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Abstract

Many tasks in computer vision aim to reconstruct unknown quantities from observations
of a scene, such as estimating depth from stereo vision, generating intermediate video
frames, or revealing hidden shapes from transient measurements. In recent years, deep
learning and differentiable rendering have become the methods of choice to tackle problems
in those domains, but both exhibit a need for extensive computational resources. This
thesis introduces innovative strategies that explicitly integrate our understanding of specific
problems into reconstruction algorithms via spatial priors and uncertainty representations,
improving both their efficiency and output quality by taking advantage of domain-specific
peculiarities.

We begin by detailing how integrating rough shapes as priors into stereo matching can refine
the depth estimation. In general, for a scene with no prior information, a comprehensive
search across all possible values is performed to regress the disparity map between both
images. However, in certain scenarios, such as stereo rigs embedded in setups containing
other cameras, additional information can be used to improve the reconstruction. Our
approach employs an efficient computation of the visual hull to reduce the search range
of stereo matching, which, combined with various optimizations tailored to this use case,
enables the accurate computation of depth at high resolutions.

Furthermore, we explore frame interpolation of rendered sequences where – in contrast to
established methods – it is possible to generate and use additional data from the intermediate
frame if necessary. By predicting the uncertainty of the interpolation output and incorporating
partial renderings as priors, we devise a novel two-step model based on the transformer
architecture that enhances the quality of the interpolated frames even for challenging content,
as demonstrated quantitatively and qualitatively through a user study. This approach
facilitates replacing the computationally costly rendering of a full sequence with a cheap
interpolation of partial renderings.

Lastly, we tackle Non-Line-of-Sight reconstruction and demonstrate how the efficient
implementation of a backward pass of a model-driven approach can lead to accurate
reconstructions while reducing the runtime from hours or days needed by the baseline
approach to minutes. This enabled us to explore different priors, and we show results
using Gaussian blobs with an optional color component and total variation regularized
depth maps. To address scenarios where the model assumptions deviate too much from the
circumstances of real-world measurements, we introduce a background network inspired by
neural representations and showcase its utility in capturing the remaining uncertainties.
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Chapter 1

Introduction

Around 4.7 billion photos1 are taken every day, more or less. While many of these are
surely just pictures of our beloved pets or a well-presented and hopefully equally delicious
meal, it also shows that we humans seem to have a desire to capture the world around us.
Images are clearly a great medium for this, as they can be understood without language and
contain considerable amounts of information. However, computationally extracting data
from images is far from trivial, and this is where computer vision comes into play. And
while funny cat pictures certainly have their own merits, research to improve computer
vision methods for health or safety applications or to reduce the environmental impact of
computation, is most certainly a worthwhile endeavor.

If we take a look at the history of computer vision, we can see a paradigm shift from
traditional approaches to neural networks starting in the early 2010s. The former employed
hand-crafted algorithms and interpretable models of all kinds of problem domains. They
were typically based on explicit reasoning to put observations and the underlying scenes
and image formation processes into relation, searching answers for questions like “What
do natural images look like?” and modeling them assuming e.g. piecewise smoothness
or non-local similarities. However, for many problems, they were no match in terms of
performance to deep learning approaches trained on millions of images, which replaced this
explicit modeling and reasoning with networks capable of capturing those correlations and
priors implicitly within their parameters during the optimization.

Starting from the first relatively straightforward convolutional networks various improve-
ments have been made in terms of network architectures and training procedures. Prominent
examples are residual networks [He et al., 2016], attention/transformer models [Dosovitskiy
et al., 2020], and improved training through better optimizers [Kingma and Ba, 2014],
regularization approaches [Kukačka et al., 2017] or training regimes like those of generative
adversarial networks [Goodfellow et al., 2014]. However, despite their impressive perfor-
mance, several open questions remain. First and foremost we can ask how it could be possible
to boost the quality of the predictions even further. While the most trivial solution would be
to increase the size of our models, such an approach often yields diminishing returns at the
cost of increased energy demand and therefore worse environmental footprint [Thompson
1 Source: https://photutorial.com/photos-statistics/
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Chapter 1 Introduction

et al., 2021]. Additionally, adding more training data to improve performance can also be
problematic in many cases, for example, because the acquisition of more data is not easily
possible as is often the case in a medical context, or because the manual labeling of data
that is often outsourced to counties with deficient labor laws is morally questionable at best.
Instead, we consider specific reconstruction applications and study how we can improve
model performance or efficiency based on our understanding of the problem domains similar
to traditional approaches to these problems by integrating additional information in the form
of spatial priors and implementing an explicit handling of uncertainties in the reconstruction
pipeline. In the following two sections, we will first give an overview of open challenges
in the problem domains we have worked on (Section 1.1) and provide an overview of our
contributions (Section 1.2).

1.1 Reconstruction Problems and Challenges

Computer vision reconstruction problems focus on extracting spatial or temporal information
from limited observations for geometric processing, inference of further information, or
generation of new content. One central task in this field is finding matching points in
images with many applications ranging from calibration over depth estimation and 3D
reconstruction to interpolation. One of the greatest challenges of this task is the size of the
search space which is equal to the image size for each point of interest when no additional
information about an image pair is given. For stereo matching applications, which aim to
infer depth from simultaneously captured image pairs, one can use the knowledge of the
camera intrinsics and extrinsics to reduce the search space to the epipolar line. Nevertheless,
the size of the full search space approach still scales quadratically with the horizontal
image resolution, which poses a challenge for high-resolution inputs. While alternative
techniques have been proposed to simply avoid searching across all possible matches like
coarse-to-fine hierarchical networks (e.g. Gu et al. [2020]), so-called all-pairs correlation
networks [Lipson et al., 2021] have demonstrated remarkable performance, which is why
we investigated how they can be adapted using more efficient matching to bring their
performance to higher resolutions (Chapter 4). In addition, most current approaches employ
relatively standard neural network architectures combined with some form of correlation
computation or warping, processing the input images in a feed-forward fashion [Laga et al.,
2020]. In such models, it is unclear how additional spatial information could be incorporated.
While traditional optimization methods use regularization terms which can be extended
to reflect other types of priors, there is no comparable functionality in learning methods
and their integration remains an open problem. A similar conundrum can be observed
in frame interpolation methods, many of which also rely on accurate matching between
images. Again, most methods use common network architectures combined with correlation,
warping, and/or kernel estimation and it remains unclear how partial information about
the target frame could be incorporated. Such an approach would be particularly interesting
in the context of video rendering, where one retains access to the renderer enabling it to
produce additional data for the intermediate frame as we will see in Chapter 5. Of course,
improving the quality of interpolation per se is also an ongoing research challenge. An open
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1.2 Contributions

question is the definition of quality, as the optimization of classical distance metrics does not
necessarily correlate with the perceived quality, which is important for algorithms targeting
a wide audience [Reda et al., 2022; Kiefhaber et al., 2024]. In line with this, another open
problem is the estimation of the interpolation quality at test time which would be a necessary
component to guide a combined rendering and interpolation method. While having access to
the ground truth that would be the output of the renderer makes solving this problem trivial,
it would defeat the purpose of reducing the heavy computational burden of rendering. In
other applications, the underlying scene parameters may be unknown, and a renderer can be
used to reconstruct them. Such an approach has been demonstrated for Non-Line-of-Sight
(NLoS) reconstruction [Iseringhausen and Hullin, 2020] where the goal is to infer the shape
of a hidden object that is not directly visible from transient images of a diffuse relay wall.
An open question in this domain, besides the effort to speed up the reconstruction, is the
choice of the underlying scene representations, where the tradeoffs between representational
power, (inverse) rendering efficiency, and regularization capabilities should be considered.
In addition, such models apply various simplifications to optimize efficiency and it is unclear
how the resulting losses in model accuracy and completeness can be compensated to still
enable processing of real measurements with varying degrees of unknowns.

1.2 Contributions

In this thesis, we present our efforts to address these problems using spatial priors and
uncertainty modeling. Fig. 1.1 gives an overview of the proposed methods, showcasing
the application domains and as well as the novel approaches we have integrated into
the reconstruction problems. The main contributions of our work can be summarized as
follows:

Improving Stereo Matching of High-Resolution Images with Additional Inputs We
propose to integrate visual hulls computed from auxiliary views of a scene into a disparity
estimation network as spatial priors for the matching. We demonstrate how the integration
improves the matching performance and further implement other optimizations to enable
training and inference at high resolutions. To this end, we replace the dense all-pairs
correlation with a sparse-dense 𝑘NN-correlation and propose a training scheme that fur-
ther reduces the memory footprint by splitting the computational graph for the gradient
backpropagation [Plack et al., 2024].

Predicting Uncertainty and Incorporate Partial Renderings for Frame Interpolation We
introduce partial inputs of the target frame to the frame interpolation problem to boost output
quality for the application in video rendering. We achieve this using a transformer-based
architecture, where the masked inputs serve as priors for the interpolation. Since the output
quality is unknown and cannot reliably inferred from the result, we add an uncertainty
prediction to the network, which is trained on the true error of the output, and demonstrate
that this approach is capable of identifying problematic regions in the interpolation, that can
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Chapter 4 Chapter 5 Chapter 6
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Figure 1.1: This thesis presents our efforts to integrate spatial priors into three different methods
tackling three problem domains for improved reconstructions, either as additional inputs into neural
networks (Chapters 4 and 5) or as regularization during optimization (Chapter 6). In all approaches,
the uncertainty of the prediction or the underlying assumptions is an important factor to consider,
which can be estimated from the outputs (Chapter 4), predicted from the inputs (Chapter 5), or
optimized with the target (Chapter 6).
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Chapter 1 Introduction

1.4 Thesis Outline

The remainder of this thesis is structured as follows.

Part I: Introduction

Chapter 2 We give a summary of the foundations that are needed to understand the methods
in this thesis. We outline the concepts of priors and uncertainty and explain the epipolar
geometry of stereo setups and the connection between disparity and depth, followed by
an overview of optical flow and image warping, which are basic building blocks of frame
interpolation. Lastly, we discuss 3D geometry representations and transient imaging setups
with the related light transport.

Chapter 3 We provide an overview of the related work in the application categories part of
this thesis, namely stereo matching, frame interpolation, and NLoS reconstruction.

Part II: Publications

Chapter 4 We present our work "VHS: High-Resolution Iterative Stereo Matching with
Visual Hull Priors" [Plack et al., 2024] which already appeared as a preprint.

Chapter 5 We summarize the peer-reviewed publication "Frame Interpolation Transformer
and Uncertainty Guidance" [Plack et al., 2023a].

Chapter 6 We summarize the peer-reviewed publication "Fast Differentiable Transient
Rendering for Non-Line-of-Sight Reconstruction" [Plack et al., 2023b].

Part III: Conclusion

Chapter 7 To conclude the main part of this thesis, we summarize the works presented
herein and discuss the impact of our methods as well as their limitations along with an
outlook into possible future work.

Part IV: Appendix

This last section contains copies of the published works that form chapters 5 and 6.
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Chapter 2

Background

This chapter provides the necessary foundations to understand the methods introduced in
this thesis. We start by outlining the basics of spatial priors in Section 2.1 and uncertainty
in Section 2.2. For a better understanding of the addressed problems, we introduce the
foundations of stereo vision in Section 2.3 followed by an explanation of optical flow and
image warping in Section 2.4 which are an essential building block of frame interpolation
methods. In Section 2.5 we outline 3D geometry representations and in Section 2.6 we give
an overview of transient imaging technology and the underlying light transport model.

2.1 Spatial Priors

Prior knowledge in the form of probability distributions can drastically improve the per-
formance of computer vision systems. While a thorough introduction is well beyond the
scope of this work, we will focus on the aspects relevant to this thesis and briefly cover the
definition of priors and their realization in total variation (TV) regularization as well as their
application to deep learning models.

2.1.1 Definition and Total Variation

The concept of prior probabilities arises in Bayesian statistics and expresses the probability
of a proposition before an observation of the evidence. In terms of Bayes’ theorem

𝑃(𝑢| 𝑓 ) = 𝑃( 𝑓 |𝑢)𝑃(𝑢)
𝑃( 𝑓 ) , (2.1)

where 𝑢 is the proposition and 𝑓 the evidence, 𝑃(𝑢) denotes prior probability. In the
case where no information about 𝑢 is available, one can use the principle of indifference,
which assigns equal probability to all outcomes and is therefore called a non-informative
prior. Other examples of non-informative priors are minor restrictions on the values such
as non-negativity. If more is known about 𝑢, for example from previous experiments or
knowledge about similar propositions, 𝑃(𝑢) is called an informative prior. This can range

9



Chapter 2 Background

from weakly informative priors, which mostly act as regularization in the inference, to strong
priors, where the observation of 𝑓 only marginally influences the posterior distribution
𝑃(𝑢| 𝑓 ).

As the focus of this thesis is on methods that operate in 3D scene or 2D image space, we are
interested in spatial priors, by which we mean prior information that is localized in space
(Chapters 4 and 5) or in the form of a smoothness assumption across space (Chapter 6). For
the latter, the TV norm originally introduced for image denoising [Rudin et al., 1992] is used,
which can be motivated from maximum a-posteriori probability (MAP) estimates as follows.
Here, we are looking for the noise-free image �̂� that maximizes the posterior probability
given the noisy image 𝑓 :

�̂� = arg max
𝑢

𝑃(𝑢| 𝑓 ) (2.2)

Using Bayes’ Theorem and dropping the constant term, this can be rewritten as a minimization
of the negative log-likelihood

�̂� = arg min
𝑢

− log(𝑃( 𝑓 |𝑢)) − log(𝑃(𝑢)). (2.3)

In the context of variational methods, the first term is known as the data term and the second
one is the regularization. With the assumptions of a Gaussian noise model and a Laplace
distribution of the image gradients

𝑃( 𝑓 |𝑢) = 1√
2𝜋𝜎

exp
(
−∥𝑢 − 𝑓 ∥2

2𝜎2

)
, 𝑃(𝑢) = 1

2𝛽exp
(
−∥𝐷𝑢∥1

𝛽

)
, (2.4)

where 𝐷 denotes the finite difference matrix, we get the TV regularized denoising

�̂� = arg min
𝑢

1
2∥𝑢 − 𝑓 ∥2 + 𝜆∥𝐷𝑢∥1 , (2.5)

where 𝜆 is a weighting parameter based on the distribution parameters 𝜎 and 𝛽. Adding
a linear operator to the data term, one can tackle various other inverse imaging tasks like
deblurring, super-resolution, or computed tomography reconstruction. Such problems
are typically solved using gradient descent type algorithms, including e.g. line search
variants [Stanimirović and Miladinović, 2010], proximal algorithms [Parikh and Boyd, 2014]
or alternating direction method of multipliers (ADMM) [Boyd et al., 2011]. We demonstrate
an application of the TV regularization as a scene prior of depth and albedo maps in a
differentiable rendering-based NLoS reconstruction method in Chapter 6.

2.1.2 Deep Learning Regularization

In deep learning approaches to inverse vision problems, the goal is to train a neural network
on a training dataset such that the prior distribution is implicitly learned and encoded in the
network weights. Several design choices of the training play a key role in solving these tasks
efficiently and in a way that generalizes well to the test set. Similar to priors in the form of
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2.1 Spatial Priors

regularization terms in traditional loss function minimization, Kukačka et al. [2017] propose
a taxonomy of such regularization techniques for deep learning:

Data Given the above definitions of the prior as knowledge from e.g. previous experiments,
the choice of training data is a natural steering device to control the training. Beyond
that, various augmentation methods that operate not only on input data but also on the
target domain or hidden features can be interpreted as regularization techniques. Popular
examples are image transformations like scaling and color transformations applied to the
inputs that effectively aim at making the method invariant to such perturbations, dropout on
the network weights [Srivastava et al., 2014] inducing learning of redundant features, and
label smoothing [Szegedy et al., 2016] to discourage over-confidence.

Network Architecture The next choice after the selection of input and target data is that of
the processing network layers which directly influences the possibilities of identifying patterns
in the training data. For example, the use of convolutional layers and U-Nets [Ronneberger
et al., 2015] assumes that the source and/or target domains have an inherent spatial structure
and hierarchy. It targets learning of translation invariant and spatially localized features,
which explains their success in imaging applications. Other examples are recurrent neural
networks such as long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997]
or gated recurrent unit (GRU) [Cho et al., 2014] which induce temporal or sequential
relationships between tokens as naturally implied in audio signals, texts or videos, or the
attention mechanism/transformer architecture [Vaswani et al., 2017] which targets global
relationships between tokens. Those architectures as well as other design choices such as the
selected activation function, pooling operations, or dilation can be seen as implicit priors
selected based on our knowledge of the problem domain.

Error Function The metric optimized during training of the neural network is chosen
to steer the output in a way that matches the desired application. Aside from that, error
metrics can also have a regularizing effect e.g. to handle class imbalance [Yan et al., 2003], or
implicitly in multi-task learning [Ruder, 2017].

Regularization Term Perhaps the most obvious connection to traditional regularization
is found in deep learning regularization terms that are added to the error metric to form
the full loss function. This includes the commonly used weight decay (see e.g. Goodfellow
et al. [2016]) which adds an 𝐿2 loss on the network weights implying a normal distribution
as their prior.

Optimization Finally, the selection of the training procedure has a major influence on the
performance and generalization capabilities of a model. As an example, it has been shown
that stochastic gradient descent can overcome saddle points for non-convex optimization [Ge
et al., 2015]. Overall, optimization regularization techniques can be further categorized into
methods for initialization, which include pre-training procedures, updates, like the popular
Adam [Kingma and Ba, 2014], and termination, which aim at preventing overfitting, e.g.
through observation of a validation set.
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Chapter 2 Background

In our methods, we induce prior information into the neural network in the form of additional
inputs during training and testing as visual hulls for stereo matching (Chapter 4) and masked
intermediates for frame interpolation (Chapter 5).

2.2 Uncertainty

Some concepts of uncertainty are closely related to the previously discussed priors, e.g.
unknown variables or stochastic processes are prominent sources of uncertainty. We will
briefly outline those concepts and discuss some applications of this theory in the context of
machine learning methods.

2.2.1 Concepts

Uncertainty is commonly classified as aleatoric or epistemic. The former describes a stochastic
uncertainty (alea, Latin for dice), that cannot be reduced by additional knowledge, while the
latter captures the remaining uncertainties (epistēmē, Greek for knowledge). Let us consider
as an example the tossing of a fair coin where the probability of heads or tails is 50% each
reflecting our uncertainty of the situation before a toss. No additional knowledge can help us
to infer more about a future sample meaning that we have aleatoric uncertainty in this case.
An example of epistemic uncertainty would be the assertion of the correctness of a factual
statement in a foreign language. Without any knowledge of the language and applying the
principle of indifference we again have a situation where both outcomes (i.e. the statement is
correct or incorrect) have an equal chance of 50%. However, this uncertainty can be reduced
by learning the language and the corresponding facts. Note that both types of uncertainty
do not necessarily occur exclusively, so in many cases, both types contribute to the total
uncertainty, which is also called predictive uncertainty of a model. In addition, it might not
always be clear which type some effect can be attributed to as it relies on the assessment of
what is possible by the addition of more knowledge, and sometimes the distinction might
even not be necessary at all. For example situations in machine learning where – after the
training of the model – only a single decision or prediction for some given inputs is of interest,
an analysis of the types of uncertainties is ineffective. Nevertheless, the quantification of
uncertainty is of great importance in many fields including but not limited to medical and
safety applications [Hüllermeier and Waegeman, 2021].

In this thesis, we propose a method that handles epistemic uncertainties in a simplified
inverse transient renderer such as model inaccuracies and ignored scene space (Chapter 6).

2.2.2 Uncertainty Estimation in Deep Learning

Uncertainty estimation techniques in deep learning can be categorized depending on the
number of neural networks used for the estimation and the determinism of their prediction.
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2.2 Uncertainty

We provide a summary of those categories based on the work of Gawlikowski et al. [2023], to
which we refer for more details:

Single Deterministic Methods This first class contains models where the uncertainty
estimation is part of the network or can be derived from a single deterministic prediction.
This includes in a broad sense typical classification networks, which assign probabilities
to all classes usually by applying a Softmax to the network outputs, since the distribution
of the probability values can be interpreted as the certainty of the output. However, it has
been observed that network predictions often tend to be over-confident, which makes the
interpretation difficult and gives rise to various alternative approaches [Gawlikowski et al.,
2023].

Bayesian Neural Networks Instead of finding a point estimate of the optimal parameters
as done in standard network training, the aim of Bayesian neural networks is to infer the
posterior distribution of parameters given the training data. Then, the prediction for a given
input can be estimated e.g. using Bayesian model averaging, but more importantly, this also
allows quantifying the uncertainty of the prediction. Note that this approach requires a prior
distribution for the network weights, where a common choice is a Gaussian prior whose MAP
estimate is equivalent to training with the 𝐿2 regularization described in Section 2.1.2 [Arbel
et al., 2023].

Ensemble Methods The underlying idea of ensemble methods is to reduce the predictive
error by computing the solution based on a set of predictions of so-called inducers (i.e.
neural networks in our case), which ideally produce a diverse but accurate set of outputs.
Nevertheless, having access to such a set allows estimating the uncertainty based on the
variability of predictions [Sagi and Rokach, 2018].

Test-Time Augmentation Methods Without access to different networks, augmentation of
the inputs same or similar to the processing during training can be used as an alternative ap-
proach to generate a set of outputs from which the uncertainty can be estimated [Gawlikowski
et al., 2023].

Aside from the estimation of uncertainty, other means can be used which might be more
informative to the user. This is especially true for vision tasks like super-resolution where the
problem is under-determined and therefore the solution is not unique. In those applications,
a quantification of the variability is not easily interpretable by a user, which gives rise to
solution space exploration methods like the super-resolution approach of Bahat and Michaeli
[2020] or the semantically-guided sparse computed tomography (CT) reconstruction of Dröge
et al. [2022].

Left-right consistency checking in stereo vision can be seen as a variant of ensemble methods
for uncertainty estimation (Chapter 4), and our frame interpolation method uses a single
deep neural network that approximates the expected error of their prediction (Chapter 5).
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Chapter 2 Background

2.3 Stereo Vision

Stereo vision aims to recover the depth at each pixel of an image from matches with the
corresponding point in a second image and triangulating the points in space. It is a passive
method opposed to active approaches like Time-of-Flight (ToF) cameras (e.g. Kolb et al.
[2008]), light detection and ranging (LiDAR) sensors (e.g. Raj et al. [2020]), and structured
light (e.g. Scharstein and Szeliski [2003]), where the latter works conceptually similar to stereo
vision. We will briefly discuss the concept of epipolar geometry and image rectification
which simplifies the search for correspondences and discuss how the depth is computed
from those matches and the knowledge of the stereo camera setup.

2.3.1 Epipolar Geometry and Image Rectification

𝑥

𝑐𝑙 𝑐𝑟

𝑥𝑙

epipolar plane

epipolar line

?

?

𝑥𝑟

𝑒𝑙
𝑒𝑟

Figure 2.1: Epipolar Geometry of a stereo setup, where the camera centers 𝑐𝑙 , 𝑐𝑟 , and the world
position 𝑥 form the epipolar plane. Projecting the camera centers into the other camera’s image plane
we get the epipoles 𝑒𝑟 , 𝑒𝑙 . Any possible point on the viewing ray defined by 𝑐𝑙 and 𝑥𝑙 gets projected
onto the epipolar line in the right camera.

In the following, we assume that our images come from an undistorted perspective camera.
For most devices, this calls for a calibration step before the measurement using e.g. Brown’s
distortion model [Brown, 1996]. Now the search for the corresponding point of each pixel
can be reduced to a search along the epipolar line instead of a naive search across the whole
image as depicted in Fig. 2.1. For a given point 𝑥𝑙 in the left image we want to find the world
space position 𝑥 at an unknown depth that it depicts. In this setup, the camera centers 𝑐𝑙
and 𝑐𝑟 , and the world point 𝑥 form the so-called epipolar plane, and its projection into the
other image gives us the epipolar line of 𝑥. Consequentially, all points on the line defined by
𝑐𝑙 to 𝑥 are projected onto the epipolar line.

This already simplifies the search for 𝑥𝑟 from 2D to a 1D search for correspondences, but the
complexity can be reduced even further by applying stereo image rectification resulting in
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𝑏

𝑐𝑙

𝑐𝑟

Figure 2.2: Stereo Rectification by reprojecting the images onto a common image plane parallel to the
baseline 𝑏 resulting in horizontal epipolar lines for all points (not shown here).

image pairs where all epipolar lines are horizontal. This can be achieved by reprojecting
both images onto a common image plane as depicted in Fig. 2.2. Note that the plane needs
to be parallel with the baseline, i.e. the line between 𝑐𝑙 and 𝑐𝑟 , and that those reprojections
can be represented by a homography. We refer to Loop and Zhang [1999] for more details.
For rectified stereo images, a wide variety of algorithms exist to find matches across the
horizontal lines for each pixel ranging from simple intensity correlation matching approaches
over regularized optimization methods to a multitude of learning-based approaches as
outlined in Section 3.1.

2.3.2 Depth from Disparity

Once the disparity 𝑑, i.e. the image space distance between corresponding points in the
rectified stereo images, is found we can compute the corresponding depth 𝑧 from the baseline
𝑏 and the focal length 𝑓 as

𝑧 =
𝑓 𝑏

𝑑
. (2.6)

This follows from multiple applications of the intercept theorem (compare Fig. 2.3) with
𝑑 = 𝑥𝑙 − 𝑥𝑟 as

𝑏

𝑏 − 𝑑 =
𝑞0 + 𝑞1

𝑞0
=
𝑝1

𝑝0
=

𝑧

𝑧 − 𝑓
(2.7)

which yields
𝑧𝑏 − 𝑓 𝑏 = 𝑧𝑏 − 𝑧𝑑 (2.8)
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𝑥𝑟

𝑧

𝑓

𝑥𝑙

𝑏
𝑐𝑙 𝑐𝑟

𝑏 − 𝑑

𝑥

𝑞0

𝑞1

𝑝0

𝑝1

Figure 2.3: Computing depth 𝑧 from disparity 𝑑 with the intercept theorem via the rightmost triangles
(𝑞0 + 𝑞1, 𝑝1, 𝑧) and (𝑞0, 𝑝0, 𝑧 − 𝑓 ). Note that 𝑏 − 𝑥𝑙 + 𝑥𝑟 = 𝑏 − 𝑑 and that the actual values of the
intermediaries 𝑝0, 𝑝1, 𝑞0, and 𝑞1 are of no concern as they only bridge the gap to 𝑧 and 𝑓 .

and finally Eq. (2.6). Note that in this formulation, depth is not the Euclidean distance
between the camera center and the point in 3D space (∥𝑥 − 𝑐𝑙∥2), but rather the 𝑧 coordinate
of the point in the cameras reference frame. Those two values, however, are related by a
projection onto the principal axis. Additionally, care must be taken to convert between pixel
coordinates in image space and world space coordinates. Note that it is common to estimate
the disparity for the left camera, but any such method can trivially compute the disparity of
the right view by simply mirroring the images horizontally and switching the inputs.

2.4 Optical Flow and Image Warping

Knowing the correspondences between all pixels of two successive frames in a video is
important for many video processing tasks. This problem is, however, much harder than
the previously discussed stereo matching, since correspondences are no longer restricted
to epipolar lines but can occur in the whole image, and temporal movement needs to be
taken into account, by both the camera and the different parts of the scene, possibly in many
different directions and with varying magnitudes. Figure 2.4 shows an example of the optical
flow field between two frames in a video along with the occlusion mask, using the flow
visualization technique established by Baker et al. [2011]. Similar to stereo vision, where left
or right disparity can be computed, we can search for the forward or backward flow, which
is often denoted by an arrow as forward flow 𝑓0→1 from frame 𝐼0 to 𝐼1 or backward flow 𝑓1→0
from frame 𝐼1 to 𝐼0 (and vice versa for the occlusion). We refer to Zhai et al. [2021] for an
overview of optical and scene flow estimation methods. Those optical flow fields can be
used to align images or, as prominently used in many frame interpolation methods, feature
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2.4 Optical Flow and Image Warping

(a) First Frame 𝐼0 (b) Second Frame 𝐼1

(c) Forward Flow 𝑓0→1 (d) Forward Occlusion 𝑂0→1

Figure 2.4: Example of the forward flow 𝑓0→1 (c) from the first frame 𝐼0 (a) to the second frame 𝐼1 (b)
and the forward occlusion 𝑂0→1 (d) identifying all points where the target of the optical flow does
not depict the same object as the source or is not within the frame.

maps between both frames. The two most commonly used approaches for this are backward
warping and forward warping as described in the following sections.

2.4.1 Backward Warping

The idea of backward warping uses, as the name implies, the forward flow to backward
warp content from the other frame. This can be easily implemented as a sampling operation,
where the optical flow vector is added to the image coordinate of each pixel to get a target
coordinate at which the other frame is sampled. Figure 2.5 shows an example output of this
operation. Note that without any handling of occlusion, content may be sampled more than
once, resulting in e.g. repeating patterns. Since this operation is easily differentiable with
respect to both the input image and the optical flow vectors when using bilinear interpolation,
it is a common module in many deep learning methods for both optical flow estimation and
frame interpolation. To achieve the best results, care must be taken to sample the images
correctly, such that e.g. zero flow will indeed sample the pixel value at the exact same position
in the other image1. The greatest advantage of this method is its simplicity and the fact that,
without occlusion, the resulting image will be smooth and without gaps. Additionally, the
flow can be used to sample from any other frame using a scaling factor, assuming that all
motion remains linear over the respective windows. By scaling 𝑓0→1 with −1 for example, the
preceding frame 𝐼−1 can be sampled, while a factor of 2 allows sampling from the frame 𝐼2.
1 Compare e.g. the “align_corners” parameter of Pytorch’s grid sampling method https://pytorch.org/docs/
stable/generated/torch.nn.functional.grid_sample.html
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Chapter 2 Background

(a) Backward Warping (b) Backward Warping with Occlusion

(c) Forward Warping with Mean (d) Forward Warping with Occlusion

Figure 2.5: Backward warping (a,b) and forward warping (c,d) examples based on Fig. 2.4. Note the
duplicates in (a) and the ghosting in (c) from not handling the occlusion correctly. Since a simple
nearest neighbor splatting was used in (c,d), non-smooth motions result in a tattered appearance.

2.4.2 Forward Warping/Splatting

Something that is not possible using backward warping, however, is to align the features of
the frame with the known flow 𝐼0 to the frame at some other time 𝐼𝑡 . This operation can be
realized using forward warping, which distributes the color or features of 𝐼0 using the flow
𝐼0→𝑡 . This is also known as splatting since the content of the frame is “drawn” onto the other
frame. The greatest advantage of this approach is its ability to warp the content to any frame
(again assuming a linear motion). Specifically for frame interpolation, the features of 𝐼0 can
be warped to 𝐼 1

2
using the scaled flow 1

2 𝑓0→1, and vice versa for 𝐼1 and 1
2 𝑓1→0.

Unlike backward warping, even non-occluded regions can result in images that have holes if
the flow fields are not smooth enough and insufficient splatting like nearest neighbor is used.
Additionally, the same pixel can receive data from multiple points that need to be blended to
look correctly. This is especially problematic if the occlusion is not known, as demonstrated
in Fig. 2.5. However, those drawbacks do not make forward warping an uninteresting choice
as demonstrated by Niklaus and Liu [2020] and Niklaus et al. [2023], to which we refer for a
more thorough treatment of the matter for frame interpolation.

2.5 3D Geometry Representations

For completeness, we provide a brief summary of 3D geometry representations with a focus
on those that are relevant in the context of this thesis.

18



2.5 3D Geometry Representations

2.5.1 Explicit

One of the simplest geometry representations are point clouds, which can e.g. be computed
from stereo matches by projecting the pixels into 3D space using the known depth and
camera parameters. They are represented as an unordered list of 3D vectors and naturally
do not contain any spatial relationships. Additional data such as color can be attached to
each point and they can easily be displayed using projective matrices. However, they do not
contain any surface information and are of infinitesimal size, which makes them unsuitable
for the representation of closed surfaces. To achieve a satisfying rendering of point clouds
additional techniques like elliptical weighted average filtering [Zwicker et al., 2001] or an
extension like surfels (“surface elements”) can be used, which use oriented discs of finite
size to represent geometry [Pfister et al., 2000].

One of the most common representations in graphics applications are meshes, which are
defined as a set of vertices 𝑣𝑖 ∈ R3 and a set of faces, typically in terms of triangles 𝑓𝑖 ∈ N3.
Aside from assigning normals or colors to the vertices, textures can be used to add details to
the surface such as albedo, normal, or height, as well as other parameters of the bidirectional
reflectance distribution function (BRDF), which can be sampled using barycentric coordinates
to interpolate UV coordinates.

2.5.2 Implicit

A common base to implicitly represent geometry is a 3D function 𝑓 : R3 → R often discretized
as a 3D volume R𝑥×𝑦×𝑧 . By restricting the values to be in {0, 1} we get an indicator function,
where 1 represents points inside the object and 0 space outside. The surface is then implicitly
given as the boundary of the indicator function. More information is contained in the signed
distance functions (SDFs), where the absolute value of each entry describes the distance to
the object’s surface. The sign indicates whether the point is inside or outside and the surface
lies at all points 𝑥 where 𝑓 (𝑥) = 0. Alternatively, one can interpret the function as a density
and assign the surface to some iso-level. To compute a mesh from such a volume, marching
cubes [Lorensen and Cline, 1987] can be applied, which builds on the observation that for
each local cube of 8 voxels and a given iso-value, there are – after removing symmetry and
rotation – 14 cases which represent a surface.

Note that the volume itself can also be implicitly given through other means. For example, a
sum of Gaussians can be used to represent the density of the volume [Iseringhausen and
Hullin, 2020], which can be useful in geometry optimization (see Chapter 6). Alternatively,
the SDF can be represented using a trained neural network as demonstrated e.g. by Park
et al. [2019]. The latter is closely related to Neural Radiance Fields (NeRFs), which are also
trained to predict a density for each point in space, but also predict radiance and are used in
conjunction with a differentiable volume renderer for novel view synthesis [Mildenhall et al.,
2020].
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2.6 Transient Imaging

In the previous sections, the input images were captured from standard cameras used in
everyday life and show a view of a scene as a steady-state image that closely resembles
human vision. While this is sufficient for many vision problems, certain tasks like NLoS
reconstruction benefit from additional information, e.g. by including our knowledge that the
propagation of light is not instantaneous but that electromagnetic waves travel at the speed
of light which is 299, 792, 458𝑚𝑠 in a vacuum. The goal of transient imaging is to explicitly take
this finite speed into account for simulations, models, and measurements as introduced by
Kirmani et al. [2009]. In this section, we will focus on the specific use case of NLoS imaging,
and discuss the measurement as well as how it can be modeled. In this application, the
goal is to retrieve the shape of an object that is hidden from the direct line of sight through
an indirect observation of reflected light on a diffuse relay wall by probing the scene with
ultra-short light pulses that are emitted toward the wall.

2.6.1 Measurement Setup

laser

detector

relay wall

hidden object

occluder

transient response
t

I(t)

Figure 2.6: Prototypical NLoS measurement setup to capture an object that is hidden behind an
occluder and only observable via the relay wall. This figure shows one possible light path going
from the laser that emits an ultra-short light pulse towards the hidden object via the relay wall and
is recorded by the time-resolved detector after another reflection on the wall. For one laser and
detection orientation, this setup measures a histogram of arrival times as shown on the top-left.

We start by describing a prototypical setup used for NLoS reconstructions based on the
seminal work of Velten et al. [2012] which is depicted in Fig. 2.6 before outlining some
possible variations. The basic building blocks, however, are mostly as follows:
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2.6 Transient Imaging

Light Source A laser capable of emitting ultra-short pulses (e.g. 50 fs) towards the wall is
used to illuminate the scene. Usually, the laser is oriented to multiple points on the wall,
which can also be arranged in a grid pattern.

Scene The scene consists of a diffuse relay wall that reflects the emitted laser light to the
hidden object and the response thereof to the detector. The object is the target we aim to
reconstruct. It is usually placed in front of the relay wall but not directly visible from the
laser/detector.

Detector A time-resolved detector measures the incident light received back from the relay
wall. Some form of synchronization between the laser and detector is needed, which can be
established electronically between the components or via observation of the first reflection of
the emitted light pulse on the wall.

There are several variations of the basic setup. Firstly, the arrangement of the laser and
detector positions on the wall can be fixed to coincide in a regular grid using a beam splitter
resulting in the so-called confocal measurement as introduced by O’Toole et al. [2018].
Several reconstruction methods are specifically tailored to this setup like the (directional)
light-cone transform [O’Toole et al., 2018; Young et al., 2020] and f–k migration [Lindell
et al., 2019b]. Alternatively, a circular pattern has been proposed, to reduce capture time
and data size [Isogawa et al., 2020]. Regarding the choice of the time-resolved detector,
the two most prominent choices are streak cameras used by Velten et al. [2012] for the
measurements, which work using a time-varying deflection of incoming photons, and
Single-Photon Avalanche Diode (SPAD) sensors (see e.g. Charbon et al. [2013] and Buttafava
et al. [2015]), which – as the name implies – detect single photons through a high bias voltage.
While the former can capture the full histogram over time for a single observed point on the
wall in one measurement, the latter relies on repeated measurements that are accumulated
into a histogram, but are smaller and cheaper and can hence be more easily arranged into a
grid to capture multiple points simultaneously.

Figure 2.7: Rendered slices of an exemplary transient image, captured in a confocal setup showing the
light propagation on the relay wall over time from left to right. The circular patterns can be explained
if one considers a single point on the hidden object, which can be seen as a “virtual emitter” of short
light pulses. It can only contribute light to points on a sphere for a given delay because of the finite
speed of light and intersecting the sphere with the wall plane results in a circle.
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2.6.2 Light Transport

While capturing transient images by itself is a technical challenge, further processing of the
data is needed to extract interpretable information, since the content of transient images
such as the one shown in Fig. 2.7 is not apparent. Towards this end, a model of light, its
propagation, and image formation is needed, where the light transport equation (LTE) is a
central element in this endeavor. We will briefly introduce the LTE for non-transient imaging
following Pharr et al. [2023] and discuss the modifications for transient imaging in this
section.

The LTE can be derived from the conservation of energy in a system. On a surface, we
describe the radiance leaving a point 𝑝 in direction 𝜔𝑜 denoted by 𝐿𝑜(𝑝, 𝜔𝑜) as

𝐿𝑜(𝑝, 𝜔𝑜) = 𝐿𝑒(𝑝, 𝜔𝑜) +
∫
𝑆2
𝑓 (𝑝, 𝜔𝑜 , 𝜔𝑖)𝐿𝑖(𝑝, 𝜔𝑖)|cos𝜃𝑖|𝑑𝜔𝑖 . (2.9)

Here, 𝐿𝑒(𝑝, 𝜔𝑜) denotes the emitted radiance, and the second term describes the scattering of
the incoming radiance 𝐿𝑖(𝑝, 𝜔𝑖) integrated over all directions 𝜔𝑖 on the hemisphere 𝑆2 with
the BRDF 𝑓 (𝑝, 𝜔𝑜 , 𝜔𝑖). A physically plausible BRDF must satisfy the following conditions.

• 𝑓 (𝑝, 𝜔𝑜 , 𝜔𝑖) > 0, ∀𝑝, 𝜔𝑜 , 𝜔𝑖 (positivity)

• 𝑓 (𝑝, 𝜔𝑜 , 𝜔𝑖) = 𝑓 (𝑝, 𝜔𝑖 , 𝜔𝑜) (symmetry/Helmholtz reciprocity)

•
∫
𝑆2 𝑓 (𝑝, 𝜔𝑜 , 𝜔𝑖)|cos𝜃𝑜|𝑑𝜔𝑜 ≤ 1, ∀𝜔𝑖 (energy conservation)

If we assume that no light is absorbed along the ray between two surfaces, i.e. if no
participating media are present, we can replace the term for the incoming radiance 𝐿𝑖 with
the outgoing radiance on the first surface point 𝑡(𝑝, 𝜔𝑖) that lies in the direct line of sight
from 𝑝 in direction 𝜔𝑖 , which can be found using ray casting:

𝐿𝑖(𝑝, 𝜔𝑖) = 𝐿𝑜(𝑡(𝑝, 𝜔𝑖),−𝜔𝑖) (2.10)

While an analytic solution is only feasible for the simplest of scenes, Monte Carlo integration
with ray tracing can be used to find a solution. An alternative formulation known as the
surface form or three-point form describes the radiance from 𝑝′ to 𝑝 using an integral over all
surfaces 𝐴 as

𝐿(𝑝′ → 𝑝) = 𝐿𝑒(𝑝′ → 𝑝) +
∫
𝐴

𝑓 (𝑝′′ → 𝑝′ → 𝑝)𝐿(𝑝′′ → 𝑝′)𝐺(𝑝′′ ↔ 𝑝′)𝑑𝐴(𝑝′′). (2.11)

In this formulation, 𝐺(𝑝′′ ↔ 𝑝′) is the geometric coupling, which also captures the visibility
between the points [Pharr et al., 2023].

This formulation has been adapted by Iseringhausen and Hullin [2020] for NLoS rendering,
i.e. the light transport between a single (virtual) light emission and an observed point on
the relay wall, by simplifying the model to include only light paths with a single interaction
with the hidden object (three bounce assumption) and temporally distributing the irradiance
contributed by each triangle using a triangular filter.
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Another alternative description of the LTE is the path integral formulation [Veach, 1998] which
describes the measurement with an integration over paths �̄�

𝐼 𝑗 =

∫
Ω

𝑓𝑗(�̄�)𝑑𝜇(�̄�). (2.12)

Here, Ω is the space of all paths of all lengths and 𝑓𝑗 the measurement contribution function.
For transient rendering, the finite speed of light needs to be integrated into the model as
shown by Jarabo et al. [2014]:

𝐼 𝑗 =

∫
Ω

∫
Δ𝑇

𝑓𝑗(�̄� , Δ̄𝑡)𝑑𝜇(Δ̄𝑡)𝑑𝜇(�̄�). (2.13)

The path contribution function 𝑓𝑗 is extended to make emission, throughput, and the sensor
importance depend on time. The additional sequence of time delays Δ̄𝑡 makes a naive
numerical integration even more difficult and the ultra-short light pulses needed to produce
interesting transient images are close to a delta manifold, which renders random sampling
futile. Note that the time delays here are results of the scattering and not propagation delays,
which correlate to the length of the traveled path �̄�. Jarabo et al. [2014] show how this can be
solved efficiently by reusing sampled paths and introducing special sampling strategies.

Inverse Rendering Based on the aforementioned model it is possible to synthesize images
from a scene description using techniques such as ray tracing. This rendering process
is a forward model and solving the inverse problem of reconstructing the scene or some
parameters thereof from observations is known as inverse rendering. This is usually done in
an iterative fashion using gradient descent type optimization. As the rendering function is
quite complex and not even differentiable everywhere, a simple choice to compute gradients
is the use of finite differences, i.e. calculating the gradient with respect to each parameter by
applying two evaluations of the loss with slight variation in the parameter. While simple to
implement, this technique is quite inefficient when many parameters need to be optimized.
However, for certain representations like the Gaussian blobs used by Iseringhausen and
Hullin [2020] and for an efficient implementation of the rendering function this can work
reasonably fast. As an alternative, automatic differentiation techniques can be applied to
compute the gradients by repeated application of the chain rule. This can be done either
in forward mode by propagating a seed for each parameter towards the full equation, or –
more commonly – in backward mode by backpropagating the gradient of the loss towards
the parameters. We present a fast differentiable NLoS renderer using backpropagation in
Chapter 6.

One peculiarity of the rendering equation is the visibility term, which is a binary decision
function and as such not differentiable at the visibility boundary. This poses a problem
for inverse rendering as it does not allow the propagation of gradients to the underlying
geometry positions. While a thorough treatment is beyond the scope of this work, various
approaches to enable the computation of meaningful derivatives have been proposed. We
refer to the survey of Kato et al. [2020] for more details and references to recent works.
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Chapter 3

Related Work

In line with the three problem areas included in this thesis, we outline the related work
for each of them as follows. First, we provide an overview of stereo estimation methods in
Section 3.1, followed by frame interpolation works in Section 3.2, before presenting a review
of NLoS reconstruction methods in Section 3.3.

3.1 Stereo Matching

We will briefly outline the taxonomy of pre-deep learning stereo matching methods in
Section 3.1.1 before giving an overview of network architectures in Section 3.1.2. As the base
architecture for our work (Chapter 4), we provide more details on recurrent networks in
Section 3.1.3. For works on the closely related problem of multi-view stereo matching, we
refer to the survey of Stathopoulou and Remondino [2023] as it is beyond the scope of this
thesis.

3.1.1 Taxonomy

To give an overview of classical stereo matching approaches, we will follow the taxonomy
proposed by Scharstein and Szeliski [2002], which was also the base for the more recent
survey of Hamzah and Ibrahim [2016]. In essence, all methods consist of the following four
steps or a subset thereof:

Matching Cost Computation For each pixel in the image, the matching cost for each offset
or disparity indicates how likely the matching point in the other image which lies on the
epipolar line (see Section 2.3.1) corresponds to the same observation, where the underlying
assumption of most approaches is that the same point viewed from the two different cameras
of a stereo rig will be photo-consistent to some degree. Scharstein and Szeliski [2002]
identified squared intensity differences and absolute intensity differences as two common
choices among many possible approaches. Starting around 2010, feature-based matching
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costs were proposed [Hamzah and Ibrahim, 2016], which can be seen as predecessors to the
learned feature representations of learning-based approaches.

Cost Aggregation As the matching cost between single pixels can be prone to noise and
potentially uninformative, aggregation is a crucial step to ensure accurate matches, especially
for methods that only consider local information. The underlying idea of many methods
is the use of moving windows, which often can be realized through convolutions with an
appropriate kernel [Scharstein and Szeliski, 2002].

Disparity Computation/Optimization To extract disparity from the cost information,
methods can be classified into local and global algorithms. Local methods simply select the
best match for each pixel as the one associated with the lowest cost in a winner-takes-all
scheme. Global methods additionally aim at incorporating smoothness and/or consistency
and typically solve a regularized optimization problem based on the given cost [Scharstein
and Szeliski, 2002].

Disparity Refinement The aim of this last step depends on the target application and can
include sub-pixel refinement for e.g. image-based rendering, but also handling of occlusions
and mismatches [Scharstein and Szeliski, 2002], where smoothing of the disparity map is
prominently done via Gaussian filters or a diffusion process [Hamzah and Ibrahim, 2016].

3.1.2 Deep Learning

The earliest works on neural networks for stereo matching were proposed by Zagoruyko and
Komodakis [2015] and Zbontar and LeCun [2015], where the goal was to train a convolutional
neural network to predict how well two image patches match, which can be seen as a
learned matching cost computation and aggregation. Zbontar and LeCun [2015] extended
this learned local approach with global optimization and subpixel refinement in a more
traditional manner. Luo et al. [2016] and Mayer et al. [2016] proposed to compute the matching
cost as the inner product between learned feature vectors. This approach of computing
correlation or cost volumes has been the foundation of many deep learning approaches since
and was originally proposed for frame interpolation by Dosovitskiy et al. [2015]. While being
computationally efficient, such a technique significantly reduces the amount of information.
Concatenation volumes are an alternative, where the features of the reference image and
the target image are concatenated for each volume, retaining more information for the
subsequent 3D-convolutional neural network (CNN) filtering that produces the cost volume
as proposed by Kendall et al. [2017]. Later, an intermediate approach was presented by Guo
et al. [2019b], who split the correlation computation into groups, retaining more information
while still reducing the latent space. As a hybrid approach, it has been used extensively since
(e.g. [Chabra et al., 2019; Nie et al., 2019; Li et al., 2022; Abd Gani et al., 2024]).
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To add further context information to the cost volume processing, Zhou et al. [2017]
proposed an additional image feature extraction module. For a better handling of the global
context Chang and Chen [2018] proposed spatial pyramid pooling before the const volume
construction and a stacked hourglass network for the processing of the cost volume. A
different pyramid-based approach was presented by Tonioni et al. [2019] targeting increased
speed of the network. Their work was also inspired by optical flow networks and computes
the disparity in a coarse-to-fine fashion and avoids large correlation volumes by refining the
rough estimate of the previous layer within a local window only. For multi-view stereo, a
similar hierarchical approach was proposed by Gu et al. [2020]. Shen et al. [2021b] have shown
fused cost volumes for better extraction of matching information from the low-resolution
data in the hierarchy.

Besides the different treatments of the cost volume, other approaches have been proposed.
Seki and Pollefeys [2017] demonstrated a network that builds on the idea of semi-global
matching, and Wang et al. [2021b] integrated ideas from Patchmatch [Barnes et al., 2009]
into the network. Xu et al. [2022] proposed to integrate an attention mechanism for filtering
the concatenation volume and the suppression of irrelevant features before aggregation.
Attention-based feature extractions were also proposed by Li et al. [2021] and Xu et al.
[2023b]. Such an approach enables the exchange of features between the left and right image
branches of the network already prior to the cost volume computation. Inspired by residual
architectures, Pang et al. [2017] proposed to split the network into two stages, where the first
outputs an initial disparity, and the second stage predicts an offset disparity that is added
to the initial one to get the final output. This approach can be seen as a predecessor of the
recurrent architectures discussed in the next section.

3.1.3 Recurrent Architectures

Conceptually similar to classical optimization-based methods, recurrent stereo networks
refine an initial disparity iteratively by predicting offsets and updating a hidden state. This
approach was initially proposed for optical flow estimation as Recurrent All-Pairs Field
Transforms (RAFT) by Teed and Deng [2020] and adapted for stereo regression by Lipson et al.
[2021] and works as follows. After the extraction of feature maps for both images through a
convolutional network, a correlation volume is computed similar to previous works using
the inner product, from which a hierarchy of volumes is computed using pooling. At the
start of each iteration of the following recurrent network, the correlation values in a window
around the current disparity estimate are bilinearly sampled from the volume, encoded, and
passed to a GRU-based network, which updates a hidden state. From this new hidden state,
a delta is predicted to update the current disparity estimate.

Several extensions to this approach have been proposed tackling initialization, iterative
updates, and disparity refinement. Wang et al. [2022] applied the idea in a multi-view stereo
problem and extracted depth probabilities along with a confidence measure from this hidden
state instead of a single depth value. The depth is computed as the local expected value
of this distribution around the highest probability. Zhao et al. [2022] replaced the GRU
modules of the iterative updates with an LSTM network and refined the disparity prediction
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using an error-aware hourglass network. Another modification to the iterative updates was
proposed by Zhao et al. [2023], who also use LSTM modules and decouple the disparity
map update from the hidden state. They further proposed normalization for an improved
disparity refinement and an attention mechanism for feature extraction. Xu et al. [2023a]
extended the correlation volume and built a geometry encoding volume to regress the initial
disparity and retain more feature information. Finally, Li et al. [2022] have shown a network
design that enables running the recurrent updates in a coarse-to-fine scheme across three
resolutions to improve efficiency. This aspect is also targeted by our work (Chapter 4) where
we replace the dense correlation volume with a sparse approach.

3.2 Frame Interpolation

Video frame interpolation is another long-standing problem in computer vision, that is
traditionally solved by splitting the problem into an optical flow estimation followed by the
actual interpolation. We discuss those methods in Section 3.2.1 and refer to Section 2.4 for
more details on optical flow and image warping. Those methods have been surpassed by
learning-based methods which can be roughly categorized as direct (Section 3.2.2), kernel
(Section 3.2.3), and motion-based methods (Section 3.2.4). See Fig. 3.1 for a visual summary
of the existing classes of approaches. We conclude this section with an overview of frame
interpolation benchmarks and metrics in Section 3.2.5 refer to the survey by Dong et al. [2023]
for a more exhaustive treatment.

3.2.1 Classical Methods

Early frame interpolation methods typically relied on optical flow vectors, which describe the
movement of points between images and as such are applicable both to view interpolation,
where both views are assumed to be recorded at the same time by different cameras, and
video frame interpolation, where the same – but potentially moving – camera observes a
scene at different times. Finding such correspondences between views goes back to the 1980s
with influential works such as Horn and Schunck [1981] and Lucas and Kanade [1981].

Once the optical flow is known, or estimated with sufficiently high quality, occlusion between
frames is a central problem for frame interpolation methods, as there are pixels for which
no match in the other frame exists. Herbst et al. [2009] studied those occlusion effects and
presented a frame interpolation method that explicitly integrates depth reasoning into the
algorithm. Another approach was presented a few years earlier by Zitnick et al. [2004] for
view interpolation, which used a two-layer representation. Based on those previous works,
Baker et al. [2011] included a simple, albeit efficient, algorithm for frame interpolation from
optical flow vectors as a baseline model in their evaluation suite.

At the same time, Werlberger et al. [2011] proposed a more complex solution by adapting
a TV-𝐿1-based denoising algorithm for frame interpolation using the precomputed optical

28



3.2 Frame Interpolation

𝑢

min𝑢 𝐸(𝑢)

(a) Optimization and Warping
Middlebury [Baker et al., 2011]

(b) Direct
FLAVR [Kalluri et al., 2023]

(c) Flow Network
FILM [Reda et al., 2022]

Transform
er

(d) Transformer
Chapter 5/VRT [Liang et al., 2022a]

(e) Kernel Prediction
AdaConv [Niklaus et al., 2017a]

(f) Kernel with Offsets
AdaCoF [Lee et al., 2020]

Figure 3.1: Overview of existing frame interpolation methods, both optimization-based traditional
approaches (a) and neural networks (b-f). The latter can mostly be distinguished by their approach
to motion compensation: While direct methods (b) do not handle motion explicitly, optical flow (c)
and kernel (e) approaches, as well as hybrid methods (f), use custom modules to improve feature
propagation. Lastly, transformer methods (d) aim at treating arbitrary sequences of frames instead of
just image pairs.
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flow. To this end, they aim to solve the following objective,

min
𝑢

∫
Ω×𝑇

|∇𝑣𝑢| + 𝜆(𝑥, 𝑡)∥𝑢 − 𝑓 | 𝑑𝑥 𝑑𝑡, (3.1)

where |∇𝑣𝑢| acts as a spatial and temporal regularization that includes the optical flow
𝑣 to temporally align the images, and the second term is the weighted data term. After
discretization, it is solved using the primal-dual algorithm by Chambolle and Pock [2011].
Rakêt et al. [2012] presented an approach based on reparametrizing the optical flow to the
intermediate frame and solved it using a bottom-up architecture. Other works have modeled
the deformation between frames using homographies of decomposed regions [Stich et al.,
2008] or posed it as an optimal control problem [Chen and Lorenz, 2011].

As an alternative to optical flow-based methods Meyer et al. [2015] presented a phase-based
method, which is built on the idea that some motions between frames can be represented
as a phase shift. They used a multi-scale pyramid and propose a bounded shift correction
based on the intuition that the movement of content between frames is similar for low and
high frequencies. Later, they presented an extension of their method [Meyer et al., 2018b],
that introduced supervised learning into their pipeline.

3.2.2 Direct Methods

Similar to most computer vision tasks, deep learning methods have demonstrated exceedingly
good performance for frame interpolation. In their seminal work Long et al. [2016] have
shown that training a CNN for frame interpolation based on videos alone can also solve the
image matching problem. Their architecture is based on the work of Dosovitskiy et al. [2015],
which introduced the first CNN-based optical flow method, and as such does not include
any motion compensation, as used by most later works presented in the following sections.
Later, Choi et al. [2020] introduced channel attention blocks in their method dubbed CAIN,
which is a deep convolutional network containing residual blocks operating on 1

8 resolution
through PixelShuffle [Shi et al., 2016]. Another method is FLAVR [Kalluri et al., 2023], which
adapts a classic 3D U-Net architecture for frame interpolation and hence can handle arbitrary
temporal context windows compared to the two neighboring keyframes used by previous
works. Despite their success, a common problem of those direct methods is that they struggle
with large motion, as convolutional networks are restricted in their receptive field and thus
cannot easily propagate information across the image. To improve the feature propagation, a
transformer-based architecture with convolutional layers was proposed by Liu et al. [2020b],
where all input frames are treated as tokens in the encoding and the target frames are added
as tokens in the decoding which are transformed into RGB in a final U-Net type network.

3.2.3 Kernel-Based Methods

Kernel-based methods aim to improve the propagation of features from keyframes to the
target frame. They were originally introduced by Niklaus et al. [2017a] in their method
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AdaConv (Adaptive Convolution) with the goal of not relying on the quality of the optical
flow estimate. In their method, a CNN predicts kernel weights for each image point that are
used to convolve patches from the input frames around those points. However, the kernels
need to have a sufficiently large size to handle large motions and in their work they predict
kernels of size 41 × 41, which limits the the sampling to 20 pixels in horizontal or vertical
direction at a relatively high memory demand, as the kernels alone require 26 GB for the
interpolation of a 1080p frame.

Various follow-up works have proposed different ideas to tackle this challenge. Foremost,
Niklaus et al. [2017b] presented an extension of their method named SepConv that separates
the large 2D kernel into two 1D kernels and hence reduces the memory requirement from
𝑛 × 𝑛 to 2𝑛. This technique was also used in their later work [Niklaus et al., 2021], where
they demonstrated that a variety of network and pipeline improvements of their method can
improve the results significantly to match the state of the art. As another optimization, hybrid
approaches between kernel- and motion-based methods have been proposed, that add an
offset prediction to efficiently handle large motion [Peleg et al., 2019; Cheng and Chen, 2020;
Lee et al., 2020], which can be seen as an adaption of deformable convolution networks of
Dai et al. [2017] for frame interpolation. Those architectures were adapted and improved by
many subsequent works. Cheng and Chen [2021] proposed an extension with an additional
bias estimator and added the temporal index as input to generate intermediate frames at
arbitrary times and Chen et al. [2021] included a coarse-to-fine offset estimation before
the deformable-convolution-based warping/blending. Another approach that splits the
interpolation into more stages was presented by Gui et al. [2020] who proposed a structure-
guided interpolation step based on deformable convolutions followed by a texture refinement
step based on EDVR [Wang et al., 2019]. Some researchers have proposed approaches that –
among other extensions – aim to improve the feature extraction of the model, either using
3D convolutions [Danier et al., 2022a] or a transformer-based architecture [Shi et al., 2022].
Liang et al. [2022a] also proposed to use transformer blocks in their video processing network
that can handle tasks like super-resolution and deblurring and can also be configured to
perform frame interpolation. Their method uses deformable convolutions to align features
from different frames and combine them using an attention mechanism. Their follow-up
work is conceptually more similar to the approach presented in Chapter 5 but does not work
for frame interpolation [Liang et al., 2022b]. More recently, Zhou et al. [2023b] proposed an
approach to improve the visual quality by using a cross-scale alignment of features and a
texture consistency loss in their training pipeline, which uses the census transform to find
the best match in the input frames and adds another 𝐿1 loss between the prediction and the
matched point.

3.2.4 Motion-Based Methods

Inspired by classical methods that rely on optical flow estimates and warping, various deep
learning methods have been proposed. They can be roughly categorized by the approach they
take to estimate and handle the optical flow. The two most prominent methodologies either
apply a forward warping by rescaling the flow vectors between the input frames [Niklaus
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and Liu, 2018; Niklaus and Liu, 2020; Hu et al., 2022] or estimate the flow vectors from the
intermediate frame to the keyframes and apply a backward warping [Park et al., 2020; Huang
et al., 2021; Park et al., 2021; Kong et al., 2022; Reda et al., 2022]. As an alternative to the
direct regression of the intermediate flow field, approaches to compute it from the flows of
the keyframes have been proposed. Jiang et al. [2018] sampled and rescaled the forward and
backward flow vectors at the same positions assuming a smooth flow field and trained a
network to reduce artifacts around boundaries. Similar to classical interpolation methods Bao
et al. [2019a] proposed to add estimated depth information for an improved resampling of the
optical flow using forward warping and fill the gaps by averaging the valid neighbors. In a
similar approach, Niklaus et al. [2023] proposed to adapt their softmax splatting interpolation
method [Niklaus and Liu, 2020] to compute the intermediate flow. More elaborate sampling
strategies combining various warping techniques and weighting/correlation have been
demonstrated by Sim et al. [2021], Lee et al. [2022], and Danier et al. [2022b].

One central assumption of most models is that the motion remains linear within the
observed time frame, which greatly simplifies rescaling and warping operations as well as
the prediction itself at the cost of accuracy. However, the prediction of non-linear flows from
just two input frames is ill-posed, which is why some researchers have proposed models
that operate on three or more input frames to accurately predict non-linear motion [Xu et al.,
2019; Liu et al., 2020a; Choi et al., 2021; Dutta et al., 2022; Liu et al., 2022c]. Alternatively,
approaches to predict non-linear motion using a learned prior from two input frames have
been proposed [Park et al., 2021; Liu et al., 2022b].

While the motion compensation techniques significantly improve the propagation of features
across the frames, large motion still poses a major challenge to many approaches. This is –
aside from the size of the search space – also an issue with the distribution of motion vectors
in the training data as shown by Reda et al. [2022], who also proposed a sampling strategy
to remove this prior from the training data and improve interpolation of large motions.
Alternative strategies include an adaptive hierarchy of the network architecture which also
enables high-resolution interpolation [Sim et al., 2021], or a two-step approach which first
narrows the temporal gap and subsequently performs another interpolation step [Argaw
and Kweon, 2022].

Several methods targeting more specific application scenarios than the general frame
interpolation have been proposed for improved performance. Siyao et al. [2021] presented a
method tailored to animated video content, where the interplay between sharp lines and
uniform colors needs to be faithfully reconstructed for a visually pleasing interpolation
and exaggerated/non-linear motions pose another challenge to the method. They used
the segmentation of the inputs to improve flow computation on untextured regions and an
iterative refinement to tackle those challenges. Targeting line art interpolation, an approach
based on interpolating graphs extracted from the input images was presented by Siyao et al.
[2023] with a transformer network for the features of the vertices and a visibility prediction
network to handle occlusion. For 3D rendering applications, it is possible to use additional
feature maps such as albedo, normal, or depth produced by the renderer for the interpolation
as demonstrated by Briedis et al., 2021. Their approach utilizes the feature maps of the target
frame, which can be computed significantly faster than the rendered images to improve
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the matching between frames and the compositing. In a following publication by Briedis
et al. [2023] they have shown interpolations with a kernel prediction for robustness that also
enables the interpolation of arbitrary additional content such as alpha masks. In addition,
they have shown an adaptive interpolation of longer sequences with an error prediction that
is conceptually similar to the work presented in Chapter 5.

Various other extensions and improvements have been proposed. Chi et al. [2022] split the
interpolation computation into three subnetworks based on the difficulty measured as the
estimated error from the optical flow. Liu et al. [2022a] used an attention mechanism for
frame fusion on multiple hierarchy levels in parallel and proposed an improved sampling
to overcome problems from imperfect flow predictions. More recent advances include
inter-frame attention [Zhang et al., 2023], bidirectional-flow estimation with novel pyramid
architectures [Jin et al., 2023a; Jin et al., 2023b], and improved correlation handling [Zhou
et al., 2023a].

3.2.5 Frame-Interpolation Evaluation

For a fair comparison of the aforementioned methods, common benchmarks, and train-
ing/evaluation procedures are necessary. We will provide a short overview of the most
commonly used datasets and metrics in this section.

Vimeo-90k [Xue et al., 2019] is one of the most commonly used datasets for training and
testing not only frame interpolation but also other video processing networks, containing a
total of 73,171 triplets and 91,701 septuplets at resolution 448 × 256 extracted from 89,800
video clips. For testing, popular choices are Middlebury [Baker et al., 2011], which was the
first dataset for this purpose, UCF101 [Soomro et al., 2012], SNU-Film [Choi et al., 2020],
which is split into four difficulty levels from easy to extreme, and X4K1000FPS or X-TEST [Sim
et al., 2021], which puts a focus on high resolution and large motion. In addition, HD [Bao
et al., 2019b] and Adobe240fps [Su et al., 2017] have been used.

To report the quality of the interpolated frame it is common to measure peak signal-to-noise
ratio (PSNR), structural similarity (SSIM), and the perceptual LPIPS [Zhang et al., 2018].
Note, that those metrics only evaluate the quality of the interpolated frame compared to the
ground truth, and not the quality of the resulting video as a whole, where different effects
like flickering blurring, or missing motion can have an immense impact on the perceived
quality and are not accurately covered by the above measures. To alleviate this to some
extent, measures like PFIQM [Yang et al., 2008] and VFIPS [Hou et al., 2022] have been
proposed, which aim at computing a quality score/perceptual similarity between videos.
Another benchmark was recently presented by Kiefhaber et al. [2024], to which we refer for
further insights into frame interpolation evaluation.
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3.3 Non-Line-of-Sight Reconstruction

Many different approaches to reconstruct the hidden scene from transient measurement
have been proposed, differing in the object representations and their faithfulness to the
underlying physical model, and most importantly the underlying measurement setup. We
will give an overview of the current literature, grouping those methods into backprojection
and transformation (Section 3.3.1) methods which typically represent the hidden scene
as an albedo volume, rendering, and optimization-based reconstructions (Section 3.3.2),
and all methods using (supervised) learning (Section 3.3.3). We close this section with a
brief summary of NLoS reconstruction approaches from different measurement modalities
(Section 3.3.4). For more details on the methods prior to 2020, we refer to Faccio et al. [2020].

3.3.1 Backprojection and Transformations

The transient measurement after a certain delay corresponds directly to the travel time and
hence distance of the light. Assuming a single reflection on the surface of the hidden object,
we know that the reflection must have happened somewhere on an ellipsoid, where the
laser position on the wall and the observed point are its foci. Back-projection methods were
initially introduced by Velten et al. [2012] and exploit this effect by projecting the measured
light into a heat map represented by a voxelized volume of the hidden scene. To reveal
the hidden shape, a filtering step using the second derivative is needed to process the heat
map. Subsequently, Arellano et al. [2017] presented a faster version of the back-projection
that formulates the problem as a voxelization of ellipsoids and uses GPU acceleration for
a fast implementation. One major advantage of those methods is that they pose relatively
few restrictions on the measurement setup: The laser/observation points do not need to
lie in a regular grid or even on a planar wall, only their positions must be known. On the
other hand, restricting the measurement setup enables other algorithms like the light-cone
transform (LCT) presented by O’Toole et al., 2018, which is tailored for a confocal setup, i.e. a
sequentially sampled regular grid of measurement points on the relay wall where each point
is both observed and illuminated. For this case, they derive a closed-form solution by writing
the problem as a 3D convolution using a change of variables and solving the deconvolution
efficiently in the Fourier domain. This approach was extended by Young et al., 2020 to
reconstruct surface normals along with the volumetric albedo. Specifically for the application
to long-range NLoS reconstruction, Wu et al. [2021a] presented an iterative 3D deconvolution
method. A different angle to approach to problem was presented by Lindell et al. [2019b] by
modeling the light propagation using the wave equation. The reconstruction is achieved by
solving a boundary value problem where the observation for one spatial slice at all times is
given and needs to be migrated to the virtual emission at time 0 in space that is the object
surface. This is realized using the 𝑓 -𝑘 migration and they also demonstrate a pre-processing
step that makes it applicable for certain non-confocal measurements. Another wave-based
approach was presented by Liu et al. [2019b] using a virtual light field model and posing the
problem in a way that is equal to solving the Rayleigh-Sommerfeld diffraction integral. This
method was later adapted by Nam et al. [2021] to work in real time through a remapping of
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measurements from custom SPAD arrays. Xin et al. [2019] present a theory of Fermat paths
that allows to identify scene geometry from discontinuities in the measurements which can
be projected using the spatial derivatives. It is noteworthy that the forward model with
the albedo volume is conceptually similar to that of computed tomography scanning, as
described by Gupta et al. [2012], where the integration is done over ellipsoids instead of lines
and the output has a higher dimensionality.

3.3.2 Optimization and Rendering

The previous approaches mostly exploit simplified models of the image formation that are
invertible to some extent to find an approximate solution. To capture more complex effects for
a better reconstruction, the image formation can be modelled in a more physically accurate
or plausible manner to find a solution via optimization of the scene parameters. Pediredla
et al. [2017] proposed a reconstruction of the walls of a room from transient measurements
using a dictionary-based optimization approach. For a volumetric reconstruction of the
full hidden scene, Heide et al. [2019] solve the problem via an alternating least-squares
optimization of a factorization that includes visibility and normals along with the time-
dependent transport matrix modeling the time-of-flight. The first rendering-based approach
was presented by Tsai et al. [2019]. They implemented a transient renderer using the three
bounce assumption and compute the image and derivative integrals using Monte Carlo
integration. They optimize a triangle mesh representation in a coarse-to-fine manner and
apply re-meshing to avoid degradations of the surface structure. An alternative analysis-
by-synthesis reconstruction approach was presented by Iseringhausen and Hullin [2020],
where they use central differences to optimize Gaussian blobs, which are meshed using
marching cubes and efficiently rendered through a GPU implementation including temporal
filtering specifically tailored to the three bounce NLoS reconstruction case. Since the
optimization is relatively slow, we present a more efficient implementation based on gradient
backpropagation in Chapter 6. The restriction to three bounces was lifted by more general
renderers as presented by Yi et al. [2021], who demonstrate tracking of an object around
two corners, and Wu et al. [2021b], who also show the optimization of a hidden shape. An
alternative research direction aims at finding scene representations better suited for inverse
rendering approaches. Inspired by advances in novel view synthesis, Shen et al. [2021a]
proposed a neural transient field that replaces voxel volume albedo representations by a
neural network. Two other methods using implicit scene parameterizations were presented
by Choi et al. [2023] and Fujimura et al. [2023].

3.3.3 Learned Reconstruction

Similar to the other problem domains, learning-based methods have been introduced to
solve the NLoS reconstruction task. Grau Chopite et al. [2020] use a 3D U-Net architecture
to process the transient measurements, followed by an upsampling and regression step
to regress depth maps and train their method on synthetically rendered transient images.
Chen et al. [2020] propose to predict a volumetric feature representation of the hidden scene
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by extracting feature vectors from the transient image, which are propagated into the 3D
scene using 𝑓 -𝑘 migration and transformed with another embedding block before further
task-specific processing. While other (differentiable) methods like filtered back-projection or
LCT can be used for the propagation, 𝑓 -𝑘 migration yielded the best results. The method is
trained end-to-end for 2D image and depth rendering, RGB-D reconstruction, classification,
and object detection. The importance of the underlying model-based propagation is also
highlighted by Mu et al. [2022], who demonstrate a similar approach but for non-confocal
measurements using a vectorized version of the Rayleigh-Sommerfeld diffraction of Nam
et al. [2021]. As an alternative to the feature volume representations described above, Grau
et al. [2022] propose to train a neural network to predict occlusion fields motivated by the
observation, that some parts of the hidden object’s surface are not visible from any point on
the relay wall due to occlusion, making their recovery from the measurement impossible.
Their implementation is based on occupancy networks for shape reconstruction [Mescheder
et al., 2019; Peng et al., 2020] and trained on synthetic data with a binary-cross-entropy loss
on sampled points. More recently, Li et al. [2023] have demonstrated improved results for
NLoS RGB-D reconstruction from a transformer-based architecture for the feature processing
after the feature propagation using 𝑓 -𝑘 migration as described above.

3.3.4 Miscellaneous Modalities

Aside from the hardware specifications and the arrangement of the laser and observation
points on the relay wall, the previous methods all worked with data captured in a similar
methodology. In this section, we will briefly outline alternative capture modalities and
processing methods for NLoS reconstruction. As capturing a transient image requires
expensive hardware Heide et al. [2013] propose to capture data from photonic mixer
devices (PMDs) and reconstruct a transient image solving the inverse problem with several
regularization terms and an alternating optimization. This work was extended to reconstruct
the hidden geometry from PMD measurements [Heide et al., 2014]. Another phase-
modulation-based approach was presented by Kadambi et al. [2016], who apply beamforming
for the localization of the hidden target. Reducing the capturing hardware requirements
even further Klein et al. [2016] propose to track hidden objects from steady-state images of
the wall with an additional coherent laser illumination solving a non-linear optimization
problem using numerical derivatives of the forward model. Smith et al. [2018] present
tracking from speckle images exploiting the movement of the hidden objects in the scene.
Finally, Lindell et al. [2019a] have shown NLoS imaging from audio signals captured using
an array of speakers and microphones and reconstructed through the LCT.
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Chapter 4

VHS: High-Resolution Iterative Stereo
Matching with Visual Hull Priors

In this chapter, we discuss the contributions and results developed in the following publication
which already appeared as a preprint.

Markus Plack, Hannah Dröge, Leif Van Holland, and Matthias B. Hullin.
“VHS: High-Resolution Iterative Stereo Matching with Visual Hull Priors.”
arXiv preprint arXiv:2406.02552, 2024.
doi: 10.48550/arXiv.2406.02552

In the following, we include a verbatim copy of the content of this work subject to some
minor editorial changes.

Author Contributions of the Publication I realized the network based on the implementa-
tion of Xu et al. [2023a] and developed the additional functions for efficient correlation. The
visual hull code was provided by Patrick Stotko and all remaining scripts were implemented
by me. In addition, I executed the training and evaluation of the models based on discussions
with my co-authors. The schematic figures were provided by Hannah Dröge and Leif Van
Holland, who also contributed greatly to the whole text.

Abstract

We present a stereo-matching method for depth estimation from high-resolution images
using visual hulls as priors, and a memory-efficient technique for the correlation computation.
Our method uses object masks extracted from supplementary views of the scene to guide
the disparity estimation, effectively reducing the search space for matches. This approach is
specifically tailored to stereo rigs in volumetric capture systems, where an accurate depth
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plays a key role in the downstream reconstruction task. To enable training and regression
at high resolutions targeted by recent systems, our approach extends a sparse correlation
computation into a hybrid sparse-dense scheme suitable for application in leading recurrent
network architectures.

We evaluate the performance-efficiency trade-off of our method compared to state-of-the-art
methods, and demonstrate the efficacy of the visual hull guidance. In addition, we propose
a training scheme for a further reduction of memory requirements during optimization,
facilitating training on high-resolution data.

Masks from
Auxiliary Views

Stereo Pair

Sparse Init.

Weak Prior

Visual Hull

Strong Prior

Disparity Map

k
h

w
Dense Refinement

Limits

Figure 4.1: We propose a technique to induce a rough shape estimate from object masks (top) as prior
information to a novel, sparse-dense stereo-matching network (bottom) for the application in capture
stages (left) for accurate and memory-efficient disparity estimation (right).

4.1 Introduction

Stereo matching is a long-standing problem in the area of computer vision, driving core
functionality in a wide range of applications, for example in the automotive industry, virtual
and augmented reality systems, as well as in medical imaging, agriculture, remote sensing,
and robotics domains. Recently, interest surged in telepresence and virtual production
scenarios that use volumetric capturing systems [Collet et al., 2015; Orts-Escolano et al., 2016;
Guo et al., 2019a; Heagerty et al., 2024], which rely on fast and accurate depth estimates
for downstream reconstruction tasks. The disparity regression problem is typically solved
by initially computing the matching cost between a stereo image pair or a suitable feature
representation thereof and searching for the best correspondences along the epipolar lines
resulting in a highly irregular cost landscape. Challenges include occlusion, view-dependent
reflectivity, repetitive patterns, and insufficient calibration accuracy. With the rise of deep
learning in the domain of computer vision, classical matching methods [Barnard and
Thompson, 1980; Mühlmann et al., 2002; Scharstein and Szeliski, 2003; Hamzah and Ibrahim,
2016] are surpassed by data-driven approaches [Mayer et al., 2016; Kendall et al., 2017; Guo
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et al., 2019b; Xu and Zhang, 2020]. Recently, so-called all-pairs-correlation networks based on
the optical flow network RAFT [Teed and Deng, 2020] have shown to perform remarkably well
when applied in the stereo matching context [Lipson et al., 2021]. Those methods compute
a dense correlation volume for all possible matches and perform stereo regression in an
iterative fashion akin to gradient descent methods. One distinct drawback of such approaches
is that the size of the full correlation volume scales quadratically with the horizontal input
resolution, limiting their applicability on high-resolution inputs. One solution to reduce the
prohibitive memory requirement is to use sparse representations [Wang et al., 2021c] that
only store the 𝑘 most relevant entries of the correlation volume, similar to 𝑘-nearest-neighbor
(𝑘NN) methods. While this still requires the computation of all correlation values, which
does not reduce the computational costs, the memory demand only scale linearly with
respect to the horizontal input resolution, but possibly discards valuable information.

In contrast, we propose a sparse-dense approach that allows us to consider all disparities,
avoiding the limitations associated with missing values in sparse representations. We
calculate disparities using a sparse method initially, followed by a refinement in a memory-
efficient dense manner. As a crucial step to reduce the amount of sparse candidates, we
propose to employ the visual hull [Laurentini, 1994] as a rough shape estimate that reduces
the set of valid disparities to points inside the hull. The foreground segmentation masks
required for this are available through the use of chroma-keying [Raditya et al., 2021] or more
sophisticated image-level segmentation approaches [Guo et al., 2019a] in many capturing
scenarios and thus the visual hull can be computed easily. During the refinement step, we
can further use the hull as a weak prior.

In summary, our contributions are as follows:

• We present a method to induce prior knowledge of visual hulls from auxiliary views
into a recurrent stereo-matching network to reduce the initial disparity search space
and as guidance for the iterative refinement.

• We demonstrate a sparse-dense correlation method that effectively reduces peak
memory requirements while retaining the accuracy of all-pairs correlation methods
through just-in-time computation for the updates.

• We propose an optimization scheme to realize high-resolution training of recurrent
stereo network architectures and show how the visual hull-guided network can benefit
from pre-training on conventional training data by making the input optional.

We share the model and training implementation of our Visual Hull Stereo (VHS) network
and the custom kernels along with the data used for training and testing at https://github.
com/unlikelymaths/vhs.

4.2 Related Work

Learning-based methods using correlation volumes to predict accurate disparity maps have
shown great potential in stereo matching. We briefly review approaches for generating cost

41

https://github.com/unlikelymaths/vhs
https://github.com/unlikelymaths/vhs


Chapter 4 VHS: High-Resolution Iterative Stereo Matching with Visual Hull Priors

volumes and discuss previous work on further refinement of the disparities by iterative
update methods before giving an overview of stereo vision approaches targeting efficiency
aspects.

4.2.1 Matching Cost Volume

Recent developments in end-to-end learning approaches for cost volumes have successfully
captured the similarity of pixel pairs across varied degrees of disparity in stereo matching
[Mayer et al., 2016; Kendall et al., 2017; Zhang et al., 2019; Gu et al., 2020].

In this context, Mayer et al. [2016] introduced a method based on correlation for calculating
cost volume, followed by subsequent work [Liang et al., 2018; Tonioni et al., 2019]. This
approach measures the correlation between the features of two images within a 1D correlation
layer applied horizontally along the disparity line.

Concatenation-based methods [Chabra et al., 2019; Nie et al., 2019; Li et al., 2022; Abd Gani
et al., 2024], on the other hand, follow a different strategy. Kendall et al. [2017] concatenated
unary features with their corresponding features along the disparity line. They generated
a 4D cost volume, subsequently processed through an encode-decoder network with 3D
convolutions across spatial dimensions and disparity. To further regularize the 4D cost
volume, Chang and Chen [2018] discussed the implementation of a learned regularization
using a stacked hourglass network. Addressing the lack of explicit similarity measures in
previous concatenation-based approaches, Guo et al. [2019b] proposed integrating group-
wise correlations into the 4D cost volume by dividing features into sub-groups and calculating
correlations for each. To improve the performance even in regions with less texture, recent
work [Xu et al., 2022] filters the concatenation volume with attention weights to suppress
unnecessary information.

To overcome storage and runtime limitations, cascading cost volumes were created by building
a cost volume pyramid and progressively refining depth estimation with a coarse-to-fine
technique [Gu et al., 2020]. Other cascade formulations have been proposed for even higher
resolutions [Wang et al., 2021b] or address unbalanced disparity distributions [Shen et al.,
2021b].

4.2.2 Iterative Updates in Stereo Matching

Initially proposed for optical flow estimation, deep learning approaches have successfully
employed traditional optimization methods using learned updates to improve performance.
These methods refine disparity maps through successive updates, as demonstrated by RAFT
(Recurrent All-Pairs Field Transforms) [Teed and Deng, 2020]. RAFT consists of a feature
encoding step, computation of correlation volumes containing the correlations between all
pixel pairs, and a learned update operator that iteratively updates the optical flow estimation
based on the correlation volumes. Based on this, Lipson et al. [2021] introduced an adaptation
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of RAFT for stereo disparity estimation, called RAFT-Stereo, which recurrently updates the
disparity map using local cost values.

Several works introduced modifications to this idea. IGEV-Stereo [Xu et al., 2023a] introduces
the geometry encoding volume to extend the all-pairs correlation volume and regress a
better initial disparity. Instead of using the GRU to update the flow field, Wang et al. [2022]
repurposed it to predict the depth probability of each pixel. Zhao et al. [2023] propose
improvements in the iterative process to preserve detail in the hidden state by decoupling
the disparity map from the hidden state and implementing a normalization strategy to
handle large variations in disparities. EAI-Stereo [Zhao et al., 2022] replaced the GRU with
an error-aware iterative module.

4.2.3 Efficiency

In a structured light setting [LeMoigne and Waxman, 1988; Vuylsteke and Oosterlinck, 1990;
Martinez and Stiefelhagen, 2013], projected patterns are designed to uniquely identify the
depth of objects at each position. Hence, the problem can be solved more efficiently for
known light patterns, as demonstrated by e.g. Hyperdepth [Fanello et al., 2016] using a
random forest approach and the branching network in Gigadepth [Schreiberhuber et al.,
2022]. Note that this is different from our setting based on the work of Guo et al. [2019a]
where multiple, potentially overlapping, patterns are projected into the scene.

Turning to wider stereo vision challenges, the bottleneck with cost volumes is their large
search space, which requires considerable computation and storage to find the desired
disparity. Khamis et al. [2018] reduced the computational cost by refining the disparity from
a low-resolution cost volume through multiple levels of resolution. Additionally, recent
works [Bangunharcana et al., 2021; Wang et al., 2021d] stress real-time disparity estimation
in stereo vision. While Shamsafar et al. [2022] relies on lightweight architectures to optimize
resources, Garrepalli et al. [2023] introduced DIFT as a mobile architecture for optical flow
that uses just-in-time computation of the correlation to reduce peak memory use and served
as the inspiration for our correlation computation in the iterative updates. SCV-Net [Lu et al.,
2018] builds a sparse correlation volume that resembles dilated convolutions controlled via a
fixed sparsity value and without dependence on the inputs. Lastly, SCV-Stereo [Wang et al.,
2021c] is an alternative approach to sparse correlation volumes. Different from their method,
we use 𝑘NN correlation for the initial disparity estimate instead of zero initialization and
compute dense correlations on an ad hoc basis during the iterative stages.

4.3 Visual Hull Stereo

The overall structure of our method is based on RAFT-Stereo [Lipson et al., 2021] and is
shown in Fig. 4.2. It consists of three stages. First, the pair of input images is encoded into a
feature representation using a pre-trained encoding network. These features are then used
to compute an initial correlation cost volume. Together with prior information attained from
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a set of image masks of the scene, a sparse set of 𝑘 disparities with the highest correlation
values is selected from which an initial disparity value is estimated (Sections 4.3.1 and 4.3.2).
Following, the disparity is iteratively refined using a Convolutional Gated Recurrent Unit
(ConvGRU)-based network and upsampling network [Xu et al., 2023a], without the need to
hold the full cost volume in memory at any time (Section 4.3.3).

Visual Hull Prior

VH filtering
+ 𝑘NN

𝑘
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Stereo Image Pair Feature Ext. Initial Disparity Iterative Refinement with ConvGRU

Figure 4.2: Overview of the three stages of our disparity estimation network VHS. Following the
Feature Extraction we compute an Initial Disparity estimate𝐷0 from a sparse 𝑘NN cost volume restricted
by the visual hull. Next, we perform an Iterative Refinement of the disparity guided by the visual hull
prior using ConvGRU modules and dense local correlations with window size 𝑘′.

4.3.1 Sparse Correlation

Given a rectified stereo pair, we use a shared feature encoding network [Xu et al., 2023a] to
extract features at 25% of the original image size. This representation is used to compute an
initial set of the 𝑘 best matches. First, we define the cost 𝑐𝑝(𝑑) ∈ R of disparity 𝑑 ∈ [0, 𝑤] at
pixel 𝑝 ∈ N2 as the inner product of the corresponding feature vectors 𝑓𝑝 , 𝑔𝑝−(0,𝑑)𝑇 , from the
left and right pictures of size ℎ × 𝑤, where 𝑔𝑝−(0,𝑑)𝑇 represents the feature vector at the pixel
in the right image offset by 𝑑:

𝑐𝑝(𝑑) = 𝑓𝑝 · 𝑔𝑝−(0,𝑑)𝑇 (4.1)

Storing the full set of correlation values at high resolutions can be inefficient and resource-
intensive, as the dense cost volume scales quadratically with the image width when the
maximal disparity is properly adjusted. To decrease the memory requirements, we instead
use a sparse correlation cost volume, which assigns to each pixel 𝑝 a much smaller subset of
correlation values 𝑐 and corresponding disparity values 𝑑,

ℳ𝑝 = {(𝑑, 𝑐𝑝(𝑑)) | 𝑑 ∈ 𝒟𝑘NN
𝑝 }, (4.2)

where 𝒟𝑘NN
𝑝 represents the set of 𝑘 best disparities for each pixel:

𝒟𝑘NN
𝑝 = arg max

�̃�𝑝⊂𝒟𝑝 ,|�̃�𝑝 |=𝐾

∑
𝑑∈�̃�𝑝

𝑐𝑝(𝑑) (4.3)

Here, 𝒟𝑝 is the set of all disparity candidates for pixel 𝑝.

44



4.3 Visual Hull Stereo

𝑏𝑚𝑖𝑛𝑝 𝑏𝑚𝑎𝑥𝑝

Figure 4.3: Estimation of the disparity boundaries (𝑏𝑚𝑖𝑛𝑝 , 𝑏𝑚𝑎𝑥𝑝 ), from two rectified views of an object’s
visual hull. The visual hull encloses the objects’ surface, so the surface is guaranteed to lie within the
disparity boundaries.

4.3.2 Visual Hull Prior

This search for the best candidates can be further improved by inducing a prior based on
image masks from the scene. The visual hull, as defined by Laurentini [1994], provides an
efficient approximation of an object’s shape derived from silhouettes captured by multiple
cameras. In adherence to the representation proposed by Scharr et al. [2017], we compute
the visual hull using a collection of masked input images, which is stored within an octree
structure for compact storage and fast access. The octree is designed such that each leaf node
indicates whether it is inside or outside the visual hull. Given this information, we calculate
the hull boundaries by sampling rays projected into the scene from the reference view and
evaluating these rays for transitions between outside and inside regions of objects. From
these transitions, we create depth limits for each camera viewpoint and define disparity
boundaries 𝑏𝑝 = (𝑏𝑚𝑖𝑛𝑝 , 𝑏𝑚𝑎𝑥𝑝 ) based on pixel location 𝑝, as illustrated in Figure 4.3. The
insight that the surfaces of the objects are confined within the interval [𝑏min

𝑝 , 𝑏max
𝑝 ] can be

leveraged to reduce computational requirements when computing the initial disparity map
𝐷0.

We streamline the 𝑘-nearest-neighbor search, previously performed across an expansive set
of disparity candidates 𝒟𝑝 for pixel 𝑝 as described in (4.3), by focusing only on disparities
constrained within 𝑏𝑝 :

𝒟∗
𝑝 = {𝑑 | 𝑏𝑚𝑖𝑛𝑝 ≤ 𝑑 ≤ 𝑏𝑚𝑎𝑥𝑝 }, 𝒟∗

𝑝 ⊆ 𝒟𝑝 (4.4)

This approach allows for a faster computation of the restricted correlation cost volume ℳ∗
𝑝

by skipping unnecessary evaluations of the correlation. Accordingly, we define our initial
disparity map as follows:

𝐷0
𝑝 =

𝐾∑
𝑙=1

𝑑𝑙 · 𝑔(𝑐𝑝(𝑑))𝑙 , (𝑑, 𝑐𝑝(𝑑)) ∈ ℳ∗
𝑝 (4.5)
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where 𝑔 is an attention-based transformation network with a softmax function as the last
layer.

4.3.3 Iterative Disparity Refinement

We use a hierarchical ConvGRU network on three resolutions to iteratively refine the predicted
disparities starting with the initial values𝐷0

𝑝 , similar to Xu et al. [2023a]: The network updates
a hidden state 𝐻 𝑖 taking the current disparity values and contextual features extracted from
the corresponding image data, and the correlated features around the current disparity
estimate as input. The new state is used to predict an offset Δ𝑖𝑝 from which the refined
disparity values are computed as

𝐷 𝑖+1
𝑝 = 𝐷 𝑖

𝑝 + Δ𝑖𝑝 . (4.6)

Memory Efficient Correlation Instead of sampling correlation values from a pre-computed
full cost volume, we propose to compute a local correlation volume ad hoc to reduce memory
usage. This volume is bounded within a window𝑊 𝑖

𝑝 of size 2𝑟 + 1, which is centered on the
currently estimated disparity 𝐷 𝑖

𝑝 ,

𝑊 𝑖
𝑝 = [𝐷 𝑖

𝑝 − 𝑟, 𝐷 𝑖
𝑝 + 𝑟], (4.7)

where we fix 𝑟 = 4 following Xu et al. [2023a]. We compute the correlations group-wise,
as originally proposed by Guo et al. [2019b], by dividing the feature vectors into a set
of subgroups. Please note that, for the initial disparity 𝐷0

𝑝 , we strategically omitted the
group-wise correlation calculation. This is due to the complexity of uniquely defining 𝑘NN
for group-wise correlations, ensuring that our approach remains computationally efficient.

Visual Hull as Weak Prior As additional information, we supply the ConvGRU with a flag
𝑓𝑝(𝑑) that guides the network to predict a value within the visual hull,

𝑓𝑝(𝑑) =
{

1 if 𝑑 ∈ 𝐷∗
𝑝 ,

−1 otherwise
(4.8)

for each disparity value 𝑑 within the window𝑊 𝑖
𝑝 . In that way, the limits 𝑏𝑝 obtained from the

visual hull operate as a weak prior guiding the disparity regression while retaining valuable
correlation information for cases such as incorrect limits due to masking errors.

One distinct advantage of our visual hull guidance is that the disparity limits are an optional
input to the whole pipeline. During the initial sparse correlation, we can fall back to sampling
from all values below a pre-defined threshold in the same manner as established models,
and during the dense updates, we set 𝑓𝑝(𝑑) = 0 to indicate missing information. This enables
the application of our sparse correlation method even without masked measurements and
pre-training of our method on existing datasets.
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(a) Reference Image (b) Ground Truth Disparity

(c) Disparity Limit 𝑏𝑚𝑖𝑛 (d) Disparity Limit 𝑏𝑚𝑎𝑥

Figure 4.4: Sample from the FlyingObjaverse training dataset. Notice how the true disparity is close
to the upper disparity limit except for the basin in the bottom right, which cannot be recovered from
the visual hull.

4.4 Training Details

Given the particular nature of our method in terms of target application and required inputs,
a boilerplate training procedure following the literature would be unproductive. Therefore,
we present custom training details tailored to our use case, covering the preparation of custom
data along with training strategies. We further introduce a memory-efficient approach
enabling training at even higher resolutions.

4.4.1 Dataset Preparation

Common stereo datasets like SceneFlow [Mayer et al., 2016] do not contain ground truth
meshes or auxiliary views, which prevents the extraction of a meaningful visual hull. As
an alternative, we render a custom dataset with Mitsuba 3 [Jakob et al., 2022] and meshes
from Objaverse-XL [Deitke et al., 2023] to train our network. The dataset generation loosely
follows the approach of SceneFlow by placing objects on a virtual capture stage. Each scene
contains a randomly transformed arrangement of 1 − 10 objects, as shown in Fig. 4.4, with
an infrared camera stereo setup using active illumination with projected patterns similar
to Guo et al. [2019a] and a total of 68 cameras for the masks, all captured at a resolution
of 4608 × 5328. We render 2 stereo pairs for 500 scenes. For testing, we follow the same
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rendering pipeline but select meshes from different sources to avoid contamination of the
training dataset. To test performance on difficult lighting effects, we curated scenes with
objects that include challenging reflectance properties and fine details using high-quality
meshes from Polyhaven1 and build eight scenes, each viewed from four different angles.
As a second test set, we used SMPL [Loper et al., 2015] human models with texture from
SMPLitex [Casas and Trinidad, 2023] to evaluate performance on human subjects. We create
100 scenes by combining random poses from the animations with random textures and
render 2 stereo pairs for each scene.
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Figure 4.5: Memory efficient training scheme for 𝑛 = 2 consecutive update steps. After the computation
of the losses ℒ𝑖 and ℒ𝑖+1, we perform backpropagation to accumulate gradients of the update network
parameters and detach the hidden state effectively freeing the computational graph.

∑
Δ indicates an

optional accumulation of gradients to avoid multiple backward passes through the feature extraction
network.

1 https://polyhaven.com/
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4.5 Experiments

4.4.2 Training Strategy

Having the visual hull guidance as an entirely optional component, allows our method
to harness a more flexible training process and to predict the disparity map even without
any pre-calculated masks. We use this flexibility in our experiments by pre-training a base
model on Sceneflow [Mayer et al., 2016] and subsequently fine-tuning the network on our
custom training data. The training is performed on SceneFlow final pass for 20 epochs
using AdamW [Loshchilov and Hutter, 2017] with a one-cycle learning rate schedule with a
learning rate of 0.00015 and a batch size of 4. We use random crops of size 288× 640, random
y-jitter and occlusion as augmentation, and an 𝐿1 loss following the weighting of RAFT-
Stereo [Lipson et al., 2021]. This model serves as our baseline for a benchmark evaluation
on the SceneFlow test set. Subsequently, the network is fine-tuned on the simulated data of
Objaverse-XL (Section 4.4.1) for high-resolution stereo following the same settings, except for
a magnified random cropping of 256 × 2048, batch size of 1 and with the additional visual
hull inputs, which we randomly drop for 1

8 of the samples. Note that we use RGB inputs
for the benchmark comparison and greyscale for the simulation of IR images for all other
experiments.

Memory Efficient Training During the training of most iterative methods, each update
of the disparity consumes more VRAM since the full compute graph needs to be stored
in memory. We propose to split the forward and backward computation in a manner that
reduces the memory requirement while still retaining accurate gradient information as
shown in Fig. 4.5. For 𝑛 consecutive update steps we compute the losses on the upscaled
disparity predictions as usual. Then, we backpropagate the partial loss and detach the
hidden state such that the computational graph can be erased. To avoid multiple backward
passes through the costly feature extraction network, we propose to optionally accumulate
all gradients for the feature vectors first before performing a final backpropagation after all
iterations are through.

Technical Details Using CUDA, we build a visual hull octree from rendered masks from
which the disparity limits are computed. Our network is implemented in Pytorch with
custom CUDA kernels for the correlation computations and we use warp-level shuffle
operations to make the initial 𝑘NN correlation computation efficient. As such, the number
of candidates is limited to 32, but we use 8 for all experiments following Wang et al. [2021c].
All our experiments were conducted on an NVIDIA GeForce RTX 4090.

4.5 Experiments

We evaluate our method in terms of average end-point error (EPE) in pixels, proportion of
errors (> 4px in %) and the D1 outlier rate [Menze and Geiger, 2015]. Runtime and video
memory measurements follow the literature and employ automatic mixed precision.
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Method #Params EPE≤192 EPEall

CascadeStereo [Gu et al., 2020] 10.5M 0.67 3.30
CFNet [Shen et al., 2021b] 23.0M 0.96 3.06
CoExNet [Bangunharcana et al., 2021] 3.5M 0.69 3.36
FADNet++ [Wang et al., 2021d] 12.4M 0.88 3.55
GwcNet [Guo et al., 2019b] 6.9M 0.76 3.52
IGEV-Stereo [Xu et al., 2023a] 12.6M 0.48 3.01
MSNet2D [Shamsafar et al., 2022] 2.3M 1.11 3.76
MSNet3D [Shamsafar et al., 2022] 1.8M 0.79 3.44
PSMNet [Chang and Chen, 2018] 5.2M 1.02 3.69

VHS (ours) 12.7M 0.89 2.33

Table 4.1: Comparison on SceneFlow final pass test set using the model implementations from Guo
et al. [2023].

Prior EPEall EPEnoc > 4pxall D1all

No 1.48 0.83 4.6 0.93
Initial 1.29 0.75 4.3 0.68
Update 1.04 0.57 3.3 0.46
Both 0.98 0.55 3.2 0.40

Table 4.2: Ablation of the visual hull guidance on the Polyhaven Test set.

4.5.1 Benchmark Evaluation

We first validate the correctness of our sparse-dense correlation network compared to the
state-of-the-art, with all methods being trained on SceneFlow. Table 4.1 shows that our
method performs competitively in terms of EPE for disparities within the range that all
methods can handle. Specifically, for pixels with true disparities less than or equal to
192 (EPE≤192), our method matches with FADNet++ [Wang et al., 2021d], with only three
methods achieving better scores. Notably, when evaluated on all pixels (EPEall), our method
surpasses all baseline models as we do not have any upper limit to the possible disparity.

Also, our method requires less memory during both inference and training as shown in
Fig. 4.8 and is as fast as IGEV-Stereo [Xu et al., 2023a] during inference while having a minor
runtime overhead during training.

4.5.2 Visual Hull Guidance

To further demonstrate our performance on high-resolution data with larger disparities
using the additional visual hull input, we evaluate our method on the two test datasets after
fine tuning on the training dataset as described in Section 4.4.1. As shown in Table 4.3, our
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Reference
Full 4608 × 5328

GT Disparity
445 − 721 / 596 − 698

CoExNet
EPE: 3.62 / 1.65

IGEV-Stereo
EPE: 1.14 / 0.92

VHS (ours)
EPE: 0.24 / 0.42

Figure 4.6: Qualitative results compared to IGEV-Stereo [Xu et al., 2023a] and CoExNet [Bangunharcana
et al., 2021] on samples from the Polyheaven and SMPL test sets. Note the faithful reconstruction of
the plates (top) and the chest (bottom) produced by our method. We show the range of disparity
values below the GT disparity and the EPE below the methods.

method outperforms all other methods on both the Polyhaven and SMPL datasets across all
metrics. Specifically, we achieve significantly lower EPEall and EPEnoc which indicates higher
overall accuracy, and a higher accuracy in non-occluded regions. We further highlight the
robustness of our method by showing the lowest percentage of pixels with large disparity
errors (> 4pxall, D1all). We present qualitative results in Fig. 4.6. Note that most baseline
models cannot perform inference on the full resolution inputs using common hardware as
they exceed the available memory (24 GB in our case) and cannot capture the large disparity
values in our data as the correlation volumes are typically limited to 192 pixels. For this
evaluation, we resort to running the models on 2× or 4× downsampled input images and
reduce the offsets by aligning them using the known minimum ground-truth disparity of
the foreground, selecting the best variant of both resolutions based on the smallest EPE.

To study the performance benefit of the visual hull, we perform an ablation study on the
Polyhaven test set, as shown in Table 4.2. While applying visual hull guidance only for the
initial disparity calculation already shows a minor improvement across all metrics compared
to an uninformed run, the weak prior during the iterative updates yields a major gain.
Ultimately, we achieved the best results by employing visual hull guidance in both phases.
The improvement is particularly remarkable considering that the majority of the object points
do not lie directly on the visual hull.

As the quality of the visual hull depends on the correctness of the masks, we additionally
study the influence of incorrect matting on the performance of our method in Fig. 4.7. We
find that our method is robust against binary dilation on the masks, while larger binary
erosion reduces the accuracy. Intuitively, this makes sense as a correct visual hull always
encloses the true surface, which is also the case for “inflated” visual hulls from dilated masks,
while “deflated” hulls from eroded masks violate this assumption.
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Method Polyhaven SMPL
EPEall EPEnoc > 4pxall D1all EPEall EPEnoc > 4pxall D1all

CascadeStereo [Gu et al., 2020]† 16.97 14.37 31.1 6.77 8.31 6.51 13.8 2.97
CFNet [Shen et al., 2021b]† 14.50 11.98 31.4 7.80 13.28 12.48 9.8 3.74
CoExNet [Bangunharcana et al., 2021]* 9.78 8.57 25.9 7.21 2.98 2.38 8.6 1.56
FADNet++ [Wang et al., 2021d]* 11.44 10.49 25.3 7.82 2.67 1.85 6.8 1.64
GwcNet [Guo et al., 2019b]† 19.97 17.04 35.8 9.60 11.27 10.34 14.9 3.86
IGEV-Stereo [Xu et al., 2023a]* 5.22 4.10 16.6 3.94 1.68 1.27 6.2 0.83
MSNet2D [Shamsafar et al., 2022]† 10.08 8.69 44.2 5.67 5.24 4.44 28.9 2.38
MSNet3D [Shamsafar et al., 2022]† 14.41 11.95 32.3 7.65 9.78 8.36 12.3 3.40
PSMNet [Chang and Chen, 2018]† 13.19 11.28 37.8 6.11 17.38 16.31 17.9 4.55

VHS (ours) 0.98 0.55 3.2 0.40 0.54 0.41 0.9 0.10

Table 4.3: Comparison on our data using the model implementations from Guo et al. [2023]. Methods marked with * run on half resolution
with inputs aligned to set minimum disparity to zero. † on quarter resolution with inputs aligned to set minimum disparity to zero.
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Figure 4.7: Correlation between mask accuracy and EPE, demonstrating the method’s robustness to
binary dilations to the correct mask.

Variant Full Backprop. Detached Features
GB ms GB ms

- 14.18 377 - -
16 8.71 441 8.49 586
8 5.85 497 5.62 584
4 4.42 611 4.19 583
2 3.69 840 3.46 583

Table 4.4: Peak memory and average runtime per iteration comparing the standard training procedure
(first row) with our proposed memory-efficient training running backpropagation through the full
network each time (left) and accumulating the feature gradients first (right) for different numbers of
connected updates. Measured for a single stereo pair at 512 × 1024.

4.5.3 Training Scheme

To evaluate the impact of the memory-efficient training scheme on memory usage and
runtime, we estimated these metrics for different numbers of connected updates before
backpropagation in relation to the standard training procedure. We compared a setting with
full backpropagation to a setting with the detached feature extraction and measured for the
former a reduction in memory usage at the cost of increased runtime for a smaller number of
connected updates, as shown in Table 4.4. In comparison, the detached features offer a stable
runtime even at as few as two connected layers with an even further reduction in memory
usage compared to full backpropagation.

Finally, we evaluate the impact of including pre-training on SceneFlow in our training
procedure. A network trained using only our Objaverse-XL-based dataset yields an EPE of
1.33 on the Polyhaven test set, compared to 0.98 of a full training, indicating a significant
benefit of the hybrid approach.
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4.6 Conclusion

We have presented a technique to induce visual hull priors into recurrent stereo networks to
improve matching performance. Combined with a novel sparse-dense correlation handling,
our approach accurately regresses disparity for high-resolution images while retaining a
favorable memory footprint and without an upper limit on the achievable disparity.
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Figure 4.8: Memory and runtime statistics of our method compared to the best-performing (IGEV)
and fastest (CoExNet) baseline methods. We fix the image height at 320 px and increase the width,
adjusting the maximum disparity to 1

4 of the latter.
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Chapter 5

Frame Interpolation Transformer and
Uncertainty Guidance

In this chapter, we discuss the contributions and results developed in the following peer-
reviewed publication:

Markus Plack, Karlis Martins Briedis, Abdelaziz Djelouah, Matthias B. Hullin, Markus
Gross, and Christopher Schroers.
“Frame Interpolation Transformer and Uncertainty Guidance.”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
doi: 10.1109/CVPR52729.2023.00946

5.1 Summary of the Publication

In this work, we present a frame interpolation method to address the problem of rendering
high-quality videos for e.g. feature film productions. Since the accurate simulation of visual
effects at high resolutions requires large amounts of computing capacity, approaches to
speed up this process are highly desirable, as they not only reduce the environmental burden
but also enable artists to work more efficiently. The underlying idea of our approach is
to render only every second frame and use a frame interpolation method to complete the
sequence. This simple approach can reduce rendering time by almost a factor of two, since
the interpolation effort is negligible compared to the rendering, but has several drawbacks
which we address in our work.

Most prominently, none of the existing frame interpolation methods today are capable of
producing outputs with consistently high quality, as complex motions, varying illumination,
and difficult visual effects still pose a significant challenge. We propose a motion-based
network architecture that uses a transformer module to fuse features during the hierarchical
updates. Paired with a novel deep feature extraction, we show that our method improves

55

https://doi.org/10.1109/CVPR52729.2023.00946


Chapter 5 Frame Interpolation Transformer and Uncertainty Guidance

upon the state of the art both quantitatively and qualitatively. We demonstrate this using
common benchmark datasets as well as a dataset collected from animated movies and
through a user study. Our architecture employs a commonly used bottom-up processing
paired with warping-based motion compensation. For the feature extraction, we build on
previous work [Reda et al., 2022] which produces semantically similar feature vectors on
multiple resolutions and includes a U-Net architecture to enable learning of more meaningful
features even on the upper levels.

Nevertheless, the improved architecture alone does not reach the target quality for all inputs
and there is no way to know how good the interpolation is. To solve the second problem,
we build an uncertainty prediction into the network, by adding two maps to the outputs
that aim to predict the quality of the interpolation. Since the true image is known during
training, we can compare it with the prediction to train the error maps. The first map is
trained on the 𝐿2 norm between the images and the second map on the perceptual error
LPIPS without spatial averaging. While simple to implement and without any overhead at
inference time, we show that this method not only works well at identifying problematic
areas in the intermediate frame but also very slightly improves interpolation quality. This
enables us to take advantage of the fact that we work with rendered content by explicitly
rendering those regions. While those additional renderings increase the computational load
again, we show that even for fractions below 10% of the full frame a significant increase in
quality can be attained. Furthermore, we propose to not only overlay or blend those new
parts but instead use them during a second pass through the network. This is possible, since
the transformer architecture of our network can distinguish the target and input frames
based on a binary mask input indicating valid content. This way, the network can be trained
to make use of the additional data and we show that this technique improves the output
quality more than a simple replacement.

Though designed for this use case, our method also works for live-action content. Generating
additional inputs might not be feasible for most applications, but for certain footages, manual
creation of partial intermediate inputs might be desirable. Additionally, the uncertainty
estimation can be used to guide this process or at least for quality control purposes, where
certain thresholds could be determined based on the expected error.

In summary, we propose to address the problem of speeding up the rendering of sequences
using a two-step approach that predicts the uncertainty of the output and incorporates partial
renderings of the intermediate frame. This is implemented through a transformer-based
network architecture and improved by a better feature extraction.

5.2 Author Contributions of the Publication

In this work, I implemented the network and training procedure using libraries and resources
from Disney Research|Studios, where most of the work was done during an internship.
The main parts of the network I implemented were an extension of the feature extraction of
Reda et al. [2022], the transformer architecture of the interpolation network, the uncertainty
output, and the handling of masked inputs. In addition, I implemented a procedure to test
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the uncertainty guidance on simulated data. Many of the ideas were developed together with
Karlis Martins Briedis, Abdelaziz Djelouah, and Christopher Schroers. Finally, I performed
most of the evaluation, including the quantitative comparisons with the state of the art,
preparing the animated datasets from open source movies, running and evaluating the user
study, the ablation study, and the additional input tests with guidance from my collaborators
and advisors.
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Chapter 6

Fast Differentiable Transient
Rendering for Non-Line-of-Sight

Reconstruction

In this chapter, we discuss the contributions and results developed in the following peer-
reviewed publication:

Markus Plack, Clara Callenberg, Monika Schneider, and Matthias B. Hullin.
“Fast Differentiable Transient Rendering for Non-Line-of-Sight Reconstruction.”
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023.
doi: 10.1109/WACV56688.2023.00308

6.1 Summary of the Publication

This work presents a differentiable transient renderer and demonstrates its practicality for
various applications. It builds on the approach of Iseringhausen and Hullin [2020], but
extends the work in various ways, improving speed and versatility.

A physically accurate path tracing of a NLoS scene like the method presented by Jarabo
et al. [2014] is a computationally heavy task by itself and using any such technique in an
optimization scheme might not seem feasible. Nevertheless, Iseringhausen and Hullin [2020]
have presented a fast renderer using various approximations along with an efficient GPU
implementation that enables an analysis-by-synthesis approach to NLoS reconstruction. This
is achieved using central differences for the optimization of parameters, which is the major
drawback addressed by our work, as the computation time scales linearly with the number
of parameters. Even with a clever technique for the selection of optimization variables a
full reconstruction can take a full day or even more. Instead, we propose to implement
the renderer in a differentiable fashion using backpropagation. This is possible since the
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approximations used to render the meshes are fully differentiable functions. We achieve
this by splitting the computation into several modules which we then implement as Pytorch
functions and add the manually derived backward pass. First, we build a spatial volume
grid of the hidden scene from the Gaussians by summing all contributions. This volume is
transformed in a second step to a triangle mesh using marching cubes and finally rendered
in the last step, which includes visibility testing. All functions are fully implemented as
CUDA kernels and the raycasting is done using NVIDIA OptiX.

Having access to such a more flexible and fast method allowed exploring various extensions,
applications, and geometry representations. We show that it is also possible to backpropagate
the loss to the albedo of the triangles. First, we added an albedo component to each Gaussian,
similar to an existing implementation for the baseline model, which is transformed into an
albedo volume and added as an attribute to all vertices during marching cubes. We extended
this by computing the derivatives needed to implement the backward functionality of all steps
with respect to the albedo and evaluate this approach on a rendered example of a textured
model. The ability to optimize albedo values naturally enables us to optimize colored depth
maps as an alternative representation of the hidden scene. For this, we optimize a grid of
offsets and another for albedo values, from which the triangles are computed and rendered
as described above. To improve convergence speed, we propose to infer depth and albedo
in a coarse-to-fine scheme, starting with the optimization of rough maps and iteratively
optimizing the upsampled maps until the desired resolution is achieved. We add a TV
regularization to the depth map and the albedo map separately to improve the stability of
the optimization. The greatest advantage of this representation compared to the Gaussians
is that it does not rely on an algorithm for the optimization of adding and removing blobs. In
addition, we have shown that the optimization is faster and the result mesh is more accurate.
Our method can also handle high-resolution inputs by switching to a stochastic optimization
keeping the optimization time low, which we show on an existing measured dataset.

As differentiable rendering approaches can be prone to overfitting, especially on real-world
data resulting in e.g. erroneous Gaussians or jagged depth maps we propose a background
network to capture any effects that are not part of our model. This network resembles
implicit representations and is trained to produce transient responses given position-encoded
coordinates of the scanning positions on the relay wall. Its output is added to the rendered
images and the parameters are optimized together with the scene parameters. To avoid
capturing more than needed for a faithful reconstruction we propose to add a condition
that limits the average power of the background transient spectra compared to the rendered
ones.

Besides the inference of the hidden geometry, we show that our method can also be used
for locating and tracking known objects that are hidden from sight. We achieve this by
transforming the fixed object vertices using a rotation and translation for the rendering and
optimizing the related position vector and orientation quaternion. We show that this also
works for partially occluded objects, since our renderer explicitly checks for each triangle’s
visibility, albeit with a lower accuracy. Lastly, we also demonstrate the application of the
differentiable renderer for self-supervised training of a reconstruction network by computing
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the loss between the rendering of the resulting density volume and the input images without
the need for any ground truth geometry.

Overall, we present a fast and versatile differentiable transient renderer and demonstrate its
use for various applications. We evaluate different geometry representations and propose a
method of capturing unknown effects which improves reconstructions of captured scenes.

6.2 Author Contributions of the Publication

I implemented the differentiable rendering and the differentiable marching cubes within
the Pytorch framework based on the CUDA/C++ implementation of the forward pass of
Iseringhausen and Hullin [2020] and did the derivations for the backward pass. Initial tests
for colored Gaussians were done by Monika Schneider within the original framework and I
replicated and extended them in my work for colored depth maps. Regarding the evaluation
and experiments, Matthias Hullin provided the flat-field correction for the “Diffuse S” dataset,
and Clara Callenberg the visualization of the tracking metrics, but the remainder was done
by me.
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Chapter 7

Conclusion

We provide a summary of the works contained in this thesis and their impact in Section 7.1
and discuss their limitations along with possible future research directions in Section 7.2
before giving some final remarks in Section 7.3.

7.1 Summary and Impact

We presented three approaches for the integration of spatial priors and uncertainty into
reconstruction methods, showcasing how they improved the quality and/or efficiency of the
methods.

High-Resolution Stereo Matching

For stereo matching, we proposed an approach that takes a step towards efficient and
accurate disparity estimation for high-resolution images. As the targeted application lies in
depth estimation from stereo rigs that are part of capture stages, we proposed a technique
to integrate a spatial prior in the form of a visual hull computed from matted images of
other views of the scene. This allows us to reduce the correlation computation, which is
the foundation of most state-of-the-art methods today, to a valid range and carve out space
that is known to be empty. Paired with a sparse-dense approach to correlation volumes our
method improves the matching efficiency of the model. In addition, we proposed a training
scheme that enables learning at high resolutions without exhaustive memory requirements
and closes the domain gap between train and test data. While the visual hull integration
is limited to specific use cases where other views of the scene are given, our method is
designed to be versatile and work without this additional input, enabling its application
in other scenarios, especially for high-resolution inputs, which will still benefit from the
sparse correlation computation and the proposed training scheme. Nevertheless, we can
envision the integration of other forms of priors into our method in a similar fashion, since
any method that assigns one or more values to each disparity estimate is easily integrated
into the model without any major restrictions.
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Frame Interpolation for Video Rendering

We expanded the frame interpolation problem to a use case in video rendering where
generating additional partial inputs for the target frame is possible. We proposed a
transformer-based architecture to handle the masked inputs as priors for the interpolation and
an uncertainty prediction to guide the rendering process. With an improved feature extraction,
our method is also capable of producing intermediate frames in the traditional setting without
additional content and we show that it improves qualitatively and quantitatively upon the
state of the art. The proposed architecture merges the approach of a transformer network
with a motion-based interpolation/flow network, resulting in efficient feature propagation
even for large motions. While designed for frame interpolation, this architecture can likely
also be adapted to other vision problems working with videos, such as optical flow estimation,
video denoising, or segmentation and classification tasks. The uncertainty estimation on the
other hand can easily be incorporated into a multitude of other approaches, not limited to
videos. Despite being a straightforward approach with no theoretical guarantees, which
limits its application to non-safety-critical and non-medical scenarios, we have demonstrated
that it performs adequately for frame interpolation and we surmise it can deliver a similar
performance when applied to other problems.

Differentiable Non-Line-of-Sight Rendering

In the context of transient imaging, we have presented a fast differentiable transient renderer
and its application to selected NLoS problems. We have proposed the optimization of depth
maps with additional albedo information to represent the hidden scene, which improves
speed and accuracy compared to the baseline approach using Gaussians. This approach
was made possible by implementing gradient backpropagation for the rendering functions,
which resulted in reduced computational complexity of optimizing many parameters. Aside
from the efficient implementation, we proposed a background network to capture unknown
effects for an improved reconstruction. Such a technique is motivated by the observation,
that there is a significant gap between rendered and captured data. This can be due to
inaccuracies within the calibration of the capturing system, non-homogeneous relay walls,
additional reflective geometry outside the reconstruction bounds, varying surface properties,
and other deviations from the model assumptions of which interreflections are the most
prominent as they are ignored by our renderer. Our background network has been adapted
by Fujimura et al. [2023] in their reconstruction pipeline using neural implicit surfaces. The
latter offers a different approach to spatial priors compared to the ones used in our work.
The importance of research in this direction is also highlighted by the work of Choi et al.
[2023], where they propose among other things the optimization of a volumetric intensity
which serves as a basis for an implicit surface representation yielding accurate and complete
reconstructions. They show that in comparison our approach is missing geometry albeit
being highly accurate on the reconstructed surface.
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7.2 Limitations and Outlook

While the methods presented in this thesis have demonstrated great performance and
advanced the state of the art in their respective fields, the problems are still far from being
solved and certain remaining limitations need to be addressed in future research. We provide
an overview of those shortcomings and the open challenges, along with suggestions for
promising research directions.

Multi-View Stereo Our current stereo method is limited to the estimation of the disparity
between two rectified images with additional matted views to guide the model. At the
same time, a large body of work exists that builds reconstructions from multi-view stereo
(MVS) setups, explicitly using the full information contained in the captured images. It
would be interesting to see how the optimizations proposed in our work can be adapted and
extended to MVS, enabling high-resolution matching in this domain. In this regard, an open
question would be the adaptation of the sparse KNN correlation, as an MVS setup with 𝑛
cameras would require the computation of a vector of size 𝑛 − 1 for each depth, for which
no straightforward ordering exists. Another particularly promising direction in the context
of capture setups is the open question of how to combine images of visible light, i.e. RGB,
and infrared recordings for improved depth estimation. Since some materials exhibit vastly
different behavior within the visible spectrum and for infrared light a method to produce
consistent feature vectors to match both domains needs to be found. This can be even more
problematic if structured light projectors are used for infrared, as those patterns are not
visible in the other images. Another open problem would be the training of such a method,
as no training data exists, and models that contain materials that also model the behavior on
infrared light are scarce.

Real Time Stereo and Temporal Consistency Many applications would greatly benefit
from an accurate disparity estimation in real-time. While our method is explicitly designed
to be resource-efficient to enable matching of high-resolution inputs, it is still not particularly
fast and especially not real-time capable. The open question is how to further optimize the
model such that this would be possible while keeping the loss in quality low. There are
several possible approaches that we can suggest for future evaluation. First, hierarchical
models, which regress the disparity in a coarse to fine matter could be a better choice for
such an application, as they tend to be faster than iterative methods like ours. Second, we
have seen that feature extraction is responsible for a significant portion of the memory and
runtime requirements. This is, however, not a straightforward point of optimization, as
lower-quality feature vectors will likely lead to a considerable reduction in quality while only
offering a minor benefit in terms of runtime. Lastly, it would be possible to consider temporal
consistency, as real-time applications imply stereo video inputs. Having an initialization
from the previous time step that is likely to be close to the solution for the current frame,
possibly applying a cheap extrapolation using estimated motion vectors, could reduce the
required number of iterations in the estimation, and allow using smaller, and hence faster
architectures.
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Computational Efficiency of Video Transformers One major drawback of video trans-
formers as used by our frame interpolation method is the large computational requirement.
While negligible in our case when compared to the immense rendering times of feature film
productions, improving their efficiency still remains an open problem for future research.
One possible solution is to apply sparse transformer architectures similar to the one used
by our stereo matching method. While unlikely to be useful for interpolation between two
frames, such an approach could extend our method to work on longer sequences of frames.
The importance of research in this direction is e.g. highlighted by the recent advances of Shi
et al. [2023] for optical flow estimation and since accurate matches between frames are an
essential part of many frame interpolation methods like ours. Another open question for
larger temporal windows would be the selection of warping operations. The runtime of
the all-to-all warping proposed in our work scales quadratically with the total number of
input and output frames, which would be unfeasible for longer sequences. While restricting
the warping to the neighboring frames would be feasible this would likely also reduce the
achievable improvement from handling larger temporal windows.

Interpolation of large motion and fine objects Similar to most coarse-to-fine frame
interpolation methods our proposed approach struggles with large motion of small objects
since the refinement of predictions from previous layers can only recover errors within
certain bounds given by the limited search range. While all-pairs correlation methods
could be a solution, they tend to be computationally more demanding which would be in
contradiction to the aforementioned limitation. An alternative solution could likely be found
when considering our use case of video frame interpolation for video rendering. One could
imagine analyzing the motion vectors which are a standard output of many renderers and
identifying objects with large offsets. This could be even used to produce additional rendered
patches for the first pass, enabling the method to recover from small errors in the prediction
through to e.g. non-linear motion, as long as a fraction of the object was successfully located.
At the same time, it might be possible to improve the uncertainty prediction to be aware of
such errors. While theoretically possible as is, we found that some more work is needed for
this approach to truly work.

Interpolation of longer sequences and better initialization In principle, our frame
interpolation method is designed to handle arbitrary sequences. It would be interesting to
see how it performs when bridging longer gaps, which would reduce the required time for
rendering even further. While this is directly tied to improving the computational efficiency
as described above, several other aspects need to be taken into consideration. Do we provide
partial renderings for all intermediate frames or only for a subset? Can we even predict
regions that are problematic prior to the first pass of the network and provide those as
additional inputs? What are good sampling strategies for the additional inputs during
training? Finally, in the context of video rendering, it would be possible to incorporate
other features such as presented by Briedis et al. [2023], aiding the interpolation of longer
sequences.
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7.3 Closing Remarks

Spatial Priors for Surface Reconstruction Optimizing Gaussian blobs to represent hidden
scenes has two obvious drawbacks. First, it is not trivial to find a good set of discrete steps
like adding, removing, and splitting blobs during the optimization, and slight changes in the
algorithm and its hyperparameters can reduce the reconstruction quality. Second, certain
shapes like planes cannot be represented using isotropic Gaussians, and while anisotropic
ones may be better suited for those tasks, they come with their own set of problems. In the
future, implicit representations might prove to be useful, but since they do not trivially allow
priors, their use in adversarial conditions could be limited.

Background Network The background network in our work is inspired by neural repre-
sentations but is – by design – limited in its representation capabilities. This limitation is
necessary because otherwise, the network could capture arbitrary parts of the signal or even
the full input, which would defy its true purpose. Therefore, it is not trivial to improve it
based on advances in neural representations. Alternatively, we think it would be interesting
to study if it is possible to include other means to guide the network in the optimization,
either learned from data or by designing some other system on top of the network.

7.3 Closing Remarks

This thesis is the culmination of a long journey but not necessarily an accurate summary of
the whole way, as it leaves out a great deal of struggles, and things that failed, and the tiny
steps that lead towards the ideas that actually worked. I hope that you, the reader, found
some of the ideas presented here stimulating, that some of the methods I have worked on
might prove to be useful to somebody, and that they are a step forward in research. And now,
without further ado, onwards to the most important step: The next [Sanderson, 2017].
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Figure 1. Our method achieves state-of-the-art results for frame interpolation. It produces sharp textures as highlighted on both live
action (left) and rendered (right [15]) content. In addition to the interpolated frame, we estimate error maps that are helpful for quality
checks in video production tools. More importantly, for rendered content it can be used to determine a subset of patches to render for the
middle frame, which are then leveraged by our model to achieve production quality level results for a fraction of the rendering cost.

Abstract

Video frame interpolation has seen important progress
in recent years, thanks to developments in several direc-
tions. Some works leverage better optical flow meth-
ods with improved splatting strategies or additional cues
from depth, while others have investigated alternative ap-
proaches through direct predictions or transformers. Still,
the problem remains unsolved in more challenging condi-
tions such as complex lighting or large motion.

In this work, we are bridging the gap towards video pro-
duction with a novel transformer-based interpolation net-
work architecture capable of estimating the expected er-
ror together with the interpolated frame. This offers sev-

*Work done during an internship at DisneyResearch|Studios

eral advantages that are of key importance for frame inter-
polation usage: First, we obtained improved visual qual-
ity over several datasets. The improvement in terms of
quality is also clearly demonstrated through a user study.
Second, our method estimates error maps for the interpo-
lated frame, which are essential for real-life applications
on longer video sequences where problematic frames need
to be flagged. Finally, for rendered content a partial render-
ing pass of the intermediate frame, guided by the predicted
error, can be utilized during the interpolation to generate a
new frame of superior quality. Through this error estima-
tion, our method can produce even higher-quality interme-
diate frames using only a fraction of the time compared to
a full rendering.
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1. Introduction
Video frame interpolation (VFI) is a classical video pro-

cessing problem where the aim is to restore an intermedi-
ate frame in a given video sequence. This temporal inbe-
tweening enables many practical applications, such as video
editing [38], novel-view synthesis [26], video retiming, and
slow motion generation [25]. Recent advances in VFI meth-
ods [13,24,28,30,37,48,53,55] have been continuously im-
proving the interpolation quality, but the problem remains
open due to complex lighting effects and large motion that
are ubiquitous in real-life videos and can introduce severe
artifacts for the existing methods.

We propose a transformer-based VFI architecture that
processes both source and target frames in a unified frame-
work and compensates motion through a tightly integrated
optical flow estimation and cross-backward warping. Our
model improves over the current state-of-the-art as sup-
ported by our extensive quantitative experiments and a user
study.

Besides the improvements in terms of results, our model
also predicts the interpolation uncertainty similar to ap-
proaches for artifact detection [4, 49] and adaptive sam-
pling [29, 60]. This is of key importance for usage in a
production context, where working with long sequences re-
quires a way to automatically identify problematic frames.
Uncertainty estimation also benefits Computer Graphics
(CG) applications, as we use it to determine which frame
patches do not have sufficient quality and optionally mark
them for rendering. Thanks to our novel transformer-based
model, the rendered patches from the middle frame nat-
urally fit in the same unified VFI framework, achieving
high quality levels at the fraction of the cost of rendering
the full middle frame. Our paradigm is more compatible
with current production renderers than CG specialized VFI
works [5, 21, 66] which require the generation of specific
G-buffers for the keyframes and the intermediate frame.

In summary, our contributions are as follows.

• We introduce a novel motion-based VFI method, that
treats input and target frames in the same manner
through a transformer-based architecture using masks.

• Our model achieves state-of-the-art performance as
shown both in quantitative experiments and a user
study.

• We perform output’s uncertainty estimation subtask,
which can be particularly beneficial for rendered con-
tent to achieve even better quality results.

2. Related work
While classical approaches to frame interpolation relied

on optical flow and image warping [2, 52, 62], they have

been surpassed by learning-based methods. We start our
discussion with a short review of direct, phase and kernel
based prediction methods, before going into more details
with approaches using motion or transformers.

Direct methods were proposed using purely convolu-
tional architectures [27, 36] or combining channel attention
with a deep residual network [13]. Alternatively, Meyer et
al. [40] show a phase-based method based on the idea that
phase-shifts can be used to represent motion, and later ex-
tended with a learning-based component [39].

Kernel-based methods, as originally introduced by
Niklaus et al. [44], aim to predict kernels for all pixels
that are applied in a convolutional layer. Offset prediction
has been used [9, 30] to reduce the necessary kernel size
to handle large motion, making those methods conceptu-
ally more similar to motion-based ones. Various other ex-
tensions have been proposed, including prediction of sep-
arable kernels [45, 46], time input for arbitrary frame in-
terpolation [10], a multi-scale architecture including cost
volumes [8], multi-stage networks [20], different back-
bones [16, 54], and improving performance [50].

Most motion-based methods build on the work of op-
tical flow estimation methods [18, 57, 61]. Some methods
use the estimated motion between the input frames to for-
ward splat them [23, 42, 43], while others aim to find the
flow from the intermediate frame to the reference frames,
allowing for an easy backward warping, either by estimat-
ing the flows directly [24, 28, 47, 48, 53], through other
means [3, 25, 31, 41, 55], or combine both forward and
backward warping approaches [17]. While most methods
assume linear motion between the keyframes, others es-
timate non-linear motion by using more than two input
frames [12, 19, 33, 34, 63] or with a learned prior [48].

Various other approaches have been proposed to im-
prove estimation of large motion by treating small and large
motion with equal priority [53], dynamically adapting the
flow estimation to the motion magnitude and image reso-
lution [55], or better strategies for feature propagation [1].
We adopt equal motion treatment by extending the scale-
agnostic feature extraction [53, 58]. Most recently, CG spe-
cific frame interpolation algorithms have been introduced
for 2D animation [56] and 3D rendering [5].

Error estimation of the optical flow is used by Chi et
al. [11] for specific treatment, proposing predefined fixed
models for the various error levels. This is different from
our method, that learns to predict perceptual and L2-based
error maps for final interpolation result.

With the introduction of the transformer [59] and its
adaptation to vision tasks [22], several transformer-based
frame interpolation approaches have been proposed. Liu et
al. [35] use a transformer architecture that incorporates
convolutions inside attention layers, but does not include
any motion compensation. VFIformer [37] uses cross-scale
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Figure 2. After extracting a feature pyramid {F l
t} (Deep Feature Extraction) for each of the three frames (left) we pass a latent

representation Wt along with a forward flow estimate Ft for each frame t through multiple levels of our reconstruction (center). At each
level, after merging with the extracted features (Feature Merging), we update the latent representation using the initial flow estimate
(Transformer Fusion I), followed by an update of the flow estimate and context vector from the new features (Flow/Context Residual)
and another latent representation update using the new features and flows (Transformer Fusion II) before upsampling flow and features
for the next level (Upsampling). Finally, we compute the interpolated Frame Î1 and an estimate of the error Ê1 (top right).

window attention after warping the feature representations
and TTVFI [32] uses an inconsistent region map inside a
trajectory aware attention module. Both methods, however,
cannot handle inputs of the middle frame and require an ex-
tra training of the upstream flow network, whereas our flow
estimation is tightly integrated with the transformer fusion
and trained end-to-end.

3. Method
The goal of our method is to interpolate two keyframes

I0, I2 and find the intermediate frame Î1 along with an es-
timate of the error Ê1. Subsequently, we analyze the er-
ror map and check if certain areas of the frame need to
be rendered as we expect them to have insufficient qual-
ity. We then pass those additional masked inputs I1 to the
network along with the keyframes to get a final interpolated
frame. Note that our method is well equipped to handle the
common problem of two-frame interpolation without any
changes to the architecture or training and that the addi-
tional inputs are entirely optional, i.e. we simply set I1 = 0.

3.1. Interpolation network

Motivated by our goal to be able to handle arbitrary
inputs, the overall architecture of our network is inspired
by transformer architectures. This means that, opposed
to common two-frame interpolation methods, there is little
distinction within the network between the keyframes and
the target frame. Instead, we equip each frame with a binary
mask Mt indicating valid inputs to guide the interpolation.
An overview of our method is given in Fig. 2.

We first extract a feature pyramid representation

{F l
t}l∈0,...,6 for each of the inputs and process them in

a coarse-to-fine manner with the same update blocks that
share weights for the bottom 5 resolutions.

In each of the levels, we first merge the latent feature
representations W l,i

t with the respective input feature pyra-
mid level. After that, they are updated in two transformer
fusion blocks and a flow/context residual block in between
that additionally updates the running flow estimates F l,i

t ,
denoting the optical flow from t to t+ 1. Finally, the latent
feature representations and flows are upsampled for pro-
cessing in the next level.

In order to reduce the memory and compute costs, the
processing of the topmost level is treated differently and
consists of two convolutional layers.

Deep feature extraction. Our feature extraction is in-
spired by that of Reda et al. [53] to enable weight sharing
on the lower levels of the reconstruction. We expand their
idea by using a U-Net architecture instead of the original
top-down approach. The reasoning behind this choice is
that it more easily enables the network to capture semanti-
cally meaningful features on the upper levels of the pyramid
without the need for many convolutional layers with large
kernels or dilation.

First, we build image I lt and mask M l
t pyramids, where

image/mask l is downsampled by a factor of 2 to obtain
level l + 1. We concatenate both and pass them through a
U-Net as illustrated in Fig. 3, keeping the last three layers
as features. Finally, we concatenate all input and feature
tensors of the same spatial resolution to build input feature
pyramids {F l

t}l∈0,...,6 for t ∈ {0, 1, 2}. Note that all fea-
tures from level two onward will be semantically similar

9813



It F0
t

F1
t

F2
t

Mt

I1t

I2t

2x Downsampling

2x Downsampling

U-Net

M1
t

M2
t

copy

copy

copy

U-Net

U-Net

Figure 3. Illustration of our deep feature extraction module. The
same U-Net is used to process the original inputs and all down-
sampled images/masks.

and thus we can use weight sharing for all following mod-
ules on those levels.

Initialization and feature merging. On the lowest level
we initialize the optical flows F 6,0

t as 0 and set the latent
feature representations W6,0

t to a learned vector that is spa-
tially repeated.

As the first step on each level, the upsampled pixel-
wise features of the previous level, or the initial values,
W l,0

t ∈ RDl are merged with their respective feature pyra-
mid features F l

t ∈ RCl , where C0 := 52, C1 := 148,
Ci∈{2..6} := 340, and Dl := Cl + 15. Therefore, we only
merge the first Cl channels of W l,0

t with F l
t while keeping

the remaining 15 channels unaffected:

W l,1
t =

[
M l

tF l
t + (1−M l

t)
[
W l,0

t

]
0..Cl−1[

W l,0
t

]
Cl..Dl−1

]
(1)

The purpose of the directly passed through channels is
similar to explicit occlusion maps employed by other meth-
ods, but we leave the choice on how to best use those addi-
tional channels to be learned by the network.

Transformer fusion. To update the latent feature rep-
resentation of each frame t0 ∈ {0, 1, 2}, we use cross-
backward warping to align the features of all other frames
ti �= t0 by rescaling the current flow estimate at stage s as

W l,s
ti→t0(x, y) = W l,s

ti ((t0 − ti)F
l,s
ti (x, y)) (2)

for spatial indices (x, y) and using bilinear interpola-
tion for non-integer coordinates. We treat W l,s

t0 (x, y),
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Figure 4. The transformer fusion module consists of two MACE
blocks applied to all triplets after the cross backward warping.

W l,s
t1→t0(x, y), and W l,s

t2→t0(x, y) as tokens processed by
the multihead attention module. Specifically, for each head
i the per-pixel query, key and value tensors are computed as

Qi =WQ
i W l,s

t0 (3)

Ki =WK
i

[
W l,s

t1→t0 ,W
l,s
t2→t0

]
(4)

Vi =WV
i

[
W l,s

t1→t0 ,W
l,s
t2→t0

]
(5)

and the softmax of the query/key multiplication and the
residual update from the weighted sum of the values are
computed as in the original transformer [59].

Since our latent feature representations have an inher-
ent spatial structure, we opt to replace the linear layers of
the standard transformer with convolutional residual layers.
We use two convolutions with kernel size 3, a dropout layer
before and after the second convolution and a GELU ac-
tivation after the first. In addition, we use layer normal-
ization after the multihead attention and the convolutional
layers, as is common in transformer architectures. We dub
those modules multihead-attention convolutional encoders
(MACE) and stack two of them for all transformer fusion
modules as shown in Fig. 4 except for the second module
on the second layer, which uses four MACE modules.

Flow residual. Initial tests suggested that a transformer
module, as used for the feature updates, is a poor choice for
updating the current flow estimate. Instead, we use a convo-
lutional module for this task. After cross-backward warping
the updated features to the reference frame, we pass each
pair (W l,s

t ,W l,s
v→t) through a series of convolutions. The

output contains the following tensors (stacked in channel
dimension): Weight αv , flow offset ΔF

v , and context resid-
ual ΔW

v (We drop the level, time, and step indices of those
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Inputs (overlaid) GTruth ABME FILM LS RIFE IFRNet VFIformer Ours LS

Figure 5. Visual comparison with other methods on rendered movie samples from [6, 7, 14, 15] using only keyframe inputs and no extra
rendered patch.

for ease of notation). We apply softmax on the weights and
update the flows and context features as

F l,3
t = F l,2

t +

∑
v e

αv 1
v−tΔ

F
v∑

v e
αv

(6)

[
W l,3

t

]
Cl..Dl−1

=
[
W l,2

t

]
Cl..Dl−1

+

∑
v e

αvΔW
v∑

v e
αv

. (7)

Note how ΔF
v needs to be rescaled to a forward flow for the

update of F l,3
t .

Miscellaneous. For the upsampling of the flows we use
parameter-free bilinear interpolation by a scaling factor of
two (Denoted by · ↑2x) as

F l,0
t = 2F l+1,4

t ↑2x. (8)

The feature maps are passed through a resize convolu-
tion same as [53] to avoid checkerboard artifacts, i.e. a
nearest-neighbor upsampling followed by a convolutional
layer with kernel size 2 and Dl output feature channels.

For the final output, we pass the latent representations
W0

t together with the extracted features F0
t through two

convolutional layers with kernel sizes 3 and 1 respectively.
The final output has five channels of which the first three
form the color image Ît and the others correspond to the
color error Êc

t and the perceptual error Êp
t .

3.2. Uncertainty estimation

To train the error outputs Ê of the network we compute
the target error maps as follows. Let IGT

t be the ground

truth frame at time t. We compute the error targets or
‘ground truth’ as

Ec
t = ‖IGT

t − Ît‖2 (9)

where ‖·‖2 denotes the L2 norm along the channel dimen-
sion. The perceptual error Ep

t follows the computation of
LPIPS [65] without the spatial averaging. In order to pre-
vent a detrimental influence of the error loss computations,
we do not propagate gradients from the error map computa-
tions to the color output and only allow gradient flow to the
error prediction of the network.

We want to use the error estimates Ê to find regions of
the target frame that are expected to have insufficient qual-
ity, so we can render those areas and pass them to the net-
work in a second pass to improve the quality. Assuming
that most common renderers should be able to operate on
a subset of rectangular tiles without a significant overhead,
we average the error estimates for those tiles for which we
chose a size of 16×16 pixels. Given a fixed budget for each
frame, we simply select the tiles with the highest expected
error and use them in the second interpolation pass.

3.3. Implementation and training

We follow common practice and train our network on
triplets from the training set of Vimeo-90K [64]. Of the
51313 triplets of resolution 448× 256 we set aside 802 for
validation. For data augmentation we randomly crop win-
dows of size 256, apply random spatial and temporal flip-
ping and rotations in multiples of 90◦. We use empty mid-

9815



dle frames for 50% of the training samples (i.e. I1 = 0)
and otherwise retain between 1

480 and 1
4 of 16 × 16 tiles as

additional input (random at first and based on the predicted
error for fine-tuning).

We train our L1 variant for 2.1M iterations with batch
size 4 using the Adam optimizer and L1 loss for the color
output with weight 1.0 and for both error estimates with
weight 0.01 each. We start with a learning rate of 5× 10−5

and reduce it every 0.75M iterations by a factor of 0.464.
For our perceptual variant (LS), we follow the same

schedule, but add VGG and Style loss from [53] after 1.9M
iterations, at which point we set the weights of the color,
VGG and style loss as 10.0, 0.25 and 40. All losses are
computed only for the center frame outputs, as we assume
the keyframes are given and complete.

4. Experiments

We evaluate the performance of our method on the stan-
dard interpolation task (Sec. 4.1) and the efficiency of the
uncertainty guidance (Sec. 4.2). We close with an ablation
study (Sec. 4.3) and a discussion of limitations (Sec. 4.4).

Metrics. We measure our results using the common eval-
uation metrics peak signal-to-noise ratio (PSNR), structural
similarity (SSIM) and the perceptual LPIPS [65]. In addi-
tion, we perform a user study for a qualitative evaluation.

Methods. We compare our method against ABME [48],
AdaCoF [30], CAIN [13], FILM (L1 and LS) [53], IFRNet
(Large) [28], RIFE [24], VFIformer [37], and XVFI [55].

Datasets. For the evaluation on traditional frame inter-
polation we use Vimeo90K [64], DAVIS [51], and SNU-
FILM [13]. In addition, we evaluate on samples taken
from the publicly available animated short films Big Buck
Bunny [14], Cosmos Laundromat [7], Elephants Dream [6],
and Sintel [15]. See supplementary material for more de-
tails and instructions to reproduce those datasets.

4.1. Traditional frame interpolation

We quantitatively evaluate our method on common
datasets in Tab. 1 against the state of the art. Our L1 variant
shows the best PSNR and SSIM performance on all diffi-
culty levels of SNU-FILM with a PSNR improvement of
up to 0.21 dB in the hard category and a competitive per-
formance on Vimeo90k and DAVIS. Our LS version out-
performs all others in terms of LPIPS on all datasets except
DAVIS and demonstrates excellent PSNR and SSIM scores
within its category. We show the performance on the ani-
mated short films in Tab. 2 where each variant outperforms
all others within its category with respect to all metrics and
on all datasets except Cosmos Laundromat, where both nev-
ertheless yield good results.
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Figure 6. User study on the animated short film datasets. On av-
erage, users had a normal/strong preference for our method for
48/34% of all votes. For each of the short films, we use a repre-
sentative subset of 30 samples and collected a total of 3158 AB
comparisons from 69 participants, most of whom are computer
graphics/vision students and graduates.

Input I0 Input I2 Ep
1 (measured)

Initial Î1 Final Î1 Êp
1 (predicted)

34.27 / 0.0070 40.83 / 0.0033 Mask: ∼ 6.7%

Figure 7. The closing of the eyes proves difficult to interpolate,
but the expected perceptual error Êp

1 closely matches the true er-
ror Ep

1 . Passing the part of the middle frame indicated by the
white box to the network we get a significantly improved interpo-
lation. Numbers below are PSNR/LPIPS. Sample is from [15].
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Method Vimeo90k DAVIS SNU-FILM Rank
Easy Medium Hard Extreme Count

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 1st 2nd

ABME ’21 36.22 0.9808 0.0217 26.47 0.8601 0.1481 39.74 0.9904 0.0228 35.85 0.9792 0.0380 30.62 0.9367 0.0668 25.44 0.8642 0.1271 0 1
AdaCoF ’20 34.38 0.9717 0.0309 25.10 0.8221 0.1550 38.85 0.9902 0.0202 35.07 0.9757 0.0372 29.47 0.9246 0.0764 24.31 0.8442 0.1493 0 0
FILM L1 ’22 36.06 0.9804 0.0201 27.31 0.8784 0.0846 40.20 0.9909 0.0186 36.01 0.9795 0.0321 30.49 0.9359 0.0578 25.20 0.8601 0.1071 3 4
IFRNet ’22 36.20 0.9808 0.0193 27.46 0.8797 0.0926 40.10 0.9906 0.0210 36.12 0.9797 0.0328 30.63 0.9368 0.0570 25.26 0.8609 0.1138 2 1
RIFE ’22 35.61 0.9780 0.0227 26.70 0.8616 0.1126 40.06 0.9907 0.0188 35.72 0.9789 0.0325 30.09 0.9331 0.0665 24.84 0.8537 0.1395 0 0
VFIformer ’22 36.50 0.9816 0.0202 27.60 0.8829 0.0939 40.13 0.9907 0.0181 36.09 0.9799 0.0333 30.67 0.9378 0.0612 25.43 0.8643 0.1190 4 5
XVFI ’21 35.06 0.9758 0.0234 25.71 0.8409 0.1365 39.99 0.9905 0.0177 35.36 0.9779 0.0322 29.56 0.9271 0.0752 24.14 0.8446 0.1551 1 1
Ours L1 36.34 0.9814 0.0204 27.46 0.8803 0.0923 40.25 0.9909 0.0202 36.29 0.9803 0.0344 30.88 0.9386 0.0604 25.61 0.8655 0.1130 8 6

CAIN ’20 34.67 0.9733 0.0311 26.03 0.8415 0.1787 39.96 0.9903 0.0204 35.64 0.9779 0.0385 29.91 0.9295 0.0898 24.78 0.8510 0.1803 0 0
FILM LS ’22 35.87 0.9790 0.0132 27.00 0.8709 0.0679 40.15 0.9906 0.0121 35.90 0.9786 0.0215 30.33 0.9333 0.0434 25.07 0.8552 0.0899 3 15
Ours LS 36.08 0.9799 0.0126 27.03 0.8712 0.0706 40.10 0.9905 0.0118 36.07 0.9790 0.0209 30.61 0.9351 0.0420 25.35 0.8594 0.0864 15 3

Table 1. Live action VFI results. We list perceptually trained methods separately below the other methods. All metrics were obtained by
running the implementations provided by the authors.

Method Big Buck Bunny Cosmos Laundromat Elephants Dream Sintel Rank #
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 1st 2nd

ABME ’21 35.60 0.9790 0.0323 34.47 0.9400 0.0823 34.80 0.9647 0.0453 36.83 0.9673 0.0495 0 0
AdaCoF ’20 34.17 0.9740 0.0413 33.83 0.9328 0.0877 33.52 0.9551 0.0560 34.73 0.9550 0.0703 0 0
FILM L1 ’22 35.50 0.9795 0.0282 34.42 0.9397 0.0678 34.70 0.9652 0.0390 36.71 0.9672 0.0395 0 4
IFRNet ’22 35.46 0.9810 0.0292 34.25 0.9399 0.0674 34.58 0.9659 0.0419 36.27 0.9683 0.0462 1 0
RIFE ’22 35.05 0.9767 0.0354 34.32 0.9379 0.0808 34.54 0.9615 0.0484 36.33 0.9638 0.0521 0 0
VFIformer ’22 35.97 0.9811 0.0365 34.56 0.9415 0.0750 35.06 0.9675 0.0406 36.94 0.9694 0.0432 2 6
XVFI ’21 34.64 0.9757 0.0371 34.09 0.9356 0.0774 34.00 0.9595 0.0503 35.51 0.9605 0.0585 0 0
Ours L1 35.98 0.9815 0.0262 34.55 0.9407 0.0762 35.25 0.9680 0.0372 37.25 0.9697 0.0393 9 2

CAIN ’20 33.38 0.9733 0.0414 33.92 0.9369 0.0982 33.57 0.9571 0.0577 35.18 0.9586 0.0727 1 0
FILM LS ’22 35.31 0.9787 0.0239 34.20 0.9361 0.0389 34.67 0.9643 0.0314 36.65 0.9661 0.0316 1 11
Ours LS 35.73 0.9805 0.0218 34.08 0.9348 0.0347 35.05 0.9666 0.0295 37.01 0.9678 0.0302 10 1

Table 2. Animated short film VFI results. We list perceptually trained methods separately below the other methods. All metrics were
obtained by running the implementations provided by the authors. Only keyframes were used and no extra rendered patches.

To further support our claim that our method performs
well in terms of visual quality, we conduct an extensive user
study. We roughly follow the approach of [42] and asked
users to compare methods side by side, but included an op-
tion for a strong preference. We show one sample of each
film in Fig. 5 and give the results in Fig. 6. We refer to the
supplementary material for more details and results.

4.2. Uncertainty guided interpolation

We will demonstrate the advantages of our uncertainty
guidance in two experiments by analyzing the ability of our
error prediction to select appropriate patches in the inter-
polated image first, and secondly showing the quality im-
provement by passing additional patches to the network.

In Fig. 8 we demonstrate the PSNR improvement when
we use our error estimation to replace a fraction of 16×16
tiles of the interpolated output by the corresponding ground
truth. For comparison, we show the effect of random re-
placement as a baseline and a replacement of the tiles with
the highest measured error as the optimal strategy. Replac-

ing a quarter of the tiles, we achieve a PSNR improvement
between 6.99 and 9.98 dB, whereas random replacement
yields at most 1.27 dB.

Next we want to study the effect of additional inputs
on the network output in separation from the error predic-
tion. Therefore, we select tiles based on the true error and
pass them into the network. We also compute the metrics
when simply replacing the tiles in the interpolated output
for our own method as a baseline and a selection of others
for comparison. We plot the results in Fig. 9 which show
that the perceptual quality is improved beyond the baseline
approach.

We give a visual example of the full uncertainty guid-
ance approach in Fig. 7, which shows how the correct re-
gion with high error is identified and the interpolation is
improved by the additional inputs and refer to the supple-
mentary material for additional results.
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Figure 9. We show that the perceptual quality of the interpola-
tion achieved by passing additional inputs to our method is better
than the baseline approach of replacing the worst patches of the
interpolation based on color error. For reference, we also show
the curves when replacing the outputs of FILM LS and IFRNet,
the two follow up methods in terms of perceptual performance.

4.3. Ablation study

For an ablation study, we train different versions of our
network to show the effect of the error estimation, the deep
feature extraction and the shared frame processing. We use
the same training procedure and color based loss for all vari-
ants as described in Sec. 3.3. The variants without error es-
timation differ only in the last convolutional layer (3 instead
of 5 outputs) and do not use the error losses. The deep fea-
ture representation is replaced by the feature representation
proposed by Reda et al. [53] and versions without shared
frame processing only update the center frame in the trans-
former fusion and flow/context residual modules. The re-
sults are presented in Tab. 3 and highlight the advantages of
the deep feature extraction and the shared frame processing
for the interpolation quality.

4.4. Limitations

Very large motion or drastic visual changes can be
missed by the error prediction and are hence not recovered
through a second rendering pass. We show an example of
this in the supplementary material. While the shared frame
processing of the network through its transformer architec-

Erro
r Est.

Deep
Feat

ures

Share
d Fram

es

Vimeo90k
PSNR SSIM

Animated
PSNR SSIM

� � � 36.34 0.9814 35.75 0.9650
� � � 36.28 0.9812 35.06 0.9633
� � � 36.31 0.9813 35.71 0.9652
� � � 35.82 0.9796 35.28 0.9634
� � � 35.76 0.9793 35.14 0.9629

Table 3. Ablation study of our network design. We averaged the
results of all animated films into a single score for each metric.
We can see that the shared frame processing boosts the perfor-
mance significantly, and the deep feature extraction adds a mod-
erate improvement from the baseline, but is essential when in-
terpolating animated content with the error estimation. The lat-
ter yields only a minor improvement, but its advantages demon-
strated in Sec. 4.2 are significant.

ture should in theory be capable of recognizing missing ob-
jects that are unlikely to be occluded, we surmise that the
current training dataset lacks sufficient examples to learn
such behavior.

Lastly, the current network is relatively slow and big.
E.g. VFIformer is on average 44.2% faster on Vimeo90k
and needs about 27.6% fewer parameters. This makes train-
ing with more than two input frames challenging, even
though the architecture supports it without any changes. We
hope to improve this in the future, which could allow for
better results through e.g. nonlinear flow estimates, or en-
able using our proposed architecture for other video pro-
cessing tasks such as deblurring and super-resolution.

5. Conclusion
In this work, we proposed a VFI method that incorpo-

rates optical flow motion compensation, deep feature ex-
traction, error estimation, and shared frame processing in
a transformer-based architecture. This enables our novel
uncertainty-guided approach for animated content produc-
tion, which can be used to greatly reduce the cost of ren-
dering while maintaining a high visual quality as we have
shown in our experiments. At the same time, our method
achieves state-of-the-art results for traditional frame inter-
polation as demonstrated on multiple common benchmarks,
and a superior visual quality confirmed by an extensive user
study. Since our training procedure using masked inputs is
similar to those of masked language models, a study of its
properties remains an interesting direction for future work.
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Abstract

Research into non-line-of-sight imaging problems has
gained momentum in recent years motivated by intriguing
prospective applications in e.g. medicine and autonomous
driving. While transient image formation is well understood
and there exist various reconstruction approaches for non-
line-of-sight scenes that combine efficient forward render-
ers with optimization schemes, those approaches suffer from
runtimes in the order of hours even for moderately sized
scenes. Furthermore, the ill-posedness of the inverse prob-
lem often leads to instabilities in the optimization.

Inspired by the latest advances in direct-line-of-sight in-
verse rendering that have led to stunning results for re-
constructing scene geometry and appearance, we present a
fast differentiable transient renderer that accelerates the in-
verse rendering runtime to minutes on consumer hardware,
making it possible to apply inverse transient imaging on a
wider range of tasks and in more time-critical scenarios.
We demonstrate its effectiveness on a series of applications
using various datasets and show that it can be used for self-
supervised learning.

1. Introduction

Extending the vision beyond what is in the direct line of
sight of an observer is a challenging problem with possible
applications ranging from autonomous driving and robotic
vision to safety and medical scenarios. Researchers have
approached this non-line-of-sight (NLoS) imaging problem
by pointing an ultrafast laser source at a wall which is in
view of the observer as well as the hidden hidden target
scene [35]. Using sensors that are able to resolve the travel
time of the laser’s light to observe reflections on the same
wall, recording transient images, objects “around a corner”
can be identified and further analyzed.

Many recent methods that use transient images for NLoS
reconstruction represent the hidden scene as a volumetric

I({ti})

∂L
∂I

∂L
∂ti

t

x

t

x

Figure 1. The triangle mesh {ti} is rendered into a transient image
using a physically plausible forward model. After computing the
loss, the gradient with respect to the pixel values is backpropagated
onto triangle coordinates and their optional attributes. We show a
false color visualization, where hue represents the direction and
saturation the length of the xy gradients.

albedo distribution [35, 9, 27]. While they are relatively
fast and often yield convincing results, most of those ap-
proaches do not take important physical effects such as vis-
ibility/occlusion and surface normals into account. On the
other hand, it has been proposed to reconstruct the hidden
shape as a mesh using an analysis-by-synthesis approach,
i.e., by making repeated forward simulations of light trans-
port. Such methods are typically slow and need hours for
the reconstruction [33, 11].

This work is inspired by the recent trend to solve inverse
problems using task-specific differentiable renderers. The
proposed differentiable renderer is specifically targeted to
NLoS reconstruction. It extends the forward rendering ap-
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Table 1. Comparison of relevant NLoS reconstruction approaches in terms of scene representation (Volume/Surface), usage of a physically-
based image formation model (included ✔, somewhat included (✔), not part of the model ✘), their reconstruction time scales ranging
from the order of milliseconds (ms) to hours (h) and their capability to generalize and adapt to new measurement geometries and higher
resolutions, ranging from high (+) to intermediate (#) and to low/very low (−/−−) flexibility.

Back
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LCT [27, 41]
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and Norm
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[8]

f -k
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ion [20]

Tran
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nt Renderi
ng [11]

Surf.
Optim

iza
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n [33]

Deep
NLoS [7]

Ours

Scene representation V V/S V/S V S S S S
Albedo reconstruction ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✔

Forward/Inverse Consistency ✘ ✘ (✔) ✘ ✔ ✔ ✘ ✔

Normals, Occlusion ✘ (✔) ✔ ✘ ✔ ✔ (✔) ✔

Reconstruction time s s h s h h ms min
Generalizability/adaptability + − + − + + −− +

Resolution + + − + # − − +

proach by Iseringhausen and Hullin [11] with additional de-
grees of freedom, such as surface albedo, and pairs it with
an efficient implementation of the backward pass to back-
propagate gradients to the parameters of the scene represen-
tation (Fig. 1). This enables the implementation of inverse
solvers for a variety of NLoS sensing setups. A key feature
of reconstructions obtained this way is that they are inher-
ently consistent with a physically justifiable image forma-
tion model, a feature still missing in most recent reconstruc-
tion techniques.

We consider the following to be the main contributions
of this work:

• We introduce a fast differentiable transient renderer for
NLoS light transport. It extends an existing image for-
mation model [11] by spatially varying albedo that is
optimized jointly with the scene geometry in a simpli-
fied global optimization scheme.

• We demonstrate the effectiveness of the renderer for
reconstructing NLoS scenes represented as radial ba-
sis functions and depth maps on simulated and real
data. We further show that the framework generalizes
to very high input resolution and object tracking tasks,
thanks to its adaptability to irregular samplings and the
use of stochastic optimization algorithms.

• We provide a complete PyTorch implementation of our
renderer, along with the implementation of other NLoS
reconstruction algorithms and various useful tools.1

Our framework runs on a consumer-grade GPU, and has
proven to accept a wide range of input configurations. It
can therefore serve as a portable and flexible development

1https://github.com/unlikelymaths/totrilib

and test environment for future NLoS reconstruction ap-
proaches. We demonstrate this on the example application
of a self-supervised network training that is based on our
differentiable renderer.

2. Related Work

Transient/NLoS Imaging. Transient imaging allows to
capture a scene’s light response in space and time. Pro-
posed originally by Abramson as early as 1978 using holo-
graphic techniques [1], it has become an increasingly rele-
vant imaging modality with the development and growing
accessibility of ultrafast photodetecting devices like streak
cameras, single-photon avalanche diodes (SPADs) and pho-
tonic mixer devices (PMDs). A comprehensive overview of
transient imaging advances can be found in [14].

In NLoS imaging, the light response of a scene is ob-
served not directly, but via its reflection on a relay wall,
while the target scene itself is outside the camera’s view.
Key tasks in this sensing mode are the reconstruction of po-
sition, shape and albedo of objects that are hidden both from
direct illumination and observation. The reconstruction of
NLoS scenes using transient data has been studied inten-
sively using different types of measurement hardware, and
different approaches exist in the literature [35, 39, 21, 3, 15,
9, 19, 26, 37, 36]. We compare the most important repre-
sentatives by their different aspects and features in Table 1.
Backprojection-based methods [35, 2] represent the hidden
scene as a voxel grid and calculate a heat map of possible
locations contributing to the measured space-time data, fol-
lowed by a filtering step. Furthermore, Shen et al. [30] have
proposed to optimize a neural transient field to reconstruct
the hidden volume with arbitrary resolution. A different ap-
proximative approach, the light-cone transform (LCT) [27],
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Figure 2. Coaxial measurement setup with the occluded scene
represented as triangle mesh (top) and antialiasing of the corre-
sponding temporal response using a trapezoidal filter (bottom).

provides a closed-form solution to the problem in a coaxial
setup, where the relay wall is scanned in a regular grid with
a beam-combined light source and detector. To reduce the
acquisition time of transient images, circular sensing pat-
terns have been proposed [12].

Since scenes represented as scattering density volumes
by default do not support surface normals and occlusion
effects, extensions with directional kernels [41] and itera-
tively adjusted linear weights [8] have been proposed. By
modelling the light transport as the propagation of a (vir-
tual) wave field, algorithms from wave optics and seismic
tomography, like f -k migration, have successfully been
adopted to solve the problem for regularly gridded input
data [22, 20].

Instead of treating the hidden scene as a voxel-based
albedo volume, several recent NLoS algorithms have intro-
duced surface representations, for which physically justifi-
able light transport models are easier to achieve. After early
attempts using planar walls [28], more recent approaches
attempt to optimize triangle meshes and their reflectance
properties by wrapping stochastic [33] or deterministic [11]
renderers a task-specific optimization scheme. The renderer
proposed in this paper builds upon the model by Isering-
hausen and Hullin [11] and achieves significantly improved
reconstruction times by introducing analytical derivatives
and utilizing a modern deep learning infrastructure.

Lastly, the availability of large amounts of synthetically

generated data has enabled the training of feed-forward net-
works for the NLoS reconstruction problem for surface-
oriented [7], volumetric [4, 25] and implicit [6] scene rep-
resentations.

Differentiable Rendering. In the case of direct-line-of-
sight inverse rendering a number of studies have investi-
gated approaches to compute the gradient of the visibility
between two points, which is not differentiable as it is ei-
ther 0 or 1. This is especially problematic as those gradients
are needed to properly move edges across pixels/the visible
hemisphere of a surface. One of the first general approaches
was published by Li et al. [18]. They compute the gradi-
ent through Monte Carlo sampling rays along the edges of
triangles. More recently, Zhang et al. [42] have proposed
a method to directly differentiate path integrals through a
reparametrization. However, in line with the work of Tsai
et al. [33], we do not take visibility gradients into account,
as the computation would increase the complexity. We still
demonstrate that our method works even for cases where
occlusion happens in the scene.

In the setting of transient imaging, various approaches
have been proposed to address the forward rendering prob-
lem [32, 13, 31, 24] and to model sensors for accurate
simulation of transient images [10]. General differentiable
renderers such as [40, 38] aim to facilitate analysis-by-
synthesis reconstruction approaches. However, their uni-
versality comes at the cost of computational complexity and
they suffer from long runtimes even in cloud computing en-
vironments. By restricting the image formation model to
the three-bounce NLoS setting, our renderer runs fast on
consumer-grade GPUs with moderate amounts of memory.

3. Differentiable Transient Rendering

The key part of our method is the formulation of the tran-
sient image formation model as a differentiable function and
the efficient backpropagation of gradients through the ren-
derer. We discuss the forward model and the gradient com-
putation in Section 3.1. To increase stability of optimization
problems on measurement data, we propose to add a back-
ground network in Section 3.2.

3.1. Image Formation

Our image formation model follows that by Isering-
hausen and Hullin [11]. Here, we recall it for the coaxial
capture geometry, where laser and detector are combined in
a single beam, before outlining the computation of gradi-
ents. More detailed gradient equations, special cases, and
their derivation for both coaxial and independent scanning
geometries are given in a supplemental document.
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Forward Model. Fig. 2 depicts the measurement setup
that is approximated by our renderer and a visualization of
the distribution of the recorded light into temporal bins of
the time-resolved detector. As interreflections on the object
contribute little to the rendered transients, we follow the
common three-bounce assumption which only takes light
paths into account that move from the laser source so to a
point on the wall s, onto a triangle t = (v0, v1, v2) of the
object surface, back to the wall point s, and are recorded by
the time-resolved sensor that is collocated with the laser at
so.

We approximate the incoming radiance for each triangle
by the constant radiance of the triangle centroid c(t) over
the full area of the triangle as

α(s, t) = f(s → c(t) → s)η(s → c(t))η(c(t) → s)A(t),
(1)

where f denotes the BRDF, η(x → y) the geometric cou-
pling between the two points x and y, and A the area of the
triangle. Using n(t) = (v1 − v0)× (v2 − v0) as the unnor-
malized normal vector of the triangle, and ns as the surface
normal of the wall at s, and further assuming Lambertian
reflection with albedo a(t), the full expression for α can be
simplified to

α(s, t) = a(t)
⟨ns, c(t)− s⟩2⟨n(t), c(t)− s⟩2

∥n(t)∥∥c(t)− s∥ . (2)

However, Lambertian reflection is no restriction of our
method and any differentiable BRDF model can be used.
We have removed the visibility term from α for ease of no-
tation as it is not differentiable, but still perform a visibility
check ν(s, c(t)) between the triangle centroid and the wall
as seen in Eq. (6).

To compute the total irradiance contributed by a triangle
to each transient bin b, α(s, t) is distributed according to a
weighting function w(s, t, b) as shown in Fig. 2 according
to the length of the light paths and hence the time of flight.
Assuming rectified measurements, the corresponding bin of
each vertex is given by

θ(vi) = (2∥vi − s∥2 − ϕ)/δ, (3)

where ϕ denotes the offset and δ the bin width of the scan-
ning setup. Note that θ is not an integer value and as such
is differentiable. We assume that the vertices are sorted in
ascending order of total distance. The weight at the center
is given as

ωc(t) =
2

θ(v2)− θ(v0)
. (4)

For the bins that fall between the points θ(v0) and θ(v1), we
compute the weight as the area under the left triangle as

ω(s, b, t) =

(
b+

1

2
− θ(v0)

)
ωc(t)

θ(v1)− θ(v0)
. (5)

Figure 3. Architecture of our background network. The position
of the scan points and the temporal bin are encoded using cosine
terms (two each in this example), followed by a linear neural net-
work operating on the first dimension and a scaling. Layers with
learnable parameters are highlighted.

The equation for weights between θ(v1) and θ(v2) follows
analogously. The full rendering function of a set of n trian-
gles can be written as

I({t0, . . . , tn−1}) =
(

n−1∑

i=0

ν(s, c(ti))α(s, ti)ω(s, b, ti)

)

s,b

(6)

Backpropagation. To avoid the need for numerical
derivatives [11], we explicitly compute gradients through
backpropagation of the gradient of a loss function L(I).
During the backward pass, we evaluate

∇tiL =
∑

s

∑

b

∂L

∂Is,b
∇tiIs,b (7)

for each triangle ti. We can reformulate this as

∇tiL =
∑

s

v(s, ti)

(
∇tiα(s, t)

∑

b

∂L

∂Is,b
ω(s, b, t)+

α(s, t)
∑

b

∂L

∂Is,b
∇tiω(s, b, t)

)
.

(8)

The gradient of α can be computed using logarithmic
derivatives as shown in the supplemental document. In or-
der to efficiently evaluate the gradients, we implement all
computations as NVIDIA Optix programs. This enables us
to directly continue with the radiance/gradient computation
after the visibility test. Note that there is no need to evalu-
ate the full sums in Eq. (8), but only the subset between the
bins θ(v0) and θ(v2) which are evaluated first.

3.2. Background Model and Reconstruction Loss

Even though the formulated model is physically moti-
vated, inconsistencies with real measurements can be ex-
pected. This can be due to approximations or in the case
where the true BRDF is different from the model. More
prominently, there can be background illumination, for in-
stance from other surfaces that are not part of the scene.
Those effects would lead to incorrect gradients and reduce
the quality of the reconstruction.
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To remedy the influence of such effects, we propose to
add a background prediction network (Fig. 3) to the op-
timizations that use the differentiable rendering proposed
above. The network takes each scan position (x, y) together
with the temporal position ti and transforms them into po-
sitional and temporal encodings using cosines similar to the
approach originally proposed by Vaswani et al. [34]. Those
encodings are passed through a simple neural network to
produce a transient response. To improve performance, the
temporal resolution is reduced by a factor of 8 and the tran-
sient image produced by the network is linearly upsampled
to the final resolution.

We also add a condition to prevent the transient back-
ground from capturing too much of the true image as fol-
lows. The output of the network IB ∈ (0, 1)S×B is scaled
using an intensity value iB that is part of the network pa-
rameters. Defining the average power of the transient spec-
tra P (I) we add the condition

P (IB) ≤ λIP (IR), P (I) =
1

S

S−1∑

i=0

∥Ii,:∥2 (9)

which we enforce by clamping iB appropriately after each
optimization step, where IR is the rendered transient image
of the current iterate. The parameter λI can be used to con-
trol the total amount of light in the transient background.
For most of our experiments we set it to 1, which we found
to work well.

The benefit of using such a network is that it is indepen-
dent of the arrangement of scan and laser points and that
both sharp jumps as well as smooth gradients can be rep-
resented, depending on the input and the effects easily cap-
tured by our forward model.

We formulate the reconstruction loss as

L(ρ, ϕ) = min
γ

∥γ(IR(ρ) + IB(ϕ))− Iin∥2, (10)

where ρ is the scene parameterization, ϕ the parameters of
the background network, and γ the unknown scaling be-
tween the input and the reconstruction. For the optimization
of depth maps in Section 4.2 we add γ to the set of param-
eters after initializing it appropriately. Unfortunately, we
found that this approach is problematic in the case of radial
basis function optimization as the addition and the removal
of blobs can lead to a significant change in the transient im-
age. Instead, we replace γ with the minimizer of Eq. (10).

An extension to other loss functions, that more accu-
rately represent the noise model of transient images, is pos-
sible, but similar to [33] we found L2 loss to work well over
a large range of datasets.

4. Applications
To demonstrate the effectiveness of our implementation,

we show its application on three different parametrizations

Figure 4. Runtime comparison with the baseline method of
Iseringhausen and Hullin [11]. Both methods yield accurate
meshes with a mean absolute depth error of 2.91cm (ours) and
2.98cm (baseline) at the end of the optimization for this synthetic
2x2m scene.

of the geometry used for reconstruction (Section 4.1 and
Section 4.2) and tracking (Section 4.3) of hidden objects.
In addition, we show that our method can also be used for
self-supervised training in Section 4.4.

We evaluate our method on common datasets using both
simulated data from [5] and our own renderer, as well as
measurements from [35], [20], and [27].

4.1. Radial Basis Function Approximation

As a direct optimization of triangular meshes is diffi-
cult due to e.g. self intersections, we follow the approach
of [11] and optimize a set of radial basis functions that ap-
proximate the density inside a volume. We generate a mesh
by extracting the isosurface using a differentiable marching
cubes [23] implementation.

For a set of Gaussian basis functions fi with parameters
pi and σi the density at a position x ∈ R3 is given as

d(x) =
∑

i

fi(x), fi(x) = e
− ∥x−pi∥2

2σi . (11)

Additionally, we allow the basis functions to carry at-
tributes such as an albedo value. This yields another vol-
ume by computing the weighted average of the attribute
values. Those values are interpolated along with the ver-
tex positions in our implementation of the marching cube
algorithm.

Note that in this scenario, the computational complexity
of the derivative of the rendering as well as the marching
cubes step does not depend on the number of radial basis
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Figure 5. Reconstructions of the simulated bunny from [5] of various methods (a–e) compared to our results (f–h). The first row shows
the resulting meshes and the second row plots the corresponding depth errors between the respective reconstructions and the ground truth.

functions. Therefore, the iterative algorithm of [11] can be
adapted to allow an optimization of all basis parameters in
all steps, because there is less need to reduce the number of
derivatives that are computed. Additionally, we add another
sampling of new blobs that is focused on modifying the sur-
face of the mesh. By backpropagating the current loss to
the vertices, we add new blobs at the vertex positions with
probability proportional to the length of the vertex gradi-
ents. We reduce runtime of the optimization by choosing
a rough resolution at the initial iterations and doubling the
resolution at certain intervals. More details are given in the
supplemental document.

We demonstrate the runtime improvement of our method
over the baseline of Iserinhausen and Hullin [11] in Fig. 4.
Both methods reconstruct the same synthetically rendered
mesh on the same hardware setup. Our method yields
convincing results after a few minutes, while the baseline
method takes a full day to produce a recognizable solution.

To further evaluate the correctness of our model we use
the simulated bunny data from [5] and compare our results
qualitatively (Fig. 5) and quantitatively (Table 2) against
various other reconstruction methods. To convert volumet-
ric reconstructions into a mesh we use marching cubes [23]
and search for a threshold that maximizes the intersection
over union (IoU). While our GPU implementations of those
methods run much faster, we found that the quality of the
results deteriorates quickly when using lower resolution in-
put. At the same time, we needed to use a scanning reso-
lution of 64 × 64 for a fair comparison with the method of
Tsai et al. [33], which also uses differentiable rendering, but
is much slower than our method.

While our Rbf-based reconstruction overestimates the
shape of the bunny, it manages to reconstruct one ear and
the overall shape very accurately, which is confirmed by a
IoU value that is only surpassed by our depth map based
reconstruction shown in the next section. We also include
results for a reconstruction from a transient sinogram as pro-

posed by [12], where the overall shape is even larger, but it
still yields convincing results and an error comparable with
volume based methods even though only 8.7% of the tran-
sient spectra are used.

We test the reconstruction of objects with spatially vary-
ing albedo on the Spot model and show results in Fig. 6. Al-
though the albedo information is associated with the radial
basis functions and not provided as a high-resolution tex-
ture, simple changes in albedo are faithfully reconstructed,
as can be seen with features like the cow model’s dark spots
and hooves.

We also demonstrate the application of out method on
real data using the mannequin measurements of Velten et
al. [35] and show the reconstructions in Fig. 6 along with a
reconstruction using a rendered mannequin using the same
setup. The overall shape of the reconstruction matches the
mannequin from the reference, even though details are lack-
ing when compared to the synthetic reconstruction. As the
data was acquired using a non-confocal setup, there are only
a few methods that can reconstruct such a measurement.
Figure 6 also highlights the ability of our background net-
work to deal with an arbitrary scanning setup and its impor-
tance for the reconstruction.

4.2. Depth Map Optimization

In this example application, we optimize the vertex po-
sitions similarly to [33]. To remove the need for additional
mesh operations we restrict the optimization of the position
to the depth values of a grid, i.e. only the z-coordinate is
optimized. As such an object would lead to a large amount
of unwanted background we also optimize the albedo of the
vertices.

To improve stability of this approach we opt to add a
total variation regularization [29] to our loss. We regularize
both the color attribute as well as the depth. As the color
values c ∈ [0, 1]H×W are naturally bounded to the [0, 1]
interval, we choose to limit the depth map d ∈ [0, 1]H×W
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(a) Photo (b) Reconstruction (c) W/o background

(d) Reconstruction (e) Spot Model (f) Reconstruction

Figure 6. Reconstructions of measured [35] (a–c) and a synthetic
mannequin dataset [11] (d), and a reconstruction of the “Spot”
model (synthetic), represented using radial basis functions with
spatially varying albedo (e,f).

Table 2. Quantitative comparison of reconstructions from the sim-
ulated measurements of the bunny [5] with various other methods
showing the runtime (minutes:seconds), intersection over union
(IoU, higher is better), as well as mean absolute error (MAE, lower
is better) and root-mean-square error (RMSE, lower is better) in
cm. For each metric, the best value is highlighted in red and the
best follow-up in blue.

Method Runtime IoU MAE RMSE
FBP [35] <0:01 0.738 4.86 5.03
f–k [20] <0:01 0.659 3.81 4.86
Fermat [39] 0:12 0.730 1.05 1.58
D-LCT [41] 0:05 0.728 0.59 0.95
Tsai et al. [33] 102:06 0.730 0.28 1.03
Rbf 4:51 0.760 0.41 1.33
Rbf (Sinogram) 1:34 0.490 1.13 2.10
Depth Map 2:25 0.803 0.26 0.76

to the same interval and apply a scaling and translation to
the reconstruction volume before the rendering. Hence, our
loss function can be written as

L(c, d) = ∥I −R(c, d)∥2 + λdTV (d) + λcTV (c), (12)

where TV is an isotropic total variation with ϵ = 0.001
for smoothing with regularization weights λd and λc. We
initialize with a coarse resolution depth map and double the
resolution during the optimization.

We also evaluate this representation on the synthetic
bunny from [5] in Fig. 5. The reconstruction captures the
fine details of the surface structure better than all other rep-
resentations, resulting in the best metrics as listed in Ta-
ble 2. While D-LCT [41] runs much faster, it lacks some
details when compared to differentiable rendering based ap-

(a) Object (photo) (b) Ours 32× 32 (c) Ours 512× 512

(d) Fermat [39] (e) Tsai et al. [33] (f) D-LCT [41]
Figure 7. Reconstruction of the “Statue” dataset photo shown
in (a) [20]. (d)–(f), three reconstructions from recent literature
(adapted from [41]). (b) and (c) show reconstructions obtained
from our framework using a depth map representation for different
input resolutions.

(a) Object (b) Tsai et al. (c) Ours raw (d) Ours flat-field
Figure 8. Reconstructions of the “Diffuse S” dataset [27]. From
left to right: photo of the object [27] (a); reconstruction by Tsai et
al. [33] (b); reconstructions using our method as depth map with
varying albedo: (c), raw dataset; (d), flat-field corrected dataset.

proaches. At the same time our method offers a significant
runtime improvement over the method of Tsai et al. [33].

We show the application of this approach on measure-
ment data of a statue [20] in Fig. 7 and the diffuse S [27] in
Fig. 8. The quality of the reconstructions of the statue is on
par with the reconstruction of D-LCT from [41]. Even after
reducing the resolution down to 32 × 32 the quality stays
consistent with a reconstruction time of only 39 seconds.
For higher resolutions, we switch to a stochastic gradient
descent optimization with batch size of 4096 scan points.
Therefore, the reconstruction time does not increase beyond
a resolution of 64× 64 and keeps below three minutes.

The reconstruction of the diffuse S shows a failure case
of our background network, which cannot deal with the
large amounts of spatially varying background present in
the dataset. We clean the data up by applying a semi-
automatic flat field correction that estimates a static back-
ground component from the signal-less portion of the
dataset (before the first transient onset). The resulting re-
construction is similar to the one of Tsai et al. [33], but runs
in under three minutes.
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Figure 9. The two armadillos are positioned with 1m and 1.5m
distance to the wall and perform a linear motion and rotation as
indicated by the key frames in the first column. The transient input
has a PSNR of 28.4. The plots on the right show the position and
rotation error in millimeters and degrees, respectively.

4.3. Tracking

This application takes as input one or more meshes of
hidden objects and a transient image of these objects at un-
known positions. The aim is to infer the hidden object’s
spatial position and orientation. To this end, we optimize
the position vector and the orientation quaternion of each
object to match the given transients.

We demonstrate the tracking of two armadillo meshes
over a video in Fig. 9. The first frame is initialized to the
correct position and rotation and we iteratively optimize the
transformation of both objects for each frame using the re-
sults of the previous frame as an initialization.

The positions and rotations are matched with negligible
errors for both objects. The accuracy of the armadillo in the
back is slightly lower because of the reduced light intensity
reaching the wall, and it degrades during the middle of the
video where most of the object is occluded by the armadillo
in the foreground. The estimation quality is, however, still
reasonable even though our method only approximates the
full visibility of the triangles and does not compute gradi-
ents for the visibility term. The optimization of a single
transform with more translation and rotation is shown in the
supplemental document.

4.4. Proof of Concept: Self-Supervised Learning

Finally, we demonstrate the flexibility of our differen-
tiable renderer by using it to train a reconstruction net-

Figure 10. Ground truth models (top) and their reconstructions
(bottom) using a network trained in a self-supervised regime with
synthetic data generated from volumetric blobs.

work in a purely self-supervised manner. We generate syn-
thetic data from random sets of gaussian blobs similar to
Section 4.1. The convolutional network takes the transient
image as input and outputs a density volume that is con-
verted into a mesh using marching cubes. We pass this
mesh through our differentiable renderer and compute the
L2 loss between the resulting transient image and the net-
work input, which can be backpropagated through all steps
to update the network parameters.

We train the network for 500000 iterations using
Adam [16] with a batch size of 32. The volume and scan
point resolution is set to 16. Additionally, we add a small
L2 regularization of the gradients of the volumetric output
for smoothness. Results are shown in Fig. 10.

5. Conclusion
We have demonstrated that an efficient computation of

the gradients for differentiable transient rendering greatly
improves the reconstruction speed compared to other ren-
dering based NLoS reconstructions. Our implementation is
general enough to handle many cases and yields reconstruc-
tions quantivatively better than other approaches. Paired
with a background network we were able to show results
on a large range of simulated and real measurements. As
the implementation is integrated into the PyTorch environ-
ment, it offers great flexibility and we have demonstrated its
use in a self-supervised learning application. Furthermore,
it may serve as a building block for future end-to-end train-
ing approaches or methods that also make use of the latest
neural scene representations.

A major limitation of our method is its restriction to
three-bounce, pulse-based setups, a necessity to achieve
the highest possible performance for non-line-of-sight prob-
lems. As future work, we can imagine to extend the soft-
ware by implementing gradients with respect to scan posi-
tions to allow for calibration similar to [17], but using more
complex targets.
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