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Zusammenfassung

Pflanzenwachstumsmodelle spielen eine entscheidende Rolle in der Land-
wirtschaft, weil sie dabei helfen zu verstehen, wie Nutzpflanzen wachsen und
gedeihen. Sie helfen Landwirten vorherzusagen, wie viel Ernte sie erwarten
können, was bei der Planung, Lagerung und Vermarktung von Lebensmitteln
wichtig ist. Sie können den Einsatz von Wasser, Dünger und Pflanzenschutzmit-
teln optimieren, was Kosten spart und zur Nachhaltigkeit beiträgt, indem
Umweltauswirkungen minimiert werden. Außerdem spielen sie eine zentrale
Rolle in der Forschung, beispielsweise wenn es darum geht, moderne An-
bausysteme wie Mischkulturen zu untersuchen und herauszufinden, in welcher
Konstellation verschiedene Nutzpflanzen gut gedeihen. Alle Punkte tragen dazu
bei, die Landwirtschaft gleichzeitig nachhaltiger und effizienter zu machen, was
im Angesicht von Klimawandel und steigender Weltbevölkerung wichtige und
zugleich große Herausforderungen sind.

Es gibt viele unterschiedliche Pflanzenwachstumsmodelle, die sich grundsät-
zlich in prozessbasierte Modelle, datengetriebene Modelle und Mischformen aus
beidem eingliedern lassen. In dieser Arbeit liegt der Fokus auf datengetriebenen
Modellen, bei denen es darum geht, das Wachstumsverhalten von Pflanzen auf
Basis von realen Daten zu lernen. Dazu werden Algorithmen und Verfahren
des maschinellen Lernens verwendet. Insbesondere stellen wir zwei grundsät-
zliche Anforderungen an die Pflanzenwachstumsmodelle, die in dieser Arbeit
entwickelt werden. Erstens soll die Modellvorhersage neben anderen Faktoren
auf Basis eines Bildes geschehen, das den Status quo der Pflanze in einem
frühen Wachstumsstadium zeigt. Zweitens sollen nicht direkt Zielparameter
bestimmt werden, sondern zunächst ein künstliches Bild generiert werden,
welches ein potenzielles zukünftiges Wachstumsstadium dieser Pflanze zeigt.
Aus der Umsetzung beider Anforderungen ergeben sich mehrere Vorteile für
die Pflanzenwachstumsmodelle. Die Modellvorhersage beruht so auf realen
Daten/Beobachtungen im Feld, wodurch realistische Bilder zukünftiger Pflanzen
erzeugt werden können, die einen Zusammenhang zum Input aufweisen. Die
generierten Bilder können nicht nur als künstliche Sensordaten weiterverwendet
werden, sondern liefern einen erheblichen Mehrwert bei der Visualisierung von
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räumlichen Pflanzenverteilungen im Feld und der der Modellerklärbarkeit.

Zur Bildgenerierung nutzen wir die Methode von erzeugenden gegnerischen
Netzwerken (Generative Adversarial Networks (GANs)) und führen Experimente
auf den Pflanzen Arabidopsis thaliana, Brassica oleracea var. botrytis (Blu-
menkohl) und Mischkulturen durch, die aus Triticum aestivum (Sommerweizen)
and Vicia faba (Ackerbohne) bestehen. Wir demonstrieren zunächst, dass ein
datengetriebenes Wachstumsmodell, welches ausschließlich auf RGB-Bildern
und einem fest definierten Wachstumsschritt basiert, dazu in der Lage ist,
realistische Bilder für unterschiedliche Bewirtschaftungsmethoden zu erzeugen.
Dabei zeigen wir, dass die Bilder nicht nur realistisch aussehen, sondern sich
als künstliche Sensordaten eignen, aus denen sinnvolle Pflanzenmerkmale
abgeleitet werden können. Danach erhöhen wir die Input-Flexibilität des
datengetriebenen Modells, sodass irreguläre Zeitreihen im Input verarbeitet und
Bilder beliebiger Wachstumsstadien erzeugt werden können. Dies ermöglicht
nicht nur Inter- sowie Extrapolation von Bildsequenzen, sondern auch die Gener-
ierung von stochastischen Bildverteilungen und die pixelweise Visualisierung
der Wachstumsvariabilität. Schließlich stellen wir ein drittes datengetriebenes
Wachstumsmodell vor, welches einen multi-modalen Input verarbeiten kann, d.h.
ein Bild sowie zusätzlich weitere Wachstumseinflussfaktoren verschiedener Art.
Es wird gezeigt, dass Ergebnisse eines prozess-basierten Modells als Input für
ein datengetriebene Wachstumsmodell genutzt werden zu kann, was genutzt
werden kann, um das prozess-basierte Modell eine räumliche Komponente
hinzuzufügen oder es zu rekalibrieren. Hervorzuheben ist, dass es gelingt Bilder
und Wachstumseinflussfaktoren neu zu kombinieren, wodurch Simulationen
möglich sind, die qualitativ und quantitativ analysiert werden.

Insgesamt stellt diese Arbeit signifikante Beiträge zur datengetriebenen Bild-
generierung zum Zwecke der Wachstumsmodellierung dar, indem realistische
Bilder von zukünftigen Wachstumsstadien generiert werden, die mitunter mehrere
Wochen in der Zukunft liegen und aus denen sich realistische Zielparameter
ableiten lassen. Insbesondere die Flexibilität durch irreguläre Bildsequenzen
oder multi-modale Bedingungen im Input, die Fähigkeit einen zeitvariablen und
stochastischen Output zu generieren und die Integration mit einem Prozess-
basierten Modell wird experimentell nachgewiesen. Gepaart mit Untersuchun-
gen über Anforderungen an die Daten sowie Experimenten und Diskussionen zur
Generalisierbarkeit der Wachstumsmodelle liefert die Arbeit essentielle Indika-
toren, wie bildgenerierende datengetriebene Wachstumsmodelle zukünftig in der
landwirtschaftlichen Praxis eingesetzt werden können.
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Abstract

Crop growth models play a crucial role in agriculture as they help to understand
how crops grow and thrive. They allow farmers to predict how much harvest
they can expect, which is important when planning, storing, and marketing food.
They can optimize the use of water, fertilizers, and pesticides, which saves costs
and contributes to sustainability by minimizing environmental impact. Moreover,
they play a central role in research, for example, when investigating modern
cultivation systems such as mixed crops and determining in which constellation
different crops thrive. These aspects contribute to making agriculture more
sustainable and efficient, which are both important and major challenges given
climate change and a growing world population.

There are many different crop growth models, which can be categorized into
process-based models, data-driven models, and a mixture of both. This thesis
focuses on data-driven models, which involve learning the growth behavior of
plants from real data. Machine learning algorithms and methods are used for
this purpose. In particular, we have two fundamental requirements for the crop
growth models that are developed in this work. First, the model prediction
should be based on an image showing the status quo of the plant at an early
growth stage, in addition to other factors. Second, target parameters should
not be determined directly, but an artificial image should be generated first
that shows this plant’s potential future growth stage. Implementing both
requirements results in several advantages for the plant growth models. The
model prediction is based on real data/observations in the field, allowing realistic
images of future plants to be generated that are related to the input. The
generated images can not only be reused as artificial sensor data but also provide
significant added value in the visualization of the spatial crop distribution in the
field and in model explainability.

For image generation we use the method of Generative Adversarial Net-
works (GANs) and perform experiments on the plants Arabidopsis thaliana,
Brassica oleracea var. botrytis (cauliflower) and mixed crops consisting of
Triticum aestivum (spring wheat) and Vicia faba (field bean). We first demon-
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strate that a data-driven crop growth model based purely on RGB images and
a fixed growth step can generate realistic images for different field treatments.
We show that the images not only look realistic but can also be used as artificial
sensor data from which meaningful plant traits can be derived. Next, we increase
the input flexibility of the data-driven model so that irregular sequences can be
processed in the input and images of arbitrary growth stages can be generated.
This enables not only interpolation and extrapolation of image sequences but
also the generation of stochastic image distributions and pixel-wise visualization
of growth variability. Finally, we present a third data-driven crop growth model
that can handle a multi-modal input, i.e., an image plus additional growth
influencing factors of different types. It is demonstrated that results from a
process-based model can be utilized as input for a data-driven growth model,
which provides the opportunity to add a spatial component to the process-based
model or to re-calibrate it. Particularly noteworthy is the ability to recombine
images and growth influencing factors, allowing for simulations that are analyzed
qualitatively and quantitatively.

Overall, this work contributes significantly to data-driven crop growth mod-
eling by generating realistic images of future growth stages from which realistic
target parameters can be derived. In particular, the flexibility through irregular
image sequences or multi-modal conditions in the input, the ability to generate
a time-variable and stochastic output, and the integration with a process-based
model are experimentally demonstrated. In combination with investigations on
data requirements and experiments on the generalizability of crop growth models,
the work provides essential indicators of how image-generating data-driven crop
growth models can be used in agricultural practice in the future.
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Chapter 1

Introduction

1.1 Motivation

Due to the fundamental challenges of our time, including the increase in world
population, global warming, and the associated consequences such as extreme
weather, decline in biodiversity, and the loss of fertile arable land, agriculture is
transforming [1]–[3]. To ensure food security in the future, it must become more
productive and efficient at the same time, which means using fewer resources
such as soil, water, fertilizer, and pesticides while increasing yields [4]. Many
approaches that aim to achieve this are coming from the field of smart farming,
which uses digital technologies to drive automation through robotics, remote sens-
ing, and machine learning. Applications in this diverse area encompass targeted
harvesting, early detection of plant diseases, and low-resource weed removal [5],
[6].

The basis for smart farming is generally high-throughput plant phenotyping
[7], [8], where structural plant traits, e.g., overall size, canopy cover, degree
of maturity, or number and position of fruits and leaves, are recorded and
analyzed. Image-based sensors are important for plant phenotyping because they
can provide fast, cost-effective, and non-destructive data. Automated imaging
systems such as Unmanned Aerial Vehicle (UAV) can capture traits from
thousands of plants remotely, significantly speeding up the phenotyping process
compared to manual in-field assessments while providing valuable information
on plant morphology. Such information can then be used to assess the status
quo of fields and initiate targeted in-field interventions that maximize yield
under low resource input.

For the modeling of crop growth, which is the core topic of this work, plant
phenotyping must be conducted several times during a growth period. It in-
volves comprehensive monitoring and analysis of plant growth determined by
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1.2. MAIN GOALS

Figure 1.1: Direct and indirect data-driven crop growth modeling in comparison. In the pro-
posed indirect crop growth modeling from the input image and growth influencing factors, first,
an image of the later growth stage is generated, and target parameters are derived from this;
in direct crop growth, target parameters are predicted directly from the input.

specific growth-relevant parameters, from sowing to harvest [9]. A major motiva-
tion is growth prediction, i.e., a temporal prediction and subsequent analysis of
future plant traits based on previous observations, prior assumptions, or expert
knowledge [10], [11]. Farmers benefit from growth prediction in multiple ways, es-
pecially in action adaptation, reliability, and planning. Growth prediction allows
early action to positively change the prediction’s outcome, for example, through
in-field interventions. If the amount and timing of the harvest can be estimated in
advance, better conditions can be negotiated with customers, such as supermar-
kets, at an early stage. In addition, it is very practical in determining when and
how much personnel must be hired and how many agricultural vehicles should be
rented.

1.2 Main goals
Apart from directly predicting specific plant traits, this work proposes a two-step
approach for crop growth modeling as depicted in Fig. 1.1: The first step aims to
generate realistic images of probable future above-ground plant phenotypes. For
this purpose, we mainly utilize the deep learning concept of GANs[12], suitable
for creating new, realistic, and sharp images from given plant image distributions.
This step is the focus of this work, including a comprehensive analysis of different
generation techniques with different kinds and numbers of growth influencing
factors considered. In the second step, we derive agronomically relevant traits,
such as projected leaf area or plant biomass, from these generated images through
plant phenotyping. This indirect two-step approach has three key advantages over
direct plant growth modeling:

• Artificial sensor data. The generated image can be treated as or even re-
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CHAPTER 1. INTRODUCTION

Figure 1.2: Distinction between image generation (top row), in which images are generated with
the actual associated multi-modal (categorical, discrete, and continuous) growth influencing
factors, and simulation (bottom row), in which these factors are varied to analyze the effects
on generated images and target parameters.

place real sensor measurement. Without the need to develop multiple Crop
Growth Models (CGMs) for different plant traits, various target traits can
be flexibly derived from the generated image of the target growth stage.
This simplifies plant phenotyping, as we can directly work with the growth
stage we are interested in.

• Spatial plant distribution. Images, especially taken from a birds-eye view,
provide a valuable overview of the 2D spread of plants over the ground. As
crop fields are often heterogeneous, weeds, pests, and nutrient deficiencies
appear more likely in some field regions than in others. Images can identify
these regions, and even the development of specific affected plants or leaves
can be visualized, enabling targeted in-field interventions in the first place.

• Explainability. Visualizations of target traits, as images do, build reliability
in the CGM. Plant growth is a very complex process, and it is not always
clear how certain factors influence growth and why the model output is as
it is, particularly when only specific target traits are predicted. With direct
plant growth modeling, it is not necessarily understandable why a model
output changes a certain way when the input changes. Generated images
as an intermediate step can thus help to increase the model explainability
[13].

Both steps, image generation and phenotyping, will be applied to different
time series data sets with different levels of complexity. From the controlled
laboratory environment, where the plant Arabidopsis thaliana is analyzed, to real
field conditions investigating Brassica oleracea var. botrytis (cauliflower) and crop
mixtures, which consist of Triticum aestivum (spring wheat) and Vicia faba (faba

3



1.3. MAIN CONTRIBUTIONS

Table 1.1: Overview of which input conditions are used in which image generation model. 1Time
is integrated into the modeling, but implicitly by arranging the data into image pairs of different
growth stages, not explicitly by model design.

Name Time Single
image

Multiple
images

Infl.
factors

Chapter

Paired image to
image translation

~1 ✓ × × Chap. 5

Inter- and extrapolating
of irregular image time series

✓ × ✓ × Chap. 6

Multi-modal image
generation and simulation

✓ ✓ × ✓ Chap. 7

bean) sown under varying treatments. We aim to show that the data-driven CGM
becomes increasingly flexible, realistic, and useful across different plants as more
conditions, depicted in Tab. 1.1, are incorporated. Starting from an existing plant
image at a different growth stage, we add the factor time along with an irregular
image sequence to obtain higher prediction flexibility and handle irregular time
series before including multi-modal growth-influencing variables, such as the plant
cultivar or the seed density.

For simulation purposes, we aim to change the constellation of growth influ-
encing factors for inference, as shown in Fig. 1.2 to analyze the change in the
corresponding generated images and derived target parameters. By additionally
integrating a stochastic part into the generation process, a diverse set of images
for each point in time can be generated - even with a constant input image and
constant growth influencing factors.

Without image output, simulations are also possible with well-established
process-based CGMs. This thesis demonstrates how the output of such a process-
based model can be linked to a data-driven image generation model. Since more
conditions mean higher data requirements and thus costs, there is a trade-off
between requirements and the accuracy of data-driven plant growth modeling.

1.3 Main contributions
The process of data-driven image generation poses several challenges, partly orig-
inating from the specific complexities in the agricultural sector. The following
describes the main challenges and what is contributed to addressing them.

Sequential non-equidistant input and time-series output. It is often
beneficial to predict growth not only for a single time point but flexibly for any
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CHAPTER 1. INTRODUCTION

number of target time points, i.e., different images of different growth stages are
to be generated with the same model: an image time series. The requirement
for such a time series is, first, that a realistic growth development is recognizable,
second, that temporally consecutive images are consistent. Similar flexibility
should also apply to the input of image generation: If several images of different
plant growth stages already exist, it should be possible to use them jointly to give
the CGM multiple image support points. However, due to irregular observations,
the input is usually a short, non-equidistant image sequence with different time
intervals rather than a complete image time series. Explicit integration of the
factor time in the image generation model is necessary for handling sequences in
the input and specifically generating time points in the output, resulting in an
image time series. We propose using sinusoidal positional encoding and show that
a realistic image time series can be generated after processing sequential input
with a combined CNN-transformer encoder module.

Multi-modal conditions. Plant growth modeling is highly complex, un-
derlying a multitude of growth-influencing variables. In standard methods of
conditional image generation, however, this complexity does not occur in the con-
ditions; it is controlled only by individual conditions, e.g., either by class labels
or images, but not both together. The integration of multi-modal conditions is
especially difficult because the conditions come with different data types and,
therefore, have to be processed differently: class labels as categorical variables
(e.g., different crop varieties), time points as discrete variables, measured values
as continuous variables (e.g., biomass values), and input images as 3-dimensional
tensors. We present several methods to integrate and link these conditions for
crop growth modeling, from individual embeddings and subsequent concatenation
in latent space to more sophisticated methods such as conditional normalization.
Starting with the most important condition, time, we show that a temporal gap
between input and output can be bridged generally before gradually adding more
growth-influencing variables. In addition to these variables, we also present a
way to link results from dynamic process-based models with a data-driven growth
model.

Visible variability. The whole process of plant growth is subject to some
unknown uncertainty. Even if all growth-influencing factors are identical, plants
will differ due to random variations. This is reflected in the data uncertainty,
which, together with the model uncertainty, contributes to the overall predictive
uncertainty. While this thesis does not aim to separate data and model uncer-
tainty, the resulting visual variability between generated samples should still be
realistic. A major problem in image-conditioned image generation is that the
stochastic part is often suppressed during generation, leading to a purely deter-
ministic, non-diverse, and overconfident output up to mode collapse. We alleviate
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the problem by exploiting optimization with the Wasserstein distance in a multi-
conditional context, partially complemented with further loss terms added to the
total objective function.

Plant trait based evaluation. The issue of how to comprehensively
evaluate generated images is unresolved. There are various evaluation metrics,
each with its own advantages and disadvantages, and a combination of metrics
must always be used to assess the quality of the generated images. The special
challenge of image generation in the context of plant growth modeling is that the
generated images should appear realistic and appealing and be suitable for pheno-
typing tasks in a second step, i.e., serve as artificial sensor data. For this purpose,
we use an individual plant trait-based evaluation for each dataset, such as esti-
mating projected leaf area or biomass. This often provides more meaningful and
relevant information about the generated image than classical evaluation metrics.

Altogether, the work includes four contributions that improve data-driven
image generation for plant growth modeling, namely (1) the handling of sequential
non-equidistant input and the generation of consistent output time series, (2) the
integration of multi-modal conditions, (3) the generation of a realistic output
distribution and thereby variability for each growth stage, and (4) the evaluation
of generated images with data-specific plant-traits. Two frameworks are publicly
available at

Two frameworks are published open source, containing data-driven CGMs
based on sequential input (Chap. 6) and based on multi-modal conditions
(Chap. 7). In addition, two crop mixture RGB image datasets collected within
the PhenoRob project in 2020 showing pre-processed field patches are published
open-source on the PhenoRoam platform.

• TransGrow, Python, presented in Chap. 6
https://github.com/luked12/transgrow

• CGANs for Crop Growth Simulations, Python, presented in Chap. 7
https://github.com/luked12/crop-growth-cgan

• Mixed-CKA, Sequential RGB image dataset, introduced in Chap. 4
https://phenoroam.phenorob.de/geonetwork/srv/eng/catalog.
search#/metadata/751c10c4-b6dc-4bcc-bc8c-c0fc5920887a

• Mixed-WG, Sequential RGB image dataset, introduced in Chap. 4
https://phenoroam.phenorob.de/geonetwork/srv/eng/catalog.
search#/metadata/d9d0434f-7864-435e-9c75-56102d9332cb
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2022, pp. 140–148
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Chapter 2

Basic techniques

In this chapter, the basic techniques of this thesis are presented, including the
taxonomy of generative modeling, the notation used in this thesis, methods on
which subsequent models are based or serve as a baseline, and metrics to evaluate
generated images.

2.1 Taxonomy of generative modeling
Statistical models can be primarily divided into two classes, discriminative
and generative models. While discriminative models draw decision boundaries
in the data space and are thus suitable for classification and regression tasks,
generative models aim to determine or approximate the data distribution [27].
Hence, generative models are suitable for clustering, representation learning, and
density estimation of a data distribution. In addition, new data instances can be
sampled from the modeled probability density, which is the key property of why
this thesis focuses on generative models.

Given discrete data x, the modeling of the probability distribution Pdata(x)

can be completely unsupervised. Likewise, with the addition of labels y, the
conditional probability distribution Pdata(x | y) can be captured. The challenge
of determining the best models to represent or approximate the data distribution
with the global optimum Pdata = Pmodel is subject of current research and highly
dependent on the data type. For image distributions, model parameterization
is not an easy and intuitive task since images with spatial, channel, and
(often) temporal dimensions generally represent high-dimensional data. For this
reason, deep neural networks with thousands of parameters are often used and
predestined through end-to-end training to approximate image distributions.
The use of deep neural networks for modeling these distributions is called deep
generative modeling in this thesis.

9



2.2. NOTATION

Considering the type of density estimation, generative models can be gen-
erally divided into two types: While explicit density estimation tries to define
Pmodel(x) explicitly, implicit density estimation tries to generate samples that
come from Pmodel(x) but without defining it explicitly beforehand. Examples
of explicit density estimation include autoregressive models [28], energy-based
models [29], Variational Autoencoders (VAEs) [30], flow-based generative mod-
els [31], and denoising diffusion probabilistic models [32], while GANs [12] are
examples of implicit density estimation. Some of the above models, specifically
VAEs and GANs, are used in this work and will be considered in more detail
below. Specifically, we consider how these models can be extended to capture
the conditional probability, which is highly relevant in crop growth modeling if
additional influencing factors (conditions) are given.

2.2 Notation
In this thesis, images are notated with X ∈ R

W×H×C , having a width ofW , height
of H, and channel depth of C. Unless otherwise specified, C = 3 is applied in
this thesis, which means images have RGB channels by default. Typically, they
are combined into a dataset comprising a total of N images. Thereby we consider
three different types of datasets:

• Classic image dataset X: There is the classic variant of an image dataset
with X = [X1,X2, . . . ,XN ].

• Paired image dataset P: This dataset consists of two subsets P = [AP, BP]

containing aligned image pairs of two domains A and B. Both subsets AP =

[AX1,
AX2, . . . ,

AXM ] and BP = [BX1,
BX2, . . . ,

BXM ] represent images from one
domain each with M = N/2. So an image pair is given by [AXm,

BXm].
Different domains here are represented by plants of two different growth
stages, which means a temporal domain gap.

• Sequential image dataset S: The sequential image dataset contains K image
sequences S = [1S, 2S, . . . , KS], whereby a sequence contains kJ aligned images
over time kS = [kX1,

kX2, . . . ,
kXkJ ] and associated times kt = [kt1,

kt2, . . . ,
ktkJ ].

Since the number of images per sequence can vary, N =
∑K

k=1
kJ is the total

number of images in the dataset. One sequence here represents images of
the same plant at different growth stages.

In general, P and S can be drawn from X or from parts of X if the requirements
of pairwise resp. sequential image alignments are fulfilled. In all three types of
datasets, additional information may be present on a per-image, per-image-pair,
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or per-sequence basis. This information is generally notated as y but may have
different dimensions and is precisely defined in each specific experiment. During
modeling, images are usually further divided into input images X in, those images
that the model uses as input, generated images Xgen, the model output, and
reference images X ref, with which generated images are evaluated.

Major model components frequently used in this thesis are the generator Gθ
and the discriminator Dδ, which represent neural networks with corresponding
parameters θ and δ. Furthermore, an encoder Q is used to encode data into a
compressed latent space z and a decoder P to decode the latent space back to
the data space, where Q and P also represent neural networks. A random noise
vector notated as ϵ is often used as stochastic model input and sampled from the
standard normal distribution ϵ ∼ N(0, 1) unless otherwise specified.

2.3 Variational autoencoder
Variational Autoencoders [30], as explicit density estimators, aim to represent the
underlying features of the data in a compact, meaningful, and probabilistic space
from which new samples can be generated. This space, generally less dimensional
than the original data, is called latent space z. To build the latent space, VAEs
are based on the idea of Autoencoders (AEs) [33], which try to reconstruct the
original data. Here, data is first encoded with z = Qϕ(X) and second decoded
back from it with X rec = Pψ(z) second. So an overall objective can be formulated
as L2 reconstruction loss between input and reconstructed image.

LAE(ϕ, ψ;X) = ‖X − Pψ(Qϕ(X)‖2 (2.1)

Since only the reconstruction loss is used, which leads to a deterministic char-
acter of the AE latent space, it lacks two essential properties: First, there is no
guarantee that two images close to each other in the latent space will look similar
after decoding (continuity). Second, there should be no point in latent space that
is not meaningfully decoded (completeness). Both come from the fact that we
have no modeling control over how the latent space behaves in those areas where
no data samples fall. Reconstructions are therefore possible, but an AE can not
be considered a generative model.

With VAE, both properties can be achieved by setting the condition of a prior
distribution P (z) to the latent space and thus turning it probabilistic. In most
cases P (z) corresponds to the normal distribution N(0, 1). To achieve this, in-
stead of directly encoding z, the encoder output for each sample is a multivariate
Gaussian parameterized by µ and σ. From this, z could be sampled, however,
sampling is not a differentiable operation and would therefore prevent gradients
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from flowing to the encoder during the backpropagation. Instead, z is calculated
via a reparametrization trick, where � represents the Hadamard product and
ϵ ∼ P (z).

z = µ+ σ � ϵ (2.2)

An additional regularization needs to be applied, which forces each sample to
follow P (z). For this, the Kullback-Leibler (KL) divergence is used.

LKL = DKL(Qϕ(z|X)‖P (z)) (2.3)

The overall objective function for VAE finally results in

LVAE(ϕ, ψ;X , z) = EQφ(z|X)[logPψ(X |z)]−DKL(Qϕ(z|X)‖P (z)) (2.4)

where the first part corresponds to a reconstruction loss and the second part
to the KL divergence loss. In terms of an interpretable latent space z, it is
preferable if each dimension in z specifically represents a particular feature. This
characteristic is called latent space disentanglement and is an important property
for controlled image generation. For instance, it allows to control of plant size,
orientation, and color independently. A prerequisite for this are uncorrelated
dimensions in z, which is not automatically the case with classical VAE. To
achieve this, β-VAE adds an additional hyperparameter (β) to weight the KL
term of the objective function.

Lβ−VAE(ϕ, ψ;X , z, β) = EQφ(z|X)[logPψ(X |z)]− βDKL(Qϕ(z|X)‖P (z)) (2.5)

Setting the hyperparameter β is a trade-off between reconstruction accuracy and
latent space disentanglement. Hence, the smaller β, the better the reconstruction
accuracy due to a lower prioritization of the KL term. Conversely, a larger β en-
courages a larger latent space disentanglement and, thus, a more interpretable
latent space. However, there is no means of controlling which feature is encoded
at which position in the latent space. This can be discovered by encoding im-
ages with concise features and then examining their position in the latent space.
Then, enabled by the completeness property, it is possible to interpolate between
two points in the latent space and thus generate images with smooth transitions
between certain features. We call this image generation by analyzing and inter-
preting the latent space implicit since there is no way to explicitly generate an
image with certain characteristics.

2.3.1 Conditional variational autoencoder
Conditional Variational Autoencoders (CVAEs) enable the explicit generation of
certain features if they were included as a condition in the image generation model.

12



CHAPTER 2. BASIC TECHNIQUES

Thereby, the condition y is considered both in the encoder and in the decoder,
whereby there are several possible fusion techniques of image and condition.

LcVAE(ϕ, ψ;X , z, y) = EQφ(z|X,y)[logPψ(X |z, y)]−DKL(Qϕ(z|X , y)‖P (z|y)) (2.6)

Remarkably, CVAE create a latent space in which the condition itself is not
encoded: since they are already added to the encoder and decoder, a conditional
representation in the latent space is obsolete.

2.4 Generative adversarial networks
Another type of deep generative model is a GAN. With GANs, the model density
is not to be represented explicitly, as with VAEs by a latent space z. Instead,
GANs aims to model the data distribution by generating samples of that distribu-
tion. However, this is not a trivial task, as the data distribution for images is very
complex and inaccessible. Therefore, the solution is to sample from something
less complex, like random Gaussian noise, and then learn a generative model that
transforms this simpler distribution into realistic instances of the actual data
distribution. GANs can therefore be regarded as distribution transformers. To
enable this transformation, a GAN consists of two neural networks that act adver-
sarially to each other. First, the generator uses the input random noise sampled
from a normal distribution to generate a new data instance. In the literature,
these generated instances are also called fake or artificial. Second, a discrimina-
tor attempts to classify real and generated instances of the data distributions.
This leads to the following objective function

LGAN(θ, δ;X , ϵ) = EX [log(Dδ(X))] + Eϵ[log(1−Dδ(Gθ(ϵ)))] (2.7)

with adversarial optimization for both parts of the GAN

θ∗, δ∗ = argmin
θ

argmax
δ

LGAN(Gθ,Dδ) (2.8)

since it must be minimized with reference to the generator’s parameters and
maximized with reference to those of the discriminator. This objective function
minimizes the Jensen-Shannon divergence between the real and the generated
data distribution [12]. The training process involves an iterative alternate update
of generator and discriminator weights, in the optimal case, up to the state of Nash
equilibrium. The better the generator succeeds in transforming random noise into
a realistic sample, the worse the classification of the discriminator becomes. So
the Nash equilibrium represents a state where the generator generates samples
that are realistic enough to fool the discriminator; it cannot distinguish between
real and generated samples.
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In fact, GAN training poses great challenges, as it usually involves issues such
as vanishing gradients, mode collapse, and training instabilities. Vanishing gra-
dients occur if the discriminator gets too strong and the generator fails to fool
the discriminator. As a result, the generator cannot improve because it does not
receive sufficient information from the discriminator; the generated images get
less realistic. While vanishing gradients are caused by a discriminator that is too
strong, mode collapse can be caused by a discriminator that is too weak or stuck
at a local minimum. In this case, the generator always tends to generate the
same or a limited diverse output, so only a subset of modes of the data distribu-
tion. The discriminator also recognizes it as such, but since the generator slightly
beats any discriminator optimization, the next epoch will again show a limited
set of modes. In addition, since GANs are very sensitive to architecture design,
weight initialization, and the choice of hyperparameters, the dynamic adversarial
training process is often difficult to stabilize. However, regularization techniques,
additional loss functions, or a different optimization, like with Wasserstein Gen-
erative Adversarial Networks (WGANs), can help to mitigate the aforementioned
issues.

2.4.1 Wasserstein generative adversarial networks
WGANs can be seen as an extension of traditional GANs with an improved
optimization technique. The primary difference between traditional GANs and
WGANs [34] is the divergence measure used in their objective functions. WGANs
use the Wasserstein distance, also known as Earth Mover’s Distance, instead of
the Jensen-Shannon divergence, used in GANs.

LWGAN(θ, δ;X , ϵ) = EX [Dδ(X)]− Eϵ[Dδ(Gθ(ϵ))] (2.9)

θ∗, δ∗ = argmin
θ

argmax
δ

LWGAN(Gθ,Dδ) (2.10)

While in classical GANs, the discriminator outputs a probability score for each
input, indicating the likelihood of the input being real, in WGANs, the discrimi-
nator output is not constrained to a specific range. Since the output can no longer
be interpreted as a probability, the discriminator is often called critic in WGANs,
but for simplicity, we will keep calling it discriminator. WGANs also need a Lip-
schitz continuity constraint on the discriminator to guarantee its continuity and
thus the existence of the Wasserstein distance [34]. The Lipschitz constraint is
enforced through discriminator weight clipping [34] or gradient penalty [35], then
it is referred to as WGAN-GP. With WGANs, the training becomes more stable,
and it is easier to decide when to stop the training as the discriminator loss di-
rectly provides an interpretable distance measure between the distributions, with
the drawback that it often takes longer to converge.
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2.4.2 Conditional generative adversarial networks

Conditional Generative Adversarial Networks (CGANs) are an extension of clas-
sic GANs incorporating additional information to guide the generation process.
This allows for more controlled and targeted image generation. The additional
or auxiliary information notated as y can represent anything from class labels
over continuous information to images and image time series. A special focus in
the central parts of this thesis is to investigate how several conditions of different
modalities can be integrated in parallel. Both the generator and the discriminator
are conditioned on y, which leads to the following modifications in the objective
function for WGANs and Conditional Wasserstein Generative Adversarial Net-
works (CWGANs).

LCGAN(θ, δ;X , ϵ, y) = EX,y[log(Dδ(y,X))] + Eϵ,y[log(1−Dδ(y,Gθ(ϵ, y)))] (2.11)

LCWGAN(θ, δ;X , ϵ, y) = EX,y[Dδ(y,X)]− Eϵ,y[Dδ(y,Gθ(ϵ, y))] (2.12)

The adversarial training scheme remains unchanged so that Eq. 2.8 for CGAN
training and Eq. 2.10 for CWGAN training can still be applied. It should be noted
that conditional GANs cannot be considered an unsupervised learning approach,
as conditions y must be present in the training for each image X .

2.5 Evaluation measures for generated images
Human perception of image quality is subjective and can vary considerably be-
tween individuals. Therefore, there are a variety of evaluation measures [36] for
generated images that aim to approximate human perception as closely as pos-
sible while retaining an objective character. They all have different pros and
cons as they specialize in different evaluation aspects, such as image sharpness,
image diversity, and semantic correctness. This means that several evaluation
measures must always be combined to assess the quality of an image generation
model comprehensively. However, there is no consensus on which combination
of measures is generally best suited - instead, an individually suitable selection
must be made for each application. In this work, the measures Mean Abso-
lute Error (MAE), Multi-scale Structural Similarity Index Measure (MS-SSIM),
Peak Signal-to-Noise Ratio (PSNR), and Learned Perceptual Image Patch Simi-
larity (LPIPS) [37] are used to directly compare two images, while KL divergence,
Wasserstein distance [34], also known as earth mover’s distance, and Fréchet In-
ception Distance (FID) [38] are used to compare image distributions. They are
introduced in Sec. 2.5.1. While the direct comparison between two images, gen-
erated image vs. real reference image, is not intuitive with unconditional image
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generation, as the output cannot be controlled, and therefore, no suitable refer-
ence image can be selected, conditional image generation restricts the space of
possible outputs. Direct comparisons can thus be performed, especially when
generating image pairs or time series. Even if it is not to be expected that gener-
ated and reference images match perfectly, a better evaluation measure indicates
a better image generation model.

In addition, in the area of plant generation, great importance is attributed to
ensuring that images are not only of good quality but that the respective plants
are also semantically meaningful, which is not fully covered by the previously
mentioned measures. To examine this, realistic dataset-specific plant traits are
derived from generated images and compared with plant traits derived from ref-
erence images. This plant-trait-based evaluation is generally based on models
that are trained independently of the respective image generation model. Espe-
cially the basic building blocks of these models, namely Mask R-CNN models
for instance segmentation of plants in the images, and a modified ResNet for
image-based regression, are introduced in Sec. 2.5.2.

2.5.1 Image quality and distribution measures
The image quality and distribution metrics used are presented in more detail
below. Notably, they are not only used for evaluation at test time but can also
support model training, e.g., as an addition to GAN’s adversarial training loss.

Mean absolute error

The Mean Absolute Error (MAE), also known as the L1 distance, is a well-
established image evaluation measure. It is a pixel-wise measure that calculates
the absolute differences between corresponding pixels in the generated image and
the reference image. The MAE is defined as the average of these absolute differ-
ences.

MAE =
1

HW

H
∑

h=1

W
∑

w=1

|Xgen
hw − X ref

hw| (2.13)

Here, H is the height and W is the width of the image. Xhw represents the
intensity value of the pixel at position [h,w]. While MAE is fast to compute,
robust to outliers, and well interpretable, it may not fully capture perceptual
differences or structural variations between images. Thus, it is often used in
conjunction with other evaluation measures.

Peak signal-to-noise ratio

Peak Signal-to-Noise Ratio (PSNR) is a metric used to assess the quality of signal
representation, particularly in the context of images and video subject to lossy
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compression. Therefore, it is well suited to evaluate the reconstruction quality
of generated images. PSNR quantifies the fidelity of a reconstructed signal by
comparing it to the original signal and is expressed as a logarithmic quantity
using the decibel (dB) scale. In the formula

PSNR = 10 · log10
(

MAX2
I

MSE

)

(2.14)

the fraction is calculated between the squared maximal possible pixel value MAXI,
which is 255 for 8-Bit images, and the MSE, also known as the L2 distance and
defined as the average of the squared pixel-wise differences.

MSE =
1

HW

H
∑

h=1

W
∑

w=1

(Xgen
hw − X ref

hw)
2 (2.15)

Typical PSNR values for 8-bit images range between 30 dB and 50 dB, with higher
values indicating better reconstruction quality. The advantages of PSNR include
its simplicity, which makes it interpretable and accessible to a wide range of users.
It’s a global measure of image quality, but it is also very sensitive in penalizing
image artifacts. So small but high changes in pixel values can lead to a significant
drop in PSNR. When aiming for artificial sensor data, this property is particularly
important. On the downside, its magnitude depends on the image content, and
therefore, PSNR is difficult to compare between datasets. Furthermore, while
PSNR is sensitive to pixel-wise differences, it does not capture structural changes
in an image. As a result, it performs unevenly for different types of distortions
and does not always correlate well with human perception.

Multi-scale structural similarity

For the structural comparison between generated and reference images, we use
the Multi-scale Structural Similarity Index Measure (MS-SSIM) [39]. When com-
paring two identical images, it reaches an optimal value MS-SSIM = 1. MS-SSIM
is implemented through a hierarchical approach to evaluate the structural simi-
larity between generated and reference images across different scales aiming to
capture both local and global structural information. This involves three steps.

In the first step, both images are decomposed into five different scales by
successive 2D average pooling. Structural similarity indices (SSIM) are then
computed independently at each scale, comparing window-wise (size 11 × 11)
corresponding sub-regions from the decomposed reference and generated images.
This involves assessing luminance, contrast, and structure similarities at both
local and global levels, incorporating spatial information within each scale. For
each window on each scale, the SSIM is calculated as
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SSIM =
2 · µrµg + C1

µ2
r + µ2

g + C1

·
2 · σrg + C2

σ2
r + σ2

g + C2

, (2.16)

where µr µg are average intensity values of the windows of the reference or
generated image, σ2

r and σ2
g are the corresponding variances, σrg is the covariance,

and C1 and C2 are constants added to the formula to stabilize the division. The
window-wise SSIM scores within each scale are averaged and normalized after-
ward using ReLU activation, which is not compliant with the original definition
but stabilizes the metric when used during neural network training. The third
step involves aggregating the SSIM scores from different scales, resulting in the
final MS-SSIM. The weights are assigned based on the significance of each scale
in human perception, since the step aims to emphasize the contributions of scales
that are more perceptually relevant, ensuring a balanced and representative mea-
sure of overall structural similarity.

Due to the analysis of structural information at different resolutions, MS-SSIM
provides a robust and comprehensive method for evaluating image quality, con-
sidering the multi-scale nature of human perception. It is particularly useful in
capturing perceptual nuances and is often preferred over traditional SSIM for
evaluating image quality, especially in scenarios where it’s important to capture
both fine and coarse details.

Learned perceptual image patch similarity

The Learned Perceptual Image Patch Similarity (LPIPS) [37] metric is a percep-
tual similarity measure designed to capture the perceived differences between im-
ages based on neural network embeddings. For this purpose, the generated and
reference images are passed to the same pre-trained network to obtain feature
representations lẑgen and lẑref of L layers, which are stacked along the channel-
dimension, unit-normalized and scaled along the channel dimension using wl. Af-
terward, they are compared using the L2 distance, averaged spatially, and added
channel-wise.

LPIPS =
∑

l

1

HlWl

∑

h,w

∥

∥wl � (lẑgen
hw − lẑref

hw)
∥

∥

2

2
(2.17)

The lower the LPIPS, the higher the similarity between the two images. Unless
otherwise specified, the VGG network [40], a 16-layer deep convolutional neural
network developed for large-scale image recognition, is used. Since LPIPS com-
pares high-level features at different latent space scales, it correlates well with
human perception. It is also relatively time-efficient, as the weights of the feature
extraction network do not need to be trained and is therefore also suitable as a
loss function.
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Fréchet inception distance

The Fréchet Inception Distance (FID) [38] is an evaluation metric to provide a
quantitative similarity between image distributions. Similar to LPIPS, the feature
representations of generated and reference images are compared in a pre-trained
deep neural network. However, two images are not compared directly over the
L2 distance, but statistics are calculated over two sets of images (image distri-
butions). Specifically, the FID is calculated in three steps. First, a pre-trained
deep neural network, Inception-v3, is used to extract feature representations from
the reference and generated images. The Inception network is usually truncated
at the 2048-dimensional pooling layer after the convolutional backbone, one of
the deepest layers in the network, and the activations from that layer are used.
Second, statistics are calculated for a set of reference and generated images, by
defining multivariate Gaussian distributionsN with mean values µ and covariance
matrices Σ of the feature representations. In the third step, the Wasserstein-2
distance between the two Gaussian distributions is computed with

FID(Nr,Ng) =
∥

∥µr − µg

∥

∥

2

2
+ tr

(

Σr + Σg − 2 (ΣrΣg)
1

2

)

, (2.18)

where Nr(µr,Σr) and Ng(µg,Σg) are the Gaussian distributions of reference and
generated images respectively. The smaller the FID(Nr,Ng), the higher the simi-
larity between reference and generated distributions.

In contrast to the previously presented metrics, FID is more robust with
respect to noise and small perturbations in the images and takes into account
(besides the image quality) the diversity of generated images, which makes it sen-
sitive to mode collapse. This means it can detect when the generative model only
covers parts of the reference image distribution. Both properties are significant
advantages over the Inception Score (IS) [41], which also uses the Inception net-
work but, in contrast to FID, considers the final output layer. Instead of assessing
deep features, IS primarily measures the diversity and confidence of the classifier
in predicting final class labels, which may be unreliable or biased for plant images
because the Inception network was not trained with data from the plant domain.
Therefore, FID is more relevant than IS for this thesis.

2.5.2 Plant-trait-based evaluation
Plant-trait-based evaluation is inspired by the idea of deriving plant traits (PT)
from images relevant to crop growth analysis. This is first done independently
for a generated and a reference image, and subsequently, the derived traits are
compared to assess the suitability of the generated image for plant phenotyping
purposes. Relevant parameters are, for instance, the size or the extent of the
plant, the leaf area, the height, or the biomass. There are different methods for
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determining these plant traits, including calculation from vegetation indices, esti-
mation using residual neural networks, and derivation from instance segmentation
using Mask R-CNN, which are used in this work.

Plant trait estimation using residual neural networks

The estimation of plant traits (PT) from images falls into the area of image
regression. Image regression describes the task of estimating continuous-values
outputs from input images. Since deep learning is well suited for image regres-
sion in the plant domain, we use residual neural networks (ResNets) [42], one
of the convolutional state-of-the-art models, in this work. ResNets, which were
originally developed for image classification, are characterized by their residual
blocks. Each residual block consists of two main paths: the identity path and the
shortcut path. The identity path is the original path through the block consisting
of multiple stacks from convolutional layers, batch normalization, and ReLU acti-
vations, while the shortcut path directly connects the block’s input to its output.
This shortcut path enables the network to learn residual functions, allowing it to
build and train exceptionally deep networks without vanishing gradients.

There are several ResNet variants from ResNet-18 to ResNet-152, with which
the number of layers is indicated. For efficiency reasons - as the number of layers
increases, so does the number of parameters and the training time - only ResNet-
18 and ResNet-50 are used in this thesis. To make it applicable for regression, it
needs to be slightly modified by reducing the final linear layer, which originally
had 1000 neurons (the number of classes in Image-Net), to the number of neurons
corresponding to the number of target parameters. If, for instance, the biomass
in a mixed crop image consisting of two species is to be determined by species, the
number of output neurons required is two. The optimization of a ResNet is fully
supervised, so pairs consisting of image and regression labels are required. In
general, image regression is particularly suitable for tasks where either pixel-wise
results are not required or pixel-wise labels are difficult to obtain, e.g., for crops,
plant height, biomass, or mixture proportions.

Plant instance assessment using Mask R-CNN

Plant instance assessment is a crucial task in various agricultural applications,
where a plant’s center point, diameter, or projected leaf area is of interest.
Mask R-CNN [43], widely applied in the plant domain, enables instance segmen-
tation, simultaneously performing object detection and semantic segmentation of
a plant. Object detection describes the localization of the plant in the image by
means of a bounding box and the assignment to a class, whereas semantic seg-
mentation represents the finer pixel-by-pixel segmentation. Both are crucial, as
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in purely semantic segmentation, the plant instances cannot be separated if the
leaves overlap, which is particularly common in late growth stages. Unlike many
related methods, Mask R-CNN streamlines the process by combining bounding
box regression, its classification, and semantic mask generation in a parallel head.
In addition to state-of-the-art accuracy, the method is thus fast, intuitive, and
easy to use. The following are the main steps of a Mask R-CNN: It begins with a
backbone Convolutional Neural Network (CNN), such as ResNet or VGG, which
processes the input image and extracts a feature map. For object detection, the
Mask R-CNN uses a slightly modified Faster R-CNN network [44] for region
proposal extraction. In contrast to Faster R-CNN, which uses RoI (Region of In-
terest) Pooling to extract fixed-size feature maps for each region proposal, Mask
R-CNN introduces RoI Align. RoI Align addresses misalignment issues caused
by quantization in RoI Pooling, ensuring more accurate pixel-to-pixel alignment
between the input image and the extracted features. Each region proposal is
then passed through two fully connected layers: one for object classification and
another for bounding box regression, where the coordinates of the bounding box
are adjusted. This step determines whether the region proposal contains an ob-
ject and refines its location. For semantic segmentation, a fully convolutional
network is used to create binary segmentation masks for each class inside each
region proposal. The Mask R-CNN is trained using a multi-task loss function,
which combines losses for classification, bounding box regression, and mask pre-
diction. Naturally, the complexity increases the more different classes are used
in training, which is why, in this thesis, dataset-specific Mask R-CNNs are de-
veloped. There is only one class at a time representing the plant of the dataset,
while everything else, including weeds, insects, or field equipment, is considered
background.

Quantification of plant traits for a set of images

In the evaluation for a whole test set with N images, the Mean Absolute Error
(MAE) and the Mean Error (ME) are calculated as follows between plant traits
(PT) of the generated and the reference image.

MAEPT =
1

N

N
∑

n=1

|PTgen
n − PTref

n | (2.19)

MEPT =
1

N

N
∑

n=1

PTgen
n − PTref

n (2.20)

Here, the quantity measure ME indicates whether the PT is overall under-
estimated (ME < 0) or overestimated (ME > 0). For whole agricultural fields,
the ME is informative, in case it is not as important to accurately determine the
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yield of individual field regions but rather to evaluate whether the overall mean
predictive error for the entire field is low.
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Chapter 3

Related Work

With the rapid rise of Machine Learning (ML) in general and in particular gen-
erative AI in recent years, these technologies have also found their way into the
agricultural sector [45]. This chapter examines recent developments and applica-
tions related to crop growth modeling and discusses links to this thesis. First,
a broader overview of Crop Growth Models (CGMs) is given to understand the
agricultural transformation toward data-driven models better. This includes their
general importance for agriculture and specifically their relevance for the arable
crops cauliflower, wheat, beans, and their mixtures examined in this thesis. In
addition, different types of currently used CGMs are presented, along with the
advantages and disadvantages of data-driven approaches and their combinations
with conventional methods. The following sections cover related work to the
data-driven approaches used in this thesis, i.e., recent machine learning and im-
age generation techniques for plant phenotyping and crop growth modeling.

3.1 Importance of crop growth models

Crop growth modeling plays a crucial role in modern agriculture by offering a sys-
tematic understanding of the complex interplay of various factors influencing crop
development [46]. The ability to predict and simulate crop growth under differ-
ent environmental conditions is instrumental in optimizing agricultural practices,
resource allocation, and crop management strategies. By integrating empirical
data and mathematical formulations, CGMs enable researchers and practitioners
to make informed decisions regarding irrigation, fertilization, and pest control,
ultimately contributing to enhanced crop yields and sustainable agricultural prac-
tices [47]. Additionally, these models serve as valuable tools for climate change
impact assessment, aiding in developing resilient and adaptive farming systems
[48].
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3.1.1 Relevance for investigating cauliflower

Modeling cauliflower growth is particularly relevant to accurately predict the
harvest-readiness of the curd, i.e., the edible part of the cauliflower head. The
general growth development depends primarily on temperature, solar radiation
[49], and CO2 concentration [50]. Since cauliflower is considered a high-value crop
in Europe, it is usually not grown under limited water or nutrient supply. There-
fore, these parameters are missing in many CGMs [51]. In traditional agricultural
practice, the above-mentioned factors are often monitored on parts of a field us-
ing spot checks, and the assessment of crop development is then extrapolated to
the entire field. However, this method is unsuitable for cauliflower. Here, the as-
sumption that cauliflower heads, planted simultaneously and exposed to the same
external conditions, have the same optimum harvest time is not valid. Instead,
there is a high within-field variability, equivalent to a long harvest period [51].
At the same time, there is a period of just one week for each plant suitable for
harvesting [52]. In addition, the harvesting methods are very labor-intensive, as
ripeness can only be determined by touching the curd to check whether it meets
size and consistency criteria. If harvested too early, the cauliflower is still under-
developed, while overripe heads of curds lose their compactness or are exposed
to light for too long, resulting in color changes [52]. The combination of the high
within-field variability leading to difficult timing and the current need for man-
ual harvesting causes the harvesting operation to account for a large proportion
of the total cost of cauliflower production [51]. As cauliflowers are subject to
high-quality standards, any deviation from the optimum harvest time will result
in a considerable loss of value and disadvantage in the sales market. To sum-
marize, mainly due to the heterogeneity in growth, cost-intensive harvesting, and
high-quality demands of the market, the development of CGMs focusing on single
heads is of great importance.

3.1.2 Relevance for investigating crop mixtures

Crop mixtures have the potential to increase system productivity compared to
sole crops and thus herald more sustainable agriculture in the future [53]. As
an example, cereal and legume crop mixtures are known to improve resource use
efficiency [54], enhance nutrient acquisition [55], maximize system productivity
through complementarity, especially on low input land limited by nitrogen defi-
ciency [56], and reduce weeds, diseases, and insect pest infestations [57]. However,
the specific crop responses to complex genotype × environment × management
interactions are not well explored. In fact, many farmers do not currently con-
sider crop mixtures an option, often due to a knowledge gap in species, cultivar,
and treatment selection, which results in performance uncertainty [58].
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To gain more knowledge about crop mixture systems, two approaches are
suitable: field trials on the one hand and Crop Growth Models (CGMs) on the
other. While field trials integrate actual environmental and management condi-
tions, they are limited in time and space and can only test a small number of
such conditions. Crop growth modeling, on the other hand, may be limited in
predicting realistic responses of crops, especially under a changing climate [59],
but allows the simulation of multiple conditions, including future environments.
For instance, it can help to simulate when domination occurs, i.e., an unbalanced
proportion of biomass in the mixture. This helps to understand the competitive
balance between crop mixtures at different growth stages, which is essential for
their viability [53].

3.2 Types of crop growth models
The growth of plants is influenced by abiotic factors, including soil composition,
temperature, precipitation, and other climate conditions, as well as biotic factors
such as pollinators, pests, weeds, and pathogens [60]. Many different conventional
models have been developed to predict crop growth based on the aggregation of
parts of these factors over the growing period, the estimation of photosynthe-
sis, or different climate conditions [51], [61], [62]. Conventional CGMs can be
divided into Process-Based crop growth Models (PBMs) (often also referred to
as mechanistic), empirical, and combined variants of both [48]. It is important
to distinguish between empirical and Data-Driven crop growth Models (DDMs)
used in this thesis. While empirical models are a subset of DDMs, not all DDMs
are empirical. In particular, generative ML algorithms, which we categorize as
DDMs, learn complex underlying patterns from data and require a high level of
optimization, which cannot be considered empirical.

3.2.1 Process-based crop growth models

Process-Based crop growth Models (PBMs) simulate crop growth by represent-
ing the dynamic interactions between various components, such as soil, climate,
and plant physiology. These dynamic interactions are generally based on physi-
cal equations, which describe, for example, water and nitrogen uptake from the
soil or the sun-induced fluorescence properties of plant leaves. As plant growth
is subject to highly complex processes, some of which are not well understood,
PBMs need to make decisions regarding the scale of application and the growth-
influencing factors considered. For example, many CGMs can handle the abiotic
factors CO2, water and nitrogen uptake well, while many biotic factors such as
weeds and pathogens are only considered in very few models [63]. This leads to
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simplifications and biases in the model, meaning that a complex calibration to
the current application site is usually required, for which experiments or domain
knowledge of realistic parameter bounds are used [63], [64]. In total, PBMs are
valuable for understanding the mechanisms influencing crop development and are
often used in research and practice for decision support, yield prediction, and
optimization of agricultural practices.

Focusing on the farm level, CGMs are usually used to manage irrigation, fer-
tilization, and sowing [63]. Among the most widely used CGMs are AquaCrop
[65], APSIM (Agricultural Production Systems sIMulator) [66], both applicable
to the optimization of water use efficiency in the context of yield responses of
wheat, DSSAT (Decision Support System for Agrotechnology Transfer) [67] sim-
ulating the development of crops under different soil, climate and management
conditions, and CROPGRO [68] included in the DSSAT system and applicable to
model the growth of brassica plants [69]. Specifically for cauliflower, PBMs exist
that incorporate relations between the different phases of cauliflower development,
crop development, leaf area expansion, increase in curd volume, and increase in
dry matter [51]. In this thesis, the SIMPLACE [70] framework is used as PBM
to model monocultures and mixtures between wheat and legumes according to
various target parameters, including height and biomass.

3.2.2 Data-driven crop growth models
In modern agriculture, the integration of machine learning has revolutionized
traditional farming practices by leveraging vast amounts of data to create accurate
and dynamic simulations of crop growth. Summarized under the term Data-
Driven crop growth Models (DDMs), they include data on crop-specific attributes
such as genetics, environmental conditions, and management practices, as well as
sensor data. Given the large amount of data fusion techniques in deep learning,
there is great flexibility in the use of input data, and no prior information on
the relationship between the variables is required [63]. Therefore, they are not
dependent on domain knowledge, which can be seen as both an advantage and
a disadvantage. On the one hand, they do not benefit from domain knowledge
of well-researched processes. The strong data dependency also makes them less
generalizable because the field of application is limited to the data on which they
were trained [63]. On the other hand, this provides the flexibility to find non-linear
patterns and connections about which there may previously have been simplified
assumptions or insufficient domain knowledge [7]. In the case of image data, which
cannot be easily integrated into PBMs, DDMs have the advantage of accessing
additional assumption-free information about the spatial plant development, such
as the plant density or the number of plants. This is particularly crucial for
mixed crops because the spatial distribution depends on crop emergence and
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mixture effects, such as the early possible domination of a partner, for which little
expert knowledge is available [53]. Another issue is the low interpretability of ML-
models often considered as black boxes since they are trained end-to-end without
understanding the parameter relationships in between. This issue is tackled by
interpretable machine learning techniques [71] and in this thesis specifically by
exploring the latent space of generative models.

There is a variety of empirical/statistical DDMs, suitable for classical regres-
sion on weather, growth-influencing variables, and remote sensing data [63]. Re-
cently, ML models are also being used, mostly to predict certain parameters
from these data, such as crop yield [72]. Further related work dealing with traits
derived from images by ML in this thesis can be found in Sec. 3.3.

3.2.3 Hybrid models

There are also efforts to link both approaches, as they can complement each other,
which are hybrid models. Conceptually, for CGMs, the linking can be parallel,
serial, or modular, depending on how the data is processed in the two models [73].
In the parallel setting, both models have the same input. In the serial setting, the
output of one model represents (parts of) the input of the other model. In the
modular case, both models are combined in submodules of the crop growth model.
Specifically, several linking strategies are possible: Integrating DDMs into PBMs
is possible by using data assimilation methods [74] or ML models to calculate
certain parameters of the PBMs in a data-driven way. DDMs can also completely
replace certain parts that can be better data-driven modeled than process-based,
such as long-term weather forecasts [73]. Conversely, the output or knowledge of
PBMs can also be used for DDMs. This follows the idea of theory-guided ML,
which, in general, aims to enhance the effectiveness and interpretability of data
science by integrating scientific knowledge [75]. For instance, PBMs can generate
simulation data that can increase and diversify the training dataset of DDMs. It
is also possible to embed knowledge about parameter bounds from PBMs into
ML algorithms by adding constraints to the loss function or by choosing certain
activation functions in neural networks [73].

Some work already shows that ML techniques can be integrated to PBMs, like
the APSIM model, to obtain a higher yield prediction accuracy [76], [77]. How-
ever, to our knowledge, no hybrid image-generating crop growth model exists.
The focus of this thesis is on combining different data types in DDMs, whereby
domain knowledge is included in the integration of this data. For instance, sen-
sor data is integrated differently than growth-influencing variables and the time
condition. In addition, a serial interface is created in Chap. 7 to combine the
output of a PBM as input of a DDM directly.
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3.3 Machine learning for plant phenotyping

Among the DDMs, especially deep learning approaches have had a significant
impact on the development of plant phenotyping methods and CGMs in recent
years. In particular, CNNs are used for direct target parameter estimation like
the assessment or prediction of crop yield and biomass [72]. While the outputs
are often one or several one-dimensional target parameters, CNNs are suitable
for processing both one-dimensional inputs, such as weather, soil, or treatment
data, as well as spatial two-dimensional data, such as plant images. Images
have proven very efficient for integrating plant traits into the model, particularly
when recorded in a unified orthographic view [78], [79]. By integrating tools for
sequential processing, such as recurrent neural networks [80], Long Short-Term
Memorys (LSTMs) [81], or transformers [82], the input space is not restricted to
a single time point. Hence, there is great flexibility in integrating different data
dimensions into neural networks to estimate certain crop growth target parame-
ters.

3.3.1 Estimation of plant traits leaf area and biomass

Accurately determining the actual leaf area from images with an orthographic
view is challenging because many leaves are hidden by the top canopy layer.
Therefore, either methods such as LiDAR scanning or multi-view imaging, which
enable the creation of a 3D model of the plant, or assumptions about the leaf
density and height of a plant are necessary for an exact determination.

A widely used alternative to the leaf area is the projected leaf area, which is
also used in this work and represents the area of the leaf surface as seen from
an orthographic perspective. This can be obtained by segmenting the leaf sur-
face and then counting the segmented pixels with a known Ground Sampling
Distance (GSD). There are various options for segmentation, such as the use of
vegetation indices [83], semantic image segmentation via CNN [19], or in the case
of overlapping instance segmentation via Mask R-CNN [52].

Similar difficulties arise for the biomass, as it depends on the plant volume,
which, as a cubic size, cannot be determined exactly from orthographic views
without height information. However, adequate estimates of CNNs can actually
be made from drone images [78] as well as satellite images [18]. It is expected
that the visual characteristics such as the structure, density, leaf size, leaf color,
and shadow effects, which all change during the growing season, provide valuable
proxies.
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3.4 Image generation for plant phenotyping

This thesis proposes first to generate images and then derive important target
traits by plant phenotyping afterward. While reference labels of the target traits
are required for the second step, the first step of image generation can be regarded
as unsupervised learning. This is a major benefit, as the gathering of labeled
training data is time-consuming and cost-intensive. In addition, labeled reference
data are often related to yield and acquired at the end of the growth period -
usually in destructive measurements - while image-based plant phenotyping is
non-destructively possible over the entire growth period [84]. Generating plant
image data can improve subsequent downstream tasks, but even the generated
images themselves bring added agricultural value in many respects.

Plant image datasets often suffer from diversity, as plants exhibit enormous
biological variability and often have complex overlapping structures, which are
additionally diverse by environmental influences [45], [85]. The generation of ar-
tificial sensor data for data augmentation helps to enrich the dataset’s diversity
by generating new realistic plant images [45], [86]–[88]. Artificially generated im-
ages are also relevant for transfer learning by domain adaptation, whereby newly
observed plant image datasets are given a style (changed exposure, background)
that corresponds to known environments, e.g., from existing pre-trained mod-
els[89]. Super-resolution tasks similarly fall into the category of artificial sensor
data, where deep learning is used to synthesize a higher-resolution image from a
low-resolution one, which is useful for visualizing fine-grained leaf structures and
detecting anomalies [90]–[92]. In all cases, the higher diversity and quality of the
datasets through augmentation, domain adaptation, and super-resolution help to
improve target tasks such as crop and disease detection and classification.

In many scenarios, the generated images can not only be seen as an inter-
mediate step, as they contribute to model understanding and explainability and
further create expert knowledge [71]. This can be seen, for instance, in the area
of plant diseases, where it is crucial to understand how biotic and abiotic stresses
affect plant organs and how diseases progress [93]. Explainability leads to trust-
worthiness in ML models, which is also enhanced when the probable position of
fruits hidden behind leaves is visualized rather than the total number of fruits
estimated by regression [17]. Similarly, in crop mixture scenarios, it is useful
to visualize spatial development, as this can provide valuable insights into field
heterogeneities and different genotype interactions [53]. This enables not only
targeted in-field interventions but also leads to a better understanding of how
two species compete with respect to certain influencing factors.
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3.5 Image generation for crop growth modeling
There are few studies that incorporate the temporal dimension to model the
development of plant growth over time using generated images, i.e., create realistic
probable estimates of future plant phenotypes.

Hamamoto et al. [94] use classical CGANs for image generation. In the
generator, LSTMs are used both in the encoder to handle equally spaced image
sequences of earlier growth stages and in the decoder to generate a sequence of fu-
ture images in one step. They treat crop growth modeling as video representation
learning, i.e., the prediction of the next frame from a sequence of previous frames.
This is reasonable for greenhouse environments with an enormously high obser-
vation rate but is not transferable to real field datasets with usually significantly
fewer observations and irregular observation intervals (cf. dataset characteristics
in Sec. 4.3). Limitations are short growth prediction steps of hours to a few days
and a small image size of 128 × 128 px, which are both increased in this thesis.

They also present the idea of integrating shape priors in the form of leaf
segmentation images into the generation by early fusion with the RGB images in
the LSTMs input. This has the advantage of directly obtaining the segmentations
of the future plant in the output alongside the predicted RGB images. While
these segmentations show an appealing quality in experiments with Komatsuna
(Brassica rapa), the generated RGB images are very blurry, and the shape priors
also do not prove helpful for the generation quality.

Slightly different shape-based prior are used by Kim et al. [95], who show
image-based crop growth modeling without GANs using several plant factory
datasets, also based on equidistant image sequences as model input. Here, the
growth prediction process is divided into first, shape prediction using a spatial
transformer network [96] to predict the future plant morphology, and second,
RGB reconstruction, in which the new shape image is filled in based on the color
information from the last available point in time using hierarchical AE. The
prediction steps are short and in the experiments 3 h for Komatsuna and 1 d each
for Arabidopsis and Butterhead lettuce (Lactuca sativa var. capitata) plants. In
general, the shape prior offers the advantage of controlling the growth process
and prevents artifacts and unnaturally shaped leaves, as the generated image
is an affine transformation of older growth stages. This is at the expense of
the temporal growth prediction capabilities because the plant structure cannot
change drastically, e.g., no completely new leaves can develop. Since this thesis
implements larger growth prediction steps and plant structures change more in
real field environments, it does not use plant shape prior. For evaluation, a
coverage score (CS) is used, which compares the Intersection over Union (IoU)
between generated and reference segmentations. The PLA evaluation of this
thesis is closely related, but here, only the overall segmentation size is considered,
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not the positioning of the segmentations via IoU, since structural differences in
long-term predictions are to be expected and not necessarily an indication of poor
model outcomes.

Yasrab et al. [97] focus on direct segmentation generation of future root
and shoot systems of Arabidopsis and Komatsuna based on a time series of past
images. For this, they use FutureGAN, a progressive growing GAN [98] coming
from the video frame prediction domain, and achieve appealing results. As with
previously mentioned models, their dependence on equidistant image time series
is a limitation, as is the generation of only segmentation images, which cannot
be used as artificial sensor data. Due to significant differences in the bit depth,
the generation of segmentations is much less complex than RGB imagery.

In the work of Foerster et al. [93], GANs are used to predict powdery mildew
spread on leaves using hyperspectral images, allowing prediction several days
into the future. While in the aforementioned studies, only the relative growth
prediction step is defined by model design, so the interval distance of equally
spaced input sequence equals the prediction distance, Foerster et al. integrate
the day to be generated after powdery mildew inoculation into the model as
absolute time information. This is achieved by concatenating the time directly
to the channel dimension of the images, which stabilizes the training at the same
time. In this thesis, both approaches of implicit time integration by data pairing
of different growth stages in Chap. 5 and explicit time integration by encoding
the target growth stage in 7 and 6 are used.

To summarize, most methods are based on conditional GANs, whereby differ-
ent architectures are implemented. The limitations are mainly in the integration
of further conditions (except shape prior), the flexibility in the number and in-
terval distance of the input images, and the prediction distance. Thus, long-term
predictions with strongly changed plant morphology were not investigated. Fur-
thermore, the utilization of image data from real field conditions and a calculation
or visualization of the predicted uncertainty is under-explored. While this sec-
tion provides a broad overview of related work on image-based modeling of crop
growth, the following chapters focus on improving different aspects of prediction.
Thus, integrated into the introduction of each chapter are specific, methodolog-
ically oriented state-of-the-art sections that include image-to-image translation
(Sec. 5.1), data imputation and extrapolation for time series (Sec. 6.1), and com-
bining images with multiple other conditions of different type (Sec. 7.1).
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Chapter 4

Data

The studies conducted in this thesis are based on four different plant datasets,
namely Arabidopsis (Arabidopsis-P und Arabidopsis-S), Brassica, GrowliFlower,
and MixedCrop (Mixed-CKA, Mixed-WG). All of them show RGB images of
different growth stages of their respective plants, from sowing or planting to
harvesting or removal, either in a paired (Fig. 4.1) or in a sequential (Fig. 4.2)
way. The acquisition time is available for each image and is given, depending on
the plant species, relative to sowing in Days After Sowing (DAS) or relative to
planting in Days After Planting (DAP) or in Weeks After Planting (WAP). One
aim of this thesis is to show that the image-based CGMs apply to datasets with
a wide range of different properties (Tab. 4.3). They differ technically in terms of
overall size, image formats, and observation intervals during the vegetation period,
but also semantically in essential properties. Different plant species, growing
environments, and heterogeneities of plants are represented, as well as different
resolutions due to varying cameras and image acquisition devices from ground
robots to robotic measuring arms and UAVs.

4.1 Requirements
Certain minimum requirements must be met for a dataset to be suitable for image-
based crop growth modeling. In general, plants need to be observed at different
points in time over the growing period, and their age must be determinable -
from the difference between the image acquisition time (usually contained in the
image metadata) and the time of sowing or planting (often not available in plant
datasets). Additional requirements apply to the observation process itself: All
images in a dataset need the same spatial resolution referred to as GSD and a
unified perspective on the plants. Preferably, a bird’ s-eye view is used, in which
plants can be assessed quickly and efficiently using remote sensing. Ideally, the
same measurement setups should be used over time, and the lighting conditions
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Figure 4.1: Overview of paired datasets. The pairs always consist of an early growth stage in
domain A (left) and an advanced growth stage in domain B (right), where the relative growth
stage difference is always 17d for (a) Arabidopsis-P and 3w for (b) Brassica. The number
above the images indicates the growth stage for (a) in Days After Sowing (DAS) and for (b) in
Weeks After Planting (WAP).

should be constant, both of which are major challenges for observations in real
field environments: the UAV flight height or the technical equipment can vary
with changing demands from different drone imagery users and weather conditions
strongly influence the lighting conditions. So, in real environments, these two
requirements (setup and lighting) are maintained as well as possible, e.g., by
UAV overflights always at the same daytime.

If Image Generation Models (IGMs) are applied in which one or more images
are set as a condition, the input and the reference output need to be spatially
aligned. Alignment means that a dataset shows images with the same section of a
plant or the same field region over time. This is one of the most important/critical
requirements, as the accuracy of the alignment depends on many aspects, such
as the repeatability of the measurement configuration and, under real conditions,
the accuracy of the geo-reference. All requirements taken together significantly
limit the number of suitable datasets, especially under real field conditions, so
datasets that fulfill the requirements with some restrictions are also permitted.
A fulfillment overview for each dataset can be found in Tab. 4.3.

4.2 Datasets
This section provides detailed information on each image dataset used to build
IGMs and corresponding information about treatments and process-based model
results, which are used as conditions. Label data relevant to deriving plant
traits from (generated) images in a supervised way within Growth Estimation
Models (GEMs) are also addressed. The different GEMs used are described in
Sec. 2.5.2. Despite partly higher resolution original images, whose pixel dimension
and spatial resolution are mentioned below, all images in this work are resized
to 256 × 256 px. We consider this size the optimal trade-off between the loss of
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Figure 4.2: Overview of sequential datasets. Temporal development of one plant resp. field
patch from each of the datasets (a) Arabidopsis-S, (b) GrowliFlower, (c) Mixed-CKA, and (d)
Mixed-WG. The number above the images indicates the growth stage for (a), (c), and (d) in
Days After Sowing (DAS) and for (b) in Days After Planting (DAP).

details in plant structures and efficient runtimes of the experiments. The experi-
ments discuss to what extent the models can be transferred to smaller and larger
images and what changes to the models may be necessary.

4.2.1 Arabidopsis

The two Arabidopsis datasets, a paired variant Arabidopsis-P and a sequential
variant Arabidopsis-S, are created from the Aberystwyth leaf evaluation dataset
[99]. It includes 80 different Arabidopsis (Arabidopsis thaliana) plants, which were
all grown under the same treatment. They were recorded on 4 trays (tray031-
034) of 20 plants each over a 35 d period from day 21 to day 55 after sowing
using an IDS UI-5480SE camera (Tamron 8mm f1.4 lens, 5MP). Each tray
image originally has a dimension of 1920 × 2560 px with a GSD of 0.15mm.
Up to four images were taken per hour, which led to 1676 observation times in
total. The camera was mounted on a robotic arm in a controlled laboratory
environment, ensuring high-accurate image alignment. For developing CGMs on
individual plants, 20 plant-centered images are clipped out of each tray at each
time point. Both the number of observation times used and the image clipping size
are different for Arabidopsis-P and Arabidopsis-S, which affects the total number
of images in the datasets. Segmentation labels on the leaf level are provided for
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two trays and selected growth stages.

Arabidopsis-P

Arabidopsis-P is designed as a paired image dataset P, where each image pair
shows spatially aligned plants with a time difference of 17 days. Within each
pair of images, domain A is the earlier growth stage, and domain B is the more
advanced growth stage 17 days in the future. As plant leaf angles change over
the course of the day, only plants recorded at the same time of day (±15min)
are paired. While the relative time difference is consistent over the entire dataset,
the absolute times of domains A and B are inconsistent. Domain A contains
the growth stages from day 21 to 38 after sowing, while Domain B contains the
growth stages from day 38 to 55 after sowing, resulting in a total of 10 325 pairs.
Limiting the domains to only one point in time would result in a maximum of
80 image pairs due to the low number of different plants, which is comparatively
small for training a deep generative model. Early growth steps are slightly over-
represented in the dataset compared to later ones because half of the plants were
removed from the trays before the observation ended, and in this case, no more
pairs can be formed (the plant in domain B is missing). The clipping size for
each plant-centered image is based on the time of plant expansion before there
is a strong overlap with neighboring plants, which clearly exceeds the edges of
the pot. However, especially in the later growth stages, neighboring plants can
protrude into an image clipping and potentially overlap with the observed plant
at the edges of the images. After resizing the images to 256 × 256 px, this results
in a GSD of 0.32mm. A spatial train-test split of the dataset is implemented:
Plants from three trays, tray031, tray032, and tray033, are used for training, and
plants from tray034 are used for testing.

Arabidopsis-S

Arabidospis-S is a sequential dataset S with a uniform sequence length of 850 im-
ages per sequence for the training and validation plants and 849 for test plants. In
contrast to Arabidopsis-P, all tray images are corrected for barrel distortions with
a provided calibration script [99] and then manually clipped to plant-centered im-
ages directly at the edges of the pots. After resizing to 256 × 256 px, this leads
to a slightly higher GSD of 0.23mm. This dataset focuses on images from 18
days of early developmental stages of A. thaliana from day 21 to day 38 after
sowing since more advanced growth stages exceed the pot and thus the clipped
image. Any plants that were already removed from the experiment before day
38 are excluded, leaving 64 plants. At the cost of a shorter observation period,
which is reduced by half compared to Arabidopsis-P, there are benefits of a more
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homogeneous dataset, with almost consistent length, no overlap in late growth
stages due to neighboring plants, and no under-representation of advanced growth
stages. Please note that the number of images per sequence clearly exceeds the
duration of the observation period in unit [d] because not only one image per day
was taken, but up to four per hour. There is a spatial train-val-test split: Two
and a half trays were used for training (tray031, tray032, and half of tray033),
half for validation (the other half of tray033), and one for testing (tray034).

4.2.2 Brassica
In the Brassica project [100], cauliflower and broccoli were observed in the field
for a 10-week growing season under different treatments, whereby this work fo-
cuses on the 288 observed cauliflower heads (Brassica oleracea var. botrytis).
The experimental site was in Australia at Lansdown Farm, about 70 km south-
west of Sydney, transitioning between subtropical and temperate climates. The
cauliflower heads are divided in the field into areas of four different treatments.
They are arranged in two beds (namely, beds 01 and 03), each separated into
four equally sized subareas with different irrigation and fertilization. The subar-
eas are indicated with {i+f+, i+f-, i-f+, i-f-}, where i denotes irrigation, f
fertilization and +/- mean sufficient or insufficient conditions, respectively.

Multi-modal images (RGB, hyperspectral, thermal) were acquired with an
autonomous ground-based kinematic multi-sensor system, of which the RGB im-
ages from two Grasshopper3 12MP GS3-U3-120S6C-C cameras in a stereo setup
are used. Due to the stereo setting, the plants are usually not centered in the
images but are slightly offset to the right or left. Weekly image acquisition took
place during movement at a speed of 0.1m/s and an acquisition rate of 0.5Hz
in the first part of the growth period (weeks 1-4) and 1Hz in the second half
(weeks 5-10), resulting in 4 or 8 images of the same plant at maximum. Due to
the continuous recording, many images are taken between two plants. These are
removed from the dataset since bare soil can be seen mainly. Images from the
first to ninth week after sowing are used; the tenth week is not included because
most cauliflower plants at this growth stage already exceed the image dimension.
Initially the images have a non-square shape of 706 × 1060 px with a GSD of
1.14mm, whereby resizing to 170 × 256 px results in a GSD of 4.84mm and zero-
padding of 43 px rows applied at the top and bottom ensures square image sizes
of 256 × 256 px.

The images’ geo-reference, which is used for image alignment, is achieved via
the localization units (IMU and GNSS) integrated into the ground robot and
enables monitoring of the same plant over time. However, it was not successful
to hold the same line on different measurement days within a few millimeters.
Therefore, two images are considered spatially aligned if their geo-positions are
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less than a threshold of 2 cm apart. Since it is more difficult to maintain an
alignment the more time points are taken into account, the dataset is not designed
as a sequential but as a paired dataset P with a difference in growth of 3 weeks.
So images of week 1 are paired with images of week 4, week 2 with 5, up to
pairing of week 6 with 9. Similar to Arabidopsis-P, both domains of the pairs
contain several growth stages: Domain A of the image pairs ranges from week
1 to week 6 and domain B from weeks 4 to 9, which leads to duplicate uses of
images in the overlapping weeks 4, 5, and 6. After removing images in spaces
between plants and images in which the cauliflower has already been harvested
or removed in another way, and after applying the alignment threshold, 6 658
images (3 329 pairs) remain of the original 21 928 images. However, image pairs
where plants are partly visible in both domains by at least 50 % are not removed
as they contribute to the diversity of the dataset.

The dataset is divided into spatially disjoint train-test parts: for training,
the plants from bed 01 are used, and for testing, the plants from bed 03. Since
a distinction between different treatments is not made during training, all the
cauliflower plants from the entire bed 01 are used. For testing, the 3-week aligned
image pairs of bed 03 are separated into the field treatments {i+f+, i+f-, i-f+,
i-f-}, which is shown in Tab. 4.1.

Table 4.1: Number of 3-week aligned cauliflower image pairs divided in bed 01 (train) and bed
03 (test) of the Brassica dataset. For training, the whole bed 01 is used. The test data is
divided into the treatment regions {i+f+, i+f-, i-f+, i-f-}. A sensor outage in week 7 results
for step 4 → 7 in only pairs for the i+f- region of bed 03.

Week Train: Bed 01 Test: Bed 03
∑

i+f+ i+f- i-f+ i-f-
∑

1 → 4 124 43 57 44 46 190
2 → 5 322 110 82 94 90 376
3 → 6 198 72 70 72 80 294
4 → 7 0 0 86 0 0 86
5 → 8 407 166 100 152 104 522
6 → 9 270 148 118 124 150 540

A few images of various growth stages were handpicked to be annotated for
plant-level instance segmentation. 35 images are labeled in total, 25 of which are
training images and 10 of which are test images. These labels are used to set up
an instance segmentation model that derives the overall plant size and the plant’s
location in the image from RGB input. Thereby, the plant size is determined by
multiplying the Projected Leaf Area (PLA) in the unit pixel by the GSD.

There were three measurement challenges affecting the images in the dataset.
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First, ensuring adequate and constant lighting conditions. Images are taken un-
derneath the robot and are generally not particularly bright. The artificial light
source causes leaves to be brighter in later growth stages because they are grown
closer to the light. Second, due to a sensor outage in week 7, there are no image
pairs for step 4 → 7 in the training set and only fewer pairs in section i+f- of
the test set. Third, in the imagery of week 8, small dot-like oversaturations with
maximum reflectance values occur in all color channels, resulting in white stains.

4.2.3 GrowliFlower
The GrowliFlower dataset [52] is a collection of multiple image data of cauliflower
(Brassica oleracea var. botrytis) from two different fields in Bornheim, Rhein-
Sieg Kreis, Germany. From this collection, unlabeled RGB image time-series
(GrowliFlowerT, field 2) are used as sequential data S for training the IGM, show-
ing 8 522 cauliflower plants in the growing period from June to September 2021.
In this thesis, a total of 102 264 images taken on 12 measurement days within a
period of 71 days from June to August are used, whereby images after harvest
are excluded. All plants were grown under uniform external conditions, although
soil inhomogeneities cannot be avoided. The original images stem from orthopho-
tos taken by an UAV equipped with a Sony Alpha 7R III camera (Zeiss/Batis
2.0 lens, 47.4MP). Aligned plant-centered clippings - enabled by the orthopho-
tos geo-reference - are taken from these orthophotos, which have a dimension of
256 × 256 px and a GSD of 3.10mm. Finally, there is not only one plant per
image, but (parts from) up to four heads are visible at the image edges and over-
lap in advanced growth stages. The whole dataset is divided into sets of approx.
77 % training and 11.5 % validation and test each, whereby a spatial separation
ensures that no center plant is visible in multiple sets.

A total of 2 197 labeled images of all growth stages of cauliflower heads of
another field (GrowliFlowerL, field 1) are provided, which are used to train a
GEM. The labels are made for instance segmentation of leaves and whole plants,
whereby this work is focused on the latter. The resolution of the labeled images
is slightly higher than that of the image time series with a GSD of 1.65mm on
an image size of 448 × 368 px.

4.2.4 MixedCrop
The MixedCrop data are from a 2020 and 2021 PhenoRob crop mixture experi-
ment described in detail by Paul et al. [53]. Two different cultivars of faba bean
(FB, Vicia faba) and twelve different entries of spring wheat (SW, Triticum aes-
tivum) were sown in mixtures of a 1:1 ratio, which means 50 % of seeds of each
species from the respective monoculture as well as in monocultures. An overview
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of the faba bean cultivars and spring wheat entities used in the MixedCrop experi-
ment is given in Tab. 4.2. Coupled with two different seeding densities i.e. low (L)
80% and high (H) 120% of the recommended sole crop densities (400 seeds m−2

for SW and 45 seeds m−2 for FB), this results in (2 · 12+2+12) · 2 = 76 different
treatments, which were replicated four times, or, in case of the faba bean mono-
cultures, eight times, resulting in a total of 320 different plots of size 10m×1.5m.
The same setup was applied to field experiments in 2020 and 2021 at two different
research sites of the University Bonn, which are both located in the Rhein-Sieg-
Kreis, Germany. The first, Mixed-CKA, is at Campus Klein-Altendorf (CKA,
near Rheinbach), and the second is at Wiesengut (WG, near Hennef). Both ex-
perimental sites are located about 30 km apart and have significantly different
growing conditions because Mixed-CKA is managed conventionally and Mixed-
WG organically. Along with an UAV image campaign, a variety of field data
were collected multiple times during the growing period, including weather, soil,
and nutrient parameters as well as manual height and biomass measurements [53],
[101]. In this thesis, the focus for both sites is on the experiments of the year
2020.

The RGB-image acquisition was conducted 11 times for Mixed-CKA1 and
10 times for Mixed-WG2 by UAV equipped with an FC6310 camera (1 ′′ CMOS
8.8mm, 20MP). The 320 field plots are positional-aligned clippings from the
geo-referenced orthophotos before being horizontally rotated and plot-centered
clipped into seven non-overlapping and square image patches. Five of these
patches are used for training, and one each is used for validation and testing
so that all sets keep all the different treatments. Each patch forms a sequential
sample over time, making both Mixed-CKA and Mixed-WG sequential data sets
S. While the original orthophotos have a GSD of 3mm, the image patches resized
to 256 × 256 px have a resolution of 5.67mm. Due to orthophoto corruptions and
destructive field measurements, some sections were manually removed, resulting
in a final number of 21 371 images for Mixed-CKA and 18 800 images for Mixed-
WG. For Mixed-WG, a significant spatial alignment error was noticed by visual
inspection, which is up to 10 cm, but inconsistent (offset in different directions)
across the images and, therefore, difficult to filter out. Since 10 cm corresponds
approximately to the spatial extent of a faba bean plant at 20 days after sowing
(DAS), the offset is well visible in the early growth stages.

1Mixed-CKA field patches are available at https://phenoroam.phenorob.de/geonetwork/
srv/eng/catalog.search#/metadata/751c10c4-b6dc-4bcc-bc8c-c0fc5920887a

2Mixed-WG field patches are available at https://phenoroam.phenorob.de/geonetwork/
srv/eng/catalog.search#/metadata/d9d0434f-7864-435e-9c75-56102d9332cb
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Table 4.2: Notation overview of species faba bean (FB) with cultivars A and B and spring
wheat (SW) with cultivars 1-10 and two additional mixed groups used in this work.

FB (Faba bean) A Mallory
B Fanfare

SW (spring wheat)

1 Lennox
2 Anabel
3 Saludo
4 Jasmund
5 Sorbas
6 Quintus
7 KWS Starlight
8 Chamsin
9 Sonett
10 SU Ahab
11 Mix-Group 1
12 Mix-Group 2

Biomass simulation using process-based modeling of crop mixtures

Labels for all images, which consist of the simulated dried biomass according to
growth stage and treatment, are calculated using a PBM for crop mixtures. The
process-based crop growth simulations were conducted in the modeling platform
SIMPLACE (Scientific Impact Assessment and Modeling Platform for Advanced
Crop Ecosystem Management) [70]. Different sub-models in the SIMPLACE
framework, called “SimComponents”, were combined, namely LINTULPhenol-
ogy, LINTUL5NPKDemand, SlimNitrogen, LINTUL5Biomass, SlimRoots, and
SlimWater, among others. An overview of key SimComponents3 is described in
Seidel et al. [102]. Specifically, the biomass per species was calculated by Sim-
Component LINTUL5Biomass, which considers the effects of water and nitrogen
limitation on biomass increment. Further mixture effects are taken into account
within the SIMPLACE framework by simulating the splitting of solar radiation
according to the competition of the two species as well as the water and nitrogen
uptake of two crop species planted in a mixture. The model was calibrated and
tested in three environments (CKA 2020, 2021, and WG 2020) based on the data
collected from the crops cultivated solely and evaluated based on the data in the
mixture treatments.

3Information about SIMPLACE components: www.simplace.net/doc/simplace_modules

41

www.simplace.net/doc/simplace_modules


4.3. COMPARISON

Figure 4.3: Overview of dataset labels. Instance segmentation for Arabidopsis, Brassica, and
GrowliFlower and process-based simulated dried biomass values for MixedCrop.

4.3 Comparison

A comparison between the datasets reveals many significant differences, as
Tab. 4.3 shows. When comparing the paired datasets, the challenges of data collec-
tion under real field conditions become apparent. Brassica has significantly fewer
images, fewer measurement times, and a lower spatial resolution than Arabidopsis-
P. In addition, there are difficulties with satisfactory exposure and spatial align-
ment with the field robot, whereas Arabidopsis-P represents a very homogeneous
dataset due to the laboratory conditions. However, significantly fewer plants
were observed with Arabidopsis-P and only under a single treatment (compared
to Brasscia: 4), which limits the diversity of the dataset and its generalizability
to Arabidopsis plants outside the dataset.

There are two datasets containing cauliflower images, Brassica and Growli-
Flower, with GrowliFlower being about 15 times larger. Regarding spatial align-
ment, UAV has advantages over Unmanned Ground Vehicle (UGV): To clip the
same positions over time and thus generate sequential data, precise coordinates
of each field point in a world coordinate system are required. This can be realized
for UAV with the recording of ground control points and the calculation of an
orthomosaic via bundle block adjustment. Meanwhile, this is not an option for
UGVs due to the smaller field of view and the need for additional positioning sen-
sors. In turn, the UGV succeeds in providing weak but constant light conditions
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through artificial light, while the illumination of orthophotos depends on solar
radiation, cloud cover, and the current properties of the soil (composition, struc-
ture, and moisture) and therefore varies strongly from one measurement time to
the next.

A comparison of the sequential datasets shows that very different types of
plants are examined: stand-alone single plants (without overlap), cabbages (with
and without overlap), and crops with strong overlaps even at early growth stages.
Not only is the sequence length different, but particularly with the sampling fre-
quency, gaps of different sizes between the recording times are noticeable. While
there are several daily observations of only 64 plants for Arabidopsis-S, there are
irregular observations and gaps of several days for GrowliFlower and MixedCrop,
but significantly more different cabbages or crops. Considering the overall size,
which decreases from GrowliFlower (~100 000 images) to Arabidopsis (~50 000)
to MixedCrop (~20 000), the latter is particularly challenging as there exist 76
different treatments in addition to the small dataset size.

There are also differences in the labels between the datasets, as seen in Fig. 4.3,
which influences the creation of GEM. While simulated biomass data are available
for MixedCrop and suitable for image regression tasks, pixel-wise plant instance
segmentations are available for all other datasets at different scales - leaf instances
or whole plant instances. In this work, only the projected leaf area per plant or
image is evaluated so that the instance segmentation of whole plants represents
a sufficient level of detail.
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N Table 4.3: Overview of all dataset properties. The upper block gives general specifications about the datasets, the middle block indicates the number

of images available for the image generation model (IGM), and the bottom block displays the number of labeled images available for the resp. growth
estimation models (GEM). 1Ranking of requirement fulfillment (a) resolution, (b) perspective, (c) setup, (d) lighting, and (e) alignment (details in Sec. 4.1)
into good (✓), medium (~), and bad (×). ∗No fixed validation set; instead, a proportion of random samples from the training set are used for validation.

Arabidopsis Brassica GrowliFlower MixedCrop
Arabidopsis-P Arabidopsis-S Mixed-CKA Mixed-WG

dataset type paired sequential paired sequential sequential sequential
# plants 80 64 288 8 522 uncounted uncounted
# treatments 1 1 4 1 76 76
# observation times 35 850 9 12 11 10
observation period [d] 35 18 63 71 113 109
image size [px] 256×256 256×256 170×256 256×256 256×256 256×256
GSD [mm] 0.32 0.23 4.84 3.10 5.67 5.67
requirements (a|b|c|d|e)1 met? ✓|✓|✓|✓|✓ ✓|✓|✓|✓|✓ ✓|~|✓|~|~ ✓|✓|✓|×|✓ ✓|✓|~|×|✓ ✓|✓|~|×|~

IGM: # images 20 650 54 384 6 658 102 264 21 371 18 800
IGM: # train images 15 236 34 000 2 642 78 864 15 017 13 154
IGM: # val images * 6 800 * 11 748 3 177 2 823
IGM: # test images 5 414 13 584 4 016 11 652 3 177 2 823
IGM: # sequences or pairs 10 325 64 3 329 8 522 2226 2212
IGM: ∅ images per sequence - 849.75 - 12 9.60 8.50

GEM: # labeled images 1 100 808 35 2 197 21 371 18 800
GEM: # train images 850 512 25 1 541 15 017 13 154
GEM: # val images * 148 * 326 3 177 2 823
GEM: # test images 250 148 10 330 3 177 2 823
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Chapter 5

Paired image-to-image
translation

This chapter is about predicting plant growth by generating a realistic future
image from an input image with a predefined growth stage offset. Since no other
conditions besides the image of the early growth stage are included, the pro-
cess is also called paired image-to-image translation: a plant’s image of an early
growth stage gets transformed into an image of a future growth stage. The aim
is to develop data-driven CGMs for the paired image datasets Arabidopsis-P and
Brassica that generate realistic and reasonable images with a specific fixed time
interval relative to the input time. Realistic means that the appearance of the
generated plant images is not distinguishable from reference plant images at the
same growth stage. Reasonable means that plant traits derived from the gener-
ated images are in line with traits assessed of reference plants, which is analyzed
in a comprehensive evaluation.

As growth prediction steps, we have chosen long-term predictions, specifically
time intervals of 17 d for Arabidopsis-P and 3w for Brassica, so that structural
changes are to be expected on the images instead of just pixel-by-pixel color
changes. In the Brassica dataset, the plants were actively exposed to different
treatments by fertilization and irrigation. However, these management decisions
are not explicitly integrated into CGM. For this reason, it is being investigated
whether these growth influencing factors, which are only noticeable by minimal
differences in the images of the early growth stages, can be captured and reason-
ably processed by the CGM.

For this purpose, we introduce a CGM workflow based on three steps, as
depicted in Fig. 5.1. First, we train a CGAN, which is based on the pix2pix
model by Isola et al. [103] in a data-driven way with the use of image pairs
showing an early and late growth stage. Second, we use this model’s generator
to generate predictions for new images of the early growth stage. Third, these
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are evaluated both in the image space by instance segmentation and in latent
space using FID.

The main contributions of this chapter can be summarized as follows:

• Generation of realistic and reasonable long-term predictions for plant
growth via image-to-image translation as CGM, where the input and target
image are structurally significantly different.

• Investigation of how treatment differences in the input images affect the
generated images without explicitly incorporating them as growth influenc-
ing factors into the CGM.

• Comprehensive analysis of the generated images using different FID variants
and the deviation of the PLA derived from instance segmentation between
reference and generated plants.

Figure 5.1: Paired image-to-image translation pipeline: First, a conditional GAN is trained on
training pairs of domains A and B. Through adversarial training of discriminator (D) and gen-
erator (G), the generated images become more realistic with each epoch. Second, the generator
is used to generate predictions from the test input. The third step of evaluation is divided into
instance segmentation using Mask R-CNN and FID calculation. Instances are calculated on
generated images as well as on reference images with the use of a Mask R-CNN model. The
comparison of the instance parameters (bounding box, area of the segmentation mask) allows
a statement about the quality of the generator. The FID score provides an additional objective
measure of the quality of the generated plant images.
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5.1 State of the art
The generation of artificial images with GANs has recently found increased at-
tention in agriculture and plant science. The underlying challenge of the image-
to-image translation task using GANs is to obtain a translation between two
domains, A and B, where a so-called domain is a set of data samples such as im-
ages whose distribution is implicitly determined by the GAN. The various GAN
approaches presented in the literature differ in how domains A and B are cho-
sen. In our work, we will refer to the early plant stage as the source distribution,
denoted as domain A, and the advanced plant stage as the target distribution,
denoted as domain B.

A commonly used type of GANs for agricultural applications are Cycle-
consistent GANs (CycleGANs), e.g., for the detection and discrimination of plant
diseases and the estimation of their future spread on its leaves [88], [93], [104].
Other applications include the translation of real images (domain A) into outputs
(domain B) that directly contain interpretations of the data, such as semantic seg-
mentations [85]. Furthermore, outputs can also be products such as vegetation
indices like the normalized difference vegetation indices [105]. The image-to-
image translation is also suitable for data augmentation and up-scaling of plant
imagery, which produces new higher-resolution images from low-resolution ones
and thus enables the analysis of plant traits in a more detailed way [106], [107].

CycleGANs are particularly suitable, if necessary, to translate in both direc-
tions, from domain A to domain B and vice versa. Thereby, they do not require
aligned image pairs, which means that for an image from domain A, there does
not have to exist a corresponding image of the same plant in domain B [108].
The ability to use non-aligned data is essential for many applications that have
sufficient training data from both domains, e.g., leaves with and without disease,
but which have only a few image pairs [93].

In agriculture, aligned temporal image pairs are becoming widely available
due to geo-referenced orthophotos or by using kinematic multi-sensor systems,
which help to position sensor imaging data, for example, by GPS. In order to
exploit this specific data characteristic, CGANs can be used to learn a powerful
generator based on a given set of input and output pairs [103]. These networks
show for various application areas that they can achieve good results in the field
of domain adaptation [109]–[111], but they have rarely been used for crop growth
modeling so far [94], [97]. To our knowledge, there is no related work yet on the
utility of agricultural data pairs in CGANs where the domains differ significantly
in time, as is done in this work.

A few works have already successfully used plant data in CGANs, like artificial
targeted plant generation, for the aim of data augmentation, which is useful if
only a limited amount of training data is available [112]. For this purpose, Zhu et
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al. use segmentation masks of plants on the input side of a CGAN to synthesize
new real-looking plant images on the output side [86]. In addition to pairs of
images of the same size, other corresponding pairs of conditions and outputs can
be used, e.g., when generating images depending on scalars or one class label. For
instance, Giuffrida et al. generate images with plants of different sizes, where the
number of leaves is introduced as a scalar condition attached to a noise vector
[113]. The resulting generated images can be used to augment data, correct
imbalances, and generate adequate samples in the training set.

Apart from CGANs, diffusion models recently entered the area of image-to-
image translation, enabling, for example, high-quality colorization and inpainting
[114]. Within the same temporal domain, they have already been used for plant
data, e.g. to translate healthy leaves into diseased leaves for data augmentation
[115]. An impression of the potential of conditional latent diffusion models is
given in Sec. 8.3.1.

5.2 Methods

5.2.1 Conditional GAN for image-to-image translation
The CGANmodel for image-to-image translation is inspired by the Pix2Pix model
of Isola et al. [103] with adjustments made to hyperparameters, as described in
more detail below. With this model, a mapping G : {AX , ϵ} → BX is implemented
from images of domain A (AX) and random noise ϵ to images of domain B (BX).
Since the mapping represents the transformation from one image (with noise) to
another image, it is referred to as a translation in the computer vision context.
The classic CGAN optimization is applied as described in Sec. 2.4.2, where the
conditions y are exclusively represented by an image of domain A.

LCGAN(θ, δ;
AX , BX , ϵ) = EAX,BX [log(Dδ(

AX , BX))]+

EAX,ϵ[log(1−Dδ(
AX ,Gθ(AX , ϵ)))]

(5.1)

While the adversarial loss encourages the generation of diverse and realistic sam-
ples, an additional L1-loss is added to maintain a high degree of similarity to the
target image in a pixel-wise manner [116]. Therefore, the L1-loss is also referred
to as reconstruction loss, which only has an influence on the generator weights θ
while discriminator weights δ remain unaffected.

LL1(θ;
AX , BX , ϵ) = EAX,BX

[

‖BX − Gθ(
AX , ϵ)‖1

]

(5.2)

Combined, the two loss functions result in the total objective, with the hyperpa-
rameter λ controlling the weighting between the adversarial part and the recon-
struction part.

θ∗, δ∗ = argmin
θ

argmax
δ

LCGAN(Gθ,Dδ) + λLL1(Gθ) (5.3)
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To ensure balanced adversarial training, backpropagation is performed alternately
on the discriminator first and then on the generator.

An important difference to classical GAN is the way stochasticitiy is inte-
grated. In this model it is not included as a Gaussian noise vector, but the
stochastic component is realized by dropout layers, which are enabled both dur-
ing training and inference. Previous studies have found that noise with classical
GAN optimization is suppressed when it is processed together with an image
in the input because the image represents a greater information content for the
translation task [103].

Generator architecture

The generator G network is a U-Net [117] with skip-connections. Hereby, the
input images are first processed in an encoder architecture until a bottleneck
layer, to which a symmetrical decoder structure is attached. The encoder con-
sists of 8 convolutional down-sampling blocks, each representing a sequence of
a strided convolutional layer, LeakyReLU activation, and batch normalization.
Accordingly, the decoder consists of 8 convolutional upsampling blocks, where
the spatial upsampling in each block is performed by a strided transposed con-
volution layer followed by ReLU activation and batch normalization. After each
upsampling, there is a dropout of 50 %, except for the innermost and outermost
convolutional blocks. Skip connections are used to preserve significant features
of earlier layers, such as edges indicating the orientation of leaves, the overall size
of plants, or the background structure.

Discriminator architecture

The discriminator D is a convolutional PatchGAN architecture that classifies
patches of the generated images into real and fake. In contrast to the classic dis-
criminator, which outputs a classification score for the whole image, PatchGAN
evaluates structures at the scale of local image patches. For this purpose, 3 strided
convolution blocks are used first, followed by a non-strided convolution block,
both of which increase the filter number piece by piece, and a final non-strided
convolution layer to reduce the filter dimension to one. In each block, batch nor-
malization and LeakyReLU activation are applied after convolution. This special
discriminator architecture has the advantage of focusing on the high-frequency
correctness of images. The low-frequency correctness is slightly neglected, but
this is compensated by the simultaneous use of the L1-Loss. In this way, the
images get a finer structure and a better texture [103].
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5.2.2 Evaluation of generated images
Evaluation by instance segmentation

The first part of the evaluation focuses on the appearance of the plants. For
this, manually derived segmentation masks of the real images are compared to
estimated segmentation masks of the generated images by means of parameters
such as extent and area. Since semantic segmentation, where each pixel is as-
signed a class, is insufficient due to limitations when plants overlap, we utilize
Mask R-CNN to compute segmentation masks, which are semantic segmentations
of each individual plant instance. The concept behind Mask R-CNN models is
described in Sec. 2.5.2, and specifically, the Detectron2 framework [118] is used.
The instance segmentation masks can be used to quantify various plant traits.
The segmentation area is used to determine the plants’ size, i.e., the number of
pixels covering the plant, which can be converted to the PLA given the spatial
resolution of the dataset (GSD). In addition to the segmentation masks, the esti-
mated bounding boxes of the instances are used to determine the two traits: plant
center and width. Here, the center position is defined as the center of the leaf ex-
tent, which approximates the plant’s actual center. We focus on the width of the
plants (inter-row) rather than the height (intra-row). For Arabidopsis-P, there is
no significant difference, but for Brassica, the inter-row spacing of cauliflower in
the field is higher, so plants are in width less affected by overlapping errors.

Evaluation by Fréchet inception distance

The second part of the evaluation focuses on the Fréchet Inception Distance (FID)
[38], which calculates the distance between the real and the generated multivariate
Gaussian image distribution, as described in Sec. 2.5.1. Unlike most related
work, we analyze three different FID scores, which compare the similarity between
the distributions of the generated, the test-reference, and the training-reference
images:

• FID(Ng,Nr): generated vs. test-reference

• FID(Ng,Nt): generated vs. training-reference

• FID(Nr,Nt): test-reference vs. training-reference

This provides insight into whether the model is actually capable of generating
new images based on the test conditions or whether training images are being
replicated. It is expected that FID(Ng,Nr) is smaller than FID(Ng,Nt), where
not the same plants are compared with each other. That is because, in order
to generate the images Ng, the model receives as condition domain A from the
test-reference Nr and not from the training-reference Nt. FID(Nr,Nt) represents
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a control value in which only real image distributions are compared with each
other. If the generated image quality is very good, FID(Ng,Nr) should also be
smaller than FID(Nr,Nt), because the latter again compares different plants with
each other. However, a very low value is to be expected for FID(Nr,Nt) if the test
and training plants are similar. So, this control value also indicates the difficulty
and complexity of the dataset.

5.3 Experiments and results

5.3.1 Experimental setup
In the experiments, we calculate a CGM for both paired image datasets
Arabidopsis-P and Brassica. A growth prediction step of 17 d into the future
is to be enabled for Arabidopsis-P and a step of 3w for Brassica. It needs to
be emphasized that the models should not be limited to a specific input time
but should be able to simultaneously perform several prediction steps of the fixed
length (17 d or 3w) within the growth period. For instance, using the Arabidopsis-
P, the same model should be able to predict the steps of 21 → 38 DAS, 22 → 39
DAS, up to 38 → 55 DAS. Accordingly, using Brassica, the predictions for the
steps of 1 → 4 WAP, 2 → 5 WAP, up to 6 → 9 WAP are to be made with the
same model.

Experimental goals

There are different expectations of the generated images in terms of realistic
appearance, reliability, and reasonableness:

• Realistic appearance: The images as a whole should show details, minimal
blurring, and no artifacts. Plants should look natural in terms of color,
structure, texture, and size.

• Reliable generation: The model should have a high generalization ability,
i.e., the generation should not only work for a part of the dataset but
be robust to different growth stages, shapes of the plant, and background
conditions.

• Reasonable output: The generated image should not be arbitrary but de-
pend on the input image. If a model is trained on different field treatments,
it should be able to predict different plant sizes accordingly.

It must be noted that we do not expect the generated image to contain every
detail of the reference image. Especially the orientation and size of single leaves
vary strongly between growth stages that are 17 d or 3w apart and, therefore,
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cannot be reconstructed. Rather, we expect to produce a plant similar to the ref-
erence in terms of overall size and position in the image, and thus, geo-referencing
in the field to be within the accuracy of the image alignment. It is also expected
that the highly accurate image alignment and almost continuous observation pos-
itively influence the results of Arabidopsis-P compared to Brassica.

Augmentation and hyperparameter

Since the generator is most efficient for square images, the rectangular Brassica
images are provided with an equally large black margin on the top and bottom
sides, as described in Sec. 4.2.2. Data augmentation consists of random cropping,
vertical and horizontal mirroring, and rotations applied to both domains of the
train and test image pairs. For Brassica, the rotation options are limited to 0 deg
and 180 deg to maintain the geometry of the vertical alignment of the cauliflower
rows in each image. The network architecture is maintained in its original state
as presented in [103]; however, some hyperparameters are adjusted. The learning
rate is set to 1e − 4, the loss weighting parameter λ to 100, and the batch size
to 1. The number of epochs is 160 for Brassica and 40 for Arabidopsis-P, the
second half of which has a linearly decaying learning rate.

Runtime

Following the pipeline in Fig. 5.1, the runtime for each step has to be considered
separately. To train a suitable generator, the computing time is about 5min per
epoch for Arabidopsis-P and about 3.5min per epoch for Brassica, whereby this
time is largely determined by the dataset size and the number of augmentations.
The convergence time of GAN training depends mainly on the diversity of the
image distribution, which is higher for Brassica than for Arabidopsis-P, requiring
more epochs overall (160 instead of 40). The two following inference steps, namely,
applying the generator to predict future images and calculating the projected leaf
area using the pre-trained Mask R-CNN, are real-time capable.

5.3.2 Accuracy assessment of instance segmentation
In order to compare the instance segmentation between the generated and real
plants, it is first necessary to analyze how accurate the instance segmentation is
with regard to labeled reference data. The Detectron2 framework is pre-trained on
everyday objects of the large-scale COCO dataset [119] and fine-tuned on labeled
images from the respective datasets. The train and test data for fine-tuning
include images from all growth stages. For instance segmentation of A. thaliana,
the Mask R-CNN model is fine-tuned on about 850 images and evaluated on about
250 images. The instance segmentation of cauliflower in the Brassica dataset is
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fine-tuned using 25 images and evaluated using 10 images. The amount of training
data is significantly lower for Brassica because manual labeling was required, as
described in Sec. 4.2.2. Although the Brassica dataset has a small amount of
training data for fine-tuning, it is sufficient because basic features are already
learned in the comprehensive pre-training. A separate instance segmentation
model is trained for each dataset, wherein both datasets we restrict ourselves to
two classes: plant and background.

For both datasets, high-quality bounding boxes with an average precision
> 75 % and semantic instance segmentation masks with an average precision
> 70 % are estimated. In all experiments, the same instance segmentation
model is applied to the reference and the generated images, as visualized in two
examples in Fig. 5.2. Different image qualities can also lead to different instance
segmentation and thus to uncertainties, even though the leaf areas of two images
are actually identical: If the generated images have quality deviations that do not
occur in the real images, e.g., blurring, instances may not be correctly recognized
on the generated images. Therefore, the basis for the evaluation by means of
instance segmentation is a good image quality that has already been qualitatively
assessed.

generated A reference A generated B reference B

Figure 5.2: Two examples, A and B, of instance segmentation using Mask R-CNN performed on
two pairs of generated and associated reference images of cauliflower growth week 5. Colors are
chosen randomly and have no meaning. The classification certainty is indicated in the corners
of the boxes.

5.3.3 Results of qualitative evaluation
Visual analysis of generated Arabidopsis-P images

Fig. 5.3 shows 3 examples of visual results of temporal prediction in the
Arabidopsis-P dataset. The upper row shows the prediction from 23 → 40 DAS,
the middle row from 30 → 47 DAS, and the lower row from 37 → 54 DAS. The
prediction is successful in both early and late epochs since the generated images
are highly similar to the reference images, both in terms of the extent and the
number of leaves. There are only a few details that reveal the artificiality of the
generated plants. For instance, in the generated image on day 40 (upper row,
center), there are two leaves in the lower part that are not attached to the plant
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with a petiole, and on day 54 (lower row, center), there is a small artifact in
the upper right corner. Likewise, when analyzing the leaf structures, one notices
that in all images, fewer petioles have unusual curvatures, and some leaves have
uncommon shapes (middle row, center). In terms of color, the generated images
are very natural, as the leaves take on slightly different shades of green, which
can be all found in the reference, and become slightly lighter from the inside out.
Even yellowish leaves or parts of leaves can be found sporadically in the reference
as well as in the generated image. In general, it is noticeable that larger outer
and inner smaller leaves are generated without being blurry. Another noteworthy
aspect is the detailed generation of the background. It looks nearly the same as
the input; even the small lumps of dirt change, as indeed it is, their position in
the generated image.

Visual analysis of generated Brassica images

For Brassica, the appearance of generated test images of different growth stages
is visually assessed with Fig. 5.4. Note that the generated black margin, used in
the input to square the images, is cut off since the model was able to generate
the area without errors. The generated cauliflower plants of domain B (middle
column) look realistic and could be mistaken for real cauliflowers by an unbiased
judgment. The comparison of the generated images with reference images for
every week (right column) shows a variety of reasons for this. Although there
is some noise in some locations, like on the left side of the cauliflower in the
generated image of week 9, the overall sharpness of the generated images is almost
as good as with the reference. In addition, brightness, contrast, and saturation,
as well as color values of foreground and background, match the reference.

A detailed look at the foreground shows that the size, number, and shape of
the leaves are plausible. Apart from a few exceptions (bottom leaf in week 5,
rightmost leaf in week 8), the orientation of the leaves towards the center of the
plant is correct, which can be seen from the direction of the leaf veins. Likewise,
the image background is realistically represented. Exceptional brightness levels
such as in week 8, in which the background is much darker than in the other
images, are captured as well as small details in the background. For example, in
steps 1 → 4 WAP and 2 → 5 WAP, the drainage pipes are visible in the generated
image at reasonable positions. In the same way, weeds of various sizes are visible
in the background next to the cauliflowers in all stages of growth.

When analyzing the relations between the generated images (middle column)
and the reference image of input domain A (left column), which is used as a
condition for the prediction, we observe a clear correlation for overall cauliflower
size. A specific input size in domain A causes a certain output size in domain
B, which matches the non-linear growth of cauliflower in the left column. From
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domain A: test-input domain B: generated domain B: test-reference

Figure 5.3: Example results of experiments with Arabidopsis-P. The left column represents
the test-input in domain A, the middle column is the generated output in domain B, and the
right column shows the corresponding aligned test-reference image in domain B. A prediction
of early growth stages (top row: 23 → 40 DAS), middle stages (middle row: 30 → 47 DAS),
and advanced growth stages (bottom row: 37 → 54 DAS) is shown.

weeks 1 to 3, cauliflower shows rather slow growth, which picks up substantially
by week 5, when plants show a fast increase in leaf growth and number. Finally,
growth slows down again, so there is only a slight size difference between weeks
8 and 9. This rather sigmoid-shaped growth pattern provides a challenge for
prediction, as the relation between condition and expected output is not constant
over time. However, the resulting sizes in generated images of domain B (middle
column) still fit the reference (right column) well.

Looking at the orientation of the individual leaves, there is no obvious pattern
between reference images of domains A and B. Although the growth direction
and orientation of individual leaves do not drastically change within three weeks,
emerging leaves often become more dominant and overlay other plant organs.
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Therefore, our temporal growth prediction considers the plant’s development as
a whole rather than changes in individual leaves. To make use of the generated
images, it is essential that the center of plants does not change and is well geo-
referenced, just as is expected for plants as sessile organisms. Our example images
show that despite inaccuracies of the image alignment (see Sec. 4.2.2), the center
position of the plants in the left and middle columns match very well between
both domains.

5.3.4 Results of evaluation by instance segmentation

Evaluation of instance segmentation in Arabidopsis-P

From the instance segmentation, the PLA is first derived as the pixel sum of the
plants’ segmentation mask. A comparison is made between the generated and
the reference images by means of the projected leaf area, where Fig. 5.5 focuses
on single plants and Fig. 5.6 addresses the daily-average values.

Fig. 5.5 shows a high correlation between the size of the projected leaf area
of corresponding generated (y-axis) and reference (x-axis) instances of the same
domain. The color indicates sequentially the time of prediction, from dark blue
(early growth stage) to green (medium growth stage) to yellow (late growth stage).
The high R2 value of 0.95 indicates a good performance of the model for temporal
prediction of plant sizes. Only a slight average overestimation of the projected leaf
area can be seen over the whole period, which becomes smaller with increasing
plant sizes (regression line slope 0.98). The maximum deviation of the points
from the optimal line is about 3000 px in early growth stages and up to 6000 px
in later stages, which, taking into account the GSD of 0.32mm, results in an error
in the PLA of approx. ±3-6 cm2 (5-10 % of image size).

The quality of the temporal prediction is underlined by Fig. 5.6 when com-
paring the daily-averaged PLA of reference and generated plants in the reference
period (days 38 to 56). It is almost the same for every day of the temporal pre-
diction. However, the generated curve is very smooth, while the reference curve
has small bumps that are typical of a true plant growth curve. The standard
deviation increases the larger the plant becomes, indicating a higher variability
in plant size at later growth stages. The maximum deviation of the points from
the optimal line is about 3000 px in early growth stages and up to 6000 px in
later stages, which, taking into account the GSD of 0.32mm, results in an error
in the PLA of approx. ±3-6 cm2 (5-10 % of image size). It is noteworthy that
the PLA shows a non-linear curve, which means that the PLA gain is properly
varying for each prediction, depending on the growth stage.
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domain A: test-input domain B: generated domain B: test-reference

Figure 5.4: Examples of input, generated, and reference images of Brassica from 1-6 WAP for
domain A and 4-9 WAP for domain B. The rows show different growth prediction steps. 1 → 4
WAP in the top row, 2 → 5 WAP in the second row up to 6 → 9 WAP in the bottom row. The
left column represents the input in domain A, the middle column is the generated output in
domain B, and the right column shows the corresponding test-reference image in domain B.
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Figure 5.5: Comparison of the projected leaf area [in pixels] of reference and generated
A. thaliana plants. In the scatter plot, one dot refers to a pair of reference and generated
plants. The gray line indicates the optimal line, while the black line represents the regression
line. In the upper left corner, the regression-line equation and the R2 value are indicated.

Figure 5.6: Daily-averaged PLA in pixels of generated and reference Arabidopsis-P plants over
time. Only the prediction time span (domain B) in the range of 38DAS to 56DAS is displayed.
The error bars indicate the standard deviation.

Evaluation of instance segmentation in Brassica

Fig. 5.7 shows the comparison of the growth patterns of generated (y-axis) and
reference instances (x-axis) for different treatments. Some findings can be drawn
from all four treatments: In all plots, it is visible that the points scatter in an area

58



CHAPTER 5. PAIRED IMAGE-TO-IMAGE TRANSLATION

around the gray line, which is the optimal line, where the generated projected
leaf area is identical to the reference one. Overall, there is a trend that plants in
early growth stages are predicted to grow a little too large (black regression line
above the optimal gray line), and plants later in growth tend to grow a little too
small (black below the gray line). This is also evident from the derived equation
of the fitted line, which has a gradient smaller than 1 in all cases. This is likely
caused by the observed exponential growth, while the model is trained to work
with all plant ages. However, R2 values from 0.66 to 0.82 show that temporal
prediction works well despite the field conditions. It is also noticeable that the
points of some weeks are not clearly separated. For instance, week 5 + 6 and
week 8 + 9 partially overlap. This is due to the natural variance in the expression
of the plants’ phenotype; even cauliflowers exposed to the same field treatments
develop differently within a certain range. It is also noticeable that the dispersion
of the points increases with the plant age, which is explained by the higher natural
variance with rising projected leaf area.

Having a closer look, some differences between the treatments can be iden-
tified. It is apparent that well-irrigated treatments i+f- and i+f+ are more
underestimated than less irrigated treatments i-f+ and i-f-, which can be seen
from the number of points below the gray line. Here, it is important to note
that irrigation is the most dominant factor influencing plant size [100]. So, large
plants are estimated slightly too small, and small plants are slightly too large.
We argue that this is due to the joint training with all field treatments, which
may cause the different treatments to balance each other out. As a consequence,
the model shifts slightly towards the average growth.

Nevertheless, the absolute differences in size between the treatments are well
modeled, which is best seen in Fig. 5.8. It shows the averaged PLA for each
observation date together with the standard deviation for the reference plants on
the left and the produced plants on the right. Only plants located in the image
center, as indicated by the center of the bounding box, are taken into account.
This avoids plants that are not fully visible in the image and should not influence
the distribution of sizes.

It is clearly seen from week 5 onward that the sizes of the reference plants are
strongly dependent on the field treatments. Well-irrigated and fertilized plants
grow better than plants lacking water and nutrients, which is in line with expec-
tations and analyses of previous studies [100]. The size of reference plants grown
under i+f+ (blue line) was bigger compared to i+f- (green), followed by i-f+
(orange) and i-f- (magenta). Although the values of the generated plants with
i+f- treatment are larger than i+f+ in weeks 4 to 6, there is a clear analogy to
the growth of reference plants under the respective treatments. Noteworthy in
week 9 is the bending of the green line in both reference and generated plants.
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(a) treatment i-f- (b) treatment i-f+

(c) treatment i+f- (d) treatment i+f+

Figure 5.7: Comparison of the projected leaf area in pixels of reference and generated cauliflower
images. The data are separated into four subplots according to their irrigation (i) and fertiliza-
tion (f). One dot in the scatter plots refers to a pair of reference and generated plants, where
the color of the dots indicates the week (w). The gray line indicates the optimal line, while the
black line represents the regression line. In the upper left corner, the straight-line equation and
the R2 value are indicated.

Whatever was inhibiting plant growth at this later stage was apparently already
encoded in the week 6 images and was recognized by the model, although the
plant sizes were not differently affected at this time (in week 6: line over orange
and purple lines).

In week 7, the generated plants show a smaller increase in size in comparison
to the other weeks. Using the growth pattern of the reference plants with i+f-
treatment for comparison, one would expect the generated plants in week 7 to
be about 2000 px to 3000 px larger in all field treatments. We see two reasons
that it does not occur and that plants are probably often underestimated in week
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7. First, the training data for step 4 → 7 WAP (see Tab. 4.1) is missing, and
the model incorrectly interprets some input images from week 4 as images from
week 3. Second, the beginning of exponential growth at these growth stages
causes difficulties, as small differences in the condition have large effects on the
generated images. We assume that more training data from the exponential
growth period, at best under different climatic conditions, would improve this
behavior. However, in all weeks, the generated cauliflower sizes are within the
standard deviation of the reference cauliflower sizes.

(a) reference plants (b) generated plants

Figure 5.8: Development of weekly-averaged PLA [in pixels] between reference (left) and gener-
ated plants (right) of Brassica. The error bars indicate the standard deviation in the respective
weeks. Curves are separated into different field treatments.

5.3.5 Results of evaluation by Fréchet inception distance
While lower FID is generally better, it is difficult to determine what order of
magnitude of FID is expected for a specific dataset and task. It is essential to
compare FID values within the context of the experimental expectation, where, in
this case, reference plants and generated plants are not expected to match exactly.
Therefore, we compare the classical FID between generated and test-reference
plants on the one hand with the FID between generated and training-reference
plants and, on the other hand, with the FID between the two real distributions
test-reference and train-reference. In all cases, the distributions include only the
domain of the later growth stage, not the corresponding domain of the earlier
growth stage.

For both data sets, FID(Ng,Nr) is in the range from 31.14 to 38.64, which
is not an excellent (FID < 10), but a very good image quality. In all cases it
is significantly lower than FID(Ng,Nt). This is essential as it suggests that in
both experiments, the plants are actually generated from the input conditions
rather than replicating the best-fitting training pattern. It can be considered
as an indication that the CGMs are capable of generating high-quality images
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Table 5.1: Overview about FID scores of both different datasets and treatments. Calculated are
FID(Ng,Nr), comparing generated vs. test-reference images, FID(Ng,Nt), comparing generated
vs. training-reference images, and FID(Nr,Nt), comparing test-reference vs. training-reference
images.

Dataset FID(Ng,Nr) FID(Ng,Nt) FID(Nr,Nt)

Arabidopsis-P 38.12 42.25 28.90

Brassica

i-f- 34.18 51.63 55.62
i-f+ 33.91 55.29 48.04
i+f- 38.64 56.33 48.21
i+f+ 31.14 54.55 49.60

with realistic plant phenotype appearances for both datasets. The FID(Nr,Nt) is
lower for Arabidopsis-P and higher for Brassica compared to FID(Ng,Nr). This
shows that for Arabidopsis-P, the distributions of test-reference and training-
reference have an exceptionally high similarity. We assume that under laboratory
conditions, there are fewer variations between the training-reference and test-
reference distributions than in the field, where plants are grown under different
treatments.

5.4 Discussion

5.4.1 Key factors for realistic image generation

We identified four key factors from the experiments on which the accuracy of
the temporal predictions mainly depends, which is essential for applications in
the field: The high accuracy of the PLA estimation of Arabidopsis-P shows that,
first, a high observation rate and, thus, a large number of aligned images with
different time references to training the accgm is beneficial. Second, it shows
that exact georeferencing of images is necessary in order to avoid positioning
errors in generated images due to incorrect spatial alignment. This is easier
to maintain under laboratory conditions, but can also be achieved in the field.
Third, the Brassica dataset shows that it is important to get a complete view
of whole plants with little overlap of neighboring plants, even at later growth
stages. Fourth, high-quality images with sufficient spatial resolution are crucial
for detecting nutrient, water, or other deficiencies at an early growth stage. In
this way, the model for Brassica was able to detect subtle differences between the
treatments in early growth stages that are barely visible to humans (see Fig. 5.8)
and was able to generate a correspondingly realistic growth prediction.
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5.4.2 Output variability

A common problem when using GANs is mode collapse, which refers to the prob-
lem of the model converging to a state where different inputs result in the same
or very similar outputs. The number of modes the generator collapses to varies
widely, and often, the model jumps back and forth between modes during train-
ing iterations. We observed mode collapse in preliminary experiments with both
datasets, in which we learned independent models for each time step. For in-
stance, in the Brassica dataset, one model for the time prediction of step 1 → 4
WAP and another model only for step 2 → 5 WAP. Training one model for
all growth stages prevented mode collapse, attributed to higher diversity in the
training data. However, there are still phenomena that occur similar to mode
collapses. In some cases, two generated plants have the same basic structure, but
the plant is more extended in a later growth stage. That means the inner leaves
look the same, while the outer leaves are expanded. Note that the position of the
plant in the generated image remains correct, i.e., even if the inner leaves of the
plant appear unchanged, the center position of the generated instance is close to
the center position of the input domain. So, the generated plants are still realistic
and reasonable, but there is a lack of realistic variability.

In order to reduce these mode collapse similar effects, we have experimented
with an increase in input diversity by means of data augmentation methods
such as Cutout, CutMix [120], and synthetically generated data. Moreover, we
conducted experiments with changed hyperparameters, modifying γ to control
the loss weighting (see Eq. 5.3) or choosing a different architecture such as the
Diversity-Sensitive CGAN [121], which is designed to force variability through a
different structure and loss functionality. None of these attempts were successful
in reducing the mode collapse similar effects in the generated images. It shows,
that reliably generating images from all parts of the of the given training distri-
butions is a critical issue in generative modeling. However, we present in the next
chapters how WGANs are, in certain aspects, capable of tackling this issue.

Another critical issue is the lack of output diversity with variable stochastic
components, which is classically a noise vector and in this case dropout. With a
change in the stochastic component at test time, the image should also change,
but this is hardly the case, as Isola et al. [103] have also found. The extent to
which this problem is linked to the mode collapse problem cannot be resolved.
With this limitation, it is not possible to visualize variability in the generated
images, which would be desirable.
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5.4.3 Scalability and limitations

To obtain a comprehensive image-based growth model for cauliflower on a larger
scale, it is necessary to increase the amount of data, including more images of
plants of different environmental conditions and time points. Images are needed
that represent as much variability in input factors and, accordingly, phenotypes
as possible so that the diversity in the distribution of images is large but not bi-
ased, which can lead to issues with GANs, as discussed in more detail in Sec. 5.4.2.
When increasing the set of images, it is important to ensure that plants in all
images have similar basic conditions (e.g., type of soil, climatic zone, season,
genome). Since there is also a natural bias in plant development in dependence
on locations, which is not directly reflected in the images, a new independent
model should be trained for each region with deviating basic conditions. In con-
trast, a model does not need to be limited in time because the distribution of
phenotypes becomes particularly diverse over several years due to different en-
vironmental influences. If the basic conditions are stable, environmental and
management influences can be captured by the CGM from images as the only
input, as we demonstrated using different treatments for irrigation and fertiliza-
tion. However, it could be useful to integrate conditions that are known, such
as management decisions, directly into the CGAN. Likewise, the growth stages,
which are only implicitly transferred to the CGM in this approach, could also be
introduced explicitly. For this, a way must be found to combine temporal and
visual conditions. Both ideas are further explored in Chap. 7.

Growth prediction using the presented image-to-image translation method
can also be done for plants other than Arabidopsis thaliana and Brassica oleracea
var. botrytis that have structurally different phenotypes, such as wheat or lupines.
Similarly, there is no restriction on the number of plants on an image, so plot-
or field-wise image generation and growth prediction are also feasible. The more
plants there are on each image at a correspondingly lower resolution, the more
difficult it becomes to evaluate the generated images by single plant detection, so
it becomes necessary to evaluate robust field-wise phenotypic traits, such as the
plant number or the total biomass. Another challenge is the height of many crops,
where no ground robot with an artificial light source is practical. Alternatives
are orthophotos, where, however, lighting conditions are different for each pass.
This can be addressed by style transfer methods, also based on GANs [89]. What
remains is that with a birds-eye view, only a small part of the plant is observed
as the height increases, which is why a change of perspective to a side view could
be useful. However, this brings new challenges in the alignment of the images.
The finer the leaf structures and grain ears and the lighter the plant, the less it
is ensured that the plants themselves do not move between two points in time,
and this issue can be amplified by the wind. While geo-referencing and stable
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plant positions are crucial requirements for paired image-to-image translation,
CycleGAN approaches could help for plants where alignment is not achievable
[93], [108].

5.4.4 Implications for agricultural practice

In modern industrial agriculture, generally, a farmer aims to plan already at
the planting stage when the field will need to be cultivated and when crops will
be ready for harvest. However, uncertain long-term weather forecasts, extreme
weather events, and pest or pathogen occurrences make it challenging to predict
these outcomes with high accuracy. To account for this, monitoring and screening
the plants’ current status in the field would be necessary but is labor-intensive
and time-consuming if conducted by the farmer or another expert. As presented
in this paper, a monitoring approach, which comprises high-throughput sensor
measurements and automatic analysis, can overcome several challenges connected
to this. First, since the current stage of the plant is continuously observed, and the
prediction of the future stage is based on it, the estimated time for harvesting
is expected to be more accurate than conventional approaches. Besides, the
difference between a plant’s current status and a farmer’s expectations about
plant status is visually accessible and quantifiable, so the farmer can take early
action in the field to prevent negative yield results. Finally, planning reliability
could be increased, not only for the time of harvest but also for the expected
harvest yield.

5.5 Conclusion
In this chapter, we have demonstrated the suitability of a conditional generative
adversarial network for temporal crop growth modeling through plant image-to-
image translation. By integrating an image of an early growth stage as a condi-
tion, we were able to generate an image showing its realistic future appearance.
In experiments with laboratory-grown Arabidopsis thaliana (Arabidopsis-P) and
field-grown Brassica oleracea var. botrytis (Brassica), we comprehensively evalu-
ated the generated images two-folded. First, the analysis using Fréchet Inception
Distance shows quantitatively that the generated images are of good quality and
show strong similarities to the reference images. Second, segmentation masks and
plant positions derived from Mask R-CNN show high correlations between pro-
jected leaf areas in generated and reference plants. For Brassica, we illustrated
that the average plant size and the plant’s position are realistically estimated
in six different growth stages. Analyzing the results for plants with four dif-
ferent field treatments, we demonstrated that plants subject to good irrigation
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and fertilization are predicted to be larger than those with deficiencies, which
is consistent with reference measurements. Compared to the laboratory experi-
ment with Arabidopsis-P, we observed a higher discrepancy between generated
and reference images, which can be related to the less exact geo-referencing of
images and partial overlaps between plants. We consider this method applicable
in agriculture because it adds an explainable component to existing CGMs by
visualizing the phenotype, is sensitive to tiny differences in crop appearance due
to different treatments, and is scalable from single crops to field-wise analyses,
as well as from brassica to any other crops. Future image-based CGMs will ad-
dress existing limitations such as mode collapse-like effects, the less diverse model
outputs, and incorporate additional conditions. We further see a high demand
for generating a range of possible output images (depending on different input
parameters) instead of a single output image, which could support simulations
operating within process-based growth models.
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Chapter 6

Inter- and extrapolating irregular
image time series

When monitoring plants by means of image time series, corrupted, blurred, and
missing images are a significant issue as plant growth is no longer holistically
analyzable over the growing season [7], [9], [10]. This impacts not only end-
users, such as farmers, who plan actions in the field directly based on these
images but also researchers and model developers, who may require homogeneous
input data and have difficulty dealing with data gaps—especially in machine
learning tasks. Sources of such gaps are manifold and, in the case of image
acquisition with unmanned aerial vehicles (UAVs) in agriculture, range from an
insufficient measurement setup over uncontrollable environmental influences to
failures in post-processing calculation of the orthomosaic. In addition, intervals
of varying size between observation times are inevitable and even desirable due
to non-linear growth patterns, so many observations fall within a range where
plants are changing rapidly. Hence, this chapter aims to develop a CGM for
the sequential datasets Arabidopsis-S, GrowliFlower, and Mixed-CKA that can
replace missing or corrupted images as artificial sensor data from irregular and
incomplete sequences (Fig. 6.1).

Compared to the CGMs in the previous chapter, where there was exactly one
image in the input, the challenge in this chapter is to handle a non-equidistant
sequence of images of arbitrary length. Consequently, a generated image should
now be consistent with several images rather than just with one. In addition, we
aim for the generation of time-variable output images, i.e., the time of the gener-
ating output image should be flexibly selectable, instead of a growth prediction
step being predefined for the model.

We introduce the deep generative model TransGrow, a CWGAN that utilizes
a CNN for spatial and transformers for temporal modeling. Transformers are
attention-based neural network layers suitable for processing and weighting se-

67



6.1. STATE OF THE ART

quential input. We demonstrate that with TransGrow, it is possible to explicitly
retrieve desired growth stages by including in the model the time points of the
input and growth stage to be generated. This differs significantly from compari-
son methods VAEs and Adversarial Autoencoders (AAEs), which interpolate in
latent space for this purpose and thus have only implicit retrieval. One advantage
of explicit retrieval is the possibility of test-time extrapolations: So, in addition
to interpolations for data imputations, probable past and future expressions of
the above-ground phenotypes can be generated.

Apart from time, no other growth influencing factors are taken into account.
Nevertheless, we consider plant growth not to be deterministic and focus on
generating a realistic image distribution to indicate which plant parts have a high
generation variability in growth development. Compared to the previous chapter,
where a classical CGAN was used, the change to a CWGAN is particularly
intended to ensure that the stochastic model component is not suppressed, as
discussed in Sec. 5.4.2. To better understand the model in general and the
impact of the stochastic component in particular, we analyze the position of
image embeddings in the model’s latent space. In addition to plant traits derived
from generated Arabidopsis-S images, this leads to a more explainable model.

Summarizing the key contributions of this chapter:

• Flexible and realistic image generation using a CNN-Transformer condi-
tioned by an input image sequence of arbitrary length and time and by the
output time, i.e., the requested growth stage of the image to be generated.

• The possibility to perform test-time extrapolations in addition to interpo-
lations for data imputations in order to predict probable future expressions
of the above-ground phenotypes.

• The generation of distribution for each point in time and, from this, the
visualization of predictive variability on the plants in the generated image.

6.1 State of the art

6.1.1 Different ways of image imputation
Interpolation approaches for data imputation

In order to interpolate between two reference images, traditional and most intu-
itive approaches directly operate in the image space, such as linear transforma-
tions, image warping, or optical flow. However, the resulting images are often
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Figure 6.1: The aim is to learn a realistic spatio-temporal model of plants from several irregular
and incomplete sequences during training in order to replace missing images (dashed images)
from a different number of input images/support points (cyan images) for inference.

inaccurate and not appealing since only the appearance, but no underlying fea-
tures are changed for generation. This problem is addressed by mapping the
essential features of the input images into a latent space and generating new im-
ages by interpolation between latent codes, for instance, enabled with AE and
their variants with adversarial constraints [122], [123]. Still, there are three ma-
jor issues: First, time is not explicitly taken into account, so assumptions about
the growth process have to be made, e.g., linear interpolation, which does not
hold for plant growth in the image space. Second, the additional modeling of
predictive uncertainties by extending the model with a stochastic component is
missing. This is essential since the observations never capture all complex growth
influencing factors. Third, extrapolations remain challenging, which are needed,
for example, to derive information from a plant’s potential future development,
such as the estimation of harvest yield and date.

Conditional generative modeling for data imputation

More sophisticated methods, such as various types of variational autoencoders
(VAE) [30] or conditional GANs [12], [124] overcome the aforementioned limita-
tions by forming a distribution in the latent space, which allows controlled sam-
pling. These distributions can be spanned by various combined conditions, such
as stochasticity paired with images, categorical labels, or text. However, when
there are sequential temporal conditions, as in this paper, most work is based
on at least one of the following assumptions: Either time is modeled implicitly
and is not controllable so that only a distribution for a specific point in time
is generated, for example, the exclusive generation of future plant phenotypes
from a fixed set of previous images [14], [97], [125]. Alternatively, the temporal
component is inherently accounted for by equidistant or concise input intervals,
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such as in video frame prediction, which is nearly impossible for real-world sensor
measurements in agriculture [98], [126], [127]. Therefore, we propose temporal
positional encoding in combination with a transformer encoder [82] to control the
time factor explicitly.

6.1.2 On temporal modeling with transformer

To address the problem of non-equidistant inputs, image timestamps are used for
positional encoding as in [128]. We call this global positional encoding since the
acquisition times of the images related to a dataset reference point are used as
positions. These positions deviate significantly from classical absolute positions,
where the transformer is provided with indices related to their order in the sen-
tence [82], positions of image patches related to their location in the original image
[129], or with the relative timestamp of video frames [127]. Thereby, for works
from the video domain, the spatial and temporal encoding is either directly com-
bined [130], [131] or initially decoupled [132]. We follow the latter idea to encode
both independently and to merge them just before the transformer layer, thus
creating the weighting of spatio-temporal image embeddings by self-attention.

6.2 Methods

In this section, we introduce the framework, which we call TransGrow1, before
giving more details about the linking of CNN and transformer in the generator
and introducing evaluation and comparison methods.

6.2.1 Framework for image generation in time series

The TransGrow framework is a CWGAN whose generator is characterized by a
combined CNN-Transformer architecture to obtain spatio-temporal image embed-
dings of irregular sequences of different lengths and to generate realistic images
from them. While the different architectural components of generator Gθ and
discriminator Dδ have been adopted from various state-of-the-art models, the
explicit integration of time via positional and transformer encoder, allowing the
generation of images of arbitrary time points is a novelty in the GAN context.
Compared to the CWGAN in Chap. 7, the structure differs considerably, and fur-
ther regularizations have been added to the objective to accelerate convergence.

1Source code is publicly available at https://github.com/luked12/transgrow
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Figure 6.2: TransGrow framework. In the generator, an input sequence X in is first spatially
encoded with CNN, pooling and linear layer to dimension dmodel and then, along with times t

and stochasticity z, temporal encoded within positional encoding and a transformer stack. Out
of this, an image of the requested growth stage is encoded. The CNN-based discriminator takes
the input sequence with either the reference Xref or the generated image Xgen sorted into the
correct chronological position.

Generator

In the generator, a target image Xgen = Gθ(ϵ,X in, t) is generated from noise ϵ,
an input image sequence X in consisting of Iin images, and times t, whereby t

is in fact split into [tin, tgen]. According to Eq. 2.12, the CWGAN conditions y
are made up of X in and t. To get X in, an image sequence sample X of length
I = Iin +1 needs to be divided into the input image sequence X in = [X1, . . . ,X Iin ]

with associated times tin = [t1, . . . , tIin ] and an image to be generated X ref with its
requested time tgen. For this purpose, the position of the image to be generated is
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randomly sampled at each training step. To indicate the time differences between
the input images and the target image, we introduce the vector ∆t = |tin − tgen|,
where it is expected that the temporal closest input image with distance min∆t

has the highest influence on the generation of Xgen.

Discriminator

In the discriminator, either the reference Dδ(X in,X ref) or the generated image
Dδ(X in,Xgen) are presented along with the input image sequence. Before feeding
through the discriminator, the target image is first sorted into the correct position
of the input sequence. So, the discriminator does not require time point embed-
dings; rather, it considers the overall consistency in the growth development. It
is built as a lightweight model from alternating convolutional layers, ReLU ac-
tivation, instance normalization, and weight-sharing between all images in the
sequence. The output is a score specifying how realistic the input is, suitable
for enforcing the minimization of the Wasserstein distance within the following
adversarial objective.

Conditional Wasserstein GAN objective

The adversarial objective is to optimize the parameters θ and δ by maximizing
several combined objective functions L by Dδ and minimizing them by Gθ.

θ∗, δ∗ = argmin
θ

argmax
δ

LCWGAN(Gθ,Dδ)

+ λL1LL1(Gθ) + λSSIMLSSIM(Gθ) + λVGGLVGG(Gθ)
(6.1)

Here, LCWGAN(Gθ,Dδ) represents the total CWGAN-GP objective function [35]
while the other terms are further regularizations applied to the generator. Those
are added with corresponding weights λ to the final objective in the form of a
LL1 reconstruction loss, a multiscale structural similarity (SSIM) loss LSSIM [39],
and a perceptual content loss employing a pretrained VGG-network LVGG [133].

Eq. 6.2 represents LCWGAN(Gθ,Dδ) the classic CWGAN objective [34], added
with the gradient penalty [35], as in Eq. 7.2.

LCWGAN(θ, δ;X in,X ref, ϵ, t) = E(X in,ϵ,t)[Dδ(X in,Gθ(ϵ,X in, t)]

− E(X in,Xref)[Dδ(X in,X ref)]

+ λGPE(X in,X̂)[(‖∇X̂Dδ(X in, X̂)‖2 − 1)2]

(6.2)

For the calculation of gradient penalty, X̂ = ηX ref +(1− η)Gθ(ϵ,X in, t) represents
a randomly weighted average between the generated and the reference image, so
η is picked randomly between 0 and 1. The weighting of the whole term is done
by coefficient λGP. It has been shown that LCWGAN(Gθ,Dδ) is able to minimize
the Wasserstein-1 distance between the distribution of the real and generated
samples.
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Optimization tricks

Since the sequence length in the datasets varies from plant to plant, no uniform
sample sizes necessary for efficient model training in batches are given. In ad-
dition, the training is computationally inefficient the longer the input sequences
because the data accessing time increases more compared to the forward pass
time. To overcome these issues, the number I of randomly sampled images form-
ing an image sequence X is significantly lower than the number of images kJ of
an entire sequence of a plant k. While ∅J varies between 8.50 and 849.75 for the
sequential data sets (see Tab. 4.3), we set I = 4 for the training of all datasets.
Subsequently, we randomly choose the target image out of the sequence, aim-
ing to generate interpolations if min(t) < tgen < max(t), and extrapolations if
tgen = min(t) or tgen = max(t), in random alternation. This is crucial because
it contributes to the positional encoding not being suppressed during the train-
ing but having an actual impact on the time of the generated image. Without
random sampling, TransGrow would only be able to generate the position of a se-
quence previously defined in training, which is often the case for video prediction,
where the target image is always the last image of the sequence. While training
is performed with a fixed sequence length, at inference, the sequence length and
the target image can still be varied as required.

6.2.2 Combining CNN and transformer

The following paragraphs provide details on how CNN and transformer are linked
in the CWGAN generator for spatio-temporal image encoding and decoding.

Spatial encoding using CNN

For the spatial encoding of X in a ResNet-18 backbone [42] is used as CNN encoder,
which is pre-trained on ImageNet [134]. It represents a comparatively small and
thus efficient trainable model (see Sec. 2.5.2) whose embedding dimension (512)
after pooling the last convolutional layer also represents a reasonable latent dimen-
sion for the transformer encoder. We encode each image independently with the
same ResNet-18 weights so that independent features result from the same latent
space. This means the sequence length can be flexibly varied without affecting
the number of model parameters. In order to preserve experimentation flexibility
for different latent dimensions, the pooled CNN output is linearly projected to a
final latent dimension dmodel.
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Weighting image embeddings using transformer

The architecture’s transformer module is a stack of multiple transformer encoder
layers [82], ensuring temporal connections of the sequence elements by increas-
ingly deeper self-attention. Each layer contains a Multi-Head Self-Attention
(MSA) and a Feed-Forward Network (FFN), with layer normalization before each
one and skip connections around each one (bottom right in Fig. 6.2). Like the
CNN encoder, the transformer encoder can accept any number of sequence ele-
ments, which is crucial for TransGrow’s flexibility in processing different numbers
of input images. It generates an output, called memory, of the same dimension
dmodel for each incoming vector of the sequence, of which only the transformed
pred-token is further used.

Positional encoding

In the positional encoding, the spatially encoded latent representations of the
input images are provided with explicit temporal information by adding Iin po-
sitional encoding vectors of the same dimension dmodel. Besides, the requested
growth stage in the form of a positionally encoded time point is added to the
learnable pred-token. We use a global positional encoding, whereby one dataset-
specific reference point is set to a reasonable time at the beginning of the growing
period, such as the date of sowing or planting. Thus, the global position of each
image can be interpreted as the plant’s growth stage. This enables the trans-
former to capture the actual temporal information of the sample in the dataset,
which is required to generate images at arbitrary points in time instead of gener-
ating fixed positions with respect to the input sequence. The positional encoding
is calculated by a combination of sine-cosine signals, as in [82].

p(t,2i) = sin
(

t

10 0002i/dmodel

)

p(t,2i+1) = cos
(

t

10 0002i/dmodel

)

(6.3)

Here, t represents the global temporal position (i.e., the growth stage), and i is
the positional dimension.

Learnable pred-token

Inspired by [129], we add a dmodel-dimensional learnable token, called pred-token,
from which the target image is decoded. Besides, it is intended first, to carry basic
shared features of all samples of the dataset and second, to have a container to
which the positional encoded requested time tgen is added and brought to the
transformer encoder.
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Inducing stochasticity

To be able to generate an output distribution at fixed X in and t, stochasticity
in the form of random noise ϵ ∼ N(0, 1) is induced into the network. Therefore,
the identical ϵ of dimension dz is scaled up to dmodel and then added to all latent
representations of the sequence together with the positional encoding. While
there are various other methods to induce noise, this one has proven to be very
robust in our case. To achieve force diversity, additional dropout layers are used
after the positional encoding and within the transformer encoder at training time.

Generator decoder

As a generator, we use a lightweight decoder [135], which, in particular, is designed
to be robustly trainable with small datasets. It includes an initial ConvTranspose
layer followed by BatchNorm and GLU to decode from 12 → 42. The subsequent
upsampling modules, each quadratically enlarging the image, consist of Nearest-
Upsampling, Conv, Batchnorm, and GLU layers. To counteract the weak gradient
flow with deep decoders, an additional skip layer excitation between the images
82 → 1282 and 162 → 2562 is used.

6.2.3 Evaluation of generated images

We utilize the established metrics MS-SSIM and PSNR to compare generated
and reference images of the same time point in the image domain and FID to
compare the generated and real image distribution across all time points in the
feature domain, as introduced in Sec. 2.5.1. While for SSIM (opt: 1) and PSNR
(opt: ∼60 dB), the larger, the better; for FID, a smaller value means a higher
similarity between the image distributions (opt: 0).

For Arabidopsis-S, we additionally perform a plant-trait-based evaluation by
determining the PLA. We use the vegetation index RGBVI [83] and calculate
a leaf area mask to which every pixel with an RGBVI>0.25 is added. The
Arabidopsis-S dataset is well suited for the application of the RGBVI because
the Arabidopsis-S plants represent the only green pixels in front of a homoge-
neous, non-vegetation-like background. In addition, a short calculation time is
advantageous because the masks on the real training images are also used for
flexible data augmentation of the Arabidopsis-S dataset. Therefore, a fast and
efficient vegetation index is preferred over deriving the PLA from MaskR-CNN
segmentations, which has a higher inference time, including the filtering of suit-
able masks.
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6.2.4 Comparison methods

While with TransGrow, the requested growth stage is specified in the input, and
target images can thus be generated explicitly, it is also possible to interpolate
between the input images. This chapter considers both linear interpolations in
the image space (L1) and the latent space using VAE [30] and AAE [136]. For
linear interpolation, we calculate the difference matrix in the image space or
the difference vector between image embeddings of two support points in the
latent space. We consider the length of this difference vector as the total time
difference and interpolate this according to the desired target time. This method
is intuitive, widely used for sampling from latent spaces in different generative
models like GANs and AEs, and remarkable can be obtained [123], [137]. It
has been demonstrated to create smooth transitions between representations of
different domains, classes, or poses of a dataset [138], [139]. Furthermore, they
are suitable for generating a variance in the output that follows a predefined
distribution - here N(0, 1). However, unlike TransGrow, they do not allow time-
dependent sampling of the latent space and, therefore, no intuitive extrapolation,
as further discussed in Sec. 6.4.1.

For maximal comparability, VAE and AAE are provided with the same gener-
ator as TransGrow. In the encoder, only the transformer stack is omitted because,
for training VAE and AAE, the data are not treated as sequential datasets S but
as classic image datasets X (see Sec. 2.2). So, no time component is involved, and
thus, no explicit temporal encoding is required. Instead of the transformer stack,
the VAE-typical dmodel-dimensional bottleneck with µ and σ is synthesized by a
linear layer and decoded to the image after reparametrization from the normal
distribution. In AAE, a discriminator is used with three linear layers, each fol-
lowed by ReLU and final sigmoid activation. In addition to an L1-loss for VAE,
the KL-divergence and for AAE, an adversarial loss utilizing binary cross entropy
are used for optimization. Both models are trained until the l1 losses converge
on the validation images.

6.3 Experiments and results

6.3.1 Experimental setup

Data augmentation and preparation

Since transformer training benefits from high data diversity, multiple augmen-
tations are performed on the train sets consisting of random 90◦-rotations and
horizontal and vertical flipping. After augmentation, images of all datasets are
scaled to the value range [0, 1].
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In addition, and especially for the Arabidopsis-S dataset, comprehensive fore-
ground (plant) and background (pot) “shufÒing augmentation” is implemented,
which significantly increases the diversity of the dataset. To achieve this, the
Arabidopsis-S plants are first cut out using the RGBVI [83], then rotated arbi-
trarily, and finally placed randomly on one of a set of eight selected background
images of an empty pot. Note that for the rotation, the rotation axis is the image
center and not the plant center, which does not match exactly, so the position
of the plant center on the augmented image varies slightly. This special shufÒing
augmentation is applied to training, validation, and test images. Although this
limits the generalizability and the comparability of the Arabidopsis-S experiments
with experiments without shufÒing, augmenting only training and validation data
leads to considerable difficulties for two reasons: First, the shufÒing establishes a
constant background over time, which is not the case in the non-augmented test
set due to moving particles and lumps of dirt in and next to the pot. Therefore, a
distribution shift would be introduced between the training and test sets. Second,
since the number of available images of empty pots is severely limited, shufÒing
augmentation overfits the eight given background pots and thus also generates
them at test time. However, comparing the original backgrounds with the gen-
erated ones from the shufÒing augmentation would have undesirable effects on
non-plant-trait-based evaluation metrics.

Model hyperparameter

The stochasticity and the embedding dimension are set to dz = 16 and dmodel =

512, as the latter is the size of the last ResNet-18 feature layer. A low dropout
probability of 0.1, as suggested in [82], [129], is used at all dropout positions as
described in Sec. 5.2 to prevent overfitting. Since the transformer is intended
to encode only the temporal component of the input, a low depth L = 3 and
a number of four heads within the multi-head attention are experimentally se-
lected. In the calculation of the generator loss, the additional regularizations
are all equally weighted λL1 = λVGG = λSSIM = 1. While in classical GANs,
the reconstruction loss (here: LL1) is often weighted substantially higher than
LGAN [14], [103], this did not turn out to be beneficial in the experiments. The
weighting of gradient penalty λGP = 10 and all other CWGAN-GP optimization
hyperparameters are set according to [35]. Using a batch size of 32, a learning
rate of 1e-4, Adam optimizer, and the settings mentioned above, it takes up to
1000 epochs for convergence, running for approximately 5 d on a single Nvidia
A100 in mixed-precision mode.
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Table 6.1: Comparison of TransGrow with classical interpolation methods in image space (L1)
and latent space (VAE, AAE) using the metrics MS-SSIM, PSNR [db], MAEPLA [% image−1],
and FID.

Approach MS-SSIM (↑) PSNR (↑) MAEPLA (↓) FID (↓)

L1 0.89 ± 0.09 31.64 ± 4.92 2.02 ± 2.42 11.35
VAE 0.87 ± 0.07 28.91 ± 2.54 1.00 ± 1.06 54.79
AAE 0.88 ± 0.09 28.83 ± 3.06 1.83 ± 2.74 20.11
TransGrow 0.90 ± 0.05 29.15 ± 2.28 0.69 ± 0.61 13.92

6.3.2 Comparing TransGrow with linear interpolation
methods

In the first experiment, we investigate the interpolation capabilities of TransGrow
and compare them with the baseline methods L1 (image space), VAE, and AAE.
For this comparison, we use the Arabidopsis-S dataset, sample three random
images from the same time series, and interpolate the temporal middle image
as the target image from the other two. In total, 200 times I = 3 random
images are sampled from each of the 16 test time series, resulting in a total of
3200 target images from which scores in Tab. 6.1 are calculated. So, there is a
random interpolation distance for each generation. The difference between the
latest and earliest growth stage 38 DAS - 21 DAS = 17 DAS means that the
nearest input image is a maximum of 8 d away, i.e. min∆t = 8. The model time
unit of TransGrow is set to whole days (discussion on this in Sec. 6.4.2), which
is why the interpolation in the baselines is in day increments as well. Since a
sequence includes several images from the same day, the reference image to be
interpolated can show small deviations from the input image, although they have
the same time stamp. These deviations can occur in the order of magnitude of
an Arabidopsis-S growth development of a maximum of one day and affect all
methods equally.

Quantitative results

In Tab. 6.1, the interpolation capabilities of the methods are compared using the
metrics MS-SSIM, PSNR, MAEPLA and FID. For the MS-SSIM, all values are
in the range between 0.87 and 0.9, with TransGrow performing best, followed
by L1, AAE, and VAE. In terms of PSNR, L1 performs best with 31.64 db,
followed by TransGrow, VAE, and AAE worst with 28.83 db. The high standard
deviations for both MS-SSIM and PSNR indicate large differences between the
interpolation distances, which is why this is examined in more detail below. In the
PLA, TransGrow clearly has the lowest deviation with MAEPLA = 0.69, followed
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by VAE (1.00), AAE (1.83) and L1 (2.02) and sets itself apart significantly from
AAE and L1. With the FID score, there are large differences; it is high for
VAE (54.79), significantly lower for AAE (20.11), and at a similarly low level for
TransGrow (13.92) and L1 (11.35). Overall, L1 and TransGrow have the best and
most similar values, and an MS-SSIM of ∼ 0.9, a PSNR ∼ 30 db, and an FID<15
indicate a high image quality. However, the clear discrepancy with MAEPLA is
apparent, i.e., the PLA calculated from L1 interpolated images is significantly
less accurate than with TransGrow. This is due to blending effects in the image
space, in which not only the interpolated plant but also the plants from the two
input images shine through, as can be seen in the following qualitative results.

Qualitative results and visualized variability

A qualitative comparison between the methods is given in Fig. 6.3 for the
Arabidopsis-S dataset. The interpolations for L1, VAE, and AAE are performed
from the two nearest input images, and the images for TransGrow are calculated
from Iin = 3 input images. In addition, a variability image is displayed for each
generated time point by plotting the pixel-wise standard deviation from genera-
tions with ten different random stochastic components ϵ and otherwise constant
input. In the top line, L1 image space interpolation is visualized. Here, it be-
comes apparent that blending between leaves of different growth stages does not
work well since leaf contours of both early and later growth stages are visible,
and not the actual leaf structures are formed. This is the main reason for the
worse MAEPLA score (Tab. 6.1) and makes the method inappropriate for any
phenotyping applications. In addition, the interpolation is deterministic, so that
no variability image can be generated.

The plants generated by AAE, VAE, and TransGrow very well match the
reference images in terms of plant size, number of leaves, and leaf orientation. A
continuous growth behavior over time can be found in all approaches. However,
there are also differences: While the VAE plants are a bit blurry, which is a typical
problem of VAE [140], the AAE plants have sharp edges, but the leaves appear a
bit too clunky. There is a lack of texture on the leaves, and in some places, leaf
petioles are missing (e.g., 28 and 31 DAS). In comparison, the TransGrow images
have more texture and the best overall appearance. Artifacts occasionally occur in
all methods, especially with rapidly developing leaves or when the interpolation
distance is high, such as for the images at 33 DAS. This refers to unnaturally
shaped leaves or leaves that have no connection to the plant center.

The variability maps also reveal significant differences, with a darker blue
indicating a larger pixel-wise standard deviation. First of all, it is noticeable that
in all methods, the variability occurs exclusively on the plants themselves and
not on the background, which is due to the shufÒing augmentation. Focusing on
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22 24 26 28 30 31 33 35 36 37 38

1 8 16 22 27 35 44 50 57 65 69

7 28 42 54 64 71 74 82 99 117 119

Figure 6.3: Generated images and associated variability maps over time. On the top is the
comparison for Arabidopsis-S between L1 image space interpolation, VAE, AAE, and Trans-
Grow. In the middle and below are the TransGrow-generated images for GrowliFlower and
Mixed-CKA. While baseline methods allow only interpolation, with TransGrow and Iin = 3

input images (cyan frame), extrapolation in the past and in the future are shown.
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(b) VAE
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(c) AAE
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(d) TransGrow

Figure 6.4: MS-SSIM of generated Arabidopsis-S images in relation to temporal nearest support
point (min∆t) and growth stage indicated by the color of dots for the different methods (a) L1,
(b) VAE, (c) AAE, and (d) TransGrow.

the plants, it is realistic that in all methods, the variability is greatest at the leaf
edges. VAE exhibits significantly greater variability than TransGrow, which in
turn exhibits greater variability than AAE. Remarkably, VAE and AAE have an
almost equally distributed variability on the leaf surfaces, although not all leaves
develop at the same rate. On the contrary, TransGrow’s leaf edge variability
is more nuanced, and the images are particularly darker blue if they belong to
fast-growing leaves. This is explainable as the difference between the respective
closest support points is particularly large in these cases.

Impact of the interpolation distance

While Tab. 6.1 shows evaluation metrics averaged over a set of random interpola-
tion distances, the standard deviations indicate that there is a strong difference
in image quality depending on the interpolation distance. Since the image to be
interpolated does not necessarily lie exactly in the temporal middle between two
input images, we analyze the MS-SSIM in Fig. 6.4 depending on the temporally
closer input image min∆t. In addition, the growth status of the image to be in-
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terpolated is visualized in color according to the colorbar on the plot’s right-hand
side. Two aspects all approaches have in common: First, at the same growth
stage, MS-SSIM decreases with increasing min∆t, i.e., the greater the interpo-
lation distance, the poorer the image quality. Although the quality of L1 drops
significantly faster than the other methods. Second, it can be noted that younger
plants have mostly a higher MS-SSIM than older plants. This is due to the fact
that the easy-to-generate background portion is larger for younger plants.

Overall, all images generated for TransGrow are at a higher level with
MS-SSIM > 0.65 than VAE and AAE with MS-SSIM > 0.55. However, Trans-
Grow has the worst scores at min∆t < 2, especially for plants at later growth
stages. In particular, identity mapping has values MS-SSIM < 0.7 and is thus
worse than L1, VAE, or AAE. If there was only one image for each day, a sig-
nificantly higher identity mapping score could generally be expected for all ap-
proaches and MS-SSIM = 1 for L1. Remarkably, for particularly long interpola-
tions of min∆t < 5, the TransGrow’s MS-SSIM show significantly better results
than the baseline approaches (up to an MS-SSIM difference of 0.3). Naturally,
interpolation in latent space carries a greater risk of leaving the data manifold
as the distance between the support points increases, whereas this risk is lower
with TransGrow due to explicit access of the latent space, as visualized by image
embeddings in latent space (Sec. 6.3.4).

6.3.3 Inter- and extrapolation across different datasets
Besides interpolation, it is also possible to extrapolate with TransGrow. In this
section, three aspects will be examined in more detail. First, the ability to perform
interpolation and extrapolation across different sequential datasets GrowliFlower
and Mixed-CKA and the potential reasons for discrepancies. Second, the compar-
ison between the extrapolation and interpolation accuracy of TransGrow. Third,
the flexibility in varying the sequence length at test time with Iin = 1/3/5/7

compared to training (fixed Iin = 3).
While we sample 200 times from each test sequence for Arabidopsis-S as in

Sec. 6.3.2, we sample 20 times for GrowliFlower and Mixed-CKA because these
two have shorter but more test sequences overall. The position of the target
image within the sampled sequence I is fully random so that both interpolations
and extrapolations are generated.

Quantitative results

Tab. 6.2 shows the interpolation and extrapolation scores of TransGrow for the
datasets Arabidopsis-S, GrowliFlower and Mixed-CKA. In the interpolation with
Iin = 3, Arabidospis-S has the highest image quality with MS-SSIM = 0.9 and
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Table 6.2: TransGrow evaluation scores MS-SSIM, PSNR [dB], and FID for random temporal
image generation of the datasets Arabidospis-S, GrowliFlower, and Mixed-CKA. Scores are
divided in interpolation and extrapolation on test sequences using each Iin = 1/3/5/7 random
input images.

Data Iin
Interpolation Extrapolation FID (↓)MS-SSIM (↑) PSNR (↑) MS-SSIM (↑) PSNR (↑)

A
ra
bi
do

ps
is-

S 1 - - 0.84 ± 0.10 27.90 ± 3.15 15.55
3 0.90 ± 0.05 29.19 ± 2.29 0.86 ± 0.10 28.56 ± 3.43 14.83
5 0.91 ± 0.05 29.51 ± 2.28 0.89 ± 0.08 29.35 ± 3.29 15.16
7 0.91 ± 0.05 29.53 ± 2.25 0.88 ± 0.09 29.10 ± 3.68 15.56

G
ro
w
liF

lo
we

r 1 - - 0.23 ± 0.17 15.83 ± 3.99 256.07
3 0.28 ± 0.16 16.23 ± 3.91 0.27 ± 0.17 16.34 ± 4.27 241.13
5 0.29 ± 0.16 16.43 ± 3.89 0.29 ± 0.17 16.49 ± 4.50 235.42
7 0.31 ± 0.17 16.85 ± 4.01 0.30 ± 0.16 16.33 ± 4.49 234.07

M
ix
ed
-C

K
A 1 - - 0.22 ± 0.11 14.80 ± 1.93 91.57

3 0.25 ± 0.07 15.08 ± 1.85 0.27 ± 0.13 15.23 ± 2.00 94.28
5 0.26 ± 0.08 15.05 ± 1.92 0.26 ± 0.15 15.24 ± 2.13 96.95
7 0.26 ± 0.09 15.36 ± 2.07 0.28 ± 0.16 15.36 ± 2.14 104.24

PSNR = 29.19, followed by GrowliFlower (MS-SSIM = 0.28, PSNR = 16.23)
and Mixed-CKA (MS-SSIM = 0.25, PSNR = 15.08). Thus, there is a large
difference in quality between the generated images of the different datasets, which
is mainly due to the greater complexity of GrowliFlower and Mixed-CKA. Due to
the larger time intervals, the changing backgrounds over time, the more diverse
plant structures with several scattered plants per image, and the differences in the
spectral image properties, it is significantly more challenging to generate an image
that exactly matches the respective reference. The distribution of the generated
images also does not match the reference distribution well, as indicated by the
FID values of 241.13 for GrowliFlower and 94.28 for Mixed-CKA, although the
qualitative results in both datasets show quite realistic plants.

Comparing the MS-SSIM of interpolation and extrapolation shows an average
accuracy drop of 0.03 for Arabidopsis-S, 0.01 for Growliflower, and even a slight
increase of 0.01 on average for Mixed-CKA. For Arabidopsis-S and Mixed-CKA,
a large increase in the standard deviation can be seen. Overall, it can be said
that the extrapolation accuracy is at the same level or just slightly lower than the
interpolation accuracy. This is notable as the baseline methods comparatively do
not allow an intuitive extrapolation.

By varying Iin, we aim to investigate how flexibly TransGrow adapts to differ-
ent sequence lengths during inference, in particular those that deviate from the
training sequence length Iin = 3. Across all datasets, an increase in Iin leads to
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higher MS-SSIM and PSNR scores, whereby this increase from the shortest to
the longest sequence is similar for interpolation and extrapolation (∼ MS-SSIM
+0.03 and PSNR +0.5). Particularly remarkable are the results for Iin = 1, i.e.,
the generation of time-varying images from a single input image. While baseline
methods usually fail to generate those images, as the direction of movement in
the latent space is ambiguous, this becomes feasible using explicit access (growth
stage requesting in the input). The drop in accuracy to the sequence length Iin = 3

is low with an average MS-SSIM and PSNR change of -0.04 and -0.5, respectively.
In general, the increase in accuracy through the addition of more support points
is due to the greater information gain with simultaneously shorter interpolation
and extrapolation distances. The sequence length difference between training and
inference poses no problems, which demonstrates the flexibility of TransGrow.

Qualitative results and visualized variability

In the bottom nine rows of Fig. 6.3, the TransGrow interpolation and extrap-
olation results for Arabidopsis-S, GrowliFlower, and Mixed-CKA are shown, as
well as the corresponding variability and reference images. While Arabidopsis-S
achieves a high image quality, GrowliFlower and Mixed-CKA are significantly
worse. With GrowliFlower, the leaf edges are blurred, and the images are not
sharp overall. The Mixed-CKA images have better visual quality than Growli-
Flower, and the wheat ears, in particular, are very sharp. However, the bean
plants in between are rather blotchy, and their leaves are not well resolved. On
the positive side, all datasets show consistency over time. All plants develop
organically, the plant center positions remain correct over time, which is particu-
larly evident in the early stages of Mixed-CKA, and no new plant parts appear in
unnatural locations. Notably, the different color tones of the soil are visually ac-
curately generated despite the very different conditions and the large deviations
from the input images.

Focusing on the variability images, GrowliFlower shows that, similar to
Arabidopsis-S, most of the variability is on the leaf edges, which is realistic. In
addition, the soil is variable due to different soil moisture levels, smaller grasses,
weeds, and furrows, which are more or less visible. The variability images of
Mixed-CKA are less meaningful. Although the six rows of plants can also be
identified here, which indicates that the variability lies mainly on the plant sur-
faces, the leaves are too mixed to be able to recognize differences between leaf
margins and leaf centers. There are also no significant variability differences be-
tween wheat and bean plants. There are points in time with greater variability,
such as 99 DAS, and other points in time with less variability, such as 74 DAS.
It was expected that the images generated at the sampling points, in particular,
would have lower variability. However, this is not the case for all datasets, which
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could be due to TransGrow not being trained as an identity mapper, so instead,
the data variability within a time point is noticeable.

A particular focus is on the generation of extrapolation images. In the case
of Arabidopsis-S, it is especially clear that the plant becomes smaller when ex-
trapolating into the past and that the outer leaves gradually expand outwards
and become wider during the two extrapolation steps into the future. Similarly,
the extrapolations of GrowliFlower and Mixed-CKA are highly realistic. Smaller
plants (GrowliFlower) or bare soil (Mixed-CKA) can be seen for the first point
in time, and fully developed cauliflower heads or a ripened mixture field for the
last two points in time. It is conceivable that such time-flexible extrapolations
into the harvest period can provide high-added value for agricultural practice.

6.3.4 Visualizing inter- and extrapolations in the latent
space

To analyze how the latent code of a generated plant evolves, we consider in detail
the transformed pred-token, which can be seen as the latent representation of the
generated image Xgen. Ideally, the generated images at consecutive growth stages
do not scatter randomly but follow a pattern in the latent space, which is referred
to as latent trajectory. Note that for each latent trajectory, the stochasticity is
kept constant, and only the requested time is varied. To visualize this, the gen-
erated latent codes of pred-tokens from multiple requested times are saved, and
together with Principal Component Analysis (PCA) [141] reduced to two dimen-
sions. We also explored other dimensionality reduction methods, particularly for
extracting the manifold of the latent space, but PCA produces the most intuitive
visualization.

In Fig. 6.5, linear interpolation of pred-tokens in the TransGrow latent space is
compared with the target time requesting applied in TransGrow. For the latter,
trajectories generated with two different noise vectors are shown. The PLA is
calculated from the generated images for both methods to visualize the effects of
different latent space methods on the image space.

There are clear differences between the methods in the latent space. While
with target time request, the trajectories of ϵ0 and ϵ1 between 24 DAS and 28
DAS are still close to the linear interpolation, between 28 and 34 DAS, they show
a significant difference to the linear interpolation. This is visible by a slightly
larger development step between 32 DAS and 33 DAS, both in the PLA and in
the generated images. Both possibilities are realistic scenarios, as plant growth
is not linear.

The target time request enables extrapolation whose points in the latent space
do not lie on the linear extension between the nearest interpolation points. How-
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(a) Latent space visualization: Latent interpolation
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(c) Latent space visualization: Target time request
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(d) PLA development: Target time request
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Figure 6.5: Visualization of the latent space of the transformed pred-token in image generations
over the time of Iin = 3 constant input images. Comparison of (a) latent interpolation with (c)
target time request in TransGrow and (b)+(d) the respective effects on the projected leaf area
(PLA) development. With the target time request, the images were generated with different
noise ϵ0 and ϵ1, but constant over time. At the bottom, the qualitative results are shown for
latent interpolation and target time request using ϵ0.

ever, the image space and the PLA development confirm a realistic extrapolation.
The difference between ϵ0 and ϵ1 shows that although the points in the latent
space are slightly apart, measurable differences in terms of PLA are only present
in the extrapolation range (21 DAS and 34-37 DAS). It can be seen from the
extrapolation in the future that the distance in the visualized latent space does
not correlate directly with changes in the image space. Here, the latent space
points are very close to each other, but significant changes in plant development
take place in the image space.
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There are possibilities to regularize the latent space with additional loss func-
tions, e.g., so that the temporal distance correlates with the trajectory length in
the latent space. However, such a regularization would have to take into account
the not-exactly known and non-linear plant development, which makes it chal-
lenging to implement. For instance, the difference in the latent space would be
expected to be significantly smaller between 21 DAS and 22 DAS than between
36 DAS and 37 DAS.

In general, the greater the distance between the sampling points, the greater
the risk of leaving the data manifold during linear interpolation and thus generat-
ing unnatural images, which is also a disadvantage of linear interpolation within
VAE and AAE. In our experiment, both methods provide different latent space
visualizations but realistic generated images, with the advantage of TransGrow,
which makes realistic extrapolations feasible.

6.4 Discussion

6.4.1 On interpolation and extrapolation in latent space

Linear interpolation in the latent space typically results in a straight line between
two points. However, the actual distribution of data in the latent space might not
be linear. It can be curved or twisted, meaning that the shortest path between
two points might not necessarily be a straight line. More sophisticated techniques,
such as geodesic or cubic B-Spline interpolation, attempt to find shorter paths
along the manifold connecting two or more points in the latent space [139]. How-
ever, these methods require knowledge or assumptions about the shape of the
manifold and a choice of distance metric, and the calculation is computationally
intense depending on the manifold.

Latent extrapolation is also conceivable by extrapolating the last two or more
sampling points, but this has not led to plausible results in prior experiments.
The locations of the support points compared to the extrapolated images in the
visualized latent space (Fig. 6.5) provide an indication of why linear extrapolation
often leads to unrealistic images.

In summary, linear interpolation, the most intuitive and simple technique,
is used in this chapter to primarily visualize the differences to explicit latent
space access via the requested growth stage. While it is not precluded that
more advanced interpolation techniques may provide better interpolation results,
extrapolation remains challenging.
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6.4.2 Flexibility of the TransGrow framework

Benefits of flexibility

As the experiments show, TransGrow has great flexibility in that irregular se-
quences with different lengths and time intervals can be included in the input,
and any growth stages can be generated. This variability is not only practical for
agricultural practice, e.g., adaptively adding images of new drone overflights to
an existing model, but can also be useful in related applications. For instance, in
earth observation using satellite image time series, where some points in time are
unusable due to clouds and can be reconstructed in a generative manner using
the remaining, thus irregular, observations.

It should also be emphasized that the positional encoding can vary the time
unit of the model, which in our experiment is fixed to day increments. In this way,
the same data can also be used to train models that can, for instance, interpolate
and extrapolate on an hourly basis, i.e., in much smaller increments, if required.

Drawbacks of flexibility

There are two main criticisms: First, the results have shown that the closest image
in time has the greatest influence when generating the target image. While this
is reasonable, the addition of more support points would be expected to result
in a more significant increase, as the model should be able to better capture the
overall growth behavior of the plant over time. The fact that very realistic images
are already generated with one input image contradicts this assumption.

Second, the identity mappings, i.e., images generated at time points of the in-
put images with TransGrow, are of poorer quality than the comparison methods.
In addition, they have a high standard deviation for different stochastic compo-
nents, which is not reasonable because only the input image of the correct point
in time should be reconstructed at these points in time. One explanation is that
VAE and AAE were trained as identity mappers, while TransGrow always has an
input sequence. If the image to be generated exists in the input, TransGrow does
not succeed in completely suppressing the other images of the input sequence,
which would be desirable. Additional experiments with the aim of improving
identity mapping by reconstructing support points more frequently during train-
ing or controlling the stochastic component depending on the temporal distance
to the target image (less noise the smaller min∆t) did not solve the issue.

This means that TransGrow’s flexibility to input several images simultane-
ously comes at the expense of error-free identity mapping. The next chapter
addresses both drawbacks through flexible image generation but with only one
input image at a time.
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6.4.3 Comparison to image-to-image translation

Compared to data-driven growth modeling using image-to-image translation
(Chap. 5), TransGrow has several advantages. In addition to the flexibility al-
ready mentioned, whereby arbitrary points in time can be generated instead of a
predefined growth step, the greater diversity of the output, including the variabil-
ity images, is a significant achievement. By optimizing using CWGAN instead of
classical CGAN, it is possible to prevent mode collapse on the one hand and not
to suppress the stochastic components ϵ on the other. This allows variability im-
ages to be generated, while the image-to-image in Chap. 5 completely suppresses
the stochastic component in the input.

Explanations for differences in image quality

Whereas the Arabidopsis-S dataset is not comparable to the Arabidopsis-P
dataset, in part due to the different augmentation applied, the datasets from
real field environments can be compared: While image-to-image translation with
Brassica resulted in an FID score of 30 - 40 depending on the treatment, the
FID for GrowliFlower (>230) and Mixed-CKA (>90) are significantly higher. Al-
though the datasets are not more complex, worse image quality is achieved with
TransGrow.

This is attributable to three factors: The first responsibility comes from the
flexibility of TransGrow. Focusing on individual output time points is much
easier for the model, as in image-to-image translation, where the modeled growth
prediction step is always identical. In TransGrow experiments, where the target
image was fixed to a specific position in the input sequence during training, the
FID could be increased by up to 50 %. However, in this way, it loses the ability
to generate time-varying images during inference.

Second, the smaller latent space size is crucial. While TransGrow’s latent
space has a size of dmodel = 512, the paired imagine-to-image translation uses skip
connections between the encoder and decoder, which means that far more infor-
mation can be transferred from the input to the image to be generated. However,
the smaller latent space of TransGrow is necessary and is caused by the processing
of spatio-temporal embeddings using a transformer. Due to this architecture, no
skip-connections are possible, and the parameter-intensive attention mechanism
within the transformer does not allow a significantly larger latent space for rea-
sons of training time. Nevertheless, a latent space with a size of dmodel = 512 can
also be sufficient for high image quality, as related work demonstrates (Sec. 6.1).

This is where a third factor takes effect: Large training datasets are required
to train transformers. This size could be artificially generated for Arabidopsis-S
through the special shufÒing augmentation but not for GrowliFlower and Mixed-
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CKA.
In summary, TransGrow’s image quality can be improved by lower output

flexibility, a larger latent space combined with more parameter- and runtime-
intensive training, and larger and more diverse datasets.

6.5 Conclusion
In this chapter, we have shown that our conditional Wasserstein generative ad-
versarial network TransGrow, with a combined generator of convolutional neural
networks and transformers, enables high-quality and realistic image generation for
incomplete and irregular sequences. For the three datasets, Arabidopsis-S, Grow-
liFlower, and Mixed-CKA, time-dependent sampling in the latent space ensures
a substantial reduction of Fréchet inception distance compared to variational
and adversarial autoencoder approaches utilizing linear latent space interpola-
tion. We investigated the accuracy of the interpolation in dependence on the
distance to the nearest support point and found that although TransGrow has
difficulties with identity mappings, it can perform significantly better long-term
interpolations. Visualizing the latent space of pred-tokens over time using dimen-
sion reductions can indicate potential reasons: For short interpolation distances,
only small differences in the latent space between linear interpolation and target
time requesting are visible. Therefore, the differences are also minor in the image
space and in the projected leaf area derived from the generated images. However,
for larger interpolation distances, we observe that linear interpolation deviates
from the data manifold, while TransGrow still samples from it

In addition to interpolation, TransGrow is also capable of extrapolation with
only a minimal decrease in multiscale structural similarity and peak signal-to-
noise ratio. Furthermore, pixel-wise variability images for each time can be de-
rived from a generated output image distribution, indicating reliable pronounced
variance at the leaf edges, where the variance of plant growth is naturally highest.
This allows farmers to forecast multiple future probable above-ground phenotypes
from a flexible number of images and any time points in the growing season.
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Chapter 7

Multi-modal conditional image
generation and simulation

This chapter is about combining a CGM based on images with other conditions,
i.e. growth influencing factors of different kinds, to be able to perform multi-
modal conditional image generation. Special emphasis is placed on the variation
of these growth influencing factors for inference to perform growth simulations.

In this context, we aim to incorporate the strengths of the CGMs from the
previous chapters. On the one hand, the less complex model architecture with
only one input and output image at a time is to be retained, which has led
to high image quality, as in Chap. 5. On the other hand, we want to keep
the flexibility to choose the input and output times of the images arbitrarily,
coupled with the ability to generate realistic output distributions, as in Chap. 6.
Linking both together with multi-modal conditioning, which we implement using
conditional batch normalization to realistically consider other growth influencing
factors alongside the input image, leads to a growth simulation framework as
shown in Fig. 7.1.

It is a two-step procedure in which time-varying images are first generated
with the IGM and then analyzed with an independently trained GEM. An im-
portant novelty in the IGM, which is a CWGAN, is the integration of multiple
conditions of different types. These are images (2D spatial continuous variables),
time points (discrete), treatment information (categorical), and daily simulated
biomass (continuous). This enables simulations during inference, i.e., while fix-
ing input conditions (input image, time, and treatment), for other growth stages,
conditions can be varied as required to generate multiple realistic predictions, as
shown with the gray shaded images in Fig. 7.1.

Experiments have been conducted on different datasets of varying complex-
ity, from Arabidopsis-S to real field data with cauliflower (GrowliFlower) and
crop mixtures (MixedCrop). In addition to classical GAN evaluation metrics,
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Figure 7.1: Proposed two-step crop growth simulation framework: In the first step of image
generation, an input image is initially encoded with its associated time (t) and treatment (trt).
Then, this encoded representation can be decoded into newly generated images with varying
growth stages for different simulation times and treatments. In the second step of growth
estimation, target parameters such as projected leaf area or biomass are estimated from the
images and analyzed over time. Both models are trained independently.

we evaluate the quality of generated images through the GEM, which acts as a
plant phenotyping module, by comparing (depending on the dataset) either the
projected leaf area or the biomass estimated from generated and real images.

It is worth emphasizing that the biomass condition for the MixedCrop dataset
is not a real growth influencing factor but instead simulated using a process-based
CGM. For crop mixtures, this allows us to make a comparison between our image-
based crop growth simulation and a classic process-based one, which was used
to establish the GEM. Thereby, we demonstrate that the IGM can serve as
an interface that makes the output of process-based CGMs more explainable by
visualizing the spatial crop development.

A transferability experiment demonstrates that our framework has the
potential to be transferred to crop mixtures in another field with different
environmental conditions. Finally, we also investigate the generalizability
and transferability of our framework from a temporal and spatial perspective:
Temporally, by generating images at times that do not exist as acquisition times
in the training dataset. Spatially (and temporally), by applying the crop mixture
CGM trained on Mixed-CKA to Mixed-WG images (with training-different
acquisition times).

The primary new findings of this chapter can be outlined as follows:

• Multi-modal growth influencing factors are integrated as conditions into an
image generation model using conditional batch normalization and allow
the data-driven CGM to perform realistic growth simulations.

• Generated images deviate less from the appearance of the reference plant
the more conditions are integrated, i.e. the more precisely the growth be-
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havior is described.

• By incorporating process-based simulated biomass as a condition, a serial
interface between PBM and DDM is created, which can be used to obtain
for PBM additional spatial explainability, validation, or indications of re-
calibration for certain field treatments.

7.1 State of the art
In many data-driven image generation works, plant growth is greatly simplified by
considering only a few conditions as growth influencing factors, for instance, the
time factor [15], or shape priors [94], while in fact, it is subject to many factors.
Miranda et al. [20] attempt to get closer to this complexity by integrating more
conditions into the growth modeling, which allows them to generate controlled
and explainable output images of crop mixtures. In their work, the conditions are
not limited to growth-influencing factors but also include regulating variables such
as seed numbers, the mean plant height, or the plant’s biomass. The conditioning
works by replacing the stochastic input of a combined VAE GAN inside the
BicycleGAN framework [142] with a conditional input. However, the proposed
method is limited to a fixed number of continuous conditions and to a predefined
growth prediction step from a fixed early growth stage to a fixed later growth
stage, which is unfavorable in agricultural practice.

In general, integrating multiple conditions is a non-trivial task, as in condi-
tional image generation, there is a trade-off between sample variety and fidelity
[143]. When the model is optimized for high variety, it aims to produce a broad
range of outputs for a given input condition, which leads to diverse outputs but
images that are less accurately conditioned (lower fidelity). When the model is
optimized for high fidelity, images are of good quality and accurately conditioned
but become less diverse (lower variability). The latter can lead to the model
generating completely deterministic outputs, which have a similar effect to mode
collapse [144].

There are many different ways of integrating conditions from concatenation
[111] over auxiliary classifiers [145], feature-wise linear modulation [146], adaptive
instance normalization [124], and latent projection [147] to conditional batch
normalization [143], [148]. In this chapter, conditional batch normalization is used
since it allows the intuitive integration of multiple conditions while maintaining
the stochasticity of the model to create an adequate distribution of generated
plants. There are also other advantages, such as seamless integration into a fixed
model architecture, whereas with classifier guidance, for example, an auxiliary
classifier must be trained.
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7.2 Methods
This section provides details of the framework1 and its components, whereby a
two-step approach is applied. First, an image is predicted (Sec. 7.2.1) using the
Image Generation Model (IGM), and second, the growth is estimated (Sec. 7.2.2)
using plant phenotyping within a Growth Estimation Model (GEM). While ex-
isting state-of-the-art models are used for growth estimation, which is fine-tuned
on our data, the methodological focus is on integrating multiple conditions of
different types in the architecture of the IGM to predict new images.

To specify the terminology: We call the output of the image generation model
generated or predicted image. The whole framework’s output is called data-
driven prediction, in contrast to process-based prediction, which is process-based
simulated biomass. In the case of predictions, there is a time shift ∆t = tgen − tin,
so∆t > 0means prediction into the future, ∆t < 0means prediction into the past,
and ∆t = 0 is an identity mapping (T0). The output of the growth estimation
model is an estimation (no time shift) relating to its own input but a prediction
relating to the input of the preceding image generation model.

7.2.1 Multi-modal conditional image generation
For image generation, we build a multi-conditional Wasserstein GAN with gra-
dient penalty (CWGAN-GP) [35] from several state-of-the-art components. The
network consists of a generator Gθ and a discriminator Dδ, where Gθ predicts
images and Dδ estimates a score for generated and real images.

Conditional Wasserstein GAN objective

In the generator, a target image Xgen = Gθ(ϵ,X in,y) is generated from an input
image X in, further conditions y, and noise ϵ ∼ N(0, 1). It should be noted
that everything that is not ϵ represents a condition according to the CGAN
definition described in Sec. 2.4.2, i.e. also the input image X in. In this case, the
notation separates it from the other conditions y since these can be different for
the input image and the image to be generated and thus split into [yin,ygen]. Both
yin and ygen represent multi-conditioning, which can be composed of several of
the following conditions: categorical (class) variables c, discrete variables t, and
continuous variables b. In the discriminator, either the reference Dδ(X ref,X in,y)

or the generated image Dδ(Xgen,X in,y) are presented along with input image and
all conditions. The discriminator estimates a score for both real and generated
input, which is capable of enforcing the minimization of the Wasserstein distance
between the two distributions. The objective of adversarial training is to optimize

1Source code is publicly available at https://github.com/luked12/crop-growth-cgan
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the parameters θ and δ by maximizing the objective function LGAN(Gθ,Dδ) by
Dδ and minimizing it by Gθ.

θ∗, δ∗ = argmin
θ

argmax
δ

LCWGAN(Gθ,Dδ) (7.1)

Eq. 7.2 represents LCWGAN(Gθ,Dδ) with the classic CWGAN objective in the first
two lines [34], added with the gradient penalty term in the second line to enforce
the required 1-Lipschitz continuity of Dδ [35].

LCWGAN(θ, δ; ϵ,X ref,X in,y) = E(ϵ,X in,y)[Dδ(Gθ(ϵ,X in,y),X in,y)]

− E(Xref,X in,y)[Dδ(X ref,X in,y)]

+ λGPE(X in,X̂)[(‖∇X̂Dδ(X in, X̂)‖2 − 1)2]

(7.2)

The gradient penalty is computed by blending a generated image with a reference
image, resulting in X̂ = ηX ref + (1 − η)Gθ(ϵ,X in,y), where η is a random value
in the range [0, 1], and its impact is controlled by λGP. Using LCWGAN(Gθ,Dδ)

minimizes the Wasserstein-1 distance, sidestepping issues like mode collapse and
vanishing gradients in classic GAN training.

Network architecture with multi-conditioning

Generator. The generator consists of an encoder Q that compresses the in-
put image and conditions related to the input image into a latent representation
z = Q(X in,yin) and a decoder P that generates the target image from a stochas-
tic component, the latent representation, and the conditions for the image to be
generated Xgen = P(ϵ, z,ygen). While for image encoding, a ResNet-18 backbone
[42] without a final fully connected layer and global average pooling with pre-
trained ImageNet [134] weights is used, decoding works architecturally inverse to
that. To integrate the conditions, all batch normalization layers are replaced by
conditional batch normalization layers (CBN) [149], where the learnable affine
parameters of classical batch normalization layers [150] are conditioned on some
auxiliary variable a. In our case, a are embeddings of the conditions y using
an embedding function Φ. In particular, the encoder’s CBN layers are condi-
tioned on the embeddings related to the input image ain = Φ(yin), while the
decoder’s CBN layers are conditioned on the embeddings related to the image to
be generated agen = Φ(ygen). Specifically, the embedding function is condition-
type-specific since y can consist of conditions of up to 3 different types, namely
discrete temporal information t, categorical class information c, and continuous
variables b. So individual embeddings are performed for each type of condition
in y, which are then concatenated to a.

yin = [tin, cin, bin], ygen = [tgen, cgen, bgen]

ain = [Φt(tin),Φc(cin),Φb(bin)], agen = [Φt(tgen),Φc(cgen),Φb(bgen)]
(7.3)
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Here, the temporal embedding Φt consists of positional encoding of discrete time
points followed by a two-layer MLP with a sigmoid linear unit (SiLU) function
in between. The class embedding Φc represents a classic lookup table embedding
that maps indices of categorical class variables to a continuous vector representa-
tion. In order to embed a vector of continuous values in Φb, a two-layer MLP with
SiLU function in between is used. In the experiments, the conditions c and b are
not always used, then embedding and resp. concatenating of unused conditions
is omitted. Notably, for the MixedCrop dataset, tin/tgen and cin/cgen are scalars
representing time (t) and treatment (c), respectively, while bin/bgen are vectors
representing 2-dimensional due to SW and FB biomass. However, after embed-
ding the individual components of y, it is ensured that Φt(t), Φc(c), and Φa(b) all
represent continuous vectors of the same 64-dimensional embedding size, which
avoid prior weighting of different conditions. Besides, CBN has already included
a linear embedding for all conditions, but the additional condition-type-specific
embedding has stabilized the training process.

To also incorporate stochasticity into the network, a random 128-dim noise
vector ϵ ∼ N(0, 1) ∈ E is generated and via noise mapping network f : E 7→ W

inspired by StyleGAN [124] projected to the latent code w ∈ W, that matches
the channel dimension of the latent representation z. The mapping network f

is a shallow three-layer linear embedding network, which gradually projects the
128-dimensional ϵ to the 512-dimensional w, which corresponds to the channel
size of the ResNet-18 latent representation. After repeating w for the spatial
dimension (global average pooling is omitted), it is finally added to z. This
means that the stochasticity is not incorporated in the encoder part of the
generator but is only used in the decoder part.

Discriminator. The discriminator takes either the generated Xgen or ref-
erence image X ref along with the input image X in, and the conditions y as in-
put. The images are concatenated channel-wise in the input and initially passed
through a convolutional layer and LeakyReLU activation. This is followed by
several convolutional blocks consisting of a convolutional layer, instance normal-
ization, and LeakyReLU up to a spatial dimension of [16× 16]. Since batch nor-
malization should be avoided in the Wasserstein discriminator [35], the conditions
are not integrated in this case with conditional batch normalization. Instead, each
condition is first embedded to dimension 256 with a different embedding function
Ψ than Φ in the generator, but the architecture of the embedding functions inside
Ψ and Φ are the same. Then, embedded conditions are reshaped and channel-
wise concatenated to the intermediate discriminator representation of spatial size
[16× 16]. Note that here, the conditions of both the input image and the image
to be generated are concatenated. From this concatenated representation, the
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final score is generated with further convolutional blocks. Previous experiments
have shown that the training converges significantly better with an intermediate
fusion of the conditions than with a fusion directly in the discriminator input.

Optimization by random sampling of image pairs

The data sampling is special since multiple reference images can be used for
every input image due to the possibility of temporal conditioning. Thus, we use
a sampling approach similar to TransGrow with random data sampling Sec. 6.2.1.
In each epoch, we first iterate classically over all training images, which are then
used as input images. Second, always another random image of the same plant is
sampled for each input image, representing the reference plant and completing the
image pair used for training. The conditions yin and ygen are drawn according
to the sampled images. This causes that during the training cin=cgen because
the treatment class does not change over time. The sampling procedure for
calculating test scores is identical. Each test image represents an input image once
and is assigned a random growth stage as the reference image to be generated.
For inference, the conditions can be varied arbitrarily, what we call data-driven
simulation. So a treatment change cin 6= cgen is possible, b does not have to fit
the reference values, and t can deviate from the training range.

7.2.2 Evaluation of generated images
Evaluation of image quality

To evaluate the quality of the generated images, we use a well-established set
of GAN evaluation metrics. For the direct comparison between generated and
reference images of the same time point, we use the Multi-scale Structural Simi-
larity Index Measure (MS-SSIM [39], optimal: 1) and the Learned Perceptual
Image Patch Similarity (LPIPS [37], optimal: 0). While MS-SSIM compares the
generated with the reference image directly at different resolutions of the image
space, LPIPS evaluates the similarity of image patch activations in the VGG-
embedded latent space, which has been shown to have a high correlation with
human perception. In addition, the Fréchet Inception Distance (FID [38], op-
timal: 0) is used to compare not only the quality but also the diversity of the
generated image distribution with the real image distribution of the test dataset.
In contrast to Sec. 5.2.2, only the classic FID(Ng,Nr) is used. However, for long-
term predictions far into the future or past, that means a large difference exists
in the growth stage of the input image and the image to be generated, so it is not
expected that generated and reference images match at the pixel level. Although
FID will degrade less as long as the plants fit into the distribution of each growth
stage, poor results are to be expected for MS-SSIM and LPIPS in such cases. To
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evaluate whether useful plant-related traits can still be derived, we use GEMs,
which determines leaf area and biomass from the generated images, as described
below.

Growth estimation by projected leaf area

For Arabidopsis-S and GrowliFlower, growth is determined using the plant trait
projected leaf area (PLA). Both datasets are well suited for this purpose because
different plants do not overlap until advanced growth stages. The PLA is derived
as an image-wise pixel sum of plant segmentations predicted with a Mask R-
CNN instance segmentation model [43]. For this, two models, with pre-trained
ImageNet weights [151], are fine-tuned on a few images of the respective plant
dataset, for which reference segmentation masks are available. By multiplying
the PLA with the squared dataset-dependent ground sample distance (GSD), we
report PLA in the unit mm2 for Arabidopsis-S and cm2 for GrowliFlower or for
comparability normalized in the unit [% image−1], which is achieved by dividing
the PLA by the image size. In this chapter, PLA is not calculated for the whole
image but only out of the segmentation predictions for the center plant, which
is especially relevant for GrowliFlower, where there are, in most cases, multiple
plants per image. To compare the PLA of a single generated and reference image
pair, we use∆PLA = PLAgen−PLAref. For MixedCrop, PLA cannot be extracted
with sufficient accuracy at the pixel level for the individual crop species due to the
fine structure of the wheat ears, enormous plant overlap, and a lack of annotated
images [19]. The accuracy evaluation of the trained instance segmentation models
can be found in Sec. 7.3.2.

Growth estimation by biomass

Instead of PLA, for MixedCrop, dried biomass (BM) in tons per hectare [t ha−1]
is to be derived from the images as a growth indicator, divided into the two
mixture species spring wheat (SW) and faba bean (FB). To estimate both with
one model, a ResNet-18 [42] is used, modifying the last linear layer to two out-
put neurons, which are activated with ReLU, since only positive biomass values
are possible. The mean squared error (MSE) function is used as the loss func-
tion. We use weights from a pre-training with ImageNet [151] and fine-tune on
MixedCrop images and corresponding reference biomass values. These reference
biomass values are not actual in-field measurements but come from a process-
based CGM for mixtures (see Sec. 4.2.4) that provides simulated SW and FB
biomasses dynamically for each image time point. Notably, we use the same sim-
ulated biomass values that are used as conditions in the image generation part of
the framework. However, this dual use is methodologically not critical since the

98



CHAPTER 7. MULTI-MODAL CONDITIONAL IMAGE GENERATION

image generation part and the growth estimation part are trained independently
of each other. Similar to PLA, we use ∆BM = BMgen −BMref to report biomass
deviations between two images. Overall, estimating biomass from bird’s eye view
imagery has three main challenges and inherent sources of error. First, biomass
is a 3D quantity derived from 2D images. Second, the process-based CGM only
estimates dried biomass for all growth stages, which is used as a reference for
training the GEM. However, the images show plants with their actual humidity
(fresh matter), which changes over time. Third, the simulation result varies only
treatment-wise, but it is likely that plants of the same treatment will develop
differently in multiple replications in the field due to different soil conditions. For
the discussion about the biomass estimation results and accuracies, see Sec. 7.3.2.

7.3 Experiments and results

In this section, after the experimental setup, the results of the GEMs are described
at the beginning, as the accuracies of these models are needed for the discussion
of the image generation results. In the following, we first show the results of
image generation with only temporal variation, which allows a comparison with
reference data, then simulations with further changed conditions, and finally, the
transferability to another experimental site.

7.3.1 Experimental setup

Data augmentation and preparation

As image augmentations, horizontal and vertical flipping, 90◦ rotations, slight
translations within a random affine transformation, and ShadowOut, which is a
semi-transparent version of CutOut [152], are applied simultaneously to input
and reference or generated image. Using a single NVIDIA A100-PCIE-40GB and
a batch size of 64, the training duration is between 13 d and 35 d, depending on
the dataset size.

Model hyperparameter

Adam optimizer is used with a learning rate of 1e-4 for both Gθ and Dδ optimiza-
tion. Regardless of the number of conditions, the models are trained for 5000
epochs, after which the best epoch is selected based on the lowest LPIPS on the
validation data.
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Table 7.1: Mask R-CNN instance segmentation accuracies divided into bounding box and seg-
mentation for the real (non-generated) images of the test set. Overall average precision (AP),
with thresholds at IoU = 0.50 and IoU = 0.75, and overall average recall (AR) are given.

Bounding Box Segmentation
AP
ø

AP
@0.50

AP
@0.75

AR
ø

AP
ø

AP
@0.50

AP
@0.75

AR
ø

Arabidopsis-S 0.92 0.99 0.99 0.95 0.77 0.99 0.98 0.78
GrowliFlower 0.86 0.96 0.92 0.88 0.78 0.97 0.92 0.82

Table 7.2: Biomass estimation accuracies assessed by MAE and ME between the estimations
from the real (non-generated) images of the test set and reference values from the process-based
crop growth model. In addition to an overall (OA) score, scores are calculated separately for
mixtures and SW resp. FB monocultural fields. All units are given in t ha−1.

Mixtures SWmono FBmono OA
MAE ME MAE ME MAE ME MAE ME

CKA SW 0.142 -0.006 0.188 -0.074 0.001 0.001 0.142 -0.026
FB 0.125 -0.008 0.017 0.017 0.179 0.052 0.097 0.005

WG SW 0.126 -0.023 0.150 -0.050 0.018 0.018 0.122 -0.027
FB 0.105 -0.026 0.003 0.003 0.185 -0.046 0.082 -0.019

7.3.2 Accuracy assessment of growth estimation models

Accuracy of projected leaf area estimation

Instance segmentation, which is used to derive PLA (projected leaf area), is
trained on a small subset of the corresponding datasets for which reference seg-
mentation masks are available. Exact numbers for all datasets can be found in
the bottom part of Tab. 4.3. The reference masks of the test set specified there
are used to run the evaluation in Tab. 7.1. It shows the instance segmentation
accuracies using the measures AP and AR, which - due to their direct derivation
from these - correlate with the accuracy of the PLA. The GrowliFlower accuracies
are comparable to the results of Kierdorf et al. [52], i.e., sufficient to evaluate
cauliflower growth. Arabidopsis-S has a higher AP and AR for bounding boxes
and is at a comparable high level to GrowliFlower for segmentation, thus also
adequate to determine PLA.

Accuracy of biomass estimation

The accuracy of dried biomass estimation for both MixedCrop sites is given in
Tab. 7.2. For mixtures the MAE is between 0.126 t ha−1 and 0.142 t ha−1 for
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Figure 7.2: Scatter results of dried biomass estimation from real Mixed-CKA imagery overall
growth stages and treatments (mixtures and monocultural fields) split up in spring wheat (SW)
and faba bean (FB). The process-based predictions are used as a reference. The regression line
is shown in red, and the optimal line is in black.

SW and between 0.105 t ha−1 and 0.125 t ha−1 for FB. Notably, the ME is less
than −0.01 t ha−1 for mixtures at CKA and less than −0.03 t ha−1 at WG for
both species. For the monoculture reference fields, the MAE is 0.179 t ha−1 for
FB in the FB monocultures and 0.188 t ha−1 for SW in the SW monocultures.
This is slightly higher than in the mixtures, which is expected because, in the
monocultures, more of each species grows in absolute terms than in the mixtures.
In return, the mixtures generally have a higher total biomass [53]. The low
estimation of SW on FB monocultures between 0.001 t ha−1 and 0.018 t ha−1 and
vice versa FB on SW monocultures between 0.003 t ha−1 and 0.017 t ha−1 can be
considered as additional evidence that the model is able to distinguish the species
with high accuracy. It can be assumed that a common weed found in both fields,
Chenopodium album, which bears partial similarity to FB, is often incorrectly
identified as FB. The mean absolute error (MAE) will be lower if there are fewer
weeds or if it is included in the GEM.

In Fig. 7.2, the overall results for CKA are visualized as two scatter plots for
SW and FB, where the estimations are plotted against the reference from the
process-based crop growth model. The regression line is close to the optimal line
with a minimal underestimation for SW (ME = −0.026 t ha−1) and a minimal
overestimation (ME = 0.005 t ha−1) for FB. In total, the regression results are
MAE = 0.14 t ha−1 and R2 = 0.99 for SW and MAE = 0.10 t ha−1 and R2 = 0.98

for FB. With this, the model is considered as accurate enough for an evaluation
of generated images.
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Table 7.3: Evaluation with metrics MS-SSIM, LPIPS, and FID. Each row represents a distinct
IGM trained on a varying combination of conditions time (t), treatment (trt), and simulated
biomass (bm); for testing, only the input image and t are varied. MS-SSIM is reported for
generations with different |∆t| filters: T0: identity |∆t| = 0; ST: short-term 1 ≤ |∆t| ≤ 10;
LT: long-term |∆t| ≥ 11. 1Transferability check: Model trained on Mixed-CKA and applied to
Mixed-WG.

Train conds. MS-SSIM (↑) LPIPS (↓) FID (↓)
t trt bm T0 ST LT ø ø ø

Arabidopsis-S ✓ × × 0.94 0.81 0.68 0.80 0.25 6.54
GrowliFlower ✓ × × 0.98 0.30 0.20 0.29 0.51 20.17
Mixed-CKA ✓ × × 0.99 0.23 0.22 0.30 0.46 20.44
Mixed-CKA ✓ ✓ × 0.97 0.25 0.23 0.31 0.47 16.26
Mixed-CKA ✓ ✓ ✓ 0.99 0.23 0.22 0.29 0.46 24.86

Mixed-WG1 ✓ × × 0.92 0.13 0.11 0.20 0.50 40.67

When assessing the following results, it is important to consider that they
strongly rely on the accuracy of the GEMs. However, the accuracy of the GEMs
is evaluated solely based on real reference images. Any discrepancy between the
growth estimation of these real reference images and the data-driven predictions
of the same growth stage can be attributed to two factors. First, it could be due
to actual differences in plant phenotypes compared to the reference images. This
is the deviation we aim to identify. Second, part of the deviation may be caused
by potential small corruptions or artifacts in the artificial images, even if they
pass GAN evaluation metrics. These corruptions can lead to incorrect estimations
by the GEM despite the visible plant phenotypes in the artificial images being
accurate. This is because the GEM was not trained on corrupted images. While
it is impossible to completely avoid or quantify the second source of deviation, we
strive to minimize it by augmenting the data used to train the GEM, making it
more robust and less susceptible to corruption. The magnitude of the deviation
can be determined for certain growth stages by comparing the biomass estimation
of real images with data-driven predictions of the same growth stage as shown
on the right in Fig. 7.6.

7.3.3 Time-varying image generation
The first image generation experiment will evaluate how accurately our frame-
work predicts images of other growth stages of the plant, given an input image
and a different amount of conditions used for training, as indicated in Tab. 7.3.
For each prediction, conditions that match the input image are used, and a vary-
ing prediction time and the corresponding reference image are randomly picked.
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Table 7.4: Plant-specific evaluation of projected leaf area (PLA) assessed by MAE and ME
in the unit [% image−1]. Both IGMs are trained solely on the temporal condition (t). MAE
is reported for generations with different |∆t| filters: T0: identity |∆t| = 0; ST: short-term
1 ≤ |∆t| ≤ 10; LT: long-term |∆t| ≥ 11.

Train conds. MAEPLA MEPLA

t trt bm T0 ST LT ø ø

Arabidopsis-S ✓ × × 0.27 0.76 1.44 0.82 -0.32
GrowliFlower ✓ × × 6.41 8.84 10.18 9.64 1.27

Multiple models are trained on the different datasets and with a varying com-
bination of conditions, namely time (t), treatment (trt), and simulated biomass
(bm).

Quantitative evaluation of image quality

In Tab. 7.3, the predicted image quality is evaluated using the metrics MS-SSIM,
LPIPS, and FID. Across all predictions, the highest accuracies are obtained
with Arabidopsis-S for all three metrics MS-SSIM = 0.8, LPIPS = 0.25, and
FID = 6.54, while similarly lower overall accuracies are obtained with the Grow-
liFlower and MixedCrop datasets. For these, the MS-SSIM is between 0.29 and
0.31, LPIPS is between 0.46 and 0.51, and FID is between 16.26 and 24.86. Par-
ticularly remarkable is the dependence of the accuracy on the prediction distance,
where MS-SSIM is higher for all datasets, the smaller |∆t|. In the case of ∆t = 0,
the model acts as an autoencoder, reproducing the input, also known as identity
mapping. The identity mapping results show an MS-SSIM of 0.94 for Arabidopsis-
S and MS-SSIM values between 0.97 and 0.99 for the Mixed-CKA models. From
short-term (ST) to long-term (LT) predictions, the MS-SSIM continuously de-
creases to 0.20.

Plant-trait-based evaluation

Insight into the usability of predicted images can be drawn from the plant-specific
evaluation results using projected leaf area (PLA) estimation for Arabidopsis-S
and GrowliFlower and biomass (BM) estimation for MixedCrop.

Tab. 7.4 shows the obtained results for Arabidopsis-S and GrowliFlower in
Tab. 7.4. It can be seen that MAE increases with larger |∆t| in both cases, but
the overall accuracy of <1% is high for Arabidopsis-S and with <10% slightly
lower for GrowliFlower. In addition, for Arabidopsis-S, a mean error of−0.32% ≈

−11mm2 indicates a small mean underestimation, while GrowliFlower heads are
predicted larger ME = 1.27% ≈ 80 cm2 than the corresponding reference.
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Table 7.5: Plant-specific evaluation of mixture biomasses (SW/FB) assessed by MAE and ME
in the unit t ha−1 given for all (OA) and for mixture (Mix) fields. Each row represents a distinct
IGM trained on a varying combination of conditions time (t), treatment (trt), and simulated
biomass (bm); for testing, only the input image and t are varied. Overall fields, MAE is reported
for generations with different |∆t| filters: T0: identity |∆t| = 0; ST: short-term 1 ≤ |∆t| ≤ 10;
LT: long-term |∆t| ≥ 11. 1Transferability check: Model trained on Mixed-CKA and applied to
Mixed-WG.

Train OA OA Mix
conds. MAE ME MAE ME

t trt bm T0 ST LT ø ø ø ø

Mixed-CKA ✓ × × SW 0.22 0.42 0.39 0.38 0.12 0.31 0.20
FB 0.16 0.34 0.30 0.28 -0.12 0.25 -0.17

Mixed-CKA ✓ ✓ × SW 0.30 0.22 0.25 0.24 0.09 0.25 0.15
FB 0.24 0.16 0.19 0.19 -0.13 0.24 -0.15

Mixed-CKA ✓ ✓ ✓
SW 0.17 0.21 0.18 0.18 -0.02 0.18 0.05
FB 0.11 0.16 0.14 0.13 -0.01 0.15 -0.04

Mixed-WG
1

✓ × × SW 0.45 1.25 1.14 1.07 0.18 1.06 0.24
FB 0.41 0.48 0.67 0.64 -0.04 0.62 -0.11

The biomass evaluation for Mixed-CKA in Tab. 7.5 is divided into models
trained with different conditions. All scores are given separately for SW and FB;
moreover, average values overall plots and all mixture plots are reported. The
MAE separation into different prediction distances shows that for T0, the low-
est deviations occur with a small increase to ST but a decrease (accuracy gain)
for LT over ST. The overall MAE ranges from 0.13 t ha−1 to 0.38 t ha−1 and is
comparable to Mix MAE, where only mixtures are considered. Thereby, overall
SW MAE is always higher than FB MAE with a magnitude of up to 0.1 t ha−1.
Noticeably, overall FB ME is negative while SW ME is positive for all models
except those trained on all conditions, showing a systematic SW over- and a
FB underestimation. With an increasing number of conditions, the overall MAE
decreases significantly by 0.2 t ha−1 for SW and 0.15 t ha−1 for FB. Comparing
the accuracy when biomass estimation is performed on predicted mixtures (last
two columns of Tab. 7.5) with the accuracy when it is performed on real mix-
tures (first two columns of Tab. 7.2) two results are shown: First, the MAE of
the predicted mixtures using the model with all conditions is slightly above the
MAE of the real mixtures (SW: +0.04 t ha−1, FB: 0.03 t ha−1). The other mod-
els trained with fewer conditions show higher deviations up to 0.17 t ha−1 for SW
and 0.13 t ha−1 for FB. Second, the ME of the predicted mixtures using the model
with all conditions is by a magnitude of 5 above the ME of the real mixtures.
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Figure 7.3: Time-varying image generation for Arabidopsis-S with, in the top row, reference
images with an early growth stage as input (cyan frame), in the second row, all day-wise
generated predictions, and, in the third row, standard deviation images over 10 predictions
with different noise input ϵ and otherwise constant input conditions. The two bottom rows have
the quality metrics: learned perceptual image patch similarity (LPIPS), multiscale structural
similarity (MS-SSIM), and the projected leaf area difference (∆PLA).

Overall, the quantitative evaluation leads to the finding: Although the
predicted images match the reference images less at large |∆t|, they represent
realistic plants of their respective growth stage, as indicated by FID, and are still
accurate enough to derive reasonable plant traits, as indicated by plant-specific
evaluation.

Qualitative results

Further findings can be drawn from qualitative results showing selected time-
varying image generation results in Fig. 7.3 for Arabidopsis-S, Fig. 7.4 for Grow-
liFlower, and Fig. 7.5 for Mixed-CKA, where models are used that are trained
on the temporal condition only. Each figure consists of 5 rows: The first row
contains a reference plant over time, where an early growth stage with a cyan
frame is the input to the model in each case. The second row shows generated
images by keeping except time all other conditions, including noise ϵ, constant.
The third row shows the variability image, which is the standard deviation over
ten predictions of the same time point with different ϵ, whereby the standard
deviation is averaged over all RGB channels and overdrawn by a factor of four
for clearer visualization. The darker the blue, the greater the variability for each
pixel within the ten predictions. The fourth and fifth rows show each gen-ref
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Figure 7.4: Time-varying image generation for GrowliFlower with, from top to bottom, the
generated, reference, and standard deviation images, as well as the LPIPS, MS-SSIM, and
∆PLA scores. For a detailed description, see Fig. 7.3.

image pair’s classical and plant-specific evaluation metrics.
For all datasets and time points, the predictions are realistic, with a few excep-

tions, such as the last image of GrowliFlower. In particular, the plant development
is consistent over time, and a clear relation to the input image is visible. This
can be determined by the orientation of the leaves (Arabidopsis-S), the position
of the plants (GrowliFlower), and the field structure (Mixed-CKA). Comparing
the variability images, Arabidopsis-S has the lowest pixel-wise standard deviation,
followed by MixedCrop and GrowliFlower. In all cases, there is high variability at
the leaf edges, where naturally the changes to plants are greatest. The LPIPS and
MS-SSIM deteriorate with increasing ∆t with a peak each for identity mapping.
Plant property curves differ for each data set: In Arabidopsis-S, ∆PLA is close
to zero until 30DAS and then drifts into the negative range, indicating a leaf
area underestimation for advanced growth stages. In GrowliFlower, the curve
is close to zero with small fluctuations except for a large negative peak at 57
DAP, indicating that the leaf area could not be correctly estimated from the pre-
dicted image of this day. Similarly, for Mixed-CKA, the curves stay around zero
until day 99, after which SW biomass is significantly overestimated with up to
2.5 t ha−1 and FB biomass is significantly underestimated with up to −2.5 t ha−1.
It can be concluded that, apart from some outliers, plant traits can be derived
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Figure 7.5: Time-varying image generation for Mixed-CKA with, from top to bottom, the
generated, reference, and standard deviation images, as well as the LPIPS, MS-SSIM, and
the biomass differences for spring wheat (∆BMSW) and faba bean (∆BMFB. For a detailed
description, see Fig. 7.3.

with high accuracy, even from long-term predictions.

7.3.4 Comparison of process-based and data-driven model

Since there are independent reference measurements of the dried biomass (“cut-
ting reference”) for all plots at time 83DAS for Mixed-CKA, we can compare the
process-based and the data-driven CGM predictions. For both models, we use
the time point 82DAS after sowing as the prediction target, the closest image
acquisition time before the biomass cuts. We select time point 28DAS as the
image input of the data-driven model because it is the first time crops are rec-
ognizable on the images (cf. Fig. 4.2). As a further input condition, we use the
treatment information, which is also available to the process-based model, but
not the biomass information, which is only available retrospectively. Two aspects
have to be taken into account in the comparison. First, the starting conditions
are not identical because the image-based model requires an input image from
a previous growth stage. In contrast, the process-based model does not require
an input image. Second, the models are not independent because the growth
estimation part of the data-driven model was trained with the output of the
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Figure 7.6: Comparison of model predictions [y-axis] for 82DAS (left: process-based, mid-
dle+right: data-driven) with in-field biomass measurements (“cutting reference”) [x-axis] at
83DAS (left+center) and real image estimates [x-axis] at 82DAS (right). On top are scatter
plots for SW biomass, below for FB biomass.

process-based model. As a result, the data-driven model is expected to achieve,
at best, the same accuracy as the process-based model when compared with the
cutting reference, provided the generated images are of adequate quality. The
latter is verified by comparing the estimated biomass from the data-driven predic-
tion (generated images) with the estimated biomass from the real images from the
reference day (82DAS). If the data-driven model provides realistic predictions
and the generated images are of a quality that is suitable for plant phenotyping,
a high correlation can be expected.

In Fig. 7.6, the treatment-wise comparison between the process-based pre-
dictions and the cutting reference is shown on the left, between the data-driven
predictions and the cutting reference in the middle, and between the data-driven
predictions and the real image estimations on the right. The top row shows the
SW, and the bottom row shows the FB biomasses. Two clusters can be seen in
all plots: The blob with the higher biomass contains the monocultures, while
the lower biomass clusters represent the mixtures. The process-based model de-
viates from the cutting reference for SW with MAE = 0.95 t ha−1 (R2 = 0.67)
and for FB with MAE = 0.30 t ha−1 (R2 = 0.92). The pattern is similar for the
data-driven model, for SW with MAE = 0.95 t ha−1 (R2 = 0.69) and for FB with
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MAE = 0.28 t ha−1 (R2 = 0.95). Overall, there are significantly larger MAEs for
SW than for FB. In addition, the prediction range for SW is significantly narrower
than the cutting reference range for both the process-based and the data-driven
estimation. Focusing on the mixtures, the predicted values range between 3.2 and
4 t ha−1 while for the cutting reference, they range between 2.4 and 5 t ha−1. This
means that the actual measured variability of SW biomass between treatments is
significantly larger than the predicted variability, both process-based and data-
driven. Remarkably, the mean value 3.7 t ha−1 is identical for both models and
the cutting reference. The comparison between the data-driven prediction and
the estimation from the real images at time 82DAS on the right side in Fig. 7.6
shows only a small MAE = 0.08 t ha−1 and a high R2 = 0.99 for both SW and FB.
This means that the MAE for this time point is 0.06 t ha−1 (SW) resp. 0.02 t ha−1

(FB) lower than in the comparison of all time points of the process-based model
with the estimation from real images (cf. Fig. 7.2). The red regression line indi-
cates that overall SW is slightly over- and FB slightly underestimated, which is
already analyzed in Sec. 7.3.3.

7.3.5 Data-driven simulation using treatment information
The data-driven simulations on the MixedCrop dataset are intended to show the
flexibility of the IGM in the presence of changing growth-influencing variables.
To enable an illustrative and informative demonstration and visualization, we
systematically vary the time (t) and treatment (trt) information as a condition
for the Mixed-CKA dataset. We use the results to investigate and evaluate how
different treatments appear in the future when something about the treatment
changes starting from a certain initial condition (image). We would like to empha-
size that the change in treatments performed is intended to evaluate the method
and is thus limited in its realistic nature, yet aims to show that our framework
applies to realistic scenarios. We expect that the estimated biomass from the
data-driven simulation changes in the same direction as that of the process-based
CGM, confirming the reliability of the image generations.

In particular, two simulations are conducted from the input time point of
28DAS to 54DAS where first, the seed density is changed from low (L) to high
(H) (Fig. 7.7), and second, the faba bean cultivar is changed from Mallory (A)
to Fanfare (B) (Fig. 7.8). Thus, the input image is encoded in the original
treatment, but a treatment change is made to decode the simulated future plant
phenotype. The figures compare the data-driven prediction without treatment
change (filled bars) with the prediction including treatment change (hashed bars)
and the process-based predictions for the respective target treatment (red dots).
The bars represent the treatment-wise mean, and the black lines are the stan-
dard deviation. We deliberately chose an early stage as the input because the
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Figure 7.7: Simulating the SW (top) and FB (bottom) change from a low (L) density to a
high (H) density treatment for all mixture field plots and the growth prediction step 28DAS to
54DAS. While filled bars represent the comparative prediction under the original treatment,
hashed bars represent the simulated treatment change. Black lines symbolize the standard
deviation across treatment replicates; red dots symbolize the outcome of the process-based
CGM for the resp. treatments and 54DAS.

differences in biomass between the treatments are not yet too great, and differ-
ences between the FB varieties are hardly discernible. However, we do not use
DAS=7, which is bare soil, because we want to observe the spatial development
of the crops. In addition, we focus on mixtures in the simulations to analyze the
biomass of spring wheat and faba bean in parallel.

Focusing on the simulation of L → H in Fig. 7.7, the data-driven estimated
biomass of the high-density simulated treatments (hashed bars) is higher than
that of the low-density simulated ones (filled bars) for SW in 20/24 cases and
for FB in 16/24 cases. The process-based biomass gain from L → H, shown by
the red dots, is for SW significantly higher (0.25 t ha−1) than for FB (<0.1 t ha−1).
Averaged across all treatments, the biomass increases for both SW and FB. Appar-
ently, FB biomass is slightly overestimated compared to the reference in almost
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Figure 7.8: Simulating the SW (top) and FB (bottom) change from faba bean cultivar Mallory
(A) to cultivar Fanfare (B) for all mixture field plots and the growth prediction step 28DAS to
54DAS. See Fig. 7.7 for a detailed description.

all cases, and SW biomass is often overestimated for the L → L simulation while
underestimated for L → H.

The analysis of the simulation of faba bean cultivar A → B in Fig. 7.8 is
more challenging because only a small loss of biomass is expected for FB and
an even smaller one for SW (almost the same level), as shown by the red dots.
Treatment-wise, this decrease is not visible for either SW or FB: Only slightly
more than half of the treatments is the hashed bar smaller than the filled bar for
both SW (13/24) and FB (15/24). In average over all treatments, the hashed bars
are smaller than the filled bares, albeit in the range of the standard deviation.
Comparing high- and low-density treatments, the estimated biomass from the
high-density treatments is higher for SW in 10/12 cases and for FB in 7/12 cases.

Fig. 7.9 also qualitatively illustrates the structural differences in the crop rows
when simulating different treatments. Besides the growth prediction step from
28DAS to 54DAS, two more growth prediction steps and two more treatment
variations are simulated, including more unlikely scenarios, such as transforma-
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Figure 7.9: Growth simulation for different prediction steps and treatment changes in Mixed-
CKA, first row 28DAS to 45DAS, second row 42DAS to 99DAS, and third row 7DAS to
82DAS. The first column shows the input image, the second the corresponding reference image
of the future growth stage, the third the predicted image at these treatment conditions, and
columns 4 to 7 show simulations of change in faba bean cultivar, density, and to monocultural
reference.

tions of mixtures to monocultures. While such simulations rarely make sense
from an application point of view, as long as a mixture component is not com-
pletely suppressed, it is nevertheless noteworthy to see the model visualizing such
a treatment change if necessary.

7.3.6 Data-driven simulation using process-based biomass
The following biomass simulation is intended to demonstrate the capability of
including dynamic output variables of a process-based CGM in our framework.
For this, we use the trained Mixed-CKA model on time (t), treatment (trt),
and process-based simulated biomass (bm), whereby the biomass systematically
varied to get predictions for different possible SW and FB biomass ratios. The
time is randomly varied, so the simulation is performed over all growth stages by
choosing a random prediction time point for each input mixture image and re-
adjusting its biomass ratio. The starting point for the simulation is the biomasses
calculated dynamically from the process-based CGM for each time point and
treatment, BMSW = BMFB = 100 %. While the IGM was trained with a fixed
biomass value attached to each reference image, we will demonstrate that almost
any combination of biomass ratios can be chosen for inference as long as they are
within the range of the training data.

Fig. 7.10 shows MAE and ME respectively for SW and FB and different
simulated biomass ratios, where the original composition (100:100) is shown in the
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Figure 7.10: Comparing MAE and ME for Mixed-CKA image generations from 28DAS to
54DAS with different simulated spring wheat (SW) to faba bean (FB) biomass ratios.

Figure 7.11: Daily Arabidopsis-S predictions from 18DAS to 41DAS including temporal OOD
images. The input image has a cyan frame, the in-distribution images a blue frame, and the
OOD images an orange frame.

middle, to the left, BMFB increases and to the right BMSW. This is accordingly
also noticeable in the ME: If the BM fraction for SW and FB increases, more
biomass is also estimated in the predicted image, and the ME increases. So
MESW rises to the right, and the MEFB rises to the left. This means that the SW
biomass must be reduced and the FB biomass increased in the input of this IGM,
compared to what the process-based model has simulated in order to achieve a
minimum prediction error.
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Figure 7.12: Daily GrowliFlower predictions from 0DAP to 73DAP including temporal OOD
images. The input image has a cyan frame, the in-distribution images a blue frame, and the
OOD images an orange frame.

7.3.7 Spatial and temporal out-of-distribution generations

Temporal out-of-distribution

By temporal out-of-distribution (OOD) images, visualized in Fig. 7.11, Fig. 7.12,
and Fig. 7.13, we refer to images of growth stages that do not exist in the training
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Figure 7.13: Daily Mixed-CKA predictions from 0DAS to 121DAS including temporal OOD
images. The input image has a cyan frame, the in-distribution images a blue frame, and the
OOD images an orange frame.

dataset. This needs to be distinguished from in-distribution images, whose growth
stages exist in the training dataset. We use the models from the respective dataset
trained solely on input image and time as conditions and keep the input image
and the noise constant for the visualizations from the entire growth period. So
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we iterate over time and generate interpolations if the newly generated image
lies between two training images and extrapolations if it lies temporally off the
training period (early and late growth stages). The time increases by one day
per image from top left to bottom right. The input image has a cyan frame, the
in-distribution images a blue frame, and the OOD images an orange frame. While
challenging to evaluate quantitatively because no reference images are available,
the consistency of the time series in terms of continuous growth development can
be examined.

Overall, the interpolation shows a continuous and reasonable growth trend.
However, there are exceptions: In GrowliFlower, in the out-of-distribution images
in rows 5 and 6 of Fig. 7.12 on the right. Here, plants almost vanish in front of a
darker background and then become larger again. A similar is visible in Mixed-
CKA, where the canopy increases in row 3 of Fig. 7.13 and decreases towards the
input image. These growth curves are not realistic and could be caused by leaving
the data manifold at these growth stages. Remarkably, the out-of-distribution
images of GrowliFlower and Mixed-CKA show a smooth transition between in-
distribution images in terms of brightness and contrast, which makes the newly
generated time series look reasonable.

For extrapolations, most predictions are also realistic since plants continue
to grow in the short-term extrapolated future and shrink when going back in
time. However, there are exceptions. For example, the early two growth stages
of Arabidopsis-S get larger with decreasing age, which is not realistic. Since the
observation for GrowliFlower does not begin with sowing but with the planting
of seedlings (0DAP) and the time cannot be negative (there is no positional
encoding for tgen<0), it is not possible to extrapolate further into the past. So,
no images of bare soil can be generated.

Spatial out-of-distribution: Transferability to new site

With a transferability experiment on the MixedCrop experiment, we aim to in-
vestigate the accuracy drop with which the model trained for Mixed-CKA, which
takes time (t) as input condition, can be applied to the Mixed-WG site. The
basic requirements are given by the same image size, resolution, crop species, and
treatments (see Sec. 4.2.4). However, this attempt to transfer the growth behav-
ior of Mixed-CKA to images of Mixed-WG poses three main challenges. First,
the growth behavior of conventionally managed CKA differs substantially from
that of organically managed WG, as indicated, for instance, by weed abundance.
Second, the spectral image properties are completely different for each time point,
so both sites have their own “style”. Third, images were not taken simultaneously
during the growing season at both locations, resulting in images from Mixed-WG
being spatially and temporally out-of-distribution (OOD).
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Figure 7.14: Transferability with prediction results for Mixed-WG input image 50DAS lying
spectrally less far away from the 54DAS-images of the training distribution (Mixed-CKA). The
predicted images are qualitatively appealing, but they do not compare well with the reference
because the crops of Mixed-CKA and Mixed-WG have different growth patterns.

Tab. 7.3 and Tab. 7.5 show the transferability quality measured by all evalu-
ation metrics in the bottom line each. It can be seen that the results show signif-
icantly lower accuracies than the ones produced by models trained and tested on
Mixed-CKA. However, the identity predictions still show a high MS-SSIM of 0.92.
Transferability fails when the spectral differences between the test image and the
nearby time points in the training dataset are too large, such as 29DAS of Mixed-
WG, as Fig. 7.15 illustrates. Some of the predicted images become blurry, and
holes appear in the crop rows, which also causes the biomass estimation to give
unreliable, non-usable results. Likewise, Fig. 7.14 demonstrates that the model
can produce reasonable results despite spatio-temporal OOD, where, compared
to Fig. 7.15, the same field patch but a different input image (21 days later) is
used.

The reason for the less accurate results lies in the first two aforementioned
challenges, which led to the predicted images not being quantitatively comparable
to the reference images. Since the model only knows the style of CKA, but
the reference images are in the style of WG, better scores were not expected.
Focusing more on qualitative results, the third challenge of temporal OOD leads
to corrupted results when the input image is significantly different from the style
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Figure 7.15: Transferability fails with predictions for Mixed-WG caused by input image 29DAS
lying spectrally too far out of the training distribution (Mixed-CKA images).

of the temporally nearest CKA image but is otherwise reliable. It shows both
failed predictions and reasonable transfer examples, first for time points for which
reference images are available, even if they do not match the reference, and second
for the entire growing period.

7.4 Discussion

7.4.1 Analysis of image generations

Quantitative discussion

In image generation, where only the time is varied, but growth influencing factors
of the output match the input, there are considerable variations in the accura-
cies between the data sets. It is noticeable that Arabidopsis-S has better values
in all metrics except T0 than GrowliFlower and Mixed-CKA, which can be at-
tributed to the daily recording times and controlled laboratory conditions with
constant light and no weather effects. The identity mapping (T0) is worse than
the other datasets because, in Arabidopsis-S, multiple images were taken per day,
which means it is not a strict identity mapping. However, this can be altered by
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changing the model time unit from days to hours. The MS-SSIM decrease from
T0 over ST to LT means the less far the model predicts into the future or past,
the better the predicted images match the reference. Particularly, an MS-SSIM
below 0.3 implies less similarity between predicted and reference images. In par-
allel, the FID for all models, including ST and LT predictions, is below 25, which
can be considered good image quality. This is expected because, with increas-
ing prediction steps, detailed plant phenotype appearances, like leaf counts and
orientations, are increasingly difficult to predict. In contrast, general structural
traits, like plant positions and overall sizes, can be predicted more accurately.

When analyzing the biomass from the generated MixedCrop images, signif-
icant differences between the SW and FB components emerge, for which there
are two explanations. First, SW has a generally higher MAE magnitude than
FB, which can be attributed to the overall higher SW biomass level in the field.
Second, there is a systematic overestimation of SW and an underestimation of FB
indicated by the ME. We assume this is due to the unbalanced dataset: there are
significantly more SW than FB monocultures. Apparently, the IGM copes worse
with this unbalanced dataset than the GEM, as FB plants are structurally more
complex and, therefore, more readily quantifiable but more difficult to generate.

Besides, MAE and ME decrease significantly for both SW and FB as more con-
ditions are added to the model. This can be explained by the model being better
informed about the crop growth behavior if it receives more growth-influencing
factors and can thus become more accurate. There is a loss of accuracy from iden-
tity mapping to short-term predictions but no significant loss from short-term to
long-term predictions. Thus, long-term predictions can be considered valuable
for phenotyping applications.

Qualitative discussion

Two important insights emerge from the qualitative analysis. First, a strong con-
sistency of the generated images over time is given, which is visible in Arabidopsis-
S and GrowliFlower through leaf orientations but also through neighboring plants
and in Mixed-CKA through certain crop patterns such as small gaps (Fig. 7.5:
second crop row, right) or weeds (third and fourth crop row, center). Second,
the dependence of the generated images on the input is visible for all datasets,
particularly in the position of the plants and crop rows and by granules on the
ground, which can be found on the input image as well as on several generated
images.

While the variability images show realistic variability at the leaf edges, they
also reveal a limitation in the image generation: While the identity mapping has
no or extremely low variability, as expected, no continuous increase in variability
over time is evident, leading to overconfidence at large ∆t where variability would
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be expected to be significantly higher.
The parallel examination of MS-SSIM and LPIPS with the images confirms

the findings from the quantitative results: Despite the images becoming less
consistent with the reference as the prediction distance increases, there is neither
a general decrease in visual quality nor a general decrease in the accuracy of the
estimated plant traits for time-varying predictions.

7.4.2 Comparison of image generation results with Trans-
Grow

Compared to the TransGrow model introduced in Chap. 6, image generation in
this chapter is not based on an input sequence but on a single point in time.
Remarkably, a consistent growth trend can still be observed when images with
otherwise constant growth influencing factors are generated over time. In ad-
dition, the identity mapping is significantly improved, as evidenced by the low
pixel-wise standard deviation in the variability images. In return, more distant
time points drift more strongly from the reference, while with TransGrow, the
entire time series can be kept close to the reference over the entire growth period
by inserting additional input images.

Comparing the image quality using average MS-SSIM and FID (Tab. 7.3) with
TransGrow when generating with Iin = 1 (Tab. 6.2) for the real field datasets
GrowliFlower and Mixed-CKA (for Arabidopsis-S no comparability is given due
to the special shufÒing augmentation) substantial differences can be identified.
The MS-SSIM (GrowliFlower: +0.06, Mixed-CKA: +0.08) and the FID are both
drastically improved (GrowliFlower: -235.89, Mixed-CKA: -71.13). This is be-
cause TransGrow incorporates a combined CNN-transformer encoder, while this
chapter’s multi-modal image generation framework only has a CNN encoder. The
additional transformer encoder provides flexibility in the input, but it accounts
for over 10 million additional model parameters, which increases the demand for
the dataset size.

Please note: Although only in-distribution generations were shown for Trans-
Grow, growth stages not present in the training dataset (out-of-distribution) can
also be requested. Due to the methodically identical representation of time by
sinusoidal positional encoding, experiments have provided similar results.

7.4.3 Data-driven and process-based comparison
Some findings can be taken away from the comparisons of data-driven and process-
based approaches: Mainly, process-based and data-driven models achieve similar
accuracy despite the long-term prediction 54 days into the future. Both models
can quantify differences between mixtures and monocultures of the same growth
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stage but are hardly sensitive to differences between the mixture treatments.
They only achieve the prediction of a correct mean value, which can be explained
by the fact that many cultivar differences occur randomly. While seed density
and environment have a large influence on the absolute mixture effect (AME) and
the land equivalent ratio (LER), the influences of SW cultivar and FB cultivar
are not significant [153].

In general, a machine learning model (growth estimation from images) can
hardly be better than the training data (process-based output), which accounts
for the similar pattern in the left and middle scatter plots of Fig. 7.6. If there
were other biomass reference data for each time point, we could use it to train
the GEM and become completely independent of the process-based model. It is
conceivable that such biomass reference data might be available in the future and
outperform the process-based model as it is trained with measurements instead
of simulations. However, these biomass reference data would need to be available
in advance and ideally be highly diverse to allow generalization across different
environments.

7.4.4 Analysis of image simulations

Treatment simulations

Two treatment simulations were conducted: first, the simulation of density change
L → H, and second, the simulation of faba bean cultivar change A → B. Both
simulation results demonstrate that even small changes in the growth-influencing
factors affect the predicted images. Thereby, the reliability of the simulations
is supported by the overall biomass increase from L → H treatments and de-
crease from faba bean cultivar A → B. If in Fig. 7.7 and Fig. 7.8, the prediction
change (filled to hashed bar) for individual treatments does not correspond to
the expected change (red dots), there are three possible interpretations. First, al-
though the treatment condition is considered in the IGM, its influence might not
be strong enough, so the differences in the generated images are not sufficiently
prominent. Second, the density resp. cultivar appearance of the input image
might already be too prominent, making it difficult to change the growth stage
later; e.g., plants cannot arise from anywhere. Third, the differences between low
and high-density treatments, respectively, between faba bean cultivars A and B,
are less clear in reality than the dynamic CGM suggests. In fact, the FB biomass
gain for L → H and the FB/SW biomass loss for A → B is below the accuracy
level of the biomass estimation (cf. Tab. 7.5), which can explain why a clear trend
in biomass changes is not particularly apparent for these cases. Apart from these
specific experiments, we see the potential to simulate further treatment changes
or their effects, e.g., weed cover. This varies over the growing season and can
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be estimated quickly in categorical measures (low, medium, high), allowing crop
growth predictions adapted to current field conditions.

Biomass simulations

The biomass simulations show that this condition reasonably affects the output
image: A higher SW simulated biomass in the framework’s input leads to a
higher SW prediction in the output and for FB accordingly. So, the predictions
realistically depend on the input conditions.

It also demonstrates the capability of our framework to generate images that
plausibly explain the output of a process-based model. The minimum MAE/ME
is not reached at 100:100, mainly due to the slight dataset bias towards SW
and the resulting under-prediction of FB plants in the images, as already dis-
cussed. Assuming an unbiased IGM, this type of analysis can serve to improve
the calibration of the process-based model and bring it closer to image-based field
observations: If the minimum MAE deviates from the expected minimum (in this
case, 100:100), the process-based CGM could be adjusted in this direction or, in
other words, complemented by the knowledge gained from the data-driven model.
Note that other dynamic growth-influencing variables, like climatic conditions,
can be used instead of process-based time-varying biomass, which could lead to
even more feasible simulations.

7.4.5 Generalizability assessment

The difficulties of generalization are that (1) different external management con-
ditions are present, (2) spectral image properties, i.e., the data set style varies,
and (3) the training time points do not match the inference time points. Inference
data are, therefore, in many respects, out-of-distribution of the training data.

Assuming the availability of this data, it would be reasonable to add manage-
ment factors and styles as auxiliary conditions via conditional batch normalization
in the IGM. More generally, domain knowledge in the form of site-dependent con-
text variables could be included that influence style and plant growth itself [21].
Different climatic conditions in general and weather in particular are also consid-
ered to be site-dependent context variables. While this requires a larger training
dataset spanning multiple sites, it will ensure even better transferability and help
to merge multiple plant time series affected by various factors influencing factors
into a more generic data-driven crop growth model.
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7.5 Conclusion
In this chapter, we have shown the capabilities of multi-conditional growth sim-
ulation using three datasets: Arabidopsis-S, GrowliFlower, and MixedCrop. For
this purpose, in the first step, we combined several conditions of different types
(discrete, continuous, categorical) in an IGM, which is a conditional Wasserstein
generative adversarial network (CWGAN), to generate multiple realistic, high-
quality images over time based on a single input image. In the second step of
growth estimation, we showed that along with classical GAN image evaluation
metrics, plant-specific traits such as projected leaf area or biomass can be de-
rived from the generated images and used for evaluation. The results for Mixed-
Crop were compared with a dynamic process-based crop growth model. Here,
the combination of data-driven crop growth models, which strongly incorporate
the spatio-temporal above-ground phenotype changes, and a process-based crop
growth model, which considers the theoretical plant growth knowledge, leads to a
better understanding of the crop mixture dynamics. Quantitative and qualitative
simulations provide a comprehensive tool to investigate how various treatments
influence the above-ground phenotype of crop mixtures and their dry matter.

In particular, the integration of process-based model output into a data-driven
CGM is useful for making crop growth predictions more accessible or even for re-
calibrating process-based models. The experiments show that the dried biomass
can be estimated more accurately from predicted images the more growth influenc-
ing factors are considered, such as in our case, the field treatment or process-based
simulated biomasses. Incorporating all available conditions into the IGM enables
accurate estimation of plant traits in predicted (artificial) images, comparable to
the accuracy achieved with real images.

Although the additional variability images show the largest variability at the
leaf edges, which is realistic, we see space for improvement in the stochasticity
integration for long-term growth predictions. Since predictions far in the future
lead to significant overconfidence in the IGM, the weighting of the stochastic
and deterministic model input should be adaptively controlled depending on the
growth prediction step. In addition, the challenge of large spectral differences
within an image sequence and between sites (“dataset styles”) should be addressed
for better model generalizability.
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Conclusion

Crop Growth Models (CGMs) play a crucial role in the transformation towards
sustainable agriculture. They help to gain a better understanding of the devel-
opment of crops and enable growth predictions. This not only fundamentally
increases planning certainty but also facilitates the optimization of cultivation
and thus minimizes environmental impacts. For example, by using resources
such as water, fertilizers, and pesticides as needed and at the right times dur-
ing the growing season, or by identifying risks such as pest infestation at an
early stage. They also play an important role in research into modern cultiva-
tion systems such as crop mixtures: By using simulation to find constellations
of plant species that complement each other well, environmental impacts can be
minimized, and yields increased simultaneously. In view of global warming and
increasing extreme weather conditions, they make a significant contribution to
finding plants that adapt well to changing climatic conditions and thus increase
agriculture’s resilience.

While process-based growth models were mainly used in the past, in which the
relationships were defined using expert knowledge, data-driven models are playing
an increasingly important role nowadays. This development is driven in particular
by the availability of data from smart agricultural machines and drones, which
can be processed using modern machine-learning methods. The main focus of this
work was on the processing of image data, both in the input and output of the
developed data-driven models that represent Conditional Generative Adversarial
Network (CGAN).

In a two-step process, we first generate artificial images of future plant growth
stages based on one or more images of an early time point and other growth-
influencing factors, and, in the second step, we perform plant phenotyping, i.e.,
relevant plant traits are derived from the images. Compared to traditional CGMs,
where target parameters are estimated directly, the artificially generated images
provide an essential added value in three ways. First, they serve as artificial
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sensor data and can thus be used for a wide variety of phenotyping applications.
Second, they visualize the spatial plant distribution, which is especially relevant
for crop mixtures and an essential prerequisite for targeted in-field interventions.
Third, they increase the reliability of complex CGMs and, thus, the explainability
of a CGM.

8.1 Summary of key contributions
The basic prerequisite for the developed CGMs is the data (Chap. 4) in this
work, in particular paired and sequential RGB images linked to other growth-
influencing variables. We have presented several datasets of different complexity
on which the experiments in this work were performed, namely image data of Ara-
bidopsis thaliana, Brassica oleracea var. botrytis (cauliflower) and crop mixtures,
which consist of Triticum aestivum (spring wheat) and Vicia faba (faba bean).
We have compared the data and analyzed which basic requirements must be met
for image data to be suitable for crop growth modeling, focusing specifically on
image resolution and perspective, measurement setup, lighting conditions, and
image alignment.

In Chap. 5, we first used paired datasets to show that an image-to-image
translation-based CGM, which solely uses images as a condition, can perform
realistic and reasonable long-term predictions of a fixed growth step. The input
and target images are structurally significantly different compared to state-of-the-
art work and the same model can be used for predictions of different growth stages.
We have shown that the CGMs can generate realistic predictions for different
treatments without explicitly including the treatment information as a condition
in the model. This is possible even with very early growth stages in the input,
where the effects of treatment differences are still minimal and barely noticeable
based on plant traits. In addition to classic GAN evaluation metrics, we also
evaluated the generated images using projected leaf area, which was derived in
the generated images and reference images using instance segmentation, thus
demonstrating that the images are suitable as artificial sensor data.

The focus of Chap. 6 was to increase the flexibility of the CGM by processing
multiple input images simultaneously and generating images of arbitrary growth
stages. In contrast to related works that work with regular input sequences,
the presented model TransGrow can process non-equidistant input sequences of
different lengths that regularly occur in observing agricultural fields. For this
purpose, we present a combination of convolutional and transformer layers for
spatio-temporal encoding of the input sequence. The use of global positional
encoding is essential because it allows any target image to be generated. This
way, inter- and extrapolations are possible, such as generating a potential future
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growth stage. By using a Wasserstein Generative Adversarial Network (WGAN)
instead of a classical GAN for image generation, we have shown that several
weaknesses, such as mode-collapse and low output diversity, can be mitigated by
not suppressing the stochastic model component.

In Chap. 7, we addressed the problem of multi-modal conditioning by using
conditional batch normalization to integrate additional growth-influencing
factors of different data types (discrete, continuous, categorical) into the CGM
in addition to the input image. We show that the more conditions are integrated
into the model, i.e., the better the plant growth is described with additional fac-
tors, the lower the deviation of the generated image from the reference image. By
recombining the conditions for inference in constellations that do not exist in the
training conditions, simulations could be conducted. Such simulations are essen-
tial for crop mixture research, as they help us better understand which varieties
should be mixed in which treatments to achieve a positive mixing effect. Finally,
we displayed that a process-based model’s output can be integrated into the
data-driven CGM. The combination of both models can provide higher spatial
specificity and can indicate the need for re-calibration of the process-based model.

In summary, we have addressed the key challenges of data-driven crop growth
modeling in this work. Within a two-step image generation and growth estima-
tion process, the contributions are mainly in the image generation part. There,
we have shown that we can generate realistic time-differentiated images that,
although structurally significantly different from input images, still inherit essen-
tial information such as plant size, leaf orientation, and plant positions from the
input. It was demonstrated that non-equidistant sequences in the input could
be processed, and a consistent output time series could be generated. Within
multi-modal conditioning, the linking of image data with other growth-influencing
factors and process-based output has been achieved, enabling crop growth sim-
ulations. Because crop growth is not deterministic, the generation of an output
distribution and associated variability maps is an important contribution enabled
by the use of WGAN. Finally, in the second part of CGM, we performed a
plant-trait-based evaluation by carrying out dataset-specific phenotyping on the
generated images, thus demonstrating that the generated images are suitable as
artificial sensor data.

8.2 Open source contributions
Two open-source frameworks have been released, featuring data-driven CGMs
based on sequential input (Chap. 6) and multi-modal conditions (Chap. 7). Ad-
ditionally, two RGB image datasets of crop mixtures, collected in 2020 as part
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of the PhenoRob project and displaying pre-processed field patches, are available
open-source on the PhenoRoam platform.

• TransGrow, Python, presented in Chap. 6
https://github.com/luked12/transgrow

• CGANs for Crop Growth Simulations, Python, presented in Chap. 7
https://github.com/luked12/crop-growth-cgan

• Mixed-CKA, Sequential RGB image dataset, introduced in Chap. 4
https://phenoroam.phenorob.de/geonetwork/srv/eng/catalog.
search#/metadata/751c10c4-b6dc-4bcc-bc8c-c0fc5920887a

• Mixed-WG, Sequential RGB image dataset, introduced in Chap. 4
https://phenoroam.phenorob.de/geonetwork/srv/eng/catalog.
search#/metadata/d9d0434f-7864-435e-9c75-56102d9332cb

8.3 Future Work

8.3.1 Diffusion models
While this work methodically focuses on different GANs variants, denoising diffu-
sion probabilistic models [32] have recently drawn attention because they deliver
promising results in the field of image generation. In many cases, e.g., with large
datasets such as ImageNet, they achieve better FID scores than state-of-the-art
GAN approaches [154].

A denoising diffusion probabilistic model works by progressively adding and
then removing noise to generate realistic data samples. The process involves two
main phases: In the forward diffusion process, starting from real data, the model
sequentially adds Gaussian noise over a series of time steps, transforming the data
into a pure noise distribution. Each step is controlled by a fixed noise schedule,
resulting in a series of increasingly noisy versions of the original data. For the
reverse denoising process, a neural network is trained to reverse the noise addition
step-by-step. Given a noisy sample at a certain time step, the model predicts a less
noisy sample from the previous time step. By iterating this denoising process from
the final noisy state back to the original data distribution, the model generates
new, realistic data samples. During training, the model learns the parameters of
the reverse process by minimizing the difference between the predicted denoised
samples and the actual samples. This ensures that the generated data closely
matches the real data distribution.

A more efficient variant of the described method, namely a latent diffusion
model [155], we have implemented for the MixedCrop dataset. With latent dif-
fusion models, the diffusion process does not take place in the image space but
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Figure 8.1: Latent diffusion generations over a noise schedule with 250 steps for MixedCrop
starting with complete noise (step 0) up to no noise (step 249). The latent diffusion model is
conditioned on the growth stage (top: 42 DAS, middle: 54 DAS, bottom: 82 DAS) and the
treatment (top: FB, middle: SW, bottom: Mix).

in the latent space of an AE that is trained separately. Vector Quantized AE,
which generate a discrete latent space, have proven particularly useful [156].

In Fig. 8.1, we have visualized three examples of denoising over 250 steps,
whereby the growth stage and the treatment are provided. Both are embedded
(using Φt and Φc as in Eq. 7.3), added to the noise time point embedding, and
then inserted into the denoising neural network as a condition. Although there
is no image of an earlier growth stage included in this case, inserting images as a
condition is generally feasible [155].

Overall, latent diffusion models are very training-intensive compared to GANs
but have the advantage that the training is very stable and intuitive due to the
optimization of usually only one MSE loss. In addition, they can effectively model
complex data distributions [32], which can potentially address the problem of too
low output variability in long-term predictions as discussed in Sec. 7.4.

8.3.2 Hybrid models
There are many different types of CGMs and, in particular, several ways to com-
bine expert/domain knowledge from Process-Based crop growth Models (PBMs)
with information obtained from big (remote sensing) data in Data-Driven crop
growth Models (DDMs), as described in Sec. 3.2. In this work, we have created a
serial interface in Chap. 7 by further processing the output of a PBM in the input
of the DDM. Further benefits could be drawn from even deeper levels of integra-
tion, in particular from combined modular CGMs. Here, certain PBM modules
can be replaced by DDM, especially those that represent empirical processes or
benefit significantly from information based on remote sensing data, e.g., light in-
terception modules, the prediction of yield responses to several climate factors, or
the linking of spatial image data with PBM intermediate results [73]. Conversely,
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modules that can be described well on a process basis should not be adopted by
DDMs so that no additional uncertainty is introduced into the model and the
interpretability of the whole CGM is not affected [73].

Another approach to introducing DDMs modules while maintaining the great-
est possible consistency with existing process-based contexts is physics-informed
machine learning [157]. For example, a neural network might be trained to pre-
dict a system’s behavior while constrained by physical equations. This can sig-
nificantly help to incorporate remote sensing data and thereby improve model
robustness and generalizability, while current CGMs are often limited to specific
crop types, climates, and study areas [158].

8.3.3 Further perspectives on data-driven modeling
We intend to address further aspects crucial for the generalizability of data-driven
image generation for crop growth modeling and its usefulness in agricultural prac-
tice. Since data is central to DDMs, the points mainly revolve around the scope,
type, and curation of datasets.

CGMs become particularly valuable for agricultural practice when they can be
transferred to different environments, i.e., are generalizable. Such generalizability
experiments are presented in this work by applying CGMs developed at one site to
another site with image data that are spatially and temporally outside the training
distribution. Also, the growth simulations, where conditions are combined that
do not occur in the training dataset demonstrate generalizability. Ultimately,
however, the growth behaviors mapped in the CGMs are limited to the area of
the training data, which is a general challenge of ML models [158].

To tackle this problem, the amount of image data from real environments, in-
cluding the associated growth-influencing factors, must be increased. This means
a higher spatial distribution and a temporal distribution, i.e., several different
growth periods. Besides the size, it is important to maintain diversity, consis-
tency, and unbiasedness [159]. Otherwise, there is no possibility of developing
image-generating CGMs depending on changing climatic conditions, for which
there is considerable demand [1].

One way to increase the amount of data is to integrate additional data sources,
such as satellite images or hand-held images, depending on the required resolu-
tion. Farmers can capture such images conveniently with mobile devices. How-
ever, meeting the high data requirements is challenging, especially for images
from hand-held devices (see Sec. 4.1). Likewise, with multiple data sources, the
calibration and alignment of the imaging sensors among each other must be en-
sured. If this is the case, multi-spectral images can also be taken into account
because they provide added value in detecting plant diseases [93].

During the research period of this work, we have experienced related research
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projects that produce high-quality datasets that are not prepared and processed
in a way that makes them accessible and reusable. Therefore, we see a great need
for the development of research data management platforms such as FAIRagro
[160] for agrosystems research, which define high-quality criteria of data. This is
in line with the idea of data-centric machine learning, in which the focus is not
on model optimization but on optimizing data creation and curation to improve
the problem definition in the first place [159].
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