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Abstract

The visualization of spatial data is an important research field in geoinformation science. Especially nowadays,
where positioning sensors are widely spread, many (large) data sets have spatial information. As an example,
take a set of bird observations where a data point corresponds to the location of a bird sighting and possibly ad-
ditional information (timestamp, photo, species specification, etc.). Often, such data sets are large and complex.
Visualizations from cartography allow users to explore and analyze the data. This ranges from visualizations
that give an overview of the data, to tools that enable a detailed analysis of data patterns. In this thesis, we
develop methods that support such visualizations. To be more precise, we apply methods from theoretical com-
puter science to existing visualizations from cartography to improve them, e.g., to decrease the time needed to
produce a visualization.

This thesis has two parts. In the first part, we consider the spatiotemporal case where each data point is
an event consisting of a point in space and time. For visualizing spatiotemporal data, it is common to use an
interactive visualization. Here, we focus on filtering the data for time windows. Then, the data that temporally
lies in the time window is visualized on a map. As visualizations, we consider three standard techniques for
visualizing point sets.

• A standard visualization is the representation of the events with one or multiple polygons, i.e., we ag-
gregate the points that lie in the time window into one or multiple polygons. In particular, we build on
the existing representation technique α-shapes. It is parameterized by a value α. Depending on α the
representation ranges from the convex hull of the point set, over multiple, detailed polygons, to no poly-
gons at all. Typically, one chooses an α value that still reflects the point set distribution while at the same
time simplifying it. We also discuss a modification of the standard α-shapes which produces schematized
α-shapes.

• Another visualization of a point set is the spatial density map. Here, we overlay the map with a grid, and all
grid cells that contain more data points than a given threshold are colored. Such a visualization can also
color-encode the number of points in the grid cells. As output, we receive a simplified and schematized
aggregation of the points.

• We also look at the labeling of point sets. Labeling is a standard cartography technique to display additional
data information. Therefore, we place an icon (e.g., a symbol) on the map over the data point. To achieve
good legibility, only a selection of labels is displayed.

To guarantee a pleasant interaction for the user, the visualization must be displayed in real-time. Especially
for large data sets this is a challenge. In this work, we develop data structures that guarantee a fast response
time. Such data structures are called time-windowed data structures. As a general idea, we break down the
visualizations into their atomic geometric elements. Then, we pre-process the set of all time-window queries for
which each atomic geometric element is displayed. Furthermore, we also look at consistency criteria between
two successive time-window queries. Especially, when the interaction is implemented in the user interface with
a slider (time-window slider), an interaction with the time-window slider should not lead to flickering effects in
the visualization.

In the second part of the thesis, we consider a static case where we have a complex spatial geometry without
any temporal information as input. While displaying this complex geometry with all its details can be needed
for a thorough analysis, it can be unclear and overwhelming for a user who wants a high-level overview. For
example, think of a very detailed border of a country. Often, such a border is used as an underlying base map
to give the user a spatial orientation. To not distract the reader from the data that lies over the base map, the
base map should not be too detailed. Hence, simplifying the border can be necessary for clear and readable
visualizations. We simplify polygons by hulls, i.e., a polygon that contains the input polygon.



Zusammenfassung

Die Visualisierung räumlicher Daten ist ein wichtiges Forschungsgebiet der Geoinformatik. Eine Vielzahl der
heutzutage erzeugten Daten haben einen räumlichen Bezug, da Sensoren zur Positionsbestimmung (z.B. mit-
tels GPS) weit verbreitet sind. Ein Beispiel für räumliche Daten sind Vogelbeobachtungen: Ein Datenpunkt
entspricht der Position und dem Zeitpunkt des beobachteten Vogels und ggf. zusätzlichen Informationen wie
Fotos oder Angaben zur Spezies. Räumliche Datensätze sind oftmals groß und komplex. Die Visualisierung
der Daten ermöglicht es, die Daten zu untersuchen und zu analysieren. In dieser Arbeit werden Methoden en-
twickelt, die solche Visualisierungen unterstützen. Dafür werden Visualisierungstechniken aus der Kartographie
mit Methoden aus der theoretischen Informatik kombiniert, um z.B. die Berechnungszeit einer Visualisierung zu
verringern.

Diese Arbeit besteht aus zwei Teilen. Im ersten Teil werden raum-zeitliche Daten betrachtet. Hier entspricht
jeder Datenpunkt einem Punkt in Raum und Zeit. Für solche raum-zeitliche Daten werden oftmals interaktive
Visualisierungen verwendet, wo Nutzer die Daten mittels Zeitfenstern filtern können. Die Daten, welche in dem
angefragten Zeitfenster liegen, werden auf einer Karte visualisiert. Da solch eine Visualisierung unübersichtlich
werden kann, werden in der Kartographie häufig Techniken verwendet, welche die Übersichtlichkeit erhalten. In
dieser Arbeit werden folgende Techniken diskutiert:

• In der Kartographie wird eine Punktmenge häufig durch ein oder mehrere Polygone repräsentiert. Dies
kann es erleichtern räumliche Muster zu erkennen und die visuelle Darstellung zu vereinfachen. Ein
verbreiteter Ansatz für die Repräsentation mit Polygonen sind α-Shapes. Abhängig von der Wahl des
Parameters α entspricht das α-Shape der konvexen Hülle der Punktmenge, oder mehreren detaillierten
Polygonen, oder der Eingabepunktmenge. Üblicherweise wählt man einen α-Wert, der die Verteilung der
Punktmenge widerspiegelt und sie gleichzeitig vereinfacht. In dieser Arbeit wird eine Modifikation der
α-Shapes eingeführt, welche schematisierte α-Shapes erzeugt.

• Eine weitere Visualisierung einer Punktmenge ist die Spatial Density Map. Dazu wird die Karte mit einem
Gitter überlagert, und alle Gitterzellen, die mehr Datenpunkte enthalten als ein festgelegter Schwellenwert,
werden eingefärbt. Eine solche Visualisierung kann auch die Anzahl der Punkte in den Gitterzellen farblich
kodieren. Eine Spatial Density Map ist eine vereinfachte und schematisierte Aggregation der Punkte.

• Eine weitere Standardtechnik der Kartographie für die Darstellung von zusätzlichen Dateninformationen
basiert darauf, dass Symbole oder Beschriftungen in der Karte über eine Auswahl der Punkte aus der
Punktmenge platziert werden. Die Symbole können beispielsweise Icons sein, welche den Typ des Daten-
punktes beschreiben, oder die Beschriftung kann dem Namen des Datenpunktes entsprechen. Um eine
gute Lesbarkeit zu garantieren und überlappende Symbole oder Beschriftungen zu vermeiden, wird nur
eine Auswahl der Symbole oder Beschriftungen angezeigt.

Um eine angenehme Interaktion für den Nutzer zu gewährleisten, sollte die Visualisierung in Echtzeit dargestellt
werden. Besonders bei großen Datenmengen ist dies eine Herausforderung und On-Demand-Berechnungen
reichen oftmals nicht aus. In dieser Arbeit werden Datenstrukturen entwickelt, die eine schnelle Visualisierung
ermöglichen. Solche Datenstrukturen für Zeitfensterfilterung werden in der Literatur als time-windowed data
structures bezeichnet. Für diese Datenstrukturen werden die Visualisierungen in ihre atomaren geometrischen
Elemente zerlegt. Für diese atomaren geometrischen Elementen werden alle Zeitfenster bestimmt, für die das
Element dargestellt wird. Darüber hinaus betrachten wir auch Konsistenzkriterien zwischen aufeinanderfolgen-
den Zeitfensterfilterungen. Insbesondere wenn die Interaktion in der Benutzeroberfläche mit einem Schiebere-
gler (time-window slider) implementiert ist, sollte eine Interaktion nicht zu Flackereffekten in der Visualisierung
führen.

Im zweiten Teil der Arbeit wird das Szenario betrachtet, bei dem komplexe räumliche Daten ohne zeitliche
Information vorliegen, welche visualisiert werden sollen. Während die Darstellung dieser komplexen Geometrie
mit all ihren Details für eine gründliche Analyse erforderlich sein kann, kann sie für Nutzer, welche sich einen
Überblick verschaffen möchten, unübersichtlich und überwältigend sein. Ein Beispiel ist eine sehr detaillierte
Landesgrenze, welche in Basiskarten verwendet wird, um Nutzern eine räumliche Orientierung zu geben. Um
die Nutzer nicht von den dargestellten Daten abzulenken, sollte die Basiskarte nicht zu kleinteilig sein. Daher
kann eine Vereinfachung der Grenze notwendig sein, um eine klare und lesbare Visualisierung zu erreichen. In
diesem Teil der Arbeit werden polygonale Hüllen diskutiert, welche komplexe Eingabepolygone vereinfachen.
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1 Introduction

In today’s world, we have to deal with a huge amount of data. Due to inexpensive and widespread positioning
sensors, a large part of the data has spatial information. For example, each smartphone, camera, navigation
device, or car generates such spatial data. Also in research, spatial data is essential, e.g., agricultural-related
observations, weather measurements, and sensor observations in robotics. With a large amount of data, it is
essential for users to get a good overview of the data and data patterns. Hence, it is essential to provide tools
for data exploration.

In the following, we describe two scenarios where data exploration tools are needed. First, we look at the
social media platform Flickr. This platform allows users to share their images and make them publicly available.
Hence, this generates a large database of images where a lot of images are annotated with their location.
Users can also look at, or download images that were generated by others. To allow users to find images that
are relevant to them, a data exploration tool is key. Further, one can also gain knowledge from data patterns,
e.g., city districts with a large number of images might be touristic districts. Hence, data exploration tools
improve the usability of and knowledge about the data. As a second scenario, take a research project with many
stakeholders in the field of agriculture. Typically, such research projects generate large amounts of spatial data
at one or multiple sites. Often, data sets generated by one researcher are of interest to other researchers as
well. Particularly, data sets that are located in the same field are interesting. To support researchers in using the
data from others, it is necessary to provide appropriate data exploration tools that also include spatial closeness.

From a theoretical point of view, the concept of data exploration is a part of data analysis. Important aims of
data exploration are providing data overviews, improving data comprehension, and illustrating data character-
istics. For spatial data, it is key to provide information on the spatial data extent. As already stated by Henrik
Ibsen "A picture is worth a thousand words", an important branch of data exploration is data visualization. For
spatial data, illustrating the data on a map is an obvious and effective approach. Here, the research fields of
data exploration, data visualization, and cartography overlap.

The research field of cartography widely explored the visualization of spatial data. Amongst others, design
goals for good visualizations have been developed. A typical cartographic design goal is to balance the infor-
mation amount while maintaining a clear and comprehensible map. This design goal is especially important for
visualization in the context of data exploration. Here, we deal with a large amount of data that can easily lead
to overwhelming visualizations. In cartography, researchers developed approaches that aggregate, simplify,
schematize, and/or select data for visualization.

In this work, we use such existing visualization techniques and design goals from cartography and enhance
them with knowledge from computer science. We partition the thesis into two parts. At first, we consider the
visualization of spatiotemporal events, i.e., spatial data that is annotated with temporal information. Secondly,
we discuss visualizations for the simplification and schematization of complex spatial data that has no temporal
information. In the following, we give a more detailed discussion of these two types of data and introduce our
approaches to enhance the visualizations.

Exploration of Spatiotemporal Events

A spatiotemporal event is a pair of a spatial geometric object and a timestamp that can be additionally annotated
with other information. In this thesis, we focus on events where the geometric object is a point in space. An
example of such event sets is the image databases from the social media platform Flickr where images are
annotated with a location and a timestamp. Additionally, the images can have titles, descriptions, and user
ratings.

For the visual exploration of spatiotemporal events, it is important to consider both, the spatial and the
temporal dimensions. Interactive user interfaces are especially well-suited for visual exploration. Figure 1.1
illustrates our interactive user interface. It consists of two components: a map at the top and an interaction
panel at the bottom. As an interaction, we allow the user to filter the data for time windows. The interaction
panel consists of a timeline and a time window on top. We use a dynamic range slider for the interaction, i.e.,
the user can slide the endpoints or the whole time window along the timeline. We call the interaction method
time slider. For a queried time window, the data that lies in this time window is displayed on the map. Note
that by continuously sliding the time window a user can also reveal spatiotemporal data patterns. It is key for
a pleasant user interaction that the visualization is displayed in real-time. Further, the visualization should be
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(a) all events (b) events with timestamps in year 2017

Figure 1.1: Each point in the maps corresponds to an image taken in the city of Bonn, Germany. Underneath
the map, we display the time-slider interface (orange). Data retrieved from Flickr. Map tiles by Stamen Design,
under CC BY 3.0. Map data by OpenStreetMap, under ODbL.

consistent, i.e., flickering should be avoided. Next, we summarize the challenges that arise with a time-slider
interface for visual event exploration.

Challenge (Exploration of Events). The main challenges for the visual exploration of spatiotemporal events with
a time-slider interface are:

C1 The spatial visualization should be precise and accurate.

C2 The spatial visualization needs to be clear and comprehensible.

C3 If the events have additional information, we need tools to display them.

C4 The response time needs to be small to handle real-time interactions.

C5 When moving the time-slider the changes in the spatial visualization should not be distracting.

C6 The system needs to be capable of handling large data sets.

We want to note that the challenges are not sorted by priority or difficulty.
From cartography, there exist several visualization techniques that face challenges C1-C3. These techniques

aggregate, simplify, schematize, and/or select parts of the data for the visualization. In the following, we give an
overview of visualizations that are used in this thesis.

• A common technique in cartography for visualizing a set of points is to aggregate them into one or multiple
polygons; see Figure 1.2a. The aim is to use fewer vertices for the polygonal representation such that the
visualization simplifies the geometry while still reflecting the point set shape. Hence, a balance between
challenges C1 and C2 is achieved. A variety of simple to more refined visualization techniques exist, such
as the convex hull, the α-shape [Edelsbrunner et al., 1982, Edelsbrunner, 2010], and the characteristic
shape [Duckham et al., 2008]. In this work, we use α-shapes. They are parameterized by a value α.
Depending on the value of α, the result can range from convex hulls to polygons that tightly fit the data.
To make the visualization even clearer, we also provide a schematized version of α-shapes where the
orientation of each line segment of a polygon stems from a pre-defined set of orientations (e.g., horizontal,
vertical, and diagonal direction).

• Another common approach for the visualization of point sets is a grid-based spatial density map; see
Figure 1.2b. Here, a grid is placed over the map and a grid cell is colored according to the number of
points that are contained in this grid cell. One can either use a binary color encoding with one threshold
or a color scale with multiple thresholds. Besides this classical version of spatial density maps, also more
elaborate information can be depicted. For example, when each point has a weight, we want to color a
grid cell according to the sum of the weights of the points that lie in the grid cell.

• When we want to visualize additional information as described in challenge C3, a typical approach in
cartography is to place symbols (icons, diagrams, etc.) or text labels at the spatial location of the point on
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(a) α-shape for storm events in year
1991

(b) density map for Covid19 spread in
April 2020

(c) labeling for tornado occurrences
between 20th of March 2017 and
20th of June 2017.

Figure 1.2: Different kinds of data visualizations. Data retrieved from Data.gov. Map tiles by Stamen Design,
under CC BY 3.0. Map data by OpenStreetMap, under ODbL.

the map; see Figure 1.2c. A common problem of such a visualization is the limited amount of space on a
map and the symbols or labels overlap. Therefore, only a selection of the symbols or labels is displayed.
Typically, the aim is to obtain an overlapping free placement of the symbols or labels [Yoeli, 1972]. In
literature, this problem is called point selection or map labeling problem, respectively.

All of these visualizations are well-studied for the static case. In Chapter 2, we discuss existing work from
cartography on static visualization techniques in more detail. Hence, challenges C1-C3 were already broadly
discussed in cartography.

Nevertheless, an interactive application scenario opens up new challenges (C4-C6). In particular, for large
data sets, a real-time query response is needed for a smooth and enjoyable data exploration. Further, it is desir-
able to have stable or in other terms consistent visualizations for small changes in the queried time window. In
this thesis, we tackle these challenges by introducing data structures that enable real-time interactions. Bannis-
ter et al. [2013] introduced such data structures for problems from computational geometry and relational event
graphs and called them time-windowed data structures. In Chapter 3, we will give a more refined discussion
on existing work from computer science on algorithms and data structures for time-windowed data structures.
The general idea in this thesis is that we break down the visualizations into their atomic geometric objects. The
α-shape consists of a set of edges, the spatial density map of a set of grid cells, and the labeling of a set of
labels. The data structures enrich each atomic geometric object with the sets of time-window queries for which
the geometry is contained in the visualization. Hence, whenever a user queries for a time window, we can
directly check the atomic geometric objects instead of going through the whole event data set. For the α-shape
visualization, we call our data structure α-structure (see Chapter 5). For spatial-density maps, we introduce the
θ -structure (see Chapter 6). In Chapter 7, we present the λ -structure for real-time and consistent map labeling.

Exploration of Spatial Data

The second part of this thesis focuses on the visual exploration of complex spatial data. Here, we consider a
polygon with a complex boundary as input. The challenge in visualizing such a complex object is to balance
the clearness and the precision. One concept to achieve such a clear visualization is simplification. Typically,
a simplified polygon has fewer corner vertices than the original polygon. A simple approach that simplifies a
polygon is the convex hull of the polygon. Another concept from cartography to achieve a clear visualization is
schematization. The edge directions of a schematized polygon are restricted to a pre-defined set of directions,
e.g., for rectilinear polygons, the direction of each edge is either horizontal or vertical. A simple example of a
schematization of a polygon is the bounding box. Since the convex hulls and bounding box do not mimic the
shape of a polygon well, more sophisticated methods are needed.

In this work, we contribute a model of optimal polygonal hulls that simplify the input polygon and polynomial-
time algorithms; see Chapter 11. We call these hulls shortcut hulls. We require that each line segment of the
hull starts and ends at a vertex of the input polygon. In order to find a good balance between simplification and
precision, we introduce a cost function that balances the covered area and the perimeter of the hull. We prove
that an optimal shortcut hull with respect to the cost function can be computed in polynomial time. If we forbid
holes in the shortcut hull, the problem admits a straightforward solution via shortest-path computation. For the
more challenging case in which the shortcut hull may contain holes, we present a polynomial-time algorithm that
is based on computing a constrained, weighted triangulation of the input polygon’s exterior.
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Contribution

We see the main contribution of this thesis in advancing the following open problems motivated by cartography
with techniques from computer science.

• Real-time visual exploration of event data with time-window data structures.

• Simplification of polygons with hulls in polynomial time.

Motivated by the real-world problem of big data exploration, both research areas are of high practical relevance.
For example, the research on time-windowed data structures allows users to explore such data smoothly and in
real-time. But also from a theoretical point of view, the underlying geometric problems are highly interesting.

Outline

This thesis is structured in two parts. In the first part, we look at time-windowed data structures for visual data
exploration. This part starts with a discussion of related work from the field of cartography; see Chapter 2. This
comprises an overview of relevant research fields and specific visualization techniques. After that, we provide
an overview of relevant methodologies from computer science; see Chapter 3. Then, we formalize the problem
of time-windowed data structures and introduce concepts that are relevant for our three time-windowed data
structures; see Chapter 4. Following these two sections, we discuss our time-windowed data structures: the
α-structure (Chapter 5), the θ -structure (Chapter 6), and the λ -structure (Chapter 7). We conclude our first part
and discuss open questions in Chapter 8.

In the second part of this thesis, we look at hulls of polygons for visual data exploration. We start this
part with a discussion of related work on simplification and schematization of geometries from computational
geometry and geoinformation; see Chapter 9. Then, we formalize the problem and introduce relevant concepts
and notations; see Chapter 10. In Chapter 11, we introduce shortcut hulls that simplify the input polygon. At
last, in Chapter 12, we conclude the second part by giving a short insight into ongoing research and an outlook
on remaining open and interesting research questions.
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2 Part I: Related Work from Cartography

Cartography is the art and science of maps. In this work, we look at the generation of maps from a computer
science point of view. In particular, the automatic generation of spatial data visualizations is essential with
today’s data volumes. Interactive visualizations also require real-time computation. In the following, we provide
an overview on broader research branches from cartography that are related to the challenge of real-time
visualization of spatial data. Afterward, we discuss more specific techniques and methods in the sections
visualizing point sets, visualizing information of point sets, visualizing spatiotemporal data sets, and dynamic
query interfaces.

Geovisualization Information visualization is a well-established research branch that deals with visualization
approaches, design goals, and also their evaluation. Such information can be anything; research findings,
socioeconomic statistics, and teaching material. When having data with spatial information, the subfield of
research is called geovisualization. It comprises work on visualization approaches, discussions of the design
space, and algorithms for creating visualizations for spatial data. Mostly such visualizations offer a high level of
interaction [Williams et al., 2013]. Often, geovisualization approaches are well-suited for data exploration.

Geovisual Analytics Cook and Thomas [2005] introduced the research field visual analytics that focuses on
how to support data processing by users with digital visualizations. One of its main areas is interactive visual
interfaces for supporting users in the analytical process [Andrienko et al., 2010]. The subfield of visual analytics
that focuses on spatial data is called geovisual analytics [Andrienko et al., 2007].

Interactive Cartography With digitization, also for cartography, a wide field of possibilities opens up. In-
teractive cartography focuses on enabling users to interactively manipulate maps. We want to point out the
difference between interactive and dynamic maps. While for dynamic maps the change is given by the system,
e.g., animations, a user can actually interact and change an interactive map. The research field interactive
cartography focuses on the design and model of such user interactions. As claimed by the visual information-
seeking mantra by Shneiderman [2003] such interactions should be designed to give the user first an overview,
then allow zooming and filtering, and at last, give further details-on-demand. An everyday example of a spatial
visualization system that offers user interaction is Google Maps. First, the users get a basic map as an overview,
then, they can search, pan, zoom, and get further details on demand. For a detailed survey on interactive car-
tography, we refer to Roth [2013] and Crampton [2002]. While traditionally interactive cartography focuses on
the scenario of a map on a screen, recent research also takes the opportunities of augmented and virtual reality
into account. Here, we want to refer to the new field immersive analytics [Marriott et al., 2018, Fonnet and Prié,
2021].

Visualizing Point Sets

Visualizing a set of points in a clear and clutter-free way is a widely explored field of research. A common
approach is to use a (visual) representation instead of the actual point set. A representation can be any set
of spatial objects that reflects the characteristic of the input point set, e.g., a polygonal hull of the point set.
We focus on work that aims at representing the spatial extent or the spatial distribution of the point set. For
these aims, two major research directions exist. One way is to represent the point set by one or more polygonal
shapes which (approximately) include the point set. Simple examples of polygonal representations are the
bounding box or convex hull of the point set; see Figure 2.1a and Figure 2.1b, respectively. A problem with
these simple approaches is that large areas of the map might be covered although no data points are contained
which might lead to a bad assessment of the point set extent. Hence, a series of more sophisticated methods
were developed. As a second visualization approach, besides the polygonal representations, there exist also
grid-based visualizations. Here, the map is discretized with a grid and the shape of the point set is reflected by
the coloring of the grid cells. Existing approaches explore different types of grids, various colorings, and different
approaches for the coloring constraints [Silverman, 1986, Liu et al., 2013, Battersby et al., 2017].

Often it is desirable to have a schematized representation, i.e., the orientations of shape borders stem from
a pre-defined set of directions, e.g., horizontal, vertical, or diagonal directions. While the shape of grid-based
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methods naturally is a schematic representation, most of the polygonal representations are not schematic but
sometimes can be tweaked to a schematic version.

In the following, we first describe the Delaunay triangulation which is a basic concept in graph theory and
geometry and which is used in many approaches of point set representation. After that, we describe a selection
of well-established point set representations. We illustrate these in Figure 2.1 and summarize their properties
in Table 2.1. We do not want to claim that any of these approaches outperforms the other but are rather suited
for different application scenarios. Subsequently, let P be the set of input points and let n be the size of P.

Delaunay Triangulation A triangulation of a set of points P is a set of vertices, edges, and triangles, s.t., the
vertices correspond to P and the number of edges is maximal and crossing-free. The Delaunay triangulation is
a triangulation where the circumcircle of every triangle is empty with respect to points from P. The Delaunay
triangulation of a set of points can be computed in O(n logn) time.

Convex Hull The convex hull of a set of points is the smallest convex polygon that contains all points. It is
a widely explored geometric concept and Chan [1996] provides an algorithm for computing the convex hull in
(n logh) running time where n is the size of the input point set and h is the number of vertices of the convex hull.
The convex hull is closely related to the Delaunay triangulation, i.e., it is the outer boundary of the area covered
by the Delaunay triangulation. The convex hull is a simple approach for representing a point set but often it is
not appropriate since it can cover large areas where no points of the input point set lie.

α-Shape The α-shape [Edelsbrunner, 2010, Edelsbrunner et al., 1983] is a representation of a set of points
in the plane by one or more polygons; see Figure 2.1c. It is a generalization of the convex hull and it is strongly
related to the Delaunay triangulation of a point set. Let α > 0. The α-shape consists of all polygons that are
formed by edges starting and ending at points of the input point set, where the edges are not longer than α, and
where an open disc with radius α/2 whose boundary intersects the start and end point of the edge and has its
center on the right side of the edge does not contain any other point of the input point set. On the one hand,
when choosing the parameter α large enough, the α-shape is equal to the convex hull. On the other hand,
when choosing α small enough the α-shape is equal to the input point set. Using the Delaunay triangulation,
an α-shape of a set of n points can be computed in O(n logn) time.

In this thesis, we use α-shapes for our data structure α-structure; see Chapter 5. A benefit of the α-
parametrization is that we can offer a high variety of output visualizations. Also, we introduce a technique for a
schematized version of α-shapes that restricts the edges of the resulting polygons to predefined orientations.
Hence, we can provide also schematized polygonal point set representations. From a technical point of view,
the α-shapes are well suited as a basis for time-windowed data structure, as they are defined very locally, i.e.,
an edge between two points of the input point set is part of the α-shape if there is an empty disc with radius α/2
that intersects the edges’ endpoints.

r-Shape The r-shape is an approach closely related to α-shapes. The idea is to center a disc of radius r on
each point of the input set; see Figure 2.1d. Then an edge is introduced between each pair of points where
the corresponding discs intersect and parts of the discs’ boundaries are part of the boundary of the union of all
discs. In the end, the boundary of the r-shape is obtained by combining all edges [Chaudhuri et al., 1997, Attali,
1998]. The r-shape can be computed in O(n) time.

Characteristic Shape Another method based on the Delaunay triangulation is the characteristic shape [Duck-
ham et al., 2008]; see Figure 2.1e. It is defined by a procedure that starts with the edges of the Delaunay
triangulation of the input point set. We iteratively check whether after removing the longest edge that is part of
the boundary is still a simple polygon. If this is true, we remove the edge, otherwise, we skip this edge. We
repeat this procedure until the longest boundary edge is longer than a chosen threshold. This can be done in
O(n logn) time. The resulting boundary is a simple polygon that contains all points of the input set.

Vernacular Regions Based on Shortest-Path Graphs de Berg et al. [2011] introduce vernacular regions
based on shortest-path graphs; see Figure 2.1f. They represent the input set of points with a single polygon.
More in detail, the polygon is defined as the outline of the shortest-path graph, which is again a subgraph of the
Delaunay triangulation. The construction takes O(n logn) time in case the holes are ignored.
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O-hull In the field of schematized shapes, we first mention the O-hull, which is closely related to the concept
of convex hulls, but the edge orientations are restricted to a certain set of directions [Fink and Wood, 2004,
Alegría et al., 2014]; see Figure 2.1g. Previous research discussed the variant where the basic orientation of
the map is given, which can be computed in O(n logn) time where n is the number of points in the input data set.
Another variant also optimizes the orientation of the basis map with respect to the area coverage of the O-hull.
This second version can be constructed in O(kn logn) time where k is the number of permitted edge orientations.
However, the O-hull is not suitable for our purposes since it can cover large areas that contain no data points
(similar to the convex hull). Hence, the O-hull does not guarantee an appropriate representation of the shape
characteristics of the input data.

s-Shape Given a set of points and a regular grid consisting of rectangular cells with width and height s, the
s-shape is defined as the outer boundary of all grid cells that contain a point. The s-shape is a schematic
polygon, consisting only of rectilinear edges, i.e., edges with either horizontal or vertical orientation [Chaudhuri
et al., 1997]; see Figure 2.1h. An s-shape can be seen as a hybrid between a grid-based and polygonal
representation. The s-shape of a point set can be computed in O(n) time.

Grid-Based Spatial Density Maps A very common approach for visualizing spatial information is a spatial
density map. Given a set of points and a grid, the grid-based spatial density map consists of all grid cells that
contain at least a certain number of data points. Besides classic regular and rectilinear grids; see Figure 2.1i,
for example, Carr et al. [1992] also use a regular hexagonal grid.

The very basic version of a spatial density map simply colors all grid cells that contain more points than a
pre-defined threshold. More refined are versions that use multiple thresholds and hence, multiple colors, such
that the visualization contains more information on the point set distribution. Often, spatial density maps are
also used to illustrate additional information about the input point set. For example, let each point correspond to
the location of an image on a social media platform (e.g., Flickr). Then, there often also exists a rating for the
images. For the spatial density map, we could think of coloring all cells according to the mean rating over all
images. For such an application scenario, also a continuous color palette can be applied.

In between different communities, the term spatial density map is not clearly defined, e.g., Chukwuma et al.
[2019] call a choropleth map a spatial density map, Kiyosugi et al. [2010] call an isochrone-like visualization a
spatial density map and on the other hand, Rafael et al. [2021] call a spatial density map a clustered heatmap.
Hence to be precise, in this work, we call the concept a grid-based spatial density map.

In this thesis, we enhance the spatial density map visualization with our data structure θ -structure; see
Chapter 6. In order to complement the polygonal representation given by α-shapes and our α-structure, spatial
density maps are a natural choice for a grid-based method. In particular, it is a widely used, easily understand-
able, and versatile visualization.

Continuous and Binned Heatmap Heatmaps of a set of points encode the point density by color [Battersby
et al., 2017]. The density is often derived from a kernel density estimation [Silverman, 1986] where the idea is to
model the density such that every data point has an influence on its surrounding region. We call the visualization
where we color every point in the plane according to a continuous density distribution with a continuous color
scheme, a continuous heatmap; see Figure 2.1j. However, in the real world, more often the plane is discretized
by a grid and each grid cell is colored according to the density distribution. Such a visualization is called a binned
heatmap; see Figure 2.1k. More in detail, we partition the map with a regular grid into cells that aggregate the
contained points. In the literature, this technique is called spatial binning and each grid cell is called a bin. For
a detailed discussion, we refer to the work by Battersby et al. [2017], who particularly argue that spatial binning
has perceptual advantages for our purposes of counting points and summing up their weights. Liu et al. [2013]
provide work on binned heatmaps for big data by introducing data cubes.
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Table 2.1: Techniques for the visualization of point sets from cartography. We classify the representation type (P
= polygonal, G = grid-based, C = continuous); the number of components in the output (1 = a single component,
* = arbitrary many components), whether the resulting visualization can have holes (Y = yes, N = no), and
whether the representation is a schematization (Y = yes, N = no), i.e., the edge directions are limited to a
predefined set of directions. We give the running times for computing the hulls with respect to the number of
input points n and for the convex hull, with respect to the number h of vertices of the convex hull.

technique repr. | comp. | holes | schematic
asymptotic
computa-
tion time

examples from
literature

convex hull P 1 N N O(n logh) Chan [1996]

α-shape P * Y N O(n logn)

Edelsbrunner
[2010], Edels-
brunner et al.
[1983]

r-shape P * Y N O(n)
Chaudhuri
et al. [1997],
Attali [1998]

characteristic-
shape P 1 N N O(n logn)

Duckham
et al. [2008]

vernacular
regions P 1 Y N O(n logn)

de Berg et al.
[2011]

O-hull P 1 Y Y O(n logn)

Fink and
Wood [2004],
Alegría et al.
[2014]

s-shape P/G * Y Y O(n)
Chaudhuri
et al. [1997]

grid-based
spatial den-
sity maps

G * Y Y

O(n) for
rectangular
grids Epp-
stein et al.
[2015]

Eppstein et al.
[2015]

continuous
heatmap C * Y N

depends
on density-
distribution

Battersby
et al. [2017]

binned
heatmap G * Y Y

depends
on density-
distribution

Liu et al.
[2013]
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(a) bounding box (b) convex hull (c) α-shape

(d) r-shape (e) characteristic shape (f) vernacular regions

(g) O-hull (h) s-shape
(i) grid-based spatial density
maps

(j) continuous heatmap (k) binned heatmap

Figure 2.1: Representing a point set. The dashed lines are not part of the visualization, but they are part of the
model of the representation. E.g, the α-shapes are defined by the shown set of empty discs.
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Time Window: 1/1/2017 – 1/1/2018

Figure 2.2: Time-slider interface for a data set where each point in the maps corresponds to an image taken in
the city of Bonn, Germany in the time range 1st of January 2017 until 1st of January 2018. Data retrieved from
Flickr. Map tiles by Stamen Design, under CC BY 3.0. Map data by OpenStreetMap, under ODbL.

Visualizing Information of Point Sets

The previously discussed representation of point sets focuses on visualizing the extent and geometric char-
acteristics of a point set. However, for some application scenarios, it can be important to visualize additional
information that is associated with the point data. For example, given a set of social media images at a different
location and time, see Figure 2.2, it can be interesting to visualize a subset of the images at their location on
the map. Another example are animal observations where we want to place an icon that encodes the species
of the animal in the map. Also, text can be placed on a map, e.g., the names of restaurants and sights. Often,
such additional information (photos, icons, text, etc.) associated with a point is visualized by placing it over the
point or close to the point on the map. For real-world data, it is mostly not possible to display all icons or texts in
a clear and comprehensive way on the map, e.g., due to overlaps. A standard procedure to solve this problem
is to visualize only a selection of the additional information. In cartography, the problem of selecting icons in the
map is called a point selection problem. It is part of the generalization operations defined by Hake et al. [2002].
On the other hand, placing text on the map is called map labeling. Throughout this thesis, we will refer to the
presented problem as a map labeling problem but we want to highlight that it is equivalent to the point selection
problem when treating each point as a label.

Map labeling is widely investigated in theoretical computer science and there exist plenty of algorithms with
respect to optimizing the visualization. In this thesis, we assume that we are given the labels’ placement and
geometry while we optimize the selection of displayed labels. For the static (non-animated and non-interactive)
case, a common goal is to maximize the number of displayed labels while avoiding overlapping labels [Agarwal
et al., 1998, Yoeli, 1972, Haunert and Wolff, 2017]. It has been shown that these problems are often NP-hard
since finding a maximal independent set in the conflict graph of the labels corresponds to selecting a maximal
non-intersecting subset of the labels.

In this thesis, we discuss map labeling for time-slider interaction. While we also want to optimize the sum of
displayed labels the visualization should be stable during the time-slider interaction. In Chapter 6, we introduce
the λ -structure that offers a solution to this problem.

Visualizing Spatiotemporal Data Sets

Previously, we presented visualizations from cartography that focus on spatial data without temporal information.
In the following, we discuss work on visualizing spatiotemporal data from the research branches geovisual ana-
lytics [Keim et al., 2008, Andrienko et al., 2010, Sun et al., 2013], geovisualization [Kraak, 2003], and interactive
cartography [Williams et al., 2013]. For a detailed survey on the exploration of spatiotemporal data, we refer to
Andrienko et al. [2003].

It is noticeable that a special focus in the area of spatiotemporal data visualization lies in the visualization
of movement data. In this context, among others, flow maps [Phan et al., 2005, Buchin et al., 2011], density
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maps for trajectories [Scheepens et al., 2011], as well as space-time cubes [Andrienko et al., 2013, 2014]
have been considered. Applications include the analysis of spatial mobility derived from social media data [Wu
et al., 2016] as well as the investigation of animal behavior [Slingsby and van Loon, 2016, Spretke et al., 2011].
Particular visualization systems were developed by Ferreira et al. [2011] for the analysis of bird populations and
by Konzack et al. [2019] for the exploration of migration patterns in gull data.

In this thesis, we focus on the visualization of spatiotemporal events that are points in space and time.
Although movement data also consists of sequences of points in space and time, our visualization faces different
challenges.

Dynamic Query Interface

At last, we want to discuss work from cartography and information visualization with respect to our interaction
techniques. In this thesis, we use the established dynamic query interface which was introduced by Kapler
and Wright [2005]. A dynamic query interface enables the user to graphically define the query and receive
a real-time response and continuous animations. It can be used for spatiotemporal data and also for other
higher dimensional data sets. Especially the implementation of a dynamic query interface with a time slider
is a standard tool for information visualization systems [Kapler and Wright, 2005, Ahlberg and Shneiderman,
2003, Hochheiser and Shneiderman, 2004, Robinson et al., 2017, Andrienko and Andrienko, 1999, Burigat and
Chittaro, 2005]. User studies showed that dynamic query interfaces allow significantly smaller task completion
time in comparison to paper-printout, text search, and form-fill-in interfaces [Ahlberg et al., 1992]. Due to the
required real-time response, the problem of efficiency [Tanin et al., 1996] arises. Additionally, due to the contin-
uous sliding of the query, the challenge of consistent visualization arises. In particular, there is the problem of
objects that unnecessarily disappear and appear again during an interaction (flickering). Often the problem of
flickering is also faced in animated and interactive map labeling.

In this thesis, we use a dynamic query interface for the visual exploration of the event data with α-shapes,
spatial density maps, and map labeling. With our data structures, we tackle the challenge of real-time response
time and flickering.
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3 Part I: Methodological Background

In this chapter, we introduce data structures from computer science that are used throughout the first part of this
thesis. In computer science, a data structure is a particular way of storing and organizing data. For example, for
a data set of numbers, we can store them in arrays, lists, heaps, or trees. Depending on the application scenario,
some data structures perform better than others. For a scenario where elements are added or removed regularly
from the data set, dynamic data structures like lists, trees, or heaps outperform static data structures like arrays.
Another typical scenario is searching in the data set. In the context of databases, a data structure is often
called an index. Choosing appropriate data structures can enable us to solve experiments with large data
sets that otherwise lead to unmanageable, large running times. In this thesis, we develop data structures that
support the search for time windows. In the literature, these data structures are called time-windowed data
structures [Bannister et al., 2013]. When developing a data structure, one needs to carefully balance the gain
in query time while preserving a small storage consumption.

Tree Structures
In this section, we introduce tree structures and different variants. We do not aim at giving a complete survey
but rather limit it to structures that are relevant to this thesis. For a fundamental overview, we refer to Cormen
et al. [2009].

We introduce a tree as a special type of graph. More in detail, let G = (V,E) be a graph where V is the set
of vertices and E is the set of edges. The graph G is a tree if G is connected, G is acyclic, and G is undirected.
Typically, we deal with rooted trees, i.e., one vertex of V is the designated root and the others can be ordered
hierarchically according to their path length to the root. For ordered rooted trees, every pair of adjacent vertices
is in a parent-child relation where the vertex that is contained in the path to the root of the other vertex is the
parent of the other vertex. Note that each vertex of a tree can be considered as a root of its own subtree.
Vertices that have no children are called leaves. The height of a rooted tree is the longest path length between
the root and a leaf. We denote the height by h in this section.

Often data structures for indexing data sets are based on tree structures. Such tree structures support
searching in the data set. We list typical kinds of search scenarios for using tree structures.

• The simplest kind of query is to report an element if it exists in the given data set. We call such queries
element existence queries.

• Another application scenario are range queries. Here, we are given a data set of k-dimensional points
and we query for all elements that are contained in a k-dimensional range. In this thesis, we have such
queries, e.g., for spatial queries for the θ -structure; see Chapter 6.

• Similarly, when we are given a data set of polygons a tree structure can support queries for all polygons
that contain a query point. Such queries are called point-in-polygon query. We use such queries in this
thesis, e.g., for the α-structure, the θ -structure, and the λ -structure when searching for all activity regions
that contain the time-window query point; see Chapter 5, Chapter 6, and Chapter 7.

In the following, we introduce several variants of tree structures. At first, we introduce a fundamental version
of a tree structure: the balanced binary search tree. Afterward, we discuss the quadtree that can be used for
the θ -structure. At last, we introduce range trees that we use for the α-structure, θ -structure, and λ -structure;
see Chapter 5, Chapter 6, and Chapter 7, respectively.

Binary Tree Probably the most important and widely used type of tree structure is the binary tree, i.e. a tree
is a binary tree if every vertex has at most two children. These are called left and right child, respectively. As for
each tree, each non-null internal and leaf node also points to its parent node. A widespread type of binary tree
is a binary search tree (sorted binary tree/ordered binary tree). A binary search tree allows efficient searching
for elements, inserting elements, and deleting elements. Let v be a node in a binary search tree. A binary tree
is called a binary search tree if it holds that the key of each node in the subtree rooted at the left child of v is
smaller than the key of v. Analogously it holds that the key of each node u in the subtree rooted at the right
child of v is larger than the key of v. For a binary search tree, the running time for search, insert, and delete is
O(h) where h is the height of the tree. A special form of a binary search tree is a self-balancing binary search
tree, e.g., AVL trees [Adelson-Velskii and Landis, 1962]; see Figure 3.1a. For such an AVL tree, it holds that
h ∈ O(logn) where n is the size of the data set. Then, the search, insertion, and deletion run in O(logn) time.
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Figure 3.1: Tree data structures.

L1 =
[

(q1, v1) (q2, v2) (q3, v3) (q4, v4) (q5, v5) (q6, v6) ...
]

L2 =
[

(q1, v1) (q2, v2) (q5, v5) (q6, v6) ...
]

Figure 3.2: Fractional cascading for two arrays L1 and L2 of key-value pairs (qi,vi) where L2 ⊂ L1. The pointers
from elements of L1 to elements of L2 are illustrated in orange.

Quadtree A quadtree is a tree structure where every internal node has exactly four child nodes. Quadtrees
are often used when working with two-dimensional spatial data. In that case, each node corresponds to a
square or rectangular region of the map; see Figure 3.1b. We call such a region of a node a cell. The children
of a node partition its cell again into four cells. Typically a quadtree is refined until either a certain spatial
resolution (minimal cell size) is reached, or the number of spatial elements in the cells is below a predefined
certain threshold. Querying a quadtree for all elements that are contained in a two-dimensional range is a typical
application scenario for quadtrees. For example, take a digital map where a user can pan the map, zoom in, and
zoom out. In order to find all spatial data in the current map extent, a quadtree can support such 2-dimensional
range queries. Typically a quadtree has a storage size of O(nh) where n is the size of the data set that needs
to be stored and h is the height of the quadtree. A range query can be answered in O(dh) time where d is the
number of reported nodes. In this work, we use quadtrees for indexing the grid cells of the density maps for the
θ -structure; see Chapter 6.

Range Trees A range tree is another form of a tree structure. They are designed for range queries on points
in the k-dimensional space. In fact, in the 1-dimensional case a range tree is a version of a balanced binary
search tree; see Figure 3.1c. Range trees were introduced by Bentley [1978] and later Chazelle [1990] improved
the memory consumption to O(n( logn

log logn )
k−1) and query time O(logk−1 n+d) where n is the number of elements,

k is the dimension, and d is the number of reported elements. In this work, we use range trees for indexing the
activity region of the θ -structure; see Chapter 6.

Fractional Cascading

Given a data set and a sequence of subsets of the data set where we perform binary searches for the same
element, we can speed up such repeated searches with fractional cascading [Chazelle and Guibas, 1986a,b,
de Berg et al., 2008]. In this work, we use fractional cascading to speed up the query time of the θ -structure.
In the following, we give a more detailed description. Let L1, . . . ,LJ be arrays with Li ⊆ L j for 1 ≤ i ≤ j ≤ J and
let q be a key. Then, fractional cascading supports queries for the key q in each array L1, . . . ,LJ . Fractional
cascading adds to each element r in Li a pointer to the first element of Li+1 that is equal or larger than r. When
searching for q, we perform a binary search in L1 and therewith we also receive the pointer to the query result
in L1 (i.e., the associated structure of the root) and iteratively for all Li; see Figure 3.2. An approach without
fractional cascading independently searches in each array, which takes O(d logn) time where n is the number of
elements in L1. With fractional cascading the search takes O(d + logn) time increasing the space consumption
by a constant factor.

Time-Windowed Data Structures

In the following, we introduce time-windowed data structures and showcase the two most important application
fields. The concept of time-windowed data structures was introduced in 2013 by Bannister et al. [2013]. Our
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developed data structures α-structure, θ -structure, and λ -structure all can be classified as time-windowed data
structures.

Let P be a data set of elements where each element p is associated with timestamps t. We call a range [tS, tE ]
that starts at timestamp tS and ends at timestamp tE a time-window. We call a query for a property of all elements
with t ∈ [tS, tE ] a time-window query. A data structure that aims at efficiently answering such time-window queries
is called a time-windowed data structure. The general idea of such data structures is to pre-process the possibly
large data set such that it can be queried with time windows efficiently. Mostly, for visualization purposes, a real-
time requirement is enforced.

As a first attempt for a time-windowed data structure, one might want to store the query result for each
possible query. Assuming the data set contains n elements, there exist O(n2) distinct results for time windows.
Hence, the resulting storage consumption can be large when storing the results of all time-window queries. To
avoid such shortfalls, more elaborate data structures are designed.

The first application field was presented by Bannister et al. [2013] for relational event graphs, i.e., a graph
where each edge is annotated with a timestamp. Their data structure supports basic counting problems, e.g.,
on the number of connected components, or the number of isolated vertices. Later, Chanchary and Maheshwari
[2019] presented a time-windowed data structure for monotone decision problems such as the bipartiteness
and the disconnectedness of relational event graphs. Chanchary et al. [2019] use color range queries on such
graphs to answer time-window queries for different graph parameters (e.g., density).

The second application field where time-windowed data structures have already been considered is compu-
tational geometry. Bannister et al. [2014] presented data structures for querying the solutions of basic problems
such as computing the convex hull of a spatiotemporal point set. Bokal et al. [2015] considered basic monotone
decision problems on spatiotemporal point sets, e.g., they can report point sets whose diameter is at most 1
or whose convex hull has an area at most 1. Chan and Pratt [2016] gave improvements for these problems
and extended them to similar decision problems. Chan and Pratt [2015] used a quadtree-based approach to
report the closest pair for a given time window. Moreover, Chanchary et al. [2018] presented time-windowed
data structures for deciding whether there are intersections between geometric objects.

In this thesis, we discuss the visualization of event data sets as a third application field for time-windowed
data structures.

Stability Enhancing Data Structures for Visualization

In the context of visualizing spatial data sets for a dynamic or interactive scenario, lately, a lot of effort has been
undertaken to provide stable visualizations. This includes stability with regards to map interactions such as
zooming, panning, and rotation, but also, when looking at time-series data, stability with regards to time [Nickel
et al., 2022].

An extensively studied scenario is stable map labeling. For example, there exists work on stable labelings
for animation, where the stability is obtained by additional stability constraints [Barth et al., 2016, Gemsa et al.,
2020, Bobák et al., 2020]. For the interactive case, Been et al. [2006] introduced the concept of active ranges
for labels, considering zooming, panning, and rotations of the map. This concept was investigated intensively
from an algorithmic point of view. Been et al. [2010] proved that active range maximization is NP-hard for zoom-
ing and they give constant-factor approximations. Active range maximization for zooming has been similarly
considered for further variants [Liao et al., 2016, Schwartges et al., 2013, Zhang et al., 2020, Nöllenburg et al.,
2010]. For active range maximization in rotating maps, Gemsa et al. [2016b] presented an NP-hardness proof
and proposed approximation algorithms. For the same scenario, Gemsa et al. [2016a] experimentally evaluated
approximation algorithms and greedy heuristics with respect to exact solutions obtained by integer linear pro-
gramming (ILP). Similarly to active range maximization, Funke et al. [2016] and Bahrdt et al. [2017] consider
circular and prioritized labels whose radius grows with the scale of the map.

With a similar goal, algorithms for map generalization have been developed that ensure consistency during
interactions. This includes methods for the consistent selection of roads from a detailed road data set during
continuous zooming [Chimani et al., 2014] or continuous movement of a focus area [van Dijk et al., 2013] as well
as methods for the consistent aggregation of areas during continuous zooming [Peng et al., 2020]. A common
approach is to pre-compute a data structure from which a map corresponding to a scale or preferences specified
by the user can be rapidly retrieved [Meijers et al., 2020].

Another research area with high attention is the stable visualization of time series data. In this scenario,
often, the visualization consists of one visualization per time step and it can be presented as an animation
or with an interactive user interface. Stability is understood here as a change in the visualization between two
consecutive time steps. Lately, such stability was considered for Demers cartograms [Nickel et al., 2022]. Again,
the authors pre-process the data set into a data structure that encodes the placement of the symbols per time
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step. Closely related is also the field of dynamic graph drawing for event graphs. For example, DynNoSlice is
a force-directed algorithm that pre-processes the data set into a data structure that is called a space-time cube
[Simonetto et al., 2020]. It can be understood as having a three-dimensional space with the spatial extent in
the x-, and y-direction and the time in the z-direction. When slicing the cube for a point in time one receives the
graph drawing.

Other Work on Real-Time Interaction with Big Data Visualizations
Besides the previously presented time-windowed data structures, the challenge of real-time interaction with big-
data visualizations has been stated in a variety of research branches, and several other problem variants were
tackled. Besides the development of data structures for time-window queries, as done in this thesis, there exists
a wide range of other approaches, e.g., introducing data structures for other or more general queries (data
cubes), improving the server-client infrastructure, and including the prediction of user interaction to prefetch
data. Note that in some of these research branches, literature often refers to the query time as latency. In the
following, we discuss examples of these approaches.

A data cube is a multidimensional array of values, and the term is typically used in the context of big data
where the memory consumption is by far larger than a computer’s main memory. In contrast to our work, data
cubes aim at providing data aggregation along any set of dimensions. Lins et al. [2013] introduce nanocubes
which are an improved version of data cubes with respect to memory consumption. They claim to fit billions
of multidimensional data entries into modern laptops’ main memory. Nanocubes support the user interaction
of aggregating the data set across every possible set of dimensions. Nanocubes can also be understood as a
database index structure. Liu et al. [2013] introduce a system imMens that provides the visualizations for queries
on multidimensional big data sets in real-time. Their system precomputes multivariate data tiles [Gupta and
Mumick, 1999] which are a data structure derived from decomposing data cubes. When users interact via the
browser-based frontend, the system visualizes the data set by combining techniques from parallel processing,
binned aggregation, and data representation. Similar to nanocubes and imMens are Hashedcubes which were
introduced by de Lara Pahins et al. [2017]. Their data structure improves memory with respect to nanocubes
and imMens while experiments show a slightly worse query time.

Chan et al. [2008b] focus on optimizing a system infrastructure consisting of database servers, a query
distribution server, and the frontend. Their system ATLAS tackles the visualization of massive time series data
sets for ad hoc queries. They particularly also consider consistency ("smoothness") for interactions.

ForeCache is a system proposed by Battle et al. [2016] for integrating predictions about the next user inter-
action into the system. With this prediction, the system prefetches data. Battle et al. show an improvement in
query time with respect to non-prefetching and other prefetching systems.
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4 Part I: Formalization

In the following, we formalize the input to our data structures, i.e., the set of events. Then, we formalize the
visualization by introducing concepts of the time-slider user interface and the interactions. At last, we introduce
concepts that are used for the α-structure, θ -structure, and λ -structure.

Input: In Chapter 5, Chapter 6, and Chapter 7, we consider a set of events E = {e1, . . . ,en} as input to our
problem where each event ei is a pair of a point pi in the plane and a timestamp ti when the event occurred. For
the θ - and λ -structure, we look at events with a certain weight wi ∈ R+ reflecting the importance of the event.
For the λ -structure, additionally, we consider the case that there is some additional information associated with
each event that should be visualized, e.g., a description. We assume that the events e1, . . . ,en are ordered by
their timestamps, i.e., ti ≤ t j for 1 ≤ i < j ≤ n; see Figure 4.1. An example of such an event set is an image
database, where the location and timestamp give information about where and when, respectively, an image
has been taken. The number of comments might reflect a weight of an event and the image itself should/can be
visualized in the map.

Visualization: Figure 4.2 displays the user interface considered in this thesis. It consists of a map and a time-
slider interface as introduced by Andrienko and Andrienko [1999]. In the map, we display the visualization of all
events that are queried with the time slider. We call a query Q = [t ′, t ′′] triggered by a time-slider interaction a
time-window query ; see Figure 4.3a. We call t ′ of Q the query start and t ′′ the query end. The queries triggered
by a time-slider interface are limited by the left boundary of the time-slider tmin and the right boundary of the
time-slider tmax. For our time-slider interface, we implement four basic interactions; see Figure 4.2:

1. Panning: continuous translation of the time window.
2. Left-Sided Scaling: continuous change of the left boundary of the time window.
3. Right-Sided Scaling: continuous change of the right boundary of the time window.
4. Uniform Scaling: continuous change of both boundaries of the time window in opposite directions, such

that the center of the time window remains the same.

Problem Formalization: For all of our time-windowed data structures, the priority is to achieve query times
that allow real-time interaction with the user interface. From a practical point of view, we define real-time re-
sponse times based on movie frame rates (24 images per second ≈ 40 milliseconds per query). For big data,
this can be very challenging. Hence, we relaxed our objective to 200 milliseconds (five frames per second).
From a theoretical point of view, we aim for asymptotical running times that are sublinear with respect to the
number of events n and low polynomial with respect to the size of the output, i.e., the visual representation for a
particular query.

For the λ -structure, we have the additional objective to have small changes when moving the time-slider. We
formalize this as follows, when a user performs one of the four basic interactions a symbol should not appear,
disappear, and appear again. Such a phenomenon is also called flickering.

Concepts used for our Time-Windowed Data Structures: Now, we introduce concepts that are used in all
of the time-windowed data structures of this thesis. At the core of our data structures, each time-window query
Q = [t ′, t ′′] is represented as a point (t ′, t ′′) in the plane; see Figure 4.3a. We call the space where the first axis
corresponds to the query start time and the second axis corresponds to the query end time the activity space.
For brevity depending on the context, we interpret Q either as interval [t ′, t ′′] or point (t ′, t ′′) in the activity space.
Each point representing a time-window query lies in the triangle defined through the left and right boundary of
the time-slider (tmin, tmin), (tmin, tmax), and (tmax, tmax), which we call the query region of the activity space. We call
the line through (tmin, tmin) and (tmax, tmax) the main diagonal of the activity space.

For our data structures, we break down the visualization techniques into their atomic geometric elements,
i.e., the edges of the α-shapes, the grid cells of the spatial density maps, and the labels of the labeling; see
Figure 4.3b. We pre-compute for each atomic element the set of all time-window queries for which the atomic
element is part of the visualization. We call this set of time-window queries activity region τ. For a particular
time-window query Q specified by a user, we report all atomic elements whose activity regions contain Q.
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5 α-Structure for Polygonal
Event Representation

The following chapter is mainly taken from a joint work with Benjamin Niedermann and Jan-Henrik Haunert
published at ACM SIGSPATIAL’19 [Bonerath et al., 2019]. It is an extension of the M.Sc. thesis [Bonerath,
2018] that won the second prize of the Karl-Kraus award of the German Society for Photogrammetry, Remote
Sensing and Geoinformation (DGPF), the Austrian Society for Surveying and Geoinformation (OVG) and the
Swiss Society for Photogrammetry and Remote Sensing (SGPF) [Bonerath et al., 2020b]. A preliminary version
was published at the workshop EuroCG’19 [Bonerath et al., 2019].

Abstract

The interactive exploration of data requires data structures that can be repeatedly queried to obtain simple
visualizations of parts of the data. We consider the scenario that the data is a set of events such that each
event is a point in space and time. The result of each query is visualized by an α-shape, which generalizes the
concept of convex hulls. Instead of computing each shape independently, we suggest and analyze a simple data
structure that aggregates the α-shapes of all possible queries. Once the data structure is built, it particularly
allows us to query single α-shapes without retrieving the actual (possibly large) point set and thus to rapidly
produce small previews of the queried data. We discuss the data structure for the original α-shapes as well as
for a schematized version of α-shapes, which further simplifies the visualization. We evaluate the data structure
on real-world data. The experiments indicate linear memory consumption with respect to the number of events,
which makes the data structure applicable in practice, although the size is quadratic for a theoretic worst-case
example.

5.1 Introduction

In scientific projects that deal with large amounts of spatiotemporal data, data management is essential. As an
example, take a project dealing with a database of storm events in the United States; see Figure 5.1. Each
storm event is an event with a geo-location and a timestamp. More generally, an event may be associated with
multiple timestamps. Assuming a collection of storm events over several decades, the amount of data becomes
enormous. On the other hand, for certain scientific questions, the user may not be interested in all data but only
in a subset in a pre-defined time window. Hence, before downloading the actual data for a thorough analysis,
the user may be interested in exploring the data by querying simplified visualizations of the data within time
windows. Typically such a query interface is implemented with a time-slider.

One approach to creating a simplified visualization is to sketch the outline of the queried data set providing
the user with the possibility of roughly assessing the spatial distribution of the data. For example, the convex
hull is a simple polygonal representation for that purpose. However, for most data sets this representation is not
adequate, because the convex hull may easily cover large areas that do not contain any points of the data set.

In this chapter, we use α-shapes [Edelsbrunner, 2010, Edelsbrunner et al., 1983] for representing point sets,
which are a generalization of convex hulls and strongly related to Delaunay triangulations. An α-shape of a set
P ⊂R2 of n points in the plane is defined as follows. Let α > 0. The spatial domain of a directed edge pq ∈ P×P
with |q− p| ≤ α is the open disk Dpq with radius α

2 whose center lies to the right of pq and whose boundary
contains the points p and q. The set Sα(P) ⊆ P×P of all edges that are shorter than α and do not contain
any point of P in their spatial domain is called α-shape; see Figure 5.2. It can be computed via the Delaunay
triangulation in O(n logn) time [Edelsbrunner et al., 1983].

In our use case, each point p ∈ P additionally is associated with a timestamp tp ∈ R, and the pair (p, t) is
called an event. Let E be the event set induced by P. To simplify the discussion, we assume that all points
in P have pairwise distinct spatial and temporal coordinates; in Section 5.5 we explain how to generalize our
approach to events with multiple timestamps. As described in the running example of Figure 5.1, the event set E
is queried frequently, e.g., with a time-slider interface. Such a query Q is a time window [t, t ′] and its result is the
subset PQ =

{
p ∈ P

∣∣ tp ∈ [t, t ′]
}

; see Figure 5.1a for the time-window query Q1 = [1991-01-01,1992-01-01] and
Figure 5.1d for the time-window query Q2 = [1991-06-01,1991-07-01]. We are then interested in visualizing PQ
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(a) storm events (orange) in the year
1991

(b) α-shape for year 1991 (c) octilinear α-shape for year 1991

(d) storm events (orange) in June
1991

(e) α-shape for June 1991 (f) octilinear α-shape for June 1991

Figure 5.1: Storm events (light blue) in the United States in the years 1991–2001. Each row highlights the
storm events in a time window (orange) together with two polygonal representations (lilac). The polygons were
generated with our approach. Data retrieved from Data.gov.Map tiles by Stamen Design, under CC BY 3.0.
Map data by OpenStreetMap, under ODbL.
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Figure 5.2: α-shape (lilac) for a point set (blue).

by its α-shape; see Figure 5.1b and Figure 5.1e for α200 := 200000 meter. A straightforward approach for a query
Q first queries the set P obtaining PQ and then computes the α-shape Sα(PQ). Utilizing a balanced binary search-
tree, finding PQ takes O(logn+ |PQ|) time. Additionally computing the α-shape, we obtainO(logn+ |PQ| log |PQ|)
running time in total. For our use case of frequently providing α-shapes for visualizing the query results, we aim
at a better running time per query. In particular, for creating previews of the data, we only want to retrieve the
α-shape of PQ but not the entire set PQ. On the other hand, storing all possible α-shapes separately is also not
a practical way as this results in cubic storage consumption. In a pre-processing phase, we, therefore, compute
a data structure that aggregates the α-shapes of all possible queries; we call it the α-structure of P; see also
Figure 5.3 for illustration. We use this data structure in the query phase to obtain the α-shapes of the incoming
queries without receiving the actual point set. We consider the parameter α to be fixed before computing the
data structure but provide an extension with which a variable α can be handled.

Besides the standard α-shapes, we also consider a schematized and especially an octilinear schematized
variant of α-shapes, which simplifies the visualization; see Figure 5.1c and Figure 5.1f. Additionally, the experi-
ments show that the data structure for schematized α-shapes has a substantially decreased memory consump-
tion.

5.1.1 Our Contribution

In Section 5.2, we discuss related work with a focus on α-shapes. In Section 5.3, we formally introduce the
problem setting and discuss properties of the α-structure. In Section 5.4, we present an algorithm that com-
putes an α-structure in O(n(logn+mR logmR)) time utilizing linear and rotational sweeps, where mR denotes the
maximum number of points p ∈ P in a square of width 2α. For the query phase, we suggest using an existing
data structure for filtering search [Chazelle, 1986] to answer a query in O(logn+ k) time, where in our case k
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Figure 5.3: Pre-processing and using the α-structure.

is the number of edges of the returned α-shape. In Section 5.5, we generalize the α-structure to data sets for
which each event may have one or more timestamps. With this adaption, the α-structure also supports spatial
events that occur repetitively. Further, we use this to create α-shapes of points that are aggregated on a given
grid. Choosing the size of the grid cells appropriately, we obtain octilinear α-shapes, i.e., the direction of each
edge complies with one of eight pre-defined directions; we call this octilinear α-shapes. This schematization
simplifies the visualization. In Section 5.6, we tweak the α-structure by further extensions. In Section 5.7, we
present a detailed evaluation of our approach with real-world data. We show that on the considered data set the
storage consumption grows linearly with the number of events. Further, we show that our data structure leads
to improved query times. The schematized α-shapes perform well with respect to the similarity to the normal
α-shape using the Jaccard index and the memory consumption.

5.2 Related Work

For an overview of other point set representations and time-windowed data structures, we refer to Chapter 2
and Chapter 3. In the following, we repeat the definition and properties of α-shapes [Edelsbrunner, 2010,
Edelsbrunner et al., 1983] that we also use as a basis for the α-structure. α-shapes are a generalization of
convex hulls and are strongly related to the Delaunay triangulation of a point set. The α-shape of a point set
consists of one or more polygons, thereby the points are aggregated into several clusters, which is beneficial for
our application scenario. This is beneficial for our application scenario because we do not need any additional
clustering techniques. Another advantage of α-shapes for the temporal dynamic data structure, which we aspire
to, is that we can decide whether an edge is contained in the α-shape of a point set based on local properties.
More precisely, we only need to consider the points in the spatial domain of an edge. Among others, this
technique finds its application in digital shape sampling and processing [Bernardini and Bajaj, 1997], in pattern
recognition [Vauhkonen et al., 2010] and molecular biology [Edelsbrunner, 1992, Liang et al., 1998].

5.3 α-Structure

In this section, we introduce a data structure that provides the user with the possibility of receiving the α-shape of
any possible temporal query Q= [t, t ′]. That is, for any query Q the data structure yields the set Sα(PQ) containing
the edges that describe the α-shape of the queried point set PQ without computing PQ. In the remainder of this
chapter, we assume that [t, t ′] ⊆ [tmin, tmax] for two pre-defined times tmin and tmax, with tmin ≤ tp and tp ≤ tmax for
all points p ∈ P. For two points p and q with timestamps tp and tq, we say that pq is active for an interval [t, t ′] if
pq belongs to the α-shape of the point set of the query [t, t ′], i.e.,

1. p and q have distance at most α,

2. tp, tq ∈ [t, t ′], and

3. there is no point r in the spatial domain of pq with timestamp tr and t ≤ tr ≤ t ′.

Further, let Lpq be the set of all queries for which the edge pq is active; Lpq is the activity region of pq. We build
the proposed data structure based on Lpq. To that end, we first characterize for which edges Lpq are not empty.

Lemma 1. Let p and q be two points in P with timestamps tp, tq and tp ≤ tq. The activity region Lpq is not empty
if and only if pq is active for query [tp, tq].

Proof. First, assume that Lpq ̸= /0 and let Q ∈ Lpq. Hence, pq is active for Q. Therefore, we have that tp, tq ∈ Q,
that the distance between p and q is at most α and that the spatial domain of pq is empty for Q. Therewith,
the spatial domain is empty for [tp, tq]. Conversely, if p and q have distance at most α and there is no point r in
the spatial domain of pq with timestamp tr and tp ≤ tr ≤ tq, then pq is active for query Q′ = [tp, tq] and therefore
Q′ ∈ Lpq.
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Figure 5.4: Query Q = [t, t ′] that yields an edge pq.

In order to describe the activity region Lpq, we interpret each time-window query [t, t ′] as the two-dimensional
point (t, t ′) in R2 in the following. Hence, Lpq becomes a region in R2; as t ≤ t ′, every query Q lies above the
diagonal through (0,0); see Figure 5.4; we call the plot in Figure 5.4b the activity space. We show that Lpq is
an axis-aligned rectangle, which implies that computing Sα(PQ) for a query Q corresponds to finding all edges
pq ∈ P×P for which there is a rectangle τpq containing Q. Based on this observation, we define the α-structure
of P to be the set Sα = {(τpq, pq) | pq ∈ P×P and τpq ̸= /0}.

In the following, we show that the activity region Lpq of an edge pq is an axis-aligned rectangle defined by
the timestamps of the points that are contained in the spatial domain of pq. To that end, let tp and tq with tp < tq
be the timestamps of p and q, and let TR be the set of all timestamps of points in the spatial domain of pq;
see Figure 5.4a. Further, let tr ∈ TR be the largest timestamp that is smaller than tp; if tr does not exist, we set
tr = tmin. Similarly, let ts ∈ TR be the smallest timestamp that is greater than tq; if s does not exist, we set ts = tmax.
Let τ be the axis-aligned rectangle that is spanned by the lower right point (tp, tq) and the upper left point (tr, ts);
see Figure 5.4b. We call τ = (tr, tp, tq, ts) the activity box of p and q (with respect to tp and tq).

Lemma 2. If for an edge pq its activity region Lpq is not empty, then the activity region is the activity box τ of p
and q.

Proof. Assume without loss of generality that tp ≤ tq. Consider the activity box τ = (tr, tp, tq, ts) of pq. As Lpq is
not empty, there is no point v in the spatial domain Dpq of pq with timestamp tv and tp < tv < tq. Hence, that
edge pq is active for the query Q = [tp, tq], which has a minimum length among all queries that are active for
pq. Further, pq is active for all queries Q = [t, t ′] with tr < t ≤ tp and tq < t ′ ≤ ts as for all these intervals Dpq is
empty. On the other hand, pq is not active for queries Q = [t, t ′] with t ≤ tr or ts ≤ t ′ as Dpq contains the point with
timestamp t or t ′, respectively. Consequently, Lpq contains exactly all queries that lie in the range [tr, tp]× [tq, ts],
which corresponds to τ.

For our use-case of a database, the memory consumption of our approach is decisive for being deployed in
practice. We first observe that O(n2) is an upper bound for the size of the α-structure. Theorem 1 shows that it
is also a lower bound in the worst case.

Theorem 1. For a set P of n points, the α-structure has size Ω(n2) in the worst case.

Proof. Let P = {p1, p2, . . . , pn} be a point set with the time stamps t1 < t2 < .. . < tn such that the points lie on a
circle C of radius r < 1

2 α ordered clockwise; see Figure 5.5. Let pi, p j ∈ P be two points with ti < t j. We show
that pi p j is contained in the α-structure Sα(P) by proving that pi p j is active for [ti, t j] (Lemma 1). Due to r < 1

2 α

the points pi, p j have distance smaller than α. Hence, it remains to be shown that there is no point r ∈ P in the
spatial domain Di j of pi p j with time stamp tr in [ti, t j]. We observe that Di j and C intersect in pi and p j. Since
the radius of C is smaller than the radius of Di j, the boundary of Di j partitions C into two parts. One part is
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Figure 5.5: Worst-case example for the size of the α-structure.

contained in Di j and the other lies outside of Di j. As the points p1, p2, . . . , pn appear in clockwise order on C, and
since the center of Di j lies to the right of pi p j by definition, we obtain that the points p1, . . . , pi−1, p j+1, . . . , pn lie
in Di j, while the others of P do not. As p1, . . . , pi−1 have smaller timestamps than pi and p j+1, . . . , pn have larger
timestamps than p j, there is no point in the spatial domain of pi p j with timestamp in [ti, t j]. Hence, pi p j is active
for [ti, t j] and thus contained in the α-structure.

Hence, the database may exceed a size that is applicable in practice. However, this example is rather unlikely
to occur in real-world applications. Generally, the size of the data structure is bounded by O(nm), where m is the
largest number of points in a distance α to a point in P. Assuming that the point density is bounded by a constant
and α is fixed, m is also constant. If, on the other hand, the density increases, it becomes more likely that an
edge gets destroyed. Thus, in our real-world data experiments, in which we choose α small in comparison to
the data extent, we observe a linear relation between the number of points and the size of the α-structure; see
Section 5.7.

5.4 Construction and Query

We provide an algorithm that computes an α-structure in O(n(logn+mR logmR)) time and we describe how to
query this data structure. The construction algorithm consists of three components utilizing two sweep-line
approaches; see Algorithm 1. The first component, which we call CPN-Search, computes all points CPN(p)⊆ P
that satisfy Condition (1) of active edges, i.e., all points that lie in a circle with center at p and radius α. We
call this circle the circle of potential neighbors (CPN) of p. We use the sweep line approach by Peng and Wolff
[2014] to find CPN(p) in O(logn+mR) time. More precisely, we use a vertical sweep line l that moves from left to
right. The status T of the sweep line is the subset of points in P that have a horizontal distance of at most α to l.
We store the points in the status in a binary tree in vertical order. We update the status whenever a point enters
or leaves the vertical strip with width 2α and axis l. A sweep event p occurs when l is at p. We can identify all
points T that lie in a square with center p and width 2α in O(logn+mR) running time. Afterward, we filter these
points obtaining CPN(p).

The second component, which we call Spatial Domain-Search, computes the set of points Rpq that lie in
the spatial domain of an edge pq. To implement this efficiently, we use a rotational sweep. More precisely, we
use a circle C of radius α

2 which sweeps counterclockwise around p such that the center of C moves along the

Algorithm 1: Computation of the α-structure
Input: Point set P, parameter α

Output: α-structure Sα(P)
Linear sweep on P from left to right:
foreach sweep event p ∈ P do

CPN-Search: Compute the CPN(p)
Rotational sweep on CPN(p) in counterclockwise order:
foreach sweep event q ∈ CPN(q) do

Spatial Domain-Search: Compute set Rpq
Activity Region-Search: Compute activity box τpq for Rpq. If τpq ̸= /0, then add (τpq, pq) to Sα(P).
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Figure 5.6: Rotational sweep at p with CPN(p) = {q1,q2,q3}.

circle with center p and radius α

2 ; see Figure 5.6. We call C the sweep circle of p. The status R of C contains
the points of P that are currently contained in C. The sweep circle C handles an event whenever its boundary
intersects with a point q ∈ CPN(p). Two kinds of events are possible; either q enters C, or it leaves C. In the first
case, q is added to R and in the latter, it is removed from C. Further, whenever a point q enters C, we return R
as the spatial domain Rpq of the edge pq. This rotational sweep takes O(mR logmR) running time.

The third component, which we call Activity Region-Check, computes the activity region Lpq of pq based on
Rpq. For this purpose, we store all points contained in C in a balanced binary search tree B ordered by their
timestamps. The activity space or more precisely the activity box can be computed by querying B for the largest
timestamp t ∈ B before min(tp, tq) and the smallest timestamp t ′ ∈ B after min(tp, tq). If t does not exist we set
t = tmin, analogously if t ′ does not exist we set t ′ = tmax. If t ′ ≤ max(tp, tq) the activity region Lpq is empty, otherwise
it is equal to the activity box τpq = (t,min(tp, tq),max(tp, tq), t ′). We add (τpq, pq) to Sα(P). Overall Algorithm 1 has
running time O(n(logn+mR logmR)).

Theorem 2. For a set P of n points the α-structure can be computed in O(n(logn+mR logmR)) time, where mR
is the maximum number of points in a square of width 2α.

In the query phase, we need to find all two-dimensional activity boxes that contain the query point Q =
(t, t ′). We suggest using a data structure for filtering search [Chazelle, 1986] to answer a temporal range query
in O(logn + k) time, where k is the number of edges of the returned α-shape. This approach has storage
consumption O(|Sα |).

For applications where not the entire map is displayed, the query additionally consists of a spatial two-
dimensional range [x,x′]× [y,y′]. We can describe each edge of the α-structure by a four-dimensional box and
the spatiotemporal query corresponds to a 4-dimensional box, defined by [x,x′]× [y,y′]× [t, t]× [t ′, t ′]. The edges
that fulfill the spatiotemporal query are all those whose boxes intersect with the query box. Answering this
query can be done in O

(
log7 n+ k

)
time and O

(∣∣Sα

∣∣log3 n
)

storage using the orthogonal intersection search
data structure by Edelsbrunner [1983].

5.5 α-Structure for Events with Multiple Timestamps

We extend our approach to the setting that each point p ∈ P has a sequence tp of timestamps so that the point
set that matches the query Q = [t, t ′] is the set PQ =

{
p ∈ P

∣∣ tp ∩ [t, t ′] ̸= /0
}

. As before, we aim at visualizing PQ by
presenting its α-shape. This generalization finds its application when visualizing events that occur repetitively.
We first present the adaptions of our approach and then discuss one application of this extension that we use
to substantially reduce the storage consumption of the α-structure.

5.5.1 Generalization of the α-Structure
We first observe that an edge pq ∈ P×P might have more than one activity box because each combination of
timestamps of p and q might yield one activity box. As before, we define Lpq as the activity region of pq, i.e.,
the set of all queries for which the edge pq is active. We observe that this time Lpq might consist of multiple
unconnected sub-regions. Further, it is easy to see that Lpq can be described as the union of all those activity
boxes, since a query Q is contained in Lpq if and only if there is an activity box of pq that contains Q. It is therefore
tempting to consider copies of the same point each having exactly one timestamp. However, this might lead to
an unnecessarily large storage consumption and duplicates in the query results, as the activity boxes of the
same edge, but different timestamps might intersect; see Figure 5.7. On the other hand, partitioning Lpq into a
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Figure 5.7: Activity region of pq for multiple timestamps.

Figure 5.8: Original α-shape (left), α-shape on a grid with α

w≈10.1 (middle), and octilinear α-shape (right) for
Q = Q2 and α = α200. Data retrieved from Data.gov.Map tiles by Stamen Design, under CC BY 3.0. Map data
by OpenStreetMap, under ODbL.

set τ pq of axis-aligned rectangles could lead to a size of τ pq that is quadratic in the number of timestamps of p
and q. In the following, we show that for Lpq we can find a partitioning τ pq into axis-aligned rectangles whose
size is linear in the number of timestamps of pq.

To that end, we first show that each connected region of the activity region Lpq is a union of rectangular
activity boxes of pq whose top left corners coincide; see Figure 5.7. We observe that the polygon derived by the
union of the activity boxes is limited at the top by a horizontal segment h and on the left by a vertical segment
v; it is completed by an xy-monotone rectilinear curve forming a staircase. We call such a polygon a staircase
polygon.

Lemma 3. If for an edge pq its activity region Lpq is not empty, then the activity region is a set of disjoint staircase
polygons.

Proof. Consider two activity boxes τ = (t1, t2, t3, t4) and τ ′ = (t ′1, t
′
2, t

′
3, t

′
4) of pq that intersect; see Figure 5.7. By

Lemma 1 the edge pq is active for I1 = [t2, t3] and I2 = [t ′2, t
′
3]. Assume without loss of generality that t2 ≤ t ′2; the

other case is symmetric. By the definition of τ and τ ′, the intervals [t1, t4] and [t ′1, t
′
4] do not contain any timestamp

tr of a point r in the spatial domain R of pq. Further, as τ and τ ′ intersect there is no timestamp tr with r ∈ R in
the interval I = [min(t1, t ′1),max(t4, t ′4)]. This implies that pq is active for I. Consequently, by the minimal choice of
t1 and t ′1 and maximal choice of t4 and t ′4 required by the definition of an activity box, we obtain t1 = t ′1 and t4 = t ′4.
This shows that the top left corners of τ and τ ′ are identical. Applying these arguments to all combinations of
the timestamps of pq, we obtain that the activity region Lpq consists of a set of staircase polygons.

In order to partition Lpq into disjoint axis-aligned rectangles, we connect each concave vertex (left bend when
going in clockwise order around Lpq) with the topmost horizontal segment h of its staircase polygon by a vertical
segment. Alternatively, one may also connect these vertices to the leftmost vertical segment v by a horizontal
segment. Altogether, we obtain a partitioning τ pq of Lpq into axis-aligned rectangles.
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The proof of Lemma 3 implies that each pair t i
p and t j

q contributes at most one vertex to the staircase polygons
of Lpq so that the size of the partitioned polygon into rectangles is linear in the number of combinations of
timestamps of p and q. Further, we observe that a pair t i

p and t j
q can only contribute a vertex to a staircase

polygon if no other point of tp and tq lies temporally in [t i
p, t

j
q]. We call these pairs t i

p, t
j
q direct neighbors. Assume

there exists a t ∈ tp with t i
p < t < t j

q. Then the activity box defined by the bottom right corner (t i
p, t

j
q) is always

contained in the activity box defined by the bottom right corner (t, t j
q). The case t ∈ tq is analog, e.g., see the

activity boxes (tr, t0
p, t

0
q , ts) and (tr, t0

p, t
1
q , ts) in Figure 5.7. Thus, the size of the partitioned polygon is in O(|tp|+ |tq|).

Corollary 1. The partitioning τ pq has linear size in the number of timestamps of p and q, which implies that the
size of Sα is in O(n2

T), where nT is the number of timestamps over all points in P.

For the construction, we adapt the algorithm of Section 5.4 as follows. Assume that the edge pq is currently
considered in the activity region search of the algorithm. Going through the timestamps of p and q in increasing
order, we compute for each pair of direct neighbors of tp and tq the activity box as described in the original
algorithm. For two neighbored combinations t i

p, t
j
q and t l

q, t
k
p with t i

p < t j
q < t j+1

q < .. . < t l+1
q < t l

q < tk
p, we check

whether the activity boxes intersect and if necessary trim the later one. Overall, the activity region can be
computed in O((|tp|+ |tq|) · log |R|) time.

5.5.2 Point Aggregation

For dense sets of input points, we observe that pairs of points easily lie closely together such that they can be
hardly distinguished visually. On the other hand, depending on the timestamps of the points, each of such points
might be a vertex of an α-shape for a particular temporal range query. Hence, the α-structure might contain a
vast set of edges that are hardly visually different. As in our use case we are only interested in visualizing the
approximate shape of the input set, we use this observation to reduce the storage consumption by aggregating
points that lie close together. Moreover, depending on how we choose the aggregation, this provides us with
the possibility of querying octilinear α-shapes schematizing the input points; we call an α-shape octilinear if
its edges are restricted to verticals, horizontals, and diagonals at 45◦. In our experiments, we show that this
preserves the rough visual appearance of the α-shapes, while substantially reducing the memory consumption
and construction time of the α-structures.

For aggregating the points, we use a fairly simple technique that underlies the input set P of points with a
grid G and moves each point p of P to the grid point of G that is closest to p. With this, the grid points correspond
to a new set of input points having multiple timestamps. As described in Section 5.5.1, we obtain from the grid
points an α-structure for points with multiple timestamps; see Figure 5.8. Further, in order to obtain octilinear
α-shapes we choose α and the width w of a grid cell such that α

w ≤
√

5. From simple geometric observations it
follows that for any grid point p its CPN only contains grid points that lie on horizontals, verticals or diagonals at
45◦ through p. To see that, assume w = 1. The closest grid points to p that do not lie on an octilinear line with p
have distance

√
5 from p. Hence, with α

w ≤
√

5 any α-shape consists of octilinear line segments.

5.6 Extensions

In this section, we present extensions of our approach that can be used for further decreasing its storage
consumption and for implementing other variants of visualizations.

5.6.1 Bridges

Depending on the concrete choice of α, the α-shape of a point set is not necessarily a set of simple polygons,
but it might contain edges that form visually unpleasant artifacts without enclosing any area; see Figure 5.9. We
call such edges bridges. Formally, an edge pq is a bridge in an α-shape Sα if it also contains the reversed edge
qp. For the purpose of roughly sketching the spatial extent of the point set, the removal of the bridges seems to
be a reasonable approach. Instead of simply removing the bridges in a post-processing step after querying the
α-structure, we delete them as follows when creating the α-structure also improving its space consumption.

For simplicity, we assume that both p and q have one timestamp each; later on, we explain how to relax this
restriction to multiple timestamps per point. For an edge pq and the reversed edge qp, let τpq and τqp be the two
axis-aligned rectangles describing their activity boxes in the α-structure Sα ; see Figure 5.10. We assume that
both activity boxes are non-empty.
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Figure 5.9: α-shape (α200) with bridges (left) and without bridges (right) for Q = Q2. Data retrieved from
Data.gov.Map tiles by Stamen Design, under CC BY 3.0. Map data by OpenStreetMap, under ODbL.
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Figure 5.10: Activity boxes for the edges pq and qp.

Observation 1. For two points p and q the activity boxes (if any) of the edges pq and qp, the bottom right
corners coincide.

We denote the set of all queries for which pq is a bridge by Bpq; obviously, we have Bpq =Bqp. Assume that
Bpq is not empty. We observe that the set Bpq is the intersecting axis-aligned rectangle of the two rectangles τpq
and τqp, i.e., Bpq = τpq ∩τqp. Further, by Observation 1 the bottom right corner of Bpq coincides with the bottom
right corners of the activity boxes τpq and τqp. This implies that the symmetric difference of τpq and τqp can be
partitioned into at most two rectangles τ1 and τ2. On account of that, we adapt the given α-structure Sα as
follows. We remove (τpq, pq) and (τqp,qp) from Sα . Further, if τ1 is contained in τpq, we add (τ1, pq) for the edge
pq to Sα , and otherwise (τ1,qp) for qp. Analogously, if τ2 is contained in τpq, we add (τ2, pq) for the edge pq to
Sα , and otherwise (τ2,qp) for qp. We note that this operation does not increase the size of the α-structure but
potentially decreases the size. In our evaluation, we show that on real-world data the size is decreased by 10%
on average.

In case that each point has multiple timestamps we similarly partition the symmetric difference of the two
staircase polygons of pq and qp into axis-aligned rectangles. We then add this partitioning to the α-structure
Sα instead of the original partitioning of both staircase polygons. Using similar arguments as above, one can
show that the partitioning can only decrease in its size.

5.6.2 Robustness

In this section, we adapt our approach to order-k α-shapes, which relaxes the restriction of empty spatial do-
mains [Krasnoshchekov and Polishchuk, 2008, Krasnoshchekov and Polishchuk, 2014]. With this extension α-
shapes become more robust against outliers also for larger values of α; see Figure 5.11. Formally, an edge pq
belongs to an order-k α-shape Sk

α if p and q have a distance of at most α and its spatial domain contains exactly
k−1 points. An edge pq is active for a query Q if it is contained in the order-k α-shape Sk

α of PQ. The set Lk
pq is

then the order-k activity region of pq. Analogously to α-shapes the region Lk
pq can be partitioned into a set τ pq
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Figure 5.11: Original α-shape (left) and an order-2 α-shape (right) for Q = Q2 and parameter α500 := 500 · 103.
Data retrieved from Data.gov.Map tiles by Stamen Design, under CC BY 3.0. Map data by OpenStreetMap,
under ODbL.
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Figure 5.12: Order-k activity regions for k = 1, . . . ,4 of edge pq.

of axis-aligned rectangles. The order-k α-structure is then the set S k
α = {(τ, pq) | pq ∈ P×P and τ ∈ τ pq}.

In case each point has one timestamp, the region Lk
pq can be partitioned into k axis-aligned rectangles or

less as shown in the following. To that end, let tp and tq be the timestamps of p and q and assume tp < tq.
Further, let TR be the timestamps of the points contained in the spatial domain R of pq; see Figure 5.12. Let
t1, t2, t3, t4 ∈ {tp, tq}∪{tr | r ∈ R}∪{tmin, tmax} such that t1 < t2 ≤ tp < tq ≤ t3 < t4. The rectangle τ = (t1, t2, t3, t4) is
an order-k activity box of pq if there are exactly k points in R \{p1, p2, p3, p4} that have a timestamp in the time
range [t1, t4].

Lemma 4. For an edge pq, the region Lk
pq can be partitioned into a set of order-k activity boxes. Further, the

number of order-k activity boxes for pq is at most k.

Proof. We observe that by definition of an order-k activity box, an edge pq is active for a query Q if and only
if Q lies in an order-k activity box. Hence, the set Lk

pq is the union of all order-k activity boxes that exist for pq.
Further, for an order-k activity box τ = (t1, t2, t3, t4) of pq there is no point r in the spatial domain of pq that has a
timestamp tr with t1 < tr < t2 or t3 < tr < t4. Assuming a point r lies between t3 < tr < t4 then a query (t, t ′) with
t1 < t < t2 contains a different number of points for t3 < t ′ < tr than for tr < t ′ < t4. This contradicts the condition
that pq has exactly k−1 points in its spatial domain for each query Q in τ. This implies that the order-k activity
boxes of pq are disjoint. In particular, for the same reason we have for any other activity box τ ′ = (t ′1, t

′
2, t

′
3, t

′
4) of

pq that if t2 ≤ t ′2 then t3 ≤ t ′3; see Figure 5.12. Consequently, any query in τ ′ also contains the timestamps of
τ. As it contains the timestamps of exactly k−1 other points in the spatial domain of pq, the number of order-k
activity boxes of pq is at most k−1.

From Lemma 4 we directly derive that for each edge pq ∈ P×P we need O(k) extra storage, which leads to
O(knm) storage in total.
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Figure 5.13: Edge in a multi-α-structure.

5.6.3 Multi-α-Structure
Up to now, we require that α is fixed before the α-structure is constructed. However, depending on the use case
the exact α depends on user-specific requirements during the query phase. For example, the user might want
to display multiple nested α-shapes with different α to illustrate different densities of the point sets. We shortly
sketch how to extend α-structures such that they provide queries for arbitrary choices of α from a pre-defined
interval [αmin,αmax].

Let pq ∈ P×P be an edge of two points p and q with timestamps tp and tq and tp < tq, and let R = {r1, . . . ,rk}
be the points that lie in the spatial domains of pq over all α ∈ [αmin,αmax]; see Figure 5.13. We denote the
timestamp of ri by ti and assume that r1, . . . ,rk are ordered such that ti < t j with 1 ≤ i ≤ j ≤ k. We denote the
radius of the circle Ci through p, q and ri by αi. Further, let Rr ⊆ R be the points on the right-hand side and Rl ⊆ R
be the points on the left-hand side of pq. We observe that a point ri ∈ Rr is contained in the circle C j of any other
point r j ∈ R with α j ≥ αi. Similarly, a point ri ∈ Rl is contained in the circle C j of any other point r j ∈ R with α j ≤ αi.
For example in Figure 5.13, the point r3 is contained in the circles C6, C4, C5 and C1. Hence, for any query with
a start time smaller than t3 the maximal possible α/2 is α3. We formalize this observation as follows. Consider
a query Q = [t, t ′] with [tp, tq] ⊆ Q. Further, let ti be the largest timestamp with ti ≤ t and let t j be the smallest
timestamp with t ′ ≤ t j. The edge pq is active for Q and a given α if and only if for each rh with i+1 ≤ h ≤ j−1 it
holds αh ≥ α/2 if rh ∈ Rr, and αh ≤ α/2 if rh ∈ Rl.

We determine for pq the smallest such i and the largest such j for which there is a query Q for which pq is
active. We add the activity box (ti, tp, tq, t j) to the α-structure and annotate it as follows. Firstly, we determine
the point rr ∈ Rr with tr ∈ [tp, tq] and smallest αr among all such points of Rr, and secondly the point rl ∈ Rl with
tl ∈ [tp, tq] and largest αl among all such points of Rl. If αr < αl, then the edge is never active as any spatial
domain of pq contains rr or rl. Hence, in that case, the edge pq is excluded from the α-structure. Otherwise,
we additionally store the set Sr ⊆ Rr which contains all points ri,r j with ti, t j /∈ [tp, tq], αi < α j ≤ αr if ti < t j < tp,
and αr ≥ αi > α j if tq < ti < t j; for example Sr = {r2,r3,r6} in Figure 5.13. Analogously, we store the set Sl ⊆ Rl
which contains all points ri,r j with ti, t j /∈ [tp, tq], αi > α j ≥ αl if ti < t j < tp, and αl ≤ αi < α j if tq < ti < t j. For the
query Q = [t, t ′] we check whether pq is active for α by checking that the spatial domain R = Rr ∪Rl of pq with
radius α/2 is empty. To that end, we determine the smallest h with rh ∈ Sr and t < th as well as the largest h′ with
rh′ ∈ Sr and th′ < t ′. If α/2 < min{αr,αh,αh′} then all points of Rr lie outside the spatial domain of pq with radius
α/2. Analogously, we determine the smallest h with rh ∈ Sl and t < th as well as the largest h′ with rh′ ∈ Sl and
th′ < t ′. If α/2 > max{αl,αh,αh′}, then all points of Rl lie outside of the spatial domain of pq with radius α/2.

Note that for each edge pq we need to store O(n) points of R in the worst case. Hence, supporting multiple
α values the storage consumption increases by a linear factor. However, the worst case seems to be unlikely
in practice, as this requires that the timestamps t1, . . . , tk and the radii α1, . . . ,αk have strongly correlated orders.
Further, the query time is increased only by a factor of O(logn) as we can use binary search to determine αh
and αh′ .

5.7 Evaluation and Experiments

For our experiments, we use two data sets. The first data set storm is a set of storm events in the United States
of America obtained from Data.gov. This data set consists of 59789 spatially and temporally unique events
that occurred during the years 1991–2000. We used the Web-Mercator projection; see Figure 5.14. Based on
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Figure 5.14: α-shapes for different queries and α values. Data retrieved from Data.gov.Map tiles by Stamen
Design, under CC BY 3.0. Map data by OpenStreetMap, under ODbL.

preliminary experiments taking the visual appearance into account, we run our experiments with α75 = 75 km,
α200 = 200 km, and α500 = 500 km. In Figure 5.14, we show α75, α200 and α500 for three time-window queries
Q1 = [1991-01-01,1992-01-01], Q2 = [1991-06-01,1991-07-01] and Q3 = [1991-06-05,1991-06-12]. While α75
leads to small clusters, α200 and α500 yield few polygons, which cover large areas. The α-shape edges were
obtained by querying the α-structure whereas the α-shape polygons were computed in a post-processing step.

The second data set socialmedia is obtained from FlickR where each data point corresponds to an image
taken at a certain location and at a certain timestamp. We extracted 3 million spatially and temporally unique
events that were uploaded between 2019-2021 and lie in Germany. Here, we use one configuration of the
α-structure with α = 5 km, we keep the bridges, and do not aggregate the data on a grid for our experiments.

We have implemented the construction algorithm in Java and stored the α-structure in a PostGIS database
using a four-dimensional BRIN-Index applied on the activity box parameters [PostgreSQL Global Development
Group, 2018]. We ran all experiments on a quad-core Intel Core i7-7700T CPU with 16 GiB RAM.

Queries We first evaluate the query phase for the α-structure of storm with α = α200. We deem α200 to be
an appropriate choice for the considered data set, as the resulting α-shapes lead to reasonably clustered point
sets; see Figure 5.14. We have created for each i with i ∈ {1, . . . ,5} a set Qi of five time-window queries that
have random starting points and yield i · 104 points; we denote the union of all Qi by Q. Figure 5.15a shows
the average size of the α-shapes for each set Qi. It shows that the α-shape consists of at most 550 edges on
average and is almost constant with increasing number of queried points. Hence, instead of retrieving the entire
set PQ for a query Q, the α-structure reduces the amount of processed objects by several orders of magnitude.
Further, Figure 5.15b shows that the α-structure reduces the query times. A query Q ∈ Q5 on the α-structure
takes on average 120 ms while querying PQ directly takes on average 320 ms. For this evaluation, we only
engineered the retrieval of the edges but did not invest special effort into the implementation of constructing the
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(a)

(b)

Figure 5.15: Performance of querying the α-structure (α200) of storm data set. (a) Number of queried edges k.
(b) Query phase time.

Figure 5.16: Query phase time of the α-structure of socialmedia data set.

polygon from the edge set, which takes 45 ms on average and 190 ms in maximum over all queries Q. Directly
constructing the α-shape from PQ leads to similar running times of 110 ms on average and 205 ms in maximum
over all Q ∈ Q.

In Figure 5.16, we give the results for evaluating the α-structure for socialmedia data. It shows a similar
trend to the results obtained for storm but with an overall higher magnitude. While querying the α-structure
is always below 3 sec, the on-demand computation of the α-shape takes up to 44 sec. Although 3 sec is
not sufficiently fast for real-time interaction, we improve the running time by a factor of 15 for the worst query
times. Hence, the experiments show that α-structures are a simple and fast tool that provide the user with the
possibility of querying previews of the data frequently.

Memory Consumption For evaluating the memory consumption of α-structures, we randomly sampled subin-
stances of both data sets. For each of these instances, we created an α-structure. Figure 5.17a and Fig-
ure 5.17b show for each instance size the number of activity boxes stored in the α-structure for storm and
socialmedia, respectively. They indicate a linear growth of the α-structure. This is remarkable as in the worst
case the structure has a quadratic size in the number of points. We explain this with the fact that with an in-
creasing number of points and therefore with increasing density, it becomes substantially more likely that a point
lies in the spatial domain of an edge having its timestamp in between the two-timestamps of the corresponding
points of the edge.

For storm, we performed a more detailed analysis considering the α value and the influence of deleting
bridges on the memory consumption; see Figure 5.17a. As to be expected, the greater α, the more the α-
structure consumes memory. The reason is the greater number of points in the circles of potential neighbors
for a greater α. Still, for all considered values of α, the number of edges is higher than the number of points by
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(a)

(b)

Figure 5.17: Memory consumption for both data sets storm and socialmedia. (a) Memory consumption for the
data set storm comparing different α values and a version where we deleted the bridges (αB

200). (b) Memory
consumption for the data set socialmedia of the α-structure (α = 5 km, keeping bridges, no point aggregation).

Figure 5.18: Memory reduction of schematized α-structure (α200) and shape similarity for schematized α-
shapes, i.e., the range of Jaccard index over all queries in Q. On the x-axis we display the ratio between α

and the grid width w.

at most a factor of 10. Further, deleting bridges reduces the memory consumption for α75 by around 12%, for
α200 by 10%, and for α500 by around 8% on average. Hence, removing bridges helps both improving the visual
appearance (see Figure 5.9) and the memory consumption.

Aggregated points As another possibility of reducing the memory consumption, we aggregated the points on
a grid and performed experiments for storm; see Section 5.5.2 and Figure 5.8. For α = α200, Figure 5.18 shows
the compression for different choices of the grid width w, i.e., the proportion of activity boxes for α200

w with respect
to the activity boxes in the α-structure constructed on the same point set without aggregation. With decreasing
value of α

w the compression increases, e.g., for α

w =
√

5, which corresponds to octilinear layouts, only 40% of the
activity boxes remain in the α-structure. As the compression influences the visual appearance of the α-shapes,
we computed for each query Q of the set Q the α-shape Sg

α for each chosen ratio g= α

w . Using the Jaccard index
we compare Sg

α to the α-shape Sα for the according point set without aggregation, i.e., for each Sg
α and Sα we

consider |Sg
α∩Sα |

|Sg
α∪Sα |

, where |Sg
α ∩Sα | (|Sg

α ∪Sα |) is the area of the intersection (union) of Sg
α and Sα ; see Figure 5.18.

We note that Sg
α approximates Sα well, even for a strong compression such as g =

√
5.

Construction Time We evaluated the construction time for both data sets storm and socialmedia; see Fig-
ure 5.19. The experiments show that even for the largest data set (socialmedia with 3000000 events) the
construction time is manageable when considering that the construction is done in a pre-processing phase.

We analyzed the construction time more in detail for the data set storm. The construction time strongly
relies on the chosen value of α. While for α75 and α200 the algorithm needs less than two minutes, for α500 the
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(b)

Figure 5.19: Evaluation of the construction of an α-structure. (a) Construction time for the data set storm. (b)
Construction time for the data set socialmedia.

construction takes about 20 minutes. This increase is reasoned in the higher number of points in the CPN for
α500. As the construction is only done once in a pre-processing step, we deem the obtained running times to be
practical.

Order-k α-Structures and Multi-α-Structures As the original α-structure and its practicability is the focus
of the evaluation, we only shortly analyze multi-α-structures and order-k α-structures giving first indications of
their usage; a detailed analysis is planned for an extended version of our work. As to be expected, the memory
consumption of multi-α-structures increases substantially, as for each edge it becomes much more likely that it
belongs to the α-structures. Preliminary experiments show that the size increases at least by a factor of 10 in
comparison to the original α-structure.

For order-k α-structures the memory consumption increases by a factor of 5.36 for α200 with respect to
the original α-structure. Despite the increased memory consumption, we feel that order-k α-shapes provide a
helpful tool for aggregating point sets and removing outliers; for example see Figure 5.11, which shows that the
α-shape is reduced to the main set of the points excluding outliers.

5.8 Conclusion

Overall, we presented the design and construction of a data structure that provides the edges of α-shapes for
time-window queries on event sets. Further, we showed how to use this data structure to provide the user with
schematized and especially octilinear α-shapes. Our experiments showed that the memory consumption of the
data structure is linear with the number of events, which makes it applicable in practice. Further, we showed
that the query time is shorter than using a straightforward implementation.
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6 θ -Structure for Grid-Based
Event Visualization

This chapter on the θ -structure is largely extracted from a joint work with Benjamin Niedermann, Jim Diederich,
Yannick Orgeig, Johannes Oehrlein, and Jan-Henrik Haunert which was published at ACM SIGSPATIAL’20 [Bon-
erath et al., 2020c]. Preliminary results were presented in the M.Sc. thesis by Jim Diederich [Diederich, 2019].

Further, we also look at a second version of the θ -structure. The θ ∗-structure is technically closely related
but it handles the visualization of public transportation networks instead of events that are points in space and
time. This section is extracted from a joint work with Yu Dong and Jan-Henrik Haunert which was submitted
to ICC’23 [Bonerath et al., 2023a]. Preliminary results were presented in the M.Sc. thesis by Yu Dong [Dong,
2021].

Abstract

The visualization of spatiotemporal data helps researchers understand global processes such as animal mi-
gration. In particular, interactively restricting the data to different time windows reveals new insights into the
short-term and long-term changes in the research data. Inspired by this use case, we consider the visualiza-
tion of point data annotated with timestamps. We pick up classical, grid-based density maps as the underlying
visualization technique and enhance them with an efficient data structure for arbitrarily specified time-window
queries, e.g., triggered by a time-slider interface. The running time of the queries is logarithmic in the total num-
ber of points and linear in the number of actually colored cells. In experiments on real-world data, we show that
the data structure answers time-window queries within milliseconds, which supports the interactive exploration
of large point sets. Further, the data structure can be used to visualize additional decision problems, e.g., it can
answer whether the sum or maximum of additional weights given with the points exceed a certain threshold.
We have defined the data structure generally enough to also support multiple thresholds expressed by different
colors.

6.1 Introduction

Interactive, map-based visualizations of spatiotemporal data are an important tool when it comes to understand-
ing underlying processes. By supporting the retrieval of visualizations for arbitrary time windows they enable
the user to investigate both global and local patterns in the data. As an example take the yearly migration of
birds as illustrated in Figure 6.1. The underlying data contains over 8 million data points each representing the
occurrence of one bird at one day within the time range from 17/05/2013 to 31/08/2016. For the visualization of
such data, we use a grid-based density map with a discrete set of colors. Figure 6.1(a) shows the living area of
the birds over the entire time range by aggregating the given point data into cells. Restricting the time window
to a certain extent helps to identify more details as shown in Figure 6.1(b)–(c). Moreover, when sliding a time
window of arbitrary but fixed size over the data we obtain a sequence of visualizations such as in Figure 6.2
illustrating the movement of the birds.

In this chapter, we present a data structure, which we call θ -structure, that provides the possibility of retriev-
ing such density maps for arbitrarily chosen time windows in real-time. Hence, the user can specify any extent
and position of the time window to investigate both short-term and long-term processes, e.g., with a time-slider
interface. The proposed data structure answers such time-window queries within milliseconds even for large
data sets, which enables a pleasant user experience for the time-slider interface. We invite the reader to try out
our prototypical implementation of such a system on www.geoinfo.uni-bonn.de/densitymaps.

Formally, we model the time-window queries as the following decision problem, which is solved for each cell
of the density map.

Decision Problem: Time-Window Query.
Given: A set P of spatiotemporal points, a threshold θ and a time window Q.
Question: Does the number of points of P that lie in Q exceed the threshold θ?

Hence, when answering a time-window query the θ -structure provides all cells that need to be colored. To
achieve fast query times, the θ -structure efficiently encodes and stores the answers for all possible time-window
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2 Nov 2014 – 8 Mar 20152 Dec 2012 – 25 Dec 2016 19 Apr 2015 – 23 Aug 2015

≥ 10 ≥ 100 ≥ 500 ≥ 1000 ≥ 5000 ≥ 10000

Figure 6.1: Density maps showing the number of occurrences of gulls (Larus argentatus and Larus fuscus) in
Western Europe. Left: the entire time range for the available data. Middle: in the winter some gulls migrate
further south. Right: in the summer their population has its maximum. Map tiles by Stamen Design, under CC
BY 3.0. Map data by OpenStreetMap, under ODbL.

18 Aug – 25 Aug 2013 25 Aug – 1 Sept 2013 1 Sept – 8 Sept 2013 8 Sept – 15 Sept 2013

Figure 6.2: Density maps showing the migration of gulls from Western Europe to Morocco within four weeks.
Colored cells show at least 10 occurrences of gulls. Map tiles by Stamen Design, under CC BY 3.0. Map data
by OpenStreetMap, under ODbL.

queries in a tree-based search structure. When answering a query the θ -structure only considers those cells
that are actually colored. This leads to an output-sensitive query time that is based on the number of returned
cells. Moreover, the data structure is space efficient and can be built within a minute even for large data sets.

We define the θ -structure general enough so that it can be used for any monotone decision problem. For
such problems, it holds for any two queries Q and Q′ with Q ⊆ Q′ that Q is a yes-instance if Q′ is also a yes-
instance. For example, assume that each point is annotated with an additional weight. Deciding whether the sum
or the maximum of the point weights in a cell exceeds a given threshold is such a monotone decision problem.
For the sum, we consider the spread of Covid-19 as a use case as shown in Figure 6.3a. For the maximum, we
consider the soil moisture index1 (SMI), which is an important indicator for droughts; see Figure 6.3b.

We emphasize that the θ -structure is not restricted to grid-based density maps but can be applied to any
partitioning of the map. This is particularly interesting for creating choropleth maps, which use geographic or
administrative regions as cells. For example, by mapping the events of the Covid-19 cases on administrative
regions, one can use the θ -structure to directly create the choropleth map.

The chapter is structured as follows. After discussing related work in Section 6.2, we present in Section 6.3
a formal model of the θ -structure for one color. In Section 6.4 we show how queries can be accelerated using
fractional cascading. In Section 6.5 we generalize the θ -structure to both a discrete set of colors. Finally, in
Section 6.6 we present our experimental evaluation on real-world data.

1For further reading and a detailed interpretation of the SMI we refer to https://www.ufz.de/droughtmonitor.
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1 Mar – 31 Mar 2020 1 Apr – 30 Apr 2020

≥ 10 ≥ 100 ≥ 1000
≥ 10000 ≥ 100000 ≥ 500000

(a) Covid-19 cases

27 Jun – 26 Aug 2002 27 Jun – 26 Aug 2019

abnormal moderate severe

extreme exceptional

(b) droughts

Figure 6.3: Examples of other data sets. (a) Maps showing the total number of Covid-19 cases. (b) Maps
showing the maximum soil moisture index. Map tiles by Stamen Design, under CC BY 3.0. Map data by
OpenStreetMap, under ODbL.

6.2 Related work

For an overview of point set representations, tree data structures, fractional cascading, and time-windowed data
structures, we refer to Chapter 2 and Chapter 3, respectively.

6.3 θ -Structure

In the following, we introduce the theoretical model for time-windowed density maps. Based on this we introduce
the θ -structure. We further explain how to query this data structure and provide a construction and update
algorithm.

Model. Let P be a set of n points in R2 where each point p ∈ P is associated with a timestamp t ∈ R≥0 and a
weight w ∈ R≥0. We call the triplet e = (p, t,w) an event and denote the set of all events by E = {e1, . . . ,en}; see
Figure 6.4. We assume that the points are contained in a simple polygon M which represents the map. Further,
let G = {c1, . . . ,cm} be a set of m polygons that partition M; see Figure 6.5. We call c ∈ G a cell. For grid-based
density maps, M is the bounding box of P and the cells of G are equally sized, axis-aligned rectangles that cover
P. On the other hand, for data related to administrative borders, it might be useful for the visualization to let P
be the set of the administrative regions. For a given partition G, each event is contained in exactly one cell c ∈ G
and we denote the set of all events of cell c by Ec ⊆ E.

For our application, we compute the density map for a time-window query Q. More precisely, let Q = [t1, t2]
be a time-window query with t1 ≤ t2. Further, we denote the set of all events that are contained in cell c ∈ G
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Figure 6.4: The events are given as a point set. Each point p is annotated with a timestamp t and optionally
with a weight w. The core problem is to evaluate for an arbitrary query Q all points (orange) whose timestamps
lie in Q.
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Figure 6.5: Partitions of the map for various types of cells.

and in the time window Q by Ec,Q, i.e., for each (p, t,w) ∈ Ec,Q it holds p ∈ c and t ∈ Q. To color the cells of the
density map, we are given a decision function D : G×R2 → {true, false}, which decides for a cell c ∈ G and a
query Q = [t1, t2] whether c is colored or not; we say that a cell c ∈ G is colored for Q if D(c,Q) = true. The density
map for decision problem D and time-window query Q displays all cells c for which D(c,Q) = true.

In this work, we restrict ourselves to decision problems for which D(c,Q) = true implies D(c,Q′) = true for all
queries Q and Q′ with Q ⊆ Q′. In that case, we call D a monotone decision problem. In the following, we list
examples of monotone decision problems:

• Counting Problem. The decision problem Dcount answers the question of whether the number of elements in
the time window Q and region c is larger than a prescribed threshold θ ∈ R≥0.

Dcount (c,Q) =

{
true if ∑e∈Ec,Q

1 ≥ θ ,

false else.
(6.1)

This is a monotone decision problem, since the number of elements in Ec,Q′ is always larger or equal to the
number of elements in Ec,Q or any Q ⊆ Q′.

• Sum Problem. The decision problem Dsum answers whether the sum of all weights in Q and region c is larger
than a threshold θ .

Dsum (c,Q) =

{
true if ∑(p,t,w)∈Ec,Q

w ≥ θ ,

false else.
(6.2)

It is a monotone decision problem since all weights are non-negative and hence for a query Q′ that contains
Q the sum is always larger than the sum for Q.

• Maximum Problem. The third example for monotone decision problems answers the question if there exists
any event in Ec,Q for which the weight is larger than the threshold θ .

Dmax (c,Q) =

{
true if max{w | (p, t,w) ∈ Ec,Q} ≥ θ ,

false else.
(6.3)

This is a monotone decision problem since by enlarging the time-window query the maximal weight cannot
decrease. Similarly, the problem of whether a weight smaller than a threshold exists in a time window is also
a monotone decision problem.
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Figure 6.6: The θ -structure is a search tree built on top of the given grid. Each node is associated with a time
structure that is queried to early exclude cells that are not reported.
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Figure 6.7: Time functions for Dcount with θ = 2 stored at each node of the θ -structure. (a)-(d) Time function for
leaf nodes v1, v2, v3, v4 of Figure 6.5. (e) Time function for internal node w and its child nodes v1, v2, v3, and v4.

An example of a non-monotone decision problem is Davg, which answers whether the average of the weights of
all events contained in a cell and a time window is larger than some value θ . This is not monotone since the
average of {w | (p, t,w) ∈ Ec,Q} can be larger than the average of {w | (p, t,w) ∈ Ec,Q} with Q ⊂ Q′.

For a given monotone decision problem D we define the time function Φc(t) of the cell c such that it provides
for a query start time t the earliest point in time for which D is fulfilled; see Figure 6.7(a) and Figure 6.7(b). For
a time window Q = [t1, t2] the polygon c is colored if Φc(t1)≤ t2. Note that the region {(t1, t2) ∈ R2 | Φc(t1)≤ t2} is
the activity region of cell c. A simple approach for the computation of a density map for a time-window query Q
is to query the time function of each of the m cells in G. This requires O(m logn) time.

In the following, we present a data structure, which we call θ -structure, that can be queried in O(d logm logn)
time, where d is the number of colored cells. In Section 6.4 we improve the query time to O(d logm+ logn). This
data structure builds a tree on top of the grid such that each leaf contains one cell; see Figure 6.6. We assume
that the tree has height O(logm); in our experiments, we used a standard quadtree for this purpose [de Berg
et al., 2008]. The core idea is to associate each node with a time structure that allows us to efficiently exclude
cells that are not reported for the given query.

We now describe the details of the θ -structure. Let H be a tree that contains for each cell c ∈ G a leaf and
has height O(logm); in the case that G is a rectangular grid structure, we use a quadtree. For each node w ∈ H
we define a time function φw(t) as follows. At first, assume w is a leaf node of H. Then, the node w corresponds
to a cell c ∈ G and we set φw(t) = Φc(t) for all t ∈ R. In the case that w is an internal node, let v1, . . . ,vk be the
child nodes of w in H. The time function φw of w is the minimal value of the time functions of v1, . . . ,vk for each t;
see Figure 6.7.

φw(t) = min{φvi(t) | 1 ≤ i ≤ k} (6.4)
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Hence, φw(t) describes the first query end time for which at least one descendant leaf cell is colored.
For our data structure, we store φw(t) in each node w of H. More precisely, let t1, . . . , tI be the set of all

timestamps where each ti with 1 ≤ i ≤ I is contained in a descendant leaf node of w and ordered such that ti ≤ t j
for 1 ≤ i ≤ j ≤ I. We denote the sequence ⟨−∞, t1, . . . , tI ,∞⟩ by Tw. We store φw as a table Pw, where the first
column corresponds to Tw and the second column contains φw(t) for each t ∈ Tw. We call Pw the timetable of w.
Altogether, we obtain a search tree H whose nodes are annotated with timetables; we call H a θ -structure.

Querying For a time-window query Q = [t1, t2] we descend in the θ -structure H starting at the root node of
H. Let w be the currently considered node of H. If φw(t1) ≤ t2 and w are a leaf node, we report the cell of w.
Otherwise, if w is an internal node, we descend to its child nodes. In case φw(t1)> t2 we stop the search in this
branch of H because there is no leaf node in the subtree of w that fulfills the decision problem.

Descending from the root to one leaf node takes O(logm) time. Deciding for a node w whether φw(t1)> t2 is
fulfilled, takes O(logn) time. Let d be the number of reported cells. Hence, overall querying takes O(d logm logn)
time.

Construction and Update We construct the θ -structure in a bottom-up approach. First, we create a tree H on
top of the grid G, i.e., the leaves of H contain the cells. We create for each cell c∈G its time function Φc by sorting
the events Ec in chronological order and by applying one linear sweep to obtain Φc(t) for each (p, t,w) ∈ Ec. We
note that Φc is constant at any other time that does not coincide with a timestamp of an event. For each leaf u
of H we set φu = Φc, where c is the cell of u. For an internal node we create φu by merging the time functions
φv1 , . . . ,φvk of its child nodes v1, . . . ,vk. More precisely, we compute φu(t) = min{φvi(t) | 1 ≤ i ≤ k} with 0 ≤ t ≤ ∞,
which is the lower envelope of the time functions φv1 , . . . ,φvk . Utilizing a linear sweep on the events of v1, . . . ,vk
in increasing order of their timestamps, we create φu in linear time of the number of events contained in the
sub-tree of u. As the cells are disjoint, in each level of H we need O(n) time in total to create the time functions.
Hence, we need O(n logn) for once sorting the events and then O(n logm) time to create H on top of G. Note,
that we assume that the time for solving the decision problem itself is neglectable, e.g., it may not be NP-hard.
The tree uses O(n) space per level and has m leaves so that it uses O(n logm+m) space in total.

Theorem 3. The θ -structure takes O(n logm+m) space, can be constructed in O(n(logn+ logm)) time, and can
be queried in O(d logm logn) time, where d is the number of cells that fulfill D.

In some of the use cases, e.g., the spreading of Covid-19, the data is not known in advance but it is updated
on a daily basis. In particular, the new events occur after the events that are already contained in the θ -
structure H. We shortly sketch how to update H. For each new event e = (p, t,w) we identify the cell c and its
leaf node u in H. We update φu for e and determine any event e′ = (p′, t ′,w′) for which φu(t ′) has been changed.
We observe that this is only the case if φu(t ′) = ∞ held before. Further, for each such event e′ and for the event
e we follow the path P from u to the root of H. At each encountered node v on this path, we update the time
function φv(t) with respect to the currently considered event. Each of these updates can be performed in O(logn)
time per node by updating the lower envelope, correspondingly. Altogether, inserting a single event may cost
O(n logn logm) time, but each event e′ triggers such updates only once. Hence, over all events, we obtain an
amortized running time O(logn logm) per event.

6.4 Fractional Cascading

Fractional cascading is a speed up technique for searching [Chazelle and Guibas, 1986a,b, de Berg et al.,
2008]; see Chapter 3. It does not increase the space consumption, but a search takes O(J+ logn) time instead
of O(J · logn) time for J reported elements and n is the overall number of elements. In the following, we discuss
how to incorporate fractional cascading into the θ -structure. For the θ -structure we are given a node w with its
timetable Pw and a child node v with the timetable Pv. Due to the construction of Pw and Pv the arrays are sorted
and Pv ⊆ Pw; see Figure 6.8. We extend the timetable Pw with a column for the child node v that contains for each
timestamp t ∈ Tw a pointer to the row of Pv of the first timestamp that is equal to or larger than t. When querying
Pw for a query Q = [t1, t2], we first perform a binary search in Pw for t1 and if φw(t1)< t2 we directly evaluate φv(t1)
by using the pointer instead of performing a second binary search for t1 in Pv. The next theorem summarizes the
results.

Theorem 4. The θ -structure with fractional cascading takes O(n logm+m) space, can be constructed in O(n(logn+
logm)) time, and can be queried in O(d logm+ logn), where d is the number of cells that fulfill D.
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Figure 6.8: Illustration of fractional cascading. The timetable of each node w is extended by an additional column
for each child node v with pointers to the rows of the timetable of v.

x

y

timeQ

(a) one color problem

x

y

time

θ = 1
θ = 2

Q

θ = 3

(b) multi-color problem

Figure 6.9: Example of different types of density map.

6.5 θ -Structure with Multiple Colors

Instead of using one color often multiple colors are desired to visualize the information; see Figure 6.9. For
example, for the counting problem, we want to color-code the number of events in the time window for all cells
that exceed at least a minimal threshold. This can be done by visualizing the results of the counting problem for
several thresholds.

Choosing the color of the cell can be seen as a second step in the query phase, i.e., in the first step we
collect all cells to be colored using the θ -structure, and in the second step, we then decide which color is used
for the cell. To that end, we assume that for each cell c we are given a color function f : G×R2 →{1, . . . ,h} that
determines for a cell c and a time-window query Q ⊆ R2 one of h color values. More precisely, f (c,Q) is a color
in the range from 1 to h if D(c,Q) = true. In case D(c,Q) = false, the value of f is undefined, which we denote by
f (Q) =⊥. We distinguish two versions that differ in the supported decision functions.

Version 1: counting, sum and maximum problems We first describe an approach that only works for de-
cision problems based on quantities such as the counting, sum, and maximum problem, but not on monotone
decision problems in general. In the following, we first explain the approach for the decision problem Dsum and
then explain the adaptions for Dcount and Dmax. We assume that the color f (c,Q) for a cell c and a query Q is
defined as follows.

f (c,Q) =

{
⊥ if Dsum(c,Q) = false,
T [∑(p,t,w)∈Ec,Q

w] otherwise,
(6.5)

where T is a simple lookup-table that maps a value W ∈ R to one of the h colors, i.e., T [W ] ∈ {1, . . . ,h}. Hence,
the computational problem reduces to determining the value of the sum ∑(p,t,w)∈Ec,Q

w.
To that end, we enrich the θ -structure H for the decision problem Dsum as follows. For each leaf node v of

H we additionally store its events Ev in a classical 1-dimensional range tree Rv [de Berg et al., 2008]. More
precisely, Rv is an ordered binary tree that stores each event e ∈ Ev in one of its leaves such that the events
appear in their temporal order when traversing the leaves from left to right (i.e., doing a pre-order traversal on
Rv). Further, each internal node contains the event of the rightmost leaf of its left sub-tree. Let u be an arbitrary
node of Rv and let w1, . . . ,wk be the weights of the events that occur in the subtree of u. We annotate u with the
weight wu = ∑

k
i=1 wi.
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Figure 6.10: Illustration of a range tree Rv. The path from ρ to ul and the path from ρ to ur have a common prefix
that ends at s. The suffixes P′

l and P′
r separate the queried events (squares) from the others (triangles).

When answering a time-window query Q = [t1, t2] on H, we perform the same procedure as described in
Section 6.3 to identify all cells that are colored for Q. For each such cell c we then perform the following
procedure to obtain ∑(p,t,w)∈Ec,Q

w. Let Rv be the range tree that is stored in the leaf of v that represents c.
Starting at the root ρ of Rv we search for the leftmost node ul of Rv with timestamp t1 ≤ tl and for the rightmost
node ur of Rv with timestamp tr ≤ t2; see Figure 6.10. Let Pl be the path that connects ρ with ul and let Pr
be the path that connects ρ with ur. After a (possibly empty) prefix starting at ρ the paths Pl and Pr split at
a common node s in Rv. Let P′

l and P′
r be the remaining suffixes of Pl and Pr that start at s, respectively. We

collect all right child nodes of the nodes in P′
l and all left child nodes of the nodes in P′

r that neither belongs to
P′

l nor to P′
r ; we denote the set of the collected nodes by C (see black dots in Figure 6.10). For c we then return

f (c) = T [∑u∈C wu +wur +wul ] as color.
We treat the counting problem as a special case of the sum problem by defining the weight of each event as 1.

For the maximum problem, we store at each internal node of Rv the weight wu = max{ww | w is a child node of u}.
Hence, in that case we return f (c) = T [max{wu | u ∈ C∪{ul ,ur}}] as color. Other decision problems based on
quantities can be solved similarly.

Assuming that a lookup in T takes O(logh) time, the time-window query runs in O(d logm+ d logn+ d logh)
time: O(d logm+ logn) time for collecting the d cells to be colored and O(d logn+d logh) time for evaluating the
color function for all d cells. Further, in addition to the O(n logm+m) space for the θ -structure we need O(n+h)
space for the range trees and lookup table in total.

Theorem 5. The multi-color θ -structure for quantitative problems takes O(n logm+m+ h) space, can be con-
structed in O(n(logn+ logm)) time, and can be queried in O(d logm+d logn+d logh), where d is the number of
colored cells and h is the number of colors.

We note that we can define the color pallet on demand in the query phase, as long as we keep the first
threshold fixed. Further, instead of using a lookup table, we can use a continuous color pallet by applying a
linear transformation. Moreover, for the counting and sum problem, we can improve the query time to O(d logm+
logn+d logh). To that end, we store in each cell c all events in an array Ac in increasing order. Further, for each
event, we store the cumulative weight up to that event. When answering a query Q on the θ -structure we use
fractional cascading to find the first and last event of Q in Ac for each cell c. The difference of their cumulative
weights is then the desired value ∑(p,t,w)∈Ec,Q

w.

Version 2: general monotone decision problems We now present an approach that supports any monotone
decision problem. More precisely, for each color i ∈ {1, . . . ,h} we are given a decision problem Di, which decides
whether a cell c can be colored with i for a given query Q. As we want to obtain a monotone color gradient, we
require for each color i with 1 ≤ i < h that Di+1(c,Q) = true implies Di = true(c,Q). If a cell c ∈ G and a query Q
fulfills Di but not Di+1, the color function f assigns the color i to c, i.e.,

f (c,Q) =


⊥ if D1(c,Q) = false for 1 ≤ i ≤ h
1 if D1(c,Q) = true, Di(c,Q) = false for 2 ≤ i ≤ h
...
h if Di(c,Q) = true for 1 ≤ i ≤ h

(6.6)

In order to query f on G, we adapt the θ -structure H by extending the timetable of all leaf nodes of H.
Let v be a leaf node with event set F and timetable P. Let φ 1

v ,φ
2
v , . . . ,φ

h
v be the time functions for the event
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Table 6.1: Properties of variants of the θ -structure: one color with and without fractional cascading (FC) and
the two versions for multiple colors. n =number of events, m =number of cells, d=number of reported cells,
h =number of colors.

Construction Storage Query Time

One Colour:
without FC O(n(logm+ logn)) O(n logm+m) O(d logm logn)
with FC O(n(logm+ logn)) O(n logm+m) O(d logm+ logn)

Multiple Colours:
version 1 O(n(logm+ logn)) O(n logm+m+h) O(d logm+d logn+d logh)
version 2 O(n(logm+ logn+h)) O(n logm+m+nh) O(d logm+ logn+d logh)

ti

ti+1

ti+2

(a) alternative 1 (b) alternative 2

s1≤ ≤ ≤s2 s3 s4

t1 ≤ ≤ ≤t2 t3 t4

r1≤ ≤r2 r3

q1≤q2≤

r1≤ ≤ ≤s1 s2 t1 q1≤ ≤ ≤q2 s3 s4 ≤t3t2≤≤≤≤≤ ≤r3

(c) alternative 3

Figure 6.11: Illustration of alternative approaches.

set F concerning the decision problems D1,D2, . . . ,Dh, respectively. We observe that φ 1
v (t)≤ φ 2

v (t)≤ . . .≤ φ h
v (t)

for t ∈ R. We extend P with a column for each time function φ 2
v , . . . ,φ

h
v . Hence, this data structure has size

O(n logm+mh); assuming that h ∈ O(1) we obtain O(n logm+m) storage consumption.
For a time-window query Q = [t1, t2], we first search in H for all leaf nodes that fulfill D1 using fractional

cascading; see Section 6.4. Let v be a leaf node that fulfills D1 and let t be the first timestamp of Tv that is equal
to or larger than t1. We perform a binary search in the sorted array φ 1

v (t), . . . ,φ
h
v (t) to determine the color i for

which Di = true and Di+1 = false. The query time is O(d logm+ logn+d logh) where d is the number of nodes that
fulfill D1.

Theorem 6. The multi-color θ -structure for arbitrary monotone decision problems with h colors has O(n logm+
m+nh) space, can be created in O(n(logn+ logm+h)) time and queried in O(d logm+ logn+d logh) time, where
d is the number of colored cells.

We can use this setting to visualize more advanced sequences of decision problems. In the running example
of bird observations, the first decision problem could be about the number of birds, the second about the number
of gulls, and the third about the number of Larus argentatus, i.e. a specific species of gulls.

6.6 Evaluation and Experiments

In this section, we present the evaluation of our approach. Table 6.1 gives an overview of the properties of the
variants of the θ -structure.

6.6.1 Comparison with Alternative Approaches

It is tempting to improve the query time, by defining the data structure differently. However, this easily leads to
an increase in storage consumption. We discuss three apparent alternatives for our approaches showing that
the balance between storage consumption and the query time is impaired. We assume that the events are given
as a sequence e1, . . . ,en ordered by their timestamps t1, . . . , tn.

Alternative 1. We construct n density maps, namely for each timestamp ti one map Mi; see Figure 6.11a.
For each cell, we store the cumulative weights of the events up to this timestamp. For example, for the counting

49



Table 6.2: The data sets used in the experiments. For each data set the tables show the number of events, the
number of grid cells, the cell size in km, whether the events have weights, and the first and last timestamp, as
well as the resolution of the data.

Data BIRDDATA COVID19DATA DROUGHTDATA

Events 8.47 ·106 0.34 ·106 19.21 ·106

Grid Cells 648×393 752×2037 139×102
Cell Size 10×10 10×10 10×10
Weights no yes yes
First Event 17/05/2013 22/01/2020 16/01/1951
Last Event 31/08/2016 17/06/2020 16/12/2019
Resolution days days months

problem, we store the number of events that have occurred so far in this cell up to this timestamp. For a time-
window query Q = [t, t ′] we first determine the two density maps Mi and M j such that ti is the earliest event with
ti ≤ t and t j is the latest timestamp with t ′ ≤ t j. Afterward, we decide for each cell in G and its cumulative weights
wi and w j in Mi and M j whether w j −wi exceeds the given threshold. If this is the case, we report that cell. We
observe that this only works for the sum and counting problem, but not for the maximum problem. Determining
Mi and M j needs O(logn) time and traversing all cells needs O(m) time, which leads to O(m+ logn) query time.
Due to its high storage consumption, which lies in Θ(m · n), this alternative is most suitable for event sets that
are based on a few timestamps (e.g., ,any events occur at the same time). Further, as the running time is
independent of the number of reported cells, it is mostly suitable for data that most of the queries report almost
all cells. However, for heterogeneous data sets, e.g., the data set on bird observations, the θ -structure clearly
prevails over this alternative due to its output-sensitive query time and its better space consumption.

Alternative 2. We refrain from building the search tree upon the grid, but only consider the grid such that
each cell c ∈ G has a time function φc; see Figure 6.11b. For a time-window query Q we iterate through all cells
of G and evaluate each time function. Compared to the θ -structure the storage consumption decreases by a
logarithmic factor to O(n+m) and the query, which lies in O(m logn), is not output-sensitive anymore. In our
experiments, we show that the superimposed search tree is a decisive speed-up.

Alternative 3. Based on the grid cells we build a search-tree T that has for each cell c ∈ G a leaf that
contains the timestamps of c in increasing order; see Figure 6.11c. Further, each internal node of T contains
the timestamps of its child nodes in increasing order. For a time-window query Q = [t, t ′] we start at the root
of T . We determine for a node v of T the earliest timestamp τ with t ≤ τ and the latest timestamp τ ′ ≤ t ′

of v. If the number of events in v between τ and τ ′ does not exceed the given threshold, we stop the search
for this node. Otherwise, if v is an internal node, we descend to its child nodes. If v is a leaf, we report the
corresponding cell. For supporting the sum problem we store for each event its cumulative weight, i.e., the
weights of all events in the same node up to that timestamp. Altogether, the data structure has the storage
consumption O((n+m) logm). Utilizing binary searches and fractional cascading a query can be answered in
O(m+ logn) time. We observe that, in the worst case, the search considers all leaves even if the number of
output cells is 0. Hence, this alternative is not output sensitive. Further, the maximum problem is not supported
by this structure. Altogether, it is not a replacement for the θ -structure.

6.6.2 Experiments

In this section, we describe the experiments on real-world data analyzing the query times of the θ -structure.

Experimental Setup. We have considered three data sets that differ in size, extent, and type. Table 6.2 gives
an overview.

• BIRDDATA. The data set consists of events that represent the occurrences of single birds. The data is
derived from the Global Biodiversity Information Facility2 [Stienen et al., 2017].

• COVID19DATA. The data set describes the spreading of the Covid-19 disease. The data was collected
from multiple sources for the countries Germany, Italy, France, England, and USA. Each event represents
the number of Covid-19 infections that were reported on one day in one of the administrative regions of

2gbif.org
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Figure 6.12: Query time for the counting problem.

the countries. The data comprises 3660 administrative regions in total. For more details and the list of
sources, we refer to www.geoinfo.uni-bonn.de/densitymaps.

• DROUGHTDATA. The data set describes the soil moisture index (SMI) observed in Germany. This index is
an indicator for droughts. It is given as raster data, which we have translated into point data by considering
the centers of the cells. Despite its rasterized appearance, we consider this data set in our experiments
as it is large and each event has a weight.

For the density maps, we used a grid to partition the bounding box of the data. Each cell has a size of 10 km ×
10 km, which is finer than the cell sizes used for illustration in Figures 6.1–6.3.

In the following evaluation, we focus on four versions of the θ -structure: the θ -structure with a single color
(θ -S), the θ -structure with a multi-color pallet (θ -M), the θ -structure with fractional cascading and a single color
(θ -S-FC), and the θ -structure with fractional cascading and a multi-color pallet (θ -M-FC). For each of the data
sets, we computed the θ -structure for each of the four variants, whereas we solved the counting problem for the
BIRDDATA, the sum problem for the COVID19DATA, and the maximum problem for the DROUGHTDATA. Since for
the DROUGHTDATA the SMI is defined between 0 and 1, where 0 means exceptional drought and 1 that there
is no drought, we inverted the scale and used 1−SMI for the weights of the data. We define the thresholds for
each data set as θBIRDDATA=10, θCOVID19DATA=10 and θDROUGHTDATA= 0.7. For the multi-color problem, we used a
lookup table with six colors.

We implemented the data structure in Java and ran the experiments on an Intel(R) Xeon(R) W-2125 CPU
clocked at 4.00GHz with 128 GiB RAM. We considered 1100 randomly chosen time-window queries. To prevent
influences of the warm-up phase of the virtual machine for Java, the first 100 queries are not considered in the
evaluation. Further, we removed six outliers from the query measurements (>85ms) which we also explain with
the use of Java.

Counting problem (BIRDDATA) For the counting problem, we evaluate the query time first for the θ -structures
with one color and afterward for those with multiple colors. In order to prove the necessity of a more advanced
data structure, we implemented a simple solution that consists of a grid where each grid cell is enhanced by an
unsorted list of timestamps of the contained events. For a query, we search in all grid cells and iterate over the
whole time list. The query time for this variant varies between 182.1 and 408.8 ms. Hence, this is not a suitable
solution for interactive visualizations and motivates more elaborated approaches.
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Figure 6.13: Query time for the sum and maximum problem.

Figure 6.12a shows the query times for θ -S, θ -S-FC for the test queries, which are ordered by the number
of reported grid cells. We compare the θ -structures to an alternative approach, which we call GRID-S. This
approach consists of a grid, where each grid cell is augmented by the time function; see Subsection 6.6.1 –
Alternative 2. The experiments show that the query time of GRID-S is in the range of 6.3 and 14.3 ms and
that it does not depend on the number of reported cells. For θ -S and θ -S-FC the query time shows a clear
dependency on the number of reported cells. Hence, for time-window queries with small output, the query time
is substantially smaller but also for large time windows we observe a clear difference. For θ -S the queries take
maximal 8.6 ms and for θ -S-FC 5.5 ms. On average the query time of θ -S reduces to 36.4% and the query time
of θ -S-FC reduces to 23.9% of the query time of GRID-S.

The query times for the multi-color problem are between 0.3 and 12.3 ms for θ -M and between 0.2 and 9.3
ms for θ -M-FC; see Figure 6.12b. This is on average 2.2 ms slower than for the respective θ -structures with
one color. The evaluation shows that the θ -structure leads to a substantial improvement of the running time.

The construction for all four data structures θ -S, θ -M, θ -S-FC, θ -M-FC took only between 31 and 33 seconds
for the BIRDDATA.

Sum problem (COVID19DATA) For the sum problem, we compare the query times of θ -S, θ -M, θ -S-FC, and
θ -M-FC; see Figure 6.13a. The fastest variant is θ -S-FC with 4.1 ms on average and 7.6 ms query time on
maximum. The θ -structure without fractional cascading θ -S is 1.8 ms slower than θ -S-FC on average. For the
multi-color versions, the query time is 2.2 ms greater on average.

Due to the comparably small size of COVID19DATA, the construction for θ -S, θ -M, θ -S-FC, and θ -M-FC only
took 3 to 5 sec.

Maximum problem (DROUGHTDATA) Figure 6.13a shows the measured query times of θ -S, θ -M, θ -S-FC
and θ -M-FC. For this data set the number of reported cells is for most time-window queries rather large. This is
reasoned in the fact that we solve the maximum problem and further, in the data and the SMI score itself. Also,
the query time is compared to the two previously presented data sets, greater which we explain with the fact
that this is the largest data set and the number of reported cells is significantly higher. On average, the fastest
variant is θ -S-FC with 13.7 ms on average and 55.0 ms query time at maximum. The additional running time
obtained by the multi-color pallet is on average 19.2 ms. This is noticeably larger than for the two other data
sets BIRDDATA and COVID19DATA because more cells are reported on average. The difference between the
θ -structure with and without fractional cascading θ -S-FC and θ -S is comparably small with 1.3 ms.
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Figure 6.14: The public transportation network and the user interface for two time windows. The road segments
that are frequently served are drawn in pink. Between (a) and (b) the users have slid the right boundary of the
time window.

For the DROUGHTDATA the construction time of all four variants θ -S, θ -M, θ -S-FC, θ -M-FC is between 64
and 67 seconds.

Summary Overall, we showed for three different real-world data sets of different sizes both an application and
an evaluation of the θ -structure. Compared to the alternative approaches, the θ -structure decreases the query
time clearly and allows a real-time interaction, e.g., with a time-slider interface. Especially, the fact that the
query time is output-sensitive is an advantage of our data structure. Further, we showed that using fractional
cascading improves the query time measurably. The multi-color version increases the query time slightly but it
is still applicable for interactive visualizations.

6.7 Excursion: θ ∗-Structure for Public Transportation Data

In this section, we present the θ ∗-structure which is a data structure based on the θ -structure for the visualization
of public transportation networks. It is extracted from the paper published at ICC’22 [Bonerath et al., 2023a].

For many people, the public transport network plays a major role in their daily lives. Therefore, careful
planning is of utmost importance. This means that decision-makers must be able to easily inform themselves
about the spatial and temporal patterns of connectivity. The most common visualizations of public transport
data are (1) the schedule tables for transportation lines at each station and (2) a map with the routes of all
transportation lines. Although both visualizations work well for certain applications, e.g., informing users of their
next route, they do not provide a high-level overview of the spatiotemporal patterns of the entire network. We
focus this work on bus networks but it can be easily extended to networks that also contain trams, etc.

In this work, we look at an interactive visualization approach that enables users to explore the spatiotemporal
patterns of the public transportation network.

1. spatial patterns: Which parts of the city are served, i.e. , which roads are traversed by buses?
2. temporal patterns: In which time windows are which parts of the city served?

Driven by these two criteria, we introduce the concept of frequently served road segments, i.e., we say a road
segment is frequently served for a time window if it is traversed by at least θ buses in the time window. We
consider θ to be a given threshold for the network. When a user explores the public transportation network,
we display all frequently served road segments for the queried time window. In a more enhanced variant of the
visualization, one can either use more than one threshold or encode the number of buses that traversed the
road for all roads that have been traversed by more than θ buses.

As described before, we enable the user to explore the network with a time-slider interface; see Figure 6.14.
In the following, we give a formal definition of our problem.
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Figure 6.15: Time function. (a) The time function for one leaf node of the θ ∗-structure. (b) The time functions of
two sibling nodes fv and fv′ and their parent node fw.

Frequently Served Roads for Time-Window Query.
input:

1. The road segments R of a public transportation network where each road segment is annotated
with the timestamps of bus traversals.

2. A pre-defined threshold θ that specifies the minimum number of bus traversals such that a road
segment is frequently served.

3. A user-defined time-window query Q = [t, t ′].
Output:

The set of all road segments RQ that were traversed by at least θ buses in the time window Q.

In order to allow a pleasant user experience, when exploring the frequently served road segments of a city, a
user should be able to receive the visualization in real time for a time-window query. Motivated by movies with
a frame rate of 24 images per second, we want to achieve a response time of roughly 40 milliseconds.

To solve this problem of real-time response, we contribute a new version of the θ -structure that enables a
real-time exploration with the range-slider. We call this data structure θ ∗-structure.

In contrast to the θ -structure, our θ ∗-structure is a binary tree. We have adopted the time function for
each node. The main contrast to the θ -structure is that there is no straightforward mapping between the road
segments and the leaf nodes of the θ ∗-structure. We will discuss several versions and (experimentally) evaluate
these.

6.7.1 Build a θ ∗-Structure

In this section, we assume that we are given a mapping between the leaf nodes U = {u1, . . . ,un} of the binary
tree B and the road segments R. In a very simple variant, one could use a random order of the road segments.
In order to simplify the notation and without loss of generality, we assume that road segment ri is mapped to
leaf node ui for 1 ≤ i ≤ n.

The time function fi(t) of a leaf node ui reports for any time-window start time the earliest time-window end
time such that the road ri is frequently served, i.e., it is traversed by θ buses. Again, as for the θ -structure, the
region {(t ′, t ′′) | fi(t ′)≤ t ′′} is the activity region of the road segment ri. Take a road segment with four-timestamps
Ti = {9 a.m.,10 a.m.,1 p.m.,3 p.m.} and a threshold θ = 3 as example. Equation 6.7 and Figure 6.15a give the
time functions for v.

fi(t) =


1 p.m. if t ≤ 9 a.m.
3 p.m. if 9 a.m. < t ≤ 10 a.m.
∞ if 10 a.m. < t.

(6.7)

Now, we introduce the time function fw of an internal node w of B. Let ui, . . . ,u j be the leaf nodes that are
descendants of w. We want the time function fw to report for any time-window start time the earliest time-window
end time such that at least one road segment r ∈ {ri, . . . ,r j} is frequently served.

We compute the time functions from the bottom of B to the top. For the leaf nodes, we can compute the
time function as described above. For an internal node w, let v and v′ be its children for which we have already
computed the time functions fv and fv′ , respectively. Then, the time-function fw is the lower boundary of the time
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Figure 6.16: The query procedure for a time-window query Q. Blue nodes report true, orange nodes report
false, and grey nodes are not queried. The road segments of the two blue leaf nodes correspond to the
frequently served road segments for Q.

Algorithm 2: QUERY

Input: θ ∗-structure B, time-window query [tstart, tend]
Output: frequently served road segments RQ for [tstart, tend]
let v be the root node of B
if v reports true for Q then

if v is leaf node of B then
add corresponding road segment of v to RQ

else
let B′ and B′′ be the subtrees of B rooted at the children of v
add result of QUERY(B′, [tstart, tend]) to RQ
add result of QUERY(B′′, [tstart, tend]) to RQ

functions fv and fv′ ; see Figure 6.15b.
fw(t) = min{ fv(t), fv′(t)} (6.8)

Overall, we can compute the θ ∗-structure in O(nm logm) time where m is the number of road segments and n
is the overall number of timestamps. The θ ∗-structure has asymptotic size of O(nm logm).

6.7.2 Querying a θ ∗-Structure
In the following, we describe how we query a θ ∗-structure for a time window [tstart, tend]. For a node v of the binary
tree, we say that v reports true for Q if fv(tstart)≤ tend and otherwise v reports false for Q. For v being an internal
node reporting true means that there is at least one descendant leaf node of v that reports true. For v being
a leaf node reporting true means that the road segment that corresponds to v is frequently served for Q. The
query approach is straightforward: we start at the root node of the tree and traverse it downwards as long as we
either reach a leaf node or a node reports false; see Algorithm 2.

The running time of checking whether a node reports true or false for a time-window query, depends on the
time needed to evaluate fv(tstart). Since fv is a staircase function, we can store it as an array Fv where each row
corresponds to the leftmost point of a horizontal segment of fv. Equation 6.9 is the array for the time function
given in Equation 6.7.

Fv =

 −∞ 1 p.m.
9 a.m. 3 p.m.

10 a.m. ∞

 (6.9)

For evaluating fv(tstart), we perform a binary search on the first column of Fv for the first value that is larger
than tstart. For a data set of m road segments with n timestamps over all road segments, and d road segments
that need to be reported for a query Q, the asymptotic query time of Algorithm 2 is O(d logn logm).

6.7.3 Building a Good θ ∗-Structure
In the following, we discuss how to improve the θ ∗-structure such that the query time is reduced. First, we dis-
cuss what is a good mapping between the road segments and the leaf nodes. This does not improve the asymp-
totic query time but in the real-world experiments, we show its real-world relevance. Secondly, we show how to
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ri rj
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Figure 6.17: Query where road segments ri and r j are frequently served. (a) ri and r j are mapped to neighboring
nodes. (b) ri and r j are mapped to nodes that are far apart.

incorporate the technique fractional cascading [Chazelle and Guibas, 1986a,b] which improves the asymptotic
and experimentally evaluated query time.

Mapping In the following, we want to analyze which order of the leaf nodes of the θ ∗-structure B is advan-
tageous for the query time. In Section 6.7.2, we described how B answers a time-window query. Figure 6.17
shows the query procedure for two different mappings between the road segments and the leaf nodes. It shows
that a time-window query Q can be answered more efficiently if all frequently served road segments for Q lie
closely together. Then, we can exclude large parts of the θ ∗-structure in the query procedure. Intuitively, it would
be good to find a mapping between the road segments and the leaf nodes of the θ ∗-structure such that neigh-
boring leaf nodes correspond to road segments that are frequently served for the same time-window queries. In
the following, we provide an approach that we call max-order to generate such a mapping. In the experimental
evaluation, we compare this to a random order.

For the max-order we compute the maximal vertical distance between pairs of time functions fv and fv′ . Let
[t1, t2] be the temporal range where the time functions fv and fv′ are larger than −∞ and smaller than ∞. Then,
we define the maximal vertical distance max-dist of the time function fv and fv′ as follows

max-dist( fv, fv′) = maxt∈[t1,t2]| fv(t)− fv′(t)| (6.10)

For the mapping between the road segments and the leaf nodes, we start with a randomly selected road seg-
ment and associate it with the first node v. Then, we compute the maximal vertical distance of fv and the time
functions of all other road segments. We associate the road segment with the smallest maximal vertical distance
to the second node w of the leaf nodes. In the next step, we compute the maximal vertical distances to the time
function fw of node w. We associate the road segment with the smallest maximal vertical distance to the third
node of the leaf nodes. We repeat this procedure until all road segments are associated to a leaf node.

Fractional Cascading As described for the θ -structure, we also implemented fractional cascading for speed up.

6.7.4 Experiments

In the following, we describe our experiments on real-world data from the public transportation network of Bonn.
First, we give an overview of the pre-processing steps that need to be done to transform the data into our
θ ∗-structure. Secondly, we evaluate the construction and query times obtained with the different versions.

Data Pre-Processing For our experiments, we used the public transportation network of the city of Bonn,
Germany obtained by the VRS GmbH3 under the data license Deutschland Zero Version 2.0. The network
contains (i) 6880 stations, (ii) 567 bus, tram, and train routes which are a sequence of stations, and (iii) 121866
trips which consist of the sequence of stations defined by the routes enriched with stop times. Based on the
geometries provided by the routes, we processed the data into a graph. To receive the road segments annotated
with the bus-traversal timestamps, we performed several pre-processing steps, i.e.,

1. computing the traversal times for the road segments in between stations by linear interpolation
2. merging timestamps of trips where they traverse the same road segment

3https://www.vrs.de/
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J1
J2 J3

Figure 6.18: Pre-processing of the road network. All grey roads are never traversed by a bus and are neglected.
The brown roads are each one road segment. The road that consists of the three blue road segments is split at
the junctions J1, J2, and J3. At each junction either a bus line is added to the road segment or leaves the road.
Hence, we receive the three blue road segments.

3. partitioning road segments where routes come in or leave the street; see Figure 6.18.
After the pre-processing phase, we have 29159 road segments with at least one, on average 24, and at maxi-
mum 2354 bus traversal timestamps. We call this data set Bonn.

Although the Bonn transportation network is large, there are of course much larger networks. In order to
simulate these, we have extended the Bonn data set. In more detail: we added the road segments of Bonn,
which are not used in the real-world transportation network, and provided them with one to 200 artificial bus
traversal times. Thus we end up with 102599 road segments. We call this larger data set Bonn-Extended.

Baselines and Versions of the θ ∗-Structure In the following, we compare the query times for computing the
solution of Problem Frequently Served Roads for Time-Window Query. In particular, we evaluate the different
versions of the θ ∗-structure that we discussed throughout the chapter

• theta∗-structure: Here, we assigned the road segments in a random order to the leaf nodes of the
θ ∗-structure. We build and query the θ ∗-structure as described in Section 6.7.1 and Section 6.7.2.

• theta∗-structure-max: In this version, we assigned the road segments to the leaf nodes according to
max-order as described in Section 6.7.3. In order to speed up the construction time, we did only compute
the maximal vertical distance to 1000 randomly chosen road segments and chose the one with the smallest
distance for computing the mapping between road segments and leaf nodes.

We compare these versions of the θ ∗-structure to two simple baselines that do not use the θ ∗-structure:
• on-demand-simple: Here, we count for each road segment the number of timestamps that are contained

in the time window and then, report all road segments that are frequently served.
• on-demand-timefunction: Here, we pre-compute the time function for all road segments. For a time-

window query, we evaluate the time function of all road segments and report all frequently served road
segments on demand.

Construction Time The construction of the θ ∗-structure is done in a pre-processing step. Hence, the com-
putation time is not critical for the application. Nevertheless, a short construction time is more pleasant. The
construction of theta∗-structure took 2 seconds for Bonn and 20 seconds for Bonn-Extension. The construc-
tion of theta∗-structure-max took 232 seconds for Bonn and 31 minutes for Bonn-Extension.

Query Times We performed the experiments with 100 synthetically generated time-window queries. Fig-
ure 6.19 shows the query time evaluation for Bonn and Figure 6.20 for Bonn-Extension. The experiments
show that theta∗-structure outperforms the two baseline approaches on-demand-simple and on-demand-
timefunction. Especially, for time windows that report smaller numbers of road segments our data structure is
more efficient. For the larger data set Bonn-Extension, our data structure still shows query times below 25 mil-
liseconds while the two baseline approaches are consistently above 35 and above 60 milliseconds, respectively.
Thus, our data structure can allow exploration in real-time (as described in the introduction 40 milliseconds
corresponds to 24 frames per second) while this is critical or not possible with the baseline approaches.

6.8 Conclusion

In this chapter, we presented the θ -structure, which can be used for rapidly answering time-window queries for
density maps. This enables the user to interactively explore large spatiotemporal data sets and to identify both
local and global patterns. In our experiments on real-world data with over 19 million data points and fine-granular
grids, we achieved query times in the range of milliseconds, which we deem to be sufficient for interactive use.
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Figure 6.19: Query time experiments for data set Bonn.

We use quadtrees to combine spatial and temporal queries, which allows us to display parts of the map or to
support zooming. We have mainly focused on density maps with rectangular grids, but the θ -structure also
supports other partitions of the map such as those used in choropleth maps. In particular, we can define for
each cell an individual threshold, e.g., depending on the number of inhabitants. We emphasize that we can also
use different types of tree structures as shown with the θ ∗-structure. Here, we use a binary tree as the basis.
As long as the height of the tree is logarithmic in the number of cells, we obtain the same query times.
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7 λ -Structure: Map Labeling for Event Data

In the following chapter, we present results from joint work with Anne Driemel, Jan-Henrik Haunert, Her-
man Haverkort, Elmar Langetepe, and Benjamin Niedermann which is currently under review. We present a
time-windowed data structure for map labeling. The focus of this work is on the stability criteria during basic
interactions with the time-slider. We show that the construction of the data structure is NP-hard and provide an
approximation algorithm and a greedy heuristic.

Abstract

User interfaces for inspecting sets of spatiotemporal events often use a combination of a map and a time-slider.
The time-slider allows the user to specify a time window, which is used to filter the data. Filtered events are
visualized on the map, e.g., with textual or iconic labels. Since the number of filtered events can be large and
we want to ensure a clear visualization, not all events that have passed the filter are annotated with a label. The
task is to decide which points to label for a user-specified position of the time-slider. Drawing upon previous
work on map labeling, we assume that every label is associated with a weight expressing its priority and we aim
to select a set of labels of maximum total weight while forbidding overlaps between selected labels. In addition
to this, we consider the stability of the labeling during certain basic interactions with the time-slider as important
for a pleasant user experience. As basic interactions we consider continuously moving the entire time window,
symmetrically scaling it, and dragging one of its endpoints. Our approach is to pre-process the events into a data
structure that we call λ -structure which consists of an activity diagram that encodes which labels are displayed
for which time windows. We introduce an optimization problem asking for an activity diagram that maximizes the
total weight of the displayed labels over all time windows, subject to constraints forbidding label-label overlaps
and ensuring the stability of the labeling. Specifically, we consider two stability requirements: (1) during a basic
interaction, a label should appear and disappear at most once; (2) if a label is displayed for a time window Q
then it is also displayed for all the time windows contained in Q and containing its timestamp. As finding such an
activity diagram is NP-hard, we propose efficient constant-factor approximation algorithms for unit-square and
unit-disk labels as well as a fast greedy heuristic for arbitrarily shaped labels. In experiments on real-world data,
we compared the results of the non-exact algorithms with optimal solutions, which we obtained by integer linear
programming.

7.1 Introduction

Map labeling is a standard technique for visualizing spatial data. It refers to annotating a map with text and
icons. Recently research on map labeling has dealt with consistency and stability constraints for interactive
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Figure 7.1: Tornadoes in the year 2017 in the United States. The tornadoes particularly exist (left) in the
southeast in winter, (middle) in the midwest in spring, and (right) in the north of the United States in summer.
The colors and numbers indicate the strengths of the tornadoes. Map tiles by Stamen Design, under CC BY
3.0. Map data by OpenStreetMap, under ODbL.
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Figure 7.2: Earthquakes in 2020 in Southeast Asia and basic interactions with the time-slider. Map tiles by
Stamen Design, under CC BY 3.0. Map data by OpenStreetMap, under ODbL.

maps [Zhang et al., 2020, Bahrdt et al., 2017, Peng et al., 2020, Meijers et al., 2020]. In this article, we consider
interactive maps for the exploration of spatiotemporal events.

As examples for spatiotemporal events, take natural phenomena (e.g., earthquakes, storm events or the
migration of animals) or cultural events (e.g., concerts) where every event corresponds to a location and a
timestamp. A typical task that a user wants to solve with the data is to search for an event that lies in a time
window. For example, take a singer who has several concerts at different locations and times. Then a typical
task of a music fan is to find a concert in a certain month that has a good location. We want to point out that
there is data similar to spatiotemporal events with similar user tasks. Take a tourist who searches for a hotel
in a foreign city. Every hotel corresponds to a location and a price-per-night (instead of a timestamp) and the
tourists search for hotels that lie in their desired price range. Note that we consider spatiotemporal events for a
simple notation in the remainder of this chapter but all our models and approaches can be used for similar data
sets.

A common visualization approach for the described task is an interface that consists of a map displaying the
events’ locations and possibly additional information as well as a filter tool to search for events in time windows.
In Figure 7.1, we show our exemplary interface that allows users to specify a time window and receive the
visualization.

The events are displayed with annotations on the map that are either simple (e.g., in the use-case of torna-
does, we have used circular annotations showing the tornadoes’ strengths) or more complex (e.g., diagrams,
icons, or plots showing additional data) and that are placed at the locations of the events. Figure 7.1 shows
three maps of the United States annotated with circular annotations displaying the occurrences of tornadoes in
winter, spring, and summer. To have a clear visualization and avoid an occluded appearance of the map, only a
selection of events is displayed. We call a selection of annotations where no two annotations overlap and whose
timestamps lie in a time window a labeling of that time window.

Commonly, the filtering for a time window is implemented by time-sliders [Andrienko and Andrienko, 1999].
In our interface, illustrated in Figure 7.1, we introduce a timeline that consists of a time axis as well as a a
time-slider (purple rectangle) that represents the time window. We allow user interaction with a time-slider that
enables the following basic interactions:

(1.) panning: continuous translation of the time window (see Figure 7.2a),

(2.+3.) left-sided and right-sided scaling: continuous change of the left or right boundary of the time window,
respectively (see Figure 7.2b),
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Figure 7.3: Sequences of map frames for two basic interactions. The colored labels are displayed, while the
white labels and the timestamps are shown only for illustration.

(4.) Uniform Scaling: continuous change of both boundaries of the time window in opposite directions, such
that the center of the time window remains the same (see Figure 7.2b).

When the user performs a basic interaction, a sequence of map frames is generated and displayed where each
map frame shows the labeling of one time window. These map frames form an animation of the map showing
the occurrences of the events over time. In the following, we discuss our approach for selecting the labels for
each time window.

At first, we aim for reproducibility, which means that the labeling of a time window should be the same no
matter what kind of basic interaction has happened before.

Then, we would like to have a good selection of labels for every time window. In static map labeling a typical
strategy is to show a maximally large selection of overlap-free annotations to obtain a high information density
while preserving the clearness of the visualization, e.g., see Yoeli [1972]. For our scenario, we assume that the
events are of different importance weight. We want to maximize the sum of the weights of the displayed labels
integrated over all time windows while for every time window no two displayed labels overlap (similar to Been
et al. [2006]). This objective allows us, e.g., in the hotel-use case to display as many potential options to the
user as possible.

However, by simply summing the weights of the displayed labels integrated over all time-window queries,
the user may experience undesirable flickering effects from frame to frame. That means a single annotation
may appear and disappear repeatedly. Unless additional requirements on the labelings are enforced, this can
happen even within a single basic interaction. For example, in Figure 7.3a (upper row), the labels A, C, and E
appear and disappear multiple times although their timestamps lie in the time window for the entire sequence.
Such flickering distracts the user and, therefore, we require that the sequence of presented labelings is stable.
In detail, we require that during one basic interaction an annotation may appear and disappear only once;
Figure 7.3a (lower row).

Also, we want to ensure that the users are able to isolate a single event by systematically shrinking the time
window. For example, in Figure 7.3b (upper row) the labels A, C, and E disappear repeatedly although they are
still contained in the time window. The users may think that A, C, and E are not contained in the time window
after shrinking. Figure 7.3b (lower row) shows a solution that allows the isolation of events. To summarize, we
require the following properties.

• REPRODUCIBILITY. The labeling of a time window Q is always the same. That means it is independent of
the basic interactions that happened before.

• MAXINFO. Integrated over all possible time-window queries the sum of the weights of the displayed labels
is maximized.

• STABILITY. Changing the time window by one basic interaction, a label appears and disappears at most
once.

• CONTAINMENT. If a label of an event is displayed for a time window Q then it is also displayed for all the
time windows that are contained in Q and contain the timestamp of the event.

Due to REPRODUCIBILITY, our approach is to pre-compute a data structure that encodes for every time window
which labels are displayed. With the properties STABILITY and CONTAINMENT, we enforce the consistency of
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time-window labelings: STABILITY avoids flickering effects, while CONTAINMENT allows the user to isolate events.
As we show later, CONTAINMENT subsumes STABILITY in our formal model. Without the properties STABILITY
and CONTAINMENT, the property MAXINFO can be implemented by optimizing each query independently. Hence,
requiring STABILITY and CONTAINMENT substantially changes the problem.

Our Contribution In this chapter, we present and discuss
1. a new model for consistent map labeling during time-slider interactions that tackles the properties RE-

PRODUCIBILITY, STABILITY, CONTAINMENT, and MAXINFO.
2. algorithms for computing solutions that comply with our model and can be loaded into standard data

structures that enable efficient retrieval of maps during interaction. We show that queries for maps es-
sentially correspond to rectangle-stabbing queries, and hence, we can propose to use STR-packed R-
trees [Leutenegger et al., 1997].

3. an experimental evaluation based on a comparison of our methods with a baseline method that does
not incorporate any consistency criteria.

We invite the reader to try out our prototypical implementation at https://www.geoinfo.uni-bonn.de/twl.
We want to emphasize that although this implementation of the visualization exists, our contribution is not a
visualization system but the model and algorithms for consistent map labeling.

7.2 Related Work

For a review of related work for map labeling techniques that are related, we refer to Chapter 2.
We want to add that, from a more technical point of view, our work is related to data structures that aim at im-

proving query times for the interactive visualization of spatiotemporal data, e.g., the standard Data Cubes [Gray
et al., 1997], or more recent variants such as NanoCubes [Lins et al., 2013] or TimeLattice [Miranda et al., 2018].
Note that these data structures do not take consistency criteria for the visualization into account. The focus is
solely on the improvement of query time with less additional memory consumption.

7.3 λ -Structure

In the following, first, we introduce our model in a formal way. Secondly, we discuss the structural results that
come with our model.

7.3.1 Problem Definition
We assume that we are given n spatiotemporal events e1, . . . ,en. Each event ei is represented by a point pi in
the plane, a timestamp ti when the event occurred, and a weight wi ∈ R+ reflecting the importance of the event.
We assume that the events are ordered such that t1 ≤ . . . ≤ tn. Let E = {e1, . . . ,en} be the set of all events. For
each event we are given a label ℓi which is a geometric object in the plane, e.g., an axis-aligned square or
disk centered at pi; see Figure 7.1 and Figure 7.2. We say that two displayed labels (and correspondingly their
events) are in conflict if the labels overlap in the plane.

Due to the application scenario, where the user changes the time-window query by moving sliders, we are
given a minimal slider position tmin and a maximal slider position tmax such that ti ∈ [tmin, tmax] for each 1 ≤ i ≤ n.
We call a time interval Q = [t ′, t ′′] ⊆ [tmin, tmax] a time-window query.

For a time-window query Q, let E∗
Q be the subset of E that contains each event ei ∈ E for which ti lies in Q,

i.e., ti ∈ Q. Let L∗
Q denote the set of labels of events in E∗

Q. Note that, displaying all labels in LQ∗ might lead to
label overlaps. Let LQ ⊆ L∗

Q such that no two labels of LQ overlap. We call LQ a time-window labeling or more
shortly a labeling. Figure 7.4 illustrates a time-window query and a labeling. Further, we call a label ℓ ∈ LQ an
active label of Q, i.e., it is displayed for Q. We denote the set of events that corresponds to labels in LQ by EQ.

Assuming we are considering only a single time-window query, we get the standard static labeling problem.
To implement MAXINFO in this static case, one would look for a labeling LQ that maximizes either the number
of active labels or the sum of their weights ∑ei∈EQ

wi. However, our use-case is not limited to one time-window
query but the user may interact with the time-slider. We want to emphasize that an optimization of the labeling
for each time-window query independently might lead to a violation with REPRODUCABILITY, STABILITY, and
CONTAINMENT. In the following, we introduce our data structure and show how to optimize MAXINFO while
requiring REPRODUCIBILITY, STABILITY, and CONTAINMENT for the time-slider interaction.

To realize REPRODUCIBILITY, we pre-compute the labelings of all time-window queries in advance and store
them in a specially defined data structure. As described before, we introduce an activity region τi for every event
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ei and store the pair in the λ -structure. As shown in Figure 7.5, each time-window query Q = [t ′, t ′′] corresponds
to a point (t ′, t ′′) in the plane. For brevity depending on the context we interpret Q either as interval [t, t ′′] or
point (t ′, t ′′) in the plane. Each point representing a time-window query lies in the triangle spanned by (tmin, tmin),
(tmin, tmax), and (tmax, tmax), which we call the query region; see Figure 7.5a. We call the line through (tmin, tmin)
and (tmax, tmax) the main diagonal of the activity diagram. An event ei corresponds to a point (ti, ti) on the main
diagonal of the activity diagram. We observe that the label ℓi can only be active for queries that lie in the
rectangle Ri that is spanned by (ti, ti) and (tmin, tmax); we call Ri the range of ei. For the proposed data structure,
we pre-compute for each event ei a region τi in Ri; see the colored regions in Figure 7.5b. We call τi the activity
region of ei. The activity region τi exactly contains the queries for which the label ℓi can be active. To enforce
the properties STABILITY and CONTAINMENT, we can only allow activity regions of certain shapes. At first, we
formalize the property CONTAINMENT. An activity region τi is monotone if, for two time-window queries Q and Q′

in the range of ei with Q′ ⊆ Q, it holds that Q′ lies in τi if Q lies in τi. Figure 7.5a illustrates two monotone activity
regions. Clearly, an event with a monotone activity region fulfills the property CONTAINMENT and we show later
that it also satisfies property STABILITY. Roughly speaking such an activity region of an event ei is the union of
a set of axis-aligned rectangles whose bottom-right corners are (ti, ti), where ti is the timestamp of ei; for proof
see Lemma 5. Later we argue that we can reduce activity regions to be rectangles as illustrated in Figure 7.5.

Let T = {τ1, . . . ,τn} be a set of monotone activity regions of the events E = {e1, . . . ,en}. A query Q on T yields
the set LT

Q = {ℓi | Q ∈ τi with 1 ≤ i ≤ n}. We call T an activity diagram of the events E. Further, it is valid if each
query Q on T yields a time-window labeling LT

Q. This is equivalent to requiring that no two activity regions τi
and τ j intersect when ℓi and ℓ j are in conflict.

In the following, we formalize the property MAXINFO. Let E = {e1, . . . ,en} be a set of spatiotemporal events.
We call v(τi) = wi · area(τi) the volume of τi where area(τi) is the area of τi and we call v(T ) = ∑

n
i=1 v(τi) the total

volume of T . The absolute volume v(T ) corresponds to the sum of weights of displayed labels integrated over
all possible time-window queries, and hence, maximizing v(T ) leads to property MAXINFO.

TIMEWINDOWLABELING summarizes our problem setting to optimize MAXINFO while guaranteeing REPRO-
DUCIBILITY and CONTAINMENT. Later, we show that TIMEWINDOWLABELING also guarantees STABILITY.
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Figure 7.6: (a) Proof of Lemma 5. Illustrated is event ei with timestamp ti; range Rleft with minimal x-coordinate
xleft and Rtop with maximal y-coordinate ytop of ei; and rectangle Hi spanned by the lower-right corner (ti, ii) and
the upper-left corner (xleft,xtop). Any activity region (blue) of other events that intersects Hi also intersects either
Rleft or Rtop. (b) Discretization of solution space. Shooting vertical and horizontal rays from the timestamps
induces a grid that is the basis for the candidate activity regions.

TIMEWINDOWLABELING.
Given: A set E = {e1, . . . ,en} of spatiotemporal events with labels; the bounds tmin and tmax of the activity

diagram.
Find: The λ -structure with a valid activity diagram T = {τ1, . . . ,τn} of monotone activity regions for E

that maximizes ∑
n
i=1 wi · area(τi), where area(τi) is the area of τi in the activity diagram.

We say that an optimal solution for TIMEWINDOWLABELING is an optimal λ -structure with an optimal activity
diagram; see Figure 7.5.

7.3.2 Structural Results
We show that for solving TIMEWINDOWLABELING it suffices to consider rectangular activity regions.

Lemma 5. The activity regions of an optimal activity diagram T for TIMEWINDOWLABELING are axis-aligned
rectangles whose bottom right corners lie on the main diagonal of the activity diagram.

Proof. We first prove that the property CONTAINMENT implies that the activity region τi of any event ei ∈ E is
the union of a set of axis-aligned rectangles whose bottom-right corners are (ti, ti), where ti is the timestamp of
ei. Afterward, we show that optimizing the property MAXINFO implies that τi is a single axis-aligned rectangle
whose bottom-right corner is (ti, ti).

Assume that τi ∈ T of ei is a monotone activity region and, hence, satisfies the property CONTAINMENT.
Consider an arbitrary time-window query Q = [t ′, t ′′] that lies in τi. For any query Q′ ⊆ Q it holds that it lies in the
axis-aligned rectangle RQ spanned by (t ′, t ′′) and (ti, ti). By the property CONTAINMENT it follows that RQ is part
of the activity region τi. Hence, we obtain that τi is the union of a (possibly infinitely large) set Ai of axis-aligned
rectangles whose bottom-right corners are (ti, ti).

Now assume that T is optimal with respect to the property MAXINFO, and hence it is maximal with respect
to the total area of the activity regions. Among all rectangles in Ai let Rtop be a rectangle whose top side has
a maximal y-coordinate and let Rleft be a rectangle whose left side has minimal x-coordinate; see Figure 7.6a.
Let ytop and xleft be the corresponding y-coordinate and x-coordinate, respectively. We observe that any activity
region that intersects the rectangle Hi spanned by (xleft,ytop) and (ti, ti) also intersects either the rectangle Rtop
or Rleft. Hence, for any event e j ∈ E that is in conflict with ei its activity region τ j cannot intersect Hi. Thus, as T
maximizes the total volume, which increases with the area of the activity regions, the rectangle Hi is part of τi.
By the extremal choice of Rtop and Rleft, we further obtain that τi is exactly Hi. Thus, we obtain the statement of
the lemma.

Due to Lemma 5 we can discretize the solution space such that for each event we can choose its activity
region from O(n2) rectangles. We define for each event ei ∈ E a candidate set Ci as follows. Let e′1, . . . ,e

′
k be

the events that are in conflict with ei and let t ′1, . . . , t
′
k be the timestamps of these events, respectively. Further,

for each event e′j with 1 ≤ j ≤ k, let v j be the vertical segment that connects (t ′j, t
′
j) with (t ′j, tmax). Similarly,

let h j be the horizontal segment that connects (t ′j, t
′
j) with (0, t ′j); see Figure 7.6b. Further, let v0 be the vertical

line through (tmin,0) and let hk+1 be the horizontal line through (0, tmax). Let S be the set of pairwise intersection
points between h1, . . . ,hk,hk+1 and v0,v1, . . . ,vk. For ei the candidate set Ci contains the axis-aligned rectangles
that are spanned by (ti, ti) and the intersection points of S that lie in the range Ri of ei.
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Figure 7.7: Illustration of a query path. (1)–(5): the time windows at the vertices of the query path.

Lemma 6. Let T be an optimal activity diagram for E. For each event ei ∈ E its activity region τi ∈ T is a rectangle
in the candidate set Ci.

Proof. We show that for each optimal activity diagram of E, the activity region τi of an event ei ∈ E is contained
in Ci. By Lemma 5, τi is an axis-aligned rectangle whose bottom right corner is (ti, ti). A similar statement holds
for any event e j that is in conflict with ei. In particular, the horizontal line supporting the lower boundary and the
vertical line supporting the right boundary of an activity region in the optimal solution are fixed a priori. Assume
for the sake of contradiction that the upper boundary of τi lies on a horizontal line that is not defined by any of
the timestamps t1, . . . , tn. Then, either we can extend τi upwards, or there exists an activity region τ j that blocks
τi from above. However, since the bottom boundary of this other activity region is fixed at t j, the latter cannot be
the case. Therefore, we could extend τi implying that the solution is not optimal. A symmetric argument can be
made for the left boundary of τi. Therefore, it must be that τi ∈Ci.

Coherent Interactions In the following, we argue that the property CONTAINMENT subsumes STABILITY, which
implies that a solution of TIMEWINDOWLABELING also satisfies the property STABILITY. As described before, we
assume that the time-window query is chosen interactively using sliders. We allow the user to choose the time
window Q = [t ′, t ′′] by four basic interactions: panning, left-sided scaling, right-sided scaling, and uniform scaling.
In more detail, when panning the time window by ∆ the resulting time-window query is [t ′+∆, t ′′+∆]. Further, the
left-sided scaling changes the left boundary t ′ of the time window to t ′+∆, and the right-sided scaling changes
the right boundary t ′′ of the time window to t ′′+∆ by an amount ∆. Finally, the uniform scaling changes the time
window by an amount ∆ in both directions to [t ′−∆, t ′′+∆]. We note that ∆ can also be negative.

Consider the interaction of a user with the time-sliders in an activity diagram. The sequence of time-window
queries issued by the user forms a trajectory in the activity diagram; we call it a query path. We observe that a
query path consists of a sequence of vertical, horizontal, and diagonal segments such that each segment cor-
responds to a basic interaction. Figure 7.7 gives an exemplary query path and the according basic interactions.
Hence, for optimal activity diagrams, it follows from Lemma 5 that the property STABILITY is satisfied: for a basic
interaction a label appears and disappears only once, as the intersection of a segment with a rectangle is at
most a single segment.

7.4 Complexity and Exact Solution

In this section, we prove that constructing an optimal activity diagram (and therewith, an optimal λ -structure)
is NP-hard and present an ILP formulation for TIMEWINDOWLABELING. Once we have constructed the activity
diagram, we can efficiently answer time-window queries utilizing rectangle-stabbing queries, i.e., for a time
query Q we return all labels whose activity regions contain Q.

7.4.1 Computational Complexity

First of all, we show that TIMEWINDOWLABELING is NP-hard by providing a reduction from a closely related
static labeling problem.

Theorem 7. Let E be a set of events with either unit-disk or axis-aligned unit-square labels. It is NP-hard to find
an optimal activity diagram of E, even if each event e ∈ E has weight 1.
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Proof. Given a set S of unit disks or axis-aligned unit squares, it is NP-hard to find a set S′ ⊆ S of maximum
cardinality such that no two elements in S′ intersect [Fowler et al., 1981]. We call the version of the problem
with squares MISS (i.e., every input set of squares). By showing that TIMEWINDOWLABELING contains MISS
as a special case, we prove that TIMEWINDOWLABELING is NP-hard as well. More precisely, every instance
of MISS can be solved by constructing and solving a corresponding instance of TIMEWINDOWLABELING. We
set tmin = 0 and tmax = 2 and annotate every square in S with the same timestamp ti = 1 for our construction
procedure (or reduction). This means that an intersection between any two activity regions is allowed if and
only if the two corresponding labels intersect. Therefore, if we were given an optimal solution to the instance
of TIMEWINDOWLABELING, we could simply return the set of all labels with non-empty activity regions as an
optimal solution to the MISS instance. The proof for unit disks works analogously.

7.4.2 ILP Formulation
Due to Theorem 7, we pursue solutions based on ILP formulations. The general idea of an ILP formulation is
to formalize the given optimization problem as a linear objective function subject to linear inequality constraints.
As the variables are integers in an ILP formulation, solving it is NP-hard in general [Garey and Johnson, 1979].
However, there are powerful solvers that often can be used to solve such formulations in practice. For the pur-
posed ILP formulation we interpret TIMEWINDOWLABELING as a problem of finding a maximum-weight selection
on rectangles that represent possible activity regions. Lemma 6 yields that it is sufficient to consider the rect-
angles contained in the set Ci of candidates for each event ei. For each event ei ∈ E and each rectangle r ∈ Ci
we introduce a binary variable xi,r, which we interpret such that xi,r = 1 if and only if the rectangle r is selected
as activity region τi for ei. For each event ei we enforce that at most one activity region can be selected by the
constraint

∑
r∈Ci

xi,r ≤ 1.

For every pair of distinct events ei, e j ∈ E that are in conflict, we need to ensure that their labels are not displayed
at the same time. We formalize this by introducing for every pair (r,r′) ∈ Ci × C j where r and r′ intersect a
constraint

xi,r + x j,r′ ≤ 1.

At last, our aim is to maximize the total volume of the activity diagram. This corresponds to maximizing the
following objective

∑
ei∈E

∑
r∈Ci

wi · area(r) · xi,r.

We obtain the optimal activity diagram TILP for E by setting for each event ei ∈ E its activity region τi as the
rectangle r ∈ Ci with xi,r = 1.

Theorem 8. The set TILP is an optimal activity diagram for E.

With our ILP formulation, we can replace the volume of the activity diagram with other measures. For
example, the square root of the area of the activity regions could lead to very small activity regions being
avoided in the optimal solution.

7.5 Non-Exact Solutions

As TIMEWINDOWLABELING is NP-hard, we tackle the problem with faster algorithms that guarantee REPRO-
DUCIBILITY, STABILITY and CONTAINMENT while they might not perform best for MAXINFO. We present approxi-
mation algorithms that guarantee a certain approximation factor α, i.e., the ratio between the total volume of the
obtained activity diagram and the total volume of an optimal activity diagram is at most the approximation factor.
Further, we present a greedy heuristic.

7.5.1 Approximation Based on a Partitioning Scheme
In this section, we discuss approximation algorithms for specific types of labels: (i) the labels are axis-aligned
rectangles of equal width and equal height, or (ii) the labels are disks of equal size. For rectangular labels, we
prove an approximation factor of 4, and for disk-shaped labels an approximation factor of 7. Note that for any
problem instance, i.e., for any input to TIMEWINDOWLABELING, the map can be scaled even with different scale
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Figure 7.8: Approximation algorithm for unit-square labels (see Figure 7.10a). (a) Labels of one color correspond
to one subset. (b) Assume that the solution for the red subset is best. Then, the labeling of a time-window query
contains only labels from the red subset.
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(b) exchange argument in proof of Lemma 7

Figure 7.9: Proof of Lemma 7 illustrated for events e1, . . . ,e5 with timestamps t1, . . . , t5, respectively. The weights
of the events are given as numbers in the circles. (a) Due to the process, we insert the activity regions in the
following order: e2,e1,e3,e5,e4. (b) An arbitrary activity diagram T and a solution T ′ that is based on T but where
the activity region of e2 is maximized. The objective of T ′ is larger.

factors in the x- and y-dimension without changing the structural properties such as the intersection relationships
between labels. Therefore, we assume, without loss of generality, that our labels are either unit squares or unit
disks.

Both approximation algorithms are based on the idea of (1) partitioning the given set of events into subsets
that can each be solved efficiently, (2) computing an optimal solution for each subset, and (3) returning the
solution of the subset with highest objective value. Figure 7.8 gives an exemplary instance, its partition and a
labeling resulting from the approximation algorithm. To make it more clear, in the solution of the approximation
algorithms only events from the subset with highest objective value have a non-empty activity region. The activity
regions of labels of all other subsets are empty.

For static map labeling, line stabbing is a common technique for partitioning a given set of labels into subsets
whose label-label conflict graph is an interval graph [Agarwal et al., 1998]. In a similar fashion, we apply a
partitioning scheme yielding subsets whose label-label conflict graph is a clique, i.e., every label is in conflict
with every other label of the clique. We can solve such instances efficiently. We first present an exact algorithm
for cliques and then show how it is used in our approximation algorithms.

Lemma 7. TIMEWINDOWLABELING can be solved in O(n) time if the label-label conflict graph is a clique and
the events are given in the order of their timestamps.

Proof. Let ei be an event of maximum weight. We maximize the activity region for ei by placing its upper-left
corner in the upper-left corner (tmin, tmax) of the activity diagram. We apply the same procedure first to the
activity diagram spanned by the temporal interval [tmin, ti] and upper left corner (tmin, ti) and secondly to the
activity diagram spanned by the temporal interval [ti, tmax] and upper left corner (ti, tmax); see also Figure 7.9a.
Note that these are two independent parts of the diagram.
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Figure 7.10: Grids used to partition a set of (a) unit-square labels and (b) unit-disk labels into four and seven
subsets, respectively.

Selecting the activity region for ei as large as possible is correct, as can be seen with a simple exchange
argument (which can be applied recursively); see Figure 7.9b. Let T be an arbitrary solution. Suppose we
construct a new solution T ′ by adding the largest possible activity region for ei to T and clipping all activity
regions in T overlapping it. Since the label-label conflict graph is a clique, the clipped parts of the activity
regions are pairwise disjoint and, thus, any clipped part is now covered by a unique section of a newly gained
part of the region of ei. Since ei has maximum weight, the total volume can only increase. Since the same
argument applies if T is an optimal solution, maximizing the activity region of ei is correct.

The algorithm can be implemented as a pre-order traversal through a binary tree containing the events and
satisfying (i) the search-tree property for the timestamps and (ii) the max-heap property for the volumes. Such
a tree is called a Cartesian tree and can be built in O(n) time if the elements are given in order [Gabow et al.,
1984]. A pre-order traversal through the tree requires O(n) time, leading to O(n) time in total.

The partitioning of events and their labels into cliques is based on a square grid in the case of unit squares
and a hexagonal grid in the case of unit disks, where every edge has length one. We illustrate both grids in
Figure 7.10. Every label ℓ is assigned to the grid cell containing the center point of ℓ. The lexicographical
order (<) of the cell’s center points is used to break ties, meaning that a label whose center lies on the boundary
between two cells c1 and c2 with c1 < c2 is assigned to c1. With this, the grid with the assigned labels has the
following properties:

(i) For every cell, the conflict graph of the assigned labels is a clique, i.e., all assigned labels are pairwisely
in conflict.

(ii) For the square grid, there exists an assignment that maps each grid cell to one of the numbers 1,2,3,4,
such that no two labels assigned to different cells with the same number intersect (see Figure 7.10a).

(iii) The latter holds for the hexagonal grid and numbers 1, . . . ,7, as shown by Chan et al. [2008a] in another
context (see Figure 7.10b).

Because of (i), the events that are assigned to the same grid cell can be solved optimally with the algorithm
described in the proof of Lemma 7. Because of (i) and (ii) or (iii), respectively, we can combine the resulting
labelings for grid cells with the same number into a single labeling (in which no two labels overlap). Let T1, . . . ,Tk
be the k solutions that we obtain, where k = 4 for square labels and k = 7 for disk labels. Among these solutions,
we return a solution of maximum total volume, leading to the following result.

Theorem 9. The algorithm based on a partitioning scheme approximates TIMEWINDOWLABELING with factor
4 for unit squares and with factor 7 for unit disks. If the events are given in the order of their timestamps, the
algorithm can be implemented to run in O(n+d) time, where d is the number of grid cells.

Proof. Let T ⋆ be an optimal solution. By applying the partitioning scheme of our algorithm to the labels, we
partition T ⋆ into k solutions, which we denote with T ⋆

1 , . . . ,T
⋆

k . For i = 1, . . . ,k, it holds that v(Ti) ≥ v(T ⋆
i ), since (i)

both T ⋆
i and Ti are solutions for the same set of labels and (ii) Ti is optimal. Therefore, ∑

k
i=1 v(Ti) ≥ v(T ⋆) and,

thus, at least one of the solutions Ti, . . . ,Tk has total volume greater or equal v(T ⋆)/k.
Constructing the grid and assigning every label to its cell requires O(n+ d) time. For each cell, the corre-

sponding instance of n′ labels can be solved in O(n′) time with the algorithm for cliques. Since the instances are
disjoint, solving all instances amounts to O(n) time.
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Figure 7.11: Greedy algorithm for four events e1,e2,e3,e4 and equal weights. There is a label conflict for the pairs
(e1,e3) and (e2,e3).

7.5.2 Greedy Heuristic

In this section, we present a greedy heuristic for computing a valid activity diagram which is not based on a
partitioning scheme. For illustration see Figure 7.11. At first, we present the algorithm, secondly we discuss
the running time, thirdly we compare the result the greedy heuristic and the approximation algorithm for an
exemplary set of events and at last, we show that the greedy heuristic can not guarantee any approximation ratio.

The idea of the greedy heuristic is to successively select activity regions that yield the largest gain. While
doing so, it maintains for each event that has not yet been placed in the activity diagram its maximal potential
activity region. Each time a new event is selected and placed in the diagram, all remaining activity regions that
are in conflict with this event are trimmed and their potential contribution is updated accordingly. More in detail,
we initialize for each event ei ∈E its largest possible activity region τi, i.e., the region that is spanned by (tmin, tmax)
and (ti, ti) and further, its volume as v(τi) = wi · area(τi). We initialize a priority queue P of events increasingly
ordered by their volumes and the empty solution set T ; see step 1 of Figure 7.11. Then, we remove the first
event ei from P (with largest volume) and add τi to the solution set T . For each event e j that is in P and that
is in conflict with ei we trim τ j to the largest possible activity region τ ′j ⊆ τ j that does not intersect τi. Finally, we
update the volume of e j in P to w j · area(τ ′j), possibly changing the position of e j in the order of P. We repeat
this process of removing the first event in P until P is empty. Then we return the valid activity diagram T .

As for the running time, note that each time an event ei is removed from P we trim the activity regions and
update the volumes of O(n) events that are in conflict with e j. Trimming takes O(1) time and updating P takes
O(logn) time per conflicting event if we implement P as a binary heap. Hence, we need O(n2 logn) time in total.

The greedy heuristic works for arbitrarily-shaped labels, as long as it can check the existence of conflicts be-
tween labels efficiently. However, it cannot guarantee an approximation factor as good as that of the partitioning-
based algorithm from Section 7.5.1. Consider the following input with 15 events, each with weight 1 and a
square-shaped label of size 6×6. The center points of the labels are: (0,0), (6,0), (0,6), (6,6), (4,4), (3,3), (9,3),
(3,9), (9,9), (7,7), (6,6), (12,6), (6,12), (12,12), and (10,10). The timestamps are: 8, 8, 8, 8, 8.002, 16, 16, 16,
16, 16.001, 21, 21, 21, 21, and 20.999, respectively, and [tmin, tmax] = [0,24]. For this input, the greedy heuristic
achieves a total activity region size of less than 207.107, whereas the optimal solution has a total activity region
size of at least 900.025 > 4.34 · 207.107. Thus, the approximation factor of the greedy heuristic is at least 4.34,
whereas the partitioning scheme guarantees an approximation factor 4.

In the following, we show that the ratio between the objective value obtained by the greedy heuristic and
the optimal objective value is not bounded by a constant value α. We use a set of n events of different weights
to construct input instances that show α ≥ n

2 . Recall that in contrast to the greedy heuristic the approximation
algorithm presented in Section 7.5.1 guarantees a constant approximation ratio. Let E be a set of events. Let
Ei ⊆ E be the set of events that are in conflict with ei ∈ E. Then, let b ∈ R such that for any two events ei,e j ∈ E,
we have 1/b ≤ wi/w j ≤ b. We call b the degree of unbalance of E. Choose an interval [1,b] from which to pick
the weights, such that b is an integral power of two, larger than 1. Let n be log2 b. Let tmin = 0 and tmin = b2. We
create n events e1, ...,en in the time window [0,b2], where en has weight 1

b−1 ; the events e j, for j ∈ {1, ...,n− 1},
have weight 2− j; each event e j, for j ∈ {1, ...,n}, has timestamp 2 j, and all labels have the same location; see
Figure 7.12 for b= 16. Note that en has maximum volume 1

b−1 2n(b2−2n) = 1
b−1 b(b2−b) = b2, whereas each other

event e j has maximum volume 2− j2 j(b2 −2 j) = b2 −2 j. The optimal solution would contain at least the right half
of each event’s maximum possible region (and for e1, also the left half); the total volume will be roughly 1

2 nb2.
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Figure 7.12: Instance with arbitrarily bad approximation ratio for b = 16.

More precisely, the total volume of this solution would indeed be:

b2

2
+

n−1

∑
j=2

b2 −2 j

2
+
(
b2 −2

)
=

(n+1)b2

2
−2n−1 =

(n+1)b2 −b
2

=
nb2 +b(b−1)

2
>

nb2 +nb
2

.

In the last step, we used b− 1 ≥ log2 b = n. The greedy heuristic, however, would first give en its maximum
possible region. This reduces the maximum height of the activity region of each other event e j from b2 − 2 j to
2n−2 j = b−2 j; thus its maximum volume is reduced to 2− j(b−2 j) = 2− jb−1= 2n− j−1< 2n− j, and the maximum
total volume of all events is reduced to less than b2 +∑

n−1
j=1 2n− j < b2 + 2n = b2 + b. Thus, the greedy heuristic’s

solution is worse than the optimal solution by a factor of at least:

α =
(nb2 +nb)/2

b2 +b
=

n
2
.

Note that the factor n/2 is reached under the condition n = log2 b, or conversely, b = 2n. In other words, the
construction requires events whose weight differences are exponential in n.

7.5.3 Combining Partitioning Scheme and Greedy Heuristic
The approximation algorithms based on the partitioning scheme yield labelings in which the labels cover the
underlying grid in an undesirable systematic pattern. We, therefore, enhance the activity diagram T0 from these
algorithms using the greedy heuristic. To that end, we copy the initial solution of the approximation T0 to T . For
every event e that has no activity region in T0, we add the largest possible activity region τ to the priority queue
P as before and use its volume as the sorting key for P. More precisely, before we add τ to P we trim τ such
that it does not intersect any activity region τ ′ in T0 that corresponds to a label ℓ′ that overlaps the label of e. The
remaining part of the greedy heuristic remains unchanged. Hence, it successively adds activity regions in P to
T until the solution is maximal. In particular, trimming activity regions ensures that the result is a valid activity
diagram. We note that filling up T0 does not negatively affect the approximation quality stated in Theorem 9.
Other greedy heuristics for improving the quality of the solution are also possible.

7.6 Evaluation and Experiments

In this section, we evaluate the presented model and algorithms on real-world data. We first consider the
construction phase of our approach, in which the activity diagram is created. Afterward, we consider the query
phase. To use real-world query paths for the evaluation, we conducted a study with users.

7.6.1 Experimental Setup
We considered two different data sets. The first data set Etornado contains 5 900 spatiotemporal events of tor-
nadoes in the years 2015–2019. It is obtained from the National Oceanic and Atmospheric Administration of
the United States1. The second data set Ebird contains 10 000 observations of two different species of gulls

1Available under public domain at https://www.spc.noaa.gov/wcm/.
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Figure 7.13: Results for the quality of the data structures obtained by the approximation algorithm (Part-D,
Part-S), by the greedy heuristic (Greedy-D, Greedy-S), and by the combination of the approximation and greedy
(Combi-D, Combi-S). (a),(b) Total volumes for Etornado and Ebird, respectively. (c),(d) The relative quality for
Etornado and Ebird, respectively; see Section 7.6.2.

in Western Europe and at the west coast of Africa in the year 2015 [Stienen et al., 2017]. For the data set of
tornadoes, we rated each event e by its storm strength z ∈ {0,1,2,3,4}. More precisely, we set w(e) = 2z, thus
favoring strong over weak tornadoes. For the occurrences of gulls, each event was rated with the same weight.
We note that the data sets have different spatial structures. While the observations of gulls form large clusters,
the occurrences of tornadoes appear more evenly distributed.

We evaluate the algorithms discussed in Section 7.5.1–7.5.3 by comparing their solutions to an exact solution
of TIMEWINDOWLABELING obtained by the ILP formulation presented in Section 7.4. We consider both unit disks
(D) and unit squares (S) as labels, obtaining eight variants for the computation of the activity diagram: the exact
solutions ILP-D and ILP-S, the approximations Part-D and Part-S by the partitioning scheme, the solutions
Greedy-D, and Greedy-S of the greedy heuristic, and the combined approaches Combi-D and Combi-S.

For the evaluation of the construction phase (Section 7.6.2) we sampled subsets of different sizes where
a subset of size k contains the first k events. For the evaluation of the query phase (Section 7.6.3 and Sec-
tion 7.6.4) we have reduced both data sets to 2000 events Etornado and Ebird each by randomly sampling them
using a uniform distribution. This maintains the overall structure of the data but enables us to evaluate our
non-exact algorithms using a slow ILP-based approach. In Section 7.6 we show that our non-exact algorithms
actually run on much larger sets.

The implementations were done in Java, and the ILP formulations were solved by Gurobi 9.1. We ran the
experiments on an Intel(R) Xeon(R) W-2125 CPU clocked at 4.00GHz with 128 GiB RAM.

7.6.2 Construction Algorithm Evaluation

In this section we compare the quality and the running time of our algorithms for the previously presented
subsets of the data sets.
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Table 7.1: Construction times for the occurrences of tornadoes (700 and 5900 events) and the observation of
gulls (70 and 10000 events).

algorithm tornadoes gulls
700 5900 70 10000

ILP-D 58.43 min – 6.68 h –
Part-D 14.98 ms 24.34 ms 19.41 ms 153.02 ms
Greedy-D 23.62 ms 1.67 sec 31.82 ms 15.02 sec
Combi-D 27.32 ms 1.69 sec 4.99 ms 14.71 sec

ILP-S 23.14 h – 6.31 h –
Part-S 1.01 ms 4.68 ms 1.15 ms 9.05 ms
Greedy-S 23.76 ms 1.68 sec 2.61 ms 14.95 sec
Combi-S 23.85 ms 1.66 sec 2.62 ms 13.25 sec

Quality of the Activity Diagrams For a non-exact algorithm, we assess the constructed activity diagram T by
comparing it to an optimal solution, i.e., we consider its relative quality, which is defined as

total volume of activity diagram T
total volume of optimal activity diagram

·100%

For Etornado the experiments show that the relative qualities of Greedy-D and Greedy-S are at least 84.27%,
Part-D and Part-S are at least 22.45%, and Combi-D and Combi-S are at least 69.16%; see Figure 7.13a. We
have obtained similar results for Ebird; see Figure 7.13b. As the relative quality could be computed only for small
data sets, we also consider absolute total volumes; see Figure 7.13c and Figure 7.13d.

Hence, although the greedy heuristic does not give any guarantees, it gives solutions of high quality in prac-
tice. Both Combi-D and Combi-S have a head-to-head race with Greedy-D and Greedy-S, respectively, without
a clear winner. Although the partitioning scheme has a theoretical approximation factor, the greedy heuristic pro-
vides substantially better results for both real-world data sets and clearly prevails over the partitioning scheme.
Altogether, we suggest running both the greedy heuristic as well as the combined approach to take the better
solution of both.

Running Time From the sampled data we consider the largest data set for which the ILP formulation could
be solved and the largest data set that has been sampled; see Table 7.1. The running times of the non-exact
algorithms lie in the range of milliseconds and seconds. In particular, the approximation algorithms are clearly
faster than the greedy heuristics. We deem the running times to be sufficiently small, as the activity diagrams
are only created once in advance. In contrast, as solving the ILP formulations may take hours, even for small
data sets, they are less applicable in practice.

7.6.3 User-generated Query Paths

To acquire query paths for the evaluation of our algorithms and model under realistic conditions, we conducted
an online study2; see Section 7.6.4. It gives us the possibility of analyzing the usage of the basic interactions
and of assessing the consistency of our model. Note that we do not aim for a user evaluation of our model with
this study.

The main visualization component of our interface is an interactive map that supports time-window filtering;
see Figure 7.1 for the map for the tornado events. For the bird observation events, the labels’ color encoded
(orange and blue) the two different species of gulls. The study is split into two phases. In the first phase, the
participants were asked to do a tutorial. During this tutorial the participants solved exercises on a data set of
earthquakes to get familiar with the interaction of the map; see Figure 7.2a. In the second phase, the actual
experiments were performed. The participants were asked to solve eight tasks: four tasks on each data set.

1. Find a time window that roughly spans one year, starts at some day in December 2019 and ends at some
day in December 2020.

2. Find a time window that spans between 30 and 40 days and shows at least 10 tornadoes in 2016.
3. Find a time window such that the majority of tornadoes (at least 20) occurred to the right of the blue line,

while only few tornadoes occurred to the left of the blue line.

2Available at https://www.geoinfo.uni-bonn.de/twl/study/.
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Table 7.2: Statistic for the 41 participants of the second run of the study.

Age 16-25: 22 26-35: 11
36-45: 4 46-55: 2
56-65: 1 66-99: 1

Gender female: 13 male: 26
other: 0 no answer: 2

Personal use of maps daily: 5 weekly: 12
monthly: 9 less: 15

Professional use of maps yes: 10 no: 31

Table 7.3: Number of participants answering the questions on personal opinion (1 = worst score and
5 = best score).

Scoring
Question 1 2 3 4 5

Is the use of the time window 1 2 3 14 21
intuitive?

Is the use of the timeline 0 2 4 16 19
intuitive?

Is the visual connection between 1 1 2 10 27
timeline and geographic map
intuitive?

How useful are such interactive 1 0 2 11 27
maps to explore data?

Would you like to use such 1 0 3 10 27
interactive map in practice?

4. In which time period did the highlighted tornado (blue circle) occur? The event occurred in the [first half/
second half] of [January/ February/ . . . /December] in [2015/ 2016/ . . ./ 2019].

5. Find a time window that spans between 20 and 25 days and shows at least 20 occurrences of gulls.
6. Checkmark the correct answers.

□ Some blue gulls stay in Western Europe for the whole year.
□ Some blue gulls migrate to Africa in winter.
□ Some orange gulls stay in Western Europe for the whole year.
□ Some orange gulls migrate to Africa in winter.

7. Find a time window for which all occurrences of gulls (at least 6) lie above the blue line.
8. Find a time window for which most occurrences of orange gulls lie below the blue line.

The study and hence, all tasks can be found under: https://www.geoinfo.uni-bonn.de/twl/study/. As the
study was conducted online, we paid special attention to the correct execution by the participants.

• The screen resolution was automatically checked.
• Full screen mode was enforced.
• The participants were asked to compare the interactive map with a screenshot confirming that it is dis-

played correctly.
• In the tutorial we ensured that the participants used each control at least once, thereby checking its

functionality automatically.

User Feedback: Although the only purpose of the study was to get real-world query paths, we asked the
users to fill in two questionnaires: one on personal preferences concerning the interactive map and one on their
background using maps. We conducted the study twice. The first time we did a pilot study with nine participants
which led us to change the appearance of the time-sliders. Up to that point, the controls for the time window were
placed on a separate slider bar. Multiple participants noted that this is not intuitive. Based on that feedback,
we switched to the current design, which is inspired by the work of Haslett et al. [1991] and Hochheiser and
Shneiderman [2004]. In the second run, we conducted the actual study for eleven days with 41 participants;
see Table 7.2. We consider the number of 41 participants who have not taken part in the first phase to be
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Task 1 Task 2 Task 3 Task 4

Task 5 Task 8Task 7Task 6

Figure 7.14: Examples of query paths recorded during the study. The query path of each participant is illustrated
in a different color. The starting point of the query path is symbolized with a black disc. See Figure 7.7 for the
interpretation of the paths’ segments.
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Figure 7.15: Number of basic interactions per participant.

sufficient. The participants were acquired from the research as well as from non-research-related networks. We
did not specify whether the participants should complete the study in one sitting. We also asked the participants
in the second run for personal feedback; see Table 7.3. They mostly find the use of the time-sliders intuitive
and would like to use such maps in practice. Hence, the research on such visualizations is of high relevance.
In the free-text answers, the main criticism is that the number of events shown on the map should better reflect
the distribution shown in the histogram. We see this as an interesting alternative objective for the scenario that
the user wants to explore the spatiotemporal patterns. However, for the use-case of finding one event, e.g.,
hotel-use-case, we deem that the objective MAXINFO supports the user’s needs better. One can also support
the visualization of spatiotemporal patterns by displaying all events in the queried time-window as points on the
map.

User Strategies for Tasks: Figure 7.14 shows examples of recorded query paths. For each task different
strategies can be recognized. For example, in Task 1 some participants preferred left-sided and right-sided
scaling (horizontal and vertical segments), while others preferred to first pan the window (diagonal segment).
Figure 7.15 shows that mostly left-sided and right-sided scaling as well as panning are used as basic inter-
actions. Uniform scaling was rarely used, which reflects some of the comments that the interaction was less
intuitive. One could therefore also omit uniform scaling from the set of basic interactions.3 The average process-
ing time and the error rate indicate that the tasks were solvable but were still demanding; see Table 7.4. We had
a detailed look at Task 6, as several participants did not solve it correctly. It turned out that the possible choices
of the answer were misleading, which often resulted in answers that were almost correct. On the account of
these observations, we conclude that with this study we have obtained a set of target-oriented query paths that
are suitable for evaluating our algorithms.

3We note that this would not change our analysis, in particular, optimal activity regions will still be rectangles.
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Table 7.4: The performance of the 41 participants, i.e., the number of correct answers and the average response
times (in seconds).

Task 1 2 3 4 5 6 7 8

Correct 37 32 38 36 28 24 36 41
Avg. time 47 48 33 84 73 97 20 25
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Figure 7.16: Results for analysis of the query phase for Task 4. We compare the data structure obtained by the
approximation algorithm (Part-D, Part-S), by the greedy heuristic (Greedy-D, Greedy-S), by the combination of
the approximation and greedy (Combi-D, Combi-S) with on-demand implementations (OD-D, OD-S) that do not
take any consistency criteria into account. (a) The ratio between the weight of the labeling with respect to the
optimal weight obtained by OD-D and OD-S, respectively. (b) Average degree of flickering. (c) Average degree
of flickering over all queries within a query path P.

Acquired Query Paths: Overall the query set comprises 328 query paths that consist of 136462 time-window
queries in total. More specifically we recorded each time-window query sent by the discrete sampling of the
web interface during the study4. From these time-window queries, we computed the basic interactions. Over all
query paths, we obtained 10997 basic interactions.

7.6.4 Query Phase Evaluation

We analyze the information density and consistency with respect to the query paths generated by the study. We
compare our presented algorithms to an on-demand solution, in which we compute each labeling for each time-
window query without considering REPRODUCIBILITY, STABILITY, and CONTAINMENT. This is a well-established
approach and we use it as our baseline for comparison. In more detail, given a time-window query, we solve
a maximum-weight independent set problem for the set of labels for all events contained in the time window.
We obtained these labelings by an ILP formulation and denote them by OD-D and OD-S for unit disks and unit
squares as labels, respectively. We build the evaluation on the data described in the study; see Section 7.6.3.

For Task 7 the ILP formulations for OD-S could not be solved in a reasonable time. When analyzing the
query paths of Task 7, large time-window queries occurred, which led to large instances of the ILP formulation
and high running times. We, therefore, have excluded this task for square labels.

Information Density For each query Q issued in the study, we compare the weight of the labeling received
from our pre-computed data structure with the weight of on-demand labeling that we optimized for Q without
consideration of consistency (OD-D, OD-S); see Figure 7.16a for Task 4. We refer to the ratio of these weights
as information density. For both data sets the solutions of Greedy-D to reach at least an information density
of 81.92% and the ones of Greedy-S at least 78.86%. The algorithms Combi-D and Combi-S reach 62.33%
and 69.54%, respectively. Part-D and Part-S drop behind with at least 16.97% and 20.44%. Hence, concerning
information density, the greedy heuristic is the best choice.

4We used Javascript for the implementation of the web-interface and sent a time-window query for every triggered "mousemove" event.
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Consistency For evaluating the consistency of the time-window labelings, we look at the change of displayed
labels between labelings of two consecutive time-window queries. More formally, let E = {e1, . . . ,en} be a set
of events such that ti is the timestamp, and ℓi the label of event ei. The label ℓi flickers between two queries Q
and Q′ if the timestamp ti is contained in both Q and Q′, and ℓi is either contained in LQ or LQ′ but not in both sets.
We define the degree fQ,Q′ of flickering between two consecutive queries Q and Q′ as the number of labels that
flicker between Q and Q′, i.e., fQ,Q′ = |{ei ∈ Ei | ℓi flickers between Q and Q′}|. Hence, the smaller fQ,Q′ is, the
more the consistency of the visual transition from the time-window labeling LQ to the time-window labeling LQ′

preserved. We assess the effect of the properties STABILITY and CONTAINMENT by the average number of
flickering effects per query within the basic interactions. More specifically, let I1, . . . , Ik be the basic interactions
of a query path P and let Q1, . . . ,Qr j be the queries of a basic interaction I j. The average degree of flickering of
a basic interaction is defined as

FBI =
1
m

k

∑
j=1

r j

∑
i=2

fQi−1,Qi (7.1)

where m is the overall number of queries of P. We note that since ILP-D, ILP-S, Part-D, Part-S, Greedy-D, and
Greedy-S are based on rectangular activity ranges, we have FBI = 0 for each of these variants. Figure 7.16
shows FBI for OD-D and OD-S. Over all query paths of all participants and all tasks the maximal value of FBI is
18.13 flickering effects per query for OD-D and 12.08 flickering effects per query for OD-S. Hence, within a basic
interaction, which consists of 12.41 queries on average, the user encounters 1334.5 and 648.17 for OD-D and
OD-S at maximum, respectively. This shows that STABILITY and CONTAINMENT eliminate unnecessary flickering
effects.

We further evaluate the design of our model by counting the flickering effects between two consecutive
queries over the entire query path consisting of the queries Q1, . . . ,Qm. Hence, we particularly consider the
flickering effects that occur during the transition from one basic interaction to the next. The average degree of
flickering over all queries within a query path P is defined as

FAll =
1
m

m

∑
i=2

fQi−1,Qi . (7.2)

Figure 7.13c shows FAll for each query path generated by one user for Task 4. Over all query paths of all
participants, the maximal value of FAll is 0.6 for Part-D, 0.61 for Part-S, 1.32 for Greedy-D, 1.24 for Greedy-S,
1.75 for Combi-D, 1.4 for Combi-S, 37.56 for OD-D, and 26.24 for OD-S. Hence, while in the on-demand solutions,
many flickering effects can be observed, at least eighteen times fewer flickering effects can be observed for the
constructed activity diagrams. Thus, for the target-oriented usage of our interactive map, we observe a high
consistency.

Query Time In our implementation, we have used STR-packed R-trees for the query phase to process the
rectangle-stabbing queries. A query took 3 µs on average and 86 µs at maximum over all considered activity
diagrams and query paths. In contrast, computing the on-demand solutions OD-D and OD-S took substantially
longer, e.g., for Task 6 we obtained 0.62 sec on average and 1.73 sec at maximum. We emphasize that the
obtained query times of the data structure allow real-time applications as we have shown in our web application.

7.7 Conclusion

We have presented the λ -structure for map labeling that ensures consistency during basic interactions with a
time-slider. As the underlying optimization problem is NP-hard, we focused on efficient non-exact algorithms.
On the one hand, we developed approximation algorithms with a theoretical quality guarantee: the weight of
the returned solution is at least a certain constant fraction (1/4 in the case of unit-square labels and 1/7 in the
case of unit disks) of the weight of an optimal solution. On the other hand, we developed an efficient greedy
heuristic. Although the greedy heuristic does not have a constant approximation factor, it performs astonishingly
well for real-world instances. In our experiments, the greedy heuristic achieved at least 83.41% of the quality of
an optimal solution. We showed that our approach is efficient enough to compute the data structure and support
queries for real-world applications. The evaluation of the generated activity diagrams for sequences of queries
stemming from our study shows that our model preserves consistency between two consecutive time-window
labelings while maintaining a high information density.
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8 Part I: Conclusion and Outlook

Conclusion

In the first part of this thesis, we presented three time-windowed data structures for the visualization of event
data. As basic visualization approaches, we used a selection of standard techniques from cartography: a polyg-
onal representation, a grid-based density visualization, and a map labeling technique. We showed that all of
these data structures allow real-time interaction via time-slider interfaces. Further, we implemented consistency
criteria for the λ -structure.

In the following, we comment on how our time-windowed data structures tackle the challenges of visualizing
spatiotemporal data.

The spatial visualization should be precise and accurate. With the parametrization of the α-structure
(value of α) and the θ -structure (grid and threshold parameter θ ), it is possible to control the shape of the
resulting visualization. Hence, the α-shape of a point set and the density map of a point set can be tuned to
be as accurate as desired. In the extreme case, it is the input point set for α-shapes and an arbitrarily close
approximation for the density maps. Nevertheless, reproducing the input is not the goal.

For the λ -structure, we can not guarantee to display all information for every data set. Here, we always
require that the visualization is overlap-free for the labels. With our optimization, we preserve as many of the
important labels as possible. In particular, the user can control the selection of displayed labels by introducing
weights according to their importance.

Hence, we deem that our data structures allow a precise and accurate representation of the data.

The spatial visualization needs to be clear and comprehensible. Producing clear and comprehensible
visualizations of large data sets is often done by reducing the information density. With the α-structure, we
cluster, aggregate, and represent the point set by a set of polygons. This leads to a simplified visualization, i.e.,
the polygons consist of fewer corners than the input point set. Depending on the parameter α the visualization
gets more or less clear. In the extreme case, the α-shape corresponds to the convex hull.

Also, the θ -structure can be controlled by the choice of the underlying grid and the value chosen for parame-
ter θ . For a regular grid, the resulting output is a schematized representation which is often perceived as clearer.
Also, the number of colored grid cells is mostly smaller than the number of points, hence, the visualization is
simpler.

For the λ -structure, we improve the clearness of the visualization by requiring that no two labels overlap.
Hence, every label is comprehensibly visualized and the overall visualization is clear.

If the events have additional information, we need tools to display them. For visualizing additional infor-
mation on the data, we introduced the λ -structure that provides solutions for displaying text, photos, or icons on
the map. We adapted techniques from map labeling and object selection to provide clear visualizations of the
additional information.

The response time needs to be small to handle real-time interactions. To achieve a small response time,
we pre-process the data into data structures (α-structure, θ -structure, λ -structure). Hence, not the whole (possi-
bly large) data set needs to be queried and processed, but we can directly obtain the visualization. As mentioned
before, the number of reported geometries is most of the time considerably smaller than the input data since we
want to have a clear visualization. Hence, the query time is smaller. Also, for the θ -structure, we took particular
care about implementing appropriate structures that optimize the query time.

We want to emphasize that we provide theoretical analyses of the asymptotic running time for our data
structures. Further, we performed real-world experiments that showed a massive improvement in the query
time in comparison to on-demand implementations. Even for large data sets the query time was always below
3 seconds for the α-structure, below 60 milliseconds for the θ -structure, and below 90 microseconds for the
λ -structure.
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The system needs to be capable of large data sets. When designing our time-windowed data structures,
we paid special attention to their storage efficiency. Particularly, we do not store the visualizations for every
possible time-window query but we store the components and assemble them for a time-window query. For the
α-structure we proved a memory consumption of O(n2) where n is the number of events. Our experiments with
real-world data suggest a linear relationship between the number of events and the memory consumption which
makes it applicable in practice. For the θ -structure we provide an asymptotic bound of O(n logm+m) where n is
the number of events and m is the number of grid cells. The size of the λ -structure is linear with the number of
events since we compute for every event one activity box.

When moving the time-slider the changes in the spatial visualization should not be distracting. Cur-
rently, we have implemented stability constraints for time-slider interaction only for the λ -structure. We imple-
ment this constraint by prohibiting a label to disappear and appear again during a continuous basic interaction
with the time-slider interface. For the α- and θ -structure, we have so far decided against demanding stabil-
ity constraints during the interaction, as this would introduce inaccuracies in the visualization. Nevertheless,
we deem that it would be beneficial to explore whether these inaccuracies or distracting flickering effects have
negative effects on the user.

Outlook

In the following, we list challenges and ideas that we have not faced yet.
• A follow-up to the work presented so far is the exploration of data structures that support different filter

interactions. For example, we suggest focusing on data that corresponds to a time range instead of a
point in time, e.g., a flooding event that takes a certain amount of days or the trajectory of a car trip or
hike that takes some hours. Then, one would like to filter for data that covers a certain point in time, i.e.,
we search for one point in time instead of a time window. For this scenario, we face similar challenges
as already presented, especially for big data, querying the actual data and computing the visualization
on-demand can be time-consuming and not fast enough for real-time interaction.

• Beside the three presented visualization approaches, there exists a wide range of information visualization
techniques. We deem it interesting to investigate which of these additional visualization techniques can
be combined with time-window slider interfaces. Examples of other visualization techniques for spatial
data are Dorling cartograms, choropleth maps, and bubble charts. But also the visualization of abstract
data, for example, pie charts, drawings of graphs, etc., is worth investigating in combination with time-
slider interfaces. Due to the high amount of temporal data, we suppose that for all of these visualizations
there exist application scenarios where it is reasonable to combine them with a time-slider interface. We
suggest investigating whether querying for such a visualization with a time-windowed query on-demand is
sufficiently fast or whether it is necessary and possible to pre-compute the data into a time-windowed data
structure.

• If the data volumes to be managed in the data structures continue to grow, it is certainly also important
to achieve further improvements in memory consumption. This could be implemented at the expense of
the precision and completeness of the visualization, i.e. an approximation of the actual visualization is
provided. For the α-structure, we already introduced the aggregation on a grid. Similarly, one could do a
spatial binning for the θ - and λ -structure. Another option is a temporal binning of the timestamps. While all
these approximation approaches aim at a reduction of storage consumption, new visualization challenges
arise. It is not straightforward to find an appropriate visualization that reflects the approximation error.

• As mentioned before, adaptations of the α-structure and θ -structure that ensure consistency during
basic interactions are interesting to investigate. Enforcing consistency might introduce inaccuracies in
the visualization where it is necessary to discuss a balance between accuracy and usability. It would be
interesting to perform user studies that investigate which type of consistency is needed and wanted by the
users. Then, formalizing such results from user experiments into mathematical models and implementing
them is another challenge.

Besides these challenges and ideas that are very closely related to our presented research, we also want to
comment on a higher level of interesting related research fields.

• For the presented data structures we restricted ourselves to queries (filtering) in one dimension (the time).
This decision is reasonable because spatio-temporal data is very common and filtering by time dimension
is very convenient. Nevertheless, for multidimensional data, applications with multidimensional filter-
ing can also be relevant. While there exists research on data structures for efficient multi-dimensional
filtering and visualization (e.g., NanoCubes [Lins et al., 2013], imMens [Liu et al., 2013], and Hashed-
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cubes de Lara Pahins et al. [2017]), we suggest aiming at more sophisticated cartographic visualizations.
For example, a polygonal aggregation of all data points that are contained in the query. The design of the
data structure should be a small query-time that enables real-time interaction while having a small storage
consumption.

• So far, we have assumed in our model that all data are exact. However, in reality, this is not the case,
and the data is associated with uncertainties. We propose to give more freedom to the visualization
using these data uncertainties. If, for example, there are uncertainties in the position, the labels of the
λ -structure could be shifted within the limits of the uncertainties to place more labels without an overlap.
If there is an inaccuracy in the time stamp, the time function of the θ -structure can be optimized. Another
example is to exclude events with high uncertainties from the visualization or to add the visualization of the
uncertainties to the visualization and incorporate this into the time-windowed data structures. Also, one
could introduce uncertainty as another filtering dimension. That means the data structure is optimized for
different uncertainty levels and time-window queries. Then, the user can comfortably explore data within
a time window that fulfills the uncertainty requirements.

• Another application field where we deem it to be promising to apply presented techniques is the visual-
ization and exploration of knowledge graphs. A knowledge graph is a graph that encodes information
about real-world objects, entities, concepts, etc., and their relationships. Knowledge graphs have become
increasingly important in recent years and are widely used, e.g., Wikidata. Visualizing knowledge graphs
can be extremely difficult, as the graphs can quickly become very large (e.g., Wikidata has more than
100 million nodes). Adequate filtering and visualization can improve this immensely and enable real-time
interactions.

• We deem that pursuing interdisciplinary research is important. Often, these projects are more diffi-
cult (e.g., different terminologies are used in the different research branches) and also publication can
be challenging if there is no perfectly fitting journal or conference. Nevertheless, combining knowledge
enables solving problems more holistically. For example, for geospatial visualization, combining research
from computer science, cartography, and human perception allows one to develop solutions based on
cartographic guidelines that can be experimentally evaluated with human perception studies and one can
derive algorithms for solving the resulting formalized problem.
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Part II

Hulls of Polygons
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Part II: Introduction

In this part, we discuss hulls of polygons that allow us to have quickly a clear overview of possibly complex
spatial data. We consider a polygon with a complex boundary as input and we want to represent the polygon
by a polygonal hull. An example of such a polygonal hull of a polygon is its convex hull. Since the convex hull
often covers large areas that are not covered by the input polygon, it is not a good representation. We aim for
polygonal hulls that balance clearness and precision, i.e., the hull should be simple while containing the char-
acteristics of the input polygon. In cartography, this problem is part of simplification and schematization [Hake
et al., 2002]. Typically a simplified polygon has fewer corner vertices than the original polygon. A schematized
polygon typically restricts the directions of its edges to a pre-defined set of directions, e.g., an octilinear poly-
gon consists of edges with either horizontal, vertical, or diagonal directions. In this work, we require that the
polygonal hull contains the input polygon.

We structure the second part as follows. First, we discuss existing work related to simplification and schema-
tization from the fields of cartography and computational geometry. Afterward, we present shortcut hulls. With
shortcut hulls, we focus on the simplification of the input polygon. Then, we give an outlook on preliminary work
for hulls that simplify and schematize the input polygon. At last, we summarize this part and this thesis with an
outlook and a conclusion.
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9 Part II: Related Work on Simplification
and Schematization

Simplification and schematization are two major research fields in cartography and computational geometry.
Especially, they are part of the list of generalization operators defined by Hake et al. [2002]. Map generalization
is especially important to reduce a map user’s cognitive load or when generating maps of a smaller scale from
existing maps. In order to fit the information on a smaller part of the display, the generalization tools aim at
providing a legible and clear map that still preserves as much information as possible [Burghardt et al., 2007].

A common technique to simplify geometries is to reduce the number of vertices of the simplified geometry
with respect to the input geometry. Often, the vertices of the simplified geometry are a subset of the input
geometry which is called vertex-restricted simplification. Typically schematization is implemented by restricting
the edges of the geometries to a predefined set of directions, e.g., rectilinear, octilinear, C -directed.

Application on Real-World Data Typical data sets for simplification and schematization are administrative
boundaries [Barkowsky et al., 2000, Buchin et al., 2016, van Dijk et al., 2014], building footprints [Haunert and
Wolff, 2010, van Kreveld et al., 2013], or metro maps [Jacobsen et al., 2021, Nöllenburg, 2014, Wu et al.,
2020]. In particular, as a motivation for outer simplifications of polygons, we point out the generalization of
isobathymetric lines in sea charts where the simplified line should lie on the downhill side of the original line
to avoid the elimination of shallows [Zhang and Guilbert, 2011]. A motivation for polygonal hulls of geometric
graphs stems from travel-time visualization, where a common aim is to compute a polygon that contains the part
of a transport network that is reachable within a given amount of time from a given origin [Baum et al., 2018,
Forsch et al., 2021].

Simplification and Schematization of a Polyline For the simplification of polylines, we refer to the Douglas-
Peucker algorithm [Douglas and Peucker, 1973], which is most widely applied in cartography, and similar ap-
proaches [Abam et al., 2010, Neyer, 1999, Pallero, 2013]. Other methods for polyline simplification are based
on a Delaunay triangulation [Ai et al., 2017, 2006, 2014].

Simplification and Schematization of a Polygonal Subdivision A closely related field is the simplification
and schematization of polygonal subdivisions [Buchin et al., 2016, Estkowski and Mitchell, 2001, Mendel, 2018,
Meulemans et al., 2010, van Goethem et al., 2015]. Another method addresses not only simple polygons but
a polygonal subdivision of the space [Buchin et al., 2016, van Goethem et al., 2015, Meulemans et al., 2010].
The method schematizes and simplifies this subdivision with a limited set of orientations while preserving each
polygonal area and the topology.

Simplification and Schematization of a Polygon Considering a polygon as input geometry, a basic tech-
nique for simplification is the convex hull [Alegría et al., 2021, Daymude et al., 2020, Fink and Wood, 2004,
Rawlins and Wood, 1987]. A schematization approach is O-hulls [Fink and Wood, 2004] which we discussed in
Chapter 2. Another example is the schematized α-shape presented in Chapter 5. Multiple other approaches
for polygonal hulls of polygons exist—some of the corresponding computational problems can be solved in
polynomial time [Haunert and Wolff, 2010], whereas others have been shown to be NP-hard [Haunert et al.,
2008].

From a computational point of view, computing a schematic hull of a polygon is related to path-planning
tasks in which the output path has to avoid a set of polygonal obstacles and the path’s edges are constrained to
a prescribed set of orientations [Adegeest et al., 1994, Lee et al., 1996, Mitchell et al., 2014, Speckmann and
Verbeek, 2018].

Simplification and Schematization of a Set of Heterogeneous Geometries For the case that multiple geo-
metric objects are given as input, there exist several techniques for detecting groups of objects and aggregating
each group into a single object. Often a partition of the plane is used as a basis for assembling the output
objects. For example, it is common to select a set of triangles from a Delaunay triangulation of a point set to
derive a polygonal representation—frequently applied methods of this type are α-shapes [Edelsbrunner et al.,
1983] and characteristic shapes [Duckham et al., 2008]. Another approach for delineating a point set is based
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on shortest paths [de Berg et al., 2011]. Some methods yield a set of schematized polygons covering a given
point set [Bonerath et al., 2019, van Kreveld et al., 2013]. Similar to α-shapes for point sets, there also exist
triangulation-based methods for sets of polygons. A common aim is to compute a set of polygons such that
each of them covers a group of input polygons [Jones et al., 1995, Chazelle, 1990, Li and Ai, 2010, Rottmann
et al., 2021, Sayidov and Weibel, 2019, Steiniger et al., 2006]. For the case that a set of polylines is given as
input, there exists work on computing an enclosing simple polygon based on a Delaunay triangulation [Ai et al.,
2017].
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10 Part II: Formalization

In the following, we give a formalization of the problem that we discuss in the second part of this thesis. At first,
we introduce geometrical concepts and afterward, we discuss hulls and their desirable properties.

Weakly-Simple Polygons Let R be a cyclic sequence (l1, . . . , ln, l1) of directed straight-line segments such that
the endpoint of li is the starting point of li+1 with 1 ≤ i ≤ n and ln+1 := l1. We call R a polygonal ring. A weakly-
simple polygon P is a region whose boundary consists of a polygonal ring O, which we call the outer ring of P,
and possibly multiple polygonal rings H1, . . . ,Hk, which we call the inner rings of P, such that there is a connected
planar straight-line graph G that supports O and H1, . . . ,Hk in the following manner: The outer ring O corresponds
to the facial walk along the outer face of G and every inner ring Hi (1 ≤ i ≤ k) corresponds to the facial walk along
an inner face of G ; see Figure 10.1. We call an inner face of G whose facial walk corresponds to an inner ring of
P a hole of P. This allows us to define the boundary, exterior, and interior of P as follows. The boundary ∂P ⊆R2

of P is the point-wise union of all the straight-line segments in O and H1, . . . ,Hk. The exterior ExtP ⊆ R2 of P is
equal to the union of the outer face of G with the holes of P. The interior of P is IntP = R2 \ (ExtP∪∂P). We call
a weakly-simple polygon that has no inner rings, i.e., it has no holes, a weakly-simple region.

In this work, a vertex of P refers to a visit of a vertex of G during a facial walk along one of the faces of G .
This particularly means that P may have multiple vertices at the same location; see Figure 10.2. We refer to the
directed straight-line segments of O and H1, . . . ,Hk as edges of P. Further, we refer to a directed straight-line
segment as shortcut if it connects two vertices of P and does not intersect the interior of P. We call a line
segment a tangent of P if it has more than one point with a segment of P in common and it does not intersect
the interior of P.

We make the following observations. First, not every inner face of G is necessarily a hole of P; see faces
g1, . . . ,g4 in Figure 10.1. Second, requiring G to be connected ensures that the holes of P are enclosed by O.
Third, the edges of G that are neither incident to the outer face of G nor to the holes of P serve as connections
between inner rings as well as between the outer ring and the inner rings; they can be chosen freely subject
to the constraints above. Fourth, every simple polygon is a weakly-simple polygon, but weakly-simple polygons
are more general than simple polygons. They can be used to describe more complex geometric objects, such
as a Euclidean minimum spanning tree of a point set; see Figure 10.3.

Hulls The hull of a weakly-simple polygon P is another weakly-simple polygon that contains P. Let C be a
set of directed straight-line segments. A C -hull is a weakly-simple polygon (possibly with holes) whose oriented
boundary consists only of segments from C and that contains P.

In this thesis, we consider shortcut hulls (see Chapter 11) where we restrict C to be a set of shortcuts.
Hence, all vertices of a shortcut hull are vertices of the input polygon. Here, we consider both weakly-simple
polygons and weakly-simple regions as input polygons. A shortcut hull is again a weakly-simple polygon.

Optimal Hulls Several C -hulls might exist for a given weakly-simple polygon. We want to find hulls that simplify
and/or schematize the input polygon P while preserving its main characteristics. We model this objective using
cost functions for weakly-simple polygons.

1. We aim for a C -hull Q of a weakly-simple polygon P that has a similar shape as P. Hence, we consider
costs c2d(P) for the area of Q. In particular, the value of c2d(Q) is minimal if P = Q.

2. We want to simplify the shape of the input polygon. Hence, we introduce costs for the perimeter c1d(Q)
of Q. We implement c1d as the sum of the costs for each segment of the outer ring and the inner rings (if
any) of Q. One example of the cost of a segment is its Euclidean length.

We allow the user the specify a balancing factor λ ∈ [0,1] with which we summarize these two cost functions
into the costs c(Q) of a C -hull.

c(Q) = λ · c1d(Q)+(1−λ ) · c2d(Q). (10.1)

We call the C -hull of P that minimizes the costs c over all admissible C -hulls of P the optimal C -hull.
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Figure 10.1: A weakly-simple polygon P with outer ring O (lilac) and five inner rings H1, . . . ,H5 (orange). The
planar straight-line graph G (black) supports O and H1, . . . ,H5. The face f0 is the outer face of G . The faces
f1, . . . , f5 are the holes of P. The faces g1, . . . ,g4 are the interior of P. (For better legibility the outer ring, as well
as the inner rings, are drawn with some offset.)

P

(a) weakly-simple polygon P

P

(b) vertices of P

Figure 10.2: The vertices of a weakly-simple polygon. For clarity, vertices with the same spatial location are
slightly displaced.

Figure 10.3: A minimum spanning tree T (blue edges) of a set of points.
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11 Shortcut Hulls: Vertex-Restricted Outer
Simplifications of Polygons

This chapter is mainly taken from joint work with Jan-Henrik Haunert, Joseph Mitchell, and Benjamin Nieder-
mann. We presented it at the Canadian Conference of Computational Geometry (2021) [Bonerath et al., 2020a].
Further, an extended version is published in the journal Computational Geometry Theory & Application [Bon-
erath et al., 2023b]. We want to acknowledge Nikolas Schwarz who is a student at the University of Konstanz,
Germany. He pointed us to (i) a mistake in the estimation of the size of C+ where we forgot to incorporate the
number of crossing components, and (ii) a problem in our analysis of the running time where we assume that the
crossing components have been pre-computed prior to our algorithm. We adapted our manuscript accordingly.

Abstract

Let P be a polygon and C a set of shortcuts, where each shortcut is a directed straight-line segment connecting
two vertices of P. A shortcut hull of P is another polygon that encloses P and whose oriented boundary is
composed of elements from C . We require P and the output shortcut hull to be weakly-simple polygons, which
we define as a generalization of simple polygons. Shortcut hulls find their application in cartography, where
a common task is to compute simplified representations of area features. We aim at a shortcut hull that has
a small area and a small perimeter. Our optimization objective is to minimize a convex combination of these
two criteria. If no holes in the shortcut hull are allowed, the problem admits a straightforward solution via the
computation of shortest paths. For the more challenging case in which the shortcut hull may contain holes,
we present a polynomial-time algorithm that is based on computing a constrained, weighted triangulation of the
input polygon’s exterior. We use this problem as a starting point for investigating further variants, e.g., restricting
the number of edges or bends. We demonstrate that shortcut hulls can be used for the schematization of
polygons.

11.1 Introduction

The simplification of polygons finds a great number of applications in tasks related to cartography or geograph-
ical information systems. For example in map generalization, the simplification of polygons is used to obtain
abstract representations of area features such as lakes or buildings. A common technique, which originally
stems from polyline simplification, is to restrict the resulting polygon Q of a polygon P to the vertices of P,
which is also called a vertex-restricted simplification [Driemel and Har-Peled, 2013, Filtser and Filtser, 2021,
Meulemans, 2014].

In this chapter, we consider the vertex-restricted crossing-free simplification of a polygon P considering only
shortcuts that do not intersect the interior of P. All shortcuts satisfying this requirement are termed possible
shortcuts. However, since there can be additional application-specific requirements, not all possible shortcuts
may be admissible. In contrast to other work, we consider the admissible shortcuts as input for our problem and
do not require special properties, e.g., that they are crossing-free or that they are within a prescribed buffer of
P. The result of the simplification is a shortcut hull Q of P, with Q possibly having holes. We emphasize that the
edges of a shortcut hull do not cross each other. Figure 11.1 shows polygons (blue area) and different choices
of shortcut hulls (blue and red area)—in this example all possible shortcuts are admissible. Such hulls find their
application when it is important that the simplification contains the polygon. Figure 11.2 shows the simplification
of a network of lakes, whose complement is a (green) polygon; note that the lakes are connected to the exterior
of the green polygon at the bottom side of the green polygon’s rectangular outer boundary. In this application,
it can be desirable that the simplification results in the water area being decreased, while preserving the land
area, which may contain important map features. Another example covered by our approach is Figure 11.3
where we have a spanning tree as input.

The degree of the simplification of Q can be quantified in terms of its perimeter and enclosed area. While a
small perimeter may indicate a strong simplification of P, a small area gives evidence that Q adheres to P. In the
two extreme cases, Q is either the convex hull of P (minimizing the perimeter), or Q coincides with P (minimizing
the enclosed area). We present algorithms that construct shortcut hulls of P that seek a balanced optimization,
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(a) (b) (c)

(d) (e) (f)

Figure 11.1: 1st column: Input polygon (blue) with a set C of all possible shortcuts (gray). 2nd–3rd columns:
Optimal C -hulls (blue and red area) for different choices of λ . For clarity, we omit the directions of the edges in
this and a majority of the other figures.

minimizing a convex combination of these two competing criteria, with the combination specified by a parameter
λ ∈ [0,1], which determines the relative importance of perimeter minimization versus area minimization. We
show that for the case that Q must not have holes we can reduce the problem to that of finding a cost-minimal
path in a directed acyclic graph that is based on the given set of admissible shortcuts. However, especially for
applications in cartography, which require the simplification of spatial structures, we deem the support of holes
in the simplification as an essential key feature. For example, in Figure 11.2d the connections between the lakes
are not preserved in the simplification shown, as they are very narrow, while it is desirable to preserve the large
lakes. We, therefore, investigate the computation of shortcut hulls that have holes in greater detail. As input, we
require a weakly-simple polygon, whose boundary is composed of polygonal rings. We formally define these
concepts as follows.

Formal Problem Definition We are given a weakly-simple region P and a set C of directed edges within
∂P∪ExtP such that the endpoints of the edges in C are vertices of P. We particularly require that an edge
e = pq ∈ C is directed such that the round walk from p to q along e and from q to p along the boundary of P is
oriented clockwise and encloses P; see Figure 11.4a. The elements in C are the admissible shortcuts. A C -
hull is a weakly-simple polygon (possibly with holes) whose oriented boundary consists only of directed edges
from C and that contains P. We seek a C -hull Q that minimizes a linear combination of the perimeter and the
enclosed area of Q. Formally, we define the cost of a C -hull Q to be

c(Q) = λ · c1d(Q)+(1−λ ) · c2d(Q), (11.1)
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(a) input map (b) input polygon P

(c) optimal shortcut hull Q (d) simplified map

Figure 11.2: Simplification of a network of lakes in Sweden. From (a) to (b): the input map is transformed into
an input polygon P (blue, in (b)) such that the lakes are in the exterior of P. From (c) to (d): the interior (blue
and red area) of the optimal shortcut hull Q of P becomes the land area (green) of the simplified map, while the
holes of Q (white) become the simplified lakes (blue).

where λ ∈ [0,1] is a given constant parameter that specifies the relative importance of the perimeter c1d(Q) and
the area c2d(Q) of Q. Further, Q is optimal if for every C -hull Q′ of P it holds c(Q)≤ c(Q′).

SHORTCUTHULL.
input: A weakly-simple region P and with n vertices, and a set C of shortcuts of P,

and λ ∈ [0,1]
output: An optimal C -hull Q of P (if it exists).

We point out that an optimal C -hull of a weakly-simple polygon P exists if a subset of C forms a polygonal ring
R that contains P. One way to ensure the existence of an optimal C -hull is, hence, to include every edge of P
in C . However, depending on the application this is not always desirable. For example, for schematized output
polygons one may only want to consider edges with specific orientations. We note that |C | ∈ O(n2), since the
edges of C have their endpoints at vertices of P.

We want to remind the reader that an (optimal) C -hull may contain holes. With this it is possible to fill up
narrow parts of the input polygon’s exterior; see Figure 11.1b. This allows us to reduce the perimeter of the
computed hull without making the new covered area too large. Nevertheless, we also provide a solution for the
special case that the computed C -hull must not have any hole.

Further, we want to point out that by forbidding the input polygon P to have holes we aim at keeping the
definition of the problem and the presentation of the algorithms simple. However, we could easily deal with
holes in the input polygon by simplifying the polygonal rings of P independently of each other.
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Figure 11.3: Shortcut hull Q of a minimum spanning tree T (blue edges). The boundary of Q is sketched with
some offset (black edges). Edges of T that occur twice on the boundary of Q are also accounted twice for the
perimeter of Q.

P

C

(a) input P and C

Q

(b) C -hull Q

e

P [e]

(c) pocket P[e]+ e

Figure 11.4: The input, a solution, and a subinstance for an instance of the problem.

Our Contribution We first discuss how to construct an optimal C -hull in O(|C |) time for the special case in
which the computed C -hull is required not to have holes (Section 11.3). Afterward, we turn to the general case
in which the C -hull may have holes (Sections 11.4–11.6). In particular, we show that finding an optimal C -hull Q
of P is closely related to finding a triangulation T of the exterior of P and assigning each triangle ∆ ∈ T either to
the interior or to the exterior of Q; see Figure 11.5a. We present an algorithm that solves SHORTCUTHULL in
O(n2) time if we forbid holes and in O(n3) time in the general case. Moreover, in the case that the edges of C do
not cross each other, it runs in O(n) time. More generally, we analyze the running time based on the structure
of C . Let S be the region between P and the convex hull of P. Let G be the crossing graph of C , i.e., each
node of G corresponds to an edge in C and two nodes of G are adjacent if the corresponding edges in C cross
each other. The spatial complexity of C is the smallest number χ ∈N such that for every connected component
of G the corresponding edges in C can be enclosed by a polygon with χ edges whose interior is disjoint with
P and only consists of vertices from P; see Figure 11.5. We call the number h of connected components in G
the number of crossing components. For the special case that no two edges of C cross each other, i.e., each
connected component is a single node, we define χ = 1 and h = 1. We show that the proposed algorithm runs
in O(hχ3 +nχ) time. We emphasize that χ ∈ O(n). Moreover, we present two variants of C -hulls that restrict the
number of permitted edges or bends. We further discuss relations of shortcut hulls with respect to problems
from applications in cartography and computational geometry (Section 11.7).

11.2 Related Work

In Chapter 9, we discussed related work on simplification and schematization. In the following, we want to add
to this related work on triangulations of polygons. Triangulating a polygon is widely studied in computational
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(a) χ = 1 (b) χ = 7, h = 3

Figure 11.5: Two examples of the set C (gray edges) with different spatial complexities χ. (a) The set C forms
a C -triangulation and an arbitrary C -hull (lilac) is shown. Each connected component of the crossing graph of
C is a single node. (b) The crossing graph of C has three connected components (enclosed by a blue, yellow,
and lilac polygon) that are not single nodes.

ei
ej

vi
vj

wi

wj

Figure 11.6: Illustration of proof for Theorem 1. Due to the order of the vertices of P the edges ei and e j cannot
be both part of S.

geometry. Triangulation of a simple polygon can be done in worst-case linear time [Chazelle, 1991]. A poly-
gon with h holes, having in total n vertices, can be triangulated in O(n logn) time [Garey et al., 1978] or even
O(n+h log1+ε h) time [Bar-Yehuda and Chazelle, 1994]. Our approach is particularly related to minimum-weight
triangulations [Shamos and Hoey, 1975] and constrained triangulations [Chew, 1989, Chin and Wang, 1998,
Kao and Mount, 1992, Lee and Lin, 1986, Shewchuk and Brown, 2015]. To summarize, a large number of
triangulation-based methods for simplification tasks exist, but these usually keep a given triangulation fixed.
In contrast, we present a method that yields a simplified representation of a polygon by optimizing over all
triangulations of a polygon’s exterior.

11.3 Shortcut Hulls without Holes

Let GC be the directed graph induced by the directed edges in C . We call GC the geometric graph of C . If we
do not allow the shortcut hull to have holes, we can compute an optimal C -hull Q based on a cost-minimal path
in GC ; see Figure 11.4b. For each edge e ∈ C , let P[e] be the section of the outer ring of P between the starting
point and the endpoint of e. We call the polygon describing the area enclosed by e and P[e] the pocket of e; see
Figure 11.4c. For each edge e we introduce costs that rate the length c1d(e) of e as well as the area c2d(P[e]) of
the pocket of e with respect to λ , i.e. c(e) = λ · c1d(e)+(1−λ ) · c2d(P[e]).

Observation 1. The vertices of the convex hull of P are part of the boundary of any shortcut hull of P.

Due to Observation 1, any C -hull of P contains the topmost vertex vtop of P. Hence, GC does not contain any
edge e that contains vtop in its pocket, and when removing vtop from GC we obtain a directed acyclic graph. In
Theorem 1 we use this property to prove that a cost-minimal path in GC corresponds to an optimal C -hull.

Theorem 1. The problem SHORTCUTHULL without holes can be solved in O(|C |) time. In particular, in the case
that the edges in C do not cross each other it can be solved in O(n) time and in O(n2) time otherwise.

Proof. Let vout be a copy of the topmost vertex vtop of GC that is only incident to all outgoing edges and analo-
gously let vin be a copy vtop that is incident to all incoming edges. Let S = (e1, . . . ,el) be the sequence of edges
of the shortest path in GC starting at vout and ending at vin. Let Q be the polygon that we obtain by interpreting
S as a polygon. We show that Q is an optimal C -hull. In particular, we need to show that Q is crossing-free.
Due to the definition of GC , the following two properties hold: (i) each edge e = vw of GC starts and ends on
the boundary of P and (ii) e is directed such the starting point of e is the starting point of P[e] and the endpoint
of e is the endpoint of P[e]. Hence, the vertex v appears before w on the boundary of P when going along P
starting at its topmost point. Assume that the edges ei = viwi and e j = v jw j with 1 ≤ i < j ≤ l cross; Figure 11.6.
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Figure 11.7: Containing box B and sliced donut D of P.

Since i < j, the starting points and endpoints of ei and e j appear in the order viwiv jw j on S. Due to properties (i)
and (ii), v j lies in the pocket of ei, and hence, they appear in the order viv jwiw j on P. However, this implies that
the sequence Si, j = (ei+1, . . . ,e j−1) contains an edge e whose starting point is the endpoint of P[e] and whose
endpoint is the starting point of P[e], which contradicts Property (ii).

The computation of the shortest path in a directed acyclic graph with |C | vertices and edges takes O(|C |)
time [Cormen et al., 2009]. In particular, when no two edges of C cross, we obtain O(n) running time and
otherwise O(n2).

If we allow Q to have holes, we cannot rate the costs for the area of a pocket in advance.

11.4 Structural Results for Shortcut Hulls with Holes

In this section, we present structural results for SHORTCUTHULL, which we utilize for an algorithm in Sec-
tion 11.5. We allow the shortcut hull to have holes.

11.4.1 Basic Concepts
Let P be a weakly-simple polygon. Let p1, . . . , pn be the vertices of P; see Figure 11.7a. We assume that the
topmost vertex of P is uniquely defined; we always can rotate P such that this is the case. We denote that vertex
by p1 and assume that P is clockwise oriented. Further, let C be a set of shortcuts of P and λ ∈ [0,1]; see
Figure 11.4a. Due to Observation 1, every C -hull of P has p1 as a vertex.

First, we introduce concepts for the description of the structural results and the algorithm. Let B be an axis-
aligned rectangle such that it is slightly larger than the bounding box of P; see Figure 11.7a. Let q1, . . . ,q4 be the
vertices of B in clockwise order such that q1 is the top-left corner of B. We require that the diagonal edges q1q3
and q2q4 intersect P, which is always possible. We call B a containing box of P. Let D be the polygonal ring
q1q2q3q4q1 p1 pn . . . p1q1. We call D a sliced donut of P; see Figure 11.7b. We observe that D is the boundary of a
bounded face of a planar straight-line graph. Further, we call e⋆ = p1q1 the cut edge of D. For an edge e that lies
in the interior of the face bounded by D and connects two vertices of D, let D[e] be the subchain of D that starts
at the start vertex of e and ends at the end vertex of e such that e⋆ is not part of that subchain; see Figure 11.7c.
Let D[e]+ e be the polygonal ring that we obtain by concatenating D[e] and e. Note that if e ∈ C then D[e] = P[e].
We call the area enclosed by D[e]+ e the pocket of e. In particular, we define the area enclosed by D to be the
pocket of e⋆.

Observation 2. The edges of a C -hull of P are contained in the sliced donut D.

In the following, we define a set C+ of edges in D with C ⊆ C+ that we use for constructing triangulations
of D, which encode the shortcut hulls. Generally, a triangulation of a polygon H is a superset of the edges of H
such that they partition the interior of H into triangles. Further, for a given set E of edges an E-triangulation of
H is a triangulation of H that only consists of edges from E. Moreover, we say that a set E of edges is part of a
triangulation T if E is a subset of the edges of T . Note that the edges of H are part of any E-triangulation of H.
Conversely, we also say that T contains E if E is part of T .
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Figure 11.8: C+-triangulation T . (a) All depicted edges belong to C+, while only green edges do not belong to
T . (b) The red triangles are active, while all other triangles are inactive. (c) The dual graph G⋆ of T forms a tree
with root ρ.

We call a set C+ of edges with C ⊆ C+ an enrichment of the shortcuts C and the sliced donut D if (1) every
edge of C+ is contained in the face bounded by D, (2) every edge of C+ starts and ends at vertices of D, and
(3) for every set C ′ ⊆ C of pair-wisely non-crossing edges the set D∪C ′ can be augmented by adding edges
from C+ to form a triangulation of D. First, we observe that C+ is well-defined as every edge in C satisfies
the first two properties. Further, by definition for any C -hull Q there is a C+-triangulation T of D that contains
Q. Hence, as an intermediate step, our algorithm for computing an optimal C -hull Q creates an enrichment of
C and D and then constructs a C+-triangulation that contains Q. In Section 11.4.2 we discuss the structural
correspondences between C+-triangulations of D and (optimal) C -hulls. In Section 11.4.3 we then show how to
construct C+. For example, a simple approach would be to define an enrichment of C by including all possible
shortcuts in D. We observe that any enrichment C+ of C has O(n2) edges. In general, the size of C+ can be
described by the spatial complexity of C , which impacts the running time of our algorithm (Section 11.5).

11.4.2 From C+-Triangulations to C -Hulls

In this section, we assume that we are given an enrichment C+ for the set of shortcuts C and a sliced donut D.
Let T be a C+-triangulation of D; see Figure 11.8.

Observation 3. For each enrichment C+ of C and each C -hull Q there exists a C+-triangulation T of the sliced
donut D such that Q is part of T .

Let T be a C+-triangulation of D such that the C -hull Q is part of T ; see Figure 11.8a. We can partition the
set of triangles of T in those that are contained in the interior of Q and those that are contained in the exterior
of Q. We call the former ones active and the latter ones inactive; see Figure 11.8b. Further, we call an edge e
of T a separator if (1) it is a part of P and adjacent to an inactive triangle, or (2) it is adjacent to both an active
and an inactive triangle. Conversely, let ℓ : T → {0,1} be a labeling of T that assigns to each triangle ∆ of T
whether it is active (ℓ(∆) = 1) or inactive (ℓ(∆) = 0). We call the pair T = (T, ℓ) a labeled C+-triangulation. From
Observation 3 we obtain the next observation.

Observation 4. For each enrichment C+ of C and each C -hull Q there exists a labeled C+-triangulation such
that its separators stem from C and form Q.

Let T = (T, ℓ) be a labeled C+-triangulation of the interior of a polygon H. We denote the set of separators
of T by ST. We define

c1d(ST) = ∑
e∈ST

c1d(e) and c2d(T ) = ∑
∆∈T,
ℓ(∆)=1

c2d(∆),

where c1d(e) denotes the length of e and c2d(∆) denotes the area of ∆. The costs of T are then defined as

c(T) = λ · c1d(ST)+(1−λ ) · c2d(T ).

For any e ∈ C+ \C we define c1d(e) = ∞. Thus, we have c(T) < ∞ if and only if ST ⊆ C . We call a labeled
C+-triangulation T of H optimal if there is no other labeled C+-triangulation T′ of H with c(T′)< c(T).

Next, we show that a labeled C+-triangulation T = (T, ℓ) that is optimal can be recursively constructed based
on optimal sub-triangulations. Let G⋆ be the dual graph of T , i.e., for each triangle, G⋆ has a node and two nodes
are adjacent iff the corresponding triangles are adjacent in T ; see Figure 11.8c.
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Lemma 1. The dual graph G⋆ of a C+-triangulation T of D is a binary tree.

Proof. As each edge of T starts and ends at the boundary of D, each edge of T splits D into two disjoint regions.
Hence, G⋆ is a tree. Further, since each node of G⋆ corresponds to a triangle of T , each node of G⋆ has at most
two child nodes.

We call G⋆ a decomposition tree of D. Let ρ be the node of G⋆ that corresponds to the triangle of T that is
adjacent to the cut edge e⋆ of D; as e⋆ is a boundary edge of D, this triangle is uniquely defined. We assume
that ρ is the root of G⋆; see Figure 11.8c. Let G⋆

u be an arbitrary sub-tree of G⋆ that is rooted at a node u of
G⋆. Further, let eu be the edge of the triangle ∆u of u that is not adjacent to the triangles of the child nodes
of u; we call eu the base edge of ∆u. The triangles of the nodes of G⋆

u form a C+-triangulation Tu of the pocket
Au =D[eu]+eu of eu. Thus, G⋆

u is a decomposition tree of Au. A labeled C+-sub-triangulation Tu = (Tu, ℓu) consists
of the C+-triangulation Tu of Au with Tu ⊆ T and the labeling ℓu with ℓu(∆) = ℓ(∆) for every ∆ ∈ Tu.

Lemma 2. Let T = (T, ℓ) be a labeled C+-triangulation of D that is optimal. Let Tu = (Tu, ℓu) be the labeled
C+-sub-triangulation of T rooted at the node u and let T′

u = (T ′
u , ℓ

′
u) be an arbitrary labeled C+-triangulation of

the same region. We denote the triangles of Tu and T′
u adjacent to eu by ∆u and ∆′

u, respectively. If ∆u and ∆′
u

have the same labels, i.e., ℓu(∆u) = ℓ′u(∆
′
u), then c(Tu)≤ c(T′

u).

Proof. For the proof, we use a simple exchange argument. Assume that there is a labeled C+-triangulation T′
u

of the pocket D[eu]+eu with ℓu(∆u) = ℓ′u(∆
′
u) and c(T′

u)< c(Tu). As both Tu and T′
u are triangulations of the pocket

D[eu]+ eu, we can replace the triangles of Tu with the triangles of T ′
u in T obtaining a new triangulation T of D.

Further, we define a new labeling ℓ such that ℓ(∆) = ℓ(∆) for every ∆ ∈ T \Tu and ℓ(∆) = ℓ′u(∆) for every ∆ ∈ T ′
u .

Let T = (T , ℓ) be the corresponding labeled C+-triangulation of D. The following calculation shows c(T)< c(T),
which contradicts the optimality of T.

c(T) =λ ·
(
c1d(ST \ST′

u
)+ c1d(ST′

u
)
)
+

(1−λ ) ·
(
c2d(T \T ′

u)+ c2d(T ′
u)
)

=λ · c1d(ST \ST′
u
)+(1−λ ) · c2d(T \T ′

u)+

λ · c1d(ST′
u
)+(1−λ ) · c2d(T ′

u)

=λ · c1d(ST \STu)+(1−λ ) · c2d(T \T ′
u)+ c(T′

u)

<λ · c1d(ST \STu)+(1−λ ) · c2d(T \T ′
u)+ c(Tu) = c(T)

Altogether, we obtain the statement of the lemma.

We use Lemma 2 for a dynamic programming approach that yields a labeled C+-triangulation T of D that is
optimal. In the following, we show that there exists such a triangulation for a given C+ and D.

Lemma 3. Let C+ be an enrichment of C and D a sliced donut of P. There exists a labeled C+-triangulation T
of D that is optimal and has cost c(T)< ∞. The separators of T form an optimal C -hull of P.

Proof. We show the following two claims, which prove the lemma. (1) For every C -hull Q of P there is a labeled
C+-triangulation T of D such that the separators of T form Q and c(T) = c(Q). (2) For every labeled C+-
triangulation T of D with c(T) < ∞ the separators of T form a C -hull Q with c(T) = c(Q). Claim 1. Let Q be
a C -hull of P. By the definition of C+, there is a C+-triangulation T of D such that Q is part of T . We define
the labeling ℓ such that ℓ(∆) = 1 for every triangle ∆ ∈ T that is contained in the interior of Q and ℓ(∆) = 0 for
every other triangle ∆ ∈ T . Hence, the separators of the labeled C+-triangulation T = (T, ℓ) are the edges of Q.
Further, by the construction of T we have c(T) = c(Q). This proves Claim 1.

Claim 2. Let T = (T, ℓ) be a C+-triangulation of D with c(T) < ∞ and let ST be the separators of T. By the
definition of the costs of T, we have ST ⊆ C . Moreover, as T is a triangulation, the edges in ST do not cross each
other. We show that the edges in ST form a C -hull Q with c(Q) = c(T). Let G⋆ be the dual graph of T . As the
diagonal edges of the containing box B intersect P, each triangle of T that is incident to one of the vertices of
B is also incident to a vertex of P; see Figure 11.9a. The vertices of the triangles incident to the vertices of B
form a path v1, . . . ,vk in G⋆ such v1 is the root of G⋆ and vk is a leaf. We denote the triangles represented by this
path by ∆1, . . . ,∆k, respectively.

Let p1, . . . , pl be the vertices of P in the order as they are incident to the triangles ∆1, . . . ,∆k in clockwise order;
see Figure 11.9b. We define pl+1 = p1. The vertices p1, . . . , pl form a weakly-simple polygon Q′ that contains P;
if P crossed Q′, this would contradict that the vertices are incident to the disjoint triangles ∆1, . . . ,∆k. We observe
that Q′ is a C+-hull of P without holes. Let T ′ ⊆ T be the set of triangles that are contained in Q′ and let E ′ be
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Figure 11.9: Proof of Lemma 3. (a) The triangles incident to the vertices q1, q2, q3 and q4 form a path in the dual
graph of the labeled triangulation T. (b) The vertices p1, . . . , p5 form a C+-hull of P containing all active triangles
(red) of T.
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Figure 11.10: Inductive construction of the boundary path Ke of an edge e that is a base edge of an inactive
triangle ∆. (a) Base case. (b) e1 is a base edge of an inactive triangle, and e2 is a separator. (c) Both e1 and e2
are base edges of inactive triangles.

the edges of these triangles. We first show that for each edge e ∈ E ′ that is a base edge of an inactive triangle
in T there is a path Ke in the pocket of e such that (1) Ke only consists of edges from ST, (2) Ke connects the
endpoints of e, and (3) the polygon Ke + e only contains inactive triangles of T. We call Ke the boundary path of
e; see Figure 11.10. Later, we use these boundary paths to assemble Q.

Let ∆ be the inactive triangle of which e is the base edge and let e1 and e2 be the other two edges of ∆. We
do an induction over the number of triangles of T that are contained in the pocket of e. If the pocket of e only
contains ∆, both edges e1 and e2 are edges of P; see Figure 11.10a. Hence, by definition they are separators.
We define Ke as the path e1 + e2, which satisfies the three requirements above. So assume that the pocket
of e contains more than one triangle; see Figure 11.10b–c. If e1 is not a separator, then it is the base edge
of an inactive triangle. Hence, by induction, there is a path Ke1 that satisfies the requirements above. If e1 is a
separator, we define Ke1 = e1. In the same way, we define a path Ke2 for the edge e2. The concatenation Ke1 +Ke2
forms a path that satisfies the requirements above, which proves the existence of the boundary path for an edge
e ∈ E ′.

We now describe the construction of the boundary of Q. For a pair pi, pi+1 with 1 ≤ i < l, the adjacent
triangle incident to one of the vertices of B is inactive. Let Ki = pi pi+1 if pi pi+1 is a separator. Otherwise,
pi pi+1 is the base edge of an inactive triangle in T. Thus, it has a boundary path Kpi pi+1 and we define Ki as
Ke. The concatenation K1 + · · ·+Kl forms the boundary B of a weakly-simple polygon Q that encloses P; see
Figure 11.9b. By construction, it consists of edges from C .

Finally, we show how to construct the holes of Q. Let e ∈ ST be a separator that is contained in the interior of
B and that is a base edge of an inactive triangle; see e and e′ in Figure 11.9b. The polygon Ze that consists of
e and the boundary path Ke only contains inactive triangles of T and is entirely contained in B. Further, for any
pair e and e′ of such separators in the interior of B the interiors of the polygons Ze and Ze′ are disjoint. Hence,
we set these polygons to be the holes of Q. Thus, we obtain a C -hull Q of P with holes such that the inactive
triangles of T lie in the exterior of Q, while all active triangles lie in the interior of Q. This implies that c(Q) = c(T),
which concludes the proof of Claim 2.
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Figure 11.11: Obtaining the enrichment C+ from C .

11.4.3 From C to C+

The performance of our algorithm solving SHORTCUTHULL relies on the considered enrichment C+. For an
edge e ∈ C+, let δe be the number of triangles that can be formed by e and two other edges from C+, and let
δ (C+) be the maximum δe over all edges e in C+. In Section 11.5 we show that the problem can be solved in
O(|C+| ·δ (C+)) time. In this part, we shortly discuss how to choose C+.

A simple choice for C+ is the set of all edges that lie in D and connect vertices of D. It is an enrichment of C
as it contains any choice of C and any triangulation of D that is based on the vertices of D is a subset of C+.

Observation 5. There exists an enrichment C+ of C with |C+| ∈ O(n2) and δ (C+) ∈ O(n).

If C has no crossings, we can do much better. We first observe that the edges of any triangulation T of
the sliced donut D are an enrichment of C and D if C is a subset of these edges. Hence, we can define
an enrichment as the set of edges of a triangulation T of D such that the edges of C are part of T ; for this
purpose we can for example utilize constrained Delaunay triangulations, but also other triangulation techniques
are possible.

Observation 6. If the edges in C do not cross, C has an enrichment C+ with |C+| ∈ O(n) and δ (C+) ∈ O(1).

In the following, we generalize both constructions of C+ and relate |C+| and δ (C+) to the number n of
vertices of P, the number of crossing components h, and the spatial complexity χ of C .

Theorem 2. There is an enrichment C+ of C with |C+| ∈ O(hχ2 +n) and δ (C+) ∈ O(χ), where h is the number
of crossing components, χ is the spatial complexity.

Proof. Let C1, . . . ,Ch be subsets of C such that two edges e ∈ Ci and e′ ∈ C j with 1 ≤ i, j ≤ h cross each other
if and only if i = j; see Figure 11.11. We call Ci a crossing component of C . Let Ri be the polygon in D with
the fewest edges, that is defined by vertices of P and contains Ci. We call Ri the region of Ci. Observe that
the regions R1, . . . ,Rh of crossing components induce a partition R of D that consists of R1, . . . ,Rh and regions
R′

1, . . . ,R
′
g defining D\

⋃h
i=1 Ri. For every region R′

i let T ′
i be an arbitrary triangulation.

Let C+ be the set of edges that contains (i) all edges of C , (ii) for each 1 ≤ i ≤ g the edges of T ′
i , and (iii)

for each 1 ≤ i ≤ h the set of all possible shortcuts of the region Ri such that these start and end at vertices of
Ri and are contained in D. The set C+ has size O(hχ2 + n) as each region Ri has at most χ vertices and the
triangulations of R′

1, . . . ,R
′
g have O(n) edges in total.

We show that C+ is an enrichment, by proving that for each set C ′ ⊆ C of pair-wisely non-crossing edges
there is a C+-triangulation T of D such that C ′ is part of T . Since an edge e ∈ C+ cannot cross the boundary of
two regions R,R′ ∈ R, we can compose T by triangulations of the regions in R as follows.

Let E be the edges of C ′ that are contained in the region R ∈ R. If R is a region of a crossing component,
C+ contains all shortcuts in this region. Since the edges of E are crossing-free, there exists a C+-triangulation
of R that is constrained to E. Thus, the edges of E are part of a C+-triangulation of R. If R is not a region of a
crossing component, the edges of C+ that lie in R form by the construction of C+ a triangulation of R. By joining
those triangulations of the regions in R, we obtain a C+-triangulation of D such that C ′ is part of it.

11.5 Computing Optimal Shortcut Hulls with Holes

The core of our algorithm is a dynamic programming approach that recursively builds the decomposition tree of
T as well as the labeling ℓ using the sliced donut D of the input polygon P and the input set of shortcuts C as
guidance utilizing Lemma 2. The algorithm consists of the following steps.
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Figure 11.12: The possible cases for the (a)–(d) active (red) and (e)–(h) inactive cost of a triangle ∆.

1. Create a containing box B and the sliced donut D of P and B. Let e⋆ be the cut edge of D.
2. Create an enrichment C+ of C and D.
3. Create the directed graph GC+ induced by the edges in C+, i.e., there is a one-to-one correspondence

between the edges of C+ and the edges of GC+ . Let T be the set of triangles in GC+ .
4. Determine for each edge e of GC+ the set Te ⊆ T of all triangles (e,e1,e2) in GC+ such that e1 and e2 lie in

the pocket of e.
5. Create two tables A and I such that they have an entry for each edge e of GC+ .

• A[e]: minimal cost of a labeled C+-triangulation T of the pocket D[e]+e such that the triangle adjacent
to e is active.

• I[e]: minimal cost of a labeled C+-triangulation T of the pocket D[e]+e such that the triangle adjacent
to e is inactive.

6. Starting at I[e⋆] apply a backtracking procedure to create a C+-triangulation T of D that is optimal. Return
T and the corresponding optimal C -hull Q of T (see proof of Lemma 3 for construction of Q).

We now explain Step 5 and Step 6 in greater detail.

Step 5 Let e be the currently considered edge of GC+ . For a triangle ∆ = (e,e1,e2) ∈Te of e we define its active
cost x∆ as

x∆ = ∑
i∈{1,2}

min{A[ei], I[ei]+λ · c1d(ei)}.

Hence, x∆ is the cost of a labeled C+-triangulation Te of the pocket D[e]+ e such that ∆ is active and the sub-
triangulations of Te restricted to the pockets D[e1]+ e1 and D[e2]+ e2 are optimal, respectively; see Figure 11.12
for the four possible cases.

A[e] =


∞ e ̸∈ C

(1−λ ) · c2d(e) e ∈ C , Te = /0,
min{x∆ | ∆ ∈ Te}+(1−λ ) · c2d(e) e ∈ C , Te ̸= /0.

Analogously, we define for ∆ its inactive cost y∆ as

y∆ = ∑
i∈{1,2}

min{A[ei]+λ · c1d(ei), I[ei]}.

Hence, y∆ is the cost of a labeled C+-triangulation Te of the pocket D[e] + e such that ∆ is inactive and the
sub-triangulations of Te restricted to the pockets D[e1]+ e1 and D[e2]+ e2 are optimal, respectively. We compute
the entry I[e] as follows.

I[e] =

{
∞ e ∈ C and Te = /0,
min{y∆ | ∆ ∈ Te} otherwise.
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By the definition of the tables A and I and Lemma 2, it directly follows that I[e⋆] is the cost of a labeled C+-
triangulation of D that is optimal. In particular, by Lemma 3 the entry I[e⋆] is the cost of an optimal C -hull. Note
that we compute the table entries of A and I in increasing order of the areas of the edges’ pockets. With this, we
can ensure that A[e1],A[e2], I[e1], and I[e2] are already computed when considering e, as the areas of the pockets
of e1 and e2 are strictly smaller than the area of the pocket of e.

Step 6 When filling both tables, we further store for each entry A[e] the triangle (e,e1,e2) ∈ Te with minimum
active cost. In particular, for the edge ei (with i ∈ {1,2}) we store a pointer to the entry A[ei] if A[ei] < I[ei]+λ ·
c1d(ei) and a pointer to the entry I[ei] otherwise. Similarly, we store for each entry I[e] the triangle (e,e1,e2) ∈ Te
with minimum inactive cost. In particular, for the edge ei (with i ∈ {1,2}) we store a pointer to the entry I[ei] if
I[ei]< A[ei]+λ ·c1d(ei) and a pointer to the entry A[ei] otherwise. Starting at the entry I[e⋆], we follow the pointers
and collect for each encountered entry its triangle —if such a triangle does not exist, we terminate the traversal.
If the entry belongs to A we label ∆ active and if it belongs to I, we label ∆ inactive. The set T of collected
triangles forms a labeled C+-triangulation T of D that is optimal. By Lemma 3 the separators of T form an
optimal C -hull.

Running Time For the running time analysis, we assume that the crossing components and their boundaries
are pre-computed. The first step of our algorithmclearly runs in O(n) time. By Theorem 2 there is an enrichment
C+ of C and D that has size O(hχ2 +n). It can be easily constructed in O(hχ3 + χn) time, which dominates the
running times of Step 2. For each edge e of GC+ the set Te contains δ (C+) triangles. Hence, the size of T is
in O(|C+| ·δ (C+)) which dominates the running times of Step 3, Step 4, and Step 5. Hence, by Theorem 2 we
obtain O(hχ3 + χn) running time. The backtracking takes linear time as it only traverses the decomposition tree
that is implicitly given by the pointers between the table entries.

Theorem 3. Given crossing components with their boundaries for the shortcuts, the problem SHORTCUTHULL
can be solved in O(hχ3 + χn) time. In particular, it is solvable in O(n3) time in general and in O(n) time if the
edges in C do not cross.

11.6 Restricted Shortcut Hulls

In this section, we discuss two variants of SHORTCUTHULL in which we restrict the number of edges and bends
of the computed shortcut hull. These restrictions are particularly interesting for the simplification of geometric
objects as they additionally allow us to easily control the complexity of the simplification.

11.6.1 Restricted C -Hull: Number of Edges
We show how to find a C -hull Q that balances its enclosed area and perimeter under the restriction that it
consists of at most k edges. We say that Q is optimal restricted to at most k edges, if there is no other C -hull Q′

with at most k edges and c(Q′)< c(Q).
k-EDGESHORTCUTHULL.

input: A weakly-simple region P with n vertices,
A set C of shortcuts of P, λ ∈ [0,1], and k ∈ N

output: An optimal C -hull Q of P (if it exists) restricted to at most k edges.

To solve k-EDGESHORTCUTHULL we adapt Step 5 of the algorithm presented in Section 11.5. We extend the
tables A and I by an additional dimension of size k modeling the budget of edges that we have left for the
particular instance. For a shortcut e ∈ C+ and a budget b we interpret the table entries as follows.

• A[e][b]: cost of labeled C+-triangulation T of the pocket of e such that T is optimal, the triangle adjacent to
e is active and T contains at most b separators.

• I[e][b]: cost of labeled C+-triangulation T of the pocket of e such that T is optimal, the triangle adjacent to
e is inactive and T contains at most b separators.

Let e be the currently considered edge of GC+ when filling the tables. For a triangle ∆ = (e,e1,e2) ∈ Te of e its
active and inactive costs depend on the given budgets b1 and b2 with 1 ≤ b1,b2 ≤ k that we intend to use for the
sub-instances attached to e1 and e2.

x∆,b1,b2 = ∑
i∈{1,2}

min{A[ei][bi], I[ei][bi −1]+λ · c1d(ei)}

y∆,b1,b2 = ∑
i∈{1,2}

min{A[ei][bi −1]+λ · c1d(ei), I[ei][bi]}
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Hence, for the case that e ∈ C and Te ̸= /0 we define

A[e][b] = min{x∆,b1,b2 | ∆ ∈ Te, b1 +b2 = b}+(1−λ ) · c2d(e).

There are b possible choices of b1 and b2 that satisfy b1 +b2 = b. Thus, we can compute A[e][b] in O(b) time. For
the remaining cases, we define

A[e][b] =

{
∞ e ̸∈ C

(1−λ ) · c2d(e) e ∈ C , Te = /0,

which can be computed in O(1) time. Moreover, for the case that e ̸∈ C or Te ̸= /0 we define

I[e][b] = min{y∆,b1,b2 | ∆ ∈ Te,b1 +b2 = b}.

For the same reasons as before we can compute I[e][b] in O(1) time. For e ∈ C or Te ̸= /0 we define I[e][b] = ∞.
Finally, to cover border cases we set A[e][0] = ∞ and I[e][0] = ∞. Altogether, the entry I[e⋆][k] contains the cost
of an optimal C -hull that is restricted to k edges. Apart from minor changes in Step 6, the other parts of the
algorithm remain unchanged.

Running time Compared to the algorithm of Section 11.5 the running time of computing a single entry in-
creases by a factor of O(k). Further, there are O(k) times more entries to be computed, which yields that the
running time increases by a factor of O(k2).

Theorem 4. The problem k-EDGESHORTCUTHULL can be solved in O(k2(hχ3 + nχ)) time. In particular, it can
be solved in O(k2n3) time in general and in O(k2n) time if the edges in C do not cross.

11.6.2 Restricted C -Hull: Number of Bends

A slightly stronger constraint than restricting the number of edges is restricting the number of bends of a C -hull.
Formally, we call two consecutive edges of a weakly-simple polygon a bend if the enclosed angle is not 180◦.
We say that Q is optimal restricted to at most k bends if there is no other C -hull Q′ with at most k bends and
c(Q′)< c(Q).
k-BENDSHORTCUTHULL.

input: A weakly-simple region P and with n vertices,
A set C of shortcuts of P, λ ∈ [0,1], and k ∈ N

output: An optimal C -hull Q of P (if it exists) that is restricted to at most k
bends.

If the vertices of P are in general position, i.e., no three vertices lie on a common line, a C -hull Q of P is
optimal restricted to at most k bends if and only if it is optimal restricted to k edges. Hence, in that case, we can
solve k-BENDSHORTCUTHULL using the algorithm presented in Section 11.6.1. In applications, the case that
the vertices of P are not in general position occurs likely when the input polygon is, e.g., a schematic polygon or
a polygon whose vertices lie on a grid. In that case, we add an edge p1 ph to C for each sequence p1, . . . , ph of
at least three vertices of P that lie on a common line; we add p1 ph only if it lies in the exterior of P. The newly
obtained set C ′ has O(n2) edges. Hence, compared to C it possibly has an increased spatial complexity with
χ ∈ O(n). From Theorem 4 we obtain the next result.

Theorem 5. The problem k-BENDSHORTCUTHULL can be solved in O(k2n3) time.

11.7 Experiments

We have implemented the algorithm presented in Section 11.5. For example, computing a shortcut hull for the
instance shown in Figure 11.2 with 1836 vertices one run of the dynamic programming approach (Step 5) took
400ms on average using an ordinary laptop. This suggests that despite its cubic worst-case running time our
algorithm is efficient enough for real-world applications. However, more experiments are needed to substantiate
this finding.
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(a) (b) octilinear (c) rectilinear

Figure 11.13: Simplification (a) and schematization (b)–(c) of the main island of Shetland.

Balancing the Costs of Area and Perimeter In Figure 11.1 we display a series of optimal C -hulls1. We
use the same polygon as input and define all possible shortcuts as admissible shortcuts while increasing the
parameter λ of the cost function. To find relevant values of λ we implemented a systematic search in the range
[0,1]. It uses the simple observation that with monotonically increasing λ the amount of area enclosed by an
optimal shortcut hull increases monotonically. More in detail, we compute the optimal shortcut hull for λ = 0 and
λ = 1. If the area cost cA of these shortcut hulls differ, we recursively consider the intervals [0,0.5] and [0.5,1]
for the choice of λ similar to a binary search. Otherwise, we stop the search.

As presented in Equation 11.1, we consider costs for the area and perimeter in SHORTCUTHULL. The
second column of Figure 11.1 shows a result for a small value of λ , i.e., the costs for the area are weighted
higher. As expected the resulting optimal C -hull is rather close to the input polygon. In contrast, the last column
of Figure 11.1 shows the optimal C -hull for a larger value of λ . We particularly obtain holes that represent large
areas enclosed by the polygon, while small gaps are filled.

Simplification and Schematization of Simple Polygons In the following, we discuss how our approach
relates to typical measures for simplification and schematization. These are the number of edges, the number
of bends [Douglas and Peucker, 1973] or the perimeter [Tufte, 1985], which are implemented by shortcut hulls;
e.g., Figure 11.13a shows the simplification of the border of the main island of Shetland by a C -hull as defined in
SHORTCUTHULL. The schematization of a polygon is frequently implemented as a hard constraint with respect to
a given set O of edge orientations. For schematizing a polygon with C -hulls, we outline two possibilities: a non-
strict and a strict schematization. For the non-strict schematization, we adapt the cost function of the shortcuts
such that edges with an orientation similar to an orientation of O are cheap while the others are expensive;
see Figure 11.13b for O consisting of horizontal, vertical, and diagonal orientations and Figure 11.13c for O

1Figure 11.1b: λ = 0.906; Figure 11.1c: λ = 0.995; Figure 11.1e: λ = 0.914; Figure 11.1f: λ = 0.975
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consisting of the horizontal and vertical orientations. The strict schematization restricts the set C of shortcuts,
such that each edge’s orientation is from O. For example, one can define C based on an underlying grid that
only uses orientations from O. We then need to take special care about the connectivity of C , e.g., by also
having all edges of the input polygon in C .

11.8 Conclusion

We introduced a simplification technique for polygons that yields shortcut hulls, i.e., weakly-simple polygons
that are described by shortcuts and that enclose the input polygon. In contrast to other work, we consider the
admissible shortcuts as input. We introduced a cost function of a shortcut hull that is a linear combination of
the covered area and the perimeter. Computing an optimal shortcut hull without holes takes O(n2) time. For the
case that we permit holes, we presented an algorithm based on dynamic programming that runs in O(n3) time.
If the input shortcuts do not cross, it runs in O(n) time.
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12 Part II: Conclusion and Outlook

Conclusion

The goal of the second part of this thesis was the formalization of optimal hulls of polygons and the development
of algorithms for the computation. The hulls should aim for a simplification and/or schematization of the input
polygon. We introduced a general framework of C -hulls of polygons, i.e., hulls that contain the input polygon and
consist of segments from a pre-defined set of segments C . With an appropriate choice of C , e.g., the direction
of all segments in C stem from a pre-defined set, the C -hull schematizes the input polygon. To achieve that the
hull is a simplification of the input polygon, we introduce two different types of cost functions: costs that depend
on the area of the hull, and costs that depend on the boundary of the hull. By balancing these costs, we achieve
hulls that mimic the shape of the input while being clearer.

We discussed shortcut hulls in detail, where the set C of segments consists of segments between vertices
of the input polygon. We proved that shortcut hulls can be computed efficiently with a running time of O(n3) in
the worst case. We give a more detailed analysis of the running time where we also discuss better bounds for
special cases depending on the input set C , e.g., if the segments in C do not cross, we obtain O(n) running time.

On-Going Research on Optimal Tight Hulls

In the following, we want to give an overview of a generalized variant of shortcut hulls that we started to study.
We published preliminary work at the EuroCG’20 workshop [Bonerath et al., 2020a]. In the following, we give
an overview of the problem formulation.

A tight hull of a crossing-free polygon P is another crossing-free polygon Q such that it contains P, each of
its segments touches P, and its exterior is a connected region. We investigate the construction of tight C -hulls,
i.e., tight hulls that are restricted to a pre-defined grid C in the exterior of P. As one example among many, the
grid C is based on horizontal and vertical rays emanating from the vertices of P; see Figure 12.1. This special
case of tight C -hulls, which we call tight rectilinear hulls, finds application in the schematization of polygons. We
present a polynomial-time algorithm that constructs tight C -hulls that are optimal with respect to an objective
linearly balancing a cost charged for the segments (e.g., their total length) and the area enclosed by the tight
hull.

We suggest an algorithm for finding a tight C -hull Q of P based on a refinement process. We start with
another tight C -hull A of P that can be precomputed and successively refine A ; see Figure 12.2. A refinement
step can be imagined as carving off pieces from the precomputed tight C -hull. Using dynamic programming, we
aim at computing the optimal tight C -hull Q by exploring all refinements. More in detail, in the refinement step of
A we partition the boundary of A at every shared vertex with P and refine these polylines independently; see
Figure 12.3. It is particularly challenging to argue that there always exists a refinement of such a polyline that

(a) (b) (c) (d)

Figure 12.1: Tight C -hulls. (a) Input polygon P and grid C based on the segments of P and vertical and
horizontal rays emanating from the vertices of P. (b)–(d) Different balances between the perimeter and area of
the simplification.
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A = Q1

P

(a)

Q2

(b)

Q = Q3

(c)

Q4=P

(d)

Figure 12.2: Refinement process. (a) Precomputed tight C -hull A of the input polygon P. (b) Refinement Q2 of
Q1. (c) Refinement of Q3 of Q2. (d) Refinement Q4 that corresponds to the optimal tight C -hull of P.

Figure 12.3: The refinement tree of a part of the polygon illustrated in Figure 12.2.

fulfills all requirements.
At EuroCG’20 workshop [Bonerath et al., 2020a], we presented results for the restricted case of tight recti-

linear hulls of rectilinear input polygons. In this version, we even considered the number of bends in the cost
function. With a dynamic program based on the sketched refinement process, we showed how to compute opti-
mal tight rectilinear hulls in polynomial time (O(n4) time where n is the number of vertices of the input polygon).

Outlook

In the following, we provide ideas and open problems that are related to our presented research.
• Until now, we have not considered the bends of the hull in the optimization of shortcut hulls. We deem

that users perceive a hull differently depending on whether it contains a number of sharp corners or not.
For many applications, e.g., representation of one homogeneous object we think it to be desirable to
avoid these sharp corners such that the hull looks homogeneous. We deem that both, corners with very
small angles, and corners with very large angles, are sharp corners and have similar effects. One could
formalize this property in the objective by introducing costs for bends. The costs can be defined as the
number of bends that are considered sharp or the sum of costs that depend on the sharpness of the bend.

• In the presented work, we mentioned that one can apply shortcut hulls also for spanning trees of point sets
as input. However, it was out of scope to experimentally and theoretically investigate different spanning
trees of point sets. It is not clear whether a particular spanning tree, e.g., the minimum spanning tree,
leads to an optimal solution with respect to the objective of a small covered area and small perimeter. By
experimentally evaluating these hulls and comparing them to other polygonal hulls of point sets, we can
get insights into the technique.

• Until now, we presented work on an optimal hull of one polygon. Besides our work, Rottmann et al.
[2021] presented a formalization of an optimal hull of a set of polygons with the constraint that the hull
consists of a subset of triangles of an input triangulation. We deem that investigating optimal hulls for
a set of (possibly heterogeneous) geometries, e.g., point sets, sets of edges, sets of polygons, sets
of heterogeneous geometries, or sets of three- or more-dimensional, is a promising research field. This
opens up a series of new challenges. For example, for a point set as input the objective that consists of
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costs for the covered area and the perimeter length is always optimal for a hull that consists only of the
point set. Hence, here, one challenge is to define a reasonable mathematical model. Also, it is not clear,
from a theoretical point of view whether no two hulls of the optimal set of hulls intersect, in particular, if
one uses objectives that are complex.

• Our approach relies on hulls that are formed by straight-line segments which is a reasonable restriction
since it is a common approach, allows a clear visualization, and comprises the information well. However,
allowing curved segments for the hull might result in hulls that perform even better with respect to
certain objectives and human perception. Also, such hulls can give insights into the objective and allow
us to understand their strengths and weaknesses with respect to visualization. Hence, we suggest to
investigate models of hulls with as few constraints as possible.

• Also, we suggest incorporating more cartographic constraints and objective for optimal hulls of geospa-
tial objects. For example, the hull of a building footprint may not overlap with a street that lies next to it.
Another example is that certain building footprints have recognizable characteristics that should be pre-
served in the hull. Introducing these real-world constraints and providing implementations of the algorithm
can increase the applicability and visibility, e.g., in the cartographic community.

• In order to develop good models of hulls it is important to consider human perception. In the previously
discussed research directions, we mentioned a series of changes to the input data, the constraints and
objectives of the hull and application scenarios. We suggest evaluating these properties of hulls in user
studies. We distinguish between (i) user studies that evaluate user performance with respect to a par-
ticular task, (ii) user studies that focus on aesthetic perception in a certain application scenario, and (iii)
qualitative interviews with experts of different application domains.
For (i), it is not straightforward how to set up the tasks. The idea of shortcut hulls is to give a clear
visualization that allows a quick assessment of the rough structure. To test this, one could display a map
for only a few seconds where some of the geospatial objects are replaced by their shortcut hulls. Then, the
user is asked to redraw the shape of the geospatial objects in the map and one can measure the similarity
to the original object.
For (ii), it would be interesting to develop an interface where one visualizes the input geometries, an
optimal hull of these geometries, and a panel where the user can interactively change the properties of
the hull (e.g., weighting factors for costs of covered area and perimeter length). The task for the user is to
optimize these properties such that the hull represents the data for a given application scenario best. One
application scenario can be the hull of a building footprint for a certain zoom level, or the hulls of a set of
animal observations that represent their geospatial habitats.
For (iii), in our opinion, it is important to contact experts from different application fields since the re-
quirements might differ tremendously. We suggest performing qualitative interviews for example on the
aesthetic perception, the clearness of the visualization, and the perceived accuracy. Also, we propose to
ask for special properties of the hulls that are motivated by the particular application field.
With these experiments, we suggest to derive insights and maybe guidelines for desirable properties of
hulls. Using this knowledge, one can iteratively improve the model and optimization of hulls.
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