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Summary

First introduced by Cherkis in theoretical physics, bow varieties form a rich family of sym-

plectic varieties generalizing Nakajima quiver varieties. An algebro-geometric definition was

later given by Nakajima and Takayama via moduli spaces of quiver representations. The main

goal of this thesis is to study the torus equivariant cohomology of bow varieties. Our study

is motivated by classical Schubert calculus and lays the foundation for a Schubert calculus

for bow varieties, where the underlying quiver is of finite type A.

The crucial main mathematical tool we use is the theory of stable envelopes of Maulik

and Okounkov. We show that this theory applies to bow varieties and study it with the main

focus on explicit calculations. As a main result of this thesis we generalize a fundamental

ingredient of classical Schubert calculus to the world of bow varieties: The Chevalley–Monk

formula. Our generalization of this formula characterizes the multiplication of tautological

divisors with respect to the stable envelope basis.

In the first part of this thesis, we give a self-contained introduction to the construction of

bow varieties and their geometric properties following the work of Nakajima and Takayama.

In particular, we recall the classification of torus fixed points of bow varieties and use a similar

method to prove that this classification also holds for generic one-parameter torus actions.

In the second part, we redevelop the theory of stable envelopes in the framework of bow

varieties. The main result is a self-contained reproof of the existence of stable envelopes for

bow varieties using the deformation to the normal cone construction due to Fulton. This

proof provides in particular an algorithm which computes the stable basis elements as linear

combinations of the fundamental classes of attracting cells.

Motivated by the localization principle in torus equivariant cohomology, we prove in the

next part a formula which determines the equivariant multiplicities of stable basis elements

at torus fixed points via a diagrammatic calculus of permutations and symmetric groups.

The main ingredient for this formula is the Resolution Theorem due to Botta and Rimányi.

In the final part of this thesis, we state and prove the Chevalley–Monk formula theorem for

bow varieties. In the proof we use orthogonality properties of stable basis elements which are

similar to the orthogonality properties of (equivariant) Schubert classes. A further important

ingredient in the proof is a certain divisibility theorem for equivariant multiplicities of stable

basis elements which we prove using our diagrammatic calculus of symmetric groups.
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Chapter 1

Introduction

This thesis describes and studies algebraic invariants of bow varieties. Bow varieties are

certain generalizations of Nakajima quiver varieties which form a rich family of holomorphic

symplectic moduli spaces of quiver representations. Their origin goes back to theoretical

physics, where they were introduced by Cherkis, [Che09], [Che10], [Che11]. In the context

of quiver representations, they were defined by Nakajima and Takayama in [NT17]. The

name bow variety indicates the important part of the quiver which looks like a bow, see

[Che09]. The easiest examples of bow varieties are cotangent bundles of Grassmannians and

(more generally) partial flag varieties. Other famous varieties from geometric representation

theory which can be realized as bow varieties are Nakajima quiver varieties, see [NT17], and

equivariant Slodowy slices, see [Los06], [RR23]. In general, bow varieties can become very

involved.

The main goal of this thesis is to give a detailed and explicit description of the torus

equivariant cohomology of bow varieties corresponding to finite type A quivers. Motivated

by the classical Schubert calculus, which is in particular a powerful tool to describe and

understand cohomology rings of Grassmannians, we develop the foundations of a Schubert

calculus for bow varieties. The generalizations of the Schubert classes are in this picture the

stable envelope classes introduced by Maulik and Okounkov in [MO19].

More precisely, the purpose of this thesis is twofold:

� In the framework of bow varieties, we bring together the general theory of stable en-

velopes of Maulik and Okounkov with concrete combinatorial models. In this way, we

provide a treatment of bow varieties from a new Schubert calculus point of view.

� As a main result (Theorem 10.26), we give then a general Chevalley–Monk formula. It

describes the multiplication in equivariant cohomology algebras of bow varieties in a

combinatorial way.

1.1 Classical Chevalley–Monk formula

The classical Chevalley–Monk formula, see [Mon59], [Che94], characterizes the multiplication

of tautological divisors in the singular cohomology of partial flag varieties. Thereby, this for-

mula uniquely determines the ring structure of these singular cohomology rings. The formula

1



1. Introduction

is best known in the special case of Grassmannians, where the cohomology can be described

in combinatorial terms using symmetric functions and partitions. For Grassmannians, the

Chevalley–Monk formula coincides with a special case of the much older Pieri’s formula, see

e.g. [EH16, Proposition 4.9]. We will now describe this formula as well as some applications

and generalizations in the special case of Grassmannians. In this framework, the formula can

be conveniently described using the combinatorics of partitions.

Enumerative problems reformulated via divisors

We go back to the origins of Schubert calculus and consider the following classical question

from enumerative geometry, see [Sch79, Chapter 19]:

(Q1) Given 4 lines L1, . . . , L4 in the complex projective space P3 in general position,

how many lines in P3 meet all the four lines L1, . . . , L4?

It is a well-known result that the answer to this question is 2. We now explain how the

answer can be obtained via the intersection theory on Grassmannians: Let Gr = Gr(2, 4)

be the Grassmannian parameterizing 2-dimensional subspaces of C4. To relate to (Q1), we

identify Gr with the moduli space of lines in P3. The question (Q1) can then be reformulated

as:

(Q1’) What is the order of the set
⋂4
i=1{V ∈ G | V ∩ Li ̸= ∅}?

The variety Gr admits the tautological bundle S and the quotient bundle Q, where

S = {(L, v) | v ∈ L} ⊂ Gr× C4, Q = (Gr× Cn)/S.

The global sections of Q are parameterized by C4. For two linear independent vectors v, w ∈
C4, the global section v ∧ w of the exterior power

∧2Q vanishes at a point V ∈ Gr if and

only if V intersects the plane spanned by v and w. There is a characteristic class of Gr in

the singular cohomology H∗(Gr) which is exactly the cohomology class corresponding to this

vanishing locus: The first Chern class of the quotient bundle c1(Q) ∈ H2(Gr). Thus, by

Kleiman’s Transversality Theorem [Kle74], we can reformulate (Q1’) as follows:

(Q1”) What is the degree of c1(Q)4 in H∗(Gr)?

This degree can be determined in terms of combinatorial intersection theory, the main in-

gredient of Schubert calculus. Going back to Hermann Schubert [Sch79], it describes the

enumerative geometry of subspaces of a vector space which allows to describe in particular

the cohomology ring of Grassmannians. For a general introduction to Schubert calculus, see

e.g. [KL72], [Ful97], [EH16].

The Gauss decomposition algorithm implies that the singular cohomology H∗(Gr(k, n))

of any Grassmannian Gr(k, n) is a free Z-module and is equipped with a homogeneous ba-

sis (Sλ)λ∈P(k,n) which is called the Schubert basis, see e.g. [Ful97] for more details on the

construction of the Schubert basis. This basis is naturally labeled by the set P(k, n) of all

partitions, where the corresponding Young diagram has at most k rows and n− k columns.

2



1.1. Classical Chevalley–Monk formula

Young diagram

(5, 4, 4, 3, 3, 1)

Partition

The cohomological degree of the corresponding Schubert class Sλ equals 2 · |λ|, where |λ|
is the number of boxes in λ. In the special case (k, n) = (2, 4) this leads to the following

basis:

S∅ S

S

S

S S

H0(Gr) H2(Gr) H4(Gr) H6(Gr) H8(Gr)

The construction of the Schubert basis implies that in general S = c1(Qk,n), where Qk,n
is the quotient bundle on Gr(k, n). By Pieri’s formula, the multitplication of c1(Qk,n) with

respect to the Schubert basis is given as follows:

c1(Qk,n) ·Sλ =
∑
µ∈Mλ

Sµ. (1.1)

Here, Mλ is the set of µ ∈ P(k, n) with the property that λ can be obtained from µ by

removing a single box.

Using (1.1), we can now easily determine the product S4 in H∗(Gr):

S
S ·7−−−→ S + S

S ·7−−−→ 2S
S ·7−−−→ 2S .

By construction, S ∈ H8(Gr) is the cohomology class corresponding to a point. Thus, the

degree of S4 indeed equals 2 which gives the desired answer to (Q1).

Overall, due to this well established understanding of the multiplication of the tautological

divisor with respect to the Schubert basis a variety of enumerative questions in the flavor of

(Q1) can be solved, see e.g. the exposition given in [EH16].

Generalization to torus equivariant cohomology

We may more generally study the torus equivariant cohomology ring H∗
T (Gr(k, n)), where the

action of the torus T = (C∗)n on Gr(k, n) is induced by the standard T -action on Cn. The

localization principle in torus equivariant cohomology, see e.g. [AF23, Chapter 7], provides a

strong interplay between local and global data of equivariant cohomology classes which makes

torus equivariant cohomology a powerful cohomology theory which is well-suited for explicit

computations. By construction, H∗
T (Gr(k, n)) is a module over H∗

T (pt) which is in fact free.

The Z-algebra H∗
T (pt) is isomorphic to the polynomial ring Z[t1, . . . , tn], where the variable ti

corresponds to the i-th factor of T . There is also a T -equivariant version of Schubert classes

(ST
λ )λ∈P(k,n) which form a basis of H∗

T (Gr(k, n)) over H∗
T (pt), see e.g. [AF23, Chapter 9].

3



1. Introduction

If we set all equivariant parameters equal to 0, the T -equivariant cohomologyH∗
T (Gr(k, n))

specializes to the usual singular cohomologyH∗(Gr(k, n)) and each torus equivariant Schubert

class ST
λ specializes to the classical Schubert class Sλ.

The formula (1.1) extends to the torus equivariant setting by just adding a diagonal term,

see e.g. [AF23, Theorem 9.6.2]:

cT1 (Qk,n) ·ST
λ =

( ∑
i∈Eλ

ti

)
·ST

λ +
∑
µ∈Mλ

ST
µ . (1.2)

Here, cT1 (Qk,n) is the first T -equivariant Chern class of Qk,n and

Eλ = {1, . . . , n} \ {λ1 + k, λ2 + (k − 1), . . . , λk + 1}.

For instance, if (k, n) = (2, 4) and λ = then

cT1 (Q2,4) ·ST = (t2 + t4)S
T + ST + ST .

Setting t1 = . . . = tn = 0 in (1.2) gives back the classical formula (1.1). In general, the

multiplication rules in the torus equivariant cohomology of Grassmannians are connected,

and in fact geometric incarnations, of deep combinatorial results in the theory of symmetric

functions, see e.g. [MS99], [KT03], [MS99], [AF23].

Generalization to the cotangent bundle

Now, we leave classical Schubert calculus and enter the world of holomorphic symplectic

varieties by passing from Gr(k, n) to its cotangent bundle T ∗Gr(k, n). As T ∗Gr(k, n) is a

vector bundle over Gr(k, n), this variety admits a further C∗-action given by scaling the

fibers and we like to study its (T ×C∗)-equivariant cohomology. The fact that we deal with a

holomorphic symplectic variety provides us a very deep and powerful tool: The stable envelope

bases of Maulik and Okounkov from [MO19]. These bases should be viewed as analogues of

the equivariant Schubert bases for Gr(k, n). More precisely, the family of stable envelope

bases should be viewed as analogue of the family of equivariant Schubert bases indexed by

different choices of Borels or cocharacters respectively, see [GKS20].

Stable envelopes exist for a large family of symplectic varieties with torus action. They

provide families of bases of the torus equivariant cohomology depending on the choice of a

generic cocharacter. These bases are uniquely characterized by three stability conditions: a

normalization, a support and a smallness condition. These stability conditions are similar

to the uniqueness conditions appearing in equivariant Schubert calculus, see e.g. [KT03],

[GKS20]. Just as in equivariant Schubert calculus, the base change matrix of different stable

envelope bases produces a solution of the Yang–Baxter equation and thus provide interesting

braid group actions on cohomology. The usual FRT-construction [FRT88], [Kas95] then can

be applied and provides a Hopf algebra acting on the torus equivariant cohomology of the

respective symplectic variety.

In the special case of cotangent bundles of Grassmannians, this Hopf algebra is a one-

parameter deformation of the Yangian for gl2, see [MO19, Chapter 11] and also [RTV15].

The multiplication of cT×C∗

1 (Qk,n) with respect to the stable envelope basis was determined

4



1.2. New picture: bow varieties

in [MO19, Theorem 10.1.1], see also [Su16, Theorem 3.1]. As explained in [RTV15], these

matrices coincide with certain limits of the dynamical Hamiltonians for the XXX model for

gl2 as defined earlier by Tarasov and Varchenko, see [TV00], [TV05]. Amazingly, this formula

can be expressed in terms of partitions as follows, see the explanation in Section 10.8:

cT×C∗

1 (Qk,n) · Stabσ(λ) =
( ∑
i∈Eλ

ti

)
· Stabσ(λ) +

∑
µ∈RHλ

(−1)|µ|−|λ|−1 · h · Stabσ(µ). (1.3)

Here, σ : C∗ → T , t 7→ (t, t2, . . . , tn) is the chosen cocharacter, h is the equivariant parameter

corresponding to the additional C∗-factor in T × C∗ and RHλ is the set of all partitions

µ ∈ P(k, n) such that λ can be obtained from µ by deleting a single rim hook. Recall that a

rim hook of a Young diagram µ is a collection of contiguous boxes running along the border

of µ:

µ
Rim hook

removal
λ

For instance, if again k = 2, n = 4 and λ = then

cT×C∗

1 (Q2,4) · Stabσ( ) = (t2 + t4)Stabσ( ) + hStabσ( ) + hStabσ( ) + hStabσ( ).

The stable envelope bases not only share characterizing properties of equivariant Schubert

bases, but can moreover be viewed as one-parameter deformations of Schubert bases: As

explained in e.g. [AMSS23], the stable enevlope basis element Stabσ(λ) is a one parameter

deformation of ST
λ and Stabσ(λ) degenerates to ST

λ via the limit

lim
h→∞

(
h|λ|−k(n−k)Stabσ(λ)

)
= ST

λ .

This limit implies that (1.3) degenerates to (1.2).

1.2 New picture: bow varieties

Nakajima quiver varieties are a fundamental part of geometric representation theory as they

for instance geometrize universal enveloping algebras of Kac–Moody algebras and their cor-

responding integrable models. For an exposition to the topic see e.g. [Gin12] or [Kir16]. As

explained in [NT17, Theorem 2.15], the family of bow varieties extends the family of Naka-

jima quiver varieties. Thus, we can in particular realize cotangent bundles of partial flag

varieties as bow varieties, see Theorem 2.67 for a precise statement.

In this thesis, we will only consider bow varieties corresponding to finite type A quivers,

see [Gai24] for other types.

Passing from Nakajima quiver varieties to bow varieties adds new features to the theory.

In particular, the family of bow varieties is equipped with a class of isomorphisms between bow

varieties corresponding to different input data. These isomorphisms correspond to certain

5



1. Introduction

transition moves on the input datum of bow varieties, see [NT17] and the exposition in Sec-

tion 2.4. These transition moves are ultimately motivated by the Hanany–Witten transition

in string theory from [HW97], see also the explanation in [NT17]. Thus, the corresponding

isomorphisms of bow varieties are called Hanany–Witten isomorphisms.

By their construction, bow varieties are endowed with an action of a torus T which scales

the symplectic form. In the case of cotangent bundles of partial flag varieties, this torus

action matches with the (T ×C∗)-action from the previous section. It was proved in [Nak18,

Theorem A.5] that bow varieties admit finitely many T-fixed points which can be classified via

matrices with entries in {0, 1} with fixed row and column vectors, see Section 3.2 for precise

statements. This explicit classification result makes the family of bow varieties well-suited for

explicit computations in torus equivariant cohomology. In particular, the torus fixed point

combinatorics of bow varieties naturally generalizes the torus fixed point combinatorics of

partial flag varieties.

In fact, the classification torus fixed points of bow varieties of finite type A appears as a

shadow of a more general Fock space combinatorics in the affine type A case, see [Nak18].

Chevalley–Monk formula for bow varieties

The aforementioned classification of T-fixed points is the starting point of our treatment. We

now give an exposition of the main result of this thesis: A Chevalley–Monk formula for bow

varieties (Theorem 10.26).

As mentioned already, bow varieties fit well in the framework of Maulik and Okounkov’s

theory which provides in particular the existence of stable envelope bases for bow varieties.

The elements in a stable envelope basis are labeled by the torus fixed points of the respective

bow variety.

The construction of bow varieties provides a family of tautological bundles (ξX)X . As

explained in Section 10.1, the mutliplication with its first Chern classes uniquely determines

the ring structure on the localized equivariant cohomology rings of bow varieties. In the

special case of cotangent bundles of Grassmannians, the tautological bundles ξX are all

isomorphic to the quotient bundle, see Theorem 2.69.

Theorem 10.26 gives a formula for the multiplication of the T-equivariant first Chern

classes of tautological bundles on bow varieties with respect to the stable envelope basis:

Theorem A (Chevalley–Monk formula for bow varieties). Let M be a matrix labeling a

T-fixed point of a bow variety and let ξX be a tautological bundle. Then, we have

cT1 (ξX) · Stabσ(M) = ι∗M (cT1 (ξX)) · Stabσ(M) +
∑

M ′∈SMM,X

sgn(M,M ′) · h · Stabσ(M ′). (1.4)

Here, ι∗M (cT1 (ξX)) is the equivariant multiplicity of cT1 (ξX) at the T-fixed point of C(D) labeled

by the matrix M and h is an equivariant parameter corresponding to the scaling of the sym-

plectic form. The set SMM,X is a certain set of matrices that differ from M by replacing a

( 1 0
0 1 )-minor of M with ( 0 1

1 0 ).

We refer to the replacement move defining the elements in SMM,X as a simple move, see

Definition 10.3 for a precise treatment.
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1.3. Structure of the thesis

Application to classical setting

Consider again the cotangent bundle T ∗Gr(k, n). As we explain in Section 3.2, the bow variety

realization of T ∗Gr(k, n) comes with a labeling of the (T × C∗)-fixed points of T ∗Gr(k, n)

by the set Bk,n of (2× n)-matrices M with entries in {0, 1} satisfying the following row and

column sum conditions:

n∑
i=1

M1,i = k,
n∑
i=1

M2,i = n− k,
2∑
i=1

Mi,j = 1, for j = 1, . . . , n.

We then discuss in Section 10.8 that we have a bijection

Bk,n
1:1←−−→ P(k, n)

and under this bijection simple moves correspond to rim hook removals. Hence, the formula

(1.4) naturally generalizes (1.3).

1.3 Structure of the thesis

This thesis consists of four parts:

Part 1: geometry of bow varieties

In the first part of the thesis, we give a self-contained introduction to the geometry of bow

varieties. In Chapter 2, we consider important ingredients of the theory of GIT quotients.

Thereby, we place special focus on the characterization of geometric points of GIT quotients

via stability conditions due to King [Kin94]. We also consider GIT quotients in the framework

of symplectic algebraic geometry and hamiltonian reduction. In particular, we discuss an

algebro-geometric version of the Marsden–Weinstein Theorem, see Theorem 2.17.

Hereafter, we recall the construction of bow varieties from [NT17] as GIT quotients of

specific moduli spaces of quiver representation. For this, we use the language of brane com-

binatorics which was developed in [RS20], [Sho21]. The input data for the construction of a

bow variety is a brane diagram which is an object like this:

0 1 3 3 2 0

That is, a brane diagram is a certain configuration of horizontal black lines with integral labels

and between each adjacent pair of horizontal lines there is a red or a blue line. As explained

in detail in [RR23, Section 2.4], these brane diagrams are motivated from theoretical physics

and arise from brane projections from R × R3 × R3 to the plane, but in this thesis we just

consider them as combinatorial data.

The construction of bow varieties goes in three steps:

D QD M̃(D) C(D)

In the first step one assigns to a brane diagram D a specific quiver QD with dimension vector.

If for instance D is as above, QD is as follows:

7



1. Introduction

0 1 3 3 2 0

1 1

To QD, one assigns an affine moduli space M̃(D) of quiver representations. It is endowed

with a holomorphic symplectic structure. The bow variety C(D) is finally obtained as a GIT

quotient from M̃(D) via hamiltonian reduction, see Definition 2.36.

The explicit construction of C(D) gives that this variety satisfies many convenient prop-

erties, some of which we explain in Section 2.3. In particular, C(D) is smooth and inherits

a holomorphic symplectic structure from M̃(D). A further important tool will be explained

in Proposition 2.47, namely the action of a torus T = A×C∗
h on C(D) which was introduced

in [NT17, Section 6]. The construction of this T-action is such that the A-action leaves the

symplectic form on C(D) invariant whereas the C∗
h-action scales the symplectic form.

Chapter 3 is then devoted to the study of the T-fixed points of bow varieties. First, we

recall the classification theorem of T-fixed points from [Nak18, Theorem A.5] via the language

of tie diagrams from [RS20], [Sho21]. These tie diagrams are extensions of brane diagrams

by adding ties between the colored lines in a specific way. The incidence matrices of these tie

diagrams are the matrices with entries in {0, 1} with fixed row and column sums depending

on the brane diagram D which were mentioned already above. From a tie diagram, one can

read off an explicit representation of the quiver QD which yields a T-fixed point of C(D). The

Classification Theorem (Theorem 3.7) then states that this construction gives a bijection

{Tie diagrams of D} 1:1←−−→ C(D)T.

As an outcome of Section 3.2, this explicit T-fixed point combinatorics makes explicit com-

putations in the T-equivariant cohomology of C(D) possible.

Hereafter, we follow [Nak18, Theorem A.5] to prove the Generic Cocharacter Theorem

(Theorem 3.23) which improves the Classification Theorem of T-fixed points. This theorem

states that that the T-fixed locus of C(D) coincides with the C∗-fixed locus which is induced

by a generic cocharacter of A.

Part 2: stable envelopes for bow varieties

In the second part of the thesis, we redevelop the theory of stable envelopes from [MO19] in

the setup of bow varieties with the focus on a more direct treatment. The theory of stable

envelopes builds on the theory of attracting cells. In Chapter 4, we give a self-contained

introduction to attracting cells for bow varieties following [MO19, Chapter 3]. The classical

Bia lynicki-Birula decomposition, see [BB73], gives that the attracting cells of T-fixed points

with respect to generic cocharacters of A are affine and locally closed subvarieties of C(D).

Their closures are then (possibly singular) lagrangian subvarieties of C(D). As in classical

Schubert calculus, the closure relation defines a partial order ⪯ on C(D)T, see Section 4.1 and

Section 4.4 for precise statements. We lay out the theory and illustrate it with examples.
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In Section 4.5, we compare attracting cells of a generic cocharacter σ of A with the

attracting cells of the opposite cocharacter σ−1. A crucial result is Theorem 4.24 which

states that the intersection on attracting cells corresponding to opposite cocharacters is always

proper. A further useful result is Theorem 4.23 which states that the attracting cells of σ

and σ−1 induce opposite partial orders on C(D)T. We prove Theorem 4.23 using a smooth

compactification of C(D).

In Chapter 5, we come to some of the main actors in this thesis: The stable envelopes. In

Theorem 5.10, we give a self-contained reproof of the existence and uniqueness of stable en-

velopes from [MO19, Chapter 3] in the case of bow varieties. The uniqueness proof is a direct

application of the defining conditions of stable envelopes and torus equivariant intersection

theory. The existence proof is based on a result which gives that the A-equivariant multi-

plicities of lagrangian subvarieties at a T-fixed point p ∈ C(D)T are uniquely determined (up

to a factor in Z) by the tangent weights at p, see Theorem 5.15. We refer to this theorem as

Langrangian Multiplicity Theorem. Its proof is based on the deformation to the tangent cone

construction due to Fulton [Ful84] and on further deformation results for conical lagrangian

subvarieties of symplectic vector spaces which we state in Proposition 5.29.

In particular, the proof of the existence of stable envelopes yields an algorithm to compute

stable basis elements as Z-linear combinations of the T-equivariant cohomology classes of

attracting cell closures, see Corollary 5.19. In Section 5.6 and in Chapter 6, we then compute

several stable basis elements using this algorithm.

A convenient consequence of the uniqueness property of stable envelopes is that they are

compatible with Hanany–Witten isomorphisms, i.e. if Φ: C(D)
∼−→ C(D̃) is a Hanany–Witten

isomorphism then the induced isomorphism H∗
T(C(D̃))

∼−→ H∗
T(C(D)) maps the stable basis

elements of C(D̃) to the stable basis elements of C(D), see Proposition 5.13.

In Chapter 7, we study properties of stable basis elements with respect to the virtual

intersection pairing on H∗
T(C(D)). As bow varieties are quasi-projective varieties, their torus

equivariant cohomologoy is endowed with a virtual intersection pairing which mimics the

Atiya–Bott–Berline–Vergne integration formula for projective varieties:

(., .)vir : H∗
T(C(D))×H∗

T(C(D))
∼−−→ S−1H∗

T(pt), (α, β)vir =
∑

p∈C(D)T

ι∗p(α · β)

eT(TpC(D))
.

Here, eT(TpC(D)) is the T-equivariant Euler class of the tangent space TpC(D) and S is the

multiplicative set generated by all tangent weights of torus fixed points of C(D).

An important result is the following Polynomiality Theorem (Theorem 7.6):

Theorem B (Polynomiality). The virtual intersection pairings of the form

(α · Stabσ(p), Stabσ−1(q))vir, p, q ∈ C(D)T, α ∈ H∗
T(C(D))

are all contained in the non-localized equivariant cohomology ring H∗
T(pt).

In other words, this theorem states that (α·Stabσ(p),Stabσ−1(q))vir is always a polynomial

in their equivariant parameters which motivates the name Polynomiality Theorem. Its proof

involves the properness statement from Theorem 4.24.
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We finish Chapter 7 by giving a self-contained reproof of the Orthogonality Theorem

(Theorem 7.8) from [MO19, Theorem 4.4.1]. This theorem states that stable basis elements

corresponding to inverse cocharacters are orthogonal with respect to the virtual intersection

pairing:

Theorem C (Orthogonality). For all p, q ∈ C(D)T, we have

(Stabσ(p), Stabσ−1(q))vir =

1 if p = q,

0 if p ̸= q.

This orthogonality property is again analogous to the orthogonality of opposite Schubert

classes in (equivariant) Schubert calculus, see e.g. [Ful97].

Part 3: equivariant multiplicities of stable basis elements

By the Localization Theorem, the equivariant multiplicities of T-equivariant cohomology

classes in H∗
T(C(D)) at the T-fixed points carry important information. We therefore deal in

the third part of this thesis with the central question:

How can we compute equivariant multiplicities of stable basis elements of bow varieties?

The compatibility of stable envelopes with Hanany–Witten isomorphisms yields that we can

restrict our attention to separated brane diagrams, these are brane diagrams of the shape

// . . . // \\ . . . \\. As explained in Section 2.4, the quiver representations defining points

of bow varieties corresponding to separated brane diagrams satisfy useful nilpotency and

surjectivity properties. These properties simplify the description of the points on these bow

varieties and also calculations in the equivariant cohomology rings.

In Chapter 8, we study local moves on separated brane diagrams of the form

d d d d d d

We refer to the left move above as red extension move, whereas the right move is called blue

extension move. The goal of Chapter 8 is to compare the stable basis elements of the bow

varieties corresponding to red and blue extension moves respectively. This should be com-

pared with [BR23, Section 5.10], where similar questions were considered in the framework

of elliptic cohomology.

If D′ is obtained from a brane diagram D by a red extension move, we show in Proposi-

tion 8.3 that the bow varieties C(D) and C(D′) are torus equivariantly isomorphic and hence

the stable basis elements of C(D) and C(D′) coincide.

On the other hand, in the case where D′ is obtained from D by a blue extension move,

the bow varieties C(D) and C(D′) are in general not isomorphic, see Lemma 8.13. However,

we prove in Theorem 8.15 that there is still a closed embedding C(D) ↪→ C(D′). Using this

embedding we then prove in Theorem 8.38 the following crucial result:

Theorem D. The equivariant multiplicities of stable basis elements of C(D) and C(D′) co-

incide up to multiplication by a uniform constant factor.
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For the proof of this theorem, we introduce a certain comparison cocharacter of the torus

T′ acting on C(D′). The corresponding C∗-fixed locus X0 is contained in the subvariety C(D).

The proof is then based on a comparison of the attracting cells of X0, C(D) and C(D′).

Chapter 9 connects back to the classical setting and deals with relations between stable

basis elements of bow varieties and stable basis elements of cotangent bundles of partial flag

varieties. We begin with recalling the localization formula from [Su17] which expresses equiv-

ariant multiplicities of stable basis elements of cotangent bundles of partial flag varieties via

combinatorics of symmetric groups. In Proposition 9.13, we give an equivalent reformulation

of this formula in terms of string diagrams which gives an illustrative approach to and a

diagrammatic version of this formula.

Hereafter, we study a bijection between the T-fixed points of bow varieties and certain

double cosets of symmetric groups with respect to Young subgroups which we call fully sepa-

rated. As we will show in Section 9.5, fully separated double cosets satisfy strong uniqueness

properties which distinguish them from usual double cosets. One important result that will

turn out to be crucial in the proof of the Chevalley–Monk formula for bow varieties in the

fourth part is Theorem 9.35 which states the following:

Theorem E. Let λ, µ be partitions of n and Sλ, Sµ ⊂ Sn be the corresponding Young

subgroups. Let w ∈ Sn such that SλwSµ is fully separated. Given u, u′ ∈ Sλ and v, v′ ∈ Sµ
with uwv = u′wv′, then we have u = u′ and v = v′.

In particular, as we will discuss in Section 10.5, this theorem simplifies computations in

the context of the diagrammatic localization formula from Proposition 9.13.

We finish Chapter 9, by combining this symmetric group calculus for bow varieties with

the D5 Resolution Theorem of Botta and Rimányi [BR23, Theorem 6.13]. In this way, we

derive in Theorem 9.44 a formula which determines the equivariant multiplicities ι∗q(Stabσ(p))

of stable basis elements of bow varieties in terms of equivariant multiplicities ι∗q̃(Stabσ̃(p̃)) of

stable basis elements of cotangent bundles of partial flag varieties:

Theorem F. Given a bow variety C(D), then there exists a partial flag variety F together

with an inclusion of torus fixed points

C(D)T ↪−−→ (T ∗F )T×C∗
, p 7→ p̃

such that we have for all p, q ∈ C(D)T:

PD · ι∗q(Stabσ(p)) = Ψ(ι∗q̃(Stabσ̃(p̃))),

for some constant factor PD ∈ H∗
T(pt) depending only on D. Here, σ̃ is a cocharacter of T

depending on σ and Ψ: H∗
T×C∗(pt)→ H∗

T(pt) is a substitution homomorphism.

As an application of this result and Proposition 9.13, we prove diagrammatic approxima-

tion formulas of stable basis elements of bow varieties in Proposition 9.50. These formulas

allow to diagrammatically compute equivariant multiplicities modulo powers of the parameter

h.
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Part 4: Chevalley–Monk formula for bow varieties

The last part of this thesis is devoted to the Chevalley–Monk formula for bow varieties

(Theorem A). The proof of this formula combines several different results that appeared

in the previous chapters. First, we use the Orthogonality Theorem C to deduce that the

coefficients appearing in the stable envelope basis expansion of the products cT1 (ξX) ·Stabσ(p)

can be determined via virtual intersection pairings of the form

(cT1 (ξX) · Stabσ(p),Stabσ−1(q))vir, p, q ∈ C(D)T. (1.5)

Then, using a degree argument, we deduce from the Polynomiality Theorem B that it suffices

to compute these virtual intersection pairings modulo h2, where h is the equivariant parameter

corresponding to the torus action which scales the symplectic form on C(D). Via Theorem D

and Theorem F, we then prove in Theorem 10.12 the following divisibility result:

Theorem G. Let p, q ∈ C(D)T with corresponding matrices Mp and Mq. Suppose p ̸= q and

that Mq is not obtained from Mp via a simple move. Then, ι∗q(Stabσ(p)) is divisible by h2.

This result gives that (1.5) vanishes if p ̸= q and Mq is not obtained from Mp via a simple

move. The remaining cases, i.e. p = q or Mq is obtained from Mp via a simple move, are then

covered in Theorem 10.15 which states the following:

Theorem H. For all p, q ∈ C(D)T, we have

(cT1 (ξX) · Stabσ(p), Stabσ−1(q))vir =


ι∗(cT1 (ξX)) if p = q,

sgn(Mp,Mq)h if Mq ∈ SMMp,X ,

0 otherwise.

The main tools in the proof of Theorem H are the uniqueness properties of fully separated

double cosets from Theorem E and the approximation formulas resulting from Theorem F.

Parts of this thesis are already submitted and available as preprint versions:

1. [Weh23], ArXiv number: 2310.11235,

2. [SW23], ArXiv number: 2312.03144.

Conventions

If not stated otherwise, all varieties and vector spaces in this thesis are over C. Varieties are

not necessarily irreducible. If y ∈ Y is a smooth point of a variety Y , we denote by TyY

the tangent space of Y at y. If V is a finite dimensional C∗-representation, we denote the

corresponding weight space decomposition as

V =
⊕
a∈Z

Va, Va = {v ∈ V | t.v = tav for all t ∈ C∗}.

We denote the weight spaces of positive, negative, non-negative and non-positive weights as

V + =
⊕
a>0

Va, V − =
⊕
a<0

Va, V ≥0 =
⊕
a≥0

Va, V ≤0 =
⊕
a≤0

Va.
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1.3. Structure of the thesis

We also denote by V 0 the subspace of T -fixed vectors of V . If T = (C∗)r is a torus and

χ1, χ2 : T → C∗ are characters of T , we denote their product

T −−→ C∗, t 7→ χ1(t)χ2(t)

with the sum notation χ1 + χ2.
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Chapter 2

Geometry of bow varieties

In this chapter, we give a self-contained introduction to bow varieties and their geometric

properties based in particularly on [NT17]. We begin with recalling fundamental ingredients

of the theory of geometric invariant theory (short GIT) with special emphasis on the char-

acterizations of stability and semistability conditions. Then, we construct bow varieties as

GIT quotients of certain moduli spaces of quiver representations using hamiltonian reduction

following [NT17, Section 2]. To describe the underlying combinatorics, we use the language

of brane diagrams and brane combinatorics from [RS20, Section 2].

The construction of bow varieties implies that these varieties are equipped with many

desirable features: They are smooth, quasi-projective and admit a holomorphic symplectic

form. They come with a torus action which scales this symplectic form and moreover they

also come family of torus equivariant tautological vector bundles.

The combinatorics of brane diagrams is in particular used to describe Hanany–Witten

transitions between different brane diagrams. These transition moves provide isomorphisms

between related bow varieties of these brane diagrams.

We close this chapter with a detailed exposition of the realization of cotangent bundles

of partial flag varieties as bow varieties which form an important family of examples of bow

varieties.

2.1 Reminders on GIT quotients

In this section, we recall the definition of GIT quotients and some of their most important

geometric properties. For more details on this subject, see [MFK94] as well as the expository

works [Muk03] and [New09]. For the convenience of the reader, we give proofs of many of

the presented results.

We begin with fixing some notation: Let X be an affine variety with coordinate ringO(X).

Let G be a reductive group acting on X with action map G × X → X, (g, x) 7→ g.x. We

denote the algebra of G-invariants of O(X) by O(X)G and let X//G = Spec(O(X)G) be the

corresponding categorical quotient. Recall that due to a theorem of Hilbert (see e.g. [Muk03,

Theorem 4.51]), X//G is an affine variety.
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Definition and basic properties

GIT quotients are defined as projective spectra of algebras of semi-invariants. These are

defined as follows: For a rational character χ : G → C∗, the N0-graded algebra of semi-

invariants of O(X) is defined as

O(X)χ :=
⊕
n≥0

O(X)χn ,

where O(X)χn = {f ∈ O(X) | f(g.x) = χ(g)nf(x), for all x ∈ X, g ∈ G}. Note that the

degree 0 piece of O(X)χ is given as O(X)χ0 = O(X)G.

The algebra O(X)χ can also be interpreted as algebra of invariants on the variety X̂ :=

X × C. For this, we extend the G-action to X̂ via

g.(x, z) = (g.x, χ−1(g)z). (2.1)

Then, there is an isomorphism of C-algebras

O(X)χ
∼−−→ O(X̂)G, f 7→ f̂ , (2.2)

where f̂(x, z) = f(x)zn, for all (x, z) ∈ X̂. As O(X̂)G is a finitely generated C-algebra, so is

O(X)χ.

Definition 2.1. The GIT quotient X//χG is defined as the scheme

X//χG := Proj(O(X)χ).

Since O(X)χ is a reduced algebra, we conclude that X//χG is also a reduced scheme.

Moreover, the construction of X//χG as projective spectrum yields the following:

Proposition 2.2. The following holds:

(i) The scheme X//χG is a quasi-projective variety.

(ii) The morphism π : X//χG → X//G induced by the inclusion O(X)G ↪→ O(X)χ is pro-

jective.

Proof. Let a1, . . . , ar be homogeneous generators of O(X)χ over O(X)G, where we denote

the degree of ai by |ai|. Let B := C[x1, . . . , xr] be the graded polynomial algebra, where xi

is homogeneous of degree |ai|. The algebra homomorphism B → O(X)χ given by xi 7→ ai

induces a closed immersion

X//χG ↪−−→ X//G× Proj(B).

By e.g. [BR86, Theorem 4.B7], the weighted projective space Proj(B) admits a closed im-

mersion Proj(B) ↪→ PN , for some N ≫ 0. Thus, we obtain a closed immersion

ι : X//χG ↪−−→ X//G× PN .

Thus, X//χG is a quasi-projective variety. Let pr : X//G × PN → X//G be the projection to

the first factor. Then, pr ◦ ι = π which proves that the morphism π is projective.
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Stable and semistable points

Next, we recall the notion of χ-(semi)stable points of X and how they characterize the

geometric points of the GIT quotient X//χG from [MFK94] and in particular in the version

of [Kin94].

Definition 2.3. Let x ∈ X.

(i) We call x χ-semistable if there exist n ≥ 1 and f ∈ O(X)χn such that x ∈ D(f), where

D(f) = {x ∈ X | f(x) ̸= 0}.

(ii) We call x χ-stable if there exist n ≥ 1 and f ∈ O(X)χn such that

(a) x ∈ D(f),

(b) the action G×D(f)→ D(f) is a closed morphism and

(c) the isotropy group Gx is finite.

We write Xss resp. Xs for the subset of χ-semistable resp. χ-stable points of X. By

construction, Xss is an open subset of X. By the upper-semicontinuity of fiber dimensions,

see e.g. [Mum88, Corollary I.8.3], the sets

{x ∈ X | dim(Gx) ≤ n}, for n ≥ 0

are open in X. In particular, the subset of all points in X with 0-dimensional isotropy group

is open in X. Thus, we conclude that Xs is also an open subset of X.

There are several equivalent definitions for χ-semistability resp. χ-stability. For instance,

by [MFK94, Amplification 1.11 and Lemma 0.3], the χ-stability condition can be reformulated

as follows:

Lemma 2.4. For a χ-semistable point x ∈ Xss the following are equivalent:

(i) x is χ-stable,

(ii) the isotropy group Gx is finite and the orbit G.x is closed in Xss,

(iii) the orbit morphism ax : G→ Xss, g 7→ g.x is proper.

In addition, King introduced the following topological criteria for χ-(semi)stability [Kin94,

Lemma 2.2]:

Proposition 2.5 (King’s stability). As above, let X̂ = X ×C with the G-action from (2.1).

Let x ∈ X and z ∈ C \ {0}.

(i) The point x is χ-semistable if and only if the orbit closure G.(x, z) does not intersect

X × {0}.

(ii) The point x ∈ X is χ-stable if and only if the orbit G.(x, z) is closed in X̂ and the

isotropy group G(x,z) is finite for all z ̸= 0.
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2. Geometry of bow varieties

Proof. For (i), suppose that x is χ-semistable. Thus, there exist n ≥ 1 and f ∈ O(X)χn such

that f(x) ̸= 0. Let f̂ ∈ O(X̂)G be the G-invariant regular function on X̂ associated to f from

(2.2). Then, f̂ vanishes on X × {0} and equals znf(x) on G.(x, z). Thus, G.(x, z) does not

intersect X × {0}. Conversely, if G.(x, z) and X × {0} are disjoint then, as G is reductive,

there exists h ∈ O(X̂)G such that h vanishes on X × {0} and h equals 1 on G.(x, z). By

(2.2), h(y, w) =
∑

n≥0 hn(y)wn, for all (y, w) ∈ X̂, where hn ∈ O(X)χn , for all n ≥ 0. As h

vanishes on X × {0}, we have h0 = 0. Thus there exists m > 0 such that hm(x) ̸= 0 which

proves that x is χ-semistable. For (ii), we begin with the following:

Observation 2.6. Let x ∈ Xss, n ≥ 1 and f ∈ O(X)χn with x ∈ D(f). We set

Zf := {(y, w) ∈ X̂ | f̂(y, w) = f(x)zn}.

By definition, Zf is a G-invariant closed subvariety of X̂ containing (x, z). Let pr : Zf → X

be the projection to the first factor. Then, the image of pr is contained in D(f) and pr: Zf →
D(f) is a finite G-equivariant morphism. Thus, as properness is a property which is local

on target, we deduce that the orbit morphism ax : G→ Xss, g 7→ g.x is proper if and only if

a(x,z) : G→ X̂, g 7→ g.(x, z) is proper.

Now, assume that x is χ-stable. Then, by Lemma 2.4.(iii), ax is proper. Hence, by

Observation 2.6, also a(x,z) is proper. Therefore, the orbit G.(x, z) is closed in X̂. By

definition, the stabilizerG(x,z) equals the preimage a−1
(x,z)(x, z). As a(x,z) is a proper morphism,

we conclude that G(x,z) is proper over C. Since G is affine and G(x,z) is a closed subvariety of

G, we conclude that also G(x,z) is affine. Hence, G(x,z) must be finite. Conversely, assume that

G.(x, z) is closed in X̂ and the isotropy group G(x,z) is finite. Since X×{0} does not intersect

G.(x, z), we know by (i) that x is χ-semistable. Let f , Zf and pr be as in Observation 2.6.

Since pr(G.(x, z)) = G.x and pr is finite, we know that dim(G.(x, z)) = dim(G.x) which gives

dim(G(x,z)) = dim(Gx). Thus, Gx is finite. Moreover, the finiteness of pr implies that G.x is

closed in D(f). As this is true for all n ≥ 1 and f ∈ O(X)χn with x ∈ D(f), we conclude

that G.x is closed in Xss. Hence, by Lemma 2.4.(ii), this proves that x is χ-stable.

Via Observation 2.6 and Lemma 2.4.(iii) we immediately obtain a further equivalent

definition of χ-stability:

Corollary 2.7. With the assumptions of Proposition 2.5, a χ-semistable point x ∈ Xss is

χ-stable if and only if the orbit morphism a(x,z) : G→ X̂ is proper.

After this discussion about equivalent definitions of χ-(semi)stability, we now come to the

geometric points of the GIT quotient X//χG. They are characterized by the χ-(semi)stable

points of X as follows: For a semi-invariant function f ∈ O(X)χn , let D+(f) ⊂ X//χG be the

corresponding principal open subset. That is,

D+(f) = Spec(Oχ,(f)), where Oχ,(f) =
{ a

f r
∣∣ r ≥ 0, a ∈ Oχrn

}
.

By construction, we have an obvious identification Oχ,(f) ∼= O(D(f))G and hence an isomor-

phism of schemes D(f)//G ∼= D+(f). The canonical quotient morphisms D(f) → D+(f)

glue to a morphism F : Xss → X//χG. Then, we have the following theorem, see [MFK94,

Theorem 1.10]:
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Theorem 2.8 (GIT-Theorem). The following holds:

(i) The morphism F : Xss → X//χG is a categorical quotient and surjective.

(ii) Given x, y ∈ Xss, we have F (x) = F (y) if and only if the orbit closures G.x and G.y

in X intersect non-trivially in Xss, i.e. G.x ∩G.y ∩Xss ̸= ∅.

(iii) Let U = F (Xs). Then, U ⊂ X//χG is an open subvariety and the morphism of varieties

F|Xs : Xs → U is a geometric quotient. In particular, F induces a bijection

{G-orbits in Xs} {Points of U}.1:1

Mumford’s Numerical Criterion

Mumford introduced a numerical criterion for χ-(semi)stability [MFK94, Chapter 2] which

proved to be very practical in explicit computations. Our formulation of this criterion is

following [Kin94, Proposition 2.6].

Recall that a one-parameter subgroup of G is an algebraic cocharacter λ : C∗ → G. Let

⟨λ, χ⟩ be the unique integer such that χ(λ(t)) = t⟨λ,χ⟩, for all t ∈ C∗. For a given point

x ∈ X, we say that the limit limt→0 λ(t).x exists in X if and only if the morphism C∗ → X,

t 7→ λ(t).x extends to a morphism C→ X.

Theorem 2.9 (Mumford’s Numerical Criterion). A point x ∈ X is χ-semistable (resp. χ-

stable) if and only if for all non-trivial one-parameter subgroups λ such that limt→0 λ(t).x

exists in X, we have ⟨λ, χ⟩ ≥ 0 (resp. ⟨λ, χ⟩ > 0).

Mumford’s Numerical Criterion can be proved using the following three auxiliary state-

ments. The first one states that one-parameter subgroups detect points on the boundary of

orbits, see [Kem78, Theorem 1.4]:

Lemma 2.10. Let x ∈ X and Y ⊂ X be a closed and G-invariant subvariety such that

Y ∩ G.x ̸= ∅. Then, there exist y ∈ Y and a one-parameter subgroup λ of G such that

limt→0 λ(t).x = y.

The second auxiliary statement states that properness orbit morphisms can be detected

via the non-trivial one-parameter subgroups of G, see [MFK94, Step (i) in proof of Theo-

rem 2.1]:

Lemma 2.11. Suppose G acts linearly on Cn and let x ∈ Cn\{0}. Then, the orbit morphism

G→ Cn, g 7→ g.x is not proper if and only if for some non-trivial one-parameter subgroup λ

of G, the limit limt→0 λ(t).x exists in Cn.

Proof of Theorem 2.9. Suppose x is χ-semistable and λ is a one-parameter subgroup of G

such that limt→0 λ(t).x exists in X. Let x0 ∈ X be this limit and fix some z ∈ C with

z ̸= 0. If ⟨λ, χ⟩ < 0 then limt→0 λ(t).(x, z) = (x0, 0) and hence G.(x, z) intersects X × {0}
non-trivially. By Proposition 2.5.(i), this contradicts the χ-semistability of x. Thus, we have

⟨λ, χ⟩ ≥ 0. Conversely, if x is not χ-semistable then G.(x, z) intersects X × {0}. Hence, by

Lemma 2.10, there exists a one-parameter subgroup λ of G such that limt→0 λ(t).(x, z) is
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2. Geometry of bow varieties

contained in X ×{0}. This is equivalent to the conditions that limt→0 λ(t).x exists in X and

⟨λ, χ⟩ < 0. Now, we prove the statement about stability. To apply Lemma 2.11 recall from

e.g. [Bri18, Proposition 2.2.5] that there exists a G-equivariant closed immersion X ↪→ W

into a finite-dimensional G-representation W . By Corollary 2.7, a χ-semistable point x is

not χ-stable if and only if the orbit morphism ax,z : G → X̂, g 7→ g.(x, z) is not proper. By

Lemma 2.11, this is equivalent to the condition that there exists a non-trivial one-parameter

subgroup λ of G such that limt→0 λ(t).(x, z) exists in X̂. This is equivalent to limt→0 λ(t).x

exists in X and ⟨λ, χ⟩ ≥ 0 which completes the proof.

In the following example, we apply Mumford’s Numerical Criterion to explicitly determine

χ-(semi)stable points.

Example 2.12. Let X = C3 where we denote the canonical basis vectors by e1, e2, e3. We

equip X with the G = (C∗ × C∗)-action

(t1, t2).(a1e1 + a2e2 + a3e3) = t21a1e1 + t1t2a2e2 + t22a3e3.

Let χ : G→ C∗, (t1, t2) 7→ t1t2. The non-trivial one-parameter subgroups of G are

λb1,b2 : C∗ −−→ G, t 7→ tb1tb2 , (b1, b2) ∈ Z2 \ {(0, 0)}.

The following table records for which x ∈ X and parameters b1, b2 the limit limt→0 λb1,b2(t).x

exists in X:

Coordinates of

x = a1e1 + a2e2 + a3e3

Parameters b1, b2 such that the limit

limt→0 λb1,b2(t).x exists in X

a1, a3 ̸= 0 b1, b2 ≥ 0

a1 ̸= 0, a3 = 0 b1 ≥ 0, b1 + b2 ≥ 0

a3 ̸= 0, a1 = 0 b2 ≥ 0, b1 + b2 ≥ 0

a1, a3 = 0, a2 ̸= 0 b1 + b2 ≥ 0

a1 = a2 = a3 = 0 b1, b2 arbitrary

From this, we deduce that if limt→0 λb1,b2(t).x exists in X then ⟨λb1,b2 , χ⟩ ≥ 0 if and only

if x ̸= 0. Thus, Mumford’s Numerical Criterion implies that the χ-semistable locus of X

equals X \ {0}. Likewise, the above table gives that if limt→0 λb1,b2(t).x exists in X then

⟨λb1,b2 , χ⟩ > 0 if and only if x is of the form x = a1e1 + a2e2 + a3e3 with a1, a3 ̸=
0. Thus, by Mumford’s Numerical Criterion, the χ-stable locus of X equals {x ∈ X |
x = a1e1 + a2e2 + a3e3 with a1, a3 ̸= 0}.

Compatibility with algebraic group actions

Suppose X is endowed with a further action of an affine algebraic group H that commutes

with the G-action. As the pullback O(X) → O(H) ⊗ O(X) restricts to a morphism on the

G-invariants O(X)G → O(H) ⊗ O(X)G, we obtain an H-action on the categorical quotient

X//G. This H-action on X//G is the unique H-action such that the quotient morphism

X → X//G is H-equivariant.

We now use the characterization of the GIT quotient X//χG from Theorem 2.8 to show

that also X//χG inherits an H-action:
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2.1. Reminders on GIT quotients

Proposition 2.13. There exists a unique H-action on X//χG such that the quotient mor-

phism F : Xss → X//χG from Theorem 2.8 is H-equivariant. Moreover, the projection mor-

phism π : X//χG→ X//G is H-equivariant.

Proof. Let a : H ×X → X be the action morphism. As the G- and H-action commute, we

have f ◦ h ∈ O(X)χn , for all semi-invariants f ∈ O(X)χn and h ∈ H. Thus, Xss is invariant

under the H-action. For f ∈ O(X)χn , we denote by af : H ×D(f) → Xss the restriction of

a to H × D(f). Since the composition F ◦ af : H × D(f) → Xss → X//χG is G-invariant,

there exists a unique a morphism a′f : H×D(f)//G→ X//χG such that the following diagram

commutes:

H ×D(f) H ×D(f)//G

Xss X//χG

af a′f

F

(2.3)

Given a further semi-invariant function f ′ ∈ O(X)χn′ , we have commutative diagrams:

H ×D(f) H ×D(f ′)

H ×D(ff ′)

Xss

af af ′

aff ′

H ×D(f)//G H ×D(f ′)//G

H ×D(ff ′)//G

X//χG

a′f a′f ′
a′ff ′

Note that the commutativity of the left diagram implies the commutativity of the right

diagram. We conclude that the morphisms a′f glue to a morphism a′ : H ×X//χG→ X//χG.

The morphism a′ defines an H-action on X//χG since identity and associativity conditions

for a′ follow from the respective conditions for a. By (2.3), the quotient morphism F is

H-equivariant. Since F is surjective, a′ is the unique H-action on X//χG such that F is

H-equivariant. To see that π is H-equivariant, note that for all h ∈ H and f ∈ O(X)χn , the

following diagram commutes:

O(X)G O(D(f))G

O(X)G O(D(f ◦ h))G

h∗

π∗

h∗

π∗

Therefore, π is compatible with the action of h which implies that π is H-equivariant.

Compatibility with Poisson structures

We now restrict our attention to GIT quotients associated to symplectic varieties and consider

the hamiltonian reduction mechanism from symplectic geometry in the framework of algebraic

geometry. In particular, we show that GIT quotients of vanishing loci of moment maps always

inherit a Poisson bracket. For more details on symplectic forms in algebraic geometry, see

e.g. [CG97, Chapter 1] and [Kir16, Chapter 9].
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2. Geometry of bow varieties

Let Y be a smooth and affine variety with algebraic G-action. We further assume that Y

admits an algebraic and G-invariant symplectic form ω. Let f be a regular function on U .

We denote by Xf the corresponding hamiltonian vector field of f , i.e. Xf is the unique vector

field on Y such that ω(·, Xf ) = df . The G-invariant symplectic form ω induces a G-invariant

Poisson bracket on {., .} on Y via

{f, g} = ω(Xg, Xf ), f, g ∈ O(Y ).

Let g be the Lie algebra of G and g∗ the dual Lie algebra of g. Then, G-acts on g via the

adjoint action and on g∗ via the coadjoint action. Let

⟨., .⟩ : g∗ × g −−→ C, (f, g) 7→ f(g)

be the evaluation pairing. A G-equivariant morphism of varieties m : Y → g∗ is called a

moment map for the G-action on Y if

dHg = ω(g⃗, ·), for all g ∈ g. (2.4)

Here, Hg := ⟨m(·), g⟩ and g⃗ is the vector field generated by g. The moment map condi-

tion (2.4) is equivalent to

{Hg, f} = −df(g⃗), for all g ∈ g, f ∈ O(Y ). (2.5)

In the following, we show that GIT quotients of X := m−1(0) always inherit a Poisson

bracket from Y . First, we consider the categorical quotient

X//G = Spec((O(Y )/I)G),

where I is the ideal generated by all Hg, for g ∈ g. For f ∈ O(Y ), we denote by [f ] its residue

class in O(Y )/I.

Proposition 2.14. There exists a unique Poisson bracket {., .}′ on X//G such that

{[f ], [f ′]}′ = [{f, f ′}], for all [f ], [f ′] ∈ (O(Y )/I)G. (2.6)

We begin with the following auxiliary statement:

Lemma 2.15. Let f ∈ O(Y ) such that [f ] ∈ (O(Y )/I)G. Then, we have {f, I} ⊂ I.

Proof. It suffices to show df(g⃗) = {f,Hg} ∈ I, for all g ∈ g. Recall from e.g. [Bri18, Proposi-

tion 2.2.5] that we can choose a G-equivariant embedding Y ↪→ W into a finite dimensional

G-representation W . Hence, there exists a finite dimensional G-subrepresentation V ⊂ O(Y )

containing f and df(g⃗). We equip V with the usual euclidean topology. For t ∈ C∗, set

Ft := t−1(f − f ◦ exp(tg)). Then, Ft ∈ V and Ft converges pointwise to df(g⃗) for t → 0.

Hence, we also have limt→0 Ft = df(g⃗) in the equclidean topology on V . Note that I ∩ V
is a subvector space of V and hence I ∩ V is closed in V . Since [f ] ∈ (O(Y )/I)G, we have

Ft ∈ V ∩ I, for all t. Thus, also df(g⃗) ∈ V ∩ I which completes the proof.
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Proof of Proposition 2.14. By Lemma 2.15, {., .}′ is a well-defined regular function on X.

For all g ∈ G and [f ], [f ′] ∈ (O(Y )/I)G, we have

g.{[f ], [f ′]}′ = g.{f, f ′} = {g.f, g.f ′} = {f, f ′}+ {f, h′}+ {h, f ′}+ {h, h′},

for some h, h′ ∈ I. Thus, Lemma 2.15 implies that {[f ], [f ′]}′ is G-invariant and hence

{., .}′ indeed takes values in (O(Y )/I)G. The Poisson bracket conditions for {., .}′ follow

immediately from the Poisson bracket conditions for {., .}.

Next, we generalize Proposition 2.14 to GIT quotients. For this, note that if χ is a

rational character of G, f ∈ O(X)χn a semi-invariant function and f̃ ∈ O(Y ) a lift of f then

Proposition 2.14 gives that there is a unique Poisson bracket {., .}′ on D(f)//G such that

{[h], [h′]}′ = [{h, h′}], for all [h], [h′] ∈ (O(D(f̃)/I)G. (2.7)

Proposition 2.16. The GIT quotient X//χG admits a unique Poisson bracket {., .}′ such that

for all semi-invariant functions f ∈ O(X)χn, the restriction of {., .}′ to D(f)//G coincides

with (2.7).

Proof. Given semi-invariants f ∈ O(X)χn and f ′ ∈ O(X)χn′ then, by (2.7), the restrictions of

the Poisson structure from D(f)//G and D(f ′)//G to D(ff ′)//G coincide. Hence, the locally

defined Poisson brackets from (2.7) glue to a global Poisson bracket on X//χG.

We close this section with the following algebro-geometric version of the Marsden–Wein-

stein Theorem which gives sufficient conditions under which the Poisson bracket on X//χG is

non-degenerated. For more details on the Marsden–Weinstein in the context of symplectic

geometry, see e.g. [AM78, Chapter 4].

Theorem 2.17 (Marsden–Weinstein Theorem). Suppose that Xss is a smooth variety of

dimension dim(Y )− dim(G) and that the quotient morphism π : Xss → X//χG is a principal

G-bundle (in the Zariski topology). Then, X//χG admits a unique algebraic symplectic form

ω′ such that

π∗ω′ = ι∗ω, (2.8)

where ι : Xss ↪→ Y is the inclusion. The Poisson bracket corresponding to ω′ coincides with

the Poisson bracket {., .}′ from Proposition 2.16.

Proof. Since π : Xss → X//χG is a principal G-bundle, we have a short exact sequence of

G-equivariant vector bundles

0→ Xss × g
α−→ TXss dπ−−→ π∗T (X//χG)→ 0.

Here, α maps (x, g) to (x, g⃗x). By construction, im(αx) = TxG.x, for all x ∈ Xss. Let
ωTxG.x denote the orthogonal complement of TxG.x in TxY with respect to ωx. By (2.4),

TxX
ss = ker(dxm) ⊂ ωTxG.x. Thus, ι∗ω induces an algebraic bilinear form ξ on π∗T (X//χG).

Since ω is G-invariant, there exists an algebraic bilinear form ω′ on T (X//χG) such that
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π∗ω′ = ξ. Thus, ω′ satisfies (2.8). It is left to show that ω′ is indeed a symplectic form. By

construction, for x ∈ Xss, the bilinear form ω′
π(x) on Tπ(x)(X//χG) ∼= TxX

ss/TxG.x is given as

ω′
π(x)([v], [w]) = ω(v, w), v, w ∈ TxXss. (2.9)

Since for all x ∈ Xss, we have TxX
ss ⊂ ωTxG.x and both vector spaces are of dimension

dim(Y )− dim(G), we have TxX
ss = ωTxG.x. This implies ωTxX

ss = TxG.x. Therefore, (2.9)

gives that ω′ is non-degenerated. So it is left to show that ω′ is closed. By naturality of the

exterior derivative, we have the following equality in Ω3(Xss):

π∗dω′ = dπ∗ω′ = dι∗ω = ι∗ω = 0. (2.10)

Here, Ωi(Xss) denotes the sheaf of i-forms on Xss. Since π is a principal G-bundle, we

conclude that π∗ : Ω3(X//χG)→ Ω3(Xss) is injective. Thus, (2.10) gives dω′ = 0. Therefore,

ω′ is an algebraic symplectic form on X//χG. Finally, (2.8) implies that the Poisson bracket

of ω′ coincides with the Poisson bracket {., .}′ from Proposition 2.16.

Remark. If for all x ∈ Xss the differential dxm : TxX → Tm(x)g
∗ is surjective then the

Regular Value Theorem implies that Xss is a smooth variety of dimension dim(Y )−dim(G).

In particular, with this assumption the dimension condition from Theorem 2.17 is always

satisfied.

2.2 Triangle parts

Triangle parts are symplectic varieties that are essential building blocks in the construction of

bow varieties. They emerged from the representation theory of chainsaw quivers, see [NT17]

and the references therein. In this section we recall the definition and fundamental properties

of triangle parts following [Tak16, Section 2] and [NT17, Sections 3 and 5].

Geometry of triangle parts

Fix finite dimensional vector spaces V1 and V2 and set m1 := dim(V1) and m2 := dim(V2).

Let G = GL(V1) × GL(V2) and g = End(V1) ⊕ End(V2) be the corresponding Lie algebra,

where the Lie bracket is given by the commutator bracket [A,B] = AB − BA on End(V1),

End(V2). As usual, G acts on g via base change: (g1, g2)(B1, B2) = (g1B1g
−1
1 , g2B2g

−1
2 ).

We define the vector space

NV1,V2 := Hom(V2, V1)⊕ End(V1)⊕ End(V2)⊕Hom(C, V1)⊕Hom(V2,C). (2.11)

The elements of NV1,V2 are tuples (A,B1, B2, a, b) of linear maps as illustrated in the diagram:

V1 V2

C

B1 B2

A

ba
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Then, G acts on NV1,V2 via

(g1, g2).(A,B1, B2, a, b) = (g1Ag
−1
2 , g1B1g

−1
1 , g2B2g

−1
2 , g1a, bg

−1
2 ).

This G-action induces also an action of the Lie algebra g on NV1,V2 :

(γ1, γ2).(A,B1, B2, a, b) = (γ1A−Aγ2, γ1B1 −B1γ1, γ2B2 −B2γ2, γ1a,−bγ2).

Definition 2.18. The triangle part tri(V1, V2) is defined as the θ-semistable locus of µ−1(0),

that is {x ∈ µ−1(0) | x is θ-semistable}, where

µ : NV1,V2 −−→ Hom(V2, V1), (A,B1, B2, a, b) 7→ B1A−AB2 + ab (2.12)

and

θ : G −−→ C∗, (g1, g2) 7→
det(g1)

det(g2)
.

Note that, by definition, tri(V1, V2) is a locally closed G-invariant subvariety of NV1,V2 .

We like to employ Mumford’s Numerical Criterion to characterize the θ-semistable points

x = (A,B1, B2, a, b) of µ−1(0). For this, we introduce the following subspace conditions,

see [Tak16, Section 2]:

(S1) If S ⊂ V2 is a subspace with B2(S) ⊂ S, A(S) = 0, b(S) = 0 then S = 0.

(S2) If T ⊂ V1 is a subspace with B1(T ) ⊂ T , im(A) + im(a) ⊂ T then T = V1.

Property (S1) is a useful criterion to check vanishing of subspaces of V2 whereas (S2) is useful

for proving that subspaces of V1 actually coincide with V1. For instance, a direct application

of these conditions is the following non-degeneracy result:

Proposition 2.19. If x = (A,B1, B2, a, b) ∈ µ−1(0) satisfies (S1) and (S2) then A has full

rank.

Proof. Choose bases (v1,i)i resp. (v2,j)j of V1 resp. V2 and view A, B1, B2, a, b as matrices

with respect to these bases. Let AT : V ∗
1 → V ∗

2 and aT : V ∗
1 → C be the transpose of A and

a. Note that if f ∈ V ∗
1 and v ∈ V2 such that f ∈ ker(AT ) and v ∈ ker(A) then, by (2.12), we

have

aT (f) · b(v) = f((B1A−AB2 + ab)(v)) = 0. (2.13)

Suppose that A has not full rank. Then, either ker(A) ⊂ ker(b) or ker(AT ) ⊂ ker(aT ) by

(2.13). If ker(A) ⊂ ker(b) then ker(A) satisfies (S1) and hence ker(A) = 0. If ker(AT ) ⊂
ker(aT ) then T = {w ∈ V1 | ker(AT )(w) = 0} satisfies (S2) and thus T = V1 and ker(AT ) = 0.

Therefore, A has full rank.

We further introduce the following triangle part conditions:

(T1) If S1 ⊂ V1, S2 ⊂ V2 are subspaces with B1(S1) ⊂ S1, B2(S2) ⊂ S2, A(S2) ⊂ S1 and

b(S2) = 0 then dim(S1) ≥ dim(S2).

(T2) If T1 ⊂ V1, T2 ⊂ V2 are subspaces with B1(T1) ⊂ T1, B2(T2) ⊂ T2, A(T2) ⊂ T1 and

im(a) ⊂ T1 then codim(T1) ≤ codim(T2).
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2. Geometry of bow varieties

Clearly, the condition (T1) implies (S1) by setting S1 = 0, S2 = S and the condition (T2)

implies (S2) by setting T1 = T , T2 = V2. The next proposition gives that these conditions

are actually equivalent to θ-semistability:

Proposition 2.20. For x = (A,B1, B2, a, b) ∈ µ−1(0), the following are equivalent:

(i) x is θ-semistable,

(ii) x satisfies (T1) and (T2),

(iii) x satisfies (S1) and (S2).

Proof. We begin with (ii) ⇒ (i). To apply Mumford’s Numerical Criterion, let λ : C∗ → G

be a one-parameter subgroup such that limt→0 λ(t).x exists in µ−1(0). The vector spaces V1

and V2 decompose into weight spaces

Vi =
⊕
n∈Z

V n
i , where V n

i = {v ∈ Vi | λ(t).v = tnv for all t ∈ C∗}, i = 1, 2,

with corresponding vector space filtrations

FmVi =
⊕
n≥m

V n
i , m ∈ Z, i = 1, 2.

Let n0 < 0, n1 > 0 such that Fn0Vi = Vi and Fn1Vi = 0 for i = 1, 2. By Mumford’s Numerical

Criterion, x is θ-semistable if and only if ⟨λ, θ⟩ ≥ 0 which is equivalent to

n1∑
j=n0

j dim(V j
1 ) ≥

n1∑
j=n0

j dim(V j
2 ). (2.14)

View C as filtered vector space with filtration FmC = 0 if m > 0 and FmC = C if m ≤ 0. Then

the existence of the limit limt→0 λ(t).x is equivalent to the condition that all the operators

A, B1, B2, a, b are morphisms of filtered vector spaces. Thus, we can apply (T1) to the

pairs (FmV1, FmV2) with m > 0 which yields
∑n1

j=m dim(V j
1 ) ≥

∑n1
j=m dim(V j

2 ). This directly

implies
n1∑
j=1

j dim(V j
1 ) ≥

n1∑
j=1

j dim(V j
2 ). (2.15)

Similarly, applying (T2) to the pairs (FmV1, FmV2) with m ≤ 0 gives
∑m−1

j=n0
dim(V j

1 ) ≤∑m−1
j=n0

dim(V j
2 ). Hence, we obtain

−1∑
j=n0

j dim(V j
1 ) ≥

−1∑
j=n0

j dim(V j
2 ). (2.16)

Combining (2.15) and (2.16) then gives (2.14). Thus, x is θ-semistable. To show (i)⇒ (iii),

suppose that x is θ-semistable and we are given S ⊂ V2 satisfying the conditions of (S1). Let

W ⊂ V2 be a vector space complement of S and define a one-parameter subgroup λ : C∗ → G

via

λ(t)|V1 = idV1 , λ(t)|S = t idS , λ(t)|W = idW .
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2.2. Triangle parts

Then, the limit limt→0 λ(t).x exists in µ−1(0) and hence Mumford’s Numerical Criterion

yields

0 ≤ ⟨λ, θ⟩ = −dim(S).

Thus, S = 0. Analogously, if T ⊂ V1 satisfies the conditions of (S2) then pick a vector space

complement V ⊂ V1 of T and define a one-parameter subgroup λ′ : C∗ → G via

λ′(t)|T = idT , λ′(t)|V = t−1 idV , λ′(t)|V2 = idV2 .

Again, limt→0 λ
′(t).x exists in µ−1(0) and Mumford’s Numerical Criterion gives

0 ≤ ⟨λ′, θ⟩ = −dim(V ).

Hence, V = 0 and T = V1. To prove (iii) ⇒ (ii), we first consider the case dim(V1) ≤
dim(V2). Suppose S1 ⊂ V1, S2 ⊂ V2 satisfy the conditions of (T1). From µ(x) = 0 follows

that B2 maps ker(A) ∩ ker(b) to ker(A). As S2 is contained in ker(b), this implies that

S2 ∩ ker(A) is B2-invariant. Hence, S2 ∩ ker(A) satisfies the conditions of (S1) which gives

S2 ∩ ker(A) = 0. Thus, A|S2
is injective and we conclude dim(S2) ≥ dim(S1) as A(S2) ⊂ S1

which gives (T1). The property (T2) follows immediately from the surjectivity of A which

follows from Proposition 2.19. It remains to consider the case dim(V1) > dim(V2). By

Proposition 2.19, A is injective which directly implies (T1). Assume T1 ⊂ V1, T2 ⊂ V2 satisfy

the conditions of (T2). Since µ(x) = 0, the operator B1 maps im(A) to im(A) + im(a). As

im(a) ⊂ T1 and T1 is B1-invariant, we conclude that T1 + im(A) is B1-invariant. Hence,

T1 + im(A) satisfies the conditions of (S2) which yields T1 + im(A) = V1. As A(T2) ⊂ T1 and

A is injective, we can choose a vector space decomposition T2 ⊕W ′ ⊕W ′′ = V2 such that

T2 ⊕W ′ = A−1(T1 ∩ im(A)). Since A(W ′′) ∩ T1 = 0, we deduce that

codim(T1) = dim(W ′′) ≤ dim(W ′) + dim(W ′′) = codim(T2)

which completes the proof.

A further direct application of the conditions (S1), (S2) is that tri(V1, V2) is smooth:

Proposition 2.21. The variety tri(V1, V2) is smooth and each irreducible component of

tri(V1, V2) is of dimension

dim(NV1,V2)− dim(Hom(V2, V1)) = m2
1 +m2

2 +m1 +m2.

For the proof, recall that for finite dimensional vector spaces V and W we have the perfect

trace pairing

⟨., .⟩ : Hom(V,W )×Hom(W,V ), ⟨A,B⟩ = tr(AB) = tr(BA).

Proof of Proposition 2.21. For x = (A,B1, B2, a, b) ∈ tri(V1, V2) ⊂ NV1,V2 , the differential of

µ at x is given as dxµ : NV1,V2 → Hom(V2, V1),

(A′, B′
1, B

′
2, a

′, b′) 7→ B2A
′ +B′

2A−A′B1 −AB′
1 + a′b+ ab′. (2.17)
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2. Geometry of bow varieties

Suppose f ∈ Hom(V1, V2) is orthogonal to the image of dxµ with respect to the trace pairing,

i.e. ⟨dxµ(x′), f⟩ = 0, for all x′ ∈ NV1,V2 . Thanks to (2.17), we have

Af = 0, fA = 0, B2f = B1f, bf = 0, fa = 0.

This gives that im(f) satisfies (S1) and hence f = 0. Thus, dxµ is surjective. By the

Regular Value Theorem, x is a smooth point of µ−1(0) and the dimension of the tangent

space Txµ
−1(0) equals dim(NV1,V2) − dim(Hom(V2, V1)). Hence, tri(V1, V2) is smooth and

each irreducible component is of dimension dim(NV1,V2)− dim(Hom(V2, V1)).

Affine structure

Using Proposition 2.19 and the stability conditions (S1) and (S2), Takayama constructed in

[Tak16, Proposition 2.20] certain normal forms for the points in tri(V1, V2) which we recall in

this subsection. In particular, these normal forms reveal that tri(V1, V2) is an affine variety.

In the case m1 = m2, these normal forms can be directly obtained from Proposition 2.19:

Proposition 2.22. For each m ∈ N0, there is an isomorphism of varieties

H : GL(m)×Matm,m(C)×Mat1,m(C)×Matm,1(C)
∼−−→ tri(Cm,Cm)

given by

H(u, h, I, J) = (u, u−1hu, h− IJ, I, Ju).

In particular, tri(Cm,Cm) is an affine variety.

Proof. By Proposition 2.19,

tri(Cm,Cm) = {x = (A,B1, B2, a, b) ∈ µ−1(0) | A ∈ GL(m)}.

Thus, we deduce that H is a well-defined bijective morphism. Since GL(m)×Matm,m(C) is

connected and tri(Cm,Cm) is smooth, Proposition 2.25 from the next subsection gives that

H is an isomorphism of varieties.

The crucial ingredient for the normal forms in the case m1 ̸= m2 is a result from [Tak16].

To formulate it let Mm,n ⊂ Matn,n(C) with m < n be the set of matrices of the form

η(h, g, f, e0, e) :=

h 0 g

f 0 e0

0 id e

 , (2.18)

where

h ∈ Matm,m(C), g ∈ Matm,1(C), f ∈ Mat1,m(C)

e0 ∈ Mat1,1(C), e ∈ Matn−m−1,1(C).

Note that Mm,n is an affine closed subvariety of Matn,n(C). The points of tri(V1, V2) can be

described via matrices η(h, g, f, e0, e) as follows, see [Tak16, Proposition 2.20]:

Lemma 2.23. Let x = (A,B1, B2, a, b) ∈ tri(V1, V2).
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2.2. Triangle parts

(i) If m1 < m2 then there exist bases

(v1,1, . . . , v1,m1), (v2,1, . . . , v2,m1 , v
′
2,1, . . . , v

′
2,m2−m1−1, v

′′
2)

of V1, V2 and η = η(h, g, f, e0, e) ∈ Mm1,m2 such that with respect to these bases we

have

(A,B1, B2, a, b) = ((id 0 0), h, η, g, (0 0 1)).

(ii) If m1 > m2 then there exist bases

(v1,1, . . . , v1,m2 , v
′
1, v

′′
1,1, . . . , v

′′
1,m1−m2−1), (v2,1, . . . , v2,m2)

of V1, V2 and η = η(h, g, f, e0, e) ∈ Mm2,m1 such that with respect to these bases we

have

(A,B1, B2, a, b) =
((

id
0
0

)
, η, h,

(
1
0
0

)
,−f

)
.

Using Lemma 2.23, we obtain the following normal forms for points of triangle parts:

Proposition 2.24 (Normal forms of triangle parts). The following holds:

(i) If m1 < m2 then there exists an isomorphism of varieties

H : GL(m2)×Mm1,m2

∼−−→ tri(Cm1 ,Cm2)

given by H(u, η(h, g, f, e0, e)) = ((id 0 0)u−1, h, uη(h, g, f, e0, e)u
−1, g, (0 0 1)u−1).

(ii) If m1 > m2 then there exists an isomorphism of varieties

H : GL(m1)×Mm2,m1

∼−−→ tri(Cm1 ,Cm2)

given by H(u, η(h, g, f, e0, e)) =
(
u
(

id
0
0

)
, uη(h, g, f, e0, e)u

−1, h, u
(

0
1
0

)
,−f

)
.

In particular, tri(Cm1 ,Cm2) is always an affine variety.

Proof. We only proof (i) as (ii) follows along similar lines. Given (u, η) ∈ GL(m1)×Mm2,m1 ,

an easy calculation shows that (A,B1, B2, a, b) = H(u, η) ∈ µ−1(0). As A is surjective,

H(u, η) satisfies (S2). By construction of H, we have

(1) (um1+1, B2(um1+1), . . . , B
m2−m1−1
2 (um1+1)) is a basis of ker(A),

(2) (um1+1, B2(um1+1), . . . , B
m2−m1−2
2 (um1+1)) is a basis of ker(A) ∩ ker(b).

Here, ui is the i-th column vector of u. Suppose S ⊂ V2 satisfies the conditions of (S1)

and assume v ∈ S \ {0}. Then, by (1) and (2), we have Bj
2(v) /∈ ker(b), for some j ≥ 1.

This constradicts the assumption that S is a B2-invariant subspace of ker(b). Hence, S = 0

and therefore, H(u, η) satisfies (S1). Thus, H is a well-defined morphism of varieties. As

GL(m2) ×Mm1,m2 is connected and tri(Cm1 ,Cm2) is smooth, Proposition 2.25 implies that

H is an isomorphism of varieties if and only if H is bijective. For surjectivity, recall from

Lemma 2.23.(i) that for all (A,B1, B2, a, b) ∈ tri(Cm1 ,Cm2), there exists η(h, g, f, e0, e) ∈
Mm1,m2 and (g1, g2) ∈ GL(m1)×GL(m2) such that

(A,B1, B2, a, b) = (g1(id 0 0)g−1
2 , g1hg

−1
1 , g2η(h, g, f, e0, e)g

−1
2 , g1g, (0 0 1)g−1

2 ).
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2. Geometry of bow varieties

Hence, if we set u = g2
(
g−1
1 0
0 id

)
, we get

H(u, η(g1hg
−1
1 , g1g, fg

−1
1 , e0, e)) = (A,B1, B2, a, b).

Thus, H is surjective. For injectivity, suppose H(u, η) = (A,B1, B2, a, b) = H(u′, η′). First,

we show that the column vectors u1, . . . , um2 and u′1, . . . , u
′
m2

of u and u′ coincide. From

(id 0 0)u = A = (id 0 0)u′ follows ui = u′i, for i = 1, . . . ,m1. Next, note that the vector

space ker(A) ∩ ker(b) ∩ ker(bB2) ∩ . . . ∩ ker(bBm2−m1−2
2 ) is of dimension 1. In addition,

um1+1 and u′m1+1 are both generators of this vector space. Since bBm2−m1−1
2 (um1+1) = 1 =

Bm2−m1−1
2 b(u′m1+1), we therefore conclude um+1 = u′m+1. From this, we deduce

um1+1+i = Bi
2um1+1 = Bi

2u
′
m1+1 = u′m1+1+i, for i = 1, . . . ,m2 −m1 − 1.

Hence, u = u′. As uηu−1 = u′η′(u′)−1, we also have η = η′. This proves that H is injective.

Remark. The normal forms from Proposition 2.22 and Proposition 2.24 are also called Hur-

tubise normal forms. This is due to the fact that Takayama matched in [Tak16, Section 2]

the normal forms for triangle parts with Hurtubise’s normal forms of solutions of Nahm’s

equation over intervals from [Hur89]. In this way, Takayama gave an interpretation of these

moduli spaces of solutions of differential equations in terms of moduli of representations of

handsaw quivers.

Isomorphism criterion

In the proof of Proposition 2.22 and Proposition 2.24, we used the following general result in

algebraic geometry:

Proposition 2.25. Let f : X → Y be a bijective morphism of varieties. If the connected

components of X are all of the same dimension and Y is irreducible and normal then f is

an isomorphism of varieties.

We first prove the following auxiliary statement:

Lemma 2.26. Let f : X → Y be a bijective morphism of varieties. Then, dim(X) = dim(Y ).

Proof. By Grothendieck’s version of Zariski’s Main Theorem, see [EGA, Chapter IV, Corol-

lary 18.12.13], there exists a factorization

X Y ′

Y
f

ι

f ′
(2.19)

where ι is an open dense immersion and f ′ is a finite morphism. As ι is an open dense

immersion, we have dim(X) = dim(Y ′). Since f ′ is finite and surjective, we also have

dim(Y ′) = dim(Y ).
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2.2. Triangle parts

Proof of Proposition 2.25. Let Y ′, ι, f ′ be as in (2.19). Since f ′ is surjective, there exists

an irreducible component Y0 of Y ′ such that the restriction f ′|Y0 : Y0 → Y is a dominant

morphism. As f ′ is finite and f ′|Y0 is dominant, we conclude that also f ′|Y0 is finite. Since

f ′|Y0 is injective on the open dense subvariety X ∩ Y0, Lemma 2.27 below gives that f ′|Y0 is

birational. Thus, by e.g. [Liu06, Corollary 4.4.6], f ′|Y0 is an isomorphism of varieties. Next,

we show that X∩Y0 = X. Assume X∩Y0 ̸= X and let Z ′ ⊂ Y ′ be the union of all irreducible

components of Y ′ which are different to Y0. Set Z := f ′(Z ′) and U := X ∩ (Z ′ \ Y0). Then,

U is a dense open subvariety of Z ′ and since f ′ is finite, Z is a closed subvariety of Y . As f

is injective, f(U) is disjoint from the open subvariety f(Y0 ∩X) ⊂ Y . Hence, f(Y0 ∩X) is

also disjoint from the Zariski closure f(U) in Y . As f ′ is closed, we have Z = f(U). Thus,

f(X ∩ Y0 ∩ Z ′) = ∅. Since f is bijective, X ∩ Y0 and X ∩ Z ′ are disjoint closed subvarieties

of X. This implies dim(X ∩ Z ′) = dim(X) and that f restricts to a bijective morphism

f|X∩Z′ : X ∩ Z ′ −−→ Y \ V,

where V := f ′(X ∩ Y0). As, Y is irreducible and V ⊂ Y is a non-empty open subvariety, we

have dim(Y \ V ) < dim(Y ). However, Lemma 2.26 gives

dim(Y \ V ) = dim(X ∩ Z ′) = dim(X) = dim(Y ).

This contradicts dim(Y \ V ) < dim(Y ). Hence, we must have Y0 ∩ X = X. Since X is an

open subvariety of Y0 and the isomorphism f ′|Y0 restricts to the bijection f : X → Y , we must

have X = Y0. Therefore, f is an isomorphism of varieties.

Lemma 2.27. Let X, Y be irreducible varieties and f : X → Y be a injective and dominant

morphism. Then, f is birational.

Proof. By definition, the induced morphism of schemes ∆f : X → X ×Y X is a locally closed

immersion. Since f is an injective morphism of varieties, we conclude that im(∆f ) contains

all the closed points of X → X ×Y X. Thus, ∆f is a surjective morphism of schemes. This

implies that f is universally injective and hence, by e.g. [Stacks, Lemma 01S4], the extension

of function field f∗ : C(Y ) ↪→ C(X) is purely inseparable. As we are in characteristic 0, this

field extension has to be of degree 1 which proves that f is birational.

Symplectic structure

It was shown in [FR14] that the vanishing locus µ−1(0) admits an algebraic Poisson structure.

Then, Nakajima and Takayama proved in [NT17, Proposition 5.7] that the restriction of this

Poisson bracket to tri(V1, V2) is non-degenerate and therefore corresponds to a symplectic

form on tri(V1, V2). In this subsection, we recall the definition and important properties of

this Poisson bstructure.

Set

n := Hom(V1, V2)⊕Hom(V1,C)⊕Hom(C, V2).

Let [., .] be the unique Lie bracket on n which satisfies

(a) Hom(V1, V2) is central,

31



2. Geometry of bow varieties

(b) we have [Hom(V1,C),Hom(V1,C)] = 0 = [Hom(C, V2),Hom(C, V2)],

(c) for all f ∈ Hom(V1,C) and a ∈ Hom(C, V2), we have

[a, f ] ∈ Hom(V1, V2), [a, f ](v) = f(v)a(1), for all v ∈ V1.

The Lie algebra g acts on n via

(g1, g2).(A, a, b) = (g1A−Ag2, g1a,−bg2)

Thus, we can take the semi-direct product a := g ⋉ n where we denote the Lie bracket on

a by [., .]′. The group G acts on a via the usual base change action. A direct computation

shows that [., .]′ is G-invariant.

Next, we use [., .]′ to induce a Poisson structure on NV1,V2 . The trace pairing induces a

perfect pairing ⟨., .⟩ : NV1,V2 × a→ C satisfying

⟨g.x, a⟩ = −⟨x, g.a⟩, for all x ∈ NV1,V2 , a ∈ a, g ∈ g. (2.20)

Via ⟨., .⟩, we obtain identifications of vector spaces NV1,V2 ∼= a∗ and N∗
V1,V2

∼= (a∗)∗ ∼= a.

We define the Poisson bracket {., .}′ on NV1,V2 to be the unique Poisson bracket such that

{f, g}′ = [f, g]′, for all f , g ∈ a. By (2.20), this Poisson bracket admits the following moment

map for the G-action:

Proposition 2.28. The projection m′ : NV1,V2 → g, (A,B1, B2, a, b) 7→ (B1, B2) is a moment

map for the G-action on NV1,V2.

Proof. By the Leibnitz rule, it suffices to prove (2.5) for a ∈ a ∼= N∗
V1,V2

. If g ∈ g and

x ∈ NV1,V2 then {⟨m′(·), g⟩, a}(x) = ⟨x, g.a⟩. Let g⃗x be the fiber of g⃗ over x. Then, da(g⃗x) =

⟨g.x, a⟩. Thus, the proof follows from (2.20).

In general, the Poisson bracket {., .}′ is not compatible with the defining equation µ = 0

of triangle parts from (2.12). Thus, in general, {., .}′ does not induce a Poisson bracket

on tri(V1, V2). However, this can be fixed, by twisting {., .}′ as follows: The vector space

automorphism of a given by

(B1, B2, A, a, b)→ (B1,−B2, A, a, b)

induces an algebra automorphism ν : O(NV1,V2)→ O(NV1,V2) via the identification N∗
V1,V2

∼= a.

Then, we define the Poisson bracket {., .} on NV1,V2 as

{f, g} := {ν(f), ν(g)}′, f, g ∈ O(NV1,V2). (2.21)

By [FR14, Proposition 3.15], we have the following result:

Proposition 2.29. The Poisson bracket {., .} on NV1,V2 from (2.21) induces a G-invariant

Poisson bracket on µ−1(0) and hence also on tri(V1, V2).
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The Poisson bracket {., .} admits an explicit description via coordinate functions: Choose

bases (v1,i)i resp. (v2,j)j of V1 resp. V2 and let Ak,l ∈ O(NV1,V2) be the regular function which

assigns to a point x = (A,B1, B2, a, b) the (k, l)-entry of the matrix of A with respect to

the bases (v1,i)i and (v2,j)j . Define (B1)k,l, (B2)k,l, ak and bk ∈ O(NV1,V2) in the same way.

Then, inserting these coordinate functions in (2.21) yields the following formulas for {., .}:

{Ai,j , Ak,l} = 0, {ai, aj} = 0 = {bi, bj},

{(B2)i,j , (B2)k,l} = δi,l(B2)k,j − δj,k(B2)i,l,

{(B1)ij , (B1)kl} = δi,l(B1)k,j − δj,k(B1)i,l,

{(B2)i,j , ak} = 0 = {(B1)i,j , bk},

{(B2)i,j , bk} = δi,kbj , {(B1)i,j , ak} = −δj,kai,

{(B2)i,j , Ak,l} = δi,lAk,j , {(B1)i,j , Ak,l} = −δj,kAi,l,

{bi, aj} = Aj,i, {Ai,j , bk} = 0 = {Ai,j , ak}.

(2.22)

Via the explicit formulas from (2.22), we deduce the following crucial result:

Proposition 2.30. The restriction of {., .} to tri(V1, V2) is non-degenerate.

Proof. We only prove the case m1 = m2 =: m, as the case m1 ̸= m2 is similar. Set R :=

O(tri(V1, V2)) and let Der(R,R) be the R-module of C-derivations. Set

Θ: R −−→ Der(R,R), f 7→ {f, .}

and let E ⊂ Der(R,R) be the R-module generated by the image of Θ. By definition, {., .} is

non-degenerated if and only if E = Der(R,R). By Proposition 2.22, it suffices to show that

E contains all the derivations

∂

∂Ai,j
,

∂

∂(B1)i,j
,

∂

∂ai
,

∂

∂bi
, for 1 ≤ i, j ≤ m. (2.23)

By (2.22), we have

Θ(Ai,j) =

m∑
k=1

Ak,j
∂

∂(B1)k,i
, for 1 ≤ i, j ≤ m. (2.24)

As the matrix (Ai,j)i,j ∈ Matm,m(R) is invertible over R, (2.24) implies that E contains all
∂

∂(B1)i,j
. From (2.22) follows

Θ(bi) ≡
m∑
k=1

Ak,i
∂

∂ak
mod E, −Θ(ai) ≡

m∑
k=1

Ai,k
∂

∂bk
mod E, for i = 1, . . . ,m.

Thus, E also contains all ∂
∂ai

and ∂
∂bi

. Finally, (2.22) gives

−Θ((B1)i,j) ≡
m∑
k=1

Ai,k
∂

∂Aj,k
mod E, for 1 ≤ i, j ≤ m

which implies that E contains also all ∂
∂Ai,j

. Hence, all derivations from (2.23) are contained

in E. This proves that {., .} is non-degenerated.
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2. Geometry of bow varieties

In particular, Proposition 2.30 implies that there exists a unique symplectic form ω on

tri(V1, V2) such that

ω(Xg, Xf ) = {f, g}, for all f , g ∈ O(tri(V1, V2)). (2.25)

Here, Xf , Xg denote the hamiltonian vector fields of f , g with respect to ω.

By Proposition 2.28, we deduce that ω admits the following moment map for the G-action

on tri(V1, V2):

Corollary 2.31. The G-equivariant morphism

m : tri(V1, V2) −−→ g, (A,B1, B2, a, b) 7→ (B1,−B2) (2.26)

is a moment map for the G-action on tri(V1, V2).

2.3 Bow varieties

In this section, we recall the construction and geometric properties of bow varieties from

[NT17, Section 2]. Bow varieties are defined as hamiltonian reductions of certain moduli

spaces of quiver representations that we call affine brane varieties. To construct these affine

brane varieties, we use the language of brane diagrams from [RS20].

Brane diagrams

A brane diagram is an object like this:

0 3 2 3 5 3 4 1 0

That is, a brane diagram is a finite sequence of black horizontal lines drawn from left to right.

Between each consecutive pair of horizontal lines there is either a blue SE-NW line \ or a red

SW-NE line /. Each horizontal line X is labeled by a non-negative integer dX . We further

demand that the first and the last horizontal line is labeled by 0.

Remark. Our terminology is slightly different to the terminology in [NT17] [RS20] and [RR23]

which is motivated from string theory. There the horizontal lines are called D3 branes, the

blue lines D5 branes and the red lines NS5 branes, see in particular the explanation in

[RR23, Section 2.4]. However, for our purposes, it suffices to view brane diagrams as purely

combinatorial objects. Hence, we will refer to the lines in brane diagrams just by their colors.

Notation 2.32. Let h(D), b(D) and r(D) denote the set of black, blue and red lines in a

given brane diagram D. We denote the number of red lines in D by M and the individual

red lines by V1, . . . , VM numbered from right to left. Likewise, let N be the number of blue

lines in D and we denote by U1, . . . , UN these lines, numbered from left to right. The black

lines in D are denoted by X1, . . . , XM+N+1 also numbered from left to right.
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2.3. Bow varieties

Thus, the lines in the above brane diagram are labeled as follows

X1 X2 X3 X4 X5 X6 X7 X8 X9

V4 V3 V2 V1U1 U2 U3 U4

0 3 2 3 5 3 4 1 0

Remark. The convention to number the red lines from right to left differs from the one

in [RS20].

Given two lines Y1, Y2 in D, we write

Y1 ◁ Y2 (2.27)

if Y1 is to the left of Y2. If Y is a colored line, we denote the black line directly to the left

resp. to the right of Y by Y − resp. Y +. Similarly, the colored lines directly left and right to

a black line X in D are denoted by X− and X+.

Affine brane varieties

We continue with the definition of affine brane varieties. For this, we assign to each horizontal

line X in D the vector space WX := CdX . Further, we set WD :=
⊕

X∈h(D)WX . We also

denote WXi just by Wi. For any red line V ∈ r(D), define the variety

MV := Hom(WV + ,WV −)⊕Hom(WV − ,WV +).

We denote the elements of MV as tuples yV = (CV , DV ) and equip MV with the usual

(GL(WV −)×GL(WV +))-action

(g−, g+).(CV , DV ) = (g−CV g
−1
+ , g+DV g

−1
− ), g− ∈ GL(WV −), g+ ∈ GL(WV +).

It is well-known, see e.g.[Gin12, Section 4], that MV admits a non-degenerated (GL(WV −)×
GL(WV +))-invariant Poisson bracket {., .} that is uniquely determined by

{CV,i,j , DV,k,l} = −δi,lδj,k. (2.28)

The corresponding symplectic form on MV is
∑dV +

i=1

∑dV −
j=1 dCV,i,j ∧ dDV,j,i and admits the

following moment map for the (GL(WV −)×GL(WV +))-action:

mV : MV −−→ End(WV −)⊕ End(WV +), (C,D) 7→ (−CD,DC). (2.29)

To any blue line U , we attach the triangle part MU := tri(WU− ,WU+). We write the elements

of MU as tuples xU = (AU , B
−
U , B

+
U , aU , bU ) and denote by

mU : MU −−→ End(WU−)⊕ End(WU+), (AU , B
−
U , B

+
U , aU , bU ) 7→ (B−

U ,−B
+
U ) (2.30)

the moment map from Corollary 2.31.

Definition 2.33. The affine brane variety associated to D is defined as the affine variety

M̃(D) :=
( ∏
U∈b(D)

MU

)
×
( ∏
V ∈r(D)

MV

)
.
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2. Geometry of bow varieties

Additionally, we define the vector space

VD :=
( ⊕
U∈b(D)

NWU− ,WU+

)
⊕
( ⊕
V ∈r(D)

MV

)
. (2.31)

Here, NWU− ,WU+ is defined as in (2.11). Note that M̃(D) is a locally closed subvariety of

VD. We denote points of M̃(D) and VD as tuples ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ). By

Proposition 2.24, all factors of M̃(D) are smooth and affine varieties which yields that also

M̃(D) is smooth and affine. We endow M̃(D) with an algebraic (base change) action of the

group

G :=
∏

X∈h(D)

GL(WX) (2.32)

given as

(gX)X .((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V )

= ((gU−AUg
−1
U+ , gU−B−

U g
−1
U− , gU+B+

U g
−1
U+ , gU−aU , bUg

−1
U+)U , (gV −CV g

−1
V + , gV +DV g

−1
V −)V ).

The Poisson brackets on the factors MU and MV induce a non-degenerated G-invariant Pois-

son bracket {., .} on M̃(D). We denote the corresponding algebraic symplectic form on

M̃(D). The moment maps mU and mV for MU and MV from (2.30) and (2.29) induce the

following moment map for the G-action on M̃(D):

m̃ : M̃(D) −−→
⊕

X ∈ h(D)

End(WX), ((xU )U , (yV )V ) 7→
∑

U ∈ b(D)

mU (xU ) +
∑

V ∈ r(D)

mV (yV ).

More explicitly, for a black line X ∈ h(D), the corresponding component m̃((xU )U , (yV )V )X

is given by

m̃((xU )U , (yV )V )X =



B−
X+ −B+

X− if X+, X− are both blue,

DX−CX− − CX+DX+ if X+, X− are both red,

DX−CX− +B−
X+ if X+ is blue and X− is red,

−CX+DX+ −B+
X− if X+ is red and X− is blue.

(2.33)

The conditions (S1) and (S2) for triangle parts yield that the points of m̃−1(0) satisfy the

injectivity and surjectivity conditions:

Proposition 2.34. Let y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ m̃−1(0).

(i) Given a local configuration in D of the form:

VU

dj−1 dj dj+1

Then, the map F : Wj →Wj−1 ⊕Wj+1 ⊕ C, v 7→ (AU (v), DV (v), bU (v)) is injective.
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2.3. Bow varieties

(ii) Given a local configuration in D of the form:

V U

dj−1 dj dj+1

Then, the map F ′ : Wj−1 ⊕Wj+1 ⊕C→Wj, (v1, v2, v3) 7→ (DV (v1), AU (v2), aU (v3)) is

surjective.

Proof. We begin with (i). By the moment map equation (2.33), we have CVDV = −B+
U

which implies ker(DV ) ⊂ ker(B+
U ). Thus, ker(F ) is B+

U -invariant and therefore satisfies the

conditions of (S1). Hence, ker(F ) = 0. For (ii), note that as DV CV = −B−
U , we have

im(B−
U ) ⊂ im(DV ) and hence im(F ′) is B−

U -invariant. This implies that im(F ′) satisfies

conditions of (S2) and thus im(F ′) = Wj .

Example 2.35. Let D = 0/1\1\1/0. We write elements of M̃(D) as tuples

((Ai, B
−
i , B

+
i , ai, bi)i=1,2, (Ci, Di)i=1,2)

according to the diagram:

0 C C C 0

C C

D2

C2

B−
1

A1

B+
1 B−

2

b1

B+
2

A2

D1

b2

C1

a1 a2
(2.34)

By Proposition 2.19, the conditions (S1) and (S2) are equivalent to A1, A2 ̸= 0. Thus, we

have an isomorphism of varieties M̃(D)
∼−→ (C∗ × C3)2 given by

((Ai, B
−
i , B

+
i , ai, bi)i=1,2, (Ci, Di)i=1,2) 7→ (A1, B

+
1 , a1, b1, A2, B

+
2 , a2, b2).

Construction of bow varieties

Let D be a brane diagram and M̃(D) be the corresponding affine brane variety. Let G and

m̃ be as in the previous subsection.

Definition 2.36. The bow variety associated to D is defined as

C(D) := m̃−1(0)//χ G,

where

χ : G −−→ C∗, (gX)X 7→
∏

X∈h′(D)

det(gX)

and h′(D) is the set of black lines X in D such that X− is red.

By Proposition 2.2.(i), C(D) is a quasi-projective variety. Moreover, Proposition 2.16

implies that the Poisson bracket {., .} on M̃(D) induces a Poisson bracket {., .}′ on C(D).
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2. Geometry of bow varieties

Geometric properties

Recall from Theorem 2.8 that the points of C(D) are characterized by χ-(semi)stability con-

ditions. By applying Mumford’s Numerical Criterion, Nakajima and Takayama proved the

following useful χ-(semi)stability conditions for points on m̃−1(0), see [NT17, Proposition 2.8]:

Proposition 2.37 ((Semi-)Stability for bow varieties). Let

x = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V )) ∈ m̃−1(0).

Then the following holds:

(i) The point x is χ-semistable if and only if x satisfies the following condition: For all

graded subspaces T =
⊕

X ∈ h(D) TX ⊂ WD such that im(aU ) + AU ⊂ TU− and AU

induces an isomorphism WU+/TU+ →WU−/TU−, for all U ∈ b(D), we have∑
X∈h′D

codim(TX) ≤ 0. (2.35)

(ii) The point x is χ-stable if and only if we have an strict inequality in (2.35) unless

T = WD.

Proposition 2.37 has many useful consequences. As a direct consequence we get that the

χ-semistable and the χ-stable locus of m̃−1(0) coincide:

Corollary 2.38 (Semistable=stable). We have m̃−1(0)ss = m̃−1(0)s.

Applying Theorem 2.8 then directly gives:

Corollary 2.39. The quotient morphism π : m̃−1(0)s → C(D) is a geometric quotient.

Next, we employ Proposition 2.37 to deduce that the χ-stable locus m̃−1(0)s is actually

smooth and we also have a convenient dimension formula:

Proposition 2.40. The variety m̃−1(0)s is smooth and each irreducible component is of

dimension

dim(M̃(D))− dim(G) =( ∑
U∈b(D)

(d2U− + d2U+ + dU− + dU+)
)

+
( ∑
V ∈r(D)

2dV −dV +

)
−
( ∑
X∈h(D)

d2X

)
.

For the proof, recall the definition of VD from (2.31) and letm′ : VD →
⊕

X∈h(D) End(WX)

be given by the formula (2.33). We also define

µ′ : VD −−→
⊕

U∈b(D)

Hom(WU+ ,WU−) (2.36)

as µ′((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) = (B−

UAU−AUB
+
U +aUbU )U . Combining these two

morphisms, we set

ND :=
( ⊕
X∈h(D)

End(WX)
)
⊕
( ⊕
U∈b(D)

Hom(WU+ ,WU−)
)

(2.37)
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2.3. Bow varieties

and

β : VD

(
m′

µ′
)

−−−−−→ ND. (2.38)

Note that, by construction, m̃−1(0) = β−1(0) and hence m̃−1(0)s is an open subvariety of

β−1(0). To employ the Regular Value Theorem, we use the following lemma:

Lemma 2.41. For y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ m̃−1(0)s, the differential dyβ

is surjective.

Proof. The differentials

dym
′ : VD −−→

⊕
X∈h(D)

End(WX), dyµ
′ : VD −−→

⊕
U∈b(D)

Hom(WU+ ,WU−)

map a point y′ = ((A′
U , (B

′
U )−, (B′

U )+, a′U , b
′
U )U , (C

′
V , D

′
V )V ) ∈ VD to

dym
′(y′)X =



(B′
X+)− − (B′

X−)+ if X+, X− ∈ b(D),

D′
X−CX− +DX−C ′

X− − C ′
X+DX+ − CX+D′

X+ if X+, X− ∈ r(D),

D′
X−CX− +D′

X−CX− + (B′
X+)− if X+ ∈ b(D), X− ∈ r(D),

−C ′
X+DX+ − CX+D′

X+ − (B′
X−)+ if X+ ∈ r(D), X− ∈ b(D).

and

dyµ
′(y′)U = B−

UA
′
U + (B′

U )−AU −A′
UB

+
U −AU (B′

U )+ + a′UbU + aUb
′
U .

Suppose

(f, h) = ((fX)X , (hU )U ) ∈
( ⊕
X∈h(D)

End(WX)
)
⊕
( ⊕
U∈b(D)

Hom(WU− ,WU+)
)

is orthogonal to im(dyβ) with respect to the trace pairing. By the above description of dym
′

and dyµ
′, we conclude that for U ∈ b(D), V ∈ r(D) holds

B−
U hU = hUB

+
U , hUaU = 0, bUhU = 0,

AUhU = fU− , hUAU = fU+ ,

CV fV + = fV −CV , DV fV − = fV +DV .

(2.39)

Combining (2.36) and (2.39), we get

B+
U fU+ = f+U BU+ , B−

U fU− = fU−B−
U , for U ∈ b(D). (2.40)

Set TX := ker(fX), SX := im(fX) and fix U ∈ b(D). By (2.40), TU− , SU− are B−
U -invariant

and TU+ , SU+ are B+
U -invariant. By (2.39), we have AU (TU+) ⊂ TU− and AU (SU+) ⊂ SU− .

In addition, (2.39) also gives im(aU ) ⊂ TU− and SU+ ⊂ ker(bU ). Thus, we can apply (T2) to

the pair (TU− , TU+) and (T1) to the pair (SU− , SU+). Hence, we have

codim(TU+) ≤ codim(TU−), dim(SU−) ≤ dim(SU+).

By definition, codim(TX) = dim(SX), for all X. Therefore,

codim(TU+) = codim(TU−), dim(SU−) = dim(SU+). (2.41)
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2. Geometry of bow varieties

By (2.36) and (2.40), we can infer that TU− + im(AU ) is B−
U -invariant and therefore TU− +

im(AU ) = WU− by (S2). By (2.41), we deduce that AU induces an isomorphism of vector

spaces WU+/TU+
∼−→ WU−/TU− . Hence, T :=

⊕
X∈h(D) TX ⊂ WD satisfies the conditions of

Proposition 2.37 which gives T = WD. Thus, fX = 0, for all X. Finally, (2.39) gives that

im(hU ) satisfies the conditions of (S1). Therefore, hU = 0, for all U and hence (f, h) = 0.

This proves that dyβ is surjective.

Proof of Proposition 2.40. Let y ∈ m̃−1(0)s ⊂ β−1(0). By Lemma 2.41 the differential dyβ

is surjective. Therefore, the Regular Value Theorem gives that y is a smooth point of

m̃−1(0) = β−1(0) and the tangent space Tym̃
−1(0) is of dimension dim(VD) − dim(ND).

By Proposition 2.21, we have

dim(VD)− dim(ND) = dim(M̃(D))− dim(G).

Thus, we deduce that m̃−1(0)s is smooth and all irreducible components are of dimension

dim(M̃(D))− dim(G).

A similar argument as in the proof of Lemma 2.41 gives that the G-action on m̃−1(0)s is

free:

Proposition 2.42. The G-action on m̃−1(0)s is free.

Proof. Let y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ m̃−1(0)s and g = (gX)X ∈ G with

g.y = y. Set TX := ker(gX − idWX
) ⊂ WX and TX := im(gX − idWX

) ⊂ WX . Note

that codim(TX) = dim(T ′
X), for all X ∈ h(D). By construction, T :=

⊕
X∈h(D) TX and

T ′ :=
⊕

X∈h(D) T
′
X are AU , B−

U , B+
U , CV , DV -invariant subspaces of WD. In addition,

we have im(aU ) ⊂ T and T ′
U+ ⊂ ker(bU ), for all U ∈ b(D). Hence, if U ∈ b(D) then

TU− + im(AU ) satisfies (S1) which gives TU− + im(AU ) = WU− . Likewise, T ′
U+ ∩ ker(AU )

satisfies (S1) which yields that the restriction A|T ′
U+

is injective. Since A(T ′
U+) ⊂ T ′

U− , we get

dim(T ′
U+) ≤ dim(T ′

U−). Equivalently, codim(TU+) ≤ dim(TU−). As TU− + im(AU ) = WU− ,

we conclude codim(TU+) = dim(TU−) and that AU induces a vector space isomorphism

WU+/TU+
∼−→ WU−/TU− . Thus, T satisfies the conditions of Proposition 2.37 and therefore

T = WD. Thus, g = idWD .

We now deduce some geometric properties for bow varieties:

Proposition 2.43 (Geometric properties of bow varieties). The following holds:

(i) The bow variety C(D) is smooth.

(ii) The quotient morphism π : m̃−1(0)s → C(D) is a principal G-bundle (in the Zariski

topology).

(iii) The Poisson bracket {., .}′ on C(D) is non-degenerated and the corresponding symplecitc

form ω′ on C(D) satisfies

π∗ω′ = ι∗ω, (2.42)

where ι : m̃−1(0)s ↪→ M̃(D) is the inclusion and ω the symplectic form on M̃(D).
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2.3. Bow varieties

Proof. By Proposition 2.42 and Proposition 2.40, m̃−1(0)s is smooth and the G-action on

m̃−1(0)s is free. By Corollary 2.38, m̃−1(0)s = m̃−1(0)ss and hence m̃−1(0)s is covered by

G-invariant open affine subvarieties. Thus, Luna’s Slice Theorem gives that C(D) is smooth

and π : m̃−1(0)s → C(D) is a principal G-bundle in the étale topology. Since G is a special

group, see e.g. [Mil13, Theorem 11.4], we deduce that π is actually a principal G-bundle in

the Zariski topology. Thus, we proved (i) and (ii). Finally, (iii) is an immediate consequence

of Theorem 2.17.

Proposition 2.43.(ii) and Proposition 2.40 yield the following dimension formula for C(D):

Corollary 2.44. Each irreducible component of C(D) is of dimension

dim(C(D)) =
( ∑
U∈b(D)

(d2U−+d2U++dU−+dU+)
)

+
( ∑
V ∈r(D)

2dV −dV +

)
−
( ∑
X∈h(D)

2d2X

)
. (2.43)

From Proposition 2.43.(ii), it follows that bow varieties admit a family of tautological

bundles:

Corollary 2.45. Let X ∈ h(D). Then, the diagonal action of G on m̃−1(0)s ×WX is free

and the geometric quotient

ξX := (m̃−1(0)s ×WX)/G (2.44)

is a vector bundle over C(D) (in the Zariski toplology).

Definition 2.46. The vector bundle ξX from (2.44) is called the tautological bundle corre-

sponding to X. We call ξD :=
⊕

X∈h(D) ξX the full tautological bundle of C(D).

Remark. In [NT17], Nakajima and Takayama give a more general definition of bow varieties

depending on more stability parameters νCσ and νRσ . For simplicity, we only consider bow

varieties corresponding to the specializations νCσ = 0 and νRσ = −1. One convenient feature

of this family of bow varieties is that they are smooth, which is not true in general.

Explicit example T ∗P1

We show now that the bow variety C(D), where D is as in Example 2.35 is isomorphic to a

very familiar quasi-projective variety: The cotangent bundle of the projective line T ∗P1.

Recall from e.g. [CG97, Lemma 1.4.9] that T ∗P1 is isomorphic to the total space of the

vector bundle Hom(Q,S), where S denotes the tautological bundle on P1 and Q = (P1×C)/S
the universal quotient bundle of P1. Thus, the points of T ∗P1 are given by

T ∗P1 = {(V, f) | V ∈ P1, f ∈ End(C2), im(f) ⊂ V, V ⊂ ker(f)}.

Recall the data to specify elements of C(D) from (2.34) and that for a tuple

y = ((Ai, B
+
i , B

−
i , ai, bi)i=1,2, (Ci, Di)i=1,2) ∈ M̃(D).

The conditions (S1) and (S2) are equivalent to A1, A2 ̸= 0. By (2.12) and (2.33), y is

contained in m̃−1(0) if and only the following equations are satisfied:

B−
1 A1 −A1B

+
1 + a1b1 = 0, B−

2 A2 −A2B
+
2 + a2b2 = 0, (2.45)

B−
1 = 0, B+

1 = B−
2 , B+

2 = 0. (2.46)
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2. Geometry of bow varieties

These equations imply a1b1 +A1a2b2A
−1
2 = 0. By Proposition 2.37, the χ-stability condition

is equivalent to (a1, a2) ̸= (0, 0). Hence, ker(a1 a2) is of dimension 1. From this, we deduce

that we have a surjective morphism of varieties H : C(D)→ T ∗P1 given as

[(Ai, B
−
i , B

+
i , ai, bi)i=1,2, (Ci, Di)i=1,2] 7→

(
ker
(
a1A

−1
1 a2

)
,

(
b1

b2A
−1
2

)(
a1A

−1
1 a2

))
.

To conclude that H is an isomorphism, it suffices by Proposition 2.25 to show that H is

injective. Let y, y′ ∈ m̃−1(0)s with H([y]) = H([y′]). Write

y = ((Ai, B
−
i , B

+
i , ai, bi)i=1,2, (Cj , Dj)i=1,2)

and

y′ = ((A′
i, (B

′
i)
−, (B′

i)
+, a′i, b

′
i)i=1,2, (C

′
j , D

′
j)j=1,2).

We may assume A1 = A2 = A′
1 = A′

2 = 1. Suppose a2 ̸= 0. In this case, we can additionally

assume a2 = a′2. Since ker(a1 a2) = ker(a′1 a
′
2), we conclude that also a1 = a′1. As(

b1

b2

)(
a1 a2

)
=

(
b′1
b′2

)(
a1 a2

)
and (a1 a2) is surjective, we deduce b1 = b′1 and b2 = b′2. Then, (2.45) yields [y] = [y′]. The

case a1 ̸= 0 follows along similar lines. Thus, we proved that H is injective and hence an

isomorphism of varieties.

Remark. This example shows a very special instance of the general fact that each Nakajima

quiver variety of type A is isomorphic to a bow variety, see [NT17, Theorem 2.15]. In

particular, cotangent bundles of of partial flag varieties can be realized as bow varieties. We

will explicitly discuss this realization in Section 2.5.

Torus actions

As we discuss in this subsection, there are two kinds of torus actions on bow varieties. The

first one follows easily from the construction of bow varieties. Thus, we refer to this action

as the obvious action. The second one was introduced in [NT17, Section 6.9.3] and scales the

symplectic form. We therefore refer to this action as the scaling action. In our exposition, we

follow the conventions from [RS20, Section 3.1], for the precise connection to the definition

of Nakajima and Takayama see [RS20, Section 3.4].

Recall from Notation 2.32 that N = |b(D)| is the number of blue lines in D. The following

two tori will be used:

� A = (C∗)N and its elements are denoted by (t1, . . . , tN ) or (tU )U∈b(D) or just by (tU )U .

� C∗
h = C∗ and its elements are usually denoted by h.

We set

T := A× C∗
h. (2.47)
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2.3. Bow varieties

The obvious action

Recall the definition of VD from (2.31). The torus A acts algebraically on VD via

(tU )U .((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V )

= ((AU , B
−
U , B

+
U , aU t

−1
U , tUbU )U , (CV , DV )V ).

(2.48)

By definition, the A-action and G-action on VD commute. Let

µ′ : VD −−→
⊕

U∈b(D)

Hom(WU+ ,WU−)

be as in (2.36). A direct computation gives that µ′ is A-invariant and that the A-action is

also compatible with (S1) and (S2). Hence, the A-action restricts to the affine brane variety

M̃(D). By construction, the moment map m̃ from (2.33) is A-invariant. Since the A-action

is also compatible with the χ-stability criterion from Proposition 2.37, we get an induced

A-action on C(D) which is explicitly given by

(tU )U .[(AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ]

= [(AU , B
−
U , B

+
U , aU t

−1
U , tUbU )U , (CV , DV )V ].

(2.49)

Via the explicit description of the Poisson bracket on M̃(D) from (2.22) and (2.28), we

conclude that the Poisson bracket on M̃(D) (and equivalently the symplectic form ω on

M̃(D)) is A-invariant. Hence, by (2.42), we conclude that also the Poisson bracket on C(D)

(and equivalently the symplectic form ω′ on C(D)) is A-invariant.

The scaling action

We have an algebraic C∗
h-action on VD via

h.((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V )

= ((AU , hB
−
U , hB

+
U , aU , hbU )U , (hCV , DV )V ).

(2.50)

Again, the C∗
h-action and the G-action commute. One can easily check that µ′ is C∗

h-

equivariant, where C∗
h acts on

⊕
X Hom(WU+ ,WU−) via h.(fX)X = (hfX)X . As the C∗

h-

action is also compatible with (S1) and (S2), we get an induced C∗
h-action on M̃(D). The

moment map m̃ is also C∗
h-equivariant where again C∗

h acts on
⊕

X End(WX) via h.(fX)X =

(hfX)X . Since the C∗
h-action is further compatible with the χ-stability condition from Propo-

sition 2.37, we get an induced C∗
h-action on the bow variety C(D):

h.[(AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V )

= [(AU , hB
−
U , hB

+
U , aU , hbU )U , (hCV , DV )V ].

(2.51)

Again employing (2.22) and (2.28) yields h∗ω = hω, for all h ∈ C∗
h. By (2.42), this implies

that the C∗
h also scales the symplectic form on C(D), i.e. h∗ω′ = hω′.

Finally, note that the A-action and the C∗
h-action on VD commute. Thus, we have the

following result:
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2. Geometry of bow varieties

Proposition 2.47. The A- and C∗
h-action on VD induce a T = (A× C∗

h)-action on M̃(D),

m̃−1(0)s and C(D).

In addition, each tautological bundle ξX of C(D) carries the structure of a T-equivariant

vector bundle via

(t, h).[y, v] = [(t, h).y, v], (t, h) ∈ T, v ∈WX , y ∈ m̃−1(0)s. (2.52)

Tangent bundle via tautological bundles

Next, we employ the characterization of tangent spaces of the χ-stable locus of m̃−1(0)

from Lemma 2.41 to describe tangent bundles of bow varieties via tautological bundles. In

particular, we deduce a formula of the T-equivariant K-theory classes of tangent bundles in

terms of tautological bundles. This formula was given in [RS20, Section 3.2] and [Sho21,

Theorem 3.1.15] as a consequence of [NT17, Proposition 2.20]. In this subsection, we give a

self-contained reproof of this formula. We lay our focus on the involved morphisms of vector

bundles.

For i ∈ Z, we denote by Chi the T-representation corresponding to the character T→ C∗,

(t1, . . . , tN , h) 7→ hi. If W is a T-representation, we denote the tensor product W ⊗ Chi also

just by hiW .

Recall from Proposition 2.43.(ii) that the projection π : m̃−1(0)s → C(D) is a principal

G-bundle. Thus, we have a short exact sequence of G-equivariant vector bundles over m̃−1(0)s:

0→ m̃−1(0)s ×
( ⊕
X∈h(D)

End(WX)
)

α−→ Tm̃−1(0)s
dπ−−→ π∗TC(D)→ 0. (2.53)

Here,

α : m̃−1(0)s ×
( ⊕
X∈h(D)

End(WX)
)
−−→ Tm̃−1(0)s, g = (gX)X 7→ g⃗,

where g⃗ is the vector field assigned to g. If we view Tm̃−1(0)s as locally closed subvariety of

TVD ∼= VD × VD then for

y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ VD,

the induced morphism on the fibers αy :
⊕

X∈h(D) End(WX)→ VD is given as

αy(g) =((gU−AU −AUgU+ , gU−B−
U −B

−
U gU− , gU+B+

U −B
+
U gU+ , gU−aU ,−bUgU+)U ,

(gV −CV − CV gV + , gV +DV −DV gV −)V ).

As the G-action commutes with the T-action on m̃−1(0)s, we conclude that (2.53) is a short

exact sequence of T-equivariant vector bundles. Thus, (2.53) induces a short exact sequence

of T-equivariant vector bundles over C(D):

0→
( ⊕
X∈h(D)

End(ξX)
)
→ (Tm̃−1(0)s)/G → TC(D)→ 0. (2.54)

Thus, we have the following identity in KT(C(D)):

[TC(D)] = [(Tm̃−1(0)s)/G]−
( ∑
X∈h(D)

[End(ξX)]
)
. (2.55)

44



2.3. Bow varieties

Next, we characterize the T-equivariant K-theory class [(Tm̃−1(0)s)/G]. Recall the mor-

phism of varieties β : VD → ND from (2.38). By Lemma 2.41, we have an isomorphism of

T-equivariant vector bundles Tm̃−1(0)s ∼= ι∗ker(dβ), where ι : m̃−1(0)s ↪→ VD is the inclu-

sion. Lemma 2.41 further implies that we have a short exact sequence of G- and T-equivariant

vector bundles over m̃−1(0)s:

0→ ι∗ker(dβ)→ m̃−1(0)s × VD
dβ−−→ m̃−1(0)s × hND → 0.

Thus, we get an induced short exact sequence of T-equivariant vector bundles over C(D):

0→ ι∗ker(dβ)/G → (m̃−1(0)s × VD)/G → (m̃−1(0)s × hND)/G → 0.

The above quotient bundles can be T-equivariantly expressed via tautological bundles over

C(D) as follows:

(m̃−1(0)s × VD)/G =
( ⊕

U∈b(D)

Hom(ξU+ , ξU−)⊕ hEnd(ξU−)⊕ hEnd(ξU+)

⊕Hom(CU , ξU−)⊕ hHom(ξU+ ,CU )
)

⊕
( ⊕

V ∈r(D)

hHom(ξV + , ξV −)⊕Hom(ξV − , ξV +)
)
,

(m̃−1(0)s × hND)/G =
⊕

X∈h(D)

hEnd(ξX) ⊕
⊕

U∈b(D)

hHom(ξU+ , ξU−).

Thus, we have the following identity in KT(C(D)):

[(Tm̃−1(0)s)/G] =
∑

U∈b(D)

TU +
∑

V ∈r(D)

TV −
∑

X∈h(D)

TX , (2.56)

where

TU = (1− h)[Hom(ξU+ , ξU−)] + h[End(ξU−)] + h[End(ξU+)]

+ [Hom(CU , ξU−)] + h[Hom(ξU+ ,CU )],

TV = h[Hom(ξV + , ξV −)] + [Hom(ξV − , ξV +)],

TX = [End(ξX)].

(2.57)

Inserting (2.56) into (2.55) then immediately gives the following formula for [TC(D)] in terms

of tautological bundles:

Corollary 2.48. We have the following identity in KT(C(D)):

[TC(D)] =
∑

U∈b(D)

TU +
∑

V ∈r(D)

TV −
∑

X∈h(D)

(1 + h)TX ,

where TU , TV and TX are defined as in (2.57).

Emptyness conditions

The injectivity and surjectivity constrains for points on m̃−1(0) from Proposition 2.34 yield

that C(D) is empty unless D satisfies the following combinatorial properties:
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2. Geometry of bow varieties

Corollary 2.49. If C(D) ̸= ∅ then we have dj ≤ dj−1 + dj+1 + 1, for all local configurations

dj−1/dj\dj+1 and dj−1\dj/dj+1 in D.

Proof. If the condition is violated, Proposition 2.34 gives m̃−1(0) = ∅. Thus, C(D) = ∅.

Definition 2.50. A brane diagram D is called admissible if dj ≤ dj−1 +dj+1 +1, for all local

configurations dj−1/dj\dj+1 and dj−1\dj/dj+1 in D.

Assumption. From now on we assume that each brane diagram D is admissible.

2.4 Hanany–Witten transition

It was shown in [NT17, Proposition 7.1] that the family of bow varieties comes with an

interesting collection of isomorphisms between bow varieties, called Hanany–Witten isomor-

phisms. These isomorphisms correspond to certain moves, called Hanany–Witten transitions,

on brane diagrams and are well-behaved with respect to the torus action. In this section,

we recall some important properties of Hanany–Witten isomorphisms. For their explicit

construction see [NT17, Section 7] and also the exposition in [RS20, Section 3.3].

Hanany–Witten isomorphisms

We begin with describing the underlying combinatorics of Hanany–Witten isomorphisms.

Definition 2.51. Let D and D̃ be brane diagrams. We say that D̃ is obtained from D via a

Hanany–Witten transition if D̃ differs from D by performing a local move of the form

VjUi

dk−1 dk dk+1 HW

Vj Ui

dk d̃k+1 dk

where dk−1+dk+1+1 = dk+d̃k. If D̃ is obtained from D via a finite number of Hanany–Witten

transitions, we write D HW
⇝ D̃ and call D and D̃ Hanany–Witten equivalent.

The following proposition (see [NT17, Proposition 7.1] and [RS20, Theorem 3.9]) charac-

terizes the isomorphism corresponding to a Hanany–Witten transition as well as the interplay

of tautological bundles under this isomorphism:

Proposition 2.52. Suppose D̃ is obtained from D̃ via Hanany–Witten transition, where the

blue line Ui is exchanged with the red line Vj. Let Xk be the black line in D with X−
k = Ui

and X+
k = Vj. Then, there exists a ρi-equivariant isomorphism of varieties

Φ: C(D)
∼−−→ C(D̃), (2.58)

where ρi is the algebraic group automorphism

ρi : T
∼−−→ T, (t1, . . . , tN , h) 7→ (t1, . . . , ti−1, hti, ti+1, . . . , tN , h).

Furthermore, the following holds:
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2.4. Hanany–Witten transition

(i) We have T-equivariant isomorphisms of vector bundles ξD,Xl
∼= Φ∗ξD̃,Xl

, for l ̸= k.

(ii) There is a short exact sequence of T-equivariant vector bundles

0→ ξD,Xk
→ ξD,Xk−1

⊕ ξD,Xk+1
⊕ hCUi → Φ∗ξD̃,Xl

→ 0. (2.59)

Here, Φ∗ξD̃,Xl
is the T-equivariant pullback of ξD̃,Xl

via Φ and CUi denotes the trivial bundle

on C(D) corresponding to the character (t1, . . . , tN , h) 7→ ti.

Example 2.53. The brane diagram D̃ = 0/1\0 is obtained from D = 0\0/0 by the Hanany–

Witten transition which switches the blue with the red line in D. By construction, C(D) is

isomorphic to a single point C(D) ∼= {pt}. Thus, by Proposition 2.52, C(D̃) is also isomorphic

to {pt}.

Hanany–Witten transition allows to move all red lines in a brane diagram to the left of all

blue lines not changing the isomorphism type of the respective bow variety. As we will discuss

in the following subsection, the realization of bow varieties corresponding to this particular

type of brane diagrams admits some useful properties.

Separated brane diagrams

Definition 2.54. For a given brane diagram D the separation degree of D is defined as

sdeg(D) := |{(U, V ) ∈ b(D)× r(D)|U ◁ V }|.

We call D separated if sdeg(D) = 0, i.e. all red lines are in D to the left of all blue lines.

Via Hanany–Witten transition, we deduce that any brane diagram is Hanany–Witten

equivalent to a separated brane diagram:

Proposition 2.55 (Reduction argument). There exists a separated brane diagram D̃ such

that D HW
⇝ D̃.

Proof. Suppose sdeg(D) > 0. Then, there exist U ∈ b(D), V ∈ r(D) such that U is directly

to the left of V . Since D is admissible, we can apply a Hanany–Witten transition reducing

the separatedness degree by 1. Now just repeat this argument.

For a separated brane diagram the operators defining points of C(D) satisfy the following

nilpotency conditions:

Proposition 2.56 (Nilpotency). Suppose D is separated and let

((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ m̃−1(0).

Then, the following holds:

(i) We have (CVjDVj )
M−j = 0 and (DVjCVj )

M−j+1 = 0, for j = 1, . . . ,M − 1.

(ii) We have (B−
U1

)M = 0.
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2. Geometry of bow varieties

Proof. By the moment map equations (2.33), we have

(CVjDVj )
M−j = CVj (CVj+1DVj+1)M−j−1DVj ,

(DVjCVj )
M−j+1 = DVj (DVj+1CVj+1)M−jDVj ,

for all j = 1, . . . ,M − 1.

Thus, (i) follows from CVM = 0, DVM = 0 via induction on j. The assertion (ii) follows

from (i) since B−
U1

= −CV1DV1 .

We also have the following surjectivity property of the C-operators:

Proposition 2.57 (Surjectivity of C-operators). Suppose D is separated and let

((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ m̃−1(0)s.

Then, all CV are surjective.

Proof. Define the graded subspace T =
⊕

X∈h(D) TX ⊂WD as TU± = WU± , for all U ∈ b(D)

and TV − = im(CV ), for all V ∈ r(D). By the moment map equation (2.33), T satisfies

the conditions of Proposition 2.37 and therefore T = WD. Hence, all operators CV are

surjective.

Margin vectors

We recall some invariants of brane diagrams from [RS20, Section 2] and [Sho21, Section 2]

that are stable under Hanany–Witten transition. Recall the conventions from Notation 2.32.

Definition 2.58. Given a brane diagram D, we assign the following invariants to D:

ri(D) := dV +
i
− dV −

i
+ |{U ∈ b(D) | U ◁ Vi}|, cj(D) := dU−

j
− dU+

j
+ |{V ∈ r(D) | V ▷ Uj}|,

where i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}. In addition, we set

Rl(D) :=
l∑

i=1

ri(D), Cl(D) :=
l∑

j=1

cj(D), R̄l(D) :=
M∑
i=l

ri(D), C̄l(D) :=
N∑
j=l

cj(D).

As D is usually a fixed brane diagram, we just denote ri(D), cj(D), Ri(D), R̄i(D), Cj(D) and

C̄j(D) by ri, cj , Ri, R̄i, Cj and C̄j . The vectors r = r(D) = (r1, . . . , rM ) and c = c(D) =

(c1, . . . , cN ) are called margin vectors of D.

The next proposition gives that margin vectors are invariant under Hanany–Witten tran-

sition:

Proposition 2.59. If D HW
⇝ D̃ then r(D) = r(D̃) and c(D) = c(D̃).

Proof. It suffices to consider the case where D̃ is obtained from D by a single Hanany–Witten

transition switching a blue line Uj with a red line Vi. We denote the red resp. blue lines of

D̃ by Ṽ resp. Ũ to distinguish them from the colored lines of D. By definition, we have

|{Ũ ∈ b(D̃) | U ◁ Ṽl}| =

|{U ∈ b(D) | U ◁ Vl}| − 1 if l = i,

|{U ∈ b(D) | U ◁ Vl}| if l ̸= i.
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2.4. Hanany–Witten transition

Since d±
Ṽl

= d±Vl , for l ̸= i, we conclude

rl(D̃) = dV +
l
− dV −

l
+ |{U ∈ b(D̃) | U ◁ Vl}| = rl(D).

By the definition of Hanany–Witten transition, we have

dṼ +
i
− dṼ −

i
= dV +

l
− dV −

l
+ 1.

This implies

ri(D̃) = dV +
i
− dV −

i
+ |{U ∈ b(D̃) | U ◁ Vi}| = ri(D).

Thus, we proved r(D) = r(D̃). The proof for c(D) = c(D̃) is analogous.

If D is separated, we have ri = dV +
i
− dV −

i
and cj = dU−

j
− dU+

j
, for all Vi ∈ r(D),

Uj ∈ b(D). Thus, we can easily read off the labels of the black lines can be easily read off

from the margin vectors:

dV +
i

= R̄i =
M∑
l=i

rl, dU−
j

= C̄j =
N∑
l=j

cl, i = 1, . . . ,M, j = 1, . . . , N. (2.60)

In particular, we have R̄1(D) = C̄1(D).

From (2.60), we deduce the following improvement of Proposition 2.55:

Corollary 2.60. A brane diagram D is Hanany–Witten equivalent to the separated brane

diagram

D̃ =
0 R̄M R̄M−1 R̄2 R̄1 = C̄1 C̄2 C̄N 0

Here, R̄i = R̄i(D) and C̄j = C̄j(D) for all i, j. In addition, D̃ is the unique separated brane

diagram such that D HW
⇝ D̃.

Proof. By Proposition 2.55, there exists a separated brane diagram D′ such that D HW
⇝ D′.

By (2.60) and the invariance of margin vectors under Hanany–Witten transformation, we

conclude D′ = D̃.

Example 2.61. As in Example 2.35, let D = 0/1\1\1/0. As one red line is to the right of

the both blue lines, we have c(D) = (1, 1). Likewise, since there are two blue lines to the

left of V1, we have r1(D) = dV +
1
− dV −

1
+ 2 = 0− 1 + 2 = 1. There is no blue line to the left

of V2. Thus, we deduce r2(D) = dV +
2
− dV −

2
= 1 − 0 = 1. Consequently, R̄1 = C̄1 = 2 and

R̄2 = C̄2 = 1. Therefore, by Corollary 2.60, D̃ = 0/1/2\1\0 is the unique separated brane

diagram such that D HW
⇝ D̃.

Note that margin vectors can have negative entries. For example for D = 0\1\0 we have

c(D) = (−1, 1). However, Corollary 2.60 ensures that the entries of the numbers R̄i and C̄j

are always non-negative.
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2.5 Cotangent bundles of flag varieties as bow varieties

We now consider a key player in geometric representation theory: The cotangent bundles

of partial flag varieties. These varieties form a rich family of symplectic varieties. For their

relevance in geometric representation theory see in particular the exposition in [CG97] and

the references therein.

Given natural numbers 0 < d1 < d2 < . . . < dm < n, we denote by F (d1, . . . , dm;n) the

partial flag variety parameterizing inclusions of vector subspaces

{0} ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em ⊂ Cn

with dim(Ei) = di, for i = 1, . . . ,m. We denote the cotangent bundle of F (d1, . . . , dm;n) by

T ∗F (d1, . . . , dm;n).

There are several ways in which the variety T ∗F (d1, . . . , dm;n) can be constructed. In this

section, we consider its realization as homogeneous space and as bow variety. As explained in

[NT17, Theorem 2.15], the bow variety realization is equivalent to the well-known realization

as Nakajima quiver variety from [Nak94, Theorem 7.3].

Realization of cotangent bundles via parabolic subgroups

We like to characterize the points of T ∗F (d1, . . . , dm;n) in terms of linear operators. For this,

we recall the following well-known realization of T ∗F (d1, . . . , dm;n) via parabolic subgroups

of general linear groups, see e.g. [CG97, Section 1.4].

Set d0 = 0, dm+1 = n, E0 = 0, Em+1 = Cn and δi = di − di−1, for i = 1, . . . ,m + 1. Let

G = GLn and P ⊂ G be the parabolic subgroup of block matrices of the shape
P1,1 P1,2 . . . P1,m+1

P2,2 . . . P2,m+1

. . .
...

Pm+1,m+1

 , Pi,j ∈ Matδi,δj (C).

Then, P acts on G via p.g = gp−1. It is a well-known result, see e.g. [Spr98], that the geo-

metric quotient G/P exists and there is an isomorphism of varieties G/P
∼−→ F (d1, . . . , dm;n)

given as

[g] 7→ Fg := ({0} ⊂ ⟨g1, . . . , gd1⟩ ⊂ · · · ⊂ ⟨g1, . . . , gdm⟩ ⊂ Cn). (2.61)

Here, gi denotes the i-th column vector of g.

Let g = End(Cn) be the Lie algebra of G and p ⊂ g be the Lie-subalgebra corresponding

to P . We denote by p⊥ the annihilator of p with respect to the trace pairing on g. That is,

p⊥ is the Lie subalgebra of g consisting of block matrices of the form

0 P1,2 P1,3 . . . P1,m+1

0 P2,3 . . . P2,m+1

. . .
. . .

...

0 Pm,m+1

0


, Pi,j ∈ Matδi,δj (C).
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2.5. Cotangent bundles of flag varieties as bow varieties

Note that the parabolic subgroup P acts algebraically on p⊥ via conjugation, i.e. p.g = pgp−1,

where p ∈ P and g ∈ p⊥. Moreover, we equip G× p⊥ with the diagonal P -action p.(g1, g2) =

(p.g1, p.g2).

We then have the following realization of T ∗F (d1, . . . , dm;n) as geometric quotient, see

[CG97, Lemma 1.4.9]:

Proposition 2.62. The geometric quotient (G × p⊥)/P exists and (G × p⊥)/P is a vector

bundle over F (d1, . . . , dm;n) via the projection (G × p⊥)/P → G/P ∼= F (d1, . . . , dm;n). In

addition, we have an isomorphism of vector bundles over (G×p⊥)/P
∼−→ T ∗F (d1, . . . , dm;n).

This result characterizes the points of T ∗F (d1, . . . , dm;n) in terms of linear operators:

Corollary 2.63. Let Td1,...,dm;n ⊂ F (d1, . . . , dm;n) × End(Cn) be the closed subbundle over

F (d1, . . . , dm;n) given by all pairs (F , f) such that f(Ei) ⊂ Ei−1, for all i = 1, . . . ,m, where

F = (0 ⊂ E1 ⊂ . . . ⊂ Em ⊂ Cn). Then, we have an isomorphism of vector bundles

(G× p⊥)/P
∼−−→ Td1,...,dm;n, [g, p] 7→ (Fg, gpg−1)

over F (d1, . . . , dm;n). Here, Fg is defined as in (2.61).

In the following, we will always implicitly identify T ∗F (d1, . . . , dm;n) with the variety

Td1,...,dm;n via Corollary 2.63.

Realization of cotangent bundles via bow varieties

Next, we realize T ∗F (d1, . . . , dm;n) as bow variety. F

Definition 2.64. Let D̃(d1, . . . , dm;n) be the brane diagram:

Vm+1 Vm Vm−1 V3 V2 V1U1 U2 Un

0 d′m d′m−1 d′2 d′1 d′1 d′1 0

where d′i = n− di for i = 1, . . . ,m.

We denote elements of the affine brane variety M̃(D̃(d1, . . . , dm;n)) and the bow variety

C(D̃(d1, . . . , dm;n)) according to the diagram

0 Cd′m Cd′m−1

Dm+1 Dm Dm−1

Cm+1 Cm Cm−1

D3 D2

C3 C2

Cd′2 Cd′1

B−
1

C
a1

A1 Cd′1

B+
1 , B

−
2

C
b2b1

a2

A2 An

C
an

bn

Cd′1

B+
n

D1

C1

0

Recall the moment map m̃ on M̃(D̃(d1, . . . , dm;n)) from (2.33). Let

y = ((Ai, B
−
i , B

+
i , ai, bi)i, (Cj , Dj)j) ∈ m̃−1(0).
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2. Geometry of bow varieties

Proposition 2.19 gives that A1, . . . , An are vector space isomorphisms. By (2.12), an easy

induction argument yields

B−
i = −

 n∑
j=i

(AiAi+1 · · ·Aj−1)ajbj(A
−1
j A−1

j−1 · · ·A
−1
i )

 , i = 1, . . . , n. (2.62)

We define operators

ay : Cn −−→ Cd
′
m , by : Cd

′
m −−→ Cn (2.63)

via the matrices

ay =
(
a1 A1a2 . . . A1 · · ·An−1an

)
, by =



b1A
−1
1

b2A
−1
2 A−1

1
...

bn−1A
−1
n−1 . . . A

−1
1

bnA
−1
n . . . A−1

1


.

Note that (2.62) in case i = 1 is equivalent to B−
1 = −ayby.

The χ-stability criterion from Proposition 2.37 can be reformulated in terms of the fol-

lowing surjectivity conditions:

Lemma 2.65. The point y is χ-stable if and only if the operators ay, C2, . . . , Cm are all

surjective.

Proof. We write W = WD̃(d1,...,dm;n). If y is χ-stable then, by Proposition 2.37, we have

im(Cm · · ·C2ay)⊕ . . .⊕ im(C2ay)⊕ im(ay)⊕WXm+2 ⊕ . . .⊕WXm+n+1 = W.

This is equivalent to the surjectivity of ay, C2, . . . , Cm. Conversely, suppose ay, C2, . . . , Cm

are all surjective. Let W ′ ⊂ W be a graded subspace satisfying the conditions of Proposi-

tion 2.37. Then, as W ′ is invariant under all Ai and contains a1(1), . . . , an(1), we deduce

W ′
m+1 = im(ay) = Wm+1. Since C2, . . . , Cm are surjective, we get W ′

j = Wj , for j < m.

As all Ai induce vector space isomorphisms Wm+1+i/W
′
m+1+i

∼−→ Wm+i/W
′
m+i, we also get

W ′
i = Wi, for i > m

In particular, Lemma 2.65 implies that we have a morphism of varieties

m̃−1(0)s −−→ F (d1, . . . , dm;n)

given as

y = ((Ai, B
−
i , B

+
i , ai, bi)i, (Cj , Dj)j) 7→ Fy = (0 ⊂ Ey,1 ⊂ . . . ⊂ Ey,m ⊂ Cn), (2.64)

where Ey,i := ker(Ci · · ·C2ay). As before, let Ey,0 = 0 and Ey,m+1 = Cn. Form (2.62) follows

that the operator byay is compatible with respect to the flag Fy in the following sense:

Lemma 2.66. We have byay(Ey,i) ⊂ Ey,i−1 for i = 1, . . . ,m+ 1.

Proof. If v ∈ ker(Ci · · ·C2ay) then (2.62) implies Ci−1 · · ·C2aybyayv = −Ci−1 · · ·C2B
−
1 ayv.

By (2.33), we have −Ci−1 · · ·C2B
−
1 ayv = Ci−1 · · ·C2D2C2ayv = DiCi · · ·C2ayv = 0 which

completes the proof.
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2.5. Cotangent bundles of flag varieties as bow varieties

By combining (2.64) and Lemma 2.66, we can realize T ∗F (d1, . . . , dm;n) as bow variety:

Theorem 2.67. There is an isomorphism of varieties

H : C(D̃(d1, . . . , dm;n))
∼−−→ T ∗F (d1, . . . , dm;n),

given by

[y] = [(Ai, B
−
i , B

+
i , ai, bi)i, (Cj , Dj)j ] 7→ (Fy, byay).

For the proof, we use the following basic lemma from linear algebra:

Lemma 2.68. Let 0 ≤ d ≤ n and f , f ′ ∈ Hom(Cn,Cd) be surjective with ker(f) = ker(f ′).

Then, there exists g ∈ GL(d) such that gf = f ′.

Proof. Choose standard basis vectors ei1 , . . . , eid of Cn such that (f(ei1), . . . , f(eid)) is a basis

of Cd. Thus,

⟨ei1 , . . . , eid⟩ ⊕ ker(f) = Cn. (2.65)

As ker(f) = ker(f ′), (2.65) gives that also (f ′(ei1), . . . , f ′(eid)) is a basis of Cd. Define

g ∈ GL(d) via g(f(eij )) = f ′(eij ), for j = 1, . . . , d. To conclude gf = f ′, it remains to show

g(f(ek)) = f ′(ek), for k ̸= i1, . . . , id. By (2.65), we can write

ek =
( d∑
j=1

λijeij

)
+ v, λij ∈ C, v ∈ ker(f).

Hence, as ker(f) = ker(f ′), we conclude

g(f(ek)) =
d∑
j=1

λijg(f(eij )) =
d∑
j=1

λijf
′(eij ) = f ′(ek)

which proves gf = f ′.

Proof of Theorem 2.67. By (2.64) and Lemma 2.66, H is a well-defined morphism of varieties.

By Proposition 2.25, H is an isomorphism if and only if H is bijective. For injectivity, suppose

that H([y]) = H([y′]), where

[y] = [(Ai, B
−
i , B

+
i , ai, bi)i, (Cj , Dj)j ]

and

[y′] = [(A′
i, (B

′)−i , (B
′)+i , a

′
i, b

′
i)i, (C

′
j , D

′
j)j ].

Let ay, a
′
y′ , by and b′y′ be as in (2.63). By Lemma 2.65, the operators ay, C2, . . . , Cm and a′y′ ,

C ′
2, . . . , C

′
m are all surjective. Thus, as Fy = Fy′ , Lemma 2.68 gives that after applying the

action of a suitable element in G, we have A1 = . . . = An = A′
1 = . . . = A′

n = id, ay = ay′

and Cj = C ′
j , for all j. Since byay = b′y′a

′
y′ = b′y′ay, we conclude by = b′y′ . Thus, by (2.62),

B−
i = (B′)−i as well as B+

i = (B′)+i , for all i. Finally, we prove via induction on j that

Dj = D′
j , for j = 2, . . . ,m. The base case j = 2 follows from (2.33):

D2C2 = −B−
1 = −(B′)−1 = D′

2C
′
2 = D2C2.
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2. Geometry of bow varieties

As C2 is surjective, we conclude D2 = D′
2. If j > 2, (2.33) and the induction hypothesis yield

DjCj = Cj−1Dj−1 = C ′
j−1D

′
j−1 = D′

jC
′
j = D′

jCj .

Again, the surjectivity of Cj gives Dj = D′
j . Hence, we proved [y] = [y′] which gives that H is

injective. For surjectivity, let (F , f) ∈ T ∗F (d1, . . . , dm;n). Write F = (0 ⊂ E1 ⊂ . . . ⊂ Em ⊂
Cn). Choose a : Cn → Cd′1 and Ci : Cd

′
i−1 → Cd′i , for i = 2, . . . ,m such that E1 = ker(a)

and Ei = ker(Ci . . . C2a), for i = 2, . . . ,m. This implies that a, C2, . . . , Cm are all surjective.

Since a is surjective and E1 ⊂ ker(f), there exists b : Cd′1 → Cn such that ba = f . Let

a1, . . . , an be the column vectors of a and b1, . . . , bn be the row vectors of b. Then, we set

Ai := id
Cd′1

, B−
i := −

( n∑
j=i

aibj

)
, B+

i := B−
i−1, for i = 1, . . . , n. (2.66)

Finally, we inductively construct operators Di : Cd
′
i → Cd

′
i−1 , for i = 2, . . . ,m such that

C2D2 = −B−
1 , and CiDi = Di−1Ci−1, i = 2, . . . ,m. (2.67)

For the base case i = 2 note that as f(E1) ⊂ f(E2), we have ker(C2a) ⊂ ker(B−
1 a). Thus,

ker(C2) ⊂ ker(B−
1 ) and hence there exists a unique D2 : Cd′2 → Cd′1 such that D2C2 = −B−

1 .

Now, for i > 0 the induction hypothesis gives

Ci−1Di−1Ci−1Ci−2 . . . C2a = Ci−1Ci−2 . . . C2af.

As f(Ei) ⊂ Ei−1, we conclude that the kernel of the above operator contains Ei. Since

Ci−1, . . . , C2, a are all surjective, this implies ker(Ci) ⊂ ker(Ci−1Di−1). Thus, there exists a

unique Di : Cd
′
i → Cd

′
i−1 such that DiCi = Ci−1Di−1. Now, by (2.66), the point

y = ((Ai, B
−
i , B

+
i , ai, bi)i, (Cj , Dj)j) ∈ VD̃(d1,...,dm;n)

satisfies (2.12). As all Ai are isomorphisms, y also satisfies (S1) and (S2). Thus, y is contained

in M̃(D̃(d1, . . . , dm;n)). By (2.67), we further have y ∈ m̃−1(0) and Lemma 2.65 gives that

y is χ-stable. Hence, [y] is indeed a point on C(D) which satisfies H([y]) = (F , f). Thus, H

is also surjective which proves that H is an isomorphism of varieties.

The T = (A× C∗
h)-action from (2.49) and (2.51) on C(D) induces the following T-action

on T ∗F (d1, . . . , dm;n):

t.(F , f) = (d(t)(F), d(t)fd(t)−1), h.(F , f) = (F , hf),

where t = (t1, . . . , tn) ∈ A, (F , f) ∈ T ∗F (d1, . . . , dm;n) and d(t) is the diagonal operator such

that d(t)(ei) = tiei for i = 1, . . . n, where e1, . . . , en denote the standard basis vectors of Cn.

Matching of tautological bundles

For i = 1, . . . ,m, let

Si = {(F = (0 ⊂ E1 ⊂ . . . ⊂ Em ⊂ Cn), v) | v ∈ Ei} ⊂ F (d1, . . . , dm;n)× Cn
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2.5. Cotangent bundles of flag varieties as bow varieties

be the i-th tautological bundle and Qi = (F (d1, . . . , dm;n) × Cn)/Si the corresponding

quotient bundle. By abuse of language, we also denote the pullbacks of Si and Qi to

T ∗F (d1, . . . , dm;n) by Si and Qi. The T-action on T ∗F (d1, . . . , dm;n) induces a T-action

on Si:
(t, h).(F , f, v) = (d(t)(F), hd(t)fd(t)−1, d(t)v), (t, h) ∈ T.

Likewise, we get an induced T-action on Qi:

(t, h).(F , f, [w]) = (d(t)(F), hd(t)fd(t)−1, [d(t)w]), (t, h) ∈ T.

In this way, Si and Qi become T-equivariant vector bundles.

The next theorem states that (up to an equivariant twist) the quotient bundles Qi corre-

spond to tautological bundles of C(D̃(d1, . . . , dm;n)):

Theorem 2.69. There is an isomorphism

H̃ : ξm+2−i
∼−−→ Qi ⊗ Ch1−i ,

of T-equivariant vector bundles over T ∗F (d1, . . . , dm;n) given as

H̃[(y, w)] = (Fy, byay, I−1
y,i (w)),

where y = ((Ai, B
−
i , B

+
i , ai, bi)i, (Cj , Dj)j) ∈ m̃−1(0)s, w ∈ Wm+2−i = Cd′i and the vector

space isomorphism Iy,i : Cn/Ey,i
∼−→ Cd′i is induced by Ci . . . C2a.

Proof. Theorem 2.67 gives that H̃ is bijective and hence an isomorphism by Proposition 2.25.

The identity I(t,h).y = hi−1Iyd(t)−1 for all (t, h) ∈ T implies that H̃ is indeed T-equivariant.

Realization via separated brane diagrams

In some situations, it is convenient to work with the following bow variety realization of

T ∗F (d1, . . . , dm;n) corresponding to a separated brane diagram: By construction, the brane

diagram D̃(d1, . . . , dm;n) admits the margin vectors

r = (n− d′1, d′1 − d′2, d′2 − d′3, . . . , d′m−1 − d′m, d′m), c = (1, 1, . . . , 1).

Thus, by Corollary 2.60, D̃(d1, . . . , dm;n) is Hanany–Witten equivalent to the separated brane

diagram D(d1, . . . , dm;n) which is defined as

0 d′m d′m−1 d′1 n n− 1 1 0 (2.68)

Note that D(d1, . . . , dm;n) is obtained from D̃(d1, . . . , dm;n) via Hanany–Witten transitions

by moving V1 to the left of U1, . . . , Un. Let

Φ: C(D̃(d1, . . . , dm;n))
∼−−→ C(D(d1, . . . , dm;n)). (2.69)

be the corresponding Hanany–Witten isomorphism from Proposition 2.52. Then,

H ′ := H ◦ Φ−1 : C(D(d1, . . . , dm;n))
∼−−→ T ∗F (d1, . . . , dm;n) (2.70)

is a ρ-equivariant isomorphism of varieties, where ρ is the automorphism of T given by

(t1, . . . , tn, h) 7→ (t1h
−1, . . . , tnh

−1, h).
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Chapter 3

Torus fixed points of bow varieties

In this chapter, we study the action and in particular the torus fixed points if the torus

action from Section 2.3. Recall that a bow varietiy C(D) is equipped with an action of a

torus T = A × C∗
h, where A leaves the symplectic form ω′ on C(D) invariant whereas C∗

h

scales ω′. Nakajima proved in [Nak18, Theorem A.5] that this torus action admits only

finitely many fixed points by first giving a classification of the A-fixed points in terms of

certain versions of Maya diagrams or equivalently partitions. The fact that C(D)A is finite

directly implies C(D)A = C(D)T.

In this chapter, we recall this classification of T-fixed points of bow varieties using the

language of tie diagrams from [RS20] and [Sho21]. We begin by describing the underlying

combinatorics and the resulting explicit construction of T-fixed points. We will in particular

see in Section 3.3 that this classification of T-fixed points is well-behaved with respect to

Hanany–Witten transition. Hereafter, we consider in Section 3.4 the classification of T-

fixed points in the special case of cotangent bundles of partial flag varieties. We match the

classification of torus fixed points in terms of tie diagrams with the classical parameterization

in terms of symmetric (i.e. Weyl) group elements. In the last part of this chapter we follow

[Nak18, Theorem A.5] to prove the Generic Cocharacter Theorem (Theorem 3.23) which

states that the fixed point locus corresponding to any generic one-parameter subgroup of A
coincides with C(D)T. This result will be crucial in the study of attracting cells in Chapter 4

and of stable envelopes of bow varieties in Chapter 5.

3.1 Tie data and tie diagrams

Following [RS20, Section 4], we associate combinatorial objects to brane diagrams.

Definitions

Let D be a brane diagram and recall the total order ◁ on the set of lines in D from (2.27).

Given a pair (Y1, Y2) of colored lines and a black line X in D with Y1 ◁ Y2, we say that the

pair (Y1, Y2) covers X if Y1 ◁ X ◁ Y2.

Definition 3.1. A Tie data with underlying brane diagram D is the data of D together with

a set D of pairs of colored lines of D such that the following holds:
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3. Torus fixed points of bow varieties

� If (Y1, Y2) ∈ D then Y1 ◁ Y2.

� If (Y1, Y2) ∈ D then either Y1 is blue and Y2 is red, or Y1 is red and Y2 is blue.

� For all black lines X of D, the number of pairs in D covering X is equal to dX .

We denote by Tie(D) the set of all tie data associated to D.

As D is usually a fixed underlying brane diagram, we just refer to a tie data associated

to D just by the set D.

We visualize such a tie data D by attaching to the brane diagram D dotted curves con-

necting a red line with a blue line according to the following algorithm: We consider all pairs

(Y1, Y2) ∈ D of one red and one blue line.

� If Y1 is blue and Y2 is red, we draw a dotted connection below the diagram D.

� If Y1 is red and Y2 is blue, we draw a dotted connection above the diagram D.

The resulting diagram is called the tie diagram of D and the dotted curves are called ties.

Conversely, a diagram with connections between red and blue lines, drawn from red to blue

at the top and from blue to red at the bottom, is a visualization of a tie data, if and only if

each black line X is covered from the top and bottom by a total number of dX arcs.

Example 3.2. Let D be the brane diagram

0 2 2 3 2 0

Then, the pairs D = {(V2, U1), (V2, U3), (U1, V1), (U2, V1), (V1, U3)} give the data of a tie

diagram which is visualized by

0 2 2 3 2 0

Note that for instance the first label 2 corresponds to the two curves covering it from above,

whereas the second label 2 corresponds to one curve running above and one curve running

below it.

As tie data and their corresponding tie diagrams are in obvious one-to-one correspondence,

we do not distinguish between them.

Non-negativity of margin vectors

One can easily verify that not every brane diagram can be extended to a tie diagram. However,

if we can extend a given brane diagram D to a tie diagram, we have the following non-

negativity result for margin vectors: For this, recall that M = |r(D)| and N = |b(D)| from

Notation 2.32 and the definition of the margin vectors r = (r1, . . . , rM ) and c = (c1, . . . , cN )

associated to D from Definition 2.58.
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3.1. Tie data and tie diagrams

Lemma 3.3. If D can be extended to a tie diagram then ri ≥ 0 and cj ≥ 0, for all i =

1, . . . ,M , j = 1, . . . , N .

Proof. For D ∈ Tie(D) and Vi ∈ r(D), we have

dV +
i
− dV −

i
= |{U ∈ b(U) | (Vi, U) ∈ D}| − |{U ∈ b(U) | (U, Vi) ∈ D}|.

Since ri = dV +
i
− dV −

i
+ |{U ∈ b(U) | U ◁ Vi}|, we thus deduce

ri = |{U ∈ b(U) | (Vi, U) ∈ D}|+ |{U ∈ b(U) | (U, Vi) /∈ D}|.

This implies ri ≥ 0. The proof for cj ≥ 0 is analogous.

Binary contingency tables

Let D still be a fixed brane diagram with margin vectors r and c.

Next, we give an equivalent definition of tie diagrams in terms of matrices with entries

in {0, 1}. As we will see in Proposition 3.18, these matrices are well-behaved with respect to

Hanany–Witten transition.

Definition 3.4. Let bct(D) denote the set of all M × N matrices B with entries in {0, 1}
satisfying following row and column sum conditions:

�

∑N
j=1Bi,j = ri, for all i ∈ {1, . . . ,M},

�

∑M
i=1Bi,j = cj , for all j ∈ {1, . . . , N}.

The elements of bct(D) are called binary contingency tables of D.

The binary contingency tables of D encode the tie diagrams of D:

Proposition 3.5. There is a bijection

M : Tie(D)
1:1←−−→ bct(D), D 7→M(D),

where

M(D)i,j =



1 if (Vi, Uj) ∈ D, Vi ◁ Uj ,

1 if (Uj , Vi) /∈ D, Uj ◁ Vi,

0 if (Vi, Uj) /∈ D, Vi ◁ Uj ,

0 if (Uj , Vi) ∈ D, Uj ◁ Vi.

(3.1)

The inverse of M is given by bct(D) → Tie(D), B 7→ DB, where DB := D′
B ∪ D′′

B and

D′
B = {(Vi, Uj) | Vi ◁ Uj , Bi,j = 1}, D′′

B = {(Uj , Vi) | Uj ◁ Vi, Bi,j = 0}.

Proof. We first show that for all D ∈ Tie(D), the matrix M(D) is indeed contained in bct(D),

i.e. M(D) satisfies the required row and column sum conditions. Let Vi ∈ r(D). Then, we

have
N∑
j=1

M(D)i,j = |{U ∈ b(D) | (Vi, U) ∈ D}|+ |{U ∈ b(D) | (U, Vi) /∈ D}|. (3.2)
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3. Torus fixed points of bow varieties

Since D is a tie diagram, we have

dV +
i
− dV −

i
= |{U ∈ b(D) | (Vi, U) ∈ D}| − |{U ∈ b(D) | (U, Vi) ∈ D}|.

This implies (3.2) = dV +
i
− dV −

i
+ |{U ∈ b(U) | U ◁ Vi}| = ri and thus proves the row

sum condition for M(D). The column sum condition follows along similar lines and hence

M(D) ∈ bct(D). Next, we prove that DB ∈ Tie(D), for all B ∈ bct(D). For this, we show

via induction on l that

dXl
= |{(Y1, Y2) ∈ DB | Y1 ◁ Xl ◁ Y2}|, for all Xl. (3.3)

The case l = 1 is clear. For the induction step, suppose that V = X−
l is red. The row sum

condition for B gives

|{U ∈ b(D) | (V,U) ∈ DB}|+|{U ∈ b(D) | (U, V ) /∈ DB}| = dV +−dV −+|{U ∈ b(D) | U◁V }|.

This is equivalent to |{U ∈ b(D) | (V,U) ∈ DB}|+ |{U ∈ b(D) | (U, V ) ∈ DB}| = dV + −dV − .

With the induction hypothesis,

dV − = |{(Y1, Y2) ∈ DB | Y1 ◁ Xl−1, Xl ◁ Y2}|+ |{U ∈ b(D) | (U, V ) ∈ DB}|.

Thus, we obtain

dV + = |{(Y1, Y2) ∈ DB | Y1 ◁ Xl−1, Xl ◁ Y2}|+ |{U ∈ b(D) | (V,U) ∈ DB}|

= |{(Y1, Y2) ∈ DB | Y1 ◁ Xl ◁ Y2}|.

Thus, we proved (3.3). The case where X−
l is blue is analogous. Hence, we conclude that

DB is indeed a tie diagram over D. Finally, (3.1) yields M(DB) = B, for all B ∈ bct(D) and

DM(D) = D, for all D ∈ Tie(D) which proves the proposition.

Separating line

The separating line of a binary contingency table B is a useful tool to illustrate the cor-

responding tie diagram DB from Proposition 3.5. It is constructed as follows: Draw the

matrix B into a coordinate system, where the entry Bi,j is put into the square box with side

length 1 and south-west corner at (M − i, j−1). Then, we define points p0, . . . , pM+N in this

coordinate system via p0 = (0, 0) and

pi =

pi−1 + (1, 0) if X−
i is blue,

pi−1 + (0, 1) if X−
i is red,

for i = 1, . . . ,M + N . The separating line SB of B is then obtained by connecting each pi

with pi+1 by a straight line.

We can illustrate DB using the following algorithm:

� For each (i, j) such that Bi,j = 1 and the entry Bi,j lies below SD, draw a dotted curve

connecting Vi and Uj .
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3.2. Classification of torus fixed points

� For each (i, j) such that Bi,j = 0 and the entry Bi,j lies above SD, draw a dotted curve

connecting Vi and Uj .

Example 3.6. Let D and D be as in Example 3.2. The corresponding binary contingency

table M(D) with separating line is given as

V3

V2

V1

U1 U2 U3 U4

0 0 1 1

0 1 1 0

1 0 0 1

3.2 Classification of torus fixed points

Next, we follow [RS20, Section 4] to associate to each tie diagram D over a given brane

diagram D a T-fixed point xD ∈ C(D). This assignment then gives the desired classification

result from [Nak18, Theorem A.5]:

Theorem 3.7 (Classification of T-fixed points). There is a bijection

Tie(D) C(D)T.1:1

The explicit assignment D 7→ xD is given in Definition 3.12 below.

We prove Theorem 3.7 in Section 3.5 as a consequence of the Generic Cocharacter Theo-

rem.

We now come to the explicit construction of the T-fixed point xD, for D ∈ Tie(D).

For the convenience of the reader, we give self-contained reproofs of statements used in the

construction of xD with special emphasis on the stability properties of the involved quiver

representations.

Butterfly diagrams

Given a tie diagram D ∈ Tie(D), we first assign to D a family of colored graphs which are

called butterfly diagrams. Based on the structure of these butterfly diagrams, we then define

in the subsequent subsection the T-fixed point xD in terms of matrices.

We first define the vertex set of the butterfly diagrams. For this, recall notation from

Notation 2.32.

Definition 3.8. Let D be a tie diagram and U be a blue line in D. Let J ∈ {1, . . . ,M +N}
such that U− = XJ . The set V (D,U) of butterfly vertices corresponding to D and U is a

finite subset of Z2, where a point (j1, j2) ∈ Z2 is contained in V (D,U) if and only if the

following conditions (i)–(iii) are satisfied:

(i) 2− J ≤ j1 ≤M +N − J ,

(ii) cD,U,Xj1+J
≤ j2 < cD,U,Xj1+J

+ dD,U,Xj1+J
,

(iii) dD,U,Xj1+J
̸= 0.
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3. Torus fixed points of bow varieties

Here, cD,U,X and dD,U,X are integers, depending on a black line X = Xj , defined as follows:

dD,U,X :=

|{V ∈ r(D) | (V,U) ∈ D,V ◁ X}| if X ◁ U ,

|{V ∈ r(D) | (U, V ) ∈ D,V ▷ X}| if X ▷ U.

For Xj ◁ U , we define cD,U,Xj recursively via cD,U,XJ
= 0 and for 2 ≤ j < J as

cD,U,Xj
:=


cD,U,Xj+1 if X+

j is blue,

cD,U,Xj+1 if X+
j is red and dD,U,Xj + 1 = dD,U,Xj+1 ,

cD,U,Xj+1 − 1 if X+
j is red and dD,U,Xj = dD,U,Xj+1 .

In case Xj ▷ U , we set

cD,U,Xj
:= dD,U,XJ+1

− dD,U,Xj .

We call the elements of V (D,U) the butterfly vertices, the integers cD,U,Xj the column bottom

indices and the dD,U,Xj the column heights of D and U .

Example 3.9. Let D be the following tie diagram:

0 1 2 3 3 5 4 2 2 0

We pick U = U2. In order to determine the integers dD,U,X , we remove all ties not connected

to U2 and count for each black line X the number of ties which cover X:

0 1 2 2 2 3 2 1 1 0

The resulting numbers dD,U,Xj are the new labels. We denote the underlying brane diagram

by DD,U . The column bottom indices cD,U,Xj are

j 2 3 4 5 6 7 8 9

cD,U,Xj −1 −1 0 0 0 0 1 1

62



3.2. Classification of torus fixed points

Following Definition 3.8, we draw the elements of V (D,U) as dots into the coordinate plane.

For better illustration, we draw the coordinate plane below the brane diagram DD,U .

0 1 2 2 2 3 2 1 1 0

1

1

Let still D be a tie diagram and U a fixed blue line in D.

Definition 3.10. A butterfly diagram for (D,U) is a finite, directed, colored graph with

colors black, blue, red, violet and green with vertex set V (D,U).

We assign to each pair (D,U) a butterfly diagram b(D,U). To encode the vertices in the

diagram, we first define subsets of V (D,U):

V +
b = {(i, j) ∈ V (D,U) | X+

i+J ∈ b(D)}, V −
b = {(i, j) ∈ V (D,U) | X−

i+J ∈ b(D)},

V +
r = {(i, j) ∈ V (D,U) | X+

i+J ∈ r(D)}, V −
r = {(i, j) ∈ V (D,U) | X−

i+J ∈ r(D)}.

In addition, we set Vb = V +
b ∪ V

−
b and Vr = V +

r ∪ V −
r . The colored arrows of b(D,U) are

recorded in Table 3.1.

Color Arrows of b(D,U)

black (i, j − 1)← (i, j) (i, j), (i, j − 1) ∈ Vb
blue (i− 1, j)←(i, j) (i, j) ∈ V −

b , (i− 1, j) ∈ V +
b

red (i+ 1, j)←(i, j) (i, j) ∈ V +
r , (i+ 1, j) ∈ V +

r

violet (i− 1, j − 1)←(i, j) (i, j) ∈ V −
r , (i− 1, j − 1) ∈ V +

r

green
(0, dD,U,U−)←∗ if dD,U,U− ̸= 0
∗←(1, dD,U,U− + 1) if dD,U,U− < dD,U,U+

Table 3.1: Arrows of the butterfly diagram b(D,U).

If for instance (D,U) are as in Example 3.9 then the corresponding butterfly diagram

b(D,U) is illustrated in Figure 3.1. For further examples of butterfly diagrams see [RS20,

Section 4.6].

From butterfly diagrams to torus fixed points

Next, we associate to a given tie diagram D and its butterfly diagrams b(D, U) the associated

T-fixed point xD by interpreting the dots as basis elements and the arrows as vector space
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3. Torus fixed points of bow varieties

0 1 2 2 2 3 2 1 1 0

∗

Figure 3.1: Butterfly diagram b(D,U), for (D,U) as in Example 3.9

.

homomorphisms: Let FD,U =
⊕

i,j∈ZCeU,i,j and let CD,U = C. Assume a is an arrow in

b(D,U) which is not green. Denote by (i1, j1) the source of a and by (i2, j2) the target of a.

Then, we assign to a the vector space endomorphism

φa : FD,U −−→ FD,U , φa(eU,i,j) =

eU,i2,j2 if i = i1, j = j1,

0 otherwise.

By construction, b(D,U) admits at most one green arrow starting in ∗ and at most one green

arrow ending in ∗. If b(D,U) admits a green arrow a starting in ∗ and ending in (i, j) we

assign to a the vector space homomorphism

ψa : CD,U −−→ FD,U , ψa(1) = eU,i,j .

If b(D,U) admits a green arrow b starting in (i1, j1) and ending in ∗, we assign to b the vector

space homomorphism

ψ′
b : FD,U −−→ CD,U , ψ′

b(eU,i,j) =

1 if i = i1, j = j1,

0 otherwise.

The column indices of the butterfly vertices define finite dimensional subspaces of FD,U :

FD,U,Xi
:= ⟨eU,i−J,j | (i− J, j) ∈ V (D,U)⟩, for all Xi ∈ h(D).

In addition, we set

FX :=
⊕

U∈b(D)

FD,U,X , for X ∈ h(D).

Let U ′ be a blue line of D and J ′ ∈ {1, . . . ,M+N} such that XJ ′ = (U ′)−. Using the colored

arrows of b(D,U), we define linear operators

AD,U,U ′ ∈ Hom(FD,U,XJ′+1
, FD,U,XJ′ ), B+

D,U,U ′ ∈ End(FD,U,XJ′+1
), B−

D,U,U ′ ∈ End(FD,U,XJ′ )
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3.2. Classification of torus fixed points

as

AD,U,U ′(eU,J ′−J+1,j) =
∑

a∈blue(D,U,J ′)

φa(eU,J ′−J+1,j),

B+
D,U,U ′(eU,J ′+1−J,j) =

∑
a∈black(D,U,J ′+1)

(−1)φa(eU,J ′+1−J,j),

B−
D,U,U ′(eU,J ′−J,j) =

∑
a∈black(D,U,J ′)

(−1)φa(eU,J ′−J,j).

Here and in the following, for any color c, we denote by c(D,U, j) the set of arrows colored

c in b(D,U) with first coordinate of the target equal to j.

Next, we analogously construct linear operators for each red line. Given a red line V in

D and I ∈ {1, . . . ,M +N} such that XI = V −, we define linear operators:

CD,U,V ∈ Hom(FD,U,XI+1
, FD,U,XI

) and DD,U,V ∈ Hom(FD,U,XI
, FD,U,XI+1

)

via the formulas

CD,U,V (eU,I−J+1,j) =
∑

a∈violet(D,U,I−J)

φa(eU,I−J+1,j), DD,U,V (eU,I−J,j) =
∑

a∈red(D,U,I−J+1)

φa(eU,I−J,j).

Finally, we also define homomorphisms

aD,U ∈ Hom(CU , FD,U,U−) and bD,U ∈ Hom(FD,U,U+ ,CU ), (3.4)

aD,U (1) =

ψa(1) if greenout(D,U) = {a},

0 if greenout(D,U) = ∅,

bD,U (eU,i,j) =

ψ′
b(eU,i,j) if greenin(D,U) = {b},

0 if greenin(D,U) = ∅,

where greenin(D,U) and greenout(D,U) are the sets of green arrows starting respectively

ending in the additional vertex ∗.
Combining the above pieces, we now define the point xD. For this, recall the notation

from Section 2.3.

Proposition 3.11. For D ∈ Tie(D), we set

yD := ((AD,U , B
−
D,U , B

+
D,U , aD,U , bD,U )U , (CD,V , DD,V )V ) ∈ VD,

where

AD,U =
⊕

U ′∈b(D)AD,U ′,U , B+
D,U =

⊕
U ′∈b(D)B

+
D,U ′,U , B−

D,U =
⊕

U ′∈b(D)B
−
D,U ′,U ,

CD,V =
⊕

U ′∈b(D)CD,U ′,V , DD,V =
⊕

U ′∈b(D)DD,U ′,V

and aU , bU are defined as in (3.4). Then, yD ∈ m̃−1(0)s.
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3. Torus fixed points of bow varieties

Proof. We have to show that yD satisfies (2.33) and (2.36) as well as the stability conditions

(S1), (S2) and the χ-stability criterion from Proposition 2.37. The equations (2.33) and

(2.36) can be directly shown using the definition of yD. So we proceed with proving (S1) and

(S2). Let U ∈ b(D). By definition, (AD,U , B
−
D,U , B

+
D,U , aD,U , bD,U ) satisfies (S1) if AD,U is

injective. So suppose AD,U is not injective. Since the AD,U ′,U are vector space isomorphisms

for U ′ ̸= U , we deduce that the operators

(AD,U,U , B
−
D,U,U , B

+
D,U,U , aD,U , bD,U )

correspond to the diagram

∗

(0, 0)

(0, d0 − 1)

(0, d0)

(1, 0)

(1, d0 − 1)

(1, d0)

(1, d0 + 1)

(1, d1)

We conclude

ker(AD,U ) = ker(AD,U,U ) = ⟨eU,1,d0+1, . . . , eU,1,d1⟩.

Let w ∈ ker(AD,U ) \ {0} and write

w = λ1eU,1,d0+1 + . . .+ λd1−d0eU,1,d1 , λi ∈ C.

Choose l such that λl ̸= 0 and λi = 0, for i < l. Then, we have

bD,U ((B+
D,U )l−1(w)) = (−1)l−1λl ̸= 0.

Thus, ker(AD,U )∩ ker(bD,U ) admits no non-trivial B+
D,U -invariant subspaces which is equiva-

lent to (S1). For (S2) note that ⟨(B−
D,U )i(aD,U (1)) | i ≥ 0⟩ = FD,U,U− . Since all AD,U,U ′ with

U ̸= U ′ are vector space isomorphisms, this implies that the only B−
D,U -invariant subspace

of WU− containing im(AD,U ) and im(aD,U ) is WU− which gives (S2). Finally, we prove that

yD is χ-stable. Suppose T =
⊕

X∈h(D) TX satisfies the conditions of Proposition 2.37. To

prove that T = WD, we show that T contains all FD,U,X , for X ∈ h(D) and U ∈ b(D).

Let U ∈ b(D) and write U− = XJ . Since aD,U (1) ∈ TU− , we have FD,U,U− ⊂ TU− .

As all AD,U,U ′ and CD,U,V are surjective, for all U ′, V ◁ U , we deduce FD,U,X ⊂ TX , for

all X ∈ h(D) with X ◁ U . By construction, all AD,Ũ,U : FD,Ũ,U+

∼−→ FD,Ũ,U− are vec-

tor space isomorphisms, for Ũ ̸= U . Thus, as AD,U induces an vector space isomorphism

WU+/TU+
∼−→ WU−/TU− , we conclude that FD,U,U+ ⊂ TU+ . Finally, we prove via induc-

tion on i that FD,U,XJ+i
⊂ TXJ+i

for i ≥ 1. The case i = 1 is clear as XJ+1 = U+.
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So suppose i ≥ 2. If V = X−
J+i is red then we have FD,U,XJ+i

⊂ TXJ+i
, as DD,U,V is

surjective. If U ′ = X+
J+i is blue then AD,U,U ′ : FD,U,XJ+i

∼−→ FD,U,XJ+i−1
is an isomor-

phism of vector spaces. By the induction hypothesis, we have FD,U,XJ+i−1
⊂ TXJ+i−1

.

Hence, we conclude FD,U,XJ+i
⊂ A−1

D,U ′(TXJ+i−1
). Since AD,U ′ induces an isomorphism

WXJ+i
/TXJ+i

∼−→ WXJ+i−1
/TXJ+i−1

, we thus have FD,U,XJ+i
⊂ TXJ+i

. Therefore, we proved

that T contains all FD,U,X . Hence, T = WD and yD is χ-stable by Proposition 2.37.

Definition 3.12. We set

xD := [yD] = [(AD,U , B
+
D,U , B

−
D,U , aD,U , bD,U )U , (CD,V , DD,V )V ] ∈ C(D),

where yD is defined as in Proposition 3.11. We call xD the T-fixed point corresponding to D.

The next proposition gives that xD is indeed a T-fixed point of C(D).

Proposition 3.13. Let t = (t1, . . . , tN ) ∈ A and h ∈ C∗
h.

(i) We have t.yD = gt.yD, where gt =
⊕N

i=1 gUi,t ∈ G and gUi,t : FD,Ui → FD,Ui , v 7→ tiv.

(ii) We have h.yD = gh.yD, where gh =
⊕N

i=1 gUi,h ∈ G and

gUi,h : FD,Ui → FD,Ui , eU,i,j 7→ hj−dD,U,U−eU,i,j .

Proof. The assertion (i) follows from the fact that the action of t only affects the operators

aD,U and bD,U . The assertion (ii) is a consequence of the fact that the operators B±
D,U and

CD,U correspond to arrows that lower the second coordinate of the respective vertices by 1,

whereas the operators AD,U and DD,U correspond to arrows whose source and target have

the same second coordinate.

3.3 Associated weight spaces

Next, we consider the fibers of tautological bundles of the points xD. Since xD is a T-fixed

point, these fibers are T-representations. Using the structure of the corresponding weight

spaces, we prove in Proposition 3.16 that two T-fixed points xD and xD′ coincide if and only

if D = D′. Then, we apply this result to characterize the images of the T-fixed points xD

under Hanany–Witten isomorphism.

Recall the definition of the full tautological bundle ξD from Definition 2.46 and its T-

equivariant structure from (2.52). Let

p = [(AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ] ∈ C(D)T.

We identify the fiber ξD,p with WD =
⊕

X∈h(D)WX . In this way, we obtain an induced graded

T-action on WD

ρ : T −−→ G, (t, h) 7→ (ρX(t, h))X (3.5)

satisfying the following action identity in VD, for all (t, h) ∈ T:

ρ(t).((AU , B
−
U , B

+
U , aU ,bU )U , (CV , DV )V )

= ((AU , hB
−
U , hB

+
U , aU t

−1
U , htUbU )U , (hCV , DV )V ).

(3.6)
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We denote the representations (WD, ρ) resp. (WX , ρX) also just by Wp resp. Wp,X to stress

the dependence on the choice of T-fixed point p.

For a character τ : T → C∗ and a black line X in D, let Wp,τ and Wp,τ,X be the corre-

sponding weight space of Wp and Wp,X respectively. The finite-dimensionality of WD implies

Wp =
⊕
τ

Wp,τ =
⊕
τ

⊕
X∈h(D)

Wp,τ,X . (3.7)

Suppose now that p = xD for some D ∈ Tie(D). Then, by Proposition 3.13, we have the

following weight space decomposition

WxD,X =
⊕

U∈b(D)

dD,U,X⊕
l=cD,U,X

hl+1−dD,U,U−CU , for X ∈ h(D), (3.8)

where, as in Section 2.4, CU denotes the T-representation corresponding to the character

((tU ′)U , h) 7→ tU , for U ∈ b(D).

Example 3.14. Consider the brane diagram 0/2/3/4/5\2/3\1/0 with tie diagram D:

0 2 3 4 5 2 3 1 0

We like to employ (3.8) to determine the T-weight space decomposition of all WxD,X . By

Definition 3.8, one can easily read off the column heights dD,U,Xj from this illustration:

j 2 3 4 5 6 7 8

dD,U1,Xj 1 2 3 3 2 1 1

dD,U2,Xj 1 1 1 2 2 3 0

The resulting indices cD,U,j are then given as follows:

j 2 3 4 5 6 7 8

cD,U1,Xj −1 −1 −1 0 0 1 1

cD,U2,Xj −2 −1 0 0 0 0 0

To determine for instance the T-weight decomposition of WxD,X3 , note that since cD,U1,X3 =

−1 and dD,U1,X3 = 2, the contribution of U1 in (3.8) is given by h−3CU1 ⊕ h−2CU1 . Likewise,

as cD,U2,X3 = −1 and dD,U2,X3 = 1, the contribution of U1 in (3.8) is given by h−2CU2 . Con-

sequently, WxD,X3 = h−3CU1 ⊕ h−2CU1 ⊕ h−2CU2 . The other T-weight space decompositions

of the WxD,Xj can be computed in exactly the same way and are recorded in the following

table:
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j WxD,Xj

2 h−3CU1 ⊕ h−4CU2

3 h−3CU1 ⊕ h−2CU1 ⊕ h−3CU2

4 h−3CU1 ⊕ h−2CU1 ⊕ h−1CU1 ⊕ h−2CU2

5 h−2CU1 ⊕ h−1CU1 ⊕ CU1 ⊕ h−2CU2 ⊕ h−1CU2

6 h−2CU1 ⊕ h−1CU1 ⊕ h−2CU2 ⊕ h−1CU2

7 h−1CU1 ⊕ h−2CU2 ⊕ h−1CU2 ⊕ CU2

8 h−1CU1

Reconstructing tie diagrams from weight spaces

We now restrict our attention to weight spaces of Wp corresponding to characters of the

subtorus A ⊂ T. We begin with the following invariance property:

Lemma 3.15 (Invariance property). Let p ∈ C(D)T and τ be a character of A. Then, the

weight space Wp,τ is invariant under all operators AU , B
−
U , B

+
U , CV , DV .

Proof. We only show that Wp,τ is AU -invariant, since the proof for the other operators is

analogous. From (3.6) we deduce ρU−(t)AU (w) = AUρU+(t)(w) = τ(t)AU (w), for t ∈ C∗,

w ∈Wp,τ,U+ . Hence, Wp,τ is AU -invariant.

Now, let p = xD, for some tie diagram D of D. Then, Proposition 3.13 gives

Wp,tU = FD,U , for all U ∈ b(D). (3.9)

Thus, the weight space decomposition (3.7) can be used to distinguish T-fixed points for

different tie diagrams:

Proposition 3.16 (Reconstruction of tie diagrams). We have

xD = xD′ if and only if D = D′.

In the proof we use that a tie diagram is uniquely determined by its column heights:

Lemma 3.17. Let D, D′ ∈ Tie(D). Then, D = D′ if and only if dD,U,X = dD′,U,X , for all

U ∈ b(D), X ∈ h(D).

Proof. The lemma follows form the fact that (V,U) ∈ D if and only if dD,U,V + = dD,U,V − + 1

and that (U, V ) ∈ D if and only if dD,U,V + = dD,U,V − − 1.

Proof of Proposition 3.16. If xD = xD′ then (3.9) gives

dD,U,X = dim(FD,U,X) = dim(FD′,U,X) = dD′,U,X , for U ∈ b(D), X ∈ h(D).

Thus, Lemma 3.17 yields D = D′.
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3. Torus fixed points of bow varieties

Compatibility with Hanany–Witten transition

Next, we apply (3.9) to prove in Proposition 3.18 certain matching identities for the T-

fixed points xD under Hanany–Witten isomorphisms. These matching identities were shown

in [Sho21, Theorem 3.2.10] by analyzing the explicit construction of Hanany–Witten isomor-

phisms from [NT17]. Our proof of these matching identities avoids the explicit construction of

Hanany–Witten isomorphisms and just uses the reconstruction result from Proposition 3.16.

Suppose D HW
⇝ D̃, where D̃ is obtained from D via a local move of the form

Xk−1 Xk Xk+1

VjUi Vj Ui

Xk−1 Xk Xk+1

We denote the corresponding Hanany–Witten isomorphism by Φ: C(D)
∼−→ C(D̃). Corre-

sponding to this Hanany-Witten transition, we define a map

ϕ : Tie(D) −−→ Tie(D̃), ϕ(D) =

D \ {(Uj , Vi)} if (Ui, Vj) ∈ D,

D ∪ {(Vi, Uj)} if (Ui, Vj) /∈ D.
(3.10)

We refer to ϕ as Hanany–Witten transition for tie diagrams. In pictures, ϕ(D) is obtained

from D by performing, in case (Uj , Vi) ∈ D, the local move

Uj Vi Vi Uj

and, in case (Uj , Vi) /∈ D, the local move

Uj Vi Vi Uj

Note that in the first case we removed the tie between Uj and Vi and in the second case

we created a tie between Uj and Vi. This pictorial description of ϕ(D) gives that D and ϕ(D)

admit the same binary contingency tables, i.e. we have

M(D) = M(ϕ(D)), for all D ∈ Tie(D), (3.11)

where M(D) and M(ϕ(D)) are defined as in Proposition 3.5. In particular, we conclude that

the map ϕ in (3.10) is a bijection.

70



3.4. Torus fixed points of cotangent bundles of flag varieties

From the illustration of ϕ we further deduce that the column heights of D and ϕ(D) are

connected as follows:

dϕ(D),U,X =


dD,U,X for X ̸= Xk,

dD,U,Xk−1
+ dD,U,Xk+1

− dD,U,Xk
for X = Xk, U ̸= Uj ,

dD,Ui,Xk−1
+ dD,Ui,Xk+1

+ 1− dD,Ui,Xk
for X = Xk, U = Uj .

(3.12)

Since tie diagrams are uniquely determined by their column heights, we deduce the following

compatibility result between the Hanany–Witten isomorphism Φ and the Hanany–Witten

transition ϕ for tie diagrams:

Proposition 3.18. For all D ∈ Tie(D), we have Φ(xD) = xϕ(D).

Proof. By Theorem 3.7, there exists D̃ ∈ Tie(D̃) such that Φ(xD) = xD̃. By Proposition 2.52,

we have A-equivariant isomorphisms of vector bundles Φ∗(ξD̃,X) ∼= ξD,X , for X ̸= Xk and a

sort exact sequence of A-equivariant vector bundles

0→ ξD,Xk
→ ξD,Xk−1

⊕ ξD,Xk+1
⊕ CUj → Φ∗(ξD̃,Xk

)→ 0. (3.13)

Hence, we obtain dim(WxD̃,tU ,X
) = dim(WxD,tU ,Xl

), for X ̸= Xk. From (3.13) we conclude

dim(WxD̃,tU ,Xk
) = dim(WxD,tU ,Xk−1

) + dim(WxD,tU ,Xk+1
)− dim(WxD,tU ,Xk

), for U ̸= Uj

and also

dim(WxD̃,tUj
,Xk

) = dim(WxD,tUj
,Xk−1

) + dim(WxD,tUj
,Xk+1

) + 1− dim(WxD,tUj
,Xk

).

By (3.9) and (3.12), we conclude dD̃,U,X = dϕ(D),U,X , for all U , X. Therefore, Lemma 3.17

gives D̃ = ϕ(D).

3.4 Torus fixed points of cotangent bundles of flag varieties

It is well-known that the torus fixed points of cotangent bundles of flag varieties are parame-

terized by left cosets of symmetric groups with respect to Young subgroups. In this section,

we illustrate an equivalence between this classification and the classification in terms of tie

diagrams via the realization as bow variety from Theorem 2.67. For this, recall the notation

of Section 2.5.

Consider T ∗F (d1, . . . , dm;n) and let Sn be the symmetric group on n letters. We usually

denote permutations w ∈ Sn in one line notation w = w(1)w(2) . . . w(n). To each w ∈ Sn,

we assign the flag

Fw := ({0} ⊂ ⟨ew(1), . . . , ew(d1)⟩ ⊂ · · · ⊂ ⟨ew(1), . . . , ew(dm)⟩ ⊂ Cn). (3.14)

By construction, (Fw, 0) is a T-fixed point of T ∗F (d1, . . . , dm;n). Moreover, note that Fw =

Fw′ if and only if w′ ∈ wSδ, where Sδ = Sδ1 × . . .× Sδm+1 is the Young subgroup. Thus, we

denote Fw also by FwSδ
. By e.g. [Ful97, Section 10.1], we have a bijection

Sn/Sδ
∼−−→ (T ∗F (d1, . . . , dm;n))T, wSδ 7→ (FwSδ

, 0).
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3. Torus fixed points of bow varieties

In the following, we illustrate an equivalence between this classification of torus fixed

points of T ∗F (d1, . . . , dm;n) and the classification of T ∗F (d1, . . . , dm;n) in terms of tie di-

agrams via its realization as bow variety from Theorem 2.67. Let D̃(d1, . . . , dm;n) be the

brane diagram from Definition 2.64 and

H : C(D̃(d1, . . . , dm;n))
∼−−→ T ∗F (d1, . . . , dm;n)

be the T-equivariant isomorphism from Theorem 2.67. Given w ∈ Sn, we define a tie diagram

D̃w ∈ Tie(D) as D̃w = D̃′
w ∪ D̃′′

w, where

D̃′
w = {(Vi, Uj) | i ∈ {2, 3, . . . ,m+ 1}, j ∈ {w(di−1 + 1), . . . , w(di)}},

D̃′′
w = {(Uj , V1) | j ∈ {w(d1 + 1), w(d1 + 2) . . . , w(n)}}.

Note that D̃w = D̃w′ , for all w′ ∈ wSδ. Thus, we also denote D̃w by D̃wSδ
.

Example 3.19. Let m = 3, d1 = 2, d2 = 4, d3 = 5 and n = 6. Then, the brane diagram

D̃(2, 4, 5; 6) equals 0/1/2/4\4\4\4\4\4\4/0 . Let w ∈ S6 be the permutation w = 253614.

To construct D̃w, note that since d1 = 2, there are no ties in D̃w which are connected to U2

and U5. As d2 = 4, the blue lines U3, U6 are both connected to V1 and V2. Likewise, since

d3 = 5, the blue line U1 is connected to V1 and V3. Finally, n = 6 implies that there are ties

between U4 and V1, V4. Hence, D̃w is illustrated as follows:

0 1 2 4 4 4 4 4 4 4 0

Lemma 3.20. We have a bijection

Sn/Sδ
∼−−→ Tie(D̃(d1, . . . , dm;n)), wSδ 7→ DwSδ

.

Proof. Let D ∈ Tie(D̃(d1, . . . , dm;n)). We set

L1 := {j | (Uj , V1) ∈ D}, Li := {j | (Vi, Uj) ∈ D}, for i = 2, . . . ,m+ 1.

In addition, L0 := {1, . . . , n}. By construction of D̃(d1, . . . , dm;n), we have |L1| = n − d1
and that for each j ∈ L1, there exists exactly one i ∈ {2, . . . ,m + 1} with (Vi, Uj) ∈ D. As

r(D) = δ, we deduce that |Li \ Li+1| = δi+1, for i = 0, . . . ,m. Thus, there exists a unique

left coset cD ∈ Sn/Sδ such that for all w ∈ cD holds

Li \ Li+1 = {w(di + 1), . . . , w(di+1)}, for i = 0, . . . ,m.

This yields DcD = D as well as cDc = c, for all c ∈ Sn/Sδ which proves the lemma.
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The isomorphism H is compatible with the bijection from Lemma 3.20:

Proposition 3.21. For all w ∈ Sn, we have H(DwSδ
) = (FwSδ

, 0).

Proof. As H is T-equivariant, H(DwSδ
) = (FzSδ

, 0), for some z ∈ Sn. We write

FzSδ
= (0 ⊂ E1 ⊂ . . . ⊂ Em ⊂ Cn).

Given j ∈ {w(di + 1), . . . w(di+1)}, the butterfly diagram corresponding to DwSδ
and Uj is

given as

UjVi
01111110

∗

Hence, ej ∈ Ei and ej /∈ E1, . . . , Ei−1 which implies FwSδ
= Fzδ . Thus, we have wSδ =

zSδ.

Fixed point matching in the separated case

Let D(d1, . . . , dm;n) be the brane diagram from (2.68). Let

Φ: C(D̃(d1, . . . , dm;n))
∼−−→ C(D(d1, . . . , dm;n)),

ϕ : Tie(D̃(d1, . . . , dm;n))
∼−−→ Tie(D(d1, . . . , dm;n))

be the associated Hanany–Witten isomorphism and the Hanany–Witten transition on tie

diagrams. For w ∈ Sn, we define a tie diagram Dw ∈ Tie(D) via the rule

(Vi, Uj) ∈ Dw ⇔ j ∈ {w(di−1 + 1), . . . , w(di)}. (3.15)

By construction, Dw = Dw′ if and only if w′ ∈ wSδ. Thus, we also denote Dw by DwSδ
.

From Proposition 3.18 follows that ϕ is given by

ϕ(D̃wSδ
) = DwSδ

, w ∈ Sn.

Consequently, the isomorphism H ′ = H ◦ Φ−1 : C(D(d1, . . . , dm;n))
∼−→ T ∗F (d1, . . . , dm;n)

satisfies

H ′(xDwSδ
) = (FwSδ

, 0), for all w ∈ Sn. (3.16)

Example 3.22. As in Example 3.19, we choose m = 3, d1 = 2, d2 = 4, d3 = 5 and n = 6.

Thus, D(2, 4, 5; 6) is given by 0/1/2/4/6\5\4\3\2\1\0. Choose w as in Example 3.19. Since

d1 = 2, the blue lines U2 and U5 are connected in Dw to V1. As d2 = 4, the blue lines U3 and
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3. Torus fixed points of bow varieties

U6 are connected to V2. Likewise, d3 = 5 gives that there is a tie between U1 and V3. Finally,

n = 6 implies that U4 is connected to V4. Therefore, we can illustrate Dw as follows:

0 1 2 4 6 5 4 3 2 1 0

3.5 The Generic Cocharacter Theorem

Let D be a fixed brane diagram and

σ : C∗ −−→ A, t 7→ (σU (t))U

be a cocharacter. We call σ generic if σU ̸= σU ′ , for U ̸= U ′. In addition, we set

C(D)σ := {x ∈ C(D) | σ(t).x = x, for all t ∈ C∗}.

Theorem 3.23 (Generic Cocharacter Theorem). Let σ : C∗ → A be generic. Then,

C(D)σ = {xD | D ∈ Tie(D)}.

We prove the Generic Cocharacter Theorem in the five subsequent subsections. Before

this, we prove some applications. As a direct consequence, we obtain a proof of Theorem 3.7:

Proof of Theorem 3.7. Let σ be a generic cocharacter of A. As A ⊂ T, we have C(D)T ⊂
C(D)σ. By Proposition 3.13, every xD is also a T-fixed point. Thus, C(D)σ ⊂ C(D)T.

We also obtain a following statement about tangent weights of torus fixed points:

Corollary 3.24 (Tangent weights). Let p ∈ C(D)T and τ be a T-weight of TpC(D). Then,

there exist i, j ∈ {1, . . . , N} with i ̸= j and m ∈ Z such that τ = ti − tj +mh.

Proof. By Corollary 2.48, all tangent weights of TpC(D) are of the form τ ′− τ ′′, where τ ′, τ ′′

are T-weights of Wp. Thus, (3.8) implies that all T-weights are of the form ti− tj +mh, with

i, j ∈ {1, . . . , N} and m ∈ Z. By the Generic Cocharacter Theorem, p is an isolated A-fixed

point. Thus, the equivariant slice theorem, see e.g. [AF23, Theorem 5.1.4], yields that no

A-weight of TpC(D) is trivial. Thus, no T-weight of TpC(D) is of the form mh, for m ∈ Z
which proves the corollary.

Remark. In [FS23, Theorem 3.2], Foster and Shou give an explicit formula for the tangent

weights at T-fixed points for bow varieties corresponding to separated brane diagrams. Its

proof relies on a detailed study of the expression of the T-equivariant K-theory class the

tangent bundle in terms of classes tautological bundles from Corollary 2.48.
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Reduction to separated case

Let σ be a generic cocharacter of A. The next lemma gives that it suffices to prove the

Generic Cocharacter Theorem for bow varieties corresponding to separated brane diagrams.

Lemma 3.25. If the Generic Cocharacter Theorem holds for all C(D) with D separated then

it holds for all C(D), where D is not necessarily separated.

Proof. If C(D) is not empty then, by Proposition 2.55, there exists a separated brane diagram

D̃ with D HW
⇝ D̃. Let Φ: C(D)

∼−→ C(D̃) be the corresponding Hanany–Witten isomorphism.

As Φ is A-equivariant, we deduce

|Tie(D̃)| = |C(D̃)σ| = |C(D)σ|.

In addition, |Tie(D̃)| = |Tie(D)| by Proposition 3.5. Hence, |C(D)σ| = |Tie(D)|. Recall from

Lemma 3.16, that if D ̸= D′ then also xD ̸= xD′ . Thus, {xD | D ∈ Tie(D)} and C(D)σ have

the same cardinality. Therefore, the inclusion {xD | D ∈ Tie(D)} ⊂ C(D)σ is an equality.

Assumption. From now on, we assume that D is a separated brane diagram.

Weight spaces for generic cocharacters

Let p = [(AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ] ∈ C(D)σ. Via σ we view the T-representations

Wp and Wp,X from (3.5) as C∗-representations. For simplicity, we denote weight spaces of

Wp and Wp,X corresponding to a character τ : C∗ → C∗ just by Wτ and Wτ,X . By finite-

dimensionality, we have weight space decompositions

WD =
⊕
τ

Wτ , WX =
⊕
τ

Wτ,X , for X ∈ h(D). (3.17)

By Lemma 3.15, the weight spaces Wτ are all invariant under the operators AU , B±
U , CV and

DV for U ∈ b(D), V ∈ r(D). In the following, we study the weight spaces Wτ and provide a

diagrammatic description of the actions of the operators AU , B±
U , CV , DV on them.

Proposition 3.26. Let U ∈ b(D). Then, the following holds:

(i) im(aU ) ⊂WσU ,U−,

(ii)
⊕

τ ̸=σU Wτ,U+ ⊂ ker(bU ),

(iii) the operator AU induces a C-linear isomorphism Wτ,U+
∼−→Wτ,U−, for all τ ̸= σU .

Proof. By (3.6), we have ρ(t)U+aU (σU (t)−11) = aU (1) and

σU (t)bU (ρ(t)−1
U+w) = bU (w), for all w ∈WU+ , t ∈ C∗

which implies (i), (ii). By (i) (or (ii)), we now know that aUbU vanishes on Wτ,U+ . Hence,

(2.12) gives

B−
UAU (w) = AUB

+
U (w), for all w ∈Wτ,U+ . (3.18)
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In particular, ker(AU |Wτ,U+
) is B+

U -invariant and thus, ker(AU |Wτ,U+
) = 0 by (S1). Next,

we show that AU |Wτ,U+
surjects onto Wτ,U− . By (3.18), im(AU |Wτ,U+

) is stable under the

B−
U -action. By Lemma 3.15 and (i), the subspace

im(AU |Wτ,U+
)⊕

⊕
ν ̸=τ

Wν,U− ⊂WU−

satisfies (S2) and thus equals WU− which proves (iii).

Proposition 3.26 gives the following improvement of (3.17):

Corollary 3.27. We have WD =
⊕

U∈b(D)WσU .

Proof. We have to show Wτ = 0, for each τ with τ ̸= σU , for all U ∈ b(D). But by

Proposition 3.26 and Lemma 3.15, the direct sum
⊕

ν ̸=τ Wν ⊂WD satisfies the conditions of

Proposition 2.37 and hence equals WD. Thus, its complement is zero which gives Wτ = 0.

Bases and diagrammatics for the blue part

Let Ui be a blue line in D. Next, we employ Proposition 3.26 and the stability condition (S2)

to determine bases of the spaces WσUi
,Xj , for j = M + 1, . . . ,M +N + 1. We further describe

the restrictions of the operators AU , B−
U , B+

U with respect to these bases, for all U ∈ b(D).

Corollary 3.28. The following holds:

(i) We have WσUi
,XM+i+1+j

= 0, for j ≥ 1.

(ii) The C-vector space WσUi
,U−

i
is generated by {(B−

Ui
)iaUi(1)|i ≥ 0}.

(iii) The operator AUj induces an isomorphism of vector spaces WσUi
,Xj+1

∼−→ WσUi
,Xj for

M + 1 ≤ j ≤M + i− 1.

Proof. By Proposition 3.26.(iii), the subspaces WσUi
,XM+i+1+j

are mutually isomorphic, for

j ≥ 1. Hence, (i) follows from WXM+N+1
= 0. For (ii), let E := ⟨(B−

Ui
)laUi(1)|l ≥ 0⟩.

Since WσUi
,Ui

+ = 0, the subspace E ⊕
⊕

τ ̸=σUi
Wτ ⊂ WD equals WD by (S2). This implies

E = WσUi
,U−

i
. Statement (iii) is immediate from Proposition 3.26.(iii).

Consider WσUi
,Xj , where M + 1 ≤ j ≤ M + i. Using Corollary 3.28 we define a basis

for WσUi
,Xj as follows: Let r = dim(WσUi

,XM+i
) and we set yM+i := aUi(1) ∈ WσUi

,XM+i
. In

addition, we define recursively yM+i−k := AUi−k
. . . AUi−1yM+i ∈ WσUi

,XM+i−k
, for 1 ≤ k < i

and we set yM+l,k := (−B−
Ul

)kyM+l, for l = 1, . . . , i, k ≥ 0.

Corollary 3.29. Let l ∈ {1, . . . , i}. Then, (yM+l,0, . . . , yM+l,r−1) is a basis of WσUi
,XM+l

.

Proof. By (2.12) and Proposition 3.26.(ii), we have

AUj−1B
−
Uj
w = B−

Uj−1
AUj−1w, for j = 2, . . . , i and w ∈WσUi

,U−
j

. (3.19)

Thus, the corollary follows from the statements (ii) and (iii) from Corollary 3.28.
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We denote the basis (yM+l,0, . . . , yM+l,r−1) of WσUi
,XM+l

by BM+l, for l = 1, . . . , i. Our

previous considerations lead to the following diagrammatic description of the operators AU ,

B−
U , B+

U with respect to this choice of bases:

Corollary 3.30 (Blue operators). The restrictions of the operators (AU ,−B−
U ,−B

+
U )U and

aUi, bUi to WσUi
with respect to the bases BM+1, . . . ,BM+i are illustrated by the following

diagram, where each column contains r dots:

U1 U2 U3 Ui−2 Ui−1 Ui Ui+1

∗

Proof. By Corollary 3.28.(iii), the dimension of the vector spaces WσUi
,Xj match with the

diagram. Proposition 2.56 gives that the operators B−
U are nilpotent. Thus, by Corollary 3.29,

the operators −B−
U (and equivalently −B+

U ) act on the chosen basis as in the diagram.

It follows from (3.19) that also the operators AU act as illustrated in the diagram. By

definition, we have aUi(1) = yM+i,0 and since WσUi
,XM+i+1

= 0, we also have bUi = 0 by

Proposition 3.26.(ii).

Bases and diagrammatics for the red part

Let still Ui be a fixed blue line in D and r = dim(WσU ,U−). Similar to the previous subsection,

we now characterize bases for the weight spaces WσUi
,Xj , for 1 ≤ j ≤ M . Then, we give

diagrammatic descriptions of the restriction of the operators CV , DV with respect to these

particular bases.

At first, we set up some notation. Set

zM+1 := yM+1 ∈WσUi
,XM+1

and define zM+1−j ∈ WσUi
,XM+1−j

recursively as zM+1−j = CVjzM+2−j , for j = 1, . . . ,M .

Let zl,k := (DVM+2−l
CVM+2−l

)kzl, for l = 2, . . . ,M + 1, k ≥ 0. We set El := ⟨zl,k|k ≥ 0⟩ and

E :=
( M⊕
l=2

El

)
⊕
( N⊕
l=1

WσUi
,XM+1+l

)
⊂WσUi

.

Note that by the moment map equation, we have zM+1,k = yM+1,k, for all k ≥ 0.
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Proposition 3.31. We have E = WσUi
.

At first, we investigate how the operators CV , DV act on the elements zk,l:

Lemma 3.32. The following holds:

(i) We have CVM+1−l
zl+1,k = zl,k, for k ≥ 0, l = 1, . . . ,M .

(ii) We have DVM+1−l
zl,k = zl+1,k+1, for k ≥ 0, l = 1, . . . ,M .

Moreover, E is invariant under all AU , B
±
U , CV , DV .

Proof. The assertions (i) and (ii) are immediate from the moment map equations. The

invariance of E under all AU , B−
U , B+

U follows directly from Lemma 3.15. Furthermore, (i)

and (ii) imply that E is invariant under all CV , DV .

The proof of Proposition 3.31 follows now from the stability criterion for bow varieties.

Proof of Proposition 3.31. By Lemma 3.32, the subspace E′ = E⊕
⊕

τ ̸=σUi
Wτ ⊂W satisfies

the conditions of Proposition 2.37 and hence equals W . Thus, we have E = WσUi
.

Proposition 3.31 and its proof lead to the following useful observation:

Corollary 3.33. For V ∈ r(D), the following holds:

(i) The operator CV induces a surjection WσUi
,V + →WσUi

,V −.

(ii) We have either dim(WσUi
,V +) = dim(WσUi

,V −) or dim(WσUi
,V +) = dim(WσUi

,V −) + 1.

Proof. According to Lemma 3.32.(ii) and Proposition 3.31, the image of CV contains a gen-

erating system of WσUi
,V − which gives (i). For (ii), write V = Vl, where l = 1, . . . ,M . By

Lemma 3.32.(i), DVl surjects onto ⟨zM+2−l,k|k ≥ 1⟩. By Proposition 2.56, this is a sub-

space of WσUi
,V + of codimension 1. Combining this with (i), we obtain dim(WσUi

,V +)− 1 ≤
dim(WσUi

,V −) ≤ dim(WσUi
,XV + ). Thus, we conclude (ii).

Now, by Corollary 3.33, there exist k0 := 1 ≤ k1 < . . . < kr ≤ kr+1 := M such that

dim(WσUi
,V +

kj

) = dim(WσUi
,V −

kj

)+1 for j = 1, . . . , r and dim(WσUi
,V +

l
) = dim(WσUi

,V −
l

) in case

kj < l < kj+1 with j = 0, . . . , r. The following corollary is immediate from Proposition 3.31:

Corollary 3.34 (Combinatorial bases). Let Xl ∈ h(D) with Vkj+1
◁Xl ◁Vkj . Then, the vector

space WσUi
,Xl

has basis (zl,0, . . . , zl,r−j−1). We denote this basis by BUi,l.

We now give a diagrammatic description of the operators CV , DV :

Corollary 3.35 (Red operators). The operators CVl, DVl, where l = kj . . . , kj+1 − 1, with

respect to the bases Bkj , . . . ,Bkj+1
are illustrated by the diagram in Figure 3.2.

Proof. By Proposition 2.56, we have zl,k = 0, for k ≥ dim(WσUi
,Xl

). Hence, Lemma 3.32 gives

that the stated operators act on the given bases exactly as illustrated in the diagram.
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Vkj Vl
kj < l < kj+1

Figure 3.2: Diagrammatic description of CVl , DVl in case l = kj , . . . , kj+1 − 1.

Proof of the Generic Cocharacter Theorem

The proof of the Generic Cocharacter Theorem is essentially a consequence of the diagram-

matic description of the operators AU , B±
U , CV , DV from Corollary 3.30 and Corollary 3.35.

Proof of Theorem 3.23. For a given p ∈ C(D)σ, we define a tie diagram D via

(V,U) ∈ D ⇔ dim(WσU ,V +) = dim(WσU ,V −) + 1.

For Ui ∈ b(D), let r, k0, . . . , kr+1 be defined as in the previous subsection. By Corollary 3.28,

we have dD,Ui,Xl
= 0, for l > M + i and dD,Ui,Xl

= r, for M + 1 ≤ l ≤ M + i. Moreover,

Corollary 3.34 gives dD,Ui,Xl
= r − j, for j = 0, . . . , r and Vkj+1 ◁ Xl ◁ Vkj . Thus, dD,Ui,Xl

=

dim(WσUi
,Xl

), for all Xl ∈ h(D) which implies that D is indeed a tie diagram of D. The

corresponding column bottom indices are given by cD,Ui,Xl
= 0, for M + 1 ≤ l ≤ M + i and

cD,Ui,Xl
= l−M−1+j, for Vkj+1

◁Xl ◁Vkj , j = 0, . . . , r. Therefore, the vector spaces FD,Ui,Xl

have bases (eUi,l−M−i,0, . . . , eUi,l−M−i,r−1), for M +1 ≤ l ≤M + i. In case Vkj+1
◁Xl ◁Vkj , for

some j = 0, . . . , r, the vector space FD,Ui,Xl
has the basis (ẽUi,Xl,0, . . . , ẽUi,Xl,r−1−j), where

we set ẽUi,Xl,k := eUi,l−M−i,l−M−2+r−k. Consequently, we can define isomorphisms of vector

spaces ϕUi,Xl
: WσUi

,Xl

∼−→ FD,U,Xl
via

ϕUi,Xl
(yl,k) = eUi,l−M−i,r−k−1, for M + 1 ≤ l ≤M + i, k = 0, . . . , r − 1

and

ϕUi,Xl
(zl,k) = ẽUi,Xl,k, for Vkj+1

◁ Xl ◁ Vkj , k = 0, . . . , j − 1.

For the other Xl, we have WσUi
,Xl

= 0, so we set ϕUi,Xl
:= 0, for Xl ◁ VkM and Xl ▷ Ui. By

Corollary 3.30,

ϕUi,U−AU (w+) = AD,Ui,UϕUi,U+(w+), ϕUi,U−B−
U (w−) = B−

D,Ui,U
ϕUi,U−(w−),

ϕUi,U+B+
U (w+) = B+

D,Ui,U
ϕUi,U+(w+),
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3. Torus fixed points of bow varieties

for all U ∈ b(D), w− ∈WσUi
,U− , w+ ∈WσUi

,U+ . In addition, Corollary 3.30 gives ϕUi,U
−
i
aUi =

aD,Ui and bUi = bD,Ui = 0. Likewise, Corollary 3.35 implies

ϕUi,V −CV (v+) = CD,Ui,V ϕUi,V +(v+), ϕUi,V +DV (v−) = DD,Ui,V ϕUi,V −(v−),

for all V ∈ r(D), v− ∈ WσUi
,V − , v+ ∈ WσUi

,V + . Thus, we proved that p equals the T-fixed

point xD and hence C(D)σ = C(D)T.
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Chapter 4

Attracting cells for bow varieties

In this chapter, we recall several aspects of the theory of attracting cells from [MO19] in the

framework of bow varieties. This theory is an important ingredient for the theory of stable

envelopes which we will discuss in the subsequent chapter.

First, we study the affine structure of attracting cells of torus fixed points of bow varieties

C(D) and show that they are always isomorphic to an affine space of dimension 1
2 dim(C(D)),

see Proposition 4.4. Then, we discuss and study in Sections 4.4-4.6 the partial ordering

on T-fixed points induced from the closure relations of attracting cells. Finally, we show

in Theorem 4.24 that certain intersections of closures of attracting cells are proper closed

subvarieties of C(D), despite the closures of attracting cells being in general not proper.

In [MO19], Maulik and Okounkov consider attracting cells of smooth and symplectic

varieties X with a torus action which leaves the symplectic structure invariant, and further

assume that X is quasi-projective and that X admits a torus equivariant proper morphism to

an affine variety. By construction, as GIT quotients, bow varieties satisfy all these properties

and hence all the results from [MO19] apply. As we have seen in Section 3.2, we are addi-

tionally in the preferable situation that bow varieties have finitely many torus fixed points

and these fixed points can be described combinatorially. These facts simplify some aspects of

the theory of attracting cells and make the computation of attracting cells in some examples

possible.

To have a well-behaved theory, we require, as in the classical situation of flag varieties, that

the fixed locus with respect to generic one-parameter subgroups of the torus A is non-empty.

By the Generic Cocharacter Theorem (Theorem 3.23), this is equivalent to the following

assumption:

Assumption. From now on, we assume that C(D) is a bow variety with C(D)T ̸= ∅.

Recall from Theorem 3.7 that C(D)T ̸= ∅ if and only if the brane diagram D can be

extended to a tie diagram.

4.1 Attracting cells

Before we go into details, we prove two general propositions about bow varieties. The first

one is about the existence of important T-equivariant morphisms.

81



4. Attracting cells for bow varieties

Proposition 4.1. There exists a smooth and projective variety X with T-action and a finite

dimensional T-representation V such that there exists

(i) a T-equivariant open dense immersion C(D) ↪→ X and

(ii) a T-equivariant closed immersion X ↪→ P(V ).

Proof. By Proposition 2.2.(i) and Proposition 2.43.(i), C(D) is a smooth and quasi-projective

variety. Hence, by [Sum74, Theorem 2], there exists a T-equivariant locally closed immersion

C(D) ↪→ P(V ′), where V ′ is a finite dimensional T-representation. Let X ′ be the Zariski

closure of C(D) in P(V ′). Then, X ′ is a T-invariant closed subvariety of P(V ′) containing

C(D) as open dense subvariety. Let I be the ideal sheaf on X ′ corresponding to the closed

subvariety X ′ \ C(D) of X ′. Applying the Equivariant Hironaka Theorem, see e.g. [W lo05,

Theorem 1.0.2], to the pair (X, I) yields that there exists a smooth and projective variety X

with T-action and a birational T-equivariant morphism f : X → X ′ such that the restriction

f−1(C(D))→ C(D) is a T-equivariant isomorphism. This gives (i). The assertion (ii) follows

from applying [Sum74, Theorem 2] to the variety X.

The next proposition is a useful statement about the existence of T-equivariant proper

morphisms to affine spaces:

Proposition 4.2. There exists a proper and T-equivariant morphism C(D) → V , where V

is a finite dimensional T-representation.

Proof. Let m̃ : M̃(D) →
⊕

X ∈ h(D) End(WX) be the moment map from (2.33). By Propo-

sition 2.43.(ii) and Proposition 2.13 the projection π : C(D) → m̃−1(0)//G is a projective

and T-equivariant morphism. Since m̃−1(0)//G is affine, there exists a T-equivariant closed

immersion ι : m̃−1(0)//G ↪→ V , where V is a finite dimensional T-representation. Thus,

ι ◦ π : C(D)→ V is a proper and T-equivariant morphism.

Definition and affine structure

Let σ : C∗ → A be a generic cocharacter and p ∈ C(D)T. By Corollary 3.24, we have a splitting

TpC(D) = TpC(D)+σ⊕TpC(D)−σ in the subspace of strictly positive respectively strictly negative

weights corresponding to σ. As the symplectic form on C(D) is A-invariant, the vector spaces

TpC(D)+σ and TpC(D)−σ are both of dimension 1
2 dim(C(D)).

Definition 4.3. The attracting cell of p with respect to σ is defined as

Attrσ(p) := {z ∈ C(D) | lim
t→0

σ(t).z = p}.

By definition, Attrσ(p) is just a T-invariant subset of C(D). However, the following

proposition shows that it actually carries the structure of a locally closed affine subvariety of

C(D).

Proposition 4.4. The attracting cell Attrσ(p) is a locally closed T-invariant subvariety of

C(D) which is T-equivariantly isomorphic to the affine space TpC(D)+σ .

For the proof, we use the classical Bia lynicki-Birula Theorem from [BB73, Theorem 4.3]

and some general applications.
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4.1. Attracting cells

The classical Bia lynicki-Birula Theorem

Let X be a smooth and projective variety with algebraic T = C∗-action. Recall from [Ive72,

Theorem 1] that XT is a smooth closed subvariety of X. We denote by F1, . . . , Fr the

irreducible components of XT and set

X+
Fi

:= {x ∈ X | lim
t→0

t.x is contained in Fi}.

Theorem 4.5 (Bialynicki-Birula). The following holds:

(i) Each X+
Fi

is a locally closed subvariety of X.

(ii) The limit map πi : X
+
Fi
→ Fi, π(x) = limt→0 t.x is an affine fiber bundle of Fi, where

all fibers are affine spaces.

(iii) For each p ∈ Fi, we have an isomorphism of T -equivariant varieties π−1
i (p) ∼= TpX

+.

Theorem 4.5 generalizes to the quasi-projective setting as follows: Let Y be a smooth and

quasi-projective variety with algebraic T = C∗-action. Then, Y T is again a smooth closed

subvariety of Y . Let F ′
1, . . . , F

′
s be the irreducible components of Y T and we set

Y +
F ′
i

:= {y ∈ Y | lim
t→0

t.y exists in Y and is contained in F ′
i}.

Corollary 4.6. The following holds:

(i) Each Y +
F ′
i
is a locally closed subvariety of Y .

(ii) The limit map π′i : Y
+
F ′
i
→ F ′

i , π(y) = limt→0 t.y is an affine fiber bundle of F ′
i .

(iii) For each p ∈ F ′
i , we have an isomorphism of T -equivariant varieties (π′i)

−1(p) ∼= TpY
+.

Proof. As in Proposition 4.1, we can choose an open dense and T -equivariant embedding

Y ↪→ X into a smooth and projective variety X with algebraic T -action. As before, let

F1, . . . , Fr be the irreducible components of XT and πi : X
+
Fi
→ Fi the limit morphism. As

Y is an open dense and T -invariant subvariety of X, we can assume that F ′
i = Fi ∩ Y for

i = 1, . . . , s. To conclude (i), (ii) and (iii), it suffices by Theorem 4.5 to show

π−1
i (F ′

i ) = Y +
F ′
i
, for i = 1, . . . , s.

For each p ∈ F ′
i , we have that Y ∩ π−1

i (p) is a T -invariant and open subvariety of π−1
i (p).

Thus, as π−1
i (p) ∼= TpX

+, Lemma 4.7 below yields Y ∩π−1
i (p) = π−1

i (p). Hence, we conclude

π−1
i (F ′

i ) = Y +
F ′
i
.

Lemma 4.7. Let W be a finite dimensional T -representation such that all T -weights of W

are strictly positive. Let U ⊂ W be an open T -invariant subvariety containing the origin of

W . Then, U = W .

Proof. Let w ∈W and T.w be the Zariski closure of the T -orbit of w in W . As all T -weights of

W are strictly positive, T.w contains the origin. So U ∩T.w is a non-empty open T -invariant

subvariety of T.w which implies w ∈ U .
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4. Attracting cells for bow varieties

Suppose T ′ = (C∗)m is a further torus acting algebraically on Y such that the T - and

T ′-actions commute. This assumtion gives that Y +
F ′
1
, . . . , Y +

F ′
s

are T ′-invariant locally closed

subvarieties of Y . Also, each limit morphism π′i is T ′-equivariant and hence Y +
F ′
i

is a T ′-

equivariant affine bundle over F ′
i . The next proposition gives that if p ∈ F ′

i ∩ Y T ′
then

the identification of fibers (π′i)
−1(p) ∼= TpY

+ from Corollary 4.6.(iii) can be chosen to be

T ′-equivariant:

Proposition 4.8. For each p ∈ F ′
i ∩Y T ′

, we have a T ′-equivariant isomorphism of varieties

(π′i)
−1(p)

∼−→ TpY
+.

For the proof, we use the following result from [Kon96]:

Theorem 4.9. Let V be a finite dimensional T -representation such that all T -weights ap-

pearing in the weight space decomposition of V are strictly positive. Let Z ⊂ V be a smooth

and T -invariant closed subvariety containing the origin p of V . Consider TpZ ⊂ V as T -

subrepresentations and let pr: V → TpZ be any T -equivariant projection. Then, pr restricts

to a T -equivariant isomorphism Z
∼−→ TpZ.

Proof of Proposition 4.8. By Corollary 4.6.(iii), Z := (π′i)
−1(p) is a smooth and affine variety

with algebraic (T ′ × T )-action. Thus, there exists a (T ′ × T )-equivariant closed immersion

Z ↪→ V into a finite dimensional (T ′ × T )-representation. Since all points of (π′i)
−1(p) are

attracted to p under the T -action, we can assume that p is mapped to the origin in V and

that all T -weights of V are strictly positive. We view the tangent space TpZ as (T ′ × T )-

subrepresentation of V . Choose a (T ′ × T )-equivariant projection pr : V → TpZ. Then, by

Theorem 4.9, pr restricts to a (T ′ × T )-equivariant isomorphism of varieties Z
∼−→ TpZ.

Proof of Proposition 4.4. By Corollary 4.6, Attrσ(p) is a locally closed T-invariant subvariety

of C(D). Then, by Proposition 4.8, Attrσ(p) is T-equivariantly isomorphic to TpC(D)+σ .

4.2 Attracting cells in a concrete example

Let D be the brane diagram

0 1 1 2 2 2 0 (4.1)

We encode the elements of M̃(D), m̃−1(0) and the bow variety C(D) as tuples of endomor-

phisms with the notation given by the following diagram:

C C C2 C2 C2

C C C

A1

b1

B+
1

D2

C2

B−
2

A2

B−
3

b2

A3

b3a1 a2 a3

Here, we dropped the operators C1, C3, D1, D3, B
−
1 and B+

3 from the picture as they always

vanish. We also identified B+
2 and B−

3 according to the moment map equation. Moreover,

note that A1, A2, A3 are isomorphisms by Proposition 2.19.
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4.2. Attracting cells in a concrete example

One can easily check that D can be extended to exactly five different tie diagrams:

D1 D2

D3

D4 D5

By Theorem 3.7, the fixed point locus is C(D)T = {xD1 , xD2 , xD3 , xD4 , xD5}, see Section 3.2

for the explicit construction of the xDi . In order to determine the attracting cells of these

T-fixed points, we first describe a covering of C(D) by open affine T-invariant subvarieties.

We start with the following observation:

Claim 4.10. A point

x = (A1, A2, A3, B
+
1 , B

−
2 , B

−
3 , C2, D2, a1, a2, a3, b1, b2, b3) ∈ m̃−1(0)

is χ-stable if and only if the following equalities hold

im(a1)+Im(A1C2a2)+im(A1C2A2a3) = C, im(a2)+im(A2a3)+im(D2A
−1
1 a1) = C2. (4.2)

Proof. Define vector spaces

T ′
1 := im(a1), T ′

2 := im(A−1
1 a1), T ′

3 := im(a2) + Im(A2a3),

T ′
4 := im(A−1

2 a2) + Im(a3), T ′
5 := im(A−1

3 A−1
2 a2) + Im(A−1

3 a3),

as well as

T ′′
1 = im(A1C2a2) + Im(A1C2A2a3), T ′′

2 = im(C2a2) + Im(C2A2a3),

T ′′
3 = im(D2A

−1
1 a1), T ′′

4 = im(A−1
2 D2A

−1
1 a1), T ′′

5 = im(A−1
3 A−1

2 D2A
−1
1 a1).

Set T ′ :=
⊕5

i=1 T
′
i , T

′′ :=
⊕5

i=1 T
′′
i and consider T ′ and T ′′ as graded subspaces of WD. In

addition, let Ti := T ′
i + T ′′

i and T :=
⊕5

i=1 Ti ⊂ WD. Note that by construction, x satisfies

(4.2) if and only if T = WD. Next, we show that T satisfies the conditions of Proposition 2.37.

Since T contains the images of all aU -operators, it is left to show that T is invariant under all

AU , B±
U , CV , DV and that each AU induces C-linear isomorphisms WU+/TU+

∼−→WU−/TU− .

By definition, we have

A1(T2) = T1, A2(T4) = T3, A3(T5) = T4. (4.3)

Therefore, T is invariant under all AU . As all AU are vector space isomorphisms, (4.3) also

yields that each AU induces a vector space isomorphism WU+/TU+
∼−→WU−/TU− . By (2.12),

B−
3 A3 = −a3b3 and B+

1 = A−1
1 a1b1. Therefore, we conclude

im(B−
3 ) = im(B−

3 A3) ⊂ im(a3) ⊂ T ′
4, im(B+

1 ) ⊂ Im(A−1
1 a1) = T ′

2.
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4. Attracting cells for bow varieties

Applying again (2.12) gives B−
2 A2 = A2B

−
3 − a2b2 which implies

im(B−
3 ) = im(B−

3 A3) ⊂ im(a2) + im(A3B
−
3 ) ⊂ T ′

3.

Thus, we proved that T is invariant under the operators B+
1 , B−

2 , B−
3 . By definition, C2(T

′
3) ⊂

T ′′
2 and D2(T

′
2) ⊂ T ′′

3 . From (2.33) follows that B+
1 = −C2D2 and B−

2 = −D2C2. Hence, we

have C2(T
′′
3 ) ⊂ im(B+

1 ) ⊂ T ′
2 and D2(T

′′
2 ) ⊂ im(B−

2 ) ⊂ T ′
3. This implies that T is invariant

under C2 and D2 and consequently T satisfies the conditions of Proposition 2.37. Now, if x

does not satisfy (4.2) then T ̸= WD and x is not χ-stable by Proposition 2.37. Conversely, if

x is not χ-stable, there exists a graded subspace S =
⊕5

i=1 Si ⊂WD satisfying the conditions

of Proposition 2.37 with S ̸= WD. Since S contains the images of all aU , the A±1
U , B±

U , CV ,

DV -invariance of S implies T ⊂ S. Consequently T ̸= WD and S does not satisfy (4.2).

From Claim 4.10, we deduce the following explicit conditions for χ-stability:

Claim 4.11. A point

x = (A1, A2, A3, B
+
1 , B

−
2 , B

−
3 , C2, D2, a1, a2, a3, b1, b2, b3) ∈ m̃−1(0)

is χ-stable if and only if one of the following five conditions is satisfied:

(cov-1) a1 ̸= 0 and det(a2 D2) ̸= 0,

(cov-2) a1 ̸= 0 and det(A2a3 D2) ̸= 0,

(cov-3) a1 ̸= 0 and det(a2 A2a3) ̸= 0,

(cov-4) C2a2 ̸= 0 and det(a2 A2a3) ̸= 0,

(cov-5) C2A2a3 ̸= 0 and det(a2 A2a3) ̸= 0.

Proof. Suppose a1 ̸= 0. By Claim 4.10, x is χ-stable if and if and only if one of the following

pairs is a basis of C2:

(a2(1), D2A
−1
1 a1(1)), (A2a3(1), D2A

−1
1 a1(1)), (a2(1), A2a3(1)).

Thus, we conclude that x is χ-stable if one of (cov-1), (cov-2) and (cov-3) holds. If a1 = 0

then Claim 4.10 yields that x is χ-stable if and only if (a2(1), A2a3(1)) is a basis of C2 and

(C2a2(1), C2A2a3(1)) is a generating system for C. Therefore, x is χ-stable if and only if

(cov-4) or (cov-5) is satisfied.

We use Claim 4.11, to cover C(D) by T-invariant affine open subvarieties

C(D) =
5⋃
i=1

Wi. (4.4)

By Claim 4.11, m̃−1(0)s is covered by the following open affine T- and G-invariant subvarieties

m̃−1(0)s = W̃1 ∪ W̃2 ∪ W̃3 ∪ W̃4 ∪ W̃5,

where W̃i = {x ∈ m−1(0) | x satisfies (cov-i)}, for i = 1, . . . , 5. Setting Wi := W̃i/G ⊂ C(D),

provides a cover (4.4) of C(D) by open affine T-invariant subvarieties. Note that xDi ∈ Wi,

for each i.The next claim contains explicit normal forms of the elements in the Wi. Via these

normal forms, we deduce that each Wi is isomorphic to C4.
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4.2. Attracting cells in a concrete example

Claim 4.12. The parameterization from Figure 4.1 on the next page gives, for any i =

1, . . . , 5, an isomorphism of varieties ηi : C4 ∼−→Wi with ηi(0) = xDi. In particular, (4.4) is a

covering by affine spaces.

Proof. We only prove the case i = 1 since the other cases can be proved analogously. Let

η̃1 : C4 → m̃−1(0)s be the morphism of varieties which maps a point (a, b, c, d) ∈ C4 to the

tuple displayed by the diagram:

C C C2 C2 C2

C C C

−ac
− ( ac bc0 0 ) − ( ac bcad bd )

( 1
0 )

(ac bc)

1 ( 1 0
0 1 ) ( 1 0

0 1 )

−ac1 −(ad bd)( 0
1 ) (a b)

( cd )

Let

η1 : C4 −−→ C(D) (4.5)

be the induced morphism. Clearly, im(η1) ⊂W1. Conversely, given

x = [A1, A2, A3, B
+
1 , B

−
2 , B

−
3 , C2, D2, a1, a2, a3, b1, b2, b3] ∈W1,

we may assume by the defining conditions of W1 that

a1 = 1, A1 = 1, A2 = A3 =

(
1 0

0 1

)
, D2 =

(
1

0

)
, a2 =

(
0

1

)
.

Let b3 = (a b) and a3 = ( cd ). Then, (2.12) implies B−
3 = −( ac bcad db ). Moreover, let b2 = (x y)

and D2 = ( zw ). By (2.12) and the moment map equation (2.33), we deduce

−

(
ac bc

ad+ x db+ y

)
= B−

2 =

(
−z −w
0 0

)
.

Hence, x = −ad, y = −bd, z = ac and w = bc. Finally, (2.12) and (2.33) also give

b1 = B+
1 = −z = −ac. This implies x ∈ im(η1) and thus, im(η1) = W1. To show

that η1 is an isomorphism, it now suffices by Proposition 2.25 to show that η1 is injec-

tive. Assume η1(a, b, c, d) = η1(a
′, b′, c′, d′), so there exists g = (g1, g2, g3, g4, g5) ∈ G such

that g.η̃1(a, b, c, d) = η̃1(a
′, b′, c′, d′). This directly implies g1 = g2 = 1 and g3 = g4 = g5. In

addition, the conditions g3( 1
0 )g−1

2 = ( 1
0 ) and g3( 0

1 ) = ( 0
1 ) imply that g3 is the identity matrix.

Hence, (a, b, c, d) = (a′, b′, c′, d′). Thus, η1 is injective and therefore an isomorphism.
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4. Attracting cells for bow varieties

W1 :

C C C2 C2 C2

C C C

−ac
− ( ac bc0 0 ) − ( ac bcad bd )

( 1
0 )

(ac bc)

1 ( 1 0
0 1 ) ( 1 0

0 1 )

−ac1 −(ad bd)( 0
1 ) (a b)

( cd )

W2 :

C C C2 C2 C2

C C C

−ac
− ( ac bc0 0 ) ( 0 0

ad bd )

( 1
0 )

(ac bc)

1 ( 1 0
0 1 ) ( 1 0

0 1 )

−ac1 (a b)( cd ) −(ad bd)
( 0
1 )

W3 :

C C C2 C2 C2

C C C

−ac−bd
−( ac adbc bd ) −( 0 0

bc bd )

( ab )

(c d)

1 ( 1 0
0 1 ) ( 1 0

0 1 )

−ac1 (ac ad)( 1
0 ) −(bc bd)

( 0
1 )

W4 :

C C C2 C2 C2

C C C

ab
( ab+dc (ab+dc)c

−d −dc ) − ( 0 0
d dc )

( −ab−dc
d

)

(1 c)

1 ( 1 0
0 1 ) ( 1 0

0 1 )

ba
−(ab+dc) (1 c)( 1

0 ) −(d dc)
( 0
1 )

W5 :

C C C2 C2 C2

C C C

ab
( −dc −d
(ab+dc)c ab+dc ) ( 0 0

(ab+dc)c ab+dc )

( d
−ab−dc )

(c 1)

1 ( 1 0
0 1 ) ( 1 0

0 1 )

ba (dc d)( 1
0 ) −(ab+dc) (c 1)

( 0
1 )

Figure 4.1: Parametrizations of the T-invariant affine open neighborhoods W1, . . . ,W5 of the
T-fixed points xD1 , . . . , xD5 . Here, (a, b, c, d) ∈ C4.
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4.2. Attracting cells in a concrete example

Via the explicit parameterizations of the coordinate charts Wi
∼= C4 from Claim 4.12,

we can now determine the induced T-action on C4. It turns out that the T-action on C4 is

always linear and has the following weight space decomposition:

Claim 4.13. The T-action on C4 induced by the isomorphism ηi : C4 ∼−→Wi is linear and the

standrad basis vectors e1, . . . , e4 are weight vectors. The corresponding weights are recorded

in Table 4.1 below.

Proof. We only show that e1 is a weight vector of the induced T-action from η1 : C4 ∼−→ W1.

The other statements of the claim can be shown in a similar way. We have to show that for

all (t1, t2, t3, h) ∈ T, we have (t1, t2, t3, h).η1(e1) = η1(t3t
−1
1 h · e1). Let η̃1 : C4 → m̃−1(0) be

as in the proof of Claim 4.12. Then, η̃1(t3t
−1
1 h · e1) is the tuple associated to the diagram:

C C C2 C2 C2

C C C

0
( 0 0
0 0 ) ( 0 0

0 0 )

( 1
0 )

(0 0)

1 ( 1 0
0 1 ) ( 1 0

0 1 )

01 (0 0)( 0
1 ) (t3t

−1
1 h 0)

( 0
0 )

Likewise, (t1, t2, t3, h).η̃1(e1) corresponds to

C C C2 C2 C2

C C C

0
( 0 0
0 0 ) ( 0 0

0 0 )

( 1
0 )

(0 0)

1 ( 1 0
0 1 ) ( 1 0

0 1 )

0t−1
1

(0 0)(
0
t−1
2

) (t3h 0)
( 0
0 )

Thus, we have g.((t1, t2, t3, h).η̃1(e1)) = η̃1(t3t
−1
1 h · e1), where

g = (g1, g2, g3, g4, g5), g1 = g2 = t1, g3 = g4 = g5 =

(
t1 0

0 t2

)
.

Hence, we indeed have (t1, t2, t3, h).η1(e1) = η1(t3t
−1
1 h · e1).

Open affine

Standard basis
vector e1 e2 e3 e4

W1 t3 − t1 + h t3 − t2 + h t1 − t3 t2 − t3
W2 t2 − t1 + h t2 − t3 + h t1 − t2 t3 − t2
W3 t2 − t1 t3 − t1 t1 − t2 + h t2 − t3 + h

W4 t2 − t1 − h t1 − t2 + 2h t2 − t3 t3 − t2 + h

W5 t3 − t1 − h t1 − t3 + 2h t3 − t2 t2 − t3 + h

Table 4.1: T-weight space decomposition of W1, . . . ,W5.
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4. Attracting cells for bow varieties

The affine covering (4.4) with its T-weight space decomposition from Claim 4.13 lets us

now get a hand on the attracting cells:

Claim 4.14. For a given generic cocharacter σ : C∗ → A, we have

Attrσ(xDi) = W+
i,σ, for i=1,. . . ,5.

Here, W+
i,σ is the subvector space of Wi generated by all positive weight spaces of Wi with

respect to σ.

Proof. By construction, W+
i,σ = Wi ∩ Attrσ(xDi) is an open and T-invariant subvariety

of Attrσ(xDi). Since W+
i,σ contains xDi , Proposition 4.4 and Lemma 4.7 imply W+

i,σ =

Attrσ(xDi).

Using Claim 4.14, we can now easily determine the attracting cells via Table 4.1. Take

for instance the cocharacter σ0(t) = (t, t2, t3). Then, by Claim 4.14, the attracting cell

Attrσ0(xD1) is equal to the subspace of W1 generated by all weight space which are positive

with respect to σ0. By Table 4.1, we have

W1
∼= Ct3−t1+h ⊕ Ct3−t2+h ⊕ Ct1−t3 ⊕ Ct2−t3 .

Pairing these characters with σ0 gives

⟨σ0, t3 − t1 + h⟩ = 2, ⟨σ0, t3 − t2 + h⟩ = 1, ⟨σ0, t1 − t3⟩ = −2, ⟨σ0, t1 − t2⟩ = −1.

Thus, Attrσ0(xD1) = Ct3−t1+h⊕Ct3−t2+h. The remaining attracting cells Attrσ0(xDi) can be

determined in the same way:

Attrσ0(xD2) = Ct2−t1+h ⊕ Ct3−t2 ,

Attrσ0(xD4) = Ct2−t1−h ⊕ Ct3−t2+h,

Attrσ0(xD3) = Ct2−t1 ⊕ Ct3−t1 ,

Attrσ0(xD5) = Ct3−t1−h ⊕ Ct3−t2 .

We leave it as an exercise to the reader to consider other choices of cocharacters and to

determine the respective attracting cells.

We return now to the general framework and will see that the attracting cells are in fact

constant along certain chambers inside the space of cocharacters.

4.3 Independence of choice of chamber

Let Λ be the cocharacter lattice of A and consider the vector space ΛR := Λ ⊗Z R. For

1 ≤ i, j ≤ N with i ̸= j, we define the following hyperplanes:

Hi,j := {(t1, . . . , tN ) | ti = tj} ⊂ ΛR.

The connected components of

ΛR \
( ⋃

1≤i,j≤N
i ̸=j

Hi,j

)

are called chambers. There is a (well-known from Lie theory) one-to-one correspondence

{Chambers} SN ,
1:1
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4.3. Independence of choice of chamber

where we assign to a permutation π ∈ SN the connected component

Cπ := {(t1, . . . , tN ) | tπ(1) < tπ(2) < . . . < tπ(N)}.

The chamber Cid is called the antidomonant chamber and denoted by C−. The dominant

chamber is defined as C+ := −C−.

Remark. This correspondence allows to connect the chambers with the combinatorics of

the symmetric group. Moreover note the parallel to the more Lie theoretic description of

attracting cells, a.k.a. Schubert cells, of Grassmannians, see [GKS20]. For readers new to the

subject it might be helpful to keep for the following this analogous framework in mind.

We have the following independence result for attracting cells:

Proposition 4.15 (Invariance of chambers). Let C be a chamber and σ, τ ∈ Λ ∩ C. Then,

we have

TpC(D)+σ = TpC(D)+τ , TpC(D)−σ = TpC(D)−τ . (4.6)

Moreover, attracting cells are constant along chamber, i.e. for all p ∈ C(D)T, we have

Attrσ(p) = Attrτ (p). (4.7)

Proof. Let π ∈ SN such that Cπ = C and fix a T-fixed point p. Recall from Corollary 3.24

that the A-weights of TpC(D) are of the form ti − tj , where i ̸= j. It follows

TpC(D)+σ =
⊕

1≤i,j≤n
π−1(i)>π−1(j)

TpC(D)ti−tj = TpC(D)+τ

and

TpC(D)−σ =
⊕

1≤i,j≤n
π−1(i)<π−1(j)

TpC(D)ti−tj = TpC(D)−τ .

Thus, we proved (4.6). The equality (4.7) follows directly from (4.6) and Proposition 4.4.

By Proposition 4.15, the TpC(D)+σ , TpC(D)−σ and Attrσ(p) only depend on the chamber C

containing σ. Thus, we also denote them respectively by TpC(D)+C , TpC(D)−C and AttrC(p).

Remark. In [MO19], Maulik and Okounkov defined chambers in a slightly different way. They

defined them as connected components of the complement of the union of all hyperplanes or-

thogonal to the A-tangent weights of A-fixed points. Corollary 3.24 implies that the chambers

defined in this subsections refine the chambers in the sense of [MO19]. The inclusion may be

strict as for instance the bow variety C(0/1/3\1\0) is just a single point. Hence, there exists

only a single chamber in the sense of Maulik and Okounkov whereas the chambers defined in

this subsection are in one-to-one correspondence with the elements of the symmetric group

on two letters.
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4. Attracting cells for bow varieties

4.4 Partial order by attraction

Given a chamber C, we define a preorder ⪯C on C(D)T as the transitive closure of the relation

p ∈ AttrC(q) ⇒ p ⪯C q, (4.8)

where AttrC(q) denotes the Zariski closure of AttrC(q) in C(D).

As we usually work with a fixed choice of chamber, we denote ⪯C also just by ⪯.

Lemma 4.16 (Fixed point ordering). The preorder ⪯ is a partial order on C(D)T.

Proof. Evidently, the preorder ⪯ is reflexive and transitive. Hence, it is left to show that ⪯
is antisymmetric. Let p, q ∈ C(D)T with p ⪯ q and q ⪯ p. For the sake of contradiction,

assume p ̸= q. Given σ ∈ C, we can choose by Proposition 4.1 a smooth σ-equivariant com-

pactification C(D) ↪→ X. Let F1, . . . , Fr be the C∗-fixed components of X and X+
Fi
, . . . , X+

Fi

the corresponding attracting cells. By Lemma 4.17 below, we can order the fixed points

components in such a way such that the subsets

Yi :=
⊔

1≤j≤i
X+
Fj
⊂ X

are closed subvarieties of X. By the Generic Cocharacter Theorem, we have Fi = {p} and

Fj = {q} for some i, j. Without loss of generality, we may assume i < j. In particular, we

have q /∈ Yi. Note that Yi ∩ C(D) is Zariski closed in C(D) and stable under attraction, i.e. if

x ∈ C(D) and limt→0 σ(t).x is contained in Yi ∩C(D) then x ∈ Yi ∩C(D). Therefore, if p′ ⪯ p
for some p′ ∈ C(D), we conclude p′ ∈ Yi. Thus, we must have q ∈ Yi which contradicts i < j.

Thus, p = q and hence, ⪯ is antisymmetric.

Lemma 4.17. Let V be a finite dimensional T = C∗-representation with weight space de-

composition V =
⊕

m∈Z Vm. Let X ↪→ P(V ) be a smooth and T -invariant closed subvariety.

We denote the irreducible components of XT by F1, . . . , Fr and the corresponding attracting

cells by X+
F1
, . . . , X+

Fr
. Define a function

wt: {F1, . . . , Fr} −−→ Z,

where wt(Fi) is the unique integer such that Fi ⊂ P(Vwt(Fi)). Then,

YF := X+
F ⊔

( ⊔
wt(F ′)>wt(F )

X+
F ′

)
is a closed subvariety of X, for all F = Fi and i = 1, . . . , r.

Proof. Suppose wt(F ) = m. Let

pr : P(V ≥m) \ P(V >m)→ P(Vm)

be the linear projection. Then, X+
F = X ∩ pr−1(F ) and thus, X+

F is a closed subvariety of

X ∩ (P(V ≥m) \ P(V >m)). Hence, X+
F ∪ (X ∩ P(V >m)) is a closed subvariety of X. From

X ∩ P(V >m) =
⊔

wt(F ′)>m

X+
F ′

follows that YF = X+
F ∪ (X ∩ P(V >m)) and thus, YF is a closed subvariety of X.
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4.4. Partial order by attraction

Partial order by attraction in a concrete example

Let D be the brane diagram from (4.1) and C(D) the corresponding bow variety. Recall

the cover of C(D) by T-invariant affine opens from (4.4). Again, we choose the generic

cocharacter σ0 = (t, t2, t3). To characterize the corresponding partial order, we first compute

all intersections Attrσ0(xDi) ∩Wj .

Claim 4.18. For i, j ∈ {1, . . . , 5}, the intersection Attrσ0(xDi) ∩Wj is a T-invariant linear
subspace of Wj whose weight space decomposition is recorded in Table 4.2 below.

Proof. We only prove the case i = 2 and j = 1 since all other cases are similar. From

Claim 4.12 we know Attrσ0(xDi) = {η2(a, 0, 0, d) | a, d ∈ C}. By Claim 4.11, we have that

η2(a, 0, 0, d) ∈W1 if and only if d ̸= 0. A direct computation shows(
1, 1,

(
1 0
0 d−1

)
,
(
1 0
0 d−1

)
,
(
1 0
0 d−1

))
.η̃2(a, 0, 0, d) = η̃1(−a, 0, 0, d−1).

Therefore, we have Attrσ0(xD2) ∩W1 = {η1(a, 0, 0, d) | a, d ∈ C}. Finally, Claim 4.13 yields

that {η1(a, 0, 0, d) | a, d ∈ C} = Ct3−t1+h ⊕ Ct2−t3 .

i
j

1 2 3 4 5

1
Ct3−t1+h

⊕Ct3−t2+h

∅ ∅ ∅ ∅

2
Ct3−t1+h

⊕Ct2−t3

Ct2−t1+h

⊕Ct3−t2

∅ ∅ ∅

3
Ct1−t3

⊕Ct2−t3

Ct1−t2

⊕Ct3−t2

Ct2−t1

⊕Ct3−t1

∅ ∅

4
Ct3−t2+h

⊕Ct1−t3

∅ Ct3−t1

⊕Ct1−t2+h

Ct2−t1−h

⊕Ct3−t2+h

∅

5 ∅ ∅ Ct1−t2+h

⊕Ct1−t3+h

Ct2−t3

⊕Ct2−t1−h

Ct3−t1−h

⊕Ct3−t2

Table 4.2: Intersections Attrσ0(xDi) ∩Wj as subspaces of Wj .

Our computations yield that the partial order corresponding to σ0 is given as follows:

Claim 4.19. We have an isomorphism of partially ordered sets

({1, 2, 3, 4, 5},≤)
∼−−→ (C(D)T,⪯), i 7→ xDi ,

where ≤ is the usual ordering on {1, 2, 3, 4, 5}.

Proof. We only prove that xD2 ⪯ xD4 as all other cases can be shown in a similar way. By

Claim 4.18, Attrσ0(xD4) contains xD3 . Thus, xD3 ⪯ xD4 . Likewise, Claim 4.18 gives that

Attrσ0(xD3) contains xD2 and therefore xD2 ⪯ xD3 . Hence, we also have xD2 ⪯ xD4 .
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4. Attracting cells for bow varieties

Full attraction cells

Lemma 4.17 implies that for a smooth projective variety with a one-parameter torus action,

we can order the attracting cells such that the successive unions of the attracting cells are all

Zariski closed. Motivated by this general result, we prove an analogous statement for bow

varieties.

Let p ∈ C(D)T. The full attracting cell of p with respect to the chamber C is defined as

AttrfC(p) :=
⊔
q⪯p

AttrC(q).

We then have the following result:

Proposition 4.20. The full attracting cell AttrfC(p) is Zariski closed in C(D).

For the proof, we use the following basic property of proper morphisms:

Lemma 4.21. Let X, X ′ be algebraic varieties with T = C∗-actions ρ, ρ′ and let f : X → X ′

be a proper T -equivariant morphism. Then, we have

{x ∈ X | lim
t→0

ρ(t).x exists in X} = f−1({x′ ∈ X ′ | lim
t→0

ρ′(t).x′ exists in X ′}).

Proof. The inclusion ⊂ is clear. For the converse inclusion, let x ∈ X such that limt→0 t.f(x)

exists in X ′. Let OC,0 be the stalk of the structure sheaf of C at the origin and K be the

function field of C. We denote by ax : T → X, t 7→ t.x the orbit morphism. By assumption,

we can extend the composition f ◦h to a morphism a′x : C→ X ′. Thus, we have a commuting

diagram:

Spec(K) T X

Spec(OC,0) C X ′

j

κ

ι

ax

f

ι0 a′x

Here, κ, ι, ι0 are the obvious morphisms. By the valuative criterion for properness, see

e.g. [Har77, Theorem II.4.7], there exists a morphism g : Spec(OC,0) → X such that f ◦ g =

a′x ◦ ι0 and g ◦ j = ax ◦ κ. Since X is of finite type over C, there exists an open subvariety

U ⊂ C and a morphism g′ : U → X such that g′ ◦ ι0 = g. Since g ◦ j = ax ◦ κ, we conclude

that the restriction of g′ to U ∩T equals the orbit morphism ax. Hence, we can extend ax to

C which gives that the limit limt→0 t.x exists in X.

Proof of Proposition 4.20. To prove that AttrfC is closed, we show

AttrfC(p) =
⋃
q⪯p

AttrC(q). (4.9)

The inclusion ⊂ is clear. For the converse, let q ∈ C(D) with q ⪯ p and let x ∈ AttrC(q).

In addition, we fix σ ∈ C. By Proposition 4.2, there exists a proper σ-equivariant morphism

π : C(D)→ V to a finite dimensional C∗-representation V . Since π(AttrC(q)) ⊂ V ≥0, we have

AttrC(q) ⊂ π−1(V ≥0). Hence, by Lemma 4.21, the limit limt→0 σ(t).x exists in C(D). Let

q′ := limt→0 σ(t).x. By the Generic Cocharacter Theorem, we have q′ ∈ C(D)T. As AttrC(q)

is σ-invariant, AttrC(q) is also σ-invariant and hence σ(C∗).x ⊂ AttrC(q). Therefore, also the

limit point q′ is contained in AttrC(q) which gives q′ ⪯ q. Hence, we deduce x ∈ AttrfC(p)

which completes the proof.

94



4.5. Opposite attracting cells

4.5 Opposite attracting cells

We define opposite chambers and attracting cells in analogy to the respective notions in

Schubert calculus:

Definition 4.22. The opposite chamber of C is defined as

Cop := {a ∈ aR | −a ∈ C}.

For p ∈ C(D)T, we call AttrCop(p) the opposite attracting cell of AttrCop(p).

Note that σ ∈ C if and only if σ−1 ∈ Cop. The next theorem states that the partial order

⪯Cop is in fact opposite to the partial order of ⪯C:

Theorem 4.23 (Opposite order). Let p, q ∈ C(D)T. Then, p ⪯C q if and only if q ⪯Cop p.

We prove Theorem 4.23 using an analytic limit argument and properness properties of

intersections of opposite attracting cells which we consider in the following subsection.

Properness of intersections of opposite cells

In general, the closure of the attracting cells corresponding to C or to Cop need not be proper.

However, the next theorem gives that their intersection is always proper:

Theorem 4.24 (Properness). For p, q ∈ C(D)T, the intersection AttrC(p) ∩ AttrCop(q) is a

proper variety over C.

We immediately conclude, using (4.9), the analogous result for full attracting cells:

Corollary 4.25. Let p, q ∈ C(D)T. Then, AttrfC(p) ∩AttrfCop(q) is proper over C.

For the proof of Theorem 4.24, we set up some notation: Pick a cocharacter σ ∈ C and,

as in the proof of Proposition 4.20, a proper σ-equivariant morphism π : C(D)→ V to a finite

dimensional C∗-representation V . Let pr0 : V → V 0 be the linear projection corresponding

to the direct sum decomposition V = V −⊕ V 0⊕ V + and set π̄ := pr0 ◦π. Note that we have

π̄(p) = π(p), for all p ∈ C(D)T. We first establish a technical tool:

Lemma 4.26. Let p ∈ C(D)T, v := π(p) ∈ V 0 and C′ ∈ {C,Cop}. If q ∈ C(D)T ∩ AttrC′(p)

then AttrC′(q) ⊂ π̄−1(v).

Proof. We only prove the case C′ = C as the proof for C′ = Cop is analogous. Since π̄ is

σ-equivariant, we have AttrC(p) ⊂ π̄−1(v) and hence AttrC(p) ⊂ π̄−1(v). Thus, π(q) = v.

Using again that π̄ is σ-equivriant, we conclude AttrC(q) ⊂ π̄−1(v).

Proof of Theorem 4.24. As above, we set v := π(p). If π(q) ̸= v then Lemma 4.26 implies

AttrC(p) ∩AttrCop(q) ⊂ π̄−1(v) ∩ π̄−1(π(q)) = ∅.

So let us assume π(q) = v. Since AttrC(p) ⊂ π−1(V ≥0) and AttrCop(q) ⊂ π−1(V ≤0) we

conclude AttrC(p) ∩AttrCop(q) ⊂ π−1(V 0). Applying Lemma 4.26 gives

AttrC(p) ∩AttrCop(q) ⊂ π−1(v).
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4. Attracting cells for bow varieties

Since π is proper, we know that the scheme theoretic fiber π−1(v) is proper over C. As

AttrC(p) ∩AttrCop(q) is a closed subvariety of π−1(v), it is also proper over C.

Example 4.27. Consider again the bow variety C(D) and let σ0 be the cocharacter (t, t2, t3).

By Claim 4.18, the intersection Attrσ0(xD2) ∩ Attrσ−1
0

(xD1) is isomorphic to the complex

projective line P1 = C ∪ {∞}; an isomorphism is given by ∞ 7→ xD2 , x 7→ η1(0, 0, 0, x), for

x ∈ C. Here, η1 : C4 ∼−→W1 is the isomorphism of varieties from Claim 4.12.

Proof of Theorem 4.23

We fix a similar setup as in the proof of Proposition 4.4: Let σ ∈ C and we choose a

locally closed T-equivariant immersion ι : C(D) ↪→ P(V ), where V is a finite dimensional T-

representation. For p ∈ C(D)T, we denote by Xp the Zariski closure of ι(Attrσ(p)) in P(V ).

Thus, Xp is a closed T-invariant subvariety of P(V ) that contains ι(Attrσ(p)) as open dense

T-invariant subvariety.

In this and the subsequent subsection, we usually view the varieties C(D), Xp and P(V )

as C∗-varieties via the generic cocharacter σ. Also, we just view V as C∗-representation. As

V is finite dimensional, we have the usual weight space decomposition

V =
⊕
a∈Z

Va, where Va = {v ∈ V | t.v = tav, for all t ∈ C∗}.

We denote the dimension of Va by na. The C∗-fixed point locus of P(V ) is given as

P(V )C
∗

= {[v] | v ∈ Va \ {0}, for some a ∈ Z}.

Given a ∈ Z and v ∈ Va \ {0}, the attracting cell of [v] in P(V ) equals

{x ∈ P(V ) | lim
t→0

t.x = [v]} =
{

[v + w] | w ∈
⊕
a′>a

Va′
}
. (4.10)

Its Zariski closure in P(V ) is the projective subspace P(⟨v⟩ ⊕
⊕

a′>a Va′).

For each p ∈ C(D)T, there exists a weight vector vp such that ι(p) = [vp]. Let ap ∈ Z be

the weight of vp. Suppose p ∈ Attrσ(q), for some q ∈ C(D)T. Then, (4.10) implies aq ≤ ap

and we have equality if and only if p = q.

The following lemma will be crucial in the proof of Theorem 4.23:

Lemma 4.28. Let p, q ∈ C(D)T with p ∈ Attrσ(q) and p ̸= q. Then, there exists p′ ∈ C(D)T

and z′ ∈ C(D) such that

(i) p′, z′ ∈ Attrσ(q) ∩Attrσ−1(p),

(ii) aq ≤ ap′ < ap,

(iii) limt→0 t.z
′ = p′ and limt→∞ t.z′ = p.

Proof of Theorem 4.23. Assuming Lemma 4.28, let p, q ∈ C(D)T be distinct with p ⪯C q.

Thus, by definition of ⪯C, there exists pairwise distinct q1, . . . , qr ∈ C(D)T with q1 = q, qr = p

and qi+1 ∈ Attrσ(qi), for all i. In order to show q ⪯Cop p, we prove that qi ∈ Attrσ−1(qi+1),

for all i. For given i, there exists, by Lemma 4.28, a sequence pi,n in Attrσ(q) ∩ C(D)T such

that
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(a) pi,n ∈ Attrσ(qi) ∩Attrσ−1(qi+1), for all n and

(b) api,n = aqi , for almost all n.

Since {p′ ∈ Attrσ(qi) ∩ C(D)T | ap′ = aqi} = {qi}, we have pi,n = qi, for almost all n. This

yields qi ∈ Attrσ−1(qi+1).

To prove Lemma 4.28, we use an analytic limit argument. Let p, q ∈ C(D)T with p ∈
Attrσ(q) and p ̸= q. We choose bases (va,1, . . . , va,na) of the weight spaces Va. Without loss

of generality, vp = vap,1 and vq = vaq ,1. Moreover, let

W :=
( ⊕
a<ap

Va

)
⊕ ⟨vap,2, . . . , vap,nap

⟩ ⊕
( ⊕
a>ap

Va

)
. (4.11)

Let Zp = {[vp + w] | w ∈W} ⊂ P(V ) be the coordinate chart with origin [vp]. We have that

Zp is C∗-invariant and t.[vp + v] = vp + ta−apv, for all v ∈ Va, a ∈ Z and t ∈ C∗. We equip

W with a hermitian product with unitary basis given by (4.11) and thus view W as metric

space. Via the isomorphism of (analytic) varieties W
∼−→ Zp, w 7→ [vp + w], we also view Zp

as metric space and denote by | · | the induced absolute value and by dist(., .) the induced

distance function on Zp.

We set

W ′ := {[vp + λvq + w] | λ ∈ C, w ∈
⊕

aq<a<ap

Va} ⊂ Zp.

Note that W ′ is a C∗-invariant linear subspace of Zp.

Proof of Lemma 4.28. We want to construct a sequence of elements in Attrσ(q) ∩ Zp which

approaches W ′ but is far away from [vp]. First, we show that for all ε > 0, there exists

z ∈ ι(Attrσ(q)) ∩ Zp such that

|z| ∈ [1, 2] and dist(z,W ′) < ε. (4.12)

By Lemma 4.29 below, there exists a path γ : [0, 1] → Xq ∩ Zp, continuous in the analytic

topology, such that γ([0, 1)) ⊂ ι(Attrσ(q)) and γ(1) = [vp]. According to our choice of basis,

we can write

γ(s) =
[
γaq(s)vq +

( ∑
aq<a′<ap

na′∑
i=1

γa′,i(s)va′,i

)
+ vp

+
( nap∑
i=2

γap,i(s)vap,i

)
+
( ∑
a′>ap

na′∑
i=1

γa′,i(s)va′,i

)]
.

The property γ([0, 1)) ⊂ ι(Attrσ(q)) implies γaq(s) ̸= 0, for s ∈ [0, 1). Since γ(1) = [vp], we

have γi,j(s) → 0, for s → 1 and all i, j. Hence, we may assume that all γap+i,j with i ≥ 0

satisfy for all s ∈ [0, 1]

|γap+i,j(s)| < n−1ε, where n =
∑
a′≥ap

na′ . (4.13)
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Choose t0 ∈ C∗ with |t0| < 1 such that |t0.γ(0)| > 2. Thus, as t0.γ(1) = [vp], the Intermediate

Value Theorem implies that there exists s0 ∈ (0, 1) such that |t0.γ(s0)| ∈ [1, 2]. In addition,

(4.13) yields

dist(t0.γ(s0),W
′) =

∣∣∣( nap∑
i=2

γap,i(s)vap,i

)
+
( ∑
a′>ap

na′∑
i=1

t
a′−ap
0 γa′,i(s)va′,i

)∣∣∣ < ε.

Hence z := t0.γ(s0) satisfies (4.12). Since ι(Attrσ(q)) ∩ Zp is C∗-invariant, we conclude

z ∈ ι(Attrσ(q)). Thus, z satisfies all desired properties.

As a direct consequence of (4.12), we conclude that there exist a sequence zm ∈ ι(Attrσ(q))

such that dist(zm, [vp]) ∈ [1, 2], for all m and dist(zm,W
′) → 0, for m → ∞. By the Heine–

Borel Theorem, zm has a convergent subsequence with limit z′ ∈ Zp∩Xq. As dist(zn,W
′)→ 0,

we also have z′ ∈W ′. The condition dist(zm, [vp]) ∈ [1, 2] yields z′ ̸= [vp]. So by the definition

of W ′, we can write

z′ = [waq + waq+1 + . . .+ wap−1 + vp], waq ∈ ⟨vq⟩, waq+i ∈ Vaq+i, for i > 1. (4.14)

As z′ ̸= [vp], we have waq+r ̸= 0, for some r ∈ {0, . . . , ap − aq − 1}. Set

r0 := min({r ∈ {0, . . . , ap − aq − 1} | waq+r ̸= 0}). (4.15)

By construction,

lim
t→0

t.z′ = [waq+r0 ] and lim
t→∞

t.z′ = [vp]. (4.16)

Recall that ι(Attrσ(q)) is an open dense C∗-subvariety of Xq. Since [vp] is contained in

the orbit closure C∗.z′, the intersection ι(C(D)) ∩ C∗.z′ is a non-empty open C∗-invariant

subvariety of C∗.z′. Hence, z′ ∈ ι(C(D)). As z′ ∈ Xq, we have z′ ∈ ι
(
Attrσ(q)

)
. Since

limt→∞ t.z′ = [vp], we also have z′ ∈ ι
(
Attrσ−1(p)

)
. By Theorem 4.24, Attrσ(q) ∩ Attrσ−1(p)

is a closed proper C∗-invariant subvariety of C(D). This implies

lim
t→0

t.z′ = [waq+r0 ] ∈ ι
(
Attrσ(q) ∩Attrσ−1(p)

)
. (4.17)

Set p′ := ι−1([waq+r0 ]). Then, as [waq+r0 ] is a C∗-fixed point of P(V ), we have p′ ∈ C(D)σ.

The Generic Cocharacter Theorem then gives p′ ∈ C(D)T. By (4.17), we know that (i) is

satisfied. Moreover, (4.15) yields ap′ = aq + r0 < ap which implies (ii). Finally, (4.16) yields

that z′ satisfies (iii). So p′ and z′ satisfy all desired properties.

Approximation of boundary points via paths

In the proof of Lemma 4.28, we used the following statement:

Lemma 4.29. Let Y be a smooth algebraic variety of dimension d which is embedded into a

projective variety X as open dense subvariety. Then, for all y ∈ Y \X =: Z, there exists a path

γ : [0, 1] → Y continuous with respect to the analytic topology on Y such that γ([0, 1)) ⊂ X

and γ(1) = y.

Proof. By the Monomalization Theorem, see e.g. [Kol09, Theorem 3.35], there exists a smooth

projective variety Y ′ and a morphism of varieties f : Y ′ → Y such that
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4.6. Partial order via invariant curves

(a) f restricts to an isomorphism f−1(X)
∼−→ X and

(b) f−1(Z) is a simple normal crossing divisor.

Thus, we may assume that Z is a simple normal crossing divisor. Given y ∈ Z. Then,

as Z is a simple normal crossing divisor, there exists an analytic neighborhood of y in Y

which is analytically isomorphic to a neighborhood U of the origin in Cd such that under

this isomorphism y is identified with the origin and Z equals the vanishing locus of functions

f1 · · · fr, where f1, . . . , fr : U → C are holomorphic functions with r ≤ d and l1, . . . , lr are

linearly independent, where li denotes the first order approximation of fi. After applying a

linear transformation, we may assume that li is the projection the i-th coordinate in Cd. By

further shrinking U , we can thus assume that there exists a constant C > 0 such that

|fi(z)− zi| < C|z|2, for z = (z1, . . . , zd) ∈ U , i = 1, . . . , r.

Hence, we conclude {z ∈ U | |zi| > C|z|2} ∩ Z = ∅. It follows that µ(1, . . . , 1) /∈ Z, for

0 < µ < (C
√
d)−1. By choosing C large enough, we may assume that the closed ball centered

at the origin with radius C ′ = 1
2(C
√
d)−1 is entirely contained in U . Thus, if we set

γ : [0, 1] −−→ U, s 7→ s · C ′ · (1, . . . , 1)

then γ yields a path with the desired properties.

4.6 Partial order via invariant curves

In [BFR23, Section 4], an equivalent description of ⪯C via T-invariant curves was given. This

description of ⪯C is particularly useful as the computation of T-invariant curves is usually

easier than the computation of all closures of attracting cells. In this section, we give a

self-contained reproof of this result using Lemma 4.28 and deformation techniques involving

Hilbert schemes.

As before, let σ ∈ C. We have the following fundamental result:

Proposition 4.30. For p, q ∈ C(D)T, we have p ⪯C q if and only if there exists x1, . . . , xk ∈
C(D) and p1, . . . , pk ∈ C(D)T such that p1 = p and pk = q and for all i, the following

conditions are satisfied

(i) limt→0 σ(t).xi = pi+1 and limt→∞ σ(t).xi = pi,

(ii) T.xi = σ(C∗).xi.

The implication ⇒ of Proposition 4.30 is immediate from the definition of ⪯C. We prove

the converse implication in the subsequent subsections using deformation techniques.

Remark. In the recent work [FS23], Foster and Shou provide a classification of the T-invariant

curves of bow varieties. Then, in [BFR23], this classification is used to explicitly identify the

partial order ⪯C with the secondary Bruhat order on (0, 1)-matrices.
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4. Attracting cells for bow varieties

Smoothness of one-dimensional T-orbits

We start with the following smoothness result for one-dimensional T-orbits.

Proposition 4.31. Let x ∈ C(D) and p ∈ C(D)T such that the orbit T.x is one-dimensional

and p ∈ T.x. Then, there exists a character τ : T→ C∗ and a T-equivariant open immersion

ι : C ↪→ T.x, where T acts on C via τ and ι(0) = p.

We use the following auxiliary statement:

Lemma 4.32. Let V be a finite dimensional A-representation with A-weight decomposition

of the form

V =
⊕

1≤i,j≤N
i ̸=j

Vti−tj .

Let Y ⊂ V be an irreducible A-invariant closed subvariety with dim(Y ) = 1. Suppose we have

0 ∈ Y . Then, we have Y = ⟨v⟩, for some A-weight vector v ∈ V .

Proof. Suppose Y contains a point w = w1 + . . . + wr, where r ≥ 2 and w1, . . . , wr ∈ V are

A-weight vectors corresponding to pairwise distinct weights. Let τl = til− tjl be the A-weight

of wl. Since 0 ∈ Y , we can assume that ti2 − tj2 ̸= tj1 − ti1 . Thus, there exist cocharacters

σ1, σ2 : C∗ → A such that

⟨σ1, τ1⟩ = 1,

⟨σ1, τ2⟩ = 0,

⟨σ2, τ1⟩ = 0,

⟨σ2, τ2⟩ = 1.

This yields that σ1(C∗).w and σ2(C∗).w are two distinct connected components of Y . This

contradicts the assumption that Y is irreducible. Hence, we conclude that Y = ⟨v⟩, for some

A-weight vector v ∈ V .

Proof of Proposition 4.31. Set Z := T.x. It is a general fact, see e.g. [AF23, Section 7.2],

that there exists a character τ : T → C∗ and a T-equivariant injective morphism ι : C → Z

onto an open subvariety Y of Z such that ι(0) = p and ι restricts to an isomorphism of

varieties C∗ ∼−→ T.x. Therefore, to conclude the proposition, it suffices to prove that p is

a smooth point of Z. By the Slice Theorem, see e.g. [AF23, Theorem 5.1.4], there exists a

T-invariant open subvariety U containing p and a T-equivariant étale morphism f : U → V to

a T-invariant open subvariety of TpC(D) with f(p) = 0. As the orbit T.x is one-dimensional,

T.f(x) is also a one-dimensional T-orbit of TpC(D). Since T.x contains p, we conclude that

T.f(x) contains 0. Thus, by Corollary 3.24 and Lemma 4.32, we have T.f(x) = ⟨w⟩, for some

T-weight vector w ∈ TpC(D). Therefore, 0 is a smooth point of T.f(x). As f is étale, we

conclude that p is also a smooth point of Z.

Proposition 4.31 directly implies the following isomorphism types for closures of one-

dimensional T-orbits:

Corollary 4.33. Let Z ⊂ C(D) be the Zariski closure of a one-dimensional T-orbit. Then,

Z is a smooth subvariety of C(D). In particular, Z is isomorphic to C∗, C or P1.

Thanks to Corollary 4.33, we call the one-dimensional T-orbits of C(D) also T-invariant
curves.
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4.6. Partial order via invariant curves

Reminders on Hilbert schemes

Before we prove Proposition 4.30, we briefly recall the definition and some properties of

Hilbert schemes. For a general introduction to Hilbert schemes see e.g. the expository works

[Str96] and [Nit05].

Let X be a projective variety with a fixed ample line bundle L. Moreover, let P ∈ Q[x]

be a polynomial. The Hilbert functor

HilbPX : {Schemes over C} −−→ {Sets}

is defined as

HilbPX(Y ) = {Z ⊂ X × Y | Z satisfies (Hilb-1)–(Hilb-3)},

where

(Hilb-1) Z is a closed subscheme of X × Y ,

(Hilb-2) the projection prY : Z → Y is flat,

(Hilb-3) for all closed points y ∈ Y , the fiber pr−1
Y (y) admits Hilbert polynomial P .

The following fundamental result is due to Grothendieck, see e.g. [Str96, Theorem 8.1]:

Theorem 4.34 (Existence of Hilbert schemes). The functor HilbPX is representable by a

projective scheme HilbPX .

This theorem implies that there exists a universal family Z ⊂ X × HilbPX such that

for every family Z ⊂ X × Y satisfying (Hilb-1)–(Hilb-3), there exists a unique morphism

f : Y → HilbPX such that f∗Z = Z. If Z ′ is a closed subscheme of X with Hilbert polynomial

P , we denote by [Z ′] the corresponding closed point on HilbPX .

If G is an algebraic group acting on X then this action induces a G-action on HilbPX . On

the closed points of HilbPX , this action is given as g.[Z ′] = [g.Z ′], where g and [Z ′] are closed

points of G and HilbPX .

Deformation of torus invariant varieties

Consider the general situation, where X is a normal and quasi-projective variety with an

algebraic action of a torus T . The representability of Hilbert functors allows us to deform

closed subvarieties of X into T -invariant closed subschemes of X as follows:

Lemma 4.35 (Deformation Lemma). Let T ′ ⊂ T be a subtorus such that T/T ′ ∼= C∗ and let

τ : C∗ → T be a chocharacter such that the induced map C∗ → T/T ′ is an isomorphism of

algebraic groups. For a T ′-invariant closed irreducible subvariety Y ⊂ X, set

Γ′ := {(τ(t).y, t) | y ∈ Y, t ∈ C∗} ⊂ X × C∗.

Let Γ be the Zariski closure of Γ′ in X ×C and let Γ0 be the scheme theoretic fiber of 0 with

respect to the projection X × C→ C. Then, the following holds

(i) the projection Γ→ C is flat,
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4. Attracting cells for bow varieties

(ii) Γ0 is a T -invariant closed subscheme of X,

(iii) the irreducible components of Γ0 are T -invariant closed subvarieties of X all of dimen-

sion dim(Y ).

Proof. By [Sum74, Theorem 2], there exists a T -equivariant embedding X ↪→ X ′ into a

projective variety X ′ with a T -action. Let Y be the Zariski closure of Y in X ′. Then, Y is a

T -invariant closed subvariety of X ′. Set

Γ
′
:= {(τ(t).y, t) | y ∈ Y , t ∈ C∗} ⊂ X ′ × C∗.

Then, Γ
′

contains Γ′ as open dense subvariety. Likewise, let Γ be the Zariski closure of Γ
′

in

X ′×C and Γ0 be the fiber of 0 with respect to the projection X ′×C→ C. By construction,

Γ resp. Γ0 contains Γ resp. Γ0 as open dense subscheme. Fix an ample line bundle on X ′ and

let P be the corresponding Hilbert polynomial of Y . By definition, the flat family Γ
′ → C∗

corresponds to the τ -orbit of [Y ] in HilbPX′ . Since Γ
′

is a closed subvariety of X ′ × C∗ and

X ′ × C∗ is an open subvariety of X ′ × C, we have that Γ
′

is a locally closed subvariety of

X ′ × C. We conclude that Γ equals the scheme theoretic closure of Γ
′

in X ′ × C. Thus,

by e.g. [Har77, Proposition III.9.7], the projection π : Γ → C is a flat morphism. Since Γ is

an open subvariety of Γ, we deduce that also the projection Γ → C is flat which proves (i).

Let τ̄ : C∗ ∼−→ T/T ′ be the algebraic group isomorphism induced by τ . We equip C with the

T -action t.x = τ̄−1([t]) · x, where [t] denotes the class of t in T/T ′. Then, the flat family

π : Γ → C corresponds to a T -equivariant morphism C → HilbPX′ . This implies that Γ0 is

a T -invariant closed subscheme of X ′. As the T -action continuously permutes the finitely

many irreducible components of Γ0, we conclude that all irreducible components of Γ0 are

T -invariant. The flatness of π implies that the dimension of all irreducible components of Γ0

equals dim(Y ), see e.g. [Har77, Corollary III.9.6]. Since Γ0 = Γ0 ∩ X, we conclude that Γ0

is a T -invariant open dense subscheme of Γ0. Thus, (ii) and (iii) follow from the respective

properties of Γ0.

In the following subsection, we use the Deformation Lemma to deform orbits of generic

cocharacters into one dimensional orbits with respect to the torus T.

Proof of Proposition 4.30

As before, fix σ ∈ C. Again, choose a T-equivariant locally closed immersion ι : C(D) ↪→ P(V )

and let ap be defined as in the proof of Theorem 4.23. In particular, note that if p, p′,

q ∈ C(D)T such that p′ ̸= p, q and p′ ∈ Attrσ(q) ∩Attrσ−1(p) then we have ap < ap′ < ap.

Proof of Proposition 4.30. To prove that ⪯C is equivalently characterized by T-invaraint

curves as described in Proposition 4.30, it suffices to show that for p, q ∈ C(D)T with p ̸= q

and p ∈ Attrσ(q) there exist x1, . . . , xk ∈ C(D) and p1, . . . , pk ∈ C(D)T such that p1 = p and

pk = q and for all i, we have

(a) limt→0 σ(t).xi = pi+1 and limt→∞ σ(t).xi = pi,

(b) T.xi = σ(C∗).xi.
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4.6. Partial order via invariant curves

We prove this statement for fixed q and arbitrary p via induction on ap. If ap = aq then

p ∈ Attrσ(q) gives p = q and the statement is trivial. If ap > aq then, by Lemma 4.28, there

exists x ∈ Attrσ(q) ∩Attrσ−1(p) with limt→∞ σ(t).x = p. Applying the Deformation Lemma

to σ(C∗).x gives that there exists a one-dimensional T-invariant irreducible subvariety Y of

Attrσ(q) ∩Attrσ−1(p) containing p. Let y ∈ Y \ C(D)T. Note that we have

ap′ < ap, for all p′ ∈ Attrσ(q) ∩Attrσ−1(p) ∩ C(D)T, p′ ̸= p.

Thus, we conclude that limt→∞ σ(t).y = p. The properness of Attrσ(q) ∩ Attrσ−1(p) implies

that p0 := limt→0 σ(t).y exists in C(D). By the Generic Cocharacter Theorem, we have

p0 ∈ C(D)T. As p0 ∈ Attrσ(q) and ap0 < ap, we can apply the induction hypothesis to p0

which yields a chain of one dimensional T-orbits with the desired properties (a) and (b).

Example of invariant curves

Consider again the bow variety C(D) from (4.1). In this subsection, we characterize the

T-invariant curves of C(D). Via Proposition 4.30, this determines the partial orders ⪯C on

C(D)T.

The classification of T-invariant curves of C(D) can be conveniently illustrated via the

GKM-graph ΓC(D) of C(D), see e.g. [Tym05] for an introduction to GKM-theory. This graph,

named after Goresky, Kottwitz and MacPherson, is defined as follows:

� The vertex set of ΓC(D) is C(D)T.

� For each T-invariant curve which is isomorphic to P1, draw a an edge between the

T-fixed points corresponding to 0 and ∞.

� For each T-invariant curve which is isomorphic to C, draw en edge with one open end

and one end adjacent to the T-fixed point corresponding to 0.

Additionally, we decorate each pair (γ, p), where γ is an edge of ΓC(D) and p is a vertex of

ΓC(D) that is adjacent to γ with the tangent weight Tpγ.

Remark. As C(D) is only quasi-projective there exist some T-invariant curves that contain

only one T-fixed point. Hence, the GKM-graph of C(D) contains edges that are just adjacent

to one vertex and admit an open end.

Recall the T-invariant affine open subvarieties C(D) =
⋃5
i=1Wi from (4.4) and the pa-

rameterizations ηi : C4 ∼−→Wi from Claim 4.12.

Claim 4.36. The T-invariant curves of C(D) are exactly the Zariski closures of the orbits

T.ηi(ej), where e1, . . . , e4 are the standard basis vectors of C4.

In the proof, we use the following statement:

Claim 4.37. Let x ∈Wi, for some i = 1, . . . , 5. Then, T.x contains ηi(0).
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4. Attracting cells for bow varieties

Proof. We only prove the case i = 1 as the other cases are similar. By Claim 4.13, W1 admits

the weight space decomposition

W1 = Ct3−t1+h ⊕ Ct3−t2+h ⊕ Ct1−t2 ⊕ Ct2−t3 .

Denote the elements of W1 as x = (λ1, λ2, λ3, λ4) according to this decomposition. By using

the C∗
h-action, we deduce that T.x contains x′ := (0, 0, λ3, λ4). Let σ : C∗ → A, t 7→ (t3, t2, t).

Then, limt→0 σ(t).x′ = 0 and thus 0 ∈ T.x.

Proof of Claim 4.36. Let x ∈ C(D) such that γ := T.x is one-dimensional. We have x ∈ Wi,

for some i = 1, . . . , 5. By Claim 4.37, we have ηi(0) ∈ γ. Thus, Lemma 4.32 and Claim 4.13

imply that T.x = ηi(ej), for some j = 1, . . . , 4.

Claim 4.38. The GKM-graph ΓC(D) is given as follows:

5

4

3

2

1

t2 − t3 + h t1 − t3 + 2h

t3 − t1 − h

t1 − t3 + h

t3 − t2

t2 − t3
t1 − t2 + 2h

t3 − t2 + h
t2 − t1 − h

t1 − t2 + h

t3 − t1

t1 − t3

t2 − t3 + h

t2 − t1 + h

t3 − t1 + h t3 − t2 + h

t1 − t2

t2 − t1

t3 − t2

t3 − t2

Proof. By Claim 4.36, the T-invariant curves of C(D) are exactly the Zariski closures of the

T.ηi(ej), for i = 1, . . . , 5 and j = 1, . . . , 4. We just determine the Zariski closure of T.η5(e3)
as all other closures can be determined in the same way. By Claim 4.12, η5(e3) corresponds

to the diagram

C C C2 C2 C2

C C C

0
( 0 0
0 0 ) ( 0 0

0 0 )

( 0
0 )

(1 1)

1 ( 1 0
0 1 ) ( 1 0

0 1 )

01 (0 0)( 1
0 ) (0 0)

( 0
1 )
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4.6. Partial order via invariant curves

Hence, η5(e3) also satisfies (cov-4) and therefore η5(e3) ∈ W4. Thus, Claim 4.37 gives γ =

T.η5(e3) ∪ {xD5 , xD4}. Thus, the GKM-graph of C(D) indeed contains an edge e connecting

the vertices labeled by 5 and 4. By Claim 4.13, the tangent weight of γ at xD5 is t3 − t2.
Hence, the pair (5, e) is decorated with t3 − t2, whereas the pair (4, e) is decorated with

t2 − t3.

By Proposition 4.30, the partial order ⪯C corresponding to an arbitrary choice of chamber

can be read off from ΓC(D) as follows: For p, q ∈ C(D)T, we have p ⪯C q if and only if there

exists a finite sequence of vertices p1, . . . , pr in ΓC(D) such that

(i) p1 = q and pr = p,

(ii) for all i, pi and pi+1 are connected by an edge γ such that Tpiγ is positive and Tpi+1γ

is negative with respect to C.

The reader is invited to use this criterion to give another proof that for the cocharacter

σ0 = (t, t2, t3) the corresponding partial order matches with the usual order ≤ on {1, 2, 3, 4, 5}.

Remark. The GKM graph of the bow variety C(D) can also be found in [RS20].

Remark. In general bow varieties may admit infinitely many T-invariant curves, see e.g. the

examples in [FS23].
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Chapter 5

Stable envelopes

Stable envelopes were introduced by Maulik and Okounkov in [MO19, Chapter 3] as fam-

ilies of torus equivariant cohomology classes satisfying a certain set of stability conditions

which are analogous to to the stability conditions from equivariant Schubert calculus, see

e.g. [KT03, Lemma 1], [GKS20, Lemma 3.8]. The stability conditions provide different fam-

ilies of stable envelope bases in localized equivariant cohomology (similar to the equivariant

Schubert bases corresponding to different choices of Borel subgroups). Just like in equivariant

Schubert calculus, the base change between different stable envelope bases produces solutions

of the Yang–Baxter equations which provides a connection between algebraic geometry and

integrable systems, see [MO19, Chapter 5]. It in particular allows interesting braid group

actions on equivariant cohomology algebras and constructions of geometric quantum groups.

Maulik and Okounkov consider in their setup smooth algebraic varieties X admitting a

holomorphic symplectic form ω satisfying the following conditions on torus actions:

(Torus-1) There exists a pair of tori A ⊂ T acting algebraically on X such that ω is fixed

by A and scaled by T .

(Torus-2) There exists an affine variety X0 with algebraic T -action and an T -equivariant

proper morphism X → X0.

Bow varieties satisfy these conditions, namely (Torus-1) by discussion on the torus action in

Section 2.3 and (Torus-2) by Proposition 4.2. As a consequence, stable envelopes exists for

bow varieties and the results of Maulik and Okounkov’s theory can be applied to them.

The current chapter is devoted to a study of these stable envelopes. We give a detailed

reproof of the uniqueness and existence of stable envelopes in the framework of bow varieties

following [MO19, Chapter 3]. As we are in the preferable situation of finitely many torus

fixed points, some arguments simplify in our setup. The uniqueness property can be shown

via a direct argument which combines the stability properties of stable envelopes and excess

intersection theory.

The proof of the existence of stable envelopes follows the algorithmic procedure from

[MO19, Section 3.5]. In the case of bow varieties, this procedure expresses the stable basis

elements as Z-linear combinations of the Poincaré duals of the fundamental classes of the

attracting cell closures. The crucial input for this algorithmic procedure is a result which
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controls the equivariant multiplicities of torus invariant lagrangian subvarieties. We take

this result from the proof of [MO19, Lemma 3.4.2] and refer to it as Lagrangian Multiplicity

Theorem, see Theorem 5.15. The Sections 5.4 and 5.5 are devoted to a detailed reproof of

Theorem 5.15 following the general outline from [MO19, Section 3.4]. Central ingredients of

the proof are the deformation to the normal cone construction from [Ful84] and a further

deformation result, see Proposition 5.29, where we deform lagrangian conic subvarieties of

symplectic vector spaces into lagrangian hyperplanes.

We close this chapter with an example where we explicitly compute stable basis elements

using the algorithm provided by the existence proof.

5.1 Torus equivariant cohomology

Before we discuss stable envelopes, we recall important ingredients of torus equivariant co-

homology and torus equivariant intersection theory which are crucial for the theory of stable

envelopes. For more details on equivariant cohomology see e.g. [Hsi75], [tD87] and [AF23].

For an introduction to equivariant intersection theory, see e.g. [Bri97] and [EG96]. For the

convenience of the reader, prove some of the presented statements.

Let X be a variety with an algebraic action of a torus T = (C∗)r. We denote by H∗
T (X)

the T -equivariant cohomology and by H
T
∗ (X) the T -equivariant Borel–Moore homology of X

with coefficients in Q. Via the cup product, H∗
T (X) is equipped with a ring structure denoted

by (α, β) 7→ α · β. Furthermore, we denote the standard action of an element α ∈ H∗
T (X) on

a ∈ HT
∗ (X) by α.a.

Given a T -equivariant morphism f : X → Y of varieties with algebraic T -actions, we

denote the respective pullback and pushforward morphisms in T -equivariant cohomology

and T -equivariant Borel–Moore homology (whenever they are defined) by f∗ and f∗.

If X is additionally smooth and Y , Y ′ are closed T -invariant subvarieties then via the

usual cup product construction, see e.g. [CG97, Section 2.6.15], we obtain the corresponding

T -equivariant intersection product

∩ : H
T
∗ (Y )×HT

∗ (Y ′) −−→ H
T
∗ (Y ∩ Y ′).

This pairing satisfies the action identity

(α.a) ∩ b = i∗(α).(a ∩ b), (5.1)

where α ∈ H∗
T (Y ), a ∈ HT

∗ (Y ), b ∈ HT
∗ (Y ′) and i : Y ∩ Y ′ ↪→ Y is the inclusion.

Approximation

The T -equivariant cohomology of a variety X with algebraic T -action can be approximated

via singular cohomology as follows: Set En := (Cn \ {0})r and equip En with the T = (C∗)r-

action

(t1, . . . , tr).(v1, . . . , vr) = (t1v1, . . . , trvr), for (t1, . . . , tr) ∈ T , (v1, . . . , vr) ∈ En.
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Then, T -acts freely on En. Set

Ui := {(x1, . . . , xn) ∈ Cn \ {0} | xi ̸= 0}

and note that we have an isomorphism of varieties

Cn−1 × C∗ ∼−−→ Ui, (v1, . . . , vn−1, t) 7→ (tv1, . . . , tvi−1, t, tvi, . . . , tvn−1). (5.2)

Set Ui := Ui1× . . .×Uir , for i = (i1, . . . , ir). Then, we have a cover of En by T -invariant open

subvarieties

En =
⋃
i∈In

Ui, where In = {1, . . . , n}r. (5.3)

Via (5.2), we obtain T -equivariant isomorphisms Cr(n−1) × T ∼= Ui, where T acts trivially

on Cr(n−1) and via the regular action on T . Thus, the geometric quotient En/T exists and

and we have an obvious isomorphism of varieties En/T ∼= (Pn)r. By (5.3), the projection

pr : En → Pn is a principal T -bundle in the Zariski topology.

Given a complex scheme X̃ with algebraic T -action, we conclude by (5.3) that En × X̃
(equipped with the diagonal T -action) admits a cover by T -invariant opens

En × X̃ =
⋃
i∈In

Ui × X̃

and we have T -equivariant isomorphisms Ui × X̃ ∼= Cr(n−1) × X̃ × T . Thus, T acts freely

on En × X̃. This gives that the geometric quotient (En × X̃)/T exists and the projection

En×X̃ → (En×X̃)/T is a principal T -bundle in the Zariski topology. Moreover, (En×X̃)/T

is covered by open subschemes

(En × X̃)/T =
⋃
i∈In

(Ui × X̃)/T (5.4)

and we have isomorphisms of schemes (Ui × X̃)/T ∼= Cr(n−1) × X̃. Note that the singular

cohomology groups (with rational coefficients) H i(En) vanish for 1 < i < 2n − 1. Thus, by

e.g. [AF23, Proposition 2.2.2], we conclude that there exist natural isomorphisms of Q-vector

spaces

fi : H
i
T (X)

∼−−→ H i((En ×X)/T ), for i < 2n− 1. (5.5)

These isomorphism are compatible with the ring structure on H∗
T (X) and H∗((En×X)/T ) in

this range, i.e. if α ∈ H i
T (X) and β ∈ Hj

T (X) with i+j < 2n−1 then fi+j(α·β) = fi(α)·fj(β).

The analogous result to (5.5) for T -equivariant Borel–Moore homology, see e.g. [AF23,

Section 17.1], states that there are natural isomorphisms of Q-vector spaces

H
T
i (X)

∼−−→ H i+r(2n−1)((En ×X)/T ), for i > −2n+ 1, (5.6)

where H∗ denotes the usual Borel–Moore homology with coefficient in Q.
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Fundamental classes

Suppose now that X is additionally irreducible. Let d be the dimension of X (as complex

variety). As explained in e.g. [AF23, Section 17.1], there exists a unique class [X]T ∈ HT
2d(X)

such that for all n ≥ 1, [X]T corresponds to the fundamental class [(En ×X)/T ] under the

identification H
T
2d(X) ∼= H2d+r(2n−1)((En ×X)/T ) from (5.6). Consequently, [X]T is called

the T -equivariant fundamental class of X.

If X is reducible then the T -equivariant fundamental class of X is defined as

[XT ] :=
s∑
l=1

jl∗[Xl]
T ,

where X1, . . . , Xs are the irreducible components of X and jl : Xl ↪→ X are the respective

inclusions.

If X is additionally smooth, we have the T -equivariant Poincaré duality isomorphism, see

e.g. [AF23, Section 3.4]:

H∗
T (X)

∼−−→ H
T
∗ (X), α 7→ α.[X].

If Y ⊂ X is a closed T -invariant subvariety then, by definition, the map

H
T
∗ (Y ) −−→ H

T
∗ (Y ), a 7→ [X]T ∩ a (5.7)

equals the identity on H
T
∗ (Y ).

Fundamental classes of schemes

Let X̃ be a separated scheme of finite type over C with algebraic T -action and let X = X̃red.

As before, denote by X1, . . . , Xs the irreducible components of X. Recall from e.g. [Ful84,

Section 1.5] that the fundamental class [X̃] ∈ H∗(X) of X̃ in the usual non-equivariant

Borel–Moore homology is defined as

[X̃] :=
s∑
i=1

m(Xi, X̃)ji∗[Xi],

where ji : Xi ↪→ X is the inclusion. Here, m(Xi, X̃) are the respective geometric multiplicities

which are defined as follows: LetOX̃,Xi
be the stalk of the structure sheaf of X̃ at Xi. SinceXi

and X̃ have equal dimension, the Krull dimension of OX̃,Xi
is 0. As OX̃,Xi

is also noetherian,

OX̃,Xi
is artinian. Thus, every finitely generated OX̃,Xi

-module M has finite length which

we denote by lOX̃,Xi
(M).

Definition 5.1. The geometric multiplicity of Xi in X̃ is defined as

m(Xi, X̃) := lOX̃,Xi
(OX̃,Xi

).

We now consider how the definition of fundamental classes generalize to the T -equivariant

framework. The next proposition gives that geometric multiplicities are well-behaved with

respect to the quotient construction from (5.4).

Proposition 5.2. Let n ≥ 1. Then, the following holds
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(i) (En ×X1)/T, . . . , (En ×Xs)/T are the irreducible components of (En × X̃)/T ,

(ii) we have m((En ×Xi)/T, (En × X̃)/T ) = m(Xi, X̃), for i = 1, . . . , s.

Proof. Recall from (5.4) that we have a cover by open subschemes

(En × X̃)/T =
⋃
i∈In

(Ui × X̃)/T

and the isomorphisms (Ui × X̃)/T ∼= Cr(n−1) × X̃. Under these isomorphisms (Ui ×Xj)/T

corresponds to Cr(n−1) ×Xj . Thus, we conclude (i). For (ii), we set

A := OX̃,Xj
, B := OCr(n−1)×X̃,Cr(n−1)×Xj

.

Note that B is isomorphic as C-algebra to the function field A(x1, . . . , xr(n−1)). Pick an

arbitrary Ui ⊂ En. Then, we have

m((En ×Xj)/T, (En × X̃)/T ) = m((Ui ×Xj)/T, (Ui × X̃)/T ) = lB(B).

Since the inclusion A ↪→ B is flat, we conclude from e.g. [Ful84, Lemma A.4.1] that

lB(B) = lA(A) + lB(B/mB),

where m ⊂ A is the unique maximal ideal. We have B/mB ∼= k(x1, . . . , xr(n−1)) as rings,

where k = A/m is the residue field. Thus, lB(B/mB) = 0 and we conclude

m((En ×Xj)/T, (En × X̃)/T ) = lA(A) = m(Xj , X̃)

which completes the proof.

Thus, we derive the following definition of T -equivariant fundamental classes:

Definition 5.3. The T -equivariant fundamental class of X̃ is defined as

[X̃]T :=

s∑
i=1

m(Xi, X̃)ji∗[Xi]
T ,

where ji : Xi ↪→ X is the inclusion. Note that [X̃]T is an element in H
T
∗ (X).

One useful aspect of scheme theoretic fundamental classes is the following general result:

Proposition 5.4. Let U ⊂ P1 be an open subvariety equipped with the trivial T -action and let

Z ⊂ X×U be an irreducible T -invariant closed subvariety such that the projection π : Z → U

is flat. Let p, q ∈ U and π−1(p), π−1(q) be the scheme theoretic fibers. Then, in H
T
∗ (X)

holds

ip∗[π
−1(p)]T = iq∗[π

−1(q)]T ,

where ip : π−1(p) ↪→ X and iq : π−1(q) ↪→ X are the respective closed immersions.
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Proof. Let dim(Z) = d+ 1 and choose n > d. By (5.4), (En × Z)/T is an irreducible closed

subvariety of ((En ×X)/T ) × U and the projection π̃ : (En × Z)/T → U is flat. Hence, we

deduce from e.g. [Ful84, Proposition 19.1.1] that ip∗[π̃
−1(p)] = iq∗[π̃

−1(q)] in H2d(En ×X).

By definition, we have

π̃−1(p) = (En × π−1(p))/T, π̃−1(q) = (En × π−1(q))/T.

Hence, by Proposition 5.2, the isomorphism H2d+r(2n−1)((En × X)/T ) ∼= H
T
2d(X) maps

ip∗[π̃
−1(p)] to ip∗[π

−1(p)]T and iq∗[π̃
−1(q)] to iq∗[π

−1(q)]T . Thus, we conclude ip∗[π
−1(p)]T =

iq∗[π
−1(q)]T .

Localization Theorem

The Localization Theorem is a central ingredient of torus equivariant cohomology which

provides a crucial exchange of local and global data. For its formulation, we set up some

notation: Let pt be the topological space consisting of one single point. We view pt as variety

with trivial T -action. Recall from e.g. [AF23, Example 1.1.2] that we have an isomorphism

of Q-algebras

H∗
T (pt) ∼= H∗((P∞)r) ∼= Q[t1, . . . , tr],

where the variable ti corresponds to the first Chern class of the tautological bundle on the

i-th factor of (P∞)r. In particular, each ti is homogeneous of degree 2. Note that for every

variety X with algebraic T -action, H∗
T (X) is an algebra over H∗

T (pt). Let Char(T ) be the

character lattice of T . We embed Char(T ) into HT (pt), where we map the character

τa1,...,ar : T −−→ C∗, (x1, . . . , xr) 7→ xa11 · · ·x
ar
r , for a1, . . . , ar ∈ Z

to the linear polynomial a1t1 + . . .+artr. Let S ⊂ H∗
T (pt) be the multiplicative set generated

by the set

(Char(T ) \ {0}) = {a1t1 + . . .+ artr | (a1, . . . , ar) ∈ Zr \ {0}}. (5.8)

Let H∗
T (X)loc := S−1H∗

T (X) be the localized T -equivariant cohomology of X.

The following version of the Localization Theorem can be found in [AF23, Theorem 7.1.1]:

Theorem 5.5 (Localization). The inclusion ι : XT ↪→ X restricts to an isomorphism of

H∗
T (pt)loc-algebras

S−1ι : H∗
T (X)loc

∼−−→ H∗
T (XT )loc.

In the important special case where XT is the disjoint union of isolated points, we have

H∗
T (XT )loc ∼=

∏
p∈XT

H∗
T ({p})loc.

For p ∈ XT , let ιp : {p} ↪→ X be the inclusion. For α ∈ H∗
T (X), the restriction ι∗p(α) ∈

H∗
T ({p}) is called the equivariant multiplicity of α at p. According to the Localization The-

orem, the image of α in H∗
T (X)loc is uniquely determined by the equivariant multiplicities

of α at all T -fixed points of X. In the next subsection, we discuss possibilities to explicitly

compute equivariant multiplicities.
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Equivariant multiplicities

Assume that X is a smooth variety with algebraic T -action and let p ∈ XT be a T -fixed

point of X. In the following, we recall important facts about equivariant multiplicities of

Poincaré duals of fundamental classes of T -invariant subvarieties of X. For this, note that if

j : Y ↪→ X is the inclusion of a closed T -invariant subvariety and α ∈ H∗
T (X) is the Poincaré

dual of j∗[Y ]T then

ι∗p(α).[p]T = [Y ]T ∩ [p]T .

We begin with the following important special case: Let V be a finite dimensional T -

representation of dimension d. We denote the origin of V by p. j : W ↪→ V be the inclusion of

a T -subrepresentation. We like to explicitly determine the T -equivariant intersection product

[W ]T ∩ [p]T .

For this, let π : V → {p} be the projection and ιp : {p}hookrightarrowV be the inclusion.

By e.g. [AF23, Proposition 17.4.1], we have that π∗ : H∗
T (pt)

∼−→ H∗
T (V ) and ι∗p : H∗

T (V )
∼−→

H∗
T (pt) are inverse isomorphisms of Q-algebras. Let s∗ : H

T
∗ (V )

∼−→ H
T
∗ ({p}) be the isomor-

phism of H∗
T (pt)-modules corresponding to ι∗p via Poincaré duality. The isomorphism s∗ is

called the T -equivariant Gysin isomorphism. By definition, s∗ is homogeneous of degree −2d,

i.e. s∗ maps H
T
i (V ) to H

T
i−2d({p}), for all i. Furthermore, s∗ satisfies s∗[V ]T = [p]T and we

have s∗(j∗[W ]T ) = [W ]T ∩ [p]T . By e.g. [AF23, Proposition 17.4.1], we have the following

explicit formula for s∗(j∗[W ]T ): Let V =
⊕s

i=1Cmi
τi and W =

⊕s
i=1Cni

τi be the respective

T -weight space decompositions. Then, we have

s∗(j∗[W ]T ) = eT (V/W ).[p]T =
( s∏
i=1

τmi−ni
i

)
.[p]T . (5.9)

Here, eT denotes the T -equivariant Euler class.

We now come to the general setup where X is smooth and p is a T -fixed point of X. Next,

we recall how equivariant multiplicities on X can be characterized via Gysin pullbacks of

fundamental classes of tangent cones. For this, let Y ⊂ X be a closed T -invariant subvariety.

Suppose Y contains p and let I be the ideal sheaf over Y corresponding to p. Let

CpY := Specp

(⊕
n≥0

In/In+1
)

be the tangent cone. Here, Specp denotes the relative spectrum over {p}. Note that CpY is a

possibly reduced scheme which admits a closed immersion i : CpY ↪→ TpX. By construction,

each irreducible component Z of CpY is a conical subvariety of TpX, i.e. Z is invariant under

the C∗-action on TpX given by the usual scalar multiplication. Via the T -action on Y , CpY

is equipped with an algebraic T -action and the closed immersion i is T -equivariant. If p is a

smooth point of Y then CpY is canonically isomorphic to the tangent space TpY .

By e.g. [AF23, Proposition 17.4.1], we have the following result:

Proposition 5.6. We have [Y ]T ∩ [p]T = s∗(i∗[CpY ]T ).

As a direct consequence, we obtain the following formula for equivariant multiplicities for

smooth subvarieties:
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Corollary 5.7. Let j : Y ↪→ X be a closed T -invariant subvariety and suppose p ∈ Y is a

smooth point of Y . Then, we have

[Y ]T ∩ [p]T = eT (TpX/TpY ).[p]T .

Proof. As p is a smooth point of Y , we have TpY = CpY . Let i : TpY ↪→ TpX be the

corresponding inclusion. By Proposition 5.6, we have [Y ]T ∩ [p]T = s∗(i∗[TpY ]T ). From (5.9)

then follows s∗(i∗[TpY ]T ) = eT (TpX/TpY ).[p]T .

From Corollary 5.7, we deduce the following technical result that will be applied later in

the uniqueness proof of stable envelopes:

Corollary 5.8. Let Y ⊂ X be a T -invariant closed subvariety, U ⊂ Y be a smooth T -

invariant open subvariety, p ∈ U be a T -fixed point and

{p} i
↪−−→ U

j
↪−−→ Y

κ
↪−−→ X

be the respective inclusions. Let a ∈ HT
∗ (Y ) and α ∈ H∗

T (X) be the Poincaré dual of κ∗(a).

Denote by β ∈ H∗
T (U) the Poincaré dual of j∗(a). Then, we have

ι∗p(α) = eT (TpX/TpU) · i∗(β).

Proof. Since there exists an open T -invariant subvariety V ⊂ X with V ∩ Y = U , we may

assume by Proposition 5.6 that U = Y . By (5.7) and (5.1),

ι∗p(α).[p]T = ι∗p(α).([X]T ∩ [p]T ) = (α.[X]T ) ∩ [p]T = κ∗(a) ∩ [p]T . (5.10)

By the definition of the T -equivariant intersection product, we have

(5.10) = a ∩ [p]T . (5.11)

Applying first (5.1) and then Corollary 5.7 yields

(5.11) = (β.[Y ]T ) ∩ [p]T = i∗(β).([Y ]T ∩ [p]T ) = (i∗(β) · eT (TpX/TpY )).[p]T .

Hence, ι∗p(α) = i∗(β) · eT (TpX/TpY ) which proves the corollary.

For better readability, we use the following convention: Given an inclusion of a T -invariant

subvariety j : Y ↪→ X, we also denote the pushforward of a T -equivariant fundamental class

j∗[Y ]T in H
T
∗ (X) just by [Y ]T .

5.2 Stable envelopes

We return to the setup where X is a bow variety C(D) and T is either A or T. We denote the

equivariant parameters by H∗
A(pt) = Q[t1, . . . , tN ] and H∗

T(pt) = Q[t1, . . . , tN , h] respectively.

A crucial definition from [MO19] is the following:
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Definition 5.9. Let d be the dimension of C(D) as complex variety. Stable envelopes are

maps, depending on a choice of a chamber C of A:

C(D)T
StabC−−−−−→ Hd

T(C(D))

which are uniquely characterized by the properties (Stab-1)-(Stab-3) from Theorem 5.10,

called the normalization, support and smallness condition, respectively.

Theorem 5.10 (Stable envelopes). Fix a chamber C of A. Then, there exist a unique family

(StabC(p))p∈C(D)T of elements in Hd
T(C(D)) satisfying the following conditions:

(Stab-1) We have ι∗p(StabC(p)) = eT(TpC(D)−C ), for all p ∈ C(D)T.

(Stab-2) We have that StabC(p) is supported on AttrfC(p), for all p ∈ C(D)T.

(Stab-3) Let p, q ∈ C(D)T with q ≺ p. Then, ι∗q(StabC(p)) is divisible by h.

Recall that a T-equivariant cohomology class γ ∈ H∗
T(C(D)) is supported on a T-invariant

closed subvariety A ⊂ C(D) if and only if j∗(γ) = 0, where j : C(D) \ A ↪→ C(D) is the

inclusion.

The normalization and support condition directly imply that stable envelopes provide a

basis of the localized equivariant cohomology ring:

Corollary 5.11 (Stable envelope basis). For a fixed chamber C of A, the T-equivariant
cohomology classes (StabC(p))p∈C(D)T form a H∗

T(pt)loc-basis of H∗
T(C(D))loc.

Definition 5.12. We refer to (StabC(p))p∈C(D)T as stable envelope basis corresponding to C

and to the individual T-equivariant cohomology classes StabC(p) as stable basis elements.

Remark. The stable envelope maps StabC provide a map

{Chambers} −−→ {Bases of H∗
T(C(D))loc}.

It is a central result of Maulik and Okounkov that the base change matrices with respect to

adjacent chambers give solutions to Yang–Baxter equations, providing an interesting connec-

tion to the theory of integrable systems. In the special case of cotangent bundles of partial flag

varieties the corresponding integrable system is the inhomogeneous XXX model for general

linear Lie algebras; see [MO19] for more details.

Remark. In the case of Nakajima quiver varieties, the definition of stable envelopes in [MO19]

also includes a choice of signs in the normalization axiom, that corresponds to a choice of

polarization of the involved Nakajima quiver variety. Polarizations can be defined in the

setting of bow varieties too, see [Sho21, Section 4.4.1] and one could work with the more

general definition. For simplicity, we however choose here all signs to be 1.
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Matching under Hanany–Witten transition

Before we come to the proof of the uniqueness and existence of stable envelopes, we show

that stable envelopes are compatible with Hanany–Witten transitions in the following way:

Suppose D̃ is obtained from D by Hanany–Witten transition. Let Φ: C(D)
∼−→ C(D̃) be the

corresponding Hanany–Witten isomorphism and Φ∗ : H∗
T(C(D̃))

∼−→ H∗
T(C(D)) be the induced

isomorphism. Furthermore, let ρ : T ∼−→ T be the automorphism of algebraic groups from

Proposition 2.52 and ρ∗ : H∗
T(pt)

∼−→ H∗
T(pt) be the induced isomorphism.

Proposition 5.13. For all p ∈ C(D)T, we have

StabC(p) = Φ∗(StabC(Φ(p))).

Proof. Since Φ∗(h) = h, we conclude that Φ∗(StabC(Φ(p))) satisfies the smallness condition.

As Φ is A-equivariant, we have

Φ−1(AttrC(Φ(q))) = AttrC(q), for all q ∈ C(D)T. (5.12)

This implies the support condition for Φ∗(StabC(Φ(p))). Denote by Λp ∈ H∗
T(C(D)) and

Λ̃p ∈ H∗
T(C(D̃)) the Poincaré duals of the T-equivariant fundamental classes of AttrC(p) and

AttrC(Φ(p)) respectively. Then, (5.12) yields Φ∗(Λ̃p) = Λp. Thus, we conclude

eT(TpC(D)−C ) = ι∗p(Λp) = ι∗p(Φ
∗(Λ̃p)). (5.13)

The normalization condition for StabC(Φ(p)) yields

ι∗Φ(p)(Λ̃p) = eT(TΦ(p)C(D̃)−C ) = ι∗Φ(p)(StabC(Φ(p))).

Thus, we conclude that

(5.13) = ρ∗(ι∗Φ(p)(StabC(Φ(p)))) = ι∗p(Φ
∗(StabC(Φ(p)))).

This proves the normalization condition for Φ∗(StabC(Φ(p))).

In the remainder of this chapter, we give a proof of Theorem 5.10 following [MO19,

Chapter 3].

Uniqueness of stable envelopes

We now prove the uniqueness statement of Theorem 5.10.

Proof of Theorem 5.10 (Uniqueness). If (StabC(p))p∈C(D)T and (Stab′
C(p))p∈C(D)T satisfy the

conditions of Theorem 5.10 then the family (StabC(p)− Stab′
C(p))p∈C(D)T satisfies the condi-

tions of Lemma 5.14 below. Hence, we have StabC(p) = Stab′
C(p), for all p ∈ C(D)T.

Lemma 5.14. Assume (γp)p∈C(D)T is a family of homogeneous equivariant cohomology classes

in H∗
T(C(D)) of degree d = dim(C(D)) satisfying the following two conditions:

(a) For all p ∈ C(D)T, the class γp is supported on AttrfC(p).
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(b) Let p, q ∈ C(D)T with q ⪯ p. Then, ι∗q(γp) is divisible by h.

Then, γp = 0, for all p ∈ C(D)T.

Proof. Fix p ∈ C(D)T and let ≤ be a total order on C(D)T which refines ⪯. Let n = |C(D)T|
and denote the T-fixed points of C(D) by q1, . . . , qn, where qi ≤ qj if and only if i ≤ j. Let

i0 ∈ {1, . . . , n} such that p = qi0 . Furthermore, we set

Ai :=
i⊔

j=1

AttrC(qj), for i = 1, . . . , n

and A0 := ∅. According to Proposition 4.20, each Ai is a closed T-invariant subvariety of

C(D) and contains AttrC(qi) as open subvariety. To prove γp = 0, we show that

if γp is supported on Ai for some i ∈ {1, . . . , n}, then, γp is also supported on Ai−1.

This implies γp = 0, since γp is supported on A0 and thus has empty support.

So let us prove the above statement. Let κ : Ai ↪→ C(D) be the inclusion. Since γp is

supported on Ai, there exists a ∈ H
T
∗ (Ai) such that κ∗(a) is the Poincaé dual of γp. Let

f : {qi} ↪→ AttrC(qi) and j : AttrC(qi) ↪→ Ai denote the inclusions and let β ∈ H∗
T(AttrC(qi))

be the Poincaré dual of j∗(a). By Corollary 5.8, we have

ι∗qi(γp) = eT(TqiC(D)−C ) · f∗(β). (5.14)

By Corollary 3.24, eT(TqiC(D)−C ) is homogeneous of degree d and not divisible by h. Thus, by

condition (b) and (5.14), we conclude f∗(β) = 0. By Proposition 4.4, f∗ is an isomorphism

of rings. Therefore, β = 0 which is equivalent to a being supported on Ai−1. Hence, γp is

supported on Ai−1 as well.

5.3 Existence of stable envelopes

The remainder of this chapter is devoted to the existence of stable envelopes. We will see

that they can be constructed using an iterative procedure based on general properties of

equivariant multiplicities of lagrangian subvarieties which are stated in Theorem 5.15. This

theorem will be proved in Sections 5.4 and 5.5 using the deformation to the tangent cone

construction from [Ful84, Section 5.1] and further deformation techniques which are similar

to those from Section 4.6. In Section 5.6, we finally illustrate the explicit construction of

stable basis elements in an example.

Equivariant multiplicities of lagrangian subvarieties

We now come to the main ingredient in the proof of the existence of stable envelopes. We call

this the Langrangian Multiplicity Theorem since it characterizes the equivariant multiplicity

of lagrangian subvarieties of symplectic varieties at points in therms of the tangent weights

at p.

Let X be a smooth symplectic variety of dimension 2n. We assume that X is endowed

with an algebraic action of a torus T = (C∗)r such that the symplectic form ω of X is

117



5. Stable envelopes

invariant under the T -action. Recall that a closed subvariety L ⊂ X is called isotropic if the

restriction of ω to the smooth locus Lsm of L vanishes. We call L lagrangian if dim(L) = n

and moreover, L is isotropic.

Given an isolated T -fixed point p ∈ X, we can choose a decomposition into T -invariant

subspaces TpX = V1 ⊕ V2 such that ωp induces an isomorphism V1 ∼= V ∗
2 .

Theorem 5.15 (Langrangian Multiplicity Theorem). Suppose V1 admits the T -weight decom-

position V1 =
⊕n

i=1Cχi, where χ1, . . . , χn are characters of T which we view as homogeneous

elements in H∗
T ({p}). Given a T -invariant lagrangian subvariety L ⊂ X, we can find ap,L ∈ Z

such that the following equality holds in H
T
∗ ({p}):

[L]T ∩ [p]T =
(
ap,L

( n∏
i=1

χi

))
.[p]T .

We prove Theorem 5.15 in Section 5.5. First, we apply this result to the setting of bow

varieties. For this, set Lp := AttrC(p), for p ∈ C(D)T. The next proposition gives that Lp is

indeed a lagrangian subvariety of C(D).

Proposition 5.16. For all p ∈ C(D)T, the variety Lp is a lagrangian subvariety of C(D).

We first prove an auxiliary statement:

Lemma 5.17. Let V be a finite dimensional C∗-represenation with all C∗-weight spaces

strictly positive. Suppose ϖ : TV × TV → C is a C∗-invariant bilinear form. Then, ϖ = 0.

Proof. We use the identification TV ∼= V × V . Suppose w ∈ V and v1, v2 ∈ V are weight

vectors of repsective weights a1, a2. Then, we have

ϖw(v1, v2) = ϖt.w(ta1v1, t
a2v2), for all t ∈ C∗.

By continuity (in the analytic topology), we deduce

ϖw(v1, v2) = lim
t→0

(
ϖt.w(ta1v1, t

a2v2)
)

= 0.

Hence, ϖw = 0.

Proof of Proposition 5.16. Recall from Proposition 4.4 that we have a T-equivariant isomor-

phism of varieties AttrC(p) ∼= TpC(D)+C . Let ϖ be the restriction of the symplectic form ω′

of C(D) to T AttrC(p) × T AttrC(p). As ω′ is A-invariant, so is ϖ. Choose σ ∈ C and view

AttrC(p) as C∗-representation via σ. Since all C∗-weights of AttrC(p) are strictly positive,

Lemma 5.17 implies ϖ = 0. As AttrC(p) is an open dense subvariety of Lp, we conclude that

Lp is lagrangian.

Combining Theorem 5.15 and Proposition 5.16 gives the following consequence:

Corollary 5.18. Let p, q ∈ C(D)T and suppose p ∈ Lq. Then,

[Lq]
A ∩ [p]A = ap,qeA(TpC(D)−C ).[p]A,

where ap,q is an integer depending on p and q.

Proof. By Proposition 5.16, Lq ⊂ C(D) is a lagrangian subvariety. Applying Theorem 5.15

according to the decomposition TpC(D) = TpC(D)−C ⊕ TpC(D)+C then finishes the proof.
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5.4. Tangent cones of lagrangian subvarieties

Proof of existence of stable envelopes

We now use Corollary 5.18 to give a direct construction of stable envelopes. For this, we use

the following notation: For p ∈ C(D)T, let Λp ∈ Hd
T(C(D)) be the Poincaré dual of [Lp]

T.

Proof of Theorem 5.10. Let ⪯′ be a total order on C(D)T refining ⪯ and let s be the cardinal-

ity of C(D)T. Denote the elements of C(D)T by p1, . . . , ps, where the labeling is compatible

with our choice of total ordering, i.e. we have pi ⪯′ pj if and only if i ≤ j. For each

i ∈ {1, . . . , s}, we construct a family of cohomology classes γi,1, . . . , γi,i ∈ Hd
T(C(D)) such

that each γi,j satisfies the following three properties:

(a) ι∗pi(γi,j) = eT(TpiC(D)−C ),

(b) there exist ai,j,1, . . . , ai,j,i−j ∈ Z such that γi,j = Λpi +
∑i−j

l=1 ai,j,lΛpi−l
,

(c) we have that ι∗pl(γi,j) is divisible by h, for l = i− 1, i− 2, . . . , j.

We set γi,i := Λpi . Then, γi,i clearly satisfies the properties (a)-(c). Suppose γi,i, . . . , γi,j

have been constructed. Then, we define γi,j−1 as follows: Since γi,j satisfies (b), we know by

Corollary 5.18 that there exists a ∈ Z such that

ι∗pj−1
(γi,j) ≡ aeT(Tpj−1C(D)−C ) mod h.

Set γi,j−1 := γi,j − aΛpj−1 . By construction, γi,j−1 satisfies (b) and ι∗pj−1
(γi,j−1) is divisible

by h. Hence, properties (a) and (c) follow from pi, pi−1, . . . , pj /∈ Lpj−1 . Thus, γi,j−1 satisfies

all the desired properties.

Now, set StabC(pi) := γi,1, for i = 1, . . . , s. Then, the normalization condition follows

immediately from (a), the support condition from (b) and the smallness condition from (c).

This completes the proof of Theorem 5.10.

The proof of Theorem 5.10 directly gives the following consequence:

Corollary 5.19. For all p ∈ C(D)T, we have

StabC(p) =
∑

q∈C(D)T

ap,qΛq,

where ap,q ∈ Z with ap,p = 1 and ap,q = 0 if q ̸⪯ p.

Note that the coefficients ap,q from Corollary 5.19 are uniquely determined by Corol-

lary 5.11.

5.4 Tangent cones of lagrangian subvarieties

In this section, we pass to the analytic setup. The definition of tangent cones in the analytic

framework is analogous to the definition of normal cones in the algebraic framework: Let X

be a complex manifold and Y ⊂ X closed analytic subvariety. Let p ∈ Y be a point and I
the ideal sheaf over Y corresponding to p. The tangent cone of p in Y is defined as

Specan
(⊕
n≥0

Inp /In+1
p

)
.
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5. Stable envelopes

Here, Inp is the stalk of In at p and Specan denotes the analytic spectrum, see e.g. [GPR94,

Section II.3] for a definition.

By e.g. [Ser56, Proposition 3], we have that if X is a smooth (algebraic) variety and Y ⊂ X
a closed subvariety with respective analytifications Xan, Y an then the canonical isomorphism

TpX
an ∼= (TpX)an restricts to an isomorphism of analytic spaces CpY

an ∼= (CpY )an.

The main result of this section is the following proposition:

Proposition 5.20. Let X be a complex symplectic manifold with symplectic form ω and

let L ⊂ X be a lagrangian subvariety. Then, for all p ∈ L, we have that all irreducible

components of the tangent cone CpL are lagrangian subvarieties of TpX. Here, we view TpX

as complex symplectic manifold via the symplectic form ωp.

For the proof, recall the holomorphic Darboux Theorem:

Theorem 5.21 (Darboux). Let X be a symplectic complex manifold of dimension 2n. We

equip C2n with the standard symplectic form

ξ :=
n∑
i=1

dxi ∧ dxi+n, (5.15)

where (x1, . . . , x2n) are the coordinates of C2n. Then, for all x ∈ X, there exists an analytic

neighborhood U ⊂ X such that U is isomorphic as symplectic complex manifold to an open

subset of C2n.

From now on, let X ⊂ C2n be an open subset containing the origin which we denote by

p. Via (5.15), we view X as symplectic complex manifold. To prove Proposition 5.20, we

use the deformation to the tangent cone construction from [Ful84, Section 5.1]. For this, we

recall some basic properties of blow ups in the analytic framework. For more details on this

subject, see e.g. [GPR94, Section VII.2] and [Fis76, Section 4.1].

Definition 5.22. Let Y ⊂ X be a closed analytic subvariety containing p. The blow up BlpY

of Y at p is defined as the analytic closure of

{((y1, . . . , y2n), [y1 : . . . : y2n]) | (y1, . . . , y2n) ∈ Y \ {p}} ⊂ Y × P2n−1.

By construction, BlpY is a closed analytic subvariety of Y × P2n−1. If Z ⊂ X is a closed

analytic subvariety containing Y then BlpY is a closed analytic subvariety of BlpZ. Let

πY : BlpY → Y be the projection. Then, π induces an isomorphism π−1
Y (Y \ {p}) ∼−→ Y \ {p}.

Definition 5.23. Let Y ⊂ X be a closed analytic subvariety containing p. The deformation

to the tangent cone of X at p is defined as

M0
pY := (Blp̂(Y × C)) \ BlpY,

where p̂ is the origin in Y ×C. We view Y as closed analytic subvariety of Y ×C via y 7→ (y, 0).

If P2n−1 ↪→ P2n is the inclusion [x1 : . . . : x2n] 7→ [x1 : . . . : x2n : 0] then

M0
pY = (Blp̂(Y × C)) \ (Y × P2n−1).

The following proposition, see [Ful84, Section 5.1], gives that M0
pY indeed transforms Y into

the tangent cone CpY :
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5.4. Tangent cones of lagrangian subvarieties

Proposition 5.24. Let π̂Y : M0
pY → Y × C be the projection.

(i) We have that π̂Y induces an isomorphism of complex analytic spaces

π̂−1
Y (Y × C∗)

∼−−→ Y × C∗. (5.16)

(ii) The fiber π̂−1
Y (p̂) is a hypersurface of M0

pY .

(iii) There exists an isomorphism π̂−1
Y (p̂) ∼= CpY of complex analytic spaces such that the

following diagram commutes

π̂−1
Y (p̂) CpY

π̂−1
X (p̂) TpX

∼

∼

Here, CpY ↪→ TpX is the standard inclusion.

Remark. In [Ful84, Section 5.1], the deformation to the tangent cone is considered in the

setup of algebraic varieties. The results transfer directly to the analytic setup.

The complex manifold structure on M0
pX can be characterized as follows: Set

X ′ := {(t−1x1, . . . , t
−1x2n, t) | (x1, . . . , x2n) ∈ X, t ∈ C∗} ∪ (C2n × {0}) ⊂ C2n+1. (5.17)

Then, there is an isomorphism of complex manifolds

M0
p (X)

∼−−→ X ′

given by

((x1, . . . , x2n, t), [x1 : . . . : x2n : t]) 7→ (t−1x1, . . . , t
−1x2n, t), for t ̸= 0

and

((0, . . . , 0), [x1 : . . . : x2n : 1]) 7→ (x1, . . . , x2n, 0).

Under this identification, the inclusion TpX ↪→M0
pX corresponds to

ι : TpX ↪−−→ X ′,
∂

∂xi
7→ ei, (5.18)

where ei denotes the i-th standard basis vector in C2n+1.

A further convenient property of the deformation to the tangent cone construction is that

it deforms the symplectic form ξ from (5.15) into the symplectic form ξp on TpX in the

following sense: Consider the holomorphic bilinear form

ξ̂ = pr∗ ξ : TX ′ × TX ′ −−→ C,

where pr : X ′ → C2n is the projection. Then, by (5.18), we have

ι∗ξ̂ = ξp. (5.19)
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5. Stable envelopes

Let f : X×C∗ ↪→ X ′ be the open embedding from (5.16) using the identification MpX ∼= X ′.

Let ιt : X ↪→ X ′ be the inclusion

ιt : X
∼−−→ X × {t} f−−→ X ′.

Then, we have

ι∗t ξ̂ = t−2ξ. (5.20)

Combining these pieces, we deduce a proof of Proposition 5.20:

Proof of Proposition 5.20. By the holomorphic Darboux Theorem, we may assume that X is

an analytic open neighborhood of the origin p ∈ C2 and X admits the symplectic structure

ξ from (5.15). Let L ⊂ X be a lagrangian subvariety containing p. With the above notation,

(5.20) implies that ξ̂ vanishes on the tangent bundle T (Lsm × C∗). Let Z be an irreducible

component of CpL. By Proposition 5.24, Lsm × C∗ is an open dense analytic subvariety

of M0
pL and dim(Z) < dim(Lsm × C∗). Hence, Proposition 5.25 below gives that TZsm is

contained in the analytic closure of T (Lsm × C∗) in TM0
pL. Thus, ξ̂ also vanishes on TZsm

which implies that Z is a lagrangian subvariety of TpX by (5.19).

Approximation tangent vectors of analytic varieties

In the proof of Proposition 5.20 we used the following result:

Proposition 5.25. Let X be a complex manifold and Y , Z ⊂ X be locally closed smooth

irreducible analytic subvarieties such that Z is contained in the closure of Y in X. Then, the

closure of TY in TX contains TZ.

We prove Proposition 5.25 via a regularity result due to Whitney. For its formulation, we

first recall some properties of Grassmannians. Let Gr(k, n) be the Grassmannian parameter-

izing k-dimensional subvector spaces of Cn. Via the analytic topology, we consider consider

Gr(k, n) as compact complex manifold. The analytic topology on Gr(k, n) is metrizable via

the distance function

dist(V,W ) = max
v∈V, |v|=1

(
min
w∈W

|v − w|
)
, for V , W ∈ Gr(k, n),

where | · | is the usual euclidean absolute value on Cn.

Lemma 5.26. Suppose Vn is a sequence in Gr(k, n) converging to W ∈ Gr(k, n). Then, for

all w ∈W , there exists a sequence vn in Cn with vn ∈ Vn and vn converges to w in Cn.

Proof. We may assume |w| = 1. Choose vn ∈ Vn with |vn − w| ≤ dist(W,Vn). Then, the

sequence vn converges to w.

Suppose now that X is an open analytic subvariety of Cn and Y ⊂ X is a locally closed

irreducible smooth analytic subvariety of dimension k. For each point y ∈ Y there exists

an open neighborhood U ⊂ X of y and holomorphic functions f1, . . . , fr : U → C such that

Y ∩ U equals the vanishing locus of f1, . . . , fr. Via the identification of vector spaces

TyY ∼= {v ∈ Cn | dyfi(v) = 0, for i=1,. . . ,r},
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5.5. Flat deformations of conical lagrangian subvarieties

we consider TyY as element in Gr(k, n) and TY as locally closed smooth subvariety of TX ∼=
X × Cn.

The following definition is due to Whitney [Whi65, Section 19]:

Definition 5.27. In the above situation, let Z ⊂ X be a further smooth locally closed

irreducible smooth subvariety. We say that Y is (a)-regular over Z if for all sequences yn

in Y such that yn converges to a point z ∈ Z and the sequence TynY converges to some

W ∈ Gr(k, n), we have TzZ ⊂W .

We have the following fundamental lemma, see [Whi65, Lemma 19.3]:

Lemma 5.28. Let Y , Z ⊂ X be locally closed irreducible smooth analytic subvarieties with

dim(Z) < dim(Y ). Then, there exists an open dense subvariety U ⊂ Z such that Y is

(a)-regular over U .

Proof of Proposition 5.25. We may assume that X is an open analytic subvariety of Cn. As

before, let k = dim(Y ). Since Z is contained in the closure of Y , we have dim(Z) < k.

Hence, by Lemma 5.28, there exists open dense subvariety U ⊂ Z such that Y is (a)-regular

over U . Let u ∈ U and v ∈ TuU . Let yn be a sequence in Y such that yn converges to u.

Since Gr(k, n) is compact, we can assume that the sequence TynY converges to some W in

Gr(k, n). By (a)-regulariy, TuU ⊂ W . Thus, by Lemma 5.26, there exist vn ∈ TynY such

that the sequence (yn, vn) converges to (u, v) in TX. Hence, TU is contained in the closure

of TY in TX. As U is dense in Z, the closure of TU in TX contains TZ. Therefore, the

closure of TY in TX contains TZ.

5.5 Flat deformations of conical lagrangian subvarieties

We now return to the algebraic setting of Theorem 5.15: Let X be a smooth symplectic

variety with algebraic T -action. We assume that the symplectic form ω on X is T -invariant.

Let p ∈ X and L be a lagrangian subvariety containing p. In Proposition 5.20, we proved that

the irreducible components of the tangent cone CpL are lagrangian subvarieties of TpX. The

next proposition shows that it is in fact possible to deform CpL into a possibly non-reduced

union of lagrangian hyperplanes. This enables us to characterize the equivariant multiplicity

of L at p.

Proposition 5.29. We have [CpL]T =
∑s

i=1mi[Hi]
T in H

T
∗ (TpX), where H1, . . . ,Hs ⊂ TpX

are T -invariant lagrangian hyperplanes and m1, . . . ,ms ∈ N0.

Assuming Proposition 5.29, we obtain directly a proof of Theorem 5.15.

Proof of Theorem 5.15. Recall, with the notation of Theorem 5.15, that TpX admits the T -

weight space decomposition TpX ∼=
⊕n

i=1(Cχi ⊕ C−χi). Thus, if H ⊂ TpX is a T -invariant

lagrangian hyperplane then H admits the weight space decomposition H ∼=
⊕n

i=1Cεiχi , where

εi ∈ {±1}. Hence, Corollary 5.7 implies

s∗([H]T ) =
( n∏
i=1

εiχi

)
.[p]T , (5.21)
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where s∗ : H
T
∗ (TpX)

∼−→ H
T
∗ ({p}) is the Gysin isomorphism. Recall from Proposition 5.6 that

[L]T ∩[p]T = s∗([CpL]T ). Finally, by Proposition 5.29 and (5.21), we conclude that s∗([CpL]T )

is an integer multiple of (
∏n
i=1 χi).[p]

T which completes the proof.

The remainder of this section is devoted to the proof of Proposition 5.29. Consider the

symplectic vector space C2n with basis e1, . . . , e2n and standard symplectic form

ϖ(ei, en+j) = −ϖ(en+j , ei) = δi,j , ϖ(ei, ej) = ϖ(en+i, en+j) = 0, for i, j ∈ {1, . . . , n}.

As before, we view C2n as symplectic variety. Note that the symplectic structure on C2n

induced by ϖ equals ξ from (5.15). Suppose the torus T = (C∗)r acts diagonally on C2n

preserving the symplectic form. Moreover, let T ′ = (C∗)n+2 acting on C2n via

(t1, . . . , tn+2) 7→



t1tn+1

. . .

tntn+1

t−1
1 tn+2

. . . t−1
n tn+2


.

Proposition 5.29 is basically a consequence of the following lemmas:

Lemma 5.30. Let C ⊂ C2n be an T -invariant conical and lagrangian subvariety. Then,

there exist irreducible, T ′-invariant, conical and lagrangian subvarieties Z1, . . . , Zs ⊂ C2n

and natural numbers m1, . . . ,ms such that [C]T =
∑s

i=1mi[Zi]
T in H

T
∗ (C2n).

Lemma 5.31. Let Z ⊂ C2n be an irreducible, T ′-invariant, lagrangian subvariety. Then,

there exist v1, . . . , vn ∈ C2n with vi ∈ {ei, ei+n}, for i = 1, . . . , n, such that Z = ⟨v1, . . . , vn⟩.

Proof of Proposition 5.29. Choose a symplectic identification TpX ∼= C2n, where the symplec-

tic form on TpX gets identified with ϖ. By Lemma 5.30, there exist irreducible, T ′-invariant,

conical and lagrangian subvarieties Z1, . . . , Zs ⊂ C2n and natural numbers m1, . . . ,ms such

that [CpL]T =
∑s

i=1mi[Zi]
T . By Lemma 5.31, Z1, . . . , Zs are T ′-invariant lagrangian hyper-

planes.

We finish this section with the proofs of Lemmas 5.30 and 5.31.

Proof of Lemma 5.30. Define subtori T0, . . . , Tn+2 ⊂ T ′ as

Ti := {(t1, . . . , ti, 1, . . . , 1) ∈ T ′ | t1, . . . , ti ∈ C∗}, i = 0, . . . , n+ 2.

Note that T0 is the trivial subgroup and Tn+2 = T ′. For j = 1, . . . , n+ 2, define cocharacters

σj : C∗ → T ′ as

σi(t)j =

t if j = i,

1 otherwise.
(5.22)

Claim 5.32. Let i ∈ {1, . . . , n + 2} and C ⊂ C2n be a Ti−1- and T -invariant conical and

lagrangian subvariety. Then, there exist irreducible, Ti and T -invariant, conical and la-

grangian subvarieties Z1, . . . , Zs ⊂ C2n and natural numbers m1, . . . ,ms such that [C]T =∑s
i=1mi[Zi]

T in H
T
∗ (C2n).
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5.5. Flat deformations of conical lagrangian subvarieties

Proof of Claim 5.32. As in Lemma 4.35, let Γ be the Zariski closure of

Γ′ = {(σi(t).x, t) | x ∈ C, t ∈ C∗} ⊂ C2n × C.

Recall from Lemma 4.35.(i) that the projection π : Γ → C is flat. Let Γ0 = π−1(0) be the

scheme theoretic fiber. We denote the irreducible components of Γ0 by Z1, . . . , Zs and let

mi = m(Zi,Γ0) be the respective geometric multiplicity. By Lemma 4.35.(ii), Z1, . . . , Zs

are Ti- and T -invariant conical subvarieties of C2n. As in the proof of Proposition 5.20, let

pr : C2n × C → C be the projection and ξ̂ := pr∗ ξ the induced bilinear form on the tangent

bundle T (C2n × C). Since C is a lagrangian subvariety of C2n and the Ti-action scales the

symplectic structure on C2n, we conclude that the restriction of ξ̂ to TΓ′
sm vanishes. Recall

from e.g. [Mum76, Theorem 2.33] that, as Γ′ is an open dense subset of Γ in the Zariski-

topology, Γ′ is also an open dense subset of Γ in the analytic topology. By Lemma 4.35.(iii),

we have dim(Γ′) = dim(Zi) + 1, for all i = 1, . . . , s. Hence, by Proposition 5.25, T (Zi)sm is

contained in the analytic closure of TΓ′
sm in T (C2n × C). Thus, ξ vanishes on T (Zi)sm and

hence Zi is also a lagrangian subvariety of C2n. Finally, as π is flat, Proposition 5.4 gives

[C]T = [Γ0]
T =

s∑
i=1

mi[Zi]
T

which completes the proof of the claim.

Using Claim 5.32, we can now easily deduce Lemma 5.30 using a repetitive argument.

By applying Claim 5.32 to T1 and C, we conclude that there exist irreducible, T1- and T -

invariant, conical, lagrangian subvarieties Z1,1, . . . , Z1,s1 ⊂ C2n as well as natural numbers

m1,1, . . . ,m1,s1 such that [C]T =
∑r1

i=1m1,i[Z1,i]
T . Now, repeat this procedure by applying

the claim to T2 and Z1,1, . . . , Z1,r1 and continue repeating. After n+ 2 repetitions, we obtain

subvarieties Z1, . . . , Zs ⊂ C2n satisfying the desired conditions of Lemma 5.30.

Proof of Lemma 5.31. Since dim(Z) = n, there exists a smooth point z = (z1, . . . , z2n) ∈ Z
such that at least n coordinates of z are non-zero. We show that for each i ∈ {1, . . . , n},
exactly one of the coordinates zi, zn+i is zero and the other non-zero. Suppose that there

exists i ∈ {1, . . . , n} such that zi and zn+i are both non-zero. Let σi : C∗ → T ′ be the

cocharacter from (5.22) and σ : C∗ → T ′ be the cocharacter given by

σ(t)j =

1 if j ̸= i, n+ 2,

t if j = i, n+ 2.

Let γ1 = σi(C∗).z and γ2 = σ(C∗).z be the respective C∗-orbits in Z. Then, Tzγ1 = ⟨w1⟩ and

Tzγ2 = ⟨w2⟩, where

w1 = ziei − zn+ien+i, w2 = ziei +
( ∑

1≤j≤n
j ̸=i

zn+jen+j

)
.

Here, we used the standard identification of symplectic vector spaces TzC2n ∼= C2n. By

definition, ϖ(w1, w2) = zizn+i ̸= 0 which contradicts the assumption that Z is lagrangian.

Thus, exactly one of zi, zn+i is zero and the other non-zero.
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For i ∈ {1, . . . , n}, we define

vi :=

ei if zi ̸= 0,

en+i if zn+i ̸= 0.

As Z is T ′-invariant, we conclude ⟨v1, . . . , vn⟩ ⊂ Z. Since Z is irreducible and of dimension

n, the inclusion must be an equality.

5.6 Example computation of stable envelopes

We illustrate the construction of stable envelopes from Section 5.3 for the bow variety

C(0/1\1/2\2\2/0) from Section 4.2. Recall the labeling of tie diagrams of D from there. Let

C be the chamber containing the cocharacter σ0 = (t, t2, t3). We denote by Λi ∈ H∗
T(C(D))

the Poincaré dual of [LxDi
]T, where LxDi

= AttrC(xDi), for i = 1, . . . , 5.

To apply the algorithmic procedure from Section 5.3, we first compute all T-equivariant

equivariant multiplicites ι∗xDj
(Λi).

Claim 5.33. The equivariant multiplicities ι∗xDj
(Λi), for i, j = 1, . . . , 5, are recorded in the

following table:

i
j

1 2 3 4 5

1
(t1 − t3)

·(t2 − t3)
0 0 0 0

2
(t1 − t3)

·(t3 − t2 + h)

(t1 − t2)

·(t2 − t3 + h)
0 0 0

3
(t3 − t1 + h)

·(t3 − t2 + h)

(t2 − t1 + h)

·(t2 − t3 + h)

(t1 − t2 + h)

·(t1 − t3 + h)
0 0

4
(t2 − t3)

·(t3 − t1 + h)
0

(t2 − t1)

·(t1 − t3 + h)

(t2 − t3)

·(t1 − t2 + 2h)
0

5 0
(t3 − t2)

·(t2 − t1 + h)

(t2 − t1)

·(t3 − t1)

(t1 − t2 + 2h)

·(t3 − t2 + h)

(t1 − t3 + 2h)

·(t2 − t3 + h)

Table 5.1: Equivariant multiplicities ι∗xDj
(Λi)

Proof of Claim 5.33. We only compute ι∗xD1
(Λ3) as all the other equivariant multiplicities

can be determined analogously. By Claim 4.13, the open subvariety W1 containing xD1 is

T-equivariantly isomorphic to

Ct3−t1+h ⊕ Ct3−t2+h ⊕ Ct1−t3 ⊕ Ct2−t3 ,

where xD1 gets identified with the origin. Then, Claim 4.18 yields that AttrC(xD3) ∩ W1

corresponds to the subspace Ct1−t3 ⊕ Ct2−t3 . Hence, (5.9) implies

ι∗xD1
(Λ3) = eT(Ct3−t1+h ⊕ Ct3−t2+h) = (t3 − t1 + h)(t3 − t2 + h)

which equals the corresponding entry in Table 5.1.
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Now, to compute for instance the stable basis element StabC(xD3), we first set γ3,3 := Λ3.

By Claim 5.33, we have

ι∗xD2
(γ3,3) = (t2 − t1 + h)(t2 − t3 + h), ι∗xD2

(Λ2) = (t1 − t2)(t2 − t3 + h).

Thus, we set γ3,2 := Λ3 + Λ2. By construction, ι∗xD1
(γ3,2) = h(t3 − t2 + h). So ι∗xD1

(γ3,2) is

already divisible by h and hence we have

StabC(xD3) = γ3,2 = Λ3 + Λ2.

The other stable basis elements can be computed in exactly the same way using Claim 5.33.

They are given by

StabC(xD1) = Λ1,

StabC(xD2) = Λ2 + Λ1,

StabC(xD4) = Λ4 + Λ3 + Λ2 + Λ1,

StabC(xD5) = Λ5 + Λ4 + Λ2.
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Chapter 6

Explicit examples of stable basis

elements

In this chapter, we explicitly apply the algorithmic procedure from Section 5.3 to the bow

varieties Ck attached to the brane diagrams of the form

0 1 1 1 1 0Dk :=

k red lines

(6.1)

We express the stable basis elements of Ck as Z-linear combinations of the Poincaré duals of

the fundamental classes of attracting cell closures, see Proposition 6.5 for the precise formula.

These explicit results are applied later in Section 9.6, where we compute equivariant

multiplicities of stable basis elements of arbitrary bow varieties.

As we show in Proposition 6.2, the bow variety Ck can be covered with affine and torus

invariant coordinate charts. These charts enable us to explicitly determine the attracting

cells of Ck as well as their Zariski closures and their respective equivariant multiplicities, see

Proposition 6.3 and (6.5). These results then allow us to employ the iterative construction

procedure from Section 5.3 to compute the stable basis elements of Ck.
Note that the multiplicities of stable basis elements for these specific examples of bow

varieties were determined in the framework of elliptic cohomology in [RSVZ22, Section 4].

The technical tools, in particular the elliptic abelianization procedure from [AO21], used

there are however different from ours.

As described in [NT17], the variety Ck also appears in theoretical physics where it can

be interpreted as a Coulomb branch which is connected to the cotangent bundle of the

Grassmannian Gr(k − 1, k) via 3d mirror symmetry. This is a theory from string theory

which connects N = 4 supersymmetric gauge theories.

6.1 Open coordinate charts

In this section, we determine open affine coordinate charts of Ck which are also torus invariant.

For this, we use similar methods as in Section 4.2.
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6. Explicit examples of stable basis elements

Recall the definition of the affine brane variety M̃(Dk) from Definition 2.33, the corre-

sponding gauge group G from (2.32) and the moment map m̃ from (2.33). We denote elements

of M̃(Dk) as tuples

x = ((Ai, B
−
i , B

+
i , ai, bi)i=1,2, (Cj , Dj)j=1,...,k)

according to the diagram

0 C C C C 0

C C
b1a1 b2a2

A1 A2

Ck Ck−1 C2 C1

Dk Dk−1 D2 D1

B−
1 B+

1 B−
2 B+

2

We view all operators Ai, B
−
i , B+

i , ai, bi, Cj and Dj as elements in C. Note that the

condition (S1) for M̃(Dk) is equivalent to b1 ̸= 0 and (S2) is equivalent to a2 ̸= 0. By

definition, m̃(x) = 0 if and only if

B+
1 = −CkDk, B−

2 = −D1C1, CiDi = Di+1Ci+1, for i = 1, . . . , k − 1. (6.2)

Therefore, by dropping vanishing and tautological operators, we denote elements of m̃−1(0)

just as tuples

(b1, a2, C1, D1, . . . , Ck, Dk).

The rank 3 torus T acts on m̃−1(0)s via

(t1, t2, h).(b1, a2, C1, D1, . . . , Ck, Dk) = (ht1b1, a2t
−1
2 , hC1, D1, . . . , hCk, Dk).

Similar to Section 4.2, we now construct covers of the χ-stable locus m̃−1(0)s. Set

Ω̃i := {(b1, a2, C1, D1, . . . , Ck, Dk) ∈ m̃−1(0) | C1, . . . , Ci−1 ̸= 0, Di+1, . . . , Dk ̸= 0}

and Ω̃ :=
⋃k
i=1 Ω̃i.

Lemma 6.1. We have m̃−1(0)s = Ω̃.

Proof. Let x = (b1, a2, C1, D1, . . . Ck, Dk) ∈ m̃−1(0). Note that a graded subspace T =⊕
X∈h(Dk)

TX ⊂WD =
⊕

X∈h(Dk)
WX satisfies the conditions of Proposition 2.37 if and only

if

(a) T is invariant under the operators C1, D1, . . . , Ck, Dk and

(b) TV +
1

= C and TV −
k

= C.

Suppose x ∈ Ω̃i, for some i and that T satisfies (b) and (a). Then, as C1, . . . , Ci−1 ̸= 0,

we have TV −
j

= C, for j = 1, . . . , i − 1. Likewise, Di+1, . . . , Dk ̸= 0 implies TV +
j

= C, for

j = i + 1, . . . , k. Hence, T = WD and x ∈ m̃−1(0)s by Proposition 2.37. Conversely, if

x ∈ m̃−1(0)s, we define T ′ =
⊕

X∈h(Dk)
T ′
X ⊂WD via

T ′
V +
1

= C, T ′
V −
k

= C, T ′
V −
j

= Im(Cj . . . C1) + Im(Dj+1 . . . Dk), for j = 1, . . . , k − 1.
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6.1. Open coordinate charts

By (6.2), T ′ satisfies (b) and (a). If x /∈ Ω̃, we have Ci−1 · · ·C1 = 0 as well as Di+1 · · ·Dk = 0,

for some i. Consequently, T ′
V −
i

= 0 and x is not χ-stable by Proposition 2.37. This gives

m̃−1(0)s ⊂ Ω̃.

By definition, each Ω̃i is a G- and T-invariant open subvariety of m̃−1(0)s. Thus, we have

a cover by T-invariant open subvarieties

Ck =
k⋃
i=1

Ωi, where Ωi := Ω̃i/G. (6.3)

Next, we show that each Ωi is T-equivariantly isomorphic to a two dimensional affine space

with linear T-action.

Proposition 6.2. For each i = 1, . . . , k, we have a T-equivariant isomorphism of varieties

ηi : Ct1−t2+(i+1)h ⊕ Ct2−t1−ih
∼−−→ Ωi,

where ηi(y, z) = [η̃i(y, z)] and η̃i(y, z) ∈ Ω̃i is represented by the following diagram:

Vk Vi+2 Vi+1 Vi Vi−1 Vi−2 V1U1 U2

0 1 1 1 1 1 1 0

C C C C C C

C C

yz yz yz y 1 1 1

1 1 1 z yz yz yz1 1

Proof. By Proposition 2.25, ηi is an isomorphism of varieties if and only if ηi is bijective.

For injectivity, suppose ηi(y, z) = ηi(y
′, z′). Hence, there exists g = (gX)X ∈ G such that

g.ηi(y, z) = ηi(y
′, z′). We write

η̃i(y, z) = (b1, a2, C1, D1, . . . Ck, Dk), η̃i(y
′, z′) = (b′1, a

′
2, C

′
1, D

′
1, . . . C

′
k, D

′
k).

Since b1 = b′1 = 1 and a2 = a′2 = 1, we have gV +
1

= 1 and gV −
k

= 1. Then,

C1 = . . . = Ci−1 = C ′
1 = . . . = C ′

i−1 = 1, Di+1 = . . . = Dk = D′
i+1 = . . . = D′

k = 1

implies gV +
j

= gV −
j

= 1, for all j ̸= i. Thus, g equals the identity which yields y =

Ci = C ′
i = y′ and z = Di = D′

i = z′. Hence, ηi is injective. For surjectivity, let

x = (b1, a2, C1, D1, . . . Ck, Dk) ∈ Ω̃i. Then, we have

g.x = η̃i(b1D
−1
k · · ·D

−1
i+1Ci · · ·C1a2, a

−1
2 C−1

1 · · ·C
−1
i−1Di · · ·Dkb

−1
1 ),

where g = (gX)X ∈ G is defined as gV −
k

= b1, gV +
1

= a−1
2 and

gV −
j

= a−1
2 C−1

1 · · ·C
−1
j , gV +

l
= b1D

−1
k · · ·D

−1
l , for j = 1, . . . , i− 1, l = i+ 1, . . . , k.

Hence, [x] = ηi(b1D
−1
k · · ·D

−1
i+1Ci · · ·C1a2, a

−1
2 C−1

1 · · ·C
−1
i−1Di · · ·Dkb

−1
1 ) which proves the sur-

jectivity of ηi. Hence, ηi is an isomorphism of varieties. To see that ηi is T-equivariant, note

that for t = (t1, t2, h) and (y, z) ∈ C2, we have

gt.(t.η̃i(y, z)) = η̃i(t1t
−1
2 hi+1y, t2t

−1
1 h−iz),
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6. Explicit examples of stable basis elements

where gt = (gt,X)X ∈ G is defined as

gt,V +
j

= t2h
1−j , gt,V −

l
= t1h, for j = 1, . . . , i, l = i, . . . , k.

Thus, ηi is T-equivariant.

6.2 Torus fixed points

By construction, the brane diagram Dk admits exactly k tie diagrams:

Tie(Dk) = {D1, . . . , Dk}, where Di = {(U1, Vi), (Vi, U2)}. (6.4)

The corresponding visualization and butterfly diagrams of Di are given as follows:

0 1 1 1 1 0

∗ ∗

Hence, the corresponding T-fixed point xDi from Definition 3.12 equals ηi(0, 0).

6.3 Attracting cells

As the torus A corresponding to Dk is of rank 2, there are only two chambers assigned to A:

The dominant chamber C+ and the antidominant chamber C−. The attracting cells of the

dominant chamber and their Zariski closures are characterized as follows:

Proposition 6.3. For i = 1, . . . , k, let L+
i := AttrC+(xDi) be the Zariski closure. Then,

(i) AttrC+(xDi) = ηi(Ct1−t2+(i+1)h), where ηi is defined as in Proposition 6.2,

(ii) for j ̸= i, we have

L+
i ∩ Ωj =

ηi+1(Ct2−t1−(i+1)h), for j = i+ 1,

∅, otherwise,

(iii) L+
i = AttrC+(xDi) ∪ {xDi−1}.

In particular, L+
i is smooth and hence isomorphic to P1.
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6.4. Stable basis elements

Proof. As ηi is T-equivariant, we have ηi(Ct1−t2+(i+1)h) = AttrC+(xDi) ∩ Ωi. By Proposi-

tion 4.4, AttrC+(xDi)
∼= C. Hence, the inclusion ηi(Ct1−t2+(i+1)h) ⊂ AttrC+(xDi) has to be

an equality which proves (i). For (ii), note that for y ∈ C \ {0}, we have

g.η̃i(y, 0) = η̃i+1(0, y
−1),

where g = (gX)X ∈ G is defined as gV −
i

= y−1 and gX = 1, for X ̸= V −
i . Thus, we have

AttrC+(xDi) ∩ Ωi+1 = ηi+1(Ct2−t1−(i+1)h \ {0}), L+
i ∩ Ωi+1ηi+1(Ct2−t1−(i+1)h).

Now, by (i), for each x = [b1, a2, C1, D1, . . . Ck, Dk] ∈ AttrC+(xDi), the operators Ci+1, . . . , Ck

and D1, . . . , Di−1 vanish. Thus, AttrC+(xDi)∩Ωj = ∅, for j ̸= i, i+ 1. Hence, we deduce (ii).

The assertion (iii) follows directly from (ii).

The same proof gives the corresponding statements for the antidominant chamber:

Proposition 6.4. For i = 1, . . . , k, let L−
i := AttrC−(xDi) be the Zariski closure. Then,

(i) AttrC−(xDi) = ηi(Ct2−t1−ih),

(ii) for j ̸= i, we have

L−
i ∩ Ωj =

ηi−1(Ct1−t2+ih), for j = i− 1,

∅, otherwise,

(iii) L−
i = AttrC−(xDi) ∪ {xDi−1}.

In particular, L−
i is isomorphic to P1.

Let Λ±
i ∈ H∗

T(Ck) be the Poincaré dual of the fundamental class [L±
i ]T. By Corollary 5.7,

we can directly read off the equivariant multiplicities of Λ+
i from Proposition 6.3:

ι∗xDj
(Λ+

i ) =


t2 − t1 − ih if j = i,

t1 − t2 + (i+ 2)h if j = i+ 1,

0 otherwise.

(6.5)

Likewise, the equivariant multiplicities of Λ−
i are

ι∗xDj
(Λ−

i ) =


t1 − t2 + (i+ 1)h if j = i,

t2 − t1 − (i− 1)h if j = i− 1,

0 otherwise.

(6.6)

6.4 Stable basis elements

Using the explicit description of the attracting cells from the previous subsection, we now

determine the stable basis elements of Ck as well as their equivariant multiplicities:
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6. Explicit examples of stable basis elements

Proposition 6.5. For i = 1, . . . , k, we have

StabC+(xDi) = Λ+
i + Λ+

i+1 + . . .+ Λ+
k

and

ι∗xDj
(StabC+(xDi)) =


0 if j < i,

t2 − t1 − ih if j = i,

h if j > i.

(6.7)

Similarly, we have

StabC−(xDi) = Λ−
i + Λ−

i−1 + . . .+ Λ−
1

and

ι∗xDj
(StabC−(xDi)) =


h if j < i,

t1 − t2 + (i+ 1)h if j = i,

0 if j > i.

(6.8)

Proof. We only prove the proposition for the dominant chamber C+. Since each Λ+
j is sup-

ported on L+
j , we conclude that Λ+

i + Λ+
i+1 + . . .+ Λ+

k is supported on
⋃k
j=i L

+
j . By Propo-

sition 4.20, we have
⋃k
j=i L

+
j = AttrfC+

(xDi) and thus Λ+
i + Λ+

i+1 + . . . + Λ+
k satisfies the

support condition. From (6.5), we immediately obtain (6.7) which implies the normalization

and smallness condition. Thus, StabC+(xDi) = Λ+
i + Λ+

i+1 + . . .+ Λ+
k .
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Chapter 7

Polynomiality and Orthogonality

Theorems

Even though bow varieties are in general not projective, they still admit a virtual intersection

pairing (., .)vir, see Definition 7.4. This pairing is modeled on the Atiyah–Bott–Berline–Vergne

integration formula and takes values in the localized torus equivariant cohomology of a point.

In this chapter, we study properties of the stable basis elements of bow varieties with

respect to the virtual intersection pairing. We first prove in Theorem 7.6 that virtual inter-

section pairings of the form

(α · StabC(p),StabCop(q))virt, α ∈ H∗
T(C(D)), p, q ∈ C(D)T

have in fact values in the non-localized cohomology H∗
T(pt). In other words, those intersection

pairings are polynomials in the equivariant parameters of H∗
T(pt). We therefore refer to

Theorem 7.6 as the Polynomiality Theorem. The main ingredient of the proof of Theorem 7.6

is the properness result from Theorem 4.24.

The second main purpose of this chapter is a self-contained reproof of the Orthogonality

Theorem from [MO19, Theorem 4.4.1] which states that the stable basis elements of opposite

chambers are orthogonal with respect to the virtual intersection pairing. This theorem pro-

vides a parallel between stable basis elements and (equivariant) Schubert classes which also

have an analogous orthogonality property, namely Schubert classes and opposite Schubert

classes are orthogonal with respect to the Poincaré pairing, see e.g. [Ful97, Section 10.2].

7.1 The (virtual) intersection pairing

In this section, we recall the definition of intersection pairings in torus equivariant cohomol-

ogy and their virtual versions for quasi-projective varieties. Given a projective variety Y

with an algebraic action of a torus T = (C∗)r, we denote by εY : Y → pt the projection.

Let εY∗ : H
T
∗ (Y )→ H

T
∗ (pt) be the corresponding pushforward in T -equivariant Borel–Moore

homology. Assume that Y is additionally smooth. In this case, we also obtain a pushforward

H∗
T (Y )→ H∗

T (pt) via Poincaré duality which we also denote by εY∗ . Then, the T -equivariant

intersection pairing is defined as

(., .) : H∗
T (Y )×H∗

T (Y ) −−→ H∗
T (pt), (α, β) = εY∗ (α · β).
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An effective tool to compute T -equivariant intersection pairings is the Atiyah–Bott–Berline–

Vergne integration formula, see [AB84, Eq(3.8)], is based on the localization principle in

T -equivariant cohomology.

The Atiyah–Bott–Berline–Vergne integration formula

Let X be a smooth projective variety with an algebraic T -action. Recall from (5.8) the

definition of H∗
T (X)loc.

Before we state the integration formula, we recall two general results about the T -fixed

components of X. The first one is the following theorem from [Ive72, Theorem 1]:

Theorem 7.1. We have that XT is a smooth closed subvariety of X. If F ⊂ XT is an

irreducible component then we have TxF = (TxX)T , for all x ∈ F .

The second result is the following lemma about the invertibility of Euler classes:

Lemma 7.2. Let F ⊂ XT be an irreducible component and E be a T -equivariant vector

bundle over F . Then, eT (E) is invertible in H∗
T (F )loc.

Proof. As T acts trivially on F , we have a canonical isomorphism of graded Q-algebras

H∗
T (F ) ∼= H∗(F ) ⊗ H∗

T (pt), where H∗(F ) is the usual singular cohomology and the tensor

product is over Q. In particular, the graded pieces of H∗
T (F ) are given as

Hj
T (F ) ∼=

j⊕
i=0

H i(F )⊗Hj−i
T (pt). (7.1)

Since F is fixed under T , we have a T -equivariant splitting E ∼=
⊕k

i=1Cmi
τi , where τ1, . . . , τk

are characters of T and Cτ denotes the T -equivariant vector bundle F × C with T -action

t.(x, v) = (x, τ(t)v). Let m be the rank of E. Then, by e.g. [EG98, Lemma 3], the H2m
T (pt)-

component of eT (E) under the identification (7.1) is given by τ :=
∏k
i=1 τ

mi
i . Since all

elements in Hj(F ), for j > 0 are nilpotent, we conclude that eT (E) becomes invertible in

H∗
T (F )loc ∼= H∗(F )⊗H∗

T (pt)loc.

Theorem 7.3 (Atiyah–Bott–Berline–Vergne integration formula). Let F1, . . . , Fs ⊂ XT be

the irreducible components of XT . Then, we have the following equality in H∗
T (pt)loc:

εX∗ (α) =

s∑
i=1

εFi
∗

( ι∗Fi
(α)

eT (NFi)

)
, for α ∈ H∗

T (X),

where ιFi : Fi ↪→ X are the inclusions and NFi = (ι∗Fi
TX)/TFi are the respective normal

bundles.

We now pass to the quasi-projective setup and discuss the notion of the virtual intersection

pairing which is modeled on the Atiyah–Bott–Berline–Vergne integration formula.

136



7.1. The (virtual) intersection pairing

The virtual intersection pairing

Suppose now that X is a smooth quasi-projective variety with algebraic T -action. We addi-

tionally assume that XT is a proper variety over C.

Definition 7.4. The virtual pushforward εX∗,virt : H∗
T (X)→ H∗

T (pt)loc is defined as

εX∗,virt(α) =

s∑
i=1

εFi
∗

( ι∗Fi
(α)

eT (NFi)

)
, for α ∈ H∗

T (X),

where F1, . . . , Fs ⊂ X are the irreducible components of XT and ιFi : Fi ↪→ X the respective

inclusions. The virtual intersection pairing on X is defined as

(., .)virt : H∗
T (X)×H∗

T (X) −−→ H∗
T (pt)loc, (α, β)virt = εX∗,virt(α · β).

By definition, the virtual pushforward and the virtual intersection pairing take values in

the localized T -equivariant cohomology ring H∗
T (pt)loc. However, for T -equivariant cohomol-

ogy classes in H∗
T (X) with proper support, the virtual pushforward is actually contained in

H∗
T (pt).

Lemma 7.5. Let i : Y ↪→ X be a T -invariant closed subvariety which is proper over C. Let

a ∈ HT
∗ (Y ) and α ∈ H∗

T (X) be the Poincaré dual of i∗(a). Then, under the identification of

H∗
T (pt)-modules H∗

T (pt) ∼= H
∗
T (pt), we have

εX∗,virt(α) = εY∗ (a).

In particular, εX∗,virt(α) is contained in H∗
T (pt).

Proof. As in Proposition 4.1, there exists a T -equivariant open immersion X ⊂ X̃, where X̃

is a smooth projective variety with T -action. Denote by j : Y ↪→ X̃ the inclusion and let

β ∈ H∗
T (X̃) be the Poincaré dual of j∗(a). As before, let F1, . . . , Fs ⊂ XT be the irreducible

components of XT and ιFi : Fi ↪→ X the respective inclusions. Since XT is proper, F1, . . . , Fs

are also irreducible components of X̃T . We denote the remeining irreducible components of

X̃T by F̃1, . . . , F̃s̃. If F ⊂ X̃T is an irreducible component, let jF : F ↪→ X̃ be the respective

inclusion. As Y does not intersect F̃i, we have j∗
F̃i

(β) = 0, for i = 1, . . . , s̃. In addition, since

Fi ⊂ X, we conclude j∗Fi
(β) = ι∗Fi

(α). Thus, the Atiyah–Bott–Berline–Vergne integration

formula yields

εY∗ (a) = εX̃∗ (j∗(a)) = εX̃∗ (β) =
s∑
i=1

εFi
∗

( j∗Fi
(β)

eT (NFi)

)
=

s∑
i=1

εFi
∗

( ι∗Fi
(α)

eT (NFi)

)
= εX∗,virt(α)

which completes the proof.

Let X = C(D) be a bow variety and T = T = A × C∗
h be the torus of rank N + 1 from

(2.47). Then, Corollary 3.24 implies that the virtual intersection form C(D) takes values in

S−1
0 H∗

T (pt) ⊂ H∗
T (pt)loc, where S0 is the multiplicative set generated by

{ti − tj +mh | 1 ≤ i, j ≤ N, i ̸= j, m ∈ Z}. (7.2)

A crucial difference between S−1
0 H∗

T (pt) and H∗
T (pt)loc is that the equivariant parameter

h is a prime element in S−1
0 H∗

T (pt) which is an important ingredient of the proof of the

Ortogonality Theorem.
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7.2 Polynomiality Theorem

Fix a chamber C of A.

Theorem 7.6 (Polynomiality). We have

(α · StabC(p),StabCop(q))virt ∈ H∗
T(pt),

for all α ∈ H∗
T(C(D)) and p, q ∈ C(D)T.

Proof. By the support condition, the product StabC(p) · StabCop(q) is supported on the in-

tersection Ap,q := AttrfC(p)∩AttrfCop(q). Hence, also α · StabC(p) · StabCop(q) is supported on

Ap,q. By Corollary 4.25, Ap,q is proper over C. Therefore, we have

(α · StabC(p),StabCop(q))virt = ε
C(D)
∗,virt(α · StabC(p) · StabCop(q)) ∈ H∗

T(pt),

by Lemma 7.5.

Example 7.7. As in Chapter 6, let C2 be the bow variety corresponding to the brane diagram

D2 = 0\1/1/1\0. We have

Tie(D2) = {D1, D2}, where D1 = {(U1, V1), (V1, U2)}, D2 = {(U1, V2), (V2, U2)}.

Let α = c1(ξX3) be the first T-equivariant Chern class of the tautological bundle ξX3 . We

now show by a direct computation that

(α · StabC−(xD2),StabC+(xD1))vir (7.3)

is indeed a polynomial in the equivariant parameters. For this, we determine the necessary

equivariant multiplicities and tangent weights. The butterfly diagrams of D1, D2 are as

follows:

D1 =
0 1 1 1 0

∗ ∗

D2 =
0 1 1 1 0

∗ ∗

Thus, the restriction formula for tautological bundles (3.8) gives ι∗xD1
(ξX3) = Ct1+h and

ι∗xD2
(ξX3) = Ct2−h. Hence, ι∗xD1

(α) = t1 + h and ι∗xD2
(α) = t2 − h. By Proposition 6.2, the

tangent weights at xD1 and xD2 are

TxD1
C2 = Ct1−t2+2h ⊕ Ct2−t1−h, TxD2

C2 = Ct1−t2+3h ⊕ Ct2−t1−2h. (7.4)

Proposition 6.5 gives the equivariant multiplicities of StabC+(xD1) and StabC−(xD2):

ι∗xD1
(StabC+(xD1)) = t2 − t1 − h,

ι∗xD2
(StabC+(xD1)) = h,

ι∗xD1
(StabC−(xD2)) = h,

ι∗xD2
(StabC−(xD2)) = t1 − t2 + 3h.

(7.5)
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Inserting this into the definition of virtual intersection products yields

(7.3) =
ι∗xD1

(α · StabC−(xD2) · StabC+(xD1))

eT(TxD1
C2)

+
ι∗xD2

(α · StabC−(xD2) · StabC+(xD1))

eT(TxD2
C2)

=
(t1 + h)h

t1 − t2 + 2h
+

(t2 − h)h

t2 − t1 − 2h

= h.

Therefore, we proved that (7.3) is indeed a polynomial in the equivariant parameters.

7.3 Orthogonality Theorem

The Orthogonality Theorem states that stable basis elements corresponding to opposite cham-

bers are orthogonal with respect to the virtual intersection pairing on C(D):

Theorem 7.8 (Orthogonality Theorem). We have

(StabC(p), StabCop(q))virt = δp,q,

for all p, q ∈ C(D)T.

Proof. Recall that the virtual intersection pairing on C(D) takes values in S−1
0 H∗

T(pt), where

S0 is defined as in (7.2) and that the equivariant parameter h is a prime element in S−1
0 H∗

T(pt).

By definition, we have

(StabC(p),StabCop(q))virt =
∑

z∈C(D)T

ι∗z(StabC(p)) · ι∗z(StabCop(q))

eT(TzC(D))
. (7.6)

Theorem 7.6 implies that (7.6) is actually contained in H∗
T(pt). If p ̸= q, we know by the

smallness condition that h divides ι∗z(StabC(p)) · ι∗z(StabCop(q)), for all z ∈ C(D)T. However,

Corollary 3.24 gives h ∤ eT(TzC(D)), for all z ∈ C(D)T. It follows that (7.6) is divisible by

h in S−1
0 H∗

T(pt) and hence also in H∗
T(pt). As ι∗z(StabC(p)) · ι∗z(StabCop(q)) and eT(TzC(D))

are homogeneous of the same degree, we conclude that (7.6) is a degree 0 polynomial in the

equivariant parameters. Hence, (7.6) has to vanish. Now, let us consider the case p = q. By

the normalization condition, we can infer

i∗p(StabC(p)) · ι∗p(StabCop(p))

eT(TpC(D))
=
eT(TpC(D)−C ) · eT(TpC(D)+C )

eT(TpC(D))
= 1.

In addition, the same argument as in the case p ̸= q gives∑
z∈C(D)T

z ̸=p

=
ι∗z(StabC(p)) · ι∗z(StabCop(p))

eT(TzC(D))
= 0.

Thus, we deduce ∑
z∈C(D)T

ι∗z(StabC(p)) · ι∗z(StabCop(p))

eT(TzC(D))
= 1.

This finishes the proof of the Orthogonality Theorem.
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7. Polynomiality and Orthogonality Theorems

Example 7.9. Let C2, D1, D2 be as in Example 7.7. We show by direct computations that the

stable bases (StabC−(xDi))i=1,2 and (StabC+(xDi))i=1,2 are indeed orthogonal with respect to

(., .)vir. Recall from Proposition 6.5 that the equivariant mutiplicities ι∗xD1
(StabC+(xD2)) and

ι∗xD2
(StabC−(xD1)) both vanish. Thus, all summands contributing to the virtual intersection

product (StabC−(xD1), StabC+(xD2))vir also vanish. Consequently

(StabC−(xD1), StabC+(xD2))vir = 0.

Likewise, we deduce that

(StabC−(xDi),StabC+(xDi))vir =
ι∗xDi

(StabC−(xDi) · StabC+(xDi))

eT(TxDi
C2)

= 1,

where the second equality follows from the normalization condition. Finally, using the for-

mulas for tangent weight from (7.4) and the equivariant multiplicities of StabC+(xD1) and

StabC−(xD2) from (7.5), we conclude

(StabC−(xD2),StabC+(xD1))vir =
h(t2 − t1 − h)

(t1 − t2 + 2h)(t2 − t1 − h)
+

(t1 − t2 + 3h)h

(t1 − t2 + 3h)(t2 − t1 − 2h)

=
h

t1 − t2 + 2h
+

h

t2 − t1 − 2h

= 0.

Hence, we showed that (StabC−(xDi))i=1,2 and (StabC+(xDi))i=1,2 are orthogonal with respect

to (., .)vir.
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Chapter 8

Extension moves for bow varieties

In this chapter, we relate the stable basis elements of different bow varieties whose associated

brane diagrams differ by a small local change. More precisely, assume that we are given two

separated brane diagrams D and D′ such that D′ is obtained from D by performing one of

the following local moves involving a red or blue line:

d

Xl

d d

X ′
l X ′

l+1

or d

Xl

d d

X ′
l X ′

l+1

We refer to these moves as extension moves. The central question of this chapter is:

How are the stable basis elements of C(D) and C(D′) connected?

It turns out that the answer to this question strongly depends on the color of the line which

is added in the extension move.

If the extension move adds a red line, we prove in Proposition 8.3 that there is a torus

equivariant isomorphism of varieties between C(D) and C(D′). The induced isomorphism in

torus equivariant cohomology respects stable basis elements as explained in Corollary 8.9.

In case the extension move adds a blue line, the dimension of C(D′) is in general strictly

greater than the dimension of C(D), see Lemma 8.13. Thus, C(D) and C(D′) are in general not

isomorphic. We prove however in Theorem 8.15 that there is a torus equivariant embedding

ι : C(D) ↪→ C(D′) which induces a bijection on torus fixed points. This embedding allows

a comparison between the attracting cells of C(D) and C(D′). In particular, we prove in

Proposition 8.27 that the equivariant multiplicities of closures of attracting cells just differ

by multiplication with a uniform constant factor. Using this result, we prove in Theorem 8.38

that the stable basis elements of C(D) and C(D′) are connected as follows. By Corollary 5.19,

the stable basis elements of C(D) and C(D′) can be realized as Z-linear combinations

Stab
C(D)
C (p) =

∑
q∈C(D)T

ap,q · Λq, Stab
C(D′)
C′ (p′) =

∑
q′∈C(D′)T′

a′p′,q′ · Λ′
q′ ,

where Λq and Λ′
q′ are the Poincaré duals of the fundamental class of the Zariski closures of

AttrC(q) and AttrC′(q′) in C(D) and C(D′) respectively. Theorem 8.38 now states that if C′

restricts to C (see Definition 8.25 for a precise definition) then we have

ap,q = a′ι(p),ι(q), for all p, q ∈ C(D)T.
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8. Extension moves for bow varieties

Since ι induces a bijection C(D)T
∼−→ C(D′)T

′
on torus fixed points, this equality uniquely

determines all the coefficients a′p′,q′ . We therefore call Theorem 8.38 the Coefficient Theorem.

As an application of Theorem 8.38, we then deduce that the stable basis elements of C(D)

and C(D′) also just differ by a uniform constant factor, see Corollary 8.39.

These results might be compared with similar observations in the context of elliptic co-

homology from [BR23, Section 5.10].

Assumption. In this chapter, all brane diagrams are assumed to be separated.

We use the following terminology: Given a brane diagram D, we call a colored line Y in

D chargeless if dY − = dY + . If Y is not chargeless, we call Y essential. We call the brane

diagram D essential if all colored lines of D are essential.

Note that in an extension move either a red or a blue chargeless line is added. Also note

that if D is a tie diagram of D and Y is a chargeless line of D then, as we assumed that D is

separated, no tie in D is attached to Y .

8.1 Red extension moves

Let D and D′ be brane diagrams. To distinguish the colored lines of D and D′, we denote

the red, blue and black lines of D by V , U and X whereas the red, blue and black lines of D′

are denoted by V ′, U ′ and X ′ respectively.

Definition 8.1. Given a black line Xl in D, we say that D′ is obtained from D via a red

extension move at Xl if we obtain D′ from D by replacing the black line Xl with label d = dXl

with the following local configuration:

d

Xl

d d

X ′
l X ′

l+1

For instance, 0/1/3/3/5\3\2\0 is obtained from 0/1/3/5\3\2\0 via a red extension move

at X3 as the black line X3 of D is replaced by the local configuration 3/3.

Assumption. Throughout this section, we assume that D′ is obtained from D via a red

extension move at Xl.

As we assumed that D, D′ are separated, we have a bijection between the respective sets

of tie diagrams:

f : Tie(D)
∼−−→ Tie(D′), (8.1)

where for D ∈ Tie(D) the corresponding tie diagram f(D) is given as

f(D) = {(V ′
i , U

′
j) | Vi ▷ Xl, (Vi, Uj) ∈ D} ∪ {(V ′

i , U
′
j) | Vi−1 ◁ Xl, (Vi−1, Uj) ∈ D}.

Pictorially, f(D) is obtained from D by just replacing the black line Xl with the local config-

uration d/d leaving all ties unchanged.

For example, consider D = 0/1/3/5\3\2\0, D′ = 0/1/3/3/5\3\2\0 as above and choose

D ∈ Tie(D) as follows:
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8.1. Red extension moves

0 1 3 5 3 2 0
D =

Then, f(D) is obtained from D by replacing the black line X3 with the local configuration

3/3 where we do not change any of the ties:

0 1 3 3 5 3 2 0
f(D) =

In the next subsection, we compare the corresponding bow varieties of D and D′.

Isomorphism of bow varieties

Recall from Notation 2.32 that M is the number of red and N is the number of blues lines

in D. Let k ∈ {0, . . . ,M} such that (X ′
l)
+ = V ′

k+1, i.e. V ′
k+1 is the red line which is added to

D′ via the red extension move. Since D and D′ are both separated, we have 1 ≤ l ≤ M + 1

and k = M + 1− l.
As D and D′ have the same number of blue lines, their respective bow varieties C(D) and

C(D′) both admit an action of the torus T = A× C∗
h, where A = (C∗)N .

In the following, we show that there exists a T-equivariant isomorphism between C(D)

and C(D′). For this, recall the definition of the affine brane varieties M̃(D), M̃(D′), their

ambient spaces VD, VD′ and the associated gauge groups G, G′ from (2.31), Definition 2.33

and (2.32). Recall also the moment maps m̃ resp. m̃′ of M̃(D) resp. M̃(D′) from (2.33)

and that the vanishing loci m̃−1(0) resp. (m̃′)−1(0) are locally closed subvariety of VD resp.

VD′ . Let χ resp. χ′ be the character of G resp. G′ from Definition 2.36 and m̃−1(0)s resp.

(m̃′)−1(0)s the corresponding χ- resp. χ′-stable locus.

We have the following crucial results:

Lemma 8.2. Let Θ̃ : VD → VD′ be the morphism of varieties which maps a point

y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ VD

to

Θ̃(y) = ((AU ′ , (BU ′)−, (BU ′)+, aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′),

where AU ′
i

= AUi, B
−
U ′
i

= B−
Ui
, B+

U ′
i

= B+
Ui
, aU ′

i
= aUi, bU ′

i
= bUi, for all i = 1, . . . , N and

CV ′
j

=


CVj if j ≤ k,

id if j = k + 1,

CVj−1 if j > k + 1,

DV ′
j

=


DVj if j ≤ k,

CVkDVk if j = k + 1,

DVj−1 if j > k + 1.

(8.2)
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8. Extension moves for bow varieties

if l < M + 1 and

CV ′
j

=

id if j = 1,

CVj−1 if j > 1,
DV ′

j
=

−B−
U1

if j = 1,

DVj−1 if j > 1,
(8.3)

if l = M + 1. Then, Θ̃ restricts to a morphism of varieties Θ̃ : m̃−1(0)s → (m̃′)−1(0)s.

Proposition 8.3. The morphism of varieties Θ̃ : m̃−1(0)s → (m̃′)−1(0)s from Lemma 8.2

induces a T-equivariant isomorphism of varieties

Θ: C(D)
∼−−→ C(D′).

Remark. The morphism Θ̃ from Lemma 8.2 can be illustrated as follows: Let

y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ VD.

Then, y is presented by the following diagram:

0 dl dl+1 dM+1 0

VM Vk+1 Vk Vk−1 V1 U1 UN

0 Cdl Cdl+1 CdM+1 0

CM Ck+1 Ck Ck−1 C1

DM Dk+1 Dk Dk−1 D1

B−
1 B+

N

A1 AN

a1 aNb1 bN

C C

Here, as in Proposition 8.3, k = M − l + 1 and hence V −
k = Xl. We also denote AUi by Ai,

B−
Ui

by B−
i and similarly for the other operators. In case l < M + 1, we obtain a diagram for

Θ̃(y) by performing the following replacements:

dl

Xl

dl dl

X ′
l X ′

l+1

Cdl Cdl Cdl
id

CkDk

Hence, Θ̃(y) corresponds to the following diagram:

0 dl dl dl+1 dM+1 0

V ′
M+1 V ′

k+2 V ′
k+1 V ′

k V ′
k−1 V ′

1 U ′
1 U ′

N

0 Cdl Cdl Cdl+1 CdM+1 0

CM Ck+1 id Ck Ck−1 C1

DM Dk+1 CkDk Dk Dk−1 D1

B−
1 B+

N

A1 AN

a1 aNb1 bN

C C
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8.1. Red extension moves

Here, we highlighted the newly added arrows. In the special case l = M + 1, we perform the

following replacement:

dM+1

XM+1

dM+1 dM+1

X ′
M+1 X ′

M+2

CdM+1 CdM+1 CdM+1

id

−B−
1

Thus, in this case, Θ̃(y) corresponds to the following diagram:

0 dM dM+1 dM+1 0

V ′
M+1 V ′

3 V ′
2 V ′

1 U ′
1 U ′

N

0 CdM CdM+1 CdM+1 0

CM C2 C1 id

DM D2 D1 −B−
1

B−
1 B+

N

A1 AN

a1 aNb1 bN

C C

The next two subsections are devoted to the proof of Lemma 8.2 and Proposition 8.3.

Basis theorem for the blue part

We begin with the following general basis theorem for bow varieties corresponding to sepa-

rated brane diagrams. The statement is similar to Corollary 3.29.

Recall the margin vectors c = c(D) = (c1, . . . , cN ) from Definition 2.58 and that dM+i =∑N
j=i cj , for i = 1, . . . , N + 1.

Proposition 8.4. Let y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ (m̃)−1(0) and set

s
(i)
y,j,r := AUiAUi+1 · · ·AUj−2AUj−1(B−

Uj
)raUj (1) ∈ CdM+i (8.4)

for i = 1, . . . , N , j ≥ i and r ≥ 0. Then,

(s
(i)
y,j,r | j = i, i+ 1, . . . , N, r = 0, . . . , cj − 1)

is a basis of CdM+i, for all i = 1, . . . , N + 1.

Proof. We prove the statement via induction on i. The case i = N + 1 is clear as in this case

dM+i = 0. If i < N + 1 then by Lemma 2.23.(ii), we have a decomposition

CdM+i = im(AUi)⊕ im(aUi)⊕ im(B−
Ui
aUi)⊕ . . .⊕ im((B−

Ui
)ci−1aUi). (8.5)

By Proposition 2.19, AUi is injective. Hence, by the induction hypothesis, CdM+i+1 admits

the basis (s
(i+1)
y,j,r | j = i + 1, . . . , N, r = 0, . . . , cj − 1). Therefore, im(AUi) admits the basis

(s
(i)
y,j,l | j = i+ 1, . . . , N, r = 0, . . . , cj − 1) which completes the proof.
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8. Extension moves for bow varieties

From Proposition 8.4, we immediately deduce the following consequence about invariant

subspaces of WD:

Corollary 8.5. Let T =
⊕

X∈h(D) TX ⊂ WD be an AU - and B±
U -invariant graded subspace

such that aU (1) ∈ T , for all U ∈ b(D). Then, TU± = WU±, for all U ∈ b(D).

In particular, Corollary 8.5 simplifies applications of the χ-stability criterion from Propo-

sition 2.37.

Proofs of Lemma 8.2 and Proposition 8.3

As before, suppose that D′ is obtained from D by a red extension move at Xl and let V ′
k+1

be the added red line.

Proof of Lemma 8.2. Since Θ̃ leaves the operators corresponding to blue lines unchanged,

Θ̃ respects (2.12) as well as the conditions (S1) and (S2). Thus, we conclude Θ̃(M̃(D)) ⊂
M̃(D′). By (8.2) and (8.3), Θ̃ also respects the moment map equation (2.33) and therefore

Θ̃(m̃−1(0)) ⊂ (m̃′)−1(0). Let

y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ m̃−1(0)

be χ-stable. To see that Θ̃(y) = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′) is also χ′-stable, let

T =
⊕

X′∈h(D′) TX′ ⊂WD′ be a graded subspace satisfying the conditions of Proposition 2.37.

Note that

(AUi , B
−
Ui
, B+

Ui
, aUi , bUi) = (AU ′

i
, B−

U ′
i
, B+

U ′
i
, aU ′

i
, bU ′

i
), for i = 1, . . . , N .

Thus, as T is AU ′- and B±
U ′-invariant and contains all aU ′(1), Corollary 8.5 yields T(U ′)± =

W(U ′)± , for all U ′ ∈ b(D). By Proposition 2.57, all CV ′ are surjective which implies T(V ′)− =

W(V ′)− , for all V ′ ∈ r(D). Hence T = WD′ and Θ̃(y) is χ′-stable by Proposition 2.37.

Consequently, Θ̃ restricts to a morphism of varieties Θ̃ : m̃−1(0)s → (m̃′)−1(0)s.

For the proof of Proposition 8.3, we define a surjection

πh : h(D′) −−→ h(D), πh(X ′
i) =

Xi if i ≤ l,

Xi−1 if i > l.
(8.6)

We get an induced map ιh : G → G′, (gX)X 7→ (g′X′)X′ , where g′X′ = gπh(X′), for allX ′ ∈ h(D′).

The next lemma gives that Θ̃ indeed induces a surjective morphism on the associated

bow varieties:

Lemma 8.6. The morphism of varieties Θ̃ : m̃−1(0)s → (m̃′)−1(0)s induces a surjective mor-

phism of varieties Θ: C(D)→ C(D′).

Proof. If we are given y1, y2 ∈ m̃−1(0)s such that g.y1 = y2 for some g = (gX)X ∈ G then, by

(8.2) and (8.2), ιh(g).Θ̃(y1) = Θ̃(y2). Hence, Θ̃ induces a morphism Θ: C(D) → C(D′). For

surjectivity, let y′ = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′) ∈ (m̃′)−1(0)s. As dX′

l
= dX′

l+1
,
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8.1. Red extension moves

we deduce from Proposition 2.57 that CV ′
k+1

is an isomorphism of vector spaces. Define

g̃ = (g̃X′)X′ ∈ G′ as g̃(V ′
k+1)

+ := CV ′
k+1

and g̃X′ := id, for X ′ ̸= (V ′
k+1)

+. Write

g̃.y′ = ((ÃU ′ , B̃−
U ′ , B̃

+
U ′ , ãU ′ , b̃U ′)U ′ , (C̃V ′ , D̃V ′)V ′).

Since C̃V ′
k+1

= id, there exists y ∈ m̃−1(0)s with Θ̃(y) = g̃.y′ by Lemma 8.7 below. Thus, Θ

is surjective.

Lemma 8.7. Let y′ = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′) ∈ (m̃′)−1(0)s with CV ′

k+1
=

id. Define F (y′) := ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ VD via AUi = AU ′

i
, B−

Ui
= B−

U ′
i
,

B+
Ui

= B+
U ′
i
, aUi = aU ′

i
, bUi = bU ′

i
, for all i = 1, . . . , N and

CVj =

CV ′
j

for j ≤ k,

CV ′
j+1

for j > k,
DVj =

DV ′
j

for j ≤ k,

DV ′
j+1

for j > k.
(8.7)

Then, Θ̃(F (y′)) = y′ and F (y′) is contained in m̃−1(0)s.

Proof. By (2.33), (8.2) and (8.3), we have Θ̃(F (y′)) = y′. Thus, it is left to show that F (y′)

is contained in m̃−1(0)s. As F leaves the operators corresponding to blue lines unchanged, we

conclude that F (y′) satisfies (2.12), (S1) and (S2). Thus, F (y′) ∈ M̃(D). From (8.7) follows

that F (y′) also satisfies the moment map equation (2.33) and therefore F (y′) ∈ m̃−1(0). To

see that F (y′) is χ-stable let T =
⊕

X∈h(D) TX ⊂ WD be a graded subspace satisfying the

conditions of Proposition 2.37. Since y′ is χ′-stable, Corollary 8.5 gives TU± = WU± , for all

U ∈ b(D). As also all CV are surjective by Proposition 2.57, we deduce T = WD and hence

F (y′) is χ-stable by Proposition 2.37.

The next lemma states that the morphism Θ is indeed T-equivariant.

Lemma 8.8. The morphism of varieties Θ: C(D)→ C(D′) is T-equivariant.

Proof. Note that Θ̃ leaves the operators attached to blue lines unchanged. Hence (2.48)

implies that Θ̃ (and hence also Θ) is A-equivariant. So it is left to show that Θ is C∗
h-

equivariant. Let h ∈ C∗
h and y ∈ m̃−1(0)s. By (8.2) and (8.3), we have Θ̃(h.y) = gh.(h.Θ̃(y)),

where

(gh)X′
i

=

h−1 · id for i ≤ l,

id for i > l.

Thus, Θ is C∗
h- and hence also T-equivariant.

Proof of Proposition 8.3. By Lemma 8.6 and Lemma 8.8, we know that Θ is a surjective and

T-equivariant morphism of varieties. By Proposition 2.25, Θ is an isomorphism of varieties

if and only if Θ is bijective. Thus, it is left to show that Θ is injective. Suppose there are

y1, y2 ∈ (m̃′)−1(0)s with g′.Θ̃(y1) = Θ̃(y2), for some g′ = (g′X′)X′ ∈ G′. Then, (8.2) and (8.3)

yield g.y1 = y2, where g = (gX)X ∈ G is given by

gXi =

g
′
X′

i
for i ≤ l,

g′X′
i+1

for i > l.

Hence, Θ is indeed injective.
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8. Extension moves for bow varieties

Invariance of stable basis elements

Since the isomorphism Θ: C(D)
∼−→ C(D′) is T-equivariant, Θ induces a bijection C(D)T

∼−→
C(D′)T. The next corollary states that this bijection corresponds to the bijection f : Tie(D)

∼−→
Tie(D′) from (8.1).

Corollary 8.9. We have Θ(xD) = xf(D), for all D ∈ Tie(D).

Proof. For all i = 1, . . . , N , the butterfly diagram b(U ′
i , f(D)) is obtained from the butterfly

diagram b(Ui, D) by first replacing the column corresponding to Xl by the following diagram:

X ′
l X ′

l+1Xl

and then shifting all dots and arrows corresponding to lines which are to the left of X ′
l down by

one. Thus, by Lemma 8.2, we have Θ̃(yD) = yf(D), where yD ∈ m̃−1(0)s, yf(D) ∈ (m̃′)−1(0)s

are defined as in Proposition 3.11. Since xD = [yD] and xf(D) = [yf(D)], we conclude Θ(xD) =

xf(D).

From Proposition 8.3 and Corollary 8.9, we now deduce that the induced isomorphism

Θ∗ : H∗
T(C(D′))

∼−→ H∗
T(C(D)) yields the following bijection on the respective sets of stable

basis elements:

Corollary 8.10. For all D ∈ Tie(D) and any choice of chamber C of A, we have

Θ∗(StabC(xf(D)) = StabC(xD).

Proof. Since the stability conditions for stable basis elements from Theorem 5.10 are invariant

with respect to T-equivariant isomorphisms, Θ∗(StabC(xf(D)) is a stable basis element. As

Θ(xD) = xf(D), we must have Θ∗(StabC(xf(D)) = StabC(xD).

8.2 Blue extension moves

Again, let D and D′ be brane diagrams.

Definition 8.11. Given a black line Xl in D, we say that D′ is obtained from D via a blue

extension move at Xl if we obtain D′ from D by replacing the black line Xl with label d = dXl

with the following local configuration:

d

Xl

d d

X ′
l X ′

l+1
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8.2. Blue extension moves

For example, the brane diagram 0/1/3/5\3\2\2\0 is obtained from 0/1/3/5\3\2\0 via a

blue extension move at X6 since X6 is replaced with the configuration 2\2.

Assumption. From now until Section 8.7, we assume that D′ is obtained from D via a blue

extension move at Xl.

Just as in (8.1), we have a bijection

f ′ : Tie(D)
∼−−→ Tie(D′), (8.8)

where for D ∈ Tie(D) the tie diagram f ′(D) is defined as

f ′(D) = {(V ′
i , U

′
j) | Uj ◁ Xl, (Vi, Uj) ∈ D} ∪ {(V ′

i , U
′
j) | Uj−1 ▷ Xl, (Vi, Uj−1) ∈ D}.

Pictorially, f ′(D) is obtained from D by replacing the black lineXl with the local configuration

d\d and we leave all ties unchanged.

Example 8.12. Choose as above D = 0/1/3/5\3\2\0 and D′ = 0/1/3/5\3\2\2\0. Let

D ∈ Tie(D) be the tie diagram

0 1 3 5 3 2 0
D =

Then, we obtain f ′(D) from D by just replacing the black line X6 with the local configuration

2\2 leaving all ties unchanged:

0 1 3 5 3 2 2 0
f ′(D) =

In contrast to the previous section, the next lemma gives that the bow varieties C(D)

and C(D′) are in general of different dimension. Hence, C(D) and C(D′) are in general not

isomorphic as varieties.

Lemma 8.13. We have dim(C(D′)) = dim(C(D)) + 2d.

For example, if D and D′ are as in Example 8.12, we have d = 2 and thus dim(C(D′)) =

dim(C(D)) + 4.

Proof of Lemma 8.13. By (2.43), we have

dim(C(D′))− dim(C(D)) = 2d(d+ 1)− 2d2 = 2d

which proves Lemma 8.13.

However, as we will discuss in the next subsection, there exists a closed embedding of

C(D) into C(D′). The construction of this embedding is similar to the construction of the

isomorphism Θ from Proposition 8.3.
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8. Extension moves for bow varieties

8.3 Embedding Theorem

Let VD, VD′ , G, G′, M̃(D), M̃(D′), m̃, m̃′, χ and χ′ be as in Section 8.1. Let k ∈ {1, . . . , N+1}
such that (X ′

l)
+ = U ′

k. That is, U ′
k is the blue line that is added in the blue extension move.

The bow variety C(D) resp. C(D′) is endowed with the action of the torus T = A × C∗
h

resp. T′ = A′ ×C∗
h. Note that A has rank N and A′ has rank N + 1. We view T as subtorus

of T′ via

T ↪−−→ T′, (t1, . . . , tN , h) 7→ (t1, . . . , tk−1, 1, tk, . . . , tN , h).

On the other hand, via the quotient map

T′ −−→ T, (t1, . . . , tN+1, h) 7→ (t1, . . . , tk−1, tk+1, . . . , tN+1, h),

we view C(D) as T′-variety.

We set

Z0 := {[(AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′ ] | aU ′

k
= 0, bU ′

k
= 0} ⊂ C(D′).

Then, Z0 is a T′-equivariant closed subvariety of C(D′). The next two results are the main

results of this section. In particular, they provide an isomorphism of varieties C(D)
∼−→ Z0.

Lemma 8.14. Let ι′ : VD → VD′ be the morphism which maps a point

y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ VD

to

ι′(y) = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′),

where (CV ′
j
, DV ′

j
) = (CVj , DVj ), for all j and

(AU ′
i
, B−

U ′
i
, B+

U ′
i
, aU ′

i
, bU ′

i
) =


(AUi , B

−
Ui
, B+

Ui
, aUi , bUi) if i < k,

(id, B+
Uk−1

, B+
Uk−1

, 0, 0) if i = k,

(AUi−1 , B
−
Ui−1

, B+
Ui−1

, aUi−1 , bUi−1) if i > k,

(8.9)

if k > 1 and

(AU ′
i
, B−

U ′
i
, B+

U ′
i
, aU ′

i
, bU ′

i
) =

(id,−DV1CV1 ,−DV1CV1 , 0, 0) if i = 1,

(AUi−1 , B
−
Ui−1

, B+
Ui−1

, aUi−1 , bUi−1) if i > 1,
(8.10)

if k = 1. Then, ι′ restricts to a morphism ι′ : m̃−1(0)s → (m̃′)−1(0)s.

Theorem 8.15 (Embedding Theorem). The morphism ι′ : m̃−1(0)s → (m̃′)−1(0)s from

Lemma 8.14 induces a T′-equivariant closed immersion

ι : C(D) ↪−−→ C(D′)

which restricts to a T′-equivariant isomorphism C(D)
∼−→ Z0.
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8.3. Embedding Theorem

Remark. The morphism ι′ : VD → VD′ from Lemma 8.14 can be illustrated as follows: Let

y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ VD.

Then, y is presented by the diagram:

0 dM+1 dl dl+1 0

VM V1 U1 Uk−1 Uk Uk+1 UN

0 CdM+1 Cdl Cd1+1 0
A1 Ak−1 Ak Ak+1 AN

C C C C C

B−
1 B+

N
B+

k−1B
−
k B+

k
B−

k+1

a1 ak−1 ak ak+1 aN
b1 bk−1 bk bk+1 bN

CM C1

DM D1

Again, we write Ai for AUi , B
−
i for B−

Ui
etc. In case k > 1, we obtain the diagram for ι′(y)

by performing the following replacement:

dl

Xl

dl dl

X ′
l X ′

l+1

Cdl Cdl Cdl

C

id

B+
k−1 B+

k−1

0
0

That is, ι′(y) is given by the diagram:

0 dM+1 dl dl dl+1 0

V ′
M V ′

1 U ′
1 U ′

k−1 U ′
k U ′

k+1 U ′
k+2 U ′

N+1

0 CdM+1 Cdl Cdl Cd1+1 0
A1 Ak−1 id Ak Ak+1 AN

C C C C C C

a1 ak−1 0 ak ak+1 aN
b1 bk−1 0 bk bk+1 bN

CM C1

DM D1

B−
1 B+

N
B+

k−1B
+
k−1 B

+
k−1B

−
k B+

k
B−

k+1

Here, we highlighted the newly added arrows. In case k = 1, we replace Cdl as follows:

dl

Xl

dl dl

X ′
l X ′

l+1

Cdl Cdl Cdl

C

id

−D1C1 −D1C1

0
0
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8. Extension moves for bow varieties

Then, ι′(y) corresponds to the diagram

0 dl dl dl+1 0

V ′
M V ′

1 U ′
1 U ′

2 U ′
3 U ′

N+1

0 Cdl Cdl Cd1+1 0
id A1 A2 AN

C C C C

CM C1

DM D1
0 a1 a2 aN

0 b1 b2 bN

−D1C1 B+
N−D1C1 B−

1 B+
1 B−

2

The next two subsections are devoted to the proofs of Lemma 8.14 and Theorem 8.15.

Z0 as torus fixed locus

In this subsection, we apply Proposition 8.4 to show that the subvariety Z0 ⊂ C(D′) from

Theorem 8.15 is the fixed locus corresponding to the cocharacter

σ0 : C∗ −−→ A′, t 7→ (σ0,U ′(t))U ′ , where σ0,U ′(t) =

t if U ′ = U ′
k,

1 if U ′ ̸= U ′
k.

(8.11)

Proposition 8.16. We have Z0 = C(D′)σ0.

As a direct consequence of Proposition 8.16, we get the following:

Corollary 8.17. We have that Z0 is a smooth subvariety of C(D′).

Proof. Recall from Proposition 2.2.(i) that C(D′) is quasi-projective. Thus, by Theorem 7.1,

the fixed locus C(D′)σ0 is a smooth subvariety of C(D′). Hence, Z0 is smooth by Proposi-

tion 8.16.

The following auxiliary statement will be used in the proof of Proposition 8.16:

Lemma 8.18. Let y = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′) ∈ (m̃′)−1(0)s. Suppose

there exist g = (gX′)X′ ∈ G′ and t ∈ C∗ such that g.y = σ0(t).y. Then, we have g = id.

Proof. Denote the margin vector of D′ by c(D′) = (c′1, . . . , c
′
N+1). By construction,

c′i =


ci if i < k,

0 if i = k,

ci−1 if i > k.

As in Proposition 8.4, let

s
(i)
y,j,r := AU ′

i
AU ′

i+1
· · ·AU ′

j−2
AU ′

j−1
(B−

U ′
j
)raU ′

j
(1) ∈ Cd

′
M+i ,

for i = 1, . . . , N + 1, j ≥ i and r ≥ 0. From g.y = σ0(t).y, we deduce

g(U ′)−AU ′ = AU ′g(U ′)+ , g(U ′)±B
±
U ′ = B±

U ′g(U ′)± , g(U ′)−aU ′(1) = σ0,U ′(t) · aU ′(1),
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8.3. Embedding Theorem

for all U ′ ∈ b(D′). Thus, if j ̸= k, we have

g(U ′
i)

−s
(i)
y,j,r = g(U ′

i)
−AU ′

i
· · ·AU ′

j−1
(B−

Uj
)raU ′

j
(1)

= AU ′
i
· · ·AU ′

j−1
(B−

U ′
j
)r(σ0,U ′

j
(t) · aU ′

j
(1))

= s
(i)
y,j,r.

(8.12)

Since c′k = 0, Proposition 8.4 says that

(s
(i)
y,j,r | j = i, i+ 1, . . . , N + 1, j ̸= k, r = 0, . . . , c′j − 1)

is a basis for Cd
′
M+i for i = 1, . . . , N + 1. Hence, (8.12) yields g(U ′)± = id, for all U ′ ∈ b(D′).

Next, we prove via induction on j that also all g(V ′
j )

+ are equal to the identity. The case

j = 1 is clear since (V ′
j )+ = (U ′

j)
−. Let j > 1 and recall from Proposition 2.57 that CV ′

j−1

is surjective. From g.y = σ0(t).y, we deduce g(V ′
j )

+CV ′
j−1

= CV ′
j−1
g(V ′

j−1)
+ . By the induction

hypothesis g(V ′
j−1)

+ = id and hence, as CV ′
j

is surjective, we also have g(V ′
j )

+ = id. Thus, we

proved g = id.

Proof of Proposition 8.16. Let y = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′) ∈ (m̃′)−1(0)s

with aU ′
k

= 0 and bU ′
k

= 0. By (8.11), σ0(t).y = y, for all t ∈ C∗. This proves Z0 ⊂ C(D)σ0 .

Conversely, let t ∈ C∗ \ {1} and y = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′) ∈ (m̃′)−1(0)s

with σ0(t).y = g.y, for some g = (gX′)X′ ∈ G′. By Lemma 8.18, we conclude g = id.

Therefore, we have t−1aU ′
k

= aU ′
k

and tbU ′
k

= bU ′
k
. Consequently, aU ′

k
= 0 and bU ′

k
= 0 which

yields C(D)σ0 ⊂ Z0.

Proofs of Lemma 8.14 and Theorem 8.15

Define the surjection

πh : h(D′) −−→ h(D), πh(X ′
i) =

Xi if i ≤ l,

Xi−1 if i > l

and the inclusion ιh : G → G′, (gX)X 7→ (g′X′)X′ , where g′X′ = gπh(X′), for all X ′ ∈ h(D′).

Proof of Lemma 8.14. For y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ m̃−1(0)s, we write

ι′(y) = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′).

By (8.9) resp. (8.10), ι′(y) satisfies (2.12), (S1) and (S2). Thus, ι′(y) ∈ M̃(D′). Since also

(CVj , DVj ) = (CV ′
j
, DV ′

j
), for all j, we conclude ι′(y) ∈ (m̃′)−1(0). To see that ι′(y) is χ′-satble,

suppose that T ′ =
⊕

X′∈h(D′) T
′
X′ ⊂ WD′ is a graded subspace satisfying the conditions of

Proposition 2.37. Define the graded subspace T =
⊕

X∈h(D) TX ⊂WD as TV ± = T ′
(V ′)± and

TU+
i

=

T
′
(U ′

i)
+ if i < k,

T ′
(U ′

i+1)
+ if i ≥ k.

As T contains all aU (1) and is invariant under all AU and B±
U , Corollary 8.5 gives TU± =

WU± , for all U ∈ b(D). As T is also invariant under all CV and all CV are surjective by
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8. Extension moves for bow varieties

Proposition 2.57, we conclude T = WD which implies T ′
X′ = WX′ , for X ′ ̸= (U ′

k)
−. Since

A′
U ′
k

= id and T ′ is invariant under A′
U ′
k
, we also deduce T ′

(U ′
k)

− = W(U ′
k)

− . Thus, T ′ = WD′

and ι′(y) is χ′-stable by Proposition 2.37.

The following lemma will be used in the proof of Theorem 8.15.

Lemma 8.19. The morphism of varieties ι′ : m̃−1(0)s → (m̃′)−1(0)s from Lemma 8.14 in-

duces a morphism of varieties ι : C(D)→ C(D′) and the image of ι equals Z0.

Proof. If y ∈ m̃−1(0)s and g = (gX)X ∈ G then (8.9) and (8.10) imply ι′(g.y) = ιh(g).ι′(y).

Thus, ι′ induces a morphism of varieties ι : C(D) → C(D′). Again, by (8.9) and (8.10), the

image of ι is contained in Z0. Conversely, let y′ = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′) ∈

(m̃′)−1(0)s with aU ′
k

= 0 and bU ′
k

= 0. Since d(U ′
k)

− = d(U ′
k)

+ , Proposition 2.19 gives that AU ′
k

is an isomorphism of vector spaces. Define g̃ = (g̃X′)X′ ∈ G′ as

g̃X′ =

AU ′
k

if X ′ = (U ′
k)

+,

id otherwise.

Set ỹ := g̃.y and write

ỹ = ((ÃU ′ , B̃−
U ′ , B̃

+
U ′ , ãU ′ , b̃U ′)U ′ , (C̃V ′ , D̃V ′)V ′).

By construction, ÃU ′
k

= id. Hence, Lemma 8.20 below gives that there exists y ∈ m̃−1(0)s

with ι′(y) = ỹ. Thus, ι([y]) = [y′] which proves im(ι) = Z0.

Lemma 8.20. Let y′ = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′) ∈ (m̃′)−1(0)s with aU ′

k
= 0,

bU ′
k

= 0 and A′
U ′
k

= id. Define

F (y′) := ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ VD

via

(AUi , B
−
Ui
, B+

Ui
, aUi , bUi) =

(AU ′
i
, B−

U ′
i
, B+

U ′
i
, aU ′

i
, bU ′

i
) if i < k,

(AU ′
i+1
, B−

U ′
i+1
, B+

U ′
i+1
, aU ′

i+1
, bU ′

i+1
) if i ≥ k

(8.13)

and (CVj , DVj ) = (CV ′
j
, DV ′

j
), for all j. Then, F (y′) ∈ m̃−1(0)s and ι′F (y′) = y′.

Proof. By (8.9) and (8.10), we conclude ι′F (y′) = y′. From (8.13), we deduce that F (y′)

satisfies (2.12), (S1), (S2) and hence F (y′) ∈ M̃(D). Since F further leaves all operators

corresponding to red lines invariant, we deduce that F (y′) ∈ m̃−1(0). To conclude that F (y′)

is χ-stable, let T =
⊕

X∈h(D) TX ⊂ WD be a graded subspace satisfying the conditions of

Proposition 2.37. We define the graded subspace T ′ =
⊕

X′∈h(D′) T
′
X′ ⊂WD′ as

T ′
X′ := Tπh(X′), for X ′ ∈ h(D′).

As aU ′
k

= 0, we deduce that T ′ contains all aU ′(1). Since T ′ is invariant under all AU ′ and

B±
U ′ , Corollary 8.5 yields T ′

(U ′)± = W(U ′)± , for all U ′ ∈ b(D′). As T ′ is also invariant under

all CV ′ , Proposition 2.57 implies that T ′
(V ′)± = W(V ′)± , for all V ′ ∈ r(D′). Thus, T ′ = WD′

which also implies T = WD. Thus, F (y′) is χ-stable by Proposition 2.37.

154
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Proof of Theorem 8.15. By Lemma 8.19, we have im(ι) = Z0. As Z0 is smooth, Proposi-

tion 2.25 implies that ι restricts to an isomorphism ι : C(D)
∼−→ Z0 if and only if ι is injective.

Suppose g′.ι′(y1) = ι′(y2), for some y1, y2 ∈ m̃−1(0)s, g′ = (g′X′)X′ ∈ G′. By (8.9) and (8.10),

we have g.y1 = y2, where g = (gX)X ∈ G is defined as

gXj =

g
′
X′

j
if j ≤ l,

g′X′
j+1

if j > l.

Thus, ι is injective and hence induces an isomorphism ι : C(D)
∼−→ Z0. Finally, (8.9) and (8.10)

give that ι′ is T′-equivariant. Thus, also ι is T′-equivariant which completes the proof.

Matching of torus fixed points

Recall the bijection f ′ : Tie(D)
∼−→ Tie(D′) from (8.8).

Corollary 8.21. We have ι(xD) = xf′(D), for all D ∈ Tie(D).

Proof. Given i = 1, . . . , N , the butterfly diagram b(U ′
i , f

′(D)) is obtained from the butterfly

diagram b(Ui, D) by replacing the column and black arrows corresponding to Xl by the

diagram:

X ′
l X ′

l+1Xl

Therefore, (8.9) and (8.10) imply ι′(yD) = yf′(D), where yD ∈ m̃−1(0)s, yf′(D) ∈ (m̃′)−1(0)s

are defined as in Proposition 3.11. This gives ι(xD) = xf′(D).

8.4 Application of basis theorem

As we saw in the proofs of Proposition 8.3 and Theorem 8.15, Proposition 8.4 proved to be

useful to prove stability conditions for points on bow varieties. In this section, we prove a

further useful application of Proposition 8.4 about the triviality of tautological bundles of

C(D).

We say that a black line X ∈ h(D) belongs to the blue part of D if X = U±, for some

U ∈ b(D). Likewise, we say that the tautological bundle ξX = ξD,X belongs to the blue part

of D if X belongs to the blue part of D.

Proposition 8.22. Suppose X belongs to the blue part of D. Then, we have an isomorphism

of T-equivariant vector bundles

ξX ∼=
⊕
Uj▷X

ci−1⊕
j=0

h−jCUi .
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Proof. Suppose X = U−
i , for some Ui ∈ b(D). For

y = ((AU , B
−
U , B

+
U , aU , bU )U , (CV , DV )V ) ∈ (m̃)−1(0)s,

let s
(i)
y,j,r ∈WX be defined as in (8.4). Given g = (gX)X ∈ G, we have

s
(i)
g.y,j,r = gU−

i
AUig

−1

U+
i

· · · gU−
j−1
AUj−1g

−1

U+
j−1

(gU−
j
B−
Uj
g−1

U−
j

)rgU−
j
aUj (1)

= gU−
i
AUi · · ·AUj−1(B−

Uj
)raUj (1)

= gU−
i
s
(i)
y,j,r.

Thus, the morphism of varieties

m̃−1(0)s × C −−→ m̃−1(0)s ×WX , (y, λ) 7→ (y, λ · s(i)y,j,r)

induces a section

s
(i)
j,r : C(D)× C −−→ ξX , ([y], λ) 7→ [y, λ · s(i)y,j,r].

Let t = (t1, . . . , tN , h) ∈ T. Then, we have

s
(i)
t.y,j,r = AUi · · ·AUj−1(hrB−

Uj
)raUj (t

−1
j )

= hrt−1
j AUi · · ·AUj−1(B−

Uj
)raUj (1)

= hrt−1
j s

(i)
y,j,r.

Thus, we conclude that s
(i)
j,r is actually a T-equivariant section s

(i)
j,r : C(D)× (h−rCUj ) → ξX .

Therefore, we have a morphism of T-equivariant vector bundles

⊕
Uj▷X

cj−1⊕
r=0

h−rCUj

∑
j,r s

(i)
j,r−−−−−−−→ ξX

which is surjective by Proposition 8.4. As both vector bundles are of the same rank, this

morphism is an isomorphism of T-equivariant vector bundles.

Remark. The triviality of the tautological bundles which belong to the blue part of D was

also observed in [BR23].

8.5 Restrictions of tautological bundles

Next, we consider restrictions of tautological bundles from C(D′) to C(D) via the embedding

ι : C(D) ↪→ C(D′) from Theorem 8.15. In particular, we show in Proposition 8.23 that the

tautological bundles on C(D′) restrict to tautological bundles on C(D). As an application,

we show in Proposition 8.24 that the torus equivariant K-theory class of the normal bundle

of this embedding can be expressed as a sum of trivial bundles. This result will be useful in

the study of the attracting cells on C(D) and C(D′).

Proposition 8.23. For each X ′ ∈ h(D′), there is an isomorphism of T′-equivariant vector

bundles ι∗ξD′,X′ ∼= ξD,πh(X′).
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Proof. Note that WX′ = Wπh(X′). Let ι′ : m̃−1(0)s ↪→ (m̃′)−1(0)s be as in Lemma 8.14. Given

g = (gX)X ∈ G, we have

(g.y, gπh(X′) .v) = (ιh(g).ι′(y), ιh(g)X′ .v), for all y ∈ m̃−1(0)s, v ∈WX′ .

Thus, the morphism of varieties

m̃−1(0)s ×Wπh(X′) −−→ (m̃′)−1(0)s ×WX′ , (y, v) 7→ (ι′(y), v)

induces a surjective morphism of vector bundles

f : ξD,πh(X′) −−→ ι∗ξD′,X′ .

As ξD,πh(X′) and ι∗ξD′,X′ have the same rank, f is an isomorphism of vector bundles. Since

ι′ is T′-equivariant, so is f .

K-theory class of the normal bundle

Let Nι be the normal bundle of the embedding ι : C(D) ↪→ C(D′).

Proposition 8.24. In KT′(C(D)) holds

[Nι] =
⊕
U ′
i▷Xl

c′i−1⊕
j=0

(
h−j [CU ′

i
⊗ C∨

U ′
k
] + hj+1[CU ′

k
⊗ C∨

U ′
i
]
)
.

Here, C∨
U ′
i

denotes the dual vector bundle of CU ′
i
. For the proof of Proposition 8.24, recall

from Corollary 2.48 that in KT′(C(D)) holds

[TC(D)] =
∑

U∈b(D)

TU +
∑

V ∈r(D)

TV −
∑

X∈h(D)

TX , (8.14)

where

TU = (1− h)[Hom(ξD,U+ , ξD,U−)] + h[End(ξD,U−)] + h[End(ξD,U+)]

+ [Hom(CU , ξD,U−)] + h[Hom(ξD,U+ ,CU )],

TV = h[Hom(ξD,V + , ξD,V −)] + [Hom(ξD,V − , ξD,V +)],

TX = (1 + h)[End(ξD,X)].

(8.15)

Likewise, in KT′(C(D′)) holds

[TC(D′)] =
∑

U ′∈b(D′)

T ′
U ′ +

∑
V ′∈r(D′)

T ′
V ′ −

∑
X′∈h(D′)

T ′
X′ , (8.16)

where

T ′
U ′ = (1− h)[Hom(ξD′,(U ′)+ , ξD′,(U ′)−)] + h[End(ξD′,(U ′)−)] + h[End(ξD′,(U ′)+)]

+ [Hom(CU ′ , ξD′,(U ′)−)] + h[Hom(ξD′,(U ′)+ ,CU ′)],

T ′
V ′ = h[Hom(ξD′,(V ′)+ , ξD′,(V ′)−)] + [Hom(ξD′,(V ′)− , ξ(V ′)+)],

T ′
X′ = (1 + h)[End(ξD′,X′)].
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Proof of Proposition 8.24. By Proposition 8.23, we have

ι∗TX′ = Tπh(X), ι∗TV ′
i

= TVi ,

for all X ′ ∈ h(D′) and V ′
i ∈ r(D′). Likewise, for j ̸= k, we have

ι∗TU ′
j

=

TUj if j < k,

TUj−1 if j > k.

Hence, we deduce from (8.14) and (8.16) that

[Nι] = ι∗[TC(D′)]− [TC(D)] = ι∗TU ′
k
− ι∗TX′

l
.

Proposition 8.23 gives ι∗ξD′,(U ′
k)

± ∼= ξD,Xl
∼= ι∗ξD′,X′

l
. Therefore,

ι∗TU ′
k
− ι∗TX′

l
= [Hom(CU ′

k
, ξD′,X′

l
)] + h[Hom(ξD′,X′

l
,CU ′

k
).

By Proposition 8.22, we have a T′-equivariant isomorphism of vector bundles

ξD′,X′
l

∼=
⊕
U ′
i▷Xl

c′i−1⊕
j=0

h−jCU ′
i
.

Hence, we conclude

[Nι] =
⊕
U ′
i▷Xl

c′i−1⊕
j=0

(
h−j [CU ′

i
⊗ C∨

U ′
k
] + hj+1[CU ′

k
⊗ C∨

U ′
i
]
)

which completes the proof.

8.6 Comparison of attracting cells

From now on, we view C(D) as closed subvariety of C(D′) via the closed immersion ι from

Theorem 8.15. In this section, we compare the attracting cells of C(D) and C(D′). The main

result of this section is Proposition 8.27 which states that the equivariant multiplicities of

the attracting cell closures of C(D) and C(D′) just differ by the multiplication with a uniform

constant factor.

First, we consider restrictions of chambers from the torus A′ to the subtorus A.

Restrictions of chambers

Define the inclusion

incb : b(D) −−→ b(D′), Ui 7→

U ′
i if i < k,

U ′
i+1 if i ≥ k.

For instance, if D = 0/1/3/5\3\2\0 and D′ = 0/1/3/5\3\2\2\0 then, as k = 3, the

injection incb is given as

U1 7→ U ′
1, U2 7→ U ′

2, U3 7→ U ′
4.
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Definition 8.25. For a chamber C′ of A′, the set

ι∗C′ := {σ : C∗ → A | there exists σ′ ∈ C′ with σU = σ′incb(U), for all U ∈ b(D)} (8.17)

is a chamber of A which we call the restriction of C′ to A.

Example 8.26. As above, choose D = 0/1/3/5\3\2\0 and D′ = 0/1/3/5\3\2\2\0. Let C′

is the chamber {t1 < t3 < t2 < t4}. Then, ι∗C′ is obtained from C′ by first forgetting the

coordinate t3 which belongs to the chargeless blue line U3 and then relabel the indices of the

ti via

t1 7→ t1, t2 7→ t2, t4 7→ t3.

That is, we obtain ι∗C′ from C′ as follows:

{t1 < t3 < t2 < t4} {t1 < t2 < t4} {t1 < t2 < t3}

Thus, ι∗C′ = {t1 < t2 < t3}.

Equivariant multiplicities of closures of attracting cells

Let C′ be a chamber of A′ and C = ι∗C′ be the restriction to A. Denote the respective

attracting cells of p ∈ C(D)T = C(D)T
′

by Attr
C(D)
C (p) and Attr

C(D′)
C′ (p) The respective Zariski

closures in C(D) and C(D′) are denoted by Lp and L′
p. Likewise, let Λp ∈ H∗

T′(C(D)) and

Λ′
p ∈ H∗

T′(C(D′)) be the Poincaré dual of [Lp]
T′

and [L′
p]
T′

respectively. We further view

H∗
T(pt) ∼= Q[t1, . . . , tN , h] as Q-subalgebra of H∗

T′(pt) ∼= Q[t1, . . . , tN+1, h] via the embedding

ti 7→

ti if i < k,

ti+1 if i ≥ k,
h 7→ h. (8.18)

Proposition 8.27. For all p, q ∈ C(D)T, we have

ι∗q(Λ
′
p) = e′ · ι∗q(Λp)

in H∗
T′(pt). Here,

e′ =
( ∏

i>k
Ui∈b+U′

k
,C′

c′i−1∏
j=0

(tk − ti + (j + 1)h)
)
·
( ∏

i>k
Ui∈b−U′

k
,C′

c′i−1∏
j=0

(ti − tk − jh)
)
,

where

b+
U ′
k,C

′ = {U ′
i ∈ b(D′) | ⟨σ′, ti − tk⟩ > 0, for all σ′ ∈ C′},

b−
U ′
k,C

′ = {U ′
i ∈ b(D′) | ⟨σ′, ti − tk⟩ < 0, for all σ′ ∈ C′}.

(8.19)

Remark. By Proposition 8.24, we have

e′ = eT′(N−
ι,p,C′), for all p ∈ C(D′)T

′
. (8.20)

Here, Nι,p is the fiber of the normal bundle Nι over p and N−
ι,p,C′ is the negative part of Nι,p

with respect to the chamber C′.
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Equivariant multiplicities via Proposition 8.27 in a concrete example

Let D′ = 0/1/2\1\1\0. Consider the Zariski closures of the attracting cells L′
p = AttrC′(p),

for p ∈ C(D)T
′
, where we choose C′ = {t1 < t2 < t3}. Our goal is to determine all equivariant

multiplicities of all the L′
p.

For this, let D = 0/1/2\1\0. So D′ is obtained from D by a blue extension move at the

black line X4. We denote by ι : C(D) ↪→ C(D) the inclusion from Theorem 8.15. Note that

the restriction C := ι∗C′ equals the chamber {t1 < t2}.
By Proposition 8.27, the equivariant multiplicities of the closures of attracting cells of

C(D) and C(D′) just differ by multiplication with a uniform constant factor. Hence, we first

determine the equivariant multiplicities of closures of attracting cells of C(D). The brane

diagram D admits two tie diagrams

D1 =
0 1 2 1 0

D2 =
0 1 2 1 0

Recall from Theorem 2.67 and (2.70) that there exists a ρ-equivariant isomorphism f varieties

H ′ : C(D)
∼−→ T ∗P1, where ρ : T ∼−→ T is the automorphism of algebraic groups given as

(t1, t2, h) 7→ (t1h
−1, t2h

−1, h).

Let π : T ∗P1 → P1 be the projection. We view P1 as subvariety of T ∗P1 via the zero-section

and denote the elements of P1 via homogeneous coordinates [x : y], where x, y ∈ C with

(x, y) ̸= (0, 0). By (3.16), we have H ′(xD1) = [1 : 0] and H ′(xD2) = [0 : 1]. Their respective

attracting cells are given as

AttrC([1 : 0]) = {[1 : x] | x ∈ C}, AttrC([0 : 1]) = π−1([0 : 1]).

The respective Zariski closures are

L[1:0] = P1, L[0:1] = π−1([0 : 1]). (8.21)

Let Λ[1:0] and Λ[0:1] be the Poincaré dual of [L[1:0]]
T and [L[0:1]]

T respectively. By (8.21), the

equivariant multiplicities Λ[1:0] and Λ[0:1] are

ι∗[1:0](Λ[1:0]) = t1 − t2 + h,

ι∗[0:1](Λ[1:0]) = t2 − t1 + h,

ι∗[1:0](Λ[0:1]) = 0,

ι∗[0:1](Λ[0:1]) = t1 − t2.
(8.22)

Now, we come to the attraction cells of C(D′). The brane diagram D′ admits the tie

diagrams

D′
1 =

0 1 2 1 1 0
D′

2 =
0 1 2 1 1 0
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By (8.8), we have f ′(xD1) = xD′
1

and f ′(xD2) = xD′
2
. Let Λ′

p be the Poincaré dual of [L′
p]
T′

,

for p ∈ C(D′)T
′
. By (8.18), we view H∗

T(pt) as subalgebra of H∗
T′(pt) via the embedding

H∗
T(pt) ↪−−→ H∗

T′(pt), where t1 7→ t1, t2 7→ t3, h 7→ h.

By Proposition 8.27, we have

ι∗xD′
i

(Λ′
xD′

i

) = (t2 − t3 + h) · ι∗xDi
(ΛxDi

), for i, j = 1, 2. (8.23)

Hence, inserting (8.22) into (8.23) yields the following explicit equivariant multiplicities:

ι∗xD′
1

(ΛxD′
1
) = (t2 − t3 + h)(t1 − t3 + h),

ι∗xD′
2

(ΛxD′
1
) = (t2 − t3 + h)(t3 − t1 + h),

ι∗xD′
1

(ΛxD′
2
) = 0,

ι∗xD′
2

(ΛxD′
2
) = (t2 − t3 + h)(t1 − t3).

Thus, we computed all equivariant multiplicities of the Poincaré duals of attracting cell

closures of C(D′).

The next four subsections are devoted to the proof of Proposition 8.27. In particular,

we define an auxiliary cocharacter to which we refer as comparison cocharacter and study

geometric properties of the corresponding fixed point locus.

Comparison cocharacter

Recall that we assumed that D′ is obtained from D via a blue extension move at the black

line Xl and U ′
k is the chargeless line added to D.

Fix a chamber C′ of the torus A′.

Definition 8.28. We define the cocharacter τ = τk,C′ of A′ as

t 7→ (τU ′(t))U ′ , τU ′(t) =


t if U ′ ∈ b+

U ′
k,C

′ ,

1 if U ′ = U ′
k,

t−1 if U ′ ∈ b−
U ′
k,C

′ .

(8.24)

We call τ the comparison cocharacter of C′ with respect to U ′
k.

Example 8.29. As in Example 8.12, let D = 0/1/3/5\3\2\0 and D′ = 0/1/3/5\3\2\2\0.

Let C′ be the chamber {t1 < t3 < t2 < t4}. Then, as t1 < t3 and t3 < t2, t3 < t4, we have

b+
U ′
3,C

′ = {U ′
2, U

′
4}, b−

U ′
3,C

′ = {U ′
1}.

Consequently, the comparison cocharacter τ = τ3,C′ is given as (t−1, t, 1, t).

The next proposition contains useful positivity (resp. negativity) properties the compar-

ison cocharacter:

Proposition 8.30. Let p ∈ C(D′)T
′
. Then, the following holds

(i) We have N+
ι,p,C′ = N+

ι,p,τ and N−
ι,p,C′ = N−

ι,p,τ .

(ii) All A′-weights of TpC(D)+τ and TpC(D′)+τ are strictly positive with respect to C′.
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(iii) All A′-weights of TpC(D)−τ and TpC(D′)−τ are strictly negative with respect to C′.

Proof. We just prove (i) as the other statements are similar. By Proposition 8.24, all A′-

weights of Nι,p are of the form ±(tk − ti). Such a weight is positive (resp. negative) with

respect to C′ if and only if it is positive (resp. negative) with respect to τ . Thus, we have

N+
ι,p,C′ = N+

ι,p,τ and N−
ι,p,C′ = N−

ι,p,τ .

Fixed locus of comparison charcacter

We set

X0 := C(D′)τ = {x ∈ C(D′) | τ(t).x = x, for all t ∈ C∗}.

By Theorem 7.1, X0 is a smooth and T′-invariant closed subvariety of C(D′). The next

proposition gives that X0 is actually also contained in C(D).

Proposition 8.31. We have X0 ⊂ C(D).

As a preparation, we use the following auxiliary lemma:

Lemma 8.32. Let y = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′) ∈ (m̃′)−1(0) and g =

(g)X′ ∈ G′ and t ∈ C∗ such that g.y = τ(t).y. As in (8.4), set

s
(i)
y,j,r := AU ′

i
AU ′

i+1
· · ·AU ′

j−2
AU ′

j−1
(B−

U ′
j
)raU ′

j
(1) ∈W(U ′

i)
− ,

for i = 1, . . . , N + 1, j ≥ i, r ≥ 0. Then, we have

g(U ′
i)

−s
(i)
y,j,r = τU ′

j
(t)s

(i)
y,j,r.

Proof. From g.y = τ(t).y follows

g(U ′)−AU ′ = AU ′g(U ′)+ , g(U ′)±B
±
U ′ = B±

U ′g(U ′)± , g(U ′)−aU ′ = τU ′(t)aU ′

for all U ′ ∈ b(D′). Thus, (8.4) gives

g(U ′
i)

−s
(i)
y,j,r = g(U ′

i)
−AU ′

i
· · ·AU ′

j−1
(B−

Uj
)raU ′

j
(1)

= AU ′
i
· · ·AU ′

j−1
(B−

U ′
j
)rτU ′

j
(t)aU ′

j
(1)

= τU ′
j
(t)s

(i)
y,j,r.

This finishes the proof.

Proof of Proposition 8.31. Let y = ((AU ′ , B−
U ′ , B

+
U ′ , aU ′ , bU ′)U ′ , (CV ′ , DV ′)V ′) ∈ (m̃′)−1(0)s

such that [y] ∈ X0. This means that for all t ∈ C∗, there exists gt = (gt,X′)X′ ∈ G′ with

gt.y = τ(t).y. In the following, we assume that t ̸= 1. By Theorem 8.15, [y] is contained in

C(D) if and only if aU ′
k

= 0 and bU ′
k

= 0. With the notation from Lemma 8.32, we set

B− := (s
(k)
y,j,l | j = k + 1, . . . , N + 1, l = 0, . . . , c′j − 1),

B+ := (s
(k+1)
y,j,l | j = k + 1, . . . , N + 1, l = 0, . . . , c′j − 1).

By Proposition 8.4, B± is a basis of W(U ′
k)

± . Lemma 8.32 implies that B± is an eigen basis

of gt,(U ′
k)

± and each eigenvalue is either t or t−1. By Lemma 8.32, we know that aU ′
k
(1) is
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an eigenvector of gt,(U ′
k)

− with eigenvalue 1. Hence, we conclude aU ′
k

= 0. To see that also

bU ′
k

= 0, note that gt.y = τ(t).y. This implies bU ′
k
g−1
t,(U ′

k)
+ = bU ′

k
and thus we have

bU ′
k
(s

(k+1)
y,j,l ) = bU ′

k
g−1
t,(U ′

k)
+(s

(k+1)
y,j,l ) = t±1bU ′

k
(s

(k+1)
y,j,l ), for all s

(k+1)
y,j,l ∈ B+.

Hence, bU ′
k

vanishes on all elements in B+ and therefore bU ′
k

= 0. Thus, we deduce [y] ∈
C(D).

Attracting fiber bundles over X0

Consider the attraction sets

Z+ := {x ∈ C(D) | lim
t→0

τ(t).x ∈ X0}, Z̃+ := {x ∈ C(D′) | lim
t→0

τ(t).x ∈ X0}.

By Corollary 4.6, Z+ and Z̃+ are locally closed subvarieties of C(D) and C(D′) respectively.

A similar argument as in the proof of Proposition 4.20 actually gives that Z+ and Z̃+ are

both closed subvarieties:

Lemma 8.33. We have that Z+ is a T′-invariant closed subvariety of C(D) and Z̃+ is a

T′-invariant closed subvariety of C(D′).

Proof. By Proposition 4.2, there exists a proper and T′-equivariant morphism f : C(D)→ V ,

where V is a finite dimensional T′-representation. Then, by Lemma 4.21, Z+ = f−1(V ≥0
τ )

and hence, Z+ is a T′-invariant closed subvariety of C(D). The same proof works for Z̃+.

According to Corollary 4.6, the limit maps

π : Z+ −−→ X0,

π̃ : Z̃+ −−→ X0,

z 7→ lim
t→0

τ(t).z,

z 7→ lim
t→0

τ(t).z

are morphisms of varieties and Z+, Z̃+ are both T′-equivariant affine bundles over X0. More-

over, for all x ∈ X0, we have isomorphisms of varieties π−1(x) ∼= TxC(D)+τ and π̃−1(x) ∼=
TxC(D′)+τ . If additionally x ∈ C(D′)T

′
then these isomorphisms can be chosen to be T′-

equivariant by Proposition 4.8.

Next we like to relate the attracting cells of C(D) and C(D′) to the affine bundles Z+ and

Z̃+. For this, note that for all p ∈ C(D′)T
′

and each cocharacter σ′ ∈ C′, we have

AttrX0
σ′ (p) = Attr

C(D′)
C′ (p) ∩X0.

Thus, AttrX0
σ′ (p) is independent from the choice of σ′ and we denote AttrX0

σ′ (p) also by

AttrX0
C′ (p). We further denote the Zariski closure of AttrX0

C′ (p) in X0 by L
(0)
p .

Proposition 8.34. Let p ∈ C(D′)T
′
. Then, the following holds:

(i) We have Attr
C(D)
C (p) = π−1(AttrX0

C′ (p)) and Lp = π−1(L
(0)
p ).

(ii) We have Attr
C(D′)
C′ (p) = π̃−1(AttrX0

C′ (p)) and L′
p = π̃−1(L

(0)
p ).

For the proof, we use the following auxiliary lemma:
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Lemma 8.35. For all p ∈ C(D′)T
′
, we have

TpC(D)+C′ = (TpC(D)0τ )+C′ ⊕ (TpC(D)+τ )+C′ , TpC(D)−C′ = (TpC(D)0τ )−C′ ⊕ (TpC(D)−τ )−C′

and

TpC(D′)+C′ = (TpC(D′)0τ )+C′ ⊕ (TpC(D′)+τ )+C′ , TpC(D′)−C′ = (TpC(D′)0τ )−C′ ⊕ (TpC(D′)−τ )−C′ .

Proof. We just prove TpC(D′)+C′ = (TpC(D′)0τ )+C′ ⊕ (TpC(D′)+τ )+C′ as the other assertions are

similar. By definition, (TpC(D)0τ )+C′ and (TpC(D)+τ )+C′ are contained in TpC(D)+C′ . Conversely,

let v ∈ TpC(D′)+C′ be an A′-weight vector of some weight λ. By Corollary 3.24, λ is of the form

ti − tj with i ̸= j and i, j ̸= k. Suppose ⟨τ, ti − tj⟩ < 0. Then, by (8.24), we have U ′
i ∈ b−

U ′
k,C

′

and U ′
j ∈ b+

U ′
k,C

′ , where b±
U ′
k,C

′ are defined as in (8.19). Equivalently, if σ′ ∈ C′, we have

⟨σ′, ti − tk⟩ < 0, ⟨σ′, tj − tk⟩ > 0.

Consequently,

⟨σ′, ti − tj⟩ = ⟨σ′, ti − tk⟩ − ⟨σ′, tj − tk⟩ < 0.

This contradicts the assumption v ∈ TpC(D′)+C′ . Hence, ⟨τ, ti − tj⟩ ≥ 0 and therefore

TpC(D′)+C′ = (TpC(D′)0τ )+C′ ⊕ (TpC(D′)+τ )+C′ .

An important consequence of Lemma 8.35 is the following statement about dimensions:

Lemma 8.36. For all p ∈ C(D′)T
′
holds

dim(Attr
C(D)
C (p)) = dim(π−1(AttrX0

C′ (p))), dim(Attr
C(D′)
C′ (p)) = dim(π̃−1(AttrX0

C′ (p))).

Proof. Note that TpC(D)+C′ = TpC(D)+C . Hence, Corollary 4.6 gives dim(Attr
C(D)
C (p)) =

dim(TpC(D)+C′). Likewise, Corollary 4.6 implies

dim(π−1(AttrX0
C′ (p))) = dim((TpX0)

+
C′) + dim(TC(D)+τ ). (8.25)

By Proposition 8.30.(ii), TC(D)+τ = (TC(D)+τ )+C′ . Since TpX0 = TpC(D)0τ , we conclude

(TpX0)
+
C′) = (TC(D)0τ )+C′ . Thus, Lemma 8.35 yields

(8.25) = dim((TpC(D)0τ )+C′) + dim((TpC(D)+τ )+C′) = dim(Attr
C(D)
C (p)).

The statement for dim(Attr
C(D′)
C′ (p)) can be shown in a similar way.

Proof of Proposition 8.34. We just prove (i) as the proof of (ii) is analogous. We first

show Attr
C(D)
C (p) ⊂ π−1(AttrX0

C′ (p)). By Lemma 8.33, TpC(D)+C′ ⊂ TpC(D)≥0
τ . Thus, since

Attr
C(D)
C (p) ∼= TpC(D)+C′ , we know Attr

C(D)
C (p) ⊂ Z+. Since the projection π is T′-equivariant,

we conclude that Attr
C(D)
C (p) is contained in π−1(AttrX0

C′ (p)). By construction, Attr
C(D)
C (p) is

a locally closed subvariety of π−1(AttrX0
C′ (p)). By Lemma 8.36, we have

dim(Attr
C(D)
C (p)) = dim(π−1(AttrX0

C′ (p))).

Thus, Attr
C(D)
C (p) is an open dense subvariety of π−1(AttrX0

C′ (p)). Now let x ∈ π−1(AttrX0
C′ (p))

and let Y := τ(C∗).x be the Zariski closure of the orbit τ(C∗).x in π−1(AttrX0
C′ (p)). Via τ ,
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we view Y variety with algebraic C∗-action. Since AttrX0
C′ (p) ⊂ Attr

C(D)
C (p), we know that

π(x) ∈ Attr
C(D)
C (p) and thus Attr

C(D)
C (p)∩Y is an non-empty open and C∗-invariant subvariety

of Y . Hence, we conclude Attr
C(D)
C (p) ∩ Y = Y and in particular x ∈ Attr

C(D)
C (p). Thus, we

proved Attr
C(D)
C (p) = π−1(AttrX0

C′ (p)). This equality also implies Lp ⊂ π−1(L
(0)
p ) and hence

Lp = π−1(L
(0)
p ) as both varieties are irreducible and of the same dimension. This completes

the proof of (i).

Proof of Proposition 8.27

Let Λ
(0)
p ∈ HT′(X0) be the Poincaré dual of [L

(0)
p ]T

′
. Using Proposition 8.34, we now show

that the equivariant multiplicities of Λp and Λ′
p just differ from the equivariant multiplicities

of Λ
(0)
p by multiplying with a certain Euler class:

Lemma 8.37. For all p, q ∈ C(D′)T
′
, we have

ι∗q(Λp) = eT′(TqC(D)−τ ) · ι∗q(Λ(0)
p ) (8.26)

and

ι∗q(Λ
′
p) = eT′(TqC(D′)−τ ) · ι∗q(Λ(0)

p ). (8.27)

Proof. We just prove (8.26) as the proof for (8.27) follows along similar lines. Recall from

Proposition 8.34.(i) that Lp = π−1(L0
p). Let π1 : TqZ

+ → TqC(D)0τ and π2 : TqZ
+ → TqC(D)+τ

be the projections corresponding to

TqZ
+ = TqX0 ⊕ Tq(π−1(q)) = TqC(D)0τ ⊕ TqC(D)+τ .

Since Z+ is a T′-equivariant affine fiber bundle, these projections induce a T′-equivariant

isomorphism of schemes

π1 × π2 : Cq(π
−1(L(0)

p ))
∼−−→ CqL

(0)
p × TqC(D)+τ .

Thus, Proposition 5.6 gives

ι∗q(Λp) = eT′((TqC(D)+τ ⊕ TqC(D)−τ )/TqC(D)+τ ) · ι∗q(Λ(0)
p ) = eT′(TqC(D)−τ ) · ι∗q(Λ(0)

p )

which proves (8.26).

Proof of Proposition 8.27. Let p, q ∈ C(D′)T
′
. By Lemma 8.37, we have

ι∗q(Λ
′
p) = eT′(TqC(D′)) · ι∗q(L(0)

p ) = eT′(N−
ι,q,τ ) · eT′(TqC(D′)) · ι∗q(L(0)

p ) = eT′(N−
ι,q,τ ) · ι∗q(Λp).

By Proposition 8.30.(i), we conclude eT′(N−
ι,q,τ ) = eT′(N−

ι,q,C−) and by (8.20), e′ = eT′(N−
ι,q,C′).

Therefore, ι∗q(Λ
′
p) = e′ · ι∗q(Λp) which completes the proof.
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8.7 Comparison of stable basis elements

We now pass from the attracting cells of C(D) and C(D′) to their respective stable basis

elements. Again, let C′ be a chamber of A′ and C = ι∗C′ be its restriction to A. We denote

the respective partial orders of C and C′ on C(D)T = C(D′)T
′

by ⪯ and ⪯′. Recall from

Corollary 5.19 that for all p ∈ C(D)T, we have

Stab
C(D)
C (p) =

∑
q⪯p

ap,qΛq (8.28)

for uniquely determined ap,q ∈ Z with ap,p = 1.

We now come to the Coefficient Theorem which is the main result of this section:

Theorem 8.38 (Coefficient Theorem). For all p ∈ C(D′)T
′
, we have

Stab
C(D′)
C′ (p) =

∑
q⪯p

ap,qΛ
′
q,

where ap,q are as in (8.28).

Remark. A good name for Theorem 8.38 would be Universal Coefficient Theorem. Unfortu-

nately, this name is already taken by algebraic topology.

As a direct consequence of Theorem 8.38, we deduce that the equivariant multiplicities of

stable basis elements of C(D) and C(D′) just differ by multiplication with a uniform constant

factor.

Corollary 8.39. For all p, q ∈ C(D)T, we have

ι∗q(Stab
C(D′)
C′ (p)) = e′ · ι∗q(Stab

C(D)
C (p))

in H∗
T′(pt), where e′ is defined as in Proposition 8.27.

Proof. By Theorem 8.38 and Proposition 8.27,

ι∗q(Stab
C(D′)
C′ (p)) = ι∗q

(∑
q⪯p

ap,qΛ
′
q

)
=
∑
q⪯p

e′ap,qι
∗
q(Λq) = e′ · ι∗q(Stab

C(D)
C (p))

which proves the corollary.

Proof of Theorem 8.38

First we show that the partial orders ⪯ and ⪯′ coincide.

Lemma 8.40. For all p, q ∈ C(D′)T
′
, we have q ⪯ p if and only if q ⪯′ p.

Proof. With the notation from Proposition 8.34, we have q ∈ Lp if and only if q ∈ L(0)
p , for

all p, q ∈ C(D′)T
′
. Likewise Proposition 8.34.(ii) gives q ∈ L′

p if and only if q ∈ L(0)
p . Hence,

q ∈ Lp if and only if q ∈ L′
p and therefore the partial orders ⪯ and ⪯′ coincide.
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Proof of Theorem 8.38. We prove that Λ̃p :=
∑

q⪯p ap,qΛ
′
q satisfies the stability conditions

from Theorem 5.10. As Λ′
q is supported on L′

q, we conclude that Λ̃p is supported on
⋃
q⪯p Lq

which equals the full attracting cell AttrfC′(p) by Prposition 4.20 and Lemma 8.40. Thus, the

support condition is satisfied. Next, we prove the normalization condition. As ⪯=⪯′, we

have ι∗p(Λ
′
q) = 0 for q ≺ p. Thus, as ap,p = 1,

ι∗p(Λ̃p) = ι∗p(Λp) = eT′(TpC(D′)−C′)

which proves the normalization condition. Finally, by Proposition 8.27, we have

ι∗q(Λ̃p) = e′ · ι∗q(Stab
C(D)
C (p)).

If q ̸= p then h divides ι∗q(Stab
C(D)
C (p)) and hence also ι∗q(Λ̃p). Thus, Λ̃p satisfies the smallness

condition which implies Λ̃p = ι∗q(Stab
C(D′)
C′ (p)).

8.8 Reduction to essential brane diagrams

In this section, we assign to each brane diagram D an essential brane diagram Dess. Then,

by employing Corollary 8.39, we show in Proposition 8.44 that the equivariant multiplicities

of the stable basis elements of C(D) and C(Dess) coincide up to multiplication with a uniform

constant.

Underlying essential brane diagrams

Given a general brane diagram D, we denote by bess(D) and ress(D) the respective sets of

essential blue and essential red lines in D. We set Ness := |bess(D)|, Mess := |ress(D)| and

write

bess(D) = {Uj1 , . . . , UjNess
}, ress(D) = {Vi1 , . . . , UiMess

}.

Definition 8.41. The underlying essential brane diagram Dess is defined as the unique (sep-

arated) brane diagrams with Ness blue lines U ess
1 , . . . , U ess

Ness
and Mess red lines V ess

1 , . . . , V ess
Mess

and the labels of the horizontal lines are given as

d(Uess
k )− = dU−

jk

, d(Uess
k )+ = dU+

jk

, d(V ess
l )− = dV −

il

, d(V ess
l )+ = dV +

il

,

for k = 1, . . . , Ness and l = 1, . . . ,Mess.

For instance, if D = 0/1/3/3/5\3\2\2\0 then the chargeless colored lines of D are V2 and

U3. The underlying essential brane diagram of D is then obtained from D by replacing the

local configuration 3/3 with 3 and 2\2 with 2. That is, Dess equals 0/1/3/5\3\2\0.

Just as in (8.1) and (8.8), we have a bijection

fess : Tie(D)
∼−−→ Tie(Dess), (8.29)

where for D ∈ Tie(D), the tie diagram fess(D) is defined as

(Vl, Uk) ∈ fess(D) ⇔ (Vil , Ujk) ∈ D.

167



8. Extension moves for bow varieties

Example 8.42. If we choose again D = 0/1/3/3/5\3\2\2\0 and D ∈ Tie(D) as follows:

0 1 3 3 5 3 2 2 0
D =

Then, fess(D) is obtained from D be replacing the local configurations 3/3 and 2\2 by black

lines labeled by 3 and 2. We leave the ties of D unchanged. Thus, fess(D) is given as follows:

0 1 3 5 3 2 0
fess(D) =

Comparison of equivariant multiplicities

We denote the tori acting on C(D) resp. C(Dess) by A, T resp. Aess, Tess. We have an inclusion

Aess ↪−−→ A, tk 7→ tjk , for k = 1, . . . , Ness.

Given a chamber C of A, we define Cess as the unique chamber of Aess such that for all k,

l ∈ {1, . . . , Ness}, we have

⟨σ, tk − tl⟩ > 0 for all σ ∈ Cess ⇔ ⟨σ, tjk − tjl⟩ > 0 for all σ ∈ C.

Example 8.43. If D = 0/2/4\4\3\3\1\0 then the chargeless lines of D are U1 and U3. Thus,

Dess = 0/2/4\3\1\0. As the essential blue lines of D are U2, U4, U5, the inclusion Aess ↪→ A is

given as (t1, t2, t3) 7→ (t2, t4, t5). Consider now the chamber C = {t2 < t1 < t3 < t5 < t5} of A.

Then, we obtain Cess from C by first forgetting the coordinates t1 and t3 as they correspond

to chargeless lines. Then, we relabel the coordinates according to (t2, t4, t5) 7→ (t1, t2, t3).

Thus, Cess is given as {t1 < t3 < t2}.

Next, we employ Corollary 8.10 and Corollary 8.39 to compare the equivariant multiplic-

ities of stable basis elements of C(D) and C(Dess). For this, we view H∗
Tess

(pt) as subalge-

bra of H∗
T(pt) via the embedding, H∗

Tess
(pt) ↪→ H∗

T(pt) given by h 7→ h and tk 7→ tjk , for

k = 1, . . . , Ness.

Proposition 8.44. For all D ∈ Tie(D) and all choices of chambers C of A, we have

Stab
C(D)
C (xD) = eess(D,C) · Stab

C(Dess)
Cess

(xfess(D))

in H∗
T(pt). Here,

eess(D,C) =
∏

Uk∈bcl(D)

(( ∏
i>k

Ui∈b+Uk,C

ci−1∏
j=0

(tk − ti + (j + 1)h)
)
·
( ∏

i>k
Ui∈b−Uk,C

ci−1∏
j=0

(ti − tk − jh)
))
,

where bcl(D) is the set of chargeless blue lines in D and b±
Uk,C

is defined as in (8.19).
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Proof. We prove the statement by induction on the number of chargeless lines in D. If D
admits no chargeless lines then D = Dess and the proposition is trivial. Suppose now that

D admits n ≥ 0 chargeless lines and D′ is obtained from D by adding a chargeless line Y .

Let f ′ess : Tie(D′)
∼−→ Tie(Dess) be the corresponding bijection from (8.29). Suppose Y is red.

Then, by definition, eess(D,C) = eess(D′,C). Let f : Tie(D)
∼−→ Tie(D′) be as in (8.1). By

construction, f ′ess ◦ f = fess. Thus, Corollary 8.10 gives

Stab
C(D′)
C (xf(D)) = Stab

C(D)
C (xD)

= eess(D,C) · Stab
C(Dess)
Cess

(xfess(D))

= eess(D′,C) · Stab
C(Dess)
Cess

(xf′ess(f(D))),

for all D ∈ Tie(D). This proves the proposition for D′ in case Y is red. Suppose now that

Y is blue. Let A ↪→ A′, T ↪→ T′ and H∗
T(pt) ↪→ H∗

T′(pt) be as in Section 8.3 and Section 8.6.

Fix a chamber C′ of A′ and let C := ι∗C′ be the restriction of C′ to A from (8.17). Let

f ′ : Tie(D)
∼−→ Tie(D′) be as in (8.8). By definition, f ′ess ◦ f ′ = fess. Thus, Corollary 8.39 yields

that in H∗
T′(pt) holds

Stab
C(D′)
C′ (xf′(D)) = e′ · Stab

C(D)
C (xD)

= e′ · eess(D,C) · Stab
C(Dess)
Cess

(xfess(D))

= e′ · eess(D,C) · Stab
C(Dess)
Cess

(xf′ess(f′(D))),

for all D ∈ Tie(D). Here, e′ is defined as in Proposition 8.27. By construction, e′ ·eess(D,C) =

eess(D′,C′). Hence, we conclude the proposition for D′.
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Chapter 9

Equivariant multiplicities via a

symmetric group calculus

In this chapter, we consider the question:

How can we compute the equivariant multiplicities of stable basis elements of bow varieties?

First, observe by Proposition 5.13 and Proposition 8.44 that we can restrict our attention to

separated and essential brane diagrams.

To give an answer to the above question, we first consider the special case of cotangent

bundles of partial flag varieties. In this case, Su proved in [Su17, Theorem 1.1] a formula

for the equivariant multiplicities of stable basis elements in terms simple roots and subwords

of reduced expressions of permutations. In Proposition 9.13, we give an equivalent diagram-

matic version of this formula in terms of string diagrams of permutations. This alternative

illustrative approach turns out to be practical in explicit calculations.

We continue in Section 9.5 with studying a bijection between the set of tie diagrams of a

given brane diagram D and certain double cosets of the symmetric group SN to which we refer

as fully separated double cosets, see Definition 9.26. As we will show in Theorem 9.35, the

permutations which are contained in fully separated double cosets satisfy strong uniqueness

properties.

In Theorem 9.44, we combine the correspondence between tie diagrams and fully separated

double cosets with the D5 Resolution Theorem [BR23, Theorem 6.13]. As a consequence,

we derive a formula for the equivariant multiplicities of the stable basis elements of bow

varieties in terms of the equivariant multiplicities of the stable basis elements of cotangent

bundles of partial flag varieties. Thus, Theorem 9.44 provides a way to compute equivariant

multiplicities via the combinatorics of symmetric groups.

Assumption. All brane diagram in this chapter are assumed to be separated and essential.

9.1 Symmetric groups and their diagrammatics

In this section, we recall the illustration of permutations via string diagrams and important

combinatorial properties of these diagrams that will be useful in the study of equivariant
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9. Equivariant multiplicities via a symmetric group calculus

multiplicities of stable basis elements of bow varieties.

Preliminaries and notation

We briefly recall some basic facts on symmetric groups. For more details, see e.g. [Hum90]

or [Sag01].

Denote the simple transpositions of the symmetric group Sn by s1, . . . , sn−1, where

si = (i, i + 1). Every permutation can be written as w = σ1 · · ·σr, where all σi are sim-

ple transpositions. If r is as small as possible, we call the expression σ1 · · ·σr for w reduced

and call r the length of w and denote it by l(w). It is well-known that l(w) is equal to the

number of inversions of w:

l(w) = |Inv(w)|, Inv(w) = {(i, j) | 1 ≤ i < j ≤ n, w(i) > w(j)}. (9.1)

By definition, a permutation w is larger than a permutation w′ in the Bruhat order if

some (not necessarily a consecutive) subword of a reduced expression for w is a reduced word

for w′. It is a well-known fact that if w dominates w′ in the Bruhat order then every reduced

expression for w admits a subword which is a reduced expression for w′, see e.g. [Hum90,

Theorem 5.10].

Let R+ = {ti − tj | 1 ≤ i < j ≤ n} ⊂ Q[t1, . . . , tn] be the set of positive roots and

R− = {ti − tj | 1 ≤ j < i ≤ n} the set of negative roots. By (9.1), we have

l(w) = |{α ∈ R+ | w.α ∈ R−}|. (9.2)

The set on the right hand side of (9.2) can also be characterized as follows: For s = si we

denote by αs = ti − ti+1 ∈ Q[t1, . . . , tn] the corresponding simple root. Given a reduced

expression w = σ1 · · ·σl(w), we set

βi := (σ1 · · ·σi−1).ασi , i = 1, . . . , l(w). (9.3)

Then, by e.g. [Hum90, Section 5.6], the set of positive roots that gets mapped to negative

roots by w−1 is given by

{β1, . . . , βl(w)} = {α ∈ R+ | w−1.α ∈ R−}. (9.4)

Example 9.1. Let n = 5 and w = 35412. Then, the set of inversions of w equals

Inv(w) = {(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (2, 3)}.

Thus, l(w) = 7 and one can directly check that w = s4s2s1s3s2s4s3 =: σ1 · · ·σ7 is a reduced

expression of w. To compute for instance β4, note that σ4 = s3 and its corresponding simple

root is αs3 = t3 − t4. Since σ1σ2σ3 = 31254, (9.3) gives

β4 = (σ1σ2σ3).αs3 = t2 − t5.

The remaining roots βi are recorded in the following table:

i 1 2 3 4 5 6 7

βi t4 − t5 t2 − t3 t1 − t3 t2 − t5 t1 − t5 t2 − t4 t1 − t4

172



9.1. Symmetric groups and their diagrammatics

Diagrammatics of permutations

We illustrate permutations in the common way using string diagrams. For instance if w =

35412 ∈ S5 then the following string diagram dw is a permutation diagram for w since it

consists of 5 strands and each number i on the bottom is connected to the number w(i) on

the top by a strand:

1 2 3 4 5

1 2 3 4 5

(9.5)

To give a formal definition of permutation diagrams, we define a strand as a smooth

embedding λ : [0, 1]→ R2.

Definition 9.2. Let w ∈ Sn be a permutation. A collection λ1, . . . , λn of n strands is called

a diagram of w if the following holds:

(i) λi(0) = (i, 0) and λi(1) = (w(i), 1) for all i = 1, . . . , n,

(ii) every two strands intersect only in finitely many points and all of these intersections

are transversal and

(iii) there are no triple or even higher intersections among the strands λ1, . . . , λn.

A diagram is called reduced if the number of intersections among λ1, . . . , λn is equal to l(w).

Example 9.3. Let w = 35412 ∈ S5 be as in Example 9.1 and dw as in (9.5). Since l(w) = 7

and dw contains exactly 7 crossings, the diagram dw is reduced.

For two diagrams dw and dz of permutations w, z ∈ Sn the composition is dw◦dz is defined

as follows: First draw dw on top of dz and then apply the linear transformation R2 → R2,

(x, y) 7→ (x, 12y). The resulting diagram dw ◦dz is a permutation diagram for the product wz.

Example 9.4. Let w = 2413 and z = 3124. The following picture shows diagrams for dw,

dz and the composition dw ◦ dz:

1 2 3 4

1 2 3 4

dw

1 2 3 4

1 2 3 4

dz

1 2 3 4

1 2 3 4

dw ◦ dz

We now relate the diagrammatics of permutations to (reduced) expressions of permuta-

tions and the Bruhat order.
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Definition 9.5. We call the intersection of two strands a crossing. Given a diagram dw of

a permutation w, we denote by K(dw) the set of crossings in dw. If all crossings of dw are of

pairwise distinct height, we call dw a coding diagram for w and denote the crossings of dw by

κ1, . . . , κl(w), where κ1 is the highest crossing, κ2 is the second highest crossing etc.

Suppose that dw is a coding diagram for w ∈ Sn and let k be the number of crossings in

dw. After applying a homotopy which does not change the heights of the crossings in dw, we

can view dw as a composition dσ1 ◦ . . . ◦ dσk , where σ1, . . . , σk are simple transpositions and

dσi is a reduced diagram for σi. Hence, we have w = σ1 · · ·σk. In this way, dw encodes an

expression of w in terms of simple transpositions.

Example 9.6. Let w and dw be as in Example 9.3. Then, dw is a coding diagram for w and

corresponds to the reduced expression w = s4s2s1s3s2s4s3.

Definition 9.7. Given a crossing κ ∈ K(dw), we refer to the local move

κ

as the resolving of κ.

Resolving crossings connects permutation diagrams to the Bruhat order as follows:

Lemma 9.8. Let w, w′ ∈ Sn and dw be a diagram for w. Then, w is larger than w′ in the

Bruhat order if and only if we can obtain a diagram for w′ by resolving crossings from dw.

Proof. After applying a homotopy, we can assume that dw is a coding diagram. Let w =

σ1 · · ·σk be the corresponding expression for w in terms of simple transpositions. If w is

larger than w′ in the Bruhat order then there exist 1 ≤ r ≤ k and 1 ≤ i1 < . . . < ir ≤ k such

that w′ = σi1 · · ·σir . Thus, resolving all crossings in K(dw) \ {κi1 , . . . , κir} from dw gives

a diagram for w′. Conversely, suppose that resolving crossings κj1 , . . . , κjs from dw gives a

diagram dw′ for w′. Then, set r := k − s and write

{κi1 < . . . < κir} = K(dw) \ {κj1 , . . . , κjs}.

After possibly applying a homotopy, dw′ equals the composition dσi1 ◦ . . . ◦ dσir . Thus, we

have w′ = σi1 · · ·σir and hence w is larger than w′ in the Bruhat order.

For w ∈ Sn with reduced diagram dw, we define a function

wt: K(dw) −−→ Q[t1, . . . , tn]

as follows: Let κ be a crossing between the strands λ and λ′. Let j resp. j′ be the endpoints

of λ resp. λ′. Assuming j < j′, we set

wt(κ) := tj − tj′ .

We call wt(κ) the weight of κ.

The next proposition gives that the weights of crossings coincide with the βi from (9.3):
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Proposition 9.9. Let dw be a reduced coding diagram and let w = σ1 · · ·σl(w) be the reduced

expression corresponding to dw. Then, we have

wt(κi) = βi, for all i = 1, . . . , l(w).

Proof. For given i ∈ {1, . . . , l(w)}, set w1 := σ1 · · ·σi−1, w2 := σi+1 · · ·σl(w) and σi = (j, j+1).

After applying a homotopy, we can view dw as a composition of a a reduced diagram of w2,

a reduced diagram of σi and a reduced diagram of w1:

w1

w2

κi

Thus, we have wt(κi) = tw1(j) − tw1(j+1) = w1.(ασi) = βi which completes the proof.

Example 9.10. Let w and dw be as in Example 9.3. The strands which are crossed in the

crossing κ4 end in 2 and 5. Thus, wt(κ4) = t2− t5 which coincides with β4 from Example 9.1.

9.2 Localization formula for full flag varieties

Let F = F (1, 2, . . . , n − 1;n) be the full flag variety of Cn endowed with the T-action from

Section 2.5. For simplicity, we refer to a T-fixed point (Fw, 0) ∈ (T ∗F )T from (3.14) just by

the permutation w. The localization formula from [Su17, Theorem 1.1] determines the T-

equivariant multiplicities of the stable basis elements of T ∗F with respect to the antidominant

chamber C−.

Theorem 9.11 (Localization formula). Let w ∈ Sn and w = σ1σ2 · · ·σl(w) be a reduced

expression. Then, for all w′ ∈ Sn, we have

ι∗w(StabC−(w′)) =
( ∏
α∈Lw

(α+ h)
)( ∑

1≤i1<···<ik≤l(w)
w′=σi1 ···σik

hl(w)−k
k∏
j=1

βij

)
, (9.6)

where the βi are defined as in (9.3) and

Lw = R+ \ {α ∈ R+ | w−1(α) ∈ R−} = {α ∈ R+ | α ̸= βl, for all l}. (9.7)

Remark. In [Su17], a different sign convention is used: There h is replaced by −h and

StabC−(w) is replaced by (−1)l(w)StabC−(w).

Example 9.12. Let n = 5 and consider the permutations w = 35412 and w′ = 23415. We

now use Theorem 9.11 to compute the equivariant multiplicity ι∗w(StabC−(w′)). For this,

we have to determine all the ingredients of the formula (9.6). As in Example 9.1, we pick

w = s4s2s1s3s2s4s3 as reduced expression for w. Checking all possible subwords of this

expression for w gives that there are only two subwords that give w′, namely σ1σ3σ5σ6σ7 and
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9. Equivariant multiplicities via a symmetric group calculus

σ3σ5σ7. We already computed the βi in Example 9.1. The only positive roots which are not

equal to one of the βi are (t1 − t2), (t3 − t4) and (t3 − t5). Thus, (9.7) gives

Lw = {(t1 − t2), (t3 − t4), (t3 − t5)}.

By Theorem 9.11, the subword σ1σ3σ5σ6σ7 contributes the summand

(t1 − t2 + h)(t3 − t4 + h)(t3 − t5 + h)h2β1β3β5β6β7,

whereas the subword σ3σ5σ7 contributes

(t1 − t2 + h)(t3 − t4 + h)(t3 − t5 + h)h4β3β5β7.

Hence, Theorem 9.11 yields

ι∗w(StabC−(w′)) = (t1 − t2 + h)(t3 − t4 + h)(t3 − t5 + h) · h2(β1β6 + h2)β3β5β7. (9.8)

Diagrammatic localization formula

Employing the diagrammatics from Section 9.1 leads to the following diagrammatic version

of Theorem 9.11:

Proposition 9.13 (Diagrammatic localization formula). Let w ∈ Sn and dw be a reduced

diagram of w. Then, for all w′ ∈ Sn, we have

ι∗w(StabC−(w′)) =
( ∏
α∈L′

w

(α+ h)
)( ∑

K′∈Kdw,w′

h|K
′|

∏
κ∈K(dw)\K′

wt(κ)
)
,

where Kdw,w′ is the set of all subsets K ′ ⊂ K(dw) such that resolving all crossings of K ′ from

dw gives a diagram for w′ and

L′
w = {α ∈ R+ | α ̸= wt(κ), for all κ ∈ K(dw)}.

Proof. We may assume without loss of generality that dw is a coding diagram. Let 1 ≤ i1 <
· · · < ik ≤ l(w) and let d′ be the diagram obtained from dw by resolving all crossings κi with

i ̸= i1, . . . , ik. By viewing dw as composition of reduced diagrams corresponding to simple

transpositions, we deduce that w′ = σi1 · · ·σik if and only if d′ is a diagram for w′. Thus,

Proposition 9.9 implies

∑
K′∈Kdw,w′

h|K
′|

∏
κ∈K(dw)\K′

wt(κ) =
∑

1≤i1<···<ik≤l(w)
w′=σi1 ···σik

hl(w)−k
k∏
j=1

βij .

In addition, Proposition 9.9 also gives Lw = L′
w which completes the proof.

Example 9.14. Let w and w′ be as in Example 9.12 and let dw be as in Example 9.3. We now

determine the equivariant multiplicity ι∗w(StabC−(w′)) using the diagrammatic localization

formula from Proposition 9.13. One can easily check that there are just two possibilities

to obtain a diagram for w′ by resolving crossings from dw. One is given by resolving the

crossings κ2 and κ4, the other by resolving the crossings κ1, κ2, κ4 and κ6, in pictures:
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1 2 3 4 5

1 2 3 4 5

dw

1 2 3 4 5

1 2 3 4 5

Resolving κ2, κ4

1 2 3 4 5

1 2 3 4 5

Resolving κ1, κ2, κ4, κ6

The diagram in the middle corresponds to the subword σ1σ3σ5σ6σ7 and the diagram on the

right hand side to σ3σ5σ7. The diagram in the middle still contains the crossings κ1, κ3, κ4,

κ5, κ6, κ7 and thus contributes the summand

(t1 − t2 + h)(t3 − t4 + h)(t3 − t5 + h)h2wt(κ1)wt(κ3)wt(κ5)wt(κ6)wt(κ7),

whereas the diagram on the right only contains κ3, κ5, κ7 and therefore contributes the

summand

(t1 − t2 + h)(t3 − t4 + h)(t3 − t5 + h)h4wt(κ3)wt(κ5)wt(κ7)

Hence, Proposition 9.13 yields

ι∗w(StabC−(w′)) =

(t1 − t2 + h)(t3 − t4 + h)(t3 − t5 + h) · h2(wt(κ1)wt(κ6) + h2)wt(κ3)wt(κ5)wt(κ7).

This agrees with the result (9.8) from the computation in Example 9.12.

9.3 Localization formula for partial flag varieties

Let F = F (d1, . . . , dm;n) be a partial flag variety and δ = (δ1, . . . , δm+1) be as in Section 2.5.

As before, for a given w ∈ Sn, we also denote the T-fixed point (FwSδ
, 0) by wSδ.

It was proved in [Su17, Corollary 4.3] that the equivariant multiplicities of the stable

basis elements of T ∗F can be computed via equivariant multiplicities of stable basis elements

of T ∗F (1, 2 . . . , n − 1;n). For the formulation of the formula, recall from e.g. [Hum90, Sec-

tion 5.12], that each left coset wSδ contains a unique element of minimal Bruhat length which

is called the shortest representative of wSδ.

Proposition 9.15. For all w, w′ ∈ Sn we have

ι∗wSδ
(StabC−(w′Sδ)) =

∑
z∈Sn

zSδ=wSδ

(−1)l(w
′Sδ)+l(w

′)ι∗z(StabC−(w′))∏
α∈Rδ

z.α
,

where l(wSδ) is the length of the shortest coset representative of wSδ and

Rδ = {ti − tj | there exist l ∈ {1, . . . , r} with d1 + · · ·+ dl−1 ≤ i < j ≤ d1 + · · ·+ dl}.

Example 9.16. Let δ = (2, 2, 1) and w = 25143, w′ = 52314. We now apply Proposi-

tion 9.15, to determine the equivariant multiplicity ι∗wSδ
(StabC−(w′Sδ)). For this, note that
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9. Equivariant multiplicities via a symmetric group calculus

w is the shortest coset representative of wSδ. Since l(w) = 5 and l(w′) = 6, we deduce that

z = w(s1×s1× id) is the only element in wSδ that dominates w′ in the Bruhat order. Hence,

Proposition 9.15 gives

ι∗wSδ
(StabC−(w′Sδ)) =

ι∗z(StabC−(w′))

(tz(1) − tz(2))(tz(3) − tz(4))
=

ι∗z(StabC−(w′))

(t5 − t2)(t4 − t1)
. (9.9)

To compute ι∗z(StabC−(w′)) we use Proposition 9.13. The following figure shows a reduced

diagram dz for z. Since l(z) = 7 and l(w′) = 6, there is only one possibility to obtain a

diagram dw′ for w′ from dz by resolving crossings:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Resolving κ5
(9.10)

We record the weights of the crossings of dz in the following table:

i 1 2 3 4 5 6 7

wt(κi) t4 − t5 t1 − t2 t3 − t5 t1 − t5 t3 − t4 t2 − t5 t1 − t4

Thus, Proposition 9.13 yields

ι∗z(StabC−(w′)) = (t1 − t3 + h)(t2 − t3 + h)(t2 − t4 + h)h ·
∏
i ̸=5

wt(κi).

Therefore, by Proposition 9.15, we have

(9.9) = (t1 − t3 + h)(t2 − t3 + h)(t2 − t4 + h)h(t4 − t5)(t1 − t2)(t3 − t5)(t1 − t5). (9.11)

Symmetric group equivariance of stable basis elements

For z ∈ Sn, the vector space isomorphism ψz : Cn ∼−→ Cn, ei 7→ ez(i) induces an isomorphism

of varieties

ϕz : T ∗F
∼−−→ T ∗F, (F , f) 7→ (ψz(F), ψzfψ

−1
z ).

By construction, ϕz maps a T-fixed point (FwSδ
, 0) to (FzwSδ

, 0). In addition, ϕz is equivariant

with respect to the automorphism ρz : T ∼−→ T given as (t1, . . . , tn, h) 7→ (tz(1), . . . , tz(n), h).

We equip H∗
T(pt) ∼= Q[t1, . . . , tn, h] with the Sn-action given by w.h = h and w.ti = tw(i), for

i = 1, . . . , n. Then, the induced automorphism ρ∗z on H∗
T(pt) ∼= Q[t1, . . . , tn, h] coincides with

the action of z−1.

The next proposition gives that the induced automorphism ϕ∗z of H∗
T(T ∗F ) permutes

stable basis elements as follows:

Proposition 9.17. For all w ∈ Sn and all choices of chambers C of A, it holds

StabC(wSδ) = ϕ∗z(Stabz.C(zwSδ)).

In particular, we have

ι∗w′Sδ
(StabC(wSδ)) = z−1.

(
ι∗zw′Sδ

(Stabz.C(zwSδ))
)
, for all w′ ∈ Sn.
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9.4. Symmetric group equivariance for bow varieties

Proof. We show that ϕ∗z(Stabz.C(zwSδ)) satisfies the stability conditions for StabC(wSδ) from

Theorem 5.10. Since ϕz maps each AttrC(ySδ) isomorphically onto Attrz.C(zySδ), we have

ySδ ⪯C y
′Sδ if and only if zySδ ⪯z.C zy′Sδ, for all y, y′ ∈ Sn. Thus, ϕz maps AttrfC(wSδ)

isomorphically onto Attrfz.C(zwSδ). As Stabz.C(zwSδ) is supported on Attrfz.C(zwSδ), we

deduce that ϕ∗z(Stabz.C(zwSδ)) is supported on Attrfz.C(zwSδ) and thus the support condition

is satisfied. Let ΛwSδ
∈ H∗

T(T ∗F ) be the Poincaré dual of [AttrC(wSδ)]T. Then, we have

ι∗wSδ
(ϕ∗z(Stabz.C(zwSδ))) = ι∗wSδ

(ΛwSδ
) = eT(TwSδ

(T ∗F )−C ).

This proves the normalization condition. The smallness follows from ρ∗z(h) = h. Hence,

StabC(wSδ) = ϕ∗z(Stabz.C(zwSδ)).

Equivariant multiplicities of the bow variety realization

We like to view T ∗F as bow variety via the realization H ′ : C(D(d1, . . . , dm;n))
∼−→ T ∗F

from (2.70). Recall from there that H ′ is equivariant with respect to the automorphism ρ

of T given by (t1, . . . , tn, h) 7→ (t1h
−1, . . . , tnh

−1, h). The induced Q-algebra automorphism

ρ∗ : H∗
T(pt)

∼−→ H∗
T(pt) is given as h 7→ h and ti 7→ ti − h for i = 1, . . . , n.

Recall from (3.16) that for all w ∈ Sn, we have H ′(xDwSδ
) = (FwSδ

, 0). Here, DwSδ
is

defined as in (3.15). Thus, we conclude

StabC−(DwSδ
) = (H ′)∗StabC−(wSδ), (9.12)

where we identified the tie diagram DwSδ
with its associated T-fixed point xDwSδ

. From

(9.12), we directly get

ι∗Dw′Sδ
(StabC−(DwSδ

)) = ρ∗(ι∗w′Sδ
(StabC−(wSδ))), for all w′ ∈ Sn. (9.13)

The localization formula implies that the equivariant multiplicities of stable basis elements

of T ∗F are actually ρ∗-invariant:

Proposition 9.18. For all w, w′ ∈ Sn, we have

ι∗Dw′Sδ
(StabC−(DwSδ

)) = ι∗w′Sδ
(StabC−(wSδ)).

Proof. We have ρ∗(ti − tj + mh) = ti − tj + mh, for all i, j ∈ {1, . . . , n} and m ∈ Z. Thus,

Theorem 9.11 and Proposition 9.15 imply

ρ∗(ι∗wSδ
(StabC−(w′Sδ))) = ι∗wSδ

(StabC−(w′Sδ)).

Hence, the proposition follows from (9.13).

9.4 Symmetric group equivariance for bow varieties

We now return to the general setup of bow varieties. The main result of this section is the

Equivairance Theorem (Theorem 9.20) which states that the symmetric group equivariance

for stable basis elements of cotangent bundles of partial flag varieties from Proposition 9.17

extends to the framework of bow varieties.
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9. Equivariant multiplicities via a symmetric group calculus

Symmetric group action brane and tie diagrams

Recall the conventions from Notation 2.32 and the definition of margin vectors from Defini-

tion 2.58. Also recall that all brane diagrams in this chapter are assumed to be separated

and essential.

Let D be a fixed brane diagram. If D ∈ Tie(D) is a tie diagram and U , U ′ ∈ b(D) are blue

lines then swapping the blue lines U , U ′ with their connected ties gives a new tie diagram

over a brane diagram that possibly differs from D:

U U ′

c

c′

U ′ U

c

c′

This gives SN -actions on the sets

BDN := {Brane diagrams D | |b(U)| = N} and
⊔

D∈BDN

Tie(D).

These SN -actions can be characterized as follows: For a permutation w ∈ SN , the brane

diagram w.D is the brane diagram with M red lines, N blue lines and the numbers on the

horizontal lines are given as

dXi(w.D) = dXi(D), i = 1, . . . ,M + 1, dXM+j
=

N∑
l=j

cw−1(l), j = 1, . . . , N + 1.

By construction, the r-margin vectors of D and w.D coincide, i.e. r(w.D) = r(D). On

the other side c(w.D) is obtained from c(D) via c(w.D) = (cw−1(1)(D), . . . , cw−1(N)(D)). If

D ∈ Tie(D), then the tie diagram w.D ∈ Tie(w.D) is given as

w.D =
⋃

(Vi,Uj)∈D

{(Vi, Uw(j))}.

Pictorially, the action of w on D is given by moving each blue line Ui with its attached ties

to the position of Uw(i).

Example 9.19. Consider the following tie diagram D with underlying brane diagram D:

0 2 5 7 8 5 3 1 0

Let w = 3142 ∈ S4. To obtain the tie diagram w.D, we permute the blue lines with the

attached ties according to w, i.e. the blue line U1 is moved with its three attached ties to

the position of U3 etc. The respective labels of the horizontal lines of w.D can then be easily

determined by counting the number of ties above the horizontal lines:
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0 2 5 7 8 6 5 2 0

Equivariance Theorem

We now come to the main theorem of this section:

Theorem 9.20 (Equivariance Theorem). For D, D′ ∈ Tie(D) and w ∈ SN we have

eT(N−
D,C) · ι∗D′(StabC(D)) = w−1.

(
eT(N−

w.D,w.C) · ι∗w.D′(Stabw.C(w.D))
)
,

where N−
D,C (resp. N−

w.D,w.C) is the negative part of the constant T-equivariant bundle ND

(resp. Nw.D) over C(D) (resp. C(w.D)) from Definition 9.21 below.

We prove Theorem 9.20 in Section 9.8.

Remark. In [BR23, Proposition 6.18], a similar SN -equivariance statement for stable basis

elements with a different normalization is proved in the framework of elliptic cohomology.

Definition 9.21. The T-equivariant vector bundle ND over C(D) is defined as

ND :=
( N⊕
j=1

cj−1⊕
l=1

hl(ξU+
j
⊗ C∨

Uj
)
)
⊕
( N⊕
j=1

cj−1⊕
l=1

h1−l(CUj ⊗ ξ∨U+
j

)
)
. (9.14)

Recall from Proposition 8.22 that for all Uj ∈ b(D), we have an isomorphism of T-

equivariant vector bundles

ξU+
j

∼=
N⊕

i=j+1

ci−1⊕
l=0

h−lCUi . (9.15)

Thus, the positive and negative part of ND with respect to a choice of chamber C can be

easily read off from the definition. For instance, if C equals the antidominant chamber C−

then the N±
D,C−

are given as follows:

Proposition 9.22. We have

N+
D,C−

=

N⊕
j=1

N⊕
i=j+1

cj−1⊕
l=1

ci−1⊕
k=0

hl−k(CUi ⊗ C∨
Uj

), N−
D,C−

=

N⊕
j=1

N⊕
i=j+1

cj−1⊕
l=1

ci−1⊕
k=0

hk−l+1(CUj ⊗ C∨
Ui

)

Proof. By (9.15), all A-weights of ξU+ ⊗ C∨
U are positive and all A-weights of CU ⊗ ξ∨U+ are

negative with respect to C−. Hence, the proposition follows by inserting (9.15) into (9.14).

Example 9.23. Let D = 0/1/2/3\2\0. We like to employ Theorem 9.20 to determine the

equivariant multiplicity ι∗D′(StabC−(D)) in case D, D′ ∈ Tie(D) are defined as

D =
0 1 2 3 2 0

D′ =
0 1 2 3 2 0
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Let s = 21 ∈ S2. Then, s.D (resp. s.D′) is obtained from D (resp. D′) by switching the

positions of the blue lines with its attached ties:

s.D =
0 1 2 3 1 0

s.D′ =
0 1 2 3 1 0

To apply Theorem 9.20, we first determine the vector bundles ND and Ns.D. From c(D) =

(1, 2), we deduce that ND = 0, whereas c(s.D) = (2, 1) gives Ns.D = Ct1−t2 ⊕Ct2−t1+h. Since

s.C− = C+, we have N−
s.D,s.C−

= Ct2−t1+h. Thus, Theorem 9.20 implies

ι∗D′(StabC−(D)) = s.
(

(t2 − t1 + h)ι∗s.D′(StabC+(s.D))
)
. (9.16)

To determine the equivariant multiplicity ι∗s.D′(StabC+(s.D)) note that the brane diagram

D3 = 0\1/1/1/1\0 from Section 6.1 is Hanany–Witten equivalent to s.D. By Proposition 3.18,

the corresponding Hanany–Witten isomorphism Φ satisfies Φ(xD2) = xs.D and Φ(xD3) =

xs.D′ , where D2, D3 ∈ Tie(D) are defined as in (6.4). By Proposition 6.5, ι∗D3
(StabC+(D2)) =

h. Thus, Proposition 5.13 gives ι∗s.D′(StabC+(s.D)) = h. Inserting this into (9.16) finally

yields

ι∗D′(StabC−(D)) = h(t1 − t2 + h).

Remark. As we will see in Proposition 9.59, the bundles ND satisfies convenient compatibility

relations which make them useful in practical computations.

Renormalized stable basis elements

Because of Theorem 9.20, it is sometimes more convenient to work this the following renor-

malized version of stable basis elements:

Definition 9.24. With the above notation, we set

S̃tabC(D) := eT(N−
D,C) · StabC(D), for all D ∈ Tie(D). (9.17)

We call the elements S̃tabC(D) the renormalized stable basis elements of C(D).

In the special case D = D(d1, . . . , dm;n), where D(d1, . . . , dm;n) is defined as in (2.68), we

have c1 = . . . = cn = 1. Thus, by (9.14), ND = 0 which yields S̃tabC(D) = StabC(D). Thus

in this case the stable basis elements and the renormalized stable basis elements coincide.

9.5 Symmetric group calculus for bow varieties

Let D be a fixed brane diagram and let n =
∑M

i=1 ri =
∑N

j=1 cj . We denote by

Sc := Sc1 × . . .× ScN ⊂ Sn and Sr := Sr1 × . . .× SrM ⊂ Sn

the corresponding Young subgroups.

In this section, we describe a correspondence between the binary contingency tables (and

equivalently the tie diagrams) of D and a special class of (Sc, Sr)-double cosets which we
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call fully separated, see Definition 9.26. As we will see in Theorem 9.35 and Corollary 9.38,

permutations that belong to fully separated double cosets satisfy strong uniqueness properties

which distinguish fully separated double cosets from general double cosets.

Fully separated double cosets

The usual assignment of a (Sc, Sr)-double coset to a matrix leads to the following well-known

bijection, see e.g. [JK81, Theorem 1.3.10]:

Theorem 9.25. Let Ξ(r, c) be the set of all M×N -matrices A with entries in Z≥0 satisfying

N∑
l=1

Ai,l = ri,

M∑
l=1

Al,j = cj , for all i, j.

Then, the map Z : Sn → Ξ(r, c) given by

Z(w)i,j = |w({Ri−1 + 1, . . . , Ri}) ∩ {Cj−1 + 1, . . . , Cj}|

induces a bijection

Z̄ : Sc\Sn/Sr
∼−−→ Ξ(r, c), ScwSr 7→ Z(w). (9.18)

By definition, the elements of bct(D) are exactly the matrices Ξ(r, c) with all entries

contained in {0, 1}. The following notion characterizes the double cosets that correspond to

bct(D) under Z̄:

Definition 9.26. A permutation w ∈ Sn is called fully separated (with respect to (r, c)) if

|w({Ri−1 + 1, . . . , Ri}) ∩ {Cj−1 + 1, . . . , Cj}| ≤ 1, for all i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}.

If w is fully separated then so is every element in ScwSr. Hence, we call a double coset

ScwSr fully separated if all its elements are fully separated. Likewise, we call a left Sr-coset

(resp. right c-coset) fully separated if all its elements are fully separated.

Clearly, a permutation w is fully separated if and only if Z(w) is contained in bct(D).

Thus, we have the following corollary:

Corollary 9.27. The bijection Z̄ from (9.18) restricts to a bijection

fsepc,r
∼−−→ bct(D),

where fsepc,r denotes the set of fully separated (Sc, Sr)-double cosets.

Example 9.28. Let n = 5 and r = (2, 2, 1), c = (1, 2, 2). To compute the matrix en-

tries Z(w1)2,2 and Z(w2)2,2 for the permutations w1 = 14253 and w2 = 14235 note that

{w1(3), w1(4)} ∩ {2, 3} = {2}. Hence, Z(w1)2,2 = 1. Likewise, as {w1(3), w1(4)} ∩ {2, 3} =

{2, 3}, we have Z(w2)2,2 = 2. The other entries of Z(w1) and Z(w2) can be computed in the

same way:

Z(w1) =

1 0 1

0 1 1

0 1 0

 , Z(w2) =

1 0 1

0 2 0

0 0 1

 .

In particular, w1 is fully separated, as all entries of Z(w1) are contained in {0, 1}. On the

other hand, Z(w2)2,2 = 2 and hence w2 is not fully separated.
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In diagrammatic language the fully separatedness condition can be reformulated as fol-

lows:

Lemma 9.29. Let w ∈ SN and dw be a diagram for w. Then, w is fully separated if and only

if for all i ∈ {1, . . . ,M}, j ∈ {1, . . . , N} there exists at most one strand in dw with source in

{Ri−1 + 1, . . . , Ri} and target in {Cj−1 + 1, . . . , Cj}.

Proof. By definition, w is fully separated if and only if |w({Ri−1 + 1, . . . , Ri}) ∩ {Cj−1 +

1, . . . , Cj}| ≤ 1, for all i, j. This is equivalent to the condition that for all i, j, there exists at

most one strand in dw with source in {Ri−1 +1, . . . , Ri} and target in {Cj−1 +1, . . . , Cj}.

Remark. In [JK81] the fully separatedness condition is called trivial intersection property.

Shortest double coset representatives

Recall from e.g. [Hum90, Section 5.12] that each left coset wSr (resp. right coset Scw) con-

tains a unique representative of minimal Bruhat length wl (resp. wr). We have that wl

(resp. wr) is uniquely determined by the condition wl(Ri−1 + 1) < . . . < wl(Ri), for all i

(resp. w−1
r (Cj−1 +1) < . . . < w−1

r (Cj), for all j). Likewise, each double coset ScwSr contains

a unique representative of shortest Bruhat length wd which is uniquely characterized by the

conditions

wd(Ri−1 + 1) < . . . < wd(Ri) and w−1
d (Cj−1 + 1) < . . . < w−1

d (Cj), for all i, j.

In the following, we describe the shortest representative of (Sc, Sr)-double cosets corre-

sponding to binary contingency tables. We begin with a hopefully intuitive example:

Example 9.30. Let n = 10, r = (3, 2, 2, 3), c = (2, 3, 2, 1, 2) and

A =


1 1 0 0 1

0 0 1 0 1

1 1 0 0 0

0 1 1 1 0

 .

We draw a diagram for the shortest double coset representative of Z̄−1(A) following the next

steps: At first, we define functions

FA,i : {1, . . . , ri} −−→ {1, . . . , N}, i = 1, . . . ,M, (9.19)

where FA,i(l) is the column index of the l-th 1-entry in the i-th row of A. For instance,

FA,1 : {1, 2, 3} → {1, . . . , 5} is given by FA,1(1) = 1, FA,1(2) = 2 and FA,1(3) = 5.

We start drawing our diagram by drawing strands λl starting in l = 1, . . . , r1 and ending in

CFA,1(1)−1 + 1, . . . , CFA,1(r1)−1 + 1. Then, we draw strands λr1+l starting in r1 + 1, . . . , r1 + r2

and the endpoint of λr1+l is the smallest element of {CFA,2(l)−1 + 1, . . . CFA,2
(l)} that is

not already the endpoint of a strand. Continuing this procedure leads to the following

permutation diagram:
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1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

c1 c2 c3 c4 c5

r1 r2 r3 r4
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

We denote the resulting permutation by w̃A, i.e. w̃A = 13961024578. Our condition to pick

always the smallest entry in {Cj−1 + 1, . . . , Cj} that is not already the endpoint of a strand

implies w̃−1
A (Cj−1 + 1) < . . . < w̃−1

A (Cj), for all j. In addition, as the functions FA,i strictly

increase, we also have w̃A(Ri−1+1) < . . . < w̃A(Ri), for all i. Thus, w̃A is a shortest (Sc, Sr)-

double coset representative. As w̃A satisfies w̃A(Ri−1 + l) ∈ {CFA,i(l)−1 + 1, . . . CFA,i(l)} for

all i, l, we conclude

Z(w̃A)i,j =

1 if j = FA,i(l),

0 otherwise.

Therefore, Z(w̃A) = A which implies that w̃A is indeed the shortest representative of Z̄−1(A).

We return to the general setup: Let D be a brane diagram and A ∈ bct(D). As in the

previous example, let FA,i : {1, . . . , ri} → {1, . . . , N} be the function assigning to l the column

index of the l-th 1-entry in the i-th row of A. Likewise, let GA,j : {1, . . . , cj} → {1, . . . ,M}
be the function assigning to l the row index of the l-th 1-entry in the j-th column of A. We

also set nA,i,j :=
∑i

l=1Al,j . That is, nA,i,j is the number of 1-entries that are in the j-th

column of A and strictly above the entry Ai+1,j .

Definition 9.31. We define a map w̃A : {1, . . . , n} → {1, . . . , n} as

w̃A(Ri−1 + l) = CFA,i(l)−1 + nA,i,FA,i(l)
, for i = 1, . . . ,M and l = 1, . . . , ri.

We now prove that w̃A is indeed contained in Sn:

Lemma 9.32. The map w̃A is bijective.

Proof. It suffices to show that w̃A is surjective. Let j ∈ {1, . . . , N} and l ∈ {1, . . . , cj}. Then,

let i = GA,j(l) and l′ ∈ {1, . . . , ri} such that Ai,j corresponds to the l′-th 1-entry in the i-th

row of A. By construction, we have w̃A(Ri−1 + l′) = Cj−1 + l which proves the surjectivity

of w̃A.

The next proposition lists important properties of w̃A.

Proposition 9.33. The following holds:
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(i) Z(w̃A) = A,

(ii) w̃A is the shortest representative of Z̄−1(A),

(iii) we have l(w̃A) = |Inv(A)|, where

Inv(A) = {((i1, j1), (i2, j2)) | Ai1,j1 = Ai2,j2 = 1, i1 < i2, j2 < j1}.

Proof. By construction, w̃A(Ri−1 + l) ∈ {CFA,i(l)−1 + 1, . . . , CFA,i(l)} which gives

Z(w̃A)i,j =

1 if j = FA,i(l),

0 otherwise.

Hence, Z(w̃A) = A. Moreover, we conclude w̃A(Ri−1 + 1) < . . . < w̃A(Ri), for all i.

By definition, we also have w̃−1
A (Cj−1 + l) ∈ {RGA,j(l)−1 + 1, . . . , RGA,j(l)} which implies

w̃−1
A (Cj−1 + 1) < . . . < w̃−1

A (Cj), for all j. Thus, w̃A is the shortest representative of Z̄−1(A).

Finally, note that since w̃A is a shortest left Sr-coset representative, the inversions of w̃A are

exactly the ordered pairs (Ri1 + l1, Ri2 + l2) with

1 ≤ i1 < i2 ≤M, 1 ≤ l1 ≤ ri1 , 1 ≤ l2 ≤ ri2 , FA,i1(l1) > FA,i2(l2).

Therefore, we have a bijection Inv(w̃D)
∼−→ Inv(D), where an inversion (Ri1 + l1, Ri2 + l2) of

w̃A is mapped to ((i1, FA,i1(l1)), (i2, FA,i2(l2)). Hence, l(w̃D) = |Inv(A)|.

Example 9.34. Let w, w′ ∈ S5 be as in Example 9.16 and choose r = (2, 2, 1), c = (2, 1, 2).

Then, we have

Z(w) =

1 0 1

1 0 1

0 1 0

 , Z(w′) =

1 0 1

1 1 0

0 0 1

 .

Set A := Z(w) and A′ := Z(w′). To determine the permuations w̃A and w̃A′ , we first read off

the functions FA,i and FA′,i from A and A′. We have FA,1 = FA,2 : {1, 2} → {1, 2, 3}, 1 7→ 1,

2 7→ 3 and FA,3 : {1} → {1, 2, 3}, 1 7→ 2. Likewise, we have FA′,1 = FA,1, FA′,2 : {1, 2} →
{1, 2, 3}, 1 7→ 1, 2 7→ 2 and FA,3 : {1} → {1, 2, 3}, 1 7→ 3. Hence, the stepwise construction of

w̃A and w̃A′ can be illustrated as follows:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Construction

of w̃A:

Construction

of w̃A′ :

Thus, we have w̃A = 14253 and w̃A′ = 14235.
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Uniqueness properties

In this subsection, we discuss strong uniqueness properties of fully separated permutations

that distinguish them from general permutations. The central result is the following theorem:

Theorem 9.35. Assume w ∈ Sn is fully separated. Let v, v′ ∈ Sr and u, u′ ∈ Sc such that

uwv = u′wv′. Then, u = u′ and v = v′.

Before we prove Theorem 9.35, we illustrate the idea of the proof in the following example:

Example 9.36. Let n, r, c and A be as in Example 9.30. For a permutation w ∈ Sn, we

define the function

Fw : {1, . . . , n} −−→ {1, . . . , N}, i 7→ Fw(i),

where Fw(i) is the unique element on {1, . . . , N} such that CFw(i)−1 + 1 ≤ w(i) ≤ CFw(i).

In terms of diagrammatic calculus, the function Fw can be characterized as follows: Pick a

diagram dw for w. On the top of dw, draw N square brackets around the intervals {1, . . . , C1},
{C1 + 1, . . . , C2}, . . . , {CN−1 + 1, . . . , CN}. Label these square brackets with 1, . . . , N from

left to right. Then, Fw(i) is the index of the square bracket containing the endpoint of the

unique strand starting in i.

Let for instance v = v1 × v2 × v3 × v4 ∈ Sr, where v1 = 312, v2 = 21, v3 = 12, v4 = 231.

A diagram for w̃Av is given by

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

c1 c2 c3 c4 c5

The functions Fw̃A and Fw̃Av can be easily read of from their diagrams:

i 1 2 3 4 5 6 7 8 9 10

Fw̃A(i) 1 2 5 3 5 1 2 2 3 4

Fw̃Av(i) 5 1 2 5 3 1 2 3 4 5

Next, we show that if we know Fw̃Av then we can reconstruct the permutation v. We begin

by reconstructing the factor v1 ∈ S3. The first three letters in the row of Fw̃Av give the word

512. Then, using the identification 1 7→ 1, 2 7→ 2, 5 7→ 3, we see that 512 corresponds to

312 = v1. Next, the fourth and the fifth letters in the row of Fw̃Av give the word 53. Using

the identification 3 7→ 1, 5 7→ 2, we get the word 21 = v2. In the same way one can construct

v3 and v4 and thus the permutation v.

In our reasoning, the fully separatedness property was essential because this property

ensures that the restriction of Fw̃Av to {1, 2, 3}, {4, 5}, {6, 7}, {8, 9, 10} is injective.
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We proceed with the general setup. As in Example 9.36, we define for given w ∈ Sn the

function

Fw : {1, . . . , n} −−→ {1, . . . , N}, i 7→ Fw(i), (9.20)

where Fw(i) is the unique element in {1, . . . , N} such that

CFw(i)−1 + 1 ≤ w(i) ≤ CFw(i).

Likewise, we define

Gw : {1, . . . , n} −−→ {1, . . . ,M}, j 7→ Gw(j),

where Gw(j) is the unique element in {1, . . . ,M} such that

RGw(j)−1 + 1 ≤ w−1(j) ≤ RGw(j).

Similarly as Fw, the function Gw admits the following diagrammatic interpretation: Pick

a diagram for w and draw M square brackets on the bottom around the discrete intervals

{1, . . . , R1}, {R1 + 1, . . . , R2}, . . . , {RM−1 + 1, . . . , RM}. Label the square brackets with

1, . . . ,M from left to right. Then, Gw(j) is the index of the square bracket containing the

starting point of the unique strand with endpoint j.

If w is fully separated then the restrictions of Fw to the sets {Ri−1+1, . . . , Ri} is injective,

for i = 1, . . . ,M . Likewise, the restriction of Gw to {Cj−1 + 1, . . . , Cj} is also injective, for

j = 1, . . . , N .

The next lemma lists useful properties of the functions Fw and Gw.

Lemma 9.37. Assume w ∈ Sn is fully separated. For u ∈ Sc and v ∈ Sr, we have

(i) Fuw = Fw,

(ii) Gwv = Gw,

(iii) Fwv = Fw if and only if v = id,

(iv) Guw = Gw if and only if u = id.

Proof. Since u leaves the sets {Cj−1 + 1, . . . , Cj} invariant, we get (i). Likewise, v leaves the

sets {Ri−1+1, . . . , Ri} invariant which gives (ii). For (iii), suppose that v ̸= id and Fwv = Fw.

Let l ∈ {1, . . . , n} such that v(l) ̸= l. Choose i ∈ {1, . . . ,M} such that l ∈ {Ri−1 +1, . . . , Ri}.
As v ∈ Sr, we have that v(l) is also contained in {Ri−1 + 1, . . . , Ri}. By definition, Fwv(l) =

Fw(v(l)) and hence Fw(v(l)) = Fw(l). This contradicts the fact that the restriction of Fw to

{Ri−1 + 1, . . . , Ri} is injective. The proof of (iv) is analogous.

Proof of Theorem 9.35. We may assume u′ = id, v′ = id. By Lemma 9.37.(i), Fw = Fuwv =

Fwv. Thus, Lemma 9.37.(iii) implies v = id. Likewise, Lemma 9.37.(ii) gives Gw = Guwv =

Guw which implies u = id by Lemma 9.37.(iv). Hence, we proved u = u′ and v = v′.
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Let A ∈ bct(D). By construction of Fw̃A and FA,i, we have

Fw̃A(Ri−1 + l) = FA,i(l), i = 1, . . . ,M, l = Ri−1 + 1, . . . , Ri. (9.21)

This observation combined with Lemma 9.37 leads to the following characterization of shortest

representatives of fully separated left resp. right cosets:

Corollary 9.38. For A ∈ bct(D), the following holds:

(i) uw̃A is a shortest left Sr-coset representative, for all u ∈ Sc,

(ii) if wSr is a fully separated left coset then there exist A ∈ bct(D), u ∈ Sc such that uw̃A

is the shortest representative of wSr,

(iii) w̃Av is a shortest right Sc-coset representative, for all v ∈ Sr,

(iv) if Scw is a fully separated right coset then there exist A ∈ bct(D), v ∈ Sr such that

w̃Av is the shortest representative of Scw.

Proof. By Lemma 9.37.(i) and (9.21), we have

Fuw̃A(Ri−1 + 1) < Fuw̃A(Ri−1 + 2) < . . . < Fuw̃A(Ri), for i = 1, . . . ,M .

This implies uw̃A(Ri−1+1) < uw̃A(Ri−1+2) < . . . < uw̃A(Ri), for i = 1, . . . ,M . Hence, uw̃A

is the shortest representative of uw̃ASr which gives (i). For (ii), we use that if wSr is fully

separated then Z(w) ∈ bct(D) and hence there exist u ∈ Sc, v ∈ Sr such that w = uw̃Z(w)v.

Thus, (i) gives that uw̃Z(w) is the shortest representative of wSr. The proofs of (iii) and (iv)

are analogous.

9.6 Equivariant multiplicities via resolutions

The main results of this section are Theorem 9.42 and Theorem 9.44 which provide formulas

that express the equivariant multiplicities of stable basis elements of bow varieties in terms of

equivariant multiplicities of stable basis elements of cotangent bundles of partial flag varieties.

In particular, these formulas allow to compute equivariant multiplicities for bow varieties via

the diagrammatic calculus from Proposition 9.13.

Theorem 9.42 deals with the stable basis elements corresponding to the dominant cham-

ber, whereas Theorem 9.44 focuses on the antidominant chamber. As we discuss in Sec-

tion 9.8, Theorem 9.42 and Theorem 9.44 are actually equivalent.

The formulation of Theorem 9.42 and Theorem 9.44 uses the language of symmetric

group calculus for bow varieties which was developed in the previous section as well as the

language of resolutions of tie diagrams from [BR23]. We therefore refer to these theorems as

the Equivariant Resolution Theorems. More specifically, we call Theorem 9.42 the Dominant

Equivariant Resolution Theorem and Theorem 9.44 the Antidominant Equivariant Resolution

Theorem.

We begin with the underlying combinatorics on brane and tie diagrams.
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Resolutions of brane and tie diagrams

As before, let D be a fixed brane diagram. Recall from Definition 2.58 that R̄i =
∑M

l=i rl and

C̄j =
∑N

l=j cl. Hence, the labels of the horizontal lines of D are given as follows:

0 R̄M R̄M−1 R̄2 n C̄2 C̄N−1 C̄N 0

Definition 9.39. The resolution Res(D) of D is the brane diagram defined as

0 R̄M R̄M−1 R̄2 n n− 1 2 1 0

That is, the resolved brane diagram Res(D) is obtained from D by replacing the part

n\C̄2\ . . . \C̄N\0 with n\n − 1\ . . . \2\1\0. Thus, Res(D) is equal to the brane diagram

D(R1, . . . , RM−1;n) from (2.68). Hence, C(Res(D)) is isomorphic to T ∗F (R1, . . . , RM−1;n).

Given u = u1 × · · · × uN ∈ Sc, we obtain an inclusion

Resu : Tie(D) ↪−−→ Tie(Res(D)), (9.22)

where for a tie diagram D ∈ Tie(D), the resolved tie diagram Resu(D) is obtained via

performing at each blue line Ui the local move:

u
i

Here, the box around ui represents an arbitrary diagram for ui.

Example 9.40. Let D be the following tie diagram with corresponding binary contingency

table:

0 1 2 3 5 3 0


1 1

0 1

1 0

0 1


We choose u1 = 21 and u2 = 231. Then, Resu(D) and its associated binary contingency table

are given by

0 1 2 3 5 4 3 2 1 1


0 1 0 0 1

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0


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Here, we see the rotated diagrams for u1 and u2, where the diagram for u1 involves the ties

of the first and the second blue line and the diagram for u2 involves the ties of the third,

fourth and fifth blue line.

As in Proposition 3.5, we denote by M(D) the binary contingency table corresponding to

a tie diagram D ∈ Tie(D). In addition, we set w̃D := w̃M(D), where w̃M(D) is the permutation

from Definition 9.31.

In terms of left Sr-cosets, we can characterize Resu(D) as follows:

Proposition 9.41. We have

Resu(D) = Duw̃DSr ,

where Duw̃DSr is defined as in (3.15).

Proof. Suppose the blue line Uj in D is connected to the red lines Vi1 , . . . Vicj , where i1 <

. . . < icj . Then, in Resu(D), the blue line UCj−1+l is connected to Viu(l) , for l = 1, . . . , cj . On

the other hand, by the construction of w̃D, we have w̃−1
D (Cj−1 + l) ∈ {Ril−1 + 1, . . . , Ri1}, for

all l. Thus, w̃−1
D u−1(Cj−1 + l) ∈ {Riuj(l)−1 + 1, . . . , Riuj(l)}. Hence, the tie diagram Resu(D)

equals Duw̃DSr .

Equivariant Resolution Theorems

We now come to the main results of this section. We begin with the Dominant Equivariant

Resolution Theorem because its formulation is slightly easier. However, in practical compu-

tations, we will always use the Antidominant Equivariant Resolution Theorem in this thesis.

Theorem 9.42 (Dominant Equivariant Resolution Theorem). Let D, D′ ∈ Tie(D) and

u ∈ Sc. Then, the equivariant multiplicities of the renormalized stable basis elements from

Definition 9.24 can be computed via

( N∏
i=1

ci−1∏
j=1

(jh)ci−j
)
· ι∗D(S̃tabC+(D′)) = Ψ′

D(ι∗Resid(D)(StabC+(Resu(D′)))),

where Ψ′
D : Q[t1, . . . , tn, h] → Q[t1, . . . , tN , h] is the Q[h]-algebra homomorphism given by

Ψ′
D(tCi−1+k) = ti − (ci − 1− k)h, for i = 1, . . . , N , k = 1, . . . , ci.

Theorem 9.42 is proved in Section 9.8. By employing the isomorphism C(Res(D)) ∼=
T ∗F (R1, . . . , RM−1;n), we obtain the following reformulation of Theorem 9.42:

Corollary 9.43. With the notation of Theorem 9.42, we have

( N∏
i=1

ci−1∏
j=1

(jh)ci−j
)
· ι∗D(S̃tabC+(D′)) = Ψ′

D(ι∗w̃DSr
(StabC+(w′Sr))),

where the stable basis element on the right hand side is on T ∗F (R1, . . . , RM−1;n) and w′ ∈
Scw̃D′Sr.
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Proof. By Proposition 9.41, Dw̃DSr = Resid(D) and Dw′Sr = Resu(D′), for some u ∈ Sc.

Thus, Proposition 9.18 yields

ι∗w̃DSr
(StabC+(w′Sr)) = ι∗Resid(D)(StabC+(Resu(D′))).

Hence, the statement follows from Theorem 9.42.

Antidominant Equivariant Resolution Theorem

For the formulation of the Antidominant Equivariant Resolution Theorem, we set

u0 := (w0,c1 × . . .× w0,cN ) ∈ Sc, (9.23)

where w0,l denotes the longest element in Sl, for all l.

Theorem 9.44 (Antidominant Equivariant Resolution Theorem). Let D and D′ be tie di-

agrams of D. Then, the equivariant multiplicities of the renormalized stable basis elements

can be computed via

( N∏
i=1

ci−1∏
j=1

(jh)ci−j
)
· ι∗D(S̃tabC−(D′)) = ΨD(ι∗Resu0 (D)(StabC−(Resu(D′)))).

Here, u ∈ Sc, u0 is as in (9.23) and the Q[h]-algebra homomorphism ΨD : Q[t1, . . . , tn, h]→
Q[t1, . . . , tN , h] is given by ΨD(tCi−1+k) = ti − (k − 1)h, for i = 1, . . . , N , k = 1, . . . , ci.

We also prove Theorem 9.44 in Section 9.8.

For D ∈ Tie(D), we set

wD := u0w̃D ∈ Sn. (9.24)

The next statement is a version of Corollary 9.43 for the antidominant chamber and follows

along similar lines:

Corollary 9.45. With the notation of Theorem 9.44, we have

( N∏
i=1

ci−1∏
j=1

(jh)ci−j
)
· ι∗D(S̃tabC−(D′)) = ΨD(ι∗wDSr

(StabC−(w′Sr))),

where the stable basis element on the right hand side is on T ∗F (R1, . . . , RM−1;n), w′ ∈
Scw̃D′Sr and wD is defined as in (9.24).

Example 9.46. Let D and D′ be the following tie diagrams:

0 1 3 5 3 2 0
D = D′ =

0 1 3 5 3 2 0

In the following, we compute the equivariant multiplicity ι∗D(S̃tabC−(D′)). Note that n = 5,

r = (2, 2, 1) and c = (2, 1, 2). Let w, w′ ∈ S5 be as in Example 9.16. Then, we have

Z(w) = M(D) and Z(w′) = M(D′). Hence, we know from Example 9.16 that w̃D = 14253
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and w̃D′ = 14235. Thus, w = (s × id×s)w̃D, where s = 21 ∈ S2. This gives w = wD.

Therefore, by Corollary 9.45, we have

h2 · ι∗D(S̃tabC−(D′)) = ΨD(ι∗wSr
(StabC−(w′Sr))), (9.25)

where

ΨD : Q[t1, t2, t3, t4, t5, h] −−→ Q[t1, t2, t3, h]

is the Q[h]-algebra homomorphism given by t1 7→ t1, t2 7→ t1−h, t3 7→ t2, t4 7→ t3, t5 7→ t3−h.

From (9.11), we know

ι∗wSr
(StabC−(w′Sr)) = h(t1− t3 + h)(t2− t3 + h)(t2− t4 + h)(t4− t5)(t1− t2)(t3− t5)(t1− t5).

Thus, we have

ΨD(ι∗wSr
(StabC−(w′Sr))) = h3(t1 − t2 + h)(t1 − t2)(t1 − t2 + h)(t2 − t3)(t1 − t3). (9.26)

Finally, inserting (9.26) in (9.25) yields

ι∗D(S̃tabC−(D′)) = h(t1 − t2 + h)(t1 − t2)(t1 − t2 + h)(t2 − t3)(t1 − t3).

The following general divisibility statement will be useful in applications of Theorem 9.44:

Lemma 9.47. Let i, j ∈ {1, . . . , n} with i < j. Then, h divides ΨD(ti − tj) if and only if

Cl−1 + 1 ≤ i < j ≤ Cl, for some l = 1, . . . , N .

Proof. Suppose Cl−1 + 1 ≤ i < j ≤ Cl, for some l = 1, . . . , N . Then, ΨD(ti − tj) = (j − i)h.

On the other hand, if Cl0−1 + 1 ≤ i ≤ Cl0 and Cl1−1 + 1 ≤ j ≤ Cl1 , for some l0 < l1. Then,

ΨD(ti − tj) ≡ tl0 − tl1 mod h.

9.7 Approximations of equivariant multiplicities

Next, we combine the diagrammatic localization formula from Proposition 9.13 and Corol-

lary 9.45 to approximate equivariant multiplicities of stable basis elements modulo powers of

h.

For this, we like to choose the reduced diagrams for permutations of a particular form:

Let w = u0w̃D(v1 × · · · × vM ), where, as in (9.23), u0 = w0,c1 × . . .×w0,cN and each vj ∈ Srj
is an arbitrary element. By Corollary 9.38, we can choose a reduced diagram for w of the

form:

w0,c1 w0,c2 w0,cN

w̃D

v1 v2 vM

(9.27)
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Here, the boxes represent reduced diagrams of the respective permutations. The example

on the right shows the permutation u0w̃Dv, where w̃D is the shortest (Sc, Sr)-double coset

representative from Example 9.30 with r = (3, 2, 2, 3), c = (2, 3, 2, 1, 2) and v ∈ Sr is chosen

as v = v1 × v2 × v3 × v4 with v1 = 312, v2 = 12, v3 = 21, v4 = 231.

If dw is a diagram of shape (9.27) then, according to their position in the diagram, we

define the following subsets of crossings in dw:

KU (dw) = {κ ∈ K(dw) | κ belongs to some w0,ci , for i = 1, . . . , N},

KW (dw) = {κ ∈ K(dw) | κ belongs to w̃D},

KV (dw) = {κ ∈ K(dw) | κ belongs to some vi, for i = 1, . . . ,M}.

(9.28)

The next proposition shows that the weights of crossings in KU precisely contribute the

normalization factor which appears in Theorem 9.44.

Proposition 9.48. The normalization factor from Theorem 9.44 can be expressed via weights

of crossings as follows:

N∏
i=1

ci−1∏
j=1

(jh)ci−j = ΨD

( ∏
κ∈KU (dw)

wt(κ)
)
.

The proof is immediate from the following lemma:

Lemma 9.49. Let w0,n ∈ Sn be the longest element and dw0,n a reduced diagram of w0,n.

Then, we have

Ψ
( ∏
κ∈K(dw0,n )

wt(κ)
)

=
n−1∏
j=1

(jh)n−j ,

where Ψ : Q[t1, . . . , tn, h]→ Q[t, h] is the Q[h]-algebra homomorphism given by

ti 7→ t− (i− 1)h, i = 1, . . . , n.

Proof. Note that by (9.4), the product
∏
κ∈K(dw0,n )

wt(κ) does not depend on the choice of

reduced diagram. We prove the statement by induction on n. The case n = 1 is trivial. For

n > 1, we choose dw0,n to be of the following shape:

1 2 3 n

1 2 n− 1n

w0,n−1

Here, the box represents a reduced diagram for w0,n−1. Let K ′ be the set of crossings con-

tained in the box of w0,n−1 and K ′′ be the set of crossings outside of the box of w0,n−1. From

the diagram dw0,n, we can read off that the crossings in K ′′ have weights t1−tn, . . . , tn−1−tn.
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Thus, we have Ψ(
∏
κ∈K′′ wt(κ)) =

∏n−1
i=1 (ih). Applying the induction hypothesis to K ′ yields

Ψ
( ∏
κ∈K(dw0,n )

wt(κ)
)

= Ψ
( ∏
κ∈K′

wt(κ)
)
·Ψ
( ∏
κ∈K′′

wt(κ)
)

=
( n−2∏
j=1

(jh)n−1−j
)
·Ψ
( n−1∏
i=1

(ti − tn)
)

=
n−1∏
j=1

(jh)n−j

which finishes the proof.

Proposition 9.50 (Approximation). Under the same assumptions as in Corollary 9.45,

choose for all z ∈ wDSr a reduced diagram dz of shape (9.27). Then, we have

ι∗D(S̃tabC−(D′)) ≡
∑

z∈wDSr

(−1)l(w
′)+l(w′Sr)

(∏
α∈L′

z
ΨD(α+ h)

)
· Pdz ,w′,m∏

β∈Rr
ΨD(z.β)

mod hm, (9.29)

where L′
z is defined as in Proposition 9.13,

Pdz ,w′,m =
∑

K′∈K(dz ,w′,m−1)

h|K
′\KU (dz)|fK′ ·

( ∏
κ∈K(dz)

κ/∈K′,KU (dz)

ΨD(wt(κ))
)

and

K(dz, w
′,m− 1) = {K ′ ∈ Kdz ,w′ | |K ′ \KU (dz)| ≤ m− 1},

fK′ =
h|K

′∩KU (dz)|∏
κ∈KU (dz)\K′ ΨD(wt(κ))∏N

i=1

∏ci−1
j=1 (jh)ci−j

.

Remark. By Lemma 9.47 and Lemma 9.49, the factor fK′ is always contained in Q. Moreover,

note that for all ti − tj ∈ Rr and z ∈ Scw̃DSr, we have Fz(i) ̸= Fz(j). Here, Fz is defined as

in (9.20). This implies that ΨD(α) is of the form ti1 − ti2 +mh, where 1 ≤ i1 < i2 ≤ N and

m ∈ Z.

Proof of Proposition 9.50. For z ∈ wDSr with reduced diagram dz of shape (9.27), define

m0(z) := |K(dz) \KU (dz)|. By Corollary 9.45, we have

ι∗D(S̃tabC−(D′)) =
∑

z∈wDSr

(−1)l(z)+l(w
′Sr)
(∏

α∈L′
z

ΨD(α+ h)
)
· Pdz ,w′,m0(z)∏

β∈Rr
ΨD(z.β)

.

If K ′ ∈ Kdz ,w′ \K(dz, w
′,m− 1) then, by Proposition 9.48, the polynomial

h|K
′|

∏
κ∈KU (dz)\K′

ΨD(wt(κ))

is divisible by h
1
2
(c1(c1−1)+···+cN (cN−1))+m. Thus, we have

Pdz ,w′,m0(z) ≡ Pdz ,w′,m mod hm, for all z ∈ wDSr.

This proves the proposition.
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Example 9.51. Let D and D′ ∈ Tie(D) be the following tie diagrams:

D′ =
0 1 2 3 4 3 2 0

0 1 2 3 4 3 2 0
D =

We now use Proposition 9.50 to determine the equivariant multiplicity ι∗D(S̃tabC−(D′)) mod-

ulo h2. Following the stepwise construction from Definition 9.31, we deduce that w̃D′ = id

and w̃D = 3214. Since c(D) = (1, 1, 2), we conclude wD′ = 1243 and wD = 4213. The next

picture contains our choice of reduced diagram dwD of shape (9.27) for wD as well as the only

two possibilities to obtain a diagram for wD′ from dwD by resolving crossings:

Diagram for wD:

dwD

1 2 3 4

1 2 3 4

Diagrams for wD′ :

d′1

1 2 3 4

1 2 3 4

d′2

1 2 3 4

1 2 3 4

Note that the weights of the crossings of dwD are

wt(κ1) = t3 − t4, wt(κ2) = t2 − t4, wt(κ3) = t1 − t4, wt(κ4) = t1 − t2.

Hence, L′
wD

= {(t2 − t3), (t1 − t3)}. The diagram d′1 is obtained from dwD by resolving the

crossing κ3 which does not belong to KU (dwD) = {κ1}. Likewise, the diagram d′2 is obtained

from dwD by resolving three crossings which are all not contained in KU (dwD). Hence,

K(dwD , wD′ , 1) = {K ′}, where K ′ = {κ3}. Thus, as r(D) = (1, 1, 1, 1), Proposition 9.50

yields

ι∗D(S̃tabC−(D′)) ≡ ΨD((t2 − t3 + h)(t1 − t3 + h)) · h ·ΨD(wt(κ2)wt(κ4)) mod h2.

Since the Q[h]-algebra homomorphism ΨD : Q[t1, t2, t3, t4, h]→ Q[t1, t2, t3, h] is given as

t1 7→ t1, t2 7→ t2, t3 7→ t3, t4 7→ t3 − h,

we conclude that ι∗D(S̃tabC−(D′)) is congruent to h(t1 − t2)(t2 − t3)(t1 − t3)2 modulo h2.

9.8 Proofs of main theorems

We now prove Theorem 9.20, Theorem 9.44 and Theorem 9.42. For this, we recall two central

results of [BR23].
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Botta–Rimányi Embedding Theorem

Fix a brane diagram D and suppose there exists k ∈ {1, . . . , N} such that ck > 1. Let D̃ be

the brane diagram obtained from D by performing the local move

Uk

dl−1 dl

Ũk Ũk+1

dl−1 dl + 1 dl

For instance, let D = 0/1/3/4/6/7\5\2\0. Note that we have c(D) = (2, 3, 2). If we

choose k = 2 then D̃ is obtained from D by replacing the local configuration 5\2 with 5\3\2,

i.e. we have D̃ = 0/1/3/4/6/7\5\3\2\0.

As before, we denote the red, blue resp. black lines of D by V , U resp. X. Likewise,

the red, blue resp. black lines of D̃ are denoted by Ṽ , Ũ resp. X̃. We denote the respective

margin coefficients of D and D̃ by ci, rj and c̃i, r̃j . Let T̃ = Ã×C∗
h be the torus from (2.47)

acting on C(D̃).

The following embedding theorem was proved in [BR23, Proposition 6.3]:

Theorem 9.52 (Botta–Rimányi Embedding Theorem). There exists a closed immersion

ι : C(D) ↪→ C(D̃) which is equivariant with respect to

φ : T ↪−−→ T̃, (t1, . . . , tN , h) 7→ (t1, . . . , tk−1, h
−1tk, tk, tk+1, . . . , tN , h).

Moreover, we have isomorphisms of T-equivariant vector bundles ι∗ξX̃ ∼= ξπ̃h(X̃), for X̃ ̸= Ũ+
k .

Here,

π̃h : h(D̃) −−→ h(D), π̃h(X̃i) =

Xi if X̃i ◁ Ũk,

Xi−1 if X̃i ▷ Ũk.

By applying Corollary 2.48, we deduce a formula for the T-equivariant K-theory class of

the normal bundle Nι of ι in terms of constant bundles:

Corollary 9.53. In KT(C(D)), it holds

[Nι] = (1 + h) +
N∑

j=k+1

( cj−1∑
l=0

hl[CUk
⊗ C∨

Uj
] + h1−l([C∨

Uk
⊗ CUj ])

)
.

Proof. Set E1 := ι∗ξŨ−
k

, E2 := ι∗ξŨ+
k

, E3 := ι∗ξŨ+
k+1

. By Corollary 2.48 and Theorem 9.52,

we have

[Nι] = [ι∗TC(D̃)]− [TC(D)] = T1 + T2 − T3,

where

T1 = (1− h)[Hom(E2, E1)] + [Hom(h−1CUk
, E1)],

T2 = (1− h)[Hom(E3, E2)] + (h− 1)[End(E2)] + h[Hom(E2, h
−1CUk

)] + [Hom(CUk
, E2)],

T3 = (1− h)[Hom(E3, E1)] + [Hom(CUk
), E1)].

Note that by Theorem 9.52, E1
∼= ξU−

k
and E3

∼= ξU+
k

. By Proposition 8.22, we have

E1
∼=

N⊕
j=k

cj−1⊕
l=0

hlCUj , E2
∼= E3 ⊕ CUk

, E3
∼=

N⊕
j=k+1

cj−1⊕
l=0

hlCUj . (9.30)
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From (9.30), we deduce [Hom(E2, E1)] = [Hom(E3, E1)] + [Hom(CUk
, E1)] which gives T1 =

T3. Hence, [Nι] = T2. By (9.30), we have [End(E2)] = [Hom(E3, E2)] + [Hom(CUk
, E2)].

Thus,

T2 = (h− 1)[Hom(CUk
, E3)] + h[Hom(E2, h

−1CUk
)] + [Hom(CUk

, E2)]

= h[Hom(CUk
, E2)] + [Hom(CUk

, E2)]

= h[Hom(CUk
, E3 ⊕ CUk

)] + [Hom(CUk
, E3 ⊕ CUk

)]

= (1 + h) + h[Hom(CUk
, E3)] + [Hom(E3,CUk

)].

Inserting (9.30) then proves the corollary.

The D5 Resolution Theorem

We now recall the D5 Resolution Theorem from [BR23, Theorem 6.13]. It states that it is in

fact possible to determine the equivariant multiplicities of stable basis elements of C(D) via

equivariant mutliplicities of the stable basis elements of C(D̃).

We first consider some combinatorial relations between the tie diagrams of D and D̃. Let

c := ck. For D ∈ Tie(D), let Vj1 , . . . , Vjc with 1 ≤ j1 < . . . < jc ≤ M be the red lines in D
that are connected to Uk with a tie. For i = 1, . . . , c, we obtain a tie diagram fi(D) ∈ Tie(D̃)

by performing the following local move in D:

Vjc Vji+1 Vji Vji−1 Vj1 Uk Ṽjc Ṽji+1 Ṽji Ṽji−1 Ṽj1 Ũk Ũk+1

That is, Ũk+1 is connected to Ṽji , whereas Ũk is connected to all Ṽjl except Ṽji . In this way,

we obtain an inclusion

fi : Tie(D) ↪−−→ Tie(D̃), D 7→ fi(D). (9.31)

Example 9.54. Let D = 0/1/3/4/6/7\5\2\0 and D̃ = 0/1/3/4/6/7\5\3\2\0. We choose

i = 2 and the tie diagram D ∈ Tie(D) as follows:

0 1 3 4 6 7 5 2 0

Since U2 is connected to V2, V3, V5, we obtain f2(D) ∈ Tie(D̃) from D by first deleting the

tie between V3 and U2. Then, we replace the black line in the blue part labeled by 3 with

the local configuration 3\2. Finally, we draw a tie between V2 and the new blue line. Hence,

f2(D) equals
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0 1 3 4 6 7 5 3 2 0

For simplicity, we denote the dominant chambers of A and Ã both by C+. Likewise, we

denote the antidominant chamber of A and Ã both by C−. Next, we define a map

{Chambers of A} −−→ {Chambers of Ã}, C 7→ C̃ (9.32)

as follows: Let C be a chamber of A and w ∈ SN such that C = w.C+. Then, the chamber C̃

of Ã is defined as C̃ := w̃.C+, where w̃ ∈ SN+1 is defined as w̃ := w̃2(w × id)w̃1, where

w̃1(i) =


i if i ≤ k′,

N + 1 if i = k′ + 1,

i− 1 if i > k′ + 1,

w̃2 = (i) =


i if i ≤ k,

i+ 1 if i > k and i ≤ N ,

k + 1 if i = N + 1.

Here, k′ := w−1(k). Diagrammatically, w̃ is obtained from w as follows:

1 2 k′ k′+1 k′+2 N N+1

w

1 2 k k+1 k+2 N N+1

Example 9.55. Let w = 31425 and k = 2. Then, w̃ is obtained from w by first increasing

all entries which are larger than 2 by 1 and then replacing the entry 2 by the two entries 23.

Hence, w̃ = 415236.

Theorem 9.56 (D5 Resolution Theorem). For all D, D′ ∈ Tie(D), i ∈ {1, . . . , c} and all

choices of chambers C of A, we have

γi · eT(N−
ι,C) · ι∗D(StabC(D′)) = φ∗(ι∗fc(D)(StabC̃(fi(D

′)))), (9.33)

where C̃ is defined as in (9.32) and the resolution coefficients γi ∈ H∗
T(pt) are defined in

Definition 9.57 below.

Remark. The D5 Resolution Theorem is proved in [BR23, Theorem 6.13] in the framework of

elliptic cohomology. The same proof can also be used here in torus equivariant cohomology.

The name D5 Resolution Theorem refers to the connection of the blue lines in brane diagrams

to brane systems from theoretical physics.

199



9. Equivariant multiplicities via a symmetric group calculus

We now come to the definition of the resolution coefficients γi: Let D̃c be the brane

diagram 0/1/2/ . . . /c − 1/c\1\0 and let T′ = (C∗)2 × C∗
h be the torus acting on C(D̃c). For

i = 1, . . . , c, let D̃i ∈ Tie(D̃c) be the tie diagram

D̃i = {(Vl, U1) | l ̸= i} ∪ {(Vi, U2)}.

That is, D̃i can is illustrated as follows:

0 c− i c− i+ 1 c 1 0

Vc Vi+1 Vi Vi−1 V1 U1 U2

Definition 9.57. For i ∈ {1, . . . , c}, the resolution coefficient γi ∈ H∗
T(pt) is defined as the

equivariant multiplicity

γi := φ̃∗(ι∗
D̃c

(StabC+(D̃i))),

where φ̃ : T→ T′, (t1, . . . , tN , h) 7→ (h−1tk, tk).

Equivariant multiplicities via the D5 Resolution Theorem

We now use Theorem 9.56 to connect the equivariant multiplicities of the renormalized stable

basis elements of C(D) and C(D̃).

Proposition 9.58. For all D, D′ ∈ Tie(D) and i ∈ {1, . . . , c}, we have( c−1∏
i=1

ih
)
· ι∗D(S̃tabC(D′)) = φ∗(ι∗fc(D)(S̃tabC̃(fi(D

′)))).

To prove Proposition 9.58, we use the following proposition which connects Nι and the

bundles ND, ND̃ from Definition 9.21.

Proposition 9.59. We have( c−1∏
i=2

ih
)
· eT(N−

D,C) = eT(N−
ι,C) · eT(ι∗N−

D̃,C̃).

Proof. By Theorem 9.52, we have

ι∗[N−
D̃,C̃]− [N−

D,C]

=
( c−2∑
i=1

hiι∗[C∨
Ũk
⊗ CŨk+1

]
)
−
(

[Hom(ξU+
k
,CUk

)] + h[Hom(CUk
, ξU+

k
)]
)−
C
.

(9.34)

Since ι is φ-equivariant, we have ι∗[C∨
Ũk
⊗ CŨk+1

] = h in KT(C(D)). Thus, we conclude

c−2∑
i=1

hiι∗[C∨
Ũk
⊗ CŨk+1

] =

c−1∑
i=2

hi.

By Corollary 9.53, the other term in (9.34) equals [N−
ι,C]. Hence, taking Euler classes on both

sides of (9.34) completes the proof.
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Next, we determine the resolution coefficients γi, for i = 1, . . . , c. For this, note that

the brane diagram Dc = 0\1/1/ . . . /1/1\0 from (6.1) is Hanany–Witten equivalent to D̃c.
Let Φ: C(Dc)

∼−→ C(D̃c) be the the corresponding Hanany–Witten isomorphism. By Propo-

sition 2.52, Φ is equivariant with respect to the automorphism φc : T′ ∼−→ T′, (t1, t2, h) 7→
(t1h

c, t2, h). Moreover, Proposition 3.18 yields Φ−1(xD̃i
) = xDi , where Di ∈ Tie(D) is as in

(6.4). In pictures, Di transforms into D̃i as follows:

U1 U2Vc Vi+1 Vi−1 V1Vi U1 U2Vc Vi+1 Vi−1 V1Vi

Proposition 9.60. We have γi = h, for all i = 1, . . . , c.

Proof. Recall from Proposition 6.5 that

ι∗Dc
(StabC+(Di)) =

t2 − t1 + ch if i = c,

h if i ̸= c.

Hence, Proposition 5.13 gives ι∗D̃c
(StabC+(D̃i)) = (φ∗

c)
−1(ι∗Dc

(StabC+(Di))) = t2 − t1. Thus,

we conclude γi = φ̃∗(t2 − t1) = h.

Proof of Proposition 9.58. By Theorem 9.56, we have

φ∗(ι∗fc(D)S̃tabC̃(fi(D
′))) = φ∗(γi) · eT(N−

ι,C) · eT(ι∗N−
D̃,C̃) · ι∗D(StabC(D′)). (9.35)

By Proposition 6.5, φ(γi) = h and by Proposition 9.59, we have

eT(N−
ι,C) · eT(ι∗N−

D̃,C̃) =
( c−1∏
i=2

ih
)
· eT(N−

D,C).

Thus, we have

(9.35) =
( c−1∏
i=1

ih
)
· eT(N−

D,C) · ι∗D(StabC(D′)) =
( c−1∏
i=1

ih
)
· ι∗D(S̃tabC(D′))

which proves the proposition.

Equivariant multiplicities via cotangent bundles of flag varieties

Next, we employ Proposition 9.58 to show that the equivariant multiplicities of stable ba-

sis elements of C(D) can be computed in terms of equivariant multiplicities of stable basis

elements of cotangent bundles of partial flag varieties.

Define a map

ψD : SN −−→ Sn, (9.36)

where for z ∈ SN , the permutation ψD(z) is defined as

(ψD(z))
(( j−1∑

i=1

cz(i)

)
+ l

)
= Cz(j)−1 + l, for j = 1, . . . , N , l = 1, . . . , cz(j).
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9. Equivariant multiplicities via a symmetric group calculus

That is, ψD(z) maps 1, . . . , cz(1) to Cz(1)−1 + 1, . . . , Cz(1) and cz(1) + 1, . . . , cz(1) + cz(2) to

Cz(2)−1 + 1, . . . , Cz(2) etc.

Example 9.61. Let N = 3, c = (3, 2, 2) and z = 231. Then, ψD(z) is obtained from z by

replacing 2 with 45, 3 with 67 and 1 with 123. Hence, ψD(z) = 4567123.

In general, note that if z = id then also ψD(z) = id.

Proposition 9.62. For C = z.C+, D, D′ ∈ Tie(D) and u ∈ Sc, we have

( N∏
i=1

ci−1∏
j=1

(jh)ci−j
)
ι∗D(S̃tabC(D′)) = Ψ′

D(ι∗Resid(D)(StabψD(z).C+
(Resu(D′)))),

where Ψ′
D is defined as in Theorem 9.42.

Proof. We prove the statement by induction on CN −N . If CN −N = 0 then c = (1, . . . , 1)

and thus D = D(R1, . . . , RM−1;n). As D = Res(D), the statement is trivial. Suppose now

that CN −N > 0. As before, let Uk ∈ b(D) with ck(D) > 1. In addition, let D̃, C̃, c, and φ

be as in the previous subsection.

Claim 9.63. Let y ∈ SN+1 be the unique permutation such that C̃ = y.C+. Then, ψD(z) =

ψD̃(y).

Proof of Claim 9.63. Let k′ := z−1(k) and set l0 :=
∑k′−1

i=1 cz(i), l1 :=
∑k′

i=1 cz(i). Since

cz(j) = c̃y(j), for j = 1, . . . , k′ − 1, we deduce

(ψD(z))(i) = (ψD̃(y))(i), for i = 1, . . . , l0.

By construction, cz(k′) = c̃y(k′) + 1 which yields

(ψD(z))(i) = (ψD̃(y))(i), for i = l0 + 1, . . . , l1 − 1.

Moreover, c̃y(k′+1) = c̃k+1 = 1 gives (ψD(z))(l1) = (ψD̃(y))(l1). Finally, cz(j) = c̃y(j+1), for

j = k′, . . . , N implies

(ψD(z))(i) = (ψD̃(y))(i), for i = l1 + 1, . . . , n.

Thus, we proved ψD(z) = ψD̃(y).

Write u = u1 × . . .× uN and let i0 := uk(c). Note that Resid(D) = Resid(fc(D)). Set

ũ := u1 × . . .× uk−1 × ũk × id×uk+1 × . . .× uN ∈ Sc(D̃),

where ũk ∈ Sc−1 is defined as

ũk(j) =

uk(j) if uk(j) < i0,

uk(j)− 1 if uk(j) > i0.

Then, Resu(D) = Resũ(fi(D)). Hence, applying the induction hypothesis to C(D̃) gives

(N+1∏
l=1

c̃l−1∏
j=1

(jh)cl−j
)
ι∗fc(D)(S̃tabC̃(fi(D

′))) = Ψ′
D̃(ι∗Resid(D)(StabψD̃(y).C+

(Resu(D′)))). (9.37)
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By Proposition 9.58,

( N∏
l=1

cl−1∏
j=1

(jh)cl−j
)
ι∗D(S̃tabC(D′)) =

(N+1∏
l=1

c̃l−1∏
j=1

(jh)c̃l−j
)
· φ∗(ι∗fc(D)S̃tabC̃(fi(D

′))). (9.38)

Since φ∗Ψ′
D̃ = Ψ′

D, we obtain from (9.37) that

(9.38) = Ψ′
D(ι∗Resid(D)(StabψD̃(y).C+

(Resu(D′)))).

Finally, Claim 9.63 gives ψD̃(y) = ψD(z) and hence completes the proof.

Proofs of main theorems

We now come to the proofs of Theorem 9.42, Theorem 9.20 and Theorem 9.44.

Proof of Theorem 9.42. Let D, D′ ∈ Tie(D) and u ∈ Sc. Choosing z = id in Proposition 9.62

gives ( N∏
i=1

ci−1∏
j=1

(jh)ci−j
)
· ι∗D(S̃tabC+(D′)) = Ψ′

D(ι∗Resid(D)(StabC+(Resu(D′))))

which proves Theorem 9.42.

Next, we prove the following special case of Theorem 9.20:

Proposition 9.64. For all D, D′ ∈ Tie(D) and z ∈ SN , we have

ι∗D(S̃tabC+(D′)) = z−1.
(
ι∗z.D(S̃tabz.C+(z.D′))

)
.

We use the following property of the map ψD from (9.36):

Lemma 9.65. Let D ∈ Tie(D) and z ∈ SN . Then, we have

Resid(D) = ψD(z).Resid(z−1.D).

Proof. Let i ∈ {1, . . . , N} and set c := cz(i). Suppose the blue line Uz(i) ∈ b(D) is connected

to the red lines Vj1 , . . . , Vjc with j1 < . . . < jc. Let l ∈ {1, . . . , c}. Then, in Resid(D), we

have that UCz(i)−1+l is just connected to Vjl . Set i0 :=
∑i−1

j=1 cz(j). Note that in Resid(z−1.D),

the blue line Ui0+l is just connected to Vjl . As ψD(i0 + l) = Cz(i)−1 + l, we deduce that

also in ψD(z).Resid(z−1.D), the blue line UCz(i)−1+l is just connected to Vjl . Thus, we have

Resid(D) = ψD(z).Resid(z−1.D).

Proof of Proposition 9.64. We set

Ph :=
( N∏
i=1

ci(D)−1∏
j=1

(jh)ci(D)−j
)

=
( N∏
i=1

ci(z.D)−1∏
j=1

(jh)ci(z.D)−j
)
. (9.39)

By Proposition 9.62, we have

ι∗z.D(S̃tabz.C+(z.D′)) = Ph ·Ψ′
z.D(ι∗Resid(z.D)(S̃tabψz.D(z).C+

(Resid(z.D′)))). (9.40)
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Lemma 9.65 implies

Resid(z.D) = ψz.D(z).Resid(D), Resid(z.D′) = ψz.D(z).Resid(D′).

Thus, Proposition 9.17 gives

(9.40) = Ph ·Ψ′
z.D

(
ψz.D(z).

(
ι∗Resid(D)(StabC+(Resid(D′)))

))
. (9.41)

Note that Lemma 9.65 yields Ψ′
z.D(ψz.D(z).f) = z.(Ψ′

D(f)), for all f ∈ Q[t1, . . . , tn, h]. There-

fore, we conclude

(9.41) = Ph · z.
(

Ψ′
D(ι∗Resid(D)(StabC+(Resid(D′))))

)
. (9.42)

By Proposition 9.62, (9.42) equals Ph · z.(ι∗D(S̃tabC+(D′))) which completes the proof.

Proof of Theorem 9.20. Let z ∈ SN and set C := z.C+. Let D, D′ ∈ Tie(D) and w ∈ SN . By

Proposition 9.64, we have

ι∗D(S̃tabC(D′)) = z.
(
ι∗z−1.D(S̃tabC+(z−1.D′))

)
and

ι∗w.D(S̃tabw.C(w.D′)) = wz.
(
ι∗z−1.D(S̃tabC+(z−1.D′))

)
.

Thus, we deduce

ι∗D(S̃tabC(D′)) = w−1.
(
ι∗w.D(S̃tabw.C(w.D′))

)
which proves Theorem 9.20.

Next, we combine Theorem 9.20 and Theorem 9.42 to prove Theorem 9.44.

Proof of Theorem 9.44. We have to show that for all D, D′ ∈ Tie(D) and u ∈ Sc, we have

Ph · ι∗D(S̃tabC−(D′)) = ΨD(ι∗Resu0 (D)(StabC−(Resu(D′)))), (9.43)

where u0 = (w0,c1 × . . .× w0,cN ) ∈ Sc and Ph is as in (9.39). By Theorem 9.20,

Ph · ι∗D(S̃tabC−(D′)) = Ph · w0,N .(ι
∗
w0,N .D

(S̃tabC+(w0,N .D
′))). (9.44)

Theorem 9.42 then gives

(9.44) = w0,N .
(

Ψ′
w0,N .D(ι∗Resid(w0,N .D)(StabC+(Resu′(w0,N .D

′))))
)
, (9.45)

where u′ := u0u. Since w0,n.Resid(w0,N .D) = Resu0(D) and w0,n.Resu′(w0,N .D
′) = Resu(D′),

Proposition 9.17 yields

ι∗w0,N .Resid(D)(S̃tabC+(w0,N .(Resu′(D
′))) = w0,n.

(
ι∗Resu0 (D)(StabC−(Resu(D′)))

)
.

Note that w0,N .(Ψ
′
w0,N .D(w0,n.f)) = ΨD(f), for all f ∈ Q[t1, . . . , tn, h]. Therefore, we deduce

(9.45) = ΨD(ι∗Resu0 (D)(StabC−(Resu(D′)))).

Thus, we proved (9.43) and hence Theorem 9.20.
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Chapter 10

Chevalley–Monk fomulas for bow

varieties

The classical Chevalley–Monk Formula [Mon59], [Che94] is a fundamental ingredient of Schu-

bert calculus. This formula uniquely determines the ring structure of the singular cohomology

of partial flag varieties by expressing products of first Chern classes of tautological bundles

with Schubert classes as Z-linear combination of Schubert classes. The coefficients appearing

hereby admit a convenient description in terms of symmetric group calculus.

Passing from a partial flag variety F = F (d1, . . . , dM ;n) to its cotangent bundle T ∗F ,

the Chevalley–Monk Formula was generalized in [MO19, Theorem 10.1.1], see also [Su16,

Theorem 3.1]. The formula here determines the stable basis expansion of products of torus

equivariant first Chern classes of tautological bundles with stable basis elements. Since the

stable basis elements of T ∗F are one-parameter deformations of the (torus equivariant) Schu-

bert classes of F , this formula degenerates to the classical Chevalley–Monk formula, see

e.g. [AMSS23, Section 9.3] and therefore can be viewed as Chevalley–Monk formula for cotan-

gent bundles of partial flag varieties.

In this chapter, we generalize this formula away from the classical context of flag varieties

to the more general setup of bow varieties. The main result is Theorem 10.26, where we prove

a new formula which determines the stable basis expansion of the products c1(ξ) · StabC(p),

where ξ is a tautological bundle on a bow variety C(D). The appearing coefficients in this

basis expansion are characterized by certain swap moves on tie diagrams to which we refer

as simple moves, see Definition 10.3. In the special case, where the bow variety equals the

cotangent bundle of a partial flag variety, Theorem 10.26 specializes to the formula from

[MO19, Theorem 10.1.1]. Hence, we refer to the formula from Theorem 10.26 as Chevalley–

Monk formula for bow varieties.

As we will show in Proposition 10.1, the localized T-equivariant cohomology of any bow

variety C(D) is generated by the T-equivariant first Chern classes of the tautological bundles.

As a consequence, Theorem 10.26 uniquely determines the ring structure of H∗
T(C(D))loc.

To prove this Theorem 10.26, we employ two crucial ingredients. The first one is a divisi-

bility result, see Theorem 10.12, which gives a sufficient criterion for equivariant multiplicities

ι∗q(StabC(p)) to be divisible by the parameter h2. The second one is Theorem 10.15 which

determines approximations of equivariant multiplicities ι∗q(StabC(p)) in the case when they
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10. Chevalley–Monk fomulas for bow varieties

are not divisible by h2. We prove Theorem 10.12 and Theorem 10.15 via the diagrammatic

approximation formulas from Proposition 9.50.

10.1 Tautological divisors as generators

Let D be a fixed brane diagram. If V is a T-equivariant vector bundle over C(D), we denote

by ci(V) its i-th T-equivaraint Chern class.

We refer to the first T-equivariant Chern classes of the tautological bundles ξX on C(D)

as tautological divisors.

Proposition 10.1. The H∗
T(pt)loc-algebra H

∗
T(C(D))loc is generated by the elements c1(ξX),

for X ∈ h(D).

Proof. Set R := H∗
T(pt)loc, A := H∗

T(C(D))loc. Also set λD,X := ι∗D(c1(ξX)) ∈ R, for X ∈ h(D)

and D ∈ Tie(D). Let R[uX ;X ∈ h(D)] be the polynomial ring in formal variables uX . We

have to show that the R-algebra homomorphism F : R[uX ;X ∈ h(D)] → A, uX 7→ c1(ξX)

is surjective. By Theorem 5.5, the inclusion ι : C(D)T ↪→ C(D) induces an isomorphism of

R-algebras ι∗ : A
∼−→ H∗

T(C(D)T)loc ∼=
∏
D∈Tie(D)H

∗
T({xD})loc. Let eD ∈ A be the idempotent

in A corresponding to the factor H∗
T({xD})loc, i.e. eD is the unique element in A such that

eD ∈
⋂

D′∈Tie(D)
D′ ̸=D

ker(ι∗D′) and eD ≡ 1 mod ker(ι∗D).

Note that F is surjective if and only if all idempotents eD are contained in the image of F .

For D ∈ Tie(D), define ideals

aD := ((uX − λD,X);X ∈ h(D)) ⊂ R[uX ;X ∈ h(D)].

Note that F (aD) ⊂ ker(ι∗D). We claim that the ideals aD are pairwise coprime. Indeed, if

D ̸= D′ then there exists Ui ∈ b(D) and Xj ∈ h(D) with dD,Ui,Xj ̸= dD′,Ui,Xj
. By (3.8),

λD,Xj =
∑

U∈b(D)

dD,U,X∑
l=cD,U,X

(tU + (l + 1− dD,U,U−)h),

λD′,Xj
=

∑
U∈b(D)

dD′,U,X∑
l=cD′,U,X

(tU + (l + 1− dD′,U,U−)h).

Hence, λD,Xj −λD′,Xj
is a unit in R. Since λD,Xj −λD′,Xj

= (λD,Xj −uXj ) + (uXj −λD′,Xj
),

we deduce (λD,Xj − λD′,Xj
) ∈ aD + aD′ and therefore aD + aD′ = R[uX ;X ∈ h(D)]. Thus,

aD and aD′ are coprime. Now, by the Chinese Remainder Theorem, we have that for all

D ∈ Tie(D), there exists an element fD ∈ R[uX ;X ∈ h(D)] such that

fD ∈
⋂

D′∈Tie(D)
D′ ̸=D

aD′ and fD ≡ 1 mod aD.

Consequently, F (fD) = eD which proves the surjectivity of F .
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10.2. Chevalley–Monk formula in the separated case

10.2 Chevalley–Monk formula in the separated case

In this section, we state and prove the Chevalley–Monk formulas for the tautological bundles

associated to D in the case where D is separated. In the upcoming section, we then derive

the general Chevalley–Monk formula for tautological bundles corresponding to general brane

diagrams using Hanany–Witten transition.

Assumption. Until the end of Section 10.6, we assume that D is separated.

Recall from Proposition 8.22 that the tautological bundles ξM+1, . . . , ξM+N+1 are con-

stant. Hence, we focus on characterizing the multiplication of c1(ξ1), . . . , c1(ξM ).

Chevalley–Monk formula for the antidominant chamber

We first restrict our attention to the antidominant chamber C−. In this case, the Chevalley–

Monk formula is given as follows:

Theorem 10.2 (Chevalley–Monk formula for antidominant chamber). Let D ∈ Tie(D).

Then, we have the following identity in H∗
T(C(D))loc:

c1(ξi) · StabC−(D) = ι∗D(c1(ξi)) · StabC−(D) +
∑

D′∈SMD,i

sgn(D,D′)h · StabC−(D′),

for i = 1, . . . ,M . Here, the set of simple moves SMD,i is defined in (10.1) and the signs of

simple moves sgn(D,D′) ∈ {±1} are defined in Definition 10.7.

The proof of Theorem 10.2 is given in Section 10.4. We first give the definitions relevant

for the theorem. We begin with the notion of simple moves and moving ties:

Definition 10.3. Let D, D′ ∈ Tie(D). We say that D′ is obtained from D via a simple

move if there exist 1 ≤ i1 < i2 ≤M and 1 ≤ j1 < j2 ≤ N such that (Vi1 , Uj1), (Vi2 , Uj2) ∈ D,

(Vi1 , Uj2), (Vi2 , Uj1) ∈ D′ and

D \ {(Vi1 , Uj2), (Vi2 , Uj1)} = D′ \ {(Vi1 , Uj1), (Vi2 , Uj2)}.

We call (Vi1 , Uj1) the right moving tie and (Vi2 , Uj2) the left moving tie of D. Let SMD be

the set of all tie diagrams that are obtained from D via a simple move.

Pictorially, simple moves can be described as switching two ties as illustrated:

Vi2 Vi1 Uj1 Uj2 Vi2 Vi1 Uj1 Uj2

Example 10.4. Let D = 0/1/3/4/5\4\3\1\0 and
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D =
0 1 3 5 4 3 2 0

Since (V1, U1), (V3, U3) ∈ D and (V3, U1), (V1, U3) /∈ D, the set

D′ = (D ∪ {(V3, U1), (V1, U3)}) \ {(V1, U1), (V3, U3)}

is a tie diagram that is obtained from D via a simple move which replaces the tie (V2, U1) with

(V2, U3) and the tie (V4, U3) with (V4, U1). This simple move can be illustrated as follows:

0 1 3 5 4 3 2 0 0 1 3 5 4 3 2 0

Here, we highlighted the ties which are involved in the simple move in green.

The bijection between tie diagrams and binary contingency tables from Proposition 3.5

then gives the following equivalent characterization of simple moves:

Lemma 10.5. Let D, D′ ∈ Tie(D). Then, D′ is obtained from D via a simple move if and

only if there exist 1 ≤ i1 < i2 ≤M and 1 ≤ j1 < j2 ≤ N such that

(i) M(D)i1,j1 = M(D)i2,j2 = 1 and M(D)i1,j2 = M(D)i1,j2 = 0,

(ii) M(D′)i1,j1 = M(D′)i2,j2 = 0 and M(D′)i1,j2 = M(D′)i1,j2 = 1,

(iii) M(D)l,k = M(D′)l,k, for (l, k) /∈ {(i1, j1), (i2, j1), (i1, j2), (i2, j2)}.

Proof. By Proposition 3.5, the condition (i) is equivalent to

(Vi1 , Uj1), (Vi2 , Uj2) ∈ D and (Vi1 , Uj2), (Vi2 , Uj1) /∈ D.

Likewise, (ii) is equivalent to

(Vi1 , Uj2), (Vi2 , Uj1) ∈ D′ and (Vi1 , Uj1), (Vi2 , Uj2) /∈ D′.

Finally, (iii) is equivalent to the condition

(Vl, Uk) ∈ D ⇔ (Vl, Uk) ∈ D′, for (l, k) /∈ {(i1, j1), (i2, j1), (i1, j2), (i2, j2)}.

Thus, the conditions (i)-(iii) are satisfied if and only if D′ is obtained from D via a simple

move with right moving tie (Vi1 , Uj1) and left moving tie (Vi2 , Uj2).

If M(D), M(D′) ∈ bct(D), we say that M(D′) is obtained from M(D) via a simple move

if and only if D′ is obtained from D via a simple move. Equivalently, M(D′) is obtained from

M(D) via a simple move if and only if the conditions (i)-(iii) from Lemma 10.5 are satisfied.

Example 10.6. Let D, D and D′ be as in Example 10.4. The binary contingency tables of

D and D′ are given as
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M(D) =

0 0 1 0

0 1 1 0

1 0 0 1

M(D′) =
1 0 0 0

0 1 1 0

0 0 1 1

By Lemma 10.5, the simple move which turns D into D′ corresponds to replacing the 0-

entries M(D)1,1, M(D)3,3 with 1-entries and replacing the 0-entries M(D)1,3, M(D)3,1 with

1-entries:

0 0 1 0

0 1 1 0

1 0 0 1

1 0 0 0

0 1 1 0

0 0 1 1

For Xi ∈ h(D) with i ∈ {1, . . . ,M}, we define the set of simple moves relative to Xi as

SMD,i = {D′ ∈ Tie(D) | D′ satisfies (a), (b) and (c)}, (10.1)

where

(a) D′ is obtained from D via a simple move,

(b) if (Vi1 , Uj1) is the right moving tie of D then Xi ◁ Vi1 ,

(c) if (Vi2 , Uj2) is the left moving tie of D then Vi2 ◁ Xi.

For instance, if D and D′ are in Example 10.4 then, as the moving ties of D are (V1, U1)

and (V3, U3), D
′ is contained in SMD,i for i = 1, 2, 3.

Next, we define the sign of a simple move:

Definition 10.7. Let D′ ∈ SMD with left moving tie (Vi1 , Uj1) and right moving tie (Vi2 , Uj2).

Then, we define

sgn(D,D′) :=

1 if n1 + n2 is even,

−1 if n1 + n2 is odd,

where

n1 := |{(Vi1 , Uj) | j1 < j < j2}|, n2 := |{(Vi2 , Uj) | j1 < j < j2}|.

We call sgn(D,D′) the sign of the simple move between D and D′.

Thus, all notions appearing in Theorem 10.2 are introduced.

Example 10.8. Let D = 0/1/3/4/5\4\3\1\0 and

D =
0 1 3 4 5 4 3 1 0

We now use Theorem 10.2 to determine c1(ξi) ·StabC−(D), for i = 3. The next picture shows

all simple moves which are contained in SMD,i.
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D 1 3 4 5 4 3 1 D1
1 3 4 5 4 3 1

D 1 3 4 5 4 3 1 D2
1 3 4 5 4 3 1

D 1 3 4 5 4 3 1 D3
1 3 4 5 4 3 1

D 1 3 4 5 4 3 1 D4
1 3 4 5 4 3 1

Here, we highlighted the moving ties of the respective simple moves and we omitted the

horizontal black lines on the boundary of the tie diagrams. From the picture, we deduce that

SMD,i = {D1, D2, D3, D4}, where

D1 = (D ∪ {(V2, U3), (V4, U1)}) \ {(V2, U1), (V4, U3)},

D2 = (D ∪ {(V2, U2), (V3, U1)}) \ {(V2, U1), (V3, U2)},

D3 = (D ∪ {(V2, U4), (V3, U1)}) \ {(V2, U1), (V3, U4)},

D4 = (D ∪ {(V1, U4), (V3, U3)}) \ {(V1, U3), (V3, U4)}.

(10.2)

From the diagram one can easily read off the respective signs:

sgn(D,D1) = sgn(D,D2) = sgn(D,D4) = 1, sgn(D,D3) = −1.

By (3.8), we have an isomorphism of T-representations ι∗D(ξi) ∼= h−2CU2 ⊕h−2CU3 ⊕h−2CU4 .

Thus, ι∗D(c1(ξi)) = t2 + t3 + t4 − 6h and hence, Theorem 10.2 gives

c1(ξi) · StabC−(D) = (t2 + t3 + t4 − 6h)StabC−(D) + hStabC−(D1) + hStabC−(D2)

− hStabC−(D3) + hStabC−(D4).

The sign

In this subsection, we give an interpretation of sgn(D,D′) in terms of permutations assigned

to the double cosets of D and D′. From this, we deduce that after appropriate normalization

of the stable basis all off-diagonal entries in the Chevalley–Monk formula become equal to

−h.

Given a tie diagram D and D′ ∈ SMD with right moving tie (Vi1 , Uj1) and left moving

tie (Vi2 , Uj2). Let w̃D′ = w̃M(D′) ∈ Sn be the shortest (Sc, Sc)-double coset representative

from Definition 9.31. Since (Vi1 , Uj2) ∈ D′, there exist a unique f1 ∈ {Ri1−1 + 1, . . . , Ri1}
such that w̃D′(f1) ∈ {Cj2−1 + 1, . . . , Cj2}. Likewise, as (Vi2 , Uj1) ∈ D′, there exists a unique

f2 ∈ {Ri2−1 + 1, . . . , Ri2} with w̃D′(f2) ∈ {Cj1−1 + 1, . . . , Cj1}. We set

ỹD := w̃D′ ◦ (f1, f2). (10.3)
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1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

w̃D′ ỹD

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 10.1: Construction of ỹD from Example 10.9. We highlighted the strands and the
crossing whose resolution gives ỹD.

Since D′ is obtained from D via a simple move with moving ties (Vi1 , Uj1) and (Vi2 , Uj2), we

conclude that ỹD ∈ w̃DSr.
The permutation ỹD has the following diagrammatic interpretation: Let dw̃D′ be a reduced

diagram of w̃D′ . Since (Vi1 , Uj2) ∈ D′ there exists a unique strand λ1 in dw̃D′ starting

in {Ri1−1 + 1, . . . , Ri1} and ending in {Cj2−1 + 1, . . . , Cj2}. Likewise, as (Vi2 , Uj1) ∈ D′

there is also a unique strand λ2 in dwD′ which starts in {Ri2−1 + 1, . . . , Ri2} and ends in

{Cj1−1 + 1, . . . , Cj1}. As i1 < i2 and j1 < j2, the strands λ1 and λ2 intersect exactly once.

Resolving the crossing of λ1 and λ2 then gives a diagram for the permutation ỹD.

Example 10.9. Consider the simple move:

3 5 7 10 8 5 3 2 3 5 7 10 8 5 3 2

We denote the tie diagram on the left by D and the one on the right by D′. The moving

ties are (V2, U1) and (V3, U5). Note that n = 10, r = (3, 2, 2, 3) and c = (2, 3, 2, 1, 2). By

construction, the binary contingency table M(D′) equals the matrix A from Example 9.30,

where we also constructed the corresponding shortest (Sc, Sr)-double coset representative

w̃D′ = 13961024578. We have w̃D′(5) ∈ {9, 10} = {C3 + 1, . . . , C4} and w̃D′(6) ∈ {1, 2} =

{C0 + 1, . . . , C1} , so f1 = 5 and f2 = 6. This gives ỹD = 13962104578. The diagrammatic

construction of ỹD is illustrated in Figure 10.1.

Comparing the length of w̃D and ỹD gives the sign we attached to D and D′:

Proposition 10.10. We have (−1)l(w̃D)+l(ỹD) = sgn(D,D′).

Proof. By construction, w̃D′(Ri−1 + l) ∈ {CFM(D′),i(l)−1 + 1, . . . CFM(D′),i(l)
}, for all i, l, where

FM(D′),i is defined as in (9.19). This directly implies that the set

{(i, j) | there exists l with Rl−1 + 1 ≤ i < j ≤ Rl and ỹD(i) > ỹD(j)}

equals

{(f1, f1 + 1), . . . , (f1, f1 + n1)} ∪ {(f2 − 1, f2), . . . , (f2 − n2, f2)}.

Here, n1 and n2 are as in Definition 10.7. Since w̃D is the shortest representative of ỹDSr,

we conclude l(ỹD) = l(w̃D) + n1 + n2 which proves the proposition.
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10. Chevalley–Monk fomulas for bow varieties

Theorem 10.2 implies now a Chevalley–Monk formula with simplified signs:

Corollary 10.11. Let D ∈ Tie(D). Then, the following identity holds in H∗
T(C(D))loc :

c1(ξi) · Stab′
C−(D) = ι∗D(c1(ξi)) · Stab′

C−(D)− h ·
( ∑
D′∈SMD,i

Stab′
C−(D′)

)
,

for i = 1, . . . ,M , where Stab′
C−(T ) = (−1)l(w̃T )StabC−(T ) for T ∈ Tie(D).

Proof. By construction, ỹD is obtained from w̃D′ by precomposition with a transposition.

Hence, we have (−1)l(ỹD) = (−1)l(w̃D′ )+1. Thus, Proposition 10.10 yields

sgn(D,D′) = (−1)l(w̃D)+l(ỹD) = (−1)l(w̃D)+l(w̃D′ )+1

which proves the corollary.

10.3 Divisibility and Approximation

We now consider divisibility and approximation theorems for equivariant multiplicities of

stable basis elements. These results are essential ingredients of the proof of Theorem 10.2.

We first formulate the theorems and deduce some consequences. The proofs are then given

in Section 10.5.

Theorem 10.12 (h2-Divisibility). The equivariant multiplicity ι∗D′(StabC−(D)) is divisible

by h2, for D ∈ Tie(D) and D′ /∈ SMD ∪ {D}.

By applying Theorem 9.20, we deduce the analogous result for the chamber C+:

Corollary 10.13. We have that ι∗D(StabC+(D′)) is divisible by h2, for D ∈ Tie(D) and

D′ /∈ SMD ∪ {D}.

Proof. As before, let w0,N ∈ SN be the longest element. By Theorem 9.20, we have

ι∗D(S̃tabC+(D′)) = w0,N .
(
ι∗w0,N .D

(S̃tabC−(w0,N .D
′))
)
. (10.4)

Here, S̃tabC+(D′) and S̃tabC−(w0,N .D
′) are the renormalized stable basis elements from Defin-

tion 9.24. Since D′ /∈ SMD if and only if w0,N .D /∈ SMw0,N .D′ , Theorem 10.12 implies that

the right hand side of (10.4) is divisible by h2. Thus, ι∗D(S̃tabC+(D′)) is divisible by h2 and

hence also ι∗D(StabC+(D′)).

Combining Theorem 10.12 and Corollary 10.13 gives the following divisibility result:

Corollary 10.14 (h2-Divisibility of products). Let D, D′, T ∈ Tie(D) such that T /∈ {D,D′}
or D′ /∈ SMD ∪ {D}. Then, we have

ι∗T (StabC−(D) · StabC+(D′)) ≡ 0 mod h2. (10.5)

Proof. If T /∈ {D,D′} then the smallness condition implies that both ι∗T (StabC−(D)) and

ι∗T (StabC+(D′)) are divisible by h which gives that (10.5) is divisible by h2. If T = D and

D′ /∈ SMD ∪{D} then, by Corollary 10.13, ι∗T (StabC+(D′)) is divisible by h2 and so is (10.5).

Likewise, if T = D′ and D′ /∈ SMD ∪ {D} then Theorem 10.12 implies that ι∗T (StabC−(D)) is

divisible by h2 and hence also (10.5).
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The next theorem determines h2-approximations of equivariant multiplicities of stable

basis elements labeled by tie diagrams which differ by a simple move:

Theorem 10.15 (h2-Approximation). Let D ∈ Tie(D) and D′ ∈ SMD with (Vi1 , Uj1) be the

right moving tie and (Vi2 , Uj2) be the left moving tie of D. Then, we have

ι∗D′(StabC−(D))

eT(TD′C(D)−C−
)
≡ sgn(D,D′)

h

tj1 − tj2
mod h2

in S−1
0 H∗

T(C(D)). Here, S0 is defined as in (7.2).

Using Theorem 9.20, we again deduce the analogous statement for C+:

Corollary 10.16. Let D ∈ Tie(D) and D′ ∈ SMD with (Vi1 , Uj1) be the right moving tie and

(Vi2 , Uj2) be the left moving tie of D. Then, we have

ι∗D(StabC+(D′))

eT(TDC(D)−C+
)
≡ sgn(D,D′)

h

tj2 − tj1
mod h2

in S−1
0 H∗

T(C(D)).

Proof. By the definition of S̃tab, we have

ι∗D(StabC+(D′))

eT(TDC(D)−C+
)

=
ι∗D(S̃tabC+(D′))

ι∗D(S̃tabC+(D))
,

ι∗D(StabC−(D′))

eT(TDC(D)−C−
)

=
ι∗D(S̃tabC−(D′))

ι∗D(S̃tabC−(D))
. (10.6)

In addition, Theorem 9.20 yields

ι∗D(S̃tabC+(D′))

ι∗D(S̃tabC+(D))
= w0,N .

( ι∗w0,N .D
(S̃tabC−(w0,N .D

′))

ι∗w0,N .D
(S̃tabC−(w0,N .D))

)
. (10.7)

The tie diagram w0,N .D is obtained from w0,N .D
′ via a simple move, where (Vi1 , UN−j2+1)

is the right moving tie and (Vi2 , UN−j1+1) is the left moving tie of w0,N .D
′. Thus, we have

ι∗D(StabC+(D′))

eT(TDC(D)−C+
)

= w0,N .

( ι∗w0,N .D
(StabC−(w0,N .D

′))

eT(Tw0,N .DC(D)−C−
)

)
≡ w0,N .

(
sgn(w0,N .D

′, w0,N .D)
h

tN−j2+1 − tN−j1+1

)
mod h2

≡ sgn(D,D′)
h

tj2 − tj1
mod h2,

where the first equality follows from (10.6) and (10.7), the subsequent congruence from The-

orem 10.15 and the final congruence from sgn(D,D′) = sgn(w0,N .D
′, w0,N .D).

Example 10.17. Let D and D1 be as in Example 10.8. To determine the (modulo h2)-

approximation of the fraction
ι∗D1

(StabC−(D))

eT(TD1C(D)−C−
)
,

note that that D1 is obtained from D via a simple move with right moving tie (V1, U1) and

left moving tie (V4, U3). Moreover, we showed in Example 10.8 that sgn(D,D1) = 1. Thus,

Theorem 10.15 yields
ι∗D1

(StabC−(D))

eT(TD1C(D)−C−
)
≡ h

t1 − t3
mod h2.
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10. Chevalley–Monk fomulas for bow varieties

Remark. In the framework of partial flag varieties, the results of this section are contained

in [Su17, Corollary 3.8].

10.4 Proof of Theorem 10.2

We begin with the following auxiliary statement:

Lemma 10.18. Let D ∈ Tie(D), D′ ∈ SMD with right moving tie (Vi1 , Uj1) and left moving

tie (Vi2 , Uj2). Then, we have

ι∗D′(c1(ξi))− ι∗D(c1(ξi)) ≡

tj1 − tj2 mod h if D ∈ SMD,i,

0 mod h if D /∈ SMD,i.

Proof. From (3.8), we obtain

ι∗T (c1(ξi)) =
∑

U∈b(D)

dT,U,Xiti mod h, for all T ∈ Tie(D), (10.8)

where dT,U,Xi is defined as in Definition 3.8. According to the relative position of Xi with

respect to Vi1 and Vi2 we have the three cases illustrated as follows:

(1)
Xi

Vi2 Vi1 Uj1 Uj2 Vi2 Vi1 Uj1 Uj2
Xi

(2)

Vi2 Vi1 Uj1 Uj2
Xi

Vi2 Vi1 Uj1 Uj2
Xi

(3)

Vi2 Vi1 Uj1 Uj2
Xi

Vi2 Vi1 Uj1 Uj2
Xi

In the first and third case, we have dD,U,Xi = dD′,U,Xi
, for all U ∈ b(D). Hence, (10.8)

yields ι∗D′(c1(ξi)) − ι∗D(c1(ξi)) ≡ 0 mod h, for D′ /∈ SMD,i. The second case is equivalent to

D′ ∈ SMD,i. In this case, we have

dD,U,Xi =


dD′,U,Xi

if U ∈ b(D) \ {Uj1 , Uj2},

dD′,U,Xi
− 1 if U = Uj1 ,

dD′,U,Xi
+ 1 if U = Uj2 .

Thus, (10.8) gives ι∗D′(c1(ξi))− ι∗D(c1(ξi)) ≡ tj1 − tj2 mod h, for D′ ∈ SMD,i.

Proof of Theorem 10.2. By Theorem 7.8, we have to show

(c1(ξi) · StabC−(D),StabC+(D′))virt =


ι∗D(c1(ξi)) if D′ = D,

sgn(D,D′)h if D′ ∈ SMD,i,

0 otherwise.

(10.9)
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10.4. Proof of Theorem 10.2

By Theorem 7.6, the virtual scalar product in (10.9) is a linear polynomial in the equivariant

parameters. Hence, it suffices to prove the above equality in H∗
T(pt)/(h2). Suppose first

that D = D′. By Theorem 4.23, the partial orders ⪯+=⪯C+ and ⪯−=⪯C− as defined

in (4.8) are opposite. Thus, the support condition for stable basis elements implies that

ι∗T (StabC−(D)) = 0, for T ̸⪯− D and ι∗T (StabC+(D)) = 0, for T ≺− D. Therefore, we have

(c1(ξi) · StabC−(D), StabC+(D))virt =
∑

D′′∈C(D)T

ι∗D′′(c1(ξi) · StabC−(D) · StabC+(D))

eT(TD′′C(D))

=
ι∗D(c1(ξi) · StabC−(D) · StabC+(D))

eT(TDC(D))
.

(10.10)

Then, the normalization condition yields

(10.10) =
ι∗D(c1(ξi)) · eT(TDC(D)−C−

) · eT(TDC(D)−C+
)

eT(TDC(D))
= ι∗D(c1(ξi)).

This proves (10.9) for D = D′. Next, we assume D′ ∈ SMD and let (Vi1 , Uj1) be the right

moving tie and (Vi2 , Uj2) be the left moving tie of D. By Corollary 10.14, we have modulo

h2:

(c1(ξi) · StabC−(D),StabC+(D′))virt ≡
ι∗D(c1(ξi) · StabC−(D) · StabC+(D′))

eT(TDC(D))

+
ι∗D′(c1(ξi) · StabC−(D) · StabC+(D′))

eT(TD′C(D))
.

(10.11)

Then, Corollary 10.13 and the normalization condition imply

ι∗D(c1(ξi) · StabC−(D) · StabC+(D′))

eT(TDC(D))
≡ sgn(D,D′)h

ι∗D(c1(ξi))

tj2 − tj1
mod h2, (10.12)

whereas Theorem 10.15 combined with the normalization condition gives

ι∗D′(c1(ξi) · StabC−(D) · StabC+(D′))

eT(TD′C(D))
≡ sgn(D,D′)h

ι∗D′(c1(ξi))

tj1 − tj2
mod h2. (10.13)

Inserting (10.12) and (10.13) in (10.11) yields

(10.11) ≡ sgn(D,D′)h
ι∗D(c1(ξi))− ι∗D′(c1(ξi))

tj2 − tj1
mod h2. (10.14)

Now, Lemma 10.18 implies

(10.14) ≡

sgn(D,D′)h mod h2 if D ∈ SMD,i,

0 mod h2 if D /∈ SMD,i.

Thus, we proved (10.9) for D′ ∈ SMD. Finally, it remains to prove (10.9) for D′ /∈ SMD∪{D}.
By Corollary 10.14, this assumption implies that h2 divides all equivariant multiplicities

ι∗T (StabC−(D) · StabC+(D′)). Thus, we conclude

(c1(ξi) · StabC−(D), StabC+(D′))virt ≡ 0 mod h2

which proves (10.9) for D′ /∈ SMD ∪ {D}. This completes the proof of Theorem 10.2.
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10.5 Proofs of Theorem 10.12 and Theorem 10.15

Recall the notation from Section 9.6 and Section 9.7.

Note that by Proposition 8.44, it suffices to show Theorem 10.12 for essential brane dia-

grams as defined in introduction of Chapter 8. Hence, we assume throughout this subsection

that D is essential.

Our crucial tool is the following:

Lemma 10.19. Let D, D′ ∈ Tie(D), z ∈ wD′Sr and dz a reduced diagram of shape (9.27).

Suppose K(dz, wD, 1) ̸= ∅, where K(dz, wD, 1) is defined as in Proposition 9.50. Then, we

have D′ ∈ SMD ∪ {D}.

Proof. Given K ∈ K(dz, wD, 1) then, as dz is of shape (9.27), we distinguish between the

following two cases:

(1) all crossings in K are contained in the boxes corresponding to w0,c1 , . . . , w0,cN and

v1, . . . , vM ,

(2) exactly one crossing κ0 ∈ K is contained in the box corresponding to w̃D′ and the

remaining crossings of K are contained in the boxes corresponding to w0,c1 , . . . , w0,cN .

If (1) is satisfied then resolving all crossings contained in K from dz still gives a permutation

in ScwD′Sr. Thus, we have ScwDSr=ScwD′Sr which implies D = D′ by Corrolary 9.27.

Assume now that (2) is satisfied. Let dw̃D′ be the reduced diagram for w̃D′ contained in dz.

We denote by λ1, λ2 the strands in dw̃D′ that intersect in κ0 and let y ∈ Sn be the permutation

that is obtained from dw̃D′ by resolving the crossing κ0. In pictures, y is obtained as follows:

c1 cj1 cj2 cN

κ0

λ1 λ2

r1 ri1 ri2 rM

c1 cj1 cj2 cN

r1 ri1 ri2 rM

yw̃D′

Let f1, f2 resp. g1, g2 the starting resp. endpoints of λ1, λ2 in dw̃D′ . As in the above picture,

we assume f1 < f2. As w̃D′ is the shortest element in Scw̃D′Sr there exist i1 < i2 and j1 < j2

such that

Ri1−1 < f1 ≤ Ri1 , Ri2−1 < f2 ≤ Ri2 , Cj1−1 < g2 ≤ Cj1 , Cj2−1 < g1 ≤ Cj2 .

Thus, we conclude

Fy(f1) = Fw̃D′ (f2) = j1, Fy(f2) = Fw̃D′ (f1) = j2, Fy(i) = Fw̃D′ (i), (10.15)

for i ̸= f1, f2. Here, Fy, Fw̃D′ are defined as in (9.20). By assumption, y ∈ Scw̃D. Thus,

we have Fy = Fw̃D . Hence, by passing to the associated matrices of these double cosets, we

deduce that (10.15) is equivalent to

M(D)i1,j1 = M(D)i2,j2 = 1,

M(D)i1,j2 = M(D)i1,j2 = 0,

M(D′)i1,j1 = M(D′)i2,j2 = 0,

M(D′)i1,j2 = M(D′)i1,j2 = 1,
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as well as M(D)l,k = M(D′)l,k for (l, k) /∈ {(i1, j1), (i1, j2), (i2, j1), (i2, j2)}. Therefore, by

Lemma 10.5, D′ is obtained from D via a simple move.

The proof of Theorem 10.12 follows now from Proposition 9.50 and Lemma 10.19:

Proof of Theorem 10.12. We have to show that the equivariant multiplicity ι∗D′(StabC−(D))

is divisible by h2, for all D′ /∈ SMD ∪ {D}. Assume ι∗D′(StabC−(D)) is not divisible by

h2 for some D′ /∈ SMD ∪ {D}. By definition, this implies that ι∗D′(S̃tabC−(D)) is also not

divisible by h2. Thus, by Proposition 9.50, there exists z ∈ wD′Sr with reduced diagram dz

of shape (9.27) such that K(dz, wD, 1) ̸= ∅. Hence, Lemma 10.19 yields D′ ∈ SMD ∪ {D}
which contradicts our assumption D′ /∈ SMD ∪ {D}.

Proof of Theorem 10.15

Again, we can assume that D is essential.

We need some further notation: Let D ∈ Tie(D) and D′ ∈ SMD with right moving

tie (Vi1 , Uj1) and left moving tie (Vi2 , Uj2). Let z ∈ wD′Sr with a reduced diagram dz of

shape (9.27). Then, there exist unique strands λ1, λ2 in dz with starting points f1, f2 and

endpoints g1, g2 such that

Ri1−1 < f1 ≤ Ri1 , Ri2−1 < f2 ≤ Ri2 , Cj1−1 < g2 ≤ Cj1 , Cj2−1 < g1 ≤ Cj2 .

Let κ0 denote the crossing of λ1 and λ2.

To prove Theorem 10.15 we utilize the approximation formula of Proposition 9.50. To

apply this formula appropriately, we use the following lemma:

Lemma 10.20. Let ỹD ∈ Sn be as in (10.3) and yD = (w0,c1 × . . . × w0,cN )ỹD. Then, we

have

K(dz, yD, 1) =

{κ0} if z = wD′,

∅ if z ̸= wD′,

where K(dz, yD, 1) is defined as in Proposition 9.50.

Proof. Let z = wD′v where v ∈ Sr and suppose K ∈ K(dz, yD, 1). As in (9.28), we denote

by KU (dz) the crossings in dz corresponding to the boxes of w0,c1 , . . . , w0,cN . By assumption

|K \KU (dz)| ≤ 1. Thus, as z is fully separated, we have K \KU (dz) = {κ0}. By construction,

resolving the crossing κ0 from dz gives a diagram for yDv. Hence, Theorem 9.35 implies that

v = id and K ∩KU (dz) = ∅ which proves the lemma.

By combining Proposition 9.50 and Lemma 10.20, we obtain the following consequence:

Corollary 10.21. We have that ι∗D′(S̃tabC−(D)) is congruent modulo h2 to

sgn(D,D′) · h ·
(∏

α∈L′
wD′

ΨD(α+ h)
)
·
(∏

κ∈KW (dwD′ )\{κ0}
ΨD(wt(κ))

)
∏
β∈Rr

ΨD(wD′ .β)
.

Here, we used the notation from Proposition 9.50 and KW (dwD′ ) is defined as in (9.28).
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Proof. If we choose w′ = yD in (9.29) then, by Lemma 10.20, the only set of crossings that

contributes to (9.29) is K(dwD′ , yD, 1) = {κ0}. Thus, by Proposition 9.50, ι∗D′(S̃tabC−(D)) is

congruent modulo h2 to

(−1)l(yD)+l(wD) · h ·
(∏

α∈L′
wD′

ΨD(α+ h)
)
·
(∏

κ∈KW (dwD′ )\{κ0}
ΨD(wt(κ))

)
∏
β∈Rr

ΨD(wD′ .β)
.

By Proposition 10.10, (−1)l(wD)+l(yD) = sgn(D,D′) which proves the corollary.

Proof of Theorem 10.15. By definition, we have

ι∗D′(StabC−(D))

eT(TD′C(D)−C−
)

=
ι∗D′(StabC−(D))

ι∗D′(StabC−(D′))
=
ι∗D′(S̃tabC−(D))

ι∗D′(S̃tabC−(D′))
. (10.16)

Proposition 9.50 gives that ι∗D′(S̃tabC−(D′)) is congruent modulo h to(∏
α∈L′

wD′
ΨD(α)

)
·
(∏

κ∈KW (dwD′ )
ΨD(wt(κ))

)
∏
β∈Rr

ΨD(wD′ .β)
. (10.17)

Combining (10.17) and Corollary 10.21 then yields

(10.16) ≡ sgn(D,D′) · h
ΨD(wt(κ0))

≡ sgn(D,D′) · h
tj1 − tj2

mod h2

which proves Theorem 10.15.

10.6 Chevalley–Monk formula for arbitrary chamber

Employing Theorem 9.20, generalizes the Chevalley–Monk formula for the antidominant

chamber from Theorem 10.2 to any choice of chamber:

Theorem 10.22. Let C = z−1.C− for z ∈ SN , D be a tie diagram of D and i ∈ {1, . . . ,M}.
Then, the following identity holds in H∗

T(C(D))loc:

c1(ξi) · StabC(D) = ι∗D(c1(ξi)) · StabC(D) +
∑

D′∈SMD,z,i

sgnz(D,D
′) · h · StabC(D′),

where SMD,z,i = {D′ ∈ Tie(D) | z.D′ ∈ SMz.D,i} and sgnz(D,D
′) = sgn(z.D, z.D′).

Let SMD,z =
⋃M
i=1 SMD,z,i. If D′ ∈ SMD,z then we say that D′ is obtained from D via a

z-twisted simple move.

Proof of Theorem 10.22. Note that (3.8) implies

ι∗T (ξD,Xi) = w−1.
(
ι∗w.T (ξw.D, Xi)

)
, for all w ∈ SN and T ∈ Tie(D). (10.18)

Employing (10.18) and Theorem 9.20 for a given T ∈ Tie(D) yields

ι∗T (c1(ξ(D)) · S̃tabC(D)) = z−1.
(
ι∗z.T (c1(ξz.D,Xi) · S̃tabC−(z.D))

)
. (10.19)
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Then, Theorem 10.2 gives that (10.19) is equal to

z−1.
(
ι∗z.T

(
ι∗z.D(c1(ξz.D,Xi))·(S̃tabC−(z.D))+

∑
D′∈SMz.D,i

sgn(z.D,D′)·h·S̃tabC−(D′)
))
. (10.20)

Applying again (10.18) and Theorem 9.20 then gives

(10.20) = ι∗T

(
ι∗D(c1(ξD,Xi)) · S̃tabC(D) +

∑
D′∈SMD,z,i

sgnz(D,D
′) · h · S̃tabC(D′)

)
.

Thus, Theorem 5.5 implies

c1(ξi) · S̃tabC(D) = ι∗D(c1(ξi)) · StabC(D) +
∑

D′∈SMD,z,i

sgnz(D,D
′) · h · S̃tabC(D′). (10.21)

As StabC and S̃tabC just differ by a uniform constant factor in H∗
T(pt), we conclude Theo-

rem 10.22 from (10.21).

10.7 Chevalley–Monk formulas in the general case

In the previous section, we proved the Chevalley–Monk formula for bow varieties corre-

sponding to separated brane diagrams. Via Hanany–Witten transition, we finally deduce

Chevalley–Monk formulas for bow varieties corresponding to arbitrary choices of brane dia-

gram and chamber.

Simple moves for general brane diagrams

Fix a brane diagram D. First, we generalize the notion of (twisted) simple moves:

Definition 10.23. For D ∈ Tie(D), we define the set of simple moves SMD as the set of all

D′ ∈ Tie(D) such that there exist 1 ≤ i1 < i2 ≤M and 1 ≤ j1 < j2 ≤ N satisfying

(i) M(D)i1,j1 = M(D)i2,j2 = 1 and M(D)i1,j2 = M(D)i1,j2 = 0,

(ii) M(D′)i1,j1 = M(D′)i2,j2 = 0 and M(D′)i1,j2 = M(D′)i1,j2 = 1,

(iii) M(D)l,k = M(D′)l,k, for all (l, k)) /∈ {(i1, j1), (i2, j1), (i1, j2), (i2, j2)}.

If D′ ∈ SMD we say that D′ is obtained from D via a simple move.

Given additionally i ∈ {1, . . . ,M}, we define the set of simple move relative to i SMD,i

as the set of all tie diagrams D′ of D such that there exists 1 ≤ i1 ≤M − i+ 1 ≤ i2 ≤M as

well as 1 ≤ j1 < j2 ≤ N satisfying (i)-(iii).

The graphical illustration of simple moves depends on the position of the separating line

relative to the respective 2 × 2 submatrix where the simple move is performed. The six

possible cases are recorded in Figure 10.2.

If D′ ∈ SMD then the sign of the simple move between D and D′ is defined as

sgn(D,D′) := (−1)n1+n2 , where n1 =

j2−1∑
l=j1+1

M(D)i1,l, n2 =

j2−1∑
l=j1+1

M(D)i2,l.
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Simple move

1 0

0 1

0 1

1 0

1 0

0 1

0 1

1 0

1 0

0 1

0 1

1 0

1 0

0 1

0 1

1 0

1 0

0 1

0 1

1 0

1 0

0 1

0 1

1 0

Illustration

Figure 10.2: Illustration of simple moves for general brane diagrams.

The notion of twisted simple moves also generalizes as expected: for z ∈ SN we set

SMD,z := {D′ ∈ Tie(D) | z.D′ ∈ SMz.D}

and

SMD,z,i := {D′ ∈ Tie(D) | z.D′ ∈ SMz.D,i}, for i = 1, . . . ,M .

If D′ ∈ SMD,z, we say that D′ is obtained from D via a z-twisted simple move. The corre-

sponding sign of the z-twisted simple move between D and D′ is defined as sgnz(D,D
′) :=

sgn(z.D, z.D′).

By Lemma 10.5, the definitions of (z-twisted) simple moves and the corresponding signs

agree with the previous definitions for separated brane diagrams.

Example 10.24. Let D = 0\1\2/3\3/2\2/0. As tie diagram D we choose

0 1 2 3 3 2 2 0

1 1 0 1

0 1 1 0

1 0 1 0

The tie diagrams that are obtained from D via a simple moves have the following binary

contingency tables:
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1 1 0 1

0 1 1 0

1 0 1 0

M(D)

1 1 0 1

1 0 1 0

0 1 1 0

M(D1)

1 1 0 1

0 1 1 0

1 0 1 0

M(D)

1 1 1 0

0 1 1 0

1 0 0 1

M(D2)

1 1 0 1

0 1 1 0

1 0 1 0

M(D)

1 1 1 0

0 1 0 1

1 0 1 0

M(D3)

We highlighted the submatrices that are involved in the respective simple moves. These

simple moves can be illustrated via tie diagrams as follows:

D
1 2 3 3 2 2 1 2 3 3 2 2 D1

D
1 2 3 3 2 2 1 2 3 3 2 2 D3

D
1 2 3 3 2 2 1 2 3 3 2 2 D2

Simple moves are well-behaved with respect to Hanany–Witten transition: Let D̃ be the

brane diagram obtained via Hanany–Witten transition from D by switching Uj0 ∈ b(D) and

Vi0 ∈ r(D). Let Φ: C(D)
∼−→ C(D̃) be the corresponding Hanany–Witten isomorphism (see

Proposition 2.52) and let ϕ : Tie(D)
∼−→ Tie(D̃) be the induced bijection, see (3.10).

Lemma 10.25. Let D, D′ ∈ Tie(D), z ∈ SN and i ∈ {1, . . . ,M}. Then, we have D′ ∈
SMD,i,z if and only if ϕ(D′) ∈ SMϕ(D),i,z.

Proof. The proof is immediate from the fact that M(D) = M(ϕ(D)), for all D ∈ Tie(D), see

(3.11).

Chevalley–Monk formula in the general case

We finally formulate and prove Chevalley–Monk formulas for bow varieties corresponding to

not-necessarily separated brane diagrams.

We first set up some notation: given a brane diagram D and i ∈ {1, . . . ,M − 1} then we

set

I(D, i) := {X ∈ h(D) | Vi+1 ◁ X ◁ Vi}.

In addition, we set

I(D, 0) := {X ∈ h(D) | V1 ◁ X} and I(D,M) := {X ∈ h(D) | X ◁ VM}.
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10. Chevalley–Monk fomulas for bow varieties

For instance, let D = 0\1\2/3\3/2\2/0 be as in Example 10.24. Then, one can easily check

that I(D, 0) = {X8}, I(D, 1) = {X7, X6}, I(D, 2) = {X5, X4} and I(D, 3) = {X3, X2, X1}.
Now, we finally state the general Chevalley–Monk formula:

Theorem 10.26 (Chevalley–Monk formula for bow varieties). Let C = z−1.C− for z ∈ SN
and i ∈ {0, . . . ,M + 1}. Then, we have the following identity in H∗

T(C(D))loc:

c1(ξj) · StabC(D) = ι∗D(c1(ξj)) · StabC(D) +
∑

D′∈SMD,z,i

sgnz(D,D
′) · h · StabC(D′),

for all Xj ∈ I(D, i) and D ∈ Tie(D).

For the proof, we use the following notation: Given a T-equivariant vector bundle E on

C(D), we denote by C(D, E) = C(D, E)D,D′ the matrix with entries in H∗
T(pt)loc correspond-

ing to the operator of multiplication with c1(E) on H∗
T(C(D))loc with respect to the stable

basis (StabC(D))D∈Tie(D).

We will use the following lemma:

Lemma 10.27. Let Uj0 ∈ b(D), Vi0 ∈ r(D), D̃, Φ and ϕ be as in Lemma 10.25. Let Xl = U+
j0

and D, D′ ∈ Tie(D). Then, we have

φj0(C(D̃, ξ̃j)ϕ(D),ϕ(D′)) = C(D, ξj)D,D′ , for j ̸= l

and

φj0(C(D̃, ξ̃l)ϕ(D),ϕ(D′)) = C(D, ξl+1)D,D′ + C(D, ξl−1)D,D′ − C(D, ξl)D,D′ + (tj0 + h)δD,D′ .

Here, ξ̃i is the tautological bundle over C(D̃) corresponding to Xi and φj0 : Q[t1, . . . , tN , h]
∼−→

Q[t1, . . . , tN , h] is the Q[h]-algebra automorphism given by tj0 7→ tj0 + h and tj 7→ tj, for

j ̸= j0.

Proof. Let Φ∗ : H∗
T(C(D̃))

∼−→ H∗
T(C(D)) be the induced ring isomorphism from Φ. By Propo-

sition 5.13, we have Φ∗(StabC(ϕ(T ))) = StabC(T ), for all T ∈ Tie(D). Thus,

φj0(C(D̃, ξ̃i)ϕ(D),ϕ(D′)) = C(D,Φ∗(ξ̃i))D,D′ .

Hence, the lemma follows from Proposition 2.52.

Proof of Theorem 10.26. We prove the theorem via induction on the separation degree of D,

see Definition 2.54. The case sdeg(D) = 0 is exactly the statement of Theorem 10.22, so let

us assume sdeg(D) > 0. As in the proof of Theorem 10.2, the support condition for stable

basis elements directly implies

C(D, ξj)D,D = ι∗D(c1(ξj)), for all D ∈ Tie(D).

Hence, it is left to show that C(D, E) has the correct off-diagonal terms. As sdeg(D) > 0,

there exist Uj0 ∈ b(D) and Vi0 ∈ r(D) as in Lemma 10.27. In the following, we use the
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10.8. Simple moves and rim hook removals

notation from Lemma 10.27. Let D, D′ ∈ Tie(D) with D ̸= D′. Assume first that Xj ̸= U+
j0

.

Then, we have Xj ∈ I(D̃, i) and hence, the induction hypothesis gives

C(D̃, ξ̃j)ϕ(D),ϕ(D′) =

sgnz(ϕ(D), ϕ(D′))h if ϕ(D′) ∈ SMϕ(D),i,z,

0 otherwise.

Hence, Lemma 10.25 and Lemma 10.27 imply

C(D, ξj)D,D′ =

sgnz(D,D
′)h if D′ ∈ SMD,i,z,

0 otherwise.

So C(D, ξj) has the correct off-diagonal terms. It remains to prove the case Xj = U+
j0

. Note

that in this case i = i0. Since Xj+1 ∈ I(D, i − 1) and Xj ∈ I(D̃, i − 1), the induction

hypothesis and the previous case imply φj0(C(D̃, ξ̃j)ϕ(D),ϕ(D′)) = C(D, ξj+1)D,D′ . Therefore,

Lemma 10.25 and Lemma 10.27 again imply that C(D, ξj) and C(D, ξj−1) have identical

off-diagonal entries. By the first case, the latter are given by

C(D, ξj−1)D,D′ =

sgnz(D,D
′)h if D′ ∈ SMD,i,z,

0 otherwise

which completes the proof.

10.8 Simple moves and rim hook removals

Consider the Grassmannian Gr(k, n) with its cotangent bundle T ∗Gr(k, n). As before, let

Q be the pullback of the quotient bundle from Gr(k, n) to T ∗Gr(k, n). Recall the bow

variety realization C(D̃(k;n))
∼−→ T ∗Gr(k, n) from Theorem 2.67 and thatQ is T-equivariantly

isomorphic to the tautological bundle ξ2 on C(D̃(k;n)).

In the introduction, we stated the formula for the stable basis expansion of the products

c1(Q) · StabC−(p) from [MO19, Theorem 10.1.1] using the language of partitions, see (1.3).

The main combinatorial tool in (1.3) were the rim hook removals on Young diagrams, see

Definition 10.31.

In this section, we show that the formulas for the stable basis expansion of c1(Q)·StabC−(p)

from (1.3) and Theorem 10.26 are actually equivalent. For this, we use the well-known match-

ing of partitions and binary contingency tables, see e.g. [Pos05], and show in Proposition 10.34

that under this correspondence rim hook removals correspond to simple moves.

Matching of partitions and binary contingency tables

We usually identify a partition with its corresponding Young diagram:

Young diagram of λ

(6, 6, 4, 3, 1)

Partition λ (10.22)
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For a partition λ, we denote by |λ| the number of boxes in the Young diagram of λ. Let P(k, n)

be the set of all partitions whose Young diagram admits at most k rows and n− k columns.

To λ ∈ P(k, n), we assign its corresponding row-vector (λ1, . . . , λk), where λi is the number

of boxes in the i-th row of λ. Likewise, we assign to λ its column vector (λ̃1, . . . , λ̃n−k), where

λ̃i is the number of boxes in the i-th column of λ.

Example 10.28. Choose (k, n) = (6, 13) and let λ be as in (10.22). Then, λ is contained in

P(k, n). The row vector and the column vector of λ are given as

(6, 6, 4, 3, 1, 0) and (5, 4, 4, 3, 2, 2, 0).

We now match the elements of P(k, n) with the binary contingency tables of D̃(k;n). Since

D̃(k;n) admits the margin vectors r = (k, n − k) and c = (1, . . . , 1), the set bct(D̃(k;n)) is

the set of (2 × n)-matrices A with entries in {0, 1} satisfying the following row and column

sum conditions

n∑
i=1

A1,i = k,
n∑
i=1

A2,i = n− k,
2∑
l=1

Al,j = 1, for j = 1, . . . , n. (10.23)

Recall the functions

FA,1 : {1, . . . , k} −−→ {1, . . . , n}, FA,2 : {1, . . . , n− k} −−→ {1, . . . , n}

from (9.19), where FA,i(j) is the column index of the j-th 1-entry in the i-th row of A. By

e.g. [Pos05, Section 2], we have a bijection

η : bct(D̃(k;n))
∼−−→ P(k, n), A 7→ η(A), (10.24)

where η(A) is the unique element in P(k, n) with row vector

(FA,1(k)− k, FA,1(k − 1)− (k − 1), . . . , FA,1(1)− 1). (10.25)

Example 10.29. Let (k, n) and λ be as in Example 10.28. We want to determine A :=

η−1(λ). As λ has the row vector (6, 6, 4, 3, 1, 0), we conclude that FA,1 is given as

(FA,1(1), . . . , FA,1(6)) = (1, 3, 6, 8, 11, 12).

Hence, we deduce from (10.23) that FA,2 is given as

(FA,2(1), . . . , FA,2(7)) = (2, 4, 5, 7, 9, 10, 13).

Consequently, we have

A =

(
1 0 1 0 0 1 0 1 0 0 1 1 0

0 1 0 1 1 0 1 0 1 1 0 0 1

)
.

The bijection η from (10.24) can be equivalently characterized via column vectors:

Lemma 10.30. For A ∈ bct(D̃(k;n)), we have that η(A) is the unique element in P(k, n)

with column vector

(k + 1− FA,2(1), k + 2− FA,2(2), . . . , k + (n− k)− FA,2(n− k)).
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Proof. For i ∈ {1, . . . , n − k}, the number of boxes in the i-th column of η(A) equals i0 :=∑n
j=FA,2(i)

A1,j . By (10.23), we have

i0 = n− FA,2(i)−
( n∑
j=FA,2(i)+1

A2,j

)
. (10.26)

As FA,2(i) is the column index of the i-th 1-entry in A, we have
∑n

j=FA,2(i)+1A2,j = n−k− i.
Thus, (10.26) implies that the i-th column of η(A) contains k + i− FA,2(i) boxes.

Rim hook removals vs simple moves

Next, we recall the definition of rim hooks and show that simple moves correspond to rim hook

removals under the bijection η from (10.24). For more details on rim hooks, see e.g. [BCFF99,

Section 2].

Definition 10.31. Let λ be a partition and (i, j) be a box in λ. The hook Hλ(i, j) of (i, j)

in λ is defined as

Hλ(i, j) := H+
λ (i, j) ∪ {(i, j)},

where H+
λ (i, j) is the set of all boxes in λ to the right and below (i, j). The rim hook RHλ(i, j)

of (i, j) in λ is the collection of contiguous boxes running along the border of λ starting in

the bottom-most box of Hλ(i, j) and ending in the right-most box of Hλ(i, j).

Given a hook Hλ(i, j), we define its height ht(Hλ(i, j)) as the number of boxed in the j-th

column of Hλ(i, j). Likewise, if RHλ(i, j) is a rim hook, we define the height of RHλ(i, j) as

ht(RHλ(i, j)) := ht(Hλ(i, j)).

Example 10.32. Let λ be as in (10.22). The following picture shows the hook and the rim

hook of the box (2, 2) in λ:

Hook of (2, 2) Rim hook of (2, 2)

As the hook Hλ(2, 2) contains 3 boxes in the second column, we have

ht(RHλ(i, j)) = ht(Hλ(i, j)) = 3.

For λ ∈ P(k, n), we define RHλ as the set of all µ ∈ P(k, n) such that λ is obtained from

µ by deleting a rim hook from µ. The elements of RHλ can be uniquely characterized via

their column vectors, see e.g. [BCFF99, Section 2]:

Lemma 10.33. Let λ, µ ∈ P(k, n). Then, we have µ ∈ RHλ if and only if there exist

1 ≤ r ≤ s ≤ n− k and l ∈ {1, . . . , k} such that

(λ̃1, . . . , λ̃n−k) = (µ̃1, . . . , µ̃r−1, µ̃r+1 − 1, µ̃r+2 − 1, . . . , µ̃s − 1, µ̃r − l, µ̃s+1, . . . , µ̃n−k).
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If µ ∈ P(k, n) and R is a rim hook in µ then the coefficients r, s, l from Lemma 10.33

are given as follows: r is the column index of the left-most box in R, s is the column index

of the right-most box in R and l equals the height of R.

If for example, µ is the partition from Example 10.32 and R is the rim hook from there

then as the picture below indicates, we have r = 2, s = 6 and l = 3.

r s

l

The next proposition is the main result of this subsection.

Proposition 10.34. For all A ∈ bct(D̃(k;n)), we have

η(SMA) = RHη(A).

Here, SMA denotes the set of all elements in bct(D̃(k;n)) that are obtained from A via a

simple move.

We begin with the following statement:

Lemma 10.35. Let A ∈ bct(D̃(k;n)) and A′ ∈ SMA. Then, η(A′) ∈ RHη(A).

Proof. By assumption, there exist 1 ≤ j1 < j2 ≤ n such that

A1,j1 = A2,j2 = 1,

A1,j2 = A1,j2 = 0,

A′
1,j1 = A′

2,j2 = 0,

A′
1,j2 = A′

1,j2 = 1

and Ai,j = A′
i,j for (i, j) ̸= (1, j1), (2, j1), (1, j2), (2, j2). Set λ := η(A). To show that

µ := η(A′) is contained in RHλ, we show that the conditions of Lemma 10.33 are satisfied

with

r = F−1
A,1(j1), s = F−1

A,2(j2), l =

j2∑
i=j1

A1,i. (10.27)

If i < r or i > s, we have FA,2(i) = FA′,2(i) and hence λ̃i = µ̃i. Likewise, for r ≤ i < s,

we have FA,2(i) = FA′,2(i + 1) and hence λ̃i = µ̃i+1 − 1 by Lemma 10.30. Finally, since

FA′,2(r) = j1 and FA,2(s) = j2, Lemma 10.30 gives

µ̃r − λ̃s =

j2∑
i=j1

A1,i.

Hence, Lemma 10.33 yields µ ∈ RHλ.

Suppose A′ ∈ SMA where the simple move is performed in the j1-th and j2-th column of

A with j1 < j2. Set λ := η(A), µ := η(A′). Then, (10.27) actually tells us the box (i0, j0)

of µ such that λ is obtained from µ by removing RHµ(i0, j0). Namely, by (10.27), we have

j0 = F−1
A,1(j1) and

i0 = µ̃j0 −
( j2∑
i=j1+1

A1,i

)
. (10.28)
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Example 10.36. Consider the following binary contingency table A with partition λ:

A =

(
0 1 1 1 0 1 0 1 0 0 1

1 0 0 0 1 0 1 0 1 1 0

)
λ =

Let A′ ∈ SMA be obtained from A by performing a simple move in the second and ninth

column of A and µ the partition corresponding to A′. That is, we have

A′ =

(
0 0 1 1 0 1 0 1 1 0 1

1 1 0 0 1 0 1 0 0 1 0

)
µ =

Here, we highlighted the matrix entries that are involved in the simple move. Note that

between the green columns in A′, the first row contains four 1-entries. Hence, as µ̃2 = 6, we

deduce from (10.27) that λ is obtained from µ by removing the rim hook RHµ(2, 2).

Proof of Proposition 10.34. Let A ∈ bct(D̃(k;n)) and set λ := η(A). By Lemma 10.35, we

have η(SMA) ⊂ RHλ. Thus, it is left to show η−1(RHλ) ⊂ SMA. Let µ ∈ RHλ and set

A′ := η−1(µ). To show that A′ is obtained from A via a simple move, we compare the

functions FA,2 and FA′,2. Let (i0, j0) be the box in µ such that we obtain λ by removing

RHµ(i0, j0) from µ. Let s0 be the column index of the right-most box in RHµ(i0, j0). By

Lemma 10.33, we have

λ̃i = µ̃i, for i < i0 or i > s0

and

λ̃i = µ̃i+1 − 1, for i = i0, i0 + 1, . . . , s0 − 1.

Thus, Lemma 10.30 yields

FA,2(i) = FA′,2(i), for i < i0 or i > s0

and

FA,2(i) = FA′,2(i+ 1), for i = i0, i0 + 1, . . . , s0 − 1.

Hence, if we write

(FA′,2(1), . . . , FA′,2(n− k)) = (l1, . . . , ln−k)

then we have

(FA,2(1), . . . , FA,2(n− k)) = (l1, . . . , li0−1, li0+1, li0+2, . . . , ls0−1, j, ls0+1, ls0+2, . . . , ln−k),
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where j = FA,2(s0). Lemma 10.33 gives µ̃i0 − λ̃s0 ≥ 1. By Lemma 10.30 this is equivalent to

(k+ i0− li0)− (k+ s0− j) ≥ 1. Since s0 ≥ i0, we deduce j − li0 ≥ 1. Thus, we conclude that

A′ is obtained from A by a simple move which is performed in the li0-th and j-th column of

A.

Reformulation of Theorem 10.26

We identify the bow variety C(D̃(k;n)) with T ∗Gr(k, n) via the T-equivariant isomorphism

from Theorem 2.67. Via the bijection η from (10.24), we may label the stable basis elements of

T ∗Gr(k, n) by the elements of P(k, n), i.e. we set StabC(λ) := StabC(η−1(λ)), for λ ∈ P(k, n).

We now give an equivalent reformulation of Theorem 10.26 for T ∗Gr(k, n) using the

language of partitions. For simplicity, we restrict our attention to the antidominant chamber.

Corollary 10.37. For all λ ∈ P(k, n), we have the following identity in H∗
T(T ∗Gr(k, n)):

c1(Q) · StabC−(λ) =
( ∑
i∈Eλ

ti

)
· StabC−(λ) +

∑
µ∈RHλ

(−1)|µ|−|λ|−1 · h · StabC−(µ). (10.29)

Here, Eλ := {1, . . . , n} \ {λ1 + k, λ2 + (k − 1), . . . , λk + 1}.

Proof. Let A ∈ bct(D̃(k;n)) with η(A) = λ and write

(FA,2(1), . . . , FA,2(n− k)) = (l1, . . . , ln−k).

By (3.8), we have ι∗A(Q) = tl1 + . . . + tln−k
. In addition, (10.25) gives Eλ = {l1, . . . , ln−k}.

Thus, Theorem 10.26 yields that we have the following identity on H∗
T(T ∗Gr(k, n))loc:

c1(Q) · StabC−(A) =
( ∑
i∈Eλ

ti

)
· StabC−(A) +

∑
A′∈SMA

sgn(A,A′) · h · StabC−(A′). (10.30)

Recall from e.g. [AF23, Corollary 3.3.3] that T ∗Gr(k, n) is equivariantly formal. Hence,

(10.30) also holds in the non-localized equivariant cohomology ring H∗
T(T ∗Gr(k, n)). By

Proposition 10.34, we have η(SMA) = RHλ. Thus, it is left to show that

sgn(A,A′) = (−1)|η(A
′)|−|λ|−1, for A′ ∈ SMA. (10.31)

Suppose A′ is obtained from A via a simple move performed in the j1-th and j2-th column

of A with j1 < j2. Then, by (10.23), we have sgn(A,A′) = (−1)j2−j1−1. On the other hand,

let (i0, j0) be the box in µ := η(A′) such that λ is obtained from µ by removing RHµ(i0, j0).

Let s0 be the column index of the right-most box in RHµ(i0, j0). Then,

|µ| − |λ| = s0 − i0 + µ̃i0 − λ̃s0 ,

By Lemma 10.30, µ̃i0 = k+i0−FA′,2(i0) and λ̃s0 = k+s0−FA,2(s0). Hence, |µ|−|λ| = j2−j1
which proves (10.31). Thus, (10.30) is equivalent to (10.29).

As desired, the formula (10.29) coincides with the formula (1.3) from the introduction.
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[RS20] R. Rimányi and Y. Shou. Bow varieties—geometry, combinatorics, characteristic

classes. arXiv preprint arXiv:2012.07814, 2020.
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