomorphisms of T-equivariant vector bundles 1*§ ¢ = (%) for X #* [:flj

Here,

_ ~ . o X if X; aUy,

7 h(D) — (D), T (X;) = o
Xi,1 Zf Xz > Uk

By applying Corollary [2.48] we deduce a formula for the T-equivariant K-theory class of

the normal bundle N, of ¢ in terms of constant bundles:

Corollary 9.53. In K1(C(D)), it holds

N c;j—1
V)= +h)+ Y (D HICy, @ Tyl +hTH(ICY, © C,))).
j=k+1  1=0

Proof. Set By = L*fﬁk—, E, = L*gglj, E5 = L*gglj . By Corollary and Theorem
+1

we have
[N,] = [*TC(D)] - [TC(D)] = T1 + T> — T,
where
Ty = (1 — h)[Hom(Ey, Ey)] + [Hom(h " 1Cy;, , E1)),
Ty = (1 — h)[Hom(E3, Es)] + (h — 1)[End(E»)] + h[Hom(Es, h~'Cy,)] + [Hom(Cy,, E»)],
T3 = (1 — h)[Hom(E3, Ey)] + [Hom(Cy, ), E1)].

)
)

Note that by Theorem @, B, = §U]; and F3 & éU,j' By Proposition @ we have

N c¢j—1 cj—1
= @ D r'Cy;, B2 B0 Cuy, @ P r'cy;. (9.30)
Jj=k 1=0 j=k+1 1=0
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From (9.30)), we deduce [Hom(E,, Eq)] = [Hom(E3, E1)] + [Hom(Cy, , E1)] which gives T} =
T3. Hence, [N,] = T». By (9.30)), we have [End(E»)] = [Hom(E3, E2)] + [Hom(Cy, , E2)].
Thus,

Ty = (h — 1)[Hom(Cy, , E3)] + h[Hom(Fy, h~'Cy;, )] + [Hom(Cy, , E2)]
= h[Hom(Cy, , F2)] + [Hom(Cy,, E2)]
= h[Hom(Cy,, E3 & Cy, )] + [Hom(Cy,, £3 @© Cy,)]
= (14 h) + h[Hom(Cy, , E3)] + [Hom(F3, Cy,)].

Inserting ([9.30]) then proves the corollary. O

The D5 Resolution Theorem

We now recall the D5 Resolution Theorem from [BR23l Theorem 6.13]. It states that it is in
fact possible to determine the equivariant multiplicities of stable basis elements of C(D) via
equivariant mutliplicities of the stable basis elements of C(D).

We first consider some combinatorial relations between the tie diagrams of D and D. Let
¢ = ci. For D € Tie(D), let V},,..., V. with 1 < j; < ... < j. < M be the red lines in D
that are connected to Uy with a tie. For i = 1,..., ¢, we obtain a tie diagram f;(D) € Tie(D)

by performing the following local move in D:

\\
\\

/////\ /////\—\

C ‘7L+1 c JH»I 7, ]z 1 k Uk‘+1

That is, ﬁkﬂ is connected to ‘7jw whereas U}, is connected to all ‘7jz except ‘;}1 In this way,

we obtain an inclusion

f;: Tie(D) — Tie(D), D w f;(D). (9.31)

Example 9.54. Let D = 0/1/3/4/6/7\5\2\0 and D = 0/1/3/4/6/7\5\3\2\0. We choose
i = 2 and the tie diagram D € Tie(D) as follows:

WA NN

Since Us is connected to Va, V3, Vs, we obtain fo(D) € Tie(D) from D by first deleting the
tie between V3 and Us. Then, we replace the black line in the blue part labeled by 3 with

~~ ~

the local configuration 3\2. Finally, we draw a tie between V5 and the new blue line. Hence,
fa(D) equals
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<~ <~ ~
~
-

0/1/3/4/6/7\ 5\3\2\0

For simplicity, we denote the dominant chambers of A and A both by €. Likewise, we

denote the antidominant chamber of A and A both by €_. Next, we define a map
{Chambers of A} — {Chambers of A}, ¢ — ¢ (9.32)

as follows: Let € be a chamber of A and w € Sy such that € = w.€;. Then, the chamber ¢
of A is defined as € := w.€4, where w € Sy is defined as w = wq(w x id)w;, where

i if i <K, i ifi <k,
Wi(i) =S N+1 ifi=k+1, Wy =(i)=49i+1 ifi>kandi<N,
i—1 ifi>kK 41, k+1 ifi=N+1.

Here, k' := w~!(k). Diagrammatically, 1 is obtained from w as follows:

1 2 k k+1k+2 NN+1

1 2 kK K'+1 K'+2 N N+1

Example 9.55. Let w = 31425 and k = 2. Then, w is obtained from w by first increasing
all entries which are larger than 2 by 1 and then replacing the entry 2 by the two entries 23.
Hence, w = 415236.

Theorem 9.56 (D5 Resolution Theorem). For all D, D" € Tie(D), i € {1,...,c} and all

choices of chambers € of A, we have
i+ eT(N;@) 15, (Stabg (D)) = go*(L’f"c(D)(Stab@(fi(D’)))), (9.33)

where € is defined as in (9.32) and the resolution coefficients v; € Hy(pt) are defined in
Definition below.

Remark. The D5 Resolution Theorem is proved in [BR23, Theorem 6.13] in the framework of
elliptic cohomology. The same proof can also be used here in torus equivariant cohomology.
The name D5 Resolution Theorem refers to the connection of the blue lines in brane diagrams

to brane systems from theoretical physics.
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We now come to the definition of the resolution coefficients ;: Let ZNDC be the brane
diagram 0/1/2/.../c — 1/0\1\0 and let T/ = (C*)? x C} be the torus acting on C(D,). For
i=1,...,¢ let D; € Tie(D,) be the tie diagram

Di = {(Vi, Un) |1 # i} U{(V;, Ua)}.

That is, D; can is illustrated as follows:

oy ey I

Definition 9.57. For i € {1,...,c}, the resolution coefficient v; € Hy(pt) is defined as the
equivariant multiplicity

Vi = @ (i, (Stabe, (Di))),
where @: T — T/, (t1,...,tn, h) = (b g, tr).

Equivariant multiplicities via the D5 Resolution Theorem

We now use Theorem to connect the equivariant multiplicities of the renormalized stable
basis elements of C(D) and C(D).

Proposition 9.58. For all D, D' € Tie(D) and i € {1,...,c}, we have

(th) b(Stabe(D')) = ¢ (1], (p) (Stabg (£:(D'))).

To prove Proposition [9.58, we use the following proposition which connects N, and the
bundles Np, Nz from Definition

Proposition 9.59. We have

c—1

(H ih) rex(Np ) = ex(N,) - en(t" N o).

i=2
Proof. By Theorem [9.52] we have

v [NB,@] - {Ng,q]
c=2 ; _ o (9.34)
(th [y ®<cﬁk+1]> _ ([Hom({U}j,CUk)] + h[Hom((CUk,gUlj)])G
=1
Since ¢ is p-equivariant, we have ¢* [Cvﬁk ® (CUk+1] = h in K1(C(D)). Thus, we conclude
c—2 c—1
i,k _ %
Y RCCE ®Cy 1= R
i=1 i=2

By Corollary the other term in 4)) equals [N ). Hence, taking Euler classes on both
sides of ({9.34]) completes the proof. O
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Next, we determine the resolution coefficients ~;, for ¢ = 1,...,¢c. For this, note that
the brane diagram D, = 0\1/1/.../1/1\0 from is Hanany-Witten equivalent to D..
Let ®: C(D.) = C(D,) be the the corresponding Hanany Witten isomorphism. By Propo-
sition ® is equivariant with respect to the automorphism .: T/ = T, (t1,t2,h)
(t1h®, to, h). Moreover, Proposition yields f1>_1(331~)i) = xp,, where D; € Tie(D) is as in
. In pictures, D; transforms into D; as follows:

bl li/i/l A 1—(—/

Proposition 9.60. We have v; = h, for alli=1,...,c
Proof. Recall from Proposition [6.5] that

to—t1+ch ifi=c,

L*Dc (Stab¢+ (Dz)) =
h if i # c.

Hence, Proposition [5.13| gives ¢75 (Stabe, (Dy)) = (goz)_l(L*Dc(StabQ(Di))) = t9 — t;. Thus,
we conclude v; = 9*(te — t1) = h. O

Proof of Proposition|9.58 By Theorem [9.56] we have
o (15, ) Stabg (1:(D) = ¢ (1) - ex(Nyg) - ex(t Ny o) - 1 (Stabe(D).  (9.35)

By Proposition ©(7vi) = h and by Proposition we have

er(N, ¢) - eTLN~~ = (th) er(Np ¢)-
Thus, we have
c—1 c—1 o
(0.35) = (Hz’h) -er(Np,¢) - 1 (Stabe(D')) = ( m) -5 (Stabe (D))
i=1 i=1
which proves the proposition. O

Equivariant multiplicities via cotangent bundles of flag varieties

Next, we employ Proposition to show that the equivariant multiplicities of stable ba-
sis elements of C(D) can be computed in terms of equivariant multiplicities of stable basis
elements of cotangent bundles of partial flag varieties.

Define a map

wpi SN — Sn, (9.36)

where for z € Sy, the permutation ¢p(z) is defined as

z))((jicz(i)) + l> —Cojyr 1 forj=1,. N, I=1,...,c.
=1
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That is, ¥p(z) maps 1,...,c.q) to Coy—1 +1,...,Cq) and c;q) + 1,...,¢c;0) + cx(2) to
02(2)71 + 1, e 702(2) etc.

Example 9.61. Let N =3, ¢ = (3,2,2) and z = 231. Then, ¢p(z) is obtained from z by
replacing 2 with 45, 3 with 67 and 1 with 123. Hence, ¥p(z) = 4567123.

In general, note that if z = id then also ¥p(z) = id.

Proposition 9.62. For € = 2.¢,, D, D' € Tie(D) and u € S, we have

N ¢;i—1

(TT TTGm= )ip(Stabe(D")) = W (i) (Stabysp (o) ¢, (Resu(D)),
i=1 j=1

where W is defined as in Theorem .

Proof. We prove the statement by induction on Cy — N. If Cy — N =0 then c = (1,...,1)
and thus D = D(Ry,...,Ry—1;n). As D = Res(D), the statement is trivial. Suppose now
that Oy — N > 0. As before, let U, € b(D) with ¢;(D) > 1. In addition, let D, ¢, ¢, and ¢

be as in the previous subsection.

Claim 9.63. Let y € Sy be the unique permutation such that € = y.€,. Then, ¢p(z) =
Vp(y).

Proof of Claim[9.63 Let k' := z7'(k) and set [y = Zf:ll Co(iy, 1= Zflzl C»(s)- Since

Ca(j) = Cy(j), for j=1,..., k" — 1, we deduce
(¥p(2))(0) = Wp(y)) (@), fori=1,....l.
By construction, ¢,y = ¢,y + 1 which yields
(o (2)(@) = WpY))(), fori=lo+1,....0H 1.

Moreover, é,/41) = Crp1 = 1 gives (¥p(2))(l1) = (Yp(y))(l). Finally, c.;y = ¢y(j41), for
j=k,...,N implies

(Vp(2))(0) = (Wp(y))(@), fori=h+1,...,n.

Thus, we proved ¢¥p(z) = Y5(y). O
Write u = uy X ... x uy and let ig := ug(c). Note that Resijq(D) = Resiq(fo(D)). Set
Ui=1up X ... X Up—1 X U X id Xug41 x...xuNeSC(ﬁ),

where 1, € S._1 is defined as

w2 [ ) <o
uk(j) —1 if uk(]) > i().

Then, Res, (D) = Resg(f;(D)). Hence, applying the induction hypothesis to C(D) gives

N+1¢—1

(TT TT G ) k. (Stabg(£i(D))) = Wiy 1y ) (Stabys )¢, (Resu(D)))). - (9.37)
I=1 j=1
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By Proposition [9.58

N ¢—1 o N+1¢-1 o o
( I1 H(jh)cl_j>LB(Stab¢(D’)) - ( 11 H(jh)cl—y> (1 () Stabg (F:(D"))).  (9.38)
=1 j=1 =1 j=1

Since ¢ \I/ - = U we obtain from ((9.37) that

(9:38) = WD (thes,y (0) (Staby; ()., (Resu(D))))-

Finally, Claim w gives 1 5(y) = 1p(z) and hence completes the proof. O

Proofs of main theorems

We now come to the proofs of Theorem [9.42] Theorem [9.20] and Theorem [9.44]

Proof of Theorem[9.42 Let D, D’ € Tie(D) and u € Se. Choosing z = id in Proposition

gives
N ¢;—1

(H T[] Gn ) 5(Stabe, (D)) = U (s, () (Stabe. (Resy (D))

i=1 j=1

which proves Theorem O

Next, we prove the following special case of Theorem [9.20
Proposition 9.64. For all D, D' € Tie(D) and z € Sy, we have

h(Stabe, (D)) = =71 (1 p(Stabs.e. (2.D)) ).

We use the following property of the map ¥p from :

Lemma 9.65. Let D € Tie(D) and z € Sy. Then, we have
Resiq(D) = ¢p(2).Resiqg(271.D).

Proof. Let i € {1,..., N} and set ¢ := c,(;). Suppose the blue line U, ;) € b(D) is connected
to the red lines Vj,,...,Vj, with j1 < ... < je. Let [ € {1,...,c}. Then, in Resjq(D), we
have that Uc,, _, 4 is just connected to Vj,. Set ig := Z;;ll c.(;)- Note that in Resiq(z71.D),
the blue line Uj,4; is just connected to Vj,. As ¢p(ig +1) = C,4)—1 + [, we deduce that
also in ¥p(z).Resiq(271.D), the blue line Uc,;y_,+1 1s just connected to Vj,. Thus, we have
Resiq(D) = ¢¥p(2).Resiq(271.D). d

Proof of Proposition[9.6 We set

N ¢i(2.D)-1

i (D)~
Py = (H H (jh)e (P ) (H H (jh)e D)= ) (9.39)
i=1 j=1 =1 =
By Proposition [9.62) we have

v% p(Stab..e, (2.D')) = Py W, p(Uhes(o.0) (Staby, oz e, (Resia(2.D"))). (9.40)
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Lemma [9.65] implies
Resiq(2.D) = 1. p(2).Resiq(D), Resiq(z.D') = ¥, p(z).Resiq(D).
Thus, Proposition [9.17] gives
B0 = Po - W (1:0(2): (e () (Stabe, (Resia(D))) ) ). (9.41)

Note that Lemma|9.65|yields ¥, ;,(v..p(2).f) = z.(¥(f)), for all f € Q[t1,...,tn, h]. There-
fore, we conclude

©.41) = P, - 2. (\IJQJ(L;;@SM(D)(smuo€+ (Resid(D’))))>. (9.42)

By Proposition (19.42) equals Py, - z.(L*D(§c\aTb¢ +(D"))) which completes the proof. O

Proof of Theorem[9.20, Let z € Sy and set € := 2.€4. Let D, D" € Tie(D) and w € Sn. By

Proposition [9.64], we have
v (Stabe(D')) = z.(L;_l,D(s?;;b€+ (zfl.p')))

and
Vi p(Staby ¢ (w.D)) = w2 (151 p(Stabe, (:7.D1)).

Thus, we deduce
h(Stabe(D)) = w14, p(Staby.e(w.D)) )

which proves Theorem [9.20 O
Next, we combine Theorem [0.20] and Theorem [9.42] to prove Theorem [9.44]

Proof of Theorem[9.44, We have to show that for all D, D’ € Tie(D) and u € S, we have
Py - 1} (Stabe_(D')) = QJD(LEQSuO (p)(Stabe_ (Res,(D")))), (9.43)
where up = (woe; X ... X Wocy) € Se and P, is as in . By Theorem
Py - th(Stabe_(D")) = Py, - wo n-(th, v p(Stabe, (woy.D'))). (9.44)
Theorem then gives
(©.44) = wo.y- (\D;UO’N.D(L;LQSM(WO}N.D) (Stabe,, (Res, (woy.D') )))), (9.45)

where v/ := upu. Since wo ,.Resiq(wo,n.D) = Resy, (D) and wo n.Resy (wo, n.D’) = Res, (D'),
Proposition yields

o Tesy(0) (Stabe (wo,v.(Res, (D)) = wo,. (q;esno (0 (Stabe_ (Resu(D')))> .
Note that wo n.(V, . p(won-f)) = ¥p(f), for all f € Q[t1,...,t,, h]. Therefore, we deduce
(9.45) = \IID(LEQSUO(D)(StabQ (Resy(D")))).

Thus, we proved (9.43) and hence Theorem O
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Chapter 10

Chevalley—Monk fomulas for bow

varieties

The classical Chevalley-Monk Formula [Mon59], [Che94] is a fundamental ingredient of Schu-
bert calculus. This formula uniquely determines the ring structure of the singular cohomology
of partial flag varieties by expressing products of first Chern classes of tautological bundles
with Schubert classes as Z-linear combination of Schubert classes. The coefficients appearing
hereby admit a convenient description in terms of symmetric group calculus.

Passing from a partial flag variety F' = F(di,...,dp;n) to its cotangent bundle T*F,
the Chevalley~Monk Formula was generalized in [MOI19, Theorem 10.1.1], see also [SulG,
Theorem 3.1]. The formula here determines the stable basis expansion of products of torus
equivariant first Chern classes of tautological bundles with stable basis elements. Since the
stable basis elements of T F' are one-parameter deformations of the (torus equivariant) Schu-
bert classes of F', this formula degenerates to the classical Chevalley—-Monk formula, see
e.g. [AMSS23], Section 9.3] and therefore can be viewed as Chevalley—Monk formula for cotan-
gent bundles of partial flag varieties.

In this chapter, we generalize this formula away from the classical context of flag varieties
to the more general setup of bow varieties. The main result is Theorem [10.26] where we prove
a new formula which determines the stable basis expansion of the products c¢; (&) - Stabg(p),
where £ is a tautological bundle on a bow variety C(D). The appearing coefficients in this
basis expansion are characterized by certain swap moves on tie diagrams to which we refer
as simple moves, see Definition In the special case, where the bow variety equals the
cotangent bundle of a partial flag variety, Theorem specializes to the formula from
[MO19, Theorem 10.1.1]. Hence, we refer to the formula from Theorem as Chevalley—
Monk formula for bow varieties.

As we will show in Proposition the localized T-equivariant cohomology of any bow
variety C(D) is generated by the T-equivariant first Chern classes of the tautological bundles.
As a consequence, Theorem uniquely determines the ring structure of H}(C(D))ioc-

To prove this Theorem we employ two crucial ingredients. The first one is a divisi-
bility result, see Theorem which gives a sufficient criterion for equivariant multiplicities
1i(Stabe(p)) to be divisible by the parameter h?. The second one is Theorem which

determines approximations of equivariant multiplicities ;(Stabe(p)) in the case when they
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are not divisible by k2. We prove Theorem [10.12| and Theorem [10.15| via the diagrammatic

approximation formulas from Proposition [9.50

10.1 Tautological divisors as generators

Let D be a fixed brane diagram. If V is a T-equivariant vector bundle over C(D), we denote
by ¢;(V) its i-th T-equivaraint Chern class.
We refer to the first T-equivariant Chern classes of the tautological bundles {x on C(D)

as tautological divisors.

Proposition 10.1. The Hj(pt)ioc-algebra Hi(C(D))ioc is generated by the elements c1(€x),
for X € h(D).

Proof. Set R := H}(pt)ioc, A = Hi(C(D))1oe. Alsoset Ap x =t} (c1({x)) € R, for X € h(D)
and D € Tie(D). Let Rlux;X € h(D)] be the polynomial ring in formal variables uy. We
have to show that the R-algebra homomorphism F': Rlux; X € h(D)] — A, ux — c1(éx)
is surjective. By Theorem the inclusion ¢: C(D)T < C(D) induces an isomorphism of
R-algebras t*: A = HA(C(D)")ioe = [ petiep) Ht({zD})oc- Let ep € A be the idempotent
in A corresponding to the factor Hi({zp})ioc, i-e. ep is the unique element in A such that

ep € ﬂ ker(tpy) and ep =1 mod ker(tp).
D’€Tie(D)
D'#D
Note that F' is surjective if and only if all idempotents ep are contained in the image of F'.
For D € Tie(D), define ideals

ap = ((’LLX — )\D,X);X S h(D)) C R[UX;X S h(D)]

Note that F(ap) C ker(:},). We claim that the ideals ap are pairwise coprime. Indeed, if
D # D' then there exists U; € b(D) and X; € h(D) with dp v, x; # dp'v; x,- By (3.8),

dp,u,x

Aox; = > Y (tu+(I+1—dpyy-)h),

UEb(D) lZCDﬂU’X

dD/,U,X

)\D/7Xj == Z Z (tU + (l + 1-— dD/,U,U_)h)‘

Ueb(D)l=cpr y,x

Hence, Ap x; — Apr x; is a unit in R. Since Ap x; — Ap/ x; = (Ap.x; —ux;) + (ux; — Apr x;);
we deduce (Ap x; — Apr.x;) € ap + apr and therefore ap + ap = Rlux; X € h(D)]. Thus,
ap and aps are coprime. Now, by the Chinese Remainder Theorem, we have that for all
D € Tie(D), there exists an element fp € R[ux; X € h(D)] such that

fp € ﬂ apr and fp =1modap.
D’ €Tie(D)
D'#D
Consequently, F'(fp) = ep which proves the surjectivity of F'. O
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10.2.  Chevalley-Monk formula in the separated case

10.2 Chevalley-Monk formula in the separated case

In this section, we state and prove the Chevalley-Monk formulas for the tautological bundles
associated to D in the case where D is separated. In the upcoming section, we then derive
the general Chevalley—Monk formula for tautological bundles corresponding to general brane

diagrams using Hanany-Witten transition.
Assumption. Until the end of Section we assume that D is separated.

Recall from Proposition that the tautological bundles &pryq, ..., p+N+1 are con-

stant. Hence, we focus on characterizing the multiplication of ¢1(&1), ..., c1(&am)-

Chevalley—Monk formula for the antidominant chamber

We first restrict our attention to the antidominant chamber €_. In this case, the Chevalley—

Monk formula is given as follows:

Theorem 10.2 (Chevalley-Monk formula for antidominant chamber). Let D € Tie(D).
Then, we have the following identity in H3(C(D))ioc:

c1(&) - Stabe_ (D) = vp(e1(&;)) - Stabe_ (D) + Z sgn(D, D")h - Stabe_ (D),
D'eSMp ;

fori=1,...,M. Here, the set of simple moves SMp; is defined in (10.1)) and the signs of
simple moves sgn(D, D') € {£1} are defined in Definition[10.7

The proof of Theorem is given in Section We first give the definitions relevant

for the theorem. We begin with the notion of simple moves and moving ties:

Definition 10.3. Let D, D’ € Tie(D). We say that D’ is obtained from D via a simple
move if there exist 1 <4y <ip < M and 1 < j; < ja < N such that (Vi,,Uj,), (Viy,Uj,) € D,
(‘/7;17 Uj2)’ (%27 Ujl) € D, and

D \ {(Viw Uj2)a (Vi2v Ujl)} =D \ {(Viv Uj1)a (Vi2v sz)}'

We call (V;,,Uj,) the right moving tie and (Vi,,Uj;,) the left moving tie of D. Let SMp be

the set of all tie diagrams that are obtained from D via a simple move.

Pictorially, simple moves can be described as switching two ties as illustrated:

Example 10.4. Let D =0/1/3/4/5\4\3\1\0 and
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Since (V1,U1), (V3,Us) € D and (V3,U;), (V1,Us) ¢ D, the set

D' = (DU{(Vs,Uh), (Vi,Us)) \ {(V1, Uh), (V3,U3)}

is a tie diagram that is obtained from D via a simple move which replaces the tie (Va, U ) with
(Va,Us) and the tie (Vy, Us) with (Vy,Uy). This simple move can be illustrated as follows:

- .

____________

Here, we highlighted the ties which are involved in the simple move in green.

The bijection between tie diagrams and binary contingency tables from Proposition [3.5

then gives the following equivalent characterization of simple moves:

Lemma 10.5. Let D, D' € Tie(D). Then, D' is obtained from D wvia a simple move if and
only if there exist 1 < i1 <ig < M and 1 < j; < jo < N such that

(i) M(D)i, j, = M(D)iyj, = 1 and M(D)s;, j, = M(D)s, j, = 0,
(7’7’) M(D/)h,jl = M(D/)i2,j2 =0 and M(D,)’h,jz = M(D/)i1,j2 = 17
(iti) M(D)1 = M (D )ik, for (I, k) & {(ir, j1). (i2, J1), (41, 2), (42, J2) }-
Proof. By Proposition the condition |(i)|is equivalent to
(‘/;17Uj1)7 (Wszjz) €D and (W17Uj2)? (VinJ&) ¢ D.
Likewise, is equivalent to
(%17Uj2)7 (wszh) €D and (VilvUjl)7 (Vinjz) ¢ D'.
Finally, is equivalent to the condition
(Vi,Up) €D & (V,Up) € D', for (I,k) & {(i1,51), (i2, j1), (i1, j2), (i2, j2) }-

Thus, the conditions |(i){(iii)| are satisfied if and only if D’ is obtained from D via a simple
move with right moving tie (V;,,U;,) and left moving tie (Vi,,Uj,). O

If M(D), M(D') € bet(D), we say that M (D’) is obtained from M (D) via a simple move
if and only if D’ is obtained from D via a simple move. Equivalently, M (D’) is obtained from
M (D) via a simple move if and only if the conditions |(i)H(iii)| from Lemma are satisfied.

Example 10.6. Let D, D and D’ be as in Example The binary contingency tables of

D and D’ are given as
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10.2.  Chevalley-Monk formula in the separated case

1]olol1 olo|1]1
M(D)= |o|1]|1]0 MDY= o|1|1]o0
olol1]o 1lololo

By Lemma the simple move which turns D into D’ corresponds to replacing the 0-
entries M (D)q,1, M (D)3 3 with 1-entries and replacing the 0-entries M (D), 3, M (D)3 with

1-entries:

10001 0o 1]1
ol1l1]o0 AN ol1l1]o0
o|lof1]o 1l0l0]o0

For X; € h(D) with i € {1,..., M}, we define the set of simple moves relative to X; as

SMp,; = {D’ € Tie(D) | D’ satisfies [(a)] [(b)] and [(c)]}, (10.1)
where
(a) D’ is obtained from D via a simple move,
(b) if (Vi,,Uj,) is the right moving tie of D then X; < Vj,,
(c) if (Viy,Uj,) is the left moving tie of D then Vj, < X;.

For instance, if D and D’ are in Example then, as the moving ties of D are (V1,U;)
and (V3,Us), D' is contained in SMp ; for i = 1,2, 3.

Next, we define the sign of a simple move:

Definition 10.7. Let D’ € SMp with left moving tie (V;,, U;, ) and right moving tie (Vj,, Uj,).
Then, we define

1 if n1 + no is even,
sgn(D, D) == e
—1 if n1 + ng is odd,

where
ny = H(V;UUJ) |]1 <j< j2}|7 ng = H(Viz’Uj) ‘.71 << .72}|
We call sgn(D, D') the sign of the simple move between D and D’'.

Thus, all notions appearing in Theorem are introduced.

Example 10.8. Let D =0/1/3/4/5\4\3\1\0 and

~

Do 0/1/3/4/5\4\3\1\0
We now use Theorem to determine c1(&;) - Stabg_ (D), for i = 3. The next picture shows

all simple moves which are contained in SMp ;.
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_ -
- -~

ANV AL/ /BN

Here, we highlighted the moving ties of the respective simple moves and we omitted the
horizontal black lines on the boundary of the tie diagrams. From the picture, we deduce that
SMD,’i = {Dl, DQ, Dg, D4}, where

Dy = (D U{(Va,Us), (Va, UN})\ {(Va, T0), (Vi, Us)},
Dy = (D U{(Va, Ua), (Vs, U1)}) \ {(Va, U), (Vs, Ua) }, (10.2)
D3 = (D U{(Va,Us), (Vs, UN})\ {(Va, U0), (V3, Un)},
Dy = (DU{(VA,Us), (Vs, Us)}) \ {(V&, Us), (Vs, Un)}.

From the diagram one can easily read off the respective signs:
Sgn(‘D7 Dl) = Sgn(D7 D2) = Sgn(D7 D4) = ]-7 Sgn(D7 D3) ==

By (3.8), we have an isomorphism of T-representations ¢}, (&;) = h=2Cy, ®h~2Cy, @ h~2Cy,.
Thus, ¢},(c1(&)) = t2 + t3 + t4 — 6h and hence, Theorem m gives

Cc1 (&) - Stabg_ (D) = (tQ + 13+ 14 — 6h)Stab¢_ (D) + hStabg_ (Dl) + hStabg_ (Dg)
— hStabg (D3) + hStabg_ (D4)

The sign

In this subsection, we give an interpretation of sgn(D, D') in terms of permutations assigned
to the double cosets of D and D’. From this, we deduce that after appropriate normalization
of the stable basis all off-diagonal entries in the Chevalley-Monk formula become equal to
—h.

Given a tie diagram D and D’ € SMp with right moving tie (V;,,Uj,) and left moving
tie (Viy,Uj,). Let wpr = wWar(pry € Sy be the shortest (S, Sc)-double coset representative
from Definition Since (Vj,,Uj,) € D', there exist a unique fi € {R;;—1 +1,..., Ry}
such that wp/(f1) € {Cj,—1 +1,...,C}, }. Likewise, as (Vj,,U;,) € D', there exists a unique
fo€{Ri—1+1,..., Ry, } with wp/(f2) € {Cj—1+1,...,C; }. We set

Up = Wpr o (f1, f2). (10.3)
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7234 5% 7% 10 7234 5% 7% 10
AN
123456 7,8 910 123456 7,8 910,
wWpr gD

Figure 10.1: Construction of §p from Example [I0.9) We highlighted the strands and the
crossing whose resolution gives yp.

Since D' is obtained from D via a simple move with moving ties (V;,,U;,) and (V;,,U;,), we
conclude that yp € WpSy.

The permutation gp has the following diagrammatic interpretation: Let dy ,, be a reduced
diagram of wps. Since (V;,,Uj;,) € D’ there exists a unique strand X\ in dg,, starting
in {R;;—1 +1,...,R;,} and ending in {Cj,—1 +1,...,C},}. Likewise, as (V;,,U;;) € D’
there is also a unique strand Az in d,, which starts in {R;,_1 + 1,..., R;,} and ends in
{Cj,-1+1,...,C5 }. As iy < iz and ji < jo, the strands A\; and Ay intersect exactly once.

Resolving the crossing of A\; and Ao then gives a diagram for the permutation ¢p.

Example 10.9. Consider the simple move:

- - -

V5 NNV /572

We denote the tie diagram on the left by D and the one on the right by D’. The moving
ties are (V2,U;) and (V3,Us). Note that n = 10, r = (3,2,2,3) and ¢ = (2,3,2,1,2). By
construction, the binary contingency table M (D’) equals the matrix A from Example
where we also constructed the corresponding shortest (S, Sy)-double coset representative
wpr = 13961024578. We have wp/(5) € {9,10} = {C3 4+ 1,...,C4} and wp/(6) € {1,2} =
{Co+1,...,C1} ,s0 fi =5 and fo = 6. This gives gyp = 13962104578. The diagrammatic

construction of §p is illustrated in Figure [10.1
Comparing the length of wp and §p gives the sign we attached to D and D’:
Proposition 10.10. We have (—1)@p)+Ip) = son(D, D).

Proof. By construction, wp/ (R;—1 +1) € {CFM(D’) -1t 1. CFM(D’) .}, for all 4,1, where
Far(pry,i is defined as in (9.19). This directly implies that the set

{(4,7) | there exists { with R;_1 +1<i<j < R;and gp(i) > yp(j)}

equals

{(flaf1+1)7"'?(f17f1 +n1)}U{(f2 _11f2)7"'7(f2 _n27f2)}'

Here, n1 and ng are as in Definition Since wp is the shortest representative of §p Sy,

we conclude I(gp) = l[(Wp) + n1 + ng which proves the proposition. O
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Theorem [10.2] implies now a Chevalley—Monk formula with simplified signs:

Corollary 10.11. Let D € Tie(D). Then, the following identity holds in Hy(C(D))ioc

c1(&) - Stab_(D) = tp(e1(&)) - Stabe_(D)—h- (> Stabl_(D))),
D'eSMp ;

fori=1,...,M, where Stab'¢_(T) = (—=1)"@7)Stabs_(T) for T € Tie(D).

Proof. By construction, ¢p is obtained from wps by precomposition with a transposition.
Hence, we have (—1)"#p) = (—1){®p)+1 Thus, Proposition [10.10| yields

sgn(D, D) = (—1)/@p)+Ep) — (_1)H@p)+(Bp/)+1

which proves the corollary. O

10.3 Divisibility and Approximation

We now consider divisibility and approximation theorems for equivariant multiplicities of
stable basis elements. These results are essential ingredients of the proof of Theorem [10.2
We first formulate the theorems and deduce some consequences. The proofs are then given
in Section

Theorem 10.12 (h2-Divisibility). The equivariant multiplicity %, (Stabe_(D)) is divisible
by h?, for D € Tie(D) and D' ¢ SMp U {D}.

By applying Theorem we deduce the analogous result for the chamber € :

Corollary 10.13. We have that %,(Stabe, (D)) is divisible by h*, for D € Tie(D) and
D' ¢ SMp U{D}.
Proof. As before, let won € Sy be the longest element. By Theorem [9.20} we have

U (Stabe, (D)) = wo - (L;;O,N.D(s?aﬁ%_ (wo,N.D'))). (10.4)

Here, Stabg L(D'")and Stabe_ (wo n.D") are the renormalized stable basis elements from Defin-
tion Since D' ¢ SMp if and only if wo n.D ¢ SMy, y.p7, Theorem implies that
the right hand side of is divisible by h%. Thus, ¢},(Stabe, (D')) is divisible by h* and
hence also ¢},(Stabe_ (D)). O

Combining Theorem [10.12| and Corollary [10.13]| gives the following divisibility result:

Corollary 10.14 (h2-Divisibility of products). Let D, D', T € Tie(D) such that T ¢ {D, D'}
or D" ¢ SMp U{D}. Then, we have

Uy (Stabg_(D) - Stabe, (D)) =0 mod A?. (10.5)

Proof. It T ¢ {D, D'} then the smallness condition implies that both u.(Stabe (D)) and
u4(Stabe, (D')) are divisible by h which gives that is divisible by h?. If T = D and
D' ¢ SMpU{D} then, by Corollary 15 (Stabe, (D")) is divisible by h? and so is (10.5).
Likewise, if T'= D" and D" ¢ SMp U{D} then Theorem implies that ¢ (Stabe (D)) is
divisible by h? and hence also (10.5)). O
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The next theorem determines h2-approximations of equivariant multiplicities of stable

basis elements labeled by tie diagrams which differ by a simple move:

Theorem 10.15 (h%-Approximation). Let D € Tie(D) and D' € SMp with (Vi,,Uj,) be the
right moving tie and (Vi,,Uj,) be the left moving tie of D. Then, we have

p(Stabe (D) _
eT(TD’C(D)E_) ’ tjl - tjz

in Sy PH:(C(D)). Here, Sy is defined as in (7.2).

mod h?

Using Theorem [0.20, we again deduce the analogous statement for €

Corollary 10.16. Let D € Tie(D) and D' € SMp with (Vi,,Uj,) be the right moving tie and

(Viy, Uj,) be the left moving tie of D. Then, we have
v (Stabe, (D)) h

—~ =sgn(D,D')——— mod h?
er(TpC(D)g, ) tj, = ti

in Sy L H(C(D)).
Proof. By the definition of %, we have

Up(Stabe, (D)) th(Stabe, (D'))  }(Stabe_(D')) 14 (Stabe_(D'))

— = —— , — = — . (10.6)
er(ITpC(D)g,) 4 (Stabe, (D)) er(TpC(D)g ) v (Stabe (D))
In addition, Theorem yields
% (Qeal * Stal /
b(Stabe (D) _ <Lwo,N.D<Sjavb¢_ (wo.n-D >>)' .
1, (Stabe, (D)) L:‘UO’N_D(Stabci (wo,n.D))

The tie diagram wo n.D is obtained from wo n.D’ via a simple move, where (V;,,Un—j,+1)

is the right moving tie and (Vj,,Un—_j,+1) is the left moving tie of wo x.D’. Thus, we have

L*D(Stab¢+ (D,)) W <L:)0,N.D(Stab¢ (wO,N.D’))>
er(TpC(D)g,) "\ ex(Tuyy.0C(D)g )

h

IN—jot+1 — EN—j1+1

= wO,N.<sgn(w0,N.D’, wo,N.D) ) mod h?

=sgn(D, D) mod h?,

J2 Y
where the first equality follows from ((10.6)) and ((10.7)), the subsequent congruence from The-
orem [10.15[ and the final congruence from sgn(D, D) = sgn(wo n.D’, wo n.D). O

Example 10.17. Let D and D; be as in Example To determine the (modulo h?)-

approximation of the fraction
LD, (Stabe_ (D))

er(Tp,C(D)g )’
note that that D; is obtained from D via a simple move with right moving tie (V;,U;) and
left moving tie (Vy, Us). Moreover, we showed in Example that sgn(D, Dy) = 1. Thus,
Theorem yields

b, (Stabe_(D))

= mod h2.
er(Tp,C(D)e ) t1—t3

213



10. CHEVALLEY—MONK FOMULAS FOR BOW VARIETIES

Remark. In the framework of partial flag varieties, the results of this section are contained
in [Sul7, Corollary 3.8].

10.4 Proof of Theorem [10.2

We begin with the following auxiliary statement:

Lemma 10.18. Let D € Tie(D), D' € SMp with right moving tie (V;,,Uj,) and left moving
tie (Vi,,Uj,). Then, we have

tj —tj, mod h if D € SMp;,
V(e (&) — th(e(&) =14 7 j» O if D € SMp

0 mod h if D ¢ SMp ;.
Proof. From (3.8]), we obtain
vr(c1(&)) = D druxti modh, forall T € Tie(D), (10.8)

Ueb(D)
where drp,x; is defined as in Definition [3.8] According to the relative position of X; with

respect to V;, and V;, we have the three cases illustrated as follows:

0 g NN g e [N

‘/il Ujl Uj2 ‘/;2 Vi1 Ujl sz

~ - -~

N
\

3) -/ V/ —\

K3
Viz i1 U]l

-

.
N 7z e ~ ~
.
U Vi, Vi ‘

2 12 11

In the first and third case, we have dpyx, = dpr.vx,, for all U € b(D). Hence, (|10.8)
yields ¢}, (c1(&)) — ¢ (c1(&)) = 0 mod h, for D' ¢ SMp ;. The second case is equivalent to
D' € SMp ;. In this case, we have

dpu,x; it U € b(D) \ {Uj,,Uj, },

dpux, =\dpux, —1 ifU="Uj,
dD’,U,X,- +1 ifU = sz.
Thus, (10.8) gives ¢}, (c1(&)) — ¢p(c1(&i)) = tj, — tj, mod h, for D' € SMp;. O

Proof of Theorem[10.3. By Theorem [7.8 we have to show
LE(CI(&)) if D' = D,
(c1(&) - Stabe_ (D), Stabe, (D'))virt = { sgn(D, D')h if D' € SMp, (10.9)

0 otherwise.
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10.4. Proof of Theorem |10.2

By Theorem the virtual scalar product in is a linear polynomial in the equivariant
parameters. Hence, it suffices to prove the above equality in Hi(pt)/(h?). Suppose first
that D = D’. By Theorem the partial orders <;==¢, and X_==¢_ as defined
in are opposite. Thus, the support condition for stable basis elements implies that
vp(Stabe_(D)) =0, for T A_ D and t5.(Stabg, (D)) = 0, for ' <_ D. Therefore, we have

3 tpr(c1(&) - Stabe (D) - Stabe, (D))
DrEC(D) eriTr (D)) (10.10)
th(e1(&) - Stabe_(D) - Stabe, (D)) '

er(TpC(D))

(c1(&i) - Stabe_ (D), Stabe, (D))virt =

Then, the normalization condition yields

th(c1(&)) - er(TpC(D)y ) - er(TpC(D),
oy - 2 T(e;)(T(Dc)Eb)» PP _ et

This proves (10.9) for D = D’. Next, we assume D’ € SMp and let (V;,,Uj,) be the right
moving tie and (V;,,Uj,) be the left moving tie of D. By Corollary [10.14} we have modulo
h?:

tp(c1(&) - Stabe (D) - Stabe (D))
er(TpC(D))

(01 (&) . Stab¢7 (D), StabgJr (D,))virt =

10.11
+ [’*D’ (Cl (fl) . Stab¢7 (D) . Stab¢+ (D,)) ( )
er(TpC(D)) '
Then, Corollary and the normalization condition imply
% ;) - Stabg_ (D) - Stabg, (D’ * i
LD(Cl(g) a C—( ) a €+( )) ESgn(D,D/)hLD(Cl(g )) mOd h/2, (1012)
er(TpC(D)) tj, = tj
whereas Theorem combined with the normalization condition gives
*(e1(&) - Stabe_ (D) - Stabg, (D’  (e1(&
‘ple(&) - Stabe (D) -Stabe, (D) _ oy (&) g e (10.13)
er(TpC(D)) tjy — by,
Inserting (10.12)) and (10.13]) in (10.11]) yields
[0 = sen(D, 02L& = D)) g e (10.14)

tj2 - tjl

Now, Lemma [10.18| implies

sgn(D, D')h mod h? if D € SMp,

([[0.14) =
0 mod h? if D¢ SMp,;.

Thus, we proved (10.9)) for D’ € SMp. Finally, it remains to prove ((10.9)) for D’ ¢ SMpU{D}.
By Corollary [10.14], this assumption implies that h? divides all equivariant multiplicities
vp(Stabg_ (D) - Stabg, (D). Thus, we conclude

(c1(&) - Stabe_(D), Stabe, (D"))vire =0 mod h?
which proves ((10.9)) for D" ¢ SMp U {D}. This completes the proof of Theorem O
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10.5 Proofs of Theorem [10.12 and Theorem [10.15

Recall the notation from Section [9.6] and Section 0.7

Note that by Proposition it suffices to show Theorem for essential brane dia-
grams as defined in introduction of Chapter [8] Hence, we assume throughout this subsection
that D is essential.

Our crucial tool is the following:

Lemma 10.19. Let D, D’ € Tie(D), z € wp/Sy and d, a reduced diagram of shape (9.27)).
Suppose K(d,,wp,1) # 0, where K(d,,wp,1) is defined as in Proposition . Then, we
have D' € SMp U {D}.

Proof. Given K € K(d,,wp,1) then, as d, is of shape (9.27)), we distinguish between the

following two cases:

(1) all crossings in K are contained in the boxes corresponding to woc,,...,woc, and

V1,5 UM,

(2) exactly one crossing k9 € K is contained in the box corresponding to wps and the

remaining crossings of K are contained in the boxes corresponding to wo,, ..., Wocy -

If is satisfied then resolving all crossings contained in K from d, still gives a permutation
in ScwprSy. Thus, we have ScwpSy=Scwp Sy which implies D = D’ by Corrolary
Assume now that is satisfied. Let dy,, be the reduced diagram for wps contained in d,.
We denote by A1, A2 the strands in dy ,, that intersect in x¢ and let y € S, be the permutation

that is obtained from dg,, by resolving the crossing o. In pictures, y is obtained as follows:

C1 Cj Cjy CN C1 Cjq Cjy CN
g e ot ! ol e e e
0 ANANANAN Yy
w n’
b A Ao
T PR I ], T L P
™ Tiq Ty M 1 i1 Tiqy M

Let f1, fa resp. g1, g2 the starting resp. endpoints of A1, A2 in dg,,. As in the above picture,
we assume f1 < fo. As wpr is the shortest element in S¢wp, Sy there exist i1 < i and j1 < ja
such that

Ry, 1 <fi<Ry, Ry, 1<fe<Ry,, C;1<9gp<0;, Ch1<g<d0C,.
Thus, we conclude
Fy(fi) = Fa,, (f2) =1, Fy(f2) = Fap, (f1) = jo,  Fy(i) = Fa, (1), (10.15)

for i # fi1, fo. Here, Fy, Fy , are defined as in (9.20). By assumption, y € Scwp. Thus,

we have Fy, = Fy,,. Hence, by passing to the associated matrices of these double cosets, we
deduce that (10.15)) is equivalent to

M(D)il,jl = M(D)iz,jz =1, M(D/)il,ﬁ = M(D,)imjz =0,
M(D)ith = M(D)ihjz =0, M(D/)il,jQ = M(Dl)il,jz =1,
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as well as M(D);, = M(D')y, for (I,k) ¢ {(i1, 1), (¢1,72), (92, j1), (12, 52)}. Therefore, by
Lemma D’ is obtained from D via a simple move. O

The proof of Theorem [10.12] follows now from Proposition [9.50] and Lemma [10.19

Proof of Theorem[10.12. We have to show that the equivariant multiplicity ¢}, (Stabe (D))
is divisible by h?, for all D' ¢ SMp U {D}. Assume ¢}, (Stabe (D)) is not divisible by
h? for some D' ¢ SMp U {D}. By definition, this implies that L*b,(Sft\a/bQ_ (D)) is also not
divisible by h2. Thus, by Proposition there exists z € wp/ Sy with reduced diagram d,
of shape such that K(d,,wp,1) # 0. Hence, Lemma yields D" € SMp U {D}

which contradicts our assumption D' ¢ SMp U {D}. O

Proof of Theorem [10.15]

Again, we can assume that D is essential.

We need some further notation: Let D € Tie(D) and D' € SMp with right moving
tie (V;,,U;,) and left moving tie (Vi,,U;,). Let z € wp/ Sy with a reduced diagram d, of
shape . Then, there exist unique strands A;, A2 in d, with starting points f1, fo and
endpoints g;, go such that

Ry, 1 <fi<Ry, Ry, 1<fi<Ry, C;1<9<0;, Ch1<gqg<d0j,.

Let kg denote the crossing of A1 and As.
To prove Theorem [10.15| we utilize the approximation formula of Proposition [9.50, To

apply this formula appropriately, we use the following lemma:

Lemma 10.20. Let jp € Sy, be as in (10.3) and yp = (wo,e; X ... X wocn)Yp- Then, we
have

K(deryp.1) = {ko} ifz=wp,
@ ifz;éwD/,

where K(d,,yp,1) is defined as in Proposition .

Proof. Let z = wpv where v € Sy and suppose K € K(d,,yp,1). As in , we denote
by K7(d.) the crossings in d, corresponding to the boxes of wo,, ..., wqc,. By assumption
|K\ Ky(d,)| < 1. Thus, as z is fully separated, we have K\ K7(d.) = {ko}. By construction,
resolving the crossing kg from d, gives a diagram for ypv. Hence, Theorem [9.35| implies that
v=id and K N Ky(d.) = () which proves the lemma. O

By combining Proposition [9.50] and Lemma [10.20] we obtain the following consequence:

Corollary 10.21. We have that LB,(S?E&)Q(D)) is congruent modulo h? to

sgn(D,D') - h- (HQG%D/ Up(a+ h)) : (HHGKW(de,)\{Ho} \IID(Wt(F;)))
ngRr Up(wpr.B3) .

Here, we used the notation from Pmposition and Ky (dw,,) is defined as in (9.28)).
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Proof. 1f we choose v’ = yp in (9.29)) then, by Lemma [10.20, the only set of crossings that
contributes to (9.29) is K(dw,,,yp,1) = {xo}. Thus, by Proposition L*D,(S?z;bg_ (D)) is
congruent modulo A? to
(—1){wo) D) . . (HQEL%D/ Up(a+ h)> . <HH€KW(de/)\{KO} \I/D(wt(/f))>
H,BERr \I/’D(’LUD//B) '

By Proposition [10.10}, (—1){@p)+up) = sgn(D, D') which proves the corollary. O

Proof of Theorem [10.15. By definition, we have

U5, (Stabe_(D)) o4, (Stabe_(D)) i}, (Stabe_(D))

= = — . 10.16
er(TpC(D)g_ )  tp(Stabe (D)) 4% (Stabe (D')) (10.16)

Proposition m gives that L*D,(S?z;b@_ (D")) is congruent modulo A to

(Macz,, ¥0(@)) - (Teernan,,) Tolwi(x))
D . (10.17)

H,BeRr \PD(wD’-ﬁ)
Combining (10.17]) and Corollary then yields
/ . / .
[016) = sgn(D,D") - h _ sgn(D,D’) - h mod B2
Up(wt(r0)) tjn — iz

which proves Theorem [10.15 O

10.6 Chevalley—Monk formula for arbitrary chamber

Employing Theorem [9.20, generalizes the Chevalley—Monk formula for the antidominant
chamber from Theorem to any choice of chamber:

Theorem 10.22. Let € = 2~ 1.¢_ for z € Sy, D be a tie diagram of D and i € {1,..., M}.
Then, the following identity holds in H3(C(D))ioc:

c1(&) - Stabe(D) = th(c1(&)) - Stabe(D) + > sgn (D, D’) - h-Stabe(D'),
D'eSMp...;

where SMp ,; = {D’ € Tie(D) | z.D' € SM., p;} and sgn,(D,D’") = sgn(z.D, z.D’).

Let SMp . = Uf\il SMp ;. If D' € SMp . then we say that D’ is obtained from D via a

z-twisted simple move.
Proof of Theorem[10.23. Note that implies
vr(ép x,) = w*1.<LZ,.T(§w.D,X,-)>, for all w € Sy and T € Tie(D). (10.18)
Employing and Theorem for a given T € Tie(D) yields
i(c1(§(D)) - Stabe(D)) = 27 (2 r(er(€em,x,) - Stabe_(2.D))). (10.19)
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10.7. Chevalley-Monk formulas in the general case

Then, Theorem m gives that (|10.19)) is equal to

z—l.(AZ.T (Li.D(cl (gz,p,xi))-(s?a/b@(z.D))+D/€SZM: .sgn(z.D,D’).h.Sft\zﬁ)@f (D’))). (10.20)

Applying again (|10.18]) and Theorem then gives

[0:20) = v (¢h(er(ép,x,) - Stabe(D) + 3~ sgn.(D,D') - Stabe(D)).
D/ESMD,ZJ

Thus, Theorem implies

c1(&) - Stabe(D) = ijy(c1(&)) - Stabe(D) + > sgn (D, D) - h-Stabe(D').  (10.21)
D'eSMp . ;

As Stabg and %g just differ by a uniform constant factor in Hz(pt), we conclude Theo-

rem (10.22| from (|10.21]). O

10.7 Chevalley-Monk formulas in the general case

In the previous section, we proved the Chevalley—-Monk formula for bow varieties corre-
sponding to separated brane diagrams. Via Hanany—Witten transition, we finally deduce
Chevalley—Monk formulas for bow varieties corresponding to arbitrary choices of brane dia-

gram and chamber.

Simple moves for general brane diagrams

Fix a brane diagram D. First, we generalize the notion of (twisted) simple moves:

Definition 10.23. For D € Tie(D), we define the set of simple moves SMp as the set of all
D’ € Tie(D) such that there exist 1 <i; <iy < M and 1 < j; < jo < N satisfying

(i) M(D);, j; = M(D);, j, =1 and M(D);, j, = M(D);, j, =0,
(i) M(D')s, j, = M(D")iy5o =0 and M(D");, j, = M(D');, j, = 1,
(ili) M(D)ix = M (D" )ik, for all (I,k)) ¢ {(i1, 1), (2, j1), (i1, j2), (i2, j2) }-
If D' € SMp we say that D" is obtained from D via a simple move.

Given additionally i € {1,..., M}, we define the set of simple move relative to i SMp ;
as the set of all tie diagrams D’ of D such that there exists 1 <13 < M —i+1<1iy < M as
wellas 1 <1 < ja <N satisfying

The graphical illustration of simple moves depends on the position of the separating line
relative to the respective 2 x 2 submatrix where the simple move is performed. The six
possible cases are recorded in Figure [10.2

If D' € SMp then the sign of the simple move between D and D’ is defined as

j2_1 j2—1
sgn(D, D) = (=1)"*" where ny = Y M(D)j, 1, na= Y M(D),.
I=j1+1 l=j1+1
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Figure 10.2: Illustration of simple moves for general brane diagrams.

The notion of twisted simple moves also generalizes as expected: for z € Sy we set
SMp, . = {D' € Tie(D) | 2.D' € SM, p}

and

SMp,.; = {D' € Tie(D) | 2.D" € SM,.p;}, fori=1,...,M.

If D' € SMp ., we say that D’ is obtained from D via a z-twisted simple move. The corre-
sponding sign of the z-twisted simple move between D and D' is defined as sgn,(D,D’) =
sgn(z.D, z.D").

By Lemma , the definitions of (z-twisted) simple moves and the corresponding signs

agree with the previous definitions for separated brane diagrams.

Example 10.24. Let D = 0\1\2/3\3/2\2/0. As tie diagram D we choose

0\ 1\ 2 332 2 /0 N L
—\—\—/— - —\— U o110
NN \// - 1]1]of1

The tie diagrams that are obtained from D via a simple moves have the following binary

contingency tables:
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1o 1o 1]o0 1]o0
o] AAns 1]o 011’\/\/\} 01
1]1]of1 1]1]ol1 1)1 1)1
(D)
101 1
01 Va2 N
1)1 1
M (D)

We highlighted the submatrices that are involved in the respective simple moves. These

M(Ds)

simple moves can be illustrated via tie diagrams as follows:

. \—\—/—\—/l\—/ o \—\—/—\_—/—\—/ )

-
‘~-_~——

~
—————————

- ~~.

______

- ~~.

b \—\—/i\—/—\—/ R 5

Simple moves are well-behaved with respect to Hanany—Witten transition: Let D be the
brane diagram obtained via Hanany-Witten transition from D by switching Uj, € b(D) and
Viy € t(D). Let ®: C(D) = C(D) be the corresponding Hanany-Witten isomorphism (see
Proposition and let ¢: Tie(D) = Tie(D) be the induced bijection, see ([3.10).

Lemma 10.25. Let D, D' € Tie(D), z € Sy and i € {1,...,M}. Then, we have D' €
SMp.; . if and only if (D) € SMy(p),; .-

Proof. The proof is immediate from the fact that M (D) = M(¢(D)), for all D € Tie(D), see
B11). N

Chevalley—Monk formula in the general case

We finally formulate and prove Chevalley—-Monk formulas for bow varieties corresponding to
not-necessarily separated brane diagrams.
We first set up some notation: given a brane diagram D and i € {1,..., M — 1} then we
set
I(D,i) ={X € h(D) | Vi1 < X <« V;}.

In addition, we set

I(D,0):={X eh(D) | Vi<« X} and I(D,M):={X eh(D)|XaVy}.
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For instance, let D = 0\1\2/3\3/2\2/0 be as in Example [10.24] Then, one can easily check
that I(D,O) = {Xg}, I(D, 1) = {X7,X6}, I(D,Q) = {X5,X4} and I(D,3) = {Xg,XQ,Xl}.
Now, we finally state the general Chevalley—Monk formula:

Theorem 10.26 (Chevalley-Monk formula for bow varieties). Let ¢ = z~1.¢_ for z € Sy
and i € {0,...,M +1}. Then, we have the following identity in H3(C(D))ioc:

c1(&)) - Stabe(D) = (p(ei(§y)) - Stabe(D) + Y sgu.(D, D') - h- Stabe(D"),
D’'eSMp . ;

for all X; € I(D,i) and D € Tie(D).

For the proof, we use the following notation: Given a T-equivariant vector bundle E on
C(D), we denote by C(D, E) = C(D, E)p pr the matrix with entries in H}(pt)joc correspond-
ing to the operator of multiplication with ¢;(E) on Hj(C(D))ioc with respect to the stable
basis (Stabe (D)) petie(p)-

We will use the following lemma;:

Lemma 10.27. Let U;, € b(D), Vj, € r(D), D, & and ¢ be as in Lemma . Let X; = U]-Jg
and D, D" € Tie(D). Then, we have

©io(C(D, &) g(Dy.0(p)) = C(D,&)p,pr,  for j #1

and

©jo (C(D, &) p(D),0(py) = C(D,&41)p,pr + C(D,&-1)p,pr — C(D, &) p,p + (tjo + h)dp,pr-

~

Here, 5} 1s the tautological bundle over C(f)) corresponding to X; and j, : Q[t1,...,tx, h] —
Qlt1,...,tn, h] is the Q[h]-algebra automorphism given by t;, — tjo + h and t; — t;, for
J # Jo-

Proof. Let ®*: H%(C(D)) = H%(C(D)) be the induced ring isomorphism from ®. By Propo-
sition we have ®*(Stabg(4(T))) = Stabe(T), for all T' € Tie(D). Thus,

©jo (C(D, &) g(p),6(p7)) = C(D,s >*(&))p.pr-
Hence, the lemma follows from Proposition [2.52 O

Proof of Theorem |10.26. We prove the theorem via induction on the separation degree of D,
see Definition The case sdeg(D) = 0 is exactly the statement of Theorem [10.22] so let
us assume sdeg(D) > 0. As in the proof of Theorem the support condition for stable

basis elements directly implies
C(D,&)p,p = tpl(c1(&5)), for all D € Tie(D).

Hence, it is left to show that C(D, F) has the correct off-diagonal terms. As sdeg(D) > 0,
there exist Uj, € b(D) and Vj, € r(D) as in Lemma [10.27, In the following, we use the
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notation from Lemma [10.27} Let D, D' € Tie(D) with D # D’. Assume first that X; # U;.
Then, we have X; € I(D, i) and hence, the induction hypothesis gives

N ¢ z Dv D')Yh if ¢(D') € SM 1,29
C(D,&j)e(n).s(0) = sgn:(¢(D), 9D Ph it ¢(D') $(D),i,

otherwise.

Hence, Lemma [10.25| and Lemma [10.27| imply

sgn,(D,D")h if D' € SMp .,
C(Dvé.j)D,D’ =

otherwise.

So C(D, &) has the correct off-diagonal terms. It remains to prove the case X; = U ;g . Note
that in this case i = 49. Since X;11 € I(D,i — 1) and X; € I(D,i — 1), the induction
hypothesis and the previous case imply ¢j, (C(D, gj)é(D),dﬂD’)) = C(D,&j+1)p,p’- Therefore,

Lemma [10.25| and Lemma [10.27| again imply that C(D,¢;) and C(D,&;—1) have identical
off-diagonal entries. By the first case, the latter are given by

sgn,(D,D")h if D' € SMp, .,
C(D,&j-1)p,pr =

otherwise

which completes the proof. O

10.8 Simple moves and rim hook removals

Consider the Grassmannian Gr(k,n) with its cotangent bundle T*Gr(k,n). As before, let
Q be the pullback of the quotient bundle from Gr(k,n) to T*Gr(k,n). Recall the bow
variety realization C(D(k;n)) = T*Gr(k,n) from Theoremand that Q is T-equivariantly
isomorphic to the tautological bundle & on C(D(k;n)).

In the introduction, we stated the formula for the stable basis expansion of the products
c1(Q) - Stabe_(p) from [MOI9, Theorem 10.1.1] using the language of partitions, see (L.3).
The main combinatorial tool in were the rim hook removals on Young diagrams, see
Definition 0.3}

In this section, we show that the formulas for the stable basis expansion of ¢1(Q)-Stabe_ (p)
from and Theorem are actually equivalent. For this, we use the well-known match-
ing of partitions and binary contingency tables, see e.g. [Pos05], and show in Proposition

that under this correspondence rim hook removals correspond to simple moves.

Matching of partitions and binary contingency tables

We usually identify a partition with its corresponding Young diagram:

(6,6,4,3,1) ANAAANAANS
Partition A

(10.22)

Young diagram of A
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For a partition A, we denote by |A| the number of boxes in the Young diagram of \. Let P(k,n)
be the set of all partitions whose Young diagram admits at most k& rows and n — k columns.

To A € P(k,n), we assign its corresponding row-vector (A1, ..., \g), where \; is the number

of boxes in the i-th row of A. Likewise, we assign to A its column vector (;\1, vy An—k), where

5\1- is the number of boxes in the i-th column of A.

Example 10.28. Choose (k,n) = (6,13) and let A be as in (10.22]). Then, A is contained in

P(k,n). The row vector and the column vector of \ are given as
(6,6,4,3,1,0) and (5,4,4,3,2,2,0).

We now match the elements of P (k,n) with the binary contingency tables of D(k;n). Since
D(k;n) admits the margin vectors r = (k,n — k) and ¢ = (1,...,1), the set bet(D(k;n)) is
the set of (2 x n)-matrices A with entries in {0, 1} satisfying the following row and column

sum conditions
n n 2
A=k, > Agyi=n—k Y Ay=1, forj=1,...,n. (10.23)
i=1 i=1 =1

Recall the functions
Fai:{1,....k} —{1,...,n}, Fao:{l,....n—k} —{1,...,n}

from (9.19), where F4;(j) is the column index of the j-th 1-entry in the i-th row of A. By

e.g. [Pos05, Section 2], we have a bijection
n: bet(D(k;n)) —— P(k,n), A n(A), (10.24)
where 1(A) is the unique element in P(k,n) with row vector
(Faa(k) =k, Fai(k—1)—(k—=1),...,Fa:(1) = 1). (10.25)

Example 10.29. Let (k,n) and A be as in Example [10.28, We want to determine A =
n~1(A). As X has the row vector (6,6,4,3,1,0), we conclude that Fy; is given as

(Fa1(1),...,Fa1(6)) = (1,3,6,8,11,12).
Hence, we deduce from ({10.23)) that F4 o is given as
(FA»2(1)’ e 7FA,2(7)) = (25 47 57 77 97 107 13)

Consequently, we have

A_1010010100110
“\o10110101100T1)

The bijection n from ((10.24)) can be equivalently characterized via column vectors:

Lemma 10.30. For A € bet(D(k;n)), we have that n(A) is the unique element in P(k,n)

with column vector
(k+1—Fa2(1),k4+2—Fa2(2),....k+(n—k)— Fa2(n—k)).
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Proof. For i € {1,...,n — k}, the number of boxes in the i-th column of n(A) equals iy =

Z?:FAQ@.) Ay j. By (10.23), we have

io=n— Fas(i) — ( 3 AQJ). (10.26)

Jj=Faz2(i)+1
As F42(i) is the column index of the i-th 1-entry in A, we have 37 S()+1 Azg =n—k—i.
Thus, (10.26) implies that the i-th column of n(A) contains k + ¢ — F4 2(7) boxes. O

Rim hook removals vs simple moves

Next, we recall the definition of rim hooks and show that simple moves correspond to rim hook
removals under the bijection 7 from (10.24). For more details on rim hooks, see e.g. [BCEFF99,
Section 2].

Definition 10.31. Let A be a partition and (4,7) be a box in A\. The hook Hy(7,j) of (i,7)
in A is defined as

HAG, ) = HY(09) U {0}
where HY (4, j) is the set of all boxes in A to the right and below (4, j). The rim hook RH, (i, j)

of (i,7) in X is the collection of contiguous boxes running along the border of A\ starting in

the bottom-most box of Hy (4, j) and ending in the right-most box of Hj (4, j).

Given a hook H) (i, j), we define its height ht(H,(7, 7)) as the number of boxed in the j-th
column of Hy (7, j). Likewise, if RH) (i, 7) is a rim hook, we define the height of RH)(i,7) as
ht(RH)\(Z,j)) = ht(H)\(Z,j))

Example 10.32. Let A be as in ([10.22f). The following picture shows the hook and the rim
hook of the box (2,2) in A:

|

Hook of (2,2) Rim hook of (2,2)

As the hook H)(2,2) contains 3 boxes in the second column, we have

For A € P(k,n), we define RH), as the set of all 4 € P(k,n) such that \ is obtained from
p by deleting a rim hook from p. The elements of RHy can be uniquely characterized via

their column vectors, see e.g. [BCFF99, Section 2]:

Lemma 10.33. Let A\, u € P(k,n). Then, we have p € RHy if and only if there exist
1<r<s<n-—kandle{l,... .k} such that

(5\17 .- '7>\n—k) = (/117 s 7/27‘—17:[]’7“-"-1 - 17/7’7’-"-2 - 17' : '7/18 - 17/7’7’ - laﬂs-‘rla s 7ﬂn—k)‘

225



10. CHEVALLEY—MONK FOMULAS FOR BOW VARIETIES

If w € P(k,n) and R is a rim hook in p then the coefficients 7, s, [ from Lemma
are given as follows: r is the column index of the left-most box in R, s is the column index
of the right-most box in R and [/ equals the height of R.

If for example, u is the partition from Example and R is the rim hook from there

then as the picture below indicates, we have r =2, s =6 and [ = 3.

T S

|

The next proposition is the main result of this subsection.
Proposition 10.34. For all A € bet(D(k;n)), we have
U(SMA) = RHn(A)

Here, SMy denotes the set of all elements in bet(D(k;n)) that are obtained from A wia a

simple move.
We begin with the following statement:
Lemma 10.35. Let A € bet(D(k;n)) and A’ € SMy. Then, n(A') € RH,(4).-

Proof. By assumption, there exist 1 < j; < jo < n such that

_ - Y
Ayj = Az, = 1, 1 = Az, =0,

_ L / _ / _
Ay j, = Ay, =0, 1j, = A1y, =1

and A;; = Aj; for (i,7) # (1,51), (2,51), (1,42), (2,52). Set A == n(A). To show that
p = n(A’) is contained in RH), we show that the conditions of Lemma are satisfied
with
J2
r= Fg,ll(jl)7 s = FX,%(J'Z)’ l= Z Ay (10.27)
1=J1
If i < rori>s, we have Fy2(i) = Fa2(i) and hence N = fi;. Likewise, for r < i < s,
we have Fg9(i) = Far2(i + 1) and hence N\i = fiig1 — 1 by Lemma Finally, since
Fu5(r) = j1 and Fa(s) = jo, Lemma [10.30] gives

B J2
,ar - )\s = Z Al,i-

i=j1
Hence, Lemma [10.33| yields 1 € RH). O
Suppose A’ € SM 4 where the simple move is performed in the ji-th and js-th column of
A with j1 < ja. Set X = n(A), p = n(A"). Then, (10.27) actually tells us the box (ig, jo)
of 41 such that X is obtained from p by removing RH,, (%o, jo). Namely, by (10.27), we have
jo = Fj1(j1) and

io = fijo — ( i Au>. (10.28)

i=j1+1
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10.8. Simple moves and rim hook removals

Example 10.36. Consider the following binary contingency table A with partition A:

[ ]

10001010110

01110101001

Let A’ € SM4 be obtained from A by performing a simple move in the second and ninth

column of A and p the partition corresponding to A’. That is, we have

, 0f0 1 1010 1101 B
A= =
1701001 010f010

Here, we highlighted the matrix entries that are involved in the simple move. Note that
between the green columns in A’, the first row contains four 1-entries. Hence, as jio = 6, we
deduce from (10.27) that A is obtained from p by removing the rim hook RH,(2,2).

| [

|

Proof of Proposition[10.34. Let A € bet(D(k;n)) and set A :== n(A). By Lemma [10.35 we
have 7(SM4) C RHy. Thus, it is left to show n~'(RH)) C SM4. Let u € RHy and set

A" == n~Y(u). To show that A’ is obtained from A via a simple move, we compare the
functions Fu 9 and Fyaro. Let (ig,jo) be the box in p such that we obtain A by removing
RH, (i, jo) from p. Let so be the column index of the right-most box in RH,(io, jo). By

Lemma [10.33] we have

Ai = [y, for i <igori>sg

and

Ai = [hiy1 — 1, for i =g, i9g+1,...,50— 1.
Thus, Lemma [10.30 yields
Fa2(i) = Far (i), fori <igori> sg

and
FA,Q(i):FA/,Q(i+1)7 for i =g, 3o+ 1,...,50 — 1.

Hence, if we write
(Faro(1),...,Faron—Fk)) = (li,...,ln—p)
then we have

(FA72(1), ey FA72(77, — ki)) = (ll, ce 7lio—17 lio+17 lio+27 e ,ZSO_l,j, ZSO_H, l50+2, ey ln—k)7
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where j = F42(s0). Lemma [10.33| gives fi;, — 5\50 > 1. By Lemma [10.30| this is equivalent to
(k+i0—1li,) — (k+s9—j) > 1. Since sy > ig, we deduce j —l;, > 1. Thus, we conclude that
A’ is obtained from A by a simple move which is performed in the l;,-th and j-th column of
A. O

Reformulation of Theorem [10.26

We identify the bow variety C(D(k;n)) with T*Gr(k,n) via the T-equivariant isomorphism
from Theorem Via the bijection 1 from , we may label the stable basis elements of
T*Gr(k,n) by the elements of P(k,n), i.e. we set Stabg()\) := Stabe(n~t())), for A € P(k,n).

We now give an equivalent reformulation of Theorem for T*Gr(k,n) using the

language of partitions. For simplicity, we restrict our attention to the antidominant chamber.

Corollary 10.37. For all X € P(k,n), we have the following identity in Hj(T*Gr(k,n)):

e1(Q) - Stabe_(A) = (D ;) - Stabe_(\) + Y (1)W1 Stabe_ (). (10.29)

i€Ey pERH,
Here, Ey ={1,....,n}\{M +kXa+(k—1),...,x +1}.

Proof. Let A € bct(ﬁ(k; n)) with n(A) = X and write
(FA,2<1)7 EER) FA,Q(TL - k)) = (ll, e ,ln,k).

By (3.8), we have /% (Q) = t;, + ...+, .. In addition, (10.25)) gives Ey = {l1,...,lh—}
Thus, Theorem |10.26| yields that we have the following identity on H}(T*Gr(k,n))ioc:

cl(g)-smb&(A):(Zti)-smb&(AH 3" sgn(4,4') - h-Stabe_(A)).  (10.30)
SN A’€SM 4

Recall from e.g. [AEF23| Corollary 3.3.3] that T7*Gr(k,n) is equivariantly formal. Hence,
(10.30) also holds in the non-localized equivariant cohomology ring Hy(7*Gr(k,n)). By
Proposition [10.34, we have n(SM4) = RHy. Thus, it is left to show that

sgn(A, A') = (=1)MAN=N=10 for A € SM 4. (10.31)

Suppose A’ is obtained from A via a simple move performed in the j;-th and js-th column
of A with j; < jo. Then, by , we have sgn(A, A’) = (—1)72771=1_ On the other hand,
let (49, Jo) be the box in p = n(A’) such that X is obtained from p by removing RH,, (o, jo)-
Let so be the column index of the right-most box in RH,, (%9, jo). Then,

Il — [N = s0 —d0 + flig — Aso>

By Lemmal10.30} ji;, = k-+io— Far2(io) and \gy = k+s0— Fa2(s0). Hence, |u|— |\ = j2— s
which proves (10.31)). Thus, (10.30]) is equivalent to (|10.29)). O

As desired, the formula ((10.29)) coincides with the formula (|1.3]) from the introduction.
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