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Abstract

More than half a century after the discovery of quantum chromodynamics as the quan-
tum-field-theoretical description of the strong interaction, its non-perturbative nature in
the low-energy regime still poses a unique challenge. Particularly, the fundamental prop-
erties and scattering of light hadrons need to be studied precisely to unravel the structure
of the strong interaction. In this thesis, we consider manifold applications of this kind
using dispersive techniques that are based on the S-matrix principles of unitarity and
analyticity.
We perform a study of rescattering effects in 3π final states, which are often described

in terms of two-body resonances and a non-interacting spectator particle. Using Khuri–
Treiman dispersion relations, we include crossed-channel effects and estimate the rescat-
tering effects beyond the simplest isobar model for a selected set of quantum numbers.
This allows for an estimate when rescattering effects become important and more com-
plicated analysis techniques are needed to extract meaningful physical information from
experiments.
However, Khuri–Treiman equations are limited to low energies as they are built from

truncated partial-wave expansions. Therefore, a new parameterization is presented that
can fulfill all theoretical expectations and connects the essential physics of hadron scat-
tering both near threshold and in asymptotic limits. In this construction, dynamical
information is entirely contained in Regge trajectories that generalize resonance poles in
the complex-energy plane to poles in the angular-momentum plane. While the construc-
tion and first results are successfully presented in this thesis, this formalism allows for
many extensions that can be explored in the future.
Properties of kaons are investigated using the kaon electromagnetic form factor and

the Primakoff reactions γK → Kπ and γK → γK. These are constructed obeying the
constraints of analyticity, which enables the extrapolation to unphysical energies or the
pole positions on the second Riemann sheet. Using the kaon form factor allows for a
calculation of the electromagnetic charge radius from a fit to experimental data in timelike
and spacelike regions, while the Primakoff reactions can be used in the future to extract the
chiral anomaly, radiative K∗(892) couplings, and kaon polarizabilities. Additionally, there
are several different applications for these results, e.g., the anomalous magnetic moment
of the muon and corrections to Dashen’s theorem.
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Chapter 1

Introduction

Physics as a fundamental natural science describes nature from very small to very large
scales. There are many successful theories that have been tested by experiments and
describe a vast amount of phenomena. Even though big revolutions do not come often,
the human knowledge is advanced in tiny steps every day. There are still a lot of puzzling
problems needed to be solved, and enormous efforts are taken striving for solutions. A few
examples are: a unified and fully consistent theory including general relativity and the
standard model of particle physics [10], dark matter [11], and the strong CP problem [12].
This thesis tries to improve the understanding of scattering reactions and decay pro-

cesses of strongly interacting particles. We use two different types of concepts. First, we
make predictions for planned experiments relying on input from theoretical constraints
and other experimental results. Secondly, we analyze experimental data using theoretical
tools for model-independent results. This is done in the very successful standard model of
particle physics (SM), which is briefly introduced in the following section.

1.1 The standard model of particle physics

The SM1 is the most successful quantum-field-theoretical description of particle physics. It
contains the electromagnetic, weak, and strong interactions, with the gauge group reading

SU(3)C × SU(2)L × U(1)Y . (1.1)

The SM contains 17 elementary particles,2 which can be grouped according to Fig. 1.1.
While the electroweak sector is very well understood, the strong interaction still poses
many problems. In contrast to the electroweak Lagrangian, the Lagrangian of quantum
chromodynamics (QCD)

LQCD = q̄
(
i /D −mq

)
q − 1

4
FA
µνF

Aµν − θ
g2

32π2
FA
µνF̃

Aµν , (1.2)

with the covariant derivative

Dµ = ∂µ − ig
1

2
λAAA

µ , (1.3)

has the quark fields q and gluon fields A, both carrying color charge, as degrees of freedom,
while the measured spectrum consists of color neutral hadrons. The field strength tensor
is defined as

FA
µν = ∂µAA

ν − ∂νAA
µ + gfABCAB

µAC
ν , (1.4)

1Some of the most important articles that led to the development of the SM are Refs. [13–20]. For a nice
historic overview, see Sec. 1 of Ref. [21] by Heinrich Leutwyler and Harald Fritzsch.

2Here, the corresponding antiparticles to the particles are not counted.
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Figure 1.1: Elementary particles in the SM. They are grouped into quarks (blue), leptons
(green), gauge bosons (red), and the Higgs boson (yellow). The left column in each node
denotes the mass, the electric charge and the spin from top to bottom. The columns I, II,
and III denote the three generations of the fermions. All masses are taken from Ref. [22],
where the numbers shown here only serve the purpose of illustrating the involved scales.3

and the dual field strength tensor reads

F̃A
µν =

1

2
ϵµναβF

Aαβ , (1.5)

where fABC are the structure constants of SU(3). Note that the flavor, spin, and color
labels are suppressed.

3Note that the displayed masses should be interpreted very carefully. The light quark masses u, d, and
s are the current-quark masses in the MS subtraction scheme at the renormalization scale µ = 2GeV.
Also, the other quark masses are scheme dependent, cf. Ref. [22] for details. Secondly, in the SM,
neutrinos are assumed to be massless. However, in order to describe the observed phenomenon of
neutrino oscillations, it is necessary that at least two generations of neutrinos have non-zero masses.
These can be incorporated by extensions of the SM, where it is still disputed whether they are Dirac or
Majorana fermions. The limits on the neutrino masses given here are for the weak eigenstates, which
are superpositions of the mass eigenstates. For further reading, we refer to the literature, e.g., Ref. [23]
and references therein.
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1.2 Mesonic degrees of freedom

The main difficulty of QCD is the running of the coupling constant g. Therefore, the
theory cannot be solved perturbatively at low energies and we have to apply different
methods in order to calculate processes. One of these methods, dispersion theory, is
introduced in Part I. Other well established approaches are effective field theories and
lattice QCD.
While the discrete symmetries charge conjugation (C), parity (P ), and time reversal

(T ) are separately conserved in the electromagnetic and strong interactions,4 only the
combination CPT is preserved in the weak interaction. However, the θ-term in Eq. (1.2)
induces P - and CP -violation. The size of the θ-term is strongly constrained by mea-
surements of the neutron electric dipole moment [24] and can therefore not explain the
matter–antimatter asymmetry in the universe.

1.2 Mesonic degrees of freedom

As mentioned in the previous section, the observable degrees of freedom are color-neutral
hadrons. In this thesis, we focus on light mesons, a specific subclass built from a quark–
antiquark pair. Light and heavy mesons are generally characterized by their quark content.
The light sector consists of the up, down, and strange quarks, while the heavy sector
includes the charm, bottom, and top quarks.5 The goal is to gain information on the
structure of QCD by decay and scattering processes of light mesons. The nonets for light
pseudoscalar (JP = 0−) and vector (JP = 1−) mesons are grouped in Fig. 1.2. These
nonets include almost all mesons that are studied in this thesis. Furthermore, the QCD
Lagrangian is invariant under a SU(2) transformation if the up- and down-quark mass are
degenerate. This symmetry is called isospin due to its mathematical similarity to spin. It
is approximately fulfilled in the strong interaction, since the quark-mass difference is small
in nature compared to the QCD scale. Additionally, electromagnetic corrections break the
isospin symmetry. However, it is useful to categorize mesons by their total isospin and
its third component. Assuming perfect isospin symmetry, all particles in a multiplet are
mass degenerate and processes violating isospin are not allowed in the strong interaction.

1.3 Effective field theories

The following section is based on Ref. [25]. One commonly used way to describe the strong
interaction at low energies are effective field theories. The general idea of effective field
theories is that for a given parameter range, the observed phenomena are not strongly
influenced by scales far removed. For a set of light and heavy degrees of freedom Li and
Hi, respectively, their masses are separated by a scale Λ

mLi ≪ Λ ≲ mHi . (1.6)

Then, for energies below the scale Λ, we are left with the effective Lagrangian with the
heavy degrees of freedom integrated out,

L(Li, Hi)
E≪Λ−−−→ Leff(Li) . (1.7)

4This statement is only true for θ = 0.
5Note that top quarks do not hadronize due to their extremely short lifetime.
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Figure 1.2: The nonets for the light pseudoscalar mesons (left) and vector mesons (right)
in terms of the hypercharge Y = 2 (Q− I3) and the third component of the isospin I3.

1.3.1 Chiral perturbation theory

To construct an effective field theory for the strong interaction, we investigate the symme-
tries of the QCD Lagrangian. Furthermore, we restrict ourselves to the light sector with
the quark fields qT = (u, d, s) and mq = diag(mu,md,ms). One can split the quark fields
into their chiral components using the projection operators

PR/L =
1

2
(1± γ5) ,

q = PLq + PRq = qL + qR . (1.8)

Therefore, we define the QCD Lagrangian for vanishing quark masses

L0
QCD = iq̄L /DqL + iq̄R /DqR − 1

4
FA
µνF

Aµν , (1.9)

which is additionally invariant under U(3)L × U(3)R transformations. This symmetry is
explicitly broken by the mass terms, which mix left- and right-handed fields. As a result,
one constructs chiral perturbation theory (ChPT), an effective field theory based on this
chiral symmetry, which can be perturbatively expanded in the quark masses.
For the following discussion, it is helpful to factorize the symmetry group according to

U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)V × U(1)A , (1.10)

where vector V = L+R and axial-vector A = L−R transformations are used. Noether’s
theorem states that the symmetry is related to 18 conserved currents,

V µ = q̄γµq , Aµ = q̄γµγ5q ,

V µ
a = q̄γµ

λa

2
q , Aµ

a = q̄γµγ5
λa

2
q ,

where a = 1, . . . , 8. The charge of the U(1)V current V µ is conserved in the SM and
is related to the quark or baryon number. The U(1)A current Aµ is anomalous due to
quantum effects [26–30]. The SU(3)R ×SU(3)L currents V µ

a and Aµ
a are broken explicitly

6



1.4 Thesis outline

by the quark masses.6 However, in the chiral limit, the question remains if the symmetry
group is realized in the Wigner–Weyl mode [31, 32], where the hadron spectrum consists
of two degenerate parity multiplets, or the Nambu–Goldstone mode [33–35], where a
massless spin-0 multiplet emerges in the hadron spectrum from the generators of the
spontaneously broken symmetry. Phenomenologically, we do not find parity doubling, but
SU(3)V multiplets. Therefore, if the chiral symmetry is realized in the Nambu–Goldstone
mode, the Vafa–Witten theorem [36] states that the vector subgroup is unbroken, and the
pattern of the spontaneous symmetry breaking (SSB) is

SU(3)L × SU(3)R
SSB−−→ SU(3)V . (1.11)

The eight broken generators of the axial-vector symmetry correspond to the Nambu–
Goldstone bosons: the pions, kaons, and the η.7 For the construction of an effective
Lagrangian with the Nambu–Goldstone bosons as degrees of freedom, we refer to the
literature, cf., e.g., Ref. [25].

1.4 Thesis outline

This thesis is structured as follows: in Part I, the fundamental concepts that are used in this
thesis are introduced. Therein, the properties of S-matrix theory and dispersion relations
are presented in Chapter 2, while Chapter 3 focuses on basic concepts of Regge theory.
In Part II and Chapter 4 therein, we investigate the importance of rescattering effects
in three-pion final states. A hypergeometric isobar model including Regge trajectories is
proposed in Part III and Chapter 5 therein. The projects including kaons are collected in
Part IV. Chapter 6 calculates the γK → Kπ amplitude dispersively, which is used as an
input in the kaon Compton scattering analysis, Chapter 7, where a theoretical framework
for the extraction of kaon polarizabilities from experiments is proposed. An analysis
of e+e− → K̄K data with the goal to extract the kaon electromagnetic form factors are
performed in Chapter 8. Finally, a general conclusion and outlook are given in Chapter 9.

6Note that the octet vector currents are already conserved in the limit of equal quark masses, while the
octet axial-vector currents are only conserved for vanishing quark masses.

7The η′ corresponds to the pseudoscalar singlet state, where the mass gap can be explained by the U(1)A
anomaly.
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Part I

Foundations

9





Chapter 2

Dispersion theory

This chapter gives a short, but rather general introduction to S-matrix theory and
dispersion relations, which will be used throughout this thesis. A recent pedagogical
introduction to S-matrix theory can be found in Ref. [37]. The classic textbook Ref. [38]
was written during the early days of S-matrix theory, which were more than half a century
ago. S-matrix theory was developed as an approach to strong interactions during a time
when QCD and its renormalization were not yet invented. The link to perturbation theory
can be done via the Lehmann–Symanzik–Zimmermann-reduction formula [39]. In the low-
energy regime, which is of major interest in this thesis, S-matrix theory in connection with
dispersion relations is a powerful tool.
In Sec. 2.1, we introduce the main definitions of S-matrix theory and introduce the

concepts of unitarity, analyticity, and crossing symmetry. The specifics of four-particle
amplitudes are discussed in Sec. 2.2. The properties of dispersion relations with one and
two cuts are presented in Sec. 2.3.

2.1 S-matrix theory

Assuming asymptotically free initial and final states |i, in⟩ and ⟨f, out|, the S-matrix can
be defined between the free particle states |i⟩ and ⟨f |,

⟨f, out|i, in⟩ = ⟨f | S |i⟩ . (2.1)

Therefore, the operator S represents the scattering information from initial to final states
between t = −∞ to t = ∞. The asymptotic states are treated as free particles that do not
encounter any further scattering. We can separate the unity from the S-matrix to define
the T -matrix via

S = 1+ iT . (2.2)

Consequently, all non-trivial information is contained in the T -matrix. Overall momentum
conservation allows one to define the scattering amplitude M according to

⟨f | T |i⟩ = (2π)4δ(4)(pf − pi)Mif , (2.3)

where the momenta pf and pi are the total four momenta of the final and initial state,
respectively. The index if on the scattering amplitude is chosen to represent the transition
from i→ f .

2.1.1 Unitarity

Probability conservation implies that the S-matrix is unitary. Therefore,

S†S = SS† = 1 (2.4)

11
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holds, which, using Eq. (2.2), can be written as the unitarity condition for the T -matrix,

i
(
T † − T

)
= T †T . (2.5)

Applying the initial and final states and inserting a complete set of intermediate states on
the right-hand side of the equation leads to

i
(
⟨f | T † |i⟩ − ⟨f | T |i⟩

)
=
∑∫
n

⟨f | T † |n⟩ ⟨n| T |i⟩ . (2.6)

Using Eq. (2.3) and since ⟨f | T † |i⟩ = ⟨i| T |f⟩∗, we find

iδ(4)(pf − pi)
(
M∗

fi −Mif

)
= (2π)4

∑∫
n

δ(4)(pf − pn)δ
(4)(pn − pi)M∗

fnMin , (2.7)

where one can utilize δ(4)(pf−pn)δ(4)(pn−pi) = δ(4)(pf−pi)δ(4)(pn−pi) under the integral.
Then, both sides contain one delta function for the overall momentum conservation. This
is dropped and overall momentum conservation is implied. The unitarity condition for a
generic scattering amplitude reads

i
(
M∗

fi −Mif

)
= (2π)4

∑∫
n

δ(4)(pn − pi)M∗
fnMin . (2.8)

2.1.2 Analyticity

A rigorous proof connecting analyticity and causality is still pending. Therefore, analyt-
icity is typically defined as an axiom of S-matrix theory [38]. Maximal analyticity states
that the scattering amplitude is holomorphic in all of its continuous variables. These are
the four-momenta of the particles. Furthermore, one can also consider the angular momen-
tum as a continuous complex variable; this feature is explored in Chapter 3 about Regge
theory. Due to overall momentum conservation, not all momenta are independent. Then,
a set of Mandelstam variables [40] can be chosen to represent the kinematical dependencies
of the scattering amplitude. Typically, s denotes the total energy in the center-of-mass
(CM) system. Imposing maximal analyticity, the scattering amplitude is holomorphic in s.
The physical region is the domain where all kinematical variables take physically allowed
values, i.e., real values above the scattering threshold for s.
There are two types of singularities allowed, namely poles and branch points. These are

related to physical states of the chosen process. The scattering amplitude is defined for all
complex variables except the positions of the singularities. Branch points, and therefore
branch cuts, appear for multi-particle intermediate states, while poles are connected to
bound states, virtual states, or resonances.
At first, we look at multi-particle states consisting of two or more particles. There

exists a continuum of values of s where they can go on-shell. As an example, we consider
a two-particle intermediate state, where

s =

(√
|p⃗1|2 +M2

1 +
√

|p⃗2|2 +M2
2

)2

, (2.9)

with the masses Mi and the three momenta p⃗i. All |p⃗i| ≥ 0 are allowed and therefore s
can take all values from (M1 +M2)

2 to infinity. This continuum of singularities appears
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as a branch cut, starting at the corresponding threshold, which is the branch point, and
extending along the real axis to infinity.1 As a consequence of a branch cut, the scattering
amplitude is a multi-valued function for complex s. This can be cured by interpreting
the scattering amplitude as a single-valued function on a Riemann surface. The branch
cuts then determine how this surface is cut into different Riemann sheets. The physical
scattering region is defined by approaching the cut from above with s + iϵ, ϵ → 0+. In
the simplest case with only one multi-particle intermediate state, the scattering amplitude
has two Riemann sheets. They are smoothly connected and the physical region can be
approached from the unphysical second Riemann sheet moving to the real axis from below
with s− iϵ, ϵ → 0+. In the general case with multiple multi-particle intermediate states,
the scattering amplitude possesses multiple unphysical sheets.

The single-particle states, the poles of the scattering amplitude, can be grouped into
three categories. A pole from a bound or virtual state is located below threshold on the
real axis of s. Thereby, the bound state appears on the physical sheet and the virtual
state is on an unphysical sheet. A resonance pole is in the complex plane on an unphysical
sheet. The location defines the mass and the width of the resonance via

√
sR =MR − i

2
ΓR . (2.10)

2.1.3 Crossing symmetry

A direct consequence of the analyticity of the S-matrix is crossing symmetry. Hence, an
arbitrary process with an incoming particle ϕ(p) can be related to a similar process with
the incoming particle replaced by the outgoing antiparticle with opposite four-momentum
ϕ̄(−p). Expressing this statement in an equation, we find

T (ϕ(p) + . . .→ . . .) = T (. . .→ . . .+ ϕ̄(−p)) , (2.11)

where the dots represent arbitrary incoming and outgoing particles. The connection of
the different scattering amplitudes with the same particle content is found via analytic
continuation in the respective four-momenta.

2.2 Four-particle amplitudes

In this section, we discuss the kinematics of generic 2 → 2 scattering and 1 → 3 decays.
Thereby, the spin of the involved particles is not important, but we have 4 particles
with masses Mi, i ∈ {1, 2, 3, 4}. We first look at an arbitrary 2 → 2 scattering process
ϕ(p1)ϕ(p2) → ϕ(p3)ϕ(p4). In principle, the four four-momenta give rise to 16 kinematical
degrees of freedom. However, not all of them are independent. Four degrees of freedom
are fixed by the on-shell condition and another four are fixed by overall energy-momentum
conservation. Furthermore, in the CM system, the three momenta are constrained, which
removes another six degrees of freedom. This holds in general in all frames employing
Lorentz transformations and therefore only 2 degrees of freedom survive. It is convenient

1The orientation of the cut in general is arbitrary since the second branch point is at infinity. However,
the cut along the real axis is the typical choice.
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to define the set of Lorentz-invariant Mandelstam variables [40]

s = (p1 + p2)
2 = (p3 + p4)

2 ,

t = (p1 − p3)
2 = (p2 − p4)

2 ,

u = (p1 − p4)
2 = (p2 − p3)

2 . (2.12)

It can be shown that the sum of these variables is fixed by energy-momentum conservation,

s+ t+ u =
∑
i

M2
i . (2.13)

Therefore, only two of these are independent and can be chosen as the two independent
degrees of freedom, and the scattering amplitude can be expressed in dependence of the
Mandelstam variables. Another commonly used choice is to define the cosine of the scat-
tering angle zs = cos(θs) in the CM system, where this angle is chosen between p⃗1 and p⃗3.
Then, s and zs are the free parameters and t and u can be expressed via

t(s, zs) =
1

2

(∑
i

M2
i − s− ∆12∆34

s
+

√
λ(s,M2

1 ,M
2
2 )λ(s,M

2
3 ,M

2
4 )

s
zs

)
,

u(s, zs) =
1

2

(∑
i

M2
i − s+

∆12∆34

s
−
√
λ(s,M2

1 ,M
2
2 )λ(s,M

2
3 ,M

2
4 )

s
zs

)
, (2.14)

where ∆ij =M2
i −M2

j and

λ(a, b, c) = a2 + b2 + c2 − 2(ab+ bc+ ca) (2.15)

is the Källén function [41]. The Källén function can be nicely rewritten for two special
cases:

λ(s,M2
1 ,M

2
2 ) =

(
s−

(
M2

1 +M2
2

)2)(
s−

(
M2

1 −M2
2

)2)
,

λ(s,M2, 0) = λ(s, 0,M2) =
(
s−M2

)2
. (2.16)

The definitions in Eq. (2.14) are for the s-channel process, where the CM energy is
√
s.

The scattering process is physically allowed when s exceeds the incoming (M1 + M2)
2

and outgoing (M3 +M4)
2 masses and the cosine of the scattering angle is constrained to

−1 ≤ zs ≤ 1.
One can use crossing symmetry to relate this to the t- or u-channel processes by either

replacing (p2 ↔ −p3) or (p2 ↔ −p4), respectively. The crossed definitions of Eq. (2.14) for
the Mandelstam variables in terms of the angles θt or θu can, e.g., be found in Ref. [42].

The situation where one of the four particles can decay into the other three can again
be found by crossing symmetry. Here, M1 ≥ M2 +M3 +M4 and the decay process can
be written as ϕ(p1) → ϕ̄(−p2)ϕ(p3)ϕ(p4). The Mandelstam variables then describe the
respective two-body subsystems of the final-state particles. For the physically allowed
decay, they are bounded by

(M3 +M4)
2 ≤ s ≤ (M1 −M2)

2 ,

(M2 +M4)
2 ≤ t ≤ (M1 −M3)

2 ,

(M2 +M3)
2 ≤ u ≤ (M1 −M4)

2 , (2.17)

and the cosine of the scattering angles is −1 ≤ zs,t,u ≤ 1. The upper bound of the
Mandelstam variable is called the pseudothreshold.
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2.2.1 Unitarity in 2 → 2 scattering

Considering 2 → 2 scattering, we want to simplify Eq. (2.8). This allows one to express
the scattering amplitude in terms of the three Mandelstam variables. We consider the
s-channel above threshold, but via crossing symmetry, we could in principle choose any
Mandelstam variable. We can express our scattering amplitudes as

Mif = lim
ϵ→0+

Mif (s+ iϵ, t, u) ,

M∗
fi = lim

ϵ→0+
M∗

fi(s+ iϵ, t, u) , (2.18)

where 0+ denotes that the limit to zero is taken from above and we can use the property
from Ref. [43] to write

M∗
fi(s+ iϵ, t, u) = Mif (s− iϵ, t, u) . (2.19)

The left-hand side of Eq. (2.8) can be written as the s-channel discontinuity

Mif −M∗
fi = lim

ϵ→0+
(Mif (s+ iϵ, t, u)−Mif (s− iϵ, t, u))

= discsMif (s, t, u) . (2.20)

Therefore,

discsMif (s, t, u) = i(2π)4
∑∫
n

δ(4)(pn − pi)M∗
fnMin , (2.21)

where, in principle, all possible intermediate states are allowed. A process is denoted as
elastic when the final-state and intermediate-state particles coincide. Moreover, invariance
under time reversal implies Mif = Mfi, and together with Eq. (2.19) this leads to

lim
ϵ→0+

Mif (s+ iϵ, t, u) = lim
ϵ→0+

Mif (s− iϵ, t, u)∗

= lim
ϵ→0+

Mif ((s+ iϵ)∗, t, u)∗ . (2.22)

Then, the scattering amplitude fulfills the Schwarz reflection principle2 and the disconti-
nuity can be expressed via the imaginary part

discsMif (s, t, u) = 2i lim
ϵ→0+

ImMif (s+ iϵ, t, u) . (2.23)

It is important to note that this derivation holds only for asymptotic initial and final
states. However, an unstable particle that decays into three others does not fulfill this
constraint. Therefore, Eq. (2.23) does not hold for 1 → 3 processes in the physical region,
but one can, nevertheless, use analytic continuation. Considering a squared mass M2

of the decaying particle that is below the three-particle production threshold, Eq. (2.21)
still holds. Then, we perform an analytic continuation in the mass M2 to a region where
the decay is kinematically allowed. The additional cut structure in M2 with a branch
point at the three-particle threshold spoils the Schwarz reflection principle. Therefore,
the identification in Eq. (2.23) is no longer valid and we need to use Eq. (2.21) with the
discontinuity directly.

2The Schwarz reflection principle is introduced in Sec. 2.3.
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2.3 Dispersion relations

This section serves as a brief introduction to dispersion relations that are extensively
used within this thesis. An extensive and rather rigorous introduction can be found in
Ref. [44]. We start the discussion using a function with a single cut in the following section.
The more complicated structure of T -matrix elements for arbitrary 2 → 2 scattering is
discussed in Sec. 2.3.2.

2.3.1 Single cut

We investigate an arbitrary complex function f(s) that is holomorphic in the complex
plane C excluding a branch cut B+ = [sth,∞) along the real axis. Furthermore, f is
real-valued for any s ∈ R\B+ and f(s) does not grow faster than O(sn) with n ∈ R for
|s| → ∞. This function then fulfills the Schwarz reflection principle f∗(s) = f(s∗) for any
s ∈ C\B+. Additionally, the discontinuity along the branch cut is given by

disc f(s) = lim
ϵ→0+

(f(s+ iϵ)− f(s− iϵ)) , (2.24)

and for a function that fulfills the Schwarz reflection principle, the discontinuity can be
related to the imaginary part via

disc f(s) = lim
ϵ→0+

(f(s+ iϵ)− f∗(s+ iϵ)) = 2i lim
ϵ→0+

Im f(s+ iϵ) . (2.25)

Cauchy’s integral formula is given by

f(s) =
1

2πi

∮
C
dx

f(x)

x− s
, (2.26)

where f is a holomorphic function in the complex plane excluding a branch cut C\B+ and
C is a closed contour in counter-clockwise orientation. The contour must enclose the point
s and cannot cross the branch cut. Two choices are represented in Fig. 2.1. We choose the
dotted blue line in combination with the red solid line. Then, Eq. (2.26) can be written
as

f(s) =
1

2πi

(
lim
ϵ→0+

∫ ∞

sth

dx
f(x+ iϵ)

x− s
− lim

ϵ→0+

∫ ∞

sth

dx
f(x− iϵ)

x− s
+

∫
γ
dx

f(x)

x− s

)
=

1

2πi

(∫ ∞

sth

dx
disc f(x)

x− s
+

∫
γ
dx

f(x)

x− s

)
, (2.27)

where the arc γ is the blue dotted line in Fig. 2.1. This integral vanishes for R → ∞ if
n < 0. Therefore, we can write

f(s) =
1

2πi

∫ ∞

sth

dx
disc f(x)

x− s
, (2.28)

which is called the dispersive representation or dispersion relation for f(s). The function
is determined by the discontinuity along the branch cut B+. It automatically gives an
analytic continuation of f from a subset of the real axis, the branch cut, to the full
complex plane.
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Re (x)

Im (x)

×
s

sth

R

2ϵ

Figure 2.1: The green zigzag line represents the branch cut starting at sth and extending
to infinity. The point s is an arbitrary point in the complex plane, where the blue dashed
line is a possible choice for the integration contour. The blue dotted and red solid line
then represent the choice that encloses the branch cut, where the radius R goes to infinity.

To allow for functions f with less restrictive asymptotic behavior, n ≥ 0, we introduce
subtractions. Therefore, we define a polynomial of degreem ≥ ⌊n⌋+1 with real coefficients
sj < sth,

Qm(x) =
m∏
j=1

(x− sj) , Q0(x) = 1 , (2.29)

where sj are called subtraction points and ⌊n⌋ = max{k ∈ Z | k ≤ n} is the floor function.
Using this, we can define the function

g(x) =
f(x)

Qm(x)(x− s)
, (2.30)

where g then again has the correct asymptotic behavior. Therefore, for g, the integration
arc vanishes and we can solve for the function f to find

f(s) = Pm−1(s) +
Qm(s)

2πi

∫ ∞

sth

dx
disc f(x)

Qm(x)(x− s)
, (2.31)

where Pm−1 is an arbitrary polynomial of degree m − 1 and its constants are called sub-
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traction constants.3 Since m = ⌊n⌋+ 1 is sufficient to render the integral convergent, we
can write for k > m

f(s) = Pm−1(s) +
sm

2πi

∫ ∞

sth

dx
disc f(x)

xm(x− s)

= Pk−1(s) +
sk

2πi

∫ ∞

sth

dx
disc f(x)

xk(x− s)
, (2.32)

where for simplicity all sj = 0. Since the polynomials are of different order, their asymp-
totic behavior differs, but the asymptotic behavior of the function f needs to remain the
same. Therefore, we can find a relation between the two polynomials written as

Pk−1(s) = Pm−1(s) +
k−m−1∑
i=0

sm+i

2πi

∫ ∞

sth

dx
disc f(x)

xm+i+1
. (2.33)

This relation is called a sum rule, which keeps the overall asymptotic behavior unchanged.
Via the sum rule, it is possible to increase the number of subtractions without introducing
new subtraction constants. An improvement of the convergence behavior is only achieved
when violating the sum rule.

Omnès function

While Eq. (2.31) holds for any function with the correct asymptotic behavior, there are
certain cases where we can define other representations. Take a holomorphic function
Ω(s), where lnΩ(s) is holomorphic and Ω(s) does not possess any zeros. Furthermore, let
Ω(s) be real on the real axis excluding a branch cut and lnΩ(s) be bounded. Then, we
can write a once-subtracted dispersion integral with s1 = 0 for lnΩ(s) as per

lnΩ(s) = c+
s

2πi

∫ ∞

sth

dx
disc (lnΩ(x))

x(x− s)
. (2.34)

The function Ω and its logarithm fulfill the Schwarz reflection principle. Therefore, we
can calculate the discontinuity explicitly,

disc (lnΩ(s)) = 2i lim
ϵ→0+

Im (ln(Ω(s+ iϵ))) = 2i lim
ϵ→0+

arg Ω(s+ iϵ) , (2.35)

and write

Ω(s) = exp(c) exp

(
lim
ϵ→0+

s

π

∫ ∞

sth

dx
arg Ω(x+ iϵ)

x(x− s)

)
. (2.36)

Using the normalization condition Ω(0) = 1 yields the Muskhelishvili–Omnès function [45,
46]4

Ω(s) = exp

(
lim
ϵ→0+

s

π

∫ ∞

sth

dx
arg Ω(x+ iϵ)

x(x− s)

)
. (2.37)

Therefore, the Omnès function is fixed purely by its argument along the cut. Since the
argument is bounded, we can define lims→∞ limϵ→0+ arg Ω(s + iϵ) = kπ. Then, one can
show that lim|s|→∞Ω(s) = O

(
s−k
)
[44].

3Note that for m = 0, the polynomial is zero and the function is purely given by the unsubtracted
dispersion integral in Eq. (2.28).

4We use the common abbreviation from the literature and call this function “Omnès function” in this
thesis.
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Homogeneous Omnès problem

We now want to investigate a class of problems for a general function f that has the
following properties:

1. f is holomorphic on C\B+;

2. f obeys the Schwarz reflection principle;

3. lim|s|→∞ f(s) = sn, n ∈ R;

4. arg f(s) is bounded along B+ by lims→∞ δ(s) = kπ, with limϵ→0+ arg f(s+iϵ) = δ(s),

where we want to find a general solution for f . Since f fulfills the Schwarz reflection
principle, the discontinuity can be written as

disc f(s) = 2i lim
ϵ→0+

Im f(s+ iϵ)

= 2i lim
ϵ→0+

f(s+ iϵ) sin δ(s) exp(−iδ(s)) . (2.38)

This feature is not directly relevant for the solution of the problem but for the comparison
with the next paragraph on the inhomogeneous solution. We can use the fact that there
exists an Omnès function for which

lim
ϵ→0+

arg f(s+ iϵ) = lim
ϵ→0+

arg Ω(s+ iϵ) . (2.39)

Then, we consider the function

h(s) =
f(s)

Ω(s)
, (2.40)

where h is holomorphic on C\B+, since f and Ω are holomorphic on C\B+. Using that f
and Ω fulfill the Schwarz reflection principle, the discontinuity of h can be calculated via

disch(s) = 2i lim
ϵ→0+

Imh(s+ iϵ) = 2i lim
ϵ→0+

Im

(
f(s+ iϵ)

Ω(s+ iϵ)

)
= 2i lim

ϵ→0+
Im

(
|f(s+ iϵ)| exp(i arg f(s+ iϵ))

|Ω(s+ iϵ)| exp(i arg Ω(s+ iϵ))

)
= 2i lim

ϵ→0+
Im

(
|f(s+ iϵ)|
|Ω(s+ iϵ)|

)
= 0 .

(2.41)

Therefore, h is free of branch cuts and due to the asymptotic behavior of f and Ω, it has
to be a polynomial of order ⌊n+ k⌋. Solving for f then yields

f(s) = P⌊n+k⌋(s)Ω(s) , (2.42)

where the coefficients of P have to be real to satisfy the Schwarz reflection principle.

Inhomogeneous Omnès problem

A further complication of the problem above is introduced via an inhomogeneity in the
discontinuity equation. The requirements for a generic function f then read:

1. f is holomorphic on C\B+;
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2. lim|s|→∞ f(s) = sn, n ∈ R;

3. δ(s) is bounded along B+ by lims→∞ δ(s) = kπ, where δ is a real valued function;

4. the discontinuity of f is given by

disc f(s) = 2i lim
ϵ→0+

(
f(s+ iϵ) + f̂(s)

)
sin δ(s) exp(−iδ(s)) ; (2.43)

5. the hat function f̂ is a complex-valued function and lim|s|→∞ f̂(s) = sn is implied
by the above conditions.

Note that limϵ→0+ arg f(s+ iϵ) = δ(s) does not hold anymore and the Schwarz reflection
principle is not satisfied. We use the same ansatz as in the previous paragraph, but the
identification with the imaginary part does not hold anymore, therefore, the discontinuity
of h is given by

disch(s) = lim
ϵ→0+

(
f(s+ iϵ)

Ω(s+ iϵ)
− f(s− iϵ)

Ω(s− iϵ)

)
= lim

ϵ→0+

(
f(s+ iϵ)

Ω(s+ iϵ)
− f(s− iϵ)

Ω∗(s+ iϵ)

)
= lim

ϵ→0+

(
f(s+ iϵ)exp(−iδ(s))− f(s− iϵ)exp(iδ(s))

|Ω(s+ iϵ)|

)
= lim

ϵ→0+

(
[f(s+ iϵ)− f(s− iϵ)]exp(iδ(s))− 2if(s+ iϵ) sin δ(s)

|Ω(s+ iϵ)|

)
= 2i lim

ϵ→0+

f̂(s) sin δ(s)

|Ω(s+ iϵ)|
. (2.44)

Note that Ω is generated by the function δ and it fulfills the Schwarz reflection principle,
even though it is violated in f . Given the explicit form of the discontinuity, we can cast
h into an m-times subtracted dispersion relation

h(s) = Pm−1(s) +
Qm(s)

π
lim
ϵ→0+

∫ ∞

sth

dx
f̂(x) sin δ(x)

|Ω(x+ iϵ)|Qm(x)(x− s)
, (2.45)

and solving for f yields

f(s) = Ω(s)

(
Pm−1(s) +

Qm(s)

π
lim
ϵ→0+

∫ ∞

sth

dx
f̂(x) sin δ(x)

|Ω(x+ iϵ)|Qm(x)(x− s)

)
. (2.46)

2.3.2 Two cuts

The abovementioned formalism can only be applied to functions that depend on one Man-
delstam variable. Studying T -matrix elements of 2 → 2 scattering, which generally depend
on two independent Mandelstam variables, is therefore not possible. In the following, we
expand the formalism to allow for these more evolved dependencies. The 2 → 2 scattering
T -matrix can be characterized by a scalar function M containing all the dynamical infor-
mation. Note that for processes involving particles with spin, this M does not correspond
to the one defined in Sec. 2.2, but there are additional kinematical factors and potentially
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multiple scalar functions. For simplicity, we concentrate on one function M here. Using
the constraint s+ t+ u = 3s0, we can write

M(s, t, u) = M(s, t, 3s0 − s− t) . (2.47)

Here, we have chosen s and t as our independent Mandelstam variables. One can simplify
this to the former case by fixing t, and therefore the amplitude is only dependent on one
variable

M(s) = M(s, t, 3s0 − s− t) , t fixed . (2.48)

In the following, we choose t below its scattering threshold. The s-channel again exhibits a
branch cut starting at the threshold sth. Additionally, the u-channel exceeds its threshold
uth. Then, the two-particle cut in the u-channel can be related to the variable s by

s ≤ 3s0 − t− uth = sℓ , (2.49)

where sℓ is the starting point of the left-hand branch cut B− = (−∞, sℓ] in the complex
s-plane. From now on, we require a kinematical setup so that sℓ < sth and the branch
cuts do not overlap. Consequently, the lower bound for t is

t > 3s0 − sth − uth . (2.50)

The amplitude M is holomorphic on C\(B+ ∪ B−) and we assume the same properties
as in Sec. 2.3.1. Then the fixed-t dispersion relation can be written as

M(s) = Pm−1(s) +
Qm(s)

2πi

∫ ∞

sth

dx
discM(x)

Qm(x)(x− s)
+
Qm(s)

2πi

∫ sℓ

−∞
dx

discM(x)

Qm(x)(x− s)
, (2.51)

where the integration contour is shown in Fig. 2.2 and the subtraction points of Q are
chosen between the two branch cuts. Since this dispersion relation implicitly depends on
the choice of t, we write

M(s, t, 3s0 − s− t) = P t
m−1(s) +

Qm(s)

2πi

∫ ∞

sth

dx
discxM(x, t, 3s0 − t− x)

Qm(x)(x− s)

+
Qm(s)

2πi

∫ sℓ

−∞
dx

discxM(x, t, 3s0 − t− x)

Qm(x)(x− s)
, (2.52)

where the coefficients of the subtraction polynomials depend on t

P t
m−1(s) =

m−1∑
i=0

ci(t)s
i . (2.53)

Furthermore, the discontinuity is defined as

discxM(x, t, 3s0 − t− x) = lim
ϵ→0+

[
M(x+ iϵ, t, 3s0 − t− x− iϵ)

−M(x− iϵ, t, 3s0 − t− x+ iϵ)
]
. (2.54)
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Re (s)

Im (s)

sthsℓ

×
s

R

2ϵ

Figure 2.2: The green zigzag lines represent the branch cuts starting at sth and sℓ and
extending to ±∞, respectively. The point s is an arbitrary point in the complex plane,
where the blue dashed line is a possible choice of the integration contour. The blue dotted
and red solid lines then represent the choice that enclose the branch cuts, where the radius
R goes to infinity.

The integral over the left-hand cut can be rewritten in terms of a right-hand-cut integral
for the crossed channel u. This yields

M(s, t, 3s0 − s− t) = P t
m−1(s) +

Qm(s)

2πi

∫ ∞

sth

dx
discxM(x, t, 3s0 − t− x)

Qm(x)(x− s)

+
Qm(u)

2πi

∫ ∞

uth

dx
discxM(3s0 − t− x, t, x)

Qm(x)(x− u)
. (2.55)

Note that the right-hand side of the equation is analytic in s, excluding the branch cuts.
However, the derivation is only valid for real t and therefore not analytic in t, while the
amplitude is required to be analytic in s and t. This property can be achieved by a
reconstruction theorem [47–49]. It states that the 2 → 2 amplitude is reconstructed from
the information on the partial-wave discontinuities. Therefore, we need to perform partial-
wave expansions of the amplitude in the different scattering channels. This depends on
the particles and their quantum numbers involved and we neither use a general nor a
specific reconstruction theorem here. Some reconstruction theorems are known in the
literature and two derivations can be found in the Appendices 4.A and 4.B. Note that
these reconstruction theorems only hold for 2 → 2 scattering. However, one can use the
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same analytic continuation of the decay mass already discussed in Sec. 2.1.1 to recover
1 → 3 decay amplitudes.
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Chapter 3

Regge theory

This chapter serves as a short introduction to Regge theory and the way its concepts are
presented here is based on Refs. [50–55]. Regge theory is used in Chapter 5. In Sec. 3.1,
the Sommerfeld–Watson transform is introduced, which results in the asymptotic limit
that is commonly known as Regge behavior. Sections 3.2, 3.3, and 3.4 briefly state other
features used in Regge theory, and in Sec. 3.5 some properties of the Veneziano model,
one of the earliest and most heavily used models to incorporate Regge physics, are shown.
The main idea of Regge theory was first introduced in 1959, where T. Regge considered

the angular momentum j as a complex variable in Schrödinger equations for non-relativistic
scattering [56]. It might seem unnatural to proceed this way, since angular momentum
is physically restricted to positive integers. However, the analytic continuation to the
complex-energy plane also gives rise to additional features of the scattering amplitude,
albeit only real energies are measurable. Poles in the complex plane at positive integer j
correspond to resonances or bound states. Phenomenologically, it is found that a sequence
of particles of mass Mj and spin j lie on a linear Regge trajectory α, where α(M2

j ) = j.
This relation can be visualized in a Chew–Frautschi plot [57], where the primary example
is the ρ trajectory, which is depicted in Fig. 3.1. Nowadays, Regge theory is applied
to describe the high-energy behavior of scattering amplitudes in precision analyses [58–
60]. Furthermore, using Regge theory, the first string theories were developed, where the
trajectories are identified with vibrational modes of strings [61].

3.1 Sommerfeld–Watson transform

This section is mainly based on Ref. [50]. We consider the partial-wave expansion of an
amplitude A(s, t), for 2 → 2 scattering without spin and particles with equal mass M , in
the physical t-channel, with t > 4M2 and s < 0, which reads

A(s, t) =
∞∑
j=0

(2j + 1)fj(t)Pj(z) , (3.1)

where fj(t) is the partial-wave amplitude, Pj(z) are the Legendre polynomials, and the
cosine of the t-channel scattering angle is given by

z = 1 +
2s

t− 4M2
. (3.2)

Formally, the expansion in Eq. (3.1) will only converge within a limited region of the
complex s-plane given by the Lehmann ellipse [62, 63]. Specifically, it diverges as z → ∞
but one can use the Sommerfeld–Watson transform [64, 65] to find the proper analytic
continuation. The partial-wave expansion is then valid in the entire s-plane, and we can
properly investigate the limit s→ ∞ and fixed t < 0.
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Figure 3.1: Chew–Frautschi plot [57] for the degenerate ρ–a2 trajectory. The masses and
their uncertainties are taken from Ref. [22]. The orange line represents a linear fit with
α(s) = 0.47 + 0.88GeV−2s.

First, we rewrite the sum as the Cauchy integral

A(s, t) =
i

2

∫
C1

dj
(2j + 1)f(j, t)Pj(−z)

sinπj
, (3.3)

with the contour shown in Fig. 3.2; here, f(j, t) is the analytic continuation of the partial
wave to complex j. Furthermore, Pj(z) for complex j is defined as the Legendre function
of the first kind [66]. The definition of the partial-wave amplitude is given by

f(j, t) =
1

2

∫ 1

−1
dzPj(z)A(s(z), t) , (3.4)

which allows for an analytic continuation to complex j. However, the partial-wave ampli-
tude in Eq. (3.4) does not fulfill the conditions of Carlson’s theorem [67] and is therefore
not unique. Furthermore, the asymptotic behavior of Pj(z) in j is [66]

Pj(z) ≈ j−1/2
(
c1e

ijθ + c2e
−ijθ

)
, (3.5)

where c1 and c2 are constants in j and z. Therefore, Pj(z) diverges exponentially with
increasing |j| everywhere except for the real j axis.

There is an alternative definition of the partial-wave amplitudes that resolves these is-
sues. It is derived via the Froissart–Gribov projection, cf. Ref. [50]. We define partial-wave
amplitudes of odd and even signature and perform the Sommerfeld–Watson transform on
each amplitude separately. The amplitudes read

A±(s, t) ≡ A±(t, z) =

∞∑
j=0

(2j + 1)f±(j, t)Pj(z) , (3.6)
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Re (j)

Im (j)
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C1

Figure 3.2: The contour C1 of Eq. (3.3) and poles at real integers of j.

where the physical amplitude is the sum

A(t, z) =
1

2

(
A+(t, z) +A+(t,−z) +A−(t, z)−A−(t,−z)

)
. (3.7)

We now need to perform the contour integral, with the contour from Fig. 3.2, on each
individual term. However, we deform the contour to C2 shown in Fig. 3.3. Doing so, we
also pick up potential poles, called Regge poles, in f±(j, t), which we classify by their
position α±(t) and residue β±(t).1 Therefore, the signature amplitudes can be written as

A±(t, z) =
i

2

∫
C2

dj
(2j + 1)f±(j, t)Pj(−z)

sinπj
−
∑
i

π(2α±
i (t) + 1)β±i (t)Pα±

i
(−z)

sinπα±
i (t)

, (3.8)

where the sum over i denotes the possible poles. If f±(j, t) falls fast enough for large j,
the blue dotted arc of C2 in Fig. 3.3 vanishes, and we are left with

A(s, t) =
i

2

∫ − 1
2
+i∞

− 1
2
−i∞

dj
(2j + 1)

2 sinπj

(
f+(j, t) (Pj(−z) + Pj(z)) + f−(j, t) (Pj(−z)− Pj(z))

)
−
∑
i

π(2α±
i (t) + 1)β±i (t)

2 sinπα±
i (t)

(
Pα±

i
(−z)± Pα±

i
(z)
)
. (3.9)

Note that the line integral is chosen at Re j = −1/2, since it gives the most convergent
behavior for the Legendre polynomials. However, in Ref. [68], it is shown how this point
may be shifted to larger negative arguments.2 Therefore, we include all Regge poles in the
sum. Equation (3.9) enables us to analytically continue the amplitude from the physical
t-channel region to high-energy s-channel scattering with t < 0. With the asymptotic
behavior of the Legendre polynomials, we find

A(s, t) ∼ −π
∑
i

β±i (t)
1± e−iπα±

i (t)

2Γ(α±
i (t) + 1) sinπα±

i (t)
sα

±
i (t)

∼
∑
i

β±i (t)

2
Γ(−α±

i (t))(1± e−iπα±
i (t))sα

±
i (t) . (3.10)

The sα(t) behavior for large s and small t is commonly called the Regge behavior and
this also holds true in the crossed channels for all Mandelstam variables. Additionally,
Γ(−α±

i (t)) produces poles for non-negative integers of α±
i (t). They are further filtered to

even and odd integers for the plus and minus signature, respectively.

1There also might appear additional effects due to branch cuts, which are ignored in this discussion. We
refer the reader to Ref. [51] for further discussions.

2For further details, see the section on the Mandelstam–Sommerfeld–Watson transform in Ref. [51].
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Re (j)

Im (j)
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C2

Figure 3.3: The contour C2 of Eq. (3.8) and poles at real integers of j. Additionally, two
poles are sketched in the complex j-plane that contribute to the second term in Eq. (3.8).

3.2 Pomeranchuk theorem

A phenomenon observed during the early stages of Regge theory is that all hadronic cross
sections are remarkably constant at high energies. To achieve σtot(s) ∼ const, a Regge
trajectory with positive parity and α+

P (0) ∼ 1 was invented in Ref. [69], which is the
maximum value permitted by the Froissart–Martin bound. This trajectory is called the
Pomeron, named after I. Y. Pomeranchuk. He proved that the fraction of the cross sections
for particle and antiparticle elastic scattering off the same target,

σ(A+B)

σ(Ā+B)
→ 1 , (3.11)

goes to unity if these cross sections are assumed to be constant at high energies [70, 71].
The Pomeron needs to have the quantum numbers of the vacuum, JPC = 0++, since it is
exchanged in the t-channel of elastic scattering. The intersection at one saturates unitarity
and there are no physical particles on this trajectory. However, it is still commonly
parameterized as a pole. Some further details can be found in Sec. 5.2.3.
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3.3 Froissart–Martin bound

In contrast to the previous section, the high-energy behavior of a cross section is restricted
by the Froissart–Martin bound [72, 73]

σtot(s) ≤
s→∞

const · ln2(s) , (3.12)

which is derived from the analytic properties of the scattering amplitude and unitarity.
However, this theorem is only proven for 2 → 2 scattering with scalar particles. For all
other processes, it is assumed to hold and most commonly used as an additional con-
straint. Relying on the Froissart–Martin bound and using the Regge behavior, with a
phenomenologically motivated rising trajectory, we find that α(t) < 1 for t < 0 and there-
fore α(0) ≤ 1. Additionally, in Refs. [52, 74, 75], it is shown that this behavior is limited by
A(s, t) >

s→∞
s−1. Together with the Froissart–Martin bound, we find that the amplitude

is constrained by
1

s
< A(s, t) < s ln2(s) , (3.13)

for s→ ∞ and arbitrary t.

3.4 Poles

Assuming we are close to an isolated Regge pole, we can write the amplitude as

A(t) =
β(t)

j − α(t)
, (3.14)

where α is a holomorphic function in the full complex plane except for a branch cut starting
at tth. Separating α(t) = αR(t) + iαI(t) and defining the point tr where αR(tr) = j, we
can expand

α(t) = j + α′
R(tr)(t− tr) + iαI(tr) + . . . . (3.15)

Inserting this equation into Eq. (3.14), we find

A(t) =
β(t)/α′

R(tr)

tr − t− iαI(tr)/α′
R(tr)

, (3.16)

and comparing to a simple Breit–Wigner formula, we can identify the massMr =
√
tr and

width Γr = αI(tr)/(α
′
R(tr)Mr). Note that below threshold, the imaginary part vanishes

and we find a bound state on the real axis.

3.5 Veneziano model

In the low-energy region, it is useful to expand the scattering amplitude in s-channel
partial-wave amplitudes. However, as s increases, the importance of higher partial waves
grows and therefore this expansion is no longer meaningful in the high-energy region. On
the contrary, one can also expand the amplitude in terms of t-channel Regge poles. This
duality was used to construct the Veneziano model [76] for 2 → 2 scattering. Applying
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this model to π+π− → π+π−, the s- and t-channel contain I = 0, 1 resonances, while the
u-channel is non-resonant with I = 2 [77–79]. Then, the amplitude can be written as

A(s, t) =
∑
n

gn(s, t)

s− sn
=
∑
m

gm(s, t)

t− tm
, (3.17)

where the sums over all the s- and t-channel resonances are equal. Furthermore, the
asymptotic Regge behavior should be fulfilled in both variables,

A(s, t) ∼
s→∞

sα(t) , (3.18)

A(s, t) ∼
t→∞

tα(s) . (3.19)

The simplest amplitude that fulfills these properties is the Veneziano formula

V (s, t) = g
Γ(1− α(s))Γ(1− α(t))

Γ(1− α(s)− α(t))
, (3.20)

where g is the coupling strength and the denominator removes the double poles at the s–t
points.3 The Regge behavior for an increasing Regge trajectory α(s) and fixed t reads

V (s, t) →
s→∞

g
π(−α(s))α(t)

Γ(α(t)) sinπα(t)
. (3.21)

If the trajectory is assumed to be a real linear function α(s) = α0 + α1s, one finds the
correct Regge asymptotics

V (s, t) →
s→∞

g
π(α1s)

α(t)

Γ(α(t)) sinπα(t)
e−iπα(t) , (3.22)

where the same holds for (s↔ t).
In the s-channel close to a resonance pole sn, one can expand the amplitude in the

cosine of the s-channel scattering angle zs

V (s, t) →
s→sn

g

α1(s− sn)(n− 1)!

(
(2(s− sth)α1zs)

n +O
(
zn−1
s

))
. (3.23)

The residue can then be written in terms of a sum of Legendre polynomials of order
0 to n. The pole then corresponds to n + 1 resonances with spin 0, . . . , n, the leading
resonance and n daughters. The main disadvantage when using real linear trajectories is
that the poles are on the real axis. Adding an imaginary part to the trajectory moves
the poles to the second Riemann sheet. However, Eq. (3.23) is no longer valid and one
produces ancestor poles with arbitrary high spin. Unitarization of single partial waves of
the Veneziano model was unsuccessful. Nevertheless, the Veneziano model is a useful test
model with many extensions to be used in different applications.

3Note that there are also other amplitudes where the summands of 1 in the arguments of the Gamma
function are generalized to arbitrary integers.
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Chapter 4

Analysis of rescattering effects in 3π final
states

4.0 Prologue

The content of this chapter is based on the publication

• D. Stamen, T. Isken, B. Kubis, M. Mikhasenko, and M. Niehus, Analysis of rescat-
tering effects in 3π final states, Eur. Phys. J. C 83, 510 (2023) [arXiv:2212.11767
[hep-ph]], [Erratum: Eur. Phys. J. C 83, 586 (2023)] .

Decays into three particles are often described in terms of two-body resonances and
a non-interacting spectator particle. P -wave two-pion rescattering can be described in
terms of an Omnès function, which incorporates the ρ resonance. Going beyond the
simplest isobar model, crossed-channel rescattering effects need to be accounted for. We
quantify the importance of these rescattering effects in three-pion systems for different
decay masses and angular-momentum quantum numbers. Therefore, we provide amplitude
decompositions, also known as reconstruction theorems, for the four decay processes with
total JPC = 0−−, 1−−, 1−+, and 2++, all of which decay predominantly as ρπ states.
Reconstruction theorems have been proven to a given order in chiral perturbation theory.
For the derivation, we use fixed-variable dispersion relations and the symmetry properties
of the amplitude, e.g., isospin and crossing symmetry. The decompositions for JPC = 0−−

and 1−− were already known in the literature, cf. Ref. [80, 81]. For JPC = 1−+, the
reconstruction theorem was first derived by Tobias Isken, and the final result can be found
in Ref. [42]. The author of this thesis performed the calculation confirming the previous
result, and the derivation is written down as part of this chapter. For JPC = 2++, the
decomposition was not known. With helpful hints by Mikhail Mikhasenko and Bastian
Kubis, the author of this thesis derived the decomposition. Note that, even though we
neglect all partial waves higher than the P -waves, we get a contribution that behaves like
a D-wave for numerical purposes. The derivation of the decomposition and the associated
numerical treatment are part of this chapter.
The inclusion of crossed-channel effects is achieved by solving the Khuri–Treiman inte-

gral equations. For the solution of the Khuri–Treiman equations, a numerical code was
developed by Hakan Akdag, Malwin Niehus, and the author of this thesis. It must be
mentioned that prior to this, other versions existed, e.g., the code from Tobias Isken,
which we used for cross checks. While Hakan Akdag mainly implemented the version for
CP -violating η(′) decays with the “Pinocchio method” [81–84] and Malwin Niehus the
Gasser–Rusetsky method [85–87] for 1−∓, the author of this thesis simplified and gen-
eralized the code, which drastically reduced the effort for including new reconstruction
theorems. This led to the current version, where all known reconstruction theorems for
η(′) → 3π and η′ → ηππ decays, as well as for the four quantum numbers mentioned
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above, are implemented. Furthermore, numerical tools are available for matching around
unstable points up to D-waves. Note that the numerical cure of D-waves had to be derived
by the author of this thesis and is part of this chapter. The functions used therein are
generalized and therefore the procedure for even higher partial waves can be derived. The
Pinocchio method is implemented in C++ , and using pybind11 [88] it is straightforward
to use the classes and their respective member functions in Python. The author of this
thesis also wrote main parts of the documentation and the code is now publicly available
at github.com/HISKP-ph/khuri treiman solver [89].

This project has been an idea for a long time and it was clear that the single-variable
amplitudes are not suitable for the desired comparison. Therefore, we needed a comparison
on the Dalitz-plot level, but it remained unclear how to account for experimental binning.
Mikhail Mikhasenko proposed the unbinned log-likelihood estimator to determine the sig-
nificance of the rescattering effects beyond two-body resonances. Using this, we computed
the minimum number of events necessary to unambiguously find these in future Dalitz-
plot analyses. The calculation uses the Kullback–Leibler divergence and variance, and it
was shown numerically that the assumption of a normal distribution is valid. First tests
and the general idea are already sketched in Ref. [87]. The analysis was performed by the
author of this thesis; additionally, all the plots that are part of this chapter were created
by the author. Kinematic effects that enhance or dilute the rescattering were identified by
the author in collaboration with Bastian Kubis and Mikhail Mikhasenko for the selected
set of quantum numbers and various masses.

4.1 Introduction

Much of the modern-era precision in hadron spectroscopy is not gleaned from scattering
reactions, but rather from production or decay processes [90–94]. For two-body states,
the universality of final-state interactions [95] provides an important and fundamental link
between scattering and production amplitudes, guaranteeing their phases to be identical
in the region where scattering is elastic. The presence of a third strongly interacting
decay product complicates rigorous analyses considerably. An approximation to the decay
amplitude where the two-particle interaction is modeled by a resonant amplitude without
accounting for the interaction with the spectators is referred to as the isobar model. The
lineshape of the resonant pairwise interaction is often parameterized by the Breit–Wigner
function [96]. While one might expect that under certain circumstances, the influence of
spectator particles on the two-body resonance signal ought to be small—the resonance in
question being narrow, or the spectators having large relative momenta—the impact of
the spectator interaction on the resonance lineshape has only rarely been quantified. The
goal of this chapter is to start the endeavor to survey such more complicated final-state
interactions numerically, beginning with the simplest processes: decays into three pions.
A tool to perform a theoretically rigorous evaluation of three-body decays is given by

the so-called Khuri–Treiman (KT) dispersion relations [97]. These are coupled integral
equations that describe all sequential pairwise two-body rescattering, summed to all orders.
While the two-body phase shifts are assumed to be known, the solutions of these equations
depend on a set of free parameters, subtraction constants of the dispersion integrals,
which can be fixed by comparison to experimental data or by matching to effective field
theories. Instead of analyzing data for a particular process, we pose the question: how
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much statistics needs to be collected in order for lineshape modifications due to a third
pion to be discernible? We choose the processes to study based on the condition that
their amplitude representations can be reduced to one single subtraction constant. This
then serves as a mere normalization, and hence allows us to study subtle variations of the
resonance lineshape in an unambiguous manner. In many three-pion decays, the ρ meson
is the most prominent pion–pion resonance, and interactions of higher angular momentum
are suppressed. An important criterion is therefore that we select decays in which S-waves
are forbidden by conservation laws, reducing the problem to the P -wave interaction only.
One process of significant interest disregarded here is the τ → 3πντ decay, in which the
a1(1260) resonance with JPC = 1++ appears prominently; however, there are S-waves
involved, whose strength relative to the P -waves cannot be fixed a priori without data
(cf. a similar analysis in Ref. [98]).
The outline of this chapter is as follows: in Sec. 4.2, we introduce and discuss the KT

equations and derive the amplitude decompositions of four different three-pion decays that
are dominated by the ρπ intermediate states. Subsequently, in Sec. 4.3, we describe the
statistical method used to distinguish the KT solutions from the simpler Omnès model
that neglects spectator interactions entirely. Section 4.4 shows our numerical results and
discusses the dependence of the crossed-channel rescattering effects on mass and quantum
numbers of the three-pion system in detail. Our findings are summarized in Sec. 4.5. Some
technical details are relegated to the appendices.

4.2 Khuri–Treiman equations

The Khuri–Treiman equations [97] were first derived in the 1960s to analyze K → 3π
decays. With the advent of very precise parameterizations of low-energy pion–pion (ππ)
phase shifts [49, 58, 99], the approach has experienced a remarkable renaissance and has
been applied to various decays [80, 81, 100–116] and scattering processes [4, 117–120] since.
We here consider four different 3π decays with quantum numbers JPC = 0−−, 1−−, 1−+,

and 2++, which fulfill the criterion introduced in Sec. 4.1. For all these, the unpolarized
distribution over the three-body phase space as represented by the Dalitz plot contains
the full information on the decay dynamics, as only one helicity amplitude contributes in
every case. In order to apply the KT equations, we decompose each amplitude into the so-
called single-variable amplitudes (SVAs), which are complex functions with a right-hand
cut only. These decompositions are known as reconstruction theorems, proven in chiral
perturbation theory in a given order using fixed-variable dispersion relations [47, 48, 121].
Thereby, we restrict ourselves to P -waves and neglect all higher partial waves.

4.2.1 Reconstruction theorem for 1−− decay

We begin our discussion with the consideration of isoscalar vector quantum numbers,
IG(JPC) = 0−(1−−), where the isospin I is forced to be zero by the negative G-parity of
the odd-pion system and negative C-parity. Decays into three neutral pions are forbidden
by charge conjugation. The decays ω/ϕ → 3π have been studied extensively using the
KT formalism [81, 102, 112, 113], as well as extended to the J/ψ → 3π decays [103, 115],
and the general reactions e+e− → 3π [122–127]. Experimentally, the Dalitz plots both for
ω → 3π [128, 129] and ϕ→ 3π [130, 131] have been investigated in detail.
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The decay reads

V (p) → π0(p1)π
+(p2)π

−(p3) , (4.1)

where p and pi denote the four momenta of the decay particle V and the pions, respectively.
The Mandelstam variables [40] are defined as s = (p−p1)2, t = (p−p2)2, and u = (p−p3)2.
The amplitude M is decomposed into a scalar amplitude F and a kinematic factor in the
following form:

M(s, t, u) = iϵµKµF(s, t, u) ,

Kµ = εµναβp
ν
1p

α
2 p

β
3 , (4.2)

where the Levi-Civita tensor is employed due to the odd intrinsic parity. By squaring the
matrix element and averaging over the initial polarization, one obtains

|M|2 = K(s, t, u)|F(s, t, u)|2 , (4.3)

where K is a factor proportional to the Kibble function [132],

K(s, t, u) =
1

4

(
stu−M2

π(M
2 −M2

π)
2
)
. (4.4)

Here, M denotes the mass of the decay particle, and Mπ refers to the pion mass in the
isospin limit. Using the fixed-variable dispersion relations, one can show that the scalar
amplitude is decomposed into the P -wave SVAs, F(x) [42, 81, 83, 87]:

F(s, t, u) = F(s) + F(t) + F(u) , (4.5)

where discontinuities in F - and higher partial waves have been neglected. The decay
amplitude is invariant under a shift

F(s) → F(s) + α(s− s0) , (4.6)

where 3s0 ≡M2 + 3M2
π = s+ t+ u, and α is an arbitrary complex constant. This means

that the decomposition in Eq. (4.5) only defines F(s) up to such a polynomial ambiguity.
The strategy to eliminate the ambiguity is discussed in Sec. 4.2.5.

4.2.2 Reconstruction theorem for 1−+ decay

Mesons with quantum numbers IG(JPC) = 1−(1−+) are exotic in the quark model. The
lightest candidate for such hybrid mesons is the π1(1600), which has been searched for
experimentally in different final states such as ηπ [133–137], η′π [134, 135, 137], and the
most relevant for the present study ρπ [138].

The amplitude decomposition for the decays π1 → 3π is very similar to the one for res-
onances with IG(JPC) = 0−(1−−) discussed in the previous section, however, the positive
charge conjugation implies odd isospin. For the isovector decay, the explicit decomposition
of the decay amplitude in terms of isospin indices is required,

Xi(p) → πj(p1)π
k(p2)π

l(p3) , (4.7)
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where i, j, k, and l are the isospin indices in the Cartesian basis. The decay is once more
of odd intrinsic parity. The decomposition reads

Mijkl(s, t, u) = iϵµKµHijkl(s, t, u) , (4.8)

with the isospin amplitude Hijkl following from the well-known isospin relations for ππ
scattering [139]:

Hijkl(s, t, u) = δijδklH(s, t, u) + δikδjlH(t, u, s) + δilδjkH(u, s, t) . (4.9)

The reconstruction theorem retaining P -waves only, i.e., neglecting discontinuities in D-
waves and higher, reads

H(s, t, u) = H(t)−H(u) , (4.10)

derived in Appendix 4.A. The decomposition is ambiguous by shifting

H(s) → H(s) + α . (4.11)

This ambiguity in principle allows us to write down a twice-subtracted dispersion integral
for H(s) that still depends on one subtraction constant only. Since the subtraction con-
stants of these two representations are connected by a sum rule, the amplitude H(s, t, u)
remains unchanged. The allowed charge configurations are

X+ → π+π0π0 , X+ → π+π+π− , X0 → π+π−π0 , X− → π−π0π0 , X− → π−π−π+ ,

which all lead to the same result for the absolute squared of the amplitude.1 Due to
the analogy between Eqs. (4.2) and (4.8), the latter can be written in the same form as
Eq. (4.3).

4.2.3 Reconstruction theorem for 2++ decay

For isovector tensor mesons, IG(JPC) = 1−(2++), the lightest state is the a2(1320) that
dominantly decays into 3π [22]. Hence, we need to consider isospin explicitly,

T i(p) → πj(p1)π
l(p2)π

k(p3) . (4.12)

Due to the high spin of the decaying particle, the complete amplitude decomposition is
considerably more complicated than for the vector decays and involves different helicity
amplitudes; this is discussed in Appendix 4.B. The isospin decomposition of Mijkl(s, t, u)
involves invariant isospin amplitudes, which can be defined with respect to different Man-
delstam variables. These are related to each other by crossing symmetry; see Appendix 4.B
for details. The s-channel amplitude is given as

Ms(s, t, u) = i
√
2ϵµνK

µ [(p2 + p3)
νB(s, t, u) + (p2 − p3)

νC(s, t, u)] . (4.13)

The resulting spin-averaged squared amplitude then reads

|Ms|2 = K̃1(s, t, u)|B(s, t, u)|2 + 2K̃2(s, t, u)Re (B(s, t, u)C(s, t, u)∗)
+ K̃3(s, t, u)|C(s, t, u)|2 , (4.14)

1The amplitudes for the charge configurations differ when including higher partial waves.
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where

K̃i(s, t, u) =
K(s, t, u)

40M2
ki(s, t, u) , ∀i ∈ {1, 2, 3} ,

k1(s, t, u) = λ(s,M2,M2
π) ,

k2(s, t, u) = (s+M2 −M2
π)(u− t) ,

k3(s, t, u) = (t− u)2 + 4M2
(
s− 4M2

π

)
, (4.15)

and λ(a, b, c) is the standard Källén function defined in Eq. (2.15). The reconstruction
theorem of the scalar functions has the form

B(s, t, u) = B(t)− B(u) ,
C(s, t, u) = B(t) + B(u) , (4.16)

neglecting discontinuities that lead to ππ D-waves and higher. This decomposition is
unambiguous.

4.2.4 Reconstruction theorem for 0−− decay

The decays of the η(′) mesons, IG(JPC) = 0+(0−+), into 3π necessarily violate G-parity. In
the Standard Model, where both the strong and the electromagnetic interactions preserve
charge conjugation, the decays proceed via breaking of isospin symmetry, while more
exotic scenarios of physics beyond the Standard Model involving C-parity violation are
suggested for the π+π−π0 final state [80, 140, 141]. We here concentrate on the latter, with
total three-pion isospin I = 0 and negative charge conjugation, which would be equally
applicable for the three-pion decay of a quark-model-exotic resonance with IG(JPC) =
0−(0−−) in QCD. Such states have been predicted as hybrid mesons with precisely this
decay channel [142], although first lattice-QCD calculations at unphysically high pion
masses suggest them to appear at higher masses than the 1−+ hybrids [143]; constituent-
gluon models partly come to different conclusions [144]. The decay amplitude written in
terms of P -waves only is given by

M(s, t, u) = (t− u)G(s) + (u− s)G(t) + (s− t)G(u) . (4.17)

We note that due to the decaying particle being a (pseudo)scalar, there is no additional
kinematic factor in the relation to the Dalitz-plot distribution. In contrast to the fully
symmetric reconstruction theorem under pairwise exchange of Mandelstam variables for
JPC = 1−−, this one is fully antisymmetric.
The amplitude stays invariant under a three-parameter polynomial shift

G(s) → G(s) + α+ βs+ γs2(3s0 − s) , (4.18)

where α, β, and γ are arbitrary complex numbers. Similar to the discussion in Sec. 4.2.2,
this ambiguity allows us to write G(s) as a twice- or three-times-subtracted dispersion
integral, depending on a single subtraction constant.
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4.2 Khuri–Treiman equations

Figure 4.1: Diagrammatic representation of iterated bubble sums for the 2π subsystems,
implemented by Omnès functions. In general, due to interchange of the rescattered pions,
three different bubble sums may contribute.

Figure 4.2: Diagrammatic representation of the amplitudes based on the full Khuri–
Treiman equations.

4.2.5 Partial-wave unitarity, Omnès solutions

The form of the partial-wave series deviates due to the different spins of the decaying
particles. While the one for the pseudoscalar decay in Eq. (4.17) proceeds in terms of
standard Legendre polynomials, the one for the vector decays has the form [145]

F(s, t, u) =
∑
ℓ=1

P ′
ℓ(zs)fℓ(s) , (4.19)

and similarly for H(s, t, u), where P ′
ℓ(zs) refers to the derivatives of the Legendre polyno-

mials. The cosine of the s-channel scattering angle, denoted by zs, can be expressed via
the Mandelstam variables

zs =
t− u

κ(s)
, κ(s) =

√
1− 4M2

π

s
λ1/2(s,M2,M2

π) . (4.20)

In the s-channel center-of-mass system, t and u are related to the scattering angle via

t(s, zs) = u(s,−zs) =
1

2

(
3s0 − s+ κ(s)zs

)
. (4.21)

The partial-wave expansion for the tensor-meson decay is slightly more cumbersome as
discussed in Appendix 4.B.
We consider elastic unitarity for the two-pion states. The ππ P -wave phase shift δ(s) =

δ11(s) is parameterized according to Ref. [146]. A partial wave χ1(s) of angular momentum
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ℓ = 1 obeys a unitarity relation of the form

discχ1(s) = lim
ϵ→0

[χ1(s+ iϵ)− χ1(s− iϵ)]

= 2iχ1(s) sin δ(s)e
−iδ(s)θ

(
s− 4M2

π

)
. (4.22)

It can be decomposed into parts with right-hand and left-hand cuts only, χ1(s) = X (s) +
X̂ (s), with X ∈ {F ,H,B,G}, where X̂ is the so-called inhomogeneity that has no discon-
tinuity along the right-hand cut. It results from the partial-wave projection of the t- and
u-channel SVAs. The inhomogeneities are given by

F̂(s) = 3⟨
(
1− z2s

)
F⟩ [JPC = 1−−] ,

Ĥ(s) = −3

2
⟨
(
1− z2s

)
H⟩ [JPC = 1−+] ,

B̂(s) = 3

4

[
⟨
(
1− z2s

)
B⟩ − ξ(s)⟨

(
1− z2s

)
zsB⟩

]
[JPC = 2++] ,

Ĝ(s) = − 3

κ(s)

[
3(s− s0)⟨zsG⟩+ κ(s)⟨z2sG⟩

]
[JPC = 0−−] , (4.23)

where we employ the notation

⟨znsX⟩ = 1

2

∫ 1

−1
dzsz

n
sX
(
t(s, zs)

)
, (4.24)

and ξ(s) is defined via

ξ(s) =

√
1− 4M2

π

s

s+M2 −M2
π

λ1/2(s,M2,M2
π)
. (4.25)

As a consequence, the unitarity relations for the partial waves can be reduced to those for
the SVAs X (s), which read

discX (s) = 2i
(
X (s) + X̂ (s)

)
sin δ(s)e−iδ(s)θ

(
s− 4M2

π

)
. (4.26)

The solution for the homogeneous problem, setting X̂ = 0, is given by the well-known
Omnès function Ω(s) [45, 46]

Xhom.(s) = P (s)Ω(s) ,

Ω(s) = exp

(
s

π

∫ ∞

4M2
π

ds′
δ(s′)

s′(s′ − s)

)
, (4.27)

where P (s) is a polynomial and Ω(0) = 1. Such representations are used, e.g., in de-
scriptions of the pion vector form factor; see Ref. [146] and references therein. Using the
Omnès function as an approximation for a SVA in a three-pion final state, we describe
the rescattering of a two-pion subsystem only, with the third pion being a spectator, as
shown in Fig. 4.1. To include the full rescattering effects, cf. Fig. 4.2, we need to solve the
inhomogeneous equation. The solution is given by [101]

X (s) = Ω(s)

(
Pn−1(s) +

sn

π

∫ ∞

4M2
π

ds′

s′n
sin δ(s′)X̂ (s′)

|Ω(s′)|(s′ − s)

)
, (4.28)
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4.2 Khuri–Treiman equations

where n determines the number of subtractions. As we aim for the most predictive model,
without the need to fix the relative strength of various subtraction constants to concrete
data, we set n = 1. The high-energy behavior of the SVAs is dictated by the one of the
Omnès function, which in turn is given by the asymptotic limit of the input phase shift:
δ(s → ∞) → π implies Ω(s → ∞) ≍ s−1, and as a consequence, also the SVAs vanish
asymptotically, X (s) ≍ s−1. As a result, none of the polynomial ambiguities discussed in
the previous sections survive: they would alter this asymptotic behavior and violate the
high-energy constraint imposed.
We note that the mass of the decay particle enters X̂ via the partial-wave projection

integral. Physically, X̂ incorporates the crossed-channel effects, which depend on the
relative momenta of all three final-state pions. The resulting differences are discussed in
Sec. 4.2.6. The solution in Eq. (4.28) is generated iteratively for each process and decay
mass, which can justify the diagrammatic representation in Fig. 4.2.

4.2.6 Comparison of different SVAs

In Fig. 4.3, we compare the KT solutions for the different SVAs to the Omnès solution,
both for different decay masses (for the JPC = 1−− case; cf. also Ref. [83]) and comparing
the SVAs with different reconstruction theorems or inhomogeneities at the same decay
mass. These pictures suggest we already have an answer to the question to what extent
the ρ lineshape and phase are modified by crossed-channel interactions, and how this
modification varies with quantum numbers and decay mass. However, this impression is
misleading to some extent, as can be seen by the following considerations.

1. As our reconstruction theorems all depend on one single SVA only, it is obvious that
an overall shift of its phase by a constant is not observable. A significant part of the
changes in phase compared to the input phase shift seen in Fig. 4.3 can already be
undone by such a shift.

2. Although we have theoretically constrained our SVAs to fulfill a certain, restrictive,
high-energy behavior, this still means that a polynomial shift according to the cor-
responding ambiguity is not observable in a finite Dalitz plot. This suggests that
any change between Omnès and full KT solution that is, in fact, polynomial-like will
not be experimentally verifiable.

3. Finally, the single subtraction or normalization constants of our dispersive amplitude
representations are not a priori fixed; changes in the SVAs that can be absorbed
in a change of normalization will therefore also not allow us to verify non-trivial
rescattering effects. This is demonstrated in the bottom row of Fig. 4.3, where the
SVAs are not commonly normalized at s = 0, but in the ρ peak: the differences
between the different solutions already appear significantly muted.

All three points demonstrate that it is very difficult to quantify the observable changes by
considering complex, interfering decay amplitudes only. We therefore choose a different,
unambiguous, path in the following and immediately study the Dalitz-plot distributions,
which are direct observables.
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Figure 4.3: Absolute values (left) and phases (right) of the SVAs: for JPC = 1−− with
different decay masses M (top), and at the same decay mass M = 7Mπ for the four
different reconstruction theorems (middle). The two plots at the bottom show again the
absolute values for both comparisons, but this time with the basis functions normalized
to the peak of the Omnès function.

4.3 Log-likelihood estimator

In experiments measuring Dalitz plots, the data is often binned. The binning scheme
is determined by each experiment individually to obtain distributions with reasonable
statistical and systematic uncertainties; therefore, there is no unique prescription even for
a given number of overall events. We thus seek an unbinned method to characterize the
Dalitz-plot distribution, relying on the total number of events for the full Dalitz plot only.
In the following, the deviations between the Omnès and KT solutions are quantified using
the Kullback–Leibler (KL) divergence [147] based on the log-likelihood estimator.
As the description of the decay amplitudes in terms of KT equations is physically more

complete, we interpret their outcome as the “truth” and test to which extent the Omnès
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4.3 Log-likelihood estimator

functions are capable of reproducing this. The decay amplitudes are denoted by MKT

and MOmnès for the KT and Omnès solutions, respectively, where the isospin and helicity
indices are suppressed for clarity. For the Omnès solution, we replace the SVAs by plain
Omnès functions in the corresponding reconstruction theorems. We define the probability
density function (pdf) as

f(s, t) =
|M|2(s, t, u)∫

D |M|2(s, t, u)dsdt
. (4.29)

Additionally, we explore an unphysical quantity defined by

|M̃(s, t, u)|2 = |M|2(s, t, u)
K(s, t, u)

,

f̃(s, t) =
|M̃(s, t, u)|2∫

D |M̃(s, t, u)|2dsdt
. (4.30)

This construct appears to be more sensitive to the distribution at the edge of the Dalitz
plots and therefore visualizes the ρ bands discussed in Sec. 4.4. Our representation is fixed
up to a normalization constant, therefore the pdf is free of any undetermined parameters.
The integral region D is the three-body decay phase space, captured by the Dalitz plot.
For the decay mass M and the pion mass Mπ, its boundaries are determined by

4M2
π ≤ s ≤ (M −Mπ)

2 ,

t(s, zs = −1) ≤ t ≤ t(s, zs = 1) , (4.31)

where t(s, zs) is given by Eq. (4.21). We generate a sample D by drawing N ∈ N pairs
(si, ti) from fKT. The likelihood function L of a pdf f with respect to the data sample D
is defined as

L(D, f) =
N∏
i=1

f(si, ti) . (4.32)

The likelihood ratio of the Omnès and KT solutions

∆L(D) =
L(D, fOmnès)

L(D, fKT)
(4.33)

indicates which one is favored. In the following, we will use the log-likelihood and its
difference

L(D, f) = ln(L(D, f)) ,
∆L(D) = ln (∆L(D)) = L(D, fOmnès)− L(D, fKT) . (4.34)

We note that ∆L > 0 is possible despite drawing data from the KT solution, since N is
finite. This gives us precisely the handle we need to determine the value of N to observe
crossed-channel rescattering effects.

We can now perform B ∈ N runs, which generate B datasets Db, b = 1, . . . , B, of size N .
On each of these datasets, one can compute ∆L and access its probabilistic distribution.
For large values of B, this distribution is Gaussian, with the mean and variance given by

E [∆L(D)] = −NdKL ,

Var [∆L(D)] = NνKL , (4.35)
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Figure 4.4: Histogram for B = 106 datasets of different sample size N . For this plot,
the amplitudes are computed at M = Mϕ and for JPC = 1−−. Additionally, we plot
Gaussians with the mean and standard deviation from Eq. (4.37).

where

d̃KL(s, t) = fKT(s, t) ln

(
fKT(s, t)

fOmnès(s, t)

)
,

dKL =

∫
D
d̃KL(s, t)dsdt ,

ν̃KL(s, t) = fKT(s, t) ln

(
fKT(s, t)

fOmnès(s, t)

)2

,

νKL =

∫
D
ν̃KL(s, t)dsdt− d2KL . (4.36)

The expressions are known as the Kullback–Leibler divergence [147] and variance. The
cumulative distribution function reads

N (x, µ(N), σ(N)) =
1

2

(
1 + erf

(
x− µ(N)√

2σ(N)

))
with µ(N) = −NdKL , σ(N) =

√
NνKL , (4.37)

where erf is the error function. To validate the assumption of a normal distribution, we
use the comparison in Fig. 4.4, which indicates a very good description.2 From here on
we can calculate our results using the pdfs as defined in Eq. (4.29).
In the region ∆L < 0 we reject the hypothesis that the Omnès solutions are sufficient

to describe the data. The probability that the hypothesis is not rejected then reads

q(N) = 1−N (0, µ(N), σ(N)) . (4.38)

2Note that this is not an assumption for large N due to the central-limit theorem.
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Fig. 4.5.

The inversion of the equation gives the number of events with the confidence determined
by q via

N(q) = 2νKL

(
erf−1(1− 2q)

dKL

)2

. (4.39)

For a 5σ confidence level we need to have q = 2.87 · 10−7 [22] and can now compute the
resulting N .

4.4 Results

Among the three-pion decays studied in this chapter, only two Dalitz plots have been
studied experimentally with sufficiently high statistics: ω → 3π [128, 129], and ϕ →
3π [130, 131].

For ω → 3π, WASA-at-COSY [128] has performed a Dalitz plot study with 44 080
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events, while the analysis by BESIII [129] is based on 260 520 events. Both experiments
parameterize the distribution by a polynomial expansion and present results testing one-
and two-parameter models. Applying the formalism of the preceding section, we find that
the statistics of WASA-at-COSY is sensitive to rescattering effects only at 2.1σ. On the
other hand, in agreement with Ref. [113], BESIII reaches a 5σ level for the solution con-
taining one subtraction. However, as pointed out by Ref. [113], an additional subtraction
leads to a better agreement for the Dalitz plot parameters.
For ϕ → 3π, KLOE [130] provides a Dalitz plot analysis using 2 · 106 events, while

CMD-2 [131] has studied almost 8 · 104 decays. For both, rescattering effects are clearly
observable, as concluded by Ref. [81].
Using the statistical method explained above and the derived reconstruction theorems,

we compute q(N) and N(q) for a large mass range as shown in Fig. 4.5. The mass
dependence of N and q for the 1−− decay looks strikingly different from the 1−+ one, even
though they share the same kinematic factor. To investigate the source of this difference in
sensitivity between the two reconstruction theorems, we perform the following, unphysical,
test. We plug the SVAs, calculated as KT solutions for the 1−+ decay, into the linear
combination given by the reconstruction theorem for 1−−, see Eq. (4.5), and vice versa.
These unphysical amplitudes are denoted by “mixed” in Fig. 4.6. We observe that this
changes the absolute values of q(N), while the qualitative behavior is the same. We
therefore conclude that much of the sensitivity to rescattering effects is not actually due
to the size of the lineshape modification of the SVAs, as shown in Fig. 4.3, but rather due
to the specific linear combination in which they form the full decay amplitude.
In a log-plot for N (for fixed q) as a function of the decay mass, we find a similar form

as for q (with fixed N); cf. left and right panels of Fig. 4.5. For large decay masses,
the necessary number of events rises for all processes.3 This is due to the fact that the
KT solutions converge to the Omnès function in the infinite-mass limit. However, in the
high-mass region, M ≳ 15Mπ, our approximations are no longer valid: inelastic effects
and higher partial waves play a non-negligible role. For low decay masses, approaching
the three-pion threshold, the necessary event numbers for the 1−−, 1−+, and 2++ decays
rise due to limited phase space and kinematic suppression of the Dalitz-plot borders, far
away from the ρ resonance. For 0−− this is different, since here the amplitude does not
vanish at the edge of the Dalitz plot.
The mass scan manifests several prominent features in the significance plot. For 1−+

decays, N starts at 105 events around the ω mass and then rises steeply to approximately
2 · 106 events at the ϕ mass. At higher masses, it falls off up to about 12Mπ. The very
high number of necessary events is mainly due to the fact that crossing symmetry requires
a zero in the Dalitz plot along the line t = u, and hence any differences due to rescattering
have to appear at the edge of the Dalitz plot, where the phase space is suppressed by the
Kibble function. The Dalitz plots for decays of a particle with 1−+ quantum numbers are
shown in Fig. 4.7 for different masses. Here, the difference decreases until the ρ bands are
inside the Dalitz plot, and then falls off again when the size increases further.
For the 1−− decays, we find a different behavior. The event number N starts at high

values for the ω resonance and then shows an overall decline with rising decay mass, with
two small peaks between the ϕ and ω(1650). At the ϕ resonance mass, the ρ bands are
completely inside the Dalitz plot. The Dalitz plots for different decay masses are shown in

3Note that this effect is not fully visualized by the mass range displayed in Fig. 4.5.
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Figure 4.7: Dalitz plots for the JPC = 1−+ reconstruction theorem. From top to bottom
the decay mass grows according to M = 5/7.25/8/14Mπ, while the Dalitz plot without
phase space f̃(s, t) defined via Eq. (4.30) is shown in the left and d̃KL(s, t) (Eq. (4.36)) in
the right column.
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Figure 4.8: Dalitz plots for the JPC = 1−− reconstruction theorem. From top to bottom
the decay mass grows according to M = 5/7.25/8/14Mπ, while the Dalitz plot without
phase space f̃(s, t) defined via Eq. (4.30) is shown in the left and d̃KL(s, t) (Eq. (4.36)) in
the right column.
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Figure 4.9: Sketches of different kinematic configurations for the 1−− decay with increasing
decay mass. The straight lines denote the (qualitative) position of the three ρ bands in
the Dalitz plot. The masses below the diagrams denote the decay masses for which the
specific kinematic configurations are reached.

Fig. 4.8. The first peak occurs due to the third kinematic configuration of the Dalitz plot
as shown in Fig. 4.9. The difference increases again when the three ρ bands cross in the
middle of the Dalitz plot. The second peak is also due to a peculiar structure in the Dalitz
plot: in this decay mass region we find a ring-shaped local minimum, clearly visible for an
unphysically narrow ρ width; see Appendix 4.D. The ring affects the sensitivity even for
the physical ρ width, and is responsible for the second peak.

In order to disentangle the origin of the various maxima and minima in the sensitivity
of the 1−− decays in dependence on the decay mass a little better, we separate, somewhat
unphysically, two different effects in Fig. 4.10: the size of the Dalitz plot, and modifications
of the SVAs. We once keep the SVA basis function fixed as calculated for decay mass
M = 7.5Mπ and only vary the size of the Dalitz plot; and secondly, we vice versa keep
the Dalitz plot fixed at M = 7.5Mπ, and only vary the SVA with its implicit decay-mass
dependence. The precise plot depends heavily on the choice for the fixed mass, but we
observe both peaks when using a SVA for a fixed mass and only varying the size of the
Dalitz plot. Fixing the size of the Dalitz plot and only varying the SVAs, on the other
hand, results in a rather smooth decrease of the difference towards higher masses. We
therefore conclude that the peaks in the 1−− mass dependence are dominated by the
structure of the Dalitz plot and not by the difference in the SVAs.
The main takeaway however is that with less than 105 events above the ϕmass, rescatter-

ing effects will play an important role in analyses of Dalitz plot data. For the ω resonance
and lower masses of the decaying particle, one requires more than 106 events to observe
them.
For 0−− decays, we find some small numerical fluctuations in the low-mass region, which

are due to the multiple regions where the total decay amplitude is kinematically suppressed
in the Dalitz plots, shown in Fig. 4.11: it vanishes along the three lines of s = t, s = u,
and t = u. The number of events slightly rises up to approximately N = 106 at the
mass of the ω and stays constant up to 9Mπ. At higher masses, a slow decline sets in,
including a small peak around 14Mπ. Due to the structure of the reconstruction theorem,
the differences are located near the Dalitz plot boundaries. The six regions of intensity
are then split into regions with larger pdfs for the KT equations and the Omnès solutions,
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Figure 4.10: Minimal number of events N to exclude the Omnès model at 5σ significance
for JPC = 1−−, as a function of the decay mass decomposed into two different effects.
The red line corresponds to the full solution from the right panel in Fig. 4.5. For the green
line (“mass fixed”), we fix the size of the Dalitz plot to M = 7.5Mπ and only use the SVA
varying with the running mass. For the blue line (“basis fixed”), we use the same SVA
solution for M = 7.5Mπ for all masses and vary the size of the Dalitz plot. Vertical gray
lines as in Fig. 4.5.

respectively.
For 2++ decays, the low-mass behavior looks similar to the 1−− decays. The difference,

however, is that we find a small plateau up to the ω mass, such that the number of events
is increased by orders of magnitude. Furthermore, the decline stops at the ϕ mass above
105 events, such that the behavior at larger masses is more similar to the other quantum
numbers. The Dalitz plots in Fig. 4.12 suggest that we do not have any visible features of
the ρ bands for the small decay masses. For larger masses we observe the two expected
bands in t- and u-channel with one crossing point inside the Dalitz plot. Similar to the
1−− decays the Dalitz plot is split into two regions, where the pdfs for the KT equations
and the Omnès functions are of different size. These regions vary in shape for the different
decay masses.
Finally, to test the dependence of our findings on the ρ-resonance width, we repeat

the above exercises using a phase shift extracted from a simple Breit–Wigner model with
an energy-dependent width [148], whose nominal width we fix to the smaller value Γρ =
30MeV. We find that the number of events required to distinguish rescattering effects is
significantly increased by about two orders of magnitude. This confirms the expected trend
that rescattering effects vanish in the limit of small widths. A short analytic derivation of
this limit is presented in Appendix 4.E.
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Figure 4.11: Dalitz plots for the JPC = 0−− reconstruction theorem. From top to bottom
the decay mass grows according to M = 5/7.25/8/14Mπ, while the Dalitz plot f(s, t)
defined via Eq. (4.29) is shown in the left and d̃KL(s, t) (Eq. (4.36)) in the right column.
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Figure 4.12: Dalitz plots for the JPC = 2++ reconstruction theorem. From top to bottom
the decay mass grows according toM = 5/7.25/8/14Mπ, while the Dalitz plot without the
K(s, t, u) factor, f̃(s, t), defined via Eq. (4.29) is shown in the left and d̃KL(s, t) (Eq. (4.36))
in the right column.
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4.5 Conclusion

In this chapter, we have investigated the feasibility of unambiguously identifying the
crossed-channel rescattering effects beyond the simplest isobar model in three-pion de-
cays dominated by ρπ intermediate states. For four different quantum numbers of the
decaying particles we have solved the Khuri–Treiman equations, integral equations that
sum iterated two-pion rescattering in each pion pair to all orders. We have determined the
minimal sample sizes for which Dalitz-plot distributions allow us to distinguish the KT
solutions from the naive picture that ignores all effects beyond two-body resonances. The
dependence on the mass of the decaying resonance has been studied in detail throughout.

The significance of the rescattering effects in 3π final states is heavily dependant on the
decay kinematics. In particular, the appearance and position of the ρ bands in the Dalitz
plots plays a major role. For JPC = 1−− we found a strong dependence on the mass of
the decaying particle: rescattering effects are small for the ω resonance, where at least a
few times 105 events in a Dalitz plot are necessary to identify them at 5σ significance,
while they are easily observable for the ϕ resonance, with of the order of 104 Dalitz plot
events sufficient; a similar sensitivity is expected for decaying isoscalar vector resonances
up to almost 2GeV. However, the predictive power for large masses, e.g., the three-pion
decays of the vector charmonia J/ψ or ψ′ [149], is clearly limited due to inelastic effects
and higher partial waves.
In general, the processes with zeros in the amplitude due to crossing symmetry need

more statistics to resolve rescattering effects. This is the case for the isovector 3π system
with quantum numbers 1−+ and 2++,4 as well as isoscalar 0−− states, where for a wide
mass range up to 2GeV, we predict necessary statistics between 105 and 106 events to
identify non-trivial rescattering effects at 5σ significance.
Throughout, our investigation should be understood as a pilot study towards the thor-

ough implementation of Dalitz plot fits beyond the simplest isobar models. Theoretical
limitations at this point clearly concern the constraint to Khuri–Treiman systems with
one single free parameter: it is by no means guaranteed that the neglect of additional
subtraction constants, which inter alia allow us to absorb effects of inelastic intermediate
states, is justified in all circumstances. Furthermore, decays with several relevant partial
waves, in particular isoscalar ππ S-waves with their strong coupling to KK̄ above 1GeV,
pose additional difficulties to pin down corrections to two-pion lineshapes unambiguously;
these are known to play an important role in the interpretation of resonance signals in
the a1 spectrum [150–152]. The systematic study of such more complicated KT systems
remains a both formidable and highly rewarding challenge for future research.

4.A 1−+ reconstruction theorem

This appendix is dedicated to the derivation of the 1−+ reconstruction theorem using
fixed-t dispersion relations. We start by considering the decay process

Xi(p) → πj(p1)π
k(p2)π

l(p3) , (4.40)

4The 2++ system only has a zero in one of the two scalar functions.
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where the T -matrix element is given by〈
πj(p1)π

k(p2)π
l(p3)

∣∣∣T ∣∣Xi(p)
〉
= (2π)4δ(4)(p− p1 − p2 − p3)Mijkl(s, t, u) , (4.41)

and the Mandelstam variables are defined as

s = (p− p1)
2 = (p2 + p3)

2 ,

t = (p− p2)
2 = (p1 + p3)

2 ,

u = (p− p3)
2 = (p1 + p2)

2 . (4.42)

The decomposition into the scalar amplitude and the kinematic prefactor due to the odd
intrinsic parity can be found in Eq. (4.8). The isospin structure is identical to ππ scattering
and the scalar amplitude therefore obeys the same decomposition

Hijkl(s, t, u) = δijδklHs(s, t, u) + δikδjlHt(s, t, u) + δilδjkHu(s, t, u) . (4.43)

Due to the symmetry of the process, the amplitude needs to stay invariant under simul-
taneous exchanges of isospin indices and momenta

k ↔ l , p2 ↔ p3 , t↔ u ;

j ↔ l , p1 ↔ p3 , s↔ u ;

j ↔ k , p1 ↔ p2 , s↔ t , (4.44)

which relates Hs, Ht, and Hu and leads to

Hijkl(s, t, u) = δijδklH(s, t, u) + δikδjlH(t, u, s) + δilδjkH(u, s, t) , (4.45)

where H is antisymmetric in its last two arguments. The isospin-projection operators are
defined as

P ijkl
0 =

1

3
δijδkl ,

P ijkl
1 =

1

2

(
δikδjl − δilδjk

)
,

P ijkl
2 =

1

2

(
δikδjk + δilδjk

)
− 1

3
δijδkl , (4.46)

which allow us to rewrite the isospin decomposition of the scalar amplitude according to

Hijkl(s, t, u) = P ijkl
0 H0(s, t, u) + P ijkl

1 H1(s, t, u) + P ijkl
2 H2(s, t, u) , (4.47)

resulting in

H(s, t, u) =
1

3

(
H0(s, t, u)−H2(s, t, u)

)
,

H(t, u, s) =
1

2

(
H1(s, t, u) +H2(s, t, u)

)
,

H(u, s, t) =
1

2

(
H2(s, t, u)−H1(s, t, u)

)
. (4.48)
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The partial-wave expansion of the isospin amplitudes proceeds via [145]

HI(s, zs) =
∑
ℓ=1

P ′
ℓ(zs)a

I
ℓ (s) . (4.49)

A fixed-t dispersion relation for H(s, t, u) yields

H(s, t, u) = P t
n−1(s, u) +

sn

2πi

∫ ∞

4M2
π

ds′
discs′H(s′, t, u(s′))

s′n(s′ − s)

+
un

2πi

∫ ∞

4M2
π

du′
discu′H(s(u′), t, u′)

u′n(u′ − u)
, (4.50)

where n determines the number of subtractions and P t
n−1(s, u) is a polynomial in s and u

of order n− 1 with fixed t. We can insert the discontinuities according to

discs′ H(s′, t, u(s′)) = 0 ,

discu′ H(s(u′), t, u′) =
1

2
disc a11(u

′) , (4.51)

neglecting all discontinuities in partial waves with ℓ ≥ 2. If we employ fixed-s and fixed-
u dispersion relations in strict analogy to the above, we find that each fixed-variable
dispersion relation misses the integral along the cut of the fixed Mandelstam variable.
This missing integral can be subtracted from the polynomial if the number of subtraction
constants is sufficiently high. This procedure is commonly referred to as symmetrizing the
fixed-variable dispersion relations; details on general properties can be found in Ref. [87].
The result is given as

H(s, t, u) = Pn−1(s, t, u)−
tn

4πi

∫ ∞

4M2
π

dt′
disc a11(t

′)

t′n(t′ − t)
+
un

4πi

∫ ∞

4M2
π

du′
disc a11(u

′)

u′n(u′ − u)
, (4.52)

which can be simplified to
H(s, t, u) = H(t)−H(u) , (4.53)

where

H(s) = Pn−1(s)−
sn

4πi

∫ ∞

4M2
π

ds′
disc a11(s

′)

s′n(s′ − s)
. (4.54)

The ambiguity of this decomposition is discussed in Sec. 4.2.2. Note that in order to
consistently define the SVAs from the symmetrized version of H(s, t, u), n ≤ 2. The same
holds true in the cases of 1−− and 2++ (neglecting angular momenta beyond P -waves).
For the 0−− decays, n ≤ 3 subtractions can be implemented.

4.B 2++ reconstruction theorem

In this appendix, we derive the reconstruction theorem for JPC = 2++, applying the
approximations needed for our analysis. We start with the decay process

T i(p) → πj(p1)π
k(p2)π

l(p3) , (4.55)
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where the Mandelstam variables are defined in Eq. (4.42). We can write down the ampli-
tude in terms of two scalar amplitudes B and C [153],

Mijkl(s, t, u) = δijδklMs(s, t, u) + δikδjlMt(s, t, u) + δilδjkMu(s, t, u) ,

Ms(s, t, u) = i
√
2ϵµνK

µ [(p2 + p3)
νBs(s, t, u) + (p2 − p3)

νCs(s, t, u)] ,
Mt(s, t, u) = i

√
2ϵµνK

µ [(p1 + p3)
νBt(s, t, u) + (p1 − p3)

νCt(s, t, u)] ,
Mu(s, t, u) = i

√
2ϵµνK

µ [(p2 + p1)
νBu(s, t, u) + (p2 − p1)

νCu(s, t, u)] , (4.56)

with the isospin indices i, j, k, and l. The amplitude needs to be invariant under the
symmetry transformations in Eq. (4.44), which gives us the following relations between
the different B and C functions:

Bt(s, t, u) = −Bs(t, s, u) , Ct(s, t, u) = −Cs(t, s, u) ,
Bu(s, t, u) = −Bs(u, t, s) , Cu(s, t, u) = −Cs(u, t, s) . (4.57)

We find that Bs is antisymmetric in the last two arguments, while Cs is symmetric. This
helps us to rewrite the amplitude in terms of Bs and Cs, and we drop the subscript s in the
following. The isospin-projection operators are defined in Eq. (4.46). The corresponding
isospin amplitude can be decomposed in analogy to Eq. (4.56) using

Mijkl(s, t, u) = P ijkl
0 M0(s, t, u) + P ijkl

1 M1(s, t, u) + P ijkl
2 M2(s, t, u) ,

MI(s, t, u) = i
√
2ϵµνK

µ
[
(p2 + p3)

νBI(s, t, u) + (p2 − p3)
νCI(s, t, u)

]
, (4.58)

where I denotes the s-channel isospin. This leads to the following relations including the
scalar isospin amplitudes:

B(s, t, u) = 1

3

[
B0(s, t, u)− B2(s, t, u)

]
,

C(s, t, u) = 1

3

[
C0(s, t, u)− C2(s, t, u)

]
,

B(t, s, u) = 1

4

[
B1(s, t, u) + B2(s, t, u) + 3C1(s, t, u) + 3C2(s, t, u)

]
,

C(t, s, u) = 1

4

[
B1(s, t, u) + B2(s, t, u)− C1(s, t, u)− C2(s, t, u)

]
,

B(u, t, s) = 1

4

[
−B1(s, t, u) + B2(s, t, u) + 3C1(s, t, u)− 3C2(s, t, u)

]
,

C(u, t, s) = 1

4

[
B1(s, t, u)− B2(s, t, u) + C1(s, t, u)− C2(s, t, u)

]
. (4.59)

To find the relation between the scalar functions B(s, t, u), C(s, t, u) and partial-wave
amplitudes, we evaluate the isospin-projected amplitude in the rest frame of the s-channel,
resulting in

MI
λ=0(s, t, u) = 0 ,

MI
λ=1(s, t, u) = β(s)

[
BI(s, t, u) sin θs − ξ(s)CI(s, t, u) sin θs cos θs

]
,

MI
λ=2(s, t, u) = α(s)CI(s, t, u) sin2 θs , (4.60)

56



4.B 2++ reconstruction theorem

where the kinematic functions are defined as

α(s) = −
λ
1/2
T (s)λπ(s)

4
√
2 s

, β(s) = −λT (s)λ
1/2
π (s)

8
√
2sM

,

ξ(s) =

√
1− 4M2

π

s

s+M2 −M2
π

λ
1/2
T (s)

, (4.61)

and

λT (s) = λ(s,M2,M2
π) , λπ(s) = λ(s,M2

π ,M
2
π) . (4.62)

Parity enforces the helicity-0 amplitude to vanish. We are therefore left with helicity-1 and
helicity-2 amplitudes, whose partial-wave expansions start at P - andD-waves, respectively.
The MI

λ contain kinematic singularities, but have well-defined partial-wave expansions for
fixed isospin I:

MI
λ(s, t, u) =

∑
j≥|λ|

(2j + 1)aλIj (s)djλ0(zs)

=
∑
j≥|λ|

(2j + 1)Kjλ(s, t, u)â
λI
j (s)d̂jλ0(zs) , (4.63)

where in particular [51, 153]

K11(s, t, u) =
1

4
√
s
sin θsλ

1/2
π (s) ,

K21(s, t, u) =
1

4
√
s
sin θsλπ(s)λ

1/2
T (s) ,

K22(s, t, u) =
1

16s
sin2 θsλπ(s)λ

1/2
T (s) , (4.64)

and the Wigner d-matrices are given by

djλ0(zs) = d̂jλ0(zs) sin
|λ| θs , d110(zs) = −sin θs√

2
,

d210(zs) = − 3√
6
sin θs cos θs , d220(zs) =

3

2
√
6
sin2 θs . (4.65)

Here, âλIj (s) are the partial-wave amplitudes, which are however not yet free of kinematic

constraints; see below. We use the relation between MI
1, C, and B to reduce B to its

leading partial waves. Neglecting all higher ones (denoted by ellipses), we find

BI(s, t, u) =
1

β(s) sin θs
MI

1(s, t, u) + ξ(s) cos θsCI(s, t, u)

=
6M

λT (s)
â1I1 (s) +

16

3
√
3
λ1/2π (s)λ

1/2
T (s)zsâ

1I
2 (s) + ξ(s)zsCI(s, t, u) + . . .

≡ ã1I1 (s) + χ(s)zsã
1I
2 (s) + ξ(s)zsCI(s, t, u) + . . . . (4.66)

Note that a kinematic constraint needs to be enforced on â1I1 to cancel the zeros of λT (s).
As a consequence, ã1I1 is now a partial wave free of any kinematic singularities and zeros,
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and is therefore suitable for a generalized Omnès representation. In strict analogy CI can
be expressed via

CI(s, t, u) =
1

α(s) sin2 θs
MI

2(s, t, u) = −5
√
3

8
â2I2 (s)

≡ −ã2I2 (s) , (4.67)

employing the partial-wave expansion of MI
2. Using that the P -waves are pure isospin I =

1 and D-waves need to be I = 0 or I = 2, we can give the relations for the discontinuities
of B and C, e.g.,

discs′ B(s′, t, u(s′)) =
1

3

(
χ(s′)zs′disc ã

10
2 (s′)− ξ(s′)zs′disc ã

20
2 (s′)

− χ(s′)zs′disc ã
12
2 (s′) + ξ(s′)zs′disc ã

22
2 (s′)

)
,

discu′ B(s(u′), t, u′) = 1

4

(
− disc ã111 (u′) + 3disc ã222 (u′)

+ χ(u′)zu′disc ã122 (u′)− ξ(u′)zu′disc ã222 (u′)
)
. (4.68)

Writing down a fixed-t dispersion relation for B

B(s, t, u) = P t
n−1(s, u) +

sn

2πi

∫ ∞

4M2
π

ds′
discs′ B(s′, t, u(s′))

s′n(s′ − s)

+
un

2πi

∫ ∞

4M2
π

du′
discu′ B(s(u′), t, u′)

u′n(u′ − u)
, (4.69)

and inserting the expansion from Eq. (4.66) into partial waves in fixed-s, -t, and -u dis-
persion relations and symmetrizing these equations yields

B(s, t, u) = B1(t)− B1(u) + (u− s)B2(t) + (s− t)B2(u)

− 3C2(t) + 3C2(u) + (t− u)

(
B0(s)−

4

3
B2(s)

)
,

C(s, t, u) = B1(t) + B1(u) + (u− s)B2(t)− (s− t)B2(u)

+ C2(t) + C2(u)−
(
C0(s)−

4

3
C2(s)

)
, (4.70)

where

B1(s) = PB1
n−1(s) +

sn

8πi

∫ ∞

4M2
π

ds′
disc ã111 (s′)

s′n(s′ − s)
,

B0(s) = PB0
n−2(s) +

sn−1

6πi

∫ ∞

4M2
π

ds′
χ(s′)disc ã102 (s′)− ξ(s′)disc ã202 (s′)

κ(s′)s′n−1(s′ − s)
,

B2(s) = PB2
n−2(s) +

sn−1

8πi

∫ ∞

4M2
π

ds′
χ(s′)disc ã122 (s′)− ξ(s′)disc ã222 (s′)

κ(s′)s′n−1(s′ − s)
,

C0(s) = P C0
n−1(s) +

sn

6πi

∫ ∞

4M2
π

ds′
disc ã202 (s′)

s′n(s′ − s)
,

C2(s) = P C2
n−1(s) +

sn

8πi

∫ ∞

4M2
π

ds′
disc ã222 (s′)

s′n(s′ − s)
. (4.71)
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At this point we neglect all SVAs that contain discontinuities for D-waves. Therefore,
only B1 is left, which contains the I = 1 P -wave. The inhomogeneity is defined via

B1(s) + B̂1(s) =
1

4
ã111 (s) . (4.72)

We can find the partial wave by projecting Eq. (4.66):

ã1I1 (s) =
3

4

∫ 1

−1
dzs(1− z2s )

(
BI(s, t, u)− ξ(s)zsCI(s, t, u)

)
, (4.73)

and therefore

B̂1(s) =
3

4

[
⟨(1− z2s )B1⟩ − ξ(s)⟨(1− z2s )zsB1⟩

]
, (4.74)

by inserting

B1(s, t, u) =
1

2

[
B(t, s, u) + 3C(t, s, u)− B(u, t, s) + 3C(u, t, s)

]
= 4B1(s) + B1(t) + B1(u) ,

C1(s, t, u) =
1

2

[
B(t, s, u)− C(t, s, u) + B(u, t, s) + C(u, t, s)

]
= B1(t)− B1(u) . (4.75)

4.C D-wave projection

This appendix is an extension of the numerical treatment of Khuri–Treiman equations
for S- and P -waves [82, 84, 154] to D-waves. Even though we do not introduce D-wave
discontinuities in our analysis, the singularity structure of the inhomogeneity integral in
the 2++ reconstruction theorem is of this type. The projection integrals from Appendix 4.B
can be written in the form

⟨zns B⟩ =
2n

κn+1(s)

∫ s+(s)

s−(s)
ds′(s′ − σ)nB(s′) , (4.76)

where

σ =
1

2
(3s0 − s) , zs =

2

κ(s)
(s′ − σ) , s±(s) =

1

2
(3s0 − s± κ(s)) . (4.77)

Therefore, the projection integral has a maximal singularity of degree 5/2 at the pseu-
dothreshold sIII = (M−Mπ)

2.5 The goal is to tame the effect of this singularity. Thereby,
we rewrite the integrals into pieces that are analytically solvable and ones that are numer-
ically stable. We start by explicitly rewriting

B̃(s) = κ5(s)B̂(s) , (4.78)

which leads to the following form of the dispersive integral:

I(s) =

∫ ∞

sth

ds′

s′n
sin δ(s′)B̃(s′)

κ5(s′)|Ω(s′)|(s′ − s∓ iϵ)
. (4.79)

5Note the additional factor from the ξ function.
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The singularities at the scattering thresholds sth = 4M2
π and sIV = (M + Mπ)

2 are
removable, since the integration path at these values is point-like. Furthermore, we define
a function ν(s) to account for the correct analytic continuation:

ν(s) =


√
1− sth

s

√
sIV − s for s < sIV

i

√
1− sth

s

√
s− sIV for s > sIV

. (4.80)

We keep the singularity at the pseudothreshold explicit in the dispersion integral and
define a function T (s) containing all other functions,

T (s) =
sin δ(s)B̃(s)
snν5(s)|Ω(s)|

. (4.81)

The dispersion integral is then given by

I(s) =

∫ ∞

sth

ds′
T (s′)

(sIII − s′)5/2(s′ − s∓ iϵ)
. (4.82)

Using this form we present the procedure to handle the Cauchy and the pseudothreshold
singularities for D-waves. This is achieved by splitting the integrals into analytic parts
and numerical integrals with removable singularities. In the following we consider two
different regions for s:

1. s ∈ R ∧ s < sth or s ∈ C
Here, s cannot hit the Cauchy singularity, since it is outside of the integration
range. Therefore, we only need to handle the critical point s′ = sIII. For this
purpose we add and subtract an expansion of T up to the second derivative around
the pseudothreshold:

I(s) =

∫ Λ2

sth

ds′
T̃ (s′)

(sIII − s′)5/2(s′ − s)
+ T (sIII)Q5/2(s, sth,Λ

2)

+ T ′(sIII)Q3/2(s, sth,Λ
2) + T ′′(sIII)Q1/2(s, sth,Λ

2) ,

T̃ (s) = T (s)− T (sIII)− (sIII − s)T ′(sIII)− (sIII − s)2T ′′(sIII) . (4.83)

The procedure to calculate the derivatives is explained at the end of this appendix.
Furthermore, we introduce a high-energy cutoff Λ2. In this form the numerical
integral converges and the Q functions are analytically given by

Q 2n+1
2

(s, x, y) =

∫ y

x

ds′
√
sIII − s′

2n+1
(s′ − s)

=
1

sIII − s

(
−2i

(2n− 1)
√
y − sIII

2n−1 − 2

(2n− 1)
√
sIII − x

2n−1

+Q 2n−1
2

(s, x, y)

)
∀n ∈ N>0 ,
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Q 1
2
(s, x, y) =

1√
sIII − s

(
log

√
sIII − s+

√
sIII − x√

sIII − s−
√
sIII − x

− 2i arctan

√
y − sIII√
sIII − s

)
. (4.84)

This recursive relation is proven by induction.

2. s ∈ R ∧ s > sth

Here, we introduce an artificial cutoff p = (sIII+s)/2 to separate the two singularities
into different integrals. First, we investigate s < sIII, where the Cauchy singularity
at s′ = s is in the integral from sth to p and the pseudothreshold singularity is in
the integral from p to Λ2. We therefore rewrite the integral in the following form:

I(s) =

∫ p

sth

ds′
T (s′)− T (s)

(sIII − s′)5/2(s′ − s)
+ T (s)R5/2(s, sth, p)

+

∫ Λ2

p
ds′

T̃ (s′)

(sIII − s′)5/2(s′ − s)
+ T (sIII)Q5/2(s, p,Λ

2)

+ T ′(sIII)Q3/2(s, p,Λ
2) + T ′′(sIII)Q1/2(s, p,Λ

2) , (4.85)

where the analytic form of R is given by

R 2n+1
2

(s, x, y) =

∫ y

x

ds′
√
sIII − s′

2n+1
(s′ − s∓ iϵ)

=
1

sIII − s

(
2

(2n− 1)
√
sIII − y2n−1 − 2

(2n− 1)
√
sIII − x

2n−1

+R 2n−1
2

(s, x, y)

)
∀n ∈ N>0 ,

R 1
2
(s, x, y) =

1√
sIII − s

(
log

√
sIII − x+

√
sIII − s√

sIII − x−
√
sIII − s

+ log

√
sIII − s−

√
sIII − y√

sIII − s+
√
sIII − y

± iπ

)
. (4.86)

These equations are again proven by induction.

Next we investigate the case s > sIII, where the Cauchy singularity at s′ = s is in
the integral from p to Λ2 and the pseudothreshold singularity is in the integral from
sth to p. Therefore, the integral can be rewritten as

I(s) =

∫ Λ2

p
ds′

T (s′)− T (s)

(sIII − s′ ∓ iϵ)5/2(s′ − s)
+ T (s)R5/2(s, p,Λ

2)

+

∫ p

sth

ds′
T̃ (s′)

(sIII − s′)5/2(s′ − s)
+ T (sIII)Q5/2(s, sth, p)

+ T ′(sIII)Q3/2(s, sth, p) + T ′′(sIII)Q1/2(s, sth, p) . (4.87)
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The remaining integrals can be evaluated numerically. We therefore expand T (s) in a
series around the pseudothreshold:

T (s) = T (sIII) + (sIII − s)T ′(sIII) + (sIII − s)2T ′′(sIII)

+
√
sIII − s

5
dD + (sIII − s)3eD + . . .

= aD + bD(sIII − s) + cD(sIII − s)2 + dD
√
sIII − s

5
+ eD(sIII − s)3 + . . . ,

T̃ (s)
√
sIII − s

5 = dD + eD
√
sIII − s+ . . . . (4.88)

This expansion is matched both slightly above and below the pseudothreshold. For each
of these the five constraints are fixed by the function at pseudothreshold sIII and two
matching points sIII ± ϵ and sIII ± 4ϵ as well as the first and second derivatives at the
matching point sIII ± ϵ. The parameters are then evaluated via

f(x, i, j, k, l,m, n, p) = − 1

nϵp
(
iT (x) + jT (4x− 3sIII) + kT (sIII) + lϵT ′(x) +mϵ2T ′′(x)

)
(4.89)

and

aD = T (sIII) ,

bD = f(x,−112, 1, 111,−80,−32, 28, 1)
∣∣
x=sIII−ϵ

,

cD = f(x, 126,−3,−123, 114, 68, 14, 2)
∣∣
x=sIII−ϵ

,

dD = −2f(x, 28,−1,−27, 24, 18, 7, 5/2)
∣∣
x=sIII−ϵ

,

eD = f(x, 56,−3,−53, 44, 40, 28, 3)
∣∣
x=sIII−ϵ

(4.90)

below pseudothreshold and

aD = T (sIII) ,

bD = f(x, 112,−1,−111,−80, 32, 28, 1)
∣∣
x=sIII+ϵ

,

cD = f(x, 126,−3,−123,−114, 68, 14, 2)
∣∣
x=sIII+ϵ

,

dD = −2if(x, 28,−1,−27,−24, 18, 7, 5/2)
∣∣
x=sIII+ϵ

,

eD = f(x,−56, 3, 53, 44,−40, 28, 3)
∣∣
x=sIII+ϵ

(4.91)

above the pseudothreshold.

4.D Interference ring

When studying the Dalitz plots of the 1−− decays, we find a remarkable property induced
by the symmetry of the process: a ring-shaped local minimum in the logarithmic intensity
that crosses all three intersection points of the ρ bands. However, this only becomes visible
when using an unphysically narrow ρ resonance. We again (cf. Sec. 4.4) employ a phase
shift from a simple Breit–Wigner model with the energy-dependent width from Ref. [148]
and the nominal width Γρ = 30MeV; therefore the resonance bands in the Dalitz plots are
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Figure 4.13: Logarithm of the intensity in the Dalitz plots for JPC = 1−− with smaller ρ
width, see Appendix 4.D. From left to right, we show the decay massesM = 10/11/14Mπ.
The blue line is the solution of Eq. (4.95).

much narrower. When looking at plots with M2 > 3(M2
ρ −M2

π), we obtain an interference
ring that crosses all three intersection points of the three ρ bands. Transforming to the
well-known Dalitz plot variables [155–157]

x =

√
3

2MQ
(t− u) ,

y =
3

2MQ

(
(M −Mπ)

2 − s
)
− 1 ,

Q =M − 3Mπ (4.92)

renders the ring to a perfect circle. Using the three intersection points s = t = M2
ρ ,

s = u =M2
ρ , and t = u =M2

ρ , we obtain three equations of the form

(x− xc)
2 + (y − yc)

2 − r2 = 0 . (4.93)

These can be solved for the center and the radius of the circle in this parameterization:

xc = 0 , yc = 0 ,

r2 =

(
3(M2

ρ −M2
π)−M2

MQ

)2

. (4.94)

Reverting back to the Mandelstam variables, we find that the ring can be determined
using the formula for the circle x2 + y2 − r2 = 0 and solving for

t(s) =
1

2

(
M2 + 3M2

π − s±
√
M1(s)M2(s)

)
,

M1(s) =M2 + 3M2
π − s− 2M2

ρ ,

M2(s) =M2 + 3
(
M2

π + s− 2M2
ρ

)
, (4.95)

in the s domain

−M
2

3
−M2

π + 2M2
ρ ≤ s ≤M2 + 3M2

π − 2M2
ρ . (4.96)

This allows us to plot the interference ring in the Dalitz plot (cf. Fig. 4.13). For large
masses, a sizeable part of it is outside of the Dalitz plot or close to its boundary, where
the phase space is small. Using our realistic parameterization for the ρ resonance, this
feature is washed out by the broadness of the ρ resonance.
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4.E Rescattering effects for narrow resonances

We assume that for a narrow-width resonance, the Omnès function behaves approximately
like a Breit–Wigner parameterization [96]

Ω(s) =
M2

M2 − s− iMΓ
, (4.97)

where the phase is given by

δ(s) = arctan

(
MΓ

M2 − s

)
. (4.98)

This assumption is justified since a zero-width phase given by

δ(s) = πθ(s−M2) . (4.99)

leads to

Ω(s) =
M2

M2 − s
, (4.100)

which is a Breit–Wigner function with zero width. By using Eqs. (4.97) and (4.98), the
phase-shift-dependent fraction inside the dispersion integral over the inhomogeneity in
Eq. (4.28) reads

sin δ(s)

|Ω(s)|
=

Γ

M
. (4.101)

The general KT solution in Eq. (4.28) therefore reduces to

X (s) = Ω(s)

(
Pn−1(s) +

Γ

M
· s

n

π

∫ ∞

4M2
π

ds′

s′n
X̂ (s′)

(s′ − s)

)
, (4.102)

making it amply clear that all crossed-channel rescattering effects are suppressed in the
limit of a narrow-width resonance for Γ → 0.
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Chapter 5

Towards a unified description of hadron
scattering at all energies

5.0 Prologue

The content of this chapter is based on the preprint

• D. Stamen, D. Winney, A. Rodas, C. Fernández-Ramı́rez, V. Mathieu, G. Montaña,
A. Pilloni, and A. P. Szczepaniak, Towards a unified description of hadron scattering
at all energies, (2024) [arXiv:2409.09172 [hep-ph]] ,

which has been submitted for publication in Physical Review D.
This project originated during the “Scattering theory” course in the “Global Classroom

Initiative” at Indiana University, where the idea to combine the properties of Khuri–
Treiman equations at low energies with the high-energy behavior of Regge theory was
proposed by Bastian Kubis and Adam Szczepaniak. In the beginning, the author of this
thesis mainly worked with Miguel Albaladejo and Adam Szczepaniak on different possible
models that might produce such a behavior. Thereby, especially the analytic properties
of the gaussian hypergeometric functions were investigated.
The model that is presented in this chapter was developed by the author of this thesis in

cooperation with Arkaitz Rodas, Adam Szczepaniak, and Daniel Winney. This happened
over an extended period of time, where many different versions were tested and discussed.
While Khuri–Treiman equations fulfill unitarity, crossing symmetry, and analyticity

in the Mandelstam variables, they are built from a truncated partial-wave expansion.
Therefore, they are clearly not analytic in the j-plane and are only applicable at low
energies.
We build a model of isobars that can be deployed in all three channels of 2 → 2 scatter-

ing. These isobars depend on a Regge trajectory in the direct channel and a combination
of crossed-channel Mandelstam variables. Furthermore, we introduce a scale parameter
that determines the position of the low- and high-energy regimes. The general isobar is
based on Γ functions and the regularized Gaussian hypergeometric function. It is therefore
analytic in all Mandelstam variables and, due to the Regge trajectory, it is analytic in the
spin, as required from Regge theory. Crossing symmetry can be incorporated by splitting
the total amplitude into a crossing-symmetric combination of isobars, which is appropriate
for the investigated process. We show that in the high-energy region, above the chosen
scale, the isobars behave exactly as expected from Regge theory if the Regge trajectories
fulfill certain properties. Further, the low-energy region is dominated by an infinite sum
of poles in the j-plane. We derive that the poles and residues show the expected behav-
ior. Furthermore, a non-resonant isobar is introduced, which can resemble the Pomeron
contribution.
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It is shown that the Regge trajectories can fulfill all the properties that are needed for
the Regge behavior of the isobars. Additionally, the trajectory is an analytic function in
its Mandelstam variable via a once-subtracted dispersion relation. Unitarity is not built
into the isobar model, but using an appropriate choice for the Regge trajectory, it can
be incorporated approximately. Therefore, the real and imaginary parts of the Regge
trajectories are connected via a coupled integral equation.
To demonstrate that this model is capable of reproducing the physical low-energy struc-

ture, we apply it to ππ → ππ scattering as an initial test. Thereby, we only employ the
direct-channel contribution and neglect all crossed-channel effects. We fit the I = 1 P -
wave and the I = 0 S-wave from the Madrid group [58]. The numerical results shown
here are the ones obtained by Daniel Winney; they were, however, cross-checked by the
author of this thesis and Arkaitz Rodas. The plots in Ref. [3] are produced by Daniel
Winney, while the ones incorporated in this chapter are redone by the author of this
thesis. For the P -wave fit, it is sufficient to use a single trajectory, while the S-wave fit
needs more freedom in order to reproduce the Adler zero. This is achieved by additionally
incorporating the f2 and Pomeron trajectories. Furthermore, imposing unitarity on the
trajectory level is more complicated than in the P -wave case. Solving the coupled integral
equation is achieved by iteration. The first real part is modeled by an asymptotic square
root function and the dispersion integral is recalculated, after which the partial waves are
refitted iteratively until neither the parameters nor the resulting partial wave change. For
the S-wave, the real and imaginary parts decouple, and we are able to find a solution that
can be fitted directly with no need of employing the iterative procedure.
Since the Regge trajectories are analytic functions, we can search for roots in |j −α(s)|

on the second Riemann sheet. Additionally, we are not only able to find the poles that
are located close to the fit region, but we can also search for the location of excitations.
The pole positions and residues are calculated by the author of this thesis and the results
are cross-checked by Arkaitz Rodas and Daniel Winney.
The next—more complicated—test would involve a combined fit to the partial waves

including all crossed-channel contributions. Also, further generalizations, as decay pro-
cesses, coupled channels, unequal masses, and particles with spin, might be explored in
the future.
The main parts of the following text are written by Daniel Winney and the author of

this thesis. Arkaitz Rodas cross-checked all the equations presented here and helped to
polish the presentation of the model. César Fernández-Ramı́rez, Vincent Mathieu, Glòria
Montaña, Alessandro Pilloni, and Adam Szczepaniak made useful comments on the text
and instructive discussions with them helped to further improve this project.

5.1 Introduction

In the middle of the twentieth century, a multitude of new strongly interacting particles
that decay into pions and nucleons were discovered. To interpret this quickly growing
spectrum, Chew, Frautschi, and contemporaries conjectured that these particles must all
be bound states of an underlying force analogous to those from non-relativistic potential
scattering [57, 69]. Crossing symmetry, however, requires that the force carriers of the
relativistic theory, i.e., the particles being exchanged, should be those very same bound
states and thus these particles must generate themselves through their own interactions.
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This idea was at the heart of the original bootstrap program, which aimed to examine
the structure of relativistic scattering amplitudes in hopes that, when constrained with all
fundamental symmetries, a unique self-consistent theory remained [158–160].
Ultimately, the constraints of general S-matrix principles [37, 38] and discrete symme-

tries are not enough to define a unique theory of strong interactions [161–163]. It was
realized that hadrons are indeed composite particles, and the underlying dynamics are
actually of the quarks and gluons within quantum chromodynamics (QCD) and not of
a self-generating bootstrap [164, 165]. Despite extensive theoretical developments since
then [21, 166–174], the non-perturbative nature of QCD at low energies means a complete
theory of hadronic resonances in terms of those constituents is still an open problem.
More than 50 years since the discovery of QCD, the primary toolkit of hadron phe-

nomenology remains remarkably similar: general amplitudes, satisfying as many symme-
tries and basic S-matrix principles as possible, are constructed to extract meaningful phys-
ical information from experimental data [173]. The key difference is that these amplitudes
are now employed to complement and test the predictions from QCD-based approaches
such as lattice QCD [171, 175], chiral perturbation theory (ChPT) [176–179], and other
effective field theories (EFTs) [170, 174, 180, 181].

The specific functional forms used to parameterize amplitudes typically depend on the
energies of interest. In low-energy processes, for example, tools such as dispersion relations
have allowed high-precision extraction of pole parameters, while including constraints
of unitarity and crossing symmetry at the level of individual partial waves (PWs) (cf.
Refs. [182, 183] and references therein). At high energies, on the other hand, Regge-based
amplitudes, which incorporate an infinite number of PWs, are typically used to describe
the phenomenology of peripheral scattering [184, 185].
Because QCD generates both the resonances at low energies as well as the exchanges at

high energies, a complete theory of bound states in QCD should still be able to describe
both resonance and Regge exchange phenomena, e.g., in the finite-energy sum rules [186].
Indeed, Regge inputs are often used to model high-energy contributions to constrain the
low-energy PWs (cf., e.g., Ref. [182]), while resonance information informs the construc-
tion of Regge trajectories (RTs), which parameterize high-energy amplitudes (cf., e.g.,
Ref. [187–189]). A “complete” amplitude, however, which smoothly connects these scat-
tering regimes, has never been satisfactorily established. Such an amplitude would provide
a connection between resonances and their properties in the angular-momentum plane,
which have been argued to give clues to its inner structure [190, 191], and thus give
important complementary information to other theoretical approaches.
Historically, attempts at such an all-energies amplitude have fallen into the class of

dual models, the most famous of which was proposed by Veneziano [76]. These ampli-
tudes postulate that the poles in different channels are “dual” to each other, meaning
the sum over poles in one channel will generate the poles in the crossed channel when
analytically continued to a different kinematical region [192]. The resulting structure is
fundamentally different than the typical construction of crossing symmetric “interference”
or “isobar” amplitudes, where the poles of each channel are summed coherently such as in
Feynman-diagram-based theories [193]. While dual amplitudes offered an appealing and
relatively simple connection between low- and high-energy scattering, they were ultimately
too restrictive to describe experimental data at any modern level of precision [53].
State-of-the-art formalisms that do allow high-precision parameterizations, such as those
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based on Khuri–Treiman (KT) [97] equations, work with a truncated set of PWs. As a
result, they no longer incorporate the constraints of analyticity in angular momentum and
therefore have uncontrolled behavior at high energies. Usually, this problem is tackled by
introducing subtractions, which suppress high-energy contributions and render the neces-
sary dispersion integrals convergent. This requires fixing additional subtraction constants
by fitting to data or matching to other theory predictions. These formalisms are thus typi-
cally restricted to limited ranges of kinematics and find most applications in meson decays,
where the phase space is limited by the mass of the decaying particle [2, 80, 81, 100–116].
Other formalisms using Roy(-like) [58, 194] or Roy–Steiner [195] equations do incorpo-
rate an a priori known number of subtractions, but require a phenomenological matching
between low- and high-energy regions. Starting from a full amplitude with the correct
asymptotic behavior would, in principle, alleviate the need for such subtractions or match-
ing.
In this chapter, we revisit the quest for an amplitude that satisfies all necessary con-

straints and simultaneously describes a wide breadth of scattering phenomena at all ener-
gies and scattering angles. We propose a new model for the 2 → 2 scattering amplitude
of spinless particles which:

1. is crossing symmetric;

2. is analytic in all energy variables except for cuts at real values;

3. is analytic in angular momentum;

4. satisfies the Froissart–Martin bound [72, 73] and Mandelstam representation with a
finite number of subtractions [40, 196];

5. has resonances appearing simultaneously as poles in the angular-momentum plane
and on unphysical sheets of the energy plane;

6. exhibits Regge behavior at high energies with fixed momentum transfer;

7. and exhibits scaling behavior at high energies with fixed scattering angle.

This is accomplished by the interplay of two pieces: a model for the amplitude itself,
which imposes structure expected from S-matrix and Regge theory, and a model for the
RTs, which feed in the dynamical information of particle properties. This two-component
formalism allows properties 1 to 7 to be satisfied by construction. Unitarity, on the
other hand, is not manifestly satisfied and needs to be imposed numerically through the
specific implementation of the RTs. As such, we propose a scheme in the same spirit as
EFTs, which allows unitarity to be imposed for energies of interest via power counting in
momentum barrier factors.
This chapter is organized as follows: the model for the amplitude is constructed from

crossing symmetric combinations of “isobars”, i.e., functions that contain the full tower
of poles with any spin in a single energy variable. Each isobar is parameterized by RTs
appearing in a hypergeometric function as discussed in Sec. 5.2. We thereby identify the
requirements of the RTs to ensure the model has the desired properties in the limits of
interest. In Sec. 5.3, we discuss the construction of RTs, which satisfy those requirements
while being flexible enough to fit data. The utility of our model as a phenomenological
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tool is demonstrated in Sec. 5.4 by applying it to elastic ππ scattering. We show how our
model can be generalized to arbitrary isospin, extract the RTs of the ρ(770) and σ/f0(500)
mesons using elastic unitarity, and compare with existing literature. Finally, a summary
including a discussion of future applications and generalizations is found in Sec. 5.5.
To streamline the presentation, several details are relegated to the appendices: a col-

lection of useful formulae and identities relevant to the properties of the hypergeometric
functions is included in Appendix 5.A. The high-energy limit at fixed scattering angle and
the possible connection to inter-meson parton dynamics is explored in Appendix 5.B. In
Appendix 5.C, we discuss general features of dual models and explore how our model fits
to the usual notions of duality. An explicit demonstration of the crossing properties of the
isobar decomposition when generalized to ππ scattering in the isospin limit is provided
in Appendix 5.D. Lastly, Appendix 5.E contains technical details of extracting the pole
locations and residues of resonances using this formalism.

5.2 Hypergeometric isobars

We first consider the elastic scattering of identical and spinless particles

ϕ1 (p1) + ϕ2 (p2) → ϕ3 (p3) + ϕ4 (p4) , (5.1)

with p2i =M2 and define the usual Mandelstam variables [40]

s = (p1 + p2)
2 = (p3 + p4)

2 ,

t = (p1 − p3)
2 = (p2 − p4)

2 , (5.2)

u = (p1 − p4)
2 = (p2 − p3)

2 ,

which satisfy the on-shell condition s+ t+ u = 4M2. Because the particles are identical,
crossing symmetry requires the single function T (s, t, u), denoting the scattering amplitude
of the reaction Eq. (5.1), to also simultaneously describe the reactions ϕ1 + ϕ̄3 → ϕ̄2 + ϕ4
and ϕ1 + ϕ̄4 → ϕ3 + ϕ̄2 through the analytic continuation of momenta, or equivalently the
interchange of Mandelstam variables.
The amplitude is expressible as an infinite sum of PWs in a given channel. For instance,

we may write [51, 197]

T (s, t, u) =
∞∑
j=0

(2j + 1)Pj(zs) tj(s) , (5.3)

in terms of the cosine of the s-channel scattering angle zs and the s-channel PWs [145],

tj(s) =
1

2

∫ 1

−1
dzs Pj(zs) T (s, t(s, zs), u(s, zs)) , (5.4)

where Pj(zs) are the Legendre polynomials. The crossed-channel variables are related to
the angular variable zs via

t(s, zs) = −2 q2s (1− zs) , (5.5a)

u(s, zs) = −2 q2s (1 + zs) , (5.5b)
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where qs =
√
s− 4M2/2 is the modulus of the 3-momentum of the initial-state or final-

state particles in the s-channel center-of-mass (CM) frame. Equation (5.5) can be inverted
to express the angular variable in terms of the Mandelstam variables:

zs =
t− u

4 q2s
. (5.6)

The PWs in Eq. (5.4) are analytic functions of energy, which contain branch cuts from
the lowest multi-particle threshold, s = 4M2 to infinity on the right-hand side of the
complex s-plane and another from s = 0 to negative infinity on the left, referred to as right-
hand cut (RHC) and left-hand cut (LHC), respectively. The RHC singularities arise from
unitarity in the direct channel, in this case the s-channel, while the LHC is related to the
dynamics of the crossed channels. Because the dependence on t and u enters only through
the angular polynomials, the two-cut structure and the infinite number of terms in Eq. (5.3)
are required to reconstruct the full amplitude and satisfy crossing symmetry. Specifically,
while Eq. (5.4) is a general definition of the PW amplitude for any s, the expansion in
Eq. (5.3) will only converge within a limited region of the complex zs-plane (equivalently
the t- or u-planes) given by the Lehmann ellipse [62, 63]. Recovering the crossed-channel
PW expansion, i.e., Eq. (5.3) in terms of tj(t), thus involves a re-summation of the infinite
sum outside this radius of convergence.
To simplify the introduction of the model, we restrict ourselves to the case of isoscalar

particles and will generalize to isovectors in Sec. 5.4. In an isobar or interference model, the
full amplitude is assumed to decompose into a crossing symmetric sum of terms describing
individual scattering channels [193]:

T (s, t, u) = F+(s, zs) + F+(t, zt) + F+(u, zu) . (5.7)

The superscript refers to the required symmetry of each term with the interchange of
final-state particles, i.e., we require F±(s, zs) = ±F±(s,−zs). In the identical particle
case all three channels enter with the same function F+(x, zx) for x = s, t or u, and it is
straightforward to verify that Eq. (5.7) is fully invariant under the interchange of any two
Mandelstam variables, thereby satisfying crossing symmetry.
F±(s, zs) is the s-channel isobar, which is assumed to contain poles only in s. Similarly,

the isobars F±(t, zt) and F±(u, zu) only contain poles in t and u, respectively, and enter
with the cosines of the crossed-channel scattering angles zt and zu. These angles are given
by Eq. (5.6) with the interchange of (s↔ t) and (s↔ u), respectively.
In the s-channel physical region, then, the direct-channel isobar, i.e., F±(s, zs), pro-

duces the pole structure associated with the resonance spectrum. The other two terms
contribute a smooth background associated with the exchanges of those same resonances
in the crossed channels. This separation of poles in each variable means that the am-
plitude is primarily driven by the first term in Eq. (5.7) at low energies where s-channel
resonances are observed. At high energies, it is instead dominated by the other two terms
where the characteristic Regge behavior must emerge from the crossed channel.
For the construction in Eq. (5.7) to describe both poles and exchange behavior in the

appropriate limits simultaneously, we parameterize the dynamics of each channel in terms
of RTs. These are dynamical functions, which encode the properties of not only single
resonances, but potentially infinite towers of particles at all energies by interpolating
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their pole locations in the complex angular-momentum plane [56]. Guided by this, we
decompose the isobars as

F±(s, zs) =
∑
i

g2i
2
[F (αi(s), νs)± (νs ↔ −νs)] , (5.8)

where αi(s) is a RT and gi is a real coupling constant. The sum runs over all RTs, which
are expected to contribute to the process. Each RT in the sum corresponds to a family
of hadrons with increasing spin and the same quantum numbers. The natural parity,
C-odd isovectors, for instance, i.e., the ρ(770), ρ3(1690), etc., are all expected to lie on
one trajectory, while isoscalars such as the σ/f0(500) and its possible excitations would be
described by another RT. The properties and explicit construction of RTs will be explored
in detail in Sec. 5.3, but for now it is sufficient to assume that each is an analytic function
of s except for a RHC required by unitarity [51].

The angular dependence enters through the crossing variable νs, which depends only on
crossed-channel Mandelstam variables

νs = q2s zs =
t− u

4
. (5.9)

The two terms in Eq. (5.8) with respect to ±νs manifestly satisfy the required symmetry
with respect to (zs ↔ −zs).
Finally, we define each term in Eq. (5.8) corresponding to the exchange of a single RT

with the form

F (α(s), νs) = Γ(jmin−α(s)) ν̂jmin
s 2F̃1 [jmin + 1, jmin − α(s); jmin + 1− α(s); ν̂s ] , (5.10)

in terms of the Γ function and the regularized hypergeometric function 2F̃1 defined from
the usual one by

2F̃1 [a, b; c; d ] =
2F1 [a, b; c; d ]

Γ(c)
. (5.11)

The regularized hypergeometric function1 is complex analytic with no pole singularities
at finite values of its arguments and with a branch cut starting when its last argument is
d = 1 and extending to infinity as long as a or b are not negative integers. We introduce a
momentum scale Λ and define q̂2s ≡ q2s/Λ

2 and ν̂s ≡ νs/Λ
2. In Sec. 5.2.1, this scale will be

identified as the characteristic scale of Regge physics. The remaining parameter jmin ≥ 0
is an integer, which corresponds to the lowest spin of a physical particle lying on the RT,
e.g., the σ/f0(500) that has jmin = 0 or the ρ whose trajectory has jmin = 1.

The usefulness of the hypergeometric functions in modeling scattering amplitudes is well
known, since the hypergeometric function provides an analytic continuation of angular
polynomials beyond integer spins and therefore hints at a natural connection with Regge
physics. Because of this, isobar models exploiting the analytic properties of hypergeometric
functions were proposed as early as the seventies as an alternative to dual models [198,
199]. Hypergeometric functions also appear naturally in the modeling of multi-Regge
processes [200, 201]. More recently, they were shown to be integral in elucidating the role

1General formulae regarding hypergeometric functions, which are relevant to our results, are collected in
Appendix 5.A.
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of Reggeized pion exchange in high-energy π± photoproduction via analytic continuation
in angular momentum [202]. Thus, before looking at specific features of Eq. (5.10), we
first consider its general analytic structure brought upon by the hypergeometric function.
Since both 2F̃1 and Γ are analytic functions in all their arguments, F (α(s), νs) is an-

alytic in both the RT and crossed-channel variables. Further, at fixed t, because the
s-dependence only implicitly enters through the RT (which is assumed to be analytic ev-
erywhere except for the RHC), the isobar is simultaneously analytic in both s and α(s).
At fixed angle, additional dependence on s enters through q2s , which is polynomial, and
therefore introduces no further singularities. As the other isobars, which enter in the
crossed-channel terms, are related to F (α(s), νs) by the interchange of Mandelstam vari-
ables, the full amplitude Eq. (5.7) will be analytic in all three energy variables, and the
RT appearing in all three channels. Since the RT will be shown to be intimately related
to spin, this property will be integral to the analyticity of the amplitude both in energy
and in complex angular momentum.
If α(s) has a RHC,2 then F (α(s), νs) will also have a RHC. The Γ(jmin − α(s)) in

Eq. (5.10) introduces poles at integer values of α(s) and will be discussed at length in
Sec. 5.2.2. Similarly, the crossed-channel isobars with respect to F (α(t), νt) contain poles
in t and will develop a LHC associated with the RHC of α(t) as viewed from the s-channel
physical region.
The aforementioned cut structure of the hypergeometric function will then split the

behavior of the isobar into two distinct regimes below and above the secondary branch cut
openings at each ν̂s,t,u = 1. Specifically, because ν̂s involves the product of momentum
and the scattering angle, the hypergeometric function contributing to the direct channel,
Eq. (5.10), has a branch point, which depends on the value of zs. Although this cut is
unphysical, it will only affect how unitarity can be imposed. Provided Λ is large enough,
the effects of these cuts are irrelevant in the resonance region. The values zs = ±1
generate the lowest lying branch points, which occur at q2s = ±Λ2 or equivalently at
s = ±4(Λ2 ±M2). The symmetrized isobar F±(s, zs) will feature both of these cuts as
shown diagrammatically in Fig. 5.1.
Because crossing symmetry requires that the same scale Λ also enters the crossed-channel

isobars, we must calculate the location of the branch points of F±(t, zt) with respect to
ν̂t = 1 as a function of s and zs. These can be found to appear at s = ±2(Λ2 ±M2)
and therefore are lower lying than the secondary cuts of the direct channel. The cuts
of the u-channel terms are identical. The cut structure of the crossed-channel isobars in
the s-plane is also illustrated in Fig. 5.1. This two-cut structure of each isobar above a
characteristic scale mimics that of the full amplitude, and will ensure that analyticity and
unitarity constraints are still satisfied when Reggeized.
The first secondary cut in the s-channel physical region will thus be the right-hand cut

coming from the hypergeometric function in the crossed-channel isobars and we define

λ2 = 2(Λ2 +M2) . (5.12)

The energy s = λ2 is thus the maximal energy at which all terms in Eq. (5.7) lie below the
branch points of the hypergeometric function for the entire physical range of the scattering
angle in all three Mandelstam variables. Below this energy, each term only contains the

2In principle, α(s) should contain many branch points corresponding to every multi-particle threshold
that the RT can couple to.

74



5.2 Hypergeometric isobars

F±(s, zs)

Re s

Im s

4M2

4(Λ2 +M2)−4(Λ2 −M2)

F±(t, zt)

Re s

Im s

2(Λ2 +M2)−2(Λ2 −M2)

Figure 5.1: The cut structure of F±(s, zs) (top) and F±(t, zt) (bottom) in the complex
s-plane for fixed zs = 1. The zigzags denote cuts induced by the RTs. The RHC (blue)
starting at threshold originates from α(s) and the LHC (red) from α(t) in the crossed
channel. The green shaded regions denote where the secondary cuts of the regularized
hypergeometric function begin to overlap those of the RTs.

T (s, t, u)

Re s

Im s

4M2

λ2−λ2 + 4M2

Figure 5.2: The cut structure of the full amplitude T (s, t, u) in the complex s-plane for
fixed zs = 1. Color scheme for the cuts as in Fig. 5.1.

RHC from the RT in its respective energy variable and the model resembles the structure
of an isobar model in the KT dispersion representation [97, 153, 203, 204]. A diagrammatic
representation of the cut structure for the full amplitude (i.e., the crossing symmetric sum
of individual isobars) in the s-plane is shown in Fig. 5.2. The same cut structure will also
appear in the t- and u-channel physical regions, respectively, due to crossing symmetry.

For energies s > λ2, at least one isobar is evaluated above the additional branch points
and the structure becomes more complicated. As we will explore in the following subsec-
tions, this transition point marks the energy at which the PW expansion diverges and must
be re-summed into something that is Regge-behaved. In this way, these two kinematic re-
gions reproduce the near-threshold resonance and asymptotic Regge regimes, respectively,
which are connected via the complete analyticity of our isobars.
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5.2.1 Regge region (s ≫ λ2)

We first consider the behavior of the isobars for energies above λ2. For simplicity, we take
s ≫ λ2 to study the Regge limit, i.e., s,−u → ∞ with t < 0 fixed. A general crossing
symmetric amplitude with the correct analytic properties is known to manifest Regge
behavior in this limit and decomposes into a sum of terms of the form [51, 56, 185]3

R(s, t) = β(t) ξ±(t) Γ(jmin − α(t))

(
s

s0

)α(t)

. (5.13)

This is the quintessential form of a Reggeon exchange, where β(t) is an arbitrary real
function of t referred to as the Regge residue. The signature factor, ξ±(t), is an oscillatory
function of the form

ξ±(t) =
1

2

[
±1 + e−iπα(t)

]
, (5.14)

where the ±1 denotes the signature of the RT α(t). The characteristic power-law behavior
sα(t) is associated with moving pole singularities, i.e., as a function of t, in the complex
angular-momentum plane and arises from the re-summation of leading powers of s in the
angular polynomials of the PW expansion, Eq. (5.3), outside its radius of convergence.
The Froissart–Martin bound [72, 73] limits the possible indefinite growth of the ampli-

tude and restricts α(0) ≤ 1 for all RTs. The bound is saturated by the Pomeron with
αP(0) ≃ 1, while all other RTs corresponding to hadrons must be subleading, e.g., the ρ
is found to have αρ(0) ≃ 0.5 [205]. Crossed-channel unitarity fixes the imaginary part of
the amplitude in this limit to be given by the signature factor.
We will show that the full amplitude constructed in Eq. (5.7) manifests the asymptotic

behavior of Eq. (5.13), and thus the α that appears in Eq. (5.10) is indeed a RT in the
usual sense. Further, identification of the RT as poles in the j-plane will be explored in
the next subsection by demonstrating that the same function also generates resonances,
i.e., poles in the PW amplitude.
We begin by considering the t-channel isobar, F±(t, zt). At fixed t < 0, i.e., below the

RHC, α(t) is real and finite. Thus, taking the Regge limit only entails considering the
hypergeometric function with |ν̂t| → ∞. Using Eq. (5.82) we must consider two cases for
α(t) > −1 and α(t) ≤ −1 when taking this limit, cf. Appendix 5.A. If α(t) > −1 the
isobar can be written as

F (α(t) > −1, νt → ∞) =

[
Γ(1 + α(t))

(−1)jminjmin!

]
Γ(jmin − α(t))

(
u− s

4Λ2

)α(t)

, (5.15)

which resembles Eq. (5.13) without the signature factor. We already notice the emergence
of a Γ(jmin−α(t)) factor, which would generate poles at positive integers α(t) = j ≥ jmin.
Because we are explicitly considering t < 0, which is below the RHC, these poles are
never manifested and requiring jmin > α(0) forbids the possibility of negative-energy poles
appearing in the physical region.
We additionally note that the Γ(1 + α(t)) factor appears to generate poles at negative

integers α(t) = j ≤ −1. These poles, however, do not exist as, if α(t) < −1, the amplitude

3Also compare to the Sommerfeld–Watson transform in Eq. (3.10).
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is instead given by the second term in the asymptotic expansion in Eq. (5.82):

F (α(t) < −1, νt → ∞) =
(−1)jmin

−1− α(t)

(
u− s

4Λ2

)−1

. (5.16)

At the transition point α(t) = −1, the hypergeometric function can be computed explicitly
and shown to be finite with energy behavior of s−1 log s smoothly connecting the two limits
in Eqs. (5.15) and (5.16), cf. Eq. (5.83).
The behavior of Eq. (5.16) means that at large s, the amplitude is always bounded

from below by a fixed power and therefore satisfies the Cerulus–Martin bound [206]. The
specific form of Eq. (5.16) is actually expected from Regge theory as unitarity prohibits
amplitudes that only contain poles in the j-plane from falling faster than s−1 [74, 75]
and can be attributed to the condensation of all Regge poles at j = −1 in the left-half
angular-momentum plane [52, 185]. The asymptotic behavior of scattering amplitudes at
fixed angles, that is, additionally taking t → −∞ with the ratio s/t kept finite, is closely
related to the behavior in Eq. (5.16) and has been proposed to be connected with the
microscopic dynamics of the partons exchanges. This connection is explored further in
Appendix 5.B.
Inserting Eq. (5.15) into Eq. (5.8), we see that Bose symmetry with respect to zt gen-

erates the signature factor and, using s ∼ −u, yields a leading Regge behavior of

1

2
[F (α(t), νt)± F (α(t), −νt)] =

[
Γ(1 + α(t))

(−1)jminjmin!

]
ξ±(t) Γ(jmin − α(t))

( s

2Λ2

)α(t)
,

(5.17)

so long as α(t) > −1. Reading off the Regge residue by comparing Eqs. (5.7), (5.8),
and (5.17) with Eq. (5.13) gives β(t) = g2 Γ(1 + α(t))/((−1)jminjmin!) and the characteris-
tic Regge scale s0 = 2Λ2. Note that this scale corresponds to the location of the secondary
branch point s0 ≈ λ2 in the limit Λ2 ≫M2. Because g and α(t) are both real, the imag-
inary part of Eq. (5.17) emerges solely from the signature factor ξ±(t) as expected from
t-channel unitarity.

As we have shown, Regge behavior emerges in the t-channel isobar when taking t < 0
finite. Due to crossing symmetry, the same Regge behavior is found in all other similar
limits, e.g., the s-channel isobar Reggeizes when s < 0 with t,−u→ ∞. However, precisely
because all isobars contribute to the full amplitude, it is necessary to also show that all
other isobars vanish faster than Eq. (5.17).
Because in the Regge limit s,−u → +∞, we must consider the behavior of the RTs at

infinity. We will assume that the RTs are unbounded in both directions as this will ensure
that the behavior of Eqs. (5.15) and (5.16) is always the leading power of s at finite t.

Looking at the u-channel term, because u→ −∞ is below the RHC, α(u) is real and we
require that α(u → −∞) → −∞. If this is the case, the trajectory will eventually cross
α(u) = −1 and the isobar will behave as

F (α(u) → −∞, νu → −∞) =
(−1)jmin

α(u)

( u

4Λ2

)−1
. (5.18)

The factor of α(u)−1 → 0 ensures that this term will vanish faster than the leading Regge
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term at any t < 0.4 Computing the same limit for the other term appearing in Eq. (5.8),
i.e., with (νu ↔ −νu), proceeds identically.

The last term to consider is the s-channel isobar as s → ∞, and this thus involves
considering complex α(s) above the RHC. To demonstrate Regge behavior, it is sufficient
to assume that the RT is unbounded, as before, but grows slower than s. While stronger
bounds are possible, less-than-linear growth can be shown to be a requirement of RTs
based on the most general analyticity principles [74] and is sufficient at this stage. With
this in mind, we will identify additional requirements from our model on the asymptotic
behavior of α(s) to be considered in Sec. 5.3. Because of the different power-law behavior
in Eqs. (5.15) and (5.16), we need to consider the two different cases of Reα(s) → ±∞
asymptotically.
If Reα(s) → −∞, the limit will be identical to that of the u-channel in Eq. (5.18) and

will vanish faster than Regge behavior regardless of Imα(s).
The more nuanced limit arises from RTs that rise indefinitely to positive infinity. Eval-

uating the Regge limit in this case yields an asymptotic behavior of the form

F (α(s) → ∞,±νs → ±∞) =
α(s)jmin

jmin!

−π
sinπα(s)

(
∓s
4Λ2

)α(s)

, (5.19)

where we have used the Euler reflection formula and kept only the leading powers of the
Pochhammer symbol, Eq. (5.77), at large arguments, i.e., (x)j → xj .

Since α(s) is complex, we may separate the contributions from its real and imaginary
parts such that, up to overall constants, the modulus of Eq. (5.19) is given by∣∣∣∣ α(s)jmin

sinπα(s)

( s

4Λ2

)α(s)∣∣∣∣ ∝ exp
[
Reα(s) log

(
s/4Λ2

)
− π Imα(s)

]
. (5.20)

The case involving (−s)α(s) is subleading and not shown explicitly. Because we assume
|α(s)| < s asymptotically, terms proportional to log |α(s)| in the exponential are neglected.
In this form, the s-channel isobar is exponentially suppressed if we require the RT to
asymptotically satisfy

Imα(s) >
1

π
Reα(s) log

( s

4Λ2

)
. (5.21)

Such a condition is not new and naturally emerges in Regge-behaved models with complex
rising RTs to ensure the amplitude is polynomial-bounded at infinity [54, 199, 207–210].
In particular, Ref. [199] shows that a model and RT satisfying Eqs. (5.19) and (5.21),
respectively, are sufficient for the Mandelstam double dispersion representation to converge
without subtractions. This property will guarantee that the amplitude has no essential
singularities at infinity in any direction in the (complex) Mandelstam plane.
We note that Eq. (5.18) is trivially satisfied by Eq. (5.21) and thus is enough for both

F±(s, zs) → 0 and F±(u, zu) → 0 faster than the Regge behavior of F±(t, zt) at arbi-
trary t < 0. Therefore, with a reasonably well-behaved α(s) whose imaginary part grows
sufficiently fast, the full crossing symmetric amplitude Eq. (5.7) will be properly Regge-
behaved in all channels.

4Satisfying this limit forbids considering the coupling g in Eq. (5.8) as a function of energy. If g is entire
and g < |α(u)| < u then g is constant by Liouville’s theorem.
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5.2.2 Resonance region (s < λ2)

The Regge behavior explored in the previous subsection is related to the presence of
particles exchanged in the crossed channels at high energies. Crossing symmetry dictates
that these same particles must be present in all other channels and, therefore, manifest as
resonances when the CM energy is near the pole location. We explore the behavior of our
isobar, Eq. (5.10), in the region below the secondary branch cuts, which manifests these
resonant poles.
By construction, for 4M2 ≤ s < λ2, we have 0 ≤ |ν̂s| < 1 and the isobar Eq. (5.10) can

be expanded in powers of ν̂s with Eq. (5.78). For the discussion of poles in this section,
we switch to using ν̂s = q̂2s zs to more easily identify the angular structure and write

F (α(s), νs) =
∞∑

j=jmin

nj
(q̂2s zs)

j

j − α(s)
, (5.22)

with

nj ≡
j!

jmin! (j − jmin)!
. (5.23)

Clearly, Eq. (5.22) is the sum of simple poles whose residues are polynomials in the crossed-
channel variables. The analytic structure of Eq. (5.22) is thus entirely determined by that
of α(s). In the absence of bound states, having no poles on the physical Riemann sheet
means any point sj satisfying (j − α(sj)) = 0 must appear on the unphysical Riemann
sheet in the lower-half complex s-plane.
To interpret the residue of these poles, we decompose the monomial in zs into Legendre

polynomials as

zjs =

j∑
j′=0

(2j′ + 1)Pj′(zs)µjj′ τj+j′ , (5.24)

with

µjj′ ≡
j!

(j − j′)!! (j + j′ + 1)!!
. (5.25)

Since the monomial has definite parity with respect to zs, the only non-zero terms in the
expansion involve Legendre polynomials of the same parity as j and we can define the
parity symbol

τk ≡ 1

2

[
1 + (−1)k

]
, (5.26)

which is 0 and 1 for odd and even indices, respectively.
Combining Eqs. (5.22) and (5.24), as α(s) → j, a single term will dominate and can be

written as

F (α(s) → j, νs) =
q̂2js

j − α(s)

 j∑
j′=0

(2j′ + 1) Pj′(zs)nj τj+j′ µjj′

 . (5.27)

Here we see the pole at α(sj) = j describes not only a single resonance of spin j, i.e.,
the residue is proportional to Pj(zs), but also resonances of all possible same-parity spins
j′ < j at the same mass. This coincidence of masses for particles of decreasing spin is

79



Towards a unified description of hadron scattering at all energies

s

j

1

2

3

4

5

s0 s1 s2 s3 s4 s5
×

◦
×

◦
×

◦

×
◦

×
◦

×

×
◦

×
◦

×
◦

×

×
◦
×

Figure 5.3: Chew–Frautschi plot illustrating the schematic pole structure of Eq. (5.8) with
a generic, indefinitely rising trajectory. Isobars will have poles at each energy sj in the
complex plane satisfying α(sj) = j. The horizontal axis thus schematically represents
complex pole locations that do not require the RT to be real or linear. We show poles from
two terms both with jmin = 0: the leading trajectory α(s) (blue) and the first daughter
trajectory α(s) − 1 (red). Crosses (circles) are poles appearing in the isobars with even
(odd) signature.

observed in the Chew–Frautschi plots of many meson families [57] and referred to as the
spectrum of “daughter poles” [51, 211]. These are typically understood as resonances
lying on RTs parallel to α(s) but shifted down by integer units of angular momentum,
e.g., the k-th daughter appears on the trajectory α(s)− k. The resulting pole structure of
the isobars is illustrated by the Chew–Frautschi plot in Fig. 5.3. It is important to note
that the spectrum resembles that of the Veneziano model [53, 212], however, as mentioned
above, the pole must be located in the complex s-plane and the RTs are not required to
be real or linear.
If a pole is sufficiently narrow (i.e., with Re sj ≫ Im sj) and isolated, the trajectory

may be expanded around the projection of the pole position on the real axis recovering a
Breit–Wigner (BW) form [52, 96, 213]. In principle, however, arbitrary lineshapes can be
implemented with an appropriately chosen parameterization for α(s).

The structure of Eq. (5.22) is robust for complex and non-linear α(s), with the residue
of each term always appearing as a fixed-order polynomial of the crossed-channel variables
and thus avoids the appearance of ancestor poles [214]. Furthermore, the “parent pole”,
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i.e., the term with j′ = j, always appears with the correct angular-momentum barrier
factor q2js as required to remove kinematic singularities in the angular variable and the
factorization of Regge pole residues [75, 185]. The same barrier factor multiplies daughter
poles, which will also be free of kinematic singularities, but vanish faster at threshold
than required by analyticity. Since any number of trajectories can be added in Eq. (5.8),
this problem can be remedied by adding the daughter trajectory itself into the sum, i.e.,
including terms with F (α(s)− k, νs).
Because every pole term in Eq. (5.10) has a definite parity, when inserted into Eq. (5.8),

Bose symmetry acts as a filter with the even-signature combination

F+(s, zs) =
∑
i

∞∑
j=jmin

τj

[
g2i nij

(q̂2s zs)
j

j − αi(s)

]
(5.28)

only containing poles at even integers.5 Similarly, the antisymmetric combination will only
have poles at odd values of j, i.e., F−(s, zs) contains a factor of τj+1. In this way, τ is the
restriction of the signature factor in Eq. (5.14) to integer values of angular momentum,
and enforces that only particles of a definite parity/signature appear on each RT.
Turning to the t-channel isobars, since |ν̂t| < 1, we find the identical structure to

Eq. (5.28), but with (s↔ t). Therefore, the dependence of s will be a polynomial and the
only possible cut comes from α(t). Since in the s-channel physical region, t ≤ 0 is below
the RHC of α(t), the entire contribution from F±(t, zt) is a real and smooth background
to the direct channel. The u-channel isobar follows analogously.
Combining all three isobars to the full amplitude we can conclude that in the s-channel

physical region, with 4M2 ≤ s < λ2, Eq. (5.7) will only have poles in s and the imaginary
part arises only by the s-channel isobar

Im T (s, t, u) = ImF+(s, zs) =
∑
i

 ∞∑
j=jmin

nij τj (q̂
2
s zs)

j

|j − αi(s)|2

 g2i Imαi(s) . (5.29)

Although we have ignored unitarity thus far, we see that the imaginary part of the ampli-
tude (and therefore of the PWs) comes from the interplay of the different RTs. As the RTs
are, in principle, complicated functions correlating information of all PWs and inelastic
channels simultaneously, it is likely impossible to construct a finite set of trajectories that
exactly unitarize Eq. (5.29) at all energies. However, since the term in the brackets is
a convergent expansion in momentum (divided by the energy scale Λ),6 one can impose
unitarity up to some energy of interest by power counting factors of q̂2s as we will show in
Sec. 5.4.
A similar structure to Eq. (5.29) emerges in the KT formalism, i.e., the discontinuity

of the full amplitude along the RHC is also that of the direct-channel isobar. One crucial
difference with a typical KT decomposition is that the sum in Eq. (5.22) is necessarily
infinite and each isobar will contribute to all allowed PWs owing to its analyticity in j. In
this energy range, the series in q̂s in Eq. (5.29) converges but will diverge at s > λ2 and

5Because nij depends on jmin it implicitly depends on αi(s). This is the same quantity as in Eq. (5.23)
where, since only one RT was considered, the index i was omitted.

6Since there is additional s-dependence in the RT, this is not a true expansion in momentum. Instead,
this is analogous to the suppression of higher PWs below the radius of interaction [185].
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must be re-summed into the Regge-behaved contributions of the previous subsection. In
this way, the momentum scale Λ mimics the radius of interaction [185]. Because each isobar
is an infinite sum of simple one-particle exchanges, Eq. (5.7) is a crossing symmetric sum
of Reggeons each realized by a van-Hove-like model [215]. Furthermore, Λ also marks the
divergence of the crossed-channel PW series and therefore plays the role of the semi-major
axis of the (small) Lehmann ellipse [62].
As shown, the amplitude given by Eqs. (5.7), (5.8), and (5.10) corresponds to the sum

of three terms each of which is responsible for the resonances and the Regge behavior in
a specific channel. This deviates from the usually held notions of duality, which argue
instead for a decomposition in which the Regge behavior in one channel is dual to the
resonances in another. More general definitions, such as proposed by Ref. [216], i.e., that
duality only requires resonances and Reggeons to emerge from the same function α(s), are
still satisfied. A more detailed discussion and comparison with dual models is provided in
Appendix 5.C.

5.2.3 The Pomeron isobar

Before concluding the discussion on the general properties of our hypergeometric isobars,
we consider how the Pomeron trajectory may be incorporated in our model. The Pomeron
shares the quantum numbers of the vacuum and is typically ascribed to the exchange of
gluonic degrees of freedom [217]. The Pomeron is phenomenologically well established and
required to describe diffractive peaks in a wide array of hadronic scattering at high energies
(cf. Ref. [218] and references therein). In the low-energy regime, these gluonic exchanges
could correspond to glueballs, i.e., resonances made entirely of gluons. Although the
existence of glueballs has long been conjectured to lie on the Pomeron trajectory [219–222],
no state has been unambiguously identified by experiment. Alternative interpretations
of the Pomeron trajectory emerging from purely non-resonant exchanges have also been
proposed [223, 224].
As such, we construct a special non-resonant isobar, which allows the Pomeron trajec-

tory αP(s) to contribute to the Regge behavior at high energies without adding direct-
channel poles at low energies.7 In practice, this includes making the assumption that the
Pomeron is a simple Regge pole. While this is a phenomenologically reasonable assump-
tion, the true nature of the Pomeron with respect to the complex j-plane may be more
complicated [218, 225].
We define the non-resonant isobar as

FNR(αP(s), νs) =
2F̃1 [1, −αP(s); 1− αP(s); ν̂s ]

αP(s)− 1
. (5.30)

This is Eq. (5.10) with jmin = 0 and the Γ(−α(s)) prefactor replaced by a single pole at
αP(s) = 1. Through the direct calculation of the Regge limit, this will yield the Regge
behavior (cf. Eq. (5.13)),

P(s, t) =
βP(t) ξ+(t)

αP(t)− 1

( s

2Λ2

)αP(t)
, (5.31)

7We will only discuss the leading trajectory and do not discard the possibility of glueballs appearing from
daughter trajectories.
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with βP(t) = g2P Γ(1 + αP(t)). Since the Pomeron has positive signature and αP(0) ∼ 1,
the trajectory can be expanded around the forward peak at t = 0,

P(s, t→ 0) =
iπ

2
g2P

( s

2Λ2

)
, (5.32)

which is entirely imaginary as expected from high-energy phenomenology. Because the
pole at αP(s) = 1 occurs at a wrong-signature value of j, it is canceled by a zero of the
signature factor ξ+(t) to give a finite contribution at forward t.

Checking the behavior of the other isobars in the Regge limit, it is straightforward to
see the usual assumption of αP(u) → −∞ as u → −∞ retains vanishing behavior faster
than Eq. (5.16). Similar to Eq. (5.19), ensuring the s-channel isobar vanishes entails a
requirement on the real and imaginary parts of αP(s). Following the analogous derivation
to obtain Eq. (5.21), one can show that if |αP(s)| ≤ s1−ϵ is bounded above for some
0 ≤ ϵ < 1 then the s-channel isobar will be exponentially suppressed if asymptotically

ImαP(s) >

(
4− 2ϵ

π

)
ReαP(s) log

( s

4Λ2

)
. (5.33)

In the resonance region, we expand in νs and write the expansion

FNR(αP(s), νs) =
αP(s)

Γ(2− αP(s))

∞∑
j=0

(q̂2s zs)
j

j − αP(s)
. (5.34)

At αP(s) = 0, the pole in the first term of the sum is canceled by the numerator of the
prefactor. Similarly, for all integer αP(s) = j ≥ 2, the poles are canceled by the Γ factor
in the denominator. Thus, the only pole contained in Eq. (5.34) arises from the j = 1
term, which will be removed by the parity factor τj in the positive signature combination
F+(s, zs), cf. Eqs. (5.8) and (5.28).8 The isobar Eq. (5.30) therefore introduces no poles
and is consistent with phenomenological expectations of the Pomeron.

5.3 Dispersive trajectories

As we have demonstrated, Eqs. (5.8) and (5.10) will recover many appealing features of
amplitudes in both the resonance and asymptotic regimes if certain assumptions on the
RTs are made. The isobar model is ultimately ineffective, however, unless RTs can be
constructed to satisfy all requirements while remaining flexible enough to fit scattering
data. In this section, we explore plausible models for this purpose.
The assumption that α(s) is an analytic function with only a RHC and bounded above

by s means it can be written as a once-subtracted dispersion relation

α(s) = α(0) +
s

π

∫ ∞

4m2

ds′
Imα(s′)

s′ (s′ − s)
, (5.35)

in terms of its imaginary part, since α(s) fulfills the Schwarz reflection principle. Dispersion
relations have long been a starting point for constructing Regge trajectories as they provide

8Note that an arbitrary number of poles at different odd values of j can be introduced and will be canceled
by the signature factor. Thus, Eq. (5.31) is a minimal choice of t-dependence for the Regge residue.
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an effective way to incorporate dynamical input while preserving analyticity [191, 209, 226–
231]. We disallow a linear term, i.e., a second subtraction, not only because it would
violate previously mentioned asymptotic bounds, but it would mean the slope of Reα(s)
and therefore the particle spectrum is determined by parameters external to the reaction
dynamics [232]. We must thus reconcile the phenomenologically observed linearity of
Reα(s) for many mesons with a RT given by the form in Eq. (5.35).
As seen in Eq. (5.29), unitarity must be implemented in our model through Imα(s)

and can thus help guide the functional form of the imaginary part. Taking the j-th PW
projection of Eq. (5.29) gives

Im tj(s) =
∑
i

g2i nij τj µjj q̂
2j
s

Imαi(s)

|j − αi(s)|2
+O

(
q̂2(j+2)
s

)
, (5.36)

where all contributions of poles at α(s) > j appear with higher powers of momentum.
Approaching threshold, these higher terms vanish faster than the leading pole, and the
imaginary part of the full amplitude will be dominated by Eq. (5.36) with j replaced by the
lowest physical spin. Similarly, since the first pole in each isobar term, Eq. (5.22), occurs
at α(s) = jmin, the lowest PW to which each α(s) will contribute also has j = jmin.

9 Thus,
examining Eq. (5.36) together with the unitarity condition of PWs [51]

Im tj(s) = ρ(s) |tj(s)|2 , (5.37)

where ρ(s) = 2qs/
√
s is the relativistic two-body phase space, each RT must satisfy

Imαi(s→ 4M2) ∝ ρ(s) q̂2jmin
s g2i , (5.38)

for the lowest PWs to fulfill unitarity at threshold. Note that even if there are multiple
poles or crossed-channel contributions, Eq. (5.38) must still hold to ensure each pole term
has the required powers of momentum. Although not considered here, in a coupled-channel
scenario similar limits could be derived for each multi-particle threshold.
In addition to constraining the behavior near threshold, analyticity and unitarity prin-

ciples can be used to constrain the asymptotic behavior. Along fairly general arguments,
for instance, the asymptotic growth of any complex trajectory should be bounded by a
square root up to possibly arbitrary log s factors [207]. Combined with Eq. (5.21) to ensure
polynomial boundedness [54, 208], however, this bound becomes stricter with

|α(s→ ∞)| ≤
√
s log s . (5.39)

Because Eq. (5.35) is defined through a once-subtracted dispersion relation, the positivity
and unboundedness of Imα(s ≥ 4M2) will guarantee α(s→ −∞) → −∞ [74].
The construction of RTs that satisfy conditions like Eqs. (5.35), (5.38), and (5.39) is

not entirely new. For example, Ref. [230] constructs a model for the imaginary part of
α(s) built up from terms of the form:

Imα(s) =
∑
i

g2i
√
s− si

(
s− si
s

)λi

θ(s− si) . (5.40)

9Because of the parity factor τj , jmin can technically be selected as a wrong-signature value and the sum
will effectively start at j = jmin + 1. For simplicity, here we assume that jmin and j have the same
parity.
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Here, the sum refers to the openings of multi-particle thresholds located at si. The ex-
ponents λi determine the vanishing behavior at each threshold and are used to enforce
unitarity constraints, e.g., by taking λi = Reα(si) or, in the case of Eq. (5.38), choosing
the lowest threshold to satisfy λ0 = jmin.

Because Eq. (5.40) behaves as
√
s asymptotically, the real part of the trajectory from

evaluating Eq. (5.35) will asymptotically approach a constant for s greater than the highest
considered threshold. Therefore, any trajectory of this type will trivially satisfy the bounds
in Eqs. (5.21) and (5.33). Achieving the quasi-linear behavior observed in the particle mass
spectra, however, requires adding multiple higher thresholds. In addition, while the form
Eq. (5.40) can reproduce the branch point structure required by unitarity and analyticity,
the precise s behavior is fairly rigid and does not allow much flexibility to unitarize PWs
of the form Eq. (5.36). Thus, we seek a different functional form with which to describe
resonances in conjunction with the isobar model in Sec. 5.2.
We will parameterize the RTs with a logarithmic form

Imα(s) =
γ

π
log

(
1 +

π

γ
ρ(s) r(s)

)
θ(s− 4M2) , (5.41)

with a constant γ > 0 and a real function r(s). At s→ 4M2 and ρ(s) → 0 we may expand
the logarithm,

Imα(s→ 4M2) = ρ(s) r(s) , (5.42)

which is independent of γ. The function r(s) is assumed to be free of singularities along
real s ≥ 4M2 but is otherwise completely general. It can thus be used to help us enforce
unitarity constraints. For a single isolated pole with j = jmin, for instance, Eqs. (5.38)
and (5.42) would imply

r(s) = g2 µjminjmin q̂
2jmin
s +O

(
q̂2jmin+1
s

)
, (5.43)

where the coupling g and momentum scale Λ should be the same as those appearing in
the isobars.10 We will thus assume that r(s) can be written as

r(s) =
N∑
k=0

ck q̂
2k
s + cα q̂

2Reα(s)
s . (5.44)

This is a general, but still fairly minimal, parameterization of the possible function r(s).
For example, Eq. (5.44) can be multiplied by any overall power of s or log s, but this is
omitted for simplicity. The first term in Eq. (5.44) allows energy behavior bounded by an
arbitrary finite-order polynomial of q̂2s , or equivalently of s, with real coefficients ck. The
second term, on the other hand, enforces a Regge-like power-law behavior. The overall
logarithm in Eq. (5.41) means any fixed power behavior in s can be added without having
exponential growth and thus the first term allows the trajectory to be flexible enough to
parameterize amplitudes at finite s when expanded for q̂2s < 1, e.g., through Eq. (5.42).
Individual c’s in Eq. (5.44) can be negative, but for Imα(s) to be real and positive on the
real axis we require r(s) > 0 for all s ≥ 4M2.

10Note that Λ enters through q̂2s .
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Taking the limit s→ ∞ of Eq. (5.41) with Eq. (5.44), we see

Imα(s→ ∞) =
γ

π
log
(
cN q̂2Ns + cα q̂

2Reα(s)
s

)
, (5.45)

where the asymptotic behavior is dictated by the behavior of the last term. Because
Reα(s) is assumed to be unbounded, we have two possibilities depending on Reα(s) →
±∞. If Reα(s) → −∞ the Regge-like term will quickly vanish as q̂2s > 1 and we have

Imα(s→ ∞) = (γ/π)N log
(
s/4Λ2

)
. (5.46a)

If instead Reα(s) → +∞, then

Imα(s→ ∞) = (γ/π)Reα(s) log
(
s/4Λ2

)
, (5.46b)

and the bound in Eq. (5.21) can be encoded by requiring γ > 1. The trade-off, however,
is that when inserted in Eq. (5.35), α(s) is now defined through a non-linear integral
equation, which must be solved numerically.
Although it is not obvious, this integral equation admits stable solutions, which satisfy

Reα(s) ∼
√
s and Imα(s) ∼

√
s log s asymptotically and thus saturate the bound in

Eq. (5.39). To illustrate this point, we will solve the integral equation by fitting the
masses of particles on the exchange degenerate ρ–a2 RT. This is intended as a proof-of-
concept and the ρ trajectory will be revisited in Sec. 5.4.1 when considering ππ scattering
using more in-depth unitarity constraints combined with the isobar model of Eq. (5.10).
Analogous to the analysis in Ref. [230], we adopt an iterative fitting procedure, where

we start with an initial guess for Reα(s) and fix free parameters by fitting Eq. (5.35) with
a least squares minimization

d2 =
∑
i

[(
Reα(M2

i )− ji
)2

+
(
Γ(M2

i )− Γi

)2]
, (5.47)

whereMi, Γi, and ji are the masses, widths, and spins of the ρ/a2 mesons and their orbital
excitations. To connect the width with the RT we expand the width function for narrow
resonances given by [52]

Γ(s) =
Imα(s)√
sReα′(s)

, (5.48)

cf. Sec. 3.4. As our primary interest is in the existence and properties of a solution and
not the numerical values of parameters, we will ignore any errors associated with the input
masses and widths. After a good fit is found, the initial guess of Reα(s) is updated with
an interpolation of the previous best-fit real part and the trajectory is fit again. This
procedure is continued until a stable solution is found.
We consider the masses and widths of isovectors of both signatures up to j ≤ 6 from the

Review of Particle Physics (RPP) [22]. In the absence of individual PWs, only the last term
in Eq. (5.44) is kept, i.e., all ck = 0, and we fix α(0) = 0.5 and Λ =

√
2GeV for simplicity.

This latter value is chosen such that
√
s = λ ≈

√
2Λ ≈ 2GeV coincides with the energy

at which Regge behavior appears to begin in the ππ total cross section [59, 233, 234]. We
start with the initial guess

Reα(s) =
0.5 + 0.9GeV−2s√
1 + s/(20GeV2)

, (5.49)
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i γ cα
0 1.345 4.953
1 1.101 3.100
2 1.072 3.612
3 1.083 3.565
4 1.085 3.566
5 1.082 3.573

10 1.082 3.571
15 1.083 3.570
20 1.083 3.569

Table 5.1: Results for the iterative fitting procedure for the exchange degenerate ρ–a2
trajectory. The fit value at the i-th fit iteration is shown for the two free parameters γ
and cα.

and fit the remaining two parameters γ and cα. A reasonably stable solution is found after
about four iterations of the integral equation as seen in the best-fit parameters tabulated
in Table 5.1.
In Figs. 5.4 and 5.5 the resulting RT after 20 iterations is plotted compared to both the

phenomenological linear trajectory (0.5 + 0.9GeV−2s) [51] and the results of Ref. [230].
In this comparison, we note several things: first, both Eqs. (5.40) and (5.41) achieve ap-
proximate linearity in the resonance region, however, this is accomplished by completely
different mechanisms. For Eq. (5.40), effective multi-body threshold openings are required
to enhance the imaginary part and prevent the real part from saturating to a constant.
The linearity of Regge trajectories is therefore assumed to be an inherently inelastic phe-
nomenon. Equation (5.41), however, accomplishes the quasi-linear behavior using only a
single threshold. Although we do not explore this here, considering additional thresholds
can modify the slope of the trajectory and possibly lead to an asymptotically constant
real part. In this way, it is actually the termination of resonances that is a multi-threshold
effect. Since the termination of the infinite tower of excited resonances is proposed to
be related to screening from coupled channels [235, 236], the interpretation of the latter
mechanism seems more plausible.
Second, Reα(s) continues to grow indefinitely, but slows from approximately linear to

square-root behaved. A model with infinitely many poles, such as in Eq. (5.22), will thus
indeed have infinitely many resonances appearing as orbital excitations. Note that, unlike
narrow resonance models, Imα(s) also grows indefinitely and at a faster rate. This has the
effect of moving higher-j poles deeper and deeper into the complex plane, such that the
infinite tower of resonances is indiscernible from a non-resonant background above some
energy scale.
Finally, we note that the best-fit value of γ ≈ 1.08 > 1 means the asymptotic behavior

of α(s) satisfies the bounds in Eqs. (5.21) and (5.39). A crossing symmetric combination
of isobar terms of the form in Eq. (5.8) with the trajectory as in Figs. 5.4 and 5.5 will thus
be properly Regge-behaved at high energies.
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Figure 5.4: Results for the exchange degenerate ρ–a2 trajectory in the resonance region.
The results using Eqs. (5.41) and (5.44) (solid) are compared to the model of Ref. [230]
using Eq. (5.40) (dashed) as well as the canonical linear ρ trajectory (black dotted).

5.4 Application to ππ scattering

As we have demonstrated, the isobar model constructed in Sec. 5.2 offers a unified descrip-
tion of low-energy resonances and high-energy Regge behavior through analyticity in both
energy and angular momentum. The key ingredients to accomplish this are RTs, which
encode all the relevant dynamical information. In Sec. 5.3, a RT model that satisfies all
the requirements to realize the isobar model in Eq. (5.7) is discussed. In this section,
we now combine the results of the previous sections to consider ππ scattering and study
the ρ and σ/f0(500) resonances as a benchmark of the presented theoretical framework
using as few parameters as possible. This is not intended to be a precision study of these
resonances.

Because the pion is an isovector, Eq. (5.7) must be generalized to accommodate the
scattering of different isospin states. Since the isobars in Eq. (5.8) already have definite
signature, such a generalization is trivially accomplished by defining isobars with a definite
isospin I = 0, 1, 2 as:

FI(s, zs) =
∑
i

g2i
2

[
F (αI

i (s), νs) + (−1)I F (αI
i (s),−νs)

]
. (5.50)

This isobar transforms as FI(s, zs) = (−1)I FI(s,−zs), which is required by Bose sym-
metry. We assume that the RTs, which are summed over, also carry a definite isospin.
While exchange degeneracy, i.e., the approximate equality of RTs with similar quantum
numbers [237], can still be imposed, we will not require it. In general, each trajectory is
only responsible for generating the resonances of a single signature and isospin.
The analog of Eq. (5.7) for the s-channel isospin amplitudes can be written by con-
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Figure 5.5: Results for the exchange degenerate ρ–a2 trajectory at asymptotic energies.
Legend is the same as in Fig. 5.4.

structing a crossing symmetric combination of terms given by Eq. (5.50) [119, 153]

T I(s, t, u) = FI(s, zs) +
∑
I′

CII′
st

[
FI′(t, zt) + (−1)I+I′ FI′(u, zu)

]
, (5.51)

where CII′
st are the elements of the isospin crossing matrix [238, 239]

Cst =


1
3 1 5

3

1
3

1
2 −5

6

1
3 −1

2
1
6

 . (5.52)

An explicit demonstration that Eq. (5.51) is crossing symmetric, i.e., the decomposition
with respect to isospin defined in the t- or u-channels is identical, is relegated to Ap-
pendix 5.D.
Since each isobar will only have poles in its energy variable, Eq. (5.51) will only have

s-channel resonances of isospin I coming from the first term. The remaining terms thus
represent the exchange of all isospin particles in the t- and u-channels. Assuming well-
behaved RTs in each channel, taking the s → ∞ limit with fixed t < 0, Eq. (5.51) yields
the Regge-behavior

T I(s, t, u) →
∑
I′

CII′
st

[∑
i

RI′
i (s, t)

]
, (5.53)

with each RI′
i given by Eq. (5.13) with respect to αI′

i (t). Clearly, Eq. (5.53) represents
the exchange of Reggeons of all isospins in the t-channel with the correct coefficients from
crossing as expected from high-energy ππ scattering [49, 59, 233].
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Although the exploratory ρ trajectory in Figs. 5.4 and 5.5 reasonably reproduces the res-
onance region with only a single threshold, this result should be interpreted with caution.
Beyond the mass of the lowest-lying ρ, inelastic thresholds become increasingly important,
e.g., the ρ3(1690) decays primarily into 4π. Constraining a RT in a broad range of energies
is thus inherently a coupled-channel problem. For this first study, then, we will restrict
ourselves to the ππ scattering in the isospin limit below the KK̄ threshold. In these ener-
gies, the primary contributions come from two-body dynamics and the RTs contain only
one relevant branch point [51]. The amplitude can thus be effectively constrained with
elastic unitarity in order to benchmark the extraction of the RTs of mesons in this mass
region.
Fixing Λ =

√
2GeV (and therefore λ ≃

√
2Λ = 2GeV) at the observed scale of Regge

physics in ππ scattering as before, the elastic region lies well within the boundary s < λ2

where our amplitude is a genuine isobar model as discussed in Sec. 5.2.2. We can thus
take the j-th PW projection, which is decomposed into separate contributions from direct-
channel and crossed-channel isobars:

tIj (s) = f Ij (s) +
∑
I′

CII′
st f̃ I

′
j (s) . (5.54)

The direct-channel term contains the RHC and is given by the projection of all the
s-channel poles, the projection of which can be written explicitly using Eq. (5.28)

f Ij (s) = τI+j

∑
i

∞∑
k=0

q̂2(j+2k)
s

[
g2i ni,j+2k µj+2k,j

j − (αI
i (s)− 2k)

]
. (5.55)

The inhomogeneous term on the other hand is given by the projection of the crossed-
channel isobars:

f̃ Ij (s) =

∫ 1

−1
dzs Pj(zs)FI(t(s, zs), zt(s, zs)) , (5.56)

which will generate the LHC of tIj (s) and cannot be done in closed form. The struc-
ture of the PW in Eq. (5.54) is intentionally written to mirror the structure of the KT
decomposition [2, 97, 153].
Since imposing unitarity in the KT formalism requires solving systems of coupled inte-

gral equations for each isospin simultaneously, they are typically very challenging. In our
formalism, the analogous integral equations will be non-linear. Because of this, we first
demonstrate that unitarity can be imposed by solving the homogeneous equation

Im tIj (s) = Im f Ij (s) = ρ(s) |f Ij (s)|2 , (5.57)

which ignores the contribution from the crossed channels in the second term of Eq. (5.54).
In the conventional KT formalism, this reduces to an Omnès problem and is readily
solved in terms of the scattering phase shift [45, 46]. In the language of Eq. (5.54), on
the other hand, the homogeneous solutions will decouple the different isospins and yield
RTs without corrections from final-state interactions. Thus, despite not involving the full
crossing symmetric model in Eq. (5.51), solving the homogeneous problem is a highly
non-trivial and necessary first step towards a full “KT with Regge poles” analysis to be
done in the future.11

11We have chosen to implement unitarity at the level of individual PWs, but because our isobars incorpo-
rate the infinite tower of increasing spin, one could, in principle, try to unitarize the full amplitude.
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As described in Sec. 5.2.2, the imaginary part of the amplitude arises from the imaginary
part of the RTs. Using Eq. (5.41), the degrees of freedom with which to incorporate
unitarity are the coefficients of the q̂2s polynomial contained within Eq. (5.44). In practice,
because this polynomial is of fixed order, unitarity can only be imposed up to a certain
momentum scale corresponding to the first power of q̂2s which is not considered. Luckily,
with the scale parameter Λ =

√
2GeV, the region below the KK̄ threshold, i.e., with

s ≲ 1GeV2, has q̂2s ≲ 0.12 and the sums over powers of momentum in Eq. (5.55) converge
very quickly. Elastic unitarity can thus be implemented numerically with only a few terms.

As our primary focus is the application to hadron spectroscopy, we will focus on the
I = 0 and 1 channels. Resonances with I = 2 would correspond to doubly-charged mesons
and are not observed in nature. From Eq. (5.29), we see that PWs in our formalism can
only achieve a non-zero imaginary part with an explicit RT in the direct channel and
thus parameterizing any I = 2 amplitude would indeed require constructing at least one
αI=2(s). Exotic mesons can be avoided with a RT that never crosses positive even integers
or through a non-resonant isobar analogous to that in Sec. 5.2.3. We, however, do not
pursue this further.

5.4.1 I = 1 and αρ(s)

The isospin I = 1 channel of the elastic ππ spectrum is well known to be dominated by the
ρ resonance in the P -wave. As such, we include only a single trajectory αρ(s) ≡ αI=1(s)
with jmin = 1, such that the isobar Eq. (5.50) takes the form

F1(s, zs) =
g2ρ
2
[F (αρ(s), νs)− F (αρ(s), −νs)] . (5.58)

We use a trajectory given by Eqs. (5.35) and (5.41) with Eq. (5.44) containing two terms

rρ(s) =
g2ρ
3
q̂2s + cρ q̂

2(1+Reαρ(s))
s , (5.59)

in order to unitarize up to order O
(
q̂2s
)
, which encompasses only the P -wave (i.e., the

F -wave is O
(
q̂6s
)
). Expanding the logarithm around small q̂2s with Eq. (5.42), the P -wave

projection of Eq. (5.58) is given by

Im f11 (s) = ρ(s)
∣∣f11 (s)∣∣2 +O

(
q̂
2(2+Reαρ(s))
s

)
. (5.60)

Since Reαρ(s) ≳ 0.5 is expected above threshold, e.g., similar to Fig. 5.4, the second term
will always be subleading and Eq. (5.60) reproduces Eq. (5.57) to leading order.

The first higher-order term in Eq. (5.60) scales with Reαρ(s) and will be the dominant
correction at small and intermediate s. However, as s increases, and Reαρ(s) > 2, the
next-to-leading order term will instead be the next fixed power of q̂2s in Eq. (5.55). The
constant cρ in Eq. (5.59) is thus left as a free parameter to incorporate the small contri-
butions from these terms in the unitarity equation at low energies. We fix αρ(0) = 0.491
to the value extracted from charge-exchange πN scattering in Ref. [205] and thus have
three parameters left to be determined: g2ρ, γρ, and cρ. We adopt an iterative fitting
procedure as in Sec. 5.3 to simultaneously solve the integral equation for αρ(s) as well as
fix parameters by comparing them to data. Using the same initial guess in Eq. (5.49),
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i g2ρ γρ cρ
0 4.269 1.302 2.818
1 4.262 1.074 3.231
2 4.263 1.071 3.241
3 4.263 1.079 3.142
4 4.263 1.080 3.212
5 4.263 1.077 3.221

10 4.263 1.077 3.221
15 4.263 1.078 3.219
20 4.263 1.078 3.218

Table 5.2: Results for the iterative fitting procedure of the ρ trajectory using low-energy
unitarity.

we now minimize the distance squared of the resulting P -wave projection of Eq. (5.58) to
known ππ PWs

(d2)Ij =
∑
i

∣∣f Ij (si)− (tGKPY)
I
j (si)

∣∣2 . (5.61)

Here (tGKPY)
I
j is the central value of PWs with a given isospin as determined by the Madrid

group (GKPY) [58]. Once again, as an exploratory study, we ignore the errors associated
with these PWs. By fitting both real and imaginary parts of the PWs simultaneously,
the constraint of elastic unitarity is incorporated into the RT. For the present case of the
ρ trajectory, f11 (si) is given by projecting Eq. (5.58) onto the P -wave and we choose 10
evenly spaced points between 4M2

π and 1GeV2 as the sampled energies si.
The resulting P -wave is plotted in Fig. 5.6 with parameters in Table 5.2, where we

see generally good agreement with unitarity and the GKPY amplitude. The resulting
trajectory αρ(s) is plotted in the resonance region in Fig. 5.7, where αρ(s) crosses through
the point Reα(M2

ρ ) = 1 as well as Imα(M2
ρ ) =Mρ ΓρReα

′(M2
ρ ), which is expected of the

nearly BW nature of the ρ lineshape. Note, however, that compared to the prototypical
linear trajectory, the slope begins to decrease well within the fit region with deviations
beginning just after the ρ mass, i.e., s ≳ 0.5GeV2. We may also compare with other
dispersive trajectories that incorporate unitarity, in particular the ρ RT calculated in
Ref. [191] using a constrained Regge pole (CRP) model [227, 228]. We see a similar trend
with the two coinciding near the ρ mass. We do note that the CRP trajectory has a
larger imaginary part near threshold, in a region where the authors already observed that
the PW amplitude is overestimated. This trajectory is calculated fixing only the complex
pole position and not with a fit to the PW (i.e., the opposite approach to this analysis).
Comparing the two methods, thus suggests that constraining the energy dependence of
the residues in the numerator is important for extracting the RT in the denominator from
fits to the PW amplitude.
Because our RT is analytic, it can also be evaluated for spacelike energies below thresh-

old, which is shown in Fig. 5.8. We compare αρ(s) with the experimental extraction of the
effective RT in charge-exchange πN scattering [205], which first observed the non-linearity
of ρ exchange at large momentum transfers. Remarkably, despite not being included in
the fit, αρ(s), as constrained by elastic unitarity, is compatible with all data points.
Finally, because the RT contains all the relevant information on the particle spectrum,
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Figure 5.6: Best-fit of the P -wave projection of Eq. (5.58) in the elastic region (solid).
For comparison, the GKPY PW (black dotted) is plotted and the expectation of elastic
unitarity if it were satisfied exactly, i.e., Eq. (5.57) (orange dashed).

This work RPP [22]
αρ(sj)

√
sj in MeV Mj in MeV Γj/2 in MeV

ρ(770) 1 760− i 70 (761 – 765) (71 – 74)

ρ(1450) 2 1380− i 120 1465± 25 200± 30

ρ3(1690) 3 1800− i 130
1688± 2.1 80± 5

ρ(1700) 1720± 20 125± 50

Table 5.3: Comparison of extracted complex roots of αρ(sj) = j with the masses and
widths of the observed ρ spectrum. Only the RPP values for the ρ(770) correspond to
T -matrix pole parameters. The remaining quoted values are BW masses and widths.

αρ(s) can be used to examine the locations of resonance poles in the complex plane by
searching for roots of (j−α(s)) for any positive integer j. Thus, in addition to the ρ(770),
we can extrapolate outside the fit range to extract the pole positions of the first radial
excitation, ρ(1450) or ρ′, and first orbital excitation ρ3, which are located at αρ(s2) = 2
and αρ(s3) = 3, respectively. In the case of the former, the minimal model considered in
Eq. (5.58) does not contain an explicit pole for this state as the j = 2 term gets canceled
by the signature factor. Ultimately, resonance masses and widths will only depend on
the RT on which they appear and we can use the RT constrained around the ρ(770) to
predict the location of higher states. The structure of daughter poles in Fig. 5.3 means
that the pole located at

√
s3 will be degenerate with the second radial excitation, the

ρ(1700) or ρ′′, which we also compare against. Details of the pole extraction are provided
in Appendix 5.E.
The resulting pole positions are tabulated in Table 5.3, where we see the parameters of

the ρ(770) are generally in good agreement with more detailed dispersive analyses [240–
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Figure 5.7: Best-fit trajectory αρ(s) after the iterative fitting procedure in the reso-
nance region (solid) compared to the CRP trajectory from [191] (dashed). The fitted
region is shaded and the phenomenological trajectory (0.5 + 0.9GeV−2s) (black dotted)
is also plotted for comparison. The points correspond to Reα(M2

ρ ) = 1 (circle) and
Imα(M2

ρ ) =Mρ ΓρReα
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ρ ) (square) at the nominal BW ρ mass Mρ = 775MeV and
width Γρ = 148MeV.

242]. In addition, using Eq. (5.109) we extract the modulus and phase of the residue

|gρππ| = 5.8 and ϕρππ = −6.2° , (5.62)

which are also in qualitatively good agreement [240–242]. We present these values as well
as the pole positions without error analysis as we aim only for an exploratory benchmark of
the isobar and trajectory models. Furthermore, the pole positions are rounded to 5MeV.
The higher poles of the ρ′, ρ′′, and ρ3 also compare reasonably well with the RPP masses

and widths in Table 5.3, but deviate more than the ground state ρ. This could be due
to several factors: first, the quoted RPP values for these states correspond to BW masses
and widths. Since these states are generally broader and harder to extract than the ρ,
there may be substantial deviations from the genuine pole location. Second, the model in
Eq. (5.28) is not unitary by construction and thus extrapolating far outside the fit range
may suffer violations from unitarity. Finally, as previously mentioned, higher ρ resonances
couple primarily to inelastic channels such as 4π. Since the RT couples to multi-body
channels in a possibly non-trivial way, our trajectory may be ignoring important effects
from inelastic thresholds.
We do not attempt to quantify the uncertainties from these effects here. Nevertheless,

finding resonance poles located in generally the right place in the complex plane, even
when extrapolated far from the fit region, is reassuring and a first step to a more in-depth
exploration of these poles in the future.
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Figure 5.8: Best-fit trajectory αρ(s) plotted for spacelike energies. The curves are the same
as Fig. 5.7. Data points are the effective ρ trajectory as extracted from charge-exchange
πN scattering at high energies [205]. These data points are shown for comparison but
were not included in the fit.

5.4.2 I = 0 and ασ(s)

Turning to the isospin I = 0 amplitude, we wish to investigate the σ/f0(500) resonance,
which is seen in the S-wave near threshold alongside the narrow f0(980). In our formalism,
this channel will receive contributions from all RTs of similar quantum numbers and one
must also account for the f2 and P trajectories. We therefore write

F0(s, zs) =
1

2

[
g2σ F (ασ(s), νs) + g2f2 F (αf2(s), νs) + g2P FNR(αP(s), νs)

]
+ (νs ↔ −νs) ,

(5.63)

where the σ and f2 use the resonant isobar in Eq. (5.10) and the Pomeron is non-resonant
using Eq. (5.30). Only a single trajectory for the scalar resonances is included as we will
restrict our fitting to energies close to threshold in order to focus on the σ. Follow-up
investigations about the f0(980) can be conducted by including an additional term in
Eq. (5.63).
We first discuss the f2 trajectory, which is expected to yield the largest contribution

resulting from I = 0 hadron exchanges at high energies, subleading only to the exchange
of a Pomeron. The smallness of the ππ scattering cross sections at maximal isospin is
often explained by cancellations between the Reggeons in the crossed channel due to the
(approximate) exchange degeneracy of the ρ and f2 trajectories [243]. Specifically, if

αρ(s) ≈ αf2(s) and g2f2 ≈ 3

2
g2ρ , (5.64)

then the sum of imaginary parts from the ρ and f2 in Eq. (5.53) will vanish asymptoti-
cally. We may do a simple test of exchange degeneracy using the αρ(s) as calculated in
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the previous subsection by comparing the quoted T -matrix poles of the f2(1270) and its
degenerate daughter pole f0(1370) [22]√

sf2(1270) = ((1260 – 1283)− i (90 – 110)) MeV , (5.65a)√
sf0(1370) = ((1250 – 1440)− i (60 – 300)) MeV . (5.65b)

Equation (5.64) suggests these should be compared with the αρ(s2) = 2 entry in Table 5.3,
which once again compare rather well, but without a detailed error analysis no definite
conclusions can be drawn. In any case, because the first physical resonance on the f2
trajectory has spin 2, this isobar must have jmin = 1 or 2 in order to avoid the pole at
j = 0. At low energies the contributions of the f2 Regge pole will always be O

(
q̂4s
)
as

dictated by Eq. (5.28), and details of the trajectory and coupling are largely suppressed
when considering very near threshold energies. Thus, taking the S-wave PW projection
of Eq. (5.63) and considering only leading order in the momentum expansion yields

f00 (s) =
g2σ

−ασ(s)
−

g2P
Γ(2− αP(s))

+O
(
q̂4s
)
, (5.66)

without a contribution from the f2. Because we are ignoring the crossed channels in
the homogeneous unitarity equation, the Pomeron coupling and trajectory are largely
unconstrained. For simplicity then, given the limited energy range considered, we will
assume αP(s) ≈ αP(0) ≃ 1 and fit the coupling g2P. Since our primary goal is the extraction
of ασ(s), we keep the full tower of poles in the hypergeometric function for F (ασ(s), νs)
and absorb all other O

(
q̂4s
)
and higher contributions of both the P and f2 in Eq. (5.63)

into the fitted coupling g2P. In a fully crossing symmetric analysis, the value of the coupling
g2P should instead be compared with the total π+π− cross section at high energies using
Eq. (5.53).
With these simplifications in mind, we approximate Eq. (5.63) as

F0(s, zs) =
1

2

[
g2σ F (ασ(s), νs)− g2P

]
+ (νs ↔ −νs) , (5.67)

such that the resulting S-wave projection is written as

f00 (s) =
g2σ + g2P ασ(s)

−ασ(s)
+O

(
q̂4s
)
. (5.68)

Note that because g2σ and g2P are both real and positive, the numerator will manifest a
zero if for some real sA < 4M2

π , the trajectory satisfies ασ(sA) = −(gσ/gP)
2. This is the

Adler zero, required by chiral symmetry [244, 245]. We remark that the existence of such
a zero in the chiral limit, i.e., at sA = 0, requires ασ(0) ≤ 0 and would be consistent with
a quickly vanishing Regge exchange contribution at high energies, but we make no a priori
assumptions about the location of the zero.
We briefly comment on how the Adler zero arises in Eq. (5.68) as compared to the

Veneziano–Lovelace–Shapiro (VLS) model [76–78]. In the latter, requiring a zero implies
a relation between the trajectories appearing in different channels. Since only a single
trajectory was considered (i.e., that of the exchange degenerate ρ–f2 mesons), this required
α(s)+α(t) = 1 and fixes α(0) = 1/2 in the chiral limit. From this perspective, the zero is
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a manifestly crossing symmetric phenomenon with the direct-channel and crossed-channel
RTs interfering near the Adler point. In Eq. (5.68), the zero arises from the interplay of
purely I = 0 trajectories in the direct channel and necessitates a trajectory with negative
intercept, a typical feature of scalar resonances, interfering with the Pomeron. Considering
subleading terms in the momentum expansion, more trajectories, or the fully crossing
symmetric combination Eq. (5.51) can modify the location of the zero, but will not change
the basic mechanism of Eq. (5.68). While the original VLS model cannot accommodate
the Pomeron, extensions to include its effects concluded it should play an important role
in satisfying chiral constraints [246, 247]. As such, we find the interpretation of the zero
in terms of σ/P interference in the direct channel particularly appealing.12

Further, since unitarity will only affect the shape of the RT, the amplitude Eq. (5.68)
will contain an Adler zero even if we only consider the homogeneous unitarity equation
without requiring the inverse amplitude, in this case ασ(s), to have a sub-threshold pole.
This is unlike the typical Omnès function approach, which requires introducing ad hoc
parameters, i.e., subtraction polynomials [248], when considering homogeneous unitarity.
We may enforce Eq. (5.57) at leading order of Eq. (5.68) if

Imασ(s) = ρ(s)

[
g2σ

∣∣∣∣1 + g2P
g2σ
ασ(s)

∣∣∣∣2 +O
(
q̂4s
)]

. (5.69)

Since by assumption |ασ(s)| < s, Eq. (5.69) is still of the form in Eqs. (5.42) and (5.44),
albeit no longer a simple polynomial in momentum.
We begin by assuming that the σ RT admits a solution similar to the ρ as considered in

Sec. 5.4.1. If this is the case, Reασ ∼
√
s → +∞ with known asymptotic limits for both

real and imaginary parts and one may choose

rσ(s) = g2σ

∣∣∣∣1 + g2P
g2σ
ασ(s)

∣∣∣∣2 + cσ q̂
2(1+Reασ(s))
s , (5.70)

such that
Im f00 (s) = ρ(s) |f00 (s)|2 +O

(
q̂2(1+Reασ(s))
s

)
, (5.71)

satisfies Eq. (5.57) at leading order assuming Reασ(s ≳ 4M2
π) is not too negative. Since

very little is known about the σ trajectory from measurements, we have more parameters,
i.e., ασ(0), g

2
σ, g

2
P, γσ, and cσ, to determine by minimizing Eq. (5.61) with our iterative

fitting procedure. We choose an initial guess of

ασ(s) =
−0.2 + 0.1GeV−2s√

1 + s/(20GeV2)
(5.72)

and fit evenly spaced points from 4M2
π to 0.5GeV2. This fitting range is selected to

minimize the effect of the f0(980), which is not included.
The first two iterations are plotted in Fig. 5.9, where we see a dramatically different

behavior than in Fig. 5.7. Specifically, subsequent iterations have the effect of reducing the

12The I = 2 S-wave is also predicted to have an Adler zero as a consequence of chiral symmetry. In
our formalism, this zero must come from a different mechanism than that of I = 0 as, in the former,
the Pomeron only contributes indirectly through the crossed channel. We do not investigate plausible
alternatives for this channel here.
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Figure 5.9: First three iterations of the integral equation for Reασ(s) (solid) and Imασ(s)
(dashed) using Eq. (5.70). The fitted region is shaded and we see a trend towards negative
Reασ(s) with subsequent iterations.

i α(0) g2σ g2P γσ cσ c′σ
[Eq. (5.70)]

0 −0.182 0.228 1.170 0.523 1.053
1 −0.156 0.362 2.243 0.111 3.78 · 10−3

2 −0.146 0.533 3.586 0.082 2.11 · 10−5

[Eq. (5.73)]

0.137 1.886 0.014

Table 5.4: Fit parameters for the σ/f0(500) trajectory. We tabulate the first two iterations
resulting from using Eq. (5.70) as well as the non-iterative solution using Eq. (5.73).

slope of Reασ(s) as it tends to negative values. At the same time, the parameters at each

iteration tabulated in Table 5.4 reveal cσ approaches zero and, thus, the term ∝ q̂
2Reασ(s)
s ,

which is responsible for the indefinite rise of the real part of the RT, decouples from the
integral equation. This implies that elastic unitarity disfavors stable solutions for the σ of
the same type as for the ρ, with the former preferring an imaginary part that grows like
some power of log s and Reασ(s) → −∞. Different choices of the initial guess change the
other parameters and rate of cσ → 0, but ultimately reach the same conclusion.
Already, we can see that the shape being approached in Fig. 5.9 is highly non-linear

and resembles the RTs from potential theory in non-relativistic quantum mechanics rather
than the quintessential “stringy” dynamics of a relativistic confined quark model [249].
In addition, none of the iterations in Fig. 5.9 cross zero near threshold implying that, if
these contain the σ pole, it is located deep in the complex plane and unlike a typical BW
resonacne.

With the previous considerations, it is possible to choose a different parameterization
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by setting cσ = 0 in Eq. (5.70) from the beginning. Since we anticipate Reα(s) → −∞,
Eq. (5.21) will be trivially satisfied and it is no longer required to find a stable iterative
solution with γσ > 1. In fact, no iterative solution is needed at all, by choosing

Imασ(s) = ρ(s) g2σ

(
1 +

g2P
g2σ

[
ασ(4M

2
π) + c′σ ρ(s) log

(
s

4M2
π

)])2

, (5.73)

which is derived from Eqs. (5.41) and (5.70) by taking γσ → ∞. This limit is taken because,
with cσ = 0, the trajectory will be asymptotically logarithmic (cf. Eq. (5.45)) and having
Imασ(s) ∝ |ασ(s)|2 will no longer spoil the convergence of Eq. (5.35). We may thus
remove the overall logarithm of Eq. (5.41) and dependence on γσ with the aforementioned
limit. By shifting the subtraction point of the dispersion integral to s = 4M2

π , we may
further approximate the factor of ασ(s) on the right-hand side of Eq. (5.69) by ασ(s) ≃
ασ(4M

2
π)+c

′
σ ρ(s) log

(
s/4M2

π

)
,13 which empirically describes the near-threshold behavior.

Strictly speaking, since ασ(s) is complex-valued above threshold, the parameter c′σ should
also be complex. The imaginary part must be a real function, however, and we keep c′σ as
a real parameter in Eq. (5.73), to be determined by the fit, and drop the absolute value.
Using Eq. (5.73), in principle, four free parameters are left to be determined by fit: g2P,

g2σ, ασ(4M
2
π), and c

′
σ. Note, however, that because the RT is now given in terms of fixed

parameters instead of an iterative interpolation, up to an overall constant, the PW in
Eq. (5.68) will only depend on the ratios ασ(4M

2
π)/g

2
σ and c′σ/g

2
σ. Then, since these are

all a priori undetermined, at least one will be redundant and we fix α(4M2
π) = −0.064.

This is the threshold value of the σ RT as calculated using the CRP model in Ref. [191],
allowing for a direct comparison between the two approaches. When considering the fully
crossing symmetric model, which is left for a future extension of this work, the parameters
of the isobars in the crossed channel, i.e., the ρ coupling, will set a scale to break this
ambiguity and allow a determination of ασ(4M

2
π) (or equivalently ασ(0)).

The resulting S-wave amplitude and its parameters are shown in Fig. 5.10 and Table 5.4,
respectively. Generally good agreement with unitarity within the fit range is observed,
but significant deviations appear when extrapolating outside. As discussed before, higher-
order terms in momentum, the presence of the f0(980), and the KK̄ threshold become
important at s ≥ 0.5GeV2 and are beyond the scope of our minimal model.

Examining the RT in Fig. 5.11, we see a very similar shape to that being approached
in Fig. 5.9: a nearly flat real part, which eventually turns downward before diverging to
Reα(s) → −∞ logarithmically. We compare explicitly with the real and imaginary parts
of the CRP ασ(s) in Ref. [191]. Therein, a twice-subtracted dispersion relation, the S-
wave PW with a single pole, and elastic unitarity are used and are in qualitatively good
agreement with the GKPY amplitude. The CRP analysis concluded that the σ pole was
consistent with a RT with a very small slope. In comparison, our trajectory in Fig. 5.11,
grows even slower and is thus also consistent with a σ meson featuring a non-ordinary
Regge behavior. Another indication of this is the observation that the real part of neither
RT in Fig. 5.11 crosses the real axis in the vicinity of the σ meson. As was seen with
the ρ resonance, the mass and width of narrow resonances lying on conventional rising

13Note that the Eq. (5.73) vanishes at threshold as Imασ(s) ∝ ρ(s) ∝
√
s− 4M2

π and, thus, Reασ(s) →
ασ(4M

2
π) linearly in (s − 4M2

π). The empirical simplification converges to the threshold value faster,
but this does not affect the analytic properties of ασ(s).
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Figure 5.10: The S-wave PW projection for the I = 0 amplitude using Eq. (5.67) as
described in the text. Legend is the same as in Fig. 5.6.

trajectories can be well estimated by expanding the RT around the integer values of the
real part. This is clearly not the case for the σ whose real part has no zero crossing.
While our free parameters are determined by fitting the PWs, the CRP trajectory was

calculated by ensuring that the σ pole and residue in the complex plane are consistent
with those quoted in Ref. [58]. In order to compare, we also continue our trajectory to
the second Riemann sheet where a single root satisfying α(sσ) = 0 is found with

√
sσ = (500− i 470)MeV , (5.74)

and a residue in the PW of

|gσππ| = 7.9GeV and ϕσππ = −72° . (5.75)

While the mass and phase are in qualitatively good agreement with typical results ex-
tracted from precision studies [240, 241, 250–252], the width and size of the coupling
deviate by about a factor of two. This is not entirely unexpected, as we recall that the
model in Eq. (5.68), which is used to constrain the RT, is devoid of s-dependence except
that coming from the ασ(s). More specifically, using the homogeneous unitarity equation
Eq. (5.57), we ignore any contribution from LHCs, which are well known to be important
contributions to σ pole determinations [248, 253–255]. Because of this, ασ(s) and therefore
the width of the σ, must encompass the entire s-dependence of the PW, leading to this
overestimation.
Another indication of this effect is the location of the Adler zero, which is located at

sA = −0.05GeV2. From ChPT predictions, we should expect the Adler zero to be some
positive factor of M2

π below threshold [248]. While the leading-order prediction places the
zero at sA = M2

π/2 [139], its precise location is typically sensitive to the implementation
of the LHC given the close proximity of the branch point at s = 0 as well as that of the
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RHC at s = 4M2
π [242, 248]. Our Adler zero at s < 0 would, in principle, overlap with the

LHC if it were included and we thus expect a more in-depth analysis, which includes the
crossed-channel contributions, to shift both pole and zero to values more consistent with
other approaches. Regardless, we consider finding a pole (and zero) in the correct mass
range with such a simple model and with few parameters provides reassurance that the
formalism presented here is capable of describing more than just the classical examples of
“simple” resonances such as the ρ.

One obvious advantage of working with RTs is that one can examine other properties
about the σ, which would not be possible with typical PW analyses. Specifically, just like
the extraction of the ρ′ and ρ3 in Sec. 5.4.1, the existence of radial and orbital excitations
of the σ can be examined. These would-be σ′ and σ2 mesons correspond to the roots
ασ(sσ′) − 1 = 0 and ασ(sσ2) − 2 = 0, respectively, and can be searched in the same way
as the ground state σ. Calculating ασ(s) in the complex plane, we notice that on the
unphysical sheet Reασ(s) → −∞ monotonically (and logarithmically) in every direction
in the lower-half complex plane. Because of this, there are no positive integer values of
ασ(s) in the complex plane and we can conclude that the σ does not have any excitations.
This is once again more akin to the RT of a non-relativistic potential with finitely many
bound states as opposed to a conventional Reggeon [191, 249]. While it may be possible
that coupling to higher thresholds can produce a RT that turns around above some energy,
such a scenario would entail the excitations are somehow “induced” by inelastic thresholds,
which we find highly unlikely.
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5.5 Summary and outlook

To summarize, in this chapter we presented a parameterization for scattering amplitudes
that recovers many expectations of S-matrix principles both at low energies and in the
asymptotic limit. Since analyticity and crossing necessarily correlate the physics of hadron
interactions at all energies and in all partial waves, our proposed formalism in terms of
hypergeometric isobars and Regge trajectories allows these constraints to be rigorously
imposed by using relatively simple functional forms. In this way, our model is a realization
of the unification of a wide array of QCD phenomena: resonances in the complex-energy
plane, existence of orbital/radial excitations, Reggeon exchanges in peripheral reactions,
and even the scaling behavior emerging from parton exchanges in perturbative regimes.
Here, we focused on the scattering of identical, spinless particles, but this constitutes a
starting point for further applications, generalizations, and improvements on the basic
formalism.
As first-order validation of the feasibility of our model, we examined low-energy ππ

scattering. We showed the flexibility of our formalism to generalize for different isospins
and meson families. A numerical method to enforce unitarity up to some momentum
scale of interest, which parallels the implementation of the KT equations, was proposed
and the Regge trajectories of the ρ and σ mesons were examined. Our results compared
reasonably to existing literature and highlighted future improvements, which can lead
to better extractions of these Regge trajectories. Specifically, we have paved the way
towards generalizing the unitarization scheme to include the full effect of left-hand cuts
in a crossing symmetric KT-like or Roy-like analysis using Regge poles. Because our
formalism aims to describe scattering at all energies, such an analysis can also include
experimental high-energy data directly to further constrain the amplitude.
Further generalizations to decay processes, coupled channels, unequal masses, and par-

ticles with spin will greatly increase the applicability of our model and allow a much more
constrained determination of Regge trajectories. Since these are generalizations of poles
in the relativistic S-matrix, Regge trajectories can be an important tool for the study of
hadronic resonances.

5.A Hypergeometric formulae

We provide a summary of relevant properties of the hypergeometric function and its reg-
ularized form. The identities used here are expounded upon in Ref. [256].

The Gaussian hypergeometric function is defined for |d| < 1 through its power series

2F1 [a, b; c; d ] =
∞∑
n=0

(a)n (b)n
(c)n

dn

n!
, (5.76)

where

(x)n =
Γ(x+ n)

Γ(x)
, (5.77)

is the Pochhammer symbol. Equation (5.76) manifests poles when c is a negative integer
and thus we work with the regularized hypergeometric function defined in Eq. (5.11),
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which is pole-free for all values of its arguments. For |d| < 1 the regularized power series
reads:

2F̃1 [a, b; c; d ] =
∞∑
n=0

(a)n (b)n
Γ(c+ n)

dn

n!
. (5.78)

The regularized hypergeometric function is also often represented in an integral form via

2F̃1 [a, b; c; d ] =
1

Γ(b)Γ(c− b)

∫ 1

0
dxxb−1(1− x)c−b−1(1− xd)−a , (5.79)

which converges only for Re (c) > Re (b) > 0 and |arg(1− d)| < π.
To consider asymptotic limits, the power series representation of 2F̃1 in 1/d converges

as |d| → ∞ and with a > b reads

2F̃1 [a, b; c; d ] →
Γ(b− a)

Γ(b)Γ(c− a)
(−d)−a +

Γ(a− b)

Γ(a)Γ(c− b)
(−d)−b , (5.80)

as long as b − a is not an integer. This latter caveat is important as there are apparent
poles emerging from the Γ functions in the numerators of both terms in the expansion. As
we approach one of these apparent poles, taking b → a+ n for integer n ≥ 1, the leading
term becomes

2F̃1 [a, a+ n; c; d→ ∞ ] → (n− 1)!

Γ(a+ n) Γ(c− a)
(−d)−a (5.81)

without a pole. The specific form of the asymptotic limit that we require is multiplied by
additional powers of the parameter d (cf. Eq. (5.10)) and we write this particular case as

dj 2F̃1 [1 + j, j − α; 1 + j − α; d→ ∞ ]

→ (−1)j
(

1

Γ(j − α)(−1− α)
(−d)−1 +

Γ(1 + α)

Γ(1 + j)
(−d)α

)
. (5.82)

Finally, Eq. (5.82) seems to manifest a pole in both terms at α → −1, but when taking
the limit we see that the result is free of poles:

dj 2F̃1 [1 + j, 1 + j; 2 + j; d→ ∞ ] → (−1)j

j!
log d (−d)−1 . (5.83)

Although we do not compute the limits for α→ −j for any integer j > 1, similar expres-
sions may be derived and Eq. (5.82) is finite and pole-free everywhere.

5.B Fixed-angle scattering

While the Regge limit explored in Sec. 5.2.1 is of more immediate interest as it relates
to the properties of hadrons in different channels, the limit of large s with fixed angle
zs, i.e., large −t with the ratio t/s fixed, connects the hadron level amplitude with the
inter-meson dynamics of parton exchanges [257, 258]. In particular, while the behavior
sα(t) is characteristic in the Regge limit, at fixed angles, hadronic cross sections exhibit
scaling properties of the form

dσ

dt
≃ 1

s2
|T (s, t, u)|2 ∝ s−N , (5.84)

103



Towards a unified description of hadron scattering at all energies

where the power N is constant and argued to be related to the number of constituent
partons involved in the scattering process [259–261].
In this limit, Veneziano-based amplitudes with linear trajectories fall exponentially and

are thus entirely unable to reproduce the power-law scaling in Eq. (5.84) [54, 262]. More
sophisticated dual models such as dual amplitudes with Mandelstam analyticity (DAMA)
can be made to exhibit fixed-angle scaling, but at the cost of logarithmically bounded
Regge trajectories [263, 264]. While a DAMA model of this form can provide a unified
description of both fixed-angle and Regge phenomena, the slowly growing RTs make it
difficult to also simultaneously describe the resonance spectra at timelike energies. Of note,
however, is that DAMA with a logarithmic trajectory allows a microscopic interpretation
of its integral representation in terms of meson wave functions and the loop momentum
of exchanged partons [262].
To investigate under which assumptions the model in Sec. 5.2 exhibits the scaling be-

havior, we will use a slightly generalized form of the isobar function with jmin = 0,

F (α(s), νs) = Γ(−α(s)) 2F̃1 [η, −α(s); 1− α(s); ν̂s ] , (5.85)

which reduces to Eq. (5.10) with η = 1. In the large energy limit at fixed s-channel
scattering angle θs, all three Mandelstam variables are large and we may use

t→ −s cos2
θs
2

and u→ −s sin2
θs
2
. (5.86)

We will ignore fixed angular factors and consider only the powers of s. This limit thus
involves considering s→ +∞ while both t and u→ −∞. With the usual assumptions on
the RTs in Sec. 5.2.1, the s-channel isobar F±(s, zs) → 0 exponentially as in Eq. (5.20).
The leading powers of s will thus be given by the t- and u-channel isobars, which decrease
proportional to t−η/α(t) and u−η/α(u), respectively (cf. Eq. (5.18)). Since the RTs we
consider are unbounded in both directions, as t, u→ −∞, both RTs α(t) and α(u) → −∞,
and the term of Eq. (5.18) becomes the leading s behavior. Since these will scale with the
same powers of s, it is sufficient to examine one of these terms.
Because α(t) is assumed to satisfy the once-subtracted dispersion relation of Eq. (5.35),

there is an 0 ≤ ϵ < 1 such that |α(t→ −∞)| ≲ s1−ϵ. This means that in the high-energy
limit at fixed angle, the amplitude Eq. (5.7) will scale as

|T (s, t, u)|2 ∝
∣∣∣∣ t−η

α(t)

∣∣∣∣2 ∝ s−2(η+1−ϵ) , (5.87)

and the resulting differential cross section as

dσ

dt
∝ s−2(η+2−ϵ) . (5.88)

Here, we see that regardless of the exact behavior of α(t), as long as it is unbounded in
the negative direction, the cross section exhibits fixed power-law scaling behavior with any
combination of isobars of the form Eq. (5.85). The parameter η can be used to change the
leading power of s to accommodate theoretical predictions or experimental data. In this
way, this isobar model smoothly connects the hadronic component of the isobars, i.e., as
encoded through α(s), to the parton-level dynamics, which are governed by η.
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In the case of ππ scattering, fixed-angle high-energy scattering is not experimentally pos-
sible and we thus do not attempt to fine-tune η. Instead, we look at the expectation from
Regge phenomenology as described in Sec. 5.2.1 as well as predictions of hadron scatter-
ing processes at large transverse momentum from perturbative QCD (pQCD). Specifically,
Refs. [257, 265] argue that because the large s- and |t|-regime of exclusive hadron pro-
cesses should be dominated by constituent parton exchanges, all hadron RTs will couple
to a lower RT that encodes hard physics and is effectively constant. Such a trajectory
would correspond to that of a Reggeized quark and satisfies αq(t→ −∞) = −1 [231]. We
thus fix η = −αq(t) ≈ 1. Identifying the lower bounding behavior of Eq. (5.16) as arising
from a lower-lying quark RT can be trivially considered by generalizing η to a function of
t but is not considered here.

With the specific form of Eq. (5.10) and with η fixed as above, the scaling of Eq. (5.84)
is N = 6 − 2ϵ. Simple dimensional counting arguments from pQCD predict the elastic
scattering of mesons each with two constituents, i.e., a quark–antiquark pair, have N =
6 [260, 261]. With the trajectories fitted in Sec. 5.4, the scaling will be dominated by
the slowest trajectory, which is that of the σ. Since our ασ(s) grows logarithmically,
it is bounded by any power of s and we can set ϵ = 1 (minus a positive infinitesimal)
giving our ππ amplitude a scaling with N = 4. As discussed above, the connection of
this scaling behavior and pQCD offers an enticing connection between the σ and quark
exchange dynamics and may offer clues into the internal structure of the former.

5.C Duality

In this appendix, we briefly compare the isobar model constructed in Sec. 5.2 with com-
monly held notions of resonance–Regge duality. The concept that s-channel poles are
“dual” to t-channel poles was first encountered by considering the finite-energy sum rules
(FESRs) resulting from the analyticity of scattering amplitudes [186, 266]. If an amplitude
is analytic and satisfies crossing symmetry then one may write a dispersion relation up to
some finite energy N and derive a self-consistency relation of the form

1

2

∫ N

−N
ds′ disc T (s′, t, u) ≃

∑
i

Ri(N, t) . (5.89)

Here, an integral over the discontinuities along both LHC and RHC is related to a sum
over Regge terms given by Eq. (5.13) on the right-hand side. For simplicity, we have
ignored the contributions of the background integral and the possible presence of Regge
cuts.
Considering Eq. (5.89) in the narrow-width approximation leads to the observation that

an amplitude that contains resonances and Regge behavior separately, i.e.,

T (s, t, u) = TRes(s, t, u) + TRegge(s, t, u) , (5.90)

leads to violations of the FESRs (and therefore analyticity) in intermediate energies where
the two terms can interfere, i.e., the “double counting” problem [186, 267]. A proposed
solution was that the resonance and Regge behaviors are dual to each other, in the Dolen–
Horn–Schmid (DHS) sense, meaning they must arise from a single function when evaluated
in different limits and there is therefore no second term with which to interfere. This led
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to the general conception that amplitudes will fall into one of two distinct categories: dual
models, which realize this DHS duality, or interference models, which sum direct-channel
and crossed-channel processes like in a Feynman-diagram-based approach. Since only the
former is thought to satisfy the FESRs, it is believed to be more fundamental.
The isobar model constructed in Sec. 5.2 belongs in the latter category with explicit

sums of poles in the s-, t-, and u-channels. The model in Eq. (5.7), however, also satisfies
the FESRs by construction as evident by the analyticity of Eq. (5.10), the cut structure in
Fig. 5.2, and the Regge asymptotics in Sec. 5.2.1. Indeed, whether satisfying the FESRs
requires amplitudes to be dual in the DHS sense has been criticized in Refs. [216, 268–271],
since interference models can be constructed to satisfy Eq. (5.89) when going beyond the
narrow-resonance approximation and introducing cuts. Our model is one realization of
these ideas, with the cuts of the RTs playing a pivotal role in the Regge asymptotics (cf.
Eq. (5.20)).
Other works further criticized the distinction between dual and interference with proofs

that, under general assumptions, amplitudes can always be decomposed into separate
resonance and Regge terms akin to an interference model [193, 272, 273]. In light of
this seemingly blurry boundary between the two classes of models, Ref. [216] suggests
an unambiguous statement of duality. It states that resonances and Regge behavior are
dual if they both arise from the same function α(s) with respect to poles in the complex
j-plane. As explored in Secs. 5.2.1 and 5.2.2, this is the case for our model.
In addition to the general considerations above, we can explicitly compare the imple-

mentation of our model to ππ scattering, discussed in Sec. 5.4 and expressed in the charge
basis in Appendix 5.D, to dual amplitudes for the same reaction, particularly the VLS
model [76–78] and the broader class of DAMA models (for a general survey of the latter,
see Refs. [54, 274, 275] and references therein).
In a generic dual model, the charge basis ππ amplitude of Eq. (5.107) is decomposed in

terms of a single function of two variables [78]:

M(s, t, u) = V (s, t) + V (s, u)− V (t, u) , (5.91)

where V (s, t) = V (t, s) contains resonances in either the s- or t-channel in different limits.
The structure of Eq. (5.91) is fairly rigid to ensure the absence of I = 2 resonances when
constructing isospin amplitudes with Eq. (5.106) [53]. The choice of the function V (s, t),
however, can be shown to be fairly general and, in the language of DAMA, typically defined
in terms of an integral of the form

V (s, t) =

∫ 1

0
dxx−α(s)−1 (1− x)−α(t)−1 g(s, t, x) , (5.92)

with a kernel function g(s, t, x) = g(t, s, 1 − x), which is regular at the end points of
integration. A classical choice of the kernel is a constant, i.e., g(s, t, x) = g2, which
reproduces the Euler beta function:

V (s, t) = g2
Γ(−α(s)) Γ(−α(t))
Γ(−α(s)− α(t))

, (5.93)

and is the basis of the VLS model. More complicated functions have also been considered,
cf. Ref. [276]. The integral in Eq. (5.92) does not typically converge for all s and t and must
be extended, e.g., to the resonance region α(s) > 0, through analytic continuation [54].
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We want to consider whether the isobar model constructed in Sec. 5.4 can recover the
structure of Eqs. (5.91) and (5.92), despite not appearing as a dual model. First, the
absence of I = 2 is trivially achieved in Eq. (5.51) by decoupling any s-channel RTs in
that channel. Thus, we set all couplings in I = 2 to zero such that Eq. (5.107) reduces to:

M(s, t, u) =
1

3
F0(s, zs) +

1

2

[
F1(t, zt)−F1(u, zu)

]
. (5.94)

The remaining I = 0 and 1 isobars can then be assumed to be given by a single exchange
degenerate trajectory α(s) with jmin = 0 and the couplings in the different isospins related
to a universal coupling by g2 = g20/3 = g21/2 (cf. the exchange degeneracy assumptions in
Eq. (5.64)). With Eq. (5.50) and these choices, Eq. (5.94) can be cast in the same form
as Eq. (5.91) using:

V (s, t) =
g2

2
[F (α(s), νs) + F (α(t), νt)] ,

V (s, u) =
g2

2
[F (α(s), −νs) + F (α(u), −νu)] , (5.95)

V (t, u) =
g2

2
[F (α(t), −νt) + F (α(u), νu)] ,

in terms of the isobar functions in Eq. (5.10). These functions are symmetric in their
arguments and related only by the interchange of Mandelstam variables. As discussed in
Sec. 5.2.2, near a resonance pole in the complex plane, V (s → sj , t) ∝ Pj(zs)/(j − α(s)),
while simultaneously V (s, t → tj) ∝ Pj(zt)/(j − α(t)). Further, the spectrum of the
Chew–Frautschi plot of Eq. (5.95) matches that of Eq. (5.93) (albeit not on linear, real
trajectories), since V (s, t) is not yet symmetrized with a definite parity. When evaluating
the Regge limits with the usual assumptions in Sec. 5.2.1, we have V (s → ∞, t) ∝ sα(t)

and V (s, t→ ∞) ∝ tα(s), once again as in Eq. (5.93).
Unlike Eq. (5.93), however, these limits are achieved through the sum of infinitely many

terms in both (j−α(s))−1 and (j−α(t))−1. Thus, a limiting case of our model can recover
all the same phenomenological features of the VLS amplitude, but without DHS duality.
Moreover, our amplitude easily loosens the assumptions of exchange degeneracy, zero-
width resonances, and linear trajectories, which have been notorious difficult challenges
for Veneziano-like amplitudes to overcome.
We can also compare Eq. (5.95) to the more general class of DAMA models given by

Eq. (5.92). Using the integral form of the regularized hypergeometric function, Eq. (5.79),
we can write the isobar in Eq. (5.10) as:

F (α(s), νs) =

∫ 1

0
dx

x−α(s)−1

1− ν̂s x
, (5.96)

which converges so long as Reα(s) < 0. With this representation, Eq. (5.95) is of the form
Eq. (5.92) with the choice

g(s, t, x) =
g2

2

[
(1− x)α(t)+1

1− ν̂s x
+

xα(s)+1

1− ν̂t (1− x)

]
, (5.97)

which satisfies the necessary symmetries and is regular at x = 0 and 1. This seems to
suggest a close connection between our amplitude and DAMA, albeit with a choice of a
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kernel that separates s- and t-channel components and thus breaks the intrinsic duality.
Such a splitting of DAMA into an interference-like representation has been considered in
Refs. [54, 273], although with different model constructions. Equation (5.97) is a partic-
ularly convenient choice as it allows the analytic continuation to arbitrary α(s) and α(t)
to be done in closed form via the hypergeometric function in Eq. (5.10).
Because we are able to write the isobars in the form of the DAMA integral and have

scaling properties as explored in Appendix 5.B, we conjecture a similar microscopic inter-
pretation of the kernel in Eq. (5.97) in terms of meson wave functions and interchanged
parton momentum as in Ref. [257] but do not explore this here.

5.D Isospin structure

Here, we show that Eq. (5.51) is indeed crossing symmetric by computing the amplitudes
projected onto the t- and u-channel isospin bases. The s–t isospin crossing matrix is
already defined in Eq. (5.52) and we define two more matrices [49]

Csu =


1
3 −1 5

3

−1
3

1
2

5
6

1
3

1
2

1
6

 (5.98a)

and

Ctu =


1 0 0

0 −1 0

0 0 1

 . (5.98b)

The elements of Eq. (5.98a) are related to those in Eq. (5.52) by CII′
st = (−1)I+I′ CII′

su .
Each matrix obeys C2

st = C2
su = C2

tu = 1 as well as the cyclic relations

CstCtu = CtuCsu = CsuCst (5.99a)

and
CsuCtu = CtuCst = CstCsu . (5.99b)

These matrices arise as coefficients when considering isospin amplitudes in different
frames. For example, defining a vector with respect to isospin components,

T⃗ (s, t, u) =

T 0(s, t, u)
T 1(s, t, u)
T 2(s, t, u)

 , (5.100)

crossing symmetry requires the t-channel isospin amplitudes to fulfill

T⃗ (t, s, u) = Cst T⃗ (s, t, u) , (5.101a)

and similarly for the u-channel

T⃗ (u, t, s) = Csu T⃗ (s, t, u) . (5.101b)
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Defining an analogous vector for the isospin-definite isobars in Eq. (5.50),

F⃗(s, zs) =

F0(s, zs)
F1(s, zs)
F2(s, zs)

 , (5.102)

we can write Eq. (5.51) compactly as:

T⃗ (s, t, u) = F⃗(s, zs) + Cst F⃗(t, zt) + Csu F⃗(u, zu) . (5.103)

Then, we calculate

Cst T⃗ (s, t, u) = Cst F⃗(s, zs) + F⃗(t, zt) + CsuCtu F⃗(u, zu)

= Cst F⃗(s, zs) + F⃗(t, zt) + Csu F⃗(u,−zu)
= T⃗ (t, s, u) , (5.104a)

where Ctu F⃗(x, zx) = F⃗(x,−zx) is used. For the u-channel, the calculation proceeds
identically:

Csu T⃗ (s, t, u) = Csu F⃗(s, zs) + Cst F⃗(t,−zt) + F⃗(u, zu)

= T⃗ (u, t, s) , (5.104b)

and thus Eq. (5.103) indeed satisfies Eq. (5.101).
The starting point of our construction Eq. (5.51) are isobars that already carry definite

isospin. However, we may also compare to the charge basis, which is the traditional starting
point of narrow-resonance models, such as in Refs. [77, 78]. By defining the generic isospin
amplitude

Mijkl(s, t, u) = δijδkl M(s, t, u) + δikδjl M(t, s, u) + δilδjk M(u, t, s) , (5.105)

with isospin indices i, j, k, and l in the Cartesian basis, the amplitude M(s, t, u) can be
related to Eq. (5.51) byT 0(s, t, u)

T 1(s, t, u)
T 2(s, t, u)

 =

3 1 1
0 1 −1
0 1 1

M(s, t, u)
M(t, s, u)
M(u, t, s)

 . (5.106)

This relation may be inverted yielding the charge basis amplitude in terms of isobars:

M(s, t, u) =
1

3
F0(s, zs) +

1

2

[
F1(t, zt)−F1(u, zu)

]
− 1

3

[
F2(s, zs)−

3

2

(
F2(t, zt) + F2(u, zu)

)]
. (5.107)

5.E Pole positions

In this appendix, we describe the procedure to extract the pole positions using the RTs
constructed in the text. The resonances of a given isobar Eq. (5.10) correspond to integer
values of α(s) in the complex s-plane. Thus, determining the location for a resonance
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with spin j on a trajectory α(s) entails searching for roots of (j − α(s)) on the second
Riemann sheet in the lower-half complex plane. Because the trajectories are defined
through Eq. (5.35), they are evaluated on the first Riemann sheet and must be continued
to the unphysical sheet. This can be accomplished in a number of ways, but we use the
Schlessinger Point Method (SPM) [277–281].14 From α(s) evaluated through Eq. (5.35),
we construct the continued fraction:

α̃N (s) = α (s1)
/(

1 +
a1 (s− s1)

1 + a2(s−s2)

. . .aN (s−sN )

)
, (5.108)

where the coefficients ak for k = 1, . . . , N are chosen such that α̃N (sk) = α(sk) at N + 1
energy points on the real line sk. We refer to the appendix of Ref. [277] for the explicit
formula to calculate each ak recursively. If the points sk interpolate a segment above
threshold, then the resulting α̃N (s) can be used to probe the unphysical Riemann sheet
in the lower-half plane, which will be smoothly connected to the first Riemann sheet in
the upper-half plane.
The interpolated sk’s are chosen to be evenly spaced points from threshold to some smax.

For a given N and smax, then, poles are found by minimizing |j − α̃N (s)| for the desired
value of j. Once poles are found, their stability upon varying N and smax must be verified
as an analytic continuation using the SPM may introduce spurious singularities [290–292].
The above procedure can be done with the trajectory alone. In order to also extract the

residue of the poles, however, we need to use the RT in conjunction with the fitted isobar
model. Since the pole at α(sj) = j will appear in the PW projection of the direct-channel
isobar f Ij (s) in Eq. (5.55), the residue can be extracted by evaluating

g2 = −16π lim
s→sj

(s− sj)
(2j + 1)

(2qs)2j
f Ij (s) . (5.109)

The PW projected isobar must also be continued to the second Riemann sheet, which can
be accomplished using the SPM as above, or directly from Eq. (5.55) by replacing α(s)
with Eq. (5.108). Once again, the stability of the residue must be checked by varying N
and smax.
Because the RTs naturally sort resonances into different particle families each entering

through a separate F (αi(s), νs) in Eq. (5.8), as we approach the pole, the residue in
Eq. (5.109) will actually only depend on a single term in the sum of Eq. (5.55). This means
the extraction of pole parameters in situations involving multiple resonances appearing on
different RTs can be simplified, since, after the amplitude is fit to data, one only needs to
examine a single trajectory at a time.

14Other methods that could be used are conformal expansions [254, 282], Laurent–Pietarinen expan-
sions [283–285], or sequences of Padé approximants [286–289].
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Chapter 6

Dispersive analysis of the Primakoff
reaction γK → Kπ

6.0 Prologue

The content of this chapter is a short summary of the publication

• M. Dax, D. Stamen, and B. Kubis, Dispersive analysis of the Primakoff reaction
γK → Kπ, Eur. Phys. J. C 81, 221 (2021) [arXiv:2012.04655 [hep-ph]] ,

the two Master’s theses

• M. Dax, Master’s thesis, Bonn University (2020) ,

• D. Stamen, Master’s thesis, Bonn University (2020) ,

and the proceeding

• D. Stamen, M. Dax, and B. Kubis, Dispersive analysis of the Primakoff reaction
γK → Kπ, PoS CD2021, 048 (2021) .

The project extends the analyses of Refs. [117, 118], where the Primakoff process
γπ → ππ is investigated. This representation of the amplitude is currently used to an-
alyze the pion COMPASS data to extract the chiral anomaly as well as the ρ → πγ cou-
pling [295]. The idea is to provide a similar framework for the upcoming run on charged
γK → Kπ processes at the same facility. It is, however, expected that the statistics in
the kaon case are decreased by roughly a factor of 8, while accounting for a longer run
time [296].
Therefore, we provide a dispersion-theoretical representation of the Primakoff reaction

amplitudes γK → Kπ in all charge channels, including the neutral ones. The K-Long
Facility (KLF) [297] in principle allows to measure these Primakoff events for a neutral
kaon beam, but major experimental challenges remain and the expected event rate might
be very small.
The main input to our analysis is a modern pion–kaon P -wave phase shift taken from

Ref. [60]. We derive the respective reconstruction theorems for all charge channels to use
Khuri–Treiman equations for the resulting single-variable amplitudes. Crossed-channel
singularities in γπ → K̄K are fixed from phenomenology wherever possible. Thereby,
the narrow resonances ω and ϕ are described via a vector-meson dominance model and
their respective couplings to πγ and K̄K. The decay ω → K̄K cannot be fixed directly
from data; consequently, we use the output of an analysis of the timelike kaon form
factor. This is compatible with fixing it from the ϕ→ K̄K coupling and SU(3) symmetry.
Furthermore, the broad ρ is dispersively reconstructed via the ππ intermediate state.
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Dispersive analysis of the Primakoff reaction γK → Kπ

Note that the γπ → ππ amplitude is therefore used as an input for the crossed-channel
contributions. We demonstrate how the subtraction constants can be matched to a low-
energy theorem and radiative couplings of the K∗(892) resonances, where the couplings
are defined as the residues of the pole on the second Riemann sheet. The amplitude at the
pole position is given in terms of the subtraction constants, allowing for a determination
of the radiative couplings from a fit to experimental data. Altogether, we provide a model-
independent framework for future analyses of high-precision kaon Primakoff data.
All these steps and main results were developed in the Master’s theses of Maximilian

Dax [293] and the author of this thesis [294] in fruitful cooperation. However, the publica-
tion [4] was only written later. Therefore, all figures were created and the main text parts
therein were written by the author of this thesis. Prominently, the cross section results
were only carried out during this time and are not part of the Master’s theses. Therefore,
the following chapter contains a short version of the technical details, since they are al-
ready explained greatly in the given references. However, the motivation for this project,
the results, and discussions are kept in more detail. Furthermore, some other results are
included that were only calculated or published in the literature after the publication.
One of these is the calculation done in Ref. [298], where the next higher partial wave, the
resonant D-wave including the K∗

2 (1430) resonance is calculated. It confirms the previous
estimate of the applicable energy range for the dispersive treatment. Additionally, the
analysis in Chapter 8 gives access to the ω → K̄K coupling. However, the uncertainties
are larger than from the method used before, so that our analysis remains unchanged.
The following chapter provides an insight into the work done by the author of this

thesis in the context of this project after the completion of the Master’s theses, while
giving enough details to make this chapter self-consistent and readable.

6.1 Introduction

The Wess–Zumino–Witten anomaly [299, 300] provides QCD predictions for processes of
odd intrinsic parity at low energies. The textbook example is the two-photon decay of the
neutral pion [26, 28, 29], which is determined, at zero quark masses, by the elementary
charge, e, and the pion decay constant, Fπ. The next-more-complicated reactions in-
volving strong and electromagnetic interactions only are three-pseudoscalars–photon pro-
cesses [301] such as γπ → ππ, or η → ππγ. Low-energy theorems for these are of a very
similar structure, i.e., they provide parameter-free predictions in terms of e and Fπ, e.g.,

F3π =
e

4π2F 3
π

(6.1)

for γπ → ππ [302–304]. This reaction can be investigated experimentally in a Primakoff
reaction [305], with a charged-pion beam scattered off the Coulomb field of a heavy nu-
cleus. Such experiments have been performed, with the objective to test the prediction of
Eq. (6.1), at Serpukhov [306], or are being analyzed at COMPASS [295, 307].

The generalization of such Primakoff reactions to beams of charged kaons was conceived
as early as in the 1960s [308], and put into practice in the 1970s both at the CERN Proton
Synchrotron [309] and at AGS in Brookhaven [310], with refined experiments conducted
in the 1980s at Fermilab [311–314]. The motivation here was mainly the exploration
of radiative couplings of strange resonances, predominantly the K∗(892), and the sup-
posed relation of these (magnetic) radiative transitions, in the quark model, to quark
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magnetic moments [311, 313]. KTeV has investigated Primakoff production of neutral
strange resonances with a KL beam [315], concentrating on radiative widths of heavier
kaon resonances. Currently, the OKA experiment [316, 317] analyzes data on charged-kaon
Primakoff reactions. In the future, high-precision data is expected from the upgrade to
a kaon beam at AMBER [318–320]. Furthermore, the KLF collaboration plans a neutral
kaon beam [297], where theoretically the Primakoff process could be measured, which will
become experimentally very challenging due to the weaker Coulomb field compared to
AMBER.
It was realized in Refs. [117, 118] for the anomalous photon–pion reaction that both

aspects, low-energy theorem and chiral anomaly on the one hand, and radiative resonance
couplings on the other, are intimately related to each other. Unitarity implies a close
link between the amplitude γπ → ππ, at zero energy and in the chiral limit, and its
behavior in the resonance peak region of the ρ(770). This has the practical consequence
that the prediction due to the anomaly can be tested with much better statistics [117].
In addition, using a dispersion-theoretical representation, the radiative coupling ρ → πγ
can be extracted in a model-independent way, from the residue of the pole on the second
Riemann sheet [118]. Furthermore, such dispersive amplitudes will also help to link lattice
QCD calculations [321–323] to physical parameters [86, 120]. The overarching interest in
γπ → ππ is also justified by its role in the dispersive reconstruction of the neutral-pion
transition form factor [122–124] and the latter’s role for hadronic light-by-light scattering
and the muon’s anomalous magnetic moment [324, 325].
In this chapter, we construct a dispersion-theoretical representation for γK → Kπ (in all

possible charge configurations) that fulfills a similar feat. The chiral anomaly predicts the
amplitudes for π0 production to have the exact same value in the chiral limit and at zero
energy as the analogous photon–pion reaction, see Eq. (6.1); based on the fundamental
principles of analyticity and unitarity, the anomaly can also here be related to the radiative
couplings of K∗(892) → Kγ [313, 314, 326]. In this manner, our analysis provides a con-
sistent framework to analyze future data, from OKA or AMBER, in a theoretically sound
setting. The radiative K∗ coupling constants are, inter alia, important input quantities for
coupled-channel descriptions of photon–photon fusion reactions γγ → ππ/KK̄ [327, 328]
and γγ → πη/KK̄ [329, 330]. On a similar note, the full γK → Kπ amplitudes might serve
as a building block for an advanced analysis of Compton scattering on kaons, from which
the kaon polarizabilities [331] can be extracted, the main motivation of the COMPASS
kaon Primakoff program [332]. This will be explored in Chapter 7.
Previous theoretical work on these reactions is rather elusive. The channels with in-

coming charged kaons were calculated in Ref. [333] in a tree-level model based on effective
Lagrangians for vector exchanges. For γK− → K−π0 only, one-loop corrections in the
chiral expansion have been considered [334, 335]. Here we derive Khuri–Treiman-type
equations [97] for all possible charge configurations and solve these self-consistently for
the (crossing-symmetric) s- and u-channels, while t-channel singularities are fixed from
data and symmetry arguments as much as possible. To guarantee an accurate descrip-
tion of the universal kaon–pion final-state interactions, we employ phase shift input from
corresponding Roy–Steiner analyses [60, 336, 337]. After the publication of Ref. [4] the
Hadron Spectrum Collaboration calculated γK → Kπ in lattice QCD with unphysical
pion masses of 284MeV [338].
The outline of this chapter is as follows: we introduce the necessary kinematics as well
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as partial-wave and isospin formalism in Sec. 6.2, leading to the amplitude decomposition
in terms of so-called reconstruction theorems. The fixed t-channel amplitudes are deter-
mined in Sec. 6.3. Section 6.4 is devoted to derivation and solution of the Khuri–Treiman
equations for γK → Kπ. In Sec. 6.5, we discuss the matching of the subtraction con-
stants, the free parameters of the dispersive representation, to the chiral anomaly and the
radiative K∗ couplings. Results for the cross sections are shown in Sec. 6.6. We summarize
and conclude our study in Sec. 6.7.

6.2 Decomposition of the amplitude

We decompose the amplitude for the reaction γ(q)K(p1) → K(p2)π(p0) in terms of a
kinematic prefactor of odd intrinsic parity and the scalar amplitude F(s, t, u) according
to

M = iϵµναβε
µpν1p

α
2 p

β
0F(s, t, u) , (6.2)

where εµ is the polarization vector of the photon and the Mandelstam variables [40] are
given by s = (q + p1)

2, t = (q − p0)
2, and u = (q − p2)

2. In the isospin limit with
Mπ =Mπ± andMK = 0.496GeV (the convention used in the pion–kaon scattering analysis
of Ref. [60]), the on-shell condition reads s + t + u = 2M2

K +M2
π = 3s0 and the elastic

threshold is given by sth = (MK +Mπ)
2. The total cross section is given by

σ(s) =
(s−M2

K)λ3/2(s,M2
π ,M

2
K)

1024πs2

∫ 1

−1
dzs(1− z2s )|F(s, t, u)|2 . (6.3)

In terms of isospin, the reaction γK → Kπ is equivalent to pion photoproduction off
a nucleon γN → Nπ studied, e.g., in Refs. [339, 340]. For dispersion-theoretical analyses
of scattering or (three-body) decay amplitudes, it is highly advantageous to decompose
these in terms of single-variable amplitudes (SVAs). Decompositions of such a kind are
commonly referred to as reconstruction theorems [47, 48, 121]. With one exception, we
neglect discontinuities of partial waves with ℓ ≥ 2, resulting in the reconstruction theorems
for F in the four different charge channels [4].
Despite the (potentially) very high accuracy of the representation at low energies, the

range of applicability towards higher energies is clearly limited. One of the main limiting
factors for a description of cross-section data in the direct or s-channel is the appearance
of a resonant Kπ D-wave around the K∗

2 (1430). Given a width of ΓK∗
2 (1430)

= 100(2)MeV,
this suggests our representation to be applicable up to well below

√
s = 1.3GeV [298].

Furthermore, for the dominant Kπ P -wave, we will stick to the implementation of elastic
unitarity with Kπ intermediate states only, which will break down around the K∗(1410)
resonance (ΓK∗(1410) = 232(21)MeV) with its large inelastic coupling mainly to Kππ. For
this reason, the dispersive amplitude representation we aim for is supposed to be valid to
good approximation up to

√
s ≈ 1.2GeV.

6.3 Singularities in the t-channel

The usual approach to analyzing Khuri–Treiman-type systems is to solve the unitarity
relations for the single-variable amplitudes in all three channels fully self-consistently. This
is an obvious strategy for perfectly crossing-symmetric systems such as γπ → ππ [117, 120],
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Figure 6.1: t-channel contributions to γK → Kπ; see main text for the individual terms.

related three-pion decays [2, 81], or even pion–pion scattering [119], but has also been
followed for less symmetric processes such as η → π+π−π0 [111], η′ → ηππ [109], or
D → K̄ππ [105, 110]. We do not pursue this approach here as far as the t-channel is
concerned, for the following reasons: the t-channel singularities in γK → Kπ are either
dominantly inelastic (ρ, a2), or consist of very narrow poles (ϕ), or both (ω); see Fig. 6.1.
For this reason, in our analysis we approximate these by fixed t-channel contributions,
similar in spirit, e.g., to various analyses of γγ → ππ [327, 341] or the description of
left-hand cuts in η(′) → π+π−γ [342].

The isospin I = 0 P -wave amplitude G(+)(t) is dominated by the ω and ϕ vector
mesons. We calculate this SVA via tree-level exchanges with intermediate vector reso-
nances V ∈ {ω, ϕ}, see Fig. 6.1. To this end we use the effective Lagrangian from Ref. [343].
The ω → KK̄ coupling required for the dominant ω-exchange contribution cannot be

determined from a direct decay. One option is to simply fix it using SU(3) symmetry, with
plausible guesses at best of the uncertainty attached. A somewhat more data-driven access
to this coupling can be obtained by relying on a vector-meson-dominance (VMD) model
fitted to timelike kaon form factor data from e+e− → K+K−, KSKL, and τ

− → K−KSντ ,
see Model II in Ref. [344]. Together with the ω–photon coupling from ω → e+e− [118] we
obtain gω = 7.1(0.8). The error is dominated by the fit value from Ref. [344]; within uncer-
tainties, gω is indeed compatible with SU(3) symmetry. Furthermore, a combined analysis
of the spacelike and timelike kaon form factors can be used to determine gωn = 5.7(1.9)
and gωc = 8.1(1.9) in the neutral and charged case, hence compatible, but with larger
uncertainties [6], cf. Chapter 8.
Adding the ω and ϕ tree-level contributions, we obtain the SVA

G(+)(t) = e

[
gωdω
M2

ω − t
−

√
2gcϕd̄ϕ

M2
ϕ − t

]
. (6.4)

We use zero-width propagators for the vector mesons as t is negative in γK → Kπ.
The isospin I = 1 γπ → KK̄ P -wave G(0)(t) is dominated by the rather broad ρ(770).

Since the ρ is a ππ P -wave resonance, we can employ a more sophisticated approach
than the VMD approximation and compute this SVA dispersively, taking into account
intermediate ππ states; cf. Fig. 6.1. The corresponding unitarity relation reads

discG(0)(t) = −i t

2
√
2
σ3π(t)

[
g11(t)

]∗
h11(t) , (6.5)
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with the isospin I = 1 P -waves h11(t) for γπ → ππ [117] and g11(t) for ππ → KK̄ [345].
We cast G(0) into a dispersion integral

G(0)(t) =
−1

4
√
2π

∫ ∞

4M2
π

dt′
t′σ3π(t

′)
[
g11(t

′)
]∗
h11(t

′)

t′ − t
. (6.6)

We retain H(−) since the corresponding P -wave is forbidden by charge conjugation, such
that the D-wave represents the leading t-channel discontinuity for this SVA. Moreover,
H(−) is enhanced due to the resonant a2(1320) contribution. We follow the approach of
Ref. [342] and compute the SVA H(−) via the tree-level diagram with an intermediate
a2(1320) tensor meson, see Fig. 6.1. For the interaction vertices, we use the formalism
presented in Ref. [346]. The coupling gT for the a2KK̄ vertex is related to the partial
width via

Γ(a2 → KK̄) =
g2TM

3
a2

120πF 4
π

σ5K
(
M2

a2

)
. (6.7)

Similarly, the coupling cT for the a2γπ vertex can be determined via the partial width of
radiative a2 decays [347] (updated compared to Ref. [342] due to the inclusion of the new
COMPASS measurement [348]),

Γ (a2 → γπ) =
e2c2T

160πF 2
π

(
M2

a2 −M2
π

)5
M5

a2

. (6.8)

The tree-level contribution of the a2 meson reads

H(−)(t) =
2
√
2ecT gT
F 3
π

1

M2
a2 − t

. (6.9)

Following the arguments presented in Ref. [342] we fix the signs of the coupling constants
via

cT gT = +|cT gT | . (6.10)

6.4 Dispersive representations and Khuri–Treiman solutions

We now discuss the main part of the dispersive representation of the γK → Kπ ampli-
tudes, the reconstruction of the s- and u-channel partial waves or SVAs. This consistently
incorporates Kπ P -wave rescattering in the elastic approximation. From the reconstruc-
tion theorems [4], we can obtain the relevant partial waves, i.e., the P -waves of different
isospins with the result

f
(i)
1 (s) = F (i)(s) + F̂ (i)(s) , i = 0, 1/2, 3/2 . (6.11)

Here, the functions F̂ (i)(s) originate from the t- and u-channel SVAs; they only contribute
left-hand cuts to the partial waves and hence have no discontinuities along the right-hand
cut. The F̂ (i)(s) can be collected from appropriate linear combinations of the different
reconstruction theorems [4].
In the approximation of elastic unitarity, a right-hand cut in the amplitude is induced

by intermediate Kπ states. Here, the partial waves for i = 0, 1/2 are both associated with
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I = 1/2, while i = 3/2 requires I = 3/2. Note that i = 0 is related to the isoscalar photon
component, while i = 1/2, 3/2 corresponds to an isovector photon. The unitarity relation

implies Watson’s final-state theorem, which states that the phase of f
(i)
1 (s) coincides with

δI1(s) [95]. Remembering that the F̂ (i)(s) are free of right-hand-cut discontinuities, we find
a unitarity relation for the SVAs,

ImF (i)(s) =
(
F (i)(s) + F̂ (i)(s)

)
e−iδI1(s) sin δI1(s) . (6.12)

Due to Eq. (6.12), the functions F̂ (i)(s) are usually referred to as inhomogeneities, as
they constitute the inhomogeneous contributions to the unitarity relations for F (i)(s).
The solution of the full, inhomogeneous unitarity relation (6.12) for the single-variable
amplitudes is subsequently obtained using a separation ansatz with the Omnès function.
The input for the latter is taken from Ref. [60]. The results are the Khuri–Treiman
equations [97] for the SVAs

F (0,1/2)(s) = Ω(s)

(
P

(0,1/2)
n−1 (s) +

sn

π

∫ ∞

sth

ds′

s′n
F̂ (0,1/2)(s′) sin δ

1/2
1 (s′)

|Ω(s′)|(s′ − s)

)
,

F (3/2)(s) = P
(3/2)
n′−1 (s) . (6.13)

Note that we approximate the I = 3/2 phase shift to be zero since it is negligibly small,
and therefore the solution for F (3/2) reduces to Eq. (6.13). We can solve for the SVAs
by inserting the fixed t-channel contributions from Sec. 6.3 into the inhomogeneities and
then solving Eq. (6.13) iteratively. The system is linear in the subtraction constants, so
that it is possible to construct basis functions. The calculation of the latter converges very
quickly, such that they remain practically unchanged after at most five iterations.

6.5 Matching

Next, we discuss how to fix the free parameters of the dispersive representation, the
subtraction constants, by matching them to the chiral anomaly on the one hand, and the
radiative couplings of the K∗(892) resonances on the other.

6.5.1 Chiral anomaly

The Wess–Zumino–Witten anomaly [299, 300] yields low-energy theorems for the different
γK → Kπ amplitudes in the limit of vanishing energies (s = t = u = 0) and vanishing
(light as well as strange) quark masses. It contributes to the neutral-pion-production
amplitudes, but not to the charge-exchange processes:

F−0/00(0, 0, 0) = FKKπ , F0−/−+(0, 0, 0) = 0 , (6.14)

where [334, 335]

FKKπ =
e

4π2F 3
π

= 9.8GeV−3 , (6.15)

is given in terms of the pion decay constant Fπ = 92.28(3)MeV and the electric charge
e, and is actually identical to the similarly defined anomaly F3π for γπ → ππ [302–304].

119



Dispersive analysis of the Primakoff reaction γK → Kπ

Since it is hard to estimate the correlations between all the higher-order corrections, we
simply estimate a resulting uncertainty of 25% on FKKπ. A complete next-to-leading-
order calculation of all γK → Kπ channels in chiral perturbation theory would certainly
be highly desirable (see Refs. [334, 335] for partial results).
Obviously, also the vanishing charge-exchange amplitude will be modified due to higher-

order corrections. Since a relative error estimate is not meaningful here, we use the
absolute uncertainty given for the anomaly also for the charge-exchange amplitudes. Our
combined assumption on the different amplitude normalizations in the soft-meson limits
is therefore

F−0/00(0, 0, 0) = 9.8(2.4)GeV−3 , F0−/−+(0, 0, 0) = 0.0(2.4)GeV−3 . (6.16)

6.5.2 Radiative couplings of the K∗(892)

In the narrow-width approximation, the radiative widths of the K∗(892) vector mesons
are given by

1

4
ΓK∗0→K0γ = ΓK∗±→K±γ =

e2d2K∗

864π

(
M2

K∗ −M2
K

MK∗

)3

. (6.17)

The Review of Particle Physics (RPP) [347] lists only three measurements from which
these radiative widths have been extracted, one for K∗0 → K0γ [314] and two for K∗± →
K±γ [313, 326]. The extracted charged and neutral radiative couplings read dcK∗ =
2.50(12)GeV−1 , dnK∗ = 1.93(8)GeV−1 , and thus violate SU(3) symmetry at the 20%
level.
For a model-independent extraction of the radiative K∗ coupling constants, we have

to analytically continue the γK → Kπ amplitudes onto the second Riemann sheet and
connect them to the residues of the corresponding poles. The continuation to the second
sheet can be found from the discontinuity,

f
(i)
1,I(s)− f

(i)
1,II(s) = −2κ̂(s)t

1/2
1,II(s)f

(i)
1,I(s) , (6.18)

where I (II) denotes the first (second) Riemann sheet, and

κ̂(s) =

√
−λ(s,M2

π ,M
2
K)

s
, κ̂(s± iϵ) = ∓iκ(s) , (6.19)

which leads to the correct analytic structure including the branch cut and where λ(a, b, c)
is the Källén function defined in Eq. (2.15).

6.6 Discussion and results

We begin the discussion of numerical results with the minimal subtraction scheme, which
contains two subtractions constants. According to the discussion of the previous section,
we can choose to fix these in two different ways: via matching to the chiral anomaly or by
reproducing the experimentally measured radiative K∗ couplings. We start with the first
option and match the subtraction constants to the low-energy theorems; see Figs. 6.2 and
6.3 (left). Obviously, the error bands are huge. This illustrates the very strong dependence
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Figure 6.2: Cross section results for γK− → K−π0 (top) and γK− → K̄0π− (bottom)
including P -wave amplitudes. Left panels: minimal subtraction scheme, matched to the
chiral anomaly and the K∗ radiative couplings separately. Right panels: twice subtracted
scheme, matched to anomaly and radiative couplings simultaneously, with and without
the a2 contribution. The error bands correspond the propagated error of the real and
imaginary parts.

of the partial waves, and in particular the K∗(892) resonance signals, on the amplitudes
in the low-energy limit. By reversing the argument, a concise measurement of the cross
section around the resonance peak will help determine the anomaly and, potentially, its
higher-order corrections very accurately if the minimal subtraction scheme can be validated
experimentally to be sufficient. This is in strict analogy to the argument of Ref. [117] that
the full resonance signal of the ρ(770) can be employed to extract the chiral anomaly in
γπ → ππ.
As the second approach, we fix the real subtraction constants in the minimal subtraction

scheme using the radiative K∗ couplings derived from experiment. We observe that the
uncertainties are much smaller in this scheme. To obtain a larger degree of flexibility
for the description of future high-precision cross-section data, we can apply the twice
subtracted version with four degrees of freedom. This allows us to include both constraints,
low-energy theorems and resonance couplings, and combine them into a prediction for
experiment. Furthermore, in the twice subtracted representation it is possible to include
the a2 t-channel contribution, which changes the isovector part of the photon only. The
corresponding plots are also included in Figs. 6.2 and 6.3. Comparing the two solutions
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Figure 6.3: Cross section results for γK̄0 → K̄0π0 (top) and γK̄0 → K−π+ (bottom)
including P -wave amplitudes. Remaining caption as in Fig. 6.2.

with and without a2-exchange, we observe that this mechanism is very small below 1GeV.
We conclude that it is unnecessary to take D- and higher partial waves into account when
considering the left-hand cuts at the current level of accuracy.
Using Eq. (6.3) and the respective partial-wave amplitudes, we can calculate the cross

sections for all physical channels, see Figs. 6.2 and 6.3. While the differences between
the various channels at low energies, very discernible in the amplitudes, are hardly ob-
servable due to the phase space factors—the onset of the visible cross sections only seems
to be deferred by about 50MeV for the charge-exchange reactions with their suppressed
near-threshold amplitudes—, we see a significant difference between the π0 and the charge-
exchange channels above the K∗(892), where we predict a strong suppression of the π0

production cross sections around 1.1GeV. As we expect D-wave corrections to become
important only above those energies [298], such a suppression should be realistically ob-
servable in experiments. With incoming neutral kaons, the cross sections are enhanced by
about a factor of two compared to their charged-kaon counterparts, while the outgoing-
neutral-pion channels are suppressed by again roughly a factor of two in the peak region
in comparison to the charge-exchange reactions.
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6.7 Summary

In this chapter, we have constructed a dispersive representation for the reaction γK → Kπ
that can be measured with kaon beams using the Primakoff mechanism. Our formalism
relies on isospin symmetry and describes all four physical charge channels simultaneously.
We have solved Khuri–Treiman-type equations for the dominant s-(and u-)channel P -wave,
based on fixed t-channel singularities that are constrained by data and phenomenology as
far as possible. We have demonstrated that subtraction constants, the free parameters
of the theory, can be matched to the low-energy prediction by the chiral anomaly, or the
radiative couplings of the K∗(892) resonance, or both. The dispersive amplitudes provide
the correct, model-independent framework to continue data both to the subthreshold
region, where it can be matched to chiral perturbation theory, and into the complex-energy
plane, where resonance couplings are defined as pole residues on unphysical Riemann
sheets.
Options for future theoretical improvement comprise in particular the calculation of

the next-to-leading-order, or O(p6), corrections to the chiral anomaly for this reaction.
Furthermore, a reduction of the uncertainty in the ω → KK̄ coupling, which affects our
amplitude representation rather strongly, would be highly desirable. One prospect is to
extract this coupling from the spacelike kaon form factor data. However, as shown in
Chapter 8 the result of a global analysis of time- and spacelike data does not decrease the
uncertainty.
Once high-precision, high-statistics experimental data is available, from AMBER or

elsewhere, a simultaneous fit to the two observable charge configurations in γK− fixes the
subtraction constants, from where it is possible to extract the physical quantities of inter-
est. The dispersive representation therefore allows future experiments to determine precise
information on the anomaly in a photon–kaon reaction as well as the radiative couplings
of the K∗(892) resonance from the complete measured energy range up to

√
s ≈ 1.2GeV.
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Chapter 7

Polarizabilities from kaon Compton
scattering

7.0 Prologue

The content of this chapter is based on the publication

• D. Stamen, J. L. Dammann, Y. Korte, and B. Kubis, Polarizabilities from kaon
Compton scattering, Eur. Phys. J. C 84, 1267 (2024) [arXiv:2409.05955 [hep-ph]] .

This project was started with Jan Luca Dammann’s Master’s thesis [349].
The electric and magnetic polarizabilities of hadrons, α and β, can be extracted from

differential cross sections for Compton scattering near threshold, as they are defined via
an expansion of the Born-term-subtracted Compton scattering amplitudes at threshold.
However, for light pseudoscalar mesons Compton scattering cannot be measured directly
from photon scattering experiments as there are no mesonic targets. For the charged pion
amplitude the most recent measurement [350] extracts the Compton scattering amplitude
from high-energy pion–nucleus bremsstrahlung πZ → πZγ. In principle, the correspond-
ing measurement is possible for charged kaons at AMBER [318–320]; however, for kaons,
it is affected by the presence of the K∗(892) resonance not too far from threshold. The
idea of this project is to propose a method to extend the energy range serviceable for this
purpose by reconstructing the K∗(892) contribution model-independently using dispersion
theory from its Kπ intermediate state.

The leading-order chiral perturbation theory (ChPT) calculation reproduces the results
for kaon Compton scattering from scalar QED, which are the Born terms. Contributions
to the polarizablities first appear at next-to-leading order and were calculated in Ref. [331].
This is in strict analogy to the pion case. At next-to-leading order, the loop corrections
have cut contributions from the intermediate states that limit the range of convergence
of the polynomial polarizability expansion. The kaon loops have a higher threshold and
therefore do not limit the extraction in the proposed energy region. However, the pion
threshold in the t-channel is already reached at energies close to the threshold. While the
pion-loop contribution is of isospin I = 0 and a pure S-wave, there are sizable rescattering
corrections due to the f0(500). Therefore, we propose a dispersion-theoretical treatment
of γγ → ππ → K+K−. It is built on a coupled-channel formalism, and while the insertion
into this project was worked out by the author of this thesis, the solutions of the coupled-
channel formalism were provided by Yannis Korte. Note that the consideration of these
rescattering corrections does not influence the extraction of the kaon polarizabilities on a
meaningful level.

The contribution from the K∗ resonance can be calculated with an effective Lagrangian
assuming vector-meson dominance (VMD). This calculation was carried out by Jan Luca
Dammann and cross-checked by the author of this thesis. From these amplitudes, one can
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extract the polarizablities induced by the K∗ resonance, which only contribute to the mag-
netic polarizability. In contrast to the ρ resonance in the pion case, the relative strength
of the resonance contribution compared to the leading ChPT result is much larger for the
K∗ resonance. To better constrain the K∗ contribution, we employ a dispersive treatment
for the Kπ intermediate states. Here, the γK → Kπ amplitudes from Chapter 6 are used.
A once-subtracted dispersion relation is needed in order to render the integral convergent.
The subtraction constant can be directly related to the VMD polarizabilities calculated
with the effective Lagrangian. This calculation was carried out by the author of this thesis.
Code for the calculation of the dispersion integral and the γK → Kπ amplitudes from
Chapter 6 can be found at github.com/HISKP-ph/kaon polarizabilities [351]. Note that
there are two versions for the γK → Kπ amplitudes. First, the solutions for the partial
waves of Chapter 6 are stored in /gammaKKpi amp. Secondly, the basis functions are
stored in /gammaKKpi amp/basisfunctions, which allow for a variation of the subtraction
constants calculated in Ref. [4]. The code provides a class that allows calculating the first
from the second.1 Furthermore, the k0++ amplitude for the dispersive t-channel calculation
is provided in /dispersive t channel.

In analogy to the experimental analysis of Ref. [350], we define ratios of differential
cross sections. These ratios can either be used for a fixed scattering angle or an integrated
range thereof. The latter is more advantageous for the experiment, since the former will
not produce meaningful statistics. However, choosing zs = −1, the linear combination
α1+β1 drops out and the ratio solely depends on α1−β1. Since there is no strong hierar-
chy between the sum and difference of the kaon polarizabilities, we discuss the sensitivity
to disentangling both by improved experimental angular coverage. To depict possible
outcomes from the experiment, we choose a range limited by the ChPT and VMD polar-
izabilities. This strategy of extracting the polarizabilities from experiment was developed
by the author of this thesis in collaboration with Bastian Kubis. Again, the numerical
calculation was performed and the plots were created by the author of this thesis.
Furthermore, it might become possible to investigate kaon Compton scattering for neu-

tral kaons at the K-Long Facility (KLF) [297]. The same methods as above can be applied,
however, with the key difference that there are no Born terms for the neutral kaon Comp-
ton scattering. Therefore, the cross section is directly proportional to the polarizabilities
near threshold, but it tends to zero and is therefore heavily suppressed compared to the
charged kaon case. The total cross section for both scenarios is calculated and we con-
clude that, due to the low statistics, measurements for the neutral kaon polarizabilities
will become very challenging.
The text contained in this chapter was written by the author of this thesis in collabo-

ration with Bastian Kubis.

7.1 Introduction

In classical electrodynamics, electric and magnetic polarizabilities characterize the defor-
mation response of a composite system in an external electromagnetic field. They appear
as the coefficients of proportionality between fields and induced dipole moments [352]. In
quantum field theory, the electric and magnetic polarizabilities, α and β, are defined from

1This is only true for the mean values; the uncertainties for the partial waves are only provided via the
first version.
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7.1 Introduction

an expansion of the (Born-term-subtracted) Compton scattering amplitudes at threshold.
Since there are no mesonic targets available, the Compton cross sections for mesons cannot
be measured directly from photon scattering experiments.
Instead, in the charged-pion channel, high-energy pion–nucleus bremsstrahlung πZ →

πZγ [350, 353, 354], radiative pion photoproduction off the proton γp→ γπ+n [355, 356],
and the crossed-channel two-photon reaction γγ → π+π− [357–361] have been mea-
sured. Historically, there have been tensions between the experimental extractions of
the charged-pion polarizabilities and the theoretical predictions from chiral perturbation
theory (ChPT) [362–367], which have been extensively discussed in the literature [368].
The most recent measurement by the COMPASS experiment [350] is in perfect agreement
with the ChPT prediction, and model dependencies for the extraction of pion polariz-
abilities may be sufficient to explain the tension with respect to earlier measurements.
A dispersive calculation of the pion polarizabilities is in good agreement with the ChPT
result [369]; cf. also the new dispersive analysis in Ref. [370]. Furthermore, new experi-
ments are planned in order to clarify the current situation. For an extensive review, see
Ref. [368].
In principle, analogous reactions to all these can also be investigated for kaons. The

photon–photon fusion processes γγ → K̄K have already been measured in the near-
threshold region [371, 372]. The data however cannot realistically be used in order to
extract polarizabilities, as the physical region is too far removed from the kinematical
point that defines the polarizabilities to allow for a reliable expansion. A promising setup
for the extraction of the Compton scattering cross section for charged kaons from the
Primakoff reaction [305] is the proposed AMBER experiment located at CERN [318–320].
Using an intensified charged-kaon beam2 allows for a measurement of the γK− → γK−

process. However, the different masses will render the extraction of polarizabilities more
challenging than in the pion case: the definition of the polarizabilities amounts to a poly-
nomial expansion at threshold, whose range of applicability is clearly limited, in particular
by the lowest lying (vector) resonances. As Mρ/Mπ ≈ 5.5, but MK∗/MK ≈ 1.8, a way
to extend the range of applicability of the kaon Compton scattering amplitude to higher
energies and thereby extract these quantities with increased accuracy is clearly desirable.
This is similar in spirit (although not in practical implementation) to the extraction of
the chiral anomaly from Primakoff reactions [4, 117, 118], including data from the first
resonance region. In this chapter we propose such a method.
In order to dispersively reconstruct the K∗ resonance in the kaon Compton amplitude

we use the solutions from the Primakoff reactions calculated in Ref. [4]. Therefore, with
these two studies we in principle allow for a simultaneous data analysis of the charged-
kaon polarizabilities, the chiral anomaly, and the radiative couplings of the K∗ resonance
at AMBER.
This chapter is structured as follows: in Sec. 7.2, we introduce the relevant definitions

for the helicity amplitudes as well as their expansion in terms of dipole and higher-order
polarizabilities. The Born terms and next-to-leading-order corrections in ChPT are dis-
cussed in Sec. 7.3. Therein we also investigate a dispersive strategy to improve on the pion
loops beyond the chiral expansion. In Sec. 7.4, effects of the vector K∗(892) resonance
are discussed: a vector-meson-dominance (VMD) model is used to estimate higher-order
corrections to the polarizabilities; and in addition, γK → Kπ amplitudes are used to re-

2The statistics using kaons is expected to be lower than in the pion case by a factor of 8 [296].
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Polarizabilities from kaon Compton scattering

construct the K∗ resonance dispersively. Numerical results are presented in Sec. 7.5, and
we propose a method to experimentally extract the kaon polarizabilities. A short discus-
sion of neutral-kaon Compton scattering is provided in Sec. 7.6. In Sec. 7.7 we summarize
our findings.

7.2 Definitions

The S-matrix element for the kaon Compton scattering process reads [341]

⟨γ(q2, λ2)K(p2)|γ(q1, λ1)K(p1)⟩ = (2π)4δ(4)(q2 + p2 − q1 − p1)

·
(
δλ1λ2 + ie2Fλ1λ2(s, t)e

i(λ1−λ2)ϕ

)
, (7.1)

with the two helicities λ1 and λ2 of the in- and outgoing photons, respectively. Fur-
thermore, the azimuthal angle ϕ is explicitly separated. The Mandelstam variables read
s = (q1 + p1)

2, t = (q1 − q2)
2, and u = (q1 − p2)

2. They fulfill the on-shell condition
s+ t+u = 2M2

K . The Mandelstam variable t can be expressed via s and the cosine of the
s-channel scattering angle zs = cos θs according to

t(s, zs) =
zs − 1

2s
(s−M2

K)2 . (7.2)

We can separate the polarization vectors from the helicity amplitude Fλ1λ2 via

Fλ1λ2(s, t) = ϵµ(q1, λ1)ϵ
∗
ν(q2, λ2)W

µν(s, t) , (7.3)

and use the Bardeen–Tung–Tarrach procedure [373, 374] to define scalar amplitudesA(s, t)
and B(s, t) without kinematic singularities. This results in [341, 375]

Wµν(s, t) = A(s, t)

(
t

2
gµν + qµ2 q

ν
1

)
+ B(s, t)

(
2t∆µ∆ν − (s− u)2gµν + 2(s− u)(∆µqν1 +∆νqµ2 )

)
, (7.4)

where ∆µ = (p1 + p2)µ. The amplitude is manifestly gauge and Lorentz invariant and
fulfills the Ward identities q1µW

µν(s, t) = 0 =Wµν(s, t)q2ν . Using the explicit form of the
polarization vectors3

ϵ(q1,±) = ∓ 1√
2


0
1
±i
0

 , ϵ(q2,±) = ∓ 1√
2


0

cos θs
±i

− sin θs

 , (7.5)

and the four-momentum vectors

q1 =
s−M2

K

2
√
s


1
0
0
1

 , q2 =
s−M2

K

2
√
s


1

sin θs
0

cos θs

 , (7.6)

3Here we use the phase convention of Ref. [376].
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we obtain the helicity amplitudes in terms of the scalar ones by

F++(s, t) = F−−(s, t) = 4(M4
K − su)B(s, t) ,

F+−(s, t) = F−+(s, t) = − t

2
A(s, t) + t(t− 4M2

K)B(s, t) . (7.7)

One can also construct the amplitude in the center-of-mass system with Coloumb gauge,
cf. Refs. [377, 378], according to4

F(s, t) = 2

[
−ϵ⃗1 · ϵ⃗2AKF(s, t) + ϵ⃗1 · q⃗2 ϵ⃗2 · q⃗1

2

t

(
AKF(s, t) + BKF(s, t)

)]
, (7.8)

where the different scalar amplitudes are mapped onto each other by

AKF(s, t) =
t

4
A(s, t)− (s− u)2

2
B(s, t) ,

BKF(s, t) = 2(s−M2
K)2B(s, t) . (7.9)

The total differential cross section is given by

dσ

dΩ
=
α2
em

4s

(
|F++(s, t)|2 + |F+−(s, t)|2

)
, (7.10)

where αem is the fine-structure constant. This chapter uses the isospin limit with MK =
0.496GeV and Mπ =Mπ± .5

Polarizabilities specify corrections to the Born terms. Electric and magnetic dipole,
quadrupole, and higher-order polarizabilities are defined as the expansion coefficients of
the Born-term-subtracted amplitudes in powers of t at fixed s =M2

K [341, 379],

±2αem

MKt
F̂+±(M

2
K , t) = (α1 ± β1)K± +

t

12
(α2 ± β2)K± +O

(
t2
)
,

F̂+±(s, t) = F+±(s, t)−FBorn
+± (s, t) . (7.11)

To illustrate the contributions of the polarizabilities that are most relevant in the forward
or backward direction, respectively, one may define z± = 1±zs and expand the differential
cross section to linear order in the polarizablities [350, 380](

dσ

dΩ

)
Pγ

=

(
dσ

dΩ

)
Born

−
αemM

3
P (s−M2

P )
2

4s2
(
sz+ +M2

P z−
) (z2−(α1 − β1)P + z2+

s2

M4
P

(α1 + β1)P

)
,

(7.12)

where P is an arbitrary (charged) pseudoscalar meson.

4Note that the T -matrix element defined in Refs. [377, 378] is related to F via T = e2F .
5This convention was used in the pion–kaon scattering analysis of Refs. [60, 337] and the γK → Kπ
analysis of Ref. [4].
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Polarizabilities from kaon Compton scattering

7.3 ChPT amplitudes and t-channel cuts

At leading order in the chiral expansion, the ChPT amplitudes for charged-kaon Compton
scattering reproduce the results of scalar quantum electrodynamics, hence they consist
precisely of the Born terms only. Nonvanishing contributions to the polarizabilities first
appear at next-to-leading or one-loop order. Including these corrections, the scalar am-
plitudes read [331]6

A(s, t) =
1

M2
K − s

+
1

M2
K − u

+
8

F 2
K

(L9 + L10) +Aloop(t) ,

B(s, t) = 1

2t

(
1

M2
K − s

+
1

M2
K − u

)
, (7.13)

where

Aloop(t) = − 1

8π2F 2
K

[
3

2
− 2M2

π

t
arctan2

(
1

σπ(t)

)
−

4M2
K

t
arctan2

(
1

σK(t)

)]
,

σP (t) =

√
4M2

P

t
− 1 . (7.14)

Using this result and Eq. (7.11), one can calculate the contribution to the polarizabilities,
which yields [331, 383]

(α1 + β1)
ChPT
K± = 0 ,

(α1 − β1)
ChPT
K± =

8αem

MKF 2
K

(L9 + L10) =
MπF

2
π

MKF 2
K

(α1 − β1)
ChPT
π± +O(MK)

= 1.1(2) · 10−4 fm3
{
1 +O

(
M2

K/Λ
2
χ

)}
, (7.15)

where Λχ ≈ 1GeV is the chiral symmetry breaking scale. The result is in strict analogy
to the pion polarizabilities, with the appropriate replacement of mass and decay constant,
and hence can be expressed as a low-energy theorem in terms of the latter, up to SU(3)-
breaking effects. Note that for this specific combination it is advantageous to measure
the cross section in the backward direction, cf. Eq. (7.12). For the numerical estimate,
we have employed the next-to-leading-order chiral prediction for the pion polarizabilities
from Ref. [367]. The uncertainty therein is a chiral SU(2) uncertainty, while the kaon po-
larizabilities are affected by (unknown) chiral SU(3) corrections as indicated in Eq. (7.15).
We will neglect the uncertainty on the pion polarizabilities in the following, and instead
give estimates for the kaon ones.
The loop contributions in Eq. (7.14) show nontrivial analytic structures: they include

cuts due to two-pion and two-kaon intermediate states, with branch points at t = 4M2
π

and t = 4M2
K , respectively. These obviously limit the range of convergence of the polyno-

mial polarizability expansion around t = 0, Eq. (7.11): a representation of the Compton
amplitude (beyond Born terms) in terms of a polynomial is bound to fail beyond those
thresholds. In the extraction of polarizabilities from charged-pion Compton scattering,

6Note the missing factor of 4 in Eq. (2) of Ref. [331] in comparison to Refs. [363, 381, 382]. Additionally
the loop correction has a wrong normalization by a factor of 2, cf. Appendix B of Ref. [330].
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γ γ

K K̄

ππ

Figure 7.1: Dispersive reconstruction of the t-channel contribution to kaon Compton scat-
tering, including the ππ intermediate states. The blobs denote the full γγ → ππ and
ππ → K̄K S-wave amplitudes.

the pionic one-loop corrections have therefore been retained [350, 378], and the same is
clearly advisable in the investigation of kaon Compton scattering: according to Eq. (7.2),
the maximum value of |t| probed at fixed s is given by (s−M2

K)2/s, which reaches 4M2
π

already for
√
s ≈ 0.65GeV. In contrast, a polynomial expansion of the kaon loops, with

their much higher threshold, is well justified. We will discuss a further improvement of
the t-channel cut in the following.

The t-channel pion-loop contribution to kaon Compton scattering is of total isospin
I = 0, and, at next-to-leading order, a pure S-wave. It is well known that the I = 0 S-
wave pion–pion system is particularly prone to sizeable rescattering corrections due to the
proximity of the f0(500) resonance (cf., e.g., Ref. [182] and references therein). In order to
control this effect reliably and prevent the non-analyticities from perturbing the extraction
of polarizability effects, we improve on the description of the pion–pion intermediate state
by employing a dispersion-theoretical description of γγ → ππ → K+K−. This is shown
diagrammatically in Fig. 7.1.
One may wonder why we concentrate on the lowest cut due to ππ intermediate states

only, and do not resum all t-channel rescattering completely, given that the formalism
is based on a coupled-channel treatment of γγ → ππ and γγ → (K̄K)I=0 [375] anyway.
As we are (mainly) interested in charged-kaon Compton scattering, the corresponding
amplitude does not only consist of t-channel isospin I = 0, but also contains I = 1, which
is the coupled-channel system of γγ → πη and γγ → (K̄K)I=1 [329, 330, 384]. The reason
is that both πη and K̄K cuts are much further away from t = 0, and do not affect the radius
of convergence in a t-expansion for energies up to the K∗(892) resonance. Furthermore,
the πη singularity affects the amplitude far less, as γγ → πη is famously suppressed in
the chiral expansion [385–387]. Finally, including the kaon loops dispersively would lead
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Polarizabilities from kaon Compton scattering

to intricate dependencies, as their reconstruction depends on subtraction constants given
by the very kaon polarizabilities we aim to extract, see Eq. (7.17) below.
The γγ → (K̄K)I=0 S-wave amplitude k0 contributes to the helicity amplitudes accord-

ing to [375, 388]

Fπ-disp
+− (s, t) = − t

2
Aπ-disp(t) =

1√
2
k0++(t) ,

Fπ-disp
++ (s, t) = 0 . (7.16)

Note that the helicity indices on the crossed-channel amplitudes denote the photon he-
licities in that channel. Furthermore, the factor −1/

√
2 is needed to relate the I = 0

amplitude to the charge basis. The Born-term-subtracted coupled-channel amplitudes are
given by [375, 388, 389](

h0++(t)
k0++(t)

)
= Ω(t)

{(
aπt
aKt

)
t+

t2

π

(∑
V

∫ tV

−∞
dx

Ω−1(x)

x2(x− t)
Im

(
h0,V++(x)

k0,V++(x)

)

−
∫ ∞

4M2
π

dx
ImΩ−1(x)

x2(x− t)

(
h0,Born
++ (x)

k0,Born
++ (x)

))}
, (7.17)

where

tV = − 1

M2
V

(M2
V −M2

π)
2 , (7.18)

and h0 denotes the γγ → (ππ)I=0 S-wave amplitudes. The vector-exchange and Born-
term contributions can be found in the literature, cf. Ref. [375]. Thereby, suppressing
the isospin index (since all elements have I = 0), the Omnès matrix has the following
components [148, 390]

Ω(t) =

(
Ωππ→ππ(t) Ωππ→K̄K(t)
ΩK̄K→ππ(t) ΩK̄K→K̄K(t)

)
. (7.19)

We now decouple and reduce it to only the ππ intermediate state explicitly, as shown
diagrammatically in Fig. 7.1. Therefore, we set aKt = k0,V++ = k0,Born

++ = 0. The system is
now independent of the subtraction constant aKt , fixed from kaon polarizablities, and only
depends on aπt , which is related to pion polarizabilities by

aπt = − Mπ

2αem

1√
3
[2(α1 − β1)π± + (α1 − β1)π0 ] . (7.20)

We now compare Aπ-disp(t) to the ChPT result for the pion loops,

Aπ(t) = − 1

8π2F 2
K

(
1

2
− 2M2

π

t
arctan2

(
1

σπ(t)

))
, (7.21)

in Fig. 7.2. There the derivative at small t can be related to the quadrupole polarizabilities
via Eq. (7.11). It is known that the next-to-next-to-leading order ChPT result gives sizable
corrections for the pion quadrupole polarizabilities [367]. As there is no calculation at that
order for the kaons, we cannot make a quantitative comparison. However, corrections on
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Figure 7.2: Comparison of the pion loop in Eq. (7.21) and the corresponding disper-
sive solution given by Aπ-disp(t). The relevant physical range for

√
s < 0.85GeV is

−0.31GeV2 < t ≤ 0GeV2.

the order shown in Fig. 7.2 are certainly not unexpected. The scalar function A including
the dispersively reconstructed pion–pion intermediate state, but the K̄K one in the one-
loop approximation, finally reads

Adisp(t) = −
√
2

t
k0++(t)−

1

8π2F 2
K

[
1−

4M2
K

t
arctan2

(
1

σK(t)

)]
.

Note that the size of Adisp(t) does not play a major role for the extraction of the kaon
polarizabilities presented in this chapter, as the figures in Sec. 7.5 look the same for both
the ChPT and the dispersive solution.

7.4 K∗ resonance

The effects of vector resonances (in the spirit of resonance saturation of chiral low-energy
constants [391]) only appear at next-to-next-to-leading-order ChPT [363–367]. Assuming
VMD and using an effective interaction Lagrangian for the vertex of the kaon, the photon,
and the K∗ [330, 375]

Lint = eCK∗ϵµναβFµν(∂αK)K∗
β , (7.22)

we find the helicity amplitudes [330] (cf. also Ref. [363] for the analogous pion case)

FV
++(s, t) = C2

K∗
(
M4

K − su
) [ 1

M2
K∗ − s

+
1

M2
K∗ − u

]
,

FV
+−(s, t) = C2

K∗t

[
s

M2
K∗ − s

+
u

M2
K∗ − u

]
. (7.23)
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The coupling CK∗ can be fixed with the K∗ → Kγ width using the values from the Review
of Particle Physics [22] via

ΓK∗→Kγ = αem
C2
K∗

6

(
M2

K∗ −M2
K

MK∗

)3

. (7.24)

An expansion of Eq. (7.23) according to Eq. (7.11) leads to the magnetic polarizability

(β1)
VMD
K± =

4αemC
2
K∗MK

M2
K∗ −M2

K

=
24M3

K∗MK

(M2
K∗ −M2

K)4
ΓK∗→Kγ = 0.36 · 10−4 fm3 , (7.25)

while no contribution to the electric one (α1)
VMD
K± is found. This is in accordance with the

fact that a pseudoscalar-to-vector transition requires a spin flip in the quark model, and
hence a magnetic photon coupling. Quantitatively, we observe that the vector-exchange
correction reduces the O(p4) ChPT result for (α1−β1)K± , cf. Eq. (7.15), by roughly 30%.
In addition, the hierarchy (α1 + β1) ≪ (α1 − β1), still valid at full O(p6) in ChPT for
charged pions [367], is modified very significantly: the ratio (α1+β1)/(α1−β1) is increased
to almost 50%, while it remains at the level of around 3% for the pions. As a result, the
(α1 + β1)K± contribution can in general not be neglected for kaon Compton scattering.
As the detailed studies of charged-pion polarizabilities at O(p6) ChPT demonstrate [363,

365, 367], vector-exchange contributions alone only yield a fair estimate of the order of
magnitude of such effects, but not a reliable quantitative assessment. From the point of
view of resonance saturation, axial-vector exchanges reduce the vector effects on (α1−β1),
but add to them for (α1 + β1), as they only contribute to α1 via

(α1)
axial
K± =

4αemC
2
K1
MK

M2
K1

−M2
K

=
24M3

K1
MK

(M2
K1

−M2
K)4

ΓK1→Kγ , (7.26)

where the Lagrangian for axial-vector to pseudoscalar and photon transitions reads [375]

Laxial = 2eCK1Fµν∂
µKν

1K . (7.27)

The main difficulty is to access the radiative charged axial-vector coupling, since there is no
experimental data available. Using nonet symmetry one can relate the strange couplings
to the non-strange ones via [375, 392]

C2
K+

1 (1270)
+ C2

K+
1 (1400)

= C2
b+1 (1235)

+ C2
a+1 (1260)

, (7.28)

where one further needs to assume the Lipkin mechanism [393] in order to extract the
physical K+

1 (1270) coupling. Moreover, the branching ratio for the a+1 (1260) is disputed
in the literature [394–397], with no precise modern experimental value available. A similar
symmetry relation to Eq. (7.28) can be tested for the radiative neutral strange axial-vector
couplings,

C2
K0

1 (1270)
+ C2

K0
1 (1400)

= 4C2
b+1 (1235)

, (7.29)

which are overestimated by more than a factor of 2. Hence, we do not attempt to quantify
the axial-vector contributions here. Furthermore, loop corrections are sizable, as are the
uncertainties due to variations of the scale at which resonance saturation is assumed to
hold. We take this into account below by associating a 50% uncertainty with the VMD

134



7.4 K∗ resonance

γ(q1, λ1)

K(p1)

γ(q2, λ2)

K(p2)

π(k1)

K(k2)

Figure 7.3: Compton scattering of kaons via an Kπ intermediate state. The two photons
have momenta qi and helicity λi, while the in- and outgoing kaon momenta are labeled by
pi. The internal momenta are k1 for the pion and k2 for the kaon.

estimates for the polarizabilities, which is probably not even overly conservative. The
main difference between the kaon and pion cases is the size of the respective masses:
higher orders in the polarizabilities are suppressed only byM2

K instead ofM2
π , making the

former more susceptible to corrections by a factor of about 12.
Apart from corrections to the polarizabilities, however, the appearance of resonances

in the Compton amplitude limits the energy range that can sensibly be employed for the
experimental extraction thereof. For this specific problem, there is still a clear hierarchy
in mass scales between the K∗(892) and the first axial-vector state, the K1(1270). We will
therefore reconstruct theK∗ contribution dispersively via its two possibleKπ intermediate
states.
We show the exact form of the partial-wave expansion of the Compton helicity ampli-

tudes in Appendix 7.A. There, we also derive the imaginary parts of the P -waves due to
Kπ intermediate states, see Fig. 7.3, for the +± helicities, which read

Im
(
f1,±(s)

)
= ± 1

8πe2
λ3/2(s,M2

π ,M
2
K)

72s2
(
|gc1(s)|2 + |gn1 (s)|2

)
θ
(
s− (MK +Mπ)

2
)
, (7.30)

where λ(a, b, c) is the Källén function defined in Eq. (2.15).7 Here gc1 and g
n
1 are the γK →

Kπ amplitudes with the charged and neutral kaons in the final state, respectively.8 Using
an n-times subtracted dispersion integral we obtain the γK → γK P -wave amplitude

f1,±(s) = Pn−1(s) +

(
s−M2

K

)n
π

∫ ∞

M2
K

ds′
Im (f1,±(s

′))(
s′ −M2

K

)n
(s′ − s)

, (7.31)

where we have subtracted at s = M2
K . We use the twice subtracted result from Ref. [4]

for the γK → Kπ amplitudes, which approach a constant for s→ ∞. Since we only need
gi1(s) in the low-energy region close to the K∗ resonance and are not interested in the
high-energy behavior of this amplitude, we set gi1(s) → 1/s for large s, starting at 1GeV.
With one subtraction the partial-wave amplitude then reads

f11,±(s) = a±1 ± f̄11 (s) , (7.32)

7Note that we include the factor of e2 due to the amplitude definition in Ref. [4].
8This form holds for both charged- and neutral-kaon Compton scattering, with gc,n1 replaced accordingly.
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where

f̄11 (s) =
(s−M2

K)

π

∫ ∞

M2
K

ds′
Im (f1,+(s

′))

(s′ −M2
K)(s′ − s)

. (7.33)

The subtraction can be fixed via a±1 = f11,±(M
2
K).

Reinserting the P -waves into the partial-wave decomposition for the helicity amplitudes
leads to the dispersively reconstructed K∗ contributions

FK∗
++(s, t) =

3

4

(
M4

K − su
) [
f11,+(s) + f11,+(u)

]
,

FK∗
+−(s, t) = −3

4
t
[
sf11,−(s) + uf11,−(u)

]
. (7.34)

The u-channel pieces are added by hand in order to render the amplitude crossing symmet-
ric. Comparing to Eq. (7.23), we note that the VMD model can be brought into exactly
the same form. Applying Eq. (7.11) then allows us to identify the connection between the
subtraction constants and the polarizabilities extracted from the VMD model,

a±1 =
1

3MKαem
(α1 ± β1)

VMD
K± = ±4

3

C2
K∗

M2
K∗ −M2

K

. (7.35)

To understand to what extent these subtraction constants can be replaced by the phe-
nomenological polarizabilties that, ultimately, ought to serve as free parameters to be
extracted from experiment, we need to discuss the structure of our complete amplitude
representation, which is of the following form. In addition to the Born terms, we retain

1. the dipole polarizabilities;

2. dispersive representations of the leading singularities in s-, t-, and u-channels, which
comprises the Kπ P -waves (or the K∗(892)) in s- and u-channels, as well as the ππ
S-wave (or the f0(500)) in the t-channel;

3. and the perturbative t-channel kaon loop to account for the missing piece in the
above to reproduce the complete next-to-leading-order chiral representation.

The Born-term-subtracted helicity amplitudes are therefore of the form

F̂+−(s, t) = − t

2

[
MK

αem
(α1 − β1)K± +Adisp(t)− 3

2

(
ta−1 + sf̄11 (s) + uf̄11 (u)

) ]
,

F̂++(s, t) =
3

4
(M4

K − su)

[
2

3MKαem
(α1 + β1)K± + f̄11 (s) + f̄11 (u)

]
. (7.36)

Note that the dipole polarizabilities (α1 ± β1)K± now subsume the contributions induced
by the subtraction constants of the dispersive P -wave. For the +− helicity amplitude,
however, a term proportional to t2a−1 is explicitly kept, since it induces a contribution to
the quadrupole polarizabilities. These only come from the K∗ resonance. Here, a−1 is fixed
by Eq. (7.35). Furthermore, in the ++ helicity we keep the kinematic structure in front
of the scalar amplitude, cf. Eq. (7.7).
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Figure 7.4: Energy dependence of the integrated ratio of the differential cross sections over
the backward half angle R̄1(s) as defined in Eq. (7.38). The colors indicate the scenarios
1 to 3, which are described in the main text. The dashed lines represent the same input
for the kaon polarizabilities as indicated by their color, but for the unphysical integrated
ratio R̄2(s).

7.5 Results

In analogy to Ref. [350], we now define ratios of differential cross sections to extract
the kaon polarizabilities and test the sensitivity to the latter. Here, the experimentally
measured quantity is normalized and compared to a theoretical one. We add the Born
terms and calculate the differential cross sections via Eq. (7.10). The ratio optimized for
sensitivity to polarizability effects, retaining all other parts of the amplitude, then reads

R1(s, t) =
dσ/dΩ(s, t)

dσ/dΩ(s, t)
∣∣∣
α1=β1=0

, (7.37)

where the label indicates that α1 and β1 are set to zero in Eq. (7.36), while all other terms
are kept. For an analysis focusing on the extraction of the kaon polarizability difference,
this ratio can be integrated over backward angles, leading to

R̄1(s) =

∫ zcut

−1
dzsR1(s, t(s, zs)) . (7.38)

This backward-integrated ratio R̄1(s), with cutoff angle zcut = 0, is shown in Fig. 7.4.
For the difference of kaon polarizabilities (α1 − β1)K± we use three different scenarios.
We employ the ChPT prediction, Eq. (7.15), and add 0.5, 1, and 1.5 times the VMD
induced corrections, Eq. (7.25), labeled by scenario 1 to 3, respectively.9 This corresponds

9Note that due to Eq. (7.25) the two linear combinations have a different sign for the VMD contribution
to the polarizabilities. Therefore, adding 1.5 times the VMD result leads to a smaller polarizability for
(α1 − β1)K± than 0.5 times the VMD result.
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Figure 7.5: Energy dependence of the ratio of the differential cross sections, Eq. (7.37), for
zs = −1. Line styles as in Fig. 7.4.

to varying (α1 − β1)K± by approximately ±20% around the central value, given by the
ChPT result with higher-order corrections estimated by VMD; in other words, the different
full lines in Fig. 7.4 indicate the required accuracy to extract (α1−β1)K± at the 20% level.

On the other hand, the colored bands around the three central full curves depict a
variation in (α1 + β1)K± from 0.5 to 1.5 times the VMD result. While we will discuss
strategies to actually disentangle (α1 ± β1)K± below, in the context of the extraction of
the polarizability difference in backward directions, we regard the sum merely as a source
of uncertainty. We observe that these bands grow wider with increasing energy, start to
overlap significantly around

√
s ≈ 700MeV, and around 800MeV are so wide that the

50% variation in (α1 + β1)K± roughly makes up for the 20% variation in (α1 − β1)K± :
the impact of the sum of polarizabilities on the extraction of the difference is by far not
negligible. This is in notable contrast to the charged-pion case. This effect can be reduced
by choosing the angle more narrowly (zcut < 0), which will on the other hand limit the
statistics. The extreme case is illustrated in Fig. 7.5: in strict backward direction, for
fixed zs = −1, the amplitude is independent of the linear combination (α1 + β1)K± and
therefore does not show any bands. However, it is unrealistic that an experiment will
gather enough statistics for such a fixed angle. Therefore, it will become crucial in the
experimental analysis to optimize the interplay of both these quantities.
We can define different ratios of differential cross sections to illustrate the necessity to

retain the K∗ resonance in the polarizability extraction; all of them are similarly studied
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Figure 7.6: Energy dependence of the integrated ratio of the differential cross sections
over the backward half angle R̄3(s) as defined in Eq. (7.40), neglecting the dispersively
reconstructed K∗ in the denominator. Line styles as in Fig. 7.4.

in forms integrated over backward angles. We define

R2(s, t) =
dσ/dΩ(s, t)

∣∣∣
K∗=0

dσ/dΩ(s, t)
∣∣∣
α1=β1=K∗=0

,

R̄2(s) =

∫ zcut

−1
dzsR2(s, t(s, zs)) , (7.39)

where K∗ = 0 denotes that we neglect the K∗ resonance and therefore do not include
f̄11 and a−1 in Eq. (7.36). This is a purely theoretical or unphysical ratio (as the K∗ is
omitted also in the numerator, which is impossible to measure experimentally), but it
serves to illustrate the analogy to the pion case, where the ρ resonance is outside of the
relevant energy region: its influence is suppressed because the energy range is chosen to be√
s < 3.5Mπ [350], where the ρ is far enough away (Mρ ≈ 5.5Mπ, or 3.5Mπ ≈Mρ − 2Γρ).

However, this still leads to an available energy range above threshold of approximately
350MeV. R̄2(s) hence shows the sensitivity of a charged-kaon polarizability extraction in
a world where no s-channel resonance disturbs the range of validity of the expansion.

This ratio is also included for comparison in Fig. 7.4 for the same three different values
of (α1 − β1)K± (but neglecting the variation in (α1 + β1)K± , which leads to extremely
similar bands as for R̄1(s)), denoted by dashed lines. We find that full and dashed lines,
corresponding to R̄1(s) and R̄2(s), are extremely close up to roughly

√
s ≈ 800MeV: our

effort to stabilize the ratio by inclusion of the K∗ is entirely successful, and data for higher
energies can be made available for the polarizability extraction that way. Note that the
energy range displayed in Figs. 7.4–7.6 corresponds rather precisely to the 350MeV used
for the pion polarizability extraction [350].
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Figure 7.7: Angular dependence of the ratio of differential cross sections R1(s, t) as defined
in Eq. (7.37) for s = (0.52GeV)2. As before we employ the ChPT prediction for the
polarizabilities and add 0.5 (orange; dashed), 1 (red; solid), and 1.5 (blue; dotted) times
the VMD induced corrections. Different colors indicate the variation in (α1 − β1)K± ,
whereas different dash-types denote the varied values for (α1 + β1)K± .

Finally, we investigate the ratio

R3(s, t) =
dσ/dΩ(s, t)

dσ/dΩ(s, t)
∣∣∣
α1=β1=K∗=0

,

R̄3(s) =

∫ zcut

−1
dzsR3(s, t(s, zs)) , (7.40)

where the full, experimentally accessible, differential cross section is employed in the nu-
merator, but normalized to a denominator omitting the K∗ effects. This corresponds to
the attempt to extract polarizabilities from real data, but ignoring the K∗ in the normal-
ization expression. We obviously expect R3 to show strong deviations from unity when
increasing s towards the K∗ resonance energy, which are indeed visible in Fig. 7.6: the
onset of the resonant rise in R̄3(s) obscures the polarizability sensitivity at the 20% level
already for energies as low as

√
s ≈ 650MeV, and quickly deteriorates even further above.

We therefore strongly suggest to use R̄1 for the extraction of kaon polarizabilities.
AMBER might be able to extend the angular range to forward directions, or positive

zs [398]. In Figs. 7.7, 7.8, and 7.9 we show the zs dependence of the ratio R1(s, t),
cf. Eq. (7.37), for different s and variations of the polarizabilities. In accordance with
Eq. (7.12), at backwards angle zs = −1 only (α1 − β1)K± affects the ratio, while at
forward angle zs = +1 only (α1 + β1)K± can be extracted. Clearly, good sensitivity at
forward angles would enable one to determine (α1+β1)K± much more precisely, and hence
ultimately disentangle electric and magnetic dipole polarizabilities. Obviously, the same
variation of the VMD contribution to (β1)K± has a larger relative impact on (α1 + β1)K±
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Figure 7.8: Angular dependence of the ratio of differential cross sections R1(s, t) as defined
in Eq. (7.37) for s = (0.65GeV)2. Legend is the same as in Fig. 7.7.

than on (α1−β1)K± . Additionally, the variation in (α1−β1)K± seems to only have impact
for all relevant s starting at zs ≲ 0.5, while (α1 + β1)K± affects the ratio visibly already
for zs ≳ −0.75.
Furthermore, we checked the stability of all these ratios by varying the input γK → Kπ

amplitudes in the dispersion integral within their uncertainty bands. Figs. 7.4, 7.5, 7.7,
7.8, and 7.9 do not change at all, since the dispersion integral is included in both the
numerator and denominator of the ratios. However, this will obviously be different once
the numerator is fixed from experiment. Additionally, Fig. 7.6 shows a dependence on the
different inputs as the dispersion integral is only used in the numerator.
Note that an experimental extraction of the accompanying pion-production process

γK → Kπ is necessary to properly constrain the amplitudes that are used in the dispersion
integral for the resonant P -wave. This is also achievable with the AMBER experiment [4].
Furthermore, note that for the analysis of the charged-pion polarizabilities [350], also
radiative corrections have been taken into account. These can easily be adapted for charged
kaons [377], which ought to be done for the experimental analysis.

7.6 Neutral-kaon Compton scattering

Compton scattering can also be discussed for neutral kaons, and measurements of this kind
might become feasible in the future at the planned K-Long Facility (KLF) at Jefferson
Lab [297]. Due to the absence of Born terms, the near-threshold amplitude is directly
proportional to the dipole polarizabilities, leading to a cross section of the form

σ(s) =
π(s−M2

K)4

12M2
Ks

3

(
M4

K (α1 − β1)
2
K0 + s2 (α1 + β1)

2
K0

)
. (7.41)
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Figure 7.9: Angular dependence of the ratio of differential cross sections R1(s, t) as defined
in Eq. (7.37) for s = (0.8GeV)2. Legend is the same as in Fig. 7.7.

This would in principle allow for a much more straightforward extraction of these; the
downside, obviously, is that the corresponding cross sections are smaller by orders of
magnitude.
In ChPT, the first contribution to the neutral-kaon Compton amplitude arises at one-

loop order and is given by [331]

An(s, t) = − 1

8π2F 2
K

[
1− 2M2

π

t
arctan2

(
1

σπ(t)

)
−

2M2
K

t
arctan2

(
1

σK(t)

)]
,

Bn(s, t) = 0 . (7.42)

Both polarizabilities in fact vanish at this order. We therefore model them, in the spirit
of the preceding analysis for charged kaons, by K∗-exchange, leading to a nonvanishing
magnetic polarizability given by the same expression as in Eq. (7.25). With radiative width
and masses adjusted to the neutral channel, this results in (β1)

VMD
K0 = 0.8 · 10−4 fm3. The

resonant lineshape of the K∗ is dispersively reconstructed in direct analogy to the charged
case.
The dispersive t-channel γγ → ππ → K̄K amplitude replaces the pion loops Aπ(t) in

Eq. (7.42) following the discussion in Sec. 7.3. This results in

An(t) = −
√
2

t
k0++(t)−

1

8π2F 2
K

[
1

2
−

2M2
K

t
arctan2

(
1

σK(t)

)]
.

The cross section dominated by the polarizablities in the low-energy region is shown
in Fig. 7.10. The solid red line represents the full neutral solution with polarizabilities,
loop corrections, and the K∗ resonance. The dashed line denotes the result based solely on
polarizabilities according to Eq. (7.41). We observe that the polarizabilities dominate up to
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Figure 7.10: Cross section for the charged (blue) and neutral (red) kaon Compton scatter-
ing. The dashed red line represents Eq. (7.41).

about
√
s = 0.7GeV; in this range, the total cross section amounts to less than a nanobarn.

Compared to the approximately 700 nb in the charged-kaon case, one looses many orders
of magnitude of events. Therefore, experimental observation close to threshold will be
very challenging. However, in the region of the K∗ resonance the neutral cross section
exceeds the charged one due to the larger radiative width of the K∗0.

7.7 Conclusion

We proposed a method to extract kaon polarizabilities from differential cross sections of
kaon Compton scattering. To this end, we used the ChPT amplitudes up to next-to-
leading order as a starting point. Therein, the t-channel pion loop contribution that limits
the range of applicability of the polarizability expansion can be dispersively improved,
employing solutions of a coupled-channel analysis of γγ → {ππ, K̄K}. The dominant
K∗ resonance in the s-channel is dispersively reconstructed using amplitudes from the
pion photoproduction reaction on kaons, γK → Kπ. In contrast to the pion case the
hierarchy (α1 + β1) ≪ (α1 − β1) is not viable for kaon polarizabilities and both linear
combinations need to be considered. We then suggested a ratio, optimized for sensitivity
to the kaon polarizabilities, by incorporating all of the former effects. We showed that this
ratio enlarges the energy range to be similar to the pion case. In addition, the relative size
of polarizability difference and sum is such in the charged-kaon case that an extension of
the experimental analysis of Compton scattering towards forward angles may realistically
allow for the disentanglement of (α1)K± and (β1)K± . For neutral kaons the cross section
close to threshold is directly proportional to the square of the polarizabilities, however,
experimental extraction will become challenging due to the small overall cross section,
since there are no corresponding Born terms.
This chapter provides all necessary theoretical methods for a combined analysis of kaon
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Primakoff data for both kaon–photon and kaon–pion [4] final states, giving combined access
to the chiral anomaly in a kaon reaction, the radiative width of the K∗(892) resonance,
and to kaon polarizabilities. Once experimental data on these reactions is available, e.g.,
from AMBER, such an analysis ought to be performed to minimize theoretical bias and
model dependence.

7.A Dispersive reconstruction of the Kπ intermediate state

In this appendix, we derive the discontinuity equation for a Kπ intermediate state of
the kaon Compton scattering amplitude. The definitions of the momenta are shown in
Fig. 7.3. We start from the unitarity of the S-matrix, which leads to

disc (Mif ) = i
∑
n

(2π)4δ(4)(q1 + p1 − kn)MinM∗
nf . (7.43)

The sum in general runs over all possible hadronic intermediate states. Replacing the sum
by the appropriate integrations results in

disc (Mif ) =
i

(2π)2

∫
d3k1
2k01

d3k2
2k02

δ(4)(q1 + p1 − k1 − k2)MinM∗
nf . (7.44)

The initial-to-final Compton scattering amplitude can be expanded into partial waves
via [145]

F+±(s, t, u) =
∞∑
J=1

(2J + 1)

(
(s−M2

K)2

4

)J

fJ,±(s)d
J
1,±(zs) , (7.45)

where the small Wigner d-functions are given by

dJ1,± =
1∓ z

J(J + 1)
P ′
J(zs)± PJ(zs) . (7.46)

PJ and P ′
J are the Legendre polynomials and their derivatives, respectively. The ampli-

tudes involving Kπ intermediate states are of odd intrinsic parity and can be related to
scalar amplitudes G(s, t, u)10

MγK→Kπ,± = iεµναβϵ
µ
j,±p

ν
i k

α
1 k

β
2G(s, t, u) , (7.47)

where j = 1 for initial to intermediate and j = 2 for intermediate to final state. The
partial-wave expansion of the scalar amplitudes is given by

G(s, t, u) =
∑
J

gJ(s)P
′
J(zs) . (7.48)

S-waves are forbidden and the D-wave and higher contributions only become relevant
outside of the kinematical region we are interested in, where the K∗

2 (1430) is the lowest

10For simplicity, we refrain from distinguishing the two possible Kπ charge configurations notation-wise,
which will simply be summed over in the final result.
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lying resonance starting well beyond 1GeV. Therefore, we only consider P -waves and the
discontinuity relation reads

3
(s−M2

K)2

4

1± zs
2

disc (f1,±(s)) =
i

(2π)2
λ1/2(s,M2

π ,M
2
K)

8s
|g1(s)|2I± , (7.49)

where

I± =

∫
d cos

(
z′s
)
dϕ′εµναβεσργδϵ

µ
1,+ϵ

σ
2,±p

ν
1p

ρ
2k

α
1 k

γ
1k

β
2 k

δ
2 . (7.50)

Since I± is fully contracted, we can evaluate it in the center-of-mass system and choose
an explicit representation for the momenta [349]. This results in

I± = ±π1± zs
24s

λ(s,M2
π ,M

2
K)(s−M2

K)2 . (7.51)

Therefore the discontinuity of the P -wave for the +± helicities reads

2iIm (f1,±(s)) = disc (f1,±(s)) = ± i

4π

λ3/2(s,M2
π ,M

2
K)

72s2
|g1(s)|2 . (7.52)
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Chapter 8

Kaon electromagnetic form factors in
dispersion theory

8.0 Prologue

The content of this chapter is based on the publication

• D. Stamen, D. Hariharan, M. Hoferichter, B. Kubis, and P. Stoffer, Kaon elec-
tromagnetic form factors in dispersion theory, Eur. Phys. J. C 82, 432 (2022)
[arXiv:2202.11106 [hep-ph]] .

Furthermore, results of this chapter are used in

• M. Hoferichter, G. Colangelo, B.-L. Hoid, B. Kubis, J. Ruiz de Elvira, D. Stamen, and
P. Stoffer, Chiral extrapolation of hadronic vacuum polarization and isospin-breaking
corrections, PoS LATTICE2022, 316 (2022) [arXiv:2210.11904 [hep-ph]] ,

• M. Hoferichter, G. Colangelo, B.-L. Hoid, B. Kubis, J. Ruiz de Elvira,
D. Schuh, D. Stamen, and P. Stoffer, Phenomenological Estimate of Isospin
Breaking in Hadronic Vacuum Polarization, Phys. Rev. Lett. 131, 161905 (2023)
[arXiv:2307.02532 [hep-ph]] .

This project started in the context of Deepti Hariharan’s Master’s thesis [399].
The electromagnetic form factors of charged and neutral kaons are strongly constrained

by their low-energy singularities, in the isovector part from two-pion intermediate states
and the isoscalar contribution in terms of ω and ϕ residues. The former can be predicted
using the respective ππ → K̄K partial-wave amplitude and the pion electromagnetic form
factor. The pion electromagnetic form factor uses the same ππ → K̄K phase shift to
ensure a real-valued imaginary part in the unitarity relation. The free parameters are
fixed by a fit to e+e− → π+π− data from BaBar [400]. Using the imaginary part from
the unitarity relation in an unsubtracted dispersion integral yields the isovector part of
the kaon electromagnetic form factor. We fix the normalization by including intermediate
states beyond ππ in a minimal way via the ρ′ resonance. The result can be compared to
data from τ− → K−KSντ decays. This analysis was carried out by the author of this
thesis.
For the isoscalar part, parameters need to be determined from electromagnetic reactions

involving kaons. For this, we use a vector-meson dominance ansatz, where the residues,
masses, and widths are free parameters.
We present a global analysis of timelike and spacelike data that implements all of these

constraints. The analysis needs to account for multiple effects such as final-state radia-
tion, vacuum-polarization effects, and systematic uncertainties leading to the d’Agostini
bias [401]. Furthermore, one data set provides binned data that needs to be accounted
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for. These fits were carried out by the author of this thesis including the creation of all
plots in this chapter and the analysis of the uncertainties and correlations. The global
fit to K̄K gives M̄ϕ = 1019.479(5)MeV, Γ̄ϕ = 4.207(8)MeV for the parameters of the ϕ
resonance including vacuum-polarization effects.
The results enable manifold applications: kaon charge radii, elastic contributions to the

kaon electromagnetic self energies and corrections to Dashen’s theorem, kaon boxes in
hadronic light-by-light (HLbL) scattering, and the ϕ region in hadronic vacuum polariza-
tion (HVP). The kaon charge radii are calculated via the derivative of the form factor at
zero energy. Our results are ⟨r2⟩c = 0.359(3) fm2, ⟨r2⟩n = −0.060(4) fm2 for the charged
and neutral radii. The calculation was performed by the author of this thesis.
Using a variant of the Cottingham formula and our result for the kaon electromagnetic

form factor, along with the pion electromagnetic form factor from Ref. [146], we find
ϵ = 0.63(40) for the elastic contribution to the violation of Dashen’s theorem. This
application was, again, carried out by the author of this thesis.

Next, we calculate the charged kaon box in HLbL scattering to be aK-box
µ = −0.48(1) ·

10−11. This was carried out by Peter Stoffer and Martin Hoferichter, who already had an
existing numerical code for the calculation of the box-diagram contribution to HLbL.

As the last application, we are able to calculate the HVP integrals around the ϕ reso-
nance to yield aHVP

µ [K+K−,≤ 1.05GeV] = 184.5(2.0) ·10−11, aHVP
µ [KSKL,≤ 1.05GeV] =

118.3(1.5)·10−11. We find a small tension to the analysis using data combination, since the
ϕ resonance shape is modified due to tensions in the underlying data sets. This analysis
was again carried out by the author of this thesis.
Note that all the previous results were cross-checked by Peter Stoffer and Martin

Hoferichter.
Currently, the tension between lattice QCD and the results from the e+e− → hadrons

cross-section data for the HVP determination hinders interpreting the precision measure-
ment of the muon’s anoumalous magnetic moment. Since isospin-breaking effects are
calculated separately in lattice QCD, we identify them for the data-driven framework in
multiple channels. This framework and the results of this chapter are used in Refs. [7, 8] to
estimate the isospin-breaking effects in HVP induced by the kaon mass difference. These
aspects are included in Appendix 8.A.

8.1 Introduction

The simplest, most stringently constrained matrix element that describes the interaction
of hadrons with the electromagnetic current jµ is the pion vector form factor (VFF)〈

π+(p1)π
−(p2)

∣∣ jµ(0) |0⟩ = (p1 − p2)µF
V
π (s) , (8.1)

where s = (p1 + p2)
2. By far the dominant contribution to its unitarity relation arises

from ππ intermediate states above the threshold sth = 4M2
π ,

ImF V
π (s) = F V

π (s) sin δ(s)e−iδ(s)θ(s− sth) , (8.2)

which strongly constrains the functional form of F V
π (s) in terms of the P -wave phase

shift δ(s) for ππ scattering. Up to isospin-breaking and inelastic corrections, the unitarity
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relation can be solved in terms of the Omnès function [45, 46]

Ω(s) = exp

(
s

π

∫ ∞

sth

ds′
δ(s′)

s′(s′ − s)

)
, (8.3)

up to a real polynomial P (s),
F V
π (s) = P (s)Ω(s) . (8.4)

Such dispersive constraints are ubiquitous in the literature as basis for increasingly precise
representations of F V

π (s) [146, 402–411], often motivated by the two-pion contribution to
HVP.

In this chapter, we apply the same strategy to the electromagnetic form factors of the
kaon, with several key differences to the case of the pion. First, while the electromagnetic
form factor of the π0 vanishes due to C parity, both charged and neutral kaons can couple
to jµ, so that isoscalar and isovector components need to be considered. The isovector
part possesses a unitarity relation similar to Eq. (8.2) [412], in that ππ intermediate states
yield by far the biggest contribution, but the reaction is no longer elastic and F V

π (s)
as well as the respective partial-wave amplitude for ππ → K̄K need to be provided as
input. The unitarity relation for the isoscalar part receives dominant contributions from
3π and K̄K intermediate states, but in practice the corresponding spectral function is well
approximated by the narrow ω and ϕ resonances, i.e., their pole parameters and residues.
These key ideas are spelled out in more detail in Sec. 8.2, to establish the formalism upon
which the remainder of this work will be based.
While the isovector part can thus be predicted (and validated by data for τ− →

K−KSντ [413]), the representation for the isoscalar part involves free parameters, most
notably the residues of the ω and ϕ contributions. To determine these, we perform fits to
cross-section data for the charged and neutral timelike reactions e+e− → K+K− [414–417]
and e+e− → KSKL [414, 418, 419], respectively, as well as spacelike data for charged-kaon–
electron scattering [420, 421]. The results of these fits are presented in Sec. 8.3, including
the comparison to the ϕ resonance parameters from Refs. [125, 347, 422, 423].
The resulting form factors can then be used to study a number of applications.

1. The derivative at s = 0 determines the charge radii, see Sec. 8.4.1. For the charged
kaon, the averages from Ref. [347] are based on the spacelike data [420, 421] only,
such that the comparison illustrates the impact of the timelike data sets, as well as
the dispersion-theoretical constraints on the isovector part. For the neutral kaon,
constraints on the charge radius can be extracted from KL → π+π−e+e− [424, 425]
and electron scattering experiments [426–428], allowing for another cross check.

2. The kaon form factors determine the elastic contribution to Compton scattering
off the kaon, which, in turn, gives the bulk of the electromagnetic self energy via
the Cottingham formula [429]. Together with the analog formula for the pion, we
can thus provide an estimate of the corrections to Dashen’s theorem [430]—which
maintains that the electromagnetic mass difference for the kaon coincides with the
one for the pion in the chiral limit—at least for the (dominant) part that arises from
elastic intermediate states. This estimate and the comparison to results from lattice
QCD as well as extractions from η → 3π are presented in Sec. 8.4.2.
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3. The spacelike form factors determine the kaon-box contributions to HLbL scattering
in the anomalous magnetic moment of the muon aµ = (g−2)µ/2, corroborating pre-
vious estimates using vector-meson dominance (VMD) [325] and Dyson–Schwinger
(DS) equations [431, 432], see Sec. 8.4.3.

4. The timelike form factors reflect HVP in the vicinity of the ϕ resonance, in fact,
we used precisely the same data sets that enter in the direct integration of e+e− →
hadrons cross sections [411, 433–435]. Since our representation does not include
excited states above the ϕ, we cannot provide a complete account of the contribution
up to a typical matching point to inclusive descriptions around 1.8GeV, but we can
study the consistency of the various K̄K data sets around the ϕ region among
themselves as well as with other hadronic reactions in which the ϕ parameters are
measured. These aspects are studied in Sec. 8.4.4.

Finally, we summarize our findings and conclusions in Sec. 8.5. The results that are used
in Refs. [7, 8] can be found in Appendix 8.A.

8.2 Formalism

While the electromagnetic form factors of charged and neutral kaons, FK±,0(s), are defined
in strict analogy to Eq. (8.1), it is more convenient for a dispersion-theoretical analysis to
decompose them into isovector (v) and isoscalar (s) components according to

FK±(s) = F s
K(s) + F v

K(s) ,

FK0(s) = F s
K(s)− F v

K(s) . (8.5)

We will discuss both of these in turn in the following.

8.2.1 Isovector part

The unitarity relation for the isovector kaon form factor reads [412]

ImF v
K(s) =

s

4
√
2
σ3π(s)

(
g11(s)

)∗
F V
π (s) . (8.6)

Here, g11(s) refers to the ππ → K̄K P -wave, which is defined from the ππ → K̄K scattering
amplitude according to [336, 337, 345]

GI(s, t, u) = 16π
√
2
∑
ℓ

(2ℓ+ 1)(qπqK)ℓPℓ(z)g
ℓ
I(s) ,

qP (s) =

√
s− 4M2

P

2
=

√
s

2
σP (s) , (8.7)

where Pℓ(z) are the Legendre polynomials and z refers to the cosine of the scattering angle.
We specifically employ the phase of the ππ → K̄K amplitude in the Omnès representation
for the pion VFF to render the imaginary part of Eq. (8.6) real by construction; this phase
agrees with the pion–pion P -wave phase shift in the elastic region, hence this choice only
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affects the continuation of δ(s) above. The polynomial is fixed by a fit to the BaBar
data [400], parameterizing the ρ–ω mixing via a Breit–Wigner function [96],

P (s) = 1 + αs+ κ
s

M2
ω − s− iMωΓω

, (8.8)

where the κ-term is dropped for the kaon form factor analysis, since the latter is performed
in the isospin limit. Furthermore, the polynomial is set to a constant above

√
s = 2GeV

to ensure convergence. Reference [337] offers two alternative parameterizations of g11(s),
an unconstrained fit to data (UFD) of that partial wave only, as well as a variant that
implements various dispersion-theoretical constraints (CFD). The fit parameters in the
pion form factor are αUFD = 0.15(9)GeV−2, αCFD = 0.18(8)GeV−2, where the uncertainty
is dominated by the input for g11. In the following, the error analysis will be performed
by propagating the uncertainties in the parameterization of g11 and by linearly adding up
the resulting variations, since these parameters are, in general, expected to be strongly
correlated [183]. Since the correlations between the parameters in g11 are not provided
in Ref. [337], this procedure should produce a conservative but realistic estimate of the
isovector uncertainties. The full isovector kaon form factor can be calculated using an
unsubtracted dispersion integral

F v
K(s) =

1

π

∫ ∞

sth

ds′
ImF v

K(s′)

s′ − s
. (8.9)

Effects of higher ρ′ = ρ(1450) and ρ′′ = ρ(1700) states are visible in g11, but only affect
the form factor minimally, so that the integral is dominated by the ρ resonance. This,
however, only captures the effect of, e.g., the ρ′ partially, which is known to couple strongly
to 4π [347] (see also the discussion in Ref. [436]). To account for intermediate states
beyond ππ in a minimal way, we therefore add an explicit ρ′ resonance via a Breit–
Wigner parameterization, with the coupling adjusted to fix the form factor normalization
to F v

K(0) = 1/2. It is introduced in the form

F ρ′

K (s) = λρ′
M2

ρ′

M2
ρ′ − s− i

√
sΓρ′(s)

, (8.10)

with the energy-dependent width chosen in accordance with the parameterization em-
ployed for g11 [336, 337, 345]1

Γρ′(s) =
Γρ′

√
s
(
2σ̂3π(s) + σ̂3K(s)

)
2Mρ′σ3π(M

2
ρ′)

, (8.11)

where σ̂P (s) = σP (s)θ(s − 4M2
P ). The resulting ρ′ couplings are λρ′,UFD = 0.01(6) and

λρ′,CFD = −0.04(7), respectively, which demonstrates that the ππ intermediate states alone
saturate the sum rule for the isovector charge to at least 15% accuracy, in line with similar
sum rules in Refs. [117, 438]. The use of an unsubtracted dispersion relation, Eq. (8.9),
with the addition of effective poles to satisfy the normalization constraint, guarantees
a reasonable high-energy behavior of the form factor representation, F v

K(s) ≍ s−1 for
s→ ∞ [403, 439–445].

1We stress that 2π and K̄K are not the dominant decay channels for ρ′, ρ′′, see Ref. [437] for more
realistic spectral functions.
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Figure 8.1: The kaon isovector form factor with input from the UFD (blue) and CFD
(red) parameterizations from Ref. [337], compared to the BaBar data [413] for the τ− →
K−KSντ decay (top) and in the full kinematic range including the ρ resonance (bottom).2

Information on the isovector kaon form factor below mτ can be obtained from
τ− → K−KSντ decays. There the spectral function v1(s) is related to the isovector
form factor by

v1(s) =
σ3K(s)

12π
|F v

K(s)|2 , (8.12)

up to isospin-breaking corrections, which, contrary to a determination of the 2π HVP
contribution from τ decays, are not relevant at the present level of accuracy. A joined
analysis of the τ− → K−KSντ and τ− → π−π0ντ decays was performed in Ref. [446] using

2Note that these plots differ from the ones in Ref. [6].
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resonance chiral theory in combination with dispersion relations to extract information
on the ρ′ and ρ′′ parameters. While the details of these higher ρ excitations are not
incorporated into our dispersive formalism, we expect the resulting representation to be
reliable at least near threshold. In Fig. 8.1 we plot the recent data from BaBar [413]
against the two form factors obtained with the different inputs for g11. We observe that
the result using the UFD input shows better agreement with the data than the CFD
result in the region below 1.1GeV. These shifts reflect the degree of consistency among
the data base used in Ref. [337], indicating a preference for the UFD variant. Given that
the UFD and CFD inputs agree within uncertainties, we thus opt for the more data-driven
approach and adopt the UFD result in the following, to ensure better agreement with the
τ− → K−KSντ data in the energy region of the fits.

8.2.2 Isoscalar part

For the isoscalar part of the kaon form factors, we employ a VMD ansatz based on the
lowest-lying isoscalar vector resonances ω(782) and ϕ(1020), as an efficient way to capture
the main singularities due to K̄K and 3π intermediate states. While such a description is
only strictly model-independent on the poles, the small widths of both resonances ensure
that corrections beyond these dominant contributions will be appreciably suppressed. In
analogy to the isovector case, we supplement this with one effective heavier pole, here
chosen as the ω′ = ω(1420), to guarantee the correct form factor normalization as well as
a reasonable large-s behavior. This results in

F s
K(s) =

cϕ
3

M2
ϕ

M2
ϕ − s− i

√
sΓϕ(s)

+
cω
6

M2
ω

M2
ω − s− iMωΓω

+

(
1

2
−
cϕ
3

− cω
6

)
M2

ω′

M2
ω′ − s− iMω′Γω′

, (8.13)

in such a way that the SU(3)-symmetric limit with lowest-meson dominance corresponds
to cω = cϕ = 1. The energy-dependent width for the ϕ resonance is parameterized as [122]

Γϕ(s) =
∑

K=K+,K0

γϕ→K̄K(s)

γϕ→K̄K(M2
ϕ)

Γ′
ϕ→K̄Kθ

(
s− 4M2

K

)
+

fϕ→πρ+3π(s)

fϕ→πρ+3π(M
2
ϕ)

Γ′
ϕ→πρ+3πθ

(
s− (Mρ +Mπ)

2
)
,

(8.14)

where the Γ′ refer to the partial widths rescaled to compensate for all other decay channels
not included explicitly, and

γϕ→K̄K(s) =

(
s− 4M2

K

)3/2
s

,

fϕ→πρ+3π(s) =

(
λ
(
s,M2

ρ ,M
2
π

)
s

)3/2

, (8.15)

where λ(a, b, c) is the Källén function defined in Eq. (2.15). The widths of ω and ω′

are kept constant in the timelike region for simplicity, since they only serve as smooth
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background terms around the ϕ peak and therefore cannot be further resolved in any of
the data sets considered in the fit. The parameterization of the spectral functions could
be further improved along the lines described in Ref. [122], e.g., by a proper description of
the energy dependence from the 3π channel beyond ρ dominance (8.15) or a dispersively
improved variant of Eq. (8.13), but in the energy regions included in the fit, i.e., the
spacelike region and the timelike region around the ϕ peak, none of these variants would
lead to any visible changes.

8.3 Fits to data

After establishing the formalism we now fit the resulting representations of the kaon form
factors to the available data in the timelike and spacelike regions. The timelike data are
fit with the total Born cross section [94]

σ(0)(s) =
πα2

3s
σ3K(s)|FK(s)|2 , (8.16)

multiplied by a correction factor 1 + α
π η(s) [447–450] to account for final-state radiation

(FSR). Sometimes the Sommerfeld–Gamow–Sakharov factor [451–453]

Z(s) =
πα

σK(s)

1 + α2/
(
4σ2K(s)

)
1− exp (−πα/σK(s))

(8.17)

is used instead to resum higher orders in α, but we checked that those effects are irrelevant
for the application to the K+K− channel, and smaller than the non-Coulomb corrections
contained in η(s). The spacelike region is fit with the same form factor function (with all
widths set to zero). We use two sets of data obtained by eK scattering for charged kaons
in the spacelike region [420, 421]. Data for neutral kaons in the spacelike region only exist
indirectly via the scattering off atomic electrons [426–428], leading to constraints on the
neutral-kaon charge radius, and are not included in our fit. In the timelike region, data for
charged kaons are taken from CMD-2 [415],3 CMD-3 [417], SND [414], and BaBar [416].
Data for neutral kaons are from CMD-2 [418], CMD-3 [419], and SND [414].4 SND has
two data sets depending on the mode of detection for the KS , distinguishing charged
(KS → π+π−, referred to as SNDnc) and neutral mode (KS → π0π0, SNDnn).

5 All the
timelike data sets except for BaBarc and CMD-2n have vacuum-polarization (VP) effects

3We show results for CMD-2 [415] for completeness, but emphasize that these data are affected by an
overestimation of the trigger efficiency for slow kaons, which leads to a systematic bias that requires a
reanalysis [454]. Therefore, the corresponding results will be indicated by dashed lines and not included
in global fits.

4Note that BaBar [422] do not provide cross-section data for the neutral channel in the ϕ region, only
for the resulting ϕ parameters, so that their analysis cannot be included in our fit. However, the ϕ
parameters are shown for comparison in Fig. 8.3.

5Note that the recently published SND data set [455] for the neutral kaon form factor is not included in
the fits discussed in this chapter. Precisely as SNDnn it is measured in the neutral mode. We show
the cross section in Fig. 8.6 in comparison to our results. The uncertainties in the data set are linearly
added systematic and statistical uncertainties quoted therein. Note that VP corrections are applied
and the bare cross section is used. The data set is in good agreement with our fit, however, due to
the very small uncertainties, compared to the older data sets, it can probably slightly decrease the
uncertainties in the neutral channel. A new analysis including Ref. [455] is planned for the future.
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included in the cross section. Therefore, we remove these using the routine from Ref. [434],
which outputs the running fine structure constant ∆α(s). It relates the bare cross section
σ(0)(s) to the dressed one σ(s) via

σ(0)(s) = σ(s)
∣∣1−∆α(s)

∣∣2 . (8.18)

Removal of VP effects leads to a downward shift in the mass of the ϕ resonance by
0.260(3)MeV [125, 423]. Crucially, this unfolding is only consistent as long as the ϕ
masses are, which therefore needs to be monitored in the analysis below. In order to
account for the binning in the BaBar experiment [416], which, in contrast to energy-scan
experiments, measures the integrated signal over the bin, we take the bare cross section
including FSR integrated over the bin as our fit function

f(xi) =
1

smax
i − smin

i

∫ smax
i

smin
i

ds
(
1 +

α

π
η(s)

)
σ(0)(s) . (8.19)

We include the systematic uncertainties in our fits after accounting for the d’Agostini
bias [401]. In the case of strongly correlated data (most prominently observed for those of
normalization-type origin), this bias leads to lower fit values in a chi-square minimization
defined as

χ2 =
∑
i,j

(
f(xi)− yi

)
V (i, j)−1

(
f(xj)− yj

)
, (8.20)

where f(x) is the fit function, y are the data points, and V is the covariance matrix. The
systematic uncertainties are taken to be 100% correlated for each experiment,6 and in
addition fully correlated between the two detection modes SNDnc and SNDnn [456].
We follow the iterative method developed in Ref. [457] to remove the bias. The modified

covariance matrix is defined as

Vn+1(i, j) = V stat(i, j) +
V syst(i, j)

yiyj
fn(xi)fn(xj) , (8.21)

where the fit function and the full covariance matrix are updated in each iteration step n.
The iteration procedure very quickly converges to the final result. Finally, the uncertainties
of the fit parameters are inflated by the scale factor

S =
√
χ2/dof , (8.22)

in case that χ2/dof > 1, following the Review of Particle Physics (RPP) prescription [347],
to account, in a minimal way, for unknown systematic errors as indicated by the χ2.
Fits in the timelike region were constrained to energies close to the ϕ resonance (as

shown in Figs. 8.5 and 8.6), since we do not include higher vector resonances in the energy
region above the ϕ with couplings adjustable to cross-section data [344]. We considered
several variants of the timelike input:

1. individual fits to a single experiment (charged or neutral channel), referred to by the
name of the respective experiment;

6BaBarc [416] quote 9 different sources for the systematic uncertainty, to be taken as 100% correlated
individually.
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Figure 8.2: Results of the individual and the combined neutral and charged data sets for
cϕ (top) and cω (bottom), with the neutral/charged-channel-residues in the upper/lower
panel. The green line denotes the SU(3)-prediction. “combinedn” and “combinedc” refer
to the scenarios in which the ϕ resonance parameters and all couplings are fit simultane-
ously, “neutral” and “charged” to the ones in which only the timelike neutral and charged
data are considered, respectively, and “charged shift” to the variant in which a shift in
the BaBarc energy calibration is allowed, see main text for details. The inner errors for cω
refer to the fit uncertainties, the total ones are obtained by adding the systematic error
from the variation of the UFD input in quadrature (a negligible effect for cϕ, Mϕ, and Γϕ).

2. combined fits to charged or neutral data sets, referred to as “charged” and “neutral”;

3. a full combination of charged and neutral data, referred to as “combined” (or
“combinedc” and “combinedn” for the residues).

In each scenario, the ϕ parameters Mϕ, Γϕ, and cϕ, as well as the residue of the ω pole
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Figure 8.3: Results of the individual and the combined neutral and charged data sets forMϕ

(left) and Γϕ (right) in red. “combined” refers to the scenario in which the ϕ resonance
parameters and all couplings are fit simultaneously, corresponding to “combinedn” and
“combinedc” in Fig. 8.2, otherwise, the notation is as in that figure. The green band
corresponds to the RPP mass average [347] shifted by the prescription from Ref. [423] to
remove the VP effect. In orange the results for the e+e− → 3π and e+e− → π0γ channels
are given, as is the result for the neutral channel from BaBar [422].

cω are allowed to float, while masses and widths of ω and ω′ are kept fixed (as the fits
are entirely insensitive to them). The spacelike data are included in all three variants,
since, even though they are relatively crude in precision compared to the timelike cross-
section measurements, they do help stabilize the extracted values of cω to some extent.
We have checked that the extracted ϕ parameters only change within uncertainties when
the SU(3) constraint cω = cϕ is imposed. They are insensitive to the complete omission
of the spacelike data from the fits and largely unaffected by the uncertainties from the
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Figure 8.4: Correlations among cϕ and cω (top), Mϕ (middle), and Γϕ (bottom), for the
“charged” (left) and “neutral” (right) scenarios in comparison to the respective individual
fits. The ellipses correspond to the ∆χ2 = 1 contours (39% confidence level) inflated
by the scale factor, in such a way that the projections reproduce the 1σ errors of the
parameters. For cω only the fit uncertainties are shown.

isovector part. However, the fit value of cω does become sensitive to the UFD input, which
we take into account by an additional systematic uncertainty, see Fig. 8.2 and Table 8.1.
In the full combination 3 we allow cω and cϕ to differ in the charged and neutral channels,

leading to 6 free parameters overall, since we do observe indications for isospin breaking
in these parameters, see Fig. 8.2. Isospin violation has been studied in the past in the
context of the ratio Γ(ϕ→ K+K−)/Γ(ϕ→ KSKL) [458–460], finding rather small effects,
with dynamical explanations tending to increase the charged-kaon coupling rather than
decrease it [458]. In principle, isospin breaking would also need to be considered when
using the charged spacelike data as constraint in the fits to the neutral channel only, but
in this case the data are clearly not precise enough to resolve such effects.
The results for the ϕ resonance parameters are shown in Fig. 8.3. In general, there is

reasonable agreement among all data sets and fit variants, the exception being the BaBarc
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neutral charged charged shift combined

χ2

dof
168
150 = 1.12 139

111 = 1.25 130
110 = 1.18 293

238 = 1.23

p-value 15% 3.7% 9.4% 0.9%

Mϕ [MeV] 1019.213(5) 1019.227(6) 1019.223(6) 1019.219(4)

Γϕ [MeV] 4.199(12) 4.215(11) 4.211(10) 4.207(8)

cϕ 1.001(6) 0.977(6) 0.976(5)
0.976(5)

1.002(7)

cω 1.07(7)(42) 1.42(8)(35) 1.41(7)(34)
1.47(7)(34)

1.03(7)(35)

ξ · 103 −1.3(5)

Table 8.1: Parameters for the fit variants 2 and 3 discussed in the main text. In the
combined fit, the upper/lower values for cϕ, cω refer to the charged/neutral channel,
respectively. The second bracket for cω indicates the uncertainty induced by the UFD
input, it is fully correlated with the corresponding variation in the isovector form factor
and thus affects the neutral and charged residues in the opposite directions.

data [416], which favor both a larger mass and width than the remainder of the data
base, as reflected also by the tension to the RPP average. This observation motivates the
consideration of a variant of fit scenario 2 in which the energy calibration in this data set
is allowed to vary, referred to as “charged shift.” Following Ref. [146], we implement such
an energy shift via √

s→
√
s+ ξ

(√
s− 2MK

)
(8.23)

to leave the threshold invariant. On the level of the form factor this translates to a small
correction [146]

|FK(s)|2 → |FK(s)|2
(
1 + ξA(s) +O(ξ2)

)
,

A(s) =
2(s− 10M2

K)

s+ 2
√
sMK

, (8.24)

to leave the cross section (8.16) invariant, but in practice we use directly Eq. (8.19) in
the fit. Since Ref. [416] already provides the bare cross section, the only case in which a
potential mismatch of the ϕ parameters when removing VP effects using the routine from
Ref. [434] could have played a role thus remains uncritical.
The fit parameters illustrated in Figs. 8.2 and 8.3 (and for the combined fits listed in

Table 8.1) display some interesting features. First, we see that there is good consistency
among the neutral data sets, whose residue comes out in very good agreement with the
SU(3) prediction cϕ = 1. In contrast, for the charged channel there is considerable spread
in the fit parameters, not only in the ϕ mass and width, leading to the increased χ2/dof
as given in Table 8.1. Moreover, the combined value of cϕ almost coincides with the
BaBarc value, not the naive average with CMD-3c, hinting towards an important role of
correlations in the combination. The origin of this effect is illustrated in Fig. 8.4. First, the
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Figure 8.5: Cross-section data as well as our combined fit to all data sets using the
“combinedc” residue for e+e− → K+K−. They are shown in the complete fit energy
ranges (top) and focused on the ϕ peak region (bottom). The fit of the charged channel
is indistinguishable from the “fit” curves shown here.

figure reiterates the fact that consistency among the neutral data sets is much better than
in the charged case, but also explains why the charged-fit value of cϕ is pulled downward
compared to its naive average: cϕ is correlated with Γϕ (and, to a lesser extent, Mϕ), and
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Figure 8.6: Cross-section data as well as our combined fit to all data sets using the
“combinedn” residue for e+e− → KSKL (right). They are shown in the complete fit
energy ranges (top) and focused on the ϕ peak region (bottom). The fit of the neutral
channel is indistinguishable from the “fit” curves shown here.

the corresponding correlations can indeed be used to reproduce the behavior of the charged
fit. In this way, the tension visible in the ϕ resonance parameters also propagates to the
extracted value of the residue. As expected, the consistency of the fit does improve slightly
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Figure 8.7: Spacelike charged-kaon form factor (squared) data compared to the fits for all
neutral or charged data sets combined.

in the “charged shift” variant, with the new χ2/dof given in Table 8.1.7 We observe that
the residues are not affected by this shift and the mass Mϕ is only shifted slightly towards
the RPP value (cf. Figs. 8.2 and 8.3). Finally, we also show the outcome of the fits in the
spacelike region, see Fig. 8.7. In particular, there is no visible difference in the neutral
and charged fit, which indicates the weak dependence on the fit parameters on this region
and justifies, a posteriori, neglecting isospin breaking in the neutral fit.
An improved determination of cω could, in combination with the ω–photon coupling

constant well known from ω → e+e− [118, 343], be used to extract the coupling of the
ω to kaons. As pointed out in Chapter 6, the latter constitutes one of the dominant
uncertainties in an analysis of the reaction γK → Kπ, where a value deduced from a
VMD analysis of kaon form factors in a wider (timelike) energy range [344] was employed,
corresponding to cω = 1.29(15). From our analysis, we conclude that the inclusion of
spacelike data does not reduce the uncertainty in this coupling constant appreciably, cf.
Table 8.1; to the contrary, the uncertainties propagated from the isovector part of the
form factor imply a larger uncertainty than quoted in Ref. [344].
Adding back VP effects, our combined fit 3 gives

M̄ϕ

∣∣
our fit

= 1019.479(5)MeV ,

Γ̄ϕ

∣∣
our fit

= 4.207(8)MeV , (8.25)

7We note that the inclusion of the lower-precision spacelike data partly conceals the extent of the tension:
without spacelike data, the p-value drops to 0.9% in the “charged” fit and to 3.1% in the “charged
shift” fit, while the fit parameters remain essentially unchanged.
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to be compared with the RPP averages

M̄ϕ

∣∣
[347]

= 1019.461(16)MeV ,

Γ̄ϕ

∣∣
[347]

= 4.249(13)MeV , (8.26)

see also Fig. 8.3. The ϕ mass comes out consistent within errors, but our global fit
suggests a sizable reduction in uncertainty, as a result of fitting all available cross sections
in a combined analysis, instead of averaging only the resonance parameters as quoted
by each experiment. For the width, the resulting uncertainty comes out similarly as in
Ref. [347], but with a central value that is lower by 2.8σ. In both cases, our results from
K̄K are consistent with previous extractions from the 3π and π0γ channels [125, 423].

8.4 Applications

8.4.1 Charge radii of the kaon

As first application of the results from Sec. 8.3 we consider the kaon charge radii, which
are defined by the derivative at s = 0

⟨r2⟩ = 6
dF (s)

ds

∣∣∣∣
s=0

. (8.27)

The RPP averages of the neutral and charged kaon charge radii are [347]

⟨r2⟩n
∣∣
[347]

= −0.077(10) fm2 [424, 425, 428] ,

⟨r2⟩c
∣∣
[347]

= 0.314(35) fm2 [420, 421] , (8.28)

which are shown as green bands in Fig. 8.8 and compared to our computed results, in-
cluding the values from the combined fit 3

⟨r2⟩n
∣∣
our fit

= −0.060(3)(2) fm2 = −0.060(4) fm2 ,

⟨r2⟩c
∣∣
our fit

= 0.359(3)(2) fm2 = 0.359(3) fm2 . (8.29)

Here and below, we quote the results from the combined fit as our main result, given
that this implements the maximum amount of independent constraints, in particular,
universality of the ϕ pole parameters. The first error refers to the fit uncertainties, the
second one to the uncertainties due to the UFD input (fully propagated, including the
indirect effect via cω). Both sources of error can therefore be considered uncorrelated and
added in quadrature.
In the charged channel, the results are compatible within 1.3σ, which is expected given

that the result quoted in Ref. [347] is calculated from the same spacelike experiments
that are used in our analysis. However, the inclusion of the timelike data as well as the
dispersive constraints on the isovector component allow us to improve the precision by an
order of magnitude.
For the neutral kaon we also observe a sizable reduction in uncertainty, here our result

lies 1.6σ higher than Ref. [347], whose average is dominated by the extraction [425] from
KL → π+π−e+e−. The latter requires some assumptions on the other decay mechanisms
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Figure 8.8: Results of the individual and the combined charged (left) and neutral (right)
data sets of the squared mean charge radius for the charged (left) and neutral (right) kaon,
for all fit variants in the same convention as in Fig. 8.2. The uncertainty is obtained by
adding the fit uncertainty and the systematic error from the UFD input in quadrature.
The green band denotes the value quoted in Ref. [347].

not involving the kaon form factor, and it is noteworthy that the best determination from
K0–electron scattering [428] finds a central value even higher than ours, albeit with a large
uncertainty. Given the slight tension with Ref. [425], we also studied variants of our fit in
which the neutral radius from Ref. [347] is imposed as another constraint, with minimal
changes to the fit outcome.
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Finally, we can also compare to the strict VMD predictions

⟨r2⟩n
∣∣
VMD

=
2

M2
ϕ

+
1

M2
ω

− 3

M2
ρ

≃ −0.06 fm2 ,

⟨r2⟩c
∣∣
VMD

=
2

M2
ϕ

+
1

M2
ω

+
3

M2
ρ

≃ 0.33 fm2 , (8.30)

which shows, a posteriori, that at least in the charge radii the deviations from VMD are
small. In the same way, the related low-energy constants in chiral perturbation theory
will come out close to the expectation from resonance saturation [461, 462].

8.4.2 Corrections to Dashen’s theorem

A precise determination of the electromagnetic mass difference for kaons

(∆M2
K)EM =

(
M2

K± −M2
K0

)
EM

(8.31)

is important for extractions of the quark mass difference δ = md−mu from meson masses.
The combination

Q2 =
M2

K

M2
π

M2
K −M2

π

(M2
K0 −M2

K±)str

{
1 +O

(
m2

q , δ, e
2
)}
, (8.32)

which determines the major semi-axis in Leutwyler’s ellipse [463](
mu

md

)2

+
1

Q2

(
ms

md

)2

= 1 , (8.33)

is particularly stable with respect to strong higher-order corrections [177], but to make use
of this relation the masses need to be corrected for their electromagnetic contributions.
Dashen’s theorem predicts [430]

(∆M2
K)EM = (∆M2

π)EM +O
(
e2mq

)
, (8.34)

but corrections are large, as shown in Refs. [464–467]. To quantify these corrections, one
commonly defines the parameter

ϵ =
(∆M2

K)EM
(∆M2

π)EM
− 1 . (8.35)

The most recent lattice-QCD averages are [468]:

Nf = 2 + 1 + 1 : ϵ = 0.79(6) [469–471] ,

Nf = 2 + 1 : ϵ = 0.73(17) [472] . (8.36)

Phenomenologically, the electromagnetic contributions can be estimated via the Cot-
tingham formula [429, 473], which establishes a connection between the electromagnetic
self energies and the forward Compton tensor. This approach has been used extensively to
separate the proton–neutron mass difference into strong and electromagnetic pieces [474–
481], but applies to any self-energy-type matrix element that arises from the contraction

165



Kaon electromagnetic form factors in dispersion theory

K K

Figure 8.9: Forward scattering amplitude (left) and self-energy contraction (right). The
thick black dots denote kaon electromagnetic form factor insertions, the dashed line indi-
cates the kaon pole. Crossed diagrams are omitted.

of two external currents, including meson masses [391, 465, 466, 482, 483] or even contact-
term contributions in neutrinoless double β decays [484, 485]. In particular, the dominant
contributions are typically generated by the elastic intermediate states, e.g., for the pion,
in which case strong contributions to the mass difference are suppressed by δ2, one can
check that the pion pole gives more than 90% of the total, with small axial-vector cor-
rections expected to make up the remainder. Since these elastic contributions are fully
determined by the respective electromagnetic form factor, we can thus apply our result to
obtain an estimate of the electromagnetic self energies of the kaons, and, in combination
with the analog result for the pion, derive the corresponding value of ϵ.

To this end, we need a variant of the Cottingham formula that includes strong higher-
order corrections, while the expressions in the literature are typically given in the chiral
limit. Starting point is the relation

(M2
P )EM =

ie2

2

∫
d4k

(2π)4
Tµ
µ

k2 + iϵ
, (8.37)

where Tµ
µ is the contracted Compton tensor in forward direction, see Fig. 8.9. The elastic

contribution reads

Tµ
µ

∣∣
el
=

2k2(3k2 − 4M2
P )− 16(k · p)2

(k2)2 − 4(k · p)2
[
FP (k

2)
]2
, (8.38)

where FP (k
2) refers to the electromagnetic form factor of the meson P and p is its on-shell

momentum. Wick-rotating k0 onto the imaginary axis, the integral yields

(M2
P )EM =

α

8π

∫ ∞

0
ds
[
FP (−s)

]2(
4W +

s

M2
P

(W − 1)
)
, (8.39)

with W =
√
1 + 4M2

P /s, and the limit MP → 0 reproduces the corresponding expressions

in the literature.8 Strictly speaking, to identify the elastic contributions in Eq. (8.38)
one needs to analyze a dispersion relation and evaluate the single-particle poles, but in
contrast to the nucleon case this does not lead to any subtleties and results in the scalar-
QED expression multiplied with the electromagnetic form factor, see Ref. [486]. As the

8For M2
P ≪ s one has 4W + (W − 1)s/M2

P → 6. However, at finite MP this kernel behaves as 8MP /
√
s

for s → 0, which explains why the kaon self-energy integral receives a larger contribution from low
energies than the one for the pion.
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Figure 8.10: The charged (blue) and neutral (red) kaon form factors in the spacelike region
as determined in Sec. 8.3.

elastic contribution to (M2
π0)EM vanishes, (∆M2

π)EM = (M2
π±)EM at this order, while the

electromagnetic kaon mass difference may be rewritten according to

(∆M2
K)EM =

α

2π

∫ ∞

0
ds F v

K(−s)F s
K(−s)

(
4W +

s

M2
K

(W − 1)
)
, (8.40)

illustrating the role of the isovector kaon form factor that is theoretically particularly well
constrained by the present analysis. Since we allow for residual isospin-breaking effects in
our fits, which affect the isoscalar form factor, we still rely on Eq. (8.39) for the numerical
evaluation.
Using our result for the kaon form factors in the spacelike region, see Fig. 8.10, as well

as the pion form factor from Ref. [146], we find

(M2
K±)EM = 2.12(2)(17) · 10−3GeV2 = 2.12(18) · 10−3GeV2 ,

(M2
K0)EM = 7(2)(17) · 10−6GeV2 = 7(17) · 10−6GeV2 ,

(∆M2
K)EM = 2.12(2)(17) · 10−3GeV2 = 2.12(18) · 10−3GeV2 ,

(∆M2
π)EM = 1.3(3) · 10−3GeV2 ,

ϵ = 0.63(40) . (8.41)

The errors cover only the uncertainty in the elastic contributions, not the additional uncer-
tainty from inelastic corrections. The second uncertainty for the kaons contains the varia-
tion of the UFD parameters as well as an uncertainty from the asymptotic continuation, all
added linearly to account for possible correlations between the UFD and asymptotic uncer-
tainties. The latter gives the dominant effect in this application, and has been estimated
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by varying the input for the pion VFF above s = (2GeV)2, changing the matching point
to an asymptotic form of the isovector kaon form factor F v

K(−s) ≍ a/(b+ s) · (s/(b+ s))n

for virtualities between 1GeV2 and 10GeV2, and varying the exponent n = 0, 1 to assess
the impact of terms beyond the asymptotic FK(−s) ≍ 1/s behavior. Moreover, the final
uncertainty from the asymptotic continuation has been inflated by a factor 2 to account for
a similar effect that could arise in the isoscalar contribution. For the pion the uncertainty
is obtained from the error bands provided in Ref. [146] and also covers the uncertainty
due to the asymptotic continuation.

In the end, the uncertainty in ϵ is dominated by the pion contribution. In part, this is
due to the fact that the integration kernel gives a larger contribution from low virtualities
for the kaon, resulting in a smaller relative uncertainty, but the more precise timelike data
for the pion VFF also allow for a more detailed study of inelastic effects in the unitarity
relation and thus a more robust error estimate for the continuation into the spacelike
region.

Equation (8.41) corresponds to the linear pion mass difference
(
Mπ± − Mπ0

)
EM

=
4.8(1.1)MeV, which numerically saturates the experimental valueMπ± −Mπ0 = 4.59MeV
(the strong mass difference is estimated to give only a small contribution

(
Mπ±−Mπ0

)
str

=
0.17(3)MeV [177]).

Comparison to Eq. (8.36) shows that this elastic estimate fully agrees with the lattice
results, demonstrating that inelastic effects have to be smaller than the precision with
which the elastic contributions can currently be evaluated.

From Eq. (8.41), we can extract the strong kaon mass difference(
M2

K0 −M2
K±
)
str

= 6.02(18) · 10−3GeV2 , (8.42)

which is perfectly compatible with the result extracted from a dispersive analysis of η → 3π
decays,

(
M2

K0 −M2
K±

)
str

= 6.24(38) · 10−3GeV2 [111]. Similarly, if we convert our result
for the strong kaon mass difference into a value for the quark mass ratio Q according to
Eq. (8.32),9 we find

Q = 22.4(3) , (8.43)

again compatible with the value deduced from η → 3π, Q = 22.1(7) [111], as well as from
several other analyses of the same decay [106–108, 387, 487]. We wish to emphasize again
that our errors here merely reflect the ones in the kaon and pion form factors, but not the
omission of inelastic intermediate states in the Cottingham formula. In view of the large
uncertainties, however, we expect that the assigned uncertainties also cover the omitted
inelastic contributions, as is indeed the case for the pion mass difference.

8.4.3 Kaon-box contribution to HLbL scattering

The last two applications concern the anomalous magnetic moment of the muon, whose
experimental world average [488–492]

aexpµ = 116 592 061(41) · 10−11 (8.44)

9For the isospin-symmetric masses M2
K and M2

π in Eq. (8.32), we use the average of charged and neutral
squared kaon masses, subtracting the electromagnetic contribution as calculated here, and the neutral
pion mass corrected for the strong mass shift [177].
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K

K

Figure 8.11: Diagrammatic representation of the kaon contributions to HVP (left) and
HLbL (right). The thick black dots denote kaon electromagnetic form factor insertions.
Dashed lines indicate the K̄K cuts and, for HLbL scattering, the kaon pole in the γ∗γ(∗) →
K̄K subamplitudes.

currently displays a 4.2σ discrepancy to the Standard-Model (SM) prediction [123–125,
146, 324, 325, 411, 423, 433–435, 486, 493–509]

aSMµ = 116 591 810(43) · 10−11 . (8.45)

Improvements are most pressing for the HVP contribution, for which the evaluation from
e+e− → hadrons cross-section data that enters Eq. (8.45) stands in 2.1σ tension with the
recent lattice-QCD calculation [510], especially since the uncertainty in the leading-order
HVP contribution [125, 146, 325, 411, 423, 433–435]

aHVP, LO
µ = 6931(40) · 10−11 (8.46)

emerges as the limiting factor in the total SM prediction. A large part of the uncer-
tainty arises from systematic tensions among the 2π data sets, most notably between the
BaBar [511] and KLOE [512] data. It is therefore the 2π channel that receives most at-
tention [513], including when scrutinizing the consequences of the tension with Ref. [510],
see Refs. [514–517]. However, compared to the final precision anticipated at the Fermi-
lab experiment, ∆aexpµ [E989] = 16 · 10−11 [518], also the subleading channels are sizable,
among them e+e− → K+K− and e+e− → KSKL; cf. Fig. 8.11 (left). We will study their
contributions in the vicinity of the ϕ region in Sec. 8.4.4.
First, we turn to the HLbL contribution [123, 124, 324, 325, 431, 486, 498–507, 519–523]

aHLbL
µ = 90(17) · 10−11 , (8.47)

in which case the uncertainty is dominated by subleading contributions beyond pseu-
doscalar poles and two-meson cuts, see Refs. [437, 524–532] for recent work in this direc-
tion. Meanwhile, K̄K states prove to be appreciably suppressed compared to their ππ
analog, which is true for both the leading box contributions (estimated in VMD [325] or
DS equations [431, 432]) and rescattering corrections [530], in the latter case despite the
strong coupling between the ππ and K̄K channels via the f0(980). While the overall effect
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aK
±-box

µ · 1011 aK
0-box

µ · 1015

VMD [325] −0.50 −1.2

DS [431] −0.48(2)(4)

DS [432] −0.48(4)

This work −0.484(5)(10) −0.5(2)(4)

Table 8.2: Results for the charged and neutral kaon-box contributions to HLbL scattering.

is thus known to be small, we can confirm these conclusions by means of our data-driven
evaluation of the kaon form factors.
The pion-box contribution, defined dispersively in a double-spectral representation of

HLbL scattering, was shown in Ref. [486] to coincide with the scalar-QED one-loop ex-
pression, multiplied by pion electromagnetic form factors for the three virtual photons.
The same applies to kaon intermediate states, see Fig. 8.11 (right): in the master formula
for the contribution to aµ [502], the HLbL scalar functions are of the form

Π̄K-box
i (Q2

1, Q
2
2, Q

2
3) = FK(Q2

1)FK(Q2
2)FK(Q2

3)
1

16π2

∫ 1

0
dx

∫ 1−x

0
dy IKi (x, y) , (8.48)

where Q2
i denote the spacelike photon virtualities and the scalar-QED Feynman integrals

are analogous to the pion case [502]. Thus, the charged- and neutral-kaon boxes can
be obtained from the expressions for the pion box by simply replacing the meson mass
and electromagnetic form factors. Diagrammatically, the box contributions correspond to
two-meson cuts in which the γ∗γ(∗) → ππ/K̄K subamplitudes [327, 328, 341, 533–535] are
further reduced to the respective poles. As in the case of the Cottingham formula, these
contributions are fully determined by the electromagnetic form factors.
The numerical results for the kaon boxes with our data-driven form-factor input, shown

in the spacelike region in Fig. 8.10, are in good agreement with previous estimates, see
Table 8.2. The uncertainties have been obtained in the same way as in Sec. 8.4.2. While in
the case of the pion box about 95% of the contribution is generated for photon virtualities
below 1GeV, due to the heavier kaon mass the charged kaon box is saturated to only 74%
by this energy region. For the neutral kaon box, this low-energy region is responsible for
only about 25% of the contribution due to the vanishing of the form factors at Q2

i = 0.
The sensitivity to larger virtualities explains the large relative uncertainty. While the
neutral-kaon box is numerically irrelevant for (g − 2)µ, even the charged-kaon box,

aK-box
µ = −0.48(1) · 10−11 , (8.49)

is of little importance in view of the overall uncertainty of the HLbL contribution, cf.
Eq. (8.47).
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K+K− KSKL

Refs. [434, 435] 181.2(1.7) 119.7(1.8)

charged/neutral 184.5(2.0) 118.3(1.5)

charged shift 184.3(2.0)

combined 184.5(2.0) 118.3(1.5)

BaBar [416] 182.5(2.2)

CMD-2 [418] 117.2(2.4)

CMD-3 [417, 419] 192.6(3.9) 119.5(2.2)

SND [414] 166.7(11.9)
119.0(5.1)

121.1(5.0)

Table 8.3: Results for the charged- and neutral-kaon contributions to HVP up to
√
s ≤

1.05GeV, in units of 10−11.

8.4.4 HVP around the ϕ resonance

The HVP contribution to aµ derives from the master formula [536, 537]

aHVP, LO
µ =

(
αmµ

3π

)2 ∫ ∞

M2
π0

ds
K̂(s)

s2
Rhad(s) ,

Rhad(s) =
3s

4πα2
σ(e+e− → hadrons) , (8.50)

where K̂(s) is a known kernel function and the hadronic cross section is understood to be
photon inclusive, see Fig. 8.11 (left) for the contribution from the K̄K cut. For the neutral
channel, the cross section thus follows directly from the form factor via Eq. (8.16), while
for the charged kaons the FSR correction needs to be added back. The numerical results
are shown in Table 8.3, in comparison to the direct integration from Refs. [434, 435].
For the neutral channel, the difference between the fit scenarios 2 and 3 is minimal, in

both cases the integral comes out lower by less than 1σ in comparison to Refs. [434, 435].
This small difference mostly traces back to the use of a linear interpolation therein, given
that the data points in the neutral channel are more clustered than in the charged one,
see Figs. 8.5 and 8.6. Accordingly, the same effect does not play a role in the charged
channel [538]. In this case, we observe that the outcomes of the fit variants 2 and 3 are
still well compatible, but larger by more than 1σ in comparison to Refs. [434, 435].10

This difference is ultimately a manifestation of the tensions between the BaBar and
CMD-3 data sets (2.3σ for the HVP integral): in our approach, the cross section is con-
strained to follow the shape of the ϕ resonance in all fit variants, in such a way that the
combined HVP integral comes out very close to the naive average of the individual data
sets, despite the underlying tension, and, as shown in Table 8.1, with a reasonable χ2/dof
even for the combined charged fit (albeit clearly worse than in the neutral channel, as

10Assuming uncorrelated errors, the difference would be 1.3σ, but this is likely an underestimate since,
due to the use of the same timelike data sets, the uncertainties are expected to be strongly correlated.
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long as no shift in energy calibration is allowed). Performing instead local averages of the
data can obfuscate this global shape if inconsistencies are present among the data sets,
and indeed a fit of our representation to the data combination of Refs. [434, 435] displays
a χ2/dof > 2.11 In particular, the increase in the χ2/dof occurs because the peak cross
section is no longer compatible with the cross-section values in the tails of the resonance,
to the effect that a linear interpolation gives the HVP integral as in Refs. [434, 435], while
enforcing our fit function does produce a larger value very close to our combined fit.
Our final results are

aHVP
µ [K+K−,≤ 1.05GeV] = 184.5(2.0) · 10−11,

aHVP
µ [KSKL,≤ 1.05GeV] = 118.3(1.5) · 10−11 , (8.51)

quoted, as for the other applications before, from the combined fit 3. In this way, we
implement the maximum amount of independent constraints available, emphasizing the
complementarity of our results to the direct integration of the cross-section data [411, 433–
435]. In particular, demanding universality of the ϕ pole parameters implies that part of
the tension in the charged data base propagates into the result for the neutral channel
via the scale factor of the fit, but the numerical impact is minimal, see Table 8.3. Since,
in this fit scenario, the numbers for the two channels become correlated via the ϕ pole
parameters, we also quote the sum

aHVP
µ [K+K− +KSKL,≤ 1.05GeV] = 302.8(2.5) · 10−11 . (8.52)

8.5 Summary and conclusions

In this chapter, we presented a comprehensive analysis of the electromagnetic form fac-
tors of the kaon, including all available constraints from dispersion relations and both
timelike and spacelike data. This approach has the advantage that a host of experimen-
tal constraints can be considered simultaneously, including (i) input from the P -wave of
ππ → K̄K and the pion electromagnetic form factor, which together yield the bulk of
the spectral function of the isovector kaon form factor, with a result that can be vali-
dated by data for τ− → K−KSντ , (ii) timelike data for e+e− → K̄K, which determine
the residue of the ϕ resonance in the isoscalar part of the form factor, and (iii) spacelike
data for charged-kaon–electron scattering, which help constrain the residue of the ω, as
not directly accessible in the timelike region. Further (indirect) constraints on the charge
radius of the neutral kaon could be imposed, but for the reasons given in Sec. 8.4.1 we opt
to provide an independent determination instead. Dispersion relations are most useful for
the isovector form factor, leading to a model-independent implementation of the ρ meson
in terms of 2π intermediate states, while for the isoscalar spectral function, dominated by
3π and K̄K contributions, a parameterization in terms of the narrow ω and ϕ resonances
proves sufficient. We considered several fit variants for the timelike data, described in 1–3
in Sec. 8.3, to account for tensions in the charged-channel data base. In particular, we
studied to which extent the subsequent applications are affected.

11We thank Alex Keshavarzi for making the combined cross-section data from Refs. [434, 435] available to
us.
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The results obtained along these lines for the kaon electromagnetic form factors enter
in a number of applications. Besides the ϕ resonance parameters—the global fit leads to
the values given in Eq. (8.25)—these are:

1. Charge radii for charged and neutral kaon, see Sec. 8.4.1 and Eq. (8.29) for the
main result: for the charged kaon, our result lies 1.3σ above the current RPP aver-
age, but is considerably more precise, thanks to the inclusion of timelike data and
dispersive constraints on the isovector form factor. The same is true for the neu-
tral kaon, in which case our result lies 1.6σ above the RPP average (dominated by
KL → π+π−e+e−), closer to the central value from K0–electron scattering.

2. Corrections to Dashen’s theorem, see Sec. 8.4.2 and Eq. (8.41) for the main result:
the spacelike kaon form factor determines the elastic contribution to the electromag-
netic mass shift via the Cottingham formula, and thus the comparison to the analog
formula for the pion entails a prediction for the corrections to Dashen’s theorem.
Our result is in perfect agreement with lattice QCD and extractions from η → 3π,
demonstrating that the inelastic effects in the evaluation of the Cottingham formula
are smaller than the current uncertainties in the elastic contribution.

3. Kaon-box contributions to HLbL scattering, see Sec. 8.4.3 and Eq. (8.49) for the main
result: the spacelike form factor also arises in the evaluation of two-kaon intermediate
states to HLbL scattering, so-called kaon-box contributions. Our result agrees with
previous calculations, but provides a data-driven estimate of the uncertainty.

4. Two-kaon contributions to HVP, see Sec. 8.4.4 and Eq. (8.51) for the main result:
the timelike data around the ϕ resonance, used to constrain the ϕ parameters in the
isoscalar form factor, dominate the contribution to the HVP integral in the same en-
ergy region. Our evaluation delineates the potential impact of dispersive constraints
and input from other kinematic regions, and also allows for a more detailed study of
the consequences of the tensions in the charged-channel data base. In general, our
results are in good agreement with previous evaluations using a direct integration
of the data, but we find that, in the charged channel, the HVP integral increases
by more than 1σ if the global shape of the ϕ resonance is enforced as it is in our
dispersive representation. This difference ultimately reflects a tension between the
BaBar and CMD-3 data for the e+e− → K+K− channel.

8.A Isospin breaking in hadronic vacuum polarization

In this appendix, we present the results that were included in Refs. [7, 8]. Since Ref. [510]
differs for the entire HVP integral by 2.1σ from e+e− data, we focus on the comparison
to lattice QCD as the reason of this deviation is still not understood. A point that can
be scrutinized in lattice-QCD calculations concerns the separation into an isosymmetric
part and isospin-breaking (IB) corrections, the latter further separated into QED, O(e2),
and strong IB, O(δ = mu − md), effects. Attempts to estimate such corrections from
phenomenology have been made before [521, 539], but using the results of this chapter
one of the main IB contributions for which enhancement is expected can be calculated.
Therefore, we provide a valuable point of comparison to lattice QCD for the IB corrections.
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Note that Refs. [7, 8] also consider other important channels and this might help to better
understand the source of this deviation.
To calculate the HVP contribution on a T×L3 lattice one defines correlators in Euclidean

time [540]

CL(t) =
a3

3

3∑
i=1

∑
x⃗

⟨Ji(x)Ji(0)⟩ , (8.53)

where a is the lattice spacing and Ji are the antihermitian spatial components of the
electromagnetic current. Using a known kernel function K̃(t) and taking the appropriate
limits one finds

aHVP, LO
µ = lim

a→0
lim

L,T→∞

(α
π

)2( a

m2
µ

) T/2∑
t=0

K̃(tmµ)ReCL(t) , (8.54)

which is the HVP contribution from lattice QCD and can be directly compared to the
quantity in Eq. (8.50).
To disentangle different regions in the CM energy

√
s, one can study so-called Euclidean-

time windows [541]. These are defined in Euclidean time by

ΘSD(t) = 1−Θ(t, t0,∆) ,

Θint(t) = Θ(t, t0,∆)−Θ(t, t1,∆) ,

ΘLD(t) = Θ(t, t1,∆) ,

Θ(t, t′,∆) =
1

2

(
1 + tanh

t− t′

∆

)
, (8.55)

where the standard parameter choice is t0 = 0.4 fm, t1 = 1.0 fm, and ∆ = 0.15 fm. This
defines a short-distance (SD), intermediate (int), and long-distance (LD) window, where
the intermediate window behaves particularly well with regards to systematic effects in
lattice QCD. To insert them in Eq. (8.50) directly, the weight functions can be transformed
to CM energy by [542]

Θ̃(s) =
3s5/2

8m4
µK̂(s)

∫ ∞

0
dtΘ(t)e−t

√
s

∫ ∞

0
ds′w

(
s′

m2
µ

)(
t2 − 4

s′
sin2

t
√
s′

2

)
,

w(r) =

(
r + 2−

√
r(r + 4)

)2
√
r(r + 4)

. (8.56)

These are shown in Fig. 8.12 and allow us to split up the IB contributions into the different
window quantities, which simplifies the comparison with lattice QCD.
The first class of contributions is from FSR that combines the virtual-photon and

bremsstrahlung diagrams. These effects are captured by η(s) defined in Sec. 8.3 and are
a pure O(e2) effect. Consequently, we compare the variation with respect to the inclusion
of η(s) for the charged kaons.
The second class comes from the IB in the kaon mass and we can use the electromagnetic

kaon mass difference in Eq. (8.41) and the strong kaon mass difference in Eq. (8.42) to
find

MK± = (494.58− 3.05δ + 2.14e2) MeV and MK0 = (494.58 + 3.03δ) MeV , (8.57)
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Figure 8.12: Weight function for short-distance (SD), intermediate (int), and long-distance
(LD) window in terms of the CM energy.

SD int LD
O(e2) O(δ) O(e2) O(δ) O(e2) O(δ)

FSR (K+K−) 0.06(0) – 0.39(2) – 0.30(2) –
mass (K+K−) −0.27(1) 0.42(2) −1.68(9) 2.57(13) −1.29(7) 1.98(10)
mass (K̄0K0) 0.00(0) −0.39(2) −0.01(0) −2.39(12) −0.01(0) −1.84(9)

Table 8.4: IB effects to aHVP
µ separated into O(e2) and O(δ) contributions as well as short-

distance (SD), intermediate (int), and long-distance (LD) windows. All entries in units of
10−10. Note that these values slightly vary from the ones used in Refs. [7, 8], because a
wrong Θ̃(s) was used therein.

where the charged and neutral sum is fixed to the RPP value. Varying the masses around
the isospin limit yields the IB corrections for the HVP integral.
The charged and neutral ϕ→ KK̄ couplings from Table 8.1 are

cK
+K−

ϕ = 1.001(6) and cK
0K̄0

ϕ = 0.977(6) , (8.58)

but it is not clear how to define the coupling in the isospin limit and therefore this IB
effect is not included in the results. Instead, we used the charged- (neutral-)kaon residue
in the K+K− (K0K̄0) channel. The opposite assignment produces a shift in the integral,
and we will assign this value (and its decomposition onto the windows, cf. Table 8.4) as
a source of uncertainty that should give an indication of missing effects in the exclusive
channels that otherwise have been explicitly included.
Our results for the full HVP, with the same cutoff in

√
s as used in Sec. 8.4.4, are

aHVP
µ [K+K−, e2] = 0.75(4) ,
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for the FSR and

aHVP
µ [K+K−, e2] = −3.24(17) , aHVP

µ [K0K̄0, e2] = −0.02(0) ,

aHVP
µ [K+K−, δ] = 4.98(26) , aHVP

µ [K0K̄0, δ] = −4.62(23) ,

aHVP
µ [K+K−, e2δ] = −0.33(1) , (8.59)

for the mass variation in units of 10−10, while the decomposition in the window quantities
is shown in Table 8.4. Note that the O(e2δ) contribution is estimated from the difference
of the charged and neutral channel using the isospin kaon mass. Furthermore, there is
a small contribution to O(e2) for the neutral kaons, since the charged kaon mass enters
through the energy dependent width of the ϕ resonance in Eq. (8.14).
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Chapter 9

Conclusions and outlook

While the standard model remains the most successful description of particle physics,
with its main problems as already mentioned in the introduction still being unsolved, this
thesis helped to gradually improve the understanding of the strong interaction. Thereby,
different aspects were investigated that we will briefly summarize in this chapter and
give an outlook on future research that can be conducted based on these results. All of
these calculations were performed to test the precision frontier, i.e., precise calculations
of low-energy phenomena in the non-perturbative regime of the strong interaction.
The currently most prominent example to test this frontier is the anomalous magnetic

moment of the moun, which is discussed in Chapter 8 as an application of the kaon elec-
tromagnetic form factor. We performed a combined fit of the kaon electromagnetic form
factor to the e+e− → KK̄ cross section in the timelike region and eK scattering in the
spacelike region from all available experiments. This constrained the free parameters in
the theoretical parameterization of the form factor. Using the form factor and its uncer-
tainties, we were able to extract several physical quantities. For the electromagnetic charge
radii of the charged and neutral kaons, the uncertainty was heavily decreased due to the
inclusion of the timelike data. Moreover, we could test Dashen’s theorem by employing
the Cottingham formula to extract the strong kaon mass difference. For applications to
the anomalous magnetic moment of the muon, we were able to calculate the kaon-box con-
tribution to hadronic light-by-light scattering, which we found to be in perfect agreement
with previous analyses. For the hadronic-vacuum-polarization contribution around the ϕ
resonance our result is in slight tension with the analysis using data combination, which
was due to the underlying tension in the cross-section data from different experiments.
While the most important and heavily disputed hadronic contribution to the anomalous
magnetic moment of the muon is connected to the ππ channel, our results were used
in Ref. [7] to estimate isospin breaking for hadronic vacuum polarization and might be
needed in the future for a precise calculation of the deviation from the experimental value.
Additionally, this analysis allows the straightforward inclusion of new data sets.
In Chapter 6, we applied dispersion-theoretical methods to predict the cross sections

for the Primakoff reaction γK → Kπ using the chiral anomaly and the currently available
experimental radiative couplings of the K∗(892) resonance. We included full crossed-
channel rescattering via Khuri–Treiman-type equations and, in the future, a precision
measurement of this cross section will allow us to extract these quantities with small the-
oretical uncertainties using our framework. Moreover, in Chapter 7, the kaon Compton
amplitude was used to derive a method to experimentally extract the kaon dipole po-
larizabilities. Therein, the results from Chapter 6 were used to dispersively reconstruct
the K∗ resonance. A combined analysis of γK → γK and γK → Kπ can therefore be
used to extract the chiral anomaly, the radiative couplings, and the kaon polarizabili-
ties once experimental data, e.g., from AMBER, becomes available. This allows for a
high-precision extraction of these quantities with small model dependencies. The ex-
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tracted chiral anomaly can be tested with the leading-order chiral perturbation theory
prediction—which is currently available—or with a full next-to-leading-order calculation
to be performed in the future. Furthermore, we provided tools to extract fundamental
electromagnetic properties of kaons, i.e., the kaon dipole polarizabilities and the electro-
magnetic charge radius from the previous paragraph, and to investigate the inner structure
of these strongly bound particles. The radiative K∗ couplings and kaon polarizabilities
extracted here can then be used as an input in the dispersive determination of the photon–
photon fusion coupled-channel reactions γγ → ππ/KK̄ and γγ → πη/KK̄, which in turn
are used in calculations of the hadronic light-by-light contribution to the anomalous mag-
netic moment of the muon. A similar analysis to Chapter 7 could also be done for the pion
polarizabilities, taking into account the effects of the ρ(770) resonance explicitly, which
might allow for a more accurate measurement than currently available [350] due to the
smaller theoretical uncertainties.
In Chapter 4, we investigated the effect of rescattering in 3π final states for differ-

ent angular-momentum quantum numbers of the decaying particle. This is an important
result, since typical experimental analyses neglect these effects, and with increasing statis-
tics, they might be needed in the future. Therefore, we calculated the number of events
in a Dalitz plot that is needed to distinguish simple isobar models from full rescattering
effects via Khuri–Treiman dispersion relations. Unfortunately, this analysis was only pos-
sible in very limited scenarios, as it needed to be conducted without prior knowledge on
the different processes. This limits the number of different channels that could be com-
puted, since only one overall constant could be fixed via the normalization. A generalized
code was made available, which will simplify the numerical solution of Khuri–Treiman
equations in future applications.
One possible application is the decay ω → 3π, since the experimental situation for its

Dalitz plot is heavily disputed. While dispersive analyses with a single subtraction [81, 102]
are not compatible with the experimental Dalitz-plot data, a second subtraction is needed
to reproduce the experimental values [113]. Using a pion–pion phase shift that includes the
dominating ωπ inelasticities in a Khuri–Treiman analysis might clarify the situation [543].
Additionally, making the full (binned) Dalitz-plot data available instead of only the polyno-
mial fit values would help to understand these intricacies better. Furthermore, a subset of
upcoming high-statistics J/ψ → 3π Dalitz-plot data from BESIII can be used to precisely
study ρ–ω mixing as well as the ω mass and width in the π+π− invariant mass spectrum.
The ω resonance parameters extracted from isospin-conserving and isospin-violating set-
tings are not compatible, cf. Refs. [127, 532, 544], and this analysis would allow for another
test of the isospin-violating setting via ρ–ω mixing. Moreover, one can get insights into
the production mechanism, since the strong production—via three gluons—is strongly
suppressed due to the OZI mechanism [545–547], and therefore, the photon exchange is
quantitatively competitive. Since this will be high-precision data, rescattering effects in
the region around the ρ-resonance bands must be calculated with the use of Khuri–Treiman
equations. In the vector charmonium sector, the “ρπ puzzle” (cf. Refs. [548–551] and ref-
erences therein) refers to the phenomenon that the ratio of ψ(2S) → ρπ and J/ψ → ρπ
branching ratios is heavily suppressed compared to perturbative QCD predictions. While
Khuri–Treiman analyses for J/ψ → 3π are available [103, 115]—albeit they do not study
the experimental Dalitz plot—the ψ(2S) → 3π decay has not been analyzed. Clearly, a
simple analysis that assumes a dominant ρπ decay of the ψ(2S) will not be useful and
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higher partial waves need to be incorporated. Further, it would be interesting to under-
stand the interference of production mechanisms in charged-meson scattering experiments,
i.e., π−p→ π−π−π+p at COMPASS, since the Deck effect [552] will contribute. Therefore,
the analysis of these Dalitz plots is more complicated and cannot be described by only
using Khuri–Treiman equations; however, one might be able to suppress the Deck effect
contributions by choosing specific kinematic regions. As different reconstruction theorems
were derived here or in the literature, other more complex scenarios are possible. These
include processes that need different partial waves and isospins or unequal particle content
in the final state, similar to η′ → ηππ but with spin.

Khuri–Treiman equations are clearly limited at higher energies, as they are derived
from truncated partial-wave expansions. A possible extension to this was investigated in
Chapter 5, where a hypergeometric isobar model with Regge trajectories was constructed.
Here, the range is not limited anymore as it takes the infinite tower of partial waves into
account and exhibits the expected Regge behavior at high energies. Furthermore, it fulfills
many necessary theoretical constraints and connects the low-energy region, governed by
resonances, with the high-energy region via Regge trajectories. As an initial numerical
application, we benchmarked our formalism on the ρ and σ/f0(500) resonances in ππ scat-
tering. While the partial waves could be described nicely, also the pole parameters could
be extracted. The Regge trajectory additionally contains information about resonances
far outside the fit region, and we could extract the pole positions of excited resonances.
The main difficulties with this model are that unitary can only be imposed approximately
and one needs to solve non-linear integral equations. Since the first numerical calculations
of the homogeneous solution (for which crossed-channel effects are neglected) were tested
successfully, further improvements will be explored in the future. The obvious next step
is the inclusion of crossed channels and a simultaneous fit to the ππ partial waves. This
then allows one to study the scattering process also at high energies. If this proves to be
solvable, possible extensions include decay processes, coupled channels, unequal masses,
and the inclusion of particles with spins, which will increase the applicability of this model.

In summary, a lot of future research is possible based on the results presented in this
thesis. It will hopefully allow to disentangle more secrets of the strong interaction.
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[334] T. Ebertshäuser, PhD thesis, Mainz University (2002).

[335] C. Hacker, PhD thesis, Mainz University (2008).

[336] P. Büttiker, S. Descotes-Genon, and B. Moussallam, Eur. Phys. J. C 33, 409–432
(2004) [arXiv:hep-ph/0310283].
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(2013) [arXiv:1306.5546 [hep-ph]].

[497] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Phys. Lett. B 734, 144–147
(2014) [arXiv:1403.6400 [hep-ph]].

[498] K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004)
[arXiv:hep-ph/0312226].

[499] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, JHEP 09, 091 (2014)
[arXiv:1402.7081 [hep-ph]].

[500] P. Masjuan and P. Sánchez-Puertas, Phys. Rev. D 95, 054026 (2017)
[arXiv:1701.05829 [hep-ph]].

[501] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, Phys. Rev. Lett. 118,
232001 (2017) [arXiv:1701.06554 [hep-ph]].

[502] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, JHEP 04, 161 (2017)
[arXiv:1702.07347 [hep-ph]].

[503] A. Gérardin, H. B. Meyer, and A. Nyffeler, Phys. Rev. D 100, 034520 (2019)
[arXiv:1903.09471 [hep-lat]].

[504] J. Bijnens, N. Hermansson-Truedsson, and A. Rodŕıguez-Sánchez, Phys. Lett. B
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Acronyms

BW Breit–Wigner
ChPT chiral perturbation theory
CM center-of-mass
CRP constrained Regge pole
DAMA dual amplitudes with Mandelstam analyticity
DHS Dolen–Horn–Schmid
DS Dyson–Schwinger
EFT effective field theory
FESRs finite-energy sum rules
FSR final-state radiation
GKPY Garćıa-Mart́ın–Kamiński–Peláez–Ynduráin
HLbL hadronic light-by-light
HVP hadronic vacuum polarization
IB isospin breaking
KL Kullback–Leibler
KT Khuri–Treiman
LHC left-hand cut
pdf probability density function
pQCD perturbative quantum chromodynamics
PW partial wave
QCD quantum chromodynamics
QED quantum electrodynamics
RHC right-hand cut
RPP Review of Particle Physics
RT Regge trajectory
SM standard model of particle physics
SPM Schlessinger Point Method
SSB spontaneous symmetry breaking
SVA single-variable amplitude
VFF vector form factor
VLS Veneziano–Lovelace–Shapiro
VMD vector-meson dominance
VP vacuum polarization
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