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- Abstract

We introduce quantum optimal transport of states on tracial AF-C*-algebras to study
non-spatial transport of quantum information, and view it as the pointwise case of a
general parametrised one. We define quantum optimal transport distances as dynamic
transport distances in a tracial but non-ergodic and infinite-dimensional quantum set-
ting, called AF-C*-setting, clearly motivated by Benamou-Brenier-type distances.

Pointwise division is replaced with inverses of evaluated operator means in the sense
of Kubo and Ando, i.e. with noncommutative division operators. To this end, we initially
extend quasi-entropies after Hiai and Petz to the AF-C*-setting and use the latter to
define energy functionals. We further extend foundational results of Carlen and Maas
to the AF-C*-setting and develop a theory of quantum optimal transport yielding non-
spatial lower Ricci bounds suitable for meaningful geometric analysis. Essential for our
discussion is a coarse graining process arising from the underlying metric geometry
as encoding scheme of the given tracial AF-C*-algebra. Since energy functionals are
I'-limits w.r.t. the coarse graining process, the latter reduces the AF-C*-setting to the
finite-dimensional one s.t. ergodicity is recovered up to a controlled remainder.

In the logarithmic mean setting, i.e. for all quantum L?-Wasserstein distances, we
apply the coarse graining process to all finitely supported accessibility components of
a given state space simultaneously. We thereby show equivalence of the EVI,-gradient
flow property for quantum relative entropy, its strong geodesic A-convexity, a, possibly
infinite-dimensional, Bakry-Emery condition, and a Hessian lower bound condition. We
subsequently define lower Ricci bounds of our quantum gradients using any one of said
equivalent conditions, give sufficient conditions for lower Ricci bounds of direct sum
quantum gradients and, assuming lower Ricci bounds, derive functional inequalities
HWI,, MLSI), and TW, in the AF-C*-setting alongside their chain of implications.

Fundamental example classes give quantum optimal transport of normal states on
hyperfinite factors of type I and II with both non-negative and strictly positive lower
Ricci bounds. An application is given by first and second quantisation of spectral triples.
Upon passing to second quantisation, we introduce gauge fields as spatial coordinates in
a first effort to parametrise quantum optimal transport. This yields an ansatz to study
noncommutative gauge theories through the dynamics of such generalised gauge fields
described as gradient flows driven by a proposed internalisation of the spectral action
on gauge fields. The latter action is known from the celebrated spectral action principle
of Connes and Chamseddine.



Take it, brave York.
— Henry V

- Preface

This work fully presents the author’s doctoral thesis in mathematics at the Institute for
Applied Mathematics of the University of Bonn under the supervision of Karl-Theodor
Sturm starting in October 2016. It was and is motivated by the lack of a general notion
of curvature in Connes’ program of noncommutative geometry, sufficiency of lower Ricci
bounds for meaningful geometric analysis in the classical case, and, at its inception still
recent, work of Carlen and Maas for lower Ricci bounds in an ergodic finite-dimensional
setting using a dynamic formulation of quantum optimal transport distances. Its main
goal is to extend results of Carlen and Maas, in particular their notion of lower Ricci
bound based on the first properly noncommutative analogue of a classical equivalence
for EVI)-gradient flows of relative entropy, to a tracial infinite-dimensional setting in
order to derive novel quantitative statements in noncommutative geometry.

The discussion given in this work includes such an extension to a well-behaved yet
sufficiently general approximately finite-dimensional, or AF-C*-setting. However, its
exact nature, formulation and implications were not visible from the outset and thus
underwent several iterations during two principal phases of work. From October 2016
to October 2020, the author worked as a member of the research group of Karl-Theodor
Sturm and presented earlier versions of this work at seminars in Bonn, IST Austria, and
the Oberwolfach Research Institute for Mathematics. From November 2020 onwards, he
held two public-private research and development positions as applied mathematician
in operations research for the German federal government and at ITABG mbH.

The discussion which emerged during this time moves beyond the author’s initial
expectations and goal. The theory of quantum optimal transport as presented here lies
in the intersection of noncommutative gauge theory, quantum statistical mechanics and
quantum information theory. Whereas some technical effort ensures classical optimal
transport theory is emulated successfully, its spatial interpretation as mass transport is
invalidated by the simplest properly noncommutative example, i.e. transport of states
on two-dimensional complex matrices encoding a single qubit, since spin and mass are
independent intrinsic properties of elementary particles. Any reasonable extension to
the infinite-dimensional quantum setting hence requires a non-spatial interpretation as
transport of, suitably general, quantum information. The author hopes to have provided
the latter in this discussion, with an eye towards future applications to noncommutative
gauge theory upon explicit introduction of gauge fields as spatial coordinates acting as
control parameters for varying encoding schemes. An account of relations to other work
at the end of the introduction focuses on the foundational work of Carlen and Maas, as
well as the work of Wirth and Zhang in the tracial infinite-dimensional setting.
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1 | Introduction

Connes’ program of noncommutative geometry [671[691[1371[138] unifies continuous
and discrete geometries [114[][197][198] using operator theory [29]1[192][193]1(194]. The
program lacks a general notion of curvature [[111[][147] even as several exist for example
classes such as noncommutative tori [70][98][110][[146]. We instead study non-spatial
lower Ricci bounds, rather than curvature directly, since these often suffice for classical
geometric analysis [148][183]. Lower Ricci bounds [151][189][190]] for optimal transport
on continuous geometries [81[97][199] are displacement convexity [72][156] of relative
entropy. In the infinitesimally Hilbertian setting, they act as limiting cases for Bochner
inequalities [105] and imply a chain of functional inequalities [151][168]] probing the
underlying metric geometry. Maas [152] and Mielke [159] extended optimal transport
to discrete geometries. Pointwise division is replaced with inverses of evaluated opera-
tor means in the sense of Kubo and Ando [[13]. Erbar and Maas further extended lower
Ricci bounds and functional inequalities [104[][106][107]. Operator means let Carlen
and Maas extend to an ergodic finite-dimensional quantum setting [48]1[491[50]. They
allow for, possibly non-tracial, weights [193]. We in turn extend their results to a tracial
but non-ergodic and infinite-dimensional quantum setting, called AF-C*-setting, and
develop a theory of quantum optimal transport yielding non-spatial lower Ricci bounds
suitable for meaningful geometric analysis. We in fact study a non-spatial transport of
quantum information [62] and view it as the pointwise case of a general parametrised
one with an ansatz to study noncommutative gauge theories [51][541[55][197[I[198].

We emulate the classical case in the infinitesimally Hilbertian setting. Following
work of Jordan, Kinderlehrer and Otto for Fokker-Planck equations [131], resp. Otto for
porous medium equations [167[][169]], Ambrosio, Gigli and Savaré give EVI,-gradient
flows of proper l.s.c. functionals defined on metric spaces [[8] to study evolution partial
differential equations using gradient flows absent differential structures [75][160]. If
EVI,-gradient flow of relative entropy exists for L2-Wasserstein distances determined
by weak upper gradients [7]][56]] inducing Dirichlet forms [117]], then it is heat flow [9]]
[10]. Existence is equivalent to A-convexity of relative entropy [9][10] and Bakry-Emery
conditions [[19][20] linking heat flow to a weak Riemannian structure [8][[103] for the
given classical L2-Wasserstein distance [11][12][105]. Sturm [189][190], as well as Lott
and Villani [151]], each established A-convexity of relative entropy [72]1[156] as synthetic
lower Ricci bounds [191]. The latter imply a HWI-interpolation inequality, a modified
logarithmic Sobolev inequality MLSI,, and a Talagrand inequality TW [151][168].



CHAPTER 1. INTRODUCTION

Equivalent characterisation of heat flow as EVI)-gradient flow of relative entropy
and functional inequalities are extended to the discrete cases [152][159] in [[106], resp. to
the ergodic finite-dimensional setting in [48]][[49][50]. Note Datta and Rouzé extended
results as per [50] to the finite-dimensional Lindblad setting in [77]. In addition, see
[21]1[164]. Equivalence in [50] uses arguments fully given by Erbar and Maas in [106]
alone. The logarithmic operator mean yields analogues of L2-Wasserstein distances and
allows a Hessian lower bound condition crucial to show equivalence. In our logarithmic
mean setting, which does assume the AF-C*-setting, yet neither ergodicity nor finite
trace, we extend results in [48][49]1[50] and [106]. This demands an involved technical
discussion for which we summarise our twelve main contributions as follows:

A.1) We introduce noncommutative differential structures. They collect the data which
define quantum optimal transport distances. Theorem [2.2.49 and Theorem [2.2.58
show they lets us define noncommutative division operators. They determine, and
are in turn determined by, quasi-entropies in the sense of Hiai and Petz [[127]][[128]]
extended to the AF-C*-setting as per Theorem [2.2.29

A.2) We define and discuss quantum optimal transport distances of states on tracial
AF-C*-algebras. These are dynamic transport distances in the AF-C*-setting and
motivated by Benamou-Brenier-type distances [24][97]. We thus define and use
both quantum gradients and noncommutative division operators in our analogous
constructions. Assuming traciality but allowing non-ergodicity, defined as complex
kernel dimension larger than one for quantum Laplacians, we extend [[152][|159]
and [48]1[49][50] to the AF-C*-setting as discussed above.

A.3) Theorem [3.1.47|shows accessibility components of quantum optimal transport dis-
tances are complete geodesic length-metric spaces [8]1[40]. States at finite distance
have identical fixed parts under noncommutative heat semigroups of quantum
Laplacians. Non-ergodicity implies differing fixed parts. Assuming spectral gaps
of quantum Laplacians and fixed parts, Theorem (3.2.65| classifies accessibility
components of square integrable normal states using fixed parts.

A.4) We in turn use the above classification to formulate a coarse graining process as
per Diagram The latter reduces the AF-C*-setting to the finite-dimensional
one s.t. ergodicity is recovered up to a controlled remainder by reducing to acces-
sibility components in the finite-dimensional setting. We take great care to show
objects and properties are compatible with compression and finite-dimensional
approximation, i.e. restrict suitably and are scaling limits as j 1 oo [122].

A.5) Theorem shows energy functionals are I'-limits [74] w.r.t. the coarse grain-
ing process as per Diagram We formalise the latter as existence of sufficient
minimising geodesics approximated in finite dimensions. Theorem gives
such existence. Using the latter, the coarse graining process lets us view quantum
optimal transport as transport of, suitably general, quantum information. Upon
allowing mixed states [116], we transport scaling limits of uniformly conditioned
spin states encoding sequences of qubits [42]1[43][1621[931[95].
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B.1) We extend quantum relative entropy in the sense of Araki [16][17] and Umegaki
[196] to the AF-C*-setting. Specifically, we extend Kosaki’s formula [[163] in the
second variable to, possibly non-finite, traces. We require properties of the strongly
unital finite-trace case. We introduce finitely supported accessibility components
to rectify this. Upon restriction, Theorem shows we recover said case as per
Theorem depending on the given finitely supported fixed state.

B.2) Following a maximum entropy production principle [91][92][155]], we view quan-
tum Laplacians as generators of quantum noise evolution. Theorem shows
quantum Laplacians satisfy, up to sign, a quantum Fokker-Planck equation with
vanishing drift term in scaling limit, i.e. only noise diffusion term.

B.3) Theoremyields equivalence of EVI,-gradient flow, A-convexity, Bakry-Emery
and Hessian lower bound conditions by means of the coarse graining process as
claimed above. We are motivated in our proof by analogous arguments in [50] and
[106]. However, Theorem replaces essential steps therein letting us argue
using Riemannian metrics on relative interiors.

B.4) Lower Ricci bounds are given by A-convexity of quantum information along min-
imising geodesics measured by quantum relative entropy. Their non-spatiality
is further visible as follows. Assuming strictly positive lower Ricci bounds and
finitely supported fixed part, Theorem classifies accessibility components
of normal states with finite quantum relative entropy using fixed parts. Using the
latter, we show strictly positive lower Ricci bounds determine energy-information
trade-offs parametrised by lower bounds on quantum noise.

B.5) Theorem gives sufficient conditions for lower Ricci bounds of direct sum
quantum gradients. In order to do so, we adapt the proof of Theorem 10.9 in [50] to
the AF-C*-setting by means of the coarse graining process. Lemmal4.3.15|provides
detailed and, to our knowledge, initially lacking proof of a necessary extension of
Theorem 5 in [127] to all finite-dimensional C*-algebras.

B.6) Theorem derives functional inequalities HWI,, MLSI; and TW, in the
AF-C*-setting. Non-ergodicity requires relative entropy of finitely supported fixed
states in their formulation. We adapt the proofs of Theorem 11.3, Theorem 11.4
and Theorem 11.5 in [50] to the AF-C*-setting by means of the coarse graining
process. We introduce quantum Fisher information in the AF-C*-setting.

C) We provide fundamental example classes. The latter yield quantum optimal trans-
port of normal states on hyperfinite factors of type I and II [[173]. An application is
given by first and second quantisation of spectral triples [54][55][197][198]. This
yields our ansatz to study noncommutative gauge theories based on a proposed
internalised spectral action [51]1[52]1[531[197][198]].

The remaining introduction details A.1) to A.5) as per Chapter [2]and Chapter[3] as well
as B.1) to B.6) as per Chapter 4. We do not detail C) here. At the end, we explain use of
notation, give structure of our discussion, and elaborate on relations to other work.
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CHAPTER 1. INTRODUCTION

We summarise our discussion of noncommutative differential structures given in
Chapter [2| and construction of quantum optimal transport distances as per Chapter
Noncommutative differential structures collect the data which define quantum optimal
transport distances. Each consists of two components and one setting. Let (¢,vw,y,V) be
such noncommutative differential structure for tracial AF-C*-algebras (A, ) and (B,w)
in (f,0)-setting. We briefly describe its components and setting necessary to establish
our underlying noncommutative topology, measures and integrals.

The approximately finite-dimensional, or AF-C*-algebras A and B are C*-algebras
s.t. A is norm closure of A9 =Ujen A and B is that of Bg = Ujen B;j for ascending chains
{A;}jen and {Bj}jen of finite-dimensional C*-algebras [29]1[38][192]. Their f.s.n. traces
7:A; — [0,00] and w : B, — [0,00] are finite on Ay, resp. Bo [96]1[192][193]. For all
p € [1,00], we define noncommutative L”-spaces L?(A,71) and L?(B,w) of measurable
operators equipped with L”-norm [[130]|161]. They fulfil Hélder inequalities. We have a
modified standard pairing encoding duality [193]. In particular, get L(A,7) = LY(A,1)*
and L®°(B,w) = L1(B,w)*. We have state space S#(A) = {ue A% | llulla = 1} and normal
state space #N(A) = S(A)NLYA,1)° of A. We do not require state spaces of B in our
discussion. We see T and w are, possibly unbounded [[170][171], noncommutative Radon
measures (cf. Example [A.1.33). States on A are noncommutative probability measures.
They are normal if they have noncommutative density in L1(A, 7). Elements in B* are
noncommutative totally finite signed outer regular Radon measures [170][171].

We use two components in a single setting. First, we have AF-A-bimodule structure
(¢,y,y) on B given by local *-homomorphisms ¢,y : A — B and anti-linear involution
y:L%(B,w) — L%(B,w). AF-C*-bimodules generalise the notion of tracial AF-*-algebras
s.t. underlying noncommutative topologies, measures and integrals interact through
local *-homomorphisms under anti-linear involutions. We have bounded A-bimodule
action on B, called the (¢, ¥)-action, given by

xuy = L‘ﬁ(R‘y”(u)) = p)uw(y) (1.1)

for all x,y € A and u € B. The (¢, y)-action satisfies y-symmetry given by

y(p@uy(y)) = dly*)ywp(x*) (1.2)

in each case. Locality of ¢ and v lets us extend Equation to a normal, unital and
bounded L>®(A, 7)-bimodule action on L2(B,w). Moreover, Equation extends in turn.
We thereby see L%(B,w) is a symmetric W *-bimodule over L>®(A, 7). This establishes, in
full, noncommutative topology, measures and integrals. Secondly, we have a quantum
gradient V: Ao — L2(B,w). It satisfies its own locality condition. The latter shows V is
a symmetric W*-derivation. These are noncommutative gradients with likewise chain
rule. The relationship between gradients, heat semigroups and Dirichlet forms extends
to the noncommutative setting [63[[65]. We further know V(A() € By and V*(Bg) < Ay.
Dualising V: Ao — By provides the weak formulation of a continuity equation as per
Equation[1.11] Elements in B* serve as synthetic tangent vectors [81[97][103].
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The data collected is, by definition or construction, compatible with compression and
finite-dimensional approximation by their locality properties. These are two general op-
erations we formalise in a coarse graining process as per Diagram To this end, we
give two classes of compression used throughout our discussion.

We use two classes of compression. First, we compress to induced AF-C*-bimodules.
For all j € N, we have induced AF-A ;-bimodule structure (¢;,v;,y;) = ((,D|Aj,1//|Aj,7/|Aj)
on B; and j-th restricted quantum gradient V; = Vi4; : Aj — Bj. Finite-dimensional
approximation is given by j 1 co for suitable convergence. Secondly, we compress with
projections. Let p € L°°(A, 1) be a projection. We have tracial W*-algebra L*(Alp]l,1) =
pL>®(A,7)p and symmetric W*-bimodule L2(B[p]l,w) = pL%(B,w)p over the former. We
thereby compress the extended (¢, y)-action with p as

xuy:L(,f’p(R;/,p(u)) =¢(pxp)uy(pyp) (1.3)

for all x,y € L°(A[p],7) and u € L2(B[p]l,w). Locality lets us extend Equation to
a unital unbounded L%(A[p], 7)-bimodule action on L%(B[p]l,w), i.e. to their spaces of
measurable operators. For all x,y € L°(A[p], 1), get joint spectral measure E x,y,L=(A[p],7)
and its domain set .#,(E ) of suitable E , 1.0(a[p] r)-a.€. defined g : RxR — C satisfying
strong resolvent convergence [[88]] as € | 0 upon e-perturbation. Each such joint spectral
measure determines compressed pulled-back joint functional calculus

F]o?,j’f)w : Sy (Exy) — %B(L*(Blpl,w)), (1.4)

of extended AF-C*-bimodule actions as per Equation Note %B(L*(Blpl,w)) is the
set of all unbounded operators on L2(B[p],w) here. Let Ao L>(A[p],r) be the *-subalgebra
generated by pAgp in L*(Alp], 7). If p satisfies additional technical properties, then we
have p-compressed quantum gradient V, = VIAO,LOO(A[p],r) 1 Ao LoAlplr) — L2(BIp]l,w).

Finally, we have a representing function f : (0,00) — (0,00) of an operator mean [[13]
together with an interpolation factor 0 € [0,1] s.t. |w|| 1-0 = ()(15)17? < co. We have mean
my :(0,00) x (0,00) — (0,00) given by mr(t,s) = f(ts™Ys for all t,s > 0. For all € > 0, we
furthermore have mean my : [0,00) — (0,00) perturbed with & given by my .(¢,s) =
myg(t+e¢,s+¢) for all £,s = 0. For all x,y € L%A[pl,7),, we have the noncommutative
division operators of x and y given by

D\ =Tryy (m7’)=m;? (LS, RY,) (1.5)

if m}:l € (Eyy). Forall x,y € L%Al[pl,7), and € > 0, we also have the noncommutative
division operator of x and y perturbed with ¢ given by

D0, e =Ty (m7t) =m7?(Lhe Y. (1.6)
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Strong resolvent convergence as € | 0 upon e-perturbation is given by

o (mre) =

29 =sr-1im2° =sr-limT m
c10 x0 30 e elo  OYP fie

v
0 Ry,] am

sr- lglmmfg(L(fp,

if m;l € #(Ey, y). This holds for applications of Equation since, assuming fixed parts
with integrable support, we show heat flow instantaneously regularises normal states
on A[p] to be, possibly unboundedly, invertible up to fixed part. States at finite distance
have identical fixed parts under noncommutative heat semigroups of quantum Lapla-
cians as per Equation We show a technical but weaker assumption on majorants
of local support as per Equation is stable under heat flow and ensures integrable
support. The latter in turn implies suitable compressibility.

Equation itself extends to all states on A without any assumptions by means
of quasi-entropies [127][128]. Note quasi-entropies generalise quantum f-divergences
[125][126], a class of dissimilarity measures for information encoded in states of quan-
tum systems [62][|141]. We use the modified standard pairing, in particular their flat and
sharp operators. For all j € N, we have quasi-entropy jf 0 :A;, L X A;, L X B; —[0,00] in
the finite-dimensional setting given by

jjf’g(ﬂj,nj’wj) sup <9,UJ,7717 (ﬁwj),ttwj>w (1.8)

for all y,ne A} and w € B*. Note subscripts j € N in Equation denote restriction to
Aj, resp. B;. Equation uses the induced AF-A ;-bimodule structure (¢;,v;,y;) on B;
in each case. Monotonicity of quasi-entropies lets us extend Equation as claimed to
a quasi-entropy £/ tAL x AT x B* — [0,00] given by

I, m,w) = Sué)jf’ (1jmjow;) —hmjf’ (1jsmjsw;) (1.9)
JE

for all u,ne A% and w € B*. Equation gives quasi-entropies for AF-C*-bimodules.
Moreover, Equation [1.8/implies Equation [I.9 decomposes as

pm n,w)—su£su0p (@# e c(tw;),fw;), —supsu,g (@y e (tw;j),fw;), (1.10)
JjeEN &> je

in each case. Using monotonicity of nets in Equation[I.7]and the Kato-Robinson theorem
[88], we kill both suprema in Equation by taking limits. We consequently obtain
closed positive unbounded quadratic forms on L?(B,w) represented uniquely by those
positive unbounded operators which extend Equation to all states. Quasi-entropies
as per Equation [1.9define energy functionals as per Equation by integrating their
own evaluation on admissible paths. Altogether, we extend the quasi-entropy approach
for defining noncommutative division operators in [50]] to AF-C*-bimodules.
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We construct quantum optimal transport distances using data as above. This follows
the classical case [97]. Let .#(A) denote the w*-closure of #(A) c A*. We metricise
its w*-topology and obtain a compact metric space. This uses separability of A. Note
the Arzela-Ascoli theorem applies to paths in compact metric spaces [136]. For all I =
[a,b] c R, we have the set AC(I,.#(A)) of all weakly absolutely continuous p: I — #(A)
s.t. impu c #(A). We say that (u,w) € AC([a,b], S (A)) x L%([a,b],B*)y is an admissible
path if (u,w) satisfies

i,u(t)(x) = w(t)(Vx) = limw;(#)(Vjx;) (1.11)
dt JjeN

for all x € Ag and a.e. t € [a,b]. We call u(a), u(b) € #(A) the marginals of (u,w), resp. u
in this case. Note L%([a,b],B*)y is the Banach dual space of the Bochner L2-space
L?%([a,b],B), and the second identity in Equation holds in general.

We require some bookkeeping. For all u°, u! € #(A), we have the set Adm!*?(u°, 1)
of all admissible paths defined on [a,b] c R with marginals u® and ,ul. We further have
the set Adm/®?! of all admissible paths defined on [a,b] c R regardless of marginals, as
well as the set Adm of all admissible paths regardless of either definition intervals or
marginals. We therefore have energy functional E/¥ : Adm — [0,00] given by

b b
EM(u,w) = f yfﬂ(y(t),u(w,w(t))dt=£_iEnN1 f 10, 10, m;0)dt (1.12)

for all [a,b] cR and (u,w) € Adm!®?!. Note, in contrast to Equation subscripts j €N
in Equation denote normalised restriction to A j, resp. B; via bars. We normalise to
norm one in the first two variables, and in the third one s.t. Equation|l.11|remains sat-
isfied. Since normalisation invalidates monotonicity of quasi-entropies, Equation [1.12
is not a supremum in general even as Equation is. Upon restricting domains to
sets of admissible paths with identical interval and marginals, we further show energy
functionals as per Equation are I'-limits [74] of suitable restrictions.

We therefore have the quantum optimal transport distance of (¢,v,y,V) on #(A) in
(f,0)-setting given by

PO pt) =  inf  \/EfO(u,w) (1.13)

Adm[ovu(po,ul)

for all u°, u' € #(A). Accessibility components of quantum optimal transport distances
are complete geodesic length-metric spaces. Metric geometry reduces to accessibility
components. There may exist uncountable infinitely many since sets of states at finite
distance have identical fixed parts under noncommutative heat semigroups of quantum
Laplacians. Assuming spectral gaps of quantum Laplacians and fixed parts, we use such
fixed parts to classify accessibility components of square integrable normal states. We
in turn use the latter classification for the coarse graining process since its assumptions
are satisfied for all accessibility components in the finite-dimensional setting.
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CHAPTER 1. INTRODUCTION

Classification uses regularisation of normal states under heat flow as mentioned for
Equation We have heat semigroup % : [0,00) — B(L2%(A, 1)) of A = V*V given by

hi(w) = e w) (1.14)

for all t = 0 and u € L2(A, 7). The heat semigroup of A extends as follows. For all j € N, we
have symmetric C*-derivation V;: A; — B;. We obtain C*-Dirichlet form u — IIVJ-uII%
on A; in each case [65]. Using the latter, we have completely Markovian semigroup
h’ :[0,00) — B(A ;j) as well [63]. Note completely Markovian semigroups [83]][85][86]
and their extensions to Banach dual spaces are given by completely positive dilations
[63]. Iterated dualisation using the modified standard pairing extends Equation [1.14]
accordingly. Altogether, we have noncommutative heat semigroup of A mapping to 2(V)
ifV=A*orV=LP(A,1) for p €{1,2,00}.

For all p€ A*, h(u) = hoo(p) is its fixed part and A (u) = u— h(u) its image part. We
call £ € F£(A) a fixed state, or fixed if h(¢) = ¢&. For all fixed states ¢ € #(A), we have the
set Fixa (&) = {u € L(A) | h(u) = &} of states on A with fixed part ¢, as well as the set
Ea&)={ue F(A)| u~¢&of states on A at finite distance to ¢. Intersecting with FNA)
yields the set Fixﬁ(cf ), resp. %§(£ ) of such normal states on A. These sets underpin both
classification and regularisation. For all fixed states ¢ € #(A), we have € 2(¢) c Fixs (&)
and decomposition

Fixa(H)= [] <€ (1.15)
€ cFix (&)

into accessibility components. Let & € #(A) be a fixed state. We say that an accessibility
component € < (5”(A),7//Vf’9) has fixed part ¢ if € < Fixy (&).
Assume ¢ € .#N(A) has integrable support. For all y € Fixg(f ), we have

hy(w) € #N(Alsuppél) (1.16)

for all ¢ € (0,00]. Note Equation [1.16] uses the support projection supp¢ € L™(A,7) of
¢. We have supp¢-compressibility and write A¢ = A[supp¢]. As such, the subscript in
Equation denotes normal states on A s.t. densities are unboundedly invertible in
%@(Lz(Ag, 7)) under compressed canonical left- and right-action. If ¢, resp. its density is
boundedly invertible in this sense and square integrable, then, assuming A has spectral
gap, regularisation as per Equation lets us show

Ex2(E) = 6a() N FNHA) = Fixa () n FN2(A). (1.17)

Upon intersecting Fix 4 (¢) with the set #N2(A) of all square integrable normal states on
A, we at once see Equation and Equation |1.17|show we classify as claimed. In the
finite-dimensional setting, assumptions as above are always satisfied and we therefore
classify all accessibility components using fixed parts.

8



The coarse graining process as per Diagram [1.19| uses classification of accessibility
components as per Equation [1.17] in the finite-dimensional setting and lets us view
quantum optimal transport as transport of, suitably general, quantum information [43]]
[62][95]. We use compression for all its vertical chains of arrows and finite-dimensional
approximation for its horizontal ones. The coarse graining process decomposes global
pictures, objects and properties into sequences of local ones together with a uniformity
condition ensuring convergence of limits.

For all j € N, we use induced AF-A j-bimodule structure on B; and j-th restricted
quantum gradient V;: A; — B;. For all ul, ul € #(A), we have

7 (w0 ) = lim g (3, 1) (1.18)

Note we do have a uniformity condition as required for Equation |1.18| because va 9 is
L.s.c. in w*-topology. In particular, we show, a priori, states are at finite distance if and
only if the limit on the right-hand side of Equation [1.18|exists.

Diagram itself expands the underlying process generating the limit on the
right-hand side of Equation Let jmin € N minimal among all j € N s.t. {; # 0. For
all j = jmin in N, we consider normalised restriction & j€FL(A)),i.e. afixed state, as well
3 AJ.(E j) and <6AJ.(<,E 7). We require convex subset K . #(A) to have lower left corner in

A* N\ ... \ A"j N\ ... \ A*j
. I 4 j 7 I Jmin
J ) ) (1.19)
or op . “es % .
ENG S o — Fa,(§) —» » Fa;  (Ejin)
AN

We show the AF-C*-setting yields noncommutative analogues of scaling limits [122]. As
such, Diagram lets us argue we transport scaling limits of uniformly conditioned
spin states encoding sequences of qubits [42][43]1[621[931[95]. Non-ergodicity restricts
information-bearing degrees of freedom. Since energy functionals are I'-limits w.r.t. the
coarse graining process, the latter reduces the AF-C*-setting to the finite-dimensional
one s.t. ergodicity is recovered up to a controlled remainder by reducing to accessibility
components in the finite-dimensional setting. If K in Diagram equals the domain
of quantum relative entropy as per Equation then we are able to apply the coarse
graining process in Chapter [4 Altogether, we study a non-spatial transport of quantum
information with restricted information-bearing degrees of freedom.
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CHAPTER 1. INTRODUCTION

We describe our results in Chapter (4] for the logarithmic mean setting. We are in the
latter setting if 6 = 1 and we use the unique symmetric representing function f = fog of
the logarithmic operator mean mj,; = m fiog © (0,00) x (0,00) — (0,00) given by

t—s 1
t,s)= ————= | t%'7% 1.20
Miog(t,s) Tog?—logs fo s da (1.20)

for all ¢,s > 0. We consider fixed state { € #(A) as above. We further suppress its, by
assumption integrable, support projection supp¢ in all subscripts and write ¢ instead.
If x> 0in L*™°(A¢, ), then Equation implies the noncommutative division operator
of x = y as per Equation acts by

Dy () = f
0

for all u € L2(Bg,w). Note Equation corresponds to multiplication with inverses of
densities in the classical case [97]], resp. use of the Kubo-Mori-Bogoliubov inner product
[176] in [50]. As such, Equationyields quantum L2-Wasserstein distances in direct
analogy to the classical case [97].

If x € L(A¢,T)y s.t. x >0 in L>(A¢,71), i.e. a boundedly invertible element in the
C1l-algebra of V upon compressing the latter with supp¢, then logx € L*™®(A¢, 1)y as well
and the noncommutative chain rule shows we have

(e .9]

(af+L%,) (el +BY,) M) da (1.21)

Ve logx = Dy e Vex. (1.22)

Using results in [172]], Equation[1.22)implies heat flow is, up to coarse graining, gradient
flow of quantum relative entropy as per Equation [1.23|on relative interiors. Heat flow
further satisfies a steepest entropy ascent property [25] by considering the steepest
descent property of gradient flows in smooth Riemannian manifolds [[144] and taking
limits. We seek conditions s.t. steepest entropy ascent implies quantum noise evolution
as per B.2). We accomplish this with our maximum entropy production principle [91]]
[921[155]. Applying heat flow to a state for ¢ > 0 introduces quantum noise in B.4).

Umegaki defined relative entropy for semi-finite W*-algebras [196]]. Using relative
modular operators, Araki generalised to all W*-algebras [[16]|17]. We extend Kosaki’s
formula [163] in the second variable to get the relative entropy Ent’ : A7 — [—o00,00]
w.r.t. 7,i.e. quantum relative entropy. It measures information required to discriminate
a given state and, possibly non-finite, trace through observation. If u ¢ Ll(A,T)EL, then
1 ¢ domEnt?, i.e. |[Ent(y,7)| = oo as expected. If pe L(A, 1), and p € LY(A,7)nL>(A,T)
is a projection s.t. suppu < p, then Ent(u,7) > —co and we have

o0
Ent(u,7)= sup {IlullA[p]*logn—f 1z:—1||p—F(t)ui+;:—2||F(1:)||§dt}, (1.23)
-

nenN,
Feg, (Alp))

where we take the supremum over all suitable step functions F : (n~!,00) — A[p] and
use the GNS-inner product |||, of y, resp. ||.|l; of 7 [192]1[193].
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The negative of Umegaki’s definition is quantum entropy, i.e. von Neumann entropy
(cf. p.17 in [163]). Equation [1.23| reduces to Umegaki’s definition if 7 < co. We further
know it is jointly convex, l.s.c. in w*-topology of L°°(A,7) and has restriction property
in this case. Either may fail if (A, 1) is not strongly unital. Uniform majorisation of the
local support of fixed parts suffices to prevent failure and recover a finite-dimensional
approximation property. As such, we require l.s.c. in topology of the given quantum
optimal transport distance on all accessibility components with suitable fixed part, as
well as compatibility with compression and finite-dimensional approximation.

For this, we compress with projections as per Equation in general. We say that
p € LY(A,7)nL™(A, 1) majorises the local support of & if

suppé; <p (1.24)

in L°°(A,7) for a.e. j € N. We further call p a majorant of the local support of ¢é. We
say that ¢ is finitely supported if ¢ € domEnt® and there exists a majorant of its local
support. Assume the latter. For all y e Fix§(§ ), finite-dimensional approximation is

Ent(y,7) =1lim Ent(y;,7) = lim Ent(i;,7). (1.25)
JEN JEN

Finally, we show Ent’ : Fixﬁ(f ) — (—o00,00]is l.s.c.in 7//vf ’B-topology. We need not assume
the logarithmic mean setting in our discussion of quantum relative entropy.

We use quantum relative entropy as measure of quantum information. Assume the
logarithmic mean setting. We write .#1°8 := #/:1 ags well as E°8 = Ef>! and Wvlog = va o
For all 10, u' € #(A), the set Geo(u°, u') of all minimising geodesics with marginals u°
and p! is non-empty if the latter are at finite distance. Lower Ricci bounds are given
by A-convexity of quantum information as per CNV, below along minimising geodesics
measured by quantum relative entropy. Let ¢ € #(A) be a finitely supported fixed state.
Let € c (y(A),WVIOg) be finitely supported with fixed part ¢ s.t. € NdomEnt’ # @. Let
A € R here. We know Ent’ is A-convex in the sense of metric geometry [8[][160] if for all
10, ut € € ndomEnt? and (i, w) € Geo(u®, ub) s.t. u(t) € dom Ent” for all £ > 0, we have

Ent(u(t),7) < (1 -t)Ent(u°,7) + t Ent(u',7) - %t(l — OB (10, ) (CNV,)

for all ¢ € [0,1]. We follow [151] and [1891[190], resp. [501[106] in our definition. We use
CNV, to view lower Ricci bounds as measurement convexity of quantum information. If
we have noncommutative analogues of displacement interpolations [72][[156]], then such
measurement convexity in the Schriédinger picture is convexity under measurement of
observables in the Heisenberg picture. Unfortunately, existence results are unknown to
us. We instead show strictly positive lower Ricci bounds determine energy-information
trade-offs parametrised by lower bounds on quantum noise. Lower resolution implies
lower energy paths. We avoid spatial interpretations of the classical case [97][151].
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CHAPTER 1. INTRODUCTION

Strictly speaking, we apply our equivalence theorem to define lower Ricci bounds of
quantum gradients in direct analogy to the classical case [9[10[[11][12[[105], resp. as
per [501[106] using CNV, together with all of the following equivalent conditions. We see
h :[0,00) x € Nndom Ent" — ¢ ndom Ent’ is EVI,-gradient flow of Ent’ in ¢ ndom Ent"*
in the sense of metric geometry [81[160] if for all y,n € € NndomEnt’, we have

e/l(t—s)

log 2 1 log 2 t=s Ar /
TWV (he(w),m) _EWV (hs(w),n)” < A e dr-(Ent(n,r)—Ent(ht(u),T)) (EVI)

for all 0 < s <t <oo. Note EVI{ as above is the well-known integral characterisation of
EVI,-gradient flows [8], denoted by EVI; throughout our discussion. If EVI,-gradient
flow of relative entropy exists, then it is heat flow as above.

Equivalence of EVI; and CNV}, is also well-known [[160]. We have three equivalent
global conditions. Upon ranging over all finitely supported accessibility components as
above, the first one is EVI) and the second one is CNV,. The third one is a, possibly
infinite-dimensional, Bakry-Emery condition [19][20] adapted to the logarithmic mean
setting as per [50]. We say that A satisfies BE, if for all finitely supported fixed states
£ € F(A) and € < (F(A), #o) with fixed part ¢, we have

1 1
|t IR}, < et  Vull (BE,)
for all ue € NL>®(A;, 7)Y, u € domV; and ¢ = 0. Note BE, uses those noncommutative
multiplication operators whose inverses are noncommutative division operators as per
Equation [1.5] Compatibility with compression and finite-dimensional approximation of
all objects involved, in particular but not only finite-dimensional approximation as per
Equation and Equation[1.25] ensure all three global conditions arise from and are
equivalent to three local conditions mirroring the above in the finite-dimensional setting
for a.e. induced noncommutative differential structure.

We therefore have EVI,-gradient flow, A-convexity and Bakry-Emery conditions in
global and local form. We cannot show their equivalence directly. For this, we consider
a Hessian lower bound condition H, as per [50]. In the finite-dimensional logarithmic
mean setting, we require such to show equivalence as claimed. We are motivated in our
proof by analogous arguments in [50] and [106]. However, we must use two differential
equations for Hessians of quantum relative entropy in order to replace essential steps
therein letting us argue using Riemannian metrics on relative interiors induced by the
given quasi-entropy. We say that HessEnt® has lower bound A if for all for all finitely
supported fixed states ¢ € #(A) and a.e. j € N in each case, we have

Hess, Ent'(n) = Agij(n, n) (Hyp)

for all pe9(;) and ne I(Agj)b. Each 9(¢;) = relint €, ;(¢;) and 9(¢;) I(Agj)b is a smooth
Riemannian manifold, resp. its trivial tangent bundle plus Riemannian metric as per
the right-hand side of H; above. Taking limits yields equivalence as claimed.

12



Following Diagram [1.19] it is Hy which most clearly shows how underlying metric
geometric properties such as lower Ricci bounds may be scaling limits of Riemannian
ones up to heat flow regularised boundary. This requires suitable K in Diagram [1.19
Let ¢ € #(A) be a fixed state. If ¢ € #(A) is finitely supported fixed state, then, assuming
strictly positive lower Ricci bounds, existence of a unique minimum for EVI,-gradient
flows of L.s.c. functionals with complete sublevels [160] lets us show

%}Ent(f) =64(¢)NndomEnt’ = Fixs () ndomEnt’ # @. (1.26)

As for Equationand K =N2(4), Equation and K = dom Ent’ readily show we
classify accessibility components of normal states with finite quantum relative entropy
using fixed parts. This yields suitable K, as is visible from our equivalent conditions
above. Strictly lower Ricci bounds avoid assumptions on spectral gaps. Equation
lets us formulate energy-information trade-offs as claimed using Talagrand inequality
TW, for A = 0 as given below. It formulates an energy-information trade-off since lower
energy paths are obtained by introducing quantum noise. The latter requires our view
of quantum Laplacians as generators of quantum noise evolution as per B.2).

We then give sufficient conditions for strictly positive lower Ricci bounds of direct
sum quantum gradients. We adapt the proof of Theorem 10.9 in [50]] for A-intertwining
symmetric C*-derivations to the AF-C*-setting by means of the coarse graining process.
We give an essential estimate for quasi-entropies evaluated on states under heat flow
extending its analogue in [50] to the AF-C*-setting. Our proof requires an extension of
Theorem 5 in [127] to all finite-dimensional C*-algebras. Examples for strictly positive
lower Ricci bounds are twisted dynamic quantum gradients induced by intertwining
sets of Clifford generators. This generalises [48]] but needs detailed implementation of
Bogoliubov automorphisms on anti-symmetric Fock space [[114][177]].

Assuming lower Ricci bounds, we derive functional inequalities HWI,, MLSI; and
TW, for A =0, resp. A > 0 as per [50]. Non-ergodicity requires relative entropy of finitely
supported fixed states in their formulation. We introduce quantum Fisher information
in the AF-C*-setting. Its role mirrors the classical case [151][168]. We have quantum
Fisher information I8 : A* — [0,00] given by

18 () = sup .71 (), 1, (Vi) (1.27)
JeN J

for all pe€ A}. Equation immediately shows quantum Fisher information inherits
properties of quasi-entropies. For all finitely supported fixed states ¢ € #(A), we use the
inherited properties and the gradient flow property to show

Ent’ (h:(w)) (1.28)
t=0

for all p e Fix} (&) n #N(Ag) nGLL™(A¢, 7)) N (dom AY. Note GL(L®(A¢, 1)) is the set of

all boundedly invertible elements in L>*(A¢, 7). Equation implies I'°8(y) is indeed a
noncommutative analogue for parametrisations {A;(u)};>o given p € FNA).

d
Ilog —_
W) dt
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CHAPTER 1. INTRODUCTION

We adapt the proof of Proposition 11.2 in [50] to the AF-C*-setting by means of the
coarse graining process. For all u,n € #(A), Equation lets us show

+

A g, -\ -
lim sup EWJ 8(hy(i)),7;) < /T8 (R y(w) (1.29)

JeN

for all ¢t = 0. Equation[1.29|in turn provides sufficient control of metric derivatives using
quantum Fisher information. It is the crucial estimate allowing us to adapt the proofs
of Theorem 11.3, Theorem 11.4 and Theorem 11.5 in [50] to the AF-C*-setting by means
of the coarse graining process.

We derive three functional inequalities. Let A € R. We say that Ent’ satisfies HWI,
if for all finitely supported fixed states ¢ € #(A) and €6 (y(A),Wvlog) with fixed part &
s.t. € ndomEnt’ # @, we have

(0] /1 o
Ent(u, 7) < %o (1, €)y/ T8 (1) - EWVI g(1,)? + Ent(¢, 7) (HWI,)

for all y € €. Assume A > 0. We say that Ent’ satisfies MLSI, if for all finitely supported
fixed states £ € F#(A) and € c (S”(A),WVIOg) with fixed part ¢ s.t. ¥ ndomEnt’ # @, we
have

Ent(y,7) < % 1°%() + Ent(é, 7) (MLSI,)

for all u € €. We further say that Ent’ satisfies TW if for all finitely supported fixed
states { € #(A) and € (y(A),Wvlog) with fixed part ¢ s.t. € ndomEnt’ # @, we have

o 2
Wvl S(u,&) < \/% (Ent(y, 7) — Ent(é, 7)) (TW))

for all u € €. We obtain the following implications in direct analogy to the classical case
[151]][168] and extending results in [50] to the AF-C*-setting as claimed. Analogous to
our equivalent conditions for lower Ricci bounds, all three functional inequalities above
are scaling limits w.r.t. the coarse graining process.

We have an expected chain of functional inequalities. If we do have lower Ricci
bounds for A € R, then Ent’ satisfies HWI,. If Ent’ satisfies HWI, for A > 0, then Ent’
in turn satisfies MLSI,. If Ent’ satisfies MLSI,, then Ent’ finally satisfies TW,. Their
proofs pass through the finite-dimensional setting.

Notation. We follow notational conventions of our stated standard references whenever
possible. However, we must tie together different ones tailored to our use. We establish a
single coherent notation in our definitions and paragraphs marked as Notation. Unless
stated otherwise, the latter are in force once stated. This includes notation given in the
appendix. The latter are revisited in the main matter prior to first use.
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Structure. We divide our discussion into main matter and its appendix. The latter
gives auxiliary technical results. In Chapter [2| we discuss the data necessary to define
quantum optimal transport distances and collect such initial data in noncommutative
differential structures. This covers A.1). In Chapter |3, we define our quantum optimal
transport distances, discuss fundamental properties and provide fundamental example
classes. This covers A.2) to A.5), and C). In Chapter {4} we construct quantum relative
entropy for, possibly non-finite, traces, discuss the logarithmic mean setting, and extend
results in [48[][49][50] and [[106] to the AF-C*-setting. This covers B.1) to B.6).

Relations to other work. We may categorise noncommutative optimal transport into
dynamic [371[48]1[491[501[5711581[591[200] and static [141[901[991[112][66] formulations.
As explained above, quantum optimal transport distances as per A.2) are dynamic
transport distances motivated by Benamou-Brenier-type distances [24]1[97]. The latter
is shared by all dynamic formulations. Following work of Maas and Mielke for the dis-
crete cases [152][159], Carlen and Maas pioneered the dynamic formulation in [49][50]
to study quantum Fokker-Planck equations [48]]. Our discussion, resp. any of its prior
versions, and independent but concurrent work of Wirth [200]] together with Zhang
[202] are the first infinite-dimensional dynamic formulations and extensions of results
in [48[[491[50]. Assuming regular operator mean and restricting to densities, i.e. normal
states, the dynamic formulation in [200] and our discussion coincide. However, each has
considerably different technical foundation, assumptions and applicability. Results and
their proofs, as well as range of examples, differ accordingly. We closely examine these
differences further below. In general terms, we see our bottom-up design yields flexible
architecture for the AF-C*-setting capable of stronger results therein.

All dynamic formulations avoid the lack of a natural noncommutative analogue of
conditioning for couplings [47]. Recent static ones consider specific sets of couplings
or quantum channels for trace-class operators on Hilbert spaces [[14][90][66[, balanced
transport plans [99][101]], or use entropic regularisation [112]]. Noncommutative duality
formulas remain difficult to find. Following the work of Erbar, Maas and Wirth [108] and
Gangbo, Li and Mou [[119] for discrete cases, Wirth gives such a duality formula [201]
for quantum optimal transport distances in the finite-dimensional setting, resp. their
entropic regularisations [22], via subsolutions of Hamilton-Jacobi-Bellmann equations
[301[168]. We do not have an infinite-dimensional extension but consider finding one by
means of the coarse graining process a test of our approach we defer to future work.

We focus on the relation of our main contributions to the two most related dynamic
formulations [48][[49][50] and [200]. Moreover, we consider the use of our discussion
for studying noncommutative gauge theories [51][54]][551[197][198] within Connes’ pro-
gram of noncommutative geometry [67][69][137][138]. This leads us to view quantum
optimal transport as transport of quantum information [62]] without considering spatial
coordinates [68]]. Furthermore, we view quantum Laplacians as generators of quantum
noise evolution as per B.2) in order to have non-spatiality of lower Ricci bounds as per
B.4) and associated energy-information trade-offs. Applications of other approaches to
entropic inequalities [6], quantum channels [90[][100][120], statistical learning [22] and
variational algorithms [89]], among several more [59][76][77], fit our point of view.
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CHAPTER 1. INTRODUCTION

We explain similarities and differences of foundational work of Carlen and Maas
[481[491[501, as well as related work of Wirth [200]], resp. Wirth and Zhang [202], to our
discussion. As explained in the introduction, we extend results in [[48][[49][50] and [[106]
to the AF-C*-setting as per A.1) by means of the coarse graining process as per A.4).
Assumptions differ from ours in two points apart from dimensionality. First, they allow
for, possibly non-tracial, weights [193]. Of course, they are finite. We assume traciality
but not finiteness. Traciality implies neither our discussion nor [200] fully subsumes
[50]. Secondly, they assume ergodicity and we do not. Using our assumptions, which let
us cover all fundamental example classes as per C), we extend the equivalence in [50]
to that of the EVI,-gradient flow of quantum relative entropy as per B.1), its strong
geodesic A-convexity, a, possibly infinite-dimensional, Bakry-Emery condition, and a
Hessian lower bound condition as per B.3). This is our equivalence theorem. We further
obtain non-spatial lower Ricci bounds as per B.4), sufficient conditions for lower Ricci
bounds of direct sum quantum gradients as per B.5), and derive functional inequalities
HWI,, MLSI; and TW, as per B.6). Finite-dimensional cases are given in [50].

Yet we cannot naively extend results to the AF-C*-setting by taking limits. We thus
consider objects and properties compatible with compression and finite-dimensional ap-
proximation as per A.4). We explain such compatibility at the end of Chapter [2| and
formalise it in the coarse graining process [[122] in Chapter [3| This in turn demands
an involved technical discussion culminating in our introduction of finitely supported
accessibility components as per B.1) and our restriction of quantum relative entropy
to the latter. An essential technique is compressed pulled-back joint functional calculus
of extended AF-C*-bimodule actions explained in Chapter [2| based on Appendix [Al and
Appendix (Bl However, use of the coarse graining process requires us to adapt or even
replace essential arguments in [[50] and [106] as explained for our main contributions
and throughout our discussion when proving suitable analogous results.

Wirth gives a dynamic formulation [200] in a tracial infinite-dimensional setting.
Assuming energy dominant trace [132] but not ergodicity, these are noncommutative
optimal transport distances of densities, i.e. normal states, in tracial W*-algebras. They
are determined by suitable symmetric C*-derivations inducing C*-Dirichlet forms on
noncommutative L2-spaces of tracial W*-algebras [63][65]. Results in [200][202] often
assume tracial state and may assume ergodicity. Note [202] is based on [200]]. Assuming
tracial state and ergodicity, Wirth shows a, possibly infinite-dimensional, Bakry-Emery
condition [200] as per [50]] implies heat flow is EVI)-gradient flow of relative entropy
for W*-algebras [163]] and therefore, by standard arguments [160], A-convexity of such
relative entropy. This cannot satisfyingly define lower Ricci bounds since [200] lacks
full equivalence as per B.3). Assuming tracial state, Wirth and Zhang give sufficient
conditions for satisfying Bakry-Emery conditions [202] as per [50] using intertwining
property for general families of bounded linear operators. They need not assume direct
sum noncommutative gradients since they give an argument dual to the monotonicity
argument in [50] we extend. Assuming tracial state, Wirth and Zhang obtain functional
inequalities HWI,, MLSI, [202] and TW, [200] as per [50] using relative entropy for
W*-algebras conditioned to fixed-point subalgebras. Such a priori conditioning handles
non-ergodicity but does not emerge from an underlying metric geometry.
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Note [200][202] and our discussion share the tracial infinite-dimensional setting.
Yet each approach has considerably different technical foundation, assumptions and
applicability. Results and their proofs, as well as range of examples, differ accordingly.
We examine these differences. Whereas noncommutative differential structures collect
our initial data, [200]] considers C*-Dirichlet forms [1] in order to define test algebras of
observables via Lipschitz seminorms using the induced noncommutative gradient [63]]
[65] and given operator mean [[13]. They may equivalently assume a given symmetric
C*-derivation, i.e. noncommutative gradient, as we do using quantum gradients. If both
approaches apply, then test algebras in [200] are larger and contain ours, i.e. unions
of all generating C*-subalgebras. Assuming regular operator mean and restricting to
densities, the dynamic formulation in [200] and our discussion coincide for two further
reasons. First, [200] assumes energy dominant trace in order to have o-weak extensions
of bimodule actions. We show a general extension of AF-C*-bimodule actions to spaces of
measurable operators using extendability of local *-homomorphisms. Note we thereby
avoid use of C*-Dirichlet forms as in [132][200]. Secondly, [200] uses noncommutative
multiplication operators for densities. We construct noncommutative division operators
for all states. We show both choices are equivalent in the finite-dimensional setting by
considering vector fields along admissible paths minimising the given quasi-entropy at
a.e. time. Taking limits shows both dynamic formulations coincide as claimed.

Assumptions and applicability differ from ours in several points. Results in [200]
[202] often assume tracial state and may assume ergodicity. As stated above, we assume
neither. We give three differences to [200] and two to [202] showing why their results
are insufficient for our purposes. First, they have weaker results concerning existence
of minimising geodesics. Assuming tracial state, the logarithmic mean setting and heat
flow is EVI,-gradient flow of relative entropy for W*-algebras, [200] shows existence of
minimising geodesics for densities at finite distance in the domain of relative entropy
for W*-algebras. We show each accessibility component for any given symmetric oper-
ator mean is a geodesic length-metric space s.t. minimising geodesics approximated in
finite dimensions as per A.5) exist between states at finite distance. This only requires
our initial data. Secondly, they lack classification of accessibility components. We show
two such classifications for varying assumptions on states as per A.3) and B.4). These
coincide in the finite-dimensional logarithmic mean setting. Thirdly, they do not prove
an equivalence theorem as per [50] or B.3). Assuming tracial state and ergodicity, [200]
shows the chain of implications starting from a Bakry-Emery condition stated above.

We assume neither and prove full equivalence as per B.3). We state and prove such
using existence of sufficient minimising geodesics approximated in finite dimensions
and classification. We use the latter for the coarse graining process and our control of
quantum relative entropy as per B.1) on finitely supported accessibility components. In
contrast, tracial states are necessary in [200]] for existence of geodesics and since it gives
no extension of relative entropy for W*-algebras as per B.1). The proof of equivalence
in [50] uses direct calculations involving the Hessian of quantum relative entropy in
the finite-dimensional Riemannian setting. We engage in our own and apply the coarse
graining process. We see no substitute for this in [200], resp. its continued development
in [202[][203]]. We expect alternatives to be new even in the finite-dimensional setting.
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CHAPTER 1. INTRODUCTION

We turn to [202]. First, sufficient conditions for satisfying Bakry-Emery conditions
as per [50] differ in applicability. Assuming tracial state, [202] gives sufficient ones as
stated above using a novel intertwining property for general families of bounded linear
operators. They do not assume direct sum noncommutative gradients and are therefore
more general than us in the finite-trace case. This provides means to construct examples
for complete gradient estimates stable under tensoring which otherwise appear difficult
according to [202] itself. These do not cover crucial fundamental example classes as per
C), resp. further iterations on the latter using standard constructions.

We assume direct sum noncommutative gradients, rather than complete gradient
estimates, but not finite trace. We cover natural examples given by dynamic quantum
gradients [133], e.g. intertwining sets of Clifford generators, which indeed have no finite
trace. They use tensor product AF-C*-bimodules in each summand and thus generalise
[48] to infinite dimensions. In the logarithmic mean setting, we use sufficient conditions
as per B.5) to show they have strictly positive lower Ricci bounds. Secondly, functional
inequalities in [202] require use of relative entropy for W*-algebras conditioned in the
second variable to the given fixed-point subalgebra. Assuming tracial state, [202] gives
functional inequalities as stated above. Recent work of Brannan, Gao and Junge [33]][34]]
independently obtained similar results to Wirth and Zhang [202] for tracial states using
likewise a priori conditioning of relative entropy for W*-algebras. Their assumptions
imply neither approach covers all fundamental example classes as per C), in particular
our strictly positive case, nor considers its conditioning as determined by the underlying
metric geometry. We do show restriction to finitely supported accessibility components
is compression of quantum relative entropy with support projections of the given fixed
part. We therefore have a conditioning determined by the underlying metric geometry
as restriction to finitely supported accessibility components. This is used in the coarse
graining process, necessary for our equivalence theorem, and yields non-spatial lower
Ricci bounds plus functional inequalities using unconditioned quantum relative entropy
as only functional - regardless of finiteness or ergodicity. We thereby ensure functional
inequalities reveal properties of the given metric geometry.

As explained in the introduction, we study non-spatial lower Ricci bounds as per B .4)
and apply functional inequalities as per B.6) to probe any underlying metric geometry
arising from one of our fundamental example classes as per C), resp. an iteration using
standard constructions. Following our examination of differences above, we see results
in [200[][202]], as well as [33]][34], are insufficient for our purposes. Conversely, allowing
for non-traciality and non-ergodicity lets us cover quantum optimal transport of normal
states on arbitrary hyperfinite factors and therefore our motivating application given
by first and second quantisation of spectral triples. We appear to have comparatively
higher control of fine-structures determined by our initial data, a control we ensure is
inherited by all objects we consider through compatibility. We see this bottom-up design
yields flexible architecture with the coarse graining process its step-by-step reduction
process terminating in a well-behaved finite-dimensional Riemannian setting open to
direct calculation. We apply the latter to show stronger results for a wider range of
examples in the AF-C*-setting covering common algebras of observables in quantum
statistical mechanics [35][36]1[162]. We view our approach as complementary to [200].
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This concludes our explanation of similarities and differences. We consider the use
of our discussion for studying noncommutative gauge theories [51][54]1[551[197][198]]
within Connes’ program of noncommutative geometry [67]1[69]1(137]1[138]. The program
so far lacks a general notion of curvature [[111][147] independent of a particular class
of spectral triples [68][69]1(114]][198]. Noncommutative tori are a challenge [70][98[[110]
[146]]. We study the weaker notion of curvature bounds for EVI,-gradient flows driven
by l.s.c. functionals for relevant metric geometries [8]1[160]. The spectral paradigm of
noncommutative geometry [51][521[53][68][69] based on Gelfand duality [192] implies
a suitable notion must cover continuous, discrete and finally mixed continuous-discrete
noncommutative geometries [114][[197]1[198]. Unfortunately, the AF-C*-setting does not
consider spatial coordinates, i.e. non-discrete geometries, unless we introduce them in
form of parametrisations for continuous fields of AF-C*-algebras [197]. First and second
quantisation of spectral triples exemplify such lack of spatial coordinates.

First quantisation considers commutative spectral triples, i.e. first quantisation of
compact spin manifolds [[68]]. We show quantum optimal transport is transversal to spa-
tial optimal transport in this case. Second quantisation rectifies this by quantising all
spatial coordinates. We apply a characterisation in [55] to obtain sufficient conditions
s.t. the quantum gradients used are infinitesimal evolution of observables at thermal
equilibrium determined by KMS-states [36]. Each assumes fixed gauge field [51[][197]
[198]. Varying von Neumann entropy [163] of such KMS-states w.r.t. the canonical trace
yields description of the spectral action on gauge fields [511[52]1[53] in terms of quantum
statistical mechanics using quantum relative entropy as per B.1) [55]. Upon passing
to second quantisation, we introduce gauge fields as spatial coordinates. We consider
all normalised Radon measures on finite-dimensional spaces of admissible gauge fields
evaluating in CAR-algebras [162], i.e. states on continuous fields of AF-C*-algebras. We
thereby generalise to quantum optimal transport parametrised by gauge fields and give
an internalised spectral action on the aforementioned states using relative entropy for
W*-algebras. This gives our ansatz as per C) in Chapter 3| If key technical challenges
are solved in future work, then we hope to study the dynamics of such generalised gauge
fields described as gradient flows driven by the internalised spectral action for the given
parametrised quantum optimal transport. We are motivated by the classical approach
of Jordan, Kinderlehrer and Otto for Fokker-Planck equations [[131]1[167]1[169].

We may relax assumptions on fibres to cover disintegration of tracial W*-algebras
into direct integrals of hyperfinite factors according to the von Neumann disintegration
theorem [192]]. We see fundamental example classes using tracial AF-C*-algebras gen-
erating hyperfinite factors of type I and II by o-weak closure are of particular interest.
We thereby define general parametrised quantum optimal transport. We view quantum
optimal transport as its pointwise case. We explain states on CAR-algebras are scaling
limits of spin states encoding qubits [42][43][62]1[93][95], but not necessarily pure [116].
Using noncommutative conditional expectations [192], we therefore consider states on
tracial AF-C*-algebras as scaling limit of uniformly conditioned spin states encoding a
sequence of qubits without use of any spatial coordinates. We view quantum optimal
transport as transport of quantum information, and the parametrised one as transport
of densities of quantum information over encoding schemes, at the end of Chapter
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2 Noncommutative Differential
Structures

Noncommutative differential structures collect the data which define quantum optimal
transport distances. Each consists of two components and one setting. First, we have an
AF-C*-bimodule over a, possibly different, tracial AF-C*-algebra. This establishes non-
commutative topology, measures and integrals. Secondly, we have a quantum gradient
for the given AF-C*-bimodule. These are noncommutative gradients with likewise chain
rule. The relationship between gradients, heat semigroups and Dirichlet forms extends
to the noncommutative setting [63[l[[65]. Finally, we have a representing function of an
operator mean together with an interpolation factor. This lets us define noncommutative
division operators. They determine, and are in turn determined by, quasi-entropies [[127]]
[128] used to define energy functionals. In Chapter [3] we readily see our construction of
quantum optimal transport distances follows the classical case [97] but using data as
above. Thus Banach dual spaces of AF-C*-bimodules serve as synthetic tangent spaces
for the weak formulation of continuity equations in the AF-C*-setting.

The data collected is, by definition or construction, compatible with compression and
finite-dimensional approximation. These are two general operations we formalise in a
coarse graining process. Compatibility transfers to quantum Laplacians, i.e. Laplacians
of quantum gradients, their noncommutative heat semigroups, as well as continuity
equations. Compatibility therefore transfers to quantum optimal transport. The coarse
graining process formalising the latter is thereby essential for the majority of our results
as it reduces the AF-C*-setting to the finite-dimensional one s.t. ergodicity is recovered
up to a controlled remainder.

Structure. In Section we discuss AF-C*-bimodules over tracial AF-C*-algebras. In
Section we discuss noncommutative division operators. In Section we discuss
quantum gradients for AF-C*-bimodules. We then define noncommutative differential
structures, discuss compatibility and outline the coarse graining process.
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2.1 The AF-C*-Setting

AF-C*-bimodules over tracial AF-C*-algebras are the setting for continuity equations of
states compatible with compression and finite-dimensional approximation. Elements in
Banach dual spaces of AF-C*-bimodules serve as likewise compatible synthetic tangent
vectors in our weak formulation. In particular, AF-C*-bimodules have an extension of
bimodule actions to spaces of measurable operators s.t. their noncommutative L2-spaces
are symmetric W*-bimodules. The latter are Hilbert spaces on which noncommutative
division operators act even upon compression. As such, they provide suitable setting for
the Leibniz rule and serve as codomains of quantum gradients.

Structure. In Subsection[2.1.1] we study AF-C*-bimodules over tracial AF-C*-algebras
and extensions of AF-C*-bimodule actions. In Subsection we discuss compressed
pulled-back joint functional calculus of extended AF-C*-bimodule actions.

2.1.1 AF-C*-bimodules over tracial AF-C*-algebras

AF-C*-bimodules over tracial AF-C*-algebras are defined using local *-homomorphisms
of tracial AF-C*-algebras. These are *-homomorphisms of C*-algebras compatible with
all AF-C*-structures in use, further extending to spaces of measurable operators. Non-
commutative L2-spaces of AF-C*-bimodules are symmetric W*-bimodules.

Tracial C*-algebras and spaces of measurable operators. Let (M,7) be a
tracial W*-algebra, i.e. W*-algebra M and f.s.n. trace 7 : M, — [0,00] with definition
domain m; (cf. Definition [B.1.1I] and Definition [B.1.5). Uniform closure of M in measure
topology is the space of measurable operators LO(M, 1) (cf. Definition . Algebra
involution on M extends to L°(M,7). We obtain the space L°(M,1);, of self-adjoint, as
well as the space L%(M, 1), of positive elements (cf. Definition [B.1.33). Since M, gener-
ates the partial order on M (cf. Proposition , note LO(M, 1), generates the partial
order on L°(M,7) by density in measure topology (cf. Proposition . We extend
the f.s.n. trace to 7 : LM, 1), — [0,00] (cf. Definition [B.1.39). For details on C*- and
W*-algebras, we refer to Subsection For details on tracial W*-algebras and their
spaces of measurable operators, we refer to Subsection

Let p € [1,00]. Noncommutative L”-space (L?(M,7),ll.l,) < L%M,7) is a Banach
space (cf. Definition [B.1.41). Algebra involution on M extends to L?(M,7). We obtain
the space LP(M,1);, of self-adjoint, as well as the space L”(M,71), of positive elements.
We may decompose accordingly (cf. Proposition . If p=1,then 7€ LY(A,7)* (cf. 3)
in Proposition . If p =2, then (L2(M,71),]l.ll2) is a Hilbert space. If p = oo, then
(LM, 1), l.l00) = (M, ||l 37)- Noncommutative LP-spaces fulfil Hélder inequalities. Note
Definition [2.1.1 uses the modified standard pairing as per Remark For details on
noncommutative integration, we refer to Subsection

Definition 2.1.1. For all u € LY(M,1)°, let iz € LY(M,7) be unique s.t. u= ). If p =
g =2, then set ff:=b~1 € B(L?(M, 7)) and call (b,#) musical isomorphisms on L2(M, 7).
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CHAPTER 2. NONCOMMUTATIVE DIFFERENTIAL STRUCTURES

Remark 2.1.2. Let p,q €[1,00]. If 1 = p~1 + ¢!, then the modified standard pairing

(x,y)— 2°(y) = T(x* y) (2.1)

defined on L?(A, 1) x LY(A, 1) is bounded, anti-linear in the first and linear in the second
variable, as well as non-degenerate (cf. Definition and Proposition [B.1.51). For
all xe LP(M,7) and y € LY(A, 1), get t(x*y) = 7(yx*) and 7(x*y) = t(xy*) by traciality.

If p=1 and g = oo, then b : LY(M,7) — M* is positivity-preserving and anti-linear
isometry onto the set M, c M* of all normal bounded functional on M equipped with
the dual space partial order (cf. Proposition and Remark [B.1.52). If A c M is
a o-weakly dense C*-subalgebra, then A ¢ M is strongly dense. Normality therefore
yields L1(A,7)’ c A* as partially ordered Banach spaces. For all u e L1(A,1)’, get unique
tue LY(A,7) s.t. p=w)’. If p = ¢ =2, then b € GL(BILAM, 1))).

Positive elements generate the partial order on C*- and W *-algebras, as well as their

Banach dual spaces (cf. Definition and Proposition[A.1.23). Definition gives
abstract tracial C*-algebras (cf. Remark [A.2.14). Following Remark the latter
extends Definition [B.1.1l and subsumes the concrete case s.t. we have consistent use of
canonical left- and right-actions for joint functional calculus of self-adjoint measurable
operators. As consequence, compressing with projections as per Lemma [2.1.6| extends
readily from one to two variables as special case of the tracial W*-algebra setting.

Definition 2.1.3. Let A c M be a o-weakly dense C*-subalgebra. We call (A, 1) a tracial
C*-algebrain M. Set 14 :=1y,.

1) Set L%A,7):=L%M,1) and

L%A, 1), :=L°M, 1), LA, 1) :=L°(M, 7). (2.2)

2) For all p € [1,00], set (LP(A,7),|.1,) := (LP(M,7),l.ll,) and

LP(A,v), :=LP(M,7)p, LP(A,1)4 :=LP(M,1)4. (2.3)

3) For all p,q €[1,00], set L?9(A,1):=LP(A,1)nL9(A, 1) and

LPA(A, 7)== LP(A,D)p NLY(A, T)p, LP9(A, 1)+ :=LP(A, 1)+ NLY(A,7);.  (2.4)

Notation 2.1.4. Unless stated otherwise, we write (A,7) and ||.||; = |.||2 for all o-weakly
dense C*-subalgebras A c M. This differs from the distinct notation (#(M, 1), |.|l;) and
(L2(M,71),]l.ll2) used in the appendix. Notation remains unambiguous throughout since
we only use (L2(A,71),|.Il;) = (L2(M, 1), ||.ll2) in the main matter.
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Remark 2.1.5. Let (A,7) be a tracial C*-algebra and £ : A — AB(A(A, 1)) canonical
left-action of A on A(A, 1) (cf. Definition and Definition [B.1.3). Using normal ex-
tension (cf. Proposition and Proposition B.1.7), get tracial W*-algebra (£(A)",1)
with o-weakly dense C*-subalgebra £(A) c £(A)". We thereby construct the tracial
C*-algebra (£(A),7) in £(A)". This is the concrete case.

If (A, 1) is a tracial C*-algebra in M, then the canonical left-action £ of A on #(A, 1)
is not the canonical left-action L of M on L?(M,) in general (cf. Definition [B.1.55).
Note L subsumes £ by twisting with natural Hilbert space isometry #(A,7) = L2(M, 1)
(cf. Proposition , L is given by multiplication in L°(M, 1), as well as inclusions
A c M cL%M,7) of *-subalgebras. The analogous holds for canonical right-actions and
opposite algebras. Altogether, requiring M in Definition [2.1.3|avoids difficulties arising
from identification of A = £(A), as is common yet implicit in the literature, while using
canonical left- and right-actions for joint functional calculus of self-adjoint measurable

operators (cf. Remark [B.1.65))

Note suitable inclusion maps of Banach dual spaces arise from Banach duals of non-
commutative conditional expectations. For abstract tracial C*-algebras, Definition [2.1.7]
gives inclusion maps obtained from compressing with projections in W*-algebras. This
uses abstract compression maps. Assuming positivity and fixed norm, get injectivity in
the non-unital case as per 1) in Proposition For tracial AF-C*-algebras, further
note Definition gives inclusion maps obtained from Hilbert space projections to
generating C*-subalgebras. This additionally yields restriction maps.

We compress C*-subalgebras with projections. Let A ¢ M be a C*-subalgebra and
p € M be a projection. We have compressed C*-subalgebra A[p]l=pC*(A,p)p c M (cf. 2)
in Definition [A.2.15). If p = 1y, then we recover the unitalisation A[13] = C*(A,1p)
of A in M (cf. Definition [A.1.64). If A = M, then M[p]l = pMp c (M,7) is a semi-finite
W*-subalgebra (cf. Remark Definition and 2) in Proposition [B.2.13). We
have tracial W*-algebra (M[p],t) (cf. 1) in Proposition . Note pt =1y —p and
Mpllly] = Mlple {(p)c (cf. Proposition . Assume A c M is a o-weakly dense
C*-subalgebra. The compressed C*-subalgebra A[p] c M[p] is o-weakly dense itself in
this case. We moreover have A[pl[1y]=Alpl® (p*)c (cf. Proposition .

Lemma 2.1.6. Let A c M be a o-weakly dense C*-subalgebra. For all projections p € M
and q €[1,00], we have

1) tracial C*-algebra (Alpl,t) in M[p],
2) L%Alpl,7)=pL°%A,1)p and LY(Alpl,7) = pLI(A,T)p.
Proof. We know 1). Thus L*(A[pl,7) = M[p], hence 2) follows by Proposition O

The abstract compression map com, : A[1y] — Alp]is given by com, x = pxp for all
x € A[1p] (cf. Definition [A.2.15). Note com,, is a completely positive, normal, unital and
surjective bounded linear map (cf. Proposition [A.2.17). If A = M, then we recover non-
commutative conditional expectations as per Remark For details on compressed
C*-subalgebras and their abstract compression maps, we refer to Subsection For
details on semi-finite W*-subalgebras, we refer to Subsection [B.2.1

23



CHAPTER 2. NONCOMMUTATIVE DIFFERENTIAL STRUCTURES

We have positivity-preserving injective Banach dual com, : A[p]* — A[1y]". If we
restrict to A < A[1,/], then we further have positivity-preserving bounded linear map
comy, : A[p]* — A”. The latter is not injective in general. If g € L°°(A, 1) is a projection
s.t. p < gq, then pg = p implies com,(A[q]) = Al[p]. Get positivity-preserving injective
Banach dual com; :Alpl* — Alql* € A[1p/]* in this case.

Definition 2.1.7. Let A ¢ M be a C*-subalgebra. For all projections p € L*(A,1), we
define the p-th inclusion inc, := com,, : A[p]* — A[1y]".

Remark 2.1.8. Semi-finite W*-subalgebras have unique noncommutative conditional
expectations (cf. Definition [B.2.7, Remark and Definition [B.2.9). For all projections
p €M, com, : M — M|[p] is the noncommutative conditional expectation n%[p] from M

to M[p] (cf. Proposition and 2) in Proposition [B.2.13).

Proposition 2.1.9. Let A € M be a g-weakly dense C*-subalgebra. All inclusion maps in
Definition[2.1.7]are bounded linear, positivity-preserving and injective. They furthermore
satisfy the following.

1) All inclusion maps in Definition [2.1.7|are w*-continuous.

2) For all projections p < q in L*(A, 1), we have Alpl* c A[q]* c A[14]" as partially
ordered Banach spaces.

Proof. Bounded linearity and 1) are immediate. Let p € L°°(A, 1) be a projection. Since
comy,, is positivity-preserving (cf. Proposition |A.2.17), inc, is as well. If g € L*°(A,7) is a
projection s.t. p < g, then pg = p implies com, o com, = com,, and therefore 2). O

Notation 2.1.10. Let A ¢ M be a o-weakly dense C*-subalgebra. For all projections
p <q in L*°(A, 1), we suppress inc, and inc, on A[p]*.

States on abstract tracial C*-algebras are noncommutative probability measures.
They are normal if they have noncommutative density. Equation and Equation
use spectral measures and spectra, as well as bounded measurable functional calculus
of self-adjoint measurable operators (cf. Definition [B.1.69 and Lemma [B.1.72).

Definition 2.1.11. Let A ¢ M be a o-weakly dense C*-subalgebra.

1) We define the state space #(A):={ue€ A} | |ulla =1} and the normal state space
FN(A) := S(A)NLYA,T)’ of A. Set

b
IR = N {x e LA, Dy | Tezooia n(60) =0} . (2.5)

2) For all p € (1,00], set #NP(A):= F(A)nLYP(A,7)’ and

b
FNP(A) = SNP(A)N {x eLY(A, 1), |O¢ SpeCMx} : (2.6)
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Remark 2.1.12. For all o-weakly dense C*-subalgebras A ¢ M, our construction and
Remark shows .#N(A) = #(M)N LM, 1)’ = #N(M) (cf. Definition [B.1.53). For all
o-weakly dense C*-subalgebras A c M, projections p € L®(A,1) and x € L'(Alp], 1), we
have (inc, xb)(y) =1(x*y) for all y € A[p]. Lemma shows x = xp = px in each case.

Proposition 2.1.13. Let A ¢ M be a o-weakly dense C*-subalgebra. For all projections
p<qin L*(A,1)and r € (1,00], we have

1) F(Alp]) € F(Alq)) € F(A) and FN(Alp]) c FN(Alq]) c #N(A),
2) FNrAlpD) c N (Alq]) < N7 (A).

Proof. Proposition [2.1.9] shows positive elements are preserved. Let p in L*°(A, 1) be a
projection. Since u(14) = u(p) = llpllarpy+ for all pe Alpl; < A[14]", fixed norm ensures
injectivity upon restriction to A c A[14]. Get 1). Using the latter, get 2). O

Tracial AF-C*-algebras. Approximately finite-dimensional, or AF-C*-algebras
are all C*-algebras which are norm closures of ascending chains of finite-dimensional
C*-algebras. We index all AF-C*-algebras over N. This is equivalent to using countable
directed sets by existence of cofinal subsets isomorphic to N. Tracial AF-C*-algebras are
both AF-C*-algebras and abstract tracial C*-algebras.

Definition 2.1.14. Let A be a C*-algebra.

1) A sequence {A} ey of finite-dimensional C*-algebras is ascending if A; c A, is
a C*-subalgebra for all j € N. Set Ag:=UenA4;.

2) We call A an AF-C*-algebra if A = A_()”'"A for an ascending sequence {A ;};en of
finite-dimensional C*-subalgebras. We further call {A j};cn a generating sequence
of A and say that A is generated by {A } jen.

3) If A is an AF-C*-algebra generated by {A } jen, then we say that A is

3.1) strongly unitalif 14, =14, for all j,k €N,
3.2) finite-dimensional if dim¢c A < oo,
3.3) finiteif A=A for all jeN.

Notation 2.1.15. For all n e N, I,, € M,,(C) denotes the unit and tr,, the non-normalised
canonical trace. In infinite dimensions, i.e. n = co, we suppress the subscript and write 1
and tr. Up to C*-isometries, finite-dimensional C*-algebras are of form &} M, (C) for
n eN[38]. If A is a AF-C*-algebra generated by {A ;} jcn, then we fix C*-isometries

ra:= {rAj tAj— ®7i1Mnj,z(C)}j€N- (2.7)

If A is furthermore finite, then set {r AJ.} jen to be constant unless stated otherwise.
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Proposition 2.1.16. Let A be an AF-C*-algebra and M a W*-algebra. If A is generated
by {Aj}jen, then

1) {1a;}jen < A is a left- and right-approximate identity in A,

2) 1y =s-limjen14; if A<M is a o-weakly dense C*-subalgebra.

Proof. Get 1) since UjenAj <A is |.|[4-dense and ]‘Aj(lAk - lAj) =14, - lAj)lAj =0 for
all j <k in N. Get 2) by 1) and uniqueness of units in C*-algebras. O

Remark 2.1.17. Note 1) in Proposition [2.1.16|shows strong unitality implies unitality.
In the setting of 2) in Proposition [2.1.16 we have 137 =14 if A is unital.

Definition gives tracial AF-C*-algebras using abstract formulation. Following
Remark[2.1.5/land Remark [2.1.19] the latter therefore subsumes the concrete case in the
AF-C*-setting s.t. we have consistent use of canonical left- and right-actions for joint
functional calculus of self-adjoint measurable operators.

Definition 2.1.18. Let A be an AF-C*-algebra generated by {A } jen and (M, 7) a tracial
W*-algebra. We call (A,7) a tracial AF-C*-algebra in M generated by {A;}jenif Ac M
is a o-weakly dense C*-subalgebra and Ay cm;.

Remark 2.1.19. Let (A,7) be a tracial C*-algebra and AF-C*-algebra generated by
{Aj}jen s.t. Ag c m;. Following construction in Remark get tracial AF-C*-algebra
(£(A),7) in £(A)" generated by {<£(A);}jen := {Z(A )} jen. This is the concrete case of
the AF-C*-setting. Note this requires £ to be a faithful *-representation.

Proposition 2.1.20. For all tracial AF-C*-algebras (A, ), we have
1) Agc L*°(A,1) is strongly dense,
2) AgcL2(A,1)is ||.|l,-dense,
3) AgcLY(A,7)is |.]|1-dense.

Proof. We show Proposition applies. We know Ay c A is ||.|4a-dense. We show
AgcL%(A,7)is ||.|l;-dense. For all j €N, set A= 1AjA01Aj c Ap and note

M= olj = LA, D141 =14 L¥(A,1)14, < L™(A,T) (2.8)

w.r.t. closure in strong operator topology (cf. 2) in Definition [A.2.15). Equation [2.8|shows
Lz(%j,r) = ].AjL2(A,T)1Aj by Lemma [2.1.6|in each case. Thus UjENLz(./%j,T) cL?A,71)
is ||.[l;-dense by Proposition [2.1.16] hence

.0

Il — 1l
LXA,0 =L ;0 < Ut <Ay cL¥A, ). 2.9)
JeN JeN
Equation shows Ay c L%(A, 1) is ||.||;-dense. O
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We consider the finite-dimensional setting. Example provides finite case. We
discuss the case of restricting to generating C*-subalgebras. We use Notation For
all AF-C*-algebras A generated by {A};en and j €N, A, denotes the self-adjoint and
A ; the positive elements in A ;.

Example 2.1.21. Let (A, 1) be a finite-dimensional tracial C*-algebra. Note L*(A,1) =
A by o-weak density. For all j €N, set A; = A. This defines finite tracial AF-C*-algebra
(A,7)in A. Finiteness does not hold in general.

Definition 2.1.22. Let (A,7) be a tracial AF-C*-algebra. For all j €N, set 7;:=7|4; and
we define sequence of finite-dimensional C*-algebras by setting

A; ifl<jinN,
Aj,l =
Aj else.

Remark 2.1.23. Unless stated otherwise, any finite-dimensional tracial C*-algebra we
consider alone is a finite tracial AF-C*-algebras as per Example [2.1.21] For generating
C*-subalgebras, we instead restrict as per Definition [2.1.22

Proposition 2.1.24. Let (A, 1) be a tracial AF-C*-algebra. For all j €N, we have
1) tracial AF-C*-algebra (A;,7)=(A;,7;)in A; generated by {A; }ien,

2) 1j=@, Cj tr,, 0ra, with Cj;>0forall l€{1,...,n}},

n

3) rAj(lAj) = Zlil‘lnj,l'

Proof. We have 1) since Ag € m;. Restricting to summands shows 2) by uniqueness of
the normalised trace on full matrix algebras. Get 3) by unitality. O

Remark 2.1.25. For all jeN, (., .)T|Aj equals Z?ﬁl C;i(., '>trnjl pulled back along r;l_.
- ’ J

Proposition 2.1.26. Let (A,1) be a tracial AF-C*-algebra. For all j €N, we consider the
Hilbert space projection nj.‘ :L%(A, 1) — A j- We have

1) UjenAj+ c Ay is .l a-dense,
2) UjenAj+ cL®(A,7), is strongly dense,

3) IL2(A,‘L') = S-limJ'EN 7'[?.
Proof. Forall jeN,getA; , c A, cL®A,7). If {x,}hen cAg s.t. |l la-limpenx, =x=01in
A, then ||.]|s-lim,nymax{x,,0} = x. Using strong convergence, the analogous statement
follows if x = 0 in L°(A, 7). This shows 1) and 2). We know Ay c L%(A, 1) is ||.||;-dense by
Proposition [2.1.200 Thus ||.[|;-lim ey n}‘.‘(x) =x for all x € Ay, hence 3) follows. O
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CHAPTER 2. NONCOMMUTATIVE DIFFERENTIAL STRUCTURES

Banach dual spaces of tracial AF-C*-algebras. Inclusion and restriction maps
of tracial AF-C*-algebras in Definition are used for bookkeeping. Notation [2.1.29
fixes conventions. We use the modified standard pairing, in particular their flat and
sharp operators as per Definition and Remark [2.1.2]
Let (A,7) be a tracial AF-C*-algebra. For all j € N, we have A; = A; via musical
isomorphisms. Let 2 as per Definition Note Ag < 2L.

Definition 2.1.27. For all Hilbert subspaces V c L2%(4, 1), let n‘é :L%(A,7) — V be the
Hilbert space projection. Let A=A or A =LP(A,7) for p €[1,00].

1) Forall jeN, let L}‘.‘ :A; — 2 be the inclusion and set n;‘ = nﬁj.

Ay,

2) Forall j<kin N, let l,;?. :A; — Ay, be the inclusion and set JTAk =T,
J J J

3) For all j <k in N, we define the j-th inclusion and j-th restriction

ing; := botf‘oli AT — A", res; = (Lj-‘)* AT — A7 (2.10)

as well as the kj-inclusion and jk-restriction

incy; 1= (nj-‘k)* :A; — A}, resj, = (l;:j)* 1A, —»A;. (2.11)

Proposition 2.1.28. All inclusion and restriction maps in Definition[2.1.27)are bounded
linear, positivity-preserving, as well as injective, resp. surjective. They furthermore satisfy
the following.

1) All inclusion and restriction maps in Definition [2.1.27|are w*-continuous.

2) For all indices, resoinc =1id. For all j <k in N, we have A;f cA; c A" as partially
ordered Banach spaces and

; . — A o= A
2.1) incyj = bOLkJ.Oﬁ and res;;, = bonjkott,

2.2) incy; =resyoinc; and res;;, = res;oincy.

Proof. Bounded linearity is immediate. Since Ag < A is |.||o-dense, testing on Ay shows
continuity in each case. We directly verify all remaining claims. O

Notation 2.1.29. For all j <k in N, the following holds. We suppress inc; and incg; on
A;. We neither distinguish JT‘]‘.X and n}‘.‘k on Ap, nor res; and res;, on A ;.
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Definition 2.1.30. Let jeN and p €[1,00].

1) For all pe A*, set y; ::resj,uEA;?.

2) Forall xe LP(A,7), set x; := tireijb €A;.
Proposition 2.1.31.

1) Forall ue A*, we have

LD lplas =supjen lpjllax =limjen llp)lla,

1.2) p=w*-lim e p;.
2) Let p €[1,00]. For all x € L?(A, 1), we have

2.D llxllp =supjenllxjllp = limjen llxjl p,

2.2) X = w*-limjeN Xj.
3) For all x € L>°(A,7), we have x = bds-lim jen x; = bdw-lim jen x ;.

Proof. We directly verify 1.1) and 2.1). They ensure uniform boundedness upon testing
for 1.2), 2.2) and 3) on Ay. We conclude by density in each case. O

Remark 2.1.32. Let j € N. For all x € L%(A, 1), we have xXj= nj.‘(x). Note Theorem [2.2.53
furthermore generalises strong convergence as per 3) in Proposition [2.1.31] to strong
resolvent convergence of positive and suitably integrable measurable operators under
canonical left- and right-actions of AF-C*-bimodules.

Following Notation [2.1.29] we treat restriction as single operation even if domains
vary or identified with duals via musical isomorphisms. We use Notation For all
JEN, A;f , denotes the real and A; . the positive elements in A;f.

Proposition 2.1.33. For all j <k in N, we have
1) As, cA; cAland S(A))c F(Ap) c FNA),
2) resj(A}) <A}, andres;(A; )< A] .
Proof. For all jeN and ue A;f, get limpen p(14,) = ||,u||A;. Apply Proposition O

Semi-finite W*-subalgebras have unique noncommutative conditional expectations
as per Remark In the unital finite-dimensional case, they are averages of unitary
conjugations [46][127][128] as per Proposition Proposition generalises to
the non-unital finite-dimensional one. In Subsection[2.2.1] Lemma [2.2.22|moreover uses
Proposition to show monotonicity of quasi-entropies.
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Assume A is finite-dimensional. Let N ¢ A be a C*-subalgebra. The commutant
N'c A of N in A is a C*-algebra. The unitaries %(A) of A are a compact group, hence
UN'")=UA)NN' is one. We know % (N') =% (N[14]) since N' = N[14]. We therefore
have lf\, =14 -1y and N[14]=N@a (lzf,)qg using direct sum of C*-algebras. Finally, we
use the rescaling map Kf\‘] :A — C (cf. Definition .

Proposition 2.1.34. Assume A is finite-dimensional. Let N c A be a C*-subalgebra and
v the Haar probability measure on % (N'). The noncommutative conditional expectation
from A to N[14]is given by nﬁ[lA](x) = f%(N,) uxu*dvy for all x € A.

Proof. We have N[14]1=%(N[141) =%(N') (cf. Proposition [A.1.37). For all x € A, set
P(x):= f%(N,) uxu*dvy(u). Note transformation of Haar measures under group actions
implies P(x) € Z(N') = N[14]. Using uniqueness of the noncommutative conditional
expectation from A to N[14] (cf. Definition [B.2.7), we directly verify our claim. O

Proposition 2.1.35. Assume A is finite-dimensional. Let N c A be a C*-subalgebra. We

have nﬁ = HQDA] - K% IZL\,. For all x € A, this Hilbert space projection is given by

cuxu*dvy +1(15) (7 ()] 15 if 14 # 1y,

7 (x) = Sy w7 (e ) 1 (2.12)
Jounyuxu*dvy else.

Proof. Apply Proposition |2.1.34]and 1) in Proposition |B.2.13 O

Definition using local *-homomorphisms. We use local *-homomorphisms to
define AF-C*-bimodule actions. In addition, Lemma and Corollary show
local *-homomorphisms extend to a *-homomorphism of spaces of measurable operators
s.t. LP-norms are preserved. Definition gives AF-C*-bimodules.

Definition 2.1.36. Let (A,7) and (B, w) be tracial AF-C*-algebras. Let ¢ : A — B be a
*-homomorphism.

1) For all j €N s.t. ¢(A)) < Bj, set ¢ := pla; : (A}, 111:) — By, |l.ll) and ¢% := ()"
for its adjoint.

2) We say that ¢ satisfies

2.1) local unitality if ¢p(1 AJ-) =1p; for all jeN,
2.2) locality if ¢p(A ;) = B and gbZ(Bj) cAjforall j<kinN,

2.3) extendability if Supjel\l ”(,b;(lBj)”Aa SupjeN ||(,[);< ”%(BJ-,AJ') < o0.
3) We call ¢ local if it satisfies locality, local unitality and extendability.
Example 2.1.37. For all tracial AF-C*-algebras (A, 1), its identity map idy4 is local.
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Proposition 2.1.38. Let (A,1) be a tracial AF-C*-algebra s.t. 1 <oco. If T € B(L*(A,1))
s.t. T(lAJ.) =14; for all jeN, then T(14)=14.

Proof. Since T < 0o, get 14 € L?(A,7) and Ay < L%(A, 7). Thus 2) in Proposition [2.1.16
implies 14 = s-lim ey 1A,~, hence 14 = ||.[l;-lim jen lAj. O

Let (A, 1) and (B,w) be tracial AF-C*-algebras. Note 2) in Proposition [2.1.20| shows
Ao c L%(A,7) is |.|l;-dense and By c L%(B,w) is ||.|l,-dense. We use such density for
Equation Let ¢ : A — B be a *-homomorphism. If ¢ satisfies locality, then

Oilp, = ¢; (2.13)

for all j < % in N. Assume ¢ is local. For all x € AnL%(A,7) and u € L%(B,w), we use
density and extendability to get ¢p(x) € L%(B,w) and

(9@, ), = el -5up 165 lancs, el < 00 (2.14)
J

Equation yields extension ¢2 € B(L%(A,1),L%(B,w)) of ¢ with norm

2
lplle := Il ”%(L2(A,T),L2(B,w)) =sup ||(P; ||%(Bj,Aj)- (2.15)
JeN

Definition 2.1.39. Let (A, 1) and (B,w) be tracial AF-C*-algebras. Let ¢y : A — B be
a local *-homomorphism. We call ¢? € B(L2(A,7),L?(B,w)) the L?-extension of ¢. Let
d>* = (¢?)" be its adjoint.

Proposition 2.1.40. Let (A, 1) and (B,w) be tracial AF-C*-algebras. Let ¢ : A — B be a
local *-homomorphism.

1) ¢*oblg,=bo (¢2’*|BO) using Banach dual ¢* :B* — A*.
2) ¢>* is positivity-preserving.
3) For all j €N, we have
* * A
3.1 ¢* |Bj =¢; and [nj , %] =0,
3.2) llp>*(w)lla < ||(/);(lBj)||A||u||B forall ueBj .
Proof. We have 3.1) by locality. Using 3.1), we directly verify 1) by testing on Ag in
each case. Then 1) shows 2) since ¢ is a *-homomorphism and b is positivity-preserving.

For all Hilbert spaces H, T € 98(H);, and C = 0, we have [T llg@) < C if and only if
—CI <T <ClI. Using the latter, note 2) and 3.1) show 3.2) immediately. O
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Lemma 2.1.41. Let (A,7) and (B, w) be tracial AF-C*-algebras. Let ¢ : A — B be a local
*-homomorphism.

1) There exists positivity-preserving w™-continuous (/)1 € @(Ll(A,T),Ll(B,w)) with

norm |¢ll1 = ol < 25Up jepy ||¢);‘f(13j)||A extending ¢. Let ¢pb* := (p1)" be its
Banach dual. We have

1.1) o(pt@)*u) =1(x*¢1* (W) for all x € L1(A,1) and u € L(B,w),
1.2) ¢5:= ¢4 |5, = 62" g,

2) There exists normal unital *-homomorphism ¢ : L*°(A, 1) — L*°(B,w) with norm

lPlloo := 1Pl = 1 extending ¢. Let ¢°>* := (c/)"o)* be its Banach dual. We have
(poo,* OblBo = bo(pé

3) Forall jeN, ¢pl(x;)= ¢ (x), for all x € LY(A,7).

Proof. Note (0-)weak- and w*-convergence coincide on bounded sets (cf. Lemma II1.2.5
in [192] and Proposition[A.1.34). We use bounded strong and bounded weak convergence
(cf. Definition and Remark [A.1.41). In particular, multiplication in W*-algebras
is bounded strongly continuous (cf. Remark[A.1.43). We know Proposition[A.1.38 applies
to Ag c L*°(A, 1) and By c L*°(B,w) by o-weak density.

We show 1). Let x € Ag and u € L®°(B,w). If |ullo = 1, then Proposition [A.1.38yields
{urtrex € By s.t. suppeg llurllp <1 and u = w*-limpeg uy. If we furthermore apply 3.2)

in Proposition|2.1.40/to Re(u ) and Im(up) for all 2 € K (cf. Proposition [B.1.47), then we
calculate

[0(¢()"u)| = limsup |w(x*¢*" ()
3.4
< limsup |o(x*¢>* (Re(u)))| +limsup |o(x* ¢>* (Im(uy)))|
keK keK

<llxll1-2sup ¢ (1)l a-
JeN

Using the above calculation, linearity and extendability of ¢ let us estimate

|w(Pp(x)*w)| < llxlly '2S‘u£ lp; (g )llallulleo < oco. (2.16)
Jje

Equation m yields extension (,bl € B(LYA,1),LY(B,w)) of ¢ with norm estimate as
claimed. Using boundedness and 3.1) in Proposition we directly verify 1.1) by
testing on Ay and By. Note 1.1) implies 1.2). Using properties of the modified standard
pairing (cf. Proposition [B.1.51), we additionally see 1.1) implies positivity-preservation
and w*-continuity of ¢p!. Altogether, get 1).
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We show 2). Using 1.1), traciality lets us calculate

o((p) = p()) u) = 7((x* — y*)p>* (W) = 7((x — y)p1*(w)*) (2.17)

for all x,y € Ag and u € L°(B,w). For all x € L*(A, 1), Proposition shows there
exists bounded net {xp}rex € Ag s.t. x = w*-limyeg x;. Using the latter in order to test
on Ay, Equation [2.17] yields positivity-preserving and w*-continuous linear extension
¢ : L®°(A, 1) — L°°(B,w) of ¢ by boundedness. For all u € By, 2) in Proposition [2.1.40
implies (,bz’*(uu*) = ai = 0 for a self-adjoint a, € Agy. For all x,y € Ag and u € B, get

(@G~ p)ully = (P~ 3" @=p)uu), = | &=y} (2.18)

We know Bg c L%(B, w) is ||.||,-dense. Thus Equation shows ¢ is bounded strongly
convergent, hence ¢ is a *-homomorphism. Ergo ¢* is normal by Proposition as
well as unital by local unitality and 2) in Proposition Get [|¢>°| = 1. Using 1) in
Proposition we directly verify ¢p°>* ob|p, =bo¢j. Altogether, get 2).

We show 3). Following Remark [2.1.2] noncommutative L!-spaces are subsets of their
Banach double dual spaces. Following Notation get 3) if

lx)) = qbl(ﬁreijb) = tiresjcpl(ac)b =l (x); (2.19)
for all x € L'(A,7) and j € N. Using 1.1) and ¢?*(Bg) < Ay, get Equation atonce. [J

Corollary 2.1.42. Let (A,71) and (B,w) be tracial AF-C*-algebras. Let ¢ : A — B be
a local *-homomorphism. There exists unital *-homomorphism ¢ : L%(A,1) — L%(B,w)
continuous in measure topologies extending ¢.

Proof. We use uniform structures (cf. Equation B.5). If p € L>°(A, 1) is a projection, then
¢(p) € L®(B,w) is a projection and ¢(p~) = ¢p(p)* by 2) in Lemma If furthermore
pt e LY(A,71), then ¢(p)* € L'(B,w) by 1) in Lemma Let €,6 > 0. If x € L®(A,7)
and p € L®(A, 1) projection s.t. [|xplle < € and 7(p*) < §, then ld(x)P(Plloo < lxPplloo < €
by 2) in Lemmaand T((,b(p)J‘) < ||(/)||1T(pL) <|l¢ll16 by 1) in Lemma

For all €,6 > 0, get ¢(N(g,0)) < N(¢g,ll¢]16). Thus ¢ maps bounded Cauchy nets to
bounded Cauchy nets in measure topologies, hence extends as claimed. For this, note
algebra involution and multiplication in spaces of measurable operators are continuous
in measure topology on bounded subsets (cf. Theorem IX.2.2 in [193] or [161]]). O

Notation 2.1.43. All extensions of local *-homomorphisms as discussed above coincide

on intersections of domains. Unless stated otherwise, we do not discern extensions. For
all local *-homomorphisms ¢, we write ¢ for extensions and ¢* for their adjoints.
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Definition gives AF-C*-bimodules. Proposition moreover shows they
induce symmetric W*-bimodules as per Definition i.e. as per Definition[2.1.50|in
all further use below. Let ¢, : A — B be local *-homomorphisms. We define bounded
A-bimodule action on B by setting

xuy = p)uy(y) (2.20)

for all x,y € A and u € B. Applying 2) in Lemma [2.1.41] we extend Equation to a
normal, unital and bounded L>°(A, )-bimodule action on L?(B,w). Symmetry requires
anti-linear involution, with algebra involution the canonical example.

Definition 2.1.44. Let (A, 1) be a tracial AF-C*-algebra. We call anti-linear isometric
involution y :L%(A,7) — L2(A, 1) local if y(Aj)cAjand y(1s,) =14, for all jeN.

Example 2.1.45. For all tracial AF-C*-algebras (A, 1), note the algebra involution on A
itself extends to a local anti-linear isometric involution Adj : L%(A,7) — L2(A, 1) since

Ap cm; (cf. Proposition [B.1.42).

Definition 2.1.46. Let (A,7) and (B,w) be tracial AF-C*-algebras. Let ¢,v: A — B
be local *-homomorphisms. Let y : L%(B,w) — L%(B,y) be a local anti-linear isometric
involution.

1) The AF-A-bimodule action given by Equation is called the (¢, y)-action of A
on B. Its extension to L®(A, 1) acting on L2(B, ) is called normal extension.

2) We say that the (¢, y)-action satisfies y-symmetry if

Y(p@uw(y)) = ply* yww(x*) (2.21)

for all x,y € A and u € B.

3) We call (¢,v,y) an AF-A-bimodule structure on B, or AF-A-bimodule over B if the
(¢, w)-action satisfies y-symmetry. We further call (¢,v,y) an AF-C*-bimodule.

4) Let (¢,v,y) be an AF-A-bimodule structure on B. For all j € N, we consider tracial
AF-C*-algebras (A;,7) and (Bj,w) as per Definition [2.1.22] We furthermore call
(P, pj,v)) = ((,blAj,wlAj,ylAj) the induced AF-A ;-bimodule structure on B;.

5) Assume ¢ =y =id4 and further y = Adj as per Example|2.1.45|for A as anti-linear
involution. We call (id4,id4,Adj) the canonical AF-A-bimodule structure on A.

Proposition 2.1.47. Let (A, 1) and (B, w) be tracial AF-C*-algebras. If (¢p,v,y) is an AF-
A-bimodule structure on B, then we have AF-A j-bimodule structure (¢;,v,y;) on B; for
all jeN. If ¢ =w =1id 4, then we have AF-A-bimodule structure (ida,ida,Adj) on A.

Proof. By construction of either case. O

34



Definition 2.1.48. Let A be a C*-algebra and ¢,y : A — Z%B(H) *-homomorphisms. For
all x,y € A, let [¢p(x),w(y)] = 0. Let H be a Hilbert space and y: H — H an anti-linear
isometric involution. We define bounded A-bimodule action by setting

xuy := plx)(p(y)w)) (2.22)

for all x,y € A and u € H. The A-bimodule action given by Equation is called the
(¢, yp)-action of A on H. We say that the (¢, y)-action satisfies y-symmetry if

yxuy) =y y(u)x” (2.23)

for all x,y € A and u € H. We call H a symmetric C*-bimodule over A if the bounded
A-bimodule action satisfies y-symmetry. We call H a symmetric W*-bimodule if A = M
is a W*-algebra, H is a symmetric C*-bimodule over M, and ¢,y are normal unital.

Proposition 2.1.49. Let (A,1) and (B,w) be tracial AF-C*-algebras. If (p,v,y) is an
AF-A-bimodule structure on B, then L2(B,w) equipped with the normal extension of the
(¢p,v)-action and y is a symmetric W*-bimodule over L*°(A,1).

Proof. Note (¢p,w)-action as per Equation is (L? ,RY)-action as per Definition [2.1.48
and Definition [2.1.51, Thus L?(B,w) is symmetric C*-bimodule over A for y anti-linear
involution. We extend by 2) in Lemma [2.1.41|and bounded strong continuity of y. O

Definition 2.1.50. Let (A,7) and (B,w) be tracial AF-C*-algebras. Let (¢,v,y) be an
AF-A-bimodule structure on B. We equip L?(B,w) with the normal extension of the
(¢, w)-action and y. We call L%(B, w) the induced symmetric W*-bimodule of (¢,,7).

2.1.2 Functional calculus for AF-C*-bimodules

We discuss canonical left- and right-actions of AF-C*-bimodules. Theorem states
sufficient conditions for compressing joint functional calculus pulled-back along such
canonical left- and right-actions to joint functional calculus of self-adjoint measurable
operators. This defines the compressed pulled-back joint functional calculus of extended
AF-C*-bimodule actions. In Subsection we use the latter to construct and control
noncommutative division operators of positive measurable operators.

Canonical left- and right-actions of AF-C*-bimodules. Tracial W*-algebras
determine canonical left- and right-actions of their spaces of measurable operators on
noncommutative L2-space (cf. Definition . Compression of AF-C*-bimodules uses
semi-finite W*-algebras and canonical inclusions of spaces of measurable operators as

per Theorem (cf. Definition and Remark [B.2.29). For details on underlying
compression maps, we refer to Subsection
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Pulling back along AF-C*-bimodule actions defines canonical left- and right-actions
of AF-C*-bimodules. We use the opposite algebra construction (cf. Definition[B.1.15). Let
(A,7) and (B,w) be tracial AF-C*-algebras. Let (¢,v,y) be an AF-A-bimodule structure
on B. Corollarylets us extend to unital *-homomorphisms ¢ :L%A,7) — LB, w)
and v :L%A,7)°® — L%B,w)°P. We have canonical left- and right-action

L@ : LY(B,w) — %B(L*B,0)), Rr=~@® v : L'(B,0)* — %B(L*B,w)) (2.24)

of L%(B,w) on L%(B,w) (cf. Definition [B.1.55 and Definition [B.1.56). Moreover, we know
they are unbounded faithful unital *-representations (cf. Corollary [B.1.64). For details
on canonical left- and right-actions, we refer to Subsection |B.1.3

Definition 2.1.51. Set L? := Li~@Bwo¢ and RY := RreopBw) o w. We thereby define
canonical left- and right-action

L?:L°A,7) — %B(L*B,w)), RV : L%(A,1)*® — %%B(L*B, ) (2.25)
of L%(A,7) on L3(B,w).

Notation 2.1.52. For all x € L%(A, 1), we write Lf := L?(x) and RY := R¥(x). We suppress
¢ and v in Definition [2.1.51|if ¢ =y =1id4.

Example 2.1.53. In the setting of 5) in Definition [2.1.46, note Definition [2.1.51]is in
fact canonical left- and right-action of L%(A, 1) on L%(A, 7).

Proposition shows canonical left- and right-actions as per Definition
are unbounded faithful unital *-representations. Restriction to the bounded case yields
induced symmetric W*-bimodule actions. Proposition uses bounded measurable
functional calculus of self-adjoint measurable operator (cf. Definition [B.1.73). The latter
ensures positivity-preservation and shows parts of Lemma [2.1.59

Proposition 2.1.54. For all x € L°(A, 1), Lf and RY are densely defined closed operators
on L>(M,1). For all x,y € L°(B,w) and A € C, we have

D LY, =MLY+ ALy and RY = MRY + AR,
2) LY, =L?L% and RY, =R!RY,
3) LY. = (L))" and RY. = (RY)".
Proof. Apply Corollary and Corollary O
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Proposition 2.1.55. For all x,y € L°(A, 1), we have
1) Lf,R;’j € %,%’(LZ(B,w))JF commute strongly,
2) LTy fooan(R4i)) =Ry (L(f) and RY (T'y reo(a )(R+i)) = R+ (RY).

Proof. Note R.; are resolvents in +i (cf. Notation [A.1.81). Let x,y € L(A,7);. Then
P(x),w(y) € L°%B,w);, by Corollary Get T'y Loa (R +), Ty 1ooa r)(Ri) € L(A, 1)
using their bounded measurable functional calculus. Moreover, Proposition and
2) in Lemma imply canonical left- and right-actions of self-adjoint measurable
operators commute strongly. Yet L? = L LoB,w°¢ and RY = Ry )0 w. Thus 1) follows

by Proposition [2.1.54] We have

(Cyzoa,nR 1)) = Ty Lo,y R i), W(Ty rooa, )R 1i)) = Tyo),LoB,w)Rei)  (2.26)
by the *-homomorphism property. Hence 2) follows by Equation [2.26 O

Definition [2.1.56| gives compression of AF-C*-bimodules by compressing canonical
left- and right-actions. We use the compressibility property in Definition itself
based on Definition [B.2.38| for the pair of normal unital *-homomorphisms

L?:L™(A,7) — B(L*B,w)), R" : L™(A,7)** — %(L*B,w)). (2.27)

We give two classes of compression. First, we compress to induced AF-C*-bimodules in
Corollary 2.1.63| Secondly, we compress with projections in Corollary [2.1.65

Definition 2.1.56. Let N c (L*°(A,1),7) and V < L%(B, w) be a Hilbert subspace. We say
that (¢,v,y) is (N, V)-compressible, and call (N, V) a compression of (¢, v, y), if (L?,RY)
is (N, V)-compressible as per Definition |B.2.43|and y(V)c V.

Remark 2.1.57. Let N c (L®(A,7),7) and V < L?(B,w) be a Hilbert subspace. Note

ng : L?(B,w) — V is the Hilbert space projection. Then (L? RY) is (N, V)-compressible
if LP(L>°(A,71)),R¥(L™(A,1)) < (V) and

B_ts¢ B _ p¥ _B
Ty —L1A”V = R1A”V' (2.28)

Proposition 2.1.58. Let N c (L®(A,1),7) and V < L%(B,w) be a Hilbert subspace. If
(b,w,y) is (N,V)-compressible, then

1) ¢IN)VcV, Vy(N)cV and y(V)cV,

2) V equipped with the (¢,v)-action and y is a symmetric W*-bimodule over N.

Proof. Following our discussion in Remark [2.1.57, we directly verify all claims. O
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Following Lemma [2.1.59] note compressibility as per Definition lets us apply
Theorem B.2.44] We use reducing Hilbert subspaces and restriction to Hilbert subspaces
given by concrete compression maps (cf. Definition and Definition [A.2.20). Then
Definition gives compressed canonical left- and right-actions. Restriction to the
bounded case yields compressed induced symmetric W*-bimodule actions.

Lemma 2.1.59. Let N c (L®(A,1),7) and V < L?(B,w) be a Hilbert subspace. Let (b,v,7)
(N,V)-compressible. If x,y € L°(N, 1)y, then L(,/C),R;” € UBy(L%(B,w)) commute strongly
and we have

LTy pooa, (R +i)) =R (Lf), RY(Ty poo(a,n(R+i)) = R+i(RY). (2.29)

Proof. Let x,y € L°(N, 7). Proposition [2.1.55| shows all claims except V-reducibility of

Lf and R;,//. Set ¢, := LY OLZ(}O(A 9 and yg := RY ORZOIO(A ;) on their respective images.

Note resolvents are preserved under canonical left- and right-actions.

Arguing as in the proof of Lemma we know mapping C*-generators as per
Equation[2.29]and subsequent closing in o-weak operator topology readily yields normal
unital *-isomorphisms

¢ W* (L roan) — W (LY), wr : W* (R, 1ooan) — W*(RY). (2.30)

Moreover, said argument for the *-homomorphisms in Equation [2.30]shows

OLEL, 1uin (D) = B9, YR(ERy iy o(2)) = E o (2). (2.31)

for all Z € B(R). Using 2) in Lemma |B.1.72, Equation implies

P(Ex1ooa,0(D) = Epy(2), y(Erman(2) =Epy(2) (2.32)

in each case. Using 1) in Proposition [2.1.58, Equation in turn shows

ELo @7} = |Egv@n] =0 (2.33)
for all Z € B(R). Corollary shows Equation implies V-reducibility. O

The *-homomorphism property ensures ¢ and y preserve real and imaginary parts
(cf. Proposition[B.1.47). Following Proposition[2.1.54] note restriction viewed as concrete
compression map shows unbounded operators as per Equation [2.34] are densely defined

and closed (cf. Proposition [A.2.24).
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Definition 2.1.60. Let N c (L®(A,1),7) and V < L%(B,w) be a Hilbert subspace. Let
(¢,v,y) be (N,V)-compressible. For all x,y € LY%A, 1), set

A v p¥
Ly y=Lily, Ry v =Ryl (2.34)

Notation 2.1.61. We suppress ¢ and y in Definition [2.1.60|if ¢ = v =id4. We further
suppress N if N = L*°(A,7). In particular, L) and Ry,,) denote evaluated canonical
left- and right-actions of L%(B,w) on L%(B, w).

Lemma 2.1.62. Let Ny < (L*°(A,1),7) and Np < (L™°(B,w),w). If

1) ¢(NA),w(Na)<Npand ¢(1n,)=w(1n,) = 1y,
2) y(NgnL*B,w)) c NgnL*B,w),
then (p,v,y) is (Na,L?(Ng,w))-compressible.
Proof. Following our discussion in Remark [2.1.57, we directly verify all claims. O
Corollary 2.1.63. For all jeN, (¢,v,y) is (A;,Bj)-compressible.
Proof. Let j€N. Apply Lemma [2.1.62]to Ny = Aj and Np = B;. O

Let p € L>°(A,7) be a projection. We know L*°(A,1)[p] < (L*(A,7),7). Lemma [2.1.6
shows (A[p]l,1) is a tracial C*-algebra in L°°(A,1)[p]. Note L°(Al[pl,t) = pL*°(A,T)p.

Definition 2.1.64. Let p € L°(A, 1) be a projection. Set L2(B[pl,w) := pL?(B,w)p. For
all u € L%(B,w), further set

np(u):=pup, nlf(u)::pupi+pLup +plupt. (2.35)
Corollary 2.1.65. For all projections p € L*(A, 1), we have

1) L?(Blpl,w)c L*(B,w) is a Hilbert subspace and HIEQ(B[p],w) =T7p,

2) (¢,w,y) is (L=(Alp], 1), LABIpl,w))-compressible.

Proof. Apply Lemma|2.1.6, 2) in Proposition |B.2.13|and Equation [2.35 O

Functional calculus. Following Lemma we apply Theorem to get
compressed pulled-back joint functional calculus of extended AF-C*-bimodule actions
(cf. Definition [B.2.46)). For this, we compress joint functional calculus pulled-back along
canonical left- and right-actions of AF-C*-bimodules. We use joint functional calculus
of strongly commuting self-adjoint unbounded operators (cf. Definition [A.1.94), as well
as bounded measurable joint functional calculus of self-adjoint measurable operators
(cf. Definition [B.1.78). For details on the former, we refer to Subsection[A.1.3] For details
on the latter, we refer to Subsection (B.1.3
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Let (A, 1) and (B,w) be tracial AF-C*-algebras. Let (¢,v,y) be an AF-A-bimodule
structure on B. Let N c (L®°(A,7),7) and V < L?(B,w) be a Hilbert subspace. Assume

(¢p,v,7)is (N,V)-compressible. Let x,y € LY%A,1);,. Lemma|2.1.59|shows Theorem[B.2.44
applies to T' = Lf yand S = R;’/ N using (L?,RY) as (N,V)-compressible pair. Following
1) in Definition [B.2.46| we have bounded measurable joint functional calculus

PRV oo
Fi”y’f\, :L (spech X y,dEx,y,N) — BWV) (2.36)

of x®yin N® N° under L? ® R¥. Following 2) and 3) in Definition B.2.46] we have joint
functional calculus

¢ pv
rIxJ,y,,IIeV : H (ExyN) — UBV)y, (2.37)

of x® y in N ® N°° under L? ® RY (cf. Corollary B.2.45).

Remark 2.1.66. In the setting of 5) in Definition [2.1.46| we have I' fd;’?vw =Ty N

Let H be a Hilbert space. If V c H is a Hilbert subspace and ny : H — V its Hilbert
space projection, then get positivity-preserving canonical inclusion %%(V) c % %(H) by
mapping T — comy T = ny Ty. This yields B(V) e B(V') c B(H) (cf. Equation |A.42).

Lemma 2.1.67. Let (p,v,y) be (N,V)-compressible. We consider L?’B,w)=VeV-<L
1) Forall xe LON,v), LY =LY\ +LY(I - 78) and RY =R? \, +RY (I - 7).

2) Let x € LN, 1) If g € L™(specpooa 1% X ¥,dE . y 10o(A,1)), then

21 ge L°°(spech X y,dEx,y,N) by restricting to SpecN X X y C SpeCrooa )X X ¥,

2.2) g(LY,RY) € B(LAB,0) n By (LB, ) and g(LY, R;’)‘V —g(L? . R",).
¢ _ ¢ ®
2.3) g(Lx,R}”) = g(Lx’N,R;V,N) @g(Lx,R;{’) i€ B(V)o BVL).
3) If x,y e L%N,7),, @, = 0 and g € Cy(10,00) x [0,00)), then
¢ v _ (19 pv
g(Lx+051]J\‘,’Ry+ﬁ11J\-]) v _g(Lx,N’Ry,N)' (238)

Proof. Let x,y € L°%N,1);,. Lemma shows L(,?,R;,V € UBv(LA(B,w)), i.e. each is a
V-reducible self-adjoint unbounded operator. Get 1) by 1.3) in Proposition Note
using abstract and concrete spectral measures yields identical commutative L*°-spaces
in the uncompressed, resp. compressed case.
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We therefore have

rLf,Rx/(g) = g(Lf,R;”), FL?N’R;N(g) = g(L(ﬁ,N,R;/]/,N) = g(L(fC)|V’R$|V) (2.39)

in each case. Following Lemma [2.1.59, we apply Theorem as discussed above.
Spectra restrict as claimed and have

g(Lf’R;V)‘V :g(Lf|v’R§vV|v)- (2.40)

Equation [2.39]and Equation [2.40|imply 2.1) and 2.2) at once. Using 2.1), get 2.3) by 1.3)
in Proposition We have direct sum by boundedness. Altogether, get 2).

We show 3). Let x,y € L°»N, 1), @, = 0 and g € Cp([0,00) x [0,00)). Theorem
implies Equation is

(L? ®v RY)(comuyory(Terart yoprs roan(@)) = (L0 0V RY)Teyn(g).  (241)

Applying L? ®y RY to Equation B.126|in Corollary [B.2.48 yields Equation m O

Notation 2.1.68. Assume (N, V)= (L®(A[p],1),L2%(Blp],w)) for projection p € L*(A,1).
For all x,y € LY(A, 1)}, we write

¢ _7r9¢ v o ._ pV
1) Lyp:= Lx,Loo(A[p],T) and R , := Ry,LOO(A[p],T)’

oy ._ pL?RY -
2) ayp =Ty ) reocarprn @0d I (Exy) = S1281p1,0) (Exy.LA1p1n)-

We suppress ¢ and v if ¢ =y =id4. We further suppress p if p = 14.

Lemma 2.1.69. Assume (N,V) = (L®(Alp], 1), L2(B[pl,w)) for projection p € L™(A,1). If
X,y € LO(A[p],T)+ and g € Cy([0,00) x [0,00)), then

D g(LLRY ), = g(LE . RY )7
2) g(LL.RY)nt = g(LL,0)LIRY. +g(0,RY|LE.RY +2(0,00m,..

Proof. For details on the tensor product of normal unital *-homomorphisms, we refer to
Corollary|A.1.53| By definition, we have

LY RV B
rx,y,L""(A,T) - (L(p ® Rw) oLy, y,L0(4,1)- (2.42)
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Following Notation [2.1.68, Equation [2.35|rewrites as

_ B _7¢py _L_g¢ (4
Tp =T oo = LoRp> Ty =LpRyr +LyiRy + LI RY.. (2.43)

Using 7, itself as our Hilbert space projection, get 1) by 2) in Lemma [2.1.67| and 1.1)
in Proposition [A.2.24] We show 2) by arguing as in the proof of Corollary B.2.48] We
assume p,pt e W Too(A T)(x)m Loo(A.7) (y) without loss of generahty Since W/, (x y) =

W*OO(A HE W) OO(A )(y) (cf. 2) in Deﬁn1t1on m Equation and Equatlon W
let us calculate

(L?eRY)” (r"’;”LOO(A T)(g)n;) =Ty oan@(pept+plep+ptept). (244

We write each summand in Equation as element in WL*OO( A T)(x, y). Theorem [B.2.44
then implies ’

Tyyroan(@(pept)=Tror~un@(pept), (2.45)

Ty yLo4,0@) (P ®p) = ToyLoan@)(p" ®p), (2.46)

sy roa0@ (Pt ®pt) =To0 10408 (p" ©pt). (2.47)

Upon applying L? ® RY to Equation the above equations show 2) at once. O

2.2 Noncommutative division operators

Noncommutative division operators generalise division by densities in the classical case
[97]. In the tracial finite-dimensional cases of [48[[[49][50], they determine, and are in
turn determined by, quasi-entropies [127]][128] used to define energy functionals. Note
quasi-entropies generalise quantum f-divergences [125[][126], a class of dissimilarity
measures for information encoded in states of quantum systems [62]][141]]. Applying the
Kato-Robinson theorem [88]] lets us extend the approach in [50] to AF-C*-bimodules.
Noncommutative division operators represent closed positive unbounded quadratic
forms determined by quasi-entropies. Quasi-entropies are non-negative, jointly convex
and w™-l.s.c. functionals on Banach dual spaces of AF-C*-bimodules. The Kato-Robinson
theorem shows noncommutative division operators are strong resolvent limits of, upon
suitable evaluation for each, perturbed inverses of operator means [[13]] as perturbation
tends to zero. Such perturbed inverses are expressed using compressed pulled-back joint
functional calculus of extended AF-C*-bimodule actions. We recover noncommutative
division operators of positive measurable operators if and only if the strong resolvent
limit is likewise expressed using compressed pulled-back joint functional calculus.

Structure. In Subsection we discuss operator means, noncommutative division
operators of positive measurable operators and quasi-entropies for AF-C*-bimodules. In
Subsection we represent closed positive unbounded quadratic forms determined
by quasi-entropies using noncommutative division operators.
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2.2.1 Quasi-entropies for AF-C*-bimodules

We define noncommutative division operators of positive measurable operators, as well
as perturbed ones. Following Lemma [2.1.67| and Lemma we have control as per
Lemma We define quasi-entropies in the finite-dimensional setting by letting
perturbation tend to zero upon applying perturbed noncommutative division operators
of positive measurable operators. Using monotonicity under restriction maps, we extend
quasi-entropies to AF-C*-bimodules. Theorem [2.2.29| collects fundamental properties.

Noncommutative division operators of positive measurable operators. Let
(A,7) and (B,w) be tracial AF-C*-algebras. Let (¢,v,y) be an AF-A-bimodule structure
on B. Let N < (L*®(A,1),7) and V < L?(B,w) be a Hilbert subspace. Let f be representing
function of an operator mean as per 2) in Definition and 0 €[0,1].

Definition 2.2.1. Let f : (0,00) — (0,00).

1) We call f symmetric if £(¢) = f(¢~1) for all ¢ > 0.

2) We call f representing function of an operator mean, or representing function if it
is operator monotone and /(1) = 1. We define its mean m / : (0,00) x (0,00) — (0, 00)
by setting m((¢,s):=f (ts~Ys for all ¢,s > 0. For all € > 0, we furthermore define its
mean my . :[0,00) — (0,00) perturbed with ¢ by setting m¢ .(¢,s) :=m(t +¢,s +¢)
for all t,s = 0.

3) Let </ be a unital *-algebra equipped with partial order generated by positive
elements. Set o/sg:={x€ A, | Je>0: x =€l y}. For all x € o/, we say that x >0 in
o if x € ofs.

Remark 2.2.2. If f is symmetric, then m¢(¢,s) = mz(s,¢) for all ¢,s > 0. If f is a rep-
resenting function, then given separable Hilbert space H and letting m/(T',S) for all
commuting T',S > 0 in 98(H) defines operator mean following Kubo and Ando [13].

Proposition 2.2.3. For all t1 2t9 >0 and s1 =59 >0, get mg(t1,51) = myg(to,so). There
exists unique continuous extension of my to [0,00) x [0, 00).

Proof. Let C = (I)c c %(H) for a separable Hilbert space H. For all ¢,s >0, get m¢(¢,s) =
f(I-s71I)-sI. Operator means are connections by Theorem 3.2 in [13]. We see our first
claim follows by (I), and our second one by (III) on p.206 in [[13]. O

Remark 2.2.4. For all € >0, get mﬁ € Cp([e,00) x [€,00)) by Proposition W
Definition [2.2.6|uses joint functional calculus to give noncommutative multiplication
and division operators of positive measurable operators. Proposition [2.2.5| ensures 2)

and 3) in Definition are well-defined.
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Proposition 2.2.5. Let (¢,y,y) be (N,V)-compressible.
1) Ifx,y e LN, )+ s.t. m7' € #(Eqyn), then m 70 € Fy(Eqyn)-
2) If x>0in LN, 1), then there exists € > 0 s.t. specyx C [€,00).

Proof. Let x,y e L°(N,1),. Note Iy € (V) is the unit. By functional calculus, get

-0(r ¢ ¢ v
m? (LY +elv, Ry +ely) =m 5 (LY RY ). (2.48)
Let {€,},en € (0,00) be descending sequence converging to zero. Then Proposition 10.1.8

in [88] implies

=sr- th(/) N ténlv, RY

¢
L neN y:N

N =sr-NmR7\ +enly. (2.49)

We show 1). Assume le #(E, .v,N). Note, by definition, 1) holds if m 0 satisfies 1)
and 2) in Corollary 5] Get 1) in the corollary by Remark [2.2.4] In or({er to get 2) in

the corollary, we calculate strong convergence of resolvents. Using Equation [2.48| and
Equation we apply Lemma in the one-variable case to get

Rii( (L"’

LRy =s- 11mR+,(mf (L +elv,RY y +elv))

=s- llmR+z(mf g(LfN’Rw ))

Get 1). Using 2) in Lemma and Corollary |B.1.64, we directly verify 2). O

Definition 2.2.6. Let (¢, v,y) be (IN,V)-compressible. For all x,y € LO(N, 7)., we define

1) My i=ms(LY B!

RY ) and M N = My x N,
2) @x,y,N ,/% x,y,N and @xN sz,x,N if m;l € y(Ex,y,N),
3) Dy N,e := Drtely,y+ely,N for all € > 0.

Notation 2.2.7. We suppress N in Definition [2.2.6]if N = L°(A, 7).

Remark 2.2.8. All unbounded operators in Definition [2.2.6] are positive. If x,y > 0 in
LO(N, 1), then Dy,yN € B(V),; by 2) in Proposition If further x,y € L*°(A, 1), then
Dy,y,N >01in %B(V) by construction.
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Notation 2.2.9. Assume (N,V) = (L®(Alp],7),L%(Blpl,w)) for projection p € L®(A,1).
For all x,y € L(A[p], 7)., we write

1) Meyp = Meyraip)r) and My p = My p,
2) Duy.p = DryLoAlplr) a0A D p 1= Drex Lo(Alp),7) 1 mz_‘l € p(Exy),

3) Dx,y.p.e = Dy, Lo(Alpl1),e for all € >0.
We suppress pif p=14.

Proposition 2.2.10. Let (¢, y,y) be (N,V)-compressible. For all x,y € LO9(N, 7)., we have

o =m39(L? v _ . -0(1¢ pv
D 90 o =mO LYy +ely,RYy +ely) =m0 (LY R | for all £ >0,

2) 9t <Y

ey N.e1 ey N.eo M B(\V)foralle;zen>0in R,

3) 2]y =srlimg 0 2)

x,y,N e lfm}_fl € y(Ex,y,N)'

Proof. Since Iy = L(fN N= Rlll/zv ~ Dy unitality as per 2) in Lemma [2.1.41} Equation |2.48
shows 1). Bounded measurable joint functional calculus is positivity-preserving since it
is a normal unital *-homomorphism (cf. 1) in Proposition|A.1.100). Thus 2) follows from

1) and Proposition Proposition [2.2.10| shows 3) follows from Corollary |B.2.45, ]

Lemma 2.2.11. Let (p,v,y) be (N,V)-compressible. Let x € N, and g € Cp(RxR). If K R
is compact s.t. specyx < K and g(t,s) = g(s,t) for all t,s € K, then

[Y,g(Lf,N,R;”,N)] =0. (2.50)
Proof. Since K is compact and g(t,s) = g(s,t) for all ¢,s € K, approximate g uniformly

on K x K by symmetric polynomials. Thus reduce to g polynomial by specyx < K. Apply
Y-symmetry as per Equation [2.21 O

Corollary 2.2.12. Let (¢,y,y) be (N,V)-compressible, f symmetric. For all x € N, get
1) M yoy=yodly,
2) 9 yoy=y02! ifx>0in N,
3) 9571\,78 oy=1yo @f,N,E for all € > 0.

Proof. By symmetry, get mf(t,s)e =my(s, ) for all t,s = 0. Apply Lemma|[2.1.69 O
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Lemma 2.2.13. Let (¢, v,y) be (N,V)-compressible.
1) Forall x,y € L°(N,1),, we have %gy € %@V(LQ(B,(»)) and
0 0
M|y = ML N (2.51)

2) Forall x,y>0in L°(N,7) and a, B >0, we have @gy N= (./%x,y|v)_0 and

0
x+a1ﬁ,,y+ﬁ1}v

_ -0
v - '/%x+a1}v,y+ﬁ1ﬁ,

-0  _ g0
L= = D (2.52)

3) Let Ny < (L*(A,1),7) and Ng c (L*°(B,w),w) be finite-dimensional s.t. 1) and 2) in
Lemma hold. For all x,y >0in N4 and a, >0, we have

0 —_qf -0
Devary wrprsy, = Peaia @ (@) Ty s (2.53)

w.r.t. B(Np)® B((1y, o).

4) Assume (N,V) = (L®(Alp],7),L*(Blpl,w)) for a projection p € L™(A,T). For all
x,y € L%A[p], 1)+ and € > 0, we have

20, =9¢, @ (@ﬁ,oygL‘{jR;ﬁ +28, LIRS +7° an) (2.54)

w.rt. B(LABlpl,w)) ® B(LABlpl,0)').

Proof. We have 1) by applying 2) in Lemma [2.1.67|to g = m?. We use 1) to obtain 2) by
likewise application of 3) in Lemma This uses strict positivity since application
demands, for g here, an extension from compact joint spectra to [0,00) x [0,00).

We show 3). Assume its setting. Let x,y >0 in N4 and a, > 0. Using 2), we have

0 B _ 50
@xﬂxlf{,A ,y+ﬁ1]J\'[A nNB - @x’yJVA. (2.55)
Note Np 1]%]3 = IZL\,BN g =0 and (,b(li,A) = 1//(1}\, ) = 11%73' Approximating m;eg uniformly
using polynomials as in the proof of Lemma |2.2.11, we calculate
2’ (1%, ) = m7° (@14, B1x, ) = m 7 (o, B) 15 (2.56)
x+a11§A ,y+ﬁ1]iVA Np f Np>F~Np f " FJ)=Np* :

Using 2.3) in Lemma [2.1.67, Equation [2.55[ and Equation [2.56|imply Equation [2.53| at
once. Get 3).
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We show 4). Assume its setting. Let x,y € L% A[p],7)+ and & > 0. Note my¢(€,€) =
f(1)e =€ since (1) =1. In addition, 1) in Proposition [2.2.10/implies

_ . —0(r¢ pv _ .07 14
Deye =M (LLRY), Dy pe = (LY RY,) (2.57)

Equation [2.57|shows 4) by Lemma [2.1.69|and 2.3) in Lemma 2.1.67|applied to m}:i O

Assume A and B are finite-dimensional. Let B = rl;l(ea;‘:lM ,;(©)) equipped with its
canonical AF-B-bimodule structure. The latter uses Notation Corollary
implies normal unital *-homomorphisms preserve functional calculus. For all normal
z € B, get specgz = U?:l specrp(z);. Thus z is positive, resp. strictly positive if and only
if all {rp(2);}]_, are. For all x,y € A}, and g € L™(specax x y,dE , o), we obtain

g(L(fC)’R;’V)(u) = rZ?l (®?:lg(LrB(¢(x))l’RrB(U/(y))z)(rB(u)l)) (2.58)
for all u € B.

Proposition 2.2.14. Assume A and B are finite-dimensional. Let B = rél(EB;":anl(C))
and equip B with its canonical AF-B-bimodule structure. For all x,y € A, we have

0 _ ..-1 n 0
_Z) %x’y - rB °© (®l:lﬂrB((,b(x))l,rB(ll/(y))l) ° rB,

6 _ ,.-1 n 0 . .
2 Day =g (®l=19r3(¢<x>),,rB(wy)),) orpif£,y>0in A.

Proof. Equation [2.58|for g = m?, resp. g = m;e. O

Quasi-entropies in the finite-dimensional setting. Following the notion of
monotone metric [175]], quasi-entropies for full matrix algebras are given in [127]][128].
These are used to define energy functionals in [48]][49][50]]. Quasi-entropies, elsewhere
known as quasi-entropy type functions instead, generalise quantum f-divergences [[125]]
[126]. We clarify and use terminology as per Remark

Let (A,7) and (B, ) be finite-dimensional tracial AF-C*-algebras. Let (¢,v,y) be an
AF-A-bimodule structure on B. Let N ¢ A and V < B be a Hilbert subspace. Let f be
representing function of an operator mean and 6 € [0, 1].

Definition 2.2.15. We define functional .# }::Z :AsgxAsgxB—[0,00) by setting

fﬁjg(x,y, u):= (2] (w),u), (2.59)

for all x,y >0in A and u € B.

Remark 2.2.16. In case of full matrix algebras, the terminology in both [127]] and [[128]]
is quasi-entropy type functions, rather than quasi-entropies. The latter are a special
case for 8 = —1 fixed. We nevertheless use quasi-entropies consistent with [50].
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Lemma 2.2.17. 979 is jointly convex. For all u € B, the map (x,y) — %(x,y,u) de-
creases in partial order on A~y x Asg induced by pairs of positive elements.

Proof. Proposition [2.1.24|and 2) in Proposition [2.2.14]imply we have

jAf,’Z(x’y’ u) = ;Cltrnl (rB(u);m;g (LFB((p(x))l’RrB(w(y))l) (rB(u)l)) (260)

for all x,y >0in A and u € B. If each summand on the right-hand side of Equation [2.60|
satisfies the claimed properties, then our claims follow. We therefore reduce to the case
of full matrix algebras since ¢,y and rp are *-homomorphisms.

Assume A =B =M, (C) for n € N and ¢ = v =idys, (c) without loss of generality. Note
v is of no consequence here. Following [128], get the quasi-entropy type function

X,Y,U)— (Dx y(U),U )y, = tr(U*m " (Lx, Ry )U) (2.61)

defined on M,(C)s¢ x M,(C)>o x M,(C). Theorem 2.1 in [128] gives joint convexity of
such functionals since f is operator monotone and 6 € [0,1]. We have operator mean
(X,Y)— Mxy =mp(Lx,Ry). Operator means are monotonically increasing on positive
bounded operators [13]. Since inversion additionally reverts partial order on strictly
positive bounded operators (cf. Proposition[A.2.30), the map (X,Y) — @x y decreases in
partial order. Exponentiation with 0 € [0, 1] preserves order, hence we obtain the map
X, Y)— tI‘(U*m;g(Lx,Ry)(U)) decreases in partial order for all U € M, (C). O

Identifying via musical isomorphisms, A = A* and B = B* as partially ordered vector
spaces. Using 2) in Proposition [2.2.10, we extend Equation [2.59| and therefore .# X’Z to
A, = A7 in the first two variables.

Definition 2.2.18. We define quasi-entropy . Z;’Z 1A% x AT x B* —[0,00] by setting

59 o— 0
f};B(H,ﬂ,w) = sup (Dyy g G0), f0),, (2.62)

for all u,ne A} and w € B*.

Notation 2.2.19. Let fg”g denote the quasi-entropy for B equipped with its canonical
AF-B-bimodule structure.

Proposition 2.2.20. . };’Z is jointly convex and l.s.c. in w*-topology.

Proof. Lemma [2.2.17 shows joint convexity. For all € > 0, note (x,y,u) — (@g,y,g(u),u)w
defined on A, x A, x B is norm continuous. Equation shows L.s.c. in w*-topology by
finite-dimensionality. O
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Proposition 2.2.21. For all x,y € A, and u € B, we have

1) 929 9

X0,

]
P(x),p(y),e’
Proof. Apply 1) in Proposition [2.2.10]to get 1). The latter yields 2) by construction. [J

Lemma 2.2.22. Let (¢, y,y) be (N,V)-compressible.

1) Forall x,ye N, and u eV, we have

JX:Z (xb,yb, ub) = i1>10p (@g’%N’E(u), uy,. (2.63)

2) Let Ny c A and Np < B be C*-subalgebras s.t. 1) and 2) in Lemma hold. Let
¢*(N),y*(Ng)c Na. For all u,ne A} and w € B*, we have

,0
j]Cf,NB (ulNA7n|NA’w|NB) = yX,B(H’ TI’ w) (264)

Proof. In this proof, y is of no consequence. We have 1) at once by 2) in Lemma [2.2.13
We show 2). Assume its setting. Note Remark We therefore consider (N4,7) and
(NB,w) to be finite tracial AF-C*-algebras.

We know ¢, : Ny — Np are local *-homomorphisms. We have AF-N4-bimodule
(¢p,w,y) on Np. Set m4 := nﬁA,nA,u = HQADA] and nig := ”ﬁB,ﬂB,u = JI%BDB] here. Using
3.1) in Proposition we have

GInyoma =nBodIN,, YIN, oA =TBOYIN,. (2.65)

Arguing as for 2.1) in Proposition [2.1.28] note identifying A* = A and B* = B via musical
isomorphisms yields

resy, =TA, resy, = I (2.66)

for restriction maps resy, : A* — N4 and resy, : B* — Np obtained by dualising the
given C*-subalgebra inclusion maps. Finite-dimensionality shows we are in the setting
of Proposition[2.1.35] Using Proposition[2.1.35] we see both noncommutative conditional
expectations 14 : A — N4 and ng : B— Np decompose as

A 11 B {1
TA :ﬂA,u—KNA].NA, 7B :T[B’u_KNBlNB' (2.67)
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Equation and Equation hold if we use N4g[14] and N[1g]instead,i.e. m4 y
and 7py. Let p,ne€ A} and w € B*. Set x := i, y := §n and z := fw. Equation and
Equation [2.66|show

7B (Ppx)) = p(max)) = P(Huln, ), 78(W() = wra(y) =v(inln,) (2.68)

and

ng(2) = fw|n,. (2.69)

We may use Na[1l4] and Ng[1g] instead. Using 1) in our setting, we see Equation [2.68
and Equation [2.69| show

I8 (naP ma P 78 ) = T (sl 0l (2.70)
Equation and 2) in Proposition [2.2.21|imply Equation if for all € > 0, we have

ng(x),nA(y),s(”B(z))’ 7B (Z)>w = <@7€A,u(x),7[A’u(y)’g (7Bu(2)), ﬂB,u(2)>w (2.71)
and

2! (78,u(2)),7B,u(2)),, < (937%5(2),2)0). (2.72)

TAuX),TA u(¥),E

We show Equation Let € > 0. Using 3) in Lemma [2.2.13] Equation as well
as unitality of noncommutative conditional expectations for unital C*-subalgebras, we
see writing €14 =ely + 81}\, yields

-0
0 A A
@nA,u(x),ﬂA,u(y),s = @ﬂA(x),ﬂA(y),NA,S emg (8 + KNy (%), € + KN, (y)) I(lﬁf})c (2.73)

wrt. B(NB)® B((1y )c). Note Dy, (0,14(»,N4,cNB) = Np = (1 )¢ We obtain

-0
e+, @6+ x4, ) KK, @20, (2.74)

Using Equation and Equation [2.74] we estimate

(2] (78,u(2)), 1B4(2),,

”A,u(x)>7[A,u(y)>8

0

-0
= (DY, ormai) TB@), TBR)),, + (e + 1y (@), 41y, () (@) 117l

= <@7€A(x),nA(y),£(nB(z))’ﬂB(Z)>w'

The above calculation shows Equation |2.71
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We show Equation|2.72] Let € > 0. Using Equation and Equation for Nal14]
and Np[1g], 1) in Proposition [2.2.21|lets us calculate

0

A u(x),7A u(y),e (nB:U(Z)) ’ nB,u(Z)>a)

— 0
=2 O(m4.0(0)) W (A ()€ (78,u(2)), mB,u(2)),,

_ 0
B @ﬂB,u(¢(x)),ﬂB,u(w(y)),e

Proposition [2.1.34] shows

(H'B,u(z)) > T[B,u(z)>w'

7B u(v) :f uvu*dvy, (2.75)
UNY)

for all v € B. Equation [2.75] expresses np as average of unitary conjugations. Note the
application of perturbed noncommutative division operators is jointly convex (cf. proof
of Lemma [2.2.17). We therefore apply the Jensen inequality [174] to estimate

0 0
@ﬂB,u((P(x)),ﬂB,u(V/(y)),E (JTB,u(Z)) s ”B,u(z)>w = <@(b(x),w(y),£(z)’ Z>w' (2.76)
Altogether, Equation [2.76|and 1) in Proposition|2.2.21|imply Equation [2.72 O

Remark 2.2.23. Equation in Lemma [2.2.22]is the monotonicity of quasi-entropies
under restriction maps, called monotonicity. We distinguish this from monotonicity of
operators means implied by 2) in Proposition|2.2.10

Lemma 2.2.24. Assume f is symmetric. For all x,y >0in A and u € B, we have
Dl <255, u”) - 270 (I + 1y15),

2) lul? =205 (0,5, u”) - 270 (115 1x0g + 1y 191 9119) - 0 (1)1

Proof. The arithmetic operator mean is the maximal symmetric one (cf. Theorem 4.5 in
[13]). Note r — rf on [0,00) preserves order. For all x,y > 0in A, get

My =mf(LERY) <270 (LL+RY)”. 2.77)

For all x,y >0in A and u € B, apply Lf +R§V// < (llplloollxlloo + 1 llcoll ¥lloo) - I to estimate

[°]
Il < |42, |22, @2 < L5 (4 5,6°) - 27 (19 oo ltlloo + 1l Iy l)” (2.78)

using Equation Note [[¢llo = 1?¥lloo = 1 by 2) in Lemma [2.1.41} Further, r — r? is
concave and therefore subadditive on [0,00) since 6 € [0, 1]. Equation shows 1).
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We prove 2). For all x,y >0in A and u € B, we use the maximal symmetric operator
mean property as above to estimate

(4 9 9
o(w*2)* < 2. @5 |-42@15 < 122,527 (LS + BY) @.2),.  (279)

Subadditivity of r — r¥ implies (S + T')? < 8% + T? for commuting bounded operators
T,S = 0 by functional calculus. Since L? and R¥ are *-representations, we obtain

(L2 +RN(2),2), < (px)(2),2), + {20, 2), < (1o 111 + 1w ()°11) - Iz1%.  (2.80)

For all ve B, and 6 €[0,1], 100 < w(lB)l_gllvllf by Jensen’s inequality. Equation m
and Equation together show 2) as norm is obtained by testing on B. For this, note
pCl1 < lIpllllxlly and Iyl < lwlliyli. U

Extending to AF-C*-bimodules. Monotonicity extends quasi-entropies from the
finite-dimensional setting to the AF-C*-setting. Theorem collects fundamental
properties. We view each symmetric representing function f as determining a class of
energetic structures with 6 € [0,1] as interpolation parameter. Proposition(3.1.53|shows
0 =0 gives quantum (—1,2)-Sobolev distance independent of /. In the logarithmic mean
setting, i.e. f represents the logarithmic operator mean and 6 = 1, we obtain quantum
L%-Wasserstein distances in direct analogy to the classical case [97].

Let (A,7) and (B,w) be tracial AF-C*-algebras. Let (¢,1,y) be an AF-A-bimodule
structure on B. Let f be representing function of an operator mean and 0 € [0, 1]. For all
J €N, we use induced AF-A j-bimodule structure on B; as per 4) in Definition

Definition 2.2.25.

1) For all jeN, we call . }; ’Z I g X ’AHB, the j-th restricted quasi-entropy.
D JBj

2) We define quasi-entropy . g’g tAl x AL x B¥ —[0,00] by setting

0 ,0
jX’B(N’n,W) = ilele yX,B,j('uj’nJ"wj) (2.81)

for all u,ne A} and w € B*.
Notation 2.2.26. Unless stated otherwise, we suppress A and B in Definition [2.2.25
Corollary 2.2.27. For all j <k in N, we have
1) ij’e(,u,n,w) = f[’e(,u,n,w) for all u,ne A;‘f,+ and w € B;’f,
2) jjf’e(,uj,nj,wj) < JZ’O(,u,n,w)for all pneA,  and we By,
Proof. For all j <k in N, apply Lemma to Na = A; and Np = B; in the setting of
the induced AF-Aj-bimodule Bj. This shows both claims at once. O
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Definition 2.2.28. For all j € N, we define

1) ing; :A;,+ ><A;i+ XB; — A} x A% x B* by setting

inc;(u,n,w) = (4,n,w) (2.82)

for all ,u,nEAJ.,Jr and w EBJ.,

2) res;j: AT x AT xB* — A7 x A’ xB’ by setting

res;(,n,w) := (1j,n;,w;) (2.83)
for all y,ne A% and w € B*.

Theorem 2.2.29. Let (A,1) and (B,w) be tracial AF-C*-algebras. Let (¢,vy,y) be an AF-
A-bimodule structure on B. Let [ be representing function of an operator mean and
0 €[0,1].

1) 919 s jointly convex and l.s.c. in w*-topology.
2) j]f’e = ﬂ{’e oincy; = g0 oinc; forall j <k in N.

3) fjf’e ores; < fkf’e oresy forall j<kin N.

4) Assume [ is symmetric. For all u,ne A7 NL*(A, 7 and w € B*nL%(B, w)’, we have

Ifwl? < #79 (u,n,w)- 270 (1%, + 1En1%,). (2.84)

5) Assume f is symmetric. For all u,ne€ A} and w € B*, we have

lwl3. < 2"0wu,n,w)- 270 (o1l + 1wifinlb.) - lol*~° (2.85)
with ||ol := w(1p) = Sup jen w(lgj) the volume and convention ||w|° := 1.

Proof. Since restriction is w*-continuous, Proposition [2.2.20]implies 1). Get 2) and 3) by
Corollary Following 2.1) in Proposition all noncommutative L!-, L2- and
L*°-norms in use are the suprema over j € N of their restrictions to A ;, resp. B;. Writing
norms as such, get 4) and 5) by Lemma [2.2.24 O

Remark 2.2.30. We know |||, ly]l1 < oo by 2.1) in Lemma [2.1.41] If (A, 1) = (B,w) with
self-adjoint local *-homomorphisms, then ||¢|; = w1 < 2. If0 = 1, then the volume term
in Equation vanishes. This allows estimates for unbounded traces.
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2.2.2 Noncommutative division operators from quasi-entropies

Quasi-entropies determine closed positive unbounded quadratic forms on symmetric
W*-bimodules given pairs of positive bounded functionals on tracial AF-C*-algebras.
Theorem [2.2.49| shows such quadratic forms have unique representing operators. These
are, by definition, noncommutative division operators of positive bounded functionals on
tracial AF-C*-algebras. Under the modified standard pairing, normal positive bounded
functionals on tracial AF-C*-algebras are positive measurable operators. Using results
in Theorem Theorem [2.2.58| states necessary and sufficient conditions to recover
noncommutative division operators of positive measurable operators.

We construct noncommutative division operators as follows using the Kato-Robinson
theorem (cf. Theorem 10.4.2 in [88]]). We define perturbed left- and right-division with
positive bounded functionals on tracial AF-C*-algebras. Inverses exist and are strongly
commuting positive unbounded operators. Using their joint spectral calculus, we define
perturbed noncommutative division operators in direct analogy to positive measurable
operators. Theorem shows strong resolvent limits exist as perturbation tends to
zero. These limits are noncommutative division operators as above. Standard reference
for unbounded quadratic forms and the Kato-Robinson theorem is [88].

Unbounded quadratic forms and the Kato-Robinson theorem. Let H be a
Hilbert space. The Kato-Robinson theorem relates closed positive unbounded quadratic
forms, their representing operators and strong resolvent limits as follows.

The full Kato-Robinson theorem, i.e. its general formulation, uses strong resolvent
convergence of positive unbounded operators on Hilbert subspaces. Definition [2.2.31
generalises Definition accordingly. Proposition shows uniform reducibility
lets us restrict again to strong resolvent convergence on Hilbert spaces. For details on
strong resolvent convergence on Hilbert spaces, we refer to Subsection|A.2.1] For details
on reducing subspaces, we refer to Subsection

Definition 2.2.31. Let V < H be a Hilbert subspace. We call {T',},en € % %B(H), strong
resolvent convergent to T € %%(V), on V in H if for all a > 0, we have

R_o(T)(w) = ”-”V'}lig\llR—a(Tn)(ﬂV(u)) (2.86)

forall u e H.

Notation 2.2.32. Let T = sr-lim,cn 7T, on V in H denote strong resolvent convergence.
We drop on V if V is clear from context, resp. in H if H is.

Remark 2.2.33. The resolvents in Equation [2.86] are given by bounded measurable
functional calculus in a priori different W*-algebras. If V = H, then Equation is
strong convergence and we recover Definition for positive unbounded operators

by Lemma and 1) in Proposition
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Proposition 2.2.34. If T = sr-lim,nT, on V in H and {T,}nen € U%By (H), then we
have T = sr-lim,enTy |y on V.

Proof. Using 1) in Proposition [A.2.24) and 2) in Lemma |A.2.26 Equation for fixed
but arbitrary a > 0 restricts to

R_,(T)=s-limR_,(T,ly). (2.87)
neN
Using 1) in Proposition Equation shows T = sr-lim,enTrly on V. O

Definition 2.2.35. Let H be a separable Hilbert space. For all positive unbounded
quadratic forms @ : H — [0, 0], set

1) dom@ :={u€H | Q(u) <o},
9) HQ):=dom@ "

Let H be a Hilbert space. Theorem 9.3.7 in [88]] gives positivity-preserving bijection
between closed positive unbounded quadratic forms and representing operators. If @
is a closed positive unbounded quadratic form on H, then it has representing operator
TeUBH®)); s.t. dom@ = dom VT and

Q)= (VT(w),VT(w))y (2.88)

for all u € dom . For all monotonically increasing sequences {T',,},en € B(H), , we define
closed positive unbounded quadratic form on H by setting

Q) :=sup (Ty(u),u); €[0,00] (2.89)
neN
for all w € H. If T is its representing operator, then 7 = sr-lim, T, on H(Q) by the
Kato-Robinson theorem. Remark [2.2.36| below fixes conventions for using uncountable
monotonically decreasing sequences instead.

Remark 2.2.36. Consider monotonically increasing {T;}¢~0 € (H), in dual order. All
sequences {T, },en given fixed but arbitrary monotonically decreasing {¢,}nen < (0,00)
generate identical quadratic form as per Equation [2.89] Uniqueness ensures each has
identical strong resolvent limit, denoted by T' = sr-lim;|o T'; in this case.

The unbounded operator representation of quasi-entropies. Let (A,7) and
(B,w) be tracial AF-C*-algebras. Let (¢, y,y) be an AF-A-bimodule structure on B. Let f
be representing function of an operator mean and 6 € [0,1]. For all u,ne A}, we extend
the map u — .#/9(u,n,u) from Bg to L%(B,w). Such extensions determine closed positive
unbounded quadratic forms on L2(B,w). We equip A* x A* x L%(B,w) with the product
topology of the given w™*-topologies. We use Notation |2.1.29
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Definition 2.2.37.
1) For all u,ne A%, set
1.1) Q1w :=supjen.7 (uj,n;,u;) for all u € LA(B,w),
1.2) dom@Q’f := {u e L*(B,w) | Q1)) < o0}.

2) We define Q¢ tAL x AL x L%(B,w) — [0,00] by setting Qf’g(,u,n,u) = Q,Cjz(u) for
all u,ne A* and u € L%(B, ).

Remark 2.2.38. Note L12(B,w) c LY(B,w) c B*. Further note .#/¢ and QY coincide
on A* x A* x L'2(B,w). If 0 < co, then L%(B,w) = L(B,w) and Q7Y is the restriction of
I9t0 A* x A* x LA(B,w).

Proposition 2.2.39. We have
1) Q7Y is jointly convex and l.s.c. in w*-topology,
2) @ foingj = yjf"’ for all jeN.
Proof. Get 1) and 2) by arguing as for 1), resp. 2) in Theorem [2.2.29 O

We construct perturbed left- and right-division by positive bounded functionals. For
allpe A%, e>0and jeN, as well as fix but arbitrary n € A%, we have positive bounded
quadratic form on L2(B,w) defined by

- At N_/-B . -1 B

L.Uj,g(u) T Qﬂj"'ElAjJIj"‘glAj(u]) - <7Tj (((l)(ﬂ]) + EI) nj (u))’ u>w (2'90)
for all u € L?(B,w) using (¢,s) — ¢ as our representing function. The right-hand side of
Equation |2.90|does not depend on n € A}. For all j <k in N, get nfk(lBk) =1p;. Thus 2)
in Proposition [2.2.39/and 3) in Theorem [2.2.29|yield monotonically increasing sequence
of uniformly positive and bounded quadratic forms on L2(B,w) s.t.

<..<e I (2.91)

Note Equation [2.91| gives monotonically increasing sequence {ﬂf (L +el )—171? }jen of
uniformly positive and bounded operators as determined by Equation Hence the
Kato-Robinson theorem shows its strong limit is the unique positive bounded operator
representing the positive bounded quadratic form defined by

L, %(u):=sup L;ﬁg(u) = sup (n?((q)(pj) + gI)_lnf(u)), uy, (2.92)
JeN JeN

forallpe A*, £ >0 and u € L(B,w).
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We analogously construct perturbed right-division using (¢,s) — s as representing
function. For all n € A%, € >0 and j € N, we have positive bounded quadratic form on
L%(B,w) defined by

R,".(u):= (n?(nf(u)(w(nj) +£I)_1),u>w (2.93)

for all u € L%(B,w). As above, we have monotonically increasing sequence of uniformly
positive and bounded operators as determined by Equation The Kato-Robinson
theorem shows its strong limit is the unique positive bounded operator representing
the positive bounded quadratic form defined by

R, ! (u):=sup R, ".(w) = sup (n? (xF @)(w(n;) + 1) ") u), (2.94)
JEN JeN

forallne A*, >0 and u € L3(B,w).

Remark 2.2.40. Note the Kato-Robinson theorem by itself only implies strong resolvent
convergence. Using Proposition 10.1.13 in [88]], we know uniform boundedness together
with strong resolvent convergence implies strong convergence. If uniform boundedness
is given when applying the Kato-Robinson theorem, then we have strong convergence.

Proposition 2.2.41. For all u,ne A} and € >0, we have
1) positive bounded quadratic form L;(f; on LB, w) s.t.

1.1) its representing operator L;‘g € ,%(LZ(B ,w)) . Is injective,

- . -1 _
1.2) OSL“fﬂ :s-hmjean(Ld)(uj)+8I) Jrf <e 11,
2) positive bounded quadratic form R,;ug/ on LB, w) s.t.

2.1) its representing operator R,ﬂf € %(LQ(B ,w)) . 1S injective,

2.2) 0=R,Y =slimjenn?(Ry () +el) 'nf <& 'L

Proof. Let u,ne A} and € > 0. Equation and Equation show L;(Q and R,;lg are
positive bounded quadratic forms on L2(B, ). The Kato-Robinson theorem ensures the
existence of the positive bounded representing operators.

For all u € L?(B,w) and j € N, we have

(Iilloo +€) M2 = ((p(y) +€D) " ujuy),,. (2.95)

Since |u|, = sup jen 1jlle in each case, Equation [2.95 implies injectivity of L;“ﬁ Get
1.1). We know 1.2) by Equation Altogether, 1) holds. We show 2) analogously. [
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Definition 2.2.42. For all y,ne A} and £ >0, we call

1) the representing operator L;(g of L;(f; left-division by u perturbed with e, and
Lﬁ,g = (L;f’;)_l left-multiplication by u perturbed with ¢,

2) the representing operator R,ﬂ/ of R,;Z./ right-division by 7 perturbed with €, and

Ry = (R,;fé/)_l right-multiplication by 1 perturbed with &.
Notation 2.2.43. We suppress ¢ and y in Definition [2.2.42|if ¢ = ¢ =id4.

Remark 2.2.44. For all y,ne A}, e>0and j€N, note I =s-limjen n? implies

- _ -1 p-v _ -1
Lie=Loguy +el) s Byje = Ry +el) (2.96)
and therefore Lﬁj,g =L, +e€l, R:,’/j,e =Ry, +el.
Proposition 2.2.45. For all u,ne A’ and € > 0, we have

)L’ R,;V,E € 02/,_0/Z>’(L2(B,(1)))Jr commute strongly and LY. RV

1L, perBne =€l

2) LY, =sr-limjenL, . and R}y, =sr-limjenR) .

Proof. We know L%, .,R), € “B(L*B,w)), and LY .,R), > eI by Proposition [2.2.41| as

inversion reverts partial order (cf. Proposition [A.2.30). We show strong commutativity.
Since we have uniform lower bound ¢ > 0, resolvents in a = 0 are respective perturbed

division operators. Using sequential strong continuity of multiplication and the inverse
of Equation [2.96] we calculate

LSR,Y =s-imL,%R,". =s-imR,".L,". =R, VL% (2.97)

JEN JEN
Equation is commutativity of resolvents in a = 0. Proposition 5.27 in [184]] then
implies strong commutativity. Get 1). We have 2) by 1) in Proposition[A.2.8fora =0. O

Definition [2.2.46|uses bounded measurable joint functional calculus of strongly com-
muting self-adjoint unbounded operators (cf. Definition |A.1.94). For details on spectral
integration and the latter functional calculus, we refer to Subsection

Definition 2.2.46. For all y,ne€ A} and £ >0, we call D, := m;l(Lﬁ,E,R:,V,E) the non-
commutative division operator of u and 1 perturbed with e.

Proposition 2.2.47. Let u,ne A’.
1) For all € >0, we have

1.1) Dype=slimjenDy; ;e € B(L*B,w)), and |Dyun.| BLABw) = el

1.2) gﬂj,ﬂj,g = @,uj+£1A,T]j+51A fOr all J eN.

2) We have monotonically increasing net {9#’,,,5}90 c 38(L2(B,w))Jr in dual order.
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Proof. Using Proposition [2.2.45 and Remark [2.2.4] get 1.1) by Lemma applied to
m}jl. Using Proposition [2.1.54, get 1.2) by functional calculus upon taking inverses in

Equation since ¢,y are unital. Altogether, get 1).
We show 2). For all j e N and €1 = ¢y > 0 in R, we use 2) in Proposition [2.2.39 and 3)
in Theorem to estimate

L’ <L RY <RV (2.98)

Hj,€1 Hj,€0° 75,61 — 15,€0°

Using positivity-preservation of representing operators, Equation [2.98| shows

Lo <L, Ryley <Ry . (2.99)
Letting j 1 co in Equation yields
—-¢ ¢ -y -y
Lye <Lg, Rye <Ry 5 (2.100)

in strong limit. Since inversion reverts partial order (cf. Proposition [A.2.30), taking the
inverses in Equation [2.100| shows

¢ ¢ 4 4
Lyeo<Ljc, Ryey<By,. (2.101)
Using 1.2) and Proposition[2.2.3] Equation [2.101]implies 2) by functional calculus. [

Lemma 2.2.48. For all u,n€ A* and u € L*(B,w), we have
79 .
1) I (wjomjous) = sup,so (20, . wus), for all jEN,

2) Sup jeNnSUPe>0 <92 g(uj)’ uj>w = SUP¢>0 SUPjeN <@zj,nj,£(uj)’ uj>w’

s
3) supjen <@2j,nj,£(uj), wj), = {25, w,u), for all € >0.

Proof. Let u,ne A* and u € L%(B,w). We use Corollary[2.1.63| For all £ >0 and j € N, we
see 1.2) in Proposition|2.2.47|and 2) in Lemma [2.2.13| show

29 (2.102)

0 _
2 = un;.Bje

Kjsm;.€

=9
B:

0
! Nj+51A,T]j+81A‘B

j
Equation 2.102| shows 1) by construction of quasi-entropies. Note sup ¢ ;supzeg @ =

SUpgck SUPjesajr for all double-indexed real sequences. The latter shows 2) at once.
For all € > 0, monotonicity of quasi-entropies shows

0 ) AR T 0 . .
ilellg (D eWiduj), = IJIEIIN1 (Dt ey s) - (2.103)

For all jeN, u; = Jrf(u) . Thus u = ||.|l,-limjen uj, hence 3) follows by Equation [2.103
and 1.1) in Proposition [2.2.47, We use uniform boundedness in our calculation. ]

59
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Theorem 2.2.49. Let (A,1) and (B,w) be tracial AF-C*-algebras. Let (¢, y,y) be an AF-
A-bimodule structure on B. Let [ be representing function of an operator mean and
0 €[0,1]. For all u,ne A%, we have

1) Qﬁjg : L2(B,w) — [0,00] is closed positive unbounded quadratic form on L%(B,w)
represented uniquely by the positive unbounded operator defined by

0 : 0
D= sr-lglr(r)l Dyne (2.104)

on H(QZ:g),
0
2) Qﬁ:g(u) = “95,71(“)”3) = SUp,50 (2}, (W), u), for all u € L*B,w).

Proof. For all u € L%(B,w), get QZ:g(u) = Supjen ij’g(,uj, n;,u;) by definition. Consecutive
application of 1) to 3) in Lemma [2.2.48|lets us calculate

QZ:g(u) =supsup (2, (u;),u;), =sup(2,, (u),u), (2.105)
>0 jeN e £>0 T

for all u € L%(B, w). Equation[2.105|implies our claims by 2) in Proposition [2.2.47|and the

Kato-Robinson theorem (cf. Theorem 10.4.2 in [|88]]). Note Remark [2.2.36/for uniqueness

of strong resolvent limits for Equation [2.104 O

Definition 2.2.50. For all u,ne A, we call @z,n in Equation|2.104|the noncommutative
division operator of u and 7.

Noncommutative division operators in the normal case. Definition
and Definition [2.2.50|are a priori different definitions of noncommutative division in the
AF-C*-setting. Using results in Theorem [2.2.53|and assuming the representing function
induces operator mean vanishing on [0,00) x {0} U {0} x [0,00), Theorem implies
Definition [2.2.50| reduces to Definition [2.2.6| if and only if operator means have finite
inverses w.r.t. compressed joint spectral measures. Since we do not suppress the flat op-
erator for positive integrable measurable operators, we distinguish inverses of canonical
left- and right-actions from perturbed noncommutative left- and right-division.

Let (A,7) and (B,w) be tracial AF-C*-algebras. Let (¢,v,y) be an AF-A-bimodule
structure on B. Let f be representing function of an operator mean and 6 € [0, 1].

Proposition 2.2.51. Let p € {2,00} and x € LP(A,1)p,.
1) Forall j €N, we have Ly ,,R; € B(L*(A,1)), N%B4,;(L*A,1)) and

7I§‘ij = comy; L,, n?ij = comy, R,. (2.106)

2) Lx = Sr'lim_jel\lej and Rx = Sr'lim_jeNij'
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Proof. For all T € B(L%(A,1)), get comy; T' = ﬂj.‘ Tn}f‘ (cf. Definition |A.2.18). We prove all
claims for canonical left-action. This readily transfers to canonical right-actions. For all
J €N, we directly verify the identity of bounded operators

nj-‘ij = comAjo (2.107)

on inner products. The above calculation uses A is a *-algebra. If x is self-adjoint, then
Equation implies A j-reducibility. Get 1). We show 2). Assume x is self-adjoint.
If p = 2, then 2) in Proposition for core L>*(A, 1) and Corollary show our
claim. If p = oo, then 2) in Proposition for core L?(A,7) and boundedness do. [

Lemma 2.2.52. Let x € L1(A,1),.
1) Lx = sr-limneN Lmin{x,n} and Rx = sr-limneN Rmin{x,n}-

2) For all jeN, we have

2

TRy (2.108)

comy, Ly, <L comy Ry

2
SRn;f‘(ﬁc)'

3) For all € > 0, we have

R (Ly)<L )™ R .(R,)<R%. (2.109)
x’,€ X7,€

Proof. We prove all claims for canonical left-action. This readily transfers to canonical
right-actions. By 2) in Lemma [B.1.72| and functional calculus, we have monotonically
increasing {Lminixnytnen = {min{L,n}}pen © B(L%(A,1)).. Applying the Kato-Robinson
theorem, we directly verify 1) on closed positive unbounded quadratic forms.

We show 2). Let j € N. We know /x; = n}f*(\/o_c). Using 1) in Proposition [2.2.51| and
1.3) in Proposition we have the identity of bounded operators

A A
Ln}‘.‘(\/&) :comAjL\/;+ (I—nj )Lﬂ?(ﬁ)(l—nj ) (2.110)

Multiplying out terms as per Equation [2.110|lets us estimate

2 2 9
Li?(ﬁ):(COmAjL\/E) +((I—n§‘)Ln§;(ﬁ)(I—n§‘)) > (coma, L /5)°. (2.111)

Furthermore, we calculate
((comAjL\/;C)z(u),u>T = T(xn?(u)nj-‘(u)*) +((1 —n?)(Lﬁn?(u)),L\/J—cnj-‘(u))T
> 7(xn (W’ (u)*) = (comy, Ly, (), u),
for all u € L2(A, 7).

61



CHAPTER 2. NONCOMMUTATIVE DIFFERENTIAL STRUCTURES

The above calculation implies

(comAjL\/;c)2 > comy; Ly;. (2.112)

Equation |2.111|and Equation [2.112|show 2).
We show 3). Let € > 0. For all j € N, Equation [2.108|yields

R_E(Li? o) SR-e[mi L) (2.113)

since inversion reverts partial order (cf. Proposition |A.2.30). Let j € N. Then using 2) in
Lemma [A.2.26| we directly verify

-1
R_g(comAjoj) = comy; (comAjoj + en}f‘) + e_l(I - JI‘;-‘), (2.114)
and
. -1
comAjL;;iA = comy, (comAj Ly, + enA) . (2.115)

J

j’

Equation|2.113] Equation [2.114{ and Equation [2.115|let us estimate

R_E(L2 ) <R _¢(comy, L, )= comAjL_bidA +e M- ﬂj-‘). (2.116)

nj—‘ (V) e

Note I = s-lim ey n}‘.‘ is uniformly bounded in norm (cf. 3) in Proposition [2.1.26). By
construction of perturbed left-division, sequential strong continuity of multiplication
ensures

L;bi,iA =s-lim comAjL;b,iiA +e (=), (2.117)
),

The map ¢t — R_.(¢?) lies in C(R). Using Lemma we see 2) in Proposition [2.2.51
thus implies

— 2 | _ : 2
R_e(Ly) _R_E(L\/a_c) B S_ljleIlI\IIR_E(Ln?(\/J_c)) (2.118)
by functional calculus.
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Using Equation [2.116] Equation 2.117|and Equation|2.118, we calculate

R oL)=s-limR- ( A(f))

<s-limcomy, L") +e (I -7%)
]EN xj;E J

— 7, 1da

e "
The above calculation shows 3) at once. O

Theorem 2.2.53. Let (A,1) and (B, w) be tracial AF-C*-algebras. Let (¢,vy,y) be an AF-
A-bimodule structure on B. Let [ be representing function of an operator mean and
0 €[0,1]. Let p €{1,2,00}. For all x € L?(A,1),, we have

L(P =sr- thf , RY =sr- hanRw (2.119)
JE

Proof. We prove all claims for canonical left-action. This readily transfers to canonical
right-actions. First, we show our claim for canonical AF-C*-bimodules. Secondly, we
extend to the general case. In this proof, y is of no consequence. Let x € LP(A,1);.

Assume (A, 1) = (B,w) is equipped with its canonical AF-A-bimodule structure. By
1) in Proposition R_.(Ly) =s-limjen R-¢(Ly;) for fixed but arbitrary ¢ > 0 implies
Ly =sr-limjenLy;. Let € > 0. Using 1.2) in Proposition uniform boundedness and
sequential strong continuity of multiplication, we calculate

—idg _ 1 .
be’g _S_ljlernl\|lcomAf(fo+EI) =s- ljlean(L +£I) —S-lj;gll\llR_g(ij). (2.120)

It suffices to have R_.(L,) = L;biiA, ergo

R (L)=L % (2.121)

by 3) in Lemma [2.2.52
We use the following. For all u € L2(A, 1), get w*-l.s.c. map

,u»—»L#EA(u)—supL Aw) (2.122)
JEN

defined on A* by 1) in Proposition [2.2.39 Let y € L1*(A,1),. Using sup jen 1yjlloo =
l¥lloo < 00, We estimate

L9 L7 5 (Jyll+€) T T>0 (2.123)

yE J’

in B(L%(A, 1)) for all jeN.
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Taking inverses in Equation 2.123|yields uniform bound s.t. 2) in Proposition [2.2.45
implies

L% —s-limL'% . (2.124)
¥%.€ JEN  yE

Following Remark [2.96, Equation [2.124] shows
L% —s-limL, +e¢l. (2.125)
Y€ ]€N 7

Normality implies Ly = w-limjen Ly, by 2) in Proposition [2.1.31 (cf. Remark A.1.10,and
Remark|A.1.30). Therefore, Equation [2.125|lets us calculate

L —s.limL, +el =L, +e¢l. (2.126)
jeN 7Y

¥E

Taking inverses in Equation [2.126] we have L;giA =R_.(L,) and therefore

(R_o(L))(w),u), = L;;‘iA(u) (2.127)

for all u € L2%(A,1).
For all n €N, get x,, := min{x,n} € L*°(A, 1), by positivity, as well as

(Roe(Lx,)@),u), =LA @) (2.128)

for all u € L%(A, 1) by Equation[2.127 Then 1) in Lemma [2.2.52 and Lemma [A.2.5 show

R_(L,)=s-limR_.(Ly,). (2.129)
neN

Equation [2.128and Equation [2.129|1et us calculate

(R—eL)(w),u), =lim (R—(Ly,)@),u), =lim L% () (2.130)

for all u € L%(A, 7). Finally, note x” = w*-lim,,cn x',’l by 2.2) in Proposition |2.1.31] Since
the map in Equation [2.122]is w*-1.s.c. , Equation [2.130| shows

(R-o(Ly)(w),u), = liminf L, ) = LM w) (2.131)

for all u € L2%(A, 7). Equation [2.131|implies Equation [2.121
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Thus our claim holds assuming canonical AF-C*-bimodule structure. Assume the
general case. The map ¢ — R.;(¢) lies in Cp(R). Applying 2) in Lemma and using
our above discussion, Lemma implies

[y pooa,n(B+i) =5 -}3611,% Uy Looa, (R i) (2.132)

For all y e L°(A, 1), Lemma [2.1.59| shows

LTy pooca 1)(R+i)) = Rsi (Li) (2.133)

We know L? : L®°(A, 1) — B(L?*B,w)) is normal unital *-homomorphism. Thus L? is
strongly continuous, hence Equation [2.132|and Equation [2.133|show

R.; (Lf) =L? Ty Loo(an)(R+i))

= S-limL(’b(rxj,LOO(A,r)(Rii))

neN

= s-}lig\llRii(L(,fj).

The above calculation shows our claim. O

Corollary 2.2.54. For all x,y € L1(A,7); and € > 0, we have
1) LY =L{+elandRY, =RY +¢l,
a0, Y.

2 9% =99

xb’yb’g - “x,y,E"

Proof. Let x,y e LY(A,7), and £ > 0. Equation in Remark [2.2.44|rewrites as

_ -1 - -1
Lx;g:(L‘fj+gI) ,RyJ;,”E:(R‘y”ﬁeI) : (2.134)

Using Equation to ensure perturbation tends to zero as required, get 1) by applying
Theorem [2.2.53|to inverses in Equation [2.134] We then get 2) by 1) in Proposition 2.2.10
applied to the trivial compression. O

Definition 2.2.55. We say that f vanishes at the boundary if m£(1,0) =0 for all 1 > 0.

Remark 2.2.56. If / vanishes at the boundary, then m¢(1,0) =m(0,A)=0for all 1 =0
by symmetry. Both the geometric and logarithmic operator means have representing
function vanishing at the boundary. The arithmetic operator mean does not.
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Lemma 2.2.57. Let f vanish at the boundary.

1) Let p € L®(A,7) be a projection. For all x,y € LY(Alp],7); and € >0, we have

0
[@x,o,s?

Ly =25, Rp ] =o. (2.135)

2) Forall x,y € LY (A, 1), and u € L*(B,w), we have

sup (29 (W), u), = sup (2, ,(w),u), = oco. (2.136)
e>0 e>0

Proof. Let x,y e L1(A,71),. We prove all claims for x. Their proof readily transfers to the
analogous one for y. We show 1). Let p € L™(A,1) be a projection s.t. x € LI(A[p], 7).
and € > 0. By bounded measurable joint functional calculus (cf. Proposition|A.1.100), we
have

@9

x,0,¢

=m" (L‘f;,o) eW*(LL,1). (2.137)

,E

Note W*(LL,1) = W*(L) e W*(I) = W*(L?) « B(LA(B, w) following Equation [A.33]in our
construction of bounded measurable joint functional calculus. Since x € L1(A[p], 1), we
know Iy roo(a,1)(R +i) € Wyeo(y ().

Corollary therefore implies

[TsLooa, )R ), p] = [Txpooarpr,nRei — Fi) + Fila, p| = 0. (2.138)

Using Lemma [2.1.59] 2) in Lemma [B.1.72[and Equation |2.138] we calculate

Rii(Lf),L(z] = [L(p(rx,Loo(A,r)(Rii)),L(g] =L?(|Ty Lo(an(Ri),p]) = 0. (2.139)

Following Remark |A.1.95 Equation [2.139|shows

[T,Lﬁ] ) (2.140)

forall T € W*(Lf). Equation |2.137|and Equation [2.140/imply 1) at once.
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We show 2). Let u € L2(B,w). Note 2) in Proposition [2.2.10|shows

sup (E’Zio,g(u), u), = liminf<95,0,g(u), uy,. (2.141)
e>0 €l0

Lemma [B.1.72|and Lemma [B.1.77|imply

specreoa )% X 0=suppE ¢ , x {0} csuppE, y x {0} = specgoo(q ) x x 0. (2.142)
For all € > 0, Equation [2.142| and Equation [A.18|show

(@ i), = [

Specroo(4 )X % 0

-0
myt0dEy, (2.143)

Let {£,},en © (0,00) be a descending sequence converging to zero. Since f vanishes
at the boundary, we have

liminfm ", (£,0)=o0 (2.144)
neN =n
for all ¢ € specyeo(4 r)x. Applying Fatou’s Lemma to Equation 2.143, Equation [2.144

shows

.. 0 s -0 —
hzréanﬂ@x,o,gn(u), uy, = f hmanfmf,gn(t, O)dEZ‘fj,o = o0. (2.145)

specpooq 1)xx0 7€

The sequence used for Equation [2.144]is fixed but arbitrary. As such, Equation [2.141
and Equation [2.145|imply 2) since no descending sequence yields a finite value. O

Theorem 2.2.58. Let (A,1) and (B,w) be tracial AF-C*-algebras. Let (¢,vy,y) be an AF-
A-bimodule structure on B. Let f be representing function of an operator mean and
0 €[0,1]. Let p € L®(A, 1) be a projection. For all x,y € LY(A[p], 1)+, we have

1) H@'' )= LXBlplv)
; ,0
2) 99, ,=srlim 02}, , on HQ'' ),

3) Q,]:tigyb(u) = SUPs0 (23 5,6 (W), 1), for all u e H(Q’nyb)'

Proof. Let x,y € LY(A,1),. We show 1). Theorem [2.2.49 and Corollary [2.2.54]imply

Q,’;’eyb(u) =sup (21 (), u), (2.146)
? &>
for all u € L2(B, w).
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Let u € L*(B,w) and € > 0. Equation shows

L%(Blpl,w)* = pL*B,w)p* & p* L*(B,w)p @ L*(B(p™),w). (2.147)

Using 4) in Lemma [2.2.13|and 1) in Lemma [2.2.57, we have

_Qﬁ

0
2 2,9,D,E

X,Y,E

® (2, LoRY. ©90, Lo RY 0 n,.) (2.148)

w.r.t. B(LABlpl,»))® B(pLAB,w)pt)e B(p1 LA(B,w)p)® B(LAB(p),w)). Moreover, all
bounded operators in Equation [2.148 are positive. Equation [2.148|lets us estimate

D=

[
(@) + 12251,

(ry@)|2

(20, cw,u), = (22 LoRY. 020, LY R} @& ",

DO

> | (22 LRy @90y£L¢iRwéB£67tpi)
=220, (pup") |2 + 25 ,yg(P up) s, +€ 7 @,

Using Equation [2.146|and 2) in Proposition [2.2.10] taking suprema in € > 0 yields

QL w=sup| 2o (pun®) |2 +sup |5, (p* up)[ly+sup e @, (2.149)
£>

Using 2) in Lemma [2.2.57], Equation |2.149|implies 1) at once. We therefore get 2) and 3)
by Equation [2.146| Equation [2.148|and Theorem [2.2.49 O

Corollary 2.2.59. Let p € L™®(A,1) be a projection. If x,y € L°(Alp],7)+ s.t. we have
m ;' € #(Eyy), then

1 H@Q',)=LBIplw)

2) “‘@zb , =929 =sr-lim. (2! on L%BIp]l,w),

x,Y,P X,Y,D,E
1.8 3 2 0 2
3 Q. yb(u) =122, p |}, = sup,»0(2Y, , W), u), for all ue L*(Blpl,w).

Proof. Note @,‘jyp = sr-lim, o 2? y,p.e ON L%(BIpl,w) by 3) in Proposition [2.2.10, Thus 2)

in Proposition [2.2.10| and the Kato-Robinson theorem imply

0
sup( ey p e, = ||@,?’y,p(u)||i <00 (2.150)

for all u € dom QZx 'y.p- We know @f,y, p» is densely defined as per 1) in Proposition [2.2.5| by

hypothesis and construction of compressed pulled-back joint functional calculus. Using
Equation [2.150, Theorem [2.2.58 hence implies our claims. O
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Remark 2.2.60. If x,y € LY(A[p], 1), s.t. L., and R, , injective, then m;l € S (Exy).
Since E 1A[p],r) and E, =(a[p] ) have no mass at zero if injectivity is given, we know
[0,00) x {0} U{0} x [0,00) € N (E y Lo(Alp1,1))- Zero may still lie in spec ooap) )% X Y-

Corollary 2.2.61. Let p,q € L®(A, 1) be projections. If x,y € L°(Alp],7); N L%A(q), 1)~
st. m;t € Fp(Eyy)N Fy(Exy), then p=q.

Proof. We equip A with its canonical AF-A-bimodule structure. We have 7, = 7, by 1) in
Corollary|2.2.59| For all j €N, note p14;p = q14,q. Using sequential strong continuity of
multiplication and Proposition 2.1.16} get p = s-limjenpla;p =s-limjengla;g=q. O

2.3 Noncommutative gradients

Symmetric C*-derivations are noncommutative gradients [63[][65]. We introduce and
consider the special case of symmetric W*-derivations. Using symmetric W*-bimodules
induced by AF-C*-bimodules as codomains, quantum gradients are, by construction, a
class of symmetric W*-derivations compatible with compression and finite-dimensional
approximation. Their dualisation provides the weak formulation of continuity equations
in the AF-C*-setting. Thus Banach dual spaces of AF-C*-bimodules serve as synthetic
tangent spaces. Compatibility transfers to quantum Laplacians, their noncommutative
heat semigroups, as well as continuity equations. Compatibility therefore transfers to
quantum optimal transport.

Structure. In Subsection [2.3.1], we review symmetric C*- and W*-derivations. We study
their compression. In Subsection we define quantum gradients, collect properties
and give standard constructions. We further construct dynamic quantum gradients from
twisted conjugation groups. In Subsection we define noncommutative differential
structures, discuss compatibility and outline the coarse graining process.

2.3.1 Symmetric C*- and W*-derivations

Symmetric C*-derivations are closable unbounded module derivations for symmetric
C*-bimodules intertwining adjoining and anti-linear involution. They determine non-
commutative analogues of Dirichlet forms [[117], called C*-Dirichlet forms [1][63]1[65].
Following likewise generalised Beurling-Deny formula [26]], representing operators of
conservative C*-Dirichlet forms are concatenations of symmetric C*-derivations and
their adjoints (cf. Theorem 8.3 in [[65]). These in turn generate completely Markovian
semigroups for tracial C*-algebras (cf. Theorem 4.11 in [63]]). Altogether, we say that
symmetric C*-derivations are noncommutative gradients which determine Laplacians
and view completely Markovian semigroups generated by the latter as noncommutative
heat semigroups. The relationship between gradients, heat semigroups and Dirichlet
forms extends to the noncommutative setting [[63][65].
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We define symmetric W*-derivations to be symmetric C*-derivations for symmetric
W*-bimodules, moreover closable w.r.t. bounded strong convergence s.t. units are in the
kernel upon closure. Using symmetric W*-bimodules induced by AF-C*-bimodules as
codomains, we have compression based on compression of AF-C*-bimodules. We then
define quantum gradients to be symmetric W*-derivations with sufficient compression
to have finite-dimensional approximation. Standard references for C*-bimodules and
C*-derivations are [63][65]. The latter are collected in [[64] on p.161-276 in [27].

Unbounded module derivations. Deﬁnition collects notions of unbounded
module derivations we use, including symmetric C*- and W*-derivations. This yields a
more general definition of symmetric C*-derivations than in [65]. Remark shows
results for symmetric C*-derivations in [[63]1[65] apply regardless. Proposition
states the chain rule for symmetric W*-derivations.

Let (M, 1) be a tracial W*-algebra.

Notation 2.3.1. Unless stated otherwise, we use the identical symbols for unbounded
operators and all of their closures. For all closable unbounded operators T : Hy — H
of Hilbert spaces, let ||.||7 denote its graph norm.

Definition 2.3.2. Let A c M be a o-weakly dense C*-subalgebra and H a symmetric
W*-bimodule over M. Let of — A be a *-subalgebra and V: .o/ — H a linear map.

1) We say that V satisfies

1.1) the Leibniz rule if Vxy =Vx-y+xVy for all x,y € o/,
1.2) symmetry if Vx* = y(Vx) for all x € .

2) We say that V is an «/-module derivation if it satisfies the Leibniz rule, and further
call V symmetric if it satisfies symmetry.

3) We say that V is a symmetric C*-derivation if
3.1) Vis a symmetric </-module derivation,
3.2) o/ cAis |.|ls-dense and «f < L2(M,7) is ||.||,-dense,
3.3) Vis (|l.lla, lI.llg)-closable and Vignrzarr s Uz, Il )-closable.
Then its (|.||+, .l z7)-closure defines the Laplacian A :=V*V of V.
4) We say that V is a symmetric W*-derivation if

4.1) Vis a symmetric C*-derivation,

4.2) for all nets {xp}rex © of s.t. bds-limpeg xp = bds-limpeg xz =0, get existence of
.l z-limgeg Vaxp, if and only if ||.| zg-limpex Vi, =0,

4.3) there exists a net {xz}rex © & s.t. bds-limpcg xp = bds-limkerZ = 1 and
Il gz-limgeg Vg, = 0.
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Remark 2.3.3. Assume the setting of Definition Let V: .« — H be a symmetric
C*-derivation. Restricting the bimodule action of M to A yields symmetric C*-bimodule
H over A as per Definition [2.1.48| If 7|4, is semi-finite, then (A, ) is tracial C*-algebra
and V is symmetric C*-derivation used in [65]. Since semi-finiteness does not affect the
chain rule, the relationship between gradients, heat semigroups and Dirichlet forms in
the noncommutative setting uses the (||.|;, ||.|lz7)-closure of V. We therefore know results
for symmetric C*-derivations in [63][[65] apply to our general notion. However, we apply
them only if A is unital and 7 < co. Note semi-finiteness of 7|4, is always given in this
case (cf. 2) in Proposition [B.1.12). If 7 < co, then replacing (|l.|l 4, |l. |l z)-closable in 3.3) in
Definition by (II.1la, |l.Ilz7)-closed yields identical (|.| 7, |I.|lz)-closures.

Definition 2.3.4. Let A ¢ M be a o-weakly dense C*-subalgebra and H a symmetric
W*-bimodule over M. Let V: o — H be a symmetric W*-derivation.

1) We call a net {x3}rcx < of bounded strongly convergent to x € M for V if
1.1) x =bds-limgeg x% and x* = bds-limpeg x;,
1.2) {Vxp}rex © H is Cauchy net in norm.
Let x = bds"-limpcx x5, denote bounded strong convergence for V.

2) Set My :={xeM | Hxplrex <o : x=bds" -limpex 1 }-

Let A € M be a o-weakly dense C*-subalgebra and H a symmetric W*-bimodule
over M. Let V: o/ — H be a symmetric W*-derivation. By 4.2) in Definition [2.3.2] we
define bounded strong closure V: My — H of V by setting

Ve :=|.lg-lim Vxz (2.151)
keK

for all x € My. In each case, we use fixed but arbitrary net {x;},cx < </ bounded strongly
convergent to x € M for V.

Definition 2.3.5. Let A ¢ M be a o-weakly dense C*-subalgebra and H a symmetric
W*-bimodule over M. For all symmetric W*-derivations V : o — H, its bounded strong
closure V: My — H is defined by Equation|2.151

Proposition 2.3.6. Let A ¢ M be a o-weakly dense C*-subalgebra and H a symmetric
W*-bimodule over M. For all symmetric W*-derivations V : of — H, we have

1) 1p € My and unital *-subalgebra My c M,
2) symmetric My-module derivation V: My — H and V1,7 =0.

Proof. Multiplication in M is jointly continuous in strong operator topology. We thus
know My c M is a *-subalgebra, further having unit 1, € My with V1, =0 by 4.3) in
Definition Since we use normal unital *-homomorphisms to define the bimodule
action of M on H as per Definition the Leibniz rule extends from </ to My. Note
symmetry follows by construction. Altogether, get 1) and 2). O
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The Leibniz rule formulates a noncommutative chain rule using functional calculus
of left- and right-bimodule actions of symmetric W*-bimodules. Following notation in
Definition we use (¢, y)-action of M on H for normal unital *-homomorphisms
¢o,w: M — B(H). For all x,y e M, ¢(x),y(y) € B(H) commute by definition.

Definition 2.3.7. Let I c R be a closed interval. For all g € C1(I), we define functional
derivative of g on I x I by setting

g()—g(s) ift#s,

Dg(t,s):= ts
8(t,) {%g(t) else.

Remark 2.3.8. Note Dge C(I xI) s.t. ”Dg”C(IxI) < || %g”cm in each case.

Proposition 2.3.9. Let x € Mj,. If I c R is a closed interval s.t. specyx < I, then

1) CU xI)c C(specyx x specy x) < L (spec p(x) x ¢(x), dE p(x),px))>
2) ||IT e,y gy < 12 llicaxp for all he CI x ).

Proof. Note spec ¢(x),spec y(x) < specyrx as ¢ and ¢ are unital *-homomorphisms. Get

spec P(x) x p(x) < specyrx x specyrx < I x 1. (2.152)

Equation [2.152/implies 1) by dualisation. Bounded measurable joint functional calculus
L p0),u(x) - L(spec ¢px) x y(x), dE p(x) y(x)) — P8(H) is a normal unital *-homomorphism
(cf. 1) in Proposition [A.1.100). Using |[[T'p(x),yx) | <1 and 1), we obtain 2) at once. O

Proposition 2.3.10. Let A c M be a g-weakly dense C*-subalgebra and H a symmetric
W*-bimodule over M. Let V : «f — H be a symmetric W*-derivation, x € My self-adjoint
and I c R a closed interval s.t. specyrx < I. If g € CX(I), then

1) g(x) € My self-adjoint and Vg(x) = I p(x) y(x)(Dg)Vx),
2) IVeWlm < || %&| o) 1Vl

Proof. Note V17 =0 by 2) in Proposition[2.3.6] If g is polynomial, then we directly verify
1) and 2) using the Leibniz rule, symmetry, and V1, = 0. Let I =[a,b] for a < b in R and
g € C1(I). Since V1 =0, we assume g(a) = 0 without loss of generality.

We know %g € C(I). Let {gn}nen < C(R) be polynomials s.t. %g = |l.lloo-limyen @ 1. For
all n e N, set g,(t) := f;qn(s)ds for all t € I. Get g,, € C1(I) with derivative g, in each
case. Using standard arguments for integration [109][139][140], norm convergence of
derivatives implies g = |.|loo-limyen g since gla) = g,(a) = 0 for all n € N. Following
our definition of bounded strong closure as per Equation [2.151] such approximation
reduces our claims to the polynomial case by linearity of the functional derivative and
Proposition |2.3.9 O
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Compressing symmetric W*-derivations. Definition gives compression
of symmetric W*-derivations. It is based on compression of AF-C*-bimodules. The two
classes of compression given in Subsection [2.1.2|each provide compression of symmetric
W*-derivations. First, we compress to induced AF-C*-bimodules in Corollary
Secondly, we compress with projections in Corollary

Let (A,7) and (B,w) be tracial AF-C*-algebras. Let (¢,w,y) be an AF-A-bimodule
structure on B. Let V: o — L%(B,w) be a symmetric W*-derivation.

Lemma 2.3.11. Let Hy and Hy be Hilbert spaces, Vo < Hy and Vi < Hy Hilbert sub-
spaces, and T : Hy — H closed unbounded operator. If € is core of T s.t.

1) n{“,{f(cg)cdomT,

2) ny (T@) =T (n}°(x)) for all x € 6,

then T < T,

Vi Vo
Proof. Let xedomT and x = ||.||7-limpeg x, for a net {xz}rex = €. Using 1) and 2), get
H]_ _ . H1 _ . HO
wy, (TG) = Iz -Vim ! (TGer)) = -y -lim 7 (). (2.153)
. H, _ Hy . .
Equation |2.153 shows 7y, (T)=T (”VO (x)) since T is closed. O

Remark 2.3.12. Assume H := Hy=H; and V :=V; = V7 in the setting of Lemma|2.3.11
If T € 4%(H);, has core as per Lemma [2.3.11] then T is V-reducible. If T € %%y (H)
and ¥ core of T', then ¥ satisfies 1) and 2) in Lemma [2.3.11

Definition 2.3.13. Let (¢,v,y) be (N,V)-compressible. We say that V : o — L2(B,w)
is (N, V)-compressible, and call (N,V) a compression of V, if

D) sy (@) SN NL®A, )y,

2) 7[?2(N T)(yf) c N is o-weakly dense and nZ‘Z(N T)(&f) cL%(N,7) is ||.|l;-dense,

3) JT£2(N,T)(.Q¢) cdomV, ng(domv*) cdomV*, and

mh (V) = Vnéz(NJ)(x), n‘L*Q(N’T)(V* u) = V*rh(u) (2.154)

for all x € o and u e domV*.
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Corollary 2.3.14. Let o/ = Ay. If j e N s.t.

V(AJ')CBJ', V*(Bj)CAJ', (2.155)
then V is (A}, Bj)-compressible.
Proof. Let j €N s.t. Equation [2.155 holds. We know (¢, v,7) is (A ;,Bj)-compressible by

Corollary[2.1.63] Using 7t£2 N = 7'[ , n"% = n? and Equation |2.155, we directly verify 1)
to 3) in Definition|2.3.13] O

Corollary 2.3.15. If p € L°°(A, 1) is a projection and {pplrek < o/ N A}, a net s.t.

1) p =bds-limgeg pi,
2) prekerV forall keK,

then p € L®(A,T)y, Vp =0, and V is (L®(Alp],7),L2(B[p],w))-compressible.

Proof. We use the following results. Let p € L®(A, 1) be a projection. We know (¢, y,y)
is (L°°(A[p], 1), L2(Blp],w))-compressible by Corollary[2.1.65 The latter shows

A __A _ B _ _B _r¢pv
TN T = LAl = L,R,, ny = T Biple) = LpRp. (2.156)

Equation [2.156|in turn implies

oy () = Pt p, my(dom V*) = p(dom V*) p. (2.157)
Lemma shows pofp c pL®(A,7)p = L®(Alp], 1), as well as pofp c pL%(A,7)p =
L?(Alp], 7). We use these inclusions to show 1) to 3) in Definition

Let {pplrex €« o/ N A}, be a net s.t. 1) and 2) holds. Get p € L*®(A,7)y and Vp = 0.
Thus 1) in Proposition yields pe/p c L*(A, 1)y, hence Equation [2.157| shows 1)
in Definition Using density of o/ as per 3.2) in Definition Equation [2.157
further shows 2) in Definition Using p € L*(A, 1)y, Equation and 2) in
Proposition we directly verify 3) in Definition on inner products. O

Definition gives *-subalgebras generated by compressions. Proposition [2.3.18
lifts properties in Definition to such *-subalgebras. The latter therefore serve as
domains of compressed symmetric W*-derivations. Definition gives compressed
symmetric W*-derivations. Proposition collects their properties. Notation
fixes conventions.

Definition 2.3.16. For all compressions (N, V) of V: of — LB, w), let o/5 c N be the
*-subalgebra generated by n?z N T)(d )in N.

Remark 2.3.17. We do not require *-subalgebras to be closed in any topology.

74



Proposition 2.3.18. For all compressions (N, V) of V : of — L2(B,w), we have
1) o/y <« NNL®(A,1)yis a *-subalgebra,
2) oy <N is o-weakly dense and </ < L2(N,7) is |.|l;-dense,
3) o/ny cdomV, n“;(dom V*)cdomV*, and
Ty (V) = Vi (), 1oy (V1) = Vi g ) (2.158)
for all x € of and u € dom V™.

Proof. Get 1) by 1) in Proposition We have 2) as Holder ensures o/  L2(N,1).
Using 2) in Proposition [2.3.6, we obtain 3) by extending 3) in Definition [2.3.13 O

Proposition 2.3.19. For all compressions (N, V) of V : of — L2(B,w), we have

1 n{’;v c vl and 7

% * B
L2AN.7) ey SV Ty

2) Vlgy Ay — V is a symmetric W*-derivation and

2.1) myy ,(domV)=LAN,7)ndomV,

2.2) Vi 1) :L2(N,7)ndomV — V is (|I.ll+, II.ll,)-closure of Vi
3) (VIV)* :VndomV* — L2(N, 1) is a closed unbounded operator and

3.1) nf@(domV*)zVﬂdomV*,
32) (Vlv)* = (V|L2(N,T)) *,

4) A€ %%(Lz(A,T))+ N %‘%LQ(N,T) (Lz(A,T)) and A|L2(N,‘L') = (VILQ(N,T))* (V|L2(N,T))‘

Proof. Proposition [2.3.18| ensures Lemma [2.3.11| applies to V : L%(4,7) — L2(B,w) for
core of and V* : L%(B,w) — L%(A, 1) for dom V*. Note (¢, ¥,7y) being (N, V)-compressible
implies V is a symmetric W*-bimodule over N as per 2) in Proposition [2.1.58, Set

An =y " = C*(aty). (2.159)

The second identity in Equation follows from 1) in Proposition Using 2) in
Proposition note Ay c N is a o-weakly dense C*-subalgebra. Using the Leibniz
rule and symmetry, Equation shows V(«/n) c V. Thus 2) in Proposition and
1) in Proposition show the restriction V : oy — V of V: L®(A, 1)y — L?*(B,0)
to oy is a symmetric «/y-module derivation. It satisfies 3.2) in Definition by 2)
in Proposition [2.3.18] Since Jt?z(N’T)(dom V) is ||.|ly-closure of o/, it satisfies 2.1) and in
turn 2.2) by 3) in Proposition [2.3.18] Hence V: oy — V satisfies 3.3) in Definition [2.3.2]
and is a symmetric C*-derivation. We show it is a symmetric W*-derivation.
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We use the following. We already show and use 1) above. Being the restriction to
o/ ensures 4.2) in Definition Semi-finiteness of N moreover shows there exists
noncommutative conditional expectation from L>(A,7) to N as per Remark ie. a
normal unital bounded linear map

w4 LA, 1) — N (2.160)

A
L2%(N 1)
Applying the noncommutative conditional expectation to an approximating net for

V:o — L%B,w) as per 4.3) in Definition yields one for V : oy — V. This uses
1) and restriction of the noncommutative conditional expectation to the Hilbert space
projection. Thus V: o/ — V is a symmetric W*-derivation, hence 2) follows since we
have 2.1) and 2.2). Using 1), we directly verify 3.1) and V*(V ndomV*) c L2(N, 7). The
latter implies

restricting to & on L?*®(A,1) and satisfying a trace identity (cf. Remark B.2.8).

dom (Viz2qy 1)) " = 4 (dom V*). (2.161)
Equation [2.161]and 2.2) show 3.2). Altogether, get 1) to 3). Note 3) implies 4). O
Definition 2.3.20. For all compressions (N,V) of V: of — L?(B,w), set
1) VN :=Vl]gy,
2) An:=VaVy.

Notation 2.3.21. Following Notation [2.3.1, we additionally use Vy to denote closures
in Definition [2.3.20| and throughout our discussion. Proposition [2.3.19| therefore states
VN = Vg2 p, Vi = (VIv)" and Ay = Al o)-

Proposition 2.3.22. Let V : of — L2(B, ) be (N,V)-compressible.

1) For all g € Cy([0,00)), we have

g(A) =g(An) @ g(Alrzgv L) (2.162)
w.rt. B(LAN,1)) ® B(LAN,1)4).
2) g(An)€ B(LAN,71)) « Bv(L*(A,71)) and g(An) = compz 4 1 8(AN).

Proof. Note 4) in Proposition|2.3.19|shows A =0 on L2(A, 1) is L2(V, 7)-reducible. Using
the latter, get 1) and 2) by 2) in Corollary|A.2.27|because Ay = Alp2y 7). O
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2.3.2 Quantum gradients for AF-C*-bimodules

In the AF-C*-setting, Equation [2.155| provides the sufficient condition for compressing
symmetric W*-derivations to induced AF-C*-bimodules. We therefore define quantum
gradients to be symmetric W*-derivations s.t. Equation holds for all j € N. Their
compression is Definition Compressing to induced AF-C*-bimodules and taking
limits is finite-dimensional approximation of quantum gradients. Proposition[2.3.19|and
Proposition imply such compatibility transfers as claimed.

Standard constructions of quantum gradients are direct sum, tensor product, as
well as internal quantum gradients. We further construct dynamic quantum gradients
by weak differentiation of twisted conjugation groups. We include a non-twisted case.
In Subsection [3.1.3] standard constructions using dynamic quantum gradients provide
fundamental example classes. Standard references for unbounded algebra derivations
generating C*-dynamical systems are [173]] and [182]. We moreover refer to [35[[36] as
comprehensive treatment of C*-dynamical systems in quantum statistical mechanics.
Standard reference for the weak differentiation of, in general non-twisted, conjugation
groups is [[60]. Their weak derivatives generalise inner derivations [133].

Definition and properties. Definition[2.3.23|gives quantum gradients. They are
symmetric W*-derivations by Proposition [2.3.25] Proposition [2.3.25| collects properties.

We compress quantum gradients. First, we compress to induced AF-C*-bimodules as
per Corollary Secondly, we compress with projections as per Corollary
assuming additional properties. Using the first one, finite-dimensional approximation
is 4) in Proposition [2.3.25] This is compatibility of quantum gradients with compression
and finite-dimensional approximation.

Let (A,7) and (B,w) be tracial AF-C*-algebras. Let (¢,v,y) be an AF-A-bimodule
structure on B. Note Remark concerning closure of quantum gradients.

Definition 2.3.23. Let V: Ay — L?(B,w) be a symmetric Ay-module derivation.

1) We say that V is a quantum gradient if Bo c dom V* and

V(A;)cBj, V*(Bj)cA; (2.163)

for all j € N. Equation [2.163|is called locality. We further call A :=V*V a quantum
Laplacian.

2) Let V be a quantum gradient. For all j € N, we call V;:= V4, :Aj — Bj the j-th
restricted quantum gradient and A; := V'V, the j-th restricted Laplacian.

Remark 2.3.24. Let V: Ay — L2(B,w) be a quantum gradient. Since By c L?(B,w) is
|.ll,-dense and Bg < domV*, we see V is (||.|l7, ll.ll,)-closable (cf. Theorem 5.1.5 in [171]).
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Proposition 2.3.25. Let V: Ay — L%(B,w) be a quantum gradient.

1) V:Ag— L%(B,w) is a symmetric W*-derivation.

2) Forall j<kin N, we have

B A Avg* *_B
2.1 nJ.VCan andzer cV n’,

B A A Av*_ B * B
2.2) 7 Vnk Cvn’j and T’ Vv m, cV ;.
3) For all jeN, we have

3.1) V:Ag— L?%B,w) is (A;,B,)-compressible,

3.2) V;:A; — Bj is a quantum gradient, V;' = (VIBJ.)* and Aj= Ag;.

4) We have
4.1) Agiscoreof Vand u=|.[lv-lim ey nj.‘(u) for all u e domV,
4.2) By iscoreof V* and v = ||.|lv+-lim ey n?(v) for all vedomV”™,
4.3) Agiscoreof Aand w = |.[|a-lim ey n?(w) for all w e domA.

5) We have y(domV*)=dom V*. For all u € domV*, we have V*y(u) = (V*u)".

Proof. Using (||.llz, |I.llx)-closure of V: Ag — L%(B,w), we have V : L%(4,7) — L2(B,w)
with core Ay c domV. We further have V* : L2(B,w) — L2(A,1) and By c dom V*. Note
Aoc L%(A,7) and By c L2(B,w) are dense in respective Hilbert space norms.

We use 4.1) to show 1). We see 3) in Proposition shows 4.1) if Equation [2.164
holds for all j € N. We use Lemma Set Hy = A; and H; = B; in each case. By
testing on the inner product, density in Hilbert space norms and Equation show
Lemma applies to V:domV — L2(B, w) using core Ag. For all j € N, we have

nfv c an.‘. (2.164)

Get 4.1). We show 1). Note V: Ag — L2(B,w) is a symmetric C*-derivation if it is
(.14, lI.llw)-closable. Using Ag < L®(A,1) = LY(A,7)* and By c L2(B,w) |.|,-dense, we
directly verify closability. Using 4.1), we directly verify 4.2) and 4.3) in Definition [2.3.2
For 4.3) in Definition we use {14;};en as approximating sequence of 14. We see
V:Ag— L%B,w) is a symmetric W*-derivation. Get 1).
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We know 1). We therefore have 3) by Equation [2.163] Corollary[2.3.14] as well as 3)
and 4) in Proposition Equation shows all claims for V in 2). We directly
verify all claims for V* in 2) by restricting V* as per 3.2). This shows 4.2) by 3) in
Proposition [2.1.26] Then 4.3) follows by 1). Altogether, get 1) to 4).

We show 5). The anti-linear isometric property of y is (y(v),y(w))y = (v,w) for all
v,w € L>(B,w). For all x € Ay and u € By, we apply ¥(Vx) = Vx* and the anti-linear
isometry property to calculate

(V'y(u),x), = (y(w),Vx), = (u,Va*), ={(V'u)",x). . (2.165)
Using 4), Equation [2.165|shows 5) by closure. O

Definition 2.3.26. Let V: Ay — L?(B,w) be a quantum gradient.

1) Let p € L*°(A, 1) be a projection. We say that V is p-compressible if the conditions
of Corollary [2.3.15| are satisfied for V and p.

2) Let V be p-compressible and Ag z4[p],r) the *-subalgebra generated by pAop in
L*>(Alpl, 7). We call V, := Vioop)r) : Ao,LoAlplr) — L%(B[p]l,w) a p-compressed
quantum gradient and A, := Apeoa[p),r) its p-compressed Laplacian.

Proposition 2.3.27. Let V: Ay — L2(B,w) be a quantum gradient.
1) Forall jeN, we have Aj = Ag, = ViV,

2) If V is p-compressible, then Ay = Alp2arp1.r) = Vp Vp-
Proof. Apply 4) in Proposition|2.3.19 O

Standard constructions. We use just three standard constructions for quantum
gradients: direct sums, tensor products and internal products. We collect constructions
and properties here for use throughout our discussion. For details on direct sums and
tensor products of C*- and W *-algebras, we refer to Subsection

Notation 2.3.28. We use superscripts before subscripts to denote instances of objects
whenever possible. If this does not yield suitable notation, in particular to prevent any
overload of exponents, then we revert to subscripts even as it may introduce double
subscripts. The latter must be clear from context, e.g. A, ; denotes the j-th generating
C*-subalgebra of an AF-C*-algebra A,, for n € N. Let m € N. For all objects E with direct
sums, set E™ := @7 | E. For all direct sums &7 | H, of Hilbert spaces, let

g © EBnm:lHn — Hk (2.166)
be the Hilbert space projection from &7 | H, to Hj, for all k € {1,...,m}.
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Definition [2.3.31| gives direct sum AF-C*-bimodules and quantum gradients for the
following data. Let m € N and (A, 1) be a tracial AF-C*-algebra. For all n € {1,...,m}, let
(B,,w,) be a tracial AF-C*-algebra and (¢,,v,,Y,) an AF-A-bimodule structure on B,,.

We define f.s.n. trace @7 ;w, on &' | L>(B,,w,) by setting

m
(O™ wn) (@) := Y wnlxn) (2.167)

n=1
for all x = (x1,...,x,) € @7 | LBy, w,)+. Get tracial AF-C*-algebra (87" B,,e"  w,)
in 7 | L*(B,,w,) generated by {®" | By, j}jen. Let p € {1,2,00}. Equation [2.167 shows

LP (&7 |Bp,®)" jw,) =&, LP(B,,w,). We obtain local *-homomorphisms

by restricting direct sum *-homomorphisms to the diagonal A c A™. We use direct sum
anti-linear isometric involution

@™ v, :L%(@™ B,,e™ w,) — L*(&™ B,,e™ 0,). (2.169)

Proposition 2.3.29. Let m € Nand (A, 1) tracial AF-C*-algebra. Forall n € {1,...,m}, let
(B,,wy) be a tracial AF-C*-algebra, (¢, Vn,Yn) an AF-A-bimodule structure on B, and
0n : Ag — L2(B,,,w,) a quantum gradient. We have

1) AF-A-bimodule structure (@,Tzl(/’m@?:ﬂ//na@nm:ﬂn) on &' By,

2) quantum gradient V® := @& 10n:Ap —>L2(®nmlen,®nm:1wn) defined by

Vex:=(01x,...,0,%) (2.170)

for all xe€ Ay,

3) V&* .= (69?:16,1)* =Y " 057, with core 7 B, o and given by

m
VO u =) onuy (2.171)
n=1
forall u=(uy,...,uy) €domV®* =™  domdy,

4) A®:=V®*'V® =YY" 0,0, with core Ay and given by

A®u=Y 8;0,u (2.172)

for all u € domA® =7, domad;;0,.
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Proof. Get 1) by construction. Using direct sum construction, Equation [2.170| shows 2)

and Equation [2.171|by reducing to summands. Equation|2.170{and Equation [2.171|thus
imply 3) and 4) by Proposition |2.3.25 O

Proposition 2.3.30. Assume the setting of Proposition Let f be a representing
function and 0 €[0,1]. For all p,ne A} and w € B*, we have

m
IO w) =Y jﬁﬁgn (u,m,wlB, ). (2.173)
n=1

Proof. We reduce to the finite-dimensional setting by 3) in Theorem Note .#70
and each j[{:gn are l.s.c. in w*-topology by 1) in Theorem |2.2.29, L.s.c. in w*-topology
shows Equation [2.173]if it holds for all p,n € A} s.t. {1, n > 0in A. Equation [2.173]itself
follows by construction of noncommutative division operators in this case. O

Definition 2.3.31. Assume the setting of Proposition [2.3.29] We call
1) (&7 1pn,®" 1 Wn, @™ Ys) their direct sum AF-C*-bimodule,
2) V¥:A)— L2(eanmlen, @™ w,) their direct sum quantum gradient,

3) 0, the n-th partial gradient, d;, the n-th partial adjoint, and A, := 0;,0,, the n-th
Laplacian for all n € {1,...,m}.

Definition gives tensor product AF-C*-bimodules and quantum gradients for
the following data. For all n € {1,2}, let (A,,7,) and (B,,w,) be tracial AF-C*-algebras
with (¢,,¥,,Yn) an AF-A, -bimodule structure on B,. We determine f.s.n. trace 71 ® 79
on L*(A1,71) ® L*(A2,12) by setting

(118 72)(x®y):=T1(x)T2(y) (2.174)
for all x € m;, and y € m,. Note both A; and Ay are nuclear. Get tracial AF-C*-algebra
(A1®A9,71®73) in L®(A1,71) ® L®(Ag,72) generated by {A1 ; ® Ag j}jen.

Let p € {2,00}. Equation [2.174] shows
Lp(Al ®A2,T1 ® Tg) = Lp(Al,Tl) ®Lp(A2,T2). (2.175)
Note the above construction likewise yields tracial AF-C*-algebra (B1 ® Bo,w1 ® w2) in
Loo(Bl,wl) ®LOO(BQ,(U2) generated by {Bl’j ®Bz,j}j€|\| s.t. Equation 2.175|1is
LP(B1®Bg,w; ® wg) = LP(B1,w1) ® L’ (Bg,w2) (2.176)

in each case.
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Note Corollary shows we obtain local *-homomorphisms

(/)1®g[)2,’(,U1®’(,U21A1®A2—>Bl®BQ (2.177)
by restricting tensored *-homomorphismsto A{®Ag c L*(A1®A9,71®72). We use tensor
product anti-linear isometric involution

Y1®7Yg: L2(Bl ® By, w1 ® a)2) — Lz(Bl ® By, w1 ® (1)2). (2.178)

Proposition 2.3.32. For all n €{1,2}, let (A,,1,) and (B,,w,) be tracial AF-C*-algebras
with ($n, Yn,Yn) an AF-A,-bimodule structure on B,, as well as 6, : A, o — LB, w,)
a quantum gradient. We have

1) AF-Aq® Ag-bimodule structure ((/)1 ® P2, W1 ®Y2,Y1 ®y2] on B1®Bo,

2) quantum gradient V®:A190Ago— L%(B1® By, w1 ® ws) defined by

VEx®y:=81x @ Wa(y)+ P1(x) ® b2y (2.179)

forall xe A1pand y€Agy,

3) V®*:=(V®)" with core dom&?} © domd} and determined by

V& 'uev=56jueys)+¢1(u)®dsv (2.180)

for all u € domé; and v € domé,.
Proof. Get 1) by construction. Using tensor product construction, Equation|2.179|shows
V® is a symmetric A9 © Ago-module derivation, implies Equation [2.180| and yields
B1o®Byocdomé; ©domby < domV®* (2.181)

by reducing to elementary tensors. Using inclusions in Equation [2.181] Equation [2.179
and Equation [2.180|imply locality. Proposition [2.3.25|implies all remaining claims. [

Definition 2.3.33. Assume the setting of Proposition |2.3.32 We call

1) (¢p1® P2, ¥1®Wa,Y1®Y2) their tensor product AF-C*-bimodule,

2) V®:A100A20 — L%(B1 ® B, w1 ® ws) their tensor product quantum gradient.

82



Remark 2.3.34. Tensor product quantum gradients have Laplacians with mixed terms
coupling their factors. This follows by construction. It differs from the decomposition
given by Equation [2.172|for direct sum quantum gradients.

Definition [2.3.35| gives generalised discrete derivatives. Example|3.1.54| shows these
specialise to discrete derivatives and internal quantum gradients. Let (A, t) be unital
tracial C*-algebra in M s.t. 7 < oco. We have *-homomorphisms

Int ._ Int ._ . .
¢ = idaea | gp oW = 1dAeA g,y pn A ABA (2.182)

given by restriction to unital C*-subalgebras A = A® (1a)c = {(1a)c®A of A® A. We
have f.s.n. trace T® T on M ® M and unital tracial C*-algebra A® A in M ® M. Thus
L2(A®A,71®7)is a symmetric C*-bimodule over A equipped with (L 70¢, Rarow)-action
and y = Adj as per Example for A® A as anti-linear involution.

Definition 2.3.35. Let (A,7) be unital tracial C*-algebra in M s.t. T < co. We define
symmetric C*-bimodule L?(A®A,7®7) over A by Equation[2.182] We define generalised
discrete derivative 5 : A — L2(A® A,7®T) on A by setting

O0x:=x®14—14®x (2.183)
for all x € A.

Proposition 2.3.36. If (A, 1) is a unital tracial C*-algebra in M s.t. T < oo, then 6 as per
Definition is a bounded symmetric A-module derivation.

Proof. Note A®A c L2(A®A,T®T) since 78T < 0co. On A®A, the symmetric C*-bimodule
action reduces to left- and right-algebra multiplication in A® A using *-homomorphisms
given by Equation as in Equation For all x,y € A, we use 6x,0y€ A®A and
Equation to calculate 6xy = (x @ 14)(y®14 —14®y)+(x @14 — 14 @x)(1g ® y) =
x(0y)+(0x)y. Thus J satisfies the Leibniz rule. Symmetry follows at once. O

Let (A, 1) be a strongly unital tracial AF-C*-algebra s.t. 7 < oco. We equip A with its
canonical AF-A-bimodule structure. Then (A®A,7®7) has canonical AF-A ® A-bimodule
structure and the *-homomorphisms given by Equation |2.182] are local.

Proposition 2.3.37. Let (A, 1) be a strongly unital tracial AF-C*-algebra s.t. T < co. For
all A =0, we have

1) AF-A-bimodule structure (c/)lnt,wlnt,Adj) on A®A,
2) bounded quantum gradient V: Ay — L*(A ® A, 7 ® 1) defined by

Vg := (x®1x—14 ®x) (2.184)

27(14)

forall x € Ay,
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3) VA*:=(VA)" bounded and determined by

VA yez=

21(14) (<1A’Z>ry‘<1A’y>12) (2.185)

forall y,z€ A,
Ao vlxygl _ A
4) A" =V = A

Proof. We have 1) by construction. Set 1 := 27(14) without loss of generality. We then
suppress A in the superscript. We show 2). Note V = §|4,. Proposition shows it
is a symmetric Ag-module derivation. Using Equation we directly verify it is a
quantum gradient. Equation further shows boundedness upon closure. Get 2).

We show 3). Boundedness of V implies V* is bounded and determined on elementary
tensors. For all x€ Ay and y,z € A, Equation lets us calculate

(Vx,y®z) o =(x,(1a,2),y), — (x,(1a,¥),2), = (x,{14a,2),y = (1a,¥),2),. (2.186)

Equation|2.186|shows Equation|2.185] Get 3). We show 4). For all x € Ay, Equation(2.184
and Equation |2.185|show Ax = 27(1 A)nﬁe”(x). Get 4) by boundedness. O

Definition 2.3.38. Let (A, 1) be a strongly unital tracial AF-C*-algebra s.t. T < co. For
all 1 =0, we call

1) (¢™t, ¢ Adj) the internal AF-A-bimodule structure on A® A,

2) V}:Ag — L%(A® A, 7 ®7) the A-internal quantum gradient on A.

Dynamic quantum gradients. Definition gives sufficient conditions to
construct quantum gradients by weak differentiation of conjugation groups twisted with
self-adjoint involutive local *-homomorphisms. These dynamic quantum gradients are
either twisted or non-twisted. Generators on Hilbert spaces control weak derivatives
as per Equation and Equation We pull back along canonical left-actions
upon weak differentiation in our construction, and twist as per Remark We use
one-parameter semigroups of bounded operators on Banach spaces [[102].

Definition gives dynamic quantum gradients. We give two classes of dynamic
quantum gradient. First, we consider trace-preserving local C*-dynamical systems in
Corollary Secondly, we consider intertwining self-adjoint unbounded operators
generating suitable conjugation groups in Corollary Whereas Corollary
yields only non-twisted examples, Corollary yields both twisted and non-twisted
ones. In Subsection standard constructions using dynamic quantum gradients
provide fundamental example classes. Those using tracial AF-C*-algebras generating
hyperfinite factors of type I and II by o-weak closure are of particular interest.
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Definition 2.3.39. Let H be a Hilbert space and 2 € %%(H);,. We define conjugation
group Ad? : R — Aut(%(H)) of 2 by setting

AdZ(S) :=e'!?Se™ 117 (2.187)
for all teR and S € ZB(H).

Let H be a Hilbert space and 2 € %#%(H);,. For all S € 8(H), the weak derivative

dt

AdZ(S) = w-yn&t—l(Ad?(S)—s) (2.188)

t=0,w

exists if and only if the following two conditions are satisfied (cf. Theorem 3.8 in [60]).
First, S(u) e dom2 for all u € dom 2. Secondly, that 2S5 — S92 € %%(H) is bounded and
closable. Then dom%2 S — S 2 = dom % and Equation [2.188|is

= AdZ(S)=i(2S - S2) e BH). (2.189)

t=0,w

Note 28 — S92 is bounded, but not a bounded operator in general. This necessitates
closure. For conjugation groups, differentiation in weak and strong operator topologies
is equivalent [60]. We use strong limits in Equation without loss of generality. If
9 € B(H), then %|t=O’WAd?(S) =i[92,S] for all S € B(H). In fact, all bounded module
derivations on W*-algebras are inner (cf. Theorem XI.3.5 in [[193]]). This explains use of
unbounded module derivations, resp. non-canonical AF-C*-bimodule structures.

Definition 2.3.40. Let (A,7) be a tracial AF-C*-algebra. A local *-homomorphism
¢:A — A is self-adjoint if ¢ € B(L2(A, 1)), as per Definition [2.1.39

Remark 2.3.41. Let (A,7) be a tracial AF-C*-algebra and ¢ : A — A a self-adjoint
involutive local *-homomorphism. Thus its L?-extension is self-adjoint by hypothesis
and involutive since Ay c L%(A, 1) is |.|;-dense, hence ¢e U(B(L?*(A,T1))) and ¢T as per
Definition For all T € #B(L*A,71)), get ¢ (T) = ¢Tp. For all x € L%A, 1), we
have ¢'(L,) = L y(x) using canonical AF-C*-bimodule action on A. We obtain

¢ToL=Log. (2.190)

If T € L(A), then ¢'(T) € L(A). If T € $L(A), then T € L(A).

Let o/ be a *-algebra. For all x,y € o/, we use their commutator [x,y] = xy — yx
and anti-commutator {x,y} = xy + yx throughout our discussion. Definition [2.3.42| gives
twisted commutators and anti-commutators in an unbounded case.
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Definition 2.3.42. Let (A, 1) be a tracial AF-C*-algebra and ¢p: A — A a self-adjoint
involutive local *-homomorphism. Note ¢ = ¢? € B(L?*(A,1)). Let @ € UBL*(A,1))p.

1) We call (2,¢) generator of a dynamic quantum gradient if
1.1) for all jeN and x € A, we have
1.1.1) &lino Al L) =D Ly~ L. D) € PLA)),
20w A7 (L) =i(Lep D - D Leip) € L(A)),
1.2) for all x,y € Ay, we have

1.1.2)

<x,L'1(% ,WAdt@(Ly)c/))>T - <L‘1(%

Ad?t(Lx¢)), y) . (@191

t=0 t=0, T

2) Let (@ ,<p) be generator of a dynamic quantum gradient. We define ¢-twisted com-
mutator [2, —]ﬁ : Ay — L?(A, 1) and anti-commutator {2, —}ﬁ :Ag— L%(A,7) by
setting

[2,x1) ::L‘l((@L(,,(x) —L(p(x)@)(p), @,x)) ::L‘1(¢(Lx</)@—9Lx¢)<p) (2.192)
for all x € Ay.

Remark 2.3.43. If ¢ = id4, then Equation [2.192| reduces to commutators and their
negatives. Using 2) in Lemma [2.3.55 we see non-trivial ¢ as per Example [3.1.59]yield
anti-commutators up to twist generalising [48]].

Let (A, 1) be a tracial AF-C*-algebra. Let ¢ : A — A be a self-adjoint involutive local
*_homomorphism. We define anti-linear isometric involution y? : L%(A, 1) — L%(A, 1) by
setting

YP(u) == p(u*) (2.193)
for all u € L2(A, 7).

Proposition 2.3.44. Let (A,71) be a tracial AF-C*-algebra. For all generators (2,¢) of
dynamic quantum gradients, we have

1) AF-A-bimodule structure (p,ida,y?) on A,
2) quantum gradient V2% : Ag — L%(A, 1) defined by
7X0) 1[4 P : ¢
V5Px =L | — AdY (Lyw)¢| = i[D,x] (2.194)

4 t=0,w

forall xe€ Ay,
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3) VZb* .= (V2)" with core Ay and determined by

d
v@,(b,* :L—l( (_
¥ P\

Ad%(Lx¢))¢) = i{2,x)%, (2.195)

t=0,w
forall xe Ay,
4) AN?¢:=v2:P*v2¢ with core Ay and determined by

AN = —{2,[2,%15}% (2.196)
forall xe€ Ay.

Proof. We have 1) by construction. For both Equation [2.194] and Equation[2.195 we see
1) in Definition shows existence of weak derivatives. Equation implies the
second identity in Equation and therefore Equation itself.

Note weak differentiation in Equation is strong differentiation [60]. We know
all weak, resp. strong derivatives in use exist. Using the latter and sequential strong
continuity of multiplication, we directly verify the Leibniz rule for VZ¢. Equation
implies symmetry. Thus V¢ is a symmetric Ag-derivation. Using self-adjointness of ¢
for the second identity below, Equation and Equation let us calculate

d
v@,([) — L—l(
(2,974y), = ( i

d

={p|L7—

<"’( (dt

d

(Lol =

< (‘P(dt

for all te R and x,y € Ag. Since Ag < L%(A, 1) is |.||;-dense, we see the above calculation

implies Equation [2.195] Hence A lies in domain of the adjoint. Locality follows by 1.1)
in Definition [2.3.42] We have 2) and 3). They imply 4) and therefore Equation(2.196, [J

Definition 2.3.45. Let (A, 1) be a tracial AF-C*-algebra. For all generators (2,¢) of
dynamic quantum gradients, we call

Ad, (Lx¢>)),¢(y)>

T

Ad?t(Lx¢))),y>

t=0,w T

WAd?t(Lx¢))¢),y>

t=0, T

1) (¢,ida,y?) the ¢-intertwined AF-A-bimodule structure on A,
2) V2 the dynamic quantum gradient generated by (2, ¢),
3) VZ¢ non-twisted if ¢ =idy, else twisted.

Notation 2.3.46. We suppress ¢ in Definition [2.3.42| and Definition [2.3.45| as well as
all objects in Proposition |2.3.44] if ¢ =ids or 2 = Dy as per 2) in Definition [2.3.53
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Definition gives trace-preserving local C*-dynamical systems. Lemma [2.3.48
yields canonical extensions to conjugation groups. Corollary[2.3.49] by considering such
extensions, gives non-twisted dynamic quantum gradients by norm differentiation of
trace-preserving local C*-dynamical systems. Note Remark

Definition 2.3.47. Let I € {R,[0,00)}.

1) Let V be a Banach space. We say that a semigroup G : I — 2(V) is strongly
continuous if x = ||.|ly-lim; o G¢(v) for allv e V.

2) Let A be a C*-algebra. Let Aut(A) c %(A) be the automorphism group of A given
by all *-isomorphisms. A C*-dynamical system (A,R, @) is a strongly continuous
group homomorphism a : R — Aut(A).

3) Let (A, 1) be a tracial AF-C*-algebra. We call a C*-dynamical system (A,R, a)

3.1) t-preserving if a; is T-preserving for all t € R,
3.2) localif a;(Aj)c Ajforall teR and jeN.

Lemma 2.3.48. For all t-preserving local C*-dynamical systems (A,R,a), there exists
unique Dy € UBL*(A, 1)), s.t. Loa, = Ad?“ oL for all t e R.

Proof. Let (A,R,a) be a T-preserving local C*-dynamical system. We extend to strongly
continuous unitary group on L?(A,7) s.t. Stone’s theorem implies our claim. Let ¢ € R.
For all u,v € Ay, get a,(u), a;(v) € L*(A,1) by locality, as well as

(at(u),at(v)ﬁ = 7(a:w)* a;(v)) = (s (u"v)) = (u,v)f (2.197)

by the *-homomorphism property and t-preservation. Using Ao c L%(4,7) |.|,-dense
and Equation we extend to a; € %Z(BL*(A,1))) here. We have unitary group
a:R— %(PB(L*A,71))). We show its strong continuity. For all j € N, set af := aila, for
all ¢ € R. Locality shows we have strongly continuous group a’ : R — Aut(A ) wrt. |.lla
in each case. Finite-dimensionality further implies strong continuity w.r.t. |.| ;.

For all ¢ € R, Equation shows a; € U(%B(L%(A,1))) is an isometry. Using the
latter get uniform bounds, note 3) in Proposition implies a : R — % (BIL*(A,1)))
is strongly continuous since a’ is for all j € N. Stone’s theorem yields unique generator
Do € UBLAA,T))p s.t.

a; = e't?a (2.198)

for all ¢ € R (cf. Theorem 5.6.36 in [134]]). For all ¢ € R and x € A, get Ly,x) = a:Lya;
by the *-homomorphism property. Using Ag c L%(A, 1) |.|,-dense, Equation then
implies our claim. Altogether, our proof is extension of invariant C*-dynamical systems
in our special case (cf. Proposition 7.4.12 [[173]). O
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Corollary 2.3.49. Let (A,1) be a tracial AF-C*-algebra. For all t-preserving local
C*-dynamical systems (A,R,a), (D4,id4a) is a generator of dynamic quantum gradient
and we have

1) quantum gradient V7= : Ag — L?(A, 1) given by

VZax = [ Dy, x]p = iL‘l(@aLx —Lx@a) (2.199)

for all x € Ay,

2) VZa* = (V%)* with core Ay and determined by

vVZa*y = —VZax = —i[Dy, x]a (2.200)

for all x € Ay,

3) A%« =VZ20*V%a yyith core Ay and determined by

AZax = —(V2) (%) = (D, [P, €141 (2.201)

forall xe€ Ay.

Proof. Let j €N and x € A;. Note we use locality to define strongly continuous group
a’ iR — Aut(A j) in the proof of Lemma It is local and 7-preserving since we
have finite tracial AF-C*-algebra (A ;,7) as per Example Applying Lemma
to (A;,7) and a’ yields 9 € %B(A )y s.t.

@ .
ra, ~A L) 2202
for all ¢ € R. The conjugation group Ad?% : R — Aut(%(A 7)) is norm differentiable at
zero for all S € %(A ;). Thus locality and Equation [2.202|imply

d

d
E ay(x)=—

£=0,1.1a dt

o)) =1L (DL a, ~ Laa,2)) € A;. (2.203)
t=0,ll.1la

Weak, strong and norm differentiation coincide in the finite-dimensional setting. Using
normality of canonical left-actions, Lemma [2.3.48|and Equation [2.203| show

a
dt

d
Da
AdS (L,C):L(a

at(x)) €L(A)). (2.204)

t=0,w £=0,1.1la
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Since a; = a_; for all ¢t € R, Lemma [2.3.48 and Equation [2.204]imply

d

dt

d
Da —
AdZe(L,) = —L(a

at(x)) € L(Aj). (2.205)

t=0,w

Equation [2.204] and Equation [2.205| imply 1.1) in Definition [2.3.42] at once. Using

a; = a_; for all £ € R and Lemma [2.3.48| note Equation [2.204] and Equation [2.205| show
Equation [2.191]is given by

£=0,1.1la

4

d
(7 a-(y)), ={—

a(x),y) (2.206)
£=0,11.1.4 dt !

t=0,Il.14

for all x,y € Ag. Equation [2.206| shows 1.2) in Definition [2.3.42] We therefore have 1)
in Definition [2.3.42] i.e. (2,,id4) is a generator of dynamic quantum gradient. Apply

Proposition [2.3.44] to (92,,id4). Equation [2.194] shows Equation [2.199, Equation [2.199
and Equation [2.206|show Equation [2.200/and Equation|2.201| Get 1) to 3). O

Following identities in Lemma(2.3.55] Corollary[2.3.56|gives twisted and non-twisted
dynamic quantum gradients by using intertwining self-adjoint unbounded operators as
generators of twisted conjugation groups.

Definition gives necessary local and strongly local properties underlying both
twisted and non-twisted dynamic quantum gradients. Proposition [2.3.52|collects several
implied properties, in particular splitting of induced semigroups as per Equation [2.209
applicable to heat semigroups of their quantum Laplacians, used in our discussion.

Definition 2.3.50. Let (A,7) be a tracial AF-C*-algebra and T' € %#%(L%(A,1))},.

1) We say that T is local if Ao cdomT and T'(A;) c A; for all j € N. We say that T is
strongly local if for all j €N and x € A ;, we have

T Ly e L(Aj), TnyLy,=0. (2.207)

2) Let T be local. For all jeN, set T := comy, T and le :=comy T.
J

Remark 2.3.51. Let (A,7) be a tracial AF-C*-algebra and T € %Z%A(L?*(A,1));, strongly
local. For all jeNandu€A;, Tﬂ}f‘Lu € L(A;) implies u € domT and

T(u)=T(n} W) =T (w4 (ula)) = (T7}L,)(14) €A (2.208)

Equation [2.208| shows T is local. Therefore, strongly local implies local.
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Proposition 2.3.52. Let (A, 1) be a tracial AF-C*-algebra and T € UBL>*(A,1));.

1) T is local if and only if T : (domT,|.|l7) — L?(A,1) has orthonormal eigenbasis
{entnen € Ao s.t. it is furthermore orthonormal eigenbasis of n;‘.‘ forall jeN.

2) Let T € #%(L*(A,7)), be local.

2.1) T has core Ao. For all j€N, get T € UBa, (L%(A,1)).
2.2) Forall teRand jeN, we have

itT — eth

il
i EBeLtTj

e (2.209)

wrt. BA;) BAL).

3) Let T € UB (LZ(A,T))h be strongly local. For all jeN, x € Aj and t € R, we have

3.1) TLy="T;Ly€L(A;)and LyT =L,T;j € L(A}),
3.2) e!'TL . =e!TiL . and L,e"T = L,e"7Ti.

Proof. We directly verify 1). Let T be local. Then 1) implies 2.1). Using reducibility as
per 2.1), get 2.2) by 2) in Corollary|A.2.27, Get 2). For all jeNand x € A}, [74,L,]1=0
by 1) in Proposition [2.2.51). Let T be strongly local. T is local by Remark We
see Equation implies 3.1) by 1.3) in Proposition since we have reducibility.
Moreover, Equation and Equation show 3.2). Get 3). O

Strong locality shows Equation [2.210|is well-defined by 3) in Proposition [2.3.52] We
use Example 2.3.54] for sets of Clifford generators as per Definition|2.3.58

Definition 2.3.53. Let (A, 1) be a tracial AF-C*-algebra and ¢ : A — A a self-adjoint
involutive local *-homomorphism. Let 2 € %#B(L*(A,1));,.

1) We say that & is ¢-intertwining if

1.1) 2 is strongly local,
1.2) ¢(domD)cdomP, D¢ #0, and D¢ = +¢2,
1.3) for all jeNand x,y € A;, we have

(x,L7(D;Lyy)— Ly2;)), = (L (sgn(D)L+Dj — D;L o)), y), - (2.210)

2) Let 2 be ¢-intertwining. Let sgn(2) € {+ 1} s.t. 2¢ = sgn(2)Pp2 be its sign. Its sign
delta is 6(2) := 6_1(sgn(2)) € {0, 1}. Set

Dy = (=)D 2. (2.211)
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CHAPTER 2. NONCOMMUTATIVE DIFFERENTIAL STRUCTURES

Example 2.3.54. Let (A,7) be a tracial AF-C*-algebra and ¢ : A — A a self-adjoint
involutive local *-homomorphism. Let d € L®(A, 1), \ {0} s.t. Ly is strongly local and
¢(d) = —d. We show L is ¢p-intertwining s.t. sgn(Ly) = —1.

We know 1.1) in Definition Equation implies ~Lg = L) = ¢pLq¢p and
therefore 1.2) in Definition We moreover have sgn(L ;) = —1. Compressing as per
Corollary and using 1) in Proposition [2.2.51] we calculate

3 -1
(%, L7 (1] Lan} Loty ~ LynjLant)), = (x,(Lla,)” (7] Lager-ya)1})),
= (LN~ Len? Lan® -7 Lam? Ly, y),

for all jeN and x,y € A;. The above calculation shows Equation |2.210|in our case since
sgn(Lg) = —1. Thus 1.3) in Definition [2.3.53] hence our claim holds.

Lemma 2.3.55. Let (A,1) be a tracial AF-C*-algebra and ¢ : A — A a self-adjoint
involutive local *-homomorphism. For all ¢-intertwining 9 € UBLAA, 1)), (Dgp,P)isa
generator of dynamic quantum gradient and we have

1) [Dg,x1% = (—i)5(@)L‘1(9Lx —L¢(x)9),

2) (@45} = ~(—iY’ DL 5en@D L.~ Ly ?),

3) {@(p, [9¢,X] }A tQZLx +L,9? - 29L¢(x)@):

for all x € Ay.

Proof. Let 9@ € 4AB(L%*(A,1));, be ¢ -intertwining. Then 1.1) and 1.2) in Definition [2.3.53

imply 92 is strongly local since [n ,¢]1 =0 for all j € N by 3.1) in Proposition [2.1.40, In

addition, ¢(domZy) c dom P, and 92(,,4) =sgn(2)pDyp.
Let jeNand x€ A;. Note [n ,p1=0. Set

Dy = comy, Dy = (-1 DD, Dy ;1= com,. Py = i)’ P D¢, (2.212)

The bounded operators in Equation [2.212] are those in Proposition [2.3.52|for 9. Using
3.2) in Proposition [2.3.52/and L ) = ¢pLy¢, the first identity in Equation [2.212| shows

Ad”(L,) = Ad (L) (2.213)

and

Ad” (Lep) = Ad” (Lcp) (2.214)
for all teR.
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Equation [2.213| shows

d

= AdYY(Ly) = i(DpLy — Ly Dy) = i(Pp ;L — LDy ), (2.215)

t=0,w

whereas Equation [2.214] shows

d

= Ad”? (L) = i(Lx¢Dy — DoLcp) = i (LD ; — Dy ;L xh). (2.216)

t=0,w

Using 3.1) in Proposition [2.3.52| and L) = ¢L¢p, the first identity in Equation [2.212
further shows

D ;iLx— LDy j = (~i)°? sgn(2)p(P, L — L py2;) € L(A ) (2.217)

and

LDy j— Dy ;iLrp = (—i)° P (sgn(D)L . D; — D;L ) € L(A). (2.218)
Equation [2.215/and Equation [2.217|in turn show

d
T AdY(Ly) = (-1Y°P sgn(@)p(D; L — Lyy?;) € L(A)), (2.219)
t=0,w

whereas Equation [2.216|and Equation [2.218 show

a
dt

Ad”! (Lyp) = (=)D (sgn(D)L D, — D;L ) € L(A)). (2.220)

t=0,w

Equation [2.219| and Equation [2.220] imply 1.1) in Definition [2.3.42| at once. Using
Equation [2.219 for the first, Equation [2.210| for the second, and finally Equation [2.220
for the third identity below, we calculate

<x,L_1(%

Ad?¢(Ly)¢)> = (=) (x, L7 (sgn(@)p(2;Ly ~ Lp»)25) ),
t=0,w T

= (=i)°(L Y (sgn( D)L D} — D;Lpw), ¥ ),
d
dt

for all j € N and x,y € Aj. The above calculation shows 1.2) in Definition [2.3.42, We
therefore have 1) in Definition [2.3.42} i.e. (2,¢) is a generator of dynamic quantum

gradient. Apply Proposition [2.3.44|to (2, ).

- <L‘1

Ad” (Lx¢)),y>T

t=0,w
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CHAPTER 2. NONCOMMUTATIVE DIFFERENTIAL STRUCTURES

Using Equation [2.192 we directly verify 1) and 2). We show 3). Note Ay c dom %2
by locality. For all x,u € Ay, we have xu € dom22. Using Equation [2.192] strong locality
and (—)29?9) = sgn(2), we apply 1) and 2) in each finite-dimensional case to get

L({24,129, 21514 @) = ~(D2Lc + L%~ 29, L gy 2 () (2.221)
forall jeN, x€ A; and u € Ay. Using strong locality, Equation [2.221| shows

L({24,129,215}% Jw) = (74 (2°La + LeD? - 2D L gy 2) 7 | ) (2.222)

forall j<kinN,x€A; and u € Ay. For fix but arbitrary u € Ay, n? on the right-hand
side of the inner bracket in Equation [2.222| vanishes without loss of generality. Using 3)

in Proposition 2.1.26] letting % 1 co in Equation [2.222] yields

L({24,129,215}% @) = = (2L + L D? - 29 L 2) (W) (2.223)

for allx€ A and u € Ag. Note the left-hand side of Equation [2.223|evaluates a bounded
operator. Since Ag < L?(A,71) is ||.|l.-dense, the right-hand side of Equation [2.222]in fact
evaluates a bounded and closable operator defined on dom22. Get 3) by closure. O

Corollary 2.3.56. Let (A,1) be a tracial AF-C*-algebra and ¢ : A — A a self-adjoint
involutive local *-homomorphism. For all ¢-intertwining 9 € UBLAA,T))n, (Dyp,P)isa
generator of dynamic quantum gradient and we have

1) quantum gradient V7% : Ag — L%(A, 1) given by

V70 = [P, 21 = (=i’ VL DL, ~ Ly ?) (2.224)

forall x€ Ay,

2) VZ2o* = (V%)* with core Ay and determined by

Vet = i) = —i(-)* DL (sgn(@)D Ly — Ly (2.225)

forall xe€ Ay,

3) A% =V20*V? with core Ay and determined by

N0 = {94, [P, 6114 = L7 (D7Lo + LD? — 29 L g% (2.226)
for all x€ Ay.
Proof. Apply Proposition |2.3.44]and Lemma [2.3.55 O
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Corollary 2.3.57. Let (A,1) be a tracial AF-C*-algebra and ¢ : A — A a self-adjoint
involutive local *-homomorphism. Let @ € UB(L*(A,1));, be ¢-intertwining. For all j € N
and x € Aj, we have

1) V2x = i(-i)°PLYD;L, ~ Ly 2)),
2) V2 x = —i(-i)° P L (sgn(2)Z,L, —Ly2j),
3) A%y = L—l(@f.Lx +Lx@J2. - 2@J'L¢(x)@j)-

Proof. Apply Corollary [2.3.56[in each finite-dimensional case. O

Definition [2.3.58| gives intertwining sets of Clifford generators. In the logarithmic
mean setting, Example [4.3.20| shows their direct sum quantum gradients yield strictly
positive lower Ricci bounds. This requires Lemma [2.3.59

Definition 2.3.58. Let (A, 1) be a tracial AF-C*-algebra and ¢: A — A a self-adjoint
involutive local *-homomorphism. Let m € N and {d,}"_; < L%(A, ).

1) We say that {d,}7" , is a ¢-intertwining set of Clifford generators for C > 0 if for
alln,ke{l,...,m}, we have

1.1) Lg, strongly local and ¢(d,) = —d,
1.2) dndk + dkdn = 2C5nk1A-

2) Let {aln}r’zl:1 be a ¢-intertwining set of Clifford generators for C > 0 as above. For
allnel{l,...,m}, set 8, := V'iLdn® and A, := A~ Lan®,

Lemma 2.3.59. Let (A,7) be a tracial AF-C*-algebra, ¢ : A — A a self-adjoint involu-
tive local *-homomorphism and m € N. If {ol,,},’?:1 c L*®(A, 1)} is a ¢-intertwining set of
Clifford generators for C >0, then

0nAp = (Mg +6,24C-1)0, (2.227)
forall n,kell,...,m}.
Proof. Let {dn};”:1 c L*°(A, 1), be a ¢-intertwining set of Clifford generators for C > 0.

Lemma gives three identities we use in this proof. If n,k € {1,...,m} s.t. n # k, then
we see Equation [C.1]and Equation [C.2]let us calculate

0, A = 0,005 = (=1)%- A0, = ARO,. (2.228)
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Equationimplies 02 = 0in each case. If n = k, then we see Equationtogether
with 82 = 0 lets us calculate

0nAp =4C0, = (A, +4C-1)0,. (2.229)
Equation [2.228 and Equation [2.229 show Equation [2.227 O

2.3.3 Noncommutative differential structures and compatibility

Noncommutative differential structures collect the data which define quantum optimal
transport distances. Each consists of two components and one setting. The data collected
is compatible with compression and finite-dimensional approximation. These are two
general operations we formalise in a coarse graining process.

The notion of noncommutative differential structure. This chapter provides
all necessary data. Definition gives noncommutative differential structures. We
explain our notions of compression and finite-dimensional approximation, as well as
compatibility with either. To this end, we use the terms noncommutative and quantum
in our discussion as means to distinguish classes of objects as per Figure 2.1.

We further explain the data for 1) in Definition satisfies such compatibility by
construction. In Subsection and Subsection [3.1.2] we show compatibility transfers
to quantum optimal transport. In Subsection we then formalise compatibility in
the coarse graining process as per Diagram This completes our explanation.

Definition 2.3.60. Let (A,7) and (B,w) be tracial AF-C*-algebras. Let (¢,v,y) be an
AF-A-bimodule structure on B. Let f be symmetric representing function of an operator
mean and 0 €[0,1] s.t. lwl|*™% < co. Let V: Ag — L?(B,w) be a quantum gradient.

1) We call (¢,v,y,V) noncommutative differential structure for (A,7) and (B,w) in
(f,0)-setting.

2) For all j €N, we consider the induced AF-A j-bimodule structure (¢;,v;,y;) on B;
as per 4) in Definition together with the j-th restricted quantum gradient
V; : Aj — B; as per 2) in Definition and call (¢;,v;,7;,V;) the induced
noncommutative differential structure for (A ;,7) and (B;,w) in (f,0)-setting.

Remark 2.3.61. Definition [2.3.60]is motivated by Definition 4.7 in [50]. The latter uses
absolutely continuous finite weights [193] w.r.t. a given finite trace. Proposition 4.12 in
[50] shows a detailed balance condition for Laplacians. We see [50] generalises [152].
Yet the detailed balance condition as per Proposition 4.12 in [50] implies ergodicity of
the given noncommutative heat semigroup. As such, Definition 4.7 in [[50]] assumes the
ergodic finite-dimensional setting but not traciality, whereas Definition [2.3.60| assumes
it but allows for infinite dimensions, possibly non-finite traces, as well as non-ergodicity
of noncommutative heat semigroups. We account for these differences.
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Commutative Not Commutative

Quantum Co(N) H (C3(N))

Not Quantum Co(R) Co(R)® H (£2(N))

Figure 2.1: Matrix for example C*-algebras decomposing the noncommutative setting
according to commutativity and inclusion in the AF-C*-setting. The noncommutative
setting subsumes the commutative and properly noncommutative one. Note all function
spaces use elements evaluating in complex numbers and vanishing at infinity.

We use the two terms noncommautative and quantum in our discussion as means to
distinguish classes of objects as per Figure 2.1. The former denotes objects in the full
noncommutative setting, in particular the AF-C*-setting. The latter denotes objects in
the AF-C*-setting compatible with compression and finite-dimensional approximation.
Note tracial AF-C*-algebras generating hyperfinite factors of type I and II by o-weak
closure, i.e. Example Example and Example are common algebras
of observables in quantum statistical mechanics [35][36[[162].

We use the above to explain compression and finite-dimensional approximation, as
well as compatibility with either. For compression, we apply compression maps to tracial
AF-C*-algebras as per Remark It acts on and yields objects and properties in
the noncommutative setting. For finite-dimensional approximation, we apply restriction
maps, possibly up to rescaling as per 1) in Definition[3.1.12] to tracial AF-C*-algebras as
per Definition It acts on objects and properties in the AF-C*-setting and yields
description of these as limits of restricted analogues in the finite-dimensional setting.
If we have notions of compression and finite-dimensional approximation for a class of
objects or properties, which we give explicitly for each use case in our discussion, then
we say such a class is compatible with both. We use compression and finite-dimensional
approximation for the coarse graining process as per Diagram[3.346] This demands data
compatible with both. The data for 1) in Definition satisfies such compatibility by
their locality properties. The coarse graining process, hence compatibility, is essential
for our discussion because it reduces the AF-C*-setting to the finite-dimensional one
s.t. ergodicity is recovered up to a controlled remainder. Note Remark
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3 | Quantum Optimal Transport

Quantum optimal transport is described using dynamic transport distances of states on
tracial AF-C*-algebras. Noncommutative differential structures collect the data which
define such dynamic transport distances. First, quantum gradients define continuity
equations for states on tracial AF-C*-algebras. Continuity equations in turn define sets
of admissible paths. Secondly, quasi-entropies define energy functionals by integrating
their own evaluation on admissible paths. Minimising square roots of energy functionals
over all admissible paths for fixed marginals defines dynamic transport distances, called
quantum optimal transport distances. This follows the classical case [97]. We show our
construction extends the discrete cases [152][159], as well as tracial finite-dimensional
ones in [48][49][50]. We provide fundamental example classes. The latter themselves
yield quantum optimal transport of normal states on hyperfinite factors of type I and II
[173]. An application is given by first and second quantisation of spectral triples [54]1[55]
[197]1198]. This yields our ansatz to study noncommutative gauge theories based on a
proposed internalised spectral action [51][52]1[53[[197][198].

However, we defer a detailed discussion to future work as it requires generalisation
to dynamic transport distances of states on continuous fields of AF-C*-algebras. We still
view quantum optimal transport as the pointwise case of a general parametrised one
since this strongly motivates non-spatiality. First quantisation considers commutative
spectral triples, i.e. first quantisation of compact spin manifolds [68]. We show quantum
optimal transport is transversal to spatial optimal transport in this case. Second quan-
tisation rectifies this by quantising all spatial coordinates. We apply a characterisation
in [55] to obtain sufficient conditions s.t. the quantum gradients used are infinitesimal
evolution of observables at thermal equilibrium determined by KMS-states [[36]. Each
assumes fixed gauge field [51[[197]1[198]]. Varying von Neumann entropy [[163] of such
KMS-states w.r.t. the canonical trace yields description of the spectral action on gauge
fields [61]1[52][53] in terms of quantum statistical mechanics [35][36] using quantum
relative entropy [565]. Upon passing to second quantisation, we introduce gauge fields
as spatial coordinates. We consider it a model, and therefore expect several properties
of quantum optimal transport: quantum gradients and thus continuity equations do
not use spatial coordinates, we have a description of quantum Laplacians in terms of
quantum statistical mechanics, and non-ergodic noncommutative heat semigroups are
the rule. We avoid spatial interpretations of the classical case [97][151], e.g. as mass
transport [8][199]], but do require an alternative one for quantum optimal transport.
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The coarse graining process provides such an alternative as it lets us view quantum
optimal transport as transport of, suitably general, quantum information. We transport
scaling limits of uniformly conditioned spin states encoding sequences of qubits. We
avoid spatial interpretations because spin states have physical realisation [43][62][95]
s.t. manipulation of encoded qubits does not consider spatial coordinates. We thereby
have non-spatiality, as well as an immediate link to quantum statistical mechanics since
information is physical [45[][95][142][143]. This link ought to be noticeable if the given
quantum system provides physical realisation of a quantum computer [[18][62].

Non-ergodicity, defined as complex kernel dimension larger than one for quantum
Laplacians, restricts information-bearing degrees of freedom. Since energy functionals
are ['-limits w.r.t. the coarse graining process, the latter reduces the AF-C*-setting to
the finite-dimensional one s.t. ergodicity is recovered up to a controlled remainder by
reducing to accessibility components in the finite-dimensional setting. There may exist
uncountable infinitely many since sets of states at finite distance have identical fixed
parts under noncommutative heat semigroups of quantum Laplacians. Assuming spec-
tral gaps of quantum Laplacians and fixed parts, we use such fixed parts to classify
accessibility components of square integrable normal states. Altogether, we study a non-
spatial transport of quantum information with restricted information-bearing degrees
of freedom. In Chapter |4, we moreover obtain a description of quantum Laplacians in
terms of both quantum statistical mechanics and quantum information theory.

Structure. In Section [3.1, we discuss quantum optimal transport distances given our
noncommutative differential structures. We provide fundamental example classes. In
Section [3.2, we review support projections of normal states, discuss our use of quantum
Fokker-Planck equations, and subsequently study noncommutative heat semigroups of
quantum Laplacians. Finally, we classify accessibility components of square integrable
normal states. In Section [3.3] we explain the coarse graining process and use it to view
quantum optimal transport as transport of quantum information.

3.1 Description using dynamic transport distances

Quantum optimal transport requires two notions. First, admissible paths determined by
continuity equations. Secondly, energy functionals given by integrating quasi-entropies
evaluated on admissible paths. Minimising square roots of energy functionals over all
admissible paths for fixed marginals defines quantum optimal transport distances. We
show existence of minimising geodesics. Energy functionals are I'-limits if restricted to
sets of admissible paths with identical interval and marginals, and therefore w.r.t. the
coarse graining process. We formalise the latter as existence of sufficient minimising
geodesics approximated in finite dimensions.

Structure. In Subsection (3.1.1] we use quasi-entropies to define energy functionals on
admissible paths determined by continuity equations. In Subsection we discuss
quantum optimal transport distances, minimising geodesics and their approximation in
finite dimensions. In Subsection [3.1.3] we provide all fundamental example classes. An
application is given by first and second quantisation of spectral triples.
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CHAPTER 3. QUANTUM OPTIMAL TRANSPORT

3.1.1 Energy functionals on admissible paths

Quantum gradients define continuity equations for states on tracial AF-C*-algebras.
Note each contains the codomain of the given quantum gradient. Continuity equations
define sets of admissible paths. We formulate the latter using Banach dual spaces of
Bochner L2-spaces. Quasi-entropies define energy functionals by integrating their own
evaluation on admissible paths. Altogether, we obtain energy functionals on admissible
paths of states on tracial AF-C*-algebras.

We use compression of quantum gradients and therefore continuity equations to
show energy functionals are I'-limits. Compressing to induced AF-C*-bimodules yields
energy functionals on admissible paths of states on generating C*-subalgebras. We
must initially extend inclusion and restriction maps for Banach dual spaces of tracial
AF-C*-algebras as per Definition to sets of admissible paths. We then compress
as above by restricting to induced AF-C*-bimodules. Taking limits recovers the initial
set of admissible paths. Using the latter, Theorem shows energy functionals are
I'-limits if restricted to sets of admissible paths with identical interval and marginals.
We thereby extend finite-dimensional approximation of quantum gradients to energy
functionals. Standard reference for Bochner L2-spaces and their Banach dual spaces is
[129]. Standard reference for I'-convergence of functionals is [[74].

Banach dual spaces of Bochner L2-spaces. Bochner L2-spaces have locally
convex topological vector spaces as codomains of integration and are not reflexive in
general [129]. We rectify this by considering w™*-topologies.

Let V be a separable Banach space.

Notation 3.1.1. Let I c R denote a closed interval. We commonly use I =[a,b] cR.

We equip all closed intervals I c R with the Lebesgue measure. Radon measures are
strictly localisable [[170]. Theorem IV.5 in [129] therefore shows results in [[129] used
here apply. A map A :I — V is Bochner measurable if and only if the map ¢ — u(h(¢))
is measurable for all ue V*. Amap g:I — V* is w*-measurable if and only if the map
t — g(t)(v) is measurable for all v € V. Separability implies equivalence.

Definition 3.1.2. Let I <R be a closed interval.

1) Set L2(I,V):={h : I — V | Bochner measurable, |[% € L*(I)}. We call L*(I,V)
the Bochner L2-space of functions from I to V. For all » € L2(I1,V), set

1hlly = fI 1A()I2 d. (3.1)

2) Set L2(I,V*),, :={g:I — V* | w*-measurable, |g||3. € L'I)}. We call L(I,V*),
the L2-space of w*-functions from I to V*. For all g € L2(I,V*),,, set

gl = fl 18D dt. (3.2)

100



Proposition 3.1.3. For all closed intervals I c R, we have
1) (L2(I,V), ||.||2) and (LZ(I,V*)W, ||.||2) are Banach spaces,
2) L2, V)* =L%(I,V"),.

Proof. Let I cR be a closed interval. We use notation in [129]. Note L2(I,V) = L%,, and
L*(I,V*)y, = L2,[V] are Banach spaces. Get 1). For all F € L*(I,V)*, Theorem VIL9 in
[129] and its immediate corollary show there exists unique gr € L2(I,V*)y s.t.

F(h) = fI grOh@)dt (3.3)

for all h € L2(1,V). Equation |3.1)and Equation [3.2| further imply

Floaw = sw |[eromoad = [lerolidi=lerl, o
’ heL2(1,V), 1/1 1
lrllo<1
in each case. Therefore, L2(I,V)* = L2(I,V*),. Get 2). O

Remark 3.1.4. Let V be a separable Banach space and K < V* norm bounded. Given
{vntnen = V\{0} with ||.|ly-dense linear span, set d(p, ") := X727 v, ||‘_;1 lp(,) —p'(vy)l
for all p,p’ € K. This defines a distance metricising the w*-topology on K.

Admissible paths determined by continuity equations. Definition in
particular Equation gives continuity equations. Definition gives admissible
paths determined by continuity equations. Admissible paths lie in state spaces of tracial
AF-C*-algebras as per Definition Proposition [3.1.6| shows norm-preservation.

Let (¢,w,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B,w) in (f,0)-setting.

Definition 3.1.5. Let I <R be a closed interval.

1) We say that u:I — A% is weakly absolutely continuous if ¢ — u(¢)(x) is absolutely
continuous for all x € Ay.

2) Let u:I — A* be weakly absolutely continuous and w € L?(I,B*),,. The pair
(u, w) satisfies the continuity equation for V on I if

d
Eu(t)(x) = w(t)(Vx) (3.5)

forall xe Ag and a.e. t€1.
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Proposition 3.1.6. Let pi: I — A* be weakly absolutely continuous and w € L2(I,B*),.
If (u,w) satisfies the continuity equation for V on I, then

Juco)

a» = )] 4- (3.6)
forall t,sel.

Proof. For all j € N, note VlAj = 0 the Leibniz rule. Thus %,u(r)(lAj) =0 for a.e.rel for
all j €N, hence

u(®)(14,) = pis)(La,) (3.7)

for all ¢,s €I and j e N. Set p;(¢) := p(#); = w(®)l4; in each case. Positivity ensures

i@ 4+ = 1i(B)(Aa,) = wE)14,) (3.8)

in each case. Using 1.1) in Proposition [2.1.31] we see Equation [3.7 and Equation [3.8
imply Equation 3.6|at once. O

Definition 3.1.7. Let .#(A) denote the w*-closure of F(A)c A%.
1) Let I =[a,b]cR. Set

1.1) ACU,#(A)):={u:1 — F(A) | uis weakly absolutely continuous},
1.2) AC(I,#(A)):={uecACU,#(A)) | impc F(A)}.
2) We say that (u,w) € AC([a, bl,.#(A)) x L%(la,b],B*)y is an admissible path if (u,w)

satisfies the continuity equation for V on [a,b]. We further call u(a), u(d) € £(A)
the marginals of (i, w), resp. p.

3) For all u0, u! € #(A), let Adm!*®1 (1%, 1) be the set of all admissible paths defined
on [a,b] < R with marginals p° and p'. Set

3.1) Adm(u°, p?) := Ug pjer Adm!@®1 (10, ut) for all 10, ul € #(A),
3.2) Adm!®?!.= U“O’uley(A)Adm[a’b] (10, ut) for all [a,b] =R,

3.3) Adm := Ui, picr Uuo,wey(A)Adm[“’b](uo,ul).

Notation 3.1.8. For all j € N, we use Adm; when denoting sets of admissible paths in
Definition for the induced noncommutative differential structure (¢;,v;,v;,V)).
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Remark 3.1.9. Let I <R be a closed interval and j € N. We have A; = A; and B; = B;
via musical isomorphisms and therefore

L*(I,A})w = L%I, A, L*I,B})w = L*I,B)). (3.9)

Each Bochner L2-space in Equation is norm equivalent to the respective Hilbert
space of square integrable functions. Up to musical isomorphisms applied to codomains
of integration, each L2-space of w*-functions in Equationis therefore likewise norm
equivalent to such a Hilbert space of square integrable functions.

Definition gives the canonical topology on sets of admissible paths alongside
a related notion of convergence for the latter. Proposition collects properties. Let
[a,b] cR. Since AC([a, b],m) c L%([a,b],A*)y up to null sets, we obtain the canonical
inclusion

Adm!'®®! ¢ L2([a,b],A%)y x L%(la,b],B")y. (3.10)

The relative topology on Adm'®?! w.r.t. the w*-topology on L2([a,b],A* )y x L2([a, b], B*)w
given by the above canonical inclusion is called the relative w*-topology.
We define a second topology on Adm!®?! by equipping

A= [ 7@ (3.11)
tela,bl

with the product topology given by the w*-topology on .#(A). Pointwise convergence in
w*-topology is convergence in the product topology. We further consider w*-topology on
L%([a,b],B)* = L%([a,b],B*)y, as per 2) in Proposition The relative topology given
by the canonical inclusion

Adm@? ¢ (A" « L2([a,b],B%),, (3.12)

is called the canonical topology on Adm/®?!.

Definition 3.1.10. For all [a,b] c R, the relative topology as per Equation is called
the canonical topology on Adm/®?!. We say that (u*,w™)pen © Adml®?! converges to
(1, w) € Adm!®! if

1.1) w(t) = w*-limyeny pu™(t) in F(A) for all ¢ € [a, b],

1.2) w=w*-lim,enw” in L2([a,b],B*)y.
We further write (1, w) = lim,en(u”, w™) in Adml®?!,
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Proposition 3.1.11. Let (u"*,w")pen < Adm!®],
1) Let (u,w) € AC([a,b],.#(A)) x L%([a, b],B*)y s.t.

1.1 p)=w*-lim,enp™(¢) for all t €la,bl],
1.2) w=w*-lim,cnw".
If there exists tg € [a,b] s.t. |to)lax =1, then (1, w) € Adm!®P,

2) If (u,w) =lim,en (U™, w™) in Adm!®?] then (t,w) =w*-lim,en (U™, w™).

Proof. We show 1). Assume its setting. For all x € Ay, the map ¢ — g(¢) := Vx defined on
[a,b] lies in L2([a, b], B) by locality if we identify as per Remark For all x € Ag and
h €(0,1), we apply the continuity equation in order to rewrite the difference quotient

1 ] 1 t+h d o 1 t+h
E(,u(t +h)(x) — w0)(x)) = }llg\‘l ﬁfo T (s)(Vx)ds = Efo w(s)(Vx)ds. (3.13)

Letting A — 0 in Equation [3.13|shows (u,w) satisfies the continuity equation for V on
[a, b]. Proposition|3.1.6{shows norm-preservation. We see 1) at once. Moreover, standard
arguments show 2) by dominated convergence. O

Definition 3.1.12|extends restriction maps in Definition [2.1.27|to all paths in Banach
dual spaces of tracial AF-C*-algebras. Proposition|3.1.14| further extends inclusion and
restriction maps to sets of admissible paths. Restricting paths rescales norm.

Definition 3.1.12. Let </ be a tracial AF-C*-algebra, I cR a closed interval and j € N.

1) For all pe o/, set

e s if p(L £0,
j=
0 else.

2) Let p:I — o/ be defined for a.e. ¢t € I. We define p; : I —nszfj* and p;: I —nszfj*
by setting

pj(t) = p(t);, pj(t):=p(t); (3.14)
fora.e. tel.

Remark 3.1.13. For all p € #/;, we have [ pjlla+ = p(lAj) for all j € N by positivity. We
obtain p(14,) # 0 for a.e. j € N by 1) in Proposition [2.1.31} For all u € #(A), we have
ii; € #(A;)if and only if u; # 0. We use this throughout our discussion.
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Following Remark 3.1.15] we assume strictly positive norm for at least one marginal
if we apply restriction maps as per Proposition[3.1.14, A more rigorous but cumbersome
notation may further include marginals in sets of admissible paths.

Proposition 3.1.14. For all [a,b]cRand j<k in N, we define

1) the j-th inclusion and restriction

inc; :Ade[.a’b] — Adm!*?!, res; : Adml*?! — Ade[.a’b] (3.15)

by setting

inc;(u, w) := (1, w), res;(u,w) = (i, ma)1a,) 'w;) (3.16)

for all (p,w) € Admj[a’b], resp. (u,w) € Adm!®?!,

2) the kj-inclusion and jk-restriction

incy; :Admj[.a’b] — Admgz’b], resji :Admg"b] — Ade[.a’b] (3.17)
by setting
incpi(u, w) := (U, w), resip(u,w) := (,aj,u(a)(lAj)_le) (3.18)

for all (u,w) € Admj[-a’b], resp. (u,w) € Admg”b].

Proof. We show 1), i.e. the case of £ = co. We obtain 2) by analogous argument for £ < co.
We know w*-continuity of inclusion and restriction maps by 1) in Proposition [2.1.28
Upon identifying as per Remark inc; maps to AC(I,#(A)) x L%(I,B*)y and res; to
AC,S(A))) x L%(I,B 7). Using the latter and Proposition we directly verify all
claimed continuity equations. O

Remark 3.1.15. If (u,w) satisfies the continuity equation for V on I, then [(¢); = 1(0);
for all ¢t € I and j € N by Proposition Non-trivial restriction requires (0); #0 in
each case. If we apply restriction maps as per Proposition then we either assume
u(0); # 0 for all j €N as part of a statement itself or we assume it implicitly without loss
of generality since Remark [3.1.13|ensures u(0); # 0 for a.e. j € N.
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Energy functionals from quasi-entropies. Definition describes energy
functionals given by integrating quasi-entropies evaluated on admissible paths. Note
Remark Definition [3.1.24] gives an a priori different description. They coincide
on admissible paths. Proposition extends results in Theorem concerning
inclusion and restriction maps to energy functionals.

Let (¢p,v,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B,w) in (f,0)-setting.

Definition 3.1.16. We define the energy functional Ef-? : Adm — [0, c0] by setting

b
EMO(u,w) = f 19 (), (), w(®)dit (3.19)

for all [a,b] <R and (u,w) € Adml®?],

Notation 3.1.17. For all jeN, let E 5 % denote energy functional in Definition [3.1.16|for
the induced noncommutative differential structure (¢;,v;,v;,V;).

Remark 3.1.18. For all j € N, Equation is

b
B (u,w) = f 1 (), ), () dt (3.20)

for all [a,b] <R and (u,w) € Ade[.a’b].

Proposition 3.1.19. Let [a,b]cRand j<kin N.

1) Forall (u,w)€e Admj[.a’b] (10, pt), we have

E?’H(y,w) = EZ’G (incg(p, w)) = ET? (incj(u, w)). (3.21)
2) Assume p°(1 A;) #0in all statements below.
2.1) For all (u,w) € Adm!®® (1%, ul), we have
E" (res;(u,w) = u°(14) "B M (u,w). (3.22)
2.2) For all (u,w)e€ Admg”b] (10, u1), we have

E?’G(resjk(,u,w)) < ,uO(lAj)_lEi’g(u,w). (3.23)
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Proof. Equation[3.20]shows 1) by 2) in Theorem [2.2.29] We show 2). Assume its setting.
For all u,ne A%, weB* and 1 =0, get I, An, Aw) = A.#79(u,n,w) by construction
of quasi-entropies. For all ¢ € [0, 1], Equation shows u(£)(14;) = uo 4;) # 0. Using the
latter, we obtain 2) by 3) in Theorem O

Proposition [3.1.21 gives a change of variables formula for energy functionals. For
this, Remark|3.1.20|states a general one for reparametrisations of measurable functions
(cf. Corollary 6 to Theorem 3 in [185]). We commonly use affine transformations as per

Remark [3.1.22| Proposition [3.1.23| extends 5) in Theorem [2.2.29| to energy functionals

and derives Lipschitz continuity.

Remark 3.1.20. Let g :[a,b] — R be Lebesgue integrable. If ¢ :[c,d] — [a, b] is mono-
tone and absolutely continuous, then ¢ - (g o) is Lebesgue integrable and we have

o(d) b
f o gt)dt = f P@)g(p@))dt. (3.24)
@(c a

Proposition 3.1.21. Let ¢ :[c,d] — [a,b] be monotone and absolutely continuous with
@) 20 for a.e. t € [c,d]. If (u,w) € Adm!®PI(u0, ub), then (no@,@-(wop)) € Adm!“a (O, ul)
and we have

d
EM(u,w) = f o) LI (u(o@®)), w(p®), pw(p@)))dt. (3.25)

[

Proof. Since ¢ is monotone and ¢ — u(¢)(x) is absolutely continuous for all x € A, the
chain rule holds for po ¢ upon evaluation by Theorem 2 and Corollary 4 in [185]. Thus
(po,p-(wo)) satisfies the continuity equation for V on [c,d]. All remaining properties
of admissible paths are inherited. For all y,ne A}, we B* and 1 =0, get jf’g(/,t,n, Aw) =
A2 919 (u,n,w) by construction of quasi-entropies. Using the latter, Equation shows
Equation immediately. O

Remark 3.1.22. Let [a,b],[c,d]cRs.t. a #b,c # d. We define monotone and absolutely
continuous homeomorphism ¢ :[c,d] — [a, b] by setting

o(t) = d—_‘;(t _¢)ta (3.26)

for all ¢ € [c,d]. Using Proposition |3.1.21, Equation shows

d-c b-a
gl _YCpre
(w) = — (uow,d

(wO(p)). (3.27)
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Proposition 3.1.23. Let [a,b] cR.

1) For all (i,w) € Adm!®®), we have

10112 2 00 5150y, < B0 (sw)-270 (1919 + 1) - ol 7 (3.28)

2) For all (p,w) € Adm*?l x € Ay and t,s € [a,b], we have

| () — () @)|? < 12— s1- EMO(u,w) - 270 (11919 + 1w19) - Nl 10 - V2. (3.29)

Proof. Note Equation[3.2]ensures 1) follows by 5) in Theorem [2.2.29] We show 2). For all
(u,w) € Adm!®?! x e Ay and ¢,s € [a,b], we use the continuity equation and apply Hélder
in order to estimate

t
| (1) — () ()| = fs %u(r)(x)dr

<

t
f lw() g [Vxlpdr
S

s Vit=sl-lwlrega,pB),  1VXIB-
We obtain 2) by applying Equation to the above calculation. O

Definition [3.1.24] gives an a priori different, as well as more general, description of
energy functionals than Definition[3.1.16]for a larger domain. Lemma|[3.1.25|shows both
descriptions coincide on admissible paths. Moreover, extensions of energy functionals as
per Definition are l.s.c in w*-topology. Lemma [3.1.26]leverages the latter in order
to show lL.s.c. of energy functionals w.r.t. convergence in canonical topology, and further
ensures the direct method in the calculus of variations [74][109] applies.

Definition 3.1.24. We define E/Y : Up, 1cr L%([a,b],A*)y, x L%([a,b],B* )y, — [0,00] by
setting

b
E"%(u,w) := sup f I (), 10, w (1)) d 2 (3.30)
JjeN Ja

for all [a,b] c R and (u,w) € L%([a,b],A*)y x L%([a, b],B*)y.

For all [a,b] c R, the inclusion in Equation [3.12|extends to

Adm!*? c L2([a,b],A%) x L2([a,b],B*)y. (3.31)

Thus Equation shows Adm c U[a,b]C@L2([a, bl,A*)y x L2([a,b],B*)y, hence we have
functional Ef*? : Adm — [0, 00] by restricting to Adm.
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Lemma 3.1.25. For all [a,b] c R, Ef | Admlab] 18 L.s.c. in w*-topology. We further have

0 _ ,0
EM=E|, . (3.32)

Proof. Let [a,b] c R. We show Ef ’6| Admleb] 18 1.8.c. in w*-topology. For all j €N, we show

b
(wwr = [ 71 (40, 0,0, 0) e (3.33)

is L.s.c. in w*-topology. Compactness shows pointwise restriction yields w™*-continuous
map from L%([a,b],A*) x L?([a,b],B*) to L%([a,b],A ;) x L*([a,b],B,). We reduce Ls.c. in
w™-topology to the finite-dimensional setting. Assume A and B are finite-dimensional.

Note .#7? is jointly convex and l.s.c. in w*-topology by 1) in Theorem [2.2.29] Further
note joint convexity implies Ef? is jointly convex. Following Remark [3.1.9] it suffices to

show sequential l.s.c. in norm as the domain is norm equivalent to a product of Hilbert
spaces. We extract pointwise a.e.-converging subsequences and conclude by l.s.c. of .#7?
in w*-topology and Fatou’s lemma. We obtain l.s.c. in w*-topology as discussed above.

Return to the general setting. We show Equation Let (1, w) € Adm!*?!. For all
k €N, definition of quasi-entropy as suprema yields

IO (@), 1 (), (D)) < 270 (), u(d), w (D)) (3.34)

for a.e. t € [a,b]. Note we restrict pointwise. Equationm shows Ef’e(p, w) < Ef’e(p, w).
Using 1.2) in Proposition [2.1.31], get w*-lim jeny p(¢) = p(¢) and w™*-limjen w j(¢) = w(t) for
a.e. t€[a,b]. Then Ls.c. of .#/¥ and Fatou’s lemma imply

b
B ¥(u, ) < liminf f 1 (8, 110, w,(0) . (3.35)
JE a
Yet the right-hand side of Equation equals E/?(u,w) by 3) in Theorem [2.2.29, We
altogether obtain our second claim. O
Lemma 3.1.26. Let (1", w™)peny © Adm!®?],
1) If (u,w) = limuen (07, w™)pen in Adml?), then Ef9(u,w) < liminf,en EF9 (1, w™).

2) IfliminfneNEf’e(,u”,w”) <ooand tg€la,bl s.t. w*-lim,enu"*(tg) € F(A), then there
exists a subsequence of (U",w™),en converging in canonical topology.

Proof. By 2) in Proposition convergence in Adm!®?! implies w*-convergence in
L2%([a,b],A*)y x L%([a,b],B*)y. Thus 1) follows from Lemma We show 2). Assume
its setting. By passing to subsequences, we furthermore assume sup,,.n E/ 0 (1", w™) < oo
without loss of generality. This is necessary for uniform bounds.
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Following Remark we metricise the w*-topology on .#(A) using {x,}nen € Ao
for which the linear span lies |.|s-dense in A and s.t. |Vx,|g <1 for all n € N. Using
bounded limit inferior and 2) in Proposition we see {"}en € AC([a,b],#(A))
is equicontinuous. Note the Arzela-Ascoli theorem applies to paths in compact metric
spaces [136]. We extract converging subsequence {u"},en. For all ¢ € [a,b], we obtain
w@t) :=w*-lim,en *(t) € #(A). Using 1) in Propositioninstead, get uniform bound
on {w"},en < L2([a, b1, B*)y. We extract w*-converging subsequence {w"},en. Finally, we
conclude by applying 1) in Proposition to (U™, w™)pen. O

Definition [3.1.27| gives suitable restriction of energy functionals. Let [a,b] < R. For
all j € N, we know res;oinc; = inc; and res;;, oincy; = incy; by 2) in Proposition [2.1.28, We
therefore identify

Adm[**! = inc; (Adm[**') c Adm!*?! (3.36)

in each case. Notation [2.1.29|thereby likewise extends to admissible paths. For all j e N
and (u,w) € Admj[.a’b], note 1) in Proposition [3.1.19/shows

B (res;(u,w) = B (u,w) = BN (1, 0) (3.37)

under identification as per Equation Note Equation [3.37| shows Definition [3.1.27
extends Equation i.e. Definition [3.1.16] for induced noncommutative differential
structures. We account for rescaling of norm.

Definition 3.1.27. We define the j-th restricted energy functional Ef¢ : Adm — [0, 0]
for j € N by setting

E?’e(resj(,u,w)) if uj(a)#0,

EM(u,w):=
i H 0 else.

Corollary 3.1.28. Let (u,w) € Adm!®?!. If Ef9(u, w) < oo, then

D (g,w) =limjeyres;(u,w) in Adm!®?]

2) E(p,w) = lim e B (p,0).

Proof. Let (u,w) € Adm®?! st. Ef9(u,w) < co. Using 1) in Proposition to have
uniform bounds, get 1) by dominated convergence. The necessary pointwise convergence
for 4 and w holds by 1) in Proposition as for Remark [3.1.13] Lemma [3.1.25| and
1) in Lemma imply 2) since rescaling of norm vanishes in the limit. O
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Upon restricting domains to sets of admissible paths with identical interval and
marginals, Theorem shows energy functionals are I'-limits of restrictions as per
Definition Sequential descriptions of I'-limits require first countability of the
domain [74]. This does not hold for function spaces parametrised by intervals with more
than one point (cf. Corollary 1.5 in [158]]). We fix marginals up to restriction in order to
get sequential descriptions as per Definition for non-trivial intervals.

Definition 3.1.29. Let [a,b] < R.

1) For all (1,w) € Adm!®?, let €(u,w) be the set of all (u/,w/) ;\ c Adm!*! s.t.

LD (v, w’) €Admj[~a’b](ﬂ(a)j,ﬂ(b)j) for a.e. jEN,

2) We define the restricted lower I'-limit, resp. the restricted upper I'-limit of E/-? by
setting

2.1) Eé’e(u,w) ::infC(u,w)liminfjeNE§’0(uj,wj),
2.2) E1 (1, w) = infe ) limsup jep B (17, w/)

for all (¢, w) € Adm!®?!,

Remark 3.1.30. Note 1) in Definition |3.1.29| equivalently uses truncation j = m for
fixed but arbitrary m € N rather than a.e. j € N. The sets we obtain are identical. We use
this in the proof of Theorem |3.1.31|if the norm vanishes for finitely many indices.

Theorem 3.1.31. Let (¢, v,y, V) be noncommutative differential structure for tracial AF-
C*-algebras (A,1) and (B,w) in (f,0)-setting. For all [a,b] cR and u°,u' € #(A), get

f.0 _ . f.0
E |Adm[a’b](ﬂo,ﬂl) =I- ljl(_;ryr\|1 Ej ‘Adm[a,b](uo’ﬂl) (3.38)

and

I-lim E/| =E,’| =£| .
JeN 7 1AdmlPl(u0,put) Adml®)(pO,ut) Adml@Pl(u0,ut)

(3.39)
Proof. Let [a,b] c R and u°,u! € #(A). We use the canonical topology on Adm®?!. Set
X := Adm!®®) (10, ub). For all (4, w) € X, let A (u,w) < X be its set of open neighbourhoods
in the relative topology given by X c Adm!'*?!. We show Equation in the first part of
our proof using standard bounds for lower and upper I'-limits. We show Equation (3.39
in the second part of our proof using Lemma and Corollary We truncate
indices j = m in N as per Remark throughout this proof.
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Let (u,w) € X. We show the energy functional bounds its upper I'-limit, i.e.

sup limsup inf Ef (n, v)<Ef9(u w). (3.40)
UeN(uw) jeN @)U

Lemma|3.1.26/shows Ef’9|X =Ef? |X We further know lim jen ,Uo(lAj) =limjen ||/J?~||A* =
1 by 1.1) in Proposition [2.1.31] For all U € A (u,w), we have (u,w) € U by definition of
open neighbourhood and use 2.1) in Proposition [3.1.19|in order to estimate

limsup inf Ef (n,v)<11msupEf6(u,w)
jeN  (mv)eU JeN

<11msupp0(1A )7L f’a(,u,w)
JeN

=EM(u,w).

Equation follows by applying the supremum in A (u,w).
We show the energy functional is bounded by its lower I'-limit, i.e.

Ef’g(u,w)< sup liminf inf Efe(n,v) (3.41)
UeN(uw) JEN (u)eU

For all U € A (u,w), the right-hand side of Equation is either finite or our claim
holds. We assume finiteness without loss of generality. Let U € A (u,w). We construct a
sequence associated to each such open set. For a.e. j € N, we have

EU,j):= inf Efe(n,v)<oo (3.42)
n,0)

by finiteness. We consider subsequence {E(U, j,)}nen ©[0,00) s.t.

lim B(U, /) = liminf inf E"(,0) < 0. (3.43)

(n,v)eU
For a.e. j €N, select (,uj,wj) eU s.t.
inf EM0(,0)=EL (w/,w))+ 71, (3.44)
(nv)eU

Since marginals are fixed, we use 2) in Lemma for ¢y = 0 to get subsequence
of res jn(,uj",wj")neN c X converging in Adm!®?!. Note convergence in Equation m
is invariant under passing to a subsequence. We relabel the subsequence obtained by
Lemma as res jn(ﬂj n win),en. Let (,uU, wY) be its limit in canonical topology.
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Using the respective sequence constructed as above in each case, i.e. s.t. we have
(WY, wY) =limpenres n (W, w/n) in Adm!*?! Equation and Equation show

lim
neN

for all U € & (u,w). Using 1) in Lemma |3.1.26| Equation and Equation in turn
let us calculate

EL (W, wi) - E(U, jn)

“tim 1o
=limj,' =0 (3.45)

fo(,U.,U L FO( dn in
EM(u”,w )Shgéanijn (", w’™)

=limEU,Jj,)
neN

=liminf inf Ef’g(r],v)
jeN  (queu  J

in each case. Equation therefore follows if

EMuw)< sup EM(uY,wY). (3.46)
Ue N (u,w)

For all U € & (u,w), we have (uU, wVelU by construction. We thus show Equation M
by constructing a sequence of open sets s.t. Lemma lets us extract subsequence
converging to (¢, w) in Adm!®®! and apply L.s.c. of the energy functional.

Let K c L%([a,b],B*)y, be a norm bounded closed set s.t. w € K. We consider .#(A)
and K as metric spaces using w*-topology as per Remark All open balls used
in this proof are in one of these two metric spaces. Let {t,},en < [a,b] be a dense and
monotone increasing sequence. For all n € N and ¢ € [a,b], we define open V,, ; = F(A)
by setting

| B,a(u@)) if t=¢ forl<n,
) #(A) else.

For all n €N, set V,, :=[s¢[q,51 Vn,s- Each of the latter is an open set in

LAt = [T . (3.47)
tela,b]

There exists open sets {Wy}nen € P(L2%([a,b]l,B*)y), the latter denoting the respective
power set, s.t. for all n € N, we have W, nK =B, -1(w) and W, .1 cW,,. For all n e N, we
obtain open set V,, x W,, F (AN« L2([a,b],B*)y, and therefore open set

U, = (Vn X Wn) NnXcX. (3.48)
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The above construction further ensures

U,i1<U, (3.49)
for all n e N, as well as
{(w,w)} = N Un. (3.50)
neN

For all n e N, let (u"*,w") € U,. Using 2) in Lemma (3.1.26| for ¢y = 0, get subsequence

converging to (u,w) in Adm!®?! by Equation and Equation Equation m
follows by applying 1) in Lemma [3.1.26|to such a subsequence. Equation [3.41]follows as
discussed above. Altogether, we have Equation and Equation Using standard
arguments for I'-convergence from upper and lower I'-limits [74]], we see Equation (3.40
and Equation [3.41] show Equation immediately.

We have Eé’g < E{,’H by definition. We are left to show

f.0 0 f.0
ElY| <EM) <E}’| . (3.51)

Using Equation and 1) in Lemma |3.1.26] we directly verify

B <EL’| . (3.52)

Equation reduces us to (i, w) € X s.t. EM%(u,w) < co. We assume the latter without
loss of generality. Thus {res;(u,w)}jen € € (u,w) by 1) in Corollary (3.1.28} hence

EY| <EM)y (3.53)

by 2) in Corollary|3.1.28| Equation |3.52|and Equation show Equation [3.51 O

3.1.2 Quantum optimal transport distances

We define quantum optimal transport distances. Theorem collects properties of
their metric geometries. Accessibility components are complete geodesic length-metric
spaces. Theorem (3.1.52| gives existence of sufficient minimising geodesics approximated
in finite dimensions. Standard references for metric geometry are [8]] and [40].

114



Quantum optimal transport as dynamic transport distance. Let (¢,v,y,V)
be noncommutative differential structure for tracial AF-C*-algebras (A, 1) and (B,w) in
(f,0)-setting. Definition gives quantum optimal transport distances. It extends
the tracial finite-dimensional cases in [48[[[49][50] by construction.

Notation 3.1.32. Let X be a set and d : X x X — [0,00] a metric, or distance function
on X. We say that the metric space (X,d) is equipped with d-topology. For all subsets
Y c X, we write (Y,d) = (Y,d|yxy) for its relative metric space.

Definition 3.1.33. We define the quantum optimal transport distance of (¢,v,y,V) on
F(A) in (f,0)-setting by setting

w PO uY) = inf  \/EF9(uw)e0,00] (3.54)

Adm[o,l](uo,ﬂ1)
for all 10, u' € #(A).

Remark 3.1.34. Neither symmetry of f nor ||| 1-0 « o is required to define admissible
paths and energy functionals. They do ensure accessibility components are complete
geodesic length-metric spaces. In the logarithmic mean setting, i.e. f represents the
logarithmic operator mean and 6 = 1, we have symmetric f and [w|° = 1.

We require accessibility components of quantum optimal transport distances to be
complete geodesic length-metric spaces. Definition describes length functionals
given by integrating square roots of quasi-entropies, i.e. speed, evaluated on admissible
paths. Proposition [3.1.39| shows using square roots of quasi-entropies as speed defines
length structures for state spaces in w*-topology. Corollary [3.1.42] which uses constant
speed parametrisations of admissible paths on the unit interval as per Lemma[3.1.40] in
turn shows quantum optimal transport distances are intrinsic distances of such length
structures by Proposition 2.4.1 in [40]. Equation gives their necessary standard
representation. Using our subsequent discussion, Corollary shows accessibility
components are complete geodesic length-metric spaces.

Definition 3.1.35.
1) For all [a,b]cR and (p,w) € Adm[®?! get

N0 (), w(®)) := \/#19 (u0), u0), w(®)) (3.55)
for a.e. t €[a,bl.

2) We define the length functional L/-? : Adm — [0, 00] by setting

b
L, w) = f N (o), wi(e))dt (3.56)

a

for all [a,b]c R and (u,w) € Adm!®?],
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We restrict admissible paths and therefore length functionals to subintervals as per
Remark Proposition shows length functionals are invariant under change
of variables. Proposition derives Lipschitz continuity, as well as standard upper
bounds involving energy functionals.

Remark 3.1.36. We restrict admissible paths to subintervals. Equation restricts
their length accordingly. Let [a,b] c R. For all [s,¢] c[a,b] and (u,w) € Adm!*?] we have
(1, W)lfs,41 = (plgs,01, W5 1) € Adm'*Y) and set

t
L, w)| .y = L0 (s, wlis ) = f N0 (u(r), w(r))dr. (3.57)
S

Proposition 3.1.37. Let ¢ :[c,d] — [a,b] be monotone and absolutely continuous. If
(1, w) € Adm@0N(pO, ub), then (o @, @ - (w o)) € Adm!SH (0, u) and we have

L (p,w) =L (po@,¢- (wop)). (3.58)

Proof. We argue as in the proof of Proposition [3.1.21. However, we integrate over the
evaluated square root A4 7f = vV .¢19. Thus we do not require ¢ to have t-a.e. defined
inverse, hence Equation shows Equation [3.58 immediately. O

Proposition 3.1.38. Let [a,b] cR.

1) For all (p,w) € Adm®?l x € Ay and [s,t] < [a,b], we have

| (u@® - ()@ < LM (u,w)] ., - \/z—ﬂ(ucpnﬁ +lwlf) - lol*=0-|Vxlp.  (3.59)

2) For all (u,w) € Adm!*®! we have

LM, w)? < (b-a)-EM(u,w). (3.60)

Furthermore, we have equality in Equation if and only if t — N0 (1), w(@))
is t-a.e. constant on [a,b].

Proof. We show 1). We argue as in the proof of 2) in Proposition where we use
the continuity equation to estimate. Rather than subsequent application of Holder, we
instead apply 5) in Theorem [2.2.29. Equation holds. We show 2). We reduce to
[a,b] =[0,1] by applying Proposition to the left- , resp. Proposition to the
right-hand side of Equation We use affine transformations as per Remark
in both cases. Having reduced to [0, 1] as described, both Equation [3.60| and our claim
concerning equality follow by Jensen’s inequality. O
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Proposition 3.1.39. (Adm,L’9) is a length structure for #(A) in w*-topology.

Proof. Proposition[3.1.37|shows Adm is a class of admissible paths in the sense of metric
geometry [40]. Our claim follows if L/-? satisfies conditions 1) to 4) on p.27 in [40]. Using
Equation [3.56, we directly verify the first three conditions. The fourth one is equivalent
to the following statement. If {u*},en € P(A) and 0 € F(A) s.t.

lim inf L™uw)=0, (3.61)
neN Adm(po,”n)

then u=w*-limy® in #(A). This is ensured by 1) in Proposition|3.1.38 O

Lemma 3.1.40. Let 1, u' € #(A) and (u,w) € Adm (O, ). If LT (1, w) € (0,00), then
there exists (fi,w) € Adm!%(u®, ul) s.z.

1) LMg,w) =L (u,w),
2) t— NO(f(t),w(t)) # 0 is t-a.e. constant.

Proof. Assume Lf’e(p,w) € (0,00). For all £ €[0,1], set

t
() := "W () := L0 (u,w) ™1 - [ N0 (1(s),w(s))ds. (3.62)
0

Since L9 (u,w) > 0, get u°® # u' by Proposition Since L/ (u,w) < oo, we know ¢
is monotone and absolutely continuous. We reduce to ¢ strictly monotone.

Assume ¢ is not strictly monotone. There exists [c,d] <[0,1] s.t. t — Wf’g(u(t),w(t))
vanishes for a.e. t € [¢,d]. Thus plj. 4] is constant by 1) in Proposition We select
[c,d] maximal. If [c,d] < I proper for a closed interval I c R, then p|; is not constant on
I. Since p° # u! and [0,1] is compact, there exists m € N and non-intersecting maximal
intervals {[c,,d,]}" ; € 2(R) satisfying R.1) and R.2) below. For all n €{1,...,m}, let

R.1) O0<cp<d, <1s.t. plge,.q,) 1s constant,

R.2) there exists no (a,b) < [0,11\ (U™ ;[cn,dn]) s.t. pliq,p) is constant.

Set do :=0 and ¢y+1 := 1. For all n € {0,...,m}, get (4, w)li4,.c,.,1 € Adm. Thus R.1)
immediately yields

(3.63)

cn+1l’

m
LM (pw)=Y Lf’e(ﬂ,W)|[dn,
n=0

For all n € {0,...,m}, we reparametrise (u,w)lq, ¢, .,] to [n(m+1)~1, (n+1)(m+ 1)~1] using
affine transformation as per Remark (3.1.22, We concatenate reparametrised paths via
canonical topological path composition.
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Altogether, we obtain a rectified path

(7,0) = ()l g oWl w i) € Adm!%1, (3.64)
‘m+1 m+1°

Proposition and Equation show L7 9(j1,1w) = LT % (u,w). Yet R.2) shows there
exists no (a,b) < [0,1] s.t. filjq ) is constant. Hence ¥ is strictly monotone by 1) in
Proposition We may reduce since its construction preserves length.

We assume ¢ := @ is strictly monotone without loss of generality. Thus ¢ is a
homeomorphism onto [0,1], hence ¢! exists and is monotone. Monotonicity ensures
¢~ 1 has t-a.e. finite derivative %(p_l. The chain rule holds for po¢~! upon testing with
Ay (cf. Corollary 4 in [185]). We therefore have

d
(1, W) := ('uoq)_l, E(p_l (w O(p_l)) € Adm'®M (0, ub). (3.65)
Proposition [3.1.37| shows L/(ji,w) = LT (u,w). Since we have ¢-a.e. finite derivatives
for ¢, ¢! and idjg 1}, the chain rule holds for ¢ = p(¢~1(¢)) (cf. Theorem 2 in [185]). We
use chain rule to derive the first, and Equation for the second identity in

d

-1
= <p(s)) =L (u,w)- A0 (1072 ®),w(p X)) (3.66)

d
_1 _
¢ (s)= (ds

s=t s=p~1(¢)

for a.e. t €[0,1]. Using Equation we further calculate

d
N PO (o), w(t) = —

- 1) N0 (u(p7 ), w(p71®)) = LT (u,w) #0  (3.67)

s=t

in each case. Equation |3.67|shows our claim. O

Remark 3.1.41. In the proof of Lemma |3.1.40, we alternatively show fi has constant
and non-vanishing metric derivative. Minimality and finite length let us bound from
below using the metric derivative in order to show A7 ’g(ﬂ(t), w(t)) #0 for a.e. t€[0,1].

Corollary 3.1.42. For all 1, u' € #(A), we have

w0 = inf LMPuw) = inf  LM%uw). (3.68)
v (IJ ,Lt) Adm[O,l](uO,Nl) H Adm(u0,ul) H

Proof. Let %, u!' € #(A). Either u° # u! or all terms equal zero. We assume p° # p!
without loss of generality. Proposition [3.1.37|shows

i LP%uw) = inf  LMu,w). (3.69)
Adm[o’ll(po,,ul) Adm(lio,ﬂl)
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Moreover, 2) in Proposition |3.1.38 shows
. .0 00,0 1
Adm[(},{]l(f;to,ﬂl)L (o) =75 o). (8.70)

Let S := {(u,w) € Adm!%H(u®, ub) | £ — A 70(u(t),w(t)) is t-a.e. constant}. Lemma [3.1.40
implies S # @ and further

inf L%(w,w) = inf  LMu,w). (3.71)
S Adm[O’l](/,LO,ul)
Using the statement on equality for Equation [3.60, we see Equation shows
00,0 1y _ f.0 _ : f.0
W (u, )Slrslf L7 (u,w) _Adm[olv{]l(f/:to,pl)L (u,w). (3.72)

Equation [3.69, Equation [3.70|and Equation imply Equation [3.68 O

Definition [3.1.43| gives minimising geodesics and distance minimisers [8]][40]. The
notions coincide by 4) in Theorem [3.1.47, In Section we apply results in variational
analysis for metric geometry using minimising geodesics [75[[160].

Definition 3.1.43.

1) Let p% u! € #(A) and [a,b] < R. We call (u,w) € Adm!*®! (0 ) a minimising
geodesic from p® to u! if there exists C =0 s.t.
WP (ut), ) = Clt s (3.73)

for all ¢,s € [a, b].

2) Let 0, ut € #(A). We call (g, w) € Adm!®H (10, 4t) a distance minimiser if

w0 (10, 1) =\ EFO(p,w) < 0. (3.74)

3) For all 1% ul € F(A), let Geo(uo,ul) be the set of all distance minimisers with
marginals u° and p!. Set Geo := U0 1c.9(a)Geo(u®, ut).

Notation 3.1.44. For all j € N, we use Geo; when denoting sets of distance minimisers
in Definition [3.1.43|for induced noncommutative differential structure (¢;,v;,y;,V)).
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Proposition 3.1.45.
1) Let u® ut € L(A). If (u,w) € Geo(u®, ut), then t — N 10 (u(t),w(t)) is t-a.e. constant.
2) Forall j<kinNand ,uo, ,ul € #(A;), we have length- and energy-preserving maps

incy; inc;

2.1) Geoj(u®, ut) — Geo (u°, ut) —> Geo(u?, ut),
2.2) Geo(u®,ut) =2 Geoy (12, 1) = Geo; (1, ut).

Proof. We show 1). For all (u,w) € Geo(u°, 1), 2) in Proposition [3.1.38] Corollary [3.1.42
and Equation yield

WL (W0, ut) < LF0 < \[EMO(uw) = w0 (u°, ). (3.75)

Furthermore, we have equality in Equation if and only if ¢ — AT ’9(,u(t),w(t)) is
t-a.e. constant on [0,1]. We have 1). We show 2). For all distance minimisers, equality
in Equation implies length and square root of energy coincide. It suffices to show
energy is preserved. Inclusions in 2.1) preserve energy by 1) in Proposition |3.1.19, and
restrictions in 2.2) do not increase energy by 2) in Proposition We obtain 2) by
Equation [3.74] since restriction maps are left-inverses of inclusion maps. O

Notation 3.1.46. For all y* € #(A) and & € {0,1}, set ji* := E as per Definition (3.1.12

Theorem 3.1.47. Let (¢,v,y, V) be noncommutative differential structure for tracial AF-
C*-algebras (A,1) and (B,w) in (f,0)-setting.

1 (y(A),va ’6) is a length-metric space with topology stronger than w*-topology.

2) For all j <k in N, we have isometric inclusions

incg; incy,

(AL = (A w1 L") = (@), 7)), (3.76)

3) va,e is l.s.c. in w*-topology. For all 1i°, u' € #(A), we have

W () = im0 (), 15)- (3.77)

4) Let u°,ul € #(A).

4.1) If?//vf’g (10, pt) < oo, then Geo(u®,ul) # @.

4.2) For all (u,w) € Adm'% (10 1), we have (u,w) € Geo(u°, ut) if and only if y is
a minimising geodesic from u° to pl.
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Proof. We know 1) by Proposition|3.1.39|and Corollary|3.1.42| Then 2) follows from 2) in
Proposition [3.1.45, We show 3). Let u°, u! € #(A). For all £ € {0,1}, let {u"**},en € F(A)
s.t. pf = w*-limpen ™", va’g(,un’o,u”’l) <oo for all n €N, as well as

w0 11) < oo, (3.78)

.. 0
111’3161an7//{ (u™°,

In order to show l.s.c. in w*-topology, it suffices to consider such subsequences. For
all n €N, let (1", w") € Adm'% (™0, 1) s.t.

Ef,@('un,wn) — va,e('un,()’un,l)z + n—l. (379)

Using w*-convergence of marginals, Equation shows Lemma(3.1.26|for ¢¢ = 0 yields
(u,w) € Adm (10, 1) s.t. we have estimate

WL ) = B0 <Timint 9] (0, ) (3.80

Equation [3.80] shows l.s.c. in w*-topology. In particular, we see Equation follows at
once if

lim sup w0, 1) < w0 (W), (3.81)
Jje

Equation holds by 2.1) in Proposition(3.1.19 Get 3).
We show 4). Lemma [3.1.26| for ¢¢ = 0 implies 4.1). Let (u,w) € Geo(u, u'). Using

Corollary |3.1.42| and 1) in Proposition [3.1.45, get C := JVf’H(u(t),w(t)) for a.e. t €[0,1]

and estimate

t
WL (u(s), p(t)) < f N (ur),w(r)dr = Clt - s| (3.82)

for all ¢,s € [0,1]. Let [s,#] = [0,1] proper. If equality in Equation does not hold for
[s,t] = [0,1], then there exists a distance minimiser from pu(s) to p(t) with strictly less
length than (4, w)|(s . Note Remark This contradicts minimality on [0, 1]. Thus
equality holds in each case, hence p is a minimising geodesic. The converse then follows
by Equation and Theorem 2.7.6 in [40]]. Get 4.2). Altogether, get 4). O

121



CHAPTER 3. QUANTUM OPTIMAL TRANSPORT

Accessibility components and minimising geodesics. Definition gives
accessibility components of quantum optimal transport distances. They are maximal
sets of states at finite distance. Corollary shows accessibility components are
complete geodesic length-metric spaces s.t. intrinsic distances of their length structures
are quantum optimal transport distances. Thus accessibility components are maximal
sets of points connected by minimising geodesics, hence metric geometry reduces to the
latter. We use this throughout our discussion.

Let (¢,v,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B,w) in (f,0)-setting.

Definition 3.1.48.
1) We call € c .#(A) accessible if va,e (10, pt) < oo for all u, ut € 6.

2) We say that € < #(A) is an accessibility component if there exists no accessible
€' < F(A) s.t. €' <€ proper. If € c #(A) is an accessibility component, then we
write

€ c (A, W) (3.83)

3) For all € < (P(A), #{"’), set Adme := Uy, e Adm(y, ).
Corollary 3.1.49.

1) An equivalence relation on F(A) is given by

pU~neuneEEc (5”(A),7//Vf’9) (3.84)
for all u,ne F#(A).
2) For all u,ne F(A), we have u~nif and only if

2.1) fj~1jfora.e jeN,
2.2) limsupje,\, in’e(ﬁj,ﬁj) < oo.

Proof. Let € c (S”(A),va ’9). If ,uo € ¢, then 1) in Theorem (3.1.47| and maximality of €
as set of finite-length admissible paths shows

€ = {,ul e S(A) | Ap,w) EAdm[O’l](yO,pl) : Lf’g(u,w) < oo} (3.85)

Using Equation we directly verify Equation defines an equivalence relation
on #(A). Thus 1) holds, hence 2) follows from 3) in Theorem [3.1.47 O
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Corollary 3.1.50. For all € c (5”(A),71/Vf ’9), we have
1) (Lf ’O,Admcg) is a length structure for € in w*-topology,

2) val’czo < 18 the unique intrinsic distance of (Lf ’Q,Adm%) on €,

3) (€ ,va ’0) is a complete geodesic length-metric space.

Proof. Let 6 < (#(A), #{*). Equation [3.85|shows 1) and 2) alike. We see (6, #{ ") is a
length-metric space. Furthermore, maximality of € and 4) in Theorem imply it
is geodesic. Thus 3) follows if we show its completeness.

Let {u"},eny € € be a Cauchy sequence. Using 1) in Theorem get e F(A)
s.t. u=w*-lim,en ™. Since " ~ u™ for all n,m € N, Equation further implies

Wi(1a) = 1"™(1a,) (3.86)

for all j,n,m € N. Using 1.1) in Proposition [2.1.31, Equation lets us calculate

o et i1 T T
el a —E,leanu(lAj)—lj_lellrwl}llgNlu (1Aj)—1j161,1\|1u (Qa)=1lp lla-=1. (3.87)

Equation |3.87/shows u € #(A). For all € > 0, there exists n. € N s.t. va’g(u”,pm) < ¢ for
all n,m = n,. For all e >0 and m = ng, l.s.c. in w*-topology as per 3) in Theorem [3.1.47
implies

Z (O liminf w0 (un, i) <e. (3.88)

Equation |3.88 shows lim,,cn va’e(,u,pm) =0. We obtain p€%. O

We formalise here, to the extend necessary for the study of metric geometry, energy
functionals being I'-limits w.r.t. the coarse graining process as existence of sufficient
minimising geodesics approximated in finite dimensions. Motivated by the sequential
descriptions as per Definition [3.1.29)and used in Theorem[3.1.31] Definition gives

finite-dimensional approximation of minimising geodesics. We consider closure of

Geog := | Geo; = Geo (3.89)

JEN

w.r.t. suitable notion of convergence. Note 2.1) in Proposition |3.1.45| shows inclusion
used in Equation Theorem|3.1.52|gives existence of sufficient minimising geodesics
approximated in finite dimensions. For details on the coarse graining process, we refer

to Subsection
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Definition 3.1.51. Let u, u! € #(A) s.t. va’e(,uo,ul) < 0o. We call (u,w) € Geo(u®, ut)
approximated in finite dimensions if there exists m € N and (¢/,w”) j>n, < Geog s.t.

1) (1/,w’) € Geo; (ﬂ?,ﬂ}) for all j = m,

2) (uj w’ ) jzm has subsequence converging to (u,w) in Adm/%H,

Theorem 3.1.52. Let (¢,v,y, V) be noncommutative differential structure for tracial AF-
C*-algebras (A, 1) and (B,w) in (f,0)-setting. If 1%, u* € #(A) and W’ (1, ") < oo, then
there exists (u,w) € Geo(u®, u') approximated in finite dimensions.

Proof. Let u° u' € #(A) s.t. va’g(uo,ul) < 0o. Apply 3) and 4) in Theorem [3.1.47|to get
m €N s.t. for all j = m, we have

Geo; (i1}, f1}) # @. (3.90)

For all j = m, let (u/,w’) € Geoj(ﬂQ, ﬁ}). Using 1) in Proposition 3.1.19|and further 3) in
Theorem (3.1.47], i.e. Equation [3.77, we calculate

lir}éli\lnfEf’e(uj,wj) = lir}é,i\lnf WV';’H(,EL(},;]})Z = va’e(,uo,ul)2 < 00. (3.91)

Equation [3.91| ensures we may extract suitable subsequence. Using 2) in Lemma (3.1.26
for ¢o = 0, get subsequence of (u/,w’);>,, converging to a (u,w) € Adm!®!. Using 1) in
Lemma|[3.1.26 we obtain (i, w) € Geo(u?, u') as claimed. O

The interpolation parameter. We view each symmetric representing function f
as determining a class of energetic structures with 6 € [0, 1] as interpolation parameter.
Proposition [3.1.53| shows 0 = 0 gives quantum ( — 1,2)-Sobolev distance independent of
f. In the logarithmic mean setting, variation of 6 € [0, 1] interpolates between, due to
independence from f, non-geometric quantum (—1,2)-Sobolev distances and quantum
L2-Wasserstein distances. This follows the classical case [97].

Proposition 3.1.53. Let (¢,v,y,V) be noncommutative differential structure for tracial
AF-C*-algebras (A,7) and (B,w) in (f,0)-setting. For all u°,u' € #(A), we have

w0 (10, 1t) = sup { | (" - 1) @) | € Ao, IVl <1}, (3.92)
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Proof. We reduce to the finite-dimensional setting. Assume Equation holds in the
latter. For all u°, u! € #(A), we use 3) in Theorem [3.1.47|to calculate

WO, ut) = limsup 114 sup {| (' - 1)) | x€ Ay, 1Vl <1}
je

=supsup {|(u' — 1*)@)| | x € A;, 1Vxll, <1}
JeN

=sup {| (1! - 1°))] | x € Ao, IVxll, <1},

It suffices to show Equation in the finite-dimensional setting.

Assume A and B are finite-dimensional. Equation below states u, n and f are
irrelevant if 6 = 0. This follows since their contributions are perturbed noncommutative
division operators to the power of zero, i.e. the identity operator. For all u,n € #(A) and
w € B*, we have

20 u,n,w) = sup lw)? € [0,00]. (3.93)
J€eN
For all 1%, u' € #(A), set
d(u,pt) = sup {|(u* - 1)) | x€ 4, IVxll, <1}, (3.94)

Let u%,u! € #(A) s.t. d(u®, ut) < co. Finiteness implies pu'(x) = uO(x) for all x € kerV by
scaling with strictly positive constants. We therefore define bounded linear functional

Fo,:imV= ker V+ — C by setting

Fuo ()= (u' - %) () (3.95)
for all Vx € imV. Equation determines unique w € imV s.t. |w|y, = d(,uo,,ul) and

(u! = u%)(x) = (w, Vx),, for all x € A. We define (i, w) € Adm®(u0, ul) by setting

@) = A -tpl + et wt) = w (3.96)

for all ¢ € [0,1]. Equation and Equation imply

WO (1O, 1) = L0 (u,w) = wlly = d (10, 1) (3.97)
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We show the converse. If (1, w) € Adm!®1(u, u1), then Equation shows

1
f N llodt = L0, w). (3.98)
0

Equation in turn shows

1
(1 - 1) )| = fo lw(®llodt = LT, w) (3.99)

for all x € A s.t. |Vx|, < 1. Take the infimum over all admissible paths with marginals
,uO and ,ul in Equation followed by the supremum over all x € A s.t. |Vx||, < 1. This
yields the converse to Equation Note our use of Corollary Equation [3.92
holds in the finite-dimensional setting. The general case follows as discussed above. []

3.1.3 Fundamental example classes

We provide fundamental example classes. We specify neither symmetric representing
function nor interpolation parameter. First, we use generalised discrete derivatives
to construct quantum optimal transport distances for tracial AF-C*-algebras parame-
trised over finite sets. This generalises the discrete cases [152][159] and those using
internal quantum gradients. Secondly, we use dynamic quantum gradients to construct
quantum optimal transport distances for tracial AF-C*-algebras generating hyperfinite
factors of type I and II by o-weak closure. These are common algebras of observables in
quantum statistical mechanics [|35][]36][162].

In the non-twisted case, we have an iterative construction. Self-adjoint unbounded
operator with compact resolvent induce examples for type I-factors. We extend to the
type I1;-factor using natural extensions of bounded operators on separable Hilbert space
to elements in CAR-algebras [[162]] under Clifford representations [114][177]. We tensor
both to the type Il -factor. In the twisted case, we show intertwining sets of Clifford
generators yield direct sums of dynamic quantum gradients for tracial AF-C*-algebras
closing to the type II-factor. In the logarithmic mean setting, the non-twisted and
twisted case have non-negative, resp. strictly positive lower Ricci bounds. Thirdly, ex-
amples using non-twisted dynamic quantum gradients are given by first and second
quantisation of spectral triples [54]1[551[1971[198]. First quantisation of spectral triples
gives examples for type I-factors induced by noncommutative Dirac operators. Second
quantisation of spectral triples is extension to the type IIi-factor. Finally, we outline
how second quantisation of spectral triples yields our ansatz to study noncommutative
gauge theories [61]1[52][53[[197]1[198] if we generalise to quantum optimal transport
parametrised by gauge fields. We view quantum optimal transport as the pointwise
case. We therefore see our discussion lies in the intersection of noncommutative gauge
theory, quantum statistical mechanics and quantum information theory [62].
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Standard references for factor W*-algebras, in particular hyperfinite ones, are [|173]]
and [192]1[1931[194]. We refer to [162] for details on CAR-algebras, as well as [114] and
[177] for Clifford representations over anti-symmetric Fock space. Standard references
for noncommutative geometry are [114][198] and [[197]. Whereas [114]] provides a rather
comprehensive treatment, note [198] gives a condensed version of the former. Standard
references for quantum statistical mechanics are [35[][36], [82]], [121]], [163] and [[188].

Generalised discrete derivatives over finite sets. We use generalised discrete
derivatives to construct quantum optimal transport distances in Example for
tracial AF-C*-algebras parametrised over finite sets. This generalises the discrete cases
[152]][159] and those using internal quantum gradients.

Let X be a finite set and u € C(X);. We define f.s.n. trace v, on C(X) by setting

Vu(F):= ) Fx)u(x) (3.100)
xeX
for all F € C(X). We have finite tracial AF-C*-algebra (C(X),v,) as per Example
Let (A,7) be a tracial AF-C*-algebra. Since |X| < oo, note C(X,A) = C(X)® A = AX
as AF-C*-algebras. Proposition yields tracial AF-C*-algebra (C(X,A),v, ®T) in
C(X,L*(A,1)) generated by {C(X,A )} jen. We have f.s.n. trace v, ® 7 on C(X,L*(A,1))
given by

(vuet)(F) = ) 7(F(x))ulx) (3.101)
xeX

for all F € C(X,L>®°(A,T1)),.

Example 3.1.54. Let X be a finite set and K € C(X x X), an irreducible Markov kernel
with steady state ug € C(X); having full support. Let (A, 1) be a strongly unital tracial
AF-C*-algebra s.t. T < oco. We tensor (C(X),v,,) and (A, 7) as per Equation We
likewise tensor (C(X x X),vg) and (A®A,7®71).

We have f.s.n. trace 7x on C(X,L*°(A, 1)) given by

1&(F):= (vug ®7)(F) = ¥ 7(F(x))uxg(x) (3.102)
xeX

for all F € C(X,L°°(A,1)),, as well as f.s.n. trace wg on C(X x X,L°(A,17)® L®°(A,T1));
given by

wrg(@:=(vg®@Te D)@ = ) (Te1)(Gx,y)K(x,y) (3.103)
x,yeX

for all G € C(X x X,L>*(A,7)® L™(A,1));. Altogether, we obtain strongly unital tracial
AF-C*-algebra (C(X,A), 1) generated by {C(X,A j)}jen, as well as (C(X x X,A®A),wk)
generated by {C(X x X,A; 0 Aj)}jen.
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We know Equation shows L%(C(X,A),7x) = C(X,L%*(A, 1)) and Equation
shows L2(C(X xX,A®A),wg) = C(X xX,L>(A®A,7®71)). Equation 2.182|further shows
we define local *-homomorphisms ¢, : C(X,A) — C(X x X,A ® A) by setting

PF)x,y) := " (F(x)), y(F)x,y) := ™ (F(y)) (3.104)

for all F € C(X,A) and x,y € X. Finally, pointwise algebra involution defines anti-linear
isometric involution y : C(X x X,L2(A®A,797)) — C(X xX,L2(A® A,7®71)). We have
AF-C(X,A)-bimodule structure (¢,,y) on C(X x X,A®A).

Let 1 = 0. Following Equation we define the (K, 1)-parametrised quantum
gradient V?{ :C(X,A¢) — C(X xX,L>(A®A,T®71)) by setting

(VAF)(x,y) = (Fx)®1a-14 ®F(y)) (3.105)

27(14)
forall F e C(X,Ap) and x,y € X. We have C(X xX,A®A)=C(X,A)®C(X,A). Using the
latter and up to positive constant, VIA{ is the generalised discrete derivative on C(X,A)
as per Definition[2.3.35|restricted to C(X,Ay). Proposition[2.3.36|shows said generalised
discrete derivative is a bounded symmetric C(X,A)-module derivation. Equation (3.105
shows VIA{ commutes with Hilbert space projections to generating C*-subalgebras. Thus
V?{ is a quantum gradient. If (A,7) = (C,1), then Equation specialises to the dis-
crete derivative. If | X| = 1, then Equation instead specialises to the A-internal
quantum gradient on A as per Definition If | X| > 1, then vk # vy, ® vy, since
K and ug are stochastic. Hence V}l{ is internal quantum gradient if and only if | X| = 1.
Parametrised quantum gradients as per Equation therefore generalise discrete
derivatives and internal quantum gradients by using (A,7) =(C,1), resp. |X|=1.

We obtain noncommutative differential structures which define quantum optimal
transport distances of discrete densities evaluating in tracial AF-C*-algebras. If we use
(A,7) =(C,1) here with K as in [152], then we recover discrete Wasserstein distances
associated to Markov chains with detailed balance condition [[152]]. We likewise recover
[159]. In summary, we generalise the discrete cases [152][159] and any using internal
quantum gradients. We recover these by using trivial codomain, resp. domain.

Dynamic quantum gradients for hyperfinite factors of type I and II. We
use dynamic quantum gradients to construct quantum optimal transport distances for
tracial AF-C*-algebras generating hyperfinite factors of type I and II by o-weak closure
[351[361[162]. The iterative construction of non-twisted dynamic quantum gradients is
given by following Example Example and Example in order. Note
Example clarifies their importance. We construct direct sums of twisted dynamic
quantum gradients, each induced by a Clifford generator, in Example In the
logarithmic mean setting, Example and Example in Subsection both
of which use Theorem imply all examples constructed here have non-negative
lower Ricci bounds. Example shows strict positivity in the twisted case.
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We give the iterative construction of non-twisted dynamic quantum gradients. Each
step in the construction is induced by trace-preserving local C*-dynamical systems as
per Corollary We cover type I-factors in Example the type II;-factor in
Example [3.1.56] and the type II-factor Example We apply Example to
get first, and Example to get second quantisation of spectral triples.

Example 3.1.55. Hyperfinite factors of type I are of form %(H) for a separable Hilbert
space H. Let H be a separable Hilbert space, D € %%(H);, with compact resolvent and
{ej}jen an orthonormal eigenbasis of the latter. For all jeN, let P;: H — (eq,...,e;)c
be the Hilbert space projection. The orthonormal eigenbasis determines unique unitary
U:H — ¢2(N). For all jeN, set H;:=PjH,Uj:=compy,U =P;UP; and

Aj=BH,)=U;M;QU;. (3.106)

We have tracial AF-C*-algebra (% (H),tr) in %(H) generated by {A;};en. We equip
A (H) with its canonical AF-_# (H)-bimodule structure.
For all j € N, Equation (3.106/shows

AdP(A)cA; (3.107)

for all ¢t € R. Equation |3.107| shows we have tr-preserving local C*-dynamical system
(X (H),R,AdP | J((H))' Note L2(# (H),tr) = S%(H) for the Hilbert-Schmidt operators on
H [29]. We apply Lemma [2.3.48|to get unique Paq € %#B(S%(H)) s.t.

7
L pgp(ey = Ad7M (L) (3.108)

for all £t € R and x € £ (H). By norm differentiation of Equation [3.108] Corollary [2.3.49
yields non-twisted dynamic quantum gradient given by

V2 = {[Daq, x4 = iL‘l(QZAde —Lx@Ad) (3.109)

for all x € # (H)y. Equation|3.108/and Equation |3.109|show Zaq is id_# (z)-intertwining.
We know the identities for dynamic quantum gradient, its adjoint and finally Laplacian

given in Corollary 2.3.56|and Corollary [2.3.57| apply.
We pull back along L to £ (H) as follows. For all j € N, note Equation [3.106| shows

D is Hj-reducible and set D; := comp; D = P;DP;. For all £ €R and j € N, arguing as for
Equation [2.209|in Proposition [2.3.52 shows

e'tD = ¢itD; g o' (3.110)
wrt. B(H;)e ,_O/B(HJ*).
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Note A (H)g c B(H) is strongly dense and et @) = 1 in each case. Using the
latter, Equation [3.110/and sequential strong continuity of multiplication show

t— L ,in € % (B(S*(H))) (3.111)

is a strongly continuous unitary group. Equation |3.108| additionally shows

L,inLyL i = Ad7M(L,) (3.112)

for all teR, jeN and x € A;. Equation [3.112| extends to £ (H) by norm density. Then
uniqueness, Corollary[2.3.57, and Equation|3.112|imply

VP = V?My = i[D;,x] = i(Djx — xD;) = i(Dx — xD) (3.113)

for all j € N and x € A;. The identities for dynamic quantum gradient, its adjoint and
Laplacian given in Corollary and Corollary pull back accordingly.

We obtain noncommutative differential structures which define quantum optimal
transport distances of density operators. Note all constructions of non-twisted dynamic
quantum gradients reduce to Equation in this example. In the logarithmic mean
setting, which uses 6 = 1, accessibility components are complete geodesic length-metric
spaces even for dim¢c H = co. We use this for first quantisation of spectral triples.

Equation are abstract canonical anti-commutation relations of CAR-algebras
[162]. Clifford representations determined by Equation provide natural concrete
realisations [114][[177]. Let H be a separable Hilbert space. The CAR-algebra </(H) over
H is defined as the unique unital C*-algebra, up to isometric *-isomorphism, equipped
with a bounded anti-linear map a : H — «/(H) s.t. C*(ima, 1)) = «/(H) and

a(u)*a)+a@)aw)* =(u,v)y  Lym), awa)+a®)a(u)=0 (3.114)

for all u,v € H. We consider CAR-algebras as Clifford algebras here. For all u € H, set
b(u):=a(u)+a(u)*. Then Equation(3.114| are equivalent to the Clifford relations

b(w)b() +b(v)b(w) =2Re(u,v) g Loy (3.115)

for all u,v € H. Thus the universal property of Clifford algebras applies and lets us
extend bounded linear maps preserving Equation hence Equation from
H to o/(H) (cf. Proposition 5.1 in [114]]). For all ¢ € %(%(H)), said universal property
determines the Bogoliubov automorphism Cliff(¢) € Aut(</(H)) of ¢ by setting

Cliff(p)(a(u)) := a(p(w)) (3.116)
for all u € H (cf. Example 5.2 in [[114]).
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We determine l.s.c. faithful semi-finite trace 7 on o/ (H) by setting

1 n
T(a(u1)”...aluy) a(vy)...a(vr)) := 6pm det §(<uk’vl>H)k,l:1 (3.117)

for all n,m €N and {u.};_;,{v;}]2; = H [162]. Note 7 is the unique normalised trace on
o (H). If dimc H = n, then («/(H),7) = (®)_ M2(C),27" ®} _, trg) = (M2n(C),27" tran) as
tracial C*-algebras [[162]. If dimc H = oo, then «/(H)" is the hyperfinite factor of type
I1; up to choice of faithful unital *-representation [173].

We associate faithful unital *-representations of CAR-algebras over anti-symmetric
Fock space to orthogonal complex structures. Such representations are called Clifford
representations [114][177]. We equip H with Euclidean structure of |.|zz. Let J be an
orthogonal complex structure on H. Using J as imaginary unital left-multiplication, we
complexify to H[J] = H @ iH. We define inner product of H[J] by setting

(u,0) gy = Re(u,v)y +iRe(u,J () (3.118)

for all u,v € H[J]. Thus (H[J],|.|l7) is a Hilbert space. Equation induces inner
product A ||.|l; of anti-symmetric Fock space & (H[J]) := A H[J] by universal property of
the exterior algebra [[114]. Hence (% (H[J1), A |l.ll.7) is a Hilbert space. We define bounded
anti-linear map aj: H — %B(%(H[J])) by setting

(aJ(u))*(v)::u/\v (3.119)
for all u € H and v € #(H[J]). Using A|.ll; and Equation [3.119| to obtain adjoints in
B(F (H[J])), we directly verify Equation [3.114]for a. (cf. pp.186-187 in [114]).

Finally, we determine the Clifford representation p; : «/(H) — B(F(H[J))) for J
by setting
pgw):=aju)+agw)” (3.120)
for all u € H. Note pj(u) = pj(b(u)) in each case since we consider H = b(H) c «/(H) as
set of generators. Thus 2a.(u) = pj(u)—ipj(J(w)) for all u € H by (anti-)linearity, hence
pJ is a faithful unital *-representation s.t.

A HIJ)) := pg(<f(H)) = of (H) (3.121)
is CAR-algebra over H and Clifford algebra of ||.||12LI. Note the unique normalised and
L.s.c. faithful semi-finite trace 7 on «/(H[J]) is determined by Equation(3.117|for a.;. We
have tracial C*-algebra (<f (H[J]),7) in of (H[J])" € B(F (HI[J])).
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Example 3.1.56. The hyperfinite factor of type II; is o«/(H)" for a separable Hilbert
space H. Let H be a separable Hilbert space, J orthogonal complex structure on H and
H{cHyc...c H Hilbert subspaces with

Iz

H= U H; (3.122)
JeN
and s.t.
J(Hj)CHj (3.123)

for all j € N. Equation |3.123|shows ¢ is orthogonal complex structure on H; and

HjlJ1c Hj,[J]1c HIJ] (3.124)

in each case. Equation |3.122| and Equation |3.124] show H[J] = UjeNHj[J]”'”H[J]. They
moreover show analogous restriction properties for p; and </ (H[J]). We have tracial
AF-C*-algebra (o (H[J]),7) in o/ (H[J])" c B(F(H[J])) generated by {<f(H ;[J]} jen. We
equip </ (H[J]) with its canonical AF-</(H[J])-bimodule structure.

We construct 7-preserving local C*-dynamical system. Let ¢ € %(%(H)) s.t. we have
(p(Hj),(p_l(Hj) c Hj for all j € N. Using @1 =¢*, we directly verify comy; ¢ € % (%B(H))
for all j € N. We obtain the J-twisted Bogoliubov automorphism

Cliff;(¢) := p.s o Cliff(p) 0 p;* € Aut(s# (H[J])) (3.125)

s.t. CliffJ((de(Hj[J]) = pg o Cliff(comp; ) o p:]l € Aut(«/(H;[J])) for all j € N. We select
compatible Dirac operator. Let D € %%(H); with compact resolvent and orthonormal
eigenbasis {e;}jen. For all jeN, let H; = (ey,...,e;)c. For all ¢ € R, Equation [3.110]shows
e'tD ¢ 9/(B(H)) satisfies our assumptions on ¢ in Equation For all £ e R, set

a; := Cliff; (') € Aut(f (H[J1)). (3.126)

For all ¢t € R and j € N, Equation shows a; is 7-preserving and Equation [3.125
shows a (o (H,[J])) < o/ (H,[J]). We show strong continuity of a : R — Aut(<f/(H[J]))
to conclude. Since ||eitP |l = 1 for all ¢ € R by functional calculus, we see locality of
a as above in fact reduces to ||.|l o (zrJ7)-continuity upon evaluation on </ (H[J1)g. Taken
together with the *-homomorphism property, we further reduce to ||. | . (z17)-continuity
upon evaluation on a(U;enH ).
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For all u € Ujen Hj, Equation 3.116/shows the map

t— at(aJ(u)) = pJ(Cliff(eitD)(a(u))) = aJ(eitDu) (3.127)

is ||| ¢ 7)-continuous. Equation [3.127]implies strong continuity. We have 7-preserving
local C*-dynamical system (of (H[J]),R, a). Corollary [2.3.49]yields non-twisted dynamic
quantum gradient. In Example [3.1.62] note Equation gives an explicit formula
for Equation using wedged conjugation group of |D| and for suitable J depending
on eigenvalues of D. The formula is taken from Proposition 2.6 in [55]. However, we
explicitly solve the associated implementation problem [[177] in Lemma

We obtain noncommutative differential structures which define quantum optimal
transport distances of states on CAR-algebras. Note the non-twisted dynamic quantum
gradients used are induced by trace-preserving local C*-dynamical systems lifted from
Example[3.1.55|via Clifford representations to Equation[3.126] We use this to get second
quantisation of spectral triples as extension of their first quantisation.

Remark 3.1.57. In contrast to Example the construction of dynamic quantum
gradients in Example does not pull back along canonical left-actions. We derive
explicit formula for Equation in Example using wedged conjugation groups
analogous to the construction in Example|3.1.55| Choice of orthogonal complex structure
is necessary to solve the associated implementation problem.

Example 3.1.58. The hyperfinite factor of type 11, is W*-tensor product B(H)® </ ()"
for infinite-dimensional separable Hilbert spaces H and #. We do not identify H = #
since their finite-dimensional approximation differs in general. Let H be a separable
Hilbert space and assume the setting of Example for D € %B(H)y,. Let A be
a separable Hilbert space and assume the setting of Example for 9 € UB(FE);,.
By 1) in Proposition[2.3.32] the tensor product construction yields tracial AF-C*-algebra
(X (H)e L (A, tro1) in B(H)e A (F[J])" generated by { & (H ;)0 ot (A j[J])} jen. We
equip £ (H) ® of (A[J]) with its canonical AF-# (H) ® of (#J])-bimodule structure.
We require 7-preserving local C*-dynamical system. For all ¢ € R, set

a; := AdP ® Cliffs(e"?) € Aut(H (H) ® o (H1J))). (3.128)

Example and Example show we have tr ®7-preserving local C*-dynamical
system (A (H) ® of (#[J]),R, @) by reducing to elementary tensors. Corollary yie-
lds non-twisted dynamic quantum gradient. Since the latter are furthermore defined by
norm differentiation, it is the tensor product quantum gradient of the dynamic ones as
per Example and Example given by Proposition [2.3.32

We obtain noncommutative differential structures which define quantum optimal
transport distances of density operators evaluating in CAR-algebras. The non-twisted
dynamic quantum gradients used are induced by trace-preserving local C*-dynamical
systems which are tensor products of those in Example and Example[3.1.56] This
finalises our three-step iterative construction.
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We construct direct sums of twisted dynamic quantum gradients induced by Clifford
generators. For this, we use tracial AF-C*-algebras in the setting of Example |3.1.58

Example 3.1.59. Let H and . be separable Hilbert spaces. Let T' € 8(H), s.t. we have
spec T c {+1} and with orthonormal eigenbasis {u j} jen. Let {v} jen be orthonormal basis
of #.Let m e N. For all jeN, set

Hj = (ul,...,uj>q:, Jf] = (vl,...,vm_l,...vm_lﬂ-)C. (3.129)

We use trivial orthogonal complex structure ¢/ := il » on # and suppress it. Using
finite-dimensional approximation given by Equation and following construction
in Example [3.1.58, we have tracial AF-C*-algebra (% (H) ® o/ (#),tr 1) generated by
{H (Hj)oot (H j)} jen. We determine the principle automorphism ¢ € Aut(</ (H)) of </ (H)
by setting

¢(pw)) = —p(u) (3.130)

for all u € A. Since ¢ is a self-adjoint involutive local *-homomorphism, we know ¢ :=
idg) ®@ € Aut( £ (H) ® o/ (A)) is one. We have AF- % (H) ® o/ (A)-bimodule structure
(¢,id 7 (et (72),Y?) on K (H) ® of () as per 1) in Proposition

Let C>0.Forall nefl,...,m}, setd, := T®C%p(vn). Get T? = Iy by specT c {+1}.
Equation and Equation show {d,}I" | ¢ B(H)® o4 (H)" is a ¢p-intertwining
set of Clifford generators for C > 0 as per 1) in Definition[2.3.58| For all n € {1,...,m}, we
know Corollary yields twisted dynamic quantum gradient 8, = V":Ldn? and its
Laplacian A, = 8,0, as per 2) in Definition Proposition yields direct sum
quantum gradient V® = & 10n 1 K (H)o0 A () — L2(€BZ’:1 H(H)® A (), &) tre71)
given by

Vex = (01%,...,0mx) = (V" EarPy v ikdnPy) (3.131)
for all x € # (H)o0(A)y. Since A® = >t 1 Ay by 4) in Proposition|2.3.29, Lemma|2.3.59

implies

0,A% = (A® +4C-1)d, (3.132)

for all n€{1,...,m}. Note Equation lets us apply Theorem to show strictly
positive lower Ricci bounds in Example If we rescale each partial gradient of V®
as 0, — A0, for 1 >0, then 4C in Equation [3.132]is 1-4C instead.

We obtain noncommutative differential structures which define quantum optimal
transport distances of density operators evaluating in CAR-algebras. Yet in contrast to
Example [3.1.58] we use direct sum quantum gradients of twisted dynamic quantum
gradients induced by intertwining sets of Clifford generators. Equation [3.132|holds and
implies strictly positive lower Ricci bounds. We therefore obtain arbitrary lower Ricci
bounds by rescaling this example.

134



Remark 3.1.60. Example for H = C, dim¢ A < 0o, and fixed C = % is introduced
in [48]]. For all j € N, note p(v,4j+1) A (A ;) ,Qf(ifj)l c L2(A(A),T). If m = oo, then we
cannot use {0, },en as noncommutative directional derivatives since locality is violated
if we do not fix m < oo for Equation in Example [3.1.59

First and second quantisation of spectral triples. Connes’ program of non-
commutative geometry [67][69]1[1371[138] unifies continuous and discrete geometries
[1141[1971[198] using operator theory [29]1[192]1[1931[194]. His spectral reconstruction
theorem shows commutative real spectral triples are operator algebraic formulation
of compact spin geometry [68]]. All real spectral triples define noncommutative gauge
theories [51]1[197[[198]. Inner fluctuations of noncommutative Dirac operators [51][54]
[551[1971[198], the latter being given as part of real spectral triples, determine a spectral
action on gauge fields [51]1[52][53]. Following the spectral action principle of Connes and
Chamseddine [52]], it is used as action functional driving the dynamics of bosonic gauge
fields [51][197]1[198]]. This spectral paradigm derives the Standard Model of particle
physics [118] from almost commutative geometries [53], i.e. mixed continuous-discrete
noncommutative geometries. We review noncommutative gauge theory, give first and
second quantisation of spectral triples, and outline how the latter yields our ansatz to
study noncommutative gauge theories based on a proposed internalised spectral action
if we generalise to quantum optimal transport parametrised by gauge fields.

We review noncommutative gauge theory. All spectral triples (2(,H,D) consist of a
unital pre-C*-algebra 2, faithful unital *-representation 7 : 2l — %(H) over separable
Hilbert space H, as well as D € %%(H); with compact resolvent (cf. Definition 4.30 in
[[197]]). Moreover, note D satisfies properties showing it is a noncommutative analogue
of an Atiyah—Singer—Dirac operator. We say that (2, H,D) is a real spectral triple if it
is further equipped with real structure J on H intertwining with D s.t. the commutant
property and first-order condition

a(x),Jn(y) J 1 =0, |Dax)—n(x)D,Jn(y)*J 1| =0 (3.133)
[

are satisfied for all x,y € 2 (cf. Equation 4.3.1 in [197]]). The first-order condition as per
Equation[3.133]is an operator algebraic characterisation of D as differential operator of
order one. We ignore gradient operators here as they only signify even or odd dimension.
We may disregard the first-order condition [[54]] but do not do so here. First quantisation
of compact spin manifolds as per Example clarifies the above analogies as it gives
all commutative real spectral triples [68]]. Equation implies triviality of gauge
groups in this case. We see general real spectral triples are necessary to describe abelian
and non-abelian gauge theories [[123]. Second quantisation of spectral triples as per
Example yields description of the spectral action as per Equation in terms
of quantum statistical mechanics [35][36] as per Equation [3.150using quantum relative
entropy as per Definition[4.1.12] Two essential results in Example[3.1.62]are taken from
[565]. It leads us to formulate the internalised spectral action as per Equation (3.160
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CHAPTER 3. QUANTUM OPTIMAL TRANSPORT

To this end, we summarise relevant parts of noncommutative gauge theories defined
by real spectral triples satisfying the first-order condition. Let (2, H,D,J) be such a real
spectral triple. Norm closure of 2l generates unital C*-algebra A s.t. 1: A — %B(H) is
faithful unital *-representation. Its 2(-bimodule of differential one-forms is defined by

Q20 = {T € BED | 3ap, y)j_, <AxA: T= Y. 7(ap) Drly)-7(yp)D | (3.134)
k=1

(cf. Definition 4.36 in [197]). Closure of unbounded commutators in Equation is
ensured by the axioms of spectral triples. Moreover, get € € {+1} s.t. JDJ ! =¢D. For all
hermitian connections V: 2 — Q})(Ql), Theorem 6.15 and Theorem 6.16 in [197]] imply
the inner fluctuation of D defined by

Dr:=D+T+eJTJ ' (8.135)

with T:=V1y € QE(Q[)O 9B(H)y, yields real spectral triple (A, H,Dr,dJ) (cf. pp.112-114 in
[197]). We say that T' € Q})(Ql) N%(H)y, is a gauge field in this case. Proposition 6 in [54]
shows we have gauge semigroup

Inn(A,H,D):= {T e QL) NBH), | T is a gauge ﬁeld} (3.136)

of Q,H,D,dJ). Its semigroup structure is not relevant to us. The map 7' — Dr defined
on Inn(2(,H,D) is a deformation of noncommutative Dirac operators parametrised by
gauge fields. Assuming even A : R — [0,00) s.t. finite trace is ensured in Equation(3.137
below, the spectral action S : Inn(2(,H,D) — R is defined by

Sp(T) := tr (R(D7)) (3.137)

for all T € Inn(2(, H,D) (cf. Definition 7.1 in [197]). We give suitable A for our purposes
in Example The subscript of S; denotes its use as action functional driving the
dynamics of bosonic gauge fields (cf. Theorem 11.10 in [197]). There exist alternatives
for other gauge fields, e.g. the fermionic action (cf. Definition 7.1 in [[197]).

The spectral action is a spectral invariant of (A,H,D,J). Proposition 6.17 in [197]
shows each unitary Morita self-equivalences of (A, H,D,<J) is implemented by a unique
U = n(w)Jn(w)J L € %H) for u € %) s.t. Ty = n(w)Dna(w)—n(w)D € Inn(,H,D) is a
gauge field. Proposition 6.5 in [197] shows we have gauge group

S@LH,D):={U e %(H) | Ju e %): U =r@JnwJ '} =@/ %@, (3.138)

of (A,H,D,J) (cf. Definition 6.4 in [197]). Note %(A;) < %(A) as for Equation
since Aj={x€A | n(x)J = J*n(x)} < Z(A). For all U € &(A,H,D), we have D1, =UDU*
by the first-order condition. We therefore see Equation is invariant under gauge
transformations (cf. Lemma and Lemma|[A.1.92).
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We give first and second quantisation of spectral triples. Example gives first
quantisation of compact spin manifolds [68]. We further include general spectral triples
as their own first quantisation by convention. Example gives second quantisation
of spectral triples [55]. Remark[3.1.63|briefly reviews the terminology of first and second
quantisation as used in our discussion. Both underlying fundamental example classes
use non-twisted dynamic quantum gradients arising from weak, equivalently norm, dif-
ferentiation of trace-preserving C*-dynamical systems determined by noncommutative
Dirac operators, i.e. assumes fixed gauge field. Example and Example give
quantum optimal transport without considering spatial coordinates. Upon passing to
second quantisation, we introduce gauge fields as spatial coordinates. Example (3.1.64
generalises to quantum optimal transport parametrised by gauge fields via deforming
noncommutative Dirac operators as per Equation

We assume fixed gauge field and summarise results. First, Example [3.1.61| arises
from a conjugation group which splits into a spatial and quantum component as per
Equation We see quantum optimal transport is transversal to spatial optimal
transport in this case. Equation (3.140| shows the spatial component is generated by
a quantisation of the gradient w.r.t. the given Riemannian metric using the Clifford
action [197][198]]. Secondly, Example [3.1.62| rectifies transversality by quantising all
spatial coordinates as per Equation We instead have a description in terms of
quantum statistical mechanics without considering spatial coordinates. Equation (3.146
gives an explicit formula for Equation The formula is taken from Proposition 2.6
in [55]]. However, note we explicitly solve the associated implementation problem [[177]]
in Lemma Assuming trace-class, Equation [3.146]shows the given non-twisted dy-
namic quantum gradient is infinitesimal evolution of observables in wedged Heisenberg
representation at thermal equilibrium determined by a KMS-state [36] of the given
trace-preserving local C*-dynamical system. Up to sign, Corollary shows such
description transfers to quantum Laplacians by twice application. We therefore expect
properties of quantum optimal transport as stated in the introduction of this chapter.

Example 3.1.61. We assume commutative real spectral triples, i.e. first quantisation
of compact spin manifolds [68]. Let (X, g) be a compact spin manifold, S — X its spinor
bundle and D its Atiyah—Singer—Dirac operator [[68][[195][[197][198].

We have unital pre-C*-algebra C*°(X) and C*-algebra C(X) (cf. Example [A.1.18).
For all x € X, the finite-dimensional Clifford algebra S, = o/(T;X) has inner product
induced by the cotangent Riemannian metric. We extend pointwise left-multiplication
of scalars from C®°(X,T*X) to L2(X,S). This defines faithful unital *-representation
L:C(X)— B(L%X,8)). Fibrewise right-multiplication of elements in Clifford algebras
defines Clifford action ¢ : C®(X,T*X) — B(L*(X,S)). Up to L_;, D is the concatenation
of ¢ and the spin connection of (X, g), i.e. the unique lift of the Levi-Civita connection
associated to (X, g) from T*X to S. The charge conjugation Jx of S is a suitable real
structure on L2(X,S). Altogether, we construct the canonical commutative real spectral
triple (A,H,D,J) = (C®(X),L*(X,S),D,Jx) [68]. We assume the latter without loss of
generality. For details on the construction and our application of its properties, we refer
to Chapter 4 in [197] and Chapter 3 in [198].
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We know spectra of elements in # (L%(X,S));, are discrete by the spectral theorem
for self-adjoint unbounded operators (cf. Theorem 5.7 in [[184]]). Continuity of elements
in C(X) implies L(C(X))n.# (L%(X,S)) = 0 by the intermediate value theorem as spectra
of continuous functions on X are subsets of their images by compactness.

We claim the conjugation group AdP : R — Aut(B(L23(X,S))) of D given by

AdP(8) = eP gD (3.139)

for all £ € R and S € B(L%(X,S)) splits into a spatial and quantum component as per
Equation upon restriction to L(C(X)) & # (L%(X,S)) c B(L*(X,S)). We consider
their generators. If A € C*°(X), then the two conditions for Equation [2.189 are met for
H=L*X,S),2=D and S =L}. As per Theorem 4.20 in [197] and explained on pp.8-10
in [198], we obtain

ety = L AdP (L) =i(DLy —~LyD) = —ic(dh) (3.140)

t=0,w

for all A € C*°(X). Smoothness and Equation imply —ic(dh) € L(C*(X)) in each
case by the first-order property (cf. Equation 4.3.1 in [197]]). As such, Equation
integrates to Ad” | L)y - R — Aut(L(X)). Applying constructions in Example
H=L%*X,S) and D € #B(L*(X,S)), we see Equation yields non-twisted dynamic
quantum gradient V™ : % (L%(X,8))y — S2(L%(X,S)) given by

vamy = P = —

- AdP(T) = i(Dx —xD) (3.141)

t=0,w

for all x € Z(L%(X,S))o. Note i(Dx—xD) € Z(L*(X,S))y in each case by construction.
As such, Equation integrates to Ad” |J((L2(X7S)) ‘R — Aut(# (L%(X,S))).

Using L(C(X))n # (L*X,S)) = 0, note Equation and Equation together
integrate to AdP |L(C(X))®Z(L2(X,S)) ‘R — Aut(L(C(X))® # (L%(X,8S))) given by

D _ D D
Adt |L(C(X))®l(L2(X,S)) _Adt |L(C(X)) EB‘Adt |JL’(L2(X,S)) (3.142)

for all ¢ € R. Note Equation and Equation [3.141| are infinitesimal evolution of ob-
servables in Heisenberg representation (cf. pp.3-15 in [35]]). They are first quantisations
in the sense of Remark[3.1.63] Equation[3.140]in fact quantises the gradient on X w.r.t. g
using the Clifford action. We say that Ad” | Lc(x) 18 the spatial, and AdP | HILAX.S) the

quantum component of the time-evolution Ad” of observables.

Example shows the quantum gradient V4™ = V2 lets us define quantum op-
timal transport for the tracial AF-C*-algebra (% (L%(X,S)),tr). Assuming the spatial
gradient VP! yields a notion of spatial optimal transport for the tracial C*-algebra
(C(X), [dlvol|), e.g. as per [200], we see quantum optimal transport is transversal to
spatial optimal transport by the direct sum decomposition in Equation |3.142
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Spatiality of C(X), resp. L(C(X)), is obvious as spatial coordinates parametrise the
Riemannian manifold X and therefore observables given by elements in L(C(X)). We
consider L(C(X)) c B(L%(X,8S)) to formulate a necessary condition for spatiality here.
We use quantum relative entropy as per Definition We apply said condition in
Example to argue second quantisation quantises all, ergo considers no, spatial
coordinates. For all p € #(# (L%(X,S)), Ent(y,tr) € [-oco,00] is the relative entropy of u
w.r.t. tr as per Equation[4.12] Theorem [4.1.25|ensures it measures information required
to discriminate p and tr through observation by extending its use from the strongly
unital finite-trace case (cf. pp.1-11 in [163]). If A € C(X);, then Lemma [4.1.17| shows
there exists no weakly dense subset K < # (L%(X,8))nSYL?*(X,S)) = SYL%X,S)) and
C > 0 s.t. the map fij : K — C defined by

fn(T) = C~ 1 tr(L,T) (3.143)
for all T' € K extends to a uj € F(H(LA(X,S))) with

| Ent(up, tr)| < co. (3.144)

Indeed, 1) in Lemmal4.1.17|shows Equation [3.144)implies & € L(C(X))nS(L3(X,S)) = 0
since SH(L2(X,8)) c #(L%(X,S) (cf. Example . Assuming hyperfinite factor, our
necessary condition for spatiality is non-extension w.r.t. the canonical trace.

We motivate our condition. The volume form d|vol| is a non-atomic Radon measure
on X (cf. pp.299-306 in [[144]). Non-extension implies our measuring process of quantum
information as difference of observables from quantum white noise, up to musical iso-
morphisms, fails for all positive continuous ones parametrised by spatial coordinates.
Corollary shows said process, in contrast to any associated to relative entropy
w.r.t. [d|vol|, only considers differences on discrete spectra. Naturally, such a countable
process cannot discern observables as above by the intermediate value theorem. We see
our measuring process fails since it requires us to measure with absolute precision [84]
and this is prevented by infinitesimal length elements [67[][144].

Example 3.1.62. Let H be a separable Hilbert space and D € %%(H);, with compact
resolvent, e.g. given by a real spectral triple. We use finite-dimensional approximation

{H;}jen of H via eigenvectors as per Example 3.1.55| The setting of Example [3.1.56
requires orthogonal complex structure o on H s.t. it is Hj-reducible for all j € N. We

use the one in [55]. Let P, : H — E . be Hilbert space projections onto the eigenvectors
of D with non-negative, resp. non-positive eigenvalues. Set J := i(P, — P_). We directly
verify o is orthogonal complex structure on H s.t.

DJ=dJD. (3.145)

Equation (3.145|shows we are in the setting of Example([3.1.56, The second quantisation
map T — AT from %(H) to B(F(H[J))) exists (cf. pp.6-10 in [36]). Example [3.1.56|also
gives 7-preserving local C*-dynamical system (of (H[J]), R, Cliff,;(e*P)).
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For all ¢ € R and x € o/ (H[J]), Lemma shows

Cliff; (eP)(x) = A\ e!Plx \ e P! e o (HIJ). (3.146)

Equation [3.146]is the claimed explicit formula for Equation[3.126] Passing from D to |D|
in the second quantisation map avoids negative eigenvalues, i.e. the Dirac sea [55][195].
We prove Lemma|[C.2.1]by solving the associated implementation problem [177]. We say
that Cliff;(e’P) is implemented on & (H[J]) by /\eitw | in each case.

Following Equation [3.146], Equation links quantum optimal transport and
quantum statistical mechanics [35]][36]]. We use KMS-states below (cf. Definition 5.3.1 in
[36]). If e PPl € SL(H) for given inverse temperature p € R, then Proposition 2.6 in [55]]
specifies Example 5.3.2 in [36] by showing the unique KMSg-state of the 7-preserving
local C*-dynamical system (<f (H[J]), R, Cliff,;(e?*?)) has density operator

Pp:= tr(/\@_ﬁ|D|)_1 Ne PPle SHFHII).. (3.147)

Applying constructions in Example [3.1.56| to a; = Cliff,;(e?*?), Corollary [2.3.49| yields
non-twisted dynamic quantum gradient V3™ : of (H[J1)g — L2(<#(H[J1),7) given by

d
Vatmy = vZa(x) = —

= NeifPlx A e Pl (3.148)

t=0,w

for all x € o/ (H[J1)g. Note Equation then implies Equation is infinitesimal
evolution of observables in wedged Heisenberg representation at thermal equilibrium
determined by Pp. This is a second quantisation in the sense of Remark[3.1.63] Whereas
Equation has closed form as unbounded commutator, use of the infinite exterior
algebra on the right-hand side of Equation introduces converging double sums
with varying left-and right-multiplication of +i|D| preventing a ready closed form.

Example shows the quantum gradient V'™ = VZ« lets us define quantum
optimal transport for the tracial AF-C*-algebra (</(H[J]), ). Following our discussion
at the end of Example 7 < oo implies our necessary condition for spatiality is not
satisfied. For all u e £ (A (H[J])), Ent(u, 1) € [-00,00] is the relative entropy of u w.r.t. t
as per Equation We know o/ (H[J]) c L («/(H[J]),7) is weakly dense since T < co
(cf. Proposition [B.1.54). For all x € o/ (H[J]),, Corollary for p =14 shows

e = T(x) 1% € SN(A (HIJT)) (3.149)

as per Equation for K = o/(H[J]) has |Ent(uy, )| < co. Our necessary condition is
not satisfied. We see V'™ quantises all, ergo considers no, spatial coordinates. Assuming
commutative real spectral triple, VI subsumes the generators of both components on
the right-hand side of Equation because Equation is a second quantisation
of the unrestricted time-evolution as per Equation|3.139
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If H and D € %9%(H);, are given by a real spectral triple, commutative or not, then
we describe the spectral action as per Equation using the negative of quantum
relative entropy w.r.t. tr, i.e. von Neumann entropy (cf. p.17 in [163]). Let T be the fixed
gauge field, D7 :=D and Pr:=Pp. For all Le R, set A(1) :=log(1+e M)+ de A1 +e H) L.
Corollary 3.2 in [55]] implies 4 : R — [0,00) is even. Theorem 3.4 in [55] shows

Sy(T) = tr (R(D7)) = —tr (Prlog Pr) = — Ent (P}, tr) < co. (3.150)

Unfortunately, Equation [3.150| uses quantum relative entropy w.r.t. tr and not 7. We
want the latter for an ansatz to study the dynamics of gauge fields driven by varying
Equation[3.150]via deforming Equation[3.135] We propose to internalise Equation[3.150
as per Equation and generalise to Equation in Example Note [55] is
based on [52][54]]. We moreover refer to [197]] as comprehensive treatment of the latter.
The general noncommutative geometric approach to quantum thermodynamics used in
[565] is introduced and explained as part of [71]].

Remark 3.1.63. First and second quantisation denotes, to our knowledge, Hamiltonian
formalism for a single quantum system, resp. multiple, often countable infinitely many
interacting ones (cf. pp.1-38 in [188]). The latter arises as infinitely many copies of the
former by applying to it the second quantisation map. If we consider time-evolution
of fermions in Heisenberg representation (cf. pp.3-15 in [35] and pp.6-10 in [36]), then
Example indeed lifts time-evolution in Example [3.1.61] as per Equation by
mapping both given constituent semigroups to their wedged form.

Example |3.1.64] outlines how Example |3.1.62] specifically Equation |3.150] yields an
ansatz to study noncommutative gauge theories based on the internalised spectral ac-

tion as per Equation if we generalise to quantum optimal transport parametrised
by gauge fields. Let (A, H,D,J) be a real spectral triple. We suppress </ below as we use
its symbol for orthogonal complex structures as per Example For all gauge fields
T € Inn(A,H,D), we have Jr as per Example for Dt as per Equation If we
further have a map Inn : Inn(,H,D) — ¥(</(H)), then its associated internalisation
of Equation 3.150| using quantum relative entropy w.r.t. 7 is given by

SP=(T) = ~Ent((p32)" (Tnn(T)), 7] (3.151)

for all T € Inn(2(, H,D). Note Equation uses p, as per Equation in each
case. We generalise Equation to Equation in Example by considering
all normalised Radon measures on finite-dimensional spaces of admissible gauge fields
evaluating in «/(H) up to varying pj, as per Equation i.e. states on continuous
fields of AF-C*-algebras. If key technical challenges are solved in future work, then we
hope to study the dynamics of such generalised gauge fields described as gradient flows
driven by the internalised spectral action for the given parametrised quantum optimal
transport. We are motivated by the classical approach of Jordan, Kinderlehrer and Otto
for Fokker-Planck equations [[131]1[167][169].
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Example 3.1.64. Let (A,H,D,J) be a real spectral triple. We suppress J. For all gauge
fields T € Inn(2(, H, D), we have J7 as per Example[3.1.62|for D as per Equation [3.135
We do not know of a locally compact topology on Inn(2(, H,D) allowing for constructions
as below. We instead consider X < Inn(2(, H,D) s.t. four conditions are satisfied.

First, let (X, g) be a smooth Riemannian manifold. We equip T*X = T'X with its
canonical dual Riemannian metric. Secondly, let d|vol| be a finite unoriented volume
form, also called volume element, on X (cf. pp.299-306 in [[144]). Thirdly, let : X — R
be smooth s.t. e PDIP1l € SY(H) for all T € X. Fourthly, let

Ax = || SHITD = [] (A (H)) (3.152)
TeX TeX

determine both a smooth vector bundle and u.s.c. C*-bundle over X (cf. Definition 6.18
in [197]). Its space of continuous sections I'(Ax) is a C*-algebra with norm given by
IFllray) := suppex 1F ()l a1, for all F € T(Ax) (cf. Proposition 6.19 in [197]]). We
define l.s.c. faithful semi-finite trace fX 7d|vol| on I'(Ax) by setting

(f rdlvoll)(F)::f 7(F(T))d|vol| (3.153)
b X

for all F e I'(Ax).. We have tracial C*-algebra (I'(Ax), [ x Td|vol|) in the space of bounded

measurable sections L™(I'(Ax), [ x Td|vol|) (cf. Proposition and Proposition .
Note LA(T'(Ax), /- x Td|vol|) equipped with canonical left- and right-actions and pointwise
algebra involution is a symmetric W*-bimodule over L>(I'(Ax), J: x Td|voll).

We define noncommutative gradient as per Equation with domain

TP(Ax) = {F eT®(Ax) | VT € X : F(T) e (H[J1]) } (3.154)

Equation gives the fundamental compatibility condition for spatial and quantum
components. The latter assumes continuous action of I'*°(7"* X) on I'*°(A x) motivated by
tensor contraction. We allow for loss of regularity. Let VX : T®(Ax) — I'**(T*X ® Ax) be
a covariant derivative and € : I'°(T*X ® Ax) — I'(Ax) a bounded linear map. Assume
we define symmetric W*-derivation vh . IYAx) — L%(T(Ax), Jx tdIvol]) by setting

(VRF)(T):= ¢(VXF)(T) (3.155)

for all F € I'°(Ax) and T € X. We call it a spatial, or horizontal gradient. Applying
constructions in Example|3.1.62|to J7 and D7 in each case, we see Equation (3.146|lets
us define symmetric W*-derivation V¥ : T'3°(Ax) — I'(Ax) by setting

(V°F)(T) := % NePrIF(T) \ e~ 4P (3.156)
t=0,w

for all F e I'°(Ax) and T € X. We call it a total quantum, or vertical gradient.
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We define symmetric W*-derivation V:I'f°(Ax) — L2(T(Ax), fX td|vol|) by setting

(VF)(T):= (V*F)(T) + (V'F)(T) (3.157)

for all F e I'°(Ax) and T € X. Equation yields noncommutative gradient for a
mixed continuous-discrete noncommutative geometry. We define continuity equations
as per 2) in Definition by testing on I'}°(Ax) and therefore admissible paths as
per Definition Let f be symmetric representing function of an operator mean
and 6 € [0,1]. For all F,G € LY(T'(Ax), fX td|vol]), we define closed positive unbounded
quadratic form on L2(T'(Ay), / x Td|vol|) as per Theorem by setting

f.0 . f.0 b b b
QFb,Gb(W)'_fX’ﬂd(H[JT]),d(H[JT])(F(U) ,GWU)Y , W) )d|v01| (3.158)

for all W € L2(I'(Ay), [ x Td|vol|). If we show Equation extends to a quasi-entropy
for Ax, then it defines energy functionals as per Definition [3.1.16] Altogether, we define
dynamic transport distances as per Definition|3.1.33

We call these generalised quantum optimal transport distances parametrised by
gauge fields, or parametrised quantum optimal transport distances. If V” = 0, then V =
VY determines a mean quantum optimal transport for normalised averages of positive
bounded functionals on CAR-algebras as per Example The latter is recovered
as the singular case of dimension zero given by X = {pt} and d|vol| = §,t. We therefore
know it is indeed VY allowing for cross-fibre transport. How much non-ergodicity in the
AF-C*-setting is in fact due to a lack of such cross-fibre transport is unknown to us.

We generalise Equation [3.151| and define the internalised spectral action. For all
Fe s (T(Ax)), Ent/x 7dvoll(fy .= Ent(F, [y td|vol|) € [-oo,00] is the relative entropy of F
w.r.t. [y tdlvol| as per Equation Assume smooth map Inn : X — (< (H)) using
the w*-topology on .#(</(H)). For all T € X, we rewrite Equation as

S (id.scarazd7) = - Bnt{(p5])" (Inn(D)or, fX rdlvoll ). (3.159)

Note the right-hand side of Equation is infinite in general since it evaluates Dirac
measures. We consider a more direct definition by further subsuming precomposition
in Equation using more general internalisation maps. If we have weakly smooth
map Inn : (I'(Ax)) — F([(Ax)) w.r.t. the w*-topology on #(I'(Ax)), then we define
its associated internalised spectral action by setting

S},nn(u) = —Ent(Inn(,u),erdlvoll) (3.160)
for all ue #(I'(Ax)). Note Equation |3.160| transforms the spectral action into an action
functional on generalised gauge fields rather than mere points. An obvious but trivial

choice for the internalisation map Inn : Y(I'(Ax)) — #(I'(Ax)) is the identity map.
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We see our choice of internalisation map is essential. Specific forms, e.g. all of those
utilising f: X — R due to its use for density operators as per Equation [3.147} are of
interest. If we have a regularisation property for internalisation maps w.r.t. a weak
Riemannian geometry in the logarithmic mean setting, then Equation suggests a
gradient flow description of the dynamics of generalised gauge fields driven by the inter-
nalised spectral action. For details on relative entropy for W*-algebras, the logarithmic
mean setting and non-spatial lower Ricci bounds, we refer to Chapter

Let (S”_I\i’w(F(A x)) as per 2) in Definition equipped with |.|o-topology. We may
have to weaken it. Assume it has a weak Riemannian metric induced by the given
quasi-entropy as per Equation [3.158|in the logarithmic mean setting analogous to the
finite-dimensional case as per Definition [3.2.52] We use identical notation. Assume A :=
V*V has ker A = (14, )¢ to avoid non-ergodicity. Moreover, we demand stronger smooth
regularisation Inn : ¥(I'(Ax)) — !S’_Ii’oo(l“(AX)) from ||.llrax) - to |.llco-topology. We see
a weaker topology weakens our regularity assumption. Let F : (—¢,e) — F(I'(Ax)) with
F(0) = u be smooth. Equation [3.160]implies

d

de e=0

We want grad, Ent/x rdivoll — (A7) for all n € y_l\i’oo(F(A x))N(domA)’ in direct analogy
to Equation [4.145|in the proof of Proposition |4.2.24] If we do lift said finite-dimensional
pointwise case, then, for ¢ := (fT(lAX)dlvoll)_llAX e YNT(Ax)), Equation(3.161|is

SY(F(e) = ~dinngEnt/x ! (d, Tnn (F(0))) (3.161)

de e=0
If regularisation allows pointwise adjoining of the derivatives in Equation [3.162[s.t. we
adjoin to the given quasi-entropy precomposed with a well-behaved map, then we may
use it to express metric slopes as per Equation and control any EVI,-gradient
flow of S })nn [[81[160]. If we show lower Ricci bounds are Hessian lower bounds as per H)
in Definition for our choice of weak Riemannian geometry, then a given one may
use the above adjoining relation to impact the dynamics of #(I'(Ax)) driven by S }Jnn.
We must solve key technical challenges, ranging from our initial construction to
choice of internalisation map, its interplay with a suitable weak Riemannian structure
and the EVI,-gradient flow property for Ent/x 7@voll we may therefore seek to relax the
problem as follows. We use, as in the AF-C*-setting, canonical C*-bimodule structures.
If we instead consider general u.s.c. C*-bundles and C*-bimodule actions s.t. each fibre
in Equation is a tracial AF-C*-algebra, then we also consider Equation
for more general noncommutative gradients. Such disintegration of tracial W*-algebras
into direct integrals of factors follows from the von Neumann disintegration theorem
in operator theory (cf. Theorem IV.8.21 in [192]). We see fundamental example classes
using tracial AF-C*-algebras generating hyperfinite factors of type I and II by o-weak
closure are of particular interest. We thereby define general parametrised quantum
optimal transport. We view quantum optimal transport as its pointwise case since the
latter is the singular case of dimension zero.

SPR(FE) =~ [ duTnn (FO)), (A Tnn(w)’) (3.162)
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3.2 Accessibility components

Accessibility components of quantum optimal transport distances are complete geodesic
length-metric spaces. Metric geometry reduces to accessibility components. There may
exist uncountable infinitely many since sets of states at finite distance have identical
fixed parts under noncommutative heat semigroups of quantum Laplacians. Assuming
spectral gaps of quantum Laplacians and fixed parts, we use such fixed parts to classify
accessibility components of square integrable normal states. We in turn use the latter
classification for the coarse graining process since its assumptions are satisfied for all
accessibility components in the finite-dimensional setting.

Classification uses regularisation of normal states under heat flow. Assuming fixed
parts with integrable support, we show heat flow instantaneously regularises normal
states to be, possibly unboundedly, invertible up to fixed part. This uses compatibility
with compression and finite-dimensional approximation. Note we avoid any regularity
assumptions for noncommutative heat semigroups. Under assumptions as above, we use
such regularisation for classification since spectral gaps of square integrable normal
fixed parts imply integrable support. In the logarithmic mean setting and assuming
finitely supported fixed parts, we further use it to show heat flow induces finite-energy
admissible paths for all states with finite quantum relative entropy.

We show classification and regularisation by passing through the finite-dimensional
setting. In the latter setting, accessibility components are norm closed convex subsets of
states having identical fixed part. States at finite distance have support projections in
the unique compressed C*-subalgebra which is given by compressing with the support
projection of their common fixed part. Relative interiors consist of all invertible states
on, resp. densities in, such a given compressed C*-subalgebra. They are also connected
Riemannian manifolds with Riemannian metric induced by the given quasi-entropy.
Using finite-dimensionality, we directly verify heat flow yields finite energy paths from
relative boundaries to relative interiors. We thereby connect all states with identical
fixed part. This yields classification and regularisation in the finite-dimensional case.
Under assumptions as above, we extend regularisation and classification to the general
case. We require the notion of reducible support as finite-dimensional approximation of
support projections. We show it is implied by integrable support. We are therefore able
to pass through the finite-dimensional setting.

Structure. In Subsection we review support projections of normal states, as well
as spectral gaps. We introduce the notion of reducible support. In Subsection we
discuss both completely Markovian semigroups and Lindblad master equations, our use
of quantum Fokker-Planck equations, and subsequently study noncommutative heat
semigroups of quantum Laplacians. In Subsection [3.2.3) we apply the latter to classify
accessibility components of square integrable normal states as discussed above.

3.2.1 Support projections of normal states

We review canonical order-preserving bijections from projections of W*-algebras to faces
of normal state spaces. They are determined by support projections of normal states.
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In the AF-C*-setting, reducible support is finite-dimensional approximation of such
support projections. Theorem [3.2.18shows integrable support implies reducible support
as required. Standard references for convex geometry of norm closed convex subsets in
pre-duals of W*-algebras are [2][3]l. Standard reference for differential and Riemannian
geometry is [[144].

Faces of normal state spaces. Lemma represents faces of normal state
spaces of abstract tracial C*-algebras as per Definition and Remark This
uses normal state spaces of compressed C*-subalgebras and their canonical inclusions
as per 1) in Proposition[2.1.13] We use the modified standard pairing, in particular their
flat and sharp operators as per Definition and Remark

Let (M, 1) be a tracial W*-algebra and A c M a o-weakly dense C*-subalgebra. Ergo
M =L>*(A,7)and M, = L'(A,71). For all x€ L(A,1),, we have unique carrier projection
suppx € L®(A, 1) of {x°} (cf. Definition 3.20 and Lemma 3.21 in [2]). Each suppx is the
minimal projection in L*°(A, 1) s.t. x = x - suppx holds. If we have x = xp for a projection
p € L®(A,T), then suppx < p. Note x =xp, x = px and x = pxp are equivalent.

Definition 3.2.1. Let x€ L1(A,1),.

1) The carrier projection suppx € L®(A, 1) of {x”} is the support projection of x.

2) If x € LON, 1) for N < (L®°(A,1),7), then we say that suppfvx := 1y —suppx is the
kernel projection of x in N.

Notation 3.2.2. We suppress N in Definition [3.2.1|if N = L*°(A, 7).

Proposition 3.2.3. Let N c (L*°(A,1),1).

1) Let x € L\(N,7).. We have suppx € N. Furthermore, we have supp®x € N[14] and
suppjy x = comy, supp°x € N.

2) Let x,y € LY(A,1),. If 1(yp) = 0 for all projections p € L(A,1) s.t. ©(xp) =0, then
suppy < suppx.

Proof. Since comy, 14 = 1n, we know 1) by definition. Get 2) by Lemma 3.25 in [2]. [

Proposition [3.2.4| shows support projections are invariant under change of canonical
left- and right-actions. Let N < (L®(A,1),7) and x € L%, 7),. Using the latter and

following Remark [A.1.87] note 2) in Lemma shows

Fen (N0 = L (T ) = B (Tl o) (3.163)
and
T80 = Lyt (Therr, ) = BN (Therry ) (3.164)
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Proposition 3.2.4. Let N c (L>®(A,1),7). For all x€ L\(N, 7)., we have

1) suppx =Ty N (X(0,001) = Lz_vl (”ﬁan,N) = RITII (nﬁnRx,N)’

_ _7-1[,A _p-1(. A
2) SuPplc\/x - Fx’N(éo) _LN (”kerL%N) - RN (nkerRx,N)’

3) Lsuppx,N = COInLZ(N,T)Lsuppx,L"o(A,T) and Rsuppx,N = cOInLZ(N,T)Rsuppx,L"o(A,T)-

Proof. Let x € LY(N,7).. Note we have x = 2L N(X(0,00) and 0 = xI'y y(60) by functional
calculus. Thus minimality of support projections implies suppx < I'y ¥()(0,00]), hence
suppx - I'y N(X(0,00]) = suppx since both are projections. We prove the converse. For all

u e L%(A,1), let {uplnen C domL, y s.t. nﬁan(u) = |I.Il;-lim,enxu,. Using the latter in

each case and further suppx-I'x N(¥(0,00)) = suppx, Equation 3.163|lets us calculate

| suppa-ull, = | Loupprrn(rom v (Fozey @) I
= ”Lsuppx,N(ﬂﬁan,N(u)) ”T
= }}g\} ”Lsuppx,N(xun)”r

= 178, @, = ITen (x00) - 2,

for all u € L%(A, 7). Since suppx < 2 N(X(0,001), g€t suppx = I'y N(X(0,00)) and therefore
1) by Equation [3.163| Then suppf\,x =1y — T’y N(x(0,001) = I'x,n(80) by functional calculus
and we have 2) by Equation [3.164] Using 1), get 3) by Corollary [B.2.35] O

Theorem 3.35 in [2] classifies norm closed convex subsets of normal state space using
support projections. We review this below for abstract tracial C*-algebras. Let V be a
normed vector space and K ¢V a norm closed convex subset. Its relative interior

relintK:{u€K|Vn€KElt>1: tu+(1—t)neK} (3.165)

is open, and its relative boundary 0K = K \relint K is closed in relative topology. A norm
closed convex subset & c K is a face of K if for all x,y € K, we know (1 —¢)x +ty € & for
any t €(0,1) implies x,y € &.

Lemma 3.2.5. For all projections p € L™(A, 1), we know

b
Fa(p):= {x ELI(A,‘L')+ | lxll1 =1, suppx Sp} = yN(A[p]) (3.166)

is a face of SN(A). Furthermore, the map p — Fa(p) from projections in L™(A,T) to
faces of #N(A) is an order-preserving bijection.
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Proof. We use 1) in Proposition [2.1.13| here and throughout our discussion. Using 1) in
Theorem 3.35 and Lemma 3.21 in [2]], we obtain a face

b
Fa)={ne 7N | up)=1} ={re LA, | lxl =1, suppx<p}  (3.167)

of #N(A) in each case. Theorem 3.35 in [2] states the map p — ZF(p) from projections
in L®(A,1) to faces of .#N(A) is an order-preserving bijection. Let p € L™(A,7) be a
projection. If x € 4 (p), then suppx < p implies suppx - p = suppx and therefore x = xp
by minimality. Thus x € L°(A[p], 7).+ by Lemma hence x” € #N(A[p]). The converse
follows because x” € #N(A[ p)) likewise implies x = xp, which in turn implies suppx < p
by Lemma 3.21 in [_2]. O

Definition 3.2.6. For all u e Ll(A,T)Z, set

1) supppu :=suppfu and call supp u the support projection of p,

2) Fa(p) :=Fa(suppp) and call F4(u) the face of on A.

Remark 3.2.7. Let ue L1(A,1)". For all projections p € L®(A,1) s.t. supp it < p, we have
pe LY(Alp],7)° and therefore F () = Z Alp1(1) by Lemma

Corollary 3.2.8. Let p,q € L°°(A, 1) be projections.

1) We have p < q if and only if #N(A[p]) ¢ #N(Alq)).

2) Assume p <q. If K < #N(Alp)) is a face, then K c #N(A[q)) is a face.

Proof. Apply Lemma (3.2.5 O]

Remark 3.2.9. Let p € L®(A,1) be a projection. If u € #N(A[p]), then suppu < p by

Lemma and therefore Z 4 (1) < #N(A[p]) by 1) in Corollary If K <« #N(Alp])
is a face, then K c #N(A) is a face by 2) in Corollary

Corollary 3.2.10. For all ue #N(A), we have F o(u) = {u} if and only if u is pure.

Proof. Let pe #N(A). If F 4(u) = {u}, then purity of u follows by the face property. As-
sume p is pure. We know K :={u} c FN(A[p)) is a face. Using 2) in Corollary @I and
following Remark Lemma [3.2.5| yields unique projection g € L*(A[p]l, 1) s.t. we
have K = #(Alq]). Since u € K, the lemma further shows suppu < ¢ and therefore
F A(u) c K. We obtain F 4 (u) = {u} as claimed. O

Let p € L*°(A, 1) be a projection. Note A[p]* mGL(L"O(A[p],T))b < Alpl; open in norm
topology. Using real vector space structure, we see A[p]; NGL(L>*(A[p], 7))’ is a Banach
manifold. We have =?_I\i’oo(A[p]) = #No(A[p]) NnGL(L®(A[p], 7))’ by boundedness.
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Corollary 3.2.11. Let p € L°°(A, 1) be a projection s.t. T(p) < oco.

1) We have embedded Banach submanifold

FNP(Alp]) = relint #N°(A[ p]) c A[p]; N GLL™(A[p],7))’. (3.168)

2) For all pe #N(Alpl), we have

2.1) Fa(w) = FN(Alp)) if and only if pe FN(Alp)),
2.2) Fa(pw) <0 N(Alp)) if and only if p¢ SN (Alp).

Proof. Set ¢, := 7(p)~1p°. We show 1). For all € #N°(A[p]), we have p € y_l\i’oo(A[p]) if
and only if fu € GL(L*°(A[p], 7)) by 2) in Definition [2.1.11] In particular, the equivalence
ensures ¢, € y_l\i’oo(A[p]). For all p € relint.#N°(A[p]), there exists ¢ > 1 s.t.

pz——&p 20, (3.169)

Since ¢, € # ™ (A[p)), note Equation|3.169|shows relint #N°(A[p]) c # ;™ (A[p]). We
directly verify the converse. Thus Equation [3.168| holds, hence

-1
. N,0c0 _
relint. #N°(A[p]) = (r| Alpl LU A[p],mb) 1). (3.170)

Equation implies 1) by the submersion theorem [144].

We show 2). For all p e #N(A[p)), u e SN (Alp)) if and only if Ty roo(a(p1,1)(80) = 0
by 1) in Definition Proposition further shows the latter is equivalent to
suppp = p. Then 1) in Corollary yields 2.1). Lemma [3.2.5| shows suppu < p in
each case, i.e. 4 (1) c SN(A[p]) by 1) in Corollaryw Using the latter and 2.1), note
Equation for relint. #N(A[p]) derives 2.2) by contradiction. O

Support projections in the AF-C*-setting. Definition gives reducible
support. Theorem [3.2.18| shows integrable support implies reducible support. Spectral
gaps imply integrable support. Lemma shows spectral gaps of square integrable
positive elements are limits of spectral gaps of their restrictions. This shows the utility

of assuming spectral gaps in order to use finite-dimensional approximation.
Let H be a Hilbert space. Let (A, 1) be a tracial AF-C*-algebra.

Lemma 3.2.12. Let T = sr-lim,enT, on H. If T, =0 for all n €N, then
0 <limsup || (¥0.00/(T) = X(0.00/(Tn)) @) 7 < 2[|80(T)W) | (3.171)
JeN
forall ue H.
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Proof. For all € >0, we define g, € Cy([0,00)) by setting

)= et ift<e,
Eelt)= 1 else.

By construction, get g.(0) =0, [g¢lloo =1 and 0 < ¥(0,c0] — & < I — g¢ in each case. We
moreover have pointwise convergence Y (0.oo] = lim¢|o g, on [0,00). Let S € %%(H)... Note

X(0,001(8) = Tims and §o(S) = yers (cf. Remark[A.1.87). Thus y(0,c0)(S) = s-lim, | g:(S) by
uniform boundedness, hence §¢(S) = s-lim;|o 1 - g.(S).

Let u € H and € > 0. Then [[(¥(0,00/(T) — ge(T)@W)lg < I — g(T))w)la, as well as
1(X0,001(TR) = 8e(TN W)l < I — ge(Ty))w)llg for all n € N, by functional calculus. For
all n € N, we therefore bound [|(¥(0,001(T) — X(0.001(T»)@)llr from above by

(I - (D)@ 7 + | (I - (T @) g + | (8(T) - g(T)) W) - (3.172)

Since g, € Cp([0,00), we know g.(T) = s-lim,,en g¢(T) by Lemma Applying the
latter to Equation[3.172| shows

0 = limsup | (xi000(T) = X0 0al T)) @) = 2| (I = ge( D)) (3.173)

Using nigerr = s-limg |0 I —g¢(T), letting € | 0 in Equation|3.173|yields Equation(3.171l O

For all T € %%(H).., we have spectral gap o(T) =inf{A >0 | A € spec T'} and say that
T has spectral gap if o(T) > 0 (cf. Definition [A.2.31). Definition gives spectral
gaps of positive measurable operators and normal positive bounded functionals. Using
canonical left- and right-actions, Proposition [3.2.14] recovers spectral gaps of positive
unbounded operators. Spectral gaps are invariant under compression. For details on
spectral gaps of positive unbounded operators, we refer to Subsection

Definition 3.2.13. Let N c (L°°(4,1),1).

1) For all x € L°(N, 1), we call o(x):=inf{1>0| A € specre(4 )%} the spectral gap of
x. We further say that x has spectral gap if o(x) > 0.

2) Forall pe LA, 1), set o(u) := o(#p) and call o(u) the spectral gap of . We further
say that y has spectral gap if o(u) > 0.

Proposition 3.2.14. Let N c (L™(A, 1), 7). For all x € L°(N,1),, we have

o(x) = inf{A >0| A€ spech} =0(Lyn)=0(RxnN). (3.174)
Proof. Let x € L°(N, 7). Thus Specreo(4 )X = specy xU{0} by 1) in Corollary B.2.35| hence

we obtain the first identity in Equation [3.174] by positivity. The second and third one
follow at once from 2) in Proposition [B.1.70|and 2) in Lemma [B.1.72 O
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Remark 3.2.15. Let N c(L*(A,1),7) and p € Ll(N,T)b. Note Proposition [B.1.51| shows
we have pe LYV, 7Y if and only if #u € L1(N,1),. Proposition [3.2.14|further implies

o(u) = inf{)t >0| e spechju} =0 (Lyyn) = 0(Ryun).- (3.175)

Equation [3.175| holds if N c (L*°(A,1),7) lies in one of the two classes of compression
given in Subsection [2.1.2] i.e. either if we compress to induced AF-C*-bimodules or if
we compress with projections. We use this throughout our discussion.

We use the following estimate. For all z € LY(A, ), and j € N, 1) in Proposition[2.2.51
and 2) in Lemma [2.2.52| show

__A A 2

Lemma 3.2.16. For all x € L%(A, 1), we have
D o(x) =limjeno(x;),
2) X(0,001(%) = s-1im jen (0,001 1) i T (X(0,001(%)) < 00.

Proof. Following Remark Proposition ensures results for spectral gaps
of positive unbounded operators likewise apply to spectral gaps of positive measurable
operators, resp. normal positive bounded functionals. Let x € L2(A, 7),. For all j € N, get
0(x;) = 0(Ly,a;) by Proposition Theorem states Ly = sr-limjen Ly,

We show 1). Strong resolvent convergence as above implies limsup jen 0(x;) < 0(x) by
Lemma We show the converse. If g(x) = 0, then our claim follows by positivity
of spectral gaps. We assume o(x) > 0 without loss of generality. Thus x # 0, hence x; # 0
and therefore o(x;) > 0 for a.e. j € N by finite-dimensionality. We assume x; # 0 and
thereby o(x;) > 0 for all j € N without loss of generality. For all j € N, we have u € A j
s.t. xju; = o(xj)u; and |u |; = 1 by finite-dimensionality.

Let jeN. Let veimLy; o, and w € Aj s.t. v = x;w. Note x; = nj‘(x) by construction.
Get ApcdomL,ndom/—-L A ) by square integrability. We have

v:xjw:xw—(I—n?)(x)w. (3.177)
We know A+A = A*+. Moreover, we have X0.001(x)x = x by functional calculus. Using

J
each of the latter, Equation [3.177/implies

v= nj.‘(v) = n;‘(xw) (3.178)

and

20,0010 = XW = (0,001 (I = 7% ) (@0 (3.179)
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Equation |3.178 and Equation [3.179| show

74 (10001000 = 0 = 1 (10,001 (I = 74 ) (W0 ). (3.180)

Expanding xw = x;w + (I - ) (x)w and using AjA = A; for the second summand in
the final term below, we apply Equation |3.180|in order to estimate

(7% (X(0.001@)),0)., = 0117 = (I = 78 ()W, Y0001 (V)
= ol = (I - ) @w, 2w — x0,00/() (I — 75 (@),
= vl = || (I - 7)@w |2 + || xo 1@ (I - 4)@w]?
> ol - ||(I - 7).

Assume v =’ and w = o(x j)_luj . The above estimate yields

0001?17 = (7 (0,000 ), u ), 2 1= o)) 2| (1 = ) ohad! | 7. (3.181)

We show |(I - n;‘.‘ )(x)u’ |2 = 0. We calculate

(7= ) ||} = [’ = e |7
= [lxw/ |} - 2Re (xu? xjud), + |0}
= |lx’ | - 20(x)Re (xu,u’ ). +o(x,)?
= Ju? % - 0,2,

Set y:=x2 € L1(A,7),. Then V¥ = x by definition. Equation |3.176|for z = y shows

A A 2 _
g Lyjnj sLn?(ﬂ)—Lx?. (3.182)

Self-adjointness and Equation [3.182 show
w7 = (vl w?), = (yju 0y, < (B ), = o). (3.183)
Thus 0 < ||({ - n}‘.‘)(x)ujllg = IIquII% - (T(xj)2 <0, hence ||(I — nj‘)(x)ujllg = 0. Applying the

latter to Equation |3.181]yields

”X(O,oo](.?C)uj”? = (nj-‘ (X(O,m](x)uj),uj>T >1. (3.184)
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For all j € N, choice of u/ and Equation [3.184|show

o(xj)= <xjuj,uj>T = (xuj,uj>T > U(x)”)c(o,oo](x)uj ||3 = o(x). (3.185)

Equation 3.185/implies limsup ;e 0(x;) = 0(x). Then 1) follows as discussed above.
We show 2). Using 2) in Lemma note Equation [3.163] and Equation [3.164
ensure Lemma (3.2.12|implies 2) if

limsup || x(0,001(Lx, )|, =0 (3.186)
JeN

for all u € imkerL,. We reduce to u € kerL, N L®°(A, 7). For all v € L>®(A, 1), we see

Equation [3.164|shows

Ter 1, () = Lo (v) = So(x)v € ker L, N L®(A, 7). (3.187)

Note 2) in Proposition [2.1.20 shows Ay < L?*®(A,71) c L?%(A,7) is |.||;-dense. Let
u € kerL, and fix arbitrary {u,}nen © L?°(A,1) s.t. u = |.ll;-limpen uy,. For all JeN
and n € N, we have nﬁem(un) ekerL, N L*(A, 1) by Equation|3.187/and estimate

[0 eatpull, = X001 e, @, < 1= unl, + [ X001 Therr, @), (3.188)

as non-trivial projections have norm one. Equation [3.188/implies Equation [3.186|if

limsup | x(0,c0/(x)u, =0 (3.189)
JeN

for all u e ker L, NL*°(A, ).

We show Equation Assume 7()(0,001(x)) < 00. Set y := x + ¥(0,00](x) € L2(A,1),.
Note ¥(0,001(¥) = X(0,001(x) and o(y) = 1 by functional calculus. We know restriction maps
are positivity-preserving by Proposition For all j €N, get x; < y; = x; + X(0,00](X);
and therefore

X(0,001(% ) = SUPPX; < SUPP Y = X(0,001(¥;) (3.190)

by 2) in Proposition [3.2.3| and 1) in Proposition Note 2) in the latter proposition
shows kerL, = kerL, since we have y(0,00]() = X(0,001(). For all u € ker L, NL*(A,7) =
kerL,NL*(A,7) and j €N, we calculate

0= (yu,u), = (yju,u)+ (I -4)pu,u),

= U(yj)”)((O,oo](yj)u”? +((I- nj-‘)(y)u,u%.
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For all j € N, we have [ x(0.c01(x))zllI < l(0,.001(¥,)ulI? by Equation [3.190| and further
(I - n;‘.‘)(y)u,u>T| < I - Jrj.‘)(x)IITIIuIIOOIIuIIT < 0o by reducing to kerL, n L®(A, 7). We
also use 1) for lim;en0(y;) = 1, and note 3) in Proposition [2.1.26, Altogether, we have

0= (yu,u)=limsup(yju,u) =limsup ||X(0,oo](xj)u||$ >0 (3.191)
JEN JeN

for all u € kerxNL*°(A,1). Equation|3.191|shows Equation(3.189] We see Equation|3.186
and therefore 2) follows as discussed above. O

Definition 3.2.17. Let x € L1(A,7),. We say that x has
1) integrable support if T(suppx) < oo,
2) reducible support if suppx = s-lim jen supp ;.

Theorem 3.2.18. Let (A,7) be a tracial AF-C*-algebra. Let x € LY(A,71),. If we have
T(suppx) < oo, then suppx = s-lim jen suppx;.

Proof. Theorem [2.2.53| states L = sr-limjenLy;. Using 2) in Lemma B.1.7 2[, as well as

1) and 2) in Proposition 3.2.4] Equation [3.163| and Equation [3.164| show Lemma |3.2.12
implies our claim if

lim sup || SuUppx;-u ||T =0 (3.192)
J€eN

for all u € kerL,. Note 1) in Proposition shows suppx = ¥(0,001(v/%) by positivity
and functional calculus. For all j € N, get suppx; = x(0,001(\/%X;)- Equation forz=x
further shows 7(,/x;p) = 0 for all projections p € A; s.t. r(n;‘(\/i)p) =0.

For all j € N, 2) in Proposition and 1) in Proposition therefore show

X000 (v/37) = X000 (7 (V) (3.193)

Thus 1) in Proposition [3.2.4] and 2) in Lemma [3.2.16| show

suppx = s-lim supp n?(\/o_c) =s-lim y(0,00] (nj.‘(\/a_c)), (3.194)
JEN JjeN

hence Equation [3.193|and Equation |3.194]let us estimate

0= || suppx-u”? =lim ||X(0,oo](n§‘(\/a_c)) . u||3 > limsup || suppx; - u||§ >0 (3.195)
JeEN JjeN

for all u € kerL,. Equation (3.195 immediately shows Equation [3.192 We obtain our
claim as described above. O
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Corollary 3.2.19. If 1 < oo, then all x € LY(A, 1), have reducible support.

Proof. Apply Theorem (3.2.18 O

Corollary 3.2.20. If x € LY(A, 1), has spectral gap, then x has reducible support.

Proof. Note 1) in Proposition shows x = o(x) - suppx by functional calculus. Thus
7(suppx) < o(x) 1 7(x) < 0o since o(x) > 0, hence Theorem [3.2.18| applies. O

Theorem gives sufficient conditions for reducible support. Non-integrability
does not exclude reducible support in general. All injective x € L1(A, 1), have reducible
support by Lemma (cf. Proposition [A.1.88). If (A, 1) = (# (H),tr) for a separable
Hilbert space H, then Example |3.2.21| shows integrable support is equivalent to being
a finite-dimensional matrix.

Example 3.2.21. Let H be a separable Hilbert space. Assume (A,7) = (# (H),tr). Let
x € S1(H). There exists U € %(%(H)) s.t. UxU* has diagonal form. We know the latter
is determined by {A,},en ©[0,00) up to reordering. Applications of unitary conjugations
are normal unital *-homomorphisms. Thus suppx = U*(suppUxU *)U by LemmalA.1.92|
and Corollary hence tr(suppx) = tr(suppUxU™*). Ergo 7(suppx) < oo if and only
if 1, =0 for a.e. n €N, i.e. tr(suppx) < oo if and only if suppx € £ (H)g = Upen M5 (C).

3.2.2 Noncommutative heat semigroups of quantum Laplacians

Noncommutative heat semigroups of quantum Laplacians are trace-preserving, as well
as completely Markovian. In the finite-dimensional setting, self-adjointness implies
quantum Laplacians satisfy, up to sign, a quantum Fokker-Planck equation with van-
ishing drift term [121], i.e. only diffusion term. The latter solve special cases of general
Lindblad master equations [82][121][187] describing purely irreversible time-evolution
of dissipative quantum systems [[35]1[36]1[82]1[1211[163]1[188]. Of course, the sign occurs
since negatives of quantum Laplacians generate noncommutative heat semigroups.

We view such diffusion terms of quantum Fokker-Planck equations as infinitesimal
applications of quantum channels [28][73] transmitting change of states of the given
quantum system determined by irreversible interaction with its environment [62]][14 1.
The extension [45][95] of Landauer’s principle [142]][143] gives strictly positive lower
bounds on production of quantum entropy upon application of quantum channels due
to minimal heat dissipation [15][44][181]. Following a maximum entropy production
principle [91]][92]1[155]], we select noise diffusion terms in the finite-dimensional setting
by maximising production of quantum entropy under constraints on energy spent and
assume stability under scaling limits. Following our discussion of the coarse graining
process in Subsection [3.3.2] we show quantum Laplacians satisfy, up to sign, a quantum
Fokker-Planck equation with vanishing drift term in scaling limit, i.e. only noise diffu-
sion term. Altogether, we therefore view quantum Laplacians as generators of quantum
noise evolution in Subsection [4.2.3] and obtain a description of quantum Laplacians in
terms of both quantum statistical mechanics [[35][36] and quantum information theory
[62] as claimed in the introduction of this chapter.
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We require regularisation of normal states under heat flow. Theorem [3.2.40| shows
such regularisation by combining compressing with support projections of normal fixed
states and finite-dimensional approximation. This uses compatibility with compression
and finite-dimensional approximation. As such, each step of the coarse graining process
terminates at accessibility components in the finite-dimensional setting s.t. heat flow
maps to their relative interiors for all non-zero times. Standard references for quantum
statistical mechanics are [35][36], [82], [121]], [163] and [188]]. Standard reference for
quantum information theory is [62]. We further use and refer to [45] as comprehensive
treatment of the quantum statistical mechanics of quantum information.

Completely Markovian semigroups. We discuss both completely Markovian
semigroups and Lindblad master equations, as well as their special case of quantum
Fokker-Planck equations. Generalising the uniformly continuous case [61]1[150][149]
applied to open quantum systems [[79]1[801[811[115], completely Markovian semigroups
[83]185][86] describe time-evolution of dissipative quantum systems weakly coupled to a
heat bath [82]][[121][187]. Symmetric C*-derivations are noncommutative gradients and
define Laplacians generating completely Markovian noncommutative heat semigroups
[631[65]. Following Remark we specialise to the AF-C*-setting in order to study
noncommutative heat semigroups of quantum Laplacians.

Definition [3.2.22]gives completely Markovian semigroups for tracial C*-algebras. We
use completely positive and completely Markovian maps (cf. Definition and Defi-

nition|A.1.54). Lemma(3.2.23| gives sufficient conditions for satisfying Equation|3.196|as
special case of general Lindblad master equations [82][121][187]]. This yields Lindblad

decompositions as per Definition Following Remark Equation isa
quantum Fokker-Planck equation with drift and diffusion terms as per Equation [3.209
We view such diffusion terms as infinitesimal applications of quantum channels [28][|73]]
transmitting change of states of the given quantum system determined by irreversible
interaction with its environment [62][141]. If self-adjointness in the finite-dimensional
setting is given, then Corollary [3.2.25| shows we may assume vanishing drift term.

Let (A, 1) be a tracial C*-algebra.

Definition 3.2.22. A semigroup G :[0,00) — B(L*(A, 1)) is completely Markovian if
G;:L°°(A,1) — L*°(A,7) is a completely Markovian normal map for all ¢ = 0.

Lemma 3.2.23. Assume 7 < co. Let S € B(L*(A,1));, s.t. S #0, S(L®(A,1)) c L™®(A, 1)
and S(14) = 0. We have semigroup G :[0,00) — B(L®(A,1)) by setting Gts = et for
all t =0. If S : L*(A,1) — L*(A,1) is normal and GS :[0,00) — B(L®(A,1)) is a
completely Markovian semigroup, then there exists H € L™(A,1),, completely positive
normal ¢ : L°(A,7) — L®(A,1) with |lp(1a)lle = 1, and C > 0 satisfying the Lindblad
master equation

C
S(x) = ilH,x]+ 5(z<p<x) ~{p(1a),3}) (3.196)
for all x e L*(A,1).
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Proof. Note GS : [0,00) — B(L™(A, 7)) is a semigroup by boundedness and functional
calculus. Assume S : L®(A,7) — L°(A, 1) is normal and G* : [0,00) — B(L®(A, 1)) is
a completely Markovian semigroup. Set of := Lzc4 1)(A). Then of” = Lo 1)(L™(A, 1))
is the o-weak closure (cf. Proposition[A.1.34]and Proposition[B.1.9). Theorem 3.1 in [61]
applies to the canonical lift of GS to «/". For all ¢ = 0, set

- S, -
ST = LLOO(A,T)OS OLL(}O(A,T)’ Gt T = LLOO(A,T)OGf OLLgO(A,T)' (3.197)

We have Gf’T = ¢!S" in each case by norm differentiation. Since *-homomorphisms are
completely positive (cf. Example [A.1.47), conjugation with canonical left-actions as per
Equation preserves complete positivity. Moreover, normality is preserved by the
GNS-construction (cf. Proposition [B.1.9). Thus G5 : [0,00) — (") is a uniformly
Il 7-continuous semigroup s.t. G, : /" — /" is a completely Markovian normal
map for all £ =0, hence Theorem 3.1 in [61]] applies.

We apply Theorem 3.1 in [61]. The theorem yields H' € of Z and completely positive
oot — A" st

. 1
ST(LJC,L‘X’(A,T)) =1 [HT’Lx,LO"(A,T)] + (PT (Lx,L“’(A,T)) - §{¢T(I),Lx,LOO(AJ)} (8.198)

for all x € L®(A,1). Using ST : &/ — /" normal, Equation [3.198|implies ¢ : o — 7"
is normal by rearranging terms accordingly. Set

H:=Lizp o oH oLio@n, ¢° = Lz o9  oLisa. (3.199)
Since we conjugate with normal *-homomorphisms, get H € L°°(A, 1), and completely

positive normal ¢° : L®(A,7) — L*®(A,1). Using the latter, applying Equation [3.197
and Equation [3.199|to Equation [3.198| shows

1
S(x) = i[H,x] + 5(2(ps(x) ~{p5(1),5}) (3.200)

for all x € L®(A,1). Note ¢5(14) = 0 implies ¢° = 0 by positivity-preservation. Since
H e L®(A,1),, as well as S € B(L%(A, 1)), and S # 0, Equation [3.200 shows ¢S(14) #0
by self-adjointness. Equation [3.200| therefore shows

H, ¢:= o] 1e°, C:= o), (3.201)

satisfy Equation |3.196|for S as claimed. O
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Definition 3.2.24. Assume the setting of Lemma [3.2.23
1) We call G® : [0,00) — B(L(A, 1)) the induced semigroup of S.

2) If S|peo(a,r) : L(A,7) — L*°(A, 1) is normal and GS completely Markovian, then
we call (H,¢,C) as per Equation |3.196|a Lindblad decomposition of S.

Corollary 3.2.25. Assume A is finite-dimensional. Let S € B(A)j, s.t. S#0and S(14) =
0. If S has completely Markovian induced semigroup, then there exists completely positive
self-adjoint normal ¢ : A — A with |l¢(1a)le =1 and C >0 s.t. (0,¢,C) is a Lindblad
decomposition of S.

Proof. We have finite-dimensional tracial W*-algebra (%(A),tr). For all T € %(A), we
decompose T' = Re(T') + i Im(T') into real and imaginary parts

T T-T*
, Im(T') =—1i
2
as per 1) in Proposition(B.1.47| Equation(3.202|yields 28(A) = B(A);, @ B(A);, using direct
sum of real vector spaces. Let T'€ B(A). We have T € %B(A);, if and only if Im(7T") = 0. For
all u,veA,set x:=v*v,y:=uu* € A, and calculate

Re(T) = - (3.202)

(Lreu,u), =0 v, T*(y), = (v,vT* (), = (V,R1:;)(V)), = (R(p+(yy*(),v) . (3.203)

For all y € A, we have T*(y) = 0 if and only if (T*(y))* = 0 since A, c Aj. Using the
latter and 3) in Proposition Equation implies T is positivity-preserving
if and only if T is. For all n € N, we argue analogously upon replacing (A,7) with
the finite-dimensional tracial C*-algebra (A ® M, (C), T ® tr,,). Altogether, we know T is
completely positive if and only if 7 is. We may also use Proposition[2.1.24and reduce to
Choi’s theorem [82] for pairs of summands in A = &} , M, (C), i.e. representations as per
Equation up to conjugation with projections, for alternative proof. If T' € 28(A);, is
completely positive, then the first identity in Equation shows Re(T") is completely
positive, and the second one Re(T')(14) =T(14) since T(14) =T*(14) by Im(T') = 0.

Normality is equivalent to boundedness in the finite-dimensional setting. Assume S
has completely Markovian induced semigroup. We are in the setting of Lemma [3.2.23
Let (H,¢,C) be a Lindblad decomposition of S. Note [H, —] € 28(A);,. Using the latter
and S € B(A);, Equation and Equation show

S =Re(S) = g(ZRe((p) ~{p(14), -}}, 0=Tm(S) = ilH, -]+ iCTm(y). (3.204)

Using [H,14] = 0, the second identity in Equation [3.204] shows Im(S)(14) = 0 at once
and therefore Re(¢)(14) = ¢(14). Thus [|Re(p)(14)lloo = Il9(14)llcoc = 1, hence we have
completely positive self-adjoint normal Re(¢p) : A — A with |Re(¢)(14)llcoc = 1 since
¢ : A — A is completely positive normal with [¢p(14)]lco = 1 by hypothesis. The first
identity in Equation shows (0,Re(¢),C) is Lindblad decomposition of S. O
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We show Equation is a special case of a general Lindblad master equation
(cf. Equation 5.2.29 in [121]). Assume the setting of Lemma We use notation
from its proof. Assume A is separable. Note 7 < co ensures L2(A, 1) is separable.

Let (H,¢,C) be a Lindblad decomposition of S. Upon conjugation with canonical
left-actions as per Equation Theorem 3.1 in [61] yields Lindblad decomposition
(HT,¢",C) of ST. Using separability of L%(A, 7) in order to have a sequence, Theorem 2.3
in Chapter 9 in [82] shows there exist {W,},,en € B(L?%(A, 7)) s.t. we have ¥,y WETW, =
w-limpyen 2" ; W, TW, and further

o' (T =Y WiTW, (3.205)

neN

for all T € o/”. Using unitality of canonical left-actions of tracial W*-algebras, we have
Y enWiW, <1 since ¢ : o' — of" is positivity-preserving with [[¢T(I)|s = 1. This lets
us relax unitality Y ,,cny W, W,, = I in the definition of quantum channels [62][141]].

Equation is a Kraus operator representation of (p* with {W,,},en € BL2(A, 1))
its Kraus operators [[141]. Applying Equation to Equation for ST yields

St =i[H,T]+ ). WiTW, - %{W;;W,L,T} (3.206)

neN

for all T € /" . Pulled-back along the canonical left-action, we have

neN

for all x € L*°(A, 1). Equation[3.206|and Equation |3.207| show

. C — * 1 *
S(x) = l[H,x] + ELL&O(A,T)( Z Wan,LOO(A,r)Wn - §{Wan,Lx,L°°(A,r)}) (3.208)
neN

for all x € L*°(A, 1). Equation is called a Kraus operator representation of S and
Equation Up to strictly positive constants, Equation i.e. Equation [3.196
via Kraus operator representation as per Equation is a general Lindblad master
equation. Following Remark [3.2.26] we additionally know Equation[3.196]is a quantum
Fokker-Planck equation with drift and diffusion terms as per Equation [3.209|s.t. their
diffusion terms are infinitesimal applications of quantum channels.

Remark 3.2.26. Note general Lindblad master equations (cf. Equation 5.2.29 in [121]])
specialise to quantum Fokker-Planck equations as follows. If quantum white noise is
the input for a given quantum system, then its associated quantum Langevin equation
(cf. Equation 5.3.15 in [121]]) determines a quantum stochastic differential equation in
It6 form (cf. Equation 5.3.50 in [121]) based on a quantum Wiener process.
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Using reduced trace obtained by the weak coupling assumption, dualisation yields
a linear differential equation of density operators (cf. Equation 5.4.12 in [121]]). It is
a quantum Fokker-Planck equation describing time-evolution of the given quantum
system under quantum white noise similar to the classical case [180]. Indeed, it is a
general Lindblad master equation s.t. commutators are taken w.r.t. the Hamiltonian of
the given quantum system, and separates into distinct drift and diffusion terms arising
from corresponding terms with physical meaning in the quantum Langevin equation.
The former arise from all reversible interactions within quantum systems, whereas the
latter do from all irreversible ones with their given environments. For details on general
Lindblad master equations and the above derivation, we refer to Chapter 5 in [121]]. For
details on their many applications, we refer to [82]], [121]] and [187].

Assume the setting of Lemma Let (H,¢,C) be a Lindblad decomposition of
S. We consider H as Hamiltonian of a quantum system. Using the latter and following
our above discussion, note Equation is a quantum Fokker-Planck equation s.t. its
commutator is taken w.r.t. H. We have drift term SP"f € § B(L2(A,1));, and diffusion
term ST € B(L2(A,1));, given by

SDrift ) — i1 H, x], SPiff(x) = g . (g(p(x) - {(p(lA),x}) (3.209)

for all x € L®(A, 7). Following our above discussion, SP'ift i the reversible part, and SPiff
the irreversible part of Equation Altogether, Equation [3.196]is described in terms
of quantum statistical mechanics [35][36]. We view SPf as infinitesimal application of
the quantum channel ¢ : L°(A,7) — L*°(A, 1) below. If H = 0, then we thereby describe
Equation in terms of quantum information theory [[62].

Completely positive normal unital maps are quantum channels (cf. pp.353-373 in
[62]). We may relax unitality in Kraus operator representations (cf. p.360 in [62]). Each
quantum channel describes a state change due to measurement (cf. pp.360-364 in [62]
or [84]][141][[163]), i.e. each transmits a corresponding change of information encoded in
states of the given quantum system (cf. 365-373 in [62]]) providing physical realisation
of a quantum computer (cf. Chapter 7 in [62] or [18]1[43]). We therefore have quantum
channel ¢ : L°(A,7) — L*°(A, 7). The second identity in Equation [3.209|shows

SPiff(x) = C- (((p(x) —x) -

1
5{(,0(1A),x}—x ) (3.210)

for all x € L°(A, 7). If ¢ is unital, then the second term in Equation[3.210]vanishes. Up to
strictly positive constant, Equation shows SPf is the difference operator given by
¢ minus a correction term controlling for non-unitality. The latter uses anti-commutator
given by the arithmetic operator mean for two variables evaluated on ¢(1,4) [13]. It is
a quantum channel and the correction terms its difference operator. Up to energy scale
but accounting for non-unitality, Equation shows ¢ transmits change of states of
the given quantum system arising from irreversible interactions with its environment
as per SPI for a discrete time-step, resp. applying SPif yields such change as per ¢ but
infinitesimally [28][73]. We therefore view SPf as infinitesimal application of ¢.
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Definition and properties. Definition gives noncommutative heat semi-
groups of quantum Laplacians by extending Definition via the modified standard
pairing. Following Remark[2.3.3] this is based on the extension of completely Markovian
semigroups in [63]] and uses results in [63][65]]. Proposition[3.2.32)and Proposition[3.2.34]
collect properties. In particular, note 3) in Proposition|3.2.34|shows sets of states at finite
distance have identical fixed parts.

Let (¢,v,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B,w) in (f,0)-setting.

Definition 3.2.27. We define heat semigroup % : [0,00) — B(L2(A, 1)) of A by setting

ho(w):=e ) (3.211)
for all =0 and u € L2(A, 7).

Notation 3.2.28. For all j € N, let 4/ : [0,00) — ZB(A j) denote heat semigroup of A; in
Definition [3.2.27|for the induced noncommutative differential structure (¢;,v;,v;,V;).

Remark 3.2.29. Note A € Z%B(L?(A,1)) is local by 4) in Proposition and 3.1) in
Proposition [2.3.25 Thus Proposition[2.3.52)applies, hence 1) therein yields orthonormal
eigenbasis {e,},eny € Ag of A s.t. it is furthermore orthonormal eigenbasis of 74 for all
J €N. By testing on A using 4) in Proposition 3.1) in Proposition shows

|7 Tera| = 0 (3.212)

for all j € N since Ag c L?(A,71) is ||.|I;-dense. Alternatively, we derive Equation |3.212
by calculating on an orthonormal basis as above. Equation [3.212| thereby generalises to
2.2) in Proposition (3.2.32

The heat semigroup of A extends as follows. For all j € N, following Remark |3.2.29
note 3.1) in Proposition [2.3.25|lets us apply 1) in Proposition [2.3.22|in order to get

heo) = (e @7 (@) = e ) = Al € 4; (3.213)

forall¢=0andx € A;. For all j € N, we have symmetric C*-derivation V;: A; — B; by 1)
in Proposition Theorem 8.3 in [65] shows we have C*-Dirichlet form u — || V;u||?
on A; in each case. Using the latter, Theorem 4.11 in [63] shows we have completely
Markovian semigroup A’ : [0,00) — B(A j) as well. Note our argument here initially
yields Markovianity. Completeness follows by likewise application of both theorems to
extensions of symmetric C*-derivations to full matrix algebras over finite-dimensional
tracial C*-algebras. Theorem 2.12 in [63]] shows completely Markovian semigroups and
their extensions to Banach dual spaces are given by completely positive dilations.
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For all j € N, we therefore have

1270 o < 1%ll0o (3.214)

for all x€ A;. Using Ag c A ||.-dense, Equation |3.212| and Equation |3.214{then yield
extension h; € 4(A) of Equation [3.211| for all ¢ = 0. Dualisation of such an extended
Equation [3.211] defines semigroup A :[0,00) — B(A*) by setting

Re(u)(x) == e B (u)(x) := p(hy(x)) (3.215)

for all ¢ =0, ue A* and x € A. Following Remark [2.1.2) normality moreover restricts
Equation [3.215|to

t(hela ) ob € BLYA,D) (3.216)

for all ¢ = 0. Equation [3.216|defines semigroup 4 :[0,00) — B(LY(A, 1)) by setting

ho(x):= e "B (x) = (R (x)) (3.217)

for all ¢ = 0 and x € L1(A, 7). Finally, dualisation of Equation [3.217| and accounting for
using the modified standard pairing L®(A, 1) = L1(A, 1)* as per Equation [3.216| defines
semigroup A :[0,00) — ZB(L*(A, 1)) by setting

he()(y) := e B )(y) := (R y(y)) (3.218)

for all =0, x € L°(A,7) and y € L'(A, 7). Note Equation restricts to extension of
Equation to A for all x € A. Up to musical isomorphisms, all extensions coincide
on intersections of domains. Altogether, we have noncommutative heat semigroup of A
mapping to B(V)if V=A" or V=LP(A,7) for p € {1,2,00}.

Proposition 3.2.30. Let V=A* or V =LP(A,7) for p €{1,2,00}.
1) ForallveV, hoo(v) :=w*-lim;_.oo h;(v) exists.
2) Forall t =0 and u € L%(A,T), we have

2.1) hoo(w)=nf (),
2.2) hyu)#0ifu#0,

Proof. Following Remark[2.1.2] density of Ay and normality imply |||y is determined by
testing on Ag. Let v € V. Equation [3.214]shows sup; [l12:(v)llv <4[vlly. Thus 1) follows
if lim;_.oo h#(v)(x) exists for all x € Ag. We require 2.1). Following Remark and
using Equation we calculate nﬁe A = Lll-limg oo 24 (v)(x) for all x € Ag on an
orthonormal eigenbasis {e,},en © Ag of A as per the remark. We obtain 2.1) by density.
Then 2.1) implies 1). We directly verify 2.2) by likewise calculation. Get 2). O
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Definition 3.2.31. Let V =A* or V = LP(A, 1) for p € {1,2,00}. We define heat semigroup
h :[0,00] — B(L2%(A, 1)) of A by setting

hi(v) = e () (3.219)
forall¢=0andveV.
Proposition 3.2.32. Let V=A* or V =LP(A,7) for p €{1,2,00}.

1) We have strongly continuous semigroup h :[0,00) — 2B(V). In particular, we have
trace-preserving and completely Markovian semigroup h :[0,00) — B(L*(A,1)).

2) For all t €[0,00], we have

2.1) h; is positivity-preserving and w”*-continuous on norm bounded sets,
2.2) hi ores; = h;ores; =resjoh; for all j €N,

2.3) llhillaw)<1and hi(1a) =14,

24) h;e @(LZ(A,T))h is local.

Proof. By construction, A : [0,00) — 2B(V) is a semigroup s.t. h; is w*-continuous on
norm bounded sets for all # = 0. We show 1). For all ¢ =0, testing for |.[|y on A lets us
apply Equation |3.214]in order to calculate

Ihellggvy <1 (3.220)

for all v € V and ¢ = 0. Equation implies strong continuity. We extend to ¢ = co by
letting ¢ 1 oo in the latter equation. Assume V = L*°(A, 7). For all j €N, note A;1 A, =0
by the Leibniz rule. Using the latter and 2) in Proposition Equation lets us
calculate h4(14) = s-lim jen ht(lAj) = s-limjepy lAJ. =14 for all £ = 0. We extend to £ = co by
letting ¢ 1 co in our calculation. Moreover, we see h; € B(L*°(A, 7)) is trace-preserving
for all ¢ = 0 by testing all x € LY®°(A, 1) with y = 14 as per Equation

For all j € N, our construction ensures 4’ : [0,00) — B(A ;j) is completely Markovian.
Using 2.2) in Proposition resp. 2) in Proposition we calculate

ht(x)®In:w*-l_i%ht(xj)cblnzo (3.221)
Jje

and

hi(1)®I,=w*-limh(14.)®,<w”-lim1y.01,=14®1, (3.222)
JjeN 7 jeN Y

for all n e N and x € L*(A, 7). Equation[3.221]uses restrictions are positivity-preserving
by Proposition [2.1.28] For all ¢ = 0, Equation [3.221| shows A; is completely positive and
Equation[3.222|shows & is completely Markovian. We are left to show normality in each
case. Complete positivity and Proposition reduce to o-weak continuity. Note the
latter is equivalent to w*-continuity on norm bounded sets (cf. Lemma I1.2.5 in [[192]

and Proposition |A.1.34). Get 1).
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Assume the general case. We show 2). Since we have w*-continuity on norm bounded
sets, positivity-preservation and therefore 2.1) follows by arguing as for Equation [3.221
in the general case without tensoring. We know all extensions coincide on intersections

of domains. Equation(3.213|shows 2.2) and Equation(3.214|shows 2.3). Then 2.2) implies
2.4) at once. Altogether, get 2). O

Definition gives fixed parts of positive bounded functionals, and thereby fixed
states, under noncommutative heat semigroups of quantum Laplacians. Note states are
preserved by 1) in Proposition [3.2.34] and have identical fixed parts if at finite distance
by 3) in Proposition [3.2.34] Following this, Definition gives sets of states which
are determined by fixed parts. These help to classify accessibility components.

Definition 3.2.33. For all p€ A*, h(u) := hoo(p) is its fixed part and AL (u) := p—h(p) its
image part. We call ¢ € #(A) a fixed state, or fixed if h(¢) =¢.

Proposition 3.2.34.

1) Forall ue A%, tel0,00] and jeN, we have

L.1) Nhdwllas = lplas,
1.2) p=0if h(u) =0,
1.3) hW); = ha(f))-

2) For all t €[0,00], we have

2.1) h(F(A)c FA),
2.2) h(FNA) c #NA).

3) For all (u,w) € Adm'%!, we have h(u(0)) = h(u(1)). In particular, states at finite
distance have identical fixed part.

Proof. Note 1.1) and 1.2) follows from 1) in Proposition [2.1.31]and trace-preservation as
per 1) in Proposition [3.2.32] Using 1.1) for rescaling as per 1) in Definition get
1.3) by 2.2) in Proposition Note Remark [3.1.15] Equation [3.216] shows normality
is preserved under h; € B(A™) for all ¢ € [0,00]. Then 1) implies 2). For 3), we reduce to
the finite-dimensional setting by 2) in Corollary and 1.3).

Assume A and B are finite-dimensional. Let (g, w) € Adm!%!. Thus the continuity
equation and finite-dimensionality imply

f0(t) = V* v (w(t)) € im A (3.223)
for a.e t € [0,1]. We moreover have A(u(¢)) = nﬁem(u(t)) e kerA for all £ €[0,1] by 2.1) in
Proposition [3.2.30 Using the latter, Equation |3.223|implies 3) in the finite-dimensional

setting. The general case follows as discussed above. O
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Definition 3.2.35.
1) For all norm closed convex K c .#(A), set Fixs (K):={ue F(A) | h(w) eK}.

2) For all fixed states { € F(A), set

2.1) Fixa(é):=Fix({¢},A) and Fixﬁ(é) = Fixa (&) n.#N(),
2.2) €4(6):={pe F(A)| p~E and €Y (&) :=€aE) NS N(A).

Proposition 3.2.36. Let K c #(A) be a norm closed convex subset. If K < F#(A) is a
face, then Fixy(K) is a face.

Proof. Let p € Fixa(K), no,n0 € L(A) and t € (0,1) s.t. u=tno+(1—-1t)n1 € Fix(K,A). We
have h(Fixs(K)) c K and therefore A(u) = th(ng) + (1 —t)h(n1) € K. Assume K is a face.
Thus A(ng),h(ng) € K, hence 1¢,n1 € Fixs (K). Norm closedness of Fix 4 (K) follows by 2.1)
in Proposition Altogether, our claim follows. O

Regularisation of normal states under heat flow. Assuming fixed parts with
integrable support, Theorem[3.2.40]shows heat flow instantaneously regularises normal
states to be, possibly unboundedly, invertible up to fixed part. The latter is equivalent to
injectivity up to fixed part. Following Remark we know Theorem applies
to noncommutative densities in form of Corollary given injectivity up to fixed
part. Note Remark[3.2.41] Theorem[3.2.40luses Lemma [3.2.39] In the finite-dimensional
setting, Lemma [3.2.38 shows Lemma [3.2.39), itself obtained from Lemma We
show the latter two lemmas by adapting [186] to the AF-C*-setting.

Let (¢, v,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B,w) in (f,0)-setting.

Lemma 3.2.37. Let T € B(L%(A, 1))}, be positivity-preserving. If T(u) # 0 for all non-zero
u e L%(A,1),, then (u,v); >0 implies (T'(w), T(v)); >0 for all u,v e L*(A,1),.

Proof. We adapt Lemma 1 in [186]]. For this, we require infima in L2(A, 1), using partial
order generated by positive elements. Definition 4.3 in [63]] gives a wedge operation on
L%(A, 1)}, using projections onto closed convex sets of Hilbert spaces. These describe the
infima we use as follows. For all x € L2(A, 1), Propositionyields xi,x_ € L%(A, 1),
st.x=x,—x_,—-x=x_—x4 and x,x_ =x_x, =0. Lemma 4.4 in [63] states

influ,v}=v—-(w-v)_=uAv=vAu=u—(v—-u)_=inf{v, u} (3.224)
for all u,v € L%(A,7).. If u,v € L%(A,7); s.t. u Av = 0, then Equation [3.224) shows we
have u =(v—u)_ and v = (u—v)_ = (v—u),. For all u,v € L?(A, 7)., we use decomposition

as per Proposition [B.1.47|and thereby see u Av =0 implies uv =vu =0.
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We show our claim using the above. Assume T'(x) # 0 for all non-zero u € L%(A, 7).
Let u,v € L%(A, 1), s.t. (w,v); > 0. Thus traciality and faithfulness imply uv # 0, hence
Equation shows u Av #0 as discussed above. Note u,v = u Av = 0 by the infimum
property. In particular, u Av € L2(A,1),. Ergo T(u A v) # 0 by hypothesis. We have

(TW),TW)), =T~ v)||f +(T(w-unv),T(wAv)) +(Tw),T(v-unv)) . (3.225)

For all x,y € L?(A, 1), we know (x,y),; = 0 by traciality. Positivity-preservation implies
the second and third summand in Equation [3.225| are non-negative. Since T(u Av) # 0
implies [|T(u A v)II% > 0, Equation [3.225| shows our claim. O

Lemma 3.2.38. For all x € LY*°(A,1), and u € L%(A, 1), we have
1) (xu,u)_>0implies (hy(x)u,u)_ >0 forall t =0,

2) the map t — hy(x,u) := <ht(x)u,u>T defined on (0,00) is either identically zero or
has at most finitely many zeros in each open interval I c (0,00).

Proof. For all ¢t =0, note 2.2) in Proposition and 2.1) in Proposition imply
Lemma applies to T = h; € B(L2(A,1)),. We show 1). Let x € LY®(A, 1), and
u € L%(A,T) s.t. (xu,u); > 0. Corollary [B.1.67| reduces the general case to u € L>®(A, 1)
and Lemma shows our claim in this special case.

We reduce to u € L>®(A,1). For all y € L°(A, 1), and w € L%(A, 1), traciality yields

yb(ww*) =1(yww*) = (yw,w), = (w*w)b(y). (3.226)

Set v := u*u € LY(A,7),. For all n € N, set v, := min{v,n} € LL®(A,1) c L>*(A,1). We
have 0 < v, <v in each case. Using Equation [3.226], we therefore estimate

(R(0)VVn, VO ), = U5 (he(2)) < U0, 1 (Ry(2)) < 0"(Ry(2) = (Ry(@)u, 1), (3.227)

for all £ =0 and n € N. We have v = ||| ;-lim,en vy, (cf. 2) in Corollary [B.1.67). Using the
latter, Equation [3.227| shows

(he(u,u), = sup (he@)v/0n, Vn), = 1im (R (x)VOn, VOr), (3.228)

for all ¢ = 0. Equation [3.228|shows it suffices to consider u € L>®(A, 7).
We know x € L%®°(A,1). Let u € L2®(A,1). We obtain uu* € L%(A,7). Thus 2.1) in
Proposition [3.2.32|implies there exists maximal ¢ € (0,00] s.t.

(h%(x),h% (wu™)), =t(hex)uu”) = (h(x)u,u)_ >0 (3.229)

for all ¢ € [0,¢). If € = 0o, then our claim follows. If € < co, then Lemma [3.2.37| shows
(hg(x), hg(uu*)), > (0 contradicting maximality. Hence 1) holds. The general case follows
as discussed above.
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We show 2). We adapt Lemma 2 in [186]. Let x € LY*(A, 1), and u € L2%(A, 7). Note
u € L>*°(A, 1) is not required. Following Remark|[3.2.29] we have orthonormal eigenbasis
{entnen ©Ag of A. For all n e N, let A, be the eigenvalue of e,,. Expressing x =) ,cnanen
and using uniform convergence shows the non-negative map

(_D—'anﬂn@nu,u% (t-0)" (3.230)

tHht(xau): Z Z

meN \ neN m!

is analytic in the right half plane. Using standard arguments for analytic maps [145], we
see 1) implies we either have h.(x,u) =0 for all £ =0 or for at most finitely many ¢ € I in
each open interval I < (0,00). Get 2). O

Lemma 3.2.39. Let { € #(A) be a fixed state and jeNs.t. {; #0.
1) We have
1.1) Fix}:{j (gAJ &)= FA; (&),
1.2) e y_l\i’oo (A j[suppé;l).

2) Forall ue Fixij (Ej), we have

R € (A, [suppé;)) (3.231)

for all t € (0,00].

Proof. Note 1.3) in Proposition shows {j € #(A)) is a fixed state. Lemma
and Proposition in particular apply to the induced noncommutative differential
structure (¢;,v;,7;,V;) using fixed state & € FL(A}). We reduce to the finite-dimensional
setting by 1.3) in Proposition(3.2.34

Assume A and B are finite-dimensional. All states are normal. Lemma shows
Fa(&) c F(A)is a face. Thus Proposition[3.2.36|shows Fix 4 (F4(¢)) c #(A) is one, hence
Lemma [3.2.5|yields projection p € A s.t.

Fixa(F4(8)) = S (Alp). (3.232)

We have 1(p) < oo as Ag = A cm;. The semigroup property and Equation [3.232/imply

hi(F(AlpD) c FL(Alp]) (3.233)

for all ¢ € [0,00]. Finite-dimensionality ensures injectivity and invertibility coincide. In
particular, get yj)’oo(A [pD) = y_l\i’oo(A [p]). We apply Corollary|3.2.11| accordingly.
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Note 1) in Corollary(3.2.11| states

FN"(Alp)) = relint #(Alp]) < Alp]; NGL(AY (3.234)

open in norm topology. Equation [3.234] ensures the following equivalence holds. For all
ne #(Alpl), we have ne y_l\i’oo(A[p]) if and only if

(nu,u), =om-lul? (3.235)

for all u € A[p]. Note the below estimate uses strong continuity and trace-preservation

as per 1) in, as well as positivity-preservation as per 2.1) in Proposition (3.2.32| For all
3.2.32

ne y_l\i’m(A[ pl), Proposition . Equation |3.235|and traciality let us estimate

(), = im (s (wu”)) = o) Jim (e ")
:U(n)-tlim T(uuw™)
=a(n)-llull?

for all u € A[p]. Equation [3.233| and the above estimate, either as stated for ¢ = co or
without taking limits for ¢ < co, show

(SN (Alp)) € SN (Alp)) (3.236)

for all ¢ € [0,00]. Note 2) in Corollary[3.2.11]states we have F4(¢) = #(A[p]) if and only if
&€ SNP(Alp)), resp. Fa(é) 0L (Alp)) if and only if ¢ ¢ Sy (A[p)). If ¢ € Sy ™(A[p])
holds, then F4(¢) = #(Alp]) shows supp¢ = p by 1) in Corollary [3.2.8] Equation [3.232
and Equation therefore imply 1) in this case.

We show 1). Assume ¢ ¢ Sﬂ_l\i’oo(A[p]). Since 1(p) < oo, T(p)_lpb € y_l\i’oo(A[p]). Note
Equation [3.234] Thus 0.#(Alp]) € #(Alp]) proper, hence

Fa§) c0F(Alp)) < F(AlpD (3.237)

proper as well. For all n € y_l\i’oo(A[p]) # ¢, Equation (3.232| and Equation imply
h(n) € 0 F(Alp]). This contradicts Equation |3.236|for ¢ = co. Ergo ¢ € (S”_I\i’w(A[p]). Get 1)
as discussed above. We show 2). Let u € Fix4(¢). Using 1.2), openness in norm topology
as per Equation shows there exists ¢9 = 0 s.t.

hi(p) € PN (Alsuppél) (3.238)

for all ¢ € (¢¢,00].
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Equation [3.239|shows there exists minimal ¢, > 0 s.t. Equation |3.238]is satisfied for
all ¢ € (t,00]. Minimality and Equation [3.236/moreover imply

() ¢ P (Alsuppé]) (3.239)

for all ¢ €[0,%,]. If ¢, > 0, then finite-dimensionality ensures Equation |3.239 derives a
contradiction to 2) in Lemma|3.2.38, Thus ¢, = 0 in each case. Get 2). The general case
follows as discussed above. O

Theorem 3.2.40. Let (¢,vy,y,V) be noncommutative differential structure for tracial AF-
C*-algebras (A,1) and (B,w) in (f,0)-setting. Let ¢ € #(A) be a fixed state.

1) Assume & € #N(A) has reducible support.

1.1) We have

1.1.1) Fix§(Fa(©)=Fa(©),
1.1.2) suppé € L*°(A, 1)y, supp¢ € kerV, and V is suppé-compressible.

1.2) For all pe F4(¢), we have

hi(p) € Fp(&) (8.240)

for all t € [0,00].
1.3) Forall ue Fixi(f) and jeNs.t. &; #0, we have

hi(iaj) € (A lsupp;l) (3.241)
for all t € (0,00].
2) Assume & € #N(A) has integrable support.

2.1) We have

2.1.1) Fix}(Za(0) = Fa(0),
2.1.2) ¢ e &N (Alsuppél).

2.2) Forall pe Fixi(é), we have

() € FN (Alsuppél) (3.242)
for all t € (0,00].
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Proof. We use 1.2) in Proposition [2.1.31] for weak continuity. Furthermore, we use 1.3)
in Proposition [3.2.34|to commute restriction and rescaling with application of heat flow.
Assume ¢ € #N(A) has reducible support, i.e. supp¢ = s-lim jeNSUPPC ;.
For all j €N, we see {j € #(A)) is a fixed state if and only if ¢; # 0. Thus 1.1) in
Lemma (3.2.39|implies
Fix) (Fa@) = {ne SN(A) | i€ Fa, () forae. jeN| (3.243)
by restricting elements on the left-hand side for all j € N s.t. {; # 0, resp. taking limits
of elements on the right-hand side in w*-topology. For all j €N s.t. {; # 0, Lemma [3.2.5]
and 2) in Lemma [3.2.39|show A(fi;) € gAj(fj) and therefore
thi(fi;) = supp&; - fhe(f;) - suppé;. (3.244)

Equation [3.243| and Equation [3.244|let us calculate

bhe() = w”-lim g (A;) = w-lim supp - #he () -supp¢; (3.245)

for all ue Fixﬁ(;@A(E )) and ¢ € [0,00]. We show the right-hand side of Equation [3.245|is
supp¢-fih:(u)-supp¢ in each case. For all x € L>°(A,1), we know x = bds-lim jen x; by 3) in
Proposition [2.1.31] Using weak continuity as for Equation [3.245| and sequential strong
continuity of multiplication, Equation [3.244]together with traciality and normality lets
us calculate
7(the(x) = lim7(he(f))x;) = lim v (the(f)) - (suppd;x; -suppd;))
=lim 7(§(1)- (supp¢; - x; -supp¢;))

=7((supp¢ - fh+(p) - supp¢) - x)

for all pe Fix§(§ 4(8)), t €[0,00] and x € L°°(A, 7). The above calculation at once shows
the right-hand side of Equation [3.245|is of claimed form. We therefore have

fh () = wljl&l supp<; - hy(f;) - suppé; = supp - fhs(w) - suppé (3.246)

for all p € Fix}(Fa(¢)) and ¢ € [0,c0].
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We show 1). Equation shows Fixg(gA(é)) < F4(¢) by Lemma We obtain
the converse as follows. Using strong continuity as per 1) in Proposition to have
norm closure, Lemma and Proposition yield inclusion of faces and therefore
projection p € L(A,1) s.t.

Fix){(Z4(©) = SN (Alp]) € Fo(©) = #N (Alsuppél) € FN(A). (3.247)

We have ¢ € Fix§(9 4(£)). Thus supp¢ < p by Lemma , hence Equation [3.247|shows
Fald)c Fixﬁ(ﬂA(E)) by 1) in Corollary Get 1.1.1). For all j € N, note Aly, =0 by
the Leibniz rule and ¢ € ker A by 2.1) in Proposition[3.2.30} Thus 1) in Proposition [3.2.4]
implies

suppé; € C*(¢j,14,) cAjnkerA (3.248)

in each case. Using Corollary Equation and reducible support of ¢ shows
1.1.2) since kerV = ker A ¢ L2(A, 7). Get 1.1). Note 1.1.1) shows 1.2) and 1.3) are claims
concerning states on A with fixed part {. Equation and Equation further
reduce to the finite-dimensional setting as per Lemma The latter lemma shows
1.2) and 1.3) at once. Altogether, get 1).

We show 2). Assume ¢ € #N(A) has integrable support, i.e. T(supp¢) < co. Ergo
Theorem [3.2.18shows ¢ has reducible support. Thus 1) holds, hence 1.1.1) implies 2.1.1)
at once. We further have 2.1.2) by 2.1) in Corollary[3.2.11|since F4(¢) = S (Alsupp¢)) by
definition. Get 2.1). We reformulate 1.2) to

B (yN(A[supp f])) < #N(Alsuppé)) (3.249)

for all ¢ € [0,00]. Let pe F4(¢). For all t € [0,00], Equation |3.249|and Lemma imply
supph(u) < supp. Ergo Theorem (3.2.18/shows each A ,(u) has reducible support. Using
the latter, 2) in Lemma [3.2.39|shows

supph (1) = s-lim supph,(f1;) = s-lim supp¢; = supp¢ (3.250)
JEN JjeN

for all t € (0,00]. Finally, Equation |3.250| shows 2.2) by 1) in Corollary and 2.1) in
Corollary(3.2.11| Altogether, get 2). O

Remark 3.2.41. We have injectivity of noncommutative densities in general, but do
not get smoothing under heat flow as per Equation Injectivity suffices to apply
Theorem as per Corollary[2.2.59] Coarse graining recovers smoothing under heat
flow as per Equation This depends on fixed parts. Such dependence is a uniform
condition on accessibility components by 3) in Proposition [3.2.34

171



CHAPTER 3. QUANTUM OPTIMAL TRANSPORT

We assume integrable support. Theorem [3.2.18| ensures reducible support. As per

Corollary[2.3.15/and following Definition[2.3.26 note it is 1.1.2) in Theorem 3.2.40|which
lets us compress quantum gradients with support projections of normal fixed states. We

use this throughout our discussion. As per 3) in Corollary we moreover combine
compressing with such support projections and finite-dimensional approximation. This
gives rise to our coarse graining process. Notation fixes conventions. For details
on compressing quantum gradients, we refer to Subsection [2.3.1]

Notation 3.2.42. Let ¢ € #N(A) be a fixed state with integrable support.

1) We write A; := Alsuppcl, o/ := elo(4, ) and L¥(A¢, )y := L“(Ag,r)vsuppf, as well

as L?(Bg, ) := Tsuppe (L?(B,w)). If A and B are finite-dimensional, then we have
A =L*(A¢,7) and write B; := L%(B;, w).

2) Forall x € LO(Ag, T)+, We write My ¢ := My supp¢ and further P, ¢ := @xb,xb = Dy supp¢
if m;' € S suppe(Ex,e)-

3) We write Vi := Vsuppe = VLOO(Ag,T) and A; := Aguppe = AL“(A;,T)-
Corollary 3.2.43. Let ¢ € #N(A) be a fixed state with integrable support.
1) We have

1.1) suppé-compressed symmetric W*-derivation Vg : of ¢ — L2(Bg,w),
1.2) supp¢-compressed Laplacian Ay = Vi V.

2) Forall t=0and h; € %(L2(A,T)), we have

2.1 [ht,”suppf] =0,

22) COHILZ(AE,T)ht = e_tA‘(.

3) We have L™°(A¢,7)y cdomV and

3.1) Tsuppe(w) = |.llv-lim e nsuppgj(uj) for all u € domV,

3.2) x =bds"-limjen Tsuppe; (x7) for all x € L®(A¢, 1)y.
4) We have domV NL%(A;,7) = domV; and

4.1) domV; ={u e L%(A¢,7) | u = |I.llv-limjen Tsuppe, (@)},
4.2) L=(A¢,t)v = {x €L®(A¢,1) | x= bdsV-limjeN nsuppgj(xj)}.

Proof. We see 1) in Corollary implies o ¢ = supp¢-Ag-suppé < A using algebra
multiplication as per Deﬁniti resp. Lz(Bg,w) = supp¢ - L2(B,w) - supp¢ using
AF-C*-bimodule action. We know V is supp¢-compressible by 1.1.2) in Theorem
We have 1) by Corollary[2.3.15 and 2) in Proposition [2.3.27] By testing on A using 4) in
Proposition 1) implies 2.1) since Ag < L?(A,71) is ||.|l.-dense. Moreover, 1) implies
2.2) by Corollary Get 2).

172



We show 3). The latter implies 4) immediately. Using sequential strong continuity of
multiplication, we readily see reducible support implies 3.1) since u = |.||y-lim jen uj for
all u € domV by 4.1) in Proposition We likewise obtain 3.2) if x = bds"-lim jeNX;
for all x € L*°(A¢,7)y. Arguing as for Equation we use 3) in Proposition and
reducible support to calculate

x= s-lirlr\ll supp¢;-x;j-suppé; = suppé - x-supp¢ (3.251)
JE

for all x € L™°(A¢,7)v. We further have supp¢ € L2(A,1) and therefore

L®(A¢,7) = Tsuppe(L¥(A, 1)) € L3(A¢, 7) (3.252)

by integrable support (cf. Proposition [B.2.30). Equation [3.251] and Equation [3.252| show
L*°(A¢,7)y cdomV. Using sequential strong continuity of multiplication and 3.1), note
reducible support implies 3.2) by 3) in Proposition [2.1.31] Thus 3), hence 4) holds. O

Remark 3.2.44. Following 2) in Corollary|3.2.43| the noncommutative heat semigroup
of V¢ considered as symmetric C*-derivation is given by

t—comyz, e =" € B(LA(Ag, ). (3.253)

Since we only consider semigroups as above if we compress with support projections of
normal fixed states, we do not distinguish any from 4 :[0,00) — Z(L%(A, 1)).

3.2.3 Classifying normal accessibility components

Assuming spectral gaps of quantum Laplacians and fixed parts, Theorem [3.2.65| clas-
sifies accessibility components of square integrable normal states using fixed parts by
showing each one is a norm closed convex subsets of all such states with identical fixed
part. Spectral gaps ensure such fixed parts themselves are square integrable normal
states with integrable support. In the finite-dimensional setting, assumptions as above
are satisfied and we classify all accessibility components using fixed parts.

In the finite-dimensional setting, relative interiors are embedded submanifolds, as
well as connected Riemannian manifolds with Riemannian metric induced by the given
quasi-entropy. Theorem shows each in turn induces the given quantum optimal
transport distance, and Theorem [3.2.65| ensures their norm closures are accessibility
components. Theorem therefore links the finite-dimensional Riemannian case
to the general one by compression, finite-dimensional approximation and heat flow. In
Chapter [4] we commonly reduce to the finite-dimensional Riemannian setting. This is a
fundamental reason to require, from a purely technical point of view, compatibility with
compression and finite-dimensional approximation. Standard reference for differential
and Riemannian geometry is [[144].
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Embedded submanifolds of states in the finite-dimensional setting. We
prepare our discussion further below. Let (¢,v,y,V) be noncommutative differential
structure for tracial AF-C*-algebras (A,7) and (B,w) in (f,60)-setting. Assume A and
B are finite-dimensional.

Proposition 3.2.45. Let p € A be a projection. For all x,y >0 in Alpl and u € Blp], we
have

1) jf’g(xbayb’ub) = <@£,y,p(u)7u>w’
2) 0<0@?0()? - ull? < (ML, w,u),

Proof. Following Remark [2.2.38, we have 1) by 3) in Corollary [2.2.59, We show 2). The
geometric operator mean is the minimal symmetric one (cf. Theorem 4.5 in [13]]). Since
x,y >01in A[p], evaluating the geometric operator mean in L, , and R, , yields

0 0
0<0(Lyp)2o(Ryp)? lulld <(ul, (w),u), (3.254)
for all u € B[p]. Equation [3.254] shows 2) by Proposition|3.2.14 O

Let ¢ € #(A¢) be a fixed state. We use Notation Restricting the GNS-inner
product of 7 yields real Hilbert space inner product of A;, = A:NAy.

Proposition 3.2.46. Let ¢ € F(A) be a fixed state.
1) We have As € B(A¢)n, suppé € ker Ay and im Ay =imANA;.

2) Setting I(A¢) :=imA¢NA¢ , and K(A¢) := (supp &)z < ker AsnAg , yields orthogonal
decomposition

Agj =I(Ap) @ (supp&)g @ K(Ay). (3.255)

Proof. We known 1) by 1.1.2) in Theorem [3.2.40| and 1.2) in Corollary |3.2.43| We have
A(Aj) c Ap by symmetry of V. Thus 1) implies 2) at once. O

We have real Hilbert space projections

”?(Aé) (Aen — I(Ay), ﬂémi) tAgp — K(Ay). (3.256)

We know I(A¢),K(A¢) < kert. Furthermore, we know 7(supp¢) > 0 by faithfulness and
have dimgimp 7| A, = 1.Forall ue A::,h’ Equation [3.255|yields decomposition

b - b
= n‘IL‘(AE)(ﬂu) + | plla - T(suppé) 1 supp {b + nIA{(Ag)(ﬁ'u) . (8.257)
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Definition 3.2.47. Let ¢ € #(A) be a fixed state.

1) We define P : A; — K(A¢) by setting

b
Be(k) = m o (H1) (3.258)
for all pe A;ﬁ.

2) Set 8(¢) = fngl;_Nlm(Af)(ﬂz“}mg)(ﬂf)b)'

Notation 3.2.48. Let X be a smooth manifold. We write T'X for its tangent bundle. We
further write 7, X for the tangent space upon evaluation at y € X.

Proposition 3.2.49. Let ¢ € F(A) be a fixed state. We have

1) embedded submanifold

9(9) = relint Fix\ (&) ¢ #Ty™(Ay), (3.259)

2) trivial tangent bundle TO() = (&) x I(A;)’.

Proof. Using 2.1) in Proposition [3.2.30, Equation |3.257| shows

h(p)* = n‘IL‘(AE)(ﬂhl(u))b, h(u) = T(suppé) tsupp & + n}‘}mé)(ﬁh(u))b (3.260)

for all p € #(A¢). Equation |3.260|implies

Fixa(©) = B b (T (1)) (3.261)

Arguing as for 1) in Corollary [3.2.11| but using ¢ € 9_1\1’°°(A5) in Equation |3.169| rather
than rescaled supp¢ under the flat operator, we directly verify

relint Fix4 () = Fixa (&) n %y ®(A¢). (3.262)
Equation (3.261| and Equation [3.262| show Equation [3.259] Thus Equation [3.260| shows
smooth paths in y_l\i’oo(Ag) with image in 9(¢) vary in (Ag)b only, hence Equation 3.259

implies 1) and therefore 2) by the submersion theorem [144]. O
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Riemannian metrics induced by quasi-entropies. Using bounded operators
in Definition determined by quasi-entropies, Definition gives Riemannian
metrics on embedded submanifolds as per Proposition [3.2.49] Restricted to each such
embedded submanifold, Theorem [3.2.62|shows the Riemannian distance is the quantum
optimal transport distance given by the quasi-entropy inducing Riemannian metric.

Let (¢,w,y,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B,w) in (f,0)-setting. Assume A and B are finite-dimensional. Let ¢ € #(A)
be a fixed state. This is the finite-dimensional Riemannian setting. We use the following
throughout our discussion. Get Alijma > 0 in Z8(im A) by finite-dimensionality. Note 1) in
Corollary shows V(A;) € B; and V*(B¢) < A; by suppé-compressibility. For all
x€A¢ 4, we see 1) in Lemma implies

M) = M|, (3.263)

Equation [3.263| lets us suppress, upon restriction to B, compressing with supp¢. We
suppress accordingly in Definition (3.2.50

Definition 3.2.50. For all u € 9(¢), set
1) §yu:= Vil V e BGmA, Ap),

2) & =M,V € BGmA:,By).

For all p € 9({), we have >0 in A; and therefore S”,Sﬁl >0 in %B(GimA¢) by 1) in
Proposition 3.2.49, Note V*&, = §, in each case by definition.

Proposition 3.2.51. For all u e 9(¢), we have
1) FuSu' > 0in BGmA) and |§u' || gamay < oD o (W™,
2) Fu(I(A) cI(A) and Tt (I(Ap) < I(A),
3) V*&,Fu' =idima,-

Proof. Let u € 9(¢). Get 1) by 1) in Proposition resp. 2) in Proposition If
Fud(Ae) € I(Ap), then F1(I(A)) < I(A¢). Note V and V* intertwine adjoining and y by
symmetry, resp. 5) in Proposition [2.3.25, Symmetry of f implies J%ﬁl oy = )/o/%& by 1)
Corollary Get 2). We have 3) by definition.

Definition 3.2.52. For all u € 9({), set

24w,v) = (Fal ), o), (3.264)
for all u,v € I(A¢).
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Proposition 3.2.53.
1) We have connected Riemannian manifold (9(¢), g%).
2) For all p e 9(&), we have

g0 (u, w, (ou&;l(ﬁw)b) = ghw,u) <o) o™ - lfu)? (3.265)

for all u e I(A¢).
3) Let pe &), ue I(A‘g)b and w € B*. If fu = V*{w, then

g0 (u, i, (stggl(ﬁu))b) < 79, 1, w). (3.266)

Furthermore, we have equality in Equation if and only if fw =& HSﬁl(ﬁu).

Proof. The map u— §, from 9(¢) to B(im A¢)so € GL(2(GmA)) is smooth and invertible
by 1) and 2) in Proposition Get 1). The identity in Equation follows by 1)
in Proposition its subsequent estimate by 1) in Proposition Get 2).

We show 3). Let e 9(8), u=x"€ I(A(g)b and w € B*. Assume x = V*fw. Then V*fw =
V*@Hgﬁl(x) by 3) in Proposition Set y:=fw — QiHS;l(x) € kerV*. Using 2), get

g0 (,u,u, (Qiu&]l(x))b + y") = gz(u, u)+2Re (y,@fu,g;@u%;l(x)}w +. g0 (u,,u,yb). (3.267)

Note 2¢ & y&jl(x) = Vgﬁl(x). Using y € ker V*, the latter implies

B8
Re(y,2{, /6,34 (%)), =0. (3.268)
Equation [3.267|and Equation |3.268|show Equation |3.266| Since {1 > 0 in A, we further
have .#/ dm U, yb) =0 if and only if y = 0. This shows equivalence. Get 3). O

We know T'9(¢) = 9(¢) x I(A¢)’ by 2) in Proposition Definition gives
smooth map © : T'9(§) — B;. Proposition shows evaluating the latter on square
integrable absolutely continuous paths to induces admissible paths. Their vector
fields minimise energy along a given absolutely continuous path.

Definition 3.2.54.
1) We define © : T'9({) — B;f by setting

O, u) = (6,53 (tw))’ (3.269)
for all u € (&) and u € I(A;)’.
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2) For all absolutely continuous u:[a,b] — 9(£), set

O, f1)(8) := O(p(?), () (3.270)

for a.e. t €[0,1].
Remark 3.2.55. Following 1) in Definition [3.2.54] note Equation (3.265| yields

10 (1, 1, O, w)) =gZ(u,u) (3.271)
for all u € 9(¢) and u € I(A)’. We use this throughout our discussion.

Proposition 3.2.56. We consider Riemannian manifold (9(¢),g°). Let w:la,b] — 9(&)
be absolutely continuous. If fab II,Ll(t)IIi*dt <00, then

D (1,0, 1)) € Adm®)(u(a), w(d)),
2) BN (1,0, 1)) = [ &% (1(8), i) dt < o0,
3) ENM (1,0, ) < E(u,w) for all (u,w) € Adm!“?!(u(a), u(b)).
Furthermore, we have equality in 3) if and only if w(t) = O(u, ()(t) for a.e. t € [a,bl.

Proof. Assume fab II,Ll(t)IIi*dt < co. Note continuity by itself implies

-1

#u(t),suppé | < 00. (3.272)

sup a(,u(t))_1 = sup ||L
t€f0,1] tel0,1]

All Banach space norms we consider here are equivalent by finite-dimensionality. Using

2) in Proposition [3.2.53] Equation |3.272|yields C > 0 s.t.

I ((®), 1(e), 0u, (D)D) = &) (®), f8)) = C- | i) | 5. (3.273)

for a.e. t € [a,b]. Using 5) in Theorem [2.2.29, Equation |3.273|yields C’,C" > 0 s.t.

.di<oco.  (3.274)

b b b
[ e molae=c'- [ gl (o uvjae=c [ o)

Equation |3.274] shows O(u, (1) is square integrable. We calculate

() = V*& .55t (D) = V* O, 1)(2) (3.275)

for a.e. t € [a,b]. Equation |3.273| and Equation [3.275| show 1) and 2). We show 3). For
all (p,w) € Adm!®®(u(a), u(b)), note fgu(t) = V*fw(t) for a.e. t € [a,b] by the continuity
equation. Using 3) in Proposition (3.2.53| the latter implies 3) at once. O
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Theorem [3.2.62] uses Lemma The latter shows minimising geodesics with
marginals in 9(¢) are suitably approximated by minimising geodesics in 9(¢) without
change of marginals. Corollary [3.2.63implies 9(¢) € 6€4(¢) is a geodesic subspace as per
2) in Definition [4.3.1] The statement of Lemma is more general. We show 1) in
the lemma by extending convolution with Dirac sequences [109] to the AF-C*-setting.
We show 2) in the lemma by adapting the proof of Lemma 3.30 in [152]].

Lemma uses the convolution of bounded Bochner measurable maps to A;f

with smooth maps on R having integrable first derivative. Definition |3.2.57| gives such
Bochner convolutions. Note Remark [3.2.58 and Remark

Definition 3.2.57.

1) Set C®Y(R):={p e C®(R) | VkeN: 5—;(;) € L1(R)}. For all closed intervals I c R, we
say that a Bochner measurable map n:I — A* [129] is bounded measurable if
IMlloo := esssup;er IN(@) 4+ < oo.

2) Letn:R— Ag be bounded measurable. For all ¢ € C°X(R), we define the Bochner
convolution mapn* ¢ :R — A;ﬁ by setting

oo

n(s)p(t —s)ds (3.276)

(n* @)@ := f

for all t e R.

Remark 3.2.58. In the finite-dimensional setting, Bochner integration specialises to
one-dimensional analogues in components. Let n: R — A* be bounded measurable. For
all p € C°>1(R), the map s — n(s)p(¢ — s) is indeed integrable for all ¢ € R.

Letn:R— A;ﬁ be bounded measurable and ¢ € C®1(R). For all x € A, we consider
the map s — 7,(s) :=n(s)(x) and have

(% @)@ (x) = f ()’ (X)p(t — s)ds = (1, * ) (2) (3.277)

for all ¢ € R. Equation [3.277| shows standard results for convolutions apply [109]. We
have |17 * @lloo < INlleoll@ll1 by Holder. For all £ € N, we moreover have

k dk
S )0)= (n+ ﬁgﬂ)(t) (3.278)

for all ¢t e R. If n is t-a.e. differentiable and 77 bounded measurable, then

d .

;M P)O=(1%9)®) (3.279)
for a.e. teR.

Remark 3.2.59. For all bounded measurable n:R — A; , we have bounded measurable
ht(m):R— AZE by setting A1(n)(t) := A (1(¢)) for all ¢ € R.
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Let p:[0,1] — 9(¢) be absolutely continuous. We extend to bounded measurable
p: R — 9(&) by setting u(t) := ¢ if £ ¢ [0,1]. Thus AL(u)(t) = 0 if ¢ ¢ [0, 1], hence A (u) is
bounded measurable with compact support in [0,1]. Assume | (t]loo < 00 and ¢ € C*X(R)
s.t. ¢ 20 and [¢l; = 1. For all n € 9(), get fin > 0 in A by 1) in Proposition [3.2.49] Since
further ¢ € 9(¢) by 2) in Theorem [3.2.40, continuity implies

%nﬂ{’a(u(t)) > 0. (3.280)

Using ¢ =0 and |l¢|l1 = 1, Equation |3.277and Equation |3.280[ show

i * @) () = %gﬂ{a(,u(t)) -suppé >0 (3.281)

in A; for all ¢ € R. Equation 3.281|shows (u * ¢)(¢) € 9({) for all ¢ € R. Taken together with
Equation [3.278, we have smooth p * ¢ : R — 9(¢). Equation [3.279| shows

d d
Zlur )= (W= )= (i* p) D) € 1A (3.282)

for a.e. t e R.

Remark 3.2.60. For all n € N, we consider normal distribution for 02 = n~! given by

n t’n
Pn(t) = \/gexp(—7) (3.283)

for all t e R [170]. We have ¢, € Cl(R), ¢n =20 and |l¢,ll1 =1 in each case. We use such
Dirac sequence {¢p,},en € C*1(R) [109] for Bochner convolutions in Lemma [3.2.61

Lemma 3.2.61. Let 10, u! € 9(¢) and (u,w) € Adm!®M(u®, ub) s.t. Ef9(u,w) < oo.

D If u:10,1]1 — 9(¢) and ||ftlloo < 00, then there exists family {u™ :[0,1] — (&)} yen of
smooth paths s.t.

1.1) (u*,0(u", i) e Adm!® for all n €N,
1.2) limgen (07,0 (u™, 1)) = (1,0(k, (1)) in Adm!1]
1.3) limpenETO (um,0(p, 7)) = BN (1, O, ) < EF9 (1, w).

2) If | il oo < 00, then there exists (U™, w")nen CAdm(,uO,,ul) and C >0 s.t.

2.1 p":10,1] — &) and |1 loo < Cllitllo for all n €N,
2.2) liminf,en EF O (0, w™) < ET0(u, w).

3) If (u,w) € Geo (0, ut), then || filloo < co.
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Proof. We show 1). Assume its setting. In particular, we have (u,0®(u, ) € Adm!%!!
and E79(u, O, 1)) < EF9(u,w) by 1), resp. 3) in Proposition Continuity implies
I 1tlloo = esssup;eqo, 1)l plla+ < oo.

For all n €N, let ¢, € C1°°(R) be the normal distribution as per Equation and
set u"* := p* @,. Then ||tlloo, I ftlloo < 00 implies ™ : R — 9(¢) is smooth s.t. 4" = 1 * ¢, in
each case. For all n € N, we directly verify

I oo = lptllco < 00, 111" lloo < llftlloo < 00 (3.284)

using |lglly = 1. We show {t" ;0,17 : [0,1]1 — 9()}nen is a sequence as claimed. Get 1.1)
by 1) in Proposition Testing on A, standard properties of Dirac sequences imply
w(t) =w*-lim,en ™ (¢) for all ¢ € [0,1] and 1(¢) = w*-lim,en (1 (2) for a.e. t € [0,1] [109]]. All
norms and operator topologies here are equivalent by finite-dimensionality. Thus 1.2)
and 1.3) follow by dominated convergence if there exists C > 0 s.t.

[0 (1™ @), ()]

w8 (10, (D) < € (3.285)
for a.e. t €[0,1] and all n € N.

We show there exists C > 0 as for Equation [3.285| Using Equation [3.284] applying
11" loo < ltll o in each case lets us estimate

[z @, 1" O, =< (S - [T o |- 1o (3.286)

and

_1
o D, ®) < [§ 2 | 12loo (3.287)

for a.e. t €[0,1] and all n € N. Since moreover ||t" [« < lItllco in each case, get uniform
bound for {||& () l}ser,nen by continuity. Uniform bound for {IIS’;}(t)II}teR,neN follows by

1) in Proposition (3.2.51|if

%gﬂ{a(un(t)) > Iifguga(,u(t)) >0 (3.288)

for all n € N. Using Lemma [A.2.33] Equation [3.281|shows Equation (3.288 by maximality
of spectral gaps. Applying uniform bounds to Equation |3.286/and Equation [3.287|yields
C >0 as required. Get 1.2) and 1.3) by dominated convergence. Altogether, get 1).
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We show 2). Assume | fi]loo < co. We adapt the proof of Lemma 3.30 in [152]. We
construct two types of perturbed paths and concatenate them. For all € € (0,1), set

pE@) =1 —e)u) + e, vi(t) =1 -e)w(t) (3.289)

for all t € [0,1]. Since fu°,ful,#¢ > 0 in A¢, we see uf(¢) € 9(¢) in each case. Moreover, we
directly verify (u¢,v?) € Adm!%!. This is the first type of perturbed path.
For all e€(0,1) and & € {0, 1}, set

e @) = (1— k) + tpe (k) (3.290)
for all ¢ € [0, 1]. Since #u°, !, ¢ > 0in A¢, we see p*E(t) € 9(¢) in each case. There further
exists C >0 s.t.

tuPE(¢) = C - suppé (3.291)

for all e€(0,1), £ €{0,1} and ¢ € [0, 1]. For all € (0,1) and & € {0, 1}, set

V() 1= e O(UPE (1), & — (k) (3.292)

for all ¢ € [0,1]. Since %uk’f(t) = &(¢ — u(k)) in each case, get (,uk’g,vk’g) € Adm(,uo,ul) at
once by 1) in Proposition This is the second type of perturbed path.

We concatenate these two types of paths. For all € € (0,1), we define concatenated
path on [0, 1] by setting

(10, e 10%¢) (e71¢) ift<e,
(15, w") @) =1 (u5,(1-26) 1) ((1-2e) Lt -¢) ife<t<l-g,
(1, e o) (e7 M1 - 1)) ift>1-¢.

We have pf:[0,1] — 9(¢) and (uf,w®) € Adm(uo, ,ul) in each case. Moreover, we directly
verify there exists C >0 s.t. SUDe(0,1) I oo < Cllttlloo. We readily see 2.1) is satisfied for
all countable subsequences of (uf,w®).~9. We claim 2.2) is likewise satisfied.

We show 2.2). For all € € (0,1) and & € {0, 1}, joint convexity of quasi-entropies as per
1) in Theorem [2.2.29| shows

EM0(uf,vf) < (1 - e)- BN (u, w). (3.293)

Using Lemma , note Equation [3.291| shows infje 1j0(1*4(¢)) = C in each case by
maximality of spectral gaps. We invert the latter to get sup;e(g 1 o(uE@)t<Cc L.
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Using 2) in Proposition [3.2.53] we therefore have

BNk, 0 < e20(8) 100 | 8¢ — k)| (3.294)

for all £ € (0,1) and % € {0, 1}. Rescaling as per Remark (3.1.22| shows

EMO(uf ,wf) = e LET O (u%€,0%€) + (1 - 26) ETO (uf,vf) + e TETO (ube,01)  (3.295)

for all € € (0,1). Applying Equation [3.293|and Equation |3.294]to Equation |3.295|yields

]__
€ EM(u,w) (3.296)

Ef’g(lf,wg) < ZE.U(A)_IC_B : ||ﬂf_ ﬁu(k)”? + 1-2¢

for all € € (0,1). Letting € | 0 in Equation yields Ef ’G(M,w) on its right-hand side.
We therefore have 2.2) as claimed. Altogether, get 2).

We show 3). Assume p € Geo(u®, ut). Minimising geodesics have ¢-a.e. constant speed
by 1) in Proposition By definition, the quasi-entropy evaluated on (u,w) is thus
t-a.e. constant. There exists C > 0 s.t. sup;e(q 17 lfw(®)llo < C by 4) in Theorem We
have |V*| < oo by finite-dimensionality. The continuity equation lets us calculate

o, = 19, = 7] w0l = [v°]-C <o0 3.297)
for a.e. t €[0,1]. Equation implies 3) at once. O

Theorem 3.2.62. Let (¢,y,y,V) be noncommutative differential structure for tracial AF-
C*-algebras (A,1) and (B,w) in (f,0)-setting. Assume A and B are finite-dimensional. If

e F(A)is a fixed state, then val’ﬁe( % 9E) is the distance induced by g°.

Proof. Let & € #(A) be a fixed state. Proposition |3.2.56| shows the induced distance d¢
of g¢ is given by minimising

1
VE! (1,00, ) = \/ fo &5 (1D, (1))t (3.298)

over smooth paths p :[0,1] — 9(¢). Thus 1) and 2) in Lemma [3.2.61| show d¢ is given
by minimising over absolutely continuous path with marginals in 9(¢) and bounded
measurable derivative, hence we conclude by 3) in Lemma |3.2.61 O

Corollary 3.2.63. For all u°,u' € 9(¢), there exists (u,w) € Geo(u®, ul) s.t. u(t) € &) for
all t €10,1]1 and p:[0,1]1 — 9(&) is @ minimising geodesic in distance induced by g°.

Proof. Let u°,u! € 9(¢). Get (i, w) € Geo(°, u') by 3) in Corollary|3.1.50, Lemma [3.2.61
implies u(¢) € 9(&) for all ¢ € [0,1] by minimality. We conclude by Theorem |3.2.62 O
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Accessibility components of square integrable normal states. Assuming
spectral gaps of quantum Laplacians and fixed parts, Theorem [3.2.65| classifies acces-
sibility components of square integrable normal states by showing each one is a norm
closed convex subsets of all such states with identical fixed part. Theorem uses
Lemma We show the lemma by twice reduction. This lets us adapt the proof
of Proposition 9.2 in [50]. In the finite-dimensional setting, assumptions as above are
satisfied and Corollary [3.2.66] classifies all accessibility components using fixed parts.

Moreover, the coarse graining process reveals more general classification schemes
by intersecting with convex subsets of states other than square integrable normal ones.
In the logarithmic mean setting and assuming strictly positive lower Ricci bounds, as
well as finitely supported fixed part but not spectral gaps, Theorem [4.3.12| classifies
accessibility components of normal states with finite quantum relative entropy using
fixed parts. Here, Example constructs quantum Laplacians having spectral gaps
for the unique hyperfinite type II;-factor.

Let (¢p,v,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B,w) in (f,0)-setting. Assume o(A) > 0.

Lemma 3.2.64. Let ¢ € 9_1\1’2(A5) be a fixed state. For all u,n € Fixa(&)n FN2(A) and
€ €(0,1], we have

#2002 07268 (lent (1) |, + (1 - O™ (t11) - ()], ) < 0. (3.299)

Proof. We reduce twice in order to adapt the proof of Proposition 9.2 in [50]. First, we
reduce to u,n € Fixa ()N FN2(A) s.t. ij,7; € ﬂ(fj) for a.e. j € N. Secondly, we reduce to
the finite-dimensional setting. Let € € (0,1]. Set

C, :=20(A) 20(E) 2675, (3.300)

We engage in the first reduction. Let y,n € Fixa (&) n FN2(A). Note va Y is 1s.c. in
w™-topology by 3) in Theorem (3.1.47| In addition, we know 2.1) in Proposition (3.2.32
ensures A :[0,00] — B(A*) is w*-continuous on .#(A). We obtain

W () < liminf WP (ho(), he(). (3.301)

Strong continuity of 4 : [0,00) — RB(L?(A,1)) as per 1) in Proposition [3.2.32| together
with [As, A1 =0 for all ¢ = 0 further yields

et g1, =tim b (thotu0) 3.302)

and

(X - ot (tu) - A (tn) |, = lim (1= &Rt (8 (w) — R (Hh ) |- (3.303)
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Equation |3.301, Equation [3.302| and Equation [3.303|imply Equation [3.299]if

WP (he(), he() < C - (||ehi(ﬁht(u)) I, + 1@ = enrt (fh(w) — 2 (Hhem) ||T) (3.304)

for all £ > 0. If &; # 0 for j €N, then hy(u); = hs(f1;), he(n); = hy(;) € () for all >0 by
1.3) in Proposition and 1.3) in Theorem [3.2.40} Since {; # 0 for a.e. j €N, we see
Equation lets us apply the first reduction by 3) in Theorem [3.1.47

We engage in the second reduction. Let y,n € Fix (¢ )N #N2(A). Assume there exists
keNs.t. fij,7; € 9(;) for all j=k in N. Let 0 <5 < o(¢). Set

Cs:=0a()-4. (3.305)
Following Remark [3.2.15} 1) in Lemma |3.2.16/implies there exists [ € N s.t.

0<Cs SU(EJ‘) (3.306)
for all j =1 in N. Set m := max{k,/}. Further set

w=A-¢e)u+eé (3.307)
for all £ €[0,1]. For all j €N, set ﬂ; = ,uf(lAj)_lp; as per 1) in Deﬁnition
Assume
O~ re -1 -5 0 1w~
wy, (F‘j’ﬂj) =20(8;) *C,; 7 e ||en (1), (3.308)
and
1 -8 g _
WL (5, 15) <20(8))2C, 2672 1S~y (3.309)

for all j = m in N. Using triangle inequality, Equation (3.308/ and Equation [3.309|show

-9
2

_0 _ _ _
w0 (0,) <20(8))72C, % - (len (b)) + o5 — £0,1, (3.310)
for all j = m in N. Note 2) in Theorem shows

00~ - 00— -
W] (mj,n;) = (0.1;) (3.311)
in each case as well. Applying Equation |3.311|to Equation |3.310|yields

-2
2

Cte b (len )l + o -eall,) @12

[ S

O -
WO (,75) < 20(4))

for all j =m in N.
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Finally, 4) in Proposition [2.3.19|implies

0<o(A)<info(A,) (3.313)
JeN

by Proposition [A.2.32| Applying Equation [3.313|to Equation |3.312|yields

_8
2

WL (1;,7,) <20(A)3C, 2677 (”t‘hJ-(jjﬂj) I, + lgas - uﬁj”T) (3.314)

for all j=m in N.

We apply limit inferior to both sides in Equation In addition, we use Ls.c. in
w*-topology for the left-hand side and I = s-lim ey n}‘.‘ for the right-hand side to get its
|.Il--limit. Altogether, applying limit inferior to Equation lets us estimate

-9
2

#2025 7 - ([len* ()|, + e ~ ]l ). (3.315)

Note [|[uf —nll; =1I(1 —g)hL(,u) - hl(n)llr since u,n € Fix(¢). Equation |3.315/shows

_9
2

WO () < 20(0)3C, 2673 (||hL(ﬁu) I, + (1= et (4e) — b (tn) ||T). (3.316)

If Equation [3.308| and Equation [3.309| hold for all j = m in N, then Equation [3.316[in
turn holds for 0 < § < g({) fixed but arbitrary. Letting 6 | 0 in Equation (3.316|therefore

yields Equation [3.304] The latter lets us apply the second reduction.
Assume A and B are finite-dimensional. Let u,n € Fix(¢). We show Equation [3.308
and Equation [3.309] We suppress subscript j € N without loss of generality. Set

pe(s):=(1—s)u+sé, n°(@t):=A—-t)n+tu (3.317)

for all s € [0,¢e] and ¢ € [0,1]. Note uf :[0,e] — 9(¢) and n° : [0,1] — () are absolutely
continuous. Using the map ¢ — @(t) := €t, rescaling u := uo¢ as per Remark
yields absolutely continuous p : [0,e] — 9({). We may use double notation for y and
uf, each denoting state and path, since their meaning is clear from context. We have

[(t) = —eh*(u) and 7 = pf —n in each case. Proposition [3.2.56|shows u,n¢ : [0,1] — 9(¢)
induce admissible paths

(1,0 (1, —en* () € Adm M (i, 1), (n°,0(n°, 1 — 1)) € Adm!* (%) (3.318)
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Since #§¢ >0 in A, we have

fut), in®(t) = te - #¢ = te- o (&) -suppé (3.319)
in A¢ for all ¢ €(0,1]. Using Lemma [A.2.33} Equation [3.319|shows

o(u®),o(n’@®) = te-o(&) (3.320)

for all # € (0, 1] by maximality of spectral gaps. Using 1) in Proposition [3.2.51] then note
Equation [3.320[in turn shows

3;(1”,3,}1(,5) <o(A) 0601 (3.321)

on imA¢. We evaluate paths on lengths functionals. Using 2) in Proposition [3.2.53| in
order to evaluate on the Riemannian metric, Equation [3.321|lets us estimate

1
L0 (1,0(u, —eh (W) < 0(A) 20(E) 2672 - |eh - (4) |, - fo t2dt (3.322)

and

1
LP0 (i, 0(nf, 1 —n)) < a(A) 20(8) 272 - ||ﬁ;f—ﬁn||,-f0 t2dt. (3.323)

Note fol t~5dt = (1- g)_l < 2 < 0o since 0 € [0,1]. Following Corollary [3.1.42, we obtain
the required estimates at once by minimising the left-hand sides in Equation [3.322|and
Equation [3.323|over admissible paths with marginals chosen accordingly. O

The statement of Theorem [3.2.65| resp. Corollary(3.2.66, refers to continuity defined
on accessibility components of square integrable normal states by norm topology under
the standard modified pairing.

Theorem 3.2.65. Let (¢, y,y,V) be noncommutative differential structure for tracial AF-
C*-algebras (A,7) and (B,w) in (f,0)-setting. Assume o(A) > 0. If é € QS”_I\%Z(A,{) is a fixed
state, then

1) ngz(f) = CgA(é) N yN’Z(A) — FIXA(E) A yNz(A)’

2) wih

is finite and | .|| -continuous.
VIE2(E)xE2(E) f I-le

Proof. Let & € #°*(A¢) be a fixed state. Using 1.2) in Proposition [2.1.31| and 1.3) in
Proposition |3.2.34] 2) in Corollary|3.1.49|implies

EA(E) NP N2(A) c Fixa (&) n.FN2(A). (3.324)

Lemmal|3.2.64{shows va Y is finite on Fix AE)NFN2(A), i.e. converse to Equation [3.324]
Get 1). Note 2t € B(L%(A, 1)) is a projection by 2.1) in Proposition [3.2.30
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We show 2). Let p € €, %(¢) and {"}nen © 64 () s.t. = |l ll;-limpen . Using
Lemma|(3.2.64] there exists C > 0 s.t.

. _0 _8
0 <limsup # (1, 1") < Ce' ™2 - A Il grecanyy - Iuelle = Ce'~2 - iulls (3.325)
neN

for all € € (0,1]. Letting € | 0 in Equation [3.325| shows ||.||;-continuity by l.s.c. as per 3)
in Theorem |3.1.47, Get 2). O

Corollary 3.2.66. Assume A and B are finite-dimensional. If § € #(A) = #N(A) is a
fixed state, then

1) €U = 6a©) =@ = Fixa(©) = Fist (),

f.0 . . .
2) WVFgA({)X(gA(é) is finite and ||.|| o-continuous.

Proof. Get 9@ = Fixa(€) since 9(¢) = relint Fixa(¢) by 1) in Proposition [3.2.49, We
see Theorem 3.2.65/implies 1) and 2) as ¢ € =?_I\i’z(A(g) by finite-dimensionality. O

Example 3.2.67. Assume the setting of Example Let {e;};jen be orthonormal
eigenbasis of D € %%B(H);,. For all jeN, get H; =(e1,...,ej)c and A = o/ (H [J]). Note
(Aj,7)= (®2:1M2(C),2_j ® _, trg) = (M,;(C),277 try;) in each case (cf. p.288 in [162]).

We give the C*-isomorphism. Let j € N. Set

Vylej):=agzleayle;)” —ayle) azle)). (3.326)

For all £ € {1,....,j} and n,m € {1,2}, let EX  be the (n,m)-unit matrix of M3(C) in the
k-th factor of ®, _ M(C). We define C*-isomorphism from &;_, M3(C) to A; by setting

ajlep)agler)” ifn=m=1,
ajler) ager) ifn=m=2,
") aglep)Valer) - Vylepo1) ifn=1m=2,

ajler)*Vyler)---Vyler-1) ifn=2 m=1

Letting j | oo provides orthonormal basis of L%(<#(H), 1) as follows, moreover suited to
calculate sufficient conditions for quantum Laplacian with spectral gaps. Indexed over
keN and n,m € {1,2}, set

nm *

P {E’;l ~EL, ifn=m,
2E% if n #m.
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The set of all finite products E using factors in {I,EX };cn nme(12) is orthonormal
basis of L?(«/(H),). For all jeN, let v i be the eigenvalue of e; and use Equation|3.127
in order to calculate

d d s .
Vagle;)=— ar(agle))=— e ™iiayle;))=—-ivj-alej) (3.327)
dt t=0,w dt t=0,w

and therefore

Vag(e;)* = (Vag(e)) =iv;-azle;). (3.328)

Equation 3.327| and Equation [3.328 show VV;(e;) = 0 in each case. If n = m, then we
further have V;(e;) = EJ,,. For all E¥ € E, the Leibniz rule therefore implies

VE: =Y v EF (3.329)

nm
jel

for finite I c N depending on Ef’im. Since V* = -V, we see Equation |[3.329| consequently
shows all eigenvalues A of A have form

2

1= (3.330)

2V

jel

Assume there exists C >0 s.t. vj € CZ for all j € N. Then Equation|3.330/shows A = C2%q?
for g € Z in each case. We have A =0 if and only if ¢ = 0. Thus A # 0 implies |¢| = 1 and
therefore A = C2 > 0, hence A either vanishes or has spectral gap.

3.3 Coarse graining and transport of quantum information

We consider states on tracial AF-C*-algebras as scaling limits of uniformly conditioned
spin states encoding sequences of qubits. Scaling limits arise from a coarse graining pro-
cess associated to noncommutative differential structures. We view quantum optimal
transport as transport of quantum information. Since energy functionals are I'-limits
w.r.t. the coarse graining process, resp. using our formalisation of the latter notion in
Subsection we view minimising geodesics approximated in finite dimensions as
optimal transport of information encoded in scaling limits as above.

Structure. In Subsection we discuss coarse graining and scaling limits. We con-
sider states on tracial AF-C*-algebras as scaling limits of uniformly conditioned spin
states encoding sequences of qubits. In Subsection we give the coarse graining
process and view quantum optimal transport as transport of quantum information.
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3.3.1 Information encoded in states on tracial AF-C*-algebras

The fundamental unit of quantum information is the quantum bit, or qubit [62][95]. We
consider spin states encoding qubits [42] since spin qubit quantum computers [43]][62]
operationalise [18] spin states according to DiVicenzo’s criteria [93]1[95]. We generalise
to scaling limits of uniformly conditioned spin states encoding sequences of qubits. We
show states on tracial AF-C*-algebras encode information in such form.

We do not claim they have physical realisation in general. However, we show such
states are noncommutative analogues of scaling limits arising from projective limits of
Banach dual spaces. These are themselves dualisations of direct limits in the category
of commutative C*-algebras obtained by means of a coarse graining process for locally
compact Hausdorff spaces. Spin states are a special case and have well-known physical
realisations as spin qubits [42][43]1[62[[93][95]. Standard reference for approaches and
methods of coarse graining in the commutative setting is [[122]. Standard reference for
category theory is [[153]]. Standard reference for quantum information theory is [62].

Coarse graining and scaling limits. Following a general description of coarse
graining via renormalisation group transformations (cf. pp.180-182 in [122]), we obtain
scaling limits from direct limits in the category of commutative C*-algebras by means of
a coarse graining process for locally compact Hausdorff spaces. Dualisation furthermore
yields projective limits of their Banach dual spaces. Examples arise from Ehrenfest
coarse graining processes for continuity equations (cf. pp.117-140 in [122]). We show
the AF-C*-setting yields noncommutative analogues of scaling limits.

We review the classical case. We use Gelfand-Naimark functor defined by Gelfand
duality (cf. Theorem 1.3.11 in [[192]). It yields natural transformation for the categories
of locally compact Hausdorff spaces and commutative C*-algebras (cf. Theorem 1.4.4 in
[192]). The classical case is in said commutative setting (cf. Example [A.1.18). We use
direct and projective limits (cf. pp.62-72 in [[153]]). Let X be a locally compact Hausdorff
space. We view X as phase space of a physical system [122][188]. Let {X;} ;en be locally
compact Hausdorff spaces s.t. we have diagram of continuous surjective maps

X » o » X » o » X1 (3.331)

in the category of locally compact Hausdorff spaces. Assume Diagram|3.331|maps, under
the Gelfand-Naimark functor, to the direct limit diagram

Co(X1) — -+ — Co(X;) — --- — Co(X) =1limCo(X ) (3.332)

in the category of commutative C*-algebras. Dualisation reverts arrows and therefore
maps Diagram [3.332|to the projective limit diagram

Co(X)* =lim Co(X ;)" » e » Co(X;)"* » e » Co(X1)” (3.333)
in the category of Banach spaces.

190



The set of pure states on Cy(X) is the set of Dirac measures on X (cf. Theorem 1.3.11
and Definition 1.3.12 in [192]]). We view the latter as pointwise measurement of phase
space X. If each X; = X/~ is a quotient space for a directed set { ~; } jen of equivalence
relations on X in dual order, then each step in Diagram identifies certain sets
of pointwise measurements. We thereby define renormalisation group transformations
and obtain a coarse graining process (cf. p.181 in [122]). Examples arise from identifying
interiors of certain cells in Ehrenfest coarse graining (cf. pp.117-123 in [122]).

We see injections in Diagram are inclusions of observables on phase space X
invariant under certain pointwise measurements. Each step in Diagram(3.332|increases
the set of observables s.t. more pointwise measurements are separated. Diagram 3.333
further extends Diagram by extending it to all totally finite signed outer regular
Radon measures on X (cf. Theorem 6.3.4 in [171]]) with separability increasing in each
step. Sets of identified, i.e. non-separated, pointwise measurements have characteristic
scale, e.g. the volume of cell interiors. Letting j | oo implies these tend to zero since

ll-lloo

CoX)=JCoXy) . (3.334)
JjeN

We say that elements in Cy(X) and Co(X)*, as well as compatible objects or properties
using the latter, are scaling limits.

We show the AF-C*-setting yields noncommutative analogues of scaling limits. Let
(A, 1) be a tracial AF-C*-algebra. Definition [2.1.14|shows direct limit diagram

Al c > vee C > A] [d > vee C > A:14_0”.”A (3335)

in the category of C*-algebras. For all j € N, 2) in Proposition [2.1.28|shows A;f cA*. We
use the modified standard pairing. Dualisation maps Diagram [3.335| to the projective

limit diagram

A=A ATy A] (3.336)

in the category of Banach spaces. Following our discussion immediately above, we see
elements in A and A*, as well as compatible objects or properties using the latter, are
noncommutative analogues of scaling limits. Diagram |3.336| gives the coarse graining
process without rescaling or consideration for the metric geometry of quantum optimal
transport distances. In Subsection [3.3.2], Diagram [3.346| extends Diagram [3.336

We are motivated by Ehrenfest coarse graining since it provides a coarse graining
process lifting kinetic equations on phase spaces to continuity equations on state spaces
by cell averaging (cf. pp.123-129 in [[122]). However, we neither coarse grain time nor
use entropy production to control scaling limits. As such, we do not see Diagram [3.346
to be a noncommutative analogue of Ehrenfest coarse graining. The maximum entropy
production principle given in Subsection is, to our knowledge, unrelated.
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Spin states. We view tracial C*-algebras as algebras of observables [82]][84][|121]
[1631[1881[192] used in Hamiltonian formalism [35][36][82]1[121][163][188] for a given
quantum system. The set of all propositions P on a given quantum system is a lattice
of projections (cf. pp.1-11 in [163]). If P is equipped with f.s.n. weight w : P — [0, 0]
[193], then the GNS-construction for weights defines a faithful unital *-representation.
This yields generated W*-algebra W*(P) (cf. Proposition and Definition [A.1.36).
All tracial W*-algebras arise in this manner (cf. Proposition [A.1.37). Let (A,7) be a
tracial C*-algebra. We have f.s.n. trace 7 := w : P(L*(A, 1)) — [0,00] and L*(A,1) =
W*(P(L*®(A,1))) (cf. Proposition [A.1.37). It suffices to consider A c L*(A, 1) as algebra
of observables since it is a o-weakly dense C*-subalgebra. Altogether, we view A as
algebra of observables for the quantum system described by the set of all propositions
P(L*°(A,7)). We view #(A) as its set of states [163][192]]. Following Remark [3.2.26] we
know precomposition with quantum channels transmits change of such states.

We consider spin states encoding qubits under quantum noise. We do not specify the
latter here. However, Example gives the depolarising channel as canonical choice
of quantum noise operator (cf. pp.378-379 in [62]). Let n € N. Up to scaling of density
operators (cf. pp.98-105 in [62]]), pure states of n qubits are given by all Hilbert space
projections onto one-dimensional subspaces of H := ®Z:162 (cf. pp.13-17 in [62]). They
generate, by construction as a subset of all propositions on a given quantum system with
state vectors in H, the lattice P of all Hilbert space projections onto any subspace of H.
Assume (A,7) = (®Z:1M2(<E),2_n ®Z:1 trg). Thus A = W*(P), hence A is an algebra of
observables as above. Corollary[3.2.10/implies pure states on A, i.e. the extreme points
of #(A), are pure states of n qubits. Superposition shows .#(A) are states of n qubits.
Spin qubit quantum computer [39][42[][43[I[94] use spin-entangled electrons [41][43]] as
physical realisation of .#(A) in order to achieve scalable quantum computing according
to DiVicenzo’s criteria [[93[[[95]. If initialisation prepares pure states and quantum gates
are unitary operations, then 1) in Corollary implies quantum computations are
restricted to 0.#(A). This is a desired feature but does require challenging control of
quantum noise in form of sufficient quantum error correction [43]62]. The latter may
be relaxed to initialisation preparing mixed states while retaining an edge over classical
computing [116]]. We consider each u € #(A) as spin state of n qubits under quantum
noise and say that it encodes the latter. We ignore the réle of quantum noise here.

Spin is an intrinsic property of elementary particles, e.g. electrons, in the Standard
Model of particle physics [53[I[118]][197]]. Its independence from mass, in contrast to
angular momentum, necessitates use of spinors [177][[197][198] in the Dirac equation
[195]l. Together with non-spatiality as per Example and Example this
motivates our view of quantum optimal transport as non-spatial transport of quantum
information. If we obtain the latter as analogue quantum simulation [18]] for sufficiently
small n € N, then we have physical realisation of our interpretation. Noncommutative
analogues of push-forward measure representations [72][156] given by precomposition
with quantum channels as per Remark provide an ansatz but are not known to
exist. If we further obtain the classical case as analogue simulation [32][154], e.g. for
fluid dynamics [24]1[97] but without any spatial discretisation of observables, then we
suspect similarities and differences of either arise from distinct physical realisations.
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Scaling limits of uniformly conditioned spin states. Note all formulations of
the classical case implicitly assume pure states have vanishing support, i.e. are Dirac
measures. Assuming non-atomic Radon measure, Dirac delta sequences [109][139][140]
show infinitesimal length elements [67]][144] imply all pure states have infinite relative
entropy w.r.t. the given Radon measure. We consider a different but equally well-known
idealisation by letting n € N tend to infinity. We thereby allow countable infinitely many
interacting quantum systems, e.g. second quantisation as per Example(3.1.62] as initial
approximation for a finite but large number of interacting ones (cf. pp.3-5 in [36]). In
Chapter |4}, we rectify the latter for our main contributions by restricting to the domain
of quantum relative entropy. We therefore generalise spin states encoding qubits to
scaling limits of uniformly conditioned spin states encoding sequences of qubits.

We show states on tracial AF-C*-algebras are of such form, i.e. we consider scaling
limits of uniformly conditioned spin states encoding sequences of qubits. Let (A, 1) be
a tracial AF-C*-algebra. Remark explains use of restrictions in Equation [3.337
below. For all u € .#(A), we have

p=w -1J1‘_:r,£|1uj:w -lj1g£uj. (3.337)

Following Diagram |3.336} note Equation lets us consider each u € #(A) as scaling
limit. We rescale in each step for a given state but not uniformly on sets of states. We do
so for Diagram Here, we show how to consider a.e. fi; € A}‘T, , in Equation as
uniformly conditioned spin state encoding qubits. We therefore consider each ue . #(A)
as scaling limit of uniformly conditioned spin states encoding a sequence of qubits.

We consider uniformly conditioned spin states encoding qubits. For all n € N, note
Example gives an isomorphism (®}_, M3(C),27" ®_, tra) = (M2n(C),27 " tran) of
tracial C*-algebras [162]]. Let j € N. There exists minimal ¢; € N s.t.

rA;

A; = o) M, (C)c My;(C)= 8" Ms(C) (3.338)

using inclusion EB;Z 1Mpn;,(C) € Myq;(C) into the upper left corner. Equation 3.338| uses
Notation Set

N:=e," M, (C), M:=8," MsC). (3.339)

We suppress the second C*-isomorphism in Equation[3.338|and consider C*-subalgebra
N < M. Using the latter, 1) in Proposition [B.2.13| yields noncommutative conditional
expectation

nPi=ny:M—N (3.340)

from M to N. Note #°" is unital, surjective and positivity-preserving. Moreover, we know
it conditions the set of all propositions P(M) on the given quantum system to a subset
of propositions P(N) [192].
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We obtain positivity-preserving injective Banach dual

P = (n¥)"  N* — M* (3.341)

s.t. ﬂj.p’*(y(N )) € F(M). Precomposing with nj.p restricts each y € #(IN) from M to N by
conditioning P(M) to P(IN). We consider each u € &#(N) as uniformly conditioned spin
state of g ; qubits and say that it encodes the latter. The first identity in Equation
and Equation show we have positivity-preserving injective Banach dual

&P = (raon?) 1 A) — M (3.342)

s.t. Lj.p(éﬂ(A = ﬂj.p’*(y(N )) € #(M). Precomposing with r4; transforms the set of all
propositions from P(N) to P(A ;) by equivalent formulation of observables. We consider
each u € .%(A;) as uniformly conditioned spin state of ¢; qubits and say that it encodes
the latter. We furthermore consider scaling limits of uniformly conditioned spin states
encoding a sequence of qubits as discussed above.

3.3.2 Transport of quantum information

We give the coarse graining process and view quantum optimal transport as transport
of quantum information. The coarse graining process involves rescaling and considers
the metric geometry of quantum optimal transport distances. We use compression and
finite-dimensional approximation as used for classification of accessibility components
in Subsection for its construction. We thereby formalise compatibility with both in
the coarse graining process as claimed in Subsection 2.3.3

The coarse graining process applies to accessibility components. These have unique
common fixed parts ensuring existence of scaled restriction maps. In order to respect
scaling limit description of marginals and fixed parts as per Subsection [3.3.1, we only
consider minimising geodesics approximated in finite dimensions as optimal transport
of scaling limits of of quantum information, i.e. of uniformly conditioned spin states
encoding sequences of qubits. Non-ergodicity restricts information-bearing degrees of
freedom by the continuity equation. Moreover, the coarse graining process reduces the
AF-C*-setting to the finite-dimensional one s.t. ergodicity is recovered up to fixed parts
by reducing to those accessibility components in the finite-dimensional setting arising
from scaled restriction of the given fixed part. For this, we use classification to determine
accessibility components in the finite-dimensional setting.

The coarse graining process. Diagram [3.346|extends Diagram [3.336|and gives
the coarse graining process. We use compression for all its vertical chains of arrows and

finite-dimensional approximation for its horizontal ones. The coarse graining process
decomposes global pictures, objects and properties into sequences of local ones together
with a uniformity condition ensuring convergence of limits. For details on the notions of
compression and finite-dimensional approximation, we refer to Subsection |2.3.3
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Let (¢,w,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B,w) in (f,0)-setting. The coarse graining process applies to accessibility
components. These may differ yet have states with identical fixed part. The latter are
unique only in that each accessibility component has exactly one. For all fixed states
¢ € #(A), note 3) in Proposition implies € 4 (&) c Fixs(¢) and decomposition

Fixa©)= [] <. (8.343)
G cFixy (&)

Definition 3.3.1. Let { € #(A) be a fixed state. We say that € c (5”(A),7l/vf ’9) has fixed
part & if € c Fixy (é).

Remark 3.3.2. If € c (5”(A),7//vf ’6), then the above shows %4 has a unique fixed part ¢
as per Definition [3.3.1] Yet ¢ is only unique among all i1 € €. As such, we cannot exclude
€ # 64(¢) unless we intersect with a suitable convex subset of states, e.g. FN2(A) as
per 1) in Theorem This is classification and reason for K in Diagram 3.346

The lowest horizontal chain of arrows in Diagram gives the coarse graining
process for the following data. Let ¢ € #(A) be a fixed state. For all j € N, we know
fjey(Aj) is a fixed state if and only if ¢; #0. If {; #0 for j €N, then {, #0 for all j<Z
in N. Let jmin € N minimal among all j € N s.t. {; # 0. For all j = jnin in N and up to
rescaling as per 1) in Definition [3.1.12] note 1.3) and 3) in Proposition imply

resj(gA(é)) = 9Aj (EJ) (3.344)

We rescale subsets of F4(¢) as per Equation [3.344] Let K < #(A) be a convex subset
s.t. for all j = j,in in N and up to rescaling as per 1) in Definition |3.1.12, we have

resi(¢ NK) =64, (). (3.345)

Corollary which uses Theorem [3.2.65, shows Equation is satisfied if K
equals #(A), #N(A), or FN2(A). Coro shows Equa is satisfied
if K is the domain of quantum relative entropy as per Definition This lets us
apply the coarse graining process in Chapter 4. Theorem (3.2.65 and Theorem |4.3.12
yield classification if K equals #N2(A), resp. the domain of quantum relative entropy.

However, each choice implies restriction of the coarse graining process to suitable
fixed states. If K is the domain of quantum relative entropy, then our discussion in
Section yields natural interpretation. For all u € S#(A), Ent(u,1) € [-00,00] is the
relative entropy of y w.r.t. T as per Equation Theorem ensures it measures
information required to discriminate p and 7 through observation by extending its use
from the strongly unital finite-trace case (cf. pp.1-11 in [163]). Restriction implies we
only consider normal states, fixed or not, encoding a finite amount of information.
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We assume data ¢ € #(A) and K as above. Using canonical inclusion maps for all
vertical arrows, restriction maps for all uppermost horizontal arrows, as well as scaled
restriction maps as per Equation [3.344] resp. Equation for all lower horizontal
arrows, we have diagram

A* w L. N A* N N A*
N " " j " " JFmin
N S
J J o J (3.346)
Fa(é) » oo — Fa(§) — o —> Fa, (G
S A AN
¢nK » o —» Ga,(E) —» o — ay ()

Diagram extends Diagram Assuming a fixed state is necessary for having
scaled restriction maps in Diagram We use compression for each vertical chain of
arrows in Diagram and finite-dimensional approximation for each horizontal one.
This demands data compatible with both. Diagram relates a global picture given
by the leftmost vertical chain of arrows to a sequence of local pictures given by vertical
chains of arrows obtained as images of scaled restriction maps.

We explain our notion of locality. For all j = j,i, in N, note A;f c A* restricts as
per Equation to an equivalent formulation represented on a finite-dimensional
model algebra of observables. We thereby restrict #(A) to a standard representation of
#(A ) by conditioned testing on direct sums of full matrix algebras. We view the latter
as local pictures in direct analogy to notions of locality for pure state spaces in the
commutative setting, i.e. locally compact Hausdorff spaces. Altogether, Diagram
decomposes global pictures, objects and properties into sequences of local ones together
with a uniformity condition ensuring convergence of limits.

Transport of information encoded in states on tracial AF-C*-algebras. Let
(¢,v,7,V) be noncommutative differential structure for tracial AF-C*-algebras (A,1)
and (B,w) in (f,0)-setting. Following our discussion in Subsection [3.3.1, we consider
each p e #(A) as scaling limit of uniformly conditioned spin states encoding sequences
of qubits. Note minimising geodesics do not restrict to other minimising geodesics in
general. However, we expect a form of finite-dimensional approximation related to and
well-behaved w.r.t. the coarse graining process, at least for marginals, if transport of
quantum information arises from quantum optimal transport. We therefore consider
minimising geodesics approximated in finite dimensions in order to respect scaling limit
description of marginals and fixed parts as above while retaining geodicity.
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For all u°,u! € #(A), Theorem [3.1.52| shows we have Wvlog(,uo,ul) < oo if and only
if fcher;e exists (u,w) € Geo(uo, ,ul) approximated in finite dimensions by a sequence
(1 ,w?) j=m < Geog. We moreover have

(1, w’) € Geoj (%, i} (3.347)

for all j = m and may pass to a subsequence converging to (¢, w) in Adm!%! in this case.

We consider each 1/ :[0,1] — .#(A 7) as optimal transport of uniformly conditioned spin
states encoding qubits and therefore transport of quantum information. Corollary[3.1.49|
shows convergence to (i, w) in Adm!%! yields the global picture, here itself scaling limit
w.r.t. the coarse graining process, using a sequence of local pictures for transport of
quantum information. Equation|3.347/shows marginals are elements in the scaling limit
sequence of marginals as per Equation |3.337

We consider each (u,w) € Geo approximated in finite-dimensions as optimal trans-
port of scaling limits of uniformly conditioned spin states encoding sequences of qubits.
We therefore view quantum optimal transport as transport of quantum information and
say that it is compatible with the coarse graining process. Thus non-ergodicity restricts
information-bearing degrees of freedom by the continuity equation, as visible from 3) in

Proposition [3.2.34]in general, resp. 2) in Proposition [3.2.46|and Proposition [3.2.49|upon

coarse graining. Moreover, our description of transport of quantum information extends
suitably to Example and its generalisations.

We restrict to Example [3.1.64] and use its notation. The given state space #(Ax)
consists of normalised Radon measures on X evaluating in </ (H) up to C*-isometry as
per Equation Dualising the minimal C*-tensor product [135][192] yields

F(Ax)={pe CoX) ®A(HD)" | 120, Iplcyxy ey =1}, (3.348)

where Co(X)* = C.(X)* is the Banach space of totally finite signed Radon measures on
X by o-compactness (cf. Proposition 6.3.6 in [171]). Each gauge field T' € X determines
an encoding scheme of «/(H)} as per Diagram These vary since Example
applied to obtain each fibre depends entirely on the given inner fluctuation Dy of D as
per Equation [3.135] If p1:[a,b] — #(Ax) is given by an admissible path s.t.

1) = 8,0 @ V(D) € (Co(X)* ® A (H)*), (3.349)

under the isomorphism in Equation for a.e. t € [a,b], then v(¢) € # (A (H)) for
a.e. t € [a,b] as well. This suppresses encoding schemes. Upon considering said path
in #(Ax), i.e. we know t — v(t) € S (oA (H[J 1)) are states on varying CAR-algebras
t— of (H[Jy»]) as per Equation we see minimising geodesics transporting Dirac
measures are transport of quantum information under varying encoding schemes. We
are therefore motivated, in direct analogy to the classical case [8][97][199] generalising
from transport of point mass to transport of mass distributions, to view parametrised
quantum optimal transport as transport of densities of quantum information over those
encoding schemes of «/(H)} as per Diagram parametrised by X.
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4 | Metric Geometry of Quantum
L2-Wasserstein Distances

The logarithmic mean setting uses the logarithmic operator mean for interpolation
parameter one. This defines quantum L?-Wasserstein distances in direct analogy to the
classical case [97]. The logarithmic operator mean is characterised as the one inducing
the Kubo-Mori-Bogoliubov inner product [176]. Up to coarse graining in the logarithmic
mean setting, the given noncommutative chain rule ensures heat flow is gradient flow
of quantum relative entropy. In our logarithmic mean setting, which does assume the
AF-C*-setting, yet neither ergodicity nor finite trace, we extend results in [48[[[49][50]
and [106] to the general case and view lower Ricci bounds as measurement convexity of
quantum information. Non-ergodicity and non-finite trace ensure fundamental example
classes in Subsection are covered. We summarise our contributions below.

We extend quantum relative entropy in the sense of Araki [16][17] and Umegaki
[196] to the AF-C*-setting. Note our construction ensures it measures information re-
quired to discriminate a given state and, possibly non-finite, trace through observation
by extending its use from the strongly unital finite-trace case [163]. If EVI;-gradient
flow of quantum relative entropy exist, then it is heat flow. We show claimed equivalence
of EVI,-gradient flow, 1-convexity, Bakry-Emery and Hessian lower bound conditions
by means of the coarse graining process. We then define lower Ricci bounds of quantum
gradients using any one of said equivalent conditions, give sufficient conditions for lower
Ricci bounds of direct sum quantum gradients and, assuming lower Ricci bounds, derive
functional inequalities HWI,, MLSI; and TW} in the AF-C*-setting.

We view quantum Laplacians as generators of quantum noise evolution in order to
have non-spatiality of lower Ricci bounds and associated energy-information trade-offs.
Following Landauer’s principle [142]][143] and its extension to quantum information
theory [45]1[95], erasure of quantum information implies strictly positive production of
quantum entropy. Yet it is unclear how the EVI,-gradient flow property selects noise
diffusion terms, i.e. generators of quantum noise evolution, in our case. To this end, we
formulate a maximum entropy production principle [91][92][155]. We show quantum
Laplacians satisfy, up to sign, a quantum Fokker-Planck equation with vanishing drift
term in scaling limit, i.e. only noise diffusion term. Altogether, we obtain a description
of quantum Laplacians in terms of both quantum statistical mechanics [35][36] and
quantum information theory [62] as claimed in the introduction of Chapter
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Structure. In Section[4.1] we discuss quantum relative entropy. We extend to, possibly
non-finite, traces in the second variable. In Section 4.2, we discuss the logarithmic mean
setting and quantum L2-Wasserstein distances. Moreover, we formulate our maximum
entropy production principle. In Section[4.3] we consider heat flow as EVI,-gradient flow
of quantum relative entropy and show our equivalence theorem. We discuss non-spatial
lower Ricci bounds and energy-information trade-offs parametrised by lower bounds on
quantum noise, give sufficient conditions and derive functional inequalities.

4.1 Quantum relative entropy

Quantum relative entropy is an extension of relative entropy for tracial C*-algebras to
the AF-C*-setting. We construct it by extending Kosaki’s formula [163]] to traces in the
second variable. Relative entropy for tracial C*-algebras is the fundamental example of
quasi-entropies and therefore quantum f-divergences [125]][126]]. We also know it mea-
sures information required to discriminate two given states through observation [[163]].
Since it is given by extension of Kosaki’s formula, our construction ensures quantum
relative entropy likewise measures information required to discriminate a given state
and, possibly non-finite, trace through observation.

In Subsection(4.3.1] we consider heat flow as EVI)-gradient flow of quantum relative
entropy. This uses two most essential properties of quantum relative entropy. First, we
show the latter is compatible with compression and finite-dimensional approximation.
Secondly, we show it satisfies a suitable notion of l.s.c. in topology of the given quantum
optimal transport distance. However, finite-dimensional approximation and l.s.c. do not
hold for all states in general. The latter requires strong unitality and finite trace. Upon
restriction to finitely supported accessibility components, i.e. having finitely supported
fixed state, we satisfyingly recover the strongly unital finite-trace case depending on the
given finitely supported fixed state by compressing with uniform majorants of their local
support. Examples of finitely supported fixed states arise from fixed states on tracial
AF-C*-algebras generating hyperfinite factors of type I and II by o-weak closure.

Structure. In Subsection [4.1.1, we review relative entropy for C*-algebras expressed
using Kosaki’s formula. We construct quantum relative entropy by extending to traces
in the second variable. In Subsection [4.1.2) we discuss uniform majorisation, finitely
supported fixed states and show all properties required of quantum relative entropy.

4.1.1 Quantum relative entropy for tracial AF-C*-algebras

Theorem 5.11 in [163]] states Kosaki’s formula. It is a variational expression of relative
entropy for normal positive bounded functionals on W*-algebras w.r.t. each other. This
determines relative entropy for W*-algebras. We construct quantum relative entropy
by two consecutive extensions of Kosaki’s formula. First, we extend to positive bounded
functionals on C*-algebras by evaluating their canonical normal extensions to universal
enveloping W*-algebras. This determines relative entropy for C*-algebras. Secondly, we
extend to positive bounded functionals on tracial AF-C*-algebras w.r.t. the given trace.
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This determines quantum relative entropy. Lemmal4.1.17|recovers Kosaki’s formula
as per Theorem 5.11 in [163] for normal positive bounded functionals with integrable
support. Standard reference for Kosaki’s formula, as well as relative entropy for C*- and
W*-algebras alike, is [[163]]. We refer to pp.35-36 and pp.98-99 in [163]] for a review.

Relative entropy for tracial C*-algebras. Umegaki defined relative entropy
for semi-finite W*-algebras [196]. Using relative modular operators, Araki generalised
to all W*-algebras [[16][17]]. Equation is Kosaki’s formula as per Theorem 5.11 in
[163]]. Using universal enveloping W*-algebras in Kosaki’s formula, we engage in our
first extension by adapting constructions in [163]] but with additional detail required
for our second one. Assuming tracial C*-algebra, Lemma [4.1.8/ shows Kosaki’s formula
uses spaces of bounded measurable operators. Proposition [4.1.6| and Proposition [4.1.9
collect properties. We consider two instructive examples here. Example gives the
finite-dimensional setting. Example shows necessity of strong unitality.

Let (M, ) be a tracial W*-algebra and A c M a o-weakly dense C*-subalgebra. Ergo
M = L®(A,7) and M, = L'(A,1). Following Remark we have Ll(A,r)b c A* as
partially ordered Banach spaces.

Definition 4.1.1. Let V < L°°(A, 1) be a linear subspace s.t. 14 € V. Let n € N.

1) Let 9,(V) be the set of all step functions F : (n"1,00) — V s.t. |imF| < co. Using
the constant map t— 1)y =14 on (n71,00), set FL:=14 —F for all F € F,,(V).

2) FHV):={F € T,(V) | 3te(n",00) Vs =t: F(s)=14}.

Definition gives the relative entropy Ent : Ll(A,T)'Zr x LI(A,T)Z — (—00,00].
Equation is Kosaki’s formula which we extend to variational expressions using pos-
itive bounded functionals on C*-algebras, and w.r.t. traces in the second variable. We
call extensions relative entropy, resp. Kosaki’s formula as well. All extensions coincide
on intersections of domains. For all y,ne L1(A, r)z, note Ent(u,n) measures information
required to discriminate u and 1 through observation (cf. pp.1-11 in [[163]). As expected
in the commutative setting, Umegaki’s definition shows Kosaki’s formula yields relative
entropy of probability densities, i.e. Kullback-Leibler divergence (cf. pp.35-36 in [[163]]).
Theorem extends the above notion of discriminating information.

Definition 4.1.2. For all p € Ll(A,T)Z, set [lxll, := /p(x*x) for all x € L*(A, 7). For all
U,n € LI(A,T)E_, the relative entropy of u w.r.t. n is defined by

o0
Ent(u,n):=  sup {uuuA*logn—f1t—1||Fl(t)||i+t—2||F(t)*||,2’dt}. (4.1)
-

neN,
Feg,(L*®(A,1))

Remark 4.1.3. Let V c L°°(A, 1) be a strong”-dense linear subspace s.t. 14 € V. Then
Theorem 5.11 in [163]] shows we may replace the supremum over all 5,(L*°(A, 1)) with
the one over all 9,(V) in Kosaki’s formula, hence the one over all J,/*(V). We use this
throughout our discussion.
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We review properties of relative entropy for W*-algebras. We take the supremum
over all 7,(L*°(A,7)) in Kosaki’s formula and apply Fatou’s lemma. Kosaki’s formula
therefore shows the relative entropy is jointly convex and l.s.c. in w™*-topology given by
L®(A,1)=LYA,1)*. Let u,n € LY(A,1)’.. If u,n #0, then Proposition 5.1 in [163] shows

Ent(u,n) = (logllulas —loglinlas)-llplax >—oco (4.2)

as |lullax, Inlla+ € (0,00). Kosaki’s formula further implies Ent(0,7) = 0 and Ent(u,0) = co
in general (cf. proof of Proposition(4.1.6). If N ¢ L*°(A, 1) is a unital W*-subalgebra, then
Corollary 5.12 in [[163] shows we have restriction

Ent(y,n) = Ent(uly,nln) (4.3)

since unital W*-algebra inclusions are normal unital Schwarz maps. Altogether, we
know Ent : Ll(A,‘L')E_ X Ll(A,‘L')E_ — (—00,00] is jointly convex, l.s.c. in w*-topology of
L°°(A,1) and has restriction property as per Equation Moreover, we may replace
suprema in Kosaki’s formula as per Remark [4.1.3]

If (A, 1) is a strongly unital AF-C*-algebra with finite trace, then the relative entropy
satisfies the following consequence of the martingale property (cf. iv) in Corollary 5.12
in [163]). For all € LA, T)b+, we have finite-dimensional approximation

Ent(u,7) = le,I\JI Ent(uj,7;). (4.4)
JE

The martingale property requires l.s.c. in w*-topology of L>*°(A,7) and Equation
for each generating C*-subalgebra. If we extend to, possibly non-finite, traces in the
second variable, then either may fail. Following Remark L.s.c. in w*-topology of
L*°(A,7) fails in general if the trace is non-finite and the relative entropy takes negative
infinity as value. Example shows Equation may fail if (A,7) is not strongly
unital. Uniform majorisation of local support suffices to prevent failure and recover
finite-dimensional approximation property as per Equation Theorem shows
the latter on finitely supported accessibility components.

Definition extends Definition to Ent: A x A¥ — (—00,00]. We require
the following. We have separable Hilbert space Hy, universal faithful *-representation
y : A — %B(Hy), and universal enveloping W*-algebra U(A) := ny(A)” of A [192]. For
all pe A%, get unique U(p) e U(A), + cU(A); s.t. U(u)la = p. These are called canonical
normal extensions. Note [|[U(w) 74y« = llplla+ in each case by construction.

Definition 4.1.4. For all u,n € A%, the relative entropy of u w.r.t. n is defined by

Ent(u,7):=  sup {”.U”A*l(’gn_f1t_lllFl(t)HzU(u)+t_2”F(t)*”%I(n)dt}' (4.5)
B

nenN,
Feg,(UA))
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Remark 4.1.5. Note Definition 4.1.2] as well as those properties of relative entropy
for W*-algebras given above, do not require traciality. Definition therefore gives
relative entropy for U(A). We use this throughout our discussion.

Proposition 4.1.6. For all u,ne A} and a,b >0 in R, we have
1) Ent(ap,bn) =aEnt(u,n)+a(loga—1logd)-llula-,
2) Ent(u,n) = (logllulas —loglinla+)- lulax if n#0,
3) Ent(0,n) =0 and Ent(u,0) =oco if u#0,

4) Ent(u,n) > —oo.

Proof. Let pu,ne A% and a,b > 0 in R. Proposition 5.1 in [163] is 1) and 2). Kosaki’s
formula implies Ent(0,n7) = O by selecting F' = 0 for all n € N in order to estimate the
supremum. If u # 0, then Kosaki’s formula likewise implies Ent(u,0) = co by selecting
F =1ya) in each case. Get 3). We see 2) and 3) imply 4) at once. O

We have o-weakly dense C*-subalgebras A < U(A) and A < L*°(A, 7). Universal
property implies there exists unique normal *-homomorphism ¢ : U(A) — L*(A,1)
s.t. pony =1idy. It is unital and surjective, further mapping the unit ball in U(A) to the
one in L*°(A, 1) as per Remark [4.1.7] We define normal trace U(r) on U(A) by setting

U(r)(x) :=7(p(x)) (4.6)
for all x € U(A).. We neither claim nor use semi-finiteness.

Remark 4.1.7. Since ¢|4 =idy, the Kaplansky density theorem shows ¢ maps the unit
ball in U(A) to the one in L*(A, 1) (cf. Theorem 5.3.5 in [134]]). Thus ¢ is surjective. It
is unital by normality and Proposition [2.1.16

Lemma |4.1.8| ensures Definition [4.1.4] is well-behaved w.r.t. normality. We use the
following. For all *-subalgebras of W*-algebras, closure in strong and weak topology
are equivalent. Such closures are equivalent to closure w.r.t. bounded strong, as well as
bounded weak convergence (cf. Proposition[A.1.38). Note (0-)weak- and w*-convergence
coincide on bounded sets (cf. Lemma I1.2.5 in [192] and Proposition [A.1.34). Bounded
sets in tracial W*-algebras are compact in w*-topology, ergo weakly compact.

Lemma 4.1.8. For all p€ AZ, the following are equivalent:
1) There exists unique normal extension of puto L(A,1) s.t. U(u) = po .
2) For all projections p e U(A), U(u)(p)=0if U(r)(p) =0.
3) kerp ckerU(u).

4) peLYA,1)).
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Proof. Note Remark Let u € A%. For all projections p € U(A), faithfulness of ©
implies U(7)(p) = 0 if and only if ¢(p) = 0. Thus 3) implies 2). We know U(u) and ¢
are completely positive normal maps (cf. Example and Example [A.1.47), and
therefore bounded weakly continuous by normality (cf. Proposition[A.1.49). Ergo ker ¢ is
a W*-subalgebra. Note W*-algebras are bounded weakly generated by their projections
(cf. Proposition[A.1.37). Hence 2) implies 3). Altogether, get equivalence of 2) and 3).

Clearly, 1) implies 2). Assume ker ¢ c kerU(u). For all x € L®(A, 1), get ¢~ 1(x) # @ by
surjectivity and set u(x) := U(u)(y) for fixed but arbitrary y € (p‘l(x). This is independent
of our choice as 3) ensures ker¢ c kerU(u). We thereby define a positivity-preserving
linear map u: L°(A,7) — C s.t. U(u) = po@. Thus [lullzem = 1UWIuay: = lplla-
since ¢ is unital, hence we have extension y € L*(A, 7). If x = bdw-limgcx x; implies
limpeg |u(x —x)| = 0 for all nets {xz}rex < L°(A, 1), then complete positivity of y shows
its normality (cf. Example and Proposition [A.1.49). Let x = bdw-limgcxg x7. By
considering all accumulation points of {u(xz)}zcx < R and showing they are in fact zero
as claimed above, we assume limcx |u(x — xp)| exists without loss of generality.

Since ¢ is surjective on unit balls, we have both weakly convergent bounded subnet
{xz}rex € L°°(A, 1) and weakly convergent bounded net {yz}rex cU(A) s.t. xp = @(yp) for
all k e K. Set y :=bdw-limzcx yr. Get x = ¢(y) by normality of ¢. Thus limpeg pu(x —xz) =
limgeg U(u)(y — yr) = 0 by normality of U(u), hence pe L*(A, 1)} is normal as discussed
above and therefore a unique extension as required. Ergo 1) implies 2). Altogether, get
equivalence of 1) and 2). Note Remark In particular, L'(A,7)}, c A* is determined
by normality. Thus 1) implies 4). Assume u € Ll(A,T)E,. We obtain U(u)|4 = po@la by
construction. Normality of u and ¢ extends the latter identity to U(A). Hence 4) implies
1). Altogether, get equivalence of 1) and 4). All statements are equivalent. O

Proposition collects further properties. Lemma implies Equation [4.9 and
therefore Equation [4.7] Example [4.1.10] gives the finite-dimensional setting. Quantum
entropy is negative quantum relative entropy. Example shows Equation [4.3| may
fail in the finite-dimensional setting if (A, 7) is not strongly unital.

Proposition 4.1.9. Ent: Ll(A,T)'i x LI(A,T)E_ — (—00,00] is jointly convex and l.s.c. in
w*-topology of Al14]*. Furthermore, Ent satisfies the following.

1) Forall u,n ELI(A,T)Z, we have

Ent(u,n)=  sup {||y||A*logn— f 1t—l||Fi(t)||i+t—2||F(t)"‘||§dt}. 4.7)

neN, n
Feg ' (Al14D

2) Let N c L*(A, 1) be a unital W*-subalgebra. For all u,n € Ll(A,T)E_, we have

Ent(u,n) = Ent(uly,nly)- (4.8)
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Proof. Note 4) in Proposition [4.1.6] shows Ent > —co on norm bounded sets. Kosaki’s
formula implies Ent is jointly convex. Let u,n € Ll(A,T)Z. We know U(u) = po¢ and
Um) =no¢ by Lemma Since ¢ is a unital surjective *-homomorphism, mapping
THUA)) to T (L>(A,7)) viaF — G :=@oF for all n € N shows

Ent(y,n)=  sup {”IJ”A*logn— f 1t_1||GL(t)||i+t_2||G(t)*||,2]dt}. (4.9)
-

neN,
FegH(L™(A,1))

Since p,n € L*(A,71)*, Equation[4.9|shows Ent(y,n) is the relative entropy of y w.r.t. ) as
per Definition Get 1) by replacing L°(A, 1) with A[14] in the second suprema of
the equation. Applying Fatou’s lemma to Equation then shows l.s.c. in w*-topology
of A[14]*. Equation 4.3|and Equation show 2) immediately. O

Example 4.1.10. Assume (A, 1) is finite-dimensional. Following Proposition we
moreover assume (A,7) = (M,(C),tr,) for n € N without loss of generality. The general
finite-dimensional case is therefore given by a weighted sum of terms having following
form up to pull-back along C*-isometries as per Equation For all u,n e M,(C)3, the
relative entropy of u w.r.t. 7 is given by

0 if u=0,
Ent(y,n) =1 tr, (- (loghu—logtn)) if p#0 and suppu < supp1n,
'S} else.

The above characterisation is Umegaki’s definition, except we make vanishing for u=0
explicit. It generalises to Araki’s definition (cf. p.77 in [163]), which in turn coincides
with Kosaki’s formula by Theorem 5.11 in [[163]. The negative of Umegaki’s definition is
quantum entropy, i.e. von Neumann entropy (cf. p.17 in [163])). Corollary [4.1.27] extends
such description to the general case.

Example 4.1.11. Assume (A, 1) = (M,(C),tr) for n = 2 in N. Note M,,_1(C) c M,,(C) is
non-unital. For all & € {1,...,n}, let A1 € (0,1). Following Example [4.1.10}, the diagonal
matrix D :=(Aq,...,A,) € M, (C); yields quantum relative entropy

n
Ent(D’,I%) = Y AzlogAs. (4.10)
k=1

We know (Dly, 1) = (Ats...sAn-1) € My_1(©)4 and (I1y, o)’ = I”_,. Moreover, we
have A, logA, <0 by hypothesis. Equation lets us estimate

»tn-1

Ent(D’,13) = Ent((Dly, y0)' 15 1) + Anlog A, <Ent((Dly, )1 1) <co. (4.1D)
Equation shows Equation fails since M,,_1(C) < M,,(C) is non-unital.
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Extending to traces in the second variable. Note Equation does not let
us take relative entropy w.r.t. non-finite traces. We extend accordingly. Let (A,7) be a
tracial AF-C*-algebra. Definition[4.1.12|gives the relative entropy Ent’ : A} — [—o00,00]
w.r.t. 7, i.e. quantum relative entropy. Proposition shows Lemma recovers
Equation for normal positive bounded functionals with integrable support.

Definition 4.1.12. Set extended trace norm ||x|ly«) := VU(T)(x*x) for all x € U(A). For
all pe A%, the relative entropy of u w.r.t. 7 is defined by

Ent(y,7):= sup {llpllA*logn— f 11:—1||1«“i(t)||§,(m+;:—2||1rr(t)||§,mdt}. (4.12)
-

neN,
Feg,(UA)

Set Ent” := Ent(.,7): A — [-00,00] and domEnt” :={u€ A} | |Ent(y,7)| < oo}. We call
Ent’ quantum relative entropy w.r.t. 7, or quantum relative entropy.

Notation 4.1.13. For all jeNand u€ A; .» let Ent(u, 7;) denote the relative entropy of
pw.rt. 7;=7|4; for the tracial AF-C*-algebra (A,7) =(A},7;) as per Definition [2.1.22

Remark 4.1.14. For all n e N and F € 9, (U(A)), traciality implies

||F(t)||?](r) =U@)(F@)'F@®)=U@)(F@®OF@®)"). (4.13)
Note |F(®)I7,, = UMEF@F(#)*) in Equation ﬂ Compare to Equation [4.13] i.e. use of
extended trace norm, in Equation If T < 0o, then Equation[4.6/shows Equation[4.12

is Equation [4.5using n = 7. If 7 is non-finite, then its joint convexity implies Ent’ is not
L.s.c. in w*-topology of A* on weakly closed convex K c A’ for which there exists pe K
s.t. Ent(u, 1) = —0o. We argue as for Example 4.4 in [[189].

Forall jeNand pe A;’ .» using quantum relative entropy for A; yields

o0
Ent(y,7;) = ’s;ng {II,uIIA; logn—fn_1 t_1||Fi(t)||i+t_2||F(t)||§dt}. (4.14)
FeT“(A))

For all pe A%, we expect Ent(u, 7) = lim jen Ent(u;, 75) if we indeed measure information
required to discriminate u and 7 through observation. Theorem |4.1.25shows this given
uniform majorant of local support. The latter uses Lemma|4.1.16/and Lemma|4.1.17

Proposition 4.1.15. If ue Ll(A,T)Z s.t. Ent(u, 1) > —o0, then we have

o0
But(un)=  sup {||u||A*logn— [ 1t—1||Fi<t>||§+t—2||F<t)||3dt}. (4.15)
eN, n-
Fef/“n”:le"’o(A,T))

Proof. Let ue LY(A,1)’. s.t. Ent(u,7) > —00. As for 1) in Proposition , normality lets
us drop ¢ in Kosaki’s formula while taking the supremum over all ,“(L*(A,1)).
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Let neN and F € 9,(L*(A,1)). If there exists t¢ € (n71,00) s.t. F(tg) € L*(A, 1), then
F being a step function implies

L2 . -2 2 9 2
f s T O] R 1OV RS f | F@|)dt = o, (4.16)
n- n-
Thus Equation and Ent(u,7) > —oo imply we may restrict to L%»*(A, 1), hence we
see Equation [4.6)shows Equation [4.15 O
Lemma 4.1.16. For all jeNand pe A; .» we have Ent(u,7) = Ent(u, 7).
Proof. Let jeNand pe A;f .- Note ”IJ”A; = |ulla+. For all x € A}, we further know

14, %[, = |14 -] 4.17)

Lemma shows U(u) = po@. Since ¢ is a unital surjective *-homomorphism, we
map J,/(A;) to 7,/(UA)) via F — G := @ 1oF for all n € N by choosing pre-images in
each case. Equation and unitality show

114, -F@|,, = [1a-F®|, = |G ® |y (4.18)

in each case. Equation implies Ent(y,7;) < Ent(u, 7) by Kosaki’s formula. We show
the converse. Since Ent(u, ;) > —oco by 4) in Proposition (4.1.6, Proposition|4.1.15(ensures

we may use Equation as Kosaki’s formula. For all n € N and F € ,(L“*(A, 1)), set
Fj(t):=F(¢); for all t € (n"!,00). Note F; € 7,%(A;) in each case.
Letn €N, F € T,X(L>*(A,7)) and t € (n~",00). Then Fj(t) = n(F(¢)) and I -F(t) € A7
by square integrability. We therefore have
IFOI? = a4 @E @) = |70 (419)

We use A jAj = AjA j = 0. Proposition |2.1.28 implies restriction maps commute with
adjoining as they are positivity-preserving (cf. Proposition [A.1.6). We calculate

2 2 2 2
[F, = 1F,®1,+ 1T =) F @), = [F@l, (4.20)
Since p € A implies p(u) = p(u ;) for all u € L2(A, 1), multiplying out terms yields
|14 -F®|2 = u1a,) — p(F;&)*) - p(F ) + |F@)- (4.21)
Note Equation lets us estimate the final summand in Equation We moreover

collect terms on the right-hand side of the resulting estimate. In summary, we obtain

||Fi(t)||i =14 —F(t)||i = |14, —Fj(t)||i = ||F]+(t)||i. (4.22)
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For all n € N and F € J,*(L**(A, 1)), applying Equation and Equation to
integrands on the left-hand side below lets us estimate

> 2 - 2 > 2 - 2
fn SR 2 F| e f I L0 R O ke (4.23)

Using Equation [4.14] resp. Equation [4.15] as Kosaki’s formula, Equation lets us
estimate Ent(u,7;) = Ent(u, 7). Altogether, get Ent(u, 1) = Ent(u, 7). O

Lemma 4.1.17. Let ue A%.

D Ifue Ll(A,T)E_, then p ¢ domEnt’.

2) Ifue LY(A, T)E_ and p € LY°(A, 1) is a projection s.t. supp it < p, then Ent(u, 7) > —oco
and we have

Ent(u,7)= sup {II,uIIA[p]*logn— f 1t_1||FL(t)||i+t_2||F(t)||fdt}. (4.24)
.

neN,
Feg ' (Alp))

Proof. We show 1). Assume u ¢ Ll(A,T)E_. If Ent(u,7) = —00, then our claim follows at
once. We assume Ent(u, 1) > —oo without loss of generality. Proposition ensures
we may use Equation |4.15|as Kosaki’s formula. Using Equation |4.15| each step function
is constant for sufficiently large ¢ > 0 and maps to L%°(A, 7). Since Ent(u, 1) > —o00, there
exist x € U(A) s.t. [ 14 —xlly =0 and ¢(x) € L%%(A,1). Since ué Ll(A,T)Z_, Lemma
yields projection p € U(A) s.t. U(7)(p) = 0 and U(u)(p) > 0 holds, and Lemma [2.1.6]shows

Il arpy = lplla-. Let C >0 s.t. 2CU(u)(p) > llplla--
We require suitable sequence to estimate. For all n € N, set

Cp ifte(n=tn),

X t=n.

F,(t):= {

Note F, € 9,(U(A)) in each case. Selecting F,, for all n € N, we estimate

n o0
Ent(,u,r)zsup{ll,uIIA*logn—U(u)(IU(A)—Cp)f 1t_ldt— ||(p(x)||3f t_gdt}. (4.25)
n- n

neN

Since /"1t 1dt=2logn and [;°t 2dt=n"" for all n € N, Equation implies

Ent(y, 7) = sup(2C(p) - Il a+) -logn — || )| -n~* = oo. (4.26)
neN
Equation shows Ent(u, 1) = co if Ent(u, 1) > —0o. Altogether, get 1).
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We show 2). Assume p € Ll(A,T)Z. Let p € LY°(A,1) be a projection s.t. suppu < p.
Lemma therefore implies u € LI(A[p],T)Z and fiu = fu-p = p - fu. Surjectivity of ¢
yields element x € ¢~ 1(p) € U(A). For all n € N, set F,,(¢) := x for all ¢ € (n™1,00). Note
F, € 7,4U(A)) in each case. Selecting F, for all n € N, we estimate

o0
Ent(u,7) = sug lullaxlogn —f ) t_l,u(lA -p)+ t_zr(p)dt > —1(p) > —o0. 4.27)
ne n

Equation 4.27| shows Proposition [4.1.15ensures we may use Equation 4.15as Kosaki’s
formula. We may furthermore take the supremum over all 9,(L>°(A,1)) (cf. proof of
Proposition [4.1.15). Since A[p] < L°(A,7) is a C*-subalgebra, we bound the variational
expression on the right-hand side of Equation from above by Ent(u,7). We show
the converse. For all n € N and F € 7;*(L%*(A, 1)), set Fp(t) :=com, F(t) = pF(t)p for all
t€(n~1,00). Since pAp < A[p] by definition, note Fpe T (Alp).

Let n €N, F € T;4(L%*>®(A,7)) and t € (n"!,00). Using fu=fiu-p = p-fu, p?>=p and
traciality, we calculate

IF-|2 = |p - Fpo@)|) + u(pF (&) (14 - p)F(1)p) (4.28)

and

IF®|? = |Fp®|? + 1 (pF®1a - p)F©®)*) +7((1a - )FOF (D). (4.29)

We know p,14 — p € L°°(A, 1), by hypothesis. For all y € L*(A, 1), we therefore have
py (1—p)yp,y(Aa —p)y*,yy* € L°(A,71);. Using such positivity, Equation lets us
estimate

|7 @1, = I - Fp0
and Equation lets us estimate

2
" (4.30)

[Fo|? = |70 (4.31

We conclude by estimating integral terms in Kosaki’s formula as follows. For all
neNandF € ﬂ’nu(Lz’o"(A,T)), applying Equation and Equation to integrands
on the left-hand side below lets us estimate

1Ll 2 L -2 2 1 mLl 2 L -2 2
fn R a0 R IO T f R L0 R LA R (4.32)
Using Equation[4.15]as Kosaki’s formula, Equation[4.32|shows we bound the variational
expression on the right-hand side of Equation from below by Ent(u, 7). Thus get
Equation , hence using relative entropy for A[p] yields Ent(u,7) = Ent(y, p®) > —co
by 4) in Proposition and 1) in Proposition Altogether, get 2). O
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4.1.2 Restriction to finitely supported accessibility components

Theorem shows compatibility of quantum relative entropy with compression and
finite-dimensional approximation, as well as suitable l.s.c. used in Theorem to
show l.s.c. in topology of the given quantum optimal transport distance. We compress
quantum relative entropy with uniform majorants of local support. Finite-dimensional
approximation and l.s.c. are given for states with uniform majorant of local support. As
such, Theorem [4.1.25|shows we recover the strongly unital finite-trace case, and thereby
the notion of discriminating information for quantum relative entropy as claimed in the
introduction of this section, by compressing with uniform majorants of local support.

We further show all states in finitely supported accessibility components have such
uniform majorants. Theorem lets us restrict quantum relative entropy to each
one s.t. compatibility and l.s.c. as above are satisfied. Assuming finitely supported fixed
states, we are therefore able to apply the coarse graining process using Diagram 3.346
for K the domain of quantum relative entropy. In Section we use the latter for our
discussion, in particular our equivalence Theorem Examples of finitely supported
fixed states arise from fixed states on tracial AF-C*-algebras generating hyperfinite
factors of type I and II by o-weak closure.

Uniform majorants of local support. Definition gives local support and
uniform majorants of local support. Using the latter, we introduce finitely supported
accessibility components. Strongly unital tracial AF-C*-algebras with finite trace have
units as uniform majorants of local support. We give examples for the non-unital and
non-finite-trace case. Following Corollary Example [4.1.22| and Example [4.1.23
give examples of finitely supported fixed states.

Let (A, 7) be a tracial AF-C*-algebra.

Definition 4.1.18. Let p € L1"*°(A, 1) a projection.

1) For all pe€ A%, we say that p majorises the local support of u if

Suppi; <p (4.33)

in L*°(A, 1) for a.e. j € N. We further call p a majorant of the local support of u and
write suppu C p.

2) The set of local supports in L*°(A, 1) uniformly majorised by p is defined by

Clpl:= {,ueAi | supp,ucp}. (4.34)

We further call p a uniform majorant of local support of all ue C[p].

*

Remark 4.1.19. If 7 < oo, then 14 majorises the local support of all pe A%.
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Lemma 4.1.20. Let p € LY°(A, 1) be a projection. If € Ll(A,T)E_ NClp], then suppu<p
and u has integrable support.

Proof. Let pe Ll(A,T)E_ NClpl. Let j €N. Using 2) in Lemma [2.2.52} applying comy; to
Equation [2.108|yields

S;:= comAjij = Ltiuj,Aj <T;:= comAjLiA( =12 . (4.35)

AV Tt (Viw)A,
Equation shows kerT'; c kerS; and therefore

A A
TerT; =< TkerS;* (4.36)

Using 2) in Proposition [3.2.4] Equation |4.36|implies

suppj 4y < suppy 77 (V/in). (4.37)
Applying 1) in Proposition to Equation yields

suppnf(@) <supppy; <p. (4.38)

Note 1) in Proposition |3.2.4| shows supp u = suppfu = X(o,oo](\/ﬁﬂ) by positivity and
functional calculus. Thus 1) in Proposition |3.2.4|and 2) in Lemma [3.2.16|show

X0.001(VEH) = s-Lim %(0,c01 (ﬂj‘ (v ﬁu)) = s-lim supp 7 (Vi), (4.39)

hence Equation 4.38 and Equation lets us estimate
supp {4 = x(0,001 (VK = s-lim supp 74 (Viu) =< p. (4.40)
Equation [4.40[ shows supp u < p. In particular, t(supp i) < 7(p) < co as required. O

Corollary 4.1.21. Let p € LY*°(A, 1) be a projection.
1) ClplcAlpl; and F(A)nClplc FL(Alp).
2) LY (A,7), nClplc L (Alp],7)’. and #N(A)nClpl < #N(Alp)).

3) If pe Clpl and {u*}rex < Clplis a net s.t. we have both p=w*-limpex u* in A* and
lpll o+ =limpeg 4* N4+, then p=w*-limpeg p* in Alpl*.

Proof. Lemma [2.1.6|yields A[p]} ﬁLl(A[p],T)b c A% NnLYA,1). Using normality, 2) in
Proposition|2.1.16/shows inc;, = com,, : A[p]} NLY(Alpl, 7y’ — A* nLY(A, 1) is injective.
Thus Lemma [4.1.20] implies 2), hence Proposition [2.1.9 shows 3) at once. We show 1).
For all u € C[p], 1) in Proposition implies p = w*-limjenpj in A* and [plla+ =
limjjen [|145ll 4+, and Lemma [3.2.5|shows {u};en © CIp] by scaling. Then 3) implies 1). O
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Example 4.1.22. Let H be a separable Hilbert space. Assume (A,1) = (£ (H),tr). Let
peSYH )Z. Following Example we know u has integrable support if and only if
supp it € £ (H)o = Upen Mp(C). Lemma [4.1.20| therefore implies p has integrable support
if and only if there exists a majorant of its local support.

Example 4.1.23. Let H and  be infinite-dimensional separable Hilbert spaces. We
assume the setting of Example|3.1.58] i.e. assume (A,7) = (A (H) ® /(A [J]),tr ®1). Set
M = L®(#% (H)® A (F[J]),tr ®1). Let n € N. We consider o-weak closure

N =M,O)oAgH[J]) M. (4.41)

Eva i -1

Note LI(N,tret)=N~ = M,(C)o 4 (H[J]) . Since I, ® 1z € M (C)o L (H[J]) is
the unit, we have 1y =1, ® 1 g1y by density in o-weak topology. Thus (tr®7)(1y) =
n < oo, hence tr®7 < oo and therefore N c (M,tr®7) (cf. 1) in Proposition [B.1.12/ and 1)
in Proposition . We show 1x majorises local support of all e LY(N,tr ®1)’.

Let pe LY(N,tr ®‘L’)Z_. Using separability to obtain sequences, Equation @ yields
{midren <N and {xf @y}, jen € My (C)0 L (HIJTD) s.t. = | [1-limpen X7 xF@yr . If j = 1
in N, then construction of tr ®7 shows

n LD (M, (€) 0 A (HIJD) € My(©) 0 A (Hj[J) e N. (4.42)
Using 2.1) in Proposition [2.1.28] applying the flat operator to Equation 4.42|yields dual
equivalent. For all j = n in N, w*-continuity and linearity therefore imply

mp,
b = ll-lloonlim 3 X} ®y) € My(©)o o/ (HjlJN)N. (4.43)
=1

Finite-dimensionality ensures a priori ||.|1-convergence for Equation is equivalent
to ||.lo-convergence as used. If j < n, then §u; € M ;(C)o o/ (H;[J]) € N shows suppu; € N
by 1) in Proposition[3.2.4] If instead j = n, then Equation[4.43|shows suppu; € N by said
proposition. For all j € N, we therefore have supp u; < 1y since each is a projection.

Quantum relative entropy given uniform majorant of local support. Using
Lemma [4.1.17, Lemma and Lemma Theorem [4.1.25] shows all properties
we require of quantum relative entropy. We compress quantum relative entropy as per
1) in Theorem Finite-dimensional approximation is 3) in Theorem This
is compatibility of quantum relative entropy with compression and finite-dimensional
approximation. Its suitable l.s.c. in topology of the given quantum optimal transport
distance is 2) in Theorem Assuming boundedness, Corollary gives closed
term trace description of quantum relative entropy. Example [4.1.10] shows its negative
is quantum entropy, i.e. von Neumann entropy (cf. p.17 in [163]]).
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Let (A, ) be a tracial AF-C*-algebra.

Lemma 4.1.24. Let p € L1™(A, 1) be a projection.

1) If pe Clp), then Ent(u,7) = Ent(u, p°) > —co and we have

o0
Ent(u,pb) = sup {II,uIIA[p]* logn—f 1t_1||FJ_(t)||Z+t_2||F(t)||ibdt}. (4.44)
-

neN,
Feg (Alp)D

2) If ue Clpland {u"}nen < Clpl s.t. we have both pu=w*-lim,cyu™ in A* and ||pll o+ =
limpen | 4%, then

Ent(u,7) < limianEnt(un,T). (4.45)
ne

Proof. Let u € C[pl. We have tracial AF-C*-algebra (A[pl,7) in L*(A[p],7) generated
by {A;[pl}jen. As such, we may apply our results concerning quantum relative entropy
for tracial AF-C*-algebras given in Subsection We use unit p in A[p].

We show 1). Compression uses general W*-algebras (cf. Definition [A.2.15). Since
Alp]c A, construction of universal enveloping W *-algebras using o-weak closure yields
W*-subalgebra U(Alpl) = ny(Alp]) < U(A). Note 1y[p) = nu(p). Since pony =idg
extends to idz~(4 ;) by normality, get ¢(1y(a[pp) = p. We therefore have

U(A[p]) = U(A)[lU(A[p])] cU(A). (4.46)

Get pe A[pl; by 1) in Corollary(4.1.21] Equation shows U(u)lyap) is canonical
normal extension of u to U(A[p]). We know p’ and 7 coincide on A[pl,. Equation

shows U(p®) = U(Dluarp) as per Equation We use relative entropy for A, resp. A[p]
in Equation below. Equation lets us estimate

Ent(u,7) = Ent(u, p°). (4.47)
If u ¢ domEnt’, then 4) in Proposition and 1) in Lemma |4.1.17/imply u ¢ L'(A,7)’,
and Ent(u,7) = Ent(,u,pb) =oo. If pe€ domEnt’, then 2) in Lemma [4.1.17|further implies

pe LY (A, 1), and Ent(y, 7) = Ent(u, p°) > —co. Get 1).
We show 2). Assume its setting. Note 3) in Corollary 4.1.21| shows u = w*-lim,en p”
in A[p]*. Thus lL.s.c. in Proposition for A[p] implies

Ent(u,pb) < limianEnt(yn,pb), (4.48)
ne
hence 1) and Equation imply Equation |4.45 O
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Theorem 4.1.25. Let (A, ) be a tracial AF-C*-algebra. Let p € LV°(A, 1) be a projection.

1) If pe #(A)NClp), then Ent(u,7) = Ent(u, p°) > —co and we have

Ent(,u,pb): sup {II,uIIA[p]*logn—fn_lt_lnFL(t)”i+t_2||F(t)||ibdt}. (4.49)

nenN,
Feg ' (Alp)

2) If ue S(A)NClpland {u"}hen € FL(A)NClpl s.t. p=w*-lim,enu", then

Ent(y,7) < limianEnt(u”,T). (4.50)
ne
3) If pe S(A)NClpl, then
Ent(y,7) =1lim Ent(y;,7) = lim Ent(i;,7). (4.51)
JEN JEN

Proof. Let pe . #(A)NC[pl. Lemmaf4.1.24{shows 1) and 2) at once. Since y = w*-limjen 4
by 1.2) in Proposition [2.1.31, Equation follows from 2) if

Ent(u,7) = lim'i\lnfEnt(uj,T). (4.52)
Jje

Note 1.1) in Proposition and Proposition ensure scaling upon restriction
is of no consequence in Equation We show Equation For this, we engage in
several reduction steps. If ¢ L'(A,7)’, then ¢ domEnt by 1) in Lemma Thus
Ent(u, 7) > —oo further implies Ent(y, 7) = oo, hence Equation [4.52] as well. We assume
peLYA, T)b+ without loss of generality. We use the following. Lemma shows p has
integrable support. Theorem [3.2.18| ensures p has reducible support.

We engage in the first reduction. We define remainder terms in Equation [4.55|below
and show the latter implies Equation For all j € N, we consider the C*-subalgebra
o= <1jj>q; c L*®(A,1) and set

b *
y} 1=l V= (suppp) sz ed;,. (4.53)
J

We further define the j-th remainder term R; € R by setting

Ent u*,% if 1+ #0,
Rj(ﬂ)::{o (J i) Aj

else.
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Using 14 = s-limjen14; as per 2) in Proposition 2.1.16, Example 4.1.10| for n = 1

shows we either have R;(u) = 0 for a.e. j € N or normality and positivity let us estimate
. PR T L L) Z (1t .1t

hI}é,l\JnfRJ('u) = lujxé,l\lnfu(lAj) log(,Lt(lAj)) ,u(lAj) log(r(suppu 1Aj)) > 0. (4.54)

For details on our estimate of Equation [4.54] we refer to Remark [4.1.26] Equation [4.54]
shows liminfjen R;j(u) = 0. We claim Equation follows if

Ent(y,7) = Ent(y;,7) + Ri(w) (4.55)

for all j € N. If we do have Equation then we apply liminf;enR;(u) = 0 to estimate
Ent(u, ) = liminfjen Ent(y;, 7) + Rj(p) = liminf ey Ent(y;, 7). Thus Equation implies
Equation hence it suffices to show the former.

We engage in the second reduction. Let j € N. Note Equation follows if

Ent(u,1) = Ent(,uj, (supp ,u)i) +R;(w), Ent(uj, (supp ,u)i) > Ent(u;,7). (4.56)

Set n; := (supp ,u)';. and v; := (supp yj)". We show Equation [4.56, For this, we show

Ent(y;j,n;) = Ent(uj,1). (4.57)

Applying Lemma 4.1.16/and 1) to u; for p = supp u; shows
Ent(y;j,7) = Ent(uj,7;) = Ent(y;,v;). (4.58)

Using Equation as Kosaki’s formula, Equation implies Equation ifv;=n;
in A;f. Following 2) in Proposition _ we equivalently estimate

— _7-11_A
xj =14, -t =14, —suppp; =Ly, (ﬂkeerj,AJ.) (4.59)

in A;. Note x; = n?(lA —supp ) = 0 by Proposition [2.1.28| Since A9 < dom L Nt get

|V u|? = (fuju,u), =0 (4.60)
for all u e kerLy, . 4,. Equation shows

kerLﬁuj’Aj ckerL Vi (4.61)
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Note 1) in Proposition [3.2.4{ shows supp u = suppfu = )((o,oo](\/ﬁ,u) by positivity and
functional calculus. Thus 1) and 2) in Proposition imply

SUPP 1 = Y (0,00 (V/iH) = L7 (I -l m) (4.62)

hence Equation [4.61| shows

I\/m7-u|)? = (suppp-u,u), =0 (4.63)

for all u e kerLy,. 5.. Equation [4.63|shows
fuj A

keerj,Aj c kerLﬁnj,Aj. (4.64)

For all u € A j, we decompose as per Equation below using the following. For the
left-hand side of Equation apply 1) and 2) in Proposition For the right-hand
side of Equation [4.65] we use Equation Altogether, we have

_ . A A __A
U =Ssuppi;-u+ ”keerj,Aj(u)’ xjnkeerj,Aj(u) = ”keerj,Aj(u) (4.65)

for all u € A . Equation lets us calculate

A
(xju,u) = (xjsuppp;-u,suppu;-u). + (nkeerijj(u),u% (4.66)
for all u € A;. As x; = 0 yields (x;suppu;-u,suppy;-u); = 0 in each case, Equation [4.66|
lets us estimate
A
(xju,u) = <7rkerLﬂ”j’Aj(u),u>T (4.67)

for all u € A ;. Equation shows Equation [4.59] Using the latter, Equation then
implies Equation 4.57|as discussed above.
We engage in the third reduction. Following Equation |4.57, we show

Ent(y,7) = Ent(y;,n;) + Ri(w) (4.68)

in order to have Equation and therefore 3) as discussed above. Set 1 := (supp u)b.
Note 2) in Proposition for N = A;[14]1< L>®(A,7) and 1) applied to e L*(A, 1), for
p =supp u lets us estimate

Ent(u,7) = Ent(u, 1) = Ent(ula;11,1,74,1141)- (4.69)
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Note of; = (1j‘ Yc € L*°(A,7). Equation |4.69|implies Equation 4.68]if
J

Ent(ﬂ'Aj[lA],n|Aj[1A]) = Ent(/.tj,nj) + Rj(/.t). 4.70)

If lj =0, then Equation 4.70{ holds since «/; = 0 and R;(1) = 0. Assume lj #0. Get
J J

Aj[lA]:AJ' EB.ij 4.71)

by hypothesis (cf. Proposition |A.1.65). For all v e A;[14]}, we decompose its norm

Vil s = Ivilas +1vile: (4.72)
over the direct sum of C*-algebras as per Equation For all n € N, decomposing as
per Equation 4.72|at each time yields further product decomposition

TE(A[14]) = THA ) x T A)). (4.73)

Using Equation [4.49| as Kosaki’s formula, Equation [4.73|implies

Ent(ula;r141,114;1141) = Ent(w),m;) + Ent(uldj, (suppp)” d)- (4.74)
J

The second summand on the right-hand side of Equation is R;(u). Equation [4.70]
holds. Equation [4.68 and therefore 3) follows as discussed above. O

Remark 4.1.26. We elaborate on our estimate of Equation We have

: Ly 1Ly 1 1L
1J_1€r'1\|1p(1Aj)—1]1(:_1,r\|11(suppu lAj)—O, ,u(lAj),T(suppu lAj)ZO (4.75)

by normality, resp. for all j € N by positivity. Using lim;_.gAlogA = 0, Equation lets
us estimate

liminfR;() = liminf (1} log(p(15)) - (1% ) log{7(suppp- 15 )
.. 1L L
> hlﬁ,ilnf_”(lAj) log(r(suppu. 1Aj))
>0

since lim ;e log (T(supp U ljj)) = —oo by normality.
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Corollary 4.1.27. Let p € LY®°(A,1) be a projection. If u € Ll"’O(A,T)?r N Clpl, then
Ent(u, 1) € (0,00) and we have

Ent(u,7) = 7(fploghy) = 7(com, fulogcomy, fu). (4.76)

Proof. Let pe L1’°°(A,T)Z N Clpl. We have com, fiu = p-fu-p € L(Alpl, 7). We use the
following. Lemma [4.1.20|shows u has integrable support. Theorem [3.2.18/ ensures u has
reducible support. Using Lemma [4.1.16|and 3) in Theorem [4.1.25| we calculate

Ent(y,7) =lim Ent(y;,7) =lim Ent(u;,7;). (4.77)
JEN JEN

Reduction using Proposition [2.1.24]in Example |4.1.10|yields

Ent(p;,7;) = 7(tu;logtp)) (4.78)

for all j € N. Equation and Equation imply

Ent(u,7) = ljierll\ll 7(fu;logtu;). (4.79)

Note Equation 4.79 shows Equation if

v(tulogiu) =lim r(fu; logtu;) (4.80)

and further

7(com,, fiulog com,, ) = ljieIlI\Jl 7(com,, it log comy, ;) = Ejellr\ll T(fujloghy;). (4.81)

Moreover, 1) in Theorem and Equation show Ent(u, 1) € (—00,00). It suffices
to show the two equations above.

We show Equation and Equation Compressing with projections decreases
norm. Thus 3) in Proposition [2.1.31| shows

fu=bds-lim fu;, comy, fu = bds-1lim com,, fiu; (4.82)
JEN JeN

by sequential strong continuity of multiplication, hence we additionally have uniform
boundedness for all operators used in Equation [4.82
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Note Lemma [A.2.5|requires such uniform boundedness. Using Lemma[A.2.5] we see
Equation shows

fulogtu = S_E'iellr\ll fujlogu;, com, fulogcom, ﬁu:bds-ljjerrr\llcomp fujlogecomy, i  (4.83)

since A — AlogA is continuous on [0,00) (cf. Remark [A.2.3] and Remark [A.2.4). Using
He L:[""’(A,T)l’+ NClp]l and limy_gAlogA =0, 3) in Corollary |B.2.35 and Corollary [B.2.36

therefore imply

fulog iy = comy, fulogcom, fiu, fu;loghu; = comy, fu;logcom, fu; (4.84)

for all j € N. Equation shows 7(com,, i logcom,, fu) = lim jeny T(comy, fi11jlog comy, 1 ;)
by strong convergence since 7(p) < co. Using the latter, Equation{4.83/and Equation 4.84
let us calculate

7(fulogtu) = 7(comy, fpulog comy, )
= lim 7 (com, fitjlog com,, ;)
JEN
= lim 7t log u;).

The above calculation shows Equation and Equation |4.81| at once. Equation 4.76
and therefore Ent(u, 1) € (0,00) follows as discussed above. O

Finitely supported accessibility components. Definition gives finitely
supported fixed states and finitely supported accessibility components. The latter are
defined by having finitely supported fixed state. Upon restriction, Theorem |4.1.29|shows
we recover the strongly unital finite-trace case as per Theorem depending on the
given finitely supported fixed state. Theorem uses Corollary

Let (¢,v,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B,w) in (f,0)-setting.

Definition 4.1.28. Let { € #(A) be a fixed state.

1) We say that ¢ is finitely supported if ¢ € dom Ent® and there exists a majorant of
its local support.

2) We say that € < (#(A), Wvlog) is finitely supported with fixed part ¢ if € has fixed
part ¢ and the latter is finitely supported.
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Theorem 4.1.29. Let (¢,vy,y,V) be noncommutative differential structure for tracial AF-
C*-algebras (A,1) and (B,w) in (f,0)-setting. Let ¢ € F(A) be a finitely supported fixed
state. Let € (9(A),va’9) be finitely supported with fixed part &. Let p € LY°(A,1) be a
projection s.t. ¢ € C[pl.

1) We have € c Fixs (&) c L(A)nClpl and € ndomEnt’ c Fix}}f(cf) c #NA)NClpl.
2) For a.e. j €N, we have 64, (&) Fixy (&) = SN@A)NCIpl.

3) Forall ue Fixﬁ(é), we have

3.1) suppu < p and u has integrable support,
3.2) Ent(u, 1) =lim ey Ent(uj, T) =lim jen Ent[ﬂj, T).

4) Ent’ :Fixﬁ({) — (—o0,00] is l.s.c. in va’e-topology.
Proof. If suppé j=supp¢; < p for j €N, then note 1) in Proposition [2.1.33|for the tracial
AF-C*-algebra (A[pl,7) and 1) in Corollary for the tracial AF-C*-algebra (A;,7)
yield inclusions
F(Aj¢) = F(Alp]) « N (ALpD. (4.85)

Using 1.3) in Theorem [3.2.40|and for a.e. j € N, Equation [4.85 shows

hi(€a;(E))) © he(Fixa, (£))) € S7(A¢,) < SN (ALRD (4.86)

for all ¢ > 0. Note 3) in Proposition [3.2.34] ensures the first inclusion in Equation [4.86

Letting ¢ | 0 in Equation [4.86/implies 2) by 1) in Proposition [3.2.32| Using 2), we readily
see 2) in Corollary(3.1.49|yields

€ cFixy (&) c L(A)nClpl (4.87)

as per Diagram [3.346|for K = domEnt’. Using Lemma [4.1.17, Equation [4.87| shows

¢ ndomEnt’  Fix)(¢) = #N(A)n Clpl. (4.88)
Equation 4.87| and Equation 4.88| show 1) at once. Using the latter, Lemma |4.1.20| in
turn implies 3.1), whereas 3) in Theorem [4.1.25|implies 3.2). Altogether, get 3). Using
1) in Theorem [3.1.47| we readily see 2) in Theorem [4.1.25|shows 4). O
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Corollary 4.1.30. Let ¢ € F#(A) be a finitely supported fixed state. Let € < (5”(A),7//Vf 0y
be finitely supported with fixed part {. We consider marginals ,uO, ,ul € € NndomEnt’ and
(n,w) e Geo(po, ,ul) approximated by (,uj ,w’) ien © Geog in finite dimensions. If there exists
C>0s.t. forall te(0,1), we have

Ent(u/(¢),7)<C- max{Ent (ﬁ?, 7),Ent (p}, T)} (4.89)
for a.e. jeN, then u(t) e domEnt’ for all ¢ € [0, 1].
Proof. Let p € L°(A, 1) be a projection s.t. £ € C[p]. Let m e N s.t. (,uj,wj)jzm c Geog as
per Definition [3.1.51|for (i, w). Using 2) in Theorem [4.1.29 we assume m € N s.t.
6, () = SN (AN Clp] (4.90)

for all j = m without loss of generality. Following 1) in Definition |[3.1.51| and further 2)
in Corollary[3.1.49] Equation [4.90] ensures we may in fact assume

1) e6a,(E;) = SN(AINCIp] (4.91)

for all ¢ € [0,1] and j = m without loss of generality. Note u/(0) = ,u? and p/(1) = ,qu. in
each case by hypothesis.

Following 2) in Definition we select a subsequence (u/,w’) i=m converging to
(¢, w) in Adm!%1). If there exists C > 0 as per Equation then Equation lets us
apply 2) and 3) in Theorem to Equation We calculate

Ent(u(),7) < lim'i\lnfEnt(uj(t),r)
JE

< C -max { liIJ%ianEnt (;1‘}, T),liIJ%ianEnt (ﬂJl.,T)}

=C -max { lim Ent (ﬁ?, T),%_ierlr\ll Ent (ﬁ}, T)}

JeN

=C- max{ Ent(,uo,r),Ent(,ul,T)} <00

for all ¢ € [0, 1]. Moreover, get Ent® > —oco on #(A)NC[p] by 1) in Theorem [4.1.25 O
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4.2 The logarithmic mean setting

We use quantum relative entropy as measure of quantum information. Assume the
logarithmic mean setting. Assuming finitely supported fixed parts, heat flow induces
finite-energy admissible paths for all states with finite quantum relative entropy. Up
to coarse graining, heat flow is gradient flow of quantum relative entropy. Heat flow
further satisfies a steepest entropy ascent property [25] by considering the steepest
descent property of gradient flows in smooth Riemannian manifolds [144] and taking
limits. We seek conditions s.t. steepest entropy ascent implies quantum noise evolution.
If we are able to do so, then we obtain slopes of maximal entropy production, i.e. erasure
of quantum information, for sufficiently regular subsets of all bounded normal states.
We accomplish this with our maximum entropy production principle [91][92][155].

In Subsection(4.3.1] we consider heat flow as EVI)-gradient flow of quantum relative
entropy. We use Euler-Lagrange equations of energy functionals and results concerning
Hessians of quantum relative entropy in the finite-dimensional setting. If heat flow
is EVI,-gradient flow of quantum relative entropy, then we have metric slopes as per
Equation [81[160]. These generalise slopes of maximal entropy production, even
absent differential structures, to all normal states with finitely supported fixed part
and finite quantum relative entropy. By locality, we restrict our maximum entropy pro-
duction principle to selection of noise diffusion terms in the finite-dimensional setting
and assume such selection is stable under scaling limits. We therefore view quantum
Laplacians as generators of quantum noise evolution. In Subsection we use such
description to show strictly positive lower Ricci bounds determine energy-information
trade-offs parametrised by lower bounds on quantum noise.

Structure. In Subsection [4.2.1] we discuss fundamental properties of the logarithmic
mean setting, define quantum L2-Wasserstein distances and show heat flow induces
finite-energy admissible paths. In Subsection we show Euler-Lagrange equations
and give, to us, necessary results concerning Hessians of quantum relative entropy. In
Subsection [4.2.3) we formulate our maximum entropy production principle.

4.2.1 Quantum L2-Wasserstein distances

Quantum L2-Wasserstein distances are quantum optimal transport distances in the
logarithmic mean setting. Assuming the latter and finitely supported fixed parts, note
Theorem shows heat flow induces finite-energy admissible paths for all states
with finite quantum relative entropy. Energy is controlled by time and relative entropy
of marginals. Moreover, quantum relative entropy decreases along heat flow.

The logarithmic operator mean and representing function. Deﬁnition
gives the logarithmic operator mean. Equation induces the Kubo-Mori-Bogoliubov
inner product [176]. Note Remark for its functional derivative. Proposition 4.2.3
gives its symmetric representing function. For details on such representing functions of
operator means, we refer to Subsection|2.2.1
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Definition 4.2.1. We define logarithmic operator mean mq : (0,00) x (0,00) — (0,00)
by setting

t—s 1
t,s)i= ———= [ %1% 4.92
Miog(t,s) Tog?—Togs fo s da (4.92)

for all £,s > 0.

Remark 4.2.2. Note mj,; extends to ¢,s = 0 since ¢ — t* is monotone on [0,00) for all
a €[0,1]. We have m44(0,0) = 0. Using functional derivative as per Definition and
in the noncommutative chain rule given by Proposition|2.3.10, we have

mﬂ,lg(t,S) =(Dlog)(t,s) = foo(t +al) Ys+al)da (4.93)
0

for all ¢,s > 0. Integral characterisations of mj,g and m lg are well-known [172].

Proposition 4.2.3. We define fiog : (0,00) — (0,00) by setting

t—1
flog(t) = @ (4.94)

for all t > 0. Then fiog is the unique symmetric representing function s.t. m fiog = Mlog-

Proof. If fiog is a symmetric representing function s.t. we have mp (¢,s) = flog(ts_l)s =
mieg(t,s) for all ¢,s > 0, then Definition yields our claim at once. We directly verify
symmetry, as well as flog(1) = 1 and fiog(£s™")s = meg(2,s) for all ¢,s > 0. The map ¢ — t*
is operator monotone for all « € [0, 1]. Since Equation 4.94]is Equation for s=11in
each case, we know operator monotonicity of f,s by its integral characterisation. O

Definition and relation to quantum relative entropy. Using symmetric rep-
resenting function as per Proposition Definition gives the logarithmic mean
setting. Proposition [4.2.6/shows the noncommutative chain rule intertwines logarithmic
operator mean and noncommutative division operators. Equation links quantum
optimal transport and noncommutative heat semigroups of quantum Laplacians. The
latter uses both Notation and 1.1) in Corollary[3.2.43] For details on compressing
quantum gradients, we refer to Subsection [2.3.1]

Definition 4.2.4. Let (¢,v,y,V) be noncommutative differential structure for tracial
AF-C*-algebras (A, 1) and (B,w) in (f,0)-setting. We are in the logarithmic mean setting
if f = flog represents mjog and 6 = 1. We further say that it is finite-dimensional if A and
B are finite-dimensional.

Notation 4.2.5. Assume the logarithmic mean setting. We write .#1°¢ := .71 as well
as E°¢:=E/1 and Wvlog = va’l.
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Proposition 4.2.6. Assume the logarithmic mean setting. Let & € #N(A) be a fixed state
with integrable support. If x € L°(A¢,T)y s.t. x > 0 in L®(A¢, 1), then logx € L°(A¢, 1)y
and we have

Velogx = Dy ¢ Vex. (4.95)

Proof. Let x € L°(A¢,7)y s.t. x > 0 in L*(A¢, 7). The latter implies 0 ¢ Specroo(a,r)X-
Note specec(s X = specro, ¥ U{0} (cf. 1) in Corollary . Let I < [0,00) be a
closed interval s.t. specr«4 1)* < I. Zero is isolated as both spectra are compact.

Let g € C1(I) s.t. g(0) = 0 and g(¢) = logt for all ¢ € SpecCroo(a,,r)X- Such g exists
by the above discussion. We have logx = g(x) € L™(A¢,7) (cf. Corollary [B.2.36). Using
ml_olg(t,s) = (Dlog)(t,s) for all ¢,s > 0 as per Equation 4.93, we calculate

-1
D = mlog(Lx,suppf’Rx,suppé)
=Dlog (Lx,suppsr , Ry supp¢ )

= Dg(Lx,Suppf,Rx,suppf)'

Following 1.1) in Corollary compressing V : Ag — L?(B,w) with supp¢ yields
symmetric W*-derivation V; : o ¢ — L%(B;,w). Using the above calculation in order to
account for 9, ¢, applying 1) in Proposition for V; to g selected as above shows
logx = g(x) € L™(A¢, 7)y and furthermore Equation [4.95] O

Remark 4.2.7. Note V =V; on L®(A¢, 1)y by 4.2) in Corollary|3.2.43] We may therefore
suppress ¢ in the subscript of V; in Equation [4.95]

Theorem uses Lemma [4.2.8] resp. its immediate Corollary[4.2.9 Up to coarse
graining, Lemma implies heat flow is gradient flow of quantum relative entropy.
Moreover, Theorem [4.2.35| generalises arguments in their proof without assuming the
finite-dimensional setting. We use operator differentiable functions [172]. We review its
general case. Let H be a separable Hilbert space and 7' > 0 in 28(H). Equation |4.96|uses
Fréchet derivatives in Z(H). For all S € 8(H), we define dlog 1(S) € 8(H) by setting

dlogp(S):= 4 log o(t) (4.96)
At =0, 1l

for all Fréchet differentiable maps ¢ — ¢(t) € B(H)sq s.t. ¢(0) =T and ¢(0) = S. We
obtain dlogy : B(H) — B(H). For all S € B(H), we have

0o 1
dlog p(S) = f (@l +T) 1S(al +T) lda, f T%log 7(S)T  *da=S (4.97)
0 0

by Subsection 4.3 in [172]. Identities in Equation determine dlogy. Equation
and Equation pull back along compressed canonical left- and right-action as given
below in the proof of Lemma |4.2.8
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Lemma 4.2.8. Assume the finite-dimensional logarithmic mean setting. Let { € #(A) be
a fixed state and [a,b] cR.

D) If p:la,b]l — 9() is differentiable for a.e. t € [a,b], then

d
- Ent’ (u(?)) = 7(#() loghu(?)) (4.98)

for a.e. t€la,bl.

2) If (u,w) € Adm'»®! s.¢. u(t) € 9¢) for all t € [a,b] and furthermore fw(t) € B for
a.e. t€la,bl, then

d
<= Ent (u(®)) = 7(#(8) log §1u() = (Pycp e (®), Viu(®),, (4.99)

for a.e. tela,bl.

Proof. We use Hilbert space (Ag, ||.[l;). Pull-back along compressed canonical left- and
right-action preserves Fréchet derivatives and therefore identities as above. These use
A¢so and Ag, rather than %B(A¢)so and B(Ae). If p: [a,b] — J({) is differentiable
for a.e. t € [a,b], then Proposition ensures fu(¢) > 0 in A; for all ¢ € [a,b] and
#(2) € I(A) for a.e. t € [a,b]. Thus logfiu(t) € A¢ in each case (cf. Corollary[B.2.36), hence
the map s — logf#u(s) € A is Fréchet differentiable for all ¢ € (a,b). Corollary
shows Ent(u(¢), 7) = t(§u(¢) logtiu(?)) for all £ € [a, b]. Note 2) in Proposition [3.2.46 implies
I(A¢) c kert. Using the latter, we argue as follows.

We show 1). Assume its setting. If ((¢) exists for £ € [a,b], then traciality, the second
identity in Equation and #(¢) € ker T imply

1
7(fu)d logy, (1)) =f0 T(jj,u(t)“dlognu(t)(ﬁu(t))jju(t)l_“)da =1(#u®) =0. (4.100)

We know Ent(u(t),7) = t(§u(t)logfu(t)) for all ¢ € [a,b]. Using the latter and the Leibniz
rule for Fréchet derivatives, Equation |4.100|lets us calculate

d
<7 Ent’ (1)) = T () log (@) + T (§u(t)d logy (H11®))) = T(H()loghiu(®))  (4.101)

for a.e. t € [a,b]. Equation [4.101| shows Equation We obtain 1). In particular, we
see 1) applies to all elements in Adm/®?!.
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We show 2). Assume its setting. Note finite-dimensionality ensures ¢ has integrable
support. Using Proposition 4.2.6, Equation lets us calculate

d
oy Ent" (u(#)) = 7(f() log fu(t)) = (fw(t), Dy e V(@) , (4.102)

for a.e. t € [a,b]. We suppress ¢ in the subscript in Equation [4.102| as per Remark
We swap Dy ),¢ € B(B¢)p, to the left-hand side of the inner product. Note this requires
fw(t) € B¢. Equation [4.102| shows Equation We have 2). O

Corollary 4.2.9. Assume the finite-dimensional logarithmic mean setting. Let £ € F(A)
be a fixed state. For all p e Fixs(¢) and t >0, we have

1) —LEnt"(hy(w) =1(Ah (1) loghe(f1r)),

2) T(Aht(ﬂu)loght(ﬁu))=!I@ft(ﬁﬂ)f (8|2 = 7% (R, g, (Vha (1))

Proof. For all ¢ € R, set u(¢) := h(u) and w(z) := —(Viu(t))’. Thus #ut) = —Afu(t) =
V*#w(t) for all ¢ > 0 by definition of A : [0,00) — ZB(A) and construction of extension
h :[0,00) — PB(A*), hence (u,w) € Adm!®? for all [a,b] =R by finite-dimensionality.

If t > 0, then fu(¢) > 0 in A¢ by 2.2) in Theorem and furthermore fw(t) € B¢
by 1.1) in Corollary Using the latter and 1.2) in Corollary applying 2) in
Lemma [4.2.8|for all [a,b] < [0,00) yields both 1) and the first identity in 2) at once. Note
1) in Proposition shows the second one immediately. O

Theorem 4.2.10. Let (¢,vy,y,V) be noncommutative differential structure for tracial AF-
C*-algebras (A, 1) and (B,w) in the logarithmic mean setting. Let ¢ € F(A) be a finitely
supported fixed state. For all pe Fixﬁ(gt YNdomEnt® and t = 0, we have

1) hy(w) € domEnt’,

2) Ent(¢,7) <Ent(h(w),7) <Ent(u, 1),

3) 75w he(w)? < t-(Ent(,7)~ Ent(hy(w), 7)) < 00
Proof. Note 2) implies 1). We show 2) and 3). Let p € FixN(.f)r‘n domEnt’. If ¢; # 0 for
J €N, then hy(u); = hy(fij) € & (A; ¢,) for all ¢ € [0,00] by 1.3) in Proposition (3.2.34/and

1.3) in Theorem [3.2.40] m Using the latter and 1.2) in Proposition [2.1.31] we reduce to the
finite-dimensional setting. For all ¢ € [0,00], we have

Ent(h(w),7) = l_ian Ent(h:(g;),7) (4.103)
Jj€E
by 3) in Theorem [4.1.29, as well as
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o (s () = lim (TN (D) (4.104)

by 1) and 3) in Theorem (3.1.47, We use both equations above to reduce as follows.
Equation [4.103| by itself shows 2) if for a.e. j € N, we have

Ent(¢;,7) < Ent(h(i;),7) < Ent(i;, 1) (4.105)
for all £ = 0. Equation[4.103|and Equation 4.104] show 3) if for a.e. j € N, we have

Wo® (s he(i))* < t- (Ent(,a 1) - Ent(ht(ﬁj),r)) (4.106)

for all £ = 0. Since ¢; # 0 for a.e. j € N, Equation reduces 2) and Equation
reduces 3) to the finite-dimensional setting.

Assume A and B are finite-dimensional. In particular, ¢ # 0. We show 2). Note
2.3) in Proposition ensures Sup;eg oo] 12:(1)lloo < lftllco. Get compact K < [0,00)
s.t. speca hi(u) c K for all t € [0,00]. Let g € Cp(R) s.t. g(A) = AlogA for all A € K. Using
Lemma[A.2.5 and Corollary [4.1.27] we see g € Cp(R) ensures we define continuous map
F :[0,00) — R by setting

t— F(t):= Ent(hy(w),7) = 7(fh () logth(w) = 7(g(th(w))) (4.107)

for all ¢ = 0 (cf. Remark[A.2.3|and Remark[A.2.4). This requires strong continuity as per
1) in Proposition [3.2.32] We obtain Ent(¢, 1) = lim;_.o, F(¢). Corollary shows

ht(ﬂ.u)’é

for all ¢ > 0. Equation and Equation [4.108| show 2).

We show 3). If ¢ = 0, then our claim follows since Wvlog is a metric. Assume ¢ > 0. For
all s €[0,¢], set pu(s) := hg(p) and w(s) := —(Viu(s))’. We show (i, w) € Adm'®H(u, k(1)) in
the proof of Corollary m Using the map s — ¢(s) := ts, we rescale (u,w) € Adm!® to
(1, w") € Adm!*! as per Remark 3.1.22] Using the map s — ¢~ 1(s) := t s, we likewise
rescale (u',w') € Adm!% to (u,w) € Adm!%*. We further apply Proposition to the
latter below. Equation lets us calculate

d 1
~FO=]2; ) Thi(in) |5 = (R, he(w, (Vha(1))) = 0 (4.108)

W8 (1, ho()” < B8 (4, w')
t
= t-f ﬂlog(u(s),w(s),w(s))ds
0

= t- (Ent(y, 7) - Ent(hy(p),7)).

Note 2) ensures the right-hand side is finite. As such, the above calculation shows 3) at
once. The general case follows as discussed above. O
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4.2.2 The finite-dimensional setting

We discuss the finite-dimensional logarithmic mean setting. We introduce A-operations
to simplify those of our calculations involving derivatives and noncommutative division
operators. Theorem formulates Euler-Lagrange equations. Theorem gives
two differential equations for Hessians of quantum relative entropy.

Euler-Lagrange equations. Theorem requires Euler-Lagrange equations
as per Theorem We introduce A-operations in order to simplify calculations. Let
(¢,w,y,V) be noncommutative differential structure for tracial AF-C*-algebras (A, 1)
and (B,w) in the finite-dimensional logarithmic mean setting. Let ¢ € #(A) be a fixed
state. Finite-dimensionality ensures finite support.

Following Definition and Remark [4.2.2] note Proposition [4.2.11] gives integral
characterisation of multiplication and division operators in our setting. These allow for

direct calculations. We moreover obtain smooth maps in Definition |4.2.13

Proposition 4.2.11. For all x € A¢ . and u € B¢, we have
D M) = [} @) upx)%da,
2) Deew)= [C(P)+alp) Tu(yx)+alp) 'daifx>0in Ag

Proof. We show 1). Let x € A¢ ; and u € B;. Using 1) in Lemma [2.2.13] Equation [4.92]
lets us calculate

M) = M) = mog(LE,RY (@)
1
_ fo L) (R *w)da
1
= f dx) uy(x) " da.
0
The above calculation shows 1). We show 2). Assume x > 0 in A¢. For all a > 0, we
define g% € Cy([0,00) x [0,00)) by setting
g%t,s):=(t+a) (s+a)" (4.109)

for all ¢,s = 0. Since u € By, 2.3) in Lemma [2.1.67|implies

g“(Lf,Rz/)(u) = g“(Ld’ RY

x,supp¢’ x,suppf)(u) (4.110)

for all a > 0. Using 2) in Lemma [2.2.13, Equation and Equation 4.110|show
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_ -1 _ 179 14
@x,f(u) = ('/%x,'f) (w)= mlog(Lx,suppf’Rx,suppf

@

_ fo m(Lf,Supp ot aIBE)_l((stupp o aIBE)_l(u))da
_ fo ~ 8L oper B suppe W)
:foooga(L;’;,R;”)(u)da
:fooo(Lf+aIB)_l((R;MaIB)_I(u))da
:fooo(cp(x)+alB)_lu(w(x)+a13)_1da.

Get 2). Note x > 0 in A; is required for @, ¢ = (M, ¢)* to be defined. O

We have Riemannian manifold (9(¢), g°) as per Definition [3.2.52/embedded in .%# (A¢)
as per Proposition 3.2.49|s.t. its tangent bundle is indeed trivial with fibre I(A¢). For all
e 9(&), we introduce operators

T =V My eV =V M N, By = My iV = Mo,V (4.111)

with domain im A¢ as per Definition|3.2.50{by Proposition(3.2.51} In each case, get §,, >0
in B(GimA¢) s.t. [§,Adj] = 0. Moreover, note &, € B(im A¢, B¢) intertwines adjoining. We
therefore restrict to I(A¢) =imA:NAg .

Notation 4.2.12. Let X and Y be smooth manifolds. We write dg : TX — TY for the
first differential form of a smooth map g : X — Y [144], i.e. its total derivative. We
further write d,g € Hom(T, X, Tg(;)Y ) upon evaluation at p€ X.

Definition 4.2.13. We consider Riemannian manifold (9(¢), g°).

1) We define .#; : 9(¢) — GL(%(B;)) by setting . (u) := My, ¢ for all p e (). We
define 9, : 9(§) — GL(ZB(By)) by setting D¢(u) := Dy, ¢ for all p € 9(E).

2) We define § : 9(§) — GL(%(mA;)) by setting §(u) := §, for all u € 9(§). We define
& : 9(§) — AB(Gm A, Be) by setting &(u) := &, for all u € 9(S).

Remark 4.2.14. Proposition [4.2.11|shows all maps in Definition 4.2.13|are smooth. We
use this throughout our discussion.

Definition 4.2.15| gives A-operations. Proposition [4.2.17| and Lemma [4.2.18| simplify
calculations involving derivatives and noncommutative division operators. Using their
results, Theorem |4.2.19|formulates Euler-Lagrange equations.
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Definition 4.2.15. Let u € 9(¢).

1) Forall x€ As and u € B, set

Aglx,u) = AdGe,u) + Al (x,u) € By (4.112)

using
AL u) = fo (i) + alp) 00 (@(tw) + alp) Mu(y (i) + alp) 'da,

A (x,u) = fooo(qb(ﬁu) +alp) tu(y(tu) + alp) "y (v (tu) + alp) 'da.

2) For all u,v € B, set

Aj(u,v) = AL (w,v) + A" (w,v) € Ag (4.113)

using
A" (u,0) = ¢*( fo " ((t) + ats) "o (w(tu) + als) "u" (@() + a:lB)_lda),

Af{’*(u,v) =y* (fooo(w(ﬂ,u) + alB)_lu* (p(fu) + alB)_lv[w(jj,u) + alB)_lda).

Proposition 4.2.16. Let V be a unital Banach *-algebra. If a map F :la,b] — GL(V)
is Fréchet differentiable in an open neighbourhood of tg € (a,b), then

d

a 1.4
dt

. -1
ey F@@)-F(ty) . (4.114)

t=to,ll.lv

Ft)y 1 =-F(to)~

t=to,l.lv

Proof. Let F :[a,b] — GL(V) be Fréchet differentiable in an open neighbourhood of
to € (a,b). The Leibniz rule lets us calculate

d d d
0=— FOF@®) 1=— F(t)-F(to) ' +F(tg)- — F®)™l. (4.115)
At |i=to, Iy At |i=to .1y At |i=to, 1y
Equation |4.114|{follows by solving Equation |4.115|for % |t:t0 II-IIVF(t)_l' O
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Proposition 4.2.17. For all p€ 9({), x € I(A¢) and u,v € By, we have
1) <A#(x,u),v>w = <x,A;(u,v)>T,
2) duDe(x”)w) = —Ay(x, ).

Proof. For all pe 9({), x € I(A¢) and u,v € B, we directly verify

(Aﬁ(x,u),v)w = (x,AZ”*(u,v»T, <Af{(x,u),v>w = <x,AZ”*(u,v)>T. (4.116)
Using Equation(4.112(and Equation [4.113} note Equation|4.116/implies 1) by definition.
We show 2). Let p € 9(¢), x € I(A¢) and u € B¢. Let € >0 and p: (—¢,€) — 9(¢) smooth
map s.t. 4(0) = p and (0) = x°. Then 2) in Proposition [4.2.11|{shows
I -1 -1
Diuy,e(u) = A ((,b(jj,u(t)) + alB) u[w(jj,u(t)) + alB) da (4.117)

for all ¢t € (—¢,¢). Using d u,@g(xb)(u) = % | 0 ,||B@ﬁ#(t)7€(u) and further applying Fréchet
derivative to the integrand in Equation {4.117} the Leibniz rule lets us calculate

o0

d d _ _
PT -@ti#(t),f(u):f 7 ((Hu®) + alp) " u(y (i) + alp) 'da
lt=0,1.1z 0 dtli=o,.1p

; fo ” (@ (tn) +a13)—1udi

=001z

(v () + alp) 'da.

The above is the integral characterisation of %
further implies

Diu,¢(w). Proposition 4.2.16

|t:0,||-||B

sI-1IB
si-IIB

for all a > 0. Equation |4.118|lets us calculate
(o) + alp) u(y(ty) + alp) 'da = —Alx,w), (4.120)

[ 3
0 dtli=0,.15

whereas Equation [4.119|lets us calculate

00 _ d _
f () + alp) Tu— (w(fu®) + alp) 'da = - A (x,w). (4.121)
0 dt |1=0,1Li5
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Using Equation [4.112] applying Equation [4.120| and Equation [4.121| to the integral

characterisation of % Diuw,¢(u) yields

|t=0,II-IIB

d
dt =015

Equation 4.122|shows 2) at once.

Diuw,c(w) = —(Aﬁ(x, u)+ A (x, u)) =—Au(x,u).

Lemma 4.2.18. For all p€9() and x,y,z € I(A¢), we have

(AT @) ), 2), = =(x, A% (0(1,5"),0(1,2"))),.

Proof. Let pe9(¢) and x,y,z € I(Ay). We calculate d, & (x°)(y). Note

S = (V' llyu¥) ", Moy =2, € GL(BBY).

-1
fu.8
Using the first identity in Equation [4.124], Proposition [4.2.16|implies

A3 1)) =~ (du(V V)N FE W),

(4.122)

(4.123)

(4.124)

(4.125)

Since V and V* are bounded linear, get du(V*%§V)(xb) = V*duﬂg(xb)v. Applying the

latter to Equation [4.125|yields

A ) = =57 (V bl ) (V3 ).

(4.126)

We therefore calculate d u/%g(xb)(v&jl(y)) in order to calculate d u&'_l(xb)(y). Using

the second identity in Equation [4.124] Proposition 4.2.16|implies

Ay M) = = My gy D) My .

(4.127)

Applying 2) in Proposition |4.2.17|for u = J%ﬁ#,g(v&jl(y)) to Equation [4.127|evaluated on

V3. L(y) yields

Al (V' (9)) = =ty g Do) Myt (33 9)))
= My (A (x’“”ﬁu,f(vgﬁl(y))))-

Using y,:(V331(5)) = 10(u, y°), we therefore obtain
dulle ) (VE ) = My [ Au(,10(1,5”)) .
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Equation |4.126/and Equation [4.128| show

S @) = =53t (V" e[ A1 (1,57)) ) ). (4.129)

We show Equation [4.123| Equation |4.129] together with 1) in Proposition|4.2.17|applied
to the third identity in our below calculation, lets us calculate

(du @) ), 2), = —( —Sﬁl(v*%ﬁu,é(/\ﬂ(x’ﬁg(“’yb))))’z>w
= —(Au(®,10(1,5")),10(1,2")),,
= —(x, A, (10(1,5°), 10 (1,2)) ).

The above calculation shows Equation|4.123 O

Theorem 4.2.19. Let (p,v,y,V) be noncommutative differential structure for tracial
AF-C*-algebras (A, 1) and (B,w) in the finite-dimensional logarithmic mean setting. Let
e F(A) be a fixed state. A smooth path p:[0,1]1 — (&) satisfies the Euler-Lagrange
equations of the energy functional induced by g° if and only if

d

1
— oo (1)) = =S A% (O (@), 1)), 1O (u(8), fu(2))) (4.130)
ds [s=t,).| 4 2

for all t€(0,1).

Proof. We consider first variation of energy [144]. Note T9({) = 9(&) x I (Ag)b is trivial by

2) in Proposition It suffices to solve for critical points of the energy functional

induced by g¢ on variations of form u(t,e) = u(t) + en(¢) using n € Cy (0, 1],I(A5)b) and

ee(—0,0) for § > 0 sufficiently small. The latter is chosen s.t. u(¢,e) € 9(¢) in each case.
Let u(¢,€) := u(t) + en(t) be such a variation. Lemma 4.2.18|shows

(dueS (1) (B®), 8®)), = =i, Ay ) (1O (D), 1)), 1O (u(D), u(8)))),  (4.131)

for all ¢ € [0,1]. Note g° = §~! via GNS-inner product of 7 restricted to A¢. Using the
latter, we calculate

d

de

1
f gi(t ) (£(2) + en(t), () + en(t))d ¢

e=0J0 ’
! d

:fo z‘gi(t)(ﬂ(t),77(15))+ - 3 (uct, ©) (1)), Hu(t)). dt

dE |e=0,.] 4+

1
- fo Zgz o (D,1®) +{duwS ™ (n®) (10®), ta®), dt.
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We thus apply Equation 4.131, symmetry of the real inner product and integration
by parts in order to calculate

a
de

1
f £ 0.0 D) + END), ) + (D) dt
£=0,|l.ll 4+ JO ’

1
- fo 28 30y (), 1(0)) = (A (H© (D), £8)), O (D), f(8)) ), (D))

([

We solve for critical points of the energy functional induced by g°. Using the formula
for first variation of energy (cf. proof of Theorem IX.4.3 in [144]), the above calculation
hence shows Equation [4.130| gives Euler-Lagrange equations. O

gﬁ(i)(ﬁﬂ(s))’ﬂﬂ(t»r + (A (1O (D), (D), 4O (D), (D)), (D) dt |.

s=t,]I.1l o

Hessians of quantum relative entropy. Theorem gives two differential
equations for Hessians of quantum relative entropy used in Lemma4.3.7] i.e. required
for our equivalence theorem. Let (¢p,v,y,V) be noncommutative differential structure
for tracial AF-C*-algebras (A,7) and (B,w) in the finite-dimensional logarithmic mean
setting. Let { € #(A) be a fixed state. Finite-dimensionality ensures finite support.

Note 2.2) in Theorem and 1) in Corollary imply smoothness of quantum
relative entropy restricted to relative interiors. Proposition 4.2.21| expresses Hessians
of quantum relative entropy in terms of A-operations.

Notation 4.2.20. Let HessEnt' denote the Hessian of Ent’ restricted to 9(¢). We write
Hess, Ent"(n) := Hess, Ent"(n,n) upon evaluation at u € 9(¢) and (n,n) € Tuﬁ(f)Z.

Proposition 4.2.21. For all pe9() and nel (Ag)b, we have

1
Hess, Ent"(7) = — (A, (10, 1), 801, m), M), + 25 (n, (atn)). (4.132)

Proof. Let ped(&)andnel (Ag)b. Note §,, = V* 4y, ¢V commutes with adjoining. Using
logtin € A¢, Proposition lets us calculate

7(nlog i) = (§u' (1), V" My s Vioghu), = (Fi' (tn), M), = (Fu" () Afp).  (4.133)

Using 1) in Lemma [4.2.8] Equation 4.133|implies

d
— Ent” (u(®)) = 730 log () = (s (£12(0)) Agact) (4.134)

for all smooth paths u:[a,b] — 9(&).
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Let p:[0,1] — 9(¢) be a geodesic s.t. u = u(0) and [1(0) = 1. Using the chain rule of
Riemannian metrics involving covariant derivatives [144], we argue as [169]] to get

Ent’ (u(2)). (4.135)

2
Hess, Ent"(n) = a2z

Equation |4.134| and Equation [4.135|let us calculate

2

L d d L
Hess, Ent"(p) = tzor(tt/,t(t)logtiu(t)) - E‘t:OT(gu(t)(ﬁu(t))Aﬁu(t)). (4.136)

We show Equation 4.134] All geodesics are critical points of the energy functional

induced by g¢ [144]. Using Equation |4.136|for the first and Theorem [4.2.19|for the third
identity in our below calculation, we therefore calculate

d
Hess, Ent’(n) = I ‘ t—OT (3;(1,5) () Aﬁﬂ(t))

_‘t:()@;(b(ﬁu(t))mm,+gi(n, (atn)’)
=~ (A1(B( "), O(1), An), + & (. (8tn)’).

The above calculation shows Equation |4.134 O

Theorem 4.2.22. Let (p,v,y,V) be noncommutative differential structure for tracial
AF-C*-algebras (A, 1) and (B,w) in the finite-dimensional logarithmic mean setting. Let
e F(A) be a fixed state. Let g, p1: U — (0,00) be smooth maps for U < (0,00) x (0,00)
open.

1) Assume U =(0,00) x (0,00) and ¢ := @o = 1. Let pu:[0,1] — 9(&) be smooth. Using
the latter, we define smooth map n:U — 9({) by setting

n(t,8) = hp,s) (1)) (4.137)
for all t,s > 0. We have
10 f(a 0 ) 02 0 0 (a )
——gt|=n,—n|+——¢ - —Ent'(n) = —-—¢-Hess, Ent"| — 4.138
205512t ™ 52" T asar? pr T (D=~ 550 Hessy Ent'{ 5om (4.138)

on (0,00) x (0,00).
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2) Assume %(po = —%(pl. Let p e 9(¢) and x € I(A¢). Using the latter, we define smooth
maps n:U — 9(¢) and X :U — I(A¢) by setting

N(t,8) 1= hgy,6) (1), X(2,8) 1= hyyt6)(x) (4.139)
for all (t,s) e U. We have

%0% |2 vx|? = —%(pl Hess, Ent"(§,(X)) (4.140)
on U.
Proof. We show 1). Assume its setting. Note %ﬁn(t,s) = —a%(p(t,s) -Afn(¢,s) and further
Dbt s) = — L2, 9)- Min(t,s) — Lop(t,s)- ALtin(t, s). We calculate

10 ¢(0 _ 9 (0 9
3 asg”(at"’_")( s)= ——<P(t s)- < 1t ((Aﬂn(t,s)) )(a—tﬁn(t,s)),a—tﬁn(t,s)>T
2

. (0
T8t 350

0 ~ P 5
T g(p(t’s‘) ' §<dn(t’8)g 1((Aﬁn(t’8))b) (&ﬁrl(t’S))’ &ﬁn(t78)>‘[

0
—n(t,s), n(t s))

2

0 b O
_a—at(p(t s)- gn(t s)((Aﬁn(t,s)) ’O_tn(t’s))

0 b 0
_—cp(t )840 (D5, 1(t,9)), =n(t,9)).

Using 1) in Lemma 4.2.8 and symmetry of the real inner product, we calculate

0 . 3 2
&Ent (n(t,s)) = <6tﬂn(t,s),logﬁn(t,s)>r

0
= gn(t,s) (&ﬂ(t, 3)> Sn(t,s) (10gﬁ77(t, 3))b)

= gn(t s)((Aﬁn(t s)) n(t,s)).
We combine the two calculations above. We obtain
10 (0 B 4 N o
33s g”(at )( )= ——<P(t s)- < 1,88 ((Aﬂn(t,s)) )(aﬁﬂ(t,S)),aﬁn(t,S)>T

2

6 T
- m(p(t 8)- —Ent (n(t,s))

0 b O
- —p(t,)- 8%, s)((A&ﬁn(t,s)) =;19)
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We readily see adding %(p(t,s) . %Ent’(n(t,s)) to both sides of the above identity
shows Equation [4.138|if

0 0
HesSnEntT( )(ts) <n(t’S)S_l((Aﬁn(t’s))b)(a_tﬁn(t’s))’a_tﬁn(t’s)>f
0 0
+gf](t,s)((Aa_tHn(t>3))b,a—tn(t,s))

for all ¢,s > 0. We show the above identity. Let ¢,s > 0. Proposition 4.2.21|implies

Hess,,EntT( )(ts) 1< Ao (t0(n(t,9), n(t s)) ]:t@)(n(t s), n(t s))),Aﬂn(t,s)>T
2009, (A 200 |

Applying Lemma to the first term and symmetry of the real inner product to the
second one above, we obtain the claimed identity. Thus Hess, Ent’ ((%n) is of required
form, hence 1) holds.

We show 2). Assume its setting. For all (¢,s) € U, set §; x(£,s) := §y,)(X(t,5). Let
(t,s) e U. We have

|-, s)VX 9|2 = (Fnx(t,9,X(,9),. (4.141)

Using Equation [4.141] the Leibniz rule lets us calculate

0 0
|| 77(t S)VX(tNS)”Z = <£',ST],X(taS)7X(tas)>T + 2<Sﬂ(t,8)(£X(t)s))7X(t7 S)>T' (4-]-4-'2)
We therefore calculate the two summands on the right-hand side of Equation [4.142|in
order. Note 6%17(15,3) = —%(po(t,s) - An(¢,s). Applying Proposition [4.2.16/to § = (F~1)~!
and further using %(po = —%(pl, we calculate
0
<%Sn,x(t,8),X(t,S)>T < Tl(t s)(gn x(t, S)) 3'17 x(t, S)>
0 _
= —90(t,)- (0§ ((A10(E,9)’) Bx (t,9)), Fpx (t,9))
S T
0 _
=~ 01t,9)- (dyeo¥ (2810, 9) ) Frx(1,9), Frx(t,9)) .
S T
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Using %X(t,s) = —g—stpl(t,s)'AX(t,s), we moreover calculate

0 0
<'Sf](t,s)(&X(tys)),X(t,s)>T = _a(pl(t,s)’ <3n(t,s)(AX(t, S));X(t,s)>r
0
= _£¢l(t,3)'<X(t,3),ASn,X(t,S)>T
0
= ——fﬂl(t,S)-gi(t,s)((gn,x(t,S))b, (Agn,X(t,S))b).

0s
We combine the two calculations above with Equation [4.142] We obtain

10 1 0 1
53 VX @) = - gcpl(t,s)(g<dn<t,s>$‘1((Aﬁn(t,s))b) ($rx(t,9)), 80 x(1,9)

+ g:;(t,s)((gn,X(t, S))b, (ASn,X(t, S))b))

We see the above identity implies Equation [4.140]if

1
Hessyc. Bnt”((§5.x(,9)") =5 (e (20,9 ) (§1.x(0,9), Frx(t.9))

+ gi(t,s)((gn,X(t’s))b, (Agn,x(t,S))b)

for all (¢,s) € U. We show the above identity. We argue as for 1) using Proposition |4.2.21
and Lemma |4.2.18] We likewise use symmetry of the real inner product. Thus

Hess, Ent"(§,(X)’) = Hess, Ent’ (3, (4.143)

is of required form, hence 2) holds. O

4.2.3 Quantum noise evolution

We view quantum Laplacians as generators of quantum noise evolution in order to have
non-spatiality of lower Ricci bounds and associated energy-information trade-offs. If
EVI,-gradient flow of quantum relative entropy exist, then our Corollary shows
it is heat flow. Its curves of maximal slope [[160]] determine slopes of maximal entropy
production, i.e. erasure of quantum information. A priori, it is nevertheless unclear how
the EVI)-gradient flow property selects noise diffusion terms, i.e. generators of quantum
noise evolution, without their selection being an isolated assumption unrelated to the
underlying metric geometry. We require finer model assumptions for a selection process
to justify viewing quantum Laplacians as above. To this end, we formulate a maximum
entropy production principle as the latter may determine erasure of information [91]][92]
[124] motivated by fluctuation-dissipation principles [4]1[5]1[31]1[155] in non-equilibrium
classical [23][178]] and quantum statistical mechanics [188]].
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Up to coarse graining, Lemma implies heat flow is gradient flow of quantum
relative entropy. Theorem [4.2.35| shows heat flow further satisfies a steepest entropy
ascent property [25] by considering the steepest descent property of gradient flows in
smooth Riemannian manifolds [144] and taking limits. Note Corollary shows
production of quantum entropy is erasure of quantum information. We seek conditions
s.t. steepest entropy ascent implies quantum noise evolution. If we are able to do so, then
Theorem obtains slopes of maximal entropy production, i.e. erasure of quantum
information, for sufficiently regular subsets of all bounded normal states. Metric slopes
as per Equation generalise to larger sets of unbounded normal states. We restrict
our maximum entropy production principle to selection of noise diffusion terms in the
finite-dimensional setting and assume such selection is stable under scaling limits.

Accordingly, our maximum entropy production principle selects from candidates for
noise diffusion terms in the finite-dimensional setting. Each candidate is determined by
a quantum Fokker-Planck equation with vanishing drift term s.t. the kernel of the given
quantum Laplacian is the solution set for zero. Following Remark generators of
induced semigroups as per Lemma [3.2.23|satisfying a quantum Fokker-Planck equation
with vanishing drift term are diffusion terms. These describe purely irreversible time-
evolution of dissipative quantum systems weakly coupled to a heat bath [35][36][82]
[1211116311188]. Following Landauer’s principle [[142]|143] and its extension to quantum
information theory [45][95], we expect they produce quantum entropy at each state. We
show this is the case for candidates but with arbitrary energy scales. If we fix these, then
we may formulate our selection rule. Note Corollary shows the given quantum
Laplacian has vanishing drift term, i.e. is itself a candidate for noise diffusion terms.

We consider four model assumptions. The first three assume the finite-dimensional
setting, and the latter is stability under scaling limits. We summarise the first three.
First, we assume production of quantum entropy, i.e. erasure of quantum information, is
transport of quantum information along information-bearing degrees of freedom. This
amounts to assuming the logarithmic mean setting and our above notion of candidate.
Secondly, we select noise diffusion terms from all candidates for arbitrary energy scales
by maximising production of quantum entropy under constraints on energy spent. Max-
imisation constraints are given by suitable evaluation of quantum Fisher information
at each state. The latter links the information structure of quantum relative entropy
to the energy structure of the given quasi-entropy, i.e. the underlying metric geometry.
Thirdly, we use fixed energy scales normalised relative to the given quantum Laplacian.
We obtain normalisation from an equivalent but expected least dissipation of energy
principle [31]. This ensures unique solutions and avoids implausible ones.

Under assumptions as above, our maximum entropy production principle then states
self-adjoint local unbounded operators are generators of quantum noise evolution if they
restrict to unique solutions in each case. Corollary implies these are indeed neg-
atives of quantum Laplacians. Following our discussion of the coarse graining process
in Subsection Theorem shows quantum Laplacians satisfy, up to sign, a
quantum Fokker-Planck equation with vanishing drift term in scaling limit, i.e. only
noise diffusion term. Of course, the sign occurs since negatives of quantum Laplacians
generate noncommutative heat semigroups as per Lemma [3.2.23
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The maximum entropy production principle. We motivate our formulation
in the finite-dimensional setting by fluctuation-dissipation principles [4][5]1[31][155] in
non-equilibrium classical [23[][178]] and quantum statistical mechanics [188]]. The latter
exist in form of both minimum and maximum entropy production principles depending
on constraints imposed on the given time-evolution [4][5][31]. The variational approach
in [179] derives L2-Wasserstein gradient flows by considering infinitesimal constraints
on energy spent. This extends Onsager’s least dissipation of energy principle [[165[][166].
In the setting of linear non-equilibrium thermodynamics [4][5][23[[178]], Onsager’s least
dissipation of energy principle is equivalent to a maximum entropy production principle
[31]]. There exist efforts to give a sensible description of the latter exclusively in terms
of information theory [91][92]. However, such a description is contested [124]. We still
arrive at three formal conditions for a suitable maximum entropy production principle.
First, it must consider exclusively infinitesimal data for its maximisation constraints on
energy spent. Secondly, it must be equivalent to a least dissipation of energy principle
for the given thermodynamics by choice of such constraints. Thirdly, these constraints
must be described only in terms of quantum information theory [62]. We show all three
formal conditions are satisfied by our maximum entropy production principle.

We in fact derive it from an equivalent least dissipation of energy principle. As part
of our discussion, we make explicit the first three model assumptions. Equation
gives maximal production of quantum entropy for candidates of noise diffusion terms as
per the first model assumptions. This lets us select noise diffusion terms for arbitrary
energy scales as per the second model assumption. Unless we fix energy scales, Propo-
sition implies we do not have unique solutions. Lemma [4.2.30], which assumes
Equation[4.159] leads us to normalised energy scales as per the third model assumption
and thereby our least dissipation of energy principle s.t. heat flow serves as fluctuated
gradient flow. Equation gives the latter. Example [4.2.37| shows our choice kills
implausible solutions in the essential case of depolarising channels [[62]. Lemma [4.2.32
shows Equation [4.185] i.e. Equation [4.159| for normalised energy scales, is derived from
Equation in Corollary Equation [4.185] selects noise diffusion terms in the
finite-dimensional setting as per our maximum entropy production principle.

Let (¢,w,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B,w) in the finite-dimensional logarithmic mean setting. Proposition [4.2.24
shows heat flow is gradient flow of quantum relative entropy. Remark explains
Proposition gives maximisation constraints on energy spent for Equation

Notation 4.2.23. Let ¢ € #(A) be a fixed state. Let grad Ent’ denote the gradient of
Ent” restricted to 9(¢). We write grad, Ent” upon evaluation at p € 9(¢).

Proposition 4.2.24. Let { € #(A) be a fixed state. For all u € 9(¢), we have

d
—grady,, ) Ent’ = —(Afh,(w) = —hi (4.144)

for all t = 0.
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Proof. Let u e 9(£). Since %ht(,u) = —(Ath () for all ¢ = 0 by construction, we know
Equation [4.144] follows if

grad, Ent” = (Atn)’ (4.145)
for all n € 9(¢). We show Equation Let 7 € 9(¢) and u € T,9(¢). Let € > 0 and
p:[—¢,e]l — 9(&) smooth s.t. p(0) =1 and p(0) = u. We directly verify having admissible

path (p,0(p, p)) € Adm! 5% satisfying the conditions of 2) in Lemma m Using the
latter and &, = ./}, :V ensured by Equation |3.263, we calculate

% tZOEntT (p(®) = (Dyn 4O (p, )(0), Viin),,
= (D e Min VT, (Hw), Vin),,
= (v, (tw), Vin),,
= (&, (fw), Afin),
= g5 (u. (Atn)").

The above calculation implies Equation [4.145|and therefore Equation [4.144 O

Definition 4.2.25. Let ¢ € #(A) be a fixed state and u € 9(S).

1) We define $)¢ , : A¢ , — R by setting

¢ u) = g5 (M), (Ap)’) (4.146)
forall x€ Ag .
2) For all C =0, set G¢ u(C) 1= {x e Agy | gh(Ax), (a2)") = C}.
Remark 4.2.26. Let ¢ € #(A) be a fixed state and p € 9(¢). Using definition of gradient
flows [[144] and following 1) in Definition |4.2.25| Proposition 4.2.24|shows
d T _ 55 b b) _
T Ent (ht(,u)) = ght(,u)((Aﬂht('u)) ) (Aﬂht(#)) ) = ﬁf,ht(y)(ﬁht(,u)) (4.147)

for all ¢ = 0. Equation [4.147|for ¢ = 0 yields —% |,—o Ent™ (A (1)) = H¢ (1) at once. We use
this throughout our discussion.
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Proposition 4.2.27. Let ¢ € #(A) be a fixed state and p € 9(&)\{&}. Let C > 0. For all
x € G¢u(C), we have )¢, (x) = supyee, () Deuly) if and only if

[

Ax=C2 -9, (81) 2 - Afpa. (4.148)

Proof. We consider Riemannian manifold (9(¢),g°) as per 1) in Proposition [3.2.53] We
know T',0(¢) =1 (A(f)b by 2) in Proposition |3.2.49| Pull-back of gz along the flat operator

yields real Hilbert space (I (Ag),gi).
We have orthogonal decomposition I(A¢) = (Affju)r ® (Aﬁ,u)[f}g. For all x € &¢ ;,(C), get
unique C,eRand r, € (Aﬁu)ﬂ% s.t.

Ax=Cy-Afu+ry. (4.149)

Using 2) in Definition [4.2.25| Equation |4.149|shows

C=C2 -9 u(til) + 85(ra,rs) (4.150)

for all x € &; ;,(C). Since moreover r, € (Ajjm[fé, Equation |4.149|further shows

9eu(x) = Cy - e (1) (4.151)

in each case. In addition, note Corollary (3.2.66| states ¢ € 9(¢) is the only fixed state in
9(¢). Yet u # ¢. Thus Proposition [4.2.24) implies $¢ ,(fu) = —% |t:0 Ent*(h;(u)) > 0, hence
we see Equation [4.150| shows

Cxl =\/C — ghra,r) -ﬁg,p(ﬁu)‘% (4.152)

for all x € & ;,(C) by rearranging terms accordingly. Let x € & ;,(C). Equation
shows we have $¢ ,(x) = supyeem(c)j’)g,y(y) if and only if C, = SUPye@, ,(C) C, holds. Up
to positive constant, note fu € &¢ ,(C). We assume C, = 0 without loss of generality
since we are concerned with the supremum. Equation therefore implies we have
|Cyl=C, = SUP,e6; ,(C) C, if and only if

g(re,r) = 0. (4.153)

Equation 4.153|states r, = 0 by positive definiteness of Riemannian metrics. Using the
latter, Equation |4.149|and Equation 4.152|show the claimed equivalence. O
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We give explicit formulation of the first and second model assumption. For this, we
must describe candidates for noise diffusion terms in the finite-dimensional setting and
use the extension [45][95] of Landauer’s principle [[142][|143] to justify strictly positive
production of quantum entropy. Equation shows such candidates are diffusion
terms. Using ker A as the solution set for zero in each case, Equation gives upper
bounds on production of quantum entropy under constraints on energy spent. The latter
ensure finiteness. Definition [4.2.28|gives maximal production of quantum entropy as per
Equation for arbitrary energy scales by maximising Equation [4.158

We describe our notion of candidate. We use completely Markovian semigroups on
L°°(A, 1) = A as per Definition|3.2.22| Let S € Z(A);, s.t. S # 0 and ker S = ker A. Assume
S has completely Markovian induced semigroup G* :[0,00) — %(A) given by Gf =e!S
for all ¢ = 0 as per 1) in Definition We extend to positivity-preserving semigroup
G?S :[0,00) — B(A*) s.t. Gf(y(A)) c #(A) for all ¢ = 0 by dualisation. Self-adjointness
implies S is a diffusion term as follows. Corollary which uses Lemma in
the finite-dimensional setting, shows there exists Lindblad decomposition (0,¢,C) of S
as per 2) in Definition [3.2.24] Following Remark we therefore have a quantum
Fokker-Planck equation given by

C
S(x) = E(2<p(x)— {p(14),x}) (4.154)

for all x € A. Equation[3.209|shows Equation[4.154]has vanishing drift term. We say that
S is a candidate for noise diffusion terms. As we show below, this notion of candidate is
part of the first model assumption and leads us to the second one.

The first model assumption states production of quantum entropy, i.e. erasure of
quantum information, is transport of quantum information along information-bearing
degrees of freedom. This description requires choice of quasi-entropy and measure of
quantum information. We use .#'°¢ and Ent’ in our formulation here. Remark
explains our choice of the logarithmic mean setting. For all fixed states { € #(A), we
replace .#1°8 with g° on 9(¢) as per Remark In Subsection we explain non-
ergodicity restricts information-bearing degrees of freedom by the continuity equation.
Thus kerS = kerA restricts, hence G5 : [0,00) x #(A) — #(A) induces finite-energy
admissible paths as follows. For all fixed states ¢ € #(A), note T9(E) = 9(&) x I (Ag)|7 by
2) in Proposition and imS NA;, =imANnAg; = I(A;) since kerS = ker A. Using
the latter, Corollary [3.2.66|then implies im SN A¢, = I(A¢) is equivalent to the following
statement in the finite-dimensional setting. For all fixed states ¢ € #(A), we have

G (9(&)) < Q) (4.155)

for all ¢t = 0. We have Alima > 0 in 8(imA) by finite-dimensionality. Equation 4.155
yields finite-energy admissible paths in relative interiors. The first model assumption
is use of noncommutative differential structure and notion of candidate as above.
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The second model assumption states we select noise diffusion terms from all candi-
dates for arbitrary energy scales by maximising production of quantum entropy under
constraints on energy spent. This requires candidates produce quantum entropy at each
state. Following Remark [3.2.26] we view diffusion terms as infinitesimal applications of
quantum channels [28]][73] transmitting change of states of the given quantum system
determined by irreversible interaction with its environment [62][141]. The extension
[45]1[95] of Landauer’s principle [142]][143]] gives strictly positive lower bounds on pro-
duction of quantum entropy upon application of quantum channels due to minimal heat
dissipation [15][44][181]. Under assumptions identical to those for general Lindblad
master equations (cf. Equation 5.2.29 in [121]), Equation 3.8 in [45] shows erasure of
quantum information implies strictly positive production of quantum entropy.

We expect G : [0, 00) x #(A) — F(A) produces quantum entropy at each state since
S is infinitesimal application of ¢. For all fixed states ¢ € #(A), Equation 4.155| and
differentiation at ¢ = 0 yield unique x, € I(A¢) s.t.

S(fu) = —Ax, (4.156)

for all u € 9(¢). Following Example Corollary shows quantum entropy is
negative quantum relative entropy. We give production of quantum entropy, i.e. erasure
of quantum information, at each state. For all fixed states ¢ € 9(¢), 2) in Lemma|4.2.8| as
in the proof of Proposition and Equation let us calculate

d b b

-S| B (GF ) = r(anitogn) = £ (0 (8 = Peulm)  @15D
=

for all p € 9(S). Set C¢ y, := gZ((Axu)b,(Axu)b) in each case. Proposition |4.2.27|shows these

are energy scales, varying in each tangent space and which determine strictly positive

constants in Equation |4.148|for the following maximisation problem. For all fixed states

¢ €9(£), we have x, € &¢ ,(C¢ ) and Equation 4.157|shows

d
~—| Ent'(G{(w)= sup Heuy) (4.158)
dt|s=o Y& u(Ce )

for all u € 9(¢). Maximising Equation gives rise to Definition in particular
to Equation The second model assumption is selection of noise diffusion terms
for arbitrary energy scales from all candidates through maximal production of quantum
entropy as per Equation [4.159| by maximising Equation [4.158

Definition 4.2.28. Let S € 8(A);, s.t. S # 0 and ker S = ker A. Assume S has completely
Markovian induced semigroup G° : [0,00) — %B(A). We say that S produces maximal
quantum entropy for V if for all fixed states ¢ € #(A) and p € 9(¢), we have C =0 s.t.

d
——| Ent"(Gi(w)= sup Heuy). (4.159)
di =0 YEG (0
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Remark 4.2.29. Note 1) in Proposition [3.2.32| ensures —A is a candidate. Following
Remark |4.2.26| for ¢ = 0, Proposition [4.2.24] and Proposition 4.2.27| show —A produces
maximal quantum entropy using energy scale

Cep= ﬁm(ﬂu)% (4.160)

for all fixed states ¢ € #(A) and u € 9(&). If we do use both the first and second model
assumptions, then —A is a noise diffusion term for energy scale as per Equation [4.160
We expect this but require Proposition and Proposition Moreover, the two
propositions are necessary to derive Equation[4.158|and therefore Equation[4.159] This
in turn requires us to assume the logarithmic mean setting.

Example shows selection of noise diffusion terms as per the second model as-
sumption must discern multiples of —A. Unless we fix energy scales, Proposition
shows we do not. Lemma[4.2.30shows candidates producing maximal quantum entropy
are determined by energy maps varying —A. This leads us to normalised energy scales
as per the third model assumption and thereby our least dissipation of energy principle
s.t. heat flow serves as fluctuated gradient flow.

Lemma 4.2.30. Let S € B(A)y, s.t. S #0 and kerS = kerA. Assume S has completely
Markovian induced semigroup GS :[0,00) — B(A). If S produces maximal quantum
entropy for V, then we know there exist two unique maps Eg : 0.#(A) x [0,00) — [0,00)
and Ag :0.%(A) x (0,00) — (0,00) satisfying the following.

1) The map Eglyoa):0F(A)x {0} — (0,00) is norm continuous.

2) Forall peo#(A), the map Eg(u, —):(0,00) — (0,00) is continuously differentiable
and the map Ag : (u, —):(0,00) — (0,00) is continuous.

3) For all pedF(A), we have

3. o) = |S(@ (), 1863 ()] for a0,
3.2) Eslosa (W) = Es(u,0) =limyo |S(GF ()] [AGT (8]

4) For all ped.F(A), we have

S(G? (#1) = ~Es(u,0)-AGY (4p) (4.161)

for all t =0.
5) For all pe o F(A), we have

d
ZEs(,0)= As(u,0)- Es (1) (4.162)

for all t > 0.
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Proof. Let ¢ € #(A) be a fixed state and u € 9(&) \ {¢}. Note Ax, #0 and $¢ ,(Hu) > 0 since
we have fiu ¢ ker S = ker A. Equation 4.158|shows

Cepi=gi((Axu), (Ax,)’) >0 (4.163)
is the unique constant in Equation |4.159| Then Equation [4.157|and Equation |4.159|let

us calculate

Ent’ (G3(w)= sup  $Heu(). (4.164)
t=0 y€6§,u(C§’u)

d
55&#(’“#) = ~dt

Using Proposition(4.2.27|for the second identity in Equation(4.165/below, Equation|4.156
and Equation |4.164] show

[

S(t) = ~Asxu = —CE - elth)

Equation uses constants on the right-hand side of Equation in order to
define the claimed energy map on 0.¥#(A) x (0,00). Equation extends to £ =0 in
the second variable. For all fixed states ¢ € #(A), u€ €a(€) \{¢} and £ = 0, we calculate
G? () # ¢ and therefore

xm (4.165)

AGY () £0 (4.166)

on an orthonormal eigenbasis of S. We define Eg : 0.#(A) x (0,00) — (0,00) by setting

1 _1
Es(p,0):=C} - 9¢,4(G7 (1)) 2 (4.167)
for all pe 0.#(A) and ¢ > 0. Equation and Equation show
Es(u,t)=|S(G () I, - 1aGT (tw) ], (4.168)

in each case by taking Hilbert space norms and then the inverses in Equation [4.165
Using boundedness of S and A, Equation [4.166| and Equation [4.168| show we extend to
Eg:0%(A)x[0,00) — (0,00) by setting

(3,0 = lim (65 (1) 18G5 ()] (4.169)

for all u e 0.#(A). With the exception of 5), Equation 4.168 and Equation [4.169|show all
claims involving E g here.
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We show 5). Equation |4.173|uses Equation |4.172|in order to define the claimed map.
Let u € relint.#(A). Using boundedness of S and A, as well as norm differentiability as
per 1) and the Leibniz rule, Equation [4.165/and Equation [4.167|1let us calculate

L ses ) =<

S
il ar|_ Gr8(m)
= —Es(u,0)-S(Afp)
= —Es(u,0) (AS(f) + [S,A] (t))
= ~Es(1,0)- (— Es(u,0A% 1+ [S, A] (#))

= Eg(u,0- A%t —Eg(u,0)- [S,A] (fu),

d
| sl =7 r:OEs(u,r)-AGf ()

d S
=——| E Atu-Es(u,0)-A—| G
arl s s, Afp=Es(p,00-A— i > (tw)

=——| Es(u,r)-Au—Es(u,0)-AS(fu)
dr r=0

=——| Es(ur)-Ap+Es(u,07A% fpu.
dr r=0

We combine the two calculations above. We obtain

d
Es(p,00-[S,A](f) =—

Eg(u,r)- Afp. (4.170)
=0

r

For all ¢t = 0, Equation [4.170 shows Eg(u,t) = Es(Gf (1),0). Using the latter together
with the semigroup property of G :[0,00) — %(A), Equation [4.170| generalises to

d
Es(,t)-[S,A](GF (t1) =~

Es(u,r)-AGY () (4.171)
=t

r

in each case. Equation |4.168| therefore shows we have

Es(u,r)-AG? () (4.172)

r=t

d
[S,A](G? (k) =Es(u,t)‘1-5

for all ¢ > 0 by taking the inverses in Equation|4.171
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Equation [4.172| shows we define Ag :0.#(A) x (0,00) — (0,00) by setting

d
As(u,t):= Eg(u, )™t | Eswr) (4.173)
r=t

for all ued.#(A) and ¢ > 0. Equation 4.166| and Equation [4.172| show continuity in the
second variable. Altogether, get 1) to 4). Equation [4.172/and Equation [4.173|yield

d
r=t
in each case. Equation 4.166|and Equation |4.174]imply Equation 4.162. Get 5). O

We give explicit formulation of the third model assumption. For this, we use our least
dissipation of energy principle. Lemma[4.2.30]lets us construct infinitesimal energy dis-
sipation maps as per Equation|4.179, resp. its reformulation as Equation We use
Equation as measure of energy dissipation when evolving induced semigroups to
heat flow through dissipating fluctuations of its integral curves. Definition gives
least dissipation of energy as per Equation 4.183| s.t. heat flow serves as fluctuated
gradient flow by minimising Equation Accordingly, 3) in Definition gives
candidates for noise diffusion terms with normal energy scale, i.e. candidates satisfying
Equation The latter equation normalises energy scales relative to —A.

We derive Equation and Equation Let S € #(A);, as per Lemma
For all y e 0.(A), Equation readily shows Eg(u, —) : [0,00) — [0,00) satisfies a
homogeneous linear differential equation with 3.2) in Lemma [4.2.30| as its initial value
at t = 0 using standard arguments for extension [[102][1391[140]. We therefore obtain

t
Egs(u,t)= exp(fo As(u,r)dr) -Eg(u,0) (4.175)

for all ped.#(A) and ¢t = 0. Lemma 4.2.30ensures

t
exp([ As(u,r)dr) >1 (4.176)
0

since f(f As(u,r)dr = 0 in each case. Note 2.2) in Theoremand Corollary show
h :[0,00) x 0. F(A) — F(A) is a norm continuous injective map s.t. fixed states are the
only elements not in its image. Moreover, Corollary ensures all fixed states are
limits in time of initial states in .(A). Thus 0.%(A) x[0,00) is a complete product space
description of heat flow, hence we adopt it to measure infinitesimal energy dissipation
when evolving the Hamiltonian of a given quantum system with initial state y € 0.#(A)
from S to —A at time ¢ = 0. We formally view such evolutions as arising from dissipating
small time-varying out-of-equilibrium perturbations of —A, i.e. fluctuations of integral
curves t — h;(u) describing evolution of temperature over time [23]][178][188].
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We construct a suitable pointwise direct sum norm. Equation [4.175|itself leads us to
consider an energy gradient of S given at (u,¢) € 0.9(A) x [0,00) by

t
exp(f As(y,r)dr)- inf Eg(u,0) — sup Eg(u,0) 4.177)
0 ped F(A) pED.F(A)

for all ped.#(A) and ¢ = 0. Equation[4.177|is composed into two factors. The right-hand
factor is the energy gradient of S at ¢ = 0, or initial energy gradient of S as per 2.1) in
Definition The left-hand factor is an exponential fluctuation term. If the initial
energy gradient of S is zero, then Equation [4.175| and Equation imply variation
of G% : [0,00) x F(A) — F(A) away from heat flow is determined by the exponential
fluctuation term up to homogeneous initial energy

eg:= inf FEg(u,0) = sup Eg(u,0) (4.178)
si= inf Es Sup Estu

relative to —A. If the exponential fluctuation term equals one, then Equation 4.175
shows such variation is instead determined by initial states. We consequently measure
infinitesimal energy dissipation when evolving S to —A at initial state y € 0.%(A) and
time ¢ = 0 using the pointwise direct sum norm

J

Equation shows Equation has zero as its minimum. Unless we restrict
values of homogeneous initial energy as per Equation Equation implies
minimisers are given by —CA for all C > 0. We expect this from Proposition but
instead due to energy scales varying away from Equation i.e. the energy scale of
—A, rather than from e_j = 1. Note 3) in Lemma |4.2.30| shows the latter. We therefore
normalise energy scales relative to —A by letting

2
+

2

inf Eg(u,0) — sup Eg(u,0) . (4.179)
ped S (A) SH yeayr()A) S

t
exp(f AS(,u,r)dr) -1
0

inf Eg(u,0)<l< sup Es(u,0). 4.180
peaay B0 LoD ) st 0) (4.180)

Equation 4.180|shows —A is the unique minimiser of Equation [4.179] i.e. we have zero
variation if and only if Eg(u,t) = E_a(u,t) =1 for all up € 0.#(A) and ¢ = 0. The third
model assumption is use of fixed energy scales normalised as per Equation [4.180
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Definition 4.2.31. Let S € B(A);, s.t. S # 0 and ker S = ker A. Assume S has completely
Markovian induced semigroup G : [0,00) — %(A) and produces maximal quantum
entropy for V.

1) We call Eg : 0.#(A) x[0,00) — (0,00) the energy map of S. We further say that
Ag :0.F(A) x(0,00) — (0,00) is its fluctuation.

2) Set EX™ := infycs #(4) Es(i,0) and E3 := sup ey o(a)Es(1,0).
2.1) We define the initial energy gradient gradg := Eg‘in —E§? of S. We define its

variance varg : 0.#(A) x [0,00) — [0,00) by setting

t
vars(u,t) := exp(f As(p,r)dr) -1 (4.181)
0

for all ue 0.#(A) and t = 0.

2.2) We define infinitesimal energy dissipation map Egis :0.%(A)x[0,00) — [0,00)
of S by setting

E3(,1) =/ [vars(u, 0)|* + |gradg ? (4.182)
for all ped.#(A) and ¢t = 0.

3) We say that S is a candidate for generating quantum noise evolution for V with
normal energy scale if Eg™ < 1 < Eg®*. We further say that S is the generator of
quantum noise evolution for V if

ESS(u,t)=0 (4.183)

forall ped.#(A) and t = 0.

Lemma[4.2.32|gives equivalent conditions for minimising Equation Note 4) in
the lemma shows —A is the unique minimiser. Moreover, Corollary[4.2.33|gives maximal
production of quantum entropy as per Equation for normalised energy scales by
maximising Equation This gives our maximum entropy production principle in
the finite-dimensional setting. Lemma [4.2.32| ensures we do select —A as claimed. Max-
imisation constraints on energy spent in Equation |4.185| are indeed given by suitable
evaluation of quantum Fisher information as per Definition [4.3.21] at each state.
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Lemma 4.2.32. For all S € (A);, which are candidates for generating quantum noise
evolution for V, the following are equivalent:

1) S is the generator of quantum noise evolution for V,

2) gradg =0 and varg(u,t)=0 for all pe0.+(A)and t =0,
3) Es(u,t)=1forall ued.F(A)and t =0,

4) S=-A

Proof. Let S be the set of all candidates for generating quantum noise evolution for V.
For all S € S, Equation 4.175|and Equation 4.183| show S is the generator of quantum
noise evolution for V if and only if

EG(u,1) = inf EG(u,1) =0 = B4} (1 1) (4.184)

for all ped.#(A) and t = 0. Following our discussion of Equation 4.179, we know —A is
the unique minimiser in our case. Using the latter, get 1) to 4). O

Corollary 4.2.33. Let S € 8(A);, be a candidate for generating quantum noise evolution
for V. Then S is the generator of quantum noise evolution for V if and only if for all fixed
states ¢ € #(A), we have

d
——| Ent'(G{(w)=  sup  Heuy)= sup Heply)  (4.185)
dt|i=o ¥e€&¢ 1 (D¢ () YES ¢ (L8 (1,11, (V1))
for all pe9().

Proof. Let ¢ € #(A) be a fixed state and u € 9(¢). Proposition shows ttG)(,u,(Aiju)b =
to) usgl(g u(logtin)) = Viiu by twice application. Using the latter, 2) in Proposition (3.2.53
lets us calculate

eultr) = ga((0n), (81)°) = 78 (1, 1,0 (1, (Mtp))) = % 11, (V1)) (4.186)

Equation |4.186| shows the second identity in Equation |4.185, Lemma |4.2.32| shows S is
the generator of quantum noise evolution for V if and only if S = —A. Proposition [4.2.27
thus implies the first identity in Equation 4.185 O

Generators of quantum noise evolution. Deﬁnition gives our maximum
entropy production principle. The fourth model assumption is locality therein. Following
our discussion of the coarse graining process in Subsection |3.3.2] we justify locality as a
natural complement to the first model assumption since Theorem [3.1.52|1ets us describe
quantum optimal transport itself as scaling limit w.r.t. the coarse graining process.
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We therefore view quantum Laplacians as generators of quantum noise evolution as
per 1) in Theorem [4.2.35] Fittingly, 2) in Theorem [4.2.35|shows quantum Laplacians sat-
isfy, up to sign, a quantum Fokker-Planck equation with vanishing drift term in scaling
limit, i.e. only noise diffusion term. Thus 3) in Theorem shows heat flow satisfies
a steepest entropy ascent property [25] by considering the steepest descent property of
gradient flows in smooth Riemannian manifolds [144]] as per Equation and taking
limits. We thereby obtain slopes of maximal entropy production, i.e. erasure of quantum
information, as per Equation for the given subsets of all bounded normal states.
If heat flow is EVI,-gradient flow of quantum relative entropy, then Equation
generalises to metric slopes as per Equation for all normal states with finitely
supported fixed part and finite quantum relative entropy. Note Remark

Let (¢,w,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B, w) in the logarithmic mean setting.

Definition 4.2.34. Let S € %%B(L%*(A, 1)), be local. We say that S is the generator of
quantum noise evolution for V if for all j €N, S; € %8(A )}, is the generator of quantum
noise evolution for V;.

Theorem 4.2.35. Let (¢, vy,y,V) be noncommutative differential structure for tracial AF-
C*-algebras (A,1) and (B, w) in the logarithmic mean setting.

1) —Ais the generator of quantum noise evolution for V.

2) Forall jeN, let (0,¢;,C;) be a Lindblad decomposition of —A ;. We have

. . Cj
~Au =l lm - Ajuj = - Lim < (20;@)—{pj(La)),u}) (4.187)

for all u € domA.

3) Let & € #(A) be a finitely supported fixed state. Let p € LY°(A,1) be a projection
s.t. we have ¢ € Clpl. Forall pe Fix§(€ )my_l\i’oo(Ag)n(dom A)b, there exists maximal
e €(0,00] s.t.

d
- Ent” (hy(w) = 1(Aho(wlogth () = 7%, hity), (V)] (4.188)

for all t €[0,¢).

Proof. We show 1) and 2). Note 4.3) in Proposition [2.3.25| shows A( is core of A. For
all j €N, 1) in Proposition shows A; = comg; A € %B(A ). Thus —A is local, hence
Lemma [4.2.32| shows it is the generator of quantum noise evolution for V. If we use
|I.Il;-limits as per 4.3) in Proposition [2.3.25] then Equation[4.187]is given by considering
Equation [4.154 for each —A; and letting j 1 co. Altogether, get 1) and 2).
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We show 3). Assume its setting. Let u € Fixﬁ(é )N 5”_1\1’00(A5) Nn(domA)’. Following 1)
in Proposition [3.2.32|for p = 2, the Hille-Yosida theorem applies to heat flow (cf. p.79 in
[102]). Using the latter, 3) in Proposition |3.2.34|and 2.2) in Theorem [3.2.40, we show

ho(w) € Fix (A) 0 #N°(A¢) N (dom A) (4.189)
for all £ = 0. Note GL(L*°(A¢, 7)) € L*°(A¢, 7) open in norm topology. Using the latter and
strong continuity as per 1) in Proposition [3.2.32] we obtain € > 0 s.t.

R € FNC(A) (4.190)

for all ¢ € [0,€]. Equation |4.189| and Equation 4.190|show

Ri(p) € Fixy (A) n PN ®(A¢) N (dom AY (4.191)

for all £ € [0,€]. Note ¢ € C[p]. We have Fixg(f) c C[pl by 1) in Theorem |4.1.29| Using the
latter and Corollary 4.1.27, Equation [4.189|implies

Ent(h:(w),7) = 7(fh()logh (1) = T(com,, k(1) log comy, fh (1)) (4.192)

for all ¢ € [0,¢]. Since ¢ € domEnt’, note ¢ € #N(A)N Clp] by Lemma |4.1.17, We have
suppé < p by Lemma [4.1.20, Equation 4.191| shows we may replace p with supp¢ in

Equation[4.192] Using the latter and 4.2) in Corollary[3.2.43] Equation[4.191]implies we
have Fréchet differentiable map ¢ — A ;(u) € L°(A¢,7)50 N L®(A¢, 1)y defined on [0, €).

We thereby extend calculations in Lemma and Corollary in particular
those involving operator differentiable functions [172], to our setting. Lemma [4.1.20
shows ¢ has integrable support. Using Proposition 4.2.6, we calculate

=& Bt (ko) = 7(Ah G og k(1) + (dhei Togy, 0 (M8, (1)
= 7(Ath () logh(w)
=(Dih . ViR (W), ViR (),
= glog (ht(p),ht(,u), (vuht(u))b)

for all [0,€). Note Remark The above calculation shows Equation|4.188| Since € > 0
by construction, there exists maximal choice of € € (0,00] as claimed. O
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Remark 4.2.36. Note 3) in Theorem 4.2.35|generalises Corollary by the semigroup
property. Using standard arguments for interchanging derivatives and limits [109][139]]
[140], we see 3.2) in Theorem [4.1.29|and 3) in Theorem [4.2.35|let us calculate

d__ . Cd
=g Eot” (he(w) = lim — == Bnt” (ke (1))

=tim 9% e (1) o 5), (Ve (1))

_ jlog(ht(u),ht(ﬂ),(Vﬁht(ﬂ))b)

for all pe FN2(A)n(domA) and ¢ > 0 if uniform convergence in the second identity is
given in each case and to finite terms. We might thereby extend Equation to a
maximal definition domain by means of coarse graining. Here, we do not consider such
assumptions on uniform convergence since we do not know of any examples.

Example gives the depolarising channel as canonical choice of quantum noise
operator (cf. pp.378-379 in [[62]). We see internal quantum gradients induce quantum
Laplacians which are, up to sign, infinitesimal applications of depolarising channels.
This shows quantum Fokker-Planck equations with vanishing drift term in scaling limit
as per Equation may have closed form description.

Example 4.2.37. Assume (A, 1) is a strongly unital tracial AF-C*-algebra s.t. T < oo, as
well as (B,w) = (A®A,7® 1) equipped with the internal AF-A-bimodule structure on
A ®A as per 1) in Definition Let A €[0,1]. We consider the A-internal quantum
gradient V*: Ag — L2(A®A,7®7) on A as per 2) in Definition We therefore
have quantum Laplacian A* = Anﬁe” € B(L*(A,1));, by 4) in Proposition

We obtain —A* # 0, —AML®(A, 1)) « L®(A,7) and —A*14 = 0. We have completely
Markovian semigroup A : [0,00) — ZB(L*°(A, 7)) by 1) in Proposition Using the
latter, Lemma shows —A% has Lindblad decomposition. We show —A” satisfies a

quantum Fokker-Planck equation with vanishing drift term. We define the depolarising
channel ¢*: L®(A,1) — L*®(A, 1) with depolarisation probability A by setting

M) = (L= D+ AT -7l @) = (T- 2l )0 = (1 - A @) (4.193)

for all x € L°(A, 1) (cf. pp.378-379 in [|62]). Moreover, we directly verify all maps of form
x— C1(x)14 defined on L*°(A, 1) for C > 0 are completely positive. Yet

7(x)

(I_nﬁerr)(x) = 7(14) A

(4.194)

for all x € L>°(A, 7).
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Equation shows ¢! : A — L™(A, 1) is a completely positive trace-preserving
unital map. Following Remark Equation shows ¢* is the quantum channel
transmitting change of states given by complete mixing with uniform probability A for
all states. Using ¢t = I — A*, we calculate

1
A= —(I-¢")(x) = 5(2(,01(@ —{p*(1a),x}) (4.195)

for all x € L*(A, 7). Equation yields Lindblad decomposition (0,¢*,1) of —A* and
closed form of Equation Following Remark Equation is a quantum
Fokker-Planck equation with vanishing drift term. If we do not use fixed energy scales
normalised as per Equation then Equation does not suffice to determine
unique quantum noise evolution even as the depolarising probability itself is fixed.

4.3 EVI,-gradient flow of quantum relative entropy

We emulate the classical case in the infinitesimally Hilbertian setting [105]. Following
work of Jordan, Kinderlehrer and Otto for Fokker-Planck equations [131]], resp. Otto for
porous medium equations [167][169], Ambrosio, Gigli and Savaré give EVI;-gradient
flows of proper l.s.c. functionals defined on metric spaces [[8] to study evolution partial
differential equations using gradient flows absent differential structures [75][160]. Note
EVI,-gradient flows generalise gradient flows in smooth Riemannian manifolds driven
by smooth functionals with Hessians bounded from below [8][103][160]. We therefore
apply results in variational analysis for metric geometry using minimising geodesics
[75][160] to study quantum relative entropy in the logarithmic mean setting.

Analogous L2-Wasserstein distances in the classical case [97] are those determined
by weak upper gradients [[7][56] inducing Dirichlet forms [117]. If EVI,-gradient flow of
relative entropy exists in this case, then it is heat flow [9][10]. Existence is equivalent to
A-convexity of relative entropy [9][10] and Bakry-Emery conditions [19][20] linking heat
flow to a weak Riemannian structure [8][103] for the given classical L2-Wasserstein dis-
tance [11]1[12][105]. Sturm [189][190], as well as Lott and Villani [151]], each established
A-convexity of relative entropy [72]][156]] as synthetic lower Ricci bounds [191]. They im-
ply following chain of functional inequalities [151]|168] probing the underlying metric
geometry. As for Riemannian manifolds [[113]][[191], there exists a HWI -interpolation
inequality and Talagrand inequality TW, for A =0, and a modified logarithmic Sobolev
inequality MLSI, for A > 0. If we do have lower Ricci bound A > 0, then A-convexity of
relative entropy implies HWI,, in turn implying MLSI,, finally implying TW, [151].
If we want lower Ricci bounds and functional inequalities for quantum L2-Wasserstein
distances in direct analogy to the classical case, then we initially require equivalent
characterisations for EVI,-gradient flow of quantum relative entropy in the logarithmic
mean setting. Since we cover all fundamental example classes in Subsection we
also face complications arising from non-ergodicity commonly avoided in the classical
case by assumption. We cannot expect ergodicity in the AF-C*-setting because dynamic
quantum gradients generalise the ubiquitous case of inner derivations [133].
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In the ergodic finite-dimensional logarithmic mean setting, Carlen and Maas ex-
tend equivalent characterisations and functional inequalities [48]1[49]1[50]. Equivalence
in [50] uses arguments fully given by Erbar and Maas in [106] alone. We use [50] as
foundation and apply the coarse graining process to reduce to the finite-dimensional
Riemannian setting s.t. ergodicity is recovered. We extend results upon replacing some
essential arguments used in [50] and [106]. Ours and independent work of Wirth [200]]
together with Zhang [202] are the first infinite-dimensional extensions of the results in
[481[491[50]. Wirth [200] gives noncommutative optimal transport distances determined
by suitable symmetric C*-derivations inducing C*-Dirichlet forms on noncommutative
L2-spaces of tracial W*-algebras [63][65]. Assuming tracial state and ergodicity, Wirth
shows a, possibly infinite-dimensional, Bakry-Emery condition [200] as per [50] implies
heat flow is EVI,-gradient flow of relative entropy for W*-algebras [[163]. However, [200]
does not show its equivalence. Assuming tracial state, Wirth and Zhang give sufficient
conditions for satisfying Bakry-Emery conditions [202] as per [50] and obtain functional
inequalities HWI;, MLSI, [202] and TW, [200] as per [50] using relative entropy for
W*-algebras conditioned to fixed-point subalgebras. Such a priori conditioning handles
non-ergodicity but does not emerge from an underlying metric geometry. As part of the
overall introduction, we show their results are insufficient for our purposes.

We contribute the following. In our logarithmic mean setting, which does assume the
AF-C*-setting, yet neither ergodicity nor finite trace, we extend results in [48][49][50]
and [[106] to the general case and view lower Ricci bounds as measurement convexity of
quantum information. Non-ergodicity and non-finite trace ensure fundamental example
classes in Subsection[3.1.3|are covered. We extend results in four parts by means of the
coarse graining process. This lets us modify arguments in [50]] and [[106]] for the known
ergodic finite-dimensional case. First, we show claimed equivalence of EVI,-gradient
flow, A-convexity, Bakry-Emery and Hessian lower bound conditions. Secondly, we then
define lower Ricci bounds of quantum gradients. Thirdly, we give sufficient conditions
for lower Ricci bounds of direct sum quantum gradients. Fourthly, we derive functional
inequalities in the AF-C*-setting. This requires quantum Fisher information. Apart
from extension and following our view of quantum Laplacians as generators of quantum
noise evolution in Subsection[4.2.3] lower Ricci bounds are given by A-convexity of quan-
tum information along minimising geodesics measured by quantum relative entropy. If
we have noncommutative analogues of displacement interpolations [[72][[156]], then such
measurement convexity in the Schrodinger picture is convexity under measurement of
observables in the Heisenberg picture. Unfortunately, existence results are unknown to
us. We instead show strictly positive lower Ricci bounds determine energy-information
trade-offs parametrised by lower bounds on quantum noise. Lower resolution implies
lower energy paths. We avoid spatial interpretations of the classical case [97][151].

Structure. In Subsection we discuss EVI)-gradient flows in metric spaces and
A-convexity of proper l.s.c. functionals. We consider heat flow as EVI,-gradient flow of
quantum relative entropy and show our equivalence theorem. In Subsection we
discuss lower Ricci bounds, energy-information trade-offs parametrised by lower bounds
on quantum noise and derive functional inequalities.
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4.3.1 The equivalence theorem

Following our discussion of the coarse graining process in Subsection we define
the EVI,-gradient flow, A-convexity and Bakry-Emery conditions in global and local
form. We furthermore consider a Hessian lower bound condition. Such conditions are, in
their global form, properties on all finitely supported accessibility components having
non-trivial intersection with the domain of quantum relative entropy. Non-ergodicity
requires us to consider accessibility components. Compatibility with compression and
finite-dimensional approximation requires finitely supported ones. Theorem (4.3.8/shows
equivalence of all conditions by means of the coarse graining process.

EVI,-gradient flows and A-convexity. Metric-functional systems provide the
general setting [81[160]. Definition gives EVI)-gradient flows and A-convexity as
per [8][160]. We use continuous semigroups on metric spaces [8] generalising those on
Banach spaces [102]. Note 2) in Definition is called strong geodesic A-convexity if it
is to be distinguished from weaker formulations. We only use the former and therefore
call it A-convexity throughout our discussion. We use minimising geodesics defined on
the unit interval [8[][40]]. Proposition collects properties of EVI,-gradient flows.

We review gradient flows in metric spaces determined by evolution variational in-
equalities, or EVI,-gradient flows. Let (X,d) be a complete geodesic length-metric space
and F' : X — (—o00,00] a proper functional l.s.c. in d-topology. Let Y c dom F' s.t. for all
u°, u! € Y ndomF, there exists minimising geodesic p:[0,1] — Y ndom F from u° to u'.
Let A eR. If S:[0,00) xY — Y is EVI,-gradient flow as per 1) in Definition [4.3.1] then
it is A-contracting as per 1) in Proposition and its curves are of maximal slope by
Theorem 3.5 in [160], i.e. each ¢ — S;(u) is absolutely continuous and satisfies

d+
7 F(Sew) = -10F*(S () (4.196)

for a.e. t = 0. We use metric slope p— [0F|(u) of F [8][160]. Equation [4.196]recovers the
steepest descent property of gradient flows in smooth Riemannian manifolds [144]. Note
existence of EVI,-gradient flows implies A-convexity of F' as per 2) in Definition [4.3.1]by
4) in Theorem 3.10 in [160]. The chain rule of Riemannian metrics involving covariant
derivatives [144] implies A-convexity generalises lower bounds for Hessians of smooth
functionals [169]. Theorem 4.2 in [160] conversely shows A-convexity of F' implies S is
the unique EVI,-gradient flow given by the generalised minimising movements scheme
[87]. Altogether, EVI,-gradient flows generalise gradient flows in smooth Riemannian
manifolds driven by smooth functionals with Hessians bounded from below.

If EVI,-gradient flow of quantum relative entropy exist, then Corollary shows
it is heat flow. We further generalise slopes of maximal entropy production, i.e. erasure
of quantum information, as per Equation to Equation for all normal states
with finitely supported fixed part and finite quantum relative entropy as claimed in the
introduction of Section We avoid the extension problems in Remark
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Definition 4.3.1. Let (X,d) be a metric space s.t. d < oo and F : X — (—o0,0] a
proper functional l.s.c. in d-topology. We call (X,d,F) a metric-functional system. Let
Y cdomF and A €R.

1) We say that a continuous semigroup S :[0,00) x Y — Y is EVI,-gradient flow of
FinY iffor all yeY and nedom#F, we have

1d* A
gad(St(u),n)Z + Ed(St(#),n)Q <F(m)-F(S«(w) (EVIy)

for all ¢ = 0.

2) Assume (X,d) is a complete geodesic length-metric space. We call Y ndomF c X a
geodesic subspace if for all 40, u' € Y ndomF, there exists a minimising geodesic
©:10,11 — X from u° to u' s.t. we have u(t) € Y ndomF for all ¢ € [0,1]. Assume

Y ndomF c X is a geodesic subspace. We say that F' is A-convex in Y if for all
minimising geodesics y:[0,1] — Y ndomF, we have

A
F(u(®)) < (1= OF (1(0) + F (D) = 511~ )l (1(0), u(1))? (CNV,)

for all £ €[0,1].

Remark 4.3.2. We have following integral characterisation of EVI,-gradient flows. Let
(X,d,F)be a metric-functional system, Y cdomF and A € R. Theorem 3.3 in [160] shows
a continuous semigroup S :[0,00) xY — Y is EVI,-gradient flow of F' in Y if and only
if for all pe€Y and n€ domF, the map ¢ — F(S;(u)) is strictly decreasing and we have

e]t(t—s)

2
forall0<s<t<oo.

2 1 2 _ [ g I
d(Se,m)” = Sd(Ss(w,n)” < fo eMdr-(F-F(Siw)) (EVI))

Proposition 4.3.3. Let (X,d,F) be a metric-functional system, Y c domF and A € R. Let
S :[0,00)xY — Y be an EVI,-gradient flow of F in Y.

1) Forall u,neY, we have

d(S:+(w),S:(m) < e Md(u,n) (4.197)
for all t = 0.

2) Assume F : X — (—00,00) has complete sublevels in d-topology. If A > 0, then F
has a unique minimum Upyin € Y NdomF.

3) Assume (X,d) is a complete length-metric space. If Y ndomF < X is a geodesic
subspace, then F is A-convex in'Y.
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Proof. The statement on A-contraction as per Theorem 3.5 in [160] for s = 0 shows 1) at
once. Moreover, the statements on asymptotic behaviour as t — oo as per Theorem 3.5 in
[160] for A > 0 imply 2) by rearranging terms. Finally, note 4) in Theorem 3.10 in [160]
implies 3) if Y ndomF < X is a geodesic subspace since the latter ensures existence of
minimising geodesics. O

Equivalence in the logarithmic mean setting. Following our discussion of the
coarse graining process in Subsection Definition gives the EVI,-gradient
flow, A-convexity and Bakry-Emery conditions in global and local form. We furthermore
consider a Hessian lower bound condition. In the finite-dimensional logarithmic mean
setting, Lemmal4.3.7/shows all conditions are equivalent. We are motivated in our proof
by analogous arguments in [50] and [[106]. However, Theorem replaces essential
steps therein letting us argue using Riemannian metrics on relative interiors induced
by the given quasi-entropy. Theorem |4.3.8/ uses Lemma to show equivalence of all
conditions by means of the coarse graining process. Corollary shows restriction to
finitely supported accessibility components suffices to determine EVI,-gradient flows.

Let (¢p,v,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,71) and (B,w) in the logarithmic mean setting. Notation [4.3.4] summarises use of 2)
in Theorem [3.1.47]and Lemma[4.1.16] Proposition [4.3.5|gives metric-functional systems
equipped with restricted 4 : [0,00) x #(A) — F(A) as continuous semigroup. We use
these in Definition

Notation 4.3.4. Let ¢ € #(A) be a finitely supported fixed state. Let € < (5”(A),7//Vl°g)
be finitely supported with fixed part ¢. For all j €N s.t. {; # 0, we have

log _ 7. log 1] T o T;
W, %Aj(éj)x%Aj(éj)_WVf Rl (&) =h, EntTly, ¢y =Ent". (4.198)

We suppress j € N upon restriction as per Equation|4.198

Proposition 4.3.5. Let ¢ € #(A) be a finitely supported fixed state. Let € c (¥(A), Wvlog)
be finitely supported with fixed part ¢ s.t. € Ndom Ent® # @. We have

1) the metric-functional system (€ N domEntT,WVlog,EntT) equipped with continuous
semigroup h :[0,00) x € NdomEnt" — ¥ ndom Ent?,

2) the metric-functional system (chj (& j),Wvlog,EntT) equipped with continuous semi-
group h :[0,00) x chj (EJ) — chj (EJ) fora.e. jeN,

3) complete sublevels of Ent' : € ndomEnt’ — (—o00,00) in Wvlog-topology.

Proof. Using € ndomEnt’ # @, 3) in Corollary and 4) in Theorem [4.1.29 show
we have metric-functional system (4 NndomEnt’, Wvog ,Ent’). Then 3) in Theorem [4.2.10
implies we obtain continuous semigroup 4 : [0,00) x € N dom Ent® — % ndom Ent’ by
considering A¢l¢ndomEntt for all £ = 0. Get 1). We see 2) follows since chj(sE j) cdomEnt’

by Corollary |4.1.27|if ¢; # 0. Using 3) in Corollary (3.1.50} 1.s.c. of Ent’ implies 3). O
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The conditions in Definition [4.3.6| are subdivided in order as follows. First, three
global conditions. Secondly, three local conditions with each one being the analogue
of the respective global condition sharing its numbering. Thirdly, our Hessian lower
bound condition. We ensure all such conditions are well-defined. For this, we collect
results in our case concerning minimising geodesics, the coarse graining process and
EVI,-gradient flows of quantum relative entropy. We use Notation 4.3.4

We collect results. Let { € #(A) be a finitely supported fixed state. Lemma |4.1.20
shows ¢ has integrable support. Let € < (<(A), Wvlog) be finitely supported with fixed
part ¢ s.t. € NndomEnt” # @¢. We have metric-functional systems equipped with heat
flow as continuous semigroups as per 1) and 2) in Proposition They coincide if A
and B are finite-dimensional. Diagram for K = domEnt’ shows we restrict, up to
rescaling as per 1) in Definition to

res;(¢ NdomEnt") = 6, (¢;), resjoh = hla; = h' (4.199)

for a.e. j € N. Remark [3.1.15| ensures we assume such rescaling here without loss of
generality. Following 1) in Definition |4.3.1, 4 :[0,00) x € NdomEnt’ — ¥ Nndom Ent’ is
EVI,-gradient flow of Ent’ in ¢ ndom Ent’ if for all y,n € € ndomEnt’, we have

1d* A
EEWVI%’ (Re(w),m)* + EWVI"g (ho(w),n)? < Ent(n, 1) - Ent(hy(w), ) (4.200)
for all £ = 0. Remark gives the following equivalent integral characterisation. For
all u,n € € NndomEnt*, we have

e/l(t—s) log 9 1 log 9 t—s Ar

TWV (he(w),n)” - §Wv (hs(w),n) sfo e dr-(Ent(n,r)—Ent(ht(p),T)) (4.201)
for all 0 < s <t < oco. Note 4.2) in Theorem ensures minimising geodesics and
distance minimisers are identical. We assume 2.1) in Definition Following 2) in
Definition Ent” is A-convex if for all u°, u' € 6 ndomEnt? and (i, w) € Geo(u®, u')
s.t. u(t) e domEnt’ for all £ =0, we have

Ent(u(t),7) < (1 - ) Ent(u°,7) + t Ent(u?,7) - %t(l —~ t)Wvlog(,uO, ,ul)z (4.202)

for all ¢ € [0, 1]. Following Definition 4.3.1/and Remark 4.3.2| let EVI,, EVI{ ,resp. CNV,
reference the above equations accordingly. Note G.3) in Definition i.e. BE,, uses
both Notation and 1.1) in Corollary Equation shows we restrict in
each step of the coarse graining process by replacing ¢ NndomEnt’ with c6,4].(5 7). We
thereby obtain local forms from global ones. For H) in Definition [4.3.6] i.e. H,, there
exists no local form. Referenced equations do not use subscripts upon restriction.
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Definition 4.3.6. Let 1 e R.

G.1) We say that Ent’ satisfies EVI, if for all finitely supported € c (9(A),Wv1°g)
s.t. € ndomEnt’ # @, h :[0,00) x € Ndom Ent’ — ¥ ndomEnt’ is EVI,-gradient
flow of Ent’ in € NndomEnt’.

G.2) We say that Ent’ satisfies A-convexity if for all finitely supported € = (#(A), Wvlog)
s.t. € ndomEnt’ # @, we have

2.1) (€n domEntT,Wvlog] is a complete geodesic length-metric space,

2.2) Ent’ is A-convex in € Ndom Ent’.

G.3) We say that A satisfies BE, if for all finitely supported fixed states ¢ € #(A) and
€ c (F(A), Wvlog) with fixed part &, we have

1 1
A e W

2
vl (BE,)

for all € € NL>*®(A¢,1)°, u € domV; and ¢ = 0.

L.1) We say that Ent’ satisfies EVI, locally if for all finitely supported fixed states
{ € F(A), h:10,00) x 6a,;(&;) — ba,(¢;) is EVI)-gradient flow of Ent’ in 64 ()
for a.e. jeN.

L.2) We say that Ent’ satisfies A-convexity locally if for all finitely supported fixed
states ¢ € #(A), Ent’ is A-convex in 64, (¢;) for a.e. j€N.

L.3) We say that & satisfies BE, locally if for all finitely supported fixed states ¢ € #(A)
and a.e. j € N in each case, we have

a2

2Vh |7 < e

2 1
i Vo (BEF")
forall ue %Aj(fj), u EAj,Ej and ¢ = 0.

H) We say that Hess Ent” has lower bound A if for all for all finitely supported fixed
states { € #(A) and a.e. j € N in each case, we have

Hess, Ent'(n) = Agi{ (1,7 (Hy)

forall pe 9(¢;) and nel(A Ej)b. We further call A a lower bound of the Hessian of
quantum relative entropy and write HessEnt® > A.
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Following results in Section Section and Section (4.1, our discussion here
and in Subsection additionally uses below equations arising from applying the
coarse graining process to quantum objects in the AF-C*-setting. As such, they use
compatibility with compression and finite-dimensional approximation. Let ¢ € #(A) and
€ c (F(A), Wvlog) as above. We use 2.2) in Proposition (3.2.32| The latter immediately
reduces to Equationin the square integrable case. For all u°, u! € #(A), note 3) in
Theorem shows we have

W (e (1) s (1)) = lim o8 (he(19), s (113) (4.203)

forall ¢£,s=0. Forall u € L2(A5,T), 2) and 4.1) in Corollary(3.2.43|together show we have
u € dom V; if and only if limits

hi(u)= ||.||v-£ier'1\|1 Tsuppé; (ht(uj)) = ||.||v-£jer§|1 supp¢ jh(u;)supp; (4.204)

exists for all £ = 0. For all ue€ %6, we see 3.2) in Theorem |4.1.29| shows we have

Ent(h:(u),7) =lim Ent(A(y;),7) = lim Ent(h,(i;), 1) (4.205)
JEN JjeN

for all ¢ € [0,00]. Compare Equation [4.205|to Equation

Lemma 4.3.7. Assume A and B are finite-dimensional. Let ¢ € #(A) be a fixed state. For
all A eR, the following are equivalent:

1) h:[0,00) x €a(é) — Ga(&) is EVIy-gradient flow of Ent® in €4(¢),
2) Ent' is A-convex in €4(¢),
3) Ent’ satisfies BE, for all pe €4({), ue Agand t =0,

4) Ent” satisfies Hy for all ue€ 9() and ne I(A¢).

Proof. Let A € R. We show 4) implies 1), then 1) implies 2), and finally 2) implies 4).
We further show equivalence of 3) and 4). We thereby show our claim. Theorem 4.2.22
lets us apply Theorem 2.2 in [75] to show 4) implies 1). We are motivated by analogous
arguments in the proof of Theorem 4.5 in [106]. However, Theorem replaces the
essential steps in [106] necessary to apply Theorem 2.2 in [75] here. Finally, further
note Theorem lets us apply a standard semigroup interpolation argument as in
the proof of Theorem 10.4 in [[50] to show 3) implies 4).
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We show 4) implies 1). Using Corollary[3.2.66 we know Theorem 3.3 in [75] implies
1) at once if & : [0,00) x 9(&) — (&) is EVI)-gradient flow of Ent’ in 9(¢). For all smooth
0,11 — 9(&), set n(t,s) := hys(u(t)) for all ¢,s = 0. Using the latter, Theorem 2.2 in
[75] further shows A :[0,00) x 9(&) — 9(¢) is EVI,-gradient flow of Ent* in 9(¢) if for all
smooth p:[0,1] — 9(£), we have

L0 ¢ 5,1 s) 1(t,5) +3Entf( (t,8)) < —tAg® =11 s) 1(5,5)| - (4.206)

50 gn(t s) ot n(t,s)

for all ¢,s = 0. Assume 4). Set ¢(t,s) := ts for all ¢,s = 0. Thus n(¢,s) = k) (u(t)) in each
case, hence 1) in Theorem [4.2.22|yields

10 .

9 0 0 o\ (0
E%gn(t,S) —n(t,s), n(t s) +—Ent (n(t s)) —tHessys,) Ent (&n(t,s)) (4.207)

for all ¢,s > 0. We extend to ¢,s = 0 by continuity. We apply H, to the right-hand side of
Equation and obtain Equation Altogether, 4) implies 1).

Note 3) in Proposition [4.3.3] shows 1) implies 2) since we know .#(A) c domEnt’
by finite-dimensionality. We show 2) implies 4). Assume 2). Let p:[0,1] — 9(¢) be a
minimising geodesic. Set u := u(0) and 1 := (1(0). Equation states

2
Hess, Ent’(n) = d—2 Ent’ (u(r)). (4.208)

r=0

We write out both differential quotients on the right-hand side of Equation |4.208
The latter equation therefore shows Hess, Ent’(n) equals

ltilr(r)l 111151 t1s71 (Ent(,u(t +5),7) — Ent(u(2),7) — Ent(u(s), 7) + Ent(y, T)). (4.209)

Equation below lets us estimate parenthesis terms in Equation Using the
latter, we directly calculate lower Hessian bounds. For all ¢,s € (0,1) s.t. t+s <1, set
po(r) := p((¢ + s)r) and v(r) := u((t +s)(1 —r)) for all r € [0,1]. Segments of minimising
geodesics reparametrised to constant speed on the unit interval as per Remark
are minimising geodesics. We obtain p € Geo(u, u(t + s)) and v € Geo(u(t + s), 1) in each
case, where we suppress canonical vector fields along minimising geodesics as per 1) in
Proposition in our notation here. We estimate by applying CNV, to the latter. We
require additional considerations.
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Set h(t,s) := t(t +s)~! for all ¢,s > 0. Using h(¢,s) = 1 — h(s,t), get w(t) = p(h(t,s))
and u(s) = v(1 — h(s,t)) = v(h(t,s)) in each case. Let ¢,s € (0,1) s.t. £ +s < 1. Minimising
geodesics have t-a.e. constant speed by 1) in Proposition Since we have (t +s)n =
0(0) by construction, symmetry of distances and constant speed of minimising geodesics
let us calculate

W8 (1t + ), 1) = W% (, it + )7 = (2 + )2 - g5, ). (4.210)

For all £,s >0 s.t. t+s <1, CNV, and Equation 4.210|let us calculate the following
two estimates. First, CNV, to u(¢) = p(h(t,s)) in order to estimate
Ao ¢
Ent(u(t),7) < (1-h(t,s)) - Ent(u, 1) + h(¢,s) - Ent(u(t + s),7) — §ts - gy (n,m). (4.211)

Secondly, we apply CNV, to u(s) = v(h(t,s)) in order to estimate

Ent(u(s),7) < (1-h(¢,)) - Ent(u(t + 5),7) + h(t,s)- Ent(u, 1) — %ts g, (4.212)

We moreover add Equation |4.211|and Equation |4.212]to obtain

Ent(u(t),7) + Ent(u(s),7) < Ent(y, 7) + Ent(u(t + s),7) — Ats -gi(n,n) (4.213)

in each case.
For all £,s €(0,1) s.t. t+s < 1, Equation |4.213|implies

Ats -gi(n, n) < Ent(u(t +s),7) — Ent(u(?),7) — Ent(u(s), 7) + Ent(y, 1) (4.214)

by rearranging terms accordingly. Assuming ¢ +s < 1 in Equation |[4.209, which we may

do since we consider a double limit, Equation [4.214]lets us estimate parenthesis terms
in Equation [4.209] We therefore calculate

d2

Hess, Ent'(n) = —

H m dr?

Ent’ (u(r))
0

r=

= ltilI(I)l lilr(r)l t 171 (Ent(,u(t +5),7) — Ent(u(2),7) — Ent(u(s), 1) + Ent(u, T))

> Ag5(n,m).

The above calculation shows 2) implies 4). Corollary [3.2.63| ensures we have sufficient
minimising geodesics in 9(¢). Altogether, we obtain a chain of implications as claimed.
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We show equivalence of 3) and 4). Assume 3). Let p € 9(¢) and x € I(A¢). Set

s 1
1) 1= e |l VR |5, 70) 2= |l

for all £ = 0. Applying BE, to Equation [4.215(shows r(¢) = [(¢) for all ¢ = 0 and therefore
r'(0) = 1'(0) as well. We directly verify

vx|? (4.215)

1'(0) = ~25 (88, () ) + 225 (0, 5@ ). (4.216)

Applying Proposition 4.2.16|to § = (F~1)~! and further using Lemma [4.2.18| we thus
argue as in the proof of 2) in Theorem |4.2.22|in order to calculate

r(0) = —<A;(ﬂ®(,u,3ﬂ(x)b), le)(,u,Su(x)b)),A,u> (4.217)

Proposition [4.2.21| shows
1
Hess, Ent” (,(x)) = ( AL (101 8 ), 10 11, §ux)) ). A )
+ g5 (Fuld0”, 5u) )

Using r'(0) = 1'(0) and the above identity, Equation 4.216/and Equation [4.217|imply

Hess, Ent” (§.(0)°) = 1§, () (4.218)
by rearranging terms accordingly. Note §, in Equation is of no consequence by 1)
in Proposition Thus Equation shows Ent” satisfies H,. Get 4).
Assume 4). It suffices to consider u € 9(¢) by Corollary as well as x € I(A)
by 1) in Corollary [2.2.12] and symmetry of V. Let U := {(¢,s) € (0,00) x (0,00) | ¢ > s}. Set
@o(t,s):=s and @1(¢,s) :=t—s, as well as

N(t,s) 1= hyyt,s)(1) = hs(u), X(£,8) := Ry, (1,6)(x) = hy_s(x) (4.219)

for all (¢,s) € U. Thus %(po = —a%(pl, hence 2) in Theorem |4.2.22| yields

10 1 2 b
3 95 1 V-5, = Hess, g Ent” (g houo (Rre-s(x) ) (4.220)
for all (¢,s) e U. If t > 0, then we extend to all s € [0, ¢] by continuity.
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For all ¢ > 0, set

1
Us):=e M |ltt? o VI o2 (4.221)

for all s € [0,¢]. Applying Equation 4.220| to derivatives of terms in Equation [4.221]lets
us calculate

10
o) —0,—2As = 2
I'(s) = 27245 (2 2|t

1
2

1
VoI, = A, Ve
1
=2 s, (Hesshs(”) Ent’ (ghs(tiu) (ht_s(x))b) - ﬂll/%hi(w)Vht_s(x)Hi)

in each case. Further note § () = V* My )V on I(A¢). We obtain

3 2 b b
”“%fi(nu)Vht—s(’o”w :gis(u)(ghs(u)(ht—s(x)) S (Pri—s(x)) ) (4.222)
for all s €[0,¢]. Then applying Equation [4.222to its preceding calculation yields
I'(s)=2e721s. (Hesshs(u)EntT (ghs(u)ht—s(x))

- Agis(ﬂ) (3113(#) (he-s@))”, Fnyi (ht—s(x))b))-

If ¢ > 0, then the above calculation shows H, implies I'(s) = 0 for all s € [0,¢]. For all
t =0, we therefore have I(¢) = [(0). Using the latter, Equation [4.221|implies

1 1
2 2 -2t 3 2
|22 Vh |, < e |t o V], (4.223)
for all ¢ = 0. Equation [4.223| shows Ent’ satisfies BE, at once. Get 3). Altogether, get
equivalence of 3) and 4). O

Theorem 4.3.8. Let (¢,vy,y,V) be noncommutative differential structure for tracial AF-
C*-algebras (A, 1) and (B,w) in the logarithmic mean setting. For all A € R, the conditions

in Definition are equivalent.

Proof. Let A € R. Note Equation at once shows Lemma |4.3.7|implies equivalence
of L.1), L..2), L.3) and H). It suffices to show equivalence of G.1) and L.1), of G.2) and
L.2), as well as of G.3) and L.3) each. We do so by passing from global to local properties
and vice versa by means of the coarse graining process. We consider the following fixed
but arbitrary. Let ¢ € #(A) be a finitely supported fixed state. Let € (9(A),Wv1°g) be
finitely supported with fixed part ¢ s.t. € NdomEnt’ # @. We test all statements on the
latter without loss of generality.
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We show equivalence of G.1) and L.1). Assume G.1). For a.e. j € N, note 64(¢;) is
finitely supported s.t. ¢; € €4(¢;) ndomEnt” # @. If the latter is satisfied, then G.1)
implies A :[0,00) x €4 (£ j)NdomEnt” — 64(¢;)ndomEnt’ is EVI,-gradient flow of Ent”
in Ga(& 7). Moreover, 2) in Theorem yields isometric inclusion

(64, (&), #0%) < (6a(&;) N domEnt™, #)*¥) (4.224)

in each case. For a.e. j € N, Equation [4.224] reduces EVI; as per Equation [4.200| from
Ca()) to €a,(E)), 1.e. we see h :[0,00) x 64 () — €a;(E;) is EVIj-gradient flow of Ent”
in c€Aj((fj) in each case. Get L.1).

Assume L.1). Let u,n € € ndomEnt’. For a.e. j € N, note L.1) shows EVI{ as per

Equation 4.201for 1,7, € %Aj(f 7). Using the latter, Equation (4.203|and Equation 4.205

let us estimate

et log 2 1 log 2
TWV (ht(,u)an) - EWV (hs(ll), 77)

. et log NN log _ oy )2
=lim —— W™ (he(). 1) = %5 5 (hs (). 7))

t—s

SlJIEI,I\ll i eMdr- (Ent(ﬁj,‘[) — Ent(ht(ﬂj),T))

t—s
= f eV dr - (Ent(, 1) - Ent(hi(p),7))
0

for all 0 < s <t < oo. The above calculation readily lifts EVI{L as per Equation 4.201
from {%Aj(fj)}jeN to € NndomEnt’, i.e. we see A :[0,00) x € NdomEnt" — ¢ NndomEnt’
is EVI)-gradient flow of Ent’ in ¥ NndomEnt’ in each case. Get G.1). Altogether, get
equivalence of G.1) and L.1).

We show equivalence of G.2) and L.2). Assume G.2). We then reduce from global to
local property as above. For a.e. j € N, we see 2.1) in Proposition shows

Geo; (ﬂg,ﬂ}) < Geo (ﬁ;’.,ﬁ}) (4.225)

for all 1% ul € €4 .(Ej). For a.e. j € N, Equation and Equation reduce CNV,
as per Equation from €4(;) to €a,(E)), i.e. we see Ent’ is A-convex in €4;(¢;) in
each case. Get L.2). Assume L.2). We show G.2) by using equivalence of G.1) and L.1) to
apply 3) in Proposition [4.3.3] We show 2.1) in Definition [4.3.6] Let u°, u' € ¥ ndomEnt?.
Since they are at finite distance, Theorem shows there exists (u,w) € Geo(u?, ut)
approximated in finite dimensions by a sequence (y/,w”) i=m < Geog. For a.e. jeN, L.2)
shows CNV, as per Equation for the minimising geodesic y/ :[0,1] — %Aj(f 2
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Upon passing to a subsequence converging to (i, w) in Adm!®!!, we consider CNV,
in each case and take limits in j € N on both sides. Equation 4.203| and Equation [4.205
show they exist. We therefore have C >0 s.t.

Ent(1/(1),7) < C-max{Ent (%, 7), Ent (i}, 7) | (4.226)

for a.e. j € N. Equation shows Corollary applies. The latter in turn shows
1(t) € € NndomEnt’ for all £ €[0,1]. Ergo 2.1) as claimed. If G.1) holds, then G.2) follows
by 3) in Proposition [4.3.3] Lemma [4.3.7|shows L.2) implies L.1). The latter is equivalent
to G.1). Get G.2). Altogether, get equivalence of G.2) and L.2).

We show equivalence of G.3) and L.3). Assume G.3). We reduce from global to local
property as above. For a.e. j € N, Equation {4.224| reduces BE, from 64 (¢;) to 64,(Z}).
Get L.3). Assume L.3). Using 3) in Proposition [2.1.31] 2.2) in Proposition which
reduces to Equation here, and Equation [4.204] show

he(tp) = s-lim he(ti)), he(w) = I-v-1im Zsuppe, (Ro(u)) (4.227)

for all p € €NL%®(A¢,7)°, u € dom V; and ¢ = 0. Using Lemma for which we ensure
necessary and suitable uniform boundedness by 2.1) in Proposition [2.1.31] the left-hand

side of Equation 4.227|implies

1 1
2 _ . 5
My = S'ljlen,\,l “%ht(npj) (4.228)

for all u€ € NL>*®(A;,7)° and ¢ = 0 (cf. Remark and Remark |A.2.4).
Finally, we estimate. For a.e. j € N, note L.3) shows BE, for all p e %Aj(fj), uj€ Aj’;

and ¢ = 0. Using the latter, the right-hand side of Equation [4.227| and Equation |4.228
let us estimate

1 : 3
|42 VR @7, = Lira |45, Vhi(u, Mo
<lim e 2M ||/%% vuil,

jeN he(iy)

1
_ 1 2
=e 2M||J%h2t(ﬁp)vu”w

for all ue € mL2’°°(A5,T)b, u € domV; and ¢ = 0. The above calculation lifts BE, from
{%AJ(E Mjen to € ndomEnt’. Get G.3). Altogether, get equivalence of G.3) and L.3). [
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Corollary 4.3.9. Let Ent’ satisfy EVI, for A € R. Let S :[0,00) x #(A) — F(A) be a
continuous semigroup s.t. Sy : F(A) — F(A) is w*-continuous for all t = 0. If we know
S :[0,00) x € Nndom Ent" — ¢ ndomEnt’ is EVI,-gradient flow of Ent' in € ndomEnt’
for all finitely supported € c (5”(A),7//v1°g) s.t. € NndomEnt® # @, then S = h.

Proof. Let A € R as per hypothesis. For all finitely supported fixed states ¢ € #(A), we
know S :[0,00) x 64(¢;) ndomEnt” — 64(¢;) ndomEnt” is EVI)-gradient flow of Ent”
in C€A(§J-) NdomEnt’ # @ for a.e. j € N. Uniqueness of EVI,-gradient flows [160] implies
Si(u) =h(w for all pe ch(gj) and ¢t = 0 in each case. Diagram for K = domEnt’
furthermore shows

A= U U%E) (4.229)
EeF(A) jeN

in w*-topology. However, each non-vanishing ¢; € #(A) is a finitely supported fixed state
itself. Equation [4.199| therefore implies we may reduce to finitely supported ¢ € #(A) in
the first product on the right-hand side of Equation The latter therefore implies
S = h; for all £ =0 by w*-continuity. O

4.3.2 Lower Ricci bounds

We define lower Ricci bounds of quantum gradients using conditions in Definition 4.3.6
Theorem [4.3.8| ensures all such conditions are indeed equivalent. Lower Ricci bounds
are given by A-convexity of quantum information along minimising geodesics measured
by quantum relative entropy. Their non-spatiality is further visible beyond the given
description in terms of quantum information theory [62] as follows. Assuming strictly
positive lower Ricci bounds and finitely supported fixed part, Theorem |4.3.12| classifies
accessibility components of normal states with finite quantum relative entropy using
fixed parts. Using the latter, we show strictly positive lower Ricci bounds determine
energy-information trade-offs parametrised by lower bounds on quantum noise.

Moreover, we extend remaining results in [48][49][50] as claimed. Theorem [4.3.18
gives sufficient conditions for lower Ricci bounds of direct sum quantum gradients.
Apart from generalised discrete derivatives over finite sets, Theorem [4.3.18| applies to
all fundamental example classes in Subsection [3.1.3] Theorem [4.3.25| derives functional
inequalities and their chain of implications. Note all terms correcting for non-ergodicity
are given by quantum relative entropy evaluated on finitely supported fixed parts since
conditioning is determined by the underlying metric geometry as restriction to finitely
supported accessibility components.

Definition and energy-information trade-offs from quantum noise. We use
quantum relative entropy as measure of quantum information. Assume the logarithmic
mean setting. Note our discussion concerning quantum optimal transport as transport
of quantum information in Subsection [3.3.2]
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Theorem |4.3.8| ensures we may use any condition in Definition 4.3.6| as equivalent
characterisation. Definition gives lower Ricci bounds of quantum gradients. We
view them as measurement convexity of quantum information. Specifically, note CNV
as per Equation shows lower Ricci bounds are given by A-convexity of quantum
information along minimising geodesics measured by quantum relative entropy. In light
of our discussion in Subsection[3.3.2] this is a non-spatial description of A-convexity but
not one we have related to computation. If we do have noncommutative analogues of dis-
placement interpolations [72][156], then precomposition with quantum channels as per
Remark transforms such measurement convexity in the Schrodinger picture into
convexity under measurement of observables in the Heisenberg picture. We may view
such channels as computations of a quantum computer [18[][62] to get a computational
interpretation of lower Ricci bounds. Unfortunately, existence results are unknown to
us. We instead show strictly positive lower Ricci bounds determine energy-information
trade-offs parametrised by lower bounds on quantum noise. Lower resolution implies
lower energy paths. We avoid spatial interpretations of the classical case [97][151].

Let (¢,w,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B, w) in the logarithmic mean setting.

Definition 4.3.10. We say that 1 € R is a lower Ricci bound on .#(A) given (¢,v,y,V)
if any condition in Definition is satisfied for 1. We further write RicV = A and say
that A is a lower Ricci bound of V.

Remark 4.3.11. We know lower Ricci bounds [151][189][190]] for optimal transport on
continuous geometries [8[97][199]] are displacement convexity of relative entropy in
the sense of McCann [72][156]. Let (X, g) be a complete connected smooth Riemannian
manifold and d|vol| the Riemannian density on X (cf. pp.299-306 in [144]]). Get metric
measure space (X,d%,d|vol|) with d¢ given by g and exponential map exp: TX — X
on TX by the Hopf-Rinow theorem (cf. pp.216-224 in [[144]). If 1 :[0,1] — FN(Co(X)) is
a minimising geodesic for the classical L2-Wasserstein distance [97]], then Theorem 3.2
and Corollary 5.2 in [72] imply there exists a d|vol|-a.e. differentiable map u : X — R
and homotopy F :[0,1] x X — X defined by

F(t)(x):=exp,(—¢-grad,u) (4.230)

for all x € X and ¢ € [0,1] s.t. its dualisation F* :[0,1] x Cy(X) — Cy(X) in the second
variable satisfies

()R = fX hx)d () = fX h(@)dF (2); (1(0)) = fX RE@@)dp = p(FO*(R)  (4.231)

for all A € Cyp(X) and ¢ € [0,1]. Homotopies as per Equation |4.230| extend the pointwise
case in [157]] and are called displacement interpolations generalising terminology in the
Euclidian case [156]]. Functionals satisfying strong convexity, resp. a weaker form as
per 2) in Definition 4.3.1] along interpolation lines determined by Equation [4.230| are
called displacement convex. Equation is a push-forward measure representation
transforming the Eulerian picture into the Lagrangian one (cf. pp.224-225 in [72]).
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Noncommutative analogues of Equation |4.230| are given by deforming the identity
operator using quantum channels. Indeed, precomposition with any continuous function
is unital and positive, ergo completely positive by commutativity (cf. Corollary IV.3.5 in
[192]). Following Remark [3.2.26] we see analogues of homotopies as per Equation
in the AF-C*-setting are given by ¢ :[0,1]x B(A) — PB(A) s.t. p(t) € B(A) is a quantum
channel for all £ =0 and ¢(0) = I. If u:[0,1] — #N(A) is a minimising geodesic, then
we want such deformation ¢ :[0,1] x B(A) — ZB(A) of the identity operator s.t.

L)) = ()" ()(x) = p(pE)(x)) (4.232)

for all x € A and ¢ € [0,1]. Passing from points x € X to observables formally replaces
the Lagrangian with the Heisenberg picture as we replace vectors of real numbers with
bounded operators (cf. pp.xix-xx in [[193]). Since each ¢(¢) in Equation moreover
describes a state change due to measurement [62]][84[][141][163], i.e. each transmits a
corresponding change of information encoded in states of the given quantum system [62]
providing physical realisation of a quantum computer [18][43], Equation shows
measurement convexity in the Schrodinger picture as per Definition |4.3.10|is convexity
under measurement of observables in the Heisenberg picture.

We show conditioning in Definition |4.3.23|is determined by the underlying metric
geometry as restriction to finitely supported accessibility components. Assuming strictly
positive lower Ricci bounds and finitely supported fixed part, Theorem |4.3.12| classifies
accessibility components of normal states with finite quantum relative entropy using
fixed parts. Strictly lower Ricci bounds avoid assumptions on spectral gaps required by
Theorem We use Corollary to formulate energy-information trade-offs.

Theorem 4.3.12. Let (¢,v,y, V) be noncommutative differential structure for tracial AF-
C*-algebras (A, 1) and (B,w) in the logarithmic mean setting. Assume RicV =1 > 0. If
e F(A) is a finitely supported fixed state, then

1) €"(¢) = 6a() ndomEnt” = Fixs({) ndomEnt’ # g,

2) Wvlré Ent )i is finite and Cgfnt(cf ) © 64(&) is a geodesic subspace.

Proof. Let ¢ € #(A) be a finitely supported fixed state. Let € c (y(A),Wvlog) be finitely
supported with fixed part ¢ s.t. € ndomEnt’ # @. Note Ent’ : € ndom Ent’ — (—o00,00)
has complete sublevels in Wvlog-topology by 3) in Proposition @ We see Ent’ has a
unique minimum ppin € ¢ NdomEnt” by 2) in Proposition [4.3.3] Theorem yields
Umin = ¢ by minimality. Ergo € = €4({) by uniqueness of fixed states. Using the latter
in each case, we have 1) by decomposing Fix4(¢) as per Equation [3.343. Theorem |4.3.8
shows 2) by 2.1) in Definition 4.3.6 O
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Corollary 4.3.13. Assume RicV = 1> 0. If £ € FL(A) is a finitely supported fixed state
and € c (y(A),Wvlog) is finitely supported with fixed part &, then either € = 64(¢) or
% NdomEnt’ = @.

Proof. If € ndomEnt’ # @, then our proof of 1) in Theorem |4.3.12| shows € = €4 (é). If
¢ NdomEnt’ = @, then ¢ ¢ € since ¢ € domEnt”. As such, € # €4(¢) in this case. d

We use strictly positive lower Ricci bounds in order to determine energy-information
trade-offs parametrised by lower bounds on quantum noise. Lower resolution, i.e. higher
lower bounds on quantum noise, implies lower energy paths. We give one trade-off for
each finitely supported accessibility component having non-trivial intersection with
the domain of quantum relative entropy. Assume RicV = A1 > 0. Let { € #(A) be a
finitely supported fixed state. Let € < (¥ (A), Wvlog) be finitely supported with fixed part
& s.t. € ndomEnt” # @. Corollary[4.3.13| shows € = €4 ().

Following our maximum entropy production principle in Subsection we view
quantum Laplacians as generators of quantum noise evolution. Thus applying heat flow
to a state for ¢ > 0 introduces quantum noise. We use resolutions to define lower bounds
on quantum noise. We define minimal and maximal resolution on %Ent(f ) by setting

—oo<pfffin(€):: inf  Ent(y,7)<pi®():= sup Ent(y,7)<o0. (4.233)
HEEEM (&) peetnt()

Get pgﬁn(f) = Ent({,7) by 2) in Theorem [4.2.10, We say that p € (pglin(é),pfax(f)) is a
resolution. For all p € (/of“(gt ), 04*%($)), we define the resolution surface and resolution
sublevel of p by setting

REMY(¢, p) = (EntTlg,0) " (0), SE™(E, 0):= | (EntTlg,@) (o). (4.234)
p'sp
Each Rf\nt(é ,p) is determined by all states for which 2) in Theorem prohibits gain
in quantum information above p by reducing quantum noise. We thereby use resolutions
to define lower bounds on quantum noise. Of course, each Sgnt(f,p) is a sublevel of
Ent’ : €4(¢) — (—00,00]. For all p € (pTI(¢), pR3%(¢)), 3) in Proposition and CNV,
as per Equation show SEP(¢, p) « €5 (¢) is a geodesic subspace and therefore a
complete geodesic length-metric space.
Let pe (pf“(f ),pfax(é )). We obtain metric-functional system (Sgnt(g‘ ,p),Wvlog,EntT)
equipped with continuous semigroup A : [0,00) x Sint(g‘ ,p) — Sl}int(f ,p). We define the
maximal lower Ricci bound of V given p by setting

AR, p):=sup ', (4.235)
A=A

where the supremum on the right-hand side of Equation |4.235|is taken over all 1’ = A
s.t. b :[0,00) x SEPY(¢, p) — SEPY(E, p) is EVIy-gradient flow of Ent” in SEP(¢, p).
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For all 1,1 € SE™(¢, p), 1) in Proposition shows

W8 (he(), () < e P2 EP 318 (1, ) (4.236)

for all ¢ = 0. Moreover, 3) in Proposition shows Ent’ is A&, p)-convex in %Ent({ ).
Note EVI) as per Equation[4.200|shows A/#*(¢, p) = 1 > 0. Equation [4.236] further shows
introducing quantum noise relative to p, i.e. ¢ > 0, implies lower energy paths.

We obtain monotonically decreasing map A**(¢, —): (,ofin(gt ), P (E)) — [A,00). As
such, Equation shows a decrease in resolution, i.e. from p to p’ < p, implies lower
energy paths if A%%(¢, p') > A7#*(¢, p). For all p € (pfin(f), PR, ul,ut e Sgnt(cf, p) and
(n,w) e Geo(,uo,pl) s.t. u(t) e domEnt’ for all ¢ =0, we have

Amax ,
Mt(l —1)- Wvlog(llo,ﬂl)z (4.237)

Ent(u(),7)<p-
for all £ € [0,1]. Equation [4.237| shows we obtain lower energy paths since energy costs
of introducing and reducing quantum noise along minimising geodesics are lowered if
resolutions are lowered.

Equation gives the energy-information trade-off for %Ent(gf ) parametrised by
lower bounds on quantum noise, i.e. by resolutions. We define strictly monotonically
increasing map diami : (p?in(é ), 047%($)) — (0,00) by setting

i () = 8 _ A
diam’, (p) := \/ Aglax(g,p)(p Pinin(©)) (4.238)

for all p € (pgﬁn(é), pR(8)). For all (pgin(é), P (&), Equation 3.18a in the statements
on asymptotic behaviour as ¢t — oo as per Theorem 3.5 in [160] for A > 0 shows

2
W8, 8) <\ | ————(p— pA. (©) (4.239)
\% H€ \/Azlax“,p)(p Pmm )

for all ue Sgnt(.f ,p). Equation |4.239|is the Talagrand inequality TW, for A =0 as per 3)
in Definition [4.3.23| Using triangle inequality, Equation [4.238 and Equation [4.239| let
us calculate

diam SE"(¢, p) < diam’, (p) (4.240)

for all p € (p?in(f),pﬁax(f)). Equation @ gives, on %E“t(f), a global description of
our above discussion. Lower resolution implies lower energy paths since energy costs
of introducing and reducing quantum noise along minimising geodesics are lowered
if resolutions are lowered. Equation formulates an energy-information trade-off
since lower energy paths are obtained by introducing quantum noise.
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Sufficient conditions. Theorem gives sufficient conditions for lower Ricci
bounds of direct sum quantum gradients. We adapt the proof of Theorem 10.9 in [50] to
the AF-C*-setting by means of the coarse graining process. Corollary which uses
Lemma[4.3.15] is essential for this. Lemma provides detailed proof of a necessary
extension of Theorem 5 in [127] to all finite-dimensional C*-algebras. Example [4.3.19
and Example derive non-negative, resp. strictly positive lower Ricci bounds.

We consider the following direct sum noncommutative differential structures. Let
m € N. Let (A,1) be a tracial AF-C*-algebra and (¢,v,y) an AF-A-bimodule structure
onA.Forallne{l,...,m},let 8, : Ao — L?(A,7) be a quantum gradient. We view each
as noncommutative directional derivative. Proposition [2.3.29] yields their direct sum
quantum gradient V® = @™ 19, : Ag —»LZ(EB’” (A, 87 7). Set

(&7 9™, y™,V®) = (&1, 871 ¥, @17, @711 0r) (4.241)

for tracial AF-C*-algebras (A,7) and (B,w) := (&' ;A,®""  7) in the logarithmic mean

setting. We use Notation [2.3.28| For details on d1rect sum quantum gradients, we refer
to Subsection

Notation 4.3.14. We write .9, Og for the quasi-entropy of the canonical AF-A-bimodule
structure on A in the logarlthmlc mean setting. Compare to Notation [2.2.26] For all
n € N and tra01a1 AF-C*-algebra (M ,(C),tr,) using non-normalised canonical trace, we
further write f g - for the quasi-entropy of the canonical AF-M,,(C)-bimodule structure
on M,(C) in the logar1thm1c mean setting

Lemma 4.3.15. Assume A is finite-dimensional. If ¢ : A — A is a completely positive
trace-preserving map, then we have

% ( (1), (ﬁn)b,q)(ﬁw)b) <9, (un,w) (4.242)
forall p,ne A and we A*.

Proof. Let n,q € N. We consider (M, (C),tr,) and (M,(C),tr,) both as finite-dimensional
tracial AF-C*-algebras, as well as Hilbert spaces using GNS-inner product of their re-
spective non-normalised canonical traces. Let §: M,(C) — M ,(C) be completely positive
trace-preserving. Theorem 5 in [[127]] shows we have

B* o Dpx)pv)oB<Dxy (4.243)
in B(M,(C)) for all X,Y >0 in M,(C). Equation [4.243|shows

T8 (BXY, B Y, BUY ) =5, (x°,7°,U7) (4.244)

for all X,Y >0 in M,(C) and U € M,(C). We suppress sharp operators in all equations
here. We show our claim by reducing Equation 4.242|to Equation [4.244
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Note Jjﬁi is jointly convex and l.s.c. in w*-topology by 1) in Theorem|2.2.29, We scale
with strictly positive constants as in the proof of Proposition [3.1.19| by construction of
quasi-entropies. Let ¢ : A — A be completely positive trace-preserving. Since we know
@ is w*-continuous by finite-dimensionality, l.s.c. in w*-topology implies Equation
if it holds for all u,n € #(A) s.t. fu,fn>01in A. Let

(4,12 (A7) = (&7, M,,,(©), 0™, Cytry)). (4.245)

Equation [4.245| uses Notation [2.1.15 We know such r4 is completely positive since it
is a *-homomorphism (cf. Example [A.1.47). It is furthermore trace-preserving by 2) in
Proposition 2.1.24, We see ¢’ :=rgo@o r;ll is completely positive trace-preserving.

Proposition [2.1.24) and 2) in Proposition [2.2.14]imply

T8y, w) = I8 (ra) r AP raw) ) (4.246)

for all x,y >0in A and u € A. Equation [4.246|implies Equation [4.242|if and only if

0 X0 ), UF) = 7%, (X0, 7, U7) (4.247)
forall X,Y >0in A’ and U € A’. We reduce Equation [4.247|to Equation [4.244

We assume (A, 1) = (A’,7') without loss of generality. Thus r4 =ida, hence ¢ = ¢'.
We require several identities and completely positive trace-preserving maps in order to
apply Equation [4.244] For all [ € {1,...,m}, set X; := m;(X) for all X € A. The latter uses

Notation [2.3.28| Proposition [2.1.24{and 2) in Proposition [2.2.14]imply

nytr

jio,i (Xb’Yb,Ub) _ l_ilcljlog (Xzbszb’Uzb) (4.248)

for all X,Y >0in A and U € A. Set q := 3., n;. We consider the diagonal A < M,(C). If
we moreover consider C; =1 for all / € {1,...,m}, then Equation [4.248|yields

S (X0 Y0 0P = 3 A% (X0, ¥, (4.249)
q,tr ’ ’ 5 nptr\“v1° 51021 :

for all X,Y >0in A, ergo M,(C), and U € A. Set M¢(X):=Y", C;X; for all X € A. The
direct sum construction implies M¢(X) > 0 in M,(C) for all X >0in A as C; >0 in each
case by assumption.
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By scaling with strictly positive constants, Equation [4.248 and Equation |4.249| let
us calculate

Il
Mz

2 (X070 =Y Ce (x0,7),07)

~
Il
—

Il
Mz

7% (ax;,cvy,eu)

ny,tr

~
Il

1

- A Mo e 10

in each case. Precomposing with ¢ in the above calculation shows

208 (XY, 0 Y, ) = 2% (M (X)), Mc (00, Mc(p@)’)  (4.250)

for all X,Y >0in A and U € A. Altogether, we have the required identities.
For all [ €{1,...,m}, we define ¢; : M,,,(C) — M,(C) by setting

@1(X):=C; Mc (X)) (4.251)

for all X € M,,(C). We know the diagonal A c M,(C) is completely positive because it
is a *-homomorphism (cf. Example [A.1.47). Since ¢ is as well, Equation readily
shows each ¢; is completely positive. For all [ € {1,...,m}, trace-preservation of ¢ implies
trg(Mcop(X)) =X, Crtry, (X)) = 1(p(X)) = C; try, (X) and therefore

try (01(X)) = C; Mtry (Mep(X)) = C 11 (X)) = try, (X)) (4.252)

for all X € M, (C). Equation shows each ¢; is trace-preserving. The latter holds for
non-normalised canonical traces on full matrix algebras. Altogether, we have completely
positive trace-preserving map ¢; : M,,(C) — My(C) for all [ € {1,...,m}.

We consider our final reduction and apply Equation Let X, Y>0inA,U€A
and {/11};'; 1<(0,1] s.t. Z;’i 1At =1. Then joint convexity and scaling with strictly positive
constants followed by Equation lets us calculate

L _ b & o\ & _ b
208 (XY, 0¥, ) =f,}f,i(l_1/ll<l’(ﬂz 'X1) ,Z_ZIMP(M 20 ,I_ZIMP(M U) )

IA
Mz

_ b _ b _ b
L (o071 (1Y) 0 (A7 T1))

~
Il
—

Il
Mz

I (‘/’(X D, 0(¥1), (U, )b)

~
Il
=

1]
Mz

9% (M (o), Mc(o(¥D), Mo (o))

~
Il
—
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For all [ € {1,...,m}, scaling with strictly positive constants implies

j;?tgr(Mc(w(Xz))b,Mc((P(Yz)) Me(pU)) ) qtr(tpz(Xz)b 01 (Y1, 01(Up) ) (4.253)

Taken together, the above calculation and Equation |4.253| show

m

T (0 XY, 0¥ Y, 0Y) < Y. CLay (Xl (0, iU ) (4.254)
=1

Equation [4.244]applies to each summand on the right-hand side of Equation 4.254]since

each ¢; : M,,,(C) — M ,(C) is completely positive trace-preserving. Using Equation (4.244

accordingly, applying Equation [4.254) and Equation [4.248|in order lets us calculate

™Mz

L (0 XP 0¥ P, Y < Y. CLIE (X0, 0V, 01U

~
Il
=

IA
NgE!

CL.o8 (X, 77,07

o~
Il
=

=78 (X0, 7, 0°).

This yields Equation |4.247, The general case follows as discussed above. O
Corollary 4.3.16. Assume A is finite-dimensional. Let A € R and set hJr =@ e Ath,in
BB) for all t =0. If [p,A\,]1=[w,A\,1=0 for all n€{1,...,m}, then we have

glog (ht(p),ht(n),hj(uw)b) < e 2M glog(yy 1 1) (4.255)

forall uyne A, we B* and t = 0.

Proof. We suppress sharp operators in all equations here. We show our claim by reduc-
ing Equation 4.255|to Lemma 4.3.15l Let x,y€ A ,ueBandt=0. Since A® =YY" A,
by 4) in Proposition [2.3.29) we see [¢,A,]1=[y,A,]1=0 for all n € {1,...,m} implies

[p,he] = [w,he] =0 (4.256)

for all ¢ = 0. Equation 4.256[in turn shows

TE(hu() R, B @) ) = 7% (ho(0@)) e (w) 2 (@) (4.257)
by construction of quasi-entropies.
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Moreover, Proposition [2.3.30/ shows

738 (he(9@) 1 (w(y))b,hi(</>(u>)b)=Zlﬂi"j(ht(¢(x))b,ht(w(y))b,nn(hj(u))b). (4.258)

We combine Equation 4.257 and Equation |4.258] We obtain

yk’g(ht(x)b,ht(y)b,hj(u)b) Zﬂl"g( ()", 2 (w(y))b,nn(hj(u))b). (4.259)

Note 1) in Proposition [3.2.32|shows A;: A — A is completely positive trace-preserving.

Applying Equation |4.259, Lemma |4.3.15| and finally Proposition [2.3.30]in order lets us
calculate

58 (hel) by, () ) = 27 o4 (P e@) R (v ) 7 (@)
e Zﬂ” 4 (pe@@) By ) e (maw)’)

<e 2M. Z Jl"g(xb,yb,nn(u)b)

n=1

:e—ut_jlog(xb’yb,ub)

The above calculation shows Equation |4.255 O

Definition 4.3.17. We call (¢™,y™,y™,V®) as per Equation [4.241|their direct sum non-
commutative differential structure. Let 1 € R. If

]-) [(,b;An] = [WaAn] = 0’
2) 0,A°% = (A®+1-1)0,,

on Ag for all n €{1,...,m}, then we say that V® is A-intertwining.

Theorem 4.3.18. Let m € N. Let (A,7) be a tracial AF-C*-algebra and (¢p,v,y) an AF-
A-bimodule structure on A. For all n € {1,...,m}, let 0, : Ag — L?(A,1) be a quantum
gradient. We consider their direct sum noncommutative differential structure. If V® is
A-intertwining, then RicV® = A.

Proof. We adapt the proof of Theorem 10.9 in [50] to the AF-C*-setting by means of the
coarse graining process. We reduce to the finite-dimensional setting. This is necessary
to apply Corollary[4.3.16] Theorem [4.3.8|ensures H) in Definition[4.3.6]is a condition for
lower Ricci bounds. For a.e. j € N, note H) and Definition 4.3.17| restrict to the induced
noncommutative differential structure ((/);”, ;.”,7/;.”, @ 10n ;) without changing A.
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Assume A is finite-dimensional. Then B is finite-dimensional. It suffices to show H,
for all fixed states { € #(A), ue9(é)and nel (A?)b. Using Corollary [3.2.66| we readily
see Theorem 3.3 in [75] and Lemma show the latter if 4 : [0,00) x I(&) — (&) is
EVI,-gradient flow of Ent® in 9(¢) for all fixed states ¢ € #(A). We further reduce as
follows. For all fixed states ¢ € #(A), we claim

1d” log 2 A log, 9
2ds SZOWV@ (,u,hs(n)) + EWV@ (u,m)° < Ent(u,7) — Ent(n, 1) (4.260)
for all u,n € 9(). If Equation |4.260| holds, then symmetry of distances, the semigroup
property and Equation |4.260|itself let us calculate

1d* log 9 1d* log 2
§EWV® (ht(ﬂ),n) = E% OWV$ (n,hs(ht(ﬂ)))
s:

A
< Ent(n,7) - Ent(h(w),7) - E}f/vlgg(ht(u),n)

for all ¢ = 0 in each case. The above calculation in turn shows A : [0,00) x 9(&) — 9(&) is
EVI,-gradient flow of Ent’ in 9(¢) for all fixed states ¢ € #(A). In summary, it suffices
to show Equation [4.260

We require several identities in order to show Equation [4.260, Set h;r = @lee_/”ht
in %(B) for all £ = 0. The latter extends to B* = @* ;| A* by dualisation in each summand
as per construction of noncommutative heat semigroups. Note 1) in Definition [4.3.17

ensures Corollary |4.3.16|applies. Using the latter, we have

log (ht(p),ht(n),hj(w)) < e 2M glog(y 1 1) (4.261)

for all u,ne€ F(A), w € B* and ¢t = 0. We dualise 2) in Definition|4.3.17|by taking adjoints.
Using the latter, 3) in Proposition [2.3.29|implies

RV =V R (4.262)

for all ¢ = 0. Altogether, we have the required identities.

We show Equation Let { € #(A) be a fixed state. Let po,pl € 9(¢). Heat flow
varies minimising geodesics as follows. Let p:[0,1] — 9(¢) be a minimising geodesic
from u° to u'. Proposition shows the canonical vector field along u is given by
wy := O(u(t), 1(2)) for all ¢t = 0. We have (u,w) € Adm!%H(u®, u1). Minimising geodesics
have t-a.e. constant speed by 1) in Proposition (3.1.45| The latter lets us calculate

E"8(u,w) = 718 (u(t), u(t), w(t)) (4.263)

for all # € [0,1].
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For all s €[0,1], set

Be(®) 1= Ry (D), wit) 1= k' (w() - s(VEHps(8)) (4.264)

for all £ € [0,1]. For all s €[0,1], Equation [4.262| and Equation [4.264|let us calculate

d
s =y (V™ (@)’ - s(AHus(2))”

= (v (1A, ()~ V¥ 11,0)) = (V> 0’

for all ¢ € (0, 1). The above calculation shows (s, wg) € Adm% (0, 2 (ul)) for all s € [0, 1].
We estimate Elog(,us,ws) in each case. Let s € (0,1]. Set

1
Fy(t) = —25(Dy 0 et | (w0(0), Vo Hps (D)), +5° 12¢, . EVEBtl,us(t)”i (4.265)

for all ¢ € (0,1]. Equation [4.261] Equation 4.263|and Equation 4.264]let us calculate

1
e_2/1tsdt'Elog(,U,w)+f F (t)dt. (4.266)
0

1
Elog(.us, ws) = f

0

We therefore define the integrand F; precisely as per Equation [4.265| in order to have
Equation 4.266, We directly verify

1 21t 1_6—2/13
Rl ly §/ - J— 4.267
fo e = (4.267)

Taken together, Equation [4.266|and Equation [4.267|show

1— e—2/ls

1
- EYS(u,w)+ f Fy(t)dt. (4.268)
0

E]Og(us’ws) < 2AS

Equation [4.268| clearly shows we must estimate the integrand F. Using jjh;rs(w(t)) =
fws () + sV®Hus(¢) in each case, 2) in Lemma lets us calculate

1
(Dhyss 0,681 (), V2 Hu5(8)),, = (Do, e8ws (), VO s (D)), + 5 ”@tflis(t),fv@ﬂus(t)”i
d i 2
= Ent (us(t) +s ||@ﬂ2ys(t),fv®ﬁ/’ts(t)”w
for all £ € (0,1).
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The above calculation shows

d
—25'@ EntT (,Lts(t)) = _2<@ﬁﬂs(t) fﬁhts(w(t)) v®ﬁﬂs(t)> + 232 ”@ﬂli @), gve;ﬁ:u's(t)”i (4269)

in each case by rearranging terms accordingly. Finally, we readily see Equation |4.265
and Equation 4.269|let us calculate

d 2 2 d
Fy(t)==2s— Ent (us(®)) —s ”@w 0.V @], < ~2s— Ent’ (us(®) (4.270)

for all ¢ € (0,1). We combine Equation |4.268|and Equation [4.270, We obtain

1— e—Z/ls
21s

Equation|4.271|yields our required estimate of Elog(us, w?®) for all s € (0,1]. We engage
in our final estimate. Equation [4.271|implies

B8 (11, w;) < E %(,w) + 5+ (Ent(u°,7) - Ent(u',7) ). (4.271)

1-— e—Z/lS

2
WO (1)) < P

S B 5(u,w) + 5+ (Ent(u’,7) - Ent(u',7))  4.272)

for all s € (0,1]. We use the energy E8(u,w) = log(u , 1?2 of the minimising geodesic
w:10,1] — 9() from p° to pl. Corollary W ensures we have sufficient minimising

geodesics in 9(¢). Equation |4.272|therefore equals

1-— 6—2/18

1 2
_Wlog('u 7hs(,ul)) < e

ST HgB (1O, 1) + 5+ (Ent(u',7) - Ent(p',7))  (4.273)

for all s € (0,1]. We see multiplying with s~! on and subtracting on Wlog(,uo,ul)z from
both sides of Equation [4.273|yields

%s (71/1°g(u hs(h)) ~ LB (10 u))

1-e 285 _2)s
<
452

-Wlog(y ,u) +Ent(u°,7) - Ent(hs(u'),7)

for all s € (0, 1]. We directly verify

1-e 245 _2)s A

li =——. 4.274
S0 4As2 2 (4.274)
Note Equation [4.274]shows letting s | 0 in the final estimate yields Equation |4.260| The
general case follows as discussed above. O
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Example(4.3.19/and Example |4.3.20|derive non-negative, resp. strictly positive lower
Ricci bounds. Whereas Example [4.3.19|covers Example [3.1.55, Example |3.1.56|and Ex-

ample[3.1.58|in Subsection [3.1.3, Example 4.3.20| covers Example [3.1.59| therein.

Example 4.3.19. Assume the following setting. Let (A,7) be a tracial AF-C*-algebra
and (A,R,a) a t-preserving local C*-dynamical system. We equip A with its canonical
AF-A-bimodule structure. We use m = 1. Corollary yields non-twisted dynamic
quantum gradient VZ=94 and shows

AZax = —(V22)(x) (4.275)

for all x € Ag. Equation [4.275|shows V2194 jg A-intertwining for A = 0. Theorem |4.3.18
implies Ric VZ«144 > 0 as claimed.

Example 4.3.20. Assume the following setting. Let (A, 1) be a tracial AF-C*-algebra
and ¢ : A — A a self-adjoint involutive local *-homomorphism. Let m € N and further
{dp} | € L%(A, 1) be a ¢p-intertwining set of Clifford generators for C >0 as per 1) in
Definition[2.3.58] For all n € {1,...,m}, Corollary[2.3.56]yields twisted dynamic quantum
gradient d,, = V"*Ldn:® and its Laplacian A, = 8},0,, as per 2) in Definition

Note Equation|C.5]lets us calculate 1) in Definition Since A®=Y" A, by 4)
in Proposition [2.3.29] Lemma implies

0,A° = (A® +4C-1)3, (4.276)

for all n € {1,...,m}. Equation [4.276| shows 2) in Definition [4.3.17| Altogether, we see V
is A-intertwining for A = 4C. Theorem [4.3.18|implies Ric V=4C > 0 as claimed.

Functional inequalities. Assuming lower Ricci bounds, Theorem derives
functional inequalities HWI;, MLSI) and TW, as per Definition Non-ergodicity
requires relative entropy of finitely supported fixed states in their formulation. We in-
troduce quantum Fisher information in the AF-C*-setting. Its role mirrors the classical
case [[151][168]. We adapt the proofs of Theorem 11.3, Theorem 11.4 and Theorem 11.5
in [50] to the AF-C*-setting by means of the coarse graining process. Lemma [4.3.24
provides sufficient control of metric derivatives using quantum Fisher information.

Let (¢,w,7,V) be noncommutative differential structure for tracial AF-C*-algebras
(A,7) and (B,w) in the logarithmic mean setting. Definition[4.3.21]gives quantum Fisher
information. Indeed, note 3) in Theorem and 3) in Proposition [4.3.22)imply it is a
noncommutative analogue for parametrisations {h;(u)};>o given p € FNA).

Definition 4.3.21. We define quantum Fisher information I°¢ : A* — [0, 00] by setting

1°2(y1) := sup 7% ), 15, (Vi)' (4.277)
jeN 7

forall ue A%.
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Proposition 4.3.22.
1) 18 is convex and l.s.c. in w*-topology.
2) Forall ue A%, we have
_ log( - - _\b .
2.1 Tg(g;) :jjog(pj,,uj,(Vﬁ,uj) )for all jeN,
2.2) T°8(y) = lim jen 198 ().
3) For all finitely supported fixed states ¢ € F#(A), we have

Ent” (k1)) (4.278)

d
Ilog - ___
(1) o

for all pe FixY(&)n # N °(A) N (dom A).

Proof. We have 1) and 2.1) by 1), resp. 2) in Theorem [2.2.29| Using 2.1), Equation [4.277
shows 3) in Theorem [2.2.29|implies 2.2). We show 3). Let ¢ € #(A) be a finitely supported
fixed state. Using 2.1) and 4.1) in Proposition [2.3.25 note 2) lets us calculate

18 () = lim 18 () = yh’g(u, i, (Vﬁ,u)b) (4.279)
Jje

for all € Fix}\ (&) n.#°(A¢) N (dom AY. The second identity in Equation 4.279| uses
fiu € domA < domV and therefore Viiu = ||.||,-limjen Viijz; in each case. Equation [4.279
shows 3) in Theorem [4.2.35|implies 3) by differentiation at ¢ = 0. O

Definition 4.3.23. Let 1 € R

1) We say that Ent’ satisfies HWI} if for all finitely supported fixed states £ € #(A)
and € c (SW(A),WVIOg) with fixed part ¢ s.t. € ndomEnt’ # @, we have
A
Ent(i, 7) < #0*8(u, )\/ T08() - 57//v1°*‘=’(u,f )2 + Ent(¢,7) (HWI,)

forall ues.
2) Assume A > 0. We say that Ent’ satisfies MLSI) if for all finitely supported fixed

states ¢ € #(A) and € (5”(A),71/v1°g) with fixed part ¢ s.t. € ndomEnt? # @, we
have
1 lo
Ent(y,7) < ﬁl S(w) +Ent(¢, 1) (MLSI,)

for all ueé.
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3) Assume A > 0. We say that Ent’ satisfies TW, if for all finitely supported fixed
states ¢ € #(A) and € c (y(A),Wvlog] with fixed part ¢ s.t. € ndomEnt’ # @, we
have

2
W (11, €) < V ~ (Ent(,7)~ Ent(¢, 1) (TW,)

for all ueé.
Lemma 4.3.24. For all u,n e #(A), we have

+

d
limsup —#o% (he(f)),71) < /T8 (R4(w) (4.280)
jeN dt

forall t =0.

Proof. We adapt the proof of Proposition 11.2 in [50] to the AF-C*-setting by means
of the coarse graining process. We reduce to the finite-dimensional setting. Note 2.2)
in Proposition |3.2.32| reduces to Equation in the square integrable case. For all
e F(A), 2.2) in Proposition therefore shows

18 (R () —11m11°g(h (7)) = limsup '8 (h,(i2;)) (4.281)
JEeN

for all ¢ = 0. Equation |4.281|implies Equation |4.280)if for all u,n € #(A), we have

d*_ _ N - .
T (he(R),m5) = (/T8 (Re (1)) (4.282)
for all £ = 0 and a.e. j € N. Taken together, Equation [4.281| and Equation 4.282| reduce
our claim to the finite-dimensional setting.
Assume A and B are finite-dimensional. We show Equation 4.280, Let u,n € #(A).
Using the semigroup property, 1) in Corollary and 3) in Proposition 4.3.22|let us
calculate

d
1% (R y(u)) = - 77 Ent*(ha(w) = 7(Ahq (1) log he (1)) (4.283)

for all ¢t > 0. We extend to ¢ = 0 by continuity. Equation [4.283| shows # — 1/11°8(h,(u)) is
continuous on [0,00). Using triangle inequality, we calculate

d+ (¢} 0
d_ (4 g( #(w),n) =limsup s~ (W (ht+s(,u) n)— %, W g( t(ﬂ)ﬂ?))
4 s10

<limsups~ log( hi(), hpvs(p))
sl0

for all ¢ = 0.
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For all s > 0, we claim

t+s
ST (Re(), hss () <571 ft v/ 18 (R (w)dr (4.284)

for all ¢ = 0. If Equation |4.284] holds, then continuity of ¢ — 1/I°8(A:(u)) on [0,00) and
Equation [4.284]itself let us calculate

t+s
_Wlog( he(p), ) <11mSups f VI8 (hy(w)dr = /T8 (h () (4.285)

for all ¢ = 0. Equation shows Equation We therefore show Equation [4.284]
Let ¢ = 0. For all s > 0, set u(r) := k(1) and w(r) := —(Viu(r))’ for all r € [¢,¢ +s]. We
show (u,w) € Adm[t’HS](ht(u),ht+s(u)) in the proof of Corollary Let L8 denote
the length functional in our case. Using scale invariance of length functionals as per
Proposition we directly verify

t+s
L%(u,w) = f v/ I2(A(w))dr. 4.286
(u,w) t (he(w)dr ( )

Equation |4.286| shows Equation |4.284] The general case follows as discussed above. [J

Theorem 4.3.25. Let (¢, y,y,V) be noncommutative differential structure for tracial AF-
C*-algebras (A,1) and (B,w) in the logarithmic mean setting.

1) IfRicV = A, then Ent’ satisfies HWI}.
2) If Ent® satisfies HWI, for A > 0, then Ent' satisfies MLSI .

3) If Ent’ satisfies MLSI,, then Ent® satisfies TW.

Proof. We adapt the proofs of Theorem 11.3, Theorem 11.4 and Theorem 11.5 in [50] to
the AF-C*-setting by means of the coarse graining process. Non-ergodicity requires us
to consider relative entropy of finitely supported fixed states.

We reduce to the finite-dimensional setting. Let { € #(A) be a finitely supported
fixed state. Let € c (y(A),Wvlog) be finitely supported with fixed part ¢ s.t. we have
% NndomEnt’ # @. For all j € N s.t. ¢; # 0, Equation and Equation together
with 2.1) in Proposition [4.3.22| show HWI restricts to

i 1 i .
Ent(f;,7) < #o " (i1,&5)/1°¢ (i) - zwlog(ﬂ],s%) +Ent(¢;,7) (EVI)
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on C€Aj(<f ;) for all A €R, resp. MLSI} and TW, restrict to

1 _ .
Ent(g;,7) < N 1°¢(2;) + Ent(¢;,7) (MLSL)

and

og(- f 2 _ £ j
ZTRNE \/;(Ent(#j,f) ~Ent(;,7)) (TW)

on chj(g ;) for all A > 0. If conversely HWI{l, MLSIfl, resp. TW{1 holds for a.e. j € N, then
note Equation and Equation together with 2.2) in Proposition show
letting j 1 oo on both sides of the given inequality recovers HWI,, MLSI;, resp. TW, on
% Nndom Ent’. We therefore reduce to the finite-dimensional setting.

Assume A and B are finite-dimensional. Let y € €. We show 1). Assume RicV = A.
If 1°8(11) = oo, then there is nothing to show. Assume I'°8(u1) < co. Theorem shows
EVI, as per Equation applies. Corollary [4.3.13| shows p, ¢ € €4 (£). We obtain

+

1
Ent(y, 7)< —=——

¥ T 1°‘°”( hip),€)” - 1"g(u,é)z +Ent(¢,7) (4.287)

for ¢t = 0 by rearranging terms accordingly. Equation 4.287 shows Ent’ satisfies HWI) if

1d*

iR (3 R 2 R NA L) (4.289)
.
We show Equation [4.288, Note 2) in Corollary 3.2.66 shows WVI?Q?A( OxE1©) is finite and

.l o-continuous. Using the latter, we have

limsup Wvlog(ht(u),p) =0, limsup Wvlog(ht(p),é) = Wvlog(u,é). (4.289)
t10 t0

Using triangle inequality, symmetry of distances and Equation [4.289|let us calculate

1d+ log
“5dr N 0 (he(w), f)
hml%up t ( log(u,f)z log( t(,u),f)z)
t
< hml%up t ( t(u) u +W ( (), ,5)) 1og( he(w), (f) )
t

= limsup 5 S (W2 (et 1) + 29 (), )W 10, )
t
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1
= limsup §t‘171/vl°g(ht(u),u)2 + (limsup T (ht(u),u)) (1, €)
£10 £10

=0+ (limsup W (), ,u)) W2 B (1, )
t|0

= #g" .6 (liml%up EY (W (haa, 1) - W, u)))
t

W8 (he(), ).

1 d*
=g (10— )
t=

Applying Lemma [4.3.24]to the final term in the above calculation yields Equation 4.288
as required. As such, we know Ent’ satisfies HWI,. Get 1).

We show 2). Assume Ent’ satisfies HWI, for A > 0. Note Young’s inequality implies
xy < Cx?+(4C)1y2 for all x,y e R and C > 0 [106]. Using C = 2711, we obtain

o /1 o 1 0
WS T = (1, % < - T8() (4.290)

by rearranging terms accordingly. HWI, and Equation [4.290|let us calculate

Ent(y,7) < WVI"g(,u, &/ Tog(u) — %Wvl"g(u, &2 +Ent(¢,7) < % 1°8(u) + Ent(£,7).  (4.291)

Equation 4.291| shows Ent’ satisfies MLSI,. Get 2).
We show 3). Assume Ent’ satisfies MLSI}. We know A > 0 by hypothesis. Set

2
F@t):= #0% (1, ho(w) + V n (Ent(ht(u), 7) - Ent(¢, r)) (4.292)

for all £ = 0. Using 1) in Theorem [3.2.40| and 3) in Proposition [4.3.22, we directly verify
Equation [4.292( defines continuous map F : (0,00) — R s.t. %F exists for all £ = 0. Norm
continuity and Theorem |4.2.10|imply

F):= ltil%l F@)= \/% (Ent(,u, T)— Ent(é,r)), F(o0) := }tle F@)= Wvlog(u,f). (4.293)

Integrating over [0,00), Equation 4.293|implies Ent’ satisfies TW if fli—;F(t) < 0 for all
t > 0. We show the latter.
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Using the semigroup property, 3) in Proposition [4.3.22/and MLSI) let us calculate

18 (h4(w))

\/ 21 (Ent(h,(w),7) - Ent(, 7))

< —\/To8 (R ()

in each case. Note we use MLSI, in the denominator. Applying Lemma |4.3.24| and the
above calculation to Equation [4.292| shows

d |2
=[5+ (Ent(hw,7) - Ent(¢, 1) = -

dt d |2
lo —
tF(t) <4y/1 g(ht(u)) t\//1 (Ent(ht(,u),r) Ent(f,r)) <0 (4.294)

for all £ > 0. Equation [4.294| shows %F(t) <0 for all ¢t > 0 as required. As such, we know
Ent’ satisfies TW}. Get 3). O

Corollary 4.3.26. If RicV = A > 0, then Ent’ satisfies HWI;, MLSI; and TW,.

Proof. Apply Theorem (4.3.25 O
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A | Operator Theory

We review operator theory. In Section we cover fundamental results for unbounded
operators, C*- and W*-algebras, as well as functional calculus used in our discussion.
In Section we discuss strong resolvent convergence, resolvent-preserving maps of
unbounded operators, and introduce compression maps.

A.1 Fundamental operator theory

In Subsection we review partial orders generated by positive elements, as well
as spaces of bounded and unbounded operators on Hilbert spaces. We further discuss
twisting maps on spaces of unbounded operators induced by Hilbert space isometries.
In Subsection C*- and W*-algebras are covered. We give direct sums and tensor
products. We discuss normal, completely positive and completely Markovian maps.

In Subsection[A.1.3] we review functional calculus. Spectral measures of self-adjoint
unbounded operators are given by the well-established bounded measurable functional
calculus for W*-algebras. Joint spectral measures are given by tensoring such spectral
measures of strongly commuting self-adjoint unbounded operators. Functional calculus
is integration w.r.t. spectral measures. Joint functional calculus is integration w.r.t. joint
spectral measures. We introduce two related standard operations for further use in our
discussion. In Lemma we establish pull-back along tensor products of normal
unital *-homomorphisms. In Subsection [A.2.2] we study compression.

A.1.1 Unbounded operators
Standard references for unbounded operators are [171]], [184] and [192].

Partial orders generated by positive elements. We use K € {C,R} as field.

Definition A.1.1. Let V be a complex vector space. A convex cone C < V is proper if
0eC and Cn-C ={0}. Let y: V — V be anti-linear involution. Its set of hermitian
elements is V;, :={v e V | y(v) = v}.

1) For allv eV, set Re(v) := (v +7y(v)) and Im(v) := & (v — y(v)).

2) If V}, has partial order, then we call it generated by its set V, :={v € V}, | v = 0} of
positive elements if V, is a proper cone generating the partial order.

288



Notation A.1.2. We use vector spaces Vs with subscript s € S in an index set. If V; has
partial order generated by positive elements, then we write V; 5 and V; ;. to denote its
set of hermitian, resp. positive elements.

Remark A.1.3. If V), has partial order generated by its set V. of positive elements, then
Vi, = (V1)r® (V, )R using direct sum of real vector spaces. Since further V = (V) )r & (Vi)r
using decomposition as per Equation we say that V has partial order generated by
its set V. of positive elements in this case.

Proposition A.1.4. Let V be a complex vector space. We consider anti-linear involution
Y:V — V. Forall veV, we have Re(v),Im(v) € V};, and

v =Re(v) +iIm(v), y(v) =Re(v) — i Im(v). (A.1)
Proof. Apply anti-linearity of y. O

Definition A.1.5. Let V and W be complex vector spaces. We consider anti-linear
involutions YV :V — V and yV : W — W. Let ¢»: V — W be a linear map.

1) We call ¢ order-preserving if

1.1) ¢(Vy) < Wy,
1.2) v; <vgin Vj implies ¢(v1) < ¢p(ve) in Wy,

2) Assume Vj, and W}, have partial orders generated by positive elements. We call ¢
positivity-preserving if ¢(V,)c W,.

Proposition A.1.6. Let V and W be complex vector spaces. We consider anti-linear
involutions vV :V —V and yW :W — W. Let ¢: V — W be a linear map.

1) ¢ is order-preserving if and only if poyV =yV 0.

2) If Vy, and Wy, have partial orders generated by positive elements, then ¢ is order-
preserving if and only if ¢ is positivity-preserving.

Proof. We have ¢(Vy,) c Wy, if and only if ¢p(Re(v)) = Re(¢p(v)) and ¢p(Im(v)) = Im(¢p(v))
for all v € V. This implies 1). Get 2) since V, = (Vo )r® (Vi)r and Wy, = (W) p® (Wi)r
generate the respective partial orders. O

Bounded and unbounded operators. For spaces of bounded operators, we fix
notation. This includes operator topologies used throughout our discussion. For spaces
of unbounded operators, we fix notation, set partial order in Definition and give
twisting maps of Hilbert space isometries in Definition We collect properties of
such twisting maps in Proposition
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Definition A.1.7. Let (V,].|ly) and (W, |.|lw) be Banach spaces.

1) Let 2B(V,W) be the set of all (|| [lv, II.lw)-bounded operators and let ||.llzzv w) be its
operator norm.

2) Set B(V):=2AB(V,V) and Iy :=idgy). We call V* := B(V,C) Banach dual of V.
Notation A.1.8. Unless stated otherwise, we suppress Banach space norms.

Operator norms determine uniform operator topology, also called norm topology. Let
H be a Hilbert space. We equip %(H) with several other operator topologies aside from
the uniform one: the o-strong and o-weak, as well as the strong and weak operator
topology. For details on these operator topologies, we refer to Chapter I1.2 in [192].

Notation A.1.9. For a normed vector space (V, ||.|lv), let v = ||.||y-limgex vz denote norm
convergence of nets in V and u = w*-limpcg 1, denote w*-convergence of nets in V*. For
a Hilbert space (H,||.|x), let x = s-limpcx x; denote strong and x = w-limpcx x; denote
weak convergence of nets in %(H).

Remark A.1.10. The o-strong and strong topologies are equivalent on norm bounded
sets (cf. Lemma I1.2.5 in [192]). Equally, the o-weak and weak topologies are.

For details on elementary unbounded operator theory, we refer to [[171].

Definition A.1.11. Let H be a Hilbert space, %#%(H) the set of all unbounded operators
on H, and % %(H);, the set of all self-adjoint unbounded operators on H.

1) For all T,S € %%(H)p, set T = S if and only if

1.1) dom7T cdomS,
1.2) (T(w),u)y =(S(u),u)y for all u € domT.

2) We call T € %%B(H)y, positive if (T(u),u ), =0 for all u € domT. Let %%(H), be
the set of all positive unbounded operators on H.

Remark A.1.12. We equip %%(H) with canonical addition and scalar multiplication
(cf. Chapter 5 in [171]]). We obtain complex unital semi-module % 2(H) satisfying all
vector space axioms except additive inverses. Linear maps, inclusions and proper cones
are defined as for complex vector spaces. Functional calculus shows %%B(H).. c % B(H);,
is a proper cone generating partial order defined as per 1) in Definition |A.1.11

Definition A.1.13. Let Hy and H; be Hilbert spaces. Let ¢ : Hy — H; be a linear or
anti-linear isometric isomorphism. For all T € % %(H), we define ([)T(T) € UB(H) as

1) dom¢'(T):={ueH;y | ¢p~(u)edomT},
2) ¢T(T)(w):=¢(T(p~1(w))) for all u € dom (7).

This defines map ¢' : % B(Hy) — UBH1) by T — ¢'(T). Using ¢~ : H; — Hy defines
map ¢~ : UBH1) — URBH) by T — ¢~ (T) := (¢~ H(T).
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Proposition|A.1.14|{shows twisting preserves standard operations for densely defined
closable unbounded operators if they are defined in the domain.

Proposition A.1.14. Let ¢ : Hy — H; be a linear or anti-linear isometric isomorphism
of Hilbert spaces.

1) We have bijective linear maps ¢" and ¢~7 = ((/)_l)T = ((bT)_l.
2) If T € UPB(Hy) is densely defined closable, then </>T(T) € UBH) is.

3) Let T,S € %%B(H) be densely defined closable s.t. T+S and T'S are densely defined
closable. For all 1g,A1 € C, we have

3.1) ¢I(T*)=¢"(T)*,

3.2) ¢' (AT +A1S) = A" (1) + 11gT(S),

3.3) ¢'(TS) =9 De1(S).
Proof. Since ¢ is anti-linear if and only if ¢! is, we assume ¢ is linear without loss of
generality. Get 1) by construction. Let T' € %%(H,). Written as graph, </>Jr maps T to

¢'(1) ={ (¢(w), (T (W) € pdomT) x Hy | u € domT}. (A.2)
Equation [A.2]shows 2) and 3) because ¢ is isometric isomorphism of Hilbert spaces. [

A.1.2 C*- and W*-algebras

Standard references for the theory of C*- and W*-algebras are [29] and [192][|193][194].
We use [134]][135] and [173] as supplement. Moreover, [38] focuses on the approximately
finite-dimensional, or AF-C*-setting, and [78]] is a source of examples.

C*-algebras. The C*-identity, i.e. Equation defines C*-algebras. It imposes
a rigid structure on such Banach *-algebras. All *-homomorphisms of C*-algebras are
bounded of norm at most one, and isometries if injective. Thus all *-isomorphisms of
C*-algebras are isometries, hence a *-algebra has at most one C*-norm.

Definition A.1.15. Let (A, ||.||4) be a Banach *-algebra. It is unital if it has unit 14 € A.

1) The hermitian, resp. positive elements in A are

Ah::{x€A|x:x*},A+::{x€Ah|EIy€A:x:y*y}. (A.3)

2) The hermitian, resp. positive bounded functionals on A are
A; = {MEA* |VxeA: p(x*x)e IR}, A= {/JEAZ | VxeA: ,u(x*x)ZO}. (A4)
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3) A is a C*-algebra if all x € A satisfy the C*-identity

lx*xlla =l (A.5)

Notation A.1.16. Let A be a C*-algebra. Rather than hermitian, we say that x € Aj, is
self-adjoint and call u€ A} real.

Example A.1.17. For all Hilbert spaces H, its space (B(H), ||.|l ) of bounded and its
space (X (H), ||.ll a@r)) of compact operators are C*-algebras.

Example A.1.18. Let X be a locally compact Hausdorff space. Let Cy(X) be the set
of all continuous g : X — C vanishing at infinity. Pointwise operations equip it with
Banach *-algebra structure. For all g € Co(X), set [glloo := Sup,cx |g(x)|. We see Co(X)
equipped with |.||» is a C*-algebra. Up to natural isomorphisms [[153], all commutative
C*-algebras are of such form by Gelfand duality (cf. Theorem 1.3.11 in [192]). If X is
compact, then Cy(X) = C(X). Note Cp(X) equipped with |.| o is a C*-algebra.

We use standard definitions for *-algebras. Homomorphisms of *-algebras are called
*-homomorphisms. For C*-algebras, Proposition shows boundedness follows by
the C*-identity if *-algebra structures are preserved. This leads to Definition

Definition A.1.19. Let A and B be C*-algebras.

1) A *-homomorphism ¢ : A — B of C*-algebras is a *-homomorphism. If A and B
are unital, then ¢: A — B is unital if ¢(14) = 1p.

2) If A c B, then A is a C*-subalgebra of B if A c B is a *-homomorphism. If A and B
are furthermore unital, then A is a unital C*-subalgebra of B if A c B is a unital
*-homomorphism.

Example A.1.20. Let A be a C*-algebra and H a Hilbert space. We call 7: A — Z%(H)
a *-representation of A over H if it is a *-homomorphism. It is faithful if injective. It is
unital if A is unital and 7(14) = Iy, i.e. if it is a unital *-homomorphism.

Proposition A.1.21. Let ¢: A — B be a *-homomorphism of C*-algebras.
D ¢peB(A,B)and ll$lanp) <1
2) If ¢ is injective, then it is an isometry.
3) If ¢ is a *-isomorphism, then ¢~ is a *-isomorphism.

Proof. Proposition 1.5.2 and Proposition 1.5.3 in [[192] show 1), resp. 2) at once. Using
2), we directly verify 3). O

Proposition A.1.22. Let A be a C*-algebra. There exists Hilbert space H and faithful
*-representation mw: A — B(H). If A is unital, then we may ask 7 to be unital.

Proof. Apply Theorem 1.9.18 in [192]. O

292



Faithful *-representations of C*-algebras are direct sums of cyclic *-representations.
The latter arise as GNS-constructions, which are standard constructions associated to
positive functionals on C*-algebras (cf. Theorem 1.9.14 in [[192]). If we further demand
normality given W*-algebras, i.e. 0-weak closed C*-algebras, then we obtain semi-cyclic
*-representations (cf. Definition VII.1.5 in [193]]). Relevant to us are canonical left- and
right-actions associated to f.s.n. traces constructed in Subsection

Proposition A.1.23. Let A be a C*-algebra.

1) The partial order generated on Ay, by the proper cone A is given by

x=yox—-yeA, (A.6)

for all x,y € Aj. Using algebra involution as anti-linear involution on A, the set
A of positive elements generates the partial order.

2) The partial order generated on A; by the proper cone A} is given by

u=nou-neA; (A.7)

for all u,ne A,’;. Using pointwise conjugation as anti-linear involution on A*, the
set A, of positive elements generates the partial order.

Proof. Apply Theorem 1.6.1 and Proposition II1.2.1 in [192]. O

Definition A.1.24. Let A be a C*-algebra. We equip Aj with the partial order defined
by Equation resp. A; with the partial order defined by Equation

Remark A.1.25. If H is a Hilbert space, then partial order on %(H); given by 1) in
Definition|A.1.11]is the one fixed here by Definition |A.1.24] Note Example|A.1.47|shows
all *-homomorphisms are positivity-preserving. Altogether, we know partial orders on

C*-algebras reduce to Definition by Proposition and Proposition

We use three standard constructions for C*-algebras: generation, direct sums and
tensor products. Definition gives generated C*-algebras. Let A be a C*-algebra
and S c A. Let Poly(S) be the set of all finite polynomials with elements in S or S*. We
know Poly(S)* = Poly(S) c A by construction. For all n € N, set

Poly(S)" := {x € A | Hya¥j_, <Poly(S): = [[ e }- (A.8)
k=1

Note Equation implies the complex linear span Cj(S) := (UpenPoly(S)")c < A is in
fact a *-subalgebra. The C*-identity is therefore inherited from A.

Definition A.1.26. Let A be a C*-algebra. For all S c A, we call C*(S) := CS(S)”'”A the
C*-algebra generated by S. If {Sk}Z:1 c P(A), then set C*(S1,...,S,) := C*(Urex Sk).
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Definition gives direct sum C*-algebras. Let m € N. For all n € {1,...,m}, let
Aj be a C*-algebra. Let @' A, be the direct sum of Banach spaces. Thus

lxller 4, = max llxplla, (A.9)

for all x = (x1,...,x,) € &' | A,. Multiplication and adjoining is defined on summands.
Equation[A.9 ensures the C*-identity.

Definition A.1.27. Let m € N. For all n € {1,...,m}, let A,, be a C*-algebra. We call
@™ A, the direct sum C*-algebra of {A,}™ ;.

Definition gives tensor product C*-algebras. Note we assume nuclearity of at
least one factor (cf. Definition XV.1.4 in [[194]). This ensures unique cross norms up to
*-isomorphism. For details on C*-tensor products, we refer to Section IV.4 in [192]] and
Chapter 11 in [135]. The latter discusses infinite tensor products.

Let A be a C*-algebra and B a nuclear C*-algebra. We construct minimal C*-tensor
product A ® B := A ®,in B via norm closure of algebraic tensor product A ® B under the
unique norm satisfying the cross norm identity

lx®yllaes =lxllallyls (A.10)

for all x € A and y € B. Multiplication and adjoining are defined on factors and therefore
elementary tensors. Equation ensures the C*-identity.

Definition A.1.28. Let A be a C*-algebra A and B a nuclear C*-algebra. We call A®B
the C*-tensor product of A and B.

Remark A.1.29. We are able to tensor suitable bounded linear maps via the algebraic
tensor product, in particular bounded linear functionals and *-homomorphisms. Both
sets of linear maps are stable under C*-tensoring.

W*-algebras. Upon faithful *-representation, closures of C*-algebras in o-weak
operator topology are unital C*-algebras. This defines W*-algebras concretely but it is
their *-algebra structures which determine o-weak operator topology. Definition [A.1.31]
gives an equivalent abstract definition as C*-algebras which are Banach duals. Their
pre-duals are unique up to isometric isomorphism, including noncommutative L!-spaces
of tracial W*-algebras as per Definition Upon faithful normal *-representation
as per Proposition the induced w*-topology is o-weak operator topology.

Remark A.1.30. Proposition for weakly continuous faithful *-representations as
per Proposition shows normality of *-representations is continuity w.r.t. w*- and
o-weak operator topology. Unitality is not necessary.

Definition A.1.31. Let M be a C*-algebra. We say that M is a W*-algebra if there
exists a Banach space M, s.t. M = (M ,)*. In this case, we call M, the pre-dual of M.
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Remark A.1.32. If M is a W*-algebra, then M., is unique up to isometric isomorphism
of Banach spaces (cf. Corollary I11.3.9 in [[192]).

Example A.1.33. In Subsection we cover tracial W*-algebras. Their pre-duals
are noncommutative L!-spaces. Fundamental example is B(H) = SY(H)* for a Hilbert
space H and S(H) its trace-class operators. The o-weak operator topology is defined as
the w*-topology on (H) = S1(H)* in this case. This mirrors the commutative case of X
a locally compact Hausdorff space and .4/ a o-ideal of null sets of the Borel o-algebra
B(X). We define W*-algebra L>*(X, /) using ||.||sc modulo .4, i.e. essential supremum.
If &/ =N, for pe C.(X)* as per Riesz—Markov—Kakutani theorem (cf. Theorem 6.3.4 in
[171]), then we know L*(X, u) := L™(X, A},) = Ll(X,p)* depending only on .A4,.

Proposition A.1.34. Let M be a C*-algebra. M is a W*-algebra if and only if M is
unital and there exists a faithful unital *-representation m : M — 9B(H) satisfying one of
the following:

1) n(M)=n(M)"
2) n(M) is (o-)strongly closed,
3) (M) is (o-)weakly closed.

If M is a W*-algebra, then there exists a faithful unital *-representation mw: M — JB(H)
s.t. the w*-topology on M = (M ,)* is the g-weak operator topology on n(M) c B(H).

Proof. For all Hilbert spaces H and S c %(H), let S’ € %(H) be the commutant of S.
Theorem I1.3.9 and Theorem III.3.5 in [192] show all claims, with exception of the weak
topologies on M and (M) coinciding. Theorem 7.4.2 in [[135] shows the latter. O

Proposition |A.1.49| states o-weak continuity is normality as per Definition |A.1.44
for completely positive maps as per Definition Note Example shows all
*-homomorphisms are completely positive. Thus we see all o-weakly *-homomorphisms
are normal, hence all those faithful unital *-representations weakly continuous as per
Proposition are also normal, i.e. Remark [A.1.30] Altogether, we know normality
as per 1) in Definition is a special case of Definition If we consider any
W*-subalgebras as per 2) in Definition then we do not assume unitality unless
stated otherwise. For details on the choice of unit, we refer to Subsection B.2.2

Definition A.1.35. Let M and N be W*-algebras.

1) A normal *-homomorphism ¢ : M — N of W*-algebras is o-weakly continuous
*-homomorphism.

2) If Nc M, then N is W*-subalgebra of M if N ¢ M is normal *-homomorphism. If
it is also unital, then N is a unital W*-subalgebra of M.

Standard constructions for C*-algebras specialise to W*-algebras. The direct sum
construction is unchanged. Definition gives generated W*-algebras by o-weak
closure of generated C*-algebras. Definition gives tensor product W*-algebras.
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Definition A.1.36. Let M be a W*-algebra. For all S < M, we call W*(S):=C; S)" the
W*-algebra generated by S. If {Sk}Z:1 c P (M), then set W*(S1,...,S,) := W*(Urerx Si).

Proposition A.1.37. For all unital C*-algebras A, we have A = C*(%(A)) for the set
U(A) :={x € A | x* = x~1} of unitary operators in A. For all W*-algebras M, we have
M =W*(P(M)) for the set P(M) :={p € M}, | p? = p} of projections in M.

Proof. Let A be a unital C*-algebra. For all x € Ay, C(specs x) = C*(%(C(specy x))) by
Stone-Weierstrass [171]]. Since 2 (C(specagx)) < %(A) in each case, decomposing into
real and imaginary parts shows A = C*(%(A)). Let M be a W*-algebra. We readily see
M = C*(%(M)) by unitality. Theorem 5.2.5 in [134]] implies (M) c C*(P(M)). Thus we
combine both to M < C*(P(M)), hence M = W*(P(M)) as claimed. O

For our discussion, it commonly suffices to have bounded linear maps preserving
strong or weak convergence of uniformly bounded nets. Proposition |A.1.49|shows such
bounded convergence is equivalent to normality if we assume complete positivity.

Proposition A.1.38. Let M be a W*-algebra, S « M a *-subalgebra and S its strong
closure. For all x € S, there exists net {xp}reg < S s.t.

x =s-limxg, sup gy < llxlam. (A11)
keK reK

Proof. If x =0, then x € S. If x # 0, then the Kaplansky density theorem yields a net as
claimed up to rescaling by a positive constant (cf. Theorem 5.3.5 in [134]). O

Definition A.1.39. Let M be a W*-algebra. We call a net {x3}zcx € M bounded strongly
convergent if it is bounded and converges strongly, resp. bounded weakly convergent if
it is bounded and converges weakly.

Notation A.1.40. Let x = bds-limycx x;, denote bounded strong and x = bdw-limpcx x2
bounded weak convergence of nets.

Remark A.1.41. The uniform boundedness principle shows bounded strong and strong
convergence coincide on sequences (cf. Theorem 2.2.9 in [171]). Equally, bounded weak
and weak convergence coincide on sequences.

Definition A.1.42. Let ¢): M — N be a bounded linear map of W*-algebras.

1) We call ¢ bounded strongly continuous if for all nets {xz}rex € M, x = bds-limpeg x7,
implies ¢(x) = bds-limzeg P(xp),

2) We call ¢ bounded weakly continuous if for all nets {xz}rex € M, x = bdw-limpeg xp,
implies ¢(x) = bdw-limpcx Pp(xz).

Remark A.1.43. Definition|A.1.42/extends to bounded multi-linear maps. We commonly
use multiplication in W*-algebras is bounded strongly continuous and therefore further
sequentially strongly continuous by Remark|A.1.41
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Normal, completely positive and completely Markovian maps. We consider
properties of bounded linear maps of C*- and W*-algebras. Completely positive normal
bounded linear maps of W*-algebras are continuous in all operator topologies we use
and stable under tensoring. Examples are positive bounded normal functionals on and
normal *-homomorphisms of W*-algebras, as well as compression maps. The notions of
completely positive map and completely Markovian map are used to define completely
Markovian semigroups [83][|85]1[86] describing irreversible time-evolution of dissipative
quantum systems weakly coupled to a heat bath [[35][36][82][121][163]1[188]. For details
on the latter, we refer to Subsection [3.2.2

Normality is preservation of suprema under a given map. Unique suprema exist
for W*-algebras. For all bounded increasing nets {x3}rcx < M} in a given W*-algebra
M, we have unique supremum sup.x X € M} in partial order. We furthermore have
SUPpeg Xk = S-limgeg x in M. Lemma 5.1.4 in [134] shows both statements.

Definition A.1.44. Let ¢ : M — N be a positivity-preserving bounded linear map of
W*-algebras. We call ¢ normal if for all bounded increasing nets {xz}rex < M, get

([)(sup xk) = sup ¢P(xz). (A.12)
keK keK

In the general noncommutative setting, positivity-preservation is not stable under
tensoring. The latter requires complete positivity. For all completely positive maps of
W*-algebras, Proposition shows normality is equivalent to o-weak continuity.
Example therefore leads to Definition Full matrix algebras are nuclear
C*-algebras. For all n e N, let I,, € M,,(C) be the identity. For all bounded linear maps
¢ : A — B of C*-algebras, the bounded linear maps ¢ ®idy, c): A®M,(C) — BeM,(C)
of C*-algebras obtained for all n € N are determined on algebraic tensor products.

Definition A.1.45. We call a bounded linear map ¢ : A — B of C*-algebras completely
positive if ¢ ®idys, (c) : A ® M,(C) — B ® M,,(C) is positivity-preserving for all n € N.

Example A.1.46. All positivity-preserving bounded linear functionals y: A — C of
C*-algebras are completely positive (cf. Corollary IV.3.5 in [192]).

Example A.1.47. If ¢ : A — B is a *-homomorphisms of C*-algebras, then ¢(x*x) =
P(x)* Pp(x) for all x € A ensures ¢ is positivity-preserving. Since each ¢ ®idys, (c) itselfis a
*-homomorphism if ¢ is, *~-homomorphisms are completely positive. Proposition
shows o-weak continuity is normality, i.e. Equation for *-homomorphisms.

Example A.1.48. Let M be a W*-algebra and p € M a projection. We obtain W*-algebra
MIlpl:= pMp and define positivity-preserving compression map com, : M — M[p] by
setting com, x := pxp for allx e M. For allneN, p® I, € M ® M,(C) is a projection and
com, ®1idypy, (c) = com,er, upon repeat construction. Thus com,, is completely positive. We
define compression maps in Definition Note 2) in Proposition shows com,,
is the unique noncommutative conditional expectation from M to M|[p].
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Proposition A.1.49. For all completely positive maps ¢ : M — N of W*-algebras, the
following are equivalent:

1) ¢ is normal,

2) ¢ is o-weakly continuous,

3) ¢ is o-strongly continuous,

4) ¢ is bounded weakly continuous,

5) ¢ is bounded strongly continuous.

Proof. Proposition II1.2.2.2 in [29] shows 1) to 3). As ¢ is bounded, the unit ball in M
is mapped to a bounded ball in N. Note o-strong and strong, as well as o-weak and
weak topologies are equivalent on norm bounded sets of W*-algebras (cf. Lemma I1.2.5
in [192]). For all bounded increasing nets {xz}rcx = My, Supgcg X is the o-strong and
therefore o-weak limit of {x3},cx. Equivalence of 1) and 4), as well as 1) and 5), thus
hold by equivalence of the operator topologies on norm bounded sets. O

Remark A.1.50. By Remark|A.1.41|and Proposition|A.1.49, completely positive normal
bounded linear maps of W*-algebras are sequentially strongly and sequentially weakly
continuous. We use this throughout our discussion.

We refer to Section IV.4 in [192] for details on W*-tensor products. We do not assume
nuclearity for tensor products of W*-algebras as their construction uses unique minimal
C*-tensor products. Let M and N be W*-algebras. Their minimal C*-tensor product is
M ®nin N. Let M, and N, denote their respective pre-dual. Get M, © N, ¢ (M ®pin N)*
for the algebraic tensor product of pre-duals by letting

(Len)(x®y):= p)n(y) (A.13)
forall uy@neM,®N, andx®ye M Qpyin N.

Definition A.1.51. Let M and N be W*-algebras. Set

M.,®N,:=M,.0oN, c(M®pp, N)* (A.14)
using norm closure. We call M @ N := (M. ® N.)* the W*-tensor product of M and N.

Lemma A.1.52. Let ¢: Mo — M1 and v : Ng — N1 be completely positive normal maps
of W*-algebras. We define completely positive normal map ¢ v : Mo® Ny — M1®N; by
setting (p@Y)(x®y) :=px)®@y(y) for all x € My and y € N.

Proof. By Proposition|A.1.49, this is Proposition IV.5.13 in [[192]. O
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Corollary A.1.53. Let ¢: My — M; and v : Ng — Ny be normal *-homomorphisms of
W*-algebras. We define normal *-homomorphism ¢ @y : My® Ng — M1 ® N1 by setting
(o) xey):=dx)yw(y) for all x € My and y € Ny. If ¢ and v are unital, then ¢p @y is.

Proof. Example |A.1.47| and Lemma [A.1.52| yield completely positive normal ¢ ® . By
Proposition and Proposition ¢ ® ¥ intertwines adjoining and is o-strongly
continuous. This is equivalent to bounded strong convergence for bounded nets. Let
S be the linear span of all elementary tensors. By strong density, Proposition
shows My® Ny is the bounded strong closure of S. As multiplication is bounded strongly
continuous and ¢®v is bounded, we directly verify our claim on elementary tensors. [J

Definition A.1.54. We call a completely positive map ¢: A — A of unital C*-algebras
Markovian if ¢(x) < [lx[|la14 for all x € A.. We call such maps completely Markovian if
¢®idys, c): A®M,(C) — A e M,(C) is Markovian for all n € N.

A.1.3 Functional calculus

Standard references for continuous and bounded measurable functional calculus for
C*-, resp. W*-algebras are [[134] and [[192]. Standard references for spectral integration
and functional calculus of self-adjoint unbounded operators are [[171] and [[184].

Integration of spectral measures. Let H be a Hilbert space. Spectral measures
of self-adjoint unbounded operators on H are projection-valued measures taking values
in (H). Image lattices of projections are noncommutative Borel o-algebras.

Notation A.1.55. For all n € N and Borel measurable X < C”, let 5(X) denote the Borel
o-algebra of X. Let yz denote the characteristic function of a set Z < C".

Definition A.1.56. Let X € B3(C"). A map E :*B(X) — %B(H) is a spectral measure on
X with values in (H) if

1) E(X)=1 and E(Z) is a projection for all Z € B(X),
2) Z— E“(Z):=(E(Z)u),u) is a measure on X for all u € H.

Let E be a spectral measure on X. Its support suppE is the set ofall x € X s.t. E(N,) #0
for all open neighbourhoods N, of x. Its null ideal is A (E):={Z € B(X) | E(Z) = 0}.

Spectral measures E : ‘B(R) — ZB(H) map bijectively to resolutions of the identity
{E((—00,AD}ser (cf. Theorem 4.6 in [184]). A spectral measure E : B(R) — %(H) is thus
determined by its resolution of the identity {E((— oo, A1)} 1cr.

Proposition A.1.57. For all spectral measures E on X € *8(C"), we have
1) E" is a finite measure for all u€ H,
2) suppkE is minimal among closed Z € B(X) s.t. E(Z)=1g.

Proof. By definition of spectral measures. O
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The null ideal A (E) of a given spectral measure E yields notions of E-a.e. defined
and E-a.e. finite map. The set of all E-a.e. finite maps g : X — C is the domain of
spectral integration w.r.t. E.

Definition A.1.58. Let E be spectral measure on X € B(C"). Let #(F) denote the set
of all E-a.e. defined Borel measurable g : X — C s.t. |g| is E-a.e. finite. We say that
{Zp}ren € B(X) is a bounding sequence for 4 c #(E) if

1) Z,cZp,q forall keN and E(UpenZr) =1,
2) |glz,| is bounded for all %z € N.

Remark A.1.59. For all spectral measures E on X € 8(C") and finite ¢ c .#(E), there
exists a bounding sequence (cf. Subsection 4.3.2 in [[184]]).

Let E be a spectral measure on X € ‘B(C"). We define spectral integration as per
Lemma 4.11 and Theorem 4.13 in [184]. Theorem 4.16 and Subsection 4.3.3 in [[184]
show fundamental properties. For all simple functions g =%}, ¢; ¥z, on X, the spectral
integral of g w.r.t. E is defined by

Ig(g):=)_ ciE(Z)). (A.15)
=1

Lemma 4.11 in [184] states |Ig(2)ll %@ < sup,cx |g€(x)| in each case. Density of simple
functions in uniform norm extends spectral integration w.r.t. E to all bounded Borel
functions on X. For all bounded Borel functions g : X — C and simple functions {g,},en

on X |.llo-converging to g, get Ig(g) = |I.ll g -lim,enIE(Z 7).
Let g € #(E). The domain of Ig is defined by

domIE(g)::{ueH| f |g(x)|2dEu<oo}. (A.16)
X

For all u € H, we have u € domIg(g) if and only if

Ip(@)@):= |1 g-lim Iz (gxz,)(w) (A.17)

exists for a bounding sequence {Z}}en of g. If u € domIg(g), then Ig(g)(u) exists and is
independent of choice of bounding sequence of g by Theorem 4.13 in [[184].

Definition A.1.60. Let E be a spectral measure on X € B(C"). For all g € #(E), we call
J gdE :=1g(g) the spectral integral of g w.r.t. E.

Remark A.1.61. Let g € #(E). Its domain as per Equation and the identity

(IE(g)(u),u>H=fXg(x)dE” (A.18)

for all u € domIg(g), i.e. IIIE(g)(u)II%I =[x lg(x)|?dE" < 0o, determine Ig(g).
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Proposition A.1.62. Let E be a spectral measure on X € B(C"). For all g € #(E), Ig(g)
is a closed normal operator s.t. Ig(g)* =1g(g) and 1g(g)*1g(g) =1g(g)Ir(g)* =1g(gg).

Proof. Apply Theorem 4.16 in [184]. O

Remark A.1.63. Proposition|A.1.62|defines invertible map E — Ig(idg) from all spectral
measures E : B(R) — B(H) to U%B(H);,. Note invertibility is the spectral theorem for
self-adjoint unbounded operators (cf. Theorem 5.7 in [[184]).

Bounded measurable functional calculus. Functional calculus of self-adjoint
unbounded operators is based on the use of spectral measures. We construct these using
bounded measurable functional calculus for W*-algebras. The latter in turn extends
continuous functional calculus for unital C*-algebras.

The choice of unit matters. If a Banach *-algebra is unital, then the unit is unique.
If however N ¢ M is a W*-subalgebra s.t. 15 # 1,7, then all normal elements in N have
two a priori distinct bounded measurable functional calculi. Equation [A.19 shows how
they may differ. If they differ, then they differ only at zero but generate distinct spectral
measures. This impacts spectral integration, in particular taking inverses.

Definition A.1.64. Let B be a unital C*-algebra. For all C*-subalgebras A c B, we call
A[lg]l=C*(A,1p) the unitalisation of A in B.

Proposition A.1.65. Let A and B be unital C*-algebras and A c B a C*-subalgebra. If
A c B is not a unital C*-subalgebra, then A[1g]=A & (1p—14)c.

Proof. Get1g—14€Allgland (13—14)A=A(1g—14)=0.Thus A& {1p—14)c. ]

Definition A.1.66. Let A be a C*-algebra.

1) We call x € A normal if x*x = xx*.

2) Let A be unital. Set GL(A):={xe A | x~ ! € A}. For all normal x € A, its spectrum
in A isspecax:={1€C|x—A1 ¢ GL(A)}.

Lemma states continuous functional calculus for unital C*-algebras. For all
normal x € A in a unital C*-algebra A, Example explains how C(specy x) is a
C*-algebra using uniform norm.

Lemma A.1.67. Let A be a unital C*-algebra. If x € A is normal, then
1) specyx c C is non-empty and compact,
2) there exists unital *-isomorphism I'y 4 : C(specg x) — C*(x,x*,14),
3) T’y A is determined by unitality and T'x A (idspec " x) =x.

Proof. Get 1) by Proposition 1.4.2, resp. 2) and 3) by Proposition 1.4.6 in [192]. O
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Remark A.1.68. Let x € A be normal. We call I'; 4 the continuous functional calculus of
xin A. For all x € C(speca x), set g(x) :=I'y a(g). We adopt analogues convention for all
functional calculus. If specg x € X < C for locally compact Hausdorff X, then g(x) = A(x)
for all g,h € Co(X) s.t. glspecyx = Plspecy x-

Corollary |A.1.69| shows continuous functional calculus extends uniquely to normal
elements in non-unital C*-algebras if we restrict to functions vanishing at zero. Note it
further shows choice of unit only involves values at zero.

Corollary A.1.69. Let B be a unital C*-algebra and A c B a C*-subalgebra. If x € A is
normal and 7 : A — PB(H) a faithful *-representation, then

1) specpx \ {0} = specga) w(x) \ {0},
2) T'yp(g) € A and 7(Tx,(8)) = T'nw) 2)(8) for all g € Co(specgen n(x) \ {0}).

Proof. Get 1) by Proposition Instead of specg) m(x) \ {0}, we consider compact
K c Cs.t. {0}uspecp xUspecg) 1(x) < K as per Remark|A.1.68] If g is a polynomial on K
vanishing at zero, then it is expressed without the constant function. Thus I'; g(g) € A
and (I, B(g)) = I'n),2@)(g) by Lemma If g € C(K) vanishes at zero, then we
approximate g uniformly in norm by polynomial on K vanishing at zero. We conclude
by boundedness of *-homomorphisms. O

Corollary A.1.70. Let A be a C*-algebra. For all x € A, we have

1) x€ Ay, if and only if specax <R,
2) x€ A, if and only if speca x < [0,00),

3) x=x4—x_ for x; :=max{x,0},x_ := —min{x,0} € A, if x € Ay,

Proof. By Corollary [A.1.69, we assume A is unital without loss of generality. Thus 1)
and 2) are Proposition 1.4.3 and Theorem 1.6.1 in [192]. Writing g(x) :=I', a(g) in each
case, we see 3) is decomposition in Proposition |A.1.23|to have proper cone. O

Lemma[A.1.72) extends to bounded measurable functional calculus. Corollary[A.1.93|
shows bounded measurable calculus of self-adjoint elements is preserved under normal
unital *-homomorphisms. In the proof of Lemma abstract spectral measures
yield bounded measurable functional calculus. Note functional calculus of self-adjoint
unbounded operators instead uses concrete ones as it assumes faithful normal unital
*.representations as per Remark in general. In Subsection we unify these
approaches for spaces of measurable operators.

Proposition A.1.71. If N c M is a unital W*-subalgebra, then N[1p/1=N.If N c M is
a non-unital W*-subalgebra, then N[1y]1=N & (131 —1n)c.

Proof. Proposition Note C*-direct sums of W*-algebras are W*-algebras. O
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Lemma A.1.72. Let M be a W*-algebra. If x € M is normal, then there exists unique
o-ideal Ny y of null sets of the Borel o-algebra *5(specysx) s.t.

1) (L°°(specprx, Nem), ll-loo) is @ W*-algebra s.t. C(specy x) is o-weakly dense,

2) Ty m extends to a normal unital *-isomorphism

Lo : L(specax, Ny pr) — Wip(x) := W™ (x, 2™, 1pp), (A.19)
3) I'x m is determined by unitality and I'y p (idspech) =x.

Proof. Let x € My, For details and the normal case, we refer to Section 5.2 in [[134]. Let
7 : M — 9B(H) be faithful normal unital *-representation. Following Theorem 5.2.2 in
[134]], get unique resolution of the identity in 28(H) associated to x. It determines unique
spectral measure E, p : °B(R) — Z8(H). Pulled-back along 7, uniqueness implies E 3/
is independent of our choice of faithful normal *-representation.

Let N m :=1{Z € BM) | E,m(Z) = 0}. Intersecting with specyrx shows A,y is a
o-ideal of null sets of the Borel o-algebra B(specy;x). Following the construction in
Example get W*-algebra L®(specysx, Ny m) s.t. C(specyrx) < L®(specyrx, Ny mr)
is o-weakly dense. This shows 1). For 2), see [134]. Get 3) by Lemma [A.1.67 O

Definition A.1.73. Let M be a W*-algebra. For all normal x € M, we call

1) T'x m as in Equation the bounded measurable functional calculus of x in M,
2) Wj,(x) as in Equation the W*-algebra generated by x in M.

Notation A.1.74. Unless stated otherwise, we suppress W*-algebras in subscripts of
spectral measures, spectra, bounded measurable functional calculus and generated
W*-algebras. We extend to measurable operators in Notation|B.1.79

Functional calculus of self-adjoint unbounded operators. Let H be Hilbert
space. For all normal T € 8(H), the map Z — E7(Z) := yz(T) defined on ‘B(C) is spectral
measure on C with values in Z8(H). We extend to self-adjoint unbounded operators.

Let T € %%(H);,. We call B(T) :=T(1 + Tz)_% € %B(H) its bounded transform [|184].
We have specBr c[—1,1]. For all t €[-1,1], set

[l

ot):=t(1-12) 2. (A.20)

Note ¢ is Ep(r)-a.e. finite measurable and invertible on [-1,1]. Formally, B(T) = (p_l(T)
by change of variable ¢ — T in Equation For all Z € B(R), set

Er(Z) 3:EB(T)((P_1(Z))- (A.21)
Equation defines spectral measure E7 : B(R) — 2(H) [184].
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Definition A.1.75. Let T € %%(H);,.
1) We call Er the spectral measure of T.
2) For all ge L (ET), set

I'r(g):=g(T):=1g,(g)= f gdEr. (A.22)

3) Wecall I'y: L (Er)— %%B(H) the functional calculus of T'.

Remark A.1.76. Note B(T) js denoted by Zr in [184]. Instead of B(T'), [171] uses the
Cayley transform C(T) := % € B(H). The induced spectral measure is E7. Thus B(T)
and C(T') define identical spectral measure, hence functional calculus.

Theorem 5.9 and Proposition 5.10 in [184]] collect elementary properties of functional
calculus. The spectral theorem for self-adjoint unbounded operators further shows each
E7:B(R) — %(H) is the unique spectral measure s.t. T =Ig,(idg) = [¢dET.

Functional calculus restricts to bounded measurable functional calculus. This uses
spectra of densely defined operators. For self-adjoint unbounded operators, spectra are
the support of spectral measures. Definition[A.1.66]is subsumed if we are given faithful
normal unital *-representation. Unitality is necessary.

Definition A.1.77. Let T be a densely defined closable operator on H. Its resolvent set
isrslT:={1eC | (T-AI)"! e B(H)} and its spectrum is spec T :=C\rsl 7.

Remark A.1.78. For all faithful normal unital *-representation 7 : M — ZB(H) of a
W*-algebra M, get specysx = spec 7(x) for all normal x € M.

If T e UB(H);, then specT cR and +i €rslT. For all g € C(specT), get spec g(T) =
g(specT) c R by the spectral mapping theorem (cf. Proposition 5.25 in [184]]). If more-
over g,g 1 € C(spec T), then spec g(T) = g(spec T).

Proposition A.1.79. If T € % %B(H);, then suppEr =specT cR.
Proof. Proposition 5.10 in [184]. O
Definition A.1.80. Let T € %%(H);,.

1) Let a € C. For all z€ C\ {a}, set

Ro(2):=(z—a) . (A.23)
IfaerslT, then R,(T) € B(H) is the resolvent of T in a.
2) Set L°°(specT,dE ) := L>®(specT, N (ET)).

Notation A.1.81. For all T' € %%B(H);,, let R.;(T) denote both R;(T) or R_;(T). Note
+i € C\R lies in the resolvent set of all self-adjoint unbounded operators.
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Let T € %%(H);, and g € #(E ). Bounding sequences let us write g(7T') as pointwise
.l z-limit. For all Z € B(R), note Equation ensures g(TE1(Z) = (gxz)(T). For all
u € H, we have u € domg(T) if and only if

8(T)(w) = ||-||H'}€ig,1\|1g(T)ET(Zk)(u) (A.24)

exists for a bounding sequence {Z}1cn of g. In fact, Equation is Equation for
spectral integration w.r.t. E7. If u € dom g(T'), then g(T)(u) exists and is independent of
choice of bounding sequence of g by Theorem 4.13 in [[184].

Proposition A.1.82. For all T € %B(H)y, W*(B(T)) =W*(C(T)) = W*(R4;(T)).

Proof. Following Remark|A.1.76, we know W*(B(T)) = W*(C(T)). Since we further have
R.; € L®(specT,dET), get R.;(T) € W*(C(T)) by Theorem 5.3.8 in [[171]. We directly
verify C(T) = R;(T)R_;(T) and get W*(C(T)) = W*(R;(T),R_;(T)) =: W*(R +;(T)). O

Definition A.1.83. For all T' € %#%(H);,, we call W*(T') := W*(B(T')) the W*-algebra
generated by T'.

Remark A.1.84. If T € B(H);,, then W*(T) =W, ., (T) = W*(T,Ip).

If T € %PBH);, then I't restricts to L®(spec T',dE ). Proposition |A.1.85| uses the
latter to formulate bounded measurable functional calculus.

Proposition A.1.85. Let T € U%B(H)y,.
1) We have normal unital *-isomorphism I'p : L®(spec T, dE 1) — W*(T).
2) If M c B(H) is a W*-subalgebra s.t. Er(Z) e M for all Z € B(R), then W*(T)c M.

Proof. Since W*(T) = W*(C(T)) by Proposition we use the functional calculus
in [171]. W*(T) = W*(T)" by Proposition Since T is self-adjoint, Lemma 5.2.8
and Theorem 5.3.8 in [171] therefore show 1). In the setting of 2), P(W*(T')) c P(M) and
Proposition[A.1.37)imply W*(T) = W*(P(W*(T)) c W*(P(M)) = M. O

Remark A.1.86. If 7 : M — 2(H) is a faithful normal unital *-representation of a
W*-algebra M, then moI'y 3y = I'n(y) for all x € Mj,. Unitality is necessary.

Bounded measurable functional calculus lets us test for injectivity by considering
the mass of {0} under E7 as per Remark

Remark A.1.87. Following Remark|A.1.61] note E7({0}) = y(o)(T) = 8o(T') is the Hilbert
space projection onto ker T since u € ker T if and only if suppE7. = {0} for all u € H.

Proposition A.1.88. If T € %%(H);, then T is injective if and only if E1({0}) = 0.

Proof. If T is injective, then get E7({0}) = 0 as per Remark If E7({0}) = 0, then
t — ¢t lis Ep-a.e. finite. Thus 7! is densely defined closed by functional calculus, hence
T is injective if E7({0}) = 0. O
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We use Lemma to directly verify affiliation with W*-algebras. Lemma
and Lemma |A.1.92| provide necessary and sufficient conditions for preserving bounded
measurable functional calculus.

Lemma A.1.89. If T € U%B(H);, and U € % (%B(H)), then we have TU =UT if and only
if [E7(Z),U]=0 for all Z € *B(R).

Proof. Assume TU =UT. Proposition[A.1.82]shows [R.;(T),U]= 0 yields [E1(Z),U]1=0
in each case. Note T =U*TU and UdomT c dom T imply R.;(T) = U*R.;(T)U. Thus
TU =UT implies [E7(Z),U] =0 for all Z € ‘B(R).

Assume [E7(Z),U]=0,ie. Ep(Z)=UEpU* for all Z € B(R). Thus E’} = E[:,{*v for all
veH, hence vedomT if and only if U*v € domT'. Get dom7T = domTU*. We also know
[g(T),U]l=0 for all g(T') e W*(T') since W*(T) is generated by all E(Z) for all Z € B(R)

by Proposition[A.1.37 and Proposition |[A.1.85] The spectral theorem and Equation
imply w € dom T if and only if there exists bounding sequence {Z}},cn of idg s.t.

Tw)= [ tdBy = I.1a-lim g (T)w). (A.25)

If w € domT, then the limit in Equation [A.1.89| exists and is independent of choice of
bounding sequence of idg. For all v € domT = domTU*, we see Equation implies
Tw)=U(l.llg-lim,engn(TYU* () =UTU*(v). Thus T=UTU"*, hence TU =UT. O

Definition A.1.90. Let Hy and H; be Hilbert spaces. Let M < %8(H() be W*-algebra and
¢ : M — PB(Hp) normal unital *-homomorphism. If T' € %%(Hy),, s.t. imE7 c M, then
we define the push-forward spectral measure ¢p(E 1) of T under ¢ by setting

PETNZ):=pET(Z)) (A.26)
for all Z € B(R).

Equation defines spectral measure ¢p(E7) : B(R) — PB(H;) if we are in the
setting of Definition |A.1.90, Lemma |A.1.92| shows push-forward spectral measures link
bounded measurable functional calculus across Hilbert spaces.

Lemma A.1.91. Let Hy and H1 be Hilbert spaces. Let M < B(H) be W*-algebra and
¢: M — PB(Hy) normal unital *-homomorphism. If Ty € UPB(Hy), and T € UB(H 1)y,
s.t. imEr c M and $p(g(To)) = g(T1) for all g € C.(R), then $p(E1,)=Er,.

Proof. Let A€ R, and {g}},en < Cp(R) s.t. sup,cnllgtll < 0o and y(—oo1(t) = limuen g (1)
for all £ € R. For all self-adjoint S on arbitrary Hilbert space H and u € H, E is finite
and we have

|(Es(( - o0, AD - g S @) = fR (Kmoot)(1) — g(0)2dEY (A27)
by functional calculus. Thus Eg(( — oo, A]) = s-lim,ep gﬁ(S ) by dominated convergence.
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Let {pplnen cCe(R) s.t. 0 < @, < pp+1 < 1forall n e Nand lim,en@,(¢) =1 forall £ eR.
Arguing as for Equation shows s-lim,en g2(S) = s-lim,en(g2 0,)(S). We therefore
assume {g,}nen € Ce(R) in Equation without loss of generality.

If p(E1,((—00,A])) = E7,((—00,A]) for all A € R, then ¢(E1,) = E7, as resolutions of the
identity are unique. We show the former by approximating in strong operator topology
as above. For fixed but arbitrary {g}},cn © C.(R) and for all n € N, note Equation
holds uniformly for all self-adjoint unbounded operators. Sequential strong continuity
of ¢ therefore implies

H(ETy((—00,A]) = s-1im ¢(gn(T0)
= S'}llg\Jlgn(Tl)
= ETl(( — 00, /1])

for all A € R. The above calculation uses Remark [A.1.10] O

Lemma A.1.92. Let Hy and Hq be Hilbert spaces. Let Ty € UB(H)y, and T € UPB(H1)y,.
If  :W*(Ty) — W*(T1) is a normal unital *-homomorphism s.t. (E1,) =Er,, then

1) specTy cspecTyand N (Er,) < N (ET,),
2) (,b(g(T())) = g(Tl) fOI‘ all g€ L°°(spec T(),dETO),

3) we have commutative diagram of normal unital surjective *-homomorphisms

r
L (spec To,dE7,) ——— W*(To)

J/res ¢ (A.28)

r
L>(specT1,dET,) N W*(Th)
with res the restriction map given by spec T1 < spec T).

Proof. We directly verify A (Er1,) c A (ET,). Since we have A € spec T'; = suppEr, if and
only if p(E1,(Ny)) = E7,(INy) # 0 for all open neighbourhoods N, of A, get 1) at once. If
g€ F(Er,) is Er,-a.e. bounded, then g € #(ET,) is ET,-a.e. bounded.

For all n €N, let {Z; ;u}z men © B(R) s.t. following pointwise Er,-a.e. approximation
of idg Y[-n ] On spec T holds. For E7,-a.e. t € spec T, get {ap m}r men € R and

m
tX[=n,n(t) = rlriglil glak,m)(zk’m(t). (A.29)
Using 1), Equation [A further yields E7,-a.e. approximation of idg y[-5.»] on spec T';.
1 [-n,n]

The approximations we use here are uniformly bounded, hence yield bounded strong
limits upon evaluation using Ty, resp. 7.
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Normality and ¢(E1,) = E1, yield ¢(ToE1,([-n,n]) = T1E7,([-n,n]) for all n € N.
For all g € L*(specT,dET,), we see 1) implies g € L™(spec T'1,d E7,) upon restriction.
Strong convergence of sequences further implies

g(To) = S_Eean g(ToE1,([-n,nl), g(T1) = s-}Lieang(TlETl([—n,n])). (A.30)

If p(g(ToE1,([-n,n)) = g(T1E7,([—n,n))) for all g(Ty) € W*(Ty) and n €N, then 2) holds
by Equation Ergo 2), and thereby 3), reduces to the bounded case.

Assume Ty and T'; are bounded. Thus ¢(Ty) = T1, hence g(d(Ty)) = g(T1) for all
g € C(spec T}). For all & € {0, 1}, Proposition[A.1.82|shows R.; € C(spec T}) and W*(T},) =
W*(R.;(Tt)). Normality implies g(¢(To)) = g(T1) for all g € L*(spec Ty,dET,). Get 2).
Using the latter, we directly verify 3). The general case follows as discussed above. [

Corollary A.1.93. Let Hy and H1 be Hilbert spaces. Let M < B(H() and N < B(H1) be
W*-algebras. We consider x € My, and y € Np. If ¢ : Wy, (x) — Wy (y) is @ normal unital
*-homomorphism s.t. p(x) =y, then $(E, y) =E, n and Lemma applies to .

Proof. Note suppE, y = specyyx and suppE, n = specyy. Let specy x,specyy < K for

compact K cR. LemmalA.1.91{shows ¢(g(x)) = g(y) for all g € C(K) suffices. We reduce to
polynomials by approximating in norms. The *-homomorphism property concludes. []

Joint functional calculus of strongly commuting self-adjoint unbounded
operators. Let H be a Hilbert space. Let T',S € %%(H),,. If [E1(Z),E s(Z1)] = 0 for all
Zy,Z1 € B(R), then we determine joint spectral measure by setting

Ers(ZoxZ1):=Ep(Zo)Es(Z1) (A.31)

for all Zy,Z1 € B(R). Equation defines spectral measure E7s : B(R x R) — %B(H)
by Theorem 4.10 in [[184].

Definition A.1.94. Let T,S € %%(H);. We say that T and S commute strongly if
[E7r(Zy),Es(Z1)]1=0 for all Zy,Z1 € B(R). Assume T and S commute strongly.

1) We call E7 g the joint spectral measure of T and S.
2) Forall ge #(Ers), set
Irs(g):=g(T,S) =g, ((2) = f gdErs. (A.32)

3) WecallI'pg: % (Er,s) — %%B(H) the joint functional calculus of 7' and S.
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Remark A.1.95. The commutator [—,—]: B(H) x B(H) — PB(H) in B(H) is given by
[T,S]:=TS —ST for all T,S € B(H). It is separately continuous in strong operator
topology. If M,N < 2B(H) are W*-algebras with strongly dense subsets My < M and
Noc N s.t.[My,Ny] =0, then [M,N] =0 by separate strong continuity.

Proposition A.1.96. For all T,S € UB(H);, the following are equivalent:
1) T and S commute strongly,
2) [Ry(T),Rp(S)]=0foracrslT and b erslS,
3) [g(T),h(S)]=0 for all g € L*>°(specT,dET) and h € L*(specS,dEg),
4) [B(T),B(S)]1=0,
5) [C(T),C(S)]=0.

Proof. Equivalence of 1) and 2) is Proposition 5.27 in [184]. Continuity of commutators
as per Remark|A.1.95|ensures Proposition |[A.1.82/shows equivalence of 2) to 5). O

Proposition A.1.97. If T,S € %%(H);, commute strongly, then

1) Erg is the unique spectral measure s.t. T = [tdEr s and S = [sdEr g,
2) suppErs cspecT xspecS.

Proof. Get 1) by Lemma 5.22 in [184]. Thus Er g is joint spectral measure given in the
proof of Theorem 5.23 in [184], hence 2) follows by Proposition 5.24 in [[184]. O

Remark A.1.98. Note suppEr s # spec T x spec S in general as %8(H) has zero divisors.
Inequality therefore occurs if Eg(Ng)H < (E7(N,)H)* for a product open neighbourhood
N x N of (t,s) e spec T x specS.

Let M,N c 2(H) be commutative W*-subalgebras s.t. W*(M,N) c B(H) is also
commutative W*-subalgebra. We determine normal unital injective *-homomorphism
M e N — %(H) by mapping

for all x e M and y € N. Get W*-subalgebra M ® N < 8(H). Proposition |A.1.100| thereby
extends Proposition using jointly generated W *-algebras.

Definition A.1.99. Let T',S € %%(H);, commute strongly.
1) The joint spectrum of T' and S is spec T x S :=suppErg.
2) Set L™(specT xS,dErs):=L>®(specT xS, N (Ers)).
3) We call W*(T',S):=W*(T)® W*(S) the W*-algebra generated by T" and S.
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If T,S € U%(H)y, commute strongly, then I'r g restricts to L*(specT x S,dEr g) as
in the case of one self-adjoint unbounded operator. Proposition |A.1.100| uses the latter
to formulate bounded measurable joint functional calculus.

Proposition A.1.100. Let T',S € %%B(H);, commute strongly.
1) We have normal unital *-isomorphism I'r s : L*°(specT x S,dEps) — W*(T,S).

2) If M c B(H) is a W*-subalgebra s.t. Ep 5(Zox Z1) € M for all Zy,Z; € B(R), then
W*(T,S)c M.

Proof. Note L>™(specT xS,dET,s) = L>*(specT x specS,dE7 g) by construction of joint
spectral measures, and L°°(spec T x specS,dE7 g) = L*™(spec T,dET)®L>*(specS,dEg)
naturally. All claims reduce to elementary tensors. Apply Proposition|A.1.85 O

Lemma A.1.101. Let Hy and Hi be Hilbert spaces. Let T(,So € UB(Hy)y, as well as
T1,S1€UPB(H1), commute strongly. If ¢ : W*(Toy) — W*(T1) and y : W*(Sy) — W*(S1)
are normal unital *-homomorphisms s.t. p(E1,) =Er, and y(Eg,) =Eg,, then

1) specTq xS1cspecTyxSoand N (Erys,) <N (Er,s,),
2) (poy)(g(To,S0)) =g(T1,S1) for all g € L>(spec Ty x So,dET, s,),

3) we have commutative diagram of normal unital surjective *-homomorphisms

I'7y,80

L*(spec Ty xSo,dET,s,) ———> W*(T0,S0)

J/res (0141 (A-34)

T1,81

r
L*(specT1xS1,dEr, s,) ——— W*(T1,S1)
with res the restriction map given by spec T1 x S1 c spec Ty x S.

Proof. We apply LemmalA.1.92]and Corollary[A.1.53]to ¢ and . This constructs normal
unital surjective *-homomorphism ¢y : W*(Ty,S¢) — W*(T'1,S1). Note Equation[A.13]
and Equation [A.33|show ¢ ® ¢ is determined by (¢ ® w)(g(To)h(So)) = g(T1)h(S1) for all
g € L®(spec Ty,dET,) and h € L™(specSo,dEg,). For all Z,Z' € B(R), construction of
joint spectral measures shows

(poy)(Er,s,(Z x Z) = (pov)(Er,(Z)Es,(Z")

= ETI(Z)Esl(Z/) =E7, g,(Z x z.

Arguing as in the proof of Lemma [A.1.92] the above calculation implies 1). We see the
restriction map res is well-defined. Using Proposition |A.1.49, we directly verify 2) and
3) on elementary tensors. Using o-strong continuity, we conclude by strong density. [
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A.2 Maps of unbounded operators

In Subsection we discuss strong resolvent convergence and resolvent-preserving
maps of unbounded operators. Strong resolvent convergence provides suitable notion of
continuity. Given uniform neighbourhood of supports, evaluation of functional calculus
on fixed bounded continuous functions is strong resolvent continuous. We extend to
joint functional calculus. Resolvent-preserving maps are strong resolvent continuous
and preserve functional calculus. Examples are twisting and compression maps.

In Subsection we introduce abstract and concrete compression maps. They
are given by left- and right-multiplication with projections. In the abstract case, we
compress W*-algebras. In the concrete case, we thus compress self-adjoint unbounded
operators on a Hilbert space by reducing subspaces. We extend abstract compression
maps to spaces of measurable operators in Subsection

A.2.1 Strong resolvent continuity and resolvent-preservation

We define strong resolvent convergence, prove strong resolvent continuity of functional
calculus in Lemma and review sufficient conditions. We then give two standard
approximations and discuss resolvent-preserving maps. Standard reference for strong
resolvent convergence is [88].

Strong resolvent convergence of self-adjoint unbounded operators. Note
Definition [A.2.1] gives strong resolvent convergence on Hilbert spaces. We use the latter
to extend 2) in Lemma to suitable unbounded functions in Corollary

In Subsection [2.2.2] Definition generalises to strong resolvent convergence on
Hilbert subspaces for use in the Kato-Robinson theorem (cf. Theorem 10.4.2 in [88]]). In
the appendix, we only use strong resolvent convergence on Hilbert spaces.

Definition A.2.1. Let H be a Hilbert space. We call {T, },,en € %%B(H);, strong resolvent
convergent to T € %AB(H);, on H if R;(T) =s-lim,cnRi(T).

Notation A.2.2. Let T = sr-lim,nT,, on H denote strong resolvent convergence. We
drop on H if H is clear from context. We extend to strong resolvent convergence on
Hilbert subspaces in Notation [2.2.32

Remark A.2.3. We equivalently use R_; in Definition [A.2.T](cf. Lemma 10.1.5 in [88]).
Moreover, note uniform boundedness and strong resolvent convergence together are
equivalent to strong convergence (cf. Proposition 10.1.13 in [88]).

Note Lemma is based on the case of one self-adjoint unbounded operator as
per Remark[A.2.4] We recover this one-variable case using the identity as second one.

Remark A.2.4. Proposition 10.1.9 in [|88]] shows we have T = sr-lim, n T, if and only if
g(T) = s-lim,en g(T) for all g € Cp(R). Lemma[A.2.5]yields the first direction given two
strongly commuting self-adjoint unbounded operators. We recover the one-variable case
by setting S =S, =1 forallneNand g =g-1€ Cp(R) in Lemma|[A.2.5]
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Lemma A.2.5. Let T = sr-lim,cnT,, and S = sr-lim,en S, on H. Let T and S commute
strongly. For all n €N, let T, and S, commute strongly. Set

Xrs:= | specT, xspecS, cRxR. (A.35)

neN

If g€ Cp(X1,8), then g(T,S) =s-limpeng(T5,Sy).

Proof. As X7 is closed by hypothesis and contains all spectral measure supports in
use (cf. Corollary 10.2.2 in [|88]), we assume g € Cp(R x R) without loss of generality. For
all gg,g1 € Co(R), sequential strong continuity of multiplication yields

(g0®g1)(T,S)=go(T)g1(S)
= S'}ngngO(Tn)gl(Sn)

= S-}ng\ll (gO ®g1)(Tran)

using the one-variable case as per Remark Thus approximating uniformly in
norm shows our claim for all g € Co(RxR). If g € Cp(R xR), then fix a monotone sequence
of mollifying functions and argue as in the proof of Proposition 10.1.9 in [88]]. O

Corollary A.2.6. Assume the setting of Lemma Forallreal g€ #(ET,3,) st
1) (t,8)— ge(t,s):=g(t+¢e,s+¢) liesin Cyp(spec Ty x So) for all € >0,
2) g(T1,S1) =sr-lim; |0 g:(T1,S1) on Hy,

we have g € S(Er, s,) with g(T1,S1) = sr-lim,| (¢ @ Y)(g:(To,S0)) on Hj.

Proof. We know g € #(Er,s,) by 1) in Lemma |A.1.101| For all € > 0, we apply 2) in

Lemma[A.1.101|to g, € Cp(spec Ty x Sp). Thus (¢ @ w)(g:(To,So)) = g:(T1,S1), hence we
conclude by 2) and ¢ | 0. O

Remark A.2.7. In the sense of Corollary[A.2.6] Lemma[A.1.101] gives conditions to pull
back unbounded joint functional calculus. Lemma [A.1.101] and Lemma further
show Corollary[A.2.6|applies to all g € Cp(X) for compact X c R xR with § >0 s.t.

|J specT:+el xspecSy+el cX. (A.36)

O<e<d

Note X715 c X as per Equation in this case.

Proposition A.2.8. We have T = sr-lim, N7, on H if there exists

1) acrslT s.t. a € Npenrsl Ty and Ry (T) = s-lim,enR o (Th),

2) or core € of T s.t. /£ c(penydomT,, and T'(u) = ||.| g-limy,en Ty (w) for all u € .
Proof. Get 1) by Proposition 10.1.23, resp. 2) by Proposition 10.1.18 in [88]. O
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Two standard approximations. Using cut-off sequences, functional calculus
lets us approximate self-adjoint and positive unbounded operators on Hilbert spaces
in strong resolvent convergence. Let H be a Hilbert space.

Lemma A.2.9. For all T € U%B(H)., we have
1) T =sr-lim,enymin{T,n},
2) Aé¢specT if and only if A ¢ specmin{T,n} for a.e. n € N.

Proof. For all neN, set T, := min{T',n} and note T,,,1 = T,. For all u € H, we have

T if d T
sup <Tn(u),u>H = sup LpeCTmin{t’n}dEu — {(()O (u), u>H I u € Om\/_’

neN neN else.

Thus T, 1 T monotonically in the sense of closed positive unbounded quadratic forms
on H, hence get 1) by the Kato-Robinson theorem (cf. Theorem 10.4.2 in [88]).

We show 2). We know specT = UpeniA <n | A € specT}. For all n € N, the spectral
mapping theorem (cf. Proposition 5.25 in [184]]) implies

spec T if |T ) <,

specT,, =
pectn {{)LSnI?LespecT}u{n} else.

Let A=0.If A ¢ specT,then A ¢ {A<n | AespecT}=specT,\{n} for all n € N. If further
AespecT,, for ng €N, then A =ng and ng ¢ spec T. We see A ¢ spec T implies A ¢ spec T',
for a.e. n € N. We know {A <n | A € specT} c P(specT) is a monotonically increasing
sequence. Thus A ¢ spec T, for a.e. n € N implies A ¢ spec T', hence 2) follows. O

Corollary A.2.10. For all T € %B(H)y, T = sr-lim,en E7([—n,n])T.

Proof. Set T, := E7([0,00))T and T- := —Ep((—00,0DT. Get T =T, — T- by functional
calculus. Using Proposition [A.1.96] we know T',.,T_ € %%(H), commute strongly since
R,/(T,),R;(T-)e W*(T) commute. For all n € N, functional calculus implies

Er([—n,n)T =E7,([0,n)T+ —E7_([0,nDT-. (A.37)

Summands in Equation commute strongly. Note (¢,s) — g(t,s) := R;(¢t —s) lies in
Cp(RxR). If S = sr-lim,cnEg([0,7])S for all S =0 on H, then Lemma [A.2.5|shows

Ri(T)=R{(T+-T-)=g(T+,T-)
=s-lim g(E7, (0,n)T,E7_(10,n)T-)
=s-lim R;(E7,(10,nDT: —E7_(10,nDT")

= S-ligNlRi(ET([—n,n])T).
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If S = sr-lim,cnEg([0,17])S for all S =0 on H, then the above calculation shows our
claim follows. Let S € %%(H).. For all n € N, functional calculus implies

Es([0,7])S = min{S,n} —n- (I - Es([0,n])). (A.38)

Summands in Equation[A.38 commute strongly. Note LemmalA.2.9/ensures we have S =
sr-lim,enymin{S,n}. We moreover have pointwise convergence lim,enn(1— xp0,,)) = 0 on
[0,00), i.e. uniformly bounded pointwise limit lim,en R ;(n(1- [0 1)) = B;(0) in Co([0,00)).
Thus sr-lim,cnn(I — Eg([0,n])) = 0. Using Lemma [A.2.5| as above for each summand on
the right-hand side of Equation a separate variable, we obtain our claim. O

Resolvent-preserving maps. Lemma shows resolvent-preserving maps
are strong resolvent continuous and preserve functional calculus. Both twisting and
compression maps are resolvent-preserving. Let Hy and H; be Hilbert spaces.

Definition A.2.11. Let ¢ : %%B(H,) — % %(H1) be a linear map s.t. p(B(Hy)) c B(H1)
and 9 c U#%(Hy);,. We say that ¢ is resolvent-preserving using 2(¢) := 9 if

1) ¢:%B(Hy) — PB(H;) is bounded and normal,
2) ¢(R+i(T)) =R.i(¢p(T)) for all T € D(¢p).
Lemma A.2.12. Let ¢ : UB(H() — % PB(H1) be a resolvent-preserving map.

1) Let T € 2(¢p). If T = sr-lim,en T, on Hy and {T}nen € 2(), then

¢(T) = sr-Um ¢(T,) on Hi. (A.39)

2) For all T € 2(¢), we have

2.1) ¢:W*(T)— W*(H(T)) is a normal unital *-isomorphism,
2.2) §(E1)=Eyr) and Lemma applies to ¢ : W*(T) — W*(H(T)).

Proof. Let T € 2(¢). If T = sr-lim,,en T, on Hy and {T',},en <€ 2(¢), then we calculate

Ri(¢(T)) = $(Ri(T)) = §(s-lim Ri(T})
= S-lig\ll (/)(Ri(Tn)) = s-lieanRi((p(Tn)).

This shows 1). We show 2). Note ¢ : C*(R.;(T)) — C*(R+;(¢(T))) maps C*-generators
onto by hypothesis. Ergo ¢lc+r, () is unital *-isomorphism s.t. ¢p(g(T)) = g(H(T)) for
all g € C.(R). We know ¢|x(#,) is normal. Therefore, o-weak closure of ¢|c+(r., (1)) exists
and is normal unital *-isomorphism ¢ : W*(T) — W*(¢(T')). Thus Lemma[A.1.91] hence
Lemma applies as claimed. Get 2). O
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Corollary A.2.13. Let ¢ : Hy — H; be a linear or anti-linear isometric isomorphism.
1) ¢ is resolvent-preserving using 2 (') = UB(Hy)p,.
2) If To € UB(Hy), and T1 € UBH ), s.t. T (ET,) = E1,, then ¢'(To)=T1.

Proof. Using Proposition g.l.ML we directly verify 1). Thus E o'(To) = (J)T(E 1,) = ET, by
2) in Lemma |A.2.12| and hypothesis, hence 2) follows by the spectral theorem. O

A.2.2 Compression maps, reducing subspaces and spectral gaps

We introduce abstract and concrete compression maps. Reducing subspaces are used
to define subsets for which compression maps are resolvent-preserving. We then apply
compression to get useful standard results concerning spectral gaps. Standard reference
for reducing subspaces is [88].

Compression maps. Definition gives abstract compression maps as per
Remark [A.2.14], and Definition |A.2.18| gives concrete ones. Following our discussion in

Subsection Definition extends Definition [A.2.15] to spaces of measurable
operators. We unify in Corollary [B.2.32|for spaces of measurable operators.

Remark A.2.14. Following [[192]1[1931[194], abstract signifies that an object or property
is independent of representation whereas concrete assumes representation.

Let M be a W*-algebra and p € M a projection. If A ¢ M is a C*-subalgebra, then
pC*(A,p)p <« M is one. If N c M is a W*-subalgebra, then pC*(N,p)p < M is one.

Definition A.2.15. Let M be a W*-algebra. We consider C*-subalgebra A c M. For all
projections p € M, we define

1) orthogonal projection p*:=1 —p €M,
2) compressed C*-subalgebra A[p]:= pC*(A,p)p<M,

3) the compression map com, : A[1y/] — A[p] by setting

comy, X 1= pxp (A.40)
for all x € A[1,/].

Remark A.2.16. If p € A, then A[p] = pAp. If p = 1), then we recover unitalisation.

Proposition A.2.17. Let M be a W*-algebra and N < M a W*-subalgebra. If p € M
is a projection, then com,, : N[1py] — Nlpl is a completely positive, normal, unital and
surjective bounded linear map.

Proof. Complete positivity is given in Example [A.1.48] Bounded weak continuity and
Proposition |A.1.49/imply normality. All remaining claims follow by construction. O
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Let N ¢ M be a W*-subalgebra. Proposition states N[1yl=N & (1]{4)0 We
directly verify N 1}\] = 1]%,N =0. We have N[1)/l[15]=N and commutative diagram

1 comy
N s Nelly — 4 N (A41)
idy

of normal *-homomorphisms. We extend Diagram in Subsection Following
this, Corollary shows choice of unit only involves values at zero.

Let H be a Hilbert space. If V c H is a Hilbert subspace and ny : H — V its Hilbert
space projection, we use positivity-preserving canonical inclusion %Z%(V) c % %(H) by
setting

T=nyTny (A.42)

for all T € 42B(V). For details on inclusions and partial order for spaces of unbounded
operators, we refer to Subsection in particular Remark [A.1.12

Definition A.2.18. Let H be a Hilbert space. For all Hilbert subspaces V c H, i.e. for
|.llz7-closed ones, let ny : H — V denote its Hilbert space projection and we define

1) orthogonal projection n‘J; =Ig—ny e BH),
2) inclusion %#%B(V) c %%A(H) as per Equation

3) the compression map comy : Z%B(H) — % PA(V) by setting

comy T :=ayTny (A.43)

for all T € UB(H).

Proposition A.2.19. Let H be a Hilbert space. If V < H is a Hilbert subspace, then
PBH)lny] = B(V) and comy : BH) — B(V) is a completely positive, normal, unital
and surjective bounded linear map.

Proof. Apply Proposition|A.2.17/for M =N = B(H) and p = ny. O

Reducing subspaces. Proposition shows compression maps satisfy 1) in
Definition Reducing subspaces, resp. reducible operators, yield the definition do-
mains for concrete compression maps. Note Equation [A.44below reduces to the obvious
commutation relation in the bounded case.
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Let H be a Hilbert space.

Definition A.2.20. Let V c H be a Hilbert subspace.

1) We say that T' € %%B(H);, is V-reducible and call V a reducing subspace of T if

nyTcTry. (A.44)

2) Let %%y (H) be the set of all V-reducible T € %%(H);,. For all T € % %(H), set

Tly :=comyT. (A.45)

Remark A.2.21. Note U%B(V)cUBy(H). For all T € UB(V), get Tly =comyT =T.

Notation A.2.22. Let V < H be a Hilbert subspace. For all T' € %%(H), we write T'|y if
we consider comy T as operator on V.

Let V < H be a Hilbert subspace. Lemma 9.8.4 in [[88]] shows we have T € %%y (H)
if and only if 7y (dom7T) c dom T and T'wy(domT) c V. Since % By (H) = U B 1 (H), we
may replace V with V= in all statements concerning reducing subspaces.

Iz

Example A.2.23. If T € %%(H);,, then T is reduced by im 7T :=im T and kerT.

Proposition A.2.24. Let V < H be a Hilbert subspace.
1) For all T € UPBv(H), we have

1.1) Ty € UuUPBV), and Tay =comy T,
1.2) TlyeUBNV), if T € UBH),,
1.3) T =comyT +comy. T,

2) For all Hilbert subspaces W 'V, we have

2.2) comwy = comyy ocomy,
2.3) UBw(H)c<UBy(H).
Proof. Theorem 9.8.3 in [88] implies 1) at once. We directly verify 2). O

Proposition A.2.25. If V < H is a Hilbert subspace, then comy is resolvent-preserving
using Y(comy) = U By (H).

Proof. We directly verify comy : %#B(H) — % %(V) is linear. Proposition and 1.1)
in Proposition[A.2.24/immediately imply all conditions except 2) in Definition|A.2.11|are
satisfied. We show the latter.
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Let T € %%Bv(H). Since T'|y € %AB(V);, and thereby +i € rsl(T'|y), get

im Ty Fily =domR.(Tly)=V. (A.46)

ForallveV,letu, €imT|y Fily <V s.t. v =(T|y Fily)(u,). We calculate

comy R5i(T)) = v (Reil )y (T(w)  ity))) = 1y (Resi (D) (Tw) ¥ i) = wy. (A4T)

Injectivity of T'|y Fily ensures Equation implies

comyR.;(T)=R.,(Tly). (A.48)
Under canonical inclusion %%A(V) c %%(H) mapping S — nySny, note Ty = comy T
by definition. Equation therefore shows
comyR.;(T)=comyR.;(comyT)=nyR.;(comyT)my. (A.49)
This is 2) in Definition[A.2.1]] O
Lemma A.2.26. If T € U By (H), then T|y € UB(V ), and we have

1) specT|y cspecT and N (Er},) < N (ET),

2) normal unital surjective *-homomorphism comy : W*(T) — W*(Ty) s.t.

comy g(T) = g(M)ly = g(T'ly) = comy g(comy T") (A.50)

for all g € L*(specT,dET),

3) commutative diagram of normal unital surjective *-homomorphisms

L>(specT,dE7) ——L % W*(To)

J/res comy (A.51)

Iy
L>(specTly,dEr),) ——— W*(Tly)
with res the restriction map given by spec T'|y c specT.

Proof. Proposition[A.2.25shows Lemma [A.2.12| applies. Thus Lemma [A.1.92] applies to
¢ = comy since Y(comy) = %Py (H) by hypothesis, hence our claims follow. O
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Corollary A.2.27. Let T € U PBv(H).
1) WNT)cuPBy(H).
2) For all g€ L®(spec T,dE7), g(T) = g(Tly)® g(Tly1) € BV) e BVL) < BEH).
3) If T = sr-lim,en Ty, on H and {Ty}nen € % By (H), then Ty = sr-limpenTrly on V.

Proof. Get 1) and 2) by Proposition|A.2.24)and LemmalA.2.26| Proposition|A.2.25|shows
3)is 1) in LemmaA.2.12|applied to ¢ = comy using Y(comy) = X% By (H). O

Corollary A.2.28. Let T € U%B(H)y. We have T € UPByv(H) if and only if [E7(Z),ny]1=0
forall Z € B(R). If T € UBv(H), then [g(T),ny]1=0 for all g € L*(specT,dET).

Proof. If T € UBv(H), then [Ep(Z),ny] for all Z € B(R) by 2) in Corollary |A.2.27. The
converse is Lemma 9.8.6 in [88]]. Apply 2) in Corollary|A.2.27|for our final claim. O

Lemma A.2.29. If TS € %3Bv(H) commute strongly, then Ty ,S|y € UB(V);, commute
strongly and we have

1) specTly xSly cspecT xS and N (Ers) < N (ET)y, Iy )s

2) normal unital surjective *-homomorphism comy : W*(T,S) — W*(T'|y,Sly) s.t.

comy g(T,S)=g(T,S)ly =g(Tly,Sly) = comy g(comy T, comy S) (A.52)
for all g€ L®(specT x S,dETs),

3) commutative diagram of normal unital surjective *-homomorphisms

Irs

L>®(specT xS,dEr ) : > WX(T,S)

J/res comy (A 53)

L1y sty

L>®(specTly xSly,dE1, si,) ———— W*(Tly,Sly)

with res the restriction map given by spec T1 x S1 c spec Ty x S.

Proof. Let T,S € %%y (H) commute strongly. Apply 2) in Corollary |A.2.27, which uses
C*-algebra direct sum, to show T'ly,Sly € %#%(V);, commute strongly. Lemma
shows our claims follow from Lemma if

comy = comy ® comy (A.54)

on W*(T,S) = W*(T)® W*(S) as per Equation Since Proposition ensures
comy has normal extension from W*(T) o W*(S), we directly verify Equation on
elementary tensors using 2) in Corollary|A.2.27 O
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Spectral gaps. Lemma states spectral gaps are upper semi-continuous
in strong resolvent convergence. Corollary shows spectral gaps of local positive
unbounded operators are limits of spectral gaps of compressions.

Let H be a Hilbert space.

Proposition A.2.30. Let T =S =0 in UPBH). If S is injective, then T is injective and
S 1>T"1>0in %BH).

Proof. Let L € 4%(H), be injective. For all €1 = £9 > 0 in R, functional calculus yields

0<R_(L)<R_.(L)<L™. (A.55)

Note Equation gives monotonically increasing sequence {R_,-1(L)},en © B(H) of
uniformly positive and bounded operators.
The Kato-Robinson theorem (cf. Theorem 10.4.2 in [88]]) shows

L t=sr-limR_,-1(L), (A.56)
neN
and we obtain unique closed positive unbounded quadratic form
u— | VL)% = sup (R_,-1(L)w),u),; € [0,00] (A.57)
neN

on H represented by L1
Let S be injective. Then T is injective by partial order. Applying Equation [A.56|and
Equation[A.57|to T, resp. S, we calculate

| v T‘l(u)”?{ = sup (R_p1(T)w),u) gy

I\

sup (R_-1(S)w),u)y

|vVs—twlly

for all u € H. The above calculation implies Theorem 9.3.7 in [88] yields S~ 1=7T"1. O

For all T € %%(H). , we know spec T < [0,00) by definition of partial order.
Definition A.2.31. Let T € %%(H), .

1) The spectral gap of T'is o(T):=inf {1 >0 | A € spec T'}.
2) We say that T has spectral gap if o(T") > 0.
Proposition A.2.32. If T € % Bv(H), then o(T) < o(T|y).
Proof. Apply 1) in Lemma O
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Lemma A.2.33. Forall T € UB(H)., we have

o(T) =sup {120 | Tl = Amerr . (A.58)

Proof. We writeimT = imT”'IIH as per Example |A.2.23| Note n—= = E7((0,00)) as Tl
is injective by Proposition|A.1.88| For all Z € B(R), Lemma |A.2.26|implies

Er_-(Z)=Er((0,00))- Er(Z)-E1((0,00)) = E7(Z n(0,00)). (A.59)

Positivity ensures suppE 7 =suppT < [0,00) and suppE Tl = SPec T'l7 < [0,00). Then
Equation implies we have spec Tl = spec T if and only if o(T) = 0, as well as
spec T'|—= = spec T'\ {0} if and only if o(T") > 0. Set

(T):=sup {120 | Tlemg = Anrr - (A.60)
Assume 0(T) = 0. Thus 0 € spec T = spec T'|—7 by specT closed. If {(T') > 0, then
there exists 1 > 0 s.t.

imT

in %#%GmT). Get 0 ¢ spec T |7 by Proposition and Equation We obtain
0=0(T)={(T) as claimed.

Assume o(T') > 0. Since their spectra are closed, positive unbounded operators are
injective with closed image if and only if they are bounded from below. Thus im7T is
closed as T'|— is positive and injective. Closedness further shows o(T') € specT'.

Get rsl T'|;;nr = rsl Tu{0} by spec T'|;m 7 = spec T'\{0}. Thus [0,0(T')) c rsl T'|;m, 7, hence
suppE T, =spec T'|imr shows we haveidr—A >0 E7|,_,-a.e. for all 1 €[0,0(T')). We see
TlimT = Antim for all A € [0,0(T)) by functional calculus and therefore o(T') < {(T) by
continuity. We show the converse. For all A € [0,{(T)), Equation implies

TlimT = ATimT- (A.62)

We claim [0,{(T)) crsl T. If this holds, then o(T') = {(T'). Let A €[0,{(T)). Since we have
0 < a(T) < {(T), there exists § >0 s.t. A+ <{(T). Equation shows

Tlimr = A +08) Tim - (A.63)
Subtracting A, in Equation shows Tlim1 — ATtimT = 67im 7 for 6 > 0 and 7y 7 =

ILim7. Thus Tlim7 — Atimr > 0 in %%BGmT), hence R (T |im1) € BGmT) as well. Using
rsl Tlimr = sl T U {0}, we see A €rsl T since A > 0. O
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Corollary A.2.34. For all T € U%(H)., we either have
1) o(T)=0and imT #im T,
2) oro(T)>0and imT =imT.

Proof. Since spec T'|— is closed, the injective positive unbounded operator T'|— has
closed image if and only if it is bounded from below. Apply Lemma [A.2.33 O

Lemma A.2.35. Let T = sr-lim,enTy, on H. If Ty hen € U B(H),, then T € U%BH),
and we have

limsup o(T,) < o(T). (A.64)

neN

Proof. Corollary 10.2.2 in [88]] implies T € %%(H)... If limsup,,cn0(T5,) = 0, then our
claim follows. We assume limsup,,cy 0(T,) > 0 without loss of generality. Let {o(T,,)}zen
be a converging subsequence s.t. A := limgeno(Ty,) > 0. For all € € (0,7), let k. € N
st Ao(Th Ne=r, € (A—g,A+¢€). Get (0,A—¢€) € Npxp, rsl Ty, . Theorem 10.2.1 in [88] applies
to this inclusion as T' = sr-limyen Ty, , implying (0,4 —€) crsl T for all € € (0,1). Letting
€] 0 shows (0,A) crsl T. Altogether, we estimate A < g(T) for all non-zero accumulation
points A of {5(T)}nen < 10,00). This is Equation[A.64] O

Corollary A.2.36. Let Hi c Hy c ... c H be Hilbert subspaces s.t. H = UneNHn“'“H. If
T eUuPB(H), is H,-reducible for all n €N, then T = sr-lim,encompy, T and we have

1) compy, T € B(H),, T, € B(H,), and U(COIIlHn T) = O'(T|Hn) forall neN,

2) monotonically decreasing sequence {o(T\g,)}, . < [0,00),

neN

3) o(T) =limueno (T g, )

Proof. Let T € “%(H), be H,-reducible for all n € N. Using 2) in Corollary[A.2.27] and
Iy =s-lim,en7y,, get T = sr-lim,encompy, T'. Moreover, we see T' € %%(H), and 1.1) in
Proposition show comp, T € B(H); and Ty, € B(H,), as per Notation
for all n € N. Proposition and Lemma thus imply our claims if

o(compy, T)=0(T\n,) (A.65)

for all n € N. Let n € N. For all A € R, we decompose

comHnT—/lIH = (TlHn —AIHn)GB—/lIH# (A.66)

w.r.t. BH,)® %(H,f). If H, = H, then there is nothing to show. We assume H, # 0
without loss of generality. Using decomposition as per Equation we directly verify
Equation by definition of spectra. O
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B | Noncommutative Measure and
Integration Theory

Theorem [B.2.44] states sufficient conditions for compressing joint functional calculus
pulled-back to joint functional calculus of self-adjoint measurable operators. The latter
are noncommutative measurable functions. Tracial W*-algebras define such spaces of
measurable operators. For all p € [1,00], we define noncommutative L?-spaces of mea-
surable operators equipped with L?-norm [130]1[161]. They fulfil Holder inequalities.
We have a modified standard pairing encoding duality [[193]].

In Section we discuss tracial W*-algebras, spaces of measurable operators and
noncommutative integration theory. We study canonical left- and right-actions of spaces
of measurable operators. In Section we prove Theorem using compression
maps given by change of canonical left- and right-actions. We formulate compressed
pulled-backed joint functional calculus of self-adjoint measurable operators.

B.1 Spaces of measurable operators

In Subsection we discuss tracial C*- and W*-algebras. The GN'S-construction for
traces defines canonical left-actions. Each is a faithful normal unital *-representation
over noncommutative L2-space, i.e. Hilbert space given by GNS-construction. Tracial
C*-algebras are a preliminary step useful for the AF-C*-setting. Canonical right-actions
are canonical left-actions of opposite tracial W*-algebras.

In Subsection[B.1.2] we discuss spaces of measurable operators and noncommutative
integration theory. Spaces of measurable operators are uniformly completed *-algebras
in measure topologies of tracial W*-algebras. Traces extend. For all p € [1,00], we define
noncommutative L?-spaces via L?-norms using traces of measurable operators. Holder
inequalities apply and we have a modified standard pairing.

In Subsection we further extend canonical left- and right-actions to spaces of
measurable operators using *-algebra multiplication. We account for noncommutative
L2-spaces different from Hilbert spaces given by GNS-construction. Whereas canonical
left-actions represent *-algebras of measurable operators, canonical right-actions are
twisted canonical left-actions defined on opposite *-algebras. Using canonical left- and
right-actions, we define spectral and joint spectral measures of self-adjoint measurable
operators. This lets us formulate their bounded measurable joint functional calculus.
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B.1.1 Tracial C*- and W*-algebras

Tracial W*-algebras have f.s.n. traces. Applying GNS-construction, each is represented
over noncommutative L?-space via canonical left-actions. Canonical right-actions arise
using opposite tracial W*-algebras. Remark [B.1.65| explains there is no twisting in the
bounded case. Standard references for tracial C*- and W*-algebras are [96] and [192]
[193]. Note [[193] discusses general weights as an extension of the tracial case.

Tracial W*-algebras and canonical left-actions. In Subsection , we cover
C*- and W*-algebras. Definition fixes partial orders.

Definition B.1.1. Let A be a C*-algebra. Set co-0=0-00 =0 as convention.

1) Amap1:A, —[0,00] is a trace on A if

1.1) t(x+y)=1(x)+71(y) for all x,y€ A, (Linearity)
1.2) t(Ax)=Atr(x) forallx€e A, and 1 =0, (Homogeneity)
1.3) 1(x*x)=1(xx*) for all x € A. (Traciality)

2) Let 7 be a trace on A. We say that 7 is

2.1) ls.c.ifitisl.s.c.in .|l 4,
2.2) faithful if 7(x) =0 implies x =0 for all x€ A,
2.3) semi-finite if 7(x) =sup {1(y) | y€ A, : y<x, 1(y)<oo} forallxe A,.

3) Let 7 be a faithful trace on A. Set n; := {x € A | 7(x*x) < co}. We call

n
m, := {x €A | Hyrdy_plzrly_ycng: x= kz,ly;:zie} (B.1)

the definition domain of 7.
4) We call (A, 1) a tracial C*-algebra if 7 is a 1.s.c. faithful semi-finite trace on A.

5) Let (A,7) be a tracial C*-algebra and ¢ : m; — A. We say that ¢ is a dilation if
0 < 1(¢p(x)) < 7(x) for all x e m;NA ;. We call ¢p trace-, or 7-preserving if 7(¢p(x)) = 7(x)
for all x € m,.

Let A be a C*-algebra and 7t a faithful trace on A. Note n,;,m; = n% =(m;NA)ccA
are self-adjoint two-sided ideals (cf. Lemma 4.5.1 and Proposition 6.1.2 in [96]]). There
exists unique linear extension of 7 to m; since 7(m; NA.) < oo (cf. Proposition 6.1.2 in
[96]). We denote extension by 7. For all x,y € m;, |t(x)| < oo and 7(xy) = 7(yx). The notion
of T-preserving map as per 5) in Definition is well-defined.

Remark B.1.2. For all x,y € m; self-adjoint, x = y implies 7(x) = 7(y). In this sense, 7 is
positivity-preserving. This corresponds to Definition [A.1.24]
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Let (A, ) be a tracial C*-algebra. The GNS-inner product of 7 on n; is given by

(x,y), =1(x"y) (B.2)

for all x,y € n;. For all x € n;, faithfulness shows | x||; = 0 if and only if x = 0. Its Hilbert
space completion is noncommutative L2-space #(A, ). For all x € A, set Z.(y) :=xyen,
for all y € n; and extend to &, € B(A4(A,71)). This is the GNS-construction for 7. Thus
% is a semi-cyclic *-representation (cf. Theorem 1.9.14 in [192] and Definition VII.1.5
in [193]), hence a faithful *-representation of A over #(A,t). It is non-degenerate by
L.s.c. (cf. Lemma VII.4.1 in [193]). We see unitality of A implies that of Z.

Definition B.1.3. For all tracial C*-algebras (A, 1), we call #(A,7):= ﬁﬂ'”’ the concrete
noncommutative L2-space and £ the canonical left-action of A on (A, 1).

Remark B.1.4. Canonical right-actions are given in Definition [B.1.14] For this, we use
the opposite *-algebra construction given in Definition |B.1.15 Note Definition [B.1.55
subsumes canonical left- and right-actions in this subsection.

Traces on W*-algebras must have canonical normal left-action in order to preserve
bounded measurable functional calculus. Faithful, semi-finite and normal traces, or
f.s.n. traces on W*-algebras have canonical normal left-action. Tracial W*-algebras are
all W*-algebras equipped with an f.s.n. trace.

Proposition fundamentally a useful reformulation of the double commutant
theorem [135][192]], states double commutants of concrete C*-algebra are, up to normal
faithful unital *-representations, all W*-algebras. Proposition[B.1.7]implies each tracial
C*-algebra induces unique f.s.n. extension of their trace to the double commutant of
their image C*-algebra. Finally, Proposition [B.1.9|ensures each tracial W*-algebra is a
tracial C*-algebra with image C*-algebra being its own double commutant. We thereby
reduce from tracial C*- to tracial W*-algebras.

Definition B.1.5. Let M be a W*-algebra.

1) A trace 7 on M is normal if for all bounded increasing nets {xz}rcx < M, get

T(sup xk) =sup 7(xp). (B.3)
keK keK

2) A trace 7 on M is f.s.n. if it is faithful, semi-finite and normal.

3) We call (M, 1) a tracial W*-algebra if 7 is a f.s.n. trace on M.

Remark B.1.6. Equation B.3|corresponds to Equation i.e. normality for bounded
linear maps of W*-algebras. The two notions coincide assuming boundedness.
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Proposition B.1.7. Let (A,1) be a tracial C*-algebra.

1) There exists unique f.s.n. trace T, on £L(A)" extending 1 from A, to L(A)].
2) (£(A),1) is a tracial W*-algebra.

Proof. Get 17 by applying Lemma 6.1.5 in [96] to Z (cf. A.60 in [96]). We have 1o, =7
on A, c #(A)/ by Proposition 6.6.5 in [96]]. Thus (£(A)", 1) is tracial W*-algebra. O

Notation B.1.8. Let (A, 1) be a tracial C*-algebra. We write T = 7o, on £(A)".

Proposition B.1.9. Let (M,1) be a tracial W*-algebra.

1) (M,7) is a tracial C*-algebra and £ is faithful normal unital *-representation
s.t. w*-topology on M maps to g-weak topology on L (M),

2) (LWM)',7) =(L(M),7).

Proof. Normality of T shows L.s.c. in o-weak topology by Theorem VII.1.11 in [193]]. Thus
7 is L.s.c. in norm, hence (M, 1) is tracial C*-algebra and we know Z is faithful unital
*-representation. Equation shows normality of Z. Its construction and normality
then show % maps w*-topology on M to o-weak topology on Z(M). Proposition
implies (M) = %(M)" at once. O

Proposition B.1.10. If (A,1) is a tracial C*-algebra, then #(L(A)',1) = A(L(A),T).
Proof. Apply Proposition and Proposition |B.1.9 O
Finite faithful traces on unital C*-algebras are well-behaved.

Definition B.1.11. Let A be a C*-algebra and 7 a trace on A. We call 7 finite if 7(x) < co
for all x € A, and further write 7 < co.

Proposition B.1.12. Let A be a unital C*-algebra and 1 a faithful trace on A.
1) t<ooifandonlyif 1(14)<oo.
2) If T < oo, then T is semi-finite.
3) If T < oo, then (A,1) is a tracial C*-algebra, T € A% and kertt = (14)c.

Proof. If T < 0o, then 7(14) < co. Assume 7(14) <oco. For all x € A, get x < ||x]|a1la by
functional calculus and therefore |7(x)| < [x]|47(14) < co by positivity-preservation on
m,; as per Remark Get 1). Assume 7 is finite. Thus A = m;, hence 7 € A%. We see
7 is semi-finite and l.s.c. in norm. In particular, (A,7) is a tracial C*-algebra and we
have 14 € #(A,1). Since dimckertt =1 by 7 € A* and 14 € kert! by faithfulness, get
kertt = (14)c c #(A,1). Altogether, get 2) and 3). O

Proposition B.1.13. Let M be a W*-algebra and t a faithful normal trace on M. If
T < oo, then T is f.s.n. trace on M.

Proof. Apply 2) in Proposition [B.1.12 O
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Opposite tracial W*-algebras and canonical right-actions. Propositionm
and Proposition [B.1.10| show canonical right-actions for tracial C*-algebras reduce to
tracial W*-algebras. Let (M, 1) be a tracial W*-algebra. For all x € M, set Z,(y) := yxen;
for all y € n; and extend to %, € B(A(M,T1)).

Definition B.1.14. Let (M,1) be a tracial W*-algebra. Following Definition [B.1.3| we
call Z the canonical right-action of M on A4 (M, 7).

Definition gives an opposite *-algebra construction. Proposition shows
(M,7) yields opposite tracial W*-algebra (M°?,1) s.t. A (M°P,71) = #(M,7). Using the
latter, Proposition shows Z is canonical left-action £°P of M°P on #(M,t) and
Proposition B.1.21]implies our discussion concerning canonical left-actions translates to
canonical right-actions as per Diagram |B.4

Definition B.1.15. Let </ be a *-algebra and Adj : o/ — of its algebra involution. Its
opposite *-algebra </°? has «f as complex vector space and is equipped with

1) opposite algebra action given by x-°P y := yx for all x,y € of,
2) Adj: o/°? — o/°P as algebra involution.

Remark B.1.16. If «/ is a topological vector space, then «/°P is one using the identical
topology. For all W*-algebras, we use identical norm and w*-topology on opposites.

Proposition B.1.17. For all tracial W*-algebras (M, 1), we have
1) 1isfs.n. trace on M°? and (M°?,7) is a tracial W*-algebra,
2) (%(MOP,T), ||-||r,op) =(AM,7),|.1l7).

Proof. Note M°? is a C*-algebra with norm and algebra involution of M. This implies
M° =M = (M.)* as Banach spaces. Thus M is a W*-algebra s.t. M* = M, hence 1 is
f.s.n. trace on M°P. We obtain 1). Traciality moreover ensures n; defined by r on M and
MP°P are identical. Get 2) by construction. O

Notation B.1.18. We write £°? for the canonical left-action £°P of M°? on A (M,71).
We write n; o, as per 3) in Definition for f.s.n. trace 7 on M°P,

Proposition |B.1.19|shows Z = £°P on M°P. Note Z # £°P in general as extensions of
M and M°? are different spaces of measurable operators. We show % = £°P naturally
extends the bounded case. For details on the latter, we refer to Subsection

Proposition B.1.19. Let (M, 1) be a tracial W*-algebra.

1) R =L is faithful normal unital *-representation s.t. w*-topology on M°® maps
to o-weak topology on Z(M).

2) (R(MPY' 1) = (LM)P, 7).

Proof. For 7 on M, resp. M°P traciality ensures n; = n; . For all x € M, we calculate
Ro(y)=xy=y-Px=2L." for all yen,. Get 1) and 2) by Propositionm O
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We have anti-linear isometric involution Adj : #/(M,7) — (M, 1) by closing Adjl,,.
wrt |.l;. Get Adj" : B(A(M, 1)) — B(H(M,T)) as per Definition

Definition B.1.20. Let (M,1) be a tracial W*-algebra. Adj : #2(M,t) — A(M,T) is
called adjoining on A (M, 1).

Proposition B.1.21. Let (M, 1) be a tracial W*-algebra. We have commutative diagram

M—= 3 BAM,T))

Adj Adjt (B.4)
M® — % s (#M,T))

s.t. horizontal maps are normal unital injective *-homomorphisms and vertical ones are
isometric involutions of Banach spaces.

Proof. We directly verify Diagram and all claims. O

B.1.2 Noncommutative integration for tracial W*-algebras

We discuss spaces of measurable operators and noncommutative integration theory.
Traces extend. For all p € [1,00], we define noncommutative L”-spaces of measurable
operators equipped with L?-norm [130][161]]. They fulfil Hélder inequalities. We have
a modified standard pairing encoding duality [193]. In particular, tracial W*-algebras
are noncommutative L>®-spaces and have noncommutative Ll-spaces as pre-duals. We
see their f.s.n. traces are, possibly unbounded [170[][171], noncommutative Radon mea-
sures. Standard references for their spaces of measurable operators and resulting notion
of noncommutative integration are pp.1461-1470 in [130], [161] and [192]][193]].

Spaces of measurable operators. Let (M,7) be a tracial W*-algebra. Its space
LO%M, 1) of measurable operators is uniform completion in measure topology and serves
as setting for noncommutative integration theory. For p = oo, get M < LO(M, 7). For all
p €l1,00], get LP(M,7) < L°(M, 1) as per Definition Uniform completion extends
the *-algebra structure and trace from M to L°(M, 1) as per Remark [B.1.24]

We thereby extend canonical left-action & : M — B(A(M,1)) to an unbounded
faithful unital *-representation £ : L%M, 1) — % B(H(M,T)). Remark explains
% does not equal canonical left-action of measurable operators in general.

Remark B.1.22. If we twist £ as per Definition using the natural isometric iso-
morphism F2(M,t) = L%(M,7) implied by Proposition then we obtain canonical
left-action L using left-multiplication in L°(M, 1) as per Definition and based on
Definition This subsumes canonical left-action in the bounded case.
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Note P(M) is the set of all projections in M. The measure topology of (M, 1) is defined
by the following fundamental system of neighbourhoods of zero. For all £,6 > 0, set

N(e,6):={xe M | 3pe PD): llxply <e, 7(pt) <6}. (B.5)

The fundamental system of entourages given by U(e,8) :={(x,y)e M xM | x—y € N(¢,5)}
for all €,6 > 0 defines uniform structure of measure topology on M. Convergence in
measure topology is called convergence in measure.

Definition B.1.23. Let LO(M, 1) be the uniform closure of M in measure topology. We
call it the space of measurable operators for (M, 1), or T-measurable operator algebra.

Remark B.1.24. Theorem IX.2.2 in [193] shows the *-algebra structure of M extends
to L%(M,1). Lemma IX.2.3 in [193] shows L°(M, 1) is Hausdorff and M < L%(M, 7).

We additionally have measure topology on #(M,71), as well as subsequent notion of
convergence in measure. The measure topology of #(M,71) is defined by the following
fundamental system of neighbourhoods of zero. For all €,6 > 0, set

O(e,8) := {u e #(M,7) | Ip e POM): llp@)ll; <&, 7(p*) < 5}. (B.6)

Uniform structure of measure topology on (M, 1) follows as for L°(INV, 7). Convergence
in measure topology is called convergence in measure. /A (M, 1) is not complete.

Let x € LO(M, 7). We construct densely defined closed operator £, on #(M,71). Let
dom %, be the set of all u € #(M,1) s.t. there exists a net {x3}rcx € M converging to x
in measure and for which {x,u}rcx < #(M,1) converges in measure to an element in
A (M, 7). For all u € dom Z,, set

Zx(u) = }einé&ka(u) e A (M,7) (B.7)

using limit in measure topology on /#(M, 7). Equation defines %, (u) independent
of converging net {x3}rcx < M. Theorem IX.2.5 in [193] shows %, is a densely defined
closed operator on #(M,1). Moreover, Proposition [B.1.31]implies those operators as per
Equation for all x € L°%(M, 1) define unbounded faithful unital *-representation

L LYM, 1) — UBA(M,7)). (B.8)

Restricting to M < L%(M, ), we recover canonical left-action of M on (M,7) as per
Definition [B.1.3] We understand *-algebra structure using #£. It has image the set of all
T-measurable operators on (M, 7). Their definition requires the notion of M-affiliated
operator. The commutant (M) c B(A(M,t)) is a W *-algebra.

Definition B.1.25. A densely defined closed unbounded operator T' on /#(M, 1) is called
M-affiliated if TU = UT for all unitaries U € % (<L (M)') c B(AH(M,T1)).
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Proposition B.1.26. If T € UB(A(M,1))p, then we know T is M-affiliated if and only
if WH(T) c L(M).

Proof. Note W*(T)=W*(T, %4,,) since £ is unital. Proposition and 1) in Propo-
sition imply spectral projections in T' generate W*(T'). Apply Lemma O

Remark B.1.27. For all densely defined closed operators T on a Hilbert space H, get
T*T self-adjoint and set absolute value |T'|:= vVT*T (cf. Theorem 5.1.9 in [171]). If T is
M-affiliated, then E|p(Z) = yz(|T|) € £(M) for all Z € B(R) by Proposition B.1.26

Following Notation [B.1.8] let 7 further denote the push-forward of 7: M. — [0,00]
along £ to £(M). The f.s.n. trace 7: £(M) — [0,00] has definition domain Z(m;).

Definition B.1.28. We call an M-affiliated operator T on # (M, 1) T-measurable, or just
measurable if there exists A > 0 s.t.

T(E|T|([/1,oo))) < 00. (B.9)

Remark B.1.29. Corollary IX.2.9 in [[193] ensures Definition |B.1.28|is 7-measurability
as used in [193]]. Proposition (B.1.30|further breaks down 7-measurability for self-adjoint
unbounded operators on A (M, 1).

Proposition B.1.30. If T € UB(A(M,1));, then T is t-measurable if and only if
1) Ep(Z)e L(M) for all Z € B(R),
2) there exists A >0 s.t. Ep((—o0,—Al),E7([A,00)) € £ (m;).

Proof. Proposition [B.1.26] at once implies 1) is equivalent to 7' being M-affiliated. For
all >0, get x11,00)(|£]) = X(—o00,-21(t) + X[1,00)(¢) for all ¢ € R. Equation [B.9therefore shows
2) is equivalent to T-measurability for all self-adjoint M -affiliated operators. O

Proposition collects properties of Z. In particular, 3) states the maximality
property. Using maximality and Remark |B.1.32] we readily see extending the *-algebra
structure of M to L°(M, 1) yields a *-algebra. Note closure is necessary for this.

Proposition B.1.31. We know each %, is a 1-measurable operator on (M ,T) for all
x € L%M,7) and furthermore have the following.

1) Forall x,y€ LM, 1) and A € C, we have

1.1) $A1x+/12y =&+ 1%,
12) Loy = L2y,
1.3) Lo =L

2) If T is t-measurable, then there exists unique x € LM, 1) s.t. T = ;.
3) Ifx,y e L°(M,1) s.t. Ly < Xy, then Ly = 2.
Proof. Apply Theorem IX.2.5 in [193]. O
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Remark B.1.32. For all densely defined closable operators T' on a Hilbert space H, get
T* densely defined closed and T* = (T*)** =(T)* by T = T"** (cf. Theorem 5.15 in [|171]).

Partial order on %%(/(M,71));, is fixed by Definition [A.1.11l We pull back partial
order to L%(M, 1);, along £. The set L%(M, 1);, of hermitian elements in Definition B.1.33
below is given using algebra involution.

Definition B.1.33. The hermitian, resp. positive elements in L°(M, 1) are

LM, 1) = {x e LOM, D) | £, = 27}, LM, 1), = {x e LM, 7}, | Z:20}. (B.10)

Notation B.1.34. Rather than hermitian, we say that x € L%(M, 1)}, is self-adjoint.

Remark B.1.35. Corollary IX.2.10 in [193]] shows L°(M, 1), is positive cone generating
the partial order on L°(M,1);. Proposition [B.1.49| implies the set L%(M, 7). of positive
elements generates the partial order on L%(M,7) as per Definition

If an application of functional calculus preserves 7-measurability, then we obtain a
unique element in L%(M, 1) by 2) in Proposition[B.1.31| Taking absolute values preserves
T-measurability. This lets us define generalised singular numbers by Equation

Definition B.1.36. Let x € L%(M,1);,. If g € S(E <) s.t. g(&£,) is T-measurable, then let
g(x) € L%M, 1) be the unique element s.t. L) = g(L).

Proposition B.1.37. Let x € L°(M, 7).
1) If xe L°(M,7), and g € L®(spec %y,dE 3,), then g(£) is T-measurable.
2) If xe LM, 1), and p €[1,00), then £LP is 1-measurable.

3) |%,| is T-measurable and |£,| = &L v

Proof. If x € L°(M, 1), and g € L>®(spec Zy,dE ¢,), then g(£,) € £(M) is T-measurable
by Proposition The latter further implies 3) if 2) holds. For this, merely apply 2)
using p = 2. Get 2) since Equation demands fix but arbitrarily large A € (0,00) while
AP tooas Alooforall pell,o0). a

Definition B.1.38. For all x € L%(M, 1), set |x| := vVx*x.

We extend 7 to LM, 1), (cf. pp.1461-1470 in [130]). The extension is linear. For all
x € L%(M,1), we have E o ([1,00)) € £(M) as per Remark |B.1.27| For all x € L%(M, 1), we
define the generalised singular number p(x) : (0,00) — [0,00) of x by setting

) =inf {1>0 | 7(E 5, (A,00)) <t} (B.11)
for all £ > 0.
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Definition B.1.39. For all x € L°(M,1),, the trace of x is defined by

T(x) = foout(x)dt. (B.12)
0

Remark B.1.40. For all x € L%(M,7) and ¢ > 0, note Equation immediately shows
we have uy(x) = us(x*) = us(|x|) by definition.

Noncommutative L”-spaces and integration. Extension of integration theory
to the noncommutative setting is fundamental to our discussion. Proposition |B.1.7|and
Proposition reduce the case of tracial C*- to tracial W*-algebras.

Let (M,7) be a tracial W*-algebra. For all p € [1,00), 2) in Proposition and
Equation let us define noncommutative L?-spaces. For p = co, we use M.

Definition B.1.41. Let p €[1,00].

1) Assume p < co. The noncommutative L?-space of (M, 1) is

LP(M,7):={x e LM, ) | 7(1xi?) <oo). (B.13)

1
For all x € LP(M,7), set ||lx|l, := 7(|x|?)?. We further call ||.||, the noncommutative
LP-norm. The self-adjoint, resp. positive elements in L?(M, 1) are

LP(M, 1), :=LP(M,7)nL°(M, 1)y, LM, 7)s := L*(M,7)nL°(M,7);.  (B.14)
2) The noncommutative L>°-space of (M, 1) is L*°(M,1):= M.
Proposition B.1.42. For all p €[1,00], we have
1) (Lp(M,T), ||.||p) is a Banach space s.t. MNLP(M,71) < LP(M,7) is |.|l,-dense,
2) Adj:LP(M,t)— LP(M,7) is anti-linear isometric involution,
3) e LYM,7)* s.t. 1(x) = 0 for all xe LY(M,71),.

Proof. All claims are given by (i) and (ii) in Theorem IX.2.13 in [193]]. Of course, its proof
shows 7 has linear extension to L1(M, 7). We therefore have 7 € L1 (M, 1)* as claimed. [

Asn, =MnL2(M,7)c L2(M,7) is |.|lo-dense by 1) in Proposition the identity
id : (ng, [I.1z) — (g, |I.ll2) closes to an isometric isomorphism id; : #(M,7) — L%(M, 7).
Equivalence classes w.r.t. ||.||; are mapped to equivalence classes in uniform closure
which are represented by square integrable T-measurable operators.

Definition B.1.43. We call id, : #(M,7) — L?(M, 1) identity in measure topology.

Notation B.1.44. Let id; o : (M, 7),].lI;) — L2(M°?,7) denote identity in measure
topology using (M°P, 1) instead. We may consider it by 2) in Proposition [B.1.17
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We have id; ' = (id;H' as per Definition

Proposition B.1.45. The maps id; and id; L are continuous w.r.t. measure topology on
LM, 1) and #(M,7). For all x € L%M, 1), we have

1 domid; (L) = {ue LAM,7) | xu e LAM, 1)},
2) id; T (L)(w) = xu in LOM, 1) for all u € domid; (Z,).

Proof. We directly verify continuity of id; and id; 1 in measure topologies on uniform
structures given by Equation and Equation For all x € M, our claims follow
since they reduce to canonical left-action of M on A (M, 7). Construction of £ therefore
implies the general case since id; and id; ! are continuous in measure topologies. O

Proposition B.1.46. We have x € L'(M, 1), if and only if /x € L*(M,1).,.
Proof. By definition of noncommutative L'-, resp. L2-spaces. O

Proposition B.1.47. For all x € L°(M,7) and p €[1,00], we have

1) x =Re(x)+iIm(x) and Re(x) := x+2x ,Im(x) := —i% e LOM, 1),

2) x=x4—x_ for x, :=max{x,0},x_ := —min{x,0} € LOM, 1), if x € LOM, 1),
3) xe LP(M,7) if and only if Re(x)+,Re(x)_,Im(x);,Im(x)- € LP(M, 7).

Proof. Get 1) by 1) in Proposition |[B.1.31l Get 2) by Proposition [B.1.30| together with
Proposition [B.1.31] We see 3) follows from 2) since |x|” = (x,)? + (x_)? in each case. [

Remark B.1.48. Re and Im are R-linear maps on L%(M, 7). For all x € L°(M, 1), we have
x* = Re(x) — i Im(x) by anti-linearity of taking adjoints.

Proposition B.1.49. L°(M, 1), generates the partial order on L°(M,1).

Proof. We use L°(M,7);, as hermitian elements. Definition fixes partial order.
Corollary IX.2.10 in [193] and 2) in Proposition [B.1.47| show L%(M, 1), is a proper cone
generating the partial order on LO(M, 1);,. d

The modified standard pairing. Let (M, 1) be a tracial W*-algebra. We know
e LY M ,7)5 by 3) in Proposition Equation are Holder inequalities. These
in turn yield a modified standard pairing defined by Equation
Let p,ge[l,00]l s.t. 1=p~t+q~ L. For all x € LP(M,7) and y € LY(M, 1), we apply (iv)
in Theorem IX.2.13 in [193] to get xy € L'(M,7) and

[Tl < lxlpllyllg. (B.15)

For p = 0o, we use |.[l3s. By (iv) in Theorem IX.2.13 in [193]], note Equation [B.15 defines
bounded non-degenerate pairing S : L?(M,t) x LY(M,t) — C by setting S(x,y) := t(xy)
for all xe LP(M,7) and y € LY(M, 7). We call S the standard pairing.
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In order to recover the GNS-inner product of 7 for p = ¢ =2 as per Equation we
modify the fist variable by taking adjoints. We therefore define the modified standard
pairing by setting

() :=1(x*y) (B.16)

for all x € LP(M,7) and y € LY(M, 7). We have t(xy) = 7(yx) and t(xy) = 7(x*y*) in each
case. For p = ¢ = 2, get t(xy) = (x*,y); for all x,y € L2(M,7). The modified standard
pairing is bounded and non-degenerate. The standard and modified standard pairing
are identical upon restriction to self-adjoint elements in the first variable.

Definition B.1.50. For all p,q € [1,00] s.t. 1 = p~1 + g7, the modified standard pairing
on LP(M,7) x LY(M,7) is defined by Equation[B.16]

Proposition B.1.51. Let M, be the pre-dual of M.
1 b:LYM,1) — M* is an anti-linear isometry onto M, c M*.
2) LY (M, 1) is the set of all normal bounded functionals on M.
3) For all x € LY\(M,7), we have

3.1) x is self-adjoint if and only if x° is real,

3.2) x is positive if and only if x° is positive.

Proof. Get 1) by (iv) in Theorem IX.2.13 in [[193]. Using 1), get 2) by Corollary II1.3.11
in [192]]. We directly verify 3) using Proposition and Proposition O

Remark B.1.52. Following Proposition [B.1.51] set M, := LY(M, 7). We readily see 3) in
the proposition shows the partial order induced by L1(M,7) c LM, 1) equals the dual
space partial order induced by M, c M* as per 2) in Proposition

Definition B.1.53. We define the state space #(M) :={ue M; | llullpr = 1} and the
normal state space FN(M):= .F(M) NLY(M,1)° of M.

Proposition B.1.54. Let A c M be a strongly dense C*-subalgebra. If o/ < AnL*(M,1)
is |l.|la-dense in A and |.|lo-dense in L2(M, 1), then

1) of < M strongly dense,
2) finite convex combinations of <f* - of c LY (M,7) are |.|1-dense in L1(M, 7).

Proof. Get 1) as A c M is strongly dense and «f < A is |.||4-dense. Mazur’s lemma [[192]]
implies w*-density of o *-of C LY(M,7), suffices for |.ll1-density. Let x € LY(M,7), and
{Vnlnen € A s.t. Vx = ||.llg-limpen yn. Foralln eN, get vy, € LY(M,7),.For all ze M, we
see T(x2) = (v/x,Vx2)9 = limpen{Vn, Yn2)2 = lim,enT(y, yn2). This is w*-density. O
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B.1.3 Canonical left- and right-actions of measurable operators

We extend canonical left- and right-actions to spaces of measurable operators. We keep
natural identifications as per Remark [B.1.22]and Remark [B.1.65|explicit to ensure their
consistent use. This subsumes the bounded case. Using canonical left- and right-actions
accordingly, we define spectral and joint spectral measures of self-adjoint measurable
operators. This lets us formulate their bounded measurable joint functional calculus.

Definition using *-algebra multiplication. Let (M,1) be a tracial W*-algebra.
Following Proposition note Definition gives canonical left- and canonical
right-action of L%(M, 1) on L2(M,7) using multiplication in L%(M, 7).

Definition B.1.55. Let x € L(M, 7). Set

dom Ly :={u € LAM, ) | xu € LAM, 1)}, (B.17)
dom Ry py := {u € L*(M,7) | ux € LA(M, 1)} (B.18)

We define canonical left-action L, ps of x on M, resp. canonical right-action R, 3s of x on
M by setting

L,y(u):=xu, Ry y(u) :=ux (B.19)
for all u € domL, p, resp. for all u € domR, 5.

We equip the opposite algebra LO(M, 7)°P of L%(M, 1) as per Definition B.1.15|with the

measure topology of L%(M, ). Using Corollary [B.1.64, we readily see Definition [B.1.55
determines, by Equation [B.19, two unbounded faithful unital *-representations

Ly : LM, 1) — %B(L*(M,7)), Ry : LOM,7)°° — %B(L*(M,7)). (B.20)

Definition B.1.56. We call Lj; and Rj; in Equation canonical left- , resp. canonical
right-action of L%(M, 1) on L2(M, 7).

Notation B.1.57. Unless stated otherwise, we suppress W*-algebras in subscripts of
canonical left- and right-actions. We require subscripts in Section[B.2] We further write
L°P, suppressing subscripts, for the canonical left-action of LO(M°P, 1) on L2(M, 7).

Proposition states L is £ up to twisting with id; 1 We see L subsumes our
discussion for £ in Subsection[B.1.2] in particular the bounded case. Concerning results
for R, get R = L°P naturally but R # L°? in general. Following Remark we know
results for L°P apply to R if and only if they are preserved under R = L°P.

Proposition B.1.58. For all x € L°(M, 1), we have L, = id;T(C%x).
Proof. Apply Proposition |B.1.45 O
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Lemma [B.1.62| shows we obtain R = L°? by twisting with natural *-isomorphism
LO(M,7)°P = LO(M°P, 1) extending idpser. This natural *-isomorphism is called opposite
algebra map and constructed in Lemma [B.1.59

Lemma B.1.59. There exists unique *-isomorphism op : LO(M,7)°® — LO%(M°?, 1) s.t.
1) op is a homeomorphism w.r.t. measure topologies on L°(M,7)°® and L°(M°P, 1),
2) op1: LM, 1) — LO9(M,7)P is a *-isomorphism,

3) we have commutative diagram

M® % 1.9(M,1)°P

idps op (B.Zl)

M® — LM, 1)
of injective horizontal and bijective vertical maps.

Proof. If {x3}peny € M is a net, then Equation and continuity of Adj in measure
topology shows {x3}rcx € M is Cauchy in measure if and only if {x;},cx < M°P is. For all
x = [{xphren] € LO%M, 1), let x°P := [{xz}ren] € LOMOP,T) and set

op(x) := x°P. (B.22)

By construction, op : L%(M,7)°® — LO%(M°P, 1) satisfies Diagram and is continuous
in measure topology. Equation in turn is fully determined by Diagram and
continuity in measure topology. We see op is unique. It is a homeomorphism since op™!
is determined by mapping Cauchy nets in M°P to Cauchy nets in M. We are left to show
op, ergo op 1, is a *-homomorphism. The *-algebras M and M°P extend suitably. O

Definition B.1.60. We call op : L°(M,7)°® — L%(M°?, 1) defined by Equation the
opposite algebra map.

Corollary B.1.61. We have commutative diagram

(M, D), llr) ———— (LAM,7), I1.1I2)

id et ) op (B.23)
(M, L17) — =2y (LM, 1), I.11)
of isometric isomorphisms of Hilbert spaces.
Proof. Apply the construction of op in the proof of Lemma |B.1.59 O
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Note 2) in Proposition [B.1.42| shows Adj : L2(M,7) — L%(M,7) defines Adj' as per
Definition Corollary [B.1.61| shows op : L2(M,t) — L?(M°?, 1) defines op'. If we
restrict to the bounded case, then we have commutative diagram

M—Lt s B(L2M,D)
Adj Adjt

A}:)p Rk @(Lz\(;l/.f,r)) (B.24)
idps op'

Mo —L 5 (L2aor, 1)

by Diagram and Diagram We thus recover R = L°P, given as Z = £ in 1)
in Proposition if we collapse the lower part of Diagram by pull-back along
Diagram We further account for twisting of Z£°P with id; p.

Lemma B.1.62. We have commutative diagram

LOM,7) —E—— wuB(LAM,1))
Adj Adjt

Lo —F %%(L;(M,r)) (B.25)
op op'

LOMeP, 1) — 5 wB(L2M°P,7))

of injective horizontal and bijective vertical maps.

Proof. For all x € L°%M, 1), we directly verify domR, = domAdj(L,+) and R = Adj o L.
This is the upper diagram. Lemma [B.1.59|and 1) in Proposition ensure vertical
maps are bijective. In particular, taking adjoints is. Thus L, R = AdjTo L and L° are
injective, hence we are left to show the lower diagram.

Let x € L°(M, 7). Note we have domR,, = {u € L*M,7) | ux € L>(M, 1)} and dom L%, =
{ve L2(M°P,1) | x°Pv € L?(M°P, 1)} by definition. For all u € L2(M, 1), we calculate

R.(u)=x-""u=o0p™*(x%) % op~! (u’) = op (L5, (0p(w))). (B.26)

Equation implies op(domR,) = domLigp. Thus R, = op'T(Ligp), hence op'(R,) = LZEP
upon applying the given dagger map. This is the lower diagram. O
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Corollary B.1.63. For all x € L°(M,1), we have
1) Adi'L, =R,
2) Ry=op '(L3,).
Proof. This reformulates the upper, resp. lower part of Diagram [B.25 O

Corollary B.1.64. For all x € L°(M,7), L, and R, are densely defined closed operators
on L>(M,1). For all x,y € L°(M,7) and A € C, we have

1) L,11x+,12y = ﬂle + /12Ly and R/llx+/’l2y = Ale + /12Ry,
2) Lyy=L.L,and Ry, =R,R,,
3) Ly =L} and R+ =R}.

Proof. Proposition [B.1.31]shows analogous claims for £, and Proposition[A.1.14]implies
they are preserved under twisting with id;. As such, Proposition[B.1.58|shows all claims
for L at once. Proposition |A.1.14]implies they are preserved under twisting with op. We
therefore obtain all claims for R by reducing to L°P using 2) in Corollary O

Remark B.1.65. All canonical left- and right-actions are multiplication by measurable
operators. Corollary [B.1.64] shows they are unbounded faithful unital *-representations
extending the bounded case. This requires Proposition i.e. Proposition
We twist with id; in case of L, as well as with id; ¢, in case of L°P. These identities in
measure topology induce distinct measure topologies on #(M,1) = #(M°P, ).

We obtain L2(M,7) and L%(M°P, 1) accordingly. Thus R # L°? by Lemma [B.1.62] even
as R = L°° is R = L°® upon pull-back along Diagram Note R is not defined on an
algebra of measurable operators, but on an opposite algebra of one. Since R = L°? up to
twisting with opposite algebra maps, results for canonical left-actions apply if and only
if they are compatible with such twisting. We use this in Corollary[B.1.64] as well as in
Section Altogether, we have consistent use of canonical left- and right-actions for
joint functional calculus of self-adjoint measurable operators.

Lemma B.1.66. For all x € L%(M,7);, the following are equivalent:
1) uedomlL,,

2) Re(u),,Re(uw)_,Im(u),,Im(u)_ € domL,.

Proof. Let x € L%M,7);,. For all n €N, set x,, := Xi-n.n(x)x. We know {x,},en € My, by 1)
in Proposition Moreover, |x,| < |x,+1| < |x| for all n € N. We know u € domL, if

and only if ||xul|o = fspech )deE% < co. Fatou’s lemma implies

f . A*dE} <liminf (A X-n V) *dEY = llxpull3. (B.27)
spec L,

neN  JspecL,
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Since |x,| < |x| for all n € N, Equation [B.27]implies

lxulle = sup lxpulle =lim ||x,u(l2 € [0,00] (B.28)
neN neN

for all u € L2(M, ). We use decomposition as per Proposition [B.1.47 and apply limits in
n €N as per Equation to show equivalence as claimed.
Let u € L2(M, 7). Proposition [B.1.47|implies

lzul? = |zRe()|3 + |2 Im(w)| 3 (B.29)

for all z € M. Note mixed terms i2Re(zRe(u),zIm(u))2 do not appear in Equation [B.29
as |lzullz € R ensures they vanish in each case. Since all positive and negative parts
involved have disjoint support, multiplying out terms yields

lzull2 = ||z Re()+ |5 + ||z Re()_ || + || 2 Im@), |3 + ||z Tm(x)_ | 2 (B.30)

for all z € M}. In particular, Equation is satisfied using z = x,, for all n € N. Thus
applying the limit in n € N as per Equation for given u extends Equation to
z = x s.t. the resulting limit is finite if and only if u satisfies 1) and 2). O

Corollary B.1.67. Let x € L'(M,1)},.
1) For all n €N, set xp := X[-n n)(x)x. Then {x,}nen c LY (M, 1), and x = ||.|l1-lim,en X

2) Assume x € LY(M,1),. For all n €N, let x,, := min{x,n}. Then {x,}en € LYM,7),
and x = |.ll1-limpenx,. We have u € domL, if and only if sup,en lIxnttll2 < 0o or
sup,en lluxnll2 < oo.

Proof. Arguing as for Equation [B.28|in the proof of Lemma we have 1) and our
first claim in 2). Let x € LX(M, 7). For all u € LAM, 1), x| = sup,cy llxnu 2 € [0,00] by
monotone convergence. Thus u € domL, if and only if sup,,cy IIxnullf < 00, hence if and
only if sup,,ep llux, 12 < 0o by 2) in Proposition O

Corollary B.1.68. For all x € L>(M, 1)y, M nL?(M,7) is core of L, and R,.

Proof. Since x € L°(M,1)p, note 1) in Corollary ensures it suffices to show our
claim for L,. Lemma lets us reduce further to showing dom L, nL2(M, 1), lies in
the closure of M nL%(A, 1) w.r.t. the graph norm of L,.

Let u € domL, nL%(M,7), and set u, := min{u,n} € L2(M,1) for all n € N. For all
A=0 and n €N, get min{A, n}2 = min{A?,n2} < 1-min{A, n}. Multiplying out terms of the
inner product lets us estimate

Ju=al2= 2], + [ minfu, 2}, - 2eun) < ], - [minfuZ 02}, B3D)
for all n € N. Equation and 2) in Corollary imply limpen lu —uy, |I§ =0.
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Note x e dom R, since u € domL,. For all n e N, get

Hx(u - un)”g :f . (A—min{/l,n})szﬁu < 00. (B.32)
spec R,

Since (A —min{A,n})? < A2 on [0,00) for all n € N by definition, applying Fatou’s lemma
to Equation shows lim,en llx(w —u,)ll2 = 0. O

Spectral measures of self-adjoint measurable operators. Using inverses of
canonical left- and right-actions, we extend Subsection to self-adjoint measurable
operators. This yields abstract notion of spectral and joint spectral measure, as well as
bounded measurable functional and joint functional calculus of self-adjoint measurable
operators. This subsumes Definition[A.1.73] Notation [B.1.79fixes conventions.

Let (M, 1) be a tracial W*-algebra.

Definition B.1.69. Let x € L°(M,1);,.

1) For all Z € B(R), set

E.m(Z2):=Ly (EL,,(2)). (B.33)

We call E, s the spectral measure of x in M.

2) The spectrum of x in M is specysx := spec L 3r. We call

Wi(x) := Ly} (W* (L)) (B.34)
the W*-algebra generated by x in M.
Proposition B.1.70. If x € L°(M, 1)}, then
1) Lg,yzm=EL,,(Z) and Rg, yz)m = ER, ,(Z) for all Z € B(R),
2) specyx =specLy p =specR, y,
8) Wy(x) =Ly (Wy(Len)) = Ry (Wyy (R ).

Proof. Let x € LO(M, 1)}, For all Z € B(R), we know E, m(Z) € M. Thus our claim in 1)
concerning Ljs holds. For Ry, we instead use R, 7 = AdjTLx,M by 1) in Corollary|B.1.63
and reduce to Lj;. We directly verify it suffices to show AdjT(E L.uZ)=E Adj" LxM(Z ) for
all Z € B(R) to obtain our claim in 1) concerning R ;. ’

Since Adj"(R+i(T)) = R+;(Adj"(T)), Lemma shows Lemma applies to
T=Lym,S= Adj"(T) and ¢ = Adj’. Thus the required identity, hence 1) holds. Get 2)
since the spectrum of a self-adjoint unbounded operator is the support of its spectral
measure. Get 3) because all W*-algebras involved are commutative. O
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If x e L%(M, 1)y, then specyrx is a locally compact Hausdorff space and with o-ideal
N (E . m) < *B(specysx) of null sets as per 1) in Definition (B.1.71

Definition B.1.71. Let x € L%(M, 1);,. Set
1) N (Exm):={ZeBR) | E,m(Z)=0},
2) L*(specyx,dE . p) := L™ (specprx, N (Ex.m)).-
Lemma B.1.72. If x € L%M,1)p, then
1) (L°°(specyx,dExm),l.loo) is @ W*-algebra s.t. Co(specy x) is o-weakly dense,

2) there exists normal unital *-isomorphism

Ty : L (specyx,dE ) — Wyy(x) (B.35)
s.t. er’M ZLMOFx,M and FRx’M :RMoFx,M,

3) T’y m is determined by unitality and

Tem(xz) = Exm(Z) (B.36)

for all Z € B(R).
Proof. Note L>(specpx,dE , p) = L(spec Lx,M,dELx,M). Get 1). Proposition im-
plies Ur.y=Lmolym and I'r,, =Rmolyx . Proposition A.1.37|and Proposition|A.1.85
thus show reducing to UL,y = Lol yields 2) and 3) in full. O

Definition B.1.73. Let x € L°(M, 1);,. We call I'x » the bounded measurable functional
calculus of x in M. For all g € L*(specyx,dE . p), set

g(x) =Ty m(g). (B.37)

Remark B.1.74. Let x € L°(M, 1)}, For all g € L®(specyrx,dE,), get g(x) e M < LO(M, 1)
consistent with Definition |B.1.36| If x € M}, then we recover Definition [A.1.73| since 3)
in Lemma [B.1.72|reduces to 3) in Lemma

Let x,y € L°(M, 1);,. Using Proposition |A.1.96, we know 2) in Lemma [B.1.72|at once
implies L, p, Ry m € URBLAM,1));, commute strongly. Equation shows

W*(Loar) ®W* (Ryar) = W (Loar, Ry ar) € B(LAM, 7). (B.38)

Note Equation ensures Corollary lets us tensor Ly : Wy (x) — W*(Ly )
and Ry : W;,(y) — W*(R, ) to a normal unital *-isomorphism

Ly ®Ryr: Wy (x) @ Wiy(y) — W* (Lyar, Ry 1) (B.39)
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Definition B.1.75. Let x,y € L%(M, 1);,.

1) For all Z € B(R x R), set

Ex,y,M(Z) = (LM ®RM)_1(ELx,M,Ry,M(Z))- (B.40)

We call E, , i the joint spectral measure of x® y in M ® M°P.

2) The joint spectrum of x® y in M ® M°P is specyrx x y := spec L,y x R, pr. We call

Wi, ) := Wig() ® Wiy(y) = (Lag ® Rag) (W (Luaa, Ry 1)) (B.41)
the W*-algebra generated by x® y in M ® M°P.

If x,y € L%M, 1), then specyx x y is a locally compact Hausdorff space and with
o-ideal A (E , ») < B(specy x x y) of null sets as per 1) in Definition [B.1.76

Definition B.1.76. Let x,y € L°(M, 1);,. Set

1) N (Exyu):={ZeBR) | Ey,yu(Z) =0},

2) L*°(specyx x y,dEy y ) := L(specyrx x y, N (E y 1))
Lemma B.1.77. If x,y € L%(M, 1)y, then

1) (L*°(specyx x y,dExym),ll.loo) is @ W*-algebra s.t. Co(specyx xy) is o-weakly
dense,

2) there exists normal unital *-isomorphism

Ty : L(specyrx x y,dEx y p) — Wyglx,y) (B.42)

s.t. er,MyRy,M = (LM ®RM) oFx,M:

3) T'x M is determined by unitality and

Teyst(X20® x2,) = Ex(Z0)E y (Z1) (B.43)
for all Zy,Z1 € B(R).

Proof. We know 1) by definition. For 2), note it reduces to factors by construction of joint
spectral measures and apply Lemma [B.1.72| Likewise get 3) by Proposition|A.1.100, [
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Definition B.1.78. Let x,y € L°(M,1),. We call I'xym the bounded measurable joint
functional calculus of x® y in M ® M°P. For all g € L™(specyrx x y,dEy y M), set

glx,y) =Ty, m(g). (B.44)

Notation B.1.79. Unless stated otherwise, we suppress W*-algebras in subscripts of
spectral measures, spectra, bounded measurable functional calculus and generated
W*-algebras. In general, we use subscripts to keep track of W*-(sub-)algebras apart
from the algebra of bounded operators on a Hilbert space.

Lemma B.1.80. Let x,y € LM, 1),. If g € Cy([0,00) x [0,00)), then

[yy,m(8)=s- lgifg Tately,y+ely, M(8) (B.45)

Proof. Note 2) in Lemma [B.1.77|implies Equation is equivalent to

I'r.r,(8)=s -lgig)l UL el R, +e1(8)- (B.46)

Let {e,}nen < (0,00) be a descending sequence converging to zero. Proposition 10.1.8 in
[88] implies L, = sr-lim,en L +€,1 and R, = sr-lim,ecn Ry +&,1. All unbounded operators
used here are positive, and each limit is clearly independent of the given descending
sequence. Using standard arguments, we see Lemma implies Equation O

B.2 Compressed pull-back of joint functional calculus

In Subsection we discuss semi-finite W*-subalgebras of tracial W*-algebras and
associated L?-reducible measurable operators. Assuming such semi-finiteness upon in-
clusion, f.s.n. traces restrict to f.s.n. traces. Theorem gives structure-preserving
canonical inclusion for spaces of measurable operators. These let us extend abstract
compression maps from W*-algebras to spaces of measurable operators.

In Subsection we formulate compressed pulled-back joint functional calculus
of self-adjoint measurable operators. Theorem states sufficient conditions. For
its proof, we express change of canonical left- and right-actions as abstract compression
maps. We use Theorem to define compressed pulled-back bounded measurable
joint functional calculus of self-adjoint measurable operators and extend to suitable
unbounded functions following its Corollary

B.2.1 L?-reducible measurable operators

Semi-finite W*-subalgebras are tracial W*-algebras. We construct structure-preserving
canonical inclusions of the resulting spaces of measurable operators in Theorem
by mapping to L?-reducible measurable operators.
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Inclusion of pre-duals ensure semi-finite W*-algebras have unique noncommutative
conditional expectations by dualisation [[192]. Abstract compression maps are one of two
example classes. While we do not use them in the appendix, we do use noncommutative
conditional expectations to show monotonicity of quasi-entropies in Subsection [2.2.1]

Semi-finite W*-subalgebras. Let (M,7) be a tracial W*-algebra. f N c M is a
W*-subalgebra, then 7|y, is faithful normal trace on N since N, c M.

Definition B.2.1. If N c M is a W*-subalgebra s.t. 7|y, is semi-finite, then we call N a
semi-finite W*-subalgebra. We write N < (M, 1) in this case.

Notation B.2.2. Let N c (M, 7). We write T =7|y, on N.

Proposition B.2.3. Let N ¢ M be a W*-subalgebra.

1) If N c(M,7), then T is f.s.n. trace on N and (N,1) is a tracial W*-algebra.
2) Nc(M,7)ifand only if N[1py]1< (M, 7).

3) N c(M,1)if and only if N°° c (M°P,1).
Proof. We have 1) by definition. If N < (M, 1), then we know N[1y]=N & (lzf,)c c(M,1)

by Proposition [A.1.71l If (N[1p/],7) € (M, 1), then N < (N[1/],7) shows N c (M, 1) at
once. Get 2). We obtain 3) since partial orders on N and N°P are identical. O

Let N < (M,7). By construction, #£(N,1) c A (M,t). We define isometric inclusion
incg : L2(N,7) — L?(M, 1) of Hilbert spaces as the unique bounded linear map s.t. we
have commutative diagram

incg

L*(N,1) ——— L%(M,7)

Ti . T N (B.4T)

H(N,1) —— H(M,7)

of Hilbert space isometries.

Definition B.2.4. For all N c (M, 1), set

II-1l2

L%(N,7):=incy(L2(N,7))  =ince(L*(N,1)) (B.48)

for incg as per Diagram [B.47

Remark B.2.5. Note incy =idz2y ) upon identifying as per Remark .2.29: following
Theorem [B.2.28] i.e. a natural identification by extending Diagram to LY(M, 7).
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The isometric isomorphism incy : L2(N,7) — L2(N, 1) of Hilbert spaces defines inc,

as per Definition [A.1.13] We introduce compression maps in Subsection

Proposition B.2.6. Let N c (M, t). We have commutative diagram

5 Nllyl —2— B(L*M,7))

N
J/idN comy,, J/inc; ° compay o (B.49)
N .

v N — I 3(L2W,1)

s.t. horizontal maps are normal unital injective *-homomorphisms and vertical ones are
positivity-preserving surjections of Banach spaces.

Proof. Diagram is the left diagram in Diagram Get unital W*-subalgebra

Ly (N)Y'" = Lyr(N[137]) € B(L2(M,7)). Proposition and Proposition m show
Nl1yl={x€M | Ly is Ly(N)"-affiliated}. (B.50)

For all x € N[1j],, Proposition [B.1.26| shows the affiliation property in Equation [B.50

lets us apply Corollary|[A.2.28|to get

(L pts L2y o) =0- (B.51)

Equation holds for all x € N[1;/] by decomposing into real and imaginary parts.
Note N[1y]=N#® (11Lv>@ using direct sum of C*-algebras as per Proposition
since 1y = 137 — 1y by definition. Using N1y, = 15N = 0, Equation shows

N ={xeM | Lyy is Lu(N)"-affiliated, x = 1yx. (B.52)

Using L2(N, 1) c L2(N[1y],7), we directly verify

T2, = Ly MAL2(NT1,0,0) = TLAWNT L0, 01w, M (B.53)

by testing on the inner product. For all x € N[1/]5, we apply [x,1x]= 0, Equation|B.51
and Equation to calculate

(L, mr2av ] = 0. (B.54)

Equation holds for all x € N[1;/] by decomposing into real and imaginary parts.
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We show the right diagram in Diagram We directly verify comlN(lzf,) =0 and
COIIIL2(N,T)(L1]J\_”M) = 0. We are left to consider x € N. Let x € N and u € L%(N, 7). Thus

L, m(inca(u)) = incg (L, n(w)) (B.55)

by |.ll2-density. Equation and Equation let us calculate

comyz(y ) L p(inea(u)) = myzy o (L m(inca(u)))
= 12y 7 (incg (L, n(w)))

=incg (L. n(w)).

Apply inc, ! to get the right diagram in Diagram Altogether, get Diagram We
are left to show positivity-preservation. This follows from Proposition|A.2.17, as well as
Proposition |A.2.19|based on the former. O

Arguing as in the proof of Proposition V.2.36 in [192], we construct noncommutative
conditional expectations of semi-finite W*-algebras. We may use Theorem below
for this since noncommutative conditional expectations are not used in its proof.

Let N c (M,1). We identify as per Remark following Theorem Thus
N.=LY(N,7)cLYM,7)= M, and L4N,1) < L*(M,7) by L°(N,7) < L°(M, 7). Dualising
this inclusion map ¢: N, — M, yields unique noncommutative conditional expectation
from M to N. Definition [B.2.7|gives its defining properties.

Definition B.2.7. Let N < (M, 7). We say that a normal unital map P: M — N is a
noncommutative conditional expectation from M to N if

1) P(x)=xforallxe N, (Projection)
2) P(x)=01implies x =0 for all xe M, (Faithfulness)
3) P(x)(y)=x(y) for all xe M and y € N,. (Trace identity)

Remark B.2.8. Following Remark we use the modified standard pairing as per
Definition [B.1.50|to have noncommutative L!-spaces as pre-duals. The trace identity is
equivalent to the following. For all x € M and y € L'(V, 1), we have

7(P(x)"y) = 7(P(x")y) = (x* ). (B.56)
Equation m shows P is unique if it exists. If 7 < co, then M c L%(M,7) LiM,1) by
Holder and we have analogous chain of subspaces for N. We therefore see 7 < oo ensures

P extends to the Hilbert space projection n% :L?(M,7) — L?(N,1).
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Definition B.2.9. Let N c (M,1) and let 1 : N, — M. denote the canonical inclusion
given by the modified standard pairing. We call n% :=1* : M — N the noncommutative
conditional expectation from M to N.

Proposition B.2.10. If N c (M, 1), then T[% : M — N is noncommutative conditional
expectation from M to N. If N c M is furthermore a unital W*-subalgebra, then n% is
trace-preserving.

Proof. We may argue here as in the proof of Proposition V.2.36 in [192] to show JTAN4 is a
noncommutative conditional expectation. This assumes unitality. However, the latter is
only used to show 7o ﬂ% =1 on m;. Equation implies uniqueness. O

We give two classes of noncommutative conditional expectations used throughout
our discussion in Proposition First, we decompose Hilbert space projections. We
use such decomposition in order to reduce non-unital to unital cases if the given trace is
finite. Secondly, we compress with projections using abstract compression maps as per

Definition for compressed W*-subalgebras as per Example

Remark B.2.11. Assume 7 <oo. If N € M is a W*-subalgebra, then we know N < (M, 1)
by Proposition [B.1.13| The latter shows semi-finiteness is satisfied for finite faithful
normal traces. We use this for Definition and 1) in Proposition

Definition B.2.12. Assume 7 <oo. Let N ¢ M be a W*-subalgebra. For all x € M, set

r(3) 7t r(n, @) i v # 1w,

M (e

Ky () 1=
else.

Proposition B.2.13. Let N c M be a W*-subalgebra.
1) If 1 <oo, then N c(M,1) and n% = ”%[1114] —K%IIJ\‘,.
2) If p € M is a projection, then M[plc (M,1) and n%[p] = comy,.

Proof. Assume 7 < oo. Proposition shows N c (M, 7). By our construction of non-
commutative L2-spaces, we have orthogonal decomposition

LA(N[1y],7) = L*(N, 1) @ (1y)c < LA(M, 7) (B.57)
since N[1y]=N#& (1}\,)@ by Proposition Extending to Hilbert space projections

as per Remark [B.2.8] Equation [B.57 shows

M _ .M M
nN[lM] - ]TN ® n(]_ll\_,)a: (B58)

w.rI.t. @(LZ(N,T)) ® ,%((1}\,)(3). Equation implies 1) at once.
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We show 2). Let p € M be a projection. Let x € N, be non-zero. Semi-finiteness of
7 yields y € M, s.t. y <x and 7(y) < co. Note pyp € M[pl,. Get pyp < x in M[p] since
x = pxp. In addition, traciality implies

0<t(pyp)+1((1ar — p)y(1yr — p)) = 7(y) < c0. (B.59)

Equation implies 7(pyp) < co. We obtain M[p] < (M, 7). Equation determines
noncommutative conditional expectations. Moreover, M[plnLY(M[p]l,7) c LY(M[p], 1) is
|.Il:-dense by construction as per Definition |[B.1.41] It suffices to show

T(n%[p](x)*y) =7((com, x) " y) (B.60)

for all x € M and y € M[pln LY MI[p], 7). Applying Equation and using y = pyp in
each case, we directly verify Equation Get 2). O

In Subsection|2.1.1] we write noncommutative conditional expectations in the unital
finite-dimensional case as as averages of unitary conjugations. We ultimately obtain the
general non-unital finite-dimensional one by 1) in Proposition

L2-reducible measurable operators. Let (M,7) be a tracial W*-algebra. For all
N < (M,7), Theorem [B.2.28| yields canonical inclusion LON,7) < LM, 1) preserving
noncommutative L”-norms. Equation leads to Definition [B.2.14

Definition B.2.14. For all N c (M, 1), we call

L'(N,7):= {x e L%M,7) | L,y is Ly(N) -affiliated, x =1 Nx} (B.61)

the space of L2(N, 7)-reducible measurable operators in L°(M, 7).

Proposition B.2.15. Let N c (M, 7).
D) LYW, 1) cLO%(N[1p1,7) < L°(M, 7) are *-subalgebras.
2) LUN,1) =N for uniform closure in measure topology of (M, ).

Proof. Note Ly(N)" = Lp(N[1p]). The construction of spaces of measurable operators
reviewed in Subsection taken from [193] is in fact independent of choice of normal
faithful unital *-representation. Using Lj; and f.s.n. trace 7 : Ly (N[1p]) — [0,00], we
see Ly maps LO(N[1/1,7) onto LO(L 37(N[131),7). This implies 1) and 2) for N[1,] since
uniform structure is determined by the measure topology on M, resp. £(M).

By definition, LoV, 1) « L%(N[1],7) is a *-subalgebra. Get 1). Equationshows
N cLY%N, 7). We have LY, 7) ¢ N by 2) for N[1j/] and continuity of multiplication on
bounded subsets of LO(M, 1) (cf. Theorem IX.2.2 in [193] and [161]). We therefore get 2)
by taking uniform closure. O

348



Let N c (M,7). Let x € L%V, 1) be self-adjoint. For all Z € B(R), Proposition [B.1.26
ensures the affiliation property in Equation implies E, ,,(Z) € Ly(N[1p]). For all
Z €B(R), get E, y(Z) € N[1] by 1) in Proposition [B.1.70|and we have decomposition

E.m(Z) = INEx m(Z)1y & 1yE . y(Z)1 = comyy By y(Z) & v N(Z)1y (B.62)
wrt. N[1yl=N@o (ljg,)q;. Note v, n(Z) €{0,1} in each case. Equation in turn yields
two compressed spectral measures. For all Z € °B(R), set

E;N(Z):=comyy E, y(Z). (B.63)
The map Z — v, n(Z) € {0,1} defined on B(R) is determined by Z — lzL\,Ex,M(Z)lﬁ. If

N c M is a unital W*-subalgebra, then set v, := 0. If not, then E, »s spectral measure of
x in M and v, y(Z) €{0,1} in each case implies there exists unique v, € R s.t.

Ve, N(Z) = xz(Vy) (B.64)
for all Z € B(R). Equation shows v, determines v, n.

Definition B.2.16. Let N c (M, 7). For all self-adjoint x € LY, 7), we define

1) the map Z — E, n(Z) on B(R) as per Equation[B.63]

2) v, =0if N € M is a unital W*-subalgebra, and v, € R as per Equation if not.
Remark B.2.17. Upon identifying L%V, 1) = L°(V, 7) as per Remark B.2.29| we readily

see K, v as per 1) in Definition is in fact the spectral measure of x in N as per 1)
in Definition [B.1.69|for all x € L°(V, 7).

Proposition B.2.18. Let N c (M, 7). If x € LON[1/],7) is self-adjoint, then

1) we define spectral measure Ly(E . n) on R with values in B(L%*(N,7)) by setting

Ly(Eyn)(Z):=Ly(ExN(2)) (B.65)
for all Z € B(R),
2) Ly is LAN[1y],7)-, L3N, 7)- and L*((13)c,7)-reducible,
3) ComLZ(N[]_M]’T) Lx,M = ComLZ(N’T)Lx,M + COmLZ((].]J\})C,T) Lx,M,
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Proof. Let x € L%(N[1;/],7) be self-adjoint. Get 1) by Proposition We show 2). For
all Z € ‘B(R), we use 1) in Proposition [B.1.70|and Equation to calculate
[ELx,M(Z)’nL2(N[1M],T)] = [LEx,M(Z),M ,”L2(N[1M],T)] =0. (B.66)
Equation m shows L p is L2(N[1p],7)-reducible by Corollary If we instead
use Equation then we calculate
[ELx,M(Z)’T[Lz(N,T)] = [LEx,M(Z),M ,7TL2(N,T)] =0 (B.67)
in each case. Equation implies L, ps is L2(N, 7)-reducible by Corollary If

T(lILV) = oo, then Lz((ljf[)c,r) = 0 by construction. If not, then L2(<11J\‘,)¢:,T) = (1*,)@. For
all Z € B(R), we obtain

ELX,M(Z)”LZ(ﬂ]f,)C,T) = an((lf\‘ﬂc,T)ELx,M(Z) = Vx,N(Z) : EL2(<1IJ{,>G,T)' (B.68)

Equation shows L, y is Lz((lj\',)@, 7)-reducible by Corollary Get 2).
We show 3). Using 2), 1.3) in Proposition [A.2.24| shows

Lx,M = COmLZ(NJ)Lx,M + C0mL2(N’T)L Lx7M. (B69)

Applying comy2(y(1,,] 1) to Equation yields

€Oy 2(N71,,1,7) LM = €OMy2(y 1) L, + comyz iy, (compaqy yt L) (B.70)

since L2(N, 1) c L2(N[1/], 7). We directly verify

TL2(1kye,n) = TLAWN, D TL2(N[1y),7) = PLAN[1y],1)TLA(N 1) (B.71)

by testing on the inner product. Equation implies

comLQ(N[lM],T) (ComLz(N’T)L Lx,M) = COmL2(<1ﬁ>C,T) Lx’M. (B72)
Applying Equation to the right-hand side of Equation shows 4). O
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Lemma B.2.19. Let N c (M, 7). If x € LON[13/],7) is self-adjoint, then JAALN(E N) is
a t-measurable self-adjoint unbounded operator on L2(N,1).

Proof. Let x € L%N[1],7) be self-adjoint. Set T, := JAALN(E . n). Proposition [B.1.26
shows the affiliation property in Equation [B.61| ensures T, is N-affiliated. We are left
to show 7-measurability as claimed. We use Notation
Let Z € B(R). Proposition [B.2.6/shows
Ly(E.n(2)) =inc,  (compaqy 1y Lar(Ex1(2))). (B.73)

Note 2) in Proposition [B.2.18|implies L, p is L2(N,1)-reducible. Lemma shows

comLz(N,,) LM (Ex,M(Z)) = comLz(NJ) LEx,M(Z),M = EcomLQ(N,r) Lx,M(Z)' (B.74)

We combine Equation and Equation to

L (B n(2)) = incy (Beomysy , Low(2)- (B.75)

Upon inversion of inc;, we see Equation ensures 2) in Corollary applies
here. Applying said corollary accordingly, get

T, =inc, " (comyzy ) Lxn)- (B.76)

Equation implies T2 = T2 and therefore

|Ty| =T\x- (B.77)

Equation and Equation let us calculate
(B m(2) =1Ly (B m(@)) =1(E 1, 1(2)) + Vi n(Z) - T(1x) (B.78)

for all Z € B(R). Equation shows 7-measurability of L, j implies 7-measurability
of T',. This is our claim by construction. O

Definition B.2.20. Let N c (M, 7). For all x € LY(N[1;/],7), set

come::L]_vl( f AdLN(ERe(x),N)) +iLZ‘\,1( f AdLN(Etmen) |- (B.79)
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Lemma B.2.21. Let N (M, 7). If x e LON[13/], 7) is self-adjoint, then

_ .
1) comyz(ni1,,,r) LMt = COMy 2y 1) iy (Leomy.N) + Vi TLaatyc oy

2) COHILZ(N’T)Lx,M = C0mL2(N,T) inc; (Lcome’N),

3) comya gy LM = Ve Tr2atye oy
Proof. If we have 2) and 3), then 3) in Proposition |B.2.18 implies 1). Get 2) by applying
inc; to Equation Using Lemma , Equation shows the spectral theorem
implies 3) since the given spectral measures coincide. O
Corollary B.2.22. Let N c (M, 7). For all x e LON[1],7), we have

1) 1yxly e LAN,7),

2) comyx =comylyxly.

Proof. We know 1) since the affiliation property in Equation [B.61]is identical. Note 1) in
Proposition [B.2.15|shows all claims reduce to self-adjoint elements. Let x € LO(N[13,1,7)
be self-adjoint. Using Corollary [B.1.64, Equation lets us calculate

comy 2y 7 Le,mt = compznyay o) Ly Lo Loy m
= comy2(Ny1y,1,n) Ly, - LemLiym
= comy 2(Ny1,,0.0) Ly, M Loy -Liym
= comy 2ni1,,10) Ly ML L1y m

= COMy 2(N[1,,1,7) Liyxiym

by boundedness of left- and right-multiplication with 1. Equation shows applying
comy 2y ;) to both sides of the above calculation yields 2). O

Upon identifying L%V, 7) = L°(N, 1) as per Remark note Lemma lets
us extend N[1p]1=N & (1y)c to L°N[1p],7) = L%N, 1) & (1) as per Equation [B.100
using direct sum of *-algebras s.t. integrability is preserved. Theorem [B.2.28| and its
Corollary ensure this extends to L”-norms for all p € [1,00]. We may therefore
forget all a priori complications underlying Definition treating comy = comy,
and com; 1 as in the bounded case. We make this explicit in Diagram
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Definition B.2.23. For all x € LY(N[1y/1,7), set vy := VRe(x) + i VIm(x)-
Lemma B.2.24. Let N (M, 7). For all x € LYN[1/1,7), we have

D x=1nx1y+vely,

2) xe LY, 1) if and only if VRe(x) = Vimx) = 0,
3) 1(lx]) = 7(|compyx|) € [0,00] if x € LAN, 7).
Proof. If N ¢ M is a unital W*-subalgebra, then we reduce to the non-unital case for
vy =0. We assume N c M is a non-unital W*-subalgebra without loss of generality. Let
x € LO%(N[15],7). We require 1) to show 2) and 3).
We show 1). As LO(N[1y],7) is a *-subalgebra by 1) in Proposition [B.2.15| we assume
x is self-adjoint without loss of generality. We show Equation to get decomposition

as per 1) by the spectral theorem. Using 2) in Lemma [B.2.21| for the first and third
identity, as well as 2) in Corollary [B.2.22|for the second one, we calculate

_ .
comy 2y ;) Lxy = comy 2y ;ine, (Leomyx,N)

_ .

= comy 2y 1) 1NCy (LcomN 1yxly,N )

= ComLZ(N’T)LlelN,M.

We show Equation [B.86] Let Z € B(R). Using the above calculation, Equation [B.75|
immediately implies
Ln(ExN(Z)) =Ln(E1yx1y N(2)). (B.80)
Note Equation ensures E, N(Z),E 1.1y N(Z) € N by definition. Moreover, we know
Ly :N — %B(L*(N,1)) is faithful by 1) in Proposition Applying L]'\,1 to both sides
of Equation yields
EN(Z)=E1yx1yN(2D). (B.81)

Equation and Equation show we have decomposition

E.m(Z) = E1ya1y N(Z) ® Ve N 13(Z) (B.82)
w.rt. N[1y]=N & (1y)c.
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Using N 1]{, = IJ{ZN =0, we directly verify

Ry (Inxly +vels) = In(yaly Fily) iy + 15 (velsy Fily) 15 (B.83)

in L°(M, 7). Using 3) in Proposition B.1.70/and bounded measurable functional calculus
as per Definition [B.1.73|inside compression terms, Equation implies

Bty rth @) = Ergay N2 1RE, 11 (2)15, (B.84)
w.r.t. N[1]= N & (13)c. Note Equation ensures E1,,1, N(Z) = INE1y 21y m(Z)1y
by definition. Lemma|B.1.72|shows elements in W;,(v1n) as per 3) in Proposition|B.1.70
are strong limits of finite polynomials with elements in {v, lzlv’ 1p7}. Using the latter, get
viNIg(Z) +1ny=E, 11 y(Z) since E,, 11 3(R) =1p. This implies

veNIN(Z) = 1NE,, 11 y 1§ (2. (B.85)

Equation [B.85] shows the right-hand sides of Equation and Equation [B.82] are
identical in each case. For all Z € B(R), we therefore have

Ex,M(Z) :ElelN"'Vxli/,M(Z)' (B.86)

Using 2) in Lemma Equation [B.86| shows the spectral theorem implies 1) since
the given spectral measures coincide. Note 1) shows 2) at once.

We show 3). Equation shows |comy x| = comy |x|. We directly verify |1yx1y| =
1xlxl1ly. Thus |x| € LYV, 1) if x € LoV, 1), hence we assume x € LYV, 1) is positive
without loss of generality. Then 2) implies v, = 0. Note the infimum in Equation [B.11
runs over all 1 > 0. Equation and v, = 0 therefore imply the generalised singular
number of x is given by

. 1
1y(0) = ut_T(llLv)(come) if ¢t = T(].N),
else.

We use the explicit expression above to calculate

o0 o0 o0
T(x) = f ui(x)dt = f Hi_r1ty(comyx)dt = f i(comyx)dt = t(comyx). (B.87)
0 (1) N 0

Following Remark [B.1.40, Equation |B.87 shows 7(|x|) = 7(| comp x|). Get 3). O
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Corollary B.2.25. Let N c (M, 7). For all x e L°(N, 1), we have
1) xe LY(M,71) if and only if comyx € LY(N, 1),

2) lxll1 = llcompyx|1 and t(x) = T(compy x) if x ELl(M,T).

Proof. Note 3) in Lemma[B.2.24]shows 1). If we furthermore extend Equation [B.87|to all
x € L9, 7)nLY(M, 1), then 2) follows. Equation shows comy : LO(N,7) — LO(IV, 1)
is linear and positivity-preserving by 1) in Corollary[A.2.13] and Proposition For
all 1 € R, max{A,0} = %(/1 +|A]) and min{A,0} = %(/1 —|A]). We use decomposition as per
Proposition and thereby see linearity, positivity-preservation and Equation
extend Equation to all x € LN, 7)nLY(M, 7). O

Lemma B.2.26. If N c (M, 1), then

1) comy :LO(NT[13],7) — LON, 1) is a surjective *-homomorphism,
2) comy : LYWV, 7) — LN, 1) is a *-isomorphism,

3) we have commutative diagram

LOWN,7) —— LOWN[1y],1) — 2 %m(L*(M, 1))

comy comy J/inc; o comy 2y 1 (B.88)

idpoup)

LOWN,7) — &0y LN, 1) — 2 wB(LAN,7)

s.t. horizontal maps are normal unital injective *-homomorphisms and vertical
ones are positivity-preserving linear surjections,

3) L2(N,1) = comy 1(L%(N,7)) and comy ! : LA, 1) — L2(N, 1) is an isometric iso-
morphism of Hilbert spaces restricting to the identity on N.

Proof. Equation |B.76/shows Diagram for self-adjoint elements. Said equation also
shows comp : LO(N[13,],7) — L%N,7) is linear. Twisting and concrete compression
maps are linear and positivity-, hence order-preserving by 1) in Corollary and
Proposition Get Diagram from the case of self-adjoint elements.

Thus comy : LO(N[1],7) — L°(N, 1) is a positivity-, hence order-preserving linear
map. In particular, comy commutes with algebra involution. If we have

comy 2y 7) Ly, i = comyay 7 Lo p - comyay o) Ly m (B.89)

for all x,y € L%N[1j],7), then we see 3.3) in Proposition and Diagram imply
comy is a *-homomorphism.
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For all y € LO(N[1y],7), we know L2(IN,7)-reducibility by 2) in Proposition [B.2.18
and use 7y 2y ;)L y,m © Ly M2y r) @s per Equation[A.44]to get

comLz(N’T)Ly,M = HL2(N,T) 'Ly,M . nLQ(N,T) = Ly,M . an(N,T). (B90)

Note left- and right-multiplication with 7yzy ;) commute with taking closure. Using

Corollary [B.1.64] and Equation [B.90, we directly verify Equation Get 1) and 3).
We show 2). We must show injectivity. It suffices to consider self-adjoint elements. By

Lemma [B.2.21| and 2) in Lemma [B.2.24] we assume N c M is a unital W*-subalgebra
without loss of generality. For all x € LO(NV, 1), get E x,M = E, n. The spectral theorem
then shows Lcomyx,n determines L,y uniquely in each case. Injectivity as required
for 2) holds. We show 4). For all x € LV, 1), comy |x|? = |comyx|? because comy is a
positivity-preserving *-homomorphism. Get 4) by 2) and Corollary O

Remark B.2.27. Note incs = comy ! on L2(N, 1) since both are isometries restricting

to the identical map on a dense subset.

We have L2(NV, 1) = comy Y(L2(N, 1)) and identify along incy. This is subsumed by
the general convention fixed in Remark

Theorem B.2.28. Let (M,7) be a tracial W*-algebra. If N c (M, 1), then
1) comy ':LOUN,7) — LUN, 1) is a *-isomorphism,

2) we have commutative diagram

LN, 1) > LON[13],7) —2— %2B(LAM, 7))

comy compyy comy oy o) (B.91)

id o 5

LOWN,7) — &0 LN, 1) — 2 wB(LAN,7)

s.t. horizontal maps are normal unital injective *-homomorphisms and vertical
ones are positivity-preserving linear surjections,

3) forall p €[1,00], L°(N, 1) = comy YLP(N, 1)) and comy ' : L°(N,7) — LP(N, 1) is
an isometric isomorphism of Banach spaces restricting to the identity on N.

Proof. We identify along ince. Lemma implies 1) and 2) at once. We show 3). For
this, we instead require the following. Let x € LY(N[13/], 7). If a € Q, then we know
comy |x|% = |compyx|¢ (B.92)

because comy is a positivity-preserving *-homomorphism by 1) in Lemma |B.2.26 We
show Equation holds for all a = 0.
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Let $=0.Forall A =0, set gg(1) := AP Get R;(gp) € Co([0,00)) and R;(IxP)e LN, 7).
Since comy is a positivity-preserving *-homomorphism, get
comyR; (Ix1P) = R; (comy |x1). (B.93)

Let a =0 and {a,},en € QN(0,00) s.t. a = lim,en @y, We thereby have uniformly bounded
pointwise limit R;(g,) =lim,enRi(gq,) in Co([0,00)) and calculate

Ri(1x1%) = s-}LinglRi(IxI“”), Ri(lcompyx|¥) = s-}LieanRi(lcomeI“”). (B.94)

Note 2) in Corollary shows comy = comj, on N[1y]. Thus comy restricted to
N[1j]is a completely positive normal bounded linear map by Proposition hence
bounded strongly continuous by Proposition Using bounded strong continuity in
each case, Equation Equation and Equation let us calculate

comyR;(|x%) = s-}lig\ll comy R; (|x]%")
:s-}lienN1Ri(comN|x|“”)
:s-}LiererRi(IcomeI“”)
=R;(lcomyx|?).

The above calculation shows

comyR;(1x1%) = R; (| compy x|%). (B.95)

Since comp 17 = comy, 17 = 1y, get comy (|x|* —i1p7) = comy |x|* —ily. Using the latter
as first and Equation for the second identity below, we calculate

comy |x|*—ily = (com]\;Ri(lxlo‘))_1 =|comyx|* —ily. (B.96)

Equation implies Equation for all a = 0.

Let p € [1,00). For all x € L%, 1), Equation shows compy |x|P = |compyx|?. If
p < oo, then we know the latter identity implies 3) by 1) and Corollary The case
of p = 0o is clear. Get 3). O

Remark B.2.29. Let (M,7) be a tracial W*-algebra. If N c (M, 1), then Theorem
ensures we identify along comy without loss of generality. Note identification preserves
*-algebra structure, positivity and noncommutative L?-norms. Corollary[B.2.25|ensures
identification further preserves trace.
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Compression maps on spaces of measurable operators. If (M,7) is a tracial
W*-algebra and p € M is a projection, then M[p] < (M, 1) by 2) in Proposition(B.2.13|and
LOY(MI(pl,7) < L°(M,7) by Theorem [B.2.28

Proposition B.2.30. Let (M,1) be a tracial W*-algebra. For all projections p € M and
q €[1,00], we have L%(M[pl,7) = pL°%(M,7)p and LY(M[pl,7) = pLI(M,7)p.

Proof. Multiplication in L%(M, 1) is continuous in measure topology on bounded subsets
(cf. Theorem IX.2.2 in [193]] and [161]). Using the latter, 2) in Proposition [B and
MI(pl = pMp, we have LO(M[pl,7) = M[p]l = pL°(M,7)p by approximating in measure
topology. For all g € [1,00], get LY(M[pl,7) = pL9(M,7)p by 3) in Theorem [B.2.28 O

Definition B.2.31. Let (M,1) be a tracial W*-algebra. For all projections p € M, we
define the compression map com,, :LO9(M, 1) — L°(M[p], 1) by setting
comy, x := pxp B.97)
for all x € L%(M, 7).
Corollary B.2.32. If N c (M, 1), then
1) comy =comy, on LO(NT11,7),

2) we have commutative diagrams

LOWN,7) —— LONT1y),7) —2— %B(L*M, 7))

idLO(N,T) comy,, J/comLz(N’T) (B98)

idogy o

LOWN,7) — &0 LW, 71) — X wB(LAN, )

LON, 1) LOWNT1y], D) — 2 %B(LAM, 7))

id oy o) comyy, J/comLz(N’ﬂ (B.99)

L (N,1)

LON, 0 — 290 pogy oy — P a1, )

s.t. horizontal maps are normal unital injective *-homomorphisms and vertical
ones are positivity-preserving linear surjections.

Proof. Get 1) by Corollary Thus Diagram is 2) in Theorem [B.2.28] hence
Diagram follows from Diagram by 2) in Corollary B.1.63 O
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B.2.2 Compressed pulled-back joint functional calculus

We prove Theorem and give compressed pulled-back joint functional calculus of
self-adjoint measurable operators in Definition In Subsection [2.1.2] we apply
Theorem [B.2.44] and its corollaries.

Change of canonical left- and right-actions. We express change of canonical
left- and right-actions as abstract compression maps. Let (M, 1) be a tracial W*-algebra
and N < (M, 7). We identify as per Remark For all x € L°(N[1p],7), note 1) in
Lemma [B.2.24| shows we have decomposition

X =Ccomy, X & Vy 1}\, (B.100)

extending N[1y]1=N & (13)¢ to L/NI1y],7) = L°N,7) & (13;)¢ using the direct sum of
*-algebras induced by canonical inclusion in L°(M, ). Mapping as per Equation
using left diagram in Diagram we indeed have LO(N[13,1,7) = L°(N, 1)@ (1}\,)¢ and
commutative diagram

LN, 1) 3 LY, 1) & (1{)c ——2— LON,7) (B.101)

id oy 1)

of *-homomorphisms. Diagram [B.101] extends Diagram [A.41]
Lemma B.2.33. If x € LO(NT[11,7)p,, then we have

1) specyx =specycomyy, x U vy} and N (Ex ) = W(Ecomle,N) NN (vy),

2) normal unital surjective *-homomorphism comy, : W, (x) — Wy (comy, x) s.t.

comyj,, I'xm(g)= 1—‘com1Nx,N(g) (B.102)
for all g € L™ (specyrx,dE um),

3) commutative diagram of normal unital surjective *-homomorphisms

Tem

L (specyrx,dE . y) ’ > Wy (x)

res comy,, (B.103)

FcomlN x,N

Lo (speCN comy,, x, dEcomle,N) Wy (comy, x)

with res the restriction map given by specycomi, X C Specy X.
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Proof. Let x € L%N[131,7);,. Decomposing LO(N[1371,7) = LN, 7) @ (llf,)c, we directly
verify 1). We show 2) and 3) using Lemma Note 1) in Corollary shows
comy = comy, On LO%(NT[1p1,7). Since we identify as per Remark we know 2) in
Lemma therefore implies

Ly 1207 1) = €0mp2y 1) Lt = Leomyy x,N - (B.104)

Up to representation under canonical left-actions, Equation |B.104] shows 2) and 3) in
Lemma are 2) and 3) as claimed. We therefore invert canonical left-actions and

conclude by 2) in Lemma O

Remark B.2.34. Theorem and Corollary show Lemma subsumes
Corollary and Lemma for canonical left- and right-actions of L2-reducible

measurable operators. Choice of unit only involves values at zero.
Corollary B.2.35. If x € L%(N, 1)y, then we have
1) specyx =specyxU{0} and N (Exp) < N (Exn),

2) g(Lx,M) |L2(N,‘[) = g(Lx,N); g(Rx,M) |L2(N,T) = g(Rx,N) for all g€ L*> (SpeCMx7 dEx,M);

3) commutative diagrams of normal unital surjective *-homomorphisms

r,
L (specy 2, dEy py) —— 25— Wix) — M —25 B(LAM, 1))
res comy,, JcomLz(NJ) (B.105)

L(specyx,dEyy) ——5 Wix) — N —5 (L2, 1)

~

o0 rx,M * 0 RM 2
L>®(specyrx,dEy py) ——— Wy (x) —— MP —— B(L*(M,1))
res comy J/comLz(NJ) (B.106)

L(specyx, dE, ) ——2—% Wix) — N® 2 (LN, 1))

with res the restriction map given by specyx C specy x.

Proof. Get 1) by 2) in Lemma [B.2.24|and 1) in Lemma [B.2.33| Diagram [B.103|is the left
diagram in both Diagram and Diagram Diagram and Diagram
yield right diagrams by restriction to bounded operators. This shows both 2) and 3). [

360



Corollary B.2.36. If x € L°(N,1);, and g € L>(specyrx,dE pr) s.t. g(0)=0, then

e m(g) =Ty n(g). (B.107)

Proof. Note N c N[1y] < (M,7) by 2) in Proposition By Theorem we
assume M = N[1j] without loss of generality. Let x € L°(V, 7). We know v, = 0 by

2) in Lemma [B.2.24] Let g € L™®(specyx,dE, ) s.t. g(0) = 0. Equation [B.102| for N c
(N[1p],7) and (1}\,)(1; < (N[1p1],7) each lets us calculate

l“x,M(g) =comy, Fx,M(g) + comlﬁ l“x,M(g) = I“x,N(g) + Fo,um(g). (B.108)

Get 1“0’ (ak >C(g) = g(0) = 0 by hypothesis. Equation shows Equation O
Corollary B.2.37. If x,y € L%(N, 1)y, then we have

1) specyx x y = (specyx U{0}) x (speeyx U{0}) and N (Eyym) <N (ExyN)s

2) g(Lx,M,Ry,M) \LZ(N,T) = g(Lx,N>Ry,N) for all g€ L™ (Spech XYy, dEx,y,M);

3) commutative diagram of normal unital surjective *-homomorphisms

Ly®Ry

Tay, .
L>(specyrx x y,dE . y m) LN Wi (x,y) ——— B(L*(M,7))

Jres comyy o1y ComLQ(N’T)J/ (B.109)

Ly®Ry

Iy, .
L™ (specyx x y,dE y n) ———% Wi(x,y) —2" B(LAN,1))

with res the restriction map given by Specyx X y C Specyrx x y.

Proof. Note 2) Lemma and 1) in Corollary show Lemma [A.2.29| applies to
the outer diagram in Diagram Said lemma therefore shows 1), 2) and the outer
diagram. Normality of all maps involved reduces the left diagram in Diagram to
elementary tensors. Apply 3) in Corollary [B.2.37] O

The compression theorem. Let (M,1) be a tracial W*-algebra and H a Hilbert
space. Let N c(M,7) and V < H be a Hilbert subspace.

Definition B.2.38. We say that a normal unital *-homomorphism ¢ : M — 2B(H) is
(N,V)-compressible if ¢(IN) c B(V) and 7y = ¢(1N)7y .

Proposition B.2.39. If ¢ : M — B(H) is (N,V)-compressible, then ¢|ny: N — B(V) is
a normal unital *-homomorphism.

Proof. Note ¢p(1y) € B(V) and ny = ¢(1n)ny shows ¢p(1y) = comyp(ly) = my. Since
O(N) < B(V), we see ¢l : N — B(V) is a normal unital *-homomorphism. O
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Remark B.2.40. Let ¢ : M — %B(H) be (N,V)-compressible. For all x € LO(N,1);,, we
have imE, y c N as per 1) in Definition [B.1.69|and therefore ¢(imE, n) = B(V).

Definition B.2.41. Let ¢ : M — %(H) be (N, V)-compressible. For all x € LON, 1), we
define the push-forward spectral measure ¢p(E, n) of x in N under ¢ to V by setting

H(En)2Z):=p(E.N(2)) (B.110)
for all Z € ‘B(R).

Lemma B.2.42. Let ¢ : M — B(H) be (N,V)-compressible. If x € L°N, 1), and fur-
ther T € UPBv(H) s.t. Py m(R+i)) = R4i(T), then we have p(I'y N(R41i)) = R4i(Tly) and
P(E.N)=ET),.

Proof. For all ye N, we have ¢p(1x) € B(V), [¢p(1n),1v]=0 and

comy P(y) = comy (P(1n)P(¥)P(1y)) = comy ¢ (comy, y) (B.111)

since ¢ is (N, V)-compressible. If y =T, 3/(g) for z€ N and g € L*(specy2,dE, yr), then
Equation [B.111]and 2) in Lemma |B.2.33| show

comy (T, m(g)) = comy p(comy, Iz p(g)) = p(T2 N (8)). (B.112)

Let x € LON,7);, and T € %%Bv(H) s.t. ¢y m(R+;)) = R.;(T). Then using 2) in
LemmalA.2.26] Equation [B.112|lets us calculate

R.i(Tly) =comyR.;(T) = comy ¢(Tx p(R+;)) = P(Lxn(R1i)). (B.113)

Proposition [B.2.39|shows (/)OLZ_Vl :L®(N,1) — %(V) is normal unital *-homomorphism.
Set ¢ N := ¢poL ;. Using 2) in Lemma B.1.72, EquationB.113|implies ¢, N(Ri(Ly N)) =

o'y N(R4;)) =R4i(T|y). We see approximating in norm shows

P(Ten(g) = drn(g(Lan)) =&(Tly) (B.114)

for all g € Co(R). We have push-forward measure ¢, y(E L.y) @s per Definition [A.1.90
Precomposing with Lz_vl maps Equation |[B.110(to Equation for pp N(EL, ), i.e.

P(Exn) =N (EL,y)- (B.115)

Equation shows Lemma |A.1.91] applies to ¢, N(EL, ). As such, Equation
shows ¢p(E, n) = (/)L,N(EL%N) = Er1), by Lemma|A.1.91 We therefore know ¢(E, ) is a
spectral measure on R with values in (V). O
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Definition B.2.43. Let ¢ : M — 2(H) be (N,V)-compressible and v : M°® — 2B(H)
(N°P V)-compressible. The pair (¢, ) is (N, V)-compressible. Set ¢ @y v := ¢|ny @ W|nop.

Theorem B.2.44. Let N c (M,7) and V c H be a Hilbert subspace. Let (¢p,w) be an
(N,V)-compressible pair. If x,y € L%N, 1), and further T, S € 4%y (H) commute strongly
s.t. pUx M(R+;)) = R1i(T) and w(I'y y(R+;)) = R+;(S), then we have

1) specyx x y=specTly xSly and N (EyyN) =N (ETy.s1v),
2) (povy)(gx,y)=gTly,Sly) for all g € L*(specyx x y,dE .y N),

3) commutative diagram of normal unital surjective *-homomorphisms

I'rs *
L>(specT xS,dET ) s W*(T,S)
id b
fove) 1—‘x,y,M %
L>®(specyx x y,dEy yp) —=— Wi(x,y)
res res J/COHllN@lN comy (B.116)
- v Fx,y,N .
L (Spech x y,dEx,y,N) — WN(x’ y)
d pevy
- ~N- rT\v,SIV > ~
L (spec T|V XS|V7dET|V,S|V) > W (T|V,S|V)

with restriction maps given by spec Ty x S|y cspecT xS, specyx x y C specyrx x y.

Proof. Let x,y € L°(N,7), and T,S € %%v(H) commute strongly s.t. oy m(Ry;) =
R.;(T) and ¢(I'y y(R+;)) = R4;(S). By construction of W*-tensor products, the normal
unital *-isomorphism Ly ® Ry : W, (x,y) — W*(L, um,R, m) has inverse (Ly ®Ry) 1=
LJ_V1 ®RR,1 b . Thus 2) in Lemma shows we have commutative diagram

l—‘Lx,N’Ry,N

L*®(specLyn xRy N,dEL, R, y) W*(LynN,RyN)

de LileRy! (B.117)

Ley N

L*(specyx x y,dEy y )

> Wylx,y)
of normal unital *-isomorphisms.
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Lemma implies ¢(I'y y(R+;)) = R1i(Tly) and y(I'y y(R4;)) = R4;(Sly). Argu-
ing as in the proof of LemmalA.2.12] mapping C*-generators onto and closing in o-weak
operator topology provides normal unital *-isomorphisms ¢ : Wy (x) — W*(Tly) and
¢ : Wi (y) — W*(Sly). Corollary lets us tensor these two *-isomorphisms to the
normal unital *-isomorphism ¢ ®y v : Wy (x,y) — W*(Tly,Sly).

Arguing as in the proof of Lemma _ set ¢ N := poLl and ygy = 1//0R1.
Lemma shows Ry = L(Z)\I,’ on N. Moreover, 2) in Lemma [B.1.72|and Lemma
show we in fact have normal unital *-isomorphisms ¢r, x : W*(L, n) — W*(Tly) and
YeN W (RyN)— W*(Sly) st. prN(EL, ) =ET), and yr N(ER, y)=Eg)y,.

Thus LemmalA.1.10T|applies using ¢z v and ¥g v, resp. their inverses. The concrete
analogue of 1) hence follows by 1) in Lemma|A.1.101] We pull back along Diagram
to the abstract case. This is 1). In our setting, Diagram in Lemma is the
commutative diagram

er,N’Ry,N

L*(specLyn xRy N,dEL, \R,y) W*(L.N,RyN)

id PLNOVRN (B.118)

~ ~
Triy sty

L>®(specTly xSly,dEry, s1,) ——— W*(T'ly,Sly)

of normal unital *-isomorphisms. Using o-weak closure, we directly verify

(PL,N®1//R,N = (([)@V W)O(LZ_V}@RRII) (B.119)

on elementary tensors. Equation B.119|shows Diagram B.118|factors into the upper and
lower diagrams

L*™(specLyn x Ryn,dEL, v R, x) NN e (L, Ry )
id Ly‘eRy
L°°(spech\>/< y,dEyyN) ik S W;\(;,y) (B.120)
id pVvY
e FTIV,Slv ~

L>(specTly xSly,dET},.s,) ———— W*(Tly,Slv)
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of normal unital *-isomorphisms. The outer diagram in Diagram is therefore
given by Diagram whereas the upper one is Diagram Thus both outer
and upper diagrams commute, hence the lower diagram in Diagram |B.120|commutes.

We apply the above discussion to (INV,V) and its special case (N,V) = (M,H). We thus
combine both to have commutative diagram

I'rs

L>(specT xS,dET3) : > WX(T,S)

Tid poy

1—‘ac,y,M *
L*®(specyx x y,dEy ypy) ——— Wy(x,y)

(B.121)
l—‘x,y,N *
L*®(specyx x y,dEy y N) ———— Wi(x,y)
d pevy
(o] FTlv’S‘V \ *
L>(specTly xSly,dET,.s),) > W (Tly,Slv)
of normal unital *-isomorphisms. We further have commutative diagram
I'rs X
L>®(specT xS,dEr ) > W(T,S)
Iﬁx,y,M %
L (specyrx x y,dEy y p) ——— Wy (x,y)
res res comjyely comy (B. 122)

Ty, .
L®(specyx x y,dEx yn) —25 Wy (x,y)

~

> W*(Tly,Sly)

Ty sty

L>(specTly x Sly,dEry, sy )

of normal unital *-homomorphisms. Indeed, note Diagram as per Lemma
is the outer diagram in Diagram whereas the left diagram in Diagram as

per Corollary B.2.37|is the inner one.
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We combine Diagram and Diagram to Diagram Commutativity
of the latter therefore implies both 2) and 3) follow if the diagram

w*(T,S)
poy
Wy, (x, )
comiyely comy (B.123)
Wy (x,y)
pVY
W*(Tlv,Slv)

of normal unital *-homomorphisms commutes. Normality reduces to commutativity on
elementary tensors. Note com1,g1, = comy, ®comi,. Equation|B.112(for ¢y y and yr N
implies commutativity on elementary tensors. O

Corollary B.2.45. Assume the setting of Theorem For all real g€ #(EyyN) s.t
1) (t,8)— ge(t,s):=g(t+¢e,s+¢) liesin Cyp(spec Ty x So) for all € >0,
2) g(Tly,Sly)=sr-limg|0g:(Tly,Sly)on V,
we have g € S (E T, s),) with g(T|y,S|ly) = sr-lim¢ o (¢ @y Y)(g(x,y)) on V.
Proof. Apply Lemma and Theorem to reduce to Corollary O
Definition B.2.46. Assume the setting of Theorem

1) We call Ff’;UN := (¢ ®y ¥)ol'y y N the bounded measurable joint functional calculus
of x®y in N ® N°°? under ¢ @y .

2) Let S (E,yn) be the set of all real g € #(E, , n) s.t. 1) and 2) in CorollaryB.2.45
are satisfied. For all g € A/ (E,,n), set

Ff,’;p,zv(g) :=g(Tlv,Sly). (B.124)

3) We call Ff’wN K (Ex,y,N) — U%B(V);, the joint functional calculus of x® y in
N @ N°P under ¢ ®y .
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Corollary B.2.47. Let Noc N1 c(M,t) and Vo c Vi c H be Hilbert subspaces. Let (¢, )
be an (No,Vy)- and (N1, Vi)-compressible pair. If x,y € L°(Ny, 1)y, and T,S € UPBv(H)
commaute strongly s.t. p(I'x y(R+;)) =R ;(T) and ¢’y (R +;)) = R+;(S), then we have

1) specy, x xy cspecyrx x y and N (Eyxym) <N (Exyny)
2) specy,x x y cspecy, x Xy and N (ExyN,) €N (ExyN,),

3) commutative diagram of normal unital surjective *-homomorphisms

oy
L>®(specyrx x y,dEy y ) ———— %B(H)

res comy;
~N- <,b,u/N <
L (specy, x x y,dEy y N,) — 2 BV (B.125)
res comy,
~N- rd),u/

x,5,Ng

L>®(specy, x x y,dEx y ny) ——— B(Vp)
with restriction maps given by specy, X X y C Specyx X y, SPECN, X X y C Specy, X X y.

Proof. Get 1) and 2) by Corollary|B.2.37, Lemma B.2.42|shows ¢(I'y n, (R +;)) = R +i(T'ly,)
and y(I'y n, (R +;)) = R+;(Sly,). Theorem |B.2.44{ applies using N1 < (M,7) and V7, as well
as No c (N1,7) and V. We use ¢ and v in both cases. Using 3) in Corollary and

3) in Theorem applied twice accordingly, we directly verify Diagram O

Corollary B.2.48. Assume the setting of Theorem Ifx,y e L°N,7);, a,f = 0and
g € Cp([0,00) x [0,00)), then

comiyoty(Losatl. i ®) =Ty N(@) (B.126)

Proof. Let x,y € LN, 7)., a, =0 and g € Cp([0,00) x [0,00)). Proposition shows
abstract compression maps are normal. By normality and Lemma |B.1.80, we assume
{0} e N (E,n)NAN(E, n) without loss of generality.

Set Z, :=specyrx \ {0} and Z, := specysy \ {0}. Note 1) in Corollary shows

Ten(xz,) =18, Tyn(xz,) = 1n. (B.127)

Using Corollary [B.2.36, Equation [B.127|implies

rxyM(XZx) = rx,N (XZx) = 1N = ry,N(XZy) = ry,M(XZy)' (B128)
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Equation [B.128|yields 1}\, e Wy, (x)n Wy, (y) and

T m(80) = 13 =Ty m(80). (B.129)

For all ¢,s € R, let g®P(¢,s) := g(¢ + ado(t),s + Bdo(s)). We obtain g%P e Cp(RxR) and

Tyyn(8%P) =Tsyn(g). (B.130)

Using Theorem [B.2.44] we calculate

com1N®1N(Fxml}\“yw%,M(g)) = comiye1y(Txym(g%P)) = Tuyn(g®F). (B.131)
Equation [B.130|and Equation [B.131|show Equation [B.126 O
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C | Clifford Calculations

We give calculations in Clifford algebras for our discussion. In Section|C.I], Lemma|[C.1.]]
gives three identities for twisted dynamic quantum gradients induced by intertwining
sets of Clifford generators. In Section|C.2| Lemma[C.2.1|gives, in detail, implementation
of Bogoliubov automorphisms as per Equation [3.126|on anti-symmetric Fock space.
C.1 Identities for intertwining sets of Clifford generators

We use the three identities in Lemma to prove Lemma [2.3.59
Lemma C.1.1. Assume the setting of Lemma

1) Forall n,ke{1,...,m}, we have

0,0} = —0p0,. (C.1)

2) Forall n,ke{l,...,m}s.t. n#k, we have

0,01, = —010,. (C.2)

3) Forall ne{l,...,m}, we have

0,0, =4C0,. (C.3)

Proof. For all n€{1,...,m}, Example [2.3.54{shows L, € B(LA(A, 1)) is ¢-intertwining
with sgn(Lg4,) = —1. We pull back along L1 Note ¢ is involutive by hypothesis. Let
n,ke{l,...,m} and x € Ay. Using {d,}" ; € L°(A, )y, Corollary [2.3.56/ shows

0nx =dpx—P(x)d,, Opx =dyx+dx)d, (C.4)

and

Ap =d2x+xd? —2d,p(x)d,. (C.5)
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Note 1.2) in Definition [2.3.58| gives the Clifford relation d,,d; + dpd, =2Cd,,14. We
use the first identity in Equation[C.4]to calculate

0n0rx =dpdprx —d,d(x)dp +dpp(x)d, —xdrd,. (C.6)
Interchanging n and % in Equation yields 0,0,x. We apply the Clifford relation to
the first and fourth summand on the right-hand side of Equation|C.6, We obtain —d;,0,x.
Equation therefore implies Equation by Clifford relations. Get 1). We likewise
use both identities in Equation[C.4]to calculate

0,0px =dpdpx +d,p(x)dy, + dpp(x)d, +xdrd, (C.7)

and

0r0nx = dpdpx —dpd(x)d, — d,p(x)dp + xd,dy,. (C.8)

If n # k, then d,,d;, = —d;d,. Using the latter, we see Equation and Equation
imply Equation by Clifford relations. Get 2).

If n =k, then d% =(C1,4. Equation is Ayx =2Cx — 2d,¢(x)d,, in this case. We use
the latter and the first identity in Equation to calculate

0nApx=2Cdx—2Ch(x)d,, —2Cp(x)d, +2Cd,x =4C0,x. (C.9

Equation [C.9 shows Equation Get 3). O

C.2 Implementation on anti-symmetric Fock space

We use Lemma to derive explicit formula for Equation [3.126]in Example [3.1.62

Lemma C.2.1. Assume the setting of Example Forall te R and x € o/ (H), get

p.(Cliff(eP)(x)) = \ P! ps(x) \e Pl € p s(2 (H)). (C.10)

Proof. We solve the associated implementation problem at each time, i.e. we show each
Cliff(e*?) to be the Bogoliubov automorphism implemented on % (H[J]) using AeitiP]
as its unique unitary operator (cf. Section 3.2 and Section 3.3 in [177]). For this, we
construct suitable unitary equivalences of faithful unital *-representations of </ (H) over
Z(HI[J]) using cyclic vectors.
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For all ¢ € R, set p; := poCliff(e’*?) and note a cyclic unit vector Q € H of p/; satisfies
the J-vacuum condition if

p5(w+idw)(Q)=0 (C.11)

for all u € H. Let Q; be the Fock state of & (H[J]). It is the unique cyclic unit vector of
pg := pg satisfying the J-vacuum condition. For all ¢ € R, set Qf] = /\e”'D |(QJ).

Let t € R. Theorem 3.2.5 in [177] states e'*/P! € % (2B(H)) is implemented on F(H[J])
by Ne't'Pl e g (B(F(HIJID)). Using H = b(H) c «/(H) as set of generators and by norm
continuity, Equation reduces to p’, = pyoe'™? and

o4, )= N\e'Plo ) \e Pl € p (ot (H)) (C.12)

for all u € H. Note [¢'*?,J] = 0 ensures Theorem 3.3.3 in [177] yields implementation
as per Equation for unique but unspecified unitary operators. We require AeitiDl
to be the unique unitary operator used. Since (2 is a cyclic unit vector of ps, we know
QY is a cyclic unit vector of p’; s.t. Ne'tPl(Q) = QY by construction. If QO satisfies the
J-vacuum condition, then Theorem 2.4.7 in [177] shows Equation

We show the JJ-vacuum condition for Q. Since [eitD J]=0, we calculate

ps(e"Pu)(Q) = —ips(J("Pu))(Q) = ps(eP (P, - P)w))(Qy) (C.13)
for all u € H. We have e!P (P, —P_) = ¢!'°| on non-negative, and e'*?(P, —P_) = ¢!Pl—2]
on negative eigenvalues. For all v € H, note P_(v) = v implies J(v) = —iv and therefore
2v = v +iJ(v). Using the J-vacuum condition for 2 ;, Equation [C.13|implies

ps (P u) Q) = ps(ePlu) Q) (C.14)
for all u € H. Using implementation of ¢! on Z(H[J]) by Ae'!!P!, Equation lets
us calculate

ps(e™Pu) @) = ps(ePlu) @) = (N Po N ™)) (C15)

for all u € H. Equation shows

NP ps@x00) = AP (ps (e P Pu) @) = pl)  (C.16)

for all u € H. Using u := v +iJ(v) for all v € H, the J-vacuum condition for QQ; and
Equation imply Q, satisfies the J-vacuum condition. Thus Theorem 2.4.7 in [177]
shows Equation hence Equation O
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